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Abstract

We investigate the longitudinal dynamics of semiconductor lasers using a model
which couples a linear hyperbolic system of partial differential equations with
ordinary differential equations. We prove the global existence and uniqueness
of solutions using the theory of strongly continuous semigroups. Subsequently,
we analyse the long-time behavior of the solutions in two steps. First, we find
attracting invariant manifolds of low dimension benefitting from the fact that the
system is singularly perturbed, i. e., the optical and the electronic variables op-
erate on different time-scales. The flow on these manifolds can be approximated
by the so-called mode approximations. The dimension of these mode approxi-
mations depends on the number of critical eigenvalues of the linear hyperbolic
operator. Next, we perform a detailed numerical and analytic bifurcation analy-
sis for the two most common constellations. Starting from known results for the
single-mode approximation, we investigate the two-mode approximation in the
special case of a rapidly rotating phase difference between the two optical com-
ponents. In this case, the first-order averaged model unveils the mechanisms for
various phenomena observed in simulations of the complete system. Moreover, it
predicts the existence of a more complex spatio-temporal behavior. In the scope
of the averaged model, this is a bursting regime.

Keywords:
semiconductor lasers, infinite-dimensional dynamical systems, invariant mani-
folds, bifurcation analysis



Zusammenfassung

Die vorliegende Arbeit untersucht die longitudinale Dynamik von Halbleiterla-
sern anhand eines Modells, in dem ein lineares hyperbolisches System parti-
eller Differentialgleichungen mit gewöhnlichen Differentialgleichungen gekoppelt
ist. Zunächst wird mit Hilfe der Theorie stark stetiger Halbgruppen die globa-
le Existenz und Eindeutigkeit von Lösungen für das konkrete System gezeigt.
Die anschließende Untersuchung des Langzeitverhaltens der Lösungen erfolgt
in zwei Schritten. Zuerst wird ausgenutzt, dass Ladungsträger und optisches
Feld sich auf unterschiedlichen Zeitskalen bewegen, um mit singulärer Störungs-
theorie invariante attrahierende Mannigfaltigkeiten niedriger Dimension zu fin-
den. Der Fluss auf diesen Mannigfaltigkeiten kann näherungsweise durch Moden-
Approximationen beschrieben werden. Deren Dimension und konkrete Gestalt
ist von der Lage des Spektrums des linearen hyperbolischen Operators abhängig.
Die zwei häufigsten Situationen werden dann einer ausführlichen numerischen
und analytischen Bifurkationsanalyse unterzogen. Ausgehend von bekannten Re-
sultaten für die Ein-Moden-Approximation, wird die Zwei-Moden-Approximation
in dem speziellen Fall untersucht, dass die Phasendifferenz zwischen den beiden
optischen Komponenten sehr schnell rotiert, so dass sie sich in erster Ordnung
herausmittelt. Mit dem vereinfachten Modell können die Mechanismen verschie-
dener Phänomene, die bei der numerischen Simulation des kompletten Modells
beobachtet wurden, erklärt werden. Darüber hinaus lässt sich die Existenz eines
anderen stabilen Regimes voraussagen, das sich im gemittelten Modell als

”
bur-

sting“ darstellt.

Sclagwörter:
Halbleiterlaser, unendlichdimensionale dynamische Systeme, invariante Mannig-
faltigkeiten, Verzweigungsanalyse
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Chapter 1

Introduction

The dynamics of semiconductor lasers can be described by the interaction of two
physical variables: the complex electromagnetic field E, roughly speaking the
light amplitude, and the inversion (carrier density) n within the active zone of
the device. These variables are governed by a system of equations which fits for
most models of moderate complexity into the form

Ė = H(n)E

ṅ = εf(n)− g(n)[E,E]
(1.1)

if we neglect noise, and if the magnitude of E is moderate. System (1.1) is
nonlinear due to the n-dependence of the linear operator H . A characteristic
feature of semiconductor lasers is the large ratio between the average lifetime of
carriers and the average lifetime of photons expressed in the small parameter ε
in (1.1). Another remarkable property of (1.1) is its symmetry with respect to
rotation E → Eeiϕ for ϕ ∈ [0, 2π) since g is a hermitian form. This implies the
existence of rotating-wave solutions (E = E0e

iωt, n = const) which are referred
to as stationary lasing states or on-states. The properties of these stationary
states are obviously important from the point of view of applications: their sta-
bility, domain of attraction, bifurcation scenarios, whether they are excitable,
etc. Another object of interest are modulated waves, i. e., quasi-periodic solu-
tions, branching from the stationary states. Lasers exhibiting self-pulsations are
potentially useful for, e. g., clock-recovery in optical communication networks
[10].

The particular form of the coefficients H , f , and g depends on the complexity
level of the model. In the introduction, we start with a short survey about some
laser models and integrate the model considered in our paper into this hierarchy.
Then, we give an overview about the contents of this paper.
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Laser Modeling

In the simplest case, one may consider the laser as a solitary point-like light source
with a given (n-dependent) frequency. This reduces E to a complex number and
H to a complex function of one real variable n. The resulting system of ordinary
differential equations is typically referred to as amplitude equations and exhibits
weakly damped oscillations. Hence, it is highly susceptible to external injection,
feedback or other perturbations. E. g., the addition of a saturable absorber (a
second component for n) leads to self-sustained oscillations and excitable behavior
[18]. System (1.1) subject to optical injection is studied in [49] and exhibits very
complex dynamical behavior including chaos.

A popular subject of research are laser diodes subject to delayed optical feedback.
The most popular models, e. g., the Lang-Kobayashi equations [29], still consider
the laser as a point-like light source but H(n) is now a delay operator, and E is
a continuous space dependent function. Then, system (1.1) is a delay-differential
equation and has an infinite-dimensional phase space. The long-time behavior
of this kind of systems can become arbitrarily complex [31]. However, the bifur-
cations of the stationary states and the appearance and properties of modulated
waves have been investigated extensively numerically [41], and analytically in,
e. g., [19], [44].

The model considered in our paper resolves the laser spatially in longitudinal
direction. In this case, the amplitude E is in L2 , and the linear operator H is a
hyperbolic differential operator describing the wave propagation, its amplification
and the internal refraction. We investigate an extension of the model proposed
in [6] by taking the nonlinear material gain dispersion into account [9]. On the
other hand, we treat the carrier density n as a piecewise spatially homogeneous
quantity such that n ∈ Rm , and g(n) is a hermitian form. This treatment is
particularly well adapted to multi-section lasers which are composed of several
sections with different parameters. Then, system (1.1) is a linear system of partial
differential equations for E which is nonlinearly coupled to a system of ordinary
differential equations for n. This system is not essentially more complicated than
the delay-differential equations considered by the external feedback models from
the functional analytic point of view. Indeed, multi-section lasers are often con-
structed in a way such that one section acts as a laser and the other sections give a
finely tuned delayed feedback. However, the longitudinally resolved model allows
us to study how the geometry of the device influences the dominant eigenvalues
and corresponding eigenspaces (modes) of H and how these modes interact or
compete.

Non-technical Overview

In chapter 2, we introduce the solution concepts for the hyperbolic system (1.1)
and prove the global existence and uniqueness of solutions. Uniqueness and exis-
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tence results for short time intervals are covered by the theory of C0 semigroups.
An a-priori estimate ensures the global existence of solutions. We permit dis-
continuous inhomogeneous boundary conditions (optical inputs which are L∞ in
time) only in this chapter.

In chapter 3, we reduce the infinite-dimensional system (1.1) to a low-dimensional
system of ordinary differential equations. To this end, we treat (1.1) as a singu-
larly perturbed system by exploiting the smallness of ε. The spectral properties
of H allow for the application of theorems on the existence of invariant manifolds
in the spirit of [20]. Truncation of the higher order terms in the expansion of
the center manifold leads to the mode approximations. The dimension of these
mode approximations may depend on the number of critical modes of H (i. e.,
the number of components of E we have to take into account). Each particular
reduced model is valid only within a finite region of the phase space and the
parameter space.

In chapter 4, we investigate the previously obtained mode approximations in the
two simplest and most generic situations. Firstly, we revisit the two-dimensional
single mode model introduced and studied numerically in [45]. It resembles the
amplitude equations but the coefficient functions may be modified due to the
geometry of the dominating mode. We consider the single mode system as a
O(
√
ε)-perturbation of a conservative oscillator, and obtain conditions implying

that the stable periodic solutions (self-pulsations) found in [45] are uniformly
bounded for small ε. Moreover, we provide an analytic formula for the location
of the self-pulsation which is a good approximation for small ε.

Secondly, we analyse the situation where two modes of H are critical but have
very different frequencies. In this case, the phase difference between the two
components of E rotates very fast. Hence, we can average the system with
respect to this rotation simplifying the system to a three-dimensional system.
This system contains two invariant planes governed by the single-mode dynamics.
Moreover it is singularly perturbed since the drift between these invariant planes
is slow. We use this time-scale difference and the knowledge about the single-
mode equations to reduce the model further and give a concise overview over
the mechanisms behind various phenomena observed in numerical simulations of
system (1.1). In particular, we locate the stability boundaries of the single-mode
self-pulsations, and detect a regime of more complex spatio-temporal behavior. In
the scope of the averaged model, this is a bursting regime. This kind of solutions
is observed frequently in the dynamics of neurons (see [24] for a classification of
these phenomena).
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Chapter 2

Traveling Wave Model with
Nonlinear Gain Dispersion —
Existence Theory

A well known model describing the longitudinal effects in narrow laser diodes
is the traveling wave model, a hyperbolic system of partial differential equations
equations and of ordinary differential equations [6], [30], [43]. This model has
been extended by adding polarization equations to include the nonlinear gain
dispersion effects [2], [6], [9], [40]. In this chapter, we introduce the corresponding
system of differential equations and prove global existence and uniqueness of mild
and classical solutions for the initial-boundary value problem. This extends the
results for the traveling wave equations of [21], [26]. In this chapter, we treat also
inhomogeneous boundary conditions whereas the other chapters will restrict to
the autonomous system.

2.1 The Initial-Boundary Value Problem

Let ψ(t, z) ∈ C 2 describe the complex amplitude of the optical field split into a
forward and a backward traveling wave. Let p(t, z) ∈ C 2 be the corresponding
nonlinear polarization (see appendix A). Both quantities depend on time and the
one-dimensional spatial variable z ∈ [0, L] (the longitudinal direction within the
laser). The vector n(t) ∈ Rm represents the spatially averaged carrier densities
within the active sections of the laser (see Fig. 2.1). The initial-boundary value
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Figure 2.1: Typical geometric configuration of the domain in a laser with 3 sections.
Two of them are active (A = {1, 3})

problem reads as follows:

∂tψ(t, z) = σ∂zψ(t, z) + β(n(t), z)ψ(t, z)− iκ(z)σcψ(t, z) + ρ(n(t), z)p(t, z)

(2.1)

∂tp(t, z) = (iΩr(n(t), z)− Γ(z)) · p(t, z) + Γ(z)ψ(t, z) (2.2)

d

dt
nk(t) = Ik −

nk(t)

τk
− P

lk
(Gk(nk(t))− ρk(nk(t)))

∫
Sk

ψ(t, z)∗ψ(t, z)dz

−P
lk
ρk(nk(t)) Re

(∫
Sk

ψ(t, z)∗p(t, z)dz

)
for k ∈ Sa (2.3)

accompanied by the inhomogeneous boundary conditions

ψ1(t, 0) = r0ψ2(t, 0) + α(t), ψ2(t, L) = rLψ1(t, L) (2.4)

and the initial conditions

ψ(0, z) = ψ0(z), p(0, z) = p0(z), n(0) = n0. (2.5)

The Hermitian transpose of a C
2-vector ψ is denoted by ψ∗ in (2.3). We will

define the appropriate function spaces and discuss the possible solution concepts
in section 2.2. The quantities and coefficients appearing above have the following
sense (see also table A.1):

• L is the length of the laser. The laser is subdivided intom sections Sk having
length lk and starting points zk for k = 1 . . .m. We scale the system such
that l1 = 1 and define zm+1 = L. Thus, Sk = [zk, zk+1]. All coefficients
are supposed to be spatially constant in each section, i. e. if z ∈ Sk,
κ(z) = κk, Γ(z) = Γk, β(n, z) = βk(nk), ρ(n, z) = ρk(nk). Moreover, we
define a subset of active sections A ⊆ {1, . . .m} and consider (2.3) and the
dynamic variable nk only for active sections (k ∈ A). Let ma := #A be
the number of active sections.

• σ =

(
−1 0
0 1

)
, σc =

(
0 1
1 0

)
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• β(n, z) = βk(nk) ∈ C for z ∈ Sk. The model we use throughout the work
reads

βk(ν) = dk + (1 + iαH,k)Gk(ν)− ρk(ν) (2.6)

where dk ∈ C , αH,k ∈ R. For k ∈ A, Gk : (n,∞) → R is a smooth strictly
monotone increasing function satisfying Gk(1) = 0, G′

k(1) > 0. Its limits
are limν↘nGk(ν) = −∞, limν→∞Gk(ν) = ∞ where n ≤ 0. Typical models
for Gk in active sections are

Gk(ν) = gk log ν, (n = 0) or (2.7)

Gk(ν) = gk · (ν − 1), (n = −∞). (2.8)

Gk is identically zero for k /∈ A. These sections are called passive.

• ρ(n, z) = ρk(nk), Ωr(n, z) = Ωr,k(nk) for z ∈ Sk, k ∈ {1 . . .m}. For k /∈ A,
we suppose ρk = 0. Moreover, we suppose ρk,Ωr,k : (n,∞) → R to be
smooth and Lipschitz continuous. Let |ρk(ν)| be bounded for ν < 1, and
ρk(1) = 0.

The variables and coefficients, their physical meanings, and their typical ranges
are shown in Table A.1. The traveling wave model described in [6], [8], [10], [21],
[38], [48] can be obtained formally by “adiabatic elimination” of p(t, z), i. e. by
replacing ∂tp(t, z) by 0 in (2.2).

For convenience, we introduce the hermitian form

gk(ν)

[(
ψ
p

)
,

(
ϕ
q

)]
=

1

lk

∫
Sk

(ψ∗(z), p∗(z))
(

Gk(ν)−ρk(ν) 1
2
ρk(ν)

1
2
ρk(ν) 0

)(ϕ(z)
q(z)

)
dz (2.9)

and the notations

‖ψ‖2
k =

∫
Sk

ψ∗(z)ψ(z)dz

(ψ, ϕ)k =

∫
Sk

ψ∗(z)ϕ(z)dz

fk(ν, (ψ, p)) = Ik −
ν

τk
− Pgk(ν)

[(
ψ
p

)
,

(
ψ
p

)]
(2.10)

for ν ∈ [n,∞) and ψ, p ∈ L
2([0, L]; C 2). Using these notations, (2.3) reads

d

dt
nk = fk(nk, (ψ, p)) for k ∈ A. (2.11)
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2.2 Existence and Uniqueness of Classical and

Mild Solutions

In this section, we treat the inhomogeneous initial-boundary value problem (2.1)-
(2.4) as an autonomous nonlinear evolution system

d

dt
u(t) = Au(t) + g(u(t)), u(0) = u0 (2.12)

where u(t) is an element of a Hilbert space V , A is a generator of a C0 semigroup
S(t), and g : U ⊆ V → V is locally Lipschitz continuous in the open set U ⊆ V .
The inhomogeneity is included in (2.12) as a component of u. We will define V , A
and g appropriately and prove the global existence of mild and classical solutions
of (2.12).

Notation

The Hilbert space V is defined as

V := L
2([0, L]; C 4)× R

ma × L
2
η ([0,∞); C ) (2.13)

where L2
η ([0,∞); C ) is the space of weighted square integrable functions. The

scalar product of L2
η ([0,∞); C ) is defined by

(v, w)η := Re

∫ ∞

0

v̄(x) · w(x)(1 + x2)ηdx.

We choose η < −1/2 such that L∞([0,∞); C ) is continuously embedded in
L2

η ([0,∞); C ). The complex plane is treated as two-dimensional real plane in
the definition of the vector space V such that the standard L

2 scalar product
(·, ·)V of V is differentiable. The corresponding components of v ∈ V are denoted
by

v = (ψ1, ψ2, p1, p2, n, a)
T .

The spatial variable in ψ and p is denoted by z ∈ [0, L] whereas the spatial
variable in a is denoted by x ∈ [0,∞). The Hilbert space H 1

η ([0,∞); C ) equipped
with the scalar product

(v, w)1,η := (v, w)η + (∂xv, ∂xw)η

is densely and continuously embedded into L2
η ([0,∞); C ). Moreover, its elements

are continuous [42]. Consequently, the Hilbert spaces

W := H
1([0, L]; C 2)× L

2([0, L]; C 2)× R
ma × H

1
η ([0,∞); C )

WBC := {(ψ, p, n, a) ∈W : ψ1(0) = r0ψ2(0) + a(0), ψ2(L) = rLψ1(L)}

8



are densely and continuously embedded in V . The linear functionals ψ1(0) −
r0ψ2(0)− a(0) and ψ2(L)− rLψ1(L) are continuous from W → R. We define the
linear operator A : WBC → V by

A



ψ1

ψ2

p
n
a


 :=



−∂zψ1

∂zψ2

0
0
∂xa


 . (2.14)

The definition of A and WBC treat the inhomogeneity α in the boundary condi-
tions as the boundary value at 0 of the variable a. We define the open set U ⊆ V
by

U := {(ψ, p, n, a) ∈ V : nk > n for k ∈ A},
and the nonlinear function g : U → V by

g(ψ, p, n, a) =



β(n)ψ − iκσcψ + ρ(n)p

(iΩr(n)− Γ)p+ Γψ(
fk(nk, (ψ, p))

)
k∈A

0


 . (2.15)

The function g is continuously differentiable to any order with respect to all
arguments and its Frechet derivative is bounded in any closed bounded ball B ⊂
U [21].

According to the theory of C0 semigroups we have two solution concepts [35]:

Definition 2.1 Let T > 0. A solution u : [0, T ] → V is a classical solution of
(2.12) if u(t) ∈ WBC ∩ U for all t ∈ [0, T ], u ∈ C1([0, T ];V ), u(0) = u0, and
equation (2.12) is valid in V for all t ∈ (0, T ).

The inhomogeneous initial-boundary value problem (2.1)-(2.5) and the autono-
mous evolution system (2.12) are equivalent in the following sense: Suppose
α ∈ H

1([0, T ); C ) in (2.4).

Let u = (ψ, p, n, a) be a classical solution of (2.12). Then, u satisfies (2.1)-(2.2),
and (2.5) in L

2 and (2.3), (2.4) for each t ∈ [0, T ] if and only if a0|[0,T ] = α.

On the other hand, assume that (ψ, p, n) satisfies (2.1)-(2.2), and (2.5) in L
2 and

(2.3), (2.4) for each t ∈ [0, T ]. Then, we can choose a a0 ∈ H 1
η ([0,∞); C ) such

that a0|[0,T ] = α and obtain that u(t) = (ψ(t), p(t), n(t), a0(t + ·)) is a classical
solution of (2.12) in [0, T ].

Definition 2.2 Let T > 0, A a generator of a C0 semigroup S(t) of bounded
operators in V . A solution u : [0, T ] → V is a mild solution of (2.12) if u(t) ∈ U
for all t ∈ [0, T ], and u(t) satisfies the variation of constants formula in V

u(t) = S(t)u0 +

∫ t

0

S(t− s)g(u(s))ds. (2.16)

9



We prove in Lemma 2.3 that A generates a C0 semigroup in V . Mild solutions of
(2.12) are a reasonable generalization of the classical solution concept of (2.1)-
(2.4) to boundary conditions including discontinuous inputs α ∈ L

2
η ([0,∞); C ).

Global Existence and Uniqueness of Solutions for the Truncated Prob-
lem

In order to prove uniqueness and global existence of solutions of (2.12), we apply
the theory of strongly continuous semigroups (see [35]).

Lemma 2.3 A : WBC ⊂ V → V generates a C0 semigroup S(t) of bounded
operators in V .

Proof:
We specify S(t) explicitly. Denote the components of S(t)(ψ0

1, ψ
0
2, p

0, n0, a0) by
(ψ1(t, z), ψ2(t, z), p(t, z), n(t), a(t, x)) and let t ≤ L.

ψ1(t, z) =

{
ψ0

1(z − t) for z > t
r0ψ

0
2(t− z) + a0(t− z) for z ≤ t

ψ2(t, z) =

{
ψ0

2(z + t) for z < L− t
rLψ

0
1(2L− t− z) for z ≥ L− t

p(t, z) = 0

n(t) = 0

a(t, x) = a0(x+ t).

For t > L we define inductively S(t)u = S(L)S(t− L)u. This procedure defines
a semigroup of bounded operators in V properly since

‖ψ1(t, ·)‖2 + ‖ψ2(t, ·)‖2 + ‖a(t, ·)‖2 ≤ 2(1 + t2)−η
(
‖ψ0

1‖+ ‖ψ0
2‖+ ‖a0‖

)
for t ≤ L. The strong continuity of S is a direct consequence of the continuity in
the mean in L

2 . It remains to be shown that S is generated by A.

Let u = (ψ0
1, ψ

0
2, p

0, n0, a0) satisfy limt→0
1
t
(S(t)u − u) ∈ V , define ϕt(z) :=

1
t
(ψ1(t, z) − ψ0

1(z)), ϕ0 = limt→0 ϕt, and δ > 0 small. Firstly, we prove that
u ∈ WBC. ϕt coincides with the difference quotient 1

t
(ψ0

1(z − t) − ψ0
1(z)) for

t < δ in the interval [δ, L]. Thus, ∂zψ
0
1 ∈ L2([δ, L]; C ) exists. Furthermore,

ϕt(·+ t) → ϕ0 in L
2([0, L−δ]; C ). Since ϕt(·+ t) = 1

t
(ψ0

1(z)−ψ0
1(z+ t)), ∂zψ

0
1 ex-

ists also in L2([0, L−δ]; C ). Consequently ψ0
1 ∈ H 1([0, L]; C ). The same argument

holds for ψ0
2 ∈ H 1([0, L]; C ) and for a0 ∈ H 1

η ([0,∞); C ).

In order to verify that u satisfies the boundary conditions we write

ϕt(z) =



z ∈ [t, L] : −1

t

∫ z

z−t
∂zψ

0
1(ζ)dζ

z ∈ [0, t] : 1
t

(
r0
∫ t−z

0
∂zψ

0
2(ζ) + ∂za

0(ζ)dζ −
∫ z

0
∂zψ

0
1(ζ)dζ

)
+

+1
t
(r0ψ

0
2(0) + a0(0)− ψ0

1(0))

(2.17)
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Consequently, the limit ϕ0 is in L2([0, L]; C ) if and only if r0ψ
0
2(0)+a0(0)−ψ0

1(0) =
0. The same argument using 1

t
(ψ2(t, z)−ψ0

2(z)) leads to the boundary condition
rLψ

0
1(L)− ψ0

2(L) = 0.

Finally, we prove that 1
t
(S(t)u−u) = Au for any u ∈WBC. Using the notation ϕt

introduced above, we have
∫ t

0
|ϕt(z)|2dz → 0 due to (2.17). Hence, ϕt → −∂zψ

0
1

on [0, L]. Again, we can use the same arguments to obtain the limits ∂zψ
0
2 and

∂xa
0. �

The operators S(t) have a uniform upper bound

‖S(t)‖ ≤ Ceγt (2.18)

within finite intervals [0, T ]. In order to apply the results of the C0 semigroup
theory [35], we truncate the nonlinearity g smoothly: For any bounded ballB ⊂ U
which is closed w. r. t. V , we choose gB : V → V such that gB(u) = g(u) for all
u ∈ B, gB is continuously differentiable and globally Lipschitz continuous. This
is possible because the Frechet derivative of g is bounded in B and the scalar
product in V is differentiable with respect to its arguments. We call

d

dt
u(t) = Au(t) + gB(u(t)), u(0) = u0 (2.19)

the truncated problem (2.12). The following Lemma 2.4 is a consequence of the
results in [35].

Lemma 2.4 (global existence for the truncated problem)
The truncated problem (2.19) has a unique global mild solution u(t) for any
u0 ∈ V . If u0 ∈WBC, u(t) is a classical solution of (2.19).

Corollary 2.5 (local existence) Let u0 ∈ U . There exists a tloc > 0 such
that the evolution problem (2.12) has a unique mild solution u(t) on the interval
[0, tloc]. If u0 ∈WBC ∩ U , u(t) is a classical solution.

A-priori Estimates — Existence of Semiflow

In order to state the result of Lemma 2.4 for (2.12), we need the following a-priori
estimate for the solutions of the truncated problem (2.19).

Lemma 2.6 Let T > 0, u0 ∈ WBC ∩ U . If n > −∞, suppose Ikτk > n for all
k ∈ A. There exists a closed bounded ball B such that B ⊂ U and the solution
u(t) of the B-truncated problem (2.19) starting at u0 stays in B for all t ∈ [0, T ].

Proof: Let u0 = (ψ0, p0, n0, a0) ∈ WBC ∩ U . We choose nlow > n such that
nlow < n0

k and Gk(nlow)− ρk(nlow) < 0 for all k ∈ A and define the function

h(t) :=
P

2
‖ψ(t)‖2 +

∑
k∈A

lk(nk(t)− nlow).
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Let t1 > 0 such that the solution u(t) of (2.12) exists on [0, t1] and nk(t) ≥ nlow.
Because of the structure of the nonlinearity g, u(t) is classical in [0, t1]. Hence,
h(t) is differentiable and

d

dt
h(t) ≤ J −

∑
k∈A

lkτ
−1
k nk +

P

2

m∑
k=1

Re dk‖ψ‖2
k

≤ J − τ̃−1nlow − γh(t),

due to (2.1), (2.3) and the supposition ρk = 0 for k /∈ A where

γ := min

{
τ−1
k ,−P

2
Re dj : k ∈ A, j ≤ m

}
> 0

J :=
∑
k∈A

lkIk + sup
{
|r0z + a0(x)|2 − |z|2 : z ∈ C , x ∈ [0, T ]

}
<∞

τ̃−1 :=
∑
k∈A

lkτ
−1
k .

Consequently, h(t) ≤ max{h(0), γ−1J − γ−1τ̃−1nlow}. Since h(0) = P
2
‖ψ0‖2 +∑

k∈A lkn
0
k − Lnlow, we obtain the estimate

0 ≤ h(t) ≤M − ξ · nlow (2.20)

where

M := max

{
γ−1J,

P

2
‖ψ0‖2 +

∑
k∈A

lkn
0
k

}

ξ := min
{
γ−1τ̃−1, L

}
.

Since nk(t) ≥ nlow in [0, t1], the estimate (2.20) for h(t) and the differential
equation (2.2) for p lead to bounds for ψ, p and n in [0, t1]:

‖ψ(t)‖2 ≤ ψ2
max := 2P−1(M − ξ · nlow)

‖p(t)‖ ≤ ‖p0‖+
√

2P−1(M − ξnlow) (2.21)

nk ∈ [nlow, nlow + l−1
k M − l−1

k ξnlow].

The bounds (2.21) are valid for arbitrary nlow ∈ (n,min {1, n0
k : k ∈ A}) if nk(t) ≥

nlow for all k ∈ A and t ∈ [0, t1]. Due to the properties of Gk and ρk (see section
2.1) and the supposition Ikτk > n, we find some nlow (sufficiently close to n) such
that

Ik >
nlow

τk
+
Pρk(nlow)

lk

(√
2P−1(M − ξnlow) + ‖p0‖

)
S+

+
Gk(nlow)− ρk(nlow)

lk
PS2

(2.22)
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holds for all S ≥ 0 and k ∈ A. By choosing nlow according to (2.22), we ensure
that d

dt
nk(t) > 0 if nk(t) = nlow. Consequently, nk(t) can never cross nlow and

the bounds (2.21) are valid on the whole interval [0, T ] for nlow meeting (2.22).
Therefore, we can choose the ball B such that the bounds (2.21) are met by all
u ∈ B. �

Moreover, a solution u(t) starting at u0 ∈ WBC ∩ U and staying in a bounded
closed ball B ⊂ U in [0, T ] is a classical solution in the whole interval [0, T ]
because of the structure of the nonlinearity g.

The bounds (2.21) do not depend on the complete WBC-norm of u0 but on its
V -norm and the L∞-norm of a0|[0,T ]. Hence, we can state the global existence
theorem also for mild solutions:

Theorem 2.7 (global existence and uniqueness)
Let T > 0, u0 = (ψ0, p0, n0, a0) ∈ U and ‖a0|[0,T ]‖∞ < ∞. If n > −∞, let
Ikτk > n for all k ∈ A. There exists a unique mild solution u(t) of (2.12) in
[0, T ]. Furthermore, if u0 ∈WBC ∩ U , u(t) is a classical solution of (2.12).

Corollary 2.8 (global boundedness) Let u0 = (ψ0, p0, n0, a0) ∈ U and as-
sume ‖a0‖∞ <∞. There exists a constant C such that ‖u(t)‖V ≤ C.

Corollary 2.9 (continuous dependence on initial values) Let T > 0, u0
j =

(ψj, pj , nj, aj) ∈ U , ‖aj |[0,T ]‖∞ < ∞ for j = 1, 2. There exists a constant
C(‖u0

1‖V , ‖u0
2‖V , ‖a1|[0,T ]‖∞, ‖a2|[0,T ]‖∞, T ) such that ‖u1(t)−u2(t)‖V ≤ C · ‖u0

1−
u0

2‖V .

Therefore, the nonlinear equation defines a semiflow S(t; u0) for t > 0. S is even
continuously differentiable with respect to its second argument in the following
sense:

Corollary 2.10 (continuous differentiability of the semiflow)
Let T > 0, u0 = (ψ0, p0, n0, a0) ∈ U , ‖a0|[0,T ]‖∞ <∞. Let

MC,ε :=
{
(ψ, p, n, a) ∈ V : ‖a|[0,T ]‖∞ ≤ C, ‖(ψ, p, n, a)‖V < ε

}
.

Then,
S(t; u0 + h0)− S(t; u0) = SL(t, 0)h0 + oC(‖h0‖V )

for all h0 ∈MC,ε for arbitrary C and sufficiently small ε. SL(t, s) is the evolution
operator of the linear evolution equation in V

d

dt
v(t) = Av(t) +

∂

∂u
g(u(t))v(t), v(s) = v0.

This follows from the C0 semigroup theory [35] since we can choose a common
ball B for all u0 + h0, h0 ∈MC,ε. This result extends to Ck smoothness (k > 1)
since the nonlinearity g is C∞ with respect to all arguments.
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The continuous dependence of the solution on all parameters within a bounded
parameter region is also a direct consequence of the C0 semigroup theory. In
order to obtain a uniform a-priori estimate, we impose additional restrictions on
the parameters: 1− |r0| > c > 0, Ikτk − n > c > 0, Re dk < −c < 0, gk > c > 0
for k ∈ A and a uniform constant c.
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Chapter 3

Model reduction — Mode
Approximations

After showing that the initial-boundary-value problem has a smooth global semi-
flow S(t; u0), we focus on the long-time behavior of S. The goal of this chapter
is to construct low-dimensional ODE models approximating S(t; u0) for large t.
These mode approximations are often used to describe the long-time behavior of
S [6], [8], [10], [45]. A heuristic justification for mode approximations was given
in [10] for the traveling wave equations without gain dispersion by exploiting the
property that the variables ψ(t, z) and n(t) operate on different time scales. We
show how these models approximate the semiflow on invariant manifolds of the
system of partial differential equations using singular perturbation theory. The
basic idea for this reduction was outlined already in [46] assuming a-priori that
the phase space is finite-dimensional and the spectrum of H has a gap.

3.1 Introduction of the Singular Perturbation

Parameter

This and the following chapter treat the autonomous system (2.1)-(2.3). Its
boundary conditions are

ψ1(t, 0) = r0ψ2(t, 0), ψ2(t, L) = rLψ1(t, L) where r0rL 6= 0. (3.1)

The condition on the facette reflectivities r0rL 6= 0 converts the semiflow S(t, ·)
locally into a flow, i. e., ‖S(t, ·)‖ exists for t ≤ 0 until ‖S(t; ·)‖ goes to infinity.
However, small reflectivities are possible and physically relevant.

We reformulate (2.1)-(2.3) to exploit its particular structure. The space depen-
dent subsystem is linear in ψ and p:

∂t

(
ψ
p

)
= H(n)

(
ψ
p

)
. (3.2)
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The linear operator

H(n) =

(
σ∂z + β(n)− iκσc ρ(n)

Γ (iΩr(n)− Γ)

)
(3.3)

acts from

Y := {(ψ, p) ∈ H
1([0, L]; C 2)× L

2([0, L]; C 2) : ψ satisfying (3.1)}
into X = L2([0, L]; C 4). H(n) generates a C0 semigroup Tn(t) acting in X. Its
coefficients κ, Γ and (for each n ∈ Rma ) β(n), Ωr(n) and ρ(n) are linear operators
in L2([0, L]; C 2) defined by the corresponding coefficients in (2.1), (2.2). The maps
β, ρ,Ωr : Rma → L(L2([0, L]; C 2)) are smooth.

We observe that Ik and τ−1
k in (2.10) are approximately two orders of magnitude

smaller than 1 (see. Table A.1). Hence, we can introduce a small parameter ε
such that (2.11) reads:

d

dt
nk = fk (nk, x) = εFk(nk)− Pgk(nk)[x, x] (3.4)

for x ∈ X where the coefficients in Fk are of order 1. Although ε is not directly
accessible, we treat it as a parameter and consider the limit ε→ 0 while keeping
Fk fixed. The parameter ε is a singular perturbation parameter for system (3.2),
(3.4): For ε = 0, the set E = {(x, n) ∈ X × R

ma : x = 0} consists of equilibria of
(3.2), (3.4). E is referred to as the slow manifold. Simultaneously, E is invariant
for ε > 0 and the slow motion on E is defined by d

dt
nk = εFk(nk). The slow

variable is n.

Since the semiflow S(t; (x, n)) induced by system (3.2), (3.4) is smooth with
respect to (x, n), we can linearize system (3.2), (3.4) for ε = 0 at each point
(0, n) ∈ E :

∂tx = H(n)x

d

dt
N = 0.

(3.5)

Hence, the spectral properties of the operator H(n) determine whether x decays
or grows exponentially near (0, n) ∈ E .

In section 3.2, we investigate H(n) and study its spectrum and the growth prop-
erties of its C0 semigroup Tn(t). In section 3.3, we focus on the dynamics near
compact subsets of E where a part of the spectrum of H(n) is on the imaginary
axis (near critical n). We apply the results of singular perturbation theory [20] to
find an exponentially attracting invariant manifold in the environment of these
subsets.

Along with (3.2), (3.4), it is convenient to introduce ε as a dummy variable and
consider the extended system where (3.2), (3.4) are augmented by the equation

d

dt
ε = 0. (3.6)
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3.2 Spectral Properties of H(n)

At first, we consider the fast subsystem (3.2) treating n as a parameter. We
drop the corresponding argument in this section. As (3.2) is linear, we have to
investigate the spectrum of H and how it is related to the C0 semigroup T (t)
generated by H . See Figure 3.1 for a sample computation.

Define the set of complex “resonance frequencies”

W = {c ∈ C : c = iΩr,k − Γk for at least one k ∈ {1 . . .m}} ⊂ C

and the complexified “gain curve” χ : C \ W → L(L2([0, L]; C 2)) (see appendix
A for explanation and [9], [40] for details). For each λ ∈ C \W, χ(λ) is a linear
operator defined by

χ(λ) =
ρΓ

λ− iΩr + Γ
∈ L(L2([0, L]; C 2)).

For λ ∈ C \W, the following relation follows from (3.3): λ is in the resolvent set
of H if and only if the boundary value problem

(σ∂z + β − iκσc + χ(λ)− λ)ϕ = 0 with b. c. (3.1) (3.7)

has only the trivial solution ϕ = 0 in H 1([0, L]; C 2). The transfer matrix corre-
sponding to (3.7) is

Tk(z, λ) =
e−γkz

2γk

(
γk + µk + e2γkz(γk − µk) iκk (1− e2γkz)

−iκk (1− e2γkz) γk − µk + e2γkz(γk + µk)

)
(3.8)

for z ∈ Sk where µk = λ − χk(λ) − βk and γk =
√
µ2

k + κ2
k (see [6], [21], [37] for

details). Hence, the function

h(λ) =
(
rL −1

)
T (L, 0;λ)

(
r0
1

)
=
(
rL −1

) 1∏
k=m

Tk(lk;λ)

(
r0
1

)
(3.9)

defined in C \W is the characteristic function ofH : Its roots are the eigenvalues of
H and {λ ∈ C \W : h(λ) 6= 0} is the resolvent set. Consequently, all λ ∈ C \W are
either eigenvalues or resolvent points of H , i. e., there is no essential (continuous
or residual) spectrum in C \W. We note that ReW � −1.

The following lemma provides an upper bound for the real parts of the eigen-
values. Moreover, we derive a result about the spatial shape of an eigenvector
corresponding to an eigenvalue of H with nonnegative real part.

Lemma 3.1 Let λ ∈ C \ W be in the point spectrum of H. Then, λ is geo-
metrically simple. Denote its corresponding scaled eigenvector by (ψ, p). Then,
‖ψ‖ ≥ 1/2, and the following estimates hold:

Reλ ≤ Λu := max
k=1...m

Γk · (Reβk + 4ρk)

Γk − 4ρk
. (3.10)
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Figure 3.1: Spectrum of H: (a) global view and (b) magnified view. The black circles in
(a) are the boundaries of the balls defined in (3.15), and (3.16). All other eigenvalues
of H are situated within the strip [Λl,Λu]. The shadowing around iΩr − Γ indicates a
sequence of eigenvalues (not actually computed) accumulating to iΩr−Γ. The magnified
view (b) shows a typical situation for κ > 0. Here two eigenvalues of H(n) are close to
the imaginary axis.

If Reλ ≥ 0,

max
k=1...m

lkgk

[(
ψ
p

)
,

(
ψ
p

)]
+ Re dk‖ψ‖2

k ≥ 0. (3.11)

Proof: Let (ψ, p) be an eigenvector associated to λ. Then, ψ is a multiple of
T (z, 0;λ) ( r0

1 ), and p = Γψ/(λ − iΩr + Γ). Thus, λ is geometrically simple and
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‖ψ‖ ≥ ‖p(z)‖ (hence, ‖ψ‖ ≥ 1/2). Partial integration of the eigenvalue equation
(3.7) and its complex conjugate equation yields:

2 Reλ ≤ 2 max
k=1...m

(Reβk + Reχk(λ)) . (3.12)

For Reλ > −Γk/2, we get Reχk(λ) ≤ 4ρk + 4ρk/Γk Reλ. For realistic parameter
values, we have Λu > −Γk/2 and 4ρk/Γk < 1 for all k implying (3.10). Estimate
(3.11) follows immediately from (3.12), the definition (2.9) of the hermitian form
gk, and p = Γψ/(λ− iΩr + Γ). �

Next, we show how to split the spectrum of H into two parts for realistic param-
eter values and in particular for small r0, rL (for possible ranges of parameters
see Table A.1). Figure 3.1 visualizes this splitting.

Lemma 3.2 Let us introduce δ1 = |r0|2/(|r0|+ |κ1|), δm = |rL|2/(|rL|+ |κm|) and
%k =

√
ρkΓk. We denote by S the strip {λ ∈ C : Reλ ∈ [Λl,Λu]} ⊂ C where Λl

is the minimum of the quantities

min
{
(2lk)

−1 log [δk/3] ,−|κk|
}
− |κk|+ Reβk − %k for k = 1 and m, (3.13)

min

{
−m|κk|,

− log(m+ 1)

2lk
− |κk|

}
+ Re βk − %k for k = 2 . . .m− 1. (3.14)

Then, λ ∈ C \W is in the resolvent set of H if λ /∈ S and

λ /∈ BR0

(
β1 −

i

2
κ1(r

−1
0 + r0)

)
∪BRL

(
βm −

i

2
κm(r−1

L + rL)

)
(3.15)

λ /∈ B%k
(iΩr,k − Γk) (3.16)

where R0 = %1 + 1 and RL = %m + 1.

Proof: Relation (3.16) leads to |χk(λ)| < %k. Thus, we can rewrite the condition
that λ is less than (3.13)–(3.15) as conditions for µk:

Reµk < min
{
(2lk)

−1 log [δk/3]− |κk|,−2|κk|
}

for k = 1 and m, (3.17)

Reµk < min{−m|κk|,− (2lk)
−1 log(m+ 1)− |κk|} for k = 2 . . .m− 1

(3.18)

µ1 /∈ B1

(
− i

2
κ1(r

−1
0 + r0)

)
(3.19)

µm /∈ B1

(
− i

2
κm(r−1

L + rL)

)
. (3.20)

We have to prove that h(λ) 6= 0 for λ satisfying (3.17)–(3.20). To this purpose,
we define the functions r1, rm : C → C implicitly by the linear equations

(1,−r1(λ)) · T 1
1 (l1, λ)

(
r0
1

)
, (1,−rm(λ)) · T 1

m(lm, λ)

(
rL

1

)
. (3.21)
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Firstly, we prove that (3.17) and (3.19) lead to |r1(λ)| > 1. We choose for γk

in (3.8) that branch of the square root which has negative real part. Hence, the
function µ→

√
µ2 + κ2

1 is properly defined in C − := {ζ ∈ C : Re ζ < −2|κ1|} and
continuous. Condition (3.17) implies Re γ1 < Reµ1 + |κ1|, and |γ1 + µ1| > 3|κ1|.
From (3.21) and (3.8) we obtain that |r1(λ)| > 1 if

∣∣∣∣r0 +
iκ1

γ1 + µ1
+ e2γ1l1

[
κ2

1r0
(γ1 + µ1)2

− iκ1

γ1 + µ1

]∣∣∣∣ >∣∣∣∣−ir0κ1

γ1 + µ1

+
κ2

1

(γ1 + µ1)2
+ e2γ1l1

[
iκ1r0
γ1 + µ1

+ 1

]∣∣∣∣ . (3.22)

Estimating |κ1/(γ1 + µ1)| < 1/3, |r0| < 1, and separating the terms with e2γ1l1 ,
(3.22) follows from ∣∣∣∣r0 +

iκ1

γ1 + µ1

∣∣∣∣ > 3 ·
∣∣e2γ1l1

∣∣ . (3.23)

Condition (3.17) ensures that the right-hand-side of (3.23) is less than δ1. Then,
the function z : µ → µ +

√
µ2 + κ2

1 is properly defined in C − , maps C − into
itself and its inverse has a Lipschitz constant < 1. Therefore, (3.19) leads to
γ1 + µ1 /∈ B1

(
−iκ1r

−1
0

)
, hence, the left-hand-side of (3.23) is larger than δ1.

Consequently, (3.17) and (3.19) lead to |r1(λ)| > 1. Drawing the same conclusions
for section Sm and rL from (3.17) and (3.20), we obtain |rm(λ)| > 1.

The characteristic function h(λ) can be expressed by r1(λ) and rm(λ) as follows:

h(λ) = (rm(λ),−1)

2∏
k=m−1

Tk(lk, λ)

(
r1(λ)

1

)
= 0.

Condition (3.18) implies

|[Tk(lk, λ)]11| > m ·max {|[Tk(lk, λ)]12|, |[Tk(lk, λ)]21|, |[Tk(lk, λ)]22|}

for each k ∈ {2, . . .m − 1}. This ensures |M11| > 3 max{|M12|, |M21|, |M22|} for
the product matrix M =

∏2
k=m−1 Tk(lk, λ). Consequently, h(λ) 6= 0. �

We can omit condition (3.14) if there are less than 3 sections. If all κk = 0 for
k = {2 . . .m− 1}, we can replace (3.14) by Reλ < Reβk− %k for k = 2 . . .m− 1.

Note that the lower bound of the strip S constructed in Lemma 3.2 is logarithmic
in |r0| and |rL| instead of ∼ |r0|−1, |rL|−1 and has a moderate magnitude even for
small r0, rL. Thus, the strip S and the balls in (3.16) are separated for realistic
parameter values (see Fig. 3.1). This allows to construct spectral projections
onto H-invariant closed subspaces.

In order to simplify the notations in the next theorem we assume:

(H) The balls of (3.15) do not intersect with the balls of (3.16).
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Theorem 3.3 lists the spectral properties of H under Assumption (H) and shows
that the growth properties of T (t) are determined by the eigenvalues of the non-
selfadjoint operator H at least in the dominant H-invariant subspace.

Theorem 3.3 (Spectral properties of H)
Assume (H). There exists a X-automorphism J with the following properties:

XP = J({0} × L2([0, L]; C 2)) and XE = J(L2([0, L]; C 2) × {0}) are closed H-
invariant subspaces. HP = H|XP

is a bounded operator.

For any γP < mink=1...m Γk − %k there exists a constant MP such that TP (t) =
T (t)|XP

is bounded by

‖TP (t)‖ ≤ MP e
−γP t. (3.24)

The spectrum of HE = H|XE
is a countable set of geometrically simple eigenvalues

λj (j ∈ Z) of finite algebraic multiplicity. All but finitely many λj are algebraically
simple. Defining

ξj :=
1

L

(
m∑

k=1

βklk −
1

2
log(r0rL) + jπi

)
, (3.25)

we can number the sequence λj in a way such that

λj − ξj = O(|j|−1) for |j| → ∞, (3.26)

counting algebraically multiple eigenvalues λj repeatedly. There exists a set of
generalized eigenvectors bj = (ϕj, pj) corresponding to λj such that {J−1bj} is an
orthonormal basis of L2([0, L]; C 2)× {0}.

Proof: We introduce the parametric family of operators

Hθ =

(
σ∂z + β − iκσc θρ

θΓ (iΩr − Γ)

)

for θ ∈ [0, 1]. The domain of Hθ is Y for all θ ∈ [0, 1]. All Hθ are generators
of C0 semigroups Tθ(t) : X → X. The semigroups Tθ(t) depend continuously
on θ for bounded intervals of t. The characteristic functions hθ(λ) are defined
in C \ W and have the form (3.9) for all θ where µk = λ − θ2χk(λ) − βk in
(3.8). Moreover, we can choose the strip S and the balls in (3.15) and (3.16)
independent of θ ∈ [0, 1]. Thus, the intersection R of the resolvent sets of all Hθ

is nonempty and the resolvents (λId − Hθ)
−1 : X → X depend continuously on

θ uniformly for compact subsets R. Let γ be a closed rectifiable curve within R
around the balls B%k

(iΩr,k − Γk) (k = 1 . . .m). Define the θ-dependent spectral
projection

Pθx =
1

2πi

∮
γ

(λId−Hθ)
−1xdλ (3.27)
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splitting X into the Hθ-invariant closed subspaces

X−,θ = rgPθ (3.28)

X+,θ = kerPθ (3.29)

and set XP = X−,1 and XE = X+,1. Then, H0 is decoupled. We have:

• X−,0 = {0} × L2([0, L]; C 2) and H−,0 := H0|X−,0 = iΩr − Γ. Hence,
specH−,0 = W and H−,0 is bounded.

• X+,0 = L2([0, L]; C 2)× {0} and H+,0 := H0|X+,0 = σ∂z + β − iκ defined in
{ψ ∈ H 1([0, L]; C 2) : ψ satisfying (3.1)}. [21], [37], [38] have shown:

specH+,0 is a countable set of geometrically simple eigenvalues λ0,j of finite
algebraic multiplicity. All but finitely many λ0,j are algebraically simple.
For |j| → ∞, λ0,j−ξj = O(|j|−1) counting algebraically multiple λ0,j repeat-
edly. There exists a set of generalized eigenvectors ϕ0,j = Lej associated to
λ0,j such that L is a L2 -automorphism and {ej} is an orthonormal basis of
L2([0, L]; C 2).

Hence, all assertions of the theorem are valid at the point θ = 0 for the X-
automorphism ( L 0

0 Id ). We have to confirm that they are preserved along the path
to θ = 1.

The projections Pθ and Qθ = Id−Pθ are continuous in θ. Define a sufficiently fine
mesh {θl : l = 0 . . . lmax, θ0 = 0, θlmax = 1} on [0, 1] such that ‖Pθl

− Pθl−1
‖ < 1

for all l ∈ {1 . . . lmax}. Then, Jl = Qθl−1
+ Pθl

is an automorphism in X. The

concatenation JP =
∏1

l=lmax
Jl maps rgP0 = {0} × L2([0, L]; C 2) onto XP . HP is

a bounded operator since its spectrum is in the interior of γ. We define

Jx = JPx for x ∈ {0} × L
2([0, L]; C 2). (3.30)

Moreover, the resolvent of Hθ is a compact perturbation of the map (ψ, p) →
(0, (λ − iΩr + Γ)−1p). Thus, Pθ is a compact perturbation of ( 0 0

0 Id ), and the
X-automorphism JP is a compact perturbation of Id.

The spectrum of HP is discrete outside of W, it is located inside of γ and can
accumulate only in points of W. Consequently, the growth of TP (t) = exp(HP t)
in XP is bounded according to (3.24).

The spectrum of HE is situated within the set C: the union of the strip S and
the balls (3.15). Hence, it is a countable set of eigenvalues λj which are the roots
of h = h1 within C. Therefore, the λj have finite algebraic multiplicity. If (ϕ, p)
is an eigenvector associated to λj, then ϕ is a multiple of T (z, 0;λ) ( r0

1 ). Thus,
all eigenvalues are geometrically simple. Define

h̃(λ) = r0rLe
−2Lλ+2

Pm
k=1 βklk − 1.
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The values ξj (j ∈ Z) are the simple roots of h̃ which is π/L-periodic in Imλ.
Asymptotically, we have

hθ(λ)− h̃(λ) = O(| Imλ|−1) for | Imλ| → ∞ and λ ∈ C

uniformly for all θ ∈ [0, 1]. Hence, hθ(λ) − h0(λ) = O(| Imλ|−1) for all θ. This
leads to the one-to-one correspondence of the roots of hθ and h0 within C and the
convergence asserted in (3.26) since no root crosses the boundary of C for varying
θ and hθ is analytic in C.
Last, we define how J maps L2([0, L]; C 2) × {0} onto XE . The one-to-one cor-
respondence between the eigenvalues λ0,j and λj in C results in a one-to-one
correspondence between the sets of generalized eigenvectors {(ϕ0,j, 0)} on one
hand, and bj = (ϕj, pj) on the other hand. All λ0,j and λj with large imaginary
part are simple eigenvalues. For sufficiently large |j|, we have ϕj = T (z, 0;λ) ( r0

1 )
implying the asymptotics

‖ϕj − ϕ0,j‖ = O(| Imλj|−1) = O(|j|−1) for |j| → ∞

in the L2 -norm. Consequently,

‖bj − (ϕ0,j, 0)‖ = O(|j|−1) for |j| → ∞. (3.31)

The set {bj} is ω-linearly independent and satisfies∑
j∈Z

‖bj − (ϕ0,j, 0)‖2 <∞.

Therefore, there exists a X-automorphism JE mapping each (ϕ0,j, 0) onto bj of
the form JE = Id−K where K is a compact linear operator [27].

We define

Jx = JE(Lx1, 0) for x = (x1, 0) ∈ L
2([0, L]; C 2)× {0}. (3.32)

(3.30) and (3.32) define a linear map of Fredholm index 0 from X into X. It is
injective from {0} × L

2([0, L]; C 2) onto XP and it maps L2([0, L]; C 2)× {0} into
XE . Since JE is injective and XE ∩ XP = {0}, J is injective. Hence J is an
X-automorphism. �

Remarks

• If Assumption (H) is not valid, we choose the curve γ around the balls
B%k

(iΩr,k − Γk) (k = 1 . . .m) and the balls (3.15). This leads to the same
statements as in Theorem 3.3 but with a slightly different decomposition
X = XP ⊕ XE : There exists a decomposition L2([0, L]; C 2) = U ⊕ V
(dimV < ∞) such that the X-automorphism J maps a subspace U × {0}
onto XE and V × L2([0, L]; C 2) onto XP . Moreover, γP = mink=1...m(Γk)−
%1 − %m − 2.
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• A remark about the structure of XP and HP : Let δ > 0. There exists a
decomposition

XP = XP,f ⊕
⊕
ω∈W

Xω

where XP,f is spanned by generalized eigenvectors of HP (dimXP,f < ∞)
and the spectral radii of (H + ωId)|Xω are less than δ for each ω ∈ W.

• The number Re ξ0 is the asymptotic growth rate approached by the real
parts of the eigenvalues λ of H for Imλ→∞.

Corollary 3.4 Let γ > Re ξ0. Then, X can be decomposed into two T (t)-
invariant subspaces

X = X+ ⊕X−

where X+ is at most finite-dimensional and spanned by the generalized eigenvec-
tors associated to the eigenvalues of H in the right half-plane {λ ∈ C : Reλ ≥ γ}.
The restriction of T (t) to X− is bounded according to

‖T (t)|X−‖ ≤Mηe
ηt for t ≥ 0 (3.33)

for any η ∈
(
sup

[
Re spec

(
H|X−

)]
, γ
)

and any norm which is equivalent to the
X-norm.

Remarks

• The growth rate η does not depend on the particular norm chosen for the
inequality (3.33) (as long as it is equivalent to the X-norm) but Mη does.
We have to choose a norm such that the magnitude of εMη is small for
realistic values of the singular perturbation parameter ε. The generalized
eigenvectors bj of H (see Theorem 3.3) induce an appropriate norm in the
H-invariant subspace XE. The original L2-norm gives a constant Mη of

order
√
|r0rL|

−1
which can be very large.

• The eigenvalues of H can be computed numerically by solving the complex
equation h(λ) = 0. The eigenvalues of HE form the sequence ξj for κ = 0,
ρ = 0 (see Theorem 3.3). We obtain the the roots of the actual characteristic
function h by following along the parameter path θκ, θρ for θ ∈ [0, 1].

• The simple eigenvectors corresponding to the eigenvalues of H are usually
referred to as the (longitudinal) modes of the laser.
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3.3 Existence and Properties of the Finite-di-

mensional Center-unstable Manifold

The off-state x = 0, nk = Ikτk is an equilibrium of system (3.2), (3.4) for ε 6= 0. It
is located in E and asymptotically stable if all Ikτk are small due to the results of
section 3.2. However, we are not interested in the behavior of the semiflow S(t; ·)
in the vicinity of the off-state but near the on-states. System (3.2), (3.4) has
a rotational symmetry. That is, if (x(t), n(t)) is a solution, then (eiϕx(t), n(t))
is also a solution for every ϕ ∈ [0, 2π). Thus, we have the following class of
rotating-wave solutions:

Definition 3.5 The solution (x(t), n(t)) of (3.2), (3.4) is an on-state if n(t) =
n0 is constant in time and x(t, z) = eiωtx0(z) where x0 ∈ Y ⊂ X is referred to as
the amplitude and ω ∈ R as the frequency of the on-state.

(eiωtx0(z), n0) is an on-state if iω is an eigenvalue of H(n0), x0 is a multiple of
the corresponding scaled eigenvector (ψ, p) and if there exists a S > 0 such that

εFk(n0,k) = S2Pgk(n0,k)[(ψ, p), (ψ, p)] for all k ∈ A.

See Lemma 3.1 for the necessary spectral properties of H . Lemma 3.1 shows also
that gk(n0,k)[(ψ, p), (ψ, p)]) > 0 for at least one k. Therefore, the variation of
the parameter ε affects the on-states (eiωtx0(z), n0) only by scaling the amplitude
S = ‖x0‖. The frequency ω, the geometric shape (ψ, p) and n0 do not depend on
ε.

The scaling factor P in the carrier density equation (3.4) determines the typical
scale of ‖x0‖. By choosing P = 1, we ensure that all on-states have an amplitude
of order O(

√
ε).

Subsequently, we are interested in the dynamics near the on-states. Hence, we
may restrict our analysis to solutions (x(t), n(t)) whose amplitude ‖x‖ does not
exceed the amplitude of the on-states significantly

‖x(t)‖ ≤ C
√
ε for some fixed C and all t ≥ 0. (3.34)

That is, we focus on the dynamics of system (3.2), (3.4) near E . We should remark
that large-amplitude oscillations will not be detected due to this restriction.

We will now introduce some notation and formulate the conditions which are
necessary to apply the results of invariant manifold theory formulated in [12],
[13], [20], [47], [50].

The results of section 3.2 show that all eigenvalues of H(n) are in the left half-
plane if nk ≤ 1 for all k ∈ A. Then, Tn(t) decays in the whole space X. However,
for larger nk a finite number of eigenvalues must cross the imaginary axis. This
allows for the following considerations. Let K ⊂ Rma be a compact set with the
following properties:

(H1) K is simple, i. e., either a single point or homeomorphic to a closed ball.
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(H2) specH(n) can be split into two parts for all n ∈ K:

specH(n) = σcu(n) ∪ σs(n) where

Reσcu(n) ≥ 0

Reσs(n) < −γs

and the number q of elements of σcu(n) counted according to their algebraic
multiplicity is positive and finite. Moreover, γs > 0 is independent of n ∈ K.

Consequently, q is also independent of n ∈ K. Furthermore, (H1) and (H2) and
the results of section 3.2 imply that there exists an open neighborhood U of K
which is diffeomorphic to an open ball in Rma such that:

• specH(n) can be split into σcu(n) and σs(n) for all n ∈ U such that
Reσs(n) < −γs and Reσcu(n) > −γs.

• There exists a decomposition of X into H(n)-invariant subspaces

X = Xs(n)⊕Xcu(n)

associated to σcu(n) and σs(n) depending smoothly on n for all n ∈ U . The
complex dimension of Xcu is q.

We introduce the according spectral projections for H(n) by Pcu(n) and Ps(n).
Pcu and Ps depend smoothly on n. The spectra of the restrictions of H(n) satisfy

Re (specH(n)|Xcu) > −γs

Re
(
specH(n)|Xs

)
< −γs

for all n ∈ U . Let B(n) : C q → Xcu be a smooth basis of Xcu introducing
C

q -coordinates in Xcu.

Corollary 3.4 ensures that the semigroup Tn(t) generated by H(n) restricted to
Xs(n) has a decay rate γs which is uniform for all n ∈ U :

‖Tn(t)x‖ ≤Mse
−γst‖x‖ for all n ∈ U , x ∈ Xs(n), t ≥ 0.

We introduce coordinates x = B(n)xcu +xs decomposing X using the projections
Pcu and Ps. That is, xcu represents the critical-unstable part Pcux ∈ Xcu in the
basis B, and xs is the stable part Psx. Then, a decomposition of (3.2), (3.4) by
Pcu and Ps implies that xcu ∈ C q , xs ∈ Xs ⊂ X, and n ∈ Rma satisfy the system

d

dt
xcu = gcu(xcu, xs, n, ε) (3.35)

= Acu(n)xcu + a11(xcu, xs, n, ε)xcu + a12(xcu, xs, n, ε)xs

d

dt
xs = gs(xcu, xs, n, ε) (3.36)

= As(n)xs + a21(xcu, xs, n, ε)xcu + a22(xcu, xs, n, ε)xs

d

dt
n = f(xcu, xs, n, ε) (3.37)
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where Acu, a11 : C
q → C

q , a12 : X → C
q , a21 : C

q → X, a22 : X → X,
As : Y → X are linear operators defined by

Acu(n) = B−1HPcuB As(n) = HPs − 2γsPcu

a11(xcu, xs, n, ε) = −B−1Pcu∂nBf a12(xcu, xs, n, ε) = B−1∂nPcufPs

a21(xcu, xs, n, ε) = −Ps∂nBf a22(xcu, xs, n, ε) = −Pcu∂nPcufPs

fk(xcu, xs, n, ε) = εFk(nk)− Pgk(nk)[Bxcu + xs, Bxcu + xs] for k ∈ A.

We introduced the term −2γsPcuxs which is 0 for xs ∈ Xs artificially in (3.36).
System (3.35)–(3.37) couples an ordinary differential equation in Rma , an ordinary
differential equation in C q , and an evolution equation in X. The semiflow induced
by (3.35)–(3.37) is properly defined as long as n(t) stays in the neighborhood U
of K. It has the invariant set S = {(xcu, xs, n) ∈ C

q × X × R
ma : xs ∈ Xs(n)}

due to
d

dt
(Pcuxs) = (∂nPcuf − 2γsId) (Pcuxs) . (3.38)

and is equivalent to S(t, ·) in S. The right-hand-sides of (3.35)–(3.37) satisfy for
all n ∈ U :

gcu(0, 0, n, 0) = 0 ∂ngcu(0, 0, n, 0) = 0

gs(0, 0, n, 0) = 0 ∂ngs(0, 0, n, 0) = 0

f(0, 0, n, 0) = 0 ∂nf(0, 0, n, 0) = 0

The linearization (3.5) of S(t, ·) reads in the coordinates (xcu, xs, n, ε) as follows
(at xcu = 0, xs = 0, n ∈ U and ε = 0):

d

dt
xcu = Acu(n)xcu

d

dt
xs = As(n)xs

d

dt
n = 0.

(3.39)

The operators Acu and As are the restrictions ofH(n) onto its invariant subspaces
Xcu and Xs. Hence, the assertion (H2) about the spectrum of H ensures that
Re(specAcu(n)) ≥ 0 and the C0 semigroup generated by As(n) decays with the
rate γs in X for all n ∈ K.

Exploiting that S(t; ·) is locally a flow, we define:

Definition 3.6 A manifold M is called S-invariant relative to the bounded open
set N if for any m ∈ M ∩ N we have S(t;m) ∈ M for all t ∈ R satisfying
S(t;m) ∈ N .
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The existence theorems for normally hyperbolic invariant manifolds stated in [12],
[13], [20], [47], [50] apply to the particular situation presented in this section:

Theorem 3.7 Assume (H1), (H2). Let k > 0 be an integer number. Let U ′ be
a sufficiently small open neighborhood of K and the numbers rcu > 0, rs > 0,
ε0 > 0 be sufficiently small. Then, there exists a manifold Ccu with the following
properties:

1. Ccu can be represented as the graph of a Ck function xs = ξ(xcu, n, ε) in
D(ξ) = {(xcu, n, ε) : ‖xcu‖ < rcu, n ∈ U ′, ε ∈ [0, ε0)} .

2. Ccu is S-invariant relative to the open bounded set N = {(xcu, xs, n) :
‖xcu‖ < rcu, ‖xs‖ < rs, n ∈ U ′} if ε < ε0.

3. Let u ∈ N be such that S(t; u) ∈ N for all t ≥ 0. Then, there exists a
uc ∈ Ccu such that ‖S(t; u)− S(t; uc)‖ decays exponentially.

4. ξ(xcu, n, ε) ∈ Xs(n) ∩ Y for all (xcu, n, ε) ∈ D(ξ), the flow on Ccu is C1 in
time, and is governed by

d

dt
xcu = Acu(n)xcu + a11(xcu, ξ, n, ε)xcu + a12(xcu, ξ, n, ε)ξ

d

dt
n = f(xcu, ξ(xcu, n, ε), n, ε).

(3.40)

5. For k ≥ 3, ξ can be expanded to

ξ(xcu, n, ε) = (O(‖xcu‖2) +O(ε))xcu. (3.41)

Proof:
Invariance and Representation
The statements 1–3 are a direct consequence of the results of [12], [13] except
for the higher order k > 1 of smoothness for ξ. Indeed, the situation is much
simpler than in [12], [13] since X is a Hilbert space, and the coordinates for the
unperturbed invariant manifold are global and known explicitly.

Firstly, we append the dummy equation (3.6) to (3.35)–(3.37) and (3.39) and
extend the semiflow S(t; ·) accordingly. Let S0 be the semiflow induced by (3.39),
(3.6). Then, S(t1; ·) is a C1 small perturbation of S0(t1; ·) for any finite t1.
S0(t; ·) has the finite-dimensional normally hyperbolic invariant manifold C0 =
{(xcu, xs, n, ε) : xs = 0, n ∈ U} (see appendix B for the precise definition of
normal hyperbolicity; its conditions are satisfied due to Re specAs(n) < −γs <
Re specAcu(n) for all n ∈ U in (3.39)).

We choose an open bounded set Ñ = {(xcu, xs, n, ε) : ‖xcu‖ < rcu, ‖xs‖ < rs, n ∈
U ′ ⊆ U, |ε| < ε0} and modify the right-hand-side of (3.39), (3.6) for u /∈ Ñ such
that C0 becomes compact. We can do so smoothly since X is a Hilbert space.
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If we choose Ñ sufficiently small, the perturbation S0 → S gets sufficiently
small. According to [12] (see appendix B), C0 persists under the perturbation
S0 → S. Denote the perturbed manifold by C̃cu. We can represent C̃cu as a graph
xs = ξ(xcu, n, ε) in Ñ since it is a C1 small perturbation of C0. The same graph
ξ is also the representation of the manifold Ccu claimed in the theorem. N is the
corresponding restriction of Ñ .

Stability
Moreover, C̃cu has a center-stable manifold Ccs in a sufficiently small rs-neighbor-
hood of C̃cu (according to [12], see appendix B). Ccs is characterized as the set of
all u which stay in the neighborhood of C̃cu for all t ≥ 0. According to [13], Ccs

is decomposed into an invariant family of foliations (stable fibers) (see appendix
B). This implies statement 3.

Higher Orders of Smoothness
The only open question is the Ck smoothness of C̃cu for k ≥ 2. The unperturbed
manifold C0 is C∞. Then, we may use exactly the procedure outlined in [50] to
find the higher order derivatives of ξ inductively (since X is a Hilbert space, C̃cu is
compact and finite-dimensional, and we have a global coordinate representation).
The domain of definition for ξ shrinks for increasing k.

Flow on Ccu

Due to (3.38), we have Ps(n)xs = 0 if (xcu, xs, n, ε) ∈ Ccu, i. e., xs = ξ(xcu, n, ε)
in N . Hence, ξ(xcu, n, ε) ∈ Xs(n) for all (xcu, n, ε) ∈ D(ξ). The solutions in Ccu

have the form

(x(t), n(t)) = (B(n(t))xcu(t) + ξ(xcu(t), n(t), ε), n(t))

where xcu and n satisfy the system

d

dt
xcu = gcu(xcu, ξ(xcu, n, ε), n, ε)

= Acu(n)xcu + a11(xcu, ξ, n, ε)xcu + a12(xcu, ξ, n, ε)ξ

d

dt
n = f(xcu, ξ(xcu, n, ε), n, ε).

Since ξ ∈ C1 with respect to its arguments, d
dt
ξ(xcu(t), n(t), ε) exists and is con-

tinuous. Hence, all solutions in Ccu are classical solutions in the sense of Definition
2.1, and ξ(xcu, n, ε) ∈ Y = D(H(n)) = D(As(n)).

Expansion of ξ
The slow manifold E = {(x, n) ∈ X × R

ma : x = 0} is invariant (and still slow)
even for ε > 0. Hence, it is a subset of Ccu, i. e., ξ(0, n, ε) = 0 for all n and ε.
Since ξ ∈ C1, we can write ξ as

ξ(xcu, n, ε) = ν(xcu, n, ε)xcu (3.42)

where ν(xcu, n, ε) =
∫ 1

0
∂xcuξ(sxcu, n, ε)ds is bounded and continuous in D(ξ).

Furthermore, we obtain

Asξ + a21xcu + a22ξ = ∂xcuξ · (Acuxcu + a11xcu + a12ξ) + ∂nξf (3.43)
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since Ccu = {(xcu, xs, n) ∈ N : xs = ξ(xc, n, ε)} is invariant with respect to
S(t, ·) (note that ξ ∈ Y = D(As(n))). Assume that ξ is sufficiently smooth.
Then, we can insert (3.42) into (3.43) and differentiate with respect to xcu in
the point xcu = 0, ε = 0. We obtain As(n)ν(0, n, 0) = ν(0, n, 0)Acu(n). Hence,
ν(0, n, 0) = 0. Differentiating (3.43) twice with respect to xcu in xcu = 0, ε = 0,
we compute As(n)∂xcuν(0, n, 0) = 2∂xcuν(0, n, 0)Acu(n). Hence, ∂xcuν(0, n, 0) = 0
and we can expand

ν(xcu, n, ε) = O(‖xcu‖2) +O(ε)

ξ(xcu, n, ε) = (O(‖xcu‖2) +O(ε))xcu

if ξ is sufficiently smooth. �

Remarks

• If a solution of (3.2), (3.4) stays inN for all t ≥ 0, its long-time behavior can
be approximated by a trajectory on Ccu due to the exponential attractivity
of Ccu. Thus, it is sufficient to study the flow of the finite-dimensional
system (3.40).

• If Acu(n) has a strictly positive eigenvalue for all n ∈ U ′, one component
of xcu will increase exponentially. Hence, most trajectories of (3.40) leave
D(ξ) directly. Consequently, we choose the set K ∈ Rma typically such
that Reσcu = 0 (see condition (H2)). That means, e. g., K is generically
an isolated point n0 (the threshold carrier density) if ma = 1. Then, the
manifold Ccu is a local center manifold according to [15], [47], and U ′ is a
small neighborhood of n0. If ma = 2, K is either a piece of a curve where
one eigenvalue of H(n) is on the imaginary axis and all other eigenvalues
have negative real part, or it is an intersection point of two of these curves.

• The rotational symmetry of the system is reflected in ξ by

eiϕξ(xcu, n, ε) = ξ(eiϕxcu, n, ε)

for all ϕ ∈ [0, 2π). Thus, (3.40) is symmetric with respect to rotation of
xcu: if (xcu(t), n(t)) is a solution of (3.40) then, (eiϕxcu(t), n(t)) is also a
solution for all ϕ ∈ [0, 2π).

Mode approximation Consider solutions of the system (3.2), (3.4), (3.6) in
the cone ‖x‖ ≤ C

√
ε according to (3.34). Within this cone, we can scale up x to

order O(1) by setting the scaling factor P in the carrier density equation (3.4) to
ε:

Pnew = ε xcu,new = xcu,old/
√
ε

xnew = xold/
√
ε ξnew(xcu,new, n, ε) = ν

(√
εxcu,new, n, ε

)
xcu,new.
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This scaling changes the carrier density equation to

d

dt
nk = εfk (nk, x) = ε(Fk(nk)− gk(nk)[x, x]). (3.44)

The system (3.40) for the flow on Ccu changes to:

d

dt
xcu = Acu(n)xcu + εa11(xcu, ξ, n)xcu + εa12(xcu, ξ, n)ξ

d

dt
n = εf(xcu, ξ(xcu, n, ε), n)

(3.45)

where Acu, a11 : C q → C q , a12 : X → C q are linear operators defined by

Acu(n) = B−1HPcuB a11(xcu, ξ, n) = −B−1Pcu∂nBf

a12(xcu, ξ, n) = B−1∂nPcufPs

fk(xcu, ξ, n) = Fk(nk)− gk(nk)[Bxcu + ξ, Bxcu + ξ] for k ∈ A.

Moreover, ξ changes such that its expansion (3.41) reads

ξ(xcu, n, ε) = εν(xcu, n, ε)xcu (3.46)

where ν ∈ C1 if ξ is sufficiently smooth. Inserting (3.46) into system (3.45), we
obtain that the expression ν(xcu, n, ε)xcu enters the system only with a factor ε2

in front of it. Hence, replacing ξ by 0 is a regular small perturbation of (3.45),
i. e., it is of order O(ε2) in the C1-norm. Moreover, the perturbation preserves the
rotational symmetry of system (3.45). The approximate system is called mode
approximation and reads

d

dt
x = Acu(n)x+ εa11(x, n)x (3.47)

d

dt
n = εf(x, n) (3.48)

where x ∈ C q , and the matrices Acu(n), a11(x, n) : C q → C q are defined by

Acu(n) = B−1(n)H(n)Pcu(n)B(n)

a11(x, n) = −B−1(n)Pcu(n)∂nB(n)f(x, n)

fk(x, n) = Fk(nk)− gk(nk)[B(n)x,B(n)x] for k ∈ A.

The matrix Acu is a representation of H(n) restricted to its critical subspace
Xcu(n) in some basis B(n). The matrix Acu depends on the particular choice
of the basis B(n) but its spectrum coincides with the critical spectrum of H(n).
The term εa11x appears since the space Xcu depends on time t.

Any normally hyperbolic invariant manifold (e. g. fixed point, periodic orbit,
invariant torus) which is present in the dynamics of (3.47), (3.48) persists under
the perturbation ξ. Hence, it is also present in system (3.45) describing the
flow on the invariant manifold Ccu and in the semiflow of the complete system
(3.2), (3.4). Furthermore, its hyperbolicity and the exponential attractivity of
Ccu ensure its continuous dependence on small parameter perturbations.
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Chapter 4

Bifurcation Analysis of the Mode
Approximations

The mode approximations derived in the previous chapter allow for detailed stud-
ies of their long-time behavior since they are low-dimensional ordinary differential
equations. Several analytic and computational results have been obtained pre-
viously about the existence regions of self-pulsations ([6], [10], [45], [48]) and its
synchronization properties [8] using the single-mode approximation (see section
4.1).

The particular form of system (3.47), (3.48) depends on the set K of critical
carrier densities n chosen in the construction of the center-unstable manifold Ccu

and its properties (H1)–(H3). Practically, only few constellations for K are of
interest and have been observed during numerical simulations of the PDE ([9],
[36]). We focus on situations where the number of unstable eigenvalues of Acu is
0. Hence, Ccu is in fact an exponentially attracting center manifold. Moreover,
we restrict our interest to cases where the number q of critical eigenvalues of H is
less or equal to 2. The case q = 2 is treated in the limit of two critical eigenvalues
with very different frequencies. Furthermore, multi-section-lasers are currently
designed such that they consist of at most three sections and typically one but
at most two of them active. Thus, we restrict to the cases where the number of
sections m = 3 and only one equation for n1 (A = {1}) is present.

We obtain the coefficients of (3.47), (3.48) in the following manner:
We compute the critical eigenvalues numerically by continuating the roots λj

of the characteristic function h(λ) with respect to n (see section 3.2). If λ 6=
iΩr,k − Γk for k ∈ {1 . . .m}, the corresponding eigenvector xj = (ψj , pj) and the

adjoint eigenvector x†j = (ψ†j , p
†
j) have the form (see [8], [48] for the adjoint)

(
ψj

pj

)
=

(
T (z, 0;λj) ( r0

1 )
Γ

λj−iΩr+Γ
T (z, 0;λj) ( r0

1 )

) (
ψ†j
p†j

)
=



(
ψ̄j,2

ψ̄j,1

)
ρ
Γ

(
p̄j,2

p̄j,1

)

 . (4.1)
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We do not consider the degenerate case where a critical eigenvalue has algebraic
multiplicity ≥ 2. Hence, λj, xj and x†j depend smoothly on n. Moreover, we can
scale xj such that

(x†j , xj) = 1 (4.2)

for all n under consideration. Then, we can choose (x†j, ·) for the components of
the spectral projector B−1Pcu in (3.47), (3.48) using the eigenbasis of H|Xcu for
B. Hence, Acu(n) is a diagonal matrix with λj(n) in the diagonal. Subsequently,
we refer to the components of B (which are eigenvectors of H) and xcu as modes
of H .

4.1 The Single Mode Case

Firstly, we consider a multi-section laser with one active section (n = n1 ∈ R)
in the generic case where a single eigenvalue λ of H(n) is on the imaginary axis
(q = 1). Thus, the set K of critical carrier densities consists of a single point
n0 > 1. The mode approximation is valid in the vicinity of this point n0. We
introduce N = (n−n0)/(n0−1). The term a11 in (3.47) vanishes if we choose the
corresponding eigenvector (ψ, p) according to (4.2). Moreover, we can decouple
the phase of the complex x in (3.47) due to the rotational symmetry of the system.
Hence, we have to analyse a two-dimensional system for S = |x|2 and N which
reads as follows:

Ṡ = G(N)S (4.3)

Ṅ = ε (I −N − (1 +N)R(N)S) (4.4)

where the coefficient functions are defined by

G(N) = 2 Reλ(N) (4.5)

(1 +N)R(N) = [g(N)− ρ(N) + Re(χ(N, λ(N)))] ‖ψ(N)‖2
1 (4.6)

and the current is adjusted to

I = (I1 − n0)/(n0 − 1)

Here, the definition for R exploits that the right-hand-side of (4.6) is zero at
N = −1 (corresponding to n = 1). Moreover, we know that G(0) = 0. If λ
crosses the imaginary axis transversally at n = n0, we have G′(0) > 0. For
typical parameter situations, the functions G and R look like depicted in Figure
4.1. The long-time behavior of (4.3), (4.4) has been investigated numerically by
[45] using the models

G(N) = αN (4.7)

R(N) = 1 +
AW 2

(N −Nr)2 +W 2
(4.8)
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1
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R(n)

G(n)

n0nr

Figure 4.1: Typical shape of G and R with respect to the unscaled variable n. The
position nr and the height of the peak in R relative to the zero of G are the mathematical
parameters determining the dynamics of system (4.3), (4.4) [45]. The dotted line is the
function G for the eigenvalue nearest to λ. The models (4.7) and (4.8) fit the depicted
functions with Nr = −0.05, A = 1, W = 0.007, α = 4 (or yr = −0.83, w = 2 for
δ = 0.06, ε = 1/300 in the rescaled system (4.10), (4.11), respectively).

for G and R where Nr represents the position of the peak in R visible in figure 4.1,
A its height, and W its half width at half maximum. The bifurcation diagram of
(4.3), (4.4) with respect to the primary bifurcation parameter Nr is reported in
[45]. It shows a family of periodic orbits with a fold (see also Fig. 4.2). The stable
branch of this type of periodic orbits is usually referred to as (single mode) self-
pulsations. The motion is actually quasiperiodic taking the rotational velocity
Imλ into account.

We pointed out in chapter 3 that the mode approximation is only valid within
a bounded region of S. Hence, we have to perform a perturbation analysis for
small ε to check if the amplitude of the periodic orbits of (4.3), (4.4) remains
finite for ε→ 0. Besides, the perturbation analysis results in approximations for
the Hopf points and the locations of the self-pulsations.

To this end, we transform (4.3), (4.4) into a small perturbation of a conservative
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oscillator: We introduce the scaled parameters and coefficient functions

δ =
√
εI/α R(y, δ, yr) = 1 +

δ2Aw2

(y − yr)2 + δ2w2

yr = Nr/δ (4.9)

w = W/δ2 r(y, δ, yr) =
R(y, δ, yr)

R(0, δ, yr)

the new state space variables

x = log S − log

[
I

R(0, δ, yr)

]
y = N/δ,

and introduce a new time tnew =
√
αIεtold. The transformed system reads

ẋ = y (4.10)

ẏ = 1− δ/I · y − (1 + δy)r(y, δ, yr) exp(x) (4.11)

where δ = O(
√
ε) is small. This scaling treats N and some of the original

quantities as naturally small, i. e. N = O(
√
ε), Nr = O(

√
ε), and W even O(ε).

Other parameters (I and A) are considered as positive and of order 1. System
(4.10), (4.11) is equivalent to (4.3), (4.4) in the invariant half-plane {S > 0}.
The transformed system (4.10), (4.11) has exactly one equilibrium x = y = 0.
Changing yr, a pair of complex eigenvalues of its linearization at 0 crosses the
imaginary axis transversally at yr,± satisfying ∂yr(0, δ, yr) = −δ(1 + I−1) which
amounts to [45]

yr,±

δw
= −δ

2w(1 + I−1)

2A

[(yr,±

δw

)2

+ 1

] [(yr,±

δw

)2

+ 1 +A

]
. (4.12)

For fixed I > 0, A > 0 and w > 0, this equation has exactly two solutions yr,+

and yr,− if the factor µ in front of the right-hand-side is small. These Hopf points
can be approximated by

yr,− ≈ −
(

2δAw2

1 + I−1

) 1
3

, yr,+ ≈ −δ3w2(1 + I−1)
1 + A

2A

by dropping terms of order µ2/3 (for yr,−) or µ2 (for yr,+), respectively.

An important aspect is how the amplitude of the self-pulsations changes for
δ → 0. As the mode approximation is only valid within a bounded region of x
(or S in (4.3), respectively), we have to verify that the amplitudes of the self-
pulsations remain bounded for δ → 0.

Consider system (4.10), (4.11) as a perturbation of the conservative oscillator
ẍ = 1 − ex (see [34] for references about the close to conservative nature of
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Figure 4.2: Bifurcation diagram for the scaled single mode approximation (4.10), (4.11).
The parameters are as indicated in the caption of figure 4.1, and I = 2. The picture
shows the two Hopf points yr,± and the family of periodic orbits with a fold at yr,f . We
report max y of the stable and unstable periodic orbits and of the critical energy level
ηs of the conservative oscillator.

PrPu

y

ηr

ηu

x

y = yr

Figure 4.3: Sketch of single mode system in the limit δ → 0. System (4.10), (4.11)
is discontinuous at the dotted line y = yr and it is in a sliding mode along the lower
side of the thick part of the line between Pr = (0, yr) and Pu = (− log(1 +A), yr). For
y 6= yr the vector field points along the level lines η = const.

single mode models). The conserved quantity along the periodic orbits of the
conservative oscillator is

E(x, y) = y2/2 + ex − x− 1.

E(x, y) > 0 if (x, y) 6= 0, E(0, 0) = 0, E is strictly monotone in x2 + y2 and
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E →∞ for x2 + y2 →∞. This allows us to introduce polar coordinates:

η(x, y) =
√
E(x, y) =

√
y2/2 + ex − x− 1

ϕ(x, y) = angle between (x, y) ∈ R2 \ {0} and the ray {x = 0, y ≤ 0}.
(4.13)

Then, ϕ̇ is uniformly positive for bounded η. Furthermore, let us introduce the
numbers

ηr = yr/
√

2

ηu =

√
η2

r +
1

1 + A
+ log(1 +A)− 1.

(4.14)

The right-hand-side of system (4.10), (4.11) is a O(δ)-perturbation of (y, 1− ex)
(the right-hand-side of ẍ = 1 − ex) except in the vicinity of the line y = yr. In
the limit δ → 0, (4.10), (4.11) is discontinuous at y = yr and equal to ẍ = 1− ex

outside of this line (see Fig. 4.3). The region x ∈ (− log(1 + A), 0) on the line
y = yr plays a special role since the sign of ẏ = 1 − (1 + A)ex opposes the sign
of ẏ = 1 − ex. The level line η = ηr touches the line y = yr at the right end
(x = 0, y = yr) of this region. The level line ηu crosses y = yr at the left end
(x = − log(1 + A), y = yr) of this region. The following Lemma 4.1 claims that
the discontinuity at y = yr acts as a small perturbation if x /∈ [− log(1 +A), 0].

Lemma 4.1 Let x∗ have a positive non-small distance from [− log(1+A), 0] and
y∗ = yr. Let A > 0, w > 0, yr < 0 be of order O(1). Denote the trajectory of
system (4.10), (4.11) through (x∗, y∗) by (x(t), y(t)) and the trajectory of ẍ = 1−ex

through (x∗, y∗) by (x0(t), y0(t)). Let the time interval [−T, T ] be sufficiently small
such that y0(t) − yr is only small in the vicinity of t = 0. Then, |x0(t) − x(t)|,
|y0(t)− y(t)| are of order O(δ) for t ∈ [−T, T ].

Proof: We have to compute the difference between (x(t), y(t) and x0(t), y0(t)
only in the vicinity of t = 0. Since x(t)−x0(t) =

∫ t

0
y(s)− y0(s) ds, it is sufficient

to prove that |y0(t)−y(t)| = O(δ) for t in some interval around 0. Let η2
∗ = y2

r/2+
ex∗−x∗−1. The trajectory (x0, y0) has the form y0(x0) = −

√
2
√
η2
∗ − ex

0 + x0 + 1.
Since ẋ is uniformly negative for y near yr, we can parametrize the trajectory
(x(t), y(t)) also with respect to x. We have

1

2
(y(x)2 − y0(x)

2) =

∫ x

x∗
y(ξ)

dy(ξ)

dξ
− y0(ξ)

dy0(ξ)

dξ
dξ

= −
∫ x

x∗

Aδ2w2

(y(ξ)− yr)2 + δ2w2
dξ +O(δ). (4.15)

The quantity ∂y(x)/∂x is uniformly positive in the vicinity of (x∗, y∗) if x∗ >
cu > 0, and it is uniformly negative if x∗ < cl < − log(1 + A). Hence, we can
estimate the term (y(ξ)− yr)

2 from below by a(x− x∗)
2 where a > 0. Then, the

integral in the right-hand-side of (4.15) is of order O(δ). �
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According to numerical observations, the stable periodic orbits of system (4.10),
(4.11) are only small in a very small parameter region near yr,+ (see Fig. 4.2). On
the other hand, the conservative oscillator ẍ = 1 − ex is not harmonic far away
from 0. Hence, we should not consider the self-pulsations as small perturbations
of harmonic oscillations expanding them near the Hopf points. Rather, we search
for a level line ηs of the conservative oscillator where the stable limit cycles branch
from at δ = 0.

The following Theorem 4.2 proves the existence of this level line ηs and, hence,
the boundedness of the self-pulsations for δ → 0. Furthermore, its proof provides
a formula for ηs which can be used for a zero-order approximation of the self-
pulsations.

Theorem 4.2 Let R > 0 be sufficiently large, δ0 > 0 be sufficiently small, and
yr < 0, A > 0, J > 0, w > 0 be of order O(1). Then,

1. system (4.10), (4.11) has a first return map rδ(η) = η + g(η) to the ray
R = {ϕ = 0}, such that the interval [0, R] is forward invariant for rδ for
all δ ∈ (0, δ0).

2. |g(η)| is of order O(δ) in any compact subset C of (0, ηr) ∪ (ηu,∞).

3. There exists exactly one level line ηs of η(x, y) within BR(0) such that an
isolated parametric family of stable limit cycles branches from ηs for δ ∈
(0, δ0).

Proof: Since ϕ̇ is uniformly positive for bounded η, the system (4.10), (4.11)
induces a first return map to the ray R = {ϕ = 0}. We denote this first return
map by rδ : η ∈ [0,∞) → [0,∞). rδ is smooth for δ > 0. It converges uniformly
in each compact subset of [0,∞) \ {ηr} to

r0(η) =

{
η for η ∈ Hc := [0, ηr) ∪ (ηu,∞)

ηu for η ∈ (ηr, ηu] =: Hf

for δ → 0. We have to study the effect of the perturbation by δ only where r0 is
critical i. e. in Hc. Let ξ : R → R be a monotone increasing function defined by
the equation ξ(x)2 = ex − x − 1. ξ is a diffeomorphism on R with ξ(0) = 0 and
an inverse function x̃(ξ) defined by

ξ2 = ex̃(ξ) − x̃(ξ)− 1. (4.16)

Let C ⊂ Hc be compact, and η ∈ C. For η ∈ C we may formally expand

rδ(η) = η + δ
∂

∂δ
rδ(η)

∣∣∣∣
δ=0

+ o(δ).
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Hence, if ∂
∂δ
rδ(η)|δ=0 exists and changes its sign from + to − at η, the fixed point

r0(η) = η will persist for δ > 0 and be stable and uniformly isolated for small δ.
Consider

(rδ(η)− η)/δ = δ−1
[√

E(x(T (η, δ)), y(T (η, δ)))−
√
E(x(0), y(0))

]
for η ∈ C where T (η, δ) is the time for the first return to R, and (x(t), y(t)) is the
trajectory inducing rδ(η). The trajectory (x(t), y(t)) is a O(δ)-perturbation of
the periodic solution of the conservative oscillator along the level line η according
to Lemma 4.1. We have

(rδ(η)− η)/δ =

= δ−1

∫ T (η,δ)

0

d

dt

√
E(x(t), y(t))dt

= −
∫ T (η,δ)

0

1

2η

(
y2

I
+ y2ex

)
dt︸ ︷︷ ︸

S1(η,δ)

−
∫ T (η,δ)

0

1

2η

δAw2yex

(y − yr)2 + δ2w2
dt︸ ︷︷ ︸

S2(η,δ)

+O(δ)

The O(δ) is uniform for η ∈ C. Hence, g(η) = rδ(η)− η is of order δ in C. The
first part S1 is negative. For η ∈ C, it can be approximated up to order O(δ) by
replacing (x(t), y(t)) by the periodic orbit of the conservative oscillator:

S1(η, δ) = −2
√

2

η

(
I−1 + 1

) ∫ η

−η

√
η2 − ξ2

ξ

ξ2 + x̃(ξ)
dξ +O(δ) (4.17)

Concerning S2, we consider η ∈ C ∩ (0, ηr) firstly. The term S2 is of order O(δ)
if η ∈ C ∩ (0, ηr). Therefore, rδ(η) < η for η ∈ C ∩ (0, ηr) and sufficiently small
δ. Thus, there is no fixed point of rδ in C ∩ (0, ηr). However, there must be an
unstable fixed point in (0, ηr] \ C for sufficiently small δ > 0 since rδ is smooth
in η for δ > 0 and limη↘ηr r0(η) = ηu > ηr. Consequently, a family of unstable
fixed points of rδ branches from ηr. This implies that there is no isolated stable
family of fixed points of rδ in (0, ηr].

Consider η ∈ C ∩ (ηu,∞) now. Then, ẏ 6= 0 at y = yr for sufficiently small δ.
Hence, we can substitute dt by dy/ẏ near y = yr. Let (x(t−), yr), and (x(t+), yr)
be the crossing points of the trajectory (x(t), y(t)) with {y = yr} (x(t−) < 0,
x(t+) > 0). We expand S2 with respect to δ to obtain

S2(η, δ) =
πAwyr

2

[
ex(t−)

η(t−)
√

(1− ex(t−))(1− (1 + A)ex(t−))
+

ex(t+)

η(t+)
√

(ex(t+) − 1)((1 + A)ex(t+) − 1)

]
+O(δ).

(4.18)
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The values x(t±) and η(t±) may be replaced by the corresponding values for the
periodic orbit of the conservative oscillator:

x(t±) = x̃
(
±
√
η2 − y2

r/2
)

+O(δ) and η(t±) = η +O(δ).

The term S1(η, 0) is zero at η = 0 and decreases monotone and super-linearly for
η →∞ whereas S2(η, 0) is a monotone increasing function with limη↘ηu S2(η, 0) =
−∞ and limη→∞ S2(η, 0) = 0. Thus, S1(η, 0) − S2(η, 0) has exactly one root
ηc in (ηu,∞). The sign change at ηc is from + to −. This situation persists
for S1(η, δ) − S2(η, δ). Consequently, there exists exactly one stable fixed point
ηc(δ) ≥ ηu of rδ for sufficiently small δ with ηc(δ) → ηc for δ → 0. �

The statement of Theorem 4.2 in terms of the original system (4.3), (4.4) is:

Corollary 4.3 For ε→ 0, there exists a family of uniformly bounded stable limit
cycles if Nr < 0 and the scaling of the parameters is Nr = O(

√
ε), A = O(1) and

W = O(ε).

The following corollary is also an immediate consequence of Lemma 4.1 and the
argumentation in the proof of Theorem 4.2:

Corollary 4.4 Let (x(t; η), y(t; η)) be the trajectory for system (4.10), (4.11)
inducing the return map rδ(η) (t ∈ [0, T (η, δ)], i. e., x(0; η) = x(T (η, δ); η) = 0,
y(0) = −

√
2η). Denote the corresponding trajectory of the conservative oscillator

ẍ = 1− ex by (x0(t; η), y0(t; η)). Let η be in a compact subset of (0,∞) \ [ηr, ηu].
Then, the distance ‖(x(t; η), y(t; η))− (x0(t; η), y0(t; η))‖ is of order O(δ) for all
t ∈ [0, T (η, δ)]. The same holds for the time of the first return: T (η, δ) = T (η, 0)+
O(δ).

Remarks

Location of the Fold Periodic Orbit There is always an unstable limit cycle
near the level line ηr = −yr/

√
2 for sufficiently small δ. However, the physically

relevant parameters do not reflect this asymptotical behavior yet. Typically, the
Hopf point yr,− is of order O(1) for realistic δ. Since the unstable periodic orbits
are located near η < ηr and the self-pulsations branch from level lines η > ηr, the
location of the fold of periodic orbits in phase space must be in the vicinity of the
level line ηr. We can exploit this fact to obtain a crude heuristic approximation
of the fold in the parameter space. We insert the orbit of ẍ = 1− ex along ηr for
(x(t), y(t)) into the term S2(η, δ). Because S2 is of order δ except in the vicinity
of (x = 0, y = yr), we only evaluate it around that point and substitute dt by
dx/y:

S2(ηr, δ) = − 1

2ηr

∫ c

−c

δAw2ex

(y(x)− yr)2 + δ2w2
dx+O(δ)
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where y(x) =
√

2
√
η2

r − ex + x+ 1 and c > 0 of order O(1). We expand this
expression with respect to δ and obtain

S2(ηr, δ) = −
√

2π

2

A
√
w√−yr
· δ−1/2 +O(

√
δ).

We equate the leading term of S2(ηr, δ) with S1(ηr, 0) to get an approximation
of the location of the fold in parameter space:

S1(yr/
√

2, 0) = −
√

2π

2

A
√
w√−yr
· δ−1/2 (4.19)

However, this approximation is only heuristic, since we do not know a priori
whether the fold periodic orbit is sufficiently close to the orbit of ẍ = 1 − ex

along ηr to have the same expansion. We plot the approximate fold location for
a sample parameter setting in the (A, yr)-plane and compare it to the numerical
solution in Fig. 4.6.

The Corresponding Averaged Equation The proof of Theorem 4.2 approx-
imates the first return map r(η) for η ∈ Hc to find a periodic orbit and to show
its stability. Alternatively, we could employ first-order averaging. This would be
only formally correct since η̇/ϕ̇ does not have a uniform Lipschitz constant with
respect to (ϕ, η) for δ → 0. However, the consideration of the return map in
Theorem 4.2 has proved that the averaged equation

η̇ =
1

2π
g(η) (4.20)

approximates the first return-map for small δ if η is in compact subsets of Hc

(i. e., g(η) is of order o(1)). For η > ηu, we may use the approximation g(η) =
δ(S1(η, 0)− S2(η, 0)).

Location of the Self-Pulsation The critical level line ηs is a zero-order ap-
proximation for the location of the stable limit cycle if yr = O(1). For simplic-
ity, we can replace the integral in S1 by its Taylor expansion [34] when solving
S1(η, 0)− S2(η, 0) = 0:

S1(η, 0) = −
(
I−1 + 1

) (
πη +

π

24
η3
)

which is very accurate within the interval [0, 4]. The third order term is important
since η is typically far away from 0. Then, the approximate equation for S1(η, 0) =
S2(η, 0) reads

−I
−1 + 1

Awyr

(
2η2 +

1

12
η4

)
=

(
1− A

e−x−r −1

)− 1
2

e−x−r − 1
+

(
1 + A

1−e−x+
r

)− 1
2

1− e−x+
r

(4.21)
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where x±r = x̃
(
±
√
η2 − y2

r/2
)
. This equation is easy to solve for I or w with

a given η2. Figure 4.2 compares the extrema of the level lines computed with
(4.21) to extrema of the actual periodic orbits.
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4.2 Two modes with different frequencies

Next, we consider a laser with one active section (n = n1 ∈ R) in the vicinity of
the situation where two eigenvalues λ1(n) and λ2(n) of H(n) cross the imaginary
axis transversally at the same n0. This case is observed frequently in numerical
computations using the full system (3.2), (3.4) [9], [36] even though it seems to
be non-generic at first sight. The reason is the following: A laser consisting of
a single DFB-section (i. e. m = ma = 1, κ 6= 0) with zero facette reflectivities
(r0 = rL = 0) is symmetric with respect to reflection. Thus, if H(n) has the
eigenvalue λ + i Im β, it has also the eigenvalue λ̄ + i Im β. Typically, a pair of
eigenvalues becomes critical having the frequencies Im λ1,2 ≈ Im β1 ± κ1. The
frequency region (Im β1 − κ1, Im β1 + κ1) is usually referred to as the stopband
of the active section. Hence, a solitary section typically supports modes at both
ends of the stopband. This situation is slightly perturbed by the passive sections
and the nonzero facette reflectivity prefering one of the two ends of the stopband.
However, this preference is usually small and may change for varying parameters
(see Fig. 3.1 b for a typical situation).

4.2.1 Motivation

For motivation, we present a result of numerical long-time computations for sys-
tem (3.2), (3.4) in Fig. 4.4 which has been obtained by [7] and [9].

The geometric configuration for Figure 4.4 is the following: We have two DFB
sections S1 and S3 (i. e. κ1, κ3 6= 0) and a phase tuning section S2 (κ2 = 0). S1

is active, S3 acts as a reflector. The parameter p = −2l2 Im d2 adjusts the phase
of the feedback from S3. Hence, p influences the behavior only modulo 2π.

Within this period, the authors of [7] choose a fine mesh, start the simulation,
and wait until the system “settles” to some final state. The approximate limits
lim supt→∞ |ψ(t, 0)|2 and lim inft→∞ |ψ(t, 0)|2 are reported in Figure 4.4 A. Then,
they advance p to the next mesh point starting the computations from the pre-
viously reported final state. The mesh is traversed in forward and in backward
direction in order to detect coexisting final states. If there are coexisting final
states, the arrows in Figure 4.4 A indicate how p was being changed. In this man-
ner, the pseudo bifurcation diagram of Figure 4.4 A is obtained which reports
only stable limiting states.

If lim supt→∞ |ψ(t, 0)|2 6= lim inft→∞ |ψ(t, 0)|2, the time profile of |ψ(t, 0)|2 is sup-
posed to be (roughly) periodic. It is shown in Figure 4.4 C for these cases. For ori-
entation, we draw the root curves {(n, p) : λj(n, p) = 0} of the dominating eigen-
values of H in Figure 4.4 B. The dashed/solid profile of the lines indicates that λ1

(solid) is at the low end of the stopband (i. e. Im λ1 ≈ Im β1−κ1) whereas λ2 and
λ̃2 (dashed) are at the high end of the stopband (i. e. Imλ2, Im λ̃2 ≈ Im β1 +κ1).
We observe the following scenarios of interaction between modes at different ends
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Figure 4.4: Pseudo bifurcation diagram for 3-section laser from [7], [9]: In Figure
(A), lim supt→∞ |ψ(t, 0)|2 and lim inft→∞ |ψ(t, 0)|2 are plotted over a fine mesh in one
period of the parameter p = −2l2 Im d2. The arrows indicate the direction the mesh is
traversed. Figure (B) shows the root curves {(n, p) : λj(n, p) = 0} for the dominant
eigenvalues of H(n). In (C), we plot the time profile over one period of ψ(t, 0) for
the non-stationary scenarios in Figure (A). See text of section 4.2 for details. Device
configuration: n = n1 (A = {1}), κ1 = κ3 6= 0, κ2 = 0.

of the stopband in Fig. 4.4:

(T1) There is no interaction visible at all if each of the modes has an on-state
which is stable in the sense of the single mode model. For p < p0, the
on-state corresponding to λ2 is stable, and the on-state corresponding to λ1

is unstable (scenario (1) in Fig. 4.4 A). The situation is vice versa if p > p0

(scenario (3)). Near p = p0, the transition between the two on-states is
extremely slow in time but sharp in the parameter space (scenario (2)).
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(T2) The behavior changes if at least one of the modes has a self-pulsation in
the sense of the single mode model. There is a parameter region where
the self-pulsation corresponding to λ1 is stable and coexists with the stable
on-state corresponding to λ̃2 (scenario (6)) or with a stable self-pulsation
corresponding to λ2 ((4) and (5)).

(T3) In region (7), a regime is stable where modes from both ends of the stopband
contribute. The time profile of the solution (7) shows that the frequency
of the self-pulsation is overlapped with another very large frequency. This
large frequency is approximately Imλ1 − Im λ2.

The large frequency difference between the dominant eigenvalues Im λ1 − Imλ2

is a characteristic feature for the situations described above. We exploit this
characteristic in the following paragraphs by considering the first order averaged
equations instead of the full two mode system. This approach has the advantage
that we can use the knowledge about the bifurcation diagram of the single mode
case. Nevertheless, it predicts and explains the scenarios (T1)–(T3) accurately.

4.2.2 Derivation of the Averaged Two Mode Equation

System (3.47), (3.48) reads

ẋ1 = λ1(n)x1 + ε∆1(n)f(n, x1, x2)x2

ẋ2 = λ2(n)x2 + ε∆2(n)f(n, x1, x2)x1

ṅ = εf(n, x1, x2)

(4.22)

where (omitting the section index 1 and the n-dependence of some coefficients)

∆1(n) =
1

λ2 − λ1

[
∂nβ +

∂nρΓ + i∂nΩrχ(λ1)

λ2 − iΩr + Γ

]
(ψ†1, ψ2)1

∆2(n) =
1

λ1 − λ2

[
∂nβ +

∂nρΓ + i∂nΩrχ(λ2)

λ1 − iΩr + Γ

]
(ψ†2, ψ1)1

f(n, x1, x2) = I − n− (n− 1)
[
R1(n)|x1|2 +R2(n)|x2|2+

+ Re(R12(n)x̄1x2)]

(n− 1)R1(n) = (g(n)− ρ(n) + Reχ(λ1(n))) ‖ψ1‖2

(n− 1)R2(n) = (g(n)− ρ(n) + Reχ(λ2(n))) ‖ψ2‖2

(n− 1)R12(n) =
[
2(g(n)− ρ(n)) + χ(λ1(n)) + χ(λ2(n))

]
(ψ1, ψ2)1.

The two amplitudes x1 and x2 and the coefficients λj, ∆j and R12 are complex
quantities.

We rescale system (4.22) in a similar way as in section 4.1: Let Reλ1(n1) = 0,
Reλ′1(n1) > 0, and Imλ1(n) < Imλ2(n) for all n under consideration. We
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introduce

Inew =
Iold − n1

n1 − 1
δ =

√
Iε

2λ′1(n1)
(4.23)

tnew =
√

2λ′1(n1)Iεtold Gj(y) = 2δ−1 Reλj((n1 − 1)δy + n1)

y = δ−1n− n1

n1 − 1
Rj,new(y) = Rj,old((n1 − 1)δy + n1)

ϕj(0) = 0 ϕ̇j = − δ−1 Imλj((n1 − 1)δy + n1)

ξj = xje
iϕj/I ∆j,new(y) = ∆j,old((n1 − 1)δy + n1)

for j = 1, 2. Denoting τ = ϕ1 − ϕ2, the rescaled system reads

ξ̇1 =
1

2
G1(y)ξ1 + δ∆1(y)f(y, ξ1, ξ2, τ)e

iτξ2 (4.24)

ξ̇2 =
1

2
G2(y)ξ2 + δ∆2(y)f(y, ξ1, ξ2, τ)e

−iτξ1 (4.25)

ẏ = f(y, ξ1, ξ2, τ) (4.26)

= 1− δ/I · y − (1 + δy)
[
R1(y)|ξ1|2 +R2(y)|ξ2|2+

+ Re
(
R12(y)ξ̄1ξ2e

i−τ
)]

τ̇ = δ−1(Imλ2 − Imλ1). (4.27)

Introduction of time τ = ϕ1 − ϕ2 transforms system (4.24)–(4.26) into a stan-
dard form ẋ = εg(x, t) where a small ε ≈ (Imλ2 − Imλ1)

−1δ is put in front
of the right-hand-side and g is 2π-periodic. The term ei(ϕ2−ϕ1) changes to e−iτ .
The corresponding first order averaged equation reads (with respect to time t,
dropping terms of order (Imλ2 − Imλ1)

−1δ)

ṡ1 = G1(y)s1 (4.28)

ṡ2 = G2(y)s2 (4.29)

ẏ = 1− δ/I · y − (1 + δy) [R1(y)s1 +R2(y)s2] (4.30)

arg ξj ≡ const for j = 1, 2 (4.31)

in polar coordinates (sj = |ξj|2). Equation (4.31) is decoupled from system
(4.28)–(4.30). Hence, we can continue our analysis using subsystem (4.28)–(4.30).

We note that the functions Rj and Gj have the same meaning for their respective
mode as G and R(·, δ, yr) in the single mode case.

The functions Gj are the effective gain functions of their corresponding modes.
The function G1 has the root 0, and G′

1(0) = 1. Moreover, we assume that G′
2(0)

is positive, not small and without loss of generality G′
2(0) ≤ 1. Then, we can

introduce α = G′
2(0)−1 ≥ 1 and rescale s2,new = sα

2,old. This scaling changes G′
2(0)

to 1 and equation (4.30) to

ẏ = 1− δ/I · y − (1 + δy) [R1(y)s1 +R2(y)s
α
2 ] . (4.32)
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We take (4.31) into account only to interpret the long-time behavior of the av-
eraged system in terms of the original quantities. The following Lemma 4.5
summarizes how standard averaging theory [22], [39] allows to lift results for
(s1, s2, y) back to (x1, x2, n).

Lemma 4.5
Denote the minimum of (Imλ1(y) − Imλ2(y))/δ by µ−1. Let (ξ1, ξ2, y) : M →
C 2 × R be a normally hyperbolic invariant manifold of system (4.28)–(4.31). Let
the flow on M be governed by ṁ = F (m). Then, there exists a normally hyper-
bolic invariant manifold of system (4.22) which is the transformation of a small
perturbation (ξ̃1, ξ̃2, ỹ) : M× S1 → C 2 × R of (ξ1, ξ2, y) of order O(µ) in the
following sense:

|ξ̃j(m,ϕ)− ξj(m)| = O(µ)

|ỹ(m,ϕ)− y(m)| = O(µ)

for j = 1, 2, all m ∈ M, and ϕ ∈ S1. Moreover, (m,ϕ) ∈ M× S1 satisfy the
equations

ṁ = F (m) + F1(m,ϕ)

ϕ̇ = −δ−1(Imλ2(ỹ(m,ϕ))− Imλ1(ỹ(m,ϕ)))

where F1 is of order O(µ). We obtain xj and n by setting ϕ(0) = 0 and

xj(t) = ξ̃j(t)e
−iϕj(t)

n(t) = (n1 − 1)δỹ(t) + n1

ϕj(t) =

∫ t

0

−δ−1 Imλj(ỹ(s)) ds.

Proof: We imbed the non-averaged system (4.24)–(4.27) into a C 2 × R × S1-
system by leaving the initial condition on ϕ2−ϕ1 free in S1. The extended system
has the form

u̇ = f(u, ϕ)

ϕ̇ = µ−1g(u)
(4.33)

where u ∈ C 2 × R, ϕ = ϕ1 − ϕ2 ∈ S1 (f is 2π-periodic in ϕ), and g is uni-
formly positive and of order 1. Let f̃(u) be the average of f with respect to
ϕ: f̃(u) = (2π)−1

∫
S1 f(u, ϕ) dϕ. After a near-identity change of coordinates

u = v + µw(v, ϕ), we have

v̇ = f̃(v) + µf1(v, ϕ)

ϕ̇ = µ−1g(v + µw(v, ϕ))
(4.34)
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where

w = g(v)−1

∫ ϕ

0

f(v, θ))− f̃(v) dθ

f1 = [Id+ µ∂1w(v, ϕ)]−1

[
f(v + µw(v, ϕ), ϕ)− f(v, ϕ)

µ
− ∂1w(v, ϕ)f̃(v)

]
.

Hence, f1 ∈ C1 is of order O(1). (4.34) is a regular perturbation of order O(µ)
of the averaged system

v̇ = f̃(v)

ϕ̇ = µ−1g(v + µw(v, ϕ)).
(4.35)

Consequently, if M is a normally hyperbolic invariant manifold of v̇ = f̃(v),
M× S1 is a normally hyperbolic invariant manifold of (4.35). This manifold
persists under the regular perturbation f1 implying the existence of a normally
hyperbolic invariant manifold M̃ of (4.33) after transforming back from v to u.
At the end, we choose those trajectories where ϕ starts at 0. The manifold M̃ is a
small perturbation of M as a graph, and the flow on M̃ is a regular perturbation
of the flow on M. �

Lemma 4.5 implies:

• A hyperbolic equilibrium (s1 6= 0, s2 = 0, y = const) of (4.28)–(4.30) is a
small perturbation of the periodic orbit (x1 =

√
s1e

iθ1−iϕ1(t), x2 = 0, n =
const). We have to take into account the particular structure of f1 and w
in (4.34) to obtain that the perturbation is actually 0 in this case.

• A hyperbolic equilibrium (s1 6= 0, s2 6= 0, y = const) is a normally hyper-
bolic invariant 2-torus close to

(x1 =
√
s1e

iθ1−iϕ1(t), x2 =
√
s2e

iθ2−iϕ2(t), n = const).

This type of solutions is referred to as pulsations of mode beating type.

• A single-mode self-pulsation (s1(t), s2 = 0, y(t)) is a normally hyperbolic
invariant 2-torus close to

(x1 =
√
s1(t)e

iθ1−iϕ1(t), x2 = 0, n(t)).

• A hyperbolic periodic orbit (s1(t), s2(t), y(t)) is a normally hyperbolic in-
variant 3-torus close to

(x1 =
√
s1(t)e

iθ1−iϕ1(t), x2 =
√
s2(t)e

iθ2−iϕ2(t), n(t)).

Remark: The definition of normal hyperbolicity of an invariant manifold im-
poses conditions on the rates of attraction and expansion normal to the manifold
(see appendix B). These rates have to be large compared to the µ discussed in
Lemma 4.5. Since the averaged system (4.28)–(4.30) will turn out to be singularly
perturbed, this imposes a restriction on the smallness of the singular perturbation
parameter.
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4.2.3 Dynamics in the Vicinity of the On-states

We note that system (4.28), (4.29), (4.32) has two invariant planes: S1 = {s2 = 0}
and S2 = {s1 = 0}. Between the invariant planes, the ratio r = s1/(s2 + s1)
satisfies the differential equation

ṙ = (G1(y)−G2(y))(r − r2). (4.36)

We can introduce the new variable x = log(s1 + s2) and rewrite the equations
(4.28), (4.32):

ẋ = (rG1(y) + (1− r)G2(y)) (4.37)

ẏ = 1− δ

I
y − (1 + δy) (rR1(y)e

x + (1− r)αR2(y)e
αx) . (4.38)

System (4.36), (4.37), (4.38) is equivalent to (4.28), (4.29), (4.32) in the invariant
subspace {s1 + s2 > 0} (s1 = rex, s2 = (1 − r)αeαx). The invariant planes are
now S1 = {r = 1} and S2 = {r = 0}.
Since G′

1(0) = G′
2(0) = 1, the long-time behavior of r is determined by G2(0) if

y is near 0 for all times i. e. if the on-states

O1 = (x = − logR1(0), y = 0, r = 1) ∈ S1

O2 =

(
x =

1

α
log

(
1− δ/I · y0

(1 + δy0)R2(y0)

)
, y = y0, r = 0

)
∈ S2

(4.39)

are stable with respect to x and y. In (4.39), y0 is the root of G2 near 0 which
is approximately −G2(0) if G2(0) is small. Hence, we may use y0 as a control
parameter instead of G2(0).

The linearization of the right-hand-side of system (4.28), (4.29), (4.32) at O1

possesses the eigenvalue G2(0) corresponding to the eigenvector v1 transversal
to S1. At O2, the linearization has the eigenvalue G1(y0) corresponding to the
eigenvector v2 transversal to S2.

The following Theorem 4.6 shows the dynamics in the vicinity of y ≈ 0 for y0 of
order o(δ) if O1 and O2 are stable within their plane:

Theorem 4.6 Let the equilibria O1 and O2 be asymptotically stable with respect
to x and y i. e. within their corresponding invariant plane S1 and S2, respectively.
Then, for sufficiently small y0 there exists an exponentially attracting heteroclinic
between O1 and O2 which is tangent to v1 at O1 and tangent to v2 at O2. The
zero-order approximation for the motion of r on the heteroclinic is

r(t) =
1

1 + e−y0tr(0)
. (4.40)
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Proof: The assumptions on the functions G1 and G2 imply that

G1(y)−G2(y) = y0 +O(y2) (4.41)

for small y0 and y. Hence, we can consider system (4.36), (4.37), (4.38) as
a small perturbation of the case G1 = G2 in the vicinity of y = 0 for small
y0. For G1 = G2 we obtain a line of equilibria E = {(x, y, r) : y = 0, 1 =
rR1(0)ex + (1− r)αR2(0)eαx, r ∈ [0, 1]}. The variable r is constant in time. Each
of these equilibria has the asymptotic decay rate

θr =
1

2
(δ + δ/I + rαR′1(0)ex + (1− r)αR′2(0)eαx)

normal to E . We assume that θ0 and θ1 are positive. Hence, θr is positive and
has a uniform distance from 0 for all r ∈ [0, 1].

Consequently, (4.36), (4.37), (4.38) is a singular perturbation of the situation
G1 = G2. The slow manifold E is uniformly exponentially attractive, compact
and overflowing invariant. Thus, it persists under the small perturbation G1−G2.
Denote the unique center manifold of the perturbed system (which is (4.36),
(4.37), (4.38)) by Ẽ . Since Ẽ is one-dimensional, it is a trajectory. It contains
both equilibria O1 and O2 and is tangent to v1 at O1 and v2 at O2 since it is
a center manifold. The zero-order approximation for the flow on Ẽ is (4.36).
Inserting (4.41) and dropping O(y2), we obtain ṙ = y0(r − r2). (4.40) is the
explicit solution of this zero-order approximation. �

Remarks

• If we assume the parameters in Rj to be of similar magnitude as in section
4.1 (i. e. Aj = O(1), yr,j = O(1), w = O(1)), the asymptotic transversal
decay rate θr is of order O(δ). Hence, the admissible magnitude for the
perturbation y0 is only o(δ) for the application of Theorem 4.6.

• There exists a heteroclinic similar to Ẽ of Theorem 4.6 if both equilibria O1

and O2 are exponentially unstable within their invariant plane. However,
Ẽ is exponentially repelling in this case.

• The situation changes if the equilibria O1 and O2 have different asymptotic
stability, say O1 is unstable and O2 is stable. The family of transversal
flows (4.37), (4.38) undergoes a Hopf bifurcation for some r ∈ (0, 1). In
general, the heteroclinic connection between O1 and O2 is split near this
Hopf point. We study this situation in the next section.

• Formula (4.40) is globally valid (i. e. for all y ∈ R) if the functions Gj are
affine:

G1(y) = y

G2(y) = y − y0.
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This implies trivial dynamics between S1 and S2: Either S1 or S2 is globally
attracting depending on the sign of y0. The other plane is globally repelling,
respectively.

• Interpretation of the results in terms of the original (non-averaged) quanti-
ties of system (4.22): The family of equilibria E at y0 = 0 corresponds to a
family of invariant 2-tori with the radius pair s1 and s2 and the rotational
velocities Im λ1(n1) and Imλ2(n1). However, these tori are not normally
hyperbolic. Hence, we only know that the formerly stable on-state O1

undergoes an almost vertical torus bifurcation leaving O1 unstable if y0 ap-
proaches 0 from above. Virtually at the same parameter value y0 = 0, the
formerly unstable on-state O2 gains stability through a vertical torus bi-
furcation. Near the torus bifurcation parameter the transition between the
two modes is very slow. This scenario agrees precisely with the behavior
observed in the simulations of system (3.2), (3.4). It corresponds to scenario
(T1) of section 4.2.1 and proves that stable pulsations of mode beating type
do not occur between two modes with very different frequencies if we have
only one active section. The first-order averaged model (4.36)–(4.38) is not
able to resolve what happens in the tiny parameter region near y0 = 0
(y0 = O(µ), see Lemma 4.5).

4.2.4 Interaction Between a Self-pulsating Mode and an
On-state — Bifurcation Study for a Simple Model

of G1 and G2

In this section, we present a simple mechanism for mode interaction between
two modes with different frequencies explaining the phenomena (T2) and (T3)
shown in section 4.2.1. We concluded in the previous section that we have trivial
dynamics between S1 and S2 if y is always near 0, or if G1(y)− G2(y) does not
have any sign changes. Hence, the mechanism for the mode interaction presented
in section 4.2.1 must be the interplay between sign changes of G1(y)−G2(y) for
different y and a self-pulsation within at least one of the invariant planes S1 and
S2.

We pointed out in section 4.2.3 that system (4.36), (4.37), (4.38) is a singular
perturbation of the situation G1 = G2. In order to keep the presentation concise,
we consider the following simplified parameter situation:

Firstly, assume that there is a stable self-pulsation within S1 and a stable equilib-
rium O2 within S2. We introduce the nonlinearity in G1(y)−G2(y) by a y2-term
in G2. The coefficient in front of y2 is typically of order δ after rescaling (4.23).
Thus, we introduce the parameters µ and γ and consider

G1(y) = y

G2(y) = y − δ
(
µ+ γy2

)
.
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We study the parameter points (µ, γ) in the vicinity of µ = γ = 0. Secondly, we
set α = 1, R2(y) = 1 and drop the index 1 of R1 to reduce the consideration of the
fast subsystem exactly to the single-mode case studied in section 4.1. Moreover,
let the parameters of R1 be of similar magnitude as in section 4.1, i. e., A = O(1),
yr = O(1) (yr < yr,+), w = O(1). We shift x to xnew = xold + logR(0, r). This
modifies (4.37) such that the system under consideration reads

ẋ = y − δ(1− r)
(
µ+ γy2

)
%(r) (4.42)

ẏ = 1− δ/Iy − (1 + δy)
R(y, r)

R(0, r)
ex. (4.43)

ṙ = δ(µ+ γy2)(r − r2) (4.44)

where

R(y, r) = 1 +
rAδ2w2

(y − yr)2 + δ2w2

%(r) = 1− r∂rR(0, r)/R(0, r).

System (4.42)–(4.44) is singularly perturbed. Its slow variable is the ratio r.
In the singular limit µ = γ = 0, the phase space R3 is foliated by the planes
r = const. The fast subsystem

ẋ = y (4.45)

ẏ = 1− δ

I
y − (1 + δy)

R(y, r)

R(0, r)
ex. (4.46)

is the single mode equation described in section 4.1 in each slice r. The variable
r acts as a parameter in the singular limit and changes the amplitude rA of the
Lorentzian curve R. We have shown in section 4.1 that the attraction rate of
limit cycles or equilibria of (4.45), (4.46) is of order δ. Thus, if µ and γ are small,
the variable r is slow compared to this attraction rate.

For µγ > 0, we have trivial dynamics between S1 and S2 since ṙ has always the
same sign as µ in this case. We consider the case µγ ≤ 0 in the next sections.

4.2.5 Geometric Shape of the Slow Manifold

Let µ = γ = 0. Then, r is constant in time. There is a family E of equilibria
(x = 0, y = 0) of the fast subsystem (4.45), (4.46) parametrized by r. This family
undergoes a Hopf bifurcation if yr ∈ (yr,−, yr,+). The Hopf parameter value is
(according to (4.12))

rh = − 1

A

(y2
r + w2δ2)2(1 + I−1)

w2δ((1 + I−1)δ(y2
r + w2δ2) + 2yr)

=
−y3

r

2δAw2

(
1 + I−1

)
+O(δ). (4.47)
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Figure 4.5: Stable and unstable parts of the slow manifold. The relation between η and
max y is: max y =

√
2η. We denote the fold periodic orbit by Pf . It appears at rf . The

Hopf point is denoted by OH . The parameter values in (4.45), (4.46) are: yr = −0.5,
A = 1, δ = 0.06, w = 2, I = 2.

E is split into a family of stable equilibria Es and unstable equilibria Eu at rh if
rh ∈ (0, 1). Moreover, a branch P of periodic orbits of (4.45), (4.46) emerges at
OH = (x = 0, y = 0, r = rh). The self-pulsation in S1 is the other end of the
branch P. We show a numerically computed example of P in Fig. 4.5. In this
case, the Hopf bifurcation is unstable (subcritical) and the periodic branch has a
fold Pf at r = rf . This fold splits the branch P into an unstable part Pu and a
stable part Ps.

Using the definition (4.13), ϕ, η and r are cylindrical coordinates in the phase
space of system (4.42)–(4.44).

Furthermore, the analysis of section 4.1 has shown that the trajectories of the
fast subsystem (4.45), (4.46) are small perturbations of the level lines η = const
on time-scales of order O(1) in at least the following two constellations:

(C1) rA is sufficiently small. Then, (4.45), (4.46) is a small perturbation of the
weakly damped oscillator ẍ = 1− δ/Iẋ− (1+ δẋ)ex. Hence, all trajectories
of (4.45), (4.46) are perturbations of order max{rA, δ} of the level lines
η = const. The fold point rf is of order

√
δ according to (4.19).

(C2) η has a positive distance from [ηr, ηu(r)] (see (4.14) where A has to be
replaced by rA). Within this region, Corollary 4.4 applies such that the
trajectories of (4.45), (4.46) are perturbations of order O(δ) of the level
lines η = const.

We exploit the proximity of the trajectories to level lines of η and the time-scale
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difference between ϕ̇ and η̇ to perform one more averaging step to eliminate the
rotation along ϕ in section 4.2.6. If (C1) and (C2) are violated (rA of order O(1)
and η in a small environment of [ηr, ηu(r)]), η may increase more rapidly (η̇ may
be of order O(1) and strictly positive).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-2.0

-1.5

-1.0

-0.5

0.0

0.5

(c)

(b)

(a)

r

yr rh

yr,d

yr,−

yr,frf

rh yr,+

Figure 4.6: Continuation of rh and rf with respect to yr. The Hopf line rh is given
by (4.47). The dotted line is the asymptotic approximation of the fold line according to
equation (4.19). The values yr,± are the Hopf parameters of the single-mode system in
S1, yr,f is its fold parameter. For yr = yr,d, the Hopf point rh becomes degenerate. The
sketches beside the bifurcation diagram show how the families E and P look like for (a)
yr ∈ (yr,d, yr,+), (b) yr ∈ (yr,−, yr,d), (c) yr ∈ (yr,f , yr,−). Fig. 4.5 corresponds to case
(b). The parameters A, w, δ and I are as in Fig. 4.5

In order to obtain all possible constellations for E and P, we continuate the Hopf
parameter value rh (using (4.47)) and the fold parameter value rf (numerically, or
using (4.19)) with respect to yr. The bifurcation diagram Figure 4.6 was reported
in [45] for the unscaled single-mode system (4.3), (4.4).

Fig. 4.6 shows three possible generic constellations:

(a) For yr ∈ (yr,d, yr,+), the Hopf bifurcation at rh is stable (supercritical) and
the entire family of periodic orbits is stable (P = Ps).

(b) For yr ∈ (yr,−, yr,d), the Hopf bifurcation at rh is unstable (subcritical) and
the family of periodic orbits P has a fold at rf splitting it into a stable part
Ps and an unstable part Pu.

(c) For yr ∈ (yr,f , yr,−), E and P are not connected anymore. The complete
line of equilibria E is stable such that Theorem 4.6 applies locally around
E . The family of periodic orbits is split by a fold at rf into a stable part
Ps and an unstable part Pu.
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At yr = yr,d, the first Lyapunov coefficient at the Hopf point rh vanishes such
that we have a generalized Hopf bifurcation (Bautin bifurcation) at this point.
We observe that the family of fold periodic orbits emerges there.

4.2.6 Averaging of the Rotation in the Fast Subsystem

We perform another averaging step within the fast subsystem to reduce the di-
mension of the system once more to a two-dimensional system. This allows for
an easy study of the bifurcation scenarios because the objects become much sim-
pler (i. e., periodic solutions become fixed points, invariant tori become periodic
solutions). Thereafter, we have to investigate how the results obtained from the
analysis of the averaged system persist under the fast periodic perturbation.

Let us introduce the new variable z = log(r/(1− r)) ∈ (−∞,∞) (r(z) = ez/(1 +
ez)). Then, z satisfies the differential equation

ż = δ(µ+ γy2). (4.48)

The variables z and r are equivalent between the invariant planes S1 and S2.
In z, x ,y, the phase space of system (4.42), (4.43), (4.48) is the whole R

3 , and
the variables z, η and ϕ are cylindrical coordinates in R3 . The limit r → 1
corresponds to z → ∞, and r → 0 corresponds to z → −∞. We define the
Hopf point of the fast subsystem zh = log(rh/(1− rh)), and the fold point zf =
log(rf/(1− rf)), respectively (see Fig. 4.5).

System (4.42), (4.43), (4.48) induces a first-return map (z̃(z, η), η̃(z, η)) to the
half-plane {ϕ = 0} for η ≥ ηl > 0. In the following Lemma 4.7, we exploit that
η and ϕ operate on different time scales and write an approximate equation for
the first-return map. Beforehand, we introduce the following functions:

Let T (η) be the period of the periodic orbit of the conservative oscillator ẍ = 1−ex

along the level line η (η2 = (ẋ)2/2 + ex − x − 1). Let Y 2(η) be the integral of
(ẋ)2 along this orbit. For simpler calculations, we can approximate T and Y 2 by
their Taylor series:

T (η) = 2π +
π

6
η2 +

π

240
η4 + . . .

Y 2(η) = 2πη2 +
π

12
η4 + . . . .

(4.49)

Let η̃1(r, η) = η+g(r, η) be the first return map of the single mode system (4.45),
(4.46) with r as parameter. Then, we have g(r, 0) = 0. Moreover, we have
obtained an approximation of order O(δ2) of g in section 4.1:

g(r, η)

δ
=− (I−1 + 1)

Y 2(η)

2η

− πrAwyr

2η



[
1− rA

e−x−r −1

]− 1
2

e−x−r − 1
+

[
1 + rA

1−e−x+
r

]− 1
2

1− e−x+
r


+O(δ)

(4.50)
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where x±r = x̃
(
±
√
η2 − y2

r/2
)

and x̃ is defined by (4.16). However, this approxi-

mation is valid only if the difference η− ηu(r) is greater than 0 and of order O(1)
(η2

u(r) = y2
r + (1 + rA)−1 + log(1 + rA)− 1, see (4.14)).

Now, we can approximate the first-return map of system (4.42), (4.43), (4.48) to
the half-plane {ϕ = 0} for η ≥ ηl > 0 with the help of the functions T , Y 2 and g:

Lemma 4.7 Let η ≥ ηl > 0 and z satisfy one of the following two conditions:

1. r(z)A is of order o(1).

2. η has a positive distance of order O(1) from [ηr, ηu(r(z))].

Let h =
√
µ2 + γ2 and δ be sufficiently small. Define δ̃ = max{δ, r(z)A}) in case

1, and, let δ̃ = δ in case 2. Then, we can approximate the first-return map of
system (4.42), (4.43), (4.48) to the half-plane {ϕ = 0, η ≥ ηl} by

z̃(z, η) = z + δ(µT (η) + γY 2(η)) +O(hδδ̃) (4.51)

η̃(z, η) = η + g(r(z), η) +O(hδ). (4.52)

Proof: Let (z(t), η(t), ϕ(t)) be the trajectory starting at (z = z∗, η = η∗ ≥
ηl, ϕ = 0) and T (z∗, η∗, δ, µ, γ) the time for the first return. Denote the trajectory
in the singular limit µ = γ = 0 starting at the same point by (z∗, η1(t), ϕ1(t)) and
its first-return time by T (z∗, η∗, δ, 0, 0), and the periodic orbit of ẍ = 1− ex along
the level line η∗ by ϕ0(t). We use the triangle inequality for these trajectories to
prove (4.51), (4.52).

According to section 4.2.5, we have η1(t)− η∗ = O(δ̃), ϕ1(t)− ϕ0(t) = O(δ̃) and
T (z∗, η∗, δ, 0, 0) − T (η∗) = O(δ̃) if η∗ satisfies condition 1 or 2. Moreover, the
right-hand-side of (4.42), (4.43) is Lipschitz continuous with respect to r, and,
hence, z (uniformly with respect to δ and h). Thus, we get η(t)− η1(t) = O(hδ),
ϕ(t)−ϕ1(t) = O(hδ) and T (z∗, η∗, δ, µ, γ)− T (z∗, η∗, δ, 0, 0) = O(hδ) since ż is of
order O(hδ). This implies (4.52), η(t)−η∗ = O(δ̃) and ϕ(t)−ϕ0(t) = O(δ̃). Since
y(η, ϕ) is Lipschitz continuous with respect to its arguments, the first return map
z̃ is

z̃(z∗, η∗) =

T (z∗,η∗,δ,µ,γ)∫
0

δ(µ+ γy2(η(t), ϕ(t))) dt

=

T (η∗)∫
0

δ(µ+ γy2(η∗, ϕ0(t))) dt+O(hδδ̃).

�

Lemma 4.7 implies for the variable r the first-return map

r̃(r, η) = r + (δ(µT (η) + γY 2(η) +O(hδδ̃))r(1− r). (4.53)
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Moreover, we observe that the first-order averaged equations for z and η

ż =
δ

2π
(µT (η) + γY 2(η)) (4.54)

η̇ =
1

2π
g(r(z), η) (4.55)

have asymptotically (up to order O(δ̃)) the return map (4.51), (4.52) within the
region where the conditions 1 and 2 of Lemma 4.7 are satisfied. Hence, within
this region we can consider the averaged equations (4.54), (4.55) instead of the
first-return map.

The averaged equation for r reads (according to (4.54))

ṙ =
δ

2π
(µT (η) + γY 2(η))r(1− r). (4.56)

4.2.7 Discussion of the Two-dimensional System

We are now in the position to analyse the averaged system (4.55), (4.56) (or
(4.54)) completely. We distinguish several cases depending on the geometric
shape of the root curve of g(r, η). This root curve coincides with the families
of equilibria and periodic orbits of the fast subsystem shown in Fig. 4.5 for a
particular set of parameters. Hence, the curve {(r, η) : g(r, η) = 0} is depicted
in Fig. 4.5, and we have outlined in Fig. 4.6 how the shape of this curve may
look like in principle. Since we do not know the complete curve analytically, our
bifurcation analysis is in part only qualitative. The curve g(r, η) = 0 has several
branches (denoted by Pu,s and Eu,s in Fig. 4.5). We refer to the stability of these
branches according to the stability of the corresponding fixed point or periodic
orbit in the fast subsystem.

Invariant Lines System (4.55), (4.56) has the invariant lines η = 0, r = 1 and
r = 0 (the planes S1 and S2 in system (4.42), (4.43), (4.44)). The direction of
motion is described correctly along η = 0 according to Theorem 4.6. The stability
is also described correctly if we are not in the vicinity of rh. Generally, we have
perturbed invariant curves Ẽs (for r < rh) and Ẽu (for r > rh) in the vicinity of
η = 0 which are split near rh in system (4.42)–(4.44).

The motion near the invariant lines r = 0, r = 1 is described correctly, since the
approximation error for the motion of r is of order O(hδδ̃) · r(1− r) (see (4.53)).

Transition of Stability from or to Single-mode Planes — Parametric
Families of Equilibria System (4.55), (4.56) has the equilibria O1 = (r =
1, η = 0) and O2 = (r = 0, η = 0). If µ > 0, O1 is stable along the line η = 0,
and O2 is unstable along η = 0 (vice versa if µ < 0). O2 is stable along r = 0,
and O1 is unstable along r = 1 if yr > yr,− and stable if yr < yr,− (see Fig. 4.6).
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Moreover, we have a fixed point P1 = (r = 1, η = ηs) corresponding to the self-
pulsation in S1 where the stable branch of the root curve g(r, η) = 0 intersects the
line r = 1 (i. e. g(1, ηs) = 0). P1 is stable along r = 1. The stability transversal
to r = 1 is determined by the linearization of (4.56). We obtain the following
corollaries using that ∂rg(r, η) > 0 for all r ∈ [0, 1] and ∂ηg(r, η) < 0 for (r, η) in
the vicinity of P1:

Corollary 4.8 Consider µ and γ within a sufficiently small ball of radius h
around (0, 0) in the parameter plane of (µ, γ). A line T of transcritical bifur-
cations through (0, 0) tangent to {µT (ηs)+γY 2(ηs) = 0} is the stability boundary
for P1. For µ > 0, γ < 0, P1 passes its stability to a fixed point Pr with r < 1
which becomes stable. For µ < 0, γ > 0, P1 passes its instability to a fixed point
Pr with r < 1 which becomes unstable and separates the stable equilibrium O2 and
the stable fixed point P1.

The stability follows immediately from the linear stability analysis at the fixed
points P1 and Pr, respectively.

Moreover, we can exploit that Y 2(η)/T (η) is monotone increasing and that the
equation g(r, η) = 0 is uniquely solvable w. r. t. r for all η ∈ (0, ηs) to obtain:

Corollary 4.9 Let µ and γ be within a sufficiently small ball of radius h around
(0, 0) in the parameter plane of (µ, γ).

(1) Assume that the root curve of g connects P1 and the invariant line η = 0.
Then, for each pair (µ, γ) with −µ/γ ∈ (0, Y 2(ηs)/T (ηs)), we have exactly
one fixed point P with r ∈ (0, 1) and η ∈ (0, ηs).

(2) Assume that the root curve of g connects P1 and another fixed point P ′
1

at η = ηi on the invariant line r = 1. Then, for each pair (µ, γ) with
−µ/γ ∈ (Y 2(ηi)/T (ηi), Y

2(ηs)/T (ηs)), we have exactly one fixed point P
with r ∈ (0, 1) and η ∈ (ηi, ηs).

Case (1) corresponds to the shapes (a) and (b) of the root curves of g shown in
Fig. 4.6, case (2) corresponds to shape (c). However, Corollary 4.9 depends on
our specific choice of the nonlinearity of G1 − G2. A fixed point with r ∈ (0, 1)
is hyperbolic if it is situated on the hyperbolic parts of the branches of the curve
g(r, η) = 0 (i. e., not in the vicinity of the fold Pf or the branch point OH as
shown in Fig. 4.5) since η is fast compared to r there.

The transcritical bifurcation and the family of fixed points branching from P1

persist under the periodic perturbation to system (4.42), (4.43), (4.44) since P1 is
located within the region where Lemma 4.7 applies. Indeed, Corollary 4.8 follows
directly from the approximation of the first-return map (4.52), (4.53). We can use
the approximation (4.50) for g(r, η) to approximate the corresponding periodic
orbits of (4.42), (4.43), (4.44).
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Figure 4.7: Comparison between the averaged approximations and the numerically com-
puted periodic solutions of system (4.42)–(4.44) for varying µ between 0 and the tran-
scritical bifurcation value for γ = −1.88 and γ = 0.73: The dotted lines correspond to
the predictions solving g(r, η) = 0, µT (η) + γY 2(η) = 0 using (4.49) and (4.50). The
solid and dashed lines show the numerically obtained periodic orbits of system (4.42)–
(4.44) (solid means stable, dashed unstable). We show the predicted maximum of the
y-component (which corresponds to

√
2η in the solution of (4.55), (4.56)) and r. Since

r is not constant in time for the numerical solutions of (4.42)–(4.44) we report r̃ =
∮
r)

for comparison.

Stability near Supercritical Hopf Point The previous paragraph has shown
that fixed points of the averaged system (4.55), (4.56) with r ∈ (0, 1) may change
their stability only near the degenerate points of the curve g(r, η) = 0, i. e. near
the branching point OH = (r = rh, η = 0) or near the fold Pf = (r = rf , η = ηf ).

Firstly, let us consider the case (a) of Fig. 4.6 and µ > 0: g(r, η) does not have a
fold, its branching point corresponds to a supercritical Hopf bifurcation, and its
entire branch is stable for η > 0. According to Corollary 4.9, we obtain a family
of fixed points Pr = (r, η) on this branch for varying ratio −µ/γ. These fixed
points are stable if η is not small, i. e., Pr is not in the vicinity of OH .

For small η we can expand the function g(r, η) near OH dropping higher order
terms of η:

g(z, η) = δη(z − aη2)

where we use the coordinate z instead of r for convenience, shift z by zh (such
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that OH = (z = 0, η = 0)), and assume a > 0 (supercriticality). Moreover, we
drop all terms of order O(η4) or greater in T (η) and Y 2(η) ending up with an
approximation for the vicinity of OH :

η̇ = η(z − aη2) (4.57)

ż = (µ+ (γ + µ/12)η2) = µ(1− λ−1η2) (4.58)

introducing the parameter λ = −(γ/µ+1/12)−1 > 0 and changing the time-scale
to tnew = δtold. This system has an equilibrium at P = (z = aλ, η =

√
λ). The

Jacobian of (4.57), (4.58)

JP =

(
−2aλ

√
λ

−2µ/
√
λ 0

)
has a pair of stable complex eigenvalues for sufficiently small λ. Their decay rate
is aλ.

In the case µ < 0, the fixed points on the branch g(r, η) = 0 are saddles. We can
use the same asymptotic model near OH as for the case µ > 0. The determinant
of the Jacobian det(JP ) = 2µ is negative implying that the fixed points remain
saddles near OH .

Appearance of Limit Cycles near Fold Next, we consider the cases (b)
and (c) outlined in Fig. 4.6 for the shape of the curve g(r, η) = 0, and µ > 0.
Then, the fixed point Pr = (r, η) on the stable branch of g(r, η) = 0 is stable
for decreasing −µ/γ (and η) until it approaches the vicinity of the fold point
Pf = (rf , ηf). Due to Corollary 4.9 the family continues through the fold point
to the unstable branch of g(r, η) = 0. For −µ/γ < Y 2(ηf)/T (ηf) and η < ηf , the
fixed point is unstable in both directions. Hence, the fixed point must loose its
stability in the vicinity of the fold through a Hopf bifurcation.

Again, we can expand the function g near Pf dropping higher order terms of
η − ηf :

g(z, η) = z − b · (η − ηf )
2

where we use again the variable z shifted by zf (such that Pf = (0, ηf)) and
assume b > 0 (fold turns to the right). Then, the fixed point P = (z, η) has the
form z = b(η − ηf )

2 where Y 2(η)/T (η) = −µ/γ. The Jacobian in P is

JP =

(
−2b(η − ηf) 1

δ(µT ′(η) + γ(Y 2)′(η)) 0

)
where µT ′(η) + γ(Y 2)′(η) < 0. The eigenvalues become complex for η in a very
small neighborhood of ηf (since δ is small) and change their sign at η = ηf

implying a Hopf bifurcation.

This situation has been studied extensively in e. g. [1] [3], [4], with special regard
to the slow-fast character of the system (z is slow, η fast in our case). It is
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typically referred to as singular Hopf bifurcation since the branch of periodic
solutions is almost vertical. The small-amplitude periodic solutions are called
Canard solutions as they follow the unstable branch of g(r, η) = 0. Moreover,
the stability and the position of the Canard periodic orbits is difficult to determine
due to the verticality of the branch.

There is no bifurcation near the fold Pf in the case µ < 0: The determinant of
JP is negative, since µT ′(η) + γ(Y 2)′(η) > 0 for η ≈ ηf . Hence, the family of
fixed points consists of saddles along the entire curve g(r, η) = 0 (for η > 0).
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Figure 4.8: Families of periodic orbits between the invariant planes r = 0 and r = 1.
The parameters are yr = −0.5, A = 1, I = 2, w = 2, δ = 0.06.

The results of this paragraph imply the existence of a torus bifurcation in system
(4.42), (4.43), (4.44) near Pf for µ > 0. The conditions of Lemma 4.7 are
satisfied if rA is of order o(1). Then, the averaged system is an approximation
of order o(1). We get a crude approximation of the torus bifurcation if we insert
ηf = ηr = yr/

√
2 for the location of the fold in phase space (as in section 4.1)

and obtain −µ/γ = Y 2(yr/
√

2)/T (yr/
√

2). Since the Hopf bifurcation in the
averaged system is nearly vertical, the torus bifurcation must be almost vertical,
too. For µ < 0, γ > 0, we can deduce that the family of saddle periodic orbits
near g(r, η) = 0 continues through the fold.

Note that the averaged system (4.55), (4.56) can not be used to determine the
behavior on the vertical branch from the torus bifurcation (neither the position
in phase space nor the normal hyperbolicity of the tori). The averaged equations
approximate system (4.42)–(4.44) up to order O(δ̃) whereas the parameter region
for the solutions of the vertical branch is exponentially small.

We computed the family of periodic orbits corresponding to fixed points along
the branch g(r, η) = 0 numerically for varying −µ/γ. The results are depicted in
Fig. 4.8.

Continuation of the Families of Limit Cycles in Case (b) If the shape of
the root curve of g is as depicted in Fig. 4.6 (b), system (4.42)–(4.44) coincides
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Figure 4.9: Bifurcation diagram for µ and γ for case (b) of Fig. 4.6. The crosses are
the numerically computed transcritical bifurcations of the self-pulsation in S1. (AUTO
cannot continuate transcritical bifurcations.) The dotted line T is the asymptotic line
µT (ηs)+γY 2(ηs) where g(1, ηs) = 0 using the approximations (4.49), (4.50). The solid
line T2 is the numerically computed line of torus bifurcations. The dotted line nearby
is the approximation assuming that the fold Pf is at the level ηr = yr/

√
2, and that the

torus bifurcation is at the fold. The dashed lines are the cuts through the parameter
plane presented in Fig. 4.8. The sketches below the diagram depict the averaged system
(4.55), (4.56) (as in Fig. 4.5). The fast motion of η is shown by double arrows and the
slow drift along the curve g(r, η) = 0 as simple arrows. Sketch (2a) corresponds to the
subcritical elliptic bursting.

with the situation investigated in [24], [25]. The branch becomes a family of
relaxation oscillations after its vertical part for −µ/γ ∈ (0, Y 2(ηf )/T (ηf)). These
relaxation oscillations pass periodically through the branch point OH = (r =
rh, η = 0) of g(r, η) along the invariant line η = 0 with increasing r and through
the fold point Pf = (rf , ηf) with decreasing r (see Fig. 4.9 sketch (2a)). The
trajectory is subject to a delayed loss of stability near OH in each period of its
oscillation. There must exist corresponding oscillations in system (4.42)–(4.44)
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which are typically referred to as subcritical elliptic bursting. The passage through
OH is in fact a slow passage through a Hopf bifurcation.

For this kind of “dynamic Hopf bifurcations”, it has been shown in [32] how the
location of the departure from η = 0 depends on the location of the approach to
η = 0 for analytical systems. In particular, it was demonstrated (also in [5]) that
the departure may be at a distance of order O(1) from rh (Slow Passage Effect).
However, this effect is extremely sensitive to non-smooth perturbations [32] or
noise [5], [25]. Hence, it is not reflected correctly in the averaged system where
we have always a delayed loss of stability.

Consequently, the torus corresponding to the oscillation of the averaged sys-
tem does not need to be a quantitatively good approximation of the bursting
type solution. A canonical model for systems like (4.42)–(4.44) and a shape of
{g(r, η) = 0} as in Fig. 4.6 case (b) has been derived in [25] by perturbation
analysis in the vicinity of the generalized Hopf point (see Fig. 4.6). The ampli-
tude equations of [25] have the same structure as (4.54), (4.55). It was pointed
out that this structure implies the existence of subcritical elliptic bursting which
is a frequently observed phenomenon in the dynamics of neurons.

Continuation of the Families of Limit Cycles in Case (c) If the shape of
the root curve of g is as depicted in Fig. 4.6 (c), the family of periodic orbits of the
averaged system ends in a homoclinic bifurcation at the saddle P ′

1 (corresponding
to the unstable limit cycle in the invariant plane S1 of system (4.42)–(4.44)).
Since, the branch is nearly vertical with respect to the parameter −µ/γ, this
homoclinic bifurcation happens immediately nearby the Hopf bifurcation.

As in case (b) , the averaging approximation is not sufficiently precise to allow
conclusions about the behavior of system (4.42)–(4.44) in this tiny parameter
region. However, we know that the torus bifurcation exists, and that only O1

is stable for −µ/γ less than the torus bifurcation value already at a very small
distance.

4.2.8 Generalization and Interpretation of the Bifurcation
Diagram regarding the Original Quantities

We can use the results of section 4.2.7 to explain the mechanisms behind the
scenarios shown for motivation in section 4.2.1.

First, we want to mention that the procedure of the section 4.2.4–4.2.7 can be
generalized to arbitrary nonlinearities of G1(y) − G2(y) in (4.36) and to other
shapes of the manifold of periodic orbits P of (4.37), (4.38). If we consider the
general fast subsystem (4.37), (4.38) as a small perturbation of the conservative
oscillator

ẋ = rG1(y) + (1− r)G2(y)

ẏ = 1− rex − (1− r)αeαx
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with the conserved quantity η(r, x, y)2, the periodic orbits are approximately
equilibria of an averaged equation η̇ = g(r, η) similar to (4.55). For each level
line η, we may define the function

F (η) =
1

2π

∫ T (η)

0

G1(y(ϕ(t)))−G2(y(ϕ(t))) dt (4.59)

which is assumed to be small compared to g. Then, we can study the general
averaged system

η̇ = g̃(η, r)

ṙ = F (η)r(1− r)
(4.60)

where g̃ may differ slightly from g because the level lines η can depend on r. We
obtain approximations for periodic orbits of the general system (4.36)–(4.38) and
their stability by investigating the equilibria of (4.60). In general, we can not
expect that equilibria of (4.60) are always unique (in contrast to Corollary 4.9).
However, we can conclude:

Corollary 4.10 Let µ be an arbitrary parameter, let P1 = (r = 1, η = η1)
be a self-pulsation in the invariant plane r = 1. P1 undergoes a transcritical
bifurcation at µ = µ0 if F (η, µ) changes its sign in η1 at µ = µ0. P1 gains
stability if the sign-change is from − to +. It looses stability otherwise. We have
a hyperbolic fixed point (r(µ), η(µ)) for r < 1 and µ ≈ µ0 if ∂rg̃(1, η1) 6= 0 and
∂ηF (η1) 6= 0.

This transcritical bifurcation is the mechanism for the appearance of the scenar-
ios (T2) and (T3) presented in section 4.2.1. The self-pulsation is actually an
invariant 2-torus in the full two-mode model (4.22) as well as in the PDE system
(3.2), (3.4). However, this torus is invariant with respect to rotation x → xeiϕ.
Hence, we may eliminate this degree of freedom and treat the self-pulsation as
a periodic orbit. Then, the transcritical bifurcation of Corollary 4.8 or 4.10 is
a torus bifurcation from the self-pulsation. The emerging torus (an invariant
3-torus in the original coordinates) is stable and visible in regime (T3) of section
4.2.1 and it is unstable in scenario (T2). In (T2), the unstable torus separates
the stable regions such that stable on-states and self-pulsations at the different
ends of the stopband (i. e., in the invariant planes r = 0 and r = 1) coexist.

The solutions of bursting type (i. e., relaxation oscillations in the averaged sys-
tem (4.55), (4.56)) would correspond to invariant 4-tori if they were persistent.
However, the bursting solution is known to be very sensitive to non-analytic per-
turbations. But the bursting behavior, i. e., the slow drift back and forth between
the two ends of the stopband, must be also present in the full two-mode system
(4.22) and, hence, in the PDE system (3.2), (3.4).
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Appendix A

Physical Interpretation of the
Traveling-Wave Equations —
Discussion of Typical Parameter
Ranges

A.1 Physical Interpretation of the Model

System (2.1)-(2.3) is well-known as a traveling wave model describing longitudinal
dynamical effects in semiconductor lasers [9], [30], [43]. Results of numerical
computations have been presented in [6], [8], [9], [10], [36].

The traveling wave equations (2.1), (2.2) describe the complex optical field E in
a spatially modulated waveguide:

E(~r, t) = E(x, y) · (ψ1(t, z)e
iω0t− π

Λ
z + ψ2(t, z)e

iω0t+ π
Λ

z).

The complex amplitudes ψ1,2(t, z) are the longitudinally slowly varying envelopes
of E. The transversal space directions are x and y, z is the longitudinal direc-
tion, and ~r = (x, y, z). For periodically modulated waveguides, Λ is longitudinal
modulation wavelength. The central frequency is ω0/(2π), and E(x, y) is the
dominant transversal mode of the waveguide.

The equations (2.1), (2.2) for an uncoupled waveguide (κ = 0) and a mono-
chromatic light-wave in forward direction eiωtψ1(z) lead to a spatial shape of the
power |ψ1|2 according to

∂z|ψ1(z)|2 = (2 Reβ(z) + 2 Reχ(iω, z))|ψ1(z)|2 (A.1)

where

χ(iω, z) =
ρ(z)Γ(z)

iω − iΩr(z) + Γ(z)
. (A.2)
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2 Reχ(iω, z)) is a Lorentzian intended to fit the gain curve of the waveguide
material (see Fig. A.1). Hence, system (2.1), (2.2) produces gain dispersion, i. e.,

2/((x-1)*(x-1)+1)

0

Γ

2ρ

ρ

Ωr
ω

Figure A.1: Shape of the Lorentzian 2Reχ(iω) for ω ∈ R and visualization of its
parameters (see Table A.1)

the spatial growth rate of the wave eiωtψ(z) depends on its frequency ω. The
variable p(t, z) reports the internal state of the gain filter. See [9], [40] for more
details. The Lorentzian gain filter is also used by [2], [30], [33].

The equation (2.3) is a simple rate equation for the spatially averaged carrier
density. It accounts for the current I, the spontaneous recombination −nk/τk,
and the stimulated recombination.

A.2 Scaling of the Variables

In order to obtain the dimensionless quantities used in (2.1)-(2.3) and their pos-
sible ranges we have to scale the time t and the spatial variable z such that the
coefficient in front of ∂zψ is ∓1. Moreover, z is scaled such that l1 = 1. The
carrier density nk in the section Sk is measured in multiples of the transparency
carrier density (i. e. such that Gk(1) = 0 for k ∈ Sa). See table A.1 for typical
ranges of the quantities and [21] for further explanations.
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typical range explanation
ψ(t, z) C

2 optical field,
forward and backward traveling wave

i · p(t, z) C 2 nonlinear polarization
for the forward and backward traveling wave

nk(t) (n,∞) spatially averaged carrier density in section Sk

Im dk R frequency detuning
Re dk < 0, (−10, 0) internal losses
αH,k (0, 10) negative of line-width enhancement factor
gk ≈ 1 differential gain in active sections
κk (−10, 10) real coupling coefficients for the optical field ψ

ρk [0, 1) ρk is maximum of the gain curve
Γk O(102) half width of half maximum of the gain curve
Ωr,k O(10) resonance frequency
Ik O(10−2) current injection in section Sk

τk O(102) spontaneous lifetime for the carriers
P (0,∞) scale of (ψ, p) (can be chosen arbitrarily)

r0, rL C , |r0|, |rL| < 1 facet reflectivities
α(t) C optical input signal,

potentially discontinuous in time

Table A.1: Ranges and explanations of the variables and coefficients appearing in (2.1)-
(2.8). See also [9], [40] to inspect their relations to the originally used physical quantities
and scales.
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Appendix B

Normally Hyperbolic Invariant
Manifolds

In this appendix, we give a general definition of normal hyperbolicity applying to
a general C1 smooth manifold which is invariant with respect to some semiflow.
Subsequently, we state the theorems on existence and persistence of invariant
manifolds and invariant foliations for semiflows in Banach spaces as they can be
found in [12], [13]. They are the basis for Theorem 3.7. However, we used the
results on the persistence of normally hyperbolic invariant manifolds also in the
well-known context [20], [50] of ordinary differential equations in chapter 4.

General Notation
Let X be a Banach space, and T (t; x) be a C1 semiflow on X; that is T (t; x)
is continuous in t and x for t ≥ 0, T (t; ·) : X → X is C1 and T (t + s; x) =
T (t;T (s; x)) for all t, s ≥ 0 and x ∈ X.

Let M ⊂ X be a C1 connected T -invariant manifold, i. e., T (t;M) ⊂ M for
each t ≥ 0. Denote the tangent bundle on X restricted to M by TX|M and the
linearized semiflow by DT (t) : TX → TX.

Definition B.1 M is said to be normally hyperbolic, if there exists a continuous
decomposition of TX|M into subbundles

T |M = Xc ⊕Xs ⊕Xu for m ∈M (B.1)

of closed subspaces (fibers) Xc,u,s(m) with the following properties:

1. Xc is the tangent bundle of M .

2. The subbundles Xc,u,s are invariant under DT , i. e.: Let m ∈ M , m1 =
T (t;m) and t ≥ 0. Then,

[DT (m)](t)|Xα(m) : Xα(m) → Xα(m1) for α = c, u, s

and [DT (m)](t)|Xu(m) is an isomorphism from Xu(m) onto Xu(m1).
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3. Xc,u,s are distinguished by an exponential trichotomy, i. e., there exists a
λ < 1 and a t0 ≥ 0 such that we have for all m ∈ M and t ≥ t0

λ inf
xu∈Xu

‖xu‖=1

‖[DT (m)](t)xu‖ > max
{
1, ‖[DT (m)](t)|Xc(m)‖

}
λmin{1, inf

xc∈Xc

‖xc‖=1

‖[DT (m)](t)xc‖} > ‖[DT (m)](t)|Xs(m)‖

Remark: We may replace the Banach space X by a smooth manifold in the
finite-dimensional context [20].

The main statements of [12], [13] can be summarized as follows:

Theorem B.2 (Persistence) Suppose M is a C1 compact connected normally
hyperbolic invariant manifold with respect to T (t; ·). Let t1 > 0 be fixed and N be
a fixed neighborhood of M .

Then, there exists a σ > 0 such that if T̃ (t; x) is a C1 semiflow inX which satisfies
‖T̃ (t1; ·) − T (t1; ·)‖C1(N) < σ, then T̃ has a C1 normally hyperbolic invariant

manifold M̃ which converges to M in the C1 topology if ‖T̃ (t1; ·)− T (t1; ·)‖C1(N)

tends to 0.

Theorem B.3 (Center-stable and center-unstable manifolds)
Suppose M is a C1 compact connected normally hyperbolic invariant manifold
with respect to a C1 semiflow T (t; ·). Let t1 > t0 be fixed and N(ε) be a sufficiently
small tubular neighborhood of M .

T has unique C1 invariant manifolds W cs(ε) and W cu(ε) in N(ε) of M with the
following properties:

1. M = W cs(ε) ∩W cu(ε).

2. W cs(ε) and W cu(ε) are tangent to the center-stable vector bundle Xc ⊕Xs

and the center-unstable vector bundle Xc ⊕Xu of M , respectively.

3. T (t;W cs(ε))∩N(ε) ⊂W cs(ε). T (t;W cs(ε)) converges to M as t→∞, and

W cs(ε) = {x ∈ N(ε) : T (kt1; x) ∈ N(ε) for all k > 0.}

4. T (t1;W
cs(ε)) ⊂W cs(ε);

5. T (t1; ·) : W cu(ε) ∩ (T (t1; ·))−1(W cu(ε)) → W cu(ε) is a diffeomorphism. If
we define T (−t; ·) on W cu(ε) in this way, then T (−t;W cu(ε)) converges to
M as t→∞ and

W cu(ε) = {x ∈ N(ε) : for all k > 0, there exists a yk ∈ N(ε)

satisfying T (kt1; yk) = x}
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Theorem B.4 (Invariant foliations in center-stable manifold)
For small ε, there exists a unique family of C1 submanifolds {W ss

m (ε) : m ∈ M}
of W cs(ε) satisfying:

1. For each m ∈ M , M ∩W ss
m (ε) = {m}, the tangent space TmW

ss
m (ε) = Xs

m

varies continuously with respect to m on M .

2. If m1, m2 ∈ M and m1 6= m2, then W ss
m1

(ε) ∩W ss
m2

(ε) = ∅ and W cs(ε) =⋃
m∈M W ss

m (ε).

3. For all m ∈M , T (t1;W
ss
m (ε)) ⊂W ss

T (t1;m)(ε).

4. For all m ∈M and t > 0, T (t;W ss
m (ε)) ∩N(ε) ⊂W ss

T (t;m)(ε).

5. For x ∈W ss
m (ε) and m 6= m1 ∈M , we have

‖T (t; x)− T (t;m)‖
‖T (t; x)− T (t;m1)‖

→ 0 exponentially as t→ +∞.

6. For x, y ∈W ss
m (ε), ‖T (t; x)− T (t; y)‖ → 0 exponentially as t→∞.

Theorem B.5 (Invariant foliations in center-unstable manifold)
For small ε, there exists a unique family of C1 submanifolds {W uu

m (ε) : m ∈ M}
of W cu(ε) satisfying:

1. For each m ∈ M , M ∩W uu
m (ε) = {m}, the tangent space TmW

uu
m (ε) = Xu

m

varies continuously with respect to m on M .

2. If m1, m2 ∈ M and m1 6= m2, then W uu
m1

(ε) ∩W uu
m2

(ε) = ∅ and W cu(ε) =⋃
m∈M W uu

m (ε).

3. For all m ∈ M , T (t1; ·) : W uu
m (ε) ∩ T (t1; ·)−1W uu

T (t1;m)(ε) → W uu
T (t1;m)(ε) is a

diffeomorphism.

4. For x ∈ W uu
m (ε), if T (t; x) ∈ N(ε) for all t ∈ (0, t2) for some t2, then

T (t; x) ∈W uu
T (t;m)(ε) for t ∈ (0, t2).

5. For x ∈W uu
m (ε) and m 6= m1 ∈M , we have

‖T (−t; x)− T (−t;m)‖
‖T (−t; x)− T (−t;m1)‖

→ 0 exponentially as t→ +∞.

6. For x, y ∈W uu
m (ε), ‖T (−t; x)− T (−t; y)‖ → 0 exponentially as t→ +∞.
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The proofs of these theorems can be found in [12], [13] under the additional
assumption:

(H) The mapping Πα
· (α = c, u, s) from M ⊂ X → L(X) defined by m→ Πα

m is
C1 where Πα

m are the invariant projections associated to the decomposition
(B.1).

This assumption is ensured by, e. g., M ∈ C2. The authors of [12], [13] refer to
[14] for proofs where the assumption M is C2 can be relaxed to require only C1.

71



Bibliography

[1] V. I. Arnold, V. S. Afrajmovich, Y. S. Ill’yashenko, and L. P. Shil’nikov.
Bifurcation Theory, volume V of Dynamical Systems. Springer Verlag, 1994.

[2] E. A. Avrutin, J. H. Marsh, and J. M. Arnold. Modelling of semiconductor-
laser structures for passive harmonic mode locking at terahertz frequencies.
Int. J. of Optoelectronics, 10(6):427–432, 1995.

[3] S. M. Baer and T. Erneux. Singular Hopf Bifurcation to Relaxation Oscil-
lations. SIAM J. on Appl. Math., 46:721–730, 1986.

[4] S. M. Baer and T. Erneux. Singular Hopf Bifurcation to Relaxation Oscil-
lations II. SIAM J. on Appl. Math., 52:1651–1664, 1992.

[5] S. M. Baer, T. Erneux, and J. Rinzel. The slow passage through a Hopf
bifurcation: delay, memory effects, and resonances. SIAM J. on Appl. Math.,
49:55–71, 1989.

[6] U. Bandelow. Theorie longitudinaler Effekte in 1.55 µm Mehrsektions DFB-
Laserdioden. PhD thesis, Humboldt-Universität Berlin, 1994.

[7] U. Bandelow, M. Radziunas, V. Tronciu, H.-J. Wünsche, and F. Hen-
neberger. Tailoring the dynamics of diode lasers by dispersive reflectors.
In Proceedings of SPIE, volume 3944, pages 536–545, 2000.

[8] U. Bandelow, L. Recke, and B. Sandstede. Frequency regions for forced
locking of self-pulsating multi-section DFB lasers. Opt. Comm., 147:212–
218, 1998.

[9] U. Bandelow, M. Wolfrum, J. Sieber, and M. Radziunas. Impact of Gain
Dispersion on the Spatio-temporal Dynamics of Multisection Lasers. IEEE
J. of Quant El., 37(2):183–189, 2001.

[10] U. Bandelow, H. Wünsche, B. Sartorius, and M. Möhrle. Dispersive self
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