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Introdution
Flow reators are used in many appliations in industry and researh. Complexinterations in the reator, suh as superposition of onvetion and di�usionproesses with hemial reations in the gas phase or at the walls, make itdiÆult for experimental data to be orretly interpreted. By means of adetailed numerial simulation, these various e�ets an be distinguished andthe interating proesses ourring within reative mixing ows are easier tounderstand.

Air Flux

Fuel Flux

Zone of

Mixing

Air FluxFigure 1: Flow reator made of an inner and an outer tube where two gasesenter and get in ontat at the outlet of the entral tube.Thus the main interest in the simulation of ow reators is the omprehensionof the omplex interplay between ow, mixing proesses and reation proesses.To desribe the hemial and physial proesses taking plae in reative ows,many hemial speies are to be onsidered with often a few hundred elemen-tary reations. Considering the equations for veloities, pressure, temperature,and eah speies, the system of PDEs modelling the reative ow ontains usu-ally between 10 and 50 equations and is highly non-linear. The leading termsin these equations may vary in spae and time. In the reation zones, thesystem may beome reation-dominated through sti� soure terms. In otherparts of the domain where hemial reations are weak, either the onvetionterms (by high Reynolds number) or the di�usive terms (as in non-reativeboundary layers) may be predominant.9



Several methods for the simulation of reative ows have already been imple-mented, usually based on �nite di�erene or �nite volume disretizations ontensor produt meshes (see for instane [18℄, [55℄). A ode based on �nite di�er-enes has reently been applied to the simulation of a low-pressure ow reatorfor kineti studies in [46℄, in order to improve existing methods (as plug-owtehniques) for evaluating data from isothermal ow kineti measurements. Ithas been developed for the low Mah-number regime and makes use of splittingtehniques for variables and spatial dimensions thereby reduing the ompu-tational e�ort. Numerial results of full reative ow simulation have beenompared with the measurement of elementary relaxation and vibrational en-ergy transfer proesses. As a model system for a simple kineti proess theheterogeneous relaxation of vibrationally exited hydrogen (H2(v00 = 1)) andits energy transfer in ollisions with deuterium (D2(v00 = 0)) was onsidered(see Chapter 6): H2(v00 = 1) wall�����! H2(v00 = 0);H2(v00 = 1) +D2(v00 = 0) ������! H2(v00 = 0) +D2(v00 = 1):This made it possible to evaluate speies wall deativation probabilities andreation rate onstants for vibrational energy transfer. However, this simula-tion did not bring enough information about the preision on the omputedquantities, whih ould assure that the error done on these quantities was lowerthan a given tolerane. Nor did the tensor-produt mesh allow to eÆientlyontrol the auray of the alulation loally in the zones of the ow tubethat were of interest. Moreover, due to some instabilities in the method, itwas neessary to use pseudo-time stepping to obtain steady solutions, whihould have been avoided in some ases.In order to eliminate these weaknesses and ahieve better auray in thesolution with reasonable omputational e�ort, we develop in this work a newmethod for the simulation of hemial ow reators with preise evaluationof some physial quantities. We derive this method from reent tehniquesfor adaptive mesh re�nement whih allows to redue the numerial e�ort andnevertheless ahieve good or even better auray in the data that may be ofinterest ompared to a straightforward tensor produt approah. This makespossible on the one hand to simulate ow reators on simple workstationsor PCs without any ompromise with respet to the quality of the omputedsolution, and on the other hand, on super-omputers, to reah an auray thatould not be ahieved on simple tensor produt meshes or on loally adaptedmeshes onstruted aording to ad ho riteria, usually justi�ed on physialgrounds, whose impat on the auray of the numerial solution is diÆult toassess.Chapter 1 disusses the dimension redution of the omputational domain.For the simulation of irular ow tubes assuming an axial symmetry, it is10



suÆient to onsider only half of an meridional setion of the tube to desribethe reative ow. We disuss here problems invariant under rotation, and thederivation of weighted Sobolev spaes needed in the weak formulation of thesystem to be solved.The model onsidered onsists of the ompressible Navier-Stokes equationswith additional onvetion-di�usion-reation equations for the hemial speies.The goal is the simulation of stationary or quasi-stationary reative ows atlow Mah number for the evaluation of kineti reation parameters as well asproess optimization of hemial reation systems in ow reators. The om-plete model for multispeies ows is presented in Chapter 2 and then restritedby simplifying the di�usive part of the speies transport as well as taking intoaount the low-Mah number ow state, in order to make fast omputationspossible without too muh loss in the model auray aording to the physis.The reation model is also presented and the form of the hemial soure termsis disussed. Further the physial onstraints on the model are explained.The disretization of the equations is disussed in Chapter 3. We use a �nite el-ement method based on bilinear elements de�ned on retangles (Q1 elements).The standard Galerkin disretization using Q1 elements is not stable and hasto be stabilized. Details are given about the pressure stabilization and thestreamline di�usion methods for steady and unsteady ompressible ows atlow Mah number.The highly non-linear system obtained requires very eÆient numerial meth-ods. Therefore a robust non-linear solver is needed. A defet orretion methodwith step size ontrol is developed by approximating the Newton matrix. Thedegree of approximation required is assessed aording to onsistene and solv-ability of the orresponding linear systems.In Chapter 4 the solver is desribed. The outer iteration is based on defetorretion and the inner large linear problems are solved by an iterative methodGMRES with the help of a multigrid method as preonditioner. GMRES andmultigrid methods are among the most eÆient modern tehniques for solvinglarge sale algebrai systems resulting from �nite element disretizations ofPDEs. The multigrid method needs an appropriate smoother for reative owproblems on loally re�ned meshes. The development of a Vanka smootherfor the Navier-Stokes part of the system and the use of Gauss-Seidel or ILUsmoothing for the hemial part lead to an eÆient and robust method.Another important part of this work deals with error ontrol and mesh adap-tivity. The aim is to ahieve reliability in the sense that physially relevantderived quantities, whih an be thought of as funtionals of the solution, areapproximated to within a given tolerane. The use of duality arguments leadsto the ontrol of the error in funtionals of the solution, whih an be quanti-ties suh as point values of the temperature or line averages of mass frations11



(whih orresponds to a CARS signal for instane, see Chapter 6). The meshadaptivity based on an a posteriori error estimate gives us the possibility tore�ne the mesh loally only in the zones where it is neessary in order to om-pute these quantities with the required auray. We treat this problem ofadaptivity and aurate quantity omputations in Chapter 5. The onept oferror estimation for funtionals of the solution is explained and we apply thismethod to produe \optimal" meshes for reliable and eÆient omputation ofreative ows in ow reators. A quantitative error estimation of funtionalsis espeially important for omparison between simulation and experiment tovalidate the underlying model. The model and numerial method developedin this work are indeed validated through experimental measurement whihalso provides the data essential for parameter estimation, suh as deativationprobabilities for vibrationally-exited H2 moleules.In order to test the eÆieny of the adaptive method and of the solvers, weonsider in Chapter 6 three relevant problems in ow reators:� CARS (Coherent Antistokes Raman Spetrosopy) measurement of de-ativation reations and reation rate for energy transfer of vibrationally-exited H2 moleules,� LIF-Spetrosopy for the kineti analysis of reations between NH andNO moleules as well as between NH and O2 moleules in the ase ofhigh temperatures, and� CA-CVD (Combustion Aided Chemial Vapor Deposition) for the opti-mization of a diamond deposition proess.In the �rst ase, the mixture onsist of 9 speies with heterogeneous reationsof deativation on the wall as well as gas-phase reations between H2 and D2moleules. The omplete hemial model onsist of 27 gas-phase reationsand 5 wall reations. The evolution of the onentration of some speies ismeasured along the axis of the tube on well de�ned measurement points. Thesolution method with adaptive mesh re�nement is applied to ompute theevolution of the speies onentration along the axis with optimal preision onthese measurement points. We are then able to ompare aurate simulationresults with measurements and thus derive reation rates.In the seond ase, the mixture onsidered (based on produts of reations be-tween NO2 and H2) onsists of 8 speies with homogeneous and heterogeneousreations with heated walls (Dirihlet boundary onditions for the temperatureat the wall). The temperature range to be onsidered is 300K (temperatureof the inoming gas ow) to 1700K. These high temperature gradients induesome numerial instabilities in the inow region so that only a quasi-stationarysolution an be found. We have to use here a time step method to be able toonverge to a solution. 12



A CA-CVD experiment (see [32℄ and [23℄) has also been simulated. The aimis to optimize the quality and quantity of diamond deposition on a substrate.The system to be solved is more omplex than the former system for thesimulation of the CARS experiment. The mixture ontains 39 speies and thereation model onsists of 358 hemial reations. An injetion of methaneis done from a pipe into a gas mixture made of produts of a H2=O2 ame.It has been shown that the deposition of diamond strongly depends on theonentration of CH3 near the substrate. Working with suh a large systemof equations does not allow to use simple strutured meshes without errorontrol on the values we are interested in. The adaptive proess developed inthis work not only allow us to ompute aurately physial values - suh as theCH3 onentration near the substrate - but also to deal with more ompliatedhemial proesses. This was made possible by improving the performaneof the simulation proess with respet to already existing odes. Using anadaptive re�nement proess based on error funtionals allows us to get higherauray on some physial value of interest with a given number of ells, andthus drastially redue memory requirements. Moreover, the implementationof robust and eÆient solvers make it possible to redue the omputation time.All omputations here an be done on a workstation.The basi priniples of �nite element methods is assumed to be known. Somereferenes are given for an introdution to �nite element disretizations.
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Chapter 1
Axisymmetri Problems andDimension Redution
Most physial problems are naturally formulated as boundary problems inthree dimensional domains. However three dimensional omputations are veryexpensive and sometimes pratially impossible on workstations. It is there-fore neessary to rewrite the problem with two dimensional equations. Thisis obtained by assuming that the dependeny of the parameters, data andsolution with respet to one of the three variables an be negleted, whihis justi�ed in many situations. Here we are interested in the ase where thethree-dimensional omputation domain is invariant under rotation around anaxis. Thus, without any approximation, the problem an be transformed intoa family of two dimensional equations on the Fourier oeÆients (f. [9℄).Moreover, if the data satisfy suitable axisymmetry properties, only the FourieroeÆient of order 0 subsists, so that the three dimensional problem an beredued to a two dimensional one. We will deal with this later ase in thiswork. The problems we are interested in are indeed invariant under rotation(see later).The axisymmetri funtions whih belong to standard Sobolev spaes on thethree dimensional domain an be mapped onto funtions in the orrespondingtwo dimensional domain. These new funtions belong to weighted Sobolevspaes, the weight being the distane to the symmetry axis. We haraterizethese funtions as the elements of the weighted spaes suh that suitable traesvanish on the rotation axis.All this leads to transform an axisymmetri boundary value problem on thethree dimensional domain into an equivalent problem on the orrespondingtwo dimensional domain. For more details see [11℄, [41℄ and [2℄.15



1.1 Desription of Axisymmetri ProblemsFor a generi point in R3 , we use both artesian oordinates (x; y; z) andylindrial oordinates (r; �; z) in R+�℄� �; �℄� R, withr =px2 + y2 and � = (� aros xr if y < 0;aros xr if y � 0. (1.1)In R2 we use the artesian oordinates (r; z) and we de�ne the half-spae R2+as the set of points in R2 with positive oordinate r.Let 
 denote a bounded domain ontained in R2+ . The axisymmetri domain�
 is the three-dimensional set obtained by rotating 
 around the axis r = 0.We are interested in two-dimensional domains of the following types for thereative ow omputations in Chapter 6:� CARS ow reator:
Fuel Flux

Air Flux

Symmetry line

Mixing ZoneFigure 1.1: 
 = half axial setion of the CARS ow reator shown in Fig. 1.� CVD ow reator:
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We denote by �0 the part of the boundary �
 ontained in the axis r = 0, i.e.the symmetry line. We set � = �
n�0. The boundary �
 is a polygon, i.e.the union of a �nite number of segments.The orresponding three-dimensional domain �
, orresponding to the wholeow reator shown in Fig. 1, is de�ned as:�
 = f(x; y; z) 2 R3 j (r; z) 2 
 [ �0 and � � < � � �g: (1.2)Let R� denote the rotation with angle � with respet to the axis r = 0 in R3 ,i.e. R�(x; y; z) = (x os � � y sin �; x sin � + y os �; z): (1.3)Of ourse, �
 is invariant by any rotation R�. The unit outward normal vetor�n to �
 is obtained by rotating the unit outward vetor n to 
 on �.1.2 Problems Invariant under RotationThe problems whih are onsidered in this work are invariant under rotation.Let us onsider the boundary value problem [ �A; �B℄ on �
 where the unknownis a vetorial funtion �v with M omponents:( �A�v = �f in �
;�B�v = �g on � �
: (1.4)The symbol � over a letter means that the orresponding funtion, distributionor operator is de�ned on �
. Here �A is a linear system of partial di�erentialoperators and �B is a system of boundary di�erential operators.De�nition 1. Problem [ �A; �B℄ is said to be invariant under rotation if thefollowing property holds for any smooth funtion �v from �
 into RM :8� 2 [��; �℄ : ( �A(�v Æ R�) = ( �A�v) Æ R�;�B(�v Æ R�) = ( �B�v) Æ R�: (1.5)Equivalently, problem [ �A; �B℄ is invariant under rotation if the operators �A and�B an be written in the following form in ylinder oordinates (r; �; z):�A(x; y; z; �x; �y; �z) = �A(r; z; �r; ��; �z);�B(x; y; z; �x; �y; �z) = �B(r; z; �r; ��; �z); (1.6)17



i.e. with oeÆients independent of the variable �. A basi example is theLaplae operator4 = �2x + �2y + �2z = �2r + 1r �r + 1r2 �2� + �2z (1.7)Dirihlet boundary onditions or, more generally, onditions whih only dependon the normal derivative ��n to the boundary, are invariant under rotation.1.3 Data and Solutions Invariant under Rota-tionDe�nition 2. A funtion �v is said to be invariant under rotation if the fol-lowing property holds 8� 2 [��; �℄ : �v Æ R� = �v: (1.8)Problems whih are invariant under rotation are assoiated with funtionsinvariant under rotation: if problem [ �A; �B℄ satis�es (1.5) and if �v is invariantunder rotation, so are �f and �g; the onverse property holds when problem[ �A; �B℄ has at most one solution.When the operators �A and �B as well as the data �f and �g are invariant underrotation, we easily see that this problem is losely linked to the two-dimensionalproblem (Av = f in 
;Bv = g on �; (1.9)where f(r; z) = �f(x; y; z);g(r; z) = �g(x; y; z); A(r; z; �r; �z) = ~A(r; z; �r; 0; �z);B(r; z; �r; �z) = ~B(r; z; �r; 0; �z); (1.10)~A and ~B being de�ned in (1.6).Thus in the ase of a problem invariant under rotation, we have atually re-dued the number of variables from 3 to 2.When problem [ �A; �B℄ is invariant under rotation, and if the data �f and �g areinvariant under rotation, it is readily heked that the following propositionsare equivalent:� �v is a solution of [ �A; �B℄ and is invariant under rotation,� v is a solution of [A;B℄. 18



1.4 Basi FormulasWith eah oordinate system, we assoiate an orthonormal basis: (ex; ey; ez) forthe artesian system, and (er; e�; ez) for the ylindrial system. The derivativewith respet to eah of these oordinates is denoted by � indexed by theoordinate. From the basi identities�x = �r os � � 1r �� sin �; �y = �r sin � � 1r �� os �we derive the formulas for operators ating on salar funtions and on veto-rial funtions. A funtion �v with values in R3 is written either in artesianoordinates vx ex+vy ey+vz ez or in ylindrial oordinates vr er+v� e�+vz ez.The problems we are interested in are invariant under rotation. Thus thederivative aording to the variable � as well as the omponent v� of the vetorde�ned above vanish, whih leads to the following formulas:� For salar funtions:artesian oordinates ylindrial oordinatesrv �xv ex + �yv ey + �zv ez �rv er + �zv ez4v �2xv + �2yv + �2zv �2rv + 1r �rv + �2zv� For vetorial funtions:artesian oordinates ylindrial oordinatesr:�v �xvx + �yvy + �zvz �rvr + 1r vr + �zvz4�v (�2xvx + �2yvx + �2zvx) ex+(�2xvy + �2yvy + �2zvy) ey+(�2xvz + �2yvz + �2zvz) ez (�2rvr + 1r �rvr + �2zvr � 1r2 vr) er+ (�2rvz + 1r �rvz + �2zvz) ez
r�v 24�xvx �xvy �xvz�yvx �yvy �yvz�zvx �zvy �zvz35 24�rvr 0 �rvz0 vr=r 0�zvr 0 �zvz3519



1.5 Weighted Sobolev SpaesIn the problems we onsider, the solution is sought in a Sobolev spae or aprodut of Sobolev spaes. From the spae L2(�
) of square integrable funtionsfor the measure dx dy dz, the Sobolev spaes Hs(�
) for any positive integer sare de�ned. Then we derive the spaes Hs0(�
) as the losure in Hs(�
) of thespae C10 (�
) and �nally the spaes H�s(�
) as the dual spaes of Hs(�
).1.5.1 De�nition and Properties of the Weighted SpaesThe spae L2�(
) is de�ned as the set of measurable funtions w suh thatkwkL2�(
) = �Z
w2(r; z) r� dr dz� 12 < +1: (1.11)For any positive integer s, Hs�(
) is the spae of funtions w in L2�(
) suhthat their partial derivatives of order � s belong to L2�(
). It is provided withthe semi-norm jwjHs�(
) =  sXl=0 k�lr�s�lz wk2L2�(
)! 12 ; (1.12)and with the norm kwkHs�(
) =  sXl=0 jwj2Hl�(
)! 12 (1.13)Thus it is a Hilbert spae.We state the prinipal results in the following propositions. We �rst de�nea mapping for salar funtions. We are interested in the haraterization ofthe funtions in Hs(�
) whih are invariant under rotation in the sense (1.8).We denote the orresponding subspae by �Hs(�
). Any element �v in �Hs(�
) isompletely haraterized by the funtion v de�ned byv(r; z) = �v(x; y; z):Proposition 1. Let s be a positive integer. The mapping: �v ! v is one-to-onefrom �Hs(�
) onto the spae Hs+(
) de�ned as follows:� If s is not an even integer,Hs+(
) = nw 2 Hs1(
); �2j�1r wj�0 = 0; 1 � j � s2o ; (1.14)endowed with the natural normkwkHs+(
) = kwkHs1(
); (1.15)20



� if s is an even integer,Hs+(
) = �w 2 Hs1(
); �2j�1r wj�0 = 0; 1 � j � s2 ;and �s�1r w 2 L2�1(
)	; (1.16)endowed with the natural normkwkHs+(
) = �kwk2Hs1(
) + k�s�1r wk2L2�1(
)�1=2 : (1.17)And then a mapping for vetorial funtions. We are interested in triple offuntions �v = (vx; vy; vz) in artesian oordinates in Hs(�
)3 whih also satisfy(1.8) with I� = R��. This spae is also denoted by �Hs(�
). We de�ne, asin setion (1.4), the radial omponent vr, the angular omponent v�, and theaxial omponent vz of the vetor �eld �v. Then the following proposition holds:Proposition 2. Let s be a positive integer number. The mapping: �v !(vr; v�; vz) is well de�ned and one-to-one from �Hs(�
) onto the produt spaeHs�(
)�Hs�(
)�Hs+(
) where the spae Hs+(
) is de�ned in proposition (1)and the spae Hs�(
) is de�ned as follows:� If s is not an odd integer,Hs�(
) = �w 2 Hs1(
); �2jr wj�0 = 0; 0 � j � s� 12 � ; (1.18)� if s is an odd integer,Hs�(
) = �w 2 Hs1(
); �2jr wj�0 = 0; 0 � j � s� 12 ;and �s�1r w 2 L2�1(
)	: (1.19)The proof of these theorems may be found in [2℄.1.6 Speial CaseFrom these results we an derive the speial ase s = 1 whih we need inhapter 3 to write the variational formulation.�H1(�
) is the spae of funtions in H11 (�
) whih are invariant under rotation.Aording to the previous propositions, the spaeH1+(
) oinides withH11 (
).And H1�(
) is the spae of funtions w in H11 (�
) suh that wj�0 = 0 andw 2 L2�1(
). 21



To take boundary onditions into aount, we must introdue the subspae offuntions in H1�(
) whih vanish on a ertain part �1 of the boundary of 
whih is not on the axis:H1�;0(
) = �v 2 H1�(
); v = 0 on �1	 (1.20)We de�ne in the same way the subspae of funtions in H1+(
) whih vanishon a ertain part �1 of the boundary of 
 whih is not on the axis:H1+;0(
) = �v 2 H1+(
); v = 0 on �1	 (1.21)
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Chapter 2Equations
The intention for the numerial simulation presented in this work is to pro-vide pro�les for onentration, temperature, density and veloity �elds. Theequations governing hemial reative ows are based on the ompressible for-mulation of the Navier-Stokes equations, for the global behavior of the mixtureow, with additional onvetion-di�usion-reation equations for the tempera-ture and the hemial speies. The equations are written in the primitive form,i.e. with the variables � (density) or p (pressure), u (veloity), T (tempera-ture), and w (mass frations). The set of oupled partial di�erential equationsonsidered desribes the onvetive motion of the uid, the hemial reationsamong the onstituent speies, and the di�usive transport proesses suh asthermal ondution and moleular di�usion. Its origin is the onservation ofthe physial variables �; �u; �E; �w. While using these variables to write theequations, the formulation is said to be onservative. For smooth solutions,both formulations (onservative or primitive) are equivalent. In many appli-ations, the formulation with primitive variables has the advantage of simplerboundary onditions and determination of transport oeÆients (most of themare given as funtions of the primitive variables).2.1 Navier-Stokes EquationsThe most general desription of a uid ow is obtained from the full system ofNavier-Stokes equations. These are obtained by writing the mass and momen-tum onservation. For multiomponent ows, they desribe the evolution intime and spae of the density and veloity of the whole mixture, i.e. averagedquantities for the global ow. They are the following:� Mass onservation : The law of mass onservation is a general statementof kinemati nature. It is independent of the nature of the uid or of23



the fores ating upon it. It expresses the empirial fat that, in a uidsystem, mass annot disappear from the system nor be reated. Themass onservation equation is���t +r � (� u) = 0; (2.1)with � the density of the uid, whih ould not be onsidered as onstantin the ase of multiomponent ows, even in the ase of low-Mah-numberows, sine the mixture is not usually homogeneous. u is the veloity ofthe ow.� Momentum onservation : The soures for the variation of momentumin a physial system are the fores ating on it. These fores onsistof the external volume fores fe and the internal fores fi. The latterare dependent on the nature of the uid onsidered, and result fromthe assumptions made about the properties of the internal deformationswithin the uid and their relation to the internal stresses. We will assumethat the uid is Newtonian, and therefore the total internal stresses �are taken to be � = �pI + � ; (2.2)where I is the unit tensor and p the isotropi pressure. � is the visousshear stress tensor. With the exeption of very high temperatures orpressures, the stress tensor for Newtonian uids has the following form(see [26℄): � = � �ru+ (ru)T � 23(r � u) I� ; (2.3)where � is the dynami visosity of the uid. In the ase of multiom-ponent ows, it is a funtion of the partial visosities and mole frationof eah speies (see setion 2.4).The equation of motion then beomes� �u�t + � (u � r) u+rp�r � � = � fv; (2.4)with fv the external volume fores.2.2 Energy ConservationThe pro�le of temperature of the multispeies ow an be obtained throughenergy onservation. The energy ontent of a system is measured by its internal24



energy per unit mass e. This internal energy is a state variable of a system andhene its variation during a thermodynamial transformation depends only onthe �nal and initial states. In a uid the total energy to be onsidered inthe onservation equation is the sum of its internal energy e and its kinetienergy per unit mass u2=2. The �rst law of thermodynamis states that thesoures for the variation of the total energy are the work of the fores atingon the system plus the heat transmitted to this system. A distintion has tobe made between the surfae and volume soures. The volume soures are thesum of the work of the volume fores f . Hene we have, Qv = � f � u. Thesurfae soures are the result of the work done on the uid by the internalshear stresses ating on the surfae of the volume onsidering that there areno surfae heat soures: Qs = � � u = �p u+ � � u: (2.5)The di�usive ux q of heat due to moleular thermal ondution is given bythe Fourier's law of heat ondutionq = ��rT; (2.6)with � the thermal ondutivity oeÆient and T the temperature.Writing the onservation of the total energy and onsidering the mass andmomentum onservation equation as desribed in [44℄ or [26℄, we obtain� dedt + pr � u = � : ru+r � (�rT ); (2.7)with dedt = �e�t + u � re the total derivative of the intern energy aording totime.We de�ne the spei� enthalpy ash = e+ p� (2.8)For an ideal gas (see Setion 2.6, [58℄), the enthalpy is a funtion of the temper-ature T and gas hemial state whih an be represented by the mass frationof eah omponent w = (wi)i=1;::: ;ns, with ns the number of speies in the mix-ture. The total variation of enthalpy for an ideal gas an be then expressed asfollow: dh = � �h�T �p;w dT + nsXi=1 � �h�wi�p;T dwi: (2.9)25



By de�nition the variation of enthalpy aording to the temperature at on-stant pressure and hemial state is alled p, spei� heat apaity:p = � �h�T �p;w : (2.10)We derive the total variation of internal energy:de = p dT + p�2 d�� 1� dp+ nsXi=1 � �h�wi�p;T dwi: (2.11)Using the ontinuity equation (2.1), it yields� dedt = � p dTdt + pr � u� dpdt + nsXi=1 � �h�wi�p;T dwidt (2.12)Sine h, the averaged enthalpy of the mixture onsidered as an ideal gas (see[58℄), ful�lls the relation h = nsXi=1 hi wi; (2.13)with hi the spei� enthalpy of speies i, equation (2.12) an be written asfollow: � dedt = �dpdt + pr � u+ � p dTdt + nsXi=1 hi dwidt : (2.14)The total time derivative of wi an be expressed with a di�usion and a re-ation terms (f. Setion 2.3 for the harateristis of these terms). Thisresult together with equation (2.7) leads to an equation whih desribes thetemperature evolution:� p dTdt = dpdt + � : ru+r � (�rT ) + nsXi=1 hi [r � ji � fi(T; w)℄: (2.15)We use a simpli�ed form of this equation beause several terms may usuallybe negleted. Sine we onsider only ows at low-Mah number, the energysoure due to internal stresses an be negleted. We are interested in thiswork in low pressure ow reator. For suh ows the pressure is onsidered asquasi-onstant in time and spae. Therefore we do not take into aount inthe following the pressure variation term in this equation. Moreover the termPi hir � ji, whih represents the di�usion of speies with di�erent enthalpies,26



is usually omitted, onsidering that the partial enthalpies hi are nearly iden-tial. Taking these simpli�ations into aount, the equation for temperaturebeomes � p �T�t + � p u � rT �r � (�rT ) = fT (T; w): (2.16)The oeÆients p and � are the spei� heat apaity at onstant pressureand the heat ondutivity of the mixture, respetively. The soure term fTdepends on the temperature and the hemial state. Let us denote by hi thespei� enthalpy of speies i, and by pi the spei� heat apaity of speies i.The soure term is thenfT (T; w) = � nsXi=1 hi(T ) fi(T; w): (2.17)The enthalpy hi of speies i is given byhi(T ) = hi;T 0 + Z TT 0 p;i(T 0) dT 0; (2.18)with an enthalpy hi;T 0 for a referene temperature T 0. The partial heat a-paity of speies i is represented by p;i. The temperature dependene of thesepartial heat apaities is modelled empirially. A fourth order polynomial �tin T , with oeÆients determined by experiments, is widely used in numerialomputations: p;i(T ) = kXj=0 �j T j i = 1; : : : ; ns: (2.19)We use the oeÆients from data bases developed at the Sandia NationalLaboratories [36℄ for the omputations in hapter 6.The heat ondutivity � orresponds to an average value for the mixture aor-ding to the hemial state of the gas and is de�ned in Setion 2.4.The fators fi(T; wj) are hemial prodution terms and are de�ned in thenext setion.2.3 Speies Mass ConservationThe evolution of the hemial state of the gas in multiomponent ows an bedesribed with the mass onservation of eah hemial speies. These latteran be represented by their mass fration or by their mole fration. We presenthere the formulation in mass frations wi. Both formulations are equivalent27



although the formulation with mole frations leads to a slightly more om-pliated transport term, while the formulation with mass frations leads to aslightly more ompliated di�usion term. Another di�erene is found in thealulation of the Jaobian matrix of the resulting non-linear system. We referhere to Chapter 4 for more details. The mass onservation of eah speiesan be written with the help of a di�usion ux ji, a soure term (reation ordestrution) fi and the onvetive transport of the speies. For a mixture ofns hemial speies, the orresponding equations are� �wi�t + � (u � r)wi +r � ji = fi(w; T ); i = 1; : : : ; ns; (2.20)with w the vetor of all mass frations wi, haraterizing the hemial state,and T the temperature. The soure term fi depends on both the temperatureand hemial state.This setion deals further with the non-linearities brought by the multispeiesharater of the ow. In some regions of the domain, the ow may be dom-inated by reation soure terms that ouple all the hemial variables witheah other as well as with the temperature. Also in regions where the hem-ial reations are weak, the non-onstant di�usion oeÆients ause anothernon-linearity and a oupling between all the hemial equations.2.3.1 Modelling of Chemial Reations and Soure TermsFor the desription of the hemial onversion in the gas phase, the hemialmehanisms are made up of elementary reations. An elementary reation anbe generally desribed bynsXi=1 air �i kr�! nsXi=1 ~air �i ; (2.21)where �i represents the ith speies and kr the reation rate of the reationnumber r. air and ~air are the stoihiometri oeÆients of speies i respetivelyas edut and produt in the reation r. In order to onserve the mass, theseoeÆients must ful�ll the equationnsXi=1 Mi(~air � air) = 0; (2.22)with Mi being the molar mass of speies i. In eah reation r of the abovetype, up to three speies are involved on eah side. Therefore, only up to threeoeÆient air do not vanish for eah r.28



The prodution rate for speies i, denoted _wi, is obtained by adding the parti-ipation of all the reations onsidered to the reation or destrution of speiesi. De�ning nr as the total number of reations,_wi(T; w) = nrXl=1 ((~ail � ail) kl(T ) nsYj=1 ajlj (w)) ; (2.23)with j the onentration of speies j, given byj = �wjMj : (2.24)The hemial soure terms for the speies equations in mass frations have theform fi(T; w) =Mi _wi(T; w); i = 1; : : : ; ns: (2.25)Due to the property (2.22) on the stoihiometri oeÆients we onlude thatthe sum over all the ns soure terms vanishes:nsXi=1 fi = 0: (2.26)The dependene on temperature for the reation rate is given by the followingArrhenius-law kr(T ) = Ar T �r exp��EarRT �: (2.27)This law is empirially validated. The onstants Ar, �r and the ativationenergy Ear are usually determined through experiments. R is the ideal gasonstant.2.3.2 Surfae ReationsThe reation model used in this work for surfae reations introdues a reationprobability  (named �stiking oeÆient�for partiles in the gas phase whih hita wall surfae (see [56℄ and [17℄ for more information about surfae reationsand their modelization). These partiles an reat (reombination, deompo-sition) or di�use further unhanged in the gas phase. We onsider here thease of surfae reations in whih there is only one gas-phase reatant. Thesereations are desribed by the following sheme:ajr �j r�! nsXi=1 ~air �i; j = 1; : : : ; ns: (2.28)29



The orresponding reation rate per surfae unit for speies i over all the n0rsurfae reations is given by_w0i (T; w) = n0rXr=1 (r 14s 8RT�Mj j (~air � Æij ajr)) ; (2.29)j being the single edut speies of the reation r. In this wall reation model,there is indeed exatly one edut speies for eah surfae reation.The probability oeÆients are taken to ber = ar T br exp �� rRT �; r = 1; : : : ; n0r; (2.30)with ar, br and r usually determined by experiments. One goal of these simu-lations is preisely to determine the value of wall deomposition probabilitiesby omparing numerial with experimental results. In our appliations (seeChapter 6) we have onsidered only onstant probability oeÆients.From a numerial point of view, we must be areful to orretly evaluate thesurfae as well as the gas-phase prodution terms. Numerial experimentsshowed us that a good loal onvergene in the reation zones have to bereahed in order to get an aurate solution. Indeed the prodution or de-strution of speies anywhere in the domain may have inuene on the wholeow. Hene a onvergene statement on the global residuum is generally notsuÆient.Sine the surfae reations our only loally on the walls, i.e. on some domainboundaries, the numerial ontribution of these reations to the residuum andjaobian matrix is only restrited to the edges orresponding to a wall, i.e. ona few one-dimensional elements (for two-dimensional omputations). Thesesoure terms inuene the boundary onditions at walls for the temperatureand the speies mass frations (see Chapter 3). For the temperature, energy isgiven to or taken from the gas phase depending on whether the reations havereated or onsumed energy. For the speies boundary onditions, a balanebetween the di�usion ux at the wall and the speies reation or destrutionrates is onsidered.The inuene of the surfae reation terms on the ow is of importane evenif their partiipation to the global residuum might be small (due to their loalexistene). The auray on the solution needed loally to resolve these termsreinfore the importane of the adaptive mesh-re�nement proess (f. Chapter5).2.3.3 Transport CoeÆientsTransport property evaluation plays an important and often time-onsumingrole in the omputational modelling of gaseous multiomponent reating ows.30



Two approahes are mostly onsidered for evaluating transport oeÆients. Ina �rst approah, a diret numerial inversion of the transport linear systemsderived from kineti theory is onsidered. This strategy often beomes ompu-tationally expensive. In a seond approah, an empirial average expression isused, whih yields less aurate transport oeÆients but allows to deal withomplex reative systems with smaller omputational e�orts.The di�usion ux, r � ji, in (2.20) an be written with the help of the speiesdi�usion veloity Vi as ji = �wi Vi; i = 1; : : : ; ns; (2.31)the speies di�usion veloities being de�ned by the kineti theory of dilutepolyatomi gas mixture (see [54℄) asVi = 1xiM nsXj 6=i MjDij dj � DTi�wi 1T rT ; (2.32)with Dij the multiomponent di�usion oeÆients (see [27℄), DTi the thermaldi�usion oeÆients and di the di�usion driving fore of the ith speies. Thevetors di inorporate the e�ets of various state-variable gradients and aregiven by di = rxi + (xi � wi) rpp ; 8 i = 1; : : : ; ns: (2.33)xi denotes the mole fration of the ith speies, Mi the speies molar mass ofthe ith speies andM the mean molar mass of the mixture, whih depends formultiomponent ows on the mixture hemial state:1M =Xi wiMi : (2.34)The mass frations wi and mole frations xi are related as follows:xi = wi MMi :Thus we see from equations (2.32) and (2.33) that the di�usion ux from thespeies mass onservation equation (2.20) is omposed of three parts: massdi�usion (Fik's law) due to gradients in molar frations, thermo-di�usion dueto temperature gradients (Soret e�et), and pressure di�usion due to pressuregradients.It follows from the above equations that the detailed modelling of a poly-atomi gas mixture requires the evaluation of its transport oeÆients, i.e.31



the multiomponent and the thermal di�usion oeÆients. These oeÆientsare funtions of the state of the mixture as given by the variables p, T , andw1; : : : ; wns. Their evaluation requires solving linear systems, referred to asthe transport linear systems (for more details on this see [20℄ and [35℄).In order to redue the omputational e�ort, mixture-averaged formulationsmay be used, whih allows to avoid solving linear systems. Mixture-averageddi�usion oeÆients an be de�ned with the help of the multiomponent prop-erties. By de�nition, in the mixture, the di�usion veloities are then relatedto the speies gradients by a Fikian formula asVi = � 1xi Di di � DTi�wi 1T rT; i = 1; : : : ; ns: (2.35)The mixture di�usion oeÆients (see [12℄) are omputed asDi = 1� xiPnsj 6=i xj=Dji ; i = 1; : : : ; ns; (2.36)with Dji the binary di�usion oeÆient of speies pair (j; i) (see [27℄). TheseoeÆients are nearly proportional to the square-root of the temperature andinversely proportional to the pressure.A potential problem with this expression is that it is not mathematially well-de�ned in the limit of the mixture beoming a pure speies. Consideringequation (2.36), this modelling is not able to handle the speial ase of purespeies. Even though di�usion itself has no real meaning in the ase of a purespeies, a omputer-program implementation should ensure that the di�usionoeÆients behave reasonably and that the ode does not \blow up" whenthe pure speies ondition is reahed. To overome this diÆulty we alwaysmaintain a residual amount of eah speies. Spei�ally, we assume in theabove formulas that xi = x̂i + Æ; (2.37)where x̂i is the atual mole fration and Æ is a small number that is numeri-ally insigni�ant ompared to any mole fration of interest, yet whih is largeenough in order to be represented in omputer arithmeti. We have experien-ed reasonable numerial behavior onsidering Æ = 10�12.A further problem is that this latter di�usion model does not neessarily ful-�ll the mass onservation onstraint whih implies that the speies di�usionveloities satisfy the mass onservation relationnsXi=1 wi Vi = 0: (2.38)32



This topi will be onsidered in Setion 2.5 in more details.Finally we have restrited in this work the di�usion ux to the �kian di�usion.As result we obtain the following speies mass onservation equations:� �wi�t +� (u � r)wi +r � (�Dirwi)�r � (�Di wiM rM) = fi(w; T ) ; i = 1; : : : ; ns: (2.39)2.4 Mixture-Averaged Flow PropertiesOur objetive in this setion is to determine mixture properties from the purespeies properties. In the ase of visosity and heat ondutivity, we use theempirial laws given in [56℄. The visosity � of a mixture an be modelled withan auray of approximately 10% by the partial visosities �i and the molefrations xi of the speies:�(T; w) = 12 24 nsXi=1 xi �i + nsXi=1 xi�i!�135 : (2.40)The �i = �i(T ) are nearly proportional to the square-root of the temperature.We use a polynomial �t with oeÆients determined by experiments [36℄. Theheat ondutivity � has a similar representation:�(T; w) = 12 24 nsXi=1 xi �i + nsXi=1 xi�i!�135 ; (2.41)with �i the partial heat ondutivity, whih are also alulated as a polynomialof the temperature.2.5 Physial onstraintsBy de�nition, the sum over all mass frations must be one and the mass on-servation implies that the sum over the di�usive uxes should vanish:nsXi=1 wi = 1 ; nsXi=1 ji = 0: (2.42)Moreover eah mass fration wi must, also by de�nition, have a value betweenzero and one: 0 � wi � 1; 8 i = 1; : : : ; ns: (2.43)33



Some are needs to be taken in using the mixture-averaged di�usion oeÆientsas desribed above. The mixture formulas are approximations and they arenot onstrained to require that the sum over all speies di�usion uxes is zero,i.e. ondition (2.38) needs not be satis�ed. Therefore, one must expet thatapplying these mixture di�usion relationships in the solution of a system ofspeies onservation equations should lead to some non-onservation, i.e. theresultant mass frations will not sum to one. Therefore one of a number oforretive ations must be invoked to ensure mass onservation.One possible approah is to de�ne a \onservation di�usion veloity" as re-ommended in [16℄. In this approah it is assumed that the di�usion veloityvetor is given as Vk = V̂k + V; (2.44)where V̂k is the ordinary di�usion veloity given by equation (2.35) and Vis a onstant orretion fator (independent of speies, but spatially varying)introdued to satisfy equation (2.38). The orretion veloity is de�ned byV = � nsXk=1 wk V̂k: (2.45)An alternative is based on exluding the onservation equation for one speies.Its mass fration is then omputed simply by subtrating the sum of the re-maining mass frations from unity. This is an attrative method for problemshaving one speies that is always present in exess. A similar approah involvesdetermining loally at eah omputational ell, whih speies is in exess. Thedi�usion veloity for that speies is then omputed to require satisfation ofequation (2.38).But even though the omplete multiomponent formulation is theoretiallyfored to onserve mass, and so should also be orreted methods for thesimpli�ed formulation, numerial implementations and resolution errors anause some slight non-onservation. Depending on the numerial method, evenslight inonsistenies an lead to diÆulties. Therefore a third approah maybe used that ensures (2.38) but also (2.43). This latter basi ondition mustabsolutely be ful�lled to avoid inonsistenies with the physis and that theresolution method su�ers omputational ineÆienies or onvergene failures.A orretion an be made diretly on the mass frations ŵi that are alulatedwith the mixture-averaged di�usion model. This model an deliver slightlynegative or greater-than-one mass frations. The orretion is then~wi = (10�12 if ŵi � 10�12;ŵi otherwise;wi = ~wiPnsk=1 ~wk :34



This allows to avoid the pure speies problem and leads to physially rea-sonable values for the mass frations. Nevertheless the wi obtained are notsolution of the multiomponent-ow system anymore. One should ensure thatthis orretion is not too strong aording to the solution ŵi obtained by theresolution of the system of partial di�erential equations. Therefore we mayapply this method as omplementary orretive measure to the methods de-sribed above sine, in this ase, we an be sure that the magnitude of thisorretion will be signi�antly smaller.In this work only the latter orretion is applied to the solution at every non-linear step of the solving proess (see Chapter 4). Numerial tests showed usthat the other orretions did not have muh inuene on the solution for ourappliation ases. The order of the orretion in our tests was loally at most10% on the speies mass frations.2.6 Ideal Gas LawUsually an algebrai equation of state for the mixture loses the system. Inmany instanes a ompressible uid an be onsidered as a perfet gas, evenif visous e�ets are taken into aount. The ideal gas law gives a relationbetween the pressure and the density:p = �R TM ; (2.46)where R is the universal gas onstant andM the mean molar mass of the mix-ture. While onsidering the low-Mah-number approximation, the pressurewhih is to be found in this later state equation is the onstant thermodynam-ial pressure pth.De�ning  = p=v, the speed of sound  is given by2 = ��p���s =  R TM =  p� ; (2.47)We an then de�ne the Mah number byM = juj : (2.48)For our appliations, it is supposed to be small. For example in the ow re-ator for the CARS experiment presented in Chapter 6, with a uid veloityof 50 m/s, the Mah number is 0.018. Under a value of 0.3, the uid may beonsidered as hydrodynamially inompressible. However in the ase of multi-omponent ows, this does not mean that the density of the ow is onstant.35



For ideal gases, the ontinuity equations an be rewritten in a form independentof the variable �. From the relation 2.46, dividing the equation 2.1 by � yieldsto the following form of the ontinuity equation:1p dpdt + 1M dMdt � 1T dTdt +r � u = 0; (2.49)with the de�nition of the total derivative ddt = ��t + u � r.In the following setion we will see that the pressure term an be negleted forthe pressure remains onstant in �rst approximation. The ontinuity equationis �nally 1M dMdt � 1T dTdt +r � u = 0: (2.50)2.7 Low-Mah-Number approximationIn low-Mah-number ows, the pressure �eld an be split in two parts, oneonstant and the other variable in spae and time. The �rst one is alled thethermodynamial part and the seond one the hydrodynamial part:p = pth + phyd: (2.51)The hydrodynamial part phyd is negligible aording to the thermodynamialpart pth. Rewriting the ideal gas law with these onditions leads to an equationfor the density: � = M pthRT : (2.52)This splitting has been used in many publiations (see for instane [42℄, [39℄,[40℄) and we sketh here the method whih leads to it.We must �rst write the governing onservation equations with non-dimensionalvariables, taking the Mah number into aount. The Mah number used tomake the variables dimensionless is evaluated at the initial state. For the sakeof simpliity, we write here only the non-dimensional momentum equation:M2� dûdt = �rp̂+ M2Re r � �̂ : (2.53)The^means that the orresponding variable is in non-dimensional form. Re =L�u� is the Reynolds number of the ow (L is a harateristi length of theproblem) and ddt = ��t + û � r. Sine the Mah number is small and sine itappears in the equations as � = M2, all the gas dynami variables may be36



expanded in terms of �. That is, any variable � 2 [�; u; p; T; w℄ an be expandedas follow: �(x; t) = �0(x; t) + � �1(x; t) + �2 �2(x; t) +O(�3): (2.54)Considering the variable p and substituting into (2.53), the momentum equa-tion reads �� DûDt = �rp̂0 � �rp̂1 � �2rp̂2 + �Re r � �̂ : (2.55)Gathering terms that are independent of M , one �nds rp0 = 0, whih showsimmediately that p0 = p0(t) (2.56)This is the main result of the low Mah number approximation. The largestomponent of the pressure is onstant throughout the �eld and hanges onlywith time. p0 is the thermodynami pressure. The seond omponent ofthe pressure appears in the �-omponent of the expansion of the momentumequation: �0 Du0Dt = �rp1 + 1Re r � �0: (2.57)p1 is the hydrodynami pressure and is generated to balane the hanges inmomentum within the ow �eld. Its ontribution to the total pressure isrestrited to �.2.8 Cylinder CoordinatesAs we saw in Chapter 1, the operators in ylinder oordinates involve sup-plementary terms that are not to be found in artesian oordinates. In thissetion we desribe the equations disussed in the previous setions developedin ylinder oordinates and fous on these supplementary terms. Some infor-mation about generalized urvilinear oordinates an be found in [24℄ or [1℄,and about the Navier-Stokes equations in ylinder oordinates in [44℄.2.8.1 The Stress TensorThe stress tensor written in anonial form in Setion 2.3 depends on theveloity-gradient tensor. Considering the symmetry ondition, just as in Chap-ter 1, this latter tensor an be written in ylinder oordinates in the basis(er; e�; ez): 37



ru = 0� �ur�r 0 �uz�r0 urr 0�ur�z 0 �uz�z 1AThe stress tensor is� = � (ru+rTu)� �23 �r � u+ p� I:De�ning a generalized pressure byp� = 23 �r � u+ p (2.58)and again taking into aount the symmetry ondition, the stress tensor be-omes � = 0� 2�ur � p� 0 � (wr + uz)0 2� ur � p� 0� (wr + uz) 0 2�wz � p� 1A :In the ylinder system of oordinates, whih is de�ned in this work with theorthonormal base (er; e�; ez), the �rst and third omponents of the divergeneof a symmetri tensor t of seond order is :(r � t)1 = 1r t11 + �t11�r + 1r �t12�� + �t13�z � t22r ;(r � t)3 = �t33�z + 1r t31 + �t31�r + �t32�� :Thus the �rst omponent of the divergene of the stress tensor in ylinderoordinates with axial symmetry is(r � �)1 = r � (�rur) + � ��r (r � u) +r� � �u�r � � ur2 � �p��r :The seond omponent of the divergene of the stress tensor vanishes, due toaxial symmetry. It remains the third omponent:(r � �)3 = +r � (�ruz) + � ��z (r � u) +r� � �u�z � �p��z :One has to remember that the divergene in ylinder oordinates isr � u = �ur�r + urr + �uz�z :38



2.8.2 The Equations in Cylinder CoordinatesAdditional terms appear in ylinder oordinates for the vetorial equations.Taking into aount the results of the previous hapter, we an then write themomentum onservation equations (2.4) in ylinder oordinates. Writing theveloity in ylinder oordinates u = (ur; uz), the system of equations is1M dMdt � 1T dTdt +r � u = 0; (2.59)� �ur�t + � (u � r) ur �r � (�rur)� � ��r (r � u)�r� � �u�r + � urr2 + �p��r = � f (r)v ; (2.60)
� �uz�t + � (u � r) uz �r � (�ruz)� � ��z (r � u)�r� � �u�z + �p��z = � f (z)v ; (2.61)
� p �T�t + � p (u � r)T +r � (�rT ) = fT (w; T ); (2.62)� �wi�t + � (u � r)wi +r � ji = fi(w; T ); 8 i = 1; : : : ; ns: (2.63)
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Chapter 3Disretization
This hapter presents and analyzes a �nite element sheme for simulating thethree major proesses in reative ows: hemial reations, di�usion and on-vetion.The methods used in simulation of reative ows are usually based on either�nite di�erenes for its simple implementation and mathematial bakgroundas in [3℄ and [46℄ or �nite volumes whih are a range of methods widely spreadin the engineering �eld (see [19℄ for a study of some shemes). The methodused in this work is based on onforming \Q1/Q1" Galerkin �nite elements.The basis on the mathematial theory of �nite element methods used in thiswork an be found in the books of Johnson [30℄ and Brenner/Sott [15℄.The hoie of a �nite element method is prinipally motivated by the exibilityit o�ers with respet to adaptive mesh re�nement. It an be oupled with errorontrol based on a posteriori error estimates provided by the orthogonalityproperty of the method as explained in Chapter 5. Thus auray for somephysial quantities whih are to be preisely known an be guaranteed.In this hapter, we disuss the disretization of the unsteady and steady multi-speies low-Mah-number ompressible Navier-Stokes equations with advetion-di�usion-reation equations for hemial speies. The aim is to simulate quasi-stationary low-Mah-number ows in ow reators.The appliation of onforming �nite elements to the inompressible or om-pressible Navier-Stokes equations is standard (see for instane [4℄, [49℄ or [10℄).Extensions to thermally oupled ows or multispeies reative ows have alsobeen developed in the last deade. The reader an �nd some examples in [38℄,[50℄, [37℄ or in the more reent work [13℄.In the ase of axisymmetri ows, the three-dimensional problem an be trans-formed to a two-dimensional one (see hapter 1). Although suh a transfor-mation redues the omputation time, we have to deal with the followingproblems: 41



� The di�erential operators in the axisymmetri formulation have singu-larities on the axis. We have to work with weighted Sobolev spaes (seehapter 1 or [41℄, [11℄).� The radial and the axial omponents of the veloity belong to di�erentSobolev spaes.We disretize the equations modelling axisymmetri multispeies reative owswith stabilized Q1 elements for all variables. The equations onsidered haveindeed two di�erent soures of diÆulties that a stable disretization mustoverome.The �rst diÆulty is the veloity-pressure oupling brought by the saddle-pointstruture of the Stokes system of equations. It is well known that this approahdoes not lead to a stable disretization unless the �nite dimensional spaesful�ll the \inf-sup" ondition (see [25℄). In order to get a stable disretization,we add weighted mesh-dependent least-squares terms to the standard Galerkinformulation as proposed by Hughes et al. in [29℄.The seond kind of instability ours in the ase of high Reynolds num-bers, when the system beomes onvetion-dominated. The standard Galerkinmethod for onvetion dominated problems produe approximations whihontain \spurious" osillations in ase of non-smooth exat solutions. Theosillations result from a lak of stability of the method. A standard �niteelement tehnique to deal with salar onvetion-di�usion equations is thestreamline di�usion method (see [30℄, [60℄). The stabilization is done by addingfurther weighted least-square terms to the disrete equations. The stabilizingperturbation term an be physially thought as a numerial di�usion term inthe diretion of the streamlines. This modi�ation enhanes stability with-out a strong e�et on the auray beause the terms added are based on theresidual.3.1 De�nitionsUsing the notations of hapter 1, we denote the inner salar produt in L21(
)by (u; v) = Z
 u(r; z) v(r; z) r dr dz (3.1)We also denote by X the solution vetor of the system presented in the nextsetion, that is X = [ur; uz; p�; T ℄T : (3.2)For simpliity, in the following the notation p will replae p�. We will all itthe generalized pressure. 42



3.2 The Variational FormulationIn this setion, we onsider the ontinuity equation (2.59) as well as the mo-mentum equations (2.60) and (2.61). We also onsider a di�usion-onvetion-reation equation modelling the evolution equations of temperature and speiesmass frations. It an be written as follow:� �T�t + � (u � r)T +r � (�rT ) = fT (w; T ): (3.3)The variational formulation of the resulting system is obtained by writing theequations in weak form and integrating by parts. We de�ne the energy formsfor eah equation:� The ontinuity equation:a1(X; q) = � 1�M d �Mdt ; q�� � 1T dTdt ; q�+ (r � u; q); (3.4)� The �rst momentum onservation equation:a2(X;') =(� durdt ; ')� �p; �'�r + 'r�+ (�rur;r')+ �� urr2 ; '�� �� ��r (r � u); '�� �r� � �u�r ; '� ; (3.5)� The seond momentum onservation equation:a3(X; ) =�� duzdt ;  �� �p; � �z �+ (�ruz;r )� �� ��z (r � u);  �� �r� � �u�z ;  � ; (3.6)� The energy or speies-mass onservation equationsa4(X; �) = �� dTdt ; ��+ (�rT;r�); (3.7)with ddt = ��t + u � r the total time derivative.Using the notations of Chapter 1, we denote by V� = H1�;0 and V+ = H1+;0 thespaes for the veloity �eld, by Q = L21(
) the spae for the pressure and byS = H1+;0(
) the spae for the temperature and mass frations.43



We de�ne the vetorial energy form orresponding to the whole system bya(X; �) = a1(X; q) + a2(X;') + a3(X; ) + a4(X; �); (3.8)with the vetorial test funtion � = [q; ';  ; �℄T 2 V = V� � V+ �Q� S.The right hand side vetor f of the system isf = [0; f (r)v ; f (z)v ; fT ℄T : (3.9)The variational formulation onsists then in �nding X 2 V = V��V+�Q�Ssuh that a(X; �) = (f; �) 8 � 2 V (3.10)holds.3.3 Boundary Conditions3.3.1 General Boundary ConditionsFor this problem, the boundary onditions are on the four di�erent boundariesthe following: symmetry on �0 : ur = 0;inow on �1 : u = u0; T = T0;wall on �2 : u = 0; �T�n = f 0T ;outow on �3 : � �u�n � p � n = 0; �T�n = 0;
9>>>>>>=>>>>>>; (3.11)

where �
 = �0 [ �1 [ �2 [ �3, and f 0T is a surfae soure terms. Sine theintegration is weighted by the fator r, the natural boundary ondition onthe symmetry boundary �0 vanishes. Nevertheless, aording to the propo-sition 2 of Setion 1.5.1, the radial veloity ur is zero on the symmetry line�0. The Neumann or mixed onditions on the other domain boundaries areobtained through the natural boundary onditions supplied by the variationalformulation.3.3.2 Supplementary ConditionsOther onditions oming diretly from the equations for a steady-state solutionan be taken into aount. 44



A ondition on uz an be found in the ase of a steady-state solution throughthe ontinuity equation (2.1) whih leads to the relationZ�3 � u � n d� + Z�0 � u � n d� + Z�1 � u � n d� = 0; (3.12)sine the veloity is zero on the wall boundary �2. On the symmetry line, thenormal n is in the radial diretion. For the outow and inow it is in the axialdiretion. At the symmetry line the integration weight r is zero. We thenobtain Z�3 � uz r dr = Z�1 � uz r dr: (3.13)The integral upon the inow boundary is known for uz whih is set by aDirihlet ondition. It physially means that the mass that ows into the tubegoes out.Again for the outow, a ondition on the generalized pressure an be foundby onsidering the natural boundary ondition on the outow boundary. Therelation Z�3 (� �uz�z � p) r dr = 0 (3.14)is ompleted by the mass onservation property�uz�z = ��(r ur)�r : (3.15)The ontinuity equation in strong formulation may be written in this wayonly if the density � remains onstant. This should be the ase on the outowboundary. Therefore, to be sure that this relation is respeted, we must assumethat no hemial reation take plae on the outow and that the mixing proessis omplete. If additionally the visosity � is also onstant on the outow (thesame hypothesis should lead to suh a situation), a diret integration yieldsZ�3 p r dr = 0; (3.16)sine r = 0 on the symmetry line and ur = 0 on the wall.Another ondition an be derived from the ontinuity equation at least in thease of a strong solution of equation (2.1). We must here onsider the three-dimensional domain and remember that the symmetry boundary orrespondsto the middle of the ow reator. Thus if the solution is smooth enough, themass onservation in strong form may be ful�lled, partiularly in the middleof the tube where no singularity is found. Lets onsider the following integral:I0 = Z�0 �r � (� u) r dz = 0 8� 2 L21(�0); (3.17)45



if the above hypothesis is ful�lled. This integral an be deomposed as followsI0 = Z�0 r � �� ur�r dz + Z�0 r � �� uz�z dz + Z�0 r � urr dz: (3.18)We have I0 = 0, sine r = 0 on this boundary. The �rst and seond integralsof the right hand side are zero for the same reason. We an then dedue thatZ�0 �ur dz = 0 8� 2 L21(�0); (3.19)whih means that the radial omponent of the veloity is zero on the symmetryline. Therefore, if the above onditions are ful�lled, no Dirihlet boundaryondition needs to be set on the symmetry line for the radial veloity.3.3.3 Symmetry Boundary ConditionDepending on the spae whih the three-dimensional solution belongs to, themapping between the three-dimensional and the two-dimensional problems analso lead to supplementary boundary onditions whih are ontained withinthe �nite element spaes onsidered. One again aording to Proposition2, the solution may indeed ful�ll supplementary onditions on the symmetryboundary if it has enough regularity. In the ase of a three-dimensional solutionwhih belongs to �H2(�
), with regard to the de�nition of the spae H2+, thenormal derivative to the symmetry boundary of the solution omponents ur,p and T vanishes. If the solution is sought in H1+, these boundary onditionson the symmetry line for the variable ited above are not valid anymore.3.4 Disretization in SpaeStarting from the variational formulation (3.10) supplemented by the bound-ary onditions (3.11), we hoose the �nite element subspaes Vh � V to obtainthe standard Galerkin disretization. We onsider in this work an approxi-mation by pieewise bi-linear shape funtions on meshes Th = fKg made ofquadrilaterals and satisfying the usual regularity onditions (quasi-uniformity).The width of the mesh Th is haraterized in terms of the mesh size funtionh = hmax = maxK2Th (hK) with hK = diam(K). In order to ease the re�ne-ment and oarsening proesses, one hanging node per element edge is allowed.Considering the vetorial energy form de�ned in (3.8), the disrete solutionXh 2 Vh is determined by the equationa(Xh; �h) = (f; �h) 8 �h 2 Vh; (3.20)with Vh the set of pieewise bi-linear shape funtions on Th, whih is a subsetof V de�ned in (3.8). 46



3.5 StabilizationAs mentioned before, the standard Galerkin disretization obtained for theNavier-Stokes equations does not yield a stable algorithm unless the spaesful�ll the disrete LBB-ondition (f. [14℄, [25℄). This ondition is a ompat-ibility ondition for the veloity-pressure oupling. An alternative, presentedby Hughes et al. in [29℄, is to modify the disrete bilinear form in order to geta stable disretization.Moreover the onvetion terms in any onvetion-di�usion equation lead tosupplementary instabilities. Non-physial osillations an appear in numerialsolutions of the Navier-Stokes equations. Therefore the approah is modi�ed.The stability of the Galerkin �nite element method has to be improved, butit has to be done arefully sine additional stability is often obtained at theprie of dereased auray. We onsider two ways of enhaning the stabilityof the standard Galerkin �nite element method:� introdution of weighted least-squares terms;� introdution of arti�ial visosity based on the residual.We refer to the Galerkin �nite element method with these modi�ations asthe streamline di�usion method. The �rst modi�ation adds stability throughleast squares ontrol of the residual and the seond modi�ation adds stabilityby the introdution of an ellipti term with the size of the di�usion oeÆientdepending on the residual with the e�et that di�usion is added where theresidual is large, i.e. typially where the solution is non-smooth. Both modi�-ations enhane stability without a strong e�et on the auray beause bothmodi�ations use the residual.3.5.1 The Galerkin-Least-Squares MethodLet a be a linear operator on a vetor spae V with inner produt (.,.) andorresponding norm k:k. Typially, A is a onvetion-di�usion di�erentialoperator, and (.,.) is the L2 inner salar produt over some domain 
. Weonsider the linear problem of �nding u suh thatAu = f; (3.21)for whih the variational formulation reads:Find u 2 V suh that(Au; ') = (f; ') 8' 2 V: (3.22)47



The least squares method for (3.21) is to �nd u 2 V that minimizes the residualover V, that is kAu� fk2 = minv2V kAv � fk2: (3.23)This is a onvex minimization problem (beause it is quadrati) and the solu-tion is haraterized by(Au;A') = (f; A') 8' 2 V (3.24)The problem is symmetri positive de�nite (A is onsidered regular), and thusan be solved without diÆulties. Equation (3.22) may be more diÆult tosolve, but may be more aurate than equation (3.24), for the test-funtionspae used in the seond problem may ontain less information (for instane ifA ontains a di�erential operator and the ansatz funtions are linear). There-fore a ombination of the 2 systems is taken. The resulting system should stillbe aurate enough but easier to solve.We now formulate the Galerkin-least-squares �nite element method for (3.21)by taking a weighted formulation of (3.22) and (3.24):Find u 2 V suh that(Au; ') + (Au; ÆA') = (f; ') + (f; ÆA') 8' 2 V: (3.25)We an alternatively formulate the Galerkin-least-squares method as a Petrov-Galerkin method, whih is a Galerkin method with the spae of test funtionsbeing di�erent from the spae of trial funtions. In our ase the test funtionshave the form '+ ÆA' with ' 2 V .3.5.2 Arti�ial VisosityAdding arti�ial visosity yields the streamline di�usion method in the form:Find u 2 V suh that(Au; '+ ÆA') + (�ru;r') = (f; '+ ÆA') 8' 2 V; (3.26)where � is the arti�ial visosity. It is de�ned in the disretization proess interms of the residual R(u) = Au� f through� =  h2 kR(u)k; (3.27)with  a positive onstant to be hosen, and h the loal mesh size.48



3.5.3 Appliation to Salar Convetion-Di�usion Equa-tionsApplying this stabilization to any salar onvetion-di�usion equation of type(3.7), the streamline di�usion method introdues a stabilizing term by the useof an additional test funtion of the form Æ u � r�. The introdution of theadditional least-squares terms is done in an element-wise fashion. This impliesthat the weighting parameter Æ depends on the element. It will be subsribedorrespondingly. We obtain the following equation:�� dThdt ; �h�+ (�rTh;r�h) + XK2Th�� dThdt �r � (�rTh); ÆK uh � r�h�= (fT ; �h) + XK2Th (f; ÆK uh � r�h) 8�h 2 Sh: (3.28)The least-squares terms orrespond to the addition of visosity in the diretionof the streamline. The method is onsistent in the sense that the stabilizingterms vanish for a strong solution of system (2.59) - (2.63). We disuss laterthe hoie of the parameter ÆK . The introdution of arti�ial visosity isstraightforward. However it should be brought into operation only if additionalross-wind di�usion is really neessary to avoid osillations. In many ases theleast-squares terms are suÆient. The disretization still remains of seondorder (see [60℄) and stable for a wide range of di�usion parameters.3.5.4 Pressure StabilizationThe spaes Qh and Vh used in this work are based on pieewise bi-linear fun-tions on quadrilateral elements, namely Q1/Q1-elements. For these spaesthe LBB-ondition is not satis�ed (see [14℄, [25℄). The stabilization of theNavier-Stokes equations for our disretization with bi-linear onforming ele-ments is done in the same way as the streamline di�usion, i.e. by addingmesh-dependent least-squares terms to the Galerkin formulation. The dis-retization then reads as follow:(r � (� uh); qh) + XK2Th (Ru; �K rqh )K= XK2Th (fv; �Krqh)K 8 qh 2 Qh;�� duhdt ; 'h�+�� ur;hr2 ; 'r;h� + (�ruh;r'h)�(�r(r � uh); 'h)� (r� � ruh; 'h)�(ph;r'h) = (fv; 'h) 8'h 2 V h� � V h+ ;
9>>>>>>>>>>>>=>>>>>>>>>>>>; (3.29)
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where Ru = � duhdt �r � (�ruh) +rph �r� � ruh��r(r � uh) + �r2 �ur;h0 �; (3.30)and �K is proportional to h2K. That amounts to additionally testing the mo-mentum onservation equations by qh+�K rqh. The struture of the system ishanged by the appearane of a pressure stabilization termPK �K (rph;rqh).Due to the hange of the bilinear form, stability for pressure is now implied bya generalized LBB ondition (f. [4℄). As for the streamline di�usion method,the pressure stabilization vanishes for a strong solution u and p, sine the stabi-lizing term is based on the residual of the momentum equation. This pressurestabilization proess for the Navier-Stokes equations must also be ompletedfor the momentum equations by the onvetion stabilization proess that hasbeen presented in previous setions.3.5.5 Stabilization WeightsWe de�ne in a �rst step some forms that desribe the stabilizing terms. Thepressure stabilization is denoted by(Xh; q) = XK2Th (Ru; �K rq )K; (3.31)with Ru de�ned in (3.30).The streamline di�usion method for the veloities involves the termsu(Xh; �) = XK2Th (Ru; ÆK uh � r� )K (3.32)And the stabilization for the temperature equation onsists of the followingterm: sT (Xh; �) = XK2Th�� dThdt �r � (�rTh); K uh � r h�K: (3.33)From the energy form (3.20), we de�ne the energy form of the system aug-mented by the least-squares terms byaÆ(Xh; �h) = a(Xh; �h) + (Xh; qh) + su(Xh; �h) + sT (Xh;  h): (3.34)This disretization has been analyzed for example in [28℄, [31℄ or [51℄. An erroranalysis lari�es the role of the parameters and motivates their hoie. The50



parameters �K; ÆK and K have to be hosen depending on the loal mesh sizehK , the onvetion u and the visosity � or � on eah ell K. Error estimatesobtained in [13℄ allow to derive values for the stabilization parameters for theompressible-low-Mah-number-ow system for whih the error of disretiza-tion e = X �Xh an be minimized. This study leads to the following valuesfor the veloity stabilization:ÆK = hK4t+ �=(� hK) + juj1 : (3.35)Analogously, minimization of the error in temperature givesÆK = hK4t+ �=(p � hK) + juj1 : (3.36)4t represents the time step. We disuss time disretization in next setion.A short analysis of the limit ases helps to understand this stabilization pa-rameter. In the ase of onvetion dominane, the veloity u is greater as thevisosity or time step and Æ � hjuj1 . If di�usion rules the ow, there is no needto add muh stabilization. Æ being then proportional to h2� , the seond order ofthe method is assured. For unsteady solutions, when the time step proessesare dominant, we have Æ � 1=4t.3.6 Time disretizationIn this work we are interested in stationary solutions of the system desribedin Chapter 2. However severe non-linearities in reative ows may imply anon-stationary behavior of the solution, with small instabilities in time whihmake a steady-state not exatly reahable. The solution may be onsidered asquasi-stationary but the system an then only be solved using a non-stationarysolution algorithm.In order to take into aount time variation of the solution, we use the expan-sion uh(t; x) = P ui(t)�i(x). We divide the time interval onsidered into Nparts of size kn = tn � tn�1. We denote the value of any variable � at time tnby �n = �(tn).The impliit Euler method leads to a system analogous to the following system:bÆ(Xnh ; �h) + kn aÆ(Xnh ; �h) = bÆ(Xn�1h ; �h); (3.37)with bÆ being the L2 salar produt augmented by stabilization terms, i.e.bÆ(X; �) = (X; �) +PK2Th (X; Æ u � r�).The additional term for the stabilization in the form bÆ may be negleted ifwe are atually looking for a quasi-stationary solution, as said above, and aretherefore not interested in the exat evolution in time. This term does not bringmore stability to the sheme and makes the proess more time-onsuming.51



3.7 Full Disretization for Reative FlowsWe an now write the disretization of the whole system (2.59)- (2.63). Wehave the following boundary onditions:symmetry on �0 : ur = 0;inow on �1 : u = u0; T = T0; wi = w(i)0 ;wall on �2 : u = 0; �T�n = nsXi=1 hiMi _w0i ; �wi�n =Mi _w0i ;outow on �3 : � �u�n � p � n = 0; �T�n = 0; �wi�n = 0:
9>>>>>>>>=>>>>>>>>; (3.38)

The weak formulation an be written as(r � uh; q) + (L(uh; wh); q) + (ph; uh; q) = Nh(q) 8q 2 Qh;1kn (uh; �) + (� uh � ruh; �) + (�ruh; �)�(r� � ru; �)� (�r(r � u); �)� (ph;r � �)+(�ur;hr2 ; �r) + su(ph; uh;�) = Fh(�) 8� 2 Vh;1kn (w(i)h ;  ) + (� uh � rw(i)h ;  ) + (�Dirw(i)h ;  )+(�Diw(i)h rM; ) + si(w(i)h ; uh; ) = Ph(wh;  ) 8 2 Sh;
9>>>>>>>>>>>>>=>>>>>>>>>>>>>; (3.39)

where Nh; Fh and Ph are the orresponding funtionals formed by the right-hand side variational formulation and the stabilization. Ph ontains the volumehemial soure terms but also the surfae soure terms R�3 Mi _w0i � d�. Theoperator L(uh; wh; q) onsists of the variational formulation of the onvetionterms from the ontinuity equation (2.59). The temperature is onsidered hereas an additional speies w0, sine the struture of its evolution equation is thesame as the struture of a mass onservation equation for any speies. We haveD0 = �=(� p). The density is de�ned by an algebrai equation � = �(wh).Sine di�usion oeÆients for eah speies an di�er strongly, one has to de�nea stabilization parameter for eah speies:Æ(i)K = hKkn +Di=hK + juj1 : (3.40)and the least-squares stabilization term:si(w(i)h ;uh; ) = XK2Th � 1kn w(i)h + � uh � rw(i)h�r � ��Dir(M w(i)h )��Mi _w(i)h ; Æ(i)K uh � r �K : (3.41)
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Chapter 4Numerial Solution
To solve the strongly non-linear system oming from the �nite element dis-retization of multispeies reative ows, we onsider the lassial approahbased on a linearization of the system with the help of its jaobian matrix.The iterative method used in this work is a defet orretion method whihrequires to solve a linear system in eah non-linear step. In suh an algo-rithm for omputing omplex reative ows, two ingredients are deisive forthe eÆieny of the total solution proess: an eonomial storage tehniquewhih fully exploits the very speial struture of the jaobian matries, and aneÆient and robust solver for the large oupled linear systems.This hapter disusses the linear systems obtained from a simpli�ation ofthe jaobian matrix, whih may be eÆiently solved. This iteration matrixhas to provide enough auray aording to the non-linear system to obtainan aeptable onvergene rate of the defet orretion proess. We will alsodesribe methods to solve the resulting linear systems.To solve the linear systems we have hosen a Generalized Minimal Residual(GMRES) algorithm. GMRES is appropriate for non-symmetri and inde�nitematries. In order to obtain an eÆient solver with a rate of onvergeneindependent of the mesh size, we use a multigrid sheme as a preonditioner.The loally-re�ned struture of the mesh makes the preonditioning through amultigrid method neessary to avoid the dependene of the ondition numberon the mesh width.The grids under onsideration are obtained as follows: The oarsest mesh doesnot ontain any hanging node and onsists of ells belonging to the level l = 0.The ells of level l � 0 are obtained by re�nement of some ells belongingto level (l � 1). Due to this hierarhial re�nement strategy the requiredsmoothing operations in a multigrid yle on level l are restrited to the ellsbelonging to this level. We use in this work di�erent smoothing operators.For the Navier-Stokes part of the system, we have implemented a methodsimilar to the smoother proposed by Vanka in [52℄ for staggered grid �nite53



di�erene disretizations, whih onsists of a blok Gauss-Seidel iteration loop.The deomposition in bloks is done path-wise on eah level of the grid andorresponds to a loal grouping of veloities and pressure unknowns. For thesmoothing of the temperature and speies equations we use two methods; the�rst one is based on point-Gauss-Seidel iterations, while the seond one may beused in the ase of sti�er systems and is based on a blok-ILU deomposition.4.1 Defet CorretionAs mentioned above, the non-linear system of equations is solved by a defet-orretion method. The iteration matrix is an approximation of the jaobianof the non-linear equations. This method is based on the Newton iterationwhih onsists of the following �x-point iterationXn+1 = 0� upwi 1An+1 = 0� upwi 1An � ! (DR)�1Rn; (4.1)with the following notations:DR = derivative of R with respet to the variables u, p, T, wi;R = residual of the system that is to be solved;! = relaxation parameter:For the sake of simpliity we will onsider the temperature in this hapter asthe �rst term of the vetor de�ning the hemial state of the ow, i.e. w0 = T ,sine the equations for temperature and those for the speies have exatly thesame harateristis.We also denote the inrements for our solution vetor bydn+1X = 0� dudpdwi 1A = 0� un+1 � unpn+1 � pnwn+1i � wni 1A ; (4.2)n+ 1 being the number of the urrent non-linear step.In the defet-orretion proess, DR is atually not omputed exatly sine asuitable approximation of this derivative is often suÆient to solve the system.For this reason, with the additional use of a relaxation parameter !, thismethod is alled quasi-Newton method, when the omputed DR onverges tothe exat �nal DR, or defet orretion method otherwise.Damping the iteration step with the parameter w leads to a stabilization ofthe algorithm. ! is hosen to be w = 2�i where i is the lowest integer greater54



than 0 suh that the monotoniity jR(Xn � 2�i dn+1X )j < jR(Xn)j is ful�lled.Xn+1 = Xn � 2�i dn+1X is then hosen as the update. This stabilization isneessary to have a robust solver and avoid osillations in the onvergene ofthe method. An example of divergene in the ase without damping an befound in [48℄.4.2 Newton MatrixThe aim of this setion is to desribe the onstrution of the jaobian matrixand its approximation. We present the jaobian matrix and its approximationused in this work in order to redue storage requirements and omputationtime. We introdue the following form whih is the residual of the system:R(fp; u; wg; fq; �;  g) =Ru(fp; u; wg; �) +Rp(fp; u; wg; q)+ nsXi=0 Rwi(fp; u; wg;  ); (4.3)where Ru, Rp are the partial residuals aording to the Navier-Stokes equationsand Rw the partial residual aording to the temperature-speies equations:Ru(fp; u; wg; �) =�� dudt ; ��+ (�ru;r�)� (p;r � �)+ (� urr2 ; �)�(r� � ru; �)� (�r(r � u); �)� (fv; �);Rp(fp; u; wg; q) = (r � u; q) + (L(u; w); q) + (rp; Ærq);Rwi(fp; u; wg;  ) =�� dwidt ;  �+ (�Dirwi;r )� (fwi;  );i = 0; : : : ; ns: (4.4)
Taking into aount the stabilization terms would not hange the strutureof this system. The only stabilizing term whih hanges the harateristis ofthe system is the term (rp; Ærq) in the operator (X; q) de�ned in relation(3.31).The jaobian matrix orresponding to the residual given above is

DR = 2666664 �Ru�u �Ru�p �Ru�wj�Rp�u �Rp�p �Rp�wj�Rwi�u �Rwi�p �Rwi�wj
3777775 ; (4.5)
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with i = 0; : : : ; ns and j = 0; : : : ; ns. For the approximation of this matrix,we must take the physis of the ow into onsideration as well as the ability toeÆiently alulate the derivatives and solve the system at low omputationalost. The ow variables u, p are oupled with the hemial state w throughthe mixture visosity �, the density � and the mean molar mass �M in theNavier-Stokes equations and through the veloity of the uid in the onvetion-di�usion equations for the temperature and speies. For our appliation to owreators, no rapid variation of the physial quantities should be observed inalmost the whole domain. Therefore, in order to be able to bring eÆientsmoothers into play, we deide to keep only a weak oupling between theNavier-Stokes equations and the temperature/speies equations. The system isorrespondingly linearized at eah non-linear step. In the approximate jaobianwe neglet the bloks �Ru�w , �Rw�u and �Rp�w . The term �Rw�p is also not taken intoaount sine the temperature is almost independent of the pressure for low-Mah-number ows. The density ouples the equations through the ideal gaslaw (2.46). Visosity, mean molar mass and speies or temperature onvetionveloities are alulated in eah non-linear step with the previous-non-linear-iteration value of the solution vetor.With these simpli�ations, the approximation of the operator DR has thefollowing blok-form: eDR = 24 App Apu 0Aup Auu 00 0 G 35 : (4.6)While denoting the test and trial funtions by  and �, respetively, we anwrite the approximated operators de�ning eDR using overlined variables as thelinearized variables alulated with their values taken from the previous non-linear step.For the ontinuity equation, Apu orresponds to the sum of the divergene oper-ator with the element-wise least-squares terms stemming from the streamline-di�usion stabilization and App results from the pressure veloity stabilization:App = XK2Th (r�; �K r )K ; (4.7)Apu = (r � (� �);  ) + XK2Th ( � d�dt �r � (�r�)+ �r2 �ur0 �� �r(r � �)�r� � r�; �K r )K ; (4.8)with the total time derivative ddt = ��t+�u�r. The variable �u is here the veloityevaluated at the previous step of the iterative proess. We neglet the otherpart of the derivative of the transport term with regards to u.56



Furthermore the operator Aup represents the inuene of the pressure in themomentum onservation equation, and Auu orresponds to the onvetion-di�usion terms in this equation:Aup = �(�;r �	) + XK2Th (r�; �K �u � r	)K; (4.9)Auu = �d�dt ;	�+ (�r�;r	) + (�urr2 ;	r)�(r� � ru;	)� (�r(r � u);	)+ XK2Th�d�dt � �r�; �K �u � r	�K: (4.10)Considering (4.6), we see that the linearized system is split into two indepen-dent parts. One part determines the evolution of the ow, the other partorresponds to the hemistry and the behavior of speies within the ow.The operator G orresponds to the onvetion-di�usion-reation terms of thespeies mass onservation equations and to the temperature evolution equa-tion, whih have the same struture. While onsidering the interations be-tween the speies, the blok-matrixG an be deomposed into (ns+1)�(ns+1)matries, the temperature being onsidered as a separate speies. The diago-nal matries Gii orrespond to the onvetion-di�usion of the mass fration ofthe speies i, as well as the reation of this speies in the gas-phase or at thewall. For all i = 0; : : : ; ns we haveGii = �d�dt ;  �+ (�Dir(M �);r )� �Mi � _wi�wi ;  �� �Mi � _w0i�wi ;  ��wall + XK2Th�d�dt + �Dir(M �); Æ(i)K �u � r �K� XK2Th�Mi � _wi�wi ; Æ(i)K �u � r �K:
9>>>>>>>>=>>>>>>>>; (4.11)

The non-diagonal blok-matries elements of the matrix G, denoted by Gijwhere i; j = 0; : : : ; ns and i 6= j, orrespond to the oupling between thespeies through hemial reations: whih speies are reated while othersare hemially transformed. These blok-matries ontain only derivatives ofgas-phase or wall prodution terms. For all i; j = 0; : : : ; ns with i 6= j, wehave Gij = ��Mi � _wi�wj ;  �� �Mi � _w0i�wj ;  ��wall� XK2Th�Mi � _wi�wj ; Æ(i)K �u � r �K: (4.12)
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As noted in Setion 2.3.2, we want here to emphasize the importane of thegas-phase and wall prodution terms in the jaobian matrix. Even if theseprodution terms may have small inuene on the residuum (the surfae rea-tions our on 1D domains { for 2D omputations), the onvergene largelydepends on their presene in the jaobian matrix. Atually the di�erene onthe onvergene between two methods using di�erent approximations of thejaobian matrix may be notied only very late in the onvergene proess. Theonvergene riterion (often residuum smaller than a ertain tolerane) has tobe hosen arefully. Indeed numerial experiments showed us that, for someapproximations, a residuum drop whih ould seem to be suÆient aordingto aepted toleranes for Navier-Stokes solver, is atually not enough for theonvergene of the hemial proesses, prinipally for surfae reations. Somesurfae reations may not be taken into aount at this point in the onver-gene proess. This means that we must be areful about loal onvergenefor hemial reations or aept to solve the system with a onvergene to thezero mahine. We have tested several approximations of the jaobian matrixin order to understand whih terms were neessary. Comparison for the wallreation terms an be found in Chapter 6.If one deided to delete one speies, as proposed in Setion 2.5, in order tomake the approximated solution automatially ful�ll the onstraint (2.42), thejaobian matrix has to be alulated in a slightly di�erent manner. The readeran �nd a omplete explanation of this method in [13℄. A hemial omponentan be deleted and its mass onservation equation substituted by the relation(2.42). The jaobian matrix of the resulting system is then alulated.4.3 Implementational ConstraintsThe size of G depends on the number of speies and the number of degreeof freedom in the disretization. The latter is ontrolled through an adaptiveproess whih will be disussed in Chapter 5; it is typially in a range between3000 to 20000. The sparse matrix type we use in the implementation is sup-plied by the DEAL library and is usually used for solving large linear systemresulting from a �nite element disretization. The reader an �nd a desriptionof this sparse matrix struture in [43℄. In our test appliations, in Chapter 6,the maximal number of speies onsidered is 39. Due to memory restritions,with so many speies, if we want to ahieve enough approximation auray,we annot keep the whole matrix G in memory. Thus, with regards to thememory available, we deide to keep the whole matrix G or redue it to itsblok-diagonal part, i.e. not to take the matries Gij into aount. This sim-pli�ation is reasonable only if the reation terms are smooth. We will see thatthe resulting defet orretion method still onverges for our appliations withan aeptable onvergene rate with regard to alulation time. For problem58



with more intense reations, we may be fored to take the whole matrix intoaount.4.4 SolversThe global solution proess for steady nonlinear systems used for our purposean be seen as a nested proess (see Fig. 4.1) involving, within a defet-orretion sheme based on a Newton iterative method, a preonditioned Gen-eralized Minimal Residual method (GMRES) as linear solver (see [45℄), wherethe preonditioner is hosen to be a multigrid method. Our implementationis based on the multigrid method developed by Beker in [4℄, whih o�ers theability to handle loally re�ned grids. For our multigrid method we use severalsmoothers depending on the systems we have to solve. For unsteady problemsa loop over time steps wraps again the whole proess.
GMRES
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Newton / Defect Correction

Multigrid (Preconditioner)

Figure 4.1: Nested solution proess.In eah nonlinear step of the defet-orretion method, a linear system is to besolved. Sine the linearized system is deoupled due to (4.6), we may imple-ment two linear solvers: one for the mixture-averaged ow (i.e. Navier-Stokes),the other for the speies onvetion-di�usion-reation proess. This requirestwo di�erent strategies for the smoothing iteration. In our implementationwe have hosen a "Vanka smoother" for the Navier-Stokes part of the system59



and a Gauss-Seidel smoother or an ILU smoother for the hemial part of thesystem.4.4.1 MultigridThe mesh we use for the disretization omes from a re�nement proess (seeChapter 5) whih makes the hierarhial struture of the triangulation avail-able. The idea is to use this struture to implement an eÆient preonditionerbased on multi-level tehniques.The appliation of multigrid methods on loally re�ned mesh is not trivial.The reader an �nd a detailed explanation in the work of Beker [4℄ and animplementation in the DEAL �nite-element library (see [6℄). We only skethhere the essential steps of suh a method.The multigrid proess we use for our purpose is based on a V-yle. Onthe oarsest grid T0 the system is solved exatly. On other levels Tl , a pre-smoothing is done and the residual is then restrited on a oarser grid Tl�1where this proess is reursively repeated until the oarsest grid is reahed.Then the solution is prolongated from the oarser grid Tl�1 to the grid Tl anda post-smoothing is arried out.
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Figure 4.2: Multigrid V-yle.In the following subsetions we desribe the smoothing operators. The smoo-thing of the residual is done level-wise. Smoothing the residual on eah levelof the mesh means eliminating its high frequenies in order to approximateit aurately on a oarser grid. A possibility is to smooth the system with a�xed number of GMRES steps on eah level of the triangulation. Nevertheless60



this leads to bad performane of the multigrid method, espeially when themesh ontains more than four or �ve levels. We need to use methods whihhave good smoothing properties (not ompulsorily a solver) without demand-ing too muh omputational e�ort sine the smoother works on eah level ofthe mesh. For the Navier-Stokes equations, we have therefore implementeda Vanka-type smoother, whih is a blok-Gauss-Seidel iterative method. Theblok are onstruted by onsidering a path-wise grouping of pressure andveloities unknowns. The speies equations are smoothed with the help of apoint-Gauss-Seidel iterative method or an ILU method. In order to obtaingood smoothing properties, it is well known that these two methods requirea renumbering of the grid nodes in the diretion of the ow. We will shortlydisuss this point as �nal remark.4.4.2 Vanka Smoothing OperatorAs smoothing operator for the Navier-Stokes equations we employ a blok-Gauss-Seidel iteration similar to the one proposed by Vanka in [52℄. A smoo-thing step onsists of a loop over the pressure degrees of freedom, where wesimultaneously update the orresponding pressure value together with the ve-loity unknowns whih are oupled with it, by solving a loal system derivedfrom the Navier-Stokes equations.
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Figure 4.3: Path de�ning the loal problems for the Vanka smoother.To this end, we assoiate with eah pressure point Pi of the onsidered level apath onsisting of the ells having Pi in ommon (see Fig. 4.3). On eah pathwe de�ne the indies li with 0 � i � 8 for veloity degrees of freedom and the61



loal index lp orresponding to the pressure point. The disrete operator forthe stabilized Navier-Stokes system of equations an be written as follows:� A BE C � : (4.13)Having alulated the residuals ri and rp for the veloity and the pressurerespetively, we obtain, after simpli�ation, the following loal system for theveloity and pressure updates di and dp:2666664 a11 0 : : : 0 b10 a22 : : : 0 b2... ... : : : ... ...0 0 : : : ann bne1 e2 : : : en 
37777752666664 d1d2...dndp

3777775 = 2666664 r1r2...rnrp
3777775 : (4.14)This system has been simpli�ed by negleting the oupling terms betweenthe veloity degrees of freedom (i.e. a12; : : : ). It an be easily solved withtwo passes over the involved unknowns. This onstrution provides veloityupdates whih satisfy the mass onservation equation with respet to the testfuntion on the path.The Vanka smoother showed more robustness than a simple Gauss-Seidelsmoothing during tests done on the Navier-Stokes equations with onstantvisosity. It is well known for saddle-point problems that by inreasing theReynolds number of the ow, the linearized systems may still be solved withthe Vanka smoother, while when using the Gauss-Seidel smoother the wholeproess shows poor onvergene rates or even diverges. Numerial tests onour appliation ases for ow reators led us to set the number of pre- andpost-smoothing steps with the Vanka smoother eah to four. Less iterationsteps ould handiap the eÆieny of the multigrid method as preonditioner.4.4.3 Chemial System SmoothingThe hemial system formed by the speies mass onservation equations andthe temperature evolution equations is solved with the help of Gauss-Seideliterations or, for more sti� systems, with an ILU method, a desription ofwhih an be found in [13℄. We use an ILU(0) from the MV++ and IML++pakages (see [43℄ and [21℄). MV++ implements eÆient matrix/vetor lassesdesigned for high performane numerial omputing and IML++ is a olletionof algorithms for solving or preonditioning linear systems of equations. Theidea of the ILU method is to ompute a fatorization of the formA = LU; (4.15)62



where A is the matrix of our system, L and U are a lower and an uppertriangular matrix respetively. In general L and U will be dense matries.The inomplete LU method of order zero provides approximations of these twomatries, ~L and ~U , whih have the same sparse struture as the matrix A. Thisallows to redue memory requirements and to alulate the deomposition withlow omputational osts. The fatorization remains aurate enough to ensurethe robustness of the method. Some examples of appliation of inomplete LUmethods may be found in [59℄ and [13℄.The blok Gauss-Seidel iterative method is not as robust as ILU methods butis less time-onsuming and an be used as an eÆient smoother for linearsystems whih do not ontain too strong onvetion and soure terms. Withregard to the implementation of a smoother for the hemial system, one mustonly be aware of the limits of this method and should make an ILU methodalso available. The Gauss-Seidel smoother is used as pre- and post-smootherfor the multigrid method with a number of steps typially eah between twoand �ve.The eÆieny of these two methods is extremely dependent on the numberingof the mesh points. To be able to use the information transport within the ow,the degrees of freedom have to be numbered in streamline diretion. Sine weneed the smoother on eah level of the mesh, the numbering of the nodes hasto be realized independently on eah re�nement level. A renumbering methodbased on the minimization of a funtional depending on the veloity of the owis desribed in [13℄. However this sort of renumbering method might demandsome omputational e�ort and if the diretion of the ow is known in advane,one may prefer to make the numbering simply dependent on this diretion,whih is done very quikly. We used the latter method in our appliations onlow-pressure ow reators.
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Chapter 5Adaptivity
5.1 IntrodutionIt is frequently the ase in engineering problems that the main quantity ofonern is not the solution of a partial di�erential equation, but a seondaryquantity whih is a salar funtional of the solution.The strategies for mesh re�nement onventionally used in �nite element meth-ods are mostly based on a posteriori error estimates in global norms involvingloal terms orresponding to residuals of the omputed solution. The meshre�nement proess aims at equilibrating these loal error indiators. Howevermeshes generated on the basis of suh global error estimates may not be appro-priate for ontrolling the auray in approximating loal quantities suh aspoint values or ontour integrals. More detailed information is needed on themehanism of error propagation with regard to these quantities depending onthe solution. This an be obtained by employing suitable duality arguments.The orresponding dual solution is approximated on the urrent mesh and isused to derive loal weight fators whih are used in the a posteriori errorestimates.Our aim in this hapter is to propose an approah to the derivation of a pos-teriori bounds on the error in linear funtionals for reative ows in order tobe able to ompute some physial quantities with best auray. A funtionalJ(�) of the solution is de�ned, whih may represent for example loal values ofthe temperature, ontour average of speies mass frations or point values ofertain omponents of the system. In these ases the error ontrol is appliedonly to a part of the solution. When suh well de�ned quantities are to be al-ulated with preision, an error indiator allows to ontrol the approximationerror on these quantities for the alulated solution.We present in this hapter an adaptive algorithm leading to reliable and eÆ-ient error ontrol in our ontext, aording to a funtional as desribed above.65



It allows to alulate the solution with a ontrolled auray for the value ofthe funtional J(�) on \optimal" meshes for our FEM Ansatz aording to theorresponding error estimator. \Optimal" means either \most eonomial forahieving a presribed auray" or \most aurate for a given number N ofmesh points". The funtional is assumed in this work to be linear althoughthe approah an be extended to non-linear funtionals (see [8℄).The error estimation is based on duality arguments. The dual problem isobtained from a linearization of the primal problem. Sine the dual problem islinear, the additional ost indued by the omputation of the error estimatororresponds to only one Newton step of the solution of the non-linear primalproblem on eah mesh level.In ontrast to the error bound obtained by duality arguments, a lassial ap-proah to adaptivity for reative ows supplies error indiators usually basedon the estimation of a global stability onstant, independently of any quantityderived from the solution (see [53℄). For salar equations, suh an indiator�ind has the form �ind = XK2Th!K K; (5.1)where !K is a weight depending on the ell K and K is a suitable di�erenequotient of the disrete solution approximating some derivative. In reativeow omputations, the situation is more ompliated sine we deal with asystem of equations. For systems the orresponding indiator reads�ind = XK2Th nXi=1 !iK iK: (5.2)In order to sum over all the equations, a saling of the omputed variables (forinstane the mass fration) may be neessary, sine the onentration of thespeies in the mixture may sensibly di�er by many orders.Through the approximation of derivatives by di�erential quotients, suh anindiator will apture the strong variations in onentration and therefore willlead to a re�nement in reation zones. However the absene of informationon global error propagation as well as on the oupling between the di�erentomponents may have negative inuene on the quality of the disrete solutionby not re�ning the mesh where the error is atually reated. Moreover thereis no possibilities to ontrol the error on quantities depending on the solution.Other traditional approahes to the onstrution of loally adapted meshesoften resort to ad ho riteria, often gradients of physial quantities, whoseimpat on the auray of the numerial solution is diÆult to assess.In the �rst setion of this hapter an error estimate for a funtional in thesimple ase of a linear onvetion-di�usion equation is developed. This onept66



is then applied to a non-linear PDE. We �nally apply the error estimation toreative-ow problems and then disuss how to organize a mesh re�nementproess with the help of the omputed estimator.5.2 Error Estimation for a Linear Salar Equa-tionWe onsider the salar onvetion-di�usion equation with homogeneous Dirih-let boundary onditions. Let � be a given vetor �eld. The variational formu-lation onsists in �nding u 2 V = H10 (
) suh thata(u; �) = (� � ru; �) + (�ru;r�) = (f; �) 8� 2 V: (5.3)This problem is approximated by a Galerkin �nite element method using asequene of test and trial spaes Vh � V parameterized by a disretizationparameter h. The disrete problem reads: �nd uh in Vh suh thata(uh; �) = (f; �) 8� 2 Vh: (5.4)For the sake of simpliity, the modi�ation due to the stabilization of theequation by the streamline di�usion method is not taken into aount; it willbe inluded later.Subtrating (5.4) from (5.3), we obtain the Galerkin orthogonality relation forthe error e = u� uh, a(e; �) = 0 8� 2 Vh: (5.5)The error e is orthogonal to the spae Vh with respet to the bilinear form a,whih is a harateristi property of Galerkin methods.We now de�ne the funtional of the solution that is to be aurately known.Let J : V ! R be a linear funtional. The aim of the adaptive proessis to onstrut an appropriate triangulation Th and to ompute uh with theondition that jJ(e)j = jJ(u)� J(uh)j � TOL (5.6)for a given tolerane TOL.To know if J(uh) is alulated aurately enough, one must be able to boundthe error J(e) de�ned above. Hene it must be expressed only in terms of theapproximated solution uh, sine the ontinuous solution u is not known.We onsider therefore the solution z 2 V of a orresponding dual problema(�; z) = J(�) 8� 2 V; (5.7)67



where trial and test funtions are interhanged with respet to the primalproblem (5.3). The orresponding ontinuous operator of this dual problem isby de�nition the adjoint of the operator of the primal problem. Integration byparts yields the following representation of this operator:L� = �� � r � �4: (5.8)This means that onvetion ours in the opposite diretion as for the primalproblem. The dual problem arries information upstream.The Galerkin orthogonality argument (5.5) and the dual problem (5.7) togetherlead to an error representation in terms of the dual solution z:J(e) = a(e; z) = a(e; z � ihz) = (f; z � ihz)� a(uh; z � ihz) (5.9)for an arbitrary interpolation ihz 2 Vh of the dual solution z 2 V . We will seelater the aim of the introdution of this interpolation of the dual solution inthe spae Vh.From (5.3) we getJ(e) = (f � � � ruh; z � ihz)� (�ruh;r(z � ihz)) (5.10)Thus we have reahed a formulation of the funtional where the unknown on-tinuous solution does not appear. Expressing the salar produt element-wise,an integration by parts leads to the exat error representation as a funtion ofthe residual of the primal system and [ruh℄, the jumps of the �rst derivativesover the ell edges:J(e) = XK2Th (f � � � ruh + �4uh; z � ihz)K� 12 XK2Th (�n � [ruh℄; z � ihz)�K ; (5.11)with n the external normal vetor to the edge �K. Note that the normalderivatives of uh are disontinuous over the ell edges.Although equation (5.11) is independent of u, it still ontains the unknownontinuous dual solution z. Therefore the error on the funtional J(e) annotbe evaluated numerially in this form and the term z � ihz must be approx-imated in an appropriate way. Several methods for this are presented in [8℄.One usually uses the ell-wise approximation of the expression kz � ihzkK .Indeed by applying the Cauhy-Shwarz inequality on (5.11) in order to getan upper bound for J(e), the resulting estimator isjJ(e)j � XK2Th!K �K (5.12)68



with �K the residual of the primal equation and !K additional weights depend-ing on the dual solution:�K := h2k k� � ruh � �4uh � fkK + 12 �h3=2k kn � [ruh℄ k�K; (5.13)!K := maxnh�2K kz � ihzkK ; h�3=2K kz � ihzk�Ko: (5.14)The residuals �K an be now omputed numerially sine they depend only onthe disrete solution uh. However the weights have still to be approximated.!K an be replaed by an approximation obtained by using loal interpolationestimates (see [5℄) !k � CK kr2zkK ; (5.15)with an interpolation onstant CK.Following the approah proposed in [8℄, in the loal interpolation estimate(5.15) the exat dual solution z is replaed by an approximation zh, disretesolution of the dual problemzh 2 Vh : a(�; zh) = J(�) 8� 2 Vh: (5.16)For simpliity, we use the same disrete spae Vh for the disrete dual problem,although a �ner or oarser mesh ould be used.The validity of this approximation in our appliation ases is justi�ed by theresults we obtain using this method in this work as well as by the resultsobtained in other works suh as in [48℄. If we substitute the seond orderdi�erene quotient kr2hzhkK for the seond derivative of the dual solution inthe bound in (5.15), the error an now be estimated byjJ(e)j � � := XK2Th �K; �K = ~!K �K ; (5.17)with approximated weights ~!K numerially evaluated as~!K := CK kr2hzhkK: (5.18)After determining the solution uh of the primal problem (5.3), the disretedual problem (5.7) has to be solved. Then the residuals �K and weights ~!Kare evaluated on eah ell in order to get the loal error indiators �K. Thetotal error with respet to the error funtional J is then estimated by (5.17).69



5.3 Error estimation with streamline di�usionFor the stabilized disretization, the orresponding error estimate involves fur-ther terms whih are needed in further developments. The modi�ation of thebilinear form does not a�et the pratial omputation but is relevant for theform of the a posteriori error estimate given by (5.17). The reader an �ndmore details on this subjet in [22℄.We modify the bilinear form a given in (5.3) just as in Setion 3.5.3 to obtainthe stabilized bilinear form ah := a+ aÆ, with aÆ de�ned byaÆ(u; �) := XK2Th ÆK (� � ru� �4u; � � r�)K: (5.19)We obtain in the same way the stabilized right hand side fh := f + fÆ, withfÆ de�ned by fÆ(�) := XK2Th ÆK (f; � � r�)K: (5.20)The disrete equation is thenah(uh; �) = fh(�) 8� 2 Vh: (5.21)The onsideration of the stabilized linear problem with least-square terms leadsto the full Galerkin orthogonalityah(e; �) = 0 8� 2 Vh: (5.22)At this point, we are at the same stage in the method as for the simple Galerkinorthogonality equation (5.5). We just have to interhange the bilinear form awith the form ah. The dual solution z searhed in V ful�lls now the equationah(�; z) = J(�) 8� 2 V: (5.23)The error estimate beomes thenJ(e) = ah(e; z) = a(e; z � ihz) + aÆ(e; z � ihz)= (f; z � ihz)� a(uh; z � ihz) + fÆ(z � ihz)� aÆ(uh; z � ihz):Following the same reasoning as in the ase without stabilization, an a poste-riori bound of the error with respet to the funtional J(�) an be derived:jJ(e)j � XK2Th�!K �K + jÆK (� � ruh � �4uh � f; � � r(z � ihz) )K j�; (5.24)with !K �K de�ned as in previous setion.70



The estimation of r(z � ihz) by the seond derivative of z,kr(z � ihz)kK � CK hK kr2zkK; (5.25)leads to the following bound:jJ(e)j � XK2Th!K (�K + j�j1;K ÆK hK k� � ruh � �4uh � fkK ): (5.26)It is to be noted that the supplementary stabilization term has at least thesame order in hK as the term �K, sine the stabilization parameter ÆK dependson hK (see Setion 3.5.5).5.4 Error Estimation for Non-linear EquationsWe now apply the weighted error estimator, explained previously for a linearsalar equation, to non-linear problems. Let V be a Hilbert spae with innerprodut (., .) and orresponding norm k:k, and a(:; :) a semi-linear form (linearin the seond argument). The variational formulation of the orrespondingproblem is: �nd u 2 V suh thata(u; �) = (f; �) 8� 2 V: (5.27)The disretization in a �nite-dimensional subspae Vh � V is: �nd uh 2 Vhsuh that a(uh; �) = (f; �) 8� 2 Vh: (5.28)Let e = u�uh be the error between the ontinuous and the disretized solution,and J(�) the funtional of the solution, still onsidered as linear, whih is tobe aurately known.The aim is to �nd a system, named dual system in the previous setion, whihallows us to get an upper bound of the error on the funtional. In order to havea variational formulation of this system, the form desribing the problem mustbe linear in the test funtion. Moreover the linearity of the primal problem hadmade it possible in the previous setion to write expliitely J(e) independentlyof the ontinuous primal solution in equation (5.9) and following. The sameargumentation annot be used here.Therefore, if we want to keep the same reasoning, we have to �nd, from theprimal non-linear system, a linear system whih allows us to write J(e) inde-pendently of the ontinuous solution. 71



With this aim in view, we onsider the derivative a0(�; �; �) of a(�; �) with respetto its �rst argument, de�ned in a point w in the diretion v bya0(w; v; �) = lim�!0 �1� ( a(w + � v; �)� a(w; �) )�: (5.29)We have the following orthogonality relation for the error e:Z 10 a0(uh + t e; e; �) dt = a(u; �)� a(uh; �) = 0 8� 2 Vh: (5.30)This suggests the use of the following bi-linear form for the onstrution of thedual problem: L(u; uh;�; z) := Z 10 a0(uh + t e;�; z) dt; (5.31)whih is linear in � and z.For representing the error J(e), we then use the dual problem onsisting in�nding z 2 V suh that:L(u; uh;�; z) = J(�) 8� 2 V: (5.32)Assuming that this problem has a unique solution z 2 V , and using theGalerkin orthogonality (5.30), we obtain the error representationJ(e) = L(u; uh; e; z � ihz); (5.33)with any approximation ih z 2 Vh of z.The goal is to evaluate the right hand side numerially, in order to get an aposteriori estimate for the quantity J(e) and thus a riterion for the optimalloal adjustment of the disretization. Sine the bilinear form L(u; uh; �; �)ontains the unknown solution u, it has to be approximated. The simplestway is to replae u by uh yielding a perturbed dual solution ~z 2 V de�ned byL(uh; uh;�; ~z) = J(�) 8� 2 V: (5.34)This approximation a�ets the quality of the resulting estimatorJ(e) � ~J(e) := L(uh; uh; e; ~z � ih~z): (5.35)Controlling the e�et on the auray of this approximated error estimator maybe a diÆult task and depends strongly on the partiular problem onsidered.Many appliations whih may be found for instane in [33℄, [48℄ or [5℄ tend tosuggest that the approximated estimator supplies orret information for theloal mesh re�nement proess. 72



In a similar way as for linear systems in Setion 5.2, an upper bound of ~J(e)an be omputed by solving the perturbed disrete dual system (5.34). Theappliation of the Cauhy-Shwarz inequality on the ell-wise representationof equation (5.33) leads to an estimation of the error in the form~J(e) � XK2ThwK �K (5.36)with residuals �K and weights !K.In order to desribe these oeÆients, we take as example a part of the mo-mentum onservation equation, for whih the form a is de�ned asa(u; �) = u � ru+ �4u: (5.37)The residuals and weights are then given by�K := h2k kuh � ruh � �4uh � fk+ 12 �h3=2k kn � [ruh℄ k�K; (5.38)!K := maxnh�2K kz � ihzkK ; h�3=2K kz � ihzk�Ko: (5.39)As before, we estimate the weights !K by the semi-norm jzjK;2 whih is againapproximated numerially by the seond-order di�erene quotient of the solu-tion zh 2 Vh of the disrete perturbed dual problem oming from (5.34),!K(z) � ~!K(zh) = CK kr2hzhkK: (5.40)The resulting weighted-residual error estimator isj ~J(e)j � � = XK2Th �K; with �K = ~!K �K: (5.41)As a �nal remark it is to be noted that an approximation has been madein the bilinear form de�ning he dual system, in order to be able to write anupper bound of J(e) whih may be numerially omputed. To keep a ontrolon the auray of the proess it may be worth to ompare if the weightsomputed with the help of dual solutions on di�erent meshes do not di�er toomuh. In this ase the error estimates are believed to be reliable. Otherwiseone ould attempt to re�ne the mesh globally in order to improve the globalapproximation of u and get less perturbed dual systems. This ould be thease for very oarse meshes. 73



5.5 Appliation to Reative FlowsWe apply the weighted-residual error estimation desribed in the previous se-tions to reative ow problems. The primal system is given by equations(2.59)-(2.63).We denote the dual solution vetor byz = [zu; zp; zw℄T : (5.42)We refer to Chapter 3 for the notation onerning the primal problem. Forthe sake of simpliity we do not take into aount the stabilizing terms in thedesription of the dual problem. Their e�et on the dual system is straightfor-ward. The inuene of these terms on the estimator itself will be mentionedlater.The derivation of the dual problem from the primal problem and the orre-sponding a posteriori error estimate follows the same line of argument as in theprevious setion. For eonomial reasons, we do not use the full Jaobian ofthe oupled system in setting up the dual problem, but only inlude its domi-nant parts. The same simpli�ation is used in the nonlinear iteration proess.Taking the notation of Chapter 1, the resulting dual problem is the following:�nd z 2 V = V� � V+ �Q� S suh that�(� u � rzu; �) + (�rzu;r�) + (zp; �) = Ju(�) 8� 2 V� � V+;�(r � zu; �) + ( uT � rzT ; �) = Jp(�) 8� 2 Q;�(� u � rz(i)w ;  ) + (�Dirz(i)w ;r )� �P ( ; zw) = Jw( ) 8 2 S; 9>>=>>;(5.43)where the bilinear form �P orresponds to a linearization of the hemial pro-dution term. The linear forms Ji de�ned on the solution spae orrespond tothe funtional of the solution for whih we want to estimate the error. Thissystem is supplemented by appropriate boundary onditions indued by thoseof the primal problem.This problem has to be solved in order to evaluate the weights in the estimatorsof the resulting a posteriori error estimatejJ(e)j � � = XK2Th XX2fu;p;wig (�K;X + �K;X) ~!K;X; (5.44)�K;X representing the terms oming from the stabilization of the system. Wesum over the error estimators orresponding to eah omponent of the fun-tional, sine we may want to ontrol the error on a funtional depending on74



several variables of the primal problem. The residuals �K;x involve the ellsresiduals and jumps of the disrete solution aross inter-elements boundaries:�K;u = hK ru + 12 h1=2K � k [�nuh℄ k�K;�K;p = hK rp;�K;wi = hK r(i)w + 12 h1=2K Di k [�nw(i)h ℄ k�K;ru = k� uh � ruh �r � �ruh +rphkK;rp = kr � uh + L(uh; wh)kK;r(i)w = k� uh � rw(i)h �r � (�Dirw(i)h )�r � (�DiM�1i w(i)h rM)� fi(Th; wh)kK:As already mentioned, the weights ~!K;x are evaluated by solving the dualproblem numerially and replaing the exat solution z by its numerial ap-proximation zh: ~!K;u = CK hK kr2hz(u)h kK;~!K;p = CK hK kr2hz(p)h kK;~!K;w = CK hK kr2hz(w)h kK:The error estimator for the omplete stabilized system is derived from theestimator desribed just above and from the result of Setion 5.3. The ompleteestimation isjJ(e)j � � + j(ph; uh; z � ihz)j+ jsu(ph; uh; z � ihz)j+ nsXi=0 jsi(ph; uh; z � ihz)j; (5.45)� being the estimator without stabilization. The forms , su and si are de�nedin Setion 3.5.5 and orrespond to the pressure and streamline-di�usion stabi-lizations. For eah equation of our system we apply the proess desribed inSetion 5.3 in order to de�ne an upper bound of the stabilization term. Anupper bound of the error on the funtional is thenjJ(e)j � �total = � + XK2Th ~!K;u ru ÆK (1 + juj1;K)+ XK2Th ~!K;wi r(i)w Æ(i)K juj1;K: (5.46)The most important aspet of this a posteriori error estimate is that the lo-al ell residuals related to the various physial e�ets governing the ow andtransfer of temperature and hemial speies are systematially weighted aor-ding to their impat on the error quantity to be ontrolled.75



5.6 Re�nement StrategiesThe right hand side in the error bound (5.46) an be evaluated one the �niteelement solutions uh and zh of the primal and dual problems have been om-puted and an be used to estimate the size of the global error J(e). Exploitingthis a posteriori error bound it is possible to adaptively ontrol the global errorto a desired tolerane level by suitably re�ning the mesh.Let an error tolerane TOL and a maximum number of mesh points Nmax begiven. The goal is to �nd the most eonomial mesh Th on whihjJ(e)j � �(uh) = XK2Th �K � TOL; (5.47)with the loal error indiators �K = !K �K . The usual approah to onstrut-ing a mesh whih does not ontain an exessively large number of elements isto proeed iteratively: we start with a oarse mesh and re�ne it suessivelybased on the size of the a posteriori error estimate. Inequality (5.47) an bethought of as a stopping riterion in this iterative proess whih an be writtenas follows:1. Solve the disrete problem on Th.2. Evaluate the estimator � =PK2Th �K .3. If � > TOL : hange grid Th aording to �K and go to 1.4. end.Starting from some initial oarse mesh, the re�nement riteria are hosen interms of the loal error indiators �K(uh; zh). In fat various strategies an beadopted to generate a re�ned mesh from a given one (point 3 of the algorithm).Here we mention three of the most popular approahes (see [8℄, [48℄ or [33℄):� Error-per-ell strategy: In this approah the mesh generation aims toequilibrate the loal error indiators by re�ning or oarsening the ele-ments K in the urrent mesh Th in order to reah the riterion�K � TOLN ; (5.48)with N the number of elements in the resulting mesh. Sine N dependson the result of the re�nement deision, this strategy is impliit and re-quires an iterative implementation. However it is ommon pratie towork with a varying value of N on eah re�nement level, with N sues-sively updated aording to the outome of the re�nement proess. Thisstrategy will deliver a partition on whih � � TOL, provided that Nmaxis not exeeded. This re�nement riterion leads to an equidistribution ofthe error over the whole mesh. 76



� Fixed-fration strategy: In eah re�nement step, the elements are orderedaording to the size of the loal error indiator �K(uh; zh), and then a�xed portion of the elements K with largest �K(uh; zh) is re�ned (in twodimension typially 30% sine this approximately doubles the number ofells in eah re�nement yle). A smaller perentage of re�ned grid ellsper adaptive step leads to a more loalized re�nements of the mesh. Thisproess is repeated until the stopping riterion � � TOL is satis�ed orNmax is exeeded.� Fixed-redution strategy: We work here with a varying tolerane TOLvar.Having alulated the disrete solutions uh and zh on a mesh Th, thetolerane is set to TOLvar = � �, where � 2 (0; 1) is a �xed redutionfator. In the next step one or several yles of the error-per-ell strategyare performed with tolerane TOLvar, yielding a re�ned mesh Thnew andnew solutions unewh , znewh with assoiated error estimator �(unewh ; znewh ).Then the tolerane is redued again by setting TOLvar = � � and anew re�nement yle begins. This iterative proess is repeated untilTOLvar � TOL, or Nmax is exeeded.In eah of the three strategies we repeat mesh modi�ation followed by solutionon the new mesh until the tolerane is satis�ed, or the presribed maximumnumber of elements is exeeded.For our appliation to reative ows in ow reators, we used prinipally theseond re�nement strategy, whih allows to tune the loalization of the re�ne-ment zones. This generally leads either to meshes ontaining a smaller numberof ells, sine in less ritial zones the error is allowed to remain over the boundpresribed in the �rst method, or to a better auray in ritial zones. Anappliation of the third re�nement strategy an be found in [48℄.
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Chapter 6
Appliations
In this hapter we present four reative ow problems with di�erent omplex-ities in the hemial reations. The �rst two problems are based on CARS(Coherent Antistokes Raman Spetrosopy) measurements for the evaluationof the deativation rate of vibrationally exited H2 moleules. In a �rst ex-ample we take into aount only the wall-deativation proess, whih an beonsidered as a set of slow hemial reations; 4 speies and 7 reations areinvolved in the hemial system. In a seond example we onsider the wall-deativation proess as well as the exhange of the vibrational energy of H2moleules with D2 moleules. Here, the hemial system involves 9 speies andthe 32 reations. A third example, again based on the same CARS ow tube,is the ow simulation of a mixture where hemial reations between H2, NO2and other produed moleules take plae by higher temperature (from 300K to1700K). Sine the high temperature gradient within the ow auses numerialinstabilities, a time step method has to be used here to be able to onverge toa quasi-stationary solution. The hemial system onsidered involves 7 speiesand 6 reations.The fourth example is based on a CVD (hemial vapor deposition) exper-iment. We are interested in the deposition of diamond on the surfae of asubstrate. As revelator of this deposition we look at the onentration of CH3near the surfae of the substrate. To improve the diamond deposition, thisonentration must be as high and homogeneous over the substrate as pos-sible. The hemial model involves 39 speies and 358 elementary hemialreations. Partiularly with so many speies and reations, the appliation ofthe solution method developed in this work makes it possible to reah goodauray with reasonable memory requirement and omputation time. Thealulation of suh reative ows an be performed by the adaptive algorithmpresented in this work on a workstation or a PC.79



6.1 CARS6.1.1 Flow Reator { OverviewThe ow tube tehnique has importane in modern experiments as one of themost powerful tools for the determination of elementary hemial reation rateonstants.The basi priniple of ow tubes is always the same: mixing of reatants takesplae upstream in a mixing setion and their onsumption or the buildup ofproduts is followed along a measurement setion by some detetion method foratoms, radials, or moleules. A reation rate onstant is then dedued frommeasured axial onentration pro�les. In order to favor di�usive proesses,whih minimize radial onentration gradients, a ow tube is traditionallyoperated at low pressure. An assumed mean ow veloity allows to onvert theaxial oordinate (distane between the �rst point of mixing and the detetionpoint) into reation time. The reation rate onstants of interest an then bededued by modelling the homogeneous reation system. However, the methodis known to bear systemati errors, sine it is based on the approximation ofa perfet deoupling of hemial and hydrodynami proess in the ow tube.Espeially in the mixing setion of the reator this assumption is not valid.In order to arry out a reliable evaluation of rate onstants from experimentaldata, it is desirable to take into aount all relevant physial and hemialproesses ourring in a reative ow. The detailed modeling of reative ow�elds within a reator for kineti studies is therefore an important tool for theexperimental determination of elementary rate onstants.6.1.2 Reation Kineti of the H2 �D2 SystemThe heterogeneous relaxation and the exhange of vibrational energy of the H2moleules has been experimentally investigated in [57℄ with the help of a testreator. For this experiment, based on the assumption of non-turbulent sta-tionary ow and hemial proess, the possibility of two-dimensional numerialsimulation with a �nite di�erene sheme has been studied in [46℄.With the adaptive solution method developed in this work, we are able to getan aurate determination of some physial quantities of interest (suh as massfrations or onentrations) along the axis. These omputational results anthen be used together with experimental measurement results to get a goodapproximation of reation rates for deativation or exhange of vibrationalenergy forH2 moleules. The automati adaptive proess re�nes the mesh onlywhere it is needed (essentially on the measurement points and on singularitiesof the solution) to get aurate values on an optimal mesh, i.e. with a minimal80



Figure 6.1: CARS ow reator.number of mesh nodes for a given preision. In this way we not only saveCPU-time but we also gain in auray, being assured of the preision on theomputed quantities.The reator onsidered here onsists essentially in the onentri disposal ofan external tube (radius 16 mm) in whih an interior tube (internal radius 5.5mm and wall thikness 1 mm) hands in (see Fig. 6.1).Two gases streaming out of the outer and interior tubes get in ontat at theoutlet of the entral tube. This entral tube is long enough to guarantee fullydeveloped laminar ow �elds for both inner and outer gas ows. From thispoint on, the gases are mixed through onvetive and di�usive transport andmay reat with eah other. The main tube (the prolongation of the outertube) onsists of a straight 32 mm diameter setion equipped with an array ofdiametrially opposed 2mm diameter holes in the wall to allow optial CARSdiagnostis with foused laser beams. In this way, it is possible to reord axialpro�les for speies onentrations. A omplete desription of the experimentan be found in [57℄, [47℄ and [46℄. 81
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Mixing ZoneFigure 6.2: Two-dimensional �eld with measurement-line positions and alu-lation �eld (half domain for symmetry reasons).Vibrationally exited hydrogen moleules H2(v00 = 1) are generated by mi-rowave disharges (MW { see Fig. 6.1) in the sidearms of the mixing headbringing the gas to the outer tube. The mirowave disharges reate also Hatoms. These atoms lead to additional reations whih the modelling of theproess must take into aount. In the inner tube, HeliumHe or in-the-ground-state Deuterium D2(v00 = 0) are injeted.The wall vibrational relaxation rate wall for the deativation of H2(v00 = 1) toH2(v00 = 0) and the vibrational energy transfer rate of H2(v00 = 1) in ollisionswith D2(v00 = 0) are the unknown reation kineti onstant whih have to bealulated.6.1.3 First Evaluation: Wall RelaxationWe investigate the deativation of vibrationally exited hydrogen moleules atthe wall (heterogeneous relaxation). An inert gas (Helium) is used as arriergas. It is streaming into the mixing tube from the internal tube. We onsiderthe laminar ow for determining the reation rate of the elementary wall-deativation reation (slow hemistry):H(�=1)2 wall�! H(�=0)2 : (6.1)82



Table 6.1: Simulation results for the H2(� = 1) wall-deativation experimenton hand-adapted(top) and on automatially adapted (bottom) meshes.Heuristi-based re�nementLevel # Cells H2(0) H2(1)1 137 0.6556 0.0052942 481 0.7373 0.006613 1793 0.7962 0.0070964 6913 0.8172 0.0074345 7042 0.8197 0.0074196 7494 0.8240 0.0074737 8492 0.8269 0.0075048 10482 0.82858 0.0075219 15993 0.82853 0.007545Error-estimator-based re�nementLevel # Cells H2(0) H2(1)1 137 0.6556 0.0052942 282 0.7382 0.0060633 619 0.7958 0.0071324 1368 0.8149 0.0073235 3077 0.8257 0.0074576 6800 0.8295 0.0075347 15100 0.8317 0.0075648 33462 0.8328 0.007587The omplete reation mehanism an be found in the appendix.The unknown is the kineti reation onstant, i.e. the wall relaxation ratewall for the reation desribed just above. A de�nition of wall is given inSetion 2.3.2. The quantities to be omputed are the results of CARS mea-surements of speies onentrations. The measured quantities are proportionalto a weighted mean value of the mass frations wi along lines perpendiularto the symmetry axis of the reator, and are used to obtain approximations ofthe speies onentrations along the axis of the tube.We will present the omputed mean values of the mass frations of ativatedand deativated hydrogen along radial lines � of the two-dimensional alula-tion �eld. The error funtional (see Chapter 5) used in the adaptive proessis J(') = Z� '(r; z) dr: (6.2)83



In order to emphasize the advantages of the method presented in this work,we also have omputed the averaged mass frations on tensor produt mesheswhih are a priori re�ned on the basis of heuristi onsiderations. This proessis only based on the a priori knowledge of the measurement lines whih areonsidered to be the re�nement lines. We begin with global mesh re�nementand then go on with loal re�nement along the measurement lines as well ason the known singularity of the solution.Comparison of results shows that the re�nement based only on heuristi riteriais not suÆient to get reliable values from the omputed solution. Table 6.1shows the values of the average of the H2 mass frations along a ross setionof the tube for a simulation �rstly with the heuristi method and seondlywith the error-estimation method.We observe improved auray on the automatially adapted meshes for aboutthe same number of grid points. In partiular, monotone onvergene of thequantities of interest is ahieved. This is an important feature of our approahwhih provides high reliability of omputed solutions.Corresponding solutions and meshes are shown in Figures 6.3, 6.4 and 6.5. Forthe meshes re�ned with the use of an error estimator, the struture of the dualsolution reets the dependene of the quantity J(X) (the error funtional) onthe loal ell-residuals.
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Figure 6.3: Mass fration of H(�=1)2 by the CARS simulation with heuristire�nement { Re�nement levels 2, 4 and 6.85



Figure 6.4: CARS simulation with adaptive loal re�nement { Mass frationof H(�=1)2 { Re�nement levels 2 and 4.
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Figure 6.5: CARS simulation with adaptive loal re�nement { Mass frationof H(�=1)2 (top) and dual solution omponent orresponding to H(�=1)2 (bottom){ Re�nement level 6.
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Figure 6.6: CARS omparison between normalized simulation results (squares)and experiment measurements (points) for the evolution of the H(�=1)2 massfration along the axis.Our omputational results have been ompared to experimental measurements(see Figure 6.6). For this omputation, the inow rate for the helium whihows from the interior tube is set to 148 l=min and the inow rate for thehydrogen whih ows in the outer tube is set to 665 l=min. The thermody-namial pressure is onsidered to be 5.33 mbar and is onstant in the wholedomain. The proportion in mole of the vibrationally exited H2 moleules atthe inow is 0.5%, the proportion of H atoms is 0.3% and the rest 99.2% isnon vibrationally-exited H2 moleules. The experimental measurements havea relative error of around 20%.Suh omparisons make it possible to approximate the deativation rate of H2moleules. At the present time we have to tune manually the value of theorresponding reation rates whih we want to evaluate. A further develop-ment should be to ouple the solution method with an optimization proessin order to �nd the best approximation of the reation rate with regard to theomparison between simulation and experiment.As pointed out in Chapter 4, we also want here to show how di�erent theonvergene proess an be when using di�erent Jaobian matrix approxima-tion. This shows that the onvergene riterion has to be hosen arefully anda residuum drop whih ould seem to be suÆient to get a orret approx-imation of a Navier-Stokes ow may be insuÆient for ows with hemial88



Figure 6.7: H(�=1)2 mass fration along a radial setion at axial position 0.143m in the CARS ow reator. Comparison between a alulation with a Jao-bian matrix taking surfae reation terms into aount (above) and a alu-lation with an approximated Jaobian matrix (below) by a onvergene with atolerane of 10�8 on the residuum. 89



reations. We ompare here two approximations of the Jaobian matrix, the�rst one taking into aount all the hemial terms, the seond one withoutthe surfae reation terms. We want to remind the user that these terms arestill taken into aount in the residuum term of the defet-orretion method.For a onvergene with a tolerane of 10�8 on the residuum, we see in Figure 6.7that the approximated Jaobian did not allow to get a orret approximationof the solution at this point in the onvergene proess. The surfae reationsare not yet aught by the solver and the value on the wall surfae of the massfrations for H(�=1)2 obtained with the help of the approximated Jaobian ishigher than the one obtained with the Jaobian taking into aount all hemialterms. While reahing a residuum of 10�9, the obtained onvergene leads inthis ase to the same results for both methods.This means that the orret evaluation of hemial proess may our onlylate in the onvergene proess. Moreover we also have to be aware that usingapproximated Jaobian may in some ases lead to problems in athing allhemial proesses in the solution (and thus get onvergene) sine we haveto onverge with a very small tolerane on the residuum. We atually did notexperiene suh a problem in our appliations and with the approximations ofthe Jaobian matrix we used (see Chapter 4).6.1.4 Seond Evaluation: Wall Deativation and Ati-vation TransferIn this experiment helium is replaed by deuterium. Thus this latter gas isadded through the entral tube while vibrationally-exited hydrogen entersthrough the outer tube. We have here to take into aount some more elemen-tary reations suh asH(�=1)2 +D(�=0)2 �! H(�=0)2 +D(�=1)2 : (6.3)The omplete reation mehanism used for this omputation an be found inthe appendix.Both hydrogen and deuterium are experimentally monitored in their �rst ex-ited vibrational state. Therefore, in the simulation, we may be interested inthe average of H(�=1)2 or of D(�=1)2 mass frations along radial lines in the two-dimensional alulation domain. As in previous setion, we ould onstrut theorresponding funtionals given by (6.2) for both speies and use them for thede�nition of the error funtional of the adaptive method. Another possibilityis to take as error funtional the sum of the error funtionals orresponding tothe mass frations of interest (i.e. for whih measurements are done).90



Table 6.2: Performane omparison between the simulation ode developed inthis work and based on the DEAL library and a �nite di�erene ode developedby J. Segatz in [46℄. CPU time (units � se. ) memory requiredode global per vertex global per vertexWaguet 13442 verties 9360 (� 2,5 h.) 0.70 63 Mb 4.7 KbSegatz 16000 verties 85750 (� 24 h.) 5.35 153 Mb 9.5 KbHowever, in order to demonstrate the exibility of the adaptive method basedon error estimates and duality arguments, we use here a di�erent error fun-tional. The CARS signal delivers the value of a weighted integration alongradial lines in the tube and we had onsequently taken this funtional in theprevious simulation. But we are atually interested in the value of onentra-tions along the axis. The numerial simulation allows diret aess of pointvalues of the onentrations. Therefore the funtional ould be hosen asJ(') = '(r0; z0); (6.4)with r0 = 0 and z0 the oordinates of the point of interest along the axis. Forthe following results we took as error funtional for the omplete system thesum over error funtionals de�ned as above for several speies and several axialoordinates.We see in Figure 6.8 that the automati adaptive re�nement proess leadsto mesh re�nement on given points (r0; z0) but also on the zones where thereations may strongly inuene the evolution of speies onentrations alongthe whole tube or also in the zones where the solution may have a singularityas on the top of the splitter plate.The method desribed in this work requires less CPU-time and memory forthe alulation of the steady state of reative ows ompared to other existing�nite di�erene methods based on tensor produt meshes. Table (6.2) showsthe omparison between the simulation ode developed in this work and a�nite-di�erene ode already suessfully used for simulation of ow reatorsdeveloped in [46℄ by J. Segatz.Considering the performane measurement for the ode developed in this work,we see that the CPU time needed to attain onvergene has been redued bya fator 7 with regard to the other ode, and that the memory requirementhas been redued by a fator 2. And this, without taking into aount theadvantages of the loal re�nement proess. The gain in performane allowsus to apply the method on more omplex systems with �ner (loally re�ned)91



Figure 6.8: CARS simulation with loal re�nement and point error funtional{ Mass fration of HD(�=1).
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grids and still ompute the solution on a workstation or a PC, as we also seein the following setion.6.1.5 NH-NO2 Chemial SystemThe main goal of this experiment is the diret measurement of reation ratesas well as the examination of their temperature dependeny in the range ofhigh temperature (300K - 1700K). The experimental material is the same asfor CARS measurements: a ow reator with an inner and an outer tubefrom whih ow di�erent gas whih then reat with eah other in the mixingzone of the tube. One di�erene is that the walls are heated and thus havea given temperature. The simulation of high temperature ows is used forinterpretations of experimental measurements of reation rates as well as forinvestigations on their temperature dependene.As a �rst step toward the omputation of the omplete reation mehanism,we ompute a high temperature ow reator with a mixture onsisting of H2,NO2 and He moleules whih produes through hemial reations OH, NOand H2O moleules as well as H and O atoms. We use as error funtional theglobal mean value of the NO onentration.The solution proess we used here for onverging to a quasi-stationary solutionis the following:� We ompute the reative ow on a oarse grid whih however is �neenough to allow to apture the prinipal strutures of the ow and hemi-al reations. Typially numerial tests showed that, for this kind of ow,a oarse grid with around 100 ells is suÆient. The quasi-onvergene ofthe time-step proess is reahed as soon as the residual di�erene betweentwo following time-steps is smaller than a given tolerane.� One a quasi-stationary solution is reahed on this oarse grid we re�neit loally using an error estimator.� We ompute further time steps and re�ne again the grid loally as soon asthe quasi-onvergene ondition has been reah for the time step proess.� We repeat the third point until the value of the error funtional reah agiven tolerane.We show in Figures 6.9 and 6.10 respetively the time evolution of the NOmoleule and the O atom mass frations within the omputation domain whihrepresents the half of an axial setion of the ow tube. From the inner tubeows a mixture of NO2 and He moleules with a mole fration distributionrespetively of 0.44 and 0.56 and with a maximal veloity of 30 m/s. From93



the external tube ow H2 moleules with a maximal veloity of 20 m/s. Thepressure of the inow is 5 mbar and the temperature 300K.This omputation is the �rst step toward the simulation of the omplete rea-tion mehanism whih was not available at the time of the alulation. Withthe help of simulation, we are able to test several mehanisms and investigatethe temperature dependene of the di�erent reation rates whih are takeninto aount, by omparing the simulation results, e.g. onentrations of somespeies, with experimental measurements of these onentrations.
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Figure 6.9: Time evolution of NO mass fration for an inow of NO2moleules in the outer tube and of H2 moleules in the inner tube{ red rep-resents a null mass fration and blue represents a maximal mass fration forthis moleule
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Figure 6.10: Time evolution of O mass fration for an inow of NO2 moleulesin the outer tube and of H2 moleules in the inner tube { red represents a nullmass fration and blue represents a maximal mass fration for this atom.
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6.2 CA-CVDIn a \Chemial Vapor Deposition" (CVD) reator, diamond an be depositedupon di�erent materials from an hydroarbon-hydrogen gas mixture undermoderate temperature and low pressure. Improvement of the growth rate andthe quality of the produed diamond layer as well as its homogeneous growthare some of the aims whih are still to be reahed in this �eld. The ompre-hension of the reations on the substrate where the diamond layer settles isstill inomplete. Even the speies whih ontrol the deposition kineti havenot been inontestably found and the omplex hemial mehanisms are notsuÆiently known.For a deeper understanding of the omplex relations between gas phase andsurfae hemial proesses and hydrodynamial proesses, simulations mustomplement the experiments and supply a base for evaluating several modelsof hemial proesses.The reator is made of a 15m-diameter tube with a height of 20m. Thegeometry of the reator used for the experiment is axially symmetri, whihmakes the two-dimensional modelling possible. The reator has three windowsfor the inspetion of the gas omposition through the detetion of uoresentlight reated with the help of a laser beam (see Fig. 6.11). The reader an�nd a omprehensive desription in [23℄. The pressure in the reator is set to50 mbar with the help of an automatially-regulated pump.The hemial radials whih are neessary for the diamond deposition uponsiliium substrates are produed injeting methane into the ombustion gas ofa H2=O2 ame. The term used for this proess supported through ombustionis \Combustion Assisted - Chemial Vapor Deposition", in short CA-CVD.Hydroarbon moleules are transformed during the hemial proess in reativeradials, whih depose on the substrate with the adequate rystal struture inform of diamond.As noted above, the detailed steps of the proess are not ompletely understoodyet. However the methyl-radial (CH3) seems to have an important role in theformation of diamond. The orresponding experimental onditions have to beset suh that a suitable temperature as well as a high onentration of CH3moleules are found in the lose proximity of the substrate surfae. Methyl isreated through the deomposition of methane or higher hydroarbons. Themixing of a hot-ame exhaust gas with high onentration in hydrogen radialswith hydroarbons leads to hemial reations suh as:CH4 +H �! CH3 +H2: (6.5)The struture of the experiment is shown in Fig. 6.11. A hydrogen/oxygename (premixed) burns above a burner. Its exhaust gas ontains beside the97



Figure 6.11: CVD ow reator.ombustion produt H2O, also up to 25% H radials (in mole) and ontributeto the warming of the methane injeted through the pipe. This latter gas isthen transported by onvetion and di�usion within a \stopping-point" owto the substrate surfae. Deomposition reations our on the way, suh thatthe CH3 onentration inreases at �rst by the onsumption of H radials,and �nally dereases due to reombination and other reations.This later proess an also be observed in the result of the simulation (seeFigure 6.13). With the help of the adaptive solution method developed inthis work, the onentration of CH3 an be aurately omputed. In order tooptimize the CH3 onentration on the substrate we ould use for our adaptiveproess an error funtional similar to the funtional desribed in Setion 6.1.3and de�ned by relation (6.2). However as we want here to show the evolution ofthe CH3 mass fration in the reator, we deide to use a global error funtional98
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(Flame inflow)Figure 6.12: CVD omputational �eld { half axial setion of the CVD reatorfor symmetry reasons.on this variable de�ned byJ(') = Z
 '(r; z) r drdz: (6.6)This gives us ontrol on the mean value of the CH3 mass fration over thewhole domain (see Chapter 5 for more details about error funtionals) andmakes the adaptive proess re�ne more globally where the gradient of thisvariable is high or on some singularities and not on given measure points orlines (see Figure 6.13). Table 6.3 gives the onvergene history of the errorestimator based on the resolution of the dual system and de�ned in (5.46).Table 6.3: Results for the error estimator for the CVD simulation using aserror funtional the global mean value of the CH3 mass fration.Level # Cells �1 412 4.21e-52 784 1.70e-53 1528 7.49e-64 2941 3.44e-65 5698 2.05e-66 11374 1.14e-67 23611 6.43e-7A next step would be to optimize the CH3 onentration on the substratesurfae by ontrolling parameters suh as the inow veloities of the gas orthe geometry. In this purpose, we would use an error funtional giving ontrol99



Figure 6.13: CVD simulation with loal re�nement { Mass fration of CH3.to the loal value of the CH3 onentration or of the onentration of anyother speies involved in the diamond deposition on the substrate. One theoptimized parameters are found by simulation, they an be applied on theexperiment.The di�erent parameters whih an be used for the optimization proess an bethe methane ow rate or the ame exhaust gas ow rate as well as the distanebetween the pipe from whih methane ows and the substrate. These are twodi�erent kinds of parameters: the �rst one involves boundary onditions, theseond one the geometry of the reator.To simplify geometrial optimization, if we deide to optimize the distanepipe/substrate, an automati mesh generator has been developed. It allows theuser to generate a mesh for the omputation domain aording to geometrialparameters suh as the pipe distane to the substrate and to the ame, as wellas the reator size and the pipe size (see desription in Appendix C).In a further work we ould also here ouple the solution proess developed inthis work with an optimization proess for instane on the inow boundaryonditions for the inow veloities or speies onentrations. Promising resultsin this �eld an be found in [34℄.
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Chapter 7Conlusion and OutlookIn this work, we have developed and implemented a solution method for thelow Mah-number formulation of the Navier-Stokes equations with supple-mentary equations desribing the evolution of the temperature and hemialspeies (mass frations) with soure terms due to heterogeneous (surfae) andhomogeneous (gas-phase) hemial reations. These equations are written inylinder oordinates and are disretized with stabilized onforming Q1/Q1 �-nite elements.The resulting nonlinear system is solved by a full-oupled defet-orretioniteration based on an approximation of the Jaobian matrix of the system. Weonstrut this approximation with regard to the onsistene and solvability ofthe orresponding linear system.A key element of the solver is the use of a multigrid preonditioner for theGMRES method applied for solving the linear problems arising in the de-fet orretion iteration. We implemented three di�erent smoothing operatorsfor our multigrid preonditioner: a Gauss-Seidel iteration and a robust ILUfatorization for the speies equations, and a Vanka-type smoother for theNavier-Stokes part of our system. The multigrid method we implemented isbased on the DEAL library and takes advantage of the hierarhial strutureof the mesh onstruted by suessive re�nements.Adaptive meshes are suessfully applied in the ontext of reative ows. Areent approah to ontrol the error in funtionals of the solution is presentedand applied to this type of problems. The reliability and eÆieny of the errorestimator for our appliations is demonstrated through numerial results fortwo types of hemial models.Comparing our method with a �nite-di�erene ode developed by J. Segatz andused in the omputation of hemial ow reators (see [46℄), the alulationtime has been redued by a fator �ve for reation mehanisms made of around30 elementary reations and involving around 10 speies. We have also suess-fully applied our method to hemial ows involving 39 speies and more than101



350 hemial reations. Even by ows with so many speies and reations, theadaptive method presented in this work allows to reah a ontrolled aurayon physial quantities of the ow with aeptable omputational e�orts.As promising outlook we would like to emphasize the following points:For large hemial systems a major part of the omputing time is onsumedby the alulation of the Jaobian matrix of the hemial soure terms and itsinversion by Gauss-Seidel iterations or ILU fatorization. Beause these oper-ations an be performed loally, a parallelization of the presented algorithmseems to be an adequate method.An appliation to 3D problems will also inrease the need of reduing memoryrequirements and omputation times without sari�ing auray. Adaptivere�nement methods will probably play an important role for solving 3D prob-lems in order to reah the needed auray on physial quantities of interestwith an optimal number of ells.Another �eld of investigation is the mesh adaption for unsteady solutions. A�rst approah is to allow beside mesh re�nement also mesh oarsening, andompute a loally-re�ned mesh for eah time step. Researh is still neededto implement a omplete mesh re�nement strategy for solutions depending ontime. Moreover a re�nement strategy for the time steps an also be de�ned.Another promising perspetive is the appliation of error ontrol and adap-tivity proesses for �nite element disretization to optimization problems gov-erned by di�erential equations. The dual solution obtained during the adaptivemesh re�nement an be used to build optimization strategies. This allows toontrol the value of the ost funtional of the optimization problem. Someresults in the �eld of oupling adaptivity and optimization methods an befound in [7℄ and [34℄. As an example of possible optimization problem we wantto give the diamond deposition seen in Setion 6.2: by optimizing some speiesonentration on the substrate, the quantity and quality of the diamond layerover the substrate an be drastially inreased.7.1 AknowledgmentI want to thank Prof. Dr. R. Rannaher for the opportunity to realize thiswork within his team, as well as for his help and support.I am also deeply grateful to R. Beker, G. Kanshat and espeially F.T.Suttmeier for their valuable mathematial ideas and suggestions, as well asfor their help onerning the implementation of the methods presented in thiswork. Some numerial algorithms as well as the mesh handling are based onthe DEAL library written by them. 102
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Appendix ACARS-Experiment reationmodel� H2 wall relaxation proessMECHANISM OF H2(V=0,1) REACT. (York Shneider-Kuehnle)************************************** ***** 1. H2-HE MECHANISM ***** * * reation rates **********************************************H21 +H + >H20 +H * 2.36E+11 0.00 0.0H21 +H20 + >H20 +H20 * 6.50E+07 0.00 0.0H21 +HE + >H20 +HE * 1.56E+07 0.00 0.0H +H +HE >H20 +HE * 5.00E+16 0.00 0.0H +H +H20 >H20 +H20 * 2.90E+15 0.00 0.0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS002 COMPLEX REACTIONS AT THE WALL1.00 H21 *1.0 1.500E-031.00 H20 0.0 0.001.00 H *1.0 1.000E-040.50 H20 0.0 0.00END� H2=D2 wall relaxation proess and vibrational energy exhangeMECHANISM OF H2(V=0,1) REACT. (T.DREIER)**** 107



********************************** ***** 1. H2+D- MECHANISM ***** k = m3/mol/s * * reation rates **********************************************H20 +D >HD0 +H * 1.78E+08 0.00 0.0HD0 +H >H20 +D * 2.03E+07 0.00 0.0D20 +H >HD0 +D * 1.27E+07 0.00 0.0HD0 +D >D20 +H * 2.03E+07 0.00 0.0H21 +H >H20 +H * 5.42E+10 0.00 0.0HD1 +H >HD0 +H * 5.42E+10 0.00 0.0H21 +D >H20 +D * 5.42E+10 0.00 0.0HD1 +D >HD0 +D * 5.42E+10 0.00 0.0H21 +D >HD0 +H * 2.00E+10 0.00 0.0D21 +H >HD0 +D * 9.55E+09 0.00 0.0HD1 +H >H20 +D * 9.55E+09 0.00 0.0HD1 +D >D20 +H * 9.55E+09 0.00 0.0H21 +D >HD1 +H * 1.04E+12 0.00 0.0D21 +H >HD1 +D * 1.27E+09 0.00 0.0HD1 +H >H21 +D * 5.21E+11 0.00 0.0HD1 +D >D21 +H * 6.00E+10 0.00 0.0H21 +HD0 >H20 +HD0 * 1.13E+11 0.00 0.0HD1 +H20 >HD0 +H21 * 8.43E+09 0.00 0.0H21 +D20 >H20 +D21 * 1.19E+10 0.00 0.0D21 +H20 >D20 +H21 * 6.02E+07 0.00 0.0HD1 +D20 >HD0 +D21 * 2.11E+09 0.00 0.0H21 +H20 >H20 +H20 * 7.80E+07 0.00 0.0H21 +HE >H20 +HE * 1.56E+07 0.00 0.0HD1 +HE >HD0 +HE * 3.01E+07 0.00 0.0H +H +HE >H20 +HE * 4.10E+08 0.00 0.0H +H +H20 >H20 +H20 * 4.68E+08 0.00 0.0D +D +D20 >D20 +D20 * 3.55E+08 0.00 0.0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS005 COMPLEX REACTIONS AT THE WALL1.00 H21 *1.0 8.700E-041.00 H20 0.0 0.001.00 D21 *1.0 8.700E-041.00 D20 0.0 0.001.00 HD1 *1.0 8.700E-041.00 HD0 0.0 0.001.00 H *1.0 1.000E-030.50 H20 0.0 0.00108



1.00 D *1.0 1.000E-030.50 D20 0.0 0.00END� NO2 and H2 reative mixture********************************** ***** 1. NO2-H2 MECHANISM ***** k = m3/mol/s **********************************************H +H +M >H2 +M * 2.50E+09 0.00 0.0 0H +H +H2 >H2 +H2 * 2.90E+03 0.00 0.0 0H +H +HE >H2 +HE * 2.50E+09 0.00 0.0 0H +NO2 >OH +NO * 7.20E+13 0.00 0.0 0H2 +OH >H2O +H * 4.52E+11 0.00 0.0 0OH +OH >H2O +O * 1.00E+12 0.00 0.0 0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS001 COMPLEX REACTIONS AT THE WALL1.00 H *1.0 1.000E-030.50 H2 0.0 0.00END
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Appendix BCVD-Experiment reationmodelMECHANISM C1-C2,Methan, P = 50 MBAR, HIGH TEMP.,OHNE C2H5O BZW. C2H5OH********************************************** 01. H2-O2 Reat. (no HO2, H2O2) * reation rates *******************************************O2 +H =OH +O 2.000E+14 0.0 70.300H2 +O =OH +H 5.060E+04 2.670 26.300H2 +OH =H2O +H 1.000E+08 1.600 13.800OH +OH =H2O +O 1.500E+09 1.140 0.420********************************************** 02. Reombination Reations******************************************H +H +M' =H2 +M' 1.800E+18 -1.000 0.000O +O +M' =O2 +M' 2.900E+17 -1.000 0.0H +OH +M' =H2O +M' 2.200E+22 -2.000 0.000********************************************** 03. HO2 Formation/Consumption******************************************H +O2 +M' =HO2 +M' 2.300E+18 -0.800 0.0HO2 +H =OH +OH 1.500E+14 0.0 4.200HO2 +H =H2 +O2 2.500E+13 0.0 2.900HO2 +H =H2O +O 3.000E+13 0.0 7.200HO2 +O =OH +O2 1.800E+13 0.0 -1.7HO2 +OH =H2O +O2 6.000E+13 0.0 0.0********************************************** 04. H2O2 Formation/Consumption******************************************HO2 +HO2 =H2O2 +O2 2.500E+11 0.0 -5.200OH +OH +M' =H2O2 +M' 3.250E+22 -2.000 0.0H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700H2O2 +H =H2O +OH 1.000E+13 0.0 15.000111



H2O2 +O =OH +HO2 2.803E+13 0.0 26.800H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200********************************************** 05. CO REACTIONS******************************************CO +OH =CO2 +H 6.000E+06 1.500 -3.100CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700CO +O +M' =CO2 +M' 7.100E+13 0.0 -19.000CO +O2 =CO2 +O 2.500E+12 0.0 200.000C +O2 =CO +O 2.000E+13 0.0 0.0C +OH =CO +H 5.000E+13 0.0 0.0********************************************** 10. CH Reations******************************************CH +O =CO +H 4.000E+13 0.0 0.0CH +O2 =CHO +O 6.000E+13 0.0 0.0CH +CO2 =CHO +CO 3.400E+12 0.0 2.900CH +H2O =3CH2 +OH 5.700E+12 0.0 -3.200CH +OH =C +H2O 4.000E+07 2.0 12.300CH +H =C +H2 1.500E+14 0.0 0.0C +H +M' =CH +M' 3.000E+14 0.0 -1.0********************************************** 11. CHO REACTIONS******************************************CHO +M' =CO +H +M' 7.100E+14 0.0 70.300CHO +H =CO +H2 9.000E+13 0.0 0.0CHO +O =CO +OH 3.000E+13 0.0 0.0CHO +O =CO2 +H 3.000E+13 0.0 0.0CHO +OH =CO +H2O 1.000E+14 0.0 0.0CHO +O2 =CO +HO2 3.000E+12 0.0 0.0CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0CH +OH =CHO +H 3.000E+13 0.0 0.0********************************************** 12. CH2 Reations******************************************3CH2 +H =CH +H2 6.000E+12 0.0 -7.5003CH2 +O >CO +H +H 8.400E+12 0.0 0.03CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.2003CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.2001CH2 +M' =3CH2 +M' 1.200E+13 0.0 0.01CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.01CH2 +H2 =CH3 +H 7.200E+13 0.0 0.03CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.43CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.43CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0******************************************112



**** 13. CH2O Reations******************************************CH2O +M' =CHO +H +M' 5.000E+16 0.0 320.000CH2O +H =CHO +H2 2.300E+10 1.05 13.700CH2O +O =CHO +OH 4.150E+11 0.57 11.600CH2O +OH =CHO +H2O 3.400E+09 1.2 -1.900CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7CH2O +CH3 =CHO +CH4 1.000E+11 0.0 25.500CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.7003CH2 +OH =CH2O +H 2.500E+13 0.0 0.0CH +H2O =CH2O +H 1.170E+15 -0.75 0.0********************************************** 14. CH3 Reations******************************************CH3 +M' =3CH2 +H +M' 1.000E+16 0.0 379.000CH3 +O =CH2O +H 8.430E+13 0.0 0.0CH3 +H =CH4 1.060E+36 -7.30 36.25CH3 +OH >CH3O +H 2.260E+14 0.0 64.8CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0CH3 +O2 >CH2O +OH 3.300E+11 0.0 37.400CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000CH3 +CH3 =C2H6 1.300E+58-13.8 79.30********************************************** 15a. CH3O Reations******************************************CH3O +M' =CH2O +H +M' 5.000E+13 0.0 105.0CH3O +H =CH2O +H2 1.800E+13 0.0 0.0CH3O +O2 =CH2O +HO2 4.000E+10 0.0 8.9CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2CH3O +O =O2 +CH3 1.100E+13 0.0 0.0CH3O +O =OH +CH2O 1.400E+12 0.0 0.0********************************************** 15b. CH2OH Reations******************************************CH2OH +M' =CH2O +H +M' 5.000E+13 0.0 105.0CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0********************************************** 16. CH3O2 Reations******************************************CH3O2 +M' >CH3 +O2 +M' 0.724E+17 0.0 111.1CH3 +O2 +M' >CH3O2 +M' 0.141E+17 0.0 -4.6CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7113



CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0********************************************** 17. CH4 Reations******************************************CH4 +H =H2 +CH3 1.300E+04 3.000 33.600CH4 +O =OH +CH3 6.923E+08 1.560 35.500CH4 +OH =H2O +CH3 1.600E+07 1.830 11.600CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100CH4 +3CH2 =CH3 +CH3 1.300E+13 0.0 39.900********************************************** 18. CH3OH Reations******************************************CH3OH =CH3 +OH 1.130E+25 -3.40 372.9CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4CH3OH +CH2O >CH3O +CH3O 0.153E+13 0.0 333.2CH3O +CH3O >CH3OH +CH2O 0.300E+14 0.0 0.0********************************************** 19. CH3O2H Reations******************************************CH3O2H =CH3O +OH 4.000E+15 0.0 180.5OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0************************************************************************** ***** 4. C2 MECHANISM ***** *************************************************************************** 19B. C2 Reations*****************************************C2 +O2 =CO +CO 5.000E+13 0.0 0.0114



C +C +M' =C2 +M' 3.000E+14 0.0 -1.0CH +CH =C2 +H +H 5.000E+13 0.0 19.0CH +CH =C2 +H2 5.000E+12 0.0 0.0C +CH =C2 +H 5.000E+13 0.0 0.0********************************************** 20. C2H REACTIONS******************************************C2H +O =CO +CH 1.000E+13 0.0 0.0C2H +O2 =HCCO +O 3.000E+12 0.0 0.0C +3CH2 =C2H +H 5.000E+13 0.0 0.0C2H +O2 =CO +CO +H 3.520E+13 0.0 0.0C2H +OH =HCCO +H 2.000E+13 0.0 0.0C2H +OH =C2 +H2O 4.000E+07 2.0 32.8C2 +H2 =C2H +H 4.000E+05 2.4 4.1********************************************** 20A. C2O REACTIONS******************************************C2O +H =CH +CO 1.000E+13 0.0 0.0C2O +O =CO +CO 5.000E+13 0.0 0.0C2O +OH =CO +CO +H 2.000E+13 0.0 0.0C2O +O2 =CO +CO +O 2.000E+13 0.0 0.0C2 +OH =C2O +H 5.000E+13 0.0 0.0********************************************** 20B. HCCO REACTIONS******************************************HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0HCCO +O >CO +CO +H 9.600E+13 0.0 0.0HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0********************************************** 21. C2H2 REACTIONS******************************************C2H2 +M' =C2H +H +M' 3.600E+16 0.0 446.0C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0C2H2 +H =C2H +H2 1.500E+14 0.0 79.6C2H2 +O =3CH2 +CO 1.720E+04 2.8 2.1C2H2 +O =HCCO +H 1.720E+04 2.8 2.1C2H2 +OH =H2O +C2H 6.000E+13 0.0 54.2CH +3CH2 =C2H2 +H 4.000E+13 0.0 0.0C +CH3 =C2H2 +H 5.000E+13 0.0 0.0C2H2 +O =C2H +OH 3.160E+15 -0.6 61.5CH +HCCO =C2H2 +CO 5.000E+13 0.0 0.0********************************************** 21A. CH2CO REACTIONS******************************************CH2CO +M' =3CH2 +CO +M' 1.000E+16 0.0 248.0CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1115



CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0CH +CH2O =CH2CO +H 9.460E+13 0.0 -2.11********************************************** 25. C2H3 REACTIONS******************************************C2H3 =C2H2 +H 1.900E+38 -8.5 192.6C2H3 +OH =C2H2 +H2O 5.000E+13 0.0 0.0C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0C2H3 +O2 =C2H2 +HO2 5.400E+12 0.0 0.0CH +CH3 =C2H3 +H 3.000E+13 0.0 0.0C2H3 +CH =3CH2 +C2H2 5.000E+13 0.0 0.0********************************************** 22A. CH3CO REACTIONS******************************************CH3CO =CH3 +CO 7.700E+23 -4.7 68.58CH3CO +H =CH2CO +H2 2.000E+13 0.0 0.0********************************************** 22B. CH2CHO REACTIONS******************************************CH2CHO +H =CH2CO +H2 2.000E+13 0.0 0.0********************************************** 23. C2H4 REACTIONS******************************************C2H4 +M' =C2H2 +H2 +M' 2.500E+17 0.0 319.8C2H4 +M' =C2H3 +H +M' 1.700E+18 0.0 404.0C2H4 +H =C2H3 +H2 1.700E+15 0.0 62.9C2H4 +O =CH2CHO +H 5.200E+05 2.08 0.0C2H4 +O =CHO +CH3 1.210E+06 2.08 0.0C2H4 +OH =C2H3 +H2O 6.500E+13 0.0 24.9CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.7********************************************** 23A. CH3CHO REACTIONS******************************************CH3CHO +M' =CH3 +CHO +M' 7.000E+15 0.0 342.8CH3CHO +H =CH3CO +H2 2.100E+09 1.16 10.1CH3CHO +H =CH2CHO +H2 2.000E+09 1.16 10.1CH3CHO +O =CH3CO +OH 5.000E+12 0.0 7.6CH3CHO +O =CH2CHO +OH 8.000E+11 0.0 7.6CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.7CH3CHO +HO2 =CH3CO +H2O2 3.000E+12 0.0 50.0CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9116



CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3********************************************** 24. C2H5 REACTIONS******************************************C2H5 =C2H4 +H 7.370E+42 -9.5 211.94C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0C2H5 +O =CH3CHO +H 5.000E+13 0.0 0.0C2H5 +O =CH2O +CH3 1.000E+13 0.0 0.0C2H5 +O2 =C2H4 +HO2 1.100E+10 0.0 -6.3C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0********************************************** 25. C2H6 REACTIONS******************************************C2H6 +H =C2H5 +H2 1.400E+09 1.5 31.1C2H6 +O =C2H5 +OH 1.000E+09 1.5 24.4C2H6 +OH =C2H5 +H2O 7.200E+06 2.0 3.6C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.4********************************************** 26. C3 Reations******************************************H +C3 +M' =C3H +M' 7.000E+16 -1.000 0.00H2 +C3 =C3H +H 4.000E+05 2.400 0.00C +C2 +M' =C3 +M' 4.000E+16 -1.000 0.00C +C2H =C3 +H 4.000E+16 -1.000 0.00CH +C2 =C3 +H 1.000E+14 0.000 0.00********************************************ENDCOLLISION EFFICIENCIESM' =H2 +H2O +O2 +CO2 +CO +CH4 +AR1.0 6.5 0.4 1.50 0.75 3.0 3.0ENDCOMPLEX REACTIONS000 COMPLEX REACTIONSEND*****END
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Appendix CA C++ Pakage for theCalulation of Flow Reatorswith Detailed Chemistry{ User Guide {
C.1 Overall StrutureThis ++ pakage allows to alulate multiomponent gas ows taking intoaount onvetion, di�usion and hemial reations in the gas phase as wellas reations at walls. It omputes the veloity �eld, pressure, density andtemperature distribution as well as the gas hemial omposition by solving asystem of PDEs desribing the evolution in spae and time of these variables.The system is made of the Navier-Stokes equations supplemented with speiesmass onservation equations. The spatial disretization is based on a �niteelement approximation. The time disretization is restrited to an impliitEuler sheme. This ode has been used to alulate quasi-stationary solutionsand therefore aurate time-step approximations were not needed.A defet orretion sheme is used to solve the non-linear systems for eahtime-step. The resulting linear systems are solved with a GMRES methodpreonditioned by a multigrid method. The global system is split in two partswith respet to the defet-orretion matrix used; the �rst part orresponds tothe Navier-Stokes equations, whih desribe the average ow of the mixture,and the seond part desribes the hemistry.This ode is based on the DEAL ++ library whih provides a exible de-velopment environment for adaptive �nite element methods. Be sure to havethis library installed on your omputer in order to be able to use the present119



pakage. The reader an �nd more informations about the DEAL library athttp://gaia.iwr.uni-heidelberg.de.Our alulation ode as well as the DEAL library have been written andtested on SUN Solaris workstations with GNU g 2.8. On other systems,some hanges might be neessary to ahieve the ompilation and linking.C.2 Getting Things Installed and StartedThe pakage is available as a ompressed tar �le: flow reator.tar.gz. Tounompress and unpak the tar �le use the ommands:gzip -d flow reator.tar.gztar xf flow reator.tarThere will be one diretory reated alled flow reator. In this diretory, aset of subdiretories are to be found:� Global hemial data ontains global hemial data about a lot ofhemial speies. It should not be hanged.� SOURCE ontains the soure �les of the program reator.� INSINP ontains a FORTRAN program whih uses the �les ontainedin the Global hemial data diretory as well as some other parameter�les (see below) in order to reate a spei�ation �le de�ning the speiesthat are to be found in the ow, with their hemial harateristis, aswell as the reations whih are to our in the mixture. This reated �leis read by the program flow reator at the start to de�ne and initializethe hemistry for the omputation.� USER DATA ontains parameter �les whih desribe the hemial speiesfound in the mixture, the hemial reations and the boundary ondi-tions.� OUTPUT ontains the results of the omputations, i.e. �les in UCD (.inp)and GNUPLOT (.dat) formats.To ompile the ode, go in SOURCE, edit the Makefile �le and write there theabsolute path of the USER DATA and SOURCE diretories in the USER and SOURCEvariable delarations:USER = /absolute path/USER DATASOURCE = /absolute path/SOURCE Do the same for the DEAL library path:DEAL = /absolute path/deal Save the �le and ompile the ode with gnu-make by typing make. 120



First a FORTRAN program alled insinp.x from the INSINP diretory alsohas to be used in order to reate a �le speifying all parameters and variablesneeded in the hemial proesses as well as the boundary onditions. Thisexeutable is supplied within the pakage, but under ertain irumstanes itmight be neessary to ompile it again. If it is the ase go in the INSINPdiretory and type make -f Make Inp. This program reads hemial data andreates a new �le ontaining the only data needed for the urrent alulation.Here you may also have to edit the �le Make Inp and write the right pathdelarations.A sript-�le named go, whih has to be exeuted in the main diretory flow reator,alls the two latter programs (insinp.x and reator), in the right order, tostart the omputation aording to the ow hemial harateristis de�nedby the user. Thus to start the solution proess go in the main diretory andtype go.C.3 Input and Output DataThe �les input, mehanism, simulation.data and onst data, in diretoryUSER DATA, ontain all the parameters the program needs to know. A hange inthe �le onst data demands that the program is ompiled again (see SetionC.2).C.3.1 Chemial MehanismThe hemial mehanism is desribed in the �le named mehanism. We give anexample of mehanism �le. The �rst part desribes the simple reations whihtake plae within the gas phase. The reation rate is given after the de�nitionof the orresponding reation on the same line. Further the reations at solidboundaries are de�ned with their reation probability. Don't forget to set thenumber of reations at the wall (named omplex reations).MECHANISM OF D2(V=0,1) REACT.************************************** ***** 1. D2-HE MECHANISM ***** **********************************************D21 +D + >D20 +D * 2.36E+11 0.00 0.0 nistD21 +D20 + >D20 +D20 * 6.50E+07 0.00 0.0 n.v.D21 +HE + >D20 +HE * 1.56E+07 0.00 0.0 n.v.121



D +D +HE >D20 +HE * 5.00E+16 0.00 0.0 nistD +D +D20 >D20 +D20 * 2.90E+15 0.00 0.0 n.v.*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS002 COMPLEX REACTIONS AT THE WALL1.00 D21 *1.0 1.500E-031.00 D20 0.0 0.001.00 D *1.0 1.000E-040.50 D20 0.0 0.00ENDC.3.2 Inow DataThe inow data are given in the �le input. In this �le one an set the molefrations of eah speies, the temperature, and veloity of the mixture at theinow boundary. This boundary ontains two di�erent area, the inner andouter tubes. The �le struture is the following:OPTIONS...................(FORMAT 7(A4,6X), END WITH -END -)REGRID /PCON /PROFIL /TSO / / / /STORE /EXTRA 2/OUTPUT 1/ENERG 2/ / / /END / / / / / / /SPECIES..........................(Format 7(2A4,1X,A1), end with -END -)HE ,H20 ,H21 ,H ,HD0 ,HD1 ,D20 ,D21 ,D , , , , , ,END************************************************************************INFLOW COMP. INNEN AUSSEN ...(FORMAT A10,2F10.3, END WITH -END -)HE : 0.792 0.000 (SAME ORDER AS ABOVE !!!!!)H20 : 0.000 0.992 (MOLE-FRACTION)H21 : 0.000 0.005 ****H : 0.000 0.003 ****HD0 : 0.000 0.000 ****HD1 : 0.000 0.000 ****D20 : 0.115 0.000 ****D21 : 0.002 0.000 ****D : 0.091 0.000 ****P : 5.33E-3 5.33E-3 BART : 292. 292. KU : 0.000 0.000 M/S122



V : 64.00 34.00 M/SThere are some more lines in this �le but they are outdated and not taken intoaount. It is important to write the name of the speies in the list on thetop of the �le in the right format (8 haraters between 2 ommas). After thespeies list, the spei�ation of the inow data is to be found in two olumnsfor the inner (INNEN) and the outer (AUSSEN) tube; �rst the speies molefration, then the pressure, the temperature and �nally the radial and axialveloities. It is to be noted that the speies MOLE frations are to be givenin this �le, although the outputs of the program give mass frations.In diretory GLOBAL CHEM DATA, the �les mol.dat and thermo.dat ontainspeies spei� databases and should not be hanged or even edited.The sript go in the main diretory alls the preproessor insinp.x, whihitself reads the input �les and speies data bases to reate a data set alledfort.3 also written in the main diretory. This data set is read by the atualsimulation ode to de�ne the ow hemial harateristis.C.3.3 Simulation ProessThe �le onst data.h in diretory USER DATA ontains data onerning thesolvers, the adaptive proess and the outputs. This �le is made of several wellde�ned parts:� Time step - Solver tolerane:#define TIME_STEP_SIZE 2.#define TIME_STEP_NUMBER 50#define MAX_SIMPLE_IT 30#define SOLVER_TOL 1.E-7The time step size is normed by the density of the mixture and there-fore is atually around a fator 10�4 smaller as the time step given byTIME STEP SIZE.The total number of time steps is given by TIME STEP NUMBER, andthe number of time steps without re�nement of the mesh is set byMAX SIMPLE IT. A quasi-stationary state an in this way be reahed be-fore the loal re�nement proess begins. After MAX SIMPLE IT numberof iterations the adaptive re�nement proess begins.SOLVER TOL is the tolerane of the defet-orretion proess on the resid-ual.� Number of speies: 123



#define SPECIES_COMP 10It should be set to the number of speies + 1 for the temperature.� Neutral speies:#define NEUTRAL_SPECIE 1It is used to de�ne the speies whih is found in the tube at the start ofthe alulation. It should be a neutral speies whih does not reat (oronly weakly) with other speies of the mixture. This allow to avoid toosti� soure terms at the beginning of the omputation.� Wall-reation ag:stati int WALL_CHEMISTRY = 1;if WALL CHEMISTRY is equal to 1, the wall reations are taken into aount.If it is equal to 0 they are not.C.3.4 Re�nement proessThe re�nement proess is based on the aurate alulation of some averageor point values of mass frations for seleted speies. The following variablesallow the user to indiate whih values for whih speies has to be known withauray.� Observation ag (solve-dual-problem ag):#define OBSERVATION 1This ag is set to 1 if some physial values have to be known with a-uray. In this ase the dual problem is solved for eah re�nement stepsand the dual solution is used to alulate the orresponding error esti-mator that is used to re�ne the mesh.If this ag is set to 0, the dual problem is not solved and the errorestimator does not ontain any weights.The following variables make sense only if the latter ag is set to 1, i.e.average or point values of some speies mass frations are to be knownwith auray.� Observed speies: 124



#define OBSERVATION_SIZE 2stati int OBSERVATION_SPECIES[OBSERVATION_SIZE℄ = {1,2};The �rst variable de�nes the number of speies for whih the mass fra-tion has to be known with auray. This number must be between 1and SPECIES COMP-1. The seond variable is an array and ontains thenumbers of the orresponding speies. The speies are ordered in thesame way as in the �le input.� Observation diretion:#define OBSERVATION_XLINE 1#define OBSERVATION_YLINE 0#define OBSERVATION_AXE_POINTS 0X orresponds to the radial diretion and Y orresponds to the axialdiretion. Here we de�ne whih value has to be known with auray.For eah of these 3 variables the value one means that this value is to bealulated with preision.OBSERVATION XLINE orresponds to average values of the mass frationof the speies de�ned above along radial lines whih are de�ned later.OBSERVATION YLINE orresponds to average values of the mass frationof the speies de�ned above along axial lines whih are de�ned later.OBSERVATION AXE POINTS orresponds to the point values of the massfration of the speies de�ned above along the axis of the tube. Thepositions of these points along the axis are de�ned later.There must be one and only one of these three variables with the valueset to 1. The two others must have the value 0.� Position of the observation lines/points (in meter):#define OBSERVATION_NUMBER 4stati double OBSERVATION_RADIUS[OBSERVATION_NUMBER℄ = {0.};stati double OBSERVATION_HEIGHTS[OBSERVATION_NUMBER℄ = {1,2,3,4};The variable OBSERVATION NUMBER de�nes the number of lines or pointswhere average or point values of the mass frations have to be knownwith preision.The variable OBSERVATION RADIUS is relevant only if OBSERVATION YLINEis set to 1, sine it de�nes the radius for eah line (parallel to the tubeaxis) where the averaged mass fration has to be alulated with prei-sion.The variable OBSERVATION HEIGHTS is relevant only if OBSERVATION YLINEis set to 1, sine it de�nes the position on the tube axis for eah radialline or point of the axis where the mass fration has to be alulatedwith preision. 125



� Number of maximal re�nement level#define MAX_REFINEMENT_LEVEL 20This variable de�nes the maximal number of re�nement level for theadaptive mesh re�nement proess. It is set to as default to 20 and anbe left to this value.C.3.5 Output DataThe output that an be ustomized here are done in Gnuplot format andorresponds to the variable evolutions along radial lines. The output �les arestored in the diretory OUTPUT whih is in the main diretory.� Number of output lines:#define OUTPUT_NUMBER 3With this variable, one de�nes the number of lines for whih there mustbe an output �le. In this �le the evolution of the ow and hemialvariables are written in Gnuplot format.� Axial position of the output linesstati double OUTPUT_HEIGHTS[OUTPUT_NUMBER℄ = {1,2,3};This array ontains the axial position of the output lines expressed inmeter from the tube start.These �les in Gnuplot-format have the following struture:#file : OUTPUT/output_15_0.dat#line output for y = 0.238 of variables:#radial position, u, v, p*, T, HE, H20, H21, H, HD0, HD1,D20, D21, D, rho, P/rho0.0045 -0.115513 26.7997 0.549813 292 1 1.01773e-13 1e-131.35934e-13 1e-13 1e-13 1e-13 1e-13 1e-13 0.000878807 606504The �rst line is the name of the �le. The seond line ontains a desriptionof the setion for whih we get the variable evolution. The third line is adesription of the order in whih the variables are stored in the �le. And thefollowing lines ontain the data. The units for these data are SI (m=s, Pa, K,dots) and mass fration is stored for the speies.126



Additionally to these Gnuplot output �le, output �les ontaining the ompletesolution on the whole domain are reated at the end of eah time step orre�nement step. They are also stored in the diretory OUTPUT. These �les arein UCD format, whih an be read by AVS, dealvision or DeViSoR, whih allthree are visualization programs.C.3.6 Mesh dataThe name of the mesh �le is given in the �le simulation.data with absoluteor relative path from the main diretory where the sript go is alled. Thedomain dimensions are also to be found in this �le.#***************** Data about the omputational field *******************#************************************************************************#**** Mesh file name# *******************ars_split.inp#**** Domain dimensions (in meter) : ***# tube height | tube radius | splitter radius0.15 0.016 0.006The tube height is the length of the tube. The tube radius is the radius ofthe outer tube. And the splitter radius is the radius of the intern tube. Thevalues are needed by the program to alulate the inow values.C.4 Automati mesh generation for CVDIn order to simplify the geometrial optimization proess for CVD experimentwe developed a mesh generator for the CVD geometry. This is only one �le:CVD mesh generator. whih an be simply ompiled and linked by any ++ompiler.The parameters whih need to be set in the �le are the following:name = "mesh.inp";/*** |-- substrat* V 127



* |------------------------------------------------------------------* | <----------------------------- symmetry line |* | |* | d_substrat |* | |* | CH4 inflow |* |----| free outflow --> |* | |* | <- pipe |* | |* |----| |* | |* | |* | d_pipe |* | H2/O2 inflow |* | |* -------------------------------------------------------------------***//*** Enter here the numbers of olumns and lines of the mesh to be generated.* ^ Lines* |* |* |* ----------> Columns*/// # = number ofint nb_under_pipe_ols = 2; // # olumns under the pipeint nb_above_pipe_ols = 2; // # olumns over the pipeint nb_under_substrat_ols = 15; // # olumns on the right of the pipeint nb_under_lines = 3; // # lines under the pipeint nb_pipe_lines = 3; // # lines beside the pipeint nb_between_lines = 4; // # lines over the pipe/*** enter here the widths of the domain (in m)128



*/double substrat_width = 0.025;double pipe_width = 0.001;/*** enter here the heights of and distanes in the domain (in m)*/double substrat_height = 0.005;double pipe_height = 0.003;// distane between the inflow of the flame exhaust gasdouble d_pipe = 0.003;// distane between the pipe and the substratdouble d_substrat = 0.005;/*** enter the numbers of the different boundary lines*/int symmetry = 2;int outflow = 0;int wall = 3;int substrat_wall = 7;int CH4_inflow = 4;int H2O2_inflow = 5;/******************************************************************/
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