Inaugural Dissertation
Zur
Erlangung der Doktorwirde
der
Naturwissenschaftlich-M athemati schen Gesamtfakul tat
der
Ruprecht-Karls-Universitat

Heidelberg

vorgelegt von
Diplom-Mathematiker Bernd Borchert
aus Lunne im Emsland

1994

FUr meaine Eltern

Predicate Classes, Promise Classes, and the
Acceptance Power of Regular Languages

Gutachter: Prof. Dr. Klaus Ambos-Spies, Universitat Heidelberg
Prof. Dr. Klaus W. Wagner, Universitat Wirzburg

Tag der mundlichen Prifung: 20. Dezember 1994

Preface

This Ph.D. thesis was written in the time from January 1991 until July 1994 and
is submitted to the Department of Mathematics of the University of Heidelberg.
It contributes some results to Structural Complexity Theory which isasubfield of
Theoretical Computer Science.

First of al | have to thank my advisor Prof. Klaus Ambos-Spies for his con-
tinuing guidance and support. He al'so gave several crucia hints for the results of
thisthesis.

Also | have to thank Prof. Juris Hartmanis and his former students Richard
Chang, Suresh Chari, Desh Ranjan, and Pankaj Rohatgi. Theinitial resultsleading
to thisthesiswere observed while wasvisiting Cornell University in spring 1992.

Thisistheright placeto expressgratitude to Prof. Steven Homer and Prof. Ak-
ihiro Kanamori from Boston University who six years ago led me to the interest-
ing field of Structural Complexity Theory. Also | would like to thank Prof. Klaus
Weihrauch, University of Hagen, for supervising my first diplomathesis, and Prof.
Wolfgang Schonfeld, IBM Heidelberg, for hisguidancewhile | wasworkingin his
group.

For helpful discussions| would like to thank Andreas Eisenblatter, Ulrich Her-
trampf, Birgit Jenner, Klaus-Jorn Lange, Pierre McKenzie, Wolfgang Merkle, An-
dre Nies, Thomas Schwentick, Nikolai Vereshchagin, and Heribert Vollmer.

| am grateful to Prof. Klaus W. Wagner, University of Wirzburg, who agreed
to referee thisthesis.

Theresults of Part | of the thesis were presented at the 9th Annual |EEE Con-
ference of Structure in Complexity Theory 1994, see [Bo94b], ajournal version
will be submitted. The results of Part Il were presented at the 11th Annual Sym-
posium of Theoretical Aspects of Computer Science (STACS) 1994, see[B0944],
ajournal version will appear in Theoretical Computer Science.

Heidelberg, July 1994

Contents

1

I ntroduction

1.1 Outlineof Part!
1.2 Oulineof Partl
1.3 RelaedWork

Predicate Classes and Promise Classes

Preliminaries

21 Order-TheoreticNotions
2.2 Recursively PresentableClasses
2.3 Polynomial Time Many-One Reducibility
2.4 Polynomial Time Many-OneDegrees
25 Principa ldeals. oo
26 ldedls.
27 ComputationTrees o

Predicate Classes
3.1 TheDe¢finition of PredicateClasses
3.2 The Characterization of PredicateClasses

Promise Classes

4.1 TheDé¢finitionof PromiseClasses
4.2 The Characterization of thePromiseClasses
4.3 Conseguences of the Characterization of the Promise Classes . .

(6)] NN P -

0 N ~N O 01 Ol

22
22
24
29

Analogous Resultsfor Other Nondeter ministic Computation Models 30

5.1 Balanced Polynomia Time Turing Machines
5.2 Polynomial Time Bit-Reducibility
5.3 Polynomia Time Nondeterministic Transducers
54 Polynomia TimeFunctionClasses.
55 Rdativized PredicateClasses

30

On the Acceptance Power of Regular Languages 39

6 Predicate Classes Accepted by Regular Languages 39
6.1 Predicate ClassesAcceptedby Languages 39
6.2 TheDefinition of Regular Languages 40
6.3 Predicate Classes Accepted by Regular Languages 41
7 A Lemma about Regular L anguages 43
7.1 o-h-Reducibility, 43
7.2 Generdlized DefiniteLanguages 46
7.3 TheManLemma 46
8 A Result for Classes Accepted by Regular Languages 48
81 TheManResult 48
8.2 A Non-Density Result on the Assumption that PH does not Collapse 50
8.3 A Non-Density Result for the RelativizedCase 51
8.4 AnAnaogous Result for theLog-SpaceCase 53
References 55
Subject Index 63
Symbol Index 64
Index of Classes 65

1 Introduction

Part | of this thesis observes a close connection between two basic concepts of
Structural Complexity Theory, both introduced by Karp in [Ka72]:

1. The concept of polynomial time many-one reducibility which since its defi-
nition was studied intensively, see for example [La75, AS854].

2. Theconcept of polynomial time nondeter ministic computation, intheslightly
more general sence as it is used to define not only the class NP (like in the
original paper) but also classeslike ©P, PP, UP, BPP, and RP.

Part |1 of this thesis relates the concepts of Part | to the notion of a regular
language.

Moredetailed outlines of the two partsand referencesto related work aregiven
below.

1.1 Outlineof Part |

Several complexity classes —like NP, &P, and PP — are defined (say accepted) by
a predicate on computation trees produced by polynomial time nondeterministic
Turing machine computations. Such classes will be called predicate classes. For
example NP is accepted by the predicate on computation trees which is 1 if and
only if the tree contains a leaf with label 1. As another example, ©P is accepted
by the predicate on computation trees which is 1 if and only if the tree contains
an odd number of leaves with label 1. Call a class a principal ideal if with re-
spect to polynomial time many-one reducibility it has a complete set and is closed
downward. It iswell known that the example classes NP, ¢ P, and PP are principal
ideals. This observation can be generalized:

e The set of predicate classes is equal to the set of principal ideals.

After the preliminary definitions and observations in Chapter 2 this theorem
will be shown in Chapter 3.

In Chapter 4 complexity classes like UP, BPP, and RP will be considered.
These classes have in common that their origina definition can be seen the fol-
lowing way: thereisa {0, 1, | }-valued function — called promise function — on

2 Introduction

computation trees where it is presumed (=" promised’) for each machine accept-
ing a language in the class that for each input the promise function is not 1 for
the corresponding computation tree. Such classes will be called promise classes.
For example UP isdefined (say accepted) by the promise function on computation
trees which has the value 0 if the tree does not contain a leaf with label 1, which
hasthe value 1 if the tree contains exactly one leaf with label 1, and which hasthe
value L if thetree contains morethan one leaf with label 1. Call aclassanideal if
with respect to polynomial time many-one reducibility it is closed downward and
closed under join. It is easy to see that the example classes UP, BPP, and RP are
countable ideals. Like before, this observation can be generalized:

e The set of promise classesisequal to the set of countable ideals.

The two characterizations of predicate classes and promise classes described
above—and their corresponding versionsfor the recursive case— are the two main
resultsof Part | of thisthesis. In Chapter 5 analogous resultsfor some other models
of nondeterministic computation will be shown.

1.2 Oulineof Part 11

In Part 11 predicates with a low complexity will be considered: the predicates
which are determined by aregular language for the the yields of computation trees
(theyield is the left-to-right concatenation of the leaf labels). For example, NP is
accepted by the predicate determined by the regular language L which consists of
the words containing at least one letter 1.

The main result of Part [l will be that if the class determined by a (nontrivial)
regular language L is not equal to P then the class contains at least one of the
classes NP, co-NP and MOD,,P for p prime.

This will be interpreted as a non-density result in two ways. (1) on the as-
sumption that the Polynomial Time Hierarchy does not collapse, and (2) for the
relativized case.

Additionally, the analog of the main result for the log-space case is shown.

1.3 Related Work

Similar work like in Part | was donein Bovet, Crescenzi, and Silvestri in [BCS91,
BCS92], by Vereshchaginin [Ve93], by Hertrampf, Lautemann, Schwentick, Voll-

Introduction 3

mer, and Wagner in [HL*93], and by Jenner, McKenzie, and Thérien in [IMT94].
Like in Part | of this thesis also in these papers the definability of complexity
classes with the help of nondeterministic computation models is investigated.
The classes determined by regular languages, see Part 11, were first considered
by Hertrampf, Lautemann, Schwentick, Vollmer, and Wagner in [HL*93]. These
classes are a specia case (namely the associative case) of the classes determined
by locally definable acceptance types defined by Hertrampf in [Her92a, Her94b].
On the other hand the mod-classes and the classes determined by finite acceptance
types, considered systematicly in [Her90, Bei91, BG92] and [GW87, Her944], re-
spectively, are classes which are by definition determined by regular languages.

Introduction

Part |

Predicate Classes and Promise
Classes

2 Preiminaries

First some standard order-theoretic notions will be defined in Section 2.1. The
well-known concept of recursively presentable classes will be defined in Section
2.2. Then the polynomial time many-one reducibility and its notions of degrees,
principal ideals and ideals are presented in the Sections 2.3 — 2.6. Section 2.7
introduces computation trees.

2.1 Order-Theoretic Notions

The following order-theoretic notions are standard, see for example [Gr78].

A binaryrelation R onaset S isasubset of S x .S. Only theinfix notation will
beused, i.e. « Ry standsfor (z,y) € R. A binary relation R isreflexiveif « Rx for
al z € 9, itistransitiveif from xRy and y Rz it follows xRz, it is symmetric if
from z Ry it follows y Rx, and it isantisymmetric if from = Ry and y Rz it follows
x = y. A preorder is areflexive and transitive binary relation on a nonempty set.
A partial order is apreorder which is antisymmetric, and an equivalence relation
is a preorder which is symmetric. A binary relation R on a set S and a binary
relation R’ on aset S’ are called isomorphic if there exists an isomorphism, i.e. a
bijective mapping : from S to S’ such that + Ry <~ i(x)R'i(y).

Let C be apreorder onaset S. Anelement s € S iscaled C-complete for
asubset 77 C Sifs € Tandt C s holdsfor al ¢t € T. A C-minimum (C-
maximum) isan element s € S suchthat s C ¢ (t CE s) foral ¢t € S. For two
elements s, s’ € S aC-supremum (C-infimum) of s and s’ isan element ¢ € §
suchthat s Ctand s’ C ¢ (t E sandt C s’) and if also for another element ¢’ € S
itholdsthat s C #and s’ C #' (# C sand ¢ C s')thent C ' (¢ C ¢). Ifitis
clear from the context that oneis dealing with a preorder C, a C—supremum will
just be called supremum, this will be done the same way for other order-theoretic
notions.

6 Part | Predicate Classes and Promise Classes

Let C beapartial order on aset S. Note that for apartia order the supremum
(infimum) of two elements, if it exists, isunique. The partial order C is called an
upper semi-lattice if the supremum exists for every pair of elements, itiscalled a
lattice if both supremum and infimum exist for every pair of elements. A binary
relation =’ on a set S’ is called an (upper semi-) sublattice of an (upper semi-)
latticeC onaset S if 5" isasubset of S, T/ istherestriction of C to .S’ x S/, and
S’isclosed under C-suprema(and C-infima). Notethat an (upper semi-) sublattice
isan (upper semi-) lattice. An (upper semi-) latticeis called distributive if for all
elementst,a,b € S the following holds: if t = s, where s is the supremum of
a and b, then there are elements «’, v’ € S suchthat «’ C a, ¥’ C b, and ¢ isthe
supremum of «’ and v/,

Let C be a partial order on a set S. Two elements s, s’ € S are called C-
comparableif s C s’ or s’ C s. A subset S’ C S iscaled aC-chain if any two
elementsof S are comparable, S’ iscalled an C-antichainif any two elementsare
incomparable. If the minimum m € S existsthen an element s # m iscalled an
C-atomif noelement ¢t # m, s existssuchthat t C s. Thepartial order C iscalled
atomic if for every element ¢t # m there isan atom s such that s C ¢. A partial
order C is caled dense if for any two comparable but different elements there is
an element properly between them, formally: for al s, s’ for which s C s’ but not
s' C sthereisat suchthat s C ¢t and ¢ C s’ but neither ¢t C s nor s’ C ¢. A partia
order which contains an atom is obviously not dense because there is no element
properly between the minimum and the atom.

2.2 Recursively Presentable Classes

Inthisthesisalanguagewill always be aset of wordsover thealphabet > = {0, 1},
for basic definitions like the one of words see for example [HU79]. A classisa
set of languages.

Let z; be the (z + 1)st word of ™ in the length-lexicographic order, see for
example[AS89]. For alanguage A andan: € IN define A® to bethelanguage {« |
(z;,x) € A} where (,) isausual bijective polynomial time computable pairing
function, see for example [BDGB88]. Call, like in [BDG88, AS89], a complexity
class C' recursively presentable if C' = {A® | ; € IN} for some recursive A, for
the notion of arecursive language see for example [HU79].

Preliminaries 7

2.3 Polynomial Time Many-One Reducibility

Let FP denote the class of functions 2 — %* which can be computed by a Tur-
ing machine running in deterministic polynomial time, see for example [HU79,
BDG88] for amoredetailed definition. Let <2 denote the polynomial time many-
one reducibility among languages, i.e. A < B if there existsafunction f € FP
suchthat x € A < f(x) € B for al words =. The original definition of this
reducibility is from Karp in [Ka72]. It is easy to see that the binary relation <?,
isapreorder on the set of all languages. Definethejoin A & B of two languages
A, B to bethe language 0A U 1B. Thejoin A ¢ B isa <P -supremum of A and
B: A/B <t A¢ BandforadllanguagesC: A,B <! C' <— A& B <! C.

The following enumeration of FP will be useful. Let in some straightforward
way the deterministic Turing machines which compute functions ¥ — X" be
encoded by words. Define for every the function f’ € FP to be the function
computed by the following polynomial time deterministic Turing machine: on
input & the machine simul ates the computation of the deterministic Turing machine
encoded by z; and cancel sthe simulation—with output € —if the simulated machine
has not terminated after |z|" +¢ steps. Itiseasy to seethat FP = {f | : € IN} and
that the function which maps (z;, «) to /() isrecursive.

2.4 Polynomial TimeMany-One Degrees

For the notions of this section see for example [La75, AS85a]. Two languages
A, B arecalled polynomial time many-one equivalent, inshort A =2 B, if A <P,
Band B <P A. Notethat =? isanequivaencerelationontheset of al languages.
Let the polynomial time many-one degree of a language A, in short deg?, (A4), be
the set of languages polynomial time many-one equivalent to 4, and let <} ,
denote the partial order on the <? -degrees defined by

deg’, (4) <7, i, deg;, (B) : <= A < B.

Note that this definition does not depend on the choice of A and B.
The degree deg), (4 & B) is the unique <7 , -supremum of deg’ (4) and
deg? (B). Thisshowsthat <7, isan upper semi-lattice on the set of al polyno-

mial time many-one degrees.

The two degrees {0} and {Z*} are called the trivial degrees. Call a degree
deg?, (A) recursiveif A and therefore all languages in deg?, (A) are recursive.

8 Part | Predicate Classes and Promise Classes

Many results are known for the partial order <} ,. . In this thesis only the

following basic results about density and distributivity due to Ladner in [La75]
and Ambos-Spiesin [AS85a], respectively, will be considered.

Theorem 2.1 (Ladner 1975, Ambos-Spies 1985a) The following partial orders
are distributive upper semi-lattices, the one in (b) is an upper semi-sublattice of
theonein (a).

(a) The partial order <7, ., onthe set of all nontrivial polynomial time many-one
degrees.

(b) The partial order <” . onthe set of the nontrivial recursive polynomial time

—m,deg

many-one degrees. This upper semi-lattice isadditionally dense.

2.5 Principal Ideals

Call aset I of languages aprincipal <’ -ideal, or smply principal ideal, if there
existsalanguage A suchthat I = <? (4) .= {B C X" | B <! A}. Thereare
several other names for the class <? (A), sometimesit is called lower cone of A
or downward closure of A. For the choice of the name principal ideal see the next
section. Note that the language A is <? -completefor <2 (A).

Thefollowing classes are examples of principal ideals.

e The class NP should be mentioned first as an example of a principal ideal.
Complete languages for NP, like the problem SAT, were — for polynomial
time Turing reducibility — first presented by Cook in [Co71], their <P -
completeness was shown in [Ka72, Le73]. For alist of <? -complete prob-
lems for NP see [GJ79]. The fact that for example SAT is not only <7 -
complete for NP but also every language <? -reducible to SAT isin NP is

gasy to see.

e Thetwo principa ideals {0} = <? (), {Z*} = <P (Z*) will be caled trivial
principal ideals.

e TheclassPisaprincipal idea <? (A)where A isany languageinP—{{),Z"}.
P containsthetwo trivial principal idealsand iscontained in every nontrivial
principal ideal, see Figure 1.

Préeliminaries 9

~_

P
RN
{0y {z%

Figure 1. Thetwo trivia principal ideals and P

e Not only P and NP but aso all other classes ¢ and N? of the Polyno-
mial Time Hierarchy are principal ideals, the existence of < -complete lan-
guages was shown in [St77, Wr77].

o Let X beany language. Then the class P* consisting of all languages com-
putablein polynomial time with oracle X (seefor example[Co71, BDG88]
and also Section 5.5) isaprincipa (many-one) ideal according to theresults
in [AS86a], see also Corollary 5.8. Asa specia case, the classes A? of the
Polynomial Time Hierarchy are principal ideals.

e TheclassesNP(n) and co-NP(n) of the Boolean Hierarchy are principal ide-
als, the existence of <* -complete languages was shown in [CG* 88].

e Counting classes like PP, C-P, MOD,,P, &P = MOD,P, US = 1-NP are
principal ideals, for the original definitions see [Gi77, Wa86b, BG92, PZ83,
BGu82, GwaT7)].

o Theexponential time classes EXPTIME = DTIME(2P9!Y) and NEXPTIME

= NTIME(2PO!Y) areprincipal ideals. More generally, the classes k-EXPTIME

opoly opoly _
= DTIME(2:) and k-NEXPTIME = NTIME(2 -), where in

both cases the exponentiation tower has height #, can easily be shown to be
principal ideals for every & > 1. For the exact definitions see for example
[J090].

10 Part | Predicate Classes and Promise Classes

There is a strong connection between the inclusion order on the principal ideals
and the partial order <? on the polynomial time many-one degrees.

Proposition 2.1 For all languages A, B it holds:

<h(A) € <7(B) <= A <) B < deg) (4) <, 4, deg], (B).

Proof. Note that the second equivalence holds by the definition of <7 , . In
order to see the first equivalence assume that <? (4) C <? (B). Because A €
<P (A) it holds by the assumption that A € <? (B), thisshows A <? B. If on
the other side A <? B then for each C' < A it holds by the transitivity of <2
that C' <P B, thisshows <? (4) C <? (B) O

In other words, the inclusion order on the principal ideals isisomorphic to the
<P -order on the polynomial time many-one degrees. It is clear by the proof that
this isomorphism between the partial order on the degrees and the inclusion order
on the principal ideals exists not only for <? but for every preorder.

Thefollowing corollary follows immediately from Proposition 2.1.

Corollary 2.1 For all languages A4, B it holds:
<h(4)=<0(B) <= A =] B < deg, (4) = deg] (B).

By the following proposition the property of being recursively presentable is
determined for aprincipal ideal by any <’ -complete |language.

Proposition 2.2 Let A bealanguage. <? (A) isrecursively presentable <— A
isrecursive <> deg’ (A) isrecursive.

Proof. Notethat the second equivalence was already mentioned in the definition
of the recursiveness of a <? -degree.

In order to see the first equivalence assume that <? (A) = {B®Y | 7 € IN} for
some recursive language B. Then A = BY) for some j € IN. But if B isrecursive
thenalso BY) = A is,

For the other direction et arecursivelanguage A begiven. Definethelanguage
C = {{z;,z) | ff(z) € A}, thefunctions f] were defined in Section 2.3. It is
easy to seethat C isrecursiveand that <? (A) ={B | B <, A} ={B | Ji € IN:

Préeliminaries 11

Ve:x € B < fl(z) € A} = {C® | i € IN}. Thisfinishesthe proof of the
fact that the class <? (A) isrecursively presentable if and only if A isrecursive.
0

By Propositions 2.1 and 2.2 the results for the polynomial time many-one de-
grees stated in Theorem 2.1 can be transfered to the principal ideals immediately.

Corollary 2.2 The following partial orders are distributive upper semi-lattices.
The onein (b) is an upper semi-sublattice of the onein (a).
(a) Theinclusion order on the set of all nontrivial principal ideals.

(b) Theinclusion order onthe set of all nontrivial recursively presentable principal
ideals. Thisupper semi-lattice is additionally dense.

2.6 ldeals

A <P -ideal, or smply ideal, is a nonempty set I of languages such that if lan-
guages A and B arein I then each language C' with C' < A ¢ B isasoin I.
In other words, an ideal isanonempty set of languages which is closed under join
und closed downward. The nameideal follows the notation in Lattice Theory, see
for example Gratzer [Gr78].

Thefollowing proposition showsthe relation between between idealsand prin-
cipal ideals.

Proposition 2.3 (a) The principal ideals are exactly the ideals which have a <7 -
complete language. (b) The recursively presentable principal ideals are exactly
the ideals which have a recursive < -complete language.

Proof. (a) Let aprincipal ideal <? (A) begiven. A is <P -complete for <? (A)
because A isin <? (A) and by definition all languagesin <? (A) are <’ -reducible
to A. It remains to show that <? (A) isanidedl. Let B, B’ € <! (A) and C' <f,
B& B.ThenC <P B& B’ <P A by the supremum property of thejoin. By the
trangitivity of <? it followsthat C' € <? (A). Therefore, <P (A) isanideal.

For the other direction let anideal I have a <? -complete language A. It will
be shown that I = < (A). It holds I C <’ (A) because every language in
is <P -reducibleto A. And it holds <? (A) C I because A € I and | is closed
downward.

12 Part | Predicate Classes and Promise Classes

Part (b) follows from part (a) and Proposition 2.2. 0

The two trivia principal ideals {#} and {Z*} will be also be caled trivial
ideals. Likein the case of principal idealsit iseasy to seethat theideal P contains
the two trivial ideals and every nontrivia ideal contains P,

Some examples of classes are given which are ideals but which are not princi-
pal ideals or not known to be principal ideals.

o Classeslike UP (definedin[Var6]), BPP, RP (both defined in [Gi77]), FewP
(defined as FNP in [AI86]), and AM (defined in [Ba85]), are easily shown
to be (recursively presentable) ideals. These classes are not known to be
principal ideals, see [Si82, Kow84, AS86b, HH88, Hem88, AS89].

¢ In Proposition 2.5 it will be shown that pairwise intersections of nontrivial
(recursively presentable) ideals are nontrivial (recursively presentable) ide-
as, like 2 N M? (for n > 1) or ZPP = RP N co-RP. Generally, it is not
known if such an intersection is a principal ideal. For a discussion of this
guestion for the classNP N co-NP see[Si82, Kow84, HI85, Hem88, AS39].

¢ (Effective) infiniteunionsof increasing sequencesof (recursively presentable)
ideals, like the class of languages of the Polynomia Time Hierarchy PH=
U,en 2F and theclass of languages of the Boolean Hierarchy BH= | J,,cnyNP(N),
are (recursively presentable) ideals which are in general not known to be
principal ideals. For the original definitions of PH and BH see [St77, Wr77,
CG*88].

e LettheclassELEMENTARY betheunionlJ,s k-EXPTIME, for the defini-
tion of the classes k-EXPTIME for k > 1 see the examples of principal ide-
alsin Section 2.5. The classELEMENTARY isa(recursively presentable)
ideal whichis provably not aprincipal ideal because by the Time Hierarchy
Theorem of [HS65] it can be shown for each £ > 1 that k-EXPTIME is a
proper subset of (k& + 1)-EXPTIME.

e The class of all recursive languages is a countable ideal but neither a prin-
cipal ideal nor arecursively presentableideal.

e The classP/poly defined by Karp and Liptonin [KL80, KL82] can easily be
shown to be anideal. It is not countable, but for example P/poly N NPisa
countable ideal.

Préeliminaries 13

e Theclassof all languagesisan ideal but not countable.
The following classes are not ideals.

o ThedlassE = DTIME(2'M) is recursively presentable, has a <7, -complete
language, and is closed under join but isnot an ideal becauseit isnot closed
downward.

¢ A polynomial time many-one degreeisanideal if and only if itisone of the
two trivial degrees because otherwise it is not closed downward.

e For two <” -incomparable recursive languages A, B the class <? (4) U
<P (B) isrecursively presentable and closed downward but is not an ideal
because it is not closed under join.

The relation of the different types of ideals introduced so far is described by
the following Proposition 2.4, see aso Figure 2.

Proposition 2.4 (a) Every recursively presentable ideal is a countable ideal. (b)
Every principal ideal is a countable ideal. (c) There is a recursively presentable
ideal which is not a principal ideal. (d) Thereis a principal ideal which is not
recursively presentable. (e) Thereis an ideal which isnot countable.

Proof. (@) Every recursively presentable class is by definition countable. (b) A
principal ideal <? (A) is by Proposition 2.3 anideal, and it is countable because
there are at most countably many <? -reductions. A witness for (c) is the class
ELEMENTARY, see the examples above, and a witness for (d) is according to
Propositions 2.2 and 2.3 any class <* (A4) for anon-recursive A. A witnessfor (€)
isthe class P/poly, see the examples above. O

Proposition 2.5 The following partial orders are distributive lattices, the one in
(b) isa sublattice of the onein (a), and the one in (c) is a sublattice of the onesin
(@) and (b).

(a) Theinclusion order on the set of all nontrivial ideals.

(b) Theinclusion order on the set of all nontrivial countable ideals.

(c) Theinclusion order on the set of all nontrivial recursively presentable ideals.

In (a), (b) and (c) the infimum of two nontrivial ideals I and .J is given by their
intersection, and the supremum is given by the smallest ideal containing both I
and J.

14 Part | Predicate Classes and Promise Classes

idedls

countable ideals

/ N\
principal ideals

recursively presentable ideals

recursively presentable principal ideals

Figure 2: Types of Ideals

Proof. (@) Lettwo nontrivial ideals I and .J begiven. It will be shownthat 7N .J
isanontrivial ideal. Therefore, I N J isthe infimum of [and .J. Because both
I and J contain the class P also the class I N J contains P and is not empty. Let
C < A¢ B fortwo languages A, B € I N J, then both I and J contain A
and B. Therefore, they contain also C' by their property of being an ideal. This
shows that 7 N J is a nontrivial ideal. The supremum of 7 and .J is the class
H={C|dAel,dBe J:C < A @ B}. Itiseasy to seethat thisclassisan
ideal, that it containsboth I and ./, and that it is contained in every ideal containing
both I and J. For the distributivity let 7, .J, H be asabove and let K be contained
in H. Now it is shown that the supremumof I’ = K N[and J' = K N J equas
K. I' and J’" and therefore also their supremum are contained in I<. For the other
directionit obviously sufficesto show that for every language A in I the principal
ideal <? (A) is the supremum of two principal idealsin I and .J, respectively.
By definition of H thereexist sets B € I,C' € Jsuchthat A <!, B¢ C,in
other words <” (A) is contained in the supremum of <” (B) and <? (C). By the
distributivity of the principal idealstherearelanguages B’ € <” (B),C’ € <” (C)
such that <? (A) isthe supremum of <? (B’) and <? (C").

(b) By the property of a sublattice to be alattice it suffices to observe that for
two given countable nontrivial ideals I and J theclasses I N .J and H from (a) are
countable. Thedistributivity follows likein (a).

(c) It suffices like in (b) to show that for two recursively presentable ideals
I={C%]|:ieIN}andJ ={DY | j € IN} (for recursive languages C' and D)

Préeliminaries 15

the classes I N J and H from (@) are aso recursively presentable. Define E to
be the recursive language {{(z;, z;), =) | € C® and for al y with |y| < |z| it
holdsthat (z;,y) € C < (z;,y) € D}. It will be shown that this construction
guaranteesthat IN.J = {E® | ; € IN}. Theinclusion from Ieft to right is obvious,
For the other direction consider a fixed EV): if EY) isinfinite, then it is also an
(infinite) language of both I and .7, and if EV) isfinitethenitisin P and therefore
inIN.J. ThisshowsInNJ={E® |ic IN}. Torepresent theclass H define F to
be the language {({{z:, z;), z&),) | fP(z) € CD @ DV}, where f7 was defined
in Section 2.3. It is easy to check that F' isrecursive, and by construction it holds
that H = {F® |7 € IN}. The distributivity follows likein (a). O

The following two results — called exact pair theorems — of Ambos-Spiesin
[AS86b] and Shinoda and Slaman in [ShS90] relate the notions of ideals and prin-
cipal ideals more closely. The latter was shown to hold for the polynomial time
Turing reducibility but the proof is also valid for the many-one case.

Theorem 2.2 (Ambos-Spies 1986) For a recursively presentable ideal I there
exist two recursive languages A and B such that T = <7 (4) N <7 (B).

Theorem 2.3 (Shinoda & Slaman 1990) For a countableideal I there exist two
languages A and B such that I = <? (4) N <’ (B).

For the nontrivial ideals the two Theorems 2.2 and 2.3 can by Proposition 2.5
be expressed the following way.

Proposition 2.6 (@) The nontrivial countable ideals are exactly the pairwise in-
tersections of the nontrivial principal ideals. (b) The nontrivial recursively pre-
sentable ideals are exactly the pairwise inter sections of the nontrivial recursively
presentable principal ideals.

2.7 Computation Trees

Consider nondeterministic Turing machines as presented for examplein [BDG8S].
In this thesis it is additionally assumed for a Turing machine that for a state and
atupel of symbols read by the heads at most two transitions are specified by the
transition function, and also it is assumed that the transition function is given as
alinear list. Thisway it is guaranteed that if nondeterminism appears during a

16 Part | Predicate Classes and Promise Classes

Figure 3: Computation tree

computation the computation branchesinto exactly two independent computations
which can be distinguished as the left computation and the right computation.

Let apolynomial time nondeterministic Turing machine be anondeterministic
Turing machine M (of the special kind above) for which there is a polynomial p
such that A/ computes for each input = on every computation path at most p(|x|)
steps.

Let a computation tree be a— not necessarily balanced — ordered binary tree
(i. e. each inner node has a left subtree and aright subtree) where the inner nodes
have no labels, and the leaves are labeled with 0 or 1. A formal definition of
ordered treesis given for example in [HU79]. An example of a computation tree
isshown in Figure 3.

It is clear that each polynomial time nondeterministic Turing machine M on
an input = produces a computation tree T'(M,) by starting at the root, adding a
binary node—for theleft and the right computation — each time anondeterministic
branching is encountered, and writing in the case of termination a0 (for rejecting)
or al (for accepting) on the corresponding leaf.

Note that for a computation only the nondeterministic steps and the output bits
are recorded in the computation tree, not the deterministic steps and also not any
information about the configurations.

The following definition is similar to the definition of the functions f7 in Sec-
tion 2.3. Let nondeterministic Turing machines (of the special kind above) be
coded in some straightforward way by words of Z*. Therefore, each word z; can

Predicate Classes 17

be assumed to describe a nondeterministic Turing machine. Let M? be the Turing
machine which simulates on input = the machine described by z; with the time
bound |z|* + 7, i.e. it cancels —with arejecting state — on every computation path
the computation after ||’ +: stepsif the computation has not already terminated on
that path. Note that this enumeration M? (for 7 € IN) of nondeterministic Turing
machines has the following properties: M is a polynomial time nondeterminis-
tic Turing machine for every ¢, and for every polynomial time nondeterministic
Turing machine M thereisan: suchthat T'(M, z) = T(M?, x) for all .

The following definition will be used only for examples, not for results. For
a computation tree T' let the rational number = (7") € [0, 1] be the probability to
reach aleaf with label 1 if one movesfrom theroot of 7" to aleaf, tossing acoin on
every inner node. For example, the computation tree in Figure 3 has the r-value
7

T6 .

3 Predicate Classes

In this chapter the notion of a predicate classwill be defined and will be shown to
be equivalent to the notion of a principal ideal.

3.1 The Definition of Predicate Classes

Let a predicate (for computation trees) be a function from the set of computation
trees to the set {0,1}. Note that a predicate could also be considered as a tree
language.

Definition 3.1 For a predicate ' and a polynomial time nondeterministic Turing
machine M define the language L (M) by

v € Lp(M) — F(T(M,z)) =1

Let the predicate class accepted by F', short F'— P, be the set of languages L (M)
for which M isa polynomial time nondeterministic Turing machine.

In other words, membership of « in Ly(M) is decided the following way:
construct the computation tree produced by M on input =, and let « bein Ly(1M)
if and only if the F-value of the computation treeis 1.

The following examples, especially the first, may clarify the definition above.

Part | Predicate Classes and Promise Classes

Figure 4: The left and the right subtree

NP is the set of languages L for which there is a polynomial time nonde-
terministic Turing machine M such that «+ € L if and only if there is an
accepting computation path of A7 oninput x, or equivaently, = € L if and
only if in T'(M, z) thereisaleaf with label 1. Therefore, NP is accepted by
the predicate F; which is 1 for a computation tree 7" if and only if T has a
leaf with label 1, in other words, NP = F; —P.

The class co-NP is the set of complements of languages in NP. Therefore,
co-NP is accepted by the predicate which is 1 for a computation tree 7' if
and only if al leavesin T have label O.

P can easily be shown to be accepted by the predicate F; for computation
treeswhichis 1if and only if the leftmost leaf in the tree has label 1.

By definition of theclass@Pin[PZ83] itholds &P = F, ;s — Pwhere F,44(T)
1if and only if for the tree T' the number of leaves with label 1 is odd.

By definition in [Gi77] the class PP is accepted by the predicate which is
1 for atree T if and only if 7(T") > 2, for the definition of the function =
see Section 2.7. It iseasy to show that PP isalso accepted by the (different)
predicate F4 which is 1 for atree T' if and only if there are more leaves
with label 1 than leaves with label O.

By the alternation characterization of PSPACE in [CK S81] one has PSPACE
= F, — P, where F,(T) isthe value of the Boolean evaluation of the formula

Predicate Classes 19

given by T for which the inner nodes are alternatingly interpreted as con-
junction and digjunction gates.

o TheclassD” =NP(2), originally definedin[PY 82], isthe classconsisting of
the languages which are an intersection of alanguage in NP and alanguage
in co-NP. Theclass D" can easily be shown to be accepted by the following
predicate Fp: for asingle-leaf tree Fp has the (arbitrary) value 0, and for
anon-single-leaf tree T' Fip hasthevalue 1if and only if the left subtree T;
—seeFigure4 —hasaleaf with label 1 and theright subtree 7, doesnot have
aleaf with label 1.

e The constructionsin [Her92a] imply definitions for many predicates which
accept well-known complexity classes, for example the 2F -, 17 - and A? -
classes of the Polynomial Time Hierarchy.

By ausual encoding of trees into words one can consider arecursive function
on words to be a recursive function on computation trees and vice versa. Let the
set of recursive predicates be the set of the recursive functions from computation
treesto {0, 1} and call apredicateclassrecursiveif it isaccepted by somerecursive
predicate. All examples of predicate classes given above are recursive.

3.2 TheCharacterization of Predicate Classes

Call apredicateclasstrivial if it isaccepted by one of the two constant predicates.

Proposition 3.1 The following sets of classes are equal: (@) thetrivial predicate
classes, (b) thetrivial principal ideals, (c) thetrivial recursive predicate classes,
(d) the trivial recursively presentable principal ideals.

Proof. If F isthe constant-O predicate then for a every polynomial time nonde-
terministic Turing machine M the language L (M) isempty. Therefore, FF—P =
{0} = <P (0). Likewise, F—P = {¥*} = <P (¥7) if F isthe constant-1 predicate.
This shows aready the equality of the setsin (a) and (b). For (c) and (d) it suf-
ficesto observe that the two trivial predicate classes are recursive and that the two
trivial principal ideals are recursively presentable. O

Thefirst main result is stated.

20 Part | Predicate Classes and Promise Classes

Theorem 3.1 (@) The predicate classes are exactly the principal ideals. (b) The
recursive predicate classesare exactly therecursively presentable principal ideals.

Note that the direction from left to right of part (a) of the theorem says that
every predicate of any recursive or non-recursive complexity accepts acomplexity
classwhich hasthe’nice’ properties of aprincipal ideal: with respect to <’ it has
acomplete set and is closed downward.

Proof. First part (a) with its two directions will be proven, part (b) will follow
easily.
Proof of part (a), direction C: Every predicate classisa principal ideal.

Fix apredicate F'. By Proposition 3.1 it can be assumed w.l.0.g. that F is not
constant-1. By the properties of the machines M?, see Section 2.7, one has the
following enumeration of F—P:

F—P={Lp(M")|i € N}.

For the predicate F' a language K will be defined the following way (like this
was done for NP in [BGS75, Har78, BDG88]):

Ky = {{z, 2,0 | t = |z|' +7 and F(T(M?, z)) = 1}.
It will be shown that for all £
F-P=<? (Kp).

It will be observed first that /{5 is an element of £'—P : consider the following
polynomial time nondeterministic Turing machine A4, : for an input y M, first
checksif y encodes atriple (z;, x,0') with ¢ = |z|* +1; if thisis not the case then
M, produces by nondeterminism a computation tree 7' with £'(T) = O, otherwise
it smulates the computation of M/ on input = for ¢ steps, branching each time
MY branches. By construction the computation tree T'(M,, (z;, x, 0")) is identi-
cal to the computation tree T'(M?, z). Therefore, (z;,2,0") € Lp(M,) <~
F(T(M,,{(z,2,00) =1 — FTM!,z)) =1 < (z,2,0') € Ky by
definition of K. This means Lz (M,) = Kr and therefore K € F—P. Now
the above equality FF—P = {Lp(M]) | i € IN} = <P (KF) iseasy to see: Let
Lp(M?) be alanguage in F'— P, and remember that the running time of A" on

Predicate Classes 21

Figure 5: Comb, encoding 0001

input = is bounded by |=|* + . Consider the function ¢ which for an input = com-
putes in polynomial time the tripel ¢(z) := (z;,z,0*"*)), By the definition of
K thefunction g isapolynomial time many-one reduction from Lz(M?) to K.
Therefore, Lp(M?) € <t (KF). Let for the other direction of the above eguation
B e < (Kr),i.e. B < Kp viaafunction f € FP. Then the polynomial time
nondeterministic Turing machine A/, which for an input = first computes f(x)
and then runs A, on input f(z) showsthat B € F —P because by construction
r € B < f(2) € K < x € Lpy(M;). Thisfinishes the proof of the
above equation.

Proof of part (a), direction O: Every principal ideal is a predicate class.

Define acomb to be a computation tree which has the special form that the | eft
successor of each inner node is aleaf. The word encoded by a comb is the word
consisting of the sequence of leaf labels of these left successors of inner nodes,
starting at the top, see Figure 5.

For alanguage A let G 4 be the predicatewhichis 1 for atreeif and only if the
tree is a comb which encodes aword from A.

To prove that every principal ideal is a predicate class it suffices to show that
for all languages A 7 =~

<h(A)=G4-P.

Note that the case A = 2" is already covered by Proposition 3.1.

In order to show the inclusion from left to right of the above equation let B €
<P (A) begiven, i.e. B ismany-one reducibleto A viaafunction ¢ € FP. Now let

22 Part | Predicate Classes and Promise Classes

M, bethe polynomial time nondeterministic Turing machine which on an input =
first computes ¢(«) and then by nondeterminism produces a comb which encodes
g(x). Nowof coursez € B <= ¢(v) € A < = € Lg, (M), this
means B € G 4—P. For the other direction let alanguage L, (M) € G4—P
for a polynomial time nondeterministic Turing machine M be given. A function
g € FP will be constructed such that «+ € L, (M) <= g(2) € A. Letyg
be the function computed by the following polynomial time deterministic Turing
machine; on input = it checks if A/ produces a comb, note that this can be done
in deterministic polynomial time; if A/ does not produce a comb then the machine
outputs aword not in A, otherwise it outputs the word encoded by the comb. By
construction z € Lg , (M) <= ¢(z) € A. Therefore, L, (M) € <P (A). This
shows the above equation.

Proof of part (b).

By Propositions 2.2 and 3.1 it suffices to observe that the two constructions
in the proof of (a) keep recursiveness, i.e. the language K is recursive if the
predicate F' is, and the predicate G 4 isrecursiveif the language A is. 0

With Theorem 3.1 (and Proposition 3.1) one can immediately transfer Corol-
lary 2.2 to the predicate classes.

Corollary 3.1 The following partial orders are distributive upper semi-lattices,
the onein (b) is an upper semi-sublattice of the onein (a).

(a) Theinclusion order on the set of all nontrivial predicate classes.

(b) Theinclusion order on the set of all nontrivial recursive predicate classes. This
upper semi-lattice is additionally dense.

4 Promise Classes

In this chapter the notion of a promise class will be defined and will be shown to
be equivalent to the notion of a countable ideal.

4.1 The Definition of Promise Classes

Extend the notion of apredicate to that of a partial predicate which will be called
promise function here: let a promise function be a function from the set of com-
putation trees to the 3-element set {0, 1, 1 }, the constant-_L function is excluded.

Promise Classes 23

This definition of a promise function can be considered as a specia case of the
general concept promise problem defined in [ESY 84] and [Se88].

Definition 4.1 For a promise function " and a polynomial time nondeterministic
Turing machine M say that M respects F' if F(T'(M,x)) # L for all words z. In
the case that M respects F' define the language L (M) by

v € Lp(M) — F(T(M,z))=1.

For every promise function F' define the promise class accepted by F', in short
F —P, to be the set of languages L (M) for which M is a polynomial time non-
deterministic Turing machine which respects £'. Call a promise classrecursive if
it is accepted by some recursive promise function.

The examples below may clarify Definition 4.1. Note that if one considers a
predicate F' asapromisefunction not having L initsimagethen thetwo definitions
of F—PinDefinitions 3.1 and 4.1 coincide. Therefore, the following Proposition
4.1 holds.

Proposition 4.1 (a) Every predicate classisa promise class. (b) Every recursive
predicate classis a recursive promise class.

Thefollowing examples of recursive promise classes are not known to be pred-
icate classes.

e UPisthe set of languages L for which thereis a polynomial time nondeter-
ministic Turing machine M such that for every input « thereisat most one
accepting path of A oninput « and (if M fulfills this condition) « € L if
and only if there is exactly one accepting path of A/ oninput x. This means
that UP = F,, — P for the promise function £, which has for a computation
tree T thevalue O if T does not have aleaf with label 1, which hasthe value
1if T hasexactly oneleaf with label 1, and which hasthevalue L otherwise.
See also [NR93] for this promise function accpeting UP.

e BPPisequal to Fgpp— P where Fgpp(T') hasthevalueO, 1, or |, depending

if thevalue of =(T) isin theinterval [0, 3], [2,1], or 3, 3, respectively.

24 Part | Predicate Classes and Promise Classes

e Let H bethe promise function which hasthevalueO, 1, or 1, depending if
the the quotient of the number of theleaveswith label 1 and thetotal number
of leaves in the tree is in the interval [0, 7], [, 1], or 13, 2[, respectively.
Then H accepts the class BPPyy, defined in [HHT92]. In that paper it is

shown that it is unlikely that BPPyyn equals BPP.

e RPisequal to Frp—Pwhere Frp(T') hasthevalueO, 1, or 1|, dependingif the
valueof 7(T)is0, intheinterval [$, 1], or intheinterval 0, 3[, respectively.

e FewP, defined as FNP in [Al86], is the class of languages in NP with at
most polynomially many accepting paths. FewP can be easily shown to be
accepted by the promise function which for atree T" hasthe value O if there
areno leaveswithlabel 1in T, which hasthevalue 1if the number of leaves
with label 1 is> 1 but does not exceed the depth of 7, and which has the
value L otherwise.

e Finite intersections of nontrivial promise classeslike NP N co-NP and ZPP
= RP N co-RP will be shown to be promise classes in the following Lemma
4.1.

4.2 The Characterization of the Promise Classes

Call apromise class trivial if it is accepted by a promise function which has not
both 0 and 1 initsimage.

Proposition 4.2 The following sets of classes are equal: (a) the trivial promise
classes, (b) thetrivial ideals, (c) thetrivial recursive promise classes, (d) thetrivial
recursively presentable ideals.

Proof. If apromisefunction ' doesnot contain 1initsimagethen each language
Ly(M) for apolynomial time nondeterministic Turing machine A which respects
Fisempty. Such amachine M awaysexists becauseit can be chosen to bethe one
which computes for every input a fixed computation tree T' for which F(T') = 0,
remember that the constant- L function was excluded to be a promise function.
Therefore, F—P = {{}. Likewise, F'—P = {Z*} if the promise function F' does
not contain O in itsimage. This shows aready the equality of the setsin (a) and

Promise Classes 25

(b). For (c) and (d) it suffices to observe that the two trivial promise classes are
recursive and that the two trivial ideals are recursively presentable. O

Note that the four setsin Proposition 4.2 above coincide with the four setsin
Proposition 3.1.

The next Proposition 4.3 is used in the proof of Lemma4.1 and in the proof of
Theorem 4.1.

Proposition 4.3 Let F' beapromisefunction. £'—Pistrivial if and only if £* does
not have both 0 and 1 in itsimage.

Proof. The direction from right to left holds by the definition of trivial promise
classes. In order to prove the other direction it will be shown that if £ has both O
and 1 in itsimage then it contains P: chose two computation trees 7; and 73 such
that F'(7p) = 0and F(711) = 1 and consider apolynomial time deterministic Turing
machine D. Let M be the polynomial time nondeterministic Turing machine M
which on input « simulates D, and if D terminates with an accepting (rejecting)
state M produces by nondeterminism the computation tree T3 (7). The language
Lr(M) isby construction equal to the language accepted by D. This shows that
Piscontained in £'—P. Therefore, F'— P isnot atrivial ideal by Proposition 4.2.
O

Before coming to the general characterization of promise classes thefollowing
Lemma4.1 is shown.

Lemma4.1l (a) Theintersection of two nontrivial promise classesis a nontrivial
promise class. (b) The intersection of two nontrivial recursive promise classes is
anontrivial recursive promise class.

Proof. (@) Let two promisefunctions D and E be given which both have both 0
and 1 in their image. Define the following promise function Fpp x: it hasthe value
| for thetwo single-leaf computation trees und is determined for a non-single-leaf
tree T" by the left and right subtrees 7}, T, of 1" (see Figure 4):

For the definition of Fp see also Figure 6.

26 Part | Predicate Classes and Promise Classes

E(T)

0 1 L

0|0 L L

DT 11 |1 | L

Figure 6: Definition of Fip (1)

Both D and E have both 0 and 1 in their image, i.e. there exist computation
treeSTl, Tz, T37 Ty for which D(Tl) = E(Tz) =0and D(T3) = E(T4) = 1. Thenthe
computation treewhose left subtreeisT; (73) and whoseright subtreeis 7> (1) has
the Fip g-value0(1). Thismeansthat Fp hasbothOand 1initsimage, especially
it is not the constant-_L function. Therefore, by Proposition 4.3, Fp z—Pisa
nontrivial promise class.

It will be shown that the definition of Fp r guarantees that
Fpy—-P=D-PNE-P.

For the inclusion from left to right it will first be shown that each language in
Fp p—Pisalanguagein D —P. Let apolynomia time nondeterministic Turing
machine M respect Fpp . Define 14; to be the polynomial time nondeterministic
Turing machine which on input = simulates the computation of A/ on input =
besides that it ignores the first branching (which exists because M respects Fip r)
and only simulates the |eft computation. Note that the computation tree T'(M;, x)
is the left subtree of T'(M,). Because M respects Fp it can by the definition
of Fp g be concluded that D(T'(M;, z)) 7 L and — moreover — D(T'(M;, x)) =
1 — Fpe(T(M,z)) = 1. Thismeans that M; respects D and Lp(M;) =
Lr, ,(M). Therefore, the language L, (M) is an element of D —P. The same
way it is shown that each language in Fp p —Pisalanguagein E —P.

For the other direction of the equation aboveletalanguage L € D—-PNE-P

Promise Classes 27

be given. This meansthat there are two polynomial time nondeterministic Turing
machines M, and M, respecting D and E, respectively, suchthat L = Lp(M,) =
Lg(MM.). Let M, . bethepolynomial timenondeterministic Turing machinewhich
oninput x first branches and then simulates A; oninput « in the left computation
and M. on input = in the right computation. By construction M, . respects Fp g
and L = Lp, ,(Mg.). Thisshows that every language L € D—P N E—-Pisin
Fp g — P and finishes the proof of the above equation.

For part (b) it sufficesto observethat if in the proof of (a) the promisefunctions
D and E arerecursive then also Fp ; iSrecursive. 0

The following theorem characterizes the promise classes.

Theorem 4.1 (a) The promise classes are exactly the countable ideals. (b) The
recursive promise classes are exactly the recursively presentable ideals.

Proof. First part (a) with its two directions will be proven.
Proof of part (a), direction C: Every promise classis a countable ideal.

Let F beapromisefunction. By Proposition 4.2 it can w.l.0.g. be assumed that
F containes O initsimage. It will be shown that with respect to <? -reducibility
F—Pis closed downward and closed under join. To show that F—P is closed
downward let a set A be polynomial time many-one reducible via a reduction
function f to alanguage L (M) where M isapolynomial time nondeterministic
Turing machine which respects F'. Thenaso A isin F'—Pbecause A = Ly(Mj),
where M isthe machinewhich for an input = first computes f(x) and then simu-
lates M on f(z), note that also M respects F'. Therefore, F'— P is closed down-
ward with respect to <? -reducibility.

The closure under joinis also easy to see: let M, , M, betwo polynomial time
nondeterministic Turing machines which respect F'. Then the following machine
M. also respects F: on input Oz M. simulates M, on input x, on input 1z it
simulates M, on input =, and on the empty word as input it producesatree T" for
which F(T) = 0. By construction Ly (M.) = Lyp(M,) & Lr(M,). Thisshows that
the join of any two languagesin F —Pisaso alanguagein F —P.

F —P is countable because there are only countably many polynomial time
nondeterministic Turing machines.

Proof of part (a), direction O: Every countable ideal isa promise class.

For the two trivial ideals the statement holds by 4.2. For a given nontrivial
countable ideal I let A, B be the two languages for I from the Theorem 2.3 of

28 Part | Predicate Classes and Promise Classes

Slaman and Shinoda, i.e. I = <P (A) N <2 (B). By Theorem 3.1 there are two
predicates G4 and G suchthat G4 —P=<? (A) and Gg—P = <? (B). Because
I isnontrivia the two promise classes G4 — P and G g — P are nontrivial promise
classes. Now by Lemma4.1(a) dlso I = <? (A)N<? (B)=G,—-PNGg—Pisa
(nontrivial) promise class.

Proof of part (b), direction C: Every recursive promise classis a recursively pre-
sentable ideal.

Given arecursive promise function F' it is shown in part (a) that F—Pisan
ideal, it remains to show that F'— P isrecursively presentable. If ' does not have
both 0 and 1 in its image then by Proposition 4.2 F —P is a trivial recursively
presentable ideal. So it can w.l.0.g. be assumed that ' has both 0 and 1 in its
image. Thisimplies by Proposition 4.3 that '— Pisnot atrivial ideal, therefore P
CF-P.

First note that

F—-P={Lp(M")|i € INandM’ respectsF'}.

Construct —likethiswasdonefor RPand UPin[Ad78] and [AS89], respectively —
the following recursive language A for which it will be shown that {4 | i €
IN} = F—P.

Ap = {{z,2) | F(T(M,2)) = 1and for al y with[y| < || : F(T(M7,y)) # L}
It suffices to show that
{AY | i e IN} = {Lp(M?) | i € IN and M? respects F'}.

For every number i € IN: if M? respects F then AY = L(M?") by construction
of A, otherwise A isfiniteand thereforeanelement of PC F—P = {Lp(M?) |
i € IN and M? respects F'}. Thisshowsthat F—P = {A% | i € IN} and finishes
the proof of part (b), direction C.
Proof of part (b), direction O: Every recursively presentable ideal is a recursive
promise class.

The proof is analog to the one for part (a), direction O, besides that Theo-
rem 2.2 of Ambos-Spies (instead of Theorem 2.3) and Lemma 4.1(b) (instead of
Lemma4.1(a)) are used. O

Promise Classes 29

promise classes

/ N
predicate classes

recursive promise classes

N /

recursive predicate classes

Figure 7: Therelation of predicate classes and promise classes

4.3 Consequencesof theCharacterization of the PromiseClasses

The following Corollary 4.1 combines Propositions 2.5 and 2.6 with Propositions
3.1and 4.2 and Theorems 3.1 and 4.1.

Corollary 4.1 (a) The nontrivial promise classes are exactly the pairwise inter-
sections of nontrivial predicate classes. The inclusion order on the set of nontriv-
ial promise classes is a distributive lattice. (b) The nontrivial recursive promise
classes are exactly the pairwise intersections of nontrivial recursive predicate
classes. The inclusion order on the set of nontrivial recursive promise classes
isadistributive lattice.

Thefollowing Corollary 4.2 combines Proposition 2.4 with Theorems 3.1 and
4.1, see Figure 7.

Corollary 4.2 (a) The set of recursive predicate classesis a proper subset of the
set of recursive promise classes. (b) The set of recursive predicate classes is a
proper subset of the set of predicate classes. (c) The set of recursive promise
classes is a proper subset of the set of promise classes. (d) The set of predicate
classes is a proper subset of the set of promise classes. (€) There is a predicate
classwhichisnot arecursive promise class. (f) Thereisa recursive promise class
which isnot a predicate class.

In [Si82, Kow84, HI85, HH88, AS89] it was investigated whether promise
classes like UP, RP, BPP, and NP N co-NP have <? -complete languages. The

30 Part | Predicate Classes and Promise Classes

following consequence of Theorems 3.1 and 4.1 and Propositions 2.2 and 2.3 states
that thisisthe caseif and only if the’promise’ can be eliminated.

Corollary 4.3 (a) A promise class has a <? -complete language if and only if it
isa predicate class. (b) A recursive promise class has a <? -complete language if
and only if it isa recursive predicate class.

The next corollary follows from Theorem 4.1 and the facts stated before that

PH and BH are recursively presentable ideals and that E = DTIME(2/1M) is recur-
sively presentable but not an ideal .

Corollary 4.4 PH and BH arerecursive promise classes. Eisnot a promise class.

5 AnalogousResultsfor Other Nondeter ministic Com-
putation M odels

The two main results of this paper were shown in the preceeding Chapters 3 and
4. In this chapter some other models of nondeterministic computation will be
considered. For each model the notion of a predicate classisdefined and an analog
of Theorem 3.1(a) is stated. The analoga will be called corollaries because their
proofs are similar to that of Theorem 3.1(a).

Remark. For the models of Sections 5.1, 5.2, and 5.3 also notions of recursive
predicate classes, promise classes, and recursive promise classes could easily be
defined in the obvious way, and analoga of Theorems 3.1(b), 4.1(a), and 4.1(b)
could be proven for each model.

5.1 Balanced Polynomial Time Turing Machines

Call a polynomial time nondeterministic Turing machine M balanced if for every
input = the computation tree 7'(M, x) isbalanced, i.e. all paths from the root of the
tree to aleaf have the same length. Note that also for this model the deterministic
stepsare not recorded in the computation tree. Consider apredicate F' for balanced
computation trees. Note that F' can be characterized by a language of words of
length 2° for : > 1. Let the balanced predicate class accepted by F' be the set of

Analogous Results for Other Nondeterministic Computation Models 31

all languages L (M) such that M isabalanced polynomial time nondeterministic
Turing machine.

Corollary 5.1 The balanced predicate classes are exactly the principal ideals.

Sketch of proof. Let AP be the nondeterministic Turing machine which on
input z simulatesthemachine M! inthefollowing way: it first computesthelength
[of the path from the root to the leftmost leaf of T'(A17,) and then it simulates
MY oninput with the following two additional features: if M terminates with
result » on some path with length smaller than [it extends by nondeterminism the
computation so that every extended path has length 7 and result r; if on the other
side the computation is aready on level [of the computation tree then only the
leftmost extending computation path is simulated. The enumeration A/”" has
the property that each 1P is a balanced nondeterministic polynomial time Tur-
ing machine, and that for each balanced nondeterministic polynomial time Turing
machine M thereisan ¢ such that T(M, z) = T(MP™,) for all x.

For agiven predicate F' for balanced computation trees, which is not constant-
1, define the language K% := {(z;,2,0') | t = |z|* +4 and F(T(MP™, 2)) = 1},
and show —likein Theorem 3.1 — that the balanced predicate class accepted by F
isequal to <P (K®). For the other direction define for a given language A # =~
the predicate G on balanced computation trees characterized by the language
{zy |z € Aand|y| = 21*I** —|z|}, and show that <? (A) is equal to the balanced
predicate class accepted by G O

5.2 Polynomial Time Bit-Reducibility

Predi cates on balanced computation trees can be identified with languages consi st-
ing of words of length 2 for : > 1. In[HL*93, HYW94, IMT94] a certain more
genera concept of balanced computation trees was introduced for which thereisa
one-one correspondence between languages and predi cates on balanced computa-
tion trees of that more general type. It was shown that this approach is equivalent
to the following approach of looking at bit-reducibility closures.

Thefollowing definition is equivalent to the onein [HL*93]. A language A is
polynomial timebit-reducibleto alanguage B if thereexist twofunctions f, ¢ € FP
such that

ve A = [g(r, 20)llg(x, z1)] ... [9(z, f(x))] € B,

32 Part | Predicate Classes and Promise Classes

where [¢(x, z;)] is defined to be the letter O if ¢((x, z;)) = € and the letter 1 other-
wise. Let RPPY(B) be the set of al languages polynomial time bit-reducible to B,
and call RPPY(B) the bit-reducibility closure of B. A characterization analogous
to the one in Theorem 3.1 is obtained.

Corollary 5.2 The bit-reducibility closures are exactly the principal ideals.

Sketch of proof. First it isindicated that every bit-reducibility closure is prin-
cipal ideal, this direction of the corollary was aready shown in [BCS92]. For a
given language B # =*, %" — {¢} let KB be the language {(z;, z;,z,0%) | t =
(Jaff+ i+ [e) +j and [f7(z, z)][f7(x, 22)] ... [F(x, fF ()] € B}, remember
from Section 2.3 that FP = {f/ | 7 € IN}. Likein the proof of Theorem 3.1 show
that

<1 (KF) = REP(B).

In order to see for example that KB isin RPPY(B) let f be the function which
maps an input of the form (z;, z;, ., 0') wheret = (|z|" + 1 + |z])’ + 5 to fF(2).
And let ¢ bethe function which maps an input of theform ((z;, z;, z, 0"), y) where
t = (Jz]* + 7+ |z|) + 5 to g;({z,y)) if |y| is not greater than |z|' + ¢, and to €
otherwise. If theinput w isnot of that form assumed in the two definitions above,
f and ¢ can be defined such that [¢(w, z0)][g(w, z1)] ... [¢(w, f(w))] isaword not
in B. Itiseasy to seethat both f and ¢ arein FP and that 2" is polynomial time
bit-reducibleto B via f and ¢.

In order to see that every principal ideal isabit-reducibility closure define for
agiven language A # 3~ the language G9! := {zy | z € A, |y| = 21} It will be
shown that

<5.(4) = REP(GL).

Let B be <? -reducibleto A viah € FP. Define f to be the function which maps
aword = to z; where: = |h(z)| + 2I"®I. And define ¢ to be the function which
maps a pair (x, z;) to a(fixed) word # e if j < |h(x)| and the jth bit of h(x) is
1, and to e otherwise. It is easy to seethat both f and ¢ are in FP and that B is
polynomial time bit-reducible to G9! via f and ¢. This shows the inclusion from
left to right of the above equation. In order to seethe other inclusion let alanguage
C be polynomial time bit-reducible to G5 viatwo functions f’, ¢’ € FP. Then C'
is <P -reducibleto A viathefollowing function in FP: oninput = check if f'(z) is
equal to z; for an: of the form j +2/; if thisis not the case output aword which is
not in A; otherwise output the word [¢'(x, z0)] - - - [¢/(x, 2;)]. O

Analogous Results for Other Nondeterministic Computation Models 33

5.3 Polynomial TimeNondeterministic Transducers

Call the following kind of polynomial time nondeterministic Turing machine a
polynomial time nondeterministic transducer: it is a polynomial time nondeter-
ministic Turing machine of the kind described in the introduction besides that it
outputs on each computation path not only 0 or 1 but a whole word. The compu-
tation trees T'(M, =) of nondeterministic transducers are binary trees with words
as leaf labels. Call these trees transducer computation trees.

Consider a predicate F' on transducer computation trees, and let for a poly-
nomial time nondeterministic transducer M the language L (M) be defined by
r € Lp(M) < F(T(M,z)) =1. Let the transducer predicate class accepted
by F' be the class of languages L (M) for which M isapolynomial time nonde-
terministic transducer.

Examples. Let F' (£”) be the predicate which interprets for a transducer com-
putation tree the leaf labels as binary numbers and is 1 if and only if the largest
of them isodd (if and only if the largest of them appears only once in the tree).
Then F—P=F'—P=A} by theresultsin [Wa87, Kr88] and [Pa84], respectively.
Likewisefor thepredicate F” whichis1if and only if thelength of thelongest | eaf
label in the transducer computation treeis odd it is easy to seethat F'—P = ©}
by the resultsin [Wa87, Kr88, Wa90].

Note that transducer predicate classes are a generalization of predicate classes:
identify all the words # e. Then every predicate induces a transducer predicate —
accepting the same class — by reading e as 0 and all other words as 1.

Thisshowsalready one direction of thefollowing corollary, the other isproven
with basically the same proof as for Theorem 3.1.

Corollary 5.3 The transducer predicate classes are exactly the principal ideals.

Let at this point the following corollary summarize the results of Theorem
3.1(a) and Corollaries 5.1, 5.2, and 5.3.

Corollary 5.4 The following sets of classes are equal:
(a) the set of principal ideals,

(b) the set of predicate classes,

(c) the set of balanced predicate classes,

34 Part | Predicate Classes and Promise Classes

(d) the set of bit-reducibility closures,
(e) the set of transducer predicate classes.

5.4 Polynomial Time Function Classes

Fix any nonemtpty set S, for example S = {0,1}, S =2, S =IN,or S = Z,
and consider the set S of the functions from =* to S. Define the polynomial

time many-one reducibility <? , among these functions, i.e. for r,t ¢ ST et
r <;, s tifthereexistsafunction f € FP such that for al = € ™

r(z) = t(f(x)),

seefor example [Wa86a] and also [V094a, Vo94h] where thisreducibility iscalled
<I'P. Itiseasy to seethat <) ; isapreorder. Fort € ST et < s(t) bethe
set {r € 2 | r <} styandcal <7 () aprincipal <}, s-ideal. Notethat ¢ is
<..s-completefor <7 (#).

Consider afunction F' from the computation treesto S. For apolynomial time
nondeterministic Turing machine M let sp(M) € SZ" pethefunctionwhich maps
xto F(T(M, z)), and let the S-function class accepted by F', in short ' — P, bethe
set of functions s (M) such that A isapolynomial time nondeterministic Turing
machine.

Examples. For S = {0,1} one has exactly the case of Chapter 3. Therefore,
the concept of S-function classes is a generalization of the concept of predicate
classes. For S = IN let F' be the function which maps a computation tree to the
number of 1'sin the tree, then F'— P = #P according to the definition in [Var9].
For S = Z (the set of integers) let G be the function which maps a computation
tree to the difference of the number of 1's and the number of 0’'sin the tree, then
G — P = GapP according to the definition in [FFK94].

With a nearly identical proof like the one for Theorem 3.1 one has for every
nonempty set .S the following theorem.

Corollary 5.5 The S-function classes are exactly the principal <! s-ideals.

Analogous Results for Other Nondeterministic Computation Models 35

Sketch of proof. For afunction F' from the computation trees to .S’ define the
function K7 which maps an input of the form (z;, z,0") wheret = |z|' + 1 to
F(T(M?,)), and which maps al other inputs to a fixed value a € S which is
in the image of F' otherwise. It can be shown like in the proof Theorem 3.1 that
F-P=<b (K7).

For aprincipal ideal <! ;-ideal <! () let G bethe function which maps a
computation tree 7" to ¢(x) if 7" isacomb which encodes «, and maps 7' to afixed
value a € S whichisintheimage of ¢+ otherwise. Now it can be shown likein the

proof of Theorem 3.1that <! (t) = G} —P. O

The function class notion can be extended in the obvious way to the nonde-
terministic transducers, see the previous section. Several well-known complexity
classes are IN-function transducer classes, for example the function classes OptP
and OptP[O(logn)] from Krentel [Kr88]: let H be the function which interprets
for atransducer computation tree the leaf labels as binary numbers and maps the
tree to the largest number of them. Then H — P = OptP by definition of OptP (for
the maximization problems), and let H’ be the function which maps a transducer
tree to the length of the longest leaf label in the tree, then it is easy to see that
H'—P=0ptP[O(logn)]. As another example let D be the function which maps
thetreeto the number of itsdifferent leaf labels. Then D — P= Span-P accordingto
the definition in [KST89]. In Vollmer’s thesis [Vo94b] several other IN-function
transducer classes are investigated. In order to get an example of a Z*-function
transducer class let £} be the function which maps a transducer computation tree
to the leaf label of the leftmost path. Then F;—P = FP.

Again, one has the following characterization (for every nonempty set .5).

Corollary 5.6 The S-function transducer classes are exactly the principal <7, -
ideals.

5.5 Redativized Predicate Classes

Consider the well-known concept of (nondeterministic) oracle Turing machines as
described for example in [BDGS88]. Let X be alanguage, X will be called in the
following context an oracle. A polynomial time nondeterministic oracle-X Turing
machine M'®X is a nondeterministic oracle Turing machine A" equipped with
the oracle X whose running time on every path is bounded by a polynomial in the
input length (the oracle questions are counted as one step). For a computation of

36 Part | Predicate Classes and Promise Classes

apolynomial time nondeterministic oracle-X Turing machine M™% on an input
= the computation tree T(M™ | z) is defined like in the unrelativized case, the
oracle questions are not recorded in T(3™¥, 2). Given a predicate F' on com-
putation trees, let L (M'™X) be the language defined by = € Lp(M™Y) —
F(T(M™X, 2)) = 1, and let the predicate class accepted by F relative to ora-
cle X, in short F — P*, bethe set of languages L -(M"™X) for which M~ isa
polynomial time nondeterministic oracle- X Turing machine.

Example. Let F; bethe predicate accepting NP, see thefirst example in Section
2.5. The class Z5 is by definition the predicate class accepted by F; relative to
oracle SAT, in other words 35 = F; — P,

Corollary 5.7 Let X beany language. Every predicate classrelative to oracle X
isaprincipal ideal.

Sketch of proof. Let the nondeterministic oracle Turing machinesbe encoded by
words. Let M!® be the nondeterministic oracle Turing machine which simulates
on input = the nondeterministic oracle Turing machine encoded by z; with the
time bound of |x|° +: steps, note that also the oracle questions are simulated. Let
X beany oracle. Like in the unrelativized case it is easy to see that F —P* =
{Lx(M™*) | € IN}. For anon-constant predicate F define like in the proof of
Theorem 3.1 the language

K = {{zi,2,0) | t =|2| +i and F(T(M®", 2)) = 1},

and show that F—P* = <2 (K¥). Note that the reduction = — (z;, x, 0"+
from alanguage L (M) to K3 does not need the oracle X . O

Note that the opposite direction of the statement of the above Corollary 5.7
holds if and only if the oracle X isin P: If X € Pthen F—P = F—P* for dl
predicates F', so the opposite direction holdsby Theorem 3.1. If X doesnot belong
to P then every predicate class relative to oracle X is either trivia or it contains
the language X, so it cannot be the class P. But Pis aprincipal ideal.

Let F; bethe predicate from the examplesin Section 2.5 which for a computa-
tiontreehasthevalue 1if and only if theleftmost leaf in 7" haslabel 1. Itiseasy to
seethat PX = F} —P* for every oracle X, where P¥ isthe set of languages which
can be computed in deterministic polynomial time with oracle X. Therefore, the

Analogous Results for Other Nondeterministic Computation Models 37

above Corollary 5.7 implies as aspecial case the following result of Ambos-Spies
in [AS86a] mentioned before.

Corollary 5.8 (Ambos-Spies 1986) For every oracle X the class P¥is a princi-
pal ideal.

38

Part |

Predicate Classes and Promise Classes

Part |1

On the Acceptance Power of
Regular Languages

In this part of the thesis predicate classes will be considered which are accepted
by a predicate of very low complexity: the predicates determined by a regular
language for the yields of computation trees.

The basic definitions and observations are presented in Chapter 6. Chapter 7
leads to alemma about regular languages which is used in Chapter 8 to prove the
main result and its corollaries.

6 PredicateClassesAccepted by Regular Languages

In Section 6.1 it will be shown how —in an obvious way — any language deter-
mines a predicate on computation trees and therefore determines a predi cate class.
After the definition of regular languages in Section 6.2 some basic results about
predicate classes determined by regular languages are presented in Section 6.3.

6.1 Predicate Classes Accepted by L anguages

For acomputation tree T" |et the yield of 7', formally yield(7"), be the word which
is the concatenation of the labels of the leaves of T', read from left to right. For
example, the yield of the computation treein Figure 3 is the word 00101100.

Given any language A, one can consider A asapredicate Y4 for computation
trees by the definition

Yi(T)=1: < yidd(T) € A.

In other words, given alanguage A, the predicate Y, is determined for acom-
putation tree T" by looking at theyield of T': if theyield isaword from A then the
predicate has the value 1, otherwise it has the value O.

For simplicity the predicate class Y, — P will just be denoted as A — P, this
should not cause confusion. Say that A accepts A—P. Likewise denote the lan-

40 Part II On the Acceptance Power of Regular L anguages

guage Ly, (M) (for a polynomial time nondeterministic Turing machine M) just
by La(M).

Examples.

e Let <NP> be the language which consists of the words which contain at
least one letter 1. Then obviously Y \p~ = Fj where F; isthe predicate
from Section 3.1 which accepts NP. In other words, <NP>—P = NP.

e Likewisefor thelanguage L, which consists of thewordswhich havemore
1'sthan O'sit holdsthat Y7, , = Fing, Where Finy Was one of the predicates
from Section 3.1 accepting PP. In other words, Ly, —P = PP.

6.2 The Definition of Regular Languages

In Part 11 of this thesis the predicate classes accepted by regular languages will
be considered. Regular languages were introduced by McCulloch and Pitts in
[MP43] and Kleene in [KI56]. There are many equivalent characterizations of
regular languages, see for example [HU79], here they will be defined to be the
languages which are accepted by finite automata.

It follows the definition of finite automata and regular languages. To thisfor-
mal definition will only be refered in the proof of Lemma 7.3.

Define—likein[HU79] —afiniteautomatontobeaquintuple A = (@, Z, 6, qo, F)
where @) is afinite set of states, > isthe alphabet {0,1}, 6 : @ x Z — @ isthe
transition function, ¢o € @ istheinitial state, and £ C () isthe set of accepting
states.

For every word w € Z* afunction ¢, : @ — @ is defined the following
inductive way. Let ¢, denote the identity function, and let 6., and ¢,,1 be defined
by 6.0(q) = 6(6.(q),0) and 6,1(q) = 6(6.(g), 1), respectively. The definition
reflectsthe ideathat 6., isthe function which in the finite automaton A starts with
astate ¢ and then follows the letters of w, stopping in state ¢.,(g).

For afinite automaton 4 = (Q,Z, 6, qo, F) cal {w € Z* | 6,(q) € F} the
language accepted by A. A languageis called regular if it is accepted by afinite
automaton.

Predicate Classes Accepted by Regular L anguages 41

6.3 Predicate Classes Accepted by Regular Languages

First some examples of predicate classes accepted by regular languages will be
given:

e Thelanguage <NP> consisting of the words which contain the letter 1 (de-
fined already in the examples of Section 6.1) isregular, i.e. NP is accepted
by the regular language <NP>. Note that the second example language
from Section 6.1 Ly, is not regular.

¢ Define <co-NP> to be the complement of <NP>, i.e. the regular language
consisting of the words which only contain 0's. By definition of co-NP the
language < co-NP> accepts co-NP.

e Let <P> betheregular language which consists of the words starting with
letter 1. Then obviously Y p~ = F}, where F; isthe predicate from Section
3.1 which accepts P. Thismeans <P>—-P=P.

¢ Call thelanguages which cannot distinguish any yields of computation trees
trivial, these are the four (regular) languages), {¢}, %", and Z* — {e}, note
that the yield of a computation tree has at least length 1. It is easy to see
that these four languages are exactly the languages which accept the trivial
predicate classes.

e In[HL*93] itismentioned that for every : € IN thereexist regular languages
accepting the classes 27 and MY of the Polynomia Time Hierarchy. Also
there the existence of a regular language accepting the class PSPACE is
shown.

e Foranumberk > 2andasubset S C {0,...,k—1}let<S,{0,..., k — 1}>
be the regular language consisting of the words for which the number of 1's
is equal modulo % to an element of S. Then, by definition of MODP, see
[BG92], the language <{1,...,k — 1},{0,..., k — 1}> acceptsthe predi-
cate class MOD,P. Asa special case, the language < {1}, {0, 1} > accepts
by definition ©P.

Let R bethe set of al nontrivial regular languages, and let R — P be the set of
classes{L—-P| L € R}, i.e theset of all predicate classes which are accepted by
anontrivia regular language.

42 Part II On the Acceptance Power of Regular L anguages

Thefollowing Theorem 6.1 isdueto Hertrampf, Lautemann, Schwentick, Voll-
mer and Wagner in [HL*93].

Theorem 6.1 ((HL*93]) P isthe minimum of the inclusion order on R — P, and
PSPACE isits maximum.

Remark. Note that it is not known whether P = PSPACE. In that case R — P
would — by the above theorem — only consist of the class P, and the following
Proposition 6.1 and even Theorem 8.1 in Chapter 8 would hold for trivial reasons.

Proposition 6.1 Theinclusion order on R — P isan upper semi-lattice.

Proof. Given two languages A, B, let A & B bethelanguage 0A U 1B. It will
be shown that A & B —Pisthe smallest class containing both A—Pand B - P.

In order to show that A—P C A @& B—-P let a polynomial time nondeter-
ministic Turing machine M be given. Define M to be the polynomial time non-
deterministic Turing machine which on input = first produces by nondetermin-
ism a 0 in the leftmost path, and then simulates M on input =. By construction
yidld(T(M,z)) € A — yidd(T(Mp,2)) € 04 <— yidd(T (Mo, x)) €
A @ B for dl inputs . In other words, for every polynomial time nondeterminis-
tic Turing machine M thereis polynomial time nondeterministic Turing machine
Mo suchthat L 4 (M) = L 465 (Mo). Therefore, A—P C A$ B—P. Theinclusion
B-PC A& B-Pholdssimilarly.

In order to show that A® B — Pisthe smallest classamong the predicate classes
accepted by nontrivial regular languages containing both A—Pand B -Plet C' — P
be another nontrivial (regular) language containing A—P and B —P. It will be
shown that for every polynomial time nondeterministic Turing machine M there
is polynomial time nondeterministic Turing machine My such that L 445 (M) =
L (Mp). Because C' is not trivial one can choose two words v, w with length
> lsuchthatv € C andw ¢ C. Given a polynomia time nondeterministic
Turing machine M, define M, (M>) to be the polynomial time nondeterministic
Turing machine which for an input = first checksif A/ on input = has more than
one computation path. If yesthen M; (M;) ssmulates M besides that it does not
compute the leftmost path; otherwise it produces by nondeterminism a computa-
tion tree with yield v if e € A (e € B) and a computation tree with yield w if

A Lemma about Regular L anguages 43

e ¢ A (e ¢ B). Because C' — P contains both A— P and B — P there exist polyno-
mial time nondeterministic Turing machines A3 and M, such that yield(M;, x) €
A < yidd(Msz,z) € C,andyidd(M,,z) € B < vyidd(My,z) € C, re-
spectively. Now let My be the polynomial time nondeterministic Turing machine
which for an input first looks if the bit of the leftmost path of the computation
of M ontheinputisO or 1 and then simulates M3 or My, respectively. By con-
struction isyield(M,z) € A @ B < vyidd(Mp,x) € C. In other words, for
every polynomial time nondeterministic Turing machine A there is polynomial
time nondeterministic Turing machine My such that L 4q5(M) = Lo (Mo). This
shows A ¢ B-PC C-P. O

It will be shown in Chapter 8 that if a nontrivial regular language R does not
accept P then at least one of the classes NP, co-NP or MOD, P for p prime is
contained in R — P. For the proof the following detour to formal languages will be
made.

7 A Lemma about Regular Languages

In Section 7.1 areducibility among languages will be introduced which implies
the inclusion of the corresponding accepted predicate classes. It will be shownin
Section 7.3 that for the regular languages thisreducibility is related to the concept
of generalized definite languages which will be defined in Section 7.2 .

7.1 o-h-Reducibility

Let an e-free homomorphism be a mapping & which maps the letters 0 and 1 to
non-empty words. An (e-free) homomorphism is extended to words inductively
by h(e) := e and h(ax) := h(a)h(x) for aletter « and aword =, see also [HU79].

For two languages A and B the o-h-reducibility will be defined, the name
standsfor offset—homomor phism. Itisnot known to the author whether the concept
is defined in the literature.

Definition 7.1 Let A, B be two languages. A iso-h-reducible to B if there exist
two words y, =, called the offsets, and an e-free homomor phism . such that for all
words x

r €A < yh(x)z € B.

44 Part II On the Acceptance Power of Regular L anguages

Proposition 7.1 The o-h-reducibility on the set of all languagesis a preorder.

Proof. A language is o-h-reducible to itself via two empty offsets and the ho-
momorphism zd with :d(0) = 0 and :d(1) = 1. This shows the reflexivity of the
relation, the transitivity is aso shown in a straightforward way as follows. Let
alanguage A be o-h-reducible to alanguage B via the offsets y; and z; and the
homomorphism determined by /,, and let B be o-h-reducible to alanguage C' via
the offsets , and =, and the homomorphism #,. Then A iso-h-reducibleto C via
the offsets y»h,(y1) and ha(z1)z2 and the homomorphism % with /(0) = h,(h41(0))
and (1) = hy(hi(1)) because it holds z € A <= wyihi(2)z1 € B <—
yzhz(yl)hz(hl(w))hz(Zl)Zz cC. H naIIy note that % is e-free because /1 and 7,
are. O
The following easy lemma motivates the definition o-h-reducibility.

Lemma7.1l Let A, B be languages. If A is o-h-reducible to B then A—P C
B-P.

Proof. Let A be o-h-reducible to B via the offsets y and =z and the homomor-
phism %. For agiven polynomial time nondeterministic Turing machine A apoly-
nomial time nondeterministic Turing machine My will be constructed such that
L4(M) = Lg(Mp). Oninput = My simulates the computation of A on input x,
producing everytime M rejects or accepts by nondeterminism a computation tree
whose yield is h(0) or h(1), respectively. And if y (=) is not the empty word, MM,
produces additionally in the leftmost (rightmost) computation path a tree whose
yieldisy (z). By construction yield(7T'(M, x)) € A < vyidd(T' (Mo, z)) € B.
Thisshows A—-PC B-P. O

Example. Let, likein [BGu82, GW87], 1-NP (2-NP) be the class accepted by
the regular language L1 (L) which consists of the words which contain exactly
one 1 (exactly two 1's). The lemma above showsthat 1-NP C 2-NP because L
iso-h-reducibleto L, viathe homomorphism ¢d with :d(0) = 0, :d(1) = 1 and the
offsetsy = 1 and = = e. The languages L, and L, also show that the opposite
direction of the Lemma 7.1 above does not hold becauseit is easy to seethat L, is
not o-h-reducible to L, but 1-NP = 2-NP was shown in [GW87].

Remember that for a number £ > 2 and asubset S C {0,...,k — 1} the
language < S, {0, ...,k — 1}> wasdefined (in the last example of Section 6.3) to

A Lemma about Regular L anguages 45

betheregular language consisting of thewords for which the number of 1'sisequal
modulo % to an element of S. Notethat if S isempty or equal to {0, ..., k—1} then
<S5,{0,...,k — 1} > istrivia. The following Lemma 7.2 gives some examples
of o-h-reducibility among the languages of the type <S5, {0,...,k — 1} > where
S isanonempty and proper subset of {0, ...,k — 1} for some k > 2. Therelation
of being a proper subset will be expressed in the following text by C.

Lemma 7.2 For anonemtpty set S C {0,...,k — 1} for some k > 2 there exists
aprime p and anonempty set @ C {0,...,p— 1} suchthat <@, {0,...,p — 1}>
iso-h-reducibleto <S5, {0,..., k — 1} >.

Proof. The proof is by induction on the factorization length of %. If k£ isaprime
thentake @ := S. If £ = mn for 1 < m,n < k then consider the sets Uy :=
{0,n,2n,....,(m—=Dn},U:={ln+12n+1 (m—Dn+1},U, _1:
{n—212n—-21,3n—1,...,mn— 1}. Two cases (1) and (2) are distinguished:

(1) Assumethat for someone: € {0,...n — 1} theset SN U; isneither empty
nor equal to U;. Define the nonempty set @' € {0,...,m — 1} by Q' := {j |
jn+1 € SnNU;}. Now the language <@, {0,...,m — 1}> is o-h-reducible
to the language <5, {0, ...,k — 1}> via the homomorphism / determined by
h(0) := 0,h(1) := 1" and the offsets 1’ and e: it is easy to see that 1'h(z) €
<U;,{0,...,k — 1}>fordlz,andthatz € <Q',{0,...,m — 1}> <= 1'h(x) €
<SNU;,{0,....k —1}>, thismeans that + € <@, {0,...,m —1}> <—
1h(z) € <S,{0,.... k —1}>.

(2) Assume that for al : € {0,...n — 1} the set S N U, is either empty
or equa to U;. Then for al numbers j € IN it holds. ; modulo % is equal to
a number in S if and only if j + n modulo % is equal to a number in S. Let
Q) betheset SN {0,...,n — 1}. Notethat)’ is a nonempty and proper sub-
set of{0,...,n — 1} because S is a nonempty and proper subset of {0,..., &k —
1}. Now it is easy to see that for al numbers 5 € IN it holds that ; modulo
n isequa to a number in @)’ if and only if j modulo % is equal to a number in
S, in other words: <@’,{0,...,n —1}> = <5,{0,...,k —1}>. Therefore,
<@',{0,...,n — 1}> iso-h-reducibleto <5, {0, ...,k — 1}> by thereflexivity
of the o-h-reducibility.

In both cases (1) and (2) there exists by the induction assumption and by the
transitivity of the o-h-reducibility aprime p and anonempty set @ C {0, ...,p—1}
suchthat <@, {0,...,p — 1} > iso-h-reducibleto < S, {0, ...,k — 1}>. O

46 Part II On the Acceptance Power of Regular L anguages

7.2 Generalized Definite L anguages

The following concept is defined implicitly in Eilenberg [Ei 76], see aso [Heu89].

Definition 7.2 (Eilenberg 1976) Call a language L generalized definite if there
isa natural number n such that for all words «, y of length » and for all words
v, w (of any length) it holds

rvy € L <= 2wy € L.

In other words, a language L is generalized definite if and only if thereis a
number n such that the membership in L for a word =z which has length > 2n
depends only on the prefix and the suffix of = of length .

Thefinite and the cofinite languages are examples of generalized definite lan-
guages. The language <P>, which was defined to consist of the words start-
ing with letter 1, is an example of a generalized definite language which is nei-
ther finite nor cofinite. Note that a generalized definite language is a regular
language, but for example none of the regular languages <NP>, <co-NP> and
<S5,{0,...,k —1}> foranonempty set S C {O,...,k — 1} for k£ > 2is gener-
alized definite.

7.3 TheManLemma

The following Lemma 7.3 is a lemma about regular languages, independent of
guestions about polynomial time computations.

Lemma7.3 Aregular language R is generalized definite if and only if none of
the languages <NP>, <co-NP>, and <@, {0, ...,p — 1}> for a nonempty set
Q C {0,...,p— 1} for aprimep iso-h-reducibleto R.

Proof. To see the direction = let <NP> be o-h-reducible to a (regular) lan-
guage R viatwo offsets =, 2’ and an e-free homomorphism % determined by /(0) =
wo and 1 (1) = w,. Givenn € IN, consider the words 0"00™ and 0*10". Because
the first word is not in <NP> and the second is in <NP> one has by the o-h-
reducibility that z/2(0"00™")z" = zh(0™)weh(0™)z" isnotin R and zA(0™)w,h(0")z'
isin R. But the length of z4(0") and the length of ~(0")z" are both > n. Be-
causethisholdsfor every n € IN R isnot generalized definite. For <co-NP> and

A Lemma about Regular L anguages 47

<Q,{0,...,p—1}> for anonempty set () C {O,...,p — 1} with p prime the
proof is analog.

For the other direction of the lemma assume that a regular language R is not
generalized definite. 1t will be shown that one of the languages <NP>, <co-NP>,
or <@,{0,...,p— 1}> foranonempty set @ C {0,...,p — 1} foraprimep is
o-h-reducible to R.

Let R be accepted by the finite automaton (@, {0, 1}, ¢, go, F). For the defi-
nition of a finite automaton and the definition of the function ¢,, : @ — @ (for
every word w) see Section 6.2. Assume w.l.0.g. that every state is reachable from
qo, 1.€. for every state ¢ € () thereisaword w such that ¢,,(qo) = ¢.

Because () isfinite, for every word w and every state ¢ theiteration of 6,, start-
ing in state ¢ has to run into a cycle sometime, more formally: for every word w
and every state ¢ thereexist two numbers 1 < m < n suchthat ¢y, ..., ¢m, ..., ¢y
are different states, ¢1 = ¢, ¢41 = 6,(c;) for 1 <@ < n and ¢, = 6,,(¢,). Assume
that for some other word = the set {6.(cn), ..., 6.(c,)} has elements from both F
and @\ F'. Itisshownthat inthiscasealanguage of thetype <@, {0,,p — 1} >
for anonempty set @ C {O,...,p — 1} for some prime p is o-h-reducible to R:
let & := 1+n — m and define the nonempty set S C {0,...,k — 1} to be the set
{J—m|m < j <nandd.(c;) € F}. Takeaword =’ for which 6.:(g0) = ¢
Define the homomorphism 4 by 2(0) = w* and (1) = w. Now it is clear that for
every word z: @ € <S5,{0,....k —1}> <= Z'h(x)z € R, this means that
the language < 5, {0, ..., k — 1}> iso-h-reducible to R, and by Lemma 7.2 and
the transitivity of the o-h-reducibility also alanguage <@, {0, ...,p — 1}> for a
nonempty set @) C {0,...,p — 1} for some prime p is o-h-reducible to R.

From now on assume that for all states ¢ and for al words w, = like above the
set {6.(cm), - .-, 0.(c,)} consists of stateswhich are either @l in Foral in@ \ F.

Because R isnot generalized definitethere exist wordsr, s, ¢, ¢ such that » and
s havelength |Q|I®l and rts € R butrt's ¢ R. Thereare at most |Q|!?! mappings
Q) — Q. Therefore, there exist words s, sp, s3 such that s = s155s3, s2 7 € and
05,5, = 05,, 1.8 b, istheidentity functionontheset {¢' € Q | 3¢ € Q : ¢’ = 65,(q)}
- the set of states reachable by 6, .

Consider for someword « and astate ¢ reachableby 6, the set of states{¢, .. .,
Cms -+, Cp } OF theiteration of 6,,, starting with ¢ = ¢;. By assumption the states
0s5(¢m), - -+, 0s5(c,) dobelong either al to F or dl to @\ F'. Consider thefirst case
and assume that for some ¢; € {c1,...,cn—1} the state 6,,(c;) isnot in F. Then,
taking aword = for which 6. (go) = ¢; and definingahomomorphism 7 by /(0) = s,

48 Part II On the Acceptance Power of Regular L anguages

and h(1) = {us;}™, itiseasy toseethat + € <NP> <= zh(x)s3 € R, i.e
<NP> iso-h-reducibleto R. Likewise, <co-NP> iso-h-reducibleto R if none of
the states 6,,(cm), - - -, 0s5(c,) isin F and thereissome¢; € {c1,...,¢n-1} SUch
that 6,,(c;) isin F.

So the only case |eft is that for each word « and each state ¢ reachable by 6,
the following holds: 6,,(¢) € F' <= dus5,(¢) € F.

Take the word r from above for which rts € R but rt's ¢ R. Because r has
length > |Q| there exist three words 1, 5, 3 such that r = ryrors, 1, # € and
0,,(q0) = 0,,,(q0). Define the homomorphism % by 2(0) = r, and h(1) = rsts;.
It will be shownthat + € <NP> <= rih(z)rst's € R, i.e. <NP> iso-h—
reducible to R. The implication <« is obvious, and for = consider aword = €
<NP>, i.e. # = 0"1y for some ¢ € IN. Then the state ¢,,,(-1)(o) IS reachable
by 65, @ 6,,1(001)53(00) = Oryratsyss(90) = 6,15(q0) € F. Therefore, by the above
assumption applied to u = h(y)rst’ and ¢ = 6,,4021)(¢0) ASO 0,11 (0e1y)rsts(q0) =
Or1h(02Dh(w)rsts153(40) = On(u)ratrssss(Orin(0°1)(20)) € F'. O

8 A Result for Classes Accepted by Regular Lan-
guages
In Section 8.1 the main result of Part Il is presented. The Sections 8.2 and 8.3 will

interpret the main result as a non-density result. In Section 8.4 the analog of the
main result is shown for the log-space case.

8.1 TheMain Result

First the following Lemma 8.1 is shown which can be considered as an easy con-
sequence of the results and methods of Beigel and Gill in [BG92].

Lemma8.1 (Beigel & Gill 1992) For aprimepandanonemptyset@ C {0,...,p—
1} thelanguage <@, {0, ...,p — 1} > accepts MOD,,P.

Proof. The results and methods of [BG92] are applied. Fix a prime p and a
nonempty set @ C {0,...,p — 1}. Because MOD,P is by definition equal to
<{1,...p—1},{0,...,p — 1} >—Pit needsto be proven:

<, {0,....p—1}>-P=<{1,...p—1}.{0,....p— 1}>—-P

A Result for Classes Accepted by Regular L anguages 49

Toshow theinclusionfromlefttorightlet {4, ..., } bethenumbersin{0, ..., p—
1} which are not in (). Given a nondeterministic machine A construct by Prop-
erty 2.2. of [BG92] the machine A1, which for aninput = has (a +p — #1)(a+p —
i) ...(a+p—1,) accepting pathsif M has a accepting pathsoninput =. Because p
isprimefor every input = the number of accepting paths of M isequal modulo p to
an element of () iff the number of accepting paths of A/, isnot equal modulo p to
0. Therefore, <@, {0,....p—1}>-PC <{1,...p —1},{0,...,p— 1}>—P.
For theinclusionfromrighttoleftlet: € Qandj € {0,...,p—1}\Q. Thenby
Theorem 6.3. of [BG92] thereisfor every machine A/ amachine M, such that the
number of accepting paths of 14, on aninput = is always equal modulo p to either
:or y anditisequal to: if and only if the number of accepting paths of A on input
x isnot equal modulo p to 0. Therefore, <{1,...p — 1},{0,...,p —1}>—-P C
<Q,{0,...,p—1}>-P. O
Now the main result is stated.

Theorem 8.1 Let A beanontrivial regular language. If A is generalized definite
then A — P = P, otherwise A — P contains at |east one of the classes NP, co-NP, or
MOD, P for p prime.

Proof. Consider anontrivia regular language A. Assume that A is generalized
definite, and let the number ». be the constant for A from Definition 7.2, i.e. for a
word with length > 2n membership in A depends only on its prefix and its suffix
of length .. It will be shown that A acceptsP. Pisof course asubset of A— P, and
in order to see that A— P is asubset of P let a polynomial time nondeterministic
Turing machine M be given. It suffices to show that L 4(M) isin P. Consider
the following deterministic Turing machine D which works in polynomial time.
Because A isfixed and n. isconstant it can be assumed that D hasalist of al words
in A of length < 2n. For aninput = themachine D first visitsby aleft traversal (see
for example [AHU74]) deterministicly the 2r. |eftmost |eavesof T'(M,), notethat
the left traversal of T'(M, x) can be done by simulating M. If D recognizes that
the yield of T'(M, «) has length < 2n then it terminates, and it terminates with
an accepting state if and only if it finds the yield of T'(M, x) inits list of words
belonging to A. If D recognizes that the yield of T'(M, x) has length > 2n it
memorizes the prefix v of length ». of theyield of T'(M, =), and visitswith aright
traversal then. rightmost leaves of T'(M, =) in order to find the suffix w of length n
of theyield of T'(M, x). Finaly, D looksupinitslist whether the concatenation vw

50 Part II On the Acceptance Power of Regular L anguages

belongsto A, and acceptsif and only if thisisthe case. By construction and by the
property of A to be generalized definiteit followsthat D acceptstheinput « if and
only if theyield of T'(M, z) isin A. In other words, D accepts L 4(M). Thisshows
that L 4(M) isin P. Becausethisholds for every polynomial time nondeterministic
Turing machine M the class A —Pisasubset of P,

If ontheother hand A isnot generalized definitethen by Lemma7.3 at least one
of the languages <NP>, <co-NP> or <@, {0,...,p — 1}> for a nonempty set
Q C {0,...,p—1} forap primeiso-h-reducibleto A. Therefore, by Lemma7.1at
least one of the classes <NP> — P = NP, <co-NP>—-P = co-NPor <@, {0, ...,p — 1}>—-P
for anonempty set Q C {0,...,p — 1} for ap primeiscontained in A—P. By
Lemmaa8.1, at least one of the classesNP, co-NP, or MOD,,Piscontainedin A —P.
0

The theorem can be stated in the following weaker form in which the notion
generalized definite is not used.

Corollary 8.1 Let A be anontrivial regular language. If A—Pisnot equal to P
then A — P contains at least one of the classes NP, co-NP, or MOD,,P for p prime.

8.2 A Non-Density Result on the Assumption that PH does not
Collapse

Remember that PH isthe union of the classes X" of the Polynomial TimeHierarchy.
Say that PH collapsesto 2! if PH = 2, and say that PH collapsesif thereis some
i € IN such that PH collapsesto 7.

The following Lemma 8.2 can be seen as an easy consequence of the results
of Todain [To91].

Lemma 8.2 (Toda 1991) IfMOD,Pfor someprimepiscontainedin NP or co-NP
then PH collapsesto X3.

Sketch of proof. Consider thecase p = 2. Assuming &P C NP one haswith the
notation of [KST93] (BP- isthe operator corresponding to BPP, i.e. BP- P = BPP):

PH C BP- ©P C BP- NP C 5.

A Result for Classes Accepted by Regular L anguages 51

The first inclusion holds by a result in [To91], the second inclusion holds by the
assumption, and the third inclusion holds by aresult in [Ba85]. Therefore, PH =
M, = 2. The same argumentation goes through for primes p # 2, see [TO92].
Because MOD,Pis closed under complements, see [BG92], the lemma also holds
for the assumption &P C co-NP. O

The assumption that PH does not collapse is stronger than the assumption
P Z NP but still can be considered reasonable. The next corollary states that a
nondensity-result would follow as a consequence.

Corollary 8.2 If PH does not collapse (to %) then NP and co-NP are two atoms
of the inclusion order on R — P.

Proof. First note that if PH does not collapse (to Z5) then P, NP, and co-NP are
different from each other. Now assume that a class L — P for alanguage L € R
is properly between P and NP. Because in that case L — P is not equal to P the
class L — P contains, by the previous Theorem 8.1, one of the classes NP, co-NP,
MOD,,Pfor p prime. By theassumption L — P cannot contain NP, and also it cannot
contain co-NP, because then NP would properly contain its set of complements,
a set-theoretic contradiction. So the only case left is that L — P contains a class
MOD, Pfor p prime. But then also NP contains MOD,, P, and PH collapsesto 2 by
the previousLemma8.2. Thisshowsthat if PH does not collapse (to Z5) then there
cannot be a class in R — P properly between P and NP. The same argumentation
holds for co-NP. O

8.3 A Non-Density Result for the Relativized Case

Consider therelativized versions of the classes X! and X7, , of the Polynomial Time
Hierarchy. For all oracles the first class is a subset of the second but there is an
oracle for which this inclusion is proper, see [BGS75, St77, Has86]. The same
holdsfor therelativized versionsof many pairsof complexity classes. Thisconcept
of comparing complexity classes was formalized by Zachos in [Za88] to define a
partial order on relativizable complexity classes which expressesthat an inclusion
is oracle independent. This concept will be presented now.

Obviously the definitions of Section 6.1 can be relativized for every oracle X,
see Section 5.5. Thisway for each language A and each oracle X the class A — P¥
is defined. Let afamily be a mapping from the set of oraclesto classes. Families

52 Part II On the Acceptance Power of Regular L anguages

will beindicated by parenthesis around the oracle variable, for example the family
which maps an oracle X to the class NP* will just be denoted by NPX). This
way I:)(eacih language A defines the family A —PX), say that A accepts the family
A— X

Onthe set of families accepted by nontrivial regular languagesthe partial order
— will be defined. Let A, B be two languages, define A—P®) — B—PX) jf
A—P* C B—P¥ holdsfor every oracle X. The partial order — corresponds to
the idea of oracle independent inclusion of relativizable complexity classes. The
concept and the symbol — isthe same asthe one of Zachosin [Za38] though here
the definition isfor familiesinstead of classes.

Let R —PY) be the set of families which are accepted by a nontrivial regular
language.

Proposition 8.1 The partial order — on R —P) isan upper semi—lattice which
has a minimum, a maximum, an infinite chain and an infinite antichain.

Proof. The upper semi-lattice part holds by the oracle-independent construction
of A @ B inthe proof of Proposition 6.1. The minimum and maximum are P&)
and PSPACE™), respectively, by Theorem 6.1 which isrelativizable. The chainis
given by the families =) because *"™) — 52:4%) was shown for every : € IN
in [St77], and =2 7 5249 py the results in [BGS75, Has86]. To obtain an
antichain consider the familiesMOD,PX) for p prime: by aresultin [BG92] there
exists for any two primes p # ¢ an oracle X such that MOD,P* is not a subset of
MOD,P*, what is another way of saying that the families MOD, P for p prime
are pairwise ——incomparable. O

A natural question for a given partial order is to ask about density, see for
example [La75]. The following result says that the partial order — on R — P
is atomic and therefore not dense, see Figure 8.3. The result is called corollary’
because its proof is nearly the same as the proof of Theorem 8.1.

Corollary 8.3 The upper semi-lattice — on R — P*) jsatomic. Theatomsare the
pairwise different families NP, co-NPX) and MOD,PX) for p prime.

Proof. By theresultsin[BGS75, Ya085, Bei91, Tor91] thefamiliesNP™), co-NP)
and MOD,,P®) for p prime are pairwise incomparable and therefore they are dif-
ferent from PYX). The corollary isnow proven by arelativized version of the proof
of Theorem 8.1. 0

A Result for Classes Accepted by Regular L anguages 53

Figure 8: — shown as adiagram

PSPACE™)

inside the triangle: the other families of R — P

NPX) co-NPY) MOD,PY) MOD3zPY) MODsPX)

N\

pLo)

8.4 An Analogous Result for the L og-Space Case

Let a log-space nondeterministic Turing machine be a nondeterministic Turing
machine (of the kind described in the introduction) for which there is a constant
¢ such that for an input « the computation terminates on every path and does not
use more than ¢ - 1og,(|z|) cells of the working tape on every path. Because ev-
ery log-space nondeterministic Turing machine M is a polynomial time one, the
computation tree T'(M, x) for an input = and the language L (M) for a predi-
cate F' on computation treesis already defined. Let the log-space predicate class
accepted by F', in short F'—L, be the set of languages L (/) such that M isa
log-space nondeterministic Turing machine. Let A—L be the log-space predicate
class accepted by Y.

Withidentical proofsthe Lemmata7.1 and 8.1 havetheir following analoga8.3
and 8.4 for the log-space case. For the proof of Lemma 8.4 results from [BD*92]
(instead from [BG92]) are applied.

54 Part Il On the Acceptance Power of Regular L anguages

Lemma8.3 Let A, B betwo languages. If A iso-h-reducibleto B then A—L C
B-L.

Lemma 8.4 For a nonempty set @ C {0, ...,p — 1} for a prime p the language
<@,{0,...,p —1}> acceptsMOD, L.

The following corollary is the log-space analog of Theorem 8.1, itisstated in
the form of Corollary 8.1.

Corollary 8.4 Let A be anontrivial regular language. If A—L isnot equal to L
then A —L contains at least one of the classesNL or MOD, L for p prime.

Sketch of proof. The proof is basically the same as the one for 8.1. If A is
generalized definite then it follows A — L = L with the analog argumentation like
in the proof of Theorem 8.1, besides that the left and the right traversal algorithm
have to be done with alook-ahead of 2n and n nodes, respectively.

If A isnot generalized definite then the same argumentation with Lemma 7.3
applieslikeinthe proof of Theorem 8.1, using Lemmata 8.3 and 8.4. Additionally
it is known from [Im88, Sz88] that NL = co-NL. O

References

[Ad78]

[AHU74]

[AI86]

[AS85d]

[AS85b]

[AS864d]

[AS86b]

[AS89]

[Ba85]

[BGS75]

[BDGS3]

[Beiol]

L. Adleman. Two theorems on random polynomial time, Proc. 19th
|EEE Symp. on Foundations of Computer Science, 1978, pp. 75-83

A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974

E. W. Allender. The complexity of sparse setsin P, 1st Structure in
Complexity Theory Conference, Lecture Notesin Computer Science
223, Springer Verlag, 1986, pp. 1-11

K. Ambos-Spies. On the structure of the polynomial time degrees of
recursive sets, Habilitationsschrift, Universitat Dortmund, 1985

K. Ambos-Spies. Sublattices of the polynomial time degrees, Infor-
mation and Control 65, 1985, pp. 63-84

K. Ambos-Spies. A note on complete problems for complexity
classes, Information Processing Letters 23, 1986, pp. 227-230

K. Ambos-Spies. Minimal pairs for polynomial time reducibilities,
Computation Theory and Logic, L ecture Notesin Computer Science
270, Springer Verlag, 1986, pp. 1-13

K. Ambos-Spies. On the relative complexity of hard problems for
complexity classes without complete problems, Theoretica Com-
puter Science 63, 1989, pp. 43-61

L. Babai. Trading group theory for randomness, Proceedings of the
17th ACM Symposion on Theory of Computing, 1985, pp. 421-429

T. Baker, J. Gill, R. Solovay. Relativizations of the P=NP? question,
SIAM Journal of Computing 4, 1975, pp. 431-442

J. Balcazar, J. Diaz, J. Gabarro. Structural Complexity I, Springer
Verlag, 1988

R.Beigel. Relativized counting classes: relations among thresholds,
parity and mods, Journal of Computer and System Science42, 1991,
pp. 76-96

56

References

[BGOZ]

[BGuS2]

[B0o944]

[B094b]

[BCS91]

[BCS92]

[BD*92]

[CG*88]

[CKS81]

[Co71]

[Ei76]

R. Beigel, J. Gill. Counting Classes: thresholds parity, mods, and
fewness, Theoretical Computer Science 103, 1992, pp. 3-23

A. Blass, Y. Gurevich. On the unique satisfiability problem, Infor-
mation and Control 55, 1982, pp. 80-88

B. Borchert. On the acceptance power of regular languages,
Proc. 11th Symposium on Theoretical Aspectsof Computer Science
(STACYS), Lecture Notesin Computer Science 775, Springer Verlag,
1994, pp. 533-542

B. Borchert. Predicate classes and promise classes, Proc. 9th Struc-
ture in Complexity Theory Conference, 1994, pp. 235-241

D. P.Bovet, P. Crescenzi, R. Silvestri. Complexity classesand sparse
oracles, Proc. 6th|EEE Structurein Complexity Theory Conference,
1991, pp. 102-108

D. P. Bovet, P. Crescenzi, R. Silvestri. A uniform approach to de-
fine complexity classes, Theoretical Computer Science 104, 1992,
pp. 263-283

G. Buntrock, C. Damm, U. Hertrampf, C. Meinel. Sructure and
importance of logspace-MOD classes, Mathematical Systems The-
ory 25, 1992, pp. 223-237

J. Y. Cai, Th. Gundermann, J. Hartmanis, L. Hemachandra,
V. Sewelson, K. Wagner, G. Wechsung. The Boolean Hierarchy 1:
structural properties, SIAM Journal on Computing 17, No. 6, 1988,
pp. 12321252

A. K. Chandra, D. C. Kozen, L. J. Stockmeyer. Alternation, Journal
of the ACM 28, 1981, pp. 114-133

S. A. Cook. The complexity of theorem proving procedures, Proc. 3rd
Annual ACM Symposium on the Theory of Computing (STOC),
1971, pp. 151-158

S. Eilenberg. Automata, languages, and machines, Volume B, Aca-
demic Press, New York, 1976

References

57

[ESY84]

[FFK94]

[GJI79]

[Gi77]

[Gr78]
[GW8T7]

[HHT92]

[Har78]

[HHS8]

[H185]

[HS65]

S. Even, A. Selman, Y. Yacobi. The complexity of promise problems
with applications to public-key crytography, Information and Con-
trol 61(2), 1984, pp. 159-173

S. A. Fenner, L. J. Fortnow, S. A. Kurtz. Gap-definable count-
ing classes, Journal of Computer and System Sciences 48, 1994,
pp. 116-148

M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness, Freeman, San Francisco, 1979

J. Gill. Computational complexity of probabilistic Turing machines,
SIAM Journal of Computing 6, 1977, pp. 675-695

G. Gratzer. General Lattice Theory, Birkhauser Verlag, Basel, 1978

T. Gundermann, G. Wechsung. Counting Classes with Finite Accep-
tance Types, Computers and Artificia Intelligence 6 No. 5, 1987,
pp. 395409

Y. Han, L. Hemachandra, T. Thierauf. Threshold computation and
cryptographic security, Technical Report No. 443, Department of
Computer Science, University of Rochester, 1992

J. Hartmanis. Feasable Computations and Provable Complexity
Properties;, CBMS-NSF Regional Conference Series in Applied
Mathematics, Society for Industrial and Applied Mathematics,
Philadelphia, 1978

J. Hartmanis, L. A. Hemachandra. Complexity classes without ma-
chines. on complete languages for UP, Theoretical Computer Sci-
ence 58, 1988, pp. 129-142

J. Hartmanis, N. Immerman. On complete problems for NP N co-
NP, 12th International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Computer Science 194,
Springer Verlag, 1985, pp. 250-259

J. Hartmanis, R. E. Stearns. On the computational complexity of al-
gorithms, Transactions of the American Mathematical Society 117,
1965, pp. 285-306

58

References

[Hass6]

[Hem88]

[Her90]

[Her924]

[Her94a]

[Her94b]

[HL*93]

[HVWO4]

[Heu89]

J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits,
Proceedings of the 18th ACM Symposium on Theory of Computing
(STOC), 1986, pp. 6-20

L. A. Hemachandra. Sructure of complexity classes: separations,
collapses and compl eteness, Proceedings M athematical Foundations
of Computer Science (MFCS), Lecture Notes in Computer Science
324, Springer Verlag, 1988, pp.59-72

U. Hertrampf. Relations among mod—classes, Theoretical Computer
Science 74, 1990, pp. 325-328

U. Hertrampf. Locally definable acceptance types for polynomial
time machines, Proc. 9th Symposium on Theoretical Aspects of
Computer Science (STACS), Lecture Notes in Computer Science
577, Springer Verlag, 1992, pp. 199-207

U. Hertrampf. Complexity classes with finite acceptance types
Proc. 11th Symposium on Theoretical Aspectsof Computer Science
(STACYS), Lecture Notesin Computer Science 775, Springer Verlag,
1994, pp. 543-553

U. Hertrampf. Complexity classes defined via k-valued functions,
Proc. 9th Structure in Complexity Theory Conference, 1994,
pp. 224-234

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wag-
ner. On the power of polynomial time bit-computations, Proc. 8th
Structure in Complexity Theory Conference, 1993, pp. 200207

U. Hertrampf, H. Vollmer, K. W. Wagner. On balanced vs. unbal-
anced computation trees, Technical Report No. 82, Ingtitut fur In-
formatik, Universitat Wirzburg, 1994

U. Heuter. Generalized definite tree languages, Proc. Conference on
Mathematical Foundations of Computer Science (MFCS), Lecture
Notes in Computer Science 379, Springer Verlag, 1989, pp. 270-
280

References

59

[HU79]

[Im88]

[IMTO4]

[J090]

[Ka72]

[KL8O]

[KL82]

[KI56]

[KST89]

[KST93]

[Kow84]

J. Hopcroft, J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979

N. Immerman. Nondeterministic space is closed under complemen-
tation, SIAM Journal of Computing 17, 1988, pp. 935-938.

B. Jenner, P. McKenzie, D. Thérien. Logspace and logtime | eaf lan-
guages, Proc. 9th Structure in Complexity Theory Conference, 1994

D. S. Johnson. A catalog of complexity classes, in: J. van Leeuwen,
ed., Handbook of Theoretical Computer Science, Volume A, North-
Holland, Amsterdam 1990

R. Kap. Reducibility among combinatorial problems,
in: R. E. Miller and J. W. Thatcher, eds., Complexity of Computer
Computations, Plenum, New York, 1972, pp. 85-103

R. M. Karp, R. J. Lipton. Some connections between nonuniformand
uniformcomplexity classes, Proc. 12th Annual ACM Symposium on
Theory of Computing (STOC), 1980, pp. 302-309

R. M. Karp, R. J. Lipton. Turing machines that take advice, En-
seignement Mathématique 28, 1982, pp. 191-209

S. C. Kleene. Representation of events in nerve nets and finite au-
tomata, Automata Studies, Princeton University Press, Princeton,
1956, pp. 3-42

J. Kobler, U. Schoning, J.Toran. On counting and approximation,
Acta Informatica 26, 1989, pp. 363—-379

J. Kobler, U. Schoning, J.Toran. The Graph | somorphism Problem:
Its Sructural Complexity, Birkhauser Verlag, 1993

W. Kowalczyk. Some connections between representability of com-
plexity classes and the power of formal systems of reasoning,
Proc. Conference on Mathematical Foundations of Computer Sci-
ence (MFCS), Lecture Notes in Computer Science 176, Springer
Verlag, 1984, pp. 364-369

60

References

[Kr88]

[La75]

[Le73]

[MP43]

[NR93]

[PY82]

[PZ83]

[Pag4]

[Ses8]

[ShS90]

[Si82]

M. W. Krentel. The complexity of optimization problems, Journal of
Computer and System Sciences 36, 1988, pp 490-509

R. Ladner. On the structure of polynomial-time reducibilities, Jour-
nal of the ACM 22, 1975, pp. 155-171

L. Levin. Universal sequential search problems, Problems of Infor-
mation Transmission 9, 1973, pp. 265-266

W. S. McCulloch, W. Fitts. Alogical calculus of the ideas immanent
in nervous activity, Bull. Math. Biophysics 5, 1943, pp. 115-133

R. Niedermeier, PRossmanith. Extended locally definable accep-
tance types, 10th Symposium on Theoretical Aspects of Computer
Science (STACS), Notesin Computer Science 665, Springer Verlag,
1993, pp. 473483

C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and
some facets of complexity), Proc. 14th Annual ACM Symposium on
the Theory of Computing (STOC), 1982, pp. 255-260

C.H. Papadimitriou, S.K. Zachos. Two remarks on the power of
counting, 6th Gl Conference on Theoretical Computer Science,
Lecture Notes in Computer Science 145, Springer Verlag, 1983,
pp. 269-276

C. H. Papadimitriou. On the complexity of unique solutions, Journal
of the ACM 31 No. 2, 1984, pp. 392—400

A. L. Selman. Promise Problems Complete for Complexity Classes,
Information and Computation 78, 1988, pp. 87-98

J. Shinoda, T. A. Slaman. On the theory of the PTIME degrees of the
recursive sets, Journal of Computer and System Sciences 41, 1990,
pp. 321-366

M. Sipser. On relativization and the existence of complete sets, 9th
International Colloquium on Automata, Languages and Program-
ming (ICALP), Lecture Notes in Computer Science 140, Springer
Verlag, 1982, pp. 523-531

References

61

[St77]

[Sz88]

[To91]

[TO92]

[Tor91]

[Var6]

[Var9]

[Ve93]

[V0944]

[V094b]

[WaS6d]

[Wa86h]

L. Stockmeyer. The polynomial-time Hierarchy, Theoretical Com-
puter Science 3, 1977, pp. 23-33

R. Szelepcsenyi. The method of forced enumeration for nondeter-
mistic automata, Actalnformatica 26, 1988, pp. 279-284

S. Toda. PP is as hard as the Polynomial Time Hierarchy, SIAM
Journal on Computing 20, 1991, pp. 865-877

S. Toda, M. Ogiwara. Counting classes are at least as hard as the
Polynomial Time Hierarchy, SIAM Journal of Computing 21, 1992,
pp. 316-328

J. Toran. Compl exity classes defined by counting quantifiers, Journal
of the ACM 38, 1991, pp. 753-774

L. G. Vaiant. The relative complexity of checking and evaluating,
Information Processing Letters 5, 1976, pp. 20-23

L. G. Valiant. The complexity of computing the permanent, Theoret-
ical Computer Science 8, 1979, pp. 189-201

N. K. Vereshchagin. Relativizable and nonrelativizable theoremsin
the polynomial theory of algorithms (Russian), |zvestija Rossijskoj
Akademii Nauk 57 No. 2, 1993, pp. 51-90 (an English trandationis
available as a manuscript and isto appear in 1994)

H. Vollmer. On different reducibility notions for function classes,
Proc. 11th Symposium on Theoretical Aspects of Computer Science
(STACYS), Lecture Notesin Computer Science 775, Springer Verlag,
1994, pp. 449460

H. Vollmer. Komplexitatsklassen von Funktionen, Dissertation
(Ph.D. Thesis), Universitat Wirzburg, 1994

K. W. Wagner. Some observations on the connection between count-
ing and recursion, Theoretical Computer Science 47, 1986, pp. 131—
147

K. W. Wagner. The complexity of combinatorial problems with suc-
cinct input representation, Acta Informatica 23, 1986, pp. 325-356

References

62

[Wa87] K. W. Wagner. More complicated questions about maxima and min-
ima, and some closures of NP, Theoretical Computer Science 51,
1987, pp. 53-80.

[Wa90] K. W. Wagner. Bounded query classes, SIAM Journal of Comput-
ing 19, No. 5, 1990, pp. 833-846

[Wr77] C. Wrathall. Complete sets and the Polymomial-Time Hierachy,
Theoretical Computer Science 3, 1977, pp. 23-33

[Yao85] A. Yao. Separating the Polynomial Time Hierarchy by Oracles,
Proc. 26th Annual |IEEE Symposium on Foundations of Computer
Science (FOCS), 1985, pp. 1-10

[Za88] S. Zachos. Probabilistic Quantifiers and Games, Journal of Com-

puter and System Sciences 36, 1988, pp. 433-451

Subject Index

Symbol Index

| ndex of Classes

66

Index of Classes

L ebend auf

Name Hermann Bernd Borchert

Geburtsdatum geboren am 21. August 1962 in Thuine/Emsland, Niedersachsen
Eltern Bernhard Borchert, Maschinenbau-Ingenieur, und Paula Borchert
Staatsangehorigkeit deutsch

Familienstand ledig

Mai 1982 Abitur am Gymnasium Georgianum Lingen/Ems

Juli 1982 — Sept. 1983 Wehrdienst
Okt. 1982—Dez. 1990 Studium der Mathematik und Informatik
in Hagen, Munster, Minchen, Boston und Heidelberg

Oktober 1984 Vordiplom in Mathematik

Mai 1988 Master of Artsin Computer Science, Boston University
Dezember 1988 Diplom in Informatik, FernUniversitat Hagen
Dezember 1990 Diplom in Mathematik, Universitat Heidelberg

Mai 1989 — Sept. 1991 Freier Mitarbeiter bel IBM Heidelberg

Okt. 1991—-Sept. 1992 LGFG Stipendium des Landes Baden-Wurttemberg

Jan. 1992 — Juni 1992 Aufenthalt an der Cornell University, Ithaca, New York

seit Okt. 1992 Assistent am Lehrstuhl fir Logik am Mathematischen Institut
der Universitat Heidelberg

