Inhaltsverzeichnis

Formelzeichen und Abkürzungen								
1	Ein	eitung	1					
2	$\mathbf{A}\mathbf{sp}$	Aspekte der Verfahrensentwicklung						
	2.1	Überblick	3					
	2.2	Werkzeuge der Verfahrensentwicklung	4					
		2.2.1 Heuristische Methoden	5					
		2.2.2 Thermodynamische Bewertung	6					
		2.2.3 Mathematische Prozeßsynthese	7					
	2.3	Flowsheeting-Programme	7					
		2.3.1 Anwendungsbereiche	8					
		2.3.2 Aufbau	9					
3	Der	Der Exergiebegriff in der Verfahrenstechnik						
	3.1	Grundlagen	10					
		3.1.1 Definition der Exergie	10					
		3.1.2 Umgebungsmodell	12					
		3.1.3 Berechnung der Exergie eines Stoffstroms	15					
	3.2	Exergiebasierte Prozeßanalyse	17					
		3.2.1 Bewertungskriterien für chemische Anlagen	17					
		3.2.2 Anbindung an ein Flowsheeting-Programm	18					
4	Exe	Exergetische Optimierung eines Prozesses						
	4.1	Ammoniaksynthese mit Steam-Reforming	21					
	4.2	Prozeßbeschreibung	21					
		4.2.1 Das Standardverfahren	22					
	4.3	Modellierung der Ammoniaksynthese	24					

		4.3.1	Synthesegaserzeugung	24						
		4.3.2	Synthesekreislauf	25						
		4.3.3	Tieftemperaturtrennung der Inerten	26						
	4.4	Kosten	schätzung	27						
	4.5	Analys	e des Standardverfahrens	29						
		4.5.1	Gesamtbewertung	29						
		4.5.2	Optimierung des Synthesedrucks	29						
		4.5.3	Ergebnis der Druckoptimierung	32						
	4.6	Analys	e von Verfahrensvarianten	32						
		4.6.1	Das Braun-Purifier-Konzept	34						
		4.6.2	Das AMV Verfahren	34						
	4.7	Ergebn	nis der exergetischen Bewertung	35						
5	MIN	NLP-A	lgorithmen	39						
	5.1	Die Su	perstruktur	39						
	5.2	Mathe	matische Abbildung der Superstruktur	42						
		5.2.1	Modellierung	42						
	5.3	Übersi	cht zu MINLP-Algorithmen	44						
		5.3.1	Branch-and-Bound	45						
		5.3.2	MINLP-Optimierung auf Basis der Netzstruktur	46						
	5.4	Der O	uter-Approximation Algorithmus	48						
		5.4.1	Übersicht	48						
		5.4.2	OAER-Algorithmus	50						
		5.4.3	Zerlegung des Netzwerks	54						
		5.4.4	Konvergenz	55						
	5.5	Die Ge	eneralized Benders Decomposition	57						
	5.6	Umset	zung der exergetischen Strukturoptimierung	60						
		5.6.1	Programmkonzept	60						
		5.6.2	Das Koordinierungsprogramm MIPS	61						
6	Anwendungsbeispiele der MINLP-Optimierung 68									
	6.1	Illustr	ation: Ein Literaturbeispiel	65						
	6.2	Zwisch	nenkühlung eines Ammoniakkonverters	68						
		6.2.1	Modellierung	68						
		6.2.2	Ergebnis	73						

INHALTSVERZEICHNIS									
		6.2.3 Diskussion	72						
7	Zus	ammenfassung	74						
A	Flie	ßbilder	76						
	A.1	Synthesekreislauf	77						
	A.2	Standardverfahren	79						
	A.3	Braun-Purifier	81						
	A.4	AMV Verfahren	83						
в	B Ergänzungen zum MINLP								
	B.1	Relaxation nichtlinearer Gleichungen	84						
	B .2	Modelle für MINLP-Optimierung	85						
		B.2.1 Reaktormodell REAKT	85						
		B.2.2 Modellierung der logischen Verbindungen	86						