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1 Introduction

1.1 Outline of Part I

polynomial time many-one reducibility

polynomial time nondeterministic computation

regular
language

accepted

predicate classes

principal ideal

promise function

Part I of this thesis observes a close connection between two basic concepts of
Structural Complexity Theory, both introduced by Karp in [Ka72]:

1. The concept of which since its defi-
nition was studied intensively, see for example [La75, AS85a].

2. The concept of , in the slightly
more general sence as it is used to define not only the class NP (like in the
original paper) but also classes like P, PP, UP, BPP, and RP.

Part II of this thesis relates the concepts of Part I to the notion of a
.

More detailed outlines of the two parts and references to related work are given
below.

Several complexity classes – like NP, P, and PP – are defined (say ) by
a predicate on computation trees produced by polynomial time nondeterministic
Turing machine computations. Such classes will be called . For
example NP is accepted by the predicate on computation trees which is 1 if and
only if the tree contains a leaf with label 1. As another example, P is accepted
by the predicate on computation trees which is 1 if and only if the tree contains
an odd number of leaves with label 1. Call a class a if with re-
spect to polynomial time many-one reducibility it has a complete set and is closed
downward. It is well known that the example classes NP, P, and PP are principal
ideals. This observation can be generalized:

The set of predicate classes is equal to the set of principal ideals.

After the preliminary definitions and observations in Chapter 2 this theorem
will be shown in Chapter 3.

In Chapter 4 complexity classes like UP, BPP, and RP will be considered.
These classes have in common that their original definition can be seen the fol-
lowing way: there is a 0 1 -valued function – called – on
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Introduction

1.2 Ouline of Part II

1.3 Related Work

promise classes
accepted

ideal

yield

2

computation trees where it is presumed (=’promised’) for each machine accept-
ing a language in the class that for each input the promise function is not for
the corresponding computation tree. Such classes will be called .
For example UP is defined (say ) by the promise function on computation
trees which has the value 0 if the tree does not contain a leaf with label 1, which
has the value 1 if the tree contains exactly one leaf with label 1, and which has the
value if the tree contains more than one leaf with label 1. Call a class an if
with respect to polynomial time many-one reducibility it is closed downward and
closed under join. It is easy to see that the example classes UP, BPP, and RP are
countable ideals. Like before, this observation can be generalized:

The set of promise classes is equal to the set of countable ideals.

The two characterizations of predicate classes and promise classes described
above – and their corresponding versions for the recursive case – are the two main
results of Part I of this thesis. In Chapter 5 analogous results for some other models
of nondeterministic computation will be shown.

In Part II predicates with a low complexity will be considered: the predicates
which are determined by a regular language for the the yields of computation trees
(the is the left-to-right concatenation of the leaf labels). For example, NP is
accepted by the predicate determined by the regular language which consists of
the words containing at least one letter 1.

The main result of Part II will be that if the class determined by a (nontrivial)
regular language is not equal to P then the class contains at least one of the
classes NP, co-NP and MOD P for prime.

This will be interpreted as a non-density result in two ways: (1) on the as-
sumption that the Polynomial Time Hierarchy does not collapse, and (2) for the
relativized case.

Additionally, the analog of the main result for the log-space case is shown.

Similar work like in Part I was done in Bovet, Crescenzi, and Silvestri in [BCS91,
BCS92], by Vereshchagin in [Ve93], by Hertrampf, Lautemann, Schwentick, Voll-
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locally definable acceptance types
mod-classes finite acceptance

types

3

mer, and Wagner in [HL*93], and by Jenner, McKenzie, and Thérien in [JMT94].
Like in Part I of this thesis also in these papers the definability of complexity
classes with the help of nondeterministic computation models is investigated.

The classes determined by regular languages, see Part II, were first considered
by Hertrampf, Lautemann, Schwentick, Vollmer, and Wagner in [HL*93]. These
classes are a special case (namely the associative case) of the classes determined
by defined by Hertrampf in [Her92a, Her94b].
On the other hand the and the classes determined by

, considered systematicly in [Her90, Bei91, BG92] and [GW87, Her94a], re-
spectively, are classes which are by definition determined by regular languages.
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Part I

2 Preliminaries

2.1 Order-Theoretic Notions

Predicate Classes and Promise
Classes
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First some standard order-theoretic notions will be defined in Section 2.1. The
well-known concept of will be defined in Section
2.2. Then the and its notions of

and are presented in the Sections 2.3 – 2.6. Section 2.7
introduces .

The following order-theoretic notions are standard, see for example [Gr78].
A on a set is a subset of . Only the infix notation will

be used, i.e. stands for ( ) . A binary relation is if for
all , it is if from and it follows , it is if
from it follows , and it is if from and it follows

= . A is a reflexive and transitive binary relation on a nonempty set.
A is a preorder which is antisymmetric, and an
is a preorder which is symmetric. A binary relation on a set and a binary
relation on a set are called if there exists an isomorphism, i.e. a
bijective mapping from to such that ( ) ( ).

Let be a preorder on a set . An element is called for
a subset if and holds for all . A (

) is an element such that ( ) for all . For two
elements a ( ) of and is an element
such that and ( and ) and if also for another element
it holds that and ( and ) then ( ). If it is
clear from the context that one is dealing with a preorder , a –supremum will
just be called , this will be done the same way for other order-theoretic
notions.
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6 Part I

Let be a partial order on a set . Note that for a partial order the supremum
(infimum) of two elements, if it exists, is unique. The partial order is called an

if the supremum exists for every pair of elements, it is called a
if both supremum and infimum exist for every pair of elements. A binary

relation on a set is called an (upper semi-) sublattice of an (upper semi-)
lattice on a set if is a subset of , is the restriction of to , and

is closed under -suprema (and -infima). Note that an (upper semi-) sublattice
is an (upper semi-) lattice. An (upper semi-) lattice is called if for all
elements the following holds: if , where is the supremum of

and , then there are elements such that , , and is the
supremum of and .

Let be a partial order on a set . Two elements are called -
comparable if or . A subset is called a if any two
elements of are comparable, is called an if any two elements are
incomparable. If the minimum exists then an element = is called an

if no element = exists such that . The partial order is called
if for every element = there is an atom such that . A partial

order is called if for any two comparable but different elements there is
an element properly between them, formally: for all for which but not

there is a such that and but neither nor . A partial
order which contains an atom is obviously not dense because there is no element
properly between the minimum and the atom.

In this thesis a will always be a set of words over the alphabet = 0 1 ,
for basic definitions like the one of see for example [HU79]. A is a
set of languages.

Let be the ( + 1)st word of in the length-lexicographic order, see for
example [AS89]. For a language and an IN define to be the language

where is a usual bijective polynomial time computable pairing
function, see for example [BDG88]. Call, like in [BDG88, AS89], a complexity
class if = IN for some recursive , for
the notion of a see for example [HU79].
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Let FP denote the class of functions which can be computed by a Tur-
ing machine running in deterministic polynomial time, see for example [HU79,
BDG88] for a more detailed definition. Let denote the polynomial time many-
one reducibility among languages, i.e. if there exists a function FP
such that ( ) for all words . The original definition of this
reducibility is from Karp in [Ka72]. It is easy to see that the binary relation
is a preorder on the set of all languages. Define the of two languages

to be the language 0 1 . The join is a -supremum of and
: and for all languages : .

The following enumeration of FP will be useful. Let in some straightforward
way the deterministic Turing machines which compute functions be
encoded by words. Define for every the function FP to be the function
computed by the following polynomial time deterministic Turing machine: on
input the machine simulates the computation of the deterministic Turing machine
encoded by and cancels the simulation – with output – if the simulated machine
has not terminated after + steps. It is easy to see that FP = IN and
that the function which maps to ( ) is recursive.

For the notions of this section see for example [La75, AS85a]. Two languages
are called , in short , if

and . Note that is an equivalence relation on the set of all languages.
Let the , in short deg ( ), be
the set of languages polynomial time many-one equivalent to , and let
denote the partial order on the -degrees defined by

deg ( ) deg ( ) :

Note that this definition does not depend on the choice of and .
The degree deg ( ) is the unique -supremum of deg ( ) and

deg ( ). This shows that is an upper semi-lattice on the set of all polyno-
mial time many-one degrees.

The two degrees and are called the degrees. Call a degree
deg ( ) if and therefore all languages in deg ( ) are recursive.
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many-one degrees. This upper semi-lattice is additionally dense.
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8 Part I

Many results are known for the partial order . In this thesis only the
following basic results about density and distributivity due to Ladner in [La75]
and Ambos-Spies in [AS85a], respectively, will be considered.

Call a set of languages a , or simply , if there
exists a language such that = ( ) := . There are
several other names for the class ( ), sometimes it is called
or . For the choice of the name see the next
section. Note that the language is -complete for ( ).

The following classes are examples of principal ideals.

The class NP should be mentioned first as an example of a principal ideal.
Complete languages for NP, like the problem SAT, were – for polynomial
time Turing reducibility – first presented by Cook in [Co71], their -
completeness was shown in [Ka72, Le73]. For a list of -complete prob-
lems for NP see [GJ79]. The fact that for example SAT is not only -
complete for NP but also every language -reducible to SAT is in NP is
easy to see.

The two principal ideals = ( ), = ( ) will be called
principal ideals.

The class P is a principal ideal ( ) where is any language in P .
P contains the two trivial principal ideals and is contained in every nontrivial
principal ideal, see Figure 1.
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Figure 1: The two trivial principal ideals and P

Not only P and NP but also all other classes and of the Polyno-
mial Time Hierarchy are principal ideals, the existence of -complete lan-
guages was shown in [St77, Wr77].

Let be any language. Then the class P consisting of all languages com-
putable in polynomial time with oracle (see for example [Co71, BDG88]
and also Section 5.5) is a principal (many-one) ideal according to the results
in [AS86a], see also Corollary 5.8. As a special case, the classes of the
Polynomial Time Hierarchy are principal ideals.

The classes NP(n) and co-NP(n) of the Boolean Hierarchy are principal ide-
als, the existence of -complete languages was shown in [CG*88].

Counting classes like PP, C P, MOD P, P = MOD P, US = 1–NP are
principal ideals, for the original definitions see [Gi77, Wa86b, BG92, PZ83,
BGu82, GW87].

The exponential time classes EXPTIME = DTIME(2poly) and NEXPTIME
= NTIME(2poly) are principal ideals. More generally, the classes -EXPTIME

= DTIME(2. . .2
poly

) and -NEXPTIME = NTIME(2. . .2
poly

), where in
both cases the exponentiation tower has height , can easily be shown to be
principal ideals for every 1. For the exact definitions see for example
[Jo90].
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Let be a language. ( ) is recursively presentable
is recursive is recursive.

10 Part I

There is a strong connection between the inclusion order on the principal ideals
and the partial order on the polynomial time many-one degrees.

deg ( ) deg ( )

Note that the second equivalence holds by the definition of . In
order to see the first equivalence assume that ( ) ( ). Because

( ) it holds by the assumption that ( ), this shows . If on
the other side then for each it holds by the transitivity of
that , this shows ( ) ( )

In other words, the inclusion order on the principal ideals is isomorphic to the
-order on the polynomial time many-one degrees. It is clear by the proof that

this isomorphism between the partial order on the degrees and the inclusion order
on the principal ideals exists not only for but for every preorder.

The following corollary follows immediately from Proposition 2.1.

= deg ( ) = deg ( )

By the following proposition the property of being recursively presentable is
determined for a principal ideal by any -complete language.

deg ( )

Note that the second equivalence was already mentioned in the definition
of the recursiveness of a -degree.

In order to see the first equivalence assume that ( ) = IN for
some recursive language . Then = for some IN. But if is recursive
then also = is.

For the other direction let a recursive language be given. Define the language
:= ( ) , the functions were defined in Section 2.3. It is

easy to see that is recursive and that ( ) = = IN :
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(a) The principal ideals are exactly the ideals which have a -
complete language. (b) The recursively presentable principal ideals are exactly
the ideals which have a recursive -complete language.

11

: ( ) = IN . This finishes the proof of the
fact that the class ( ) is recursively presentable if and only if is recursive.

By Propositions 2.1 and 2.2 the results for the polynomial time many-one de-
grees stated in Theorem 2.1 can be transfered to the principal ideals immediately.

A , or simply , is a nonempty set of languages such that if lan-
guages and are in then each language with is also in .
In other words, an ideal is a nonempty set of languages which is closed under join
und closed downward. The name follows the notation in Lattice Theory, see
for example Grätzer [Gr78].

The following proposition shows the relation between between ideals and prin-
cipal ideals.

(a) Let a principal ideal ( ) be given. is -complete for ( )
because is in ( ) and by definition all languages in ( ) are -reducible
to . It remains to show that ( ) is an ideal. Let ( ) and

. Then by the supremum property of the join. By the
transitivity of it follows that ( ). Therefore, ( ) is an ideal.

For the other direction let an ideal have a -complete language . It will
be shown that = ( ). It holds ( ) because every language in
is -reducible to . And it holds ( ) because and I is closed
downward.
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Part (b) follows from part (a) and Proposition 2.2.
The two trivial principal ideals and will be also be called

. Like in the case of principal ideals it is easy to see that the ideal P contains
the two trivial ideals and every nontrivial ideal contains P.

Some examples of classes are given which are ideals but which are not princi-
pal ideals or not known to be principal ideals.

Classes like UP (defined in [Va76]), BPP, RP (both defined in [Gi77]), FewP
(defined as FNP in [Al86]), and AM (defined in [Ba85]), are easily shown
to be (recursively presentable) ideals. These classes are not known to be
principal ideals, see [Si82, Kow84, AS86b, HH88, Hem88, AS89].

In Proposition 2.5 it will be shown that pairwise intersections of nontrivial
(recursively presentable) ideals are nontrivial (recursively presentable) ide-
als, like (for 1) or ZPP = RP co-RP. Generally, it is not
known if such an intersection is a principal ideal. For a discussion of this
question for the class NP co-NP see [Si82, Kow84, HI85, Hem88, AS89].

(Effective) infinite unions of increasing sequences of (recursively presentable)
ideals, like the class of languages of the Polynomial Time Hierarchy PH=

and the class of languages of the Boolean Hierarchy BH= NP(n),
are (recursively presentable) ideals which are in general not known to be
principal ideals. For the original definitions of PH and BH see [St77, Wr77,
CG*88].

Let the class ELEMENTARY be the union -EXPTIME, for the defini-
tion of the classes -EXPTIME for 1 see the examples of principal ide-
als in Section 2.5. The class ELEMENTARY is a (recursively presentable)
ideal which is provably not a principal ideal because by the Time Hierarchy
Theorem of [HS65] it can be shown for each 1 that -EXPTIME is a
proper subset of ( + 1)-EXPTIME.

The class of all recursive languages is a countable ideal but neither a prin-
cipal ideal nor a recursively presentable ideal.

The class P/poly defined by Karp and Lipton in [KL80, KL82] can easily be
shown to be an ideal. It is not countable, but for example P/poly NP is a
countable ideal.
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Proposition 2.4

Proof.

Proposition 2.5

(a) Every recursively presentable ideal is a countable ideal. (b)
Every principal ideal is a countable ideal. (c) There is a recursively presentable
ideal which is not a principal ideal. (d) There is a principal ideal which is not
recursively presentable. (e) There is an ideal which is not countable.

The following partial orders are distributive lattices, the one in
(b) is a sublattice of the one in (a), and the one in (c) is a sublattice of the ones in
(a) and (b).

(a) The inclusion order on the set of all nontrivial ideals.
(b) The inclusion order on the set of all nontrivial countable ideals.

(c) The inclusion order on the set of all nontrivial recursively presentable ideals.
In (a), (b) and (c) the infimum of two nontrivial ideals and is given by their
intersection, and the supremum is given by the smallest ideal containing both
and .

13

The class of all languages is an ideal but not countable.

The following classes are not ideals.

The class E = DTIME(2lin) is recursively presentable, has a -complete
language, and is closed under join but is not an ideal because it is not closed
downward.

A polynomial time many-one degree is an ideal if and only if it is one of the
two trivial degrees because otherwise it is not closed downward.

For two -incomparable recursive languages the class ( )
( ) is recursively presentable and closed downward but is not an ideal

because it is not closed under join.

The relation of the different types of ideals introduced so far is described by
the following Proposition 2.4, see also Figure 2.

(a) Every recursively presentable class is by definition countable. (b) A
principal ideal ( ) is by Proposition 2.3 an ideal, and it is countable because
there are at most countably many -reductions. A witness for (c) is the class
ELEMENTARY, see the examples above, and a witness for (d) is according to
Propositions 2.2 and 2.3 any class ( ) for a non-recursive . A witness for (e)
is the class P/poly, see the examples above.
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recursively presentable principal ideals

recursively presentable ideals
principal ideals

countable ideals

ideals

Figure 2: Types of Ideals

(a) Let two nontrivial ideals and be given. It will be shown that
is a nontrivial ideal. Therefore, is the infimum of and . Because both

and contain the class P also the class contains P and is not empty. Let
for two languages , then both and contain

and . Therefore, they contain also by their property of being an ideal. This
shows that is a nontrivial ideal. The supremum of and is the class

= : . It is easy to see that this class is an
ideal, that it contains both and , and that it is contained in every ideal containing
both and . For the distributivity let be as above and let be contained
in . Now it is shown that the supremum of = and = equals

. and and therefore also their supremum are contained in . For the other
direction it obviously suffices to show that for every language in the principal
ideal ( ) is the supremum of two principal ideals in and , respectively.
By definition of there exist sets such that , in
other words ( ) is contained in the supremum of ( ) and ( ). By the
distributivity of the principal ideals there are languages ( ) ( )
such that ( ) is the supremum of ( ) and ( ).

(b) By the property of a sublattice to be a lattice it suffices to observe that for
two given countable nontrivial ideals and the classes and from (a) are
countable. The distributivity follows like in (a).

(c) It suffices like in (b) to show that for two recursively presentable ideals
= IN and = IN (for recursive languages and )
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Theorem 2.2 (Ambos-Spies 1986)

Theorem 2.3 (Shinoda & Slaman 1990)

Proposition 2.6

exact pair theorems

For a recursively presentable ideal there
exist two recursive languages and such that ( ) ( ).

For a countable ideal there exist two
languages and such that ( ) ( ).

(a) The nontrivial countable ideals are exactly the pairwise in-
tersections of the nontrivial principal ideals. (b) The nontrivial recursively pre-
sentable ideals are exactly the pairwise intersections of the nontrivial recursively
presentable principal ideals.
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the classes and from (a) are also recursively presentable. Define to
be the recursive language and for all with it
holds that . It will be shown that this construction
guarantees that = IN . The inclusion from left to right is obvious.
For the other direction consider a fixed : if is infinite, then it is also an
(infinite) language of both and , and if is finite then it is in P and therefore
in . This shows = IN . To represent the class define to
be the language ( ) , where was defined
in Section 2.3. It is easy to check that is recursive, and by construction it holds
that = IN . The distributivity follows like in (a).

The following two results – called – of Ambos-Spies in
[AS86b] and Shinoda and Slaman in [ShS90] relate the notions of ideals and prin-
cipal ideals more closely. The latter was shown to hold for the polynomial time
Turing reducibility but the proof is also valid for the many-one case.

=

=

For the nontrivial ideals the two Theorems 2.2 and 2.3 can by Proposition 2.5
be expressed the following way.

Consider nondeterministic Turing machines as presented for example in [BDG88].
In this thesis it is additionally assumed for a Turing machine that for a state and
a tupel of symbols read by the heads at most two transitions are specified by the
transition function, and also it is assumed that the transition function is given as
a linear list. This way it is guaranteed that if nondeterminism appears during a
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0
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1
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Figure 3: Computation tree

computation the computation branches into exactly two independent computations
which can be distinguished as the left computation and the right computation.

Let a polynomial time nondeterministic Turing machine be a nondeterministic
Turing machine (of the special kind above) for which there is a polynomial
such that computes for each input on every computation path at most ( )
steps.

Let a be a – not necessarily balanced – ordered binary tree
(i. e. each inner node has a left subtree and a right subtree) where the inner nodes
have no labels, and the leaves are labeled with 0 or 1. A formal definition of
ordered trees is given for example in [HU79]. An example of a computation tree
is shown in Figure 3.

It is clear that each polynomial time nondeterministic Turing machine on
an input produces a computation tree ( ) by starting at the root, adding a
binary node – for the left and the right computation – each time a nondeterministic
branching is encountered, and writing in the case of termination a 0 (for rejecting)
or a 1 (for accepting) on the corresponding leaf.

Note that for a computation only the nondeterministic steps and the output bits
are recorded in the computation tree, not the deterministic steps and also not any
information about the configurations.

The following definition is similar to the definition of the functions in Sec-
tion 2.3. Let nondeterministic Turing machines (of the special kind above) be
coded in some straightforward way by words of . Therefore, each word can
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3.1 The Definition of Predicate Classes

M

x z

x i

x i

M i

M

i

M i T M;x T M ;x x

T � T ;

T

�

;

F

M L M

x L M F T M;x :

F F L M

M

x L M

M x x L M

F

predicate class

predicate

For a predicate and a polynomial time nondeterministic Turing
machine define the language by

Let the , short , be the set of languages
for which is a polynomial time nondeterministic Turing machine.

17

be assumed to describe a nondeterministic Turing machine. Let be the Turing
machine which simulates on input the machine described by with the time
bound + , i.e. it cancels – with a rejecting state – on every computation path
the computation after + steps if the computation has not already terminated on
that path. Note that this enumeration (for IN) of nondeterministic Turing
machines has the following properties: is a polynomial time nondeterminis-
tic Turing machine for every , and for every polynomial time nondeterministic
Turing machine there is an such that ( ) = ( ) for all .

The following definition will be used only for examples, not for results. For
a computation tree let the rational number ( ) [0 1] be the probability to
reach a leaf with label 1 if one moves from the root of to a leaf, tossing a coin on
every inner node. For example, the computation tree in Figure 3 has the -value

.

In this chapter the notion of a will be defined and will be shown to
be equivalent to the notion of a principal ideal.

Let a (for computation trees) be a function from the set of computation
trees to the set 0 1 . Note that a predicate could also be considered as a tree
language.

( )

( ) ( ( )) = 1

predicate class accepted by – P ( )

In other words, membership of in ( ) is decided the following way:
construct the computation tree produced by on input , and let be in ( )
if and only if the -value of the computation tree is 1.

The following examples, especially the first, may clarify the definition above.



1

1

1
2

maj

�

2

2

�

�

� � �

�

�

l

r

l

odd odd

a a

H

H

H

H

�

�

�

�

A

A

A

A

A

A

�

�

�

�

�

�

A

A

A

A

A

�

�

�

�

�

Predicate Classes and Promise Classes

T

T

L

M x L

M x x L

T M;x

F T T

F

T

T

F

F F T

T

T � T > �

F T

F F T

18 Part I

Figure 4: The left and the right subtree

NP is the set of languages for which there is a polynomial time nonde-
terministic Turing machine such that if and only if there is an
accepting computation path of on input , or equivalently, if and
only if in ( ) there is a leaf with label 1. Therefore, NP is accepted by
the predicate which is 1 for a computation tree if and only if has a
leaf with label 1, in other words, NP = – P.

The class co-NP is the set of complements of languages in NP. Therefore,
co-NP is accepted by the predicate which is 1 for a computation tree if
and only if all leaves in have label 0.

P can easily be shown to be accepted by the predicate for computation
trees which is 1 if and only if the leftmost leaf in the tree has label 1.

By definition of the class P in [PZ83] it holds P = – P where ( ) =
1 if and only if for the tree the number of leaves with label 1 is odd.

By definition in [Gi77] the class PP is accepted by the predicate which is
1 for a tree if and only if ( ) , for the definition of the function
see Section 2.7. It is easy to show that PP is also accepted by the (different)
predicate which is 1 for a tree if and only if there are more leaves
with label 1 than leaves with label 0.

By the alternation characterization of PSPACE in [CKS81] one has PSPACE
= – P, where ( ) is the value of the Boolean evaluation of the formula
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Proposition 3.1

Proof.

3.2 The Characterization of Predicate Classes

recursive predicates
recursive

trivial

The following sets of classes are equal: (a) the trivial predicate
classes, (b) the trivial principal ideals, (c) the trivial recursive predicate classes,
(d) the trivial recursively presentable principal ideals.
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given by for which the inner nodes are alternatingly interpreted as con-
junction and disjunction gates.

The class D = NP(2), originally defined in [PY82], is the class consisting of
the languages which are an intersection of a language in NP and a language
in co-NP. The class D can easily be shown to be accepted by the following
predicate : for a single-leaf tree has the (arbitrary) value 0, and for
a non-single-leaf tree has the value 1 if and only if the left subtree
– see Figure 4 – has a leaf with label 1 and the right subtree does not have
a leaf with label 1.

The constructions in [Her92a] imply definitions for many predicates which
accept well-known complexity classes, for example the -, - and -
classes of the Polynomial Time Hierarchy.

By a usual encoding of trees into words one can consider a recursive function
on words to be a recursive function on computation trees and vice versa. Let the
set of be the set of the recursive functions from computation
trees to 0 1 and call a predicate class if it is accepted by some recursive
predicate. All examples of predicate classes given above are recursive.

Call a predicate class if it is accepted by one of the two constant predicates.

If is the constant-0 predicate then for a every polynomial time nonde-
terministic Turing machine the language ( ) is empty. Therefore, – P =

= ( ). Likewise, – P = = ( ) if is the constant-1 predicate.
This shows already the equality of the sets in (a) and (b). For (c) and (d) it suf-
fices to observe that the two trivial predicate classes are recursive and that the two
trivial principal ideals are recursively presentable.

The first main result is stated.
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(a) The predicate classes are exactly the principal ideals. (b) The
recursive predicate classes are exactly the recursively presentable principal ideals.

Every predicate class is a principal ideal.
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Note that the direction from left to right of part (a) of the theorem says that
every predicate of any recursive or non-recursive complexity accepts a complexity
class which has the ’nice’ properties of a principal ideal: with respect to it has
a complete set and is closed downward.

First part (a) with its two directions will be proven, part (b) will follow
easily.
Proof of part (a), direction :

Fix a predicate . By Proposition 3.1 it can be assumed w.l.o.g. that is not
constant-1. By the properties of the machines , see Section 2.7, one has the
following enumeration of – P :

– P = ( ) IN

For the predicate a language will be defined the following way (like this
was done for NP in [BGS75, Har78, BDG88]):

:= 0 = + and ( ( )) = 1

It will be shown that for all

– P = ( )

It will be observed first that is an element of – P : consider the following
polynomial time nondeterministic Turing machine : for an input first
checks if encodes a triple 0 with = + ; if this is not the case then

produces by nondeterminism a computation tree with ( ) = 0, otherwise
it simulates the computation of on input for steps, branching each time

branches. By construction the computation tree ( 0 ) is identi-
cal to the computation tree ( ). Therefore, 0 ( )

( ( 0 )) = 1 ( ( )) = 1 0 by
definition of . This means ( ) = and therefore – P. Now
the above equality – P = ( ) IN = ( ) is easy to see: Let

( ) be a language in – P, and remember that the running time of on



i+

Σ

Σ

j j

�

�

@

@

�

�

@

@

�

�

@

@

�

�

@

@

�

�

Predicate Classes

j j

h i

2 �

2 � � 2

2

2 () 2 () 2

�

6

�

2

� 2

i

i

x i

F F

p

i

F

F

p

i

p

m

F

p

m

F

p

m

F

f

u

F F f

A

p

m

A

p

m

x x i g x

g x z ; x;

K g L M K

L M K

B K B K f

M x f x

M f x B F

x B f x K x L M

A G

A

A

A G :

A

B

A B A g

Every principal ideal is a predicate class.
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word encoded by a comb
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Figure 5: Comb, encoding 0001

input is bounded by + . Consider the function which for an input com-
putes in polynomial time the tripel ( ) := 0 . By the definition of

the function is a polynomial time many-one reduction from ( ) to .
Therefore, ( ) ( ). Let for the other direction of the above equation

( ), i.e. via a function FP. Then the polynomial time
nondeterministic Turing machine which for an input first computes ( )
and then runs on input ( ) shows that – P because by construction

( ) ( ). This finishes the proof of the
above equation.
Proof of part (a), direction :

Define a to be a computation tree which has the special form that the left
successor of each inner node is a leaf. The is the word
consisting of the sequence of leaf labels of these left successors of inner nodes,
starting at the top, see Figure 5.

For a language let be the predicate which is 1 for a tree if and only if the
tree is a comb which encodes a word from .

To prove that every principal ideal is a predicate class it suffices to show that
for all languages =

( ) = – P

Note that the case = is already covered by Proposition 3.1.
In order to show the inclusion from left to right of the above equation let
( ) be given, i.e. is many-one reducible to via a function FP. Now let
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Predicate Classes and Promise Classes
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g x x B g x A x L M

B G L M G

M

g x L M g x A g

x M

M

A

x L M g x A L M A

K

F G A
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The following partial orders are distributive upper semi-lattices,
the one in (b) is an upper semi-sublattice of the one in (a).

(a) The inclusion order on the set of all nontrivial predicate classes.
(b) The inclusion order on the set of all nontrivial recursive predicate classes. This
upper semi-lattice is additionally dense.

promise class

promise function promise function

22 Part I

be the polynomial time nondeterministic Turing machine which on an input
first computes ( ) and then by nondeterminism produces a comb which encodes

( ). Now of course ( ) ( ), this
means – P. For the other direction let a language ( ) – P
for a polynomial time nondeterministic Turing machine be given. A function

FP will be constructed such that ( ) ( ) . Let
be the function computed by the following polynomial time deterministic Turing
machine: on input it checks if produces a comb, note that this can be done
in deterministic polynomial time; if does not produce a comb then the machine
outputs a word not in , otherwise it outputs the word encoded by the comb. By
construction ( ) ( ) . Therefore, ( ) ( ). This
shows the above equation.
Proof of part (b).

By Propositions 2.2 and 3.1 it suffices to observe that the two constructions
in the proof of (a) keep recursiveness, i.e. the language is recursive if the
predicate is, and the predicate is recursive if the language is.

With Theorem 3.1 (and Proposition 3.1) one can immediately transfer Corol-
lary 2.2 to the predicate classes.

In this chapter the notion of a will be defined and will be shown to
be equivalent to the notion of a countable ideal.

Extend the notion of a predicate to that of a partial predicate which will be called
here: let a be a function from the set of com-

putation trees to the 3-element set 0 1 , the constant- function is excluded.
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promise problem

For a promise function and a polynomial time nondeterministic
Turing machine say that if for all words . In
the case that respects define the language by

For every promise function define the , in short
, to be the set of languages for which is a polynomial time non-

deterministic Turing machine which respects . Call a promise class if
it is accepted by some recursive promise function.

(a) Every predicate class is a promise class. (b) Every recursive
predicate class is a recursive promise class.
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This definition of a promise function can be considered as a special case of the
general concept defined in [ESY84] and [Se88].

respects ( ( )) =
( )

( ) ( ( )) = 1

promise class accepted by
– P ( )

recursive

The examples below may clarify Definition 4.1. Note that if one considers a
predicate as a promise function not having in its image then the two definitions
of – P in Definitions 3.1 and 4.1 coincide. Therefore, the following Proposition
4.1 holds.

The following examples of recursive promise classes are not known to be pred-
icate classes.

UP is the set of languages for which there is a polynomial time nondeter-
ministic Turing machine such that for every input there is at most one
accepting path of on input and (if fulfills this condition) if
and only if there is exactly one accepting path of on input . This means
that UP = – P for the promise function which has for a computation
tree the value 0 if does not have a leaf with label 1, which has the value
1 if has exactly one leaf with label 1, and which has the value otherwise.
See also [NR93] for this promise function accpeting UP.

BPP is equal to – P where ( ) has the value 0 1 or , depending
if the value of ( ) is in the interval [0 ], [ 1], or ] [, respectively.
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4.2 The Characterization of the Promise Classes

trivial

The following sets of classes are equal: (a) the trivial promise
classes, (b) the trivial ideals, (c) the trivial recursive promise classes, (d) the trivial
recursively presentable ideals.
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Let be the promise function which has the value 0 1 or , depending if
the the quotient of the number of the leaves with label 1 and the total number
of leaves in the tree is in the interval [0 ], [ 1], or ] [, respectively.
Then accepts the class BPP defined in [HHT92]. In that paper it is
shown that it is unlikely that BPP equals BPP.

RP is equal to – P where ( ) has the value 0 1, or , depending if the
value of ( ) is 0, in the interval [ 1], or in the interval ]0 [, respectively.

FewP, defined as FNP in [Al86], is the class of languages in NP with at
most polynomially many accepting paths. FewP can be easily shown to be
accepted by the promise function which for a tree has the value 0 if there
are no leaves with label 1 in T, which has the value 1 if the number of leaves
with label 1 is 1 but does not exceed the depth of , and which has the
value otherwise.

Finite intersections of nontrivial promise classes like NP co-NP and ZPP
= RP co-RP will be shown to be promise classes in the following Lemma
4.1.

Call a promise class if it is accepted by a promise function which has not
both 0 and 1 in its image.

If a promise function does not contain 1 in its image then each language
( ) for a polynomial time nondeterministic Turing machine which respects

is empty. Such a machine always exists because it can be chosen to be the one
which computes for every input a fixed computation tree for which ( ) = 0,
remember that the constant- function was excluded to be a promise function.
Therefore, – P = . Likewise, – P = if the promise function does
not contain 0 in its image. This shows already the equality of the sets in (a) and
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Let be a promise function. is trivial if and only if does
not have both and in its image.

(a) The intersection of two nontrivial promise classes is a nontrivial
promise class. (b) The intersection of two nontrivial recursive promise classes is
a nontrivial recursive promise class.
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(b). For (c) and (d) it suffices to observe that the two trivial promise classes are
recursive and that the two trivial ideals are recursively presentable.

Note that the four sets in Proposition 4.2 above coincide with the four sets in
Proposition 3.1.

The next Proposition 4.3 is used in the proof of Lemma 4.1 and in the proof of
Theorem 4.1.

– P
0 1

The direction from right to left holds by the definition of trivial promise
classes. In order to prove the other direction it will be shown that if has both 0
and 1 in its image then it contains P: chose two computation trees and such
that ( ) = 0 and ( ) = 1 and consider a polynomial time deterministic Turing
machine . Let be the polynomial time nondeterministic Turing machine
which on input simulates , and if terminates with an accepting (rejecting)
state produces by nondeterminism the computation tree ( ). The language

( ) is by construction equal to the language accepted by . This shows that
P is contained in – P. Therefore, – P is not a trivial ideal by Proposition 4.2.

Before coming to the general characterization of promise classes the following
Lemma 4.1 is shown.

(a) Let two promise functions and be given which both have both 0
and 1 in their image. Define the following promise function : it has the value

for the two single-leaf computation trees und is determined for a non-single-leaf
tree by the left and right subtrees of (see Figure 4):

( ) :=
( ) if ( ) = ( )

otherwise

For the definition of see also Figure 6.
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1 1

0 0

0 1

( )

( )

Figure 6: Definition of ( )

Both and have both 0 and 1 in their image, i.e. there exist computation
trees for which ( ) = ( ) = 0 and ( ) = ( ) = 1. Then the
computation tree whose left subtree is ( ) and whose right subtree is ( ) has
the -value 0 (1). This means that has both 0 and 1 in its image, especially
it is not the constant- function. Therefore, by Proposition 4 3, – P is a
nontrivial promise class.

It will be shown that the definition of guarantees that

– P = – P – P

For the inclusion from left to right it will first be shown that each language in
– P is a language in – P. Let a polynomial time nondeterministic Turing

machine respect . Define to be the polynomial time nondeterministic
Turing machine which on input simulates the computation of on input
besides that it ignores the first branching (which exists because respects )
and only simulates the left computation. Note that the computation tree ( )
is the left subtree of ( ). Because respects it can by the definition
of be concluded that ( ( )) = and – moreover – ( ( )) =
1 ( ( )) = 1. This means that respects and ( ) =

( ). Therefore, the language ( ) is an element of – P. The same
way it is shown that each language in – P is a language in – P.

For the other direction of the equation above let a language – P – P
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(a) The promise classes are exactly the countable ideals. (b) The
recursive promise classes are exactly the recursively presentable ideals.

Every promise class is a countable ideal.

Every countable ideal is a promise class.
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be given. This means that there are two polynomial time nondeterministic Turing
machines and respecting and , respectively, such that = ( ) =

( ). Let be the polynomial time nondeterministic Turing machine which
on input first branches and then simulates on input in the left computation
and on input in the right computation. By construction respects
and = ( ). This shows that every language – P – P is in

– P and finishes the proof of the above equation.
For part (b) it suffices to observe that if in the proof of (a) the promise functions

and are recursive then also is recursive.
The following theorem characterizes the promise classes.

First part (a) with its two directions will be proven.
Proof of part (a), direction :

Let be a promise function. By Proposition 4.2 it can w.l.o.g. be assumed that
containes 0 in its image. It will be shown that with respect to -reducibility
– P is closed downward and closed under join. To show that – P is closed

downward let a set be polynomial time many-one reducible via a reduction
function to a language ( ) where is a polynomial time nondeterministic
Turing machine which respects . Then also is in – P because = ( ),
where is the machine which for an input first computes ( ) and then simu-
lates on ( ), note that also respects . Therefore, – P is closed down-
ward with respect to -reducibility.

The closure under join is also easy to see: let be two polynomial time
nondeterministic Turing machines which respect . Then the following machine

also respects : on input 0 simulates on input , on input 1 it
simulates on input , and on the empty word as input it produces a tree for
which ( ) = 0. By construction ( ) = ( ) ( ). This shows that
the join of any two languages in – P is also a language in – P.

– P is countable because there are only countably many polynomial time
nondeterministic Turing machines.
Proof of part (a), direction :

For the two trivial ideals the statement holds by 4.2. For a given nontrivial
countable ideal let be the two languages for from the Theorem 2.3 of
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sentable ideal.

Every recursively presentable ideal is a recursive
promise class.

28 Part I

Slaman and Shinoda, i.e. = ( ) ( ). By Theorem 3.1 there are two
predicates and such that – P = ( ) and – P = ( ). Because

is nontrivial the two promise classes – P and – P are nontrivial promise
classes. Now by Lemma 4.1(a) also = ( ) ( ) = – P – P is a
(nontrivial) promise class.
Proof of part (b), direction :

Given a recursive promise function it is shown in part (a) that – P is an
ideal, it remains to show that – P is recursively presentable. If does not have
both 0 and 1 in its image then by Proposition 4.2 – P is a trivial recursively
presentable ideal. So it can w.l.o.g. be assumed that has both 0 and 1 in its
image. This implies by Proposition 4.3 that – P is not a trivial ideal, therefore P

– P.
First note that

– P = ( ) IN and respects

Construct – like this was done for RP and UP in [Ad78] and [AS89], respectively –
the following recursive language for which it will be shown that
IN = – P.

:= ( ( )) = 1 and for all with : ( ( )) =

It suffices to show that

IN = ( ) IN and respects

For every number IN: if respects then = ( ) by construction
of , otherwise is finite and therefore an element of P – P = ( )

IN and respects . This shows that – P = IN and finishes
the proof of part (b), direction .
Proof of part (b), direction :

The proof is analog to the one for part (a), direction , besides that Theo-
rem 2.2 of Ambos-Spies (instead of Theorem 2.3) and Lemma 4.1(b) (instead of
Lemma 4.1(a)) are used.
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recursive predicate classes

recursive promise classes
predicate classes

promise classes

Figure 7: The relation of predicate classes and promise classes

The following Corollary 4.1 combines Propositions 2.5 and 2.6 with Propositions
3.1 and 4.2 and Theorems 3.1 and 4.1.

The following Corollary 4.2 combines Proposition 2.4 with Theorems 3.1 and
4.1, see Figure 7.

In [Si82, Kow84, HI85, HH88, AS89] it was investigated whether promise
classes like UP, RP, BPP, and NP co-NP have -complete languages. The

(a) The nontrivial promise classes are exactly the pairwise inter-
sections of nontrivial predicate classes. The inclusion order on the set of nontriv-
ial promise classes is a distributive lattice. (b) The nontrivial recursive promise
classes are exactly the pairwise intersections of nontrivial recursive predicate
classes. The inclusion order on the set of nontrivial recursive promise classes
is a distributive lattice.

(a) The set of recursive predicate classes is a proper subset of the
set of recursive promise classes. (b) The set of recursive predicate classes is a
proper subset of the set of predicate classes. (c) The set of recursive promise
classes is a proper subset of the set of promise classes. (d) The set of predicate
classes is a proper subset of the set of promise classes. (e) There is a predicate
class which is not a recursive promise class. (f) There is a recursive promise class
which is not a predicate class.
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Predicate Classes and Promise Classes

5.1 Balanced Polynomial Time Turing Machines

5 Analogous Results for Other Nondeterministic Com-
putation Models

(a) A promise class has a -complete language if and only if it
is a predicate class. (b) A recursive promise class has a -complete language if
and only if it is a recursive predicate class.

and are recursive promise classes. is not a promise class.

corollaries

recursive
predicate classes, promise classes recursive promise classes

balanced

balanced predicate class accepted by

30 Part I

following consequence of Theorems 3.1 and 4.1 and Propositions 2.2 and 2.3 states
that this is the case if and only if the ’promise’ can be eliminated.

The next corollary follows from Theorem 4.1 and the facts stated before that
PH and BH are recursively presentable ideals and that E = DTIME(2lin) is recur-
sively presentable but not an ideal.

PH BH E

The two main results of this paper were shown in the preceeding Chapters 3 and
4. In this chapter some other models of nondeterministic computation will be
considered. For each model the notion of a predicate class is defined and an analog
of Theorem 3.1(a) is stated. The analoga will be called because their
proofs are similar to that of Theorem 3.1(a).

For the models of Sections 5.1, 5.2, and 5.3 also notions of
, and could easily be

defined in the obvious way, and analoga of Theorems 3.1(b), 4.1(a), and 4.1(b)
could be proven for each model.

Call a polynomial time nondeterministic Turing machine if for every
input the computation tree ( ) is balanced, i.e. all paths from the root of the
tree to a leaf have the same length. Note that also for this model the deterministic
steps are not recorded in the computation tree. Consider a predicate for balanced
computation trees. Note that can be characterized by a language of words of
length 2 for 1. Let the be the set of
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all languages ( ) such that is a balanced polynomial time nondeterministic
Turing machine.

Let be the nondeterministic Turing machine which on
input simulates the machine in the following way: it first computes the length

of the path from the root to the leftmost leaf of ( ) and then it simulates
on input with the following two additional features: if terminates with

result on some path with length smaller than it extends by nondeterminism the
computation so that every extended path has length and result ; if on the other
side the computation is already on level of the computation tree then only the
leftmost extending computation path is simulated. The enumeration has
the property that each is a balanced nondeterministic polynomial time Tur-
ing machine, and that for each balanced nondeterministic polynomial time Turing
machine there is an such that ( ) = ( ) for all .

For a given predicate for balanced computation trees, which is not constant-
1, define the language := 0 = + and ( ( )) = 1 ,
and show – like in Theorem 3.1 – that the balanced predicate class accepted by
is equal to ( ) For the other direction define for a given language =
the predicate on balanced computation trees characterized by the language

and = 2 , and show that ( ) is equal to the balanced
predicate class accepted by .

Predicates on balanced computation trees can be identified with languages consist-
ing of words of length 2 for 1. In [HL*93, HVW94, JMT94] a certain more
general concept of balanced computation trees was introduced for which there is a
one-one correspondence between languages and predicates on balanced computa-
tion trees of that more general type. It was shown that this approach is equivalent
to the following approach of looking at .

The following definition is equivalent to the one in [HL*93]. A language is
to a language if there exist two functions FP

such that
[ ( )][ ( )] . . . [ ( ( ))]
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where [ ( )] is defined to be the letter 0 if ( ) = and the letter 1 other-
wise. Let ( ) be the set of all languages polynomial time bit-reducible to ,
and call ( ) the . A characterization analogous
to the one in Theorem 3.1 is obtained.

First it is indicated that every bit-reducibility closure is prin-
cipal ideal, this direction of the corollary was already shown in [BCS92]. For a
given language = let be the language 0 =
( + + ) + and [ ( )][ ( )] . . . [ ( ( ))] , remember
from Section 2.3 that FP = IN . Like in the proof of Theorem 3.1 show
that

( ) = ( )

In order to see for example that is in ( ) let f be the function which
maps an input of the form 0 where = ( + + ) + to ( ).
And let be the function which maps an input of the form 0 where

= ( + + ) + to ( ) if is not greater than + , and to
otherwise. If the input is not of that form assumed in the two definitions above,

and can be defined such that [ ( )][ ( )] . . . [ ( ( ))] is a word not
in . It is easy to see that both and are in FP and that is polynomial time
bit-reducible to via and .

In order to see that every principal ideal is a bit-reducibility closure define for
a given language = the language := = 2 . It will be
shown that

( ) = ( )

Let be -reducible to via FP. Define to be the function which maps
a word to where = ( ) + 2 . And define to be the function which
maps a pair to a (fixed) word = if ( ) and the th bit of ( ) is
1, and to otherwise. It is easy to see that both and are in FP and that is
polynomial time bit-reducible to via and . This shows the inclusion from
left to right of the above equation. In order to see the other inclusion let a language
C be polynomial time bit-reducible to via two functions FP. Then
is -reducible to via the following function in FP: on input check if ( ) is
equal to for an of the form + 2 ; if this is not the case output a word which is
not in ; otherwise output the word [ ( )] [ ( )].
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5.3 Polynomial Time Nondeterministic Transducers

Analogous Results for Other Nondeterministic Computation Models

polynomial time nondeterministic transducer

transducer computation trees

transducer predicate class accepted
by

The transducer predicate classes are exactly the principal ideals.

The following sets of classes are equal:
(a) the set of principal ideals,

(b) the set of predicate classes,
(c) the set of balanced predicate classes,
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Call the following kind of polynomial time nondeterministic Turing machine a
: it is a polynomial time nondeter-

ministic Turing machine of the kind described in the introduction besides that it
outputs on each computation path not only 0 or 1 but a whole word. The compu-
tation trees ( ) of nondeterministic transducers are binary trees with words
as leaf labels. Call these trees .

Consider a predicate on transducer computation trees, and let for a poly-
nomial time nondeterministic transducer the language ( ) be defined by

( ) ( ( )) = 1. Let the
be the class of languages ( ) for which is a polynomial time nonde-

terministic transducer.

Let ( ) be the predicate which interprets for a transducer com-
putation tree the leaf labels as binary numbers and is 1 if and only if the largest
of them is odd (if and only if the largest of them appears only once in the tree).
Then – P = – P = by the results in [Wa87, Kr88] and [Pa84], respectively.
Likewise for the predicate which is 1 if and only if the length of the longest leaf
label in the transducer computation tree is odd it is easy to see that – P =
by the results in [Wa87, Kr88, Wa90].

Note that transducer predicate classes are a generalization of predicate classes:
identify all the words = . Then every predicate induces a transducer predicate –
accepting the same class – by reading as 0 and all other words as 1.

This shows already one direction of the following corollary, the other is proven
with basically the same proof as for Theorem 3.1.

Let at this point the following corollary summarize the results of Theorem
3.1(a) and Corollaries 5.1, 5.2, and 5.3.
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Fix any nonemtpty set , for example = 0 1 , = , = IN, or = ,

and consider the set of the functions from to . Define the polynomial
time many-one reducibility among these functions, i.e. for let

if there exists a function FP such that for all :

( ) = ( ( ))

see for example [Wa86a] and also [Vo94a, Vo94b] where this reducibility is called
. It is easy to see that is a preorder. For let ( ) be the

set and call ( ) a . Note that is
-complete for ( ).

Consider a function from the computation trees to . For a polynomial time
nondeterministic Turing machine let ( ) be the function which maps

to ( ( )), and let the , in short – P, be the
set of functions ( ) such that is a polynomial time nondeterministic Turing
machine.

For = 0 1 one has exactly the case of Chapter 3. Therefore,
the concept of -function classes is a generalization of the concept of predicate
classes. For = IN let be the function which maps a computation tree to the
number of 1’s in the tree, then – P = #P according to the definition in [Va79].
For = (the set of integers) let be the function which maps a computation
tree to the difference of the number of 1’s and the number of 0’s in the tree, then

– P = GapP according to the definition in [FFK94].
With a nearly identical proof like the one for Theorem 3.1 one has for every

nonempty set the following theorem.
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The -function transducer classes are exactly the principal -
ideals.

oracle polynomial time nondeterministic oracle- Turing
machine
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For a function from the computation trees to define the
function which maps an input of the form 0 where = + to

( ( )), and which maps all other inputs to a fixed value which is
in the image of otherwise. It can be shown like in the proof Theorem 3.1 that

– P = ( ).
For a principal ideal -ideal ( ) let be the function which maps a

computation tree to ( ) if is a comb which encodes , and maps to a fixed
value which is in the image of otherwise. Now it can be shown like in the
proof of Theorem 3.1 that ( ) = – P.

The function class notion can be extended in the obvious way to the nonde-
terministic transducers, see the previous section. Several well-known complexity
classes are IN-function transducer classes, for example the function classes OptP
and OptP[ (log )] from Krentel [Kr88]: let be the function which interprets
for a transducer computation tree the leaf labels as binary numbers and maps the
tree to the largest number of them. Then – P = OptP by definition of OptP (for
the maximization problems), and let be the function which maps a transducer
tree to the length of the longest leaf label in the tree, then it is easy to see that

– P = OptP[ (log )]. As another example let be the function which maps
the tree to the number of its different leaf labels. Then – P = Span-P according to
the definition in [KST89]. In Vollmer’s thesis [Vo94b] several other IN-function
transducer classes are investigated. In order to get an example of a -function
transducer class let be the function which maps a transducer computation tree
to the leaf label of the leftmost path. Then – P = FP.

Again, one has the following characterization (for every nonempty set ).

Consider the well-known concept of (nondeterministic) oracle Turing machines as
described for example in [BDG88]. Let be a language, will be called in the
following context an . A

is a nondeterministic oracle Turing machine equipped with
the oracle whose running time on every path is bounded by a polynomial in the
input length (the oracle questions are counted as one step). For a computation of
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Let be any language. Every predicate class relative to oracle
is a principal ideal.
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a polynomial time nondeterministic oracle-X Turing machine on an input
the computation tree ( ) is defined like in the unrelativized case, the

oracle questions are not recorded in ( ). Given a predicate on com-
putation trees, let ( ) be the language defined by ( )

( ( )) = 1, and let the
, in short – P , be the set of languages ( ) for which is a

polynomial time nondeterministic oracle- Turing machine.

Let be the predicate accepting NP, see the first example in Section
2.5. The class is by definition the predicate class accepted by relative to
oracle SAT, in other words = – P .

Let the nondeterministic oracle Turing machines be encoded by
words. Let be the nondeterministic oracle Turing machine which simulates
on input the nondeterministic oracle Turing machine encoded by with the
time bound of + steps, note that also the oracle questions are simulated. Let

be any oracle. Like in the unrelativized case it is easy to see that – P =
( ) IN . For a non-constant predicate define like in the proof of

Theorem 3.1 the language

:= 0 = + and ( ( )) = 1

and show that – P = ( ). Note that the reduction 0
from a language ( ) to does not need the oracle .

Note that the opposite direction of the statement of the above Corollary 5.7
holds if and only if the oracle is in P: If P then – P = – P for all
predicates , so the opposite direction holds by Theorem 3.1. If does not belong
to then every predicate class relative to oracle is either trivial or it contains
the language X, so it cannot be the class P. But P is a principal ideal.

Let be the predicate from the examples in Section 2.5 which for a computa-
tion tree has the value 1 if and only if the leftmost leaf in has label 1. It is easy to
see that P = – P for every oracle , where P is the set of languages which
can be computed in deterministic polynomial time with oracle . Therefore, the
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XCorollary 5.8 (Ambos-Spies 1986) For every oracle the class is a princi-
pal ideal.
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above Corollary 5.7 implies as a special case the following result of Ambos-Spies
in [AS86a] mentioned before.

P
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6.1 Predicate Classes Accepted by Languages

On the Acceptance Power of
Regular Languages

Part II

6 Predicate Classes Accepted by Regular Languages

In this part of the thesis predicate classes will be considered which are accepted
by a predicate of very low complexity: the predicates determined by a regular
language for the yields of computation trees.

The basic definitions and observations are presented in Chapter 6. Chapter 7
leads to a lemma about regular languages which is used in Chapter 8 to prove the
main result and its corollaries.

In Section 6.1 it will be shown how – in an obvious way – any language deter-
mines a predicate on computation trees and therefore determines a predicate class.
After the definition of in Section 6.2 some basic results about
predicate classes determined by regular languages are presented in Section 6.3.

For a computation tree let the , formally yield( ), be the word which
is the concatenation of the labels of the leaves of , read from left to right. For
example, the yield of the computation tree in Figure 3 is the word 00101100.

Given any language , one can consider as a predicate for computation
trees by the definition

( ) = 1 : yield( )

In other words, given a language , the predicate is determined for a com-
putation tree by looking at the yield of : if the yield is a word from then the
predicate has the value 1, otherwise it has the value 0.

For simplicity the predicate class – P will just be denoted as – P, this
should not cause confusion. Say that – P. Likewise denote the lan-
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guage ( ) (for a polynomial time nondeterministic Turing machine ) just
by ( ).

Let NP be the language which consists of the words which contain at
least one letter 1. Then obviously = where is the predicate
from Section 3.1 which accepts NP. In other words, NP – P = NP.

Likewise for the language which consists of the words which have more
1’s than 0’s it holds that = , where was one of the predicates
from Section 3.1 accepting PP. In other words, – P = PP.

In Part II of this thesis the predicate classes accepted by regular languages will
be considered. Regular languages were introduced by McCulloch and Pitts in
[MP43] and Kleene in [Kl56]. There are many equivalent characterizations of
regular languages, see for example [HU79], here they will be defined to be the
languages which are accepted by finite automata.

It follows the definition of finite automata and regular languages. To this for-
mal definition will only be refered in the proof of Lemma 7.3.

Define – like in [HU79] – a to be a quintuple = ( )
where is a finite set of , is the alphabet 0 1 , : is the

, is the , and is the set of
.

For every word a function : is defined the following
inductive way. Let denote the identity function, and let and be defined
by ( ) := ( ( ) 0) and ( ) := ( ( ) 1), respectively. The definition
reflects the idea that is the function which in the finite automaton starts with
a state and then follows the letters of , stopping in state ( ).

For a finite automaton = ( ) call ( ) the
. A language is called if it is accepted by a finite

automaton.



� �

maj

P

Σ Σ

Σ Π

trivial

l l

p

i

p

i

k

k

�

�

�

�

; f g � f g

� 2

� � � f � g f � g

f � g f � g

f g f g

�

R R

f j 2 Rg

Predicate Classes Accepted by Regular Languages

6.3 Predicate Classes Accepted by Regular Languages

< >

< >

L

< > < >

< >

< >

Y

< >

F F

< >

; � ; �

i

k S ; ; k <S; ; ; k >

k S

< ; ; k ; ; ; k >

< ; ; >

L L

41

First some examples of predicate classes accepted by regular languages will be
given:

The language NP consisting of the words which contain the letter 1 (de-
fined already in the examples of Section 6.1) is regular, i.e. NP is accepted
by the regular language NP . Note that the second example language
from Section 6.1 is not regular.

Define co-NP to be the complement of NP , i.e. the regular language
consisting of the words which only contain 0’s. By definition of co-NP the
language co-NP accepts co-NP.

Let P be the regular language which consists of the words starting with
letter 1. Then obviously = , where is the predicate from Section
3.1 which accepts P. This means P – P = P.

Call the languages which cannot distinguish any yields of computation trees
, these are the four (regular) languages , and , note

that the yield of a computation tree has at least length 1. It is easy to see
that these four languages are exactly the languages which accept the trivial
predicate classes.

In [HL*93] it is mentioned that for every IN there exist regular languages
accepting the classes and of the Polynomial Time Hierarchy. Also
there the existence of a regular language accepting the class PSPACE is
shown.

For a number 2 and a subset 0 . . . 1 let 0 . . . 1
be the regular language consisting of the words for which the number of 1’s
is equal modulo to an element of . Then, by definition of MOD P, see
[BG92], the language 1 . . . 1 0 . . . 1 accepts the predi-
cate class MOD P. As a special case, the language 1 0 1 accepts
by definition P.

Let be the set of all nontrivial regular languages, and let – P be the set of
classes – P , i.e. the set of all predicate classes which are accepted by
a nontrivial regular language.
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Theorem 6.1 ([HL*93])

Remark.

Proposition 6.1

Proof. A;B A B A B

A B A B

A A B

M M

x

M x

T M;x A T M ;x A T M ;x

A B x

M

M L M L M A A B

B A B

A B

A B C

A B

M

M L M

L M C v;w

v C w C

M M M

x M x

M M M

v � A � B w

P is the minimum of the inclusion order on , and
is its maximum .

The inclusion order on is an upper semi-lattice.
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The following Theorem 6.1 is due to Hertrampf, Lautemann, Schwentick, Voll-
mer and Wagner in [HL*93].

– P
PSPACE

Note that it is not known whether P = PSPACE. In that case – P
would – by the above theorem – only consist of the class P, and the following
Proposition 6.1 and even Theorem 8.1 in Chapter 8 would hold for trivial reasons.

– P

Given two languages , let be the language 0 1 . It will
be shown that – P is the smallest class containing both – P and – P.

In order to show that – P – P let a polynomial time nondeter-
ministic Turing machine be given. Define to be the polynomial time non-
deterministic Turing machine which on input first produces by nondetermin-
ism a 0 in the leftmost path, and then simulates on input . By construction
yield( ( )) yield( ( )) 0 yield( ( ))

for all inputs . In other words, for every polynomial time nondeterminis-
tic Turing machine there is polynomial time nondeterministic Turing machine

such that ( ) = ( ). Therefore, – P – P. The inclusion
– P – P holds similarly.

In order to show that – P is the smallest class among the predicate classes
accepted by nontrivial regular languages containing both – P and – P let – P
be another nontrivial (regular) language containing – P and – P. It will be
shown that for every polynomial time nondeterministic Turing machine there
is polynomial time nondeterministic Turing machine such that ( ) =

( ). Because is not trivial one can choose two words with length
1 such that and . Given a polynomial time nondeterministic

Turing machine , define ( ) to be the polynomial time nondeterministic
Turing machine which for an input first checks if on input has more than
one computation path. If yes then ( ) simulates besides that it does not
compute the leftmost path; otherwise it produces by nondeterminism a computa-
tion tree with yield if ( ) and a computation tree with yield if
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( ). Because – P contains both – P and – P there exist polyno-
mial time nondeterministic Turing machines and such that yield( )

yield( ) , and yield( ) yield( ) , re-
spectively. Now let be the polynomial time nondeterministic Turing machine
which for an input first looks if the bit of the leftmost path of the computation
of on the input is 0 or 1 and then simulates or , respectively. By con-
struction is yield( ) yield( ) . In other words, for
every polynomial time nondeterministic Turing machine there is polynomial
time nondeterministic Turing machine such that ( ) = ( ). This
shows – P – P.

It will be shown in Chapter 8 that if a nontrivial regular language does not
accept P then at least one of the classes NP, co-NP or MOD P for prime is
contained in – P. For the proof the following detour to formal languages will be
made.

In Section 7.1 a reducibility among languages will be introduced which implies
the inclusion of the corresponding accepted predicate classes. It will be shown in
Section 7.3 that for the regular languages this reducibility is related to the concept
of which will be defined in Section 7.2 .

Let an be a mapping which maps the letters 0 and 1 to
non-empty words. An ( -free) homomorphism is extended to words inductively
by ( ) := and ( ) := ( ) ( ) for a letter and a word , see also [HU79].

For two languages and the will be defined, the name
stands for . It is not known to the author whether the concept
is defined in the literature.

o-h-reducible
offsets

( )
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The o-h-reducibility on the set of all languages is a preorder.

Let be languages. If is o-h-reducible to then
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A language is o-h-reducible to itself via two empty offsets and the ho-
momorphism with (0) = 0 and (1) = 1. This shows the reflexivity of the
relation, the transitivity is also shown in a straightforward way as follows. Let
a language be o-h-reducible to a language via the offsets and and the
homomorphism determined by , and let be o-h-reducible to a language via
the offsets and and the homomorphism . Then is o-h-reducible to via
the offsets ( ) and ( ) and the homomorphism with (0) = ( (0))
and (1) = ( (1)) because it holds ( )

( ) ( ( )) ( ) . Finally note that is -free because and
are.

The following easy lemma motivates the definition o-h-reducibility.

– P
– P

Let be o-h-reducible to via the offsets and and the homomor-
phism . For a given polynomial time nondeterministic Turing machine a poly-
nomial time nondeterministic Turing machine will be constructed such that

( ) = ( ). On input simulates the computation of on input ,
producing everytime rejects or accepts by nondeterminism a computation tree
whose yield is h(0) or h(1), respectively. And if ( ) is not the empty word,
produces additionally in the leftmost (rightmost) computation path a tree whose
yield is ( ). By construction yield( ( )) yield( ( )) .
This shows – P – P.

Let, like in [BGu82, GW87], 1–NP (2–NP) be the class accepted by
the regular language ( ) which consists of the words which contain exactly
one 1 (exactly two 1’s). The lemma above shows that 1–NP 2–NP because
is o-h-reducible to via the homomorphism with (0) = 0 (1) = 1 and the
offsets = 1 and = . The languages and also show that the opposite
direction of the Lemma 7.1 above does not hold because it is easy to see that is
not o-h-reducible to but 1–NP = 2–NP was shown in [GW87].

Remember that for a number 2 and a subset 0 . . . 1 the
language 0 . . . 1 was defined (in the last example of Section 6.3) to
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be the regular language consisting of the words for which the number of 1’s is equal
modulo to an element of . Note that if is empty or equal to 0 . . . 1 then

0 . . . 1 is trivial. The following Lemma 7.2 gives some examples
of o-h-reducibility among the languages of the type 0 . . . 1 where

is a nonempty and proper subset of 0 . . . 1 for some 2. The relation
of being a proper subset will be expressed in the following text by .

0 . . . 1 2
0 . . . 1 0 . . . 1

0 . . . 1

The proof is by induction on the factorization length of . If is a prime
then take := . If = for 1 then consider the sets :=

0 2 . . . ( 1) := 1 + 1 2 + 1 . . . ( 1) + 1 . . . :=
1 2 1 3 1 . . . 1 . Two cases (1) and (2) are distinguished:

(1) Assume that for some one 0 . . . 1 the set is neither empty
nor equal to . Define the nonempty set 0 . . . 1 by :=

+ . Now the language 0 . . . 1 is o-h-reducible
to the language 0 . . . 1 via the homomorphism determined by

(0) := 0 (1) := 1 and the offsets 1 and : it is easy to see that 1 ( )
0 . . . 1 for all , and that 0 . . . 1 1 ( )

0 . . . 1 , this means that 0 . . . 1
1 ( ) 0 . . . 1 .

(2) Assume that for all 0 . . . 1 the set is either empty
or equal to . Then for all numbers IN it holds: modulo is equal to
a number in if and only if + modulo is equal to a number in . Let

be the set 0 . . . 1 . Note that is a nonempty and proper sub-
set of 0 . . . 1 because is a nonempty and proper subset of 0 . . .
1 . Now it is easy to see that for all numbers IN it holds that modulo

is equal to a number in if and only if modulo is equal to a number in
, in other words: 0 . . . 1 = 0 . . . 1 . Therefore,

0 . . . 1 is o-h-reducible to 0 . . . 1 by the reflexivity
of the o-h-reducibility.

In both cases (1) and (2) there exists by the induction assumption and by the
transitivity of the o-h-reducibility a prime and a nonempty set 0 . . . 1
such that 0 . . . 1 is o-h-reducible to 0 . . . 1 .
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Definition 7.2 (Eilenberg 1976)

Lemma 7.3

Proof.

7.2 Generalized Definite Languages

7.3 The Main Lemma
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Call a language if there
is a natural number such that for all words of length and for all words

(of any length) it holds

A regular language is generalized definite if and only if none of
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for a prime is o-h-reducible to .
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The following concept is defined implicitly in Eilenberg [Ei76], see also [Heu89].

generalized definite

In other words, a language is generalized definite if and only if there is a
number such that the membership in for a word which has length 2
depends only on the prefix and the suffix of of length .

The finite and the cofinite languages are examples of generalized definite lan-
guages. The language P , which was defined to consist of the words start-
ing with letter 1, is an example of a generalized definite language which is nei-
ther finite nor cofinite. Note that a generalized definite language is a regular
language, but for example none of the regular languages NP , co-NP and

0 . . . 1 for a nonempty set 0 . . . 1 for 2 is gener-
alized definite.

The following Lemma 7.3 is a lemma about regular languages, independent of
questions about polynomial time computations.

NP co-NP 0 . . . 1
0 . . . 1

To see the direction = let NP be o-h-reducible to a (regular) lan-
guage via two offsets and an -free homomorphism determined by (0) =

and (1) = . Given IN, consider the words 0 00 and 0 10 . Because
the first word is not in NP and the second is in NP one has by the o-h-
reducibility that (0 00 ) = (0 ) (0 ) is not in and (0 ) (0 )
is in . But the length of (0 ) and the length of (0 ) are both . Be-
cause this holds for every IN is not generalized definite. For co-NP and
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0 . . . 1 for a nonempty set 0 . . . 1 with prime the
proof is analog.

For the other direction of the lemma assume that a regular language is not
generalized definite. It will be shown that one of the languages NP , co-NP ,
or 0 . . . 1 for a nonempty set 0 . . . 1 for a prime is
o-h-reducible to .

Let be accepted by the finite automaton ( 0 1 ). For the defi-
nition of a finite automaton and the definition of the function : (for
every word ) see Section 6.2. Assume w.l.o.g. that every state is reachable from

, i.e. for every state there is a word such that ( ) = .
Because is finite, for every word and every state the iteration of start-

ing in state has to run into a cycle sometime, more formally: for every word
and every state there exist two numbers 1 such that . . . . . .
are different states, = , = ( ) for 1 and = ( ). Assume
that for some other word the set ( ) . . . ( ) has elements from both
and . It is shown that in this case a language of the type 0 . . . 1
for a nonempty set 0 . . . 1 for some prime is o-h-reducible to :
let := 1 + and define the nonempty set 0 . . . 1 to be the set

and ( ) . Take a word for which ( ) = .
Define the homomorphism by (0) = and (1) = . Now it is clear that for
every word : 0 . . . 1 ( ) , this means that
the language 0 . . . 1 is o-h-reducible to , and by Lemma 7.2 and
the transitivity of the o-h-reducibility also a language 0 . . . 1 for a
nonempty set 0 . . . 1 for some prime is o-h-reducible to .

From now on assume that for all states and for all words like above the
set ( ), . . ., ( ) consists of states which are either all in or all in .

Because is not generalized definite there exist words such that and
have length and but . There are at most mappings

. Therefore, there exist words such that = , = and
= , i.e. is the identity function on the set : = ( )

- the set of states by .
Consider for some word and a state reachable by the set of states . . .
. . . of the iteration of starting with = . By assumption the states

( ) . . . ( ) do belong either all to or all to . Consider the first case
and assume that for some . . . the state ( ) is not in . Then,
taking a word for which ( ) = and defining a homomorphism by (0) =
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and (1) = , it is easy to see that NP ( ) , i.e.
NP is o-h-reducible to . Likewise, co-NP is o-h-reducible to if none of

the states ( ) . . . ( ) is in and there is some . . . such
that ( ) is in .

So the only case left is that for each word and each state reachable by
the following holds: ( ) ( ) .

Take the word from above for which but . Because has
length there exist three words such that = , = and

( ) = ( ). Define the homomorphism by (0) = and (1) = .
It will be shown that NP ( ) , i.e. NP is o-h–
reducible to . The implication is obvious, and for consider a word

NP , i.e. = 0 1 for some IN. Then the state ( ) is reachable
by and ( ) = ( ) = ( ) . Therefore, by the above
assumption applied to = ( ) and = ( ) also ( ) =

( ) = ( ( )) .

In Section 8.1 the main result of Part II is presented. The Sections 8.2 and 8.3 will
interpret the main result as a non-density result. In Section 8.4 the analog of the
main result is shown for the log-space case.

First the following Lemma 8.1 is shown which can be considered as an easy con-
sequence of the results and methods of Beigel and Gill in [BG92].

0 . . .
1 0 . . . 1 MOD P

The results and methods of [BG92] are applied. Fix a prime and a
nonempty set 0 . . . 1 . Because MOD P is by definition equal to

1 . . . 1 0 . . . 1 – P it needs to be proven:

0 . . . 1 – P = 1 . . . 1 0 . . . 1 – P
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To show the inclusion from left to right let . . . be the numbers in 0 . . .
1 which are not in . Given a nondeterministic machine construct by Prop-
erty 2.2. of [BG92] the machine which for an input has ( + )( +

) . . . ( + ) accepting paths if has accepting paths on input . Because
is prime for every input the number of accepting paths of is equal modulo to
an element of iff the number of accepting paths of is not equal modulo to
0. Therefore, 0 . . . 1 – P 1 . . . 1 0 . . . 1 – P.

For the inclusion from right to left let and 0 . . . 1 . Then by
Theorem 6.3. of [BG92] there is for every machine a machine such that the
number of accepting paths of on an input is always equal modulo to either

or and it is equal to if and only if the number of accepting paths of on input
is not equal modulo to 0. Therefore, 1 . . . 1 0 . . . 1 – P

0 . . . 1 – P.
Now the main result is stated.

– P = P – P NP co-NP
MOD P

Consider a nontrivial regular language . Assume that is generalized
definite, and let the number be the constant for from Definition 7.2, i.e. for a
word with length 2 membership in depends only on its prefix and its suffix
of length . It will be shown that accepts P. P is of course a subset of – P, and
in order to see that – P is a subset of P let a polynomial time nondeterministic
Turing machine be given. It suffices to show that ( ) is in P. Consider
the following deterministic Turing machine which works in polynomial time.
Because is fixed and is constant it can be assumed that has a list of all words
in of length 2 . For an input the machine first visits by a left traversal (see
for example [AHU74]) deterministicly the 2 leftmost leaves of ( ), note that
the left traversal of ( ) can be done by simulating . If recognizes that
the yield of ( ) has length 2 then it terminates, and it terminates with
an accepting state if and only if it finds the yield of ( ) in its list of words
belonging to . If recognizes that the yield of ( ) has length 2 it
memorizes the prefix of length of the yield of ( ), and visits with a right
traversal the rightmost leaves of ( ) in order to find the suffix of length
of the yield of ( ). Finally, looks up in its list whether the concatenation
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Corollary 8.1

Lemma 8.2 (Toda 1991)

Sketch of proof.

8.2 A Non-Density Result on the Assumption that PH does not
Collapse

A
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:

generalized definite

Let be a nontrivial regular language. If is not equal to
then contains at least one of the classes , , or for prime.

collapses to collapses

If for some prime is contained in or
then PH collapses to .
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belongs to , and accepts if and only if this is the case. By construction and by the
property of to be generalized definite it follows that accepts the input if and
only if the yield of ( ) is in . In other words, accepts ( ). This shows
that ( ) is in P. Because this holds for every polynomial time nondeterministic
Turing machine the class – P is a subset of P.

If on the other hand is not generalized definite then by Lemma 7.3 at least one
of the languages NP , co-NP or 0 . . . 1 for a nonempty set

0 . . . 1 for a prime is o-h-reducible to . Therefore, by Lemma 7.1 at
least one of the classes NP – P = NP, co-NP – P = co-NP or 0 . . . 1 – P
for a nonempty set 0 . . . 1 for a prime is contained in – P. By
Lemma 8.1, at least one of the classes NP, co-NP, or MOD P is contained in – P.

The theorem can be stated in the following weaker form in which the notion
is not used.

– P P
– P NP co-NP MOD P

Remember that PH is the union of the classes of the Polynomial Time Hierarchy.
Say that PH if PH = , and say that PH if there is some

IN such that PH collapses to .
The following Lemma 8.2 can be seen as an easy consequence of the results

of Toda in [To91].

MOD P NP co-NP

Consider the case = 2. Assuming P NP one has with the
notation of [KST93] (BP is the operator corresponding to BPP, i.e. BP P = BPP):

PH BP P BP NP
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8.3 A Non-Density Result for the Relativized Case

A Result for Classes Accepted by Regular Languages

If PH does not collapse (to ) then and are two atoms
of the inclusion order on .

family
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The first inclusion holds by a result in [To91], the second inclusion holds by the
assumption, and the third inclusion holds by a result in [Ba85]. Therefore, PH =

= . The same argumentation goes through for primes = 2, see [TO92].
Because MOD P is closed under complements, see [BG92], the lemma also holds
for the assumption P co-NP.

The assumption that PH does not collapse is stronger than the assumption
P = NP but still can be considered reasonable. The next corollary states that a
nondensity-result would follow as a consequence.

NP co-NP
– P

First note that if PH does not collapse (to ) then P, NP, and co-NP are
different from each other. Now assume that a class – P for a language
is properly between P and NP. Because in that case – P is not equal to P the
class – P contains, by the previous Theorem 8.1, one of the classes NP, co-NP,
MOD P for prime. By the assumption – P cannot contain NP, and also it cannot
contain co-NP, because then NP would properly contain its set of complements,
a set-theoretic contradiction. So the only case left is that – P contains a class
MOD P for prime. But then also NP contains MOD P, and PH collapses to by
the previous Lemma 8.2. This shows that if PH does not collapse (to ) then there
cannot be a class in – P properly between P and NP. The same argumentation
holds for co-NP.

Consider the relativized versions of the classes and of the Polynomial Time
Hierarchy. For all oracles the first class is a subset of the second but there is an
oracle for which this inclusion is proper, see [BGS75, St77, Has86]. The same
holds for the relativized versions of many pairs of complexity classes. This concept
of comparing complexity classes was formalized by Zachos in [Za88] to define a
partial order on relativizable complexity classes which expresses that an inclusion
is oracle independent. This concept will be presented now.

Obviously the definitions of Section 6.1 can be relativized for every oracle ,
see Section 5.5. This way for each language and each oracle the class – P
is defined. Let a be a mapping from the set of oracles to classes. Families
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Proposition 8.1

Proof.

Corollary 8.3

Proof.
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The partial order on is an upper semi–lattice which
has a minimum, a maximum, an infinite chain and an infinite antichain.

corollary

The upper semi-lattice on is atomic. The atoms are the
pairwise different families , and for prime.
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will be indicated by parenthesis around the oracle variable, for example the family
which maps an oracle to the class NP will just be denoted by NP . This
way each language defines the family – P , say that

– P
On the set of families accepted by nontrivial regular languages the partial order
will be defined. Let be two languages, define – P – P if

– P – P holds for every oracle . The partial order corresponds to
the idea of oracle independent inclusion of relativizable complexity classes. The
concept and the symbol is the same as the one of Zachos in [Za88] though here
the definition is for families instead of classes.

Let – P be the set of families which are accepted by a nontrivial regular
language.

– P

The upper semi-lattice part holds by the oracle-independent construction
of in the proof of Proposition 6.1. The minimum and maximum are P
and PSPACE , respectively, by Theorem 6.1 which is relativizable. The chain is
given by the families because was shown for every IN
in [St77], and = by the results in [BGS75, Has86]. To obtain an
antichain consider the families MOD P for prime: by a result in [BG92] there
exists for any two primes = an oracle such that MOD P is not a subset of
MOD P , what is another way of saying that the families MOD P for prime
are pairwise –incomparable.

A natural question for a given partial order is to ask about density, see for
example [La75]. The following result says that the partial order on – P
is atomic and therefore not dense, see Figure 8.3. The result is called ˚
because its proof is nearly the same as the proof of Theorem 8.1.

– P
NP co-NP MOD P

By the results in [BGS75, Yao85, Bei91, Tor91] the families NP , co-NP
and MOD P for prime are pairwise incomparable and therefore they are dif-
ferent from P . The corollary is now proven by a relativized version of the proof
of Theorem 8.1.
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Figure 8: shown as a diagram

P

NP co-NP MOD P MOD P MOD P . . .

inside the triangle: the other families of – P

PSPACE

Let a be a nondeterministic Turing
machine (of the kind described in the introduction) for which there is a constant

such that for an input the computation terminates on every path and does not
use more than log ( ) cells of the working tape on every path. Because ev-
ery log-space nondeterministic Turing machine is a polynomial time one, the
computation tree ( ) for an input and the language ( ) for a predi-
cate on computation trees is already defined. Let the

, in short – L, be the set of languages ( ) such that is a
log-space nondeterministic Turing machine. Let – L be the log-space predicate
class accepted by .

With identical proofs the Lemmata 7.1 and 8.1 have their following analoga 8.3
and 8.4 for the log-space case. For the proof of Lemma 8.4 results from [BD*92]
(instead from [BG92]) are applied.
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Lemma 8.3

Lemma 8.4

Corollary 8.4

Sketch of proof.

Let be two languages. If is o-h-reducible to then
.

For a nonempty set for a prime the language
accepts .

Let be a nontrivial regular language. If is not equal to
then contains at least one of the classes or for prime.
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– L
– L

0 . . . 1
0 . . . 1 MOD L

The following corollary is the log-space analog of Theorem 8.1, it is stated in
the form of Corollary 8.1.

– L L
– L NL MOD L

The proof is basically the same as the one for 8.1. If is
generalized definite then it follows – L = L with the analog argumentation like
in the proof of Theorem 8.1, besides that the left and the right traversal algorithm
have to be done with a look-ahead of 2 and nodes, respectively.

If is not generalized definite then the same argumentation with Lemma 7.3
applies like in the proof of Theorem 8.1, using Lemmata 8.3 and 8.4. Additionally
it is known from [Im88, Sz88] that NL = co-NL.
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