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Abstra
tE�
ient numeri
al methods for the real-time solution of optimal 
ontrol problems arisingin nonlinear model predi
tive 
ontrol (NMPC) are presented. The pra
ti
al appli
abilityof the methods is demonstrated in an experimental appli
ation to a pilot plant distillation
olumn, involving the real-time optimization of a large s
ale di�erential algebrai
 pro
essmodel, with sampling times of only a few se
onds.The solution approa
h is based on the dire
t multiple shooting method, whi
h allowsto 
ombine the use of advan
ed, fully adaptive DAE solvers with the advantages of a simul-taneous strategy. The real-time approa
h is 
hara
terized by an initial value embeddingstrategy, that e�
iently exploits solution information in subsequent optimization problems.Dovetailing of the solution iterations with the pro
ess development in a real-time iterations
heme allows to redu
e sampling times to a minimum, but maintains all advantages of afully nonlinear treatment of the optimization problems. It is shown how the 
omputationsin ea
h real-time iteration 
an be divided into a preparation phase and a 
onsiderablyshorter feedba
k phase, whi
h avoids the delay of one sampling time that is present in allprevious NMPC s
hemes. A Gauss-Newton approa
h for least squares integrals is realizedwhi
h allows to 
ompute an ex
ellent Hessian approximation at negligible 
omputational
osts.The 
ontra
tion properties of the algorithm are investigated theoreti
ally, and 
ontra
-tivity of the real-time iterates is shown under mild 
onditions. Bounds on the loss ofoptimality with respe
t to the optimal solution are established.In an experimental proof-of-
on
ept study the developed numeri
al methods are appliedto the NMPC of a pilot plant distillation 
olumn situated at the Institut für Systemdy-namik und Regelungste
hnik at the University of Stuttgart. A suitable system model isdeveloped, whi
h is sti� and 
omprises more than 200 state variables, and the system pa-rameters are �tted to experimental data. A variant of the Extended Kalman Filter (EKF)is developed for state estimation. Using the real-time optimization algorithm, samplingtimes of less than 20 se
onds and feedba
k delays below 400 millise
onds 
ould be realizedunder pra
ti
al 
onditions. The s
heme shows good 
losed-loop performan
e, espe
ially forlarge disturban
es.In a numeri
al experiment, the periodi
 
ontrol of an unstable system, an airbornekite that is �ying loopings, is investigated. The algorithm shows ex
ellent robustness andreal-time performan
e for this 
hallenging on-line optimization example.
KeywordsBoundary Value Problems, Constrained Gauss-Newton, Di�erential Algebrai
 Equations,Dire
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al Pro
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k Control, Periodi
 Control, Real-Time Opti-mization
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Introdu
tionOptimization te
hniques have a fundamental impa
t on 
urrent industrial pra
ti
e. Opti-mization plays a 
ru
ial role not only in operations resear
h and in produ
t design, but alsoin the design of dynami
 industrial pro
esses. In many 
ases, an optimal 
ontrol problemis solved o�-line, i.e., before the a
tual pro
ess operation begins, and a variety of highlydeveloped algorithms have been developed to atta
k this task.In pra
ti
al appli
ations, however, 
ontrol traje
tories that are the result of an o�-lineoptimization are of limited appli
ability, as the real pro
ess does not typi
ally 
oin
ide
ompletely with the mathemati
al model and is most probably subje
t to disturban
es.Therefore, the generation of optimization-based feedba
k 
ontrols is of major pra
ti
alinterest. As optimal feedba
k 
ontrols 
annot usually be pre
al
ulated in advan
e for allpossible disturban
es, the need for real-time optimization of the 
ontrolled pro
ess arises.Model Predi
tive ControlThe idea of model predi
tive 
ontrol (MPC) is to determine the 
ontrol at time t0 bysolving an optimal 
ontrol problem on a predi
tion horizon [t0, t0 + T ] (see Fig. 1). Theresulting optimal 
ontrols are given to the real pro
ess for a short time δ only, and at time
t0 + δ a new problem is solved on a horizon [t0 + δ, t0 + T + δ] that is moved forward. Asequen
e of optimization problems is formulated and solved in real-time, whi
h providesthe possibility of rea
ting to disturban
es. Linear model predi
tive 
ontrol (LMPC), thatis based on 
onstrained linear system models, has a
hieved a state of 
onsiderable maturity(
f. Gar
ía et al [GPM89℄, Lee et al. [LMG94℄). It has had a strong impa
t on industrial
ontrol pra
ti
e and LMPC te
hniques are nowadays widely applied, espe
ially in thepro
ess industries (
f. Qin and Badgwell [QB96℄).Nonlinear Model Predi
tive ControlFor pro
esses operating during load 
hanges, or for bat
h and periodi
 pro
esses, however,nonlinear models that are based on �rst prin
iples are expe
ted to 
apture the system be-haviour more a

urately than linear ones. Nonlinear model predi
tive 
ontrol (NMPC)promises to in
rease produ
tivity and 
ontrol performan
e and has long been investi-gated theoreti
ally (for overview arti
les see e.g. Rawlings et al. [RMM94℄, Allgöwer etal. [ABQ+99℄, De Ni
olao et al. [DMS00℄, or Mayne [May00℄).1



2 Introdu
tion
� past
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ontrols

6
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ontrols
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Figure 1: The prin
iple of model predi
tive 
ontrol: The optimization problem at time t0,for the 
urrent system state x0.In the industry, however, NMPC is still being per
eived as an a
ademi
 
on
ept ratherthan a pra
ti
able 
ontrol strategy, and in a re
ent survey, Qin and Badgwell [QB00℄report only 88 NMPC appli
ations worldwide, only 5 of whi
h are based on �rst prin
iplemodels. As detailed nonlinear pro
ess models are in
reasingly being used for the designof industrial pro
esses (see, e.g. Pantelides and Barton [PB93℄, Ross et al. [RBP+99℄,or Sorensen [Sor99℄) they may, as a byprodu
t, also be
ome easily available for NMPCappli
ations.The di�
ulty of solving the arising optimal 
ontrol problems in real-time, however, iswidely regarded as the prin
ipal impediment to a pra
ti
al appli
ation of NMPC. In theirsurvey, Qin and Badgwell [QB00℄ point out that �speed and the assuran
e of a reliablesolution in real-time are major limiting fa
tors in existing appli
ations.�In this thesis, we present a new approa
h to respond to the 
hallenge of real-timeoptimization in NMPC.Existing Real-Time Optimization Approa
hesIn the last de
ade, the area of numeri
al te
hniques for the on-line solution of dynami
optimization problems in NMPC has undergone rapid development. Most real-time ap-proa
hes are appli
ations of optimal 
ontrol methods whi
h were originally developed foro�-line use, and therefore they 
an be easily 
lassi�ed within the established framework ofdynami
 optimization methods.



3Dynami
 optimization algorithms based on the dire
t solution approa
h have provento be parti
ularly su

essful for the pra
ti
al solution of 
onstrained optimal 
ontrol prob-lems. In the dire
t approa
h, the originally in�nite optimal 
ontrol problem is parame-terized to yield a �nite dimensional Nonlinear Programming (NLP) problem, that 
an besolved e�
iently by highly developed variants of sequential quadrati
 programming (SQP)(Han [Han76℄ and Powell [Pow78℄). A variety of strategies for formulating the �nite di-mensional NLP exists. The approa
hes 
an roughly be 
lassi�ed into sequential and simul-taneous solution strategies.Sequential Approa
hThe sequential approa
h parameterizes the 
ontrol traje
tory and eliminates the 
or-responding state traje
tory from the optimization problem by a numeri
al solution ofthe dynami
 model equations (
f. Hi
ks and Ray [HR71℄, Sargent and Sullivan [SS78℄,Kraft [Kra85℄). Only the 
ontrol parameters remain as degrees of freedom in the NLP. Sim-ulation and optimization 
al
ulations are performed sequentially , one after the other. Theapproa
h 
an easily be 
oupled with advan
ed simulation tools and is applied in many pra
-ti
al o�-line appli
ations (
f. e.g. Pantelides et al. [PSV94℄, Vassiliadis [VSP94a, VSP94b℄,Engl et al. [EKKvS99℄; an overview of existing software pa
kages 
an be found in Binderet al. [BBB+01℄).Many real-time optimization s
hemes for NMPC are based on the sequential approa
h.We parti
ularly mention the so 
alled multistep, Newton-type 
ontrol algorithm that wasproposed by Li and Biegler [LB89℄ and de Oliveira and Biegler [OB95b℄ and whi
h 
or-responds to a 
onstrained Gauss-Newton method. This approa
h was often applied fornumeri
al tests of NMPC, see e.g. Abel et al. [ADM95℄ and M'hamdi et al. [MHAM96℄. Asequential approa
h was also used, e.g., by Weber [Web95℄ and Chen [Che97℄. For a large-s
ale appli
ation of the sequential approa
h in real-time optimization see also Kronsederet al. [KvSB01℄.Sequential optimization s
hemes for NMPC su�er from the drawba
k that poor initialguesses for the 
ontrol traje
tory may lead the predi
ted state traje
tories far away fromdesired referen
e traje
tories. This often 
auses an unne
essarily strong nonlinearity ofthe resulting NLPs and poor 
onvergen
e behaviour, espe
ially for unstable systems. Insome 
ases, an open-loop simulation on a longer horizon is even impossible (see Fig 8.4 inChap. 8 for an example).Simultaneous Approa
hThe simultaneous approa
h avoids this di�
ulty by parameterizing both, the 
ontrol andthe state traje
tory, and by solving the dynami
 model equations and the 
ontrol op-timization problem simultaneously in a large 
onstrained NLP. The parameterized statetraje
tory be
omes a part of the optimization variables, and instability and nonlinearityof the dynami
 model 
an be better 
ontrolled.



4 Introdu
tionMany resear
hers have applied 
ollo
ation in order to parameterize the dynami
 model(see e.g. Tsang et al. [THE75℄, Bo
k [Bo
83℄, Biegler [Bie84℄, Cuthrell and Biegler [CB89℄,S
hulz [S
h96℄), resulting in very large, but also very sparse NLPs. The 
ollo
ation ap-proa
h has been proposed for the solution of NMPC optimization problems by Bieglerin [Bie00℄.A se
ond simultaneous approa
h to optimal 
ontrol, the dire
t multiple shootingmethod, was presented by Plitt in 1981 [Pli81℄. This method forms the basis for ourreal-time algorithm. The optimization horizon of interest is divided into a number ofsubintervals with lo
al 
ontrol parameters, and the dynami
 model equations are solvedindependently on ea
h of these subintervals, 
f. Chap. 2. Continuity of the state traje
toryfrom one interval to the next is enfor
ed on the NLP level only, thus o�ering the possi-bility to deal with unstable and strongly nonlinear system models, as 
ollo
ation. Themethod has long been known as a fast o�-line optimization method in ODE and DAE (seee.g. Bo
k et al. [BP84, BES88, Bo
87, BBLS99℄, Tanartkit and Biegler [TB95, TB96℄,Leineweber [Lei96, Lei99℄, Petzold et al. [PRG+97℄, Hinsberger et al. [HMP96, Hin98℄).Re
ently, the dire
t multiple shooting method was proposed for real-time optimizationproblems and NMPC. Santos et al. [SOB95℄ emphasize the strength of the method indealing with unstable modes and apply it to an NMPC simulation example, the TennesseEastman problem (Downs and Vogel [DV93℄), but do not address the question of real-timefeasibility. Leineweber et al. [LBS97℄ proposes a s
heme for the fast reoptimization of bat
hpro
esses after large disturban
es and presents an appli
ation example from bio
hemi
alengineering.In the last year, an experimental feasibility study of NMPC based on the 
onventionaldire
t multiple shooting method has been presented by Santos et al. [SAC+00, San00℄,for an experimentally simulated unstable 
ontinuous stirred tank rea
tor. The nonlinear�rst prin
iple model 
onsists of four di�erential states and two 
ontrols. Choosing shortpredi
tion horizons, optimization times of a few se
onds are realized, whi
h is su�
ientlyfast for the 
onsidered example.Despite these su

essful appli
ations of dire
t multiple shooting to real-time optimiza-tion, the use of an algorithm that was essentially designed for o�-line use 
ertainly hasits limits, and this fa
t is re�e
ted in the moderate system sizes of the above examples.Large s
ale problems with stri
t real-time 
onstraints have therefore not been treated inexperimental appli
ation examples so far.The Conventional S
hemeMost numeri
al real-time optimization s
hemes are based on the idea that one movinghorizon optimization problem 
an be formulated after the other, and that ea
h of theseproblems 
an be solved independently, with higher or lower a

ura
y. The solution methoditself is, in dire
t approa
hes, typi
ally an iterative SQP type method. The followingalgorithmi
 s
heme summarizes the 
onventional s
heme:1. Formulate an optimization problem a

ording to the k-th data



52. Initialize the solution pro
edure.3. Perform iterations.4. Stop when a termination 
riterion is satis�ed (or when the time limit is rea
hed)5. Give the �rst 
ontrol value to the plant.6. In
rease k by one and go to 1.The fo
us is on 
hosing an e�
ient o�-line method and to formulate the optimizationproblems in su
h a way that the real-time requirements 
an be met. Note that a delay ofone sampling time is present in this s
heme.The Real-Time Iteration S
hemeIn 
ontrast to a 
onventional s
heme, our real-time iteration approa
h shifts the fo
us fromthe sequen
e of optimization problems towards the solution algorithm itself. The algorithmis regarded to be iterating 
ontinuously � and while the algorithm is iterating, the problemdata are modi�ed from one iteration to the next. The s
heme 
an be sket
hed as follows:1. Prepare the k-th real-time iteration as far as possible without knowledge of the k-thdata.2. When the k-th data are available, modify the problem, and perform qui
kly those
al
ulations that are ne
essary to obtain the �rst 
ontrol value.3. Give this 
ontrol value immediately to the plant.4. Perform the remaining 
al
ulations of the k-th iterate.5. In
rease k by one and go to 1.This approa
h does only perform one iteration per sampling time and thus allows to redu
ethe sampling times 
onsiderably. Furthermore, the feedba
k step 2 is itself mu
h shorterthan a full iteration, so that the response delay 
an pra
ti
ally be avoided. Note thatthe s
heme still o�ers the advantages of a fully nonlinear treatment of the optimizationproblems.The approa
h 
an only perform well if the iteration s
heme has good 
ontra
tion prop-erties � this is typi
ally the 
ase for simultaneous approa
hes like dire
t multiple shooting� and if the problem modi�
ations are implemented in su
h a way that they have minimalinterferen
e on the iterates.



6 Introdu
tionThe Initial Value Embedding StrategyThe 
ru
ial observation is that essentially one parameter su�
es to distinguish betweendi�erent optimization problems, the initial value x0 of the state traje
tory (
f. Fig. 1). Ifderivative information with respe
t to x0 is available, whi
h is the 
ase for simultaneoussolution approa
hes, neighboring problems 
an be initialized very e�
iently by a so 
alledinitial value embedding strategy. After ea
h problem modi�
ation, the strategy obtainsan ex
ellent �rst order 
orre
tion in the state and 
ontrol traje
tory that is based on theprevious system linearization. Roughly spoken, the approa
h allows the in
lusion of linearMPC feedba
k into the predi
ted traje
tory, before a new system linearization is performed.The approa
h exploits the similarity between subsequent problems as mu
h as possible. In
onjun
tion with the ex
ellent 
ontra
tion properties of a simultaneous solution approa
hlike dire
t multiple shooting, the real-time iterates stay very 
lose to the exa
t solutions ofthe optimization problem.The idea to dovetail the solution iterations by employing the initial value embeddingidea was �rst proposed by Bo
k et al. [BDLS00℄, with a fo
us on shrinking horizon pro-
esses. The initial value embedding strategy without a dovetailing of iterations and pro-
ess was implemented in a �rst version of the on-line dire
t multiple shooting method(Diehl [Die98℄), and several numeri
al feasibility studies have been 
arried out with thisalgorithm: in Diehl et al. [DBLS99℄ real-time feasibility of the NMPC of a 
ontinuousstirred tank rea
tor is shown for rather long 
ontrol horizons (
f. Se
 1.2); in Nagy etal. [NFD+00℄, Allgöwer et al. [AFN+00℄, and Findeisen et al. [FAD+00℄ the NMPC of alarge s
ale pro
ess 
ontrol example, namely a binary distillation 
olumn, is 
onsidered, andreal-time feasibility is demonstrated in numeri
al simulations.In this thesis we present the newly developed real-time iteration s
heme and inves-tigate the 
ontra
tion properties of the approa
h, and present experimental results thathave been obtained by an appli
ation of the developed algorithm to the NMPC of a pilotplant distillation 
olumn at the Institut für Systemdynamik und Regelungste
hnik (ISR),University of Stuttgart, employing a sti� DAE optimization model with over 200 states.We mention here that several singular features of algorithm have been presented byother resear
hers in the area of pra
ti
al real-time optimization.In parti
ular, a one-iteration s
heme has been proposed by Li and Biegler [LB89℄, for thesequential approa
h. Their s
heme, however, did not in
lude the initial value embeddingstrategy for the initialization from one problem to the next, and it seems that the s
hemewas not further pursued in appli
ation examples. In a subsequent paper, de Oliveira andBiegler [OB95a℄ fo
us on the 
onverged form of the algorithm, whi
h essentially equals a
onventional Gauss-Newton method for the sequential approa
h.1In the appli
ation of 
onventional optimization s
hemes to on-line 
ontrol, the questionof how to initialize subsequent problems has found some attention in the literature. Lieb-man [LEL92℄ observes that warm starts of the optimization algorithm 
an save up to 80%1Note that it would be possible to 
ombine the initial value embedding idea with a sequential approa
h,though it is not as straightforward as for simultaneous approa
hes.



7
omputation time, 
f. also Biegler and Rawlings [BR91℄. A shift strategy that a

ounts forthe movement of the optimization horizon forward in time is proposed, e.g., by de Oliveiraand Biegler [OB95a℄ for the sequential approa
h.Highlights of the Thesis and OverviewThe aim of this thesis is threefold. First, we want to des
ribe in full detail how the real-timeiteration s
heme 
an be realized for the dire
t multiple shooting method. This is done inChapters 2, 4 and 6. Se
ondly, the theoreti
al properties of the s
heme are investigatedin Chapter 5, whi
h 
ontains a 
ontra
tivity result and bounds on the loss of optimality.Finally, we demonstrate the pra
ti
al appli
ability of the approa
h in an experimentalstudy that involves the NMPC of a pilot plant distillation 
olumn, whi
h is modelled by alarge s
ale pro
ess model (Chapter 7), and show in a simulation study that the approa
h
an su

essfully be applied to an unstable periodi
 
ontrol example with stri
t real-timerequirements (Chapter 8).1. In Chapter 1, we introdu
e the 
lass of real-time optimal 
ontrol problems that
an be treated with our approa
h. We also introdu
e a guiding example problemfrom 
hemi
al engineering that will be used several times in the thesis for illustra-tive purposes. Some theory regarding optimal feedba
k 
ontrol and nonlinear modelpredi
tive 
ontrol is brie�y reviewed.2. The dire
t multiple shooting parameterization is reviewed in Chapter 2 and theparameterized nonlinear programming (NLP) problem that will be regarded in theremainder of this thesis is formulated and dis
ussed.3. In Chapter 3, we re
all optimality 
onditions for 
onstrained NLPs and review aresult from parametri
 optimization, whi
h investigates the solution of neighboringoptimization problems. The Sequential Quadrati
 Programming (SQP) te
hnique isdes
ribed, and its astonishing power in the solution of perturbed optimization prob-lems is shown for a one dimensional analog of the initial value embedding strategy.4. The new real-time iteration algorithm is presented in Chapter 4. We present theinitial value embedding strategy and show how the approa
h 
an be realized onshrinking and on moving horizons.5. Chapter 5 
ontains the major theoreti
al results of this thesis. After a review of the
onvergen
e properties for general o�-line Newton type methods in Se
. 5.1, we show
ontra
tivity of the real-time iterates for the on-line problem on shrinking horizons(Se
. 5.2). The 
ontra
tivity result is exploited to investigate the properties of theon-line solution, 
ompared to the optimal o�-line solution.6. The spe
i�
 algorithmi
 realization of one real-time iteration is des
ribed in Chap-ter 6. The 
hapter mostly presents well known te
hniques from the o�-line dire
t



8 Introdu
tionmultiple shooting method in a new setting, leading to the division into preparationand feedba
k phase. However, a newly developed Gauss-Newton approa
h for leastsquares integrals is presented in Se
. 6.4, whi
h 
an be employed for both, the o�-and the on-line dire
t multiple shooting method.7. Experimental results are presented in Chapter 7. The study involves the NMPC of apilot plant distillation 
olumn using a sti� di�erential algebrai
 optimization modelwith over 200 states. We develop the system model and des
ribe how the systemparameters were determined using experimental data from the real 
olumn. Theexperimental results demonstrate that NMPC with a large s
ale pro
ess model isfeasible.8. To demonstrate the power and versatility of the proposed real-time iteration s
heme,we present in Chapter 8 numeri
al simulations for an unstable periodi
 
ontrol exam-ple, namely an airborne kite. Control aim is to let the kite �y loopings. A new kitemodel is developed and a periodi
 orbit determined. Numeri
al tests show the real-time feasibility and an astonishing robustness of the real-time optimization approa
heven for large disturban
es.9. We �nally 
on
lude this thesis with a summary and an outlook of interesting futuredevelopments.The developed real-time algorithm, that has also been presented in some publi
ations(Bo
k et al. [BDS+00℄, Diehl et al. [DBS+01, DUF+01℄), is 
urrently 
onsidered for use inan industrial appli
ation.



Chapter 1Real-Time Optimal ControlIn this 
hapter we will �rst introdu
e a general 
lass of optimal 
ontrol problems for whi
hour algorithms are designed, and review some theory regarding optimal feedba
k 
ontroland nonlinear model predi
tive 
ontrol.1.1 Optimal Control Problems in DAEDi�erential Algebrai
 System ModelsLet us assume that a system that we want to 
ontrol 
an be des
ribed by a di�erential-algebrai
 equation (DAE) model of the following form:
B(x(t), z(t), u(t), p, t) · ẋ(t) = f(x(t), z(t), u(t), p, t)

0 = g(x(t), z(t), u(t), p, t).Here, x ∈ R
nx and z ∈ R

nz denote the di�erential and the algebrai
 state ve
tors, re-spe
tively, u ∈ R
nu is the ve
tor valued 
ontrol fun
tion, whereas p ∈ R

np is a ve
tor of
onstant system parameters su
h as rea
tion 
onstants or material parameters.We also assume that the Ja
obian ∂g
∂z
(·) and the matrix B(·) are invertible, so that theDAE is of index-one and of semi-expli
it type.Obje
tive Fun
tionalLet us introdu
e a general Bolza type obje
tive fun
tional on a time horizon [t0, tf ] withstart time t0 and �nal time tf

∫ tf

t0

L(x(t), z(t), u(t), p, t) dt + E(x(tf ), z(tf ), p, tf),where L is often 
alled the Lagrange term, and E the Mayer term of the obje
tive. Thisobje
tive fun
tional de�nes the overall �
osts� that shall be minimized.9



10 Real-Time Optimal ControlLeast Squares Obje
tives for Tra
king Problems: An important sub
lass of optimal
ontrol problems are tra
king problems that have as their aim to determine 
ontrols thatlead the system state or more general an output fun
tion l(x(t), z(t), u(t), p, t) ∈ R
nl �
lose�to some spe
i�ed referen
e output traje
tory lr(p, t) ∈ R

nl on the interval t ∈ [t0, tf ].Typi
ally, the distan
e from the referen
e traje
tory is measured by the integral of asquared di�eren
e, that may be weighted by a positive de�nite matrix Q, so that theintegral
∫ tf

t0

‖Q 1
2 · (l(x(t), z(t), u(t), p, t)− lr(t, p))‖22 dtshall be minimized.1By rede�ning l(x(t), z(t), u(t), p, t), we 
an assume that Q = I and lr(p, t) = 0, ∀ t ∈

[t0, tf ]. By also introdu
ing a least squares Mayer term with a ve
tor valued residualfun
tion e(x(tf ), z(tf ), p, tf) ∈ R
ne, the general form of an obje
tive fun
tional in leastsquares form is given as

∫ tf

t0

‖l(x(t), z(t), u(t), p, t)‖22 dt + ‖e(x(tf ), z(tf ), p, tf)‖22.This form 
an be exploited for the e�
ient solution of the optimization problems by aGauss-Newton approa
h that is presented in Se
tion 6.4.Path Constraints and Boundary ConditionsThe state and 
ontrol traje
tories are required to satisfy so 
alled path 
onstraints on thehorizon of interest
h(x(t), z(t), u(t), p, t) ≥ 0, t ∈ [t0, tf ].The most 
ommon form of this 
onstraint type are minimum and maximum values for the
ontrols, but also e.g. safety restri
tions on the system state may enter here. In addition,terminal equality or inequality 
onstraints

re(x(tf ), z(tf ), p, tf) = 0

ri(x(tf ), z(tf ), p, tf) ≥ 0may be imposed, e.g. to spe
ify that a semi-bat
h pro
ess should stop when the tank isfull. In some nonlinear model predi
tive 
ontrol formulations, the terminal 
onstraints helpto guarantee nominal stability (
f. Se
. 1.4.1).One 
onstraint that plays an important role in the presented algorithms is the initialvalue 
onstraint
x(t0) = x0.1We use the de�nition ‖l‖22 :=

∑nl

i=1 l
2
i
.



1.1 Optimal Control Problems in DAE 11We will also treat the �xed parameters p and the initial time t0 as if they were 
onstrainedvariables:
p = p̄

t0 = t̄0The introdu
tion of t0 and p as trivially 
onstrained optimization variables seems to be anunne
essary blow-up of the problem. However, this formulation will turn out to be 
ru
ialfor the proposed real-time algorithms.Elimination of Parameter and Time Dependen
eFor notational simpli
ity we will in the remainder of this thesis drop the dependen
e of theproblem fun
tions on the system parameters p and the time t. This is no loss of generality:by introdu
ing an augmented state ve
tor
x̃ :=





x
p
t̃



 and initial 
ondition x̃0 :=





x0
p̄
t̄0



 ,and introdu
ing the augmented di�erential equation B̃(·) ˙̃x = f̃(·) with
B̃(·) :=





B(·) 0 0
0 Inp 0
0 0 1



 , and f̃(·) :=





f(·)
0
1



 ,the original formulation of the initial value problem formulation 
an be re
aptured if the�
lo
k� variable t̃(t) is inserted wherever a dire
t dependen
e of the time t was present.Note, however, that the trivial additional di�erential equations are treated indepen-dently from the others in the numeri
al solution pro
edures, for reasons of e�
ien
y. Fur-thermore, only those parameters p that may have di�erent values at pra
ti
ally relevantpro
ess 
onditions should be kept in this way, whereas all de�nitely known parameters 
anbe taken as 
onstants that are �hidden� in the problem fun
tions.As the optimization problem has be
ome time independent, the time horizon of interestmay start at t0 = 0. Let us de�ne T to be the horizon length.If the �nal time tf should be �xed, this 
an now be a
hieved by formulating a terminalequality 
onstraint
re(x̃(T )) := t̃(T )− tf = 0.Note that in this 
ase the duration T depends impli
itly on the initial value x̃0, be
auseat a feasible solution tf = t̃(T ) = t̃(0) + T = t̄0 + T , so that T = tf − t̄0.



12 Real-Time Optimal Control1.1.1 Problem FormulationWe 
an now formulate an optimal 
ontrol problem
Poc(x0) : min

u(·), x(·),
z(·), (T )

∫ T

0

L(x(t), z(t), u(t)) dt + E(x(T ), z(T )) (1.1a)subje
t to
B(x(t), z(t), u(t)) · ẋ(t)− f(x(t), z(t), u(t)) = 0, t ∈ [0, T ], (1.1b)

g(x(t), z(t), u(t)) = 0, t ∈ [0, T ], (1.1
)
x(0)− x0 = 0, (1.1d)

re(x(T ), z(T )) = 0, (1.1e)
ri(x(T ), z(T )) ≥ 0, (1.1f)

h(x(t), z(t), u(t)) ≥ 0, t ∈ [0, T ]. (1.1g)The length T may either be �xed, or appear as a degree of freedom in the optimizationproblem.Solving the optimal 
ontrol problem (1.1) for an initial value x0 we obtain optimal tra-je
tories x∗(t; x0) and z∗(t; x0) and an open-loop optimal 
ontrol u∗(t; x0), for t ∈ [0, T (x0)].In order to keep the dependen
y of the optimal traje
tories on the initial value x0 in mind,we have taken them as additional arguments to the solution fun
tions.We shall now introdu
e as a guiding example an optimal 
ontrol problem from 
hemi
alengineering, whi
h will be 
ited several times in this thesis for illustrative purposes.1.2 A Guiding Example: Continuous Stirred Tank Re-a
torLet us 
onsider a 
ontinuous stirred tank rea
tor (CSTR) model that was introdu
ed byChen et al. [CKA95℄ as a ben
hmark example for Nonlinear Model Predi
tive Control. Therea
tor is designed to produ
e 
y
lopentenol from 
y
lopentadiene by an a
id-
atalyzedele
trophili
 hydration in aqueous solution, an exothermal rea
tion that makes a 
oolingja
ket ne
essary. The 
onsidered ODE model was originally introdu
ed by Klatt andEngell [KE93℄.1.2.1 Dynami
 Model of the CSTRA s
hemati
 diagram of the rea
tor (taken from [CKA95℄) is shown in Fig. 1.1. The rea
-tion and heat transfer s
heme developed by Klatt and Engell [KE93℄ is based on physi
almodelling; it leads to an ODE model with four states and two 
ontrols.



1.2 A Guiding Example: Continuous Stirred Tank Rea
tor 13

Figure 1.1: S
hemati
 diagram of the CSTR (as shown in [CKA95℄)
The feed in�ow has temperature ϑ0 and 
ontains only 
y
lopentadiene (substan
e A)with 
on
entration cA0. Its �ow rate V̇ 
an be 
ontrolled. In order to keep the liquid tankvolume 
onstant, the out�ow is kept at the same rate as the in�ow. The out�ow 
ontains aremainder of 
y
lopentadiene, the produ
t 
y
lopentenol (substan
e B), and two unwantedby-produ
ts, 
y
lopentanediol (substan
e C) and di
y
lopentadiene (substan
e D), with
on
entrations cA, cB, cC , and cD. The s
heme for this so-
alled van der Vusse rea
tion isgiven as

A
k1−→ B

k2−→ C

2A
k3−→ D.The rea
tion rates ki depend on the rea
tor temperature ϑ via an Arrhenius law

ki(ϑ) = ki0 · exp
(

Ei

ϑ/oC + 273.15

)

, i = 1, 2, 3.The temperature ϑK in the 
ooling ja
ket is held down by an external heat ex
hangerwhose heat removal rate Q̇K 
an be 
ontrolled. As the substan
es C and D are unwantedand do not rea
t further, it is not ne
essary to keep tra
k of their 
on
entrations.



14 Real-Time Optimal ControlThe nonlinear ODE model 
an be derived from 
omponent balan
es for the substan
esA and B in the aqueous solution, and from enthalpy balan
es for the rea
tor and 
oolingja
ket:
˙cA =

V̇

VR
(cA0 − cA) −k1(ϑ)cA −k3(ϑ)c2A

˙cB = − V̇

VR
cB +k1(ϑ)cA −k2(ϑ)cB

ϑ̇ =
V̇

VR
(ϑ0 − ϑ) +

kwAR

ρCpVR
(ϑK − ϑ)

− 1

ρCp

(

k1(ϑ)cAH1 + k2(ϑ)cBH2 + k3(ϑ)c
2
AH3

)

˙ϑK =
1

mKCPK

(

Q̇K + kwAR(ϑ− ϑK)
)

.

(1.2)
Here, CPK and Cp denote the heat 
apa
ities of 
oolant and aqueous solution, ρ the solu-tion's density, H1,H2, and H3 the rea
tion enthalpies. Values of these parameters as wellas for the Arrhenius 
oe�
ients ki0 and Ei for i = 1, 2, 3 and the employed rea
tor spe
i�
quantities (volume VR, surfa
e AR and heat transfer 
oe�
ient kW for 
ooling ja
ket and
oolant mass mK) are listed in Table 1.1. By introdu
ing the system state x and the
ontrol ve
tor u as

x =









cA
cB
ϑ
ϑK









and u =

(

V̇
VR

Q̇K

)

we 
an summarize Eqs. (1.2) as
ẋ = f(x, u).The result of a steady state optimization of the yield =

cB |S
cA0

with respe
t to the designparameter ϑ0 (feed temperature) and the two 
ontrols yields the steady state and 
ontrols
xS =









2.1402 mol
l

1.0903 mol
l

114.19 ◦C
112.91 ◦C









and uS =

(

14.19 h−1

−1113.5 kJ
h

)

.We will take this steady state as a desired referen
e value in the optimal 
ontrol problemthat follows � please note that it is of no importan
e in the following that xS, uS was itselfthe result of an optimization; the only property that is important for the optimal 
ontrolproblem is that f(xS, uS) = 0.Note that we do not introdu
e the 
onstant system parameters as additional variables,be
ause we assume that they will never be subje
t to 
hanges.
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tor 15Symbol Value Symbol Value
k10 1.287 ·1012h−1 ρ 0.9342 kg

l

k20 1.287 ·1012h−1 Cp 3.01 kJ
kg·K

k30 9.043 ·109h−1 kw 4032 kJ
h·m2·K

E1 -9758.3 AR 0.215 m2

E2 -9758.3 VR 10 l
E3 -8560 mK 5 kg
H1 4.2 kJ

mol
CPK 2.0 kJ

kg·K

H2 -11.0 kJ
mol

cA0 5.1 mol
l

H3 -41.85 kJ
mol

θ0 104.9 ◦CTable 1.1: Constant system parameters.1.2.2 The Optimal Control ProblemGiven an initial state x0, the optimal 
ontrol problem Poc(x0) is to steer the system safelyand qui
kly into the steady state xS. We take the formulation 
hosen by Chen in [Che97℄,that aims at minimizing the integrated weighted quadrati
 deviaton of the traje
tory fromthe optimal steady state values. We de�ne a Lagrange term
L(x, u) := (x− xS)

TQ(x− xS) + (u− uS)
TR(u− uS)with diagonal matri
es

Q :=









0.2 mol−2 l2 0 0 0
0 1.0 mol−2 l2 0 0
0 0 0.5 ◦C−2 0
0 0 0 0.2 ◦C−2







and
R :=

(

0.5h2 0
0 5.0 · 10−7 kJ−2 h2

)

.Control bounds uLB ≤ u(t) ≤ uUB are given by
uLB :=

(

3.0 h−1

−9000 kJ
h

) and uUB :=

(

35.0 h−1

0 kJ
h

)

,so that we de�ne the path inequality 
onstraint fun
tion to be:
h(x(t), u(t)) :=

(

u(t)− uLB
uUB − u(t)

)

≥ 0.We formulate the following optimal 
ontrol problem Poc(x0):
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min

u(·),x(·)

∫ T

0

L (x(t), u(t)) dt (1.3)subje
t to
ẋ(t) = f (x(t), u(t)) , ∀ t ∈ [0, T ],

x(t0) = x0,

h(x(t), u(t)) ≥ 0, ∀ t ∈ [0, T ].In 
ontrast to the formulation 
hosen in [Che97℄ we 
hoose a 
onsiderably longer horizonlength of T = 2000 se
onds, whi
h is su�
iently large to allow the assumption that ourproblem formulation is a good approximation for T = ∞.The optimal traje
tories x∗(t; x0) and u∗(t; x0) of an example solution of this optimiza-tion problem for the initial value
x0 :=









1.0 mol
l

0.5 mol
l

100 ◦C
100 ◦C









(1.4)are shown in Figure 1.2.1.3 Optimal Feedba
k ControlLet us for a moment assume that we 
an pre
ompute, for all x0 ∈ R
nx for whi
h theoptimization problem Poc(x0) has a solution, the optimal 
ontrol traje
tories u∗(t; x0) aswell as the 
orresponding optimal state traje
tories x∗(t; x0) and z∗(t; x0) on the timehorizon t ∈ [0, T (x0)]. We will assume that T is not �xed, but open to optimization. Thelength T may, however, be determined by the �nal state 
onstraint (1.1e), e.g. in the 
aseof a �xed end time tf . Note that in this 
ase the �
lo
k� variable t̃ is part of the systemstate x.Let us pi
k a �xed value of x0 and 
onsider the optimal solution traje
tories x∗(·; x0),

z∗(·; x0), and u∗(·; x0) of Poc(x0). Let us also pi
k a time t1 ∈ [0, T (x0)] and the 
orrespond-ing state x1 := x∗(t1; x0) on the optimal di�erential state traje
tory x∗(·; x0). Considernow the related optimization problem Poc(x1). How are its optimal solution traje
tories
x∗(·; x1), z∗(·; x1), and u∗(·; x1) on [0, T (x1)] related to those of Poc(x0)? From the prin
ipleof optimality , also known as the optimality of subar
s, it follows that T (x1) = T (x0)− t1and that the solution traje
tories of Poc(x1) 
oin
ide with the remaining part of the solutiontraje
tories of Poc(x0) after t1, i.e.,

x∗(t; x1) = x∗(t1 + t; x0)
z∗(t; x1) = z∗(t1 + t; x0)
u∗(t; x1) = u∗(t1 + t; x0)







∀ t ∈ [0, T (x1)].
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hosing t = 0 and formulating the last identity for all t1 ∈ [0, T (x0)], we 
an 
onverselyyield the optimal 
ontrol traje
tory u(·; x0) by
u(t1; x0) = u∗(0; x∗(t1; x0)), ∀ t1 ∈ [0, T (x0)].Hen
e, the result of the pre
omputation 
an be 
aptured in an optimal feedba
k 
ontrol(
f. [BH69℄) fun
tion uf that is de�ned as

uf(x0) := u∗(0; x0). (1.5)This fun
tion may be used as a feedba
k 
ontrol that leads to the 
losed-loop DAE system
B(·) · ẋcl(t) = f(xcl(t), zcl(t), u

f(xcl(t)))

0 = g(xcl(t), zcl(t), u
f(xcl(t))).One 
omputationally expensive and storage 
onsuming possibility would be to pre
al
ulatesu
h a feedba
k 
ontrol law o�-line on a su�
iently �ne grid. The te
hnique of 
hoi
e to
ompute this feedba
k 
ontrol would be dynami
 programming [Bel57℄, or an approa
husing the Hamilton-Ja
obi-Bellman (HJB) equation [LM68, Son90℄. However, even formoderate state dimensions nx this would require a prohibitively large 
omputational e�ort.In 
ontrast to this our work is 
on
erned with e�
ient ways to 
al
ulate the optimalfeedba
k 
ontrol uf(x0) in real-time while the real pro
ess runs.1.3.1 Linearized Neighboring Feedba
k ControlOne possibility to approximate the optimal feedba
k 
ontrol law uf(xcl(t)) in the vi
inityof a referen
e traje
tory is provided by linearized neighboring feedba
k 
ontrol (also 
alledperturbation feedba
k 
ontrol [BH69℄). It requires a nominal or referen
e solution x∗(·; x0),

z∗(·; x0), and u∗(·; x0) of a nominal problem Poc(x0), and is a good approximation if thedistan
e ‖x(t) − x∗(t; x0)‖ of the real traje
tory x(t) to the referen
e traje
tory remainssmall. The idea is to approximate
uf(xcl(t)) = u∗(0; xcl(t)), ∀t ∈ [0, T (x0)],by the linearization

ulnfc(xcl(t)) := u∗(t; x0) +K(t)(xcl(t)− x∗(t; x0)),where
K(t) :=

∂uf

∂x
(x∗(t; x0))that is de�ned for all t ∈ [0, T (x0)]. Note that the 
onstant term u∗(t; x0) is equal to

uf(x∗(t; x0)) = u∗(0; x∗(t; x0)) due to the prin
iple of optimality. The derivative or gainmatrix K, if it exists, 
an e�
iently be 
al
ulated by using �rst and se
ond derivative
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k Control 19information along the referen
e traje
tory x∗(·; x0), z∗(·; x0), and u∗(·; x0), see e.g. Brysonand Ho [BH69℄.The method 
an be extended to the 
ase that the derivative K does not exist in a stri
tsense, e.g. in the 
ase of bang-bang 
ontrols, but where it is still possible to use deriva-tive information along a referen
e traje
tory. Numeri
al te
hniques to 
ompute linearizedneighboring feedba
k 
ontrols have been developed, e.g., by Pes
h [Pes78℄, Krämer-Eis etal. [KE85, KEB87℄, and Kugelmann and Pes
h [KP90a, KP90b℄. Linearized neighboringte
hniques have been applied for on-line 
ontrol of bat
h rea
tors, e.g., by Terwies
h andAgarwal [TA94℄.Note that the approximations provided by these te
hniques are only valid in the neigh-borhood of a referen
e traje
tory. If the real-system has moved far away from the referen
etraje
tory during pro
ess development, the approximation of the optimal feedba
k 
ontrolmay be
ome very poor and may drive the system even into dire
tions opposite to what isdesired. Cf. Se
. 4.3.2 and Example 4.4.Example 1.1 (Optimal and Linearized Neighboring Feedba
k)As an example for a tabulation of the optimal feedba
k 
ontrols uf(x), and for the linearizedneighboring feedba
k approximation ulnfc(x) we show in Figure 1.3 a one dimensional 
utthrough the four dimensional state spa
e of the CSTR of Se
tion 1.2, for initial values
xǫ := xS + ǫ(x0 − xS),that interpolate between the steady state xS and the disturbed initial value x0 from (1.4).The graphs for uf(xǫ) := u∗(0; xǫ) have been obtained by a numeri
al solution of theoptimal 
ontrol problem (1.3) (whi
h we take as an approximation for T = ∞) for 141initial values xǫ, ǫ ∈ {−0.20,−0.19, . . . , 1.19, 1.20}, whereas ulnfc(xǫ) := uS+K(0)(xǫ−xS)is based on a linearization of uf(·) at the steady state xS. For a 
losed-loop traje
tory dueto a linearized neighboring feedba
k te
hnique, 
f. Example 4.4.In our 
onsiderations about optimal feedba
k 
ontrol we have assumed that the horizonlength T of the optimization problem (1.1) is a variable in the optimization problem thatis either determined by some 
onstraints or a real degree of freedom. In this 
ase we speakof �shrinking horizon problems�, be
ause the time horizon T is shrinking during optimalpro
ess development, as we have seen by the prin
iple of optimality for subar
s. In 
hemi
alengineering this problem type arises typi
ally for bat
h or semi-bat
h pro
esses, in roboti
se.g. for time optimal maneuvers.1.3.2 In�nite Horizon ProblemsOn the other hand, a major appli
ation for feedba
k 
ontrol systems are systems thatrun in�nitely long, so that the 
hoi
e T = ∞ would be appropriate. It is straightforwardthat the prin
iple of optimality holds also for the solution traje
tories x∗∞(·; x0), z∗∞(·; x0),and u∗∞(·; x0), and we may a

ordingly de�ne an optimal feedba
k 
ontrol law for in�nitehorizon problems
uf∞(x0) := u∗∞(0; x0).
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k
ontrols for the steady state xS (ǫ = 0) and the disturbed value x0 (ǫ = 1) (
f. Fig. 1.2,
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Nominal StabilityFor steady state tra
king problems with an obje
tive ∫∞

0
L(x(t), z(t), u(t)) dt that satis�es

L(x, z, u) > 0 for all (x, z, u) 6= (xS, zS, uS) and L(xS , zS, uS) = 0 at the steady state, theprin
iple of optimality ensures nominal stability of the 
orresponding 
losed-loop system,as the optimal 
ost fun
tion
V∞(x0) :=

∫ ∞

0

L(x∗∞(t; x0), z
∗
∞(t; x0), u

∗
∞(t; x0)) dt,if it remains �nite, serves as a Lyapunov fun
tion (as de�ned e.g. in [Son90℄) for the
losed-loop system.To sket
h the idea of the nominal stability proof, let us assume that V∞(·) ∈ C1 andthat u∗∞(·; x0) ∈ C0∀ x0, and furthermore that the level sets of V∞(·) are 
ompa
t in R

nx .First note that V∞(xS) = 0 and V∞(x0) > 0, x0 6= xS. It will now be shown that
d

dt
V∞(xcl(t)) < 0, ∀ xcl(t) 6= xS, (1.6)so that the only a

umulation point of the 
losed-loop traje
tory xcl(t), t ∈ [0,∞), 
an be

xS. As the level sets are 
ompa
t, an a

umulation point must exist, so that asymptoti
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tive Control 21stability follows. To show the des
ent property (1.6), �rst note that the 
losed-loop traje
-tory xcl(·) for the initial value x0 
oin
ides with the optimal traje
tory x∗∞(·; x0). Thereforeit needs only to be shown that
d

dt
V∞(x∗∞(t; x0)) < 0, ∀ x∗∞(t; x0) 6= xS . (1.7)Di�erentiation of the identity

V∞(x∗∞(t; x0)) = V∞(x0)−
∫ t

0

L(x∗∞(τ ; x0), z
∗
∞(τ ; x0), u

∗
∞(τ ; x0)) dτ,(whi
h is a dire
t 
onsequen
e of the prin
iple of optimality) with respe
t to t yields

d

dt
V∞(x∗∞(t; x0)) = −L(x∗∞(t; x0), z

∗
∞(t; x0), u

∗
∞(t; x0)) < 0, ∀ x∗∞(t; x0) 6= xS.1.4 Nonlinear Model Predi
tive ControlUnfortunately, in�nite horizon problems are in general very di�
ult to handle for nonlinearand 
onstrained systems. Therefore, a so 
alled �moving horizon� approa
h is often usedinstead, where a 
onstant 
ontrol horizon of length T is 
hosen in all optimization prob-lems. If the 
onstant T is su�
iently large, the 
omputed optimal traje
tories x∗T (·; x0),, z∗T (·; x0), and u∗T (·; x0) are expe
ted to be similar to the 
orresponding in�nite horizonvalues x∗∞(·; x0), z∗∞(·; x0), and u∗∞(·; x0) on [0, T ] so that the de�nition for moving horizonproblems,

ufT (x0) := u∗T (0; x0)is a good approximation for the in�nite horizon optimal feedba
k 
ontrol uf∞(x). We 
allthe resulting feedba
k law ufT (x) �optimal moving horizon feedba
k 
ontrol� [BBB+01℄ or�Nonlinear Model Predi
tive Control� (NMPC). Often also the term �Re
eding HorizonControl� (RHC) [MM90℄ is used to denote this moving horizon s
heme. The 
omputationof the optimal moving horizon 
ontrol law ufT (x0) in real-time is the main appli
ation ofour algorithms.1.4.1 S
hemes to Ensure Nominal StabilityNote that the prin
iple of optimality does no longer hold for moving horizon problems;however, a variety of s
hemes to ensure nominal stability for steady state tra
king problemshas been devised. These s
hemes make strong use of arti�
ially introdu
ed end point
onstraints as formulated in Eqs. (1.1e) and (1.1f), and of the Mayer term E(x(T ), z(T ))in the obje
tive fun
tional (1.1a). The prin
ipal idea is to formulate the optimizationproblems in su
h a way that the optimal 
ost fun
tion
VT (x0) :=

∫ T

0

L(x∗T (t; x0), z
∗
T (t; x0), u

∗
T (t; x0)) dt+ E(x∗T (T ; x0))
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an serve as a Lyapunov fun
tion of the 
losed-loop system, as for in�nite horizon problems.For an overview of su
h s
hemes, we refer to the arti
les by Mayne [May96, May00℄ or DeNi
olao, Magni, and S
attolini [DMS00℄. Here, we will brie�y introdu
e three of theses
hemes. All three have in 
ommon that the so 
alled monotoni
ity property [DMS00℄holds in a neighborhood ΩT of the steady state xS:
VT (x) ≤ VT−δ(x), ∀ δ ≥ 0, δ ≤ T, x ∈ ΩT . (1.8)Nominal stability follows together with the prin
iple of optimality for subar
s, whi
h statesthat

VT (x0) =

∫ δ

0

L(x∗T (t; x0), z
∗
T (t; x0), u

∗
T (t; x0)) dt+ VT−δ(x

∗
T (δ; x0))so that (using x0 = x∗T (0; x0))

VT (x
∗
T (δ; x0))− VT (x

∗
T (0; x0)) ≤ VT−δ(x

∗
T (δ; x0))− VT (x

∗
T (0; x0))

= −
∫ δ

0
L(x∗T (t; x0), z

∗
T (t; x0), u

∗
T (t; x0)) dt.Di�erentiating this inequality by δ we 
an dedu
e that

d
dt
VT (x

∗
T (0; x0)) = ∂VT

∂x
(x∗T (0; x0)) ẋ

∗
T (0; x0)

≤ −L(x∗T (0; x0), z∗T (0; x0), u∗T (0; x0)) < 0, ∀ x0 6= xS.Let us now 
hoose x0 := xcl(t) to be one state of the 
losed-loop traje
tory, at time t. Thetime development of the nominal 
losed-loop system obeys the same DAE as the model;be
ause at time t the di�erential system state is xcl(t) = x0 = x∗T (0; x0) and the 
losed-loop 
ontrol is 
hosen to be ufT (xcl(t)) := u∗T (0; x0), the algebrai
 state also 
oin
ides withthe start of the optimal traje
tory: zcl(t) = z∗T (0; x0) (due to the algebrai
 
onsisten
y
ondition); therefore, the time derivatives 
oin
ide:
ẋcl(t) = ẋ∗T (0; x0).This allows to 
on
lude that

d

dt
VT (xcl(t)) =

∂VT
∂x

(xcl(t)) ẋcl(t) < 0, ∀xcl(t) 6= xS.Zero Terminal ConstraintThe idea of the zero terminal 
onstraint (ZTC) s
heme is to formulate the terminal point
onstraint
re(x(T )) := x(T )− xS,where xS is the di�erential part of the desired steady state, and to employ no �nal penalty

E(x(T )). Nominal stability for nonlinear 
ontinuous time systems was proven by Mayneand Mi
halska [MM90℄. The monotoni
ity property (1.8) follows from the fa
t that theoptimal solution x∗T−δ(t; x0), z∗T−δ(t; x0), and u∗T−δ(t; x0) of a problem Poc,T−δ(x0) on a shorthorizon [0, T−δ] 
an be prolonged to a feasible traje
tory of the problem Poc,T (x0) on a longhorizon [0, T ], by adding for t ∈ [T−δ, T ] the �nal parts x∗T (t; x0) := xS, z∗T (t; x0) := zS,and u∗T (t; x0) := uS, that have no additional 
osts, 
f. Fig.1.4.
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TFigure 1.4: Monotoni
ity property for the zero terminal 
onstraint (ZTC) s
heme: thesolution traje
tories of problem Poc,T−δ(x0) 
an be prolonged to feasible traje
tories forproblem Poc,T (x0) without in
reasing the obje
tive.Quasi-In�nite Horizon NMPCThe quasi-in�nite horizon (QIH) s
heme employs a positive de�nite penalty matrix P ∈

R
nx×nx that allows to formulate a terminal penalty term

E(x(T )) := ‖x(T )− xS‖2P := ‖P 1
2 (x(T )− xS)‖22and a terminal 
onstraint

ri(x(T )) := α− ‖x(T )− xS‖2P ≥ 0,(with α > 0) that 
onstrains x(T ) to be in an ellipti
 region Ω := {x ∈ R
nx|‖x−xS‖2P ≤ α}.Chen and Allgöwer [CA98, Che97℄ have shown how the matrix P and the 
onstant α 
anbe 
omputed so that the monotoni
ity property (1.8) is satis�ed. Their approa
h, thatwas originally formulated for ODE systems, was generalized to DAE systems of index-one by Findeisen and Allgöwer [FA00℄. Using the system linearization around the steadystate and a linear 
losed-loop law u(x) = uS + K · (x − xS), the matrix P is 
omputedas the solution of a Lyapunov equation, and the 
onstant α is determined so that theellipti
 region Ω is positively invariant for the linearly 
ontrolled 
losed-loop system, andso that the path 
onstraints h(x, z, uS + K · (x − xS)) ≤ 0 are not violated in the set

{(x, z) ∈ R
nx × R

nz |x ∈ Ω, g(x, z, uS +K · (x− xS)) = 0}.In�nite-Horizon Closed-Loop CostingThe idea of the in�nite-horizon 
losed-loop 
osting approa
h, that was proposed by DeNi
olao, Magni, and S
attolini [DMS96℄, is to introdu
e a terminal penalty that is itselfthe in�nite integral of the Lagrange obje
tive
E(x(T )) :=

∫ ∞

T

L(x̂(t; x(T )), ẑ(t; x(T )), û(t; x(T ))) dt



24 Real-Time Optimal Controlwhere x̂(t; x(T )) and ẑ(t; x(T )) are the traje
tories 
orresponding to the following 
losed-loop initial value problem on the horizon [T,∞):
B(·) · ˙̂x(t) = f(x̂(t), ẑ(t), K(x̂(t))),

0 = g(x̂(t), ẑ(t), K(x̂(t))),

x̂(T ) = x(T ).The fun
tion K : R nx → R
nu is 
hosen so as to stabilize the system in the vi
inity of thesteady state (typi
ally by a LQR 
ontrol law for the system linearization). The �nal state
onstraint ri(x(T )) ≥ 0 must 
onstrain x(T ) so that all predi
ted 
losed-loop traje
tories

x̂(t; x(T )), ẑ(t; x(T )), and û(t; x(T )) := K(x̂(t; x(T ))) remain feasible and have �nite 
osts.The monotoni
ity property (1.8) follows from the fa
t that a prolongation of the horizonfrom [0, T−δ] to [0, T ] only in
reases the degrees of freedom; the new degrees of freedom,the 
ontrols u(t) for t ∈ [T−δ, T ], 
an still be 
hosen to be u(t) = K(x(t)), whi
h wouldyield equal 
osts as for the short horizon. A pra
ti
al implementation of this approa
h mustover
ome the nontrivial problems of determining the �nal state 
onstraint ri(x(T )) ≥ 0,and the on-line 
omputation of the in�nite integral to determine E(x(T )). Note, however,that the 
omputation of a �nite horizon approximation of E(x(T )) 
an be very 
heap evenon relatively long horizons, if adaptive impli
it DAE solvers are used, as the stepsizes inthe vi
inity of the steady state 
an be made very large. We have employed su
h a s
hemefor the 
ontrol experiments with a distillation 
olumn that are presented in Chap. 7, wherethe trivial 
losed-loop law K(·) := uS 
ould be 
hosen be
ause the system is stable.1.4.2 Alternative Feedba
k StrategiesOptimal feedba
k 
ontrol and nonlinear model predi
tive 
ontrol as de�ned above are notthe only ways to derive feedba
k laws, and among these they are not ne
essarily the best.They su�er from an inherent 
ontradi
tion: on the one hand the employed system modelis deterministi
, but on the other hand the ne
essity for feedba
k 
ontrol is 
reated by thenon-deterministi
 behaviour of the system, or by the presen
e of model-plant mismat
h.There are several strategies that in
lude some sort of knowledge that the real system doesnot obey the deterministi
 model equations. We will brie�y mention two of these here.Sto
hasti
 Optimal ControlSto
hasti
 optimal 
ontrol te
hniques employ a sto
hasti
 system model instead of a de-terministi
 one, and aim at optimizing the expe
tation value of an obje
tive fun
tional.The sto
hasti
 point of view makes it possible to design feedba
k 
ontrollers that takefuture disturban
es into a

ount � provided that realisti
 assumptions on the governingsto
hasti
s are available. The method of 
hoi
e for the solution of sto
hasti
 optimal 
on-trol problems is dynami
 programming, whi
h is originally due to Bellman [Bel57℄. (Were
ommend the two ex
ellent books on Optimal Control and Dynami
 Programming byBertsekas [Ber95a, Ber95b℄ and refer also to Bertsekas et al. [BT96, BS96℄). For linear sys-tems with quadrati
 
osts the solution of sto
hasti
 optimal 
ontrol problems is equivalent



1.4 Nonlinear Model Predi
tive Control 25to the solution of a 
orresponding deterministi
 optimal 
ontrol problem (see e.g. Brysonand Ho, [BH69℄), a fa
t that leads to the separation theorem or 
ertainty-equivalen
e prin-
iple [Sim56, JT61℄ for linear systems. Nonlinear sto
hasti
 optimal 
ontrol problems,however, are di�
ult to solve even for moderate system sizes.Robust ControlThe area of so 
alled robust 
ontrol te
hniques is vast and has undergone rapid developmentin the last two de
ades. Roughly spoken, robust 
ontrol te
hniques aim at designingfeedba
k 
ontrol laws urc(x) that are not only able to stabilize a nominal system model,but that show a good 
ontrol performan
e for a whole set of perturbed/disturbed systems.For an introdu
tion into linear robust 
ontrol te
hniques we refer to Zhou et al. [ZDG96℄or to Morari [Mor87℄. Though robust 
ontrol theory is highly developed for linear systems,only a few extensions exist that take expli
itly nonlinear system models into a

ount. Thequestion of robustness of NMPC is mostly unsolved. Some preliminary steps have beenoutlined for example in [OM94, MM93, YP93℄, and even some approa
hes exist that tryto synthesize robust NMPC 
ontrollers, e.g. Chen et al. [CSA97℄ (
f. also [May00℄).





Chapter 2Dire
t Multiple ShootingIn this 
hapter we will present, as a �rst step towards the numeri
al solution of the optimal
ontrol problem (1.1), the so 
alled dire
t multiple shooting parameterization whi
h isthe basis for all algorithms presented later in this thesis. The dire
t multiple shootingparameterization transforms the original in�nite optimal 
ontrol problem Poc(x0) (1.1) intoa �nite dimensional Nonlinear Programming (NLP) problem that we will denote by P (x0).The dire
t multiple shooting method is originally due to Bo
k and Plitt [Pli81, BP84℄,and its most re
ent form has been developed by Leineweber [Lei99℄ and implementedin his optimal 
ontrol pa
kage MUSCOD-II, whi
h also forms the basis for the a
tualimplementation of the real-time algorithms presented in this work.2.1 Problem ParameterizationIn order to reformulate the in�nite optimal 
ontrol problem (1.1) as a �nite dimensionalnonlinear programming (NLP) problem, both its 
ontrols and its states are parameterizedin the dire
t multiple shooting method. Let us �rst introdu
e a time transformation thatprepares the 
ontrol and state parameterization.2.1.1 Time TransformationIn order to be able to treat problems with a variable horizon length T 
onveniently, weintrodu
e a time transformation
t : [0, 1] → [0, T ], τ 7→ t(τ, T ) := Tτwhi
h allows us to regard an optimization problem on the �xed horizon [0, 1] only. Byinterpreting the traje
tories of x, z, and u as fun
tions of τ ∈ [0, 1] we 
an formulate aproblem on the horizon [0, 1] that is equivalent to problem (1.1). If the horizon length Tis variable, we will treat it as a free global parameter, that 
an 
on
eptually be lo
alizedby introdu
tion of an additional trivial di�erential equation Ṫ (τ) = 0 with a free initialvalue. To keep notation simple we will in the following subse
tions assume that T is �xed,but keep in mind that the 
ase of a variable horizon is 
aptured by this approa
h, too.27
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Figure 2.1: Control and state parameterization (N = 5).2.1.2 Control Dis
retizationIn the dire
t multiple shooting method (as in all dire
t solution approa
hes) the in�nitelymany degrees of freedom u(τ) for τ ∈ [0, 1] are approximated by a �nite 
ontrol represen-tation. For this aim we 
hoose a multiple shooting grid
0 = τ0 < τ1 < . . . < τN = 1, (2.1)and approximate the 
ontrol u(τ) by a pie
ewise 
onstant 
ontrol representation, i.e., weset

u(τ) := qi for τ ∈ [τi, τi+1), i = 0, 1, . . .N − 1, (2.2)with N ve
tors qi ∈ R
nu , as sket
hed on the left hand side of Fig. 2.1. For 
ompleteness,we set as 
ontrol at the �nal time

u(1) := qN := qN−1,where the ve
tor qN is introdu
ed for notational 
onvenien
e only and will not be regardedas a new parameter, but just as a se
ond name for qN−1. Note that the point value u(1)of the 
ontrol may dire
tly in�uen
e the �nal algebrai
 state z(1) (that is determined by
g(x(1), z(1), u(1)) = 0) and 
an therefore not be negle
ted in the 
ase of DAE models.It is possible to use other, possibly higher order 
ontrol parameterizations on the in-tervals (e.g. linear or 
ubi
 polynomials), but it is of 
ru
ial importan
e for the dire
tmultiple shooting method that the 
ontrol parameterization has lo
al support on the mul-tiple shooting intervals [τi, τi+1], so that the 
ontrol parameters have a lo
al in�uen
e only(
f. Se
. 6.1).Where 
ontinuity of the 
ontrols is desired, the 
ontrol 
an e.g. be treated as anadditional di�erential system state whose time derivative 
an be 
ontrolled.2.1.3 State ParameterizationIn a 
ru
ial se
ond step, 2(N+1) additional ve
tors sx0, sx1 , . . . , sxN and sz0, sz1, . . . , szN of thesame dimensions nx and nz as di�erential and algebrai
 system states are introdu
ed, whi
h



2.1 Problem Parameterization 29we will denote di�erential and algebrai
 node values. For brevity we will often 
ombinethem in the ve
tors si := (sxi , s
z
i ).All but the last node value serve as initial values for N independent relaxed initial valueproblems on the intervals [τi, τi+1]:

B(·) · ẋi(τ) = T f(xi(τ), zi(τ), qi) (2.3)
0 = g(xi(τ), zi(τ), qi)− exp

(

−β τ − τi
τi+1 − τi

)

g(sxi , s
z
i , qi) (2.4)

xi(τi) = sxi . (2.5)The de
aying subtrahend in (2.4) with β > 0 is deliberately introdu
ed to fa
ilitate an e�-
ient DAE solution for initial values and 
ontrols sxi , szi , qi that may temporarily violate the
onsisten
y 
onditions (1.1
) (note that (sxi , szi , qi) is per de�nition a 
onsistent initial valuefor the relaxed initial value problem). This modi�
ation (Bo
k et al. [BES88℄), is 
ommonlyreferred to as a relaxed DAE formulation, 
f. S
hulz et al. [SBS98℄, Leineweber [Lei99℄.The solutions of these initial value problems are N independent traje
tories xi(τ), zi(τ)on [τi, τi+1], whi
h are a fun
tion of si and qi only. In order to keep this dependen
y inmind, we will denote them often by xi(τ ; si, qi) and zi(τ ; si, qi). See the right hand side ofFig. 2.1 for an illustration.By substituting the independent traje
tories xi(τ), zi(τ) into the Lagrange term L inEq. (1.1a) we 
an simultaneously 
al
ulate the integral obje
tive 
ontributions Li(si, qi)that are given by
Li(si, qi) :=

∫ τi+1

τi

T L(xi(τ), zi(τ), qi)) dτ. (2.6)The introdu
tion of the values sxi and szi has introdu
ed non-physi
al degrees of freedomthat have to be removed by 
orresponding equality 
onstraints in the NLP. First, we haveto require that the relaxation terms in the relaxed DAE formulation (2.4) vanish, i.e.,formulate the algebrai
 
onsisten
y 
onditions
g(sxi , s

z
i , qi) = 0 i = 0, 1, . . . , N. (2.7)Se
ondly, we have to enfor
e 
ontinuity of the di�erential state traje
tory by formulatingthe following mat
hing 
onditions whi
h require that ea
h di�erential node value sxi+1should equal the �nal value of the pre
eding traje
tory xi:

sxi+1 = xi(τi+1; si, qi), i = 0, . . . , N − 1. (2.8)The �rst di�erential node value sx0 is required to be equal to the initial value x0 of theoptimization problem:
s0 = x0. (2.9)Together, the 
onstraints (2.7), (2.8), and (2.9) remove the additional degrees of freedomwhi
h were introdu
ed with the parameters si, i = 0, . . . , N . It is by no means ne
essarythat these 
onstraints are satis�ed during the optimization iterations � on the 
ontrary, itis a 
ru
ial feature of the dire
t multiple shooting method that it 
an deal with infeasibleinitial guesses of the variables si.



30 Dire
t Multiple Shooting2.1.4 Dis
retization of Path ConstraintsUsing the multiple shooting grid τ0, . . . , τN , the in�nite dimensional path inequality 
on-straints (1.1g) are transformed into N + 1 ve
tor inequality 
onstraints
h(sxi , s

z
i , qi) ≥ 0, i = 0, 1, . . . , N.Note that it would be equally possible to use a �ner grid for the dis
retization of the path
onstraints.2.2 The Nonlinear Programming ProblemThe �nite dimensional NLP in the dire
t multiple shooting parameterization is given as

P (x0) : min
q0, . . . , qN−1,

s0, . . . , sN

N−1
∑

i=0

Li(s
x
i , s

z
i , qi) + E(sxN , s

z
N) (2.10a)subje
t to

sxi+1 − xi(τi+1; s
x
i , s

z
i , qi) = 0, i = 0, . . . , N − 1, (2.10b)

g(sxi , s
z
i , qi) = 0, i = 0, . . . , N, (2.10
)

sx0 − x0 = 0, (2.10d)
re(sxN , s

z
N) = 0, (2.10e)

ri(sxN , s
z
N) ≥ 0, (2.10f)

h(sxi , s
z
i , qi) ≥ 0, i = 0, . . . , N. (2.10g)This is the NLP problem formulation that we will use as a referen
e in the following
hapters. For a visualization of the NLP variables, see Fig. 2.2. It turns out that the NLPhas a very favourable sparse stru
ture, due to the fa
t that all 
onstraint fun
tions and theadditive terms of the obje
tive fun
tion ea
h depend only on a small number of variables,and 
onversely, ea
h variable appears only in a few problem fun
tions.To 
onveniently write the NLP (2.10) in a shorter form let us introdu
e the ve
tors

q :=







q0...
qN−1






∈ R

nq , s :=







s0...
sN






∈ R

ns, and w :=

(

q
s

)

∈ R
nwwith nq := Nnu, ns := (N + 1)(nx + nz), and nw = nq + ns, and de�ne F (w) :=

∑N−1
i=0 Li(si, qi) + E(sN) and summarize all equality 
onstraints in a fun
tion G : R nw →
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R

nG and all inequality 
onstraints in a fun
tion H : R nw → R
nH . The NLP 
an then besummarized as

min
w ∈ R

nw
F (w) subje
t to {

G(w) = 0,
H(w) ≥ 0.We will in the following Chapter 3 dis
uss how to de
ide if a point w ∈ R

nw is a lo
aloptimum of the NLP 2.10. But let us beforehand brie�y mention some stru
tural featuresof the NLP, and also give an example for the multiple shooting parameterization.Remark on the Initial Value ConstraintIn a real-time appli
ation of our optimization algorithms, the problem P (x0) has to besolved several times, ea
h time for a di�erent initial value x0. In our real-time strategieswe will exploit the fa
t that the a
tual value of x0 enters the problem P (x0) only via theinitial value 
onstraint (2.10d). We may therefore isolate this 
onstraint, and summarizethe optimization problem P (x0) as
P (x0) : min

sx0∈Rnx ,w̃∈R(nw−nx)
F (sx0 , w̃) subje
t to 





sx0 − x0 = 0,

G̃(sx0, w̃) = 0,
H(sx0, w̃) ≥ 0.This formulation will be
ome 
ru
ial in our des
ription of the real-time iteration s
hemein Chapter 4.Remark on Free Horizon LengthsNote that in the 
ase that the horizon length T is variable, we simply augment the dif-ferential state ve
tors by an additional 
omponent Ṫ (τ) = 0, ∀τ ∈ [0, 1]; in the multiple
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t Multiple Shootingshooting formulation, the 
ontinuity 
onditions (2.10b) enfor
e that T is 
onstant over thewhole horizon; its initial value, however, is free, in 
ontrast to the other initial values x0.To 
apture problems with variable T in the above NLP formulation, we therefore only haveto modify the initial value 
onstraint sx0 −x0 = 0 to (Inx| 0)sx0 −x0 = 0 (note that x0 ∈ R
nxand sxi ∈ R

nx+1).2.2.1 Free and Dependent VariablesNote that the variables q = (q0, q1, . . . , qN−1) may be denoted the �free� 
omponents, and
s = (s0, s1, . . . , sN) the �dependent� 
omponents, sin
e the 
onstraints (2.10b)-(2.10d)allow to determine all variables s uniquely if q is given (in the 
ase of a free horizon length,as dis
ussed above, the last initial value sx0nx+1 is also free and a
tually be
omes a part of
q). If we assume for a moment that no �nal equality 
onstraint (2.10e) and no inequality
onstraints (2.10f),(2.10g) are present, we 
an write the optimization problem in the form

min
q ∈ R

nq , s ∈ R
ns
F (q, s) subje
t to G(q, s) = 0,where the fun
tion G has the useful property that its Ja
obian ∂G

∂s
with respe
t to thedependent variables, s, is invertible. To see this, note that ∂G

∂s
is lower blo
k triangular























Inx

∂g
∂sx0

∂g
∂sz0

−∂x0(τ1)
∂sx0

−∂x0(τ1)
∂sz0

Inx. . .
−∂xN−1(τN)

∂sxN−1
−∂xN−1(τN)

∂szN−1
Inx

∂g
∂sxN

∂g
∂szN





















with invertible blo
ks Inx and ∂g
∂szi

on the diagonal (the invertibility of ∂g
∂szi

follows from theindex one assumption of the DAE system).In the presen
e of �nal equality 
onstraints (2.10e) some previously free variables ofthe ve
tor q may be de
lared dependent and it may again be possible to �nd a separationinto free and dependent variables q and s with the invertibility of ∂G
∂s
. The same may bedone in the presen
e of a
tive inequality 
onstraints (2.10f) or (2.10g).The separability into free and dependent 
omponents will be used for some 
onvergen
eresults in Chapter 5; it is also exploited by the numeri
al solution algorithms des
ribed inSe
tions 6.5 and 6.6.Example 2.1 (Dire
t Multiple Shooting for the CSTR)Let us again 
onsider the guiding example of Se
tion 1.2. Choosing N =100 multipleshooting intervals ea
h of 20 se
onds length, we arrive at an NLP formulation that 
om-prises nw = nq + ns = Nnu + (N + 1)nx = 100 × 2 + 101 × 4 = 604 NLP variables.
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node index iFigure 2.3: Content of NLP variables in the dire
t multiple shooting method, 
orrespondingto the solution of Figure 1.2. The dots in the �rst four graphs indi
ate the multiple shootingnode values si, the last two graphs show the pie
ewise 
onstant 
ontrols qi.The overall number of 
ontinuity 
onstraints (2.10b) is Nnx = 400, the initial value
onstraint (2.10d) has dimension nx = 4. Together, they form ns 
onstraints, so that
nw−ns = 604−404 = 200 = nq e�e
tive degrees of freedom remain. The values for all 604multiple shooting variables at the solution of problem P (x0), with x0 a

ording to (1.4), arevisualized in Figure 2.3.





Chapter 3Lo
al Optimality and SQP MethodsThis 
hapter is aimed at the preparation of our numeri
al methods for the solution ofneighboring optimization problems in real-time. We will therefore 
onsider not only onesingle NLP problem, but a parameterized family of optimization problems
P (t) : min

w ∈ R
nw
F (t, w) subje
t to {

G(t, w) = 0
H(t, w) ≥ 0with C2 fun
tions F : R × R

nw → R , G : R × R
nw → R

nG, and H : R × R
nw →

R
nH . Please note that the s
alar homotopy parameter t has no relation to the physi
altime t. It 
an be thought of as a one dimensional analog for the initial value x0 thatdistinguishes between di�erent optimization problems P (x0) as they arise in the multipleshooting parameterization. The ve
tor w 
an be regarded as the multiple shooting variables

q0, . . . , qN−1, s0, . . . , sN .We will �rst review in Se
. 3.1 some 
onditions whi
h allow to de
ide if a point w∗(t) isa (lo
al) solution of an optimization problem P (t) for �xed t. In Se
tion 3.2 we will reviewa result from parametri
 optimization that allows to 
on
lude that the solution manifold
w∗(t) is 
ontinuous and pie
ewise di�erentiable with respe
t to t, in all �benign� points
w∗(t) that satisfy rather mild 
onditions. The nondi�erentiable points are those pointswhere the set of binding inequalities 
hanges.The so 
alled �Sequential Quadrati
 Programming� (SQP) method is an approa
h to�nd a (lo
al) minimum w∗(t) of a problem P (t) for �xed homotopy parameter t. It willbe introdu
ed in Se
. 3.3. We also show in Se
. 3.4 that its prototype algorithm, the so
alled exa
t Hessian SQP method , when applied to an optimization problem P (t+ ǫ) andinitialized with the solution of problem P (t), is able to provide a predi
tion for w∗(t+ǫ) thatis of O(‖ǫ‖2), even if the set of binding inequalities 
hanges at the point t. This astonishingproperty, however, requires a slight reformulation of the optimization problems, whi
h leadsdire
tly to the idea of the initial value embedding strategy, a 
ru
ial feature of the real-timeiteration approa
h presented in Chap. 4. 35



36 Lo
al Optimality and SQP Methods3.1 Lo
al Optimality ConditionsFor notational 
onvenien
e, let us �rst drop the parameter t and treat a single NLP problem
min

w ∈ R
nw
F (w) subje
t to {

G(w) = 0
H(w) ≥ 0

(3.1)where the fun
tions F : R
nw → R , G : R

nw → R
nG , and H : R

nw → R
nH are twi
e
ontinuously di�erentiable.Let us generalize the de�nition of the gradient∇F of a s
alar fun
tion F to the gradient

∇wG of ve
tor fun
tions G as the transpose of the Ja
obian matrix
∇wG(w) :=

(

∂G
∂w

(w)
)T
.A feasible point is a point w ∈ R

nw that satis�es G(w) = 0 andH(w) ≥ 0. A lo
al minimumof the NLP (3.1) is a feasible point w∗ whi
h has the property that F (w∗) ≤ F (w) for allfeasible points w in a neighborhood of w∗. A stri
t lo
al minimum satis�es F (w∗) < F (w)for all neighboring feasible points w 6= w∗.A
tive inequality 
onstraints at a feasible point w are those 
omponents Hj(w) of H(w)with Hj(w) = 0. We will subsume the equality 
onstraints and the a
tive inequalities at apoint w (the so 
alled the a
tive set) in a 
ombined ve
tor fun
tion of a
tive 
onstraints:
G̃(w) :=

(

G(w)
Hact(w)

)

.Note that the a
tive set may be di�erent at di�erent feasible points w.Regular points are feasible points w that satisfy the 
ondition that the Ja
obian ofthe a
tive 
onstraints, ∇G̃(w)T , has full rank, i.e., that all rows of ∇G̃(w)T are linearlyindependent.To investigate lo
al optimality in the presen
e of 
onstraints, it is very useful to intro-du
e the Lagrangian multiplier ve
tors λ ∈ R
nG and µ ∈ R

nH , that are also 
alled adjointvariables, as they 
orrespond one-to-one to the 
onstraint fun
tions G and H , and to de�nethe so 
alled Lagrangian fun
tion L by
L(w, λ, µ) := F (w)− λTG(w)− µTH(w). (3.2)We will now state a variant of the Karush-Kuhn-Tu
ker ne
essary 
onditions for lo
aloptimality of a point w∗. These 
onditions have been �rst derived by Karush in 1939 [Kar39℄� and independently by Kuhn and Tu
ker in 1951 [KT51℄. (A proof of the following twotheorems 
an be found in virtually any textbook on nonlinear programming, e.g. Bazaaraand Shetty [BS79℄ or No
edal and Wright [NW99℄.) For brevity, we will restri
t ourattention to regular points only.



3.1 Lo
al Optimality Conditions 37Theorem 3.1 (Karush-Kuhn-Tu
ker Conditions)If a regular point w∗ ∈ R
nw is a lo
al optimum of the NLP (3.1), then there exist uniqueLagrange multiplier ve
tors λ∗ ∈ R

nG and µ∗ ∈ R
nH so that the triple (w∗, λ∗, µ∗) satis�esthe following ne
essary 
onditions:

∇wL(w∗, λ∗, µ∗) = 0 (3.3a)
G(w∗) = 0, (3.3b)
H(w∗) ≥ 0, (3.3
)

µ∗ ≥ 0, (3.3d)
µ∗
j Hj(w

∗) = 0, j = 1, 2, . . . , nH . (3.3e)A triple (w∗, λ∗, µ∗) that satis�es the Karush-Kuhn-Tu
ker 
onditions (3.3) is 
alled a KKTpoint. Note that the so 
alled 
omplementarity 
ondition (3.3e) implies that µ∗
j = 0 atina
tive 
onstraints Hj(w

∗) > 0. At a
tive 
onstraints Hj(w
∗) = 0 the 
orrespondingmultipliers µ∗ may also be
ome zero. A
tive 
onstraints with zero multipliers are 
alledweakly a
tive, and those with positive multipliers strongly a
tive. Let us subdivide thea
tive set ve
tor fun
tion Hact(w∗) at a KKT point (w∗, λ∗, µ∗) into its strongly and weaklya
tive parts, i.e., let us write

Hact(w∗) =:

(

Hs.act

Hw.act

)

(w∗).A KKT point for whi
h all a
tive 
onstraints are strongly a
tive is said to satisfy the stri
t
omplementarity 
ondition.Quadrati
 ProgramsOne spe
ial 
lass of optimization problem plays a preeminent role in the SQP algo-rithms that are presented later in this 
hapter and deserves some remarks: quadrati
 pro-grams (QP) are those optimization problems (3.1) that have a quadrati
 obje
tive fun
tionand linear 
onstraint fun
tions, i.e., problems of the type
min

w ∈ R
nw

1

2
wTAw + aTw subje
t to {

b+Bw = 0
c + Cw ≥ 0

(3.4)with ve
tors a ∈ R
nw , b ∈ R

nG, c ∈ R
nH , and matri
es A ∈ R

nw × R
nw , B ∈ R

nG × R
nw ,and C ∈ R

nH × R
nw .A variety of highly developed algorithms to solve QPs exists, and the su

ess of SQPtype methods is to a large part due to the fa
t that QPs are very e�
iently solvable.



38 Lo
al Optimality and SQP MethodsThe 
onditions (3.3) for a point (w∗, λ∗, µ∗) to be a KKT point of the above QP are:
Aw∗ + a− BTλ∗ − CTµ∗ = 0

b+Bw∗ = 0,

c+ Cw∗ ≥ 0,

µ∗ ≥ 0,

µ∗
j (cj + Cj,·w

∗) = 0, j = 1, 2, . . . , nH .For QPs without inequalites, the KKT 
onditions 
an be written in the 
ompa
t form
(

A BT

B 0

)(

w∗

−λ∗
)

=

(

−a
−b

)

.The matrix on the left hand side is 
alled the KKT matrix. It is invertible, if B has fullrank nG and A is positive de�nite on the null spa
e of B, as stated in the following lemma.The invertibility of the KKT matrix implies that the equality 
onstrained QP has a uniqueKKT point.Lemma 3.2 (Invertibility of the KKT Matrix)Let us assume that A ∈ R
n × R

n is a symmetri
 matrix and B ∈ R
m × R

n has full rank
m ≤ n. Let us furthermore assume that A is positive de�nite on the null spa
e of B. Thenthe matrix

(

A BT

B 0

)is invertible.A short proof of this lemma 
an be found in No
edal and Wright [NW99, Lemma 16.1℄.The existen
e and uniqueness of a KKT point 
an also be shown for inequality 
on-strained QPs, e.g. under the two additional assumptions that the feasible set is non-empty,and that the 
ombined 
onstraint matrix (BT , CT ) has full rank nG+nH . We will en
ountersu
h a uniquely solvable quadrati
 programming problem in Theorem 3.4.First, however, let us review su�
ient 
onditions for a KKT point to be a stri
t lo
aloptimizer.Theorem 3.3 (Strong Se
ond Order Su�
ient Conditions)Su�
ient 
onditions for a point w∗ ∈ R
nw to be a stri
t lo
al minimizer of (3.1) are:

• w∗ is a regular point,
• there exist multiplier ve
tors λ∗ ∈ R

nG and µ∗ ∈ R
nH , su
h that (w∗, λ∗, µ∗) is aKKT point, and
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• the Hessian matrix ∇2

wL(w∗, λ∗, µ∗)1 is positive de�nite on the null spa
e N s of thelinearized strongly a
tive 
onstraints
G̃s(w∗) :=

(

G
Hs.act

)

(w∗),i.e., for every non-zero ve
tor ∆w ∈ N s,
N s := {∆w ∈ R

nw |∇wG̃
s(w∗)T∆w = 0},it holds that

∆wT ∇2
wL(w∗, λ∗, µ∗) ∆w > 0.Remark: The su�
ient 
onditions of the theorem are 
alled �strong� se
ond order su�-
ient 
onditions, be
ause weaker su�
ient 
onditions exists, whi
h require only the positivede�niteness of ∇2

wL(w∗, λ∗, µ∗) on a 
one
N w := {∆w ∈ N s|∇wH̃

w.act(w∗)T∆w ≥ 0}.We have 
hosen the strong formulation, as it turns out that the strong se
ond order su�-
ient 
onditions for optimality, as stated in Theorem 3.3, have the desirable property thata KKT point (w∗, λ∗, µ∗) that satis�es them is stable against perturbations in the problemfun
tions F , G and H , as we will investigate in the following se
tion.3.2 Pie
ewise Di�erentiable Dependen
e on Perturba-tionsLet us now 
onsider a parameterized family of optimization problems P (t)
min

w ∈ R
nw
F (t, w) subje
t to {

G(t, w) = 0
H(t, w) ≥ 0

(3.6)where the fun
tions F : R × R
nw → R , G : R × R

nw → R
nG , and H : R × R

nw → R
nHare C2. We want to investigate how the solution points (w∗(t), λ∗(t), µ∗(t)) depend on thevariable t, or, in the language of parametri
 optimization, we want to investigate the set

Σloc := {(t, w) ∈ R × R
nw |w is a lo
al minimizer for P (t))}.We restri
t our attention to the subset of points (t, w∗(t)) from Σloc that satisfy the strongse
ond order su�
ient 
onditions of Theorem 3.3. The main result of this se
tion is that1Here we use the de�nition ∇2

wL := ∂
2
L

∂w2 .



40 Lo
al Optimality and SQP Methodsthe points (w∗(t), λ∗(t), µ∗(t)) form a 
ontinuous and pie
ewise di�erentiable 
urve on thissubset, if an additional te
hni
al assumption is satis�ed. For a mu
h more detailed dis
us-sion of the properties of the set Σloc we refer to the book on parametri
 optimization byGuddat, Guerra Vasquez and Jongen [GVJ90℄.Before we formulate this theorem, we will give a simple example for illustration.Example 3.1 (Pie
ewise Di�erentiability)Consider the family P (t) of simple optimization problems
min
w ∈ R

1

2
w2 subje
t to −t + sinh(w) ≥ 0The solution 
urves w∗(t), µ∗(t) 
an easily be found to be
w∗(t) = max(0, arcsinh(t)),

µ∗(t) =
w∗(t)

cosh(w∗(t))
.These 
urves are 
ontinuous and pie
ewise di�erentiable with pie
ewise derivatives

∂w∗

∂t
(t) =

{

0, if t < 0,
cosh(arcsinh(t))−1, if t > 0,

∂µ∗

∂t
(t) = cosh(w∗(t))−1(1− tanh(w∗(t)))

∂w∗

∂t
(t).The graph of w∗(t) is depi
ted in Figure 3.1. How 
an the manifold be 
hara
terized inthe vi
inity of the 
ontinuous but non-di�erentiable point w∗(0)?We will now formulate the basi
 theorem of this se
tion, whi
h is proved in Appendix C.A very similar formulation of the theorem and a proof 
an be found in [GVJ90℄ (Theo-rem 3.3.4 and Corollary 3.3.1 (2)).Theorem 3.4 (One Sided Di�erentiability)Consider a parameterized family of optimization problems P (t) as de�ned in (3.6). Letus assume that we have found, for problem P (0), a KKT point (w∗(0), λ∗(0), µ∗(0)) thatsatis�es the su�
ient optimality 
onditions of Theorem 3.3, with strongly and weakly a
tiveset ve
tors Hs.act and Hw.act.Let us furthermore assume that the solution (δw∗, δλ∗, δµ

s.act
∗ , δµw.act

∗ ) of the followingquadrati
 program (with all derivatives evaluated at the solution point (w∗(0), λ∗(0), µ∗(0))for t = 0)
min

δw∈Rnw

1

2
δwT ∇2

wL δw +

(

∂

∂t
∇wL

)T

δwsubje
t to 





∂G
∂t

+∇wG
T δw = 0

∂Hs.act

∂t
+ (∇wH

s.act)
T
δw = 0.

∂Hw.act

∂t
+ (∇wH

w.act)
T
δw ≥ 0.

(3.7)
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tFigure 3.1: Graph of the solution manifold w∗(t) of Example 3.1.
satis�es the stri
t 
omplementarity 
ondition for the multiplier ve
tor δµw.act

∗ of the in-equality 
onstraints.Then there exists an ǫ > 0 and a di�erentiable 
urve v : [0, ǫ) → R
nw × R

nG × R
nH ,

t 7→





w∗(t)
λ∗(t)
µ∗(t)



of KKT points that satisfy the su�
ient optimality 
onditions of Theorem 3.3 for the
orresponding problems P (t), t ∈ [0, ǫ). At t = 0 the one sided derivative of this 
urve isgiven by
lim

t→0,t>0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)



 =













δw∗

δλ∗


δµ∗

















:=













δw∗

δλ∗
δµs.act

∗

δµw.act
∗

0













.

Remark 1: Note that the QP (3.7) always has a unique solution (δw∗, δλ∗, δµ
s.act
∗ , δµw.act

∗ ).This is due to the positive de�niteness of ∇2
wL on the null spa
e of the equality 
onstraintmatrix∇wG̃

sT , the feasibility of the QP (δw = 0 is feasible), and the fa
t that the 
onstraintmatrix (∇wG,∇wH
s.act,∇wH

w.act) has full rank due to the assumption that w∗(0) is a regularpoint.



42 Lo
al Optimality and SQP MethodsRemark 2: The only further requirement in addition to the su�
ient 
onditions of The-orem 3.3 is the � te
hni
al � assumption of stri
t 
omplementarity in the solution of theQP (3.7). It is needed to guarantee that there exists an ǫ > 0 so that the a
tive set of thelo
al solutions of P (t) does not 
hange for t ∈ (0, ǫ).Remark 3: The theorem treats only the existen
e of the �right� hand side of the solution
urve (w∗(t), λ∗(t), µ∗(t)) on the interval t ∈ [0, ǫ). If the stri
t 
omplementarity 
onditionis also satis�ed for the solution (δw′
∗, δλ

′
∗, δµ

s.act
∗

′
, δµw.act

∗
′
) of an inverted version of theQP (3.7), namely of

min
δw∈Rnw

1

2
δwT ∇2

wL δw +

(

− ∂

∂t
∇wL

)T

δwsubje
t to 













(

−∂G
∂t

)

+∇wG
T δw = 0

(

−∂Hs.act

∂t

)

+ (∇wH
s.act)

T
δw = 0.

(

−∂Hw.act

∂t

)

+ (∇wH
w.act)

T
δw ≥ 0,

(3.8)
then also the �left� hand side solution 
urve t ∈ (−ǫ′, 0] 7→ (w∗(t), λ∗(t), µ∗(t)), ǫ′ > 0,exists, with the one sided derivative

lim
t→0,t<0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)



 =













−δw′
∗

−δλ′
∗

−δµs.act
∗

′

−δµw.act
∗

′

0













.This is an immediate 
onsequen
e of the theorem, applied to the reversed problem family
P ′(t) := P (−t).Remark 4: If the referen
e point (w∗(0), λ∗(0), µ∗(0)) itself satis�es the stri
t 
omple-mentarity 
ondition, then no weakly a
tive 
onstraints Hw.act exist, and the original andinverted QP, (3.7) and (3.8), do not 
ontain any inequality 
onstraints. Therefore, theassumption of stri
t 
omplementarity in the QP solution is trivially satis�ed for bothproblems, and the solution 
urve exists on both sides, for t ∈ (−ǫ′, ǫ). Furthermore, fromsymmetry follows that the QP solutions 
oin
ide (up to a sign 
hange),





δw∗

δλ∗
δµs.act

∗



 =





−δw′
∗

−δλ′∗
−δµs.act

∗
′



 ,so that the derivative of the 
urve t ∈ (−ǫ′, ǫ) 7→ (w∗(t), λ∗(t), µ∗(t)) exists and is 
ontinu-ous everywhere, also at the point t = 0.
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Figure 3.2: Two sided derivative of the solution manifold w∗(t) of Example 3.1.
Example 3.2 (One Sided Di�erentiability)Let us again 
onsider the family P (t) of simple optimization problems of Example 3.1.For t = 0 the referen
e solution is w∗(0) = µ∗(0) = 0, and the quadrati
 programmingsubproblem (3.7) as in Theorem 3.4 is

min
δw ∈ R

1

2
δw2 subje
t to −1 + δw ≥ 0,with the solution
δw∗ = 1 and δµw.act

∗ = 1,whi
h 
orresponds to the �right� hand side derivatives of w∗(t), µ∗(t) for t→ 0, t > 0.Conversely, the inverted quadrati
 programming subproblem (3.8) is
min

δw ∈ R

1

2
δw2 subje
t to 1 + δw ≥ 0,whi
h has the solution

δw′
∗ = 0 and δµw.act

∗
′
= 0.This solution 
orresponds to the (inverted) derivatives of w∗(t), µ∗(t) for t→ 0, t < 0. Thetwo sides of the derivative are illustrated in Figure 3.2.



44 Lo
al Optimality and SQP Methods3.3 Sequential Quadrati
 ProgrammingSequential Quadrati
 Programming (SQP) is an iterative te
hnique to �nd a KKT point
(w∗, λ∗, µ∗) of an NLP

min
w ∈ R

nw
F (w) subje
t to {

G(w) = 0
H(w) ≥ 0Starting with an initial guess y0 = (w0, λ0, µ0), an SQP method iterates

yk+1 = yk + αk∆yk (3.9)where αk ∈ (0, 1] and
∆yk =





∆wk

∆λk
∆µk



 :=





∆wk

λ̃k − λk
µ̃k − µk



is obtained from the solution point (∆wk, λ̃k, µ̃k) of the following quadrati
 program
min

∆w ∈ Ωk

1

2
∆wT Ak ∆w + ∇wF (wk)

T∆wsubje
t to {

G(wk) +∇wG(wk)
T∆w = 0

H(wk) +∇wH(wk)
T∆w ≥ 0

(3.10)Existing SQP methods di�er mainly by the 
hoi
e of the steplength αk, the 
hoi
e ofthe so 
alled Hessian matrix Ak and the 
hoi
e of the set Ωk ⊂ R
nw . The iterates yka

ording to Eq. (3.9) form a sequen
e that is expe
ted to 
onverge towards a KKT point

y∗ = (w∗, λ∗, µ∗) of the NLP. In pra
ti
e, the iterations are stopped when a prespe
i�ed
onvergen
e 
riterion is ful�lled.We will in this se
tion introdu
e only one SQP method that is theoreti
ally very appeal-ing: the full step exa
t Hessian SQP method, that was �rst introdu
ed by Wilson [Wil63℄.3.3.1 The Full Step Exa
t Hessian SQP MethodThe full step exa
t Hessian SQP method is distinguished by the 
hoi
es αk := 1, Ωk := R
nw ,and, most important,

Ak := ∇2
wL(wk, λk, µk).To see why this 
hoi
e is advantageous, let us �rst regard an equality 
onstrained problem.In this 
ase, the ne
essary optimality 
onditions for the QP solution (∆wk, λ̃k) are

∇2
wL(wk, λk)∆wk +∇wF (wk)−∇wG(wk)λ̃k = 0,

G(wk) +∇wG(wk)
T∆wk = 0.



3.3 Sequential Quadrati
 Programming 45By substituting λ̃k = λk +∆λk we 
an write this equivalently as
∇wL(wk, λk) +∇2

wL(wk, λk) ∆wk −∇wG(wk) ∆λk = 0,
G(wk) +∇wG(wk)

T ∆wk = 0whi
h 
orresponds to the Newton-Raphson iteration rule
(

∇wL(wk, λk)
G(wk)

)

+
∂

∂(w, λ)

(

∇wL(wk, λk)
G(wk)

)(

∆wk

∆λk

)

= 0,for the solution of the KKT system
(

∇wL(w, λ)
G(w)

)

=

(

∇wF (w)−∇wG(w)λ
G(w)

)

= 0.This equivalen
e proves that the full step exa
t Hessian SQP method shows the sameex
ellent lo
al 
onvergen
e behaviour as the Newton-Raphson method, in the vi
inity ofa solution (w∗, λ∗) of the KKT system. Note, however, that it is ne
essary to start witha good initial guess not only for the primal variables w, but also for the multipliers λ.Fortunately, it turns out that the initial guess λ0 of the multipliers is not as 
ru
ial as theinitial guess w0 for the primal variables, due to the spe
ial stru
ture of the KKT system.This is expressed in the following theorem (for a proof we refer to Flet
her [Fle87℄).Theorem 3.5 (Convergen
e of the Exa
t Hessian SQP Method)If a point (w∗, λ∗) satis�es the su�
ient optimality 
onditions of Theorem 3.3 of anequality-
onstrained NLP problem, and if w0 is su�
iently 
lose to w∗, and if λ0 is 
hosensu
h that the matrix
(

∇2
wL(w0, λ0) −∇wG(w0)
∇wG(w0)

T 0

)is invertible, then the sequen
e of iterates generated by the full step exa
t Hessian SQPmethod, i.e., the sequen
e (wk, λk) of iterates that satis�es
(

∇2
wL(wk, λk) −∇wG(wk)
∇wG(wk)

T 0

)(

wk+1 − wk

λk+1

)

= −
(

∇wF (wk)
G(wk)

)
onverges q-quadrati
ally to (w∗, λ∗), i.e.,
∥

∥

∥

∥

(

wk+1 − w∗

λk+1 − λ∗

)∥

∥

∥

∥

≤ C

∥

∥

∥

∥

(

wk − w∗

λk − λ∗

)∥

∥

∥

∥

2with some 
onstant C ≥ 0.



46 Lo
al Optimality and SQP Methods3.3.2 A
tive Set DeterminationIn Theorem 3.5, lo
al 
onvergen
e is only proven for equality 
onstrained problems. In thepresen
e of inequality 
onstraints, however, we may assume that 
lose to the solution thea
tive set does not 
hange, so that the reasoning for equality 
onstrained problems is stillappli
able. This assumption is valid in the vi
inity of a KKT point (w∗, λ∗, µ∗) that satis-�es the se
ond order su�
ient 
onditions of Theorem 3.3 and the stri
t 
omplementarity
ondition.The strength of the QP formulation (3.10) during the SQP iterations is that it allowsto determine the multipliers and the a
tive set without prior knowledge of them. To showthis, let us assume that we have found a KKT point y∗ = (w∗, λ∗, µ∗) that satis�es the �rstorder ne
essary 
onditions of Theorem 3.1:
∇F (w∗)−∇wG(w

∗)λ∗ −∇H(w∗)µ∗ = 0

G(w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

µ∗
j H(w∗)j = 0, j = 1, 2, . . . , nH .Let us now assume that we formulate the �rst QP 3.10 for the determination of ∆y0,initialized at y0 = y∗, with some Hessian matrix A0. The ne
essary 
onditions of optimalityfor the QP solution (∆w0, λ̃0, µ̃0) are

A0 ∆w0 +∇F (w∗)−∇wG(w
∗)λ̃0 −∇H(w∗)µ̃0 = 0

G(w∗) +∇wG(w
∗)T∆w0 = 0

H(w∗) +∇wH(w∗)T∆w0 ≥ 0

µ̃0 ≥ 0

µ̃0,j (H(w∗) +∇wH(w∗)T∆w0)j = 0, j = 1, 2, . . . , nH .It 
an be seen that (∆w0, λ̃0, µ̃0) = (0, λ∗, µ∗) satis�es these 
onditions, and assumingpositive de�niteness of A0 on the null spa
e of the equality 
onstraints ∇wG(w
∗)T , thissolution is also the unique optimum of the QP: multipliers and a
tive set are dete
tedfrom knowledge of w∗ only. We may therefore infer that even in a neighborhood of alo
al optimum w∗, the multipliers and a
tive set 
an be determined by the SQP algorithm,under a weak positive de�niteness assumption on the matrix A0. This 
an indeed beproven, under the 
ondition that (w∗, λ∗, µ∗) satis�es the se
ond order su�
ient 
onditionsof Theorem 3.3 and the stri
t 
omplementarity 
ondition. For a detailed dis
ussion and aproof we refer to Robinson [Rob74℄.3.4 SQP for a Parameterized Problem FamilyLet us in the sequel 
onsider the parameterized family of augmented optimization problems
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P̆ (t̆) : min

t ∈ R , w ∈ R
nw
F (t, w) subje
t to 





t− t̆ = 0
G(t, w) = 0
H(t, w) ≥ 0

(3.14)where the fun
tions F : R × R
nw → R , G : R × R

nw → R
nG , and H : R × R

nw → R
nHare in C2. This family is equivalent to the family P (t) of problems (3.6) in Se
tion 3.2,with the only di�eren
e that t is now introdu
ed as an additional variable whi
h is �xedby the additional 
onstraint t − t̆ = 0. This addition of t to the SQP variables has the
onsequen
e that derivatives with respe
t to t are evaluated in the SQP algorithm, whi
hallows to perform the transition between di�erent optimization problems in su
h a waythat a �rst order approximation of the solution manifold as in Theorem 3.4 is provided bythe �rst iterate.Let us for brevity de�ne

w̆ :=

(

t
w

)

, λ̆ :=

(

λt
λ

)

, and Ğ(w̆) :=

(

t− t̆
G(t, w)

)

,so that the Lagrangian fun
tion L̆ of problem P̆ (t̆) 
an be written as
L̆(w̆, λ̆, µ) := F (w̆)− λ̆T Ğ(w̆)− µTH(w̆)

= F (t, w)− λt(t− t̆)− λTG(t, w)− µTH(t, w)
= L(t, w, λ, µ)− λt(t− t̆),where

L(t, w, λ, µ) = F (t, w)− λTG(t, w)− µTH(t, w)is the Lagrangian fun
tion for the parameterized family of optimization problems P (t) ofSe
tion 3.2.We will now show that the �rst full step exa
t Hessian SQP iterate for the enlargedproblem P̆ (ǫ), when started at the solution (w̆∗(0), λ̆∗(0), µ∗(0)) of P̆ (0), is 
losely relatedto the one sided derivative of the solution manifold (w∗(·), λ∗(·), µ∗(·)) of the problems
P (t), as in Theorem 3.4.Theorem 3.6 (First Order Predi
tion by Exa
t Hessian SQP)Let us assume that we have found a KKT point (w̆∗(0), λ̆∗(0), µ∗(0)) of problem P̆ (0) thatsatis�es the su�
ient optimality 
onditions of Theorem 3.3. If a full step SQP algorithmwith exa
t Hessian for the solution of the problem P̆ (ǫ), with ǫ > 0 su�
iently small,is started with this solution as an initial guess, then the nontrivial part of the �rst SQPstep, (∆w,∆λ,∆µ), is identi
al to ǫ times the one sided derivative of the solution manifold
(w∗(·), λ∗(·), µ∗(·)) of problems P (t) as given in Theorem 3.4, i.e.,

1

ǫ





∆w
∆λ
∆µ



 =





δw∗

δλ∗
δµ∗



 = lim
t→0,t>0

1

t





w∗(t)− w∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)







48 Lo
al Optimality and SQP MethodsRemark: The �rst order predi
tion provided by the exa
t Hessian SQP is equivalent toone step of the Euler predi
tor pathfollowing method in parametri
 optimization [GVJ90,Se
. 3.3, p. 73℄.
Proof: For a proof �rst note that ∇2

w̆ L̆ = ∇2
w̆L due to the linearity of the 
onstraint

t− ǫ = 0, so that the value of the additional multiplier λt plays no role in the QP (3.10).Furthermore, it 
an easily be seen that (w̆∗(0), λ̆∗(0), µ∗(0)) satis�es the su�
ient optimal-ity 
onditions of Theorem 3.3 for problem P̆ (0) if and only if (w∗(0), λ∗(0), µ∗(0)) satis�esthem for problem P (0), and λ∗t (0) = ∂
∂t
L(0, w∗(0), λ∗(0), µ∗(0)).The QP (3.10) for the �rst SQP iterate 
an be written in the form

min
∆t,∆w

1

2
∆wT∇2

wL∆w +∆t
∂

∂t
∇wLT∆w +∇wF

T∆w +
∂F

∂t
∆t +

1

2

∂2L
∂t2

∆t2subje
t to 





∆t− ǫ = 0
G+ ∂G

∂t
∆t+∇wG

T∆w = 0
H + ∂H

∂t
∆t +∇wH

T∆w ≥ 0,where all fun
tions and derivatives are evaluated at the point t = 0, w∗(0), λ∗(0) and µ∗(0).The variable∆t = ǫ 
an dire
tly be eliminated, and using the fa
t that G(0, w∗(0)) = 0and Hact(0, w∗(0)) = 0 as well as the fa
t that
∇wF (0, w

∗(0)) = ∇wG(0, w
∗(0))λ∗(0) +∇wH (0, w∗(0))µ∗(0)we 
an formulate the equivalent QP (dropping the 
onstant ∂F

∂t
ǫ+ 1

2
∂2L
∂t2
ǫ2 in the obje
tive)

min
∆w

1

2
∆wT∇2

wL∆w + ǫ
∂

∂t
∇wLT∆w + (∇wGλ

∗(0) +∇wHµ
∗(0))T ∆wsubje
t to 





∂G
∂t
ǫ+∇wG

T∆w = 0
∂Hact

∂t
ǫ+∇wH

actT∆w ≥ 0

H inact + ∂Hinact

∂t
ǫ+∇wH

inactT∆w ≥ 0,
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onditions (3.3) a

ording to Theorem 3.1 for a triple (∆w, λ, µ) to be a KKT pointof this QP problem are, using λ = λ∗(0) + ∆λ and µ = µ∗(0) + ∆µ:
∇2
wL∆w + ǫ

∂

∂t
∇wL −∇wG∆λ−∇wH∆µ = 0, (3.15a)

∂G

∂t
ǫ+∇wG

T∆w = 0, (3.15b)
∂Hs.act

∂t
ǫ+∇wH

s.actT∆w ≥ 0, (3.15
)
∂Hw.act

∂t
ǫ+∇wH

w.actT∆w ≥ 0, (3.15d)
H inact +

∂H inact

∂t
ǫ+∇wH

inactT∆w ≥ 0, (3.15e)
µ∗,s.act(0) + ∆µs.act ≥ 0, (3.15f)

∆µw.act ≥ 0, (3.15g)
∆µinact ≥ 0, (3.15h)

(µ∗(0) + ∆µ)s.actj

(

∂Hs.act

∂t
ǫ+∇wH

s.actT∆w

)

j

= 0, (3.15i)
∆µw.act

j

(

∂Hw.act

∂t
ǫ+∇wH

w.actT∆w

)

j

= 0, (3.15j)
∆µinact

j

(

H inact +
∂H inact

∂t
ǫ+∇wH

inactT∆w

)

j

= 0. (3.15k)By assuming that∆w,∆µ 
an be made arbitrarily small by 
hoosing ǫ small, we 
an assumethat H inact + ∂Hinact

∂t
ǫ +∇wH

inactT∆w > 0 and therefore drop (3.15e), and repla
e (3.15k)by ∆µinact
j = 0. Additionally, we 
on
lude that (µ∗(0) + ∆µ)s.actj > 0, so that (3.15i)and (3.15
) 
an be repla
ed by

∂Hs.act

∂t
ǫ+∇wH

s.actT∆w = 0.By a division by ǫ and a rede�nition
δw∗ :=

∆w

ǫ
, δλ∗ :=

∆λ

ǫ
, and δµ∗ :=

∆µ

ǫ
,



50 Lo
al Optimality and SQP Methodswe 
an write the ne
essary 
onditions as
∇2
wLδw∗ +

∂

∂t
∇wL −∇wGδλ∗ −∇wHδµ∗ = 0,

∂G

∂t
+∇wG

T δw∗ = 0,

∂Hs.act

∂t
+∇wH

s.actT δw∗ = 0,

∂Hw.act

∂t
+∇wH

w.actT δw∗ ≥ 0,

δµw.act
∗ ≥ 0,

δµ∗
w.act
j

(

∂Hw.act

∂t
+∇wH

w.actT δw∗

)

j

= 0,

δµinact
∗ = 0,whi
h are exa
tly the KKT 
onditions for the QP (3.7) that is formulated in Theorem 3.4.By the unique existen
e of this solution we 
on�rm our assumption that ∆w and ∆µ 
anbe made arbitrarily small by 
hosing ǫ su�
iently small.

3.4.1 Large Disturban
es and A
tive Set ChangesIn the proof of Theorem 3.6 we have made ǫ su�
iently small to ensure that the a
tive setof the �rst QP 
orresponds to the a
tive set in the immediate vi
inity of the solution point
w∗(0) � in this way it was possible to show that the �rst iterate of the exa
t Hessian SQPmethod, when started at a solution y∗(t) delivers a predi
tion y∗(t)+∆y(ǫ) of the solution
y∗(t+ ǫ) that is ‖y∗(t+ ǫ)− (y∗(t)+∆y(ǫ))‖ = O(‖ǫ‖2) under rather mild 
onditions, evenat the points where the a
tive set 
hanges, as treated in Theorem 3.4.In pra
ti
al appli
ations, however, when we want to solve a problem P (t2) startingwith the solution of a problem P (t1), we will typi
ally en
ounter the 
ase that the non-di�erentiable point of the solution 
urve w∗(t) lies somewhere in the interval between t1and t2. It is very important to note that the SQP method is in pra
ti
e also able to treatthis 
ase, as it 
an even reprodu
e distant a
tive set 
hanges, whi
h will be illustrated bythe following example.Example 3.3 (First Order Predi
tion of Exa
t Hessian SQP)Let us again 
onsider the family of simple optimization problems of Examples 3.1 and 3.2,but in an augmented formulation P̆ (t̆):
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Figure 3.3: First step ∆w of exa
t Hessian SQP method for Example 3.1, as a fun
tion of
ǫ, for the initialization t∗ = 0.5, w∗ = 0.48 = arcsin(0.5).

min
t ∈ R , w ∈ R

1

2
w2 subje
t to {

t− t̆ = 0
−t + sinh(w) ≥ 0Initialized at a solution t∗ = t̆, w∗ = max(0, arcsin(t∗), µ∗ = w∗/ cosh(w∗) of P̆ (t̆), the QPof the �rst exa
t Hessian SQP iteration for the solution of P̆ (t̆+ ǫ) is

min
∆t ∈ R ,∆w ∈ R

1

2
∆wT (1− tanh(w∗)w∗ ∆w + w∗ ∆wsubje
t to {

∆t − ǫ = 0
−t∗ + sinh(w∗)−∆t + cosh(w∗) ∆w ≥ 0,whi
h has the solution

∆t = ǫ,

∆w = max(− w∗

1−tanh(w∗)w∗
, t

∗−sinh(w∗)+ǫ
cosh(w∗)

),

µ̃ = w∗+(1−tanh(w∗)w∗)∆w
cosh(w∗)as depi
ted in Figure 3.3 for an initialization t∗, w∗ that is in the neighborhood of the�
orner� t = 0, w = 0.





Chapter 4Real-Time IterationsIn this 
hapter we will develop the main algorithmi
 ideas of our real-time iteration ap-proa
h. We will �rst present in Se
. 4.1 the 
hallenges that every real-time optimal 
ontrols
heme has to fa
e, and motivate the idea of the real-time iteration s
heme. In Se
. 4.2 wepresent the initial value embedding approa
h for perturbed problems, that arises quite nat-urally in the framework of the dire
t multiple shooting method. The algorithm is des
ribedin Se
. 4.3 for shrinking horizon problems, and in Se
. 4.4 for moving horizon problems,that are typi
al for pra
ti
al NMPC appli
ations.After the presentation of the real-time iteration idea in this 
hapter, we will in Chap. 5prove that the proposed approa
h leads to a 
ontra
tive algorithm under suitable 
ondi-tions, and in Chap. 6 we will have a 
lose look at one real-time iteration.4.1 Pra
ti
al Real-Time Optimal ControlIn a real-time s
enario we aim at not only solving one optimization problem, but a wholesequen
e of problems. Let us denote the di�erential state of the plant at time t by x0(t).Then, ideally, at every time t, the optimal 
ontrol problem of Se
. 1.1.1 with an initialvalue x0(t) would be solved instantaneously, and the optimal 
ontrol u∗(0; x0(t)) be givenas a 
ontrol to the real plant at time t. This strategy would yield an optimal feedba
k
ontrol, or, for moving horizons, a Re
eding Horizon Control (RHC) law as e.g. de�nedin [MM90℄. In all real implementations of NMPC, however, two approximations to thisideal approa
h are made:
• First, it is not the in�nite optimal 
ontrol problem from Se
. 1.1.1 that is solved, buta parameterized, �nite dimensional formulation of it. In our approa
h it is the NLPfrom Se
. 2.2 that arises after the dire
t multiple shooting parameterization, whi
hwas denoted P (x0(t)).
• Se
ondly, the optimization problems 
annot be solved instantaneously, so that theproblems are solved only at dis
rete sampling times . . . , ti, ti+1, . . . , with interval53



54 Real-Time Iterationsdurations δi = ti+1 − ti that are long enough to perform the ne
essary 
omputationsfor the solution of problem P (x0(ti)).Note that in this framework the optimal 
ontrol 
orresponding to the system state
x0(ti) at time ti is usually only available at time ti+1, after the 
omputations have beenperformed. This leads to a delay that may result in poor real-time performan
e, if thesampling intervals δi are not short enough.In prin
iple, it is possible to predi
t the state x0(ti+1) already at time ti and to solve the
orresponding problem P (x0(ti+1)) during the time interval [ti, ti+1], so that at time ti+1the optimal solution for the problem P (x0(ti+1)) is already available. However, unpredi
teddisturban
es that have o

ured in the interval [ti, ti+1] are not taken into a

ount, so thatthe feedba
k delay of one sampling time is still present.4.1.1 A Conventional Approa
hA straightforward approa
h to real-time optimal 
ontrol would be to just employ a fasto�-line algorithm to solve the arising optimization problems, and use the 
ompletely 
on-verged solution of the optimization problem to provide the feedba
k. We 
all this approa
hthe 
onventional approa
h to NMPC , and it is for example des
ribed by Binder et al.in [BBB+01℄. Note, however, that the duration δi may not be known in advan
e, if it isinsisted that ea
h solution should satisfy a prespe
i�ed 
onvergen
e 
riterion: in fa
t, thenumber of SQP iterations 
annot be bounded at all! In all pra
ti
al implementations somesafeguards must exist, that stop the solution algorithm in time, e.g. after a �xed numberof SQP iterations, even if the 
onvergen
e 
riterion is not met.Example 4.1 (Conventional NMPC)Let us 
onsider again the s
enario that was presented in Se
. 1.2 and introdu
e it as areal-time example. We assume that the system state is disturbed at time t0 = 0, so thatit suddenly jumps to the disturbed initial value x0, that is known immediately, but 
ouldnot be known in advan
e. We 
hoose a multiple shooting parameterization with N = 100intervals ea
h of 20 se
onds length. Let us assume that one SQP iteration takes 20 se
onds
omputation time, and that after 5 iterations all o

uring optimization problems are solvedwith satisfying a

ura
y: therefore, we 
an 
hoose a sampling time of δ = 100 se
onds.During this time we have to apply the best available 
ontrols to the real plant, whi
h arethe steady state 
ontrols in the �rst 100 se
onds, and in the following sampling times theout
ome of the previous optimization. The optimizations are 
arried out for the predi
tedinitial values after 100 se
onds, to alleviate the e�e
t of the delay. We will assume that themodel and the real plant 
oin
ide, so that the open-loop solution that is available after the�rst 100 se
onds 
orresponds already to the 
losed-loop traje
tory and is not modi�ed inthe following sampling intervals. The resulting 
losed-loop traje
tory is shown in Fig. 4.1,and 
ompared to the optimal feedba
k 
ontrol. The integrated least squares obje
tive that we
an regard as a performan
e measure of the 
losed-loop traje
tories, is for the 
onventionalNMPC s
heme in
reased by 17 % 
ompared to the optimal feedba
k 
ontrol.
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time [s]Figure 4.1: State and 
ontrol traje
tories of a 
onventional NMPC s
heme, 
ompared withoptimal feedba
k 
ontrol (whi
h is dotted).
4.1.2 The Real-Time Iteration IdeaThe reason for the poor performan
e of the 
onventional NMPC s
heme is that we have towait a long time until a feedba
k to disturban
es is delivered, and in the meantime we haveto apply a rather arbitrary, un
orre
ted 
ontrol. Would it not be possible to use some otherfeedba
k 
ontrol that is not ne
essarily optimal, but better than the un
orre
ted values?In Example 3.3 at the end of Chap. 3 we have seen that the �rst QP solution of a full stepexa
t Hessian SQP algorithm provides already a rather good approximation of the exa
tsolution, if the algorithm is initialized in a neighborhood of this solution. Motivated bythis observation, we 
on
lude that � in a real-time s
enario � it would probably be betterto use the result of this �rst 
orre
tion instead of waiting until the SQP algorithm has
onverged (without rea
ting to disturban
es). After the �rst SQP iteration, there wouldalready be the 
han
e to rea
t to new disturban
es � and if no further disturban
e o

urs,the algorithm 
ould 
ontinue to improve the out
ome of the previous iterates. Compared



56 Real-Time Iterationswith the 
onventional approa
h, our real-time algorithm di�ers therefore in two importantrespe
ts:
• We restri
t the number of solution iterations that are performed for ea
h problem toone single SQP iteration, allowing to redu
e the sampling intervals δi to a minimum.This approa
h is only possible if we ensure that the subsequent optimization problemsare 
arefully initialized in order to maintain the ex
ellent 
onvergen
e properties ofthe dire
t multiple shooting method in the absen
e of disturban
es.
• Se
ondly, we divide the ne
essary 
omputations during ea
h real-time iteration intoa (long) preparation phase that 
an be performed without knowledge of x0, and a
onsiderably shorter feedba
k phase that allows to make the delay even shorter thanthe sampling time δi. As this remaining delay is typi
ally orders of magnitude smallerthan δi, we will in the following negle
t it and assume that the result of ea
h real-timeiteration is immediately available, and that the sampling time δi is only needed toprepare the following real-time iteration.Both algorithmi
 features are based on an initialization strategy that 
an be understoodas an initial value embedding , whi
h will be des
ribed in the following se
tion.4.2 The Initial Value EmbeddingIn Theorem 3.6 of Se
. 3.4 we have shown that the �rst iterate of a full step exa
t HessianSQP algorithm that is initialized at a neighboring solution delivers a �rst order approx-imation of the exa
t solution, if an augmented problem formulation (3.14) is used. The
ru
ial feature of this augmented formulation is that the a
tual value of the parameter thatdistinguishes between di�erent problems is introdu
ed as an additional NLP variable, thatis �xed by a trivial equality 
onstraint, so that derivatives with respe
t to the parameterare present in the SQP framework. Fortunately, in the dire
t multiple shooting NLP for-mulation of Se
. 2.2, the distinguishing parameter of the NLPs P (x0) is the initial value

x0, that is itself 
onstraining sx0 by a trivial equality 
onstraint sx0 − x0 = 0. Therefore, wemay regard the NLP formulation (2.10) as an embedded problem formulation of the form
min

sx0∈Rnx ,w̃∈R(nw−nx)
F (sx0 , w̃) subje
t to 





sx0 − x0 = 0,

G̃(sx0 , w̃) = 0,
H(sx0 , w̃) ≥ 0,with w = (sx0 , w̃) (
f. Se
. 2.2). Comparing with the notation of (3.14), sx0 has taken thepla
e of t, and x0 the pla
e of t̆.Let us assume that we have found a solution y∗(x0) = (w∗(x0), λ

∗(x0), µ
∗(x0)) of prob-lem P (x0). If the SQP algorithm for the solution of a neighboring problem P (x0 + ǫ) isinitialized with this solution, the �rst full step exa
t Hessian SQP iterate provides alreadyan ex
ellent (�rst order) approximation of the solution y∗(x0+ ǫ). This �rst iterate is evenable to approximate distant a
tive set 
hanges, as was shown in Example 3.3, and will alsobe illustrated in the following example for a parameterized optimal 
ontrol problem.
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Figure 4.2: First order 
orre
tion in q10 and q20 after initial value embedding as a fun
tion of
ǫ, for two di�erent initializations: on the left hand side the algorithm was initialized withthe steady state traje
tory, on the right hand side with the out
ome of the �rst iterate for
ǫ = 1 from the left hand side. The exa
t solution manifold (
f. Fig. 1.3) is dotted.Example 4.2 (Initial Value Embedding)Let us again 
onsider the 
ontinuous stirred tank rea
tor with a disturbed initial value x0as in Example 4.1. We will regard a whole family of optimization problems P (xǫ) withperturbed initial values

xǫ := xS + ǫ(x0 − xS),that interpolate between the steady state xS and the disturbed initial value x0 (
f. Exam-ple 1.1). Let us initialize the SQP algorithm with the steady state traje
tory, whi
h is thesolution of P (xS) (ǫ = 0). The number nw of NLP variables is 604, as dis
ussed in Ex-ample 2.1. We restri
t our attention only to the �rst 
ontrol ve
tor, q0. A 
omparison ofthe �rst 
orre
tion in q0 after the initial value embedding with the exa
t solution manifold(
f. Example 1.1) is shown on the left hand side of Fig. 4.2 for di�erent values of ǫ; thisillustrates that the initial value embedding strategy provides a �rst order approximation ofthe exa
t solution manifold, that takes a
tive set 
hanges into a

ount (
f. lower left graphof Fig. 4.2). On the right hand side of Fig. 4.2 we investigate what happens if we 
hoose the�rst iterate itself as an initialization of the algorithm, so that we obtain a se
ond iterate.Note that the �rst iterate itself is not the solution of any problem, so that the manifold ofse
ond iterates does not tou
h the exa
t solution manifold at a referen
e point, as before.But it 
an be seen that in the vi
inity of ǫ = 1 it provides already a quite good approximationof the exa
t solution manifold.



58 Real-Time Iterations4.3 Real-Time Iterations on Shrinking HorizonsSo far we have assumed that the initialization of the SQP algorithm is given. In a real-time s
enario, there is essentially only one sour
e whi
h 
an provide an initial guess for the
urrent problem: the out
ome of the previous iterate. Depending on the problem 
lass,di�erent strategies 
ome to mind to use the previous real-time iteration to initialize the
urrent one.In the 
ase of shrinking horizon problems, there exists a very natural initialization thatis based on the prin
iple of optimality: if a solution x∗(t), z∗(t), u∗(t) is optimal on the timehorizon t ∈ [ti, tf ] for an initial value x0(ti), its restri
tion to the shrunk horizon [ti+1, tf ] =
[ti + δi, tf ] is still optimal for the initial value x0(ti+1) = x∗(ti+1). This 
an be translatedinto the dire
t multiple shooting 
ontext, if the length of the multiple shooting intervals,
T (τi+1 − τi), 
orresponds to the length of the sampling intervals, δi = ti+1 − ti. Let us forthis s
ope regard a problem dis
retization with N multiple shooting intervals, and let usassume that for the optimization problem P (x0(t0)) on the full horizon [t0, t0+T ] a solution
w∗ = (q0, . . . , qN−1, s0, . . . , sN) has been found. At time tk = t0 +

∑k
i=1 δi = t0 + Tτk, aredu
ed problem 
an be formulated, on a shrunk horizon with only N−k multiple shootingintervals, for the initial value xk := x0(tk). We will denote this problem by Pk(xk). Letus adopt the 
onvention that the multiple shooting variables wk of the redu
ed NLP arenumbered so that the indi
es start with k, i.e., wk = (qk, . . . , qN−1, sk, . . . , sN), so that theproblem Pk(xk), k = 0, . . . , N − 1 
an be written as:

Pk(xk) : min
qk, . . . , qN−1,

sk, . . . , sN

N−1
∑

i=k

Li(s
x
i , s

z
i , qi) + E(sxN , s

z
N) (4.1a)subje
t to

sxi+1 − xi(τi+1; s
x
i , s

z
i , qi) = 0, i = k, . . . , N − 1, (4.1b)

g(sxi , s
z
i , qi) = 0, i = k, . . . , N, (4.1
)

sxk − xk = 0, (4.1d)
re(sxN , s

z
N) = 0, (4.1e)

ri(sxN , s
z
N) ≥ 0, (4.1f)

h(sxi , s
z
i , qi) ≥ 0, i = k, . . . , N. (4.1g)Note that P0(x0) 
orresponds to the original problem P (x0) formulated in (2.10).Clearly, if we have found a solution y∗k = (w∗

k, λ
∗
k, µ

∗
k) of problem Pk(xk), and if the state

xk+1 
orresponds to the predi
ted optimal value on this traje
tory, i.e., xk+1 = (sxk+1)
∗

k
, therestri
tion of the solution to the remaining horizon provides the solution y∗k+1 for the shrunkproblem Pk+1(xk+1), whi
h is a good initialization also for disturbed initial values xk+1+ ǫ,



4.3 Real-Time Iterations on Shrinking Horizons 59when the initial value embedding is employed. Let us introdu
e the �shrink� operator Sk,that just removes the �rst 
omponents qk, sk and the 
orresponding multipliers from ave
tor yk = (wk, λk, µk), i.e., the operator that proje
ts the variables and multipliers of
Pk(·) to the variable and multiplier spa
e of Pk+1(·). Using Sk, the above statement 
anbe expressed as

y∗k+1 = Sky
∗
k.4.3.1 A Real-Time AlgorithmIn the real-time iteration 
ontext, the algorithm would pro
eed as follows: Starting withan initial guess y00 = (w0

0, λ
0
0, µ

0
0) for the problems P0(·) prepare the �rst real-time iterationas far as possible without knowledge of x0. Then perform for for k = 0, . . . , N − 1 thefollowing 
y
le:1. At the moment tk that xk is known, perform the prepared real-time iteration (basedon a linearization at ykk and the initial value embedding idea) towards the solution of

Pk(xk). This yields the �rst order 
orre
tion yk+1
k .2. Give the resulting value of the �rst 
ontrol ve
tor (qk)k+1

k (whi
h is 
ontained in theve
tor yk+1
k ) immediately as a 
ontrol to the plant.3. Shrink the �rst order 
orre
tion yk+1

k to the variable spa
e of the new problem Pk+1(·),i.e., de�ne the new iterate
yk+1
k+1 := Sky

k+1
k .4. Prepare the �rst iterate of problem Pk+1(·) as far as possible without knowledge of

xk+1, using the shrunk ve
tor yk+1
k+1 as an initialization.5. In
rease k by one and go to 1.Note that in our algorithm the �rst two steps do only need a very short 
omputation time
ompared to the fourth step (
f. Chap. 6).Example 4.3 (Real-time iterations)The 
losed-loop traje
tory resulting from the real-time iteration approa
h for the s
enariothat was presented in Se
. 1.2 is shown in Fig. 4.3. The number of multiple shootingintervals is N = 100, with intervals of equal length δk = 20 se
 for k = 0, . . . , N − 1. Theinitialization y00 was 
hosen to be the steady state traje
tory, i.e., the solution of P (xS). Weassume that the preparation time per real-time iteration is exa
tly 20 se
onds (in reality,the 
omputation time per iteration was always less than 1 se
ond, 
f. Fig. 4.5).It 
an be seen that the real-time iteration approa
h delivers a traje
tory that is nearlyidenti
al with an optimal feedba
k 
ontrol (dotted line) � apart from the �outlier� of u1 in the�rst interval whi
h is due to linearization errors, and whi
h 
orresponds to the �rst iteratein Fig. 4.2. In the se
ond real-time iteration, when nonlinearities are taken into a

ount,

u1 is already very 
lose to its optimal value. The performan
e index is only in
reased by 3% 
ompared to optimal feedba
k 
ontrol.
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ontrol traje
tories of the real-time iteration approa
h. The dottedlines, that are nearly identi
al, show the traje
tory due to optimal feedba
k 
ontrol.
4.3.2 Comparison with Linearized Neighboring Feedba
k ControlIt is interesting to 
ompare the above real-time iteration s
heme with a well-known approx-imation of optimal feedba
k 
ontrol, namely with linearized neighboring feedba
k 
ontrolas introdu
ed in Se
. 1.3.1. For this aim let us assume that the initial guess y00 is the solu-tion of a nominal problem P0(x̄0), and that the predi
ted optimal traje
tory goes throughthe points x̄1, . . . , x̄N , that we 
all the nominal or referen
e traje
tory. By the prin
ipleof optimality it is 
lear that for a given k < N the restri
tion of y00 to the variable spa
e of
Pk(·), that we denote by y0k, is the solution of the problem Pk(x̄k). The idea of linearizedneighboring feedba
k 
ontrol is to use only the initial guess y00 and its subve
tors y0k forthe initialization of the real-time iterations. The preparation of the �rst iterate for allproblems Pk(·) 
an be performed o�-line, redu
ing the ne
essary on-line 
omputations toa minimum.In linearized neighboring feedba
k 
ontrol, usually the assumption is made that thea
tive set does not 
hange during the on-line QP solutions, so that the QP 
an largely be
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tor multipli
ation that has to be performed on-line:the 
ontrol uk on the interval [tk, tk+1] is given by uk = ūk −Kk(xk − x̄k), where ūk is thenominal 
ontrol, and the matrix Kk is the pre
omputed gain matrix . Virtually no on-line
omputations have to be performed in this 
ase, and very short sampling times 
an berealized.For larger deviations in xk− x̄k, however, this may lead to 
ontrol responses that ex
eedthe 
ontrol bounds � therefore we present here a modi�ed linearized feedba
k 
ontrol s
hemethat solves the prepared QPs on-line, so that all linearized 
onstraints 
an be taken intoa

ount, when a
tive set 
hanges o

ur. Note that bounds are linear 
onstraints andtherefore exa
tly satis�ed in ea
h QP solution. The di�eren
e to the real-time iterations
heme is that all 
ontrol responses are based on the same system linearization, at thereferen
e solution y00. This algorithm would pro
eed as follows:Based on the referen
e solution y00 = (w0
0, λ

0
0, µ

0
0) and on its subve
tors y0k =

SkSk−1 . . . S1y
0
0 (that are the solutions of the nominal problems Pk(x̄k)), prepare the �rstQP solution of the problems Pk(·) as far as possible without knowledge of xk. Then performfor for k = 0, . . . , N − 1 the following 
y
le:1. At the moment tk that xk is known, perform the prepared QP solution towards thesolution of Pk(xk). This yields the �rst order 
orre
tion y1k.2. Give the resulting value of the �rst 
ontrol ve
tor (qk)

1
k (whi
h is 
ontained in theve
tor y1k) immediately as a 
ontrol to the plant.3. In
rease k by one and go to 1.Note that this linearized neighboring feedba
k 
ontrol s
heme is very 
losely related tolinear model predi
tive 
ontrol on shrinking horizons, as it is based on a linear systemmodel, and only a QP has to be solved in ea
h iteration. It is superior to what is 
ommonly
alled linear model predi
tive 
ontrol, however, in the respe
t that nonlinearities of thesystem equations along the nominal traje
tory are taken into a

ount, and that the Hessianmatrix does not only represent a quadrati
 obje
tive, but the full se
ond order informationof the Lagrangian fun
tion along the nominal traje
tory. Note that the values y1k are �rstorder approximations of the optimal solutions y∗k of the full nonlinear problems Pk(xk), i.e.,

‖y1k − y∗k‖ = O(‖xk − x̄k‖2), due to the initial value embedding.The low 
omputational on-line 
ost of linearized neighboring feedba
k 
ontrol, however,
omes along with the inability to adapt to large deviations from the nominal solution (i.e.,for big ‖xk − x̄k‖), as the system nonlinearity is not taken into a

ount in the on-line
ontext.Example 4.4 (Linearized neighboring feedba
k 
ontrol)In Fig. 4.4 a 
losed-loop traje
tory 
orresponding to the des
ribed linearized neighboringfeedba
k 
ontrol for the same s
enario as in Example 4.3 is shown, and 
ompared with thereal-time iteration s
heme. It 
an be seen that the two traje
tories di�er signi�
antly, andthat the linearized neighboring feedba
k 
ontrol shows 
onsiderably poorer performan
e, see
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time [s]Figure 4.4: Linearized neighboring feedba
k 
ontrol: state and 
ontrol traje
tories, 
om-pared with the real-time iteration traje
tories (dotted). Both s
hemes 
oin
ide on the �rstinterval, but the linearized neighboring s
heme does not take nonlinearities into a

ount.
Table 4.1. Note that the two s
hemes 
oin
ide on the �rst interval, where they both usethe same initialization (
f. Fig. 4.2). In the linearized neighboring feedba
k 
ontrol, thisinitialization is kept for the whole traje
tory, whereas it is 
ontinuously updated during thereal-time iteration 
y
les.
4.3.3 Problems with Free Final TimeSo far we have fo
used on problems where the overall duration was prespe
i�ed. In pra
ti
alshrinking horizon problems, however, often the �nal time is open to optimization, or isdetermined impli
itly by terminal 
onstraints. As dis
ussed in Se
. 2.2, the formulation ofa free �nal time 
an be a
hieved by an augmentation of the di�erential state ve
tors sxi by
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ostsOptimal Feedba
k Control 100 %Real-Time Iterations 103 %Conventional NMPC Approa
h 117 %Linearized Neighboring Feedba
k 121 %Table 4.1: Performan
e of di�erent real-time strategies, measured in terms of the obje
tivefun
tion, from Examples 4.1, 4.3, and 4.4.one 
omponent, and the formulation (4.1) of the optimization problem Pk(xk) needs to bemodi�ed only at the initial value 
onstraint (4.1d), whi
h is 
hanged to
(Inx|0)sxk − xk = 0.As before, the prin
iple of optimality holds, so that a solution of problem Pk(xk) providesa solution of the shrunk problem Pk+1(xk+1), if xk+1 
orresponds to the predi
ted value

(Inx |0)sxk+1. If disturban
es o

ur, the initial value embedding and real-time iterations
heme 
an be applied without modi�
ations; however, it should be kept in mind that theinterval durations may now 
hange during the real-time iterations.Apart from the shrinking problem formulation as des
ribed above, there exists an in-teresting se
ond possibility to formulate the series of optimization problem on a shrinkinghorizon with free �nal time: instead of the problems P0(x0), P1(x1), . . . , PN−1(xN−1) withshrinking multiple shooting interval numbers, we 
an 
onsider always the same multipleshooting dis
retization and regard only one type of parameterized problem, P (·) = P0(·),i.e., we treat su

essively P (x0), P (x1), . . . , P (xN−1). In this 
ase it is not straightforwardhow to initialize the subsequent real-time iterations. One way would be to take the vari-able and multipliers from the previous iterate without any modi�
ation, i.e., to performsu

essive warm starts and to rely on the approximation 
apa
ities of the initial value em-bedding (
f. Se
. 4.4.2). Though su
h a s
heme 
an be su

essful in pra
ti
al appli
ations,espe
ially for short sampling times, it is di�
ult to prove 
onvergen
e, as it will be donefor the shrinking problem formulation in Chap. 5.4.4 Real-Time Iterations on Moving HorizonsIn appli
ations of nonlinear model predi
tive 
ontrol (NMPC) to 
ontinuous pro
essesthe optimization problems are typi
ally formulated on moving horizons, whi
h aim toapproximate an in�nite predi
tion horizon. This results in problems whi
h all have thesame horizon length, and whi
h are only distinguished by the initial value xk. We willtherefore only treat one type of optimization problem P (·), and adopt the 
onvention thatthe subve
tors of the primal variables w are denoted by q0, . . . , qN−1 and s0, . . . , sN in allproblems, i.e., we disregard the absolute position of the moving horizon in time, in 
ontrastto the shrinking horizon 
ase.



64 Real-Time IterationsWe will present two basi
 strategies how to pro
eed from one optimization problemto the next. Both show their advantages in di�erent 
ir
umstan
es: the �rst, the shiftstrategy, is espe
ially advantageous for periodi
 or time dependent pro
esses, as it 
onsidersthe movement of the horizon in time expli
itly. The se
ond strategy, the warm start, isespe
ially useful in appli
ations where the multiple shooting intervals are 
hosen to be
onsiderably longer than the sampling times.4.4.1 Shift StrategyThe prin
iple of optimality does not hold for �nite moving horizons, but it is approximatelyvalid if the horizon length is long enough to justify the assumption that the remaining 
ostson the in�nite horizon 
an be negle
ted. This motivates an adaptation of the shrinkinghorizon initialization strategy to moving horizons that we 
all the shift strategy .For the initialization of a problem P (xk+1) it uses the iterate yk+1
k = (wk+1

k , λk+1
k , µk+1

k ),that is the out
ome of the previous iteration towards the solution of problem P (xk), toinitialize the new problem with yk+1
k+1 as follows.Shift in the Primal VariablesIf the primal variables wk+1

k are denoted by
wk+1

k = (q0, q1, . . . , qN−2, qN−1; s0, s1, . . . , sN−2, sN−1, sN)then the shift initialization sets
wk+1

k := (q1, q2, . . . , qN−1, q
new
N−1; s1, s2, . . . , sN−1, s

new
N−1, s

new
N ),where the new values qnewN−1, snewN−1, and snewN 
an be spe
i�ed in di�erent ways:

• One straightforward way is to keep the old values at their pla
e, i.e., to initialize
qnewN−1 := qN−1, snewN−1 := sN−1, and snewN := sN ,whi
h has the advantage that the only infeasibility that is introdu
ed into a feasibletraje
tory is the violation of the 
ontinuity 
ondition at the start of the last interval,i.e., at τN−1.

• A se
ond possibility would be to solve the DAE on the new last interval, startingwith sN , and employing the 
ontrol qN−1, whi
h yields the �nal value snewN (sN , qN−1)for di�erential and algebrai
 states, i.e., we initialize:
qnewN−1 := qN−1, snewN−1 := sN , and snewN := snewN (snewN−1, q

new
N−1).In this 
ase, both the 
ontinuity 
ondition and the algebrai
 
onsisten
y 
ondition at

τN−1 are full�lled, if the previous solution was feasible: for the 
ontinuity 
onditionthis is trivially true, and for the 
onsisten
y 
ondition note that previously, at τN ,
0 = g(sN , qN) = g(sN , qN−1), as qN−1 provides per de�nition the 
ontrol qN at the�nal multiple shooting node. However, path and terminal 
onstraints may be violatedby the new �nal value snewN .
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• Yet another possibility is to solve the DAE on the last interval starting at sN , but toemploy a di�erent 
ontrol than qN−1. Though this may sa
ri�
e algebrai
 
onsisten
yat τN−1, this strategy may be advantageous, e.g. for periodi
 pro
esses, where a timedependent nominal 
ontrol may be taken. This strategy was employed for the periodi

ontrol example of Chap. 8.Note that the initial violation of 
onstraints is naturally treated in the dire
t multipleshooting framework and does not 
reate any additional di�
ulty in the following SQPiterations. During the real-time iterations the out
ome of the previous iterate will usuallynot be feasible anyway, and additional infeasibility is introdu
ed by initial values xk thatare not in a

ordan
e with the predi
tions.Shift in the MultipliersThe initialization of the multipliers is also performed by a shift; for the multiplier valueson the �nal interval we usually keep the old values. It is 
lear that a shifted solution, evenif it may be feasible, is in general not optimal. For su�
iently long horizons, however,we expe
t the prin
iple of optimality to hold, so that the shifted primal variables and theshifted multipliers yk+1

k+1 are 
lose to a solution of P (xk+1) if yk+1
k was a solution of P (xk)and the system has developed as predi
ted (i.e., xk+1 = sx1).4.4.2 Warm Start Te
hniqueOn the other hand, if the horizon length is relatively short, so that the prin
iple of optimal-ity does not hold at all, subsequent optimization problems may have very similar solutions,that are mainly determined by terminal 
onditions, su
h as e.g. a Mayer term and terminal
onstraints that are introdu
ed to bound the negle
ted future 
osts (
f. Se
. 1.4). In this
ase the best initialization of subsequent problems should be a warm start strategy , whi
htakes the result of the previous iteration, yk+1

k , without further 
hanges to initialize the
urrent iteration: yk+1
k+1 := yk+1

k .If yk+1
k was the solution to problem P (xk), then the only infeasibility in problem P (xk+1)is introdu
ed by the initial value 
onstraint, as in general xk+1 6= xk. In this 
ase, however,the next iterate yk+2

k+1 is identi
al to the �rst order 
orre
tion to the optimal solution, aswe proved in Theorem 3.6, i.e., its distan
e to the optimal solution is ‖yk+2
k+1 − y∗k+1‖ =

O(‖xk+1 − xk‖2), if an exa
t Hessian SQP method is used. To shed more light on thisdesirable property, we regard the (unsolved) problem P (xk+1) as a member in a familyof perturbed problems P (xk + ǫ(xk+1 − xk)), where a solution for ǫ = 0 exists, and thesolution for ǫ = 1 is desired (
f. Example 4.2). The warm start strategy therefore has avery natural 
onne
tion to the initial value embedding strategy.Interpretation as Modi�ed SQP IterationsAnother interesting property of the warm start te
hnique o

urs if the initial values xk, xk+1
oin
ide during some iterates k, k + 1, . . . . In this 
ase, all real-time iterations treat the



66 Real-Time Iterationssame problem, so that the standard 
onvergen
e properties of SQP methods 
an be ex-pe
ted. This observation motivates a new look on the real-time iteration idea: ratherthan interpreting the real-time iterations as many prematurely stopped solution attemptsof subsequent optimization problems, we regard them as a 
ontinuous series of SQP it-erates with the parti
ularity that one parameter, the initial value x0, is slightly modi�edduring the iterations. This interpretation 
aptures very well the philosophy of the real-time iterations; in every pra
ti
al implementation of a real-time iteration algorithm it hasmeti
ulously to be taken 
are that the initialization from one problem to the next doespreserve all informations that are ne
essary to guarantee the 
onvergen
e properties of ano�-line method. This is most easily realized for the warm start strategy.Short Sampling TimesIn some pra
ti
al NMPC appli
ations it may be desirable to 
hoose the multiple shootingintervals longer than the sampling time; this allows e.g. long predi
tion horizons with alimited number of multiple shooting nodes, whi
h may be a 
ru
ial real-time advantage,as the 
omputation time generally grows with the number of multiple shooting nodes.Another pra
ti
al reason for 
hoosing relatively long 
ontrol intervals may be to detunethe NMPC 
ontroller, whose aggressive response may otherwise ex
ite unmodelled systemmodes with short times
ales.In the warm start te
hnique, short sampling times 
an be treated without di�
ulty.Even sampling times of variable size are allowed � the only requirement for good perfor-man
e is that the problems (i.e., the initial value x0) do not 
hange too mu
h from oneiteration to the next. Therefore, the shorter the sampling time, the better the 
ontra
tionbehaviour.Self-Syn
hronization of the Real-Time IterationsWhere a 
ontinuous stream of state estimates is available, the warm start te
hnique eveno�ers the possibility to let the sampling times be determined on-line by the optimizer itself.Whenever a new real-time iterate is prepared, say at time tk, the 
urrent state estimate
x0(tk) is used to perform the next real-time iteration towards the solution of P (x0(tk)),whose response is given immediately to the real-plant, and then the next iterate is prepared,until the algorithm is ready to perform, at time tk+1, the next feedba
k phase. Note thatin this s
heme it is not ne
essary to know the 
omputation time tk+1 − tk in advan
e. Inour pra
ti
al implementation of NMPC in Chap. 7 we have employed this s
heme.Su

essive Generation of Feedba
k LawsYet another possibility, that 
an be employed if a full real-time iteration takes too long tobe able to respond to relevant disturban
es, is to separate the preparation phase and thefeedba
k phase of ea
h real-time iteration 
ompletely. Then, the self-syn
hronized majorSQP iterations are performed as one pro
ess, that gives all data that are ne
essary for theimmediate feedba
k to another pro
ess. This feedba
k pro
ess delivers a feedba
k u(x0(t))
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y that 
an be 
onsiderably higher than that of the major nonlinear iterates.Only at the end of ea
h major SQP iteration, say at the time points tk, all updated dataare transferred from the SQP pro
ess to the feedba
k pro
ess, and simultaneously the the
urrent system state x0(tk) is given to the SQP pro
ess, to modify the next major real-timeiteration. The s
heme 
an be visualized as follows:MajorReal-TimeIterations updates-
x0(tk)�

ImmediateFeedba
k u(x0(t))-

x0(t)�

�
� SystemNote that between the updates (that o

ur only at the major sampling times tk) thefeedba
k is based on a linear system model that is obtained by a linearization along thebest available predi
ted traje
tory, similar to the linearized neighboring feedba
k 
ontrols
heme that was presented in Se
. 1.3.1.Example 4.5 (Comparison of Moving Horizon Strategies)The CSTR real-time s
enario that was treated in the previous examples 
an in a straight-forward way be formulated as a moving horizon problem. Instead of shrinking the timehorizon of the problems, the time horizon is kept at 
onstant length and moved forward.We 
an imagine that we 
ontinuously �append� multiple shooting intervals at the end of thehorizon. With the 
hosen horizon length of 2000 se
onds the 
losed loop system was alreadyat steady state in the middle of the horizon of the �rst optimization problem; therefore theappended parts do pra
ti
ally not matter at all, and for the shift strategy with exa
t HessianSQP we obtain exa
tly the same 
losed loop traje
tory as before in the real-time iterationExample 4.3 on a shrinking horizon. We have 
arried out 
losed-loop simulations for thesame s
enario also with the warm start te
hnique, and the result is that the 
losed-looptraje
tories are pra
ti
ally identi
al. We also 
arried out tests with an algorithm where theexa
t Hessian matrix was repla
ed by a Gauss-Newton approximation, whi
h again yieldsno visible di�eren
e of the traje
tories. The performan
e of the di�erent strategies 
an bemeasured by the obje
tive fun
tion on the 
onsidered interval of 2000 se
onds 
ompared tothe optimal value, as in Table 4.1. For all four moving horizon strategies we have observednearly identi
al values of 103 % of the optimal 
osts.For the 
hosen appli
ation, all strategies require more or less the same 
omputational
osts per real-time iteration, whi
h is dominated by linear algebra, be
ause the ODE solutionand sensitivity 
omputation do not require mu
h time for a system of su
h a small size.The ne
essary CPU time per iteration, and the share of it whi
h is needed to deliver the�immediate feedba
k� are depi
ted in Fig. 4.5 for the above s
enario, where a Gauss-Newtonmethod was employed. First, it 
an be seen that the overall 
ost of at most one se
ond ismu
h below the 20 se
onds that we have 
hosen as sampling time, thus ensuring pra
ti
alappli
ability of the algorithm for this type of problem. But it 
an also be seen that the�immediate� feedba
k requires a 
onsiderable proportion of the overall CPU time for thisexample problem and is therefore not as immediate as postulated. Note, however, that in
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Figure 4.5: Preparation and feedba
k times for the real-time iterations for the movinghorizon CSTR s
enario of Example 4.5, on an AMD Athlon pro
essor with 1009 MHz.The horizon length was 
hosen to be N = 100 multiple shooting intervals.large s
ale appli
ations the lion's share of the 
omputational 
ost is in
urred by the DAEsolution, whi
h does not 
ontribute to the response time, so that the immediate feedba
kis indeed orders of magnitude smaller than the overall 
omputation time (
f. Figs. 7.7and 7.16 in Chap. 7). Details on the separation into preparation and feedba
k phase aregiven in Chap. 6.



Chapter 5Contra
tivity of the Real-TimeIterationsIn the last 
hapter we have presented a new s
heme for the approximate solution of op-timization problems in real-time, whi
h shows very promising performan
e in numeri
alexamples. From the previous dis
ussion, however, it is far from 
lear how this s
hemebehaves theoreti
ally.To motivate why this is important, let us imagine that we apply the real-time iterations
heme in a NMPC framework to stabilize a system, and that the real system 
oin
ideswith the employed system model. If the subsequent optimization problems 
ould be solvedexa
tly in real-time, proofs exist that ensure nominal stability of the 
losed-loop systemfor di�erent NMPC s
hemes (
f. Se
. 1.4). Now the question arises if it is also possibleto establish nominal stability results if the optimization problems are not solved exa
tly,but with our real-time iteration s
heme. Otherwise, it may be possible that the real-time
ontroller does not stabilize the system, but drives it in the worst 
ase even away fromthe desired operating point: linearization errors may in
rease from iteration to iteration,and the approximations to the exa
t solutions may be
ome worse and worse. We willshow that this need not be feared, and we will prove that the real-time iterations deliverapproximations of the exa
t solutions that be
ome better and better, under reasonable
onditions.Unfortunately, standard 
onvergen
e results for o�-line SQP methods 
annot be ap-plied, be
ause ea
h real-time iteration belongs to a di�erent optimization problem. Never-theless, we will start the 
hapter in Se
. 5.1 by reviewing the lo
al 
onvergen
e propertiesfor a 
lass of o�-line optimization algorithms that are 
ommonly referred to as �Newtontype methods�, whi
h 
omprise the exa
t Hessian SQP method and the Constrained Gauss-Newton method. We will then in Se
. 5.2 present the real-time iteration s
heme in a newsetting, whi
h allows to 
ompare the real-time iterates on shrinking horizons with thoseof the o�-line method. This makes it possible to prove 
ontra
tivity of the real-time iter-ations. We usually avoid the term �
onvergen
e� in the real-time framework on shrinkinghorizons, be
ause the iterates stop after N 
y
les, when the time horizon of interest is over.69



70 Contra
tivity of the Real-Time IterationsThe prin
ipal result is that the real-time iteration s
heme on shrinking horizons is
ontra
ting under the same su�
ient 
onditions as the 
orresponding o�-line s
heme. Thisresult 
an 
on
eptually be generalized to the shift strategy on in�nite moving horizons andallows to 
on
lude that the real-time iteration s
heme leads to a 
onvergent 
losed-loopbehaviour in this 
ase. Finally, in Se
. 5.3 we investigate how far the result of the real-timeiterations deviates from the theoreti
al optimal solutions.Throughout the 
hapter we will assume that the iterates are started su�
iently 
loseto a KKT point that satis�es the su�
ient 
onditions of Theorem 3.3 and the stri
t 
om-plementarity 
ondition, so that we 
an assume that the a
tive set is known and we 
anrestri
t our attention to equality 
onstrained problems. Furthermore, we will assume thatthe variables w 
an be split into free variables q ∈ R
nq and dependent ones s ∈ R

ns, sothat the o�-line optimization problem on the full horizon of interest 
an be formulated asfollows:
P (x0) : min

q,s
F (q, s) s.t. G(q, s) = 0 (5.1)with F : D̂ ⊂ R

nq × R
ns → R and G : D̂ ⊂ R

nq × R
ns → R

ns twi
e 
ontinuouslydi�erentiable, where we assume that the 
onstraint fun
tion G is su
h that ∂G
∂s

is invertiblefor all (q, s) ∈ D̂. This last property 
an naturally be a
hieved for the dire
t multipleshooting method, as dis
ussed in Se
. 2.2.1, where q are the 
ontrols, and s the statevariables. This separation helps to formulate the shrinking of the time horizon in thereal-time setting; the shrinking will be expressed by de
reasing step-by-step the degrees offreedom for the 
ontrols.5.1 The O�-Line Problem5.1.1 Newton Type Optimization MethodsUsing the Lagrangian fun
tion L : D̂ × R
ns → R

L(q, s, λ) := F (q, s)− λTG(q, s)we 
an formulate ne
essary optimality 
onditions of �rst order, a

ording to Theorem 3.1:
∇(q,s,−λ)L(q, s, λ) =





∇qF (q, s)−∇qG(q, s)λ
∇sF (q, s)−∇sG(q, s)λ

G(q, s)



 = 0. (5.2)Let us de�ne for later 
onvenien
e the ve
tor y ∈ R
n with n := nq + ns + ns and thefun
tion R : D ⊂ D̂ × R

ns → R
n as

y :=





q
s
−λ



 and R(y) :=





∇qF (q, s)−∇qG(q, s)λ
∇sF (q, s)−∇sG(q, s)λ

G(q, s)



 , (5.3)



5.1 The O�-Line Problem 71so that the above system (5.2) is equivalent to R(y) = 0. To solve this system, the exa
tNewton-Raphson method would start at an initial guess y0 and 
ompute a sequen
e ofiterates y1, y2, . . . a

ording to
yk+1 = yk +∆yk, (5.4)where ea
h ∆yk is the solution of the linearized system

R(yk) +
∂R

∂y
(yk)∆yk = 0, (5.5)or, fully written,





∇qL
∇sL
G(q, s)



 +







∂2L
∂q2

∂2L
∂q∂s

T ∂G
∂q

T

∂2L
∂q∂s

∂2L
∂s2

∂G
∂s

T

∂G
∂q

∂G
∂s

0











∆qk

∆sk

−∆λk



 = 0. (5.6)We have seen in Se
. 3.3.1 that these Newton-Raphson iterates are identi
al to the full stepexa
t Hessian SQP method.The Newton type methods 
onsidered in this 
hapter di�er from the exa
t Newton-Raphson method in the way that the exa
t Hessian ∂2L
∂(q,s)2

is repla
ed by a (symmetri
)approximation
A(y) =

(

Aqq AT
qs

Aqs Ass

)

,so that we 
an de�ne an approximate derivative of R by:
J(y) :=







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0






. (5.7)For our Newton type method, Eq. (5.5) is repla
ed by the approximation

R(yk) + J(yk)∆yk = 0. (5.8)5.1.2 The Constrained Gauss-Newton MethodAn important spe
ial 
ase of the Newton type methods 
onsidered in this 
hapter is the
onstrained Gauss-Newton method, whi
h is appli
able for problems with a least squaresform of the obje
tive fun
tion F :
F (q, s) =

1

2
‖l(q, s)‖22 (5.9)



72 Contra
tivity of the Real-Time Iterationswith l : D̂ → R
nl, nl ≥ 1, a ve
tor valued fun
tion. For this 
ase, the Hessian approxima-tion A is de�ned to be

A(q, s) :=

(

∂l

∂(q, s)

)T (
∂l

∂(q, s)

)

. (5.10)The error ∂2L
∂(q,s)2

−A 
an be quanti�ed by 
al
ulation of ∂2L
∂(q,s)2

∂2L
∂(q, s)2

−
(

∂l

∂(q, s)

)T (
∂l

∂(q, s)

)

=

nl
∑

i=1

li
∂2li

∂(q, s)2
+

ns
∑

i=1

λi
∂2Gi

∂(q, s)2
.At a solution y∗ = (q∗, s∗, λ∗), the ne
essary optimality 
onditions (5.2) require that

∇sF −∇sGλ
∗ =

(

∂l

∂s

)T

l(q∗, s∗)−∇sGλ
∗ = 0,so that

λ∗ = −∇sG
−1 ∂l

∂s

T

l(q∗, s∗) = O (‖l(q∗, s∗)‖) ,whi
h allows to 
on
lude that
∥

∥

∥

∥

∂2L
∂(q, s)2

−A(q∗, s∗))

∥

∥

∥

∥

= O (‖l(q∗, s∗)‖) .Thus we expe
t the Gauss-Newton method to work well for small residual ve
tors l(q, s).Note that A(q, s) is independent of the multiplier ve
tor λ.Remark: The least squares fun
tion l(q, s) needs not to be a mapping into a �nitedimensional spa
e R nl, but may more generally be a mapping into any Hilbert spa
e H . If
〈·, ·〉H is the inner produ
t in H , the least squares obje
tive fun
tion of Eq. (5.9) is thenwritten as

F (q, s) =
1

2
〈l(q, s), l(q, s)〉H,and the Gauss-Newton approximation of the Hessian in Eq. (5.10) is given by the symmetri
matrix

A(q, s)ij := Re

〈

∂l

∂(q, s)i
,

∂l

∂(q, s)j

〉

H

,where the indi
es i, j run through all 
omponents of (q, s). Note that this matrix is �nitedimensional, whi
h allows to treat this general 
ase with the presented numeri
al methods.In Se
. 6.4 it is shown how to 
ompute A(q, s) e�
iently in the presen
e of integral leastsquares terms as introdu
ed in Se
. 1.1.



5.1 The O�-Line Problem 735.1.3 Su�
ient Conditions for Lo
al Convergen
eLet us now state su�
ient 
onditions for 
onvergen
e of a series of general Newton typeiterates (yk), k = 0, 1, . . . in a spa
e R
n de�ned by

yk+1 = yk +∆yk = yk − J(yk)−1R(yk), (5.11)towards a solution of the system
R(y) = 0. (5.12)Theorem 5.1 (Lo
al Convergen
e of Newton Type Methods)Let us assume that R : D ⊂ R

n → R
n is 
ontinuously di�erentiable and that the approxi-mation of the derivative J : D ⊂ R

n → R
(n×n) is 
ontinuous and has a 
ontinuous inverseon D. Furthermore, let us make the following assumptions:

∥

∥

∥

∥

J(y1)
−1

(

J(y2)−
∂R

∂y
(y2)

)∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D (5.13a)and
∥

∥J(y1)
−1 (J(y2)− J(y3))

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D. (5.13b)Additionally, we suppose that the �rst step ∆y0 := −J(y0)−1R(y0) starting at an initialguess y0 is su�
iently small, so that
δ0 := κ+

ω

2
‖∆y0‖ < 1 (5.13
)and that

D0 :=

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D. (5.13d)Under these 
onditions the sequen
e of Newton type iterates (yk) de�ned by Eq. (5.11)remains inside D0 and 
onverges towards a y∗ ∈ D0 satisfying the sytem (5.12), R(y∗) = 0.Proof: Slightly modifying a proof that 
an be found in Bo
k [Bo
87℄, we �rst show thatthe norm of the steps ∆yk 
ontra
ts, and show then that (yk) is a Cau
hy sequen
e. The
ontra
tion 
an be shown as follows:
‖∆yk+1‖ = ‖J(yk+1)−1 · R(yk+1)‖

= ‖J(yk+1)−1 · (R(yk+1)− R(yk)− J(yk) ·∆yk)‖
= ‖J(yk+1)−1 ·

∫ 1

0
(∂R
∂y
(yk + t∆yk)− J(yk)) ·∆yk dt‖

= ‖J(yk+1)−1 ·
∫ 1

0
(∂R
∂y
(yk + t∆yk)− J(yk + t∆yk))∆yk dt

+J(yk+1)−1 ·
∫ 1

0
(J(yk + t∆yk)− J(yk))∆yk dt‖

≤
∫ 1

0
‖J(yk+1)−1 (∂R

∂y
(yk + t∆yk)− J(yk + t∆yk))‖‖∆yk‖ dt

+
∫ 1

0
‖J(yk+1)−1 (J(yk + t∆yk)− J(yk))‖‖∆yk‖ dt

≤ κ‖∆yk‖+
∫ 1

0
ωt‖∆yk‖2 dt

=
(

κ+ ω
2
‖∆yk‖

)

‖∆yk‖ =: δk‖∆yk‖.

(5.14)



74 Contra
tivity of the Real-Time IterationsIf δk ≤ 1, then ‖∆yk+1‖ ≤ ‖∆yk‖, and δk+1 ≤ δk ≤ 1. Therefore, we 
an indu
tivelydedu
e that
‖∆yk+1‖ ≤ δ0‖∆yk‖, ∀ k ≥ 0so that

‖yk+m − yk‖ ≤ 1

1− δ0
‖∆yk‖ ≤ δk0

1− δ0
‖∆y0‖, ∀ k,m ≥ 0. (5.15)In parti
ular,

‖ym − y0‖ ≤ 1

1− δ0
‖∆y0‖, ∀m ≥ 0.Therefore, (yk) is a Cau
hy sequen
e that remains inside the 
ompa
t set D0 and hen
e
onverges towards a limit point y∗. By 
ontinuity of R and J−1,

0 = lim
k→∞

∆yk = lim
k→∞

−J(yk)−1R(yk) = −J(y∗)−1R(y∗)so that R(y∗) = 0.We will state a se
ond, stri
ter form of the above theorem, whi
h is appli
able to opti-mization problems only, and implies lo
al 
onvergen
e of the Newton type iterates towardsa stri
t lo
al minimum. Before this se
ond version of the theorem 
an be formulated, wehave to give an expli
it formula for the inverse of the approximate derivative J(y).Lemma 5.2 (Inverse of the KKT Matrix)Let us assume that J(y) is a matrix as de�ned in Eq. (5.7), i.e.,
J(y) =







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0





with ∂G
∂s

invertible, and let us also assume that the so 
alled redu
ed Hessian matrix
Ar(y) :=

(

I −∂G
∂q

T (∂G
∂s

)−T
)

(

Aqq AT
qs

Aqs Ass

)

(

I

−
(

∂G
∂s

)−1 ∂G
∂q

) (5.16)is positive de�nite. Then the inverse of J(y) exists and is given by the formula
J(y)−1 = C1(y)Ar(y)

−1C1(y)
T + C2(y) (5.17)with

C1(y) :=







I

−
(

∂G
∂s

)−1 ∂G
∂q

−
(

∂G
∂s

)−T
(

Aqs − Ass

(

∂G
∂s

)−1 ∂G
∂q

)






(5.18)



5.1 The O�-Line Problem 75and
C2(y) :=







0 0 0

0 0
(

∂G
∂s

)−1

0
(

∂G
∂s

)−T −
(

∂G
∂s

)−T
Ass

(

∂G
∂s

)−1






. (5.19)Remark: Note that the assumptions of this lemma 
oin
ide with those of Lemma 3.2,with the 
onstraint matrix B set to B = (∂G

∂q
|∂G
∂s
). They are also 
losely related to thesu�
ient optimality 
onditions of Theorem 3.3. The positive de�niteness of Ar will beused in the proof of Theorem 5.3 to show that the Newton type iterates 
onverge towardsa lo
al minimum.Proof: The invertibility follows from Lemma 3.2. The inversion formula (5.17) 
an beveri�ed by 
he
king that

J(y)(C1(y)Ar(y)
−1C1(y)

T + C2(y)) = Iand using the fa
t that
J(y)C1(y) =





Ar(y)
0
0



 and J(y)C2(y) = I−





C1(y)
T

0
0



 .Theorem 5.3 (O�-Line Convergen
e)Let us assume that R : D → R
n is de�ned a

ording to (5.3) to be the residual of thene
essary optimality 
onditions of the equality 
onstrained optimization problem (5.1).We assume that the redu
ed Hessian approximation Ar(y) from Eq. (5.16) is positivede�nite on the whole domain D, with bounded inverse:

‖Ar(y)
−1‖ ≤ βA <∞, ∀ y ∈ D. (5.20a)We also assume boundedness of ‖C1‖ and ‖C2‖ as de�ned in Eqs. (5.18) and (5.19) on D:

‖C1(y)‖ ≤ βC1 <∞, ∀ y ∈ D, (5.20b)and
‖C2(y)‖ ≤ βC2 <∞, ∀ y ∈ D. (5.20
)Let us de�ne β := βC1βAβC1 + βC2. Let us suppose that a Lips
hitz 
ondition

β ‖J(y1)− J(y2)‖ ≤ ω‖y1 − y2‖, ω <∞, ∀ y1, y2 ∈ D, (5.20d)holds for the derivative approximation J(y) and that
β

∥

∥

∥

∥

A(y)− ∂2L
∂(q, s)2

(y)

∥

∥

∥

∥

≤ κ, κ < 1, ∀ y ∈ D. (5.20e)
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Figure 5.1: Convergen
e rates for o�-line Newton type methods, for the solution of Exam-ple 5.1. Comparison of Newton and Gauss-Newton method, when started at the steadystate traje
tory.
Additionally, we assume as in Theorem 5.1 that the �rst step ∆y0 := −J(y0)−1R(y0)starting at an initial guess y0 is su�
iently small, so that

δ0 := κ+
ω

2
‖∆y0‖ < 1 (5.20f)and that

D0 :=

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D. (5.20g)Under these 
ir
umstan
es the Newton type iterates (yk) a

ording to Eq. (5.8) 
onvergetowards a KKT point y∗ = (q∗, s∗, λ∗) ∈ D whose primal part (q∗, s∗) is a stri
t lo
alminimum of Problem (5.1).A proof of the theorem is given in Appendix D.Example 5.1 (Continuous Stirred Tank Rea
tor)Let us again 
onsider the optimal 
ontrol problem that was introdu
ed in Se
. 2.1, respe
-tively its multiple shooting parameterization as des
ribed in Example 2.1. The solution w∗of the NLP with initial value as in Se
. 2.1 was shown in Fig. 2.3; a 
omparison of the
onvergen
e rates for the Newton and Gauss-Newton method is given in Fig. 5.1, where thealgorithm is started at the steady state traje
tory. The plot for the Gauss-Newton methodallows us to estimate that κ ≈ 0.1.



5.2 The On-Line Problem 775.2 The On-Line ProblemWe will now regard real-time iterations on shrinking horizons as introdu
ed in Se
. 4.1.2,in the framework of the o�-line optimization problem. It is shown in Se
. 5.2.1 that theessential di�eren
e to the o�-line iterations is that after ea
h Newton type iteration some
omponents of the free variables q are �xed, i.e., that the optimization problem (5.1) is
hanged to a problem in the same spa
e, but with some more (trivial) equality 
onstraints.In the following Se
. 5.2.2 we will show that the nonlinearity and in
ompatibility 
onstants
ω and κ for the o�-line problem are still valid for a problem with some �xed 
ontrols. Thisallows to 
on
lude in Theorem 5.6 that the real-time iterations 
ontra
t if the su�
ient
onditions for o�-line 
onvergen
e of Theorem 5.3 are satis�ed, whi
h is the main resultof this 
hapter. In Se
. 5.3 we investigate how far the result of the real-time iterationsdeviates from the theoreti
al optimal solutions.Let us �rst dis
uss why �xing of some free 
omponents is equivalent to the real-timeiteration s
heme as introdu
ed in Se
. 4.1.2.5.2.1 The Fixed Control FormulationIn the real-time iteration framework for shrinking horizons of Se
. 4.3, we have redu
ed thenumber of multiple shooting nodes from one problem to the next, in order to keep pa
ewith the pro
ess development.We regard a problem dis
retization with N multiple shooting intervals on a �xed lengthtime horizon with duration T , and assume that the 
omputation time for the k-th real-timeiteration is δk, and that ∑N

k=1 δk = T (this is e.g. the 
ase if all iterations take the sametime δ and the time horizon of interest has the length T = Nδ). The multiple shootingpoints are 
hosen so that the times tk := Tτk satisfy tk − tk−1 = δk, i.e.,
t0 = 0, tk =

k
∑

i=1

δi, for k = 1, . . . , N.Let x0, x1, . . . , xN denote the di�erential system states of the real system at times
t0, t1, . . . , tN , that serve as initial values for the parameterized optimization problems
Pk(xk) of shrinking length, as de�ned in Se
. 4.3, Eq. (4.1).At time t0 the state x0 is known, and the initial value embedding strategy qui
kly yieldsthe 
ontrol value u0 that will be implemented on the �rst time interval, up to time t1. Attime t1 the next immediate feedba
k has been prepared, and is applied to the shrunkproblem P1(x1). If the model and the real system 
oin
ide, the new system state x1 isidenti
al to the �nal value x(t1) of the initial value problem

B(·)ẋ(t) = f(x(t), z(t), u0), t ∈ [t0, t1],
0 = g(x(t), z(t), u0), t ∈ [t0, t1],

x0(t0) = x0,and the initial value 
onstraint for the problem P1(x1) is
sx1 = x1.



78 Contra
tivity of the Real-Time IterationsLet us now regard the original problem P0(x0) on the full horizon, but with an additional
onstraint that �xes the 
ontrol q0 on the �rst interval to be equal to the implementedvalue u0 = q00 +∆q00 = q10 . This problem then 
ontains the 
onstraints
sx1 − x0(t1; s

x
0, s

z
0, q0) = 0,

g(sx0, s
z
0, q0) = 0,

sx0 − x0 = 0,

q0 − u0 = 0,whi
h 
onstrain sx0 , sz0, q0 and sx1 uniquely. In the solution, sx1 = x1, be
ause the relaxedinitial value problem
B(·)ẋ0(t) = f(x0(t), z0(t), q0), t ∈ [t0, t1],

0 = g(x0(t), z0(t), q0)− e
−β

t−t0
t1−t0 g(sx0, s

z
0, q0), t ∈ [t0, t1],

x0(t0) = sx0 ,is equivalent to the real system dynami
s if sx0 = x0, q0 = u0, g(sx0, sz0, q0) = 0, so that
x0(t1; s

x
0 , s

z
0, q0) = x(t1) = x1. On
e the 
orre
t values for s0, q0 are found during theiterative solution pro
edure, they are not 
hanged anymore, and the above 
onstraints are
ompletely equivalent to sx1 = x1.For ODE models, the 
orre
t solution for sx0 , q0 is already found after the �rst iterate,due to the linearity of the initial value 
onstraint, and due to the fa
t that u0 was set justto the out
ome of this �rst iterate. Therefore, �xing of q0 is 
ompletely equivalent to theshrinking of the horizon. One slight 
ompli
ation arises, however, for DAE models: afterthe �rst iterate, sz0 may still not be at its 
orre
t value in the �xed 
ontrol formulation (i.e.,

g(sx0, s
z
0, q0) 6= 0) and this may result in a value x0(t1; sx0, sz0, q0) that is slightly di�erentfrom the 
orre
t value x(t1), due to the DAE relaxation. We will disregard this slightdi�eren
e that is only present in the relaxed DAE 
ase (and that 
ould even be interpretedas a slight superiority of the real implementation over the �xed 
ontrol formulation, whi
hwe only introdu
e here for theoreti
al purposes).Let us therefore assume in the remaining part of this 
hapter that the real-time itera-tions on shrinking horizons are identi
al to a subsequent �xing of the 
ontrols q0, . . . , qN−1in the original o�-line optimization problem (5.1), whi
h we denoted by P (x0) or P0(x0).For notational 
onvenien
e, we will in the following de�ne P 0 := P0(x0) = P (x0) to bethe original (o�-line) problem, and denote by P k the problems with more and more �xed
ontrols that are generated during the real-time iterations and whi
h are equivalent to theshrinking horizon problems Pk(xk). A visualization of the out
ome of the �rst two real-timeiterations is given in Figures 5.2 and 5.3.The series of problems P k, k = 0, . . . , N are given by

P k : min
q,s

F (q, s) subje
t to {

G(q, s) = 0,
qi − ui = 0, i = 0, . . . , k − 1.
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h impli
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80 Contra
tivity of the Real-Time Iterations(Re
all that q = (q0, q1, . . . , qN−1).) In a shorter formulation, we will also write theseproblems as
P k : min

q,s
F (q, s) s.t. {

G(q, s) = 0,

Qk
1
T
(q − uk) = 0.Here, the matri
es Qk

1 ∈ R
nq×mk , mk = knu, are of the form

Qk
1 :=

(

Imk

0

)

, (5.21)and the ve
tors uk ∈ R
nq are de�ned as

uk :=











u0...
uk−1

∗











, with Qk
1

T
(q − uk) =







q0 − u0...
qk−1 − uk−1






,so that the last 
omponents of uk, that are introdu
ed only for later notational 
onvenien
e,
an 
arry arbitrary values. Note that in the last problem PN no degrees of freedom remain,as all 
omponents of q are �xed.5.2.2 Fixing Some ControlsWe will now prove that the nonlinearity and in
ompatibility 
onstants ω and κ from theo�-line problem (5.1) are still valid for any modi�ed problem P k, when some 
ontrols are�xed. Let us in this subse
tion 
onsider only one modi�ed optimization problem P k anddrop the index k for notational simpli
ity:

min
q,s

F (q, s) s.t. {

G(q, s) = 0
QT

1 (q − u) = 0
(5.22)where the matrix Q1 ∈ R

nq×m, m ≤ nq 
onsists of m orthonormal 
olumns, as in (5.21).We also introdu
e the orthonormal 
omplement of Q1 by
Q2 :=

(

0
I(nq−m)

)

∈ R
nq×(nq−m).Let us formulate the ne
essary �rst-order 
onditions of optimality for the modi�ed problem.We introdu
e the Lagrangian fun
tion L̃ of the modi�ed problem (5.22)

L̃(q, s, λ, µ) := L(q, s, λ)− λQ
TQT

1 (q − u),where L is the Lagrangian fun
tion of the original problem (5.1). The ne
essary 
onditionsof optimality for the modi�ed problem are:
∇(q,s,−λ,−λQ)L̃(q, s, λ, λQ) =









∇qL −Q1λQ
∇sL
G(q, s)

QT
1 (q − u)









= 0. (5.23)
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omponent of this ve
tor by the orthogonal matrix (Q1|Q2)
T ∈ R

nq×nqyields












(

−λQ +QT
1∇qL

QT
2∇qL

)

∇sL
G(q, s)

QT
1 (q − u)













= 0and it 
an be seen that the upper part 
an always be made zero by 
hoosing
λQ := QT

1∇qL.Therefore, the trivial �rst 
ondition 
an be omitted in the formulation of the ne
essary
onditions for optimality of the modi�ed problem and we do not have to regard the addi-tional multipliers λQ. This allows us to treat the modi�ed problem in the same primal-dualspa
e of y ∈ R
n as the original problem, with n = nq +ns+ns. De�ning the essential partof the residual of the ne
essary optimality 
onditions to be

R̃(y) :=









QT
1 (q − u)
QT

2∇qL
∇sL
G(q, s)









=









QT
1 (q − u)

0
0
0









+









0
QT

2

I

I









R(y)we 
an 
ompute the derivative
∂R̃

∂y
=









QT
1

0
0
0









+









0
QT

2

I

I









∂R

∂y
(5.24)and provide an approximation of this derivative whi
h uses the approximation J(y) of theoriginal problem

J̃(y) :=









QT
1

0
0
0









+









0
QT

2

I

I









J(y)

=











QT
1 0 0

QT
2Aqq QT

2A
T
qs QT

2
∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0











.

(5.25)
Theorem 5.4 (Contra
tion Constants for the Modi�ed Problem)Let us assume that the su�
ent 
onditions for lo
al 
onvergen
e of Theorem 5.3 are satis�ed
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tivity of the Real-Time Iterationsfor the original (o�-line) problem (5.1). Then the derivative approximation J̃ : D → R
nof the modi�ed problem (5.22) satis�es the two 
onditions

∥

∥

∥

∥

∥

J̃(y1)
−1

(

J̃(y2)−
∂R̃

∂y
(y2)

)∥

∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D, and (5.26a)
∥

∥

∥J̃(y1)
−1
(

J̃(y2)− J̃(y3)
)∥

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D, (5.26b)with the same values of κ and ω as the o�-line problem.Remark: These two bounds 
orrespond to the properties (5.13a) and (5.13b) in Theo-rem 5.1.3, thus allowing to 
on
lude that the 
ontra
tion inequality
‖∆yk+1‖ ≤

(

κ+
ω

2
‖∆yk‖

)

‖∆yk‖also holds for the modi�ed problem. This implies that the optimization problem does notbe
ome less tra
table from the algorithmi
 viewpoint when we add additional 
onstraints.However, we do not address the question a suitable problem initialization, yet.To prove the theorem, let us �rst give an expli
it formula of the inverse J̃(y)−1.Lemma 5.5 (KKT Inverse for the Modi�ed Problem)The inverse of the matrix J̃(y) as de�ned in Eq. (5.25) is given by the formula
J̃(y)−1 = Q









I

C̃1Ã
−1
r C̃T

1 + C̃2

















I

−QT
2AqqQ1 I

−AqsQ1 I

−∂G
∂q
Q1 I









, (5.27)with
Q :=





Q1 Q2

I

I



 ,

Ãr(y) := QT
2Ar(y)Q2, (5.28a)

C̃1(y) :=





QT
2

I

I



C1(y)Q2, (5.28b)and
C̃2(y) :=





QT
2

I

I



C2(y)





Q2

I

I



 , (5.28
)where Ar(y), C1(y), and C2(y) are de�ned as in Lemma 5.2 for the original problem.



5.2 The On-Line Problem 83Proof of Lemma 5.5: We will 
he
k that J̃(y)J̃(y)−1 = I. First note that
J̃(y)Q =











I

QT
2AqqQ1 QT

2AqqQ2 QT
2A

T
qs QT

2
∂G
∂q

T

AqsQ1 AqsQ2 Ass
∂G
∂s

T

∂G
∂q
Q1

∂G
∂q
Q2

∂G
∂s

0











.The inverse of the lower-right part of this matrix 
an be obtained by an appli
ation ofLemma 5.2 (using QT
2Q2 = I). Its inverse is given as







QT
2AqqQ2 QT

2A
T
qs QT

2
∂G
∂q

T

AqsQ2 Ass
∂G
∂s

T

∂G
∂q
Q2

∂G
∂s

0







−1

= C̃1(y)Ã
−1
r (y)C̃T

1 (y) + C̃2.Therefore,
J̃(y)Q









I

C̃1Ã
−1
r C̃T

1 + C̃2









=









I

QT
2AqqQ1 I

AqsQ1 I
∂G
∂q
Q1 I









,whi
h is the inverse of the rightmost blo
k Frobenius matrix in formula (5.27).Proof of Theorem 5.4: Note that C̃1(y) and C̃2(y) as de�ned in Eqs. (5.28b) and (5.28
)are proje
tions of C1(y) and C2(y), so that their (spe
tral) matrix norm satis�es
‖C̃1(y)‖ ≤ ‖C1(y)‖ ≤ βC1 , ∀y ∈ D,and
‖C̃2(y)‖ ≤ ‖C2(y)‖ ≤ βC2 , ∀y ∈ D.To provide a bound on the inverse Ãr(y)

−1 we have to use the fa
t that Ar(y) ispositive de�nite. First we show that the eigenvalues of the proje
tion Ãr(y) = QT
2Ar(y)Q2lie between the maximum and minimum eigenvalues of Ar(y). To prove this we note that

Ãr(y) is a submatrix of Ar(y), as
Ar(y) =

(

QT
1

QT
2

)

Ar(y) (Q1|Q2) =

( * ** Ãr(y)

)By the interla
ing property (see e.g. [Wil65℄, pp. 103�104), the eigenvalues
λ̃1(y), . . . , λ̃(nq−m)(y) of the submatrix Ãr(y) must lie in the spe
trum of Ar(y), i.e.,
λ̃k(y) ∈ [λ1(y), λnq(y)]. In parti
ular, λ1(y) ≤ λ̃1(y) for the smallest eigenvalues. The
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tivity of the Real-Time Iterationsinverse of the smallest eigenvalue 
orresponds to the spe
tral norm of the inverse of apositive de�nite matrix, so that we dedu
e that
‖Ãr(y)

−1‖ =
1

λ̃1(y)
≤ 1

λ1(y)
= ‖A−1

r (y)‖ ≤ βA, ∀y ∈ D.This allows to �nd a bound on the 
entral part of the inverse J̃(y)−1 in formula (5.27):
∥

∥

∥C̃1(y)Ãr(y)
−1C̃1(y)

T
+ C̃2(y)

∥

∥

∥ ≤ βC1βAβC1 + βC2 = β, ∀y ∈ D.From Eqs. (5.24) and (5.25) it follows that
J̃(y2)−

∂R̃

∂y
(y2) =









0
QT

2

I

I









(

J(y2)−
∂R

∂y
(y2)

)

and
J̃(y2)− J̃(y3) =









0
QT

2

I

I









(J(y2)− J(y3))and from formula (5.27) that
J̃−1(y1)









0
QT

2

I

I









=





Q2

I

I





(

C̃1(y1)Ãr(y1)
−1C̃1(y1)

T
+ C̃2(y1)

)





QT
2

I

I



 ,whi
h has a spe
tral norm less or equal to β. This allows to establish the desired bounds:
∥

∥

∥

∥

∥

J̃−1(y1)

(

J̃(y2)−
∂R̃

∂y
(y2)

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

J̃−1(y1)









0
QT

2

I

I









(

J(y2)−
∂R

∂y
(y2)

)

∥

∥

∥

∥

∥

∥

∥

∥

= β

∥

∥

∥

∥

∥

J(y2)−
∂R̃

∂y
(y2)

∥

∥

∥

∥

∥

≤ κ < 1, ∀y1, y2 ∈ D,
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∥

∥

∥J̃−1(y1)
(

J̃(y2)− J̃(y3)
)∥

∥

∥

= β ‖J(y2)− J(y3)‖ ≤ ω‖y2 − y3‖, ∀y1, y2, y3 ∈ D.

5.2.3 Convergen
e of the Real-Time IterationsIn this subse
tion we �nally 
onsider the s
enario that we subsequently �x more and morefree 
omponents during the Newton type iterations. To be able to speak 
onvenientlyabout 
onvergen
e, and to be able to de�ne a limit point y∗ of the real-time iterates yk, wewill regard an in�nite sequen
e of optimization problems P k, k = 0, 1, . . . , where we de�ne
PN+k := PN for k > 0. Following the N-th iterate, no degrees of freedom remain, but theiterates may still be 
onverging towards feasibility.1As dis
ussed above, at the k-th iterate the problem P k

P k : min
q,s

F (q, s) s.t. {

G(q, s) = 0

Qk
1
T
(q − uk) = 0

(5.29)is treated, where the matri
es Qk
1 ∈ R

nq×mk and their orthonormal 
omplements Qk
2 ∈

R
nq×(nq−mk) are of the form

Qk
1 :=

(

Imk

0

)

, and Qk
2 :=

(

0
I(nq−mk)

)with nonde
reasing integers mk that satisfy 0 = m0 ≤ mk ≤ nq. Note that
Qk+1

2 = Qk
2Πk with Πk :=

(

0
I(nq−mk+1)

)

∈ R
(nq−mk)×(nq−mk+1).The ve
tors uk will be de�ned during the iterations with iterates yk = (qk, sk, λk), to be

uk := qk, k = 0, . . .Note that the �rst problem P 0 has no additional 
onstraint, be
ause m0 = 0, and 
orre-sponds to the original o�-line problem (5.1) that was treated in Se
. 5.1. In 
ontrast to P 0,the problems P 1, P 2, . . . are only generated during the iterations and therefore depend onthe initialization y0 and on the 
hosen Newton type method.Ea
h problem P k is equivalent to �nding the zero of a fun
tion Rk as follows:
Rk(y) :=









Qk
1
T
(q − uk)

Qk
2
T∇qL
∇sL
G(q, s)









= 0.1Note, however, that for ODE models a feasible solution is already obtained after the N -th iterate.



86 Contra
tivity of the Real-Time IterationsNote that the ne
essary optimality 
onditionsR0(y) = 0 
orrespond to the o�-line 
ondition
R(y) = 0 that was de�ned in Eq. (5.3) in Se
. 5.1.1. The derivative approximation Jk(y)is de�ned a

ording to Eq. (5.25) to be

Jk(y) =









Qk
1
T

0
0
0









+









0

Qk
2
T

I

I









J(y),where J(y) is the derivative approximation of R(y).During the real-time iterations, ea
h step ∆yk = yk+1 − yk is generated by an attemptto atta
k problem P k, starting at the 
urrent best guess yk:
∆yk := −Jk(yk)−1 Rk(yk). (5.30)Theorem 5.6 (Convergen
e of the Real-Time Iterations)Let us assume that the su�
ent 
onditions for lo
al 
onvergen
e of Theorem 5.3 are satis-�ed for the original (o�-line) problem (5.1). Then the sequen
e of real-time iterates (yk)a

ording to Eq. (5.30) 
onverges towards a feasible point

y∗ ∈ D0 =

{

y ∈ R
n| ‖y − y0‖ ≤ ‖∆y0‖

1− δ0

}

⊂ D, δ0 = κ+
ω

2
‖∆y0‖.Remark: Though this theorem uses the term �
onvergen
e� and regards the in�nitesequen
e yk, it is not the behaviour for k → ∞ that 
auses the di�
ulty, as from k = Non we treat always the same optimization problem PN ; the di�
ulty lies in showing thatthe �rst iterates y1, y2, . . . , yN remain in the set D0.Proof: We will follow the lines of the proof of Theorem 5.1. Note that the �rst step ∆y0of the real-time iterations 
oin
ides with the �rst step of the o�-line iterations. Therefore,to prove 
onvergen
e towards a limit point y∗ = (q∗, s∗, λ∗), we only have to show that the
ontra
tion propery

‖∆yk+1‖ ≤
(

κ+
ω

2
‖∆yk‖

)

‖∆yk‖ (5.31)is satis�ed for the real-time iterates. In a se
ond step, we will show that the primal part
(q∗, s∗) of the limit point is feasible.In Theorem 5.4 in Se
. 5.2.2 we have already shown that �xing of 
omponents does notin
rease the 
onstants κ < 1 and ω that are used to prove the 
ontra
tion property for asingle optimization problem. This means that all derivative approximations Jk satisfy thebounds (5.13a) and (5.13b).But how to 
ompare the steps ∆yk and ∆yk+1 that 
orrespond to di�erent residualfun
tions Rk and Rk+1?
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k to prove the 
ontra
tion property (5.31) is to treat two subsequent steps ∆ykand ∆yk+1 as if they were belonging to the same optimization problem P k+1 with residualfun
tion Rk+1. If this is true, Eq. (5.14) 
an dire
tly be used to prove the 
ontra
tionproperty. This tri
k is paradoxi
al be
ause it assumes that the 
onstraint
Qk+1

1

T
(q − uk+1) = Qk+1

1

T
(q − qk+1) = 0is already de�ned before the iterate yk+1 = (qk+1, sk+1, λk+1) is 
omputed, i.e., before qk+1is known!Fortunately, it 
an be shown that the step ∆yk is not 
hanged, if it would have beende�ned by

∆yk := −Jk+1(yk)−1 Rk+1(yk)instead of
∆yk := −Jk(yk)−1 Rk(yk)as in Eq. (5.30). To see this, note that∆yk is the unique solution ofRk(yk)+Jk(yk)∆yk = 0.We will show that it also satis�es Rk+1(yk) + Jk+1(yk)∆yk = 0.

Rk+1(yk) + Jk+1(yk) ∆yk

=











Qk+1
1

T
(qk−qk+1)

Qk+1
2

T∇qL
∇sL
G(q, s)











+











Qk+1
1

T

Qk+1
2

T
Aqq Qk+1

2

T
AT

qs Qk+1
2

T∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0















qk+1−qk
sk+1−sk
λk−λk+1





=









0

Qk+1
2

T

I

I

















∇qL
∇sL
G(q, s)



 +







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0






∆yk







=









0

ΠT
kQ

k
2
T

I

I

















∇qL
∇sL
G(q, s)



+







Aqq AT
qs

∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0






∆yk







=









0
ΠT

k

I

I

















Qk
2
T∇qL
∇sL
G(q, s)



+







Qk
2
T
Aqq Qk

2
T
AT

qs Qk
2
T∂G
∂q

T

Aqs Ass
∂G
∂s

T

∂G
∂q

∂G
∂s

0






∆yk







=









0
ΠT

k

I

I













0
0
0



 = 0.
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node index kFigure 5.4: Limit point w∗ of the real-time iteration approa
h (with Gauss-Newton it-erations) in Example 5.2, whi
h is very similar to the exa
t o�-line solution (dotted, 
f.Fig. 2.3).
Therefore, the iterations 
onverge towards a limit point y∗ ∈ D0. To show that thispoint is feasible, note that at some problem P k0 no more 
omponents 
an be �xed (tobe spe
i�
, k0 = N in the real-time iterations for the multiple shooting method), so that
Rk = Rk0 , ∀ k ≥ k0. Therefore

0 = lim
k→∞

−Jk(yk)−1Rk(yk) = lim
k→∞

−Jk0(yk)−1Rk0(yk) = −Jk0(y∗)−1Rk0(y∗),so that Rk0(y∗) = 0 whi
h implies G(q∗, s∗) = 0.
Example 5.2 (Continuous Stirred Tank Rea
tor)Let us again 
onsider Example 5.1. The limit point w∗ = (q∗, s∗) is shown in Fig. 5.4; a
omparison of the 
onvergen
e rates for the Newton and Gauss-Newton method is shownin Fig. 5.5.
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Figure 5.5: Convergen
e rates for Newton type methods, for the real-time iterations ofExample 5.2. Comparison of Newton and Gauss-Newton method. The dotted lines indi
atethe 
onvergen
e rates for the o�-line solution (
f. Example 5.1).5.3 Comparison of On-Line and O�-Line SolutionsWe will now investigate the error that we make by using the real-time iteration s
heme,
ompared to the exa
t o�-line solution of P 0. We denote the o�-line solution now by y∗0 todistinguish it from the limit point y∗ of the real-time iterations. We will also 
ompare y∗with the exa
t solutions y∗k of the optimization problems P k for k ≥ 1. Note that not onlythe limit point y∗ depends on the initial guess y0 and the 
hosen Newton type method, butalso the exa
t solutions y∗k, be
ause the optimization problems P k are generated on-line.Several results are established; �rst, we bound the distan
es ‖y∗ − y∗k‖ in the spa
e ofKKT points y = (q, s, λ) by the size of the �rst step ∆y0. Se
ondly, we show how the�rst step ∆y0 itself is bounded, if the initial guess y0 was the solution of a neighboringoptimization problem. Finally, we will investigate how mu
h optimality is lost with respe
tto the obje
tive fun
tion.5.3.1 Distan
e to Optimal SolutionsTheorem 5.7 (Distan
e to O�-Line Solution)If the su�
ient 
onditions for o�-line 
onvergen
e of Theorem 5.3 are satis�ed, the distan
ebetween the limit point y∗ of the real-time iterations as de�ned in Eq. (5.30) and the solution
y∗0 of the o�-line optimization problem P 0 
an be bounded by

‖y∗ − y∗0‖ ≤ 2δ0‖∆y0‖
1− δ0

, δ0 = κ+
ω

2
‖∆y0‖. (5.32)Proof: We make use of the fa
t that the iterates for the solution of the o�-line problem asin Theorem 5.3 and the real-time iterations (yk) 
oin
ide on y0 and y1 before they separate.



90 Contra
tivity of the Real-Time IterationsAs they have the same 
ontra
tion 
onstants κ < 1 and ω, also δ0 is identi
al for both.Using the property (5.15) from the proof of Theorem 5.1 for the Newton type iterates
‖yk+m − yk‖ ≤ 1

1− δ0
‖∆yk‖ ≤ δk0

1− δ0
‖∆y0‖, ∀ k,m ≥ 0,we dedu
e that

‖y∗ − y1‖ = lim
m→∞

‖y1+m − y1‖ ≤ δ0
1− δ0

‖∆y0‖.For the o�-line solution y∗0 of P 0, the same inequality holds, so that
‖y∗ − y∗0‖ ≤ ‖y∗ − y1‖+ ‖y∗0 − y1‖ ≤ 2δ0

1− δ0
‖∆y0‖.An interesting 
orollary of this theorem is the following:Corollary 5.8 (Shrinking Distan
e to Optimal Solutions)The distan
e between the limit point y∗ of the real-time iterations as de�ned in Eq. (5.30)and the rigorous solution y∗k of the k-th on-line optimization problem P k 
an be bounded by

‖y∗ − y∗k‖ ≤ 2δk‖∆yk‖
1− δk

≤ 2δk+1
0 ‖∆y0‖
1− δ0

.This means that the limit point y∗ of the real-time iterations is 
lose to the rigoroussolution of a problem P k, if k < N is 
hosen large enough (note that for k ≥ N , y∗k = y∗anyway, as the problem does not 
hange anymore). Note that the iterates 
onverge intypi
al appli
ation problems mu
h faster than the horizon shrinks (e.g. Example 5.2).This allows to 
on
lude that the real-time iterates pra
ti
ally provide an optimal solution
y∗k of a problem P k with a relatively small k < N , i.e., for a problem with a slightlyshortened horizon only.5.3.2 Size of First Step after Initial Value EmbeddingTo know more about the distan
e between the two points y∗ and y∗0, it is ne
essary to �nda bound on the �rst step ∆y0. Let us therefore go ba
k to the formulation for the o�-lineoptimization problem P 0 = P (x0) that was given in Se
. 2.2, whi
h keeps the initial value
onstraint separate:

P 0 : min
q,s

F (q, s) subje
t to {

sx0 − x0 = 0,

G̃(q, s) = 0,The optimality residual ve
tor therefore has the stru
ture
Rx0(y) :=









∇qL
∇sL
sx0 − x0
G̃(q, s)









.



5.3 Comparison of On-Line and O�-Line Solutions 91Note that the derivative ∂R
∂y

and the derivative approximation J do not depend on thevalue of the parameter x0. We will now establish a bound on the �rst step ∆y0 after theinitial value embedding, if the iterations are started at an initial guess y0 that is itself theresult of a neighboring optimization problem (
f. Theorem 3.6 on the �rst order predi
tionby an exa
t Hessian SQP, and the initial value embedding idea in Se
. 4.2).Lemma 5.9 (Bound on First Step)Let us assume that ȳ∗0 is the solution of an optimization problem P0(x̄0), and that x0 = x̄0+ǫ.Then the �rst step ∆y0 of the iterations for the solution of problem P 0 = P0(x0) whenstarting at y0 := ȳ∗0 
an be bounded by
‖∆y0‖ ≤ β‖ǫ‖,where β is de�ned as in Theorem 5.3.Proof: We make use of the fa
t that Rx̄0(y

0) = Rx̄0(ȳ
∗
0) = 0 and 
al
ulate ∆y0 dire
tly:

∆y0 = −J(y0)−1Rx0(y
0)

= −J(y0)−1









Rx̄0(y
0) +









0
0
−ǫ
0

















= J(y0)−1









0
0
ǫ
0









.The proof is 
ompleted by using ‖J(y0)−1‖ ≤ β as shown in the proof of Theorem 5.3.As an immediate 
onsequen
e of this lemma and of Theorem 5.7, we obtain the following:Corollary 5.10 (Distan
e after Initial Disturban
e)The distan
e between the rigorous solution y∗0 of the optimization problem P0(x0) and thelimit point y∗ of the real-time iterations, when started at the solution ȳ∗0 of a neighboringoptimization problem P0(x̄0), is � for a general Newton type method � of �rst order in thesize of the disturban
e ǫ = x0 − x̄0

‖y∗ − y∗0‖ ≤ 2
κ+ ω

2
β‖ǫ‖

1− (κ+ ω
2
β‖ǫ‖)β‖ǫ‖,and � for an exa
t Newton method � of se
ond order in the size of the disturban
e

‖y∗ − y∗0‖ ≤ ω

1− ω
2
β‖ǫ‖β

2‖ǫ‖2.5.3.3 Bounds on the Loss of OptimalityNow that we know how far the limit point y∗ is from the optimal solution, we 
an alsoinvestigate how mu
h optimality is lost, in terms of the obje
tive fun
tion F (q∗, s∗).



92 Contra
tivity of the Real-Time IterationsTheorem 5.11 (Loss of Optimality)Let us assume that the su�
ient 
onditions for o�-line 
onvergen
e of Theorem 5.3 aresatis�ed. Let us also assume that the exa
t derivative matrix ∂R
∂y

is bounded on D0:
∥

∥

∥

∥

∂R

∂y
(y)

∥

∥

∥

∥

≤ BR, ∀y ∈ D0.Denoting the limit point of the real-time iterations by y∗ = (q∗, s∗, λ∗), and the optimalo�-line solution by y∗0 = (q∗0, s
∗
0, λ

∗
0), the loss of optimality 
an be bounded by

F (q∗, s∗)− F (q∗0, s
∗
0) ≤

1

2
BR‖y∗ − y∗0‖2. (5.33)Proof: First note that not only the point (q∗0, s∗0), but also the point (q∗, s∗) is feasiblea

ording to Theorem 5.6, i.e., G(q∗0, s∗0) = G(q∗, s∗) = 0. Therefore, we 
an 
ompare thevalues of the Lagrangian fun
tion L(q, s, λ) = F (q, s) − λTG(q, s) that 
oin
ide with theobje
tive in both points.

L(y∗)−L(y∗0) =
∫ 1

0
∂L
∂y
(y∗0 + t1(y

∗ − y∗0)) (y
∗ − y∗0) dt1

=
∫ 1

0
R(y∗0 + t1(y

∗ − y∗0))
T (y∗−y∗0) dt1

=
∫ 1

0

(

∫ t1
0

∂R
∂y
(y∗0 + t2(y

∗−y∗0))(y∗−y∗0) dt2
)T

(y∗−y∗0) dt1
= (y∗−y∗0)T

(

∫ 1

0

∫ t1
0

∂R
∂y
(y∗0 + t2(y

∗−y∗0)) dt2 dt1
)T

(y∗−y∗0)where we have used the fa
t that R(y∗0) = 0. We 
on
lude that
‖L(y∗)−L(y∗0)‖ ≤ 1

2
Br‖y∗−y∗0‖2.This theorem together with Corollary 5.10 implies the following:Corollary 5.12 (Loss of Optimality after Initial Disturban
e)The loss of optimality due to the real-time iterations for the approximate solution of P0(x0)is of se
ond order in the size of an initial disturban
e ǫ as in Corollary 5.10 for a generalNewton type method:

F (q∗, s∗)− F (q∗0, s
∗
0) ≤ 2Br

(

κ+ ω
2
β‖ǫ‖

1− (κ + ω
2
β‖ǫ‖)β

)2

‖ǫ‖2, (5.34)and � for an exa
t Newton method � of fourth order in the size of the disturban
e:
F (q∗, s∗)− F (q∗0, s

∗
0) ≤

Brω
2β4

2
(

1− ω
2
β‖ǫ‖

)2‖ǫ‖4. (5.35)



Chapter 6A Close Look at one Real-TimeIterationIn this 
hapter we des
ribe in detail what 
omputations are ne
essary to perform one real-time iteration, and we show how these 
omputations 
an be performed e�
iently. Startingwith the 
urrent iterate of the variables (w, λ, µ), we des
ribe how to �nally arrive at thesolution (∆w, λ̃, µ̃) of the QP (3.10), that allows to generate the next iterate. Though mostparts of the algorithm are well known, we present all details here, to be able to show whatis meant by the separation into preparation and feedba
k phase, whi
h is important forthe real-time iterations. The feedba
k phase 
omprises only a small fra
tion of the overall
omputations, whi
h 
an be found in Subse
tions 6.5.2 and 6.5.2 for two alternative QPsolution approa
hes.We will start the 
hapter by brie�y investigating the stru
ture of the nonlinear pro-gramming problem in Se
. 6.1, and show how this stru
ture leads to a favourable stru
tureof the QP that has to be generated and solved in ea
h 
y
le. In our approa
h, QP genera-tion and QP solution are intertwined, so that we 
annot 
learly separate these two steps.In Se
. 6.2 we show that only a so 
alled partially redu
ed QP has to be generated if somesolution steps are performed in advan
e, and in Se
. 6.3 we will explain how the remainingsensitivities 
an be 
omputed e�
iently. We 
losely follow the lines of Leineweber [Lei99℄,who developed the employed partial redu
tion strategy.An newly developed Gauss-Newton approa
h to obtain an ex
ellent approximation ofthe Hessian in the presen
e of integral least squares terms is presented in Se
. 6.4.We present two alternative approa
hes to solve the partially redu
ed QP: in Se
. 6.5we des
ribe the so 
alled 
ondensing te
hnique, whi
h we a
tually used for the presentednumeri
al examples, and whi
h 
ondenses the large, but stru
tured QP into a small, butunstru
tured QP, whi
h is then solved by standard te
hniques. The alternative approa
hpresented in Se
. 6.6 does dire
tly atta
k the large stru
tured QP by a dynami
 program-ming approa
h that leads to a Ri

ati re
ursion. Both methods allow to perform themost expensive steps before the a
tual value of x0 is known, thus allowing to prepare an�immediate feedba
k�. Finally, we give a summary of the ne
essary 
omputation steps93



94 A Close Look at one Real-Time Iterationper real-time iteration, and show that the algorithm 
an be interpreted as a su

essivegeneration of approximated optimal feedba
k 
ontrol laws.6.1 Problem Stru
tureAn important feature of the dire
t multiple shooting method is the sparse stru
ture of thelarge s
ale NLP (2.10). Its Lagrangian fun
tion L(w, λ, µ) 
an be written as
L(w, λ, µ) :=

∑N−1
i=0 Li(s

x
i , s

z
i , qi) + E(sxN , s

z
N)

−∑N−1
i=0 λxi+1

T (xi(τi+1)− sxi+1)

−∑N
i=0 λ

z
i
Tg(sxi , s

z
i , qi) − λx0

T (x0 − sx0)− λTr r
e(sxN , s

z
N)

−µT
r r

i(sxN , s
z
N)−

∑N
i=0 µ

T
i h(s

x
i , s

z
i , qi),with λ = (λx0 , . . . , λ

x
N , λ

z
0, . . . , λ

z
N , λr) and µ = (µr, µ0, . . . , µN). This Lagrangian fun
tionis partially separable: Let us reorder the ve
tor w = (w0, . . . , wN) with wi = (sxi , s

z
i , qi).1Then it 
an be seen that the Hessian matrix ∇2

wL is blo
k diagonal with non-zero blo
ks
Ai that 
orrespond ea
h to the variables wi only (Bo
k and Plitt, [BP84℄), i.e.

∇2
wL =











A0 . . .
AN−1

AN











.The unredu
ed QP that 
ould be formulated at a 
urrent iterate w looks as follows:
min

∆w0, . . . ,∆wN

1
2

∑N
i=0∆w

T
i Ai∆wi +

∑N−1
i=0 ∇wi

Li(s
x
i , s

z
i , qi)

T∆wi

+∇(sxN ,szN )E(s
x
N , s

z
N)

T∆(sxN , s
z
N)

(6.1a)subje
t to
sxi+1 − xi(τi+1) + ∆sxi+1 −

∂xi(τi+1)

∂wi

∆wi = 0, i = 0, . . . , N − 1, (6.1b)
g(sxi , s

z
i , qi) +

∂g

∂sxi
∆sxi +

∂g

∂szi
∆szi +

∂g

∂qi
∆qi = 0, i = 0, . . . , N, (6.1
)

sx0 − x0 +∆sx0 = 0, (6.1d)
re(sxN , s

z
N) +

∂re

∂(sxN , s
z
N)

∆(sxN , s
z
N) = 0, (6.1e)

ri(sxN , s
z
N) +

∂ri

∂(sxN , s
z
N)

∆(sxN , s
z
N) ≥ 0, (6.1f)

h(sxi , s
z
i , qi) +

∂h

∂wi
∆wi ≥ 0, i = 0, . . . , N. (6.1g)

∆qN −∆qN−1 = 0 (6.1h)1We re
all here that qN := qN−1 is only introdu
ed for notational 
onvenien
e and has to be eliminatedagain. Due to the linearity of the 
onstraint qN = qN−1 it does not a�e
t the Hessian matrix.



6.2 The Partial Redu
tion Te
hnique 95It is a 
ru
ial feature of our algorithm that this QP is never generated dire
tly. Instead,following the partial redu
tion approa
h developed by Leineweber [Lei99℄, �rst only thelinearized 
onsisten
y 
onditions (6.1
) are generated that allow to eliminate ∆szi from theQP, as will be des
ribed in the following se
tion.6.2 The Partial Redu
tion Te
hniqueThe partial redu
tion approa
h starts as follows: on
e the linearized 
onsisten
y 
ondi-tions (6.1
)
g(sxi , s

z
i , qi) +

(

∂g

∂sxi

∣

∣

∣

∣

∂g

∂szi

∣

∣

∣

∣

∂g

∂qi

)

∆wi = 0, i = 0, . . . , N,are generated, the (usually sparse) systems
(

∂g

∂szi

)

(

dzi Dsx

i Dq
i

)

= −
(

g(sxi , s
z
i , qi)

∣

∣

∣

∣

∂g

∂sxi

∣

∣

∣

∣

∂g

∂qi

)

, i = 0, . . . , Nare resolved.2 The matrix ( ∂g
∂szi

) is always invertible due to the index-one assumption forthe DAE system. The solution ( dzi Dsx

i Dq
i

) of this system allows to 
onstru
t theve
tor and matrix
di :=





0
dzi
0



 and Di :=





I 0
Dsx

i Dq
i

0 I



 ,that are 
alled the range spa
e and null spa
e 
omponent of the linearized 
onsisten
y
onditions, be
ause
∂g(sxi , s

z
i , qi)

∂(sxi , s
z
i , qi)

di = −g(sxi , szi , qi) and ∂g(sxi , s
z
i , qi)

∂(sxi , s
z
i , qi)

Di = 0.It is straightforward to see that
∆wi := di +Di

(

∆sxi
∆qi

) (6.2)satis�es the linearized 
onsisten
y 
onditions (6.1
) for arbitrary values of ∆sxi and ∆qi. Itis therefore possible to formulate an equivalent, redu
ed QP, where the variables ∆szi are
ompletely eliminated. For this aim let us de�ne
(

Qi ST
i

Si Ri

)

:= DT
i AiDi, i = 0, . . . , N,

(

gxi
gqi

)

:= DT
i ∇wi

Li +DT
i Aidi, i = 0, . . . , N − 1, (6.3a)

(

gxN
gqN

)

:= DT
N∇wN

E(sxN , s
z
N) +DT

NANdN , (6.3b)2We employ an advan
ed dire
t sparse solver, the Harwell subroutine MA48 by Du� and Reid [DR96℄.



96 A Close Look at one Real-Time Iterationfor the redu
ed obje
tive, as well as
ci+1 := sxi+1 − xi(τi+1)−

∂xi(τi+1)

∂szi
dzi , (Xi|Yi) :=

∂xi(τi+1)

∂wi
Di, (6.4)

hi := h(sxi , s
z
i , qi) +

∂h

∂szi
dzi , (Hx

i |Hq
i ) :=

∂h

∂wi

Di, i = 0, . . . , N − 1,and
re := re(sxN , s

z
N) +

∂re

∂szN
dzN , (Re,x|Re,q) :=

∂re

∂wN

DN ,

ri := ri(sxN , s
z
N) +

∂ri

∂szN
dzN , (Ri,x|Ri,q) :=

∂ri

∂wN
DN ,for the 
onstraints, so that we 
an formulate the following redu
ed QP that is equivalentto (6.1)

min
∆sx0 , . . . ,∆sxN
∆q0, . . . ,∆qN

∑N
i=0{ 1

2
∆sxi

TQi∆s
x
i +

1
2
∆qTi Ri∆qi

+∆qTi Si∆s
x
i + gxi

T∆sxi + gqi
T
∆qi }

(6.5a)subje
t to
ci+1 +∆sxi+1 −Xi∆s

x
i − Yi∆qi = 0, i = 0, . . . , N − 1, (6.5b)

sx0 − x0 +∆sx0 = 0, (6.5
)
re +Re,x∆sxN +Re,q∆qN = 0, (6.5d)
ri +Ri,x∆sxN +Ri,q∆qN ≥ 0, (6.5e)
hi +Hx

i ∆s
x
i +Hq

i ∆qi ≥ 0, i = 0, . . . , N, (6.5f)
∆qN −∆qN−1 = 0. (6.5g)In partial redu
tion approa
hes the full spa
e Hessian blo
ks Ai are never 
omputed. There-fore, the terms DT

i Aidi are usually dropped in the de�nitions (6.3), 
ausing only a minor
hange, as di are proportional to g(sxi , szi , qi), whi
h are expe
ted to be 
lose to zero neara solution. However, in Se
. 6.4 we present a newly developed approa
h to 
ompute e�-
iently approximations of both, the redu
ed Hessian DT
i AiDi and the gradient 
ontribution

DT
i Aidi, that is based on a Gauss-Newton approa
h for least squares integrals. But let us�rst des
ribe how the linearized 
ontinuity 
onditions (6.5b) of the partially redu
ed QP
an be generated e�
iently.



6.3 E�
ient Sensitivity Computation 976.3 E�
ient Sensitivity ComputationOn ea
h multiple shooting interval [τi, τi+1], the relaxed initial value problems (2.3)-(2.5)
B(·) · ẋi(τ) = T f(xi(τ), zi(τ), qi)

0 = g(xi(τ), zi(τ), qi)− exp

(

−β τ − τi
τi+1 − τi

)

g(sxi , s
z
i , qi)

xi(τi) = sxihave to be solved to yield the solution traje
tories xi(τ) and zi(τ). These traje
toriesdepend on the initial values sxi , szi of di�erential and algebrai
 states, and on the 
ontrolparameters qi. In a naive implementation, we would also have to 
ompute the derivativesof the �nal value xi(τi+1) with respe
t to these quantities. As mentioned above, a 
ru
ialfeature of Leineweber's partial redu
tion approa
h to multiple shooting for DAE [Lei99℄ isthat the full derivative matri
es
∂xi(τi+1)

∂(sxi , s
z
i , qi)are never 
al
ulated, but instead dire
tly the dire
tional derivatives

(

ki Xi Yi
)

:=
∂xi(τi+1)

∂(sxi , s
z
i , qi)





0 I 0
dzi Dsx

i Dq
i

0 0 I



that are a
tually needed to formulate the partially redu
ed QP (6.5).3 This saves a 
onsid-erable amount of 
omputational e�ort for problems with a large share of algebrai
 variables.Before we des
ribe this approa
h in detail, a remark is in order about how to generallyapproa
h the problem of 
omputing derivatives of a DAE solver output.Remark on External and Internal Numeri
al Di�erentiationOne straightforward approa
h that is simple to implement is to start an existing DAE solverseveral times with perturbed initial values and 
ontrol parameters, and to subtra
t theperturbed outputs xi(τi+1) to 
ompute an approximation of the desired matrix (ki|Xi|Yi)by �nite-di�eren
es (see e.g. Rosen and Luus [RL91℄). This approa
h, whi
h may be
alled External Numeri
al Di�erentiation (END), has serious drawba
ks, as the output ofa modern, adaptive DAE solver is usually a dis
ontinuous fun
tion of the initial valuesand 
ontrol parameters. If the inputs for the DAE solver are varied 
ontinuously, theoutput xi(τi+1) usually jumps dis
ontinuously, with jumps that have to be expe
ted to beas big as the integrator toleran
e permits (see e.g. Gear and Vu [GV83℄). If the perturbedtraje
tories are 
hosen 
lose to ea
h other, as it is required in �nite-di�eren
e s
hemes toyield a good approximation of the derivative, these dis
ontinuities 
an outweigh the desired3The ve
tors ki = ∂xi(τi+1)
∂sz

i

dz
i
are needed to generate ci+1 a

ording to Eq. (6.4).



98 A Close Look at one Real-Time Iterationderivative information, if the integrator a

ura
y is not 
hosen extraordinarily high; if su
han a

ura
y is feasible at all, this will 
ause ex
essive 
omputation times.An approa
h whi
h avoids the drawba
ks of END is the so 
alled Internal Numeri
alDi�erentiation (IND) as des
ribed by Bo
k [Bo
81℄. The idea is to freeze the dis
retiza-tion s
heme for the neighboring traje
tories, so that the output be
omes a di�erentiablefun
tion of the inputs. This allows to perform the DAE solution even with low a

ura
y,without jeopardizing the a

ura
y of the derivative approximation. The frozen dis
retiza-tion s
heme is usually adapted to the nominal traje
tory.In addition, mu
h e�ort 
an be saved if the perturbed traje
tories are 
omputed simul-taneously, as many matrix evaluations and fa
torizations then need to be performed onlyon
e for all traje
tories.A related approa
h that may be interpreted as the �analyti
al limit of IND� [Bo
83℄is to solve the sensitivity equations along the nominal system traje
tory. We will brie�ydes
ribe how this approa
h 
an be used to 
ompute dire
tional derivatives.6.3.1 Dire
tional DerivativesLet us for notational 
onvenien
e assume that the DAE is expli
it, i.e., that B(·) = I, andlet us also assume that T = 1, so that the initial value problem (2.3)-(2.5) 
an be writtenas
ẋi(τ) = f(xi(τ), zi(τ), qi),

0 = g(xi(τ), zi(τ), qi)− e
−β

τ−τi
τi+1−τi g(sxi , s

z
i , qi),

xi(τi) = sxi .Di�erentiation of this system with respe
t to the initial values and 
ontrol parameters
(sxi , s

z
i , qi) and a multipli
ation from the right by the matrix (di|Di) yields a linear matrixDAE. De�ning the matrix fun
tions

(

ki(τ) Xi(τ) Yi(τ)
)

:= ∂xi(τ)
∂(sxi ,s

z
i ,qi)

(

di Di

)

,

(

kzi (τ) Xz
i (τ) Y z

i (τ)
)

:= ∂zi(τ)
∂(sxi ,s

z
i ,qi)

(

di Di

)

,this matrix DAE 
an be written as
d

dτ

(

ki(τ) Xi(τ) Yi(τ)
)

=
∂f(·)

∂(x, z, u)





ki(τ) Xi(τ) Yi(τ)
kzi (τ) Xz

i (τ) Y z
i (τ)

0 0 I



 ,

0 =
∂g(·)

∂(x, z, u)





ki(τ) Xi(τ) Yi(τ)
kzi (τ) Xz

i (τ) Y z
i (τ)

0 0 I





−e−β
τ−τi

τi+1−τi

(

−g(sxi , szi , qi) 0 0
)

,
(

ki(τi) Xi(τi) Yi(τi)
)

=
(

0 I 0
)

.
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onsistent initial value for the algebrai
 matrix ( kzi Xz
i Y z

i

) is
(

kzi (τi) Xz
i (τi) Y z

i (τi)
)

=
(

dzi Dsx

i Dq
i

)

.This linear matrix DAE 
an be solved simultaneously with the original initial value prob-lem (2.3)-(2.5), as it is done e.g. in the version of the advan
ed BDF integrator DAESOL(Bauer [Bau00℄) that we used for most 
omputations that are presented in this thesis. The�nal values are then used to de�ne
(

ki Xi Yi
)

:=
(

ki(τi+1) Xi(τi+1) Yi(τi+1)
)

.Computation of the Redu
ed Obje
tive GradientWe have so far not dis
ussed how to 
ompute the redu
ed obje
tive gradients DT
i ∇wi

Lithat are needed to 
ompute
gi :=

(

gxi
gqi

)in (6.3a), i.e., how to 
ompute the dire
tional derivatives of the obje
tive integrals
Li(s

x
i , s

z
i , qi) =

∫ τi+1

τi

L(xi(τ), zi(τ), qi)) dτ.The obje
tive integrals 
an be 
omputed by introdu
ing an additional di�erential state
xL, and solving the following initial value problem together with the original initial valueproblem:

ẋLi (τ) = L(xi(τ), zi(τ), qi)), for τ ∈ [τi, τi+1],
ẋLi (τi) = 0.The dire
tional derivatives 
an then be 
omputed as above.Numeri
al Cal
ulation of the Exa
t Hessian MatrixLeineweber [Lei99℄ has developed a s
heme to 
ompute a �nite-di�eren
e approximationof the exa
t Hessian matrix blo
ks Ai, whi
h is so far only appli
able to systems des
ribedby ordinary di�erential equations (ODE). His approa
h generalizes the idea of InternalNumeri
al Di�erentiation to se
ond order derivatives, by solving the �rst order sensitivityequations several times for perturbed initial values, with a �xed dis
retization s
heme. Wehave employed this method in some examples for 
omparison with our newly developedGauss-Newton approa
h that is des
ribed in the following se
tion.



100 A Close Look at one Real-Time Iteration6.4 A Gauss-Newton Method for Integral Least SquaresTermsIn the 
ase of a Lagrange term L that has least squares form, i.e., if
L(xi(τ), zi(τ), qi) = ‖l(xi(τ), zi(τ), qi)‖22with a ve
tor valued fun
tion l(·), there exists a possibility to obtain a 
heap approximationof the Hessian blo
ks Ai by an extension of the Gauss-Newton approa
h to least squaresintegrals. This approximation is good if the residual l(·) and if the multipliers λ, and µare 
lose to zero (
f. the dis
ussion in Se
. 5.1.2).To derive an expression for the Gauss-Newton approximation of the full Hessian letus negle
t the 
onstraint 
ontributions and regard only the obje
tive 
ontribution of theHessian that is
∇2

(sxi ,s
z
i ,qi)

∫ τi+1

τi

‖l(xi(τ), zi(τ), qi)‖22 dτ.A Gauss-Newton approximation of the Hessian 
an be obtained by di�erentiating twi
eunder the integral and dropping terms that 
ontain l(xi(τ), zi(τ), qi):
Ai := 2

∫ τi+1

τi

Ji(τ)
TJi(τ) dτ, (6.7)where

Ji(τ) :=

(

∂l(xi(τ), zi(τ), qi)

∂(x, z, u)

)







∂xi(τ)
∂sxi

∂xi(τ)
∂szi

∂xi(τ)
∂qi

∂zi(τ)
∂sxi

∂zi(τ)
∂szi

∂zi(τ)
∂qi

0 0 I






.6.4.1 A Partially Redu
ed Hessian ApproximationIf we are interested only in the Gauss-Newton approximation DT

i AiDi of the redu
edHessian , we 
an multiply Eq. (6.7) from the left and the right with DT
i and Di:

DT
i AiDi = 2

∫ τi+1

τi

DT
i Ji(τ)

TJi(τ)Di dτ.Fortunately the matrix produ
ts Ji(τ)Di are 
heaply available, if dire
tional derivativesare 
al
ulated as des
ribed in the previous se
tion. Using the notation of that se
tion,
Ji(τ)Di 
an be seen to have the simple form

Ji(τ)Di = J̃i(τ) :=

(

∂l(xi(τ), zi(τ), qi)

∂(x, z, u)

)





Xi(τ) Yi(τ)
Xz

i (τ) Y z
i (τ)

0 I



 .
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h 101The partially redu
ed obje
tive gradient
gi = 2DT

i

(

∇(sxi ,s
z
i ,qi)

∫ τi+1

τi

‖l(xi(τ), zi(τ), qi))‖22 dτ
)

+DT
i Aidi.as de�ned in Eq. (6.3a) 
an also be 
al
ulated exa
tly, without ever 
omputing the fullHessian approximation. For the exa
t 
omputation of the redu
ed obej
tive gradient (6.3)we also need the terms DT

i Aidi. A multipli
ation of Eq. (6.7) from the left and the rightwith DT
i and di yields

DT
i Aidi = 2

∫ τi+1

τi

J̃i(τ)
T

(

∂l(xi(τ), zi(τ), qi)

∂(x, z)

)(

ki(τ)
kzi (τ)

)

dτ.so that
gi := 2

∫ τi+1

τi

J̃i(τ)
T

(

l(xi(τ), zi(τ), qi) +

(

∂l(xi(τ), zi(τ), qi)

∂(x, z)

)(

ki(τ)
kzi (τ)

))

dτ.The matrix J̃i(τ) 
an be 
omputed simultaneously with the DAE solution. The integral
an be 
al
ulated by using a suitable integration formula. Note that the evaluation of theintegrand is very 
heap 
ompared to the 
omputations ne
essary for the DAE solution.Furthermore, if an interpolation of the sensitivity matri
es is employed in the DAE solver,the integrand 
an be evaluated at arbitrary points on the interval, without the ne
essity tostop the integration routine (
f. Bo
k and S
hlöder [BS81℄); these evaluation points are inparti
ular independent of the stepsizes of the DAE solver.We have implemented this extension of the Gauss-Newton method, whi
h deliversthe Hessian approximation at virtually no additional 
osts, in the 
urrent version ofthe optimal 
ontrol pa
kage MUSCOD-II, in 
onjun
tion with the impli
it DAE solverDAESOL [BBS99, Bau00℄.Remark: In previous Gauss-Newton approa
hes to NMPC, only least squares terms atdis
rete time points had been formulated (
f. de Oliveira and Biegler [OB95b℄ for thesequential approa
h, and Santos et al. [SOB95℄ for the dire
t multiple shooting method),whi
h leads to an unne
essary overhead espe
ially on long predi
tion intervals with 
onstant
ontrols.6.5 QP Solution by a Condensing Approa
hAfter we have dis
ussed how the partially redu
ed QP (6.5) 
an be generated, we will inthis and the following se
tion present two alternative strategies to solve su
h a QP.The so 
alled 
ondensing approa
h redu
es the QP further to yield a smaller QP in thevariables ∆q0, . . . ,∆qN−1 only. In the real-time 
ontext, the algorithm pro
eeds in twosteps: �rst, it uses the linearized 
ontinuity 
onditions (6.5b) to eliminate ∆sx1 , . . .∆s
x
Nfrom the QP (6.5). We will also eliminate∆qN using (6.5g). The resulting QP is 
alled the
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ondensed QP. In a se
ond step, the initial value 
onstraint (6.5
) will be used to eliminate
∆sx0 , so that a fully redu
ed QP in the variables ∆q := (∆q0, . . . , qN−1) only needs to besolved by a standard QP solver. Finally, the solution of the fully redu
ed QP is expandedto yield the solution in variable and multiplier spa
e of the partially redu
ed QP.6.5.1 First Condensing StepFor the �rst 
ondensing step, let us reorder the variables of the partially redu
ed QP andsummarize them into a partitioned ve
tor

(

∆w1

∆w2

)

, with ∆w1 :=











∆sx1...
∆sxN
∆qN











, and ∆w2 :=











∆sx0
∆q0...

∆qN−1











.By introdu
ing
b1 :=



















c1
c2
c3...
cN
0



















, B11 :=



















I

−X1 I

−X2 I. . . . . .
−XN−1 I

I



















,

and
B12 :=



















−X0 −Y0
−Y1

−Y2 . . .
−YN−1

−I



















,

the 
ontinuity 
onditions (6.5b) and (6.5f) 
an be written as
b1 +B11∆w1 +B12∆w2 = 0,and the un
ondensed QP (6.5) 
an be summarized as
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min

∆w1,∆w2

1
2
∆wT

1 A11∆w1 + ∆wT
1 A12∆w2

+ 1
2
∆wT

2 A22∆w2 + aT1∆w1 + aT2∆w2

(6.8)subje
t to
b1 +B11∆w1 +B12∆w2 = 0
b2 +B21∆w1 +B22∆w2 = 0
c+ C1∆w1 + C2∆w2 ≥ 0.The idea of the 
ondensing approa
h is to exploit the invertibility of B11 to eliminate ∆w1by

∆w1 = −B−1
11 (B12∆w2 + b1) =:M∆w2 +m (6.9)and to repla
e the above QP by a so 
alled 
ondensed QP :

min
∆w2

1

2
∆wT

2 Ã∆w2 + ãT∆w2 s.t. {

b̃+ B̃∆w2 = 0

c̃+ C̃∆w2 ≥ 0
(6.10a)with

Ã =MTA11M +MTA12 + AT
12M + A22,

ã =MTA11m+ AT
12m+MTa1 + a2,

b̃ = b2 +B21m,

B̃ = B21M +B22,

c̃ = c+ C1m, and
C̃ = C1M + C2.The generation of the 
ondensed QP 
an be a
hieved e�
iently by re
ursive te
hniques thathave been introdu
ed by Bo
k and Plitt [Pli81, BP84℄. They are des
ribed in Appendix E.6.5.2 Se
ond Condensing Step and Immediate Feedba
kIn the real-time 
ontext it is important to note that all 
omputations of the �rst 
ondensingstep 
an be performed before the a
tual value of x0 is known, allowing to prepare an�Immediate Feedba
k�. So let us have a 
lose look at the 
ondensed QP (6.10a). Sin
e

∆w2 = (∆sx0 ,∆q), it has the following stru
ture
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min

∆sx0 ,∆q

1
2
∆sx0

T Ãss∆s
x
0 +

1
2
∆qT Ãqq∆q

+∆sx0
T Ãsq∆q + ãTs ∆s

x
0 + ãTq∆q

(6.10b)subje
t to
sx0 − x0 +∆sx0 = 0

b̃r + B̃rs∆s
x
0 + B̃rq∆q = 0

c̃+ C̃s∆s
x
0 + C̃q∆q ≥ 0.At the moment when x0 is known, the fully redu
ed QP 
an be formulated:

min
∆q

1
2
∆qT Ãqq∆q +

(

(x0 − sx0)
T Ãsq + ãTq

)

∆q (6.11)subje
t to
(

b̃r + B̃rs(x0 − sx0)
)

+ B̃rq∆q = 0
(

c̃+ C̃s(x0 − sx0)
)

+ C̃q∆q ≥ 0.This dense QP 
an be solved by a standard QP solver. It is of rather small size 
omparedto the original un
ondensed QP (6.8), and bears nearly no sparsity. We usually employQPSOL4 by Gill, Murray, Saunders, and Wright [GMSW83℄, a routine that makes use ofan a
tive set strategy and is able to 
ope with inde�nite Hessian matri
es. Note that inprin
iple even large parts of the fully redu
ed QP (6.11) 
an be pre
omputed before x0is available, if matrix fa
torizations based on the a
tive set for x0 = sx0 are 
al
ulated inadvan
e, as proposed in [BDLS00℄.The solution of the fully redu
ed QP are the optimal values for ∆q0, . . . , ∆qN−1. Thevalue of ∆q0 plays a 
ru
ial role in the real-time 
ontext, as it is this 
ontrol that is givendire
tly to the real system as an immediate feedba
k.Remark: The fa
t that an a
tive set strategy is used to determine the a
tive set 
arriessome danger in the real-time 
ontext, as it is well known that the worst 
ase 
omplex-ity of su
h an algorithm 
an be exponential in the number of variables (
f. Klee andMinty [KM72℄). Experien
e shows, however, that the 
omputational burden of this denseQP solution is bounded in pra
ti
e. In typi
al appli
ations of our real-time algorithms it is
onsiderably smaller than the e�ort needed for the �rst 
ondensing step, whi
h itself needsonly a small share of the overall time of a full real-time iteration 
y
le. A theoreti
allyappealing alternative to a
tive set strategies is provided by Interior-Point Methods (IPM),4QPSOL is available as a NAG routine under the name E04NAF.
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h 105that have polynomial run time bounds. For an introdu
tion into IPM algorithms andtheir appli
ation to quadrati
 programs we refer e.g. to No
edal and Wright [NW99℄ orWright [Wri97℄.6.5.3 Expansion of the QP SolutionThe expansion of the QP solution passes through the two 
ondensing steps in reverse order:�rst the fully redu
ed QP solution is expanded to the 
ondensed QP solution, and se
ondly,the 
ondensed QP solution is expanded to the full solution of the un
ondensed QP (6.8).First Expansion StepThe solution (∆q, λ̃r, µ̃) of the fully redu
ed QP (6.11) 
an trivially be expanded to yieldthe solution (∆w2, λ̃2, µ̃) of the 
ondensed QP (6.10a) (resp. (6.10b) ) with
∆w2 =

(

∆sx0
∆q

)

, and λ̃2 =

(

λ̃x0
λ̃r

)by 
omputing
∆sx0 = x0 − sx0 , and λ̃x0 = Ãss∆s

x
0 + Ãsq∆q + ãs − B̃T

rsλ̃r − C̃T
s µ̃.That (∆w2, λ̃2, µ̃) is a solution of the 
ondensed QP 
an be seen by 
omparing the KKT
onditions of (6.10b) with those of (6.11).Expansion of the Condensed QP SolutionSimilarly, the solution (∆w2, λ̃2, µ̃) of the 
ondensed QP (6.10a) 
an further be expandedto the full solution (∆w1,∆w2, λ̃1, λ̃2, µ̃) of the un
ondensed QP (6.8) by 
omputing

∆w1 =M∆w2 +mand
λ̃1 = B−T

11 (A11∆w1 + A12∆w2 + a1 − BT
21λ̃2 − CT

1 µ̃). (6.12)To justify Eq (6.12) let us formulate the stationarity 
ondition of the Lagrange gradient ofthe un
ondensed QP (6.8) as follows:
A11∆w1 + A12∆w2 + a1 − BT

11λ̃1 − BT
21λ̃2 − CT

1 µ̃ = 0,

A22∆w2 + AT
12∆w1 + a2 − BT

12λ̃1 − BT
22λ̃2 − CT

2 µ̃ = 0.
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ondition is equivalent to Eq. (6.12), whereas the se
ond 
an be seen to be satis�ed,if Lagrange stationarity with respe
t to ∆w2 is attained in the 
ondensed QP (6.10a):
0 = Ã∆w2 + ã− B̃T λ̃2 − C̃T µ̃

= (MTA11M +MTA12 + AT
12M + A22)∆w2 +MTA11m+ AT

12m

+MTa1 + a2 − (B21M +B22)
T λ̃2 − (C1M + C2)

T µ̃

= A22∆w2 + AT
12∆w1 + a2 −BT

22λ̃2 − CT
2 µ̃

+MT {A11∆w1 + A12∆w2 + a1 − BT
21λ̃2 − CT

1 µ̃}
= A22∆w2 + AT

12∆w1 + a2 −BT
12λ̃1 −BT

22λ̃2 − CT
2 µ̃.The expansion step 
an e�
iently be performed by a ba
kwards re
ursion that is e.g.des
ribed by Leineweber [Lei99℄. We mention here that the partial redu
tion approa
hdoes not allow to re
apture the multipliers λzi of the algebrai
 
onsisten
y 
onditions,be
ause this would require knowledge of derivatives that are not 
omputed. Fortunately,these multipliers are of minor importan
e in our real-time iteration s
heme, as the 
urrentmultiplier values only enter the next QP formulation through the Hessian approximation.If the extended Gauss-Newton approa
h is used, the multiplier values do not matter at allin the QP formulation.6.6 A Ri

ati Re
ursion Approa
hA se
ond basi
 strategy to atta
k the solution of the partially redu
ed QP (6.5), thatleads to a Ri

ati re
ursion s
heme, 
an best be presented in the framework of dynami
programming. We will here only introdu
e the underlying idea, and refer the interestedreader to Steinba
h [Ste95℄ or Rao et al. [RWR98℄ for a more detailed des
ription of theapproa
h. For ease of presentation, we restri
t our attention to QP problems (6.5) without�nal state and inequality 
onstraints (6.5d)-(6.5f). We will also assume that RN , SN , and

gqN are zero, so that the last 
ontrol ∆qN 
an dire
tly be eliminated from the problem, i.e.,we 
onsider the QP
min

∆sx0 , . . . ,∆sxN
∆q0, . . . ,∆qN−1

N−1
∑

i=0

{1
2
∆qTiRi∆qi +∆qTi Si∆s

x
i + gxi

T∆sxi + gqi
T
∆qi

+1
2
∆sxi

TQi∆s
x
i } + 1

2
∆sxN

TQN∆s
x
N + gxN

T∆sxN

(6.14)subje
t to
ci+1 +∆sxi+1 −Xi∆s

x
i − Yi∆qi = 0, i = 0, . . . , N − 1,

sx0 − x0 +∆sx0 = 0.The idea of the re
ursive algorithm to solve the above QP 
an be summarized as follows:starting with the 
ost fun
tion
ΠN(∆s

x
N) :=

1

2
∆sxN

TQN∆s
x
N + gxN

T∆sxN (6.15)



6.6 A Ri

ati Re
ursion Approa
h 107of the �nal node, we 
onstru
t the so 
alled optimal 
ost-to-go fun
tion ΠN−1(∆s
x
N−1) ofthe previous stage, by 
hoosing for ea
h value ∆sxN−1 the 
ontrol ∆qN−1 that optimizesthe added 
osts to go to the �nal stage, i.e., the sum of the stage 
osts and the �nal stage
osts ΠN . This pro
edure is repeated for ΠN−2 down to Π0. At ea
h step the followingsmall optimization problem

Πi(∆s
x
i ) := min

∆sxi+1,∆qi

1

2
∆sxi

TQi∆s
x
i +

1

2
∆qTi Ri∆qi +∆qTi Si∆s

x
i

+gxi
T∆sxi + gqi

T
∆qi +Πi+1(∆s

x
i+1)subje
t to

ci+1 +∆sxi+1 −Xi∆s
x
i − Yi∆qi = 0

(6.16)is solved. It turns out that the 
ost-to-go fun
tions Πi(∆s
x
i ) remain quadrati
 fun
tions, afa
t that makes the dynami
 programming approa
h so e�
ient. Let us therefore write

Πi(∆s
x
i ) =

1

2
∆sxi

TPi∆s
x
i + pTi ∆s

x
i + πi, for i = 0, . . . , N.The algorithm that we propose for the real-time solution of the QP 
onsists of three steps,�rst a ba
kwards re
ursion that prepares the se
ond step (the immediate feedba
k), and�nally a forward re
ursion whi
h re
overs the full QP solution.6.6.1 Ba
kwards Re
ursionThe ba
kwards re
ursion is started by de�ning ΠN a

ording to Eq. (6.15), i.e.,

PN := QN , pN := gxN , and πN = 0.For the re
ursion step, let us assume that the optimal 
ost-to-go fun
tion Πi+1(∆s
x
i+1) hasalready been 
omputed, i.e., that the matrix Pi+1, the ve
tor pi+1 and the s
alar πi+1 areknown. The QP (6.16) 
an be solved as follows: �rst we eliminate

∆sxi+1 = −ci+1 +Xi∆s
x
i + Yi∆qi (6.17)in the obje
tive fun
tion

Fi(∆s
x
i ,∆qi,∆s

x
i+1) :=

1
2
∆sxi

TQi∆s
x
i +

1
2
∆qTi Ri∆qi +∆qTi Si∆s

x
i + gxi

T∆sxi + gqi
T
∆qi

+1
2
∆sxi+1

TPi+1∆s
x
i+1 + pTi+1∆s

x
i+1 + πi+1that be
omes

Fi(·) = 1
2
∆qTi (Ri + Y T

i Pi+1Yi)∆qi
+((Si + Y T

i Pi+1Xi)∆s
x
i + gqi − Y T

i Pi+1ci+1 + Y T
i pi+1)

T∆qi
+1

2
∆sxi

T (Qi +XT
i Pi+1Xi)∆s

x
i + gxi

T∆sxi + cTi+1Pi+1ci+1

−cTi+1Pi+1Xi∆s
x
i − pTi+1ci+1 + pTi+1Xi∆s

x
i + πi+1.



108 A Close Look at one Real-Time IterationThe minimum of this fun
tion with respe
t to ∆qi is attained at
∆qi = −(Ri + Y T

i Pi+1Yi)
−1 (Si + Y T

i Pi+1Xi) ∆sxi
−(Ri + Y T

i Pi+1Yi)
−1(gqi − Y T

i Pi+1ci+1 + Y T
i pi+1)

=: −Ki∆s
x
i − ki,

(6.18)whi
h inserted into the obje
tive fun
tion Fi gives the optimal 
ost-to-go a

ording to(6.16) as
Πi(∆s

x
i ) =

1

2
∆sxi

TPi∆s
x
i + pTi ∆s

x
i+1 + πiwith

Pi := Qi +XT
i Pi+1Xi

−(Si + Y T
i Pi+1Xi)

T (Ri + Y T
i Pi+1Yi)

−1(Si + Y T
i Pi+1Xi),

pi := gxi +XT
i pi+1 −XT

i Pi+1ci+1

−(Si + Y T
i Pi+1Xi)

T (Ri + Y T
i Pi+1Yi)

−1(gqi − Y T
i Pi+1ci+1 + Y T

i pi+1),

πi := πi+1 + cTi+1Pi+1ci+1 − pTi+1ci+1 − (gqi − Y T
i Pi+1ci+1 + Y T

i pi+1)
T ·

(Ri + Y T
i Pi+1Yi)

−1(gqi − Y T
i Pi+1ci+1 + Y T

i pi+1).The values πi+1 are irrelevant for the determination of ∆sxi+1 and ∆qi; therefore they areusually omitted. The matrix re
ursion formula for Pi is also known as the dis
rete-timeRi

ati matrix equation for time-varying systems.The only quantities that have to be stored for subsequent use in the forward re
ur-sion are the matri
es K0, . . . , KN−1 and P0, . . . , PN , and the ve
tors k0, . . . , kN−1 and
p0, . . . , pN .6.6.2 Immediate Feedba
kThe 
omplete ba
kwards re
ursion 
an be performed before the a
tual value of x0 is known.Then, at the moment when x0 is known, the 
ontrol response∆q0 
an be qui
kly determineda

ording to Eq. (6.18),

∆q0 = −K0(x0 − sx0)− k0,and 
an immediately be given to the plant. The 
ontrol response 
an be interpreted asthe �rst part of the forward re
ursion that will be des
ribed in the following. However, westress the fa
t that it is only the above matrix ve
tor multipli
ation and ve
tor additionthat needs to be performed to deliver the part of the QP solution, ∆q0, that is a
tuallyneeded for the approximate optimal feedba
k 
ontrol response.This 
omputation requires only nu×nx+nu �oating point operations whi
h 
an 
ertainlybe 
onsidered an immediate feedba
k, when 
ompared to the 
omplete real-time iteration
y
le, whi
h needs many orders of magnitude higher 
omputational e�ort.
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ati Re
ursion Approa
h 1096.6.3 Forward Re
ursionStarting with a known value of ∆sx0 = x0 − sx0, Eqs. (6.18) and (6.17) are alternately usedto 
ompute
∆qi = −Ki∆s

x
i − ki, for i = 0, . . . , N − 1,and

∆sxi+1 = −ci+1 +Xi∆s
x
i + Yi∆qi for i = 0, . . . , N − 1.The QP multipliers λ̃xi for i = 0, . . . , N are 
omputed as follows

λ̃xi =
∂Πi(∆s

x
i )

∂∆sxi
= Pi∆s

x
i + pi.6.6.4 Comparison of Condensing and Ri

ati Re
ursionThe Ri

ati re
ursion s
heme allows to solve the QP with a numeri
al e�ort of O(N),whi
h is in sharp 
ontrast to the 
ondensing approa
h, whi
h in turn is of O(N2) for the
ondensing itself, and even O(N3) for the solution of the dense QP, if we disregard a
tiveset 
hanges. For the pra
ti
al appli
ations that we have en
ountered so far, however, wehave employed the 
ondensing approa
h. This was motivated by the following observations:

• A
tive set 
hanges during the QP solution are rather expensive in the Ri

ati ap-proa
h, as ea
h a
tive set 
hange would require a full ba
kwards and forward re
ur-sion. In pra
ti
al implementations, the Ri

ati re
ursion is therefore usually imple-mented in 
onjun
tion with an interior-point method (IPM) to treat the inequalities(
f. [Ste95, Wri96, RWR98℄). But even the IPM approa
h requires some 
ompletere
ursions until the QP solution is found, and is therefore not stri
tly in line withour idea of an immediate feedba
k, that takes a
tive set 
hanges into a

ount.
• Furthermore, pra
ti
al experien
e shows that the sensitivity 
omputation dominatesby far the overall 
omputational e�ort during ea
h real-time iteration 
y
le for typi
alappli
ation problems whi
h have large state dimensions nx and a small number N ofmultiple shooting intervals, when the 
ondensing approa
h is employed. This redu
esthe pra
ti
al bene�ts of alternative QP solution pro
edures.Though the 
ondensing approa
h works well in 
urrent appli
ations, we want to point outthat it has its limits, espe
ially for long horizon lenghts N , and that a solution s
hemethat employs the Ri

ati re
ursion with an interior-point method, as e.g. developed bySteinba
h [Ste95℄ for the multiple shooting method, promises to o�er advantages in thereal-time 
ontext and deserves further investigation.



110 A Close Look at one Real-Time Iteration6.7 Division into Preparation and Feedba
k PhaseWe will now summarize the version of the real-time algorithm that we used for mostnumeri
al tests in this thesis. It makes use of the newly developed Gauss-Newton approa
hto obtain the Hessian approximation, and employs the 
ondensing strategy to solve thepartially redu
ed QP. Though we �rst present the ne
essary 
omputations in the sameorder as in the above presentation, we will give a se
ond ordering of the steps that allowsto interpret the algorithm as the su

essive generation of approximated optimal feedba
k
ontrol laws.6.7.1 Five Computation StepsDuring ea
h real-time iteration the following steps have to be performed:1. Partial redu
tion: Linearize the 
onsisten
y 
onditions and resolve the linear systemto eliminate the ∆szi as a linear fun
tion of ∆sxi and ∆qi, as des
ribed in Se
. 6.22. DAE solution and derivative generation: Linearize the 
ontinuity 
onditions by solv-ing the relaxed initial value problems and 
omputing dire
tional derivatives withrespe
t to ∆sxi and ∆qi following the s
heme of Se
. 6.3. Simultaneously, 
omputethe gradient of the obje
tive fun
tion, and the Hessian approximation a

ording tothe Gauss-Newton approa
h des
ribed in Se
. 6.4. Linearize also the remaining point
onstraints.3. First 
ondensing step: Using the linearized 
ontinuity 
onditions, eliminate the vari-ables ∆sx1 , . . .∆sxN . Proje
t the obje
tive gradient onto the spa
e of the remainingvariables ∆sx0 , ∆q0, . . . ,∆qN−1, and also the Hessian and the linearized point 
on-straints.4. Step generation: at the moment that x0 is known, perform the se
ond 
ondensing stepand solve the fully redu
ed QP with an e�
ient dense QP solver using an a
tive setstrategy. The solution yields the �nal values of ∆q0, . . . ,∆qN−1. The value q0 +∆q0
an immediately be given as a 
ontrol to the real-system.5. Expansion: Expand the fully redu
ed QP solution to yield the full QP solution
(∆w, λ̃, µ̃). Based on this QP solution, pass over to the next SQP iterate and goba
k to step 1.6.7.2 The O�-Line Steps in a Rotated OrderIt is an important feature of the above 
y
le that the value x0 needs only to be knownbefore step 4 
an be performed. In our real-time implementation, we isolate step 4 androtate the order of the above steps, to yield the following s
heme:



6.7 Division into Preparation and Feedba
k Phase 111I) Feedba
k phase: After observation of the 
urrent value x0 perform only step 4 andapply the resulting value of q0 +∆q0 immediately to the real pro
ess. Maintain thenew 
ontrol value during some pro
ess duration δ whi
h is su�
iently long to performall 
al
ulations of one 
y
le.II) Preparation phase: During this period δ �rst expand the out
ome of step 4 to thefull QP solution (expansion step 5), then 
ompute the new iterate wk+1 = wk+∆wk,and based on this new iterate, perform the steps 1, 2 and 3 to prepare the feedba
kresponse for the following step. Go ba
k to I.The feedba
k phase itself is typi
ally orders of magnitude shorter than the preparationphase (
f. Fig 7.7). Thus, our algorithm 
an be interpreted as the su

essive generation ofimmediate feedba
k laws (
f. Se
. 4.4.2) that take state and 
ontrol inequality 
onstraintson the 
omplete horizon into a

ount. Experien
e with the investigated large s
ale examplesshows that the a
tive set does not 
hange mu
h from one 
y
le to the next so that the
omputation time for the feedba
k is bounded and very small in pra
ti
e.





Chapter 7Control of a Distillation ColumnAs an appli
ation example for the proposed real-time iteration s
hemes we 
onsider the
ontrol of a high purity binary distillation 
olumn. We have performed a variety of 
losed-loop experiments at a pilot plant distillation 
olumn that is lo
ated at the Institut fürSystemdynamik und Regelungste
hnik (ISR) of the University of Stuttgart. All experi-ments were 
arried out in 
ollaboration with Dr. Ilknur Uslu, Stefan S
hwarzkopf, andRolf Findeisen. Finan
ial support by the Deuts
he Fors
hungsgemeins
haft (DFG) withinthe DFG-S
hwerpunktprogramm �Real-Time Optimization of Large Systems� is gratefullya
knowledged.In �rst numeri
al tests, the feasibility of the real-time optimization s
heme 
ould beshown, with 
omputation times in the range of se
onds for a 164th order model [DBS+01℄,and the pra
ti
al appli
ability was 
on�rmed in a �rst series of 
losed-loop experi-ments [DUF+01℄; however, the observed 
losed-loop performan
e su�ered from os
illationsthat were due to time delays in the real plant, that have not been 
aptured by the 164thorder distillation model. We therefore improved the model by in
luding hydrodynami
e�e
ts that have been responsible for the time delays, resulting in a 
onsiderably sti�erand larger system model. We will in this 
hapter present new numeri
al and experimentalresults that have been obtained with this improved system model. Parts of the presenta-tion, espe
ially of the experimental setup, follow the lines of a previous paper [DUF+01℄,from whi
h originate also the Figures 7.1, 7.8, and 7.9.7.1 The Distillation ColumnThe distillation 
olumn is used for the separation of a binary mixture of Methanol andn-Propanol. It has a diameter of 0.10 m and a height of 7 m and 
onsists of 40 bubble
ap trays. The overhead vapor is totally 
ondensed in a water 
ooled 
ondenser whi
his open to atmosphere. The reboiler is heated ele
tri
ally. A �owsheet of the distillationsystem is shown in Fig. 7.1. The preheated feed stream enters the 
olumn at the feedtray as saturated liquid. It 
an be swit
hed automati
ally between two feed tanks inorder to introdu
e well de�ned disturban
es in the feed 
on
entration. In the 
onsidered113
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Figure 7.1: Flowsheet of the distillation 
olumn
on�guration, the pro
ess inputs that are available for 
ontrol purposes are the heat inputto the reboiler, Q, and the re�ux �ow rate Lvol. Control aim is to maintain high purityspe
i�
ations for the distillate and bottom produ
t streams Dvol and Bvol.The 
olumn is 
ontrolled by a distributed 
ontrol system (DCS), that is used for thelower level 
ontrol and data a
quisition. Basi
 
ontrol loops for the levels, the �ow rates,and the heat input are realized on the DCS system. To implement more advan
ed 
on-trol s
hemes the DCS is 
onne
ted to a PC from and to whi
h dire
t a

ess from UNIXworkstations is possible.7.1.1 The DAE ModelWe will refer to the N = 40 trays by ℓ = 1, 2, . . . , N , 
ounting from the bottom to the top,with ℓ = NF = 20 being the feed tray. For notational 
onvenien
e, let us refer with ℓ = 0
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Figure 7.2: Molar �ows in the distillation 
olumn.to the reboiler and to the 
ondenser by ℓ = N + 1. The 
orresponding temperatures aredenoted by T0, . . . , TN+1.As we treat a binary distillation we have only two 
omponents, Methanol and n-Propanol. Let us denote the liquid Methanol 
on
entrations of reboiler, trays and 
ondenserby Xℓ for ℓ = 0, 1, 2, . . . , N + 1. The 
on
entration Xn−Prop.,ℓ of n-Propanol is determinedby the 
losing 
ondition, so that we will substitute Xn−Prop.,ℓ := 1−X1,ℓ dire
tly.The molar vapor and liquid �uxes out of ea
h tray are denoted by Vℓ and Lℓ for
ℓ = 1, 2, . . . , N . The molar vapor �ux out of the reboiler is denoted by V0 and the liquidbottom produ
t stream by B. Similarly, LN+1 denotes the molar liquid re�ux out of the
ondenser into the top tray while D denotes the distillate stream out of the 
ondenser.The molar feed stream entering at tray ℓ = NF is denoted by F ; it is assumed to be liquid.All molar �ows in the distillation 
olumn are depi
ted in Fig. 7.2.The molar 
on
entrations of the liquid �uxes are equal to the tray 
on
entrations Xℓ,whereas the vapor �uxes' molar 
on
entrations are denoted by Yℓ for ℓ = 0, 1, . . . , N .



116 Control of a Distillation ColumnWe assume that the pressures Pℓ of reboiler, trays and 
ondenser are 
onstant, as wellas the volume holdups nv
0 and nv

N+1 of reboiler and 
ondenser. The liquid volume holdups
nv
ℓ of the trays may vary. All volume holdups are related to the molar holdups nℓ by

nv
ℓ = V m(Xℓ, Tℓ) nℓ for ℓ = 0, . . . , N + 1,The molar volumes V m(Xℓ, Tℓ) of the liquid mixture are spe
i�ed in Appendix B.To determine the (
onstant) pressures we assume that the 
ondenser pressure is �xedto the outside pressure, i.e., PN+1 = Ptop whereas the pressures Pℓ on the trays and thereboiler are 
al
ulated under the assumption of 
onstant pressure drop from tray to tray,i.e.,

Pℓ = Pℓ+1 +∆Pℓ ℓ = N,N − 1, . . . , 2, 1, 0.The tray temperatures Tℓ are impli
itly de�ned by the assumption that the sum of thepartial pressures equals the total pressure on ea
h tray, i.e.,
Pℓ − P s

1 (Tℓ)Xℓ − P s
2 (Tℓ)(1−Xℓ) = 0, ℓ = 0, 1, . . . , N + 1, (7.1)where the partial pressures P s

k (Tℓ) are 
omputed a

ording to the Antoine Equation, asspe
i�ed in Appendix B.The derivative of the temperature with respe
t to time, Ṫℓ, is given by the impli
itfun
tion theorem:
Ṫℓ = − (P s

1 (Tℓ)− P s
2 (Tℓ))Ẋℓ

∂P s
1

∂Tℓ
Xℓ +

∂P s
2

∂Tℓ
(1−Xℓ)

.To a

ount for non-ideality of the trays and other unmodelled e�e
ts we have introdu
edthe tray e�
ien
ies αℓ for ℓ = 1, 2, . . . , N to 
al
ulate the 
omposition Yℓ of the vapor �owout of tray ℓ as a linear 
ombination of the ideal vapor 
omposition on the tray and thein
oming vapor 
omposition from the tray below, i.e.,
Yℓ = αℓ

P s
1 (Tℓ)

Pℓ
Xℓ + (1− αℓ) Yℓ−1, ℓ = 1, . . . , N,starting with Y0 =

P s
1 (T0)

P0
X0. The 
on
entration of the liquid out�ow D at the top of the
olumn is equal to the 
ondenser 
on
entration XN+1.Mass balan
es: The di�erential equations that determine the 
hange of the molarholdups nℓ of the trays are given by the mass 
onservation for ℓ = 1, 2, . . . , NF − 1, NF +

1, . . . , N

ṅℓ = Vℓ−1 − Vℓ + Lℓ+1 − Lℓ, (7.2)and for ℓ = NF by
ṅNF

= VNF−1 − VNF
+ LNF+1 − LNF

+ F, (7.3)



7.1 The Distillation Column 117where F is the molar in�ow on the feed tray, that 
an be determined from the volume feed�ow Fvol, the Methanol 
on
entration XF in the feed and its temperature TF via
Fvol = V m(XF , TF )F.Mass 
onservation in reboiler and 
ondenser are given by
ṅ0 = −V0 + L1 −B, (7.4)and

ṅN+1 = VN −D − LN+1. (7.5)The assumption that reboiler and 
ondenser volume nv
0 and nv

N+1 are �xed leads to twofurther equations for ℓ = 0, N + 1

0 = ṅv
ℓ = V m(Xℓ, Tℓ)ṅℓ +

∂V m

∂(X, T )
(Ẋℓ, Ṫℓ)

T nℓ, (7.6)that allow to eliminate ṅ0 and ṅN+1. Therefore, n0 and nN+1 are 
hosen to be no di�erentialvariables.The liquid re�ux stream Lvol from the 
ondenser is 
ontrolled and allows to determine
LN+1 via

Lvol = V m(XN+1, TC)LN+1,where TC is the temperature of the 
ondensate.The 
omponentwise mass 
onservation in the reboiler requires
Ẋ0n0 +X0ṅ0 = −V0Y0 + L1X1 − BX0, (7.7)on the trays ℓ = 1, 2, . . . , NF − 1, NF + 1, . . . , N ,

Ẋℓnℓ +Xℓṅℓ = Vℓ−1Yℓ−1 − VℓYℓ + Lℓ+1Xℓ+1 − LℓXℓ, (7.8)on the feed traẏ
XNF

nNF
+XNF

ṅNF
= VNF−1YNF−1 − VNF

YNF

+LNF+1XNF+1 − LNF
XNF

+ FXF ,
(7.9)and in the 
ondenser

ẊN+1nN+1 +XN+1ṅN+1 = VNYN −DXN+1 − LN+1XN+1. (7.10)



118 Control of a Distillation ColumnEnthalpy balan
es: With the liquid and vapor stream enthalpies abbreviated as hLℓ :=
hL(Xℓ, Tℓ) and hVℓ := hV (Yℓ, Tℓ, Pℓ) for ℓ = 0, . . . , N (see Appendix B), we 
an formulatethe enthalpy balan
e in the reboiler that allows to determine the vapor stream V0:

ṅ0h
L
0 + n0

(

∂hL0
∂X0

Ẋ0 +
∂hL0
∂T0

Ṫ0

)

= Q−Qloss − V0h
V
0 + L1h

L
1 − BhL0 . (7.11)Here Q is the applied heat input, and with Qloss we a

ount for possible heat losses in thereboiler. The enthalpy balan
es for the trays ℓ = 1, 2, . . . , NF − 1, NF + 1, . . . , N − 1 are

ṅℓh
L
ℓ + nℓ

(

∂hL
ℓ

∂Xℓ
Ẋℓ +

∂hL
ℓ

∂Tℓ
Ṫℓ

)

= Vℓ−1h
V
ℓ−1 − Vℓh

V
ℓ + Lℓ+1h

L
ℓ+1

−Lℓh
L
ℓ ,

(7.12)and for the feed tray
ṅNF

hLNF
+ nNF

(

∂hL
NF

∂XNF

ẊNF
+

∂hL
NF

∂TNF

ṪNF

)

= VNF−1h
V
NF−1 − VNF

hVNF
+ LNF+1h

L
NF+1 − LNF

hLNF

+FhL(XF , TF , PF ).

(7.13)As the liquid re�ux LN+1 of the 
ondensate is at a temperature TC , the enthalpy balan
eon tray N reads
ṅNh

L
N + nN

(

∂hL
N

∂XN
ẊN +

∂hL
N

∂TN
ṪN

)

= VN−1h
V
N−1 − VNh

V
N + LN+1h

L(XN+1, TC , PN+1)− LNh
L
N .

(7.14)Hydrodynami
s: To determine the liquid out�ow Lℓ of ea
h tray, we use a heuristi
s
heme that is based on the so 
alled �Fran
is weir formula�. It requires only two parametersper tray, one is a referen
e volume nref
ℓ , the se
ond is denoted byWℓ. The formula postulatesthat

Lℓ V
m(Xℓ, Tℓ) =Wℓ(n

v
ℓ − nref

ℓ )
3
2 , ℓ = 1, . . . , N, (7.15)and 
an be derived by an analysis of the gravity �ow over a horizontal weir with verti
alwalls, that is given in Appendix B.Summarizing the DAEWe 
an subsume all system states in two ve
tors x and z whi
h denote the di�erential andthe algebrai
 state ve
tors, respe
tively.The (molar) Methanol 
on
entrations in reboiler, on the 40 trays, and in the 
ondenser

Xℓ for ℓ = 0, 1, . . . , N +1 are the �rst 42 
omponents of the di�erential state ve
tor x, andthe molar tray holdups nℓ for ℓ = 1, . . . , N are the se
ond 40 
omponents.The liquid and vapor (molar) �uxes Lℓ and Vℓ (ℓ = 1, 2, . . . , N) out of the40 trays as well as the 42 temperatures Tℓ (ℓ = 0, 1, 2, . . . , N + 1) of reboiler,
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ondenser form the 122 
omponents of the algebrai
 state ve
tor z =
(L1, . . . , LN , V1, . . . , VN , T0, . . . , TN+1)

T .1 Note that many algebrai
 variables that 
aneasily be eliminated (as e.g. hLℓ , P s
k (Tℓ), V0, et
.) do not 
ount as algebrai
 variables inthis formulation.The two 
omponents of the 
ontrol ve
tor u = (Lvol, Q)

T are the volumetri
 re�ux �ow
Lvol, and the heat input Q, that determines impli
itly the molar vapor �ux V0 out of thereboiler. All remaining system parameters, i.e., nv

0, Ptop, nv
N+1, ∆P0,... ,N , nref

1,... ,N , α1,... ,N ,
Fvol, XF , W1,... ,N , TF , Qloss, and TC , 
an be subsumed in a ve
tor p.The equations (7.7)�(7.10) and (7.2)�(7.3) are the 82 di�erential equations f , and(7.15), (7.12)�(7.14), and (7.1) form the 122 algebrai
 equations g of the system.After substituting ṅℓ in Eqs. (7.7)�(7.10) and dividing these equations by nℓ, we 
ansummarize the DAE system, whi
h has index one, in the following form:

ẋ(t) = f(x(t), z(t), u(t), p) (7.16)
0 = g(x(t), z(t), u(t), p). (7.17)The employed values for the parameters p have been estimated and are listed in Table 7.1in Se
tion 7.2. A 
omplete referen
e to the material property fun
tions V m(x, T ), P s

k (T ),
hL(X, T ), and hV (Y, T, P ) is given in Appendix B.7.2 Determination of the System ParametersIn the a
tual appli
ation, the performan
e of NMPC 
ru
ially depends on the quality ofthe model. Considering this fa
t, steady state and open-loop dynami
 experiments havebeen performed. To obtain measurements of the dynami
 behaviour of the 
olumn step
hanges in the feed rate Fvol and 
omposition XF , the re�ux rate Lvol, and heat input Qwere performed. Measurements of all 42 temperatures T0, . . . , TN+1 were taken to obtaina least squares �t of the simulated to the observed behaviour. The additional assumptionsfor this �t are that the tray e�
ien
ies are 
onstant on ea
h of the two 
olumn se
tions,i.e., α1 = . . . = αNF

and αNF+1 = . . . = αN , that the pressure losses are 
onstant on bothse
tions: ∆P0 = . . . = ∆PNF−1 and ∆PNF
= . . . = ∆PN , and that the volumetri
 referen
etray holdups 
oin
ide: nref

1 = . . . = nref
N . Reboiler and 
ondenser holdup are di�
ult todetermine from temperature measurements, as they both 
ontain very pure liquids duringreasonable operating 
onditions and whi
h have 
onstant boiling temperatures. Conversely,these two volumes do not matter mu
h for the NMPC performan
e. They were determineda

ording to user knowlegde.1The equilibrium temperature of the 
ondenser mixture may help to de�ne the temperature of there�ux by TC := TN+1 when TC is not spe
i�ed. Otherwise, this last algebrai
 variable 
ould be eliminatedwithout 
hanging the dynami
s.
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nv
0 8.5 l Ptop 939 h Pa
nv
N+1 0.17 l ∆Pstrip 2.5 h Pa
nref
tray 0.155 l ∆Prect 1.9 h Pa
αstrip 62 % TF 71◦C
αrect 35 % TC 47.2◦C
Wtray 0.166 l− 1

2 s−1 Fvol 14.0 l h−1

Qloss 0.51 kW XF 0.32Table 7.1: Constant system parametersThe 10 parameters that 
ould be adjusted to dynami
 experimental data were:
αstrip := α1,... ,NF

,
αrect := αNF+1,... ,N ,
Ptop,
∆Pstrip := ∆P0,... ,NF−1,
∆Prect := ∆PNF ,... ,N ,
Qloss,
TF ,
TC
nref
tray := nref

1,... ,N , and
Wtray := W1,... ,N .

(7.18)
During the test series, these parameters have been adjusted several times using stati
 anddynami
 experiments, exploiting both, engineering intuition and advan
ed software tools.The �nally estimated system parameters are listed in Table 7.1.7.2.1 Stati
 System ParametersThe estimation of the �rst eight of the parameters (7.18), that we 
all the stati
 systemparameters, 
an in prin
iple be performed using steady state data only. Denoting themeasured steady state temperature averages of a steady state experiment by the ve
tor
Tm := (Tm

0 , . . . , T
m
N+1)

T and the averaged steady state 
ontrols by um := (Lm
vol, Q

m)T , andintrodu
ing the proje
tion matrix T that extra
ts the temperatures from the algebrai
system state, so that Tz = (T0, . . . , TN+1)
T , we 
an formulate the following least squaresproblem:

min
xS ,zS,p

‖TzS − Tm‖2Q (7.19)subje
t to
f(xS, zS, u

m, p) = 0,

g(xS, zS, u
m, p) = 0,
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Figure 7.3: Comparison of temperature measurements and estimated steady state temper-ature pro�le (solid line).
where the 
onstraints ensure that only steady states are allowed. The positive de�niteweighting matrix Q would ideally be the inverse of the 
ovarian
e matrix of the tempera-ture measurements, that 
an be expe
ted to be diagonal with equal entries. For the NMPCperforman
e tests, however, we have expli
itly given more weight to the 
ontrolled tem-peratures, T28 and T14, by a fa
tor of ten, to avoid steady state o�set due to model-plantmismat
h.7.2.2 Dynami
 System ParametersThe last two parameters from the set (7.18), nref

tray and Wtray, 
an only be estimated bydynami
 experiments. They have been determined by the solution of a nonlinear leastsquares �t of the dynami
 model to the measurement data. Let us for this aim de�nethe time dependent temperature measurement fun
tion Tm(t) and the measured 
ontroltraje
tory um(t), on a horizon [0, T ]. Then the estimation problem 
an be formulated as:
min

x(·),z(·),p

∫ T

0

‖Tz(t)− Tm(t)‖2Q dt (7.20)
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time [s]Figure 7.4: Comparison of measured (noisy) and simulated traje
tories (smooth) of thetemperatures T28 and T14, for a small step 
hange in the re�ux Lvol.subje
t to
ẋ(t)− f(x(t), z(t), um(t), p) = 0, t ∈ [0, T ],

g(x(t), z(t), um(t), p) = 0, t ∈ [0, T ].If the dynami
 experiment starts in steady state, we add the steady state 
onstraint
f(x(0), z(0), um(0), p) = 0,

g(x(0), z(0), um(0), p) = 0.Though spe
i�
ally tailored parameter estimation algorithms based on the multipleshooting method exist for the solution of this type of problem (see, e.g., Bo
k etal. [Bo
87, BES88℄), we have solved the least squares problems with our 
urrent implemen-tation of the Gauss-Newton approa
h in the software pa
kage MUSCOD-II, as des
ribedin Se
. 6.4 (with a pie
ewise polynomial representation of the temperature measurementdata). This approa
h has the pra
ti
al advantage of being able to perform both, parameterestimation and dynami
 optimization, in the same modelling environment, and thus re-du
es the risk of trans
ription errors. The �nally employed parameter values for nref
tray and

Wtray have been determined by Bürner in a MUSCOD-II/MATLAB environment [Bür01℄.
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time [s]Figure 7.5: Comparison of measured (noisy) and simulated traje
tories (smooth), for ana posteriori test with a 
ontrol s
enario whi
h involves large but short re�ux variations(right). The dotted lines show for 
omparison a simulation with an equilibrium model,whi
h does not 
apture hydrodynami
 e�e
ts.
In Fig. 7.4, simulated and measured pro�les for the temperatures T28 and T14 are shown,for an experiment involving a step 
hange in the re�ux Lvol, and starting at the nominaloperating 
onditions. The 
ompared temperature pro�les show that the medium time s
aledynami
s are 
aptured well by the model.An a posteriori test of the model 
an be seen on the right hand side of Fig. 7.5, where asimulation was performed using the same 
ontrol pro�les as in a 
losed-loop experiment (
f.Fig. 7.14), with very large steps in Lvol. The time horizon is shorter and the 
omparisonshows that the model does roughly 
apture short time s
ale e�e
ts that are due to hydro-dynami
s, in 
ontrast to an equilibrium model, that 
annot reprodu
e the 
orrespondingdelays (dotted line) (
f. [DUF+01℄).7.3 Optimal Control Problem FormulationThe 
ontrol aim is to maintain the spe
i�
ations on the produ
t purities X0 and XN+1 inreboiler and 
ondenser despite disturban
es.As usual in distillation 
ontrol, the 
on
entrations X0 and XN+1 are not 
ontrolleddire
tly � instead, an inferential 
ontrol s
heme whi
h 
ontrols the deviation of the 
on-
entrations on tray 14 and 28 from a given setpoint is used. These two 
on
entrations aremu
h more sensitive to 
hanges in the inputs of the system than the produ
t 
on
entra-tions; if they are kept 
onstant, the produ
t purities are safely maintained for a large rangeof pro
ess 
onditions. As 
on
entrations are di�
ult to measure, we 
onsider instead the
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h 
orrespond dire
tly to the 
on
entrations via the Antoine equa-tion. In the following we will use the proje
tion T̃ z := (T28, T14)
T to extra
t the 
ontrolledtemperatures from the ve
tor z, and de�ne T̃ref := ( T ref

28 , T
ref
14

)T
= ( 70 ◦C, 88 ◦C )T forthe desired setpoints.7.3.1 Steady State DeterminationAlternative A (Algebrai
 Constraints): A desired steady state xS, zS, and the 
orre-sponding 
ontrol uS 
ould in prin
iple be determined, for given parameters p, as a solutionof the steady state equation

f(xS, zS, uS, p) = 0,

g(xS, zS, uS, p) = 0,

T̃ zS − T̃ref = 0.Here the last equation restri
ts the steady state to satisfy the inferential 
ontrol aim ofkeeping the temperatures at the �xed referen
e values. The ne
essary degrees of freedomare provided by the two 
omponents of the steady state 
ontrols uS. This approa
h wasused in the �rst series of numeri
al and experimental tests [DBS+01, DUF+01℄.Alternative B (End Point Constraint): In the pra
ti
al 
omputations in this thesis,however, we have adopted an alternative approa
h to determine the desired steady state: tothis end note that the steady state xS, zS for given p and uS 
ould equally be determined byan integration of the model DAE over a su�
iently long time horizon with 
onstant 
ontrols
uS, yielding xS, zS as �nal values, whi
h are pra
ti
ally independent of the initial values.The requirement that the steady state should satisfy T̃ zS = T̃ref 
an then be formulatedas a �nal state 
onstraint that impli
itly determines uS. We employ this se
ond approa
hto determine uS by using an additional long predi
tion interval at the end of the 
ontrolhorizon in the problem formulation. Note that the use of this approa
h does not 
auseadditional numeri
al e�ort if a predi
tion horizon is employed anyway; on the 
ontrary,this formulation avoids introdu
ing additional variables xS , zS into the NLP.7.3.2 The Optimal Control ProblemObje
tive Fun
tion: The open-loop obje
tive is formulated as the integral of a leastsquares term

L(z, u, uS) := ‖T̃ z − T̃ref‖22 + ‖R(u− uS)‖22 , (7.21)where the se
ond term is introdu
ed for regularization, with a small diagonal weightingmatrix
R =

(

0.05 ◦C h l−1 0
0 0.05 ◦C kW−1

)

.
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tion Interval: To ensure nominal stability of the 
losed-loop system, an addi-tional predi
tion interval [t0 + Tc, t0 + Tp] is appended to the 
ontrol horizon [t0, t0 + Tc],with the 
ontrols �xed to the setpoint values uS. The obje
tive 
ontribution of this intervalprovides an upper bound of the negle
ted future 
osts that are due after the end of the
ontrol horizon, if its length is su�
iently large (
f. Se
. 1.4.1). A length of Tp−Tc = 36000se
onds has been 
onsidered to be su�
ient in all performed experiments. Note that theoptimized system state x(t0+Tc) at the start of this interval (i.e., at the end of the 
ontrolhorizon) is in pra
ti
e already very 
lose to the desired steady state value xS .Problem FormulationThe resulting optimal 
ontrol problem is formulated as follows:
min

u(·),x(·),p,uS

∫ t0+Tp

t0

{

∥

∥

∥T̃ z(t)− T̃ref

∥

∥

∥

2

2
+ ‖R(u(t)− uS)‖22

}

dt (7.22)subje
t to the model DAE
ẋ(t) = f(x(t), z(t), u(t), p)

0 = g(x(t), z(t), u(t), p)
for t ∈ [t0, t0 + Tp].Initial values for the di�erential states and values for the system parameters are pres
ribed:

x(t0) = x0,

p = p0.State and 
ontrol inequality 
onstraints are formulated by
h(x(t), z(t), u(t), p) ≥ 0 t ∈ [t0, t0 + Tp],where h := (D,B)T is the fun
tion 
al
ulating the �uxes D and B out of 
ondenser andreboiler a

ording to the model equations whi
h 
annot be
ome negative. This impli
itlyprovides upper limits to the 
ontrols.The steady state 
ontrol uS is determined impli
itly by the requirements that u is
onstant on the long predi
tion interval
u(t) = uS for t ∈ [t0 + Tc, t0 + Tp],and by the �nal state 
onstraint

T̃ z(t0 + Tp)− T̃ref = 0.
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time [s]Figure 7.6: Numeri
al simulation of a 
losed-loop response after a re�ux breakdown of �veminutes and snapshot of a predi
ted traje
tory (dotted). The right hand side shows the�rst 2100 se
onds of the predi
ted traje
tory, for the solution of the optimization problemat time t=400 se
onds. The remaining 34500 se
onds of the predi
tion horizon are notshown.
7.3.3 Numeri
al RealizationThe length Tc of the 
ontrol horizon and the 
ontrol dis
retization have to be 
hosen su
hthat the 
omputation time for one real-time iteration does not ex
eed the relevant times
ale of the system or of the disturban
es. Based on numeri
al experiments on the available
omputer (AMD Athlon pro
essor with 1009 MHz) and on the requirement that one real-time iteration should not ex
eed 20 se
onds, we found that Tc=600 se
onds with 5 
ontrolintervals ea
h of 120 se
onds length is a good 
hoi
e. For a visualization of the 
ontrolhorizon, see the right hand side of Fig. 7.6, whi
h shows an example solution pro�le.As the 
ontrol interval length is 6 times longer than the desired sampling time, theinitialization strategy for subsequent real-time iterations was 
hosen to be the warm startstrategy (
f. Se
. 4.4.2). For the Hessian approximation we have 
hosen the Gauss-Newtonapproa
h for least squares integrals that is des
ribed in Se
. 6.4.
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y
les and time that is needed in thefeedba
k phase, for the numeri
al experiment in Fig. 7.6.
As a �rst numeri
al test of the 
losed-loop algorithm we 
onsider the following s
enario:starting at the nominal operating 
onditions, a re�ux breakdown happens and leaves the
ontrol inputs �xed to Lvol=0.5 l h−1 and Q=2.5 kW for a duration of �ve minutes. Afterthese �ve minutes the plant 
an again be 
ontrolled by the NMPC s
heme. The optimizerworks all the time, even if the feedba
k is not given to the simulated plant. The 
losed-loopbehaviour is shown in Fig. 7.6.The ne
essary CPU times for ea
h real-time iteration, as well as the re
orded responsetimes are shown in Fig. 7.7. Note that the response times are roughly two orders ofmagnitude smaller than the CPU time for one iteration.7.4 Experimental SetupAs said above, we have tested the des
ribed NMPC s
heme on the pilot plant distillation
olumn for various s
enarios. For 
omparison, we also performed 
losed-loop experimentswith a 
onventional 
ontroller, namely a Proportional Integral (PI) 
ontrol s
heme. Wedes
ribe in this se
tion how the two s
hemes were pra
ti
ally set up.7.4.1 NMPC Controller SetupOn-Line State EstimationTo obtain an estimate of the 82 di�erential system states and of the model parameter XFby measurements of the three temperatures T14, T21 and T28 only, we have implemented avariant of an Extended Kalman Filter (EKF).In 
ontrast to an ordinary EKF our estimator 
an in
orporate additional knowledgeabout the possible range of states and parameters in form of bounds. This is espe
iallyuseful as the tray 
on
entrations need to be 
onstrained to be in the interval [0, 1] fromphysi
al reasoning. The algorithm is des
ribed in Appendix A. A 
omparison of esti-
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Figure 7.8: Closed-loop NMPC setupmated and measured temperature pro�les 
an be found in Fig. 7.15 � note that only thetemperatures T14, T21 and T28 are available to the state estimator.The des
ribed EKF type algorithm is 
urrently extended by Bürner to a moving horizonestimator [Bür01℄. This new algorithm � so far with a horizon length of 10 se
onds only �was already employed for one of the 
losed-loop experiments, whi
h involved a step 
hangein XF (
f. Fig. 7.12). The performan
e in the estimation of XF 
an be seen in Fig. 7.13.The large estimation o�set is due to model-plant mismat
h.Coupling with the Pro
ess Control SystemAs mentioned above, the distillation 
olumn is 
ontrolled by a lower level distributed 
ontrolsystem (DCS), whi
h is 
onne
ted to a PC (
f. Fig. 7.1). A

ess to this PC from UNIXworkstations is possible via ftp, so that all higher level algorithms, in parti
ular the stateestimator and the real-time iteration s
heme, 
ould be implemented on a powerful LINUXworkstation with an AMD Athlon pro
essor (1009 MHz). With the given equipment it wasonly possible to obtain measurements and to write the 
omputed 
ontrol inputs to the DCSevery 10 se
onds, i.e., a sampling time of 10 se
onds was used for the state estimator. Thereal-time iteration s
heme was implemented in a self-syn
hronizing way (
f. Se
. 4.4.2),whi
h made it robust against CPU load 
hanges due to other users; its adaptive samplingtime did in pra
ti
e never ex
eed 20 se
onds (
f. Fig. 7.16).The three pro
esses � data a
quisition, state estimation and real-time optimization �were running independently and 
ommuni
ating only via input and output �les, in su
ha way that a breakdown of one 
omponent did not 
ause an immediate breakdown of theothers. Missing new inputs were simply repla
ed by old values. This 
onstru
tion made thewhole system su�
iently stable against unexplained delays in the data transfer betweenthe UNIX workstation and the PC. Figure 7.8 shows the overall 
ontroller/plant/estimatorsetup.
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Figure 7.9: Closed-loop PI setup7.4.2 PI Controller SetupTo be able to assess the performan
e of the proposed NMPC s
heme, we also 
arried outexperiments with an existing PI 
ontroller that is usually employed for the 
ontrol of the
olumn. This 
onventional 
ontrol s
heme 
onsists of two de
oupled single-input/single-output PI loops, one of whi
h uses the heat input Q to 
ontrol the temperature T14, theother using the re�ux Lvol to 
ontrol the temperature T28.The 
ontrolled variables are, as in the NMPC 
ase, the temperatures T14 and T28. Themanipulated variables are the heat input Q to the boiler (
orresponding to the liquid �ow
V0 out of the boiler) and the re�ux �ow Lvol. The PI setup is shown in Fig. 7.9.7.5 Experimental ResultsWe have tested the NMPC s
heme and the PI 
ontrol s
heme on various s
enarios. Ass
enarios we used step 
hanges in the feed �ow rate (Fvol); a step 
hange in the feed
omposition (XF ); a short re�ux breakdown of �ve minutes (Lvol); and a large disturban
es
enario where the 
olumn was driven with too mu
h heat input and too low re�ux �owfor over ten minutes.7.5.1 Feed Flow ChangeFigure 7.10 shows the 
ontrolled outputs (T28 and T14) and input responses (Lvol and Q)where the feed �ow rate Fvol is 
hanged by −10 % at time t = 1000 se
onds. The plots onthe left hand side show the results of the NMPC s
heme and those on the right hand sidebelong to the PI 
ontroller. It 
an be seen that the performan
e of the NMPC s
heme isbetter than that of the PI 
ontroller, both with respe
t to the size of the os
illation, mainlyin T28, and with respe
t to the attenuation time: 1000 se
onds after the feed�ow 
hangethe system is more or less in the new steady state, whereas the PI 
losed-loop system isstill os
illating 3000 se
onds after the load 
hange. In Fig. 7.11 we show a se
ond step
hange in Fvol. Starting from the steady state for a feed�ow that is redu
ed by −10 %from its nominal value, we in
rease it at time t = 1000 se
. by 20 %, to + 10 % of the
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hange: Comparison of real-time iteration NMPC with a 
onven-tional PI 
ontroller, for a step redu
tion of 10 % in the feed �ow Fvol.nominal value. Again, the NMPC performan
e is 
onsiderably better, having 
ompletedthe transition 1000 se
onds after the feed �ow 
hange, and with a maximum deviationin T28 of 0.3◦C. This is in sharp 
ontrast to the PI performan
e, whi
h has a maximumdeviation of 0.8◦C, and whi
h did not even 
omplete the transition to the new steady state3500 se
onds after the step 
hange.7.5.2 Feed Con
entration ChangeFor the next test, a step 
hange in the feed 
omposition is 
onsidered; XF is de
reased from0.320 to 0.272 at t=1000 se
. In Fig. 7.12, the NMPC 
losed-loop response is 
ompared tothat of the PI 
ontroller; here the NMPC 
ontroller shows no superior performan
e to thePI. The steady state o�set 
an be explained by the fa
t that the NMPC 
ontroller doesnot have an integral term (as the PI 
ontroller), that is able to remove steady state o�set
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time [s]Figure 7.11: Feed �ow 
hange: Comparison of real-time iteration NMPC with a 
onven-tional PI 
ontroller, for a feed �ow step 
hange by 20 % (from -10% to +10 % of thenominal value).in the presen
e of model-plant mismat
h, whi
h has been in
reased due to the 
hange in
XF . Note that the NMPC performan
e depends 
ru
ially on the quality of the on-linestate and parameter estimates, as the jump in XF has to be dete
ted 
orre
tly to yield anappropriate response. For a 
omparison of estimated and real values ofXF , see Fig. 7.13. It
an be seen that it took roughly 600 se
onds to dete
t the 
omposition 
hange 
ompletely.7.5.3 Short Re�ux BreakdownIn the previous two 
ases the disturbing e�e
ts of load 
hanges (in the feed �ow and
omposition) on the 
ontrolled temperatures T28 and T14 are relatively small. In order tohave a larger disturban
e e�e
t we simulated a short re�ux �ow breakdown, i.e., we �xed
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time [s]Figure 7.12: Feed 
on
entration 
hange: Comparison of real-time iteration NMPC with a
onventional PI 
ontroller, for a feed 
on
entration 
hange from XF = 0.32 to XF = 0.275.the inputs for �ve minutes, setting the re�ux to a very small value of Lvol = 0.5 l/h. Attime t = 1000 se
., the re�ux breakdown is assumed to be over, so that feedba
k 
an againbe applied to the 
olumn. The 
losed-loop responses of NMPC and PI 
ontrollers areshown in Fig. 7.14 (this result 
an also be found in [DUF+01℄). Note that both 
ontrollersstart with the same system state at t = 1000 se
.; the PI performan
e is worse than theNMPC s
heme, as T28 is in
reasing up to 72◦C, whereas it only in
reases to 71.3◦C forthe NMPC s
heme, and the disturban
e e�e
ts last until 3000 se
. after the disturban
e,
ompared to less than 2000 se
. for NMPC.Valve Saturation: The mi
ro re�ux breakdown that happens for both s
enarios in thefeedba
k phase is due to valve saturation, i.e., due to the fa
t that the �lling level of there�ux drum was shortly be
oming too low be
ause more re�ux L was desired than theamount of vapor �ow VN entering the 
ondenser (
f. Fig. 7.2). This 
auses an automati
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Figure 7.13: On-line estimate of XF (solid), 
ompared to the real value (dashed), in thes
enario of Fig. 7.12.stop of the re�ux pump. In the NMPC s
heme, this phenomenon should have been avoidedby the 
onstraint D ≥ 0, i.e., the requirement that the distillate out�ow remains non-negative (note that in the model the 
ondenser hold up is assumed 
onstant). However,due to model-plant mismat
h, the 
onstraint was violated in the real-plant even though itwas satis�ed in the model predi
tion. To a

ount for the un
ertainty, we have sharpenedthe 
onstraint to D ≥ 0.2 · 10−5 kmol
sec

in the following experiments, to provide a se
uritymargin of 10 % of the nominal value of D. For the PI 
ontrollers, there is no easy wayto 
ir
umvent valve saturation in the presen
e of large disturban
es; therefore we did notperform the large disturban
e s
enario with the PI 
ontrollers.7.5.4 Large Disturban
e S
enarioTo have even larger disturban
e e�e
ts, we 
onsider the following s
enario: starting with asteady state for an in
reased feed �ow rate (by 20 %), we redu
e at time t = 700 se
ondssimultaneously the feed�ow (ba
k to its nominal value) and the re�ux, from Lvol = 5.3 l
hdown to Lvol = 2 l

h
, while maintaining the heating power 
onstant at its (high) value

Q = 2.9 kW. These inputs, that are maintained 
onstant for 800 se
onds, heat the 
olumnup and move the temperature pro�le far away from the nominal operationg 
onditions, as
an be seen in the right hand side of Fig. 7.15, where the distorted temperature pro�le attime t = 1500 is shown. Only at this time the NMPC feedba
k is swit
hed on. The 
losed-loop response 
an be seen on the left hand side in Fig. 7.15. While Q jumps immediatelydown to its minimum value of 1.5kW, Lvol is not in
reased to its maximum value, as wouldfrom �rst sight be the best thing to 
ool the 
olumn. However, this would have resulted invalve saturation, as dis
ussed above; it was the 
onstraint D ≥ 0.2 · 10−5 kmol
sec

that 
ausedthis interesting feature of the 
losed-loop behaviour.7.5.5 Brief Dis
ussionWe have seen that the proposed real-time iteration NMPC 
ontrol s
heme is not only fea-sible for a pra
ti
al large s
ale appli
ation, but that it results in a good performan
e when
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time [s]Figure 7.14: Re�ux breakdown: Comparison of real-time iteration NMPC with a 
on-ventional PI 
ontroller, after a re�ux breakdown of 5 minutes. At time t=1000 s both
losed-loop s
enarios start at the same state.no estimation di�
ulties exist. The poorest performan
e o

urred in the feed 
omposition
hange s
enario, where the state estimator was not able to tra
k the system parameter
XF instantly. On the other hand, the NMPC s
heme shows good performan
e when 
on-straints play a role, whi
h are di�
ult to handle with a PI 
ontrol s
heme. Espe
iallythe 
losed-loop response of the large disturban
e s
enario shows interesting features anddeserves further analysis. We will have a 
loser look at the observed real-time performan
e,and we will also 
ompare the experimentally observed traje
tory with 
omputations thathave been performed a posteriori.Observed Computation Times: Let us �rst have a look on the 
omputation timesunder experimental 
onditions. We measure not only the overall time for ea
h real-timeiteration, but also the response time, i.e., the time between the moment that the 
urrent
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Figure 7.15: Large disturban
e s
enario. Left: Closed-loop response. Feedba
k starts onlyat time t = 1500 se
onds. The temperature pro�le at this time is shown on the right handside (+), together with the estimated pro�le (solid) and 
ompared to the nominal pro�le(dots/dashed).
observed state x0 is given to the optimizer, and the moment that the 
ontrol response isavailable for the data transfer to the 
olumn. Both time measurements were done externally(from a MATLAB environment), i.e., they are not CPU times in the stri
t sense, but theoverall times that the 
omputations required under the given CPU load 
onditions. Theobserved times 
an be seen in Fig. 7.16. Note that due to the fa
t that the 
ommuni
ationsampling rate was te
hni
ally restri
ted to be not shorter than 10 se
onds, the immediateresponse may in our realization have taken up to 10 se
onds until it arrives at the distillation
olumn, depending on the phase di�eren
e of the (self-syn
hronizing) optimizer and thedata transfer system.
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omputation times for the full real-time iteration 
y
les and the timethat is needed in the feedba
k phase, for the large disturban
e experiment (
f. Fig. 7.15).Predi
tion Horizon Contents: To analyse the working of the NMPC 
ontroller better,we will have a look at the predi
ted 
ontrol traje
tory at the time point t = 1500 se
onds,and 
ompare it to the �nal 
losed-loop response, in Fig. 7.17. It 
an be seen that thepredi
ted and real traje
tory di�er signi�
antly. This is mainly 
aused by the fa
t thatthe 
ontrol horizon of 600 se
onds is too short to 
apture all ne
essary 
ontrol a
tions fora disturban
e as large as the one 
onsidered.We will 
ompare the experimentally observed performan
e with a simulated 
losed-looptraje
tory, and with the optimal solution, a

ording to the model.Closed-Loop Simulation: It is interesting to test how similar the experimental resultin Fig. 7.15 is to a 
losed-loop simulation, where noise e�e
ts and model-plant mismat
hdo not play a role. We have therefore taken the (estimated) system state at time t = 1500,to start a 
losed-loop simulation, using the same 
ontroller setup as before, but under theassumption that the plant is identi
al to the model. The result of this simulation 
an beseen in the 
entral 
olumn in Fig. 7.18.Optimal Solution: For 
ompleteness, the experimental and simulated 
losed-loop tra-je
tories are 
ompared with a theoreti
al o�-line result, namely with the optimal open-looptraje
tory, that 
an be seen on the right 
olumn of Fig. 7.18. It 
an be seen that the ex-perimental and simulated 
losed-loop traje
tories show 
onsiderable similarity with thetheoreti
ally optimal solution.The 
omputation of the optimal traje
tory with the o�-line multiple shooting methodrequired 23 major SQP iterations with a CPU time of 3356 se
onds (AMD Athlon pro
essorwith 1009 MHz), where the 
ontrol horizon was 
hosen to 
onsist of 45 multiple shootingintervals, ea
h of 30 se
onds length. Note that the 
omputation time for this problem isin the same order as the whole pro
ess duration.
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time [s]Figure 7.17: Comparison of experimental 
losed-loop traje
tory (left) with the NMPCpredi
tion horizon at time t = 1500 se
onds (right).
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Chapter 8Control of a Looping KiteIn order to demonstrate the versatility of the proposed real-time iteration s
heme we presenthere the 
ontrol of an airborne kite as a periodi
 
ontrol example. The kite is held by twolines whi
h allow to 
ontrol the lateral angle of the kite, see Fig. 8.1. By pulling one linethe kite will turn in the dire
tion of the line being pulled. This allows an experien
ed kitepilot to �y loops or similar �gures. The aim of our automati
 
ontrol is to make the kite�y a �gure that may be 
alled a �lying eight�, with a 
y
le time of 8 se
onds (see Fig. 8.2).The 
orresponding orbit is not open-loop stable, so that feedba
k has to be applied duringthe �ight � we will show simulation results where our proposed real-time iteration s
hemewas used to 
ontrol the kite, with a sampling time of one se
ond.8.1 The Dual Line Kite ModelThe movement of the kite at the sky 
an be modelled by Newton's laws of motion anda suitable model for the aerodynami
 for
e. Most di�
ulty lies in the determination ofsuitable 
oordinate systems: we will �rst des
ribe the kite's motion in polar 
oordinates,and se
ondly determine the dire
tion of the aerodynami
 for
es.8.1.1 Newton's Laws of Motion in Polar CoordinatesThe position p ∈ R
3 of the kite 
an be modelled in 3-dimensional Eu
lidean spa
e, 
hoosingthe position of the kite pilot as the origin, and the third 
omponent p3 to be the height ofthe kite above the ground. With m denoting the mass of the kite and F ∈ R

3 the totalfor
e a
ting on the kite, Newton's law of motion reads
p̈ =

d 2p

dt2
=
F

m
.Let us introdu
e polar 
oordinates θ, φ, r:

p =





p1
p2
p3



 =





r sin(θ) cos(φ)
r sin(θ) sin(φ)

r cos(θ)



 .139
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PSfrag repla
ements
et
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Figure 8.1: A pi
ture of the kite.Note that the distan
e r between pilot and kite is usually 
onstant during �ight, and θ isthe angle that the lines form with the verti
al. In these 
oordinates, p̈ looks as follows
p̈ =

d

dt

(

∂p

∂θ
θ̇ +

∂p

∂φ
φ̇+

∂p

∂r
ṙ

)

=
∂p

∂θ
θ̈ +

∂p

∂φ
φ̈+

∂p

∂r
r̈ +

∂2p

∂θ2
θ̇2 +

∂2p

∂φ2
φ̇2 +

∂2p

∂r2
ṙ2

+ 2
∂2p

∂φ∂θ
φ̇θ̇ + 2

∂2p

∂r∂θ
ṙθ̇ + 2

∂2p

∂r∂φ
ṙφ̇.

(8.1)Let us introdu
e a lo
al right handed 
oordinate system with the three basis ve
tors
eθ =





cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)



 , eφ =





− sin(φ)
cos(φ)

0



 , and er =





sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)



 .In this 
oordinate system, the partial derivatives of p with respe
t to θ, φ, r be
ome
∂p

∂θ
= reθ,

∂p

∂φ
= r sin(θ)eφ, and ∂p

∂r
= er,and

∂2p

∂θ2
= −rer,

∂2p

∂φ2
= −r sin2(θ)er − r sin(θ) cos(θ)eθ, and ∂2p

∂r2
= 0,as well as

∂2p

∂φ∂θ
= r cos(θ)eφ,

∂2p

∂r∂θ
= eθ, and ∂2p

∂r∂φ
= sin(θ)eφ.



8.1 The Dual Line Kite Model 141Eq. (8.1) 
an therefore be written as:
p̈ = eθ

(

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇
)

+ eφ

(

r sin(θ)φ̈+ 2r cos(φ)φ̇θ̇ + 2 sin(θ)ṙφ̇
)

+ er

(

r̈ − rθ̇2 − r sin2(θ)φ̇2
)

.De�ning
Fθ := F · eθ, Fφ := F · eφ, and Fr := F · er,we 
an write Newton's laws of motion in the form

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇ =
Fθ

m
,

r sin(θ)φ̈+ 2r cos(θ)φ̇θ̇ + 2 sin(θ)ṙφ̇ =
Fφ

m
,

r̈ − rθ̇2 − r sin2(θ)φ̇2 =
Fr

m
. (8.2)If the length of the lines, denoted by r, is kept 
onstant, all terms involving time derivativesof r will drop out. Furthermore, the last equation (8.2) will be
ome redundant, as thefor
e in the radial dire
tion will be augmented by a 
onstraint for
e 
ontribution Fc, sothat Eq. (8.2) is automati
ally satis�ed when the augmented for
e F ′

r := Fr − Fc repla
es
Fr, with Fc = Fr + rθ̇2 + r sin2(θ)φ̇2. In this 
ase the equations of motion1 simplify to

θ̈ =
Fθ

rm
+ sin(θ) cos(θ)φ̇2, (8.3)

φ̈ =
Fφ

rm
− 2 cot(θ)φ̇θ̇. (8.4)In our model, the for
e ve
tor F = F gra + F aer 
onsists of two 
ontributions, the grav-itational for
e F gra and the aerodynami
 for
e F aer. In 
artesian 
oordinates, F gra =

(0, 0,−mg)T with g = 9.81 m s−2 being the earth's gravitational a

eleration. In lo
al
oordinates we therefore have
Fθ = F gra

θ + F aer
θ = sin(θ)mg + F aer

θ and Fφ = F aer
φ .It remains to derive an expression for the aerodynami
 for
e F aer.8.1.2 Kite Orientation and the Aerodynami
 For
eTo model the aerodynami
 for
e that is a
ting on the kite, we �rst assume that the kite'strailing edge is always pulled by the tail into the dire
tion of the e�e
tive wind, as seen1Note that the validity of these equations requires that Fc = Fr + rθ̇2 + r sin2(θ)φ̇2 ≥ 0, as a line 
anonly pull, not push.



142 Control of a Looping KiteName Symbol Valueline length r 50 mkite mass m 1 kgwind velo
ity vw 6 m/sdensity of air ρ 1.2 kg/m3
hara
teristi
 area A 0.5 m2lift 
oe�
ient Cl 1.5drag 
oe�
ient Cd 0.29Table 8.1: The kite parameters.from the kite's inertial frame. Under this assumption the kite's longitudinal axis is alwaysin line with the e�e
tive wind ve
tor we := w− ṗ, where w = (vw, 0, 0)
T is the wind as seenfrom the earth system, and ṗ the kite velo
ity. If we introdu
e a unit ve
tor el pointingfrom the front towards the trailing edge of the kite (
f. Fig. 8.1), we therefore assume that

el =
we

‖we‖
.The transversal axis of the kite 
an be des
ribed by a perpendi
ular unit ve
tor et that ispointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinalaxis, i.e.,

et · el =
et · we

‖we‖
= 0. (8.5)The orientation of the transversal axis et against the lines' axis (whi
h is given by theve
tor er) 
an be in�uen
ed by the length di�eren
e ∆l of the two lines. If the distan
ebetween the two lines' �xing points on the kite is d, then the ve
tor from the left to theright �xing point is det, and the proje
tion of this ve
tor onto the lines' axis should equal

∆l (being positive if the right wingtip is farther away from the pilot), i.e., ∆l = d et · er.Let us de�ne the lateral angle ψ to be
ψ = arcsin

(

∆l

d

)

.We will assume that we 
ontrol this angle ψ dire
tly. It determines the orientation of etwhi
h has to satisfy:
et · er =

∆l

d
= sin(ψ). (8.6)A third requirement that et should satisfy is that

(el × et) · er =
we × et
‖we‖

· er > 0, (8.7)



8.1 The Dual Line Kite Model 143whi
h takes a

ount of the fa
t that the kite is always in the same orientation with respe
tto the lines.How to �nd a ve
tor et that satis�es these requirements (8.5)�(8.7)? Using the proje
-tion wp
e of the e�e
tive wind ve
tor we onto the tangent plane spanned by eθ and eφ,

wp
e := eθ(eθ · we) + eφ(eφ · we) = we − er(er · we),we 
an de�ne the orthogonal unit ve
tors

ew :=
wp

e

‖wp
e‖

and eo := er × ew,so that (ew, eo, er) form an orthogonal right-handed 
oordinate basis. Note that in thisbasis the e�e
tive wind we has no 
omponent in eo dire
tion, as
we = ‖wp

e‖ew + (we · er)er.We will show that the de�nition
et := ew(− cos(ψ) sin(η)) + eo(cos(ψ) cos(η)) + er sin(ψ)with

η := arcsin

(

we · er
‖wp

e‖
tan(ψ)

)satis�es the requirements (8.5)�(8.7). Equation (8.5) 
an be veri�ed by substitution of thede�nition of η into
et · we = − cos(ψ) sin(η)‖wp

e‖+ sin(ψ)(we · er) = 0.Eq. (8.6) is trivially satis�ed, and Eq. (8.7) 
an be veri�ed by 
al
ulation of
(we × et) · er = (we · ew) cos(ψ) cos(η)− (we · eo)(− cos(ψ) sin(η))

= ‖wp
e‖ cos(ψ) cos(η)(where we used the fa
t that we · eo = 0). For angles ψ and η in the range from −π/2 to

π/2 this expression is always positive. The above 
onsiderations allow to determine theorientation of the kite depending on the 
ontrol ψ and the e�e
tive wind we only. Notethat the 
onsiderations would break down if the e�e
tive wind we would be equal to zero,or if
∣

∣

∣

∣

we · er
we · ew

tan(ψ)

∣

∣

∣

∣

> 1.The two ve
tors el × et and el are the dire
tions of aerodynami
 lift and drag, respe
tively.To 
ompute the magnitudes Fl and Fd of lift and drag we assume that the lift and drag
oe�
ients Cl and Cd are 
onstant, so that we have
Fl =

1

2
ρ‖we‖2ACl and Fd =

1

2
ρ‖we‖2ACd,



144 Control of a Looping Kitewith ρ being the density of air, and A being the 
hara
teristi
 area of the kite.Given the dire
tions and magnitudes of lift and drag, we 
an 
ompute F aer as theirsum, yielding
F aer = Fl(el × et) + Fdelor, in the lo
al 
oordinate system

F aer
θ = Fl((el × et) · eθ) + Fd(el · eθ) and F aer

φ = Fl((el × et) · eφ) + Fd(el · eφ).The system parameters that have been 
hosen for the simulation model are listed in Ta-ble 8.1. De�ning the system state x := (θ, θ̇, φ, φ̇)T and the 
ontrol u := ψ we 
an summa-rize the system equations (8.3)�(8.4) in the short form
ẋ = f(x, u),with

f((θ, θ̇, φ, φ̇)T , ψ) :=

















θ̇

F aer
θ (θ, θ̇, φ, φ̇, ψ)

rm
+ sin(θ)

g

r
+ sin(θ) cos(θ)φ̇2

φ̇

F aer
φ (θ, θ̇, φ, φ̇, ψ)

rm
− 2 cot(θ)φ̇θ̇

















.

8.2 A Periodi
 OrbitUsing the above system model, a periodi
 orbit was determined that 
an be 
hara
terizedas a �lying eight� and whi
h is depi
ted as a φ − θ−plot in Fig. 8.2, and as a time plotin Fig. 8.3. The wind is assumed to blow in the dire
tion of the p1-axis (θ = 90o and
φ = 0o). The periodi
 solution was 
omputed using the o�-line variant of MUSCOD-II,imposing periodi
ity 
onditions with period T = 8 se
onds and suitable state boundsand a suitable obje
tive fun
tion in order to yield a solution that was 
onsidered to bea meaningful referen
e orbit. Note that the 
ontrol ψ (see Fig. 8.3) is positive when thekite shall turn in a 
lo
kwise dire
tion, as seen from the pilot's viewpoint, and negativefor an anti-
lo
kwise dire
tion. We will denote the periodi
 referen
e solution by xr(t) and
ur(t). This solution is de�ned for all t ∈ (−∞,∞) and satis�es the periodi
ity 
ondition
xr(t + T ) = xr(t) and ur(t+ T ) = ur(t).It is interesting to note that small errors a

umulate very qui
kly so that the un
on-trolled system will not stay in the periodi
 orbit very long during a numeri
al simulation(see Fig. 8.4). This observation 
an be 
on�rmed by investigating the asymptoti
 stabilityproperties of the periodi
 orbit.



8.2 A Periodi
 Orbit 145

60 40 20 0  −20 −40 −60
90

80

70

60

50

40

30

θ 
[d

eg
]

φ [deg]

1 

2 

3 

4 

5 

6 

7 

0/8 

Figure 8.2: Periodi
 orbit plotted in the φ− θ−plane, as seen by the kite pilot. The dotsseparate intervals of one se
ond.
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ontrol applied to the undisturbed system.8.2.1 Stability Analysis of the Open-Loop SystemTo determine the asymptoti
 stability properties of the open-loop system along the periodi
orbit, let us 
onsider an initial value problem for the open-loop system on the interval [0, T ]
orresponding to one period:̇
x(t) = f(x(t), ur(t)), ∀t ∈ [0, T ],

x(0) = x0.The solution traje
tories x(t) 
an be regarded as fun
tions of the initial value x0. Note thatfor x0 = xr(0) the solution is identi
al to the referen
e traje
tory xr(t). The sensitivitymatri
es
W (t) :=

∂x(t)

∂x0
(xr(0)), t ∈ [0, T ],
an therefore be obtained as the solution of the matrix initial value problem:

Ẇ (t) =
∂f

∂x
(xr(t), ur(t)) · W (t) ∀t ∈ [0, T ],

W (0) = Inx .The �nal valueW (T ) is 
alled the monodromy matrix . It 
hara
terizes the sensitivity of the�nal state of ea
h period with respe
t to the initial value. Asymptoti
ally stable periodi
orbits are 
hara
terized by a monodromy matrix whose eigenvalues (also 
alled �FloquetMultipliers�) all have a modulus smaller than one, whi
h means that initial disturban
esare damped out during the 
y
les. For a proof see e.g. Amann [Ama83℄.
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al 
omputation of W (T ) for the kite model along the 
hosen periodi
 orbityields
W (T ) =









3.0182 2.4014 0.9587 −0.1307
3.3399 2.5500 0.0054 −0.3935
−2.7170 −1.8596 0.8436 0.5072
−2.8961 −2.0491 0.5601 0.4640









,whi
h has the eigenvalue spe
trum
σ (W (T )) = { 5.29, 1.53, 6.16 · 10−2, 4.17 · 10−7 },
ontaining two eigenvalues that have a modulus bigger than one. This 
on�rms that thesystem is asymptoti
ally unstable in the periodi
 referen
e orbit.8.3 The Optimal Control ProblemGiven an initial state xt0 at time t0, an optimal 
ontrol problem 
an be formulated thattakes a

ount of the obje
tive to keep the system 
lose to the referen
e orbit. For this aimwe de�ne a Lagrange term

L(x, u, t) := (x− xr(t))
TQ(x− xr(t)) + (u− ur(t))

TR(u− ur(t))with diagonal weighting matri
es
Q := ·









1.2 0 0 0
0 3.0s2 0 0
0 0 3.0 0
0 0 0 3.0s2









10−4deg−2s−1 and R := 1.0 · 10−2deg−2s−1.A hard 
onstraint is given by the fa
t that we do not want the kite to 
rash onto theground (θ = 90 degrees), and for se
urity, we require a path 
onstraint fun
tion
h(x, u) :=

(

75 deg − θ
)to be positive. Using these de�nitions, we formulate the following optimal 
ontrol problemon the moving horizon [t0, t0 + 2T ]:

min
u(·),x(·)

∫ t0+2T

t0

L(x(t), u(t), t) dt (8.8)subje
t to
ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t0 + 2T ],

x(t0) = xt0 ,

h(x(t), u(t)) ≥ 0, ∀t ∈ [t0, t0 + 2T ].
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φ [deg]Figure 8.5: Closed-loop 
ontrol applied to the undisturbed system, simulation of 100 peri-ods. Numeri
al errors are attenuated by very small 
ontrol responses (with u(t)− ur(t) inthe order of 10−2 degree) and do not a

umulate.
8.4 Closed-Loop SimulationsIn the multiple shooting dis
retization the multiple shooting intervals were 
hosen to beea
h of one se
ond length, thus allowing eight 
ontrol 
orre
tions per period T . The Hessianmatrix was approximated using the Gauss-Newton approa
h for integral least squares termsdes
ribed in Se
. 6.4. The initialization of subsequent optimization problems was a
hievedwith a shift strategy where the new �nal interval was initialized by an integration usingthe nominal open-loop 
ontrol ur(t), 
f. Se
. 4.4.1.As a �rst test of the algorithm we try to 
ontrol the undisturbed system, and the resultof a simulation of 100 periods is depi
ted in Fig. 8.5. It 
an be seen that the referen
eorbit is perfe
tly tra
ked. The dots separate intervals of one se
ond length and 
orrespondto the sampling times.For a se
ond test we give the kite a slight �ki
k� at time t = 1.0 se
onds that leadsto a disturban
e in the angular velo
ity θ̇. It 
hanges from −1 deg/s to +5 deg/s. The
losed-loop response is depi
ted in Fig. 8.6 as a φ− θ−plot.As a third test we give the kite a moderate �ki
k� at time t = 3.5 se
onds that lets theangular velo
ity θ̇ 
hange from 12 deg/s to 25 deg/s. The 
losed-loop response is depi
tedin Fig. 8.7. For a 
omparison we also show the open-loop response to this disturban
e inFig. 8.8, whi
h results in a 
rash 5 se
onds after the disturban
e.In a fourth test we �ki
k� the kite strongly at time t = 4.0 se
onds so that the angularvelo
ity θ̇ 
hanges abruptly from 20 deg/s to−7 deg/s. The 
losed-loop response is depi
tedin Fig. 8.9.
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φ [deg]Figure 8.6: Closed-loop response to a small disturban
e in θ̇ that 
hanges from −1 deg/s to
+5 deg/s at time t = 1.0 se
onds. After one period the disturban
e is nearly attenuated.
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ontrol response to a moderate disturban
e in θ̇ that 
hangesfrom 12 deg/s to 25 deg/s at time t = 3.5 se
onds. After 1.5 periods the disturban
e isattenuated.
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φ [deg]Figure 8.8: Open-loop response to the same disturban
e as in Fig. 8.7, at time t = 3.5 se
-onds. Five se
onds after the disturban
e the kite 
rashes onto the ground (θ=90 degrees).

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ 
[d

eg
]

φ [deg]Figure 8.9: Closed-loop response to a strong disturban
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hanges from 20 deg/sto a value of −7 deg/s at time t = 4.0 se
onds. After two periods the disturban
e is
ompletely attenuated.
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φ [deg]Figure 8.10: Closed-loop traje
tory for the weak disturban
e test, simulated over 100periods.As a last test we apply random noise of various magnitude to the system: disturban
eshappen with probability p = 10% s−1, and they simultaneously disturb all 4 
omponentsof the system state, with independent magnitudes that are 
hara
terized by the standarddeviations
sθ = 0.9 deg, sθ̇ = 0.9 deg s−1, sφ = 0.6 deg, and sφ̇ = 0.6 deg s−1for the weak disturban
e test, and
sθ = 4.5 deg, sθ̇ = 4.5 deg s−1, sφ = 3 deg, and sφ̇ = 3 deg s−1for the strong disturban
e test. For ea
h s
enario, we have 
arried out simulations for100 periods (i.e., for 800 se
onds). The resulting φ − θ−plots 
an be seen in Fig. 8.10 forthe weak disturban
e s
enario, and in Fig. 8.11 for the strong disturban
e s
enario. Whilethe weak s
enario shows how ni
ely the 
losed-loop system behaves even in the presen
eof moderate disturban
es, the strong disturban
e s
enario is 
ertainly at the limits ofthe appli
ability of the 
hosen 
ontrol approa
h, as the disturban
es sometimes push thesystem state out of the state bounds spe
i�ed in the optimization problem (θ ≤ 75 degrees).The resulting infeasibility of the optimization problems was 
ushioned by the relaxationstrategy of the QP solver. However, this does not give any guarantee for the working ofour approa
h in the presen
e of severe disturban
es. Instead, a s
heme employing soft
onstraint formulations should be employed.The 
omputation time for ea
h real-time iteratiion 
y
le did not ex
eed the samplingtime of one se
ond in all simulations and averaged to 0.45 se
onds with a standard deviation
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tory for the strong disturban
e test, simulated over 100periods.of 0.02 se
onds (on a Compaq Alpha XP1000 workstation). The immediate feedba
k tookin average one tenth of this value, 0.05 se
onds.



Con
lusions and Outlook
Summary and Con
lusionsWe have presented a new numeri
al method for the real-time optimization of 
onstrainednonlinear pro
esses and have demonstrated its pra
ti
al appli
ability in an experimental
ase study, the nonlinear model predi
tive 
ontrol of a distillation 
olumn whi
h is de-s
ribed by a large s
ale sti� DAE model. Sampling times in the range of se
onds 
ouldbe realized. The theoreti
al 
ontra
tion properties of the algorithm have been investigatedand 
omputable bounds on the loss of optimality with respe
t to a rigorous solution 
ouldbe established.Des
ription of the Method (Chapters 1 � 4 and 6)The proposed approa
h is based on the dire
t multiple shooting method (Chap. 2) thatallows to 
ombine the use of e�
ient state-of-the-art DAE solvers with the advantages of asimultaneous strategy, like the possibility to treat unstable system models. In parti
ular,the presented algorithm is 
hara
terized by the following, newly developed features:

• The initialization of subsequent optimization problems with an initial value em-bedding strategy delivers, for an exa
t Hessian SQP, a �rst-order predi
tor for thesolution of new problems even in the presen
e of a
tive set 
hanges (Chap. 3). Forgeneral Newton type methods, the initial value embedding still delivers an ex
ellentpredi
tor (Chap. 5, Se
. 5.3).
• Dovetailing of the solution iterations with the pro
ess development in a real-timeiteration s
heme allows to redu
e sampling times to a minimum, but maintains alladvantages of a fully nonlinear treatment of the optimization problems (Chap. 4).
• A separation of the 
omputations in ea
h real-time iteration into a preparationphase and a feedba
k phase is realized (Chap. 6). The feedba
k phase is typi
allyorders of magnitude shorter than the preparation phase, and allows to deliver alinearized feedba
k that takes all linearized 
onstraints into a

ount. This feedba
kis equivalent to linear MPC s
hemes, using a system linearization along the 
urrentoptimal referen
e traje
tory. The delay of one sampling time that is present in allprevious NMPC s
hemes is avoided. 153
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lusions and Outlook
• AGauss-Newton approa
h for least squares integrals allows to 
ompute an ex-
ellent Hessian approximation at negligible 
omputational 
osts. The Gauss-NewtonHessian is 
omputed simultanously with the sensitivity 
omputation without the ne-
essity to stop the integration routine (Se
. 6.4). This is espe
ially useful on longpredi
tion intervals with 
onstant 
ontrols.Contra
tivity of the Real-Time Iteration S
heme (Chapter 5)Contra
tivity of the s
heme is proven for real-time iterations on shrinking horizons, andthe out
ome of the iterates is 
ompared to the 
orresponding exa
t solution on the fullhorizon. The s
enario assumes that plant and optimization model 
oin
ide, but that oneunpredi
ted disturban
e happens at the start of the 
onsidered time period.
• The real-time iteration s
heme is 
ontra
ting under the same 
onditions as the o�-line method (Theorem 5.6). This means: if the full horizon optimization problemand a given initialization satisfy the su�
ient 
onditions for lo
al 
onvergen
e of theo�-line Newton type method, then the real-time iteration s
heme is 
ontra
ting.
• The iterates approa
h the optimal solution on the remaining horizon, witha velo
ity that depends on the 
ontra
tion rate (Corollary 5.8). Due to the ex
ellent
ontra
tion properties of the dire
t multiple shooting method, this means that aftera few iterations the real-time solution is pra
ti
ally identi
al to the exa
t solution onthe remaining horizon.
• We establish a bound on the loss of optimality with respe
t to the optimalsolution on the full horizon (Theorem 5.11). This bound limits possible losses onthe �rst intervals, before the iterates approa
h the optimal solution on the remaininghorizon.
• If the algorithm was initialized at a neighboring solution, as it typi
ally happensin pra
ti
e, the loss of optimality is of fourth order in the size of the initialdisturban
e for an exa
t Newton method (Corollary 5.12).Appli
ation Tests of the S
heme (Chapters 7 and 8)Experimental Control of a Distillation Column: The algorithm is su

esssfullyapplied to a nontrivial pro
ess 
ontrol example, namely the NMPC of a pilot plant distil-lation 
olumn situated at the Institut für Systemdynamik und Regelungste
hnik , Stuttgart.A model for the 
olumn is developed, 
onsidering enthalpy balan
es and hydrodynami
s,whi
h results in a sti� DAE with 82 di�erential and 122 algebrai
 state variables. Modelparameters are �tted to experimental dynami
 data.The optimization problem is formulated using the integrated squared deviation of two
ontrolled temperatures as obje
tive, and employing a 
ontrol horizon with 5 samplingintervals of 120 se
onds ea
h, and a predi
tion horizon of 36 000 se
onds. The 
omputation



155times for ea
h real-time iteration are below 20 se
onds, and the realized feedba
k times areunder pra
ti
al 
onditions below 400 millise
onds. The experimentally observed 
losed-loop behaviour shows good performan
e, espe
ially for large disturban
es.The study proves that NMPC using large s
ale pro
ess models is feasible under pra
ti
al
onditions, when the real-time iteration s
heme is used (Chap. 7).Simulated Control of a Looping Kite: In a se
ond example, the real-time iterationapproa
h is applied to a simulated unstable periodi
 pro
ess, an airborne kite. The newlydeveloped kite model 
onsists of four di�erential states and one 
ontrol. The 
ontrol aimis to let the kite �y an unstable periodi
 traje
tory with a period of eight se
onds. Thereal-time iteration s
heme is able to su

essfully stabilize the system for all investigateddisturban
e s
enarios, meeting the real-time requirement of at maximum one se
ond periteration. Simulation results show ex
ellent robustness of the real-time optimization algo-rithm even in the presen
e of large disturban
es. (Chap. 8).OutlookWithin this thesis, we have demonstrated the pra
ti
al feasibility of NMPC using large s
aledetailed pro
ess models. Several future developments of numeri
al methods for NMPC
ome to mind, whi
h may extend its area of appli
ability.ParallelizationA parallelization of the developed algorithm, whi
h has already been a
hieved for the o�-line dire
t multiple shooting method, promises to redu
e 
omputation times 
onsiderably.The method is parti
ularly well suited for parallel 
omputation, sin
e the most expensivepart of the algorithm, the integrations and sensitivity 
omputations, are de
oupled ondi�erent multiple shooting intervals and 
an be performed in parallel [GB94, BS01℄. Forthe distillation model developed in this thesis, pro
essor e�
ien
ies in the range of 80 %for 8 nodes have been observed. Only minor modi�
ations have to be made to adapt theexisting parallel version of the o�-line method to the real-time iteration 
ontext.Redu
ed Approa
hAnother interesting future development is to employ a redu
tion approa
h that exploits theinitial value 
onstraint and the 
ontinuity 
onditions for an e�
ient derivative 
omputationin the multiple shooting method. The approa
h, that is originally due to S
hlöder [S
h88℄,has long been su

essfully applied to large s
ale parameter estimation problems (see e.g.Dieses [Die01℄ for re
ent developments and appli
ations). An appli
ation of the approa
hto the des
ribed Gauss-Newton method for optimal 
ontrol is possible and promises largesavings in 
omputation times in the sensitivity generation, thus allowing to further redu
esampling times. The redu
ed approa
h is fully 
ompatible with most algorithmi
 ideas of



156 Con
lusions and Outlookthis thesis, espe
ially with the initial value embedding and the dovetailing of the solutioniterations with the pro
ess development. However, the separation into preparation andfeedba
k phase 
annot be realized as easily as before, as some parts of the DAE sensitivity
al
ulation 
an only be performed after the initial value x0 is known.The approa
h would be espe
ially e�
ient for models with large di�erential state di-mensions and a relatively small number of 
ontrol parameters.On-Line Parameter and State EstimationIn the appli
ation of NMPC te
hniques, an important requirement is knowledge of thesystem state and of the 
urrent values of the system parameters. Moving horizon strategiesto atta
k this task have been formulated (see e.g. Rao and Rawlings [RR00℄), but the �eld ofnumeri
al methods for the real-time solution of the resulting optimal 
ontrol problems stillneeds 
onsiderable development. A transfer of the real-time iteration s
heme to this typeof problem promises to deliver a powerful method for the on-line solution of moving horizonstate estimation problems, and is 
urrently under investigation (
f. Bürner [Bür01℄).Periodi
 ControlIn the last numeri
al example we showed the feasibility of an NMPC approa
h designed to
ontrol an unstable periodi
 system. Given the existing optimization s
heme, the stabilizingperiodi
 feedba
k law was easily obtained by a straightforward periodi
 formulation of theleast squares obje
tive. In the area of periodi
 
ontrol, the use of NMPC te
hniques mayallow new periodi
 pro
ess designs that have so far been avoided, and an appli
ation ofthe developed numeri
al methods to this problem 
lass deserves further investigation.



Appendix AAn Extended Kalman Filter VariantWe will here des
ribe the variant of the Extended Kalman Filter (EKF) that was used forthe state estimation in the experimental tests of Chap. 7. For an introdu
tion into 
urrentdevelopments in the area of nonlinear state estimation we refer e.g. to Muske and Edgar[ME96℄ or to Rao and Rawlings [RR00℄. We also refer to an overview arti
le by Binder etal. [BBB+01℄ that dis
usses some aspe
ts of state estimation, and to the work of Bürneron numeri
al methods of moving horizon state estimation [Bür01℄.In 
ontrast to a standard Extended Kalman Filter (EKF), our variant is able to treatbounds on the system state, a feature that 
an be 
ru
ial for the pra
ti
al appli
abilityof the algoritm. We will �rst formulate the on-line estimation problem in Se
. A.1 andintrodu
e the EKF type algorithm in Se
. A.2, and afterwards motivate it by heuristi
arguments in Se
. A.3.A.1 Problem FormulationTransformation into Dis
rete TimeLet us 
onsider the system development on intervals of �xed length δ only, whi
h 
orrespondto the sampling rate of measurements. Given initial values xk (that may also 
omprise
onstant system parameters, 
f. Se
. 1.1) and 
ontrols uk, the system DAE 
an be solvedon the interval [tk, tk + δ]

B(·) ẋ(t) = f(x(t), z(t), uk),
0 = g(x(t), z(t), uk),

x(tk) = xk.
(A.1)In the following, we are interested only in the values x(tk+δ) and z(tk) of this solution. Letus denote them by Xk(xk) and Zk(xk), where the 
onstant 
ontrol values uk are a

ountedfor by the index k. As some of the states 
an be measured, let us also introdu
e themeasurement fun
tion

hk(xk) := Hxxk +HzZk(xk)157



158 An Extended Kalman Filter Variantwith 
onstant matri
es Hx and Hz. For the distillation model with temperature mea-surements we have set Hx = 0, and 
hosen Hz su
h that it just extra
ts the measuredtemperatures from the algebrai
 state ve
tor.The undisturbed system development {yk, xk}∞k=0 with an initial value x0 under a given
ontrol sequen
e {uk}∞k=0 
an then be des
ribed by the equations
xk+1 = Xk(xk), for k = 0, 1, . . . ,
yk = hk(xk).

(A.2)Sto
hasti
 FormulationThe ne
essity to estimate the system state arises be
ause the real system does not 
oin
idewith the model. To a

ount for this, we model the dis
rete time system as a sto
hasti
system, and we also assume that the measurements are distorted by noise. Let us thereforeregard the dis
rete time sto
hasti
 system and measurement model
xk+1 = Xk(xk) + wk,
yk = hk(xk) + vk.

(A.3)The state disturban
e and measurement noise sequen
es {wk}∞k=0 and {vk}∞k=0 are assumedto be independent and identi
ally distributed, both with zero mean and known (positivede�nite) 
ovarian
e matri
es
Σw := E {wkw

T
k } and Σv := E {vkvTk }.The notation E {·} denotes the expe
tation values. From the real system behaviour at asampling time k, only the measurement sequen
e {yi}ki=0 is available. Additional knowledgeexists in form of state bounds that require that

xLB ≤ xi ≤ xUB for i = 0, . . . , k.The problem is to infer the system state xk from this given information.The Idea of Kalman FilteringThe Extended Kalman Filter (EKF) for nonlinear systems pro
eeds in prin
iple as thelinear Kalman �lter [Kal60, Son90℄, but is based on subsequent linearizations of the sys-tem model at the best available estimate. The idea of the Kalman �lter is to 
ompareea
h measurement with the predi
tion of the model, and to 
orre
t the estimated state
x̂ a

ording to the deviation. The weight of past measurement information is kept in aweighting matrix P .A.2 The EKF Type AlgorithmGiven a 
urrent estimate x̂k ∈ R

nx , a nonsingular square weighting matrix Pk (of the samedimension R
nx×nx as Σw) and a measurement yk ∈ R

ny at time k, the re
ursive algorithm
omputes the matrix Pk+1 and the ve
tor x̂k+1 as follows:



A.2 The EKF Type Algorithm 1591. Compute h := hk(x̂k) and H := ∂hk(x̂k)
∂x̂k

.2. Compute a QR de
omposition
(

Pk

Σ
− 1

2
v H

)

=: Q̂R̂ (A.4)with R̂ upper triangular and of full rank (note that this is always possible as Pk isnonsingular). Obtain a 
orre
ted di�erential state value
x′ := x̂k − R̂−1Q̂T

(

0

Σ
− 1

2
v (h− yk)

)

. (A.5)3. To avoid a violation of upper and lower bounds (that may make the DAE solutionimpossible), solve
min
x

‖R̂(x− x′)‖22 subje
t to xLB ≤ x ≤ xUB.Denote the solution by x̃. On
e the a
tive set and x̃ are known, de�ne a matrix Q1 =
(e1, e2, . . . , ena) 
onsisting of na unit ve
tors ei 
orresponding to the na 
omponentsof the a
tive set, so that the equivalent problem

min
x

‖R̂(x− x′)‖22 subje
t to QT
1 (x− x̃) = 0, (A.6)
an be formulated (whi
h has the solution x̃ itself). Denote by Q2 the orthonor-mal 
omplement to Q1, so that (Q1|Q2) is an orthonormal (permutation) matrix.Perform another QR fa
torization R̂Q2 =: Q′R′ to yield the invertible matrix

R′ ∈ R
(nx−a)×(nx−a). This is the only step that is additional to a standard EKFs
heme, and it 
an be justi�ed heuristi
ally. If no bounds are a
tive, x̃ = x′ and

R′ = R̂.4. Compute x̂k+1 := Xk(x̃) and G := ∂Xk(x̃)
∂x̃

.5. Compute a 
omplete QR de
omposition
(

R′

−Σ
− 1

2
w GQ2

)

=:
(

Q̄ Q̃
)

(

R̄
0

)with R̄ non-singular.6. Compute
Pk+1 := Q̃T

(

0

Σ
− 1

2
w

)

.Note that our algorithm produ
es predi
tive estimates x̂k+1 with knowledge of the k-thmeasurement yk (and the 
ontrol value uk) only.



160 An Extended Kalman Filter VariantDerivative GenerationThe fun
tion Xk(xk) and its derivative ∂Xk

∂xk

an e�
iently be 
omputed by a DAE solverusing the prin
iple of internal numeri
al di�erentiation (IND) (
f. Se
. 6.3). We use theDAE solver DAESOL [Bau00℄. The 
omputation of hk(xk) = Hxxk+HzZk(xk) requires thedetermination of 
onsistent algebrai
 variables Zk(xk) that satisfy g(xk, Zk(xk), uk) = 0.This is a
hieved in our implementation by a (damped) Newton's method whi
h 
ausesvery little 
omputational e�ort 
ompared to the DAE solution. By the impli
it fun
tiontheorem, the derivative ∂hk

∂xk

an be evaluated to be
∂hk
∂xk

= Hx +Hz

(

∂g

∂z

)−1
∂g

∂x
.A.3 Heuristi
 MotivationThe idea behind the EKF algorithm is based on dynami
 programming arguments. Let usde�ne a fun
tion

F (x, x̄) :=







Pk(x− x̂k)

Σ
− 1

2
v (hk(x)− yk)

Σ
− 1

2
w (x̄−Xk(x))





that represents the 
osts on stage k, given a past state estimate x̂k and a weighting matrix
Pk. The idea is to approximately summarize the optimal value

min
x

‖F (x, x̄)‖22 subje
t to xLB ≤ x ≤ xUB, (A.7)that depends on the state x̄, in a quadrati
 fun
tion
‖Pk+1(x̄−x̂k+1)‖22 + 
onst .To obtain this approximation, we will linearize the system, as only then it is possible tosummarize the optimal stage 
osts in a quadrati
 fun
tion (using the dis
rete time Kalman�lter idea).The linearization of problem (A.7) does not only 
on
ern the fun
tion F , as usualin EKF algorithms, but also the 
onstraints, whi
h have to be 
onverted into appropriateequality 
onstraints to make the problem truly linear. The pro
edure of the previous se
tion
an be regarded as a dovetailing of the problem linearization and the linear Kalman �lteralgorithm.We linearize the problem during the solution pro
edure, as des
ribed in the previousse
tion: let us linearize hk(x) at the point x̂k to yield the approximation h+H(x−x̂k) (step1), then let us 
hoose a point x̃ (the out
ome of the QP solution, steps 2 and 3) at whi
h



A.3 Heuristi
 Motivation 161we linearize Xk(x) to yield the linearization x̂k+1+G(x− x̃) = x̂k+1+G(x̂k− x̃)+G(x− x̂k)(step 4). We 
an therefore approximate F (x, x̄) by the linear fun
tion
f̃ + (F̃x|F̃x̄)

(

x− x̂k
x̄− x̂k+1

)

=







0

Σ
− 1

2
v (h− yk)

−Σ
− 1

2
w G(x̂k − x̃)






+







Pk 0

Σ
− 1

2
v H 0

−Σ
− 1

2
w G Σ

− 1
2

w







(

x− x̂k
x̄− x̂k+1

)

.Fixing also the a
tive set we transform the inequality 
onstraints into equalities
QT

1 (x− x̃) = 0,so that the linearization of problem (A.7) 
an be written as
min
x

∥

∥

∥

∥

f̃ + (F̃x|F̃x̄)

(

x− x̂k
x̄− x̂k+1

)∥

∥

∥

∥

2

2

subje
t to QT
1 (x− x̃) = 0,or, equivalently, as an un
onstrained problem, where we dire
tly substitute x = x̃ + Q2y(using the orthonormal 
omplement Q2 of Q1):

min
y

∥

∥

∥

∥

f̄ + (F̃xQ2|F̃x̄)

(

y
x̄−x̂k+1

)∥

∥

∥

∥

2

2

, (A.8)with
f̄ := f̃ + F̃x(x̃− x̂k) =





0

Σ
− 1

2
v (h− yk)

0



 +





Pk

Σ
− 1

2
v H
0



 (x̃− x̂k). (A.9)Our EKF type algorithm 
omputes a QR fa
torization of (F̃xQ2|F̃x̄), as
(F̃xQ2|F̃x̄) =







PkQ2 0

Σ
− 1

2
v HQ2 0

−Σ
− 1

2
w GQ2 Σ

− 1
2

w






=

(

Q̂ 0
0 I

)

(

R̂Q2 0

−Σ
− 1

2
w GQ2 Σ

− 1
2

w

)

=

(

Q̂ 0
0 I

)(

Q′ 0
0 I

)

(

R′ 0

−Σ
− 1

2
w GQ2 Σ

− 1
2

w

)

=

(

Q̂ 0
0 I

)(

Q′ 0
0 I

)

(Q̄|Q̃)
(

R̄ R′′

0 Pk+1

)with R′′ := Q̄T

(

0

Σ
− 1

2
w

). The linear problem (A.8) is therefore equivalent to:
min
y

∥

∥

∥

∥

(

Q̄T

Q̃T

)(

Q′T 0
0 I

)(

Q̂T 0
0 I

)

f̄ +

(

R̄ R′′

0 Pk+1

)(

y
x̄−x̂k+1

)∥

∥

∥

∥

2

2

.



162 An Extended Kalman Filter VariantThe optimal solution of this linearized problem 
an be summarized as
‖Pk+1(x̄−x̂k+1)‖22.if

Q̃T

(

Q′T 0
0 I

)(

Q̂T 0
0 I

)

f̄ = 0.To see that this is indeed the 
ase, note that
(

Q̂T 0
0 I

)

f̄ =

(

R̂(x̃− x′)
0

)due to (A.4), (A.5) and (A.9), and that
Q′T R̂(x̃− x′) = R′−T

(R̂Q2)
T R̂(x̃− x′)must be zero, be
ause y = 0 is solution of the following optimization problem, that isequivalent to (A.6) with x = x̃+Q2y:

min
y

‖R̂(x̃− x′) + R̂Q2y‖22.Note that at the solution y = 0 the gradient of the obje
tive with respe
t to y is
2(R̂Q2)

T R̂(x̃− x′), whi
h is zero due to the ne
essary optimality 
onditions.



Appendix BDetails of the Distillation Model
Physi
al Property Fun
tionsMolar Volume V m(X, T )The molar volume V m(x, T ) of the liquid tray 
ontent is 
al
ulated as a linear 
ombinationof the molar volumes of the undiluted 
omponents, i.e.,

V m(X, T ) := XV m
1 (T ) + (1−X)V m

2 (T ).with V m
k (T ) 
al
ulated a

ording to

V m
k (T ) :=

1

ak
expbk

(1 + exp(1−T/ck)
(dk)).The molar volume 
oe�
ients ak, bk, ck, dk b are given in Table B.1.Partial Pressures P s

k (T )The partial pressures P s
k (T ) of the undiluted 
omponents are determined by the Antoineequation
P s
k (T ) := exp

(

Ak −
Bk

T + Ck

)

k = 1, 2.The employed Antoine 
oe�
ients are given in Table B.2.Component Molar volume 
oe�
ients
k ak [kmol l−1℄ bk ck [K℄ dk1 (Methanol) 2.288 0.2685 512.4 0.24532 (n-Propanol) 1.235 0.27136 536.4 0.2400Table B.1: The molar volume 
oe�
ients163



164 Details of the Distillation ModelComponent Antoine 
oe�
ients
k Ak Bk [K℄ Ck [K℄1 (Methanol) 23.48 3626.6 -34.292 (n-Propanol) 22.437 3166.4 -80.15Table B.2: The Antoine 
oe�
ientsEnthalpy 
oe�
ients

k h1,k [K−1℄ h2,k [K−2℄ h3,k [K−3℄ T c
k [K℄ P c

k [Pa℄ Ωk1 18.31 1.713 10−2 6.399 10−5 512.6 8.096 106 0.5572 31.92 4.49 10−2 9.663 10−5 536.7 5.166 106 0.612Table B.3: The enthalpy 
oe�
ientsThe Enthalpies hL(X, T ) and hV (Y, T, P )The vapour and liquid stream enthalpies hL(X, T ) and hV (Y, T, P ) are given by
hL(X, T ) := XhL1 (T ) + (1−X)hL2 (T )and

hV (Y, T, P ) := Y hV1 (T, P ) + (1− Y )hV2 (T, P ).The pure liquid enthalpies hLk (T ) are determined a

ording to
hLk (T ) := C

{

h1,k(T − T0) + h2,k(T − T0)
2 + h3,k(T − T0)

3
}with T0 = 273.15 K and C = 4.186 J mol−1, and the pure vapour enthalpies hVk (T, P )a

ording to

hVk (T, P ) := hLk (T ) + RT c
k

√

1− P
P c
k

(

T
T c
k

)−3

{

a− b T
T c
k
+ c
(

T
T c
k

)7

+ Ωk

(

d− e T
T c
k
+ f

(

T
T c
k

)7
)}with R = 8.3147 J mol−1 K−1, a = 6.09648, b = 1.28862, c = 1.016, d = 15.6875, e =

13.4721, and f = 2.615.The employed 
oe�
ients are given in Table B.3.Derivation of the Fran
is Weir FormulaThe Fran
is weir formula that was introdu
ed in Eq. (7.15), gives a relationship betweenthe volumetri
 �owrate Lvol and the volume holdup nv of an idealized tray by
Lvol =W (nv − nref)

3
2 ,
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� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

?y
� w - ?

h6Figure B.1: Cross se
tion of the liquid �ow out of a weir.where the �ow 
onstant W and the referen
e volume nref are 
onstant. For a derivation,let us regard the gravity �ow over a horizontal weir of width w with verti
al walls, wherethe water level is at height h over the lower edge of the weir, as depi
ted in Figure B.1.The liquid level h 
an be determined from the ex
ess volume on the tray, if its ground area
A is known:

h =
nv − nref

A
.Introdu
ing a 
oordinate y that starts at the liquid surfa
e and measures the depth, we
an determine the (horizontal) water velo
ity v(y) due to gravity by Bernoulli's equation

1

2
ρv2 = ρgy,where ρ is the mass density and g the gravity 
onstant. Note that v(y) = √

2gy is inde-pendent of the liquid's density ρ. The overall out�ow rate Lvol 
an now be determined byan integration over y from the top level (y = 0) down to the weir's upper edge (y = h):
Lvol =

∫ h

0
v(y)wdy = w

√
2g
∫ h

0
y

1
2dy = w

√
2g 2

3
h

3
2

= w
√
2g 2

3
A− 3

2

(

nv − nref
) 3

2 =: W
(

nv − nref
) 3

2 .The real values of the �ow width w depend on the tray geometry (see e.g. Lo
kett [Lo
86℄).However, sin
e we know that the geometry of the bubble 
ap trays in the pilot plantdistillation 
olumn is di�erent from ideal trays, we use the Fran
is weir formula as aheuristi
 s
heme only, and estimate the two parameters W and nref by using dynami
experimental data.





Appendix CProof of Theorem 3.4In this appendix we will give a proof of Theorem 3.4 from Se
. 3.2. A similar proof of thetheorem 
an be found in [GVJ90, Theorem 3.3.4 and Corollary 3.3.1 (2)℄.To prove the theorem, let us subdivide the weakly a
tive 
onstraints Hw.act into those
omponents Hw.act,+ with δµw.act,+
∗ > 0 and those Hw.act,0 with δµw.act,0

∗ = 0 in the solutionof QP (3.7), i.e., we write
Hw.act(t, w) =:

(

Hw.act,+

Hw.act,0

)

(t, w).Let us introdu
e the fun
tion
Ḡ(t, w) :=





G
Hs.act

Hw.act,+



 (t, w).We will see that this is the fun
tion of a
tive 
onstraints for all P (t) on t ∈ (0, ǫ), andfurthermore, that all these 
onstraints are strongly a
tive on (0, ǫ). Let us therefore 
onsiderthe family of equality 
onstrained problems
min

w ∈ R
nw
F (t, w) subje
t to Ḡ(t, w) = 0,with Lagrangian fun
tion L̄(t, w, λ̄) := F (t, w) − λ̄T Ḡ(t, w). The system of ne
essaryoptimality 
onditions 3.3 for these problems 
an be stated as

∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) =

(

∇wL̄(t, w∗(t), λ̄∗(t))
−Ḡ(w∗(t))

)

= 0. (C.1)A tentative total di�erentiation of these 
onditions with respe
t to t yields
∂

∂t
∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) + ∇2

(w,λ̄)L̄(t, w∗(t), λ̄∗(t))
∂

∂t

(

w∗(t)
λ̄∗(t)

)

= 0.167



168 Proof of Theorem 3.4The matrix
∇2
(w,λ̄)L̄(t, w∗(t), λ̄∗(t)) =

(

∇2
w L̄(t, w∗(t), λ̄∗(t)) −∇wḠ(t, w

∗(t))
−∇wḠ(t, w

∗(t))T 0

)is the Karush-Kuhn-Tu
ker (KKT) matrix of the nonlinear problem. For t = 0 it isinvertible as 
an be proven with the help of Lemma 3.2. To apply the lemma, we set
A := ∇2

w L̄(0, w∗(0), λ̄∗(0)) and B := −∇wḠ(0, w
∗(0))T , and note that ∇wḠ

T has full rankdue to the regularity of w∗(0), and that A = ∇2
w L̄ = ∇2

wL be
ause the multipliers of theweakly a
tive and ina
tive 
onstraints are zero. Matrix A is positive de�nite on the nullspa
e NB of B = ∇wḠ
T , be
ause NB is a subspa
e of the null spa
e N s of the linearizedstrongly a
tive 
onstraints ∇wG̃

sT , and A is positive de�nite on N s due to the su�
ient
onditions 3.3.By the impli
it fun
tion theorem, the invertibility of the KKT matrix at t = 0 ensuresthat there exists for a su�
iently small ǫ > 0 a 
urve v̄ : (−ǫ, ǫ) → R
nw×R

nḠ , t 7→ (

w∗(t)
λ̄∗(t)

)of points satisfying 
ondition (C.1), with 
ontinuous derivative
∂

∂t

(

w∗(t)
λ̄∗(t)

)

= −
(

∇2
(w,λ̄)L̄(t, w∗(t), λ̄∗(t))

)−1 ∂

∂t
∇(w,λ̄)L̄(t, w∗(t), λ̄∗(t)). (C.2)Let us enlarge this 
urve v̄ in a straightforward way to yield a 
urve ṽ : (−ǫ, ǫ) → R

nw ×
R

nG × R
nH ,

t 7→

















w∗

λ∗








µ∗

























=

















w∗

λ∗

µ∗s.act

µ∗w.act,+

µ∗w.act,0

µ∗inact

















(t) :=

















w∗(t)


λ̄∗(t)





0
0

















.

By 
omparing the ne
essary optimality 
onditions 3.3 for the quadrati
 programming prob-lem (3.7) with Eq. (C.2) for t = 0 it 
an be veri�ed that
∂

∂t

















w∗

λ∗

µ∗s.act

µ∗w.act,+

µ∗w.act,0

µ∗inact

















(0) =
∂

∂t

















w∗


λ̄∗





0
0

















(0) =

















δw∗

δλ∗
δµs.act

∗

δµw.act,+
∗

0
0

















.

We will show that the restri
tion of this 
urve to the interval t ∈ [0, ǫ) is the desired 
urve
v of stri
tly optimal KKT points of the 
orresponding problems P (t). For this aim weshow that the points w∗(t), t ∈ [0, ǫ), are feasible and that the multipliers µ∗(t) remainnon-negative for t ∈ [0, ǫ).



169First, by 
ontinuity of the fun
tion H inact it is 
lear that
H inact(t, w∗(t)) > 0, ∀t ∈ [0, ǫ)if ǫ is 
hosen su�
iently small. The total derivative of the �zero� part Hw.act,0 of the weaklya
tive 
onstraints with respe
t to t is the ve
tor

D :=
d

dt
Hw.act,0(0, w∗(0)) =

∂Hw.act,0

∂t
+
(

∇wH
w.act,0

)T
δw∗ > 0,whose 
omponents are positive due to the stri
t 
omplementarity assumption for the solu-tion of the quadrati
 programming problem (3.7). Therefore,

Hw.act,0(t, w∗(t)) = Dt+O(t2) ≥ 0, ∀t ∈ [0, ǫ),if ǫ is 
hosen su�
iently small. Taking into a

ount that all other 
onstraints are 
ontainedin the ve
tor Ḡ, and exploiting the fa
t that Ḡ(w∗(t)) = 0 along the 
urve, we 
an 
on
ludethat w∗(t) are feasible points for all t ∈ [0, ǫ).Conversely, let us 
he
k that the multipliers µ∗(t) remain non-negative for t ∈ [0, ǫ).From 
ontinuity we 
an 
on
lude that µ∗s.act > 0, t ∈ [0, ǫ), and from δµw.act,+
∗ > 0 we
on
lude that

µ∗w.act,+ = δµw.act,+
∗ t+O(t2) ≥ 0, ∀t ∈ [0, ǫ).The multipliers µ∗w.act,0 and µ∗inact are identi
al to zero on the 
urve. Therefore, the points

(w∗(t), λ∗(t), µ∗(t)) are KKT points for t ∈ [0, ǫ).Furthermore, we 
an ensure by 
ontinuity of the �rst and se
ond order partialderivatives ∇w,λ,µL(t, w∗(t), λ∗(t), µ∗(t)) and ∇2
w,λ,µL(t, w∗(t), λ∗(t), µ∗(t)) that the tworemaining 
onditions of Theorem 3.3 (regularity and positive de�niteness on the lin-earized strongly a
tive 
onstraints), are satis�ed at all points on the 
urve v, by
hoosing ǫ suitably small. Note that the set Ḡ of strongly a
tive 
onstraints on the
urve (w∗(t), λ∗(t), µ∗(t)), t ∈ (0, ǫ), 
omprises always the set G̃s of strongly a
tive
onstraints at the point (w∗(0), λ∗(0), µ∗(0)). As the Hessian is positive de�nite on the nullspa
e of the linearized 
onstraints G̃s, it is also positive de�nite on the null spa
e of thelinearized strongly a
tive 
onstraints at a point (w∗(t), λ∗(t), µ∗(t)), whi
h is a subspa
e.





Appendix DProof of Theorem 5.3We will prove Theorem 5.3 in two steps: �rst it is shown that the assumptions of The-orem 5.1 are met and that the iterates therefore 
onverge towards a KKT point y∗, andse
ondly it is shown that this point also satis�es the su�
ient 
onditions of optimality asstated in Theorem 3.3.Using the inversion formula (5.17)
J(y)−1 = C1(y)Ar(y)

−1C1(y)
T + C2(y)from Lemma 5.2 and the bounds (5.20a), (5.20b), and (5.20
), a bound on the norm of theinverse of J−1 on the domain D 
an be established:

∥

∥J(y1)
−1
∥

∥ ≤ βC1βAβC1 + βC2 = β <∞, ∀ y1 ∈ D.From 
ontinuity of J(y), J(y)−1 is 
ontinuous on D. Using the de�nition (5.7) of J andthe full form of ∂R
∂y

as shown in Eq. (5.6), we 
an 
on
lude with assumption (5.20e) that
∥

∥

∥

∥

J(y2)−
∂R

∂y
(y2)

∥

∥

∥

∥

=

∥

∥

∥

∥

A(y2)−
∂2L

∂(q, s)2
(y2)

∥

∥

∥

∥

≤ κ

β
, ∀ y2 ∈ D,and therefore that the �rst 
ondition (5.13a) of Theorem 5.1 is satis�ed:

∥

∥

∥

∥

J(y1)
−1

(

J(y2)−
∂R

∂y
(y2)

)∥

∥

∥

∥

≤ κ < 1, ∀ y1, y2 ∈ D.Assumption (5.20d) ensures that 
ondition (5.13b) of Theorem 5.1 is also satis�ed:
∥

∥J(y1)
−1 (J(y2)− J(y3))

∥

∥ ≤ ω‖y2 − y3‖, ∀ y1, y2, y3 ∈ D.This allows to apply Theorem 5.1 to 
on
lude that the iterates 
onverge towards a point
y∗ ∈ D0 ⊂ D whi
h satis�es R(y∗) = 0.To prove that this point y∗ is not only a regular KKT point, but also satis�es thesu�
ient 
onditions of optimality a

ording to Theorem 3.3, it su�
es to show that the171



172 Proof of Theorem 5.3Hessian matrix ∇2
(q,s)L(q∗, s∗, λ∗) is positive de�nite on the null spa
e of the linearized
onstraints ∇(q,s)G(q

∗, s∗). For this s
ope �rst note that the null spa
e of the linearized
onstraints is spanned by the matrix
(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

,and therefore it only needs to be shown that the redu
ed exa
t Hessian
Are(y

∗) :=
(

I −∂g
∂q

T (∂g
∂s

)−T
)







∂2L
∂q2

∂2L
∂q∂s

T

∂2L
∂q∂s

∂2L
∂s2







(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

is positive de�nite. To show this, let us introdu
e the homotopy Aα : [0, 1] → R
(nq×nq)

Aα := (1− α)Ar(y
∗) + αAre(y

∗),and note that
∥

∥

∥

∥

∥

(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)∥

∥

∥

∥

∥

≤ ‖C1‖ ≤ βC1 ,so that
‖Aα −Ar‖ =

(

I −∂g
∂q

T (∂g
∂s

)−T
)

α
(

∂2L
∂(q,s)2

− A
)

(

I

−
(

∂g
∂s

)−1 ∂g
∂q

)

≤ βC1 α
κ

βC1βAβC1 + βC2

βC1 ≤
ακ

βA
.

Aα is invertible for all α ∈ [0, 1], as its inverse 
an be written
A−1

α =
(

Ar − (Ar − ArA
−1
r Aα)

)−1
=
(

I− (I− A−1
r Aα)

)−1
A−1

rand
‖I−A−1

r Aα‖ = ‖A−1
r (Ar − Aα)‖

≤ ‖A−1
r ‖‖Ar − Aα‖

≤ βA
ακ

βA
= ακ ≤ κ < 1.As A0 = Ar is positive de�nite and Aα remains invertible for all α ∈ [0, 1], none of theeigenvalues of Aα 
an be
ome negative on the way from α = 0 to α = 1, so that inparti
ular A1 = Are is positive de�nite.



Appendix EThe Re
ursive Condensing Te
hniqueFor the �rst step of the 
ondensing approa
h that was introdu
ed in Se
. 6.5, some matrixprodu
ts and sums have to be 
omputed that involve the blo
k sparse matri
es B11, B12,
B21, B22, A11, A12, and A22, as de�ned in Se
. 6.5. We will show how the sparsity 
an beexploited to perform these 
omputations e�
iently.The matrix M := −B−1

11 B12 and the ve
tor m := −B−1
11 b1 
an be 
al
ulated as follows.Computing

X0|0 := I, Xi+1|0 := XiXi|0, i = 0, . . . , N − 1,and for j = 0, . . . , N − 1

Yj+1|j := Yj, Yi+1|j := XiYi|j, i = j + 1, . . . , N − 1,as well as m0 := 0, mi+1 := Ximi − ci, i = 0, . . . , N − 1, the matrix M and the ve
tor
m 
an be written as

M :=



















X1|0 Y1|0
X2|0 Y2|0 Y2|1
X3|0 Y3|0 Y3|1 Y3|2... ... ... . . . . . .
XN |0 YN |0 YN |1 YN |2 · · · YN |N−1

0 0 0 0 0 I



















and m :=



















m1

m2

m3...
mN

0



















.

The 
ondensed Hessian matrix Ã := MTA11M +MTA12 + AT
12M + A22 of the 
ondensedQP 
an be e�
iently 
omputed if the stru
ture of A and M is exploited. Computing

Ãss :=
∑N

i=0X
T
i|0QiXi|0,

Ãs,j := XT
j|0S

T
j +

∑N
k=j+1X

T
k|0QkYk|j, for j = 0, . . . , N,

Ãi,i := Ri +
∑N

k=i+1 Y
T
k|iQkYk|i, for i = 0, . . . , N,

Ãi,j := Y T
j|iS

T
j +

∑N
k=j+1 Y

T
k|iQkYk|j, for 0 ≤ i < j ≤ N,

Ã′
i,N−1 := Ãi,N−1 + Ãi,N , for i = 0, . . . , N − 2,173



174 The Re
ursive Condensing Te
hniqueand Ã′
s,N−1 := Ãs,N−1+ Ãs,N as well as Ã′

N−1,N−1 := ÃN−1,N−1+ ÃN−1,N + ÃT
N−1,N + ÃN,N ,we 
an de�ne

Ã :=















Ãss Ãs,0 · · · Ãs,N−2 Ã′
s,N−1

ÃT
s,0 Ã0,0 · · · Ã0,N−2 Ã′

0,N−1... . . . ...
ÃT

s,N−2 ÃT
0,N−2 · · · ÃN−2,N−2 Ã′

N−2,N−1

Ã′ T

s,N−1 Ã′ T

0,N−1 · · · Ã′ T

N−2,N−1 Ã′
N−1,N−1















.

Similarly, the 
ondensed obje
tive gradient ã = MTA11m + AT
12m + MTa1 + a2 =

(ãs, ã0, . . . , ãN−2, ã
′
N−1) 
an be 
al
ulated with

ãTs := gx0
T +

N
∑

i=1

(

mT
i Qi + gxi

T
)

Xi|0,and for j = 0, . . . , N

ãTj := gqj
T
+mT

j S
T
j +

N
∑

k=j+1

(

mT
i Qi + gxi

T
)

QkYk|j,and
ã′N−1 := ãN−1 + ãN .The two remaining 
ondensed 
onstraint fun
tions

b̃+ B̃∆w2 :=

(

b̃s
b̃r

)

+

(

B̃s

B̃r

)

∆w2,

c̃+ C̃∆w2 :=











c̃r
c̃0...̃
cN











+











C̃r

C̃0...̃
CN











∆w2,are built a

ording to
b̃s := sx0 − x0, B̃s := −I,

b̃r := re +Re,xmN , B̃r := Re,x
(

XN |0|YN |0| . . . |YN |N−1

)

+ (0| . . . |0|Re,q),

c̃r := ri +Ri,xmN , C̃r := Ri,x
(

XN |0|YN |0| . . . |YN |N−1

)

+ (0| . . . |0|Ri,q),

c̃i = hi +Hx
i mi, C̃i :=

(

Hx
i Xi|0|Hx

i Yi|0| . . . |Hx
i Yi|i−1|Hq

i |0| . . .
)

,

c̃N = hN +Hx
NmN ,

C̃N :=
(

Hx
NXN |0|Hx

NYN |0| . . . |Hx
NYN |N−2|Hx

NYN |N−1 +Hq
N

)

.
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