Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte FZKA 5924

Untersuchung von kompakten und granularen Wolframoxid-Schichten als Gassensoren

Günter Schütt Institut für Instrumentelle Analytik Projekt Mikrosystemtechnik

von der Fakultät für Chemie der Universität Karlsruhe (TH) genehmigte Dissertation

Forschungszentrum Karlsruhe GmbH, Karlsruhe
1997

Inhaltsverzeichnis

1	Einl	Einleitung			
2	Gru	Grundlagen			
	2.1	Funktionsprinzip von Gasdetektoren aus halbleitenden Metall-			
		oxiden	3		
	2.2	Leistungsparameter von Sensoren	5		
		2.2.1 Sensorsignal, Ansprech- und Abklingzeit	5		
		2.2.2 Nachweisgrenzen	6		
		2.2.3 Signalmuster und Unterscheidbarkeit von Gasen	6		
	2.3	Materialeigenschaften von Wolframoxid WO ₃	7		
	2.4	Röntgen-Photoelektronenspektroskopie (XPS)	8		
	2.5	Sekundärneutralmassenspektrometrie (SNMS)	9		
	2.6	Interferenzmikroskopie	11		
	2.7	Röntgenbeugung	12		
3	Exp	erimentelles	13		
	3.1	Herstellung kompakter WO ₃ -Sensoren und -Sensorfelder	13		
		3.1.1 Herstellung kompakter Sensoren	13		
		3.1.2 Prinzipieller Aufbau von Sensorfeldern	14		
		3.1.3 Herstellung von Sensorfeldern	14		
	3.2	Herstellung mikrogranularer WO ₃ -Sensoren	17		
		3.2.1 Elektrische Kontaktierung mikrogranularer Sensoren	17		
		3.2.2 Sprühtrocknungsverfahren	18		
		3.2.3 Größenklassifikation mit Kaskadenimpaktor	19		
		3.2.4 Temperaturbehandlung	20		
	3.3	Untersuchung der Gasempfindlichkeit	20		
		3.3.1 Auswahl und Erzeugung der Testatmosphären	20		
		3.3.2 Prüfstand für Sensoren und Sensorfelder	22		
		3.3.2.1 Halterung für Sensoren	22		
		3.3.2.2 Halterung für Sensorfelder	23		
		3.3.3 Messung der elektrischen Leitfähigkeit	24		
		3.3.4 Vorbereitung und Durchführung der sensorischen Prüfung	25		
	3.4	Bestimmung von Partikelgrößen granularer WO ₃ -Schichten	27		
	3.5	Chemische Analyse	28		
		3.5.1 Untersuchungen mit SNMS	28		
		3.5.2 Untersuchungen mit XPS	29		
4	Vor	rbereitende Untersuchungen	31		
	4.1	Morphologie von WO ₃ -Schichten	31		
		4.1.1 Visuelle Prüfung	31		
		4.1.2 Bestimmung der Schichtdicken kompakter WO ₃ -Sensoren	31		

		4.1.3		nität kompakter WO ₃ -Schichten	32	
		4.1.4	Partikel	struktur und Verteilung der Partikelgrößen gra-		
			nularer	WO ₃ -Schichten	33	
			4.1.4.1	Partikelstruktur	33	
			4.1.4.2	Verteilung der Partikelgrößen	34	
			4.1.4.3		37	
	4.2	Eleme	ntanalyse	e mit SNMS	38	
		4.2.1	Vergleic	h der Elementkonzentrationen kompakter und		
				rer WO ₃ -Sensoren	38	
		4.2.2		erteilung der Elemente in einem kompakten Sen-		
					39	
	4.3	Unters		n der Oxidationszustände mit XPS	41	
		4.3.1	_	h kompakter und granularer Sensoren	41	
		4.3.2	_	nach einer Exposition mit NO ₂	43	
	4.4	Strom		ngs-Charakteristik von WO ₃ -Schichten	44	
			•			
5	Sen	sorisch	ıe Prüfu	ng von WO ₃ -Schichten	47	
	5.1	Tempe	eratureini	fluß auf das Nachweisverhalten granularer WO ₃ -	* 5	
		Sensor	en		47	
		5.1.1		aturabhängigkeit der Sensorsignale bezüglich NO ₂		
		und Propan				
			5.1.1.1	Temperaturabhängigkeit der Sensorsignale be-		
				züglich NO ₂	47	
			5.1.1.2	Temperaturabhängigkeit der Sensorsignale be-		
				züglich Propan	48	
			5.1.1.3	Temperaturabhängigkeit der Signale für Propan		
				und NO ₂ von SnO ₂ -Sensoren	49	
			5.1.1.4	Diskussion der Selektivität bezüglich NO2 und		
				Propan von WO ₃ - und SnO ₂ -Sensoren	51	
		5.1.2	Temper	aturabhängigkeit des Nachweisverhaltens bezüg-		
			lich Kohlenmonoxid und Ethanol			
			5.1.2.1	Temperaturabhängigkeit des Sensorsignals be-		
				züglich Kohlenmonoxid	52	
			5.1.2.2	Temperaturabhängigkeit des Sensorsignals be-		
				züglich Ethanol	53	
			5.1.2.3	Temperaturabhängigkeit der Ansprech- und Ab-		
				klingzeiten bezüglich Ethanol	54	
	5.2	Kompakte WO ₃ -Sensoren				
		5.2.1	Abhäng	gigkeit der Signale kompakter WO ₃ -Sensoren von		
			_	nzentration	56	
		5.2.2		ion des Nachweisverhaltens bezüglich ${ m NO_2}$	58	
		5.2.3		der Herstellungstemperatur	59	
	53	Komr) - Sensorfelder	62	

7	Zus	Zusammenfassung 10			
	6.3	Perspe	ektive	104	
	•	6.2.2	1	103	
		6.2.1	81	102	
		0		102	
	6.2 Eignung von WO ₃ -Sensoren zur Erfassung von Luftverunre				
	6.1	ich kompakter und granularer WO ₃ -Sensoren	97		
6	Disl	cussion	1	97	
			3.4.4.5 Ansprech- und Abkingzeiten	30	
			5.4.4.2 Erkennbarkeit des Alterungszustand 5.4.4.3 Ansprech- und Abklingzeiten	93 95	
			•		
		5.4.4	Langzeitstabilität	91 92	
		5.4.3	Beeinflussung der NO ₂ -Detektion durch weitere Gase	88	
		E 4 2	Benzol	87	
			5.4.2.2.4 Ansprech- und Abklingzeiten bezüglich	07	
			pan und Benzol	86	
			trockener Atmosphäre für NO2, Pro-	. -	
			5.4.2.2.3 Vergleich mit Detektionsverhalten in		
			le bei konstanter Luftfeuchte von 50 %	83	
			5.4.2.2.2 Konzentrationsabhängigkeit der Signa-		
			5.4.2.2.1 Empfindlichkeit für Luftfeuchte	82	
			5.4.2.2 Detektionsverhalten in feuchter Atmosphäre	82	
			5.4.2.1 Einfluß des Sauerstoffgehalts	80	
		5.4.2	Querempfindlichkeiten	80	
			5.4.1.5 Einfluß der Belegungsdichte von WO ₃ -Sensoren	77	
			$5.4.1.4$ Einfluß der Partikelgröße auf die Signale bei 350 $^{\circ}\mathrm{C}$	75	
			5.4.1.3 Ansprech- und Abklingzeiten bei 225 und 350 °C	74	
			5.4.1.2 Diskussion des Nachweisverhaltens	73	
			und 225°C	71	
			von NO ₂ , Propan, Benzol und Methan bei 350		
			5.4.1.1 Abhängigkeit der Signale von der Konzentration		
		_	wie 350 °C	71	
	J. 4	5.4.1	Detektionsverhalten granularer WO ₃ -Sensoren bei 225 so-		
	5.4		lare WO ₃ -Schichten	71	
		5.3.4	Wiederholte Detektion von NO ₂ mit einem WO ₃ -Sensorfeld		
		5.3.3	Reproduzierbarkeit der Herstellung von WO ₃ -Sensorfeldern		
		5.3.2	von der Konzentration	62 65	
		5.3.1	Abhängigkeit der Signale kompakter WO ₃ -Sensorfelder von der Konzentration	es	
		F O 1			

INHAL	TSVI	ERZE	ICH	NIS

	111
	117
	117
	2