W. A. R. - Bibliothek inv. - Nr. D. 16655

Einsatz von Fuzzy-Control zur Regelung NSTITUT WAR — Bibliothek — Verfahrenstechnischer Prozesse

FAX 0 61 51/16 37 58 Marco Boll 03.4 BOH

FIT-Verlag

für Innovation und Technologietransfer Paderborn 1997

Inhaltsverzeichnis

1	Einführung	9
2	Aufbau und Eigenschaften von Fuzzy-Systemen	12
	2.1 Grundlagen der Fuzzy-Logik	12
	2.1.1 Fuzzy-Menge	12
	2.1.2 Operationen auf Fuzzy-Mengen	14
	2.1.3 Fuzzy-Relationen	15
	2.1.4 Approximatives Schließen	16
	2.2 Aufbau von Fuzzy-Systemen	17
	2.2.1 Linguistische Variable und linguistischer Wert	17
	2.2.2 Fuzzifizierung	18
	2.2.3 Inferenz	18
	2.2.4 Defuzzifizierung	22
	2.3 Übertragungsverhalten von Fuzzy-Komponenten	23
	2.3.1 Globale Eigenschaften	25
	2.3.2 Lokale Eigenschaften	29
	2.4 Einordnung	32
3	Einsatz von Fuzzy-Control	34
	3.1 Einbindung in den Regelkreis	34
	3.1.1 Fuzzy-Regler	34
	3.1.2 Fuzzy-Hybrid-Regler	39
	3.2 Entwurf von Fuzzy-Regelungen	43
	3.2.1 Heuristischer Entwurf	44
	3.2.2 Automatischer Entwurf von Zugehörigkeitsfunktionen und Regeln	45
	3.3 Stabilitätsprüfung von Regelkreisen mit Fuzzy-Komponenten	49
	3.3.1 Methode der harmonischen Balance	50
	3.3.2 Anwendung auf Regelkreise mit Fuzzy-Komponenten	52

4	Anwendungen auf verfahrenstechnische Prozesse			
	4.1 Regelung der Ozonkonzentration in einem Rohrreaktor			
		4.1	Prozeßbeschreibung und Modellierung	64
		4.1.2	Entwurf des Fuzzy-Hybrid-Reglers	73
		4.1.3	Simulationsergebnisse	78
		4.1.4	Stabilitätsprüfung	87
		4.1.5	Experimentelle Validierung	94
	4.2	Regel	ung der Substratkonzentration in Bioreaktoren	99
		4.2.1	Modell des Prozesses	100
		4.2.2	Einsatz von Fuzzy-Control für die Regelung von Bioreaktoren	106
		4.2.3	Entwicklung eines robusten Fuzzy-Hybrid-Reglers	108
		4.2.4	Simulationsergebnisse	123
		4.2.5	Übertragbarkeit des Regelkonzepts	134
		4.2.6	Experimentelle Validierung	138
5	Zu	samm	enfassung	146
6	An	hang	~ 	149
7	Syr	mbolv	erzeichnis	156
8	Lit	eratur	•	159