
INAUGURAL-DISSERTATIONzurErlangung der DoktorwürdederNaturwissenshaftlih-Mathematishen GesamtfakultätderRupreht-Karls-UniversitätHeidelberg

vorgelegt vonDipl. Phys. Moritz Mathias Diehlaus HamburgTag der mündlihen Prüfung: 25. Juni 2001





Real-Time Optimizationfor Large Sale Nonlinear Proesses

Gutahter: Prof. Dr. Dr. h.. Hans Georg BokProf. Dr.-Ing. Frank Allgöwer





AbstratE�ient numerial methods for the real-time solution of optimal ontrol problems arisingin nonlinear model preditive ontrol (NMPC) are presented. The pratial appliabilityof the methods is demonstrated in an experimental appliation to a pilot plant distillationolumn, involving the real-time optimization of a large sale di�erential algebrai proessmodel, with sampling times of only a few seonds.The solution approah is based on the diret multiple shooting method, whih allowsto ombine the use of advaned, fully adaptive DAE solvers with the advantages of a simul-taneous strategy. The real-time approah is haraterized by an initial value embeddingstrategy, that e�iently exploits solution information in subsequent optimization problems.Dovetailing of the solution iterations with the proess development in a real-time iterationsheme allows to redue sampling times to a minimum, but maintains all advantages of afully nonlinear treatment of the optimization problems. It is shown how the omputationsin eah real-time iteration an be divided into a preparation phase and a onsiderablyshorter feedbak phase, whih avoids the delay of one sampling time that is present in allprevious NMPC shemes. A Gauss-Newton approah for least squares integrals is realizedwhih allows to ompute an exellent Hessian approximation at negligible omputationalosts.The ontration properties of the algorithm are investigated theoretially, and ontra-tivity of the real-time iterates is shown under mild onditions. Bounds on the loss ofoptimality with respet to the optimal solution are established.In an experimental proof-of-onept study the developed numerial methods are appliedto the NMPC of a pilot plant distillation olumn situated at the Institut für Systemdy-namik und Regelungstehnik at the University of Stuttgart. A suitable system model isdeveloped, whih is sti� and omprises more than 200 state variables, and the system pa-rameters are �tted to experimental data. A variant of the Extended Kalman Filter (EKF)is developed for state estimation. Using the real-time optimization algorithm, samplingtimes of less than 20 seonds and feedbak delays below 400 milliseonds ould be realizedunder pratial onditions. The sheme shows good losed-loop performane, espeially forlarge disturbanes.In a numerial experiment, the periodi ontrol of an unstable system, an airbornekite that is �ying loopings, is investigated. The algorithm shows exellent robustness andreal-time performane for this hallenging on-line optimization example.
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IntrodutionOptimization tehniques have a fundamental impat on urrent industrial pratie. Opti-mization plays a ruial role not only in operations researh and in produt design, but alsoin the design of dynami industrial proesses. In many ases, an optimal ontrol problemis solved o�-line, i.e., before the atual proess operation begins, and a variety of highlydeveloped algorithms have been developed to attak this task.In pratial appliations, however, ontrol trajetories that are the result of an o�-lineoptimization are of limited appliability, as the real proess does not typially oinideompletely with the mathematial model and is most probably subjet to disturbanes.Therefore, the generation of optimization-based feedbak ontrols is of major pratialinterest. As optimal feedbak ontrols annot usually be prealulated in advane for allpossible disturbanes, the need for real-time optimization of the ontrolled proess arises.Model Preditive ControlThe idea of model preditive ontrol (MPC) is to determine the ontrol at time t0 bysolving an optimal ontrol problem on a predition horizon [t0, t0 + T ] (see Fig. 1). Theresulting optimal ontrols are given to the real proess for a short time δ only, and at time
t0 + δ a new problem is solved on a horizon [t0 + δ, t0 + T + δ] that is moved forward. Asequene of optimization problems is formulated and solved in real-time, whih providesthe possibility of reating to disturbanes. Linear model preditive ontrol (LMPC), thatis based on onstrained linear system models, has ahieved a state of onsiderable maturity(f. Garía et al [GPM89℄, Lee et al. [LMG94℄). It has had a strong impat on industrialontrol pratie and LMPC tehniques are nowadays widely applied, espeially in theproess industries (f. Qin and Badgwell [QB96℄).Nonlinear Model Preditive ControlFor proesses operating during load hanges, or for bath and periodi proesses, however,nonlinear models that are based on �rst priniples are expeted to apture the system be-haviour more aurately than linear ones. Nonlinear model preditive ontrol (NMPC)promises to inrease produtivity and ontrol performane and has long been investi-gated theoretially (for overview artiles see e.g. Rawlings et al. [RMM94℄, Allgöwer etal. [ABQ+99℄, De Niolao et al. [DMS00℄, or Mayne [May00℄).1
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Figure 1: The priniple of model preditive ontrol: The optimization problem at time t0,for the urrent system state x0.In the industry, however, NMPC is still being pereived as an aademi onept ratherthan a pratiable ontrol strategy, and in a reent survey, Qin and Badgwell [QB00℄report only 88 NMPC appliations worldwide, only 5 of whih are based on �rst priniplemodels. As detailed nonlinear proess models are inreasingly being used for the designof industrial proesses (see, e.g. Pantelides and Barton [PB93℄, Ross et al. [RBP+99℄,or Sorensen [Sor99℄) they may, as a byprodut, also beome easily available for NMPCappliations.The di�ulty of solving the arising optimal ontrol problems in real-time, however, iswidely regarded as the prinipal impediment to a pratial appliation of NMPC. In theirsurvey, Qin and Badgwell [QB00℄ point out that �speed and the assurane of a reliablesolution in real-time are major limiting fators in existing appliations.�In this thesis, we present a new approah to respond to the hallenge of real-timeoptimization in NMPC.Existing Real-Time Optimization ApproahesIn the last deade, the area of numerial tehniques for the on-line solution of dynamioptimization problems in NMPC has undergone rapid development. Most real-time ap-proahes are appliations of optimal ontrol methods whih were originally developed foro�-line use, and therefore they an be easily lassi�ed within the established framework ofdynami optimization methods.



3Dynami optimization algorithms based on the diret solution approah have provento be partiularly suessful for the pratial solution of onstrained optimal ontrol prob-lems. In the diret approah, the originally in�nite optimal ontrol problem is parame-terized to yield a �nite dimensional Nonlinear Programming (NLP) problem, that an besolved e�iently by highly developed variants of sequential quadrati programming (SQP)(Han [Han76℄ and Powell [Pow78℄). A variety of strategies for formulating the �nite di-mensional NLP exists. The approahes an roughly be lassi�ed into sequential and simul-taneous solution strategies.Sequential ApproahThe sequential approah parameterizes the ontrol trajetory and eliminates the or-responding state trajetory from the optimization problem by a numerial solution ofthe dynami model equations (f. Hiks and Ray [HR71℄, Sargent and Sullivan [SS78℄,Kraft [Kra85℄). Only the ontrol parameters remain as degrees of freedom in the NLP. Sim-ulation and optimization alulations are performed sequentially , one after the other. Theapproah an easily be oupled with advaned simulation tools and is applied in many pra-tial o�-line appliations (f. e.g. Pantelides et al. [PSV94℄, Vassiliadis [VSP94a, VSP94b℄,Engl et al. [EKKvS99℄; an overview of existing software pakages an be found in Binderet al. [BBB+01℄).Many real-time optimization shemes for NMPC are based on the sequential approah.We partiularly mention the so alled multistep, Newton-type ontrol algorithm that wasproposed by Li and Biegler [LB89℄ and de Oliveira and Biegler [OB95b℄ and whih or-responds to a onstrained Gauss-Newton method. This approah was often applied fornumerial tests of NMPC, see e.g. Abel et al. [ADM95℄ and M'hamdi et al. [MHAM96℄. Asequential approah was also used, e.g., by Weber [Web95℄ and Chen [Che97℄. For a large-sale appliation of the sequential approah in real-time optimization see also Kronsederet al. [KvSB01℄.Sequential optimization shemes for NMPC su�er from the drawbak that poor initialguesses for the ontrol trajetory may lead the predited state trajetories far away fromdesired referene trajetories. This often auses an unneessarily strong nonlinearity ofthe resulting NLPs and poor onvergene behaviour, espeially for unstable systems. Insome ases, an open-loop simulation on a longer horizon is even impossible (see Fig 8.4 inChap. 8 for an example).Simultaneous ApproahThe simultaneous approah avoids this di�ulty by parameterizing both, the ontrol andthe state trajetory, and by solving the dynami model equations and the ontrol op-timization problem simultaneously in a large onstrained NLP. The parameterized statetrajetory beomes a part of the optimization variables, and instability and nonlinearityof the dynami model an be better ontrolled.



4 IntrodutionMany researhers have applied olloation in order to parameterize the dynami model(see e.g. Tsang et al. [THE75℄, Bok [Bo83℄, Biegler [Bie84℄, Cuthrell and Biegler [CB89℄,Shulz [Sh96℄), resulting in very large, but also very sparse NLPs. The olloation ap-proah has been proposed for the solution of NMPC optimization problems by Bieglerin [Bie00℄.A seond simultaneous approah to optimal ontrol, the diret multiple shootingmethod, was presented by Plitt in 1981 [Pli81℄. This method forms the basis for ourreal-time algorithm. The optimization horizon of interest is divided into a number ofsubintervals with loal ontrol parameters, and the dynami model equations are solvedindependently on eah of these subintervals, f. Chap. 2. Continuity of the state trajetoryfrom one interval to the next is enfored on the NLP level only, thus o�ering the possi-bility to deal with unstable and strongly nonlinear system models, as olloation. Themethod has long been known as a fast o�-line optimization method in ODE and DAE (seee.g. Bok et al. [BP84, BES88, Bo87, BBLS99℄, Tanartkit and Biegler [TB95, TB96℄,Leineweber [Lei96, Lei99℄, Petzold et al. [PRG+97℄, Hinsberger et al. [HMP96, Hin98℄).Reently, the diret multiple shooting method was proposed for real-time optimizationproblems and NMPC. Santos et al. [SOB95℄ emphasize the strength of the method indealing with unstable modes and apply it to an NMPC simulation example, the TennesseEastman problem (Downs and Vogel [DV93℄), but do not address the question of real-timefeasibility. Leineweber et al. [LBS97℄ proposes a sheme for the fast reoptimization of bathproesses after large disturbanes and presents an appliation example from biohemialengineering.In the last year, an experimental feasibility study of NMPC based on the onventionaldiret multiple shooting method has been presented by Santos et al. [SAC+00, San00℄,for an experimentally simulated unstable ontinuous stirred tank reator. The nonlinear�rst priniple model onsists of four di�erential states and two ontrols. Choosing shortpredition horizons, optimization times of a few seonds are realized, whih is su�ientlyfast for the onsidered example.Despite these suessful appliations of diret multiple shooting to real-time optimiza-tion, the use of an algorithm that was essentially designed for o�-line use ertainly hasits limits, and this fat is re�eted in the moderate system sizes of the above examples.Large sale problems with strit real-time onstraints have therefore not been treated inexperimental appliation examples so far.The Conventional ShemeMost numerial real-time optimization shemes are based on the idea that one movinghorizon optimization problem an be formulated after the other, and that eah of theseproblems an be solved independently, with higher or lower auray. The solution methoditself is, in diret approahes, typially an iterative SQP type method. The followingalgorithmi sheme summarizes the onventional sheme:1. Formulate an optimization problem aording to the k-th data



52. Initialize the solution proedure.3. Perform iterations.4. Stop when a termination riterion is satis�ed (or when the time limit is reahed)5. Give the �rst ontrol value to the plant.6. Inrease k by one and go to 1.The fous is on hosing an e�ient o�-line method and to formulate the optimizationproblems in suh a way that the real-time requirements an be met. Note that a delay ofone sampling time is present in this sheme.The Real-Time Iteration ShemeIn ontrast to a onventional sheme, our real-time iteration approah shifts the fous fromthe sequene of optimization problems towards the solution algorithm itself. The algorithmis regarded to be iterating ontinuously � and while the algorithm is iterating, the problemdata are modi�ed from one iteration to the next. The sheme an be skethed as follows:1. Prepare the k-th real-time iteration as far as possible without knowledge of the k-thdata.2. When the k-th data are available, modify the problem, and perform quikly thosealulations that are neessary to obtain the �rst ontrol value.3. Give this ontrol value immediately to the plant.4. Perform the remaining alulations of the k-th iterate.5. Inrease k by one and go to 1.This approah does only perform one iteration per sampling time and thus allows to reduethe sampling times onsiderably. Furthermore, the feedbak step 2 is itself muh shorterthan a full iteration, so that the response delay an pratially be avoided. Note thatthe sheme still o�ers the advantages of a fully nonlinear treatment of the optimizationproblems.The approah an only perform well if the iteration sheme has good ontration prop-erties � this is typially the ase for simultaneous approahes like diret multiple shooting� and if the problem modi�ations are implemented in suh a way that they have minimalinterferene on the iterates.



6 IntrodutionThe Initial Value Embedding StrategyThe ruial observation is that essentially one parameter su�es to distinguish betweendi�erent optimization problems, the initial value x0 of the state trajetory (f. Fig. 1). Ifderivative information with respet to x0 is available, whih is the ase for simultaneoussolution approahes, neighboring problems an be initialized very e�iently by a so alledinitial value embedding strategy. After eah problem modi�ation, the strategy obtainsan exellent �rst order orretion in the state and ontrol trajetory that is based on theprevious system linearization. Roughly spoken, the approah allows the inlusion of linearMPC feedbak into the predited trajetory, before a new system linearization is performed.The approah exploits the similarity between subsequent problems as muh as possible. Inonjuntion with the exellent ontration properties of a simultaneous solution approahlike diret multiple shooting, the real-time iterates stay very lose to the exat solutions ofthe optimization problem.The idea to dovetail the solution iterations by employing the initial value embeddingidea was �rst proposed by Bok et al. [BDLS00℄, with a fous on shrinking horizon pro-esses. The initial value embedding strategy without a dovetailing of iterations and pro-ess was implemented in a �rst version of the on-line diret multiple shooting method(Diehl [Die98℄), and several numerial feasibility studies have been arried out with thisalgorithm: in Diehl et al. [DBLS99℄ real-time feasibility of the NMPC of a ontinuousstirred tank reator is shown for rather long ontrol horizons (f. Se 1.2); in Nagy etal. [NFD+00℄, Allgöwer et al. [AFN+00℄, and Findeisen et al. [FAD+00℄ the NMPC of alarge sale proess ontrol example, namely a binary distillation olumn, is onsidered, andreal-time feasibility is demonstrated in numerial simulations.In this thesis we present the newly developed real-time iteration sheme and inves-tigate the ontration properties of the approah, and present experimental results thathave been obtained by an appliation of the developed algorithm to the NMPC of a pilotplant distillation olumn at the Institut für Systemdynamik und Regelungstehnik (ISR),University of Stuttgart, employing a sti� DAE optimization model with over 200 states.We mention here that several singular features of algorithm have been presented byother researhers in the area of pratial real-time optimization.In partiular, a one-iteration sheme has been proposed by Li and Biegler [LB89℄, for thesequential approah. Their sheme, however, did not inlude the initial value embeddingstrategy for the initialization from one problem to the next, and it seems that the shemewas not further pursued in appliation examples. In a subsequent paper, de Oliveira andBiegler [OB95a℄ fous on the onverged form of the algorithm, whih essentially equals aonventional Gauss-Newton method for the sequential approah.1In the appliation of onventional optimization shemes to on-line ontrol, the questionof how to initialize subsequent problems has found some attention in the literature. Lieb-man [LEL92℄ observes that warm starts of the optimization algorithm an save up to 80%1Note that it would be possible to ombine the initial value embedding idea with a sequential approah,though it is not as straightforward as for simultaneous approahes.



7omputation time, f. also Biegler and Rawlings [BR91℄. A shift strategy that aounts forthe movement of the optimization horizon forward in time is proposed, e.g., by de Oliveiraand Biegler [OB95a℄ for the sequential approah.Highlights of the Thesis and OverviewThe aim of this thesis is threefold. First, we want to desribe in full detail how the real-timeiteration sheme an be realized for the diret multiple shooting method. This is done inChapters 2, 4 and 6. Seondly, the theoretial properties of the sheme are investigatedin Chapter 5, whih ontains a ontrativity result and bounds on the loss of optimality.Finally, we demonstrate the pratial appliability of the approah in an experimentalstudy that involves the NMPC of a pilot plant distillation olumn, whih is modelled by alarge sale proess model (Chapter 7), and show in a simulation study that the approahan suessfully be applied to an unstable periodi ontrol example with strit real-timerequirements (Chapter 8).1. In Chapter 1, we introdue the lass of real-time optimal ontrol problems thatan be treated with our approah. We also introdue a guiding example problemfrom hemial engineering that will be used several times in the thesis for illustra-tive purposes. Some theory regarding optimal feedbak ontrol and nonlinear modelpreditive ontrol is brie�y reviewed.2. The diret multiple shooting parameterization is reviewed in Chapter 2 and theparameterized nonlinear programming (NLP) problem that will be regarded in theremainder of this thesis is formulated and disussed.3. In Chapter 3, we reall optimality onditions for onstrained NLPs and review aresult from parametri optimization, whih investigates the solution of neighboringoptimization problems. The Sequential Quadrati Programming (SQP) tehnique isdesribed, and its astonishing power in the solution of perturbed optimization prob-lems is shown for a one dimensional analog of the initial value embedding strategy.4. The new real-time iteration algorithm is presented in Chapter 4. We present theinitial value embedding strategy and show how the approah an be realized onshrinking and on moving horizons.5. Chapter 5 ontains the major theoretial results of this thesis. After a review of theonvergene properties for general o�-line Newton type methods in Se. 5.1, we showontrativity of the real-time iterates for the on-line problem on shrinking horizons(Se. 5.2). The ontrativity result is exploited to investigate the properties of theon-line solution, ompared to the optimal o�-line solution.6. The spei� algorithmi realization of one real-time iteration is desribed in Chap-ter 6. The hapter mostly presents well known tehniques from the o�-line diret



8 Introdutionmultiple shooting method in a new setting, leading to the division into preparationand feedbak phase. However, a newly developed Gauss-Newton approah for leastsquares integrals is presented in Se. 6.4, whih an be employed for both, the o�-and the on-line diret multiple shooting method.7. Experimental results are presented in Chapter 7. The study involves the NMPC of apilot plant distillation olumn using a sti� di�erential algebrai optimization modelwith over 200 states. We develop the system model and desribe how the systemparameters were determined using experimental data from the real olumn. Theexperimental results demonstrate that NMPC with a large sale proess model isfeasible.8. To demonstrate the power and versatility of the proposed real-time iteration sheme,we present in Chapter 8 numerial simulations for an unstable periodi ontrol exam-ple, namely an airborne kite. Control aim is to let the kite �y loopings. A new kitemodel is developed and a periodi orbit determined. Numerial tests show the real-time feasibility and an astonishing robustness of the real-time optimization approaheven for large disturbanes.9. We �nally onlude this thesis with a summary and an outlook of interesting futuredevelopments.The developed real-time algorithm, that has also been presented in some publiations(Bok et al. [BDS+00℄, Diehl et al. [DBS+01, DUF+01℄), is urrently onsidered for use inan industrial appliation.



Chapter 1Real-Time Optimal ControlIn this hapter we will �rst introdue a general lass of optimal ontrol problems for whihour algorithms are designed, and review some theory regarding optimal feedbak ontroland nonlinear model preditive ontrol.1.1 Optimal Control Problems in DAEDi�erential Algebrai System ModelsLet us assume that a system that we want to ontrol an be desribed by a di�erential-algebrai equation (DAE) model of the following form:
B(x(t), z(t), u(t), p, t) · ẋ(t) = f(x(t), z(t), u(t), p, t)

0 = g(x(t), z(t), u(t), p, t).Here, x ∈ R
nx and z ∈ R

nz denote the di�erential and the algebrai state vetors, re-spetively, u ∈ R
nu is the vetor valued ontrol funtion, whereas p ∈ R

np is a vetor ofonstant system parameters suh as reation onstants or material parameters.We also assume that the Jaobian ∂g
∂z
(·) and the matrix B(·) are invertible, so that theDAE is of index-one and of semi-expliit type.Objetive FuntionalLet us introdue a general Bolza type objetive funtional on a time horizon [t0, tf ] withstart time t0 and �nal time tf

∫ tf

t0

L(x(t), z(t), u(t), p, t) dt + E(x(tf ), z(tf ), p, tf),where L is often alled the Lagrange term, and E the Mayer term of the objetive. Thisobjetive funtional de�nes the overall �osts� that shall be minimized.9



10 Real-Time Optimal ControlLeast Squares Objetives for Traking Problems: An important sublass of optimalontrol problems are traking problems that have as their aim to determine ontrols thatlead the system state or more general an output funtion l(x(t), z(t), u(t), p, t) ∈ R
nl �lose�to some spei�ed referene output trajetory lr(p, t) ∈ R

nl on the interval t ∈ [t0, tf ].Typially, the distane from the referene trajetory is measured by the integral of asquared di�erene, that may be weighted by a positive de�nite matrix Q, so that theintegral
∫ tf

t0

‖Q 1
2 · (l(x(t), z(t), u(t), p, t)− lr(t, p))‖22 dtshall be minimized.1By rede�ning l(x(t), z(t), u(t), p, t), we an assume that Q = I and lr(p, t) = 0, ∀ t ∈

[t0, tf ]. By also introduing a least squares Mayer term with a vetor valued residualfuntion e(x(tf ), z(tf ), p, tf) ∈ R
ne, the general form of an objetive funtional in leastsquares form is given as

∫ tf

t0

‖l(x(t), z(t), u(t), p, t)‖22 dt + ‖e(x(tf ), z(tf ), p, tf)‖22.This form an be exploited for the e�ient solution of the optimization problems by aGauss-Newton approah that is presented in Setion 6.4.Path Constraints and Boundary ConditionsThe state and ontrol trajetories are required to satisfy so alled path onstraints on thehorizon of interest
h(x(t), z(t), u(t), p, t) ≥ 0, t ∈ [t0, tf ].The most ommon form of this onstraint type are minimum and maximum values for theontrols, but also e.g. safety restritions on the system state may enter here. In addition,terminal equality or inequality onstraints

re(x(tf ), z(tf ), p, tf) = 0

ri(x(tf ), z(tf ), p, tf) ≥ 0may be imposed, e.g. to speify that a semi-bath proess should stop when the tank isfull. In some nonlinear model preditive ontrol formulations, the terminal onstraints helpto guarantee nominal stability (f. Se. 1.4.1).One onstraint that plays an important role in the presented algorithms is the initialvalue onstraint
x(t0) = x0.1We use the de�nition ‖l‖22 :=

∑nl

i=1 l
2
i
.



1.1 Optimal Control Problems in DAE 11We will also treat the �xed parameters p and the initial time t0 as if they were onstrainedvariables:
p = p̄

t0 = t̄0The introdution of t0 and p as trivially onstrained optimization variables seems to be anunneessary blow-up of the problem. However, this formulation will turn out to be ruialfor the proposed real-time algorithms.Elimination of Parameter and Time DependeneFor notational simpliity we will in the remainder of this thesis drop the dependene of theproblem funtions on the system parameters p and the time t. This is no loss of generality:by introduing an augmented state vetor
x̃ :=





x
p
t̃



 and initial ondition x̃0 :=





x0
p̄
t̄0



 ,and introduing the augmented di�erential equation B̃(·) ˙̃x = f̃(·) with
B̃(·) :=





B(·) 0 0
0 Inp 0
0 0 1



 , and f̃(·) :=





f(·)
0
1



 ,the original formulation of the initial value problem formulation an be reaptured if the�lok� variable t̃(t) is inserted wherever a diret dependene of the time t was present.Note, however, that the trivial additional di�erential equations are treated indepen-dently from the others in the numerial solution proedures, for reasons of e�ieny. Fur-thermore, only those parameters p that may have di�erent values at pratially relevantproess onditions should be kept in this way, whereas all de�nitely known parameters anbe taken as onstants that are �hidden� in the problem funtions.As the optimization problem has beome time independent, the time horizon of interestmay start at t0 = 0. Let us de�ne T to be the horizon length.If the �nal time tf should be �xed, this an now be ahieved by formulating a terminalequality onstraint
re(x̃(T )) := t̃(T )− tf = 0.Note that in this ase the duration T depends impliitly on the initial value x̃0, beauseat a feasible solution tf = t̃(T ) = t̃(0) + T = t̄0 + T , so that T = tf − t̄0.



12 Real-Time Optimal Control1.1.1 Problem FormulationWe an now formulate an optimal ontrol problem
Poc(x0) : min

u(·), x(·),
z(·), (T )

∫ T

0

L(x(t), z(t), u(t)) dt + E(x(T ), z(T )) (1.1a)subjet to
B(x(t), z(t), u(t)) · ẋ(t)− f(x(t), z(t), u(t)) = 0, t ∈ [0, T ], (1.1b)

g(x(t), z(t), u(t)) = 0, t ∈ [0, T ], (1.1)
x(0)− x0 = 0, (1.1d)

re(x(T ), z(T )) = 0, (1.1e)
ri(x(T ), z(T )) ≥ 0, (1.1f)

h(x(t), z(t), u(t)) ≥ 0, t ∈ [0, T ]. (1.1g)The length T may either be �xed, or appear as a degree of freedom in the optimizationproblem.Solving the optimal ontrol problem (1.1) for an initial value x0 we obtain optimal tra-jetories x∗(t; x0) and z∗(t; x0) and an open-loop optimal ontrol u∗(t; x0), for t ∈ [0, T (x0)].In order to keep the dependeny of the optimal trajetories on the initial value x0 in mind,we have taken them as additional arguments to the solution funtions.We shall now introdue as a guiding example an optimal ontrol problem from hemialengineering, whih will be ited several times in this thesis for illustrative purposes.1.2 A Guiding Example: Continuous Stirred Tank Re-atorLet us onsider a ontinuous stirred tank reator (CSTR) model that was introdued byChen et al. [CKA95℄ as a benhmark example for Nonlinear Model Preditive Control. Thereator is designed to produe ylopentenol from ylopentadiene by an aid-atalyzedeletrophili hydration in aqueous solution, an exothermal reation that makes a oolingjaket neessary. The onsidered ODE model was originally introdued by Klatt andEngell [KE93℄.1.2.1 Dynami Model of the CSTRA shemati diagram of the reator (taken from [CKA95℄) is shown in Fig. 1.1. The rea-tion and heat transfer sheme developed by Klatt and Engell [KE93℄ is based on physialmodelling; it leads to an ODE model with four states and two ontrols.



1.2 A Guiding Example: Continuous Stirred Tank Reator 13

Figure 1.1: Shemati diagram of the CSTR (as shown in [CKA95℄)
The feed in�ow has temperature ϑ0 and ontains only ylopentadiene (substane A)with onentration cA0. Its �ow rate V̇ an be ontrolled. In order to keep the liquid tankvolume onstant, the out�ow is kept at the same rate as the in�ow. The out�ow ontains aremainder of ylopentadiene, the produt ylopentenol (substane B), and two unwantedby-produts, ylopentanediol (substane C) and diylopentadiene (substane D), withonentrations cA, cB, cC , and cD. The sheme for this so-alled van der Vusse reation isgiven as

A
k1−→ B

k2−→ C

2A
k3−→ D.The reation rates ki depend on the reator temperature ϑ via an Arrhenius law

ki(ϑ) = ki0 · exp
(

Ei

ϑ/oC + 273.15

)

, i = 1, 2, 3.The temperature ϑK in the ooling jaket is held down by an external heat exhangerwhose heat removal rate Q̇K an be ontrolled. As the substanes C and D are unwantedand do not reat further, it is not neessary to keep trak of their onentrations.



14 Real-Time Optimal ControlThe nonlinear ODE model an be derived from omponent balanes for the substanesA and B in the aqueous solution, and from enthalpy balanes for the reator and oolingjaket:
˙cA =

V̇

VR
(cA0 − cA) −k1(ϑ)cA −k3(ϑ)c2A

˙cB = − V̇

VR
cB +k1(ϑ)cA −k2(ϑ)cB

ϑ̇ =
V̇

VR
(ϑ0 − ϑ) +

kwAR

ρCpVR
(ϑK − ϑ)

− 1

ρCp

(

k1(ϑ)cAH1 + k2(ϑ)cBH2 + k3(ϑ)c
2
AH3

)

˙ϑK =
1

mKCPK

(

Q̇K + kwAR(ϑ− ϑK)
)

.

(1.2)
Here, CPK and Cp denote the heat apaities of oolant and aqueous solution, ρ the solu-tion's density, H1,H2, and H3 the reation enthalpies. Values of these parameters as wellas for the Arrhenius oe�ients ki0 and Ei for i = 1, 2, 3 and the employed reator spei�quantities (volume VR, surfae AR and heat transfer oe�ient kW for ooling jaket andoolant mass mK) are listed in Table 1.1. By introduing the system state x and theontrol vetor u as

x =









cA
cB
ϑ
ϑK









and u =

(

V̇
VR

Q̇K

)

we an summarize Eqs. (1.2) as
ẋ = f(x, u).The result of a steady state optimization of the yield =

cB |S
cA0

with respet to the designparameter ϑ0 (feed temperature) and the two ontrols yields the steady state and ontrols
xS =









2.1402 mol
l

1.0903 mol
l

114.19 ◦C
112.91 ◦C









and uS =

(

14.19 h−1

−1113.5 kJ
h

)

.We will take this steady state as a desired referene value in the optimal ontrol problemthat follows � please note that it is of no importane in the following that xS, uS was itselfthe result of an optimization; the only property that is important for the optimal ontrolproblem is that f(xS, uS) = 0.Note that we do not introdue the onstant system parameters as additional variables,beause we assume that they will never be subjet to hanges.



1.2 A Guiding Example: Continuous Stirred Tank Reator 15Symbol Value Symbol Value
k10 1.287 ·1012h−1 ρ 0.9342 kg

l

k20 1.287 ·1012h−1 Cp 3.01 kJ
kg·K

k30 9.043 ·109h−1 kw 4032 kJ
h·m2·K

E1 -9758.3 AR 0.215 m2

E2 -9758.3 VR 10 l
E3 -8560 mK 5 kg
H1 4.2 kJ

mol
CPK 2.0 kJ

kg·K

H2 -11.0 kJ
mol

cA0 5.1 mol
l

H3 -41.85 kJ
mol

θ0 104.9 ◦CTable 1.1: Constant system parameters.1.2.2 The Optimal Control ProblemGiven an initial state x0, the optimal ontrol problem Poc(x0) is to steer the system safelyand quikly into the steady state xS. We take the formulation hosen by Chen in [Che97℄,that aims at minimizing the integrated weighted quadrati deviaton of the trajetory fromthe optimal steady state values. We de�ne a Lagrange term
L(x, u) := (x− xS)

TQ(x− xS) + (u− uS)
TR(u− uS)with diagonal matries

Q :=









0.2 mol−2 l2 0 0 0
0 1.0 mol−2 l2 0 0
0 0 0.5 ◦C−2 0
0 0 0 0.2 ◦C−2







and
R :=

(

0.5h2 0
0 5.0 · 10−7 kJ−2 h2

)

.Control bounds uLB ≤ u(t) ≤ uUB are given by
uLB :=

(

3.0 h−1

−9000 kJ
h

) and uUB :=

(

35.0 h−1

0 kJ
h

)

,so that we de�ne the path inequality onstraint funtion to be:
h(x(t), u(t)) :=

(

u(t)− uLB
uUB − u(t)

)

≥ 0.We formulate the following optimal ontrol problem Poc(x0):
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time [s]Figure 1.2: Example solution of the optimization problem (1.3). The �rst four graphs showthe optimal state trajetories x∗(t; x0) and the last two the optimal ontrol trajetories
u∗(t; x0).
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min

u(·),x(·)

∫ T

0

L (x(t), u(t)) dt (1.3)subjet to
ẋ(t) = f (x(t), u(t)) , ∀ t ∈ [0, T ],

x(t0) = x0,

h(x(t), u(t)) ≥ 0, ∀ t ∈ [0, T ].In ontrast to the formulation hosen in [Che97℄ we hoose a onsiderably longer horizonlength of T = 2000 seonds, whih is su�iently large to allow the assumption that ourproblem formulation is a good approximation for T = ∞.The optimal trajetories x∗(t; x0) and u∗(t; x0) of an example solution of this optimiza-tion problem for the initial value
x0 :=









1.0 mol
l

0.5 mol
l

100 ◦C
100 ◦C









(1.4)are shown in Figure 1.2.1.3 Optimal Feedbak ControlLet us for a moment assume that we an preompute, for all x0 ∈ R
nx for whih theoptimization problem Poc(x0) has a solution, the optimal ontrol trajetories u∗(t; x0) aswell as the orresponding optimal state trajetories x∗(t; x0) and z∗(t; x0) on the timehorizon t ∈ [0, T (x0)]. We will assume that T is not �xed, but open to optimization. Thelength T may, however, be determined by the �nal state onstraint (1.1e), e.g. in the aseof a �xed end time tf . Note that in this ase the �lok� variable t̃ is part of the systemstate x.Let us pik a �xed value of x0 and onsider the optimal solution trajetories x∗(·; x0),

z∗(·; x0), and u∗(·; x0) of Poc(x0). Let us also pik a time t1 ∈ [0, T (x0)] and the orrespond-ing state x1 := x∗(t1; x0) on the optimal di�erential state trajetory x∗(·; x0). Considernow the related optimization problem Poc(x1). How are its optimal solution trajetories
x∗(·; x1), z∗(·; x1), and u∗(·; x1) on [0, T (x1)] related to those of Poc(x0)? From the prinipleof optimality , also known as the optimality of subars, it follows that T (x1) = T (x0)− t1and that the solution trajetories of Poc(x1) oinide with the remaining part of the solutiontrajetories of Poc(x0) after t1, i.e.,

x∗(t; x1) = x∗(t1 + t; x0)
z∗(t; x1) = z∗(t1 + t; x0)
u∗(t; x1) = u∗(t1 + t; x0)







∀ t ∈ [0, T (x1)].



18 Real-Time Optimal ControlBy hosing t = 0 and formulating the last identity for all t1 ∈ [0, T (x0)], we an onverselyyield the optimal ontrol trajetory u(·; x0) by
u(t1; x0) = u∗(0; x∗(t1; x0)), ∀ t1 ∈ [0, T (x0)].Hene, the result of the preomputation an be aptured in an optimal feedbak ontrol(f. [BH69℄) funtion uf that is de�ned as

uf(x0) := u∗(0; x0). (1.5)This funtion may be used as a feedbak ontrol that leads to the losed-loop DAE system
B(·) · ẋcl(t) = f(xcl(t), zcl(t), u

f(xcl(t)))

0 = g(xcl(t), zcl(t), u
f(xcl(t))).One omputationally expensive and storage onsuming possibility would be to prealulatesuh a feedbak ontrol law o�-line on a su�iently �ne grid. The tehnique of hoie toompute this feedbak ontrol would be dynami programming [Bel57℄, or an approahusing the Hamilton-Jaobi-Bellman (HJB) equation [LM68, Son90℄. However, even formoderate state dimensions nx this would require a prohibitively large omputational e�ort.In ontrast to this our work is onerned with e�ient ways to alulate the optimalfeedbak ontrol uf(x0) in real-time while the real proess runs.1.3.1 Linearized Neighboring Feedbak ControlOne possibility to approximate the optimal feedbak ontrol law uf(xcl(t)) in the viinityof a referene trajetory is provided by linearized neighboring feedbak ontrol (also alledperturbation feedbak ontrol [BH69℄). It requires a nominal or referene solution x∗(·; x0),

z∗(·; x0), and u∗(·; x0) of a nominal problem Poc(x0), and is a good approximation if thedistane ‖x(t) − x∗(t; x0)‖ of the real trajetory x(t) to the referene trajetory remainssmall. The idea is to approximate
uf(xcl(t)) = u∗(0; xcl(t)), ∀t ∈ [0, T (x0)],by the linearization

ulnfc(xcl(t)) := u∗(t; x0) +K(t)(xcl(t)− x∗(t; x0)),where
K(t) :=

∂uf

∂x
(x∗(t; x0))that is de�ned for all t ∈ [0, T (x0)]. Note that the onstant term u∗(t; x0) is equal to

uf(x∗(t; x0)) = u∗(0; x∗(t; x0)) due to the priniple of optimality. The derivative or gainmatrix K, if it exists, an e�iently be alulated by using �rst and seond derivative



1.3 Optimal Feedbak Control 19information along the referene trajetory x∗(·; x0), z∗(·; x0), and u∗(·; x0), see e.g. Brysonand Ho [BH69℄.The method an be extended to the ase that the derivative K does not exist in a stritsense, e.g. in the ase of bang-bang ontrols, but where it is still possible to use deriva-tive information along a referene trajetory. Numerial tehniques to ompute linearizedneighboring feedbak ontrols have been developed, e.g., by Pesh [Pes78℄, Krämer-Eis etal. [KE85, KEB87℄, and Kugelmann and Pesh [KP90a, KP90b℄. Linearized neighboringtehniques have been applied for on-line ontrol of bath reators, e.g., by Terwiesh andAgarwal [TA94℄.Note that the approximations provided by these tehniques are only valid in the neigh-borhood of a referene trajetory. If the real-system has moved far away from the referenetrajetory during proess development, the approximation of the optimal feedbak ontrolmay beome very poor and may drive the system even into diretions opposite to what isdesired. Cf. Se. 4.3.2 and Example 4.4.Example 1.1 (Optimal and Linearized Neighboring Feedbak)As an example for a tabulation of the optimal feedbak ontrols uf(x), and for the linearizedneighboring feedbak approximation ulnfc(x) we show in Figure 1.3 a one dimensional utthrough the four dimensional state spae of the CSTR of Setion 1.2, for initial values
xǫ := xS + ǫ(x0 − xS),that interpolate between the steady state xS and the disturbed initial value x0 from (1.4).The graphs for uf(xǫ) := u∗(0; xǫ) have been obtained by a numerial solution of theoptimal ontrol problem (1.3) (whih we take as an approximation for T = ∞) for 141initial values xǫ, ǫ ∈ {−0.20,−0.19, . . . , 1.19, 1.20}, whereas ulnfc(xǫ) := uS+K(0)(xǫ−xS)is based on a linearization of uf(·) at the steady state xS. For a losed-loop trajetory dueto a linearized neighboring feedbak tehnique, f. Example 4.4.In our onsiderations about optimal feedbak ontrol we have assumed that the horizonlength T of the optimization problem (1.1) is a variable in the optimization problem thatis either determined by some onstraints or a real degree of freedom. In this ase we speakof �shrinking horizon problems�, beause the time horizon T is shrinking during optimalproess development, as we have seen by the priniple of optimality for subars. In hemialengineering this problem type arises typially for bath or semi-bath proesses, in robotise.g. for time optimal maneuvers.1.3.2 In�nite Horizon ProblemsOn the other hand, a major appliation for feedbak ontrol systems are systems thatrun in�nitely long, so that the hoie T = ∞ would be appropriate. It is straightforwardthat the priniple of optimality holds also for the solution trajetories x∗∞(·; x0), z∗∞(·; x0),and u∗∞(·; x0), and we may aordingly de�ne an optimal feedbak ontrol law for in�nitehorizon problems
uf∞(x0) := u∗∞(0; x0).
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Nominal StabilityFor steady state traking problems with an objetive ∫∞

0
L(x(t), z(t), u(t)) dt that satis�es

L(x, z, u) > 0 for all (x, z, u) 6= (xS, zS, uS) and L(xS , zS, uS) = 0 at the steady state, thepriniple of optimality ensures nominal stability of the orresponding losed-loop system,as the optimal ost funtion
V∞(x0) :=

∫ ∞

0

L(x∗∞(t; x0), z
∗
∞(t; x0), u

∗
∞(t; x0)) dt,if it remains �nite, serves as a Lyapunov funtion (as de�ned e.g. in [Son90℄) for thelosed-loop system.To sketh the idea of the nominal stability proof, let us assume that V∞(·) ∈ C1 andthat u∗∞(·; x0) ∈ C0∀ x0, and furthermore that the level sets of V∞(·) are ompat in R

nx .First note that V∞(xS) = 0 and V∞(x0) > 0, x0 6= xS. It will now be shown that
d

dt
V∞(xcl(t)) < 0, ∀ xcl(t) 6= xS, (1.6)so that the only aumulation point of the losed-loop trajetory xcl(t), t ∈ [0,∞), an be

xS. As the level sets are ompat, an aumulation point must exist, so that asymptoti



1.4 Nonlinear Model Preditive Control 21stability follows. To show the desent property (1.6), �rst note that the losed-loop traje-tory xcl(·) for the initial value x0 oinides with the optimal trajetory x∗∞(·; x0). Thereforeit needs only to be shown that
d

dt
V∞(x∗∞(t; x0)) < 0, ∀ x∗∞(t; x0) 6= xS . (1.7)Di�erentiation of the identity

V∞(x∗∞(t; x0)) = V∞(x0)−
∫ t

0

L(x∗∞(τ ; x0), z
∗
∞(τ ; x0), u

∗
∞(τ ; x0)) dτ,(whih is a diret onsequene of the priniple of optimality) with respet to t yields

d

dt
V∞(x∗∞(t; x0)) = −L(x∗∞(t; x0), z

∗
∞(t; x0), u

∗
∞(t; x0)) < 0, ∀ x∗∞(t; x0) 6= xS.1.4 Nonlinear Model Preditive ControlUnfortunately, in�nite horizon problems are in general very di�ult to handle for nonlinearand onstrained systems. Therefore, a so alled �moving horizon� approah is often usedinstead, where a onstant ontrol horizon of length T is hosen in all optimization prob-lems. If the onstant T is su�iently large, the omputed optimal trajetories x∗T (·; x0),, z∗T (·; x0), and u∗T (·; x0) are expeted to be similar to the orresponding in�nite horizonvalues x∗∞(·; x0), z∗∞(·; x0), and u∗∞(·; x0) on [0, T ] so that the de�nition for moving horizonproblems,

ufT (x0) := u∗T (0; x0)is a good approximation for the in�nite horizon optimal feedbak ontrol uf∞(x). We allthe resulting feedbak law ufT (x) �optimal moving horizon feedbak ontrol� [BBB+01℄ or�Nonlinear Model Preditive Control� (NMPC). Often also the term �Reeding HorizonControl� (RHC) [MM90℄ is used to denote this moving horizon sheme. The omputationof the optimal moving horizon ontrol law ufT (x0) in real-time is the main appliation ofour algorithms.1.4.1 Shemes to Ensure Nominal StabilityNote that the priniple of optimality does no longer hold for moving horizon problems;however, a variety of shemes to ensure nominal stability for steady state traking problemshas been devised. These shemes make strong use of arti�ially introdued end pointonstraints as formulated in Eqs. (1.1e) and (1.1f), and of the Mayer term E(x(T ), z(T ))in the objetive funtional (1.1a). The prinipal idea is to formulate the optimizationproblems in suh a way that the optimal ost funtion
VT (x0) :=

∫ T

0

L(x∗T (t; x0), z
∗
T (t; x0), u

∗
T (t; x0)) dt+ E(x∗T (T ; x0))



22 Real-Time Optimal Controlan serve as a Lyapunov funtion of the losed-loop system, as for in�nite horizon problems.For an overview of suh shemes, we refer to the artiles by Mayne [May96, May00℄ or DeNiolao, Magni, and Sattolini [DMS00℄. Here, we will brie�y introdue three of theseshemes. All three have in ommon that the so alled monotoniity property [DMS00℄holds in a neighborhood ΩT of the steady state xS:
VT (x) ≤ VT−δ(x), ∀ δ ≥ 0, δ ≤ T, x ∈ ΩT . (1.8)Nominal stability follows together with the priniple of optimality for subars, whih statesthat

VT (x0) =

∫ δ

0

L(x∗T (t; x0), z
∗
T (t; x0), u

∗
T (t; x0)) dt+ VT−δ(x

∗
T (δ; x0))so that (using x0 = x∗T (0; x0))

VT (x
∗
T (δ; x0))− VT (x

∗
T (0; x0)) ≤ VT−δ(x

∗
T (δ; x0))− VT (x

∗
T (0; x0))

= −
∫ δ

0
L(x∗T (t; x0), z

∗
T (t; x0), u

∗
T (t; x0)) dt.Di�erentiating this inequality by δ we an dedue that

d
dt
VT (x

∗
T (0; x0)) = ∂VT

∂x
(x∗T (0; x0)) ẋ

∗
T (0; x0)

≤ −L(x∗T (0; x0), z∗T (0; x0), u∗T (0; x0)) < 0, ∀ x0 6= xS.Let us now hoose x0 := xcl(t) to be one state of the losed-loop trajetory, at time t. Thetime development of the nominal losed-loop system obeys the same DAE as the model;beause at time t the di�erential system state is xcl(t) = x0 = x∗T (0; x0) and the losed-loop ontrol is hosen to be ufT (xcl(t)) := u∗T (0; x0), the algebrai state also oinides withthe start of the optimal trajetory: zcl(t) = z∗T (0; x0) (due to the algebrai onsistenyondition); therefore, the time derivatives oinide:
ẋcl(t) = ẋ∗T (0; x0).This allows to onlude that

d

dt
VT (xcl(t)) =

∂VT
∂x

(xcl(t)) ẋcl(t) < 0, ∀xcl(t) 6= xS.Zero Terminal ConstraintThe idea of the zero terminal onstraint (ZTC) sheme is to formulate the terminal pointonstraint
re(x(T )) := x(T )− xS,where xS is the di�erential part of the desired steady state, and to employ no �nal penalty

E(x(T )). Nominal stability for nonlinear ontinuous time systems was proven by Mayneand Mihalska [MM90℄. The monotoniity property (1.8) follows from the fat that theoptimal solution x∗T−δ(t; x0), z∗T−δ(t; x0), and u∗T−δ(t; x0) of a problem Poc,T−δ(x0) on a shorthorizon [0, T−δ] an be prolonged to a feasible trajetory of the problem Poc,T (x0) on a longhorizon [0, T ], by adding for t ∈ [T−δ, T ] the �nal parts x∗T (t; x0) := xS, z∗T (t; x0) := zS,and u∗T (t; x0) := uS, that have no additional osts, f. Fig.1.4.
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TFigure 1.4: Monotoniity property for the zero terminal onstraint (ZTC) sheme: thesolution trajetories of problem Poc,T−δ(x0) an be prolonged to feasible trajetories forproblem Poc,T (x0) without inreasing the objetive.Quasi-In�nite Horizon NMPCThe quasi-in�nite horizon (QIH) sheme employs a positive de�nite penalty matrix P ∈

R
nx×nx that allows to formulate a terminal penalty term

E(x(T )) := ‖x(T )− xS‖2P := ‖P 1
2 (x(T )− xS)‖22and a terminal onstraint

ri(x(T )) := α− ‖x(T )− xS‖2P ≥ 0,(with α > 0) that onstrains x(T ) to be in an ellipti region Ω := {x ∈ R
nx|‖x−xS‖2P ≤ α}.Chen and Allgöwer [CA98, Che97℄ have shown how the matrix P and the onstant α anbe omputed so that the monotoniity property (1.8) is satis�ed. Their approah, thatwas originally formulated for ODE systems, was generalized to DAE systems of index-one by Findeisen and Allgöwer [FA00℄. Using the system linearization around the steadystate and a linear losed-loop law u(x) = uS + K · (x − xS), the matrix P is omputedas the solution of a Lyapunov equation, and the onstant α is determined so that theellipti region Ω is positively invariant for the linearly ontrolled losed-loop system, andso that the path onstraints h(x, z, uS + K · (x − xS)) ≤ 0 are not violated in the set

{(x, z) ∈ R
nx × R

nz |x ∈ Ω, g(x, z, uS +K · (x− xS)) = 0}.In�nite-Horizon Closed-Loop CostingThe idea of the in�nite-horizon losed-loop osting approah, that was proposed by DeNiolao, Magni, and Sattolini [DMS96℄, is to introdue a terminal penalty that is itselfthe in�nite integral of the Lagrange objetive
E(x(T )) :=

∫ ∞

T

L(x̂(t; x(T )), ẑ(t; x(T )), û(t; x(T ))) dt



24 Real-Time Optimal Controlwhere x̂(t; x(T )) and ẑ(t; x(T )) are the trajetories orresponding to the following losed-loop initial value problem on the horizon [T,∞):
B(·) · ˙̂x(t) = f(x̂(t), ẑ(t), K(x̂(t))),

0 = g(x̂(t), ẑ(t), K(x̂(t))),

x̂(T ) = x(T ).The funtion K : R nx → R
nu is hosen so as to stabilize the system in the viinity of thesteady state (typially by a LQR ontrol law for the system linearization). The �nal stateonstraint ri(x(T )) ≥ 0 must onstrain x(T ) so that all predited losed-loop trajetories

x̂(t; x(T )), ẑ(t; x(T )), and û(t; x(T )) := K(x̂(t; x(T ))) remain feasible and have �nite osts.The monotoniity property (1.8) follows from the fat that a prolongation of the horizonfrom [0, T−δ] to [0, T ] only inreases the degrees of freedom; the new degrees of freedom,the ontrols u(t) for t ∈ [T−δ, T ], an still be hosen to be u(t) = K(x(t)), whih wouldyield equal osts as for the short horizon. A pratial implementation of this approah mustoverome the nontrivial problems of determining the �nal state onstraint ri(x(T )) ≥ 0,and the on-line omputation of the in�nite integral to determine E(x(T )). Note, however,that the omputation of a �nite horizon approximation of E(x(T )) an be very heap evenon relatively long horizons, if adaptive impliit DAE solvers are used, as the stepsizes inthe viinity of the steady state an be made very large. We have employed suh a shemefor the ontrol experiments with a distillation olumn that are presented in Chap. 7, wherethe trivial losed-loop law K(·) := uS ould be hosen beause the system is stable.1.4.2 Alternative Feedbak StrategiesOptimal feedbak ontrol and nonlinear model preditive ontrol as de�ned above are notthe only ways to derive feedbak laws, and among these they are not neessarily the best.They su�er from an inherent ontradition: on the one hand the employed system modelis deterministi, but on the other hand the neessity for feedbak ontrol is reated by thenon-deterministi behaviour of the system, or by the presene of model-plant mismath.There are several strategies that inlude some sort of knowledge that the real system doesnot obey the deterministi model equations. We will brie�y mention two of these here.Stohasti Optimal ControlStohasti optimal ontrol tehniques employ a stohasti system model instead of a de-terministi one, and aim at optimizing the expetation value of an objetive funtional.The stohasti point of view makes it possible to design feedbak ontrollers that takefuture disturbanes into aount � provided that realisti assumptions on the governingstohastis are available. The method of hoie for the solution of stohasti optimal on-trol problems is dynami programming, whih is originally due to Bellman [Bel57℄. (Wereommend the two exellent books on Optimal Control and Dynami Programming byBertsekas [Ber95a, Ber95b℄ and refer also to Bertsekas et al. [BT96, BS96℄). For linear sys-tems with quadrati osts the solution of stohasti optimal ontrol problems is equivalent



1.4 Nonlinear Model Preditive Control 25to the solution of a orresponding deterministi optimal ontrol problem (see e.g. Brysonand Ho, [BH69℄), a fat that leads to the separation theorem or ertainty-equivalene prin-iple [Sim56, JT61℄ for linear systems. Nonlinear stohasti optimal ontrol problems,however, are di�ult to solve even for moderate system sizes.Robust ControlThe area of so alled robust ontrol tehniques is vast and has undergone rapid developmentin the last two deades. Roughly spoken, robust ontrol tehniques aim at designingfeedbak ontrol laws urc(x) that are not only able to stabilize a nominal system model,but that show a good ontrol performane for a whole set of perturbed/disturbed systems.For an introdution into linear robust ontrol tehniques we refer to Zhou et al. [ZDG96℄or to Morari [Mor87℄. Though robust ontrol theory is highly developed for linear systems,only a few extensions exist that take expliitly nonlinear system models into aount. Thequestion of robustness of NMPC is mostly unsolved. Some preliminary steps have beenoutlined for example in [OM94, MM93, YP93℄, and even some approahes exist that tryto synthesize robust NMPC ontrollers, e.g. Chen et al. [CSA97℄ (f. also [May00℄).





Chapter 2Diret Multiple ShootingIn this hapter we will present, as a �rst step towards the numerial solution of the optimalontrol problem (1.1), the so alled diret multiple shooting parameterization whih isthe basis for all algorithms presented later in this thesis. The diret multiple shootingparameterization transforms the original in�nite optimal ontrol problem Poc(x0) (1.1) intoa �nite dimensional Nonlinear Programming (NLP) problem that we will denote by P (x0).The diret multiple shooting method is originally due to Bok and Plitt [Pli81, BP84℄,and its most reent form has been developed by Leineweber [Lei99℄ and implementedin his optimal ontrol pakage MUSCOD-II, whih also forms the basis for the atualimplementation of the real-time algorithms presented in this work.2.1 Problem ParameterizationIn order to reformulate the in�nite optimal ontrol problem (1.1) as a �nite dimensionalnonlinear programming (NLP) problem, both its ontrols and its states are parameterizedin the diret multiple shooting method. Let us �rst introdue a time transformation thatprepares the ontrol and state parameterization.2.1.1 Time TransformationIn order to be able to treat problems with a variable horizon length T onveniently, weintrodue a time transformation
t : [0, 1] → [0, T ], τ 7→ t(τ, T ) := Tτwhih allows us to regard an optimization problem on the �xed horizon [0, 1] only. Byinterpreting the trajetories of x, z, and u as funtions of τ ∈ [0, 1] we an formulate aproblem on the horizon [0, 1] that is equivalent to problem (1.1). If the horizon length Tis variable, we will treat it as a free global parameter, that an oneptually be loalizedby introdution of an additional trivial di�erential equation Ṫ (τ) = 0 with a free initialvalue. To keep notation simple we will in the following subsetions assume that T is �xed,but keep in mind that the ase of a variable horizon is aptured by this approah, too.27
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Figure 2.1: Control and state parameterization (N = 5).2.1.2 Control DisretizationIn the diret multiple shooting method (as in all diret solution approahes) the in�nitelymany degrees of freedom u(τ) for τ ∈ [0, 1] are approximated by a �nite ontrol represen-tation. For this aim we hoose a multiple shooting grid
0 = τ0 < τ1 < . . . < τN = 1, (2.1)and approximate the ontrol u(τ) by a pieewise onstant ontrol representation, i.e., weset

u(τ) := qi for τ ∈ [τi, τi+1), i = 0, 1, . . .N − 1, (2.2)with N vetors qi ∈ R
nu , as skethed on the left hand side of Fig. 2.1. For ompleteness,we set as ontrol at the �nal time

u(1) := qN := qN−1,where the vetor qN is introdued for notational onveniene only and will not be regardedas a new parameter, but just as a seond name for qN−1. Note that the point value u(1)of the ontrol may diretly in�uene the �nal algebrai state z(1) (that is determined by
g(x(1), z(1), u(1)) = 0) and an therefore not be negleted in the ase of DAE models.It is possible to use other, possibly higher order ontrol parameterizations on the in-tervals (e.g. linear or ubi polynomials), but it is of ruial importane for the diretmultiple shooting method that the ontrol parameterization has loal support on the mul-tiple shooting intervals [τi, τi+1], so that the ontrol parameters have a loal in�uene only(f. Se. 6.1).Where ontinuity of the ontrols is desired, the ontrol an e.g. be treated as anadditional di�erential system state whose time derivative an be ontrolled.2.1.3 State ParameterizationIn a ruial seond step, 2(N+1) additional vetors sx0, sx1 , . . . , sxN and sz0, sz1, . . . , szN of thesame dimensions nx and nz as di�erential and algebrai system states are introdued, whih



2.1 Problem Parameterization 29we will denote di�erential and algebrai node values. For brevity we will often ombinethem in the vetors si := (sxi , s
z
i ).All but the last node value serve as initial values for N independent relaxed initial valueproblems on the intervals [τi, τi+1]:

B(·) · ẋi(τ) = T f(xi(τ), zi(τ), qi) (2.3)
0 = g(xi(τ), zi(τ), qi)− exp

(

−β τ − τi
τi+1 − τi

)

g(sxi , s
z
i , qi) (2.4)

xi(τi) = sxi . (2.5)The deaying subtrahend in (2.4) with β > 0 is deliberately introdued to failitate an e�-ient DAE solution for initial values and ontrols sxi , szi , qi that may temporarily violate theonsisteny onditions (1.1) (note that (sxi , szi , qi) is per de�nition a onsistent initial valuefor the relaxed initial value problem). This modi�ation (Bok et al. [BES88℄), is ommonlyreferred to as a relaxed DAE formulation, f. Shulz et al. [SBS98℄, Leineweber [Lei99℄.The solutions of these initial value problems are N independent trajetories xi(τ), zi(τ)on [τi, τi+1], whih are a funtion of si and qi only. In order to keep this dependeny inmind, we will denote them often by xi(τ ; si, qi) and zi(τ ; si, qi). See the right hand side ofFig. 2.1 for an illustration.By substituting the independent trajetories xi(τ), zi(τ) into the Lagrange term L inEq. (1.1a) we an simultaneously alulate the integral objetive ontributions Li(si, qi)that are given by
Li(si, qi) :=

∫ τi+1

τi

T L(xi(τ), zi(τ), qi)) dτ. (2.6)The introdution of the values sxi and szi has introdued non-physial degrees of freedomthat have to be removed by orresponding equality onstraints in the NLP. First, we haveto require that the relaxation terms in the relaxed DAE formulation (2.4) vanish, i.e.,formulate the algebrai onsisteny onditions
g(sxi , s

z
i , qi) = 0 i = 0, 1, . . . , N. (2.7)Seondly, we have to enfore ontinuity of the di�erential state trajetory by formulatingthe following mathing onditions whih require that eah di�erential node value sxi+1should equal the �nal value of the preeding trajetory xi:

sxi+1 = xi(τi+1; si, qi), i = 0, . . . , N − 1. (2.8)The �rst di�erential node value sx0 is required to be equal to the initial value x0 of theoptimization problem:
s0 = x0. (2.9)Together, the onstraints (2.7), (2.8), and (2.9) remove the additional degrees of freedomwhih were introdued with the parameters si, i = 0, . . . , N . It is by no means neessarythat these onstraints are satis�ed during the optimization iterations � on the ontrary, itis a ruial feature of the diret multiple shooting method that it an deal with infeasibleinitial guesses of the variables si.



30 Diret Multiple Shooting2.1.4 Disretization of Path ConstraintsUsing the multiple shooting grid τ0, . . . , τN , the in�nite dimensional path inequality on-straints (1.1g) are transformed into N + 1 vetor inequality onstraints
h(sxi , s

z
i , qi) ≥ 0, i = 0, 1, . . . , N.Note that it would be equally possible to use a �ner grid for the disretization of the pathonstraints.2.2 The Nonlinear Programming ProblemThe �nite dimensional NLP in the diret multiple shooting parameterization is given as

P (x0) : min
q0, . . . , qN−1,

s0, . . . , sN

N−1
∑

i=0

Li(s
x
i , s

z
i , qi) + E(sxN , s

z
N) (2.10a)subjet to

sxi+1 − xi(τi+1; s
x
i , s

z
i , qi) = 0, i = 0, . . . , N − 1, (2.10b)

g(sxi , s
z
i , qi) = 0, i = 0, . . . , N, (2.10)

sx0 − x0 = 0, (2.10d)
re(sxN , s

z
N) = 0, (2.10e)

ri(sxN , s
z
N) ≥ 0, (2.10f)

h(sxi , s
z
i , qi) ≥ 0, i = 0, . . . , N. (2.10g)This is the NLP problem formulation that we will use as a referene in the followinghapters. For a visualization of the NLP variables, see Fig. 2.2. It turns out that the NLPhas a very favourable sparse struture, due to the fat that all onstraint funtions and theadditive terms of the objetive funtion eah depend only on a small number of variables,and onversely, eah variable appears only in a few problem funtions.To onveniently write the NLP (2.10) in a shorter form let us introdue the vetors

q :=







q0...
qN−1






∈ R

nq , s :=







s0...
sN






∈ R

ns, and w :=

(

q
s

)

∈ R
nwwith nq := Nnu, ns := (N + 1)(nx + nz), and nw = nq + ns, and de�ne F (w) :=

∑N−1
i=0 Li(si, qi) + E(sN) and summarize all equality onstraints in a funtion G : R nw →
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r r r r r r-Figure 2.2: The NLP variables in the multiple shooting parameterization
R

nG and all inequality onstraints in a funtion H : R nw → R
nH . The NLP an then besummarized as

min
w ∈ R

nw
F (w) subjet to {

G(w) = 0,
H(w) ≥ 0.We will in the following Chapter 3 disuss how to deide if a point w ∈ R

nw is a loaloptimum of the NLP 2.10. But let us beforehand brie�y mention some strutural featuresof the NLP, and also give an example for the multiple shooting parameterization.Remark on the Initial Value ConstraintIn a real-time appliation of our optimization algorithms, the problem P (x0) has to besolved several times, eah time for a di�erent initial value x0. In our real-time strategieswe will exploit the fat that the atual value of x0 enters the problem P (x0) only via theinitial value onstraint (2.10d). We may therefore isolate this onstraint, and summarizethe optimization problem P (x0) as
P (x0) : min

sx0∈Rnx ,w̃∈R(nw−nx)
F (sx0 , w̃) subjet to 





sx0 − x0 = 0,

G̃(sx0, w̃) = 0,
H(sx0, w̃) ≥ 0.This formulation will beome ruial in our desription of the real-time iteration shemein Chapter 4.Remark on Free Horizon LengthsNote that in the ase that the horizon length T is variable, we simply augment the dif-ferential state vetors by an additional omponent Ṫ (τ) = 0, ∀τ ∈ [0, 1]; in the multiple



32 Diret Multiple Shootingshooting formulation, the ontinuity onditions (2.10b) enfore that T is onstant over thewhole horizon; its initial value, however, is free, in ontrast to the other initial values x0.To apture problems with variable T in the above NLP formulation, we therefore only haveto modify the initial value onstraint sx0 −x0 = 0 to (Inx| 0)sx0 −x0 = 0 (note that x0 ∈ R
nxand sxi ∈ R

nx+1).2.2.1 Free and Dependent VariablesNote that the variables q = (q0, q1, . . . , qN−1) may be denoted the �free� omponents, and
s = (s0, s1, . . . , sN) the �dependent� omponents, sine the onstraints (2.10b)-(2.10d)allow to determine all variables s uniquely if q is given (in the ase of a free horizon length,as disussed above, the last initial value sx0nx+1 is also free and atually beomes a part of
q). If we assume for a moment that no �nal equality onstraint (2.10e) and no inequalityonstraints (2.10f),(2.10g) are present, we an write the optimization problem in the form

min
q ∈ R

nq , s ∈ R
ns
F (q, s) subjet to G(q, s) = 0,where the funtion G has the useful property that its Jaobian ∂G

∂s
with respet to thedependent variables, s, is invertible. To see this, note that ∂G

∂s
is lower blok triangular























Inx

∂g
∂sx0

∂g
∂sz0

−∂x0(τ1)
∂sx0

−∂x0(τ1)
∂sz0

Inx. . .
−∂xN−1(τN)

∂sxN−1
−∂xN−1(τN)

∂szN−1
Inx

∂g
∂sxN

∂g
∂szN





















with invertible bloks Inx and ∂g
∂szi

on the diagonal (the invertibility of ∂g
∂szi

follows from theindex one assumption of the DAE system).In the presene of �nal equality onstraints (2.10e) some previously free variables ofthe vetor q may be delared dependent and it may again be possible to �nd a separationinto free and dependent variables q and s with the invertibility of ∂G
∂s
. The same may bedone in the presene of ative inequality onstraints (2.10f) or (2.10g).The separability into free and dependent omponents will be used for some onvergeneresults in Chapter 5; it is also exploited by the numerial solution algorithms desribed inSetions 6.5 and 6.6.Example 2.1 (Diret Multiple Shooting for the CSTR)Let us again onsider the guiding example of Setion 1.2. Choosing N =100 multipleshooting intervals eah of 20 seonds length, we arrive at an NLP formulation that om-prises nw = nq + ns = Nnu + (N + 1)nx = 100 × 2 + 101 × 4 = 604 NLP variables.
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node index iFigure 2.3: Content of NLP variables in the diret multiple shooting method, orrespondingto the solution of Figure 1.2. The dots in the �rst four graphs indiate the multiple shootingnode values si, the last two graphs show the pieewise onstant ontrols qi.The overall number of ontinuity onstraints (2.10b) is Nnx = 400, the initial valueonstraint (2.10d) has dimension nx = 4. Together, they form ns onstraints, so that
nw−ns = 604−404 = 200 = nq e�etive degrees of freedom remain. The values for all 604multiple shooting variables at the solution of problem P (x0), with x0 aording to (1.4), arevisualized in Figure 2.3.





Chapter 3Loal Optimality and SQP MethodsThis hapter is aimed at the preparation of our numerial methods for the solution ofneighboring optimization problems in real-time. We will therefore onsider not only onesingle NLP problem, but a parameterized family of optimization problems
P (t) : min

w ∈ R
nw
F (t, w) subjet to {

G(t, w) = 0
H(t, w) ≥ 0with C2 funtions F : R × R

nw → R , G : R × R
nw → R

nG, and H : R × R
nw →

R
nH . Please note that the salar homotopy parameter t has no relation to the physialtime t. It an be thought of as a one dimensional analog for the initial value x0 thatdistinguishes between di�erent optimization problems P (x0) as they arise in the multipleshooting parameterization. The vetor w an be regarded as the multiple shooting variables

q0, . . . , qN−1, s0, . . . , sN .We will �rst review in Se. 3.1 some onditions whih allow to deide if a point w∗(t) isa (loal) solution of an optimization problem P (t) for �xed t. In Setion 3.2 we will reviewa result from parametri optimization that allows to onlude that the solution manifold
w∗(t) is ontinuous and pieewise di�erentiable with respet to t, in all �benign� points
w∗(t) that satisfy rather mild onditions. The nondi�erentiable points are those pointswhere the set of binding inequalities hanges.The so alled �Sequential Quadrati Programming� (SQP) method is an approah to�nd a (loal) minimum w∗(t) of a problem P (t) for �xed homotopy parameter t. It willbe introdued in Se. 3.3. We also show in Se. 3.4 that its prototype algorithm, the soalled exat Hessian SQP method , when applied to an optimization problem P (t+ ǫ) andinitialized with the solution of problem P (t), is able to provide a predition for w∗(t+ǫ) thatis of O(‖ǫ‖2), even if the set of binding inequalities hanges at the point t. This astonishingproperty, however, requires a slight reformulation of the optimization problems, whih leadsdiretly to the idea of the initial value embedding strategy, a ruial feature of the real-timeiteration approah presented in Chap. 4. 35



36 Loal Optimality and SQP Methods3.1 Loal Optimality ConditionsFor notational onveniene, let us �rst drop the parameter t and treat a single NLP problem
min

w ∈ R
nw
F (w) subjet to {

G(w) = 0
H(w) ≥ 0

(3.1)where the funtions F : R
nw → R , G : R

nw → R
nG , and H : R

nw → R
nH are twieontinuously di�erentiable.Let us generalize the de�nition of the gradient∇F of a salar funtion F to the gradient

∇wG of vetor funtions G as the transpose of the Jaobian matrix
∇wG(w) :=

(

∂G
∂w

(w)
)T
.A feasible point is a point w ∈ R

nw that satis�es G(w) = 0 andH(w) ≥ 0. A loal minimumof the NLP (3.1) is a feasible point w∗ whih has the property that F (w∗) ≤ F (w) for allfeasible points w in a neighborhood of w∗. A strit loal minimum satis�es F (w∗) < F (w)for all neighboring feasible points w 6= w∗.Ative inequality onstraints at a feasible point w are those omponents Hj(w) of H(w)with Hj(w) = 0. We will subsume the equality onstraints and the ative inequalities at apoint w (the so alled the ative set) in a ombined vetor funtion of ative onstraints:
G̃(w) :=

(

G(w)
Hact(w)

)

.Note that the ative set may be di�erent at di�erent feasible points w.Regular points are feasible points w that satisfy the ondition that the Jaobian ofthe ative onstraints, ∇G̃(w)T , has full rank, i.e., that all rows of ∇G̃(w)T are linearlyindependent.To investigate loal optimality in the presene of onstraints, it is very useful to intro-due the Lagrangian multiplier vetors λ ∈ R
nG and µ ∈ R

nH , that are also alled adjointvariables, as they orrespond one-to-one to the onstraint funtions G and H , and to de�nethe so alled Lagrangian funtion L by
L(w, λ, µ) := F (w)− λTG(w)− µTH(w). (3.2)We will now state a variant of the Karush-Kuhn-Tuker neessary onditions for loaloptimality of a point w∗. These onditions have been �rst derived by Karush in 1939 [Kar39℄� and independently by Kuhn and Tuker in 1951 [KT51℄. (A proof of the following twotheorems an be found in virtually any textbook on nonlinear programming, e.g. Bazaaraand Shetty [BS79℄ or Noedal and Wright [NW99℄.) For brevity, we will restrit ourattention to regular points only.



3.1 Loal Optimality Conditions 37Theorem 3.1 (Karush-Kuhn-Tuker Conditions)If a regular point w∗ ∈ R
nw is a loal optimum of the NLP (3.1), then there exist uniqueLagrange multiplier vetors λ∗ ∈ R

nG and µ∗ ∈ R
nH so that the triple (w∗, λ∗, µ∗) satis�esthe following neessary onditions:

∇wL(w∗, λ∗, µ∗) = 0 (3.3a)
G(w∗) = 0, (3.3b)
H(w∗) ≥ 0, (3.3)

µ∗ ≥ 0, (3.3d)
µ∗
j Hj(w

∗) = 0, j = 1, 2, . . . , nH . (3.3e)A triple (w∗, λ∗, µ∗) that satis�es the Karush-Kuhn-Tuker onditions (3.3) is alled a KKTpoint. Note that the so alled omplementarity ondition (3.3e) implies that µ∗
j = 0 atinative onstraints Hj(w

∗) > 0. At ative onstraints Hj(w
∗) = 0 the orrespondingmultipliers µ∗ may also beome zero. Ative onstraints with zero multipliers are alledweakly ative, and those with positive multipliers strongly ative. Let us subdivide theative set vetor funtion Hact(w∗) at a KKT point (w∗, λ∗, µ∗) into its strongly and weaklyative parts, i.e., let us write

Hact(w∗) =:

(

Hs.act

Hw.act

)

(w∗).A KKT point for whih all ative onstraints are strongly ative is said to satisfy the stritomplementarity ondition.Quadrati ProgramsOne speial lass of optimization problem plays a preeminent role in the SQP algo-rithms that are presented later in this hapter and deserves some remarks: quadrati pro-grams (QP) are those optimization problems (3.1) that have a quadrati objetive funtionand linear onstraint funtions, i.e., problems of the type
min

w ∈ R
nw

1

2
wTAw + aTw subjet to {

b+Bw = 0
c + Cw ≥ 0

(3.4)with vetors a ∈ R
nw , b ∈ R

nG, c ∈ R
nH , and matries A ∈ R

nw × R
nw , B ∈ R

nG × R
nw ,and C ∈ R

nH × R
nw .A variety of highly developed algorithms to solve QPs exists, and the suess of SQPtype methods is to a large part due to the fat that QPs are very e�iently solvable.



38 Loal Optimality and SQP MethodsThe onditions (3.3) for a point (w∗, λ∗, µ∗) to be a KKT point of the above QP are:
Aw∗ + a− BTλ∗ − CTµ∗ = 0

b+Bw∗ = 0,

c+ Cw∗ ≥ 0,

µ∗ ≥ 0,

µ∗
j (cj + Cj,·w

∗) = 0, j = 1, 2, . . . , nH .For QPs without inequalites, the KKT onditions an be written in the ompat form
(

A BT

B 0

)(

w∗

−λ∗
)

=

(

−a
−b

)

.The matrix on the left hand side is alled the KKT matrix. It is invertible, if B has fullrank nG and A is positive de�nite on the null spae of B, as stated in the following lemma.The invertibility of the KKT matrix implies that the equality onstrained QP has a uniqueKKT point.Lemma 3.2 (Invertibility of the KKT Matrix)Let us assume that A ∈ R
n × R

n is a symmetri matrix and B ∈ R
m × R

n has full rank
m ≤ n. Let us furthermore assume that A is positive de�nite on the null spae of B. Thenthe matrix

(

A BT

B 0

)is invertible.A short proof of this lemma an be found in Noedal and Wright [NW99, Lemma 16.1℄.The existene and uniqueness of a KKT point an also be shown for inequality on-strained QPs, e.g. under the two additional assumptions that the feasible set is non-empty,and that the ombined onstraint matrix (BT , CT ) has full rank nG+nH . We will enountersuh a uniquely solvable quadrati programming problem in Theorem 3.4.First, however, let us review su�ient onditions for a KKT point to be a strit loaloptimizer.Theorem 3.3 (Strong Seond Order Su�ient Conditions)Su�ient onditions for a point w∗ ∈ R
nw to be a strit loal minimizer of (3.1) are:

• w∗ is a regular point,
• there exist multiplier vetors λ∗ ∈ R

nG and µ∗ ∈ R
nH , suh that (w∗, λ∗, µ∗) is aKKT point, and
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• the Hessian matrix ∇2

wL(w∗, λ∗, µ∗)1 is positive de�nite on the null spae N s of thelinearized strongly ative onstraints
G̃s(w∗) :=

(

G
Hs.act

)

(w∗),i.e., for every non-zero vetor ∆w ∈ N s,
N s := {∆w ∈ R

nw |∇wG̃
s(w∗)T∆w = 0},it holds that

∆wT ∇2
wL(w∗, λ∗, µ∗) ∆w > 0.Remark: The su�ient onditions of the theorem are alled �strong� seond order su�-ient onditions, beause weaker su�ient onditions exists, whih require only the positivede�niteness of ∇2

wL(w∗, λ∗, µ∗) on a one
N w := {∆w ∈ N s|∇wH̃

w.act(w∗)T∆w ≥ 0}.We have hosen the strong formulation, as it turns out that the strong seond order su�-ient onditions for optimality, as stated in Theorem 3.3, have the desirable property thata KKT point (w∗, λ∗, µ∗) that satis�es them is stable against perturbations in the problemfuntions F , G and H , as we will investigate in the following setion.3.2 Pieewise Di�erentiable Dependene on Perturba-tionsLet us now onsider a parameterized family of optimization problems P (t)
min

w ∈ R
nw
F (t, w) subjet to {

G(t, w) = 0
H(t, w) ≥ 0

(3.6)where the funtions F : R × R
nw → R , G : R × R

nw → R
nG , and H : R × R

nw → R
nHare C2. We want to investigate how the solution points (w∗(t), λ∗(t), µ∗(t)) depend on thevariable t, or, in the language of parametri optimization, we want to investigate the set

Σloc := {(t, w) ∈ R × R
nw |w is a loal minimizer for P (t))}.We restrit our attention to the subset of points (t, w∗(t)) from Σloc that satisfy the strongseond order su�ient onditions of Theorem 3.3. The main result of this setion is that1Here we use the de�nition ∇2

wL := ∂
2
L

∂w2 .



40 Loal Optimality and SQP Methodsthe points (w∗(t), λ∗(t), µ∗(t)) form a ontinuous and pieewise di�erentiable urve on thissubset, if an additional tehnial assumption is satis�ed. For a muh more detailed disus-sion of the properties of the set Σloc we refer to the book on parametri optimization byGuddat, Guerra Vasquez and Jongen [GVJ90℄.Before we formulate this theorem, we will give a simple example for illustration.Example 3.1 (Pieewise Di�erentiability)Consider the family P (t) of simple optimization problems
min
w ∈ R

1

2
w2 subjet to −t + sinh(w) ≥ 0The solution urves w∗(t), µ∗(t) an easily be found to be
w∗(t) = max(0, arcsinh(t)),

µ∗(t) =
w∗(t)

cosh(w∗(t))
.These urves are ontinuous and pieewise di�erentiable with pieewise derivatives

∂w∗

∂t
(t) =

{

0, if t < 0,
cosh(arcsinh(t))−1, if t > 0,

∂µ∗

∂t
(t) = cosh(w∗(t))−1(1− tanh(w∗(t)))

∂w∗

∂t
(t).The graph of w∗(t) is depited in Figure 3.1. How an the manifold be haraterized inthe viinity of the ontinuous but non-di�erentiable point w∗(0)?We will now formulate the basi theorem of this setion, whih is proved in Appendix C.A very similar formulation of the theorem and a proof an be found in [GVJ90℄ (Theo-rem 3.3.4 and Corollary 3.3.1 (2)).Theorem 3.4 (One Sided Di�erentiability)Consider a parameterized family of optimization problems P (t) as de�ned in (3.6). Letus assume that we have found, for problem P (0), a KKT point (w∗(0), λ∗(0), µ∗(0)) thatsatis�es the su�ient optimality onditions of Theorem 3.3, with strongly and weakly ativeset vetors Hs.act and Hw.act.Let us furthermore assume that the solution (δw∗, δλ∗, δµ

s.act
∗ , δµw.act

∗ ) of the followingquadrati program (with all derivatives evaluated at the solution point (w∗(0), λ∗(0), µ∗(0))for t = 0)
min

δw∈Rnw

1

2
δwT ∇2

wL δw +

(

∂

∂t
∇wL

)T

δwsubjet to 





∂G
∂t

+∇wG
T δw = 0

∂Hs.act

∂t
+ (∇wH

s.act)
T
δw = 0.

∂Hw.act

∂t
+ (∇wH

w.act)
T
δw ≥ 0.

(3.7)
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satis�es the strit omplementarity ondition for the multiplier vetor δµw.act

∗ of the in-equality onstraints.Then there exists an ǫ > 0 and a di�erentiable urve v : [0, ǫ) → R
nw × R

nG × R
nH ,

t 7→





w∗(t)
λ∗(t)
µ∗(t)



of KKT points that satisfy the su�ient optimality onditions of Theorem 3.3 for theorresponding problems P (t), t ∈ [0, ǫ). At t = 0 the one sided derivative of this urve isgiven by
lim

t→0,t>0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)



 =













δw∗

δλ∗


δµ∗

















:=













δw∗

δλ∗
δµs.act

∗

δµw.act
∗

0













.

Remark 1: Note that the QP (3.7) always has a unique solution (δw∗, δλ∗, δµ
s.act
∗ , δµw.act

∗ ).This is due to the positive de�niteness of ∇2
wL on the null spae of the equality onstraintmatrix∇wG̃

sT , the feasibility of the QP (δw = 0 is feasible), and the fat that the onstraintmatrix (∇wG,∇wH
s.act,∇wH

w.act) has full rank due to the assumption that w∗(0) is a regularpoint.



42 Loal Optimality and SQP MethodsRemark 2: The only further requirement in addition to the su�ient onditions of The-orem 3.3 is the � tehnial � assumption of strit omplementarity in the solution of theQP (3.7). It is needed to guarantee that there exists an ǫ > 0 so that the ative set of theloal solutions of P (t) does not hange for t ∈ (0, ǫ).Remark 3: The theorem treats only the existene of the �right� hand side of the solutionurve (w∗(t), λ∗(t), µ∗(t)) on the interval t ∈ [0, ǫ). If the strit omplementarity onditionis also satis�ed for the solution (δw′
∗, δλ

′
∗, δµ

s.act
∗

′
, δµw.act

∗
′
) of an inverted version of theQP (3.7), namely of

min
δw∈Rnw

1

2
δwT ∇2

wL δw +

(

− ∂

∂t
∇wL

)T

δwsubjet to 













(

−∂G
∂t

)

+∇wG
T δw = 0

(

−∂Hs.act

∂t

)

+ (∇wH
s.act)

T
δw = 0.

(

−∂Hw.act

∂t

)

+ (∇wH
w.act)

T
δw ≥ 0,

(3.8)
then also the �left� hand side solution urve t ∈ (−ǫ′, 0] 7→ (w∗(t), λ∗(t), µ∗(t)), ǫ′ > 0,exists, with the one sided derivative

lim
t→0,t<0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)



 =













−δw′
∗

−δλ′
∗

−δµs.act
∗

′

−δµw.act
∗

′

0













.This is an immediate onsequene of the theorem, applied to the reversed problem family
P ′(t) := P (−t).Remark 4: If the referene point (w∗(0), λ∗(0), µ∗(0)) itself satis�es the strit omple-mentarity ondition, then no weakly ative onstraints Hw.act exist, and the original andinverted QP, (3.7) and (3.8), do not ontain any inequality onstraints. Therefore, theassumption of strit omplementarity in the QP solution is trivially satis�ed for bothproblems, and the solution urve exists on both sides, for t ∈ (−ǫ′, ǫ). Furthermore, fromsymmetry follows that the QP solutions oinide (up to a sign hange),





δw∗

δλ∗
δµs.act

∗



 =





−δw′
∗

−δλ′∗
−δµs.act

∗
′



 ,so that the derivative of the urve t ∈ (−ǫ′, ǫ) 7→ (w∗(t), λ∗(t), µ∗(t)) exists and is ontinu-ous everywhere, also at the point t = 0.
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Figure 3.2: Two sided derivative of the solution manifold w∗(t) of Example 3.1.
Example 3.2 (One Sided Di�erentiability)Let us again onsider the family P (t) of simple optimization problems of Example 3.1.For t = 0 the referene solution is w∗(0) = µ∗(0) = 0, and the quadrati programmingsubproblem (3.7) as in Theorem 3.4 is

min
δw ∈ R

1

2
δw2 subjet to −1 + δw ≥ 0,with the solution
δw∗ = 1 and δµw.act

∗ = 1,whih orresponds to the �right� hand side derivatives of w∗(t), µ∗(t) for t→ 0, t > 0.Conversely, the inverted quadrati programming subproblem (3.8) is
min

δw ∈ R

1

2
δw2 subjet to 1 + δw ≥ 0,whih has the solution

δw′
∗ = 0 and δµw.act

∗
′
= 0.This solution orresponds to the (inverted) derivatives of w∗(t), µ∗(t) for t→ 0, t < 0. Thetwo sides of the derivative are illustrated in Figure 3.2.



44 Loal Optimality and SQP Methods3.3 Sequential Quadrati ProgrammingSequential Quadrati Programming (SQP) is an iterative tehnique to �nd a KKT point
(w∗, λ∗, µ∗) of an NLP

min
w ∈ R

nw
F (w) subjet to {

G(w) = 0
H(w) ≥ 0Starting with an initial guess y0 = (w0, λ0, µ0), an SQP method iterates

yk+1 = yk + αk∆yk (3.9)where αk ∈ (0, 1] and
∆yk =





∆wk

∆λk
∆µk



 :=





∆wk

λ̃k − λk
µ̃k − µk



is obtained from the solution point (∆wk, λ̃k, µ̃k) of the following quadrati program
min

∆w ∈ Ωk

1

2
∆wT Ak ∆w + ∇wF (wk)

T∆wsubjet to {

G(wk) +∇wG(wk)
T∆w = 0

H(wk) +∇wH(wk)
T∆w ≥ 0

(3.10)Existing SQP methods di�er mainly by the hoie of the steplength αk, the hoie ofthe so alled Hessian matrix Ak and the hoie of the set Ωk ⊂ R
nw . The iterates ykaording to Eq. (3.9) form a sequene that is expeted to onverge towards a KKT point

y∗ = (w∗, λ∗, µ∗) of the NLP. In pratie, the iterations are stopped when a prespei�edonvergene riterion is ful�lled.We will in this setion introdue only one SQP method that is theoretially very appeal-ing: the full step exat Hessian SQP method, that was �rst introdued by Wilson [Wil63℄.3.3.1 The Full Step Exat Hessian SQP MethodThe full step exat Hessian SQP method is distinguished by the hoies αk := 1, Ωk := R
nw ,and, most important,

Ak := ∇2
wL(wk, λk, µk).To see why this hoie is advantageous, let us �rst regard an equality onstrained problem.In this ase, the neessary optimality onditions for the QP solution (∆wk, λ̃k) are

∇2
wL(wk, λk)∆wk +∇wF (wk)−∇wG(wk)λ̃k = 0,

G(wk) +∇wG(wk)
T∆wk = 0.



3.3 Sequential Quadrati Programming 45By substituting λ̃k = λk +∆λk we an write this equivalently as
∇wL(wk, λk) +∇2

wL(wk, λk) ∆wk −∇wG(wk) ∆λk = 0,
G(wk) +∇wG(wk)

T ∆wk = 0whih orresponds to the Newton-Raphson iteration rule
(

∇wL(wk, λk)
G(wk)

)

+
∂

∂(w, λ)

(

∇wL(wk, λk)
G(wk)

)(

∆wk

∆λk

)

= 0,for the solution of the KKT system
(

∇wL(w, λ)
G(w)

)

=

(

∇wF (w)−∇wG(w)λ
G(w)

)

= 0.This equivalene proves that the full step exat Hessian SQP method shows the sameexellent loal onvergene behaviour as the Newton-Raphson method, in the viinity ofa solution (w∗, λ∗) of the KKT system. Note, however, that it is neessary to start witha good initial guess not only for the primal variables w, but also for the multipliers λ.Fortunately, it turns out that the initial guess λ0 of the multipliers is not as ruial as theinitial guess w0 for the primal variables, due to the speial struture of the KKT system.This is expressed in the following theorem (for a proof we refer to Flether [Fle87℄).Theorem 3.5 (Convergene of the Exat Hessian SQP Method)If a point (w∗, λ∗) satis�es the su�ient optimality onditions of Theorem 3.3 of anequality-onstrained NLP problem, and if w0 is su�iently lose to w∗, and if λ0 is hosensuh that the matrix
(

∇2
wL(w0, λ0) −∇wG(w0)
∇wG(w0)

T 0

)is invertible, then the sequene of iterates generated by the full step exat Hessian SQPmethod, i.e., the sequene (wk, λk) of iterates that satis�es
(

∇2
wL(wk, λk) −∇wG(wk)
∇wG(wk)

T 0

)(

wk+1 − wk

λk+1

)

= −
(

∇wF (wk)
G(wk)

)onverges q-quadratially to (w∗, λ∗), i.e.,
∥

∥

∥

∥

(

wk+1 − w∗

λk+1 − λ∗

)∥

∥

∥

∥

≤ C

∥

∥

∥

∥

(

wk − w∗

λk − λ∗

)∥

∥

∥

∥

2with some onstant C ≥ 0.



46 Loal Optimality and SQP Methods3.3.2 Ative Set DeterminationIn Theorem 3.5, loal onvergene is only proven for equality onstrained problems. In thepresene of inequality onstraints, however, we may assume that lose to the solution theative set does not hange, so that the reasoning for equality onstrained problems is stillappliable. This assumption is valid in the viinity of a KKT point (w∗, λ∗, µ∗) that satis-�es the seond order su�ient onditions of Theorem 3.3 and the strit omplementarityondition.The strength of the QP formulation (3.10) during the SQP iterations is that it allowsto determine the multipliers and the ative set without prior knowledge of them. To showthis, let us assume that we have found a KKT point y∗ = (w∗, λ∗, µ∗) that satis�es the �rstorder neessary onditions of Theorem 3.1:
∇F (w∗)−∇wG(w

∗)λ∗ −∇H(w∗)µ∗ = 0

G(w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

µ∗
j H(w∗)j = 0, j = 1, 2, . . . , nH .Let us now assume that we formulate the �rst QP 3.10 for the determination of ∆y0,initialized at y0 = y∗, with some Hessian matrix A0. The neessary onditions of optimalityfor the QP solution (∆w0, λ̃0, µ̃0) are

A0 ∆w0 +∇F (w∗)−∇wG(w
∗)λ̃0 −∇H(w∗)µ̃0 = 0

G(w∗) +∇wG(w
∗)T∆w0 = 0

H(w∗) +∇wH(w∗)T∆w0 ≥ 0

µ̃0 ≥ 0

µ̃0,j (H(w∗) +∇wH(w∗)T∆w0)j = 0, j = 1, 2, . . . , nH .It an be seen that (∆w0, λ̃0, µ̃0) = (0, λ∗, µ∗) satis�es these onditions, and assumingpositive de�niteness of A0 on the null spae of the equality onstraints ∇wG(w
∗)T , thissolution is also the unique optimum of the QP: multipliers and ative set are detetedfrom knowledge of w∗ only. We may therefore infer that even in a neighborhood of aloal optimum w∗, the multipliers and ative set an be determined by the SQP algorithm,under a weak positive de�niteness assumption on the matrix A0. This an indeed beproven, under the ondition that (w∗, λ∗, µ∗) satis�es the seond order su�ient onditionsof Theorem 3.3 and the strit omplementarity ondition. For a detailed disussion and aproof we refer to Robinson [Rob74℄.3.4 SQP for a Parameterized Problem FamilyLet us in the sequel onsider the parameterized family of augmented optimization problems
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P̆ (t̆) : min

t ∈ R , w ∈ R
nw
F (t, w) subjet to 





t− t̆ = 0
G(t, w) = 0
H(t, w) ≥ 0

(3.14)where the funtions F : R × R
nw → R , G : R × R

nw → R
nG , and H : R × R

nw → R
nHare in C2. This family is equivalent to the family P (t) of problems (3.6) in Setion 3.2,with the only di�erene that t is now introdued as an additional variable whih is �xedby the additional onstraint t − t̆ = 0. This addition of t to the SQP variables has theonsequene that derivatives with respet to t are evaluated in the SQP algorithm, whihallows to perform the transition between di�erent optimization problems in suh a waythat a �rst order approximation of the solution manifold as in Theorem 3.4 is provided bythe �rst iterate.Let us for brevity de�ne

w̆ :=

(

t
w

)

, λ̆ :=

(

λt
λ

)

, and Ğ(w̆) :=

(

t− t̆
G(t, w)

)

,so that the Lagrangian funtion L̆ of problem P̆ (t̆) an be written as
L̆(w̆, λ̆, µ) := F (w̆)− λ̆T Ğ(w̆)− µTH(w̆)

= F (t, w)− λt(t− t̆)− λTG(t, w)− µTH(t, w)
= L(t, w, λ, µ)− λt(t− t̆),where

L(t, w, λ, µ) = F (t, w)− λTG(t, w)− µTH(t, w)is the Lagrangian funtion for the parameterized family of optimization problems P (t) ofSetion 3.2.We will now show that the �rst full step exat Hessian SQP iterate for the enlargedproblem P̆ (ǫ), when started at the solution (w̆∗(0), λ̆∗(0), µ∗(0)) of P̆ (0), is losely relatedto the one sided derivative of the solution manifold (w∗(·), λ∗(·), µ∗(·)) of the problems
P (t), as in Theorem 3.4.Theorem 3.6 (First Order Predition by Exat Hessian SQP)Let us assume that we have found a KKT point (w̆∗(0), λ̆∗(0), µ∗(0)) of problem P̆ (0) thatsatis�es the su�ient optimality onditions of Theorem 3.3. If a full step SQP algorithmwith exat Hessian for the solution of the problem P̆ (ǫ), with ǫ > 0 su�iently small,is started with this solution as an initial guess, then the nontrivial part of the �rst SQPstep, (∆w,∆λ,∆µ), is idential to ǫ times the one sided derivative of the solution manifold
(w∗(·), λ∗(·), µ∗(·)) of problems P (t) as given in Theorem 3.4, i.e.,

1

ǫ





∆w
∆λ
∆µ



 =





δw∗

δλ∗
δµ∗



 = lim
t→0,t>0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)







48 Loal Optimality and SQP MethodsRemark: The �rst order predition provided by the exat Hessian SQP is equivalent toone step of the Euler preditor pathfollowing method in parametri optimization [GVJ90,Se. 3.3, p. 73℄.
Proof: For a proof �rst note that ∇2

w̆ L̆ = ∇2
w̆L due to the linearity of the onstraint

t− ǫ = 0, so that the value of the additional multiplier λt plays no role in the QP (3.10).Furthermore, it an easily be seen that (w̆∗(0), λ̆∗(0), µ∗(0)) satis�es the su�ient optimal-ity onditions of Theorem 3.3 for problem P̆ (0) if and only if (w∗(0), λ∗(0), µ∗(0)) satis�esthem for problem P (0), and λ∗t (0) = ∂
∂t
L(0, w∗(0), λ∗(0), µ∗(0)).The QP (3.10) for the �rst SQP iterate an be written in the form

min
∆t,∆w

1

2
∆wT∇2

wL∆w +∆t
∂

∂t
∇wLT∆w +∇wF

T∆w +
∂F

∂t
∆t +

1

2

∂2L
∂t2

∆t2subjet to 





∆t− ǫ = 0
G+ ∂G

∂t
∆t+∇wG

T∆w = 0
H + ∂H

∂t
∆t +∇wH

T∆w ≥ 0,where all funtions and derivatives are evaluated at the point t = 0, w∗(0), λ∗(0) and µ∗(0).The variable∆t = ǫ an diretly be eliminated, and using the fat that G(0, w∗(0)) = 0and Hact(0, w∗(0)) = 0 as well as the fat that
∇wF (0, w

∗(0)) = ∇wG(0, w
∗(0))λ∗(0) +∇wH (0, w∗(0))µ∗(0)we an formulate the equivalent QP (dropping the onstant ∂F

∂t
ǫ+ 1

2
∂2L
∂t2
ǫ2 in the objetive)

min
∆w

1

2
∆wT∇2

wL∆w + ǫ
∂

∂t
∇wLT∆w + (∇wGλ

∗(0) +∇wHµ
∗(0))T ∆wsubjet to 





∂G
∂t
ǫ+∇wG

T∆w = 0
∂Hact

∂t
ǫ+∇wH

actT∆w ≥ 0

H inact + ∂Hinact

∂t
ǫ+∇wH

inactT∆w ≥ 0,



3.4 SQP for a Parameterized Problem Family 49The onditions (3.3) aording to Theorem 3.1 for a triple (∆w, λ, µ) to be a KKT pointof this QP problem are, using λ = λ∗(0) + ∆λ and µ = µ∗(0) + ∆µ:
∇2
wL∆w + ǫ

∂

∂t
∇wL −∇wG∆λ−∇wH∆µ = 0, (3.15a)

∂G

∂t
ǫ+∇wG

T∆w = 0, (3.15b)
∂Hs.act

∂t
ǫ+∇wH

s.actT∆w ≥ 0, (3.15)
∂Hw.act

∂t
ǫ+∇wH

w.actT∆w ≥ 0, (3.15d)
H inact +

∂H inact

∂t
ǫ+∇wH

inactT∆w ≥ 0, (3.15e)
µ∗,s.act(0) + ∆µs.act ≥ 0, (3.15f)

∆µw.act ≥ 0, (3.15g)
∆µinact ≥ 0, (3.15h)

(µ∗(0) + ∆µ)s.actj

(

∂Hs.act

∂t
ǫ+∇wH

s.actT∆w

)

j

= 0, (3.15i)
∆µw.act

j

(

∂Hw.act

∂t
ǫ+∇wH

w.actT∆w

)

j

= 0, (3.15j)
∆µinact

j

(

H inact +
∂H inact

∂t
ǫ+∇wH

inactT∆w

)

j

= 0. (3.15k)By assuming that∆w,∆µ an be made arbitrarily small by hoosing ǫ small, we an assumethat H inact + ∂Hinact

∂t
ǫ +∇wH

inactT∆w > 0 and therefore drop (3.15e), and replae (3.15k)by ∆µinact
j = 0. Additionally, we onlude that (µ∗(0) + ∆µ)s.actj > 0, so that (3.15i)and (3.15) an be replaed by

∂Hs.act

∂t
ǫ+∇wH

s.actT∆w = 0.By a division by ǫ and a rede�nition
δw∗ :=

∆w

ǫ
, δλ∗ :=

∆λ

ǫ
, and δµ∗ :=

∆µ

ǫ
,



50 Loal Optimality and SQP Methodswe an write the neessary onditions as
∇2
wLδw∗ +

∂

∂t
∇wL −∇wGδλ∗ −∇wHδµ∗ = 0,

∂G

∂t
+∇wG

T δw∗ = 0,

∂Hs.act

∂t
+∇wH

s.actT δw∗ = 0,

∂Hw.act

∂t
+∇wH

w.actT δw∗ ≥ 0,

δµw.act
∗ ≥ 0,

δµ∗
w.act
j

(

∂Hw.act

∂t
+∇wH

w.actT δw∗

)

j

= 0,

δµinact
∗ = 0,whih are exatly the KKT onditions for the QP (3.7) that is formulated in Theorem 3.4.By the unique existene of this solution we on�rm our assumption that ∆w and ∆µ anbe made arbitrarily small by hosing ǫ su�iently small.

3.4.1 Large Disturbanes and Ative Set ChangesIn the proof of Theorem 3.6 we have made ǫ su�iently small to ensure that the ative setof the �rst QP orresponds to the ative set in the immediate viinity of the solution point
w∗(0) � in this way it was possible to show that the �rst iterate of the exat Hessian SQPmethod, when started at a solution y∗(t) delivers a predition y∗(t)+∆y(ǫ) of the solution
y∗(t+ ǫ) that is ‖y∗(t+ ǫ)− (y∗(t)+∆y(ǫ))‖ = O(‖ǫ‖2) under rather mild onditions, evenat the points where the ative set hanges, as treated in Theorem 3.4.In pratial appliations, however, when we want to solve a problem P (t2) startingwith the solution of a problem P (t1), we will typially enounter the ase that the non-di�erentiable point of the solution urve w∗(t) lies somewhere in the interval between t1and t2. It is very important to note that the SQP method is in pratie also able to treatthis ase, as it an even reprodue distant ative set hanges, whih will be illustrated bythe following example.Example 3.3 (First Order Predition of Exat Hessian SQP)Let us again onsider the family of simple optimization problems of Examples 3.1 and 3.2,but in an augmented formulation P̆ (t̆):
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Figure 3.3: First step ∆w of exat Hessian SQP method for Example 3.1, as a funtion of
ǫ, for the initialization t∗ = 0.5, w∗ = 0.48 = arcsin(0.5).

min
t ∈ R , w ∈ R

1

2
w2 subjet to {

t− t̆ = 0
−t + sinh(w) ≥ 0Initialized at a solution t∗ = t̆, w∗ = max(0, arcsin(t∗), µ∗ = w∗/ cosh(w∗) of P̆ (t̆), the QPof the �rst exat Hessian SQP iteration for the solution of P̆ (t̆+ ǫ) is

min
∆t ∈ R ,∆w ∈ R

1

2
∆wT (1− tanh(w∗)w∗ ∆w + w∗ ∆wsubjet to {

∆t − ǫ = 0
−t∗ + sinh(w∗)−∆t + cosh(w∗) ∆w ≥ 0,whih has the solution

∆t = ǫ,

∆w = max(− w∗

1−tanh(w∗)w∗
, t

∗−sinh(w∗)+ǫ
cosh(w∗)

),

µ̃ = w∗+(1−tanh(w∗)w∗)∆w
cosh(w∗)as depited in Figure 3.3 for an initialization t∗, w∗ that is in the neighborhood of the�orner� t = 0, w = 0.





Chapter 4Real-Time IterationsIn this hapter we will develop the main algorithmi ideas of our real-time iteration ap-proah. We will �rst present in Se. 4.1 the hallenges that every real-time optimal ontrolsheme has to fae, and motivate the idea of the real-time iteration sheme. In Se. 4.2 wepresent the initial value embedding approah for perturbed problems, that arises quite nat-urally in the framework of the diret multiple shooting method. The algorithm is desribedin Se. 4.3 for shrinking horizon problems, and in Se. 4.4 for moving horizon problems,that are typial for pratial NMPC appliations.After the presentation of the real-time iteration idea in this hapter, we will in Chap. 5prove that the proposed approah leads to a ontrative algorithm under suitable ondi-tions, and in Chap. 6 we will have a lose look at one real-time iteration.4.1 Pratial Real-Time Optimal ControlIn a real-time senario we aim at not only solving one optimization problem, but a wholesequene of problems. Let us denote the di�erential state of the plant at time t by x0(t).Then, ideally, at every time t, the optimal ontrol problem of Se. 1.1.1 with an initialvalue x0(t) would be solved instantaneously, and the optimal ontrol u∗(0; x0(t)) be givenas a ontrol to the real plant at time t. This strategy would yield an optimal feedbakontrol, or, for moving horizons, a Reeding Horizon Control (RHC) law as e.g. de�nedin [MM90℄. In all real implementations of NMPC, however, two approximations to thisideal approah are made:
• First, it is not the in�nite optimal ontrol problem from Se. 1.1.1 that is solved, buta parameterized, �nite dimensional formulation of it. In our approah it is the NLPfrom Se. 2.2 that arises after the diret multiple shooting parameterization, whihwas denoted P (x0(t)).
• Seondly, the optimization problems annot be solved instantaneously, so that theproblems are solved only at disrete sampling times . . . , ti, ti+1, . . . , with interval53



54 Real-Time Iterationsdurations δi = ti+1 − ti that are long enough to perform the neessary omputationsfor the solution of problem P (x0(ti)).Note that in this framework the optimal ontrol orresponding to the system state
x0(ti) at time ti is usually only available at time ti+1, after the omputations have beenperformed. This leads to a delay that may result in poor real-time performane, if thesampling intervals δi are not short enough.In priniple, it is possible to predit the state x0(ti+1) already at time ti and to solve theorresponding problem P (x0(ti+1)) during the time interval [ti, ti+1], so that at time ti+1the optimal solution for the problem P (x0(ti+1)) is already available. However, unprediteddisturbanes that have oured in the interval [ti, ti+1] are not taken into aount, so thatthe feedbak delay of one sampling time is still present.4.1.1 A Conventional ApproahA straightforward approah to real-time optimal ontrol would be to just employ a fasto�-line algorithm to solve the arising optimization problems, and use the ompletely on-verged solution of the optimization problem to provide the feedbak. We all this approahthe onventional approah to NMPC , and it is for example desribed by Binder et al.in [BBB+01℄. Note, however, that the duration δi may not be known in advane, if it isinsisted that eah solution should satisfy a prespei�ed onvergene riterion: in fat, thenumber of SQP iterations annot be bounded at all! In all pratial implementations somesafeguards must exist, that stop the solution algorithm in time, e.g. after a �xed numberof SQP iterations, even if the onvergene riterion is not met.Example 4.1 (Conventional NMPC)Let us onsider again the senario that was presented in Se. 1.2 and introdue it as areal-time example. We assume that the system state is disturbed at time t0 = 0, so thatit suddenly jumps to the disturbed initial value x0, that is known immediately, but ouldnot be known in advane. We hoose a multiple shooting parameterization with N = 100intervals eah of 20 seonds length. Let us assume that one SQP iteration takes 20 seondsomputation time, and that after 5 iterations all ouring optimization problems are solvedwith satisfying auray: therefore, we an hoose a sampling time of δ = 100 seonds.During this time we have to apply the best available ontrols to the real plant, whih arethe steady state ontrols in the �rst 100 seonds, and in the following sampling times theoutome of the previous optimization. The optimizations are arried out for the preditedinitial values after 100 seonds, to alleviate the e�et of the delay. We will assume that themodel and the real plant oinide, so that the open-loop solution that is available after the�rst 100 seonds orresponds already to the losed-loop trajetory and is not modi�ed inthe following sampling intervals. The resulting losed-loop trajetory is shown in Fig. 4.1,and ompared to the optimal feedbak ontrol. The integrated least squares objetive that wean regard as a performane measure of the losed-loop trajetories, is for the onventionalNMPC sheme inreased by 17 % ompared to the optimal feedbak ontrol.
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4.1.2 The Real-Time Iteration IdeaThe reason for the poor performane of the onventional NMPC sheme is that we have towait a long time until a feedbak to disturbanes is delivered, and in the meantime we haveto apply a rather arbitrary, unorreted ontrol. Would it not be possible to use some otherfeedbak ontrol that is not neessarily optimal, but better than the unorreted values?In Example 3.3 at the end of Chap. 3 we have seen that the �rst QP solution of a full stepexat Hessian SQP algorithm provides already a rather good approximation of the exatsolution, if the algorithm is initialized in a neighborhood of this solution. Motivated bythis observation, we onlude that � in a real-time senario � it would probably be betterto use the result of this �rst orretion instead of waiting until the SQP algorithm hasonverged (without reating to disturbanes). After the �rst SQP iteration, there wouldalready be the hane to reat to new disturbanes � and if no further disturbane ours,the algorithm ould ontinue to improve the outome of the previous iterates. Compared



56 Real-Time Iterationswith the onventional approah, our real-time algorithm di�ers therefore in two importantrespets:
• We restrit the number of solution iterations that are performed for eah problem toone single SQP iteration, allowing to redue the sampling intervals δi to a minimum.This approah is only possible if we ensure that the subsequent optimization problemsare arefully initialized in order to maintain the exellent onvergene properties ofthe diret multiple shooting method in the absene of disturbanes.
• Seondly, we divide the neessary omputations during eah real-time iteration intoa (long) preparation phase that an be performed without knowledge of x0, and aonsiderably shorter feedbak phase that allows to make the delay even shorter thanthe sampling time δi. As this remaining delay is typially orders of magnitude smallerthan δi, we will in the following neglet it and assume that the result of eah real-timeiteration is immediately available, and that the sampling time δi is only needed toprepare the following real-time iteration.Both algorithmi features are based on an initialization strategy that an be understoodas an initial value embedding , whih will be desribed in the following setion.4.2 The Initial Value EmbeddingIn Theorem 3.6 of Se. 3.4 we have shown that the �rst iterate of a full step exat HessianSQP algorithm that is initialized at a neighboring solution delivers a �rst order approx-imation of the exat solution, if an augmented problem formulation (3.14) is used. Theruial feature of this augmented formulation is that the atual value of the parameter thatdistinguishes between di�erent problems is introdued as an additional NLP variable, thatis �xed by a trivial equality onstraint, so that derivatives with respet to the parameterare present in the SQP framework. Fortunately, in the diret multiple shooting NLP for-mulation of Se. 2.2, the distinguishing parameter of the NLPs P (x0) is the initial value

x0, that is itself onstraining sx0 by a trivial equality onstraint sx0 − x0 = 0. Therefore, wemay regard the NLP formulation (2.10) as an embedded problem formulation of the form
min

sx0∈Rnx ,w̃∈R(nw−nx)
F (sx0 , w̃) subjet to 





sx0 − x0 = 0,

G̃(sx0 , w̃) = 0,
H(sx0 , w̃) ≥ 0,with w = (sx0 , w̃) (f. Se. 2.2). Comparing with the notation of (3.14), sx0 has taken theplae of t, and x0 the plae of t̆.Let us assume that we have found a solution y∗(x0) = (w∗(x0), λ

∗(x0), µ
∗(x0)) of prob-lem P (x0). If the SQP algorithm for the solution of a neighboring problem P (x0 + ǫ) isinitialized with this solution, the �rst full step exat Hessian SQP iterate provides alreadyan exellent (�rst order) approximation of the solution y∗(x0+ ǫ). This �rst iterate is evenable to approximate distant ative set hanges, as was shown in Example 3.3, and will alsobe illustrated in the following example for a parameterized optimal ontrol problem.
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Figure 4.2: First order orretion in q10 and q20 after initial value embedding as a funtion of
ǫ, for two di�erent initializations: on the left hand side the algorithm was initialized withthe steady state trajetory, on the right hand side with the outome of the �rst iterate for
ǫ = 1 from the left hand side. The exat solution manifold (f. Fig. 1.3) is dotted.Example 4.2 (Initial Value Embedding)Let us again onsider the ontinuous stirred tank reator with a disturbed initial value x0as in Example 4.1. We will regard a whole family of optimization problems P (xǫ) withperturbed initial values

xǫ := xS + ǫ(x0 − xS),that interpolate between the steady state xS and the disturbed initial value x0 (f. Exam-ple 1.1). Let us initialize the SQP algorithm with the steady state trajetory, whih is thesolution of P (xS) (ǫ = 0). The number nw of NLP variables is 604, as disussed in Ex-ample 2.1. We restrit our attention only to the �rst ontrol vetor, q0. A omparison ofthe �rst orretion in q0 after the initial value embedding with the exat solution manifold(f. Example 1.1) is shown on the left hand side of Fig. 4.2 for di�erent values of ǫ; thisillustrates that the initial value embedding strategy provides a �rst order approximation ofthe exat solution manifold, that takes ative set hanges into aount (f. lower left graphof Fig. 4.2). On the right hand side of Fig. 4.2 we investigate what happens if we hoose the�rst iterate itself as an initialization of the algorithm, so that we obtain a seond iterate.Note that the �rst iterate itself is not the solution of any problem, so that the manifold ofseond iterates does not touh the exat solution manifold at a referene point, as before.But it an be seen that in the viinity of ǫ = 1 it provides already a quite good approximationof the exat solution manifold.



58 Real-Time Iterations4.3 Real-Time Iterations on Shrinking HorizonsSo far we have assumed that the initialization of the SQP algorithm is given. In a real-time senario, there is essentially only one soure whih an provide an initial guess for theurrent problem: the outome of the previous iterate. Depending on the problem lass,di�erent strategies ome to mind to use the previous real-time iteration to initialize theurrent one.In the ase of shrinking horizon problems, there exists a very natural initialization thatis based on the priniple of optimality: if a solution x∗(t), z∗(t), u∗(t) is optimal on the timehorizon t ∈ [ti, tf ] for an initial value x0(ti), its restrition to the shrunk horizon [ti+1, tf ] =
[ti + δi, tf ] is still optimal for the initial value x0(ti+1) = x∗(ti+1). This an be translatedinto the diret multiple shooting ontext, if the length of the multiple shooting intervals,
T (τi+1 − τi), orresponds to the length of the sampling intervals, δi = ti+1 − ti. Let us forthis sope regard a problem disretization with N multiple shooting intervals, and let usassume that for the optimization problem P (x0(t0)) on the full horizon [t0, t0+T ] a solution
w∗ = (q0, . . . , qN−1, s0, . . . , sN) has been found. At time tk = t0 +

∑k
i=1 δi = t0 + Tτk, aredued problem an be formulated, on a shrunk horizon with only N−k multiple shootingintervals, for the initial value xk := x0(tk). We will denote this problem by Pk(xk). Letus adopt the onvention that the multiple shooting variables wk of the redued NLP arenumbered so that the indies start with k, i.e., wk = (qk, . . . , qN−1, sk, . . . , sN), so that theproblem Pk(xk), k = 0, . . . , N − 1 an be written as:

Pk(xk) : min
qk, . . . , qN−1,

sk, . . . , sN

N−1
∑

i=k

Li(s
x
i , s

z
i , qi) + E(sxN , s

z
N) (4.1a)subjet to

sxi+1 − xi(τi+1; s
x
i , s

z
i , qi) = 0, i = k, . . . , N − 1, (4.1b)

g(sxi , s
z
i , qi) = 0, i = k, . . . , N, (4.1)

sxk − xk = 0, (4.1d)
re(sxN , s

z
N) = 0, (4.1e)

ri(sxN , s
z
N) ≥ 0, (4.1f)

h(sxi , s
z
i , qi) ≥ 0, i = k, . . . , N. (4.1g)Note that P0(x0) orresponds to the original problem P (x0) formulated in (2.10).Clearly, if we have found a solution y∗k = (w∗

k, λ
∗
k, µ

∗
k) of problem Pk(xk), and if the state

xk+1 orresponds to the predited optimal value on this trajetory, i.e., xk+1 = (sxk+1)
∗

k
, therestrition of the solution to the remaining horizon provides the solution y∗k+1 for the shrunkproblem Pk+1(xk+1), whih is a good initialization also for disturbed initial values xk+1+ ǫ,



4.3 Real-Time Iterations on Shrinking Horizons 59when the initial value embedding is employed. Let us introdue the �shrink� operator Sk,that just removes the �rst omponents qk, sk and the orresponding multipliers from avetor yk = (wk, λk, µk), i.e., the operator that projets the variables and multipliers of
Pk(·) to the variable and multiplier spae of Pk+1(·). Using Sk, the above statement anbe expressed as

y∗k+1 = Sky
∗
k.4.3.1 A Real-Time AlgorithmIn the real-time iteration ontext, the algorithm would proeed as follows: Starting withan initial guess y00 = (w0

0, λ
0
0, µ

0
0) for the problems P0(·) prepare the �rst real-time iterationas far as possible without knowledge of x0. Then perform for for k = 0, . . . , N − 1 thefollowing yle:1. At the moment tk that xk is known, perform the prepared real-time iteration (basedon a linearization at ykk and the initial value embedding idea) towards the solution of

Pk(xk). This yields the �rst order orretion yk+1
k .2. Give the resulting value of the �rst ontrol vetor (qk)k+1

k (whih is ontained in thevetor yk+1
k ) immediately as a ontrol to the plant.3. Shrink the �rst order orretion yk+1

k to the variable spae of the new problem Pk+1(·),i.e., de�ne the new iterate
yk+1
k+1 := Sky

k+1
k .4. Prepare the �rst iterate of problem Pk+1(·) as far as possible without knowledge of

xk+1, using the shrunk vetor yk+1
k+1 as an initialization.5. Inrease k by one and go to 1.Note that in our algorithm the �rst two steps do only need a very short omputation timeompared to the fourth step (f. Chap. 6).Example 4.3 (Real-time iterations)The losed-loop trajetory resulting from the real-time iteration approah for the senariothat was presented in Se. 1.2 is shown in Fig. 4.3. The number of multiple shootingintervals is N = 100, with intervals of equal length δk = 20 se for k = 0, . . . , N − 1. Theinitialization y00 was hosen to be the steady state trajetory, i.e., the solution of P (xS). Weassume that the preparation time per real-time iteration is exatly 20 seonds (in reality,the omputation time per iteration was always less than 1 seond, f. Fig. 4.5).It an be seen that the real-time iteration approah delivers a trajetory that is nearlyidential with an optimal feedbak ontrol (dotted line) � apart from the �outlier� of u1 in the�rst interval whih is due to linearization errors, and whih orresponds to the �rst iteratein Fig. 4.2. In the seond real-time iteration, when nonlinearities are taken into aount,

u1 is already very lose to its optimal value. The performane index is only inreased by 3% ompared to optimal feedbak ontrol.
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time [s]Figure 4.3: State and ontrol trajetories of the real-time iteration approah. The dottedlines, that are nearly idential, show the trajetory due to optimal feedbak ontrol.
4.3.2 Comparison with Linearized Neighboring Feedbak ControlIt is interesting to ompare the above real-time iteration sheme with a well-known approx-imation of optimal feedbak ontrol, namely with linearized neighboring feedbak ontrolas introdued in Se. 1.3.1. For this aim let us assume that the initial guess y00 is the solu-tion of a nominal problem P0(x̄0), and that the predited optimal trajetory goes throughthe points x̄1, . . . , x̄N , that we all the nominal or referene trajetory. By the prinipleof optimality it is lear that for a given k < N the restrition of y00 to the variable spae of
Pk(·), that we denote by y0k, is the solution of the problem Pk(x̄k). The idea of linearizedneighboring feedbak ontrol is to use only the initial guess y00 and its subvetors y0k forthe initialization of the real-time iterations. The preparation of the �rst iterate for allproblems Pk(·) an be performed o�-line, reduing the neessary on-line omputations toa minimum.In linearized neighboring feedbak ontrol, usually the assumption is made that theative set does not hange during the on-line QP solutions, so that the QP an largely be



4.3 Real-Time Iterations on Shrinking Horizons 61presolved, leaving only one matrix vetor multipliation that has to be performed on-line:the ontrol uk on the interval [tk, tk+1] is given by uk = ūk −Kk(xk − x̄k), where ūk is thenominal ontrol, and the matrix Kk is the preomputed gain matrix . Virtually no on-lineomputations have to be performed in this ase, and very short sampling times an berealized.For larger deviations in xk− x̄k, however, this may lead to ontrol responses that exeedthe ontrol bounds � therefore we present here a modi�ed linearized feedbak ontrol shemethat solves the prepared QPs on-line, so that all linearized onstraints an be taken intoaount, when ative set hanges our. Note that bounds are linear onstraints andtherefore exatly satis�ed in eah QP solution. The di�erene to the real-time iterationsheme is that all ontrol responses are based on the same system linearization, at thereferene solution y00. This algorithm would proeed as follows:Based on the referene solution y00 = (w0
0, λ

0
0, µ

0
0) and on its subvetors y0k =

SkSk−1 . . . S1y
0
0 (that are the solutions of the nominal problems Pk(x̄k)), prepare the �rstQP solution of the problems Pk(·) as far as possible without knowledge of xk. Then performfor for k = 0, . . . , N − 1 the following yle:1. At the moment tk that xk is known, perform the prepared QP solution towards thesolution of Pk(xk). This yields the �rst order orretion y1k.2. Give the resulting value of the �rst ontrol vetor (qk)

1
k (whih is ontained in thevetor y1k) immediately as a ontrol to the plant.3. Inrease k by one and go to 1.Note that this linearized neighboring feedbak ontrol sheme is very losely related tolinear model preditive ontrol on shrinking horizons, as it is based on a linear systemmodel, and only a QP has to be solved in eah iteration. It is superior to what is ommonlyalled linear model preditive ontrol, however, in the respet that nonlinearities of thesystem equations along the nominal trajetory are taken into aount, and that the Hessianmatrix does not only represent a quadrati objetive, but the full seond order informationof the Lagrangian funtion along the nominal trajetory. Note that the values y1k are �rstorder approximations of the optimal solutions y∗k of the full nonlinear problems Pk(xk), i.e.,

‖y1k − y∗k‖ = O(‖xk − x̄k‖2), due to the initial value embedding.The low omputational on-line ost of linearized neighboring feedbak ontrol, however,omes along with the inability to adapt to large deviations from the nominal solution (i.e.,for big ‖xk − x̄k‖), as the system nonlinearity is not taken into aount in the on-lineontext.Example 4.4 (Linearized neighboring feedbak ontrol)In Fig. 4.4 a losed-loop trajetory orresponding to the desribed linearized neighboringfeedbak ontrol for the same senario as in Example 4.3 is shown, and ompared with thereal-time iteration sheme. It an be seen that the two trajetories di�er signi�antly, andthat the linearized neighboring feedbak ontrol shows onsiderably poorer performane, see
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time [s]Figure 4.4: Linearized neighboring feedbak ontrol: state and ontrol trajetories, om-pared with the real-time iteration trajetories (dotted). Both shemes oinide on the �rstinterval, but the linearized neighboring sheme does not take nonlinearities into aount.
Table 4.1. Note that the two shemes oinide on the �rst interval, where they both usethe same initialization (f. Fig. 4.2). In the linearized neighboring feedbak ontrol, thisinitialization is kept for the whole trajetory, whereas it is ontinuously updated during thereal-time iteration yles.
4.3.3 Problems with Free Final TimeSo far we have foused on problems where the overall duration was prespei�ed. In pratialshrinking horizon problems, however, often the �nal time is open to optimization, or isdetermined impliitly by terminal onstraints. As disussed in Se. 2.2, the formulation ofa free �nal time an be ahieved by an augmentation of the di�erential state vetors sxi by



4.4 Real-Time Iterations on Moving Horizons 63Strategy relative ostsOptimal Feedbak Control 100 %Real-Time Iterations 103 %Conventional NMPC Approah 117 %Linearized Neighboring Feedbak 121 %Table 4.1: Performane of di�erent real-time strategies, measured in terms of the objetivefuntion, from Examples 4.1, 4.3, and 4.4.one omponent, and the formulation (4.1) of the optimization problem Pk(xk) needs to bemodi�ed only at the initial value onstraint (4.1d), whih is hanged to
(Inx|0)sxk − xk = 0.As before, the priniple of optimality holds, so that a solution of problem Pk(xk) providesa solution of the shrunk problem Pk+1(xk+1), if xk+1 orresponds to the predited value

(Inx |0)sxk+1. If disturbanes our, the initial value embedding and real-time iterationsheme an be applied without modi�ations; however, it should be kept in mind that theinterval durations may now hange during the real-time iterations.Apart from the shrinking problem formulation as desribed above, there exists an in-teresting seond possibility to formulate the series of optimization problem on a shrinkinghorizon with free �nal time: instead of the problems P0(x0), P1(x1), . . . , PN−1(xN−1) withshrinking multiple shooting interval numbers, we an onsider always the same multipleshooting disretization and regard only one type of parameterized problem, P (·) = P0(·),i.e., we treat suessively P (x0), P (x1), . . . , P (xN−1). In this ase it is not straightforwardhow to initialize the subsequent real-time iterations. One way would be to take the vari-able and multipliers from the previous iterate without any modi�ation, i.e., to performsuessive warm starts and to rely on the approximation apaities of the initial value em-bedding (f. Se. 4.4.2). Though suh a sheme an be suessful in pratial appliations,espeially for short sampling times, it is di�ult to prove onvergene, as it will be donefor the shrinking problem formulation in Chap. 5.4.4 Real-Time Iterations on Moving HorizonsIn appliations of nonlinear model preditive ontrol (NMPC) to ontinuous proessesthe optimization problems are typially formulated on moving horizons, whih aim toapproximate an in�nite predition horizon. This results in problems whih all have thesame horizon length, and whih are only distinguished by the initial value xk. We willtherefore only treat one type of optimization problem P (·), and adopt the onvention thatthe subvetors of the primal variables w are denoted by q0, . . . , qN−1 and s0, . . . , sN in allproblems, i.e., we disregard the absolute position of the moving horizon in time, in ontrastto the shrinking horizon ase.



64 Real-Time IterationsWe will present two basi strategies how to proeed from one optimization problemto the next. Both show their advantages in di�erent irumstanes: the �rst, the shiftstrategy, is espeially advantageous for periodi or time dependent proesses, as it onsidersthe movement of the horizon in time expliitly. The seond strategy, the warm start, isespeially useful in appliations where the multiple shooting intervals are hosen to beonsiderably longer than the sampling times.4.4.1 Shift StrategyThe priniple of optimality does not hold for �nite moving horizons, but it is approximatelyvalid if the horizon length is long enough to justify the assumption that the remaining ostson the in�nite horizon an be negleted. This motivates an adaptation of the shrinkinghorizon initialization strategy to moving horizons that we all the shift strategy .For the initialization of a problem P (xk+1) it uses the iterate yk+1
k = (wk+1

k , λk+1
k , µk+1

k ),that is the outome of the previous iteration towards the solution of problem P (xk), toinitialize the new problem with yk+1
k+1 as follows.Shift in the Primal VariablesIf the primal variables wk+1

k are denoted by
wk+1

k = (q0, q1, . . . , qN−2, qN−1; s0, s1, . . . , sN−2, sN−1, sN)then the shift initialization sets
wk+1

k := (q1, q2, . . . , qN−1, q
new
N−1; s1, s2, . . . , sN−1, s

new
N−1, s

new
N ),where the new values qnewN−1, snewN−1, and snewN an be spei�ed in di�erent ways:

• One straightforward way is to keep the old values at their plae, i.e., to initialize
qnewN−1 := qN−1, snewN−1 := sN−1, and snewN := sN ,whih has the advantage that the only infeasibility that is introdued into a feasibletrajetory is the violation of the ontinuity ondition at the start of the last interval,i.e., at τN−1.

• A seond possibility would be to solve the DAE on the new last interval, startingwith sN , and employing the ontrol qN−1, whih yields the �nal value snewN (sN , qN−1)for di�erential and algebrai states, i.e., we initialize:
qnewN−1 := qN−1, snewN−1 := sN , and snewN := snewN (snewN−1, q

new
N−1).In this ase, both the ontinuity ondition and the algebrai onsisteny ondition at

τN−1 are full�lled, if the previous solution was feasible: for the ontinuity onditionthis is trivially true, and for the onsisteny ondition note that previously, at τN ,
0 = g(sN , qN) = g(sN , qN−1), as qN−1 provides per de�nition the ontrol qN at the�nal multiple shooting node. However, path and terminal onstraints may be violatedby the new �nal value snewN .
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• Yet another possibility is to solve the DAE on the last interval starting at sN , but toemploy a di�erent ontrol than qN−1. Though this may sari�e algebrai onsistenyat τN−1, this strategy may be advantageous, e.g. for periodi proesses, where a timedependent nominal ontrol may be taken. This strategy was employed for the periodiontrol example of Chap. 8.Note that the initial violation of onstraints is naturally treated in the diret multipleshooting framework and does not reate any additional di�ulty in the following SQPiterations. During the real-time iterations the outome of the previous iterate will usuallynot be feasible anyway, and additional infeasibility is introdued by initial values xk thatare not in aordane with the preditions.Shift in the MultipliersThe initialization of the multipliers is also performed by a shift; for the multiplier valueson the �nal interval we usually keep the old values. It is lear that a shifted solution, evenif it may be feasible, is in general not optimal. For su�iently long horizons, however,we expet the priniple of optimality to hold, so that the shifted primal variables and theshifted multipliers yk+1

k+1 are lose to a solution of P (xk+1) if yk+1
k was a solution of P (xk)and the system has developed as predited (i.e., xk+1 = sx1).4.4.2 Warm Start TehniqueOn the other hand, if the horizon length is relatively short, so that the priniple of optimal-ity does not hold at all, subsequent optimization problems may have very similar solutions,that are mainly determined by terminal onditions, suh as e.g. a Mayer term and terminalonstraints that are introdued to bound the negleted future osts (f. Se. 1.4). In thisase the best initialization of subsequent problems should be a warm start strategy , whihtakes the result of the previous iteration, yk+1

k , without further hanges to initialize theurrent iteration: yk+1
k+1 := yk+1

k .If yk+1
k was the solution to problem P (xk), then the only infeasibility in problem P (xk+1)is introdued by the initial value onstraint, as in general xk+1 6= xk. In this ase, however,the next iterate yk+2

k+1 is idential to the �rst order orretion to the optimal solution, aswe proved in Theorem 3.6, i.e., its distane to the optimal solution is ‖yk+2
k+1 − y∗k+1‖ =

O(‖xk+1 − xk‖2), if an exat Hessian SQP method is used. To shed more light on thisdesirable property, we regard the (unsolved) problem P (xk+1) as a member in a familyof perturbed problems P (xk + ǫ(xk+1 − xk)), where a solution for ǫ = 0 exists, and thesolution for ǫ = 1 is desired (f. Example 4.2). The warm start strategy therefore has avery natural onnetion to the initial value embedding strategy.Interpretation as Modi�ed SQP IterationsAnother interesting property of the warm start tehnique ours if the initial values xk, xk+1oinide during some iterates k, k + 1, . . . . In this ase, all real-time iterations treat the



66 Real-Time Iterationssame problem, so that the standard onvergene properties of SQP methods an be ex-peted. This observation motivates a new look on the real-time iteration idea: ratherthan interpreting the real-time iterations as many prematurely stopped solution attemptsof subsequent optimization problems, we regard them as a ontinuous series of SQP it-erates with the partiularity that one parameter, the initial value x0, is slightly modi�edduring the iterations. This interpretation aptures very well the philosophy of the real-time iterations; in every pratial implementation of a real-time iteration algorithm it hasmetiulously to be taken are that the initialization from one problem to the next doespreserve all informations that are neessary to guarantee the onvergene properties of ano�-line method. This is most easily realized for the warm start strategy.Short Sampling TimesIn some pratial NMPC appliations it may be desirable to hoose the multiple shootingintervals longer than the sampling time; this allows e.g. long predition horizons with alimited number of multiple shooting nodes, whih may be a ruial real-time advantage,as the omputation time generally grows with the number of multiple shooting nodes.Another pratial reason for hoosing relatively long ontrol intervals may be to detunethe NMPC ontroller, whose aggressive response may otherwise exite unmodelled systemmodes with short timesales.In the warm start tehnique, short sampling times an be treated without di�ulty.Even sampling times of variable size are allowed � the only requirement for good perfor-mane is that the problems (i.e., the initial value x0) do not hange too muh from oneiteration to the next. Therefore, the shorter the sampling time, the better the ontrationbehaviour.Self-Synhronization of the Real-Time IterationsWhere a ontinuous stream of state estimates is available, the warm start tehnique eveno�ers the possibility to let the sampling times be determined on-line by the optimizer itself.Whenever a new real-time iterate is prepared, say at time tk, the urrent state estimate
x0(tk) is used to perform the next real-time iteration towards the solution of P (x0(tk)),whose response is given immediately to the real-plant, and then the next iterate is prepared,until the algorithm is ready to perform, at time tk+1, the next feedbak phase. Note thatin this sheme it is not neessary to know the omputation time tk+1 − tk in advane. Inour pratial implementation of NMPC in Chap. 7 we have employed this sheme.Suessive Generation of Feedbak LawsYet another possibility, that an be employed if a full real-time iteration takes too long tobe able to respond to relevant disturbanes, is to separate the preparation phase and thefeedbak phase of eah real-time iteration ompletely. Then, the self-synhronized majorSQP iterations are performed as one proess, that gives all data that are neessary for theimmediate feedbak to another proess. This feedbak proess delivers a feedbak u(x0(t))



4.4 Real-Time Iterations on Moving Horizons 67with a frequeny that an be onsiderably higher than that of the major nonlinear iterates.Only at the end of eah major SQP iteration, say at the time points tk, all updated dataare transferred from the SQP proess to the feedbak proess, and simultaneously the theurrent system state x0(tk) is given to the SQP proess, to modify the next major real-timeiteration. The sheme an be visualized as follows:MajorReal-TimeIterations updates-
x0(tk)�

ImmediateFeedbak u(x0(t))-

x0(t)�

�
� SystemNote that between the updates (that our only at the major sampling times tk) thefeedbak is based on a linear system model that is obtained by a linearization along thebest available predited trajetory, similar to the linearized neighboring feedbak ontrolsheme that was presented in Se. 1.3.1.Example 4.5 (Comparison of Moving Horizon Strategies)The CSTR real-time senario that was treated in the previous examples an in a straight-forward way be formulated as a moving horizon problem. Instead of shrinking the timehorizon of the problems, the time horizon is kept at onstant length and moved forward.We an imagine that we ontinuously �append� multiple shooting intervals at the end of thehorizon. With the hosen horizon length of 2000 seonds the losed loop system was alreadyat steady state in the middle of the horizon of the �rst optimization problem; therefore theappended parts do pratially not matter at all, and for the shift strategy with exat HessianSQP we obtain exatly the same losed loop trajetory as before in the real-time iterationExample 4.3 on a shrinking horizon. We have arried out losed-loop simulations for thesame senario also with the warm start tehnique, and the result is that the losed-looptrajetories are pratially idential. We also arried out tests with an algorithm where theexat Hessian matrix was replaed by a Gauss-Newton approximation, whih again yieldsno visible di�erene of the trajetories. The performane of the di�erent strategies an bemeasured by the objetive funtion on the onsidered interval of 2000 seonds ompared tothe optimal value, as in Table 4.1. For all four moving horizon strategies we have observednearly idential values of 103 % of the optimal osts.For the hosen appliation, all strategies require more or less the same omputationalosts per real-time iteration, whih is dominated by linear algebra, beause the ODE solutionand sensitivity omputation do not require muh time for a system of suh a small size.The neessary CPU time per iteration, and the share of it whih is needed to deliver the�immediate feedbak� are depited in Fig. 4.5 for the above senario, where a Gauss-Newtonmethod was employed. First, it an be seen that the overall ost of at most one seond ismuh below the 20 seonds that we have hosen as sampling time, thus ensuring pratialappliability of the algorithm for this type of problem. But it an also be seen that the�immediate� feedbak requires a onsiderable proportion of the overall CPU time for thisexample problem and is therefore not as immediate as postulated. Note, however, that in
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Figure 4.5: Preparation and feedbak times for the real-time iterations for the movinghorizon CSTR senario of Example 4.5, on an AMD Athlon proessor with 1009 MHz.The horizon length was hosen to be N = 100 multiple shooting intervals.large sale appliations the lion's share of the omputational ost is inurred by the DAEsolution, whih does not ontribute to the response time, so that the immediate feedbakis indeed orders of magnitude smaller than the overall omputation time (f. Figs. 7.7and 7.16 in Chap. 7). Details on the separation into preparation and feedbak phase aregiven in Chap. 6.



Chapter 5Contrativity of the Real-TimeIterationsIn the last hapter we have presented a new sheme for the approximate solution of op-timization problems in real-time, whih shows very promising performane in numerialexamples. From the previous disussion, however, it is far from lear how this shemebehaves theoretially.To motivate why this is important, let us imagine that we apply the real-time iterationsheme in a NMPC framework to stabilize a system, and that the real system oinideswith the employed system model. If the subsequent optimization problems ould be solvedexatly in real-time, proofs exist that ensure nominal stability of the losed-loop systemfor di�erent NMPC shemes (f. Se. 1.4). Now the question arises if it is also possibleto establish nominal stability results if the optimization problems are not solved exatly,but with our real-time iteration sheme. Otherwise, it may be possible that the real-timeontroller does not stabilize the system, but drives it in the worst ase even away fromthe desired operating point: linearization errors may inrease from iteration to iteration,and the approximations to the exat solutions may beome worse and worse. We willshow that this need not be feared, and we will prove that the real-time iterations deliverapproximations of the exat solutions that beome better and better, under reasonableonditions.Unfortunately, standard onvergene results for o�-line SQP methods annot be ap-plied, beause eah real-time iteration belongs to a di�erent optimization problem. Never-theless, we will start the hapter in Se. 5.1 by reviewing the loal onvergene propertiesfor a lass of o�-line optimization algorithms that are ommonly referred to as �Newtontype methods�, whih omprise the exat Hessian SQP method and the Constrained Gauss-Newton method. We will then in Se. 5.2 present the real-time iteration sheme in a newsetting, whih allows to ompare the real-time iterates on shrinking horizons with thoseof the o�-line method. This makes it possible to prove ontrativity of the real-time iter-ations. We usually avoid the term �onvergene� in the real-time framework on shrinkinghorizons, beause the iterates stop after N yles, when the time horizon of interest is over.69



70 Contrativity of the Real-Time IterationsThe prinipal result is that the real-time iteration sheme on shrinking horizons isontrating under the same su�ient onditions as the orresponding o�-line sheme. Thisresult an oneptually be generalized to the shift strategy on in�nite moving horizons andallows to onlude that the real-time iteration sheme leads to a onvergent losed-loopbehaviour in this ase. Finally, in Se. 5.3 we investigate how far the result of the real-timeiterations deviates from the theoretial optimal solutions.Throughout the hapter we will assume that the iterates are started su�iently loseto a KKT point that satis�es the su�ient onditions of Theorem 3.3 and the strit om-plementarity ondition, so that we an assume that the ative set is known and we anrestrit our attention to equality onstrained problems. Furthermore, we will assume thatthe variables w an be split into free variables q ∈ R
nq and dependent ones s ∈ R

ns, sothat the o�-line optimization problem on the full horizon of interest an be formulated asfollows:
P (x0) : min

q,s
F (q, s) s.t. G(q, s) = 0 (5.1)with F : D̂ ⊂ R

nq × R
ns → R and G : D̂ ⊂ R

nq × R
ns → R

ns twie ontinuouslydi�erentiable, where we assume that the onstraint funtion G is suh that ∂G
∂s

is invertiblefor all (q, s) ∈ D̂. This last property an naturally be ahieved for the diret multipleshooting method, as disussed in Se. 2.2.1, where q are the ontrols, and s the statevariables. This separation helps to formulate the shrinking of the time horizon in thereal-time setting; the shrinking will be expressed by dereasing step-by-step the degrees offreedom for the ontrols.5.1 The O�-Line Problem5.1.1 Newton Type Optimization MethodsUsing the Lagrangian funtion L : D̂ × R
ns → R

L(q, s, λ) := F (q, s)− λTG(q, s)we an formulate neessary optimality onditions of �rst order, aording to Theorem 3.1:
∇(q,s,−λ)L(q, s, λ) =





∇qF (q, s)−∇qG(q, s)λ
∇sF (q, s)−∇sG(q, s)λ

G(q, s)



 = 0. (5.2)Let us de�ne for later onveniene the vetor y ∈ R
n with n := nq + ns + ns and thefuntion R : D ⊂ D̂ × R

ns → R
n as

y :=





q
s
−λ



 and R(y) :=





∇qF (q, s)−∇qG(q, s)λ
∇sF (q, s)−∇sG(q, s)λ

G(q, s)



 , (5.3)



5.1 The O�-Line Problem 71so that the above system (5.2) is equivalent to R(y) = 0. To solve this system, the exatNewton-Raphson method would start at an initial guess y0 and ompute a sequene ofiterates y1, y2, . . . aording to
yk+1 = yk +∆yk, (5.4)where eah ∆yk is the solution of the linearized system

R(yk) +
∂R

∂y
(yk)∆yk = 0, (5.5)or, fully written,





∇qL
∇sL
G(q, s)



 +







∂2L
∂q2

∂2L
∂q∂s

T ∂G
∂q

T

∂2L
∂q∂s

∂2L
∂s2

∂G
∂s

T

∂G
∂q

∂G
∂s

0











∆qk

∆sk

−∆λk



 = 0. (5.6)We have seen in Se. 3.3.1 that these Newton-Raphson iterates are idential to the full stepexat Hessian SQP method.The Newton type methods onsidered in this hapter di�er from the exat Newton-Raphson method in the way that the exat Hessian ∂2L
∂(q,s)2

is replaed by a (symmetri)approximation
A(y) =

(

Aqq AT
qs

Aqs Ass

)

,so that we an de�ne an approximate derivative of R by:
J(y) :=







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0






. (5.7)For our Newton type method, Eq. (5.5) is replaed by the approximation

R(yk) + J(yk)∆yk = 0. (5.8)5.1.2 The Constrained Gauss-Newton MethodAn important speial ase of the Newton type methods onsidered in this hapter is theonstrained Gauss-Newton method, whih is appliable for problems with a least squaresform of the objetive funtion F :
F (q, s) =

1

2
‖l(q, s)‖22 (5.9)



72 Contrativity of the Real-Time Iterationswith l : D̂ → R
nl, nl ≥ 1, a vetor valued funtion. For this ase, the Hessian approxima-tion A is de�ned to be

A(q, s) :=

(

∂l

∂(q, s)

)T (
∂l

∂(q, s)

)

. (5.10)The error ∂2L
∂(q,s)2

−A an be quanti�ed by alulation of ∂2L
∂(q,s)2

∂2L
∂(q, s)2

−
(

∂l

∂(q, s)

)T (
∂l

∂(q, s)

)

=

nl
∑

i=1

li
∂2li

∂(q, s)2
+

ns
∑

i=1

λi
∂2Gi

∂(q, s)2
.At a solution y∗ = (q∗, s∗, λ∗), the neessary optimality onditions (5.2) require that

∇sF −∇sGλ
∗ =

(

∂l

∂s

)T

l(q∗, s∗)−∇sGλ
∗ = 0,so that

λ∗ = −∇sG
−1 ∂l

∂s

T

l(q∗, s∗) = O (‖l(q∗, s∗)‖) ,whih allows to onlude that
∥

∥

∥

∥

∂2L
∂(q, s)2

−A(q∗, s∗))

∥

∥

∥

∥

= O (‖l(q∗, s∗)‖) .Thus we expet the Gauss-Newton method to work well for small residual vetors l(q, s).Note that A(q, s) is independent of the multiplier vetor λ.Remark: The least squares funtion l(q, s) needs not to be a mapping into a �nitedimensional spae R nl, but may more generally be a mapping into any Hilbert spae H . If
〈·, ·〉H is the inner produt in H , the least squares objetive funtion of Eq. (5.9) is thenwritten as

F (q, s) =
1

2
〈l(q, s), l(q, s)〉H,and the Gauss-Newton approximation of the Hessian in Eq. (5.10) is given by the symmetrimatrix

A(q, s)ij := Re

〈

∂l

∂(q, s)i
,

∂l

∂(q, s)j

〉

H

,where the indies i, j run through all omponents of (q, s). Note that this matrix is �nitedimensional, whih allows to treat this general ase with the presented numerial methods.In Se. 6.4 it is shown how to ompute A(q, s) e�iently in the presene of integral leastsquares terms as introdued in Se. 1.1.



5.1 The O�-Line Problem 735.1.3 Su�ient Conditions for Loal ConvergeneLet us now state su�ient onditions for onvergene of a series of general Newton typeiterates (yk), k = 0, 1, . . . in a spae R
n de�ned by

yk+1 = yk +∆yk = yk − J(yk)−1R(yk), (5.11)towards a solution of the system
R(y) = 0. (5.12)Theorem 5.1 (Loal Convergene of Newton Type Methods)Let us assume that R : D ⊂ R

n → R
n is ontinuously di�erentiable and that the approxi-mation of the derivative J : D ⊂ R

n → R
(n×n) is ontinuous and has a ontinuous inverseon D. Furthermore, let us make the following assumptions:

∥

∥

∥

∥

J(y1)
−1

(

J(y2)−
∂R

∂y
(y2)

)∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D (5.13a)and
∥

∥J(y1)
−1 (J(y2)− J(y3))

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D. (5.13b)Additionally, we suppose that the �rst step ∆y0 := −J(y0)−1R(y0) starting at an initialguess y0 is su�iently small, so that
δ0 := κ+

ω

2
‖∆y0‖ < 1 (5.13)and that

D0 :=

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D. (5.13d)Under these onditions the sequene of Newton type iterates (yk) de�ned by Eq. (5.11)remains inside D0 and onverges towards a y∗ ∈ D0 satisfying the sytem (5.12), R(y∗) = 0.Proof: Slightly modifying a proof that an be found in Bok [Bo87℄, we �rst show thatthe norm of the steps ∆yk ontrats, and show then that (yk) is a Cauhy sequene. Theontration an be shown as follows:
‖∆yk+1‖ = ‖J(yk+1)−1 · R(yk+1)‖

= ‖J(yk+1)−1 · (R(yk+1)− R(yk)− J(yk) ·∆yk)‖
= ‖J(yk+1)−1 ·

∫ 1

0
(∂R
∂y
(yk + t∆yk)− J(yk)) ·∆yk dt‖

= ‖J(yk+1)−1 ·
∫ 1

0
(∂R
∂y
(yk + t∆yk)− J(yk + t∆yk))∆yk dt

+J(yk+1)−1 ·
∫ 1

0
(J(yk + t∆yk)− J(yk))∆yk dt‖

≤
∫ 1

0
‖J(yk+1)−1 (∂R

∂y
(yk + t∆yk)− J(yk + t∆yk))‖‖∆yk‖ dt

+
∫ 1

0
‖J(yk+1)−1 (J(yk + t∆yk)− J(yk))‖‖∆yk‖ dt

≤ κ‖∆yk‖+
∫ 1

0
ωt‖∆yk‖2 dt

=
(

κ+ ω
2
‖∆yk‖

)

‖∆yk‖ =: δk‖∆yk‖.

(5.14)



74 Contrativity of the Real-Time IterationsIf δk ≤ 1, then ‖∆yk+1‖ ≤ ‖∆yk‖, and δk+1 ≤ δk ≤ 1. Therefore, we an indutivelydedue that
‖∆yk+1‖ ≤ δ0‖∆yk‖, ∀ k ≥ 0so that

‖yk+m − yk‖ ≤ 1

1− δ0
‖∆yk‖ ≤ δk0

1− δ0
‖∆y0‖, ∀ k,m ≥ 0. (5.15)In partiular,

‖ym − y0‖ ≤ 1

1− δ0
‖∆y0‖, ∀m ≥ 0.Therefore, (yk) is a Cauhy sequene that remains inside the ompat set D0 and heneonverges towards a limit point y∗. By ontinuity of R and J−1,

0 = lim
k→∞

∆yk = lim
k→∞

−J(yk)−1R(yk) = −J(y∗)−1R(y∗)so that R(y∗) = 0.We will state a seond, striter form of the above theorem, whih is appliable to opti-mization problems only, and implies loal onvergene of the Newton type iterates towardsa strit loal minimum. Before this seond version of the theorem an be formulated, wehave to give an expliit formula for the inverse of the approximate derivative J(y).Lemma 5.2 (Inverse of the KKT Matrix)Let us assume that J(y) is a matrix as de�ned in Eq. (5.7), i.e.,
J(y) =







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0





with ∂G
∂s

invertible, and let us also assume that the so alled redued Hessian matrix
Ar(y) :=

(

I −∂G
∂q

T (∂G
∂s

)−T
)

(

Aqq AT
qs

Aqs Ass

)

(

I

−
(

∂G
∂s

)−1 ∂G
∂q

) (5.16)is positive de�nite. Then the inverse of J(y) exists and is given by the formula
J(y)−1 = C1(y)Ar(y)

−1C1(y)
T + C2(y) (5.17)with

C1(y) :=







I

−
(

∂G
∂s

)−1 ∂G
∂q

−
(

∂G
∂s

)−T
(

Aqs − Ass

(

∂G
∂s

)−1 ∂G
∂q

)






(5.18)



5.1 The O�-Line Problem 75and
C2(y) :=







0 0 0

0 0
(

∂G
∂s

)−1

0
(

∂G
∂s

)−T −
(

∂G
∂s

)−T
Ass

(

∂G
∂s

)−1






. (5.19)Remark: Note that the assumptions of this lemma oinide with those of Lemma 3.2,with the onstraint matrix B set to B = (∂G

∂q
|∂G
∂s
). They are also losely related to thesu�ient optimality onditions of Theorem 3.3. The positive de�niteness of Ar will beused in the proof of Theorem 5.3 to show that the Newton type iterates onverge towardsa loal minimum.Proof: The invertibility follows from Lemma 3.2. The inversion formula (5.17) an beveri�ed by heking that

J(y)(C1(y)Ar(y)
−1C1(y)

T + C2(y)) = Iand using the fat that
J(y)C1(y) =





Ar(y)
0
0



 and J(y)C2(y) = I−





C1(y)
T

0
0



 .Theorem 5.3 (O�-Line Convergene)Let us assume that R : D → R
n is de�ned aording to (5.3) to be the residual of theneessary optimality onditions of the equality onstrained optimization problem (5.1).We assume that the redued Hessian approximation Ar(y) from Eq. (5.16) is positivede�nite on the whole domain D, with bounded inverse:

‖Ar(y)
−1‖ ≤ βA <∞, ∀ y ∈ D. (5.20a)We also assume boundedness of ‖C1‖ and ‖C2‖ as de�ned in Eqs. (5.18) and (5.19) on D:

‖C1(y)‖ ≤ βC1 <∞, ∀ y ∈ D, (5.20b)and
‖C2(y)‖ ≤ βC2 <∞, ∀ y ∈ D. (5.20)Let us de�ne β := βC1βAβC1 + βC2. Let us suppose that a Lipshitz ondition

β ‖J(y1)− J(y2)‖ ≤ ω‖y1 − y2‖, ω <∞, ∀ y1, y2 ∈ D, (5.20d)holds for the derivative approximation J(y) and that
β

∥

∥

∥

∥

A(y)− ∂2L
∂(q, s)2

(y)

∥

∥

∥

∥

≤ κ, κ < 1, ∀ y ∈ D. (5.20e)
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Figure 5.1: Convergene rates for o�-line Newton type methods, for the solution of Exam-ple 5.1. Comparison of Newton and Gauss-Newton method, when started at the steadystate trajetory.
Additionally, we assume as in Theorem 5.1 that the �rst step ∆y0 := −J(y0)−1R(y0)starting at an initial guess y0 is su�iently small, so that

δ0 := κ+
ω

2
‖∆y0‖ < 1 (5.20f)and that

D0 :=

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D. (5.20g)Under these irumstanes the Newton type iterates (yk) aording to Eq. (5.8) onvergetowards a KKT point y∗ = (q∗, s∗, λ∗) ∈ D whose primal part (q∗, s∗) is a strit loalminimum of Problem (5.1).A proof of the theorem is given in Appendix D.Example 5.1 (Continuous Stirred Tank Reator)Let us again onsider the optimal ontrol problem that was introdued in Se. 2.1, respe-tively its multiple shooting parameterization as desribed in Example 2.1. The solution w∗of the NLP with initial value as in Se. 2.1 was shown in Fig. 2.3; a omparison of theonvergene rates for the Newton and Gauss-Newton method is given in Fig. 5.1, where thealgorithm is started at the steady state trajetory. The plot for the Gauss-Newton methodallows us to estimate that κ ≈ 0.1.



5.2 The On-Line Problem 775.2 The On-Line ProblemWe will now regard real-time iterations on shrinking horizons as introdued in Se. 4.1.2,in the framework of the o�-line optimization problem. It is shown in Se. 5.2.1 that theessential di�erene to the o�-line iterations is that after eah Newton type iteration someomponents of the free variables q are �xed, i.e., that the optimization problem (5.1) ishanged to a problem in the same spae, but with some more (trivial) equality onstraints.In the following Se. 5.2.2 we will show that the nonlinearity and inompatibility onstants
ω and κ for the o�-line problem are still valid for a problem with some �xed ontrols. Thisallows to onlude in Theorem 5.6 that the real-time iterations ontrat if the su�ientonditions for o�-line onvergene of Theorem 5.3 are satis�ed, whih is the main resultof this hapter. In Se. 5.3 we investigate how far the result of the real-time iterationsdeviates from the theoretial optimal solutions.Let us �rst disuss why �xing of some free omponents is equivalent to the real-timeiteration sheme as introdued in Se. 4.1.2.5.2.1 The Fixed Control FormulationIn the real-time iteration framework for shrinking horizons of Se. 4.3, we have redued thenumber of multiple shooting nodes from one problem to the next, in order to keep paewith the proess development.We regard a problem disretization with N multiple shooting intervals on a �xed lengthtime horizon with duration T , and assume that the omputation time for the k-th real-timeiteration is δk, and that ∑N

k=1 δk = T (this is e.g. the ase if all iterations take the sametime δ and the time horizon of interest has the length T = Nδ). The multiple shootingpoints are hosen so that the times tk := Tτk satisfy tk − tk−1 = δk, i.e.,
t0 = 0, tk =

k
∑

i=1

δi, for k = 1, . . . , N.Let x0, x1, . . . , xN denote the di�erential system states of the real system at times
t0, t1, . . . , tN , that serve as initial values for the parameterized optimization problems
Pk(xk) of shrinking length, as de�ned in Se. 4.3, Eq. (4.1).At time t0 the state x0 is known, and the initial value embedding strategy quikly yieldsthe ontrol value u0 that will be implemented on the �rst time interval, up to time t1. Attime t1 the next immediate feedbak has been prepared, and is applied to the shrunkproblem P1(x1). If the model and the real system oinide, the new system state x1 isidential to the �nal value x(t1) of the initial value problem

B(·)ẋ(t) = f(x(t), z(t), u0), t ∈ [t0, t1],
0 = g(x(t), z(t), u0), t ∈ [t0, t1],

x0(t0) = x0,and the initial value onstraint for the problem P1(x1) is
sx1 = x1.



78 Contrativity of the Real-Time IterationsLet us now regard the original problem P0(x0) on the full horizon, but with an additionalonstraint that �xes the ontrol q0 on the �rst interval to be equal to the implementedvalue u0 = q00 +∆q00 = q10 . This problem then ontains the onstraints
sx1 − x0(t1; s

x
0, s

z
0, q0) = 0,

g(sx0, s
z
0, q0) = 0,

sx0 − x0 = 0,

q0 − u0 = 0,whih onstrain sx0 , sz0, q0 and sx1 uniquely. In the solution, sx1 = x1, beause the relaxedinitial value problem
B(·)ẋ0(t) = f(x0(t), z0(t), q0), t ∈ [t0, t1],

0 = g(x0(t), z0(t), q0)− e
−β

t−t0
t1−t0 g(sx0, s

z
0, q0), t ∈ [t0, t1],

x0(t0) = sx0 ,is equivalent to the real system dynamis if sx0 = x0, q0 = u0, g(sx0, sz0, q0) = 0, so that
x0(t1; s

x
0 , s

z
0, q0) = x(t1) = x1. One the orret values for s0, q0 are found during theiterative solution proedure, they are not hanged anymore, and the above onstraints areompletely equivalent to sx1 = x1.For ODE models, the orret solution for sx0 , q0 is already found after the �rst iterate,due to the linearity of the initial value onstraint, and due to the fat that u0 was set justto the outome of this �rst iterate. Therefore, �xing of q0 is ompletely equivalent to theshrinking of the horizon. One slight ompliation arises, however, for DAE models: afterthe �rst iterate, sz0 may still not be at its orret value in the �xed ontrol formulation (i.e.,

g(sx0, s
z
0, q0) 6= 0) and this may result in a value x0(t1; sx0, sz0, q0) that is slightly di�erentfrom the orret value x(t1), due to the DAE relaxation. We will disregard this slightdi�erene that is only present in the relaxed DAE ase (and that ould even be interpretedas a slight superiority of the real implementation over the �xed ontrol formulation, whihwe only introdue here for theoretial purposes).Let us therefore assume in the remaining part of this hapter that the real-time itera-tions on shrinking horizons are idential to a subsequent �xing of the ontrols q0, . . . , qN−1in the original o�-line optimization problem (5.1), whih we denoted by P (x0) or P0(x0).For notational onveniene, we will in the following de�ne P 0 := P0(x0) = P (x0) to bethe original (o�-line) problem, and denote by P k the problems with more and more �xedontrols that are generated during the real-time iterations and whih are equivalent to theshrinking horizon problems Pk(xk). A visualization of the outome of the �rst two real-timeiterations is given in Figures 5.2 and 5.3.The series of problems P k, k = 0, . . . , N are given by

P k : min
q,s

F (q, s) subjet to {

G(q, s) = 0,
qi − ui = 0, i = 0, . . . , k − 1.
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80 Contrativity of the Real-Time Iterations(Reall that q = (q0, q1, . . . , qN−1).) In a shorter formulation, we will also write theseproblems as
P k : min

q,s
F (q, s) s.t. {

G(q, s) = 0,

Qk
1
T
(q − uk) = 0.Here, the matries Qk

1 ∈ R
nq×mk , mk = knu, are of the form

Qk
1 :=

(

Imk

0

)

, (5.21)and the vetors uk ∈ R
nq are de�ned as

uk :=











u0...
uk−1

∗











, with Qk
1

T
(q − uk) =







q0 − u0...
qk−1 − uk−1






,so that the last omponents of uk, that are introdued only for later notational onveniene,an arry arbitrary values. Note that in the last problem PN no degrees of freedom remain,as all omponents of q are �xed.5.2.2 Fixing Some ControlsWe will now prove that the nonlinearity and inompatibility onstants ω and κ from theo�-line problem (5.1) are still valid for any modi�ed problem P k, when some ontrols are�xed. Let us in this subsetion onsider only one modi�ed optimization problem P k anddrop the index k for notational simpliity:

min
q,s

F (q, s) s.t. {

G(q, s) = 0
QT

1 (q − u) = 0
(5.22)where the matrix Q1 ∈ R

nq×m, m ≤ nq onsists of m orthonormal olumns, as in (5.21).We also introdue the orthonormal omplement of Q1 by
Q2 :=

(

0
I(nq−m)

)

∈ R
nq×(nq−m).Let us formulate the neessary �rst-order onditions of optimality for the modi�ed problem.We introdue the Lagrangian funtion L̃ of the modi�ed problem (5.22)

L̃(q, s, λ, µ) := L(q, s, λ)− λQ
TQT

1 (q − u),where L is the Lagrangian funtion of the original problem (5.1). The neessary onditionsof optimality for the modi�ed problem are:
∇(q,s,−λ,−λQ)L̃(q, s, λ, λQ) =









∇qL −Q1λQ
∇sL
G(q, s)

QT
1 (q − u)









= 0. (5.23)



5.2 The On-Line Problem 81Multiplying the �rst omponent of this vetor by the orthogonal matrix (Q1|Q2)
T ∈ R

nq×nqyields












(

−λQ +QT
1∇qL

QT
2∇qL

)

∇sL
G(q, s)

QT
1 (q − u)













= 0and it an be seen that the upper part an always be made zero by hoosing
λQ := QT

1∇qL.Therefore, the trivial �rst ondition an be omitted in the formulation of the neessaryonditions for optimality of the modi�ed problem and we do not have to regard the addi-tional multipliers λQ. This allows us to treat the modi�ed problem in the same primal-dualspae of y ∈ R
n as the original problem, with n = nq +ns+ns. De�ning the essential partof the residual of the neessary optimality onditions to be

R̃(y) :=









QT
1 (q − u)
QT

2∇qL
∇sL
G(q, s)









=









QT
1 (q − u)

0
0
0









+









0
QT

2

I

I









R(y)we an ompute the derivative
∂R̃

∂y
=









QT
1

0
0
0









+









0
QT

2

I

I









∂R

∂y
(5.24)and provide an approximation of this derivative whih uses the approximation J(y) of theoriginal problem

J̃(y) :=









QT
1

0
0
0









+









0
QT

2

I

I









J(y)

=











QT
1 0 0

QT
2Aqq QT

2A
T
qs QT

2
∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0











.

(5.25)
Theorem 5.4 (Contration Constants for the Modi�ed Problem)Let us assume that the su�ent onditions for loal onvergene of Theorem 5.3 are satis�ed



82 Contrativity of the Real-Time Iterationsfor the original (o�-line) problem (5.1). Then the derivative approximation J̃ : D → R
nof the modi�ed problem (5.22) satis�es the two onditions

∥

∥

∥

∥

∥

J̃(y1)
−1

(

J̃(y2)−
∂R̃

∂y
(y2)

)∥

∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D, and (5.26a)
∥

∥

∥J̃(y1)
−1
(

J̃(y2)− J̃(y3)
)∥

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D, (5.26b)with the same values of κ and ω as the o�-line problem.Remark: These two bounds orrespond to the properties (5.13a) and (5.13b) in Theo-rem 5.1.3, thus allowing to onlude that the ontration inequality
‖∆yk+1‖ ≤

(

κ+
ω

2
‖∆yk‖

)

‖∆yk‖also holds for the modi�ed problem. This implies that the optimization problem does notbeome less tratable from the algorithmi viewpoint when we add additional onstraints.However, we do not address the question a suitable problem initialization, yet.To prove the theorem, let us �rst give an expliit formula of the inverse J̃(y)−1.Lemma 5.5 (KKT Inverse for the Modi�ed Problem)The inverse of the matrix J̃(y) as de�ned in Eq. (5.25) is given by the formula
J̃(y)−1 = Q









I

C̃1Ã
−1
r C̃T

1 + C̃2

















I

−QT
2AqqQ1 I

−AqsQ1 I

−∂G
∂q
Q1 I









, (5.27)with
Q :=





Q1 Q2

I

I



 ,

Ãr(y) := QT
2Ar(y)Q2, (5.28a)

C̃1(y) :=





QT
2

I

I



C1(y)Q2, (5.28b)and
C̃2(y) :=





QT
2

I

I



C2(y)





Q2

I

I



 , (5.28)where Ar(y), C1(y), and C2(y) are de�ned as in Lemma 5.2 for the original problem.



5.2 The On-Line Problem 83Proof of Lemma 5.5: We will hek that J̃(y)J̃(y)−1 = I. First note that
J̃(y)Q =











I

QT
2AqqQ1 QT

2AqqQ2 QT
2A

T
qs QT

2
∂G
∂q

T

AqsQ1 AqsQ2 Ass
∂G
∂s

T

∂G
∂q
Q1

∂G
∂q
Q2

∂G
∂s

0











.The inverse of the lower-right part of this matrix an be obtained by an appliation ofLemma 5.2 (using QT
2Q2 = I). Its inverse is given as







QT
2AqqQ2 QT

2A
T
qs QT

2
∂G
∂q

T

AqsQ2 Ass
∂G
∂s

T

∂G
∂q
Q2

∂G
∂s

0







−1

= C̃1(y)Ã
−1
r (y)C̃T

1 (y) + C̃2.Therefore,
J̃(y)Q









I

C̃1Ã
−1
r C̃T

1 + C̃2









=









I

QT
2AqqQ1 I

AqsQ1 I
∂G
∂q
Q1 I









,whih is the inverse of the rightmost blok Frobenius matrix in formula (5.27).Proof of Theorem 5.4: Note that C̃1(y) and C̃2(y) as de�ned in Eqs. (5.28b) and (5.28)are projetions of C1(y) and C2(y), so that their (spetral) matrix norm satis�es
‖C̃1(y)‖ ≤ ‖C1(y)‖ ≤ βC1 , ∀y ∈ D,and
‖C̃2(y)‖ ≤ ‖C2(y)‖ ≤ βC2 , ∀y ∈ D.To provide a bound on the inverse Ãr(y)

−1 we have to use the fat that Ar(y) ispositive de�nite. First we show that the eigenvalues of the projetion Ãr(y) = QT
2Ar(y)Q2lie between the maximum and minimum eigenvalues of Ar(y). To prove this we note that

Ãr(y) is a submatrix of Ar(y), as
Ar(y) =

(

QT
1

QT
2

)

Ar(y) (Q1|Q2) =

( * ** Ãr(y)

)By the interlaing property (see e.g. [Wil65℄, pp. 103�104), the eigenvalues
λ̃1(y), . . . , λ̃(nq−m)(y) of the submatrix Ãr(y) must lie in the spetrum of Ar(y), i.e.,
λ̃k(y) ∈ [λ1(y), λnq(y)]. In partiular, λ1(y) ≤ λ̃1(y) for the smallest eigenvalues. The



84 Contrativity of the Real-Time Iterationsinverse of the smallest eigenvalue orresponds to the spetral norm of the inverse of apositive de�nite matrix, so that we dedue that
‖Ãr(y)

−1‖ =
1

λ̃1(y)
≤ 1

λ1(y)
= ‖A−1

r (y)‖ ≤ βA, ∀y ∈ D.This allows to �nd a bound on the entral part of the inverse J̃(y)−1 in formula (5.27):
∥

∥

∥C̃1(y)Ãr(y)
−1C̃1(y)

T
+ C̃2(y)

∥

∥

∥ ≤ βC1βAβC1 + βC2 = β, ∀y ∈ D.From Eqs. (5.24) and (5.25) it follows that
J̃(y2)−

∂R̃

∂y
(y2) =









0
QT

2

I

I









(

J(y2)−
∂R

∂y
(y2)

)

and
J̃(y2)− J̃(y3) =









0
QT

2

I

I









(J(y2)− J(y3))and from formula (5.27) that
J̃−1(y1)









0
QT

2

I

I









=





Q2

I

I





(

C̃1(y1)Ãr(y1)
−1C̃1(y1)

T
+ C̃2(y1)

)





QT
2

I

I



 ,whih has a spetral norm less or equal to β. This allows to establish the desired bounds:
∥

∥

∥

∥

∥

J̃−1(y1)

(

J̃(y2)−
∂R̃

∂y
(y2)

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

J̃−1(y1)









0
QT

2

I

I









(

J(y2)−
∂R

∂y
(y2)

)

∥

∥

∥

∥

∥

∥

∥

∥

= β

∥

∥

∥

∥

∥

J(y2)−
∂R̃

∂y
(y2)

∥

∥

∥

∥

∥

≤ κ < 1, ∀y1, y2 ∈ D,
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∥

∥

∥J̃−1(y1)
(

J̃(y2)− J̃(y3)
)∥

∥

∥

= β ‖J(y2)− J(y3)‖ ≤ ω‖y2 − y3‖, ∀y1, y2, y3 ∈ D.

5.2.3 Convergene of the Real-Time IterationsIn this subsetion we �nally onsider the senario that we subsequently �x more and morefree omponents during the Newton type iterations. To be able to speak onvenientlyabout onvergene, and to be able to de�ne a limit point y∗ of the real-time iterates yk, wewill regard an in�nite sequene of optimization problems P k, k = 0, 1, . . . , where we de�ne
PN+k := PN for k > 0. Following the N-th iterate, no degrees of freedom remain, but theiterates may still be onverging towards feasibility.1As disussed above, at the k-th iterate the problem P k

P k : min
q,s

F (q, s) s.t. {

G(q, s) = 0

Qk
1
T
(q − uk) = 0

(5.29)is treated, where the matries Qk
1 ∈ R

nq×mk and their orthonormal omplements Qk
2 ∈

R
nq×(nq−mk) are of the form

Qk
1 :=

(

Imk

0

)

, and Qk
2 :=

(

0
I(nq−mk)

)with nondereasing integers mk that satisfy 0 = m0 ≤ mk ≤ nq. Note that
Qk+1

2 = Qk
2Πk with Πk :=

(

0
I(nq−mk+1)

)

∈ R
(nq−mk)×(nq−mk+1).The vetors uk will be de�ned during the iterations with iterates yk = (qk, sk, λk), to be

uk := qk, k = 0, . . .Note that the �rst problem P 0 has no additional onstraint, beause m0 = 0, and orre-sponds to the original o�-line problem (5.1) that was treated in Se. 5.1. In ontrast to P 0,the problems P 1, P 2, . . . are only generated during the iterations and therefore depend onthe initialization y0 and on the hosen Newton type method.Eah problem P k is equivalent to �nding the zero of a funtion Rk as follows:
Rk(y) :=









Qk
1
T
(q − uk)

Qk
2
T∇qL
∇sL
G(q, s)









= 0.1Note, however, that for ODE models a feasible solution is already obtained after the N -th iterate.



86 Contrativity of the Real-Time IterationsNote that the neessary optimality onditionsR0(y) = 0 orrespond to the o�-line ondition
R(y) = 0 that was de�ned in Eq. (5.3) in Se. 5.1.1. The derivative approximation Jk(y)is de�ned aording to Eq. (5.25) to be

Jk(y) =









Qk
1
T

0
0
0









+









0

Qk
2
T

I

I









J(y),where J(y) is the derivative approximation of R(y).During the real-time iterations, eah step ∆yk = yk+1 − yk is generated by an attemptto attak problem P k, starting at the urrent best guess yk:
∆yk := −Jk(yk)−1 Rk(yk). (5.30)Theorem 5.6 (Convergene of the Real-Time Iterations)Let us assume that the su�ent onditions for loal onvergene of Theorem 5.3 are satis-�ed for the original (o�-line) problem (5.1). Then the sequene of real-time iterates (yk)aording to Eq. (5.30) onverges towards a feasible point

y∗ ∈ D0 =

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D, δ0 = κ+
ω

2
‖∆y0‖.Remark: Though this theorem uses the term �onvergene� and regards the in�nitesequene yk, it is not the behaviour for k → ∞ that auses the di�ulty, as from k = Non we treat always the same optimization problem PN ; the di�ulty lies in showing thatthe �rst iterates y1, y2, . . . , yN remain in the set D0.Proof: We will follow the lines of the proof of Theorem 5.1. Note that the �rst step ∆y0of the real-time iterations oinides with the �rst step of the o�-line iterations. Therefore,to prove onvergene towards a limit point y∗ = (q∗, s∗, λ∗), we only have to show that theontration propery

‖∆yk+1‖ ≤
(

κ+
ω

2
‖∆yk‖

)

‖∆yk‖ (5.31)is satis�ed for the real-time iterates. In a seond step, we will show that the primal part
(q∗, s∗) of the limit point is feasible.In Theorem 5.4 in Se. 5.2.2 we have already shown that �xing of omponents does notinrease the onstants κ < 1 and ω that are used to prove the ontration property for asingle optimization problem. This means that all derivative approximations Jk satisfy thebounds (5.13a) and (5.13b).But how to ompare the steps ∆yk and ∆yk+1 that orrespond to di�erent residualfuntions Rk and Rk+1?



5.2 The On-Line Problem 87The trik to prove the ontration property (5.31) is to treat two subsequent steps ∆ykand ∆yk+1 as if they were belonging to the same optimization problem P k+1 with residualfuntion Rk+1. If this is true, Eq. (5.14) an diretly be used to prove the ontrationproperty. This trik is paradoxial beause it assumes that the onstraint
Qk+1

1

T
(q − uk+1) = Qk+1

1

T
(q − qk+1) = 0is already de�ned before the iterate yk+1 = (qk+1, sk+1, λk+1) is omputed, i.e., before qk+1is known!Fortunately, it an be shown that the step ∆yk is not hanged, if it would have beende�ned by

∆yk := −Jk+1(yk)−1 Rk+1(yk)instead of
∆yk := −Jk(yk)−1 Rk(yk)as in Eq. (5.30). To see this, note that∆yk is the unique solution ofRk(yk)+Jk(yk)∆yk = 0.We will show that it also satis�es Rk+1(yk) + Jk+1(yk)∆yk = 0.

Rk+1(yk) + Jk+1(yk) ∆yk

=
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T
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 = 0.
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node index kFigure 5.4: Limit point w∗ of the real-time iteration approah (with Gauss-Newton it-erations) in Example 5.2, whih is very similar to the exat o�-line solution (dotted, f.Fig. 2.3).
Therefore, the iterations onverge towards a limit point y∗ ∈ D0. To show that thispoint is feasible, note that at some problem P k0 no more omponents an be �xed (tobe spei�, k0 = N in the real-time iterations for the multiple shooting method), so that
Rk = Rk0 , ∀ k ≥ k0. Therefore

0 = lim
k→∞

−Jk(yk)−1Rk(yk) = lim
k→∞

−Jk0(yk)−1Rk0(yk) = −Jk0(y∗)−1Rk0(y∗),so that Rk0(y∗) = 0 whih implies G(q∗, s∗) = 0.
Example 5.2 (Continuous Stirred Tank Reator)Let us again onsider Example 5.1. The limit point w∗ = (q∗, s∗) is shown in Fig. 5.4; aomparison of the onvergene rates for the Newton and Gauss-Newton method is shownin Fig. 5.5.
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Figure 5.5: Convergene rates for Newton type methods, for the real-time iterations ofExample 5.2. Comparison of Newton and Gauss-Newton method. The dotted lines indiatethe onvergene rates for the o�-line solution (f. Example 5.1).5.3 Comparison of On-Line and O�-Line SolutionsWe will now investigate the error that we make by using the real-time iteration sheme,ompared to the exat o�-line solution of P 0. We denote the o�-line solution now by y∗0 todistinguish it from the limit point y∗ of the real-time iterations. We will also ompare y∗with the exat solutions y∗k of the optimization problems P k for k ≥ 1. Note that not onlythe limit point y∗ depends on the initial guess y0 and the hosen Newton type method, butalso the exat solutions y∗k, beause the optimization problems P k are generated on-line.Several results are established; �rst, we bound the distanes ‖y∗ − y∗k‖ in the spae ofKKT points y = (q, s, λ) by the size of the �rst step ∆y0. Seondly, we show how the�rst step ∆y0 itself is bounded, if the initial guess y0 was the solution of a neighboringoptimization problem. Finally, we will investigate how muh optimality is lost with respetto the objetive funtion.5.3.1 Distane to Optimal SolutionsTheorem 5.7 (Distane to O�-Line Solution)If the su�ient onditions for o�-line onvergene of Theorem 5.3 are satis�ed, the distanebetween the limit point y∗ of the real-time iterations as de�ned in Eq. (5.30) and the solution
y∗0 of the o�-line optimization problem P 0 an be bounded by

‖y∗ − y∗0‖ ≤ 2δ0‖∆y0‖
1− δ0

, δ0 = κ+
ω

2
‖∆y0‖. (5.32)Proof: We make use of the fat that the iterates for the solution of the o�-line problem asin Theorem 5.3 and the real-time iterations (yk) oinide on y0 and y1 before they separate.



90 Contrativity of the Real-Time IterationsAs they have the same ontration onstants κ < 1 and ω, also δ0 is idential for both.Using the property (5.15) from the proof of Theorem 5.1 for the Newton type iterates
‖yk+m − yk‖ ≤ 1

1− δ0
‖∆yk‖ ≤ δk0

1− δ0
‖∆y0‖, ∀ k,m ≥ 0,we dedue that

‖y∗ − y1‖ = lim
m→∞

‖y1+m − y1‖ ≤ δ0
1− δ0

‖∆y0‖.For the o�-line solution y∗0 of P 0, the same inequality holds, so that
‖y∗ − y∗0‖ ≤ ‖y∗ − y1‖+ ‖y∗0 − y1‖ ≤ 2δ0

1− δ0
‖∆y0‖.An interesting orollary of this theorem is the following:Corollary 5.8 (Shrinking Distane to Optimal Solutions)The distane between the limit point y∗ of the real-time iterations as de�ned in Eq. (5.30)and the rigorous solution y∗k of the k-th on-line optimization problem P k an be bounded by

‖y∗ − y∗k‖ ≤ 2δk‖∆yk‖
1− δk

≤ 2δk+1
0 ‖∆y0‖
1− δ0

.This means that the limit point y∗ of the real-time iterations is lose to the rigoroussolution of a problem P k, if k < N is hosen large enough (note that for k ≥ N , y∗k = y∗anyway, as the problem does not hange anymore). Note that the iterates onverge intypial appliation problems muh faster than the horizon shrinks (e.g. Example 5.2).This allows to onlude that the real-time iterates pratially provide an optimal solution
y∗k of a problem P k with a relatively small k < N , i.e., for a problem with a slightlyshortened horizon only.5.3.2 Size of First Step after Initial Value EmbeddingTo know more about the distane between the two points y∗ and y∗0, it is neessary to �nda bound on the �rst step ∆y0. Let us therefore go bak to the formulation for the o�-lineoptimization problem P 0 = P (x0) that was given in Se. 2.2, whih keeps the initial valueonstraint separate:

P 0 : min
q,s

F (q, s) subjet to {

sx0 − x0 = 0,

G̃(q, s) = 0,The optimality residual vetor therefore has the struture
Rx0(y) :=









∇qL
∇sL
sx0 − x0
G̃(q, s)









.



5.3 Comparison of On-Line and O�-Line Solutions 91Note that the derivative ∂R
∂y

and the derivative approximation J do not depend on thevalue of the parameter x0. We will now establish a bound on the �rst step ∆y0 after theinitial value embedding, if the iterations are started at an initial guess y0 that is itself theresult of a neighboring optimization problem (f. Theorem 3.6 on the �rst order preditionby an exat Hessian SQP, and the initial value embedding idea in Se. 4.2).Lemma 5.9 (Bound on First Step)Let us assume that ȳ∗0 is the solution of an optimization problem P0(x̄0), and that x0 = x̄0+ǫ.Then the �rst step ∆y0 of the iterations for the solution of problem P 0 = P0(x0) whenstarting at y0 := ȳ∗0 an be bounded by
‖∆y0‖ ≤ β‖ǫ‖,where β is de�ned as in Theorem 5.3.Proof: We make use of the fat that Rx̄0(y

0) = Rx̄0(ȳ
∗
0) = 0 and alulate ∆y0 diretly:

∆y0 = −J(y0)−1Rx0(y
0)

= −J(y0)−1









Rx̄0(y
0) +









0
0
−ǫ
0

















= J(y0)−1









0
0
ǫ
0









.The proof is ompleted by using ‖J(y0)−1‖ ≤ β as shown in the proof of Theorem 5.3.As an immediate onsequene of this lemma and of Theorem 5.7, we obtain the following:Corollary 5.10 (Distane after Initial Disturbane)The distane between the rigorous solution y∗0 of the optimization problem P0(x0) and thelimit point y∗ of the real-time iterations, when started at the solution ȳ∗0 of a neighboringoptimization problem P0(x̄0), is � for a general Newton type method � of �rst order in thesize of the disturbane ǫ = x0 − x̄0

‖y∗ − y∗0‖ ≤ 2
κ+ ω

2
β‖ǫ‖

1− (κ+ ω
2
β‖ǫ‖)β‖ǫ‖,and � for an exat Newton method � of seond order in the size of the disturbane

‖y∗ − y∗0‖ ≤ ω

1− ω
2
β‖ǫ‖β

2‖ǫ‖2.5.3.3 Bounds on the Loss of OptimalityNow that we know how far the limit point y∗ is from the optimal solution, we an alsoinvestigate how muh optimality is lost, in terms of the objetive funtion F (q∗, s∗).



92 Contrativity of the Real-Time IterationsTheorem 5.11 (Loss of Optimality)Let us assume that the su�ient onditions for o�-line onvergene of Theorem 5.3 aresatis�ed. Let us also assume that the exat derivative matrix ∂R
∂y

is bounded on D0:
∥

∥

∥

∥

∂R

∂y
(y)

∥

∥

∥

∥

≤ BR, ∀y ∈ D0.Denoting the limit point of the real-time iterations by y∗ = (q∗, s∗, λ∗), and the optimalo�-line solution by y∗0 = (q∗0, s
∗
0, λ

∗
0), the loss of optimality an be bounded by

F (q∗, s∗)− F (q∗0, s
∗
0) ≤

1

2
BR‖y∗ − y∗0‖2. (5.33)Proof: First note that not only the point (q∗0, s∗0), but also the point (q∗, s∗) is feasibleaording to Theorem 5.6, i.e., G(q∗0, s∗0) = G(q∗, s∗) = 0. Therefore, we an ompare thevalues of the Lagrangian funtion L(q, s, λ) = F (q, s) − λTG(q, s) that oinide with theobjetive in both points.

L(y∗)−L(y∗0) =
∫ 1

0
∂L
∂y
(y∗0 + t1(y

∗ − y∗0)) (y
∗ − y∗0) dt1

=
∫ 1

0
R(y∗0 + t1(y

∗ − y∗0))
T (y∗−y∗0) dt1

=
∫ 1

0

(

∫ t1
0

∂R
∂y
(y∗0 + t2(y

∗−y∗0))(y∗−y∗0) dt2
)T

(y∗−y∗0) dt1
= (y∗−y∗0)T

(

∫ 1

0

∫ t1
0

∂R
∂y
(y∗0 + t2(y

∗−y∗0)) dt2 dt1
)T

(y∗−y∗0)where we have used the fat that R(y∗0) = 0. We onlude that
‖L(y∗)−L(y∗0)‖ ≤ 1

2
Br‖y∗−y∗0‖2.This theorem together with Corollary 5.10 implies the following:Corollary 5.12 (Loss of Optimality after Initial Disturbane)The loss of optimality due to the real-time iterations for the approximate solution of P0(x0)is of seond order in the size of an initial disturbane ǫ as in Corollary 5.10 for a generalNewton type method:

F (q∗, s∗)− F (q∗0, s
∗
0) ≤ 2Br

(

κ+ ω
2
β‖ǫ‖

1− (κ + ω
2
β‖ǫ‖)β

)2

‖ǫ‖2, (5.34)and � for an exat Newton method � of fourth order in the size of the disturbane:
F (q∗, s∗)− F (q∗0, s

∗
0) ≤

Brω
2β4

2
(

1− ω
2
β‖ǫ‖

)2‖ǫ‖4. (5.35)



Chapter 6A Close Look at one Real-TimeIterationIn this hapter we desribe in detail what omputations are neessary to perform one real-time iteration, and we show how these omputations an be performed e�iently. Startingwith the urrent iterate of the variables (w, λ, µ), we desribe how to �nally arrive at thesolution (∆w, λ̃, µ̃) of the QP (3.10), that allows to generate the next iterate. Though mostparts of the algorithm are well known, we present all details here, to be able to show whatis meant by the separation into preparation and feedbak phase, whih is important forthe real-time iterations. The feedbak phase omprises only a small fration of the overallomputations, whih an be found in Subsetions 6.5.2 and 6.5.2 for two alternative QPsolution approahes.We will start the hapter by brie�y investigating the struture of the nonlinear pro-gramming problem in Se. 6.1, and show how this struture leads to a favourable strutureof the QP that has to be generated and solved in eah yle. In our approah, QP genera-tion and QP solution are intertwined, so that we annot learly separate these two steps.In Se. 6.2 we show that only a so alled partially redued QP has to be generated if somesolution steps are performed in advane, and in Se. 6.3 we will explain how the remainingsensitivities an be omputed e�iently. We losely follow the lines of Leineweber [Lei99℄,who developed the employed partial redution strategy.An newly developed Gauss-Newton approah to obtain an exellent approximation ofthe Hessian in the presene of integral least squares terms is presented in Se. 6.4.We present two alternative approahes to solve the partially redued QP: in Se. 6.5we desribe the so alled ondensing tehnique, whih we atually used for the presentednumerial examples, and whih ondenses the large, but strutured QP into a small, butunstrutured QP, whih is then solved by standard tehniques. The alternative approahpresented in Se. 6.6 does diretly attak the large strutured QP by a dynami program-ming approah that leads to a Riati reursion. Both methods allow to perform themost expensive steps before the atual value of x0 is known, thus allowing to prepare an�immediate feedbak�. Finally, we give a summary of the neessary omputation steps93



94 A Close Look at one Real-Time Iterationper real-time iteration, and show that the algorithm an be interpreted as a suessivegeneration of approximated optimal feedbak ontrol laws.6.1 Problem StrutureAn important feature of the diret multiple shooting method is the sparse struture of thelarge sale NLP (2.10). Its Lagrangian funtion L(w, λ, µ) an be written as
L(w, λ, µ) :=

∑N−1
i=0 Li(s

x
i , s

z
i , qi) + E(sxN , s

z
N)

−∑N−1
i=0 λxi+1

T (xi(τi+1)− sxi+1)

−∑N
i=0 λ

z
i
Tg(sxi , s

z
i , qi) − λx0

T (x0 − sx0)− λTr r
e(sxN , s

z
N)

−µT
r r

i(sxN , s
z
N)−

∑N
i=0 µ

T
i h(s

x
i , s

z
i , qi),with λ = (λx0 , . . . , λ

x
N , λ

z
0, . . . , λ

z
N , λr) and µ = (µr, µ0, . . . , µN). This Lagrangian funtionis partially separable: Let us reorder the vetor w = (w0, . . . , wN) with wi = (sxi , s

z
i , qi).1Then it an be seen that the Hessian matrix ∇2

wL is blok diagonal with non-zero bloks
Ai that orrespond eah to the variables wi only (Bok and Plitt, [BP84℄), i.e.

∇2
wL =











A0 . . .
AN−1

AN











.The unredued QP that ould be formulated at a urrent iterate w looks as follows:
min

∆w0, . . . ,∆wN

1
2

∑N
i=0∆w

T
i Ai∆wi +

∑N−1
i=0 ∇wi

Li(s
x
i , s

z
i , qi)

T∆wi

+∇(sxN ,szN )E(s
x
N , s

z
N)

T∆(sxN , s
z
N)

(6.1a)subjet to
sxi+1 − xi(τi+1) + ∆sxi+1 −

∂xi(τi+1)

∂wi

∆wi = 0, i = 0, . . . , N − 1, (6.1b)
g(sxi , s

z
i , qi) +

∂g

∂sxi
∆sxi +

∂g

∂szi
∆szi +

∂g

∂qi
∆qi = 0, i = 0, . . . , N, (6.1)

sx0 − x0 +∆sx0 = 0, (6.1d)
re(sxN , s

z
N) +

∂re

∂(sxN , s
z
N)

∆(sxN , s
z
N) = 0, (6.1e)

ri(sxN , s
z
N) +

∂ri

∂(sxN , s
z
N)

∆(sxN , s
z
N) ≥ 0, (6.1f)

h(sxi , s
z
i , qi) +

∂h

∂wi
∆wi ≥ 0, i = 0, . . . , N. (6.1g)

∆qN −∆qN−1 = 0 (6.1h)1We reall here that qN := qN−1 is only introdued for notational onveniene and has to be eliminatedagain. Due to the linearity of the onstraint qN = qN−1 it does not a�et the Hessian matrix.



6.2 The Partial Redution Tehnique 95It is a ruial feature of our algorithm that this QP is never generated diretly. Instead,following the partial redution approah developed by Leineweber [Lei99℄, �rst only thelinearized onsisteny onditions (6.1) are generated that allow to eliminate ∆szi from theQP, as will be desribed in the following setion.6.2 The Partial Redution TehniqueThe partial redution approah starts as follows: one the linearized onsisteny ondi-tions (6.1)
g(sxi , s

z
i , qi) +

(

∂g

∂sxi

∣

∣

∣

∣

∂g

∂szi

∣

∣

∣

∣

∂g

∂qi

)

∆wi = 0, i = 0, . . . , N,are generated, the (usually sparse) systems
(

∂g

∂szi

)

(

dzi Dsx

i Dq
i

)

= −
(

g(sxi , s
z
i , qi)

∣

∣

∣

∣

∂g

∂sxi

∣

∣

∣

∣

∂g

∂qi

)

, i = 0, . . . , Nare resolved.2 The matrix ( ∂g
∂szi

) is always invertible due to the index-one assumption forthe DAE system. The solution ( dzi Dsx

i Dq
i

) of this system allows to onstrut thevetor and matrix
di :=





0
dzi
0



 and Di :=





I 0
Dsx

i Dq
i

0 I



 ,that are alled the range spae and null spae omponent of the linearized onsistenyonditions, beause
∂g(sxi , s

z
i , qi)

∂(sxi , s
z
i , qi)

di = −g(sxi , szi , qi) and ∂g(sxi , s
z
i , qi)

∂(sxi , s
z
i , qi)

Di = 0.It is straightforward to see that
∆wi := di +Di

(

∆sxi
∆qi

) (6.2)satis�es the linearized onsisteny onditions (6.1) for arbitrary values of ∆sxi and ∆qi. Itis therefore possible to formulate an equivalent, redued QP, where the variables ∆szi areompletely eliminated. For this aim let us de�ne
(

Qi ST
i

Si Ri

)

:= DT
i AiDi, i = 0, . . . , N,

(

gxi
gqi

)

:= DT
i ∇wi

Li +DT
i Aidi, i = 0, . . . , N − 1, (6.3a)

(

gxN
gqN

)

:= DT
N∇wN

E(sxN , s
z
N) +DT

NANdN , (6.3b)2We employ an advaned diret sparse solver, the Harwell subroutine MA48 by Du� and Reid [DR96℄.



96 A Close Look at one Real-Time Iterationfor the redued objetive, as well as
ci+1 := sxi+1 − xi(τi+1)−

∂xi(τi+1)

∂szi
dzi , (Xi|Yi) :=

∂xi(τi+1)

∂wi
Di, (6.4)

hi := h(sxi , s
z
i , qi) +

∂h

∂szi
dzi , (Hx

i |Hq
i ) :=

∂h

∂wi

Di, i = 0, . . . , N − 1,and
re := re(sxN , s

z
N) +

∂re

∂szN
dzN , (Re,x|Re,q) :=

∂re

∂wN

DN ,

ri := ri(sxN , s
z
N) +

∂ri

∂szN
dzN , (Ri,x|Ri,q) :=

∂ri

∂wN
DN ,for the onstraints, so that we an formulate the following redued QP that is equivalentto (6.1)

min
∆sx0 , . . . ,∆sxN
∆q0, . . . ,∆qN

∑N
i=0{ 1

2
∆sxi

TQi∆s
x
i +

1
2
∆qTi Ri∆qi

+∆qTi Si∆s
x
i + gxi

T∆sxi + gqi
T
∆qi }

(6.5a)subjet to
ci+1 +∆sxi+1 −Xi∆s

x
i − Yi∆qi = 0, i = 0, . . . , N − 1, (6.5b)

sx0 − x0 +∆sx0 = 0, (6.5)
re +Re,x∆sxN +Re,q∆qN = 0, (6.5d)
ri +Ri,x∆sxN +Ri,q∆qN ≥ 0, (6.5e)
hi +Hx

i ∆s
x
i +Hq

i ∆qi ≥ 0, i = 0, . . . , N, (6.5f)
∆qN −∆qN−1 = 0. (6.5g)In partial redution approahes the full spae Hessian bloks Ai are never omputed. There-fore, the terms DT

i Aidi are usually dropped in the de�nitions (6.3), ausing only a minorhange, as di are proportional to g(sxi , szi , qi), whih are expeted to be lose to zero neara solution. However, in Se. 6.4 we present a newly developed approah to ompute e�-iently approximations of both, the redued Hessian DT
i AiDi and the gradient ontribution

DT
i Aidi, that is based on a Gauss-Newton approah for least squares integrals. But let us�rst desribe how the linearized ontinuity onditions (6.5b) of the partially redued QPan be generated e�iently.



6.3 E�ient Sensitivity Computation 976.3 E�ient Sensitivity ComputationOn eah multiple shooting interval [τi, τi+1], the relaxed initial value problems (2.3)-(2.5)
B(·) · ẋi(τ) = T f(xi(τ), zi(τ), qi)

0 = g(xi(τ), zi(τ), qi)− exp

(

−β τ − τi
τi+1 − τi

)

g(sxi , s
z
i , qi)

xi(τi) = sxihave to be solved to yield the solution trajetories xi(τ) and zi(τ). These trajetoriesdepend on the initial values sxi , szi of di�erential and algebrai states, and on the ontrolparameters qi. In a naive implementation, we would also have to ompute the derivativesof the �nal value xi(τi+1) with respet to these quantities. As mentioned above, a ruialfeature of Leineweber's partial redution approah to multiple shooting for DAE [Lei99℄ isthat the full derivative matries
∂xi(τi+1)

∂(sxi , s
z
i , qi)are never alulated, but instead diretly the diretional derivatives

(

ki Xi Yi
)

:=
∂xi(τi+1)

∂(sxi , s
z
i , qi)





0 I 0
dzi Dsx

i Dq
i

0 0 I



that are atually needed to formulate the partially redued QP (6.5).3 This saves a onsid-erable amount of omputational e�ort for problems with a large share of algebrai variables.Before we desribe this approah in detail, a remark is in order about how to generallyapproah the problem of omputing derivatives of a DAE solver output.Remark on External and Internal Numerial Di�erentiationOne straightforward approah that is simple to implement is to start an existing DAE solverseveral times with perturbed initial values and ontrol parameters, and to subtrat theperturbed outputs xi(τi+1) to ompute an approximation of the desired matrix (ki|Xi|Yi)by �nite-di�erenes (see e.g. Rosen and Luus [RL91℄). This approah, whih may bealled External Numerial Di�erentiation (END), has serious drawbaks, as the output ofa modern, adaptive DAE solver is usually a disontinuous funtion of the initial valuesand ontrol parameters. If the inputs for the DAE solver are varied ontinuously, theoutput xi(τi+1) usually jumps disontinuously, with jumps that have to be expeted to beas big as the integrator tolerane permits (see e.g. Gear and Vu [GV83℄). If the perturbedtrajetories are hosen lose to eah other, as it is required in �nite-di�erene shemes toyield a good approximation of the derivative, these disontinuities an outweigh the desired3The vetors ki = ∂xi(τi+1)
∂sz

i

dz
i
are needed to generate ci+1 aording to Eq. (6.4).



98 A Close Look at one Real-Time Iterationderivative information, if the integrator auray is not hosen extraordinarily high; if suhan auray is feasible at all, this will ause exessive omputation times.An approah whih avoids the drawbaks of END is the so alled Internal NumerialDi�erentiation (IND) as desribed by Bok [Bo81℄. The idea is to freeze the disretiza-tion sheme for the neighboring trajetories, so that the output beomes a di�erentiablefuntion of the inputs. This allows to perform the DAE solution even with low auray,without jeopardizing the auray of the derivative approximation. The frozen disretiza-tion sheme is usually adapted to the nominal trajetory.In addition, muh e�ort an be saved if the perturbed trajetories are omputed simul-taneously, as many matrix evaluations and fatorizations then need to be performed onlyone for all trajetories.A related approah that may be interpreted as the �analytial limit of IND� [Bo83℄is to solve the sensitivity equations along the nominal system trajetory. We will brie�ydesribe how this approah an be used to ompute diretional derivatives.6.3.1 Diretional DerivativesLet us for notational onveniene assume that the DAE is expliit, i.e., that B(·) = I, andlet us also assume that T = 1, so that the initial value problem (2.3)-(2.5) an be writtenas
ẋi(τ) = f(xi(τ), zi(τ), qi),

0 = g(xi(τ), zi(τ), qi)− e
−β

τ−τi
τi+1−τi g(sxi , s

z
i , qi),

xi(τi) = sxi .Di�erentiation of this system with respet to the initial values and ontrol parameters
(sxi , s

z
i , qi) and a multipliation from the right by the matrix (di|Di) yields a linear matrixDAE. De�ning the matrix funtions

(

ki(τ) Xi(τ) Yi(τ)
)

:= ∂xi(τ)
∂(sxi ,s

z
i ,qi)

(

di Di

)

,

(

kzi (τ) Xz
i (τ) Y z

i (τ)
)

:= ∂zi(τ)
∂(sxi ,s

z
i ,qi)

(

di Di

)

,this matrix DAE an be written as
d

dτ

(

ki(τ) Xi(τ) Yi(τ)
)

=
∂f(·)

∂(x, z, u)





ki(τ) Xi(τ) Yi(τ)
kzi (τ) Xz

i (τ) Y z
i (τ)

0 0 I



 ,

0 =
∂g(·)

∂(x, z, u)





ki(τ) Xi(τ) Yi(τ)
kzi (τ) Xz

i (τ) Y z
i (τ)

0 0 I





−e−β
τ−τi

τi+1−τi

(

−g(sxi , szi , qi) 0 0
)

,
(

ki(τi) Xi(τi) Yi(τi)
)

=
(

0 I 0
)

.



6.3 E�ient Sensitivity Computation 99The onsistent initial value for the algebrai matrix ( kzi Xz
i Y z

i

) is
(

kzi (τi) Xz
i (τi) Y z

i (τi)
)

=
(

dzi Dsx

i Dq
i

)

.This linear matrix DAE an be solved simultaneously with the original initial value prob-lem (2.3)-(2.5), as it is done e.g. in the version of the advaned BDF integrator DAESOL(Bauer [Bau00℄) that we used for most omputations that are presented in this thesis. The�nal values are then used to de�ne
(

ki Xi Yi
)

:=
(

ki(τi+1) Xi(τi+1) Yi(τi+1)
)

.Computation of the Redued Objetive GradientWe have so far not disussed how to ompute the redued objetive gradients DT
i ∇wi

Lithat are needed to ompute
gi :=

(

gxi
gqi

)in (6.3a), i.e., how to ompute the diretional derivatives of the objetive integrals
Li(s

x
i , s

z
i , qi) =

∫ τi+1

τi

L(xi(τ), zi(τ), qi)) dτ.The objetive integrals an be omputed by introduing an additional di�erential state
xL, and solving the following initial value problem together with the original initial valueproblem:

ẋLi (τ) = L(xi(τ), zi(τ), qi)), for τ ∈ [τi, τi+1],
ẋLi (τi) = 0.The diretional derivatives an then be omputed as above.Numerial Calulation of the Exat Hessian MatrixLeineweber [Lei99℄ has developed a sheme to ompute a �nite-di�erene approximationof the exat Hessian matrix bloks Ai, whih is so far only appliable to systems desribedby ordinary di�erential equations (ODE). His approah generalizes the idea of InternalNumerial Di�erentiation to seond order derivatives, by solving the �rst order sensitivityequations several times for perturbed initial values, with a �xed disretization sheme. Wehave employed this method in some examples for omparison with our newly developedGauss-Newton approah that is desribed in the following setion.



100 A Close Look at one Real-Time Iteration6.4 A Gauss-Newton Method for Integral Least SquaresTermsIn the ase of a Lagrange term L that has least squares form, i.e., if
L(xi(τ), zi(τ), qi) = ‖l(xi(τ), zi(τ), qi)‖22with a vetor valued funtion l(·), there exists a possibility to obtain a heap approximationof the Hessian bloks Ai by an extension of the Gauss-Newton approah to least squaresintegrals. This approximation is good if the residual l(·) and if the multipliers λ, and µare lose to zero (f. the disussion in Se. 5.1.2).To derive an expression for the Gauss-Newton approximation of the full Hessian letus neglet the onstraint ontributions and regard only the objetive ontribution of theHessian that is
∇2

(sxi ,s
z
i ,qi)

∫ τi+1

τi

‖l(xi(τ), zi(τ), qi)‖22 dτ.A Gauss-Newton approximation of the Hessian an be obtained by di�erentiating twieunder the integral and dropping terms that ontain l(xi(τ), zi(τ), qi):
Ai := 2

∫ τi+1

τi

Ji(τ)
TJi(τ) dτ, (6.7)where

Ji(τ) :=

(

∂l(xi(τ), zi(τ), qi)

∂(x, z, u)

)







∂xi(τ)
∂sxi

∂xi(τ)
∂szi

∂xi(τ)
∂qi

∂zi(τ)
∂sxi

∂zi(τ)
∂szi

∂zi(τ)
∂qi

0 0 I






.6.4.1 A Partially Redued Hessian ApproximationIf we are interested only in the Gauss-Newton approximation DT

i AiDi of the reduedHessian , we an multiply Eq. (6.7) from the left and the right with DT
i and Di:

DT
i AiDi = 2

∫ τi+1

τi

DT
i Ji(τ)

TJi(τ)Di dτ.Fortunately the matrix produts Ji(τ)Di are heaply available, if diretional derivativesare alulated as desribed in the previous setion. Using the notation of that setion,
Ji(τ)Di an be seen to have the simple form

Ji(τ)Di = J̃i(τ) :=

(

∂l(xi(τ), zi(τ), qi)

∂(x, z, u)

)





Xi(τ) Yi(τ)
Xz

i (τ) Y z
i (τ)

0 I



 .



6.5 QP Solution by a Condensing Approah 101The partially redued objetive gradient
gi = 2DT

i

(

∇(sxi ,s
z
i ,qi)

∫ τi+1

τi

‖l(xi(τ), zi(τ), qi))‖22 dτ
)

+DT
i Aidi.as de�ned in Eq. (6.3a) an also be alulated exatly, without ever omputing the fullHessian approximation. For the exat omputation of the redued obejtive gradient (6.3)we also need the terms DT

i Aidi. A multipliation of Eq. (6.7) from the left and the rightwith DT
i and di yields

DT
i Aidi = 2

∫ τi+1

τi

J̃i(τ)
T

(

∂l(xi(τ), zi(τ), qi)

∂(x, z)

)(

ki(τ)
kzi (τ)

)

dτ.so that
gi := 2

∫ τi+1

τi

J̃i(τ)
T

(

l(xi(τ), zi(τ), qi) +

(

∂l(xi(τ), zi(τ), qi)

∂(x, z)

)(

ki(τ)
kzi (τ)

))

dτ.The matrix J̃i(τ) an be omputed simultaneously with the DAE solution. The integralan be alulated by using a suitable integration formula. Note that the evaluation of theintegrand is very heap ompared to the omputations neessary for the DAE solution.Furthermore, if an interpolation of the sensitivity matries is employed in the DAE solver,the integrand an be evaluated at arbitrary points on the interval, without the neessity tostop the integration routine (f. Bok and Shlöder [BS81℄); these evaluation points are inpartiular independent of the stepsizes of the DAE solver.We have implemented this extension of the Gauss-Newton method, whih deliversthe Hessian approximation at virtually no additional osts, in the urrent version ofthe optimal ontrol pakage MUSCOD-II, in onjuntion with the impliit DAE solverDAESOL [BBS99, Bau00℄.Remark: In previous Gauss-Newton approahes to NMPC, only least squares terms atdisrete time points had been formulated (f. de Oliveira and Biegler [OB95b℄ for thesequential approah, and Santos et al. [SOB95℄ for the diret multiple shooting method),whih leads to an unneessary overhead espeially on long predition intervals with onstantontrols.6.5 QP Solution by a Condensing ApproahAfter we have disussed how the partially redued QP (6.5) an be generated, we will inthis and the following setion present two alternative strategies to solve suh a QP.The so alled ondensing approah redues the QP further to yield a smaller QP in thevariables ∆q0, . . . ,∆qN−1 only. In the real-time ontext, the algorithm proeeds in twosteps: �rst, it uses the linearized ontinuity onditions (6.5b) to eliminate ∆sx1 , . . .∆s
x
Nfrom the QP (6.5). We will also eliminate∆qN using (6.5g). The resulting QP is alled the



102 A Close Look at one Real-Time Iterationondensed QP. In a seond step, the initial value onstraint (6.5) will be used to eliminate
∆sx0 , so that a fully redued QP in the variables ∆q := (∆q0, . . . , qN−1) only needs to besolved by a standard QP solver. Finally, the solution of the fully redued QP is expandedto yield the solution in variable and multiplier spae of the partially redued QP.6.5.1 First Condensing StepFor the �rst ondensing step, let us reorder the variables of the partially redued QP andsummarize them into a partitioned vetor

(

∆w1

∆w2

)

, with ∆w1 :=











∆sx1...
∆sxN
∆qN











, and ∆w2 :=











∆sx0
∆q0...

∆qN−1











.By introduing
b1 :=



















c1
c2
c3...
cN
0



















, B11 :=



















I

−X1 I

−X2 I. . . . . .
−XN−1 I

I



















,

and
B12 :=



















−X0 −Y0
−Y1

−Y2 . . .
−YN−1

−I



















,

the ontinuity onditions (6.5b) and (6.5f) an be written as
b1 +B11∆w1 +B12∆w2 = 0,and the unondensed QP (6.5) an be summarized as
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min

∆w1,∆w2

1
2
∆wT

1 A11∆w1 + ∆wT
1 A12∆w2

+ 1
2
∆wT

2 A22∆w2 + aT1∆w1 + aT2∆w2

(6.8)subjet to
b1 +B11∆w1 +B12∆w2 = 0
b2 +B21∆w1 +B22∆w2 = 0
c+ C1∆w1 + C2∆w2 ≥ 0.The idea of the ondensing approah is to exploit the invertibility of B11 to eliminate ∆w1by

∆w1 = −B−1
11 (B12∆w2 + b1) =:M∆w2 +m (6.9)and to replae the above QP by a so alled ondensed QP :

min
∆w2

1

2
∆wT

2 Ã∆w2 + ãT∆w2 s.t. {

b̃+ B̃∆w2 = 0

c̃+ C̃∆w2 ≥ 0
(6.10a)with

Ã =MTA11M +MTA12 + AT
12M + A22,

ã =MTA11m+ AT
12m+MTa1 + a2,

b̃ = b2 +B21m,

B̃ = B21M +B22,

c̃ = c+ C1m, and
C̃ = C1M + C2.The generation of the ondensed QP an be ahieved e�iently by reursive tehniques thathave been introdued by Bok and Plitt [Pli81, BP84℄. They are desribed in Appendix E.6.5.2 Seond Condensing Step and Immediate FeedbakIn the real-time ontext it is important to note that all omputations of the �rst ondensingstep an be performed before the atual value of x0 is known, allowing to prepare an�Immediate Feedbak�. So let us have a lose look at the ondensed QP (6.10a). Sine

∆w2 = (∆sx0 ,∆q), it has the following struture
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min

∆sx0 ,∆q

1
2
∆sx0

T Ãss∆s
x
0 +

1
2
∆qT Ãqq∆q

+∆sx0
T Ãsq∆q + ãTs ∆s

x
0 + ãTq∆q

(6.10b)subjet to
sx0 − x0 +∆sx0 = 0

b̃r + B̃rs∆s
x
0 + B̃rq∆q = 0

c̃+ C̃s∆s
x
0 + C̃q∆q ≥ 0.At the moment when x0 is known, the fully redued QP an be formulated:

min
∆q

1
2
∆qT Ãqq∆q +

(

(x0 − sx0)
T Ãsq + ãTq

)

∆q (6.11)subjet to
(

b̃r + B̃rs(x0 − sx0)
)

+ B̃rq∆q = 0
(

c̃+ C̃s(x0 − sx0)
)

+ C̃q∆q ≥ 0.This dense QP an be solved by a standard QP solver. It is of rather small size omparedto the original unondensed QP (6.8), and bears nearly no sparsity. We usually employQPSOL4 by Gill, Murray, Saunders, and Wright [GMSW83℄, a routine that makes use ofan ative set strategy and is able to ope with inde�nite Hessian matries. Note that inpriniple even large parts of the fully redued QP (6.11) an be preomputed before x0is available, if matrix fatorizations based on the ative set for x0 = sx0 are alulated inadvane, as proposed in [BDLS00℄.The solution of the fully redued QP are the optimal values for ∆q0, . . . , ∆qN−1. Thevalue of ∆q0 plays a ruial role in the real-time ontext, as it is this ontrol that is givendiretly to the real system as an immediate feedbak.Remark: The fat that an ative set strategy is used to determine the ative set arriessome danger in the real-time ontext, as it is well known that the worst ase omplex-ity of suh an algorithm an be exponential in the number of variables (f. Klee andMinty [KM72℄). Experiene shows, however, that the omputational burden of this denseQP solution is bounded in pratie. In typial appliations of our real-time algorithms it isonsiderably smaller than the e�ort needed for the �rst ondensing step, whih itself needsonly a small share of the overall time of a full real-time iteration yle. A theoretiallyappealing alternative to ative set strategies is provided by Interior-Point Methods (IPM),4QPSOL is available as a NAG routine under the name E04NAF.



6.5 QP Solution by a Condensing Approah 105that have polynomial run time bounds. For an introdution into IPM algorithms andtheir appliation to quadrati programs we refer e.g. to Noedal and Wright [NW99℄ orWright [Wri97℄.6.5.3 Expansion of the QP SolutionThe expansion of the QP solution passes through the two ondensing steps in reverse order:�rst the fully redued QP solution is expanded to the ondensed QP solution, and seondly,the ondensed QP solution is expanded to the full solution of the unondensed QP (6.8).First Expansion StepThe solution (∆q, λ̃r, µ̃) of the fully redued QP (6.11) an trivially be expanded to yieldthe solution (∆w2, λ̃2, µ̃) of the ondensed QP (6.10a) (resp. (6.10b) ) with
∆w2 =

(

∆sx0
∆q

)

, and λ̃2 =

(

λ̃x0
λ̃r

)by omputing
∆sx0 = x0 − sx0 , and λ̃x0 = Ãss∆s

x
0 + Ãsq∆q + ãs − B̃T

rsλ̃r − C̃T
s µ̃.That (∆w2, λ̃2, µ̃) is a solution of the ondensed QP an be seen by omparing the KKTonditions of (6.10b) with those of (6.11).Expansion of the Condensed QP SolutionSimilarly, the solution (∆w2, λ̃2, µ̃) of the ondensed QP (6.10a) an further be expandedto the full solution (∆w1,∆w2, λ̃1, λ̃2, µ̃) of the unondensed QP (6.8) by omputing

∆w1 =M∆w2 +mand
λ̃1 = B−T

11 (A11∆w1 + A12∆w2 + a1 − BT
21λ̃2 − CT

1 µ̃). (6.12)To justify Eq (6.12) let us formulate the stationarity ondition of the Lagrange gradient ofthe unondensed QP (6.8) as follows:
A11∆w1 + A12∆w2 + a1 − BT

11λ̃1 − BT
21λ̃2 − CT

1 µ̃ = 0,

A22∆w2 + AT
12∆w1 + a2 − BT

12λ̃1 − BT
22λ̃2 − CT

2 µ̃ = 0.



106 A Close Look at one Real-Time IterationThe �rst ondition is equivalent to Eq. (6.12), whereas the seond an be seen to be satis�ed,if Lagrange stationarity with respet to ∆w2 is attained in the ondensed QP (6.10a):
0 = Ã∆w2 + ã− B̃T λ̃2 − C̃T µ̃

= (MTA11M +MTA12 + AT
12M + A22)∆w2 +MTA11m+ AT

12m

+MTa1 + a2 − (B21M +B22)
T λ̃2 − (C1M + C2)

T µ̃

= A22∆w2 + AT
12∆w1 + a2 −BT

22λ̃2 − CT
2 µ̃

+MT {A11∆w1 + A12∆w2 + a1 − BT
21λ̃2 − CT

1 µ̃}
= A22∆w2 + AT

12∆w1 + a2 −BT
12λ̃1 −BT

22λ̃2 − CT
2 µ̃.The expansion step an e�iently be performed by a bakwards reursion that is e.g.desribed by Leineweber [Lei99℄. We mention here that the partial redution approahdoes not allow to reapture the multipliers λzi of the algebrai onsisteny onditions,beause this would require knowledge of derivatives that are not omputed. Fortunately,these multipliers are of minor importane in our real-time iteration sheme, as the urrentmultiplier values only enter the next QP formulation through the Hessian approximation.If the extended Gauss-Newton approah is used, the multiplier values do not matter at allin the QP formulation.6.6 A Riati Reursion ApproahA seond basi strategy to attak the solution of the partially redued QP (6.5), thatleads to a Riati reursion sheme, an best be presented in the framework of dynamiprogramming. We will here only introdue the underlying idea, and refer the interestedreader to Steinbah [Ste95℄ or Rao et al. [RWR98℄ for a more detailed desription of theapproah. For ease of presentation, we restrit our attention to QP problems (6.5) without�nal state and inequality onstraints (6.5d)-(6.5f). We will also assume that RN , SN , and

gqN are zero, so that the last ontrol ∆qN an diretly be eliminated from the problem, i.e.,we onsider the QP
min

∆sx0 , . . . ,∆sxN
∆q0, . . . ,∆qN−1

N−1
∑

i=0

{1
2
∆qTiRi∆qi +∆qTi Si∆s

x
i + gxi

T∆sxi + gqi
T
∆qi

+1
2
∆sxi

TQi∆s
x
i } + 1

2
∆sxN

TQN∆s
x
N + gxN

T∆sxN

(6.14)subjet to
ci+1 +∆sxi+1 −Xi∆s

x
i − Yi∆qi = 0, i = 0, . . . , N − 1,

sx0 − x0 +∆sx0 = 0.The idea of the reursive algorithm to solve the above QP an be summarized as follows:starting with the ost funtion
ΠN(∆s

x
N) :=

1

2
∆sxN

TQN∆s
x
N + gxN

T∆sxN (6.15)



6.6 A Riati Reursion Approah 107of the �nal node, we onstrut the so alled optimal ost-to-go funtion ΠN−1(∆s
x
N−1) ofthe previous stage, by hoosing for eah value ∆sxN−1 the ontrol ∆qN−1 that optimizesthe added osts to go to the �nal stage, i.e., the sum of the stage osts and the �nal stageosts ΠN . This proedure is repeated for ΠN−2 down to Π0. At eah step the followingsmall optimization problem

Πi(∆s
x
i ) := min

∆sxi+1,∆qi

1

2
∆sxi

TQi∆s
x
i +

1

2
∆qTi Ri∆qi +∆qTi Si∆s

x
i

+gxi
T∆sxi + gqi

T
∆qi +Πi+1(∆s

x
i+1)subjet to

ci+1 +∆sxi+1 −Xi∆s
x
i − Yi∆qi = 0

(6.16)is solved. It turns out that the ost-to-go funtions Πi(∆s
x
i ) remain quadrati funtions, afat that makes the dynami programming approah so e�ient. Let us therefore write

Πi(∆s
x
i ) =

1

2
∆sxi

TPi∆s
x
i + pTi ∆s

x
i + πi, for i = 0, . . . , N.The algorithm that we propose for the real-time solution of the QP onsists of three steps,�rst a bakwards reursion that prepares the seond step (the immediate feedbak), and�nally a forward reursion whih reovers the full QP solution.6.6.1 Bakwards ReursionThe bakwards reursion is started by de�ning ΠN aording to Eq. (6.15), i.e.,

PN := QN , pN := gxN , and πN = 0.For the reursion step, let us assume that the optimal ost-to-go funtion Πi+1(∆s
x
i+1) hasalready been omputed, i.e., that the matrix Pi+1, the vetor pi+1 and the salar πi+1 areknown. The QP (6.16) an be solved as follows: �rst we eliminate

∆sxi+1 = −ci+1 +Xi∆s
x
i + Yi∆qi (6.17)in the objetive funtion

Fi(∆s
x
i ,∆qi,∆s

x
i+1) :=

1
2
∆sxi

TQi∆s
x
i +

1
2
∆qTi Ri∆qi +∆qTi Si∆s

x
i + gxi

T∆sxi + gqi
T
∆qi

+1
2
∆sxi+1

TPi+1∆s
x
i+1 + pTi+1∆s

x
i+1 + πi+1that beomes

Fi(·) = 1
2
∆qTi (Ri + Y T

i Pi+1Yi)∆qi
+((Si + Y T

i Pi+1Xi)∆s
x
i + gqi − Y T

i Pi+1ci+1 + Y T
i pi+1)

T∆qi
+1

2
∆sxi

T (Qi +XT
i Pi+1Xi)∆s

x
i + gxi

T∆sxi + cTi+1Pi+1ci+1

−cTi+1Pi+1Xi∆s
x
i − pTi+1ci+1 + pTi+1Xi∆s

x
i + πi+1.



108 A Close Look at one Real-Time IterationThe minimum of this funtion with respet to ∆qi is attained at
∆qi = −(Ri + Y T

i Pi+1Yi)
−1 (Si + Y T

i Pi+1Xi) ∆sxi
−(Ri + Y T

i Pi+1Yi)
−1(gqi − Y T

i Pi+1ci+1 + Y T
i pi+1)

=: −Ki∆s
x
i − ki,

(6.18)whih inserted into the objetive funtion Fi gives the optimal ost-to-go aording to(6.16) as
Πi(∆s

x
i ) =

1

2
∆sxi

TPi∆s
x
i + pTi ∆s

x
i+1 + πiwith

Pi := Qi +XT
i Pi+1Xi

−(Si + Y T
i Pi+1Xi)

T (Ri + Y T
i Pi+1Yi)

−1(Si + Y T
i Pi+1Xi),

pi := gxi +XT
i pi+1 −XT

i Pi+1ci+1

−(Si + Y T
i Pi+1Xi)

T (Ri + Y T
i Pi+1Yi)

−1(gqi − Y T
i Pi+1ci+1 + Y T

i pi+1),

πi := πi+1 + cTi+1Pi+1ci+1 − pTi+1ci+1 − (gqi − Y T
i Pi+1ci+1 + Y T

i pi+1)
T ·

(Ri + Y T
i Pi+1Yi)

−1(gqi − Y T
i Pi+1ci+1 + Y T

i pi+1).The values πi+1 are irrelevant for the determination of ∆sxi+1 and ∆qi; therefore they areusually omitted. The matrix reursion formula for Pi is also known as the disrete-timeRiati matrix equation for time-varying systems.The only quantities that have to be stored for subsequent use in the forward reur-sion are the matries K0, . . . , KN−1 and P0, . . . , PN , and the vetors k0, . . . , kN−1 and
p0, . . . , pN .6.6.2 Immediate FeedbakThe omplete bakwards reursion an be performed before the atual value of x0 is known.Then, at the moment when x0 is known, the ontrol response∆q0 an be quikly determinedaording to Eq. (6.18),

∆q0 = −K0(x0 − sx0)− k0,and an immediately be given to the plant. The ontrol response an be interpreted asthe �rst part of the forward reursion that will be desribed in the following. However, westress the fat that it is only the above matrix vetor multipliation and vetor additionthat needs to be performed to deliver the part of the QP solution, ∆q0, that is atuallyneeded for the approximate optimal feedbak ontrol response.This omputation requires only nu×nx+nu �oating point operations whih an ertainlybe onsidered an immediate feedbak, when ompared to the omplete real-time iterationyle, whih needs many orders of magnitude higher omputational e�ort.



6.6 A Riati Reursion Approah 1096.6.3 Forward ReursionStarting with a known value of ∆sx0 = x0 − sx0, Eqs. (6.18) and (6.17) are alternately usedto ompute
∆qi = −Ki∆s

x
i − ki, for i = 0, . . . , N − 1,and

∆sxi+1 = −ci+1 +Xi∆s
x
i + Yi∆qi for i = 0, . . . , N − 1.The QP multipliers λ̃xi for i = 0, . . . , N are omputed as follows

λ̃xi =
∂Πi(∆s

x
i )

∂∆sxi
= Pi∆s

x
i + pi.6.6.4 Comparison of Condensing and Riati ReursionThe Riati reursion sheme allows to solve the QP with a numerial e�ort of O(N),whih is in sharp ontrast to the ondensing approah, whih in turn is of O(N2) for theondensing itself, and even O(N3) for the solution of the dense QP, if we disregard ativeset hanges. For the pratial appliations that we have enountered so far, however, wehave employed the ondensing approah. This was motivated by the following observations:

• Ative set hanges during the QP solution are rather expensive in the Riati ap-proah, as eah ative set hange would require a full bakwards and forward reur-sion. In pratial implementations, the Riati reursion is therefore usually imple-mented in onjuntion with an interior-point method (IPM) to treat the inequalities(f. [Ste95, Wri96, RWR98℄). But even the IPM approah requires some ompletereursions until the QP solution is found, and is therefore not stritly in line withour idea of an immediate feedbak, that takes ative set hanges into aount.
• Furthermore, pratial experiene shows that the sensitivity omputation dominatesby far the overall omputational e�ort during eah real-time iteration yle for typialappliation problems whih have large state dimensions nx and a small number N ofmultiple shooting intervals, when the ondensing approah is employed. This reduesthe pratial bene�ts of alternative QP solution proedures.Though the ondensing approah works well in urrent appliations, we want to point outthat it has its limits, espeially for long horizon lenghts N , and that a solution shemethat employs the Riati reursion with an interior-point method, as e.g. developed bySteinbah [Ste95℄ for the multiple shooting method, promises to o�er advantages in thereal-time ontext and deserves further investigation.



110 A Close Look at one Real-Time Iteration6.7 Division into Preparation and Feedbak PhaseWe will now summarize the version of the real-time algorithm that we used for mostnumerial tests in this thesis. It makes use of the newly developed Gauss-Newton approahto obtain the Hessian approximation, and employs the ondensing strategy to solve thepartially redued QP. Though we �rst present the neessary omputations in the sameorder as in the above presentation, we will give a seond ordering of the steps that allowsto interpret the algorithm as the suessive generation of approximated optimal feedbakontrol laws.6.7.1 Five Computation StepsDuring eah real-time iteration the following steps have to be performed:1. Partial redution: Linearize the onsisteny onditions and resolve the linear systemto eliminate the ∆szi as a linear funtion of ∆sxi and ∆qi, as desribed in Se. 6.22. DAE solution and derivative generation: Linearize the ontinuity onditions by solv-ing the relaxed initial value problems and omputing diretional derivatives withrespet to ∆sxi and ∆qi following the sheme of Se. 6.3. Simultaneously, omputethe gradient of the objetive funtion, and the Hessian approximation aording tothe Gauss-Newton approah desribed in Se. 6.4. Linearize also the remaining pointonstraints.3. First ondensing step: Using the linearized ontinuity onditions, eliminate the vari-ables ∆sx1 , . . .∆sxN . Projet the objetive gradient onto the spae of the remainingvariables ∆sx0 , ∆q0, . . . ,∆qN−1, and also the Hessian and the linearized point on-straints.4. Step generation: at the moment that x0 is known, perform the seond ondensing stepand solve the fully redued QP with an e�ient dense QP solver using an ative setstrategy. The solution yields the �nal values of ∆q0, . . . ,∆qN−1. The value q0 +∆q0an immediately be given as a ontrol to the real-system.5. Expansion: Expand the fully redued QP solution to yield the full QP solution
(∆w, λ̃, µ̃). Based on this QP solution, pass over to the next SQP iterate and gobak to step 1.6.7.2 The O�-Line Steps in a Rotated OrderIt is an important feature of the above yle that the value x0 needs only to be knownbefore step 4 an be performed. In our real-time implementation, we isolate step 4 androtate the order of the above steps, to yield the following sheme:



6.7 Division into Preparation and Feedbak Phase 111I) Feedbak phase: After observation of the urrent value x0 perform only step 4 andapply the resulting value of q0 +∆q0 immediately to the real proess. Maintain thenew ontrol value during some proess duration δ whih is su�iently long to performall alulations of one yle.II) Preparation phase: During this period δ �rst expand the outome of step 4 to thefull QP solution (expansion step 5), then ompute the new iterate wk+1 = wk+∆wk,and based on this new iterate, perform the steps 1, 2 and 3 to prepare the feedbakresponse for the following step. Go bak to I.The feedbak phase itself is typially orders of magnitude shorter than the preparationphase (f. Fig 7.7). Thus, our algorithm an be interpreted as the suessive generation ofimmediate feedbak laws (f. Se. 4.4.2) that take state and ontrol inequality onstraintson the omplete horizon into aount. Experiene with the investigated large sale examplesshows that the ative set does not hange muh from one yle to the next so that theomputation time for the feedbak is bounded and very small in pratie.





Chapter 7Control of a Distillation ColumnAs an appliation example for the proposed real-time iteration shemes we onsider theontrol of a high purity binary distillation olumn. We have performed a variety of losed-loop experiments at a pilot plant distillation olumn that is loated at the Institut fürSystemdynamik und Regelungstehnik (ISR) of the University of Stuttgart. All experi-ments were arried out in ollaboration with Dr. Ilknur Uslu, Stefan Shwarzkopf, andRolf Findeisen. Finanial support by the Deutshe Forshungsgemeinshaft (DFG) withinthe DFG-Shwerpunktprogramm �Real-Time Optimization of Large Systems� is gratefullyaknowledged.In �rst numerial tests, the feasibility of the real-time optimization sheme ould beshown, with omputation times in the range of seonds for a 164th order model [DBS+01℄,and the pratial appliability was on�rmed in a �rst series of losed-loop experi-ments [DUF+01℄; however, the observed losed-loop performane su�ered from osillationsthat were due to time delays in the real plant, that have not been aptured by the 164thorder distillation model. We therefore improved the model by inluding hydrodynamie�ets that have been responsible for the time delays, resulting in a onsiderably sti�erand larger system model. We will in this hapter present new numerial and experimentalresults that have been obtained with this improved system model. Parts of the presenta-tion, espeially of the experimental setup, follow the lines of a previous paper [DUF+01℄,from whih originate also the Figures 7.1, 7.8, and 7.9.7.1 The Distillation ColumnThe distillation olumn is used for the separation of a binary mixture of Methanol andn-Propanol. It has a diameter of 0.10 m and a height of 7 m and onsists of 40 bubbleap trays. The overhead vapor is totally ondensed in a water ooled ondenser whihis open to atmosphere. The reboiler is heated eletrially. A �owsheet of the distillationsystem is shown in Fig. 7.1. The preheated feed stream enters the olumn at the feedtray as saturated liquid. It an be swithed automatially between two feed tanks inorder to introdue well de�ned disturbanes in the feed onentration. In the onsidered113
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Figure 7.1: Flowsheet of the distillation olumnon�guration, the proess inputs that are available for ontrol purposes are the heat inputto the reboiler, Q, and the re�ux �ow rate Lvol. Control aim is to maintain high purityspei�ations for the distillate and bottom produt streams Dvol and Bvol.The olumn is ontrolled by a distributed ontrol system (DCS), that is used for thelower level ontrol and data aquisition. Basi ontrol loops for the levels, the �ow rates,and the heat input are realized on the DCS system. To implement more advaned on-trol shemes the DCS is onneted to a PC from and to whih diret aess from UNIXworkstations is possible.7.1.1 The DAE ModelWe will refer to the N = 40 trays by ℓ = 1, 2, . . . , N , ounting from the bottom to the top,with ℓ = NF = 20 being the feed tray. For notational onveniene, let us refer with ℓ = 0
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Figure 7.2: Molar �ows in the distillation olumn.to the reboiler and to the ondenser by ℓ = N + 1. The orresponding temperatures aredenoted by T0, . . . , TN+1.As we treat a binary distillation we have only two omponents, Methanol and n-Propanol. Let us denote the liquid Methanol onentrations of reboiler, trays and ondenserby Xℓ for ℓ = 0, 1, 2, . . . , N + 1. The onentration Xn−Prop.,ℓ of n-Propanol is determinedby the losing ondition, so that we will substitute Xn−Prop.,ℓ := 1−X1,ℓ diretly.The molar vapor and liquid �uxes out of eah tray are denoted by Vℓ and Lℓ for
ℓ = 1, 2, . . . , N . The molar vapor �ux out of the reboiler is denoted by V0 and the liquidbottom produt stream by B. Similarly, LN+1 denotes the molar liquid re�ux out of theondenser into the top tray while D denotes the distillate stream out of the ondenser.The molar feed stream entering at tray ℓ = NF is denoted by F ; it is assumed to be liquid.All molar �ows in the distillation olumn are depited in Fig. 7.2.The molar onentrations of the liquid �uxes are equal to the tray onentrations Xℓ,whereas the vapor �uxes' molar onentrations are denoted by Yℓ for ℓ = 0, 1, . . . , N .



116 Control of a Distillation ColumnWe assume that the pressures Pℓ of reboiler, trays and ondenser are onstant, as wellas the volume holdups nv
0 and nv

N+1 of reboiler and ondenser. The liquid volume holdups
nv
ℓ of the trays may vary. All volume holdups are related to the molar holdups nℓ by

nv
ℓ = V m(Xℓ, Tℓ) nℓ for ℓ = 0, . . . , N + 1,The molar volumes V m(Xℓ, Tℓ) of the liquid mixture are spei�ed in Appendix B.To determine the (onstant) pressures we assume that the ondenser pressure is �xedto the outside pressure, i.e., PN+1 = Ptop whereas the pressures Pℓ on the trays and thereboiler are alulated under the assumption of onstant pressure drop from tray to tray,i.e.,

Pℓ = Pℓ+1 +∆Pℓ ℓ = N,N − 1, . . . , 2, 1, 0.The tray temperatures Tℓ are impliitly de�ned by the assumption that the sum of thepartial pressures equals the total pressure on eah tray, i.e.,
Pℓ − P s

1 (Tℓ)Xℓ − P s
2 (Tℓ)(1−Xℓ) = 0, ℓ = 0, 1, . . . , N + 1, (7.1)where the partial pressures P s

k (Tℓ) are omputed aording to the Antoine Equation, asspei�ed in Appendix B.The derivative of the temperature with respet to time, Ṫℓ, is given by the impliitfuntion theorem:
Ṫℓ = − (P s

1 (Tℓ)− P s
2 (Tℓ))Ẋℓ

∂P s
1

∂Tℓ
Xℓ +

∂P s
2

∂Tℓ
(1−Xℓ)

.To aount for non-ideality of the trays and other unmodelled e�ets we have introduedthe tray e�ienies αℓ for ℓ = 1, 2, . . . , N to alulate the omposition Yℓ of the vapor �owout of tray ℓ as a linear ombination of the ideal vapor omposition on the tray and theinoming vapor omposition from the tray below, i.e.,
Yℓ = αℓ

P s
1 (Tℓ)

Pℓ
Xℓ + (1− αℓ) Yℓ−1, ℓ = 1, . . . , N,starting with Y0 =

P s
1 (T0)

P0
X0. The onentration of the liquid out�ow D at the top of theolumn is equal to the ondenser onentration XN+1.Mass balanes: The di�erential equations that determine the hange of the molarholdups nℓ of the trays are given by the mass onservation for ℓ = 1, 2, . . . , NF − 1, NF +

1, . . . , N

ṅℓ = Vℓ−1 − Vℓ + Lℓ+1 − Lℓ, (7.2)and for ℓ = NF by
ṅNF

= VNF−1 − VNF
+ LNF+1 − LNF

+ F, (7.3)



7.1 The Distillation Column 117where F is the molar in�ow on the feed tray, that an be determined from the volume feed�ow Fvol, the Methanol onentration XF in the feed and its temperature TF via
Fvol = V m(XF , TF )F.Mass onservation in reboiler and ondenser are given by
ṅ0 = −V0 + L1 −B, (7.4)and

ṅN+1 = VN −D − LN+1. (7.5)The assumption that reboiler and ondenser volume nv
0 and nv

N+1 are �xed leads to twofurther equations for ℓ = 0, N + 1

0 = ṅv
ℓ = V m(Xℓ, Tℓ)ṅℓ +

∂V m

∂(X, T )
(Ẋℓ, Ṫℓ)

T nℓ, (7.6)that allow to eliminate ṅ0 and ṅN+1. Therefore, n0 and nN+1 are hosen to be no di�erentialvariables.The liquid re�ux stream Lvol from the ondenser is ontrolled and allows to determine
LN+1 via

Lvol = V m(XN+1, TC)LN+1,where TC is the temperature of the ondensate.The omponentwise mass onservation in the reboiler requires
Ẋ0n0 +X0ṅ0 = −V0Y0 + L1X1 − BX0, (7.7)on the trays ℓ = 1, 2, . . . , NF − 1, NF + 1, . . . , N ,

Ẋℓnℓ +Xℓṅℓ = Vℓ−1Yℓ−1 − VℓYℓ + Lℓ+1Xℓ+1 − LℓXℓ, (7.8)on the feed traẏ
XNF

nNF
+XNF

ṅNF
= VNF−1YNF−1 − VNF

YNF

+LNF+1XNF+1 − LNF
XNF

+ FXF ,
(7.9)and in the ondenser

ẊN+1nN+1 +XN+1ṅN+1 = VNYN −DXN+1 − LN+1XN+1. (7.10)



118 Control of a Distillation ColumnEnthalpy balanes: With the liquid and vapor stream enthalpies abbreviated as hLℓ :=
hL(Xℓ, Tℓ) and hVℓ := hV (Yℓ, Tℓ, Pℓ) for ℓ = 0, . . . , N (see Appendix B), we an formulatethe enthalpy balane in the reboiler that allows to determine the vapor stream V0:

ṅ0h
L
0 + n0

(

∂hL0
∂X0

Ẋ0 +
∂hL0
∂T0

Ṫ0

)

= Q−Qloss − V0h
V
0 + L1h

L
1 − BhL0 . (7.11)Here Q is the applied heat input, and with Qloss we aount for possible heat losses in thereboiler. The enthalpy balanes for the trays ℓ = 1, 2, . . . , NF − 1, NF + 1, . . . , N − 1 are

ṅℓh
L
ℓ + nℓ

(

∂hL
ℓ

∂Xℓ
Ẋℓ +

∂hL
ℓ

∂Tℓ
Ṫℓ

)

= Vℓ−1h
V
ℓ−1 − Vℓh

V
ℓ + Lℓ+1h

L
ℓ+1

−Lℓh
L
ℓ ,

(7.12)and for the feed tray
ṅNF

hLNF
+ nNF

(

∂hL
NF

∂XNF

ẊNF
+

∂hL
NF

∂TNF

ṪNF

)

= VNF−1h
V
NF−1 − VNF

hVNF
+ LNF+1h

L
NF+1 − LNF

hLNF

+FhL(XF , TF , PF ).

(7.13)As the liquid re�ux LN+1 of the ondensate is at a temperature TC , the enthalpy balaneon tray N reads
ṅNh

L
N + nN

(

∂hL
N

∂XN
ẊN +

∂hL
N

∂TN
ṪN

)

= VN−1h
V
N−1 − VNh

V
N + LN+1h

L(XN+1, TC , PN+1)− LNh
L
N .

(7.14)Hydrodynamis: To determine the liquid out�ow Lℓ of eah tray, we use a heuristisheme that is based on the so alled �Franis weir formula�. It requires only two parametersper tray, one is a referene volume nref
ℓ , the seond is denoted byWℓ. The formula postulatesthat

Lℓ V
m(Xℓ, Tℓ) =Wℓ(n

v
ℓ − nref

ℓ )
3
2 , ℓ = 1, . . . , N, (7.15)and an be derived by an analysis of the gravity �ow over a horizontal weir with vertialwalls, that is given in Appendix B.Summarizing the DAEWe an subsume all system states in two vetors x and z whih denote the di�erential andthe algebrai state vetors, respetively.The (molar) Methanol onentrations in reboiler, on the 40 trays, and in the ondenser

Xℓ for ℓ = 0, 1, . . . , N +1 are the �rst 42 omponents of the di�erential state vetor x, andthe molar tray holdups nℓ for ℓ = 1, . . . , N are the seond 40 omponents.The liquid and vapor (molar) �uxes Lℓ and Vℓ (ℓ = 1, 2, . . . , N) out of the40 trays as well as the 42 temperatures Tℓ (ℓ = 0, 1, 2, . . . , N + 1) of reboiler,



7.2 Determination of the System Parameters 119trays and ondenser form the 122 omponents of the algebrai state vetor z =
(L1, . . . , LN , V1, . . . , VN , T0, . . . , TN+1)

T .1 Note that many algebrai variables that aneasily be eliminated (as e.g. hLℓ , P s
k (Tℓ), V0, et.) do not ount as algebrai variables inthis formulation.The two omponents of the ontrol vetor u = (Lvol, Q)

T are the volumetri re�ux �ow
Lvol, and the heat input Q, that determines impliitly the molar vapor �ux V0 out of thereboiler. All remaining system parameters, i.e., nv

0, Ptop, nv
N+1, ∆P0,... ,N , nref

1,... ,N , α1,... ,N ,
Fvol, XF , W1,... ,N , TF , Qloss, and TC , an be subsumed in a vetor p.The equations (7.7)�(7.10) and (7.2)�(7.3) are the 82 di�erential equations f , and(7.15), (7.12)�(7.14), and (7.1) form the 122 algebrai equations g of the system.After substituting ṅℓ in Eqs. (7.7)�(7.10) and dividing these equations by nℓ, we ansummarize the DAE system, whih has index one, in the following form:

ẋ(t) = f(x(t), z(t), u(t), p) (7.16)
0 = g(x(t), z(t), u(t), p). (7.17)The employed values for the parameters p have been estimated and are listed in Table 7.1in Setion 7.2. A omplete referene to the material property funtions V m(x, T ), P s

k (T ),
hL(X, T ), and hV (Y, T, P ) is given in Appendix B.7.2 Determination of the System ParametersIn the atual appliation, the performane of NMPC ruially depends on the quality ofthe model. Considering this fat, steady state and open-loop dynami experiments havebeen performed. To obtain measurements of the dynami behaviour of the olumn stephanges in the feed rate Fvol and omposition XF , the re�ux rate Lvol, and heat input Qwere performed. Measurements of all 42 temperatures T0, . . . , TN+1 were taken to obtaina least squares �t of the simulated to the observed behaviour. The additional assumptionsfor this �t are that the tray e�ienies are onstant on eah of the two olumn setions,i.e., α1 = . . . = αNF

and αNF+1 = . . . = αN , that the pressure losses are onstant on bothsetions: ∆P0 = . . . = ∆PNF−1 and ∆PNF
= . . . = ∆PN , and that the volumetri referenetray holdups oinide: nref

1 = . . . = nref
N . Reboiler and ondenser holdup are di�ult todetermine from temperature measurements, as they both ontain very pure liquids duringreasonable operating onditions and whih have onstant boiling temperatures. Conversely,these two volumes do not matter muh for the NMPC performane. They were determinedaording to user knowlegde.1The equilibrium temperature of the ondenser mixture may help to de�ne the temperature of there�ux by TC := TN+1 when TC is not spei�ed. Otherwise, this last algebrai variable ould be eliminatedwithout hanging the dynamis.



120 Control of a Distillation ColumnSymbol Value Symbol Value
nv
0 8.5 l Ptop 939 h Pa
nv
N+1 0.17 l ∆Pstrip 2.5 h Pa
nref
tray 0.155 l ∆Prect 1.9 h Pa
αstrip 62 % TF 71◦C
αrect 35 % TC 47.2◦C
Wtray 0.166 l− 1

2 s−1 Fvol 14.0 l h−1

Qloss 0.51 kW XF 0.32Table 7.1: Constant system parametersThe 10 parameters that ould be adjusted to dynami experimental data were:
αstrip := α1,... ,NF

,
αrect := αNF+1,... ,N ,
Ptop,
∆Pstrip := ∆P0,... ,NF−1,
∆Prect := ∆PNF ,... ,N ,
Qloss,
TF ,
TC
nref
tray := nref

1,... ,N , and
Wtray := W1,... ,N .

(7.18)
During the test series, these parameters have been adjusted several times using stati anddynami experiments, exploiting both, engineering intuition and advaned software tools.The �nally estimated system parameters are listed in Table 7.1.7.2.1 Stati System ParametersThe estimation of the �rst eight of the parameters (7.18), that we all the stati systemparameters, an in priniple be performed using steady state data only. Denoting themeasured steady state temperature averages of a steady state experiment by the vetor
Tm := (Tm

0 , . . . , T
m
N+1)

T and the averaged steady state ontrols by um := (Lm
vol, Q

m)T , andintroduing the projetion matrix T that extrats the temperatures from the algebraisystem state, so that Tz = (T0, . . . , TN+1)
T , we an formulate the following least squaresproblem:

min
xS ,zS,p

‖TzS − Tm‖2Q (7.19)subjet to
f(xS, zS, u

m, p) = 0,

g(xS, zS, u
m, p) = 0,
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Figure 7.3: Comparison of temperature measurements and estimated steady state temper-ature pro�le (solid line).
where the onstraints ensure that only steady states are allowed. The positive de�niteweighting matrix Q would ideally be the inverse of the ovariane matrix of the tempera-ture measurements, that an be expeted to be diagonal with equal entries. For the NMPCperformane tests, however, we have expliitly given more weight to the ontrolled tem-peratures, T28 and T14, by a fator of ten, to avoid steady state o�set due to model-plantmismath.7.2.2 Dynami System ParametersThe last two parameters from the set (7.18), nref

tray and Wtray, an only be estimated bydynami experiments. They have been determined by the solution of a nonlinear leastsquares �t of the dynami model to the measurement data. Let us for this aim de�nethe time dependent temperature measurement funtion Tm(t) and the measured ontroltrajetory um(t), on a horizon [0, T ]. Then the estimation problem an be formulated as:
min

x(·),z(·),p

∫ T

0

‖Tz(t)− Tm(t)‖2Q dt (7.20)



122 Control of a Distillation Column
0 1000 2000 3000 4000 5000

68

69

70

71

T
28

 [o C
]

0 1000 2000 3000 4000 5000
86

87

88

89

T
14

 [o C
]

0 1000 2000 3000 4000 5000
4

4.5

5

L vo
l [l

/h
]

0 1000 2000 3000 4000 5000
2

2.5

3

Q
 [k

W
]

time [s]Figure 7.4: Comparison of measured (noisy) and simulated trajetories (smooth) of thetemperatures T28 and T14, for a small step hange in the re�ux Lvol.subjet to
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g(x(t), z(t), um(t), p) = 0, t ∈ [0, T ].If the dynami experiment starts in steady state, we add the steady state onstraint
f(x(0), z(0), um(0), p) = 0,

g(x(0), z(0), um(0), p) = 0.Though spei�ally tailored parameter estimation algorithms based on the multipleshooting method exist for the solution of this type of problem (see, e.g., Bok etal. [Bo87, BES88℄), we have solved the least squares problems with our urrent implemen-tation of the Gauss-Newton approah in the software pakage MUSCOD-II, as desribedin Se. 6.4 (with a pieewise polynomial representation of the temperature measurementdata). This approah has the pratial advantage of being able to perform both, parameterestimation and dynami optimization, in the same modelling environment, and thus re-dues the risk of transription errors. The �nally employed parameter values for nref
tray and

Wtray have been determined by Bürner in a MUSCOD-II/MATLAB environment [Bür01℄.
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In Fig. 7.4, simulated and measured pro�les for the temperatures T28 and T14 are shown,for an experiment involving a step hange in the re�ux Lvol, and starting at the nominaloperating onditions. The ompared temperature pro�les show that the medium time saledynamis are aptured well by the model.An a posteriori test of the model an be seen on the right hand side of Fig. 7.5, where asimulation was performed using the same ontrol pro�les as in a losed-loop experiment (f.Fig. 7.14), with very large steps in Lvol. The time horizon is shorter and the omparisonshows that the model does roughly apture short time sale e�ets that are due to hydro-dynamis, in ontrast to an equilibrium model, that annot reprodue the orrespondingdelays (dotted line) (f. [DUF+01℄).7.3 Optimal Control Problem FormulationThe ontrol aim is to maintain the spei�ations on the produt purities X0 and XN+1 inreboiler and ondenser despite disturbanes.As usual in distillation ontrol, the onentrations X0 and XN+1 are not ontrolleddiretly � instead, an inferential ontrol sheme whih ontrols the deviation of the on-entrations on tray 14 and 28 from a given setpoint is used. These two onentrations aremuh more sensitive to hanges in the inputs of the system than the produt onentra-tions; if they are kept onstant, the produt purities are safely maintained for a large rangeof proess onditions. As onentrations are di�ult to measure, we onsider instead the



124 Control of a Distillation Columntray temperatures, whih orrespond diretly to the onentrations via the Antoine equa-tion. In the following we will use the projetion T̃ z := (T28, T14)
T to extrat the ontrolledtemperatures from the vetor z, and de�ne T̃ref := ( T ref

28 , T
ref
14

)T
= ( 70 ◦C, 88 ◦C )T forthe desired setpoints.7.3.1 Steady State DeterminationAlternative A (Algebrai Constraints): A desired steady state xS, zS, and the orre-sponding ontrol uS ould in priniple be determined, for given parameters p, as a solutionof the steady state equation

f(xS, zS, uS, p) = 0,

g(xS, zS, uS, p) = 0,

T̃ zS − T̃ref = 0.Here the last equation restrits the steady state to satisfy the inferential ontrol aim ofkeeping the temperatures at the �xed referene values. The neessary degrees of freedomare provided by the two omponents of the steady state ontrols uS. This approah wasused in the �rst series of numerial and experimental tests [DBS+01, DUF+01℄.Alternative B (End Point Constraint): In the pratial omputations in this thesis,however, we have adopted an alternative approah to determine the desired steady state: tothis end note that the steady state xS, zS for given p and uS ould equally be determined byan integration of the model DAE over a su�iently long time horizon with onstant ontrols
uS, yielding xS, zS as �nal values, whih are pratially independent of the initial values.The requirement that the steady state should satisfy T̃ zS = T̃ref an then be formulatedas a �nal state onstraint that impliitly determines uS. We employ this seond approahto determine uS by using an additional long predition interval at the end of the ontrolhorizon in the problem formulation. Note that the use of this approah does not auseadditional numerial e�ort if a predition horizon is employed anyway; on the ontrary,this formulation avoids introduing additional variables xS , zS into the NLP.7.3.2 The Optimal Control ProblemObjetive Funtion: The open-loop objetive is formulated as the integral of a leastsquares term

L(z, u, uS) := ‖T̃ z − T̃ref‖22 + ‖R(u− uS)‖22 , (7.21)where the seond term is introdued for regularization, with a small diagonal weightingmatrix
R =

(

0.05 ◦C h l−1 0
0 0.05 ◦C kW−1

)

.



7.3 Optimal Control Problem Formulation 125Predition Interval: To ensure nominal stability of the losed-loop system, an addi-tional predition interval [t0 + Tc, t0 + Tp] is appended to the ontrol horizon [t0, t0 + Tc],with the ontrols �xed to the setpoint values uS. The objetive ontribution of this intervalprovides an upper bound of the negleted future osts that are due after the end of theontrol horizon, if its length is su�iently large (f. Se. 1.4.1). A length of Tp−Tc = 36000seonds has been onsidered to be su�ient in all performed experiments. Note that theoptimized system state x(t0+Tc) at the start of this interval (i.e., at the end of the ontrolhorizon) is in pratie already very lose to the desired steady state value xS .Problem FormulationThe resulting optimal ontrol problem is formulated as follows:
min

u(·),x(·),p,uS

∫ t0+Tp

t0

{

∥

∥

∥T̃ z(t)− T̃ref

∥

∥

∥

2

2
+ ‖R(u(t)− uS)‖22

}

dt (7.22)subjet to the model DAE
ẋ(t) = f(x(t), z(t), u(t), p)

0 = g(x(t), z(t), u(t), p)
for t ∈ [t0, t0 + Tp].Initial values for the di�erential states and values for the system parameters are presribed:

x(t0) = x0,

p = p0.State and ontrol inequality onstraints are formulated by
h(x(t), z(t), u(t), p) ≥ 0 t ∈ [t0, t0 + Tp],where h := (D,B)T is the funtion alulating the �uxes D and B out of ondenser andreboiler aording to the model equations whih annot beome negative. This impliitlyprovides upper limits to the ontrols.The steady state ontrol uS is determined impliitly by the requirements that u isonstant on the long predition interval
u(t) = uS for t ∈ [t0 + Tc, t0 + Tp],and by the �nal state onstraint

T̃ z(t0 + Tp)− T̃ref = 0.
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7.3.3 Numerial RealizationThe length Tc of the ontrol horizon and the ontrol disretization have to be hosen suhthat the omputation time for one real-time iteration does not exeed the relevant timesale of the system or of the disturbanes. Based on numerial experiments on the availableomputer (AMD Athlon proessor with 1009 MHz) and on the requirement that one real-time iteration should not exeed 20 seonds, we found that Tc=600 seonds with 5 ontrolintervals eah of 120 seonds length is a good hoie. For a visualization of the ontrolhorizon, see the right hand side of Fig. 7.6, whih shows an example solution pro�le.As the ontrol interval length is 6 times longer than the desired sampling time, theinitialization strategy for subsequent real-time iterations was hosen to be the warm startstrategy (f. Se. 4.4.2). For the Hessian approximation we have hosen the Gauss-Newtonapproah for least squares integrals that is desribed in Se. 6.4.
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As a �rst numerial test of the losed-loop algorithm we onsider the following senario:starting at the nominal operating onditions, a re�ux breakdown happens and leaves theontrol inputs �xed to Lvol=0.5 l h−1 and Q=2.5 kW for a duration of �ve minutes. Afterthese �ve minutes the plant an again be ontrolled by the NMPC sheme. The optimizerworks all the time, even if the feedbak is not given to the simulated plant. The losed-loopbehaviour is shown in Fig. 7.6.The neessary CPU times for eah real-time iteration, as well as the reorded responsetimes are shown in Fig. 7.7. Note that the response times are roughly two orders ofmagnitude smaller than the CPU time for one iteration.7.4 Experimental SetupAs said above, we have tested the desribed NMPC sheme on the pilot plant distillationolumn for various senarios. For omparison, we also performed losed-loop experimentswith a onventional ontroller, namely a Proportional Integral (PI) ontrol sheme. Wedesribe in this setion how the two shemes were pratially set up.7.4.1 NMPC Controller SetupOn-Line State EstimationTo obtain an estimate of the 82 di�erential system states and of the model parameter XFby measurements of the three temperatures T14, T21 and T28 only, we have implemented avariant of an Extended Kalman Filter (EKF).In ontrast to an ordinary EKF our estimator an inorporate additional knowledgeabout the possible range of states and parameters in form of bounds. This is espeiallyuseful as the tray onentrations need to be onstrained to be in the interval [0, 1] fromphysial reasoning. The algorithm is desribed in Appendix A. A omparison of esti-
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Figure 7.8: Closed-loop NMPC setupmated and measured temperature pro�les an be found in Fig. 7.15 � note that only thetemperatures T14, T21 and T28 are available to the state estimator.The desribed EKF type algorithm is urrently extended by Bürner to a moving horizonestimator [Bür01℄. This new algorithm � so far with a horizon length of 10 seonds only �was already employed for one of the losed-loop experiments, whih involved a step hangein XF (f. Fig. 7.12). The performane in the estimation of XF an be seen in Fig. 7.13.The large estimation o�set is due to model-plant mismath.Coupling with the Proess Control SystemAs mentioned above, the distillation olumn is ontrolled by a lower level distributed ontrolsystem (DCS), whih is onneted to a PC (f. Fig. 7.1). Aess to this PC from UNIXworkstations is possible via ftp, so that all higher level algorithms, in partiular the stateestimator and the real-time iteration sheme, ould be implemented on a powerful LINUXworkstation with an AMD Athlon proessor (1009 MHz). With the given equipment it wasonly possible to obtain measurements and to write the omputed ontrol inputs to the DCSevery 10 seonds, i.e., a sampling time of 10 seonds was used for the state estimator. Thereal-time iteration sheme was implemented in a self-synhronizing way (f. Se. 4.4.2),whih made it robust against CPU load hanges due to other users; its adaptive samplingtime did in pratie never exeed 20 seonds (f. Fig. 7.16).The three proesses � data aquisition, state estimation and real-time optimization �were running independently and ommuniating only via input and output �les, in suha way that a breakdown of one omponent did not ause an immediate breakdown of theothers. Missing new inputs were simply replaed by old values. This onstrution made thewhole system su�iently stable against unexplained delays in the data transfer betweenthe UNIX workstation and the PC. Figure 7.8 shows the overall ontroller/plant/estimatorsetup.
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Figure 7.9: Closed-loop PI setup7.4.2 PI Controller SetupTo be able to assess the performane of the proposed NMPC sheme, we also arried outexperiments with an existing PI ontroller that is usually employed for the ontrol of theolumn. This onventional ontrol sheme onsists of two deoupled single-input/single-output PI loops, one of whih uses the heat input Q to ontrol the temperature T14, theother using the re�ux Lvol to ontrol the temperature T28.The ontrolled variables are, as in the NMPC ase, the temperatures T14 and T28. Themanipulated variables are the heat input Q to the boiler (orresponding to the liquid �ow
V0 out of the boiler) and the re�ux �ow Lvol. The PI setup is shown in Fig. 7.9.7.5 Experimental ResultsWe have tested the NMPC sheme and the PI ontrol sheme on various senarios. Assenarios we used step hanges in the feed �ow rate (Fvol); a step hange in the feedomposition (XF ); a short re�ux breakdown of �ve minutes (Lvol); and a large disturbanesenario where the olumn was driven with too muh heat input and too low re�ux �owfor over ten minutes.7.5.1 Feed Flow ChangeFigure 7.10 shows the ontrolled outputs (T28 and T14) and input responses (Lvol and Q)where the feed �ow rate Fvol is hanged by −10 % at time t = 1000 seonds. The plots onthe left hand side show the results of the NMPC sheme and those on the right hand sidebelong to the PI ontroller. It an be seen that the performane of the NMPC sheme isbetter than that of the PI ontroller, both with respet to the size of the osillation, mainlyin T28, and with respet to the attenuation time: 1000 seonds after the feed�ow hangethe system is more or less in the new steady state, whereas the PI losed-loop system isstill osillating 3000 seonds after the load hange. In Fig. 7.11 we show a seond stephange in Fvol. Starting from the steady state for a feed�ow that is redued by −10 %from its nominal value, we inrease it at time t = 1000 se. by 20 %, to + 10 % of the
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Figure 7.13: On-line estimate of XF (solid), ompared to the real value (dashed), in thesenario of Fig. 7.12.stop of the re�ux pump. In the NMPC sheme, this phenomenon should have been avoidedby the onstraint D ≥ 0, i.e., the requirement that the distillate out�ow remains non-negative (note that in the model the ondenser hold up is assumed onstant). However,due to model-plant mismath, the onstraint was violated in the real-plant even though itwas satis�ed in the model predition. To aount for the unertainty, we have sharpenedthe onstraint to D ≥ 0.2 · 10−5 kmol
sec

in the following experiments, to provide a seuritymargin of 10 % of the nominal value of D. For the PI ontrollers, there is no easy wayto irumvent valve saturation in the presene of large disturbanes; therefore we did notperform the large disturbane senario with the PI ontrollers.7.5.4 Large Disturbane SenarioTo have even larger disturbane e�ets, we onsider the following senario: starting with asteady state for an inreased feed �ow rate (by 20 %), we redue at time t = 700 seondssimultaneously the feed�ow (bak to its nominal value) and the re�ux, from Lvol = 5.3 l
hdown to Lvol = 2 l

h
, while maintaining the heating power onstant at its (high) value

Q = 2.9 kW. These inputs, that are maintained onstant for 800 seonds, heat the olumnup and move the temperature pro�le far away from the nominal operationg onditions, asan be seen in the right hand side of Fig. 7.15, where the distorted temperature pro�le attime t = 1500 is shown. Only at this time the NMPC feedbak is swithed on. The losed-loop response an be seen on the left hand side in Fig. 7.15. While Q jumps immediatelydown to its minimum value of 1.5kW, Lvol is not inreased to its maximum value, as wouldfrom �rst sight be the best thing to ool the olumn. However, this would have resulted invalve saturation, as disussed above; it was the onstraint D ≥ 0.2 · 10−5 kmol
sec

that ausedthis interesting feature of the losed-loop behaviour.7.5.5 Brief DisussionWe have seen that the proposed real-time iteration NMPC ontrol sheme is not only fea-sible for a pratial large sale appliation, but that it results in a good performane when
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Chapter 8Control of a Looping KiteIn order to demonstrate the versatility of the proposed real-time iteration sheme we presenthere the ontrol of an airborne kite as a periodi ontrol example. The kite is held by twolines whih allow to ontrol the lateral angle of the kite, see Fig. 8.1. By pulling one linethe kite will turn in the diretion of the line being pulled. This allows an experiened kitepilot to �y loops or similar �gures. The aim of our automati ontrol is to make the kite�y a �gure that may be alled a �lying eight�, with a yle time of 8 seonds (see Fig. 8.2).The orresponding orbit is not open-loop stable, so that feedbak has to be applied duringthe �ight � we will show simulation results where our proposed real-time iteration shemewas used to ontrol the kite, with a sampling time of one seond.8.1 The Dual Line Kite ModelThe movement of the kite at the sky an be modelled by Newton's laws of motion anda suitable model for the aerodynami fore. Most di�ulty lies in the determination ofsuitable oordinate systems: we will �rst desribe the kite's motion in polar oordinates,and seondly determine the diretion of the aerodynami fores.8.1.1 Newton's Laws of Motion in Polar CoordinatesThe position p ∈ R
3 of the kite an be modelled in 3-dimensional Eulidean spae, hoosingthe position of the kite pilot as the origin, and the third omponent p3 to be the height ofthe kite above the ground. With m denoting the mass of the kite and F ∈ R

3 the totalfore ating on the kite, Newton's law of motion reads
p̈ =

d 2p

dt2
=
F

m
.Let us introdue polar oordinates θ, φ, r:

p =





p1
p2
p3



 =





r sin(θ) cos(φ)
r sin(θ) sin(φ)

r cos(θ)



 .139
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p

Figure 8.1: A piture of the kite.Note that the distane r between pilot and kite is usually onstant during �ight, and θ isthe angle that the lines form with the vertial. In these oordinates, p̈ looks as follows
p̈ =

d

dt

(

∂p

∂θ
θ̇ +

∂p

∂φ
φ̇+

∂p

∂r
ṙ

)

=
∂p

∂θ
θ̈ +

∂p

∂φ
φ̈+

∂p

∂r
r̈ +

∂2p

∂θ2
θ̇2 +

∂2p

∂φ2
φ̇2 +

∂2p

∂r2
ṙ2

+ 2
∂2p

∂φ∂θ
φ̇θ̇ + 2

∂2p

∂r∂θ
ṙθ̇ + 2

∂2p

∂r∂φ
ṙφ̇.

(8.1)Let us introdue a loal right handed oordinate system with the three basis vetors
eθ =





cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)



 , eφ =





− sin(φ)
cos(φ)

0



 , and er =





sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)



 .In this oordinate system, the partial derivatives of p with respet to θ, φ, r beome
∂p

∂θ
= reθ,

∂p

∂φ
= r sin(θ)eφ, and ∂p

∂r
= er,and

∂2p

∂θ2
= −rer,

∂2p

∂φ2
= −r sin2(θ)er − r sin(θ) cos(θ)eθ, and ∂2p

∂r2
= 0,as well as

∂2p

∂φ∂θ
= r cos(θ)eφ,

∂2p

∂r∂θ
= eθ, and ∂2p

∂r∂φ
= sin(θ)eφ.



8.1 The Dual Line Kite Model 141Eq. (8.1) an therefore be written as:
p̈ = eθ

(

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇
)

+ eφ

(

r sin(θ)φ̈+ 2r cos(φ)φ̇θ̇ + 2 sin(θ)ṙφ̇
)

+ er

(

r̈ − rθ̇2 − r sin2(θ)φ̇2
)

.De�ning
Fθ := F · eθ, Fφ := F · eφ, and Fr := F · er,we an write Newton's laws of motion in the form

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇ =
Fθ

m
,

r sin(θ)φ̈+ 2r cos(θ)φ̇θ̇ + 2 sin(θ)ṙφ̇ =
Fφ

m
,

r̈ − rθ̇2 − r sin2(θ)φ̇2 =
Fr

m
. (8.2)If the length of the lines, denoted by r, is kept onstant, all terms involving time derivativesof r will drop out. Furthermore, the last equation (8.2) will beome redundant, as thefore in the radial diretion will be augmented by a onstraint fore ontribution Fc, sothat Eq. (8.2) is automatially satis�ed when the augmented fore F ′

r := Fr − Fc replaes
Fr, with Fc = Fr + rθ̇2 + r sin2(θ)φ̇2. In this ase the equations of motion1 simplify to

θ̈ =
Fθ

rm
+ sin(θ) cos(θ)φ̇2, (8.3)

φ̈ =
Fφ

rm
− 2 cot(θ)φ̇θ̇. (8.4)In our model, the fore vetor F = F gra + F aer onsists of two ontributions, the grav-itational fore F gra and the aerodynami fore F aer. In artesian oordinates, F gra =

(0, 0,−mg)T with g = 9.81 m s−2 being the earth's gravitational aeleration. In loaloordinates we therefore have
Fθ = F gra

θ + F aer
θ = sin(θ)mg + F aer

θ and Fφ = F aer
φ .It remains to derive an expression for the aerodynami fore F aer.8.1.2 Kite Orientation and the Aerodynami ForeTo model the aerodynami fore that is ating on the kite, we �rst assume that the kite'strailing edge is always pulled by the tail into the diretion of the e�etive wind, as seen1Note that the validity of these equations requires that Fc = Fr + rθ̇2 + r sin2(θ)φ̇2 ≥ 0, as a line anonly pull, not push.



142 Control of a Looping KiteName Symbol Valueline length r 50 mkite mass m 1 kgwind veloity vw 6 m/sdensity of air ρ 1.2 kg/m3harateristi area A 0.5 m2lift oe�ient Cl 1.5drag oe�ient Cd 0.29Table 8.1: The kite parameters.from the kite's inertial frame. Under this assumption the kite's longitudinal axis is alwaysin line with the e�etive wind vetor we := w− ṗ, where w = (vw, 0, 0)
T is the wind as seenfrom the earth system, and ṗ the kite veloity. If we introdue a unit vetor el pointingfrom the front towards the trailing edge of the kite (f. Fig. 8.1), we therefore assume that

el =
we

‖we‖
.The transversal axis of the kite an be desribed by a perpendiular unit vetor et that ispointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinalaxis, i.e.,

et · el =
et · we

‖we‖
= 0. (8.5)The orientation of the transversal axis et against the lines' axis (whih is given by thevetor er) an be in�uened by the length di�erene ∆l of the two lines. If the distanebetween the two lines' �xing points on the kite is d, then the vetor from the left to theright �xing point is det, and the projetion of this vetor onto the lines' axis should equal

∆l (being positive if the right wingtip is farther away from the pilot), i.e., ∆l = d et · er.Let us de�ne the lateral angle ψ to be
ψ = arcsin

(

∆l

d

)

.We will assume that we ontrol this angle ψ diretly. It determines the orientation of etwhih has to satisfy:
et · er =

∆l

d
= sin(ψ). (8.6)A third requirement that et should satisfy is that

(el × et) · er =
we × et
‖we‖

· er > 0, (8.7)



8.1 The Dual Line Kite Model 143whih takes aount of the fat that the kite is always in the same orientation with respetto the lines.How to �nd a vetor et that satis�es these requirements (8.5)�(8.7)? Using the proje-tion wp
e of the e�etive wind vetor we onto the tangent plane spanned by eθ and eφ,

wp
e := eθ(eθ · we) + eφ(eφ · we) = we − er(er · we),we an de�ne the orthogonal unit vetors

ew :=
wp

e

‖wp
e‖

and eo := er × ew,so that (ew, eo, er) form an orthogonal right-handed oordinate basis. Note that in thisbasis the e�etive wind we has no omponent in eo diretion, as
we = ‖wp

e‖ew + (we · er)er.We will show that the de�nition
et := ew(− cos(ψ) sin(η)) + eo(cos(ψ) cos(η)) + er sin(ψ)with

η := arcsin

(

we · er
‖wp

e‖
tan(ψ)

)satis�es the requirements (8.5)�(8.7). Equation (8.5) an be veri�ed by substitution of thede�nition of η into
et · we = − cos(ψ) sin(η)‖wp

e‖+ sin(ψ)(we · er) = 0.Eq. (8.6) is trivially satis�ed, and Eq. (8.7) an be veri�ed by alulation of
(we × et) · er = (we · ew) cos(ψ) cos(η)− (we · eo)(− cos(ψ) sin(η))

= ‖wp
e‖ cos(ψ) cos(η)(where we used the fat that we · eo = 0). For angles ψ and η in the range from −π/2 to

π/2 this expression is always positive. The above onsiderations allow to determine theorientation of the kite depending on the ontrol ψ and the e�etive wind we only. Notethat the onsiderations would break down if the e�etive wind we would be equal to zero,or if
∣

∣

∣

∣

we · er
we · ew

tan(ψ)

∣

∣

∣

∣

> 1.The two vetors el × et and el are the diretions of aerodynami lift and drag, respetively.To ompute the magnitudes Fl and Fd of lift and drag we assume that the lift and dragoe�ients Cl and Cd are onstant, so that we have
Fl =

1

2
ρ‖we‖2ACl and Fd =

1

2
ρ‖we‖2ACd,



144 Control of a Looping Kitewith ρ being the density of air, and A being the harateristi area of the kite.Given the diretions and magnitudes of lift and drag, we an ompute F aer as theirsum, yielding
F aer = Fl(el × et) + Fdelor, in the loal oordinate system

F aer
θ = Fl((el × et) · eθ) + Fd(el · eθ) and F aer

φ = Fl((el × et) · eφ) + Fd(el · eφ).The system parameters that have been hosen for the simulation model are listed in Ta-ble 8.1. De�ning the system state x := (θ, θ̇, φ, φ̇)T and the ontrol u := ψ we an summa-rize the system equations (8.3)�(8.4) in the short form
ẋ = f(x, u),with

f((θ, θ̇, φ, φ̇)T , ψ) :=

















θ̇

F aer
θ (θ, θ̇, φ, φ̇, ψ)

rm
+ sin(θ)

g

r
+ sin(θ) cos(θ)φ̇2

φ̇

F aer
φ (θ, θ̇, φ, φ̇, ψ)

rm
− 2 cot(θ)φ̇θ̇

















.

8.2 A Periodi OrbitUsing the above system model, a periodi orbit was determined that an be haraterizedas a �lying eight� and whih is depited as a φ − θ−plot in Fig. 8.2, and as a time plotin Fig. 8.3. The wind is assumed to blow in the diretion of the p1-axis (θ = 90o and
φ = 0o). The periodi solution was omputed using the o�-line variant of MUSCOD-II,imposing periodiity onditions with period T = 8 seonds and suitable state boundsand a suitable objetive funtion in order to yield a solution that was onsidered to bea meaningful referene orbit. Note that the ontrol ψ (see Fig. 8.3) is positive when thekite shall turn in a lokwise diretion, as seen from the pilot's viewpoint, and negativefor an anti-lokwise diretion. We will denote the periodi referene solution by xr(t) and
ur(t). This solution is de�ned for all t ∈ (−∞,∞) and satis�es the periodiity ondition
xr(t + T ) = xr(t) and ur(t+ T ) = ur(t).It is interesting to note that small errors aumulate very quikly so that the unon-trolled system will not stay in the periodi orbit very long during a numerial simulation(see Fig. 8.4). This observation an be on�rmed by investigating the asymptoti stabilityproperties of the periodi orbit.
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Figure 8.2: Periodi orbit plotted in the φ− θ−plane, as seen by the kite pilot. The dotsseparate intervals of one seond.
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φ [deg]Figure 8.4: Open-loop ontrol applied to the undisturbed system.8.2.1 Stability Analysis of the Open-Loop SystemTo determine the asymptoti stability properties of the open-loop system along the periodiorbit, let us onsider an initial value problem for the open-loop system on the interval [0, T ]orresponding to one period:̇
x(t) = f(x(t), ur(t)), ∀t ∈ [0, T ],

x(0) = x0.The solution trajetories x(t) an be regarded as funtions of the initial value x0. Note thatfor x0 = xr(0) the solution is idential to the referene trajetory xr(t). The sensitivitymatries
W (t) :=

∂x(t)

∂x0
(xr(0)), t ∈ [0, T ],an therefore be obtained as the solution of the matrix initial value problem:

Ẇ (t) =
∂f

∂x
(xr(t), ur(t)) · W (t) ∀t ∈ [0, T ],

W (0) = Inx .The �nal valueW (T ) is alled the monodromy matrix . It haraterizes the sensitivity of the�nal state of eah period with respet to the initial value. Asymptotially stable periodiorbits are haraterized by a monodromy matrix whose eigenvalues (also alled �FloquetMultipliers�) all have a modulus smaller than one, whih means that initial disturbanesare damped out during the yles. For a proof see e.g. Amann [Ama83℄.



8.3 The Optimal Control Problem 147A numerial omputation of W (T ) for the kite model along the hosen periodi orbityields
W (T ) =









3.0182 2.4014 0.9587 −0.1307
3.3399 2.5500 0.0054 −0.3935
−2.7170 −1.8596 0.8436 0.5072
−2.8961 −2.0491 0.5601 0.4640









,whih has the eigenvalue spetrum
σ (W (T )) = { 5.29, 1.53, 6.16 · 10−2, 4.17 · 10−7 },ontaining two eigenvalues that have a modulus bigger than one. This on�rms that thesystem is asymptotially unstable in the periodi referene orbit.8.3 The Optimal Control ProblemGiven an initial state xt0 at time t0, an optimal ontrol problem an be formulated thattakes aount of the objetive to keep the system lose to the referene orbit. For this aimwe de�ne a Lagrange term

L(x, u, t) := (x− xr(t))
TQ(x− xr(t)) + (u− ur(t))

TR(u− ur(t))with diagonal weighting matries
Q := ·









1.2 0 0 0
0 3.0s2 0 0
0 0 3.0 0
0 0 0 3.0s2









10−4deg−2s−1 and R := 1.0 · 10−2deg−2s−1.A hard onstraint is given by the fat that we do not want the kite to rash onto theground (θ = 90 degrees), and for seurity, we require a path onstraint funtion
h(x, u) :=

(

75 deg − θ
)to be positive. Using these de�nitions, we formulate the following optimal ontrol problemon the moving horizon [t0, t0 + 2T ]:

min
u(·),x(·)

∫ t0+2T

t0

L(x(t), u(t), t) dt (8.8)subjet to
ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t0 + 2T ],

x(t0) = xt0 ,

h(x(t), u(t)) ≥ 0, ∀t ∈ [t0, t0 + 2T ].
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φ [deg]Figure 8.5: Closed-loop ontrol applied to the undisturbed system, simulation of 100 peri-ods. Numerial errors are attenuated by very small ontrol responses (with u(t)− ur(t) inthe order of 10−2 degree) and do not aumulate.
8.4 Closed-Loop SimulationsIn the multiple shooting disretization the multiple shooting intervals were hosen to beeah of one seond length, thus allowing eight ontrol orretions per period T . The Hessianmatrix was approximated using the Gauss-Newton approah for integral least squares termsdesribed in Se. 6.4. The initialization of subsequent optimization problems was ahievedwith a shift strategy where the new �nal interval was initialized by an integration usingthe nominal open-loop ontrol ur(t), f. Se. 4.4.1.As a �rst test of the algorithm we try to ontrol the undisturbed system, and the resultof a simulation of 100 periods is depited in Fig. 8.5. It an be seen that the refereneorbit is perfetly traked. The dots separate intervals of one seond length and orrespondto the sampling times.For a seond test we give the kite a slight �kik� at time t = 1.0 seonds that leadsto a disturbane in the angular veloity θ̇. It hanges from −1 deg/s to +5 deg/s. Thelosed-loop response is depited in Fig. 8.6 as a φ− θ−plot.As a third test we give the kite a moderate �kik� at time t = 3.5 seonds that lets theangular veloity θ̇ hange from 12 deg/s to 25 deg/s. The losed-loop response is depitedin Fig. 8.7. For a omparison we also show the open-loop response to this disturbane inFig. 8.8, whih results in a rash 5 seonds after the disturbane.In a fourth test we �kik� the kite strongly at time t = 4.0 seonds so that the angularveloity θ̇ hanges abruptly from 20 deg/s to−7 deg/s. The losed-loop response is depitedin Fig. 8.9.
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+5 deg/s at time t = 1.0 seonds. After one period the disturbane is nearly attenuated.
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φ [deg]Figure 8.8: Open-loop response to the same disturbane as in Fig. 8.7, at time t = 3.5 se-onds. Five seonds after the disturbane the kite rashes onto the ground (θ=90 degrees).
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Conlusions and Outlook
Summary and ConlusionsWe have presented a new numerial method for the real-time optimization of onstrainednonlinear proesses and have demonstrated its pratial appliability in an experimentalase study, the nonlinear model preditive ontrol of a distillation olumn whih is de-sribed by a large sale sti� DAE model. Sampling times in the range of seonds ouldbe realized. The theoretial ontration properties of the algorithm have been investigatedand omputable bounds on the loss of optimality with respet to a rigorous solution ouldbe established.Desription of the Method (Chapters 1 � 4 and 6)The proposed approah is based on the diret multiple shooting method (Chap. 2) thatallows to ombine the use of e�ient state-of-the-art DAE solvers with the advantages of asimultaneous strategy, like the possibility to treat unstable system models. In partiular,the presented algorithm is haraterized by the following, newly developed features:

• The initialization of subsequent optimization problems with an initial value em-bedding strategy delivers, for an exat Hessian SQP, a �rst-order preditor for thesolution of new problems even in the presene of ative set hanges (Chap. 3). Forgeneral Newton type methods, the initial value embedding still delivers an exellentpreditor (Chap. 5, Se. 5.3).
• Dovetailing of the solution iterations with the proess development in a real-timeiteration sheme allows to redue sampling times to a minimum, but maintains alladvantages of a fully nonlinear treatment of the optimization problems (Chap. 4).
• A separation of the omputations in eah real-time iteration into a preparationphase and a feedbak phase is realized (Chap. 6). The feedbak phase is typiallyorders of magnitude shorter than the preparation phase, and allows to deliver alinearized feedbak that takes all linearized onstraints into aount. This feedbakis equivalent to linear MPC shemes, using a system linearization along the urrentoptimal referene trajetory. The delay of one sampling time that is present in allprevious NMPC shemes is avoided. 153



154 Conlusions and Outlook
• AGauss-Newton approah for least squares integrals allows to ompute an ex-ellent Hessian approximation at negligible omputational osts. The Gauss-NewtonHessian is omputed simultanously with the sensitivity omputation without the ne-essity to stop the integration routine (Se. 6.4). This is espeially useful on longpredition intervals with onstant ontrols.Contrativity of the Real-Time Iteration Sheme (Chapter 5)Contrativity of the sheme is proven for real-time iterations on shrinking horizons, andthe outome of the iterates is ompared to the orresponding exat solution on the fullhorizon. The senario assumes that plant and optimization model oinide, but that oneunpredited disturbane happens at the start of the onsidered time period.
• The real-time iteration sheme is ontrating under the same onditions as the o�-line method (Theorem 5.6). This means: if the full horizon optimization problemand a given initialization satisfy the su�ient onditions for loal onvergene of theo�-line Newton type method, then the real-time iteration sheme is ontrating.
• The iterates approah the optimal solution on the remaining horizon, witha veloity that depends on the ontration rate (Corollary 5.8). Due to the exellentontration properties of the diret multiple shooting method, this means that aftera few iterations the real-time solution is pratially idential to the exat solution onthe remaining horizon.
• We establish a bound on the loss of optimality with respet to the optimalsolution on the full horizon (Theorem 5.11). This bound limits possible losses onthe �rst intervals, before the iterates approah the optimal solution on the remaininghorizon.
• If the algorithm was initialized at a neighboring solution, as it typially happensin pratie, the loss of optimality is of fourth order in the size of the initialdisturbane for an exat Newton method (Corollary 5.12).Appliation Tests of the Sheme (Chapters 7 and 8)Experimental Control of a Distillation Column: The algorithm is suesssfullyapplied to a nontrivial proess ontrol example, namely the NMPC of a pilot plant distil-lation olumn situated at the Institut für Systemdynamik und Regelungstehnik , Stuttgart.A model for the olumn is developed, onsidering enthalpy balanes and hydrodynamis,whih results in a sti� DAE with 82 di�erential and 122 algebrai state variables. Modelparameters are �tted to experimental dynami data.The optimization problem is formulated using the integrated squared deviation of twoontrolled temperatures as objetive, and employing a ontrol horizon with 5 samplingintervals of 120 seonds eah, and a predition horizon of 36 000 seonds. The omputation



155times for eah real-time iteration are below 20 seonds, and the realized feedbak times areunder pratial onditions below 400 milliseonds. The experimentally observed losed-loop behaviour shows good performane, espeially for large disturbanes.The study proves that NMPC using large sale proess models is feasible under pratialonditions, when the real-time iteration sheme is used (Chap. 7).Simulated Control of a Looping Kite: In a seond example, the real-time iterationapproah is applied to a simulated unstable periodi proess, an airborne kite. The newlydeveloped kite model onsists of four di�erential states and one ontrol. The ontrol aimis to let the kite �y an unstable periodi trajetory with a period of eight seonds. Thereal-time iteration sheme is able to suessfully stabilize the system for all investigateddisturbane senarios, meeting the real-time requirement of at maximum one seond periteration. Simulation results show exellent robustness of the real-time optimization algo-rithm even in the presene of large disturbanes. (Chap. 8).OutlookWithin this thesis, we have demonstrated the pratial feasibility of NMPC using large saledetailed proess models. Several future developments of numerial methods for NMPCome to mind, whih may extend its area of appliability.ParallelizationA parallelization of the developed algorithm, whih has already been ahieved for the o�-line diret multiple shooting method, promises to redue omputation times onsiderably.The method is partiularly well suited for parallel omputation, sine the most expensivepart of the algorithm, the integrations and sensitivity omputations, are deoupled ondi�erent multiple shooting intervals and an be performed in parallel [GB94, BS01℄. Forthe distillation model developed in this thesis, proessor e�ienies in the range of 80 %for 8 nodes have been observed. Only minor modi�ations have to be made to adapt theexisting parallel version of the o�-line method to the real-time iteration ontext.Redued ApproahAnother interesting future development is to employ a redution approah that exploits theinitial value onstraint and the ontinuity onditions for an e�ient derivative omputationin the multiple shooting method. The approah, that is originally due to Shlöder [Sh88℄,has long been suessfully applied to large sale parameter estimation problems (see e.g.Dieses [Die01℄ for reent developments and appliations). An appliation of the approahto the desribed Gauss-Newton method for optimal ontrol is possible and promises largesavings in omputation times in the sensitivity generation, thus allowing to further reduesampling times. The redued approah is fully ompatible with most algorithmi ideas of



156 Conlusions and Outlookthis thesis, espeially with the initial value embedding and the dovetailing of the solutioniterations with the proess development. However, the separation into preparation andfeedbak phase annot be realized as easily as before, as some parts of the DAE sensitivityalulation an only be performed after the initial value x0 is known.The approah would be espeially e�ient for models with large di�erential state di-mensions and a relatively small number of ontrol parameters.On-Line Parameter and State EstimationIn the appliation of NMPC tehniques, an important requirement is knowledge of thesystem state and of the urrent values of the system parameters. Moving horizon strategiesto attak this task have been formulated (see e.g. Rao and Rawlings [RR00℄), but the �eld ofnumerial methods for the real-time solution of the resulting optimal ontrol problems stillneeds onsiderable development. A transfer of the real-time iteration sheme to this typeof problem promises to deliver a powerful method for the on-line solution of moving horizonstate estimation problems, and is urrently under investigation (f. Bürner [Bür01℄).Periodi ControlIn the last numerial example we showed the feasibility of an NMPC approah designed toontrol an unstable periodi system. Given the existing optimization sheme, the stabilizingperiodi feedbak law was easily obtained by a straightforward periodi formulation of theleast squares objetive. In the area of periodi ontrol, the use of NMPC tehniques mayallow new periodi proess designs that have so far been avoided, and an appliation ofthe developed numerial methods to this problem lass deserves further investigation.



Appendix AAn Extended Kalman Filter VariantWe will here desribe the variant of the Extended Kalman Filter (EKF) that was used forthe state estimation in the experimental tests of Chap. 7. For an introdution into urrentdevelopments in the area of nonlinear state estimation we refer e.g. to Muske and Edgar[ME96℄ or to Rao and Rawlings [RR00℄. We also refer to an overview artile by Binder etal. [BBB+01℄ that disusses some aspets of state estimation, and to the work of Bürneron numerial methods of moving horizon state estimation [Bür01℄.In ontrast to a standard Extended Kalman Filter (EKF), our variant is able to treatbounds on the system state, a feature that an be ruial for the pratial appliabilityof the algoritm. We will �rst formulate the on-line estimation problem in Se. A.1 andintrodue the EKF type algorithm in Se. A.2, and afterwards motivate it by heuristiarguments in Se. A.3.A.1 Problem FormulationTransformation into Disrete TimeLet us onsider the system development on intervals of �xed length δ only, whih orrespondto the sampling rate of measurements. Given initial values xk (that may also ompriseonstant system parameters, f. Se. 1.1) and ontrols uk, the system DAE an be solvedon the interval [tk, tk + δ]

B(·) ẋ(t) = f(x(t), z(t), uk),
0 = g(x(t), z(t), uk),

x(tk) = xk.
(A.1)In the following, we are interested only in the values x(tk+δ) and z(tk) of this solution. Letus denote them by Xk(xk) and Zk(xk), where the onstant ontrol values uk are aountedfor by the index k. As some of the states an be measured, let us also introdue themeasurement funtion

hk(xk) := Hxxk +HzZk(xk)157



158 An Extended Kalman Filter Variantwith onstant matries Hx and Hz. For the distillation model with temperature mea-surements we have set Hx = 0, and hosen Hz suh that it just extrats the measuredtemperatures from the algebrai state vetor.The undisturbed system development {yk, xk}∞k=0 with an initial value x0 under a givenontrol sequene {uk}∞k=0 an then be desribed by the equations
xk+1 = Xk(xk), for k = 0, 1, . . . ,
yk = hk(xk).

(A.2)Stohasti FormulationThe neessity to estimate the system state arises beause the real system does not oinidewith the model. To aount for this, we model the disrete time system as a stohastisystem, and we also assume that the measurements are distorted by noise. Let us thereforeregard the disrete time stohasti system and measurement model
xk+1 = Xk(xk) + wk,
yk = hk(xk) + vk.

(A.3)The state disturbane and measurement noise sequenes {wk}∞k=0 and {vk}∞k=0 are assumedto be independent and identially distributed, both with zero mean and known (positivede�nite) ovariane matries
Σw := E {wkw

T
k } and Σv := E {vkvTk }.The notation E {·} denotes the expetation values. From the real system behaviour at asampling time k, only the measurement sequene {yi}ki=0 is available. Additional knowledgeexists in form of state bounds that require that

xLB ≤ xi ≤ xUB for i = 0, . . . , k.The problem is to infer the system state xk from this given information.The Idea of Kalman FilteringThe Extended Kalman Filter (EKF) for nonlinear systems proeeds in priniple as thelinear Kalman �lter [Kal60, Son90℄, but is based on subsequent linearizations of the sys-tem model at the best available estimate. The idea of the Kalman �lter is to ompareeah measurement with the predition of the model, and to orret the estimated state
x̂ aording to the deviation. The weight of past measurement information is kept in aweighting matrix P .A.2 The EKF Type AlgorithmGiven a urrent estimate x̂k ∈ R

nx , a nonsingular square weighting matrix Pk (of the samedimension R
nx×nx as Σw) and a measurement yk ∈ R

ny at time k, the reursive algorithmomputes the matrix Pk+1 and the vetor x̂k+1 as follows:



A.2 The EKF Type Algorithm 1591. Compute h := hk(x̂k) and H := ∂hk(x̂k)
∂x̂k

.2. Compute a QR deomposition
(

Pk

Σ
− 1

2
v H

)

=: Q̂R̂ (A.4)with R̂ upper triangular and of full rank (note that this is always possible as Pk isnonsingular). Obtain a orreted di�erential state value
x′ := x̂k − R̂−1Q̂T

(

0

Σ
− 1

2
v (h− yk)

)

. (A.5)3. To avoid a violation of upper and lower bounds (that may make the DAE solutionimpossible), solve
min
x

‖R̂(x− x′)‖22 subjet to xLB ≤ x ≤ xUB.Denote the solution by x̃. One the ative set and x̃ are known, de�ne a matrix Q1 =
(e1, e2, . . . , ena) onsisting of na unit vetors ei orresponding to the na omponentsof the ative set, so that the equivalent problem

min
x

‖R̂(x− x′)‖22 subjet to QT
1 (x− x̃) = 0, (A.6)an be formulated (whih has the solution x̃ itself). Denote by Q2 the orthonor-mal omplement to Q1, so that (Q1|Q2) is an orthonormal (permutation) matrix.Perform another QR fatorization R̂Q2 =: Q′R′ to yield the invertible matrix

R′ ∈ R
(nx−a)×(nx−a). This is the only step that is additional to a standard EKFsheme, and it an be justi�ed heuristially. If no bounds are ative, x̃ = x′ and

R′ = R̂.4. Compute x̂k+1 := Xk(x̃) and G := ∂Xk(x̃)
∂x̃

.5. Compute a omplete QR deomposition
(

R′

−Σ
− 1

2
w GQ2

)

=:
(

Q̄ Q̃
)

(

R̄
0

)with R̄ non-singular.6. Compute
Pk+1 := Q̃T

(

0

Σ
− 1

2
w

)

.Note that our algorithm produes preditive estimates x̂k+1 with knowledge of the k-thmeasurement yk (and the ontrol value uk) only.



160 An Extended Kalman Filter VariantDerivative GenerationThe funtion Xk(xk) and its derivative ∂Xk

∂xk
an e�iently be omputed by a DAE solverusing the priniple of internal numerial di�erentiation (IND) (f. Se. 6.3). We use theDAE solver DAESOL [Bau00℄. The omputation of hk(xk) = Hxxk+HzZk(xk) requires thedetermination of onsistent algebrai variables Zk(xk) that satisfy g(xk, Zk(xk), uk) = 0.This is ahieved in our implementation by a (damped) Newton's method whih ausesvery little omputational e�ort ompared to the DAE solution. By the impliit funtiontheorem, the derivative ∂hk

∂xk
an be evaluated to be
∂hk
∂xk

= Hx +Hz

(

∂g

∂z

)−1
∂g

∂x
.A.3 Heuristi MotivationThe idea behind the EKF algorithm is based on dynami programming arguments. Let usde�ne a funtion

F (x, x̄) :=







Pk(x− x̂k)

Σ
− 1

2
v (hk(x)− yk)

Σ
− 1

2
w (x̄−Xk(x))





that represents the osts on stage k, given a past state estimate x̂k and a weighting matrix
Pk. The idea is to approximately summarize the optimal value

min
x

‖F (x, x̄)‖22 subjet to xLB ≤ x ≤ xUB, (A.7)that depends on the state x̄, in a quadrati funtion
‖Pk+1(x̄−x̂k+1)‖22 + onst .To obtain this approximation, we will linearize the system, as only then it is possible tosummarize the optimal stage osts in a quadrati funtion (using the disrete time Kalman�lter idea).The linearization of problem (A.7) does not only onern the funtion F , as usualin EKF algorithms, but also the onstraints, whih have to be onverted into appropriateequality onstraints to make the problem truly linear. The proedure of the previous setionan be regarded as a dovetailing of the problem linearization and the linear Kalman �lteralgorithm.We linearize the problem during the solution proedure, as desribed in the previoussetion: let us linearize hk(x) at the point x̂k to yield the approximation h+H(x−x̂k) (step1), then let us hoose a point x̃ (the outome of the QP solution, steps 2 and 3) at whih



A.3 Heuristi Motivation 161we linearize Xk(x) to yield the linearization x̂k+1+G(x− x̃) = x̂k+1+G(x̂k− x̃)+G(x− x̂k)(step 4). We an therefore approximate F (x, x̄) by the linear funtion
f̃ + (F̃x|F̃x̄)

(

x− x̂k
x̄− x̂k+1

)

=







0

Σ
− 1

2
v (h− yk)

−Σ
− 1

2
w G(x̂k − x̃)






+







Pk 0

Σ
− 1

2
v H 0

−Σ
− 1

2
w G Σ

− 1
2

w







(

x− x̂k
x̄− x̂k+1

)

.Fixing also the ative set we transform the inequality onstraints into equalities
QT

1 (x− x̃) = 0,so that the linearization of problem (A.7) an be written as
min
x

∥

∥

∥

∥

f̃ + (F̃x|F̃x̄)

(

x− x̂k
x̄− x̂k+1

)∥

∥

∥

∥

2

2

subjet to QT
1 (x− x̃) = 0,or, equivalently, as an unonstrained problem, where we diretly substitute x = x̃ + Q2y(using the orthonormal omplement Q2 of Q1):

min
y

∥

∥

∥

∥

f̄ + (F̃xQ2|F̃x̄)

(

y
x̄−x̂k+1

)∥

∥

∥

∥

2

2

, (A.8)with
f̄ := f̃ + F̃x(x̃− x̂k) =





0
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2
v (h− yk)

0



 +





Pk

Σ
− 1

2
v H
0



 (x̃− x̂k). (A.9)Our EKF type algorithm omputes a QR fatorization of (F̃xQ2|F̃x̄), as
(F̃xQ2|F̃x̄) =
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=
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=

(
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(
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)

(Q̄|Q̃)
(

R̄ R′′

0 Pk+1

)with R′′ := Q̄T

(

0
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2
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). The linear problem (A.8) is therefore equivalent to:
min
y
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Q′T 0
0 I

)(

Q̂T 0
0 I

)

f̄ +

(

R̄ R′′

0 Pk+1

)(

y
x̄−x̂k+1

)∥

∥

∥

∥

2

2

.



162 An Extended Kalman Filter VariantThe optimal solution of this linearized problem an be summarized as
‖Pk+1(x̄−x̂k+1)‖22.if

Q̃T

(

Q′T 0
0 I

)(

Q̂T 0
0 I

)

f̄ = 0.To see that this is indeed the ase, note that
(

Q̂T 0
0 I

)

f̄ =

(

R̂(x̃− x′)
0

)due to (A.4), (A.5) and (A.9), and that
Q′T R̂(x̃− x′) = R′−T

(R̂Q2)
T R̂(x̃− x′)must be zero, beause y = 0 is solution of the following optimization problem, that isequivalent to (A.6) with x = x̃+Q2y:

min
y

‖R̂(x̃− x′) + R̂Q2y‖22.Note that at the solution y = 0 the gradient of the objetive with respet to y is
2(R̂Q2)

T R̂(x̃− x′), whih is zero due to the neessary optimality onditions.



Appendix BDetails of the Distillation Model
Physial Property FuntionsMolar Volume V m(X, T )The molar volume V m(x, T ) of the liquid tray ontent is alulated as a linear ombinationof the molar volumes of the undiluted omponents, i.e.,

V m(X, T ) := XV m
1 (T ) + (1−X)V m

2 (T ).with V m
k (T ) alulated aording to

V m
k (T ) :=

1

ak
expbk

(1 + exp(1−T/ck)
(dk)).The molar volume oe�ients ak, bk, ck, dk b are given in Table B.1.Partial Pressures P s

k (T )The partial pressures P s
k (T ) of the undiluted omponents are determined by the Antoineequation
P s
k (T ) := exp

(

Ak −
Bk

T + Ck

)

k = 1, 2.The employed Antoine oe�ients are given in Table B.2.Component Molar volume oe�ients
k ak [kmol l−1℄ bk ck [K℄ dk1 (Methanol) 2.288 0.2685 512.4 0.24532 (n-Propanol) 1.235 0.27136 536.4 0.2400Table B.1: The molar volume oe�ients163



164 Details of the Distillation ModelComponent Antoine oe�ients
k Ak Bk [K℄ Ck [K℄1 (Methanol) 23.48 3626.6 -34.292 (n-Propanol) 22.437 3166.4 -80.15Table B.2: The Antoine oe�ientsEnthalpy oe�ients

k h1,k [K−1℄ h2,k [K−2℄ h3,k [K−3℄ T c
k [K℄ P c

k [Pa℄ Ωk1 18.31 1.713 10−2 6.399 10−5 512.6 8.096 106 0.5572 31.92 4.49 10−2 9.663 10−5 536.7 5.166 106 0.612Table B.3: The enthalpy oe�ientsThe Enthalpies hL(X, T ) and hV (Y, T, P )The vapour and liquid stream enthalpies hL(X, T ) and hV (Y, T, P ) are given by
hL(X, T ) := XhL1 (T ) + (1−X)hL2 (T )and

hV (Y, T, P ) := Y hV1 (T, P ) + (1− Y )hV2 (T, P ).The pure liquid enthalpies hLk (T ) are determined aording to
hLk (T ) := C

{

h1,k(T − T0) + h2,k(T − T0)
2 + h3,k(T − T0)

3
}with T0 = 273.15 K and C = 4.186 J mol−1, and the pure vapour enthalpies hVk (T, P )aording to

hVk (T, P ) := hLk (T ) + RT c
k

√

1− P
P c
k

(

T
T c
k

)−3

{

a− b T
T c
k
+ c
(

T
T c
k

)7

+ Ωk

(

d− e T
T c
k
+ f

(

T
T c
k

)7
)}with R = 8.3147 J mol−1 K−1, a = 6.09648, b = 1.28862, c = 1.016, d = 15.6875, e =

13.4721, and f = 2.615.The employed oe�ients are given in Table B.3.Derivation of the Franis Weir FormulaThe Franis weir formula that was introdued in Eq. (7.15), gives a relationship betweenthe volumetri �owrate Lvol and the volume holdup nv of an idealized tray by
Lvol =W (nv − nref)

3
2 ,
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h6Figure B.1: Cross setion of the liquid �ow out of a weir.where the �ow onstant W and the referene volume nref are onstant. For a derivation,let us regard the gravity �ow over a horizontal weir of width w with vertial walls, wherethe water level is at height h over the lower edge of the weir, as depited in Figure B.1.The liquid level h an be determined from the exess volume on the tray, if its ground area
A is known:

h =
nv − nref

A
.Introduing a oordinate y that starts at the liquid surfae and measures the depth, wean determine the (horizontal) water veloity v(y) due to gravity by Bernoulli's equation

1

2
ρv2 = ρgy,where ρ is the mass density and g the gravity onstant. Note that v(y) = √

2gy is inde-pendent of the liquid's density ρ. The overall out�ow rate Lvol an now be determined byan integration over y from the top level (y = 0) down to the weir's upper edge (y = h):
Lvol =

∫ h

0
v(y)wdy = w

√
2g
∫ h

0
y

1
2dy = w

√
2g 2

3
h

3
2

= w
√
2g 2

3
A− 3

2

(

nv − nref
) 3

2 =: W
(

nv − nref
) 3

2 .The real values of the �ow width w depend on the tray geometry (see e.g. Lokett [Lo86℄).However, sine we know that the geometry of the bubble ap trays in the pilot plantdistillation olumn is di�erent from ideal trays, we use the Franis weir formula as aheuristi sheme only, and estimate the two parameters W and nref by using dynamiexperimental data.





Appendix CProof of Theorem 3.4In this appendix we will give a proof of Theorem 3.4 from Se. 3.2. A similar proof of thetheorem an be found in [GVJ90, Theorem 3.3.4 and Corollary 3.3.1 (2)℄.To prove the theorem, let us subdivide the weakly ative onstraints Hw.act into thoseomponents Hw.act,+ with δµw.act,+
∗ > 0 and those Hw.act,0 with δµw.act,0

∗ = 0 in the solutionof QP (3.7), i.e., we write
Hw.act(t, w) =:

(

Hw.act,+

Hw.act,0

)

(t, w).Let us introdue the funtion
Ḡ(t, w) :=





G
Hs.act

Hw.act,+



 (t, w).We will see that this is the funtion of ative onstraints for all P (t) on t ∈ (0, ǫ), andfurthermore, that all these onstraints are strongly ative on (0, ǫ). Let us therefore onsiderthe family of equality onstrained problems
min

w ∈ R
nw
F (t, w) subjet to Ḡ(t, w) = 0,with Lagrangian funtion L̄(t, w, λ̄) := F (t, w) − λ̄T Ḡ(t, w). The system of neessaryoptimality onditions 3.3 for these problems an be stated as

∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) =

(

∇wL̄(t, w∗(t), λ̄∗(t))
−Ḡ(w∗(t))

)

= 0. (C.1)A tentative total di�erentiation of these onditions with respet to t yields
∂

∂t
∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) + ∇2

(w,λ̄)L̄(t, w∗(t), λ̄∗(t))
∂

∂t

(

w∗(t)
λ̄∗(t)

)

= 0.167



168 Proof of Theorem 3.4The matrix
∇2
(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) =

(

∇2
w L̄(t, w∗(t), λ̄∗(t)) −∇wḠ(t, w

∗(t))
−∇wḠ(t, w

∗(t))T 0

)is the Karush-Kuhn-Tuker (KKT) matrix of the nonlinear problem. For t = 0 it isinvertible as an be proven with the help of Lemma 3.2. To apply the lemma, we set
A := ∇2

w L̄(0, w∗(0), λ̄∗(0)) and B := −∇wḠ(0, w
∗(0))T , and note that ∇wḠ

T has full rankdue to the regularity of w∗(0), and that A = ∇2
w L̄ = ∇2

wL beause the multipliers of theweakly ative and inative onstraints are zero. Matrix A is positive de�nite on the nullspae NB of B = ∇wḠ
T , beause NB is a subspae of the null spae N s of the linearizedstrongly ative onstraints ∇wG̃

sT , and A is positive de�nite on N s due to the su�ientonditions 3.3.By the impliit funtion theorem, the invertibility of the KKT matrix at t = 0 ensuresthat there exists for a su�iently small ǫ > 0 a urve v̄ : (−ǫ, ǫ) → R
nw×R

nḠ , t 7→ (

w∗(t)
λ̄∗(t)

)of points satisfying ondition (C.1), with ontinuous derivative
∂

∂t

(

w∗(t)
λ̄∗(t)

)

= −
(

∇2
(w,λ̄)L̄(t, w∗(t), λ̄∗(t))

)−1 ∂

∂t
∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)). (C.2)Let us enlarge this urve v̄ in a straightforward way to yield a urve ṽ : (−ǫ, ǫ) → R

nw ×
R

nG × R
nH ,

t 7→

















w∗

λ∗








µ∗

























=

















w∗

λ∗

µ∗s.act

µ∗w.act,+

µ∗w.act,0

µ∗inact

















(t) :=

















w∗(t)


λ̄∗(t)





0
0

















.

By omparing the neessary optimality onditions 3.3 for the quadrati programming prob-lem (3.7) with Eq. (C.2) for t = 0 it an be veri�ed that
∂

∂t

















w∗

λ∗

µ∗s.act

µ∗w.act,+

µ∗w.act,0

µ∗inact

















(0) =
∂

∂t

















w∗


λ̄∗





0
0

















(0) =

















δw∗

δλ∗
δµs.act

∗

δµw.act,+
∗

0
0

















.

We will show that the restrition of this urve to the interval t ∈ [0, ǫ) is the desired urve
v of stritly optimal KKT points of the orresponding problems P (t). For this aim weshow that the points w∗(t), t ∈ [0, ǫ), are feasible and that the multipliers µ∗(t) remainnon-negative for t ∈ [0, ǫ).



169First, by ontinuity of the funtion H inact it is lear that
H inact(t, w∗(t)) > 0, ∀t ∈ [0, ǫ)if ǫ is hosen su�iently small. The total derivative of the �zero� part Hw.act,0 of the weaklyative onstraints with respet to t is the vetor

D :=
d

dt
Hw.act,0(0, w∗(0)) =

∂Hw.act,0

∂t
+
(

∇wH
w.act,0

)T
δw∗ > 0,whose omponents are positive due to the strit omplementarity assumption for the solu-tion of the quadrati programming problem (3.7). Therefore,

Hw.act,0(t, w∗(t)) = Dt+O(t2) ≥ 0, ∀t ∈ [0, ǫ),if ǫ is hosen su�iently small. Taking into aount that all other onstraints are ontainedin the vetor Ḡ, and exploiting the fat that Ḡ(w∗(t)) = 0 along the urve, we an onludethat w∗(t) are feasible points for all t ∈ [0, ǫ).Conversely, let us hek that the multipliers µ∗(t) remain non-negative for t ∈ [0, ǫ).From ontinuity we an onlude that µ∗s.act > 0, t ∈ [0, ǫ), and from δµw.act,+
∗ > 0 weonlude that

µ∗w.act,+ = δµw.act,+
∗ t+O(t2) ≥ 0, ∀t ∈ [0, ǫ).The multipliers µ∗w.act,0 and µ∗inact are idential to zero on the urve. Therefore, the points

(w∗(t), λ∗(t), µ∗(t)) are KKT points for t ∈ [0, ǫ).Furthermore, we an ensure by ontinuity of the �rst and seond order partialderivatives ∇w,λ,µL(t, w∗(t), λ∗(t), µ∗(t)) and ∇2
w,λ,µL(t, w∗(t), λ∗(t), µ∗(t)) that the tworemaining onditions of Theorem 3.3 (regularity and positive de�niteness on the lin-earized strongly ative onstraints), are satis�ed at all points on the urve v, byhoosing ǫ suitably small. Note that the set Ḡ of strongly ative onstraints on theurve (w∗(t), λ∗(t), µ∗(t)), t ∈ (0, ǫ), omprises always the set G̃s of strongly ativeonstraints at the point (w∗(0), λ∗(0), µ∗(0)). As the Hessian is positive de�nite on the nullspae of the linearized onstraints G̃s, it is also positive de�nite on the null spae of thelinearized strongly ative onstraints at a point (w∗(t), λ∗(t), µ∗(t)), whih is a subspae.





Appendix DProof of Theorem 5.3We will prove Theorem 5.3 in two steps: �rst it is shown that the assumptions of The-orem 5.1 are met and that the iterates therefore onverge towards a KKT point y∗, andseondly it is shown that this point also satis�es the su�ient onditions of optimality asstated in Theorem 3.3.Using the inversion formula (5.17)
J(y)−1 = C1(y)Ar(y)

−1C1(y)
T + C2(y)from Lemma 5.2 and the bounds (5.20a), (5.20b), and (5.20), a bound on the norm of theinverse of J−1 on the domain D an be established:

∥

∥J(y1)
−1
∥

∥ ≤ βC1βAβC1 + βC2 = β <∞, ∀ y1 ∈ D.From ontinuity of J(y), J(y)−1 is ontinuous on D. Using the de�nition (5.7) of J andthe full form of ∂R
∂y

as shown in Eq. (5.6), we an onlude with assumption (5.20e) that
∥

∥

∥

∥

J(y2)−
∂R

∂y
(y2)

∥

∥

∥

∥

=

∥

∥

∥

∥

A(y2)−
∂2L

∂(q, s)2
(y2)

∥

∥

∥

∥

≤ κ

β
, ∀ y2 ∈ D,and therefore that the �rst ondition (5.13a) of Theorem 5.1 is satis�ed:

∥

∥

∥

∥

J(y1)
−1

(

J(y2)−
∂R

∂y
(y2)

)∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D.Assumption (5.20d) ensures that ondition (5.13b) of Theorem 5.1 is also satis�ed:
∥

∥J(y1)
−1 (J(y2)− J(y3))

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D.This allows to apply Theorem 5.1 to onlude that the iterates onverge towards a point
y∗ ∈ D0 ⊂ D whih satis�es R(y∗) = 0.To prove that this point y∗ is not only a regular KKT point, but also satis�es thesu�ient onditions of optimality aording to Theorem 3.3, it su�es to show that the171



172 Proof of Theorem 5.3Hessian matrix ∇2
(q,s)L(q∗, s∗, λ∗) is positive de�nite on the null spae of the linearizedonstraints ∇(q,s)G(q

∗, s∗). For this sope �rst note that the null spae of the linearizedonstraints is spanned by the matrix
(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

,and therefore it only needs to be shown that the redued exat Hessian
Are(y

∗) :=
(

I −∂g
∂q

T (∂g
∂s

)−T
)







∂2L
∂q2

∂2L
∂q∂s

T

∂2L
∂q∂s

∂2L
∂s2







(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

is positive de�nite. To show this, let us introdue the homotopy Aα : [0, 1] → R
(nq×nq)

Aα := (1− α)Ar(y
∗) + αAre(y

∗),and note that
∥

∥

∥

∥

∥

(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)∥

∥

∥

∥

∥

≤ ‖C1‖ ≤ βC1 ,so that
‖Aα −Ar‖ =

(

I −∂g
∂q

T (∂g
∂s

)−T
)

α
(

∂2L
∂(q,s)2

− A
)

(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

≤ βC1 α
κ

βC1βAβC1 + βC2

βC1 ≤
ακ

βA
.

Aα is invertible for all α ∈ [0, 1], as its inverse an be written
A−1

α =
(

Ar − (Ar − ArA
−1
r Aα)

)−1
=
(

I− (I− A−1
r Aα)

)−1
A−1

rand
‖I−A−1

r Aα‖ = ‖A−1
r (Ar − Aα)‖

≤ ‖A−1
r ‖‖Ar − Aα‖

≤ βA
ακ

βA
= ακ ≤ κ < 1.As A0 = Ar is positive de�nite and Aα remains invertible for all α ∈ [0, 1], none of theeigenvalues of Aα an beome negative on the way from α = 0 to α = 1, so that inpartiular A1 = Are is positive de�nite.



Appendix EThe Reursive Condensing TehniqueFor the �rst step of the ondensing approah that was introdued in Se. 6.5, some matrixproduts and sums have to be omputed that involve the blok sparse matries B11, B12,
B21, B22, A11, A12, and A22, as de�ned in Se. 6.5. We will show how the sparsity an beexploited to perform these omputations e�iently.The matrix M := −B−1

11 B12 and the vetor m := −B−1
11 b1 an be alulated as follows.Computing

X0|0 := I, Xi+1|0 := XiXi|0, i = 0, . . . , N − 1,and for j = 0, . . . , N − 1

Yj+1|j := Yj, Yi+1|j := XiYi|j, i = j + 1, . . . , N − 1,as well as m0 := 0, mi+1 := Ximi − ci, i = 0, . . . , N − 1, the matrix M and the vetor
m an be written as

M :=



















X1|0 Y1|0
X2|0 Y2|0 Y2|1
X3|0 Y3|0 Y3|1 Y3|2... ... ... . . . . . .
XN |0 YN |0 YN |1 YN |2 · · · YN |N−1

0 0 0 0 0 I



















and m :=



















m1

m2

m3...
mN

0



















.

The ondensed Hessian matrix Ã := MTA11M +MTA12 + AT
12M + A22 of the ondensedQP an be e�iently omputed if the struture of A and M is exploited. Computing

Ãss :=
∑N

i=0X
T
i|0QiXi|0,

Ãs,j := XT
j|0S

T
j +

∑N
k=j+1X

T
k|0QkYk|j, for j = 0, . . . , N,

Ãi,i := Ri +
∑N

k=i+1 Y
T
k|iQkYk|i, for i = 0, . . . , N,

Ãi,j := Y T
j|iS

T
j +

∑N
k=j+1 Y

T
k|iQkYk|j, for 0 ≤ i < j ≤ N,

Ã′
i,N−1 := Ãi,N−1 + Ãi,N , for i = 0, . . . , N − 2,173



174 The Reursive Condensing Tehniqueand Ã′
s,N−1 := Ãs,N−1+ Ãs,N as well as Ã′

N−1,N−1 := ÃN−1,N−1+ ÃN−1,N + ÃT
N−1,N + ÃN,N ,we an de�ne

Ã :=















Ãss Ãs,0 · · · Ãs,N−2 Ã′
s,N−1

ÃT
s,0 Ã0,0 · · · Ã0,N−2 Ã′

0,N−1... . . . ...
ÃT

s,N−2 ÃT
0,N−2 · · · ÃN−2,N−2 Ã′

N−2,N−1

Ã′ T

s,N−1 Ã′ T

0,N−1 · · · Ã′ T

N−2,N−1 Ã′
N−1,N−1















.

Similarly, the ondensed objetive gradient ã = MTA11m + AT
12m + MTa1 + a2 =

(ãs, ã0, . . . , ãN−2, ã
′
N−1) an be alulated with

ãTs := gx0
T +

N
∑

i=1

(

mT
i Qi + gxi

T
)

Xi|0,and for j = 0, . . . , N

ãTj := gqj
T
+mT

j S
T
j +

N
∑

k=j+1

(

mT
i Qi + gxi

T
)

QkYk|j,and
ã′N−1 := ãN−1 + ãN .The two remaining ondensed onstraint funtions

b̃+ B̃∆w2 :=

(

b̃s
b̃r

)

+

(

B̃s

B̃r

)

∆w2,

c̃+ C̃∆w2 :=











c̃r
c̃0...̃
cN











+











C̃r

C̃0...̃
CN











∆w2,are built aording to
b̃s := sx0 − x0, B̃s := −I,

b̃r := re +Re,xmN , B̃r := Re,x
(

XN |0|YN |0| . . . |YN |N−1

)

+ (0| . . . |0|Re,q),

c̃r := ri +Ri,xmN , C̃r := Ri,x
(

XN |0|YN |0| . . . |YN |N−1

)

+ (0| . . . |0|Ri,q),

c̃i = hi +Hx
i mi, C̃i :=

(

Hx
i Xi|0|Hx

i Yi|0| . . . |Hx
i Yi|i−1|Hq

i |0| . . .
)

,

c̃N = hN +Hx
NmN ,

C̃N :=
(

Hx
NXN |0|Hx

NYN |0| . . . |Hx
NYN |N−2|Hx

NYN |N−1 +Hq
N

)

.
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