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Introduction

Flow reactors are used in many applications in industry and research. Complex
interactions in the reactor, such as superposition of convection and diffusion
processes with chemical reactions in the gas phase or at the walls, make it
difficult for experimental data to be correctly interpreted. By means of a
detailed numerical simulation, these various effects can be distinguished and
the interacting processes occurring within reactive mixing flows are easier to
understand.

Air Flux

Zone of /

Fuel Flux Mixing l

Air Flux

Figure 1: Flow reactor made of an inner and an outer tube where two gases
enter and get in contact at the outlet of the central tube.

Thus the main interest in the simulation of flow reactors is the comprehension
of the complex interplay between flow, mixing processes and reaction processes.
To describe the chemical and physical processes taking place in reactive flows,
many chemical species are to be considered with often a few hundred elemen-
tary reactions. Considering the equations for velocities, pressure, temperature,
and each species, the system of PDEs modelling the reactive flow contains usu-
ally between 10 and 50 equations and is highly non-linear. The leading terms
in these equations may vary in space and time. In the reaction zones, the
system may become reaction-dominated through stiff source terms. In other
parts of the domain where chemical reactions are weak, either the convection
terms (by high Reynolds number) or the diffusive terms (as in non-reactive
boundary layers) may be predominant.
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Several methods for the simulation of reactive flows have already been imple-
mented, usually based on finite difference or finite volume discretizations on
tensor product meshes (see for instance [18], [55]). A code based on finite differ-
ences has recently been applied to the simulation of a low-pressure flow reactor
for kinetic studies in [46], in order to improve existing methods (as plug-flow
techniques) for evaluating data from isothermal flow kinetic measurements. Tt
has been developed for the low Mach-number regime and makes use of splitting
techniques for variables and spatial dimensions thereby reducing the compu-
tational effort. Numerical results of full reactive flow simulation have been
compared with the measurement of elementary relaxation and vibrational en-
ergy transfer processes. As a model system for a simple kinetic process the
heterogeneous relaxation of vibrationally excited hydrogen (Hy(v” = 1)) and
its energy transfer in collisions with deuterium (Dsy(v” = 0)) was considered
(see Chapter 6):

Hy(v" =1) wall , H,(v" =0),
Hy(W"=1)4+Dy(v" =0) _____, Hy(v" =0)+ Dy(v" =1).

This made it possible to evaluate species wall deactivation probabilities and
reaction rate constants for vibrational energy transfer. However, this simula-
tion did not bring enough information about the precision on the computed
quantities, which could assure that the error done on these quantities was lower
than a given tolerance. Nor did the tensor-product mesh allow to efficiently
control the accuracy of the calculation locally in the zones of the flow tube
that were of interest. Moreover, due to some instabilities in the method, it
was necessary to use pseudo-time stepping to obtain steady solutions, which
could have been avoided in some cases.

In order to eliminate these weaknesses and achieve better accuracy in the
solution with reasonable computational effort, we develop in this work a new
method for the simulation of chemical flow reactors with precise evaluation
of some physical quantities. We derive this method from recent techniques
for adaptive mesh refinement which allows to reduce the numerical effort and
nevertheless achieve good or even better accuracy in the data that may be of
interest compared to a straightforward tensor product approach. This makes
possible on the one hand to simulate flow reactors on simple workstations
or PCs without any compromise with respect to the quality of the computed
solution, and on the other hand, on super-computers, to reach an accuracy that
could not be achieved on simple tensor product meshes or on locally adapted
meshes constructed according to ad hoc criteria, usually justified on physical
grounds, whose impact on the accuracy of the numerical solution is difficult to
assess.

Chapter 1 discusses the dimension reduction of the computational domain.
For the simulation of circular flow tubes assuming an axial symmetry, it is
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sufficient to consider only half of an meridional section of the tube to describe
the reactive flow. We discuss here problems invariant under rotation, and the
derivation of weighted Sobolev spaces needed in the weak formulation of the
system to be solved.

The model considered consists of the compressible Navier-Stokes equations
with additional convection-diffusion-reaction equations for the chemical species.
The goal is the simulation of stationary or quasi-stationary reactive flows at
low Mach number for the evaluation of kinetic reaction parameters as well as
process optimization of chemical reaction systems in flow reactors. The com-
plete model for multispecies flows is presented in Chapter 2 and then restricted
by simplifying the diffusive part of the species transport as well as taking into
account the low-Mach number flow state, in order to make fast computations
possible without too much loss in the model accuracy according to the physics.
The reaction model is also presented and the form of the chemical source terms
is discussed. Further the physical constraints on the model are explained.

The discretization of the equations is discussed in Chapter 3. We use a finite el-
ement method based on bilinear elements defined on rectangles (¢); elements).
The standard Galerkin discretization using (); elements is not stable and has
to be stabilized. Details are given about the pressure stabilization and the
streamline diffusion methods for steady and unsteady compressible flows at
low Mach number.

The highly non-linear system obtained requires very efficient numerical meth-
ods. Therefore a robust non-linear solver is needed. A defect correction method
with step size control is developed by approximating the Newton matrix. The
degree of approximation required is assessed according to consistence and solv-
ability of the corresponding linear systems.

In Chapter 4 the solver is described. The outer iteration is based on defect
correction and the inner large linear problems are solved by an iterative method
GMRES with the help of a multigrid method as preconditioner. GMRES and
multigrid methods are among the most efficient modern techniques for solving
large scale algebraic systems resulting from finite element discretizations of
PDEs. The multigrid method needs an appropriate smoother for reactive flow
problems on locally refined meshes. The development of a Vanka smoother
for the Navier-Stokes part of the system and the use of Gauss-Seidel or ILU
smoothing for the chemical part lead to an efficient and robust method.

Another important part of this work deals with error control and mesh adap-
tivity. The aim is to achieve reliability in the sense that physically relevant
derived quantities, which can be thought of as functionals of the solution, are
approximated to within a given tolerance. The use of duality arguments leads
to the control of the error in functionals of the solution, which can be quanti-
ties such as point values of the temperature or line averages of mass fractions
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(which corresponds to a CARS signal for instance, see Chapter 6). The mesh
adaptivity based on an a posteriori error estimate gives us the possibility to
refine the mesh locally only in the zones where it is necessary in order to com-
pute these quantities with the required accuracy. We treat this problem of
adaptivity and accurate quantity computations in Chapter 5. The concept of
error estimation for functionals of the solution is explained and we apply this
method to produce “optimal” meshes for reliable and efficient computation of
reactive flows in flow reactors. A quantitative error estimation of functionals
is especially important for comparison between simulation and experiment to
validate the underlying model. The model and numerical method developed
in this work are indeed validated through experimental measurement which
also provides the data essential for parameter estimation, such as deactivation
probabilities for vibrationally-excited Hy molecules.

In order to test the efficiency of the adaptive method and of the solvers, we
consider in Chapter 6 three relevant problems in flow reactors:

e CARS (Coherent Antistokes Raman Spectroscopy) measurement of de-
activation reactions and reaction rate for energy transfer of vibrationally-
excited Hy molecules,

e LIF-Spectroscopy for the kinetic analysis of reactions between NH and
NO molecules as well as between NH and O, molecules in the case of
high temperatures, and

e CA-CVD (Combustion Aided Chemical Vapor Deposition) for the opti-
mization of a diamond deposition process.

In the first case, the mixture consist of 9 species with heterogeneous reactions
of deactivation on the wall as well as gas-phase reactions between Hy and Dy
molecules. The complete chemical model consist of 27 gas-phase reactions
and 5 wall reactions. The evolution of the concentration of some species is
measured along the axis of the tube on well defined measurement points. The
solution method with adaptive mesh refinement is applied to compute the
evolution of the species concentration along the axis with optimal precision on
these measurement points. We are then able to compare accurate simulation
results with measurements and thus derive reaction rates.

In the second case, the mixture considered (based on products of reactions be-
tween NO, and Hs) consists of 8 species with homogeneous and heterogeneous
reactions with heated walls (Dirichlet boundary conditions for the temperature
at the wall). The temperature range to be considered is 300K (temperature
of the incoming gas flow) to 1700K. These high temperature gradients induce
some numerical instabilities in the inflow region so that only a quasi-stationary
solution can be found. We have to use here a time step method to be able to
converge to a solution.
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A CA-CVD experiment (see [32] and [23]) has also been simulated. The aim
is to optimize the quality and quantity of diamond deposition on a substrate.
The system to be solved is more complex than the former system for the
simulation of the CARS experiment. The mixture contains 39 species and the
reaction model consists of 358 chemical reactions. An injection of methane
is done from a pipe into a gas mixture made of products of a Hy/O, flame.
It has been shown that the deposition of diamond strongly depends on the
concentration of C'Hj near the substrate. Working with such a large system
of equations does not allow to use simple structured meshes without error
control on the values we are interested in. The adaptive process developed in
this work not only allow us to compute accurately physical values - such as the
C Hj3 concentration near the substrate - but also to deal with more complicated
chemical processes. This was made possible by improving the performance
of the simulation process with respect to already existing codes. Using an
adaptive refinement process based on error functionals allows us to get higher
accuracy on some physical value of interest with a given number of cells, and
thus drastically reduce memory requirements. Moreover, the implementation
of robust and efficient solvers make it possible to reduce the computation time.
All computations here can be done on a workstation.

The basic principles of finite element methods is assumed to be known. Some
references are given for an introduction to finite element discretizations.
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Chapter 1

Axisymmetric Problems and
Dimension Reduction

Most physical problems are naturally formulated as boundary problems in
three dimensional domains. However three dimensional computations are very
expensive and sometimes practically impossible on workstations. It is there-
fore necessary to rewrite the problem with two dimensional equations. This
is obtained by assuming that the dependency of the parameters, data and
solution with respect to one of the three variables can be neglected, which
is justified in many situations. Here we are interested in the case where the
three-dimensional computation domain is invariant under rotation around an
axis. Thus, without any approximation, the problem can be transformed into
a family of two dimensional equations on the Fourier coefficients (cf. [9]).
Moreover, if the data satisfy suitable axisymmetry properties, only the Fourier
coefficient of order 0 subsists, so that the three dimensional problem can be
reduced to a two dimensional one. We will deal with this later case in this
work. The problems we are interested in are indeed invariant under rotation
(see later).

The axisymmetric functions which belong to standard Sobolev spaces on the
three dimensional domain can be mapped onto functions in the corresponding
two dimensional domain. These new functions belong to weighted Sobolev
spaces, the weight being the distance to the symmetry axis. We characterize
these functions as the elements of the weighted spaces such that suitable traces
vanish on the rotation axis.

All this leads to transform an axisymmetric boundary value problem on the
three dimensional domain into an equivalent problem on the corresponding

two dimensional domain. For more details see [11], [41] and [2].
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1.1 Description of Axisymmetric Problems

For a generic point in R®, we use both cartesian coordinates (z,y,2) and
cylindrical coordinates (r,0, z) in Ry X] — 7, 7] X R, with

_ T f 0
r=+/2?+y? and 9:{ arccosy 1ty <0, (1.1)

arccos if y > 0.

In R? we use the cartesian coordinates (r, z) and we define the half-space R%
as the set of points in R? with positive coordinate 7.

Let Q denote a bounded domain contained in R% . The axisymmetric domain
Q2 is the three-dimensional set obtained by rotating € around the axis r = 0.

We are interested in two-dimensional domains of the following types for the
reactive flow computations in Chapter 6:

e CARS flow reactor:

Symmetry line
-

— Mixing Zone
_>

Fuel Flux

Air Flux |

Figure 1.1: Q = half azial section of the CARS flow reactor shown in Fig. 1.

e CVD flow reactor:

TCH

|
|
}
s |
i
|
|

Symmetry line ‘ :
| Inner pipe Outflow

[HZIO2 (Flame inflow)
-

Figure 1.2: 2 = half azial section of the CVD reactor
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We denote by I'y the part of the boundary 02 contained in the axis r = 0, i.e.
the symmetry line. We set T' = 9Q\I's. The boundary 99 is a polygon, i.e.
the union of a finite number of segments.

The corresponding three-dimensional domain Q, corresponding to the whole
flow reactor shown in Fig. 1, is defined as:

v

Q={(z,y,2) €R* | (r,z2)eQuUly and —-7<0<7} (1.2)

Let R, denote the rotation with angle 1 with respect to the axis 7 = 0 in R?,
ie.

R, (x,y,2) = (xcosn — ysinn, xsinn + ycosn, 2). (1.3)

Of course, () is invariant by any rotation R,. The unit outward normal vector
n to €1 is obtained by rotating the unit outward vector n to {2 on T.

1.2 Problems Invariant under Rotation

The problems which are considered in this work are invariant under rotation.
Let us consider the boundary value problem [A, B] on €2 where the unknown
is a vectorial function ¢ with M components:

{fiﬁ:f in Q,

y y (1.4)
B g on Of).

c
Il

The symbol ~ over a letter means that the corresponding function, distribution
or operator is defined on ). Here A is a linear system of partial differential
operators and B is a system of boundary differential operators.

Definition 1. Problem [A, B] is said to be invariant under rotation if the

following property holds for any smooth function v from Q) into RM :

Vn € [-m, 7 :

(1.5)

Equivalently, problem [A, lu?] is invariant under rotation if the operators A and
B can be written in the following form in cylinder coordinates (r, 6, z):

A(xa Y, z; a:l:a aya az) - u(ra 2, 87'7 66’7 az)a

. (1.6)
B(Q?, Y, z; axa aya 82) = B(T, Z; ar; 80; az)a
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i.e. with coefficients independent of the variable 6. A basic example is the
Laplace operator

1 1
A=+ +0=0+-0,+—0,+0’ (1.7)
T Y z r r 7,2 0 z

Dirichlet boundary conditions or, more generally, conditions which only depend
on the normal derivative J; to the boundary, are invariant under rotation.

1.3 Data and Solutions Invariant under Rota-
tion

Definition 2. A function v is said to be invariant under rotation if the fol-
lowing property holds

Vn € [—m, 7 : voR,=70. (1.8)

Problems which are invariant under rotation are associated with functions
invariant under rotation: if problem [A, B] satisfies (1.5) and if # is invariant
under rotation, so are f and ¢; the converse property holds when problem
[A, B] has at most one solution.

When the operators A and B as well as the data f and ¢ are invariant under
rotation, we easily see that this problem is closely linked to the two-dimensional
problem

{Av =f in €, (1.9)
Bv=g on T,
where
f(T,Z) :f(x,y,z), A(T,Z;ar,az) :A(T,Z;ar,o,az), (1 10)
g(T,Z):f](:L‘,y,Z), B(r,z;@r,az) ZB(T,Z;ar,O,az), .

A and B being defined in (1.6).

Thus in the case of a problem invariant under rotation, we have actually re-
duced the number of variables from 3 to 2.

When problem [ﬁ, B] is invariant under rotation, and if the data f and § are
invariant under rotation, it is readily checked that the following propositions
are equivalent:

e U is a solution of [A, B] and is invariant under rotation,

e v is a solution of [A, B].

18



1.4 Basic Formulas

With each coordinate system, we associate an orthonormal basis: (e, e,, e,) for
the cartesian system, and (e,, g, €,) for the cylindrical system. The derivative
with respect to each of these coordinates is denoted by O indexed by the
coordinate. From the basic identities

1 1
Oy = 0 cost) — — Oy sinf, Oy = 0y sinfl — — 0y cost
r r

we derive the formulas for operators acting on scalar functions and on vecto-
rial functions. A function ¥ with values in R?® is written either in cartesian
coordinates v, e, + v, €, +v, e, or in cylindrical coordinates v, e, +vg ey +v; €,.

The problems we are interested in are invariant under rotation. Thus the
derivative according to the variable # as well as the component vy of the vector
defined above vanish, which leads to the following formulas:

e For scalar functions:

cartesian coordinates

cylindrical coordinates

Vv | Oyve, +0yve, +0dve,

o0,v e, + 0,0 e,

Av v + 0jv + v

v+ 1 0pv + 0%

e For vectorial functions:

cartesian coordinates

cylindrical coordinates

V.o OpVg + Oyvy + 0,0,

0,0, + % vy + 0,0,

Ad (0207 + Oovg 4 O2v,) €4
+(02v, + azvy + 9%v,) e,
+(02v, + 8;7),2 + 0%v,) e,

1 1
((9,?1),« + " Orvy + va,n ) vr) €

1
+ (831),2 + . Orv, + 8§vz) e

OpVy  Oyvy  Ov,
Oyvy  Oyvy  Oyv,
0,vy Ovy 0,0,

ov, 0 0w,
0 wo/r 0
v, 0 0,
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1.5 Weighted Sobolev Spaces

In the problems we consider, the solution is sought in a Sobolev space or a
product of Sobolev spaces. From the space LQ(Q) of square integrable functions
for the measure dx dy dz, the Sobolev spaces HS(Q) for any positive integer s
are defined. Then we derive the spaces H¢(Q) as the closure in H*($2) of the

v 7 v

space C§°(€2) and finally the spaces H *(£2) as the dual spaces of H*(2).

1.5.1 Definition and Properties of the Weighted Spaces

The space L2(Q) is defined as the set of measurable functions w such that

1
[wllrz(9) = </ w?(r, z) r® dr dz) < +o00. (1.11)
Q

For any positive integer s, H:(Q) is the space of functions w in LZ(Q) such
that their partial derivatives of order < s belong to L2 (). It is provided with
the semi-norm

2

] () = (Z ||3i3§_lwllig(g)> : (1.12)
=0

and with the norm

1
ol 0) = (Z |w|ifé(m) (1.13)

1=0
Thus it is a Hilbert space.

We state the principal results in the following propositions. We first define
a mapping for scalar functions. We are interested in the characterization of

9

the functions in H*(£2) which are invariant under rotation in the sense (1.8).
We denote the corresponding subspace by H*(£2). Any element ¢ in H*((2) is
completely characterized by the function v defined by

v(r,z) = v(z,y, 2).

Proposition 1. Let s be a positive integer. The mapping: v — v is one-to-one
from H*(Q2) onto the space H3 () defined as follows:

e If s is not an even integer,
H2(Q) = {w € H3 Q) 9% lwlp, =0, 1<j< ;} (1.14)
endowed with the natural norm

1wz @) = llwll s @); (1.15)
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e if s is an even integer,

M@ = {we HI@): 7wk, =0, 1<<5 o
and 0 'w € L?,(Q)},
endowed with the natural norm
1/2
ooy = (Il + 0070l ) - D

And then a mapping for vectorial functions. We are interested in triple of
functions & = (vg, v,,v,) in cartesian coordinates in H*(2)* which also satisfy
(1.8) with Z, = R_,. This space is also denoted by H*(2). We define, as
in section (1.4), the radial component v,, the angular component vy, and the
axial component v, of the vector field ©. Then the following proposition holds:

Proposition 2. Let s be a positive integer number. The mapping: © —
(vr, v9,v,) 1s well defined and one-to-one from ﬁs(fl) onto the product space
H*® (Q) x H? (Q2) x H3(Q) where the space H () is defined in proposition (1)
and the space H® (Q) is defined as follows:

e If s is not an odd integer,

Hi(Q):{wer(Q); O wlp, =0, 0<j5< 5 }; (1.18)

e if s is an odd integer,

H(Q) = {we H}(Q); dFwlr, =0, 0<j<
and 0 'w e L?,(Q)}.

The proof of these theorems may be found in [2].

1.6 Special Case

From these results we can derive the special case s = 1 which we need in
chapter 3 to write the variational formulation.

H'(Q) is the space of functions in H}(2) which are invariant under rotation.
According to the previous propositions, the space H' (Q) coincides with H] ().
And H'(Q) is the space of functions w in H{ () such that w|p, = 0 and
we L?(Q).
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To take boundary conditions into account, we must introduce the subspace of
functions in H!(Q) which vanish on a certain part I'; of the boundary of Q

which is not on the axis:

HL () ={ve H.(Q); v=0o0onT;} (1.20)

We define in the same way the subspace of functions in H7 () which vanish
on a certain part I'y of the boundary of €2 which is not on the axis:

Hio(Q)={veH(Q); v=0onT} (1.21)
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Chapter 2

Equations

The intention for the numerical simulation presented in this work is to pro-
vide profiles for concentration, temperature, density and velocity fields. The
equations governing chemical reactive flows are based on the compressible for-
mulation of the Navier-Stokes equations, for the global behavior of the mixture
flow, with additional convection-diffusion-reaction equations for the tempera-
ture and the chemical species. The equations are written in the primitive form,
i.e. with the variables p (density) or p (pressure), u (velocity), T' (tempera-
ture), and w (mass fractions). The set of coupled partial differential equations
considered describes the convective motion of the fluid, the chemical reactions
among the constituent species, and the diffusive transport processes such as
thermal conduction and molecular diffusion. Its origin is the conservation of
the physical variables p, pu, pE, pw. While using these variables to write the
equations, the formulation is said to be conservative. For smooth solutions,
both formulations (conservative or primitive) are equivalent. In many appli-
cations, the formulation with primitive variables has the advantage of simpler
boundary conditions and determination of transport coefficients (most of them
are given as functions of the primitive variables).

2.1 Navier-Stokes Equations

The most general description of a fluid flow is obtained from the full system of
Navier-Stokes equations. These are obtained by writing the mass and momen-
tum conservation. For multicomponent flows, they describe the evolution in
time and space of the density and velocity of the whole mixture, i.e. averaged
quantities for the global flow. They are the following:

e Mass conservation : The law of mass conservation is a general statement
of kinematic nature. It is independent of the nature of the fluid or of
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the forces acting upon it. It expresses the empirical fact that, in a fluid
system, mass cannot disappear from the system nor be created. The
mass conservation equation is

dp

L, + V . u) = 0, 2]_
LV (pu) 1)
with p the density of the fluid, which could not be considered as constant
in the case of multicomponent flows, even in the case of low-Mach-number
flows, since the mixture is not usually homogeneous. u is the velocity of
the flow.

e Momentum conservation : The sources for the variation of momentum
in a physical system are the forces acting on it. These forces consist
of the external volume forces f. and the internal forces f;. The latter
are dependent on the nature of the fluid considered, and result from
the assumptions made about the properties of the internal deformations
within the fluid and their relation to the internal stresses. We will assume
that the fluid is Newtonian, and therefore the total internal stresses &
are taken to be

& =—pl+7, (2.2)

where T is the unit tensor and p the isotropic pressure. 7 is the viscous
shear stress tensor. With the exception of very high temperatures or
pressures, the stress tensor for Newtonian fluids has the following form
(see [26]):

== VU+(VU)T—§(V-U)? , (2.3)

where p is the dynamic viscosity of the fluid. In the case of multicom-
ponent flows, it is a function of the partial viscosities and mole fraction
of each species (see section 2.4).

The equation of motion then becomes

poar +p(u-V)utVp—V-F=pf, (2.4)

with f, the external volume forces.
2.2 Energy Conservation

The profile of temperature of the multispecies flow can be obtained through
energy conservation. The energy content of a system is measured by its internal
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energy per unit mass e. This internal energy is a state variable of a system and
hence its variation during a thermodynamical transformation depends only on
the final and initial states. In a fluid the total energy to be considered in
the conservation equation is the sum of its internal energy e and its kinetic
energy per unit mass u?/2. The first law of thermodynamics states that the
sources for the variation of the total energy are the work of the forces acting
on the system plus the heat transmitted to this system. A distinction has to
be made between the surface and volume sources. The volume sources are the
sum of the work of the volume forces f. Hence we have, ), = pf - u. The
surface sources are the result of the work done on the fluid by the internal
shear stresses acting on the surface of the volume considering that there are
no surface heat sources:

Qs =G -u=—pu-+7-u. (2.5)

The diffusive flux ¢ of heat due to molecular thermal conduction is given by
the Fourier’s law of heat conduction

qg=—-AVT, (2.6)

with A the thermal conductivity coefficient and 7" the temperature.

Writing the conservation of the total energy and considering the mass and
momentum conservation equation as described in [44] or [26], we obtain

de _
p%ﬂLpV-u:F:VUjLV-()\VT), (2.7)
with % = % + u - Ve the total derivative of the intern energy according to
time.

We define the specific enthalpy as

h=e+? (2.8)

p

For an ideal gas (see Section 2.6, [58]), the enthalpy is a function of the temper-
ature T" and gas chemical state which can be represented by the mass fraction
of each component w = (w;)i=1,.. n,, With ny the number of species in the mix-
ture. The total variation of enthalpy for an ideal gas can be then expressed as
follow:

oh [ Oh
dh = [ — dT dw;. 2.

=1
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By definition the variation of enthalpy according to the temperature at con-
stant pressure and chemical state is called c,, specific heat capacity:

oh
cp = (a—T>M. (2.10)

We derive the total variation of internal energy:

de—cpdT+ p——dp+z<aw> dw;. (2.11)
(2 p’T

Using the continuity equation (2.1), it yields

de dT dp oh dw;
e, ™ _ @ 2.12
P =P g TPV T g +Z <8wl> dt (2.12)

Since h, the averaged enthalpy of the mixture considered as an ideal gas (see
[58]), fulfills the relation

h= i (2.13)

with h; the specific enthalpy of species i, equation (2.12) can be written as
follow:

de dp
dt dt

dwZ

dTr
+pV-u+pc,— 7 +Z (2.14)

The total time derivative of w; can be expressed with a diffusion and a re-
action terms (cf. Section 2.3 for the characteristics of these terms). This
result together with equation (2.7) leads to an equation which describes the
temperature evolution:

dT  dp

pep oy = dt+7’ Vu+V-(AVT) —i—Zh V-5 — fi(T,w)].  (2.15)

i=1

We use a simplified form of this equation because several terms may usually
be neglected. Since we consider only flows at low-Mach number, the energy
source due to internal stresses can be neglected. We are interested in this
work in low pressure flow reactor. For such flows the pressure is considered as
quasi-constant in time and space. Therefore we do not take into account in
the following the pressure variation term in this equation. Moreover the term
> hi V - ji, which represents the diffusion of species with different enthalpies,
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is usually omitted, considering that the partial enthalpies h; are nearly iden-
tical. Taking these simplifications into account, the equation for temperature
becomes

oT
pcpg—l-pcpu-VT—V-()\VT) = fr(T,w). (2.16)

The coefficients ¢, and A are the specific heat capacity at constant pressure
and the heat conductivity of the mixture, respectively. The source term fr
depends on the temperature and the chemical state. Let us denote by h; the
specific enthalpy of species ¢, and by ¢, the specific heat capacity of species i.
The source term is then

fr(T,w) = =" hi(T) fi(T, w). (2.17)
i=1
The enthalpy h; of species 7 is given by
T
Ba(T) = hoo + / e (T') dT", (2.18)
T0

with an enthalpy h; o for a reference temperature 7°. The partial heat ca-
pacity of species i is represented by ¢, ;. The temperature dependence of these
partial heat capacities is modelled empirically. A fourth order polynomial fit
in T, with coefficients determined by experiments, is widely used in numerical
computations:

k
(M) =Y oy TV i=1,...n, (2.19)
=0

We use the coefficients from data bases developed at the Sandia National
Laboratories [36] for the computations in chapter 6.

The heat conductivity A corresponds to an average value for the mixture accor-
ding to the chemical state of the gas and is defined in Section 2.4.

The factors f;(T,w;) are chemical production terms and are defined in the
next section.

2.3 Species Mass Conservation

The evolution of the chemical state of the gas in multicomponent flows can be
described with the mass conservation of each chemical species. These latter
can be represented by their mass fraction or by their mole fraction. We present
here the formulation in mass fractions w;. Both formulations are equivalent
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although the formulation with mole fractions leads to a slightly more com-
plicated transport term, while the formulation with mass fractions leads to a
slightly more complicated diffusion term. Another difference is found in the
calculation of the Jacobian matrix of the resulting non-linear system. We refer
here to Chapter 4 for more details. The mass conservation of each species
can be written with the help of a diffusion flux j;, a source term (creation or
destruction) f; and the convective transport of the species. For a mixture of
ns chemical species, the corresponding equations are

8wz~
ot

with w the vector of all mass fractions w;, characterizing the chemical state,
and T the temperature. The source term f; depends on both the temperature
and chemical state.

This section deals further with the non-linearities brought by the multispecies
character of the flow. In some regions of the domain, the flow may be dom-
inated by reaction source terms that couple all the chemical variables with
each other as well as with the temperature. Also in regions where the chem-
ical reactions are weak, the non-constant diffusion coefficients cause another
non-linearity and a coupling between all the chemical equations.

2.3.1 Modelling of Chemical Reactions and Source Terms

For the description of the chemical conversion in the gas phase, the chemical
mechanisms are made up of elementary reactions. An elementary reaction can
be generally described by

nzsair Xi i> nzsdw XZ s (221)
=1 i=1

where x; represents the ith species and k, the reaction rate of the reaction
number r. a;- and a;. are the stoichiometric coefficients of species i respectively
as educt and product in the reaction r. In order to conserve the mass, these
coefficients must fulfill the equation

ZMi(dir —a;r) =0, (2.22)
i=1

with M; being the molar mass of species 7. In each reaction r of the above
type, up to three species are involved on each side. Therefore, only up to three
coefficient a;. do not vanish for each r.
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The production rate for species 7, denoted w;, is obtained by adding the parti-
cipation of all the reactions considered to the creation or destruction of species
i. Defining n, as the total number of reactions,

Ny

wi(T,w) = Z {(diz —aq) ki(T) f[C?jl(w)} : (2.23)

1=1
with ¢; the concentration of species j, given by

_ Pw;

¢ =7 (2.24)
J

The chemical source terms for the species equations in mass fractions have the
form

Due to the property (2.22) on the stoichiometric coefficients we conclude that
the sum over all the n, source terms vanishes:

ifi = 0. (2.26)
i=1

The dependence on temperature for the reaction rate is given by the following
Arrhenius-law

E
k(T) = A, TP -=—=. 2.27
(1) o (72 (2.27)
This law is empirically validated. The constants A,, 5, and the activation
energy F,. are usually determined through experiments. R is the ideal gas
constant.

2.3.2 Surface Reactions

The reaction model used in this work for surface reactions introduces a reaction
probability v (named Sticking coefficientfor particles in the gas phase which hit
a wall surface (see [56] and [17] for more information about surface reactions
and their modelization). These particles can react (recombination, decompo-
sition) or diffuse further unchanged in the gas phase. We consider here the
case of surface reactions in which there is only one gas-phase reactant. These
reactions are described by the following scheme:

apX; =Y dpxi,  j=1,....n, (2.28)
i=1
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The corresponding reaction rate per surface unit for species i over all the n?
surface reactions is given by

n0

) - 1 |8RT
U)?(T, ’U}) = ; {’)/r Z 71'—]% Cj (air — 61] ajr)} y (229)
j being the single educt species of the reaction . In this wall reaction model,
there is indeed exactly one educt species for each surface reaction.

The probability coefficients are taken to be
c
v = a, T" exp (—R—T), r=1,...,n, (2.30)
with a,., b, and ¢, usually determined by experiments. One goal of these simu-
lations is precisely to determine the value of wall decomposition probabilities
by comparing numerical with experimental results. In our applications (see
Chapter 6) we have considered only constant probability coefficients.

From a numerical point of view, we must be careful to correctly evaluate the
surface as well as the gas-phase production terms. Numerical experiments
showed us that a good local convergence in the reaction zones have to be
reached in order to get an accurate solution. Indeed the production or de-
struction of species anywhere in the domain may have influence on the whole
flow. Hence a convergence statement on the global residuum is generally not
sufficient.

Since the surface reactions occur only locally on the walls, i.e. on some domain
boundaries, the numerical contribution of these reactions to the residuum and
jacobian matrix is only restricted to the edges corresponding to a wall, i.e. on
a few one-dimensional elements (for two-dimensional computations). These
source terms influence the boundary conditions at walls for the temperature
and the species mass fractions (see Chapter 3). For the temperature, energy is
given to or taken from the gas phase depending on whether the reactions have
created or consumed energy. For the species boundary conditions, a balance
between the diffusion flux at the wall and the species creation or destruction
rates is considered.

The influence of the surface reaction terms on the flow is of importance even
if their participation to the global residuum might be small (due to their local
existence). The accuracy on the solution needed locally to resolve these terms
reinforce the importance of the adaptive mesh-refinement process (cf. Chapter
5).

2.3.3 Transport Coefficients

Transport property evaluation plays an important and often time-consuming
role in the computational modelling of gaseous multicomponent reacting flows.
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Two approaches are mostly considered for evaluating transport coefficients. In
a first approach, a direct numerical inversion of the transport linear systems
derived from kinetic theory is considered. This strategy often becomes compu-
tationally expensive. In a second approach, an empirical average expression is
used, which yields less accurate transport coefficients but allows to deal with
complex reactive systems with smaller computational efforts.

The diffusion flux, V - j;, in (2.20) can be written with the help of the species
diffusion velocity V; as

jz-:pwﬂ/;, Z:L , N, (231)

the species diffusion velocities being defined by the kinetic theory of dilute
polyatomic gas mixture (see [54]) as

Vi S a2 Lor (2.32)
v < 320 T T ; .

with D;; the multicomponent diffusion coefficients (see [27]), D] the thermal
diffusion coefficients and d; the diffusion driving force of the i¢th species. The
vectors d; incorporate the effects of various state-variable gradients and are
given by

wi)%, Vi=1,...,n,. (2.33)

di = VQ?Z + (l‘l —
z; denotes the mole fraction of the ith species, M; the species molar mass of
the ith species and M the mean molar mass of the mixture, which depends for
multicomponent flows on the mixture chemical state:
1 w;

)

The mass fractions w; and mole fractions z; are related as follows:

M
T = w; A

Thus we see from equations (2.32) and (2.33) that the diffusion flux from the
species mass conservation equation (2.20) is composed of three parts: mass
diffusion (Fick’s law) due to gradients in molar fractions, thermo-diffusion due
to temperature gradients (Soret effect), and pressure diffusion due to pressure
gradients.

It follows from the above equations that the detailed modelling of a poly-
atomic gas mixture requires the evaluation of its transport coefficients, i.e.
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the multicomponent and the thermal diffusion coefficients. These coefficients
are functions of the state of the mixture as given by the variables p, T', and
Wy, ..., W,,. Their evaluation requires solving linear systems, referred to as

the transport linear systems (for more details on this see [20] and [35]).

In order to reduce the computational effort, mixture-averaged formulations
may be used, which allows to avoid solving linear systems. Mixture-averaged
diffusion coefficients can be defined with the help of the multicomponent prop-
erties. By definition, in the mixture, the diffusion velocities are then related
to the species gradients by a Fickian formula as

1 DI 1

‘/;:__D’Ldl_ — T, ':1,..., e 2.35
T pwiTV ! " ( )

The mixture diffusion coefficients (see [12]) are computed as

1— ZT;
> i ®i/ Dy’

with Dj; the binary diffusion coefficient of species pair (j,7) (see [27]). These
coefficients are nearly proportional to the square-root of the temperature and
inversely proportional to the pressure.

D; = i=1,...,n, (2.36)

A potential problem with this expression is that it is not mathematically well-
defined in the limit of the mixture becoming a pure species. Considering
equation (2.36), this modelling is not able to handle the special case of pure
species. Even though diffusion itself has no real meaning in the case of a pure
species, a computer-program implementation should ensure that the diffusion
coefficients behave reasonably and that the code does not “blow up” when
the pure species condition is reached. To overcome this difficulty we always
maintain a residual amount of each species. Specifically, we assume in the
above formulas that

T, = fz + 5, (237)

where z; is the actual mole fraction and ¢ is a small number that is numeri-
cally insignificant compared to any mole fraction of interest, yet which is large
enough in order to be represented in computer arithmetic. We have experien-
ced reasonable numerical behavior considering § = 1072,

A further problem is that this latter diffusion model does not necessarily ful-
fill the mass conservation constraint which implies that the species diffusion
velocities satisfy the mass conservation relation

> wVi=0. (2.38)
i=1
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This topic will be considered in Section 2.5 in more details.

Finally we have restricted in this work the diffusion flux to the fickian diffusion.
As result we obtain the following species mass conservation equations:

awi

ot

p——=+p (- V)w,+ V- (pD; Vw;)

—V- (pDi%Vﬁ) = fi(w,T), i=1,...,n,. (2.39)

2.4 Mixture-Averaged Flow Properties

Our objective in this section is to determine mixture properties from the pure
species properties. In the case of viscosity and heat conductivity, we use the
empirical laws given in [56]. The viscosity p of a mixture can be modelled with
an accuracy of approximately 10% by the partial viscosities p; and the mole
fractions z; of the species:

—1
]_ s s T;

(T, w) = B Z_Zlfz i + (Z f) : (2.40)
The p; = p;(T) are nearly proportional to the square-root of the temperature.

We use a polynomial fit with coefficients determined by experiments [36]. The
heat conductivity A has a similar representation:

-1
1 Ns Ng .

MT,w) = 2 in)\i+( i-) , (2.41)
i=1 i=1 !

with ); the partial heat conductivity, which are also calculated as a polynomial
of the temperature.

2.5 Physical constraints

By definition, the sum over all mass fractions must be one and the mass con-
servation implies that the sum over the diffusive fluxes should vanish:

iwizl, iji:o. (2.42)
=1 i=1

Moreover each mass fraction w; must, also by definition, have a value between
zero and one:

0<w; <1, Vi=1,..., n,. (2.43)
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Some care needs to be taken in using the mixture-averaged diffusion coefficients
as described above. The mixture formulas are approximations and they are
not constrained to require that the sum over all species diffusion fluxes is zero,
i.e. condition (2.38) needs not be satisfied. Therefore, one must expect that
applying these mixture diffusion relationships in the solution of a system of
species conservation equations should lead to some non-conservation, i.e. the
resultant mass fractions will not sum to one. Therefore one of a number of
corrective actions must be invoked to ensure mass conservation.

One possible approach is to define a “conservation diffusion velocity” as rec-
ommended in [16]. In this approach it is assumed that the diffusion velocity
vector is given as

Vi = Vi + V,, (2.44)

where Vj, is the ordinary diffusion velocity given by equation (2.35) and V,
is a constant correction factor (independent of species, but spatially varying)
introduced to satisfy equation (2.38). The correction velocity is defined by

Vo=—> w Vi (2.45)
k=1

An alternative is based on excluding the conservation equation for one species.
Its mass fraction is then computed simply by subtracting the sum of the re-
maining mass fractions from unity. This is an attractive method for problems
having one species that is always present in excess. A similar approach involves
determining locally at each computational cell, which species is in excess. The
diffusion velocity for that species is then computed to require satisfaction of
equation (2.38).

But even though the complete multicomponent formulation is theoretically
forced to conserve mass, and so should also be corrected methods for the
simplified formulation, numerical implementations and resolution errors can
cause some slight non-conservation. Depending on the numerical method, even
slight inconsistencies can lead to difficulties. Therefore a third approach may
be used that ensures (2.38) but also (2.43). This latter basic condition must
absolutely be fulfilled to avoid inconsistencies with the physics and that the
resolution method suffers computational inefficiencies or convergence failures.
A correction can be made directly on the mass fractions w; that are calculated
with the mixture-averaged diffusion model. This model can deliver slightly
negative or greater-than-one mass fractions. The correction is then

{1012 if w; < 10712,

w; =

w; otherwise,
w;
Wy = —=7——

ZZ; UN)k.
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This allows to avoid the pure species problem and leads to physically rea-
sonable values for the mass fractions. Nevertheless the w; obtained are not
solution of the multicomponent-flow system anymore. One should ensure that
this correction is not too strong according to the solution w; obtained by the
resolution of the system of partial differential equations. Therefore we may
apply this method as complementary corrective measure to the methods de-
scribed above since, in this case, we can be sure that the magnitude of this
correction will be significantly smaller.

In this work only the latter correction is applied to the solution at every non-
linear step of the solving process (see Chapter 4). Numerical tests showed us
that the other corrections did not have much influence on the solution for our
application cases. The order of the correction in our tests was locally at most
10% on the species mass fractions.

2.6 Ideal Gas Law

Usually an algebraic equation of state for the mixture closes the system. In
many instances a compressible fluid can be considered as a perfect gas, even
if viscous effects are taken into account. The ideal gas law gives a relation
between the pressure and the density:

p=—=, (2.46)

where R is the universal gas constant and M the mean molar mass of the mix-
ture. While considering the low-Mach-number approximation, the pressure
which is to be found in this later state equation is the constant thermodynam-
ical pressure py,.

Defining v = ¢,/¢,, the speed of sound ¢ is given by

0 RT
o= () =it (2.47)
op) M P
We can then define the Mach number by
Yl (2.48)
c

For our applications, it is supposed to be small. For example in the flow re-
actor for the CARS experiment presented in Chapter 6, with a fluid velocity
of 50 m/s, the Mach number is 0.018. Under a value of 0.3, the fluid may be
considered as hydrodynamically incompressible. However in the case of multi-
component flows, this does not mean that the density of the flow is constant.
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For ideal gases, the continuity equations can be rewritten in a form independent
of the variable p. From the relation 2.46, dividing the equation 2.1 by p yields
to the following form of the continuity equation:

ldp 1 dM 1dT
S I AT 2.49
st A at Tar VY (2.49)

with the definition of the total derivative % = % +u-V.

In the following section we will see that the pressure term can be neglected for
the pressure remains constant in first approximation. The continuity equation
is finally

4 V.u=0, (2.50)

2.7 Low-Mach-Number approximation

In low-Mach-number flows, the pressure field can be split in two parts, one
constant and the other variable in space and time. The first one is called the
thermodynamical part and the second one the hydrodynamical part:

P = Pih + Phyd- (2.51)

The hydrodynamical part py,q is negligible according to the thermodynamical
part py,. Rewriting the ideal gas law with these conditions leads to an equation
for the density:

_ Mpth
RT

(2.52)

This splitting has been used in many publications (see for instance [42], [39],
[40]) and we sketch here the method which leads to it.

We must first write the governing conservation equations with non-dimensional
variables, taking the Mach number into account. The Mach number used to
make the variables dimensionless is evaluated at the initial state. For the sake
of simplicity, we write here only the non-dimensional momentum equation:
du v M?

M?p— = —Vp
M PR

\ArS (2.53)

The " means that the corresponding variable is in non-dimensional form. Re =
Lru i the Reynolds number of the flow (L is a characteristic length of the

problem) and & = % + @ - V. Since the Mach number is small and since it
appears in the equations as € = yM?, all the gas dynamic variables may be
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expanded in terms of €. That is, any variable ( € [p, u, p, T, w] can be expanded
as follow:

C(x,t) = Co(x,t) + ey, t) + €2 G, t) + O(€). (2.54)

Considering the variable p and substituting into (2.53), the momentum equa-
tion reads

Di
ep% = —Vpo — €V — VP, + Rie V-7 (2.55)
Gathering terms that are independent of M, one finds Vpy, = 0, which shows
immediately that

Po = po(t) (2.56)

This is the main result of the low Mach number approximation. The largest
component of the pressure is constant throughout the field and changes only
with time. py is the thermodynamic pressure. The second component of
the pressure appears in the e-component of the expansion of the momentum
equation:

DUO 1

—=-Vp1+—=—V -1 2.57

Po Di D1 R, 0 ( )

py is the hydrodynamic pressure and is generated to balance the changes in
momentum within the flow field. Its contribution to the total pressure is
restricted to e.

2.8 Cylinder Coordinates

As we saw in Chapter 1, the operators in cylinder coordinates involve sup-
plementary terms that are not to be found in cartesian coordinates. In this
section we describe the equations discussed in the previous sections developed
in cylinder coordinates and focus on these supplementary terms. Some infor-
mation about generalized curvilinear coordinates can be found in [24] or [1],
and about the Navier-Stokes equations in cylinder coordinates in [44].

2.8.1 The Stress Tensor

The stress tensor written in canonical form in Section 2.3 depends on the
velocity-gradient tensor. Considering the symmetry condition, just as in Chap-
ter 1, this latter tensor can be written in cylinder coordinates in the basis

(61"7 €9, ez):
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Qup g Ous
or or
Vu= 0 =2 0
Oy ou,
% 0 %
The stress tensor is
= T 2 =
g=u(Vu+Viu)— guV-u—irp I
Defining a generalized pressure by
. 2
P :§uV-u+p (2.58)

and again taking into account the symmetry condition, the stress tensor be-
comes

2 L, — p* 0 p(w, + uy)
o= 0 21 —p* 0
p (wy + ) 0 2 pwy —p*

In the cylinder system of coordinates, which is defined in this work with the
orthonormal base (e, €y, €,), the first and third components of the divergence

of a symmetric tensor ¢ of second order is :

= . 1 87511 1 6t12 8t13 t22
Vet = St 50+ D% T T
= . 6t33 1 87531 3t32
(Vo = 7ttt 5 5

Thus the first component of the divergence of the stress tensor in cylinder
coordinates with axial symmetry is

@ _u op*
or r2  or’

_ 0
(V‘E)lZV'(MVUr)"'#E(V‘U)‘FVM'

The second component of the divergence of the stress tensor vanishes, due to
axial symmetry. It remains the third component:

ooy
0z 0z

_ 0
(V-E)3:+V-(uVuz)wLu%(V-u)—l—Vu-

One has to remember that the divergence in cylinder coordinates is

ou, u, Ou,

Vo 8r+r+6z
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2.8.2 The Equations in Cylinder Coordinates

Additional terms appear in cylinder coordinates for the vectorial equations.
Taking into account the results of the previous chapter, we can then write the
momentum conservation equations (2.4) in cylinder coordinates. Writing the
velocity in cylinder coordinates u = (u,, u,), the system of equations is

Ou,
_ +p(u-V)u, — V- (uVu,)
ot (2.60)
ou r  Op* r) '
—pm (Vou) =V oot p s+ == =pf"
ou,
p— +tpu-V)u, = V- (uVu,)
ot
u oy (2.61)
— = (VY -u) — i = 5 f®)
nog, (Vou) =V o=+ == =p f,7,
oT
pcpa-i-pcp (u-V)T+V-(AVT) = fr(w,T), (2.62)
awi . .
P 5 +p(u-VYw;+V - j; = fi(w,T), Vi=1,...,ns. (2.63)
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Chapter 3

Discretization

This chapter presents and analyzes a finite element scheme for simulating the
three major processes in reactive flows: chemical reactions, diffusion and con-
vection.

The methods used in simulation of reactive flows are usually based on either
finite differences for its simple implementation and mathematical background
as in [3] and [46] or finite volumes which are a range of methods widely spread
in the engineering field (see [19] for a study of some schemes). The method
used in this work is based on conforming “@Q;/@Q,” Galerkin finite elements.
The basics on the mathematical theory of finite element methods used in this
work can be found in the books of Johnson [30] and Brenner/Scott [15].

The choice of a finite element method is principally motivated by the flexibility
it offers with respect to adaptive mesh refinement. It can be coupled with error
control based on a posteriori error estimates provided by the orthogonality
property of the method as explained in Chapter 5. Thus accuracy for some
physical quantities which are to be precisely known can be guaranteed.

In this chapter, we discuss the discretization of the unsteady and steady multi-
species low-Mach-number compressible Navier-Stokes equations with advection
diffusion-reaction equations for chemical species. The aim is to simulate quasi-
stationary low-Mach-number flows in flow reactors.

The application of conforming finite elements to the incompressible or com-
pressible Navier-Stokes equations is standard (see for instance [4], [49] or [10]).
Extensions to thermally coupled flows or multispecies reactive flows have also
been developed in the last decade. The reader can find some examples in [38],
[50], [37] or in the more recent work [13].

In the case of axisymmetric flows, the three-dimensional problem can be trans-
formed to a two-dimensional one (see chapter 1). Although such a transfor-
mation reduces the computation time, we have to deal with the following
problems:
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e The differential operators in the axisymmetric formulation have singu-
larities on the axis. We have to work with weighted Sobolev spaces (see
chapter 1 or [41], [11]).

e The radial and the axial components of the velocity belong to different
Sobolev spaces.

We discretize the equations modelling axisymmetric multispecies reactive flows
with stabilized Q1 elements for all variables. The equations considered have
indeed two different sources of difficulties that a stable discretization must
overcome.

The first difficulty is the velocity-pressure coupling brought by the saddle-point
structure of the Stokes system of equations. It is well known that this approach
does not lead to a stable discretization unless the finite dimensional spaces
fulfill the “inf-sup” condition (see [25]). In order to get a stable discretization,
we add weighted mesh-dependent least-squares terms to the standard Galerkin
formulation as proposed by Hughes et al. in [29].

The second kind of instability occurs in the case of high Reynolds num-
bers, when the system becomes convection-dominated. The standard Galerkin
method for convection dominated problems produce approximations which
contain “spurious” oscillations in case of non-smooth exact solutions. The
oscillations result from a lack of stability of the method. A standard finite
element technique to deal with scalar convection-diffusion equations is the
streamline diffusion method (see [30], [60]). The stabilization is done by adding
further weighted least-square terms to the discrete equations. The stabilizing
perturbation term can be physically thought as a numerical diffusion term in
the direction of the streamlines. This modification enhances stability with-
out a strong effect on the accuracy because the terms added are based on the
residual.

3.1 Definitions

Using the notations of chapter 1, we denote the inner scalar product in L3(Q)
by

(u,v) = /Qu(r, z)u(r,z) rdrdz (3.1)

We also denote by X the solution vector of the system presented in the next
section, that is

X = [uy, u,,p*, T)". (3.2)
For simplicity, in the following the notation p will replace p*. We will call it

the generalized pressure.
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3.2 The Variational Formulation

In this section, we consider the continuity equation (2.59) as well as the mo-
mentum equations (2.60) and (2.61). We also consider a diffusion-convection-
reaction equation modelling the evolution equations of temperature and species
mass fractions. It can be written as follow:

pa—f—l—p(u-V)TwLV-()\VT) = fr(w,T). (3.3)

The variational formulation of the resulting system is obtained by writing the
equations in weak form and integrating by parts. We define the energy forms
for each equation:

e The continuity equation:

a1(X,q) = (% %,O - (% Cfi—f,q> +(V-u,q), (3.4)

e The first momentum conservation equation:

du, 0

Uy 0 ou
+ (uﬁ,w) - (Ma(v‘u)#?) - <Vu-5,<p> ,

e The second momentum conservation equation:
du, oY
X ={p— — —
(o) = (055 0) = (50 ) + (0 Tu v0)
0 ou

e The energy or species-mass conservation equations

—

3.6)

ai(X, $) = (p a ¢>) L (AVT, V), (3.7)

with % = % + u - V the total time derivative.

Using the notations of Chapter 1, we denote by V_ = H! ; and V,, = H! , the
spaces for the velocity field, by @ = L?(2) the space for the pressure and by
S = H () the space for the temperature and mass fractions.

43



We define the vectorial energy form corresponding to the whole system by

a(Xa 5) = al(Xa Q) + a2(X7 90) + a3(X7 ?ﬁ) + a4(X7 ¢)7 (38)
with the vectorial test function £ = [¢, 0,9, 0] €V =V_xV, xQ x S.
The right hand side vector f of the system is

F=10 £ 95 g7 (3.9)

The variational formulation consists then in finding X e V=V_xV, x@Q xS
such that

a(X,§) = (f,§) VEeV (3.10)
holds.

3.3 Boundary Conditions

3.3.1 General Boundary Conditions

For this problem, the boundary conditions are on the four different boundaries
the following:

symmetry on Iy : u, = 0, )
inflow on I'y : u = ug, T =Ty,

or
HonTy:u=0, =—=f9 (3-11)
wall on [’y : w 5 fr
0 or
outﬂowonl“g:ua—z-p-n:[), %:O,J

where 9Q = Ty UT; UT, UT3, and f2 is a surface source terms. Since the
integration is weighted by the factor r, the natural boundary condition on
the symmetry boundary I'y vanishes. Nevertheless, according to the propo-
sition 2 of Section 1.5.1, the radial velocity u, is zero on the symmetry line
['y. The Neumann or mixed conditions on the other domain boundaries are
obtained through the natural boundary conditions supplied by the variational
formulation.

3.3.2 Supplementary Conditions

Other conditions coming directly from the equations for a steady-state solution
can be taken into account.
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A condition on u, can be found in the case of a steady-state solution through
the continuity equation (2.1) which leads to the relation

/pu-ndF—i—/pu-ndF—l—/pu-ndF:O, (3.12)
T3 To Iy

since the velocity is zero on the wall boundary I's. On the symmetry line, the
normal n is in the radial direction. For the outflow and inflow it is in the axial
direction. At the symmetry line the integration weight r is zero. We then

obtain
/ pu,rdr :/ pu,rdr. (3.13)
I3 I

The integral upon the inflow boundary is known for u, which is set by a
Dirichlet condition. It physically means that the mass that flows into the tube
goes out.

Again for the outflow, a condition on the generalized pressure can be found
by considering the natural boundary condition on the outflow boundary. The
relation

ou,
— dr = 14
[ Gz —prar=o (3.14)
is completed by the mass conservation property
ou, o(r u,)
=— . 3.15
0z or ( )

The continuity equation in strong formulation may be written in this way
only if the density p remains constant. This should be the case on the outflow
boundary. Therefore, to be sure that this relation is respected, we must assume
that no chemical reaction take place on the outflow and that the mixing process
is complete. If additionally the viscosity p is also constant on the outflow (the
same hypothesis should lead to such a situation), a direct integration yields

/ prdr=0, (3.16)
I's

since r = 0 on the symmetry line and u, = 0 on the wall.

Another condition can be derived from the continuity equation at least in the
case of a strong solution of equation (2.1). We must here consider the three-
dimensional domain and remember that the symmetry boundary corresponds
to the middle of the flow reactor. Thus if the solution is smooth enough, the
mass conservation in strong form may be fulfilled, particularly in the middle
of the tube where no singularity is found. Lets consider the following integral:

Iy= [ ¢V-(pu)yrdz=0 V¢ e L3(Ty), (3.17)

1)
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if the above hypothesis is fulfilled. This integral can be decomposed as follows

10:/ r¢agurdz+/ rqﬁaguzdz—i—/ ré-tdz. (3.18)
To r o z o r

We have Iy = 0, since r = 0 on this boundary. The first and second integrals
of the right hand side are zero for the same reason. We can then deduce that

/ du,dz=0 Vo€ L¥(Ty), (3.19)
T'o

which means that the radial component of the velocity is zero on the symmetry
line. Therefore, if the above conditions are fulfilled, no Dirichlet boundary
condition needs to be set on the symmetry line for the radial velocity.

3.3.3 Symmetry Boundary Condition

Depending on the space which the three-dimensional solution belongs to, the
mapping between the three-dimensional and the two-dimensional problems can
also lead to supplementary boundary conditions which are contained within
the finite element spaces considered. Once again according to Proposition
2, the solution may indeed fulfill supplementary conditions on the symmetry
boundary if it has enough regularity. In the case of a three-dimensional solution
which belongs to H2(€2), with regard to the definition of the space H?, the
normal derivative to the symmetry boundary of the solution components u,.,
p and T vanishes. If the solution is sought in HZ, these boundary conditions
on the symmetry line for the variable cited above are not valid anymore.

3.4 Discretization in Space

Starting from the variational formulation (3.10) supplemented by the bound-
ary conditions (3.11), we choose the finite element subspaces V}, C V' to obtain
the standard Galerkin discretization. We consider in this work an approxi-
mation by piecewise bi-linear shape functions on meshes T, = {K} made of
quadrilaterals and satisfying the usual regularity conditions (quasi-uniformity).
The width of the mesh T}, is characterized in terms of the mesh size function
h = hmar = maxger, (hx) with hg = diam(K). In order to ease the refine-
ment and coarsening processes, one hanging node per element edge is allowed.

Considering the vectorial energy form defined in (3.8), the discrete solution
X, € 'V}, is determined by the equation

a(Xn, &) = (f,6n)  VEn € Vi, (3.20)

with V}, the set of piecewise bi-linear shape functions on T}, which is a subset
of V defined in (3.8).
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3.5 Stabilization

As mentioned before, the standard Galerkin discretization obtained for the
Navier-Stokes equations does not yield a stable algorithm unless the spaces
fulfill the discrete LBB-condition (cf. [14], [25]). This condition is a compat-
ibility condition for the velocity-pressure coupling. An alternative, presented
by Hughes et al. in [29], is to modify the discrete bilinear form in order to get
a stable discretization.

Moreover the convection terms in any convection-diffusion equation lead to
supplementary instabilities. Non-physical oscillations can appear in numerical
solutions of the Navier-Stokes equations. Therefore the approach is modified.
The stability of the Galerkin finite element method has to be improved, but
it has to be done carefully since additional stability is often obtained at the
price of decreased accuracy. We consider two ways of enhancing the stability
of the standard Galerkin finite element method:

e introduction of weighted least-squares terms;

e introduction of artificial viscosity based on the residual.

We refer to the Galerkin finite element method with these modifications as
the streamline diffusion method. The first modification adds stability through
least squares control of the residual and the second modification adds stability
by the introduction of an elliptic term with the size of the diffusion coefficient
depending on the residual with the effect that diffusion is added where the
residual is large, i.e. typically where the solution is non-smooth. Both modifi-
cations enhance stability without a strong effect on the accuracy because both
modifications use the residual.

3.5.1 The Galerkin-Least-Squares Method

Let a be a linear operator on a vector space V with inner product (.,.) and
corresponding norm ||.|[. Typically, A is a convection-diffusion differential
operator, and (.,.) is the L, inner scalar product over some domain Q. We
consider the linear problem of finding u such that

Au = f, (3.21)

for which the variational formulation reads:

Find v €V such that

(Au,0) = (f, )  VoeV. (3.22)
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The least squares method for (3.21) is to find v € V' that minimizes the residual
over V, that is

4w — 1 = min || 40 — f|1% (3.23)

This is a convex minimization problem (because it is quadratic) and the solu-
tion is characterized by

(Au, Ap) = (f, Ap) VYo eV (3.24)

The problem is symmetric positive definite (A is considered regular), and thus
can be solved without difficulties. Equation (3.22) may be more difficult to
solve, but may be more accurate than equation (3.24), for the test-function
space used in the second problem may contain less information (for instance if
A contains a differential operator and the ansatz functions are linear). There-
fore a combination of the 2 systems is taken. The resulting system should still
be accurate enough but easier to solve.

We now formulate the Galerkin-least-squares finite element method for (3.21)
by taking a weighted formulation of (3.22) and (3.24):

Find v € V such that

(A p) + (A 6A9) = (1,0) + (£,640)  vpev. )

We can alternatively formulate the Galerkin-least-squares method as a Petrov-
Galerkin method, which is a Galerkin method with the space of test functions
being different from the space of trial functions. In our case the test functions
have the form ¢ + dAp with p € V.

3.5.2 Artificial Viscosity

Adding artificial viscosity yields the streamline diffusion method in the form:

Find uw eV such that

3.26
(Au, o + 0Ap) + (eVu, V) = (f,p + 6 Ap) Vo eV, ( )

where € is the artificial viscosity. It is defined in the discretization process in
terms of the residual R(u) = Au — f through

e=vh*||R(u), (3.27)
with v a positive constant to be chosen, and h the local mesh size.
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3.5.3 Application to Scalar Convection-Diffusion Equa-
tions

Applying this stabilization to any scalar convection-diffusion equation of type
(3.7), the streamline diffusion method introduces a stabilizing term by the use
of an additional test function of the form du - V¢. The introduction of the
additional least-squares terms is done in an element-wise fashion. This implies
that the weighting parameter 0 depends on the element. It will be subscribed
correspondingly. We obtain the following equation:

dT. dT,
(%) + O LT+ 3 (0 =9 OV Tt Vo)
KeTy,

:(fT’¢h)+ Z (fa5KUhV¢h) v¢h€5h.

KeTy

(3.28)

The least-squares terms correspond to the addition of viscosity in the direction
of the streamline. The method is consistent in the sense that the stabilizing
terms vanish for a strong solution of system (2.59) - (2.63). We discuss later
the choice of the parameter dx. The introduction of artificial viscosity is
straightforward. However it should be brought into operation only if additional
cross-wind diffusion is really necessary to avoid oscillations. In many cases the
least-squares terms are sufficient. The discretization still remains of second
order (see [60]) and stable for a wide range of diffusion parameters.

3.5.4 Pressure Stabilization

The spaces ), and V}, used in this work are based on piecewise bi-linear func-
tions on quadrilateral elements, namely Q1/Ql-elements. For these spaces
the LBB-condition is not satisfied (see [14], [25]). The stabilization of the
Navier-Stokes equations for our discretization with bi-linear conforming ele-
ments is done in the same way as the streamline diffusion, i.e. by adding
mesh-dependent least-squares terms to the Galerkin formulation. The dis-
cretization then reads as follow:

(V- (pun)yan) + Y (Ruy ax Van) g

KeTy,

= Z (f’uaaK VQh)K VQh S Qha
et , (3.29)
duy, Ur p '
<P e @h) + (M 2 %,h) + (1 Vup, Vor,)
—(uV(V - up), o) — (Vi - Vup, o)
_(phav¢h) = (f’lH(th) VQOh € Vll X Vf:u
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where

d
Ru:p%—v-(uVuh)—i—Vph—V,u-Vuh
i fus (3.30)
—/LV(V'Uh)—Fﬁ( 6’ ),

and ax is proportional to h%. That amounts to additionally testing the mo-
mentum conservation equations by ¢, +ag Vq,. The structure of the system is
changed by the appearance of a pressure stabilization term » .- ax (Vpy, V).
Due to the change of the bilinear form, stability for pressure is now implied by
a generalized LBB condition (cf. [4]). As for the streamline diffusion method,
the pressure stabilization vanishes for a strong solution u and p, since the stabi-
lizing term is based on the residual of the momentum equation. This pressure
stabilization process for the Navier-Stokes equations must also be completed
for the momentum equations by the convection stabilization process that has
been presented in previous sections.

3.5.5 Stabilization Weights

We define in a first step some forms that describe the stabilizing terms. The
pressure stabilization is denoted by

¢(Xn,q) = Y, (Ru, 0 V), (3.31)

KeTy,

with R, defined in (3.30).

The streamline diffusion method for the velocities involves the term

5u(Xn, 8) = Y (Ru, Ocun - V) o (3.32)

KET}L

And the stabilization for the temperature equation consists of the following
term:

st(Xn,¢) = (p% —V-()\VTh),yKuh-Vzbh) . (3.33)
KETy, K

From the energy form (3.20), we define the energy form of the system aug-
mented by the least-squares terms by

as(Xn, &) = a(Xn, &) + c(Xn, an) + 5u(Xny 1) + 57( X, Un). (3.34)

This discretization has been analyzed for example in [28], [31] or [51]. An error
analysis clarifies the role of the parameters and motivates their choice. The
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parameters o, 0 and vx have to be chosen depending on the local mesh size
hk, the convection u and the viscosity p or A on each cell K. Error estimates
obtained in [13] allow to derive values for the stabilization parameters for the
compressible-low-Mach-number-flow system for which the error of discretiza-
tion e = X — X}, can be minimized. This study leads to the following values
for the velocity stabilization:

hi
ok = . 3.35
T R Ao il (3:3)
Analogously, minimization of the error in temperature gives
h
K (3.36)

O = :
BT A+ M (cp phi) + ulo

At represents the time step. We discuss time discretization in next section.
A short analysis of the limit cases helps to understand this stabilization pa-
rameter. In the case of convection dominance, the velocity u is greater as the

viscosity or time step and § ~ ——. If diffusion rules the flow, there is no need

[u]oo .

to add much stabilization. ¢ being then proportional to %2, the second order of
the method is assured. For unsteady solutions, when the time step processes
are dominant, we have § ~ 1/At.

3.6 Time discretization

In this work we are interested in stationary solutions of the system described
in Chapter 2. However severe non-linearities in reactive flows may imply a
non-stationary behavior of the solution, with small instabilities in time which
make a steady-state not exactly reachable. The solution may be considered as
quasi-stationary but the system can then only be solved using a non-stationary
solution algorithm.

In order to take into account time variation of the solution, we use the expan-
sion wp(t,z) = > ui(t) ¢;(x). We divide the time interval considered into N
parts of size k, = t, — t,_1. We denote the value of any variable ( at time ¢,

by (" = ((tn).

The implicit Euler method leads to a system analogous to the following system:
bs (X705 €n) + kn as (X7, €)= bs(X5 1, &n), (3.37)

with bs; being the L, scalar product augmented by stabilization terms, i.e.

b5(Xa f) = (Xa 5) + ZKGTh (X,(SU : Vf)

The additional term for the stabilization in the form bs may be neglected if

we are actually looking for a quasi-stationary solution, as said above, and are

therefore not interested in the exact evolution in time. This term does not bring
more stability to the scheme and makes the process more time-consuming.
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3.7 Full Discretization for Reactive Flows

We can now write the discretization of the whole system (2.59)- (2.63). We
have the following boundary conditions:

symmetry on [y : u, = 0,

inflowon I'y tu=wug, T =Ty w;=uwy,

0T & Ow;
wallon Ty :u=0, —— = h; M;u! Wi anaf, ¢ (3.38)

on — 7 On v
U or ow;
fl 3:p——p-n= — = L =0.
outflow on IT'3 ,uan p-n =0, o 0, o 0 )

The weak formulation can be written as
(V- up, q) + (L(up, wn), q) + c(pr, un, q) = Nu(q) Vg € Qp, )
o s 0) + (9 T, )+ (1 Vi, 0)
(Vi Vi, 6) — (09 (V - u), 6) — (on, V- )

+(uU;éh, r) + Su (D un; 0) = Fi(9) Vo € Vi, (3.39)

(@ 0) + (o Vi 0) + (p Di V. v)

+(p D wl" M, ) + si(w up; ) = Py(wn, ) Vi € Sh, |

where Ny, Fj, and P, are the corresponding functionals formed by the right-
hand side variational formulation and the stabilization. P}, contains the volume
chemical source terms but also the surface source terms fF3 M; w? ¢dl’. The
operator L(uy,wp; q) consists of the variational formulation of the convection
terms from the continuity equation (2.59). The temperature is considered here
as an additional species wy, since the structure of its evolution equation is the
same as the structure of a mass conservation equation for any species. We have
Dy = A/(pc,). The density is defined by an algebraic equation p = p(wy,).

Since diffusion coefficients for each species can differ strongly, one has to define
a stabilization parameter for each species:

Y (3.40)

and the least-squares stabilization term:

i G i
si(wf(l),uh;@b): Z <k—w,(l)+puh-Vw,(1)
KeT, " (3.41)

v (pDi V(Mw,(j’)) — M, 69, - w)K.
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Chapter 4

Numerical Solution

To solve the strongly non-linear system coming from the finite element dis-
cretization of multispecies reactive flows, we consider the classical approach
based on a linearization of the system with the help of its jacobian matrix.
The iterative method used in this work is a defect correction method which
requires to solve a linear system in each non-linear step. In such an algo-
rithm for computing complex reactive flows, two ingredients are decisive for
the efficiency of the total solution process: an economical storage technique
which fully exploits the very special structure of the jacobian matrices, and an
efficient and robust solver for the large coupled linear systems.

This chapter discusses the linear systems obtained from a simplification of
the jacobian matrix, which may be efficiently solved. This iteration matrix
has to provide enough accuracy according to the non-linear system to obtain
an acceptable convergence rate of the defect correction process. We will also
describe methods to solve the resulting linear systems.

To solve the linear systems we have chosen a Generalized Minimal Residual
(GMRES) algorithm. GMRES is appropriate for non-symmetric and indefinite
matrices. In order to obtain an efficient solver with a rate of convergence
independent of the mesh size, we use a multigrid scheme as a preconditioner.
The locally-refined structure of the mesh makes the preconditioning through a
multigrid method necessary to avoid the dependence of the condition number
on the mesh width.

The grids under consideration are obtained as follows: The coarsest mesh does
not contain any hanging node and consists of cells belonging to the level [ = 0.
The cells of level [ > 0 are obtained by refinement of some cells belonging
to level (I — 1). Due to this hierarchical refinement strategy the required
smoothing operations in a multigrid cycle on level [ are restricted to the cells
belonging to this level. We use in this work different smoothing operators.
For the Navier-Stokes part of the system, we have implemented a method
similar to the smoother proposed by Vanka in [52] for staggered grid finite
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difference discretizations, which consists of a block Gauss-Seidel iteration loop.
The decomposition in blocks is done patch-wise on each level of the grid and
corresponds to a local grouping of velocities and pressure unknowns. For the
smoothing of the temperature and species equations we use two methods; the
first one is based on point-Gauss-Seidel iterations, while the second one may be
used in the case of stiffer systems and is based on a block-ILU decomposition.

4.1 Defect Correction

As mentioned above, the non-linear system of equations is solved by a defect-
correction method. The iteration matrix is an approximation of the jacobian
of the non-linear equations. This method is based on the Newton iteration
which consists of the following fix-point iteration

n+1 n
u u
Xmtt=1 p =1 »p —w(Dg)~" R", (4.1)
w; w;
with the following notations:
Dgr = derivative of R with respect to the variables u, p, T, w;,

R = residual of the system that is to be solved,

w = relaxation parameter.

For the sake of simplicity we will consider the temperature in this chapter as
the first term of the vector defining the chemical state of the flow, i.e. wy =T,
since the equations for temperature and those for the species have exactly the
same characteristics.

We also denote the increments for our solution vector by

du un+1 —un
=1 d, | = prtt-p" |, (4.2)
dwi wszrl - wzn

n + 1 being the number of the current non-linear step.

In the defect-correction process, Dy is actually not computed exactly since a
suitable approximation of this derivative is often sufficient to solve the system.
For this reason, with the additional use of a relaxation parameter w, this
method is called quasi-Newton method, when the computed Dy converges to
the exact final Dg, or defect correction method otherwise.

Damping the iteration step with the parameter w leads to a stabilization of
the algorithm. w is chosen to be w = 27¢ where i is the lowest integer greater
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than 0 such that the monotonicity |R(X™ — 277 d%")| < |R(X™)| is fulfilled.
Xl = X — 271 4% is then chosen as the update. This stabilization is
necessary to have a robust solver and avoid oscillations in the convergence of
the method. An example of divergence in the case without damping can be

found in [48].

4.2 Newton Matrix

The aim of this section is to describe the construction of the jacobian matrix
and its approximation. We present the jacobian matrix and its approximation
used in this work in order to reduce storage requirements and computation
time. We introduce the following form which is the residual of the system:

EB({p,u, w}, {q, ¢,9}) =Ru({p,u, w}, ) + Bp({p, u, w}, q)

37 R ({0}, -

where R,, R, are the partial residuals according to the Navier-Stokes equations
and R, the partial residual according to the temperature-species equations:

Rulfp.h.0) = (0 55.0) + (1V0.96) = (.7 - 0)

+ (125, @) (Vi Vu,6) = V(Y 1), 8) = (fur 0),

Ru (p0},0) = (555, 0) + (0 D0, V) = (),
1=0,...,n,.

Taking into account the stabilization terms would not change the structure
of this system. The only stabilizing term which changes the characteristics of
the system is the term (Vp,d Vq) in the operator ¢(X,¢q) defined in relation
(3.31).

The jacobian matrix corresponding to the residual given above is

ou op ow;
ORp ORyp ORp
DR = ou op ow; ) (45)
ORy;, ORw, ORuw,
| Ou op ow;



with 2 = 0,... ,ng and j = 0,... ,n,. For the approximation of this matrix,
we must take the physics of the flow into consideration as well as the ability to
efficiently calculate the derivatives and solve the system at low computational
cost. The flow variables u, p are coupled with the chemical state w through
the mixture viscosity p, the density p and the mean molar mass M in the
Navier-Stokes equations and through the velocity of the fluid in the convection-
diffusion equations for the temperature and species. For our application to flow
reactors, no rapid variation of the physical quantities should be observed in
almost the whole domain. Therefore, in order to be able to bring efficient
smoothers into play, we decide to keep only a weak coupling between the
Navier-Stokes equations and the temperature/species equations. The system is
correspondingly linearized at each non-linear step. In the approximate jacobian
we neglect the blocks 86}3‘, 852‘” and %. The term %ﬁ is also not taken into
account since the temperature is almost independent of the pressure for low-
Mach-number flows. The density couples the equations through the ideal gas
law (2.46). Viscosity, mean molar mass and species or temperature convection
velocities are calculated in each non-linear step with the previous-non-linear-
iteration value of the solution vector.

With these simplifications, the approximation of the operator Dy has the
following block-form:

_ Ay Ay 0
0 0 ¢

While denoting the test and trial functions by ¢ and ¢, respectively, we can
write the approximated operators defining Dy using overlined variables as the
linearized variables calculated with their values taken from the previous non-
linear step.

For the continuity equation, A,, corresponds to the sum of the divergence oper-
ator with the element-wise least-squares terms stemming from the streamline-
diffusion stabilization and A,, results from the pressure velocity stabilization:

Ap = Z (VC ag Vi), (4.7)
KeTy,
d
A = (V- (pQ)y) + Y (pd—i—v-(uvg)
KeT),
+ T—’é (16) —uV(V Q) = V-V ax Vi) (4.8)

with the total time derivative % = % +1u-V. The variable 7 is here the velocity
evaluated at the previous step of the iterative process. We neglect the other
part of the derivative of the transport term with regards to u.
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Furthermore the operator A,, represents the influence of the pressure in the
momentum conservation equation, and A,, corresponds to the convection-
diffusion terms in this equation:

w = —((V-0)+ ) (VCagu- V), (4.9)

KeTy

A

_(dg Uy
—(V - Vu, ¥) = (uV(V - u), ¥)
+) (% — u V¢, aKu-V\IJ> . (4.10)

KeT), K

Considering (4.6), we see that the linearized system is split into two indepen-
dent parts. One part determines the evolution of the flow, the other part
corresponds to the chemistry and the behavior of species within the flow.
The operator G corresponds to the convection-diffusion-reaction terms of the
species mass conservation equations and to the temperature evolution equa-
tion, which have the same structure. While considering the interactions be-
tween the species, the block-matrix G can be decomposed into (ns+1) x (ns+1)
matrices, the temperature being considered as a separate species. The diago-
nal matrices GG;; correspond to the convection-diffusion of the mass fraction of
the species 7, as well as the reaction of this species in the gas-phase or at the
wall. For all « =0,...,ns we have
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The non-diagonal block-matrices elements of the matrix G, denoted by Gj;
where 7,7 = 0,...,n, and ¢ # j, correspond to the coupling between the
species through chemical reactions: which species are created while others
are chemically transformed. These block-matrices contain only derivatives of
gas-phase or wall production terms. For all 7,7 = 0,... ,n, with i # j, we

have
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As noted in Section 2.3.2, we want here to emphasize the importance of the
gas-phase and wall production terms in the jacobian matrix. Even if these
production terms may have small influence on the residuum (the surface reac-
tions occur on 1D domains — for 2D computations), the convergence largely
depends on their presence in the jacobian matrix. Actually the difference on
the convergence between two methods using different approximations of the
jacobian matrix may be noticed only very late in the convergence process. The
convergence criterion (often residuum smaller than a certain tolerance) has to
be chosen carefully. Indeed numerical experiments showed us that, for some
approximations, a residuum drop which could seem to be sufficient according
to accepted tolerances for Navier-Stokes solver, is actually not enough for the
convergence of the chemical processes, principally for surface reactions. Some
surface reactions may not be taken into account at this point in the conver-
gence process. This means that we must be careful about local convergence
for chemical reactions or accept to solve the system with a convergence to the
zero machine. We have tested several approximations of the jacobian matrix
in order to understand which terms were necessary. Comparison for the wall
reaction terms can be found in Chapter 6.

If one decided to delete one species, as proposed in Section 2.5, in order to
make the approximated solution automatically fulfill the constraint (2.42), the
jacobian matrix has to be calculated in a slightly different manner. The reader
can find a complete explanation of this method in [13]. A chemical component
can be deleted and its mass conservation equation substituted by the relation
(2.42). The jacobian matrix of the resulting system is then calculated.

4.3 Implementational Constraints

The size of G depends on the number of species and the number of degree
of freedom in the discretization. The latter is controlled through an adaptive
process which will be discussed in Chapter 5; it is typically in a range between
3000 to 20000. The sparse matrix type we use in the implementation is sup-
plied by the DEAL library and is usually used for solving large linear system
resulting from a finite element discretization. The reader can find a description
of this sparse matrix structure in [43]. In our test applications, in Chapter 6,
the maximal number of species considered is 39. Due to memory restrictions,
with so many species, if we want to achieve enough approximation accuracy,
we cannot keep the whole matrix G in memory. Thus, with regards to the
memory available, we decide to keep the whole matrix G or reduce it to its
block-diagonal part, i.e. not to take the matrices G;; into account. This sim-
plification is reasonable only if the reaction terms are smooth. We will see that
the resulting defect correction method still converges for our applications with
an acceptable convergence rate with regard to calculation time. For problem
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with more intense reactions, we may be forced to take the whole matrix into
account.

4.4 Solvers

The global solution process for steady nonlinear systems used for our purpose
can be seen as a nested process (see Fig. 4.1) involving, within a defect-
correction scheme based on a Newton iterative method, a preconditioned Gen-
eralized Minimal Residual method (GMRES) as linear solver (see [45]), where
the preconditioner is chosen to be a multigrid method. Our implementation
is based on the multigrid method developed by Becker in [4], which offers the
ability to handle locally refined grids. For our multigrid method we use several
smoothers depending on the systems we have to solve. For unsteady problems
a loop over time steps wraps again the whole process.

Newton / Defect Correction

GMRES

Multigrid (Preconditioner)

Smoothers

o Vanka
o Gauss-Seidel
e ILU

Figure 4.1: Nested solution process.

In each nonlinear step of the defect-correction method, a linear system is to be
solved. Since the linearized system is decoupled due to (4.6), we may imple-
ment two linear solvers: one for the mixture-averaged flow (i.e. Navier-Stokes),
the other for the species convection-diffusion-reaction process. This requires
two different strategies for the smoothing iteration. In our implementation
we have chosen a ”Vanka smoother” for the Navier-Stokes part of the system
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and a Gauss-Seidel smoother or an ILU smoother for the chemical part of the
system.

4.4.1 Multigrid

The mesh we use for the discretization comes from a refinement process (see
Chapter 5) which makes the hierarchical structure of the triangulation avail-
able. The idea is to use this structure to implement an efficient preconditioner
based on multi-level techniques.

The application of multigrid methods on locally refined mesh is not trivial.
The reader can find a detailed explanation in the work of Becker [4] and an
implementation in the DEAL finite-element library (see [6]). We only sketch
here the essential steps of such a method.

The multigrid process we use for our purpose is based on a V-cycle. On
the coarsest grid T, the system is solved exactly. On other levels T;, a pre-
smoothing is done and the residual is then restricted on a coarser grid T, ;
where this process is recursively repeated until the coarsest grid is reached.
Then the solution is prolongated from the coarser grid T;_; to the grid T; and
a post-smoothing is carried out.

T Pre-Smoothing Post-Smoothing
I

T, 4/ Pos-Smoothing

Exact Solution

Figure 4.2: Multigrid V-cycle.

In the following subsections we describe the smoothing operators. The smoo-
thing of the residual is done level-wise. Smoothing the residual on each level
of the mesh means eliminating its high frequencies in order to approximate
it accurately on a coarser grid. A possibility is to smooth the system with a
fixed number of GMRES steps on each level of the triangulation. Nevertheless
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this leads to bad performance of the multigrid method, especially when the
mesh contains more than four or five levels. We need to use methods which
have good smoothing properties (not compulsorily a solver) without demand-
ing too much computational effort since the smoother works on each level of
the mesh. For the Navier-Stokes equations, we have therefore implemented
a Vanka-type smoother, which is a block-Gauss-Seidel iterative method. The
block are constructed by considering a patch-wise grouping of pressure and
velocities unknowns. The species equations are smoothed with the help of a
point-Gauss-Seidel iterative method or an ILU method. In order to obtain
good smoothing properties, it is well known that these two methods require
a renumbering of the grid nodes in the direction of the flow. We will shortly
discuss this point as final remark.

4.4.2 Vanka Smoothing Operator

As smoothing operator for the Navier-Stokes equations we employ a block-
Gauss-Seidel iteration similar to the one proposed by Vanka in [52]. A smoo-
thing step consists of a loop over the pressure degrees of freedom, where we
simultaneously update the corresponding pressure value together with the ve-
locity unknowns which are coupled with it, by solving a local system derived
from the Navier-Stokes equations.

~.

Figure 4.3: Patch defining the local problems for the Vanka smoother.

To this end, we associate with each pressure point P; of the considered level a
patch consisting of the cells having P; in common (see Fig. 4.3). On each patch
we define the indices [; with 0 < ¢ < 8 for velocity degrees of freedom and the
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local index [, corresponding to the pressure point. The discrete operator for
the stabilized Navier-Stokes system of equations can be written as follows:

< P ) | (4.13)

Having calculated the residuals r; and r, for the velocity and the pressure
respectively, we obtain, after simplification, the following local system for the
velocity and pressure updates d; and d,:

ap 0 ... 0 b dy r
0 axp ... 0 b dy T2
S = (4.14)
0 0 o Qpp bn dn T'n
| e e ey C _dp_ | Ty

This system has been simplified by neglecting the coupling terms between
the velocity degrees of freedom (i.e. ajs,...). It can be easily solved with
two passes over the involved unknowns. This construction provides velocity
updates which satisfy the mass conservation equation with respect to the test
function on the patch.

The Vanka smoother showed more robustness than a simple Gauss-Seidel
smoothing during tests done on the Navier-Stokes equations with constant
viscosity. It is well known for saddle-point problems that by increasing the
Reynolds number of the flow, the linearized systems may still be solved with
the Vanka smoother, while when using the Gauss-Seidel smoother the whole
process shows poor convergence rates or even diverges. Numerical tests on
our application cases for flow reactors led us to set the number of pre- and
post-smoothing steps with the Vanka smoother each to four. Less iteration
steps could handicap the efficiency of the multigrid method as preconditioner.

4.4.3 Chemical System Smoothing

The chemical system formed by the species mass conservation equations and
the temperature evolution equations is solved with the help of Gauss-Seidel
iterations or, for more stiff systems, with an ILU method, a description of
which can be found in [13]. We use an ILU(0) from the MV++ and IML++
packages (see [43] and [21]). MV++ implements efficient matrix/vector classes
designed for high performance numerical computing and IML++ is a collection
of algorithms for solving or preconditioning linear systems of equations. The
idea of the ILU method is to compute a factorization of the form

A=LU, (4.15)
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where A is the matrix of our system, L and U are a lower and an upper
triangular matrix respectively. In general L and U will be dense matrices.
The incomplete LU method of order zero provides approximations of these two
matrices, L and U, which have the same sparse structure as the matrix A. This
allows to reduce memory requirements and to calculate the decomposition with
low computational costs. The factorization remains accurate enough to ensure
the robustness of the method. Some examples of application of incomplete LU
methods may be found in [59] and [13].

The block Gauss-Seidel iterative method is not as robust as ILU methods but
is less time-consuming and can be used as an efficient smoother for linear
systems which do not contain too strong convection and source terms. With
regard to the implementation of a smoother for the chemical system, one must
only be aware of the limits of this method and should make an ILU method
also available. The Gauss-Seidel smoother is used as pre- and post-smoother
for the multigrid method with a number of steps typically each between two
and five.

The efficiency of these two methods is extremely dependent on the numbering
of the mesh points. To be able to use the information transport within the flow,
the degrees of freedom have to be numbered in streamline direction. Since we
need the smoother on each level of the mesh, the numbering of the nodes has
to be realized independently on each refinement level. A renumbering method
based on the minimization of a functional depending on the velocity of the flow
is described in [13]. However this sort of renumbering method might demand
some computational effort and if the direction of the flow is known in advance,
one may prefer to make the numbering simply dependent on this direction,
which is done very quickly. We used the latter method in our applications on
low-pressure flow reactors.
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Chapter 5

Adaptivity

5.1 Introduction

It is frequently the case in engineering problems that the main quantity of
concern is not the solution of a partial differential equation, but a secondary
quantity which is a scalar functional of the solution.

The strategies for mesh refinement conventionally used in finite element meth-
ods are mostly based on a posteriori error estimates in global norms involving
local terms corresponding to residuals of the computed solution. The mesh
refinement process aims at equilibrating these local error indicators. However
meshes generated on the basis of such global error estimates may not be appro-
priate for controlling the accuracy in approximating local quantities such as
point values or contour integrals. More detailed information is needed on the
mechanism of error propagation with regard to these quantities depending on
the solution. This can be obtained by employing suitable duality arguments.
The corresponding dual solution is approximated on the current mesh and is
used to derive local weight factors which are used in the a posteriori error
estimates.

Our aim in this chapter is to propose an approach to the derivation of a pos-
tertori bounds on the error in linear functionals for reactive flows in order to
be able to compute some physical quantities with best accuracy. A functional
J(+) of the solution is defined, which may represent for example local values of
the temperature, contour average of species mass fractions or point values of
certain components of the system. In these cases the error control is applied
only to a part of the solution. When such well defined quantities are to be cal-
culated with precision, an error indicator allows to control the approximation
error on these quantities for the calculated solution.

We present in this chapter an adaptive algorithm leading to reliable and effi-
cient error control in our context, according to a functional as described above.
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It allows to calculate the solution with a controlled accuracy for the value of
the functional J(-) on “optimal” meshes for our FEM Ansatz according to the
corresponding error estimator. “Optimal” means either “most economical for
achieving a prescribed accuracy” or “most accurate for a given number N of
mesh points”. The functional is assumed in this work to be linear although
the approach can be extended to non-linear functionals (see [8]).

The error estimation is based on duality arguments. The dual problem is
obtained from a linearization of the primal problem. Since the dual problem is
linear, the additional cost induced by the computation of the error estimator
corresponds to only one Newton step of the solution of the non-linear primal
problem on each mesh level.

In contrast to the error bound obtained by duality arguments, a classical ap-
proach to adaptivity for reactive flows supplies error indicators usually based
on the estimation of a global stability constant, independently of any quantity
derived from the solution (see [53]). For scalar equations, such an indicator
Ning has the form

Nind = Z WK VK, (5.1)

KeTy,

where wg is a weight depending on the cell K and vk is a suitable difference
quotient of the discrete solution approximating some derivative. In reactive
flow computations, the situation is more complicated since we deal with a
system of equations. For systems the corresponding indicator reads

Mna = Y > WiV (5.2)

KET), i=1

In order to sum over all the equations, a scaling of the computed variables (for
instance the mass fraction) may be necessary, since the concentration of the
species in the mixture may sensibly differ by many orders.

Through the approximation of derivatives by differential quotients, such an
indicator will capture the strong variations in concentration and therefore will
lead to a refinement in reaction zones. However the absence of information
on global error propagation as well as on the coupling between the different
components may have negative influence on the quality of the discrete solution
by not refining the mesh where the error is actually created. Moreover there
is no possibilities to control the error on quantities depending on the solution.

Other traditional approaches to the construction of locally adapted meshes
often resort to ad hoc criteria, often gradients of physical quantities, whose
impact on the accuracy of the numerical solution is difficult to assess.

In the first section of this chapter an error estimate for a functional in the
simple case of a linear convection-diffusion equation is developed. This concept
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is then applied to a non-linear PDE. We finally apply the error estimation to
reactive-flow problems and then discuss how to organize a mesh refinement
process with the help of the computed estimator.

5.2 Error Estimation for a Linear Scalar Equa-
tion

We consider the scalar convection-diffusion equation with homogeneous Dirich-
let boundary conditions. Let S be a given vector field. The variational formu-
lation consists in finding u € V' = H,(Q2) such that

a(u, @) = (B-Vu,¢) + (uVu,Ve) = (f,¢)  VoeV. (5.3)

This problem is approximated by a Galerkin finite element method using a
sequence of test and trial spaces V;, C V parameterized by a discretization
parameter h. The discrete problem reads: find u; in V} such that

a(un, @) = (f,¢) Vo€V, (5.4)

For the sake of simplicity, the modification due to the stabilization of the
equation by the streamline diffusion method is not taken into account; it will
be included later.

Subtracting (5.4) from (5.3), we obtain the Galerkin orthogonality relation for
the error e = u — uy,

ale,) =0 Yo € V. (5.5)
The error e is orthogonal to the space V}, with respect to the bilinear form a,
which is a characteristic property of Galerkin methods.

We now define the functional of the solution that is to be accurately known.
Let J : V — R be a linear functional. The aim of the adaptive process
is to construct an appropriate triangulation T; and to compute u;, with the
condition that

[ J(e)l = |J(u) = J(un)| <TOL (5.6)

for a given tolerance T'OL.

To know if J(uy) is calculated accurately enough, one must be able to bound
the error J(e) defined above. Hence it must be expressed only in terms of the
approximated solution uy, since the continuous solution w« is not known.

We consider therefore the solution z € V' of a corresponding dual problem

a(g,2) =J(¢) VoeV, (5.7)
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where trial and test functions are interchanged with respect to the primal
problem (5.3). The corresponding continuous operator of this dual problem is
by definition the adjoint of the operator of the primal problem. Integration by
parts yields the following representation of this operator:

L*=—-03-V — u/. (5.8)
This means that convection occurs in the opposite direction as for the primal
problem. The dual problem carries information upstream.
The Galerkin orthogonality argument (5.5) and the dual problem (5.7) together
lead to an error representation in terms of the dual solution z:

J(e)=ale,z) =ale,z —inz) = (f, 2 —inz) — alup, 2 — ip2) (5.9)

for an arbitrary interpolation i,z € V}, of the dual solution z € V. We will see
later the aim of the introduction of this interpolation of the dual solution in
the space Vj,.

From (5.3) we get
Je)=(f =08 -Vup,z—inz) — (uNVup, V(z —ip2)) (5.10)

Thus we have reached a formulation of the functional where the unknown con-
tinuous solution does not appear. Expressing the scalar product element-wise,
an integration by parts leads to the exact error representation as a function of
the residual of the primal system and [Vuy], the jumps of the first derivatives
over the cell edges:

J(e) = Z (f = B-Vup+ plup, 2 —in2)k

KeTh

]_ .
_ 5 Z (Mn . [Vuh],z — th)aKa

KeTy,

(5.11)

with n the external normal vector to the edge 0K. Note that the normal
derivatives of u; are discontinuous over the cell edges.

Although equation (5.11) is independent of u, it still contains the unknown
continuous dual solution z. Therefore the error on the functional .J(e) cannot
be evaluated numerically in this form and the term z — 4,2 must be approx-
imated in an appropriate way. Several methods for this are presented in [8].
One usually uses the cell-wise approximation of the expression ||z — ipz|| k.
Indeed by applying the Cauchy-Schwarz inequality on (5.11) in order to get
an upper bound for .J(e), the resulting estimator is

[T(e) < ) wrpxe (5.12)

KeTy,
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with px the residual of the primal equation and wy additional weights depend-
ing on the dual solution:

1
pr = hillB-Vuy — pluy — fllx + 9 nhi? - [Vug) lloxe, (5.13)

wi = max {hllz = inzllc bl = 2o }- (5.14)

The residuals px can be now computed numerically since they depend only on
the discrete solution u,. However the weights have still to be approximated.
wg can be replaced by an approximation obtained by using local interpolation
estimates (see [5])

with an interpolation constant C.

Following the approach proposed in [8], in the local interpolation estimate
(5.15) the exact dual solution z is replaced by an approximation z,, discrete
solution of the dual problem

zn € Vo a(qS, Zh) = J(¢) Yo € V. (516)

For simplicity, we use the same discrete space V}, for the discrete dual problem,
although a finer or coarser mesh could be used.

The validity of this approximation in our application cases is justified by the
results we obtain using this method in this work as well as by the results
obtained in other works such as in [48]. If we substitute the second order
difference quotient ||V2z,||x for the second derivative of the dual solution in
the bound in (5.15), the error can now be estimated by

el ~n=> nx,  nx=xpx, (5.17)

KeTy,

with approximated weights wx numerically evaluated as

After determining the solution wuy of the primal problem (5.3), the discrete
dual problem (5.7) has to be solved. Then the residuals px and weights wg
are evaluated on each cell in order to get the local error indicators ng. The
total error with respect to the error functional .J is then estimated by (5.17).
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5.3 Error estimation with streamline diffusion

For the stabilized discretization, the corresponding error estimate involves fur-
ther terms which are needed in further developments. The modification of the
bilinear form does not affect the practical computation but is relevant for the
form of the a posteriori error estimate given by (5.17). The reader can find
more details on this subject in [22].

We modify the bilinear form a given in (5.3) just as in Section 3.5.3 to obtain
the stabilized bilinear form ay := a + as, with as defined by

as(u, @) = Z dx (B-Vu—plAu,B-Vo)k. (5.19)

KETh

We obtain in the same way the stabilized right hand side f, := f + f5, with
fs defined by

fs(@) == 6k (f,B- V)i (5.20)

KeTy,

The discrete equation is then

an(Un, @) = fu(®) Vo € V. (5.21)

The consideration of the stabilized linear problem with least-square terms leads
to the full Galerkin orthogonality

ah(e, ¢) =0 VeV, (522)

At this point, we are at the same stage in the method as for the simple Galerkin
orthogonality equation (5.5). We just have to interchange the bilinear form a
with the form a;. The dual solution z searched in V' fulfills now the equation

an(9,2) = 1(¢)  VoeV. (5.23)
The error estimate becomes then

J(e) = anle,2) =ale,z —inz) + asle, z —ipz)

= (f,z—inz) —alun, z —inz) + fs(z —inz) — as(up, 2 — ip2).

Following the same reasoning as in the case without stabilization, an a poste-
riori bound of the error with respect to the functional J(-) can be derived:

OIS 3 {urpuc + 1ok (B Fun = ntsun = .6z = in2) )il ), (520
KeT,,

with wg px defined as in previous section.
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The estimation of V(z — i52) by the second derivative of z,

leads to the following bound:

[7(e)] < Y wi (prc + |Blooic 0k hac |18+ Vun — p Dup = ). (5.26)

KeTy,

It is to be noted that the supplementary stabilization term has at least the
same order in hg as the term pg, since the stabilization parameter dx depends
on hg (see Section 3.5.5).

5.4 Error Estimation for Non-linear Equations

We now apply the weighted error estimator, explained previously for a linear
scalar equation, to non-linear problems. Let V' be a Hilbert space with inner
product (., .) and corresponding norm ||.||, and a(.,.) a semi-linear form (linear
in the second argument). The variational formulation of the corresponding
problem is: find v € V such that

a(u,9) = (f,¢) VoeV. (5.27)

The discretization in a finite-dimensional subspace V,, C V is: find uy, € V),
such that

a(un, @) = (f,9) Vo€V (5.28)

Let e = u—uy, be the error between the continuous and the discretized solution,
and J(-) the functional of the solution, still considered as linear, which is to
be accurately known.

The aim is to find a system, named dual system in the previous section, which
allows us to get an upper bound of the error on the functional. In order to have
a variational formulation of this system, the form describing the problem must
be linear in the test function. Moreover the linearity of the primal problem had
made it possible in the previous section to write explicitely J(e) independently
of the continuous primal solution in equation (5.9) and following. The same
argumentation cannot be used here.

Therefore, if we want to keep the same reasoning, we have to find, from the
primal non-linear system, a linear system which allows us to write J(e) inde-
pendently of the continuous solution.
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With this aim in view, we consider the derivative a'(+; -, -) of a(-, -) with respect
to its first argument, defined in a point w in the direction v by

a (w;v, @) = lim E (a(w+ev,d) —a(w, @) )|. (5.29)

e—0 | €

We have the following orthogonality relation for the error e:

1
/ a'(up +tese, @) dt = a(u,d) —alup, ) =0 Vo€ V. (5.30)
0

This suggests the use of the following bi-linear form for the construction of the
dual problem:

1
L(u,up; ¢, 2) ::/ a (up +te; o, 2) dt, (5.31)
0

which is linear in ¢ and z.

For representing the error J(e), we then use the dual problem consisting in
finding z € V such that:

L(u,up; ¢, 2) = J(9) VoeV. (5.32)

Assuming that this problem has a unique solution z € V, and using the
Galerkin orthogonality (5.30), we obtain the error representation

J(e) = L(u,up; e,z — ipz), (5.33)

with any approximation i, z € V), of 2.

The goal is to evaluate the right hand side numerically, in order to get an a
posteriori estimate for the quantity J(e) and thus a criterion for the optimal
local adjustment of the discretization. Since the bilinear form L(u,up;-,-)
contains the unknown solution u, it has to be approximated. The simplest
way is to replace u by uy yielding a perturbed dual solution z € V' defined by

L(up,un; ¢,2) = J(¢) Vo eV. (5.34)

This approximation affects the quality of the resulting estimator

J(e) = J(€) := L(up,up; e,z — ip2). (5.35)

Controlling the effect on the accuracy of this approximated error estimator may
be a difficult task and depends strongly on the particular problem considered.
Many applications which may be found for instance in [33], [48] or [5] tend to
suggest that the approximated estimator supplies correct information for the
local mesh refinement process.
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In a similar way as for linear systems in Section 5.2, an upper bound of J(e)
can be computed by solving the perturbed discrete dual system (5.34). The
application of the Cauchy-Schwarz inequality on the cell-wise representation
of equation (5.33) leads to an estimation of the error in the form

T(e) < ) wipx (5.36)

KeTy,

with residuals px and weights wg.

In order to describe these coefficients, we take as example a part of the mo-
mentum conservation equation, for which the form a is defined as

a(u, @) =u-Vu+ pAu. (5.37)

The residuals and weights are then given by

1
pc 1= B llun - Vun = psun = £+ 5w - (V] lore,  (5.39)
w = max{nZlle = inzllic, i le = inzlla }. (5.3)

As before, we estimate the weights wx by the semi-norm |z|x 2 which is again
approximated numerically by the second-order difference quotient of the solu-
tion z, € V}, of the discrete perturbed dual problem coming from (5.34),

The resulting weighted-residual error estimator is

Je)|<n=> nxk,  with ng=dxpx. (5.41)
KETh

As a final remark it is to be noted that an approximation has been made
in the bilinear form defining he dual system, in order to be able to write an
upper bound of .J(e) which may be numerically computed. To keep a control
on the accuracy of the process it may be worth to compare if the weights
computed with the help of dual solutions on different meshes do not differ too
much. In this case the error estimates are believed to be reliable. Otherwise
one could attempt to refine the mesh globally in order to improve the global
approximation of u and get less perturbed dual systems. This could be the
case for very coarse meshes.
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5.5 Application to Reactive Flows

We apply the weighted-residual error estimation described in the previous sec-

tions to reactive flow problems. The primal system is given by equations
(2.59)-(2.63).

We denote the dual solution vector by
2= [2u, 2p, Zu)” - (5.42)

We refer to Chapter 3 for the notation concerning the primal problem. For
the sake of simplicity we do not take into account the stabilizing terms in the
description of the dual problem. Their effect on the dual system is straightfor-
ward. The influence of these terms on the estimator itself will be mentioned
later.

The derivation of the dual problem from the primal problem and the corre-
sponding a posteriori error estimate follows the same line of argument as in the
previous section. For economical reasons, we do not use the full Jacobian of
the coupled system in setting up the dual problem, but only include its domi-
nant parts. The same simplification is used in the nonlinear iteration process.
Taking the notation of Chapter 1, the resulting dual problem is the following:
find ze V=V_xV, x@Q xS such that

—(pu-Vzu,¢>+(qu,v¢) (2prd) = Ju(d) YpeEV_ xV,,
—(V -2y, x) + ( Vo, x) = Jp(x) Yx€Q,
—(pu-szs",w)+(pDst>,w>— P, z0) = Ju(yp) V€S,

)
)
(5.43)

where the bilinear form P corresponds to a linearization of the chemical pro-
duction term. The linear forms .J; defined on the solution space correspond to
the functional of the solution for which we want to estimate the error. This
system is supplemented by appropriate boundary conditions induced by those
of the primal problem.

This problem has to be solved in order to evaluate the weights in the estimators
of the resulting a posteriori error estimate

T <n=>Y > (oxx+0oxx) ¥xx, (5.44)

KeTy, Xe{u,p,w;}

Ok, x representing the terms coming from the stabilization of the system. We
sum over the error estimators corresponding to each component of the func-
tional, since we may want to control the error on a functional depending on
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several variables of the primal problem. The residuals pk, involve the cells
residuals and jumps of the discrete solution across inter-elements boundaries:

prcw = ety + S0 1) [0nun] [lox,

PKp = DK Tp,
P = hie v + L il Di|| [0,wi)] o,
ry = ||pun - Vup — V- uNVup + V|| k,
rp = ||V - up, + L(up, wp)|| i,
r) = [lpuy - Vi) = V- (pDiVwy) = V - (pD; My wf! M) = fi(Th, wn) i

As already mentioned, the weights Wk, are evaluated by solving the dual
problem numerically and replacing the exact solution z by its numerical ap-
proximation z:

B = Cic hic IV724" &

Gy = O hic 1V323) |

G = O hic [ V32" |1
The error estimator for the complete stabilized system is derived from the

estimator described just above and from the result of Section 5.3. The complete
estimation is

|J(e)| < 0+ |c(ph, un; 2 — in2)| + |5u(Dh, un; 2 — in2)|

Ns
+ Z |5i (P, un; 2 — in2)],
i=0

(5.45)

1 being the estimator without stabilization. The forms ¢, s, and s; are defined
in Section 3.5.5 and correspond to the pressure and streamline-diffusion stabi-
lizations. For each equation of our system we apply the process described in
Section 5.3 in order to define an upper bound of the stabilization term. An
upper bound of the error on the functional is then

[T(e)] < Mhotat =1 + Y @xutudk (14 [ufox)
KeTy,

+ Z DK w; 7D 5&? |4 00, K-
KeTy,

(5.46)

The most important aspect of this a posteriori error estimate is that the lo-
cal cell residuals related to the various physical effects governing the flow and
transfer of temperature and chemical species are systematically weighted accor-
ding to their impact on the error quantity to be controlled.
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5.6 Refinement Strategies

The right hand side in the error bound (5.46) can be evaluated once the finite
element solutions u; and z;, of the primal and dual problems have been com-
puted and can be used to estimate the size of the global error J(e). Exploiting
this a posteriori error bound it is possible to adaptively control the global error
to a desired tolerance level by suitably refining the mesh.

Let an error tolerance TOL and a maximum number of mesh points N,,., be
given. The goal is to find the most economical mesh T}, on which

[7(e)| < nlup) = > nk < TOL, (5.47)

KETh

with the local error indicators nx = wi px. The usual approach to construct-
ing a mesh which does not contain an excessively large number of elements is
to proceed iteratively: we start with a coarse mesh and refine it successively
based on the size of the a posteriori error estimate. Inequality (5.47) can be
thought of as a stopping criterion in this iterative process which can be written
as follows:

1. Solve the discrete problem on Tj,.

2. Evaluate the estimator n =" r N

3. If n > TOL : change grid T}, according to nx and go to 1.
4. end.

Starting from some initial coarse mesh, the refinement criteria are chosen in
terms of the local error indicators ng (un, z;). In fact various strategies can be
adopted to generate a refined mesh from a given one (point 3 of the algorithm).
Here we mention three of the most popular approaches (see [8], [48] or [33]):

e FError-per-cell strategy: In this approach the mesh generation aims to
equilibrate the local error indicators by refining or coarsening the ele-
ments K in the current mesh T} in order to reach the criterion

_T0L

Nk ~ N

with N the number of elements in the resulting mesh. Since N depends

on the result of the refinement decision, this strategy is implicit and re-

quires an iterative implementation. However it is common practice to
work with a varying value of N on each refinement level, with N succes-
sively updated according to the outcome of the refinement process. This

strategy will deliver a partition on which n ~ TOL, provided that N,,,.

is not exceeded. This refinement criterion leads to an equidistribution of

the error over the whole mesh.

(5.48)
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e Fized-fraction strategy: In each refinement step, the elements are ordered
according to the size of the local error indicator ng (us, z,), and then a
fixed portion of the elements K with largest ng (up, 2;,) is refined (in two
dimension typically 30% since this approximately doubles the number of
cells in each refinement cycle). A smaller percentage of refined grid cells
per adaptive step leads to a more localized refinements of the mesh. This
process is repeated until the stopping criterion n < T'OL is satisfied or
Nz 18 exceeded.

o Fized-reduction strategy: We work here with a varying tolerance T'O L,
Having calculated the discrete solutions u;, and z, on a mesh T, the
tolerance is set to TO L, = on, where o € (0,1) is a fixed reduction
factor. In the next step one or several cycles of the error-per-cell strategy
are performed with tolerance TOL,,,, yielding a refined mesh T, and
new solutions u}®”, zp°" with associated error estimator n(uyc”, zj").
Then the tolerance is reduced again by setting TOL,, = on and a
new refinement cycle begins. This iterative process is repeated until

TOLyy <TOL, or Ny, is exceeded.

In each of the three strategies we repeat mesh modification followed by solution
on the new mesh until the tolerance is satisfied, or the prescribed maximum
number of elements is exceeded.

For our application to reactive flows in flow reactors, we used principally the
second refinement strategy, which allows to tune the localization of the refine-
ment zones. This generally leads either to meshes containing a smaller number
of cells, since in less critical zones the error is allowed to remain over the bound
prescribed in the first method, or to a better accuracy in critical zones. An
application of the third refinement strategy can be found in [48].
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Chapter 6

Applications

In this chapter we present four reactive flow problems with different complex-
ities in the chemical reactions. The first two problems are based on CARS
(Coherent Antistokes Raman Spectroscopy) measurements for the evaluation
of the deactivation rate of vibrationally excited H, molecules. In a first ex-
ample we take into account only the wall-deactivation process, which can be
considered as a set of slow chemical reactions; 4 species and 7 reactions are
involved in the chemical system. In a second example we consider the wall-
deactivation process as well as the exchange of the vibrational energy of Hy
molecules with Dy molecules. Here, the chemical system involves 9 species and
the 32 reactions. A third example, again based on the same CARS flow tube,
is the flow simulation of a mixture where chemical reactions between Hy, NOy
and other produced molecules take place by higher temperature (from 300K to
1700K). Since the high temperature gradient within the flow causes numerical
instabilities, a time step method has to be used here to be able to converge to
a quasi-stationary solution. The chemical system considered involves 7 species
and 6 reactions.

The fourth example is based on a CVD (chemical vapor deposition) exper-
iment. We are interested in the deposition of diamond on the surface of a
substrate. As revelator of this deposition we look at the concentration of C'H3
near the surface of the substrate. To improve the diamond deposition, this
concentration must be as high and homogeneous over the substrate as pos-
sible. The chemical model involves 39 species and 358 elementary chemical
reactions. Particularly with so many species and reactions, the application of
the solution method developed in this work makes it possible to reach good
accuracy with reasonable memory requirement and computation time. The
calculation of such reactive flows can be performed by the adaptive algorithm
presented in this work on a workstation or a PC.
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6.1 CARS

6.1.1 Flow Reactor — Overview

The flow tube technique has importance in modern experiments as one of the
most powerful tools for the determination of elementary chemical reaction rate
constants.

The basic principle of flow tubes is always the same: mixing of reactants takes
place upstream in a mixing section and their consumption or the buildup of
products is followed along a measurement section by some detection method for
atoms, radicals, or molecules. A reaction rate constant is then deduced from
measured axial concentration profiles. In order to favor diffusive processes,
which minimize radial concentration gradients, a flow tube is traditionally
operated at low pressure. An assumed mean flow velocity allows to convert the
axial coordinate (distance between the first point of mixing and the detection
point) into reaction time. The reaction rate constants of interest can then be
deduced by modelling the homogeneous reaction system. However, the method
is known to bear systematic errors, since it is based on the approximation of
a perfect decoupling of chemical and hydrodynamic process in the flow tube.
Especially in the mixing section of the reactor this assumption is not valid.

In order to carry out a reliable evaluation of rate constants from experimental
data, it is desirable to take into account all relevant physical and chemical
processes occurring in a reactive flow. The detailed modeling of reactive flow
fields within a reactor for kinetic studies is therefore an important tool for the
experimental determination of elementary rate constants.

6.1.2 Reaction Kinetic of the Hy — Dy System

The heterogeneous relaxation and the exchange of vibrational energy of the Hy
molecules has been experimentally investigated in [57] with the help of a test
reactor. For this experiment, based on the assumption of non-turbulent sta-
tionary flow and chemical process, the possibility of two-dimensional numerical
simulation with a finite difference scheme has been studied in [46].

With the adaptive solution method developed in this work, we are able to get
an accurate determination of some physical quantities of interest (such as mass
fractions or concentrations) along the axis. These computational results can
then be used together with experimental measurement results to get a good
approximation of reaction rates for deactivation or exchange of vibrational
energy for H, molecules. The automatic adaptive process refines the mesh only
where it is needed (essentially on the measurement points and on singularities
of the solution) to get accurate values on an optimal mesh, i.e. with a minimal
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Figure 6.1: CARS flow reactor.

number of mesh nodes for a given precision. In this way we not only save
CPU-time but we also gain in accuracy, being assured of the precision on the
computed quantities.

The reactor considered here consists essentially in the concentric disposal of
an external tube (radius 16 mm) in which an interior tube (internal radius 5.5
mm and wall thickness 1 mm) hands in (see Fig. 6.1).

Two gases streaming out of the outer and interior tubes get in contact at the
outlet of the central tube. This central tube is long enough to guarantee fully
developed laminar flow fields for both inner and outer gas flows. From this
point on, the gases are mixed through convective and diffusive transport and
may react with each other. The main tube (the prolongation of the outer
tube) consists of a straight 32 mm diameter section equipped with an array of
diametrically opposed 2mm diameter holes in the wall to allow optical CARS
diagnostics with focused laser beams. In this way, it is possible to record axial
profiles for species concentrations. A complete description of the experiment
can be found in [57], [47] and [46].
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Figure 6.2: Two-dimensional field with measurement-line positions and calcu-
lation field (half domain for symmetry reasons).

Vibrationally excited hydrogen molecules Hy(v” = 1) are generated by mi-
crowave discharges (MW — see Fig. 6.1) in the sidearms of the mixing head
bringing the gas to the outer tube. The microwave discharges create also H
atoms. These atoms lead to additional reactions which the modelling of the
process must take into account. In the inner tube, Helium He or in-the-ground-
state Deuterium Dy (v” = 0) are injected.

The wall vibrational relaxation rate 7,y for the deactivation of Hy(v" = 1) to
H,(v" = 0) and the vibrational energy transfer rate of Hy(v"” = 1) in collisions
with Dy(v” = 0) are the unknown reaction kinetic constant which have to be
calculated.

6.1.3 First Evaluation: Wall Relaxation

We investigate the deactivation of vibrationally excited hydrogen molecules at
the wall (heterogeneous relaxation). An inert gas (Helium) is used as carrier
gas. It is streaming into the mixing tube from the internal tube. We consider
the laminar flow for determining the reaction rate of the elementary wall-
deactivation reaction (slow chemistry):

gy =l g0, (6.1)
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Table 6.1: Simulation results for the Ho(v = 1) wall-deactivation experiment
on hand-adapted(top) and on automatically adapted (bottom) meshes.

Heuristic-based refinement

Level | # Cells |  H2(0) | H2(1)
1 137 0.6556 0.005294
2 481 0.7373 0.00661
3 1793 0.7962 0.007096
4 6913 0.8172 0.007434
5 7042 0.8197 0.007419
6 7494 0.8240 0.007473
7 8492 0.8269 0.007504
8 10482 | 0.82858 | 0.007521
9 15993 | 0.82853 | 0.007545

Error-estimator-based refinement

Level ‘ # Cells ‘ H2(0) ‘ H2(1)
1 137 0.6556 0.005294
2 282 0.7382 0.006063
3 619 0.7958 0.007132
4 1368 0.8149 0.007323
5 3077 0.8257 0.007457
6 6800 0.8295 0.007534
7 15100 0.8317 0.007564
8 33462 0.8328 0.007587

The complete reaction mechanism can be found in the appendix.

The unknown is the kinetic reaction constant, i.e. the wall relaxation rate
Ywan for the reaction described just above. A definition of 7y, is given in
Section 2.3.2. The quantities to be computed are the results of CARS mea-
surements of species concentrations. The measured quantities are proportional
to a weighted mean value of the mass fractions w; along lines perpendicular
to the symmetry axis of the reactor, and are used to obtain approximations of
the species concentrations along the axis of the tube.

We will present the computed mean values of the mass fractions of activated
and deactivated hydrogen along radial lines I' of the two-dimensional calcula-
tion field. The error functional (see Chapter 5) used in the adaptive process
is

J(g) = /F olr, ) dr. (6.2)



In order to emphasize the advantages of the method presented in this work,
we also have computed the averaged mass fractions on tensor product meshes
which are a priori refined on the basis of heuristic considerations. This process
is only based on the a priori knowledge of the measurement lines which are
considered to be the refinement lines. We begin with global mesh refinement
and then go on with local refinement along the measurement lines as well as
on the known singularity of the solution.

Comparison of results shows that the refinement based only on heuristic criteria
is not sufficient to get reliable values from the computed solution. Table 6.1
shows the values of the average of the H, mass fractions along a cross section
of the tube for a simulation firstly with the heuristic method and secondly
with the error-estimation method.

We observe improved accuracy on the automatically adapted meshes for about
the same number of grid points. In particular, monotone convergence of the
quantities of interest is achieved. This is an important feature of our approach
which provides high reliability of computed solutions.

Corresponding solutions and meshes are shown in Figures 6.3, 6.4 and 6.5. For
the meshes refined with the use of an error estimator, the structure of the dual
solution reflects the dependence of the quantity J(X) (the error functional) on
the local cell-residuals.
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Figure 6.3: Mass fraction of HQ(VZI) by the CARS simulation with heuristic
refinement — Refinement levels 2, / and 6.
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Figure 6.4: CARS simulation with adaptive local refinement — Mass fraction
of Hé”ﬂ) — Refinement levels 2 and 4.
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Figure 6.5: CARS simulation with adaptive local refinement — Mass fraction
of HQ(VZI) (top) and dual solution component corresponding to Hg':l) (bottom,)
— Refinement level 6.
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Figure 6.6: CARS comparison between normalized simulation results (squares)
and experiment measurements (points) for the evolution of the HQ(V:1> mass
fraction along the axis.

Our computational results have been compared to experimental measurements
(see Figure 6.6). For this computation, the inflow rate for the helium which
flows from the interior tube is set to 148 [/min and the inflow rate for the
hydrogen which flows in the outer tube is set to 665 [/min. The thermody-
namical pressure is considered to be 5.33 mbar and is constant in the whole
domain. The proportion in mole of the vibrationally excited H, molecules at
the inflow is 0.5%, the proportion of H atoms is 0.3% and the rest 99.2% is
non vibrationally-excited H molecules. The experimental measurements have
a relative error of around 20%.

Such comparisons make it possible to approximate the deactivation rate of Hs
molecules. At the present time we have to tune manually the value of the
corresponding reaction rates which we want to evaluate. A further develop-
ment should be to couple the solution method with an optimization process
in order to find the best approximation of the reaction rate with regard to the
comparison between simulation and experiment.

As pointed out in Chapter 4, we also want here to show how different the
convergence process can be when using different Jacobian matrix approxima-
tion. This shows that the convergence criterion has to be chosen carefully and
a residuum drop which could seem to be sufficient to get a correct approx-
imation of a Navier-Stokes flow may be insufficient for flows with chemical

88



Gmma T T T T T T

fam
000085

0.00004 . .

0.00022 . -

Q0002

0.00018 - - -

0.00016 . .

0.0007 4 1 1 1 1 1 1 1
Qooe 0.004 Q00 0.008 am ame a4 ame

Q.00155 T T T T T T T
Hz1 +

anms | = -

Q00145

Q004

Q035

Qo3

0.00125 o 4

QONE - -
]

0.00118 L L L L 1 L L 8
Q elielers 0.004 Q00s 0.008 am amz o4 ame

Figure 6.7: HQ(VZI) mass fraction along a radial section at axial position 0.143
m in the CARS flow reactor. Comparison between a calculation with a Jaco-
bian matriz taking surface reaction terms into account (above) and a calcu-
lation with an approzimated Jacobian matriz (below) by a convergence with a
tolerance of 1078 on the residuum.
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reactions. We compare here two approximations of the Jacobian matrix, the
first one taking into account all the chemical terms, the second one without
the surface reaction terms. We want to remind the user that these terms are
still taken into account in the residuum term of the defect-correction method.

For a convergence with a tolerance of 10~ on the residuum, we see in Figure 6.7
that the approximated Jacobian did not allow to get a correct approximation
of the solution at this point in the convergence process. The surface reactions
are not yet Cau%ht by the solver and the value on the wall surface of the mass
fractions for HZVZI) obtained with the help of the approximated Jacobian is
higher than the one obtained with the Jacobian taking into account all chemical
terms. While reaching a residuum of 1079, the obtained convergence leads in

this case to the same results for both methods.

This means that the correct evaluation of chemical process may occur only
late in the convergence process. Moreover we also have to be aware that using
approximated Jacobian may in some cases lead to problems in catching all
chemical processes in the solution (and thus get convergence) since we have
to converge with a very small tolerance on the residuum. We actually did not
experience such a problem in our applications and with the approximations of
the Jacobian matrix we used (see Chapter 4).

6.1.4 Second Evaluation: Wall Deactivation and Acti-
vation Transfer

In this experiment helium is replaced by deuterium. Thus this latter gas is
added through the central tube while vibrationally-excited hydrogen enters
through the outer tube. We have here to take into account some more elemen-
tary reactions such as

B RDEY s HE Dy, ©63)

The complete reaction mechanism used for this computation can be found in
the appendix.

Both hydrogen and deuterium are experimentally monitored in their first ex-
cited vibrational state. Therefore, in the simulation, we may be interested in
the average of H{"™" or of DY'=" mass fractions along radial lines in the two-
dimensional calculation domain. As in previous section, we could construct the
corresponding functionals given by (6.2) for both species and use them for the
definition of the error functional of the adaptive method. Another possibility
is to take as error functional the sum of the error functionals corresponding to
the mass fractions of interest (i.e. for which measurements are done).
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Table 6.2: Performance comparison between the simulation code developed in
this work and based on the DEAL library and a finite difference code developed
by J. Segatz in [46].

code CPU time (units ~ sec. ) memory required

global | per vertex | global | per vertex
Waguet 13442 vertices | 9360 (~ 2,5 h.) 0.70 63 Mb 4.7 Kb

Segatz 16000 vertices | 85750 (~ 24 h.) 2.35 153 Mb 9.5 Kb

However, in order to demonstrate the flexibility of the adaptive method based
on error estimates and duality arguments, we use here a different error func-
tional. The CARS signal delivers the value of a weighted integration along
radial lines in the tube and we had consequently taken this functional in the
previous simulation. But we are actually interested in the value of concentra-
tions along the axis. The numerical simulation allows direct access of point
values of the concentrations. Therefore the functional could be chosen as

J() = ¢(r0, 20), (6.4)

with rp = 0 and zp the coordinates of the point of interest along the axis. For
the following results we took as error functional for the complete system the
sum over error functionals defined as above for several species and several axial
coordinates.

We see in Figure 6.8 that the automatic adaptive refinement process leads
to mesh refinement on given points (rg, zp) but also on the zones where the
reactions may strongly influence the evolution of species concentrations along
the whole tube or also in the zones where the solution may have a singularity
as on the top of the splitter plate.

The method described in this work requires less CPU-time and memory for
the calculation of the steady state of reactive flows compared to other existing
finite difference methods based on tensor product meshes. Table (6.2) shows
the comparison between the simulation code developed in this work and a
finite-difference code already successfully used for simulation of flow reactors
developed in [46] by J. Segatz.

Considering the performance measurement for the code developed in this work,
we see that the CPU time needed to attain convergence has been reduced by
a factor 7 with regard to the other code, and that the memory requirement
has been reduced by a factor 2. And this, without taking into account the
advantages of the local refinement process. The gain in performance allows
us to apply the method on more complex systems with finer (locally refined)
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Figure 6.8: CARS simulation with local refinement and point error functional

~ Mass fraction of HDWV

92



grids and still compute the solution on a workstation or a PC, as we also see
in the following section.

6.1.5 NH-NO2 Chemical System

The main goal of this experiment is the direct measurement of reaction rates
as well as the examination of their temperature dependency in the range of
high temperature (300K - 1700K). The experimental material is the same as
for CARS measurements: a flow reactor with an inner and an outer tube
from which flow different gas which then react with each other in the mixing
zone of the tube. One difference is that the walls are heated and thus have
a given temperature. The simulation of high temperature flows is used for
interpretations of experimental measurements of reaction rates as well as for
investigations on their temperature dependence.

As a first step toward the computation of the complete reaction mechanism,
we compute a high temperature flow reactor with a mixture consisting of Hs,
NO, and He molecules which produces through chemical reactions OH, NO
and H>0O molecules as well as H and O atoms. We use as error functional the
global mean value of the NO concentration.

The solution process we used here for converging to a quasi-stationary solution
is the following:

e We compute the reactive flow on a coarse grid which however is fine
enough to allow to capture the principal structures of the flow and chemi-
cal reactions. Typically numerical tests showed that, for this kind of flow,
a coarse grid with around 100 cells is sufficient. The quasi-convergence of
the time-step process is reached as soon as the residual difference between
two following time-steps is smaller than a given tolerance.

e Once a quasi-stationary solution is reached on this coarse grid we refine
it locally using an error estimator.

e We compute further time steps and refine again the grid locally as soon as
the quasi-convergence condition has been reach for the time step process.

e We repeat the third point until the value of the error functional reach a
given tolerance.

We show in Figures 6.9 and 6.10 respectively the time evolution of the NO
molecule and the O atom mass fractions within the computation domain which
represents the half of an axial section of the flow tube. From the inner tube
flows a mixture of NOs and He molecules with a mole fraction distribution
respectively of 0.44 and 0.56 and with a maximal velocity of 30 m/s. From
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the external tube flow Hy molecules with a maximal velocity of 20 m/s. The
pressure of the inflow is 5 mbar and the temperature 300K.

This computation is the first step toward the simulation of the complete reac-
tion mechanism which was not available at the time of the calculation. With
the help of simulation, we are able to test several mechanisms and investigate
the temperature dependence of the different reaction rates which are taken
into account, by comparing the simulation results, e.g. concentrations of some
species, with experimental measurements of these concentrations.
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Figure 6.9: Time evolution of NO mass fraction for an inflow of NOy
molecules in the outer tube and of Hy molecules in the inner tube— red rep-

resents a null mass fraction and blue represents a maximal mass fraction for
this molecule
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Figure 6.10: Time evolution of O mass fraction for an inflow of NOy molecules
in the outer tube and of Hy molecules in the inner tube — red represents a null
mass fraction and blue represents a mazimal mass fraction for this atom.
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6.2 CA-CVD

In a “Chemical Vapor Deposition” (CVD) reactor, diamond can be deposited
upon different materials from an hydrocarbon-hydrogen gas mixture under
moderate temperature and low pressure. Improvement of the growth rate and
the quality of the produced diamond layer as well as its homogeneous growth
are some of the aims which are still to be reached in this field. The compre-
hension of the reactions on the substrate where the diamond layer settles is
still incomplete. Even the species which control the deposition kinetic have
not been incontestably found and the complex chemical mechanisms are not
sufficiently known.

For a deeper understanding of the complex relations between gas phase and
surface chemical processes and hydrodynamical processes, simulations must
complement the experiments and supply a base for evaluating several models
of chemical processes.

The reactor is made of a 15cm-diameter tube with a height of 20cm. The
geometry of the reactor used for the experiment is axially symmetric, which
makes the two-dimensional modelling possible. The reactor has three windows
for the inspection of the gas composition through the detection of fluorescent
light created with the help of a laser beam (see Fig. 6.11). The reader can
find a comprehensive description in [23]. The pressure in the reactor is set to
50 mbar with the help of an automatically-regulated pump.

The chemical radicals which are necessary for the diamond deposition upon
silicium substrates are produced injecting methane into the combustion gas of
a Hy/O5 flame. The term used for this process supported through combustion
is “Combustion Assisted - Chemical Vapor Deposition”, in short CA-CVD.
Hydrocarbon molecules are transformed during the chemical process in reactive
radicals, which depose on the substrate with the adequate crystal structure in
form of diamond.

As noted above, the detailed steps of the process are not completely understood
yet. However the methyl-radical (C'H3) seems to have an important role in the
formation of diamond. The corresponding experimental conditions have to be
set such that a suitable temperature as well as a high concentration of C'Hy
molecules are found in the close proximity of the substrate surface. Methyl is
created through the decomposition of methane or higher hydrocarbons. The
mixing of a hot-flame exhaust gas with high concentration in hydrogen radicals
with hydrocarbons leads to chemical reactions such as:

The structure of the experiment is shown in Fig. 6.11. A hydrogen/oxygen
flame (premixed) burns above a burner. Its exhaust gas contains beside the

97



Substrate

/ Window

Burner 1 T Hz /02

Figure 6.11: CVD flow reactor.

combustion product HyO, also up to 25% H radicals (in mole) and contribute
to the warming of the methane injected through the pipe. This latter gas is
then transported by convection and diffusion within a “stopping-point” flow
to the substrate surface. Decomposition reactions occur on the way, such that
the C'H3 concentration increases at first by the consumption of H radicals,
and finally decreases due to recombination and other reactions.

This later process can also be observed in the result of the simulation (see
Figure 6.13). With the help of the adaptive solution method developed in
this work, the concentration of C'H3 can be accurately computed. In order to
optimize the C'H3 concentration on the substrate we could use for our adaptive
process an error functional similar to the functional described in Section 6.1.3
and defined by relation (6.2). However as we want here to show the evolution of
the C'H3 mass fraction in the reactor, we decide to use a global error functional
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Figure 6.12: CVD computational field — half axial section of the CVD reactor
for symmetry reasons.

on this variable defined by

J() :/Qcp(r,z)rdrdz. (6.6)

This gives us control on the mean value of the C'H; mass fraction over the
whole domain (see Chapter 5 for more details about error functionals) and
makes the adaptive process refine more globally where the gradient of this
variable is high or on some singularities and not on given measure points or
lines (see Figure 6.13). Table 6.3 gives the convergence history of the error
estimator based on the resolution of the dual system and defined in (5.46).

Table 6.3: Results for the error estimator for the CVD simulation using as
error functional the global mean value of the C'H3 mass fraction.

Level | # Cells n
1 412 4.21e-5
2 784 1.70e-5
3 1528 7.49e-6
4 2941 3.44e-6
5 5698 2.05e-6
6 11374 1.14e-6
7 23611 6.43e-7

A next step would be to optimize the C'H3 concentration on the substrate
surface by controlling parameters such as the inflow velocities of the gas or
the geometry. In this purpose, we would use an error functional giving control

99



Substrate

Figure 6.13: CVD simulation with local refinement — Mass fraction of C Hs.

to the local value of the C'H; concentration or of the concentration of any
other species involved in the diamond deposition on the substrate. Once the
optimized parameters are found by simulation, they can be applied on the
experiment.

The different parameters which can be used for the optimization process can be
the methane flow rate or the flame exhaust gas flow rate as well as the distance
between the pipe from which methane flows and the substrate. These are two
different kinds of parameters: the first one involves boundary conditions, the
second one the geometry of the reactor.

To simplify geometrical optimization, if we decide to optimize the distance
pipe/substrate, an automatic mesh generator has been developed. It allows the
user to generate a mesh for the computation domain according to geometrical
parameters such as the pipe distance to the substrate and to the flame, as well
as the reactor size and the pipe size (see description in Appendix C).

In a further work we could also here couple the solution process developed in
this work with an optimization process for instance on the inflow boundary
conditions for the inflow velocities or species concentrations. Promising results
in this field can be found in [34].
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Chapter 7

Conclusion and Outlook

In this work, we have developed and implemented a solution method for the
low Mach-number formulation of the Navier-Stokes equations with supple-
mentary equations describing the evolution of the temperature and chemical
species (mass fractions) with source terms due to heterogeneous (surface) and
homogeneous (gas-phase) chemical reactions. These equations are written in
cylinder coordinates and are discretized with stabilized conforming Q1/Q1 fi-
nite elements.

The resulting nonlinear system is solved by a full-coupled defect-correction
iteration based on an approximation of the Jacobian matrix of the system. We
construct this approximation with regard to the consistence and solvability of
the corresponding linear system.

A key element of the solver is the use of a multigrid preconditioner for the
GMRES method applied for solving the linear problems arising in the de-
fect correction iteration. We implemented three different smoothing operators
for our multigrid preconditioner: a Gauss-Seidel iteration and a robust ILU
factorization for the species equations, and a Vanka-type smoother for the
Navier-Stokes part of our system. The multigrid method we implemented is
based on the DEAL library and takes advantage of the hierarchical structure
of the mesh constructed by successive refinements.

Adaptive meshes are successfully applied in the context of reactive flows. A
recent approach to control the error in functionals of the solution is presented
and applied to this type of problems. The reliability and efficiency of the error
estimator for our applications is demonstrated through numerical results for
two types of chemical models.

Comparing our method with a finite-difference code developed by J. Segatz and
used in the computation of chemical flow reactors (see [46]), the calculation
time has been reduced by a factor five for reaction mechanisms made of around
30 elementary reactions and involving around 10 species. We have also success-
fully applied our method to chemical flows involving 39 species and more than
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350 chemical reactions. Even by flows with so many species and reactions, the
adaptive method presented in this work allows to reach a controlled accuracy
on physical quantities of the flow with acceptable computational efforts.

As promising outlook we would like to emphasize the following points:

For large chemical systems a major part of the computing time is consumed
by the calculation of the Jacobian matrix of the chemical source terms and its
inversion by Gauss-Seidel iterations or ILU factorization. Because these oper-
ations can be performed locally, a parallelization of the presented algorithm
seems to be an adequate method.

An application to 3D problems will also increase the need of reducing memory
requirements and computation times without sacrificing accuracy. Adaptive
refinement methods will probably play an important role for solving 3D prob-
lems in order to reach the needed accuracy on physical quantities of interest
with an optimal number of cells.

Another field of investigation is the mesh adaption for unsteady solutions. A
first approach is to allow beside mesh refinement also mesh coarsening, and
compute a locally-refined mesh for each time step. Research is still needed
to implement a complete mesh refinement strategy for solutions depending on
time. Moreover a refinement strategy for the time steps can also be defined.

Another promising perspective is the application of error control and adap-
tivity processes for finite element discretization to optimization problems gov-
erned by differential equations. The dual solution obtained during the adaptive
mesh refinement can be used to build optimization strategies. This allows to
control the value of the cost functional of the optimization problem. Some
results in the field of coupling adaptivity and optimization methods can be
found in [7] and [34]. As an example of possible optimization problem we want
to give the diamond deposition seen in Section 6.2: by optimizing some species
concentration on the substrate, the quantity and quality of the diamond layer
over the substrate can be drastically increased.
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Appendix A

CARS-Experiment reaction
model

e H, wall relaxation process

MECHANISM OF H2(V=0,1) REACT. (Yorck Schneider-Kuehnle)
ok ok k

3k 3k 3k 3k >k 3k 3k 5k >k 3k 3k 5k >k ok 3k 3k 5k >k %k 3k 5k %k %k 3k 5k % %k %k %k 5k

%k % %k %k *

*x%x%x% 1, H2-HE MECHANISM *

*k ok k * * reaction rates *

sk kK K K K K K K K K K K K KK K K K KoK ok Kok ok ok ok ok ok ok ok ok ok ok o o o o ok ok

H21 +H + >H20 +H * 2.36E+11  0.00

H21 +H20 + >H20 +H20 * 6.50E+07 0.00

H21 +HE + >H20 +HE * 1.66E+07 0.00

H +H +HE >H20 +HE * 5.00E+16 0.00

H +H +H20 >H20 +H20 * 2.90E+15 0.00

3k 3k 3k 3k >k 3k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k >k 3k >k 3k >k 3k 5k >k 5k >k 3k 3%k 3k 5k >k 5k >k %k 5%k %k 5k %k 3k %k %k %k

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

002 COMPLEX REACTIONS AT THE WALL
1.00 H21 *1.0 1.500E-03
1.00 H20 0.0 0.00
1.00 H *1.0 1.000E-04
0.50 H20 0.0 0.00

END
e Hy/Dsy wall relaxation process and vibrational energy exchange

MECHANISM OF H2(V=0,1) REACT. (T.DREIER)
ok ok k
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3k 3k 3k 3k >k 3k 3k 5k >k >k 5k 3k >k >k >k 3k 5k >k >k 3k 5k >k >k %k %k 3k %k %k %k k

%k %k k *

*x*x*%x 1. H2+D- MECHANISM *

*okok ok k = cm3/mol/s * *
3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 5k 5k %k 3k >k 3k >k 3k 3k %k sk %k 5k >k sk sk %k 5k >k 5k 5k >k 5k >k %k >k %k 5k %k k
H20 +D >HDO +H *
HDO +H >H20 +D *
D20 +H >HDO +D *
HDO +D >D20 +H *
H21 +H >H20 +H *
HD1 +H >HDO +H *
H21 +D >H20 +D *
HD1 +D >HDO +D *
H21 +D >HDO +H *
D21 +H >HDO +D *
HD1 +H >H20 +D *
HD1 +D >D20 +H *
H21 +D >HD1 +H *
D21 +H >HD1 +D *
HD1 +H >H21 +D *
HD1 +D >D21 +H *
H21 +HDO >H20 +HDO *
HD1 +H20 >HDO +H21 *
H21 +D20 >H20 +D21 *
D21 +H20 >D20 +H21 *
HD1 +D20 >HDO +D21 *
H21 +H20 >H20 +H20 *
H21 +HE >H20 +HE *
HD1 +HE >HDO +HE *
H +H +HE >H20 +HE *
H +H +H20 >H20 +H20 *
D +D +D20 >D20 +D20 *
>k 3k 3k 3k >k 3k 5k 5k >k 5k 3k >k >k 5k 5k %k 5k 5k 5k %k 5k 5k >k 5k 3k %k >k 5k >k >k >k %k >k 5k %k >k 5k %k >k 5k %k >k 5k %k %k
END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS
005 COMPLEX REACTIONS AT THE WALL

1.00 H21 *1.0
1.00 H20
1.00 D21 *1.0
1.00 D20
1.00 HD1 *1.0
1.00 HDO
1.00 H *1.0
0.50 H20
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WP PP WL NN O, OO = O© O ODNDOOOLOoOoND =N =

.78E+08
.03E+07
.27TE+07
.03E+07
.42E+10
.42E+10
.42E+10
.42E+10
.00E+10
.55E+09
.55E+09
.55E+09
.04E+12
.27E+09
.21E+11
.00E+10
.13E+11
.43E+09
.19E+10
.02E+07
.11E+09
.80E+07
.56E+07
.01E+07
.10E+08
.68E+08
.55E+08

O O O O O OO OO OO OO OO O0OO0OO0OO0OO0OO0OO0OO0OOoO o OoOOo
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.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O = O 00 O 00 O

.700E-04
.0 0.00
.700E-04
.0 0.00
.700E-04
.0 0.00
.000E-03
.0 0.00
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1.00 D *1.0 1.000E-03
0.50 D20 0.0 0.00
END

NOy and H reactive mixture

3k 3k 3k 3k >k 3k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k >k 5k %k 3k %k 3k %k %k %k %k k *k k

k %k %k k *

*xxxx 1. NO2-H2 MECHANISM *

*okokok k = cm3/mol/s *

3k 3k 3k 3k 3k 3k 3k sk 3k sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk sk sk vk >k >k >k >k >k 5k 3k 3k 5k 5k 5k k >k %k

H +H +M >H2 +M * 2.50E+09 0.00

H +H +H2 >H2 +H2 * 2.90E+03 0.00

H +H +HE >H2 +HE * 2.50E+09 0.00

H +N02 >0H +NO * 7.20E+13 0.00

H2 +0H >H20 +H * 4 .52E+11 0.00

OH +0H >H20 +0 * 1.00E+12 0.00

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk Sk sk sk sk sk sk sk sk sk sk Sk sk ke sk sk sk sk >k sk >k >k >k >k 5k 3k 3k 5k 3k 5k k %k %k

END

COLLISION EFFICIENCIES

END

COMPLEX REACTIONS

001 COMPLEX REACTIONS AT THE WALL
1.00 H *1.0 1.000E-03
0.50 H2 0.0 0.00

END

109

O O O O O O
O O O O O O

O O O O O O



110



Appendix B

CVD-Experiment reaction

model

MECHANISM C1-C2,Methan, P = 50 MBAR, HIGH TEMP.

3k 3k 3k 3k >k 3k 3k 3k >k ok 3k 3k 3k >k 3k 3k 3k >k k 3k 5k >k ok 3k 3k 5k >k >k 3k 3k 5k %k %k %k 3k 5k 5k %k %k %k %k k

*okkok 01. H2-02 React. (no HO2, H202)
sk sk kK K kK K K K K K K K KK K K K K K KoK ok ok sk ok ok sk ok ok ok ok ok ok ok ok o
02 +H =0H +0

H2 +0 =0H +H

H2 +0H =H20 +H

OH +0H =H20 +0

sk kK K K K K K K K K K K KK K K K K K KoK ok ok ok ok ok ok ok ok ok ok ok ok ok ok o
*k ok k 02. Recombination Reactions

sk kK kK K K K K K K KK K K KK K K K KoK ok ok sk ok ok ok ok ok ok ok ok ok ok ok o
H +H +M? =H2 +M°

0 +0 +M° =02 +M’

H +0H +M° =H20 +M°

sk sk kK kK K K K K K K KK KK K K K KoK ok ok ok ok ok ok ok ok ok ok ok ok ok ok o
*k ok k 03. HO2 Formation/Consumption
sk kK kK K K K K K K K K K K K K K K K KoK ok ok Kok ok ok ok ok ok ok ok ok ok ok o
H +02 +M° =H02 +M°

HO2 +H =0H +0H

HO2 ~ +H i +02

HO2 +H =H20 +0

HO2  +0 ~0H +02

HO2 +0H =H20 +02

sk kK K K K K K K K K K K KK K KK KK KoK ok ok sk ok ok ok ok ok ok ok ok ok ok ok o
Kook ok 04. H202 Formation/Consumption
sk sk kK K K K K K K K K K K K K K KK K K KoK ok ok ok ok ok ok ok ok ok ok ok ok ok ok o
HO2 +H02 =H202 +02

OH +0H +M’ =H202 +M’
H202 +H 1 +H02

H202 +H =H20 +0H
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H202
H202

+0
+0H

=0H
=H20

+H02
+HO2

3k 3k 3k 5k >k >k 3k 3k >k >k 3k 3k 5k >k >k 3k 5k >k >k 3k 5k >k %k %k 5k 3k 5k >k >k 3k 5k 3k 5k %k %k %k 5k %k %k %k %k 5k

% %k %k %k

05.

CO REACTIONS

3k 3k 3k 5k >k >k 3k 3k >k >k 3k 3k 3k >k >k 3k 5k >k >k 3k 5k >k %k %k 5k 3k 5k >k >k 3k 5k 3k 5k >k %k %k 5k %k %k %k %k 5k

CcOo
CcOo
CcOo
CcOo
C
C

+0H
+HO2
+0
+02
+02
+0H

=C02
=C02
+M?
=C02
=C0
=C0

+H

+0H

=C02 +M?
+0

+0

+H

3k 3k 3k 5k >k >k 3k 5k >k >k 3k 3k 3k >k >k 3k 5k >k >k 3k 5k >k %k %k 5k 3k 5k >k >k %k 3k 3k 5k %k %k %k 5k %k %k %k %k 5k

% %k %k %k

10.

CH Reactions

3k 3k 3k 5k >k >k 3k 3k >k >k 3k 3k 5k >k ok 3k 5k >k >k 3k 5k >k >k %k 5k 3k 5k >k >k %k 5k 3k 5k >k %k %k 5k %k %k %k %k 5k

CH
CH
CH
CH
CH
CH
C

+0
+02
+C02
+H20
+0H
+H
+H

=C0
=CHO
=CHO
=3CH2

+M°

+H

+0

+C0

+0H

+H20

+H2

=CH +M?

3k 3k >k 3k >k 3k >k 3k >k 3k 5k >k 5k 3k 5k >k 5k >k 3k >k 3k >k 3k 5k >k 5k %k 3k >k %k >k %k 5k %k %k 5%k %k %k %k %k k k

% %k %k k

11.

CHO REACTIONS

3k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k 3k 5k >k 5k >k 3k >k 3k >k 3k 5k >k 5k %k 3k >k %k >k %k 3k %k %k % %k %k %k %k k k

CHO
CHO
CHO
CHO
CHO
CHO
CHO
CH

+M?
+H
+0
+0
+0H
+02
+CHO
+0H

=C0
=C0
=C0
=C02
=C0
=C0
=CH20
=CHO

+H +M°
+H2

+0H

+H

+H20

+H02

+CO0

+H

3k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k >k 5k >k 5k >k 3k >k 3k >k 3k 5k >k 5k %k 3k >k %k >k %k 5k %k %k % %k %k %k %k k k

* %k %k k

12.

CH2 Reactions

3k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k 3k 5k >k 5k >k 3k >k 3k >k 3k 5k >k 5k %k %k >k %k >k %k 3k %k %k % %k %k %k %k k k

3CH2
3CH2
3CH2
3CH2
1CH2
1CH2
1CH2
3CH2
3CH2
3CH2

+H

+0
+02
+02
+M?
+02
+H2
+3CH2
+3CH2
+CH3

=CH
>C0
=C0
=C02
=3CH2
=C0
=CH3
=C2H2
=C2H2
=C2H4

+H2
+H +H
+0H +H
+H2
+M?
+0H +H
+H
+H2
+H +H
+H

3k 3k >k 3k >k 3k >k 3k 5k 3k 5k 3k 5k >k 5k >k 5k >k 3k >k 3k >k 3k 5k >k 3k %k 3k >k %k >k %k 3k %k %k 5% %k %k %k %k k k
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13.

CH20 Reactions

3k 3k 3k 3k >k 3k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k >k 5k >k 3k >k 3k 5k %k 5k >k 3k >k %k 5k >k 5k >k %k %k %k %k %k k

CH20
CH20
CH20
CH20
CH20
CH20
CH20
3CH2
CH

+M?
+H
+0
+0H
+HO02
+CH3
+02
+0H
+H20

=CHO
=CHO
=CHO
=CHO
=CHO
=CHO
=CHO
=CH20
=CH20

+H +M
+H2

+0H

+H20

+H202

+CH4

+H02

+H

+H

3k 3k 3k 3k >k 3k 3k 3k >k ok 3k 3k 3k >k 3k 3k 3k >k 3k 3k 5k >k k 3k 3k 5k >k >k 3k 3k 5k %k %k %k 3k 5k 5k %k %k %k %k k

%k % %k %k

14.

CH3 Reactions

3k 3k 3k 3k >k 3k 3k 3k >k ok 3k 3k 3k >k 3k 3k 3k >k 5k 3k 5k >k k 3k 3k 5k >k >k 3k 3k 5k %k %k %k 3k 5k 5k %k %k %k %k k

CH3
CH3
CH3
CH3
CH30
CH3
CH3
CH3
CH3
CH3

+M?
+0
+H
+0H
+H
+02
+H02
+HO2
+CH3
+CH3

=3CH2
=CH20
=CH4

>CH30
>CH3

>CH20
=CH30
=CH4

>C2H4
=C2H6

+H +M°
+H

+H

+0H
+0H
+0H
+02
+H2

3k 3k 3k 3k >k 3k 3k 3k >k ok 3k 3k 3k >k 3k 3k 3k >k k 3k 5k >k k 3k 3k 5k %k >k 3k 3k 5k %k %k >k 3k 5k 5k %k %k %k %k k

%k % %k %k

15a.

CH30 Reactions

>k 3k 3k 3k >k 3k 3k 3k >k ok 3k 3k 3k >k 3k 3k 5k >k 3k 3k 5k >k %k 3k 3k 5k %k >k 3k 3k 5k %k %k %k 3k 5k 5k %k %k %k %k k

CH30
CH30
CH30
CH20
CH30H
CH30
CH30

+M?
+H
+02

+CH30

+CHO
+0
+0

=CH20
=CH20
=CH20

>CH30H

>CH20
=02
=0H

+H +M?
+H2

+H02

+CHO

+CH30

+CH3

+CH20

3k 3k 3k 3k >k 3k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k >k 5k >k 3k %k 3k 5k %k 5k >k 5k >k 3k 5k >k 5k %k %k %k %k %k %k k

15b. CH20H Reactions
3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 5k 3k >k 5k 3k >k >k 3k >k >k 5k 3k >k 3k 3k >k >k 3k >k 3k >k >k >k >k >k %k %k >k *k %k k

%k 3k %k Xk

CH20H  +M’ =CH20 +H +M’
CH20H +H =CH20 +H2
CH20H +02 =CH20 +H02

3k 3k 3k 3k >k 3k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k >k 5k >k 3k %k 3k 5k 3k 5k >k 3k >k 3k 5k >k 5k >k %k %k %k %k %k k

CH302 Reactions
st sk sk sk ok sk ok sk ok ke ok e ok sk sk ok sk ok sk ok e sk sk sk sk ok sk sk sk ok sk sk sk ok ok ok sk sk ok ok ok ok

* ok %k k 16.

CH302 +M’ >CH3 +02 +M’
CH3 +02 +M° >CH302  +M’
CH302  +CH20 >CH302H +CHO
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Appendix C

A C++4 Package for the
Calculation of Flow Reactors
with Detailed Chemistry

— User Guide —

C.1 Overall Structure

This c++ package allows to calculate multicomponent gas flows taking into
account convection, diffusion and chemical reactions in the gas phase as well
as reactions at walls. It computes the velocity field, pressure, density and
temperature distribution as well as the gas chemical composition by solving a
system of PDEs describing the evolution in space and time of these variables.

The system is made of the Navier-Stokes equations supplemented with species
mass conservation equations. The spatial discretization is based on a finite
element approximation. The time discretization is restricted to an implicit
Euler scheme. This code has been used to calculate quasi-stationary solutions
and therefore accurate time-step approximations were not needed.

A defect correction scheme is used to solve the non-linear systems for each
time-step. The resulting linear systems are solved with a GMRES method
preconditioned by a multigrid method. The global system is split in two parts
with respect to the defect-correction matrix used; the first part corresponds to
the Navier-Stokes equations, which describe the average flow of the mixture,
and the second part describes the chemistry.

This code is based on the DEAL c++ library which provides a flexible de-
velopment environment for adaptive finite element methods. Be sure to have
this library installed on your computer in order to be able to use the present
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package. The reader can find more informations about the DEAL library at
http://gaia.iwr.uni-heidelberg.de.

Our calculation code as well as the DEAL library have been written and
tested on SUN Solaris workstations with GNU gcc 2.8. On other systems,
some changes might be necessary to achieve the compilation and linking.

C.2 Getting Things Installed and Started

The package is available as a compressed tar file: flow_reactor.tar.gz. To
uncompress and unpack the tar file use the commands:

gzip -d flow_reactor.tar.gz

tar xf flow_reactor.tar

There will be one directory created called flow_reactor. In this directory, a
set of subdirectories are to be found:

e Global chemical_data contains global chemical data about a lot of
chemical species. It should not be changed.

e SOURCE contains the source files of the program reactor.

e INSINP contains a FORTRAN program which uses the files contained
in the Global_chemical _data directory as well as some other parameter
files (see below) in order to create a specification file defining the species
that are to be found in the flow, with their chemical characteristics, as
well as the reactions which are to occur in the mixture. This created file
is read by the program flow_reactor at the start to define and initialize
the chemistry for the computation.

e USER_DATA contains parameter files which describe the chemical species
found in the mixture, the chemical reactions and the boundary condi-
tions.

e OUTPUT contains the results of the computations, i.e. files in UCD (.inp)
and GNUPLOT (.dat) formats.

To compile the code, go in SOURCE, edit the Makefile file and write there the
absolute path of the USER_DATA and SOURCE directories in the USER and SOURCE
variable declarations:

USER = /absolute_path/USER_DATA

SOURCE = /absolute_path/SOURCE Do the same for the DEAL library path:
DEAL = /absolute_path/deal Save the file and compile the code with gnu-
make by typing make.
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First a FORTRAN program called insinp.x from the INSINP directory also
has to be used in order to create a file specifying all parameters and variables
needed in the chemical processes as well as the boundary conditions. This
executable is supplied within the package, but under certain circumstances it
might be necessary to compile it again. If it is the case go in the INSINP
directory and type make -f Make_Inp. This program reads chemical data and
creates a new file containing the only data needed for the current calculation.
Here you may also have to edit the file Make Inp and write the right path
declarations.

A script-file named go, which has to be executed in the main directory flow_reactor,
calls the two latter programs (insinp.x and reactor), in the right order, to
start the computation according to the flow chemical characteristics defined
by the user. Thus to start the solution process go in the main directory and

type go.

C.3 Input and Output Data

The files input, mechanism, simulation.data and const_data, in directory
USER_DATA, contain all the parameters the program needs to know. A change in
the file const_data demands that the program is compiled again (see Section

C.2).

C.3.1 Chemical Mechanism

The chemical mechanism is described in the file named mechanism. We give an
example of mechanism file. The first part describes the simple reactions which
take place within the gas phase. The reaction rate is given after the definition
of the corresponding reaction on the same line. Further the reactions at solid
boundaries are defined with their reaction probability. Don’t forget to set the
number of reactions at the wall (named complex reactions).

MECHANISM OF D2(V=0,1) REACT.
koK kK

KK K K K >k %k >k 3k 3k 3k 3k 3k ok ok ok ok ok ok ok ok kK kK k k kok ok

%ok k %k *
*xxx 1, D2-HE MECHANISM *
>k 5k k *

>k 3k 5k >k >k 3k 5k >k %k 5k 5k %k 5k 5k >k >k 3k 5k %k %k 3k >k %k 3k >k %k %k >k %k %k 3k >k %k 3k >k %k 5k >k %k %k k % k k

D21 +D + >D20 +D * 2.36E+11 0.00 0.0
D21 +D20 + >D20 +D20 * 6.50E+07 0.00 0.0
D21 +HE + >D20 +HE * 1.56E+07 0.00 0.0
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D +D +HE >D20 +HE * 5.00E+16 0.00 0.0 nist
D +D +D20 >D20 +D20 * 2.90E+15 0.00 0.0 n.v.
3k 3k 3k 3k 3k ok 5k 3k 3k ok ok sk 3k ok ok sk 3k ok Sk sk >k ok Sk sk 3k ok ok sk 3k ok ok ok sk 3k ok ok sk sk ok ok ok sk sk ok ok
END
COLLISION EFFICIENCIES
END
COMPLEX REACTIONS
002 COMPLEX REACTIONS AT THE WALL

1.00 D21 x1.0 1.500E-03

1.00 D20 0.0 0.00

1.00 D x1.0 1.000E-04

0.50 D20 0.0 0.00
END

C.3.2 Inflow Data
The inflow data are given in the file input. In this file one can set the mole
fractions of each species, the temperature, and velocity of the mixture at the
inflow boundary. This boundary contains two different area, the inner and
outer tubes. The file structure is the following:

OPTIONS................... (FORMAT 7(A4,6X), END WITH -END -)
REGRID /PCON /PROFIL /TS0 / / / /
STORE /EXTRA 2/0UTPUT 1/ENERG 2/ / / /
END / / / / / /
SPECIES. ...ttt (Format 7(2A4,1X,A1), end with -END -)
HE ,H20 ,H21 ,H ,HDO ,HD1 ,D20 ,
D21 ,D , , , , , ,
END

K5k >k >k >k 3k 3k 3k 3k 3k 3k 5k 3k ok ok ok ok ok ok ok >k 5k >k 5k 5k 3k 3k 3k 5k ok 5k 5k >k >k 5k 5k 3k 3k 3k ok 5k 5k >k >k %k 3k 3k 3k 3k 3k 5k 5k >k %k %k %k %k 5k %k 5k 5k >k ok Xk %k %k %k %k 3k k ok k

INFLOW COMP.

HE
H20
H21
H
HDO
HD1
D20
D21

o+ 'v o

(62

INNEN

.792
.000
.000
.000
.000
.000
.115
.002
.091

WO O O O O O O O O

.33E-3

292.
0.000

AUSSEN

.000
.992
.005
.003
.000
.000
.000
.000
.000

O O O O O O O O O

.33E-3

292.
0.000
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. (FORMAT A10,2F10.3, END WITH -END -)

(MOLE-FRACTION)
%k k %k

koK kK
*okokok
*okokok
koK kK
koK kK
koK kK
BAR
K

M/S



v : 64.00 34.00 M/S

There are some more lines in this file but they are outdated and not taken into
account. It is important to write the name of the species in the list on the
top of the file in the right format (8 characters between 2 commas). After the
species list, the specification of the inflow data is to be found in two columns
for the inner (INNEN) and the outer (AUSSEN) tube; first the species mole
fraction, then the pressure, the temperature and finally the radial and axial
velocities. It is to be noted that the species MOLE fractions are to be given
in this file, although the outputs of the program give mass fractions.

In directory GLOBAL_CHEM_DATA, the files mol.dat and thermo.dat contain
species specific databases and should not be changed or even edited.

The script go in the main directory calls the preprocessor insinp.x, which
itself reads the input files and species data bases to create a data set called
fort.3 also written in the main directory. This data set is read by the actual
simulation code to define the flow chemical characteristics.

C.3.3 Simulation Process

The file const_data.h in directory USER_DATA contains data concerning the
solvers, the adaptive process and the outputs. This file is made of several well
defined parts:

e Time step - Solver tolerance:

#define TIME_STEP_SIZE 2.
#define TIME_STEP_NUMBER 50
#define MAX_SIMPLE_IT 30
#define SOLVER_TOL 1.E-7

The time step size is normed by the density of the mixture and there-
fore is actually around a factor 10~* smaller as the time step given by
TIME_STEP_SIZE.

The total number of time steps is given by TIME_STEP NUMBER, and
the number of time steps without refinement of the mesh is set by
MAX_SIMPLE_IT. A quasi-stationary state can in this way be reached be-
fore the local refinement process begins. After MAX_SIMPLE_IT number
of iterations the adaptive refinement process begins.

SOLVER_TOL is the tolerance of the defect-correction process on the resid-
ual.

e Number of species:
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#define SPECIES_COMP 10

It should be set to the number of species + 1 for the temperature.

e Neutral species:
#define NEUTRAL_SPECIE 1

It is used to define the species which is found in the tube at the start of
the calculation. It should be a neutral species which does not react (or
only weakly) with other species of the mixture. This allow to avoid too
stiff source terms at the beginning of the computation.

e Wall-reaction flag:
static int WALL_CHEMISTRY = 1;

if WALL_CHEMISTRY is equal to 1, the wall reactions are taken into account.
If it is equal to 0 they are not.

C.3.4 Refinement process

The refinement process is based on the accurate calculation of some average
or point values of mass fractions for selected species. The following variables
allow the user to indicate which values for which species has to be known with
accuracy.

e Observation flag (solve-dual-problem flag):
#define OBSERVATION 1

This flag is set to 1 if some physical values have to be known with ac-
curacy. In this case the dual problem is solved for each refinement steps
and the dual solution is used to calculate the corresponding error esti-
mator that is used to refine the mesh.

If this flag is set to 0, the dual problem is not solved and the error
estimator does not contain any weights.

The following variables make sense only if the latter flag is set to 1, i.e.
average or point values of some species mass fractions are to be known
with accuracy.

e Observed species:
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#define OBSERVATION_SIZE 2
static int OBSERVATION_SPECIES[OBSERVATION_SIZE] = {1,2};

The first variable defines the number of species for which the mass frac-
tion has to be known with accuracy. This number must be between 1
and SPECIES_COMP-1. The second variable is an array and contains the
numbers of the corresponding species. The species are ordered in the
same way as in the file input.

Observation direction:

#define OBSERVATION_XLINE 1
#define OBSERVATION_YLINE O
#define OBSERVATION_AXE_POINTS O

X corresponds to the radial direction and Y corresponds to the axial
direction. Here we define which value has to be known with accuracy.
For each of these 3 variables the value one means that this value is to be
calculated with precision.

OBSERVATION_XLINE corresponds to average values of the mass fraction
of the species defined above along radial lines which are defined later.
OBSERVATION_YLINE corresponds to average values of the mass fraction
of the species defined above along axial lines which are defined later.
OBSERVATION_AXE POINTS corresponds to the point values of the mass
fraction of the species defined above along the axis of the tube. The
positions of these points along the axis are defined later.

There must be one and only one of these three variables with the value
set to 1. The two others must have the value 0.

Position of the observation lines/points (in meter):

#define OBSERVATION_NUMBER 4
static double OBSERVATION_RADIUS[OBSERVATION_NUMBER] = {0.};
static double OBSERVATION_HEIGHTS[OBSERVATION_NUMBER] = {1,2,3,4};

The variable 0BSERVATION_NUMBER defines the number of lines or points
where average or point values of the mass fractions have to be known
with precision.

The variable OBSERVATION_RADIUS is relevant only if 0BSERVATION_YLINE
is set to 1, since it defines the radius for each line (parallel to the tube
axis) where the averaged mass fraction has to be calculated with preci-
sion.

The variable OBSERVATION_HEIGHTS is relevant only if 0BSERVATION_YLINE
is set to 1, since it defines the position on the tube axis for each radial
line or point of the axis where the mass fraction has to be calculated
with precision.
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e Number of maximal refinement level
##define MAX_REFINEMENT_LEVEL 20

This variable defines the maximal number of refinement level for the
adaptive mesh refinement process. It is set to as default to 20 and can
be left to this value.

C.3.5 Output Data

The output that can be customized here are done in Gnuplot format and
corresponds to the variable evolutions along radial lines. The output files are
stored in the directory OUTPUT which is in the main directory.

e Number of output lines:
#define OUTPUT_NUMBER 3

With this variable, one defines the number of lines for which there must
be an output file. In this file the evolution of the flow and chemical
variables are written in Gnuplot format.

e Axial position of the output lines
static double OUTPUT_HEIGHTS[OUTPUT_NUMBER] = {1,2,3};

This array contains the axial position of the output lines expressed in
meter from the tube start.

These files in Gnuplot-format have the following structure:

#file : OUTPUT/output_15_0.dat

#line output for y = 0.238 of variables:

#radial position, u, v, p*, T, HE, H20, H21, H, HDO, HD1,
D20, D21, D, rho, P/rho

0.0045 -0.115513 26.7997 0.549813 292 1 1.01773e-13 1e-13
1.35934e-13 1e-13 1le-13 1e-13 1e-13 1e-13 0.000878807 606504

The first line is the name of the file. The second line contains a description
of the section for which we get the variable evolution. The third line is a
description of the order in which the variables are stored in the file. And the
following lines contain the data. The units for these data are SI (m/s, Pa, K,
cdots) and mass fraction is stored for the species.
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Additionally to these Gnuplot output file, output files containing the complete
solution on the whole domain are created at the end of each time step or
refinement step. They are also stored in the directory OUTPUT. These files are
in UCD format, which can be read by AVS, dealvision or DeViSoR, which all
three are visualization programs.

C.3.6 Mesh data

The name of the mesh file is given in the file simulation.data with absolute
or relative path from the main directory where the script go is called. The
domain dimensions are also to be found in this file.

Hhkokkoskokokkokokkkokkkkkkx Data about the Computa‘tional field skskskokokkkskskskokokokkkkkkk
ok ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk sk ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok

#tx**xx Mesh file name
# ok ok ook ok ok ok ok ook ok ook ok ok sk ok

cars_split.inp

#+xxxx Domain dimensions (in meter) : *xx
# tube height | tube radius splitter radius
0.15 0.016 0.006

The tube height is the length of the tube. The tube radius is the radius of
the outer tube. And the splitter radius is the radius of the intern tube. The
values are needed by the program to calculate the inflow values.

C.4 Automatic mesh generation for CVD

In order to simplify the geometrical optimization process for CVD experiment
we developed a mesh generator for the CVD geometry. This is only one file:
CVD_mesh_generator.cc which can be simply compiled and linked by any c++
compiler.

The parameters which need to be set in the file are the following:

name = "mesh.inp";
VELS
* |-- substrat

* v
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— free outflow -->

H2/02 inflow

R R S R R R R CHEE O U N
N
|
o]
=
o]
(0]

K
*

*

*/

VA

* Enter here the numbers of columns and lines of the mesh to be generate
* ~ Lines

*

*

* |

X m————————— > Columns

*/

// # = number of

int nb_under_pipe_cols = 2; // # columns under the pipe

int nb_above_pipe_cols = 2; // # columns over the pipe

int nb_under_substrat_cols = 15; // # columns on the right of the pipe
int nb_under_lines = 3; // # lines under the pipe

int nb_pipe_lines = 3; // # lines beside the pipe

int nb_between_lines = 4; // # lines over the pipe

VA
* enter here the widths of the domain (in m)
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*/
double substrat_width = 0.025;
double pipe_width = 0.001;

VAL

* enter here the heights of and distances in the domain (in m)
*/

double substrat_height = 0.005;

double pipe_height = 0.003;

// distance between the inflow of the flame exhaust gas
double d_pipe = 0.003;

// distance between the pipe and the substrat
double d_substrat = 0.005;

/%%

* enter the numbers of the different boundary lines
*/

int symmetry = 2;

int outflow = O;

int wall = 3;

int substrat_wall = 7;

int CH4_inflow = 4;

int H202_inflow = 5;

/******************************************************************/
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