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Wei
he di�raktive Ho
henergiestreuung und Formfaktorenin ni
htperturbativer QCDZusammenfassungIn der vorliegenden Arbeit untersu
hen wir wei
he Ho
henergie-Reaktionen im Rah-men ni
htperturbativer Modelle. Dazu verwenden wir ein auf einem Funktionalin-tegral-Ansatz beruhendes Modell und leiten die Streuamplituden her, deren wesent-li
her Bestandteil Erwartungswerte von li
htartigen Wegner-Wilson S
hleifen undLinien sind, die dann im Modell des sto
hastis
hen Vakuums bere
hnet werden.Mesonen bes
hreiben wir in einem einfa
hen Quark-Antiquark Bild, f�ur Baryonennehmen wir eine Quark-Diquark Struktur an, als Hadron-Wellenfunktionen verwen-den wir einen Wirbel-Ste
h-Bauer Ansatz. Aus den Streuamplituden bere
hnen wirintegrierte und di�erentielle Wirkungsquers
hnitte sowohl f�ur elastis
he und di�rak-tive Proton-Proton als au
h f�ur Proton-Pion Streuung bei hohen S
hwerpunktsen-ergien und kleinen Impuls�ubertr�agen und verglei
hen mit experimentellen Daten.Abh�angig von der Symmetrie des jeweiligen Endzustandes erhalten wir entwederC = P = +1 (Pomeron) oder C = P = �1 (Odderon) Austaus
h. Des weiterenbere
hnen wir im Rahmen des Modells die Isovektor-Formfaktoren des Protons unddes Pions bei raumartigen Impuls�ubertr�agen. Im abs
hliessenden Kapitel verwen-den wir einen Dispersionsrelations-Ansatz zur Bere
hnung des Pion Formfaktorsbei zeitartigen Impuls�ubertr�agen. Aus dem Verglei
h mit experimentellen Datenbestimmen wir die Massen und Kopplungskonstanten der �- und !-Mesonen.Soft di�ra
tive high energy s
attering and form fa
tors innonperturbative QCDAbstra
tIn this work we study soft high energy rea
tions in the framework of nonperturbativemodels. Using a fun
tional integral approa
h we derive the s
attering amplitudes,whi
h are governed by expe
tation values of light-likeWegner-Wilson loops and lines,whi
h then are then evaluated in the model of the sto
hasti
 va
uum. We des
ribemesons in a simple quark-antiquark pi
ture, for baryons we assume a quark-diquarkstru
ture, as hadroni
 wave fun
tions we apply a Wirbel-Ste
h-Bauer ansatz. In thefollowing we 
al
ulate integrated and di�erential 
ross se
tions from the s
atteringamplitudes, as well for elasti
 and di�ra
tive proton-proton as for proton-pion s
at-tering at high 
entre of mass energies and small momentum transfers and 
ompareto experimental data. Depending on the symmetry of the respe
tive �nal state weget either C = P = +1 (pomeron) oder C = P = �1 (odderon) ex
hange. Further-more we 
al
ulate the isove
tor form fa
tors of the proton and the pion at spa
e-likemomentum transfers. In the �nal 
hapter we use a dispersion approa
h to 
al
ulatethe pion form fa
tor at time-like momentum transfers and determine the masses and
oupling 
onstants of the �- and !-mesons from a 
omparison to experimental data.
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Chapter 1Introdu
tionToday it is 
ommon belief that Quantum Chromodynami
s (QCD) is the theorydes
ribing the physi
s of the strong intera
tion. QCD is a Yang-Mills theory [1℄with the gauge group SU(3). The Lagrangian of QCD is 
onstru
ted from the basi
degrees of freedom, the quarks and gluons, in terms of whi
h we should be able todes
ribe all strong pro
esses. Due to the non-abelian stru
ture of SU(3), both quarksand gluons 
arry 
olour-
harge. But in the real world we observe neither quarks norgluons as free parti
les. Instead, the parti
les we see in nature are hadrons, whi
h are
olourless obje
ts, in whi
h the quarks and gluons are 
on�ned. The problem now isto �nd a suitable transition from the level of quarks and gluons, whose transa
tionsare des
ribed by the QCD Lagrangian, to the level of hadrons, whi
h are seen inthe real world pro
esses. For 
ertain 
ir
umstan
es we 
an solve this problem andderive results from �rst prin
iples, starting from the Lagrangian.One 
ase where this is possible is the �eld of short-distan
e phenomena. There,all o

urring momentum s
ales are mu
h larger than the QCD s
ale parameter�QCD � 200MeV. Due to asymptoti
 freedom [2℄, the QCD 
oupling parameterbe
omes small for large momentum s
ales and therefore we 
an use perturbativemethods, whi
h allow us for example to 
al
ulate the total 
ross se
tion in ele
tron-positron annihilation or the total hadroni
 de
ay rate of the Z-boson. Anotherexample is the 
al
ulation of parton distribution fun
tions for large Q2 by means ofthe DGLAP equation [3℄, whi
h has been derived from perturbative QCD.For long-distan
e phenomena, i.e. when all o

urring momentum s
ales are onlyof order �QCD or smaller, the QCD 
oupling be
omes too large and perturbationtheory breaks down. This is the regime of nonperturbative QCD, where we have touse numeri
al methods to obtain results from �rst prin
iples. One su
h numeri
almethod is latti
e QCD [4, 5℄. Typi
al quantities that are 
al
ulated in this 
ontextare e.g. hadron masses.The subje
t of this work are soft high energy rea
tions, whi
h are neither pureshort-distan
e, nor pure long-distan
e phenomena, be
ause we deal with two mo-mentum s
ales: the 
entre of mass (
.m.) energy is be
oming large, ps & 10GeV,the momentum transfer stays �nite, pjtj . 1GeV. Therefore, neither perturbation1



2 Chapter 1. Introdu
tiontheory nor numeri
al methods su
h as latti
e QCD 
an be applied dire
tly and wehave to revert to models.Until today, of 
ourse a lot of models have been developed to des
ribe highenergy hadron-hadron s
attering. Examples are the geometri
 model [6℄, the valonmodel [7℄, topologi
al expansions and strings [8℄, perturbative �eld theoreti
al 
al
u-lations [9℄ and the work of Cheng and Wu on the behaviour of high energy s
atteringamplitudes in quantum �eld theory based on perturbative 
al
ulations (see [10℄ andreferen
es therein).The experimentally observed in
rease of total 
ross se
tions for hadroni
 rea
-tions with the 
.m. energy [11℄, starting at about ps = 10 GeV, has been des
ribedphenomenologi
ally by Donna
hie and Landsho� [12℄ in the 
ontext of Regge the-ory [13℄. In this pi
ture the pomeron behaves like a photon with C = +1 and
ouples to single quarks, the transition to the hadron level then leads to the addi-tive quark rule [14℄. The rise of the total hadroni
 
ross se
tions 
an be des
ribed bya pomeron with an inter
ept slightly larger than one [11,12℄. For inelasti
 di�ra
tion,the pomeron-photon analogy was applied in [15℄ to relate the 
ross se
tion of theserea
tions in a quantitative way to the stru
ture fun
tions of deep inelasti
 ele
tron-proton s
attering. For reviews on nonperturbative models we refer to [16{19℄.A new nonperturbative des
ription of soft hadroni
 high energy rea
tions, start-ing from a mi
ros
opi
 level, was developed in [20℄ where in the 
ase of an abeliangluon model the pomeron properties were related to nonperturbative aspe
ts ofthe va
uum like the gluon 
ondensate introdu
ed by Shifman, Vainshtein and Za-kharov [21℄. These methods were generalised to QCD in [22℄. In this model the ob-je
ts governing the s
attering amplitudes are 
orrelation fun
tions of Wegner-Wilsonlines and loops [23,24℄, whi
h are then evaluated in the model of the sto
hasti
 va
-uum [25℄ as formulated in Minkowski spa
e in [23, 24, 26℄.This method has been applied to various rea
tions, for example ex
lusive ve
tormeson produ
tion [27{29℄, elasti
 hadron-hadron s
attering [30℄, and photo- andele
troprodu
tion of pseudos
alar and tensor mesons [31, 32℄. In this work we willextend the model to the des
ription of inelasti
 di�ra
tive hadron-hadron s
attering.In 
hapter 2 we present the basi
 prin
iples of our model. Progressing as in [22{24,26{30,33,34℄ we start from quark-quark s
attering, where we apply a fun
tionalintegral approa
h and use an eikonal expansion to derive an expression for the quark-quark s
attering amplitudes at high energies and small momentum transfers. Thetransition to the hadron level is performed by folding with suitably de�ned wavefun
tions. In this work, the 
onstituent 
on�guration of baryons is assumed to beof the quark-diquark type for the reasons given in [35, 36℄. Then baryons a
t as
olour dipoles like mesons. Moreover we use two di�erent models for the di�ra
tive�nal state X when des
ribing inelasti
 di�ra
tive s
attering pro
esses. The soft highenergy hadron-hadron s
attering amplitudes for both elasti
 and inelasti
 di�ra
tives
attering are given at the end of this 
hapter.The evaluation of the s
attering amplitudes is the topi
 of the next 
hapter. We�rst give a brief summery of the properties of the model of the sto
hasti
 va
uum and



3then apply it in its Minkowskian formulation to 
al
ulate the 
orrelation fun
tions ofthe light-like Wegner-Wilson loops, where we use two approa
hes. Then we dis
ussthe hadroni
 wave fun
tions [37℄ for s- and p-wave states. Furthermore we de�newave fun
tions in
orporating the eigenfun
tions of a two-dimensional harmoni
 os-
illator whi
h we need for one of the methods des
ribing the di�ra
tive �nal statein inelasti
 di�ra
tive s
attering. Finally, we analyse symmetry properties of thes
attering amplitudes after inserting the wave fun
tions and the expressions whi
hwe obtain from the evaluation of the loop-loop 
orrelation fun
tions in the di�erentapproa
hes. Based on symmetry 
onsiderations we �nd that our model gives eitherC = P = +1, i.e. pomeron, ex
hange, or C = P = �1, i.e. odderon, ex
hange,depending on whi
h rea
tion in parti
ular we are studying. To be able to studyodderon ex
hange in the framework of our model in a purely hadroni
 rea
tion, wehave 
hosen a spe
i�
 rea
tion whi
h should have a 
lear experimental signature.In 
hapter 4 we 
al
ulate integrated and di�erential 
ross se
tions from the s
at-tering amplitudes derived in 
hapters 2 and 3. We 
on
entrate on proton-protonand proton-pion s
attering and 
ompare our numeri
al results obtained from bothapproa
hes to experimental data. In the 
ase of pp-s
attering we brie
y reviewprevious results on the di�erential elasti
 
ross se
tion from [30℄. We then turn tosingle di�ra
tive disso
iation pp ! pX. Most of the results shown in this 
ontextare the basis for the publi
ation [38℄, where in addition to hadron-hadron s
atter-ing also photo- and ele
troprodu
tion of �0-mesons is dis
ussed. Furthermore westudy the double di�ra
tive ex
itation of the proton pp ! N(1535)N(1535) whi
his mediated by odderon ex
hange and give our predi
tions for the di�erential andintegrated 
ross se
tion for this rea
tion. For proton-pion s
attering we also startwith a review of the di�erential elasti
 
ross se
tion from [30℄ and then 
ontinuewith the study of single di�ra
tive disso
iation of the pion p� ! pX.The next 
hapter deals with the isove
tor proton and pion form fa
tors at smallspa
e-like momentum transfers. In the region of interest to us here, 0 � �q2 �10GeV2, the form fa
tor is dominated by nonperturbative QCD e�e
ts [39℄, and 
anfor example be des
ribed by a pi
ture based on the 
on
ept of 
onstituent quarkswhi
h e�e
tively a

ount for nonperturbative dynami
s [40℄. In this region all pre-
onditions for the appli
ation of our nonperturbative model are ful�lled. Thereforewe 
an 
al
ulate the proton and pion form fa
tors in the framework of our modeland extra
t the ele
tromagneti
 radii from �ts to experimental data. However, wedo not intend to perform a pre
ision 
al
ulation of the form fa
tors but apply the
al
ulation mainly to extra
t parameters we need in the de�nition of our hadronwave fun
tions. The results obtained here are also published in [38℄.The aim of 
hapter 6 is to study the pion form fa
tor for small time-like mo-mentum transfers. In this region we 
an no longer apply the nonperturbative modelwhi
h we have used so far. There are many approa
hes to des
ribe the time-like pionform fa
tor, in
luding ve
tor meson dominan
e [41℄, 
hiral perturbation theory [42℄and the appli
ation of dispersion relations [43℄. In the following we apply 
onsis-tently a dispersion approa
h with ���, �KK, and gauge-invariant �
 
ouplings.



4 Chapter 1. Introdu
tionThe form fa
tor is obtained by resummation of pion and kaon loops. For the loopdiagrams we use a dispersion representation and analyse ambiguities related to sub-tra
tion 
onstants. The resulting representation for the form fa
tor is shown to havethe form of the 
onventional ve
tor meson dominan
e formula with one importantdistin
tion - the e�e
tive �-meson de
ay 
onstant f e�� turns out to depend on themomentum transfer. For the ele
tromagneti
 pion form fa
tor we in
lude in additionthe � � ! mixing e�e
ts. We apply the representations obtained to the analysis ofthe data on the pion form fa
tors from e+e� annihilation and � de
ay and extra
tthe ��, �0 and ! masses and 
oupling 
onstants. The work of this 
hapter has beenpublished in [44℄.Our 
on
lusions and a summary are given in 
hapter 7.



Chapter 2Derivation of the s
atteringamplitudesThe formalism we are going to use, as developed in [22℄, is based on the followinggeneral 
onsiderations. Imagine that we look at e.g. elasti
 hadron-hadron s
atteringh1(P1) + h2(P2)! h1(P3) + h2(P4) (2.1)at high energies and small momentum transfer through a \mi
ros
ope". This mi-
ros
ope has to have an appropriate resolution, whi
h allows us to see the essentialfeatures of the pro
ess but does not resolve the unimportant details of the internalstru
ture of the hadrons, whi
h would only 
ompli
ate the des
ription. In [22℄ theappropriate resolution has been estimated by a series of simple arguments basedon the un
ertainty relation. For a time interval of approximately �0 � 2 fm thefollowing assumptions 
on
erning the s
attering pro
ess 
an be made:� The parton state of the hadrons does not 
hange qualitatively, i.e. partonannihilation and parton produ
tion pro
esses are negligible.� The partons are subje
t to soft elasti
 s
attering.� The partons move on essentially straight light-like worldlines.To derive the s
attering amplitudes for soft high energy hadron-hadron s
attering,we progress as follows: �rst, we 
onsider quark-quark s
attering in the frameworkof the model. On this level, the essential features of the model will be
ome ap-parent and we will see that the strong intera
tion between the quarks is mediatedby the nonperturbative gluoni
 va
uum 
u
tuations. Then we dis
uss how to treatantiquarks in our formalism and give simple rules for the 
onstru
tion of s
atteringamplitudes for arbitrary systems of quarks and antiquarks in the framework of ourmodel. With these ingredients we 
an progress to the level of hadrons, whi
h weperform by folding the partoni
 s
attering amplitudes by suitable hadroni
 wavefun
tions. In the last step we 
onstru
t the hadroni
 T -matrix elements for thetypes of rea
tions we are interested in. 5



6 Chapter 2. Derivation of the s
attering amplitudes2.1 Quark-quark s
atteringConsider the s
attering of two quarks q1 and q2q1(p1) + q2(p2)! q3(p3) + q4(p4); (2.2)where pi; i = 1 : : : 4 are the four-momenta of the quarks and the momentum transferis q = p1 � p3. The normalisation of the quark states is given byhq(pj; sj; Aj; fj)jq(pk; sk; Ak; fk)i= Æsj ;skÆAj ;AkÆfj ;fk(2�)2q2p0j2p0kÆ(3)(pj � pk) (2.3)� Æ(j; k):As an abbreviation we use j(k) to denote the momentum pj(k) and the set of spin,
olour and 
avour index sj(k); Aj(k) and fj(k) of the quark qj(k), respe
tively.2.1.1 The fun
tional integral approa
hApplying the redu
tion formalism by Lehmann, Symanzik and Zimmermann to theS-matrix element of rea
tion (2.2), we get an integral over the 4-point fun
tion ofthe quark �eldsSfi � hq3(p3)q4(p4)jSjq1(p1)q2(p2)i= Z�2 Z d4x1d4x2d4x3d4x4 e�i(p1�x1+p2�p2�p3�x3�p4�x4)�u4(i!�6 4 �m0q4)�u3(i!�6 3 �m0q3)h0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i(i �6 1 +m0q1)u1(i �6 2 +m0q2)u2: (2.4)Here Z is the wave fun
tion renormalisation 
onstant and m0qj are the renormalisedquark masses, de�ned by the lo
ation of the pole of Fourier transform of the fullFeynman propagator. The 4-point fun
tion 
an be 
al
ulated nonperturbativelyusing the fun
tional integral of QCDh0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i= Z�1 Z D(G; q; �q) exp�i Z dxLQCD(x)� q4(x4)q3(x3)�q1(x1)�q2(x2) (2.5)with the partition fun
tionZ = h0outj0ini = Z D(G; q; �q) exp�i Z dxLQCD(x)� : (2.6)



2.1. Quark-quark s
attering 7The QCD Lagrangian is given byLQCD = �12Tr(G��(x)G��(x)) +Xq �q(x)(iD6 �mq)q(x): (2.7)Here q(x) are the quark �elds with masses mq, q = u; d; s; 
; b; t 
ounting the dif-ferent quark 
avours. In standard notation G�(x) denotes the matrix of the gluonpotential, G��(x) the matrix of the gluon �eld strength tensor.G�(x) = Ga�(x)�a2 ;G��(x) = ��G�(x)� ��G�(x) + ig[G�(x); G�(x)℄ (2.8)�a; a=1;:::;8 are the Gell-Mann matri
es of SU(3) with 
olour index a, D� is the 
o-variant derivative, de�ned by D� = �� + igG�: (2.9)As the Lagrangian is bilinear in the quark and antiquark �elds we 
an dire
tlyperform the integration over the fermioni
 degrees of freedom by a generalised Gaus-sian integration and �ndh0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i= Z�1 Z D(G) exp�� i2 Z dxTr(G��(x)G��(x))�Yq det [�i(iD6 �mq + i�)℄�Æf3f1 1i SF (x3; x1;G)Æf4f2 1i SF (x4; x2;G)� (3$ 4)� : (2.10)SF (xj; xk;G) is the unrenormalised Green's fun
tion for a quark in an external gluon�eld G�(x) for whi
h we have(iD6 �mq)SF (xj; xk;G) = �Æ(4)(xj � xk): (2.11)The Lippmann-S
hwinger equationSF (xj; xk;G) = S0F (xj; xk)� S0F (xj; xk)(gG6 �Æm)SF (xj; xk;G) (2.12)relates the unrenormalised Green's fun
tion to the free Green's fun
tion S0F (xj; xk)with renormalised mass m0 = m+ Æm. Using the shorthand notationjj) := usj;Aj (pj)e�ipj �xj ;(jj := �usj;Aj (pj)eipj �xj ;j Fpj) := SF (i �6 j +m0qj)jj); (2.13)



8 Chapter 2. Derivation of the s
attering amplitudeswhere j Fpj) are quark wave fun
tions whi
h satisfy the Dira
 equation in an externalgluon potential (iD6 �mqj )j Fpj) = 0; j = 1; 2; (2.14)and the Lippmann-S
hwinger equation, we get from (2.4)Sfi = �Z�2 DÆf3f1Æf4f2(3j(gG6 �Æmq1)j Fp1)(4j(gG6 �Æmq2)j Fp2)� (3$ 4)EG: (2.15)In our notation we impli
itly in
lude the integrations over xj; xk, resulting from theLSZ redu
tion formalism, when we write expressions of the form (kj Fpj). To 
learup the notation further we have introdu
ed the bra
ket symbol h iG of a fun
tionF (G) as hF (G)iG := Z�1 Z D(G) exp�� i2 Z dxTr(G��(x)G��(x))�Yq det [�i(iD6 �mq + i�)℄F (G): (2.16)In (2.15) we have two 
ontributions, the one that is written out expli
itely 
orre-sponds to t-
hannel ex
hange, the one that we have written symboli
ally as (3$ 4),meaning that quark 3 has to be inter
hanged with quark 4, 
orresponds to an u-
hannel pro
ess. In high energy s
attering with ps ! 1 and small p�t theu-
hannel 
ontributions are suppressed by a fa
tor s�1 at least and we therefore willnegle
t them in the following. With the de�nition of quark s
attering amplitudesMFkj(G) := (kj(i!�6 k �m0qk)SF (i �6 j +m0qk)jj)= (kj(gG6 �Æmqj )j Fpj); (j = 1; k = 3); (j = 2; k = 4); (2.17)whi
h have the 
orre
t form for a s
attering amplitude, i.e. an in
oming 
ompletewave folded with the potential and an outgoing plane wave, we get from (2.15)Sfi = �Z�2 Æf3f1Æf4f2hMF31(G)MF42(G)iG: (2.18)This equation 
an be interpreted as follows: the in
oming quarks are s
attered inde-pendently on the gluon ba
kground �elds. This is des
ribed by the quark s
atteringamplitudesMF31;MF42 whi
h are evaluated independently. Then we have to averageover all gluon �eld 
on�gurations by performing the fun
tional integration h iG.The up to now undetermined wave fun
tion renormalisation 
onstant Z appearsin (2.18). However, one of the assumptions of our model is that over the time interval
onsidered by us, no parton 
reation or annihilation pro
esses o

ur, meaning Z should be equal to 1. In [22℄ Z has been 
al
ulated in the framework of the modeland one 
onsistently �nds Z = 1. In the following we therefore set the wavefun
tion renormalisation 
onstant to 1.



2.1. Quark-quark s
attering 9Before we 
ontinue our programme and have to �nd a suitable high energy ap-proximation that will allow us to 
al
ulate the quark s
attering amplitudesMFkj(G),we note that the wave fun
tions j Fpj) do not satisfy the desired boundary 
onditionsfor x0 ! �1. The transition from Feynman wave fun
tions j Fpj) to retarded wavefun
tions j rpj) 
an be performed using the Lippmann-S
hwinger equation (2.12).The wave fun
tions possess the 
orre
t behaviour for x0 ! �1, namely that of ain
oming plain wave j rpj) x0!�1�! jj): (2.19)The repla
ement of MFkj with Mrkj in (2.18), i.e. going from Feynman to retardedboundary 
onditions, is a non-trivial step. It has been shown in [22℄ that thisrepla
ement is valid in the high energy limit for gluon potentials G� with an upperbound for the frequen
y spe
trum. This is in 
onsisten
y with our model, where weassumed that the partons undergo soft, elasti
 s
attering. Therefore the fun
tionalintegral in (2.18) is dominated by gluons with a frequen
y that is suÆ
iently smalland we 
an write Sfi = �Æf3f1Æf4f2hMr31(G)Mr42(G)iG; (2.20)with Mrkj(G) := (kj(gG6 �Æmqj )j rpj ): (2.21)2.1.2 The eikonal expansionAs mentioned before now we have to 
al
ulate the quark s
attering amplitudes whi
hinvolves solving the Dira
 equation for a quark in an external gluon potential(iD6 �mqj )j rpj ) = (i�6 �gG6 (x)�m0qj + Æmqj )j rpj) = 0 (2.22)and respe
ting the boundary 
ondition (2.19), whi
h of 
ourse 
annot be done ex-a
tly. However, sin
e we are only interested in the high energy limit of (2.4) for smallmomentum transfers, the DeBroglie wavelength of the quarks propagating throughthe gluon potentials are suÆ
iently small 
ompared to the 
u
tuations of the gluoni

on�gurations governing the fun
tional integral in (2.4) and we 
an use an eikonalapproximation. For this purpose it is 
onvenient to use light-
one variables whi
hare de�ned by x� = x0 � x3 (2.23)for any 4-ve
tor x and to 
hoose the 
entre of mass system as referen
e frame. Inthe high energy limit the quark light-
one momenta then go to in�nity and thetransverse momenta stay �nite.In the eikonal approximation we 
an now solve the di�erential equation (2.22)and satisfy the boundary 
onditions (2.19). We pro
eed as explained in [22,33℄ and
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attering amplitudes�nd as solutions for the quark wave fun
tions in leading order rp1(x) = V�(x+; x�;xT )�1 +O� 1p1+�� e�ip1�xu1(p1); rp2(x) = V+(x+; x�;xT )�1 +O� 1p2��� e�ip2�xu2(p2); (2.24)with the eikonal phasesV�(x+; x�;xT ) = P�exp �� ig2 Z x+�1 dx0+G�(x0+; x�;xT )�� ;V+(x+; x�;xT ) = P�exp �� ig2 Z x��1 dx0�G+(x+; x0�;xT )�� ; (2.25)whi
h satisfy the following boundary 
onditions and di�erential equations:V�(x+; x�;xT ) x�!�1�! 1;��V�(x+; x�;xT ) = � ig2 G�(x+; x�;xT ) � V�(x+; x�;xT ): (2.26)Inserting (2.24) into (2.21) and taking into a

ount (2.26) and the relations�u3(p3)
�u1(p1) = pp3+p1+Æs3s1n�+;�u4(p4)
�u2(p2) = pp4�p2�Æs4s2n��;n�� := 0BB� 100�1 1CCA ; (2.27)whi
h are valid in the high energy limit p1+; p3+; p2�; p4� � ps; p1�; p3�; p2+; p4+ � 0;ps!1 we �nd for the quark s
attering amplitudesMr31(G) = ipp3+p1+Æs3s1 Z dx� d2xT e i2 (p3�p1)+x��i(p3�p1)T �xT[V�(1; x�;xT )� 1℄A3A1 ;Mr42(G) = ipp4�p2�Æs4s2 Z dy+ d2yT e i2 (p4�p2)�y+�i(p4�p2)T �yT[V+(y+;1;yT )� 1℄A4A2 : (2.28)Now we insert these expressions for the quark s
attering amplitudes into (2.20)and make use of the translational invarian
e of the fun
tional integral. With thede�nition of the impa
t parameter bT := xT � yT we obtain our �nal result for thequark-quark s
attering amplitudeTfi = �2is Æs3s1Æs4s2 Z d2bT eiqT �bT�hV�(1; 0; bT2 )� 1iA3A1hV+(0;1;�bT2 )� 1iA4A2�G : (2.29)



2.2. Des
ription of antiquarks 11The momentum transfer q = q1 � q3 is purely transverse in the high energy limit.The underlying physi
al pi
ture of this result is the following: The quarks movealong straight light-like lines through the external gluon potential and a

umulatenon-abelian phase fa
tors V�, whi
h are obtained by integration along their traje
-tories, 
orrelating their phases, whi
h leads to the intera
tion of the quarks. Toobtain the s
attering amplitude we �nally have to perform a Fourier transform withrespe
t to the impa
t parameter bT . In the high energy limit the quark heli
itiesare 
onserved during the intera
tion.2.2 Des
ription of antiquarksSo far we have dis
ussed the wave fun
tions for outgoing quarks, if we want todes
ribe arbitrary systems of partons we need the wave fun
tions for in
oming quarksand in
oming and outgoing antiquarks as well. We do not give wave fun
tions forgluons here, sin
e in our simple ansatz for hadrons, whi
h we will present in thenext 
hapter, hadrons 
onsist of quarks and antiquarks - or diquarks in the 
ase ofbaryons - only and due to one of the assumptions of our model, no parton 
reation(nor annihilation) o

urs over the time interval of the s
attering pro
ess.j 0rpj ) := Sr(i �6 j +m0qj)jj 0);( e apj j := (jj(�i!�6 j +m0qj )Sr;( e 0apj j := (j 0j(�i!�6 j +m0qj )Sr: (2.30)Here a prime denotes that we are 
onsidering an antiquark and the index a standsfor advan
ed wave fun
tions, whi
h have to be used for in
oming partons and ful�lthe advan
ed boundary 
onditions(e apj j x0!+1�! (jj: (2.31)The antiquark spinors are given byjj 0) := vsj ;Aj(pj)eipj �xj ;(j 0j := �vsj ;Aj(pj)e�ipj �xj : (2.32)The advan
ed wave fun
tions have to satisfy the Dira
 equation( e apj j(i �6 j + gG6 +m0qj � Æmqj) = 0 (2.33)to whi
h we �nd the solutionse ap1(x) = eV�(x+; x�;xT )�1 +O� 1p1+ �� e�ip1�xu1(p1);e ap2(x) = eV+(x+; x�;xT )�1 +O� 1p2� �� e�ip2�xu2(p2); (2.34)
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attering amplitudeswith the eikonal phases de�ned analogously to (2.25)eV�(x+; x�;xT ) = P�exp � ig2 Z 1x+ dx0+G�(x0+; x�;xT )�� ;eV+(x+; x�;xT ) = P�exp � ig2 Z 1x� dx0�G+(x+; x0�;xT )�� : (2.35)Here P denotes anti-path-ordering. For the phase fa
tors analogue relations to (2.26)hold eV�(x+; x�;xT ) x�!1�! 1�� heV y�(x+; x�;xT )V�(x+; x�;xT )i = 0eV y�(x+; x�;xT )V�(x+; x�;xT ) = � V+(x+;1;xT )V�(1; x�;xT ) : (2.36)To 
al
ulate the s
attering amplitudeM0rk0j0(G) of an antiquark �q in an externalgluon potential G� we note that this 
orresponds to the s
attering of a quark q inthe 
harge 
onjugated gluon potential G0� withG0�(x) = CG�(x)Cy = �G��(x): (2.37)Furthermore we note that repla
ing G� by G0� in V� 
orresponds to 
omplex 
onju-gating the eikonal phase fa
tor, i.e. to the repla
ement V� ! V ��. De�ningM0rk0j0(G) := �(j 0j(i!�6 j �m0qj)j 0rpk): (2.38)we then obtain for the antiquark s
attering amplitudeM0r3010(G) = iqp03+p01+Æs03s01 Z dx� d2xT e i2 (p03�p01)+x��i(p03�p01)T �xT�V ��(1; x�;xT )� 1�A03A01 ;M0r4020(G) = iqp04�p02�Æs04s02 Z dy+ d2yT e i2 (p04�p02)�y+�i(p04�p02)T �yT�V �+(y+;1;yT )� 1�A04A02 : (2.39)When 
al
ulating S-matrix elements for quarks and antiquarks we also haveto take into a

ount 
ontributions from dis
onne
ted diagrams when applying theLSZ redu
tion formalism. These diagrams lead to delta fun
tions Æ(j; k) (Æ(j 0; k0))whi
h 
an
el the 1 in the (anti-)quark s
attering amplitudes Mrkj (M0rk0j0). In thehigh energy limit in leading order in s we then �nd a simple rule for the S-matrixelement: for ea
h quark or antiquark we write a 
ertain fa
tor whi
h we obtain fromthe appropriate quark or antiquark s
attering amplitude for �xed external gluonpotential G�(x). Then we multiply all these fa
tors and average over all gluonpotentials by means of the fun
tional integral (2.16).



2.3. S
attering of hadrons 13The fa
tors are� for a quark 
ying in positive x3 dire
tion (j ! k)Sq+(k; j) = ppk+pj+Æsksj Z dx� d2xT e i2 (pk�pj)+x��i(pk�pj)T �xTV�(1; x�;xT )AkAj ; (2.40)� for a quark 
ying in negative x3 dire
tionSq�(k; j) = ppk�pj�Æsksj Z dx+ d2xT e i2 (pk�pj)�x+�i(pk�pj)T �xTV�(x+;1;xT )AkAj ; (2.41)� for an antiquark 
ying in positive x3 dire
tion (j 0 ! k0)S�q+(k0; j 0) = qp0k+p0j+Æs0ks0j Z dx� d2xT e i2 (p0k�p0j)+x��i(p0k�p0j)T �xTV ��(1; x�;xT )A0kA0j (2.42)� and for an antiquark 
ying in negative x3 dire
tionS�q�(k0; j 0) = qp0k�p0j�Æs0ks0j Z dx+ d2xT e i2 (p0k�p0j)�x+�i(p0k�p0j)T �xTV �+(x+;1;xT )A0kA0j : (2.43)2.3 S
attering of hadronsIn this se
tion we want to study hadron-hadron s
attering. We are interested intwo types of s
attering rea
tions. We 
all the �rst one \ex
lusive" s
attering, i.e.the �nal state 
onsists of two de�nite hadrons whi
h we des
ribe by their a

ordinghadroni
 wave fun
tions. Elasti
 s
attering for example falls into this 
ategory,h1(P1) + h2(P2)! h1(P3) + h2(P4); (2.44)but we do not have to limit ourselves to elasti
 s
attering. The di�ra
tive s
atteringof the initial state hadrons h1 and h2 into e.g. ex
ited states h01 and h02 is also 
overedby our approa
h. More generally we writeh1(P1) + h2(P2)! h3(P3) + h4(P4); (2.45)where h3 and h4 
an be any hadrons that are a

essible by a soft di�ra
tive pro
ess.The se
ond type of rea
tions we want to study are \semi-in
lusive" pro
esses, where
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attering amplitudesone of the initial state hadrons stays inta
t and the other one di�ra
tively disso
iatesinto a �nal state X h1(P1) + h2(P2)! h1(P3) + X(P4); (2.46)where X 
an be any di�ra
tive ex
itation of h2. In both 
ases we use the 
onventionthat the hadrons h1; h3 move in positive x3 dire
tion and h2; h4 or X, respe
tively,in negative x3 dire
tion, i.e. P1+; P3+; P2�; P4� !1 in the high energy limit.In our model we des
ribe mesons as quark-antiquark pairs and the 
onstituentquark 
on�guration of baryons is assumed to be of the quark-diquark type for thereasons given in [35,36℄, where the point-like diquark is treated like an antiquark inthis approa
h. The baryons then a
t as 
olour dipoles like mesons.The di�ra
tive �nal state X is modelled by a q�q-pair (or quark-diquark pair)in a 
olour singlet state. Then we use two approa
hes. In the �rst method weuse free plane waves for the quark and antiquark and invoke quark-hadron duality.Integration over all allowed values in phase spa
e and the 
losure relation then yieldall possible di�ra
tive �nal states X, where the 
ase of elasti
 s
attering also isin
luded. The se
ond ansatz, applied to 
on�rm the results of the �rst methodand to gain additional insight into the stru
ture of the 
al
ulated di�erential 
rossse
tions, uses the wave fun
tions of a two-dimensional harmoni
 os
illator wherethe ground state 
orresponds to hadron h2 and the ex
ited states to the di�ra
tiveex
itations of h2. Sin
e these eigenfun
tions form a basis, the 
ontributions fromdi�erent ex
ited states are orthogonal to ea
h other and the 
al
ulation of 
rossse
tions 
an be performed as follows: �rst the 
ross se
tion for one spe
i�
 ex
itedstate with de�nite quantum numbers n;m is 
al
ulated and then the sum over allex
ited states is taken to get the inelasti
 semi-in
lusive di�ra
tive 
ross se
tion.The momenta p of the quark and p0 of the antiquark (or diquark, respe
tively)in a hadron (or the di�ra
tive �nal state X) with momentum P are parametrisedusing light-
one variables byp� = zP�; p0� = (1� z)P�;pT = zPT +�T ; p0T = (1� z)PT ��T : (2.47)Here z is the longitudinal momentum fra
tion 
arried by the quark. The relativetransverse momentum between the quark and the antiquark (diquark) is given by�T = pT � p0T2 + �12 � z�PT : (2.48)Lorentz invarian
e requires z to appear also in the transverse momenta pT and p0Tas de�ned above.2.3.1 Ex
lusive s
atteringThe hadroni
 s
attering amplitude is obtained by folding the underlying partoni
S-matrix element with suitable hadroni
 wave fun
tions, where the hadrons will be
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x3
x0 x1;2C+

C�
bT

xT
yTFigure 2.1: Two light-like Wegner-Wilson loops in position spa
eformed of parton wave pa
kets as explained above. Pro
eeding as in [24, 33℄, i.e.applying the rules (2.40)-(2.43) and with (2.47),(2.48), we �ndSfi = Æfi + i(2�)4Æ(4)(P3 + P4 � P1 � P2)TfiTfi = 2is Z d2bT eiqT �bT Ĵex
l(bT ); (2.49)with the ex
lusive pro�le fun
tionĴex
l(bT ) = � Z d2xT d2yT Z 10 dz dz0w31(xT ; z)w42(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG;(2.50)as has been found for the 
ase of elasti
 s
attering in [30℄. HereW� are the light-likeWegner-Wilson loopsW� := 13 trV (C�) = 13 tr P exp (�ig ZC� dx�Ga�(x)�a2 ); (2.51)
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�q+
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q�
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{z} z 1� zxT
z }|
{ z }| {1� z0

z0 yT bT ryq
ry�q rxq

rx�q
Figure 2.2: The orientation and extension of the light-like Wegner-Wilson loops ina proje
tion into transverse position spa
ewhere P denotes path ordering and C� is the 
urve 
onsisting of two light-likeworldlines for the quark and the antiquark (or diquark, respe
tively) and 
onne
t-ing pie
es at �1 (see Fig. 2.1), whi
h ensure gauge invarian
e. xT and yT de�nethe extension and orientation in transverse position spa
e of the two loops repre-senting the two hadrons h1 and h2 respe
tively, z (z0) parametrises the fra
tion ofthe longitudinal momentum of hadron h1 (h2) 
arried by the quark (see (2.47)). Theimpa
t parameter is given by bT , the light-
one bary
entres of the loops are lo
atedat 12bT + (12 � z)xT and �12bT + (12 � z0)yT , respe
tively (see [27℄ and Fig. 2.2). Asx-axis for the transverse ve
tors xT ; yT and bT we 
hoose qT .The symbol h: : :iG denotes the fun
tional integration whi
h 
orrelates the twoloops. In (2.50) the loop-loop 
orrelation fun
tion is multiplied with the fun
tionsw31(xT ; z) and w42(yT ; z0). These fun
tions wkj(xT ; z) denote the overlap betweeninitial state hadron hj and �nal state hadron hk for �xed transverse extension xTand �xed longitudinal momentum fra
tion z. Then we have to integrate over allextensions and orientations xT ;yT of the loops in transverse spa
e as well as overthe longitudinal momentum fra
tions z; z0 respe
tively. Finally a Fourier transformwith respe
t to the impa
t parameter bT has to be performed, as in the 
ase ofquark-quark s
attering.2.3.2 Semi-in
lusive s
atteringEx
ept for the repla
ement h4(P4) ! X(P4) everything remains un
hanged whenwe want to des
ribe the inelasti
 di�ra
tive disso
iation rea
tion (2.46) and we �nd
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�qT �qqh2(P2)

h1(P1) h1(P3)
�4T6?? |{z} X(P4)Figure 2.3: The semi-in
lusive s
attering rea
tion h1 + h2 ! h1 +Xin analogy to (2.49)Sfi = Æfi + i(2�)4Æ(4)(P3 + P4 � P1 � P2)TfiTfi = 2is Z d2bT eiqT �bT Ĵdiss; (2.52)where we have to use the pro�le fun
tion Ĵdiss now. As stated before, we are goingto use two di�erent ans�atze for X, leading to two expressions for the pro�le fun
-tions, depending on whi
h des
ription for the di�ra
tive �nal state we use in the
al
ulation.For the plane wave des
ription we obtainĴp:wavediss (bT ; z0) = � Z d2xT d2yT Z 10 dz w31(xT ; z)p2�p2z0(1� z0) e�i�4T �yT '2(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG;(2.53)where�4T is the relative transverse momentum between the quark and the antiquark(or diquark) of X (see (2.48) and Fig. 2.3). Instead of the overlap fun
tion w42o

urring in (2.50) here we have got the produ
t of the plane wave and the wavefun
tion '2 of the in
oming hadron h2.For the os
illator des
ription we obtainĴ2d os
diss (bT ) = � Z d2xT d2yT Z 10 dz Z 10 dz0 w31(xT ; z)Xn;m(yT ; z0)'2(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG:(2.54)Here Xn;m(yT ; z0) stands for the two-dimensional harmoni
 os
illator wave fun
tionwith quantum numbers n;m. Again, this fun
tion has to be multiplied by '2, de-s
ribing the in
oming hadron h2. Inserting in (2.54) the ground state wave fun
tion
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attering amplitudesX0;0 leads to the elasti
 s
attering amplitude, whi
h we also get from (2.49),(2.50)with h4 = h2; h3 = h1.In the plane wave des
ription z0 is part of the spe
i�
ation of the �nal stateand thus appears as argument of Ĵp:wavediss (bT ; z0) in (2.53). The phase spa
e integralthen in
ludes an integration over z0. When using the se
ond method involving thetwo-dimensional os
illator fun
tions to des
ribe the di�ra
tive �nal state, one hasto insert the fun
tion Xn;m on the r.h.s. of (2.54) and to integrate over z0. ThusĴ2d os
diss (bT ) depends for given os
illator fun
tion Xn;m on bT only.



Chapter 3Evaluation of the s
atteringamplitudesThe next step is to evaluate the s
attering amplitude (2.49), where the main partwill be to 
al
ulate the loop-loop 
orrelation fun
tion appearing in (2.50), (2.53)and (2.54), respe
tively. For this task we will make use of the model of the sto
hasti
va
uum (MSV), whi
h has been introdu
ed by Dos
h and Simonov [25℄. The modelis based on a small number of physi
ally well motivated assumptions and allows us to
ompute the relevant quantities we need for the des
ription of high energy s
attering,e.g. the expe
tation values of Wegner-Wilson lines and loops. Furthermore we haveto spe
ify suitable hadroni
 wave fun
tions 'j and to 
onstru
t from them theoverlap fun
tions wkj appearing in (2.50), (2.53) and (2.54). On
e we know how to
al
ulate the 
orrelation fun
tion by applying the model of the sto
hasti
 va
uumand after de�ning the wave fun
tions we 
an analyse the symmetry properties of thes
attering amplitudes. These 
onsiderations will allow us to 
lassify whi
h quantumnumbers 
an be ex
hanged in the di�erent rea
tions we are studying.3.1 The loop-loop 
orrelation fun
tion in the modelof the sto
hasti
 va
uumA

ording to present knowledge the va
uum has a highly nontrivial stru
ture gov-erned by 
hromoele
tri
 and -magneti
 ba
kground �elds. It has been �rst noted bySavvidy [45℄ that the mean energy density of the va
uum 
an be lowered by addinga 
onstant 
hromomagneti
 ba
kground �eld to the perturbative va
uum. The min-imal value of the energy density is obtained for a value of the 
hromomagneti
 �eldstrength B 6= 0, i.e. the va
uum spontaneously develops a 
hromomagneti
 ba
k-ground �eld, analogous to the spontaneous magnetisation of ferromagnets below theCurie temperature.Of 
ourse the QCD va
uum state must be relativisti
ally invariant and mustnot have a preferred dire
tion in ordinary and 
olour spa
e. In analogy to Weiss19



20 Chapter 3. Evaluation of the s
attering amplitudesdomains in a ferromagnet, states 
omposed of domains with random orientation ofthe gluon �eld strength have been proposed. The va
uum state then is build of alinear superposition of su
h states with various domains, where the �elds inside thedomains are oriented in various dire
tions. As well the boundaries of the domainsas the orientation of the �elds inside of them will 
u
tuate.An important step in the investigations of the QCD va
uum stru
ture wasa
hieved by Shifman, Vainshtein and Zakharov [21℄ with the introdu
tion of theQCD 
ondensates. In this way, nonperturbative 
omponents entered the perturba-tive des
ription of the QCD va
uum. With the introdu
tion of nonlo
al 
ondensatesone 
an go even one step further and study long-distan
e e�e
ts as for example 
on-�nement. Be
ause QCD is a non-abelian theory, nonlo
al 
ondensates 
an a priorinot be de�ned in a gauge-invariant way. To 
ure this problem we introdu
e so-
alled
onne
tors as the non-abelian generalisation of the S
hwinger string of QED, whi
hallow us to de�ne parallel-transported quantities su
h as the parallel-transportedgluon �eld strength (see Appendix B). Then we 
an de�ne gauge-invariant nonlo
al
ondensates by shifting the o

urring �eld strengths to a 
ommon referen
e point.The model of the sto
hasti
 va
uum in
orporates many of the above ideas. Itsstrongest assumption is that the nonperturbative behaviour of QCD 
an be approx-imated by a Gaussian pro
ess where the �eld strengths are the sto
hasti
 variables.This assumption already allows us to derive 
on�nement in the framework of themodel.3.1.1 Properties of the model of the sto
hasti
 va
uumIn this se
tion we will present the Minkowskian formulation of the model of thesto
hasti
 va
uum. A more detailed presentation of the model 
an be found in[23{26℄, where both the original formulation in Eu
lidian spa
e-time and the analyti

ontinuation to Minkowskian spa
e-time are dis
ussed.The starting point for the model is the 
orrelator of two gluon �eld strengthtensors Ga�� at points x1 and x2, parallel-transported to a 
ommon referen
e pointo along the two 
urves Cx1 and Cx2:D g24�2 Ĝa��(o; x1;Cx1)Ĝ��b(o; x2;Cx2)EG � 14ÆabF����(x1; x2; o;Cx1; Cx2): (3.1)The right hand side depends only on the points x1; x2 and the two 
urves Cx1 ; Cx2,the 
ommon referen
e point o 
an be freely shifted along the 
urve C12 = Cx1 + �Cx2.Due to 
olour 
onservation, the 
orrelation fun
tion is proportional to Æab. In theMSV the strong assumption is made that F���� is independent of the 
hoi
e of the
onne
ting 
urve C12:



3.1. The loop-loop 
orrelation fun
tion in the MSV 21Assumption I: F���� is independent of o and Cx1; Cx2.Then Poin
ar�e and parity invarian
e require F���� to be of the following form:F����(z) = 124G2�(g��g�� � g��g��) ��D(z2) + (1� �)D1(z2)�+(z�z�g�� � z�z�g�� + z�z�g�� � z�z�g��)(1� �)dD1(z2)dz2 �; (3.2)G2 � 14�2 hg2FF i = h0j g24�2 Ga��(0)Ga��(0)j0i; (3.3)where z = x1 � x2.Here G2 is proportional to the gluon 
ondensate h0jGa��(0)Ga��(0) j0i, D and D1are invariant fun
tions normalised to 1 at z = 0, D(0) = D1(0) = 1, and � is aparameter determining the non-abelian 
hara
ter of the 
orrelator. The propertiesof the fun
tions D and D1 are further spe
i�ed through the se
ond assumption ofthe MSV:Assumption II: For spa
e-like separations the fun
tions D; D1 rapidly fall to zeroon a s
ale given by the 
orrelation length a � 0:3 fm.The Fourier de
omposition of those fun
tions is given byD(z2) = Z 1�1 d4k(2�)4 e�ikz eD(k2);D1(z2) = Z 1�1 d4k(2�)4 e�ikz eD1(k2): (3.4)A suitable ansatz for eD and eD1 is given in [24℄:eD(k2) = 27(2�)4(8a)2 ik2(k2 � ��2 + i�)4 ;eD1(k2) = 23 27(2�)4(8a)2 i(k2 � ��2 + i�)3 ; (3.5)with the 
onstant � = 8a=3�. The fun
tions of (3.4),(3.5) 
an be 
ompared to latti
e
al
ulations [46, 47℄ for the Eu
lidian version of the 
orrelator (3.1) and from a �tone 
an extra
t the following ranges for the parameters G2; a; � [47℄:�G2a4 = 0:39 : : : 0:41;� = 0:80 : : : 0:89;a = 0:33 : : : 0:37 fm: (3.6)



22 Chapter 3. Evaluation of the s
attering amplitudesAssumption III: The va
uum 
u
tuations of the �eld strengths are determined bya Gaussian pro
ess.This implies that 
orrelators of more than two gluon �eld strengths fa
torise andthus the pro
ess is 
ompletely de�ned by the se
ond moment of its distribution.The expe
tation value of one single parallel-transported gluon �eld strength tensorvanishes due to 
olour 
onservation and the fa
t that the QCD va
uum has nopreferred dire
tion in 
olour spa
e: hĜ(i)iG = 0; (3.7)where we have used the abbreviationĜ(i) � Ĝai�i�i(o; xi;Cxi): (3.8)Due to the assumption of a Gaussian pro
ess and 
olour 
onservation all n-pointfun
tions with odd n vanish as well and we are therefore left withhĜ(1) : : : Ĝ(2n)iG = Xall pairingshĜ(i1)Ĝ(i2)iG : : : hĜ(i2n�1)Ĝ(i2n)iG: (3.9)3.1.2 Appli
ation of the model of the sto
hasti
 va
uum tothe 
orrelation fun
tionNow we will make a 
umulant expansion [33℄ for the loop-loop 
orrelation fun
tionDW+W�EG � DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )EG (3.10)in (2.50), or (2.53), (2.54), respe
tively, and then evaluate the result in the frameworkof the MSV.To expand the 
orrelation fun
tion, we pro
eed as explained in [30℄. First the lineintegrals along the 
losed loops C� are transformed to surfa
e integrals with the helpof the non-abelian Stokes theorem where, following the authors of [24℄, we 
hoosethe mantle of a double pyramid as the integration surfa
e. The basis surfa
es S�of the two pyramids are en
losed by the two loops C� (see Fig. 3.1). The 
ommonreferen
e point o is 
hosen to be the apex, where both pyramids tou
h, and P+and P� are the mantle surfa
es of the two pyramids, respe
tively. Following [30℄ werewrite the two tra
es over 3�3 matri
es o

urring in (3.10) after inserting (2.51) asone tra
e (Tr2) of a matrix a
ting in the 9-dimensional tensor produ
t spa
e. Withthe de�nition̂Gt;��(o; x;Cx) := � Ĝa��(o; x;Cx)(�a2 
 1) for x 2 P+Ĝa��(o; x;Cx)(1
 �a2 ) for x 2 P� ; (3.11)
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C+C� P� P+o

Figure 3.1: The integration surfa
es for the evaluation of the loop-loop 
orrelationfun
tionwe 
an write (3.10) as the expe
tation value of one ordered exponential in theprodu
t spa
e, where the integration surfa
e is given by the mantle P = P+ [P� ofthe double pyramid:hW+W�iG = 19 Tr2 �P exp �� ig2 ZP d���(x) Ĝt;��(o; x;Cx)��G : (3.12)The 
umulant expansion of this expression up to the se
ond term readsDW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )EG= 19 Tr2 exp ��g28 ZP d���(x) ZP d���(x0)DP(Ĝt;��(o; x;Cx)Ĝt;��(o; x0;Cx0))EG�=: 19Tr2 exp C2(bT ;xT ;yT ; z; z0); (3.13)where C2 is a 9� 9 matrix invariant unter SU(3) 
olour rotations. As shown in [30℄this �nally leads to hW+W�iG = 23e�i 13� + 13ei 23� (3.14)



24 Chapter 3. Evaluation of the s
attering amplitudeswith�(bT ;xT ;yT ; z; z0) = G2�224 fI(rxq; ryq) + I(rx�q; ry�q)� I(rxq; ry�q)� I(rx�q; ryq)g ;I(rx; ry) = ��2�2 ry � rx Z 10 dv(� jvry � rxj� �2K2� jvry � rxj� �+� jry � vrxj� �2K2� jry � vrxj� �)+(1� �)��4� jry � rxj� �3K3� jry � rxj� � : (3.15)Here G2; �; � are as de�ned in (3.2),(3.5) and K2;3 are the modi�ed Bessel fun
tionsof se
ond and third degree. The ve
tors rij with i = x; y and j = q; �q are those fromthe 
oordinate origin to the positions of the quarks and antiquarks (or diquarks) intransverse spa
e as shown in Fig. 2.2. Separating the real and the imaginary partof the above expression (� is a real fun
tion) we get�W+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1�G= (23 
os�13�(bT ;xT ;yT ; z; z0)�+ 13 
os�23�(bT ;xT ;yT ; z; z0)�� 1�i23 sin�13�(bT ;xT ;yT ; z; z0)�+ i13 sin�23�(bT ;xT ;yT ; z; z0)�):(3.16)This is the �nal result for the 
orrelation fun
tion of two light-like Wegner-Wilsonloops in the matrix 
umulant method [30℄. If we assume j�j � 1, (3.16) redu
es tohW+W� � 1iG = ��19 �(bT ;xT ;yT ; z; z0)2� ; (3.17)negle
ting terms of order �3 and higher. This is the result of the traditional expan-sion method [24℄. When 
omputing the numeri
al results for the 
ross se
tions weare interested in, we will use both (3.16) and (3.17) and 
ompare with experimentaldata.3.2 The hadroni
 wave fun
tionsWe now have to spe
ify the hadroni
 wave fun
tions and overlap fun
tions o

urringin (2.50), (2.53) and (2.54). As mentioned before we make a simple ansatz and
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onstru
t mesons as quark-antiquark and baryons as quark-diquark wave pa
kets,where s
alar diquarks should be favoured above ve
tor diquarks due to dynami
alreasons [48℄. This means that in our model the spin of a baryon is 
arried by thequark.In the following we will deal mainly with hadrons with angular momentum L = 0,in parti
ular the proton and the pion. When studying the s
attering of protonsand pions we are only interested in unpolarised 
ross se
tions and due to heli
ity
onservation on the parton level in our model we 
an therefore limit ourselves to thedes
ription of spinless s-wave states. For the 
orresponding wave fun
tions we makea Wirbel-Ste
h-Bauer ansatz [37℄, whi
h assumes a Gaussian-shaped distribution forboth the longitudinal momentum fra
tion z 
arried by the quark in the hadron andthe transverse spatial extension xT of the hadron'j(xT ; z) =s2z(1� z)2�S2hjIhj e�(z� 12 )2=4z2hj e�x2T =4S2hj : (3.18)where zhj and Shj are the parameters de�ning the widths of the longitudinal mo-mentum and transverse extension distributions of hadron hj, respe
tively. The nor-malisation 
onstant Ihj is given byIhj = Z 10 dz 2z(1� z) e�(z� 12 )2=2z2hj : (3.19)Only in our study of the double di�ra
tive ex
itation of two protons into ex
itednu
leon resonan
es, namely the N(1535), whi
h has the quantum numbers I(JP ) =12(12�) with L = 1 in the quark-diquark pi
ture, we also need p-wave fun
tions. To
onstru
t the N(1535) wave fun
tion we have to 
ouple a spin 1=2 state to a p-wavein su
h a way that the total angular momentum J = 1=2, taking into a

ount theproper Clebs
h-Gordan 
oeÆ
ients. This means that the spin of the quark, whi
h
arries the total spin of the hadron, be
ause we use s
alar diquarks as explainedabove, is antiparallel to the heli
ity of the p-wave. As our model 
onserves theheli
ities on the parton level and again we are 
al
ulating unpolarised 
ross se
tionsonly, the s
attering of two protons into two ex
ited resonan
es is redu
ed to thes
attering of two spinless s-waves in the initial state into two spinless p-waves with�xed heli
ities in the �nal state. In the following we give only the � = �1 heli
itystates of the wave fun
tion, sin
e due to the repla
ement of the Gaussian-shaped z-dependen
e of the Wirbel-Ste
h-Bauer ansatz by a delta fun
tion 
entred at z = 1=2in the numeri
al analysis, the � = 0 state does not 
ontribute, be
ause it 
ontainsa fa
tor proportional to z � (1 � z), whi
h is identi
al to 0 when z is �xed to1=2. As the 
ontribution of the � = 0 state is strongly suppressed 
ompared tothose of the � = �1 states as well in the formulation using the Gaussian-shapedz-distribution, whi
h also is 
entred around z = 1=2, the repla
ement by the deltafun
tion has no substantial impa
t on the numeri
al results. The reason for this
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attering amplitudesapproximation is dis
ussed more detailed in 
hapter 4. To keep the expression forthe wave fun
tion short, we make this simpli�
ation here as well and thus avoidthe otherwise o

urring � = 0 term. For the spinless p-wave we extend the originalWirbel-Ste
h-Bauer ansatz to angular momentum L = 1 and obtain'�j (xT ; z) = xT e�x2T =4S2hjq6�S4hj �ei��x Æ(z � 12); � = �1: (3.20)Here �x is the angle between xT and qT .As the overlap fun
tion wkj(xT ; z) we de�ne the overlap between hadron hj inthe initial and hadron hk in the �nal state for �xed transverse extension xT and�xed longitudinal momentum fra
tion zw(�)kj (xT ; z) := ('(�)k (xT ; z))� 'j(xT ; z); (3.21)where the heli
ity index � o

urs only in 
ase we deal with a p-wave in the �nalstate.For the des
ription of the di�ra
tive �nal state X in semi-in
lusive s
attering weuse in our se
ond ansatz the wave fun
tionsXn;m, whi
h 
onsist of the eigenfun
tions~Xn;m(yT ; z0) of a two-dimensional harmoni
 os
illator [49℄ for the yT -dependen
e andan additional part for the z0-dependen
e as in (3.18):Xn;m(yT ; z0) = s2z0(1� z0)Ihj e�(z0� 12 )2=4z2hj ~Xn;m(yT );~Xn;m(yT ) = 1p((n+m)=2)! ((n�m)=2)! 24sS2hj2  yT2S2hj + myT � ddyT!35n+m224sS2hj2  yT2S2hj � myT � ddyT !35n�m2 e�y2T =4S2hjq2�S2hj eim�y ; (3.22)where �y is the angle between yT and qT . Here of 
ourse, we also have angularmomentum L 6= 0 ex
ept for the ground state wave fun
tion X0;0.3.3 The hadroni
 s
attering amplitudesIn the following we will deal with three types of hadron-hadron rea
tions: the �rstone is elasti
 s
attering, whi
h falls into the 
ategory of the ex
lusive pro
essesdis
ussed in se
tion 2.3.1. As a semi-in
lusive pro
ess (see se
tion 2.3.2) we willstudy single di�ra
tive disso
iation. Double di�ra
tive ex
itation, whi
h again isan ex
lusive pro
ess, is the third type of s
attering rea
tion we are investigating.



3.3. The hadroni
 s
attering amplitudes 27After having evaluated the loop-loop 
orrelation fun
tion in 3.1.2 and with thewave fun
tions from the previous se
tion, we give the expressions for the hadroni
s
attering amplitudes for these pro
esses and analyse their respe
tive symmetryproperties.3.3.1 Elasti
 s
atteringWe now put everything together, inserting the overlap fun
tions (3.21) and theresults (3.16) or (3.17) for the 
orrelation fun
tion of the Wegner-Wilson loops,depending on whi
h method is used in the evaluation, in (2.50), where we set h3 =h1; h4 = h2.We 
an simplify the resulting expression by exploiting symmetry properties ofthe wave and 
orrelation fun
tions. The repla
ements xT ! �xT and z ! 1 � z,whi
h ex
hange the quark with the 
orresponding diquark (or antiquark in the 
aseof mesons) in hadron h1, lead to � ! �� (see Fig. 2.2 and (3.15)). On the otherhand these repla
ements leave the wave fun
tions invariant and thus the integrationover xT and z averages out the sin�-terms of (3.16) when inserted in (2.50). We
an therefore repla
e (3.16) byhW+W� � 1iG ! �23 
os�13�� + 13 
os�23��� 1� : (3.23)In the expansion method hW+W� � 1iG in (3.17) is already even under � ! ��.In our model, therefore, the expression for the 
orrelation fun
tion is purely realin (3.17) and only the real part of (3.16) 
ontributes. The T -matrix element isinvariant under the ex
hange of hadron h1 by its antihadron. Thus we get onlyC = P = +1 (pomeron) ex
hange and no C = P = �1 (odderon) ex
hange.Furthermore it is useful to take advantage of global azimuthal invarian
e andde�ne as new integration variables the relative angles between the impa
t parameterbT and xT and yT , respe
tively:�0x = �x � �b; �0y = �y � �b: (3.24)With this 
hoi
e of variables the elasti
 pro�le fun
tion be
omes independent of �band using the relationZ 2�0 d�b eip�t bT ein�b = 2�inJn(p�t bT ); (3.25)where Jn is the Bessel fun
tion of n-th degree, we 
an perform the integral over theangle of the impa
t parameter in (2.49) analyti
ally.For elasti
 s
attering our �nal result for the s
attering amplitude then readsTfi = 4�is Z 10 dbT bT J0(p�t bT ) Ĵel(bT ); (3.26)
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attering amplitudeswith the elasti
 pro�le fun
tionĴel(bT ) = � Z d2xT d2yT Z 10 dz dz0w11(xT ; z)w22(yT ; z0)�23 
os�13�(bT ;xT ;yT ; z; z0)�+ 13 
os�23�(bT ;xT ;yT ; z; z0)�� 1�(3.27)when using the matrix 
umulant method andĴel(bT ) = � Z d2xT d2yT Z 10 dz dz0w11(xT ; z)w22(yT ; z0)��19 �(bT ;xT ;yT ; z; z0)2� (3.28)when using the expansion method, respe
tively.3.3.2 Single di�ra
tive disso
iationIn analogy to elasti
 s
attering we insert the overlap fun
tion w11 and either (3.16) or(3.17) into Ĵdiss, for whi
h we have two expressions, (2.53) and (2.54), depending onthe 
hoi
e of the plane wave or the harmoni
 os
illator des
ription of the di�ra
tive�nal state X. If using the latter expression, we also have to input the ex
ited statewave fun
tions Xn;m given by (3.22).We note that it is suÆ
ient that one overlap fun
tion, here w11(xT ; z), has thesymmetry properties dis
ussed in the previous se
tion, and thus the same argumentsas in the 
ase of elasti
 s
attering 
an be applied. Therefore we 
an repla
e (3.16)by (3.23) for single di�ra
tive disso
iation as well.The expression for the s
attering amplitude is hen
e given by (2.52) with eitherthe pro�le fun
tion (2.53) for the plane wave des
ription or (2.54) for the os
illatordes
ription of X. In both 
ases the loop-loop 
orrelation fun
tion evaluates to (3.23)for the matrix 
umulant method or (3.17) for the expansion method.Furthermore, when 
al
ulating 
ross se
tions with the des
ription of X given bythe os
illator method we 
an use analogous arguments. The simultaneous repla
e-ments yT ! �yT and z0 ! 1 � z0 and subsequent integration over yT and z0 leadto the 
an
ellation of 
ontributions with odd m in (2.54) be
ause of the existen
eof a fa
tor eim�y in ~Xn;m(yT ). Sin
e for these fun
tions odd m only o

ur for oddn, the sum over all ex
ited states in the 
al
ulation of 
ross se
tions 
an be redu
edto the sum over the wave fun
tions with even n and the 
orresponding m's. Finallywe point out that here the integration over the angle �b whi
h we a

omplish anal-ogously to the 
ase of elasti
 s
attering by exploiting global azimuthal invarian
eleads to Bessel fun
tions of m-th degree. This is due to the fa
tor eim�y in Xn;m andrelation (3.25).



3.3. The hadroni
 s
attering amplitudes 293.3.3 Double di�ra
tive ex
itationWe have seen in the previous se
tions that both in elasti
 and single di�ra
tive dis-so
iation we only get C = P = +1, i.e. pomeron, ex
hange and no C = P = �1, i.e.odderon, ex
hange in our model. This is, as we have seen, due to the symmetry ofthe hadron wave fun
tions, where integration over all angles leads to a 
an
ellation ofthose terms of the 
orrelation fun
tion that are odd under C and P transformations.This result is not a unique feature of our model but is rather model independent.It relies on the fa
t that the quark-diquark density in a nu
leon is nearly symmet-ri
 under a parity transformation if the diquark is suÆ
iently small, whereas theodderon 
oupling 
hanges sign. To study odderon ex
hange in our model we haveto �nd a rea
tion where the odderon 
ontribution is not 
an
elled after integrationdue to the symmetry properties of the wave fun
tions. This is possible in rea
tions,where initial state nu
leons are transformed di�ra
tively into ex
ited negative paritystates. In this 
ase, even for point-like diquarks whi
h we are using in our ansatz forthe wave fun
tions, the odderon 
ouples to the nu
leon without any restri
tion [36℄.Three rea
tions whi
h permit odderon ex
hange but ex
lude pomeron ex
hange havebeen suggested in high-energy photoprodu
tion: ex
lusive neutral pseudos
alar me-son produ
tion with nu
leon break-up [31℄, f2(1270) and a2(1320) produ
tion withnu
leon break-up [32℄, and the asymmetry in the fra
tional energy of 
harm versusanti
harm jets, whi
h is sensitive to odderon-pomeron interferen
e [50℄.Here we are going to study a hadroni
 rea
tion for whi
h odderon ex
hange isallowed, namely p + p! N(1535) + N(1535): (3.29)In addition, the N(1535) has a unique signature, being the only known baryon witha strong �N de
ay [11℄. One should note, however, that this de
ay provides somediÆ
ulty for standard models of baryon spe
tros
opy, in
luding the quark-diquarkmodel. It remains un
lear why the N(1535) de
ay has su
h a large bran
hing ratioof about 30-55% into �N whereas this de
ay is negligible for the N(1520).To 
onstru
t the T -matrix element of rea
tion (3.29) we start from (2.50), wherethe overlap fun
tions w�31 and w�42 
onsist of one s-wave for the proton and one p-wave for the N(1535) ea
h. Now we are going to argue why it is suÆ
ient to dealwith spinless s- and p-waves as stated in se
tion 3.2: as we are using s
alar diquarksthe spin of the proton and of the N(1535) is 
arried by the quark in the a

ordinghadron. The spin 
onserving delta fun
tions in (2.40)-(2.43) on the parton level thenensure that the spins of the proton and of the ex
ited nu
leon resonan
e are alignedparallel. As explained in se
tion 3.2 we do not get any 
ontributions from the stateswith heli
ity � = 0 in our approximation. Sin
e spin and angular momentum of theN(1535) are antiparallel to ea
h other in order to form a state with total angularmomentum J = 1=2, we 
an infer dire
tly that the heli
ity of the p-wave des
ribingthe N(1535) is oriented antiparallel to the spin of the in
oming proton. This meansthat from the originally 16 possible spin 
ombinations of the 4 hadrons in initial and�nal state only 4 survive due to spin 
onservation on the parton level. For those we
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attering amplitudesimmediately know whi
h heli
ity state we have to assign to the N(1535) in the �nalstate. As we will 
al
ulate unpolarised 
ross se
tions in the following, i.e. we takethe average over the initial state spins and sum over all �nal state spins, we haveredu
ed the problem to the s
attering of two initial state s-waves into two �nal statep-waves with �xed heli
ities, as already stated when dis
ussing the wave fun
tions.Moreover, looking at the expression for the p-wave (3.20), we note that on the levelof 
ross se
tions the following relations holdjhN+(1535)N+(1535)jT jp pij2 = jhN�(1535)N�(1535)jT jp pij2 ;jhN+(1535)N�(1535)jT jp pij2 = jhN�(1535)N+(1535)jT jp pij2 ; (3.30)where � indi
ates the heli
ity � = �1 of the N(1535). This means that onlythe relative orientation of the heli
ities of the two N(1535) in the �nal state areof importan
e and thus we only have to 
al
ulate two s
attering amplitudes, onewhere the heli
ities are aligned parallel, whi
h we will 
all T+ and one where theyare aligned antiparallel, whi
h we will 
all T�.Now we have to show that we indeed get C = P = �1 ex
hange for this type ofrea
tion. The proof will rely on symmetry 
onsiderations, as in the 
ase of elasti
s
attering and single di�ra
tive disso
iation before. To simplify our notation wede�ne a redu
ed overlap fun
tion ewkj whi
h does not 
ontain any terms due to theangular dependen
e of the p-wave. Instead we expli
itely write out this angulardependen
e in the following be
ause it is 
ru
ial for our argumentation:w�kj(xT ; �x; z) =: �ei��x ewkj(xT ; z): (3.31)With this de�nition and (3.24), (3.25) we obtain for the s
attering amplitudeT� = 4�is Z 10 dbT bT Jn(p�t bT ) Ĵ�(bT ); (3.32)where n = 2 for T+ and n = 0 for T�. Here the pro�le fun
tion is given byĴ�(bT ) = Z d2xT d2yT ew31(xT ; 12) ew42(yT ; 12) 
os(�x � �y)n: : :o; (3.33)where f: : :g is an abbreviation for either (3.16) or (3.17). To obtain this result wehave used the invarian
e of the 
orrelation fun
tion under the simultaneous trans-formation of the variables �x ! ��x and �y ! ��y. Now we 
onsider the symme-try properties of the wave and 
orrelation fun
tions again. The argumentation isanalogous to the 
ase of elasti
 s
attering with the 
ru
ial di�eren
e being the addi-tional fa
tor 
os(�x � �y) here, whi
h 
hanges sign when we make the repla
ementxT ! �xT or yT ! �yT , respe
tively. Due to this fa
tor the integration over xTor yT now 
an
els the 
os�-terms of (3.16) instead of the sin�-terms. Therefore, inthe 
ontext of this s
attering rea
tion, (3.16) redu
es tohW+W� � 1iG ! i��23 sin�13�� + 13 sin�23��� : (3.34)
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 s
attering amplitudes 31On the other hand, the expression (3.17), whi
h we get from the expansion methodin the approximation up to O(�2) dis
ussed there, is even under �! �� and thusvanishes 
ompletely after integration over xT or yT . To be able to use here as wella 
orrelation fun
tion whi
h has been evaluated in the expansion method, we haveto in
lude terms of higher order in �. In [36, 51℄ the relevant term of order �3 hasbeen 
al
ulated in the framework of the expansion method and the result ishW+W� � 1i(3)G = i��54 181 �(bT ;xT ;yT ; z; z0)3� ; (3.35)where we have atta
hed an index (3) to denote that we are only dis
ussing thethird order term in � here. Comparing this result with the O(�3)-term of theexpansion of (3.16) we noti
e that the former is larger by a fa
tor 5=4. This isa 
onsequen
e of the trun
ation of the 
umulant expansion at se
ond order, dueto whi
h we negle
t terms proportional to �3. Taking into a

ount the 4- and6-
umulant we re
over (3.35) as the term of order �3 in an expansion [52℄.To 
on
lude, we note that for double di�ra
tive ex
itation we have a purely imag-inary 
ontribution to the 
orrelation fun
tion, either (3.34) for the matrix 
umulantmethod or (3.35) for the expansion method, where we have to in
lude the next, i.e.third, order in � to get a non-zero 
ontribution. Due to the symmetry of the waveand 
orrelation fun
tions we indeed get C = P = �1, i.e. odderon, ex
hange.Finally we point out that also in the 
ase of elasti
 s
attering and single di�ra
tivedisso
iation an imaginary part of the 
orrelation fun
tion and C = P = �1 ex
hangeterms both non-vanishing after integration with the overlap fun
tions 
ould arisefrom the in
lusion of higher 
umulant terms in (3.13). This 
ould also be the 
ase ifwe 
hose a more general des
ription of the hadrons with di�erent symmetries of thewave fun
tions whi
h are essential for the 
an
ellations after integration. Of 
ourse,the analogue is true for double di�ra
tive ex
itation, with the di�eren
e that these
hanges would lead to C = P = +1 ex
hange there.
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Chapter 4Hadron-hadron 
ross se
tionsThe fo
us of this 
hapter will be on proton-proton s
attering, where a lot of data isavailable in the energy range we are interested in, i.e. high 
entre of mass energy andsmall momentum transfer. First we will review elasti
 s
attering, whi
h has been
al
ulated previously using the matrix 
umulant method in [30℄. Then the study willbe extended to single di�ra
tive disso
iation. We will 
on
lude the investigation ofproton-proton s
attering with the analysis of the rea
tion p p ! N(1535)N(1535),i.e. double di�ra
tive ex
itation of the proton. Then we will 
onsider proton-pions
attering, i.e. we repla
e one of the in
oming protons by a pion. In this 
ontext weare going to study elasti
 s
attering and single di�ra
tive disso
iation of the pion.To 
al
ulate 
ross se
tions for the rea
tions we are 
onsidering, we have to �xour free parameters, namely those of the MSV: G2, a and �; and those of the wavefun
tions, the extension parameter Shj and the width of the longitudinal momentumdistribution zhj . The set of MSV parameters used in this work has been establishedin [30℄ for the 
ase of the matrix 
umulant method giving (3.16). For the expansionmethod giving (3.17) the set of parameters depends on whether we dis
uss C = P =+1 ex
hange, for whi
h we use the values given in [27℄, or C = P = �1 ex
hange. Inorder to obtain the latter 
ontribution, a somewhat di�erent approximation s
hemewas used in [36, 51℄ and therefore the resulting values are slightly modi�ed. Thesethree parameter sets are 
ompiled in Table 4.1.expansion methodmatrix method C = P = +1 C = P = �1G2 (529 MeV)4 (501 MeV)4 (525 MeV)4a 0:32 fm 0:346 fm 0:31 fm� 0:74 0:74 0:74Table 4.1: The parameters of the MSV for the matrix 
umulant and the expansionmethodThe values given in Table 4.1 should be 
onsidered as e�e
tive values extra
ted from33
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ross se
tions�ts to high energy s
attering data using two di�erent approximate formulae. Thusthe di�eren
es between the values in the se
ond and third (or fourth, respe
tively)
olumn of the table 
an be taken as a theoreti
al error estimate. With �xed param-eters the model gives energy independent 
ross se
tions. It has been shown in [24℄that both the energy dependen
e of the 
ross se
tion and of the slope parameterb of elasti
 s
attering 
an be well des
ribed by energy dependent hadron extensionparameters Shi(s). In [30℄ it was found that in the framework of the matrix 
umu-lant method energy dependent extension parameters 
an even des
ribe the energyevolution of the whole di�erential elasti
 
ross se
tions d�=dt up to jtj � 1GeV2.When using the matrix 
umulant method we adopt the parametrisation from [30℄for the extension parameter Sp of the protonSp(s) = 0:700� sGeV2�0:034 fm: (4.1)This was obtained by �tting the total 
ross se
tion as 
al
ulated from the opti
altheorem with the T -matrix element 
al
ulated within the model�tot = 1s Im(Tfi)����t=0 (4.2)to the soft pomeron part of the Donna
hie-Landsho� (DL) parametrisation for�tot [12℄. For the expansion method we have established a similar 
onne
tion betweenSp and s: Sp(s) = 0:624� sGeV2�0:028 fm: (4.3)At ps = 23:5 GeV, for instan
e, we get Sp = 0:868 fm and Sp = 0:745 fm from (4.1)and (4.3), respe
tively. Sin
e the MSV-parameters for C = P = +1 ex
hange in theexpansion method are di�erent from the ones used for the C = P = �1 ex
hangeas stated above, of 
ourse the extension parameters di�er as well. In the followingwe only need the extension parameter of the proton at ps = 20 GeV for the latter.To be 
onsistent with the set of MSV-parameters, we use the value Sp = 0:85 fmfrom [36, 51℄. The width of the longitudinal momentum distribution of the protonhas been 
hosen as zp = 0:4 whi
h gives a best �t to the isove
tor form fa
tor of theproton 
al
ulated in the framework of our model (see 
hapter 5).A di�erent des
ription of the energy dependen
e, motivated by the two pomeronpi
ture has been suggested in [53℄. In this approa
h the 
orrelation fun
tion �instead of the hadron extension parameters is assumed to depend on the energy.This is in line with other two 
omponent pi
tures as e.g. [54, 55℄. Of 
ourse thisleads to a di�erent set of both MSV and wave fun
tion parameters. Sin
e in thiswork also the 
orrelation fun
tions eD; eD1 from (3.5) and the integration surfa
e (seeFig. 3.1) are modi�ed 
ompared to our ansatz, we will not use this approa
h in thefollowing.After having �xed all parameters, the 
al
ulation of 
ross se
tions 
an be per-formed numeri
ally. All phase spa
e integrals and the integrals o

urring in the
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attering 35s
attering amplitudes are evaluated using the Monte-Carlo integration subroutineVegas [56℄ in an adapted version [57℄.4.1 Proton-proton s
atteringFrom the experimental side a lot of data on proton-proton s
attering exists over awide range of energies. In parti
ular the availability of data on soft di�ra
tive s
at-tering at high 
entre of mass energies makes proton-proton s
attering an interesting�eld of appli
ation for our model.4.1.1 Elasti
 s
atteringLet us �rst 
onsider elasti
 proton-proton s
atteringp(P1) + p(P2)! p(P3) + p(P4): (4.4)The di�erential 
ross se
tion d�el=dt for this rea
tion has already been 
al
ulatedusing the fun
tional integral approa
h and the matrix 
umulant method in [30℄,however, as the results will be needed in the analysis of single di�ra
tive disso
iation,we give a short reminder of the results obtained there. Moreover we 
al
ulate thedi�erential 
ross se
tion using the expansion method and the integrated elasti
 
rossse
tion applying both methods and 
ompare the results.For s�M2p the di�erential 
ross se
tion is given byd�el = 116� 1s2 jTfij2 dt; (4.5)where Tfi is our result (3.26) for the elasti
 s
attering amplitude. Depending onwhi
h method for the evaluation of the 
orrelation fun
tion is used, we insert (3.27)or (3.28), respe
tively.In [27℄ it has been argued that the Gaussian shaped distribution of the longi-tudinal momentum fra
tion z (z0) 
an be repla
ed by a delta-fun
tion 
entred atz = 1=2 (z0 = 1=2), sin
e the fun
tion � (3.15), whi
h determines the shape of the
orrelation fun
tion, depends only weakly on z (z0). A numeri
al investigation ofthe total 
ross se
tion 
al
ulated from the opti
al theorem shows that the resultingdi�eren
e for �tot is smaller than 1%. The pro�t one makes out of this simpli�
ationis a mu
h shorter 
omputation time in the numeri
al analysis, as ea
h additionalvariable of integration means roughly a fa
tor of 10 in the time needed to 
al
ulatethe 
ross se
tion. In the following we will make use of this simpli�
ation if notexpli
itly stated otherwise.In Fig. 4.1 we 
ompare the results from the matrix 
umulant and expansion meth-ods to experiment. The �rst method, i.e. using (3.23), gives a reasonable des
riptionof the data for jtj . 1GeV2 over many orders of magnitude but underestimates the
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Figure 4.1: The di�erential elasti
 
ross se
tion d�el=dt at ps = 23:5 GeV 
al
u-lated using the matrix 
umulant method (dashed line) and the expansion method(solid line) 
ompared to the experimental data from [58℄data at small jtj. The expansion method, i.e. using (3.17), gives a better des
riptionof the data for jtj . 0:2GeV2 but overshoots the data by orders of magnitude forlarger jtj. A �t of the form d�el=dt = A exp b t to the di�erential 
ross se
tion givesb = 13:8 � 0:4GeV�2 for the matrix 
umulant method and b = 10:0 � 0:2GeV�2for the expansion method, respe
tively. From a �t to the experimental data [58℄we obtain b = 11:6 � 0:1GeV�2. These �ts have been performed within the range0 � jtj � 0:2GeV2, sin
e the des
ription of the data over a larger jtj-range wouldrequire an additional term / t2 in the exponent of the �t. If we 
al
ulate theintegrated elasti
 
ross se
tion at ps = 23:5GeV, we obtain �el = 5:0mb in thematrix 
umulant method and �el = 7:3mb in the expansion method 
ompared toan experimental value of �el = 6:81 � 0:19mb [11℄. The fa
t that the elasti
 
rossse
tion 
al
ulated by the expansion method is 
loser to the experimental value thanthe one from the matrix 
umulant method is easily understood from Fig. 4.1b. Inthe integral over d�=dt only the region jtj . 0:2GeV2 
ontributes signi�
antly andthere the expansion method des
ribes the data better. In the region jtj & 0:2GeV2the result from the expansion method is bigger than the experimental result, withthe 
onsequen
e that the resulting integrated 
ross se
tion is too big.In Fig. 4.2 we show �el for 10 GeV � ps � 10 TeV. The data are as wellfrom pp- as from p�p-experiments [11℄. As our approa
h does not in
lude, in Reggeterminology, any non-leading traje
tories, we 
annot distinguish between these tworea
tions and they are des
ribed by the same s
attering amplitude. The 
al
ulationagrees reasonably well with the experimental data. Due to the reasons dis
ussedabove, the integrated 
ross se
tions obtained from the matrix 
umulant method are
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Figure 4.2: The integrated elasti
 
ross se
tion as a fun
tion of ps 
al
ulated usingthe matrix 
umulant method (dashed line) and the expansion method (solid line)
ompared to the experimental data from [11℄smaller than the experimental values. The di�eren
e we get from the two meth-ods 
an thus be seen as a theoreti
al error estimate. The theoreti
al un
ertaintieshave their origin in the di�erent s
hemes whi
h we use to evaluate the 
orrelationfun
tion (3.10), whi
h both of 
ourse make use of approximations, as has been dis-
ussed in se
tion 3.1. In the 
ase of the matrix 
umulant expansion method theapproximation is due to the trun
ation of the 
umulant expansion after the se
ond
umulant term, in the expansion method we expand dire
tly in terms of the gluon�eld strengths. This means that both methods do not ne
essarily 
ontain the samephysi
al 
ontributions when we 
ompare the respe
tive expressions order by order.We have already pointed out this fa
t when dis
ussing the s
attering amplitude forthe C = P = �1 ex
hange in se
tion 3.3.3, where we noted that we would haveto in
lude higher order 
umulant 
ontributions in the matrix 
umulant method toobtain the same result in O(�3) as in the expansion method.4.1.2 Single di�ra
tive disso
iationNow we turn to inelasti
 di�ra
tive s
atteringp(P1) + p(P2)! p(P3) + X(P4): (4.6)
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Figure 4.3: The integrated single di�ra
tive disso
iation 
ross se
tion as a fun
tionof ps 
al
ulated using the matrix 
umulant method (dashed line) and the expansionmethod (solid line)Using the plane wave method (2.52), (2.53) we 
al
ulate the di�erential di�ra
tive
ross se
tion as d�di� = (2�)4 12s jTfij2 d5P; (4.7)where d5P = 1(2�)9 14sz0(1� z0)d2P4Td2�4Tdz0 (4.8)is the 5-dimensional phase spa
e measure for the three parti
le �nal state formedby the �rst proton whi
h remains inta
t and the quark and the diquark whi
h de-s
ribe the se
ond, di�ra
tively ex
ited proton. As stated above the des
ription ofthe di�ra
tive �nal state X by a free quark-diquark pair also in
ludes the 
ase ofelasti
 s
attering. To obtain the 
ross se
tion �sd for single di�ra
tive disso
iation,we have to subtra
t the elasti
 
ontribution and then multiply by 2 to a

ountfor the rea
tion where the �rst proton breaks up and the se
ond stays inta
t. We�nd for the integrated single di�ra
tive 
ross se
tion as a fun
tion of ps the resultshown in Fig. 4.3. Comparing our results to experimental data, one has to keep inmind that the overall normalisation un
ertainty of the experiments is of O(10%).Furthermore the derivation of integrated 
ross se
tions from experimental data in-volves extrapolations of the measured data at given values of t and � = M2X=s to
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attering 39regions where no data exist. The extrapolations depend on assumptions on theshape of the t-distribution and the shape of the �-distribution. Di�erent experi-ments make di�erent assumptions and thus the resulting integrated 
ross se
tionsdi�er from ea
h other. The experimental values on the integrated single di�ra
tivedisso
iation 
ross se
tion quoted here use � � 0:05 as an upper bound in the massdistribution [59{61, 63℄, ex
ept for [62℄ where the range is extended to � � 0:2. Inour 
al
ulation of �sd we integrate over all values of �. Be
ause the mass spe
trumobtained in our 
al
ulation de
reases rapidly with in
reasing � (see Fig. 4.6), ournumeri
al result of the integrated 
ross se
tion is dominated by the low mass regionand is not sensible to the integration range being � � 0:05 or � � 0:2. Again the dif-feren
e between the 
ross se
tions obtained by the two methods 
an be understoodas an estimation of the theoreti
al errors whi
h arise due to the approximationsmade in the evaluation of the 
orrelation fun
tion.In Table 4.2 we give the ratio R of the single di�ra
tive disso
iation 
ross se
tionto the sum of the single di�ra
tive disso
iation and the elasti
 
ross se
tions from ourmodel and from di�erent experiments. For ps = 546GeV and 1800 GeV we haveused the values of �el and �sd as quoted by the UA4, CDF and E710 experiments.For the ISR energy range 20GeV . ps . 60GeV a lot of data exist. Sin
e the
ross se
tions do not vary mu
h over this energy range, we have �tted both �el and�sd as being proportional to a small power of ps and have then 
al
ulated R as afun
tion of ps using these �ts. The quoted ISR R-value in Table 4.2 is evaluatedat an intermediate energy of ps = 38:5GeV. As 
an be seen, our model, andR = �sd=(�el + �sd)ps [GeV℄ matrix expansion values 
al
. from exp.23.5 0.40 0.4738.5 0.39 0.47 0:49� 0:07 ISR [59, 60℄62.3 0.39 0.46 0:41� 0:02 UA4 [61℄546 0.36 0.45 0:38� 0:01 CDF [62℄0:33� 0:05 E710 [63℄1800 0.35 0.44 0:32� 0:01 CDF [62℄Table 4.2: The ratio R of the single di�ra
tive disso
iation to the sum of thesingle di�ra
tive disso
iation and elasti
 
ross se
tions from the model and fromexperimentsmore pronoun
edly in the matrix 
umulant method, predi
ts that the di�ra
tivedisso
iation 
ross se
tion grows more slowly with in
reasing energy than the elasti

ross se
tion. This is in qualitative agreement with experiment, where an even slowerrise of �sd 
ompared to �el is observed. The smaller R-values in the matrix 
umulant
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Figure 4.4: The di�erential di�ra
tive 
ross se
tion d�sd=dt at ps = 23:5 GeV 
al-
ulated using the matrix 
umulant method (dashed line) and the expansion method(solid line) 
ompared to the experimental data from [59℄method 
ompared to the expansion method are mainly due to the relatively smallintegrated single di�ra
tive disso
iation 
ross se
tions in the former method.The results for the di�erential 
ross se
tion of the single di�ra
tive disso
iationare shown in Fig. 4.4. The 
urve 
al
ulated in the framework of the expansionmethod des
ribes the slope of the di�ra
tive rea
tion quite well even for larger val-ues of jtj. Therefore the agreement with the experiment is reasonably good withinthe jtj-range 
onsidered here. This 
ould however be partly a

idental. In pro-
esses where the proton breaks up, the ex
hange of hard and semi-hard gluons willplay an important role. This ex
hange is not des
ribed by our model whi
h is anapproximation for the infrared behaviour of QCD. We have seen in elasti
 s
at-tering that the expansion method overestimates the 
ross se
tion for values of jtjlarger than 0:2GeV2, see Fig. 4.1, and this 
ould simulate the expe
ted 
ontribu-tion of hard or semi-hard gluon ex
hange in the di�ra
tive disso
iation rea
tions.We stress however that the fast de
rease of the single di�ra
tive disso
iation 
rossse
tion d�sd=dt for jtj . 0:2GeV2 is a �rm predi
tion of our model. Performing a�t over the range 0 � jtj � 0:2GeV2 of the form d�sd=dt = A exp bt like in the 
aseof elasti
 s
attering we obtain b = 12:6 � 0:2GeV�2. For su
h small momentumtransfer no experimental data on the di�erential di�ra
tive 
ross se
tion exist. To
ompare to experiment, we therefore apply the �t formula to both our result andthe experimental data in the range 0:2GeV2 � jtj � 0:5GeV2. For larger valuesof jtj we would require an additional term / t2 in the exponent of the �t. The



4.1. Proton-proton s
attering 41�ts then give b = 7:9� 0:3GeV�2 for our 
al
ulation in the expansion method andb = 7:0 � 0:3GeV�2 for the data from [59℄. Integration of our result for the dif-ferential distribution over t leads to integrated single di�ra
tive disso
iation 
rossse
tions whi
h are larger than the a

ording experimental integrated 
ross se
tions.1Those are 
al
ulated from the experimental di�erential 
ross se
tions under the as-sumption of a linear extrapolation of the slope down to t = 0GeV2. Therefore it isthe steep slope for jtj . 0:2GeV2 in our 
al
ulation that leads to larger integrated
ross se
tions than experimentally observed even though in the whole range whereexperimental data on the di�erential t-distribution are available our 
al
ulation givessmaller values than the experiment [59℄. Sin
e our model predi
ts an in
reasinglysteeper slope when we go to higher energies, this e�e
t gets more pronoun
ed forlarge values of ps. Therefore the agreement of our result for the integrated singledi�ra
tive disso
iation 
ross se
tions is not as good for the Tevatron data as it is forthe ISR data (see Fig. 4.3).To 
he
k the validity of our des
ription of the di�ra
tive �nal state by a freequark-diquark pair using plane waves, now we apply the se
ond method, whi
hdes
ribes the di�ra
tive �nal state X through a sum of wave fun
tions of ex
itedstates of a two-dimensional harmoni
 os
illator, as explained above in se
tion 2.3.2.In this des
ription, the �nal state phase spa
e is two-dimensional as in the 
ase ofelasti
 s
attering and the di�erential 
ross se
tion is given byd�sddt = 116� 1s2 X(n;m)6=(0;0) jTfij2 (4.9)with Tfi from (2.54). The sum runs over all even n for the reasons given in se
-tion 3.3.2, the asso
iated quantum number m runs over m = �n;�(n� 2); : : : ; n�2; n. The numeri
al analysis shows that both 
al
ulations are in very good agree-ment to ea
h other and that summing up the 
ontributions from values of n � 6already gives � 98% of the result using plane waves.So far we have only dis
ussed the result for the di�erential 
ross se
tion whi
hwe obtain when we apply the expansion method. Fig. 4.4 also shows the result ofour 
al
ulation in the framework of the matrix 
umulant method. As already seen inelasti
 s
attering, the result obtained from the matrix 
umulant method is smallerthan the one from the expansion method. The same �t we have used for the expan-sion method for the range 0 � jtj � 0:2GeV2 here leads to b = 19:1 � 0:9GeV�2.This is in analogy to elasti
 s
attering, where we have also found a steeper slopefor very small momentum transfers when 
omparing matrix 
umulant with expan-sion method. Repeating the �t in the range 0:2GeV2 � jtj � 0:5GeV2 we obtainb = 9:2 � 1:7GeV�2. However, in the range 0:1GeV2 . jtj . 0:7GeV2 the di�er-ential 
ross se
tion develops a depression and in 
ontrast to elasti
 s
attering the1Of 
ourse the physi
al region of t is bounded by tmin, whi
h is a fun
tion of the mass of thedi�ra
tive �nal state and of ps, but in the kinemati
al region whi
h we are studying we havetmin . 10�3 and thus tmin 
an be safely set to 0.
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Figure 4.5: The 
ontributions of harmoni
 os
illator wave fun
tions with �xedquantum numbers n;m to the di�erential di�ra
tive 
ross se
tion d�sd=dt 
omparedto the result obtained by the plane wave des
ription (solid line) of the di�ra
tive�nal state Xmatrix 
umulant method fails to des
ribe the shape of the di�erential 
ross se
tion.This depression is the reason why, after integration over t, the integrated singledi�ra
tive disso
iation 
ross se
tions in the matrix 
umulant method are noti
eablysmaller than the ones extra
ted from the expansion method and experimental data.To understand where this depression 
omes from, we again apply the se
ondmethod and des
ribe the di�ra
tive �nal state through the sum of the wave fun
-tions Xn;m. Progressing analogously to the above study of the expansion method wesum up all 
ontributions with n � 6 and asso
iated m's and �nd as well very goodagreement to the plane wave des
ription. This shows us that both des
riptions of Xindeed are equivalent to ea
h other. Now we take a 
loser look at the 
ontributionsto the di�erential di�ra
tive 
ross se
tion from ex
ited state wave fun
tions Xn;mwith de�nite values of n and m. The reason why we 
an 
ompare the 
ontributionsfrom wave fun
tions with de�nite quantum numbers dire
tly to ea
h other and tothe plane wave des
ription is that due to orthogonality they add up on the levelof the 
ross se
tion and not on the level of the s
attering amplitudes. We havealready used this fa
t in (4.9). Therefore we 
an 
al
ulate di�erential di�ra
tive
ross se
tions with the sum over n;m repla
ed by just one term with �xed quantumnumbers. Some of these 
ontributions to the di�erential 
ross se
tion are shownin Fig. 4.5, where we have also in
luded the result obtained by the plane wave de-s
ription for 
omparison. We see that, like for elasti
 s
attering as dis
ussed in [30℄,
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attering 43various 
ontributions to the di�erential 
ross se
tions develop a \dip"-stru
ture, inparti
ular those with m = 0. The lo
ation of these dips is given by the jtj-value atwhi
h the real part of the 
orrelation fun
tion 
hanges sign. At whi
h exa
t value fort < 0 this happens is governed by the details of the interplay of the Bessel fun
tionJm that o

urs in the s
attering amplitude (see (3.25) and se
tion 3.3.2), the wavefun
tion Xn;m and the 
orrelation fun
tion. We note that for in
reasing quantumnumber n the position of the dip moves to larger values of jtj. As the imaginary partof the 
orrelation fun
tion is 
an
elled after integration over the wave fun
tions asdis
ussed above, the s
attering amplitude is zero at these positions and therefore weget an in�nitely deep dip. As 
an be seen from Fig. 4.5 several dips develop in theregion 0:1GeV2 � jtj � 0:7GeV2 for wave fun
tions with n � 6. In parti
ular the
ontribution with the quantum numbers n = 2; m = 0 whi
h a

ounts for the mainpart in the sum has a dip at jtj � 0:3GeV2. Performing the sum over n;m then leadsto the formation of the depression for this region of jtj. We expe
t the dips - and in
onsequen
e the depression - to be at least partly �lled up when we in
lude higher
umulant terms, whi
h 
ould lead to an imaginary part of the 
orrelation fun
tionnon-vanishing after integration with the wave fun
tions as dis
ussed in more detail inse
tion 3.3. Also the des
ription of the proton by a more general quark 
on�gurationthan the simple quark-diquark pi
ture we have used here 
hanges the symmetries ofthe wave fun
tions whi
h are essential for the 
an
ellation of the imaginary part ofthe 
orrelation fun
tion. The result would be a re�ned des
ription of the di�erentialdi�ra
tive 
ross se
tion in the matrix 
umulant method and therefore, after inte-gration over t, also a larger integrated single di�ra
tive disso
iation 
ross se
tionswhi
h would be in better a

ord with experiment.In the following we will 
onsider the mass spe
trum d2�sd=(d�dt) of the singledi�ra
tive disso
iation rea
tion at ps = 23:5 GeV for t = �0:0525 GeV2, where �is the squared mass of the di�ra
tive �nal state divided by s. In our ansatz withplane wave �nal states, � then is given by� := M2Xs = �24T + (1� z0)m2q + z0m2�qz0(1� z0)s : (4.10)Here mq and m�q are the masses of the quark and the diquark whi
h des
ribe theex
ited proton state. To take thresholds into a

ount the mass for the quark hasbeen 
hosen to be 330 MeV and for the diquark 660 MeV so that the sum roughlygives the proton mass. Going ba
k to (2.53) we re
ognise that now we 
an nolonger repla
e the Gaussian shaped longitudinal momentum distribution in the wavefun
tion (3.18) for the hadron h2, whi
h breaks up, by a delta fun
tion 
entredaround 1/2, as we have done in the 
al
ulations before, be
ause z0 determines thevalue of � in (4.10). This was di�erent for the 
al
ulation of d�sd=dt, where weperformed an integration over the full range of �4T in phase spa
e and were notinterested in any parti
ular value of �. As a 
onsequen
e of the introdu
tion of quarkmasses the integration over z0 now does not run from 0 to 1, but the integration



44 Chapter 4. Hadron-hadron 
ross se
tions

�0:02 0 0:02 0:0410�11
101102103104

�
1=�d2 � sd=(d�
dt)[mb=GeV2
℄

Figure 4.6: The di�ra
tive mass spe
trum d2�sd=(d�dt) for t = �0:0525 GeV2 atps = 23:5 GeV 
al
ulated using the matrix 
umulant method (dashed line) and theexpansion method (solid line) together with the data from [60℄limits are given byz00=1 = 12 � m2q �m2�q2�s �s14 � m2q +m2�q2�s + �m2q �m2�q2�s �2: (4.11)This ensures that the mass spe
trum starts at M2X = M2p where Mp is the protonmass. Our plane wave des
ription of the di�ra
tive �nal state of 
ourse also in
ludeselasti
 s
attering. To 
ompare with experimental results on di�ra
tive disso
iationwe have to subtra
t the elasti
 
ontribution. To do so we argue as follows: to obtainthe elasti
 
ontribution, we integrate d2�sd=(d�dt) over � from �0 = M2p=s up to�1. We determine �1 in su
h a way that the integral gives the value of the elasti
di�erential 
ross se
tion d�el=dt. Now we interprete the mass spe
trum as 
onsistingof the elasti
 part, whi
h lies between �0 and �1 and the disso
iation part, whi
hstarts at �1. This pro
edure allows us to separate the elasti
 and the disso
iation
ontributions.The result of the 
al
ulation is shown in Fig. 4.6 for t = �0:0525GeV2 andthe 
.m. energy ps = 23:5 GeV together with the data points from [60℄. Forthe matrix 
umulant method we determine �1 = 1:90GeV2=s � 3:44 � 10�3, for theexpansion method �1 = 1:63GeV2=s � 2:95�10�3. Again the di�erential distributionobtained by our 
al
ulation in the matrix 
umulant method is smaller than the one
orresponding to the expansion method and starts for slightly larger �1. This is



4.1. Proton-proton s
attering 45not surprising be
ause integrating d2�sd=(d�dt) over � from �1 to �2 =1, followingthe argumentation from above, we have to �nd the value for the di�erential singledisso
iative 
ross se
tion d�sd=dt at t = �0:0525GeV2. 2 As we have seen above,this di�erential 
ross se
tion is smaller for all values of t in the matrix 
umulantmethod than in the expansion method and therefore the double di�erential 
rossse
tion also has to be smaller when 
al
ulated by means of the former method. The
omparison with the experimental data proves diÆ
ult, as the experimental valuesare smeared out over a 
ertain range of values for � be
ause of the dete
tor massresolution fun
tion. This explains also the data for the unphysi
al negative �-values.As a 
onsequen
e the large peak of the di�ra
tive mass spe
trum is mu
h morepronoun
ed in our 
al
ulation and the experimental distribution is 
atter aroundthat peak. To 
ompare dire
tly with the experiment, we would have to fold ourresults with the mass resolution fun
tion of the dete
tor used in the experiments [60℄,but unfortunately, this resolution fun
tion 
an no longer be re
onstru
ted [64℄. Wenote that our model should give reliable results for small �. Indeed, for large valuesof � the model seems to underestimate the data 
onsiderably. But for this � regionwe expe
t, for instan
e, that our purely nonperturbative treatment of the s
atteringmust be supplemented by hard gluon radiation whi
h should lead to high invariantmasses for the di�ra
tively ex
ited state. Furthermore our 
al
ulation treats the�nal state as a quark-diquark pair and therefore no 
on�nement e�e
ts are in
ludedhere.4.1.3 Double di�ra
tive ex
itationNow we will study the double di�ra
tive ex
itation of the protonp(P1) + p(P2)! N(1535)(P3) + N(1535)(P4); (4.12)where the N(1535) is an ex
ited nu
leon resonan
e with mass M� = 1535MeV andthe quantum numbers I(JP ) = 12(12�). In the quark-diquark pi
ture it has angularmomentum L = 1. The di�erential 
ross se
tion is given byd�dd = 132� 1s2 � jT+j2 + jT�j2� dt; (4.13)with T� from (3.32). The s
attering amplitudes 
ontain the double di�ra
tive pro�lefun
tion Ĵ�, whi
h depends expli
itely on the relative orientation of the heli
itiesof the two ex
ited nu
leon resonan
es (see (3.33)). Depending on whi
h method wewant to use, we use either (3.34) or (3.35) to evaluate the 
orrelation fun
tion.Unfortunately no experimental data exist on this rea
tion so far, so we 
an onlygive predi
tions for future experiments. RHIC for example meets all the require-ments to investigate this rea
tion. As we mentioned in se
tion 3.3.3 this rea
tion2In pra
ti
e it is suÆ
ient to perform the integral for a �nite value of �2 � 25GeV2=s be
auseof the fast de
rease of the 
al
ulated di�erential distribution for large values of �.
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Figure 4.7: The di�erential di�ra
tive 
ross se
tion d�dd=dt at ps = 20 GeV 
al-
ulated using the matrix 
umulant method (dashed line) and the expansion method(solid line)has an unique signature sin
e the N(1535) is the only known baryon with a strong�N de
ay. A 
lear signal in the dete
tor for this rea
tion thus would be a �nal state
omposed of 2 �'s and 2 nu
leons. However, there is also the question open whythe N(1535) has a strong de
ay mode into �N whereas the N(1520), whi
h has thesame quantum numbers apart from J = 32 instead of J = 12 , has not [11℄. Standardmodels of baryon spe
tros
opy, in
luding the quark-diquark model we use here, havediÆ
ulties explaining this experimentally well founded fa
t. We have to keep this inmind as a possible sour
e of theoreti
al un
ertainties in our model when dis
ussingour results.The di�erential 
ross se
tion d�dd=dt 
al
ulated in the framework of both meth-ods is shown in Fig. 4.7. These distributions exhibit some qualitative features thatwe have already dis
ussed in se
tion 4.1.2 when investigating single di�ra
tive dis-so
iation. One similarity is that again the result obtained by the matrix 
umulantmethod is smaller 
ompared to the one 
al
ulated with the expansion method. Go-ing ba
k to the dis
ussion following (3.35) we re
all that the two methods rely ondi�erent approximation s
hemes that do not ne
essarily in
lude the same 
ontri-butions at every order of �. We have seen for example that the term of O(�3) inthe expression for the 
orrelation fun
tion is larger by a fa
tor 54 in the expansionmethod 
ompared to the matrix 
umulant method with trun
ation after the se
-ond 
umulant. To see where the di�eren
e between the methods 
omes from weexpand (3.34) to order �3 giving �i 181�3 and 
al
ulate the di�erential 
ross se
tion.
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Figure 4.8: The 
ontribution of T+ and T� to the di�erential 
ross se
tion d�dd=dt
ompared to the full result (solid line)Naively we would expe
t the distribution obtained that way to be smaller by a fa
-tor (45)2 than the expansion method result for the reason given above. However, wehave to remember that the MSV parameters are di�erent for the two methods and infa
t the distribution 
al
ulated with the expanded matrix 
umulant result and theoriginal matrix 
umulant parameters (se
ond 
olumn of Table 4.1) is slightly largerthan the one 
al
ulated with the expansion method and the a

ording parameters(fourth 
olumn of Table 4.1). This is mainly due to the fa
t that the 
orrelationlength enters the 
ross se
tion to power a24. In
luding step by step higher ordersin � we �nally get ba
k to the result for the matrix 
umulant method shown inFig. 4.7. By this argument we see that the 
ontributions from higher orders in� have an essential in
uen
e on both the normalisation and the shape of the dif-ferential 
ross se
tion. For elasti
 s
attering and for single di�ra
tive disso
iation,where we have C = P = +1 ex
hange instead of the C = P = �1 ex
hange we aredis
ussing here, these arguments also hold true. In all 
ases we start from (3.16)for the matrix 
umulant method and depending on the symmetries of the wave and
orrelation fun
tions we keep either (3.23) or (3.34) after integration with the over-lap fun
tions. Expanding these expressions and 
al
ulating the 
ontributions fromin
reasingly higher orders in � we see that also for C = P = +1 ex
hange theyare 
ru
ial for the normalisation and the shape of the 
ross se
tion. In parti
ularthe position of the the dip stru
ture seen in the di�erential distribution of elasti
s
attering and the depression in the di�erential 
ross se
tion of single di�ra
tivedisso
iation depend on how many orders in � we take into a

ount.
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ross se
tionsAnother agreement with single di�ra
tive disso
iation is the development of a de-pression in the di�erential distribution 
al
ulated with the matrix 
umulant method(
ompare Figs. 4.4 and 4.7). In analogy to se
tion 4.1.2, where we have analysedthe origin of the depression by studying 
ontributions of single os
illator fun
tionsto the 
ross se
tion, we now 
al
ulate the 
ross se
tion from either T+ or T� aloneinstead of immediately summing up both 
ontributions. The respe
tive results areshown in Fig. 4.8. Again we �nd that the reason for the depression is the lo
ationof a dip at jtj � 1:0GeV2 in the leading term of the sum, namely the one we getfrom T�.3 As already mentioned in se
tion 4.1.2, the in
lusion of higher 
umulantsand a re�ned model for both the proton and the ex
ited nu
leon state 
ould lead toan improved des
ription of the di�erential 
ross se
tion.Compared to elasti
 s
attering or single di�ra
tive disso
iation we note that thedi�erential distribution for small values of jtj is relatively 
at. A �t to d�dd=dt =A exp b t gives b = 8:2� 0:1GeV�2 for the matrix 
umulant and b = 5:7� 0:1GeV�2for the expansion method. Our predi
tions for the integrated 
ross se
tion for therea
tion pp ! N(1535)N(1535) are �dd = 0:2mb when applying the matrix 
umu-lant and �dd = 0:7mb when applying the expansion method. These 
ross se
tionsare solely due to C = P = �1, i.e. odderon, ex
hange. In the approximation we usehere, an a priori possible 
ontribution through pomeron ex
hange is stri
tly zero.This is in agreement with the Gribov-Morrison rule [65℄, but as neither this rule norour model are exa
t the possibility 
annot be ruled out entirely. However, this 
anbe tested experimentally. As the odderon is known to 
ouple at most very weaklyto the nu
leon it will not 
ontribute signi�
antly to the rea
tion p p ! pN(1535).So if this rea
tion is observed at high energy, the natural interpretation is that itis due to pomeron ex
hange and, using reggeon fa
torisation together with pp elas-ti
 s
attering, allows the pomeron 
ontribution to p p ! N(1535)N(1535) to beobtained.To 
on
lude this se
tion we note that a possible 
he
k of our results 
ould beobtained by 
al
ulating the ele
tromagneti
 p � N(1535) transition form fa
tor.However, in the formulation of the model used here, in parti
ular due to the ap-pli
ation of the quark-diquark pi
ture with s
alar diquarks, this 
al
ulation is notfeasible. We will 
ome ba
k to this point when dis
ussing the 
al
ulation of formfa
tors in the framework of our model.4.2 Proton-pion s
atteringWe present 
al
ulations for the rea
tion p �� ! p � and p �� ! pX, respe
tively.Of 
ourse, the va
uum parameters G2; a; � stay the same but we still have to �x thepion extension parameters S� and z� in (3.18). Pro
eeding as in the 
ase of proton-proton s
attering we �nd for the parameters S� = 0:60 fm for the matrix 
umulant3Of 
ourse it is not the leading term in the region of the dip, where its 
ontribution tends tozero.
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attering 49and S� = 0:55 fm for the expansion method, respe
tively, at ps = 19:5 GeV. Inboth methods we obtain the same value z� = 0:5 for the width of the longitudinalmomentum distribution.4.2.1 Elasti
 s
attering
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Figure 4.9: The di�erential elasti
 
ross se
tion d�el=dt at ps = 19:5 GeV 
al
u-lated using the matrix 
umulant method (dashed line) and the expansion method(solid line) 
ompared to the experimental data from [67℄Again we will �rst take a look at elasti
 s
attering. For a 
.m. energy ofps = 19:5 GeV we �nd for the integrated elasti
 
ross se
tions �el = 2:4mb withthe matrix 
umulant and �el = 3:1mb with the expansion method, 
ompared to anexperimental value of �el = 3:30� 0:11mb [66℄. The di�erential elasti
 
ross se
tionis shown in Fig. 4.9. The matrix 
umulant method des
ribes the di�erential distri-bution reasonably well over many orders of magnitude and underestimates the datafor small jtj. This is the reason why the integrated 
ross se
tion 
omes out too smallwhen applying the matrix 
umulant method. The expansion method gives a betterdes
ription of the data for jtj . 0:2GeV2 but overestimates the data for larger valuesof jtj, and therefore the integrated 
ross se
tion as well. All this is in 
omplete anal-ogy to elasti
 proton-proton s
attering. Fitting our result for the di�erential 
rossse
tion by d�el=dt = A exp b t we �nd b = 10:9� 0:3GeV2 for the matrix 
umulantmethod and b = 8:7 � 0:3GeV�2 for the expansion method. The experimentallymeasured values are b = 7:9 � 0:2GeV�2 for �+p - and b = 8:4 � 0:1GeV�2 for��p -s
attering, respe
tively [67℄. We 
annot distinguish between these two rea
-tions and des
ribe them by the same s
attering amplitude be
ause our model doesnot in
lude, in Regge terminology, any non-leading traje
tories.
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ross se
tions4.2.2 Single di�ra
tive disso
iationMoving on to the rea
tion where the pion breaks up di�ra
tively, we 
al
ulate �sdand the R-value, whi
h we de�ne as in the 
ase of proton-proton s
attering. Forthe matrix 
umulant method we �nd �sd = 1:1mb and R = 0:32, for the expansionmethod �sd = 2:0mb and R = 0:39. The a

ording experimental values are �sd =1:90 � 0:2mb and R = 0:37 � 0:03 [68℄ whi
h is in quite good agreement to theresults obtained from the expansion method. Di�erential 
ross se
tion for proton-pion s
attering with di�ra
tive break up of the pion are unfortunately not availableat 
.m. energies whi
h are high enough for our model to be appli
able.



Chapter 5Spa
e-like form fa
tors in themodelIn this 
hapter we will study form fa
tors within our model. We do not intend toperform a pre
ision 
al
ulation of form fa
tors but we will apply the 
al
ulationto extra
t values for the width of the longitudinal momentum distributions of theproton and the pion, zp and z�, respe
tively, by �tting our results to experimentaldata.5.1 The ele
tromagneti
 form fa
tors of the pro-tonThe 
oupling of the ele
tromagneti
 
urrent to the proton 
an be des
ribed byhp(P 0; s0)jj�(0)jp(P; s)i = e �us0(P 0) �
�F1p(Q2) + i���q�2Mp F2p(Q2)�us(P ); (5.1)where the momentum transfer is q = P 0 � P , Q2 = �q2, Mp is the proton mass,e = p4��e:m: and F1p; F2p are the Dira
 and Pauli form fa
tor of the proton, respe
-tively. Now we 
hoose su
h a 
oordinate system so that q is purely transverse:P � = 12P+n�+ + 12P�n�� � 12q�;P 0� = 12P+n�+ + 12P�n�� + 12q�;q = 0� 0qT0 1A ; n� = 0BB� 100�1 1CCA ;P� = (14q2T +M2p )=P+: (5.2)51
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e-like form fa
tors in the modelIn the high energy limit, P+ !1, we get for the matrix element (5.1) (see [69℄)hp(P 0; s0)jj�(0)jp(P; s)i = e P+n�+ �ys0 �F1p(Q2)� �3qT � �2Mp F2p(Q2)��s+O(1); (5.3)where �s; �s0 are the Pauli two-
omponent spinors. F1p multiplies the spin-non-
ippart, F2p the spin-
ip part of the matrix element. Cal
ulating the spin average ofthis expression leads to12Xs hp(P 0; s)jj�(x)jp(P; s)i = e P+n�+F1p(Q2) +O(1): (5.4)We des
ribe the 
al
ulation of the Dira
 form fa
tor of the proton in the frameworkof our model in appendix C. In the following we 
onsider the matrix element of thethird 
omponent of the isospin 
urrent j�3 . Its matrix element between proton statesis as in (5.1),(5.3), with Fip repla
ed by Fiv, related to the form fa
tors of protonand neutron by Fiv = 12 �Fip(Q2)� Fin(Q2)� (i = 1; 2): (5.5)With the wave fun
tions (3.18) we obtainF1v(Q2) = 12Ip Z 10 dz 2z(1� z) e�(z� 12 )2=2z2p e� z22 S2pQ2 ; (5.6)where Ip is the normalisation fa
tor (3.19). For this 
al
ulation we need only theexpe
tation value of one Wegner-Wilson loop. A straightforward 
al
ulation showsthat the expe
tation value over one single loop is 1 in both the matrix 
umulantmethod and the expansion method. Thus, in our model the form fa
tor is just theFourier transform of the squared wave fun
tion.We will now use (5.6) to determine zp and Sp. It turns out that in the range0 � Q � 0:5GeV the form fa
tor depends sensitively on Sp but only weakly on zp.From a �t to experiment in this region we obtain Sp = 0:77 fm. With Sp �xed tothis value we show in Fig. 5.1 our result (5.6) for F1v for di�erent values of zp. Theexperimental values have been 
al
ulated from the experimental data for GEp andGMp from [70,71℄ and a �t of the experimental data on GEn and GMn [72℄ a

ordingto (5.5) and the relation between the Dira
 (F1p;n) and the ele
tri
 (GEp;n) andmagneti
 (GMp;n) form fa
tor of the proton and neutron, respe
tively:F1N(Q2) = GEN(Q2) + �GMN (Q2)1 + � ; � = Q24M2N (N = p; n): (5.7)The best �t is found for zp = 0:4. As 
an be seen from Fig. 5.1, zp, whi
h �xesthe width of the longitudinal momentum distribution of the 
onstituents, playsno important role for Q . 0:5GeV. For larger values of Q however, our �t is
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Figure 5.1: The isove
tor form fa
tor of the proton for Sp = 0:77 fm and di�erentvalues of zp 
ompared to the experimental data from [70{72℄substantially improved when using a Gaussian shaped z-dependen
e instead of adelta-fun
tion 
entred around z = 1=2, whi
h is equivalent to zp ! 0.It has to be noted that the proton extension parameter Sp obtained from (5.6) isnot, and need not be, the same as the one used in the hadroni
 s
attering pro
esses inthe previous 
hapters. Whereas the hadroni
 extension parameter has been allowedto be energy dependent (see (4.1),(4.3)) to a

ount for the rise of �tot with ps, theextension parameter 
onne
ted with the form fa
tor has a �xed value for all energiesas the form fa
tor itself is energy independent and is related to the ele
tromagneti
radius of the proton as follows. Using the de�nitionshr2ip = �6 dGEp(Q2)dQ2 ����Q2=0 ;rpem = phr2ip; (5.8)relations (5.5),(5.7) and the experimental valuedGEn(Q2)dQ2 ����Q2=0 = 0:019 fm2 (5.9)from thermal-neutron-ele
tron s
attering [73℄, we get from our modelrpem = 0:81 fm: (5.10)
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e-like form fa
tors in the modelThis 
oin
ides with the value one obtains for the proton ele
tromagneti
 radius whendes
ribing the ele
tri
 form fa
tor of the proton by the dipole parametrisation [70℄,whi
h also results in rpem = 0:81 fm. From s
attering experiments one �nds rpem =0:88 � 0:03 fm or rpem = 0:92 � 0:03 fm, depending on whi
h �t is used for theexperimental data on GEp(Q2) for small Q2 [70℄. The Lamb shift measurements [74℄give rpem = 0:890 � 0:014 fm. Thus our result (5.10), as well as the one 
al
ulatedfrom the dipole parametrisation, is smaller than the experimental value for rpem.Our 
al
ulation as well as the dipole �t des
ribe the data [71℄ for GEp rather wellfor Q & 0:4GeV. But for smaller Q the data [70℄ indi
ate a rapid 
hange in theslope dGEp(Q2)=dQ2 whi
h is des
ribed neither by our model nor by the dipoleparametrisation. Su
h an \anomalous" behaviour of GEp and GEn for small Q2 hasbeen related to QCD va
uum e�e
ts in [75℄.5.2 The ele
tromagneti
 form fa
tor of the pion
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Figure 5.2: The pion form fa
tor for S� = 0:68 fm and di�erent values of z� 
om-pared to the experimental data from [76℄For the 
harged pions �� the matrix element of the ele
tromagneti
 and the third
omponent of the isospin 
urrent are equal. Choosing again the 
oordinate systemas in (5.2) with Mp repla
ed by m� we geth�+(P 0)jj�(0)j�+(P )i = e (P+n�+ + P�n��)F�(Q2): (5.11)
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tromagneti
 form fa
tor of the pion 55Here the matrix element 
an be expressed by one form fa
tor F� only. The 
al
ula-tion of this matrix element in our model leads toF�(Q2) = 1I� Z 10 dz 2z(1� z) e�(z� 12 )2=2z2� e� z22 S2�Q2: (5.12)We 
ompare (5.12) to experimental data for F� from [76℄ in Fig. 5.2. As for theproton the transverse extension parameter S� 
an be �tted in the range 0 � Q �0:5GeV with the result S� = 0:68 fm. Using the analogue of relation (5.8) for thepion, this value gives an ele
tromagneti
 radius r�em = 0:64 fm, whi
h is 
onsistentwith the experimental value r�em = 0:663 � 0:006 fm [76℄. For values Q & 0:5GeVour �t be
omes sensitive to the width of the longitudinal momentum distributionof the 
onstituents. For the pion, the best �t for the width of this distribution isgiven by z� = 0:5. The broader distribution 
ompared to the proton is related tothe smaller mass of the pion, whi
h is in agreement with the parametrisation of thehadron wave fun
tions in [37℄.
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Chapter 6The time-like pion form fa
tor in adispersion approa
hOur aim in this 
hapter is to develop a dedi
ated model of the time-like pion formfa
tor. In 
ontrast to the previous 
hapter, where our main interest lay in theextra
tion of the parameters zp; z�, here we want to give a detailed des
ription ofthe behaviour of the form fa
tor. First we will give an overview of some models andthe regions in whi
h they are appli
able. Then we will present our approa
h and
al
ulate the phase and the modulus of the ele
tromagneti
 and 
harged 
urrentform fa
tor. From �ts to experimental data we will obtain the masses and de
ay
onstants of the neutral and 
harged �-mesons and the !-meson.We re
all the de�nition of the ele
tromagneti
 form fa
tor of the pion by thematrix element of the ele
tromagneti
 
urrenth�+(P 0)jj�(0)j�+(P )i = e(P + P 0)�F�(q2); (6.1)where the momentum transfer is q = P 0 � P . The form fa
tor is normalised asF�(0) = 1. As fun
tion of the 
omplex variable s = q2, the form fa
tor F�(s) hasa 
ut in the 
omplex s-plane starting at the two-pion threshold s = 4m2� whi
h
orresponds to two-pion intermediate states. There are also 
uts related to K �Kintermediate states and multi-meson states (4�, et
). The form fa
tor in the time-like region (s > 0) is F�(s+ i�) = jF�(s)jeiÆ(s); (6.2)where Æ(s) is the phase. For the theoreti
al des
ription of the form fa
tor in di�erentregions of momentum transfers di�erent theoreti
al approa
hes are used.At large spa
e-like momentum transfers, �q2 !1, perturbative QCD (pQCD)gives rigorous predi
tions for the asymptoti
 behaviour of the form fa
tor [77℄F�(q2) � 8�f��s(�q2)�q2 ; (6.3)57
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tor in a dispersion approa
hwhere �s is the QCD 
oupling parameter and f� = 130:7�0:4MeV is the pion de
ay
onstant de�ned by the relationh0j �d
�
5uj�+(P )i = iP �f�: (6.4)As the spa
e-like momentum transfer be
omes smaller, the form fa
tor turns outto be the result of the interplay of perturbative and nonperturbative QCD e�e
ts,with a strong eviden
e that nonperturbative QCD e�e
ts dominate in the region0 � �q2 � 10GeV2 [39℄. The pi
ture based on the 
on
ept of 
onstituent quarkswhi
h e�e
tively a

ount for nonperturbative dynami
s has proven to be eÆ
ientfor the des
ription of the form fa
tor in this region (see for instan
e [40℄). In 
hap-ter 5, we also have 
al
ulated F� for small spa
e-like momentum transfers in theframework of our nonperturbative model. This 
al
ulation is not intended as a pre-
ise determination of the form fa
tor, sin
e our model, in the formulation we usehere, was not developed with the attention on the 
al
ulation of form fa
tors, butrather on the des
ription of soft high energy hadron-hadron s
attering. However,our model has allowed us to give a reasonable des
ription of the experimental data.The agreement 
ould be improved by using a re�ned model, in parti
ular whenusing more sophisti
ated wave fun
tions and more general quark 
on�gurations todes
ribe the proton and the pion. Moving on to large time-like momentum transfers,s & 10GeV2, F�(s) 
an be obtained from the analyti
 
ontinuation of the pQCDformula (6.3). At small time-like momentum transfers the situation is more 
om-pli
ated sin
e there dynami
al details of the 
on�nement me
hanism are 
ru
ial.Quarks and gluons are no longer the degrees of freedom of QCD leading to a simpledes
ription of the form fa
tor. At time-like momentum transfers we are essentiallyin the region of hadroni
 singularities and typi
ally one relies on methods based onhadroni
 degrees of freedom. In the region of interest to us here, 0 � q2 � 1:5GeV2,the lightest pseudos
alar mesons are most important.There are many approa
hes to understand the behaviour of the pion form fa
torat time-like momentum transfers from 0 to 1.5 GeV2. A time honoured approa
h isbased on the ve
tor meson dominan
e (VMD) model [41℄. In the simplest versionof VMD one assumes just the �-meson dominan
e, whi
h leads toF�(s) = M2�M2� � s; (6.5)where M� is the mass of the �-meson. This simple formula works with a gooda

ura
y both for small spa
e-like momentum transfers and time-like momentumtransfers below the �� threshold: �1GeV2 � s � 4m2�. For s near the �� thresholdone should take into a

ount e�e
ts of the virtual pions. In this region momenta ofthe intermediate pions are small and a 
onsistent des
ription of the form fa
tor isprovided by 
hiral perturbation theory (ChPT) [42℄, the e�e
tive theory for QCDat low energies.For higher s, in the region of � and ! resonan
es, a similar rigorous treatmentof the form fa
tor is still la
king, and one has to rely on model 
onsiderations.



59Contributions of the two-pion intermediate states may be 
onsistently des
ribed bydispersion representations. The appli
ation of dispersion relations has led to thefamous Gounaris-Sakurai (GS) formula [43℄ whi
h takes into a

ount �-meson �nitewidth 
orre
tions due to virtual pionsF�(s) = M2� � B��(0)M2� � s�B��(s) : (6.6)The fun
tion B��(s) 
orresponds to the two-pion loop diagram. The 
orrespond-ing Feynman integral is linearly divergent, but its imaginary part is de�ned in aunique way. The real part is then re
onstru
ted by a doubly-subtra
ted dispersionrepresentation. The Gounaris-Sakurai pres
ription to �x the subtra
tion 
onstantsreads Re B��(s)js=M2� = 0; ddsRe B��(s)js=M2� = 0: (6.7)The phase of the form fa
tortan Æ(s) = ImB��(s)M2� � s� ReB��(s) : (6.8)for the GS pres
ription agrees well with the experimental data in the region 4m2� <s < 0:9GeV2. But (6.6) gives too small a value (by � 15%) for jF�(s)j at s aroundM2� .On the other hand, one 
an 
onsider a simple VMD ansatz taking only the �-meson 
ontribution into a

ount. This should be a good approximation in the region0:5GeV2 � s � 0:8GeV2, ex
ept for the narrow interval near s � M2! where the��! mixing e�e
ts are important [78℄. The simple VMD ansatz then is very similarto (6.6), but with the numerator repla
ed by the 
 ! � ! �� transition matrixelement: F�(s) = 12g�!��f� M�M2� � s�B��(s) : (6.9)Here g��� and f� are de�ned a

ording toh�(k1)�(k2)jT j�("; k)i = 12g�!�� "�(k1 � k2)�; (6.10)h0jJ�j�0("; k)i = f�M� "�; (6.11)where "� is the �-meson polarisation and k is the 4-momentum ve
tor. Now jF�(s)jfrom (6.9) des
ribes well the data for s � M2� . But extrapolating (6.9) to s = 0gives F�(0) � 1:15 in gross violation of the normalisation 
ondition F�(0) = 1.Thus, neither (6.6) nor (6.9) 
an des
ribe the form fa
tor over the whole range0 � s � 1:5GeV2: namely, (6.6) leads to a too small value of jF�j at s = M2� ,



60 Chapter 6. The time-like pion form fa
tor in a dispersion approa
hwhereas the form fa
tor given by (6.9) is far above unity at s = 0. There weremany attempts to modify the ve
tor meson dominan
e or to use related approa
hesin order to bring the results on the pion form fa
tor in agreement with the data(see [79, 80℄ and referen
es therein).In the following we apply 
onsistently a dispersion approa
h to the pion formfa
tor in a model with ���, �KK, !��, and gauge-invariant � � 
, ! � 
 and��! 
ouplings. Our approa
h allows a dire
t resummation of pion and kaon loops.Ambiguities related to subtra
tions in linearly divergent meson loop diagrams areabsorbed in the physi
al meson masses and 
oupling 
onstants. After taking intoa

ount the �� ! mixing e�e
ts the pion form fa
tor in the range 0 � s � 1GeV2is well des
ribed both in magnitude and phase by a formula whi
h is similar to theVMD expressions (6.6) and (6.9) but avoids their pitfalls.6.1 The dispersion approa
hOur model makes use of 
onventional methods of dispersion theory. First we makean ansatz for the e�e
tive 
ouplings of the pseudos
alar mesons, ve
tor mesons andthe photon. These 
ouplings are used in essen
e only to 
al
ulate the absorptiveparts of the amplitudes. The 
omplete amplitudes are then obtained by dispersionrelations and a Dyson resummation. We want to make 
lear from the outset that oure�e
tive 
ouplings dis
ussed below are not to be 
ompared dire
tly to the e�e
tiveLagrangian of ChPT [42℄ and resonan
e theory in the framework of ChPT [81℄. Weshall see, however, that our model, used as explained above, respe
ts all the knownresults from ChPT for the pion form fa
tor. Thus our model 
an be seen as analternative to the one of [80℄ where ChPT results are extended to F�(s) in the range0 � s � 1:5GeV2 using again a resummation s
heme.In our model pions intera
t with the �-mesons and generate in this way the �nite�-meson width. We do not in
lude into 
onsideration dire
t four-pion 
ouplings. Ne-gle
ting of the latter goes along the line of the resonan
e saturation in the ChPT [81℄whi
h states that the 
oupling 
onstants of the e�e
tive 
hiral Lagrangian at orderp4 are essentially saturated by the meson resonan
e ex
hange. The �0-meson is
oupled to the 
onserved ve
tor 
urrent of 
harged pions as follows:L��� = i2g ��y��� � ���y�� ��; (6.12)where �� is the 
onserved ve
tor �eld des
ribing the �-meson. We denote in thisse
tion g � g�!��. Mat
hing to the one-loop ChPT [42℄ leads to the relationg�!�� = 2M�=f�: (6.13)The photon is 
oupled to the 
harged pion through the usual minimal 
oupling,L
�� = ie(�y��� � ���y�)A�: (6.14)
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�� ��
������ : : :+++++Figure 6.1: The pion form fa
tor in the pi
ture where pions intera
t via the �-meson ex
hange and generate in this way the �nite �-meson width. The photon is
oupled to the 
harged pions through the usual minimal 
oupling, and the dire
tgauge-invariant ��
 
oupling is assumed. No G-parity violating e�e
ts are in
ludedat this stage.We also add a dire
t gauge-invariant �� 
 
oupling of the formL�
 = �14 ef�M�F ��G(�)�� ; (6.15)where F�� = ��A� � ��A�; G(�)�� = ���� � ����: (6.16)This model is similar to the model of [82℄. No G-parity violating !�� or dire
t� � ! 
ouplings are in
luded at this stage. As explained above, we 
al
ulate theele
tromagneti
 form fa
tor in our model by the sum of the diagrams of Fig. 6.1.Summing all the pion loop insertions, we obtainF�(s) = 1 + f�2M� s � g + g2B�
(s)M2� � s� B��(s)= M2� � (1� f�2M�g)s+ �12g B�
(s)�B��(s)	M2� � s� B��(s) : (6.17)The quantities B��(s) and B�
(s) 
orrespond to one-loop � � 
 and � � � self en-ergy diagrams generated by the pion loop. The imaginary parts of these diagrams
an be 
al
ulated by setting the intermediate pions on mass shell. The full fun
-tions B��(s) and B�
(s) are 
onstru
ted from their imaginary parts by means of thespe
tral representation with a suitable number of subtra
tions and by adding the
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h
orresponding subtra
tion 
onstants. This is the usual dispersion theory pro
edurewhi
h we adopt sin
e the Feynman integral for the pion one-loop diagram leads toa divergent expression. For the �� intermediate states the imaginary parts of thefun
tions B��(s) and B�
(s) satisfy the relationsIm B��(s) = g2Im B��(s);Im B�
(s) = 2g Im B��(s); (6.18)where Im B��(s) � I(s;m2�) = 1192�s�1� 4m2�s �3=2 : (6.19)For a realisti
 des
ription we have to take into a

ount also 
ontributions of K+K�and K0 �K0 intermediate states. The 
oupling 
onstant g�!KK 
annot be measureddire
tly. We use the relation2g�!KK = g�!�� = g; (6.20)whi
h is valid in the SU(3) limit. Repeating the pro
edure des
ribed above, summingthe pion and kaon loops, we �nd with (6.20)Im B�� = g2�Im B�� + 14 (Im BK+K� + Im BK0 �K0)�= g2�Im B�� + 12Im BKK� ;Im B�
 = 2g�Im B�� + 12Im BK+K��= 2g�Im B�� + 12Im BKK� ; (6.21)and hen
e 12 g Im B�
(s)� Im B��(s) = 0: (6.22)It follows from (6.22) that the di�eren
e 12gB�
(s) � B��(s) is a polynomial in sdetermined by the subtra
tion 
onditions. Hen
e the numerator of the pion formfa
tor (6.17) is also a real polynomial. Therefore, the phase of the form fa
tor is
ompletely determined by the denominator. The latter is the usual propagator ofthe �-meson with the �nite width 
orre
tions taken into a

ount.Let us now 
onsider subtra
tion 
onstants. The fun
tion B�
(s) des
ribes the
oupling of the pion to the 
onserved ele
tromagneti
 
urrent. Therefore we mustset B�
(0) = 0; (6.23)
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h that the 
harge of the pion remains unrenormalised by higher order 
orre
tions.The fun
tion B��(s) determines the behaviour of the �� elasti
 JP = 1� partial waveamplitude in whi
h the �-meson pole is known to be present in the zero-width limit.Therefore, we require Re B��(M2� ) = 0: (6.24)Without loss of generality the se
ond subtra
tion 
onstant may be �xed by settingB��(s = 0) = 0: (6.25)Any other 
ondition would just lead to res
aling of the parameters in the formula forthe form fa
tor. Thus, the most general expression for the form fa
tor in
orporatingsubtra
tion ambiguities in the �� and KK loop diagrams 
ontains three1 
onstantsM2� , g, and f�: F�(s) = M2� � (1� f�2M�g)sM2� � s�B��(s) : (6.26)Here B��(s) = g2 s�R(s;m2�)� R(M2� ; m2�) + R(s;m2K)�R(M2� ; m2K)2 �+ ig2 �I(s;m2�) + I(s;m2K)2 � ; (6.27)with I(s;m2) de�ned by (6.19), andR(s;m2) = 1192�2 V:P: Z 14m2 ds0(s0 � s)s0 �1� 4m2s0 �3=2= 8<: 196�2 �13 + �2 + �32 log� 1��1+��� ; � =q1� 4m2s ; for s � 4m2;196�2 �13 � �2 + �3 � ar
tan�1��� ; � =q4m2s � 1; for s < 4m2;(6.28)where V.P. means the prin
iple value. Let us point out that the numerator of theform fa
tor in (6.26) is not a 
onstant, but a linear fun
tion of s. This s-dependen
eappears as the dire
t 
onsequen
e of 
urrent 
onservation. We 
an write (6.26) inthe form of the modi�ed GS formulaF�(s) = 12g�!��f e�� (s)M�M2� � s� B��(s) (6.29)1Assuming more than two subtra
tions in the pion loop diagrams leads to more subtra
tion
onstants. This is not di
tated by the 
onvergen
e properties of the loop diagrams, but is stillpossible. We will not dis
uss su
h a 
ase here.
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tor in a dispersion approa
hwith the e�e
tive s-dependent �� 
 
oupling 
onstantf e�� (s) = f� sM2� + 2(M2� � s)gM� : (6.30)One should be 
areful with the interpretation of this result: as is 
lear from (6.23),there is no dire
t transition of the �-meson to the real photon as a 
onsequen
e ofthe gauge invariant ��
 
oupling. On the other hand, the e�e
tive 
oupling f e�� (s)is 
learly nonzero at s = 0. Therefore the pion form fa
tor looks as if there wasdire
t � � 
 
oupling also for the real photon. This is just the usual ve
tor mesondominan
e. The latter thus emerges as the dire
t 
onsequen
e of our assumptionthat the ve
tor meson 
ouples to the same pion 
urrent as the photon. For furtherdis
ussions of the relationship between VMD and gauge invarian
e we refer to [82℄.If we use the ChPT relation (6.13), whi
h agrees perfe
tly with the measured valueof g�!��, then (6.30) leads to an interesting relationf e�� (s = 0) = f�: (6.31)Noti
e that the phase of F�(s) in (6.29) is still given by (6.8) and is 
ompletelydetermined by the fun
tion B��(s).6.2 The �� ! mixingIn se
tion 6.1 we dis
ussed the � 
ontribution due to the bare � plus the e�e
ts of the�-meson width due to the light-meson loops to the pion form fa
tor. This analysisis suÆ
ient for des
ribing the pion form fa
tor of the 
harged ve
tor 
urrent usingthe CVC relation. For the ele
tromagneti
 pion form fa
tor it is ne
essary to takeinto a

ount the ��! mixing e�e
ts. The ! is 
oupled to the pions and the photonsimilarly to the �0-meson (see (6.12) and (6.15))L!�� = i2g!!�� ��y��� � ���y��!�; L!
 = �14 ef!M!F ��G(!)�� ; (6.32)!� being a 
onserved ve
tor �eld des
ribing the !-meson and G(!)�� = ��!� � ��!�.It has proven useful to 
lassify various 
ontributions to hadroni
 amplitudesa

ording to their formal order in the 1=N
 expansion [42℄, where N
=3 is the numberof 
olours in QCD. In the language of the 1=N
 expansion the analysis of the previousse
tion 
orresponds to taking into a

ount the leading order 1=N
 pro
ess, whi
h
orresponds to the resonan
e 
ontribution in a zero-width approximation, and thesubleading O(1=N
) e�e
ts of the meson loops.2 Performing a resummation of thesemeson loops gave our dispersion des
ription of the form fa
tor.2Re
all that pion and kaon loop diagrams are of order 1=N
 and of order p4 of the momentumexpansion.
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ontribute to the � � ! mixing amplitude B�!. Thedire
t �� ! mixing diagram is the only diagram whi
h emerges to leading order in1=N
, meson-loop diagrams are subleading 1=N
 e�e
ts.A 
orresponding treatment of the �� ! mixing e�e
ts then requires taking intoa

ount the leading and subleading 1=N
 e�e
ts as well. To leading order in 1=N
,meson loops do not 
ontribute and therefore the only e�e
t is the dire
t � � !transition des
ribed in terms of the dire
t 
oupling (see Fig. 6.2).At subleading 1=N
 order several meson loop diagrams shown in Fig. 6.2 emerge.We make use of spe
tral representations for loop diagrams, i.e. we 
al
ulate dire
tlythe imaginary parts and then re
onstru
t the full fun
tion by means of the spe
tralintegral with the relevant number of subtra
tions. Subtra
tion 
onstants then areeither �xed by physi
al 
onstraints or determined by the experimental data. Letus point out an important feature related to our dispersion 
al
ulation: the dire
t� � ! 
oupling, whi
h is a leading 1=N
 pro
ess and the real part of the � � !mixing loop diagrams at q2 =M2� , whi
h is a subleading 1=N
 pro
ess, 
ontribute tothe form fa
tor pre
isely in the same way, su
h that only their sum has a physi
almeaning. We therefore a

ount for the net e�e
t of these two 
ontributions by asingle subtra
tion 
onstant and do not 
onsider the dire
t ��! 
oupling separately.We have analysed in se
tion 6.1 the �-meson self-energy fun
tion B�� whi
hdetermines the propagator of the intera
ting �-meson. Let us now dis
uss a similarself-energy fun
tion of the !-meson B!! and the o�-diagonal � � ! fun
tion B�!whi
h des
ribes the �� ! mixing.The fun
tion B!! determines the ! propagator D!(s) = 1=(M2! � s � B!!) inthe absen
e of the �� ! mixing e�e
ts. The main 
ontribution to Im B!! is givenby the three-pion intermediate states. This Im B!! should then be inserted intoa dispersion integral to obtain B!!. However, be
ause of the small width of the !resonan
e, it is suÆ
ient for our analysis to 
onsider as a simple ansatz a 
onstantB!! B!! = i�tot! M!: (6.33)Possible pro
esses whi
h 
ontribute to the � � ! mixing amplitude B�! = B!� areshown in Fig. 6.2. The 
oupling 
onstants whi
h determine the relative strength ofthe diagrams in Fig. 6.2 are shown in Table 6.1. One �nds (see also [83℄) thatthe main 
ontribution to the imaginary part of the �� ! mixing amplitude B�! isgiven by the diagrams with two-pion and two-kaon intermediate states. To obtainthe full B�! we write again a dispersion representation with two subtra
tions. The



66 Chapter 6. The time-like pion form fa
tor in a dispersion approa
hRes. M [MeV℄ �tot [MeV℄ �e+e� [keV℄ Br(�+��) Br(�0
)�0 769.0� 0.9 150.7� 2.9 6.77� 0.32 100% (6.8� 1.7)�10�4! 782.57� 0.12 8.44� 0.09 0.60� 0.02 (2.21� 0.3)% (8.5� 0.5)�10�2Res. fV [MeV℄ gV!2��0 152� 5 11.8� 0.2! 45.3� 0.9 0.4� 0.02Table 6.1: Masses and rates for ve
tor mesons from [11℄ and the 
orrespondingde
ay 
onstants. Re
all the SU(2)-limit relations f� = 3f!.imaginary parts of these diagrams 
an be 
al
ulated in analogy to (6.18) in termsof the 
oupling 
onstants gV!PP with V = �; !, P = �;K de�ned a

ording to therelation hP (k1) �P (k2)jT jV ("; k)i = 12gV!PP"(V )� (k1 � k2)�:For instan
e, the imaginary part of the diagram with the �� intermediate state isequal to g�!��g!!��I(s;m2�).The same arguments as used to show the relation (6.22) between Im B�
 andIm B�� lead to g�!��Im B�!(s)� g!!��Im B��(s) = 0: (6.34)Hen
e, the 
ombination g!!��B�� � g�!��B�! is a polynomial of �rst order in s.The �� ! mixing e�e
ts are sizeable only in the narrow vi
inity of s = M2!, so wemay set g�!��B�! � g!!��B�� = s �; (6.35)and the value of � will be found from the �t to the pion form fa
tor. As we haveexplained above, the real part of the fun
tion B�! at s � M2�;! in
ludes the dire
t�� ! 
oupling.6.3 The ele
tromagneti
 pion form fa
tor with�� ! mixingIn the problem of the � � ! mixing, the 
onstant g!!2� is a natural small param-eter, and the expansion of the pion form fa
tor in powers of this parameter 
anbe 
onstru
ted. We 
an safely negle
t all terms of order g2!!�� and limit ourselvesto the �rst order analysis. The diagrams whi
h des
ribe the 
ontributions to the
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Figure 6.3: Diagrams for the pion form fa
tor whi
h emerge at �rst order of theexpansion in g!!��. In this �gure the � and ! propagators areD� = 1=(M2��s�B��)and D! = 1=(M2! � s� B!!), respe
tively.form fa
tor of �rst order in g!!2� are shown in Fig. 6.3. Adding the 
orrespondingexpressions to the result (6.29) we get for the pion form fa
torF�(s) = 12g�!��f e�� (s)M�M2� � s� B��(s) + 12g!!�� f!sM!M2! � s� B!!(s) � M2� � s+� � sM2� � s�B��(s)�+O(g2!!��):(6.36)We use this expression for the numeri
al analysis of the data for the ele
tromagneti
pion form fa
tor in the next se
tion.6.4 Numeri
al analysisIn this se
tion we apply the formulas obtained to the analysis of the data on theele
tromagneti
 and 
harged 
urrent pion form fa
tors and extra
t in this way theresonan
e masses and 
oupling 
onstants. We in
lude the 
ontributions of the �(770)and !(782) resonan
es and negle
t the higher ve
tor resonan
es �(1450) and �(1700)(for a dis
ussion of these latter see [84℄). As 
an be seen from the analysis of [85℄,the in
uen
e of the latter upon the pion form fa
tor is negligible in the region s � 1GeV. We therefore extra
t the � and ! parameters making use of the form fa
tordata for s � 1 GeV.6.4.1 The ele
tromagneti
 pion form fa
torWe �t the available data on the phase [86℄ and the modulus [76, 87℄ of the ele
tro-magneti
 pion form fa
tor to (6.36) whi
h in
ludes the � � ! mixing e�e
ts. The
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tor in a dispersion approa
hform fa
tor turns out to be weakly sensitive to g!!�� and f! for whi
h we use thevalues from Table 6.1.The resonan
e parameters turn out to be rather sensitive to the upper limitps � Qupper of the data points in
luded into the �t pro
edure. The extra
tedmasses and 
ouplings from the best �t of the form fa
tor, whi
h was done separatelyfor the phase and the modulus, are shown in Table 6.2 and 6.3, respe
tively. Thisdependen
e on Qupper might signal that the errors in the extra
ted masses and
oupling 
onstants are in fa
t sizeably greater than those quoted in [11℄. Obviously,the error estimates provided by the popular Fumili [88℄ program should be takenwith some 
are.Qupper, MeV 710 (5 pts) 775 (10 pts) 850 (15 pts) 965 (20 pts)M�0 , MeV 772.7� 1.3 773.4� 0.8 773.0� 0.6 771.1� 0.6g�0!�+�� 12.05� 0.07 12.0� 0.05 12.0� 0.04 11.87� 0.04Table 6.2: The upper limit of the ps-range of the data from [86℄ used for �ttingthe phase of the pion form fa
tor and the 
orresponding �tted parameters M� andg�!2�. Error estimates as given by the Fumili program are shown.960 (40 pts [76℄Qupper [MeV℄ 820 (27 pts) 950 (40 pts) 1000 (45 pts) + 45 pts [87℄)M�0 [MeV℄ 774.7� 0.3 776.1� 0.2 773.6� 0.2 775.5� 0.1f�0 [MeV℄ 147.7� 0.2 148.2� 0.1 149.0� 0.1 149.4� 0.1g�0!�+�� 11.37� 0.03 11.38� 0.01 11.7� 0.01 11.5� 0.05M! [MeV℄ 782.5� 0.3 781.3� 0.2 781.9� 0.2 782.5� 0.2� 0.180� 0.007 0.191� 0.006 0.183� 0.006 0.170� 0.007Table 6.3: The upper limit of the Q-range of the data [76℄, used for �tting themodulus of the pion form fa
tor and the 
orresponding �tted parameters M�, f�,g�!2�, M!, and �. The last 
olumn shows the result of the �t to the 
ombineddata on jF�j from [76℄ and [87℄. Error estimates as given by the Fumili programare shown.Our best estimates for the � and ! parameters from a 
ombination of the �tsto the phase and the modulus are presented in Table 6.5. We obtain these valuesas follows: the parameter values from the last 
olumns of Tables 6.2 and 6.3 shouldbe the most reliable ones, sin
e they 
orrespond to the biggest data sets. On theother hand, the errors given by the Fumili program 
annot be trusted. We tookthe average of the values for M0� and g�!��, weighting the values from the modulus�t by a fa
tor 2/3 and those from the phase �t by 1/3. The errors in Table 6.5 areour edu
ated guesses.The pion elasti
 form fa
tor 
al
ulated with the 
entral values of the parametersfrom Table 6.5 is shown in Fig. 6.4. Both the phase and the magnitude of the formfa
tor are well des
ribed, ex
ept for the phase at ps > 0:9 GeV.
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ompared tothe data on the phase from [86℄ and the data on the modulus from [76℄ (solid 
ir
les)and [87℄ (empty 
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les). For the 
al
ulation the 
entral values of the parametersfrom Table 6.5 have been used.



70 Chapter 6. The time-like pion form fa
tor in a dispersion approa
h6.4.2 The 
harged 
urrent pion form fa
torThe amplitude of the weak transition �� ! ���0�� 
an be parametrised in termsof the two �� ! �0 transition form fa
tors as followsh�0(p0)j�u
�dj��(p)i = 1p2F+� (q2)(p0 + p)� + 1p2F�� (q2)q�: (6.37)In the isospin limit F�� = 0 and F+� = F�. These relations should work wellfor all q2 ex
ept for the region of the � and ! resonan
es: the form fa
tor F�
ontains 
ontributions of the �0 and ! resonan
e, whereas the 
ontribution analogousto ! is absent in F+� . Thus, the 
harged 
urrent form fa
tor F+� as measured inthe �� ! �0���� de
ay is given in our model by the the modi�ed � dominan
eformula (6.29). Comparison with the ALEPH [85℄ and CLEO [89℄ data allows theextra
tion of the masses and 
oupling 
onstants of the ��. We give the 
orrespondingnumbers in Table 6.4 and plot the form fa
tor in Fig. 6.5.Qupper [MeV℄ 760 (18 pts) 900 (23 pts) 1025 (28 pts)M�� [MeV℄ 768.8� 0.3 775.1� 0.1 776.9� 0.1f�� [MeV℄ 144.9� 0.3 150.3� 0.1 150.1� 0.1g��!�0�� 11.22� 0.02 11.34� 0.01 11.80� 0.05Table 6.4: Fit to the 
harged 
urrent pion form fa
tor from the CLEO data [89℄ onthe �� ! ���0�� de
ay. The upper limit Qupper of the ps-range of the data usedand the 
orresponding �tted parameters for the �� meson. Error estimates as givenby the Fumili program are shown.
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ompared to the CLEO data [89℄
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al analysis 71To 
on
lude this 
hapter we summarise our �nal results for the �0; �� and !parameters whi
h we extra
ted from �ts to the data on the ele
tromagneti
 [76,86,87℄and 
harged 
urrent [85, 89℄ pion form fa
tors in Table 6.5. The masses, the weakde
ay 
onstants and the pioni
 
oupling 
onstants of the neutral and 
harged �-mesons are found to be equal within the errors. Let us point out that our �ttedvalue for g�!2� agrees perfe
tly with the ChPT predi
tion g�!2� = 2M�=f�=11.7.We noti
e that our 
entral values of the � masses are 2-3 MeV higher than the
orresponding numbers obtained from the same rea
tions by [11℄. A 
omparison ofthe data and the theoreti
al 
urves for the ele
tromagneti
 and 
harged 
urrent pionform fa
tors is presented in Fig. 6.6. We point out that the � � ! mixing gives asizeable 
ontribution to the ele
tromagneti
 form fa
tor in the region of the � and !resonan
es, where it leads to an in
rease of jF�j2 by 10% at s = M2� and by almost30% at s =M2!.M�� [MeV℄ M�0 [MeV℄ M! [MeV℄ f� [MeV℄ g�!�� �775� 2 774� 2 782:0� 0:5 149� 1 11:6� 0:3 0:17� 0:02Table 6.5: The masses and de
ay 
onstants of the ve
tor mesons and the � � !mixing parameter � (see (6.35)) as obtained by our analysis
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tromagneti
 (full 
ir
les) [76,87℄ and the 
harged
urrent form fa
tor from the �� ! ���0�� de
ay (open squares) [89℄ with our �ts.The �ts to the ele
tromagneti
 pion form fa
tor show the �0 
ontribution (dottedline) and the result in
luding � � ! mixing (dashed line). The �t to the 
harged
urrent pion form fa
tor is the solid line.
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Chapter 7Con
lusionsIn this work we examine soft high energy rea
tions in the framework of nonper-turbative QCD. In the �rst part we 
al
ulate total and di�erential 
ross se
tionsfor elasti
 and inelasti
 di�ra
tive s
attering. In our model we start from a mi-
ros
opi
 des
ription of the s
attering of quark-antiquark and quark-diquark wavepa
kets and use fun
tional integral methods to obtain expressions for the s
atteringamplitudes. The 
orrelation fun
tions of light-like Wegner-Wilson loops governingthese amplitudes are evaluated in the framework of the model of the sto
hasti
 va
-uum [23{26℄. The hadron-hadron s
attering amplitudes are obtained by multiplyingthe parton s
attering amplitudes with suitable hadroni
 wave fun
tions [37℄. Both amatrix 
umulant expansion for the 
orrelation fun
tion of two Wegner-Wilson loopsas developed in [30℄ and an expansion method [24, 27℄ are used.The free parameters of our model are those of the model of the sto
hasti
 va
uum:G2, a and �, and the ones of the wave fun
tions: Shi and zhi , determining thewidth of the transverse and longitudinal momentum distributions of the 
onstituentsof the hadrons, respe
tively. These parameters have been determined in previouswork [24, 30℄ on elasti
 s
attering. The extension parameters Shi are allowed todepend on the 
.m. energy a

ording to (4.1) and (4.3) respe
tively. In this sensedi�erent hadrons are 
hara
terised through their radii, whi
h 
ome out 
lose to the
orresponding ele
tromagneti
 radii of the hadrons for energies ps � 20 GeV. Thevalues for zhi are obtained from a 
al
ulation of form fa
tors in our model.With all parameters �xed, integrated and di�erential 
ross se
tions for proton-proton and proton-pion s
attering are 
al
ulated and 
ompared to experimentalresults [58{63,66{68℄. Our model does not distinguish between pp and p�p s
atteringor p�+ and p�� s
attering, respe
tively.The 
al
ulated integrated elasti
 
ross se
tions agree with the experimental val-ues within the numeri
al and experimental errors for a wide range of 
.m. energiesstarting at about ps = 20 GeV up to the Tevatron energy ps = 1800 GeV. Thedi�erential elasti
 
ross se
tions are des
ribed reasonably well over many orders ofmagnitude by the matrix 
umulant method, however, this method underestimatesthe data for small jtj. On the other hand the expansion method gives a good73
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lusionsdes
ription of the di�erential 
ross se
tions for jtj . 0:2GeV2 but overshoots thedata for larger values of jtj. As a 
onsequen
e of the integrated 
ross se
tions beingmainly due to the 
ontributions from small jtj, the expansion method gives betterresults here whereas the matrix 
umulant method tends to underestimate the exper-imental data. The di�eren
e between the results obtained from both methods 
anbe seen as a theoreti
al error estimate of our model, as they use di�erent approxi-mation s
hemes in the evaluation of the 
orrelation fun
tion. In the approximationwe use in this work we have C = P = +1 ex
hange only.Furthermore the rise of the integrated 
ross se
tions in single di�ra
tive disso-
iation as a fun
tion of ps is 
al
ulated. Our 
al
ulated ratio �sd=(�el + �sd) isin rough agreement with experiment. The experimentally observed behaviour thatthe di�ra
tive disso
iation part of the 
ross se
tion in
reases more slowly with psthan the elasti
 one is reprodu
ed qualitatively in our 
al
ulation. The di�erentialdistribution 
an be reasonably well des
ribed by the expansion method. The diÆ-
ulties we en
ounter in the des
ription of d�sd=dt by means of the matrix 
umulantmethod, i.e. the formation of a depression at jtj � 0:3GeV2, are investigated ina se
ond approa
h. This approa
h uses two-dimensional harmoni
 os
illator wavefun
tions instead of plane waves for the des
ription of the di�ra
tive �nal state and
on�rms the results found before, but allows us to analyse the origin of the observeddepression. Again the pro
ess is mediated by C = P = +1 ex
hange only in ourapproximation.Turning to double di�ra
tive ex
itation pp ! N(1535)N(1535) we study C =P = �1 ex
hange in the framework of our model, whi
h arises due to the symmetriesof the �nal state wave fun
tions. The qualitative features of our predi
tions forthe integrated and di�erential 
ross se
tions resemble the ones of the results fromC = P = +1 ex
hange, the ex
eption being a rather slow de
rease of the di�erentialdistribution with in
reasing momentum transfer. This behaviour is also knownfrom the heli
ity amplitude Ap1=2 measured in the 
ontext of the ele
tromagneti
p � N(1535) transition form fa
tor. However, due to restri
tions of our model, inparti
ular the simple ansatz for baryons, whi
h are given by wave pa
kets of a quarkand a s
alar diquark, we 
annot 
al
ulate this heli
ity amplitude in our model andtherefore are not able to 
ompare to experimental data.The last 
hapter in the �rst part of our work deals with form fa
tors at smallspa
e-like momentum transfers, 
al
ulated in the framework of our model. Ourresult for the isove
tor Dira
 form fa
tor of the proton and the ele
tromagneti
form fa
tor of the pion, as well as the ele
tromagneti
 radii extra
ted from them,
ompare reasonably well to experimental data.To summarise the �rst part, our model is quite well suited to des
ribe inelasti
di�ra
tive hadroni
 rea
tions at high 
.m. energies (ps & 20 GeV) and small mo-mentum transfer. Further progress 
ould be made when in
luding higher 
umulantterms in (3.16) whi
h would 
ontribute to both C = P = +1 and C = P = �1ex
hange. The hope is that these 
ontributions 
ould, at least partly, �ll up the dips



75en
ountered in various 
ontributions to the di�erential 
ross se
tions and thus leadto an improved des
ription of the data. Also a more re�ned hadron model 
ouldhelp avoid some short
omings of the model as dis
ussed in parti
ular in the 
ontextof the spin-
ip 
ontribution to the form fa
tor.The up
oming experiments e.g. at RHIC will be a ri
h sour
e for new experi-mental data for both single and double di�ra
tive disso
iation in hadroni
 rea
tionsat high 
.m. energies. Therefore the study of inelasti
 di�ra
tive s
attering willremain an interesting and instru
tive �eld of work, where e�e
ts of nonperturbativeQCD 
an be studied.In the se
ond part of our work we analyse the ele
tromagneti
 and 
harged
urrent pion form fa
tors at time-like momentum transfers in a dispersion approa
h.Here we 
onsider a model with ���, �KK, !��, !KK and gauge-invariant � � 
and ! � 
 
ouplings. The pion form fa
tor is obtained by a resummation of pionand kaon loops leading to the �nite width of the �-meson. The resulting expressionfor the pion form fa
tor takes the form of the ve
tor meson dominan
e formula withone important distin
tion: the e�e
tive de
ay 
onstant f e�� depends linearly on themomentum transfer squared. We also take into a

ount the � � ! mixing in theele
tromagneti
 pion form fa
tor.The values of the �0 and ! parameters are extra
ted from the �t to the ele
tro-magneti
 pion form fa
tor [76, 86, 87℄ at 0 � ps � 1:0GeV where 
ontributions ofhigher ve
tor meson resonan
es are negligible. The �� ! mixing is found to give asizeable 
ontribution to the ele
tromagneti
 form fa
tor in the region of the � and !resonan
es, where it leads to an in
rease of jF�j2 by 10% at s = M2� and by almost30% at s =M2!.The values of the �� parameters are obtained by the �t to the 
harged 
urrentpion form fa
tor measured in � de
ay [85, 89℄.Our best estimates for the � and ! parameters are presented in Table 6.5. Themasses, the weak de
ay 
onstants and the pioni
 
oupling 
onstants of the neutraland 
harged �-mesons are found to be equal within the errors andour �tted valuefor g�!2� agrees perfe
tly with the ChPT predi
tion g�!2� = 2M�=f�=11.7.To summarise the se
ond part of our work, we have presented a model whi
hgives a good des
ription the ele
tromagneti
 and 
harged 
urrent pion form fa
torin the region 0 � ps � 1:0GeV in
luding the e�e
ts due to � � ! mixing. The �and ! parameters whi
h we obtain from our model are within errors in agreementto experimental data [11℄.
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Appendix AConventionsThroughout this work we use natural units, in whi
h~ = 
 = 1: (A.1)The �ne stru
ture 
onstant of the ele
tromagneti
 intera
tion is given in Heaviside-Lorentz units by �e:m: = e24� � 1137 : (A.2)Latin indi
es i; j; k et
. generally run over the three spatial 
oordinate labels, greekindi
es �; �; �; : : : generally run over the four spa
etime 
oordinate labels.The spa
etime metri
 g�� is diagonal with elementsg00 = 1; g11 = g22 = g33 = �1: (A.3)The Dira
 matri
es 
� are de�ned so that
�
� + 
�
� = 2g��: (A.4)Moreover we de�ne 
5 = i
0
1
2
3;��� = i2(
�
� � 
�
�): (A.5)By letters in boldfa
e we denote spatial three-ve
tors, e.g. x;p. A subs
ript Tdenotes that we are dealing with two-dimensional transverse ve
torsx = � xTx3 � ; xT = � x1x2 � : (A.6)77



78 Appendix A. Conventions
Light-
one variables are de�ned byx� = x0 � x3: (A.7)The measure of integration then is given byd4x = dx0dx1dx2dx3 = 12dx+dx�d2xT : (A.8)



Appendix BConne
torsWe de�ne a 
onne
tor V (y; x;Cx) between the points x and y along the 
urve Cx asthe non-abelian generalisation of the S
hwinger string of QEDV (y; x;Cx) := P�exp(�ig ZCx dz�G�(z))� : (B.1)Here P denotes path ordering. This 
onne
tor has the following properties:� The 
onne
tor of the sum of two adjoined 
urves C1 and C2 is equal to theprodu
t of the 
onne
tors of the single 
urves:V (z; x;C1 + C2) = V (z; y;C2) � V (y; x;C1): (B.2)� If Cx is the 
urve 
onne
ting x and y and �Cx is the same 
urve but withreversed orientation, i.e. running from y to x, thenV (y; x;Cx) � V (x; y; �Cx) = 1: (B.3)� Hermitian 
onjugation 
orresponds to path reversal:V y(y; x;Cx) = V (x; y; �Cx) (B.4)By applying 
onne
tors we 
an shift various quantities between two points inspa
e-time in a gauge 
ovariant way. E.g. we de�ne the shifted gluon �eld strengthtensor Ĝ whi
h has been transported from x to y along the 
urve Cx byĜ��(y) := V (y; x;Cx)G��(x)V �1(y; x;Cx): (B.5)Comparing to (2.25) we re
ognise that the 
onne
tors are in fa
t the eikonal phaseswhi
h we have introdu
ed in the dis
ussion of quark-quark s
attering in 
hapter 2.79
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Appendix CCal
ulation of form fa
tors in themodelStarting point for the form fa
tor 
al
ulation is the matrix element of the third
omponent of the isospin 
urrent at x = 0J�3 � hh3(P 0)jj�3 (0)jh1(P )i (C.1)with j�3 (x) =X � (x)
��12� 3� (x): (C.2)Here P denotes the sum over quark �elds u; d and � 3 is the third Pauli isospinmatrix. The hadrons h1; h3 are supposed to move in positive x3-dire
tion withP+ = P 0+ !1 (see (5.2)). In analogy to the des
ription of hadron-hadron s
atter-ing we therefore denote the in
oming hadron by h1 and the outgoing hadron by h3.The steps required to 
ompute the form fa
tor from this expression are 
ompletelyanalogous to those dis
ussed in 
hapter 2 that lead to the T -matrix element (2.49),with the di�eren
e that now there are additional 
ontra
tions between the quarksand diquarks (or antiquarks in the 
ase of mesons) of the hadrons h1; h3 and thequark �elds of the 
urrent j�3 when applying the LSZ redu
tion formalism. By 
on-sidering the isospin 
urrent we ensure that 
ontributions whi
h 
ontain subdiagramsarising from 
ontra
tions between the quark �elds of the 
urrent drop out be
ausethey are proportional to tr � 3 = 0. Now we des
ribe the form fa
tor 
al
ulation forthe �+ meson, modelled as u �d wave pa
ket.Using our notation from 
hapter 2 we obtain J�3 (C.1) by �rst 
al
ulating thematrix element of j�3 between q�q states and then folding with the wave fun
tions ofthe wave pa
kets.J�3 = Z d2�3T Z 10 dz3 1(2�)3=2 1p2 Æs3;�s03 ~'�3(z3;�3T ) 1p3 ÆA3A03Z d2�1T Z 10 dz1 1(2�)3=2 1p2 Æs1;�s01 ~'1(z1;�1T ) 1p3 ÆA1A01hu �djj�3 ju �di; (C.3)81
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�
�d u

uj�(0) �j
�(0) �d u�d(a) (b)Figure C.1: The two 
ontributions to the matrix element hu �djj�3 ju �di. The dashedlines indi
ate that the loops have been 
losed by the wave fun
tions.with hu �djj�3 ju �di � hu(p3; s3; A3) �d(p03; s03; A03)jj�3 (0)ju(p1; s1; A1) �d(p01; s01; A01)i; (C.4)where si; Ai are spin and 
olour indi
es, respe
tively and ~'1;3 are the Fourier trans-forms of the wave fun
tions (3.18)~'i(z;�T ) = 12� Z d2xT e�i�T �xT'i(z;xT ): (C.5)Applying the LSZ redu
tion formalism we 
an express the matrix element hu �djj�3 ju �difrom (C.4) as an integral over the quark 6-point-fun
tion. We get only two termsdepi
ted graphi
ally in Fig. C.1 whi
h are to be interpreted as follows. We 
onsider a�xed gluon ba
kground. The quark and antiquark travel in this ba
kground and the
urrent either hooks onto the quark line (Fig. C.1a) or the antiquark line (Fig. C.1b).As in 
hapter 2 the matrix element (C.4) is obtained by averaging over all gluonpotentials with the measure given by the fun
tional integral (2.16). In the highenergy limit for u and �d the s
attering amplitudes in the �xed gluon ba
kgroundredu
e to Wegner-Wilson line operators whi
h are 
losed to a loopW+ by the mesonwave fun
tions. This is indi
ated by the dashed lines in Fig. C.1. Combiningeverything we obtainh�+(P 0)jj�3 (0)j�+(P )i = P1+n�+2 Z 10 dz Z d2xT '�3(z;xT )'1(z;xT ) ei(1�z)qT �xT + e�izqT �xT!�W+(12xT ;xT )�G : (C.6)



83A straightforward 
al
ulation in the MSV shows that the expe
tation value ofthe 
orrelation fun
tion of one Wegner-Wilson loop is equal to 1. By a shift in theintegration variable the d2xT integration 
an be redu
ed to a Gaussian integral overthe wave fun
tions and we �nd the �nal result for the matrix element (C.1)h�+(P 0)jj�3 (0)j�+(P )i = P1+n�+I� Z 10 dz 2z(1� z) e�(z� 12 )2=2z2h e� z22 S2hq2T : (C.7)Let us turn to the proton form fa
tors now. In our simple ansatz the proton
onsists of a quark and a s
alar diquark, whi
h should be favoured above the ve
tordiquark due to dynami
al reasons [48℄. The spin of the proton then is 
arried by thequark. This together with the spin 
onservation on the parton level draws 
on
lusionthat, in our model, we get for the matrix element of j�3 between proton states anexpression similar to (C.7):hp(P 0; s0)jj�3 (0)jp(P; s)i = P+n�+�ys0F1v(Q2)�s (C.8)with F1v(Q2) given in (5.6). Thus we get only a spin-non-
ip and no spin-
ip
ontribution in the matrix element (5.3), that is, our model gives F2v(Q2) = 0. Thisis 
ertainly not a very good approximation. But on the other hand the spin-
ip partin (5.3) is suppressed by jqT j=(2Mp) for qT ! 0. Thus the matrix element (5.3) isstill reasonably des
ribed by the model for small enough jqT j.Here some remarks on the ele
tromagneti
 p � N(1535) transition form fa
torare due. The transition 
urrent 
an be written in terms of the analogues F1�; F2� ofthe Pauli and Dira
 form fa
tor, respe
tively, (see [90, 91℄)hN(1535)(P 0; s0)jj�(0)jp(P; s)i= e �us0(P 0) �
5�
� �Q2M� +MP + q��F1�(Q2) + i
5���q�F2p(Q2)�us(P ); (C.9)whereM� is the mass of the N(1535). A similar 
al
ulation to the one presented herefor the form fa
tors of the proton shows that again F1� multiplies the spin-non-
ippart and F2� the spin-
ip part. Sin
e we 
annot obtain the spin-
ip 
ontributionin our model as shown above, we �nd F2�(Q2) = 0. We have argued that it is notde
isive for the des
ription of the ele
tromagneti
 form fa
tors of the proton at smallmomentum transfers that the spin-
ip 
ontribution in our model is identi
al to zero.However, this is di�erent for the ele
tromagneti
 p�N(1535) transition form fa
tor.The quantities that are measured experimentally are the heli
ity amplitudes Ap1=2and Sp1=2. Ea
h of these amplitudes are des
ribed by linear 
ombinations of F1� andF2� and in this 
ontext F2� is not suppressed 
ompared to F1�. On the 
ontrary, forAp1=2, whi
h is due to transverse photons with heli
ity � = +1, F1� is suppressed byjqT j2=(M�+MP ) for qT ! 0 (see [91℄). Therefore, we 
annot 
al
ulate in a sensibleway a quantity whi
h we 
ould 
ompare to experimental data. We only note that
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ulation of form fa
tors in the modelthe experimentally observed slow de
rease of Ap1=2 with Q2 (see [92℄ and referen
estherein) is in qualitative agreement to our 
al
ulation of the di�erential 
ross forpp! N(1535)N(1535), where we also �nd a relatively 
at distribution in jtj.To summarise, we have outlined in this appendix a 
al
ulation of isove
tor formfa
tors using the same methods as for the s
attering pro
esses. The results are inessen
e as in [69℄ taking our simple ansatz for the wave fun
tions of the hadrons intoa

ount.
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