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Introdu
tion
Flow rea
tors are used in many appli
ations in industry and resear
h. Complexintera
tions in the rea
tor, su
h as superposition of 
onve
tion and di�usionpro
esses with 
hemi
al rea
tions in the gas phase or at the walls, make itdiÆ
ult for experimental data to be 
orre
tly interpreted. By means of adetailed numeri
al simulation, these various e�e
ts 
an be distinguished andthe intera
ting pro
esses o

urring within rea
tive mixing 
ows are easier tounderstand.

Air Flux

Fuel Flux

Zone of

Mixing

Air FluxFigure 1: Flow rea
tor made of an inner and an outer tube where two gasesenter and get in 
onta
t at the outlet of the 
entral tube.Thus the main interest in the simulation of 
ow rea
tors is the 
omprehensionof the 
omplex interplay between 
ow, mixing pro
esses and rea
tion pro
esses.To des
ribe the 
hemi
al and physi
al pro
esses taking pla
e in rea
tive 
ows,many 
hemi
al spe
ies are to be 
onsidered with often a few hundred elemen-tary rea
tions. Considering the equations for velo
ities, pressure, temperature,and ea
h spe
ies, the system of PDEs modelling the rea
tive 
ow 
ontains usu-ally between 10 and 50 equations and is highly non-linear. The leading termsin these equations may vary in spa
e and time. In the rea
tion zones, thesystem may be
ome rea
tion-dominated through sti� sour
e terms. In otherparts of the domain where 
hemi
al rea
tions are weak, either the 
onve
tionterms (by high Reynolds number) or the di�usive terms (as in non-rea
tiveboundary layers) may be predominant.9



Several methods for the simulation of rea
tive 
ows have already been imple-mented, usually based on �nite di�eren
e or �nite volume dis
retizations ontensor produ
t meshes (see for instan
e [18℄, [55℄). A 
ode based on �nite di�er-en
es has re
ently been applied to the simulation of a low-pressure 
ow rea
torfor kineti
 studies in [46℄, in order to improve existing methods (as plug-
owte
hniques) for evaluating data from isothermal 
ow kineti
 measurements. Ithas been developed for the low Ma
h-number regime and makes use of splittingte
hniques for variables and spatial dimensions thereby redu
ing the 
ompu-tational e�ort. Numeri
al results of full rea
tive 
ow simulation have been
ompared with the measurement of elementary relaxation and vibrational en-ergy transfer pro
esses. As a model system for a simple kineti
 pro
ess theheterogeneous relaxation of vibrationally ex
ited hydrogen (H2(v00 = 1)) andits energy transfer in 
ollisions with deuterium (D2(v00 = 0)) was 
onsidered(see Chapter 6): H2(v00 = 1) wall�����! H2(v00 = 0);H2(v00 = 1) +D2(v00 = 0) ������! H2(v00 = 0) +D2(v00 = 1):This made it possible to evaluate spe
ies wall dea
tivation probabilities andrea
tion rate 
onstants for vibrational energy transfer. However, this simula-tion did not bring enough information about the pre
ision on the 
omputedquantities, whi
h 
ould assure that the error done on these quantities was lowerthan a given toleran
e. Nor did the tensor-produ
t mesh allow to eÆ
iently
ontrol the a

ura
y of the 
al
ulation lo
ally in the zones of the 
ow tubethat were of interest. Moreover, due to some instabilities in the method, itwas ne
essary to use pseudo-time stepping to obtain steady solutions, whi
h
ould have been avoided in some 
ases.In order to eliminate these weaknesses and a
hieve better a

ura
y in thesolution with reasonable 
omputational e�ort, we develop in this work a newmethod for the simulation of 
hemi
al 
ow rea
tors with pre
ise evaluationof some physi
al quantities. We derive this method from re
ent te
hniquesfor adaptive mesh re�nement whi
h allows to redu
e the numeri
al e�ort andnevertheless a
hieve good or even better a

ura
y in the data that may be ofinterest 
ompared to a straightforward tensor produ
t approa
h. This makespossible on the one hand to simulate 
ow rea
tors on simple workstationsor PCs without any 
ompromise with respe
t to the quality of the 
omputedsolution, and on the other hand, on super-
omputers, to rea
h an a

ura
y that
ould not be a
hieved on simple tensor produ
t meshes or on lo
ally adaptedmeshes 
onstru
ted a

ording to ad ho
 
riteria, usually justi�ed on physi
algrounds, whose impa
t on the a

ura
y of the numeri
al solution is diÆ
ult toassess.Chapter 1 dis
usses the dimension redu
tion of the 
omputational domain.For the simulation of 
ir
ular 
ow tubes assuming an axial symmetry, it is10



suÆ
ient to 
onsider only half of an meridional se
tion of the tube to des
ribethe rea
tive 
ow. We dis
uss here problems invariant under rotation, and thederivation of weighted Sobolev spa
es needed in the weak formulation of thesystem to be solved.The model 
onsidered 
onsists of the 
ompressible Navier-Stokes equationswith additional 
onve
tion-di�usion-rea
tion equations for the 
hemi
al spe
ies.The goal is the simulation of stationary or quasi-stationary rea
tive 
ows atlow Ma
h number for the evaluation of kineti
 rea
tion parameters as well aspro
ess optimization of 
hemi
al rea
tion systems in 
ow rea
tors. The 
om-plete model for multispe
ies 
ows is presented in Chapter 2 and then restri
tedby simplifying the di�usive part of the spe
ies transport as well as taking intoa

ount the low-Ma
h number 
ow state, in order to make fast 
omputationspossible without too mu
h loss in the model a

ura
y a

ording to the physi
s.The rea
tion model is also presented and the form of the 
hemi
al sour
e termsis dis
ussed. Further the physi
al 
onstraints on the model are explained.The dis
retization of the equations is dis
ussed in Chapter 3. We use a �nite el-ement method based on bilinear elements de�ned on re
tangles (Q1 elements).The standard Galerkin dis
retization using Q1 elements is not stable and hasto be stabilized. Details are given about the pressure stabilization and thestreamline di�usion methods for steady and unsteady 
ompressible 
ows atlow Ma
h number.The highly non-linear system obtained requires very eÆ
ient numeri
al meth-ods. Therefore a robust non-linear solver is needed. A defe
t 
orre
tion methodwith step size 
ontrol is developed by approximating the Newton matrix. Thedegree of approximation required is assessed a

ording to 
onsisten
e and solv-ability of the 
orresponding linear systems.In Chapter 4 the solver is des
ribed. The outer iteration is based on defe
t
orre
tion and the inner large linear problems are solved by an iterative methodGMRES with the help of a multigrid method as pre
onditioner. GMRES andmultigrid methods are among the most eÆ
ient modern te
hniques for solvinglarge s
ale algebrai
 systems resulting from �nite element dis
retizations ofPDEs. The multigrid method needs an appropriate smoother for rea
tive 
owproblems on lo
ally re�ned meshes. The development of a Vanka smootherfor the Navier-Stokes part of the system and the use of Gauss-Seidel or ILUsmoothing for the 
hemi
al part lead to an eÆ
ient and robust method.Another important part of this work deals with error 
ontrol and mesh adap-tivity. The aim is to a
hieve reliability in the sense that physi
ally relevantderived quantities, whi
h 
an be thought of as fun
tionals of the solution, areapproximated to within a given toleran
e. The use of duality arguments leadsto the 
ontrol of the error in fun
tionals of the solution, whi
h 
an be quanti-ties su
h as point values of the temperature or line averages of mass fra
tions11



(whi
h 
orresponds to a CARS signal for instan
e, see Chapter 6). The meshadaptivity based on an a posteriori error estimate gives us the possibility tore�ne the mesh lo
ally only in the zones where it is ne
essary in order to 
om-pute these quantities with the required a

ura
y. We treat this problem ofadaptivity and a

urate quantity 
omputations in Chapter 5. The 
on
ept oferror estimation for fun
tionals of the solution is explained and we apply thismethod to produ
e \optimal" meshes for reliable and eÆ
ient 
omputation ofrea
tive 
ows in 
ow rea
tors. A quantitative error estimation of fun
tionalsis espe
ially important for 
omparison between simulation and experiment tovalidate the underlying model. The model and numeri
al method developedin this work are indeed validated through experimental measurement whi
halso provides the data essential for parameter estimation, su
h as dea
tivationprobabilities for vibrationally-ex
ited H2 mole
ules.In order to test the eÆ
ien
y of the adaptive method and of the solvers, we
onsider in Chapter 6 three relevant problems in 
ow rea
tors:� CARS (Coherent Antistokes Raman Spe
tros
opy) measurement of de-a
tivation rea
tions and rea
tion rate for energy transfer of vibrationally-ex
ited H2 mole
ules,� LIF-Spe
tros
opy for the kineti
 analysis of rea
tions between NH andNO mole
ules as well as between NH and O2 mole
ules in the 
ase ofhigh temperatures, and� CA-CVD (Combustion Aided Chemi
al Vapor Deposition) for the opti-mization of a diamond deposition pro
ess.In the �rst 
ase, the mixture 
onsist of 9 spe
ies with heterogeneous rea
tionsof dea
tivation on the wall as well as gas-phase rea
tions between H2 and D2mole
ules. The 
omplete 
hemi
al model 
onsist of 27 gas-phase rea
tionsand 5 wall rea
tions. The evolution of the 
on
entration of some spe
ies ismeasured along the axis of the tube on well de�ned measurement points. Thesolution method with adaptive mesh re�nement is applied to 
ompute theevolution of the spe
ies 
on
entration along the axis with optimal pre
ision onthese measurement points. We are then able to 
ompare a

urate simulationresults with measurements and thus derive rea
tion rates.In the se
ond 
ase, the mixture 
onsidered (based on produ
ts of rea
tions be-tween NO2 and H2) 
onsists of 8 spe
ies with homogeneous and heterogeneousrea
tions with heated walls (Diri
hlet boundary 
onditions for the temperatureat the wall). The temperature range to be 
onsidered is 300K (temperatureof the in
oming gas 
ow) to 1700K. These high temperature gradients indu
esome numeri
al instabilities in the in
ow region so that only a quasi-stationarysolution 
an be found. We have to use here a time step method to be able to
onverge to a solution. 12



A CA-CVD experiment (see [32℄ and [23℄) has also been simulated. The aimis to optimize the quality and quantity of diamond deposition on a substrate.The system to be solved is more 
omplex than the former system for thesimulation of the CARS experiment. The mixture 
ontains 39 spe
ies and therea
tion model 
onsists of 358 
hemi
al rea
tions. An inje
tion of methaneis done from a pipe into a gas mixture made of produ
ts of a H2=O2 
ame.It has been shown that the deposition of diamond strongly depends on the
on
entration of CH3 near the substrate. Working with su
h a large systemof equations does not allow to use simple stru
tured meshes without error
ontrol on the values we are interested in. The adaptive pro
ess developed inthis work not only allow us to 
ompute a

urately physi
al values - su
h as theCH3 
on
entration near the substrate - but also to deal with more 
ompli
ated
hemi
al pro
esses. This was made possible by improving the performan
eof the simulation pro
ess with respe
t to already existing 
odes. Using anadaptive re�nement pro
ess based on error fun
tionals allows us to get highera

ura
y on some physi
al value of interest with a given number of 
ells, andthus drasti
ally redu
e memory requirements. Moreover, the implementationof robust and eÆ
ient solvers make it possible to redu
e the 
omputation time.All 
omputations here 
an be done on a workstation.The basi
 prin
iples of �nite element methods is assumed to be known. Somereferen
es are given for an introdu
tion to �nite element dis
retizations.

13
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Chapter 1
Axisymmetri
 Problems andDimension Redu
tion
Most physi
al problems are naturally formulated as boundary problems inthree dimensional domains. However three dimensional 
omputations are veryexpensive and sometimes pra
ti
ally impossible on workstations. It is there-fore ne
essary to rewrite the problem with two dimensional equations. Thisis obtained by assuming that the dependen
y of the parameters, data andsolution with respe
t to one of the three variables 
an be negle
ted, whi
his justi�ed in many situations. Here we are interested in the 
ase where thethree-dimensional 
omputation domain is invariant under rotation around anaxis. Thus, without any approximation, the problem 
an be transformed intoa family of two dimensional equations on the Fourier 
oeÆ
ients (
f. [9℄).Moreover, if the data satisfy suitable axisymmetry properties, only the Fourier
oeÆ
ient of order 0 subsists, so that the three dimensional problem 
an beredu
ed to a two dimensional one. We will deal with this later 
ase in thiswork. The problems we are interested in are indeed invariant under rotation(see later).The axisymmetri
 fun
tions whi
h belong to standard Sobolev spa
es on thethree dimensional domain 
an be mapped onto fun
tions in the 
orrespondingtwo dimensional domain. These new fun
tions belong to weighted Sobolevspa
es, the weight being the distan
e to the symmetry axis. We 
hara
terizethese fun
tions as the elements of the weighted spa
es su
h that suitable tra
esvanish on the rotation axis.All this leads to transform an axisymmetri
 boundary value problem on thethree dimensional domain into an equivalent problem on the 
orrespondingtwo dimensional domain. For more details see [11℄, [41℄ and [2℄.15



1.1 Des
ription of Axisymmetri
 ProblemsFor a generi
 point in R3 , we use both 
artesian 
oordinates (x; y; z) and
ylindri
al 
oordinates (r; �; z) in R+�℄� �; �℄� R, withr =px2 + y2 and � = (� ar

os xr if y < 0;ar

os xr if y � 0. (1.1)In R2 we use the 
artesian 
oordinates (r; z) and we de�ne the half-spa
e R2+as the set of points in R2 with positive 
oordinate r.Let 
 denote a bounded domain 
ontained in R2+ . The axisymmetri
 domain�
 is the three-dimensional set obtained by rotating 
 around the axis r = 0.We are interested in two-dimensional domains of the following types for therea
tive 
ow 
omputations in Chapter 6:� CARS 
ow rea
tor:
Fuel Flux

Air Flux

Symmetry line

Mixing ZoneFigure 1.1: 
 = half axial se
tion of the CARS 
ow rea
tor shown in Fig. 1.� CVD 
ow rea
tor:
�����������������������
�����������������������
�����������������������
�����������������������

Outflow

CH
4

H  / O
2 2

Symmetry line

Substrate (wall)

Inner pipe

(Flame inflow)Figure 1.2: 
 = half axial se
tion of the CVD rea
tor16



We denote by �0 the part of the boundary �
 
ontained in the axis r = 0, i.e.the symmetry line. We set � = �
n�0. The boundary �
 is a polygon, i.e.the union of a �nite number of segments.The 
orresponding three-dimensional domain �
, 
orresponding to the whole
ow rea
tor shown in Fig. 1, is de�ned as:�
 = f(x; y; z) 2 R3 j (r; z) 2 
 [ �0 and � � < � � �g: (1.2)Let R� denote the rotation with angle � with respe
t to the axis r = 0 in R3 ,i.e. R�(x; y; z) = (x 
os � � y sin �; x sin � + y 
os �; z): (1.3)Of 
ourse, �
 is invariant by any rotation R�. The unit outward normal ve
tor�n to �
 is obtained by rotating the unit outward ve
tor n to 
 on �.1.2 Problems Invariant under RotationThe problems whi
h are 
onsidered in this work are invariant under rotation.Let us 
onsider the boundary value problem [ �A; �B℄ on �
 where the unknownis a ve
torial fun
tion �v with M 
omponents:( �A�v = �f in �
;�B�v = �g on � �
: (1.4)The symbol � over a letter means that the 
orresponding fun
tion, distributionor operator is de�ned on �
. Here �A is a linear system of partial di�erentialoperators and �B is a system of boundary di�erential operators.De�nition 1. Problem [ �A; �B℄ is said to be invariant under rotation if thefollowing property holds for any smooth fun
tion �v from �
 into RM :8� 2 [��; �℄ : ( �A(�v Æ R�) = ( �A�v) Æ R�;�B(�v Æ R�) = ( �B�v) Æ R�: (1.5)Equivalently, problem [ �A; �B℄ is invariant under rotation if the operators �A and�B 
an be written in the following form in 
ylinder 
oordinates (r; �; z):�A(x; y; z; �x; �y; �z) = �A(r; z; �r; ��; �z);�B(x; y; z; �x; �y; �z) = �B(r; z; �r; ��; �z); (1.6)17



i.e. with 
oeÆ
ients independent of the variable �. A basi
 example is theLapla
e operator4 = �2x + �2y + �2z = �2r + 1r �r + 1r2 �2� + �2z (1.7)Diri
hlet boundary 
onditions or, more generally, 
onditions whi
h only dependon the normal derivative ��n to the boundary, are invariant under rotation.1.3 Data and Solutions Invariant under Rota-tionDe�nition 2. A fun
tion �v is said to be invariant under rotation if the fol-lowing property holds 8� 2 [��; �℄ : �v Æ R� = �v: (1.8)Problems whi
h are invariant under rotation are asso
iated with fun
tionsinvariant under rotation: if problem [ �A; �B℄ satis�es (1.5) and if �v is invariantunder rotation, so are �f and �g; the 
onverse property holds when problem[ �A; �B℄ has at most one solution.When the operators �A and �B as well as the data �f and �g are invariant underrotation, we easily see that this problem is 
losely linked to the two-dimensionalproblem (Av = f in 
;Bv = g on �; (1.9)where f(r; z) = �f(x; y; z);g(r; z) = �g(x; y; z); A(r; z; �r; �z) = ~A(r; z; �r; 0; �z);B(r; z; �r; �z) = ~B(r; z; �r; 0; �z); (1.10)~A and ~B being de�ned in (1.6).Thus in the 
ase of a problem invariant under rotation, we have a
tually re-du
ed the number of variables from 3 to 2.When problem [ �A; �B℄ is invariant under rotation, and if the data �f and �g areinvariant under rotation, it is readily 
he
ked that the following propositionsare equivalent:� �v is a solution of [ �A; �B℄ and is invariant under rotation,� v is a solution of [A;B℄. 18



1.4 Basi
 FormulasWith ea
h 
oordinate system, we asso
iate an orthonormal basis: (ex; ey; ez) forthe 
artesian system, and (er; e�; ez) for the 
ylindri
al system. The derivativewith respe
t to ea
h of these 
oordinates is denoted by � indexed by the
oordinate. From the basi
 identities�x = �r 
os � � 1r �� sin �; �y = �r sin � � 1r �� 
os �we derive the formulas for operators a
ting on s
alar fun
tions and on ve
to-rial fun
tions. A fun
tion �v with values in R3 is written either in 
artesian
oordinates vx ex+vy ey+vz ez or in 
ylindri
al 
oordinates vr er+v� e�+vz ez.The problems we are interested in are invariant under rotation. Thus thederivative a

ording to the variable � as well as the 
omponent v� of the ve
torde�ned above vanish, whi
h leads to the following formulas:� For s
alar fun
tions:
artesian 
oordinates 
ylindri
al 
oordinatesrv �xv ex + �yv ey + �zv ez �rv er + �zv ez4v �2xv + �2yv + �2zv �2rv + 1r �rv + �2zv� For ve
torial fun
tions:
artesian 
oordinates 
ylindri
al 
oordinatesr:�v �xvx + �yvy + �zvz �rvr + 1r vr + �zvz4�v (�2xvx + �2yvx + �2zvx) ex+(�2xvy + �2yvy + �2zvy) ey+(�2xvz + �2yvz + �2zvz) ez (�2rvr + 1r �rvr + �2zvr � 1r2 vr) er+ (�2rvz + 1r �rvz + �2zvz) ez
r�v 24�xvx �xvy �xvz�yvx �yvy �yvz�zvx �zvy �zvz35 24�rvr 0 �rvz0 vr=r 0�zvr 0 �zvz3519



1.5 Weighted Sobolev Spa
esIn the problems we 
onsider, the solution is sought in a Sobolev spa
e or aprodu
t of Sobolev spa
es. From the spa
e L2(�
) of square integrable fun
tionsfor the measure dx dy dz, the Sobolev spa
es Hs(�
) for any positive integer sare de�ned. Then we derive the spa
es Hs0(�
) as the 
losure in Hs(�
) of thespa
e C10 (�
) and �nally the spa
es H�s(�
) as the dual spa
es of Hs(�
).1.5.1 De�nition and Properties of the Weighted Spa
esThe spa
e L2�(
) is de�ned as the set of measurable fun
tions w su
h thatkwkL2�(
) = �Z
w2(r; z) r� dr dz� 12 < +1: (1.11)For any positive integer s, Hs�(
) is the spa
e of fun
tions w in L2�(
) su
hthat their partial derivatives of order � s belong to L2�(
). It is provided withthe semi-norm jwjHs�(
) =  sXl=0 k�lr�s�lz wk2L2�(
)! 12 ; (1.12)and with the norm kwkHs�(
) =  sXl=0 jwj2Hl�(
)! 12 (1.13)Thus it is a Hilbert spa
e.We state the prin
ipal results in the following propositions. We �rst de�nea mapping for s
alar fun
tions. We are interested in the 
hara
terization ofthe fun
tions in Hs(�
) whi
h are invariant under rotation in the sense (1.8).We denote the 
orresponding subspa
e by �Hs(�
). Any element �v in �Hs(�
) is
ompletely 
hara
terized by the fun
tion v de�ned byv(r; z) = �v(x; y; z):Proposition 1. Let s be a positive integer. The mapping: �v ! v is one-to-onefrom �Hs(�
) onto the spa
e Hs+(
) de�ned as follows:� If s is not an even integer,Hs+(
) = nw 2 Hs1(
); �2j�1r wj�0 = 0; 1 � j � s2o ; (1.14)endowed with the natural normkwkHs+(
) = kwkHs1(
); (1.15)20



� if s is an even integer,Hs+(
) = �w 2 Hs1(
); �2j�1r wj�0 = 0; 1 � j � s2 ;and �s�1r w 2 L2�1(
)	; (1.16)endowed with the natural normkwkHs+(
) = �kwk2Hs1(
) + k�s�1r wk2L2�1(
)�1=2 : (1.17)And then a mapping for ve
torial fun
tions. We are interested in triple offun
tions �v = (vx; vy; vz) in 
artesian 
oordinates in Hs(�
)3 whi
h also satisfy(1.8) with I� = R��. This spa
e is also denoted by �Hs(�
). We de�ne, asin se
tion (1.4), the radial 
omponent vr, the angular 
omponent v�, and theaxial 
omponent vz of the ve
tor �eld �v. Then the following proposition holds:Proposition 2. Let s be a positive integer number. The mapping: �v !(vr; v�; vz) is well de�ned and one-to-one from �Hs(�
) onto the produ
t spa
eHs�(
)�Hs�(
)�Hs+(
) where the spa
e Hs+(
) is de�ned in proposition (1)and the spa
e Hs�(
) is de�ned as follows:� If s is not an odd integer,Hs�(
) = �w 2 Hs1(
); �2jr wj�0 = 0; 0 � j � s� 12 � ; (1.18)� if s is an odd integer,Hs�(
) = �w 2 Hs1(
); �2jr wj�0 = 0; 0 � j � s� 12 ;and �s�1r w 2 L2�1(
)	: (1.19)The proof of these theorems may be found in [2℄.1.6 Spe
ial CaseFrom these results we 
an derive the spe
ial 
ase s = 1 whi
h we need in
hapter 3 to write the variational formulation.�H1(�
) is the spa
e of fun
tions in H11 (�
) whi
h are invariant under rotation.A

ording to the previous propositions, the spa
eH1+(
) 
oin
ides withH11 (
).And H1�(
) is the spa
e of fun
tions w in H11 (�
) su
h that wj�0 = 0 andw 2 L2�1(
). 21



To take boundary 
onditions into a

ount, we must introdu
e the subspa
e offun
tions in H1�(
) whi
h vanish on a 
ertain part �1 of the boundary of 
whi
h is not on the axis:H1�;0(
) = �v 2 H1�(
); v = 0 on �1	 (1.20)We de�ne in the same way the subspa
e of fun
tions in H1+(
) whi
h vanishon a 
ertain part �1 of the boundary of 
 whi
h is not on the axis:H1+;0(
) = �v 2 H1+(
); v = 0 on �1	 (1.21)
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Chapter 2Equations
The intention for the numeri
al simulation presented in this work is to pro-vide pro�les for 
on
entration, temperature, density and velo
ity �elds. Theequations governing 
hemi
al rea
tive 
ows are based on the 
ompressible for-mulation of the Navier-Stokes equations, for the global behavior of the mixture
ow, with additional 
onve
tion-di�usion-rea
tion equations for the tempera-ture and the 
hemi
al spe
ies. The equations are written in the primitive form,i.e. with the variables � (density) or p (pressure), u (velo
ity), T (tempera-ture), and w (mass fra
tions). The set of 
oupled partial di�erential equations
onsidered des
ribes the 
onve
tive motion of the 
uid, the 
hemi
al rea
tionsamong the 
onstituent spe
ies, and the di�usive transport pro
esses su
h asthermal 
ondu
tion and mole
ular di�usion. Its origin is the 
onservation ofthe physi
al variables �; �u; �E; �w. While using these variables to write theequations, the formulation is said to be 
onservative. For smooth solutions,both formulations (
onservative or primitive) are equivalent. In many appli-
ations, the formulation with primitive variables has the advantage of simplerboundary 
onditions and determination of transport 
oeÆ
ients (most of themare given as fun
tions of the primitive variables).2.1 Navier-Stokes EquationsThe most general des
ription of a 
uid 
ow is obtained from the full system ofNavier-Stokes equations. These are obtained by writing the mass and momen-tum 
onservation. For multi
omponent 
ows, they des
ribe the evolution intime and spa
e of the density and velo
ity of the whole mixture, i.e. averagedquantities for the global 
ow. They are the following:� Mass 
onservation : The law of mass 
onservation is a general statementof kinemati
 nature. It is independent of the nature of the 
uid or of23



the for
es a
ting upon it. It expresses the empiri
al fa
t that, in a 
uidsystem, mass 
annot disappear from the system nor be 
reated. Themass 
onservation equation is���t +r � (� u) = 0; (2.1)with � the density of the 
uid, whi
h 
ould not be 
onsidered as 
onstantin the 
ase of multi
omponent 
ows, even in the 
ase of low-Ma
h-number
ows, sin
e the mixture is not usually homogeneous. u is the velo
ity ofthe 
ow.� Momentum 
onservation : The sour
es for the variation of momentumin a physi
al system are the for
es a
ting on it. These for
es 
onsistof the external volume for
es fe and the internal for
es fi. The latterare dependent on the nature of the 
uid 
onsidered, and result fromthe assumptions made about the properties of the internal deformationswithin the 
uid and their relation to the internal stresses. We will assumethat the 
uid is Newtonian, and therefore the total internal stresses �are taken to be � = �pI + � ; (2.2)where I is the unit tensor and p the isotropi
 pressure. � is the vis
ousshear stress tensor. With the ex
eption of very high temperatures orpressures, the stress tensor for Newtonian 
uids has the following form(see [26℄): � = � �ru+ (ru)T � 23(r � u) I� ; (2.3)where � is the dynami
 vis
osity of the 
uid. In the 
ase of multi
om-ponent 
ows, it is a fun
tion of the partial vis
osities and mole fra
tionof ea
h spe
ies (see se
tion 2.4).The equation of motion then be
omes� �u�t + � (u � r) u+rp�r � � = � fv; (2.4)with fv the external volume for
es.2.2 Energy ConservationThe pro�le of temperature of the multispe
ies 
ow 
an be obtained throughenergy 
onservation. The energy 
ontent of a system is measured by its internal24



energy per unit mass e. This internal energy is a state variable of a system andhen
e its variation during a thermodynami
al transformation depends only onthe �nal and initial states. In a 
uid the total energy to be 
onsidered inthe 
onservation equation is the sum of its internal energy e and its kineti
energy per unit mass u2=2. The �rst law of thermodynami
s states that thesour
es for the variation of the total energy are the work of the for
es a
tingon the system plus the heat transmitted to this system. A distin
tion has tobe made between the surfa
e and volume sour
es. The volume sour
es are thesum of the work of the volume for
es f . Hen
e we have, Qv = � f � u. Thesurfa
e sour
es are the result of the work done on the 
uid by the internalshear stresses a
ting on the surfa
e of the volume 
onsidering that there areno surfa
e heat sour
es: Qs = � � u = �p u+ � � u: (2.5)The di�usive 
ux q of heat due to mole
ular thermal 
ondu
tion is given bythe Fourier's law of heat 
ondu
tionq = ��rT; (2.6)with � the thermal 
ondu
tivity 
oeÆ
ient and T the temperature.Writing the 
onservation of the total energy and 
onsidering the mass andmomentum 
onservation equation as des
ribed in [44℄ or [26℄, we obtain� dedt + pr � u = � : ru+r � (�rT ); (2.7)with dedt = �e�t + u � re the total derivative of the intern energy a

ording totime.We de�ne the spe
i�
 enthalpy ash = e+ p� (2.8)For an ideal gas (see Se
tion 2.6, [58℄), the enthalpy is a fun
tion of the temper-ature T and gas 
hemi
al state whi
h 
an be represented by the mass fra
tionof ea
h 
omponent w = (wi)i=1;::: ;ns, with ns the number of spe
ies in the mix-ture. The total variation of enthalpy for an ideal gas 
an be then expressed asfollow: dh = � �h�T �p;w dT + nsXi=1 � �h�wi�p;T dwi: (2.9)25



By de�nition the variation of enthalpy a

ording to the temperature at 
on-stant pressure and 
hemi
al state is 
alled 
p, spe
i�
 heat 
apa
ity:
p = � �h�T �p;w : (2.10)We derive the total variation of internal energy:de = 
p dT + p�2 d�� 1� dp+ nsXi=1 � �h�wi�p;T dwi: (2.11)Using the 
ontinuity equation (2.1), it yields� dedt = � 
p dTdt + pr � u� dpdt + nsXi=1 � �h�wi�p;T dwidt (2.12)Sin
e h, the averaged enthalpy of the mixture 
onsidered as an ideal gas (see[58℄), ful�lls the relation h = nsXi=1 hi wi; (2.13)with hi the spe
i�
 enthalpy of spe
ies i, equation (2.12) 
an be written asfollow: � dedt = �dpdt + pr � u+ � 
p dTdt + nsXi=1 hi dwidt : (2.14)The total time derivative of wi 
an be expressed with a di�usion and a re-a
tion terms (
f. Se
tion 2.3 for the 
hara
teristi
s of these terms). Thisresult together with equation (2.7) leads to an equation whi
h des
ribes thetemperature evolution:� 
p dTdt = dpdt + � : ru+r � (�rT ) + nsXi=1 hi [r � ji � fi(T; w)℄: (2.15)We use a simpli�ed form of this equation be
ause several terms may usuallybe negle
ted. Sin
e we 
onsider only 
ows at low-Ma
h number, the energysour
e due to internal stresses 
an be negle
ted. We are interested in thiswork in low pressure 
ow rea
tor. For su
h 
ows the pressure is 
onsidered asquasi-
onstant in time and spa
e. Therefore we do not take into a

ount inthe following the pressure variation term in this equation. Moreover the termPi hir � ji, whi
h represents the di�usion of spe
ies with di�erent enthalpies,26



is usually omitted, 
onsidering that the partial enthalpies hi are nearly iden-ti
al. Taking these simpli�
ations into a

ount, the equation for temperaturebe
omes � 
p �T�t + � 
p u � rT �r � (�rT ) = fT (T; w): (2.16)The 
oeÆ
ients 
p and � are the spe
i�
 heat 
apa
ity at 
onstant pressureand the heat 
ondu
tivity of the mixture, respe
tively. The sour
e term fTdepends on the temperature and the 
hemi
al state. Let us denote by hi thespe
i�
 enthalpy of spe
ies i, and by 
pi the spe
i�
 heat 
apa
ity of spe
ies i.The sour
e term is thenfT (T; w) = � nsXi=1 hi(T ) fi(T; w): (2.17)The enthalpy hi of spe
ies i is given byhi(T ) = hi;T 0 + Z TT 0 
p;i(T 0) dT 0; (2.18)with an enthalpy hi;T 0 for a referen
e temperature T 0. The partial heat 
a-pa
ity of spe
ies i is represented by 
p;i. The temperature dependen
e of thesepartial heat 
apa
ities is modelled empiri
ally. A fourth order polynomial �tin T , with 
oeÆ
ients determined by experiments, is widely used in numeri
al
omputations: 
p;i(T ) = kXj=0 �j T j i = 1; : : : ; ns: (2.19)We use the 
oeÆ
ients from data bases developed at the Sandia NationalLaboratories [36℄ for the 
omputations in 
hapter 6.The heat 
ondu
tivity � 
orresponds to an average value for the mixture a

or-ding to the 
hemi
al state of the gas and is de�ned in Se
tion 2.4.The fa
tors fi(T; wj) are 
hemi
al produ
tion terms and are de�ned in thenext se
tion.2.3 Spe
ies Mass ConservationThe evolution of the 
hemi
al state of the gas in multi
omponent 
ows 
an bedes
ribed with the mass 
onservation of ea
h 
hemi
al spe
ies. These latter
an be represented by their mass fra
tion or by their mole fra
tion. We presenthere the formulation in mass fra
tions wi. Both formulations are equivalent27



although the formulation with mole fra
tions leads to a slightly more 
om-pli
ated transport term, while the formulation with mass fra
tions leads to aslightly more 
ompli
ated di�usion term. Another di�eren
e is found in the
al
ulation of the Ja
obian matrix of the resulting non-linear system. We referhere to Chapter 4 for more details. The mass 
onservation of ea
h spe
ies
an be written with the help of a di�usion 
ux ji, a sour
e term (
reation ordestru
tion) fi and the 
onve
tive transport of the spe
ies. For a mixture ofns 
hemi
al spe
ies, the 
orresponding equations are� �wi�t + � (u � r)wi +r � ji = fi(w; T ); i = 1; : : : ; ns; (2.20)with w the ve
tor of all mass fra
tions wi, 
hara
terizing the 
hemi
al state,and T the temperature. The sour
e term fi depends on both the temperatureand 
hemi
al state.This se
tion deals further with the non-linearities brought by the multispe
ies
hara
ter of the 
ow. In some regions of the domain, the 
ow may be dom-inated by rea
tion sour
e terms that 
ouple all the 
hemi
al variables withea
h other as well as with the temperature. Also in regions where the 
hem-i
al rea
tions are weak, the non-
onstant di�usion 
oeÆ
ients 
ause anothernon-linearity and a 
oupling between all the 
hemi
al equations.2.3.1 Modelling of Chemi
al Rea
tions and Sour
e TermsFor the des
ription of the 
hemi
al 
onversion in the gas phase, the 
hemi
alme
hanisms are made up of elementary rea
tions. An elementary rea
tion 
anbe generally des
ribed bynsXi=1 air �i kr�! nsXi=1 ~air �i ; (2.21)where �i represents the ith spe
ies and kr the rea
tion rate of the rea
tionnumber r. air and ~air are the stoi
hiometri
 
oeÆ
ients of spe
ies i respe
tivelyas edu
t and produ
t in the rea
tion r. In order to 
onserve the mass, these
oeÆ
ients must ful�ll the equationnsXi=1 Mi(~air � air) = 0; (2.22)with Mi being the molar mass of spe
ies i. In ea
h rea
tion r of the abovetype, up to three spe
ies are involved on ea
h side. Therefore, only up to three
oeÆ
ient air do not vanish for ea
h r.28



The produ
tion rate for spe
ies i, denoted _wi, is obtained by adding the parti-
ipation of all the rea
tions 
onsidered to the 
reation or destru
tion of spe
iesi. De�ning nr as the total number of rea
tions,_wi(T; w) = nrXl=1 ((~ail � ail) kl(T ) nsYj=1 
ajlj (w)) ; (2.23)with 
j the 
on
entration of spe
ies j, given by
j = �wjMj : (2.24)The 
hemi
al sour
e terms for the spe
ies equations in mass fra
tions have theform fi(T; w) =Mi _wi(T; w); i = 1; : : : ; ns: (2.25)Due to the property (2.22) on the stoi
hiometri
 
oeÆ
ients we 
on
lude thatthe sum over all the ns sour
e terms vanishes:nsXi=1 fi = 0: (2.26)The dependen
e on temperature for the rea
tion rate is given by the followingArrhenius-law kr(T ) = Ar T �r exp��EarRT �: (2.27)This law is empiri
ally validated. The 
onstants Ar, �r and the a
tivationenergy Ear are usually determined through experiments. R is the ideal gas
onstant.2.3.2 Surfa
e Rea
tionsThe rea
tion model used in this work for surfa
e rea
tions introdu
es a rea
tionprobability 
 (named �sti
king 
oeÆ
ient�for parti
les in the gas phase whi
h hita wall surfa
e (see [56℄ and [17℄ for more information about surfa
e rea
tionsand their modelization). These parti
les 
an rea
t (re
ombination, de
ompo-sition) or di�use further un
hanged in the gas phase. We 
onsider here the
ase of surfa
e rea
tions in whi
h there is only one gas-phase rea
tant. Theserea
tions are des
ribed by the following s
heme:ajr �j 
r�! nsXi=1 ~air �i; j = 1; : : : ; ns: (2.28)29



The 
orresponding rea
tion rate per surfa
e unit for spe
ies i over all the n0rsurfa
e rea
tions is given by_w0i (T; w) = n0rXr=1 (
r 14s 8RT�Mj 
j (~air � Æij ajr)) ; (2.29)j being the single edu
t spe
ies of the rea
tion r. In this wall rea
tion model,there is indeed exa
tly one edu
t spe
ies for ea
h surfa
e rea
tion.The probability 
oeÆ
ients are taken to be
r = ar T br exp �� 
rRT �; r = 1; : : : ; n0r; (2.30)with ar, br and 
r usually determined by experiments. One goal of these simu-lations is pre
isely to determine the value of wall de
omposition probabilitiesby 
omparing numeri
al with experimental results. In our appli
ations (seeChapter 6) we have 
onsidered only 
onstant probability 
oeÆ
ients.From a numeri
al point of view, we must be 
areful to 
orre
tly evaluate thesurfa
e as well as the gas-phase produ
tion terms. Numeri
al experimentsshowed us that a good lo
al 
onvergen
e in the rea
tion zones have to berea
hed in order to get an a

urate solution. Indeed the produ
tion or de-stru
tion of spe
ies anywhere in the domain may have in
uen
e on the whole
ow. Hen
e a 
onvergen
e statement on the global residuum is generally notsuÆ
ient.Sin
e the surfa
e rea
tions o

ur only lo
ally on the walls, i.e. on some domainboundaries, the numeri
al 
ontribution of these rea
tions to the residuum andja
obian matrix is only restri
ted to the edges 
orresponding to a wall, i.e. ona few one-dimensional elements (for two-dimensional 
omputations). Thesesour
e terms in
uen
e the boundary 
onditions at walls for the temperatureand the spe
ies mass fra
tions (see Chapter 3). For the temperature, energy isgiven to or taken from the gas phase depending on whether the rea
tions have
reated or 
onsumed energy. For the spe
ies boundary 
onditions, a balan
ebetween the di�usion 
ux at the wall and the spe
ies 
reation or destru
tionrates is 
onsidered.The in
uen
e of the surfa
e rea
tion terms on the 
ow is of importan
e evenif their parti
ipation to the global residuum might be small (due to their lo
alexisten
e). The a

ura
y on the solution needed lo
ally to resolve these termsreinfor
e the importan
e of the adaptive mesh-re�nement pro
ess (
f. Chapter5).2.3.3 Transport CoeÆ
ientsTransport property evaluation plays an important and often time-
onsumingrole in the 
omputational modelling of gaseous multi
omponent rea
ting 
ows.30



Two approa
hes are mostly 
onsidered for evaluating transport 
oeÆ
ients. Ina �rst approa
h, a dire
t numeri
al inversion of the transport linear systemsderived from kineti
 theory is 
onsidered. This strategy often be
omes 
ompu-tationally expensive. In a se
ond approa
h, an empiri
al average expression isused, whi
h yields less a

urate transport 
oeÆ
ients but allows to deal with
omplex rea
tive systems with smaller 
omputational e�orts.The di�usion 
ux, r � ji, in (2.20) 
an be written with the help of the spe
iesdi�usion velo
ity Vi as ji = �wi Vi; i = 1; : : : ; ns; (2.31)the spe
ies di�usion velo
ities being de�ned by the kineti
 theory of dilutepolyatomi
 gas mixture (see [54℄) asVi = 1xiM nsXj 6=i MjDij dj � DTi�wi 1T rT ; (2.32)with Dij the multi
omponent di�usion 
oeÆ
ients (see [27℄), DTi the thermaldi�usion 
oeÆ
ients and di the di�usion driving for
e of the ith spe
ies. Theve
tors di in
orporate the e�e
ts of various state-variable gradients and aregiven by di = rxi + (xi � wi) rpp ; 8 i = 1; : : : ; ns: (2.33)xi denotes the mole fra
tion of the ith spe
ies, Mi the spe
ies molar mass ofthe ith spe
ies andM the mean molar mass of the mixture, whi
h depends formulti
omponent 
ows on the mixture 
hemi
al state:1M =Xi wiMi : (2.34)The mass fra
tions wi and mole fra
tions xi are related as follows:xi = wi MMi :Thus we see from equations (2.32) and (2.33) that the di�usion 
ux from thespe
ies mass 
onservation equation (2.20) is 
omposed of three parts: massdi�usion (Fi
k's law) due to gradients in molar fra
tions, thermo-di�usion dueto temperature gradients (Soret e�e
t), and pressure di�usion due to pressuregradients.It follows from the above equations that the detailed modelling of a poly-atomi
 gas mixture requires the evaluation of its transport 
oeÆ
ients, i.e.31



the multi
omponent and the thermal di�usion 
oeÆ
ients. These 
oeÆ
ientsare fun
tions of the state of the mixture as given by the variables p, T , andw1; : : : ; wns. Their evaluation requires solving linear systems, referred to asthe transport linear systems (for more details on this see [20℄ and [35℄).In order to redu
e the 
omputational e�ort, mixture-averaged formulationsmay be used, whi
h allows to avoid solving linear systems. Mixture-averageddi�usion 
oeÆ
ients 
an be de�ned with the help of the multi
omponent prop-erties. By de�nition, in the mixture, the di�usion velo
ities are then relatedto the spe
ies gradients by a Fi
kian formula asVi = � 1xi Di di � DTi�wi 1T rT; i = 1; : : : ; ns: (2.35)The mixture di�usion 
oeÆ
ients (see [12℄) are 
omputed asDi = 1� xiPnsj 6=i xj=Dji ; i = 1; : : : ; ns; (2.36)with Dji the binary di�usion 
oeÆ
ient of spe
ies pair (j; i) (see [27℄). These
oeÆ
ients are nearly proportional to the square-root of the temperature andinversely proportional to the pressure.A potential problem with this expression is that it is not mathemati
ally well-de�ned in the limit of the mixture be
oming a pure spe
ies. Consideringequation (2.36), this modelling is not able to handle the spe
ial 
ase of purespe
ies. Even though di�usion itself has no real meaning in the 
ase of a purespe
ies, a 
omputer-program implementation should ensure that the di�usion
oeÆ
ients behave reasonably and that the 
ode does not \blow up" whenthe pure spe
ies 
ondition is rea
hed. To over
ome this diÆ
ulty we alwaysmaintain a residual amount of ea
h spe
ies. Spe
i�
ally, we assume in theabove formulas that xi = x̂i + Æ; (2.37)where x̂i is the a
tual mole fra
tion and Æ is a small number that is numeri-
ally insigni�
ant 
ompared to any mole fra
tion of interest, yet whi
h is largeenough in order to be represented in 
omputer arithmeti
. We have experien-
ed reasonable numeri
al behavior 
onsidering Æ = 10�12.A further problem is that this latter di�usion model does not ne
essarily ful-�ll the mass 
onservation 
onstraint whi
h implies that the spe
ies di�usionvelo
ities satisfy the mass 
onservation relationnsXi=1 wi Vi = 0: (2.38)32



This topi
 will be 
onsidered in Se
tion 2.5 in more details.Finally we have restri
ted in this work the di�usion 
ux to the �
kian di�usion.As result we obtain the following spe
ies mass 
onservation equations:� �wi�t +� (u � r)wi +r � (�Dirwi)�r � (�Di wiM rM) = fi(w; T ) ; i = 1; : : : ; ns: (2.39)2.4 Mixture-Averaged Flow PropertiesOur obje
tive in this se
tion is to determine mixture properties from the purespe
ies properties. In the 
ase of vis
osity and heat 
ondu
tivity, we use theempiri
al laws given in [56℄. The vis
osity � of a mixture 
an be modelled withan a

ura
y of approximately 10% by the partial vis
osities �i and the molefra
tions xi of the spe
ies:�(T; w) = 12 24 nsXi=1 xi �i + nsXi=1 xi�i!�135 : (2.40)The �i = �i(T ) are nearly proportional to the square-root of the temperature.We use a polynomial �t with 
oeÆ
ients determined by experiments [36℄. Theheat 
ondu
tivity � has a similar representation:�(T; w) = 12 24 nsXi=1 xi �i + nsXi=1 xi�i!�135 ; (2.41)with �i the partial heat 
ondu
tivity, whi
h are also 
al
ulated as a polynomialof the temperature.2.5 Physi
al 
onstraintsBy de�nition, the sum over all mass fra
tions must be one and the mass 
on-servation implies that the sum over the di�usive 
uxes should vanish:nsXi=1 wi = 1 ; nsXi=1 ji = 0: (2.42)Moreover ea
h mass fra
tion wi must, also by de�nition, have a value betweenzero and one: 0 � wi � 1; 8 i = 1; : : : ; ns: (2.43)33



Some 
are needs to be taken in using the mixture-averaged di�usion 
oeÆ
ientsas des
ribed above. The mixture formulas are approximations and they arenot 
onstrained to require that the sum over all spe
ies di�usion 
uxes is zero,i.e. 
ondition (2.38) needs not be satis�ed. Therefore, one must expe
t thatapplying these mixture di�usion relationships in the solution of a system ofspe
ies 
onservation equations should lead to some non-
onservation, i.e. theresultant mass fra
tions will not sum to one. Therefore one of a number of
orre
tive a
tions must be invoked to ensure mass 
onservation.One possible approa
h is to de�ne a \
onservation di�usion velo
ity" as re
-ommended in [16℄. In this approa
h it is assumed that the di�usion velo
ityve
tor is given as Vk = V̂k + V
; (2.44)where V̂k is the ordinary di�usion velo
ity given by equation (2.35) and V
is a 
onstant 
orre
tion fa
tor (independent of spe
ies, but spatially varying)introdu
ed to satisfy equation (2.38). The 
orre
tion velo
ity is de�ned byV
 = � nsXk=1 wk V̂k: (2.45)An alternative is based on ex
luding the 
onservation equation for one spe
ies.Its mass fra
tion is then 
omputed simply by subtra
ting the sum of the re-maining mass fra
tions from unity. This is an attra
tive method for problemshaving one spe
ies that is always present in ex
ess. A similar approa
h involvesdetermining lo
ally at ea
h 
omputational 
ell, whi
h spe
ies is in ex
ess. Thedi�usion velo
ity for that spe
ies is then 
omputed to require satisfa
tion ofequation (2.38).But even though the 
omplete multi
omponent formulation is theoreti
allyfor
ed to 
onserve mass, and so should also be 
orre
ted methods for thesimpli�ed formulation, numeri
al implementations and resolution errors 
an
ause some slight non-
onservation. Depending on the numeri
al method, evenslight in
onsisten
ies 
an lead to diÆ
ulties. Therefore a third approa
h maybe used that ensures (2.38) but also (2.43). This latter basi
 
ondition mustabsolutely be ful�lled to avoid in
onsisten
ies with the physi
s and that theresolution method su�ers 
omputational ineÆ
ien
ies or 
onvergen
e failures.A 
orre
tion 
an be made dire
tly on the mass fra
tions ŵi that are 
al
ulatedwith the mixture-averaged di�usion model. This model 
an deliver slightlynegative or greater-than-one mass fra
tions. The 
orre
tion is then~wi = (10�12 if ŵi � 10�12;ŵi otherwise;wi = ~wiPnsk=1 ~wk :34



This allows to avoid the pure spe
ies problem and leads to physi
ally rea-sonable values for the mass fra
tions. Nevertheless the wi obtained are notsolution of the multi
omponent-
ow system anymore. One should ensure thatthis 
orre
tion is not too strong a

ording to the solution ŵi obtained by theresolution of the system of partial di�erential equations. Therefore we mayapply this method as 
omplementary 
orre
tive measure to the methods de-s
ribed above sin
e, in this 
ase, we 
an be sure that the magnitude of this
orre
tion will be signi�
antly smaller.In this work only the latter 
orre
tion is applied to the solution at every non-linear step of the solving pro
ess (see Chapter 4). Numeri
al tests showed usthat the other 
orre
tions did not have mu
h in
uen
e on the solution for ourappli
ation 
ases. The order of the 
orre
tion in our tests was lo
ally at most10% on the spe
ies mass fra
tions.2.6 Ideal Gas LawUsually an algebrai
 equation of state for the mixture 
loses the system. Inmany instan
es a 
ompressible 
uid 
an be 
onsidered as a perfe
t gas, evenif vis
ous e�e
ts are taken into a

ount. The ideal gas law gives a relationbetween the pressure and the density:p = �R TM ; (2.46)where R is the universal gas 
onstant andM the mean molar mass of the mix-ture. While 
onsidering the low-Ma
h-number approximation, the pressurewhi
h is to be found in this later state equation is the 
onstant thermodynam-i
al pressure pth.De�ning 
 = 
p=
v, the speed of sound 
 is given by
2 = ��p���s = 
 R TM = 
 p� ; (2.47)We 
an then de�ne the Ma
h number byM = juj
 : (2.48)For our appli
ations, it is supposed to be small. For example in the 
ow re-a
tor for the CARS experiment presented in Chapter 6, with a 
uid velo
ityof 50 m/s, the Ma
h number is 0.018. Under a value of 0.3, the 
uid may be
onsidered as hydrodynami
ally in
ompressible. However in the 
ase of multi-
omponent 
ows, this does not mean that the density of the 
ow is 
onstant.35



For ideal gases, the 
ontinuity equations 
an be rewritten in a form independentof the variable �. From the relation 2.46, dividing the equation 2.1 by � yieldsto the following form of the 
ontinuity equation:1p dpdt + 1M dMdt � 1T dTdt +r � u = 0; (2.49)with the de�nition of the total derivative ddt = ��t + u � r.In the following se
tion we will see that the pressure term 
an be negle
ted forthe pressure remains 
onstant in �rst approximation. The 
ontinuity equationis �nally 1M dMdt � 1T dTdt +r � u = 0: (2.50)2.7 Low-Ma
h-Number approximationIn low-Ma
h-number 
ows, the pressure �eld 
an be split in two parts, one
onstant and the other variable in spa
e and time. The �rst one is 
alled thethermodynami
al part and the se
ond one the hydrodynami
al part:p = pth + phyd: (2.51)The hydrodynami
al part phyd is negligible a

ording to the thermodynami
alpart pth. Rewriting the ideal gas law with these 
onditions leads to an equationfor the density: � = M pthRT : (2.52)This splitting has been used in many publi
ations (see for instan
e [42℄, [39℄,[40℄) and we sket
h here the method whi
h leads to it.We must �rst write the governing 
onservation equations with non-dimensionalvariables, taking the Ma
h number into a

ount. The Ma
h number used tomake the variables dimensionless is evaluated at the initial state. For the sakeof simpli
ity, we write here only the non-dimensional momentum equation:
M2� dûdt = �rp̂+ 
M2Re r � �̂ : (2.53)The^means that the 
orresponding variable is in non-dimensional form. Re =L�u� is the Reynolds number of the 
ow (L is a 
hara
teristi
 length of theproblem) and ddt = ��t + û � r. Sin
e the Ma
h number is small and sin
e itappears in the equations as � = 
M2, all the gas dynami
 variables may be36



expanded in terms of �. That is, any variable � 2 [�; u; p; T; w℄ 
an be expandedas follow: �(x; t) = �0(x; t) + � �1(x; t) + �2 �2(x; t) +O(�3): (2.54)Considering the variable p and substituting into (2.53), the momentum equa-tion reads �� DûDt = �rp̂0 � �rp̂1 � �2rp̂2 + �Re r � �̂ : (2.55)Gathering terms that are independent of M , one �nds rp0 = 0, whi
h showsimmediately that p0 = p0(t) (2.56)This is the main result of the low Ma
h number approximation. The largest
omponent of the pressure is 
onstant throughout the �eld and 
hanges onlywith time. p0 is the thermodynami
 pressure. The se
ond 
omponent ofthe pressure appears in the �-
omponent of the expansion of the momentumequation: �0 Du0Dt = �rp1 + 1Re r � �0: (2.57)p1 is the hydrodynami
 pressure and is generated to balan
e the 
hanges inmomentum within the 
ow �eld. Its 
ontribution to the total pressure isrestri
ted to �.2.8 Cylinder CoordinatesAs we saw in Chapter 1, the operators in 
ylinder 
oordinates involve sup-plementary terms that are not to be found in 
artesian 
oordinates. In thisse
tion we des
ribe the equations dis
ussed in the previous se
tions developedin 
ylinder 
oordinates and fo
us on these supplementary terms. Some infor-mation about generalized 
urvilinear 
oordinates 
an be found in [24℄ or [1℄,and about the Navier-Stokes equations in 
ylinder 
oordinates in [44℄.2.8.1 The Stress TensorThe stress tensor written in 
anoni
al form in Se
tion 2.3 depends on thevelo
ity-gradient tensor. Considering the symmetry 
ondition, just as in Chap-ter 1, this latter tensor 
an be written in 
ylinder 
oordinates in the basis(er; e�; ez): 37



ru = 0� �ur�r 0 �uz�r0 urr 0�ur�z 0 �uz�z 1AThe stress tensor is� = � (ru+rTu)� �23 �r � u+ p� I:De�ning a generalized pressure byp� = 23 �r � u+ p (2.58)and again taking into a

ount the symmetry 
ondition, the stress tensor be-
omes � = 0� 2�ur � p� 0 � (wr + uz)0 2� ur � p� 0� (wr + uz) 0 2�wz � p� 1A :In the 
ylinder system of 
oordinates, whi
h is de�ned in this work with theorthonormal base (er; e�; ez), the �rst and third 
omponents of the divergen
eof a symmetri
 tensor t of se
ond order is :(r � t)1 = 1r t11 + �t11�r + 1r �t12�� + �t13�z � t22r ;(r � t)3 = �t33�z + 1r t31 + �t31�r + �t32�� :Thus the �rst 
omponent of the divergen
e of the stress tensor in 
ylinder
oordinates with axial symmetry is(r � �)1 = r � (�rur) + � ��r (r � u) +r� � �u�r � � ur2 � �p��r :The se
ond 
omponent of the divergen
e of the stress tensor vanishes, due toaxial symmetry. It remains the third 
omponent:(r � �)3 = +r � (�ruz) + � ��z (r � u) +r� � �u�z � �p��z :One has to remember that the divergen
e in 
ylinder 
oordinates isr � u = �ur�r + urr + �uz�z :38



2.8.2 The Equations in Cylinder CoordinatesAdditional terms appear in 
ylinder 
oordinates for the ve
torial equations.Taking into a

ount the results of the previous 
hapter, we 
an then write themomentum 
onservation equations (2.4) in 
ylinder 
oordinates. Writing thevelo
ity in 
ylinder 
oordinates u = (ur; uz), the system of equations is1M dMdt � 1T dTdt +r � u = 0; (2.59)� �ur�t + � (u � r) ur �r � (�rur)� � ��r (r � u)�r� � �u�r + � urr2 + �p��r = � f (r)v ; (2.60)
� �uz�t + � (u � r) uz �r � (�ruz)� � ��z (r � u)�r� � �u�z + �p��z = � f (z)v ; (2.61)
� 
p �T�t + � 
p (u � r)T +r � (�rT ) = fT (w; T ); (2.62)� �wi�t + � (u � r)wi +r � ji = fi(w; T ); 8 i = 1; : : : ; ns: (2.63)
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Chapter 3Dis
retization
This 
hapter presents and analyzes a �nite element s
heme for simulating thethree major pro
esses in rea
tive 
ows: 
hemi
al rea
tions, di�usion and 
on-ve
tion.The methods used in simulation of rea
tive 
ows are usually based on either�nite di�eren
es for its simple implementation and mathemati
al ba
kgroundas in [3℄ and [46℄ or �nite volumes whi
h are a range of methods widely spreadin the engineering �eld (see [19℄ for a study of some s
hemes). The methodused in this work is based on 
onforming \Q1/Q1" Galerkin �nite elements.The basi
s on the mathemati
al theory of �nite element methods used in thiswork 
an be found in the books of Johnson [30℄ and Brenner/S
ott [15℄.The 
hoi
e of a �nite element method is prin
ipally motivated by the 
exibilityit o�ers with respe
t to adaptive mesh re�nement. It 
an be 
oupled with error
ontrol based on a posteriori error estimates provided by the orthogonalityproperty of the method as explained in Chapter 5. Thus a

ura
y for somephysi
al quantities whi
h are to be pre
isely known 
an be guaranteed.In this 
hapter, we dis
uss the dis
retization of the unsteady and steady multi-spe
ies low-Ma
h-number 
ompressible Navier-Stokes equations with adve
tion-di�usion-rea
tion equations for 
hemi
al spe
ies. The aim is to simulate quasi-stationary low-Ma
h-number 
ows in 
ow rea
tors.The appli
ation of 
onforming �nite elements to the in
ompressible or 
om-pressible Navier-Stokes equations is standard (see for instan
e [4℄, [49℄ or [10℄).Extensions to thermally 
oupled 
ows or multispe
ies rea
tive 
ows have alsobeen developed in the last de
ade. The reader 
an �nd some examples in [38℄,[50℄, [37℄ or in the more re
ent work [13℄.In the 
ase of axisymmetri
 
ows, the three-dimensional problem 
an be trans-formed to a two-dimensional one (see 
hapter 1). Although su
h a transfor-mation redu
es the 
omputation time, we have to deal with the followingproblems: 41



� The di�erential operators in the axisymmetri
 formulation have singu-larities on the axis. We have to work with weighted Sobolev spa
es (see
hapter 1 or [41℄, [11℄).� The radial and the axial 
omponents of the velo
ity belong to di�erentSobolev spa
es.We dis
retize the equations modelling axisymmetri
 multispe
ies rea
tive 
owswith stabilized Q1 elements for all variables. The equations 
onsidered haveindeed two di�erent sour
es of diÆ
ulties that a stable dis
retization mustover
ome.The �rst diÆ
ulty is the velo
ity-pressure 
oupling brought by the saddle-pointstru
ture of the Stokes system of equations. It is well known that this approa
hdoes not lead to a stable dis
retization unless the �nite dimensional spa
esful�ll the \inf-sup" 
ondition (see [25℄). In order to get a stable dis
retization,we add weighted mesh-dependent least-squares terms to the standard Galerkinformulation as proposed by Hughes et al. in [29℄.The se
ond kind of instability o

urs in the 
ase of high Reynolds num-bers, when the system be
omes 
onve
tion-dominated. The standard Galerkinmethod for 
onve
tion dominated problems produ
e approximations whi
h
ontain \spurious" os
illations in 
ase of non-smooth exa
t solutions. Theos
illations result from a la
k of stability of the method. A standard �niteelement te
hnique to deal with s
alar 
onve
tion-di�usion equations is thestreamline di�usion method (see [30℄, [60℄). The stabilization is done by addingfurther weighted least-square terms to the dis
rete equations. The stabilizingperturbation term 
an be physi
ally thought as a numeri
al di�usion term inthe dire
tion of the streamlines. This modi�
ation enhan
es stability with-out a strong e�e
t on the a

ura
y be
ause the terms added are based on theresidual.3.1 De�nitionsUsing the notations of 
hapter 1, we denote the inner s
alar produ
t in L21(
)by (u; v) = Z
 u(r; z) v(r; z) r dr dz (3.1)We also denote by X the solution ve
tor of the system presented in the nextse
tion, that is X = [ur; uz; p�; T ℄T : (3.2)For simpli
ity, in the following the notation p will repla
e p�. We will 
all itthe generalized pressure. 42



3.2 The Variational FormulationIn this se
tion, we 
onsider the 
ontinuity equation (2.59) as well as the mo-mentum equations (2.60) and (2.61). We also 
onsider a di�usion-
onve
tion-rea
tion equation modelling the evolution equations of temperature and spe
iesmass fra
tions. It 
an be written as follow:� �T�t + � (u � r)T +r � (�rT ) = fT (w; T ): (3.3)The variational formulation of the resulting system is obtained by writing theequations in weak form and integrating by parts. We de�ne the energy formsfor ea
h equation:� The 
ontinuity equation:a1(X; q) = � 1�M d �Mdt ; q�� � 1T dTdt ; q�+ (r � u; q); (3.4)� The �rst momentum 
onservation equation:a2(X;') =(� durdt ; ')� �p; �'�r + 'r�+ (�rur;r')+ �� urr2 ; '�� �� ��r (r � u); '�� �r� � �u�r ; '� ; (3.5)� The se
ond momentum 
onservation equation:a3(X; ) =�� duzdt ;  �� �p; � �z �+ (�ruz;r )� �� ��z (r � u);  �� �r� � �u�z ;  � ; (3.6)� The energy or spe
ies-mass 
onservation equationsa4(X; �) = �� dTdt ; ��+ (�rT;r�); (3.7)with ddt = ��t + u � r the total time derivative.Using the notations of Chapter 1, we denote by V� = H1�;0 and V+ = H1+;0 thespa
es for the velo
ity �eld, by Q = L21(
) the spa
e for the pressure and byS = H1+;0(
) the spa
e for the temperature and mass fra
tions.43



We de�ne the ve
torial energy form 
orresponding to the whole system bya(X; �) = a1(X; q) + a2(X;') + a3(X; ) + a4(X; �); (3.8)with the ve
torial test fun
tion � = [q; ';  ; �℄T 2 V = V� � V+ �Q� S.The right hand side ve
tor f of the system isf = [0; f (r)v ; f (z)v ; fT ℄T : (3.9)The variational formulation 
onsists then in �nding X 2 V = V��V+�Q�Ssu
h that a(X; �) = (f; �) 8 � 2 V (3.10)holds.3.3 Boundary Conditions3.3.1 General Boundary ConditionsFor this problem, the boundary 
onditions are on the four di�erent boundariesthe following: symmetry on �0 : ur = 0;in
ow on �1 : u = u0; T = T0;wall on �2 : u = 0; �T�n = f 0T ;out
ow on �3 : � �u�n � p � n = 0; �T�n = 0;
9>>>>>>=>>>>>>; (3.11)

where �
 = �0 [ �1 [ �2 [ �3, and f 0T is a surfa
e sour
e terms. Sin
e theintegration is weighted by the fa
tor r, the natural boundary 
ondition onthe symmetry boundary �0 vanishes. Nevertheless, a

ording to the propo-sition 2 of Se
tion 1.5.1, the radial velo
ity ur is zero on the symmetry line�0. The Neumann or mixed 
onditions on the other domain boundaries areobtained through the natural boundary 
onditions supplied by the variationalformulation.3.3.2 Supplementary ConditionsOther 
onditions 
oming dire
tly from the equations for a steady-state solution
an be taken into a

ount. 44



A 
ondition on uz 
an be found in the 
ase of a steady-state solution throughthe 
ontinuity equation (2.1) whi
h leads to the relationZ�3 � u � n d� + Z�0 � u � n d� + Z�1 � u � n d� = 0; (3.12)sin
e the velo
ity is zero on the wall boundary �2. On the symmetry line, thenormal n is in the radial dire
tion. For the out
ow and in
ow it is in the axialdire
tion. At the symmetry line the integration weight r is zero. We thenobtain Z�3 � uz r dr = Z�1 � uz r dr: (3.13)The integral upon the in
ow boundary is known for uz whi
h is set by aDiri
hlet 
ondition. It physi
ally means that the mass that 
ows into the tubegoes out.Again for the out
ow, a 
ondition on the generalized pressure 
an be foundby 
onsidering the natural boundary 
ondition on the out
ow boundary. Therelation Z�3 (� �uz�z � p) r dr = 0 (3.14)is 
ompleted by the mass 
onservation property�uz�z = ��(r ur)�r : (3.15)The 
ontinuity equation in strong formulation may be written in this wayonly if the density � remains 
onstant. This should be the 
ase on the out
owboundary. Therefore, to be sure that this relation is respe
ted, we must assumethat no 
hemi
al rea
tion take pla
e on the out
ow and that the mixing pro
essis 
omplete. If additionally the vis
osity � is also 
onstant on the out
ow (thesame hypothesis should lead to su
h a situation), a dire
t integration yieldsZ�3 p r dr = 0; (3.16)sin
e r = 0 on the symmetry line and ur = 0 on the wall.Another 
ondition 
an be derived from the 
ontinuity equation at least in the
ase of a strong solution of equation (2.1). We must here 
onsider the three-dimensional domain and remember that the symmetry boundary 
orrespondsto the middle of the 
ow rea
tor. Thus if the solution is smooth enough, themass 
onservation in strong form may be ful�lled, parti
ularly in the middleof the tube where no singularity is found. Lets 
onsider the following integral:I0 = Z�0 �r � (� u) r dz = 0 8� 2 L21(�0); (3.17)45



if the above hypothesis is ful�lled. This integral 
an be de
omposed as followsI0 = Z�0 r � �� ur�r dz + Z�0 r � �� uz�z dz + Z�0 r � urr dz: (3.18)We have I0 = 0, sin
e r = 0 on this boundary. The �rst and se
ond integralsof the right hand side are zero for the same reason. We 
an then dedu
e thatZ�0 �ur dz = 0 8� 2 L21(�0); (3.19)whi
h means that the radial 
omponent of the velo
ity is zero on the symmetryline. Therefore, if the above 
onditions are ful�lled, no Diri
hlet boundary
ondition needs to be set on the symmetry line for the radial velo
ity.3.3.3 Symmetry Boundary ConditionDepending on the spa
e whi
h the three-dimensional solution belongs to, themapping between the three-dimensional and the two-dimensional problems 
analso lead to supplementary boundary 
onditions whi
h are 
ontained withinthe �nite element spa
es 
onsidered. On
e again a

ording to Proposition2, the solution may indeed ful�ll supplementary 
onditions on the symmetryboundary if it has enough regularity. In the 
ase of a three-dimensional solutionwhi
h belongs to �H2(�
), with regard to the de�nition of the spa
e H2+, thenormal derivative to the symmetry boundary of the solution 
omponents ur,p and T vanishes. If the solution is sought in H1+, these boundary 
onditionson the symmetry line for the variable 
ited above are not valid anymore.3.4 Dis
retization in Spa
eStarting from the variational formulation (3.10) supplemented by the bound-ary 
onditions (3.11), we 
hoose the �nite element subspa
es Vh � V to obtainthe standard Galerkin dis
retization. We 
onsider in this work an approxi-mation by pie
ewise bi-linear shape fun
tions on meshes Th = fKg made ofquadrilaterals and satisfying the usual regularity 
onditions (quasi-uniformity).The width of the mesh Th is 
hara
terized in terms of the mesh size fun
tionh = hmax = maxK2Th (hK) with hK = diam(K). In order to ease the re�ne-ment and 
oarsening pro
esses, one hanging node per element edge is allowed.Considering the ve
torial energy form de�ned in (3.8), the dis
rete solutionXh 2 Vh is determined by the equationa(Xh; �h) = (f; �h) 8 �h 2 Vh; (3.20)with Vh the set of pie
ewise bi-linear shape fun
tions on Th, whi
h is a subsetof V de�ned in (3.8). 46



3.5 StabilizationAs mentioned before, the standard Galerkin dis
retization obtained for theNavier-Stokes equations does not yield a stable algorithm unless the spa
esful�ll the dis
rete LBB-
ondition (
f. [14℄, [25℄). This 
ondition is a 
ompat-ibility 
ondition for the velo
ity-pressure 
oupling. An alternative, presentedby Hughes et al. in [29℄, is to modify the dis
rete bilinear form in order to geta stable dis
retization.Moreover the 
onve
tion terms in any 
onve
tion-di�usion equation lead tosupplementary instabilities. Non-physi
al os
illations 
an appear in numeri
alsolutions of the Navier-Stokes equations. Therefore the approa
h is modi�ed.The stability of the Galerkin �nite element method has to be improved, butit has to be done 
arefully sin
e additional stability is often obtained at thepri
e of de
reased a

ura
y. We 
onsider two ways of enhan
ing the stabilityof the standard Galerkin �nite element method:� introdu
tion of weighted least-squares terms;� introdu
tion of arti�
ial vis
osity based on the residual.We refer to the Galerkin �nite element method with these modi�
ations asthe streamline di�usion method. The �rst modi�
ation adds stability throughleast squares 
ontrol of the residual and the se
ond modi�
ation adds stabilityby the introdu
tion of an ellipti
 term with the size of the di�usion 
oeÆ
ientdepending on the residual with the e�e
t that di�usion is added where theresidual is large, i.e. typi
ally where the solution is non-smooth. Both modi�-
ations enhan
e stability without a strong e�e
t on the a

ura
y be
ause bothmodi�
ations use the residual.3.5.1 The Galerkin-Least-Squares MethodLet a be a linear operator on a ve
tor spa
e V with inner produ
t (.,.) and
orresponding norm k:k. Typi
ally, A is a 
onve
tion-di�usion di�erentialoperator, and (.,.) is the L2 inner s
alar produ
t over some domain 
. We
onsider the linear problem of �nding u su
h thatAu = f; (3.21)for whi
h the variational formulation reads:Find u 2 V su
h that(Au; ') = (f; ') 8' 2 V: (3.22)47



The least squares method for (3.21) is to �nd u 2 V that minimizes the residualover V, that is kAu� fk2 = minv2V kAv � fk2: (3.23)This is a 
onvex minimization problem (be
ause it is quadrati
) and the solu-tion is 
hara
terized by(Au;A') = (f; A') 8' 2 V (3.24)The problem is symmetri
 positive de�nite (A is 
onsidered regular), and thus
an be solved without diÆ
ulties. Equation (3.22) may be more diÆ
ult tosolve, but may be more a

urate than equation (3.24), for the test-fun
tionspa
e used in the se
ond problem may 
ontain less information (for instan
e ifA 
ontains a di�erential operator and the ansatz fun
tions are linear). There-fore a 
ombination of the 2 systems is taken. The resulting system should stillbe a

urate enough but easier to solve.We now formulate the Galerkin-least-squares �nite element method for (3.21)by taking a weighted formulation of (3.22) and (3.24):Find u 2 V su
h that(Au; ') + (Au; ÆA') = (f; ') + (f; ÆA') 8' 2 V: (3.25)We 
an alternatively formulate the Galerkin-least-squares method as a Petrov-Galerkin method, whi
h is a Galerkin method with the spa
e of test fun
tionsbeing di�erent from the spa
e of trial fun
tions. In our 
ase the test fun
tionshave the form '+ ÆA' with ' 2 V .3.5.2 Arti�
ial Vis
osityAdding arti�
ial vis
osity yields the streamline di�usion method in the form:Find u 2 V su
h that(Au; '+ ÆA') + (�ru;r') = (f; '+ ÆA') 8' 2 V; (3.26)where � is the arti�
ial vis
osity. It is de�ned in the dis
retization pro
ess interms of the residual R(u) = Au� f through� = 
 h2 kR(u)k; (3.27)with 
 a positive 
onstant to be 
hosen, and h the lo
al mesh size.48



3.5.3 Appli
ation to S
alar Conve
tion-Di�usion Equa-tionsApplying this stabilization to any s
alar 
onve
tion-di�usion equation of type(3.7), the streamline di�usion method introdu
es a stabilizing term by the useof an additional test fun
tion of the form Æ u � r�. The introdu
tion of theadditional least-squares terms is done in an element-wise fashion. This impliesthat the weighting parameter Æ depends on the element. It will be subs
ribed
orrespondingly. We obtain the following equation:�� dThdt ; �h�+ (�rTh;r�h) + XK2Th�� dThdt �r � (�rTh); ÆK uh � r�h�= (fT ; �h) + XK2Th (f; ÆK uh � r�h) 8�h 2 Sh: (3.28)The least-squares terms 
orrespond to the addition of vis
osity in the dire
tionof the streamline. The method is 
onsistent in the sense that the stabilizingterms vanish for a strong solution of system (2.59) - (2.63). We dis
uss laterthe 
hoi
e of the parameter ÆK . The introdu
tion of arti�
ial vis
osity isstraightforward. However it should be brought into operation only if additional
ross-wind di�usion is really ne
essary to avoid os
illations. In many 
ases theleast-squares terms are suÆ
ient. The dis
retization still remains of se
ondorder (see [60℄) and stable for a wide range of di�usion parameters.3.5.4 Pressure StabilizationThe spa
es Qh and Vh used in this work are based on pie
ewise bi-linear fun
-tions on quadrilateral elements, namely Q1/Q1-elements. For these spa
esthe LBB-
ondition is not satis�ed (see [14℄, [25℄). The stabilization of theNavier-Stokes equations for our dis
retization with bi-linear 
onforming ele-ments is done in the same way as the streamline di�usion, i.e. by addingmesh-dependent least-squares terms to the Galerkin formulation. The dis-
retization then reads as follow:(r � (� uh); qh) + XK2Th (Ru; �K rqh )K= XK2Th (fv; �Krqh)K 8 qh 2 Qh;�� duhdt ; 'h�+�� ur;hr2 ; 'r;h� + (�ruh;r'h)�(�r(r � uh); 'h)� (r� � ruh; 'h)�(ph;r'h) = (fv; 'h) 8'h 2 V h� � V h+ ;
9>>>>>>>>>>>>=>>>>>>>>>>>>; (3.29)
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where Ru = � duhdt �r � (�ruh) +rph �r� � ruh��r(r � uh) + �r2 �ur;h0 �; (3.30)and �K is proportional to h2K. That amounts to additionally testing the mo-mentum 
onservation equations by qh+�K rqh. The stru
ture of the system is
hanged by the appearan
e of a pressure stabilization termPK �K (rph;rqh).Due to the 
hange of the bilinear form, stability for pressure is now implied bya generalized LBB 
ondition (
f. [4℄). As for the streamline di�usion method,the pressure stabilization vanishes for a strong solution u and p, sin
e the stabi-lizing term is based on the residual of the momentum equation. This pressurestabilization pro
ess for the Navier-Stokes equations must also be 
ompletedfor the momentum equations by the 
onve
tion stabilization pro
ess that hasbeen presented in previous se
tions.3.5.5 Stabilization WeightsWe de�ne in a �rst step some forms that des
ribe the stabilizing terms. Thepressure stabilization is denoted by
(Xh; q) = XK2Th (Ru; �K rq )K; (3.31)with Ru de�ned in (3.30).The streamline di�usion method for the velo
ities involves the termsu(Xh; �) = XK2Th (Ru; ÆK uh � r� )K (3.32)And the stabilization for the temperature equation 
onsists of the followingterm: sT (Xh; �) = XK2Th�� dThdt �r � (�rTh); 
K uh � r h�K: (3.33)From the energy form (3.20), we de�ne the energy form of the system aug-mented by the least-squares terms byaÆ(Xh; �h) = a(Xh; �h) + 
(Xh; qh) + su(Xh; �h) + sT (Xh;  h): (3.34)This dis
retization has been analyzed for example in [28℄, [31℄ or [51℄. An erroranalysis 
lari�es the role of the parameters and motivates their 
hoi
e. The50



parameters �K; ÆK and 
K have to be 
hosen depending on the lo
al mesh sizehK , the 
onve
tion u and the vis
osity � or � on ea
h 
ell K. Error estimatesobtained in [13℄ allow to derive values for the stabilization parameters for the
ompressible-low-Ma
h-number-
ow system for whi
h the error of dis
retiza-tion e = X �Xh 
an be minimized. This study leads to the following valuesfor the velo
ity stabilization:ÆK = hK4t+ �=(� hK) + juj1 : (3.35)Analogously, minimization of the error in temperature givesÆK = hK4t+ �=(
p � hK) + juj1 : (3.36)4t represents the time step. We dis
uss time dis
retization in next se
tion.A short analysis of the limit 
ases helps to understand this stabilization pa-rameter. In the 
ase of 
onve
tion dominan
e, the velo
ity u is greater as thevis
osity or time step and Æ � hjuj1 . If di�usion rules the 
ow, there is no needto add mu
h stabilization. Æ being then proportional to h2� , the se
ond order ofthe method is assured. For unsteady solutions, when the time step pro
essesare dominant, we have Æ � 1=4t.3.6 Time dis
retizationIn this work we are interested in stationary solutions of the system des
ribedin Chapter 2. However severe non-linearities in rea
tive 
ows may imply anon-stationary behavior of the solution, with small instabilities in time whi
hmake a steady-state not exa
tly rea
hable. The solution may be 
onsidered asquasi-stationary but the system 
an then only be solved using a non-stationarysolution algorithm.In order to take into a

ount time variation of the solution, we use the expan-sion uh(t; x) = P ui(t)�i(x). We divide the time interval 
onsidered into Nparts of size kn = tn � tn�1. We denote the value of any variable � at time tnby �n = �(tn).The impli
it Euler method leads to a system analogous to the following system:bÆ(Xnh ; �h) + kn aÆ(Xnh ; �h) = bÆ(Xn�1h ; �h); (3.37)with bÆ being the L2 s
alar produ
t augmented by stabilization terms, i.e.bÆ(X; �) = (X; �) +PK2Th (X; Æ u � r�).The additional term for the stabilization in the form bÆ may be negle
ted ifwe are a
tually looking for a quasi-stationary solution, as said above, and aretherefore not interested in the exa
t evolution in time. This term does not bringmore stability to the s
heme and makes the pro
ess more time-
onsuming.51



3.7 Full Dis
retization for Rea
tive FlowsWe 
an now write the dis
retization of the whole system (2.59)- (2.63). Wehave the following boundary 
onditions:symmetry on �0 : ur = 0;in
ow on �1 : u = u0; T = T0; wi = w(i)0 ;wall on �2 : u = 0; �T�n = nsXi=1 hiMi _w0i ; �wi�n =Mi _w0i ;out
ow on �3 : � �u�n � p � n = 0; �T�n = 0; �wi�n = 0:
9>>>>>>>>=>>>>>>>>; (3.38)

The weak formulation 
an be written as(r � uh; q) + (L(uh; wh); q) + 
(ph; uh; q) = Nh(q) 8q 2 Qh;1kn (uh; �) + (� uh � ruh; �) + (�ruh; �)�(r� � ru; �)� (�r(r � u); �)� (ph;r � �)+(�ur;hr2 ; �r) + su(ph; uh;�) = Fh(�) 8� 2 Vh;1kn (w(i)h ;  ) + (� uh � rw(i)h ;  ) + (�Dirw(i)h ;  )+(�Diw(i)h rM; ) + si(w(i)h ; uh; ) = Ph(wh;  ) 8 2 Sh;
9>>>>>>>>>>>>>=>>>>>>>>>>>>>; (3.39)

where Nh; Fh and Ph are the 
orresponding fun
tionals formed by the right-hand side variational formulation and the stabilization. Ph 
ontains the volume
hemi
al sour
e terms but also the surfa
e sour
e terms R�3 Mi _w0i � d�. Theoperator L(uh; wh; q) 
onsists of the variational formulation of the 
onve
tionterms from the 
ontinuity equation (2.59). The temperature is 
onsidered hereas an additional spe
ies w0, sin
e the stru
ture of its evolution equation is thesame as the stru
ture of a mass 
onservation equation for any spe
ies. We haveD0 = �=(� 
p). The density is de�ned by an algebrai
 equation � = �(wh).Sin
e di�usion 
oeÆ
ients for ea
h spe
ies 
an di�er strongly, one has to de�nea stabilization parameter for ea
h spe
ies:Æ(i)K = hKkn +Di=hK + juj1 : (3.40)and the least-squares stabilization term:si(w(i)h ;uh; ) = XK2Th � 1kn w(i)h + � uh � rw(i)h�r � ��Dir(M w(i)h )��Mi _w(i)h ; Æ(i)K uh � r �K : (3.41)
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Chapter 4Numeri
al Solution
To solve the strongly non-linear system 
oming from the �nite element dis-
retization of multispe
ies rea
tive 
ows, we 
onsider the 
lassi
al approa
hbased on a linearization of the system with the help of its ja
obian matrix.The iterative method used in this work is a defe
t 
orre
tion method whi
hrequires to solve a linear system in ea
h non-linear step. In su
h an algo-rithm for 
omputing 
omplex rea
tive 
ows, two ingredients are de
isive forthe eÆ
ien
y of the total solution pro
ess: an e
onomi
al storage te
hniquewhi
h fully exploits the very spe
ial stru
ture of the ja
obian matri
es, and aneÆ
ient and robust solver for the large 
oupled linear systems.This 
hapter dis
usses the linear systems obtained from a simpli�
ation ofthe ja
obian matrix, whi
h may be eÆ
iently solved. This iteration matrixhas to provide enough a

ura
y a

ording to the non-linear system to obtainan a

eptable 
onvergen
e rate of the defe
t 
orre
tion pro
ess. We will alsodes
ribe methods to solve the resulting linear systems.To solve the linear systems we have 
hosen a Generalized Minimal Residual(GMRES) algorithm. GMRES is appropriate for non-symmetri
 and inde�nitematri
es. In order to obtain an eÆ
ient solver with a rate of 
onvergen
eindependent of the mesh size, we use a multigrid s
heme as a pre
onditioner.The lo
ally-re�ned stru
ture of the mesh makes the pre
onditioning through amultigrid method ne
essary to avoid the dependen
e of the 
ondition numberon the mesh width.The grids under 
onsideration are obtained as follows: The 
oarsest mesh doesnot 
ontain any hanging node and 
onsists of 
ells belonging to the level l = 0.The 
ells of level l � 0 are obtained by re�nement of some 
ells belongingto level (l � 1). Due to this hierar
hi
al re�nement strategy the requiredsmoothing operations in a multigrid 
y
le on level l are restri
ted to the 
ellsbelonging to this level. We use in this work di�erent smoothing operators.For the Navier-Stokes part of the system, we have implemented a methodsimilar to the smoother proposed by Vanka in [52℄ for staggered grid �nite53



di�eren
e dis
retizations, whi
h 
onsists of a blo
k Gauss-Seidel iteration loop.The de
omposition in blo
ks is done pat
h-wise on ea
h level of the grid and
orresponds to a lo
al grouping of velo
ities and pressure unknowns. For thesmoothing of the temperature and spe
ies equations we use two methods; the�rst one is based on point-Gauss-Seidel iterations, while the se
ond one may beused in the 
ase of sti�er systems and is based on a blo
k-ILU de
omposition.4.1 Defe
t Corre
tionAs mentioned above, the non-linear system of equations is solved by a defe
t-
orre
tion method. The iteration matrix is an approximation of the ja
obianof the non-linear equations. This method is based on the Newton iterationwhi
h 
onsists of the following �x-point iterationXn+1 = 0� upwi 1An+1 = 0� upwi 1An � ! (DR)�1Rn; (4.1)with the following notations:DR = derivative of R with respe
t to the variables u, p, T, wi;R = residual of the system that is to be solved;! = relaxation parameter:For the sake of simpli
ity we will 
onsider the temperature in this 
hapter asthe �rst term of the ve
tor de�ning the 
hemi
al state of the 
ow, i.e. w0 = T ,sin
e the equations for temperature and those for the spe
ies have exa
tly thesame 
hara
teristi
s.We also denote the in
rements for our solution ve
tor bydn+1X = 0� dudpdwi 1A = 0� un+1 � unpn+1 � pnwn+1i � wni 1A ; (4.2)n+ 1 being the number of the 
urrent non-linear step.In the defe
t-
orre
tion pro
ess, DR is a
tually not 
omputed exa
tly sin
e asuitable approximation of this derivative is often suÆ
ient to solve the system.For this reason, with the additional use of a relaxation parameter !, thismethod is 
alled quasi-Newton method, when the 
omputed DR 
onverges tothe exa
t �nal DR, or defe
t 
orre
tion method otherwise.Damping the iteration step with the parameter w leads to a stabilization ofthe algorithm. ! is 
hosen to be w = 2�i where i is the lowest integer greater54



than 0 su
h that the monotoni
ity jR(Xn � 2�i dn+1X )j < jR(Xn)j is ful�lled.Xn+1 = Xn � 2�i dn+1X is then 
hosen as the update. This stabilization isne
essary to have a robust solver and avoid os
illations in the 
onvergen
e ofthe method. An example of divergen
e in the 
ase without damping 
an befound in [48℄.4.2 Newton MatrixThe aim of this se
tion is to des
ribe the 
onstru
tion of the ja
obian matrixand its approximation. We present the ja
obian matrix and its approximationused in this work in order to redu
e storage requirements and 
omputationtime. We introdu
e the following form whi
h is the residual of the system:R(fp; u; wg; fq; �;  g) =Ru(fp; u; wg; �) +Rp(fp; u; wg; q)+ nsXi=0 Rwi(fp; u; wg;  ); (4.3)where Ru, Rp are the partial residuals a

ording to the Navier-Stokes equationsand Rw the partial residual a

ording to the temperature-spe
ies equations:Ru(fp; u; wg; �) =�� dudt ; ��+ (�ru;r�)� (p;r � �)+ (� urr2 ; �)�(r� � ru; �)� (�r(r � u); �)� (fv; �);Rp(fp; u; wg; q) = (r � u; q) + (L(u; w); q) + (rp; Ærq);Rwi(fp; u; wg;  ) =�� dwidt ;  �+ (�Dirwi;r )� (fwi;  );i = 0; : : : ; ns: (4.4)
Taking into a

ount the stabilization terms would not 
hange the stru
tureof this system. The only stabilizing term whi
h 
hanges the 
hara
teristi
s ofthe system is the term (rp; Ærq) in the operator 
(X; q) de�ned in relation(3.31).The ja
obian matrix 
orresponding to the residual given above is

DR = 2666664 �Ru�u �Ru�p �Ru�wj�Rp�u �Rp�p �Rp�wj�Rwi�u �Rwi�p �Rwi�wj
3777775 ; (4.5)

55



with i = 0; : : : ; ns and j = 0; : : : ; ns. For the approximation of this matrix,we must take the physi
s of the 
ow into 
onsideration as well as the ability toeÆ
iently 
al
ulate the derivatives and solve the system at low 
omputational
ost. The 
ow variables u, p are 
oupled with the 
hemi
al state w throughthe mixture vis
osity �, the density � and the mean molar mass �M in theNavier-Stokes equations and through the velo
ity of the 
uid in the 
onve
tion-di�usion equations for the temperature and spe
ies. For our appli
ation to 
owrea
tors, no rapid variation of the physi
al quantities should be observed inalmost the whole domain. Therefore, in order to be able to bring eÆ
ientsmoothers into play, we de
ide to keep only a weak 
oupling between theNavier-Stokes equations and the temperature/spe
ies equations. The system is
orrespondingly linearized at ea
h non-linear step. In the approximate ja
obianwe negle
t the blo
ks �Ru�w , �Rw�u and �Rp�w . The term �Rw�p is also not taken intoa

ount sin
e the temperature is almost independent of the pressure for low-Ma
h-number 
ows. The density 
ouples the equations through the ideal gaslaw (2.46). Vis
osity, mean molar mass and spe
ies or temperature 
onve
tionvelo
ities are 
al
ulated in ea
h non-linear step with the previous-non-linear-iteration value of the solution ve
tor.With these simpli�
ations, the approximation of the operator DR has thefollowing blo
k-form: eDR = 24 App Apu 0Aup Auu 00 0 G 35 : (4.6)While denoting the test and trial fun
tions by  and �, respe
tively, we 
anwrite the approximated operators de�ning eDR using overlined variables as thelinearized variables 
al
ulated with their values taken from the previous non-linear step.For the 
ontinuity equation, Apu 
orresponds to the sum of the divergen
e oper-ator with the element-wise least-squares terms stemming from the streamline-di�usion stabilization and App results from the pressure velo
ity stabilization:App = XK2Th (r�; �K r )K ; (4.7)Apu = (r � (� �);  ) + XK2Th ( � d�dt �r � (�r�)+ �r2 �ur0 �� �r(r � �)�r� � r�; �K r )K ; (4.8)with the total time derivative ddt = ��t+�u�r. The variable �u is here the velo
ityevaluated at the previous step of the iterative pro
ess. We negle
t the otherpart of the derivative of the transport term with regards to u.56



Furthermore the operator Aup represents the in
uen
e of the pressure in themomentum 
onservation equation, and Auu 
orresponds to the 
onve
tion-di�usion terms in this equation:Aup = �(�;r �	) + XK2Th (r�; �K �u � r	)K; (4.9)Auu = �d�dt ;	�+ (�r�;r	) + (�urr2 ;	r)�(r� � ru;	)� (�r(r � u);	)+ XK2Th�d�dt � �r�; �K �u � r	�K: (4.10)Considering (4.6), we see that the linearized system is split into two indepen-dent parts. One part determines the evolution of the 
ow, the other part
orresponds to the 
hemistry and the behavior of spe
ies within the 
ow.The operator G 
orresponds to the 
onve
tion-di�usion-rea
tion terms of thespe
ies mass 
onservation equations and to the temperature evolution equa-tion, whi
h have the same stru
ture. While 
onsidering the intera
tions be-tween the spe
ies, the blo
k-matrixG 
an be de
omposed into (ns+1)�(ns+1)matri
es, the temperature being 
onsidered as a separate spe
ies. The diago-nal matri
es Gii 
orrespond to the 
onve
tion-di�usion of the mass fra
tion ofthe spe
ies i, as well as the rea
tion of this spe
ies in the gas-phase or at thewall. For all i = 0; : : : ; ns we haveGii = �d�dt ;  �+ (�Dir(M �);r )� �Mi � _wi�wi ;  �� �Mi � _w0i�wi ;  ��wall + XK2Th�d�dt + �Dir(M �); Æ(i)K �u � r �K� XK2Th�Mi � _wi�wi ; Æ(i)K �u � r �K:
9>>>>>>>>=>>>>>>>>; (4.11)

The non-diagonal blo
k-matri
es elements of the matrix G, denoted by Gijwhere i; j = 0; : : : ; ns and i 6= j, 
orrespond to the 
oupling between thespe
ies through 
hemi
al rea
tions: whi
h spe
ies are 
reated while othersare 
hemi
ally transformed. These blo
k-matri
es 
ontain only derivatives ofgas-phase or wall produ
tion terms. For all i; j = 0; : : : ; ns with i 6= j, wehave Gij = ��Mi � _wi�wj ;  �� �Mi � _w0i�wj ;  ��wall� XK2Th�Mi � _wi�wj ; Æ(i)K �u � r �K: (4.12)
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As noted in Se
tion 2.3.2, we want here to emphasize the importan
e of thegas-phase and wall produ
tion terms in the ja
obian matrix. Even if theseprodu
tion terms may have small in
uen
e on the residuum (the surfa
e rea
-tions o

ur on 1D domains { for 2D 
omputations), the 
onvergen
e largelydepends on their presen
e in the ja
obian matrix. A
tually the di�eren
e onthe 
onvergen
e between two methods using di�erent approximations of theja
obian matrix may be noti
ed only very late in the 
onvergen
e pro
ess. The
onvergen
e 
riterion (often residuum smaller than a 
ertain toleran
e) has tobe 
hosen 
arefully. Indeed numeri
al experiments showed us that, for someapproximations, a residuum drop whi
h 
ould seem to be suÆ
ient a

ordingto a

epted toleran
es for Navier-Stokes solver, is a
tually not enough for the
onvergen
e of the 
hemi
al pro
esses, prin
ipally for surfa
e rea
tions. Somesurfa
e rea
tions may not be taken into a

ount at this point in the 
onver-gen
e pro
ess. This means that we must be 
areful about lo
al 
onvergen
efor 
hemi
al rea
tions or a

ept to solve the system with a 
onvergen
e to thezero ma
hine. We have tested several approximations of the ja
obian matrixin order to understand whi
h terms were ne
essary. Comparison for the wallrea
tion terms 
an be found in Chapter 6.If one de
ided to delete one spe
ies, as proposed in Se
tion 2.5, in order tomake the approximated solution automati
ally ful�ll the 
onstraint (2.42), theja
obian matrix has to be 
al
ulated in a slightly di�erent manner. The reader
an �nd a 
omplete explanation of this method in [13℄. A 
hemi
al 
omponent
an be deleted and its mass 
onservation equation substituted by the relation(2.42). The ja
obian matrix of the resulting system is then 
al
ulated.4.3 Implementational ConstraintsThe size of G depends on the number of spe
ies and the number of degreeof freedom in the dis
retization. The latter is 
ontrolled through an adaptivepro
ess whi
h will be dis
ussed in Chapter 5; it is typi
ally in a range between3000 to 20000. The sparse matrix type we use in the implementation is sup-plied by the DEAL library and is usually used for solving large linear systemresulting from a �nite element dis
retization. The reader 
an �nd a des
riptionof this sparse matrix stru
ture in [43℄. In our test appli
ations, in Chapter 6,the maximal number of spe
ies 
onsidered is 39. Due to memory restri
tions,with so many spe
ies, if we want to a
hieve enough approximation a

ura
y,we 
annot keep the whole matrix G in memory. Thus, with regards to thememory available, we de
ide to keep the whole matrix G or redu
e it to itsblo
k-diagonal part, i.e. not to take the matri
es Gij into a

ount. This sim-pli�
ation is reasonable only if the rea
tion terms are smooth. We will see thatthe resulting defe
t 
orre
tion method still 
onverges for our appli
ations withan a

eptable 
onvergen
e rate with regard to 
al
ulation time. For problem58



with more intense rea
tions, we may be for
ed to take the whole matrix intoa

ount.4.4 SolversThe global solution pro
ess for steady nonlinear systems used for our purpose
an be seen as a nested pro
ess (see Fig. 4.1) involving, within a defe
t-
orre
tion s
heme based on a Newton iterative method, a pre
onditioned Gen-eralized Minimal Residual method (GMRES) as linear solver (see [45℄), wherethe pre
onditioner is 
hosen to be a multigrid method. Our implementationis based on the multigrid method developed by Be
ker in [4℄, whi
h o�ers theability to handle lo
ally re�ned grids. For our multigrid method we use severalsmoothers depending on the systems we have to solve. For unsteady problemsa loop over time steps wraps again the whole pro
ess.
GMRES

Smoothers

 Gauss-Seidel
 Vanka

 ILU

Newton / Defect Correction

Multigrid (Preconditioner)

Figure 4.1: Nested solution pro
ess.In ea
h nonlinear step of the defe
t-
orre
tion method, a linear system is to besolved. Sin
e the linearized system is de
oupled due to (4.6), we may imple-ment two linear solvers: one for the mixture-averaged 
ow (i.e. Navier-Stokes),the other for the spe
ies 
onve
tion-di�usion-rea
tion pro
ess. This requirestwo di�erent strategies for the smoothing iteration. In our implementationwe have 
hosen a "Vanka smoother" for the Navier-Stokes part of the system59



and a Gauss-Seidel smoother or an ILU smoother for the 
hemi
al part of thesystem.4.4.1 MultigridThe mesh we use for the dis
retization 
omes from a re�nement pro
ess (seeChapter 5) whi
h makes the hierar
hi
al stru
ture of the triangulation avail-able. The idea is to use this stru
ture to implement an eÆ
ient pre
onditionerbased on multi-level te
hniques.The appli
ation of multigrid methods on lo
ally re�ned mesh is not trivial.The reader 
an �nd a detailed explanation in the work of Be
ker [4℄ and animplementation in the DEAL �nite-element library (see [6℄). We only sket
hhere the essential steps of su
h a method.The multigrid pro
ess we use for our purpose is based on a V-
y
le. Onthe 
oarsest grid T0 the system is solved exa
tly. On other levels Tl , a pre-smoothing is done and the residual is then restri
ted on a 
oarser grid Tl�1where this pro
ess is re
ursively repeated until the 
oarsest grid is rea
hed.Then the solution is prolongated from the 
oarser grid Tl�1 to the grid Tl anda post-smoothing is 
arried out.
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Figure 4.2: Multigrid V-
y
le.In the following subse
tions we des
ribe the smoothing operators. The smoo-thing of the residual is done level-wise. Smoothing the residual on ea
h levelof the mesh means eliminating its high frequen
ies in order to approximateit a

urately on a 
oarser grid. A possibility is to smooth the system with a�xed number of GMRES steps on ea
h level of the triangulation. Nevertheless60



this leads to bad performan
e of the multigrid method, espe
ially when themesh 
ontains more than four or �ve levels. We need to use methods whi
hhave good smoothing properties (not 
ompulsorily a solver) without demand-ing too mu
h 
omputational e�ort sin
e the smoother works on ea
h level ofthe mesh. For the Navier-Stokes equations, we have therefore implementeda Vanka-type smoother, whi
h is a blo
k-Gauss-Seidel iterative method. Theblo
k are 
onstru
ted by 
onsidering a pat
h-wise grouping of pressure andvelo
ities unknowns. The spe
ies equations are smoothed with the help of apoint-Gauss-Seidel iterative method or an ILU method. In order to obtaingood smoothing properties, it is well known that these two methods requirea renumbering of the grid nodes in the dire
tion of the 
ow. We will shortlydis
uss this point as �nal remark.4.4.2 Vanka Smoothing OperatorAs smoothing operator for the Navier-Stokes equations we employ a blo
k-Gauss-Seidel iteration similar to the one proposed by Vanka in [52℄. A smoo-thing step 
onsists of a loop over the pressure degrees of freedom, where wesimultaneously update the 
orresponding pressure value together with the ve-lo
ity unknowns whi
h are 
oupled with it, by solving a lo
al system derivedfrom the Navier-Stokes equations.
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Figure 4.3: Pat
h de�ning the lo
al problems for the Vanka smoother.To this end, we asso
iate with ea
h pressure point Pi of the 
onsidered level apat
h 
onsisting of the 
ells having Pi in 
ommon (see Fig. 4.3). On ea
h pat
hwe de�ne the indi
es li with 0 � i � 8 for velo
ity degrees of freedom and the61



lo
al index lp 
orresponding to the pressure point. The dis
rete operator forthe stabilized Navier-Stokes system of equations 
an be written as follows:� A BE C � : (4.13)Having 
al
ulated the residuals ri and rp for the velo
ity and the pressurerespe
tively, we obtain, after simpli�
ation, the following lo
al system for thevelo
ity and pressure updates di and dp:2666664 a11 0 : : : 0 b10 a22 : : : 0 b2... ... : : : ... ...0 0 : : : ann bne1 e2 : : : en 

37777752666664 d1d2...dndp

3777775 = 2666664 r1r2...rnrp
3777775 : (4.14)This system has been simpli�ed by negle
ting the 
oupling terms betweenthe velo
ity degrees of freedom (i.e. a12; : : : ). It 
an be easily solved withtwo passes over the involved unknowns. This 
onstru
tion provides velo
ityupdates whi
h satisfy the mass 
onservation equation with respe
t to the testfun
tion on the pat
h.The Vanka smoother showed more robustness than a simple Gauss-Seidelsmoothing during tests done on the Navier-Stokes equations with 
onstantvis
osity. It is well known for saddle-point problems that by in
reasing theReynolds number of the 
ow, the linearized systems may still be solved withthe Vanka smoother, while when using the Gauss-Seidel smoother the wholepro
ess shows poor 
onvergen
e rates or even diverges. Numeri
al tests onour appli
ation 
ases for 
ow rea
tors led us to set the number of pre- andpost-smoothing steps with the Vanka smoother ea
h to four. Less iterationsteps 
ould handi
ap the eÆ
ien
y of the multigrid method as pre
onditioner.4.4.3 Chemi
al System SmoothingThe 
hemi
al system formed by the spe
ies mass 
onservation equations andthe temperature evolution equations is solved with the help of Gauss-Seideliterations or, for more sti� systems, with an ILU method, a des
ription ofwhi
h 
an be found in [13℄. We use an ILU(0) from the MV++ and IML++pa
kages (see [43℄ and [21℄). MV++ implements eÆ
ient matrix/ve
tor 
lassesdesigned for high performan
e numeri
al 
omputing and IML++ is a 
olle
tionof algorithms for solving or pre
onditioning linear systems of equations. Theidea of the ILU method is to 
ompute a fa
torization of the formA = LU; (4.15)62



where A is the matrix of our system, L and U are a lower and an uppertriangular matrix respe
tively. In general L and U will be dense matri
es.The in
omplete LU method of order zero provides approximations of these twomatri
es, ~L and ~U , whi
h have the same sparse stru
ture as the matrix A. Thisallows to redu
e memory requirements and to 
al
ulate the de
omposition withlow 
omputational 
osts. The fa
torization remains a

urate enough to ensurethe robustness of the method. Some examples of appli
ation of in
omplete LUmethods may be found in [59℄ and [13℄.The blo
k Gauss-Seidel iterative method is not as robust as ILU methods butis less time-
onsuming and 
an be used as an eÆ
ient smoother for linearsystems whi
h do not 
ontain too strong 
onve
tion and sour
e terms. Withregard to the implementation of a smoother for the 
hemi
al system, one mustonly be aware of the limits of this method and should make an ILU methodalso available. The Gauss-Seidel smoother is used as pre- and post-smootherfor the multigrid method with a number of steps typi
ally ea
h between twoand �ve.The eÆ
ien
y of these two methods is extremely dependent on the numberingof the mesh points. To be able to use the information transport within the 
ow,the degrees of freedom have to be numbered in streamline dire
tion. Sin
e weneed the smoother on ea
h level of the mesh, the numbering of the nodes hasto be realized independently on ea
h re�nement level. A renumbering methodbased on the minimization of a fun
tional depending on the velo
ity of the 
owis des
ribed in [13℄. However this sort of renumbering method might demandsome 
omputational e�ort and if the dire
tion of the 
ow is known in advan
e,one may prefer to make the numbering simply dependent on this dire
tion,whi
h is done very qui
kly. We used the latter method in our appli
ations onlow-pressure 
ow rea
tors.
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Chapter 5Adaptivity
5.1 Introdu
tionIt is frequently the 
ase in engineering problems that the main quantity of
on
ern is not the solution of a partial di�erential equation, but a se
ondaryquantity whi
h is a s
alar fun
tional of the solution.The strategies for mesh re�nement 
onventionally used in �nite element meth-ods are mostly based on a posteriori error estimates in global norms involvinglo
al terms 
orresponding to residuals of the 
omputed solution. The meshre�nement pro
ess aims at equilibrating these lo
al error indi
ators. Howevermeshes generated on the basis of su
h global error estimates may not be appro-priate for 
ontrolling the a

ura
y in approximating lo
al quantities su
h aspoint values or 
ontour integrals. More detailed information is needed on theme
hanism of error propagation with regard to these quantities depending onthe solution. This 
an be obtained by employing suitable duality arguments.The 
orresponding dual solution is approximated on the 
urrent mesh and isused to derive lo
al weight fa
tors whi
h are used in the a posteriori errorestimates.Our aim in this 
hapter is to propose an approa
h to the derivation of a pos-teriori bounds on the error in linear fun
tionals for rea
tive 
ows in order tobe able to 
ompute some physi
al quantities with best a

ura
y. A fun
tionalJ(�) of the solution is de�ned, whi
h may represent for example lo
al values ofthe temperature, 
ontour average of spe
ies mass fra
tions or point values of
ertain 
omponents of the system. In these 
ases the error 
ontrol is appliedonly to a part of the solution. When su
h well de�ned quantities are to be 
al-
ulated with pre
ision, an error indi
ator allows to 
ontrol the approximationerror on these quantities for the 
al
ulated solution.We present in this 
hapter an adaptive algorithm leading to reliable and eÆ-
ient error 
ontrol in our 
ontext, a

ording to a fun
tional as des
ribed above.65



It allows to 
al
ulate the solution with a 
ontrolled a

ura
y for the value ofthe fun
tional J(�) on \optimal" meshes for our FEM Ansatz a

ording to the
orresponding error estimator. \Optimal" means either \most e
onomi
al fora
hieving a pres
ribed a

ura
y" or \most a

urate for a given number N ofmesh points". The fun
tional is assumed in this work to be linear althoughthe approa
h 
an be extended to non-linear fun
tionals (see [8℄).The error estimation is based on duality arguments. The dual problem isobtained from a linearization of the primal problem. Sin
e the dual problem islinear, the additional 
ost indu
ed by the 
omputation of the error estimator
orresponds to only one Newton step of the solution of the non-linear primalproblem on ea
h mesh level.In 
ontrast to the error bound obtained by duality arguments, a 
lassi
al ap-proa
h to adaptivity for rea
tive 
ows supplies error indi
ators usually basedon the estimation of a global stability 
onstant, independently of any quantityderived from the solution (see [53℄). For s
alar equations, su
h an indi
ator�ind has the form �ind = XK2Th!K 
K; (5.1)where !K is a weight depending on the 
ell K and 
K is a suitable di�eren
equotient of the dis
rete solution approximating some derivative. In rea
tive
ow 
omputations, the situation is more 
ompli
ated sin
e we deal with asystem of equations. For systems the 
orresponding indi
ator reads�ind = XK2Th nXi=1 !iK 
iK: (5.2)In order to sum over all the equations, a s
aling of the 
omputed variables (forinstan
e the mass fra
tion) may be ne
essary, sin
e the 
on
entration of thespe
ies in the mixture may sensibly di�er by many orders.Through the approximation of derivatives by di�erential quotients, su
h anindi
ator will 
apture the strong variations in 
on
entration and therefore willlead to a re�nement in rea
tion zones. However the absen
e of informationon global error propagation as well as on the 
oupling between the di�erent
omponents may have negative in
uen
e on the quality of the dis
rete solutionby not re�ning the mesh where the error is a
tually 
reated. Moreover thereis no possibilities to 
ontrol the error on quantities depending on the solution.Other traditional approa
hes to the 
onstru
tion of lo
ally adapted meshesoften resort to ad ho
 
riteria, often gradients of physi
al quantities, whoseimpa
t on the a

ura
y of the numeri
al solution is diÆ
ult to assess.In the �rst se
tion of this 
hapter an error estimate for a fun
tional in thesimple 
ase of a linear 
onve
tion-di�usion equation is developed. This 
on
ept66



is then applied to a non-linear PDE. We �nally apply the error estimation torea
tive-
ow problems and then dis
uss how to organize a mesh re�nementpro
ess with the help of the 
omputed estimator.5.2 Error Estimation for a Linear S
alar Equa-tionWe 
onsider the s
alar 
onve
tion-di�usion equation with homogeneous Diri
h-let boundary 
onditions. Let � be a given ve
tor �eld. The variational formu-lation 
onsists in �nding u 2 V = H10 (
) su
h thata(u; �) = (� � ru; �) + (�ru;r�) = (f; �) 8� 2 V: (5.3)This problem is approximated by a Galerkin �nite element method using asequen
e of test and trial spa
es Vh � V parameterized by a dis
retizationparameter h. The dis
rete problem reads: �nd uh in Vh su
h thata(uh; �) = (f; �) 8� 2 Vh: (5.4)For the sake of simpli
ity, the modi�
ation due to the stabilization of theequation by the streamline di�usion method is not taken into a

ount; it willbe in
luded later.Subtra
ting (5.4) from (5.3), we obtain the Galerkin orthogonality relation forthe error e = u� uh, a(e; �) = 0 8� 2 Vh: (5.5)The error e is orthogonal to the spa
e Vh with respe
t to the bilinear form a,whi
h is a 
hara
teristi
 property of Galerkin methods.We now de�ne the fun
tional of the solution that is to be a

urately known.Let J : V ! R be a linear fun
tional. The aim of the adaptive pro
essis to 
onstru
t an appropriate triangulation Th and to 
ompute uh with the
ondition that jJ(e)j = jJ(u)� J(uh)j � TOL (5.6)for a given toleran
e TOL.To know if J(uh) is 
al
ulated a

urately enough, one must be able to boundthe error J(e) de�ned above. Hen
e it must be expressed only in terms of theapproximated solution uh, sin
e the 
ontinuous solution u is not known.We 
onsider therefore the solution z 2 V of a 
orresponding dual problema(�; z) = J(�) 8� 2 V; (5.7)67



where trial and test fun
tions are inter
hanged with respe
t to the primalproblem (5.3). The 
orresponding 
ontinuous operator of this dual problem isby de�nition the adjoint of the operator of the primal problem. Integration byparts yields the following representation of this operator:L� = �� � r � �4: (5.8)This means that 
onve
tion o

urs in the opposite dire
tion as for the primalproblem. The dual problem 
arries information upstream.The Galerkin orthogonality argument (5.5) and the dual problem (5.7) togetherlead to an error representation in terms of the dual solution z:J(e) = a(e; z) = a(e; z � ihz) = (f; z � ihz)� a(uh; z � ihz) (5.9)for an arbitrary interpolation ihz 2 Vh of the dual solution z 2 V . We will seelater the aim of the introdu
tion of this interpolation of the dual solution inthe spa
e Vh.From (5.3) we getJ(e) = (f � � � ruh; z � ihz)� (�ruh;r(z � ihz)) (5.10)Thus we have rea
hed a formulation of the fun
tional where the unknown 
on-tinuous solution does not appear. Expressing the s
alar produ
t element-wise,an integration by parts leads to the exa
t error representation as a fun
tion ofthe residual of the primal system and [ruh℄, the jumps of the �rst derivativesover the 
ell edges:J(e) = XK2Th (f � � � ruh + �4uh; z � ihz)K� 12 XK2Th (�n � [ruh℄; z � ihz)�K ; (5.11)with n the external normal ve
tor to the edge �K. Note that the normalderivatives of uh are dis
ontinuous over the 
ell edges.Although equation (5.11) is independent of u, it still 
ontains the unknown
ontinuous dual solution z. Therefore the error on the fun
tional J(e) 
annotbe evaluated numeri
ally in this form and the term z � ihz must be approx-imated in an appropriate way. Several methods for this are presented in [8℄.One usually uses the 
ell-wise approximation of the expression kz � ihzkK .Indeed by applying the Cau
hy-S
hwarz inequality on (5.11) in order to getan upper bound for J(e), the resulting estimator isjJ(e)j � XK2Th!K �K (5.12)68



with �K the residual of the primal equation and !K additional weights depend-ing on the dual solution:�K := h2k k� � ruh � �4uh � fkK + 12 �h3=2k kn � [ruh℄ k�K; (5.13)!K := maxnh�2K kz � ihzkK ; h�3=2K kz � ihzk�Ko: (5.14)The residuals �K 
an be now 
omputed numeri
ally sin
e they depend only onthe dis
rete solution uh. However the weights have still to be approximated.!K 
an be repla
ed by an approximation obtained by using lo
al interpolationestimates (see [5℄) !k � CK kr2zkK ; (5.15)with an interpolation 
onstant CK.Following the approa
h proposed in [8℄, in the lo
al interpolation estimate(5.15) the exa
t dual solution z is repla
ed by an approximation zh, dis
retesolution of the dual problemzh 2 Vh : a(�; zh) = J(�) 8� 2 Vh: (5.16)For simpli
ity, we use the same dis
rete spa
e Vh for the dis
rete dual problem,although a �ner or 
oarser mesh 
ould be used.The validity of this approximation in our appli
ation 
ases is justi�ed by theresults we obtain using this method in this work as well as by the resultsobtained in other works su
h as in [48℄. If we substitute the se
ond orderdi�eren
e quotient kr2hzhkK for the se
ond derivative of the dual solution inthe bound in (5.15), the error 
an now be estimated byjJ(e)j � � := XK2Th �K; �K = ~!K �K ; (5.17)with approximated weights ~!K numeri
ally evaluated as~!K := CK kr2hzhkK: (5.18)After determining the solution uh of the primal problem (5.3), the dis
retedual problem (5.7) has to be solved. Then the residuals �K and weights ~!Kare evaluated on ea
h 
ell in order to get the lo
al error indi
ators �K. Thetotal error with respe
t to the error fun
tional J is then estimated by (5.17).69



5.3 Error estimation with streamline di�usionFor the stabilized dis
retization, the 
orresponding error estimate involves fur-ther terms whi
h are needed in further developments. The modi�
ation of thebilinear form does not a�e
t the pra
ti
al 
omputation but is relevant for theform of the a posteriori error estimate given by (5.17). The reader 
an �ndmore details on this subje
t in [22℄.We modify the bilinear form a given in (5.3) just as in Se
tion 3.5.3 to obtainthe stabilized bilinear form ah := a+ aÆ, with aÆ de�ned byaÆ(u; �) := XK2Th ÆK (� � ru� �4u; � � r�)K: (5.19)We obtain in the same way the stabilized right hand side fh := f + fÆ, withfÆ de�ned by fÆ(�) := XK2Th ÆK (f; � � r�)K: (5.20)The dis
rete equation is thenah(uh; �) = fh(�) 8� 2 Vh: (5.21)The 
onsideration of the stabilized linear problem with least-square terms leadsto the full Galerkin orthogonalityah(e; �) = 0 8� 2 Vh: (5.22)At this point, we are at the same stage in the method as for the simple Galerkinorthogonality equation (5.5). We just have to inter
hange the bilinear form awith the form ah. The dual solution z sear
hed in V ful�lls now the equationah(�; z) = J(�) 8� 2 V: (5.23)The error estimate be
omes thenJ(e) = ah(e; z) = a(e; z � ihz) + aÆ(e; z � ihz)= (f; z � ihz)� a(uh; z � ihz) + fÆ(z � ihz)� aÆ(uh; z � ihz):Following the same reasoning as in the 
ase without stabilization, an a poste-riori bound of the error with respe
t to the fun
tional J(�) 
an be derived:jJ(e)j � XK2Th�!K �K + jÆK (� � ruh � �4uh � f; � � r(z � ihz) )K j�; (5.24)with !K �K de�ned as in previous se
tion.70



The estimation of r(z � ihz) by the se
ond derivative of z,kr(z � ihz)kK � CK hK kr2zkK; (5.25)leads to the following bound:jJ(e)j � XK2Th!K (�K + j�j1;K ÆK hK k� � ruh � �4uh � fkK ): (5.26)It is to be noted that the supplementary stabilization term has at least thesame order in hK as the term �K, sin
e the stabilization parameter ÆK dependson hK (see Se
tion 3.5.5).5.4 Error Estimation for Non-linear EquationsWe now apply the weighted error estimator, explained previously for a linears
alar equation, to non-linear problems. Let V be a Hilbert spa
e with innerprodu
t (., .) and 
orresponding norm k:k, and a(:; :) a semi-linear form (linearin the se
ond argument). The variational formulation of the 
orrespondingproblem is: �nd u 2 V su
h thata(u; �) = (f; �) 8� 2 V: (5.27)The dis
retization in a �nite-dimensional subspa
e Vh � V is: �nd uh 2 Vhsu
h that a(uh; �) = (f; �) 8� 2 Vh: (5.28)Let e = u�uh be the error between the 
ontinuous and the dis
retized solution,and J(�) the fun
tional of the solution, still 
onsidered as linear, whi
h is tobe a

urately known.The aim is to �nd a system, named dual system in the previous se
tion, whi
hallows us to get an upper bound of the error on the fun
tional. In order to havea variational formulation of this system, the form des
ribing the problem mustbe linear in the test fun
tion. Moreover the linearity of the primal problem hadmade it possible in the previous se
tion to write expli
itely J(e) independentlyof the 
ontinuous primal solution in equation (5.9) and following. The sameargumentation 
annot be used here.Therefore, if we want to keep the same reasoning, we have to �nd, from theprimal non-linear system, a linear system whi
h allows us to write J(e) inde-pendently of the 
ontinuous solution. 71



With this aim in view, we 
onsider the derivative a0(�; �; �) of a(�; �) with respe
tto its �rst argument, de�ned in a point w in the dire
tion v bya0(w; v; �) = lim�!0 �1� ( a(w + � v; �)� a(w; �) )�: (5.29)We have the following orthogonality relation for the error e:Z 10 a0(uh + t e; e; �) dt = a(u; �)� a(uh; �) = 0 8� 2 Vh: (5.30)This suggests the use of the following bi-linear form for the 
onstru
tion of thedual problem: L(u; uh;�; z) := Z 10 a0(uh + t e;�; z) dt; (5.31)whi
h is linear in � and z.For representing the error J(e), we then use the dual problem 
onsisting in�nding z 2 V su
h that:L(u; uh;�; z) = J(�) 8� 2 V: (5.32)Assuming that this problem has a unique solution z 2 V , and using theGalerkin orthogonality (5.30), we obtain the error representationJ(e) = L(u; uh; e; z � ihz); (5.33)with any approximation ih z 2 Vh of z.The goal is to evaluate the right hand side numeri
ally, in order to get an aposteriori estimate for the quantity J(e) and thus a 
riterion for the optimallo
al adjustment of the dis
retization. Sin
e the bilinear form L(u; uh; �; �)
ontains the unknown solution u, it has to be approximated. The simplestway is to repla
e u by uh yielding a perturbed dual solution ~z 2 V de�ned byL(uh; uh;�; ~z) = J(�) 8� 2 V: (5.34)This approximation a�e
ts the quality of the resulting estimatorJ(e) � ~J(e) := L(uh; uh; e; ~z � ih~z): (5.35)Controlling the e�e
t on the a

ura
y of this approximated error estimator maybe a diÆ
ult task and depends strongly on the parti
ular problem 
onsidered.Many appli
ations whi
h may be found for instan
e in [33℄, [48℄ or [5℄ tend tosuggest that the approximated estimator supplies 
orre
t information for thelo
al mesh re�nement pro
ess. 72



In a similar way as for linear systems in Se
tion 5.2, an upper bound of ~J(e)
an be 
omputed by solving the perturbed dis
rete dual system (5.34). Theappli
ation of the Cau
hy-S
hwarz inequality on the 
ell-wise representationof equation (5.33) leads to an estimation of the error in the form~J(e) � XK2ThwK �K (5.36)with residuals �K and weights !K.In order to des
ribe these 
oeÆ
ients, we take as example a part of the mo-mentum 
onservation equation, for whi
h the form a is de�ned asa(u; �) = u � ru+ �4u: (5.37)The residuals and weights are then given by�K := h2k kuh � ruh � �4uh � fk+ 12 �h3=2k kn � [ruh℄ k�K; (5.38)!K := maxnh�2K kz � ihzkK ; h�3=2K kz � ihzk�Ko: (5.39)As before, we estimate the weights !K by the semi-norm jzjK;2 whi
h is againapproximated numeri
ally by the se
ond-order di�eren
e quotient of the solu-tion zh 2 Vh of the dis
rete perturbed dual problem 
oming from (5.34),!K(z) � ~!K(zh) = CK kr2hzhkK: (5.40)The resulting weighted-residual error estimator isj ~J(e)j � � = XK2Th �K; with �K = ~!K �K: (5.41)As a �nal remark it is to be noted that an approximation has been madein the bilinear form de�ning he dual system, in order to be able to write anupper bound of J(e) whi
h may be numeri
ally 
omputed. To keep a 
ontrolon the a

ura
y of the pro
ess it may be worth to 
ompare if the weights
omputed with the help of dual solutions on di�erent meshes do not di�er toomu
h. In this 
ase the error estimates are believed to be reliable. Otherwiseone 
ould attempt to re�ne the mesh globally in order to improve the globalapproximation of u and get less perturbed dual systems. This 
ould be the
ase for very 
oarse meshes. 73



5.5 Appli
ation to Rea
tive FlowsWe apply the weighted-residual error estimation des
ribed in the previous se
-tions to rea
tive 
ow problems. The primal system is given by equations(2.59)-(2.63).We denote the dual solution ve
tor byz = [zu; zp; zw℄T : (5.42)We refer to Chapter 3 for the notation 
on
erning the primal problem. Forthe sake of simpli
ity we do not take into a

ount the stabilizing terms in thedes
ription of the dual problem. Their e�e
t on the dual system is straightfor-ward. The in
uen
e of these terms on the estimator itself will be mentionedlater.The derivation of the dual problem from the primal problem and the 
orre-sponding a posteriori error estimate follows the same line of argument as in theprevious se
tion. For e
onomi
al reasons, we do not use the full Ja
obian ofthe 
oupled system in setting up the dual problem, but only in
lude its domi-nant parts. The same simpli�
ation is used in the nonlinear iteration pro
ess.Taking the notation of Chapter 1, the resulting dual problem is the following:�nd z 2 V = V� � V+ �Q� S su
h that�(� u � rzu; �) + (�rzu;r�) + (zp; �) = Ju(�) 8� 2 V� � V+;�(r � zu; �) + ( uT � rzT ; �) = Jp(�) 8� 2 Q;�(� u � rz(i)w ;  ) + (�Dirz(i)w ;r )� �P ( ; zw) = Jw( ) 8 2 S; 9>>=>>;(5.43)where the bilinear form �P 
orresponds to a linearization of the 
hemi
al pro-du
tion term. The linear forms Ji de�ned on the solution spa
e 
orrespond tothe fun
tional of the solution for whi
h we want to estimate the error. Thissystem is supplemented by appropriate boundary 
onditions indu
ed by thoseof the primal problem.This problem has to be solved in order to evaluate the weights in the estimatorsof the resulting a posteriori error estimatejJ(e)j � � = XK2Th XX2fu;p;wig (�K;X + �K;X) ~!K;X; (5.44)�K;X representing the terms 
oming from the stabilization of the system. Wesum over the error estimators 
orresponding to ea
h 
omponent of the fun
-tional, sin
e we may want to 
ontrol the error on a fun
tional depending on74



several variables of the primal problem. The residuals �K;x involve the 
ellsresiduals and jumps of the dis
rete solution a
ross inter-elements boundaries:�K;u = hK ru + 12 h1=2K � k [�nuh℄ k�K;�K;p = hK rp;�K;wi = hK r(i)w + 12 h1=2K Di k [�nw(i)h ℄ k�K;ru = k� uh � ruh �r � �ruh +rphkK;rp = kr � uh + L(uh; wh)kK;r(i)w = k� uh � rw(i)h �r � (�Dirw(i)h )�r � (�DiM�1i w(i)h rM)� fi(Th; wh)kK:As already mentioned, the weights ~!K;x are evaluated by solving the dualproblem numeri
ally and repla
ing the exa
t solution z by its numeri
al ap-proximation zh: ~!K;u = CK hK kr2hz(u)h kK;~!K;p = CK hK kr2hz(p)h kK;~!K;w = CK hK kr2hz(w)h kK:The error estimator for the 
omplete stabilized system is derived from theestimator des
ribed just above and from the result of Se
tion 5.3. The 
ompleteestimation isjJ(e)j � � + j
(ph; uh; z � ihz)j+ jsu(ph; uh; z � ihz)j+ nsXi=0 jsi(ph; uh; z � ihz)j; (5.45)� being the estimator without stabilization. The forms 
, su and si are de�nedin Se
tion 3.5.5 and 
orrespond to the pressure and streamline-di�usion stabi-lizations. For ea
h equation of our system we apply the pro
ess des
ribed inSe
tion 5.3 in order to de�ne an upper bound of the stabilization term. Anupper bound of the error on the fun
tional is thenjJ(e)j � �total = � + XK2Th ~!K;u ru ÆK (1 + juj1;K)+ XK2Th ~!K;wi r(i)w Æ(i)K juj1;K: (5.46)The most important aspe
t of this a posteriori error estimate is that the lo-
al 
ell residuals related to the various physi
al e�e
ts governing the 
ow andtransfer of temperature and 
hemi
al spe
ies are systemati
ally weighted a

or-ding to their impa
t on the error quantity to be 
ontrolled.75



5.6 Re�nement StrategiesThe right hand side in the error bound (5.46) 
an be evaluated on
e the �niteelement solutions uh and zh of the primal and dual problems have been 
om-puted and 
an be used to estimate the size of the global error J(e). Exploitingthis a posteriori error bound it is possible to adaptively 
ontrol the global errorto a desired toleran
e level by suitably re�ning the mesh.Let an error toleran
e TOL and a maximum number of mesh points Nmax begiven. The goal is to �nd the most e
onomi
al mesh Th on whi
hjJ(e)j � �(uh) = XK2Th �K � TOL; (5.47)with the lo
al error indi
ators �K = !K �K . The usual approa
h to 
onstru
t-ing a mesh whi
h does not 
ontain an ex
essively large number of elements isto pro
eed iteratively: we start with a 
oarse mesh and re�ne it su

essivelybased on the size of the a posteriori error estimate. Inequality (5.47) 
an bethought of as a stopping 
riterion in this iterative pro
ess whi
h 
an be writtenas follows:1. Solve the dis
rete problem on Th.2. Evaluate the estimator � =PK2Th �K .3. If � > TOL : 
hange grid Th a

ording to �K and go to 1.4. end.Starting from some initial 
oarse mesh, the re�nement 
riteria are 
hosen interms of the lo
al error indi
ators �K(uh; zh). In fa
t various strategies 
an beadopted to generate a re�ned mesh from a given one (point 3 of the algorithm).Here we mention three of the most popular approa
hes (see [8℄, [48℄ or [33℄):� Error-per-
ell strategy: In this approa
h the mesh generation aims toequilibrate the lo
al error indi
ators by re�ning or 
oarsening the ele-ments K in the 
urrent mesh Th in order to rea
h the 
riterion�K � TOLN ; (5.48)with N the number of elements in the resulting mesh. Sin
e N dependson the result of the re�nement de
ision, this strategy is impli
it and re-quires an iterative implementation. However it is 
ommon pra
ti
e towork with a varying value of N on ea
h re�nement level, with N su

es-sively updated a

ording to the out
ome of the re�nement pro
ess. Thisstrategy will deliver a partition on whi
h � � TOL, provided that Nmaxis not ex
eeded. This re�nement 
riterion leads to an equidistribution ofthe error over the whole mesh. 76



� Fixed-fra
tion strategy: In ea
h re�nement step, the elements are ordereda

ording to the size of the lo
al error indi
ator �K(uh; zh), and then a�xed portion of the elements K with largest �K(uh; zh) is re�ned (in twodimension typi
ally 30% sin
e this approximately doubles the number of
ells in ea
h re�nement 
y
le). A smaller per
entage of re�ned grid 
ellsper adaptive step leads to a more lo
alized re�nements of the mesh. Thispro
ess is repeated until the stopping 
riterion � � TOL is satis�ed orNmax is ex
eeded.� Fixed-redu
tion strategy: We work here with a varying toleran
e TOLvar.Having 
al
ulated the dis
rete solutions uh and zh on a mesh Th, thetoleran
e is set to TOLvar = � �, where � 2 (0; 1) is a �xed redu
tionfa
tor. In the next step one or several 
y
les of the error-per-
ell strategyare performed with toleran
e TOLvar, yielding a re�ned mesh Thnew andnew solutions unewh , znewh with asso
iated error estimator �(unewh ; znewh ).Then the toleran
e is redu
ed again by setting TOLvar = � � and anew re�nement 
y
le begins. This iterative pro
ess is repeated untilTOLvar � TOL, or Nmax is ex
eeded.In ea
h of the three strategies we repeat mesh modi�
ation followed by solutionon the new mesh until the toleran
e is satis�ed, or the pres
ribed maximumnumber of elements is ex
eeded.For our appli
ation to rea
tive 
ows in 
ow rea
tors, we used prin
ipally these
ond re�nement strategy, whi
h allows to tune the lo
alization of the re�ne-ment zones. This generally leads either to meshes 
ontaining a smaller numberof 
ells, sin
e in less 
riti
al zones the error is allowed to remain over the boundpres
ribed in the �rst method, or to a better a

ura
y in 
riti
al zones. Anappli
ation of the third re�nement strategy 
an be found in [48℄.
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Chapter 6
Appli
ations
In this 
hapter we present four rea
tive 
ow problems with di�erent 
omplex-ities in the 
hemi
al rea
tions. The �rst two problems are based on CARS(Coherent Antistokes Raman Spe
tros
opy) measurements for the evaluationof the dea
tivation rate of vibrationally ex
ited H2 mole
ules. In a �rst ex-ample we take into a

ount only the wall-dea
tivation pro
ess, whi
h 
an be
onsidered as a set of slow 
hemi
al rea
tions; 4 spe
ies and 7 rea
tions areinvolved in the 
hemi
al system. In a se
ond example we 
onsider the wall-dea
tivation pro
ess as well as the ex
hange of the vibrational energy of H2mole
ules with D2 mole
ules. Here, the 
hemi
al system involves 9 spe
ies andthe 32 rea
tions. A third example, again based on the same CARS 
ow tube,is the 
ow simulation of a mixture where 
hemi
al rea
tions between H2, NO2and other produ
ed mole
ules take pla
e by higher temperature (from 300K to1700K). Sin
e the high temperature gradient within the 
ow 
auses numeri
alinstabilities, a time step method has to be used here to be able to 
onverge toa quasi-stationary solution. The 
hemi
al system 
onsidered involves 7 spe
iesand 6 rea
tions.The fourth example is based on a CVD (
hemi
al vapor deposition) exper-iment. We are interested in the deposition of diamond on the surfa
e of asubstrate. As revelator of this deposition we look at the 
on
entration of CH3near the surfa
e of the substrate. To improve the diamond deposition, this
on
entration must be as high and homogeneous over the substrate as pos-sible. The 
hemi
al model involves 39 spe
ies and 358 elementary 
hemi
alrea
tions. Parti
ularly with so many spe
ies and rea
tions, the appli
ation ofthe solution method developed in this work makes it possible to rea
h gooda

ura
y with reasonable memory requirement and 
omputation time. The
al
ulation of su
h rea
tive 
ows 
an be performed by the adaptive algorithmpresented in this work on a workstation or a PC.79



6.1 CARS6.1.1 Flow Rea
tor { OverviewThe 
ow tube te
hnique has importan
e in modern experiments as one of themost powerful tools for the determination of elementary 
hemi
al rea
tion rate
onstants.The basi
 prin
iple of 
ow tubes is always the same: mixing of rea
tants takespla
e upstream in a mixing se
tion and their 
onsumption or the buildup ofprodu
ts is followed along a measurement se
tion by some dete
tion method foratoms, radi
als, or mole
ules. A rea
tion rate 
onstant is then dedu
ed frommeasured axial 
on
entration pro�les. In order to favor di�usive pro
esses,whi
h minimize radial 
on
entration gradients, a 
ow tube is traditionallyoperated at low pressure. An assumed mean 
ow velo
ity allows to 
onvert theaxial 
oordinate (distan
e between the �rst point of mixing and the dete
tionpoint) into rea
tion time. The rea
tion rate 
onstants of interest 
an then bededu
ed by modelling the homogeneous rea
tion system. However, the methodis known to bear systemati
 errors, sin
e it is based on the approximation ofa perfe
t de
oupling of 
hemi
al and hydrodynami
 pro
ess in the 
ow tube.Espe
ially in the mixing se
tion of the rea
tor this assumption is not valid.In order to 
arry out a reliable evaluation of rate 
onstants from experimentaldata, it is desirable to take into a

ount all relevant physi
al and 
hemi
alpro
esses o

urring in a rea
tive 
ow. The detailed modeling of rea
tive 
ow�elds within a rea
tor for kineti
 studies is therefore an important tool for theexperimental determination of elementary rate 
onstants.6.1.2 Rea
tion Kineti
 of the H2 �D2 SystemThe heterogeneous relaxation and the ex
hange of vibrational energy of the H2mole
ules has been experimentally investigated in [57℄ with the help of a testrea
tor. For this experiment, based on the assumption of non-turbulent sta-tionary 
ow and 
hemi
al pro
ess, the possibility of two-dimensional numeri
alsimulation with a �nite di�eren
e s
heme has been studied in [46℄.With the adaptive solution method developed in this work, we are able to getan a

urate determination of some physi
al quantities of interest (su
h as massfra
tions or 
on
entrations) along the axis. These 
omputational results 
anthen be used together with experimental measurement results to get a goodapproximation of rea
tion rates for dea
tivation or ex
hange of vibrationalenergy forH2 mole
ules. The automati
 adaptive pro
ess re�nes the mesh onlywhere it is needed (essentially on the measurement points and on singularitiesof the solution) to get a

urate values on an optimal mesh, i.e. with a minimal80



Figure 6.1: CARS 
ow rea
tor.number of mesh nodes for a given pre
ision. In this way we not only saveCPU-time but we also gain in a

ura
y, being assured of the pre
ision on the
omputed quantities.The rea
tor 
onsidered here 
onsists essentially in the 
on
entri
 disposal ofan external tube (radius 16 mm) in whi
h an interior tube (internal radius 5.5mm and wall thi
kness 1 mm) hands in (see Fig. 6.1).Two gases streaming out of the outer and interior tubes get in 
onta
t at theoutlet of the 
entral tube. This 
entral tube is long enough to guarantee fullydeveloped laminar 
ow �elds for both inner and outer gas 
ows. From thispoint on, the gases are mixed through 
onve
tive and di�usive transport andmay rea
t with ea
h other. The main tube (the prolongation of the outertube) 
onsists of a straight 32 mm diameter se
tion equipped with an array ofdiametri
ally opposed 2mm diameter holes in the wall to allow opti
al CARSdiagnosti
s with fo
used laser beams. In this way, it is possible to re
ord axialpro�les for spe
ies 
on
entrations. A 
omplete des
ription of the experiment
an be found in [57℄, [47℄ and [46℄. 81



He / D_2

H_2

Symmetry line

Mixing ZoneFigure 6.2: Two-dimensional �eld with measurement-line positions and 
al
u-lation �eld (half domain for symmetry reasons).Vibrationally ex
ited hydrogen mole
ules H2(v00 = 1) are generated by mi-
rowave dis
harges (MW { see Fig. 6.1) in the sidearms of the mixing headbringing the gas to the outer tube. The mi
rowave dis
harges 
reate also Hatoms. These atoms lead to additional rea
tions whi
h the modelling of thepro
ess must take into a

ount. In the inner tube, HeliumHe or in-the-ground-state Deuterium D2(v00 = 0) are inje
ted.The wall vibrational relaxation rate 
wall for the dea
tivation of H2(v00 = 1) toH2(v00 = 0) and the vibrational energy transfer rate of H2(v00 = 1) in 
ollisionswith D2(v00 = 0) are the unknown rea
tion kineti
 
onstant whi
h have to be
al
ulated.6.1.3 First Evaluation: Wall RelaxationWe investigate the dea
tivation of vibrationally ex
ited hydrogen mole
ules atthe wall (heterogeneous relaxation). An inert gas (Helium) is used as 
arriergas. It is streaming into the mixing tube from the internal tube. We 
onsiderthe laminar 
ow for determining the rea
tion rate of the elementary wall-dea
tivation rea
tion (slow 
hemistry):H(�=1)2 wall�! H(�=0)2 : (6.1)82



Table 6.1: Simulation results for the H2(� = 1) wall-dea
tivation experimenton hand-adapted(top) and on automati
ally adapted (bottom) meshes.Heuristi
-based re�nementLevel # Cells H2(0) H2(1)1 137 0.6556 0.0052942 481 0.7373 0.006613 1793 0.7962 0.0070964 6913 0.8172 0.0074345 7042 0.8197 0.0074196 7494 0.8240 0.0074737 8492 0.8269 0.0075048 10482 0.82858 0.0075219 15993 0.82853 0.007545Error-estimator-based re�nementLevel # Cells H2(0) H2(1)1 137 0.6556 0.0052942 282 0.7382 0.0060633 619 0.7958 0.0071324 1368 0.8149 0.0073235 3077 0.8257 0.0074576 6800 0.8295 0.0075347 15100 0.8317 0.0075648 33462 0.8328 0.007587The 
omplete rea
tion me
hanism 
an be found in the appendix.The unknown is the kineti
 rea
tion 
onstant, i.e. the wall relaxation rate
wall for the rea
tion des
ribed just above. A de�nition of 
wall is given inSe
tion 2.3.2. The quantities to be 
omputed are the results of CARS mea-surements of spe
ies 
on
entrations. The measured quantities are proportionalto a weighted mean value of the mass fra
tions wi along lines perpendi
ularto the symmetry axis of the rea
tor, and are used to obtain approximations ofthe spe
ies 
on
entrations along the axis of the tube.We will present the 
omputed mean values of the mass fra
tions of a
tivatedand dea
tivated hydrogen along radial lines � of the two-dimensional 
al
ula-tion �eld. The error fun
tional (see Chapter 5) used in the adaptive pro
essis J(') = Z� '(r; z) dr: (6.2)83



In order to emphasize the advantages of the method presented in this work,we also have 
omputed the averaged mass fra
tions on tensor produ
t mesheswhi
h are a priori re�ned on the basis of heuristi
 
onsiderations. This pro
essis only based on the a priori knowledge of the measurement lines whi
h are
onsidered to be the re�nement lines. We begin with global mesh re�nementand then go on with lo
al re�nement along the measurement lines as well ason the known singularity of the solution.Comparison of results shows that the re�nement based only on heuristi
 
riteriais not suÆ
ient to get reliable values from the 
omputed solution. Table 6.1shows the values of the average of the H2 mass fra
tions along a 
ross se
tionof the tube for a simulation �rstly with the heuristi
 method and se
ondlywith the error-estimation method.We observe improved a

ura
y on the automati
ally adapted meshes for aboutthe same number of grid points. In parti
ular, monotone 
onvergen
e of thequantities of interest is a
hieved. This is an important feature of our approa
hwhi
h provides high reliability of 
omputed solutions.Corresponding solutions and meshes are shown in Figures 6.3, 6.4 and 6.5. Forthe meshes re�ned with the use of an error estimator, the stru
ture of the dualsolution re
e
ts the dependen
e of the quantity J(X) (the error fun
tional) onthe lo
al 
ell-residuals.
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Figure 6.3: Mass fra
tion of H(�=1)2 by the CARS simulation with heuristi
re�nement { Re�nement levels 2, 4 and 6.85



Figure 6.4: CARS simulation with adaptive lo
al re�nement { Mass fra
tionof H(�=1)2 { Re�nement levels 2 and 4.
86



Figure 6.5: CARS simulation with adaptive lo
al re�nement { Mass fra
tionof H(�=1)2 (top) and dual solution 
omponent 
orresponding to H(�=1)2 (bottom){ Re�nement level 6.
87



Figure 6.6: CARS 
omparison between normalized simulation results (squares)and experiment measurements (points) for the evolution of the H(�=1)2 massfra
tion along the axis.Our 
omputational results have been 
ompared to experimental measurements(see Figure 6.6). For this 
omputation, the in
ow rate for the helium whi
h
ows from the interior tube is set to 148 l=min and the in
ow rate for thehydrogen whi
h 
ows in the outer tube is set to 665 l=min. The thermody-nami
al pressure is 
onsidered to be 5.33 mbar and is 
onstant in the wholedomain. The proportion in mole of the vibrationally ex
ited H2 mole
ules atthe in
ow is 0.5%, the proportion of H atoms is 0.3% and the rest 99.2% isnon vibrationally-ex
ited H2 mole
ules. The experimental measurements havea relative error of around 20%.Su
h 
omparisons make it possible to approximate the dea
tivation rate of H2mole
ules. At the present time we have to tune manually the value of the
orresponding rea
tion rates whi
h we want to evaluate. A further develop-ment should be to 
ouple the solution method with an optimization pro
essin order to �nd the best approximation of the rea
tion rate with regard to the
omparison between simulation and experiment.As pointed out in Chapter 4, we also want here to show how di�erent the
onvergen
e pro
ess 
an be when using di�erent Ja
obian matrix approxima-tion. This shows that the 
onvergen
e 
riterion has to be 
hosen 
arefully anda residuum drop whi
h 
ould seem to be suÆ
ient to get a 
orre
t approx-imation of a Navier-Stokes 
ow may be insuÆ
ient for 
ows with 
hemi
al88



Figure 6.7: H(�=1)2 mass fra
tion along a radial se
tion at axial position 0.143m in the CARS 
ow rea
tor. Comparison between a 
al
ulation with a Ja
o-bian matrix taking surfa
e rea
tion terms into a

ount (above) and a 
al
u-lation with an approximated Ja
obian matrix (below) by a 
onvergen
e with atoleran
e of 10�8 on the residuum. 89



rea
tions. We 
ompare here two approximations of the Ja
obian matrix, the�rst one taking into a

ount all the 
hemi
al terms, the se
ond one withoutthe surfa
e rea
tion terms. We want to remind the user that these terms arestill taken into a

ount in the residuum term of the defe
t-
orre
tion method.For a 
onvergen
e with a toleran
e of 10�8 on the residuum, we see in Figure 6.7that the approximated Ja
obian did not allow to get a 
orre
t approximationof the solution at this point in the 
onvergen
e pro
ess. The surfa
e rea
tionsare not yet 
aught by the solver and the value on the wall surfa
e of the massfra
tions for H(�=1)2 obtained with the help of the approximated Ja
obian ishigher than the one obtained with the Ja
obian taking into a

ount all 
hemi
alterms. While rea
hing a residuum of 10�9, the obtained 
onvergen
e leads inthis 
ase to the same results for both methods.This means that the 
orre
t evaluation of 
hemi
al pro
ess may o

ur onlylate in the 
onvergen
e pro
ess. Moreover we also have to be aware that usingapproximated Ja
obian may in some 
ases lead to problems in 
at
hing all
hemi
al pro
esses in the solution (and thus get 
onvergen
e) sin
e we haveto 
onverge with a very small toleran
e on the residuum. We a
tually did notexperien
e su
h a problem in our appli
ations and with the approximations ofthe Ja
obian matrix we used (see Chapter 4).6.1.4 Se
ond Evaluation: Wall Dea
tivation and A
ti-vation TransferIn this experiment helium is repla
ed by deuterium. Thus this latter gas isadded through the 
entral tube while vibrationally-ex
ited hydrogen entersthrough the outer tube. We have here to take into a

ount some more elemen-tary rea
tions su
h asH(�=1)2 +D(�=0)2 �! H(�=0)2 +D(�=1)2 : (6.3)The 
omplete rea
tion me
hanism used for this 
omputation 
an be found inthe appendix.Both hydrogen and deuterium are experimentally monitored in their �rst ex-
ited vibrational state. Therefore, in the simulation, we may be interested inthe average of H(�=1)2 or of D(�=1)2 mass fra
tions along radial lines in the two-dimensional 
al
ulation domain. As in previous se
tion, we 
ould 
onstru
t the
orresponding fun
tionals given by (6.2) for both spe
ies and use them for thede�nition of the error fun
tional of the adaptive method. Another possibilityis to take as error fun
tional the sum of the error fun
tionals 
orresponding tothe mass fra
tions of interest (i.e. for whi
h measurements are done).90



Table 6.2: Performan
e 
omparison between the simulation 
ode developed inthis work and based on the DEAL library and a �nite di�eren
e 
ode developedby J. Segatz in [46℄. CPU time (units � se
. ) memory required
ode global per vertex global per vertexWaguet 13442 verti
es 9360 (� 2,5 h.) 0.70 63 Mb 4.7 KbSegatz 16000 verti
es 85750 (� 24 h.) 5.35 153 Mb 9.5 KbHowever, in order to demonstrate the 
exibility of the adaptive method basedon error estimates and duality arguments, we use here a di�erent error fun
-tional. The CARS signal delivers the value of a weighted integration alongradial lines in the tube and we had 
onsequently taken this fun
tional in theprevious simulation. But we are a
tually interested in the value of 
on
entra-tions along the axis. The numeri
al simulation allows dire
t a

ess of pointvalues of the 
on
entrations. Therefore the fun
tional 
ould be 
hosen asJ(') = '(r0; z0); (6.4)with r0 = 0 and z0 the 
oordinates of the point of interest along the axis. Forthe following results we took as error fun
tional for the 
omplete system thesum over error fun
tionals de�ned as above for several spe
ies and several axial
oordinates.We see in Figure 6.8 that the automati
 adaptive re�nement pro
ess leadsto mesh re�nement on given points (r0; z0) but also on the zones where therea
tions may strongly in
uen
e the evolution of spe
ies 
on
entrations alongthe whole tube or also in the zones where the solution may have a singularityas on the top of the splitter plate.The method des
ribed in this work requires less CPU-time and memory forthe 
al
ulation of the steady state of rea
tive 
ows 
ompared to other existing�nite di�eren
e methods based on tensor produ
t meshes. Table (6.2) showsthe 
omparison between the simulation 
ode developed in this work and a�nite-di�eren
e 
ode already su

essfully used for simulation of 
ow rea
torsdeveloped in [46℄ by J. Segatz.Considering the performan
e measurement for the 
ode developed in this work,we see that the CPU time needed to attain 
onvergen
e has been redu
ed bya fa
tor 7 with regard to the other 
ode, and that the memory requirementhas been redu
ed by a fa
tor 2. And this, without taking into a

ount theadvantages of the lo
al re�nement pro
ess. The gain in performan
e allowsus to apply the method on more 
omplex systems with �ner (lo
ally re�ned)91



Figure 6.8: CARS simulation with lo
al re�nement and point error fun
tional{ Mass fra
tion of HD(�=1).
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grids and still 
ompute the solution on a workstation or a PC, as we also seein the following se
tion.6.1.5 NH-NO2 Chemi
al SystemThe main goal of this experiment is the dire
t measurement of rea
tion ratesas well as the examination of their temperature dependen
y in the range ofhigh temperature (300K - 1700K). The experimental material is the same asfor CARS measurements: a 
ow rea
tor with an inner and an outer tubefrom whi
h 
ow di�erent gas whi
h then rea
t with ea
h other in the mixingzone of the tube. One di�eren
e is that the walls are heated and thus havea given temperature. The simulation of high temperature 
ows is used forinterpretations of experimental measurements of rea
tion rates as well as forinvestigations on their temperature dependen
e.As a �rst step toward the 
omputation of the 
omplete rea
tion me
hanism,we 
ompute a high temperature 
ow rea
tor with a mixture 
onsisting of H2,NO2 and He mole
ules whi
h produ
es through 
hemi
al rea
tions OH, NOand H2O mole
ules as well as H and O atoms. We use as error fun
tional theglobal mean value of the NO 
on
entration.The solution pro
ess we used here for 
onverging to a quasi-stationary solutionis the following:� We 
ompute the rea
tive 
ow on a 
oarse grid whi
h however is �neenough to allow to 
apture the prin
ipal stru
tures of the 
ow and 
hemi-
al rea
tions. Typi
ally numeri
al tests showed that, for this kind of 
ow,a 
oarse grid with around 100 
ells is suÆ
ient. The quasi-
onvergen
e ofthe time-step pro
ess is rea
hed as soon as the residual di�eren
e betweentwo following time-steps is smaller than a given toleran
e.� On
e a quasi-stationary solution is rea
hed on this 
oarse grid we re�neit lo
ally using an error estimator.� We 
ompute further time steps and re�ne again the grid lo
ally as soon asthe quasi-
onvergen
e 
ondition has been rea
h for the time step pro
ess.� We repeat the third point until the value of the error fun
tional rea
h agiven toleran
e.We show in Figures 6.9 and 6.10 respe
tively the time evolution of the NOmole
ule and the O atom mass fra
tions within the 
omputation domain whi
hrepresents the half of an axial se
tion of the 
ow tube. From the inner tube
ows a mixture of NO2 and He mole
ules with a mole fra
tion distributionrespe
tively of 0.44 and 0.56 and with a maximal velo
ity of 30 m/s. From93



the external tube 
ow H2 mole
ules with a maximal velo
ity of 20 m/s. Thepressure of the in
ow is 5 mbar and the temperature 300K.This 
omputation is the �rst step toward the simulation of the 
omplete rea
-tion me
hanism whi
h was not available at the time of the 
al
ulation. Withthe help of simulation, we are able to test several me
hanisms and investigatethe temperature dependen
e of the di�erent rea
tion rates whi
h are takeninto a

ount, by 
omparing the simulation results, e.g. 
on
entrations of somespe
ies, with experimental measurements of these 
on
entrations.
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Figure 6.9: Time evolution of NO mass fra
tion for an in
ow of NO2mole
ules in the outer tube and of H2 mole
ules in the inner tube{ red rep-resents a null mass fra
tion and blue represents a maximal mass fra
tion forthis mole
ule
95



Figure 6.10: Time evolution of O mass fra
tion for an in
ow of NO2 mole
ulesin the outer tube and of H2 mole
ules in the inner tube { red represents a nullmass fra
tion and blue represents a maximal mass fra
tion for this atom.
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6.2 CA-CVDIn a \Chemi
al Vapor Deposition" (CVD) rea
tor, diamond 
an be depositedupon di�erent materials from an hydro
arbon-hydrogen gas mixture undermoderate temperature and low pressure. Improvement of the growth rate andthe quality of the produ
ed diamond layer as well as its homogeneous growthare some of the aims whi
h are still to be rea
hed in this �eld. The 
ompre-hension of the rea
tions on the substrate where the diamond layer settles isstill in
omplete. Even the spe
ies whi
h 
ontrol the deposition kineti
 havenot been in
ontestably found and the 
omplex 
hemi
al me
hanisms are notsuÆ
iently known.For a deeper understanding of the 
omplex relations between gas phase andsurfa
e 
hemi
al pro
esses and hydrodynami
al pro
esses, simulations must
omplement the experiments and supply a base for evaluating several modelsof 
hemi
al pro
esses.The rea
tor is made of a 15
m-diameter tube with a height of 20
m. Thegeometry of the rea
tor used for the experiment is axially symmetri
, whi
hmakes the two-dimensional modelling possible. The rea
tor has three windowsfor the inspe
tion of the gas 
omposition through the dete
tion of 
uores
entlight 
reated with the help of a laser beam (see Fig. 6.11). The reader 
an�nd a 
omprehensive des
ription in [23℄. The pressure in the rea
tor is set to50 mbar with the help of an automati
ally-regulated pump.The 
hemi
al radi
als whi
h are ne
essary for the diamond deposition uponsili
ium substrates are produ
ed inje
ting methane into the 
ombustion gas ofa H2=O2 
ame. The term used for this pro
ess supported through 
ombustionis \Combustion Assisted - Chemi
al Vapor Deposition", in short CA-CVD.Hydro
arbon mole
ules are transformed during the 
hemi
al pro
ess in rea
tiveradi
als, whi
h depose on the substrate with the adequate 
rystal stru
ture inform of diamond.As noted above, the detailed steps of the pro
ess are not 
ompletely understoodyet. However the methyl-radi
al (CH3) seems to have an important role in theformation of diamond. The 
orresponding experimental 
onditions have to beset su
h that a suitable temperature as well as a high 
on
entration of CH3mole
ules are found in the 
lose proximity of the substrate surfa
e. Methyl is
reated through the de
omposition of methane or higher hydro
arbons. Themixing of a hot-
ame exhaust gas with high 
on
entration in hydrogen radi
alswith hydro
arbons leads to 
hemi
al rea
tions su
h as:CH4 +H �! CH3 +H2: (6.5)The stru
ture of the experiment is shown in Fig. 6.11. A hydrogen/oxygen
ame (premixed) burns above a burner. Its exhaust gas 
ontains beside the97



Figure 6.11: CVD 
ow rea
tor.
ombustion produ
t H2O, also up to 25% H radi
als (in mole) and 
ontributeto the warming of the methane inje
ted through the pipe. This latter gas isthen transported by 
onve
tion and di�usion within a \stopping-point" 
owto the substrate surfa
e. De
omposition rea
tions o

ur on the way, su
h thatthe CH3 
on
entration in
reases at �rst by the 
onsumption of H radi
als,and �nally de
reases due to re
ombination and other rea
tions.This later pro
ess 
an also be observed in the result of the simulation (seeFigure 6.13). With the help of the adaptive solution method developed inthis work, the 
on
entration of CH3 
an be a

urately 
omputed. In order tooptimize the CH3 
on
entration on the substrate we 
ould use for our adaptivepro
ess an error fun
tional similar to the fun
tional des
ribed in Se
tion 6.1.3and de�ned by relation (6.2). However as we want here to show the evolution ofthe CH3 mass fra
tion in the rea
tor, we de
ide to use a global error fun
tional98
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(Flame inflow)Figure 6.12: CVD 
omputational �eld { half axial se
tion of the CVD rea
torfor symmetry reasons.on this variable de�ned byJ(') = Z
 '(r; z) r drdz: (6.6)This gives us 
ontrol on the mean value of the CH3 mass fra
tion over thewhole domain (see Chapter 5 for more details about error fun
tionals) andmakes the adaptive pro
ess re�ne more globally where the gradient of thisvariable is high or on some singularities and not on given measure points orlines (see Figure 6.13). Table 6.3 gives the 
onvergen
e history of the errorestimator based on the resolution of the dual system and de�ned in (5.46).Table 6.3: Results for the error estimator for the CVD simulation using aserror fun
tional the global mean value of the CH3 mass fra
tion.Level # Cells �1 412 4.21e-52 784 1.70e-53 1528 7.49e-64 2941 3.44e-65 5698 2.05e-66 11374 1.14e-67 23611 6.43e-7A next step would be to optimize the CH3 
on
entration on the substratesurfa
e by 
ontrolling parameters su
h as the in
ow velo
ities of the gas orthe geometry. In this purpose, we would use an error fun
tional giving 
ontrol99



Figure 6.13: CVD simulation with lo
al re�nement { Mass fra
tion of CH3.to the lo
al value of the CH3 
on
entration or of the 
on
entration of anyother spe
ies involved in the diamond deposition on the substrate. On
e theoptimized parameters are found by simulation, they 
an be applied on theexperiment.The di�erent parameters whi
h 
an be used for the optimization pro
ess 
an bethe methane 
ow rate or the 
ame exhaust gas 
ow rate as well as the distan
ebetween the pipe from whi
h methane 
ows and the substrate. These are twodi�erent kinds of parameters: the �rst one involves boundary 
onditions, these
ond one the geometry of the rea
tor.To simplify geometri
al optimization, if we de
ide to optimize the distan
epipe/substrate, an automati
 mesh generator has been developed. It allows theuser to generate a mesh for the 
omputation domain a

ording to geometri
alparameters su
h as the pipe distan
e to the substrate and to the 
ame, as wellas the rea
tor size and the pipe size (see des
ription in Appendix C).In a further work we 
ould also here 
ouple the solution pro
ess developed inthis work with an optimization pro
ess for instan
e on the in
ow boundary
onditions for the in
ow velo
ities or spe
ies 
on
entrations. Promising resultsin this �eld 
an be found in [34℄.
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Chapter 7Con
lusion and OutlookIn this work, we have developed and implemented a solution method for thelow Ma
h-number formulation of the Navier-Stokes equations with supple-mentary equations des
ribing the evolution of the temperature and 
hemi
alspe
ies (mass fra
tions) with sour
e terms due to heterogeneous (surfa
e) andhomogeneous (gas-phase) 
hemi
al rea
tions. These equations are written in
ylinder 
oordinates and are dis
retized with stabilized 
onforming Q1/Q1 �-nite elements.The resulting nonlinear system is solved by a full-
oupled defe
t-
orre
tioniteration based on an approximation of the Ja
obian matrix of the system. We
onstru
t this approximation with regard to the 
onsisten
e and solvability ofthe 
orresponding linear system.A key element of the solver is the use of a multigrid pre
onditioner for theGMRES method applied for solving the linear problems arising in the de-fe
t 
orre
tion iteration. We implemented three di�erent smoothing operatorsfor our multigrid pre
onditioner: a Gauss-Seidel iteration and a robust ILUfa
torization for the spe
ies equations, and a Vanka-type smoother for theNavier-Stokes part of our system. The multigrid method we implemented isbased on the DEAL library and takes advantage of the hierar
hi
al stru
tureof the mesh 
onstru
ted by su

essive re�nements.Adaptive meshes are su

essfully applied in the 
ontext of rea
tive 
ows. Are
ent approa
h to 
ontrol the error in fun
tionals of the solution is presentedand applied to this type of problems. The reliability and eÆ
ien
y of the errorestimator for our appli
ations is demonstrated through numeri
al results fortwo types of 
hemi
al models.Comparing our method with a �nite-di�eren
e 
ode developed by J. Segatz andused in the 
omputation of 
hemi
al 
ow rea
tors (see [46℄), the 
al
ulationtime has been redu
ed by a fa
tor �ve for rea
tion me
hanisms made of around30 elementary rea
tions and involving around 10 spe
ies. We have also su

ess-fully applied our method to 
hemi
al 
ows involving 39 spe
ies and more than101



350 
hemi
al rea
tions. Even by 
ows with so many spe
ies and rea
tions, theadaptive method presented in this work allows to rea
h a 
ontrolled a

ura
yon physi
al quantities of the 
ow with a

eptable 
omputational e�orts.As promising outlook we would like to emphasize the following points:For large 
hemi
al systems a major part of the 
omputing time is 
onsumedby the 
al
ulation of the Ja
obian matrix of the 
hemi
al sour
e terms and itsinversion by Gauss-Seidel iterations or ILU fa
torization. Be
ause these oper-ations 
an be performed lo
ally, a parallelization of the presented algorithmseems to be an adequate method.An appli
ation to 3D problems will also in
rease the need of redu
ing memoryrequirements and 
omputation times without sa
ri�
ing a

ura
y. Adaptivere�nement methods will probably play an important role for solving 3D prob-lems in order to rea
h the needed a

ura
y on physi
al quantities of interestwith an optimal number of 
ells.Another �eld of investigation is the mesh adaption for unsteady solutions. A�rst approa
h is to allow beside mesh re�nement also mesh 
oarsening, and
ompute a lo
ally-re�ned mesh for ea
h time step. Resear
h is still neededto implement a 
omplete mesh re�nement strategy for solutions depending ontime. Moreover a re�nement strategy for the time steps 
an also be de�ned.Another promising perspe
tive is the appli
ation of error 
ontrol and adap-tivity pro
esses for �nite element dis
retization to optimization problems gov-erned by di�erential equations. The dual solution obtained during the adaptivemesh re�nement 
an be used to build optimization strategies. This allows to
ontrol the value of the 
ost fun
tional of the optimization problem. Someresults in the �eld of 
oupling adaptivity and optimization methods 
an befound in [7℄ and [34℄. As an example of possible optimization problem we wantto give the diamond deposition seen in Se
tion 6.2: by optimizing some spe
ies
on
entration on the substrate, the quantity and quality of the diamond layerover the substrate 
an be drasti
ally in
reased.7.1 A
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Appendix ACARS-Experiment rea
tionmodel� H2 wall relaxation pro
essMECHANISM OF H2(V=0,1) REACT. (Yor
k S
hneider-Kuehnle)************************************** ***** 1. H2-HE MECHANISM ***** * * rea
tion rates **********************************************H21 +H + >H20 +H * 2.36E+11 0.00 0.0H21 +H20 + >H20 +H20 * 6.50E+07 0.00 0.0H21 +HE + >H20 +HE * 1.56E+07 0.00 0.0H +H +HE >H20 +HE * 5.00E+16 0.00 0.0H +H +H20 >H20 +H20 * 2.90E+15 0.00 0.0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS002 COMPLEX REACTIONS AT THE WALL1.00 H21 *1.0 1.500E-031.00 H20 0.0 0.001.00 H *1.0 1.000E-040.50 H20 0.0 0.00END� H2=D2 wall relaxation pro
ess and vibrational energy ex
hangeMECHANISM OF H2(V=0,1) REACT. (T.DREIER)**** 107



********************************** ***** 1. H2+D- MECHANISM ***** k = 
m3/mol/s * * rea
tion rates **********************************************H20 +D >HD0 +H * 1.78E+08 0.00 0.0HD0 +H >H20 +D * 2.03E+07 0.00 0.0D20 +H >HD0 +D * 1.27E+07 0.00 0.0HD0 +D >D20 +H * 2.03E+07 0.00 0.0H21 +H >H20 +H * 5.42E+10 0.00 0.0HD1 +H >HD0 +H * 5.42E+10 0.00 0.0H21 +D >H20 +D * 5.42E+10 0.00 0.0HD1 +D >HD0 +D * 5.42E+10 0.00 0.0H21 +D >HD0 +H * 2.00E+10 0.00 0.0D21 +H >HD0 +D * 9.55E+09 0.00 0.0HD1 +H >H20 +D * 9.55E+09 0.00 0.0HD1 +D >D20 +H * 9.55E+09 0.00 0.0H21 +D >HD1 +H * 1.04E+12 0.00 0.0D21 +H >HD1 +D * 1.27E+09 0.00 0.0HD1 +H >H21 +D * 5.21E+11 0.00 0.0HD1 +D >D21 +H * 6.00E+10 0.00 0.0H21 +HD0 >H20 +HD0 * 1.13E+11 0.00 0.0HD1 +H20 >HD0 +H21 * 8.43E+09 0.00 0.0H21 +D20 >H20 +D21 * 1.19E+10 0.00 0.0D21 +H20 >D20 +H21 * 6.02E+07 0.00 0.0HD1 +D20 >HD0 +D21 * 2.11E+09 0.00 0.0H21 +H20 >H20 +H20 * 7.80E+07 0.00 0.0H21 +HE >H20 +HE * 1.56E+07 0.00 0.0HD1 +HE >HD0 +HE * 3.01E+07 0.00 0.0H +H +HE >H20 +HE * 4.10E+08 0.00 0.0H +H +H20 >H20 +H20 * 4.68E+08 0.00 0.0D +D +D20 >D20 +D20 * 3.55E+08 0.00 0.0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS005 COMPLEX REACTIONS AT THE WALL1.00 H21 *1.0 8.700E-041.00 H20 0.0 0.001.00 D21 *1.0 8.700E-041.00 D20 0.0 0.001.00 HD1 *1.0 8.700E-041.00 HD0 0.0 0.001.00 H *1.0 1.000E-030.50 H20 0.0 0.00108



1.00 D *1.0 1.000E-030.50 D20 0.0 0.00END� NO2 and H2 rea
tive mixture********************************** ***** 1. NO2-H2 MECHANISM ***** k = 
m3/mol/s **********************************************H +H +M >H2 +M * 2.50E+09 0.00 0.0 0H +H +H2 >H2 +H2 * 2.90E+03 0.00 0.0 0H +H +HE >H2 +HE * 2.50E+09 0.00 0.0 0H +NO2 >OH +NO * 7.20E+13 0.00 0.0 0H2 +OH >H2O +H * 4.52E+11 0.00 0.0 0OH +OH >H2O +O * 1.00E+12 0.00 0.0 0*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS001 COMPLEX REACTIONS AT THE WALL1.00 H *1.0 1.000E-030.50 H2 0.0 0.00END
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Appendix BCVD-Experiment rea
tionmodelMECHANISM C1-C2,Methan, P = 50 MBAR, HIGH TEMP.,OHNE C2H5O BZW. C2H5OH********************************************** 01. H2-O2 Rea
t. (no HO2, H2O2) * rea
tion rates *******************************************O2 +H =OH +O 2.000E+14 0.0 70.300H2 +O =OH +H 5.060E+04 2.670 26.300H2 +OH =H2O +H 1.000E+08 1.600 13.800OH +OH =H2O +O 1.500E+09 1.140 0.420********************************************** 02. Re
ombination Rea
tions******************************************H +H +M' =H2 +M' 1.800E+18 -1.000 0.000O +O +M' =O2 +M' 2.900E+17 -1.000 0.0H +OH +M' =H2O +M' 2.200E+22 -2.000 0.000********************************************** 03. HO2 Formation/Consumption******************************************H +O2 +M' =HO2 +M' 2.300E+18 -0.800 0.0HO2 +H =OH +OH 1.500E+14 0.0 4.200HO2 +H =H2 +O2 2.500E+13 0.0 2.900HO2 +H =H2O +O 3.000E+13 0.0 7.200HO2 +O =OH +O2 1.800E+13 0.0 -1.7HO2 +OH =H2O +O2 6.000E+13 0.0 0.0********************************************** 04. H2O2 Formation/Consumption******************************************HO2 +HO2 =H2O2 +O2 2.500E+11 0.0 -5.200OH +OH +M' =H2O2 +M' 3.250E+22 -2.000 0.0H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700H2O2 +H =H2O +OH 1.000E+13 0.0 15.000111



H2O2 +O =OH +HO2 2.803E+13 0.0 26.800H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200********************************************** 05. CO REACTIONS******************************************CO +OH =CO2 +H 6.000E+06 1.500 -3.100CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700CO +O +M' =CO2 +M' 7.100E+13 0.0 -19.000CO +O2 =CO2 +O 2.500E+12 0.0 200.000C +O2 =CO +O 2.000E+13 0.0 0.0C +OH =CO +H 5.000E+13 0.0 0.0********************************************** 10. CH Rea
tions******************************************CH +O =CO +H 4.000E+13 0.0 0.0CH +O2 =CHO +O 6.000E+13 0.0 0.0CH +CO2 =CHO +CO 3.400E+12 0.0 2.900CH +H2O =3CH2 +OH 5.700E+12 0.0 -3.200CH +OH =C +H2O 4.000E+07 2.0 12.300CH +H =C +H2 1.500E+14 0.0 0.0C +H +M' =CH +M' 3.000E+14 0.0 -1.0********************************************** 11. CHO REACTIONS******************************************CHO +M' =CO +H +M' 7.100E+14 0.0 70.300CHO +H =CO +H2 9.000E+13 0.0 0.0CHO +O =CO +OH 3.000E+13 0.0 0.0CHO +O =CO2 +H 3.000E+13 0.0 0.0CHO +OH =CO +H2O 1.000E+14 0.0 0.0CHO +O2 =CO +HO2 3.000E+12 0.0 0.0CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0CH +OH =CHO +H 3.000E+13 0.0 0.0********************************************** 12. CH2 Rea
tions******************************************3CH2 +H =CH +H2 6.000E+12 0.0 -7.5003CH2 +O >CO +H +H 8.400E+12 0.0 0.03CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.2003CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.2001CH2 +M' =3CH2 +M' 1.200E+13 0.0 0.01CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.01CH2 +H2 =CH3 +H 7.200E+13 0.0 0.03CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.43CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.43CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0******************************************112



**** 13. CH2O Rea
tions******************************************CH2O +M' =CHO +H +M' 5.000E+16 0.0 320.000CH2O +H =CHO +H2 2.300E+10 1.05 13.700CH2O +O =CHO +OH 4.150E+11 0.57 11.600CH2O +OH =CHO +H2O 3.400E+09 1.2 -1.900CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7CH2O +CH3 =CHO +CH4 1.000E+11 0.0 25.500CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.7003CH2 +OH =CH2O +H 2.500E+13 0.0 0.0CH +H2O =CH2O +H 1.170E+15 -0.75 0.0********************************************** 14. CH3 Rea
tions******************************************CH3 +M' =3CH2 +H +M' 1.000E+16 0.0 379.000CH3 +O =CH2O +H 8.430E+13 0.0 0.0CH3 +H =CH4 1.060E+36 -7.30 36.25CH3 +OH >CH3O +H 2.260E+14 0.0 64.8CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0CH3 +O2 >CH2O +OH 3.300E+11 0.0 37.400CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000CH3 +CH3 =C2H6 1.300E+58-13.8 79.30********************************************** 15a. CH3O Rea
tions******************************************CH3O +M' =CH2O +H +M' 5.000E+13 0.0 105.0CH3O +H =CH2O +H2 1.800E+13 0.0 0.0CH3O +O2 =CH2O +HO2 4.000E+10 0.0 8.9CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2CH3O +O =O2 +CH3 1.100E+13 0.0 0.0CH3O +O =OH +CH2O 1.400E+12 0.0 0.0********************************************** 15b. CH2OH Rea
tions******************************************CH2OH +M' =CH2O +H +M' 5.000E+13 0.0 105.0CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0********************************************** 16. CH3O2 Rea
tions******************************************CH3O2 +M' >CH3 +O2 +M' 0.724E+17 0.0 111.1CH3 +O2 +M' >CH3O2 +M' 0.141E+17 0.0 -4.6CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7113



CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0********************************************** 17. CH4 Rea
tions******************************************CH4 +H =H2 +CH3 1.300E+04 3.000 33.600CH4 +O =OH +CH3 6.923E+08 1.560 35.500CH4 +OH =H2O +CH3 1.600E+07 1.830 11.600CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100CH4 +3CH2 =CH3 +CH3 1.300E+13 0.0 39.900********************************************** 18. CH3OH Rea
tions******************************************CH3OH =CH3 +OH 1.130E+25 -3.40 372.9CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4CH3OH +CH2O >CH3O +CH3O 0.153E+13 0.0 333.2CH3O +CH3O >CH3OH +CH2O 0.300E+14 0.0 0.0********************************************** 19. CH3O2H Rea
tions******************************************CH3O2H =CH3O +OH 4.000E+15 0.0 180.5OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0************************************************************************** ***** 4. C2 MECHANISM ***** *************************************************************************** 19B. C2 Rea
tions*****************************************C2 +O2 =CO +CO 5.000E+13 0.0 0.0114



C +C +M' =C2 +M' 3.000E+14 0.0 -1.0CH +CH =C2 +H +H 5.000E+13 0.0 19.0CH +CH =C2 +H2 5.000E+12 0.0 0.0C +CH =C2 +H 5.000E+13 0.0 0.0********************************************** 20. C2H REACTIONS******************************************C2H +O =CO +CH 1.000E+13 0.0 0.0C2H +O2 =HCCO +O 3.000E+12 0.0 0.0C +3CH2 =C2H +H 5.000E+13 0.0 0.0C2H +O2 =CO +CO +H 3.520E+13 0.0 0.0C2H +OH =HCCO +H 2.000E+13 0.0 0.0C2H +OH =C2 +H2O 4.000E+07 2.0 32.8C2 +H2 =C2H +H 4.000E+05 2.4 4.1********************************************** 20A. C2O REACTIONS******************************************C2O +H =CH +CO 1.000E+13 0.0 0.0C2O +O =CO +CO 5.000E+13 0.0 0.0C2O +OH =CO +CO +H 2.000E+13 0.0 0.0C2O +O2 =CO +CO +O 2.000E+13 0.0 0.0C2 +OH =C2O +H 5.000E+13 0.0 0.0********************************************** 20B. HCCO REACTIONS******************************************HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0HCCO +O >CO +CO +H 9.600E+13 0.0 0.0HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0********************************************** 21. C2H2 REACTIONS******************************************C2H2 +M' =C2H +H +M' 3.600E+16 0.0 446.0C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0C2H2 +H =C2H +H2 1.500E+14 0.0 79.6C2H2 +O =3CH2 +CO 1.720E+04 2.8 2.1C2H2 +O =HCCO +H 1.720E+04 2.8 2.1C2H2 +OH =H2O +C2H 6.000E+13 0.0 54.2CH +3CH2 =C2H2 +H 4.000E+13 0.0 0.0C +CH3 =C2H2 +H 5.000E+13 0.0 0.0C2H2 +O =C2H +OH 3.160E+15 -0.6 61.5CH +HCCO =C2H2 +CO 5.000E+13 0.0 0.0********************************************** 21A. CH2CO REACTIONS******************************************CH2CO +M' =3CH2 +CO +M' 1.000E+16 0.0 248.0CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1115



CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0CH +CH2O =CH2CO +H 9.460E+13 0.0 -2.11********************************************** 25. C2H3 REACTIONS******************************************C2H3 =C2H2 +H 1.900E+38 -8.5 192.6C2H3 +OH =C2H2 +H2O 5.000E+13 0.0 0.0C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0C2H3 +O2 =C2H2 +HO2 5.400E+12 0.0 0.0CH +CH3 =C2H3 +H 3.000E+13 0.0 0.0C2H3 +CH =3CH2 +C2H2 5.000E+13 0.0 0.0********************************************** 22A. CH3CO REACTIONS******************************************CH3CO =CH3 +CO 7.700E+23 -4.7 68.58CH3CO +H =CH2CO +H2 2.000E+13 0.0 0.0********************************************** 22B. CH2CHO REACTIONS******************************************CH2CHO +H =CH2CO +H2 2.000E+13 0.0 0.0********************************************** 23. C2H4 REACTIONS******************************************C2H4 +M' =C2H2 +H2 +M' 2.500E+17 0.0 319.8C2H4 +M' =C2H3 +H +M' 1.700E+18 0.0 404.0C2H4 +H =C2H3 +H2 1.700E+15 0.0 62.9C2H4 +O =CH2CHO +H 5.200E+05 2.08 0.0C2H4 +O =CHO +CH3 1.210E+06 2.08 0.0C2H4 +OH =C2H3 +H2O 6.500E+13 0.0 24.9CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.7********************************************** 23A. CH3CHO REACTIONS******************************************CH3CHO +M' =CH3 +CHO +M' 7.000E+15 0.0 342.8CH3CHO +H =CH3CO +H2 2.100E+09 1.16 10.1CH3CHO +H =CH2CHO +H2 2.000E+09 1.16 10.1CH3CHO +O =CH3CO +OH 5.000E+12 0.0 7.6CH3CHO +O =CH2CHO +OH 8.000E+11 0.0 7.6CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.7CH3CHO +HO2 =CH3CO +H2O2 3.000E+12 0.0 50.0CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9116



CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3********************************************** 24. C2H5 REACTIONS******************************************C2H5 =C2H4 +H 7.370E+42 -9.5 211.94C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0C2H5 +O =CH3CHO +H 5.000E+13 0.0 0.0C2H5 +O =CH2O +CH3 1.000E+13 0.0 0.0C2H5 +O2 =C2H4 +HO2 1.100E+10 0.0 -6.3C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0********************************************** 25. C2H6 REACTIONS******************************************C2H6 +H =C2H5 +H2 1.400E+09 1.5 31.1C2H6 +O =C2H5 +OH 1.000E+09 1.5 24.4C2H6 +OH =C2H5 +H2O 7.200E+06 2.0 3.6C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.4********************************************** 26. C3 Rea
tions******************************************H +C3 +M' =C3H +M' 7.000E+16 -1.000 0.00H2 +C3 =C3H +H 4.000E+05 2.400 0.00C +C2 +M' =C3 +M' 4.000E+16 -1.000 0.00C +C2H =C3 +H 4.000E+16 -1.000 0.00CH +C2 =C3 +H 1.000E+14 0.000 0.00********************************************ENDCOLLISION EFFICIENCIESM' =H2 +H2O +O2 +CO2 +CO +CH4 +AR1.0 6.5 0.4 1.50 0.75 3.0 3.0ENDCOMPLEX REACTIONS000 COMPLEX REACTIONSEND*****END
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Appendix CA C++ Pa
kage for theCal
ulation of Flow Rea
torswith Detailed Chemistry{ User Guide {
C.1 Overall Stru
tureThis 
++ pa
kage allows to 
al
ulate multi
omponent gas 
ows taking intoa

ount 
onve
tion, di�usion and 
hemi
al rea
tions in the gas phase as wellas rea
tions at walls. It 
omputes the velo
ity �eld, pressure, density andtemperature distribution as well as the gas 
hemi
al 
omposition by solving asystem of PDEs des
ribing the evolution in spa
e and time of these variables.The system is made of the Navier-Stokes equations supplemented with spe
iesmass 
onservation equations. The spatial dis
retization is based on a �niteelement approximation. The time dis
retization is restri
ted to an impli
itEuler s
heme. This 
ode has been used to 
al
ulate quasi-stationary solutionsand therefore a

urate time-step approximations were not needed.A defe
t 
orre
tion s
heme is used to solve the non-linear systems for ea
htime-step. The resulting linear systems are solved with a GMRES methodpre
onditioned by a multigrid method. The global system is split in two partswith respe
t to the defe
t-
orre
tion matrix used; the �rst part 
orresponds tothe Navier-Stokes equations, whi
h des
ribe the average 
ow of the mixture,and the se
ond part des
ribes the 
hemistry.This 
ode is based on the DEAL 
++ library whi
h provides a 
exible de-velopment environment for adaptive �nite element methods. Be sure to havethis library installed on your 
omputer in order to be able to use the present119



pa
kage. The reader 
an �nd more informations about the DEAL library athttp://gaia.iwr.uni-heidelberg.de.Our 
al
ulation 
ode as well as the DEAL library have been written andtested on SUN Solaris workstations with GNU g

 2.8. On other systems,some 
hanges might be ne
essary to a
hieve the 
ompilation and linking.C.2 Getting Things Installed and StartedThe pa
kage is available as a 
ompressed tar �le: flow rea
tor.tar.gz. Toun
ompress and unpa
k the tar �le use the 
ommands:gzip -d flow rea
tor.tar.gztar xf flow rea
tor.tarThere will be one dire
tory 
reated 
alled flow rea
tor. In this dire
tory, aset of subdire
tories are to be found:� Global 
hemi
al data 
ontains global 
hemi
al data about a lot of
hemi
al spe
ies. It should not be 
hanged.� SOURCE 
ontains the sour
e �les of the program rea
tor.� INSINP 
ontains a FORTRAN program whi
h uses the �les 
ontainedin the Global 
hemi
al data dire
tory as well as some other parameter�les (see below) in order to 
reate a spe
i�
ation �le de�ning the spe
iesthat are to be found in the 
ow, with their 
hemi
al 
hara
teristi
s, aswell as the rea
tions whi
h are to o

ur in the mixture. This 
reated �leis read by the program flow rea
tor at the start to de�ne and initializethe 
hemistry for the 
omputation.� USER DATA 
ontains parameter �les whi
h des
ribe the 
hemi
al spe
iesfound in the mixture, the 
hemi
al rea
tions and the boundary 
ondi-tions.� OUTPUT 
ontains the results of the 
omputations, i.e. �les in UCD (.inp)and GNUPLOT (.dat) formats.To 
ompile the 
ode, go in SOURCE, edit the Makefile �le and write there theabsolute path of the USER DATA and SOURCE dire
tories in the USER and SOURCEvariable de
larations:USER = /absolute path/USER DATASOURCE = /absolute path/SOURCE Do the same for the DEAL library path:DEAL = /absolute path/deal Save the �le and 
ompile the 
ode with gnu-make by typing make. 120



First a FORTRAN program 
alled insinp.x from the INSINP dire
tory alsohas to be used in order to 
reate a �le spe
ifying all parameters and variablesneeded in the 
hemi
al pro
esses as well as the boundary 
onditions. Thisexe
utable is supplied within the pa
kage, but under 
ertain 
ir
umstan
es itmight be ne
essary to 
ompile it again. If it is the 
ase go in the INSINPdire
tory and type make -f Make Inp. This program reads 
hemi
al data and
reates a new �le 
ontaining the only data needed for the 
urrent 
al
ulation.Here you may also have to edit the �le Make Inp and write the right pathde
larations.A s
ript-�le named go, whi
h has to be exe
uted in the main dire
tory flow rea
tor,
alls the two latter programs (insinp.x and rea
tor), in the right order, tostart the 
omputation a

ording to the 
ow 
hemi
al 
hara
teristi
s de�nedby the user. Thus to start the solution pro
ess go in the main dire
tory andtype go.C.3 Input and Output DataThe �les input, me
hanism, simulation.data and 
onst data, in dire
toryUSER DATA, 
ontain all the parameters the program needs to know. A 
hange inthe �le 
onst data demands that the program is 
ompiled again (see Se
tionC.2).C.3.1 Chemi
al Me
hanismThe 
hemi
al me
hanism is des
ribed in the �le named me
hanism. We give anexample of me
hanism �le. The �rst part des
ribes the simple rea
tions whi
htake pla
e within the gas phase. The rea
tion rate is given after the de�nitionof the 
orresponding rea
tion on the same line. Further the rea
tions at solidboundaries are de�ned with their rea
tion probability. Don't forget to set thenumber of rea
tions at the wall (named 
omplex rea
tions).MECHANISM OF D2(V=0,1) REACT.************************************** ***** 1. D2-HE MECHANISM ***** **********************************************D21 +D + >D20 +D * 2.36E+11 0.00 0.0 nistD21 +D20 + >D20 +D20 * 6.50E+07 0.00 0.0 n.v.D21 +HE + >D20 +HE * 1.56E+07 0.00 0.0 n.v.121



D +D +HE >D20 +HE * 5.00E+16 0.00 0.0 nistD +D +D20 >D20 +D20 * 2.90E+15 0.00 0.0 n.v.*********************************************ENDCOLLISION EFFICIENCIESENDCOMPLEX REACTIONS002 COMPLEX REACTIONS AT THE WALL1.00 D21 *1.0 1.500E-031.00 D20 0.0 0.001.00 D *1.0 1.000E-040.50 D20 0.0 0.00ENDC.3.2 In
ow DataThe in
ow data are given in the �le input. In this �le one 
an set the molefra
tions of ea
h spe
ies, the temperature, and velo
ity of the mixture at thein
ow boundary. This boundary 
ontains two di�erent area, the inner andouter tubes. The �le stru
ture is the following:OPTIONS...................(FORMAT 7(A4,6X), END WITH -END -)REGRID /PCON /PROFIL /TSO / / / /STORE /EXTRA 2/OUTPUT 1/ENERG 2/ / / /END / / / / / / /SPECIES..........................(Format 7(2A4,1X,A1), end with -END -)HE ,H20 ,H21 ,H ,HD0 ,HD1 ,D20 ,D21 ,D , , , , , ,END************************************************************************INFLOW COMP. INNEN AUSSEN ...(FORMAT A10,2F10.3, END WITH -END -)HE : 0.792 0.000 (SAME ORDER AS ABOVE !!!!!)H20 : 0.000 0.992 (MOLE-FRACTION)H21 : 0.000 0.005 ****H : 0.000 0.003 ****HD0 : 0.000 0.000 ****HD1 : 0.000 0.000 ****D20 : 0.115 0.000 ****D21 : 0.002 0.000 ****D : 0.091 0.000 ****P : 5.33E-3 5.33E-3 BART : 292. 292. KU : 0.000 0.000 M/S122



V : 64.00 34.00 M/SThere are some more lines in this �le but they are outdated and not taken intoa

ount. It is important to write the name of the spe
ies in the list on thetop of the �le in the right format (8 
hara
ters between 2 
ommas). After thespe
ies list, the spe
i�
ation of the in
ow data is to be found in two 
olumnsfor the inner (INNEN) and the outer (AUSSEN) tube; �rst the spe
ies molefra
tion, then the pressure, the temperature and �nally the radial and axialvelo
ities. It is to be noted that the spe
ies MOLE fra
tions are to be givenin this �le, although the outputs of the program give mass fra
tions.In dire
tory GLOBAL CHEM DATA, the �les mol.dat and thermo.dat 
ontainspe
ies spe
i�
 databases and should not be 
hanged or even edited.The s
ript go in the main dire
tory 
alls the prepro
essor insinp.x, whi
hitself reads the input �les and spe
ies data bases to 
reate a data set 
alledfort.3 also written in the main dire
tory. This data set is read by the a
tualsimulation 
ode to de�ne the 
ow 
hemi
al 
hara
teristi
s.C.3.3 Simulation Pro
essThe �le 
onst data.h in dire
tory USER DATA 
ontains data 
on
erning thesolvers, the adaptive pro
ess and the outputs. This �le is made of several wellde�ned parts:� Time step - Solver toleran
e:#define TIME_STEP_SIZE 2.#define TIME_STEP_NUMBER 50#define MAX_SIMPLE_IT 30#define SOLVER_TOL 1.E-7The time step size is normed by the density of the mixture and there-fore is a
tually around a fa
tor 10�4 smaller as the time step given byTIME STEP SIZE.The total number of time steps is given by TIME STEP NUMBER, andthe number of time steps without re�nement of the mesh is set byMAX SIMPLE IT. A quasi-stationary state 
an in this way be rea
hed be-fore the lo
al re�nement pro
ess begins. After MAX SIMPLE IT numberof iterations the adaptive re�nement pro
ess begins.SOLVER TOL is the toleran
e of the defe
t-
orre
tion pro
ess on the resid-ual.� Number of spe
ies: 123



#define SPECIES_COMP 10It should be set to the number of spe
ies + 1 for the temperature.� Neutral spe
ies:#define NEUTRAL_SPECIE 1It is used to de�ne the spe
ies whi
h is found in the tube at the start ofthe 
al
ulation. It should be a neutral spe
ies whi
h does not rea
t (oronly weakly) with other spe
ies of the mixture. This allow to avoid toosti� sour
e terms at the beginning of the 
omputation.� Wall-rea
tion 
ag:stati
 int WALL_CHEMISTRY = 1;if WALL CHEMISTRY is equal to 1, the wall rea
tions are taken into a

ount.If it is equal to 0 they are not.C.3.4 Re�nement pro
essThe re�nement pro
ess is based on the a

urate 
al
ulation of some averageor point values of mass fra
tions for sele
ted spe
ies. The following variablesallow the user to indi
ate whi
h values for whi
h spe
ies has to be known witha

ura
y.� Observation 
ag (solve-dual-problem 
ag):#define OBSERVATION 1This 
ag is set to 1 if some physi
al values have to be known with a
-
ura
y. In this 
ase the dual problem is solved for ea
h re�nement stepsand the dual solution is used to 
al
ulate the 
orresponding error esti-mator that is used to re�ne the mesh.If this 
ag is set to 0, the dual problem is not solved and the errorestimator does not 
ontain any weights.The following variables make sense only if the latter 
ag is set to 1, i.e.average or point values of some spe
ies mass fra
tions are to be knownwith a

ura
y.� Observed spe
ies: 124



#define OBSERVATION_SIZE 2stati
 int OBSERVATION_SPECIES[OBSERVATION_SIZE℄ = {1,2};The �rst variable de�nes the number of spe
ies for whi
h the mass fra
-tion has to be known with a

ura
y. This number must be between 1and SPECIES COMP-1. The se
ond variable is an array and 
ontains thenumbers of the 
orresponding spe
ies. The spe
ies are ordered in thesame way as in the �le input.� Observation dire
tion:#define OBSERVATION_XLINE 1#define OBSERVATION_YLINE 0#define OBSERVATION_AXE_POINTS 0X 
orresponds to the radial dire
tion and Y 
orresponds to the axialdire
tion. Here we de�ne whi
h value has to be known with a

ura
y.For ea
h of these 3 variables the value one means that this value is to be
al
ulated with pre
ision.OBSERVATION XLINE 
orresponds to average values of the mass fra
tionof the spe
ies de�ned above along radial lines whi
h are de�ned later.OBSERVATION YLINE 
orresponds to average values of the mass fra
tionof the spe
ies de�ned above along axial lines whi
h are de�ned later.OBSERVATION AXE POINTS 
orresponds to the point values of the massfra
tion of the spe
ies de�ned above along the axis of the tube. Thepositions of these points along the axis are de�ned later.There must be one and only one of these three variables with the valueset to 1. The two others must have the value 0.� Position of the observation lines/points (in meter):#define OBSERVATION_NUMBER 4stati
 double OBSERVATION_RADIUS[OBSERVATION_NUMBER℄ = {0.};stati
 double OBSERVATION_HEIGHTS[OBSERVATION_NUMBER℄ = {1,2,3,4};The variable OBSERVATION NUMBER de�nes the number of lines or pointswhere average or point values of the mass fra
tions have to be knownwith pre
ision.The variable OBSERVATION RADIUS is relevant only if OBSERVATION YLINEis set to 1, sin
e it de�nes the radius for ea
h line (parallel to the tubeaxis) where the averaged mass fra
tion has to be 
al
ulated with pre
i-sion.The variable OBSERVATION HEIGHTS is relevant only if OBSERVATION YLINEis set to 1, sin
e it de�nes the position on the tube axis for ea
h radialline or point of the axis where the mass fra
tion has to be 
al
ulatedwith pre
ision. 125



� Number of maximal re�nement level#define MAX_REFINEMENT_LEVEL 20This variable de�nes the maximal number of re�nement level for theadaptive mesh re�nement pro
ess. It is set to as default to 20 and 
anbe left to this value.C.3.5 Output DataThe output that 
an be 
ustomized here are done in Gnuplot format and
orresponds to the variable evolutions along radial lines. The output �les arestored in the dire
tory OUTPUT whi
h is in the main dire
tory.� Number of output lines:#define OUTPUT_NUMBER 3With this variable, one de�nes the number of lines for whi
h there mustbe an output �le. In this �le the evolution of the 
ow and 
hemi
alvariables are written in Gnuplot format.� Axial position of the output linesstati
 double OUTPUT_HEIGHTS[OUTPUT_NUMBER℄ = {1,2,3};This array 
ontains the axial position of the output lines expressed inmeter from the tube start.These �les in Gnuplot-format have the following stru
ture:#file : OUTPUT/output_15_0.dat#line output for y = 0.238 of variables:#radial position, u, v, p*, T, HE, H20, H21, H, HD0, HD1,D20, D21, D, rho, P/rho0.0045 -0.115513 26.7997 0.549813 292 1 1.01773e-13 1e-131.35934e-13 1e-13 1e-13 1e-13 1e-13 1e-13 0.000878807 606504The �rst line is the name of the �le. The se
ond line 
ontains a des
riptionof the se
tion for whi
h we get the variable evolution. The third line is ades
ription of the order in whi
h the variables are stored in the �le. And thefollowing lines 
ontain the data. The units for these data are SI (m=s, Pa, K,
dots) and mass fra
tion is stored for the spe
ies.126



Additionally to these Gnuplot output �le, output �les 
ontaining the 
ompletesolution on the whole domain are 
reated at the end of ea
h time step orre�nement step. They are also stored in the dire
tory OUTPUT. These �les arein UCD format, whi
h 
an be read by AVS, dealvision or DeViSoR, whi
h allthree are visualization programs.C.3.6 Mesh dataThe name of the mesh �le is given in the �le simulation.data with absoluteor relative path from the main dire
tory where the s
ript go is 
alled. Thedomain dimensions are also to be found in this �le.#***************** Data about the 
omputational field *******************#************************************************************************#**** Mesh file name# *******************
ars_split.inp#**** Domain dimensions (in meter) : ***# tube height | tube radius | splitter radius0.15 0.016 0.006The tube height is the length of the tube. The tube radius is the radius ofthe outer tube. And the splitter radius is the radius of the intern tube. Thevalues are needed by the program to 
al
ulate the in
ow values.C.4 Automati
 mesh generation for CVDIn order to simplify the geometri
al optimization pro
ess for CVD experimentwe developed a mesh generator for the CVD geometry. This is only one �le:CVD mesh generator.

 whi
h 
an be simply 
ompiled and linked by any 
++
ompiler.The parameters whi
h need to be set in the �le are the following:name = "mesh.inp";/*** |-- substrat* V 127



* |------------------------------------------------------------------* | <----------------------------- symmetry line |* | |* | d_substrat |* | |* | CH4 inflow |* |----| free outflow --> |* | |* | <- pipe |* | |* |----| |* | |* | |* | d_pipe |* | H2/O2 inflow |* | |* -------------------------------------------------------------------***//*** Enter here the numbers of 
olumns and lines of the mesh to be generated.* ^ Lines* |* |* |* ----------> Columns*/// # = number ofint nb_under_pipe_
ols = 2; // # 
olumns under the pipeint nb_above_pipe_
ols = 2; // # 
olumns over the pipeint nb_under_substrat_
ols = 15; // # 
olumns on the right of the pipeint nb_under_lines = 3; // # lines under the pipeint nb_pipe_lines = 3; // # lines beside the pipeint nb_between_lines = 4; // # lines over the pipe/*** enter here the widths of the domain (in m)128



*/double substrat_width = 0.025;double pipe_width = 0.001;/*** enter here the heights of and distan
es in the domain (in m)*/double substrat_height = 0.005;double pipe_height = 0.003;// distan
e between the inflow of the flame exhaust gasdouble d_pipe = 0.003;// distan
e between the pipe and the substratdouble d_substrat = 0.005;/*** enter the numbers of the different boundary lines*/int symmetry = 2;int outflow = 0;int wall = 3;int substrat_wall = 7;int CH4_inflow = 4;int H2O2_inflow = 5;/******************************************************************/
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