Contents

Cha	apter 1	Introduction and Geological Background	1
		tes and the Continental Crust	1
1.3		me Important Granite Types	2
		Continental Crust	9
1.4	Grani	te and Water	13
Cha	apter 2	The Haplogranite System Qz-Ab-Or	18
2.1		ning of Melting in the System Qz-Ab-Or	
	at a _H	$_{\rm O}$ = 1 and Composition of Initial Melts	- 19
	2.1.1	Beginning of Melting	19
	2.1.2	Composition of Initial H ₂ O-Saturated	
		Melts	21
	2.1.3	Petrogenetic Implications	22
2.2	Dry M	Ielting in the System Qz-Ab-Or	25
	2.2.1	Beginning of Dry Melting	25
	2.2.2	Composition of Dry Melts	27
2.3	Meltir	ng in Subsystems (Dry and at $a_{H,O} = 1$)	27
	2.3.1	Beginning of Melting in Binary and	
		Ternary Subsystems at $a_{H,O} = 1$	27
	2.3.2	Dry and H ₂ O-Saturated Melting	
		in the Subsystems Qz-Ab and Qz-Or	29
	2.3.3	Eutectic Compositions of the Subsystems	
		Qz-Ab and Qz-Or	30
	2.3.4	The System Ab-Or-H ₂ O	31
2.4	Begin	ning of Melting at $a_{H,O} < 1$	32
		Beginning of Melting in the Subsystem	
		Ab-H ₂ O-CO ₂	32
	2.4.2	Beginning of Melting in the Subsystem	
		Qz-H ₂ O-CO ₂	33
		Beginning of Melting in the Subsystem	
		Qz-Or-H ₂ O-CO ₂	34
		Beginning of Melting in the System	
		$Qz-Ab-Or-H_2O-CO_2$	35

2.5 Liquidus Phase Relationships	38
2.5.1 Phase Relationships at $a_{H,O} = 1$	38
2.5.2 Phase Relationships at $a_{H,O} < 1$	41
2.5.3 Composition of H_2O -Undersaturated	
Melts	45
2.5.4 Minimum Water Contents of	
Haplogranitic Melts	49
2.5.5 Liquidus Curves of the Haplogranite	
System	51
2.5.6 Liquidus Curves of a Muscovite-Granite	54
2.5.7 Water and Melt Content Relationship	55
2.5.7 water and wen content relationship	55
Charles Descrition of Hadrong Hoplosmatic	
Chapter 3 Properties of Hydrous Haplogranitic Melts	58
3.1 Water Solubility	58
3.1.1 Determination of H ₂ O Solubility	
and Precision of the Data	58
3.1.2 Pressure Dependence of H ₂ O Solubility	60
3.1.3 Compositional Dependence of H_2O	
Solubility for Qz, Ab, Or, and Binary	
Compositions.	62
3.1.4 Compositional Dependence of H_2O	
Solubility for Qz-Ab-Or Compositions	62
3.1.5 Temperature Dependence of H ₂ O Solubility	67
3.1.6 Applications	69
3.2 Water Speciation in Aluminosilicate Melts,	••
Models for Incorporation Mechanisms	
of Water and Implications	71
3.2.1 Burnham's Model for Incorporation	/1
of Water	72
3.2.2 Molecular Water and Hydroxyl Groups	74
3.2.3 The Role of the Charge-Balancing Cation	/4
in Albite and Haplogranite Melts	80
3.2.4 Implications for the Properties of Granitic	00
Melts	82
3.3 Viscosity and Rheological Properties	02
of Granitic Melts and Magmas	07
3.2.1 Dry Molto	83
3.3.1 Dry Melts	84
3.3.2 Experimental Viscosity Data in Hydrous	
Melts	86
3.3.3 Comparison of Experimental and	~-
Calculated Viscosity Data	92
3.3.4 The Effect of Crystals and Bubbles	
on the Viscosity of Magmas	96
3.3.5 Implications for Natural Magmatic Systems	99

Contents

3.4 Density of Hydrous Granitic Liquids	102
3.4.1 Experimental Data	102
3.4.2 Implications	104
3.5 Diffusion of Major Elements and Water	
in Aluminosilicate Melts	105
3.5.1 Diffusion of Cations in Dry Melts	
and Glasses	106
3.5.2 Effect of Water on the Diffusion	
of Major Elements in Melts	107
3.5.3 Diffusivity of Water in Granitic Melts	109
3.5.4 Implications	112
3.6 Properties of Ascending Hydrous Magmas	114
3.6.1 Ascent of Chemically Closed Magmatic	
Systems	115
3.6.2 Adiabatic Ascent	120
3.6.3 Crystal Fractionation During Ascent	123
3.6.4 Role of Physical Properties of Granitoid	
Magmas on Transport Mechanisms (Dike	
vs. Diapir)	125
Chapter 4 Effects of Additional Aluminum and	
Minor Components in the System	
Qz-Ab-Or	127
4.1 Phase Relations in the System Qz -Ab-Or-Al ₂ O ₃	127
4.1 Phase Relations in the System Q2-A0-OF-A1 ₂ O ₃ 4.1.1 Effect of Alumina at H ₂ O-Saturated	121
Conditions	127
4.1.2 Effect of Alumina at H ₂ O-Undersaturated	127
Conditions	130
4.1.3 Petrogenetic Implications	132
4.2 Effect of Alumina on Solubility of H_2O	152
in the System Qz-Ab-Or-Al ₂ O ₃ \dots	135
4.2.1 Experimental Data	135
4.2.2 Petrogenetic Implications	137
4.3 Effect of Phosphorus and Solubility of	
Accessory Minerals in Granitic Melts	137
4.3.1 Phase Relations in the Granitic System	137
4.3.2 P_2O_5 Contents and Solubility of Apatite	10,
in Peraluminous and Ca-Bearing Melts	138
4.3.3 Solubility of Monazite in Granitic Melts	142
4.3.4 Solubility of Other Accessory Minerals	144
4.3.5 Applications	145
4.4 Effect of Fluorine	147
4.4.1 Effect on Phase Relations	147
4.4.2 Effect on H_2O Solubility	149
4.4.3 Viscosity and Density	151
	1.71

4.4.4 Solubility of F in Granitic Melts	153
4.4.5 Implications	154
4.5 Effect of Boron	155
4.5.1 Effect on Phase Relations	155
4.5.2 Effect on H_2O Solubility	159
4.5.2 Effect on H ₂ O Solutions for Melts	160
4.5.4 Solubility of Boron and Tourmaline	
Stability in Granitic Melts	160
4.5.5 Implications	162
4.6 Effect of Lithium	164
4.7 Contribution of Experimental Petrology to Case	101
Studies of Peraluminous Leucogranites	1 66
4.7.1 The Harney Peak Leucogranite	166
4.7.1 The Handy Feak Leucogramme	176
	170
4.7.3Conclusions and Limitations	196
of the Experimental Studies	186
Chapter 5 Fe and Mg in Granitic Melts	.188
5.1 The Role and Control of f ₀ ,	188
5.1.1 Control by Solid Buffers and Problems	189
5.1.2 The Shaw Membrane Technique	190
5.2 Phase Equilibria Involving Ferromagnesian	1.50
Minerals and Melt	190
5.3 Magnesium Content of Granitic Melts	193
5.3.1 Fe-Free Granitic Melts	193
5.3.2 Fe-Mg-Bearing Granitic Melts	194
5.4 Iron Content of Granitic Melts	195
5.5 Effect of Alumina on the Composition of	195
Granitic Melts	198
5.6 Implications	200
5.6 Implications	200
Chapter 6 The Tonalite System Qz-Ab-An	202
	. 202
6.1 Onset of H ₂ O-Saturated Melting in the Pure	
System Qz-Ab-An	202
6.2 Melting of Plagioclase, Kinetic Studies	204
6.2.1 Kinetic Studies in the Systems Ab-An	
and Ab-An-H ₂ O	204
6.2.2 Kinetic Studies in the System	_• ·
Qz-Ab-An-H ₂ O	205
6.2.3 Kinetic Studies in the System	205
$Qz-Ab-An-Al_2O_3-H_2O$	206
6.3 Phase Equilibria in the System Qz-Ab-An-H ₂ O.	200
6.3.1 The System Qz-Ab-An-H ₂ O at 2 kbar \dots	207
6.3.2 The System Qz-Ab-An-H ₂ O at 5 kbar \dots	208
at J Kual	210

6.3.3 Interpretation and Application	
of the Results	211
6.4 Phase Equilibria in the Peraluminous Tonalite	
System Qz-Ab-An-Al ₂ O ₃ -H ₂ O	214
6.5 Formation of Tonalites in the Light	
of the Experimental Results	215
6.6 Experimental Investigations on Natural	215
Tonalites	218
6.6.1 H ₂ O-Saturated Melting Experiments	
	219
6.6.2 Dehydration Melting Experiments	240
on Tonalites	219
6.6.3 Phase Relationships of Tonalites	
with Variable H ₂ O Contents	
at High Pressure	221
6.7 Constraints on the Origin of Archean Tonalites	225
6.8 Relevance of the Experimental Results	227
Chapter 7 The Granite System Qz-Ab-Or-An	229
7.1 Beginning of Melting (Water Saturated)	
in the System Qz-Ab-Or-An	229
7.2 Melting of Plagioclase in the System	
Qz-Ab-Or-An	232
7.2.1 Kinetic Studies in the System	
Qz-Ab-Or-An-Biotite	232
7.2.2 Distribution of Ab and An Between Melt	
and Coexisting Plagioclase	234
7.3 Hypersolidus Phase Relationships in the System	
Qz-Ab-Or-An	236
7.4 Kinetics of Subsolidus Reactions	
with Plagioclase	240
7.4.1 Application and Interpretation	240
of the Results	242
of the Results	242
Chapter 8 Experiments with Natural Granites	
and Related Rocks	244
8.1 Early Investigations	244
8.2 Comparison of Results Obtained	277
in Model Systems and Natural Rocks	244
	244
8.3 Melting and Crystallization Experiments	245
Performed at Water Saturation	245
8.3.1 Experimental Melting of Greywackes	245
8.3.2 Experimental Melting of Pelitic	_
Compositions	246
8.3.3 Crystallization of an Obsidian	246

8.3.4 The Effect of Volatile Components Other	
than H_2O on the Solidus Temperature	246
8.3.5 Low Pressure Melting, and Comparison of	
Granitic and Basaltic Solidus Curves	247
8.3.6 Melting of Granitic Rocks	
at High Pressures	248
8.4 Melting Experiments Performed at Water	
Undersaturation	250
8.4.1 Water-Undersaturated Melting in Runs	
with Water Added to the Solids	250
8.4.2 Water-Undersaturated Melting Controlled	
by H ₂ O-CO ₂ Mixtures	256
8.4.3 Experimental Melting of and Crystalliza-	
tion of Tuffs and Rhyolitic Rocks	
Performed under Selected Conditions	260
8.5 Summary of Experimental Findings	
and Conclusion	26 1
Chapter 9 Formation of Granitic Magmas	
Chapter 9 Formation of Granitic Magmas by Dehydration Melting	264
by Denyuration Menting	204
9.1 General Remarks	264
9.2 Dehydration Melting of Muscovite-Bearing	
Mineral Assemblages	266
9.2.1 Muscovite and Muscovite+Quartz	
Subsolidus Stability	266
9.2.2 Solidus for Dehydration Melting	
of Quartz+Muscovite	267
9.2.3 Petrogenetic Importance of the Solidus for	
Dehydration Melting of Muscovite-Quartz	
Assemblages	269
9.2.4 Dehydration Melting of Muscovite-Quartz	
Assemblages in Multicomponent Systems .	270
9.3 Dehydration Melting of Biotite-Bearing Mineral	
Assemblages	270
9.3.1 Solidus for Dehydration Melting	
of Biotite (Phlogopite)+Quartz	270
9.3.2 Dehydration Melting and Petrogenetic	
Implications, Early Ideas, and Results	275
9.3.3 Petrogenetic Grids and Phase Equilibria	
in High-Grade Pelitic Rocks	277
9.3.4 Dehydration Melting of Biotite-Bearing	
Metapelitic Assemblages	277
9.3.5 Summary of Experimental Results with	
Biotite-Bearing Mineral Assemblages	281
9.4 Dehydration Melting in Amphibolites	282

9.4.1 The Solidus for Dehydration Melting	
in Amphibolites	282
9.4.2 Composition of Partial Melts Generated	
by Dehydration Melting of Amphibolites .	289
9.4.3 Summary of Experimental Results	
Obtained with Hornblende-Bearing	
Mineral Assemblages	297
9.5 Evolution of the Continental Crust	
by Dehydration Melting of Amphibolites	
and Tonalites	298
Appendix: List of Abbreviations Used in the Text .	302
References	304
Permission Statement	329
Carble of Judges	224
Subject Index	331