Matrix Groups

An Introduction to Lie Group Theory

With 16 Figures

. . . .

Springer

Contents

Part I. Basic Ideas and Examples

1.	Rea	al and Complex Matrix Groups	3
	1.1	Groups of Matrices	3
	1.2	Groups of Matrices as Metric Spaces	5
	1.3	Compactness	12
	1.4	Matrix Groups	15
	1.5	Some Important Examples	17
	1.6	Complex Matrices as Real Matrices	29
	1.7	Continuous Homomorphisms of Matrix Groups	31
	1.8	Matrix Groups for Normed Vector Spaces	33
	1.9	Continuous Group Actions	37
2.	Exp	oonentials, Differential Equations and One-parameter Sub-	
	gro	ups	45
	2.1	The Matrix Exponential and Logarithm	45
	2.2	Calculating Exponentials and Jordan Form	51
	2.3	Differential Equations in Matrices	55
	2.4	One-parameter Subgroups in Matrix Groups	56
	2.5	One-parameter Subgroups and Differential Equations	59
3.	Tangent Spaces and Lie Algebras		
J.	Tan	gent Spaces and Lie Algebras	67
J.	Tan 3.1	gent Spaces and Lie Algebras	
э.			67

	3.4 3.5 3.6	Some Observations on the Exponential Function of a MatrixGroup84SO(3) and SU(2)86The Complexification of a Real Lie Algebra92
4.	Alg	ebras, Quaternions and Quaternionic Symplectic Groups 99
	4.1	Algebras
	4.2	Real and Complex Normed Algebras
	4.3	Linear Algebra over a Division Algebra
	4.4	The Quaternions
	4.5	Quaternionic Matrix Groups 120
	4.6	Automorphism Groups of Algebras
5.	Clif	ford Algebras and Spinor Groups129
	5.1	Real Clifford Algebras
	5.2	Clifford Groups
	5.3	Pinor and Spinor Groups
	5.4	The Centres of Spinor Groups 151
	5.5	Finite Subgroups of Spinor Groups152
6.	Lor	entz Groups
	6.1	Lorentz Groups
	6.2	A Principal Axis Theorem for Lorentz Groups
	6.3	$\operatorname{SL}_2(\mathbb{C})$ and the Lorentz Group $\operatorname{Lor}(3,1)\ldots\ldots\ldots171$

Part II. Matrix Groups as Lie Groups

Lie	Groups
7.1	Smooth Manifolds
7.2	Tangent Spaces and Derivatives
7.3	Lie Groups
7.4	Some Examples of Lie Groups
7.5	Some Useful Formulæ in Matrix Groups 193
7.6	Matrix Groups are Lie Groups
7.7	Not All Lie Groups are Matrix Groups
Hor	nogeneous Spaces
8.1	Homogeneous Spaces as Manifolds
8.2	Homogeneous Spaces as Orbits
8.3	Projective Spaces
8.4	Grassmannians
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 Hor 8.1 8.2 8.3

	8.5	The Gram–Schmidt Process
	8.6	Reduced Echelon Form
	8.7	Real Inner Products
	8.8	Symplectic Forms
9.	Сог	nnectivity of Matrix Groups
	9.1	Connectivity of Manifolds
	9.2	Examples of Path Connected Matrix Groups
	9.3	The Path Components of a Lie Group
	9.4	Another Connectivity Result

Part III. Compact Connected Lie Groups and their Classification

10.	Maximal Tori in Compact Connected Lie Groups
	10.1 Tori
	10.2 Maximal Tori in Compact Lie Groups
	10.3 The Normaliser and Weyl Group of a Maximal Torus
	10.4 The Centre of a Compact Connected Lie Group
11.	Semi-simple Factorisation
	11.1 An Invariant Inner Product
	11.2 The Centre and its Lie Algebra
	11.3 Lie Ideals and the Adjoint Action
	11.4 Semi-simple Decompositions
	11.5 The Structure of the Adjoint Representation
12.	Roots Systems, Weyl Groups and Dynkin Diagrams
	12.1 Inner Products and Duality
	12.2 Roots systems and their Weyl groups
	12.3 Some Examples of Root Systems
	12.4 The Dynkin Diagram of a Root System
	12.5 Irreducible Dynkin Diagrams
	12.6 From Root Systems to Lie Algebras
Hin	ts and Solutions to Selected Exercises
Bib	liography
Ind	ex