| nstitut fur Informatik
der Technischen Universitat M Unchen

Providing efficient, extensible and adaptive
intra-query parallelism for advanced applications

Clara Nippl

| nstitut fur Informatik
der Technischen Universitat M Ginchen

Providing efficient, extensible and adaptive
intra-query parallelism for advanced applications

Clara Nippl

Vollstdndiger Abdruck der von der Fakultdt fur Informatik der Technischen Universitét
Munchen zur Erlangung des akademischen Grades eines

Doktorsder Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. M. Paul
Prifer der Dissertation:

1. Univ.-Prof. R. Bayer, Ph.D.
2. Univ.-Prof. Dr. B. Mitschang,
Universitat Stuttgart

Die Dissertation wurde am 21.01.2000 bei der Technischen Universitat Minchen
eingereicht und durch die Fakultét fur Informatik am 20.07.2000 angenommen.

Abstract

Parallel execution offers a solution to the problem of reducing the response time of object-rela-
tional queries against large databases. A database management system answers a query by first
finding a procedural plan to execute the query and subsequently executing the plan to produce
the query result. In thisthesis we address all significant levels of the query processing architec-
turein order to provide a comprehensive approach to the problem of efficient intra-query paral-
lelism.

Thereby, we develop optimization and parallelization algorithms using models that incorporate
the sources of parallelism as well as obstacles to achieve speedup. To reduce its inherent com-
plexity, we have split parallelization into several phases, each phase concentrating on particular
aspects of parallel query execution. This rule- and cost-based approach guarantees both exten-
shbility as well as effectiveness. Adaptability to diverse application domains and architectural
characteristics are provided by means of appropriate parameter settings.

The proposed strategies have been implemented and evaluated within the parallel object-rela-
tional DBMS prototype MIDAS. The results show that the presented approach is particularly
suitable for the parallelization of large and complex queries, as can be found in upcoming appli-
cations such as data warehouses, digital libraries or stream analysis.

Acknowledgments

| express my gratitude to the people and organizations that made this thesis possible.

Many thanks to my advisor, Professor Dr.-Ing. habil. Bernhard Mitschang. | owe him a great
deal for his help and guidance from the beginning of the research to the end of this thesis.
Thanks for his friendly supervision, visionary instructions and useful comments during the
preparation of common publications.

| am grateful to Professor Rudolf Bayer for the analysis of my results and helpful and incisive
comments.

| acknowledge the help of my colleagues Giannis Bozas, Michael Jaedicke, AngelikaReiser and
Stephan Zimmermann with whom | worked together in the MIDAS project. The research area
of Gianniswas |lock and buffer management. Michael focused on parallelization of user-defined
functionality. Stephan worked on transaction management, process architecture, communica-
tion aswell as benchmarking and performance. This group effort yielded a valuable experimen-
tal platform that served also for the performance analysis of thiswork. | thank Angelikaalso for
her helpful comments for this thesis.

Specia thanks to Professor Leonard Shapiro form the Portland State University. He helped me
understand the realities of top-down query optimization. | gratefully acknowledge the fruitful
discussions with him via mail and meetings. Thanks to Goetz Graefe as well for providing us
the Cascades code that served as a basis for our TOPAZ parallelizer and Model-M optimizer.

Thanksto the studentsthat have hel ped devel oping and implementing many of the concepts pre-
sented in this thesis: Franz Brandmayr, Rolf Druegh, Michael Fleischhauer, Matthias Hilbig,
Kay Kruegel-Barvels, Sabine Perathoner, Jean-Jacques Raye, and Steffen Rost. Thiswork also
benefits from the effort of all other students that worked in the MIDAS project.

The following friends and colleagues were a source of invaluable discussions and diversions:
Paula Furtado, Andreas Milller, Jirgen Sellentin, Aiko Frank, Volker Mark.

| also gratefully acknowledge the valuable comments of the anonymous referees of diverse
papers, which haveimproved thiswork aswell. Furthermore, | would like to thank the Deutsche
Forschungsgemeinschaft for supporting this research. The MIDAS project was funded from
grants from SFB342, B2.

Last but not least, this thesiswould not have been possible without the support and understand-
ing of my family. | thank them all for their affection and continuous care. | owe a debt to my
husband Zoltan and son David for putting up with my long hours of work and for their support,
love and encouragement.

Table of Contents

1. Introduction 1
1.1 Parallel DAabaSESccceereiieiieie e sieesie ettt ettt neenreeneas 1
1.2 COMPIEXITY ISSUESveveeiecie ettt ste e te s st e s ae e tenseenesneesteennesnnenneennens 2
IR I V= VT 1 SSRRSRS 4

2. Basic Concepts and Notations 7
P28 R 1 011 0o 18 Tox 1 o o PR 7
2.2 MIDAS System ArChITECTUIEooeiiiieeeeeeees e e 8
2.3 Query Processing iNMIDAS ...ttt s ne s 10
2.4 The MIDAS EXECULION MOE!ccoiiiiieieiesieeie et 11

3. Efficiently Exploiting

Data Riversfor Intra-Query Parallelism 13
G300 R 1 911 0o [FTox 1 o o USSR 13
3.2 Anatomy of the Data RIVEr CONCEPLccveeeiieiieiie e 14
3.3 Implementation Concepts for Dala RIVESScccceeirieiiiieeseseese e 15
3.3.1 Communication Segments as a Concept to Implement Data RIiverscccccceeveenene. 15
3.3.2 Control Of DAAfIOWccooiiieieeeee et nee 16
3.3.3 Control of Data Partitioningccccceoeeoererereieeeisese et 17
3.3.4 Control of DAaMErGINGccceeeriririiieieresiese ettt 18
3.3.5 Performance MEaSUIEMENLSccccveviireiieiesesieeeesiesteseeseestesseeseeseessesseeseesresseenseseess 18
3.3.6 Recommendations for the Parametrization of Data RIVES'Scccceeiiiiiieieieeienne 21
3.4 Deadlock Situations Caused by Intra-Operator Parallelismccccvevininiinienieennes 23
3.4.1 Deadlock Within aData RIVErccccveeeieiiceeeere e 23
3.4.2 Deadlocks in BetWeen Data RIVEScccccoviiieeiereeieie st eee e eee et 24
3.4.3 Deadlocks Caused by Binary OPErairScccoceeerereniereeeseseseesee e 25
3.5 Reducing the Number and Size of Data RIVESScccooeiiiininenerere e 25
3.6 Reducing the Number of Data Streams and Execution UNitsccccccevveveeeennen, 26
A (= F= =0 VY o] 4 USSP 28
3.8 SUMIMANY .ttt b e s sr e nbe e b e e e e sne e neennennnen 29
4. TOPAZ
a Multi-Phase Par allelizer 31
g R 1 11 0 [F 1 o ST 31
VA L = 1 o YAV o] o RS 32
4.2.1 Specialized Paralelization TEChNIQUEScccocveiieeiieiicce e 33
4.2.2 Pardlelization Using Traditional Sequential Optimization Techniques 33

4.2.3 Suitability of Traditional Parallelization Techniques

for Upcoming Applicalion SCENAIOSccccceeieiieeiircee e e e e e e 34

S 1 T Y SRR 36
4.3 The Cascades Optimizer FrameWOrKcccecieieereeieeseesie e eee s see e 37
4.3.1 Anatomy of the Cascades Optimizer Frameworkc.ccocvivineieiiinenescee 38
4.4 TOPAZ SITALEGIESeeveiueeieeuieieieste sttt sttt e et se et et e bt besseenesbesseene e eneenes 42
4.4.1 Control of the SEarch SPatecccvcvv e 43
4.4.2 Control of the Granularity of Parall&lisSmccccoe v 45
4.4.3 Control of Partitioning SIrat@gIESccceerererieiririsesesie st 46
4.4.4 Control of the Degrees of Parall&liSmccooeiiirinenecee e 46
4.5 Multi-Phase Parall€liZationcccceoieieieeieieseee e st 48
4.5.1 Phase 1: Inter-Operator Parallelism and Refinement of Global Costsccceceeeuees 48
4.5.2 Phase 2: Intra-Operator Parallelism applied to High-Cost Operatorscccveeveneeens 49
4.5.3 Phase 3: Block Expansion and Treatment of Low-Cost Operatorsccccoeeveeenne. 51
4.5.4 Phase 4: Block Combination Further Decreasing
Parallelization OVErheadcocoieiiiieeec e 52
4.6 Preventing DeadloCk SItUBLIONSc.oeereeiieieieresie e 53
4.6.1 Deadlock-Aware Parall€lizationcccooieiiiiininceeeesese e 53
4.6.2 Assessment Of the APPIrOGCNcooiiiiiiieeee e 55
4.7 Performance INVESHIGALIONccceieriririeeeiiesesiese st 56
4.8 SUMIMAIY ..uteiieiieeteete ettt e e s st e s se e s b e e e e sae e s Rt e s e eme e s b e e e e nbeennenneenneennan 59
. The TOPAZ Cost M odel 61
o300 R 1 011 0o [UTox 1 oo TS 61
5.2 REAEOWOIK ...ttt st st s b b ens 62
5.3 Deriving the COSt MEASUIEScceiieiiieieriesie sttt 62
5.3.1 Sequential EXECULIONcccuiiiiieriiicie e et e e teeste e s ete st e ste e e e sreesneesnaesnaesnnens 64
5.3.2 Independent Parallel EXECULIONccccceeiieiiiiie et 64
5.3.3 Dependent Parallel EXECULIONccoveieeiiiiec et s e e nneens 65
5.3.4 BlOCK BUIOING ..ottt 67
5.3.5 Multiple Evaluation of the INPUEScceeoeiriiinireeeee e 70
5.3.6 Materializing Send OPEIalorsScccoeeeririerierieesesie et 71
5.3.7 Example of aCost CalCUIELIONccoeiiriieeiei et nreens 72
5.3.8 Intra-Operator ParallE&liSMccooiiieie e 75
5.4 The COSt FOMMUIBEccveieieieiee et 76
5.4.1 REQUIAI OPEIBIOIScoveiviieeueeieeiesiestesieieeie sttt ss st se e et be bt e s b e b e eneeseene s 77
5.4.2 SN0 OPEIBIONSvcviieiriiieeieiee ettt ettt sttt b e st et bt b nbe s e e s e b e nb e eseene e s 78
5.4.3 RECEIVE OPEIAIOIS ..ocveeiieieeeiieseeeteeeesteeseesteesteseeestesteesaeesseeseeseessseesseenseessesssnessenns 79
5.4.4 The Operators Restriction, Projection, Nested L oops and Cartesian Product 80
5.4.5 HESN JOINS ..ottt 80
5.5 RESDUICES ...ttt r e e be e e e e e e e ne e s nneeneas 81
5.5.1 Resource Usage MOEl ..ot 81
5.5.2 Defining the Pruning METICceviei it see st 83
5.6 The ParPrune SIrat@gycccecceeieeiieieeiieeie e sttt e ste et se e e nne e eneenns 84
5.6.1 Average Cost PEI CPUoooiiiiiieierteeiee sttt e nnn 85
5.6.2 Average Cost PEr OPEIELOLceivereerieirereesieseseeste s e s e sresre s e e ssesreereenneseeas 86
5.6.3 Maximal Degree of Parall&liSmcccciiiiiiiiini e 87
S.7 SUMIMEIY ..ttt b et she e st e e e nb e e b e s e et e saneaneenneennas 88

. Enhancing Optimization for a Subsequent Par allelization:

the Quasi-Parallel Cost Model 89
B.1 INEFOTUCLION ..ottt e e e e e e e et e e e e e e e e e e e eeeeeeeeeeeeenneeeeaeeens 89

6.2 The MOdel-M OPLIMIZENccooieiiree e s 91

6.3 The Sequential Cost MOElccooouiiieiiceceee e 92
6.4 The Quasi-Parallel CoSt MOAE!ccoecviiiiiieiececce e 93
L R = T Tex (T g0 e 0= = (] £ 94
6.4.2 Favoring Independent ParalleliSmccoooeei i 95
6.4.3 Degreesof ParalleliSmM ...t 97

6.5 Performance MEASUrEMENTSccoceieiirenineneeee et s 100
5.6 SUMIMAIY ...ttt r e b e e b e e e e s neenn e nesnnenr e 106
. Scheduling and L oad Balancing 107
75 R 1 011 0o 18 Tox 1 o o SR 107
7.2 REGEAWOIK ...ttt et e sr e 109
PO = O = 1= o (1= SR 110
7.3.1 DisStributed APProaChcoiiiiiieiereee e 110
7.3.2 QEC INPUL INFOrMELIONoocieiieciiece st e e sneesnnens 111
7.3.3 TWO-Phase SCheAUIINGcocciiiiiiece e et s sae e s nreenneens 112
7.3.4 Management of NON-PreemMPtive FESOUIMCEScceeiverierireeeeeireeseeeseesseesaesssesnsessens 113

O = O o, 7= S S S 114
7.4.1 Phase 1l: Coarse SChedUIING ..o 114
7.4.2 Phase 2: FINE SCNEAUIING ..occeieieiecie et ete et sre st sre e s nreennee s 115

SRS U 1101017 TR 117
. Parallelization of User-Defined Functionality 119
LS00 1010 [F o1 o o ISP 119
8.2 Applicability of StreamJoin for the Evaluation of Frequent Itemsets 120
SN R 2 L= (o Yo S 122
8.2.2 DataMiNiNg SCENANO ...cciceeiieerieeiieseesee e see s eesee e e sre e s ae e e see s e e sneesre e sreeeneesneesneas 122
8.2.3 The StreamJoin OPEIAIOrccccceeviereesierreeseesee st e seesreeseeseesee e e sreesreesreesneesaeesnees 124
8.2.4 Definition of the Candidate ItEMSELScccceeiiiiiiiie e 126
8.2.5 Backward Exploration (BE) Of ItEMSELSccovviiiiiiieieree e 128
8.2.6 Forward Exploration (FE) Of ItEMSELScceiieiriiirieeeee e 131
8.2.7 Summary of Pruning TECANIQUESccueiriiriirieirieeiiriesie et 132
8.2.8 Integration With the DBMSoo it 133
8.2.9 Parallelization POtENIalccccoeiieeirieiieee et 136
8.2.10Implementation ASPECEScccvecieererieeseereeseeseesteese e e e see e e sree e e sreesreesreesneesneesnnes 138
8.2.11Performance eVaAlUBLIONcccceiiririeiese et ea et nne e 139

8.2 A2SUMMEIY ..otttk e e bt bt e s b e bt s b e et e b e sb e ebe e e e b e b e emeenee e e nre e s 143

8.3 Applicability of StreamJoin for Universal Quantificationccccoceverererieennn 144
8.3.1 REGEIWOIK .ottt st neneenens 144
8.3.2 Example Scenario 1. The University Databaseccccccevvviveieciieesen e vee e 145
8.3.3 Example Scenario 2: Data War€hOUSEcccovereriirierienieesesie e 146
8.3.4 Performance EVAlUALIONccccviieiieiiiieiese ettt st 148

8.4 SEBOUEICESoeeiieieiiiieie ettt sttt ettt b e r e e e b e r e n e n e e rs 151
8.5 Pattern Discovery in GENomiC Databasesccceevveeevveiie v e 153
8.6 Applicability of StreamJoin in Profiling SErVICEScoevveveiieve e 154
8.6.1 The Boolean Retrieval MOGElcccoieeieie e 155
8.6.2 The Profiling SEIVICE ...cecieeiiecee et 155
8.6.3 Mapping to the Datalase Layerccccceveiiiiiie e se e e s 156
8.6.4 Performance EVAlUALIONcccooiiiiiiiiciee e 161
SO0 0 11 o] SRS RR 162

9. Conclusions and Future Work 165

9.1 Summary Of CONtHDULIONSccouieiieiiesiece e 165
LS I R D - = U Y= = 165
9.1.2 The TOPAZ ParallEliZEroccooiiieiiiiereeee s 166
L2 I G I \V oo (= B o = S 166
9.1.4 The QEC COMPONENTcoieeiiiieeiieeeeseeereeseesstesreesreesreeseesreesaeeseesseeeneessessnsesneesnnes 167
9.1.5 The StreamJoin OPEraLOrccceecieeierireeresieeeseeeeeeeesnresreeseeeeesseessessessneesressneeas 167
0.2 FULUIE WOTK ...ttt sttt sttt st benne s 168
9.2.1 QUENY EXECULION ..ottt sttt 168
9.2.2 Query Optimization and Parallelizationccccceeveeiiieiien v 168
9.2.3 Resource Allocation, Scheduling and Load Balancingccceeeevievievivcseccieene 169
A. References 171
N I . = = oSSR 171
B. Operatorsand Rules 179
B.1 Selected operators used in the MIDAS execution enginecceverereerenieneeneenns 179
B.2 Selected rules used by the TOPAZ parall€lizerccccooevveeecicceceee e, 181
B.3 Logical operators used in MOAE-M.cooiriiiiiiiecesese e 183
B.4 Physical operators used in MOGel-Mccoiiiini e 183
B.5 Rules used by the Model-M OptimIZErcccooiveieiieseeeceee e 184
C. Proofsand Algorithms 185
C.1 Proofsrelated to the MFSSearch algorithm ..o 185
C.2 The MFSSearch algorithm for the backward exploration
S0 07 | [0 TS 187
C.3 The Expand procedure adapted to the forward exploration
S0 0 7= | [0 S 189
D. Auxiliary Lists 191
D.1 LISt Of FIQUIES ...ttt sttt 191

.2 LISt Of T Al S .. ettt e e mssssnssnsneeemnnsnnnnn 193

Chapter 1
| ntroduction

1.1 Parallel Databases

In recent years, the amount of data handled by database management systems (DBMSs) has
increased steadily. Indeed, it isno longer unusual for aDBM S to manage datain the range from
hundreds of gigabytes to terabytes. This massive increase is coupled with a growing need for
databases to exhibit more sophisticated functionality such as the support of object-relational
extensions. In many cases, these new requirements have rendered traditional sequential DBM Ss
unable to provide the necessary system performance. This applies especially for information
systems that service large numbers of concurrent users.

In order to be able to query these large data volumes in a reasonable amount of time, it is nec-
essary to provide a powerful, high-performance parallel database processing. Scalability, flexi-
bility, and manageability are equally important to achieve the required performance.

Enabling parallel query processing for database systems that feature large volumes of data and
concurrent access by large numbers of users entails several new issues that must be solved.
Although parallel databases have been an active research areain the past years, most of thework
concentrated on isolated problems, mostly in combination with a pre-determined processing
scenario, like e.g. thejoin ordering problem for a specific system architecture. Thus, most of the
proposed solutions have left several open questions, especially w.r.t. applicability and interop-
erability with other system components.

Moreover, recent years highlighted the trend towards extended support for complex data types
as well as for user-defined functionality. However, most related work on parallel database sys-
tems does not account also for these forthcoming extensions from the simple traditional data
supported in the mainstream relational database products.

In this thesis we address the problem of providing efficient intra-query parallelism to queries
coming from complex applications, such as OLAP, data-mining, digital libraries etc. Thereby,
our main contribution is to provide a comprehensive and integrative approach to this topic. We
will address the main components of the query processing system and present the most impor-
tant aspects w.r.t. intra-query parallelism related to each component.

Special interest is dedicated to the interoperability among the different system componentsin
order to generate efficient parallel plans. The strategiesin each module are based on the insights

that result from the realization and validation of other componentsaswell, thusyielding a seam-
less system architecture adapted to next-generation application development.

An additional focus of thiswork isto combine parallelism with the necessary extensibility and
flexibility that is needed to support object-relational queries as well [IM99]. Therefore, the
design of each component follows a generic approach that is independent of any concrete data
types, operator functionality, data organization or physical architectural decisions. The custom-
1zing to specific application scenarios is done through different mechanisms, such as parame-
ters, (optimization) rules, user-defined operator functionality etc.

All of the proposed strategies are implemented and evaluated within the parallel object-rela-
tional DBMS prototype MIDAS. The aim of the MIDAS project [BJ+96] is to build a testbed
PDBMSthat iswell suited to serve as aplatform for the exploration of various parallel database
technology and itsintegration into the system architecture. As explained before, the main focus
of thisthesisisto provide efficient intra-query parallelism for complex applications. Other areas
of interest in the MIDASS project include transaction management and system architecture opti-
mization [Zi99], extended database functionality [Ja99], as well as buffer and lock management
[B0z98]. The contribution of the entire MIDAS team to the results presented in this thesis are
gratefully appreciated.

1.2 Motivation

Query optimization refersto the important processin relational database systemsthat selectsan
optimal execution plan for a query from a set of feasible plans, based on some predefined opti-
mi zation objectives such as minimizing the response time and maximizing throughput. Because
of theimportance and complexity of query optimization, alarge amount of effort has been spent
on developing efficient optimization algorithms for various systems, including centralized, dis-
tributed and parallel database systems. Most of these works concentrate on the optimization of
joins. Asshown in [LVZ93] the number X, of possible plan shapesfor aquery of nrelationsis:

Xp=(2n - 2)!/(n-1)!.

With this equation, the number of distinct plansfor e.g. 6,7,8, 9 and 10 relations are, respectively
30240, 665280, 17297280, 518918432 and 17643225600.

In auniprocessor environment, besides choosing the join order, a query execution plan needsto
specify the join method as well. Given mjoin methods supported by the DBMS, the total num-
ber of query evaluation plans becomes:

= ix.

Inaparalel system, the optimization problem is even more complicated, with new dimensions
and additional parameters introduced by parallelism. First, the number of feasible plans
increases dramatically because of the availability of more resources such as processors and
memory. Second, proper scheduling and resource allocation arecritical to parallel DBMS. Thus,
besides determining a good join order and the join strategies used, it is also important to deter-

Application
Optimization

Figll: Simplified database query
Parallelization processing model

1

Execution Control I

g
< Query Execution)

mine the number of operationsto performin parallel aswell asthe scheduling and allocation of
resources to the concurrent operations. Hence, optimization of aquery is even more expensive
and complicated in aparallel DBMS.

With such a huge search space, it is computationally expensive to perform an exhaustive search
to obtain the optimal execution plan. The challenge isto develop efficient heuristics that are not
only ableto prune the search space effectively but also to ensure that the plan obtained from the
restricted space is optimal or near-optimal.

As already mentioned, most previous work concentrated on join operators only. However,
upcoming applications stress the demand for new functionalities as well, such as aggregations,
al quantification, etc., aswell asfor object-relational extensions, that are also important factors
in determining the optimality of a plan. As shown in [Ju99], the consideration of a single addi-
tional operator within query optimization, namely grouping, determines already a dramatic
increase of the search space size and optimization performance.

Furthermore, in order to reduce search complexity, most related work concentrated only on spe-
cific forms of intra-query parallelism or plan shapes. However, any simplifying assumption
w.r.t. the search space, like e.g. considering only linear execution plans, incurs the risk that the
optimal or near-optimal solutions might be excluded.

As stated in the previous section, our aim is to elaborate a comprehensive approach to query
optimization and parallelization, taking into account al forms of parallelism. To reduce com-
plexity, we have split plan generation into subsequent phases, each phase concentrating on par-
ticular aspects of parallel query execution. This strategy is also reflected within the query pro-
cessing architecture. For an easier understanding, we have depicted a simplified model of this
architecturein Fig. 1.1.

In our approach, the search spaceisrefined gradually. In the first phase, the optimizer generates
a plan where only selected aspects of the subsequent parall€elization are taken into account. A
detailed parall€elization follows within the parall€elizer. This component takes the costs of the
participating operatorsinto account to determine the best segmentation strategy and to derive a

set of parameters for run-time aspects, like e.g. degrees of parallelism, resource consumption
etc. Finally, a query execution control component takes the current run-time environment into
account to derive the final values for the parameters as well as the best scheduling policy.

This comprehensive multi-phase strategy based on modularization and parametrization is in
contrast to other approaches that incorporate either detailed knowledge, asin the so-called one-
phase approach, or no knowledge (cf. the two-phase approach) of the parallel environment
within query optimization. A detailed eval uation of these strategies and processing architectures
w.r.t. optimization, parallelization and scheduling will be given in the subsequent chapters.

1.3 Overview

Thethesisisorganized asfollows. In Chapter 2, we start with some basi ¢ concepts and notations
based on our MIDAS prototype. Thereby, we restrict ourselves to concepts of direct relevance
to this work.

In the following, we concentrate on the efficient realization of intra-query parallelism through-
out different database modules. Necessary interoperability issues are best understood by pro-
ceeding in a bottom-up manner within query processing cf. Fig. 1.1.

In Chapter 3 wefocus on the execution level. Thereby, we present the data river paradigm. This
paradigm is used for the management of intermediate query result setsthat are produced aswell
as consumed by operators in a parallel database engine. We point out some aspects related to
this paradigm that have a serious impact on query processing and efficiency. In addition we
present an implementation based on a stringent modularization concept in combination with a
set of parametersthat on one hand provide necessary flexibility and on the other hand contribute
to significant performance improvements. Furthermore, based on a thorough performance anal-
ysis we present a comprehensive set of parameter combinations that are recommended for spe-
cific situations covering the variety of communication patterns typically found in parallel data-
base engines.

In Chapter 4 we concentrate on the generation of efficient parallel plans that can make best use
of the concepts presented before. Currently the key problems of query optimization are exten-
sibility imposed by object-relational technology, aswell as query complexity caused by upcom-
ing applications, such as OLAP. We propose a generic approach to parallelization, called
TOPAZ. Different forms of parallelism are exploited to obtain maximum speedup combined
with lowest resource consumption. The necessary abstractionsw.r.t. operator characteristicsand
system architecture are provided by rulesthat are used by a cost-based, top-down search engine.
A multi-phase pruning based on a global analysis of the plan guides the search process, thus
considerably reducing complexity and achieving optimization performance. Since TOPAZ
solely relies on the widespread concepts of iterators and data rivers common to most (parallel)
execution models, it fits as an enabling technology into most state-of-the-art object-relational
systems. This is additionally enforced by the fact that specia strategies have been devised

within the parallelizer to overcome specific problems that result from the usage of the datariver
paradigm, such as e.g. deadlocks.

Chapter 5 provides a detailed description of the TOPAZ cost model. Furthermore, it illustrates
the consideration of resources within the cost calculation and presents a pruning package that
has been elaborated to effectively reduce the search complexity of the parallel search space.

Sincetheinput of TOPAZ represents a sequential physical plan, we further concentrate in Chap-
ter 6 on necessary modifications that affect the optimizer component. The input of TOPAZ is
delivered by a cost-based optimizer, called Model-M. This component uses the same top-down
search strategy as the TOPAZ parallelizer, but explores different search space regions. Prior
work has shown that traditional two-phase parallelization, i.e. parallelizing the best sequential
plan, produces suboptimal results. Hence, our approach employs a so-called quasi-parallel cost
model that accounts for parallelism aready in the optimization, i.e. in the sequential plan gen-
eration phase. Thus, the Model-M optimizer perfectly fits into the overall parallelization
scheme, as it contributes towards a phase-wise search space exploration and refinement. The
validation of this overall generic parallelization scheme shows that in the average linear speed-
ups are obtained without producing significant additional overhead.

An exception from the bottom-up presentation within the query processing system is merely
provided by the query execution control (QEC) module. In Chapter 7, thisis the last database
system component to be presented in thisthesis. Thisis because the QEC module combines the
tasks of scheduling, load balancing and resource alocation by interfacing the run-time environ-
ment with other system components. Hence, it collectsitsinput from diverse sources presented
before. In order to provide the necessary scalability, thismoduleis based on adistributed design.
A phase-oriented strategy yields both robustness as well as adaptability to non-uniform hard-
ware configurations and different run-time aspects, such as data skew etc.

After presenting the extensions performed on the query processing system, in Chapter 8 we
move our focus towards the validation of the proposed approaches. Therefore, we consider a
class of applications having as a common feature the need to process sets of items that satisfy a
specific requirement. This class contains various applications such as data mining, pattern rec-
ognition, financial time series and profile matching in digital libraries. By evaluating this class,
we aim to investigate if the proposed approaches towards efficient and extensible intra-query
parallelism are capable of facing new requirements in today’s complex, rapidly changing world
as well. Thereby, we first introduce a new operator, called SreamJoin, as an efficient strategy
to solve the itemset generation problem of the given application class. We show how this oper-
ator can effectively beintegrated within the processing system. For abetter illustration, different
application-specific query execution plans are provided as well. Furthermore, we validate
through measurements results that the necessary functionality extensions are also able to make
profit of the inherent intra-query parallelization scheme of the MIDAS system that results from
the implementation of the strategiesin thisthesis.

Thus, the class of applications considered in Chapter 8, together with the class of OLAP appli-
cations, for which we have chosen the TPC-D benchmark [TPC95] as a representative to effec-
tuate most of our performance analysis in the previous chapters, convincingly demonstrate that
the concepts presented in this thesis have yielded an extensible, parallel and solid technology

that is capable of facing the requirements of next-generation complex query types as well.

Finally, in Chapter 9 we summarize our contributions and discuss some open problems.

Chapter 2
Basic Concepts and Notations

This chapter gives a short introduction to MIDAS, our testbed parallel database system and
thereby introduces the basic concepts and terminology used in thisthesis.

2.1 Introduction

The main focus of the MIDAS project isto provide efficient support for complex applications,
suchason-1ine anal ytical processing (COLAP),deci sion support sys-
tens (DSS),data m ning etc.

MIDAS (Munlch Parallel DAtabase System) is a prototype parallel object-relational database
system (ORDBMS) running on a hybrid architecture. Thisarchitecture comprises several pr o-
cessing sites (asocaled nodes or host s) that communicate via a high-speed inter-
connection, e.g. fast ethernet. The processing sites can be either simple workstations or shared-
memory computers (also called SMP for symmetric multi-processing). The starting point of the
MIDAS project was acommercially available sequential relational DBMS, the TransBase SQL -
DBMS [Trans95]. Paralel database technology has been integrated gradually into this system
either by component exchange or by system extension. For portability reasons the whole system
has been embedded into the Paralel Virtual Machine environment (PVM) [Ge94, BFZ97].

The MIDAS system supports different kinds of parallelism. | nt er -t ransacti on par -

al | el i smallowsfor aparallel processing of concurrent transactions, thusincreasing transac-
tion throughput [Zi99]. I ntra-transacti on paral |l el i sm focuses on parallel query
processing within asingletransaction, in thisway especially reducing the response time of com-
plex transactions. Herein, the main parallel processing feature in MIDAS isi ntr a- query
paral | el i sm This kind of parallelism comprises inter- and intra-operator parallelism as
well as data and pipeline paralelism. Intra-query parallelism is needed to achieve acceptable
response times for complex and data-intensive operations as occurring e.g. in decision-support
and data warehousing systems, geographic information systems or multimedia database sys-
tems. Since database systems are no single-user systems, such a parallel query processing must
be supported for multiple concurrently running queries and possibly in parallel to OLTP trans-
actions. Please note that this thesis deals with intra-query parallelism only.

(THostlw(w(Hosth . .
MIDAS Server Fig2.2. TheMIDAS prototype

Entry System

Execution System

Virtual Database Cache

S L S

MIDAS realizesaclient/server architecture asdepicted in Fig. 2.2. The MIDASclients are data-
base applications. They are sequential programs performing transactions on the M DAS
Ser ver. A MIDAS client can run on any computer having access to the MIDAS Server.

The Server is composed of two layers, the MIDAS entry syst emthat corresponds to the
logical database processor and the MIDAS execut i on systemthat corresponds to the
physical database processor. The components of the server communicate via PV M.

The architectural components of MIDAS will be described in detail in the next section. Section
2.3 deals with the MIDAS query processing architecture. Finally, Section 2.4 presents the
MIDAS execution model.

2.2 MIDAS System Architecture

The MIDAS entry system supportsinter-transaction paralelism, i.e. parallel execution of dif-
ferent MIDAS client applications. For that purpose, the entry system consists of avarying num-
ber of appl i cati on servers andanadmi ni stration server that provideamech-
anism such that an arbitrary and varying number of clients canissuetheir queriestothe MIDAS
Server in paradlel. Thereisonly one administration server process for each DBMS instance. It
assigns each new client application exclusively to one application server. Hence, the client
transmits al further queries directly to the corresponding application server. A query is com-
piled, optimized, parallelized, and finally transformed into apar al | el query execu-

tion pl an (PQEP) which canbe performed by the execution systemin paralel. In addition,
the application server initiates, schedules, and controls the parallel execution of these PQEPs.
Finally, this component isalso in charge of transmitting the PQEP eval uation results back to the
application.

The MIDAS execution system is responsible for intra-query paralelism. Thisis achieved by
the capability of the execution system to work on different parts of one PQEP simultaneously.
The execution system is designed as a set of executi on units (EU) and aset of seg-

ment servers and segnent sl aves. Furthermore, the execution system comprisesthe
virtual database cache (VDBC). Thiscomponent provides storage and transaction

Node A Node B Node C

MIDAS Server
1 it ntaiiiiebid el bbbt Bt bbbt B bbb bbbl Attt
: Administration Application Entry
| Server L Server
| System
I
|
1
| Execution
\ System
|

DB-Cache

|

I

|

Segment ,
Server |

|

I

|

External RPC Communication
< --= Internal RPC Communication
DB <= Internal PYM Communication

N <= Disk Access
Fig2.3: Thearchitectureof MIDAS

support as well as efficient access to the shared physical database for al concurrent execution
units.

A query is processed exploiting multiple execution units, i.e. multiple independent processes,
as depicted in Fig. 2.3. Please note that MIDAS cannot use threads to lower the inter-process
communication costs, because PVM is not thread-safe. The application servers are in charge of
dynamically starting and removing execution units as needed. Obviously, the actual number of
execution units depends on the number of PQEPs concurrently performed by the MIDAS exe-
cution system and the chosen degree (or even degrees) of parallelism for each PQEP. Each exe-
cution unit works on one portion of aparallel execution plan as determined and assigned by the
corresponding application server. In the following, we will call such PQEP portions sub-

pl ans. The execution units that process subplans of the same query communicate via the
V DBC component by exchanging buffer frames. The corresponding mechanismwill be detailed
in Section 3.3.1. For efficiency reasons and in order to overcome communication overhead,
each execution unit has full access to the physical database.

Thevirtual database cacheis managed by the segment server and segment slave processes. Each
processing site of the MIDA S parallel ORDBM S employs exactly one segment server. This seg-
ment server handles all requests for buffer pages that come from other hosts. Thus, itisalsoin
charge of cache coherency and concurrency control [LB97, Boz98]. All requests that involve
time-consuming operations, like I/O operations, or that can be blocking, e.g. due to deadlock
problems, are delegated to a segment slave process.

2.3 Query Processingin MIDAS

One goal of the MIDAS project is the design of an adaptive cost-based query execution inte-
grating scheduling and load balancing. In order to reach this goal, we have to solve two prob-
lems: first, at compile-time, the generation of aparallel QEP and second, at run-time, the adap-
tive, parallel execution of this plan.

The parallel plan is generated in severa steps, shown in Fig. 2.4. The query processing archi-
tecture of MIDAS first incorporates the par ser that compiles (SQL-)queries. For each state-
ment the parser produces an initial QEP. A QEP isinternally represented as a C-structure. How-
ever, it is possible to transform QEPs into a textual (and corresponding visual) format called
gent r ee. Such agentree can also be used as an input for the parser viaa special interface. An
application can directly execute a gentree viathe call level interface. In the following sections,
we will mostly use the gentree representation to visualize QEPs.

The initial QEP is further pre-optimized by some passes of the Tr ansBase pre-opti -
m zer . This optimizer applies heuristic transformations in several passes to an operator plan.
While this component did the complete optimization in TransBase, it is currently replaced by a
new opt i m zer caled Mobdel _M(M for MIDAS). However, some passes of the TransBase
optimizer are still used as a pre-optimization step, for example to generate a normalized repre-
sentation.

The pre-optimized execution plan constitutes the input of the Model-M optimizer. The goa of
this component isto produce a sequential QEP with ahigh potential for parallelization. The cor-
responding concept will be detailed in Chapter 6. The resulting sequential plan is handed to the
paral | el i zer, caled TOPAZ. Both, optimizer and parallelizer, are implemented based on
theCascades Opti m zer Framewor k [Gr95, Bi97] representing acost-based and rule-
driven approach.

The TOPAZ paradl€lizer, treated in detail in Chapter 4, analyzes the sequential QEP for its
potential w.r.t. paralelism. To reduce complexity, it splits paralelization into subsequent
phases, each phase concentrating on particular aspects of parallel query execution. TOPAZ uses

,____________*_SQLstatementorgentree

| Parser | S
V initia QEP
| TransBase Pre-optimizer |
pre-optimized QEP
| Optimizer Model_M | .
V optimized QEP ¥ "'~ based on
I Parallelizer TOPAZ | -4 Cascaes

application server - - - - B,

o parallelized QEP
(gl QFCe=Dd]
f scheduled partiad QEPs

/ — — 4 Execution System |

Fig2.4: Thequery processing architecturein MIDAS

10

a novel parallel cost model. This model comprises besides CPU-costs also communication
costs, memory usage, and disk accesses and it supports inter-operator as well as intra-operator
parallelism by means of pipelining and data parallelism. The search complexity is additionally
reduced by a pruning package that is designed to consider also global constraintsin the course
of parallelization. To be able to perform the parallelization step at compile-time, the decisions
of the parallelizer must not depend on the current system state. This loose coupling is realized
in MIDAS through parameters. They determinethe degr ees of parallelism (DOP)
as well as other run-time aspects like memory allocation, buffer management etc.

This parameterized PQEP allows the run-time component, called Quer y Execut i on Con-
trol (QEC, cf.Fig. 2.4), to deriveindividual PQEPswith parameter values that are adjusted to
the run-time system state. Thus, QEC comprises the run-time responsibilities of load balancing,
scheduling, and resource alocation. It performs afine-tuning of the PQEP and schedul es differ-
ent portions of the PQEP to different execution units. As presented in more detail in Chapter 4,
thisisdonein two phases. The decisions take the current system state and the provided cost for-
mulas into account. Thisallowsto choose the parametersin such away that the query execution
resources match both resource availability and contention in the best possible ways. Therefore,
load information is gathered from different system components (like buffer manager, lock man-
ager, and operating system) at all processing sites and further combined and condensed in order
to get the global system view (cf. Fig. 2.4).

The compiler, optimizer and parallelizer components are part of the MIDAS entry system and
are realized within the application server. The mediator role of the QEC module between the
MIDAS entry and execution system is also reflected by its architectural design. Thus, the first
phase is executed within the application server, while the second phase is part of the execution
system.

2.4 The MIDAS Execution M odel

The MIDAS operators are designed according to the i t er at or (or Open- Next - Cl ose)
processing model [Gr95, GB+96]. Iterators are self-contained software objects that accept
streams of rows from one or several data sets, apply a predefined behavior and manipulate the
data according to the specifications of the behavior. Thus, regardless of what type theiterator is
and what behavior isassociated with it, all iteratorsfollow the same model. Some of the MIDAS
operators, used by the execution system, are listed in Appendix B.1.

In this model that is used also in object-relational DBM Ss [GB+96], queries are structured by
bundling together the appropriate operators (iterators) into a QEP (Fig. 2.5a). In a sequential
DBMS, each QEP is processed by a single execution unit. In the course of parallelization, this
QEP isbroken down into several subplansor bl ocks [TD93] (Fig. 2.5b) that define the gran-
ularity or unit of parallelism [HS93]. A block can be considered as a single operator whose pro-
cessing cost isthe sum of the processing costs of the constituting operators. It isvital to perform
a cost-based analysis to identify the optimal granularity for parallelism, i.e. number of blocks
for a given query, number of operators within a block, and degree of paralelism assigned to a

11

a) Iterators bundled together b) A logical view to pipeline ¢) Execution view to a PQEP: blocks
to a sequential QEP parallelism between blocks B; ~ Mapped to execution units Bj as well
as data rivers Dy for communication

Fig2.5: Fromasequential QEP toparallel execution using blocksand datarivers

block [NM98a]. As already mentioned, thisis achieved in MIDAS by the TOPAZ parall€lizer.

As determined by the parallelizer and at run-time adjusted by the QEC, a block is assigned to
one or several execution units, according to its degree of parallelism. The flow of tuplesamong
the various execution units is organized by the concept of data rivers (D, and D5 in
Fig. 2.5¢). Thismapping, presented in more detail in Chapter 3, supports dataparallelismwithin
ablock aswell as pipeline parallelism in between blocks.

Moreinformation onthe MIDAS prototype can bealso foundin [Zi99, Boz98, Ja99, Bro7, FI197,
Hi98, KB98, Pe98].

12

Chapter 3
Efficiently Exploiting
Data Riversfor Intra-Query
Parallelism

This chapter concentrates on obtaining efficient intra-query parallelism on the execution level.
Therefore, we evaluate the data river paradigm for the management of intermediate query result
sets that are produced as well as consumed by operatorsin the parallel database engine.

3.1 Introduction

Thedat a ri ver paradigm [Gr95, DG92] has been devised to achieve inter- and intra-oper-
ator parallelism between producing and consuming instances by means of special communica-
tion operators. Meanwhile this concept is used in many (object-)relational PDBM Ss under var-
ious synonyms, e.g. the send/receive operators in DB2 UDB [IMP97, 1bm98], the split/merge
operators in Gamma [DG92], or the Exchange operator in Informix Dynamic Server and Vol-
cano [Gr94, Zo97, Inf98]. However, while validating our implementation of this concept, we
have identified a set of parameters that significantly impact the performance of parallel queries,
in terms of speedup as well as resource consumption. These parameters concern dataflow con-
trol, the granularity for data transport, as well as specific measures to minimize overhead and
thus increase efficiency. Based on this insight we developed a clean modularization of the data
river paradigm that providesthis set of parameters and that resulted into an extensible approach
covering the whole spectrum for communication found and needed in parallel query processing.
To our knowledge, no other publicly available report deals with these aspects and its conse-
guences at thislevel of parallelism and detail.

Therest of the chapter is organized asfollows. First, we devel op the primitives of the datariver
paradigm. Section 3.3 details our design and implementation of data rivers, coming up with a
modularization and parameterization approach. As afirst summary, a set of parameter combi-
nationsisinvestigated that is recommended for specific situations covering the necessary spec-
trum for communication. Section 3.4 presents possible deadlock scenarios when exploiting the

13

datariver paradigm. Efficient embedding of the datariver paradigm into query processingisdis-
cussed in Sections 3.5 and 3.6. Finally, Section 3.7 covers related work; a summary isgivenin
Section 3.8.

3.2 Anatomy of the Data River Concept

As already mentioned in the previous section, the data river concept, based on split and merge
of intermediate result tuple sets, is adopted also by many (object-)relational DBMS as it com-
plies best with the iterator concept for the operators. If multiple producers add records to the
same river that is consumed by several consumers, the river consists of several parallel dat a
st r eans. Inthisway, parallelismistransparent for operatorsor operator instances, asthey still
operate sequentially on these data streams that constitute the datariver.

In Fig. 3.1 we detail the data river concept (data streams are visualized as black bars) to distin-
guish the following basic communication patterns that comprehensively support intra-query
paralelism:

® Pipelining: Thisisthe simplest way of intra-query communication. In Fig. 3.1a left, the
output of producer B, is consumed by consumer B;. In this case, the data river consists of
asingle data stream. In the more general case, when consumer and producer have the same
degree of paralelism N, the corresponding data river consists of N distinct streams
(Fig. 3.1aright).

® Replication: In this case, all consumer instances read the same input. In Fig. 3.1b left, a
single block produces adata stream, that isread by all consumer instances. In the more gen-
eral case (Fig. 3.1bright), N instances produce N data streams that are read by all consumer
instances. Thus, for replication N data streams are necessary, N being the degree of paral-
lelism of the producer block.

® Partitioning: In Fig. 3.1c, the tuples produced by B, are partitioned according to a given
criterion and written into the corresponding data stream that is read by an instance (B4, to
By\p) of consumer B;. In thiscase M data streams are needed, where M isthe degree of par-
allelism of the consumer block.

) Pipelining @»® o) Repicaion |

c) Partitioning d) Merging

Fig3.1: Communication patternsrealized by using datarivers

e) Repartitioning|

DATAFLOW,

14

®* Merging: To produceafinal result, each producer instancefills a separate data stream with
its intermediate results (see Fig. 3.1d). These are read by the consumer which merges the
tuples coming from the different data streams according to the requirementsfor further pro-
cessing (like sort ordering etc.). Please note that another possibility would beto have asin-
gle data stream, that is jointly filled by al producer instances. The disadvantage of this
communication pattern isthat the merging hasto be done on the producer side. Hence, any
requirements for data stream properties at the consumer side have to be taken into consid-
eration already at the producer side. Moreover, the producer instances cannot operate inde-
pendently from each other. Thus the independency criterion, i.e. being self-contained pro-
cessing objects, would not be satisfied for operators and operator instances.

® Repartitioning: Different degrees of parallelism or different partitioning strategies on
both producer and consumer side imply a repartitioning of the data as shown in Fig. 3.1e.
For aN:M redistribution, as each of the N producers write into M partitions, each mapped
to adata stream, N x M data streams are necessary to build this type of datariver.

3.3 Implementation Conceptsfor Data Rivers

In the following we describe the design and implementation of the datariver paradigm as devel-
oped in the PDBMS MIDAS. Please note that in the logical concept presented in Section 3.2,
there is no dependency on any specific execution architecture. In this section, we concentrate
on an implementation concept for datariversthat preservesthisindependency to alarge extent.
Thereby, weidentify the following basic aspects of the datariver approach: data flow, data par-
titioning and data merging. Each aspect is implemented by a separate module and a set of
parameters to offer maximum adaptability to specific Situations. In addition, extensibility mea-
sures to the data rivers concept are also valuable for forthcoming hybrid heterogeneous archi-
tectures [NZT96, HFV96].

In the following we concentrate on the modularization approach and show the impact of the
defined parameters on performance. Thereby, a thorough performance analysis is conducted
and acomprehensive set of parameter combinationsisidentified that are recommended for spe-
cific situations.

3.3.1 Communication Segments as a Concept to | mplement Data Rivers

In order to organize the flow of intermediate and result tuples, the parallelizer equips each block
instance with two communication operators. send and r ecei ve. These follow the same iter-
ator concept as all the other operators, thus hiding all particularities and implementation aspects
of the datariver concept. Each block instance, excluding the top one, has as root asend operator,
which transmits the resulting tuples to one or more parent blocks. Many DBM Ss use a special
communication subsystem for theimplementation of the datariver between the send and receive
operators [BF+95, Z097]. In contrast, we decided to view a data stream as a special temporary

15

relation mapped to so-called comruni cati on segnents (CS) that are handled by the
storage system and by the database buffer management (VDBC). CSs are temporary segments
that are only visible inside a transaction and that are deleted at the end of the query or transac-
tion. The same kind of segments are used for instance by the sort operator to store initial runs.
Thus, send respectively receive are implemented to write to (resp. read from) CSs. With this
concept of mapping each data stream to a CS, MIDA'S uses the same model for permanent and
intermediate data sets. Additionally, the communication between consumers and producers
takes place in an efficient buffered manner.

MIDAS supports different data organizations within a CS. In addition to the very general notion
of atuple stream flowing from producer to consumer execution units, one can use appropriate
data structures to improve the execution of both producer and consumer processing. For exam-
ple, sorting (the task of the producer) as well as sorted access (a consumer requirement) can be
considerably simplified by a B-tree data organization of the CS representing the data stream; in
addition, such a data structure allows for direct and repeated access. Thus, by storing interme-
diateresultsin 1 or several CSs, MIDAS allows the reuse of these results, a prerequisite to opti-
mization for common subexpressions as well as to multi-query optimization [Qi96, Se88].

With the concept of data streams mapped to CSs, we could realize all communication patterns
necessary for intra-query parallelism as described in Section 3.2. However, in order to make a
certain communication pattern executable, several settings for data partitioning, data merge, or
dataflow have to be provided. Thiswill be discussed in the following subsections and exempli-
fied by the QEP examples given in Fig. 3.2. Please note that in this representation, the operators
bracketed by send and receive (recv) nodes are bundled together to a block. Blocks can have
different degrees of parallelism depicted as a sequence of overlapping operators. For simplifi-
cation purposes, we omit the datarivers and the associated data streams at the borders of ablock,
but we express the bundling of operators within a block by connection lines. Most operators
(e.g. the sort), show certain parameters that describe the operator execution in more detail, as
e.g. memory allocation and management, sort parametrization etc. These parameters can also
be adapted to the system state at run-time by the QEC component.

3.3.2 Control of Dataflow

In MIDAS, the dataflow granularity between execution units that communicate via CSs is a
page or adternatively asubpage, i.e. afraction of a page, since MIDAS uses subpages for
coherency control, locking, aswell aslogging/recovery to reduce overhead [Li94]. Flow control
is achieved by a page-based locking scheme. For instance, consuming block instance(s) are
stalled until at least one page of their input data streams, i.e. CSs, isfilled up by the correspond-
ing producer. A local reader can access the pages directly through the database buffer, so there
is no need for memory copies. Otherwise, the transmission of the page is achieved through
(PVM) messages and by memory to memory transfer. Each CS has a certain quota of buffer
pages assigned to the producer. If thisis exhausted, one of the following dataflow control strat-
egies is used, depending on the send operator’s parameters that are set by the parallelizer or
dynamically reset by the QEC:

16

|l =l=3T
ERGEC4] +1

(=1
ERGEC4] +1

o <— Merging

e
ERC+] readonce nobuf

*~. Executon -7
Parameters’

a) Pipelining b) Intra-Operator Parallelism using c¢) Intra-Operator Parallelism that requires
(Inter-Operator Parallelism) partitioning and merging data rivers a data river of type repartitioning

Fig3.2: Formsof intra-query parallelism in MIDAS

®* WRITEOUT: The“newest” pageiswritten to disk. The rationale behind this decision is that
the older pages, that are still buffered, are the next to be read by the consumer.

® NOBUF: Theorigina LRU replacement algorithm of the buffer management is used, hence
no explicit quota has to be specified. However, in contrast to the WRITEOUT strategy, the
CS pages may be replaced due to any page request to the database buffer. According to the
LRU strategy, in this case the “older” pages are affected, although they are the next to be
read by the consumer(s).

® WAIT: In this case the producer is stalled until the consumer(s) has/have read pages and
request(s) more input.

Based on these definitions one can easily observe that WRITEOUT is just a NOBUF strategy
restricted by afixed buffer quota and a FIFO replacement strategy; WAIT refersto afixed buffer
guotawithout any replacement, but with a hold request on the producer if the quotais exceeded.
Obviously only the NOBUF and WRITEOUT strategies lead to materialization, hence we call these
send operators at some places materializing nodes. If there is only one consumer instance (i.e.
no replication or multi-query optimization), a page can be deleted as soon asit isread. Thisis
achieved by an additional parameter, called readonce. Hence, if this parameter is used in com-
bination with wWAIT, 1/0O can be avoided entirely.

3.3.3 Control of Data Partitioning

By streaming the output of one operator into the input of the other operator, the two can work
concurrently giving i nt er - oper ator paral | el i smor pipelining. Thisis achieved by
simply placing a send-receive pair on any edge of a QEP. Thus, the QEP in Fig. 3.2a has been
split up in 3 blocks that communicate in a pipelining manner via CSs as described above.

I ntra-operator parallelisminMIDASIs based on data partitioning. The splitting
and merging of data streams is performed by the send and receive operators as well. For each

17

partition a separate CS is created and filled by the send operator with corresponding tuples. In
this way, each operator (or block) instance processes one partition of the data. The strategies
implemented are r ound- r obi n, hash, range, anduser-defined partition-

I ng [IM99]. The particular technique used depends on the type of the operator that has to be
paralelized. Thusthe partitioning often hasto keep track of the attribute values, likein the case
of hash- or range-based partitioning. An example is given in Fig. 3.2b. Here, the sort operator
has a degree of parallelism of 4, each instance processing a single partition of the initial data
stream. Asin the case of sorting avalue-based partitioning is not necessary, around-robin strat-
egy has been chosen, indicated in Fig. 3.2b by the parameter RR[4] set for the send operator.
The reason for this choice is that round-robin partitioning is cheap and prohibits data skew.

InFig. 3.2c, an examplefor repartitioning is presented, where achange from DOP=3 to DOP=4
hasto be accomplished. Asdescribed in Section 3.2, for aN: M redistribution the datariver con-
sists of N x M data streams, each mapped to a separate CS instance. Thus, in this example 3 x 4
= 12 CSsare used. For illustration purposes, in this example the send operator performs a hash
partitioning on the (first) sorting attribute, indicated by parameter H[4] [1] of the send operator.

3.3.4 Control of Data Merging

In order to combine several paralel data streams created by the send operator as described
before, the receive operator has to read from multiple CSs aswell. The communication between
send and receive can be based on polling or on a notification technique. In MIDAS, both alter-
natives areimplemented, thefirst one being the default mode and the second one being triggered
by the NOTIFY option. The decision on which mode to select is made by the QEC component,
according to the relative costs of the consumer and producer instances. If the consumer isslower
than the producers a polling technique is beneficial since most probably thefirst request for data
can already be answered. In the opposite case, the NOTIFY alternative is favorable.

With respect to the order in which the data streams are read, the following alternatives are pos-
sible:
® MERGE: In this case, the CSs containing locally sorted data streams are merged into afinal
sorted stream (see Fig. 3.2b and Fig. 3.2c).

* SEQ: Hereoneentire datastream isconsumed before the next isworked on. Asaside effect,
a sorted output can be produced directly from range partitioned and locally sorted data
streams.

® ASYNCH: In this mode, the tuples are read in their order of arrival. The output is unsorted.
In contrast to the other modes presented, this one does not prescribe how the streams are
merged. As soon as any page is available it is subject to consumption. Hence, we call this
adata-driven consumption while the other two policies are called demand-driven.

3.3.5 Performance M easurements
With the concept presented, we could parallelizein MIDAS traditional and application-specific

18

Feisier Bdes B Enyrebaimes m 1 Bepersial FEepeg

DATAFLOW MODE:
WAIT(10)
WAIT(1)

NOBUF

NOBUF NOTIFY
NOBUF SUBPAGE
NOBUF NOTIFY

. . = 0 AL
—=‘“----"'--51I"'~.1|..,1I SUBPAGE
o T I I | [| WRITEOUT(10)
< B0
1 T £ & [T]

O WNBE

~

at= 8 WRITEOUT(1)

].1 neiten

Fig3.3: Examplequery and performance using different dataflow
parameters (cluster)

operators [NIJM97]. This has been extended to user-defined functions and table operators as
well [IM98, Ja99]. In addition, parallel 1/O is supported by new parallel scan operators that
exploit specific storage structures and data fragmentation as well as physical properties of the
resulting data streams (e.g. sorting, partitioning etc.).

As shown until now, apart from the decision on where to place a send-receive pair, several
parametersrelated to the datariver paradigm can influence the performance of aparallel execu-
tion plan. We have investigated these aspects by using a100 MB TPC-D database running on a
cluster of 4 Sun-ULTRA1 workstations with 143 MHz Ultra-SPARC processors and, for com-
parison purposes, also on a Sun-SPARC20 SMP, having 4 processors, each 100 MHz, and 4
disks.

As shown in Fig. 3.3, we have used a ssmple query consisting of the parallel scan of the
LINEITEM table, performed by the pscan operator, followed by a grouping. In this scenario, the
consumer subplan is slower than the producers. Since the LINEITEM table is physically parti-
tioned onto 4 disks, the parallelizer has chosen to set the degree of parallelism of the scan oper-
ator to 4 as well. We have executed this query repeatedly while modifying the receive modes.
For each receive mode, the dataflow parameters of the send operator have been modified as
well, aslisted in the figure. Note that in the case of an ASYNCH receive the output is not sorted,;
we haveonly listed it herefor comparison purposes. The numbersin parenthesis show the buffer
guotain pagesfor the wAIT and WRITEOUT strategies. The SUBPAGE option indicates that instead

TR PRS- P SRR L] —r e — Bl B Bdapwimen Trporaka Dlieasy
DATAFLOW MODE:

LIS e HIT

WAIT(10)
o Hits - WAIT(1)
- i NOBUF
(B Ermm

NOBUF NOTIFY
ﬂ — NOBUF SUBPAGE]
NOBUF NOTIFY

Ny Sk

0 SUBPAGE

1::I| I|I I I I I I I I I WRITEOUT(10)
8 WRITEOUT(1)

a) Single—user mode b) Multi-user mode
Fig3.4: Performance using different dataflow parameters (SMP)

OO h WNBRE

LH |

~

19

Table 3.1;

Average response times for TPC-D query set (ms)

writeout writeout nobuf wait wait wait(10 nobuf
D (10) 8} (20) 2 users | 2users

SMP (4 x 100 MHz) 38713 38069 36615 35284 34824 61711 60123
Cluster (4 x 143 MHz) 23337 22472 22623 23794 23034 43724 41275

of awhole page, only afraction of it (here 1/4) is used as dataflow granule. Thisleadsto afiner
granularity for the management of intermediate results, but also to more overhead due to the
increased number of messages. In Fig. 3.4a the same test series are performed on the SMP
machine, in Fig. 3.4b additionally using a noise factor as a constant load on the same system
environment (i. e. disks and processors) simulating a multi-user scenario.

In real-life queries, the plans are more sophisticated and usually split into more blocks using
also replication. In order to analyze these scenarios as well, we have executed 16 different par-
alel TPC-D queries on the above mentioned platforms. In this test series, all aspects related to
intra-query parallelism, i.e. degrees of parallelism, receive mode parameters etc. are kept con-
stant while changing the dataflow parameters. The average response times for the whole query
set can be found in Tab. 3.1.

The resultsin Fig. 3.3 and Fig. 3.4 show that the ASYNCH receive mode produces the best per-
formance, except for the WRITEOUT strategy on the SMP platform, when only one buffer page
Is allocated for intermediate results. This is due to the fact that al producer instances, in this
scenario being faster than the consumer instance, have to spool their intermediate resultsto disk
as soon as a page is filled up, thus causing a high disk contention. However, although the
ASYNCH receive mode shows good results for all the other dataflow parameters analyzed, it is
only usableif the final result doesn’'t haveto fulfill any specific physical properties, ase.g. sort-
ing. This property isonly guaranteed by the other two (demand-driven) receive modes. Here, an
advantage of the SEQ receive strategy over the MERGE one can be observed. This aspect is espe-
cially obvious for the workstation cluster as the MERGE strategy generally involves a dightly
increased communication overhead. However, the SEQ case requires a range-based partitioning
on the sorting attribute. This constraint isnot necessary in the case of the MERGE strategy. Hence
the sort operator can be bundled into a block also with operators that require a different parti-
tioning strategy than a range partitioning on the sort attribute (the details on block construction
can be found in Section 3.5). Although several systems [Gr95] use only one (usually hash-
based) partitioning strategy, the above discussion also confirmsthat various strategies should be
used for different problems.

Asfor dataflow control, these tests show that a synchronized communication between subplans,
using the WAIT option, is always favorable, especially if enough buffer pages are available. For
this strategy, the difference between demand- and data-driven receive modes is also minimal.
So why not use this dataflow strategy, combined with a demand-driven receive, without being
obliged to find solutions for overflowing buffers as in the case of an ASYNCH receive and disk
contention as in the case of materializing send operators? The answer is that athough the
demand-driven approach has the least synchronization overhead and produces correct outputs

20

w.r.t. physical properties, it sometimes can produce deadlocks (see Section 3.4). One solution
to this problem is the usage of an ASYNCH receive in parts of the PQEP where thisis possible,
or the usage of materializing send operators, like WRITEOUT or NOBUF. Another important
remark is that in the smple example query we used for this test, the intermediate results have
been read by a single consumer, making efficient garbage coll ection possible (readonce option).
In this case the WAIT strategy eliminates completely the need for disk access and thus leads to
agood performance. If replication or multi-query optimization is used, more consumers use the
same intermediate results, hence these have to be materialized. In this case, the use of the wAIT
option doesn’'t bring any remarkable benefits (see Tab. 3.1).

As expected in the example given in Fig. 3.3 (and Fig. 3.4) showing a slow consumer, the
NOTIFY strategy has a negative influence on performance, due to the increased number of mes-
sages. Hence in such cases the (default) strategy based on polling should be used for communi-
cation between the send and receive operators. Using afiner granularity for communication (i.e.
the SUBPAGE option) is beneficial e.g. on the SMP platform in a multi-user environment
(Fig. 3.4b); when the intermediate results have to be communicated over the network, larger
units are preferable (Fig. 3.3). From the two materializing send strategies, NOBUF seemsto be a
good compromise when WAIT cannot be used because of deadlocks. However, the tests in
Fig. 3.3 and Fig. 3.4 have been performed in an environment with a relatively large database
buffer (1500 pages) that could be exploited by the NOBUF strategy. Column 2 and 3 of Tab. 3.1
show that the WRITEOUT strategy leads to a comparable performance even though having less
buffer pages. Thisis due to the FIFO replacement strategy.

3.3.6 Recommendationsfor the Parametrization of Data Rivers

The results of our performance analysis can be described by a comprehensive set of parameter
combinations that are recommended for specific situations. These recommendations, summa-
rizedin Tab. 3.2, arefirst taken into account by the parallelizer. Asaready mentioned, thiscom-
ponent takes the cost model and system statistics into account to find out which forms of paral-
lelism provide optimal response time combined with minimal resource utilization. However, the
outcome of this phaseis still apreliminary result, as certain parameters can be further modified
by the QEC at runtime. Thisisimportant, because the results in this section show that different
parameters or parameter combinations are favorable, depending on the runtime environment,
such as the platform where a block is scheduled, available database buffer, current number of
users etc. With this concept of parametric PQEPs we achieve the necessary flexibility to be able
to adapt in the best possible ways to these runtime situations.

Tab. 3.2 is structured as follows. The first column separates situations for which the other col-
umns determine the corresponding parameters. First, we discuss the scenarios where no special
physical properties are requested for the final stream. After this we present various situations
that require a sorted result. We continue with the parameter settings for replication. Further-
more, it isworthwhileto identify the situations where the cost of the producer is higher than that
of the consumer as well as multi-user contexts in SMP environments.

Focusing first on the receive modes, we can conclude from Tab. 3.2 that the ASYNCH mode is

21

Table 3.2

Parameter combinations recommended for specific situations

Situations Receive | Dataflow Mode Parameter | Data Par-
Mode titioning
Parame- Parame-
ter ter
Resulting No special physical properties of ASYNCH Buffer pages for communication ROUND-
stream resulting or intermediate data sufficient available: wAIT ROBIN
unsorted streams + else: NOBUF
No special physical properties of ASYNCH Buffer pages for communication HASH
resulting stream « sufficient available: waIT
Intermediate streams require * else: NOBUF
partitioning on certain attributes
Resulting No deadlock possible SEQ WAIT RANGE
stream Partitioning on sort attribute eftc;::bsu?et)
sorted possible
No deadlock possible MERGE WAIT HASH
. . t (on
Partitioning required on (or} sor :
. 9 q. attribute) attributes
attributes R, different from sort R)
attribute
Deadlock possible MERGE Buffer pages for communication HASH
Partitioning required on (or_l sort « sufficient available: wRITEOUT (Oﬂ
.) attribute) attributes
attributes R, different from sort e else: NOBUF R)
attribute
Deadlock possible SEQ Buffer pages for communication RANGE
Partitioning on sort attribute « sufficient available: WRITEOUT (on sort
. . attribute)
possible ¢ else: NOBUF
Replication ASYNCH Buffer pages for communication REPLICA-
« sufficient available: wRITEOUT TION

¢ else: NOBUF

Cost of producer higher than that of consumer

in addition NOTIFY option

SMP, multi-user environment

in addition SUBPAGE option

favorable for almost all situations. Exceptions are provided only by scenarios that require a

sorted output.

The dataflow mode parameter in Tab. 3.2 is set by the QEC component depending in some sit-
uations on the available number of buffer pages. If there are enough pages available, a dataflow
mode that shows good performance in combination with a sufficiently large buffer quota should
be chosen. Such modes are e.g. WAIT for deadlock-free plans or WRITEOUT for PQEPSs bearing
a possible cyclic data dependency. Otherwise, if the number of available buffer pages at the
beginning of the execution isinsufficient, the NOBUF strategy is advisable, as this can make use
also of pagesthat are freed at runtime, possibly also by other queries.

22

As for the partitioning parameters, we recommend a round-robin strategy for all cases where
thisis possible, asthis partitioning does not result into any data skew. In all other situations, the
partitioning has to keep track of the actual parallelization strategy.

Our practical experience showed that a buffer quota is necessary in any case. The size of the
guota has to be adapted according to general system state, i.e workload, and in accordance to
the difference of the processing rate between consumer and producer blocks. Exactly for that
reason it is important that the parallelizer builds blocks having similar processing rates. Our
experiments showed that if both producer and consumer processing rates are in the same range,
abuffer quota of less than 10 provesto be sufficient.

In the following sections, we will concentrate on more complex parallel query execution plans
that employ the data river paradigm. Thereby, we introduce and discuss indispensable measures
related to this concept that have a serious impact on applicability and efficiency.

3.4 Deadlock Situations Caused by Intra-Operator Parallelism

In MIDAS, aswell asin other PDBMS (e.g. DB2 UDB [BV98]), the intermediate result tuples
to be communicated between execution units are bundled together to granules containing mul-
tiple rows. Thisisto reduce communication overhead. The dataflow granule can be e.g. a page,
as in MIDAS. As shown in Section 3.3.5, a synchronized communication for intermediate
results, using the wAIT option for the send operator combined with a demand-driven receive
mode, e.g. MERGE Or SEQ, isthe most favorable parameter combination, if certain physical prop-
erties (e.g. sorting) of the final data stream are important. In this case, flow control hasto stall
producer instances to prevent buffer overflow, as well as consumer instances until pages are
filled up. These waiting situations can produce deadlocks when intra-operator paralelism is
used. The reason isthat intra-operator parallelism abolishes the tree structure of a QEP and thus
can generate cycles.

In the following, we will present some deadl ock scenarios, aswell as solutionsto resolve cyclic
data dependencies. These solutions are based on dedicating selected send nodes along a data
cycleasmaterializing. To avoid speedup degradation due to disk contention, this hasto be done
in a cost-based manner, taking into account intermediate result cardinalities and operator costs.
Please note that even amaterializing send node resultsto I/O only if thereisnot sufficient buffer
available. The corresponding strategy that is incorporated into the parallelizer will be detailed
in Section 4.6.

3.4.1 Deadlock Within a Data River

Situation: A demand-driven merging order within the receive operator is necessary if certain
physical properties (e.g. sorting) of the final data stream areimportant. Supposethat in Fig. 3.5a
R; and R, are two instances of such areceive operator. For smplicity reasons, assume that the
corresponding send operator has also two instances S; and S, performing a data repartitioning.

23

waiting situation

) o = data streams
. . =7 S
R R : / \ N | full data page
L < o 2 = incomplete data
= . o
S

o

till to be filled up
‘e s

& L. L

a) Deadlock within a data river b) Deadlock in between data rivers

Fig3.5: Deadlock scenariosfor unary operations

Thus, according to Section 3.3.3, there are 2 x 2 = 4 data streams involved, depicted in Fig. 3.5
as dotted lines. We further assume that the available buffer per data stream is one page. Due to
data skew, at agiven point in the query execution, some of the buffer pages are already filled up
when others are still incomplete (cf. Fig. 3.5a). However, if the buffer corresponding to the cur-
rent output tuple of the producer isfilled, it is stalled by the flow control, unless a materializing
send operator is used. In the example from Fig. 3.5a S, has aready filled up the buffer corre-
sponding to R;. Suppose that according to the partitioning function the subsequent tuple is
assigned to the same partition. In this case, it should be added to the buffer corresponding to Ry
as well. However, since this buffer isfull, S, cannot continue with its evaluation. On the other
hand, in a demand-driven receive mode the reader also blocks until the sender has filled up a
full page or has finished. In Fig. 3.5 the continuous arrows depict waiting situations from the
arrow bottom to its head. As shown in Fig. 3.5a, due to a pre-defined merging strategy, instance
R, waitsfor S; instead of processing the data stream corresponding to S,. Hence, a cyclic data
dependency comes to existence.

Solution: As shown by the arrows in Fig. 3.5a for instance a 2:2 repartitioning can produce a
deadlock, if R; and R, are receive nodes for which the merging strategy of the data streamsis
demand-driven and the send nodes realize the WAIT strategy. Generally, in order to avoid dead-
locks with N: M repartitioning using a demand-driven receive strategy, the usage of non-block-
ing send nodes that materialize the intermediate results in case of an overflow is necessary.
Hereby it is sufficient to modify only one of the send nodes S, or S, to materializing.

3.4.2 Deadlocksin Between Data Rivers

Situation: In Fig. 3.5b a partitioning is performed, and later on the data is merged by a central
receive node. Here, global data dependencies have occurred, producing a cycle. It isimportant
to note that the problem doesn’t occur if in the intermediate block instances (marked with B in
Fig. 3.5b) thereisat least one so-caled bl ocki ng boundar y. Theserefer to particular loca-
tions within query execution, where the complete intermediate result table has to be derived
before the next operation can start. A frequently used blocking operator is e.g. the sort node.
Blocking boundaries prevent from cycles, because at the time when the topmost receive opera-
tor starts merging, the send operator S; has already processed all of itsinput.

Solution: In order to avoid thistype of deadlocks, also materializing send nodes are necessary.
Here, changing the mode of S, or S, and S; breaks up the data dependency. However, if it

24

a) Deadlock caused by a merge join b) Sort nodes prevent from deadlock situation
Fig3.6: Deadlockssituationsfor binary operators

becomes necessary to introduce materializing send nodes, it is less expensive to change the
mode of replicating nodes, as multiple readers usually impose a materialization of the interme-
diate results anyway. If the overall parallel plan doesn’t contain any replicating nodes, send
operators that delimit inner subplan instances (e.g. S, or S3) should be modified, because they
usually operate on smaller data sizes as compared to a central partitioning send node (e.g. S;).

3.4.3 Deadlocks Caused by Binary Operators

Situation: Binary operators with a predetermined processing order, as e.g. the merge join in
Fig. 3.6a, are able to produce similar global dependenciesasacentral merging receive node dis-
cussed before. In this situation the deadlock is also among datarivers, but in contrast to Section
3.4.2, these are on the same level in the QEP and being consumed simultaneously by the inputs
of the mergejoin operator. Binary operatorsthat process oneinput stream entirely after the other
(e.g. the hash join) don't raise such problems. A situation like in Fig. 3.6a doesn’'t occur either
if the sorting of at least one input is necessary (Fig. 3.6b). As shown above, the sort, being a
blocking operator, implicitly resolves the data dependency. In general, deadlocks caused by
binary operators are possible, if both inputs are partitioned or replicated by non-materializing
send nodes and none of the inputs is processed either by a blocking operator (e.g. sort) or
entirely before or after the other.

Solution: In the depicted situation it is sufficient to modify only one of the two nodes S, or S,
to a materializing send node. Generally the node selection is done according to intermediate
result sizes.

3.5 Reducing the Number and Size of Data Rivers

Prior work on parallel execution and cost models aswell as scheduling relies on the assumption
that the QEP is coar se- gr ai n, i.e. the parallelization overhead for each operator exceeds
only up to aspecific factor the total amount of work performed during the execution of the oper-
ator [G197], [GGS96], [DG92]. However, this strategy based on one-operator granules for paral-
lelism is suboptimal for practical database execution plans. This is due to the fact that a data

25

Table 3.3 Influence of block construction on performance

(average over 16 TPC-D queries is reported) Small Blocks Combined Blocks
Avg. Execution Time (ms) 41686 23002
Avg. Speedup (vs. Sequential Execution) 2,4 4,34
Avg. Number of Execution Units 13,625 7,5

river is necessary for each operator in the QEP, even if specific operators don’t contribute sig-
nificantly to overall performance improvements. Thisleadsto aloss of efficiency w.r.t. commu-
nication costs and resource utilization.

Our response to this problem iscost - based bl ock bui | di ng. This strategy accounts
for operator costs, selectivities, and intermediate result sizes to construct coar se-grai n
bl ocks, i.e. to perform several operatorswithin asingle execution unit. The goal of thisblock-
building isto achieve mutually adjusted processing rates among communicating, i.e. neighbor-
ing blocks. If the rate at which tuples are sent to an execution unit is much higher than the rate
at which tuples can be processed, the communication buffer can overflow, forcing the sender to
block. On the other hand, if the rate at which tuples are received is much too low, the corre-
sponding execution unit will frequently be idle and will waste non-preemptive system
resources, as e.g. memory. Hence, mutually adjusted processing rates are prerequisite to effi-
cient pipelining [MD95]. Additionally, through block construction intermediate result material-
Ization and inter-process communication between operators, i.e. data rivers, can be avoided.
Thisimplies savings in main memory or even I/O costs.

Building blocks by taking the sizes of intermediate results into consideration and performing
the required block partitioning where it is most favorable, is an important instrument to reduce
the size and number of datarivers and implicitly reducing communication overhead as well.

To validate our approach, we have processed 16 different parallel TPC-D queries on the same
workstation cluster asin Section 3.3.5. In one test series small blocks have been used, in some
cases comprising only one operator, in the other series these blocks have been combined, adapt-
ing the degree of parallelism of thefinal block accordingly. The results, summarized in Tab. 3.3,
show that cost-based block building combined with adapted degrees of parallelism throughout
the PQEP contributes significantly to obtain optima speedups, in the same time reducing
resource utilization.

3.6 Reducing the Number of Data Streams and Execution Units

In severa situations, the insertion of a datariver is not imposed by cost-based decisions, i.e. to
reduce response time by means of parall€elization. For instance, if the partitioning strategies of
two low-cost operators are different, adatariver hasto beinserted merely for repartitioning pur-
poses, although the costs don't justify a parallel processing of the operators. To reduce the
increased resource consumption in this case, i.e. number of execution units and the communi-

26

g :ﬁ

—

+
nofetch nostorg

— =

=t
4+ +5 HC29S. 2957 nofeokch nostorg

oo S

linmeitern

Fig 3.7

Executing send and receive within the same execution unit

cation costs, we have implemented the possibility to execute the send and receive operators
within the same execution unit. Hence, the need for a data stream between send and receive
operator instances that are processed within the same execution unit disappears. With this strat-
egy, we deliberately dispense with parallel execution at some points which don’'t contribute to
overall performance gains, thus saving resources. In thisway agood trade-off isachieved, espe-
cialy for intra-query parallelism in amulti-user environment. We have adapted the send/receive
nodesto deal with this special situation aswell. Please note that thisisin contrast to Section 3.5,
here we have to deal with repartitioning that generally prohibits block combination.

As an example, consider TPC-D query Q1 (Fig. 3.7), parallelized for 4 processors and 4 disks.
Here, adegree of parallelism of 4 is used throughout the PQEP. However, the grouping requires
an attribute-based partitioning, in this case hash, indicated by the parameter (H[4] [4 5]). Thus,
arepartitioning is necessary, realized by adatariver of 4 x 4 = 16 data streams, leading to alto-
gether 9 execution units. By bundling together send and receive, the number of execution units
isreduced to 5. In addition, 4 data streams get substituted by communication within an execu-
tion unit, as visualized by the lines connecting inner-block operators. Hence the data river is
now constituted only of 16 - 4 = 12 data streams.

The validation of this approach, using all applicable TPC-D queries and the same test scenario
as before, can be found in Tab. 3.4. The results clearly show that this strategy leads to an
increased efficiency, especially in a multi-user environment.

Table3.4 Benefit of execution unit combination
(average over applicable TPC-D queries) Separate Execution Combined Execution
Units Units
Avg. Number of Execution Units 6,6 4.7
SMP avg. Execution Time (ms) - Single User 38985 35565
SMP avg. Execution Time (ms) - 2 Users 60136 52699
Cluster avg. Execution Time (ms) - Single user? 30171 26765

a. While comparing the results please note that the workstations in the cluster have more processing power than the SMP.

27

3.7 Related Work

Important research activities have been done in the area of parallel query execution. However,
most previous work uses simplifying assumptions or concentrates on specific architectures and
operator types that don’t cover the requirement catalog coming from real-life application sce-
narios. In addition, language extensions or extensions to the database engineitself, as supported
by object-relational DBMS, are hard to accomplish. Thus parallelization in many cases is
restricted to join orderings in combination with restricted forms of parallelism [Has95] or is
based on heuristics, ase.g. in XPRS[HS93]. Here, the exchange of intermediate resultsis done
through temporary tables, but there is no discussion on how to organize these tables, which is
one focus of this chapter. Other approaches are highly specialized for specific, e.g. main-mem-
ory [BDV96] architectures or certain operator types, like e.g. hash joins[SD90, L C+93, ZZS93,
WFA95].

The most similar approach to the MIDAS execution system in a shared-memory environment
is Volcano [Gr94]. Here, intermediate results are managed by a buffering control mechanism
based on semaphores. Vol cano adopts only a data-driven dataflow between the subplans, while
having a demand-driven approach within a subplan. Processes needed for the execution of sub-
plans are forked dynamically through the Exchange operator. Hence, this results aso into an
architecture-specific solution. To reduce the number of processes, the Exchange operator was
extended to run within a process operator tree (similar to our approach described in Section
3.6), thus making inter-process communication demand-driven, too. The author claims this
makes flow control obsolete. However, we cannot support this statement, as in the course of
redistribution, the Exchange operator within a process also provides input for other processes,
that can overflow. Asshownin 4.1, thisleads to a high deadlock probability, an issue that is not
discussed in the Volcano paper. Furthermore, no experimental results are presented, which
makes the devel oped techniques hard to be analyzed or to be compared to other approaches.

The Gamma prototype [DG92] uses the split and merge operatorsin asimilar way as MIDAS
uses the send and receive operators. Apart from this, the query execution system of Gammaiis
quite different from ours, asit doesn’'t allow multiple operators to be processed within the same
process. In thismodel [Gh90], there isageneric process template that can receive and send data
and can execute exactly one operator at any point of time. Later work [BF+95] has shown that
this mechanism generates too many processes. In addition, network 1/0 is the only means of
obtaining input and delivering output for operators, implying high interprocess communication
for queries containing multiple operators.

The assumption that each operator is parallelized independently, the output of an operator being
always repartitioned to serve as input to the next one is the basis of more recent models as well
[G197, GGS96]. However, our resultsin Section 3.5 show that the optimal degree of parallelism
of aset of operators differs from the optimal degree of parallelism of each separate operator, as
in this way repartitioning can be avoided and larger blocks can be constructed, thus saving
resources.

Asfor commercial databases, Informix Dynamic Server [Z097, Inf98] uses some Volcano con-
cepts for the query execution system. A special operator is used to pipe intermediate results
from one set of operatorsto initiate another set of operators. A special dataflow manager is used

28

to provide flow control and avoid spoolings to disk and probably also deadlocks, an issue not
discussed there.

In DB2 UDB [Ibm98, IMP97, BF+95], the intermediate results are managed by so-called table
gueues that connect subsections of aplan. Only one (hash-based) redistribution strategy is used.
But the major difference to MIDAS is that there is no synchronization between the sender and
the receiver. The disadvantage of such a pure data-driven approach is that a special communi-
cation subsystem has to be implemented, that guarantees the correct order of arrival and the
materialization/dropping of messages. Our measurements in Section 3.3.5 also show that the
communication costs for such an approach are higher than in a synchronized communication.
That iswhy in MIDAS we combine both methods, using the demand driven approach whenever
possible and materializing only to avoid deadlocks. Another difference to MIDAS is that the
degree of parallelism of an operator is mainly determined by the partitioning of itsinputs, while
inMIDAS thisis calculated according to the actual cost of the operator or the block the operator
belongs to.

The Nonstop SQL/MX Database [Tand97] uses split and collect nodes for data partitioning that
aresimilar to our send and receive nodes, except that only hash distribution is supported. To our
knowledge, there exists no publication describing flow control mechanisms or resource man-
agement strategies. The degree of parallelism is chosen according to heuristics, like total num-
ber of processors, or number of outer table fragmentsfor hash joins. In Oracle8 [Or99] multiple
relational operators can be processed within the same process, but parallelismislimited to a 2-
process depth at atime. Another simplifying aspect is that only one pre-determined degree of
paralelism is used throughout the plan. This degree of parallelism can be only overridden by
system limits and user hints. This approach of a uniform degree of paralelism for the entire
PQEP is aso adopted by Teradata [BF97], but proves to be suboptimal as confirmed by our
experiments and performance analysis.

3.8 Summary

In this chapter we have presented and eval uated our approach to efficient management of inter-
mediate query resultsin parallel database engines. Intra-query parallelism has been achieved by
implementing the data river paradigm using communication segments. We have analyzed the
importance of certain aspectsin this paradigm, like dataflow control, partitioning, and merging
of datastreamsaswell asthe granularity used for communication. Furthermore, we have shown
how this paradigm can be significantly improved by block construction, cost-related degrees of
parallelism and combination of execution units. We have pointed out the importance of these
concepts towards achieving optimal speedup with minimal resource consumption. We have
shown that the approach adopted by most commercial DBM Ss of choosing a uniform degree of
paralelism for the whole PQEP results in less efficiency, especially in forthcoming applica-
tions, like OLAP and parallel object-relational DBMS, where the operator costs in a plan can
differ significantly. Additionally, we have presented the deadlock problem which occursin par-
alel query execution systems if a pure demand-driven dataflow is used.

29

30

Chapter 4

OPAZ
a M ulti-Phase Parallelizer

An open problem is how to integrate parallelization with existing optimizer technology. This
chapter presents our approach towards achieving this goal. The corresponding strategies are
implemented within our parallelizer component, called TOPAZ.

4.1 Introduction

Generally, the responsibility for query parallelization istaken over by the so-called parall€elizer.
Itstask isto come up, without incurring too much overhead, with aparallel query execution plan
that exploits various forms of parallelism, thereby achieving maximum speedup combined with
lowest resource consumption. Among the most important requirements to be fulfilled by mod-
ern parallelizer technology are the following ones:

* Extensbility: This requirement is stressed by forthcoming application scenarios. Neces-
sary SQL extensions are dealt with using concepts like user-defined functions [IM 98] or
designated (internal) operators [NJM97]. Similar issues are treated in the context of (par-
allel) object-relational database systems [StM096].

® Performance: To conquer the complexity of the parallel search space [GHK92], [LVZ93],
accurate pruning techniques are necessary.

® Granularity of Parallelism: A QEP consists of operators showing significantly dissimilar
processing costs. Currently, cost models as well as parall€elization strategies only deal with
high-cost operators (also called coarse-grain operators [GGS96], [GI97]), as the perfor-
mance speedup by means of parallelization is most profitable for this kind of operators.
However, low-cost operators, if not treated the right way, can deteriorate query execution
performance considerably. Hence, aflexible granularity of parallelism that providesacom-
prehensive treatment of low-cost and high-cost operators is necessary.

® Economical Resource Allocation: The maximum speedup obtainable is delimited by the
critical path of the best execution schedule for the PQEP. Hence, to limit resource conten-
tion, no resources should be allocated to subplans that cannot reduce this measure. This

31

demand is particularly important in the case of queriesthat run over longer periods of time
(e.g. DSS queries) and in multi-user environments.

* Comprehensiveness: In order to generate PQEPS of acceptable quality for all query types
it is necessary to take into account all forms of intra-query parallelism.

® Adaptability: Hybrid (or hierarchical) system architectures are gaining popularity. How-
ever, the development of optimization techniques to exploit their full potential is still an
open problem [Gr95], [BFV96].

Obviously, numerous techniques have to be devised and combined in order to meet all of the
above listed requirements. As rule-driven optimizers [Lo88], [Gr95] have already proved to be
extensible and efficient, we rely on that technology also for parallelization and propose a solu-
tion based on a top-down search strategy, called TOPAZ (TOp-down PAralleliZer). TOPAZ is
based on afully cost-based decision making. To reduce complexity, it splits parallelization into
subsequent phases, each phase concentrating on particular aspects of parallel query execution.
Moreover, by means of a global pre-analysis of the sequential plan first cost measures are
derived that are used to guide and restrict the search process. TOPAZ combines high-cost as
well as low-cost operators into blocks that are subject to coarse-grain parallelism. As shown in
the previous chapter, this cost-based block building isimportant to achieve economical and effi-
cient resource utilization. The rule-driven approach provides for the necessary abstraction to
support any kind of operators as well as different architecture types, including hybrid ones. As
already mentioned in Section 2.4, TOPAZ solely relies on the widespread concepts of iterators
and datarivers common to (parallel) execution models. Hence, it fits as an enabling technology
into most state-of-the-art (object-) relational systems. Thisis additionally supported by the fact
that TOPAZ builds upon the Cascades Optimizer Framework [Gr95], which is also the basis of
some commercia optimizers, like Microsoft's SQL Server [Gr96] and Tandem’s Serverware
SQL [Ce96].

In this chapter, we analyze the possibilities of integrating parallelization into established query
optimization search engines and point out limitations of the heuristics used in state-of-the art
paralelizers. A discussion of related work is given in Section 4.2. The Cascades Optimizer
Framework is described in Section 4.3. In Section 4.4 a sample query taken from the TPC-D
benchmark is introduced as a running example. In addition, the design of TOPAZ in terms of
basic parallelization strategies as well as internal optimization and control measures is pre-
sented. In Section 4.5 the main phases of the parallelization task are described. The strategy for
deadlock prevention on the parallelization level is presented in Section 4.6. An anaysis and
evaluation of the technology incorporated into TOPAZ is provided in Section 4.7. Finally, in
Section 4.8 a summary completes the chapter.

4.2 Related Work

Query optimizers use continuously improved techniques to simplify the task of extending func-
tionality, making search strategies more flexible, and increasing efficiency [HK+97], [PGK97],

32

[OL90]. Inaparallel context, the search space becomes even more complex asresource utiliza-
tion hasto be considered as well. One way to tackle this problem isto devel op specialized solu-
tions for the exploration of the parallel search space. The other approach is to reuse existing
sequential optimization techniques and to extend them by special heuristics.

4.2.1 Specialized Parallelization Techniques

The two-phase approach uses a traditional search strategy for optimization and a specialized
one for parallelization of queries. The parallelization task is based in many cases on heuristics
[HS93] or it is restricted to join orderings in combination with restricted forms of parallelism
[Has95]. As the parallelizer is a separate system, easy reuse of infrastructure or technology
improvements as mentioned above is prohibited. In addition, extensibility, as required by
object-relational extensions, is limited.

Other approaches propose an integration of optimization and parallelization, but are still highly
specialized for specific architectures or certain operator types. Some research concentrated on
scheduling of joins that maximizes the effect of specific forms of parallelism. Thus concepts as
right-deep [SD90], segmented right-deep [LC+93], zig-zag [ZZS93] and bushy trees[WFA95]
have been elaborated. Although these strategies have achieved good performance for specific
scenarios [STY 93], they rely on the hash-join execution model and thus cannot be applied in a
straightforward way to complex queries holding any kind of operators.

4.2.2 Parallelization Using Traditional Sequential Optimization Techniques

If the optimizer and the parallelizer areintegrated, they both use the same search strategy. How-
ever, they differ in the exploration of the search space and the size of the portion explored. Due
to its exponential complexity, exhaustive search is only feasible for very ssmple queriesand is
implemented in few research DBM Ss, mainly for performance comparison purposes. Random-
ized algorithms have been mainly tested for join orderings in both the paralel and sequential
context [LVZ93], [KD96], showing efficiency only for a high number of base tables. The best-
known polynomial algorithm, the greedy paradigm [LST91], explores only a small portion of
the search space, often ignoring some forms of parallelism. Thus, it islikely to fail the regions
of good physical operator trees.

The bottom-up (dynamic programming) algorithm works iteratively over the number of base
tables, constructing an optimal physical operator tree based on the expansion of optimal sub-
trees involving a smaller number of tables. To handle exponential complexity, a pruning func-
tion isintroduced to realize a branch and bound strategy, i.e. it reduces the number of trees to
be expanded in the remaining of the search algorithm. Pruning isachieved by comparing all sub-
trees which join the same set of relations with respect to an equivalence criteria and then dis-
carding all trees of non-optimal cost.

As already mentioned, in order to tackle the even higher complexity of aparallel context, many
PDBM Ss use beside dynamic programming pruning also other simplifying heuristics. Thus, in

33

DB2 Parallel Edition [BF+95], [IMP97], the degree of parallelism of the operators is mainly
determined by the partitioning of the inputs. In Teradata and Oracle’s Parallel Query Option
[BF97], [Or99] it even remains the same for the whole plan.

In top-down optimizers, such as Volcano [Gr94], Cascades [Gr95] and Columbia [SM+98,
Xu98], the complexity explosion isalso controlled by pruning. These optimizers compute costs
for high-level plans before some lower-level plans are examined. These cost limits are then
passed down to optimization of incrementally constructed QEPs and can thus prune plans
whose predicted total costs exceed this limit. Some investigations [KD96] have yielded poor
performance for top-down optimizers. However, these results referred to the Volcano search
strategy, that meanwhile got improved in the new generation of top-down optimizers, especially
concerning pruning techniques [Ju99], [SM+98], [Gr95].

W.r.t. paralélization, in Volcano the best sequential plan found isdivided into several segments
that are bracketed by Exchange operators. Please note that in this way parallelization, i.e. the
computation of the degree of intra-operator parallelism or the determination of the segment
boundaries, is done with another search strategy than that of the Volcano optimizer. Although
top-down optimizersare used in other PDBM Ss[Ce96] aswell, we do not know of any publicly
available report on how to decide on parallelization using this type of search engine.

To overcome the shortcomings of each optimization strategy in combination with certain query
types, also hybrid optimizers have been proposed [ON+95], [McB+96]. Thus, region-based
optimizers [ON+95] use different optimization techniques for different application scenarios.
The EROC project [McB+96] combines top-down and bottom-up approaches in the NEATO
join optimizer. Here, the bottom-up search strategy is used to enumerate all join orders and the
top-down strategy is used to perform the mapping from logical to physical operatorsin aparallel
environment.

As the optimizers based on bottom-up [Z097, HK+97, IMP97] and top-down [Ce96, Grog]
search strategies are both extensible [L088, Gr95] and in addition the most frequently used in
commercial DBMSs, we will concentrate in the following on the suitability of these two tech-
niques for parallel query optimization.

4.2.3 Suitability of Traditional Parallelization Techniques
for Upcoming Application Scenarios

In this section, we consider an example that reflects the changing requirements of upcoming
applications. Thereby, we analyze the suitability of state-of-the-art parallelization strategies for
this example scenario. As already mentioned, most database systems use for optimization as
well asfor parallelization a bottom-up search strategy. For this reason, we consider this search
strategy for our analysis as well. Furthermore, we will also adopt the ssimplifying heuristics
commonly used by bottom-up optimizersin a parallel search space, namely the limitation to a
number of “interesting partitionings” that are usually chosen according to the partitioning of the
inputs [BF+95, IMP97].

We will compare thistraditional parallelization with a strategy where required physical proper-

FACTS (PeriodKey, ProductKey,..., Quantity, Region...)
PRODUCTS (ProductKey, Type, Name, Color, Size, Price,

Manufacturer...)

ProductKey
FACTS (10.000 tuples) PRODUCTS (100 tuples)

Fig4.1l: TheQEP of the example DSS query

ties are determined at an early optimization stage and thus can be used to guide further search
space exploration. Such aconcept can be easily realized for instance within atop-down strategy
as used by Cascades[Gr95]. Therefore, wewill consider this search strategy asthe second alter-
native to analyze.

In Fig. 4.1, we take as an example a data warehouse, where extreme data volumes necessarily
impose data partitioning and parallelism. The considered star schema consists of a central
FACTS table and several dimension tables, PRODUCT S being one of them. The given partition-
ing attributesthat arein most cases key candidates are underlined. The proportion between table
sizes correspond to typical state-of-the-art data warehouses [Schn97]. Furthermore, consider a
DSS query that for instance analyzes the sales patterns of different regions:
SELECT Region, ratio_to_report (Price * Quantity), avg (Quantity), most_frequent (Name),
most_freguent (Manufacturer), count (distinct Color), count (distinct Type)
FROM Facts, Products

WHERE Facts.ProductKey = Products.ProductK ey
GROUPBY Region

For smplification, we have expressed some aggregations by functions. These can be UDFs or
SQL extensions, as proposed already by some database vendors [Inf98, Re98]. The query is
trandated into a QEP, as depicted in Fig. 4.1. Grouping as well as any specified aggregation
have been combined into one operator (Group). Depending on the concrete DBS this can be
realized by a single dedicated operator, e.g. smilar to a DataCube [GB+96], or a single UDF,
or even a bunch of operators. In any case, if this operator gets parallelized, its input has to be
partitioned according to the Region attribute. However, if the aggregation doesn’t refer to a
holistic [GB+96] function (e.g. most_frequent) or if it doesn’t hold the distinct parameter, then
a specific optimization based on a two-phase parallelization® is possible. Since our example
contains both, this optimization is prohibited. Furthermore, assume that al attribute sizes are
equal (10 bytes), the degree of partitioning for the FACTS table is 12 (one partition for each
month) and 2 for the PRODUCTS table.

4.2.3.1 Traditional Parallelization

First, the execution of thejoin isoptimized. Asthe two relations are not partitioned on the same
attribute, the following possibilities are considered:

1. First, local aggregations are computed, each instance covering a portion of the data. Second, the local aggre-
gates are merged to produce the global result [SN95].

35

1. Replicate the PRODUCTS table to each partition of the FACTS table.
The transmission of the 7 participating attributes makes up a volume of:
7 x 10 (bytes) x 12 (partitions of the FACTS table) x 100 (tuples) = 84.000 hytes.

2. Replicate the FACTS table.
Thisimplies the transmission of the 3 needed attributes, ProductKey, Quantity and Region:
3 x 10 (bytes) x 2 (partitions of the PRODUCTS table) x 10.000 (tuples) = 600.000 bytes.
Thisclearly exceedsthe costs of variant 1. Additionally, in this case the degree of parallel-
ismisonly 2, implying also higher local processing costs for the parallel join instances.

3. Repartition both tables according to the join attribute ProductKey.
The quantity to be communicated in this caseiis:
3 x 10 (bytes) x 10.000 (tuples) + 7 x 10 (bytes) x 100 (tuples) = 307.000 bytes.

Next, the aggregation has to be optimized. Itsinput has to be partitioned according to Region, a
condition that is not fulfilled by any of the above mentioned variants. Thus, the join result has
to berepartitioned. Thisimpliesthe transmission of 9 attributes (7 coming from the PRODUCTS
table as well as Quantity and Region):

9 x 10 (bytes) x 10.000 (tuples) = 900.000 bytes.
Adding also the communication needed for the join, considering the best solution (Variant 1),
the overall transmission volumeis:

84.000 + 900.000 = 984.000 bytes.

4.2.3.2 Parallelization by Taking into Account Required Physical Properties

Sincein this example the group operator isthe most costly one, first this node gets parallelized,
imposing as required physical property the partitioning of itsinput according to Region. Thisis
considered when parallelizing the join operator. Thus, beside the variants from above the fol-
lowing is aso taken into account:

4. Repartition the FACTS table according to Region and replicate the PRODUCTS table.
In this case the communication overhead due to the repartitioning of the FACTS tableis:
3 x 10 (bytes) x 10.000 (tuples) = 300.000 bytes.
Thisisindependent of the degree of parallelism of the join operator. To have the same local
processing costs as in variant 1, we consider this degree as being equal to 12. Thus, the
PRODUCTS table has to be replicated to 12 partitions, implying the same communication
overhead asin variant 1, i.e. 84.000 bytes.

In spite of the higher local communication costs heeded for the join, variant 4 allows the exe-
cution of the aggregation without additional repartitioning costs. Thus, the final plan will have
an overall communication that averages only to:

300.000 + 84.000 = 384.000 bytes.

4.2.4 Summary
Please note that bottom-up optimizers can also be extended to find the plan presented before, by

36

e.g. considering also other partitioning strategiesthan the “interesting partitionings’ determined
by the inputs. In [GHK 92, LV Z93] solutions were proposed by modifying the equivalence cri-
teria and extending the cost model. However, this reduces the effectivity of pruning.

In thisexample we have shown that by using physical properties derived at certain stages of top-
down optimization as conditions for forthcoming stages, better parallel plans can be obtained.
Generally, some crucia decisionsinthe parallel context refer to physical properties, ase.g. par-
titioning, degrees of parallelism and usage of resources, that have to be chosen in away to guar-
antee overall efficiency and to minimize resource contention.

Given the above, it is favorable to come up very early with physical tree solutions, whose cost
estimates can be used to perform aglobal plan analysisand to guide further parallel search space
exploration. Thus, beside the quality of the plans also the performance of the optimization itself
can beimproved considerably. As mentioned above, thisrequirement is satisfied for instance by
atop-down search engine, as Cascades. Hence, we decided to use this strategy for the TOPAZ
paralelizer aswell.

For the MIDAS project, it wasimportant to first concentrate on the strategies needed to achieve
efficient intra-query parallelism. Hence, for a first version of TOPAZ we decided to have as
input a complete sequential physical plan that is generated by the TransBase optimizer. Later
on, thiscomponent has been replaced by atop-down sequential optimizer (see Chapter 6). Thus,
optimizer and parallelizer use the same search strategy, i.e. Cascades, but explore different
search space regions with different rule sets.

In the following, we present the Cascades Optimizer Framework and later on we will concen-
trate on the parallelization effort.

4.3 The Cascades Optimizer Framework

TheCascades Optim zer Framewor k or shortly Cascades isatool for the develop-
ment of extensible, rule-driven and cost-based optimizers. It has been originally developed by
Goetz Gragefe at the Oregon Graduate I nstitute and extended by Leonard Shapiro and his group
at the Portland State University. It achieves a substantial improvement over its predecessor Vol-
cano in functionality, usability, and robustness without giving up extensibility.

The aim of Cascades is to support different data models as well as different query processing
environments. In order to achieve this goal, it differentiates between the nodel and the
sear ch engi ne. The search engine defines the interfaces and provides the code to expand
the search space and to search for the optimal plan. The model component describesthe DBMS
onwhich the queriesrun, and lists the equivalence transformations (rules) which are used by the
search engine to expand the search space.

Thedat abase i npl ement or (DBl) doesn’'t have to take care of the internal features of
the search engine. Instead, the DBI isin charge of developing the model that reflects the char-
acteristics of the DBM S and the execution environment. Thus, the model incorporates the oper-
ators, properties of subplans, rules aswell as acost model. The advantage of such a strict sepa-

37

ration liesin thefact that the DBI can support different data model swith the same search engine.
Thisfeature has been used in MIDAS to devel op different models for the optimization and par-
al€elization part.

4.3.1 Anatomy of the Cascades Optimizer Framework

In the following, we will present the Cascades Optimizer Framework and introduce some of the
fundamental concepts of query optimization that are necessary for further understanding.

4.3.1.1 Physical and L ogical Operators

Cascades models can be broken into two pieces, the |l ogi cal nodel and the physi cal
nodel . The logical model relates to the semantics of the database system, i.e. what is to be
computed. The physical model relatesto data structures, implementation algorithms and storage
devicesetc., i.e. how it isto be computed. Together the logical and physical modelsform a par-
ticular Cascades model which represents both the logical and physical aspects of the corre-
sponding DBMS.

The logical model incorporates the | ogi cal oper at or s. These are high-level operators
that specify data transformations without specifying the physical execution algorithms to be
used. Each logical operator takes a fixed number of inputs (which is caled theari ty of the

SELECT *
FROM A, B,C

WHERE A.a=B.a Example Quer
ANDB.c=Cc pleQuery

EQJOIN

EQJOIN
A.a=B.a

@ Logical Tree

MERGE_JOI

A.a=B.a

Fig4.2: Query optimization example

38

operator) and may have parameters that distinguish the variant of an operator. Two typical log-
ical operators are GET and EQJOIN. The GET operator has no input and one argument, which
isthe name of the stored relation. GET retrieves the tuples of the relation from disk and outputs
thetuplesfor further operations. The EQJOIN operator hastwo inputs, namely the left and right
tables to be joined, and one argument for the equality condition(s). This argument is expressed
as ordered sets of join attributes relating to the left and right tables.

Physi cal operators represent specific algorithms that implement particular database
operations. It ispossibleto use several physical execution algorithmsfor the implementation of
a given logical operator. For instance, the EQJOIN operator can be implemented using hash,
sort-merge or other algorithms. These specific algorithms can be implemented in different phys-
ical operators. Thus, two common physical operators are HASH_JOIN, which implements the
hash-join a gorithm, and MERGE_JOIN, which implements the sort-mergejoin algorithm. The
typical algorithm for the GET logical operator is scanning the table in stored order, which is
implemented in another physical operator REL_SCAN. Like logical operators, each physical
operator also has a fixed number of inputs (which is the arity of the operator), and may have
parameters.

Theinput of Cascadesisat ree of | ogi cal operators, representingtheinitia query.
Replacing the logical operatorsin a query tree by the physical operators which can implement
them givesriseto atree of physical operatorswhich isnothing elsebut theexecut i on pl an
for the given query. Fig. 4.2 shows a query optimization example. Here, the underlying cost
model hasimposed the implementation of the upper EQJOIN operator asaHASH_JOIN, while
the bottom join has been implemented asaMERGE_JOIN. In this example the optimized phys-
ical plan preservesthejoin order from the logical tree. However, please note that a modification
of the join order (or more generally the execution order) is possible as well. As shown by the
memo structure that will be introduced in the following section, e.g. the possibility of perform-
ing ajoin between the tables B and C has al so been evaluated. However, thisalternative has been
dropped because of higher processing costs.

1 4
EQJOIN 2 5 B.c=C.c GET B
HASH-JOIN 2 3 B.c=C.c REL_SCAN B

SORT 4 B.a

EQJOIN 3 6 A.a=B.a
HASH-JOIN 3 6 Aa=B.a

2 EQJOIN 3 4 A.a=B.a ﬂ GET c
MERGE-JOIN 3 4 Aa=Ba REL_SCAN C

3] GET A 6 EQJOIN 4 5 B.c=C.c
REL_SCAN A HASH-JOIN 4 5 B.c=C.c
Fig4.3: Example of amemo structure

39

4.3.1.2 The Memo Structure

The search space isrepresented by the so-called meno st ruct ur e. Cascadesusesexpr es-
si ons to represent subplans. An expression consists of an operator plus zero or more input
expressions. An expression can be logical or physical based on the type of its operator. Expres-
sonsarel ogi cal I y equi val ent if they havethe samel ogi cal properties,i.e.
the same cardinality, the same schema information etc.

In Cascades, a set of logically equivalent expressionsdefineagr oup. To save space, the search
space, i.e. memo structure, is represented as a set of groups, where groups take some other
groups asinput. Thereis atop group designated as the final group, corresponding to the result
from the evaluation of the initial query. Fig. 4.3 shows the memo structure for the example
query in Fig. 4.2. Physical operators are emphasized. The numbers following the operators
denote the input groups. Each line ends with the parameters of the corresponding operators.

4.3.1.3Rules

Rules are used by Cascades to generate the logically equivalent expressions of a given initial
query. A ruleisadescription of how to transform an expression to alogically equivalent expres-
sion. A new expression is generated when aruleis applied to agiven expression. Thus, the opti-
mizer uses rules to expand the initial search space and generate all the logically equivalent
expressions of agiveninitial query. Rules are part of the model and it isthe task of the DBI to
specify them.

Each ruleisdefined asapair of patt er n and substi t ut e. A pattern defines the structure
of thelogical expression on which the rule can be applied. A substitute defines the structure of
the result after applying the rule. When expanding the search space, the optimizer considers
each logical expression, and checks if this expression matches any patterns of the rulesin the
rule set. If the pattern of aruleis matched, the rulefiresto generate the new logically equivalent
expression according to the substitute of the rule. Cascades uses expressions to represent pat-
terns and substitutes. Patterns are always logical expressions, while substitutes can be logical or
physical.

A ruleiscaledtransformati on rul e if its substitute is a logical expression. Fig. 4.4
shows an example of atransformation rule where the top SELECT operator is pushed down to
oneinput of the EQJOIN operator.

A rule is caled i mpl ement ati on rul e if its substitute is a physical expression. For

@ @ Fig4.4: Exampleof a

transformation rule
Crom> ()
G

40

= o ==

) oo :
@ Fig4.5: Implementation rules

instance, in Fig. 4.5aalogical join operator EQJOIN istransformed into a physical operator, in
thiscaseintoaHASH_JOIN. Fig. 4.5b shows an example of arule where two logical operators
are transformed into a single physical operator, in this case into aREL_INDEX_SCAN, i.e. a
table scan using an index (cf. Appendix B.4).

Enf or cenent rul es areaspecial type of implementation rules, that can add physical oper-
ators to agroup in order to enforce certain physical properties (see next section). An example
of such an enforcement rule that isin charge of imposing the necessary sort orderingisgivenin
Fig. 4.6. Inthis case, the SORT operator gets asinput the same group where it has been inserted.

NG

Fig4.6: Enforcement rule

4.3.1.4Properties

Cascades computes in each stage of the optimization process the properties of the resulting sub-
plans. These properties describe the result, i.e. the output of the top operator of the respective
subplan.

Logi cal properti es areassignedto al subplans. They describe aspects of the result that
are independent of the finally chosen implementation algorithm. Such properties are for
instance schema, cardinality, attribute statistics, uniqueness, candidate keys and tracked func-
tional dependencies. Since all expressions in a group are logicaly equivalent (see Section
4.3.1.2), they all have the same logical properties. Thus these properties only need to be calcu-
lated once for each group.

Incontrast, physi cal properti es canonly beassignedto physical operators or subplans.
They reflect those characteristics of a subplan that result from the employed physical operator.
Such aphysical property can be for instance the sort ordering.

41

Cascadesfurther differentiatesamong synt hesi zed, requi r ed andexcl uded physical
properties. The synthesized properties are the ones that result from a concrete physical imple-
mentation of an operator. For instance in Fig. 4.2 the table A is sorted on attribute a. Hence a
full table scan, implemented by the operator “ REL_SCAN A” imposesthe synthesized property
“sorted on a” . This property is used for the subsequent implementation of the MERGE_JOIN
operator, resulting in the fact that no sort operator isneeded on itsleft input. Hence, in the course
of the optimization process, the synthesized physical properties aswell asthelogical properties
are calculated bottom-up, while required and excluded physical properties are calculated top-
down. For instance, the physical operator MERGE_JOIN requiresthat both inputs are sorted on
the join attribute. Hence, this requirement is propagated from top to bottom.

4.3.1.5 Functionality of Cascades

In Cascades, the optimization algorithm is broken into severa parts, which are called t asks.
All such task objectsare collected in atask structure that isrealized asa L ast-I n-First-Out stack.
Thus, scheduling atask isvery similar to invoking afunction. Thetask ispopped out of the stack
and the appropriate method of the task isinvoked.

As[Gr95] pointed out, other task structures can easily be envisioned. In particular, task objects
can bereordered very easily at any point, enabling very flexible mechanismsfor heuristic guid-
ance and could even permit efficient parallel search (using shared memory).

The Cascades optimizer first copiesthe original query into the memo structure. This definesthe
initial search space. The entire optimization process is then triggered by atask to optimize the
top group of theinitial search space. Thisin turn triggersthe optimization of smaller and smaller
subgroups in the search space. Optimizing a group means finding the best plan in the group
according to the cost model. Therefore, it applies rules to all expressions of this group. In this
process, new tasks are placed into the task stack and new groups and expressions are added to
the search space.

Given the above, it is obvious that the task of optimizing the top group requires that all the sub-
groups to complete their optimization as well. Hence, after thistask is completed, the optimiza-
tion is also finished, returning as aresult the best plan of the top group.

4.4 TOPAZ Strategies

To provide the necessary abstraction, it isimportant to decouple optimization from some sched-
uling and load balancing aspects[Ta97]. Aspresented in Section 2.3, thisisachieved in MIDAS
through parameters. Thus, the goal of TOPAZ isto come up with a parameterized PQEP. Each
parameter keepstrack of particular plan properties, like memory allocation, buffer management
etc., whose final adjustment has to be made according to the run-time system state by the QEC
component.

We will exemplify the parallelization using query Q3 from the TPC-D benchmark [TPC95],
whose SQL representationisgivenin Fig. 4.7a. The sequential execution plan of this query that

42

SELECT |_orderkey,

sum(l_extendedprice * (1- |_discount))
AS revenue, o_orderdate, o_shippriority

FROM customer, new_order, lineitem

WHERE c_mktsegment = ‘BUILDING’
AND c_custkey = o_custkey
AND |_orderkey = o_orderkey
AND o_orderdate < date ‘[1995]'
AND |_shipdate > date‘[1995]

GROUP BY |_orderkey, o_orderdate,
o_shippriority

ORDER BY revenue desc,
0_orderdate

=1 LES'EII]?OSIJ [42] AC130] seg

h

ain
=2 LL31476] TLS1 HC25] WL4] =eq

ar,

a) SQL representation of query Q3 b) Sequential QEP c) Parallel QEP

Fig4.7. Parallelization of query Q3 of the TPC-D benchmark

serves asinput for TOPAZ isdepicted in Fig. 4.7b. Essentially, it consists of a 3-way join (per-
formed by 2 hash joins on the tables CUSTOMER, NEW_ORDER, and LINEITEM) followed by a
complex aggregation. In this scenario we further assume that the tables are physically parti-
tioned across 4 disks in around-robin manner. The resulting parallel query execution plan can
befound in Fig. 4.7c.

In the following, we describe in detail some of the core strategies of TOPAZ. In Fig. 4.7c we
have depicted the parallel plan generated for our running example. For a better understanding,
the block boundaries are marked by dotted lines. This PQEP already shows some of theintrinsic
characteristics resulting from our parallelizer that are quite different to the ones known from
other approaches:

® cost-related degrees of parallelism and adjusted block sizes, saving scarce resources
® parameters allowing a fine-tuning of the execution plan to different application scenarios

® usage of all possible communication patterns to realize efficient intra-query parallelism.

4.4.1 Control of the Search Space

Exponential complexity [OL90] has forced optimizers to use different techniques to restrict the
search space and to improve performance. One of these techniques is to prune expressions that
cannot participate in the final, best plan. However, traditional optimization metrics are not suf-

43

ficient for parallel search spaces [GHK92], because, contrary to sequential optimization, physi-
cal resources, partitioning strategies, and scheduling play a vital role. A pruning strategy that
doesn’t take into account these aspects risks to miss the best parallel plan. Heuristic solutions,
as extending the traditional pruning criteria by “interesting partitionings’ are aso insufficient,
as shown in Section 4.2.3. The solutions proposed in [GHK92] and [LVZ93] refer to extensions
of the optimization metric that account also for resource utilization. Thus, the costs for asingle
QEP fill up a vector, and a multidimensional “less-than” is needed to prune the search space.
The problem with these approaches is that dynamic programming pruning techniques become
generaly ineffective and optimization effort explodes in terms of time and memory consump-
tion, as it becomes comparable to exhaustive search. Recent work [GGS96], [GI97] propose a
more relaxed cost metric that is based on approximations taking into account some global
parameters as critical path length or average work per processing site. To our knowledge, there
exists no published work on how to incorporate these cost metrics into existing search engines.

Our solution to these problems comprise the following extensions to top-down optimization:

1. Cost Model The strategies proposed in [GHK92], [LVZ93] are known to assure correct
pruning. Based on these results, our cost model comprises besides CPU-costs also commu-
nication costs, memory usage, disk accesses, and blocking boundaries. In addition, rather
than extending the search space to explore aternative plans holding different degrees of
parallelism, these degrees are aso incorporated into the cost model. Thus, the global pro-
cessing costs of an operator, i.e. the sum of the costs of its inputs plus the operator’s local
processing costs, are calculated for different degrees of paralelism and maintained in an
array (see Section 4.4.4). The TOPAZ cost model will be presented in more detail in
Chapter 5.

2. Phases To overcome the drawback of poor optimization performance due to inefficient
pruning, parallelization issplit into different phases, each phase concentrating on particul ar
aspects of parallel execution. The first phases focus on global optimization of the entire
plan w.r.t. dataflow, execution time, and resource utilization. This allowsthe parallelizer to
take global dependenciesinto account, detecting those locations in the plan where the ben-
efit in exploiting some forms of paralelism is maximized. In the subsequent phases
decisions are based on alocal view of the QEP, i.e. aview restricted to only one operator
or ablock of operators and the costs involved in their execution. Another way to express
this strategy is that each phase uses as a starting point the result of the previous one to
expand a specific region of the search space. These regions do not overlap, since they are
expanded using different transformations, i.e. different rule sets. However, the size of the
explored search space regions decreases in each phase, asthey refer to successively refined
aspects of parallel query execution. Thefinal refinement is made by the QEC; it can further
adjust certain parameters, like memory usage, degree of parallelism etc. according to the
run-time environment. Thusthe overall approach to handling the huge search space for par-
allelization in MIDAS is neither enumeration nor randomization but a cost-based multi-
phase pruning. This strategy is detailed in Section 4.5.

3. Pruning Package (ParPrune) Global parameters [GGS96], [GI97] are incorporated in
TOPAZ by means of an additional pruning strategy. ParPrune further limits the complexity

in each phase, asit guides the search only towards promising regions of the search space.
It works in combination with the top-down search engine and consists of two parts: first,
in the course of apre-analysisdifferent global measures are calculated: critical path length,
expected memory usage, average costs per CPU, average operator costs etc. Second, these
measures serve as constraints (i.e. conditions for rule activations) for al subsequent paral-
Ielization phases. The ParPrune approach will be presented in more detail in Section 5.6.
Apart of thefact that this strategy reduces the optimization effort itself, it can in some cases
influence also the quality of the final plans, as e.g. the global pre-analysis permits a better
estimation on the search space regions that are worthwhile to be explored in more detail.

4.4.2 Control of the Granularity of Parallelism

As mentioned in Section 3.5, the coarse-grain requirement is not always assured by practical
database execution plans. An example coming from traditional QEPs is arestriction evaluating
only alow-cost predicate. Some PDBM Ss have solved this problem using heuristics, ase.g. par-
allelizing these operators always together with their predecessors. However, in parallel object-
relational DBMSs this is not possible if e.g. a user-defined predicate or low-cost aggregation
requires a specia partitioning strategy. It is an open problem how to deal with these operators.
Parallelizing them separately causes obviously too much overhead, while asequential execution
can cause bottlenecks at several places of the PQEP and thus suboptimal performance.

Therefore, in contrast to other strategies [GI197, GGS96], we incorporated into TOPAZ also the
possibility of bundling together severa operatorsinto abl ock, i.e. to perform severa opera-
tors within a single execution unit, as recommended in Section 3.5. The strategy is cost-based,
as it accounts for operator costs, selectivities, and intermediate result sizes to determine block
boundaries. Following the recommendations resulting from Section 3.5, an additional goal isto
achieve mutually adjusted processing rates among communicating blocks.

The degree of parallelism of the resulting blocksis adjusted by TOPAZ to the actual block pro-
cessing costs, i.e. the sum of the costs of the constituting operators. This guarantees overall effi-
ciency and isin contrast to approaches used by other PDBMSs as e.g. choosing the same DOP
for the whole QEP or limiting the considered degrees to a few alternatives [BF97, Or98,
JMPI7].

Intra-block parallelismisanalogousto intra-operator parallelism and requiresto execute several
instances of the complete block by different execution units. Each instance has to work on dif-
ferent sets of data, i.e. the processing within one instance of the block is independent from all
the other instances of this block. In the PQEP shown in Fig. 4.7c, the largest block isformed by
the sort, projection (proj), group, and hash-join (hjoin) operators having a DOP of 5.

The necessary conditionsto bundle operators within ablock are: sanme degr ees of par-
allelismandsane partitioning strategies. Thus, inorder to achieve efficient
block building, aflexible control of these propertiesis necessary, as described in the following
sections. However, these conditions are not sufficient. A cost-based analysis has to decide if a
specific block construction also leads to a decrease of the overall processing costs.

45

4.4.3 Control of Partitioning Strategies

In order to have the necessary degrees of freedom, TOPAZ distinguishes between logical and
physical data partitioning. As presented in Section 3.3.3, the strategies for physical data parti-
tioning implemented in MIDAS are round-robin, hash, range and user-defined partitioning.
Which of these techniquesis used depends on the type of the operator that hasto be parallelized.
In many cases, the partitioning has to keep track of the attribute values, likein the case of hash-
or range-based partitioning. For instance, in Fig. 4.7c the send operator highlighted by an excla-
mation mark performs a hash partitioning on the first attribute into 5 partitions as indicated in
the operator description by the parameter H[5] [1]. However, TOPAZ differentiates only
between the following logical partitionings:

® Any: This parameter indicates that the parallelized operator (or block) doesn’t necessarily
need a specific partitioning (as e.g. the sort operator).

® Attr: If an operator needs avalue-based partitioning on certain attributes (ase.g. in the case
of certain aggregations), the corresponding send operator is extended by the Attr parameter
together with the identifiers of the required partitioning attributes.

Thus, if ablock construction becomes necessary in the course of parallelization, TOPAZ can
change aless strict partitioning (like Any) into a stricter one (like Attr). This can be done easily,
only by taking into consideration the required physical properties. At the end of the paralleliza-
tion, when block construction is finalized, these logical parameters are mapped to one of the
above mentioned physical partitioning strategies.

4.4.4 Control of the Degreesof Parallelism

Consider a QEP having two adjacent high-cost operators. In Fig. 4.8 (left), these are the final
phase of a sort (merging of sorted runs) and an aggregation operator (group). As both of them
are coarse-grain, both are processed using intra-operator parallelism. Suppose that by taking
into account only the local costs of the operators and the intermediate result sizes, the best
degree of parallelism for the sort operator results to 3 and that for the aggregation is 2. Due to
the different degrees of paralelism, arepartitioning of the intermediate results of the sort oper-
ator is necessary, implicating high communication costs.

If the degree of parallelism of the group isincreased to 3, pipelining between the two operators
becomes possible. This reduces communication costs, but increases the number of execution
unitsfrom5to 6. Actually, the optimal execution for the two operators would be within the same
block, but with an increased degree of parallelism according to the higher block processing
costs, as shown in Fig. 4.8 (right). This implies less execution units and less communication
costs, as only the aggregated result of the group has to be transmitted. A plan with similar
response time but reduced resource consumption is also more suitable for a multi-query envi-
ronment.

Assume that this query is optimized by a search strategy that adopts local pruning. Considering
e.g. abottom-up optimizer, it first optimizes the sort, finding the best degree of parallelism of 3
and prunesall the other plans, asthey are (locally) more expensive. At the next level, when opti-

46

@ Q D @D

Fig4.8: Adjusting the DOP for block construction

mizing the group, the search engine cannot find the best plan shown in Fig. 4.8 (right), because
the search space doesn’t contain the plan and costs for the sort operator in combination with a
degree of paralelism of 4. However, keeping the plan alternatives for al possible DOPsis also
an impractical solution with regard to optimizer performance.

We have elaborated the following solution to this problem: To keep the degrees of parallelism
flexible, TOPAZ incorporates this aspect only in the cost model, without explicitly extending
the search space with alternative plans that differ only in the degrees of paralelism. If an oper-
ator gets parallelized by partitioning its inputs, the corresponding send operator doesn’'t hold
any specific information on the number of partitions. A parameter like* Attr[2] 1" inthe course
of the parallelization only means that this send operator performs a value-based partitioning on
the first attribute and that the number of partitionsis greater or equal 2. At the same time the
costs of the operator are calculated for al possible degrees of parallelism, storing them in an
array. This cost calculation is propagated upwards. The global processing costs of the successor
can also be calculated correctly for different DOPs, since its local processing costs are known
and the processing costs of itsinput are available for every considered DOP. Thus, e.g. the deci-
sion on combining two blocks can be taken on the basis of the lowest value in the cost array of
the topmaost operator. In the example, thisisthe group and the entry inits cost array correspond-
ing to the minimal global processing costs will be found for a DOP of 4.

In Section 4.2, we have aready mentioned some heuristics used in practice, ase.g. choosing the
same DOP for the whole PQEP or limiting the considered degrees to afew alternatives [BF97],
[0r99], [IMP97]. New query types, as e.g. DSS and object-relational ones, make the usage of
CPU-intensive operators and UDFs more and more popular. In these scenarios, the operator
costsin a QEP can differ significantly. We believe that the degree of parallelism for these oper-
ators can rely only on cost-based decisions, asin TOPAZ, whereas using only restricted heuris-
tics like the ones mentioned above can lead to truly suboptimal parallel plans.

47

4.5 Multi-Phase Par allelization

In the following we describe the parallelization phases that exploit the strategies described in
the previous section, using as example the TPC-D query Q3 (Fig. 4.7a). Please note that the
PQEPs presented in each phase are complete physical trees, having specific data partitionings
and degrees of parallelism, athough we mentioned before that these aspects are kept flexible.
In TOPAZ each phase can be separately turned on or off. Thus the following examples rather
reflect the physical treesthat are obtained if the phases are turned on successively, starting with
the sequential one (Fig. 4.7b). We accentuate that this is only for illustration purposes, as the
final paralel planistheresult of all constituting phases that explore different regions of the par-
allel search space. The corresponding rules are presented in Appendix B.2.

As each phase is characterized by a separate rule set, examples of representative rules and of
rule applications will be provided as well. Since the send and receive operators appear aways
in pairs, they are internally considered as a single operator, caled SR, holding the parameters
for the respective send (S...) and receive (R...) part. However, in aphysical plan, they are repre-
sented separately at the end and at the beginning of neighboring blocks, constituting adatariver.

4.5.1 Phase 1: Inter-Operator Parallelism and Refinement of Global Costs

This phase starts from the sequential plan and analyzes the possibility of reducing the critical
path length through inter-operator parallelism. An additional goal is to achieve a mutually
adjusted processing rate over all blocksin the QEP, thus considerably reducing query execution
overhead, as described in Section 3.5. The transformations considered in this phase expand a
search space region containing alternative plans that exploit only pipelining and independent
parallelism. The decision criteria comprise sizes of intermediate results, expected resource con-
sumption, processing costs of the emerging blocks as well as blocking operators.

A naive strategy would be to define a single rule for insertion of SR nodes and let the search
engine find the optimal places for inter-operator parallelism according to the cost model. But
thisincreases unnecessarily the parallelization effort, since alternatives that are unlikely to lead
to the best plan are explored as well. For example, pipelining shouldn’t be considered in com-
bination with subplans that are not on the critical path. This naive strategy would lead already
for this first phase to an unacceptable performance. Hence, the considered aternatives are
restricted by ParPrune. In this phase it accounts for the relative costs of the operators and the
critical path length computed during the pre-analysis. Thus, inter-operation parallelism is con-
sidered only in combination with certain subplans and operators that are reasonable from aglo-
bal point of view. In Fig. 4.9a, arule for the insertion of pipelining SR nodes below a binary
operator is presented. The condition for the consideration of this transformation within a QEP
isthat both inputs TO and T1 exceed certain cost limits.

Our example query resulting from this phase is presented in Fig. 4.9b. As shown by the inter-
rupted dashed arrows, the left inputs of the join operators are blocking, since they are used to
build the hash tables. Hence, efficient pipelining is only possible in the segment marked by the
continuous dashed arrow at the right side of the figure. In this segment, the group is recognized

48

hjoin
=1 LCS9070511° TC42] HL130]1 =eq

|

To \

|

|
|
|

a) Rule example b) Intermediate result after phase 1
Fig4.9: Inter-operator parallelism

as acostly operator due to the size of the intermediate result and the high local processing cost.
Thus the cost model has determined the introduction of only one pipelining edge, as shown in
the figure. Thisresultsin two blocks with similar processing rates.

Please note that the goal of this phaseisnot to come up with thefinal set of edgesfor inter-oper-
ator parallelism. Due to modified cost proportionsin the next phases, some of these edges may
be replaced by neighboring ones. The result of this phase are refined cost limits that have been
established w.r.t. critical path length and average block processing costs. Theserefined costs are
exploited by the subsequent phases.

4.5.2 Phase 2: Intra-Operator Parallelism applied to High-Cost Operators

The result of the previous phase is now used to span a hew search space region, exploring the
possibility of further reducing the critical path length and block processing costs by controlled
introduction of intra-operator parallelism. Therefore operators that already meet the coarse-
grain demand are individually parallelized, bracketing them with send-receive nodes.

Depending on the type of the operator, one or both inputs have to be partitioned. Hence, parti-
tioning send nodes are inserted such that each operator instance processes one partition. The
intermediate results produced by these instances are collected by a receive node that is placed
at the output of the operator. For each operator separate parallelization rules have been defined,
considering the operators’ characteristics, as e.g. some operator types admit more alternatives.
Asshown in Fig. 4.10a, e.g. a hash-join can be paralelized by partitioning both inputs or only

49

R[Attr[2] 1]

TLH] HO471 WL2] seg

Operators within the dashed area define a
parallelized block bracketed by S/R nodes

=——=——==mwy

sen
eadonce nobuf TLIE00

a) Parallelization rule b) Parallelization of high-cost operators
for the hash-join operator

Fig4.10: Intra-operator parallelism

one input combined with areplication of the other. The solution chosen by TOPAZ depends on
the cost distribution in the QEP. For instance, if one of the inputs is replicated, there exists no
requirement concerning the partitioning strategy of the other. Thus repartitioning can be omit-
ted, an aspect that is especialy beneficial if this input has a high cardinality. The SR node
parameters only indicate logical partitionings (Attr or Any) without specifying any concrete
degrees of parallelism or physical partitioning strategies (see Section 4.4.3).

Global execution performance and critical path length are mostly influenced by nodes having
high local processing costs. The effect of ParPrunein this phaseisto take into account the aver-
age costs per operator computed during the pre-analysis and to consider only those operators
that beside the coarse-grain requirement, also exceed a minimal cost limit.

InFig. 4.10b the result for our example query isshown if parallelization is stopped at this stage.
Please note that thisisonly for illustration purposes. Thusthe parallelization includes al so tasks
that are usually performed only after the last phase, like mapping from logical to physical par-
titioning strategies and setting of concrete DOPs. These have been chosen according to inter-
mediate result sizes, local processing costs, and disk partitioning. The parallelized operators are
the group (DOP=5), the two joins (DOP=4 and DOP=3), and the scan of the LINEITEM table
(rrscan: round-robin scan) with DOP=4. Obviously, in this example the group isthe most costly
operator, since the DOP assigned to it is the highest. The group requires a partitioning on the
5th attribute, as indicated by the parameter (H[5] [5]...) of the corresponding send operator,

50

identifying a hash partitioning of attribute 5 into 5 buckets. In contrast to shared-disk or shared-
everything architectures, in a shared-nothing environment the parallelization of the relation
scansin this phaseisrestricted by the given physical disk partitioning strategies. This constraint
can be modeled as an additional required physical property.

As aresult of this phase ssimple blocks that hold one parallelized operator show up. The paral-
Ielization of thesedr i ver nodes impose certain physical properties, like data partitioning,
degree of parallelism, and sort order that will biasthe parallelization of the remaining operators.

4.5.3 Phase 3: Block Expansion and Treatment of L ow-Cost Operators

Phase 3 analyzes the possibility of expanding the one-operator blocks obtained in the previous
phase. The resulting blocks incorporate also operators that individually don’t meet the coarse-
grain requirement or have low processing costs. As shown in Section 4.4.2 this achievesamin-
imization of the resources needed to process the given set of operators and avoids bottlenecks.
The DOPs are adjusted according to the block processing costs (see Section 4.4.4).

The corresponding search space region is expanded by transformations that slide the SR oper-

==1
c_update

Phase 2 Phase 3

_ _ . Operators within the dashed area define
a parallelized block bracketed by S/R

a) Examples of rule applications b) Effect of block expansion in the example query

Fig4.11: Block expansion

51

ators towards not yet parallelized operators, thus including them into existing blocks. If in the
course of thisdliding two SR nodes meet, they are transformed into asingle repartitioning node.
In Fig. 4.11a, a situation is shown where the nested-loop operator (NL) has been parallelized in
Phase 2 by repartitioning an input and replicating the other. In Phase 3, the top SR node is
pushed up. As aresult, the Sort operator becomes part of the block taking over the paralleliza-
tion decisions and properties of that block. The other SR node, i.e. the one below the NL oper-
ator, is pushed downwards, thus parallelizing the relation scan (Rel operator). This transforma-
tion is specific to shared-disk and shared-everything architectures, expressing an additional
degree of freedom compared to shared-nothing environments. As stated before, in thelatter case
the scans haveto be parallelized in Phase 2, accounting also for physical disk partitionings. The
result of the two transformationsis a block consisting of the 4 operators, having the same DOP
and the same partitioning strategy. The Rrscan operator, a parallel scan, reads different parti-
tions of the first input table in each block instance. The Rel operator reads the entire second
input table and replicates it to all block instances.

All of the above mentioned transformations, e.g. pushing an SR node through an operator,
merging of two neighboring SR nodesinto asingle repartitioning node etc., are defined asrules
cf. Appendix B.2, the resulting plans being added to the search space and maintained according
to cost-based decisions. To reduce the number of worthless transformations, ParPrune for
instance checks in advance if a given partitioning strategy can be taken over by a candidate
operator.

In our example query (Fig. 4.11b), the parallelization of the lower hash join has been extended
downwards, parallelizing also the scan of the NEw_ORDER table and adjusting the DOP of the
block from 3 to 4. As explained before, this adjustment is triggered from the increased cost of
the resulting block, now holding 4 operators. the hjoin, proj, restr respectively
rrscan(new_order). Analogously, the parallelization of the LINEITEM scan and the group have
been extended upwards. Due to low processing costs, the scan of the CUSTOMER table is done
sequentially, however replicating the result for further parallel processing.

4.5.4 Phase 4: Block Combination Further Decreasing
Parallelization Overhead

As described in Section 4.4.2, bundling coarse-grain blocks can lead to a further reduction of
resource utilization and intra-query communication, thus contributing even to the decrease of
thecritical path length. Therefore, the last parallelization phase analyzes the possibility of com-
bining adjacent blocks with comparable partitioning strategies.

Phase 4 operateswith asinglerule for the elimination of repartitioning nodes between two adja-
cent blocks. Thisisonly possible if the partitioning strategy of the candidate blocksis equal or
comparable. As shown in Section 4.4.3, this condition is satisfied if e.g. the logical partitioning
of at least one block is Any. For thefinal plan shownin Fig. 4.7c, the group block has been bun-
dled together with the upper hash join block adjusting the DOP to 5. The required partitioning
imposed by the group has been taken into consideration by modifying the partitioning of thejoin
block from round-robin (send(RR[4] ...)) to hash (send(H[5] [1] ...)), ashighlighted by the excla-

52

mation mark. Hence, repartitioning has been pushed down to be performed before the join oper-
ator, where it is more beneficial w.r.t. intermediate result sizes. This shows again that TOPAZ
keeps track of all cost factors also on aglobal level.

4.6 Preventing Deadlock Situations

In Section 3.4 we have presented some deadl ock scenarioswith possible solutionsto resolve the
data dependency. However, it is still an open problem how to recognize and prevent these situ-
ations. Most previous work [Has95], [HS93], [BDV96], [GI97], [GGS96] uses simplifying
assumptionsin their model that ignore issueslike dataflow or deadlocks. Nevertheless, in forth-
coming application scenariosthat refer also to object-relational enhancements, acomprehensive
treatment of all aspects related to query processing is necessary.

One possibility to detect deadlocks would be to implement a sophisticated communication sub-
system that controls the exchange of intermediate results, waiting situations and additional disk
spoolings. Clearly, in aparallel and possibly distributed environment this would require a non-
negligible overhead. Hence, we have elaborated a different strategy. This is based on shifting
the recognition and treatment of deadl ocksfrom runtimeto plan generation time, yielding agen-
erally applicable deadlock-aware optimization that produces deadl ock-free parallel plans. Inthe
following, we will present this approach followed by an evaluation w.r.t. applicability and effi-
ciency.

4.6.1 Deadlock-Aware Parallelization

As presented in the previous sections, TOPAZ uses various physical properties that are taken
into account in the course of parallelization. In order to detect potential deadlock scenarios, we
have introduced an additional property, called deadlock. Thisisset to TRUE if the current oper-
ator could be part of a cycle caused by data dependencies. This property is propagated down-
wards, thus being taken into consideration for the parallelization of the inputs. Please observe
that in thisway the treatment of the deadlock property is similar to the one for the sorted-order
property. The only difference is that the latter requirement is satisfied by the insertion of addi-
tional sort nodes, while the deadlock-free requirement is resolved by substituting certain send
nodes from WAIT to materializing, as proposed in Section 3.4.

We will exemplify this strategy using as an example the subplan in Fig. 4.12. In this example,
the subplan is parallelized by partitioning the inputs of the two join operators. Thisis achieved
by thelower SR pairs, that realize aval ue-based partitioning on the join attributes. As presented
in Section 4.4.3, aparameter like* Attr[2] 1" in the course of parallelization meansthat the cor-
responding send operator performs a value-based, e.g. hash or range partitioning on the first
attribute and that the number of partitionsisgreater or equal 2. Thetopmost SR pair mergesthe
intermediate results created by the subplan instances that are executed in parallel.

If during the top-down parall€elization a receive node with a demand-driven merging strategy is

53

S/R
R[Attr[2] 1]
MERGE

deadlock = tr uei

e false

A % A
SIR
S[Attr[2] 2]

v L ">~ materializing
send node

Fig4.12: Preventing deadlocks situations by using top-down optimization

inserted, the deadlock property is set to TRUE, as these nodes can always be the origin of a
potential deadlock scenario (see Sections 3.4.1 and 3.4.2). Thisis exemplified by the topmost
S/Rpair that realizes a sorted output from locally sorted data streams (asindicated by the MERGE
parameter). However, if in the subsequent optimization stages the insertion of blocking opera-
tors is necessary, in this example the upper sort operator to realize locally sorted data streams
aswell asthe lower sort operator inserted because of the mergejoin, the deadlock property can
be reset to FALSE. As presented in Section 3.4, these operators resolve the data dependency.

In the case of binary operators with simultaneous input processing, in our example the merge
joins, adeadlock isonly possible, if they are parallelized via partitioning, repartitioning, or rep-
lication (see Section 3.4.3). However, setting deadlock to TRUE for both inputsis only neces-
sary if the deadlock probability emerged already from the parallelization of the top nodes, i.e.
if the deadlock property was already set to TRUE when reaching the current operator (asin the
case of the lower merge join operator in Fig. 4.12). Otherwise, it is sufficient to propagate the
deadlock alert to only one of the inputs. If the operator is parallelized by partitioning only one
input while replicating the other, the deadlock probability will be propagated to the replicating
input. Therationale behind thisdecisionisthat it isawaysthe input with the smaller cardinality
that is subject to replication, hence a materialization at this point isless costly. In addition, usu-
aly in this case intermediate results have to be materialized anyway, because of the multiple
readers. If the operator is parallelized by partitioning both inputs, TOPAZ selects the input with
the smaller cardinality to propagate the deadlock alert (as in the case of the upper merge join
operator).

If the deadlock property is still set to TRUE when a send operator is reached, this one will be
implemented as materializing. Thus, to guarantee a deadl ock-free execution for the example in
Fig. 4.12, from the three send operators, only one had to be implemented as materializing.

4.6.2 Assessment of the Approach

With the strategy presented, the data dependency could be resolved efficiently already in the
course of plan generation, involving only minimal optimization overhead. The decision on
where to introduce materialization points is cost-based, taking into account intermediate result
cardinalities as well as operator processing costs.

In order to assess the benefits of this approach it is necessary to discuss the following cases:

® No data dependency detected
If thereisno data dependency detected at compiletime, no deadlocks can occur. Inthiscase
our treatment of deadlocksis not affecting thefinal plan. The parallel QEP constructed will
be the same asif the deadlock extension is not set on during optimization time, but with the
additional guarantee that the execution of this plan will not result into any deadlock situa-
tion. Hence there is no need anymore for a runtime deadlock facility.

* Data dependency existent, but uniform processing rates

Because of a potential deadlock scenario, the optimizer inserted one or several materializ-
ing send nodes. However, the materializing property leads to disk spoolings only if the
communication buffers overflow. As presented in Section 3.3.6, if the processing rates of
producing and consuming instances are comparable, a small buffer pool preventsdisk 1/0.
From an execution point of view, in this situation the materializing strategy is not different
from the waiT strategy, because the similar processing rates do also prevent from buffer
overflow, waiting situations as well as deadlocks. As aresult our strategy does not lead to
worse performance or additional overhead.

* Data dependency existent, but non-uniform processing rates

If the processing rate of the consumer is much lower than that of the producer and the com-
munication between the instances is realized via a materializing send operator, the over-
flown intermediate result pages will be forced to disk. However, this means that the data
dependency detected in the optimization phase would have surely caused a scenario with
at least two execution unitsin awaiting and later on in adeadlock situation. Hence, without
the presented strategy for deadlock treatment during paralelization this scenario, in turn,
hasto be detected and resolved all at runtime. Truly thiswould result in more overhead and
worse performance than compared to our solution.

By correlating necessary materialization pointswith the smallest possible cardinalities, the opti-
mization-based strategy is ableto minimize disk contention. Furthermore, thisisalso reinforced
by the fact that the primary goal of TOPAZ isto generate parallel planswith uniform processing
rates. As mentioned above, this prevents from disk 1/0 even if some send operators are imple-
mented as materializing.

Thisisin contrast to a dedicated communication subsystem, that introduces runtime overhead
to control the data flow and to devise necessary disk spoolings. In addition, these approaches
frequently use a timeout-based strategy in order to recognize deadlocks. These idle situations
clearly have a negative influence on query performance. Moreover, the runtime overhead to
resolve them is additionally increased by the fact that deadlocks can have various other sources
inamulti-user distributed system, for instance caused by various synchronization locks. In such

55

an environment, it isextremely important to assure that the execution of a stand-alone execution
plan is deadlock-free.

4.7 Performance I nvestigation

The TOPAZ dataand cost model s have been implemented using the Cascades Optimizer Frame-
work. The current version has approximately 80 rules, divided into 4 categories, one for each
parallelization phase (see Appendix B.2). We have validated our approach by using different
applications, such as OLAP, DSS, and digital libraries. In this section, we report on the perfor-
mance of TOPAZ by using a series of TPC-D queries performed in a single-user environment
on a 100 MB database, running on a cluster of 4 SUN-ULTRA1 workstations with 143 MHz
Ultra SPARC processors, connected via a Fast Ethernet network. In order to perform a detailed
analysis of the separate parall€elization phases, we took the result of each plan and executed it
on our cluster.

Fig. 4.13 shows the average speedups obtained after each phase for all queries of the test series,
parallelized for the 4 workstations; the speedup obtained by our running example TPC-D query
QSisillustrated in a separate curve. We would like to remind that thisisfor demonstration pur-
poses, since parallelization is made up of all phases, the actual result being that obtained after
Phase 4.

. ‘ ‘ S— The first two are only preparatory phases
that result in theinsertion of different forms
of parallelism according to a global cost-
based analysis (see Section 4.4.1). These
are carried over in subsequent phasesto the
rest of the QEP, considering also physical
properties in the top-down parallelization,

] ase.g. partitioning and sort orders (see Sec-
T tions 4.5.3 and 4.5.4). These are the phases

5L

Speedups

" T e ® + where the real speedups are achieved. In
Fig4.13: Speedups after each phase Phase 2 coarse-grain operators that signifi-

cantly contribute to the critical path are par-
alelized separately. The negative speedup
demonstrates quite dramatically our statement (Section 4.4.2) that (ignoring non-coarse-grain

Table 3.5 Speedup distribution in the test series

Total number of queries 16

queries with superlinear speedup (4.5 to 13) 6
queries with near-linear speedup (4) 5

queries with sublinear speedup (1.5 to 3.5) 5

56

Table 3.6 Effect of pruning and global view on execution and parallelization

Resource and response time metrics ParPrune off | ParPrune on
Average execution time for modified queries (ms) 25943 23717
Average number of execution units for modified queries 11.125 8.25
Overall average parallelization time (ms) 884 703

operators causes bottlenecks in parallel execution, thus influencing negatively performance.
The difference between Phase 2 and 3, respectively Phase 3 and 4 shows the importance of
block construction, optimal setting of degrees of parallelism, and other TOPAZ strategies as
described in Section 4.4.

Please note that in some cases, as e.g. for query Q3, we obtained superlinear speedup see also
Tab. 3.5). Thisisdueto thefact that scaleup refers not only to CPUs, but also to other resources.
Hence, if aquery isparallelized correctly it can benefit al'so from parallel 1/0 facilitiesand from
the increased database cache that can reduce disk spoolings. The results show the importance of
Incorporating these aspects into the cost model, as proposed by TOPAZ and presented in detail
in Chapter 5. Of course, this situation can change in a multi-user environment, due to general
resource contention.

Tab. 3.5 shows also some sublinear speedups. As mentioned before, the implemented base ver-
sion of TOPAZ gets as an input a complete sequential tree, produced by a sequential optimizer.
We have observed that some characteristics of these trees can influence the quality of the fina
paralel plan. Thus the suboptimal speedups are mostly related to queries containing a correla-
tion, with this property preventing an efficient parallelization. The treatment of this problem
within query optimization will be presented in Chapter 6. However, we have never observed a
deterioration w.r.t. the (sequential) performance, as al TOPAZ strategies account for parallel-
ization overhead and thus introduce parallelism only where it istruly beneficial.

W.r.t. the importance of a global view in the parallelization process, we have parallelized and
executed the queries with and without the Par Prune technique that can be easily switched on or
off in our prototype. As described in Section 4.4.1, ParPrune is used to provide an additional
guidance throughout the parallelization phases. This is to reduce optimization complexity.
However, as a side-effect, Par Prune can also improve the quality of thefinal plan asthe global
pre-analysis permits a better estimation on the search space regions that are worthwhile to be
explored. Inthetest series, ParPrune modified the final planin 50% of the test cases. Ascan be
seen in Tab. 3.6, for these queries an additional performance improvement has been achieved.
An interesting aspect is that this performance gain has been achieved with explicitly less
resource consumption. We have only listed here the number of execution units, that in this way
has been reduced by 34%. But even where Par Prune didn’t come up with amore efficient plan,
the best plan has been found with clearly less effort. This can be seen already by comparing the
average parallelization times in the last row of Tab. 3.6. However, these numbers also include
some organization overhead, ase.g. the time necessary to copy the QEPsinto and out of the Cas-
cades memory structure. Please note that the numbers are comparabl e to sequential optimization
efforts.

57

250 T 900 T
ParPrune off +— ParPrune off +—
ParPrune on —+-- ParPrune on —+--
800 [
A
700 N
8 g
E § 600 |-
500 |-
A
400
0 : : 300 ‘ 1
1 2 3 4 1 2 3 4
Phases Phases
a) Rules b) Tasks
130 T T 60
ParPrune off <+— Rules <—
ParPrune on -+-- Tasks ~+--
120 | i 50 | Expressions -8-- |
110 | g 40
1%}
< -
o s | T -+
§ 100p -, § e ED
& N g N
o 1 20| TN
A N AN
80 | SO\ 10} s
70 L L 0 ! | i
1 2 3 4 1 2 3 4
Phases Phases
c) Expressions d) Differences in percent
Fig4.14: Influence of ParPrune on rules, tasks and expressions participating
in each phase

To evaluate only the search complexity, we have used as measures the number of expressions
generated, the number of tasks and the number of rule applicationsin the course of the parallel-
ization. Please note that these measures have been presented in Section 4.3.

In Fig. 4.144, b, and c the average number of rules, tasks, and expressions participating in each
phase of the parallelization are compared. As can be seen, by using ParPrune, these numbers
could bedrastically reduced as compared to anon-pruned parallelization attempt. In order to get
a better understanding, a summarization is given in Fig. 4.14d, showing for each phase the
reductions (in percent) achieved for these measures. Thus, e.g. the number of applied rulesin
the first phase is reduced drastically, by 54%. Generally, the impact of ParPrune is the highest
inthefirst two phases, asthese are the onesthat participate most in the determination of thefinal
character of the PQEP. It is here that a guidance given by a pruning strategy can help the most
infinding the right regions of the search space. Later on only agradual refinement of the parallel
plan takes place that translates to a search only around the regions found in the earlier phases.
Thus, in these last phases pruning can only contribute to the reduction of unnecessary transfor-
mations and thisimpact is not so visible.

58

4.8 Summary

In this chapter we have shown that our approach, called TOPAZ, fulfills al basic requirements
of a modern parallelizer. This is accomplished by a cost-based, rule-driven and multi-phase
strategy. A thorough performance analysis and evaluation of our parallelizer technology clearly
showed that the complex parallelization task can be conducted by TOPAZ’s underlying paral-
lelization strategies as well as internal optimization and control measures such as ParPrune.
These measurements further indicate that the parallel plans created by TOPAZ are executable
by state-of-the-art parallel database engines showing linear speedup. In summary, our investi-
gations manifested that these results can only be achieved by the integration of all before men-
tioned parallelizer properties. However, considering the non-negligible overhead resulting from
the usage of such a sophisticated parallelization strategy, the goal of TOPAZ is clearly the par-
allelization of large and complex queries, that can make truly profit of all itsintrinsic features,
including aso its deadl ock-preventing facility.

59

60

Chapter 5
he TOPAZ Cost M odel

This section describes the cost model that has been designed and implemented as a part of the
Cascades data model for the TOPAZ parallelizer.

5.1 Introduction

The starting point for the TOPAZ cost model constituted ideas from [GHK92] and [LVZ93].
However, significant extensions and modifications have been made in order to satisfy the
requirements of afull-function, parallel object-relational DBMS as MIDAS.

Thus, aguiding principle in our cost model design has been to consider parallel processing for
all types of operators. This comprehensive approach is in contrast to most previous work. In
addition, the main contribution of this strategy is the incorporation of block building into the
paralel cost model.

First, we focus entirely on the cost formulae that are necessary to express the various forms of
intra-query parallelism. In order to avoid an unnecessary complication of the resulting expres-
sions, we will makein thisfirst part some ssimplifying assumptions, listed in the following:

A1l. Send and receive operators don't have local costs of their own.

Thus, send and receive operators don’t contribute to the total cost of aplan or subplan. Actually,
the exchange of intermediate results involves non-negligible communication costs [Has95]. As
shown also in Chapter 3, the communication overhead is even more significant if materializing
send operators are employed. Thus, later on in this chapter (Sections 5.4.2 and 5.4.3) send and
receive operators will be treated in the same way as other “regular” nodes, i.e. as operators that
process their input according to the iterator model. In this representation the costs related to
intra-query communication, i.e. the management of communication segments (see Chapter 3),
can be considered as the operator’s local costs.

A2. Unlimited resource availability

For simplification purposes, the cost formulae will be first derived without taking into account
the resource consumption of different operators and subplans. That means that in afirst step we
will concentrate on the response time of aquery, i.e. in the following the term cost is equivalent

61

to response time. Later on, in Section 5.5, we will also integrate resources into the cost model.
A3. The granularity for intra-query parallelismis one operator.

Thus, we will first examine the special case where all operators are separated by send/receive
operators. Inthisway, they can be assigned independently to separate execution units. However,
the results in Section 3.5 convincingly demonstrate the importance of block building. Hence,
we extended the cost model as described in Section 5.3.4 to make the parallelizer cognizant of
this aspect as well.

The chapter is organized as follows. Section 5.2 gives abrief overview on related work. In Sec-
tion 5.3 we gradually derive the significant cost measures. The resulting cost formulae are sum-
marized in Section 5.4. Theinfluence of resourceswill be presented in Section 5.5. Finally, Sec-
tion 5.6 provides a detailed description of the ParPrune strategy that has been introduced in
Chapter 4.

5.2 Related Work

Cost models for parallel query optimization are influenced by the number of possible waysin
which resources may be allocated to the execution plans.

Most existing cost models actually schedule operators onto resources and then calculate the
responsetime [LVZ93, LST91, GHK92]. Thisapproach isinadequate for our overall paralleliza-
tion strategy where the final resource parameters are set by the query execution control compo-
nent corresponding to the current run-time situation.

Other approaches [STY93, HS93] assume that all resources are used to execute each operator.
Thisisin contradiction to the requirements posed by a multi-user environment.

More recently, the issue of designing efficiently computable and accurate estimator functions
for response time in parallel database systems has been addressed in [G197, GGS96]. However,
these approaches are based on the simplifying assumption that each operator is parallelized sep-
arately. Hence, they don’'t support any execution models that implement also block building, as
e.g. MIDAS.

5.3 Deriving the Cost Measures

In the following, we define some basic cost variables. Other variables that are needed for the
TOPAZ cost model will be introduced gradualy.

Given asubplan T with N as the root operator:

* Tiocal(N)
are the local costs of operator N that are necessary to calculate all result tuples. These are
intrinsic costs related to the algorithm implemented within the operator. That means that

62

Figh5.1: Sequential Execution

the costs of the inputs are not contained herein. For instance, in the QEP presented in
Fig. 5.1, T\oca(N) refersonly to the local processing costs of the Uniq operator.

* Np Np,...
denote the immediate successors of an operator N, i.e. the root operators of its immediate
input subplans Ty, T4,... Asaready mentioned, in thisfirst step send operators are not taken
into account. Please note that in the following, we will use the term of successor and pre-
decessor w.r.t. the position in the tree. Thus e.g. in Fig. 5.1, the Sort is the successor of the
Uniq operator. However, the data flow, respectively processing within a tree, takes place
from bottom to top as shown by the arrows in Fig. 5.1. Hence, in the course of evaluation
the Sort operator transmits intermediate result tuplesto its predecessor, the Uniq operator.

* Tiota(N)
are the total costs of subplan T with N as top operator. Thisis the time that is necessary to

completely evaluate T. More precisely, in theiterator model employed also by MIDAS (see
Section 2.4), Tioa(N) relates to the time after which operator N has calculated its last
results tuple and has transmitted it to its predecessor. Hence, in the sequential execution,
Tiotal(N) isthe sum of the local costs of operator N and the costs of itsinputs:

Tiotal(N) = Tioca(N) + Zi o Tiotal(Nj), wherek = arity of N.
Further on, we concentrate on some characteristic scenarios encountered while employing intra-
query parallelism. Thereby, we present typical examples corresponding to each scenario. Based
on these examples, we introduce new cost components, respectively develop new formulae.
Following the convention used in the previous chapters, send and receive operatorswill be often
represented asasingle logical operator. Please note that thefinal cost formulae covering al pos-
sible scenarios and operators in the MIDAS cost model will be presented in Section 5.4.

63

5.3.1 Sequential Execution

Fig. 5.1 shows an example for sequent i al executi on (SE) between two operators N
and N, (respectively between the corresponding subplans T and T). The Uniq operator, adupli-
cate elimination, is separated by a send operator from the subplan T having as a root the sort
operator Ng. Hence, the two operators can be processed on two separate execution units. How-
ever, this strategy isnot beneficial for this scenario. The Uniq operator can only start processing
when its successor (in this case the sort operator) has delivered its first result tuple. However,
the sort operator isablocking operator, i.e. it hasto process all of itsinput before delivering the
first output tuple. At the time when thistask isfinished, the subplan Ty is aso completely eval-
uated. Hence, parallelism between N and T is not possible. The two operators N and N are
evaluated one after the other, i.e. sequentially.

Given the above, the cost for N amounts to the sum of the total costs of Ng and the local costs
of N:

Tiotal(N) = Tiotal(No) + Tiocal(N).

5.3.2 Independent Parallel Execution

Wedefinel ndependent Paral | el Execution (1 PE) asaprocessing scenario where
among the implicated operators, respectively subplans, there are no data dependencies. In this
case none of the operators is implicated in any waiting situations until some other operators
deliver (intermediate) results. Hence, the transmission rate between communicating subplans
has no relevance, either.

InFig. 5.2 atypical example of IPE isgiven. The two subplans Tpand T, are separated from the
common predecessor merge join via send operators and can thus be scheduled on separate exe-
cution units for execution. There is no data dependency between them, because sort operators
derive their complete intermediate result table before the next operation (in this case the merge
join) can start. Hence no blocking between the two operators can occur.

We introduce the new binary operator ||, called “ Par al | el ” that can be applied for the cost
calculation of two operators, respectively subplans, that are executed in an |PE manner. Using
this operator, the response time of the entire plan T can be expressed as follows:

Tiotal(N) = (Tiotal(No) 1| Tiotal(ND)+ Tioca(N).

First, both input subplans of N have to be evaluated completely. The resulting response timeis
expressed by (Tiota(No) || Tiotai(N1)), asintroduced before for subplans executed in an | PE man-
ner. Only at this point can operator N start processing. Thus, thisis also a case of sequential exe-
cution between N and its successors. Therefore, the corresponding costs are added up.

For the evaluation of the expression Tyq41(No) || Tiotar(N7) it isimportant to assess the influence
of resource contention on the final costs. If resources are not taken into account, the following
formulaisvalid:

Tiotal(No) || Tiotai(N1) = max (Tiotai (No), Tiotal(N1)-
Thus, the total response time is the maximum of the response times of the two inputs. This esti-

__

Fig5.2: Independent Parallel Execution

mation is correct, if To and T, access different resources and thus no contention occurs. How-
ever, the response time increases if the two subplans compete for (common) resources. In
extreme cases | PE can even degenerate to sequential execution. Asalready mentioned, the treat-
ment of resources will be presented in detail in Section 5.5.1.

Given the above, we can conclude that the cost of Tiq4(Ng) || Tiotal(N1) lies between the fol-
lowing limits:

maX (Tiota1(No)s Tiotal(N1)) <= Tiotal(No) || Tiotai(N1) <= Tiotal(No) + Tiotai(N1)
|PE -—> SE

5.3.3 Dependent Parallel Execution

Dependent Paral |l el Execution (DPE) meansthat two operators, respectively two
subplans are processed on different execution units, but there is a data dependency between
them. As shown also in Chapter 3, if the processing rates of communicating subplans are not
similar, waiting situations can occur. A typical DPE scenario is pipelining parallelism. Fig. 5.3a
shows a simple example for dependent parallel execution. Two operators N and Ny, a duplicate
elimination uniq and restriction restr, are split up into two subplans by a send operator. Since
the restr operator is not blocking, it deliversits result tuplesimmediately to its predecessor and
hence parallelism between N and N is possible.

However, the actual extent of parallelism is dependent of the dataflow between the two opera-
tors. The most important factor to influence the dataflow are blocking boundaries, hence they
must be incorporated into the cost model. In order to evaluate the actual response time of an
operator, it isimportant to have knowledge on its processing start time. If its successor Ny isa
blocking operator, as e.g., the sort in Fig. 5.1, dependent parallel execution degenerates to
sequential execution (cf. Section 5.3.1). However, if Ny is not a blocking operator and doesn’t
have to wait for any successors of its own, N can start processing without delay. Hence, this sit-
uation resembles to some extent to an independent parallel execution. This can be expressed as

65

Fig5.3: Dependent Parallel Execution

follows:

maX (Tiotal(No)s Tiocal(N)) <= Tiotal(N) <= Tiotal(No) + Tioca(N)
IPE -—-> DPE -—> S

The delay until an operator receives its first tuple from its successor and can in turn start pro-
cessing, will be further referred to asthe costsof itsnmat eri al i zed front [GHK92]. The
materialized front of an operator N isthe set of input subplansthat must be completely evaluated
before N can start evaluating its first input tuple. The name results from the fact that these are
subplans containing blocking operators, hence often a materialization of intermediate resultsis
necessary.

Therefore, we introduce a new cost component, called Tyeqin(N). This component indicates at
which time an operator N deliversitsfirst (intermediate) result tupleto its predecessor. If Nisa
blocking operator we have:

Thegin(N) = Tioral(N),

because the entire subplan T having N as aroot must be evaluated entirely before the first result
tuple is handed over to the preceding operator.

The costs for the subplan in Fig. 5.3a can thus be calculated as follows:

Tiotal(N) = Thegin(No) + ((Ttotal(No) - Thegin(No)) Il Tiocal(N))

= Thegin(No) + max((Total (No) - Thegin(No)): Tiocal(N))
Thegin(N) = Thegin(No) (since N is not a blocking operator).
The term (Tiotal(No) - Thegin(No)) denotes the remaining processing cost for subplan Ty, that has
to be evaluated after Ny has delivered itsfirst tupleto N. If Ng isablocking operator, thisexpres-
sion equalsto O, asinthis case N would have processed all of itsinput entirely before delivering
thefirst result tuple.

Fig. 5.3b shows a further example. In this case the inputs of the binary operator Intersect are
also implicated in a DPE execution. The dependency results here from the processing rate of
their common predecessor. Thisresultsin:

Tiotal(N) = (Toegin(No) I Thegin(N1)) +

66

((Tiotal(No) - Toegin(No)) [l (Trotai (N1 - Thegin(ND) [| Tiocar(N))

= MaX(Thegin(No), Tpegin(N1) +

maX(Tiotal (No) - Thegin(No): Ttotal(ND - Toegin(N1): Tiocal(N))
Thegin(N) = (Toegin(No) Il Toegin(N1))

= maX(Thegin(No), Thegin(N1)) (since N is not a blocking operator).

The materialized fronts of Ny and N, can be processed in parallel in an |PE manner. The result-
ing response time is the cost of the materialized front of N. Since N can only start processing if
both inputs have delivered their first tuple, Thegin(N) is the maximum between the costs of the
materialized fronts of the inputs.

The remaining subplans having the processing costs Tigig1(No) - Thegin(No), Tiotal(N1) - The-
gin(N1), respectively Tqc4(N) can now be processed parallely ina pipelining manner. Assuming
a constant processing rate, the formulafor IPE is here also valid.

Conclusion: In this section, we introduced the cost component Tpeqin(N) that stands for the
costs of the materialized front of operator N. These costs are caused by blocking operatorsin
the PQEP If resources are not taken into account, Tpegin(N) is equivalent to the time when oper-
ator N has evaluated its first intermediate result tuple.

5.3.4 Block Building

In this section, we extend the cost model to deal also with block building. As explained in Sec-
tion 3.5, ablock can be viewed similarly to a single operator whose processing cost is the sum
of the processing costs of the constituting operators. Hence, in this case parallelism is exploited
among the various blocks, rather than within a block. Fig. 5.4 shows a QEP that is split up into
two blocks. The relation scan operator rel and the projection proj are processed parallely in a
DPE manner with the restriction restr and the duplicate elimination unig.

Inthis case anew cost component, called Tyocess, IS needed to add up thelocal costs of the con-
stituting operators within ablock. Thus, the blocks are regarded as virtual operators (N;" and N’
in Fig. 5.4) with correspondingly increased processing costs.

The following cases are possible in the bottom-up cost calculation of a plan:

1. Nisaleaf or areceive operator:
Tproc&ss(N) = Tiocal(N)
2. else: (thearity of N5 n,n> 0)
Tprocas(N) = ((ZI o TpI'OCESS(Ni)) + Tiocal(N).
Thus, we use a similar cost calculation technique within a block as employed for traditional
sequential execution presented in Section 5.1. However, modeling a set of operators within a
block as a single virtual operator gives rise to difficulties if the block contains also blocking
operators. As aready mentioned, in a parallel environment it isimportant to keep track of the
costs of the materialized front(s). These costs are determined by blocking operators and are
propagated for further cost cal culations by means of the Theg, Cost component. For ablock con-
taining one or several blocking operators we have different values of Tpeg, Within a block as

67

T, AN Fig5.4: Dependent paralle execu-
o f ________ \ tion of 2 blocks

well. Hence, if thisblock ismodeled asasingle virtual operator, thefinal value of this cost com-
ponent is undefined. Therefore, we decided to bundle together operators of ablock only as far
asthe next blocking node or send operator. In thisway, ablock containing m blocking operators
Ismodeled as nm+ 1 virtual operators.

Hence, in the bottom-up cost calculation we have:
Torocess(N) = 0, if N is blocking.

If multiple blocks are processed in a DPE manner, the final cost isinfluenced by the most costly
block. Hence, it isimportant to retain this information during cost calculation. For this reason,
the new cost component T,y IS introduced.

For agiven operator N, T, is calculated in the following way:
1. Leaf or blocking operator:
Thax(N) =0
2. send operator:
Tmax(N) = (Tprocess(N) Il Trrax(No))-
3. ese (thearity of N=n,n> 0)
Trrax(N) = Trax(No) 1 -+] Trax(Nn-1)
Hence, for blocking operators Ty, iSreset to 0. Thisis due to the fact that for predecessors the
treatment of DPE-style parallelism below the given (blocking) operator becomes superfluous.
If the root of the local block is reached (case 2), T,y Can be evaluated as being the maximum
between the processing cost of thelocal block (Tprcess(N)) and the costs of its successor blocks

(Thax(No)). Finally, for all other operators, the inputs are processed in a DPE-type parallelism.
Hence, the corresponding formula applies also for the calculation of T, (case 3). This case

68

Fig5.5: Block building with a materialized front

includes also unary operators, for which the value of T, iS propagated unchanged.

Given the above, the total cost of a unary operator N results to:

Tiotal(N) = Tbegin(NO) + (Tprocess(N) Il Trnax(No))-

Block building influences the calculation of the materialized front for binary operators as well.
Thus, the formula

Thegin(N) = (Toegin(No) | Toegin(N1)) = Max(Tpegin(No), Thegin(N1), given in Section 5.3.3 is
no longer valid.

This can be exemplified using the PQEP in Fig. 5.5. Here, the merge join and the two blocking
sort operators are incorporated within the same block. The costs of the materialized front of N
(Thegin(No)) are at least as high as the local costs of the Ieft sort (Ng); an analog observation is
valid for the costs of the materialized front of theright input N;. However, the two sort operators
are not processed in parallel, but sequentially, since they areincorporated within the same block.
Hence, it is not correct to use the max operator as in the above formula. Using the sum is not
correct either, because in this way the costs of the materialized fronts of T’ and T;" would also
be added up. However, these fronts are executed in paralel. In order to assess the costs in this
situation correctly, the new cost component Ty, 41¢ IS introduced. In the bottom-up cost calcu-
lation, Tparanel(N) stands for the costs of the materialized front of the most recent subplan that
runsin parallel with N.

Thus, for the root operator N of a block, i.e. a send operator, we have:

Toarallel(N) = Thegin(N).

In all other casesTpara“e,(N) = Tpara“e,(No)

For the example in Fig. 5.5: Toaralle (No) = Tbegin(No’), Toaralle (N = Tbegin(Nl’)

69

Thus, the costs for the materialized front of N result to:

Thegin(N) = (Thegin(No) Il Tparaile (N1)) + (Thegin(N1) - Tparaiier (N1))-

The merge join requires first its left input tuple, i.e. the left input Ty constituted of the subplan
Ty and the sort N are evaluated first. Meanwhile, the subplan T, starts processing in parallel,
aswell. Thus, the materialized front of Ng runsin parallel with the materialized front of the par-
alel input subplan T;" of Nj. Thisis reflected by the expression (Theqin(No) || Tparaiie (N1)-
Later on, the evaluation continues with the right input of the merge join. Thereby, (Tpegin(N1) -
Tparallel (N1)) expresses the remaining costs of the materialized front of N;.

Conclusion: In this section, the consideration of block building has imposed the introduction
of three further cost components:

Torocess eflectsthelocal costs of avirtual operator. Such virtual operators are obtained by divid-
ing a block into several units, corresponding to the number of blocking operators contained
within the block.

Trax 1S introduced to account for the virtual operator with the highest costs in a chain of blocks
that are executed in parallel. Obvioudly, thefinal cost of aPQEP ismostly influenced by its most
expensive operators. The cost component T, iS used to model this aspect in the case of block
building aswell, i.e. for virtual operators.

Tparallel IS €employed to express the costs of materializing fronts that are executed in parallel.

5.3.5 Multiple Evaluation of the Inputs

In this section, we concentrate on binary operators that evaluate their right input in a repeated
manner. Examples of such operatorsin the MIDAS execution model are the nested loops, car-
tesian product, the restriction and projection.

If the right input contains at |east one parallel subplan, only the operators belonging to the local
block need to be evaluated repeatedly. The detached subplans have to be processed only once,
because in the data river concept presented in Chapter 3, the derived intermediate results (man-
aged within communication segments) are available until the end of transaction.

Intuitively, in such a case the following formula could be used:

Toracess(N) = Tiocal(N) + Tprocess(No) + €ard0 * Tprocess(N1),

where card0 is the cardinality of the left input.

However, this formula is not correct if the right input contains within the same block also a
blocking operator, like in Fig. 5.6. As defined in Section 5.3.4, Tyacess(Ny) reflects only the
coststhat come up above the materialized front, hence in this case above the sort operator. Apart
of this, the costs of some operators vary if they are evaluated repeatedly, as e.g. the correlation
or the send operators.

Therefore it is important to introduce a further component, called Tygqin(N), that indicates the
costs that are necessary to evaluate the subplan with N as aroot operator once again.

For the receive operator we have:

70

Fig5.6: Multiple evaluation of
the right input when
usng the nested-loops
operator

Tagain(N) = O, if the previously derived intermediate results are not materialized to disk.
Contrary, additional 1/0 costs occur (see Section 3.3)

Given an operator N with arity n, where the processing costs for a repeated evaluation remain
constant. Inthiscase ,_;

Tagain(N) = ((ZI o Tagain(Ni)) + Tiocal(N).
Please note that in contrast to Tyracess Presented in Section 5.3.4, Taggin isnot reset to 0 if Nis
blocking.

Hence, for the nested loops operator in Fig. 5.6, we have:

Torocess(N) = Tiocal(N) + Tprocess(No) + Tprocess(N1) + (card0 - 1) * Tagain(Ny).
Conclusion: As presented in this section, operators that evaluate their input multiple times
impose the introduction of anew cost component, called T,g,j. Thisis due to the fact that in a
paralel environment the costs necessary to repeatedly evaluate a subplan are possibly lowered
by reused intermediate results.

5.3.6 Materializing Send Operators

A further special case not yet taken into account by the cost model are materializing send oper-
ators. Asdefined in Section 3.3.2, these are operators that implement the NOBUF and WRITEOUT
strategies and hence write their intermediate results to disk in case of an overflow. In this way,
such send operators as well as the corresponding blocks are independent of their predecessors.
Thus, DPE ismodified to IPE, in an analog way as described in Section 5.3.4 for blocking oper-
ators, i.e. materialized fronts. However, the difference liesin the fact that, although the NOBUF
and WRITEOUT send operators are materializing, they are not blocking, because their predeces-
sor can immediately access the intermediate results viaa datariver.

In order to incorporate thiskind of parallelism into the cost model aswell, weintroduce afurther
cost component, called Tg,g. This variable remains 0 until the (bottom-up) cost calculation
reaches a materializing send operator.

71

At thispoint, it is equaled to the total costs of the current block.
Thus, for agiven operator N, Tg,q iS calculated in the following way:

1. Leaf operator:
Tend(N) =0
2. unary operator:
Tend(N) = Tena(No)
3. binary operator:
Tend(N) = (Tend(No) [l Tena(N1)
4. materializing send operator:
Tend(N) = Tioral(N) and Trpu(N) = 0.
Then, for the total costs of a node N above a materializing send operator we have:

Thegin(N) + (Tprocess(N) 1] TrraxN) I (Tend(N) - Toegin(N))), if Tend(N) > Tpegin(N)
TtotaI(N):{

Tbegi n(N) + (Tprocess(N) Il Trax(N)), if Teng(N) <= Tbegin(N)-
Theterm (Teng(N) - Tpegin(N)) indicatesthat after the materialized front of N has been processed
(reflected by the cost component Tpegin), N can run in an |PE manner with the rest of Teng (if
Tend(N) > Thegin(N)). For abetter understanding, we will illustrate this situation in the following
example scenario.

Conclusion: In this section, we have introduced the cost component Tg,q. Thisreflectsthe time
when ablock transmitting itsintermediate results viaamaterializing send operator finishes pro-
cessing.

5.3.7 Exampleof a Cost Calculation

In this section we will effectuate a cost calculation for the QEP presented in Fig. 5.7 based on
the model presented previously. This plan consists of 2 blocks, connected via a send/receive
operator pair. We assume the total costs of subplan Ty and T, as being Tiq4(Ng) = 10, respec-
tively Tiora1(S) = 15. The merge join has the local costs of T4 (N) = 5. The left input of the
mergejoinissubplan Ty. Thishasasroot the blocking operator sort. Therefore, this subplan has
to be completely evaluated, before operator N requires its first right input tuple. This is
expressed by the following:

Thegin (No) =Tiota(Ng) =10

Tprocess (Np) =0

Tmax (No) = Tend(No) =0.

Assuming that the costs of the materialized front of T, are 0, we have:

Tbegin S =0

Tprocess (9 =15

For simplification purposes, communication costs areignored in this example. However, please

72

note that they are also part of the cost model and will be introduced later. In the following, we
consider 3 different scenarios.

1. First, we assume that Sis a send operator with a WAIT strategy, i.e. the producer (subplan
T,) isstalled until the consumer (the mergejoin) requestsitsfirst right input tuple (cf. Sec-
tion 3.3.2). Only at thistime subplan T; starts processing. However, DPE-style parallelism
with the merge join is possible.

S Thx O = Torocess ()
Tend 9 =0
Toaralled (S = Tpegn (9 =10
N1: Thegin (Np = Thegin o =0
Tmax (N) = Tk (9 =15
Tend (Np) = Tend 9 =20
Torocess (N) = 0
N Tprocess (N) Torocess (No) + Tprocess (ND) + Tjoca(N) =0+ 0+ 5=5
Toegin+ (N) = (Toegin(No) |l Tparaitet (ND) + (Thegin(N1) - Tparaiie (N1)) =
(10]] 0) + (0-0) = 10
Tt (N = ToNo) | Tye(Np) = 0[] 15= 15
Tod (N = TorgN) Il Terg(Np = 01 0= 0
Tiotal(N) = Tbegin(N) + (Tprocess(N) Il Trrax(N)) =
10+ (5]| 15) = 10+ 15= 25,

15

2. Here, we assume that operator Sisamaterializing send node. In this case, no blocking can
occur and subplan T, can immediately start processing. Thus, T and T, runin an | PE man-
ner. After Ty has finished, operator N can be processed in parallel with the rest of T;.

S Thax S =0
Tend S =15

Tprocess=5

Fig5.7. Example of a
cost calculation

73

Toaralle (9
Ny Tbegin (Nl)

Trax (Np =
Tend (Np =
Torocess (Np =
N Torocess (N) =
Tbegin N) =
Tmax (N) =
Tend (N
Tiota (N) =

Tbegin o =0
Tbegin 9 =0
Tax (& =0
Tedw (9 =15
0

Torocess (No) *+ Tprocess (N1 + Tiocal(N) =0+ 0+ 5=5
(Thegin(No) |l Tparaitet (ND) + (Thegin(N1) - Tparaiie (N1) =
(10]] 0) + (0-0) = 10

Trmax(No) || Tmax(N7) = 0]] 0= 0

= Tend(No) || Teng(N7) = O] 15= 15

Tbegin(N) + (Tprocess(N) Il TrraxN) 1] (Tena(N) - Tbegi n(N))

10+ (5]]0|| 15- 10) = 15.

3. This case emphasizes the difference between a blocking operator and a materializing send
node. Therefore, we assume that subplan T, contains a blocking operator, e.g. asort, right
below the send operator. The materialized front of T, isin this case equal to the total costs,
hence Tpegin(S) = 15. To and Ty runin an I|PE manner in this case aswell. However, in con-
trast to case 2, no parallelism is possible between N and T;.

S Thx (O =
Ted (O =
Tparallel o =

Nt Tohegin (N9 =
Toaralle (N9 =
Tmax (Np =
Tend (Np =
Torocess (Np =

N: Tprocess N =
Tbegin N) =
Trex (N =
Ted (N) =

Tproceﬁs 9 =0
0

Tbegin S =15

Tbegin 9 =15
Tparalle (& = 15
Tmax o =0
Tedw O =0
0

Tprocess (No) Torocess (ND) + Tjoca(N) =0+ 0+ 5=5
(Thegin(No) |l Tparaitet (ND) + (Thegin(N1) - Tparaiie (N1)) =
(10| 15) + (15- 15) = 15

Timax(No) || Tmax(N7) = 0[] 0= 0

Tend(No) || Tend(Np) = 0[] 0=10

+

Tiotal(N) = Tbegin(N) + (Tprocess(N) Il Trax(N)) =
15+ (5| 0) = 20.

Aninteresting result of thisexampleisthat thetotal costs are highest when a send operator with
the WAIT strategy is employed. Thisis due to the lacking independent parallelism between the
subplans Ty and T,. Since the cost of the materialized front of T, is 0, the pipe blocks right from
the beginning of the execution. If only response time is taken into account, like in this ssimple
example, the lowest costs result from the usage of a materializing send operator. The explana-
tion isthat this operator allows both | PE-style parallelism between T and T, as well as pipelin-
ing parallelism between T; and N. However, in reality and as shown in Section 3.3.5, material-
izing send operators implicate non-negligible 1/0O costs. As already mentioned, in this example

74

thelocal costs for the send operator have been ignored.

5.3.8 Intra-Operator Parallelism

This section concentrates on the extensions that are necessary to incorporate al so intra-operator
paralelism into the cost model. As presented in Chapter 3, in the data river paradigm operator
instances follow the same iterator model as operators. Thus, the formulae presented until now
for SE, IPE and DPE paralelism must not be modified. Intra-operator parallelism rather
changes the local costs of operators. In this model, we assume that if an operator (or block) is
split up into instances, thereisalPE-style parallelism between them. This assumption isaways
correct in a data-driven consumption, i.e. employing an ASYNCH receive operator (see Section
3.3.4), and in the case when materializing send nodes are used. Only in the case of a demand-
driven consumption in the presence of data skew, | PE can degenerate to DPE. However, asit is
extremely difficult to keep track of data skew in intermediate result streams, the cost model will
not take this latter aspect into account.

Thus, each instance can be regarded as an operator (respectively block) whose local costs have
been lowered correspondingly. At the same time, the costs of the partitioning send operators
have to be increased. If resources are not taken into account, for an operator N split up into m
Instances, the local costs of an instance are:

" (N) = Tjpea(N) / m.

local
However, instead of dividing the local costs by the number of partitions, TOPAZ invokes for

instances the same cost formulaas for regular operators (blocks), but with correspondingly low-
ered cardinalities. If card,,..., card,, are the cardinalities of the m partitions, for the total cardi-
nality we have:

m
card = Z card.
i=0
Then, the response time of operator N is determined by the instance having the highest cardi-

nality. We define T4 (N, card) as the local costs of operator N when the input cardinality is
card. Thus, for the total costs of operator N having minstances we have:

Tiocal(N) = Tiocai(N, cardy) || . Il Tioca(N, cardy) = mex . ™ (Tica (N, cardy).
As aready mentioned, in TOPAZ we assume a uniform data distribution, hence we have:
Tiocal(N) = Tiocal(N, card/m) || ... || Tjoca(N, card/m)

If resources are not taken into account, this expression is equivalent to:
Tiocal(N) = Tiocal(N, card/m).

Please note that in the presence of resource contention this formula provides different results
than the expression T ¢4 (N) / m. Consider as an example asort operator with an input cardinal-
ity card that exceeds the available buffer size. In this case additional disk spoolings are neces-
sary that are also reflected in the value of Tjoc(N). If intra-operator parallelism is applied, the
cardinality of an instance is reduced to card/m. In many cases, this lowers or even eliminates
any 1/O costs completely. Hence, we have Toeq (N, card/m) <= T (N) / m.

75

5.4 The Cost Formulae

In the following, we will summarize the cost formulae introduced in the previous sections. We
will begin with the formulae for regular operators. Send/receive operators as well as operators
that process their inputs repeatedly or sequentially will be treated in separate sections. For more
accuracy, we introduce some further cost components:

®* Tibegin(N) reflects the local start-up costs of operator N. A typical exampleis atable scan,
where the delay is caused by the operations necessary to physically open afile.

* Theactual processing costs of an operator are given by Tjyrocess(N). Thus, in the usual case
we have Tjoca (N) = Tibegin(N) + Tiprocess(N)-

* Ngy(N) defines the number of execution units that are necessary to process the subplan
having operator N as root. This component will come to application in Section 5.5.2.

All cost components and constants are summarized once more in Table 5.1 and Table 5.2.

Tableb.1 Constants used for the cost calculation

cardo Cardinality of the (left) input of N

card Cardinality of the output of N

pages Size of the output relation in MIDAS pages
cachesize Number of database buffer pages

toisk Time to read/write a MIDAS page to disk

For blocking operators we introduce the operation sync(N). This operation summarizes all set-
tings corresponding to this operator type as described in Section 5.3

sync(N):
Thegin (N) = Tigta (N)
Tprocess (N =0
Tax (N) =0
Tend (N) 0

Table5.2 Cost variables

Ttotal(N) Total costs of the subplan having N as a root operator

TI or ocess(N) Local processing costs of operator N

TI beg n(N) Local start-up costs of operator N

TI ocaI(N) Total local costs of operator N

Tbegi n(N) Costs of operator N that are necessary to deliver its first (intermediate) result tuple to its pre-
decessor

Tprocess(N) Local processing costs of the virtual operator constituted from N and all subsequent nodes,
as far as the next send or blocking operator

Tagai n(N) Costs for the repeated execution of the subplan having N as a root operator

76

Table5.2 Cost variables

TparaIIeI(N) Costs of the materialized front of the last parallel subplan below N; corresponds to the time
when the first tuple is delivered to the block having N as a root operator

Tmax(N) Processing costs of the subplans running parallel to N in a DPE manner

Tend(N) Total costs of the last subplan below N that contains a materializing send operator

NEU(N) Number of execution units to process the subplan having operator N as root

5.4.1 Regular operators

This section detailsthe cost formulae for regular operators. This category includes the main part
of the operatorsinthe MIDAS cost model. Theterm “regular” meansthat they don’t necessitate
aspecial treatment w.r.t. their cost calculation. For a better understanding, they are divided into
different subclasses, corresponding to their arity. Please note that both the formulae as well as
the order in which they are listed correspond to a bottom-up cost calculation.

5.4.1.1 L eaf operators
Tiocal N =T, begin(N) +T process(N)

Tiotal (N) = Tioca(N)
Thegin (N) = Tipegin(N)
Tprocess N = Tlproc&ss(N)

Tagain (N = Tiota(N)
Toaratles (N =0
Trex (N =0
Tend (N =0

If N isablocking operator: synch(N)

5.4.1.2 Unary operators

Tiocal N = leegin(N) + Tlprocess(N)
Torocess (N) = Tprocess(No) * Tiprocess(N)
Tagain N = Tagai n(No) + Tiocal(N)
Thegin (N) = Thegin(No) * Tipegin(N)
Toaralled (N} = Tparane(No)
Tmax (N) = Tmaxd(No)
Tend (N) = Tena(No)
Thegin(N) + (Tprocess(N) [l Trmax(N) [l (Tend(N) - Thegin(N))), if Tend(N) > Thegin(N)
Trotal(N)=
Thegin(N) + (Tprocess(N) | Tmax(N)), i Teng(N) <= Thegin(N).

If N isablocking operator: synch(N)

7

5.4.1.3Binary operators

Tiocal N = leegin(N) +T process(N)
Torocess N) = Tproc&ss(NO) + Tprocess(Nl) + T process(N)
Tagain (N = Tagain(NO) + Tagain(Nl) + Tiocal(N)
Thegin (N) = (Toegin(No) Il Tparaiiel (ND) *+ (Thegin(N1) - Tparaiiel (N1)) + Tipegin(N)
Toaralld (N = Tparane(No)) || Tparaiie(N1)
Trnax (N) = Tax(No) I Tryax(N1)
Tend (N) = Tend(No) || Teng(Ng)
Thegin(N) + (TprocesstN) | TraxN) [(Tena(N) - Tpegin(N))), if Teng(N) > Thegin(N)
Trotal(N)=
Thegin(N) + (Torocess(N) Il Tmax(N)), if Teng(N) <= Thegin(N).

If N isablocking operator: synch(N)

5.4.1.4 Operators having arity n (n >= 2)

Tiocal (N) = TibegintN) * Tiprocess(N)

Tprocess (N) (ZI ~ 0o TpI’OCGSS(Ni)) + TI process(N)
n p—

1
(zi 0o Tagain(Ni)) + TIocaI(N)

Tagain (N)

Thegin (N) = Tpegin(No)
fori:=1TOn-1do

Thegin(N) = (Thegin(N) || Tparaiie (ND) + Thegin(Ni) - Tparaniel (N;))

end
Thegin (N) = Thegin(N) + Tipegin(N)
Toarales (N = Tparane(No) Il - [l Tparaiet(Nn-1)
Trax (N) = Tiax(No) |l -+ [l Trnax(Nn-1)
Tend (N) = Tend(No) Il -+ I Tend(Np-1)
Thegin(N) + (TprocesstN) | TrraxN) [(Tend(N) - Tpegin(N))), if Teng(N) > Thegin(N)
Tiotal(N)=

Tbegin(N) + (Tprocess(N) Il Trax(N)), if Tena(N) <= Tbegi n(N).
If N isablocking operator: synch(N)

5.4.2 Send Operators

Asaready mentioned, send and receive operatorsareinternally represented as a single operator,
asthey always appear in pairs. However, for the cost calculation, they are regarded as two (vir-
tual) independent operators that belong to two different blocks, with corresponding cost formu-
lae. Thistreatment has been already illustrated by the example givenin Fig. 5.7.

The send operator is the root of the current block. Thus, when the bottom-up cost calculation
reaches this operator, the evaluation of the entire block is finished as well. If the send operator
Is materializing, the block cannot be stalled by predecessors, hence the cost component Tgng iS
equal to thetotal cost of the block and the variable T, can be reset to 0.

78

By definition, the component Ty, indicates when the current operator, i.e. send, deliversits
first tupleto its predecessor (in this case the receive operator). However, as described in Section
3.3.2. the granule of dataflow in MIDAS is a page. Hence, the delay for the first input tuple of
the receive operator is additionally increased by the time necessary to fill up aMIDAS page. In
order to assessthis additional delay, the total processing costs of the current operator have to be
divided by the number of MIDAS pages that have to be transmitted.

Asfor the other cost components, the variable Tya 41¢ IS Set to the same value as Tpggi, accord-
ing to Section 5.3.4 for send operators. The component Tagyin is NOt relevant, as send operators
cannot be reset and repeatedly eval uated.

The above considerations can be summarized as follows:
Tiocal N =T, begin(N) +T process(N)

TpI'OCESS (N) TpI'OCE'$(N0) + T| procass(N)
Thegin (N) = Thegin(No) * Tipegin(N)

Tendprocess = Tend(No) - Thegin(N)
Thegin (N) = Tpegin(N) + (Torocess(N) I Trmax(No) Il Tendprocess) / Pages
Tparalld (N) = Thegin(N)
1. if Nismaterializing:
Tiotal (N) = Thegin(N) + (Tprocess(N) || Trrax(No) || Tendprocess)
Tax (N =0
Tend (N) = Tiota(N)
2. ese
Tax N = Tprocas(N) || Trrax(No)
Tend (N) = Tena(No)
Tiotal (N) = Thegin(N) + (Tmax(N) || Tendprocess)

Please note that we used the term Tenggrocess 8 an auxiliary variable to express the remaining
work after the materializing front of N has been processed.

5.4.3 Recelve Operators

Sincereceive operatorsare leaf operators of inner blocks, in abottom-up evaluation they initiate
the cost calculation for the subsequent block. Therefore, the local processing costs of a block,
reflected by Tprocess, are set to the local processing costs of the receive operator.

For the calculation of T,y,i, We make the following approximation: if the size of the input rela-
tion (in MIDAS pages) isless or equal to the database buffer size, we assume that no material-
ization of the intermediate results is necessary, hence no costs occur. Otherwise, the pages have
to be read from disk, that in turn implicates I/O costs.

Tiocal N = leegin(N) + Tlprocess(N)
Tprocess (N) Tlprocas(N)
Thegin (N) = Thegin(No) * Tipegin(N)
Tparalled (N) = Tparana(No)

79

Trnax (N) = Tmax(No)
Tend (N) = Tena(No)
Tiotal (N = Tbegin(N) + (Tprocess(N) Il Tmax(N) Il (Tend(N) B Tbegi n(N)))

1. if pages> cachesize
Tagain (N) = pages* tgig
2. ese
Tagain (N)

I
o

5.4.4 The OperatorsRestriction, Projection, Nested Loopsand Cartesian
Product

The operators nested |oops and cartesian product perform for each left input tuple a complete
and repeated evaluation of their right input. In MIDAS, the restriction and projection follow the
same execution model to evaluate their predicates. The total costs are therefore mostly influ-
enced by the cardinality of the left input and the costs of the right input subplan. The operators
have minimal internal tuple processing costs, i.e. minimal local costs of their own. Hence, for
the calculation of the component Tjy.5 We will only consider the costs that result from the
repeated execution of the right inpuit.

Thus, following changes to the formulae given in Section 5.4.1.3 are necessary:
Tiocal (N) = Tipegin(N) + Tiprocess(N) + (cardO - 1)* Tagain(Ny)

Torocess (N) = Tiprocess(N) + Tprocess(No) + Tprocess(N1) + (card0 - 1)* Tagain(Ny)
Tagain (N) Tibegin(N) + Tiprocess(N) + Tagain(No) + card0 * Tagain(Ny)

5.4.5 Hash Joins
The hash join operator processes its inputs sequentially. First, the build relation is completely

Fig5.8: Splitting up the hash
i join operator

evaluated, followed by the (mostly larger) probe relation. During the construction of the hash
table, no tuples are transmitted to the predecessor. Only in the probe phase pipelining parallel-
ism becomes possible. Hence the hash joinisapart |y bl ocki ng operator.

In order to use the ability of the TOPAZ cost model to differentiate between blocking and non-
blocking operators, the hash join is split up into two virtual nodes: a build and a probe (cf.

80

Fig. 5.8). Asmentioned in Section 5.4.2, send/receive operators are treated in an analogous way.
For the hash join, the probe can be regarded as a regular and the build as a blocking operator.
Thus, the formulae given in Section 5.4.1.2 apply correspondingly.

5.5 Resources

We now extend the cost model to take into account also the resource consumption of operators,
respectively subplans. The most important resources are CPU, disk, network communication as
well as main memory. Please note that if different parts of a query are processed in parallel and
they access the same resources, the independency assumption is no longer satisfied. For a cor-
rect calculus, this aspect has to be modeled correspondingly.

Resource consumption has an even more important role in a multi-user scenario. However, as
already mentioned, it is the task of the query execution control (QEC), to account also for the
concrete run-time environment. TOPAZ performsits cost calculations for given configurations.
These appear as parameters in the final plan, together with the corresponding cost values. At
guery execution time, the QEC analyzesthe given runtime environment and decides on thefinal
resource parameters (like memory consumption and degree of parallelism).

However, if the workload is approximately known in advance, in terms as e.g. number of users,
typical resource consumption of aquery etc., itisalso possibleto tune TOPAZ correspondingly.
This can be done by either increasing the costs estimated for resource consumption or by reduc-
ing the available resources for each query. Then, the cost calculations will be performed only
for these environments, thus reducing optimization overhead.

5.5.1 Resource Usage Model

Theresource utilization of operators and subplans can be modeled by thefollowing pair for each
resource:

(t, w), where t is the time after which the resource is freed and w is the effective time during
which the resource it used.

Thus, we always havet >= w. If t > w, the resource is not utilized permanently. Since it is
extremely hard to assess the concrete utilization times, we assume that the resources are used
uniformly during period t. We further assume that all resources can be used in a time-sharing
mode. That means that if for a given usage (t, w), we havet > w, the resource can be used by
other plans during a period t - w.

The main memory is treated in a special way. This resource is not preemptive, i.e. it cannot be
shared by multiple execution units. Therefore, the uniformity assumption does not apply for this
resource. As operators have different memory requirements, the resource consumption is vari-
able during the execution of a plan. For scheduling purposes, it is also important to operate not
only with the maximum memory requirement of a query, but with more exact distributions (see
Chapter 7). Therefore, we decided to perform agiven parall€lization task under certain memory

81

limits. Thisistreated as a constraint and the available memory is divided proportionally on the
constituting operators. If the available memory is not sufficient for specific operators, material-
izations of intermediate results are necessary. This is reflected by an increased total response
time. However, as mentioned above, if the typical workload is not known in advance, for asin-
gle query multiple parallelization tasks are performed, also with varying memory limits. The
results are then transmitted to the QEC as parameters. Depending on the run-time environments,
the QEC may favor for instance a plan having a higher response time but alower memory con-
sumption.

If an operator or subplan using resources Ry,...,R;,, has a response time of t, the corresponding
gosts can be modeled by a resource vector:

r=(t, w), .

wheret isthe response time of the subplan and the vector w = (wy,...,w,,) reflects the effective
utilization time for each resource Ry,...,R,,. Thereby, we have the following invariant:
t>=max (f © 5 (w),

meaning that the total response time takes at least as long as the most costly resource.

In this way the cost model can be modified to take also resource usage into account. This can
be done by substituting in the cost formulae from Section 5.4 the pure response time with a
resource vector r = (t, w) that reflects also the resource consumption. Thus, all cost compo-
nents, such as Thegin, Tprocess: PECOMe also resource vectors. However, in order to leave the for-
mulae given in Section 5.4 unchanged, it is necessary to extend the definition of the appropriate
operations on resource vectors as well.

Given two resource vectors ?1: (tq, \7v1) and ?2: (to, \?vz) with \?vi :(Wil,...,wi) denoting the
work of nresources Ry,...,R,, we define the following operations: "
® Operation +
> > -> -> 1 2 1 2
ri+ro= (i +t, wi+ wy) = (g + ty, (w1 W W wn)).
Hence, for the addition of two cost components the response times t; and t, are added up
asusual. In addition, since the total resource consumption also increases, for each resource
R; the effective utilization times are also summed up.
® QOperation -
1T o= (ot Wi -Wo) = (ta- ty, (W) - W2 W= wP)).
The differenceistreated in an analogous way as the addition. In thisway, the resource con-
sumption of the remaining subplan is taken into account correctly.
® Operations* and /
These operations are defined only between resource vectors and scalars. Thus, given a sca-
lar value f, we have:
Yk fk o — (f% * 0N — (f% % L w1
il f=f r1; (frt, f*wy) - (f tl,(lf W1""’f wn)).
rolf= (@ /f,wq/f)=(t,/f, (w1 /f,...,wn /1)).
® QOperation “Parallel” (]|)

Given two operators (respectively subplans) that are involved in an independent parallel
execution (see Section 5.3.2). Until now, we have considered for the cal culation of thetotal

82

response time the maximum between the separate response times. However, this is only
correct if the two operators access different resources or if acommon resource is accessed
at different times. By using vectors as defined before, we also have an information on
resource utilization times. This information is important, as during a given time period,
each resource can be used in a time-sharing mode by multiple operators (subplans). The
total response time and the total resource utilization can then be calculated correctly by
Enean}s of the _())perati on [|:
Pl o5 (W), i
wherew = wq + woandt = max(ty, to, max . _ 1(wi)).
The resource consumption of the two operators (subplans) is thus added up for each sepa-
rate resource, similarly as for the addition. However, the total response time is derived by
building the maximum over the two separate response times and the highest resource con-
sumption. In thisway, the invariant t >= max :n 1(wi) Is aways guaranteed as well.
Consider tpe following two)exampl&sfor two resources Ry and Ry:
Example 5.1: r1= }(10, (5, 7); ro= (7, (5, 2)
r11T2= (10, (10,9))
In this case, the response time of the first query is long enough to cover both
resource utilization times. Hence, the total response time is determined only by
this component.

Example 5.2: El = (10, (5, 7); f,= (7, (5, 6))
r1]l ro= (max(10, 7, max(10, 13)), (10, 13)) = (13, (10, 13))
In this case, contention has occurred during the utilization of the second
resource. Thus, the two subplans can no longer operate independently. This is
reflected by the increased total response time that in this case is mostly influ-
enced by the consumption of the second resource.

With the operations presented, the TOPAZ cost model calculates for each operator in the exe-
cution plan the cost variables Tigca» Tiotal €C. Presented in Table 5.2. These variables are mod-
eled asresource vectors. The calculation is performed separately for each degree of parallelism
and theresultsare kept in an array, as presented in Section 4.4.4. The degrees of parallelism con-
sidered is limited by the ParPrune strategy (see Section 5.6).

5.5.2 Definingthe Pruning Metric

Thetotal costsfor an operator N, respectively for asubplan having N asaroot operator are given
by Lhe component T4 (N). As introduced before, this is now constituted as a resource vector
(t, w) having the following form:

Tiotal (N) = (t, (Wepu » Wi » Weomm)),
where t is the response time of N, wey, reflects the processor costs, w, the effective I/O time
and W, reflects the actual communication cost™.

However, query optimizers, as the Cascades Optimizer Framework (see Section 4.3), deal with

83

cost values over which atotal order can be defined. Thisisimportant for pruning decisions, i.e.
on which plan to eliminate from the search space. However, when dealing with multidimen-
sional cost values, as the resource vector in our cost model, there exists no pruning metric that
provides atotal order. In [GHK92], an |-dimensional compare function is proposed to provide a
partial order in | dimensions. However, in this case, instead of keeping one plan for each subset
of relations (and eventually for each required physical property), it is necessary to keep a set of
(incomparable) plans. This makes the search complexity unacceptable. As a conclusion
[GHK92] propose to have a limited number of dimensions in the pruning metric, or even to
ignore some resources.

In contrast, our solution is based on transforming the resource vector into a single cost

val ue. Thereby, it is important to account for both response time and resource contention.
Thus, if aparallel plan shows only a minimal speedup, but a significant overhead as compared
to the sequential case, it is more favorable from the throughput point of view to choose the
sequential plan. Therefore, for the calculation gf the cost value, all three components, namely
the response time t, the resource consumption w and the number of execution units, have to be
taken into consideration.

The formulafor the calculation of the cost value v(N) in TOPAZ is the following:

V(N) = (t+ (cpu+ io+ comm)* RESOURCE_FACTOR) *
(1+ (Ngy/ N_CPUS) * EU_FACTOR),

where t := Tiotal(N).t
cpu 1= Tioral(N)-Wepy
0 1= Tiora(N).Wig

comm:= Tioa1(N)- Woomm:
N_CPUS= number of available processors
RESOURCE_FACTOR, EU_FACTOR = tuning factors.

The number of execution units Ng, is divided by the number of available processors. Thus, the
influence of thiscomponent isonly significant, if the PQEP requiresahigh number of execution
units as compared to the total number of processors. The influence of the resources can be fur-
ther varied by means of the RESOURCE_FACTOR and EU_FACTOR components. Please note
that if the value of these factorsis 0, v(N) is equivalent to the response time.

5.6 TheParPrune Strategy

This section describes the way by which the quality of the plans derived by the parallelizer can
be influenced by an appropriate analysis that precedes the actual parallelization task. As pre-
sented in Section 4.7, the influence of this pre-analysis is twofold:

1. First, the parallelization complexity in terms of tasks, generated expressions and applied
rules can be reduced considerably. Thisis due to the fact that only relevant regions of the

1. The main memory is not included into the vector, because memory, as described above, is treated as a constraint during
parallelization.

search space are analyzed in detail. These regions are characterized by the fact that the plan
portions that cause the highest costs are parallelized in the most favorable way, i.e. the
influence of parall€elization is maximized. Hence, during the pre-analysisit is important to
detect these portions and to eliminate those subplans from consideration that e.g. have no
influence on the critical path length.

2. An even more important reason for the usage of a pre-analysisis the fact that in this way
the generated plans show a significantly reduced resource consumption. As shown in Sec-
tion 4.7, for instance the number of execution units could be reduced considerably.

This second aspect isduetothe i ndependency assunpti on of query optimizers. Thus,
in order to reduce the search complexity through adequate pruning techniques, optimizers
assumethat if two plansdiffer only in asubplan, then the plan with the better subplanisalso the
better plan. Hence, given a specific plan portion, it is sufficient to find and keep the best plan
corresponding this portion, and the other variants can be pruned from further search space
exploration. In the parallel search space, this has the consequence that locally optimal plans
make the best profit out of resource allocation, even if they don’t contribute in a significant way
to the reduction of some global aspects, ase.g. critical plan length. More precisely, in aparallel
search space data dependencies and resource contention between parts of a plan are crucial fac-
tors that violate the independency assumption.

Therefore, in order to use the search strategy of query optimizers also for parall€elization pur-
posesit isimportant to use someconst r ai nt s inthe optimization process. Theseare derived
by the cal culation of some global measures of the query execution plan and will be presented in
the following sections.

5.6.1 Average Cost per CPU

First, the average cost per CPU (avg_cost) is calculated. Thereby, the costs of concurrently run-
ning operators are added up and divided by the number of available processors. In Phase 1 of
the parallelization process, inter-operator parallelism is only applied to subplans whose total
cost exceed avg_cost. As mentioned in Section 4.5.1, the goals hereby are to achieve mutually
adjusted processing rates over all blocks and to reduce the critical path Iength through inter-
operator parallelism. The global measure avg_cost prohibits the construction of blocks having
much too dissimilar costs. As explained above, these would come to existence due to the inde-
pendency assumption of optimizer technology. Thus, keeping the locally optimal plan for each
portion leads to the construction of fine-granular blocks at the beginning of the parallelization
process (when al resources are available). This has as a consequence that the lack of resources
in the subsequent parallelization prohibits the introduction of parallelism in the rest of the plan.

The strategy can be exemplified by the QEPin Fig. 5.9. Here, the local costs are given as num-
bers near the corresponding operators. Thetotal costsof the plan are 80. Assuming that the num-
ber of available processorsis 4, the value of avg_cost resultsinto 80 / 4= 20.

Hence, in Phase 1 the introduction of inter-operator parallelism is considered only in combina-
tion with the edges A to F. Finally, the application of the cost model determinesthe introduction

85

" 20 RS- i1

Fig5.9: TheParPrune Srategy

of pipesonly on the edges A, B and C. Without the ParPrune strategy, the search engine would
try to apply pipelining parallelism on all edges, meaning an increased parallelization overhead.
In addition, the quality of the plan would also be influenced. For example, due to the indepen-
dency assumption as explained above, the parallelization could have ended with the introduc-
tion of send-receive operators above the hash join operator as well.

5.6.2 Average Cost per Operator

Global considerations are important for the application of intra-operator parallelism aswell. As
shown in Section 4.5.2, global execution performance and critical path length are mostly influ-
enced by nodes having high local processing costs. In order to find these operators, TOPAZ cal-
culates during the pre-analysis the average cost per operator (avg_nodecost) by dividing the
total costs of the QEP through the number of operators. However, for the cal cul ation of the aver-
age only those operators are involved whose local costs are not negligible. Thus, for instance
operators denoting a predicate, like eq, attr etc., are not taken into account.

In Phase 2 of TOPAZ, the parallelization rules apply only to operators whose costs exceed
avg_nodecost. For the example QEPin Fig. 5.9, the global measure avg_nodecost resultsto 80/
10=8, sincefor the division only the operators marked by a gray background are taken into con-
sideration. In this way, there remain 4 driver nodes whose costs exceed the limit of 8, marked
in Fig. 5.9 by a bounding circle. Through ParPrune, only these operators will be involved in

86

Phase 2 of the parallelization process.

5.6.3 Maximal Degree of Parallelism

The driver nodes for the consideration of intra-operator parallelism are derived through the
measure avg_nodecost. However, the calculation of the corresponding degrees of parallelismis
still an open problem. The independency assumption leads here also to alocal view of each sep-
arate plan portion, having as an effect that for each operator or block the locally optimal degree
of parallelism is chosen. Thisin turn leads to an altogether suboptimal resource distribution in
the query execution plan. Hence, it is important to find a mechanism that limits the DOP for
operators, respectively subplans.

In TOPAZ, thisisdone through the measure maximal degree of parallelism (par), that isderived
for each operator N according to the costs of the subplan that has N as root. Thereby, the degree
of parallelismis chosen proportionally to the total costs of the plan and the available number of
CPUs:

par (N) = N_CPUS* Tigta(N) / Tiotal:
where N_CPUS =available number of processors and T;q4 = total cost of the entire QEP.

During the cost calculation, the degree of parallelism for each operator N is considered only up
to the measure par(N). From this set of degrees, the cost model chooses the best one, even if it
differs from the locally optimal degree of parallelism.

The mechanism is exemplified in Fig. 5.9. We will derive the value of par in a top-down man-
ner, marking only those locations where the value of par changes. For the top operators Sel and
Union the cost of the subplan having these operators asroot is 80, corresponding to the total cost
of the QEP. Thus, the maximal degree of parallelism can beallocated, that is equal to the number
of available processors: par = 4* 80/ 80 = 4.

The cost of the two input subplans of the Union operator are 56 (left input) and 21 (right input).
Hence, the value of par for the left input operator, Proj, is calculated as follows:
par = 4* 56 /80 = 2,8, that is rounded to 3.

For the right input, we have:
par=4*21/80=105= 1.

The calculation is performed in an analog way for all operators. Asresultsfrom Fig. 5.9, inthis
way from the 4 potential driver nodes derived in the last section, there remains only one opera-
tor, namely the user-defined function UDF, that will be parallelized separately in Phase 2. The
corresponding maximal degree of paralelism is 2. However, as explained in Section 4.5.3,
through block expansion, this parallelization can be extended downwards. If thisis considered
to be favorable by the cost model, the resulting block holds the operators UDF and Rel2 and has
amaximal degree of parallelism of 2. On the other hand, the parallelization can be also extended
upwards, thus involving also the Mjoin operator. The resulting block can already have a DOP
of up to 3, as given by the par value of the topmost operator (in this case the Mjoin operator).
This process can continue asfar asthe top operator of the QEP. The DOPs of the resulting block
will then be considered up to the maximal value of 4 (given by the par value of the Sel operator).

87

From this set of degrees, TOPAZ will choose the best one. For the example QEP, thiswill prob-
ably be 2, as the cost model also has to take into consideration that there are two additional
blocks (below edges A and C) that run in paralel, each of them having a degree of paralelism
of 1.

5.7 Summary

In this chapter we have presented the cost model employed by the TOPAZ parall€elizer. In con-
trast to most related work, this approach models intra-query parallelism employing data rivers
in a comprehensive way, including blocking boundaries, resource usage as well as block build-
ing. Nevertheless, operator characteristics are encapsulated within the corresponding cost for-
mulae. Hence, this generic approach is also suitable for object-relational extensions. New oper-
ators or user-defined functions merely have to provide their private cost functions that will be
taken into consideration accordingly. The linear speedups presented in the previous chapters
convincingly demonstrate the accuracy of the TOPAZ cost model.

88

Chapter 6

Enhancing Optimization for a
Subsequent Par allelization:
the Quasi-Parallel Cost M odel

This section presents the strategies used in the optimizer component of MIDAS. Thereby, a spe-
cial emphasisis put on the consideration of parallelism already in the sequential plan generation
phase. As an effect, the subsequent parallelization yields more efficiently executable PQEPs.

6.1 Introduction

The aim of the TOPAZ parallelizer, presented in the previous chapters, is to achieve the best
possible speedup by means of different forms of parallelism from a given sequential plan.

Asmentioned in Section 4.2.4, for the first version of TOPAZ this sequential plan has been pro-
duced by the TransBase optimizer. This component is not cost-based. Instead, the initial
(sub)planistransformed step by step into a new (sub)plan by using heuristics. Since thereisno
possihility to compare the costs of the plans before and after a transformation, there is no guar-
antee on the fact that the final plan is also the best one.

In addition, it is still an open question how to obtain the overall best parallel plan. Prior work
on two-phase paralelization [HS93, Has95] has shown that this cannot be achieved by smply
parallelizing the best sequential plan. Thisis due to the fact that in atraditional two-phase par-
alelization scheme, the optimization, i.e. the generation of the sequentia plan, is completely
decoupled from the subsequent parallelization task. This often results in plans that are inher-
ently sequential and, consequently, unable to exploit the available paralelism. On the other
hand, using a detailed resource scheduling model during plan generation, as advocated by the
one-phase approach, can have tremendous impact on optimizer complexity and optimization
cost. For instance a dynamic programming algorithm, as employed by bottom-up optimizers
must use much stricter pruning criteria that account for the use of system resources. This leads
to a combinatorial explosion in the state that must be maintained while building the plan, ren-
dering the algorithm impractical even for small query sizes[G197].

89

An approach towards integrating some knowledge on parallelism already into the optimization
is made in [Has95]. Here, the optimization is split up into a join ordering module and a post-
pass optimization module. The first phase, i.e. optimization, is then performed as follows. For
each processing tree generated by the join ordering module, the post-pass determines the edges
for repartitioning, s.t. the overall communication costs for the given tree are minimized. The
derived costs are then returned to the join ordering module, that continues to search for a better
ordering. Even though this approach is limited to join orderings, the integration of a complex
post-pass to the optimization problem augments its high computational complexity. It is not
clear if such supplement efforts are compensated by significantly better execution plans. More-
over, since the join ordering is still a stand-alone module, the approach bears aso the common
drawbacks of 2-phase parallelization mentioned in Section 4.2.1, namely limited extensibility,
difficult reuse of technology improvements etc.

In contrast, our approach isto provide an abstraction within the optimizer that lies between the
two extreme ends of a spectrum, incorporating either detailed knowledge, as in the one-phase
approach, or no knowledge (cf. the two-phase approach) of the parallel environment. Thus, the
incorporation of thisknowledge should be effective enough to influence the sequential plan gen-
eration, but at the same time not too detailed in order to keep the optimization task tractable. We
decided torealizethisgoal by means of anew cost model, which we called quasi-parallel. Thus,
the search engine of the optimizer employing this cost model concentrates only on promising
regionsin the (sequential) search space w.r.t. the subsequent parallelization task. In thisway, the
optimization can be regarded as an additional phase in the overall multi-phase parallelization
scheme of the input query, corresponding to our strategy to conquer the complexity of the par-
alle search space.

However, in some situations queries are executed in non-parallel environments as well. Hence,
for these scenariosiit is still necessary to be able to derive also the best sequential plan. Thisis
realized by means of atraditional cost model to be used by the optimizer that we called sequen-
tial (or short seq).

Given the above, the main goals of the new optimizer component to be integrated into the
MIDAS system, have been the following:

1. improve the quality of the generated sequential plans by replacing the heuristic TransBase
optimizer by a cost-based one.

2. make the optimization process cognizant of the subsequent parallelization aswell. Hereby,
the optimization overhead should be minimal. In contrast to [Has95], in our approach the
plan generation itself should be influenced. This should be reflected among others by the
shape of the generated execution plan, as well as the employed physical operators.

3. usethe same search engine for both optimization and parallelization in order to achieve an
integrated environment.

The corresponding concepts will be presented as follows. In Section 6.2 we present the main
design decisions for the new optimizer component. The cost model for the sequential case will
be detailed in Section 6.3. Our approach towards accounting for parallelism in the optimization
phase, namely the quasi-parallel cost model, will be presented in Section 6.4. Furthermore, a

performance analysisin Section 6.5 and a summary in Section 6.6 concludes the chapter.

6.2 The Model-M Optimizer

Since for the implementation of TOPAZ we employed Cascades, we decided to use the same
framework for the realization of the optimizer aswell. Inthisway optimizer and parallelizer use
the same (top-down) search strategy, i.e. Cascades, but explore different search space regions
through different models.

The model used for the optimization phase is called Model-M (M for MIDAYS). As presented in
Section 4.3, therole of the model isto introduce logica and physical operators, compute logical
and physical properties and to present rules that can be used to generate the search space. The
cost model will be presented separately in the following sections.

Thel ogi cal operat ors, listed in Appendix B.3, were defined specifically for the subset
of SQL used in DSS queries[Bi97, Hi98, KB98]. The physi cal operators aregivenin
Appendix B.4 and correspond to the operators used in the MIDA S execution engine (see Appen-
dix B.1).

As presented in Section 4.3.1.3, r ul es are divided into transformation rules and implementa-
tion rules. The rules corresponding to Model-M are presented in Appendix B.5. In order to min-
imize the number of rule application and thus reduce search complexity, we decided to keep
some passes of the TransBase optimizer as a pre-optimization step. For instance, assuming that
it is amost always beneficial to push down selections and projections, the pre-optimization
pushes the SELECT and PROJECT operatorsin the initial query down as far as possible. That
is, intheinitial query plan that isthe input to the Model-M optimizer, these operatorslie directly
over the GET logical operator, if possible. Asaresult, SELECT and PROJECT push-down rules
are not required in Model-M.

A genera problem of the rule-based optimizersisthe generation of dupl i cat es. Thisisthe
repeated generation of the same expression by different sequences of transformation rules.
Thus, ssmple transformational rules such asjoin associativity and join commutativity are com-
pletein that they will generate every possible join order. However, they generate many expres-
sions more than once. This is very costly since there are aready order 3" expressions in the
memo for an n relation join without any duplicates [Bi97]. In addition, the application of rules
is arelatively expensive process for the optimizer. A solution to this problem is presented in
[PGK97]. Here, adupl i cate-free rul e set (DFRS) for generating all possible join
orders is introduced. These rules generate al of the expressions in alogical search space (for
example the join order search space) without generating any expression twice. We have imple-
mented the duplicate freerule set as ageneral method to reduce search complexity in the Model-
M optimizer as well. The corresponding rules bear the DFRS prefix in Appendix B.5.

As mentioned in the previous section, one of the goals of the new optimizer is to take into
account the subsequent parallelization. Since the search engine, used also by the parallelizer
TOPAZ, had to be left unchanged, the best possibility to achieve this goal is to influence the

91

model part of the optimizer framework, more precisely the cost model. Therefore, as already
mentioned in the introduction, we have elaborated two different cost models. one for the
sequential optimization and one for the subsequent parallelization task. These will be presented
in the following sections. Thereby, we use the same notation and terminology as in Chapter 5.

6.3 The Sequential Cost Model

The goal of the seq cost model isto assess the best plan for asequential execution, i.e. for anon-
paralel processing environment. In this case, the resulting plan does not contain any parallel
constructs. Hence, similar to the scenario presented in Section 5.3.1, the total costs of a
(sub)plan are calculated by adding up the local costs of the root operator and the total costs of
itsinputs. Thereby, similar to the approach used by the TOPAZ cost model, the formulae for the
calculation of thelocal costs are provided by the operator’s specification and taken into account
accordingly. This resultsin an abstraction that supports upcoming extended database function-
ality. However, from the cost componentsintroduced in Section 5.4, only Tjoeg(N) and Tigi4(N)
are necessary for the seq cost model.

In this simplified model, the following formulae are used for the cost calculation of operators:
* N =aregular operator havi rpglarity n:
Tiotal(N) = Tiocal(N) + (zi . Tiotal (ND))-

® N = binary operator with multiple evaluation of the right input:
Tiotal(N) = Tiocal(N) + Tioral(No) + card0 * Tigrg (Ny).

An exception from the above is introduced for constructs that involve a correlation. A typical
representative of this class is the index nested-loops (INL) join operator. Consider the logical
QEP from Fig. 6.1a. This can be transformed into a physical QEP using e.g. aHASH_JOIN as
in Fig. 6.1b. In this case, the logical GET operator has also been transformed into a full table
scan (REL_SCAN). Another alternative is given by the QEP in Fig. 6.1c, where the EQJOIN
has been transformed into an index nested-loops join. In this case, for each tuple T of the left

Correlation!

P

P_GROUP

T

Fig 6.1:

~
|

a) b)

Alternative query execution plans

P

P_PROJECT) /
~

c)

/

REL_INDEX_SCAN (T

92

input, an index scan is performed on the right input taking into consideration only the value of
the join attribute of tuple T. Here, we have to deal with a correlation, i.e. the processing of the
right input is dependent of the current value of T.

What are the possibilities to model such a correlation situation in an optimizer framework like
Cascades, that relies on the independency assumption (see Chapter 4)? Similar problems arise
when dealing with queries containing e.g. exist or (not) in clauses. Calculating the costs of the
right input is especially difficult. As already mentioned, the cost calculation is performed bot-
tom-up, taking into account the input cardinalities. But in a correlation scenario these cardinal-
ities are variable. For instance in Fig.6.1c, the number of tuples delivered by the
REL_INDEX_SCAN operator varies for each access. Hence, we decided to encapsulate the
information referring to the correlation entirely within the INL_JOIN operator. Thus, both
inputs can be optimized in the usual manner. The output cardinality of the REL_INDEX_SCAN
operator isthe same asfor an usual full table scan operator. However, when the cost calculation
reaches the INL_JOIN operator, the following formulais used:

Tiotal(N) = Tiocal(N) + Tiora(Ng) + card0 * Tygiq(N7) * index_factor.

The component index_factor indicates the fraction of work that has to be done in each iteration
for the evaluation of the right input as compared to a cartesian product. It is calculated with the
help of the logical property unique_card. This property reflects the number of distinct values
for each column in the schema.

The following example illustrates the calculation of the index_factor.

Example 5.3: Consider that the right input in Fig. 6.1c has a unique_card of 20 for the join
attribute and the cardinality of thisinput is2000. Then, assuming auniformvalue
distribution, the number of tuples to be transmitted to the INL_JOIN operator in
each iteration averages to 2000/20 = 100 tuples.

Hence the index_factor can be calculated as the reverse of the unique_card of the right join
attribute. Please note that the cardinality of the right input is already considered in the above
formula by the component Ty (N1).

6.4 The Quasi-Parallel Cost Modé€l

By employing the quasi-parallel cost model, we aim to introduce knowledge on the subsequent
parallelization task into the sequential plan generation as well. Thereby, possible parallel con-
structs should be favored and eventual deterrents of parallelism should be eliminated. At the
same time, the optimization, respectively parallelization complexity should not increase signif-
icantly. In thisway, the optimization can be regarded as a (first) phase of the overall parall€eliza-
tion scheme. Similar to the different phases of TOPAZ, the Model-M optimizer employing the
quasi-parallel cost model leads the optimization process towards promising regions of the
search space.

In the following, we concentrate on different aspects of optimization that mostly influence the

93

subsequent parallelization and hence should be considered by the quasi-parallel cost model.

6.4.1 Blocking operators

As presented already in Chapter 5, in a parallel processing environment, the critical path and
thereby also the response time of a query execution plan is mostly influenced by blocking oper-
ators. Fig. 6.2 showstwo alternative (sub)plans of aquery. Thelocal costs are given as numbers
near the corresponding operators. The first plan (Fig. 6.2a) contains a blocking operator. In the
seq cost model, the total cost of thisplanis:

Tiotal (S€0) = 30+ 30 = 60.

If we now consider only pipeline parallelism, the total cost of this plan is also

Tiotal (Par) = 30+ 30 = 60,

as the blocking boundary prohibits parallelism between the two operators and hence dependent
parallel execution (DPE) degenerates to sequential execution (SE).

The second plan alternative, shown in Fig. 6.2b, does not contain any blocking boundaries.
However, the constituting operators are more costly than in the first plan. In the sequential exe-
cution scenario, for the total costs of this plan we have:

Tiora (S60) = 40 + 40 = 80,

Clearly, these costs are higher than in the first variant, hence a traditional optimizer would
choose variant a). However, if pipelining parallelism is employed and assuming that enough
resources are available, the total costs of this plan are:

Tiotal (Quasi-par) = 40 || 40 = max (40, 40) = 40.
Hence, for aparallel environment employing only pipelining parallelism, the second alternative
Is more favorable.

In order to assess the influence of blocking operators on the total response time, we decided to
incorporate also the components Thegin aNd Tyrocess i NtO the cost calculation. As defined in Sec-
tion 5.3.2, Thegin(N) indicates the time when operator N delivers its first (intermediate) result
tuple to its predecessor and thus accounts for the costs of its materialized front. The component
Tprocess IS Needed to add up the local costs of the constituting operators between two blocking
boundaries.

Thus, analog to Section 5.3.4, we have:

(®) = (®)

)
N
30 40
Blocking Boundary
a)
Fig6.2: Influence of blocking operators

94

1. Nisleaf operator:

Tproc&ss(N) = Tiocal(N)
2. else (thearity of N £ n)

Tprocas(N) = (z| _ OTproceﬁ(Ni)) + Tiocal(N).
3. Nisblocking operator:

Thegin(N) = Tiotal(N)

Tprocas(N) =0.

6.4.2 Favoring Independent Parallelism

The shape of the query execution plan is also of interest for a subsequent parallelization. For
instance, in a left- or right-deep tree only dependent parallel execution (DPE) is possible. As
shown in Section 5.3.3, DPE can deteriorate to SE in the presence of resource contention or if
blocking operators are involved. Hence, an additional goal of the quasi-parallel cost model is
to guide the search space exploration towards regions with high potential for independent par-
allel execution (IPE). Hereby, operators having more than one input bear a special interest. This
is due to the fact that the different input subplans can run parallely in a real |PE manner if
enough resources are available (cf. Section 5.3.2).

On the other hand, operators having more than one input are usually costly. Hence, in the quasi-
parallel cost model we assume these operators will be detached from their inputs by TOPAZ.
Thisisreflected by the following formulae given for binary operators.
* N=aregular binary operator:
Thegin(N) = MAX (Thegin(No), Thegin(N1)
Tprocas(N) = MAX (Tocal(N), Tprocas(NO)’ Tproce$(N1))
Tiotal(N) = Tprocess(N) + Thegi n(N).
® N = binary operator with multiple evaluation of the right input:
Thegin(N) = MAX (Thegin(No), Thegin(N1))
Torocess(N) = MAX (Tocal(N), Tprocess(No), card0® Tygia(N1))
Tiotal(N) = Tprocess(N) + Thegi n(N).
® N=INL-Join:
Thegin(N) = Thegin(No) *+ Thegin(N1)
TprOC%S(N) = MAX (Tyoca(N), TprOC%S(NO), card0* Tiqq(N1)* index_factor)
Tiotal(N) = Tprocess(N) + Thegi n(N).
Here, the materialized fronts of the two inputs are added up as an effect of the correlation
(see Section 6.3). The right input can only start working when the left input has delivered
itsfirst tuple.

* N =Hash Join:
Thegin(N) = MAX (Tiota1 (No), Thegin(N1)
Tproc&ss(N) = MAX (Tiocal(N), Tproc&ss(Nl))
Tiotal(N) = Tprocess(N) + Tpegin(N)

95

Tbegin =10
Tprocess = 40
Ttotal = 50

Tlocal = 20

MERGE_JOIN

Tlocal = 30 Tlocal =40 | HASH_JOIN 2

Tbegin = 10
Tprocess = 40
Ttotal = 50

Tbegin = 10
Tprocess = 30
Ttotal = 40

HASH_JOIN 1

a) Tlocal = 10 REL_SCAN ‘ ’ REL_SCAN ‘ ’ REL_SCAN ‘ ’ REL_SCAN ‘ Tlocal = 10
Tbegin =0 Tbegin =0 Tbegin =0 Tbegin =0
Tprocess = 10 Tprocess = 10 Tprocess = 10 Tprocess = 10
Ttotal = 10 Ttotal = 10 Ttotal = 10 Ttotal = 10
Tbegin = 40
Tprocess = 40 HASH_JOIN 2 Tlocal = 40
Ttotal = 80
Tbegin =10
Tprocess = 30 MERGE_JOIN Tlocal = 20 Tlocal = 10
Ttotal = 40
Tbegin =0
Thegin = 10 Tprocess = 10
b) Tprocess=30 | HASH_JOIN 1 Ttotal =10
Ttotal = 40
Thbegin =0
Tprocess = 10
Tlocal =10 | REL_SCAN ‘ ’ REL_SCAN ‘ Ttod =10
Tbegin =0 Tbegin =0
Tprocess = 10 Tprocess = 10
Ttotal = 10 Ttotal = 10

Fig6.3: Cost calculation for a bushy, respectively left-deep tree
using the quasi-parallel cost model

In this case, we assumed that N is the build relation and N; is the probe relation. Hence,
the evaluation of the left input has to be completed in order to build the hash table. Only at
this moment can the first result tuple be delivered to the predecessor.

With these cost formulae, plans with high potential for IPE are favored. Thisisillustrated also
by the example givenin Fig. 6.3. Here, we made the simplifying assumption that the local costs
of the operators remain the same for different join ordering strategies. The cost calculation is
performed for a bushy (Fig. 6.3a), respectively left-deep (Fig. 6.3b) tree. It starts with the leaf
operators and uses the derived costs for the calculation of the predecessors, cf. the above given
formulae for hash-, respectively merge-joins (the latter being considered as regular binary oper-
ators). The total cost of the trees corresponds to the total cost of the top operators. As results
from Fig. 6.3, the quasi-parallel cost model yieldsfor the bushy tree atotal cost of 50, whilein
the case of the |eft-deep tree this cost is 80. Hence, the first alternative will be chosen.

Contrary to binary operators, parallelism between unary operators and their successors is not
incorporated into the cost model. The motivation for this decision liesin the fact that splitting
up a pipeline into multiple blocks can only be done on the basis of global considerations as
shown in Section 5.6. Thisis the task of the subsequent phases of the TOPAZ parallelizer. On
the other hand, without blocking operators the best sequential (sub)plan for a pipe usually cor-
responds also to the best parallel subplan.

Nevertheless, if blocking operators are involved, the quasi-parallel cost model will influence
the physical implementation of unary operators along a pipe as well. An example is given in
Fig. 6.4. Here, the M_UNIQ logical operator from Fig. 6.4aisfirst transformed into the physi-
cal duplicate elimination P_UNIQ, that requires a sorted input (Fig. 6.4b). The second alterna-

96

Tbegin:25
Tprocess=50 Tiotal (S0)=90 Torocess=20
Ttota (quasi-par)=75 Tiotal (quasi-par)=50

@ Tioca=50 @ Thegin=25 @ Tioca =50
Tprocess=10
Tiota =35

" Theg®0
@ | Tioca=10 P_UNIQ : begin Tbegin=0

Tprocess™ Tprocess™45
Thegin=25 Tiota=45

Thegin=0

Tiotal (S89)=100

Thegin=0 !
T =5
@ o Tprocess™0
Tiota=25 @34 _UNIQ
T, =40
Tiocal ZZOQSO RT local

Thegin=0 Tbegin=0
Torocess™ Tproce_szs
Tiom=5 Tiota =5
Tioca=5 REL_SCAN Tioca=5 REL_SCAN
a) b) c)
Fig6.4: Influence of the quasi-parallel cost model on the unary operators

along a pipe

tive, shown in Fig. 6.4c, isthe hash-based P_ HASH_UNIQ operator, that has higher local costs
but does not require a sorted input. The total costs of the plans for the seq cost model are 90,
respectively 100, rendering the first alternative as the best plan.

However, in this QEP the critical path is mostly influenced by the binary P_UNION operator.
Hence, in aparallel environment it is not necessary to choose the best possible physical imple-
mentation for the duplicate elimination M_UNIQ (in this case the P_SORT/P_UNIQ combina-
tion), since thiswill run anyway in parallel with the costly P_UNION operator. On the contrary,
if the best sequential alternative contains a blocking operator, as e.g. the sort operator in
Fig. 6.4b, thisiseven counterproductive, sinceit causesadelay until thefirst input tuple reaches
the P_UNION (reflected by the Tyegin cost component of this operator that is different from
null). This example enforces once more that parallelizing the best sequential physical plan does
not yield the best parallel plan.

By employing the quasi-parallel cost model asshowninFig. 6.4, thetotal costsof thefirst alter-
native (75) are higher than that of the second (50). Hence, this second plan will be the one to be
transmitted to the parallelizer.

6.4.3 Degreesof Parallelism

In the last section, we have shown that the consideration of blocking edgesin the quasi-parallel
cost model influences the physical operatorsthat constitute the final plan produced by the opti-
mizer. However, in some cases the suitability of some operatorsfor aparallel scenario becomes
only evident if different DOPs are taken into account. Hence, analogously to the approach

97

described in Section 4.4.2, we decided to use cost arrays corresponding to each possible degree
of parallelism already for the optimization phase. However, please note that the goal isto pro-
duce a sequential physical plan with ahigh affinity for intra-query parallelism. The decision on
where to introduce the different forms of parallelism is still made by the TOPAZ paralldlizer.

In order to assess the costs corresponding to different DOPs, it isimportant to consider the par-
allelization possibilities of operatorsaswell. Asmentioned in Section 4.5.2, some operators can
be parallelized in different ways. Thus, e.g. the hash join can be parallelized by partitioning both
inputs or by partitioning only one input and replicating the other. In some cases, ase.g. for some
user-defined functions or user-defined table operators [Ja99], the lack of suitable partitioning
functions imposes the replication of one or several inputs. The same argumentation applies also
for subplans containing a correlation.

For the cost cal culation corresponding to agiven DOP it isimportant to know whether the oper-
ator (respectively subplan) is partitioned or replicated. We solved this problem by introducing
two additional physical propertiesinto the quasi-parallel cost model:

® Part: inthis case the operator or subplan is partitioned by means of a suitable partitioning
function

* Repl: thisphysical property stands for areplicated operator or subplan

Please note that this strategy is used for a more adequate cost estimation in the presence of a
possible intra-operator parallelism. As already mentioned, the goal is to explore search space
regions where thisform of parallelism can be efficiently used without unnecessarily blowing up
the search complexity. Hence, any concrete partitioning functions and parallelization particul ar-
ities are not taken into account. This task and the corresponding accurate cost calculation will
be effectuated by the different phases of the parall€elizer.

With the help of cost arrays for different DOPs and assuming that each instance of an operator
or subplan can work independently of all the other instances, the consideration of intra-operator
parallelism can be done without any changesto the cost formulae introduced in the previous sec-
tions. This aspect will only be reflected by the local operator costs. As defined in Section 5.3.8,
Tiocal(N, card) stands for the local costs of operator N when the input cardinality is card. Thus,
assuming a uniform data distribution, the costs of operator N having m instances is calculated
asfollows:

* Tioca(N) = Tioca (N, card/m), for the Part context
® Tiocal(N) = Tioca(N, card), if the optimization is made in the Repl context.

The optimization starts with the top operator using the physical property Part. In the course of
optimization, the parallelization possibilities of each operator are taken into account, continuing
the optimization of the inputs with the corresponding physical property. Thereby, the costs are
calculated for each possible degree of parallelism. When the cost calculation isfinished, the best
plan is chosen according to the lowest values in the cost arrays of the alternative (sub)plans.

Thisstrategy isexemplified by the cost calculation of the logical plan givenin Fig. 6.1a. A por-
tion of the corresponding memo structure is depicted in Fig. 6.5. Here, for each physical oper-
ator that is contained in agroup (see Section 4.3.1.2) the appropriate cost array is calculated by

98

1 | EquoiN 2 3
HASH-JOIN 2 3

Part: [1] 1700 [2] 750 [3] 366
INL-JOIN 2 3

Part: [1] 1600 [2] 800 [3] 533

2 3
M_AGGR 4 PROJECT 5
P_GROUP 4 P PROJECT 5
Part: [1] 400 [2] 200 [3] 133 Part: [1] 100[2] 50[3] 33
Repl: [1] 100 [2] 100 [3] 100

Fig6.5: Memo structure with cost calculations for the example query using

the quasi-parallel cost model. The numbers in brackets show the
cor responding DOPs.

taking into consideration the current context. Thereby, we assume that the database contains 3
processing sites, hence a DOP of up to 3 istaken into consideration.

The optimization starts with the top operator contained in the first group, i.e. the EQJOIN, by
transforming it into aHASH_JOIN (cf. Fig. 6.1b). This operator can be most efficiently paral-
lelized by partitioning both of its inputs. Hence, the optimization of the inputs continues with
the physical property Part. The top operators of the resulting physical subplans are contained in
group 2 and 3 together with the corresponding cost arrays. For the final cost calculation, it is
important to assess the local costs of the HASH-JOIN operator. Assume that the input cardinal-
ity of this operator is card. We further assume that for this cardinality, the hash table cannot be
kept completely in main memory, i.e. I/O operations are necessary. For aDOP=2, the available
memory size is also doubled, thus less disk spoolings are necessary. For a DOP=3 the hash
tables can be maintained entirely in main memory, thus don’'t causing any 1/O costs. Hence, for
the different degrees of parallelism, we assume to have the following costs:

Tiocal(HASH-JOIN, card/1) = 1200
T ocal(HASH-JOIN, card/2) = 500
T ocal(HASH-JOIN, card/3) = 200.

For thefinal cost array, the local costs of the top operator are added to thetotal costs of itsinputs
corresponding to each DOP:

®* N =HASH-JOIN:
[1] Tiota(N) = 1200 + 400 (left input) + 100 (right input) = 1700
[2] Tiota(N) =500 + 200 (left input) + 50 (right input for the context Part) = 750
[3] Tiota(N) =200 + 133 (left input) + 33 (right input for the context Part) = 366.

1. For simplification purposes, we have not mixed in this example the strategy for favoring IPE with the strategy for taking
into consideration the DOPs. Hence the costs are calculated by addition rather than using the maximum asin Section 6.4.2.

99

For the second physical aternative an index-nested loops join isemployed (cf. Fig. 6.1c). Since
this operator impliesacorrelation, asexplained in Section 6.3, it only can be parallelized by rep-
licating itsright input. Thus, the optimization of thisinput is made in the Repl context, yielding
the costs shown in the second line of group 3. On the other hand, assume that the local costs of
the INL-JOIN operator are 600 for the sequential case. Since this operator cannot make profit
of increasing memory sizes, the local costs of an instance decreases linearly with the degree of
parallelism:

Tiocal(INL-JOIN, card/1) = 600
Tiocal(INL-JOIN, card/2) = 300
Tiocal(INL-JOIN, card/3) = 200.

For the final cost array, assuming the left input cardinality cardO as being 6000 and the
unique_card of the right input as being 1000, we have:
® N =INL-JOIN:
[1] Tiota(N) = Tiocal(N) + Tiotal(Ng) + card0 * index_factor * Ty (Ng) =
= Tiocal(N) + Tiotal(Ng) + card0/ unique_card * Ty (Ng)=
= 600 + 400 + 6000/1000 * 100 =
=600 + 400 + 6 * 100 = 1600
Analogously:
[2] Tiga(N) =300+ 200+ 3* 100 = 800
[3] Tiota(N) =200+ 133+ 2* 100 = 533.

By comparing the resulting cost arrays, we observe that the variant containing the INL-JOIN
operator ismore favorable for the sequential case, i.e. DOP=1. For atraditional cost model, this
is the final plan that is produced by the optimizer. However, if intra-operator paralelism is
applied, we have significantly lower response times for the plan variant containing the
HASH_JOIN, especialy for a DOP = 3. In a traditional two-phase paralelization, this plan
would have been missed. By applying the quasi-parallel cost model in the optimization phase,
the resulting plan is chosen according to the lowest value in the cost arrays. In this case, thisis
the variant containing the hash join, for the DOP=3. Hence, thisisthe plan that will be handed
to the parallelizer.

6.5 Performance M easurements

Our goal in this section is to determine the effectiveness of our the Model-M optimizer as well
as of the quasi-parallel cost model. As mentioned at the beginning of this section, thefirst goal
was to improve the quality of the sequential plans as compared to the plans produced by the
TransBase optimizer. In order to verify if thisgoal has been reached, we have used selected que-
ries from the from the TPC-D benchmark.! These queries have been optimized, parallelized and
processed on the same workstation cluster as presented in Section 3.3.5. Please note that we

1. Sincethe Model-M optimizer cannot yet resolve subqueries, we omitted corresponding queries from our performance mea-
surements.

100

Table 6.1 Average execution times (sec)

TransBase Model-M
Sequential 286,13 130,95
Parallel 106,3 49

have used the seq cost model for the Model-M optimizer. Thus, both optimizers produce the best
sequential plans, i.e. for non-parallel processing scenarios, corresponding to their search strat-

egy.

Asshown in Table 6.1 by comparing the execution times, the sequential plans produced by the
new optimizer are significantly better that those produced by the TransBase optimizer. This
applies also for the parallel plans that have been generated by TOPAZ from the respective
sequential plans.

Next, we analyze the impact of the quasi-parallel cost model on execution times as well ason
optimization and parallelization complexity. First, we illustrate this by using a single example
guery (Q10 from the TPC-D benchmark). Fig. 6.6 shows the sequential plans obtained by opti-
mizing this query first using the seq cost model and next the quasi-parallel cost model. By com-
paring Fig. 6.6aand Fig. 6.6b wefirst observethat the shapes of theresulting plansare different.
Inthefirst case aleft-deep tree has been produced, while in the second case the shape of the plan
Is bushy. As mentioned in Section 6.4.2, this maximizes the effect of independent parallelism.
Next, we notice that the physical operators employed are also different. While for the imple-
mentation of two joins the seq cost model has chosen index nested-loops joinst, implying two

sort sart
=3 M[50.50]1 nofetch nostorse =2 MIBO,50] nofetch nostorm

12547 361 =uml3
sort
-+ +2 +5 +4 +7 +3F +6 ML50,.50]1 nofetch nos
P4
Correlation2
Correlationl i\
' (R Crsi)
(P NGk | eni
D FED G @
. (Feet .
=2y) :
G oy Cals)
=u_order
lineitem ‘

a) Seq cost model a) Quasi-parallel cost model

tore

sort
]+ 40 +d #4346 HLD0,50! noFebch nostore

Fig6.6: Sequential plans obtained by optimizing query Q10 using different
cost models

101

Table 6.2 Analysisof query Q10

Optimization Parallelization
Cost | Tasks/ | Opt. | Mem. Exec. Pha Task/Rules/ Parallel- | Mem. | Exec.Time
Model | Rules/ | Time | (KB) Time ses Expr ization (KB) Parallel
Expr (ms) Seq. Plan Time Plan
Seq 945/ 595 324 48,1s 1 344/39/109 1,127 s 508 42,1s
225/
2 305/41/91
174
3 376/57/101
4 275/24/87
Sum | 1300/161/388
Quasi- 989/ 640 356 49s 1 385/50/123 1,343 s 620 128s
Par 2341 2 346/54/109
183
3 645/132/161
4 291/29/93
Sum | 1667/265/486

correlations, the quasi-parallel cost model has decided to use for the same operations hash-
joins. Thisresults from the approach described in Section 6.4.3. Hence, this strategy eliminates
the correlations in Fig. 6.6a since for this example and according to the quasi-parallel cost cal-
culation they are counterproductive to parallelism.

In order to perform adetailed analysis, in Table 6.2 we have listed different measures related to
the optimization, parallelization, as well as execution time of the example query. Thereby, the
optimization (respectively parallelization) complexity is expressed in the number of tasks,
applied rules and generated expressions similarly to the performance investigation for TOPAZ
in Section 4.7. In addition, we have a so listed the absolute optimization (parallelization) times
and corresponding memory consumptions. For the parallelization the number of tasks, rulesand

Table 6.3 M easurement results for applicable TPC-D queries (averages)

Speedup seq 2.01

Speedup quasi-parallel 3.98

Speedup quasi-parallel as compared to seq 2,22

Optimization Overhead in Tasks (%) 8,84
Optimization Overhead in Expressions (%) 9
Optimization Overhead in Rules (%) 7,9
Parallelization Overhead in Tasks (%) 8,5
Parallelization Overhead in Expressions (%) 8,3

Parallelization Overhead in Rules (%) 15,21

1. Pleasenotethat intheMIDASengine, theindex_nested |oopsfunctionality isimplemented using thetimes operator aswell.

102

expressions are given separately for each phase aswell. By comparing the two cost models, we
observe that the execution time of the sequential plan obtained after the optimization phase
using the quasi-parallel cost model (cf. Fig. 6.6b) is higher than that obtained by using the seq
cost model (cf. Fig. 6.6a). Thisisas expected, since the seq cost model isin charge of producing
the best plan for a non-parallel environment. However, the situation is different for the execu-
tion times of the parallelized plans, given in the last column of Table 6.2. Here, the PQEP pro-
duced by parallelizing the quasi-parallel plan shows alinear speedup, while in the case of the
best sequential plan parallelism could not be applied efficiently. Please note that the difference
between the execution times of the two parallel plans is more than factor 3. As can be seen by
the measures given in Table 6.2, this has been achieved with arelatively low optimization and
parallelization overhead by using the quasi-parallel cost model.

Similar results apply to the other TPC-D queriesaswell. In Table 6.3, we havelisted the average
speedups achieved by parallelizing the queries that have been optimized with the two different
cost models. As can be seenin line 2 of Table 6.3, a sequential optimization using the quasi-
parallel approach followed by aparall€elization as proposed in the TOPAZ strategy yieldsin the
average linear speedups. Line 3 shows that the parallel plans resulting from the quasi-parallel
cost model are twice asfast as those obtained from the seq cost model. The corresponding opti-
mi zation/parallelization overhead is around 10 percent.

For the second test scenario we used join queries, where the number of joins has been succes-
sively increased from 1 to 5. The database has been partitioned on three disks. The measurement
results are presented in Fig. 6.7.

By comparing the execution times in Fig. 6.7a we notice that the traditional 2-phase approach,
i.e. parallelizing the best sequential plan (denoted Seq in the diagram), produces suboptimal
resultsinthiscaseaswell. In contrast, by using the quasi-parallel cost model, we obtain sequen-
tial plans (denoted Quasi-Par in the diagram) that have similar or higher execution times asthe
best sequential plans, but that bear a higher potential for parallelization. The overall approach,
I.e. optimizing the input plan with the quasi-parallel cost model and parallelizing the resulting
plan with TOPAZ yieldsin this scenario also linear speedups.

Fig. 6.7b shows the actual number of expressions generated during the optimization phase.
Since this measure increases exponentially with the number of joins [OL90], for visibility pur-
poses, we only presented the results for queries containing up to 4 joins. The results are pre-
sented for two cases: once for a “traditional” rule set and second for the duplicate-free rule set
(marked DFRS in thefigure) that has been explained in Section 6.1. The optimization overhead
resulting from quasi-parallel cost model for these two scenarios are given in percent near the
corresponding value coordinates. The results show that this overhead is in this test series only
up to ca. 10-15% as well.

By comparing the DFRS and traditional scenarios, we have also shown that our approach can
further fully benefit of any improvements made in the area of query optimization. Thus from
Fig. 6.7b results that the usage of aduplicate-free rule set has reduced the number of considered
expressionsin the quasi-parallel optimization aswell.

In some cases, the seq and quasi-parallel cost models produce the same plan. This is for
instance the case for the query containing asingle join in thistest scenario. In this situation, the

103

70

| [Y . S~ meerererererereererrereer: e rerereerepeers s
E — Parallel Seq 3)
FE = Parallel Quasi-Far
§= a1 [S—

% = Quasr--ar
|.|.| = — | u

|
1 g 3 4 §
Joins
800
0/4(%

1 T) :
6o ~ Seq DFRS *
E S0 = Ouasi-ParDERS L ;
7]
@qm 1. -+ Saq Trﬁd- b)
o == Quasi-Far Trad
i 3|:|[| e e e

100 g WA

R == + .
1 2 3 4
Joins
Fig6.7: Responsetimesand optimization complexity

increase in optimization complexity (11% as shown in Fig. 6.7b) is not compensated by lower
execution times (see Fig. 6.7a). However, this situation arises mostly for simple queries, where
the optimization complexity is anyway very low. Hence, the overall performance losses are not

noticeable.

In Fig. 6.8awe show the parall€elization overhead in expressions generated as compared to par-
alelizing the optimal sequential plan. As expected, the paralelization complexity increasesin
almost al cases. The reason for thisis that the quasi-parallel cost model produces plans with
generaly higher parallelization possibilities. The biggest difference is achieved in Phase 3 of
the parallelization process. The explanation lies in the fact that due to the better parallelization

104

L L ol [y |
= =] — =
1 1

Var Expressions ()

Mg
i
1

—h
=

Fhase 1 Phase 2 Fhase 3 Fhase 4 Sum

b)

Joins

Fig6.8: Parallelization complexity and overall responsetimes

possihilities, the first two phases could detect more portions in the sequential plan where paral-
lelism is worthwhile to be introduced. As described in Section 4.5.3, it is mainly the task of
Phase 3 to carry over these forms of parallelism to the other parts of the query.

However, the increases in optimization, respectively parallelization complexity are fully com-
pensated by the performance gains in execution times. This is shown in Fig. 6.8b, where we
compared the overall response times, i.e. the sum of optimization, parallelization and execution
times.

105

6.6 Summary

In this section, we have presented the Model-M optimizer as an approach to realize cost-based
optimization. This component uses the same search engine as the TOPAZ parall€elizer, namely
Cascades. However, dueto different models, they explore different portions of the search space.
For the presented optimizer, we implemented a quasi-parallel cost model, in addition to the
sequential one. In this case, contrary to other approaches, the optimization is grounded on the
knowledge that every query will be executed on a parallel processing system. Thisisdone with-
out significant overhead in the optimization, respectively parallelization process.

Thus, the optimizer perfectly fitsinto the overall parallelization strategy, that reduces the search
complexity through phases, each phase concentrating on different portions of the search space.
As confirmed by measurement results, this overall parallelization strategy yields parallel plans
showing linear speedups.

106

Chapter 7

Scheduling and L oad
Balancing

In this section we present the concepts used for the realization of the QEC component in
MIDAS. QEC is arun-time system that combines the tasks of load balancing as well as execu-
tion scheduling and determines the final resource allocation for the PQEP execution.

7.1 Introduction

In the previous chapters we have presented the strategies that are used by the TOPAZ parallel-
izer, respectively the Model-M optimizer, to produce parametrized parallel query execution
plans. At run-time this PQEP is examined by the Query Executi on Control (QeEC)
component. Among the most important requirements posed to this component are the following
Oones:

® Scalability: Scalability isanissue of concernin building parallel database systems because
of the ever increasing amount of data, and the complexity and volume of application inter-
action with the database system. Ensuring scalability of a system requires eliminating
potential bottlenecks in the system. This can be only accomplished by choosing a distrib-
uted approach for the design of all significant system components. However, in the case of
scheduling and load balancing, most related work is based on a centralized approach.

® Resource management: In order to provide optimal response times, resource utilization
should be maximized as much as possible. Therefore, e.g. idle times due to waiting Situa-
tionsthat are inherent to database query processing, should be reduced to a minimum pos-
sible.

® Load balancing: Load-balancing policy fals into two broad groups: static and dynamic.
Static policies use algorithms which operate without regard to run-time loads across a sys-
tem, while dynamic policies use the run-time performance of various parts of a system in
order to make more ‘informed’ decisions about balancing. In order to improve the response
time of a single (paralel) query, as well throughput in a multi-query environment, a
dynamic load-balancing policy which uses run-time state information in making schedul-

107

ing decisions should be used.

* Hybrid heterogeneous architectures. A smplifying assumption in most research on
resource management ([LOT94], [GGS96], [TL9I6], [DG92], [Va93]) is to consider stan-
dard architectures, like shared-everything (SE), shared-disk (SD) or shared-nothing (SN),
with identical nodes. However, new trends show a convergence of parallel hardware
towards a hybrid architecture, comprising two levels[NZT96]. Moreover, as new applica-
tions need more computing power, it islikely that newer and faster computing components
will be available that will be added to the system. In this way the nodes in the inner level
of these environments may differ in processor speed, amount of memory, number of disks
etc. MIDAS is currently working on such a hybrid heterogeneous architecture. Load bal-
ancing and resource management for such systems is considered an open problem
[HFV96].

® Adaptability: The cost estimates provided by the optimizer, respectively parallelizer com-
ponents are often inaccurate. The reasons for this are various, like e.g. obsolete statistical
information, the difficulty to find correct estimation functions (especialy for intermediate
results), etc. The problem isfurther aggravated in the case of parallel object-relational sys-
tems that allow users to define data types, methods and operators. For instance, selectivity
estimation for such user-defined constructs is still an area that is poorly understood
[KD98]. Hence, it is important to recognize unforeseen situations and to (re)act corre-
gpondingly. In addition, as MIDAS supports real-life applications ([C}H97], [NIM97]) we
have to implement a strategy for the QEC that also keeps track of different workloadsin a
multi-query environment.

® Robustness: An important aim of the QEC component is to provide a faultless execution.
For instance, an overload of the system, even in the presence of several resource-intensive
applications, should be avoided. This applies also to deadlocks that can come to existence
due to waiting situations for common resources. In the same time, the QEC component has
to guarantee that the cumulated memory requirements of the concurrently running queries
do not exceed the overall available database cache.

In order to satisfy these requirements, we propose a distributed, two-phase approach. Hereby,
the information concerning the system state is made on all nodes available. Thus, the scheduling
task can be accomplished on any node, i.e. no bottlenecks can occur. We call this first phase
coar se schedul i ng. The corresponding decisionstake the current global database system
state and the provided cost formulas into account. Thereby, the parameters for query execution
resources are chosen in away that matches both resource availability and contention. Asaresult
of thisfirst phase, the constituting subplans of a PQEP are assigned to different processing sites
that are favorable form aglobal point of view. However, the exact schedules for these subplans,
i.e. start and wait times, are decided by the local component of the QEC. Thisfi ne sched-
ul i ng is based on the actual runtime parameters of the corresponding processing site. It
accounts more exactly for the resource consumption, dependency situations among the partici-
pating subplans and other related aspects.

The chapter is organized as follows. An overview on related work is given in Section 7.2. Fur-
thermore, Section 7.3 provides a detail ed description of the basic QEC strategies. In Section 7.4

108

the main phases of the scheduling task are presented. Finally, in Section 7.4 a summary com-
pletes the chapter.

7.2 Related Work

Numerous techniques have been proposed for resource management and load balancing in par-
allel database systems.

In XPRS [HS93] the plan fragments are divided in CPU-bound and 1/0-bound tasks and further
scheduled accordingly. However, the proposed allocation algorithm is only applicable for
shared-memory systems, asit ismassively based on global control. To cope with theincreasing
complexity, some reported work only concentrates on scheduling of joins in a way that maxi-
mizes the effect of certain forms of parallelism. Apart of the fact that the linear tree schedulings
proposed in [SD90, MD95, ZZS93] risk to utilize the resources inefficiently, the concepts can-
not be applied for forthcoming query types, like OLAP, holding also other complex operators.

A memory allocation scheme for multiple-query workloadsis addressed in [MSD93]. An adap-
tive algorithm taking into account different query classes is proposed. However, the study is
limited to single join queries on a centralized database system. In [LC+93] processor assign-
ment algorithms for pipelined hash-joins in a shared-disk environment are presented. In this
work, communication costs and independent parallelism are ignored.

In [GI96] a multi-dimensional resource scheduling algorithm is proposed. However, it is
restricted to identical preemptive resource sites. As memory is not preemptive, it is not consid-
eredinthismodel, whichisnot realistic w.r.t. multi-query environments. M oreover, the assump-
tions made by the authors are prohibitive for the usage of this algorithm in a real-life system
without changes: no memory limitations, clones of the same operator placed strictly on different
sites, as well as non-increasing operator execution times. In [GI97], a more generalized model
is presented, that includes also memory consumption as a so-called space-shared resource.
Assuming that the output of an operator treeisaways repartitioned to serve as input to the next
one, the degrees of parallelism for each operator are calculated independently. The results
shown in the previous chapters show that the optimal degree of parallelism of a set of operators
differs from the optimal degree of parallelism of each stand-alone operator, asin this way rep-
artitioning can be avoided and larger blocks can be constructed, thus saving resources. Apart of
this, still identical sites and only simple hash joins are considered, additionally assuming that
the build relation fits always into the memory.

In [BFV96], the topic of load balancing in a hierarchical shared-nothing database systemisdis-
cussed. Apart of the fact that here all nodes are considered to be identical as well, no other
resources than CPU is considered. Our measurements for intra-operator parallelism show that
scheduling the instances on different machines may result in high execution time skew, even if
the data is evenly partitioned (no data skew). This results in a higher overall execution time,
because the partitioned subquery takes as long as the slowest of its instances. Moreover, the
effects with regard to the resource utilization (idle times) are the same as with data skew.

109

7.3 QEC Strategies

As presented in Chapter 4, the goal of the TOPAZ parallelizer isto come up with parameterized
parallel query execution plans. Some of these parameters are related to resource consumption,
such as requested memory, degree(s) of parallelism etc. On the other hand, TOPAZ also trans-
mits the corresponding anticipated cost measures. These measures are calculated by using the
cost model described in Chapter 5. It is the task of the QEC to make the final adjustment for
resource parameters according to the run-time system state and to initiate and control the exe-
cution of the constituting subplans.

For this purposg, it is crucial to use a multi-dimensional resource model as proposed in [GI96]
and [GI97]. Above, we have already pointed out some drawbacks of this model with regard to
architectural and query processing assumptions. One important critic concerning the model
itself is the dimension independence assumption. Our measurements show that thisis not con-
firmed by reality, as for instance memory allocated to a hash-join allows the operator to use a
larger hash table, thus reducing disk contention. Thus aresource manager hasto take both mem-
ory and disk bandwidth into account to balance resource contention [DG95]. We generalize this
statement by saying that in order to provide better overall performancefor all forms of parallel-
iIsm in a multi-query environment, the QEC has to use a multi-dimensional resource model
extended for heterogeneous hybrid architectures and the cost models and algorithms adapted to
keep track of the functional dependencies between dimensions.

In the following, we will describe some of the core strategies of the QEC component towards
achieving thisaim.

7.3.1 Distributed Approach

Most related work on scheduling parallel query execution plans in PDBMSs [GI196, GI97,
SD90, MD95, ZZS93] isbhased on acent r al i zed approach. In this model, the scheduler is
amonolithic component, mostly already incorporated within the parallelizer. The advantage of
such a strategy, where all subplans areinitiated and managed by a single component, is that the
knowledge on concurrently running tasks and anticipated costsis also centralized. Hence, better
estimations on the global system can be made, that in turn permits a better load balancing. How-
ever, in aparallel DBMS supporting real-life applications and multi-query environments, such
an approach is not beneficial due to performance and availability reasons.

Hence, we propose adi st ri but ed approach, where the scheduling task can be performed
on any processing site, similar to the optimization and parallelization. Thus, in the MIDAS sys-
tem architecture presented in Fig. 2.3, the QEC becomes part of the application server. As
described in Section 2.2, application servers are assigned exclusively to DBMS clients. Hence,
for each new client, anew QEC is started that manages only the queries coming from the respec-
tive application. The location for a new application server, respectively new QEC component,
within the parallel system is decided by the MIDAS Server taking into account load balancing
aspects. That meansthat in MIDAS the QEC components themselves are also uniformly spread
across the constituting processing sites.

110

However, in order to perform an optimal scheduling of the incoming PQEPSs, each QEC com-
ponent also hasto keep track of the global system state. Thisis determined by the resource char-
acteristics of the constituting nodes of the PDBMS, as well as the queries submitted by other
concurrent applications having resource demands on their own. The strategy to derivethisinfor-
mation without incurring too much overhead is described in the following section.

7.3.2 QEC Input Information

The decisions taken by the QEC component are based on information gathered from different
components.

Firgt, the estimated cost i nf or mat i on is provided by the paralelizer, respectively opti-
mizer. This is given for each subplan as a multi-dimensional array, corresponding to the
accounted resources. As presented in Section 5.5, these cost components for each parallel plan
variant are cal culated with respect to some given constraints w.r.t. non-preemptive resources, as
e.g. memory.

Second, in a hybrid heterogeneous environment as MIDAS, the QEC component also has to
keeptrack of theconfi gurati on characteristics of each processing site
within the paralel DBMS. In MIDAS, the description of each processing site consists of the
number of processors, cache size, processor speed and attached disks.

Third, up-to-date information on the cur r ent syst em st at e is equally important w.r.t.
load balancing aspects. Thereby, the incurring overhead, in terms of messages etc., should be
kept aslow as possible.

One possibility is to inquire the current system state for each scheduling task. However, this
implies repeated message exchanges with all processing nodes, hence unacceptabl e overhead.
Moreover, in a distributed approach as previously proposed, additional effort is necessary to
guarantee that the information received at the beginning of the scheduling task is not obsolete
by the time the subplans are actually assigned to processing nodes. This gives rise to similar
problems as encountered in the field of transaction management, solvable only by locking
schemes or similar complex strategies and thus incurring non-negligible overhead.

Host 1 Host 2 Host 3
Resource Info - Host 1 Resource Info - Host 1 Resource Info - Host 1
Resource Info - Host 2 ~—pw» | Resourcelnfo - Host 2 . Resource Info - Host 2
Resource Info - Host 3 Resource Info - Host 3 Resource Info - Host 3

Fig 7.1 Exchange of load information in the PDBM S

111

Hence, we decided to decouple the information update concerning the system state from the
actual scheduling task. The corresponding strategy is depicted in Fig. 7.1. Thus, the exchange
of load information among the different processing nodes is provided by a separate subsystem.
Thereby, each processing site keeps a shared-memory data structure containing information on
the current and planned resource utilization for each processing site of the PDBMS. In the fol-
lowing, we will use the term “planned” for resources that correspond to subplans that have
already been assigned to a processing site, but have not yet come to evaluation (due to the inex-
istence of input tuples, materialized fronts or other fine-scheduling reasons). The information
update, based on PV M [Ge94] messages, iscyclic, as shown by thearrowsin Fig. 7.1 and inde-
pendent of any scheduling tasks. Thereby, during each iteration, a processing site first receives
the current load information from a neighboring processing site, then updates within the data
structure only theinformation concerning the processing siteitself (marked in Fig. 7.1 by agray
background) and finally sends the entire data structure to the next node. The advantage of such
an approach lies in the fact that the load information is available to other components as well,
ase.g. thetransaction manager [Zi99]. In addition, the communication overhead is constant and
independent of the number of submitted queries, respectively QEC components.

However, the cyclic update scheme as presented above implies also a delay in the exchange of
information among the constituting processing sites. Thus, thisinformation channel is not suit-
ableto provide detailed information, ase.g. start and end timesfor each subplan etc. Rather than
this, more coarse-grained and implicitly lesstime-sensitive datais exchanged. Examples of such
data for each processing site are given in the following: the total number and cumulated costs
of the currently running, as well as planned subplans, the total number of already accredited, as
well as planned cache pages etc.

7.3.3 Two-Phase Scheduling

The design of QEC component(s) hasto support the loose coupling between the scheduling task
and the information subsystem, as presented in the previous section. In such an environment,
detailed information about the execution of each subplan on every processing site is not avail-
able. However, the requirement w.r.t. robustness as mentioned in Section 7.1, is imperative.
Hence, the scheduling task is divided into two phases. The corresponding component design is
depicted in Fig. 7.2.

Thefirst phase, called coar se schedul i ng, isincorporated within the application server
and thus is assigned exclusively to aDBMS client. Hence, it belongs to the dynamic part of the
QEC. It takes the global load information and system parameters (as described above) into
account to assign the incoming subplans to processing sites. Thereby, only the cumulated
required resources of a subplan and the cumulated planned, respectively already assigned
resources of the processing sites are taken into consideration. Thereby, the plan variant which
fitsbest into the current runtime environment is chosen. Thus, the main task of thisphaseisload
balancing and resource management on aglobal level.

The second phase, called f i ne schedul i ng, isassigned to a processing site. Hence, it the
static part of the QEC component. It isin charge of elaborating a detailed and accurate schedule

112

HOST A HOST B
P__
H | -
Al |/G|°baj \| Coarse
s || Lo e eduling (dynamic)
\Info J
E 1] O
1 - Processing site|
assignment
- -~ N
P /] \ Fi / \ Fin
| Local Ine Local e
H | schedulé ™! Scheduling (static) | scheduié ™ Scheduling (static)
A | |Plan | |Plan |
S \‘_/ :,"\Halt \‘_/ :,"\ Halt
E | :<' :4'
2 : ‘ EU assignment ‘ EU assignment
- (@ (@
Fig7.2. Two-phase scheduling

plan for the corresponding site. In contrast to Phase 1, it manages the subplans coming from dif-
ferent applications. Thereby, constraints such as available memory, data dependencies, materi-
alized fronts etc. are also taken into account. If e.g. the memory requirements of agiven subplan
can not be satisfied, the subplan is halted. Thus, the main task of this phase is to guarantee
robustness and adaptability.

7.3.4 Management of non-preemptive resour ces

By shifting the exact scheduling of subplans to the corresponding processing sites, more accu-
rate planning is possible. In this way the usage of non-preemptive resources, like memory, can
be maximized. In the previous chapters we have shown that the start of subplans can be delayed
by mat eri al i zed fronts.Hence, if al subplans of a PQEP are started at the same time,
some of themwill remainidleuntil they receivetheir first input tuple. However, in order to guar-
antee the necessary robustness, the memory requirement of this subplan is already taken into
account and hence cannot be used by other subplans. Thus, it isimportant to schedul e such sub-
plans only when they can start their effective evaluation, i.e. when their first input tupleis avail-
able.

The other aspect isrelatedtonon- uni f or mresour ce uti |l i zat i on during the execu-
tion of a subplan. Although thisis acceptable in the case of preemptive resources, for non-pre-
emptive resources it can cause scheduling delays and thus throughput problems. The non-uni-
form resource utilization is caused by the fact that operatorsin a subplan have different resource
requirements. This is determined on one hand by the implemented algorithm (i.e. different
memory requirements of the hash-join vs. the sort operator). On the other hand, it isinfluenced

113

emory (pages)

30 Free Mem(1)

—Bounding Curve

Free Mem(2)

.- Free Mem(3)
B 7

-

-
-

Time

Fig7.3: Memory distribution

by the input cardinality of the operators. The memory distribution for an example subplan is
given in Fig. 7.3. By associating to this distribution a strictly decreasing bounding curve, the
reserved memory accredited exclusively to this subplan can also be decreased accordingly.
Thus, possible waiting tasks can already be started during the execution of the subplan. In
Fig. 7.3 this corresponds to the times Free_ Mem(1) and Free_ Mem(2). This is in contrast to
other approaches, where the entire reserved memory is made available to other subplansat once,
namely only at the end of the execution of this subplan (corresponding to thetime Free_ Mem(3)
inFig. 7.3).

Both aspects, i.e. materialized fronts and non-uniform resource consumption, have not been
taken into account even in recently published models[GI97].

7.4 QEC Phases

In the following, we briefly describe the functionality of the two phases of the QEC component
in MIDAS.

7.4.1 Phase 1. Coar se scheduling

As described in Section 7.3.1, the first phase, called coarse scheduling, is realized within the
dynamic part of the QEC component.

One solution to the problem of adaptability isto dynamically adjust the resource allocation for
the subplans and to keep track of the configuration and load of each processing site. The QEC
uses the information described in Section 7.3.2 to assign subplans to processing sites that are
most suitable from the resource utilization point of view. Instances of the same subplan are exe-
cuted on similar machines, if possible. If not, the resources accredited to subplans are decre-
mented according to the node's characteristics and the run time of the slowest instance. In this
way, these resources are available for other plans or subplans. In high load situationsit is even

114

beneficial to choose a plan variant that has a higher estimated response time, but requires less
resources.

Another important aspect in a shared-disk environment is to minimize the overhead introduced
by the distributed database buffer, in our casethe VDBC. It is essential to reduce the number of
multiple page copies in local database buffers at different nodes and to achieve high buffer hit
ratios. When considering access costs, datalocality is extremely important. Thisrefers not only
to disk versus buffer access but also to local and remote buffer access. The costs of remote
buffer access comprises both transfer costsfor the accessed pages and the costs due to increased
resource/data contention between nodes. To support datalocality, we introduce alogical assign-
ment of data partitions to nodes. For example, for arelation scan it is desirable to execute it at
the node where currently most of the pages to be scanned are buffered. This saves communica-
tion, disk 1/0, and CPU costs. But sometimes it might be better to assign the scan to another
node due to load balancing purposes. Costs related to data contention (e.g. lock waits and dead-
locks) have to be considered as well.

With the concept of data locality, the QEC can easily be adapted for shared-nothing environ-
ment as well. In such situations, the data locality is treated as a constraint, instead of an option
asin a shared-disk environment.

The assignment of subplans to processing sites is done as follows:

The constituting subplans of a PQEP are first sorted in ascending order of their start time. This
Is determined by their materializing fronts, as described in Section 5.3.3. For subplans having
the same start time, the second sorting criteriais the local cost of the respective subplans. This
sorted list is then processed starting with the first element, i.e. subplan. For each subplan, the
demanded resources, as calculated by the cost model, are matched against the available and
planned resources of every processing site. Therefore, the corresponding resource vectors are
linearized, i.e. transformed into cost val ues, similarly to the approach presented in Section
5.5.2. Thus, for each subplan, the processing site having the most favorable cost valueis chosen.
The available resources of this processing site are then decreased accordingly and the process
continuesin asimilar way for the next element, i.e. subplan, of the sorted list.

In this way, first those subplans are taken into account that can immediately start their evalua-
tion, thus providing the necessary input for the subsequent, dependent subplans. On the other
hand, the strategy accounts also for the local costs of the subplans, assigning high-cost subplans
to the most favorable processing sites. This reduces the overall response time of a query.

When this process is finished for all subplans of a PQEP, the first phase of the QEC isaso in
charge of transmitting the subplans to the corresponding processing sites.

7.4.2 Phase 2. Fine Scheduling

For each processing site, there exists one (static) QEC component performing the second sched-
uling phase, called fine scheduling. It receives subplans from different applications, i.e. differ-
ent dynamic QEC components.

This phase is in charge of elaborating an accurate and efficient schedule plan for the tasks

115

RESERVATIONS RESERVATIONS
currevlttime
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
| | | | | | | Time | | | | | | | Time
T T T T T T T T T T T T T T
T6
| | L = T
T2| } T2 b -mmmm \
] TS T3 feeeeeooo- \
T L7 \
Subplans ubplans
a) b)
Fig7.4: Finescheduling

assigned to the given processing site. Thereby, more detailed information can be taken into
account as compared to the first phase: data dependencies between subplans, memory require-
ments, the existence of input tuples etc. This can be partly achieved by using the cost estimates
provided by TOPAZ. For instance, as presented in Chapter 5, the cost model accounts for the
materialized front of subplans aswell. Hence, subplans having a start time Tg,+>0 can already
be scheduled corresponding to the estimated delay. However, for the realization of thisaim, a
detailed schedule, respectively reservation plan is necessary.

The strategy for fine scheduling taking the resource main memory correctly into account is pre-
sented by the example givenin Fig. 7.4. For simplicity reasons, this example does not deal with
any non-uniform resource utilization distribution, as discussed in Section 7.3.4. Assume that on
a processing site with a totally available memory of 30 pages, the following 4 subplans have
been assigned:

Tstart Tend requested memory
1. 10 40 10
2. 20 65 10
3. 50 70 10
4. 40 60 10

The corresponding schedule, respectively reservation list is depicted in Fig. 7.4a. Assume that
at the time 30, 3 additional subplans are assigned to the processing site:

Tetart Tend requested memory
5. 0 10 10
7. 10 20 10
3. 0 10 10

Taking into consideration the current time (T = 30), this results into the following time spans:

5. (30, 40)
7. (40, 50)
3. (30, 40).

Thus, thereservation list can be completed by adding subplans Ts and Tg accordingly. However,
for subplan T, the total memory of 30 pages is already assigned in the requested time period
(30, 40). Hence, in order to assure a correct processing, this subplan must be postponed and can
only start at time 60, as shown in Fig. 7.4b.

116

Thus, the basis of the second QEC phase are schedule plans. In this way, the usage of available
resources is maximized, at the same time guaranteeing the required robustness. However, these
plans are constructed by using the cost estimated provided by the parallelizer. As already men-
tioned, these estimates are often based on simplifying assumptionsaswell ason statistical infor-
mation. Hence, the second QEC phase also has to take care of the necessary adaptability by
counterbalancing some wrong cost estimates made by the optimization or parallelization.

The two main tasks related to the response to unforeseen situations are the following:

® Forward correction:
With this strategy, the QEC reacts on early terminations and corrects the plan correspond-
ingly. For instancein Fig. 7.4b, if the evaluation of T, iscompleted before time 60, subplan
T can be scheduled earlier as well. However, a necessary condition for this action is that
the materialized front of T, isalready completed, i.e. the subplan can effectively start pro-
cessing.

® Backward correction:
This strategy applies for the following two situations:
1. The evaluation of a given subplan takes longer than initially estimated by the parallelizer.
2. The datariversthat serve asinput for agiven subplan are not yet filled. As already men-
tioned, this situation comes to existence if the materialized front of a subplan takes longer
than initially estimated.
The backward correction accounts for the resulting delays, and postpones the eval uation of
subsequent subplans.

At the same time, the QEC also guarantees that the result of the two strategies described above
still yieldsa correct schedule plan at any time, i.e. satisfying the imposed constraints, ase.g. the
memory limits.

7.5 Summary

In this chapter we have presented our approach to scheduling, load balancing and resource man-
agement incorporated within the QEC component. This approach is based on a multidimen-
sional resource model. In contrast to other strategies, the necessary scalability is provided by a
distributed design. Adaptability and robustness are combined within a 2-phase strategy. Thus,
thefirst phase focuses on global system parameters while the second phase isin charge of elab-
orating a schedule plan related to each processing site by taking local aspects into account.
Thereby, the incurring overhead, in terms of messages etc., is also minimal. Since the schedul-
ing algorithm accounts also for the individual architectural characteristics of each processing
site, it is applicable for forthcoming hybrid heterogeneous architectures as well.

The proposed approach is implemented within the MIDAS system, yielding promising first
results. We plan to address a detailed performance evaluation to our future work.

117

118

Chapter 8

Par allelization of User-Defined
Functionality

In this chapter we validate our approaches towards achieving efficient intra-query parallelism
for complex applications, thereby concentrating especially on execution, extensibility and
adaptability issues. Therefore, we have chosen a specific class of applications, called in thefol-
lowing stream-oriented applications. These are characterized by the fact that their data often
takes the form of (time) series, or more generally streams, i.e. an ordered sequence of records.
Analysis of this data requires stream processing techniques, which differ in significant ways
from what current database query techniques support today. In this chapter we present a new
operator, called SreamJoin, to solve stream-related problems of various applications, such as
data mining, pattern recognition and universal quantification. We show how this operator can
efficiently be embedded in the database engine, thus implicitly using the optimization and par-
allelization capabilities presented in the previous sections for the benefit of the application.

8.1 Introduction

In the past years the importance of efficient stream processing techniques within the database
system is continuously increasing. This can be shown by the examples listed next.

® Data Mining
One of the core mechanisms of most data mining algorithms[AM+95] is a phase that eval-
uates patterns called frequent itemsets. A frequent itemset is a set of items appearing
together in anumber of database records meeting a user-defined threshold, called support.
Thefinal itemsets are usually derived using a set of candidate itemsets. That means, a can-
didate itemset is established as being a frequent itemset if the number of transactions con-
taining all itemsin the candidate itemset exceeds the predefined support.

® Universal Quantification

Forthcoming applications stress the need for efficient implementation of universal quanti-
fication concepts. Given e.g. a decision support system (DSS), a frequently formulated
guery type is the following: “Find the customers/suppliers/stores that buy/supply/sell all

119

items that satisfy a particular condition” .

® Sequences

Recently, there is a growing interest in periodicity search [HGY 98] in time-related data-
bases. Given for instance a stock data database, one frequently formulated query is. “ Find
all stock items that monotonically fall/rise in a given time period” .

® Pattern Recognition

In the domain of molecular biology, scientists often match functionally unknown proteins
against a protein coding database of known proteins. If amatchisfound, it islikely that the
two proteinsarefunctionally related. Thus, given asequence and a protein coding database,
the problem can be formulated as follows“ Find the item sequencesin the database system
that contain all items of the pattern sequence in the given order” .

® Digital Libraries
Modern digital libraries offer a profiling service to keep track of their user’s individual
reading interests. A profile usually consists of a set of keywords, that are usually specified
in a specific order. One task of the profiling service is to find the documents that contain
all keywords. In some cases, the words in the documents have to fulfill certain additional
position requirements [NJM 97].

If we analyze in more detail the above mentioned query types, we recognize that acommon fea-
ture of all application domains is the need for effective processing of avar i abl e number of
intermediate result tuples, or st r eans, to produce the final result. This number is not known
apriori, asit correspondse.g. to the number of itemsin an itemset, or the number of search terms
inaprofile.

However, stream analysisis not effectively supported by current database engines. Our solution
to this problem is to extend the database functionality by a new operator, called SreamJoin,
whose stream processing technique is applicable in various application domains. We will
explain the functionality of SreamJoin based on an example coming from the data mining area,
i.e. frequent itemset generation. In the subsequent sections, we will show the applicability of
this operator in other domains as well. For each domain, we present possibilities of further
increasing performance by means of intra-query parallelism, obtained according to the concepts
presented in the previous chapters.

8.2 Applicability of StreamJoin for the Evaluation of Frequent
ltemsets

Datamining is an emerging research area, whose goal isto extract significant patterns or inter-
esting rules from databases. High-level inference from large volumes of routine business data
can provide valuable information to businesses, such as customer buying patterns, shelving cri-
terion in supermarkets and stock trends. In the following, we will concentrate especially on the
issue of performing data mining directly on the data stored in a data warehouse.

120

Asthe amount and complexity of datain the warehouse reaches previously unthinkable propor-
tions, it becomes more difficult to identify trends and relationships in the data using ssimple
guery and reporting tools. Data mining can provide new insights into the rel ationships between
dataelementsand provide analysts and decision-makers with new discoveries. Given the above,
integrating the data warehouse DBM S with data mining makes sense for many reasons. First,
obtaining clean, consistent data to mine is a primary challenge, implicitly provided by data
warehouses. Second, traditional mining tools would typically transfer and copy the data, an
operation that is prohibitively costly in the case of large-scale warehouse applications. Third, it
is advantageous to mine data from multiple sources to discover as many interrelationships as
possible. This requirement is also fulfilled by warehouses that contain data from a number of
sources. Anintegrated approach provides al so the capability to go back to the data source to ask
specific, newly-relevant questions. Finally, the continuously extended functionality of the data-
base engines, including parallelization, can also only be used in an integrated environment.

One of the basic operationsin data mining isthe discovery of frequent sets. Given aset of trans-
actions, where each transaction refersto a set of items, this operation consists of finding itemsets
that occur in the database with certain user-specified frequency, called minimum support. The
derived itemsets can be used for further processing, such as association rule mining [AY 97],
time series analysis, cluster analysis etc.

However, special requirements haveto be fulfilled when integrating frequent itemset generation
with large-scale databases, such as data warehouses. First, due to the large amounts of data
stored, multiple database scans cause prohibitive overhead in terms of 1/0 costs. Second, it is
essential to provide adequate pruning techniquesto reduce the exponential complexity of search
space exploration. Finally, the mining algorithm itself has to prove high efficiency. Most algo-
rithms proposed and integrated into a database engine are variants of Apriori [AM+95]. How-
ever, this strategy scales exponentially with the longest itemset length, thus reducing its appli-
cability for scenarios involving both high data volumes as well as considerable item domains,
such as e.g. data warehouses.

Itemsets that have no superset that is frequent are called maximal frequent itemsets (MFI). The
set of all maximal frequent itemsets, also called the maximal frequent set (MFS), implicitly
defines the set of all frequent itemsets as well. Based on this observation, we propose a novel
methodology to efficiently evaluate the maximal frequent set only, called MFSSearch. This
strategy is based on a new operator, called SreamJoin, that efficiently calculates the support of
acandidateitemset, aswell asof al of its prefixes. A dynamic pruning technique that combines
both top-down as well as bottom-up techniques is used throughout search space exploration. As
a result, the complexity of the algorithm does not depend exponentially on the length of the
longest MFI and is only proportional to the MFSvolume, i.e. the sum of the lengths of all MFls.

The strategy can efficiently be embedded into the database engine, resulting in a uniform pro-
cessing scheme within asingle query execution plan. We show how the approach can easily be
expressed in augmented SQL using user-defined table operators [JM99] and common table
expressions [SQL99]. The most striking difference to other approaches lies in the drastically
reduced /O overhead. Thus, instead of performing multiple scans of the whole database, only
selective disk accesses are necessary, depending on the current search space status. Intermediate

121

result materializations or preparatory phases are not necessary, either. Moreover, the processing
scheme is non-blocking, i.e. first results (MFIs) can be delivered fast before the whole MFSis
derived. Furthermore, we point out how this approach can make full profit of the parallelization
possibilities of the database engine, as presented in the previous chapters, yielding linear
speedup and thus further performance improvements. In contrast to other approaches, we use
the existing disk partitioning of the database, since repartitioning or even (selective) replication
of the entire datais impracticable for operating data warehouses.

8.2.1 Related work

Integrating data mining with databases has gained growing interest in the research community.
However, ailmost all approaches are based on the bottom-up Apriori algorithm, thus bearing also
the main drawbacks of this strategy, namely exponential complexity and multiple database scan
operations [AS96, AY98]. Additionally, the proposed approaches also involve some kind of
intermediate result materializations or preprocessing of data. On the other hand, some of the
proposed improvements of the Apriori algorithm are not suitable for integration with dataware-
houses, as they perform modifications on the stored data [PCY 97].

When comparing different possibilities of integrating the Apriori algorithm withinaDBMS,; in
[STA98] the most promising scenario was found to be one based on a so-called Vertical format
of the database. However, thisformat requires also a preparatory phasethat createsfor each item
aBLOB containing al tids that contain that item. We discuss this work in more detail later on
in this section.

Recently, solutions using also top-down or hybrid search strategies were proposed, such as the
MaxMiner algorithm [Ba98], PincerSearch [LK98] or MaxClique and MaxEclat [ZP+97].
However, although the pruning strategies of these algorithms reduce the search compl exity con-
siderably as compared to Apriori, they still involve multiple database passes or even preparatory
phases. This has a negative effect on performance, as demonstrated later on in this section. In
addition, it is not clear how these approaches can be efficiently integrated in the database
engine. Moreover, the algorithms presented in [ZP+97] are also based on avertical databasefor-
mat, making it impractical for existing large warehouse applications.

Other approaches concentrate on language extensions [MPC96, MPC98, HF+96] that are based
on special operators to generate association rules. However, as shown in [Ch98], for the easy
development of data mining applications it is important that the constituting operations are
unbundled so that they may be shared. Thus, a better alternative is to provide a primitive that
can be exploited more generaly for different data mining applications. The strategy for MFS
calculation proposed in this section follows exactly this recommendation.

8.2.2 DataMining Scenario

The decision on whether a given candidate itemset is frequent is the performance-critical oper-
ation in the MFS calculation. In our approach we want to directly map this primitive operation

122

FR (itemset, tid)

(100, 1)
(200, 2)
A IR (itemset, item, tid)
(STREAMJIOIN (itemset, item, tid.new = tid.old)) 888 ig ;)
rJOIN(tid) { |<:>§OO,10 (100, 10, 3) | Group for itemset 100
—— 008 T— (100,43, 1)

o SZOO 35

C>S200,10 T
| JOIN (tid) { —————S02 \888 18 g

R 888 ;(2) :3 Group for itemset 200

(JOIN(ltem—item)) (200, 22. 2)
(200, 35, 2)

\ 1,10

(canp(itemset, item))888 4113; (TRANS(tid, item)) El 22;

(200, 10) g ;I_g;

(200, 22) (2: 22)

(200, 35) (. 35)

(3. 10)

Fig8.1: Processing scenario for the evaluation of frequent itemsets

to a single database operator. In order to model this scenario we assume the following two
tables: TRANS(tid, item) giving report of which transactions contain which items and
CAND(itemset, item) telling which itemsets contain which items, i.e. the potential frequent item-
sets. An example of two itemsets (100 and 200), three transactions (1, 2 and 3) and four items
(20, 22, 35, 43) isshown in Fig. 8.1. Thisrelational modeling of the data mining scenario sup-
portsthat both the number of items per tid, aswell asthe number of items per itemset isvariable
and unknown during table creation time. In contrast, other representation alternatives, ase.g. al
items of atid appearing as different columns of asingletuple arenot useful in practice[STA98].
Given this scenario and a parameter minsup defining the minimal support set by the user, the
problem of deciding for a potential frequent itemset 1Sin the CAND table whether I1Sis frequent
can be formulated as follows:

“Find (through the TRANS table) those transactions containing all items of IS, If the sum of
the qualifying transactions exceeds minsup, then return IS as being a frequent itemset.”

Evaluating this query involves a join on item between the two tables TRANS(tid, item) and
CAND(itemset, item) for itemset = IS Thisyields a set of tuples (1S, item, tid). We will call the
subset of those tuples for a given itemset which contain one specificitem | a stream, denoted by
Ss)- Thestreamsfor one specific itemset form agroup. This meansin general, every tuple from
the CAND table defines one stream.

For the task to find frequent itemsets, the streams only form an intermediate result (IR in
Fig. 8.1). E.g., for our potential frequent itemset ISwe must find those transactions which con-
tain all the items of 1S. This means that for the final result (FRin Fig. 8.1) we have to join the

123

different streams of theitemset ISon the tid attribute, i.e. we haveto join al the streamswithin
agroup. In Fig. 8.1 we have an example for two itemsets, 100 and 200, which contain two resp.
three items. Therefore two streams resp. three streams are built for the itemsets. Joining the
streams yields for this example into a two-way resp. three-way join. However, in the general
case we do not have knowledge on the number of items per itemset, hence the number of joins
to be performed on agroup is variable as well.

Thistask isakind of all-quantification. At the same time, it isavery primitive operation within
the processing of frequent itemsets. Hence, any efficient evaluation of this all-quantification
directly supports the performance of the frequent itemset processing. Since al-quantification is
not yet afrequently occurring operator in database processing, there are rarely implementations
of it available [CK+97]. Here we designed our own solution, called SreamJoin operator, which
perfectly fitsinto our algorithms. The operator will be introduced in the next section. Thereafter
we will describe the particularities of our algorithm for efficient MFI candidate generation.

8.2.3 The StreamJoin Operator

We first describe the functionality of the operator: SreamJoin basically memorizes the incom-
Ing tuples as long as they belong to the same stream. Then, these tuples are joined with the next
stream. This procedure continues for all streams of agroup (i.e. for all itemswithin a candidate
itemset), such that at the end, only those tuples survive that support all streams within a group,
I.e., al itemswithin the given itemset. The SreamJoin operator has the following signature:

SreamJoin (Group-1D, Sream+-ID, pred(Join-ID1,Join-1D2, ...))

Two parameters specify the columns that define a group and the streams within a group; here,
these parameters are itemset and item. The subsequent parameter defines the join predicate.

Thisjoin predicate defines condition(s) between attribute values of the current stream and those
of the previous stream. Thisis expressed by the suffixes new and old. Thus, Join-1D.new repre-
sents the value of the attribute Join-ID for the current stream and Join-1D.old represents the
value of the same attribute in the previous stream.

For example, in Fig. 8.1 the join predicate tid.new = tid.old defines a simple equi-join on the tid
attribute. Thus the operator joins subsequent streams of the same group on the tid column, as
explained in the previous section. However, more complex predicates can be used as well to
support e.g. pattern matching or sequence analysis, as presented later on in this chapter.

We now come to some implementation issues: Theinput hasto be grouped on the Group-1D and
Sream-ID attributes. Obviously, this requirement can always be fulfilled by adequate sorting
techniques. However, explicit sorting can mostly be avoided by adequate pre-processing of the
datain the very same query execution plan.

For instance, assume that the CAND tablein Fig. 8.1 is sorted on itemset. Consider the following
evaluation alternatives w.r.t. the join between TRANS and CAND:

® anindex-nested-loops join, using an index of the TRANS table on the item attribute; thisis
possiblein almost all cases, sincein most datawarehouse schemasthe central table has sev-
eral indexes on the dimension attributes.

124

® ahash join, the CAND table being used as the probing table; please note that for an item
domain containing | items the number of possible candidatesis 2! and thus the size of the
CAND table might even exceed the size of the TRANS table.

In these cases, the join result is constituted as follows: for each tuple (itemset, item) of the CAND
table a set of tuples (itemset, item, tid) is generated, yielding exactly a stream, i.e. the transac-
tions that contain that specific item. For instance, the tuple (100, 10) has generated the stream
Si00,10 consisting of the tuples (100, 10, 1), (100, 10, 2) and (100, 10, 3). Hence, the necessary
grouping of the intermediate result IR for the SreamJoin processing is already satisfied and no
additional sort operations are necessary.

Based on this, our preliminary implementation for SreamJoin uses a dynamic hash-based
approach with two hash tables. The strategy isillustrated in Fig. 8.2 for an example group, rep-
resenting group 500, constituted of four streams, derived from four items 1, 2, 3and 4. Thefirst
stream of each group is used to build the first hash table. The next stream is probed against this
hash table, the matching tuples being inserted into the second hash table. At the beginning of
the next iteration the first hash table is deleted, and the second is used for probing. Similar to
the previous iteration, the matching tuples are used to build up the new contents of the first hash
table. This process continues until the next group isreached, or either aresult of aprobing phase
or aconstituting stream isempty. At the sametime, theintermediate result (i.e. hash table) sizes
decrease with each iteration, as the tuples which don’t match the join condition are eliminated.

Please note that this description of SreamJoin shows certain similarities to the evaluation of
recursive queries in database systems [CCW93]. Indeed, though the two areas seem radically
different because of the approach and formalism used, they have some common features. First,
the presented hash-based implementation of SreamJoinissimilar to the transitive closure algo-
rithm described in [HWF93]. Second, both approaches apply a variable number of consecutive
iterations and a stop condition to obtain the final result. Moreover, in both cases the number of
iterationsis not known apriori, being dependent on the val ue distribution of the input. However,

- — - Probe

—® Build (represents also prefix supports)
Hi1, Hi3t contents of the first hash table
Hy o contents of the second hash table

transactions containing itemset {1,2,3,4}

< > Ssp04
transactions containing itemset {1,2,3}

— — — H
Ss500,3 2.2

transactions containing itemset {1,2

———— Ss002

Hia —
‘wmning itemset {1}

. ‘ . — Ss500.1 .
Fig8.2: StreamJoin processing flow for example group 500, constituted of 4 streams

125

the difference between the two approachesliesin the characteristics of theiterations. Asalready
mentioned, SreamJoin processesitsinput streamwiseor linearly, i.e. agiven input tupleisonly
considered once. In contrast, the evaluation of transitive closure, or recursion in general,
requires arepetitive processing of theinput. This cyclic processing may consider the same input
tuple several times in order to produce the complete result. Another important difference
between the two approaches liesin the fact that the SreamJoin processing reduces the interme-
diateresult with each iteration, asthe tuples which don’t match the join predicate are eliminated.
In contrast, transitive closure produces in each iteration new tuples that are added to the final
result. Finally, there is also a major difference between the two stop conditions applied. Thus
the transitive closure algorithm stops when no new tuples are produced, i.e. the (intermediate)
result set of a given iteration is identical to the one of the previous iteration. In contrast, the
SreamJoin algorithm joins streams of the same group until the subsequent group is reached.
Thus, the stop condition for joining is the fact that the value of the Group-ID attribute for the
current tuple is different to that of the previous input tuple.

In the following, we point out some characteristics of the SreamJoin processing. As indicated
in Fig. 8.2, the continuous arrows al so represent the transactions that contain the prefixes of the
exampleitemset {1,2,3,4}. Hence, the corresponding supports can be easily evaluated by asim-
ple subsequent count(tid) operation. Thereby, the frequent itemsets are those for which the cal-
culated support exceeds minsup. In general, the following observation is valid:
Observation 1: Given an itemset X = {1,2,..., N-1,N}, by processing this itemset via the
SreamJoin operator, we also obtain the supports of all prefixes{1}, {1,2}... {1,2,...N-1}. O

Hence, given atransaction table TRANS and a table CAND with candidate itemsets, the support
of the candidates as well as of their prefixes can be efficiently evaluated within the database,
performing ajoin on the two tables and pipelining the intermediate result IR into the SreamJoin
operator, as aready shown in Fig. 8.1.

8.2.4 Definition of the Candidate | temsets

An open question is how to guide the search space exploration in order to reduce search com-
plexity and expensive database scans. In the hypothetical scenario from Fig. 8.1 we supposed
that all candidate itemsets are stored in the CAND table. However, given the exponential com-
plexity of the search space, this is impracticable for real-life applications and item domains.
Hence, itisdesirableto fill the CAND as much as possible with MFI candidates only. In our solu-
tion this sophisticated task of generating suitable candidates for the CAND table is performed by
the MFSSearch algorithm. The strategy expands the search space gradually, starting with the
itemset containing all items. The SreamJoin processing is employed for the calculation of indi-
vidual candidate supports. The produced results are used for the generation of further candi-
dates. Thus, MFSSearch guides the search space exploration dynamically by already derived
intermediate results. In the following, we describe this strategy in detail. For simplification pur-
poses, theorem proofs as well as detailed algorithms can be found in Appendix C.

Given an infrequent itemset X = {1,2,...,N-1,N}, in atop-down search it is necessary to test all
of its subsets of level N-1. This can be done by successively eliminating the items N-1, N-2,...1

126

from X. It is not necessary to do this with item N, since X -{N} is a prefix whose support is
implicitly evaluated together with the support of X by the SreamJoin operator (see Observation
1). In the following, we will call the set of items needed to generate all unexplored subsets of
level N-1 for agiven itemset X the ElimList of X or Ey.

In this case Ex = {1,2,...,N-1}. The subsets situated on the same level will be called siblings.

However, if this procedure of generating subsets by eliminating thefirst N-1 elementsisapplied

recursively, duplicates are generated. This follows from the following observation:
Observation 2: If X; and X, are two subsets of itemset X, obtained by eliminating two dif-
ferent items from X, then X, and X, differ by only one item position. [J

Suppose X;= {1,2,...AZ,B,...N-1}, X,={1,2,...AYB,...N-1}.

If this process is done recursively, one subset of X; will be obtained by eliminating item Z:
X1z={12,...AB,...N-1}. Similarly Xoy = {1,2,...,AB,...N-1} and X;7 = Xox

In order to avoid duplicate generation, if X, is expanded after X;, the ElimList of X, must not
contain Y. More generally, if the siblings Xy, X,...,Xy.1 are expanded successively, the ElimList
of agivenitemset X; must not contain any positions which differentiate thisitemset from any of
itssiblings Xy,..., Xj.1. This can be done easily, if we decrease the original ElimList of X by one
element in order to get the appropriate ElimList for each subset generated.

Thusfor X = {1,2,..., N-1, N} and Ex = {1,2,...,N-1} we have the following sibling subsets and
ElimLists:

X.= {1,2,...N-2,N}, E; = {1,2,...N-2},
Xo= {1,2,...N-3, N-1,N}, E = {1,2,....N-3},

XN-l: {2,...,N'l, N}, EN-l = 0.

Fig. 8.3 shows a search space generated by the MFSSearch algorithm after employing only the
ElimList technique described above, i.e. without any additional pruning as described later. We
will call the subsets expanded by an itemset itself direct subsets, while subsets expanded by a
sibling are called cross subsets. For instance {36} is a direct subset of {136}, while {16} isa
cross subset of {136}, expanded by {126}.

Based on the information given so far, we can now derive the following two basic properties.

Theorem 1. The ElimList method guarantees a full expansion of the search space
without duplicate generation.

As aconclusion, given a superset X on level N with the ElimList E, and a subset X; generated
by eliminating item N-i from X, the ElimList of X; is{1, 2,..., N-i-1}. This method of succes-
sively decreasing the ElimList for sibling subsets guarantees a complete and duplicate-free
search space expansion.

Obviously, any subset of afrequent itemset isalso frequent. Henceit isonly necessary to expand
the direct subsets of a given itemset if this itemset is infrequent. We call this form of pruning
Direct Top-Down Pruning (DTDP).
Theorem 2: The upper bound for the number of itemsets considered by the MFS
Search agorithm for afinite item domain 1,2,..., Nis 2N-L.

127

Level 6 Level 5 Level 4 Level 3 Level 2 Leve 1
mo3ase - 1 M3 T 1 M3 — — 71 W6 T T me— — — 71 B — — 1
E={12035) T~ E=(1234} - E=(123y 3 ” E={12} P ey -
L [L 74 L 2 N L — ' _ 1 L 'L _ 1
\ 26 1
E={
136 -1 }56_ - —
L E:{E J— _|_>I_ _:{_ —
26— — — 7
E={} .
246 — — 71 'I46___j_’"716___—"
E={12} E={1} =
L___th%____q L—Y
E={}
g — O e — —
E=(1} =
e
v E={}
236 ~ ~ 1 ﬁst__4 s — — 1 B — — 7
L E:{1_23}_ P L _E:{E}_ 4 L =={i — a7 B={} |
\ 1256 1
E={}
T — = e l
E={1) e
|§35? — 4 L—— — | Forward
CE oo
12456 1 Mas6 — — 71 s 1
N T = € S S =) ¥ A
- \ Basg - Backwa_rd
L B} _ % | g?(pliratlon
3456 — n 3456 I direction
E={1} - L B} 0
v _ — 4 - = =
123456 K
L B
Fig8.3: Search space for frequent itemset evaluation over the finite item domain:
12,....6

Thus, by employing thisbasic version of MFSSearch (ElimList technique and DTDP) the search
complexity has already been reduced by a magnitude of 2.

Sibling subsets can be explored either backward or forward, as marked in Fig. 8.3 by arrows.
The following section will detail on that and a summary of all possible and meaningful combi-
nations of the various pruning and search strategies is given in Section 8.2.7.

8.2.5 Backward Exploration (BE) of Itemsets
Animportant property for all backward-oriented strategiesto be discussed below isgiven by the
following theorem.

Theorem 3: Given two itemsets X; and X,, st. X; 0 X,. In the BE scenario X; will
be processed after Xo.

8.25.1 CrossTop-Down Pruning

In this section, we are interested in finding out how a given frequent itemset can prune cross
subsetsaswell. InFig. 8.3, if e.g. {1456} isfrequent, direct top-down pruning eliminates {456},
but it is desirable to prune the cross subsets {156} and {146}, expanded later on by {1256},
respectively {1246}, as well. We call this Cross Top-Down Pruning (CTDP).

Theorem 4: Given afiniteitem domain 1,...,N. In the backward exploration any item-

128

set except itemset Z={N} isasuperset of at least one itemset that is not expanded yet.

Hence, once an itemset isfound frequent, it can prune its (direct and cross) subsets from explo-
ration. However, at a given moment, the search space consists of itemsets that are either @)
expanded and explored, b) expanded or c) unexpanded. Thefully explored search spaceisgiven
in Fig. 8.3. Evidently, pruning can only affect category b) and c), i.e. not yet explored itemsets.
Itemsets of category b) can be pruned together with their direct subsets as soon as a frequent
superset is found. However, it is not clear how to prune itemsets of category c). In Fig. 8.3, if
e.g. itemset X= {456} isfound to befrequent, it can prune itemsets {56}, {46} and {6}. However,
these areitemsetson Level 2 and 1, none of which have been expanded yet at the moment when
Xisexplored. Thus, it is necessary to memorize X for itemsets that have not yet been explored,
if these itemsets can produce subsets of X. In this case, these are the itemsets {12356} and
{12346}. Such a set of relevant frequent itemsets, called FrequentSet, is logically assigned to
each itemset element, similarly to its ElimList.

Theorem 5: The set of frequent itemsets F assigned to any candidate itemset contains
only maximal frequent itemsets.

Given afrequent itemset X and an expanded but unexplored itemset Y (category b), with Y hav-
ing adirect subset Z that is not expanded yet (i.e. of category c), s.t. Z is aso a cross subset of
X. Now the question is how to prune the search space in order to avoid the evaluation of Z.

Theorem 6: Given a frequent itemset X and an expanded but unexplored itemset Y,
XOY andthe ElimList of Y being E. Y will expand a subset of X if
{ylyOY,yOX OE . Thiswill befurther on referred to as Condition (1).

A relevant frequent itemset will be propagated to lower levels only if this condition is fulfilled.

Example 8.1: If the itemset X= {456} is frequent, it will be included in the FrequentSet of the
expanded but unexplored itemsets {12356} and {12346} that also satisfy Condi-
tion (1). When these itemsets are explored, they will further propagate X only to
the subsets {1256}, {1246} and {1236} on Level 4. This process continues and
leads finally to the pruning of the itemsets {56}, {46} and {6}.

8.2.5.2 Bottom-Up Pruning

Bottom-up pruning (BUP) uses the property that if a subset of an itemset in the search spaceis
found infrequent, it is no longer necessary to explore that itemset as it is infrequent anyway.
According to Theorem 3, in the BE scenario an itemset can never be a subset of an itemset that
Is expanded later. Thus, an entire itemset can never be used for BUP. However, according to
Observation 1, by processing an itemset via the SreamJoin operator, the supports of all prefixes
are implicitly calculated as well. Thus, we can use infrequent prefixesfor BUP,

Definition 1: Givenanitemset X = {1,2,...,N-1,N} with prefixes X; = {1},...,.Xy ={1,2,...,N-1,N}
The maximal infrequent prefix (MIP) of Xis (O, if Xisfrequent
{ X, s.t. X; infrequent and X; frequent, j <.

Thus, an early termination condition for the processing of an itemset X viathe SreamJoin oper-
ator is finding the maximal infrequent prefix of X.
Example 8.2: Given a minimal support of 10 and X={2,3,4,5,6}. Assume that the following

129

supports have been calculated: sup{2} = 88, sup{2,3} = 51, sup{2,3,4} = 9,
sup{2,3,4,5} = 7, sup{2,3,4,5,6} = 1. Thusthe MIP of Xis{2,3,4} with the cor-
responding support 9. Once this prefix isfound, it is not necessary to probe the
remaining elements of X, namely 5 and 6, as at this point it is known that X is
infrequent.

With top-down pruning as described in the previous section, once a superset of an itemset X has

been found frequent, we could prune X together with all its direct subsets, as they are also all

frequent. Thisis not always possible in BUP. More precisely, if a subset Y of an itemset X is

found infrequent, we can prune X, but not all direct subsets of X, asthey might not include Y.

Example 8.3: Assuming that in the backward exploration from Fig. 8.3, the MIP of itemset
{23456} isfound to be {23}, also {12356} isinfrequent and can be pruned. How-
ever, fromitsdirect subsets only {2356} contains{23}, whilethe otherstill have
to be explored.

Theorem 7: In bottom-up pruning, a maximal infrequent prefix X can prune an item-
set Y in the search space together with its direct subsets if X OY and ElimListy
doesn’t contain any items from X. We will further refer to this as Condition (2).
Example 8.4: Supposethat in the backward exploration from Fig. 8.3, the MIP of itemset {456}
isfound to be {4}. In this case, {4} can prune the whole branch rooted at {1246}
since the ElimList of thisitem is{12} and thus every direct subset also includes

{4}

Similar to top-down pruning, in order to incorporate also unexpanded itemsetsin the BUR, it is
necessary to keep a set of infrequent itemsets that are relevant for the direct subsets of a given
itemset X, called IFy.

A given prefix can be evaluated multiple times, within different itemsets.

Theorem 8: Given afinite item domain 1,2,...,N. In the BE scenario the last time a
prefix P={Pq, P1,..., P} isevaluated is within the itemset X={P, Py,..., P,,, N}.

We will further refer to the prefix X\ {N} of an itemset X as PMaxy. From Theorem 8 results

that given an infrequent itemset X, its maximal infrequent prefix MIP can only be a subset of an

itemset that is not explored yet if [IMIP| < |X| - 1. We will further call this formula Condition (3).

Indeed if [MIP| = [X] - 1, then MIP = PMaxy and according to Theorem 8 this prefix will not

be expanded further on.

Example 8.5: If the MIP of itemset X={456} is {45}, there is no sense to perform bottom-up
pruning with this prefix, asit isnot included in any itemset still to be explored.

Another important result of Theorem 8isthat if [MIP| = |X|, the prefix PMaxy is &l so a maximal
frequent itemset. We will this formula Condition (4) in the algorithm description given in the
appendix C.2.

Indeed, from X = {1, 2,..., N} and X is infrequent and |MIP| = |X], i.e. MIP = X, results that
PMaxy= {1, 2,...,,N-1} is frequent. According to Theorem 8, there is no other itemset in the
search space still to be explored that includes PMaxy. On the other hand, there is also no other
superset of PMaxy explored earlier that has been found fregquent, as in this case the itemset

130

- - - - Backward Exploration
X1

—— Direct Top Down Pruning
— Cross Top Down Pruning

a) Top-Down Pruning

X (includes 2) —> Bottom-Up Pruning

<« - - - Backward Exploration (Infrequent Sets)

iXY =Z = infrequent

b) Bottom-Up Pruning
Fig8.4: Pruning strategiesin backward exploration scenario

would have been eliminated by top-down pruning. From this results that PMaxy is a maximal
frequent itemset.

Fig. 8.4 shows the reduction of the search space through the pruning techniques presented so
far. InFig. 8.4athe frequent set X3 prunesits direct subsets aswell asits cross subsets expanded
by X; and X,. In Fig. 8.4b the infrequent prefix Z prunes both itemset X aswell as subsets of X
that satisfy Condition 2.

8.2.6 Forward Exploration (FE) of Itemsets

From Theorem 3 results that in the FE scenario, an itemset A can be a subset of an itemset B that
will be explored later. If both A and B are found frequent, A cannot be a MFI. Thus, contrary to
BE, in the FE scenario it is possible to generate also frequent itemsets that are not maximal.
Henceit isnecessary to have somefilter mechanismsthat return only MFIs. Thiscan berealized
by e.g. explicitly maintaining a set of maximal frequent itemsets throughout the exploration.
Once a frequent itemset X isfound, it is added to this list and eventual subsets of X have to be
eliminated, if existing. Thus, at the end of the algorithm the set contains the MFS only.

Similar techniques are used also in [Ba98, LK 98]. The disadvantage of this approach isthat in
this way the maximal frequent itemsets can only be returned when the whole search space
exploration isfinished. More precisely, if FE isrealized within the database engine, this would
yield ablocking boundary, as all input hasto be processed before thefirst output tuple, i.e. MFI,
is delivered. Please note that in the BE scenario this is not necessary, since once an itemset is
found to be frequent, it can immediately be returned, as Theorem 3 guarantees that it is also
maximal.

We will further concentrate on pruning possibilities for the FE scenario. DTDP can be realized
in the same way as described for BE. However, according to Theorem 3, in the FE scenario no
itemset explored at a given time has cross subsets that are expanded later. Hence, CTDP is not
applicable at all.

131

8.2.6.1 Bottom-Up Pruning

In the FE scenario, either entire itemsets or maximal infrequent prefixes can be used for BUP,
However, contrary to BE, if we use entire itemsets for pruning, we cannot simply discard an
itemset from exploration if one of its subsets is found infrequent. As shown in Section 8.2.5.2,
each itemset X in the search space stands in reality for two itemsets, namely X and PMaxy = X
\ {N}. If wefind an itemset Y = {Y{, Y,..., N} to be infrequent and Y [0 X, we can discard X
from evaluation, but we still have to evaluate PMaxy, as thisitemset is not a superset of Y. Only
if NOY, X can betotally discarded from evaluation.
Example 8.6: If in the forward exploration from Fig. 8.3 itemset {246} is infrequent, it can
prune {12456} from evaluation, but it is still necessary to evaluate its prefix
{1245}. However if the MIP of {246} is {24}, {1245} is infrequent and can be
pruned as well.

In the backward eval uation scenario, we don’t have to consider this problem, because as shown
in Section 8.2.5.2, only maximal infrequent prefixes can be used for BUP.

Please note that the MFSSearch algorithm for both the backward and forward exploration sce-
nariosis given in the appendices C.2, respectively C.3.

8.2.7 Summary of Pruning Techniques

As detailed in the previous sections and shown in Fig. 8.4, the following pruning techniques
have been developed for efficient generation of maximal frequent itemsets:

® Direct Top-Down Pruning (DTDP) prunes the direct subsets of an itemset X. The tech-
nique ensures that these subsets will only be expanded and explored if X is infrequent.
DTDP is applicable to both backward and forward exploration strategies.

® Cross Top-Down Pruning (CTDP) ensures that unexplored cross subsets of fregquent
itemsets are eliminated from exploration. CTDP makes use of a list of relevant frequent
itemsets assigned to each expanded itemset, called FrequentSet, that is propagated selec-
tively towards not yet explored subsets. It isonly applicable to the BE scenario.

® Bottom-Up Pruning (BUP) eliminates supersets of infrequent itemsets from exploration.
Analogously to CTDP, BUP makes use of a list of relevant infrequent itemsets. BUP is
applicableto both exploration strategies. However, atailoring to the associated strategy has
to be provided.

A summarization of the pruning techniques and their application to BE and FE is given in
Tab. 8.1.

Please note that the terms *bottom-up” and “top-down” have been also used in combination
with the optimization strategies presented in Chapter 4. However, the difference lies in the fact
that w.r.t. query optimization, they denote the way in which the search space is expanded. In
contrast, for the MFSSearch strategy the terms “top-down” and “bottom-up” describe only the
applied pruning techniques, while the way in which the search space is expanded is described
by the terms “backward” and “forward”.

132

Table 8.1 Summarizing of the pruning techniques employed by the MFSSearch algorithm

Backward Exploration (BE) Forward Exploration (FE)

DTDP (X=Frequent) * prunes direct subsets of X * prunes direct subsets of X

CTDP (X=Frequent) e adds X to FrequentSet(2), if Z ex- | « not applicable
pands a subset of X (Cond. 1)

e prunes Y and its direct subsets, if
YOX

BUP (X=Infrequent) + only possible if X is not an entire | , i x Y, but XO PMa& , prunes only Y

itemset (Cond. 3) . .
] direct subsets of Y are pruned only if
* {EXOY, prunesY; Cond. 2 satisfied;

direct subsets of Y are pruned only else adds X to InfrequentSet(Y)
if Cond. 2 satisfied;

else adds X to InfrequentSet(Y)

e« if X0O PMa>\(, prunes also PMaxy

Despite of this difference, the MFSSearch strategy still bears certain similarities with the search
space exploration for database query optimization, as implemented e.g. in Cascades (see Sec-
tion 4.3). In both cases, the search space is expanded gradually, depending on the current status
and possible pruning techniques. Furthermore, the knowledge on already explored search space
regions has to be managed by means of appropriate data structures. In this context, the proposed
“frequent” and “infrequent” setsin MFSSearch have the same purpose as the “memo” structure
in the Cascades Optimizer Framework, as described in Section 4.3.1.2. Finally, an important
aim of both optimization strategies is to reduce the search space in order to improve optimiza-
tion performance. Thisis achieved in both cases by appropriate pruning techniques, reduction
or elimination of redundant work aswell as of duplicates. Please note that this latter aim isreal-
ized in the MFSSearch algorithm by the ElimList technique, while in Cascadesit is achieved by
aduplicate-free rule set as described in Section 6.3.

8.2.8 Integration with the DBMS

In Fig. 8.1 we visualized our approach to evaluate the supports of itemsets and prefixes within
the database by using the SreamJoin operator. In this scenario, the candidates are given by the
(static) caND table. Hence, in order to find the MFS, this table must contain all possible candi-
date itemsets, determined e.g. during a preprocessing step. However, as already mentioned, this
approach is prohibitively costly in terms of time and disk space for real-life item domains.

Hence, in our solution theinput for the SreamJoin operator is provided by the MFSSearch algo-
rithm introduced in Section 8.2.3. In order to obtain an efficient and comprehensive integration
of data mining with the data warehouse DBMS this task has to be performed in the database
engine as well. In this section we present a strategy to efficiently map MFSSearch to database
operators. The necessary flexibility will be provided by user-defined functions [SQL99] and
user-defined table operators (UDTOs) [IM99]. UDTOs permit the definition of set-oriented
operations within the database engine. They operate on one or more tables and possibly some
additional scalar parameters and return a tuple or atable. The arguments (i.e. input tables) can

133

MFS
A itemset, item
(GenerateResults (itemset, item, sup, parameter:minsup) D]
b (itemset, item, sup) = SResult
(STREAMJOIN (itemset, item, tid.new = tid.old))
A (itemset, item, tid)

(oI (item = item))

(itemset, item)
2 tl

(GenerateCand (itemset, item, sup)) -
ad L™

(FRsTCAND(itemset, item))

Fig8.5: Mapping of MFSSearch on database operators

beintermediateresultsof aquery, i.e. they are not restricted to base tables only. Thusthe Sream-
Join operator itself can be implemented asaUDTO aswell.

In addition, we assume that the candidate generation algorithm isrealized asa UDTO as well,
called GenerateCand. As already mentioned, this algorithm starts with the itemset holding all
items. Thus, this is the first itemset produced by the GenerateCand operator. Later on, since
dynamic pruning is employed, the generation of further candidates depends on the results of
processing the current candidate in the search space via the SreamJoin operator. This results
into a cyclein the overall MFS generation scheme, as depicted in Fig. 8.5.

As the GenerateCand UDTO is incorporated within a cycle, candidate and result generation
must be split up. In Fig. 8.5, the functionality of the SreamJoin operator has aready been
expanded to calcul ate al so the aggregation on itemset as explained in Section 8.2.3, thus return-
ing the support of each itemset aswell as of all its prefixes. The resulting output stream is called
Result(itemset, item, sup).

This output stream is consumed by two operators. the GenerateCand UDTO and the Genera-
teResults UDF. The GenerateCand UDTO isonly responsible for candidate generation. For eas-
ier understanding, we assume that it initially reads the first candidate, namely the itemset incor-
porating all items, from the table FIRSTCAND(itemset, item). This first input is used for internal
initializations and transmitted unchanged to the subsequent operators Join, respectively Sream-
Join. These calculate the corresponding (prefix) supportsin asimilar way as already presented
in Section 8.2.2. In all subsequent iterations, the input of the GenerateCand UDTO is provided
by the output of the SreamJoin processing, i.e. the SResult data stream. Thisintermediate result
is used by GenerateCand to perform pruning as presented in the previous section and further
span the search space. The resulting subsequent candidate itemsets are added to the output
stream, thus starting new iterations. The process continues until no further candidate itemsets
are available, i.e. the entire MFS s calcul ated.

The functionality for generating the final result istaken over by the GenerateResults UDF. This
gets as input the result of the SreamJoin operator in the form (itemset, item, sup). The minimal
support defined by the user is provided by means of a scalar parameter minsup. Thus, Genera-
teResults hasthe possibility to identify frequent itemsets, i.e. to perform afiltering functionality.
As aready explained, by employing the backward exploration for the MFSSearch candidate

134

SET minsup = myminsup;

WITH SResult(itemset, item, sup) AS
((SELECT StreamJoin(itemset, item, tid)
FROM TRANS,
(GenerateCand(SELECT itemset, item, -1 FROM FIRSTCAND)) AStl
WHERE TRANS.item = t1.item)
UNION ALL
(SELECT StreamJoin(itemset, item, tid)
FROM TRANS,
(GenerateCand(SELECT itemset, item, sup FROM SResult)) ASt2
WHERE TRANS.item = t2.item))

SELECT GenerateResults FROM SResult

Fig8.6: SQL representation using common table expressions, UDFsand UDTOs

generation, afrequent itemset found isalso aMFI. Thus, GenerateResults can immediately add
it to the output stream, yielding a maximal frequent itemset that is returned to the user. This
results in fast response times and continuous input for further processing, such as e.g. associa-
tion rule generation.

In thefollowing, wefocus on how the QEP from Fig. 8.5 can be expressed in (augmented) SQL .
As already mentioned, GenerateResults can be realized by a UDF, as currently supported by
most database vendors. However, UDFs can not be used for the SreamJoin and GenerateCand
approaches, since they both deliver sets of tuples. This problem of expressing set-orientation
can be solved by UDTOs[IM99], as presented in the following. Asfor the cyclewithin the QEP,
thiscan beresolved in asimilar way asrecursion [SQL99], using e.g. common table expressions
[Choeg].

By adequately using the above mentioned concepts, we obtain a single statement, as depicted in
Fig. 8.6. Hereby, we have used a simplified syntax for a better understanding. The common
table expression corresponds to the SResult stream. The first “SELECT Streamdoin” clause cor-
respondsto thefirst iteration, where GenerateCand receivesitsinput from the FIRSTCAND table,
i.e. the itemset containing all items. Thisfirst input is used to initialize the search space, hence
the value of the sup parameter is irrelevant (e.g. -1 in Fig. 8.6). After initializing the search
space, the GenerateCand operator transmits this first candidate unchanged to the SreamJoin
operator. The corresponding output streamiscaled tl in Fig. 8.5 and Fig. 8.6. The subsequent
iterations are expressed by the second input of the UNION operator. In this “SELECT Sream
Join” clause, theinput of GenerateCand isalready provided by the result of the SreamJoin oper-
ator, i.e.the SResult stream. This input is used to further explore the search space. The subse-
guent candidate itemset is added to the output stream t2, thus starting a new iteration.

In thisway, the MFS cal culation can be comprehensively expressed in (augmented) SQL. Thus
the entire processing scheme or constituting parts of it can be referenced for other mining tasks
as well. Please note that in contrast to other approaches [STA98], this strategy avoids interme-
diate table constructions aswell asthe formulation of separate SQL statementsfor each process-
ing phase. Instead, as presented in Fig. 8.6, the entire MFS calculation can be expressed in a
compact way by a single statement, thus query optimization and parall€elization can be applied
as usual for sake of increasing efficiency.

135

8.2.9 Parallelization Potential

In this section we concentrate on the parallelization possibilities of our approach. A critical
aspect of parallelization isthat the strategies work well with the existing physical data partition-
ing. This is especialy important for an efficient integration of data mining with data ware-
houses. In contrast, most related work [HKK 97, AS96] propose solutions that are based on pro-
prietary partitioning strategies or even data replications, rendering these approaches inadequate
for large-scale operating databases. In addition, for such applications communication and 1/0
overhead should be avoided as much as possible. However, most previous parallelization strat-
egies [SK96, AS96] make repeated passes over the disk-resident database partition, thusincur-
ring high 1/0 overhead. Moreover, in many cases they exchange their counts of candidates or
remote database partitions during each iteration, resulting also in high communication over-
head. Additionally, some of the approaches replicate complicated memory structures, thus inef-
ficiently utilizing main memory.

In the following, we present parallelization approaches that maximize datalocality, thus reduc-
ing communication as well as 1/0 overhead. Moreover, different kinds of physical disk parti-
tionings of the data warehouse are taken into account.

Suppose that the TRANS table in Fig. 8.5 is the central FACTS table in a data warehouse star
schema, holding also other attributes like supplier, customer, time etc. We differentiate two sce-
narios w.r.t. possible physical partitionings on disk, as discussed in the following.

8.2.9.1 Collocated Transaction Items

According to different application scenarios, the FACTS table can be partitioned in multiple ways
[Schn97]. In Fig. 8.7 we propose a solution which is compatible with a partitioning strategy of

(1) ABC |\£FS — |ocal communication
r] (5) AC ’ ---[> network communication

i (_Seneratecand) GenerateResults - B selective broadcast
T '~ 77 local processing

A, 390
| as20 (3
AB.C, 85

| (_CumulateSupports)
' B
. A, 100 A, 200 A, 90

AB, 80 AB, 100 AB, 20)
| AB.C, 50 AB.C, 30 ABC, 5

R EETE (Sreamdon), (Sreamdon).

(1) candidate generation

| . A , A Do A ! (2) local supports
. o o | e ot
A A L . (4) result generation
L. 2. Ar o i —A— — - A l (5) new candidate
' ! | | [\ | f
[cl : ' _—— : ' _—— :
. _Part. 1998 -Part.1997.- - Part. 1996

Fig8.7: Paralle processing for the evaluation of maximal frequent itemsets;
items belonging to a transaction reside on the same partition

136

the central FACTS table so that all tuples belonging to a single transaction are on the same parti-
tion. Thisisthe case for instance if the partitioning is done on time, tid, or customer attributes.

In this case, each partition can calculate the local supports of the candidate itemsets by using the
SreamJoin processing scheme. In Fig. 8.7, thefirst candidate itemset is{A, B, C}. Only the sup-
ports of the prefixes need to be communicated to acentral merge operator, called CumulateSup-
ports, that evaluates the final supports by adding up the local supports of the prefixes. This
cumulated result istheinput of both the central GenerateCand aswell as Gener ateResults oper-
ators. As described in Section 8.2.8, the GenerateCand operator decides on the next candidate
itemset. Thisitemset, e.g. {A, C} inFig. 8.7, isbroadcasted to al participating nodes, thus start-
ing a new iteration. The GenerateResults operator produces the final results holding maximal
frequent itemsets as already shown in Section 8.2.8.

Hence, only candidate itemsets and computed supports need to be communicated over the net-
work, producing only minimal communication overhead. Thisissimilar to the Count Distribu-
tion algorithm [AS96]. However, in contrast to this strategy, performance isimproved by avoid-
Ing multiple database passes and replicated memory structures.

8.2.9.2 Distributed Transaction Items

In the second possible scenario the FACTS table is partitioned in a way that doesn’t guarantee
that all items belonging to a transaction reside on the same partition. Thisis the case if the par-
titioning is done for instance on the item attribute.

A small modification of the SreamJoin operator allowing it to read streams from different
Inputs can al so prevent from repartitioning. Thisisshown in Fig. 8.8, where the data warehouse
Is partitioned on the item attribute. When computing the support for candidate itemset {A, B, C},
the SreamJoin operator receives its input streams from different nodes, corresponding to the
constituting items. Thereby, the SreamJoin operator can reside on any of the processing nodes.
Please note the communication overhead isincreased by the fact that the tids belonging to each

_____ (1) ABC MFS —® local communication
!— 1(5) Are 4 ---[> network communication
| (GenerateCand) Gener ateResults - B selective broadcast

\ = local processing
A, 390
| A,B, 200
| A;B,C, 85
| C SreamJoin D) (3)
. v N
'+ tid-Stream A tid-Stream B tid-StreamC (2)

Gy G I (2 loenl o craten
L A L S _A _A B A * ! (3) parallel StreamJoin
e | = | = (4) result generation

L Lo ' (5) new candidate
Part. A__ _Part. B Part.C
Fig8.8: Parallel processing for the evaluation of maximal frequent itemsets;
items belonging to a transaction reside on different partitions

137

item need to be communicated over the network. This can be reduced by executing the Sream-
Join processing on the node corresponding to the item with the highest support. In this case, the
most voluminous tid-lists don’t have to be communicated over the network.

It is not necessary to broadcast the candidate itemsets to all partitions, either. If the partitioning
function on the item attribute is known, a candidate itemset only has to be sent to the partitions
that contain that item. For instance, in step (5) from Fig. 8.8, the new candidate {A, C} only has
to be sent to partitions A and C. We do not know of any other parallelization strategy in the data
mining area which would incur less communication overhead for this scenario without reparti-
tioning or (selectively) replicating the database, as e.g. in [HKK97].

8.2.10 Implementation Aspects

In both scenarios, local and network communication as well as the (selective) broadcast can be
realized by means of the data river concept presented in Chapter 3. Thus, in case of collocated
transaction items, the merging of local supports (resulting from step (2)) can be realized using
areceive operator adopting the MERGE strategy. I n contrast, when transaction items do not reside
on the same partition, the resulting tid streams have to be merged using the SEQ merge strategy.
Cf. Section 3.3.4, this strategy guarantees that one entire data stream is consumed before the
next is worked on.

Since the SreamJoin operator is realized according to the iterator concept, it can be incorpo-
rated both into the TOPAZ parallelizer as well as the Model-M optimizer. Thus, efficient intra-
guery parallelism can be provided to any execution plan that contains this operator.

In order to achieve thisaim, SreamJoin first hasto be incorporated into the cost model asalog-
ical and physical operator inasimilar way asthe MIDA S operators presented in Chapter 5. This
can be done in a straightforward way, since the operator is neither blocking nor necessitating
any special treatment w.r.t. its cost calculation. Hence all cost formulas provided in Section
5.4.1.2 for regular unary operators apply for the SreamJoin operator aswell. In this context, the
base component Tpeqin is determined by the cost that is necessary to construct the first hash
table of the SreamJoin operator. Thelocal processing Costs Tjprqcess CaN be derived from statis-
tics by estimating the total number of groups as well as the (average) number of iterations that
are necessary to process a group.

Second, appropriate rules have to be provided in order to make TOPAZ cognizant of the paral-
|elization possibilities of the SreamJoin operator. These parallelization rules have to account
for possible physical disk partitionings of the database, as discussed in Sections 8.2.9.1 and
8.2.9.2. These partitionings can be defined as properties and treated by TOPAZ in an analog way
as the underlying system architecture, i.e. shared-nothing, shared-disk or hybrid (discussed in
Section 4.4). Finally, the routines that convert MIDAS operator treesinto logical operator trees
asinput for Model-M and TOPAZ and that convert the optimized, respectively parallelized phys-
ical trees back into aMIDAS operator tree have to be adjusted.

Hence, our parallelization strategy presented in the previous chapters can easily be extended to
provide comprehensive and efficient parallelism for query execution plans that contain user-

138

defined constructs as well. However, please note the resulting performance is influenced in a
significant way by the effectiveness of the applied estimation functions, that are especially
needed for the determination of the T ocess COMpoNent. Providing accurate selectivity and exe-
cution cost estimates for user-defined extensionsiis still an open problem [Ja99] and is beyond
the scope of thisthesis.

8.2.11 Performance evaluation

In order to evaluate the performance of our processing scheme MFSSearch for maximal fre-
guent itemsets via the SreamJoin operator, we have integrated this operator into the MIDAS
system. We have validated our approach using a100 MB TPC-D database [TPC95], running on
a SUN-ULTRA1 workstation with a 143 MHz Ultra Sparc processor. For the parallel scenarios,
we used acluster of up to 4 workstations. The database contains 150.000 transactions compris-
ing orders on 20.000 different parts. For a detailed evaluation, it was important to consider a
column having a limited value domain. Thus, we have performed our measurements on the
LINEITEM table, where the place of the item column is taken over by linenumber and the pair
partkey, suppkey is considered as being the tid attribute. The domain of the linenumber column
isfrom 1 to 7, and the attributes partkey, suppkey define 67.806 transactions.

In the following we would like to point out the difference of thismodeling to traditional market
basket analysis. For ssimplification purposes, assume that the linenumber attribute represents
some kind of timestamp: weekdays, months etc. In a traditional market basket anaysis, if an
itemset {A, B} isfound frequent, a possible resulting rule might be: “ If a customer buysitem A
at agiventimeit islikely that he/she buys also item B” . In contrast, a possible interpretation of
afrequent itemset {1, 2} in our modeling isthe following: “ If a part issold at timestamp 1, it is
likely that the same part will be sold at timestamp 2 as well” . Hence, this kind of modeling is
particularly suitable for e.g. event analysis.

In amost all top-down approaches item ordering plays an important role [Ba98, ZP+97]. The
rationale is that items with high frequency are most likely to appear in frequent itemsets, thus
increasing the effectiveness of top-down pruning. Therefore, itemsare ordered during apre-pro-
cessing phase in increasing order of their supports. We have evaluated the influence of item
ordering on MFSSearch aswell, obtaining also the maximum efficiency for the decreasing order
of the item frequencies. Hence, in the following we report on the performance of MFSSearch
using this ordering strategy.

In order to compare the performance of MFSSearch with the Apriori algorithm that isthe basis
of most bottom-up approaches, in Fig. 8.9a we have presented the time that is necessary to per-
form the multiple database scans specific to this algorithm. Please note that this curve doesn’t
comprise any CPU costs that are also inherent to the Apriori algorithm. As can be seen in
Fig. 8.9a, MFSSearch shows both for the forward (FE) as well as for the backward evaluation
(BE) a performance that is orders of magnitude better than the Apriori algorithm. At the same
time, we have listed the I/O costs that would result from processing the items using MaxMiner
[Ba98]. This roughly corresponds also to the 1/O necessary for the PincerSearch algorithm
[LK98]. As can be seen, although both approaches have proven to be more efficient than the

139

as0 b — Apriori (Only I/O Costs!)
a00 TN - MFSSearch BE (Total Costs)
350 ||bdormmsoreng — MaxMiner (Only /O Costs!)
-+ MFSSearch FE (Total Costs)
@ 300 o
@
£
|_

Support (%)
a)
350
300 4 e i
2B rommgform e fe —— Direct + Cross Top-Down
CORT Yo R T S0 A - Direct Top-Down + Bottom-Up
g ; — Direct + Cross Top-Down + Bottom-Up
= 190 Ry —— Direct Top-Dawn
100 + B L
BO oo BT papmmmgma
0 - a a 1 a 1 1 1 a 1
o o (o] o < (o] o o (o) o
- ~l b < 0 © ~ ® e

Support (%)

b)

Fig8.9: Effectivenessof pruning

Apriori agorithm in terms of CPU costs, the repetitive database scans still cause significant 1/
O costs. The results in [Ba98] also show that the increased efficiency of MaxMiner doesn’t
result primarily from the reduction of database passes, but from the consideration of less candi-
dates. However, as can be seen in Fig. 8.9a, the resulting 1/0 costs of these algorithms already

exceed the total costs of MFSSearch.

As results from Fig. 8.9a, BE is more efficient for lower supports. The reason for thisisthat in
this case we have alarge number of long MFIsthat can be used for top-down pruning. However,
in the FE scenario, CTDP is not possible. In contrast, in the domain of higher supports and

140

implicitly large number of infrequent itemsets BUP is most effective. In this case FE is slightly
better than BE, resulting from the fact that in the BE scenario only prefixes can be used for BUP.

A detailed analysis on the effectiveness of the different pruning techniques for the BE scenario
Isgiven in Fig. 8.9b. Obviously, top-down pruning is most effective for lower supports, where
large maximal frequent itemsets can prune several subsets, these being also frequent. Starting
with a support of 20-25%, DTDP does not cometo application at all. Asfor CTDP this point is
reached with a support of ca. 50%. BUP is most effective with higher supports. The reason for
thisisthat the higher the support, the more infrequent itemsets are found, that in turn can prune
their supersets. The bottom curve in Fig. 8.9b shows that the best performance is achieved by
the combination of al three pruning techniques. This leads to overall response times that are
only proportional to the volume of maximal frequent itemsets.

Given the above, we expect that the BE scenario achieves generally the best performance when
integrated into the database engine. This results on one hand from the fact that it yields a non-
blocking processing, hence rapid response times. On the other hand, this strategy combines both
pruning strategies to achieve an efficient reduction of the search space for any support values.
Hence, all further performance evaluation refers to the MFSSearch BE scenario.

The most striking difference between Apriori and MFSSearch is in the number of candidate
itemsets considered to produce the set of maximal frequent itemsets. As can be seen in
Fig. 8.10a, whilein the MFSSearch processing scheme this number is proportional to the actual
number of maximal frequent itemsets, the itemsets considered by the Apriori algorithm
increases exponentially with decreasing supports. As shown in [LK98], the number of maxi-
mum frequent itemsets is a non-monotone function w.r.t. the minimal support. Thisresult shows
that, unlike most algorithms, MFSSearch can fully benefit from this property. Thus, it is also
suitable for the exploration of large item domains.

As mentioned in Section 8.2.1, in [STA98] the most promising improvement of the Apriori
algorithm that is also suitable for database integration was found to be one based on a \ertical
format. Thisformat requires a preparatory phase that determinesfor each item alist comprising
all tids that contain that item. Because of the variable length of these lists, in [STA98] they are
stored in BLOBSs. To compare this optimized variant of the Apriori a gorithm with our approach,
we have kept track of the data accesses necessary in each scenario. In this case, by asingle data
access we mean the access to al tids corresponding to a single item, i.e. in the implementation
proposed by [STA98] reading in asingle BLOB. In Fig. 8.10b, we have compared these num-
bers with the MFS volume, i.e. the sum of the lengths of all maximal frequent itemsets. As can
be seen, the data accesses related to MFSSearch are proportional to thisvolume. In contrast, the
data accesses needed for the Vertical approach increased exponentially with decreasing sup-
ports. Comparing Fig. 8.9a and Fig. 8.10b, we can aso see that the complexity of MFSSearch
scales linearly with the maximal frequent itemset volume.

Asfor parallelization, we have partitioned the LINEITEM table on partkey, suppkey. This corre-
sponds to a partitioning in which al tuples belonging to a transaction reside on the same parti-
tion (cf. Section 8.2.9.1). We have used a degree of parallelism varying from 1 (sequential) to
4. The results presented in Fig. 8.10c show a linear speedup. This demonstrates that the data
river concept presented in Chapter 3 provides efficient intra-query parallelism for plans contain-
ing user-defined constructs as well, thus validating the extensibility of the concept.

141

140
120 - — T R
7 — Apriori = MFSSearch — # Maximal Frequent temsets
3 100 -
g
o 80+
O
2}
T 60 -
g
& 40
B =3
20 -
0 1 1 1 1 1 1 T i
o o o o o o o o o o
- a o < T} © ~) »
Support (%)
a) Candidate itemsets considered
D) e
200 1N —— Apriori Vertical
o - Sum of length of MFSs
T A W ~+ MFSSearch
e 1 1 e
BO A e e
0 | 1 | | 1 ! ! pesdiiiRIS
o o o o o o o o Qo o
— Al o < fe} [Te] M~ [se] »
Support (%)
b) Data accesses
120 - Seq = Par2 |
I A e -+ Par3 — Pard |
g 80 e e
15}
=
|_
c) Parallelization performance
Fig 8.10: Performance evaluation for MFS calculation

142

8.2.12 Summary

In this section we have presented a processing scheme for the generation of maximal frequent
itemsetsthat employsanew operator, called SreamJoin that iscombined with ahighly effective
search strategy. This scheme meets all requirements posed to modern data mining approaches:

® The data accesses are kept minimal, only being proportional to the sum of the lengths of
the maximal frequent itemsets (called the volume of maximal frequent itemsets).

* Efficient pruning can be applied. Only itemsets that are neither supersets of any known
infrequent itemsets nor subsets of any known frequent itemsets are considered. Asaresullt,
the number of candidate itemsets considered is proportional to the actual number of MFIs.
Hence, the algorithm is also applicable for large item domains.

* The complexity of the algorithm scales linearly in the volume of maximal frequent item-
sets. The measurement results demonstrate that our approach can fully benefit of the non-
monotone property of the number of maximal frequent itemsets w.r.t. minimal support.

* Non-blocking execution and short response times are achieved, especially for the first
result tuples. Thisis due to the fact that by using our candidate generation algorithm with
a backward exploration of itemsets, any frequent itemset found is also a MFI.

® The processing scheme can be efficiently integrated with adatabase engine, thus being able
to make profit of all forms of query execution optimizations, including parall€elization.
Moreover, unlike most related work where itemset generation is still performed by multiple
phases, involving also insertions into intermediate tables, our approach yields a uniform
processing within a single query execution plan, without any additional disk spoolings,
blocking of intermediate results, or preparatory phases.

Compared to previous work, our measurements indicate that MFSSearch has a better perfor-
mance than the Apriori-like bottom-up approaches. Compared to most top-down approaches,
our strategy avoids multiple database passes and istruly independent of the length of thelongest
MFI. Thus, the MFSSearch strategy is applicable also for (ad-hoc) mining in large-scale
DBMSs, such as data warehouses, as well as for hybrid solutions, where the considered item
domain isrestricted by means of e.g. sampling [FS+98].

MFSSearch represents a processing primitive for the calculation of the maximal frequent set,
thus facilitating the modularization of similar problems, e.g. pattern recognition, and the reuse
of this primitive. We have presented a solution towards deeply integrating MFSSearch with the
DBMS engine. Furthermore, we have shown that at this level intra-query parallelism is appli-
cable in a straightforward way using the concepts presented in the previous chapters, resulting
into linear speedup and thusincreased efficiency. This showsthe extensibility and effectiveness
of our approach for complex applications as well, holding also user-defined constructs.

Finally, our implementation concept based on user-defined table operators and user-defined
functionsis available on the (SQL) language level, thus permitting an easy reuse of implemen-
tation as well.

143

8.3 Applicability of StreamJoin for Univer sal Quantification

Quantified queries become increasingly important in forthcoming applications, such as DSS,
OLAP etc. However, relational database systems do not adequately support such queries. Effec-
tive support is needed at both the language level as well asin the underlying query processing
system. Asfar asthefirst issueis concerned, quantified queries are expressed in SQL using the
GROUP BY, (NOT) EXISTSand (NOT) IN clauses, as well as counting.

We first consider the example given in [GC95], a university database with two relations,
COURSE(course-no, title) and TRANSCRIPT(student-id, course-no,...). The goal isto find the stu-
dents who have taken all courses offered by the university. Two examples of expressing this
guery in SQL are presented below.

Example 8.7:

SELECT DI STINCT t1.student-id FROV TRANSCRI PT t 1
VWHERE NOT EXI STS
(SELECT * FROM COURSE C
VWHERE NOT EXI STS(
SELECT * FROM TRANSCRI PT t 2
WHERE t 2. student-id = t1.student-id
AND t 2. course-no = c.course-no))

Example 8.8:

SELECT t.student-id FROM TRANSCRI PT t
GROUP BY t.student-id
HAVI NG COUNT (t.course-no) = (SELECT COUNT (course-no) FROM COURSE)

Obvioudly, these formulations are not natural and in addition difficult to optimize. Language
extensions have aready been proposed in the literature [HP95, RBG96] and are being consid-
ered as additional predicates in the upcoming SQL 99 standardization as well [SQL99]. In this
section, we concentrate on the support provided by relational query processors.

8.3.1 Related work

[CK+97] presents acomprehensive treatment of universal quantification for object-oriented and
object-relational databases from the query level to the evaluation. According to this analysis,
plans implementing the all-quantification with an anti-semijoin are superior to all other alterna-
tives. However, aswe will present in this section, this approach is only applicable in an object-
oriented model. Thusit isstill an open problem how to deal with universal quantifiersin OLAP
or DSS applications, that are mostly based on arelational star or snowflake schema. Because of
high data volumes, especially in these environments effective support is needed, and data reor-
ganization has to be avoided.

Universal quantification is evaluated in [GC95] by a hash-based division algorithm. However,
as shown in [CK+97] and later on in this section, this approach applies only for a special class
of queries, namely those for which the quantifier’srange constitutesaclosed formula. In[Da37]
generalized join and aggregation operators are presented. However, the scope of the paper is
restricted only to traditional aggregation operations over groups, such as average, max, count
etc., and is not applicable for al-quantification. [RBG96] propose a generalized quantifier

144

framework that defines acompletely new query subsystem. Thus, it requires significant changes
to the query execution system, as special indexes and multi-dimensional structures have to be
built for all relations. Moreover, since only small test databases have been used, the results are
not directly applicable for large-scale applications, such as e.g. OLAP.

Inthefollowing, in order to assessthe applicability of the different approaches, wewill consider
two exampl e scenarios employing universal quantification.

8.3.2 Example Scenario 1. The University Database

We first consider the university database example given in [GC95]. As already mentioned, this
database contains two relations, COURSE(course-no, title) and TRANSCRIPT(student-id, course-
no,...).

8.3.2.1 TheHash-division Algorithm

In [GC95] the TRANSCRIPT relation is called the dividend, the COURSE table the divisor and the
division result is called quotient. The hash-division algorithm uses two hash tables, one for the
divisor and one for the quotient. For each tuple in the quotient table a bitmap is kept with one
bit for each divisor tuple. First, al divisor tuples are inserted into the divisor table. Next, the
algorithm consumes the dividend relation. If a matching tuple is found in the divisor table, the
dividend tuple is either newly inserted as a candidate into the quotient table, or, if it is aready
present, the associated bitmap is modified by turning the bit corresponding to the matching divi-
sor tuple to 1. When all tuples of the dividend relation are consumed, the quotient consists of
those tuples in the quotient table for which the corresponding bitmap contains no zeros.

8.3.2.2 The Anti-semijoin Approach

As described in [CK+97], in an object-oriented model the N:M relationship enrolled between
students and coursesistypically modeled by a set-valued attribute enrolledCour sesfor each stu-
dent. Thusthe all-quantification can be resolved by an anti-semijoin on the 2 tables TRANSCRIPT
and COURSE using the condition course—no O enrolledCourses . The anti-semijoin adds to
the output stream only those tuples, i.e. students, for which no join partner has been found. This
Is equivalent to the fact that all courses are included into the enrolledCourses attribute of the
given student item, hence the student has attended all courses.

However, in arelational schema this approach cannot be applied. Obvioudly, the anti-semijoin
0N TRANSCRIPT and COURSE, using the condition course—no # course—no, yieldsasaresult
an empty set. Thus, the anti-semijoin strategy cannot be applied for the evaluation of universal
guantification in e.g. data warehouses that adopt arelational star or snowflake schema.

8.3.2.3 The StreamJoin Approach

Fig. 8.11 presents the QEP for the evaluation of the all-quantification via the SreamJoin oper-
ator. By joining the 2 tables TRANSCRIPT and COURSE using e.g. an index on course-no for the
TRANSCRIPT table, the intermediate result IR consists of separate streams for each course, con-
taining the students that have taken that course. These streams are called in the example from

145

FR
(JiLL)

A

@TREAMJOIN (0, course-id, student-id.new = student-id.old))
IR
‘ (JAck, DATABASES)
—————Spatabases A (JiLL, DATABASES)
<———Scompilers —7 (JILL, COMPILERS)

<———SGraphics (J0E, COMPILERS)
(JILL, GRAPHICS)
A (JOE, GRAPHICS)

(JOIN (course-no = course-noD
(JACK, DATABASES) / \
(JiLL, COMPILERS) © |
(JLL, GRAPHICS) COURSE ATABASES
(JILL, DATABASES) (ComPILERS)
(JoE, GRAPHICS) (GRAPHICS)
(Joe, COMPILERS)

Fig8.11: Evaluation of universal quantification with the StreamJoin approach

Fig. 8.11 Spaanasess Scompilers AN Sgrapnics: 1N Order to obtain the students that have participated in
all courses, ajoin of these streams on the student-id attribute is necessary. This operation is per-
formed by the SreamJoin operator, yielding for the example from Fig. 8.11 one tuple for the
final result FR. Please note that the parameter corresponding to the Group-1D is set to O (or any
arbitrary constant value), asthereis only one divisor set to be tested.

As compared to the hash-division algorithm, this approach needs less buffer space, because it
has as an upper bound the size of the first stream (in this example the 2 tuples of the stream Sy,
wabases)- AS shown in Section 8.2.3, the intermediate result (i.e. hash table) sizes decrease with
each iteration, asthe tuples which don’t match the join condition are eliminated. In contrast, the
hash division algorithm has to keep the whole divisor in memory, i.e. the COURSE table (3
tuples), together with all quotient candidates and the corresponding bitmaps (3 tuples + bit-
maps). Thisresults for this small exampleto altogether 6 tuples + 3 bitmaps that have to be kept
permanently in memory for the hash division agorithm, compared to maximal 2 tuplesthat are
kept simultaneoudly in memory for the SreamJoin approach.

8.3.3 Example Scenario 2: Data Warehouse

Consider a data warehouse with a central FACTS table, describing the sales in a given time
period, and several dimension tables, e.g. NATION being one of them:

FACTS(partkey, suppkey, nationkey,...)
NATION(regionkey, nationkey, nationname,...) ...

Suppose that for marketing purposes, a user isinterested in the following query:
Find the suppliers who supply a part that is being sold in all nations of a region.

In the following, we analyze how this query can be solved by the various approaches.

146

8.3.3.1 TheHash-division Algorithm

In this case, the divisor table is NATION, or, more precisely, it is constituted of several parts of
this table, each part corresponding to aregion. It results already from this aspect that the hash-
division algorithm cannot be applied in a straightforward way, as it has to be extended to keep
separate bitmaps for every divisor, i.e. every region. In addition, each <partkey, suppkey> com-
bination has to be considered as a possible quotient candidate. Thus, the quotient table is con-
stituted of all such combinations, each combination having in addition severa bitmaps corre-
sponding to the different regions. It results already from these memory requirements that the
algorithm is not competitive for this case.

8.3.3.2 The Anti-semijoin Approach

Similar to Section 8.3.3.2, the approach is not applicable for this relational schema, since the
anti-semijoin between the 2 tables on the nationkey attributes yields an empty set.

8.3.3.3 The StreamJoin Approach

Since nationkey is one of the dimensions of the central FACTS table, suppose for smplicity pur-
poses that there exists an index on this attribute. We further assume that the NATION table is
sorted on the regionkey attribute. Please note that if these conditions are not fulfilled by the
physical databases design, they can be accomplished by corresponding operators. By joining the
NATION and FACTS table, each region defines a group, containing the parts that have been sold
in that region. In the example from Fig. 8.12 the groups are defined by the attributes AFRICA and
AMERICA. Each group contains several streams, corresponding to the different countries of that
region. For instance, in Fig. 8.12 the group AFRICA is constituted of the streams ALGERIA and
KENYA. This intermediate result constitutes the input for the SreamJoin operator. Thus the
Group-ID parameter of the SreamJoin operator as defined in Section 8.2.3 corresponds to the
regionkey attribute, while the Sream-ID is set to nationkey. If we join the streams on the supp-
key attribute, we obtain the suppliers whose different parts are sold in al countries of aregion.
However, the query contains as an additional constraint that it must be the same part that is sold

A

(STREAMJOIN (regionkey, nationkey, suppkey.new = suppkey.old; partkey.new = partkey.o@

(AFRICA, ALGERIA, ...)
(AFRICA, ALGERIA, ...)
(AFRICA, KENYA, ...)
(AMERICA, ARGENTINA, ...)
(AMERICA, BRAZIL , ...)
(AMERICA, BRAZIL , ...)
(AMERICA, CANADA , ...)

A

(J0IN (nationkey = nationkey))

/'
Cmoy D

Fig8.12: Simplified QEP for theillustration of the SreamJoin approach

147

in al countries. Thus, the join is defined on two attributes, namely suppkey and partkey. For
both attributes, the join condition is equality, expressed by suppkey.old = suppkey.new, respec-
tively partkey.old = partkey.new.

This example shows that the proposed approach solves even complex queriesinvolving univer-
sal quantification, yielding a uniform database processing with low memory consumption.
Intermediate result materializations are not necessary, either. This results in reduced 1/O costs
as well. Finally, savings in communication costs result from the fact that only the final result
tuples need to be transmitted back to the application.

8.3.4 Performance Evaluation

For the performance evaluation, we have used the same 100 MB TPC-D database asin Section
8.2.11. For this database, we have evaluated different possibilities of evaluating the query pre-
sented in Section 8.3.3, namely “Find the suppliers who supply a part that is being sold in all
nations of a region” .

We first compared the memory requirements of the SreamJoin and hash division approaches,
on condition that the latter is extended to handle also complex divisors, by e.g. keeping several
bitmaps for each quotient candidate. In this database the number of distinct <partkey, suppkey>
combinations is 79.947. As mentioned, each such combination has to keep a separate bitmap
corresponding to each region. In the TPC-D database, the number of regionsis 5, each region
being constituted of 5 nations. Thus, the memory requirement for the quotient table of the hash
division algorithm is as follows:

79.947 (tuples) x 16 hits (partkey, suppkey attributes) x
5 (bitmaps corresponding to each region) x 5 bits (nations per region) = 3,2 MB.

Thistable is permanently needed by the algorithm, thus, if it doesn’t fit into memory, both divi-
sor and quotient tables have to be partitioned, resulting into considerable disk 1/0 costs.Please
remind that the size of the hash tables used by the SreamJoin approach decreases in each step.
During the measurements, the memory consumption of this algorithm averaged to ca. 280 KB.
The peek of the memory consumption has been 700 KB. However, this has been measured only
for asmall time period, corresponding to a single stream.

The hash division algorithm has to consume all of its input before it produces the first output
tuple. An additional advantage of the SreamJoin algorithm is that it forwards the result tuples
region by region, thus making this approach also more attractive for pipelining.

As presented in Section 8.3.3, the anti-semijoin approach is not suitable for this scenario. The
other possibilities in [CK+97] for evaluating the all-quantificator are based on counting or set
difference. Hence, we compared the SreamJoin eval uation with these two strategies as well.

In Fig. 8.13 different variants of the SreamJoin approach are shown, all using a DOP of 4.
Please note that the schema of the TPC-D database is more complicated than the classic star
schema. Since the LINEITEM table doesn’t contain the nationkey, this attribute has to be derived
by joining the region, nation, customer and (new-)order tables, the final join with the central
LINEITEM table being done on the orderkey attribute.

148

HERGEL4] +2 H 43

] iz

reoy

rec
‘HERGEH] H 42 BLL sunbayer60 sunbayerS1 surbayerél mﬂwszw

1 L‘HERGEH] 42 ALL

send
nobuf TL36001 |
M

Prscan
Tineite

3
——— 11

1=2 LL12754] TCY6] HO41D VI4D seq

e |
II
1=2 L[12754] T'E"}g]lrht41] VL4l seq]bu

recy
o7 ALl

recy
7 AL

sehd
nobud TL36007

sel
no_update

recy
|nERGEm +1 42 43 ALL sunbayerSl sunbayerSl sunbauersl sur\bwer\bim

—

recy
HERGEL4] 42 H 43 sunbaverfil sunbayerS1 sunbayerfl sunba\tu\ﬁZW 1

sort
4142 48 nofebch nostors MC100, 1001

Fig8.13: Query execution plansusing the SreamJoin approach

149

The variants shown in Fig. 8.13 are identical in the way they employ the SreamJoin operator
(marked by dark arrows), but differ in the way they perform the join with the LINEITEM table.
As mentioned before, this has to be done in away that guarantees the correct ordering for the
SreamJoin operator. This grouping hasto be done on Group-ID that in this exampleisidentical
with the regionkey attribute, and Sream+1D, which is set to nationkey (as explained Section
8.3.3.3). The grouping requirement can of course always be accomplished by sort operators.
However, as shown by these examples, thisis not always necessary, since the required ordering
can also be accomplished by using an adequate algorithm for the operators delivering the
SreamJoin input. Thus Variant @) uses a hash join and full table scan on LINEITEM. Variant b)
employs an nested loops index join using a previously built index of the LINEITEM table on the
orderkey attribute. Additionally, in variant c) thisindex is built on the fly. Thus, sorting can be
entirely avoided if such possibilities are taken into account when optimizing queriesthat contain
a SreamJoin operator.

The PQEPs shown in Fig. 8.13 also demonstrate the various parallelization possibilities of a
guery execution plan containing the SreamJoin operator. Please note that the most convenient
variant for the given database configuration can be generated by aflexible, cost-based and rule-
driven parallelizer, such as TOPAZ, that accounts also for the existing physical properties of the
database, such as indexes, partitioning strategies etc.

In Fig. 8.14 we present the results of our performance evaluation for the approach based on
counting aswell asfor the SreamJoin variants. The approach based on set difference took more
than 10 hoursfor only one region, henceit is obviously not competitive. As already mentioned,
the queries have been performed sequentially, as well asin parallel, using different degrees of
parallelism. When employing parallelism, the part of the query that isin charge of deriving the
orderkey attribute for the join with the LINEITEM table has been kept constant, while modifying
the DOP of the relevant subplan, e.g. for the SreamJoin variants the subplan containing the
SreamJoin operator. In the plans from Fig. 8.13, the subplans whose DOP has been changed is
marked by a bounding box. In order to asses the speedups correctly, the constant costs of the
base subplans have to be considered aswell. Thus, they have been listed separately in Fig. 8.14.

800
700 = Count
e O StreamdJoin + IndexBuild + IndexJoin
600 1 B StreamdJoin + IndexJoin
500 | O StreamdJoin + HashJoin
=
5] -
£ 400
|_ J—
300 —
200 | | | =
1 i]T s
0 ‘ 1 1 ‘
Seq Par1 Par2 Par3 Par4 Base
Fig 8.14: Performance evaluation

150

The performance eval uation shows that the SreamJoin approach outperforms the variant based
on counting by factors, evenif theindex of the LINEITEM tableisbuilt onthefly. The best results
have been achieved for the hash join variant, as this approach allows a uniform evaluation with
minimal 1/0 costs after the hash table has been built. However, this variant can only be used if
the database cacheis large enough to hold the tables of both the hash join as well as SreamJoin
operators. As can be seen, the only situation where this requirement couldn’t be accomplished
was the sequential case, where the whole QEP is evaluated on the same processing site.

As shown in Fig. 8.14, after substracting the constant base costs, quasi-linear speedups have
been achieved. This demonstrates that our approach for achieving efficient intra-query parallel-
ism is effective al'so in case of complex query execution plans as those presented in Fig. 8.13,
holding user-defined extensions as well.

8.4 Sequences

Recently, patterns and sequences, especially time sequences appear in various application
domains. Typical examples are scientific experiments such as temperature reading generated by
sensors, business applications such as stock priceindexes or bank account histories and medical
data such as cardiology data. Sequence processing is a challenging task for data mining pur-
poses aswell [2a98]. The corresponding (temporal) databases tend to be voluminous, thusforc-
ing specific algorithms to reduce processing overhead, such as communication costs etc. How-
ever, related work treats sequence analysis mostly on top of a database. In contrast, the Sream-
Join operator can significantly contribute towards performing sequence processing in an
integrated fashion. Thiswill be demonstrated in the following using as an example an applica-
tion operating on financial data.

One interesting scenario in finance is to identify pairs of stocks whose prices track one another
[MC98]. Suppose a database for stock analysis containing the following table:

STOCKINFO(week, day, stockkey, price).

Without loss of generality, we assume that this table is sorted on the week and day attributes.
Hence, the query “ Which stocks have had continuously rising prices during an entire week?”
can be simply evaluated by a scan of the STOCKINFO table followed by the SreamJoin operator.
The corresponding signature is expressed as follows:

SreamJoin (week, day, stockkey.new = stockkey.old; price.new > price.old).

Hence, the Group-ID is set to week, the Sream-ID set to day and the join is performed on the
stockkey and price attributes. In thisway only those tuples of anew stream, i.e. anew day, qual-
ify, that satisfy the condition that for the same stockkey (stockkey.new = stockkey.old) the price
israising (price.new > price.old). Theresult of thissimple execution plan are tuples of the form
(stockkey, week), representing the stocks that have had continuously rising prices during an
entire week.

Assume that the user is further interested in stocks that are chasing one another. In asimplified

151

(stock_id1, stock _id2)
(1BM, COMPAQ, ...)

A

(STREAMJOIN (stockkeyl, weekl, stockkey2.new = stockkey2.o|d)

(stockkeyl, weekl, stockkey?2)
(1BM, 4, COMPAQ, ...)

(1BM, 4, MICROSOFT , ...)

(1BM, 13, COMPAQ, ...)

A

(JoIN (week2 = weekl + 1))
(stockkeyl, weekl) _ ~~— (stockkey2, week?2)

(1Bm, 4) (1Bm, 4)

(1Bm, 13) (1M, 13)
(compPAQ, 1) (compAQ, 1)
(compPAQ, 5) (compAQ, 5)
(comPAQ, 14) (compAQ, 14)
(MICROSOFT, 5) (MICROSOFT, 5)
(MICROSOFT, 17) (MICROSOFT, 17)

Fig8.15: QEP for the usage of the StreamJoin operator in financial time series

model, this can be defined by the fact that every time the price of thefirst stock isrising during
an entire week, the price of the second stock is also rising during the subsequent week as well.
Thus, the query can be answered by a self join followed by the SreamJoin operator as shown
by the QEP depicted in Fig. 8.15. The self join is on condition that the attribute value week2 is
subsequent to weekl, given by the expression week2 = weekl + 1. The intermediate result
(stockkeyl, weekl, stockkey?2) expresses pairs of stocks that chase one another in 2 subsequent
weeks. However, the condition for chasing stock pricesisthat every timethefirst stock isrising,
the second is also rising in the subsequent week. This condition is evaluated by the SreamJoin
operator. Theinput isdelivered by theintermediate result described above, by setting the param-
eters Group-ID to stockkeyl, Sream-ID to weekl and the join predicate is defined on
stockkey2.

In Fig. 8.15, we have depicted the group defined by the stock IBM. This group is constituted of
two streams, corresponding to the two weeks (4 and 13) with rising pricesfor thisstock. By join-
ing the streams on stockkey2, we obtain the stocks that chase IBM in all subsequent weeks. In
this example, the price of Compaq is rising every time when the price of IBM isrising, while
Microsoft is chasing IBM only in the 4th week, thusit is eliminated by SreamJoin for the final
result.

This example shows once again that the SreamJoin operator interfaces in a natural way the
other query processing capabilities of the database engine, thus being able to make use also of
all existing facilities and optimizations, such asindexes, sorting etc., including intra-query par-
alelism.

152

8.5 Pattern Discovery in Genomic Databases

Genomic databases assist molecular biologists in understanding the biochemica function,
chemical structure, and evolutionary history of organisms. Popular systems for searching
genomic databases match queries to answers by comparing a query to each of the sequencesin
the database. Efficiency in such exhaustive systems is crucial, Since some servers process over
40,000 queries per day [BLO93], and severa queries require comparison to over one gigabyte
of genomic sequence data. A genomic database contains sequence records that are continuous
strings drawn from a specific aphabet, varying from afew charactersto several hundred thou-
sand charactersin length. During each query task, anew string, further called pattern, hasto be
matched against the old strings. Thereby, the strategy must be able to find statistically signifi-
cant similarity in the presence of not only varying sequence lengths, but also repetitive subse-
guences. Contrary to most related work [WZ96, TFT99], our approach to discovering patterns
in a database of genetic sequences is realized within the database engine.

We consider the patterns as being regular expressions of the form * X;*X,*..., where X4, X, are
segments of a sequence made up of consecutive letters, and * represents a variable length of
intermediate letters. We treat the maximal value of this variable length as a parameter, called
int_length. The user is interested in the locations (positions) where a pattern is contained in a
given sequence. Suppose that the information corresponding to sequences is stored in a table
SEQUENCE(poS, letter) and the pattern is stored in atable PATTERN(Ietter). Please note that thisis
only asimplified representation. Thusif e.g. there are several patterns to be analyzed, the PAT-
TERN table has to be extended by a patternkey attribute. Similarly, in the general case, the
SEQUENCE table contains a sequencekey attribute as well. Assume that in this example the pat-
tern has the form A*B*C, with int_length being 1, i.e. one intermediate letter is allowed for
matching subsequences.

This query can be evaluated in an integrated fashion by using the SreamJoin operator as shown
inFig. 8.16. In this case each element of the pattern defines a stream, containing all positions of
the sequence where this element occurs. As already mentioned, we are interested in the portions

(pos)
4)
IR (STREAMJOIN (1(patternkey), letter, pos.new <= pos.old + 2))
(A1) A
(A 5) b
(8, 3) (JoIN (letter = letter)) (etien
(8, 8) SEQUENCE(pos, letter
(c, 4) —V W 15
PATTERN(letter) (2, X)
(» (3,B)
(®) (4,0
© (5.4
(6, %)
(7,D)
(8,B)
Fig8.16: QEP for the usage of the SreamJoin operator in pattern recognition

153

of the sequence that contain all elements of the pattern in the given order with the imposed posi-
tion requirements. Hence, the join condition for the StreamJoin operator is on the pos attribute,
expressed by the following parameter:

pos.new <= pos.old + int_length + 1.
In the example from Fig. 8.16, by substituting int_length with 1, we obtain:
pos.new <= pos.old + 2.

The Group-1D parameter of the SreamJoin operator is set to 1 (or any constant value), since a
group is defined by a pattern sequence and in this simple example there is only one pattern
involved. In the generalized case the Group-1D is set to the patter nkey attribute. The Sream-I1D
is set to the letter attribute. In the example, we have three streams, corresponding to the letters
A, B and C of the pattern. As mentioned, only the sequences satisfying the imposed position
requirements qualify. For instance, in the example from Fig. 8.16, the tuples (A, 5) and (B, 8) of
the intermediate result IR don’t survive, since the distance between the letters is greater than 1.
The result contains positions in the sequence that mark the end of alocation where the pattern
isintegrally included. In this example, the pattern isincluded in the SEQUENCE table from posi-
tion 1 to 4, hence the result contains the position 4.

The presented exampl esillustrate that the SreamJoin operator can be employed to solve queries
concerning sequences within the database as well. The resulting plans guarantee a natural and
uniform data flow among the operators involved. Moreover, no data transfer between the data-
base and the application is necessary. Taking into account the volume of the involved applica-
tions, this aspect alone already resultsin substantial performance improvements.

Moreover, the capabilities of the database engineto provide efficient intra-query parallelism can
be fully applied. The resulting parallel plan is similar to those presented in Section 8.3, hence
we have not depicted it here separately.

8.6 Applicability of StreamJoin in Profiling Services

Nowadays enormous quantities of data are being accumulated by both the commercial and the
scientific communities and thus use and spread of digital libraries enhances drastically. Addi-
tionally, an increasing number of users accessing these databases through web interfaces poses
even harder performance requirements on the digital libraries; in these environments system
response times of hours or even days for sequential evaluation have been reported despite of
well-optimized execution plans.

For some years now, we experienced all this, while employing our OMNIS Document Manage-
ment System (short ODS) in various application scenarios, especially library applications. ODS
has been developed at our university to administer all kinds of scientific libraries with docu-
mentsin paper form or electronic form ranging from books and journalsto technical reports and
articlesfrom newsgroups. ODS is developed as alayered system divided into three major com-
ponents. The service layer comprises system services for archiving, retrieval, lending, as well

154

as profiling. The full-text and document management layer uses the database layer to manage
the documents given in several representations and stored in multiple formats. Broad accessi-
bility is guaranteed by support of different platforms and operating systems aswell asa WWW
gateway. More information on ODS can be found in [CV+95], [BO+95].

8.6.1 TheBoolean Retrieval M ode

ODS provides a boolean retrieval model answering queries on the existence of word patterns,
words, phrases, and boolean expressions of them in documents. Syntax and semantics of the
model can beinformally described as follows:

<word> Exact match of <word>

: Distance operator, used to combine terms to phrases

& Boolean AND of phrases

| Boolean OR of phrases.

% WId card character usable in a <word>, allowing to specify simple pattern
matching

A termis defined as a word or a word pattern. Terms connected by distance operators form
phrases. Thissimple model defines the basis of the retrieval service, asfor example, the phrase
“deduct% . database” asks for all documents in which there is an occurrence of aword starting
with the string ‘deduct’ together with aword ‘ database’ and having at most one other arbitrary
word in between as indicated by the distance operator.

8.6.2 TheProfiling Service

Basically, a profile represents the user’s reading interests and can be expressed as a single full-
text retrieval query in ODS. The profiling service is the (batch) execution of alarge set of pro-
files, which can be launched in fixed time intervals, for example once per night. A sample pro-
file, also used in the following, may look like this:

‘deduct%. database | multimedia database’)

Please observe that there are some noteworthy differences between complex retrieval queries
and profiles:

* Profiles aren’t interactive but batched, which relieves execution timing requirements and
thereby offers more optimization possibilities; note that for interactive queries there is no
other possibility than optimizing them one at atime.

® Profiling provides opportunities for multi-query optimization, i.e. to process a set of que-
riesin an integrated, tightly coupled and optimized fashion.

* Profiles tend to be stable over some period of time so that they are launched in the same
form many times againgt the same database (holding more and more documents). Again,
this advocates for rigorous and perhaps even exhaustive optimization, since optimization
time is separate from runtime; thus optimization efforts pay off by repeated execution.

155

8.6.3 Mappingtothe Database L ayer

In the following we provide someinsight into the mapping of the document retrieval queries as
well as the profiles and profile processing to the database |ayer.

8.6.3.1 Mapping of Full-Text Retrieval

As already mentioned before, our document retrieval model is based on full-text indexing that,
applied to ODS, refersto plain relational tables, which are organized in such away that docu-
ment archiving and especially document retrieval can be done quite efficiently. There are two
important tables, a table worDs (word, word-1D), which maps each word which appears in at
least one document to a word number word-1D, and a table DOCUMENTS (word-1D, DOc-1D, PQS),
which maps word numbers to document numbers boc-ID and position numbers Pos depending
on where the word appears in the documents; primary keys are underlined. To give an idea on
how an ODS query looks at the database level, we have shown in Fig. 8.17 the query execution
plan (QEP) generated by the optimizer for a sample query. This QEP be easily understood by
simply applying the information previously given on our full-text retrieval model, its database
representation, as well asthe common knowledge on SQL and its query processing. Please note
that a detailed analysis of this query type can be found in [BJ+96].

8.6.3.2 Mapping of Profiles

Looking at ODS users' behavior, we expect on the average 15 to 20 search phrases per profile,
and for example 2800 profiles if we want to serve all students and staff members of our com-
puter science department. In addition, we register an increasing amount of external users access-

SELECT

PROJ |DOC-ID
RESTR ON POS

MERGE-JOIN ON DOC-ID

[INL-JOIN ON word-1D j

PROJ | DOC-ID
RESTR ON POS

(_MERGE-JOIN ON DOC-ID)

[

PROJ [DOC-ID,POS]

SORT [DOC-ID, POS]

[INL-JOIN ON word-ID]

SORT [DOC-ID, POS]

[INL-J0IN ON word-1D j

[INL-JOIN ON word-ID j

INDEX-SELECT ON
DOCUMENTS
[word-1D]

INDEX-SELECT ON
DOCUMENTS
[word-1D]

INDEX-SELECT ON
DOCUMENTS
[word-1D]

INDEX-SELECT ON
DOCUMENTS
[word-1D]

PROJ [word-ID]

PROJ [word-1D] PROJ [Word-ID] PROJ [Word-1D]

INDEX-SELECT ON
WORDS [word
(‘DATABASE’

INDEX-SELECT ON
WORDS [word]
(‘MULTIMEDIA")

INDEX-SELECT ON
WORDS [wor
(‘DATABASE'

INDEX-SELECT ON
WORDS [word]

(‘DEDUCT%)

Fig8.17: Thestructureof an ODSfull-text retrieval QEP
(‘deduct% . database | multimedia database’)

156

ing the system through the WWW interface, who might also be interested in the new service.
Considering the query from Fig. 8.17, which can be seen as a very simple profile containing
only 4 words, we can get an idea of the complexity of plans covering regular profiles. More
accurately, the query complexity (interms of number of joins, unions and intersections) islinear
in the number of terms in the query predicate. In the average, we have to cope with about 200
unary and 80 binary operations per profile. At the same time, there is a great redundancy both
within query plans as well as between them (see the shaded QEP areas for term ‘database’ in
Fig. 8.17 and the discussion below).

In order to cope with this query complexity and to maximize overall throughput, we can con-
ceive two solutions, both quite attractive to us:

* Multiple Query Optimization (MQO)
Some related work can be found in [Se88] and [RC88], presenting algorithms for identifi-
cation of structurally identical subqueries and elimination of common sub-expressions.
Unfortunately, the techniques presented are not applicable for large queries.

* Parallel Evaluation
We can achieve some speedup by using parallel evaluation strategies for single ODS que-
ries according to the concepts presented in the previous chapters. Nevertheless, if we con-
tinue processing these queries one a atime, performance needswill not be met: in addition
to the processing costs, there is considerable overhead due to (often redundant) plan gen-
eration and startup costs.

Hence, our overall strategy has to be a combination of both parallel query evaluation and mul-
tiple query optimization. In doing so, we extend the DBM S with a profiling component, which
accepts as input not only a single profile in the form of a full-text query, but a set of such pro-
files, i.e., aset of queries. The aim is to combine and to process all evaluation phases for all
profiles on all processing nodesin parallel.

Maximizing throughput using batch scheduling in parallel database systems is also dealt with
in [MSD93], but only single join queries were discussed. In [TL96] algorithms have been pro-
posed that merge single query plans to produce a pipelined multi-query plan, i.e. separate plan
generation is still the case.

In Section 8.6.3.3 we show how separate complex but similar queries can be represented by one
common QER, thus reducing both the overall number of operations (by means of elimination of
common query fragments) and QEP generation time. In Section 8.6.3.4 we analyze profile eval-
uation and its inherent parall€elization potential.

8.6.3.3 Multiple Query Optimization and Normalized Representation of Profiles

MQO for profiles resultsinto a so-called normalized profile set that is reflected by our internal
representation of profiles. This normalized representation consists of three tablesas depicted in
Fig. 8.18. Each primitive term, i.e. each word or word pattern, is assigned a term identifier
(Term-ID) and stored in the TERMS table; for efficient processing there is an index on the Term
column additionally providing a lexicographic order. Terms connected by distance operators
and boolean AND operators form subprofiles. In our example, there are 3 subprofiles. As the

157

Table TERMS Table SUBPROFILES Table PROFILES
Term Term-o subpro-ID | Term-ID | Distance | profilepos profile-iD | subpPro-iD
architect% | 6 1 1 1 1 1 1
data% 4 1 2 -2 2 1 2
database | 2 2 3 0 1 2 2
deduct% 1 2 2 -2 2 2 3
multimedia | 3 3 4 0 1
system 5 3 5 0 2

3 6 -2 3
Fig 8.18: Normalized profilerepresentation for two sample profiles
primary keysare underlined, common expressions ar e shaded):
Profile 1: ‘deduct% . database | multimedia database’
Profile 2: ‘multimedia database | data% system architect%*

number of termsin a subprofile is variable, we have chosen to describe a subprofile in the sug-
PROFILES table in the following way: for each term of a subprofile a corresponding tuple is
inserted; thelast column, Profileros, holds the position of the term within its subprofile; the Dis-
tance column expresses the number of words between the actual term and the next term in the
subprofile as is defined by the distance operator used in that subprofile. The special value -2
illustrates that there are no further termsin the subprofile. Finally, the PROFILES table represents
the profilesin digunctive normal form over subprofiles.

First analyses of the WWW queriesto ODS show that there is a significant number of common
sub-expressions, asfor example common terms (in Fig. 8.18 the shaded terms 2 and 3) and com-
mon subprofiles (in Fig. 8.18 the shaded subprofile 2). The elimination of these can be done
very efficiently during the normalization of profiles. Thus, superfluous word and word pattern
search efforts can be avoided.

8.6.3.4 Parallel Processing of Normalized Profiles

The profiling service can basically be regarded as the execution of alarge number of full-text
retrieval queriesthat are combined to a single QEP as explained above. The parallel processing
of profiles can be decomposed into the following four steps.

8.6.3.5 Term Mapping

Term mapping, step 1, basically joins the TERMS and WORDS tabl es, thus getting the word num-
bers that correspond to aterm. Both relations are clustered in sorted order on the join attribute,
so amerge algorithm is best suited for thisjoin.

As can be seen from Fig. 8.19, the resulting QEP can be parallelized by using the concepts pro-
vided by our TOPAZ parall€elizer, aswell asthe Model-M optimizer. Obviously, the declustering
of the base relations that supports data parallelism best depends on the concrete architecture

158

R2 (DOC-1D,POS, TEr M-1D)

[PROJ [DOC-ID,POS, TErM-ID]]

(IN-JoINONword-D |

WORD MAPPING

INDEX-SEL ON R1 (word-1D,Term-ID)
DOCUMENTS \

[word-iD] N
—————————————— \— -
R1 (word-Ib,Term-ID)

[PROJ [word-1D,Term-1D]]

(mERGE-JOIN(word LIKE Term) | TERM MAPPING
WORDS(Wor d,word-1D) TERMS(Term,Term-ID)

Fig8.19: Term mapping and word mapping on a single processing node

employed and can be taken in consideration accordingly during optimization by means of phys-
ical properties. In addition to using data parallelism for processing, the resulting tuples of this
step can be immediately used as input for the next step, thereby allowing for pipeline parallel-
ism.

8.6.3.6 Word Mapping

Word mapping, i.e. step 2, determines documents and document positions corresponding to a
term. For this reason, the intermediate result of step 1 (R1) isjoined with the DOCUMENTS table
resulting in the intermediate result R2. Fig. 8.19 shows the first two phases. An index nested-
loops-join is used for this step. The intermediate results R2 are used to build hash-tables on the
Term-ID attribute. Thisisakind of preprocessing in order to speed up the subsequent step 3.

Again appropriate techniques presented in the previous chapters apply and can be used to
achieve a scalable parallel execution of this step, e.g. by using data parallelism.

8.6.3.7 Subprofile Mapping

Step 3 determines all the documents satisfying any given subprofile. The word distances
between terms have to be obeyed and only those documents qualify that contain all terms of a
subprofile. In order to do this, the partial result of step 2 (R2) must be joined with the suBPRO-
FILEStable on Term-ID. Remember that we have a previoudly built hash-table on Term-1D which
can be used to perform efficient hash-joins. Since the number of termsin asubprofileisvariable,
thisjoin produces a variable number of result streams, each stream holding document positions
that contain a certain term. To obtain the documents that contain all terms, these streams have
to be joined on the Doc-ID attribute. This operation cannot be processed by traditional database
operators (as detailed below). Hence, the only possibility isto perform this operation outside the
DBMS and within the (profiling) application. But this |eads to immense performance losses, as
all streams have to be transmitted to the application, merged, and, as far as further operations
are needed for post processing, these haveto be transmitted back. The profiling serviceisagood
example where pushing semantics down into the DBM Sisvital, asthiswould reduce high com-

159

R3(Doc-I1D, SUbPI’O ID)

PROJ [Doc-iD, subPro ID]

RESTR ON POS

HASH -JOIN ON DOC-1D

PROJ [DOC-ID,subpPro-id, ‘
2.P0s,S2.Distance]

(_ HASH-JOIN'ON DOC-ID)
[HASH-JOIN ON Term-D | (HASH-JOIN ON TErmH-D) (HASH-JOIN ON Term+-D)
A A A4 A
R2;(DoC-1D,POS, TEFM-ID) A R2;(DoC-1D,POS, TErM-1D) | R2;(DoOC-1D,POS, TEFM-ID)
!_ _ @40y e 41(3’6"2 3)

SUBPROFILES(SUbPro-1D, Ter m-D, Distance,Profil eros)

Fig 8.20: Subprofile mapping using the tuple-stream evaluation

munication costs between the application and the database. In the following, we exemplify how
this can be achieved for our application.
Approach 1: Tuple-Stream Evaluation

One possibility isto use aso-called “ Tuple-Stream Evaluation”. The suBPROFILEStableis sorted
on subpro-ID and profileros. This guarantees that the terms of the same subprofile arrive one
after another in the same order as specified in the subprofile. These tuples are probed in parallel
against the R2 hash table. In this way separate streams of document numbers get produced in
parallel. Next, these streams are joined two at atime and the result is restricted according to the
distance operator specified between two consecutiveterms. In Fig. 8.20., thisapproach is exem-
plified for subprofile 3 of our sample schema (that holdsterms4, 5 and 6, cf. tablesin Fig. 8.18).
The difficulty of this approach lies in the fact that the number of terms varies from subprofile
to subprofile, so that the number of operatorsisnot known at plan generation time and the height
of the QEP varies accordingly. Thusthis approach provides no suitable solution to our problem.
Approach 2: StreamJoin

The other possibility isto extend the database functionality by means of the SreamJoin operator
as introduced in the previous sections. SreamJoin combines exactly the “variable part” of the
QEPfor the Tuple-Stream Eval uation discussed above. Note that every tuple of the SUBPROFILES
table produces a stream docstr(subpro-1D, ProfilePos, Doc-1D, ...) when probed against the R2
relation (expressing all documents that contain that term). Thus, a subprofile defines a group
whose streams have to be joined to obtain the documentsthat contain all terms of this subprofile.
The parametersthat define agroup and the streamswithin agroup are in this case subPro-1D and
profileros. Thejoin predicate PRED in this caseiscomplex, expressing both equality on the boc-
ID attribute (Doc-1D.new = Doc-ID. old), as well as the conformity with the position require-
ments, expressed by the distance operator. Please note that the expression Posnew = Poshew +

160

R3j(DoC-1D,SubPro-I1D)

[PROJ [DOC-ID,SUbPro-ID]]

[STREAMJOIN [subpPro-1D, ProfilePos, PRED]

[HASH-JOIN ON Tern+ID

R3;(Doc-1D,subPro-ID)

[PROJ [DOC-ID,SUbPro-ID]]

[SI’REAMJOIN [subPro-1D, ProfilePos, PRED] j

(HASH-JOIN ON TermviD |

R2(DoC-ID,POS,Ter m-D) R2(Doc-ID,POS, Ter m-D)

3,4,0,1

3,5,0,2§ (11,11

3.6-2,3) (1,2,-2,2)
SUBPROFILES SUBPROFILES

PRED: Doc-ID.new = Doc-I1D.old; Pos.new = Pos.old + DISTANCE + 1
Fig8.21: Subprofile mapping using the StreamJoin approach
Distance + 1 is given only for illustration purposes. Obviously, in areal-life application more
complex position requirements can be envisioned and expressed within the SreamJoin predi-
cate.

Though the tuples of one subprofile are processed within one operator, the tuples of different
subprofiles can be processed by different SreamJoin operations, thus allowing data parallelism
for the sUBPROFILES table as shown in Fig. 8.21. Here, the first subplan instance processes sub-
profile 3, while the second one evaluates in parallel subprofile 1. Please note that data parallel-
ism is also applicable w.r.t. the other input of this step (R2).

The parallelization can be efficiently realized by means of TOPAZ in this case as well. There-
fore, the SreamJoin operator has to be incorporated into the cost model as discussed in Section
8.2.8. The fact that the input has to be partitioned on the subpro-iD attribute (i.e. the Group-ID
parameter cf. the definition given in Section 8.2.3), can be specified asarequired physical prop-
erty that has to be satisfied in the final, parallel plan.

8.6.3.8 Profile Mapping

The evaluation of profiles, i.e. step 4, isnow trivial. The result of the last step has to be joined
on the subpPro-1D columns with the PROFILES by probing the tuples of this table against the hash-
tables built one step before. Finally the duplicates resulting from documents matching more
than one subprofile of a given profile have to be eliminated in the result for each profile. This
step can also use data parallelism for the operators involved.

8.6.4 Performance Evaluation

For the performance evaluation we have used our 1.2 GB department library, running ona SUN
SPARC20 workstation with 4* 100 MHz SPARC processors. The data has been partitioned onto
4 disks. We have evaluated about 600 user profiles, each of them being constituted of 10 to 15
search terms. The results are summarized in Table 8.2.

First, we evaluated each profile sequentially. Next, we parallelized each query separately and
executed them one after the other on our workstation. As can be seenin line 2 of Table 8.2, the
speedup in this case is not considerable, as the structure of the QEPs for full-text retrieval as

161

Table 8.2 Performance evaluation for profile calculation

Execution Mode Time (min)
Sequential Batch Execution 56
Parallel Batch Execution 41
4-Step, Sequential 32
4-Step, Parallel DOP =1 29
DOP =2 22
DOP =3 18
DOP =4 15

presented in Fig. 8.17 contains severa correlations. As shown in Chapter 6, this prohibits an
efficient parallelization. Moreover, as already mentioned in Section 8.6.3.2, thereis a consider-
able overhead due to the redundant plan generation and startup costs.

In the following, we used our 4-step processing scheme, without employing any forms of par-
alelism. Asshown in the measurement results, the elimination of redundant work alone resulted
already into aconsiderable performanceimprovement. By employing parallelism for subprofile
mapping as discussed in Section 8.6.3.7, the performance could be further improved as shown
inlines 4 to 7 of Table 8.2. Here, the results refer to different degrees of parallelism, that has
been varied from 1 (thus employing only pipelining parallelism) to 4. We stress once again that
for this performance eval uation we have only used parallelism for subprofile mapping: Thusthe
results of Table 8.2 corresponding to different DOPs incorporate al so the (constant) costs of the
sequential (unparallelized) parts.

Theresults show that intra-query parallelism provided by the concepts presented in the previous
chapters of thisthesis results into increased efficiency also in the case of batch queries that rep-
resent user profiles. Please notethat all four steps can employ data parallelism in ascalable way.
This means that the profiling service is now bounded only by the limits the hardware poses on
parallelism. Moreover, the resources needed for evaluation have been drastically reduced by
multiple query optimization.

8.7 Conclusions

In this chapter we have discussed different applications involving stream processing. As pre-
sented, this class includes such important applications as data mining, time series, DNA analy-
sis, universal quantification and digital libraries. We have proposed a new operator, called
SreamJoin, to efficiently process streams on the database engine level. Contrary to related
work, the SreamJoin approach provides a resource-effective and efficient strategy to solve the
problem of stream analysis, avoiding expensive data transfer manipulations. Stream analysis
like most data analysis, is best done in away that permits interactive exploration. The Sream-
Join approach presented in this chapter isanovel strategy towards efficiently satisfying ‘ad hoc’

162

queries as well.

Moreover, we have shown that this new functionality can be efficiently integrated with the data-
base engine, both on the execution as well as on the parallelization level. We have shown that
extending the database functionality is certainly worthwhile, when, asin most applications pre-
sented in this chapter, the communication between the database and the application would
become a considerable part of the overall processing costs. By means of integration into the
DBMS, we achieve a robust and scalable environment for parallel execution of these queries.
Thisresultsin efficient execution, reliability, and portability of the corresponding applications.
The non-blocking feature of SreamJoin can be used for pipelining purposes as well.

As presented by relevant examples in this chapter, adaptability to diverse application domains
is provided by means of appropriate parameter settings. Furthermore, we have shown that the
SreamJoin operator can easily be integrated into our parallelization framework, implicitly
yielding increased efficiency to the diverse QEPs containing this operator. The linear and near-
linear speedups obtained prove the extensibility and effectiveness of the concepts presented in
the previous chapters for truly complex, real-life applications as well.

163

164

Chapter 9
Conclusions and Future Work

In this chapter first a brief summarization of the main contributionsis given. Thereby, we aso
discuss the applicability of the proposed techniques for different scenarios. Finally, the chapter
concludes with some remarks concerning future work.

9.1 Summary of Contributions

In this thesis we have addressed the problem of inter-query parallelism in parallel object-rela-
tional database systems. The presented contributions cover awide domain in the query process-
ing architecture, starting with parallel query execution, parallelization, optimization as well as
scheduling and load balancing. They conclude with the discussion on specific optimization and
parallelization techniques for a given application class. In the following, we group our conclu-
sions and discussion on efficiency and applicability around the main topics introduced in the
previous chapters.

9.1.1 DataRivers

First, we presented a modularization and parametrization approach for the implementation of
data rivers that serves as basis for most parallel query execution engines. Our approach to
parameterize a PQEP allows to adapt important performance indicating parameters to the exist-
Ing run-time situation.

We have presented the concept of block building in order to achieve coarse-grained parallelism
and thus to reduce the number and size of data rivers. Furthermore, measures for reducing the
number of data streams and execution units as well as for resolving deadlock situations have
been addressed as well.

Since our datariver implementation perfectly fitsinto state-of-the-art parallel database engines,
any functional extensionsto relational data processing, as e.g. recursion, (set-oriented) triggers,
user-defined abstract data types, user-defined functions and user-defined tables, as being dis-
cussed for example in the object-relational context can still benefit from our approach in case
of parallel processing. Even if the herein mentioned communication patterns do not suffice for

165

some particular extension, we are still confident that new communication patterns can be easily
reflected within our datariver approach, because of its modularization and extensibility issues.

9.1.2 The TOPAZ paralleizer

All insights previously gained from the analysis and implementation of the datariver paradigm
have been incorporated into our parallelizer, called TOPAZ. In addition, this component bears
further important characteristics that are imperative in order to satisfy the requirements posed
by upcoming applications.

Its ‘rule-driven’ property guarantees for the necessary extensibility. Both language extensions
and extensions to the database engine itself, as well as changes to the parallel system architec-
ture can be accomplished by means of respective rules. Its ‘multi-phase’ property realizes an
overall strategy that considersall forms of parallelism. It splitsthe parallelization task into sub-
sequent phases, with each phase concentrating on particular aspects of an efficient parallel exe-
cution. In addition, this property turned out to be a major concept to handle the inherent com-
plexity of parallelization. Its‘ cost-based’ property guaranteesthat all decisionsw.r.t. investigat-
ing the parallel search space are cost-based. Hence, promising search space regions are explored
to derive the best parallel plan.

A prerequisite to optimization performance is pruning. The strategy developed for TOPAZ,
called ParPrune, is based on a global plan pre-analysis and exploited throughout the parallel-
ization phases, within each focusing on valuable search space regions. Since the complex par-
alelization strategy of TOPAZ ismainly suitable for large and costly queries, ParPruneisalso
in charge of preventing unnecessary parallelization overhead. Thus, if the global costs of a plan
resulting from the pre-analysis are below a given threshold, the actual parallelization task does
not come to application at all.

The concept of blocks incorporated within the cost model enables (coarse-grain) parallelism to
low-cost as well as high-cost operators. Moreover, by the deadlock-preventing facility of
TOPAZ cyclic data dependencies can be detected and eliminated already on the parallelization
level. It further guarantees economical and efficient resource consumption. As aresult efficient
parallel plans are generated that show linear speedup even for complex queries as can be found
in data warehouse and object-relational environments.

9.1.3 Model-M Optimizer

The integration of optimization and parallelization has been an open problem in most related
research activities. In this respect, the one- and two-phase approaches lie at the two different
ends of a spectrum, incorporating either detailed or no knowledge of the parallel environment.
In our opinion, acombined approach, i.e. an optimizer taking into account some parallel aspects,
followed by a detailed parall€lization as realized within the TOPAZ approach, is the most suit-

166

able for forthcoming query scenarios. This is reflected within our new optimizer component,
called Model-M.

Here, the subsequent parallelization task is considered already at sequential plan generation
time by means of a so-called quasi-parallel cost model. In order to avoid excessive optimization
complexity this model accounts only for the most important aspects and deterrents of paralel
execution. These aspects include blocking boundaries, correlations as well as the shape of the
resulting plan. As aresult sequential plans with a high potential for intra-query parallelism are
produced.

We have demonstrated experimental results to support our claim that, in contrast to other strat-
egies, the incurred overhead is not significant. As our approach uses the same top-down search
engine for the optimizer and the parallelizer, Model-M can be viewed as a (first) phase of an
overall multi-phase parallelization strategy where each phase concentrates on different, gradu-
ally refined aspects of the parallel search space. Hence, this concept lends itself predominantly
to the area of complex query optimization and parall€lization.

9.1.4 The QEC component

One important reason for sub-optimality of query execution plans is that a lot of information
about the run-time system is not available at query optimization, respectively parallelization
time. In addition, there are a number of reasons why estimating the cost of execution for com-
plex queries becomes increasingly difficult. This observation applies especially for the area of
parallel object-relational database systems. Our approach to tackle this problem is to produce
parametric plans and to adapt the final values of these parameters to the run-time environment.
Thistask is accomplished by the QEC component.

Load balancing and resource allocation are realized within a two-phase scheduling scheme.
Thusthefirst phase concentrates on global aspects and assigns adapted (sub)plansto processing
sites, while the second phase is in charge of elaborating a detailed schedule plan for the given
processing site.

The loose coupling between the information subsystem that provides the necessary load infor-
mation and the actual scheduling task guarantees that the incurring overhead, in terms of mes-
sages etc., isalso minimal.

In contrast to most related work, this distributed approach supports both scalability and multi-
guery scenarios, as well as upcoming hybrid heterogeneous architectures.

9.1.5 The StreamJoin Oper ator

Finally, we have proposed the SreamJoin operator as an efficient method to support a specific
application class that deals with sets of items. This class includes various applications such as
data mining w.r.t. the generation of association rules, pattern matching, universal quantification,

167

timeseriesaswell asdigital librariesw.r.t. profile eval uation. We have shown how this approach
can be efficiently integrated with the database engine, thus being able to make profit of all forms
of query execution optimizations, including parallelization. In this way, we have performed a
first validation of some of the concepts presented above w.r.t. extensibility and the ability to effi-
ciently deal with the complexity of the parallel search space.

9.2 FutureWork

The primary focus of further activities constitute a comprehensive validation and consequent
improvement of the presented concepts w.r.t. other application domains as well, thereby espe-
cialy concentrating on object-relational extensions. In the following we only point out the main
topics of future work.

9.2.1 Query Execution

On the execution level, the data river paradigm with its modularization and parametrization
approach already proved to be suitable for the support of user-defined functions and predicates
as well as of user-defined table operators as described in [Ja99].

However, the parallel evaluation of specific constructs still deserves a further careful study.
Herein, given theinherent inaccuracies of cost estimationsin the presence of user-defined func-
tionality, especialy possibilities for run-time adjustment of operators to the current processing
environment (similar to dynamic query execution plans [GC95]) should be analyzed.

9.2.2 Query Optimization and Parallelization

Aswith the implementation and validation of TOPAZ and Model-M thefirst phase of elaborat-
ing suitable parallelization strategiesisfinalized, we will further concentrate on extending them
to other scenariosaswell. A possible aternativeisto use TOPAZ for hybrid optimizer solutions,
e.g. to map logical trees, obtained by a bottom-up search strategy, to physical ones, similar to
the NEATO optimizer [McB+96]. Here, the bottom-up search strategy is used to enumerate all
join orders and the top-down strategy is used to perform the mapping from logical to physical
operators in a parallel environment. Although only joins have been considered, optimization
time was dominated by the mapping phase, due to the high number of possible mappings from
logical operatorsto physical solutionsin a parallel DBMS. We believe that the mapping prob-
lem becomes even more complex when new operator types, ase.g. UDFs, have to be considered
aswell.

Another research direction congtitute performance improvement measures as well. Thus, a
tighter coupling between optimization and parallelization can be envisioned to further eliminate
parallelization overhead.

168

Furthermore, possible modificationsin the search engine of the Cascades Optimizer Framework
itself should be explored. For instance, the independency assumption that is the basis of most
sequential optimizers, including Cascades, isno longer valid in the parallel search space. In the
running first version of TOPAZ the treatment of this issue is realized solely by the ParPrune
strategy. However, making the search engine cognizant of this aspect is also an interesting path
to follow. Generally, a concept for the accurate modeling of dependencies within a query exe-
cution plan should be elaborated, since this aspect is equally important in the sequential search
space with respect to e.g. correlations and subqueries.

Furthermore, our performance evauation showed that for the Cascades version currently
employed the memory usage and optimization time can become prohibitive when optimizing
very large queries. Thus, itisvital to integrate further pruning techniques as used by the succes-
sor of Cascades, Columbia [Ju99, SM+98]. We are confident our approach can make profit of
other engineering improvements as well, as described in [Xu98].

Finally, we intend to extend the existing set of parall€elization, respectively optimization rules
for object-relational environments as well. Thereby, the interaction of rules bear a special inter-
est. Provided its beforementioned characteristics, we hope that our parallelization approach can
easily be extended while still retaining its high efficiency.

9.2.3 Resource Allocation, Scheduling and L oad Balancing

Another important issue is the further improvement of run-time adaptability. In our approach,
the query optimizer/parallelizer tries to anticipate the most common cases that might arise at
run-time and produce a parameterized plan that covers these possibilities. If asituation arises at
run-time that is not covered by the common cases anticipated, a hybrid approach involving
dynamic re-optimization, as presented e.g. in [KD98], can be envisioned.

As emerging new applications force databases to support complex decision support queries,
complex datatypes and user-defined methods, it will become more and more difficult for query
optimizersto statically produce good query execution plans. Run-time adjustment will become
imperative in such cases. We believe that the techniques we have presented, possibly in combi-
nation with some forms of re-optimization and dynamic query execution plans will form the
basis for the future development of query optimizers to meet this challenge.

169

170

Appendix A
Refer ences

A.l References

AY 97 C. C. Aggarwal, P. S. Yu: Mining Large Itemsets for Association Rules, TCDE Bull.,
21(1), March 1997

AY 98 C. C. Aggarwal, P. S. Yu: Online Generation of Association Rules, In: DE Conf.,
Orlando, Florida, 1998

AM+95 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. |. Verkamo: Fast Discovery of
Association Rules, Advances in Knowledge Discovery and Data Mining, Chapter 12,
AAAI/MIT Press, 1995

AS96 R. Agrawal, J. C. Shafer: Parallel Mining of Association Rules, In: TKDE 8(6): 962-969,
1996

BF97 C. Bdlinger, R. Fryer: Born to be Paralle, In: Bulletin of the IEEE Computer Society
TCDE, Val. 20, No. 2, 1997

BKK88 J. Banerjee, W. Kim, K.-C. Kim: “Queries in Object-Oriented Databases, Proc. of the 4th
Int. Conf. on Data Engineering, 1988, S. 31-38

BF+95 C. K. Baru, G Fecteau, A. Goyal, H. Hsiao, A. Jnhingran, S. Padmanabhan, G. P. Cope-
land, W.G. Wilson: DB2 Parallel Edition, In: IBM Sytems Journal, Vol 34, No 2, 1995

Bag8 R. Bayardo: Efficiently Mining Long Patterns from Databases, In: Proc. SIGMOD Conf.,
Seattle, 1998

BLO93 D. Benson, D. Lipman, and J. Ostel: GenBank, In: Nucleic Acids Research,
21(13):2963--2965, 1993.

Bi97 Billings, K.: A TPC-D Model for Database Query Optimization in Cascades, Master The-
sis, Portland State University, CS Department, 1997

Blak97 JA. Blakeley: Universa Data Access with OLE DB, In: Prac. of the IEEE COMP-
CON’'97, 1997,S. 2-7

BO+95 C. Bohm, A. Oppitz, P. Vogel, S. Wiesener: Prints of the 17th Century in a Distributed
Digital Library System, DEXA ‘95 (Database and Expert Systems Applications), 6th
International Conference, LNCS 978, Springer, 1995

BDV96 L. Bouganim, B. Dageville, P. Valduriez: Adaptive Parallel Query Executionin DBS3, In:
EDBT Conf., Avignon, 1996

BFV96 L. Bouganim, D. Florescu, P. Valduriez: Dynamic Load Balancing in Hierarchical Paral-
lel Database Systems, In: Proc. of the 22nd VLDB Conference, Bombay, India, 1996

Boz98 G. Bozas: Scalahility in Paralel Database Systems, PhD Thesis, Fakultét fir Informatik,

Technische Universitéat Mlinchen, 1998

171

BFZ97

BJ96

Bro7

BM+97

BV98

CCW93

Ce%

Cho6
Chos8

CYW96

CH97

CV+95

CK+97

DGY95

Da87

Dewioo

DG92

FS+98

FI97

GGS96

172

G Bozas, M. Fleischhauer, S. Zimmermann: PVM Experiences in Developing the
MIDAS Parallel Database System, Proc. of the 4th European PVM User Group Meeting,
Krakow, Poland, 1997

G Bozas, M. Jaedicke et a: On Transforming a Sequential SQL-DBMS into a Paralléel
One: First Results and Experiences of the MIDAS Project, In: Proceedings of the EURO-
PAR Conf., 1996

F. Brandmayer: Paralel Query Execution in MIDAS (in German), Master Thesis,
Fakultat for Informatik, Technische Universitét Miinchen, 1997

S. Brin, R. Motwani, J. Ullmann, S. Tsur: Dynamic Itemset Counting and Implication
Rules for Market Basket Data, In: Proc. ACM SIGMOD Conf., 1997

S. Brobst, B. Vecchione: DB2 UDB: Starburst, In; Database Programming & Design,
Feb. 1998

F. Cacace, S. Ceri, M. A. W. Houtsma: A Survey of Paralel Execution Strategies for
Transitive Closure and L ogic Programs. Distributed and Parallel Databases 1(4): 337-382
(1993)

P. Celis. The Query Optimizer in Tandem’'s new ServerWare SQL Product, In: Proc.
VLDB Conf., India, 1996

D. Chamberlin: Using the New DB2, Morgan Kaufman Publishers, San Francisco, 1996

S. Chaudhuri: Data Mining and Database Systems. Where is the Intersection?, In: Bulle-
tin of the TCDE, 21(1), March 1998

M.-S. Chen, P. Yu, K.-L. Wu: Optimization of Parallel Execution for Multi-Join Queries,
| EEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 3, June 1996, p. 416-
428

A. Clausnitzer, M. Jaedicke, B. Mitschang, C. Nippl, A. Reiser, S. Zimmermann: On the
Application of Parallel Database Technology for Large Scale Document Management
Systems, Proc. IDEAS Conf., Montreal, 1997

A. Clausnitzer, P. Vogel, S. Wiesener: A WWW interface to the OMNIS/Myriad literature
retrieval engine, In. COMPUTER NETWORKS and ISDN SYSTEMS 27 (1995), p.
1017-1027, ELSEVIER, 1995.

J. Claussen, A. Kemper, G. Moerkotte, K. Peithner: Optimizing Queries with Universal
Quantification in Object-Oriented and Object-Relational Databases, In: Proc. VLDB
Conf, Athens, Greece, 1997

D. Davidson, G. Graefe: Dynamic Resource Brokering for Multi-User Query Execution,
In: Proceedings of the 1995 ACM SIGMOD Intl. Conf. on Management of Data, San
Jose, 1995

U. Dayal: Of nests and trees: A unified approach to processing queries that contain nested
subqueries, In: Proc. VLDB Conf., Brighton, 1987.

D. DeWitt et al: The Gamma Database Machine Project, In: IEEE Transactions on
Knowledge and Data Engineering, March 1990.

D. DeWwitt, J. Gray: Paralel Database Systems. The Future of High Performance Data
base Systems, In: CACM, Vol.35, No.6, pp.85-98, 1992

M. Fang, N. Shivakumar et a: Computing Iceberg Queries Efficiently, Proc. VLDB
Conf., New York, 1998.

M. Fleischhauer: Parallelization of Relational Database Queriesin MIDAS (in German),
Master Thesis, Fakultét fir Informatik, Technische Universitét M iinchen, 1997

S. Ganguly, A. Goel, A. Silberschatz: Efficient and Accurate Cost Models for Parallel
Query Optimization, In: Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems,, Montreal, 1996

GHK92

GGS96

Gl9%

Gl97

Ge94
Gh9o
Gro4
Gros
Gr96
GC94
GC95
Gray95

GB+96

Has95
HK+97
HF+96

HGY 98

HKK97
HFV96

Hi98

HS93

S. Ganguly, W. Hasan, R. Krishnamurty: Query Optimization for Parallel Execution, In:
Proc. SIGMOD Conf., San Diego, California, USA, 1992

S. Ganguly, A. Goel, A. Silberschatz: Efficient and Accurate Cost Models for Paralle
Query Optimization, In: Proc. SIGACT-SIGMOD-SIGART Symp. on Principles of DB
Systems, Montreal, 1996

M. Garofalakis, Y. loannidis: Multi-dimensional Resource Scheduling for Parallel Que-
ries, in: Proceedings of the 1996 ACM SIGMOD, Val. 25, No. 2, 1996

M. Garofalakis, Y. loannidis: Parallel Query Scheduling and Optimization with Time-
and Space-Shared Resources, In: Proceedings of the 23rd VLDB Conference, Athens,
Greece, 1997

Geigt, A. et d.: PVM 3 User's Guide and Reference Manual. TR ORNL/TM 12187, Oak
Ridge Nat. Lab., 1994

S. Ghandeharizadeh, Physical Database Design in Multiprocessor Systems, PhD thesis,
University of Wisconsin - Madison, 1990.

G. Graefe: Volcano-An Extensible and Parallel Query Execution System, In: TKDE, 6(1),
1994

G. Graefe: The Cascades Framework for Query Optimization, In: DE Bulletin, 18(3),
1995

G. Graefe: Relational Engine and Query Processing in Microsoft SQL Server, In: Proc. of
the Intl. Conf. on Data Engineering, New Orleans, 1996

G. Graefe, R. L. Cole: Optimization of Dynamic Query Evaluation Plans, In: Proc. of the
1994 ACM-SIGMOD Conf., 1994

G. Graefe, R. L. Cole: Fast Algorithms for Universal Quantification in Large Databases,
In: TODS 20(2): 187-236, 1995.

Gray, J.. A Survey of Parallel Database Techniques and Systems, In: Tutorial Handout at
the Int. Conf. on Very Large Databases, Zurich, 1995

J. Gray, A. Bosworth et a: Data Cube: A Relational Aggregation Operator Generalizing
Group-by, Cross-Tab, and Sub Totals, In: Proc. Intl. Conf. on Data Engineering, New
Orleans, 1996

W. Hasan: Optimization of SQL Queries for Paralledl Machines, PhD Thesis, Stanford
Univ., 1995

L. Haas, D. Kossmann et al: Optimizing Queries across Diverse Data Sources, In: Proc.
of the 23rd VLDB Conf., Athens, Greece, 1997

J. Han, Y. Fu et a: A Data Mining Query Language for Relational Databases, In: Proc.
SIGMOD Conf, Montreal, 1996.

J. Han, W. Gong, Y. Yin: Mining Segment-Wise Periodic Patternsin Time Related Data
bases, In: Proc. Intl. Conf. on Knowledge Discovery and Data Mining, New York City,
NY, August 1998

E.-H. Han, G Karypis, V. Kumar: Scalable Paralel Data Mining for Association Rules,
In: SIGMOD Conference, Tucson, Arizona, 1997

W. Hasan, D. Florescu, P. Valduriez: Open Issues in Paralel Query Optimization, In:
SIGMOD Record 25(3), 1996

M. Hilbig: Development of a Cost-Based Query Optimizer for the Parallel Relational
Database System MIDAS (in German), Master Thesis, Fakultét fur Informatik, Tech-
nische Universitat Munchen, 1998

W. Hong, M. Stonebraker: Optimization of Parallel Query Execution Plansin XPRS, In:
Distributed and Parallel Databases, pp. 9-32, 1993

173

HWF93

HP95

Ibm98
Info8

JM98

M99

JMPO7

Ju99

KD96

KD98

KB98

LK98

Li94

LB97

Lo88

LC+93

LOT94

LST91

LT94

LVZ93

McB+96

174

M. A. W. Houtsma, A. N. Wildschut, J. Flokstra: Implementation and performance evalu-
ation of a paralld transitive closure algorithm on PRISMA/DB, in: Proceedings of the
19th Intl. Conf. on Very Large Data Bases, Dublin, 1993.

P. Hsu, D. Parker: Improving SQL with generalized quantifiers, In: Proc. Data Engineer-
ing Conference, Taipeh, Taiwan, 1995.

IBM DB2 Universa Database, Version 5, IBM Corp., 1998

Extended Parallel Option for Informix Dynamic Server: Technical Brief, Informix Soft-
ware, http://www.informix.com

M. Jaedicke: New Concepts for Parallel Object-Relational Query Processing, PhD The-
sis, Fakultét fur Informatik, Universitét Stuttgart, 1999

M. Jaedicke, B. Mitschang: A Framework for Parallel Processing of Aggregate and Sca
lar Functions in Object-Relational DBMS, Proc. SIGMOD Conf., Seattle, 1998

M. Jaedicke, B. Mitschang: User-Defined Table Operators. Enhancing Extensibility for
ORDBMS, Proc. VLDB Conference, Edinburgh, 1999.

A. Jnhingran, T. Malkemus, S. Padmanabhan: Query Optimization in DB2 Parallel Edi-
tion, In: Data Engineering Bulletin, 20(2), 1997

K. Julisch: Extensibility and Efficiency of Top-Down Query Optimizers, Master Thesis,
Universitat Stuttgart, 1999

N. Kabra, D. DeWitt: OPT++: An Object-Oriented |mplementation for Extensible Data-
base Query Optimization, Proc. ACM SIGMOD Conf., 1996

N. Kabra, D. DeWitt: Efficient Mid-Query Re-Optimization of Sub-Optimal Query Exe-
cution Plans, Proc. ACM SIGMOD Conf., 1999

K. Krueger-Barverls. Development of a Rule-based Query Optimizer for the Parallel
Object-Relational Database System MIDAS (in German), Master Thesis, Fakultét fur
Informatik, Technische Universitédt Minchen, 1998

D. Lin, Z. M. Kedem: Pincer-Search. a New Algorithm for Discovering the Maximum
Frequent Set, In: Proc EDBT Conf., Valencia, Spain, 1998

Listl, A.: Using Subpages for Cache Coherency Control in Parallel Database Systems,
Proc. PARLE Conf., 1994

Listl, A., Bozas, G.:: Performance Gains Using Subpages for Cache Coherency Control,
Proceedings of the 8th International Workshop on Database and Expert Systems Applica
tions, Toulouse, France, 1997

G. Lohman: Grammar-like Functional Rules for Representing Query Optimization Alter-
natives, In: Proc. of the ACM SIGMOD Conf., Chicago, 1988

M.-L. Lo, M.-S. Chen et a: On Optimal Processor Allocation to Support Pipelined Hash
Joins, In: Proc. SIGMOD Conf., Washington D. C., 1993

H. Lu, B. Oai, K. Tan (eds.): Query Processing in Parallel Relational Database Systems,
|EEE Computer Society Press, Los Alamitos, Californiau.a., 1994

H. Lu, M. Shan, K. L. Tan: Optimization of Multi-Way Join Queries for Parallel Execu-
tion, In: Proc. VLDB Conf., San Mateo, USA, 1991

H. Lu, K. Tan, : Load-Balanced Join Processing in Shared-Nothing Systems, in: Journal
of Parallel and Distributed Computing 23, p. 382-398, 1994

R. Lanzelotte, P. Valduriez, M. Zait: On the Effectiveness of Optimization Search Strate-
giesfor Parallel Execution Spaces, In: Proc. VLDB Conf., Dublin, 1993

W. McKenna, L. Burger et a: EROC: A Toolkit for Building NEATO Query Optimizers,
In: Proc. of the 22nd VLDB Conf., Mumbai, India, 1996

MD95

MSD93
MPC96
MPC98
MH95

Mi95
MC98

NJIM97
NM98a

NM98b

NZM99

NRMO00a
NRMO00b
NZT96

Or99
OL90

ON+95
PCY97

PGK97

Qi
RBGY6

Re98
RP98

M. Mehta, D. DeWitt: Managing Intra-operator Parallelism in Parallel Database Systems,
in: Proceedings of the 21t Intl. Conference on Very Large Data Bases, p. 382-394, Zur-
ich, 1995

M. Mehta, V. Soloviev, D. DeWitt: Batch Scheduling in parallel database systems, in:
Proceedings of the Sth Intl. Conf. on Data Engineering, p. 400-410, Vienna, 1993

R. Meo, G. Psaila, S. Ceri: A New SQL-like Operator for Mining Association Rules, In:
Proc. VLDB Conf, Mumbai, India, 1996

R. Meo, G Psaila, S. Ceri: A Tightly-Coupled Architecture for Data Mining, In: DE
Conf., Orlando, 1998

H. W. Mewes, K. Heumann: Genome Analysis. Pattern Search in Biological Macromole-
cules. CPM 1995: 261-285

B. Mitschang: Query Processing in Database Systems (in German), Vieweg Verlag, 1995.

L. Molesky, M. Caruso: Managing Financial Time Series Data: Object-Relational and
Object Database Systems, Tutorial VLDB Conf., New York City, 1998

C. Nippl, M. Jaedicke, B. Mitschang: Accelerating Profiling Services by Parallel Data-
base Technology, In: Proc. PDPTA Conf., Las Vegas, 1997

C. Nippl, B. Mitschang: TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase Parallelizer,
Proc. VLDB Conf., New York City, 1998

C. Nippl, B. Mitschang: Towards Deadlock-Preventing Query Optimization and Parallel-
ization, In: Proc. Intl. Conf. on Parallel and Distributed Computing Systems, Chicago,
[llinois, 1998

C. Nippl, S. Zimmermann, B. Mitschang: Design, Implementation and Evaluation of
Data Rivers for Efficient Intra-Query Paralelism, Technica Report TUM-10018, Tech-
nische Universitat Minchen, 1999.

C. Nippl, A. Reiser, B. Mitschang: Towards Deep Integration of Data Mining Technology
with Data Warehouses, Technical Report, Technische Universitét M tinchen, 2000.

C. Nippl, A. Reiser, B. Mitschang: Conquering the Search Space for the Calculation of
the Maximal Frequent Set, Technical Report, Technische Universitdt Mtnchen, 2000.

M. Norman, T. Zurek, P. Thanisch: Much Ado about Shared-Nothing, In: ACM Sigmod
Records, 23(3), 1996

Oracle8 Parallel Server Concepts, Oracle Corp, http://www.oracle.com.

K. Ono, GM. Lohman: Measuring the Complexity of Join Enumeration in Query Optimi-
zation, In: Proc. Intl. Conf. on VLDB, Brisbane, 1990

F. Ozcan, S. Nural et a: A Region Based Query Optimizer through Cascades Optimizer
Framework, In: DE Bulletin 18(3), Sept 1995

J. S. Park, M.S. Chane, P.S. Yu: Using a Hash-Based Method with Transaction Trimming
for Mining Association Rules, In: IEEE Trans. on TKDE, 9(5), Sept. 1997

A. Pellenkoft, C. Galindo-Legaria, M. Kersten: The Complexity of Transformation-
Based Join Enumeration, In: Proc. VLDB Conf., Athens, 1997

S. Perathoner: Development of a Component for Load Balancing for the Parallel Data-
base System MIDAS (in German), Master Thesis, Fakultét fir Informatik, Technische
Universitdt Minchen, 1998

Qian, X.: Query Folding, in: |IEEE Data Engineering Conference, pp. 48-55, 1996

S. Rao, A. Badia, D. v. Gucht: Providing Better Support for a Class of Decision Support
Queries, In: Proc. SIGMOD Conf., Montreal, 1996

Red Brick Systems Inc., http://www.redbrick.com/rbs-g/html/whpap.html

B. Reinwald, H. Pirahesh: SQL Open Heterogeneous Data Access, SIGMOD Conf., Seat-
tle, 1998

175

RC88

SON95

STA98

Schn97

SD90

SeB8

SM+98

SN95

STY93

SK98

SK96

SIM096

SQL99

Ta97

TL96

Tand97
TD93
TPC95

Trans95

TFT99

Vag3

WZ96

176

A. Rosenthal, S. Chakravarthy: Anatomy of a modular multiple query optimizer, in: Pro-
ceedings of the 14th Intl. Conf. on Very Large Data Bases, p. 230-249, Los Angeles, 1988

A. Savasare, E. Omiecinski, S. Navathe: An Efficient Algorithm for Mining Association
Rulesin Large Databases, In: Proc. VLDB Conf., Zurich, 1995

S. Sarawagi, S. Thomas, R. Agrawal: Integrating Association Rule Mining with Rela-
tiona Database Systems: Alternatives and Implications, In: Proc. ACM SIGMOD Conf,
Seattle, 1998

D. Schneider: The Ins and Outs of Data Warehousing, In: Tutorial on the VLDB Confer-
ence, Athens, 1997

D. Schneider, D. DeWitt: Tradeoffs in Processing Complex Join Queries via Hashing in
Multi-processor Database Machines, In: Proc. of the Intl. VLDB Conference, Melbourne,
Australia, 1990

T. Sellis. Multiple-query optimization, in: ACM Transactions on Database Systems,
13(1):23-52, March 1988

L. Shapiro, D. Maier, K. Billings, Y. Fan, B. Vance, Q. Wang, H. Wu: Group Pruning in
the Columbia Query Optimizer, Internal Report, Portland State University, 1998

A. Shatdal, J. Naughton: Adaptive Parallel Aggregation Algorithms, Proc. SSIGMOD
Conf., San Jose, 1995

E. Shekita, K. L. Tan, H. Young: Multi-Join Optimization for Symmetric Multiproces-
sors, In: Proc. VLDB Conf., Dublin, 1993

T. Shintani, M. Kitsuregawa: Parallel Mining Algorithms for Generalized Association
Rules with Classification Hierarchy, In: Proc. SIGMOD Conference, Seattle, 1998

T. Shintani, M. Kitsuregawa: Hash Based Parallel Algorithms for Mining Association
Rules. PDIS 1996

M. Stonebraker, D. Moore: ORDBMS - The next Great Wave, Morgan Kaufman Publish-
ers, 1996

ISO/IEC 9075:1999, Information technology-Database languages-SQL-Part2: Founda
tion (SQL/Foundation), will be published in 1999.

K.L. Tan: Decoupling Load-Balancing and Optimization Issues: A Two-Phase Query
Processing Framework for Shared-Nothing Systems,In: Int. Journal of Computer Systems
and Engineering 12(1), Jan. 1997

K. Tan, H. Lu: Scheduling Multiple Queries in Symmetric Multiprocessors, in: Informa-
tion Sciences, Elsevier Science Publishing Inc, North-Holland, Vol95, Nos 1 & 2, p. 125-
153, November 1996

Nonstop SQL/MX Database, Tandem Computers Inc., 1997

J. Thomas, S. Dessloch: A Plan-Operator Concept for Client-Based Knowledge Process-
ing, Proc. 19th VL DB Conference, Dublin, 1993

Transaction Processing Performance Council. TPC Benchmark D, Stand. Spec,, Rev. 1.0,
1995

TransBase System and Installation Guide, Version 4.2, TransAction Software GmbH,
1995

T. Tsunoda, M. Fukagawa, and T. Takagi: Time and Memory Efficient Algorithm for
Extracting Palindromic and Repetitive Subsequences in Nucleic Acid Sequences, In:
Pacific Symposium on Biocomputing, 1999.

Valduriez, P: Parallel Database Systems: Open Problems and New | ssues, In: Distributed
and Parallel Databases, Vol.1, No. 2, pp.137-166, April 1993.

H. Williams, J. Zobel: Indexing nucleotide databases for fast query evaluation, In: Proc.
EDBT Conf. Avignon, 1996.

WFA95

Xu98

Za98

ZP+97

27593

Zi99

Z097

A. Wilschut, J. Flokstra, P. Apers. Parallel Evauation of Multi-Join Queries, In: Proc.
ACM SIGMOD Conf., 1995

Y. Xu: Efficiency in the Columbia Query Optimizer, Master Thesis, Portland State Uni-
versity, 1998

M. J. Zaki: Efficient Enumeration of Frequent Sequences, In: Proc. CIKM Conference,
Bethesda, 1998.

M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li: New Algorithms for Fast Discovery of
Association Rules, In: Proc. Intl. Conf. on Knowledge Discovery and Data Mining, New-
port Beach, California, 1997

M. Ziane, M. Zait, B. Salamet: Paradlel Query Processing with ZigZag Trees, In: Very
Large Databases Journal, 2(3), March 1993

S. Zimmermann: PhD Thesis in preparation, Fakultét fir Informatik, Technische Univer-
sitét Minchen, 1999

C. Zou: XPS: A High Performance Parallel Database Server, In: Data Engineering Bulle-
tin 20(2), 1997

177

178

Appendix B

Operatorsand Rules

B.1 Selected operatorsused in the MIDAS execution engine

1

MIDAS Operator

Functionality

Rel Relation scan

Restr Relational restriction (predicate is given by the 2nd input)
Proj Relational projection (corresponding tuple given by the 2nd input)
Build Tuple construction (corresponding to the projection)

Times Cartesian product; part of the index nested-loops construction
Mjoin Merge join

Hjoin Hash join

Group Group by

Aggr Aggregation

Uniq Duplicate elimination

Sort Sort

Corr Materialization of intermediate results for repeated execution
Union Union with duplicate elimination

Intersect Intersection of two input sets

Attr Attribute value

Const Constant value

Cast Type modification

Add Addition

Sub Substraction

Mul Multiplication

Div Division

Eq Comparison (=)

Lt Comparison (<)

Gt Comparison (>)

179

MIDAS Operator Functionality

Le Comparison (<=)

Ge Comparison (>=)
And Logical “and”

Or Logical “or”

Like Comparison (pattern)

1. Thisrepresents only the list of some basic MIDAS operators, mostly inherited from the TransBase system. Further exten-
sions, as e.g. user-defined functions and table operators, are not listed here.

180

B.2 Selected rules used by the TOPAZ parallelizer

Phase 1
Name Description
Insert_Pipe_1 Introduces inter-operator parallelism below a
unary operator
Insert_Pipe_2 Introduces inter-operator parallelism below a

unary operator

Corr_to_Send

Create a data river for the reuse of intermediate
results in case of a correlation

Phase 2

Name

Description

Mjoin_to_parMjoin

Parallelize a merge join operator

Rel_to_Pscan

Relation scan to parallel scan

Rel_to_Rscan

Relation scan to round-robin scan

Times_to_parTimes

Parallelize cartesian product and index nested-
loops join

Hjoin_to_parHjoin

Parallelize a hash join operator

Group_to_parGroup

Parallelize group by

Aggr_to_parAggr

Parallelize aggregation

Unig_to_parUniq

Parallelize duplicate elimination

Sort_to_parSort

Parallelize sorting

Union_to_parUnion

Parallelize union with duplicate elimination

Intersect_to_parintersect

Parallelize intersection

Phase 3

Name

Description

SendSend_to_Send

Replace two neighboring send operators by a single
repartitioning node

SendCorr_to_Send

Replace neighboring send and corr operators by a
single send node

CorrSend_to_Send

Replace neighboring corr and send operators by a
single send node

SendRel_to_Pscan

Replace neighboring send and rel operators by a
single pscan node

SendRel_to_Rrscan

Replace neighboring send and rel operators by a
single rrscan node

ProjSend_to_SendProj

Push send through the proj operator (upwards)

SendProj_to_ProjSend

Push send through the proj operator (downwards)

RestrSend_to_SendRestr

Push send through the restr operator (upwards)

181

Phase 3

Name

Description

SendRestr_to_RestrSend

Push send through the restr operator (downwards)

SortSend_to_SendSort

Push send through the sort operator (upwards)

SendSort_to_SortSend

Push send through the sort operator (downwards)

UnigqSend_to_SendUniq

Push send through the uniq operator (upwards)

SendUnig_to_UnigSend

Push send through the uniq operator (downwards)

UnionSend_to_SendUnion

Push both input send operators through the union
operator (upwards)

SendUnion_to_UnionSend

Push send operator through the union operator
(downwards)

IntersectSend_to_SendIntersect

Push both input send operators through the intersect
operator (upwards)

Sendintersect_to_IntersectSend

Push send operator through the intersect operator
(downwards)

SendMijoin_to_MjoinSend

Push send through the mjoin operator (downwards)

MjoinSend_to_SendMjoin

Push send operator through the mjoin operator
(upwards)

MjoinSendLeft_to_SendMjoin

Push left input send operator through the mjoin
operator (upwards)

MjoinSendRight_to_SendMjoin

Push right input send operator through the mjoin
operator (upwards)

SendHjoin_to_HjoinSend

Push send through the hjoin operator (downwards)

HjoinSend_to_SendHjoin

Push send operator through the hjoin operator
(upwards)

HjoinSendLeft_to_SendHjoin

Push left input send operator through the hjoin oper-
ator (upwards)

HjoinSendRight_to_SendHjoin

Push right input send operator through the hjoin
operator (upwards)

GroupSend_to_SendGroup

Push send through the group operator (upwards)

SendGroup_to_GroupSend

Push send through the group operator (downwards)

TimesSend_to_SendTimes

Push left input send operator through the times
operator (upwards)

SendTimes_to_TimesSend

Push send through the times operator (downwards)

Phase 4

Name

Description

Remove_SendNode

Remove send operator in order to perform block
combination

182

B.3 Logical operatorsused in Model-M.

Name Functionality

GET Get a table from disk

SELECT Relational restriction

PROJECT Relational projection

GROUP_BY Logical grouping operator

M_AGGR Aggregation applied to the entire input relation

M_UNIQ Duplicate elimination

EQJOIN Models both joins as well as cartesian products

M_UNION Logical operator modeling the union of the two input tables

B.4 Physical operatorsused in Model-M

Name Functionality

REL_SCAN Full table scan

REL_INDEX_SCAN Table scan using an index

RESTRICTION Physical restriction operator
P_PROJECT Physical projection operator
P_GROUP_BY Divides the input relation into groups and eventually aggregates them according to an

aggregation function

P_AGGR Similar to P_GROUP_BY, except that the aggregation function is applied to the entire
input relation

P_UNIQ Physical duplicate elimination, requires a sorted input

P_HASH_UNIQ Physical duplicate elimination by using a hash table, no sorted input is necessary

P_SORT Performs a sorting on the input table according to the specified attributes

Can also perform duplicate elimination

HASH_JOIN Implements the join of the two input tables by using a hash table
If the hash table doesn't fit into the main memory, disk spoolings are necessary;
No requirements with respect to the input tables

MERGE_JOIN Joins by comparing the two input streams on the join attribute;
Both inputs have to be sorted on the join attribute

INL_JOIN For each tuple of the left input the join partners are retrieved by an index access on the
right table
Implies a correlation

P_TIMES Returns the cartesian product of the two input tables

P_UNION Returns the union of the two input tables

183

B.5 Rulesused by the M odel-M optimizer

Transformation Rules

Name

Description

EQJOIN_COMMUTE

Join commutativity

EQJOIN_LTOR

Left to right join associativity

PROJECT_UP

PROJECT thru EQJOIN upwards

REMOVE_PROJECT

PROJECT Idempotence

DFRS_EQJOIN_COMMUTE

Duplicate_free join commutativity

DFRS_EQJOIN_LTOR

Duplicate_free left to right join associativity

DFRS_EQJOIN_RTOL

Duplicate_free right to left join associativity

DFRS_EQJOIN_EXCHANGE

Duplicate_free exchange of inputs on a subplan containing 3 EQJOINS

Implementation Rules

Name

Description

GET_to_REL_SCAN

Implements GET as a full table scan

GET_to_REL_INDEX_SCAN

Implements GET as an index scan, if a corresponding index is available

SELECT_to_RESTRICTION

Transforms a logical relational selection into the corresponding physical
operator

PROJECT to_P_PROJECT

Transforms a logical relational projection into the corresponding physical
operator

GROUP_BY_to_P_GROUP_BY

Implements grouping and aggregation

M_AGGR_to_P_AGGR

Implements aggregation on the entire input relation

M_UNIQ_to_P_UNIQ

Implements duplicate elimination is the input table is already sorted

M_UNIQ_to_P_SORT

Implements duplicate elimination by sorting the input relation, if the nec-
essary ordering is not satisfied

M_UNIQ to_P_HASH_UNIQ

Implements duplicate elimination via hashing

EQJOIN_to_HASH_JOIN

Implements a join by using a hash table

EQJOIN_to_MERGE_JOIN

Implements a join by merging

EQJOIN_to_INL_JOIN

Implements a join by using an index and a correlation

EQJOIN_to_P_TIMES

Implements a physical cartesian product

M_UNION_to_P_UNION

Implements a physical union of the input tables

Enforcement Rules

Name

Description

Insert_Sort

Introduces a sort operator to realize the desired ordering

184

Appendix C
Proofsand Algorithms

C.1 Proofsrelated to the MFSSearch algorithm

Proof to Theorem 1: Obviously, for anitemset on level N all subsets of level N-1 are generated
if its ElimList contains all N elements. It is not necessary to expand its prefix of length N-1
since it is implicitly evaluated through ECS. Hence, it is sufficient to include the first N-1
elementsinto the ElimList.Consider asuperset X onlevel Nwiththe ElimList Ex = {1,2,...,N-
1} and the sibling subsets (on level N-1) Xy, Xo,..., XN.1- [N this case, subset X; is generated
by eliminating item N-i from X, s.t. X; = X - {N-i}. In this case we will demonstrate that any
itemy in the ElimList of X;, s.t. y > N-i, generates only a duplicate subset on level N-2.

This subset, named e.g. X .y, is obtained by eliminating y from X;:
Xiny = X - {y} = X-{N-i, y}.
On the other hand, there exists asibling of X, called Xy.y suchthat Xy, = X-{y}. Sincey

> N-i, results that Xy, has been expanded before X; and that the ElimList of Xy, also con-
tains N-i. Results that Xy, has already expanded a subset Xy.y,; on level N-2 such that

XNeyi = XNy = {N-i} = X - {y, N-i}.
Thus, X; Ny = Xj Ny @Nd X .y is expanded after X; .y Results that X .y is a duplicate.

Proof to Theorem 2: Assume that all itemsets are expanded. In the top-down search, this pro-
cessisdonefrom higher levelsto lower ones. Thetotal number of elementsonlevel i is E,'\E .
However, not all of these elements need to be expanded, as some of them have already been
processed as prefixesin level i+1. Thus, the elements that need to be expanded on level i
isdio._ d+1g

INJ - ONDO°
Hence, for N items, the number of expanded itemsetsis given by:

NO IN=-10_ ONO MN-20 _ IN-1g, O\O 0 _ 20 4 B0 N-1 ONO y—
nton o o) oNT - an ot o)t ootoa Tt (D7 5p)=

= Q0+ N + 09 forNoddor I 15+ MNTH ++ KO for Neven=
=2N"1e

185

Proof to Theorem 3. By successively reducing the size of the ElimList as described in the
Expand procedure, the direct subsets of an itemset X are only those that have not been
expanded before by another sibling. From the nature of top-down processing, the direct sub-
sets of an itemset X will be processed after X. The cross subsets are related to siblings of X
that are expanded before X. As in the backward processing siblings are processed in the
opposite order than they are expanded, results that also these cross subsets of X will be pro-
cessed after X. 4

Proof to Theorem 4: For the domain 1,2,...,N-1,N, the last itemset to be expanded is itemset
Z={N}. However, Z is asubset of any itemset in the search space. ¢

Proof to Theorem 5: Assume X,, X, OF and X; [I X;, From Theorem 3 followsthat X; will
be processed later than X,. But X, is aready frequent, from which results that it prunes X,
o that X; cannot be aso included in F. Contradiction. 4

Proof to Theorem 6: As presented at the beginning of this section, the subsets of Y are obtained
by eliminating elements of E from Y. If thereisoneelement yO Y,y X, sothat yOE,
results that y will be present in all direct subsets of Y. Follows that all subsets of Y contain
one element that is not included in X. Thus they cannot be subsets of X. ¢

Proof to Theorem 7: Thedirect subsets of Y are obtained by eliminating elements of ElimListy
from Y. From Xisincluded in Y, and ElimListy doesn’t contain any elements from X, results
that all direct subsets of Y also contain X. Since X isinfrequent, these direct subsets can also
be pruned. ¢

Proof to Theorem 8: Assume that there exists an itemset Y={Pg, P1,..., Py, Pp+1,...N} that is
expanded after X. But X Y , s.t. according to Theorem 3, X must be expanded after Y. Con-
tradiction. ¢

186

C.2 The MFSSearch algorithm for the backward exploration
scenario

MESSearch algorithm for a finite item domain 1,2,...,N
1. X:={1,2,..,N}; Ex :={1,2,....,N-1}; Fyx := U;IFy = [,
2. get MIP, sup from ECS(X)

3. if (sup < minsup) /I X infrequent, MIP = PMax

4, if (IMIP] <|X]-1) /I Condition (3)

5. IFX = FX 0 MIP; /l Propagate Relevant Infrequent Itemset
6. else if (IMIP]| = |X]) /I Condition (4)

7. return X\ {N}; /I X\ {N} Maximal Frequent Itemset

8. Expand(X, Ex, Fx, IFy);

Expand(ltemset X, ElimList E, FrequentSet F, InfrequentSet IF)
1. for eachi=1, n-1 (n = size of ElimList)

2. Xi =X\ {en_i};

3. if(EFXDF,XiDFX)

4, X =1, Il Cross Top-Down Pruning

5. else

6. Ei =E\ {en_i, vy en_l};

7. F=0;1F:=0;

8. foreach F, OF

9. if condition (1) /I Condition (1)

10. Fi = Fi g FX ; /l Propagate Relevant Frequent ltemsets
11. foreach IF, O1 , IFXDXi

12. if condition (2) /I Condition (2)

13. X; =01, /I Bottom-Up Pruning affecting also direct subsets
14. else

15. Mark X; as infrequent; /I Bottom-Up Pruning affecting only the itemset
16. IFi = IFi O IFX ; /l Propagate Relevant Infrequent Itemsets
17. for each)(i £0,1:=n-1,1 /I Backward Exploration

18. if =Infrequent(X;)

19. get MIP, sup from ECS(X;)

20. if (sup < minsup) Il X; infrequent, MIP

21. if (IMIP] <Xl -1) I/ Condition (3)

22. BottomUp (MIP);

23. else if (IMIP] = |Xi) // Condition (4)

24, return X; \ {N}; 11 X; \ {N} Maximal Frequent Itemset
25. Expand(X;, E;, Fj, IF);

26. else

27. CrossTopDown(X;);

28. return Xj; /I Maximal Frequent Itemset

29. else Expand(X;, E;, Fj, IFy);

CrossTopDown (Frequent_ltemset X)

1. for each candidate Y, Y expanded but unexplored
2. if condition (1)

3. FY = FYDX;

187

BottomUp(Infrequent_Itemset I)
1. for each candidate Y, Y expanded but unexplored

2.if 13Y

3. if condition (2)

4, Y:=1; /I prune Y together with its direct subsets

5. else

6. Mark Y as Infrequent; /I prune only Y

7. IFY = IFYD l; /I propagate | to be taken into account for subsets of Y

As can be seen from MFSSearch, the procedure Expand is used to address both pruning and search strat-
egies within the given search space.

188

C.3 The Expand procedure adapted to the forward exploration
scenario

Expand(ltemset X, ElimList E, InfrequentSet IF)
1. for eachi=1, n-1 (n = size of ElimList)

2. Xi =X\ {en_i};
3. Ei =E\ {en_i, vy en_l};
4. IF:=0;
5. foreach IF, O1 , IFXDXi
6. if condition (2)
7. X; =1, [/l Bottom-Up Pruning affecting also direct subsets
8. else
9. Mark X; as infrequent; /I Bottom-Up Pruning affecting only the itemset
10. if 10 PMaxX_ /I prune also PMax of X;
[
11. Mark PM as Infrequent;
P a
12. IFi = IFi ad IFX; /I Propagate Relevant Infrequent Iltemsets
13. for each Xiz0 i:=1,n-1 /I Forward Exploration
14. if =Infrequent(X;) /Il probe X;
15. get MIP, sup from ECS(X);
16. if (sup < minsup) Il X; infrequent, MIP = PMax
17. BottomUp (MIP);
18. if (IMIP]=]Xi) /I condition (4)
19. UpdateMFS(X; \ {N}); /I X\ {N} Frequent Itemset
20. Expand(Xi, Ei! IFi);
21. else
22. UpdateMFS(X)); /I X; Frequent Itemset
23. else
24. if =Infrequent(X; —{ N}) /I probe PMax of X;
25. get MIP, sup from ECS(X; \ {N});
26. if (sup > minsup)
27. UpdateMFS(X; \ {N}); /I Xi \ {N} Frequent Itemset
28. Expand(X;, E;, IF);

UpdateMES(Frequent_ltemset X)
for each YOMEFS

1

2 if Y is a subset of X
3. eliminate Y;

4 MFS:= MFSOX ;

BottomUp(Infrequent Itemset I)

1. for each candidate Y, Y expanded but unexplored

2.if 10Y
3. if condition (2)
4, Y:=0; /[prune Y together with its direct subsets
5. else
6. Mark Y as Infrequent; I/l prune only Y
7. if | 0PMax
Y
8. Mark PMaxy as Infrequent; I/ prune also PMaxy
9. IFY = IFYD I /I propagate | to be taken into account for subsets of Y

189

190

Appendix D
Auxiliary Lists

D.1 List of Figures

Fig 1.1
Fig2.2:
Fig 2.3:
Fig 2.4
Fig 2.5
Fig 3.1:
Fig 3.2:
Fig 3.3
Fig 3.4
Fig 3.5:
Fig 3.6:
Fig 3.7
Fig 4.1
Fig4.2:
Fig 4.3
Fig 4.4
Fig 4.5:
Fig 4.6:
Fig 4.7
Fig 4.8:
Fig 4.9:

Fig 4.10:
Fig 4.11:
Fig4.12:
Fig 4.13:
Fig 4.14:

Fig 5.1
Fig5.2:
Fig5.3:
Fig 5.4
Fig 5.5:
Fig 5.6:
Fig 5.7
Fig 5.8:

Simplified database query processing Modelccovveeveeieve e 3
The MIDAS PIrOtOLYPE ..ottt 8
The architeCture of MIDASo o e 9
The query processing architecture in MIDAS ..o 10
From a sequential QEP to parallel execution using blocks and datarivers 12
Communication patterns realized by using datariverscccceevveeeieesecceceene. 14
Forms of intra-query paralelismin MIDAS ... 17
Example query and performance using different dataflow parameters (cluster) ... 19
Performance using different dataflow parameters (SMP)ccccovvevvccecicciecee, 19
Deadlock scenarios for unary OPErationscccceeceeeevieeieesesieeseese e 24
Deadlocks situations for DiNary OPEratorscoeierererierieeneseeeeseesee e 25
Executing send and receive within the same execution unitccccccceeeevieenee. 27
The QEP of the example@ DSS QUENYcoveieieeiece e 35
Query optimization EXAMPIEccoviiirieieeee e 38
Example of amemo SITUCIUIEcc.eooviieceee e 39
Example of atransformation rUleccooeeieeie i 40
IMPIEMENLEEION TUIES ... e 41
ENfOrCemeNt TULEooeeeieeeee e e 41
Parallelization of query Q3 of the TPC-D benchmarkccooeveevviieiicece 43
Adjusting the DOP for block CONSIIUCLIONccoeiiieiirieieeeee e 47
Inter-operator Parall€liSMcocee e e 49
Intra-operator Parall€liSMcocee e e 50
BIOCK EXPANSION ...t 51
Preventing deadl ocks situations by using top-down optimization 54
Speedups after €aCh PhaSecc.eci e 56
Influence of ParPrune on rules, tasks and expressions participating in each phase 58
Sequential EXECULIONcoeoieiieiieie ettt 63
Independent Parallel EXECULIONcceceeiiieiieiie et 65
Dependent Parallel EXECULIONccooiiirieriiieeeieres e 66
Dependent parallel execution of 2 blocKSccceeeeivciiice e 68
Block building with amaterialized frontcccoeevvieeiicce e 69
Multiple evaluation of the right input when using the nested-loops operator 71
Example of acost CACUIAtioNcooeeeeiieieceeseee e 73
Splitting up the hash joiN OPEratorcccccieieiiecece e 80

191

Fig5.9:
Fig 6.1:
Fig 6.2:
Fig 6.3:

Fig 6.4
Fig 6.5:

Fig 6.6:
Fig 6.7
Fig 6.8:
Fig 7.1:
Fig7.2:
Fig 7.3:
Fig 7.4:
Fig 8.1:
Fig 8.2:
Fig 8.3:
Fig 8.4
Fig 8.5:
Fig 8.6:
Fig 8.7

Fig 8.8:

Fig 8.9:

Fig 8.10:
Fig 8.11:
Fig 8.12:
Fig 8.13:
Fig 8.14:
Fig 8.15:
Fig 8.16:
Fig 8.17:
Fig 8.18:
Fig 8.19:
Fig 8.20:
Fig 8.21:

192

The ParPrune SITaEQYcoeoerieriiirieeeeeee e 86
Alternative query eXeCULiON PlaNSccceeceeiieieseeiteeee e e 92
Influence of bIOCKING OPEIalOrScccceeiiiie e 94
Cost calculation for a bushy, respectively left-deep tree using the quasi-parallel cost

107070 [PR PRPRPRRN 96

Influence of the quasi-parallel cost model on the unary operators along apipe 97
Memo structure with cost calculations for the example query using the quasi-paral-

lel cost model. The numbers in brackets show the corresponding DOPs. 99
Sequential plans obtained by optimizing query Q10 using different cost models 101
Response times and optimization COMPIEXITYccererierienenenereseseseeeees 104
Parallelization complexity and overall responsetimesccccceveeeveeveeieeciecveenne. 105
Exchange of load information in the PDBMS ... 111
TWO-Phase SChEAUITNGcc.oouiiiiiiceeee e 113
MemOry diStHDULIONcceiieiieciece e 114
FINE SCNEAUIING ..o e 116
Processing scenario for the evaluation of frequent itemsetscccceceveverenenne. 123
StreamJoin processing flow for example group 500, constituted of 4 streams 125
Search space for frequent itemset evaluation over the finite item domain — 128
Pruning strategies in backward exploration SCeNAioc.ccoevereneresenieniennns 131
Mapping of MFSSearch on database Operatorscooeveeveeieeneceeseseese e 134
SQL representation using common table expressions, UDFsand UDTOs 135
Parallel processing for the evaluation of maximal frequent itemsets; items belon-

ging to atransaction reside on the same partitioncccoceevevieececcese e, 136
Parallel processing for the evaluation of maximal frequent itemsets; items belonging
to atransaction reside on different partitions 137
Effectiveness of Pruning ... 140
Performance evaluation for MFS calCulationcccccevenininenieninenese e 142
Evaluation of universal quantification with the StreamJoin approach 146
Simplified QEP for theillustration of the StreamJoin approachc.c......... 147
Query execution plans using the StreamJoin approachccccecevceeveneeieseennens 149
Performance eValUalioncccooeeieeiesieie e 150
QEP for the usage of the StreamJoin operator in financial time series 152
QEP for the usage of the StreamJoin operator in pattern recognition 153
The structure of an ODS full-text retrieval QEPocvevveeveeeeee e 156
Normalized profile representation for two sample profilescocceeveeceennenee. 158
Term mapping and word mapping on asingle processing NOdecccoceveeeenne 159
Subprofile mapping using the tuple-stream evaluationccoceevevenieseennns 160
Subprofile mapping using the StreamJoin approachcccccevveeveeceeneeceseenen, 161

D.2 List of Tables

1. Average response timesfor TPC-D query Sat (IMS)ccooerererireninine e 20
2. Parameter combinations recommended for specific SItuationscccccveceeveeceveecieenane 22
3. Influence of block construction on PerformMance.............cocveeeieiererereeee e 26
4. Benefit of execution unit COMDINGLIONccovieereriesiese e 27
5. Speedup distribution iN the teSt SEMESccvieiiice e 56
6. Effect of pruning and global view on execution and parallelization............ccoccovvevvinenen. 57
7. Constants used for the COSt CalCUIBLTION...........c.ooeiirerisiceree e 76
8. COSL VAITAIIES.......ccuiieiiciiee ettt b e b e nenneeneas 76
9. Average eXeCULION TIMES (SEC)ververreriererieieieesie st see st sie s ss st a e e snesre b e ene e 101
10. AnalySiS Of QUENY QL0ocueiieieiecieeie ettt re e see s re e s e e eereeneeneenrn 102
11. Measurement results for applicable TPC-D queries (aVerages)cccovveeeveereeseesvesnenne 102
12. Summarizing of the pruning techniques employed by the MFSSearch algorithm........... 133
13. Performance evaluation for profile calculationccccocveveieevicie s 162

193

194

