Brian Straughan

Explosive Instabilities in Mechanics

With 12 Figures

Contents

1.	\mathbf{Int}	roduction	1			
	1.1	Blow-Up in Partial Differential Equations				
		in Applied Mathematics	1			
	1.2	Methods of Establishing Non-existence				
		and Growth Solutions	4			
		1.2.1 The Concavity Method	4			
		1.2.2 The Eigenfunction Method	10			
		1.2.3 Explicit Inequality Methods	12			
		1.2.4 The Multi-Eigenfunction Method	15			
		1.2.5 Logarithmic Convexity	17			
	1.3	Finite Time Blow-Up Systems with Convection	19			
		1.3.1 Fujita-Type Problems	20			
		1.3.2 Equations with Gradient Terms	24			
		1.3.3 Systems with Gradient Terms	27			
		1.3.4 Equations with Gradient Terms				
		and Non-Dirichlet Boundary Conditions	28			
		1.3.5 Blow-Up of Derivatives	31			
2.	Analysis of a First-Order System					
4.		-	33			
	$2.1 \\ 2.2$	Conditional Decay of Solutions Boundedness of Solutions	зз 37			
			37 40			
	2.3	Unconditional Decay of Solutions	40 43			
	2.4	2.3.1 Special Cases	43 44			
			44 47			
	2.5	Numerical Results by Finite Elements	41			
		and Quadratic Right-Hand Sides	47			
		and Quadratic regit-mand Sides	41			
3.	\mathbf{Sin}	gularities for Classical Fluid Equations	63			
	3.1	Breakdown for First-Order Systems	63			
	3.2	Blow-Up of Solutions to the Euler Equations	66			
		3.2.1 Vortex Sheet Breakdown				
		and Rayleigh–Taylor Instability	70			
		3.2.2 A Mathematical Theory for Sonoluminescence	71			

	3.3	Blow-Up of Solutions to the Navier–Stokes Equations	74				
		3.3.1 Self-similar Solutions	77				
		3.3.2 Bénard–Marangoni Convection	78				
4.	Catastrophic Behaviour						
		Other Non-linear Fluid Theories	81				
	4.1	Non-existence on Unbounded Domains	81				
		4.1.1 Ladyzhenskaya's Models	81				
		4.1.2 Global Non-existence Backward in Time	•				
		for Model I, When the Spatial Domain Is \mathbf{R}^2	86				
		4.1.3 Global Non-existence Backward in Time					
		for Model I, When the Spatial Domain Is \mathbf{R}^3	90				
		4.1.4 Exponential Growth for Model II,					
		Backward in Time	94				
		4.1.5 The Backward in Time Problem for Model III	97				
	4.2	A Model for a Second Grade Fluid in Glacier Physics	99				
		4.2.1 Non-existence Forward in Time for Model I	101				
		4.2.2 Non-existence Backward in Time for Model I	103				
		4.2.3 Exponential Growth Forward in Time for Model II	105				
		4.2.4 Exponential Boundedness Backward in Time					
		for Model II	108				
	4.3	Blow-Up for Generalised KdeV Equations	108				
	4.4	Very Rapid Growth in Ferrohydrodynamics	112				
	4.5	Temperature Blow-Up in an Ice Sheet	115				
5.	Blow-Up in Volterra Equations						
	5.1	Blow-Up for a Solution to a Volterra Equation	119				
		5.1.1 A General Non-linear Volterra Equation	122				
		5.1.2 Volterra Equations Motivated by Partial Differential					
		Equations on a Bounded Spatial Domain	125				
	5.2	Blow-Up for a Solution to a System of Volterra Equations .	126				
		5.2.1 Coupled Non-linear Volterra Equations Which May					
		Arise from Non-linear Parabolic Systems	127				
6.	Che	emotaxis	131				
	6.1	Mathematical Theories of Chemotaxis	131				
	0.1	6.1.1 A Simplified Model	133				
	6.2	Blow-Up in Chemotaxis	100				
		When There Are Two Diffusion Terms	134				
	6.3	Blow-Up in Chemotaxis with a Single Diffusion Term	137				
	0.0						
7.	\mathbf{Ch}	ange of Type	143				
	7.1	Instability in a Hypoplastic Material	143				

	7.2	Instability in a Viscous Plastic Model		
		for Sea Ice Dynamics	150	
	7.3	Pressure Dependent Viscosity Flow	152	
8.	Rap	id Energy Growth in Parallel Flows	155	
	8.1	Rapid Growth in Incompressible Viscous Flows	155	
		8.1.1 Parallel Flows	158	
		8.1.2 Energy Growth in Circular Pipe Flow	168	
		8.1.3 Linear Instability of Elliptic Pipe Flow	171	
	8.2	Transient Growth in Compressible Flows	172	
	8.3	Shear Flow in Granular Materials	173	
	8.4	Energy Growth in Parallel Flows		
		of Superimposed Viscous Fluids	176	
Bibliography				
Suł	oject	Index	193	