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Weihe di�raktive Hohenergiestreuung und Formfaktorenin nihtperturbativer QCDZusammenfassungIn der vorliegenden Arbeit untersuhen wir weihe Hohenergie-Reaktionen im Rah-men nihtperturbativer Modelle. Dazu verwenden wir ein auf einem Funktionalin-tegral-Ansatz beruhendes Modell und leiten die Streuamplituden her, deren wesent-liher Bestandteil Erwartungswerte von lihtartigen Wegner-Wilson Shleifen undLinien sind, die dann im Modell des stohastishen Vakuums berehnet werden.Mesonen beshreiben wir in einem einfahen Quark-Antiquark Bild, f�ur Baryonennehmen wir eine Quark-Diquark Struktur an, als Hadron-Wellenfunktionen verwen-den wir einen Wirbel-Steh-Bauer Ansatz. Aus den Streuamplituden berehnen wirintegrierte und di�erentielle Wirkungsquershnitte sowohl f�ur elastishe und di�rak-tive Proton-Proton als auh f�ur Proton-Pion Streuung bei hohen Shwerpunktsen-ergien und kleinen Impuls�ubertr�agen und vergleihen mit experimentellen Daten.Abh�angig von der Symmetrie des jeweiligen Endzustandes erhalten wir entwederC = P = +1 (Pomeron) oder C = P = �1 (Odderon) Austaush. Des weiterenberehnen wir im Rahmen des Modells die Isovektor-Formfaktoren des Protons unddes Pions bei raumartigen Impuls�ubertr�agen. Im abshliessenden Kapitel verwen-den wir einen Dispersionsrelations-Ansatz zur Berehnung des Pion Formfaktorsbei zeitartigen Impuls�ubertr�agen. Aus dem Vergleih mit experimentellen Datenbestimmen wir die Massen und Kopplungskonstanten der �- und !-Mesonen.Soft di�rative high energy sattering and form fators innonperturbative QCDAbstratIn this work we study soft high energy reations in the framework of nonperturbativemodels. Using a funtional integral approah we derive the sattering amplitudes,whih are governed by expetation values of light-likeWegner-Wilson loops and lines,whih then are then evaluated in the model of the stohasti vauum. We desribemesons in a simple quark-antiquark piture, for baryons we assume a quark-diquarkstruture, as hadroni wave funtions we apply a Wirbel-Steh-Bauer ansatz. In thefollowing we alulate integrated and di�erential ross setions from the satteringamplitudes, as well for elasti and di�rative proton-proton as for proton-pion sat-tering at high entre of mass energies and small momentum transfers and ompareto experimental data. Depending on the symmetry of the respetive �nal state weget either C = P = +1 (pomeron) oder C = P = �1 (odderon) exhange. Further-more we alulate the isovetor form fators of the proton and the pion at spae-likemomentum transfers. In the �nal hapter we use a dispersion approah to alulatethe pion form fator at time-like momentum transfers and determine the masses andoupling onstants of the �- and !-mesons from a omparison to experimental data.
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Chapter 1IntrodutionToday it is ommon belief that Quantum Chromodynamis (QCD) is the theorydesribing the physis of the strong interation. QCD is a Yang-Mills theory [1℄with the gauge group SU(3). The Lagrangian of QCD is onstruted from the basidegrees of freedom, the quarks and gluons, in terms of whih we should be able todesribe all strong proesses. Due to the non-abelian struture of SU(3), both quarksand gluons arry olour-harge. But in the real world we observe neither quarks norgluons as free partiles. Instead, the partiles we see in nature are hadrons, whih areolourless objets, in whih the quarks and gluons are on�ned. The problem now isto �nd a suitable transition from the level of quarks and gluons, whose transationsare desribed by the QCD Lagrangian, to the level of hadrons, whih are seen inthe real world proesses. For ertain irumstanes we an solve this problem andderive results from �rst priniples, starting from the Lagrangian.One ase where this is possible is the �eld of short-distane phenomena. There,all ourring momentum sales are muh larger than the QCD sale parameter�QCD � 200MeV. Due to asymptoti freedom [2℄, the QCD oupling parameterbeomes small for large momentum sales and therefore we an use perturbativemethods, whih allow us for example to alulate the total ross setion in eletron-positron annihilation or the total hadroni deay rate of the Z-boson. Anotherexample is the alulation of parton distribution funtions for large Q2 by means ofthe DGLAP equation [3℄, whih has been derived from perturbative QCD.For long-distane phenomena, i.e. when all ourring momentum sales are onlyof order �QCD or smaller, the QCD oupling beomes too large and perturbationtheory breaks down. This is the regime of nonperturbative QCD, where we have touse numerial methods to obtain results from �rst priniples. One suh numerialmethod is lattie QCD [4, 5℄. Typial quantities that are alulated in this ontextare e.g. hadron masses.The subjet of this work are soft high energy reations, whih are neither pureshort-distane, nor pure long-distane phenomena, beause we deal with two mo-mentum sales: the entre of mass (.m.) energy is beoming large, ps & 10GeV,the momentum transfer stays �nite, pjtj . 1GeV. Therefore, neither perturbation1



2 Chapter 1. Introdutiontheory nor numerial methods suh as lattie QCD an be applied diretly and wehave to revert to models.Until today, of ourse a lot of models have been developed to desribe highenergy hadron-hadron sattering. Examples are the geometri model [6℄, the valonmodel [7℄, topologial expansions and strings [8℄, perturbative �eld theoretial alu-lations [9℄ and the work of Cheng and Wu on the behaviour of high energy satteringamplitudes in quantum �eld theory based on perturbative alulations (see [10℄ andreferenes therein).The experimentally observed inrease of total ross setions for hadroni rea-tions with the .m. energy [11℄, starting at about ps = 10 GeV, has been desribedphenomenologially by Donnahie and Landsho� [12℄ in the ontext of Regge the-ory [13℄. In this piture the pomeron behaves like a photon with C = +1 andouples to single quarks, the transition to the hadron level then leads to the addi-tive quark rule [14℄. The rise of the total hadroni ross setions an be desribed bya pomeron with an interept slightly larger than one [11,12℄. For inelasti di�ration,the pomeron-photon analogy was applied in [15℄ to relate the ross setion of thesereations in a quantitative way to the struture funtions of deep inelasti eletron-proton sattering. For reviews on nonperturbative models we refer to [16{19℄.A new nonperturbative desription of soft hadroni high energy reations, start-ing from a mirosopi level, was developed in [20℄ where in the ase of an abeliangluon model the pomeron properties were related to nonperturbative aspets ofthe vauum like the gluon ondensate introdued by Shifman, Vainshtein and Za-kharov [21℄. These methods were generalised to QCD in [22℄. In this model the ob-jets governing the sattering amplitudes are orrelation funtions of Wegner-Wilsonlines and loops [23,24℄, whih are then evaluated in the model of the stohasti va-uum [25℄ as formulated in Minkowski spae in [23, 24, 26℄.This method has been applied to various reations, for example exlusive vetormeson prodution [27{29℄, elasti hadron-hadron sattering [30℄, and photo- andeletroprodution of pseudosalar and tensor mesons [31, 32℄. In this work we willextend the model to the desription of inelasti di�rative hadron-hadron sattering.In hapter 2 we present the basi priniples of our model. Progressing as in [22{24,26{30,33,34℄ we start from quark-quark sattering, where we apply a funtionalintegral approah and use an eikonal expansion to derive an expression for the quark-quark sattering amplitudes at high energies and small momentum transfers. Thetransition to the hadron level is performed by folding with suitably de�ned wavefuntions. In this work, the onstituent on�guration of baryons is assumed to beof the quark-diquark type for the reasons given in [35, 36℄. Then baryons at asolour dipoles like mesons. Moreover we use two di�erent models for the di�rative�nal state X when desribing inelasti di�rative sattering proesses. The soft highenergy hadron-hadron sattering amplitudes for both elasti and inelasti di�rativesattering are given at the end of this hapter.The evaluation of the sattering amplitudes is the topi of the next hapter. We�rst give a brief summery of the properties of the model of the stohasti vauum and



3then apply it in its Minkowskian formulation to alulate the orrelation funtions ofthe light-like Wegner-Wilson loops, where we use two approahes. Then we disussthe hadroni wave funtions [37℄ for s- and p-wave states. Furthermore we de�newave funtions inorporating the eigenfuntions of a two-dimensional harmoni os-illator whih we need for one of the methods desribing the di�rative �nal statein inelasti di�rative sattering. Finally, we analyse symmetry properties of thesattering amplitudes after inserting the wave funtions and the expressions whihwe obtain from the evaluation of the loop-loop orrelation funtions in the di�erentapproahes. Based on symmetry onsiderations we �nd that our model gives eitherC = P = +1, i.e. pomeron, exhange, or C = P = �1, i.e. odderon, exhange,depending on whih reation in partiular we are studying. To be able to studyodderon exhange in the framework of our model in a purely hadroni reation, wehave hosen a spei� reation whih should have a lear experimental signature.In hapter 4 we alulate integrated and di�erential ross setions from the sat-tering amplitudes derived in hapters 2 and 3. We onentrate on proton-protonand proton-pion sattering and ompare our numerial results obtained from bothapproahes to experimental data. In the ase of pp-sattering we briey reviewprevious results on the di�erential elasti ross setion from [30℄. We then turn tosingle di�rative dissoiation pp ! pX. Most of the results shown in this ontextare the basis for the publiation [38℄, where in addition to hadron-hadron satter-ing also photo- and eletroprodution of �0-mesons is disussed. Furthermore westudy the double di�rative exitation of the proton pp ! N(1535)N(1535) whihis mediated by odderon exhange and give our preditions for the di�erential andintegrated ross setion for this reation. For proton-pion sattering we also startwith a review of the di�erential elasti ross setion from [30℄ and then ontinuewith the study of single di�rative dissoiation of the pion p� ! pX.The next hapter deals with the isovetor proton and pion form fators at smallspae-like momentum transfers. In the region of interest to us here, 0 � �q2 �10GeV2, the form fator is dominated by nonperturbative QCD e�ets [39℄, and anfor example be desribed by a piture based on the onept of onstituent quarkswhih e�etively aount for nonperturbative dynamis [40℄. In this region all pre-onditions for the appliation of our nonperturbative model are ful�lled. Thereforewe an alulate the proton and pion form fators in the framework of our modeland extrat the eletromagneti radii from �ts to experimental data. However, wedo not intend to perform a preision alulation of the form fators but apply thealulation mainly to extrat parameters we need in the de�nition of our hadronwave funtions. The results obtained here are also published in [38℄.The aim of hapter 6 is to study the pion form fator for small time-like mo-mentum transfers. In this region we an no longer apply the nonperturbative modelwhih we have used so far. There are many approahes to desribe the time-like pionform fator, inluding vetor meson dominane [41℄, hiral perturbation theory [42℄and the appliation of dispersion relations [43℄. In the following we apply onsis-tently a dispersion approah with ���, �KK, and gauge-invariant � ouplings.



4 Chapter 1. IntrodutionThe form fator is obtained by resummation of pion and kaon loops. For the loopdiagrams we use a dispersion representation and analyse ambiguities related to sub-tration onstants. The resulting representation for the form fator is shown to havethe form of the onventional vetor meson dominane formula with one importantdistintion - the e�etive �-meson deay onstant f e�� turns out to depend on themomentum transfer. For the eletromagneti pion form fator we inlude in additionthe � � ! mixing e�ets. We apply the representations obtained to the analysis ofthe data on the pion form fators from e+e� annihilation and � deay and extratthe ��, �0 and ! masses and oupling onstants. The work of this hapter has beenpublished in [44℄.Our onlusions and a summary are given in hapter 7.



Chapter 2Derivation of the satteringamplitudesThe formalism we are going to use, as developed in [22℄, is based on the followinggeneral onsiderations. Imagine that we look at e.g. elasti hadron-hadron satteringh1(P1) + h2(P2)! h1(P3) + h2(P4) (2.1)at high energies and small momentum transfer through a \mirosope". This mi-rosope has to have an appropriate resolution, whih allows us to see the essentialfeatures of the proess but does not resolve the unimportant details of the internalstruture of the hadrons, whih would only ompliate the desription. In [22℄ theappropriate resolution has been estimated by a series of simple arguments basedon the unertainty relation. For a time interval of approximately �0 � 2 fm thefollowing assumptions onerning the sattering proess an be made:� The parton state of the hadrons does not hange qualitatively, i.e. partonannihilation and parton prodution proesses are negligible.� The partons are subjet to soft elasti sattering.� The partons move on essentially straight light-like worldlines.To derive the sattering amplitudes for soft high energy hadron-hadron sattering,we progress as follows: �rst, we onsider quark-quark sattering in the frameworkof the model. On this level, the essential features of the model will beome ap-parent and we will see that the strong interation between the quarks is mediatedby the nonperturbative gluoni vauum utuations. Then we disuss how to treatantiquarks in our formalism and give simple rules for the onstrution of satteringamplitudes for arbitrary systems of quarks and antiquarks in the framework of ourmodel. With these ingredients we an progress to the level of hadrons, whih weperform by folding the partoni sattering amplitudes by suitable hadroni wavefuntions. In the last step we onstrut the hadroni T -matrix elements for thetypes of reations we are interested in. 5



6 Chapter 2. Derivation of the sattering amplitudes2.1 Quark-quark satteringConsider the sattering of two quarks q1 and q2q1(p1) + q2(p2)! q3(p3) + q4(p4); (2.2)where pi; i = 1 : : : 4 are the four-momenta of the quarks and the momentum transferis q = p1 � p3. The normalisation of the quark states is given byhq(pj; sj; Aj; fj)jq(pk; sk; Ak; fk)i= Æsj ;skÆAj ;AkÆfj ;fk(2�)2q2p0j2p0kÆ(3)(pj � pk) (2.3)� Æ(j; k):As an abbreviation we use j(k) to denote the momentum pj(k) and the set of spin,olour and avour index sj(k); Aj(k) and fj(k) of the quark qj(k), respetively.2.1.1 The funtional integral approahApplying the redution formalism by Lehmann, Symanzik and Zimmermann to theS-matrix element of reation (2.2), we get an integral over the 4-point funtion ofthe quark �eldsSfi � hq3(p3)q4(p4)jSjq1(p1)q2(p2)i= Z�2 Z d4x1d4x2d4x3d4x4 e�i(p1�x1+p2�p2�p3�x3�p4�x4)�u4(i!�6 4 �m0q4)�u3(i!�6 3 �m0q3)h0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i(i �6 1 +m0q1)u1(i �6 2 +m0q2)u2: (2.4)Here Z is the wave funtion renormalisation onstant and m0qj are the renormalisedquark masses, de�ned by the loation of the pole of Fourier transform of the fullFeynman propagator. The 4-point funtion an be alulated nonperturbativelyusing the funtional integral of QCDh0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i= Z�1 Z D(G; q; �q) exp�i Z dxLQCD(x)� q4(x4)q3(x3)�q1(x1)�q2(x2) (2.5)with the partition funtionZ = h0outj0ini = Z D(G; q; �q) exp�i Z dxLQCD(x)� : (2.6)



2.1. Quark-quark sattering 7The QCD Lagrangian is given byLQCD = �12Tr(G��(x)G��(x)) +Xq �q(x)(iD6 �mq)q(x): (2.7)Here q(x) are the quark �elds with masses mq, q = u; d; s; ; b; t ounting the dif-ferent quark avours. In standard notation G�(x) denotes the matrix of the gluonpotential, G��(x) the matrix of the gluon �eld strength tensor.G�(x) = Ga�(x)�a2 ;G��(x) = ��G�(x)� ��G�(x) + ig[G�(x); G�(x)℄ (2.8)�a; a=1;:::;8 are the Gell-Mann matries of SU(3) with olour index a, D� is the o-variant derivative, de�ned by D� = �� + igG�: (2.9)As the Lagrangian is bilinear in the quark and antiquark �elds we an diretlyperform the integration over the fermioni degrees of freedom by a generalised Gaus-sian integration and �ndh0jT(q4(x4)q3(x3)�q1(x1)�q2(x2))j0i= Z�1 Z D(G) exp�� i2 Z dxTr(G��(x)G��(x))�Yq det [�i(iD6 �mq + i�)℄�Æf3f1 1i SF (x3; x1;G)Æf4f2 1i SF (x4; x2;G)� (3$ 4)� : (2.10)SF (xj; xk;G) is the unrenormalised Green's funtion for a quark in an external gluon�eld G�(x) for whih we have(iD6 �mq)SF (xj; xk;G) = �Æ(4)(xj � xk): (2.11)The Lippmann-Shwinger equationSF (xj; xk;G) = S0F (xj; xk)� S0F (xj; xk)(gG6 �Æm)SF (xj; xk;G) (2.12)relates the unrenormalised Green's funtion to the free Green's funtion S0F (xj; xk)with renormalised mass m0 = m+ Æm. Using the shorthand notationjj) := usj;Aj (pj)e�ipj �xj ;(jj := �usj;Aj (pj)eipj �xj ;j Fpj) := SF (i �6 j +m0qj)jj); (2.13)



8 Chapter 2. Derivation of the sattering amplitudeswhere j Fpj) are quark wave funtions whih satisfy the Dira equation in an externalgluon potential (iD6 �mqj )j Fpj) = 0; j = 1; 2; (2.14)and the Lippmann-Shwinger equation, we get from (2.4)Sfi = �Z�2 DÆf3f1Æf4f2(3j(gG6 �Æmq1)j Fp1)(4j(gG6 �Æmq2)j Fp2)� (3$ 4)EG: (2.15)In our notation we impliitly inlude the integrations over xj; xk, resulting from theLSZ redution formalism, when we write expressions of the form (kj Fpj). To learup the notation further we have introdued the braket symbol h iG of a funtionF (G) as hF (G)iG := Z�1 Z D(G) exp�� i2 Z dxTr(G��(x)G��(x))�Yq det [�i(iD6 �mq + i�)℄F (G): (2.16)In (2.15) we have two ontributions, the one that is written out expliitely orre-sponds to t-hannel exhange, the one that we have written symbolially as (3$ 4),meaning that quark 3 has to be interhanged with quark 4, orresponds to an u-hannel proess. In high energy sattering with ps ! 1 and small p�t theu-hannel ontributions are suppressed by a fator s�1 at least and we therefore willneglet them in the following. With the de�nition of quark sattering amplitudesMFkj(G) := (kj(i!�6 k �m0qk)SF (i �6 j +m0qk)jj)= (kj(gG6 �Æmqj )j Fpj); (j = 1; k = 3); (j = 2; k = 4); (2.17)whih have the orret form for a sattering amplitude, i.e. an inoming ompletewave folded with the potential and an outgoing plane wave, we get from (2.15)Sfi = �Z�2 Æf3f1Æf4f2hMF31(G)MF42(G)iG: (2.18)This equation an be interpreted as follows: the inoming quarks are sattered inde-pendently on the gluon bakground �elds. This is desribed by the quark satteringamplitudesMF31;MF42 whih are evaluated independently. Then we have to averageover all gluon �eld on�gurations by performing the funtional integration h iG.The up to now undetermined wave funtion renormalisation onstant Z appearsin (2.18). However, one of the assumptions of our model is that over the time intervalonsidered by us, no parton reation or annihilation proesses our, meaning Z should be equal to 1. In [22℄ Z has been alulated in the framework of the modeland one onsistently �nds Z = 1. In the following we therefore set the wavefuntion renormalisation onstant to 1.



2.1. Quark-quark sattering 9Before we ontinue our programme and have to �nd a suitable high energy ap-proximation that will allow us to alulate the quark sattering amplitudesMFkj(G),we note that the wave funtions j Fpj) do not satisfy the desired boundary onditionsfor x0 ! �1. The transition from Feynman wave funtions j Fpj) to retarded wavefuntions j rpj) an be performed using the Lippmann-Shwinger equation (2.12).The wave funtions possess the orret behaviour for x0 ! �1, namely that of ainoming plain wave j rpj) x0!�1�! jj): (2.19)The replaement of MFkj with Mrkj in (2.18), i.e. going from Feynman to retardedboundary onditions, is a non-trivial step. It has been shown in [22℄ that thisreplaement is valid in the high energy limit for gluon potentials G� with an upperbound for the frequeny spetrum. This is in onsisteny with our model, where weassumed that the partons undergo soft, elasti sattering. Therefore the funtionalintegral in (2.18) is dominated by gluons with a frequeny that is suÆiently smalland we an write Sfi = �Æf3f1Æf4f2hMr31(G)Mr42(G)iG; (2.20)with Mrkj(G) := (kj(gG6 �Æmqj )j rpj ): (2.21)2.1.2 The eikonal expansionAs mentioned before now we have to alulate the quark sattering amplitudes whihinvolves solving the Dira equation for a quark in an external gluon potential(iD6 �mqj )j rpj ) = (i�6 �gG6 (x)�m0qj + Æmqj )j rpj) = 0 (2.22)and respeting the boundary ondition (2.19), whih of ourse annot be done ex-atly. However, sine we are only interested in the high energy limit of (2.4) for smallmomentum transfers, the DeBroglie wavelength of the quarks propagating throughthe gluon potentials are suÆiently small ompared to the utuations of the gluonion�gurations governing the funtional integral in (2.4) and we an use an eikonalapproximation. For this purpose it is onvenient to use light-one variables whihare de�ned by x� = x0 � x3 (2.23)for any 4-vetor x and to hoose the entre of mass system as referene frame. Inthe high energy limit the quark light-one momenta then go to in�nity and thetransverse momenta stay �nite.In the eikonal approximation we an now solve the di�erential equation (2.22)and satisfy the boundary onditions (2.19). We proeed as explained in [22,33℄ and



10 Chapter 2. Derivation of the sattering amplitudes�nd as solutions for the quark wave funtions in leading order rp1(x) = V�(x+; x�;xT )�1 +O� 1p1+�� e�ip1�xu1(p1); rp2(x) = V+(x+; x�;xT )�1 +O� 1p2��� e�ip2�xu2(p2); (2.24)with the eikonal phasesV�(x+; x�;xT ) = P�exp �� ig2 Z x+�1 dx0+G�(x0+; x�;xT )�� ;V+(x+; x�;xT ) = P�exp �� ig2 Z x��1 dx0�G+(x+; x0�;xT )�� ; (2.25)whih satisfy the following boundary onditions and di�erential equations:V�(x+; x�;xT ) x�!�1�! 1;��V�(x+; x�;xT ) = � ig2 G�(x+; x�;xT ) � V�(x+; x�;xT ): (2.26)Inserting (2.24) into (2.21) and taking into aount (2.26) and the relations�u3(p3)�u1(p1) = pp3+p1+Æs3s1n�+;�u4(p4)�u2(p2) = pp4�p2�Æs4s2n��;n�� := 0BB� 100�1 1CCA ; (2.27)whih are valid in the high energy limit p1+; p3+; p2�; p4� � ps; p1�; p3�; p2+; p4+ � 0;ps!1 we �nd for the quark sattering amplitudesMr31(G) = ipp3+p1+Æs3s1 Z dx� d2xT e i2 (p3�p1)+x��i(p3�p1)T �xT[V�(1; x�;xT )� 1℄A3A1 ;Mr42(G) = ipp4�p2�Æs4s2 Z dy+ d2yT e i2 (p4�p2)�y+�i(p4�p2)T �yT[V+(y+;1;yT )� 1℄A4A2 : (2.28)Now we insert these expressions for the quark sattering amplitudes into (2.20)and make use of the translational invariane of the funtional integral. With thede�nition of the impat parameter bT := xT � yT we obtain our �nal result for thequark-quark sattering amplitudeTfi = �2is Æs3s1Æs4s2 Z d2bT eiqT �bT�hV�(1; 0; bT2 )� 1iA3A1hV+(0;1;�bT2 )� 1iA4A2�G : (2.29)



2.2. Desription of antiquarks 11The momentum transfer q = q1 � q3 is purely transverse in the high energy limit.The underlying physial piture of this result is the following: The quarks movealong straight light-like lines through the external gluon potential and aumulatenon-abelian phase fators V�, whih are obtained by integration along their traje-tories, orrelating their phases, whih leads to the interation of the quarks. Toobtain the sattering amplitude we �nally have to perform a Fourier transform withrespet to the impat parameter bT . In the high energy limit the quark heliitiesare onserved during the interation.2.2 Desription of antiquarksSo far we have disussed the wave funtions for outgoing quarks, if we want todesribe arbitrary systems of partons we need the wave funtions for inoming quarksand inoming and outgoing antiquarks as well. We do not give wave funtions forgluons here, sine in our simple ansatz for hadrons, whih we will present in thenext hapter, hadrons onsist of quarks and antiquarks - or diquarks in the ase ofbaryons - only and due to one of the assumptions of our model, no parton reation(nor annihilation) ours over the time interval of the sattering proess.j 0rpj ) := Sr(i �6 j +m0qj)jj 0);( e apj j := (jj(�i!�6 j +m0qj )Sr;( e 0apj j := (j 0j(�i!�6 j +m0qj )Sr: (2.30)Here a prime denotes that we are onsidering an antiquark and the index a standsfor advaned wave funtions, whih have to be used for inoming partons and ful�lthe advaned boundary onditions(e apj j x0!+1�! (jj: (2.31)The antiquark spinors are given byjj 0) := vsj ;Aj(pj)eipj �xj ;(j 0j := �vsj ;Aj(pj)e�ipj �xj : (2.32)The advaned wave funtions have to satisfy the Dira equation( e apj j(i �6 j + gG6 +m0qj � Æmqj) = 0 (2.33)to whih we �nd the solutionse ap1(x) = eV�(x+; x�;xT )�1 +O� 1p1+ �� e�ip1�xu1(p1);e ap2(x) = eV+(x+; x�;xT )�1 +O� 1p2� �� e�ip2�xu2(p2); (2.34)



12 Chapter 2. Derivation of the sattering amplitudeswith the eikonal phases de�ned analogously to (2.25)eV�(x+; x�;xT ) = P�exp � ig2 Z 1x+ dx0+G�(x0+; x�;xT )�� ;eV+(x+; x�;xT ) = P�exp � ig2 Z 1x� dx0�G+(x+; x0�;xT )�� : (2.35)Here P denotes anti-path-ordering. For the phase fators analogue relations to (2.26)hold eV�(x+; x�;xT ) x�!1�! 1�� heV y�(x+; x�;xT )V�(x+; x�;xT )i = 0eV y�(x+; x�;xT )V�(x+; x�;xT ) = � V+(x+;1;xT )V�(1; x�;xT ) : (2.36)To alulate the sattering amplitudeM0rk0j0(G) of an antiquark �q in an externalgluon potential G� we note that this orresponds to the sattering of a quark q inthe harge onjugated gluon potential G0� withG0�(x) = CG�(x)Cy = �G��(x): (2.37)Furthermore we note that replaing G� by G0� in V� orresponds to omplex onju-gating the eikonal phase fator, i.e. to the replaement V� ! V ��. De�ningM0rk0j0(G) := �(j 0j(i!�6 j �m0qj)j 0rpk): (2.38)we then obtain for the antiquark sattering amplitudeM0r3010(G) = iqp03+p01+Æs03s01 Z dx� d2xT e i2 (p03�p01)+x��i(p03�p01)T �xT�V ��(1; x�;xT )� 1�A03A01 ;M0r4020(G) = iqp04�p02�Æs04s02 Z dy+ d2yT e i2 (p04�p02)�y+�i(p04�p02)T �yT�V �+(y+;1;yT )� 1�A04A02 : (2.39)When alulating S-matrix elements for quarks and antiquarks we also haveto take into aount ontributions from disonneted diagrams when applying theLSZ redution formalism. These diagrams lead to delta funtions Æ(j; k) (Æ(j 0; k0))whih anel the 1 in the (anti-)quark sattering amplitudes Mrkj (M0rk0j0). In thehigh energy limit in leading order in s we then �nd a simple rule for the S-matrixelement: for eah quark or antiquark we write a ertain fator whih we obtain fromthe appropriate quark or antiquark sattering amplitude for �xed external gluonpotential G�(x). Then we multiply all these fators and average over all gluonpotentials by means of the funtional integral (2.16).



2.3. Sattering of hadrons 13The fators are� for a quark ying in positive x3 diretion (j ! k)Sq+(k; j) = ppk+pj+Æsksj Z dx� d2xT e i2 (pk�pj)+x��i(pk�pj)T �xTV�(1; x�;xT )AkAj ; (2.40)� for a quark ying in negative x3 diretionSq�(k; j) = ppk�pj�Æsksj Z dx+ d2xT e i2 (pk�pj)�x+�i(pk�pj)T �xTV�(x+;1;xT )AkAj ; (2.41)� for an antiquark ying in positive x3 diretion (j 0 ! k0)S�q+(k0; j 0) = qp0k+p0j+Æs0ks0j Z dx� d2xT e i2 (p0k�p0j)+x��i(p0k�p0j)T �xTV ��(1; x�;xT )A0kA0j (2.42)� and for an antiquark ying in negative x3 diretionS�q�(k0; j 0) = qp0k�p0j�Æs0ks0j Z dx+ d2xT e i2 (p0k�p0j)�x+�i(p0k�p0j)T �xTV �+(x+;1;xT )A0kA0j : (2.43)2.3 Sattering of hadronsIn this setion we want to study hadron-hadron sattering. We are interested intwo types of sattering reations. We all the �rst one \exlusive" sattering, i.e.the �nal state onsists of two de�nite hadrons whih we desribe by their aordinghadroni wave funtions. Elasti sattering for example falls into this ategory,h1(P1) + h2(P2)! h1(P3) + h2(P4); (2.44)but we do not have to limit ourselves to elasti sattering. The di�rative satteringof the initial state hadrons h1 and h2 into e.g. exited states h01 and h02 is also overedby our approah. More generally we writeh1(P1) + h2(P2)! h3(P3) + h4(P4); (2.45)where h3 and h4 an be any hadrons that are aessible by a soft di�rative proess.The seond type of reations we want to study are \semi-inlusive" proesses, where



14 Chapter 2. Derivation of the sattering amplitudesone of the initial state hadrons stays intat and the other one di�ratively dissoiatesinto a �nal state X h1(P1) + h2(P2)! h1(P3) + X(P4); (2.46)where X an be any di�rative exitation of h2. In both ases we use the onventionthat the hadrons h1; h3 move in positive x3 diretion and h2; h4 or X, respetively,in negative x3 diretion, i.e. P1+; P3+; P2�; P4� !1 in the high energy limit.In our model we desribe mesons as quark-antiquark pairs and the onstituentquark on�guration of baryons is assumed to be of the quark-diquark type for thereasons given in [35,36℄, where the point-like diquark is treated like an antiquark inthis approah. The baryons then at as olour dipoles like mesons.The di�rative �nal state X is modelled by a q�q-pair (or quark-diquark pair)in a olour singlet state. Then we use two approahes. In the �rst method weuse free plane waves for the quark and antiquark and invoke quark-hadron duality.Integration over all allowed values in phase spae and the losure relation then yieldall possible di�rative �nal states X, where the ase of elasti sattering also isinluded. The seond ansatz, applied to on�rm the results of the �rst methodand to gain additional insight into the struture of the alulated di�erential rosssetions, uses the wave funtions of a two-dimensional harmoni osillator wherethe ground state orresponds to hadron h2 and the exited states to the di�rativeexitations of h2. Sine these eigenfuntions form a basis, the ontributions fromdi�erent exited states are orthogonal to eah other and the alulation of rosssetions an be performed as follows: �rst the ross setion for one spei� exitedstate with de�nite quantum numbers n;m is alulated and then the sum over allexited states is taken to get the inelasti semi-inlusive di�rative ross setion.The momenta p of the quark and p0 of the antiquark (or diquark, respetively)in a hadron (or the di�rative �nal state X) with momentum P are parametrisedusing light-one variables byp� = zP�; p0� = (1� z)P�;pT = zPT +�T ; p0T = (1� z)PT ��T : (2.47)Here z is the longitudinal momentum fration arried by the quark. The relativetransverse momentum between the quark and the antiquark (diquark) is given by�T = pT � p0T2 + �12 � z�PT : (2.48)Lorentz invariane requires z to appear also in the transverse momenta pT and p0Tas de�ned above.2.3.1 Exlusive satteringThe hadroni sattering amplitude is obtained by folding the underlying partoniS-matrix element with suitable hadroni wave funtions, where the hadrons will be
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yTFigure 2.1: Two light-like Wegner-Wilson loops in position spaeformed of parton wave pakets as explained above. Proeeding as in [24, 33℄, i.e.applying the rules (2.40)-(2.43) and with (2.47),(2.48), we �ndSfi = Æfi + i(2�)4Æ(4)(P3 + P4 � P1 � P2)TfiTfi = 2is Z d2bT eiqT �bT Ĵexl(bT ); (2.49)with the exlusive pro�le funtionĴexl(bT ) = � Z d2xT d2yT Z 10 dz dz0w31(xT ; z)w42(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG;(2.50)as has been found for the ase of elasti sattering in [30℄. HereW� are the light-likeWegner-Wilson loopsW� := 13 trV (C�) = 13 tr P exp (�ig ZC� dx�Ga�(x)�a2 ); (2.51)
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Figure 2.2: The orientation and extension of the light-like Wegner-Wilson loops ina projetion into transverse position spaewhere P denotes path ordering and C� is the urve onsisting of two light-likeworldlines for the quark and the antiquark (or diquark, respetively) and onnet-ing piees at �1 (see Fig. 2.1), whih ensure gauge invariane. xT and yT de�nethe extension and orientation in transverse position spae of the two loops repre-senting the two hadrons h1 and h2 respetively, z (z0) parametrises the fration ofthe longitudinal momentum of hadron h1 (h2) arried by the quark (see (2.47)). Theimpat parameter is given by bT , the light-one baryentres of the loops are loatedat 12bT + (12 � z)xT and �12bT + (12 � z0)yT , respetively (see [27℄ and Fig. 2.2). Asx-axis for the transverse vetors xT ; yT and bT we hoose qT .The symbol h: : :iG denotes the funtional integration whih orrelates the twoloops. In (2.50) the loop-loop orrelation funtion is multiplied with the funtionsw31(xT ; z) and w42(yT ; z0). These funtions wkj(xT ; z) denote the overlap betweeninitial state hadron hj and �nal state hadron hk for �xed transverse extension xTand �xed longitudinal momentum fration z. Then we have to integrate over allextensions and orientations xT ;yT of the loops in transverse spae as well as overthe longitudinal momentum frations z; z0 respetively. Finally a Fourier transformwith respet to the impat parameter bT has to be performed, as in the ase ofquark-quark sattering.2.3.2 Semi-inlusive satteringExept for the replaement h4(P4) ! X(P4) everything remains unhanged whenwe want to desribe the inelasti di�rative dissoiation reation (2.46) and we �nd
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�4T6?? |{z} X(P4)Figure 2.3: The semi-inlusive sattering reation h1 + h2 ! h1 +Xin analogy to (2.49)Sfi = Æfi + i(2�)4Æ(4)(P3 + P4 � P1 � P2)TfiTfi = 2is Z d2bT eiqT �bT Ĵdiss; (2.52)where we have to use the pro�le funtion Ĵdiss now. As stated before, we are goingto use two di�erent ans�atze for X, leading to two expressions for the pro�le fun-tions, depending on whih desription for the di�rative �nal state we use in thealulation.For the plane wave desription we obtainĴp:wavediss (bT ; z0) = � Z d2xT d2yT Z 10 dz w31(xT ; z)p2�p2z0(1� z0) e�i�4T �yT '2(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG;(2.53)where�4T is the relative transverse momentum between the quark and the antiquark(or diquark) of X (see (2.48) and Fig. 2.3). Instead of the overlap funtion w42ourring in (2.50) here we have got the produt of the plane wave and the wavefuntion '2 of the inoming hadron h2.For the osillator desription we obtainĴ2d osdiss (bT ) = � Z d2xT d2yT Z 10 dz Z 10 dz0 w31(xT ; z)Xn;m(yT ; z0)'2(yT ; z0)DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1EG:(2.54)Here Xn;m(yT ; z0) stands for the two-dimensional harmoni osillator wave funtionwith quantum numbers n;m. Again, this funtion has to be multiplied by '2, de-sribing the inoming hadron h2. Inserting in (2.54) the ground state wave funtion



18 Chapter 2. Derivation of the sattering amplitudesX0;0 leads to the elasti sattering amplitude, whih we also get from (2.49),(2.50)with h4 = h2; h3 = h1.In the plane wave desription z0 is part of the spei�ation of the �nal stateand thus appears as argument of Ĵp:wavediss (bT ; z0) in (2.53). The phase spae integralthen inludes an integration over z0. When using the seond method involving thetwo-dimensional osillator funtions to desribe the di�rative �nal state, one hasto insert the funtion Xn;m on the r.h.s. of (2.54) and to integrate over z0. ThusĴ2d osdiss (bT ) depends for given osillator funtion Xn;m on bT only.



Chapter 3Evaluation of the satteringamplitudesThe next step is to evaluate the sattering amplitude (2.49), where the main partwill be to alulate the loop-loop orrelation funtion appearing in (2.50), (2.53)and (2.54), respetively. For this task we will make use of the model of the stohastivauum (MSV), whih has been introdued by Dosh and Simonov [25℄. The modelis based on a small number of physially well motivated assumptions and allows us toompute the relevant quantities we need for the desription of high energy sattering,e.g. the expetation values of Wegner-Wilson lines and loops. Furthermore we haveto speify suitable hadroni wave funtions 'j and to onstrut from them theoverlap funtions wkj appearing in (2.50), (2.53) and (2.54). One we know how toalulate the orrelation funtion by applying the model of the stohasti vauumand after de�ning the wave funtions we an analyse the symmetry properties of thesattering amplitudes. These onsiderations will allow us to lassify whih quantumnumbers an be exhanged in the di�erent reations we are studying.3.1 The loop-loop orrelation funtion in the modelof the stohasti vauumAording to present knowledge the vauum has a highly nontrivial struture gov-erned by hromoeletri and -magneti bakground �elds. It has been �rst noted bySavvidy [45℄ that the mean energy density of the vauum an be lowered by addinga onstant hromomagneti bakground �eld to the perturbative vauum. The min-imal value of the energy density is obtained for a value of the hromomagneti �eldstrength B 6= 0, i.e. the vauum spontaneously develops a hromomagneti bak-ground �eld, analogous to the spontaneous magnetisation of ferromagnets below theCurie temperature.Of ourse the QCD vauum state must be relativistially invariant and mustnot have a preferred diretion in ordinary and olour spae. In analogy to Weiss19



20 Chapter 3. Evaluation of the sattering amplitudesdomains in a ferromagnet, states omposed of domains with random orientation ofthe gluon �eld strength have been proposed. The vauum state then is build of alinear superposition of suh states with various domains, where the �elds inside thedomains are oriented in various diretions. As well the boundaries of the domainsas the orientation of the �elds inside of them will utuate.An important step in the investigations of the QCD vauum struture wasahieved by Shifman, Vainshtein and Zakharov [21℄ with the introdution of theQCD ondensates. In this way, nonperturbative omponents entered the perturba-tive desription of the QCD vauum. With the introdution of nonloal ondensatesone an go even one step further and study long-distane e�ets as for example on-�nement. Beause QCD is a non-abelian theory, nonloal ondensates an a priorinot be de�ned in a gauge-invariant way. To ure this problem we introdue so-alledonnetors as the non-abelian generalisation of the Shwinger string of QED, whihallow us to de�ne parallel-transported quantities suh as the parallel-transportedgluon �eld strength (see Appendix B). Then we an de�ne gauge-invariant nonloalondensates by shifting the ourring �eld strengths to a ommon referene point.The model of the stohasti vauum inorporates many of the above ideas. Itsstrongest assumption is that the nonperturbative behaviour of QCD an be approx-imated by a Gaussian proess where the �eld strengths are the stohasti variables.This assumption already allows us to derive on�nement in the framework of themodel.3.1.1 Properties of the model of the stohasti vauumIn this setion we will present the Minkowskian formulation of the model of thestohasti vauum. A more detailed presentation of the model an be found in[23{26℄, where both the original formulation in Eulidian spae-time and the analytiontinuation to Minkowskian spae-time are disussed.The starting point for the model is the orrelator of two gluon �eld strengthtensors Ga�� at points x1 and x2, parallel-transported to a ommon referene pointo along the two urves Cx1 and Cx2:D g24�2 Ĝa��(o; x1;Cx1)Ĝ��b(o; x2;Cx2)EG � 14ÆabF����(x1; x2; o;Cx1; Cx2): (3.1)The right hand side depends only on the points x1; x2 and the two urves Cx1 ; Cx2,the ommon referene point o an be freely shifted along the urve C12 = Cx1 + �Cx2.Due to olour onservation, the orrelation funtion is proportional to Æab. In theMSV the strong assumption is made that F���� is independent of the hoie of theonneting urve C12:



3.1. The loop-loop orrelation funtion in the MSV 21Assumption I: F���� is independent of o and Cx1; Cx2.Then Poinar�e and parity invariane require F���� to be of the following form:F����(z) = 124G2�(g��g�� � g��g��) ��D(z2) + (1� �)D1(z2)�+(z�z�g�� � z�z�g�� + z�z�g�� � z�z�g��)(1� �)dD1(z2)dz2 �; (3.2)G2 � 14�2 hg2FF i = h0j g24�2 Ga��(0)Ga��(0)j0i; (3.3)where z = x1 � x2.Here G2 is proportional to the gluon ondensate h0jGa��(0)Ga��(0) j0i, D and D1are invariant funtions normalised to 1 at z = 0, D(0) = D1(0) = 1, and � is aparameter determining the non-abelian harater of the orrelator. The propertiesof the funtions D and D1 are further spei�ed through the seond assumption ofthe MSV:Assumption II: For spae-like separations the funtions D; D1 rapidly fall to zeroon a sale given by the orrelation length a � 0:3 fm.The Fourier deomposition of those funtions is given byD(z2) = Z 1�1 d4k(2�)4 e�ikz eD(k2);D1(z2) = Z 1�1 d4k(2�)4 e�ikz eD1(k2): (3.4)A suitable ansatz for eD and eD1 is given in [24℄:eD(k2) = 27(2�)4(8a)2 ik2(k2 � ��2 + i�)4 ;eD1(k2) = 23 27(2�)4(8a)2 i(k2 � ��2 + i�)3 ; (3.5)with the onstant � = 8a=3�. The funtions of (3.4),(3.5) an be ompared to lattiealulations [46, 47℄ for the Eulidian version of the orrelator (3.1) and from a �tone an extrat the following ranges for the parameters G2; a; � [47℄:�G2a4 = 0:39 : : : 0:41;� = 0:80 : : : 0:89;a = 0:33 : : : 0:37 fm: (3.6)



22 Chapter 3. Evaluation of the sattering amplitudesAssumption III: The vauum utuations of the �eld strengths are determined bya Gaussian proess.This implies that orrelators of more than two gluon �eld strengths fatorise andthus the proess is ompletely de�ned by the seond moment of its distribution.The expetation value of one single parallel-transported gluon �eld strength tensorvanishes due to olour onservation and the fat that the QCD vauum has nopreferred diretion in olour spae: hĜ(i)iG = 0; (3.7)where we have used the abbreviationĜ(i) � Ĝai�i�i(o; xi;Cxi): (3.8)Due to the assumption of a Gaussian proess and olour onservation all n-pointfuntions with odd n vanish as well and we are therefore left withhĜ(1) : : : Ĝ(2n)iG = Xall pairingshĜ(i1)Ĝ(i2)iG : : : hĜ(i2n�1)Ĝ(i2n)iG: (3.9)3.1.2 Appliation of the model of the stohasti vauum tothe orrelation funtionNow we will make a umulant expansion [33℄ for the loop-loop orrelation funtionDW+W�EG � DW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )EG (3.10)in (2.50), or (2.53), (2.54), respetively, and then evaluate the result in the frameworkof the MSV.To expand the orrelation funtion, we proeed as explained in [30℄. First the lineintegrals along the losed loops C� are transformed to surfae integrals with the helpof the non-abelian Stokes theorem where, following the authors of [24℄, we hoosethe mantle of a double pyramid as the integration surfae. The basis surfaes S�of the two pyramids are enlosed by the two loops C� (see Fig. 3.1). The ommonreferene point o is hosen to be the apex, where both pyramids touh, and P+and P� are the mantle surfaes of the two pyramids, respetively. Following [30℄ werewrite the two traes over 3�3 matries ourring in (3.10) after inserting (2.51) asone trae (Tr2) of a matrix ating in the 9-dimensional tensor produt spae. Withthe de�nition̂Gt;��(o; x;Cx) := � Ĝa��(o; x;Cx)(�a2 
 1) for x 2 P+Ĝa��(o; x;Cx)(1
 �a2 ) for x 2 P� ; (3.11)



3.1. The loop-loop orrelation funtion in the MSV 23
x3

x0 x1;2
C+C� P� P+o

Figure 3.1: The integration surfaes for the evaluation of the loop-loop orrelationfuntionwe an write (3.10) as the expetation value of one ordered exponential in theprodut spae, where the integration surfae is given by the mantle P = P+ [P� ofthe double pyramid:hW+W�iG = 19 Tr2 �P exp �� ig2 ZP d���(x) Ĝt;��(o; x;Cx)��G : (3.12)The umulant expansion of this expression up to the seond term readsDW+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )EG= 19 Tr2 exp ��g28 ZP d���(x) ZP d���(x0)DP(Ĝt;��(o; x;Cx)Ĝt;��(o; x0;Cx0))EG�=: 19Tr2 exp C2(bT ;xT ;yT ; z; z0); (3.13)where C2 is a 9� 9 matrix invariant unter SU(3) olour rotations. As shown in [30℄this �nally leads to hW+W�iG = 23e�i 13� + 13ei 23� (3.14)



24 Chapter 3. Evaluation of the sattering amplitudeswith�(bT ;xT ;yT ; z; z0) = G2�224 fI(rxq; ryq) + I(rx�q; ry�q)� I(rxq; ry�q)� I(rx�q; ryq)g ;I(rx; ry) = ��2�2 ry � rx Z 10 dv(� jvry � rxj� �2K2� jvry � rxj� �+� jry � vrxj� �2K2� jry � vrxj� �)+(1� �)��4� jry � rxj� �3K3� jry � rxj� � : (3.15)Here G2; �; � are as de�ned in (3.2),(3.5) and K2;3 are the modi�ed Bessel funtionsof seond and third degree. The vetors rij with i = x; y and j = q; �q are those fromthe oordinate origin to the positions of the quarks and antiquarks (or diquarks) intransverse spae as shown in Fig. 2.2. Separating the real and the imaginary partof the above expression (� is a real funtion) we get�W+(12bT + (12 � z)xT ;xT )W�(�12bT + (12 � z0)yT ;yT )� 1�G= (23 os�13�(bT ;xT ;yT ; z; z0)�+ 13 os�23�(bT ;xT ;yT ; z; z0)�� 1�i23 sin�13�(bT ;xT ;yT ; z; z0)�+ i13 sin�23�(bT ;xT ;yT ; z; z0)�):(3.16)This is the �nal result for the orrelation funtion of two light-like Wegner-Wilsonloops in the matrix umulant method [30℄. If we assume j�j � 1, (3.16) redues tohW+W� � 1iG = ��19 �(bT ;xT ;yT ; z; z0)2� ; (3.17)negleting terms of order �3 and higher. This is the result of the traditional expan-sion method [24℄. When omputing the numerial results for the ross setions weare interested in, we will use both (3.16) and (3.17) and ompare with experimentaldata.3.2 The hadroni wave funtionsWe now have to speify the hadroni wave funtions and overlap funtions ourringin (2.50), (2.53) and (2.54). As mentioned before we make a simple ansatz and



3.2. The hadroni wave funtions 25onstrut mesons as quark-antiquark and baryons as quark-diquark wave pakets,where salar diquarks should be favoured above vetor diquarks due to dynamialreasons [48℄. This means that in our model the spin of a baryon is arried by thequark.In the following we will deal mainly with hadrons with angular momentum L = 0,in partiular the proton and the pion. When studying the sattering of protonsand pions we are only interested in unpolarised ross setions and due to heliityonservation on the parton level in our model we an therefore limit ourselves to thedesription of spinless s-wave states. For the orresponding wave funtions we makea Wirbel-Steh-Bauer ansatz [37℄, whih assumes a Gaussian-shaped distribution forboth the longitudinal momentum fration z arried by the quark in the hadron andthe transverse spatial extension xT of the hadron'j(xT ; z) =s2z(1� z)2�S2hjIhj e�(z� 12 )2=4z2hj e�x2T =4S2hj : (3.18)where zhj and Shj are the parameters de�ning the widths of the longitudinal mo-mentum and transverse extension distributions of hadron hj, respetively. The nor-malisation onstant Ihj is given byIhj = Z 10 dz 2z(1� z) e�(z� 12 )2=2z2hj : (3.19)Only in our study of the double di�rative exitation of two protons into exitednuleon resonanes, namely the N(1535), whih has the quantum numbers I(JP ) =12(12�) with L = 1 in the quark-diquark piture, we also need p-wave funtions. Toonstrut the N(1535) wave funtion we have to ouple a spin 1=2 state to a p-wavein suh a way that the total angular momentum J = 1=2, taking into aount theproper Clebsh-Gordan oeÆients. This means that the spin of the quark, whiharries the total spin of the hadron, beause we use salar diquarks as explainedabove, is antiparallel to the heliity of the p-wave. As our model onserves theheliities on the parton level and again we are alulating unpolarised ross setionsonly, the sattering of two protons into two exited resonanes is redued to thesattering of two spinless s-waves in the initial state into two spinless p-waves with�xed heliities in the �nal state. In the following we give only the � = �1 heliitystates of the wave funtion, sine due to the replaement of the Gaussian-shaped z-dependene of the Wirbel-Steh-Bauer ansatz by a delta funtion entred at z = 1=2in the numerial analysis, the � = 0 state does not ontribute, beause it ontainsa fator proportional to z � (1 � z), whih is idential to 0 when z is �xed to1=2. As the ontribution of the � = 0 state is strongly suppressed ompared tothose of the � = �1 states as well in the formulation using the Gaussian-shapedz-distribution, whih also is entred around z = 1=2, the replaement by the deltafuntion has no substantial impat on the numerial results. The reason for this



26 Chapter 3. Evaluation of the sattering amplitudesapproximation is disussed more detailed in hapter 4. To keep the expression forthe wave funtion short, we make this simpli�ation here as well and thus avoidthe otherwise ourring � = 0 term. For the spinless p-wave we extend the originalWirbel-Steh-Bauer ansatz to angular momentum L = 1 and obtain'�j (xT ; z) = xT e�x2T =4S2hjq6�S4hj �ei��x Æ(z � 12); � = �1: (3.20)Here �x is the angle between xT and qT .As the overlap funtion wkj(xT ; z) we de�ne the overlap between hadron hj inthe initial and hadron hk in the �nal state for �xed transverse extension xT and�xed longitudinal momentum fration zw(�)kj (xT ; z) := ('(�)k (xT ; z))� 'j(xT ; z); (3.21)where the heliity index � ours only in ase we deal with a p-wave in the �nalstate.For the desription of the di�rative �nal state X in semi-inlusive sattering weuse in our seond ansatz the wave funtionsXn;m, whih onsist of the eigenfuntions~Xn;m(yT ; z0) of a two-dimensional harmoni osillator [49℄ for the yT -dependene andan additional part for the z0-dependene as in (3.18):Xn;m(yT ; z0) = s2z0(1� z0)Ihj e�(z0� 12 )2=4z2hj ~Xn;m(yT );~Xn;m(yT ) = 1p((n+m)=2)! ((n�m)=2)! 24sS2hj2  yT2S2hj + myT � ddyT!35n+m224sS2hj2  yT2S2hj � myT � ddyT !35n�m2 e�y2T =4S2hjq2�S2hj eim�y ; (3.22)where �y is the angle between yT and qT . Here of ourse, we also have angularmomentum L 6= 0 exept for the ground state wave funtion X0;0.3.3 The hadroni sattering amplitudesIn the following we will deal with three types of hadron-hadron reations: the �rstone is elasti sattering, whih falls into the ategory of the exlusive proessesdisussed in setion 2.3.1. As a semi-inlusive proess (see setion 2.3.2) we willstudy single di�rative dissoiation. Double di�rative exitation, whih again isan exlusive proess, is the third type of sattering reation we are investigating.



3.3. The hadroni sattering amplitudes 27After having evaluated the loop-loop orrelation funtion in 3.1.2 and with thewave funtions from the previous setion, we give the expressions for the hadronisattering amplitudes for these proesses and analyse their respetive symmetryproperties.3.3.1 Elasti satteringWe now put everything together, inserting the overlap funtions (3.21) and theresults (3.16) or (3.17) for the orrelation funtion of the Wegner-Wilson loops,depending on whih method is used in the evaluation, in (2.50), where we set h3 =h1; h4 = h2.We an simplify the resulting expression by exploiting symmetry properties ofthe wave and orrelation funtions. The replaements xT ! �xT and z ! 1 � z,whih exhange the quark with the orresponding diquark (or antiquark in the aseof mesons) in hadron h1, lead to � ! �� (see Fig. 2.2 and (3.15)). On the otherhand these replaements leave the wave funtions invariant and thus the integrationover xT and z averages out the sin�-terms of (3.16) when inserted in (2.50). Wean therefore replae (3.16) byhW+W� � 1iG ! �23 os�13�� + 13 os�23��� 1� : (3.23)In the expansion method hW+W� � 1iG in (3.17) is already even under � ! ��.In our model, therefore, the expression for the orrelation funtion is purely realin (3.17) and only the real part of (3.16) ontributes. The T -matrix element isinvariant under the exhange of hadron h1 by its antihadron. Thus we get onlyC = P = +1 (pomeron) exhange and no C = P = �1 (odderon) exhange.Furthermore it is useful to take advantage of global azimuthal invariane andde�ne as new integration variables the relative angles between the impat parameterbT and xT and yT , respetively:�0x = �x � �b; �0y = �y � �b: (3.24)With this hoie of variables the elasti pro�le funtion beomes independent of �band using the relationZ 2�0 d�b eip�t bT ein�b = 2�inJn(p�t bT ); (3.25)where Jn is the Bessel funtion of n-th degree, we an perform the integral over theangle of the impat parameter in (2.49) analytially.For elasti sattering our �nal result for the sattering amplitude then readsTfi = 4�is Z 10 dbT bT J0(p�t bT ) Ĵel(bT ); (3.26)



28 Chapter 3. Evaluation of the sattering amplitudeswith the elasti pro�le funtionĴel(bT ) = � Z d2xT d2yT Z 10 dz dz0w11(xT ; z)w22(yT ; z0)�23 os�13�(bT ;xT ;yT ; z; z0)�+ 13 os�23�(bT ;xT ;yT ; z; z0)�� 1�(3.27)when using the matrix umulant method andĴel(bT ) = � Z d2xT d2yT Z 10 dz dz0w11(xT ; z)w22(yT ; z0)��19 �(bT ;xT ;yT ; z; z0)2� (3.28)when using the expansion method, respetively.3.3.2 Single di�rative dissoiationIn analogy to elasti sattering we insert the overlap funtion w11 and either (3.16) or(3.17) into Ĵdiss, for whih we have two expressions, (2.53) and (2.54), depending onthe hoie of the plane wave or the harmoni osillator desription of the di�rative�nal state X. If using the latter expression, we also have to input the exited statewave funtions Xn;m given by (3.22).We note that it is suÆient that one overlap funtion, here w11(xT ; z), has thesymmetry properties disussed in the previous setion, and thus the same argumentsas in the ase of elasti sattering an be applied. Therefore we an replae (3.16)by (3.23) for single di�rative dissoiation as well.The expression for the sattering amplitude is hene given by (2.52) with eitherthe pro�le funtion (2.53) for the plane wave desription or (2.54) for the osillatordesription of X. In both ases the loop-loop orrelation funtion evaluates to (3.23)for the matrix umulant method or (3.17) for the expansion method.Furthermore, when alulating ross setions with the desription of X given bythe osillator method we an use analogous arguments. The simultaneous replae-ments yT ! �yT and z0 ! 1 � z0 and subsequent integration over yT and z0 leadto the anellation of ontributions with odd m in (2.54) beause of the existeneof a fator eim�y in ~Xn;m(yT ). Sine for these funtions odd m only our for oddn, the sum over all exited states in the alulation of ross setions an be reduedto the sum over the wave funtions with even n and the orresponding m's. Finallywe point out that here the integration over the angle �b whih we aomplish anal-ogously to the ase of elasti sattering by exploiting global azimuthal invarianeleads to Bessel funtions of m-th degree. This is due to the fator eim�y in Xn;m andrelation (3.25).



3.3. The hadroni sattering amplitudes 293.3.3 Double di�rative exitationWe have seen in the previous setions that both in elasti and single di�rative dis-soiation we only get C = P = +1, i.e. pomeron, exhange and no C = P = �1, i.e.odderon, exhange in our model. This is, as we have seen, due to the symmetry ofthe hadron wave funtions, where integration over all angles leads to a anellation ofthose terms of the orrelation funtion that are odd under C and P transformations.This result is not a unique feature of our model but is rather model independent.It relies on the fat that the quark-diquark density in a nuleon is nearly symmet-ri under a parity transformation if the diquark is suÆiently small, whereas theodderon oupling hanges sign. To study odderon exhange in our model we haveto �nd a reation where the odderon ontribution is not anelled after integrationdue to the symmetry properties of the wave funtions. This is possible in reations,where initial state nuleons are transformed di�ratively into exited negative paritystates. In this ase, even for point-like diquarks whih we are using in our ansatz forthe wave funtions, the odderon ouples to the nuleon without any restrition [36℄.Three reations whih permit odderon exhange but exlude pomeron exhange havebeen suggested in high-energy photoprodution: exlusive neutral pseudosalar me-son prodution with nuleon break-up [31℄, f2(1270) and a2(1320) prodution withnuleon break-up [32℄, and the asymmetry in the frational energy of harm versusantiharm jets, whih is sensitive to odderon-pomeron interferene [50℄.Here we are going to study a hadroni reation for whih odderon exhange isallowed, namely p + p! N(1535) + N(1535): (3.29)In addition, the N(1535) has a unique signature, being the only known baryon witha strong �N deay [11℄. One should note, however, that this deay provides somediÆulty for standard models of baryon spetrosopy, inluding the quark-diquarkmodel. It remains unlear why the N(1535) deay has suh a large branhing ratioof about 30-55% into �N whereas this deay is negligible for the N(1520).To onstrut the T -matrix element of reation (3.29) we start from (2.50), wherethe overlap funtions w�31 and w�42 onsist of one s-wave for the proton and one p-wave for the N(1535) eah. Now we are going to argue why it is suÆient to dealwith spinless s- and p-waves as stated in setion 3.2: as we are using salar diquarksthe spin of the proton and of the N(1535) is arried by the quark in the aordinghadron. The spin onserving delta funtions in (2.40)-(2.43) on the parton level thenensure that the spins of the proton and of the exited nuleon resonane are alignedparallel. As explained in setion 3.2 we do not get any ontributions from the stateswith heliity � = 0 in our approximation. Sine spin and angular momentum of theN(1535) are antiparallel to eah other in order to form a state with total angularmomentum J = 1=2, we an infer diretly that the heliity of the p-wave desribingthe N(1535) is oriented antiparallel to the spin of the inoming proton. This meansthat from the originally 16 possible spin ombinations of the 4 hadrons in initial and�nal state only 4 survive due to spin onservation on the parton level. For those we



30 Chapter 3. Evaluation of the sattering amplitudesimmediately know whih heliity state we have to assign to the N(1535) in the �nalstate. As we will alulate unpolarised ross setions in the following, i.e. we takethe average over the initial state spins and sum over all �nal state spins, we haveredued the problem to the sattering of two initial state s-waves into two �nal statep-waves with �xed heliities, as already stated when disussing the wave funtions.Moreover, looking at the expression for the p-wave (3.20), we note that on the levelof ross setions the following relations holdjhN+(1535)N+(1535)jT jp pij2 = jhN�(1535)N�(1535)jT jp pij2 ;jhN+(1535)N�(1535)jT jp pij2 = jhN�(1535)N+(1535)jT jp pij2 ; (3.30)where � indiates the heliity � = �1 of the N(1535). This means that onlythe relative orientation of the heliities of the two N(1535) in the �nal state areof importane and thus we only have to alulate two sattering amplitudes, onewhere the heliities are aligned parallel, whih we will all T+ and one where theyare aligned antiparallel, whih we will all T�.Now we have to show that we indeed get C = P = �1 exhange for this type ofreation. The proof will rely on symmetry onsiderations, as in the ase of elastisattering and single di�rative dissoiation before. To simplify our notation wede�ne a redued overlap funtion ewkj whih does not ontain any terms due to theangular dependene of the p-wave. Instead we expliitely write out this angulardependene in the following beause it is ruial for our argumentation:w�kj(xT ; �x; z) =: �ei��x ewkj(xT ; z): (3.31)With this de�nition and (3.24), (3.25) we obtain for the sattering amplitudeT� = 4�is Z 10 dbT bT Jn(p�t bT ) Ĵ�(bT ); (3.32)where n = 2 for T+ and n = 0 for T�. Here the pro�le funtion is given byĴ�(bT ) = Z d2xT d2yT ew31(xT ; 12) ew42(yT ; 12) os(�x � �y)n: : :o; (3.33)where f: : :g is an abbreviation for either (3.16) or (3.17). To obtain this result wehave used the invariane of the orrelation funtion under the simultaneous trans-formation of the variables �x ! ��x and �y ! ��y. Now we onsider the symme-try properties of the wave and orrelation funtions again. The argumentation isanalogous to the ase of elasti sattering with the ruial di�erene being the addi-tional fator os(�x � �y) here, whih hanges sign when we make the replaementxT ! �xT or yT ! �yT , respetively. Due to this fator the integration over xTor yT now anels the os�-terms of (3.16) instead of the sin�-terms. Therefore, inthe ontext of this sattering reation, (3.16) redues tohW+W� � 1iG ! i��23 sin�13�� + 13 sin�23��� : (3.34)



3.3. The hadroni sattering amplitudes 31On the other hand, the expression (3.17), whih we get from the expansion methodin the approximation up to O(�2) disussed there, is even under �! �� and thusvanishes ompletely after integration over xT or yT . To be able to use here as wella orrelation funtion whih has been evaluated in the expansion method, we haveto inlude terms of higher order in �. In [36, 51℄ the relevant term of order �3 hasbeen alulated in the framework of the expansion method and the result ishW+W� � 1i(3)G = i��54 181 �(bT ;xT ;yT ; z; z0)3� ; (3.35)where we have attahed an index (3) to denote that we are only disussing thethird order term in � here. Comparing this result with the O(�3)-term of theexpansion of (3.16) we notie that the former is larger by a fator 5=4. This isa onsequene of the trunation of the umulant expansion at seond order, dueto whih we neglet terms proportional to �3. Taking into aount the 4- and6-umulant we reover (3.35) as the term of order �3 in an expansion [52℄.To onlude, we note that for double di�rative exitation we have a purely imag-inary ontribution to the orrelation funtion, either (3.34) for the matrix umulantmethod or (3.35) for the expansion method, where we have to inlude the next, i.e.third, order in � to get a non-zero ontribution. Due to the symmetry of the waveand orrelation funtions we indeed get C = P = �1, i.e. odderon, exhange.Finally we point out that also in the ase of elasti sattering and single di�rativedissoiation an imaginary part of the orrelation funtion and C = P = �1 exhangeterms both non-vanishing after integration with the overlap funtions ould arisefrom the inlusion of higher umulant terms in (3.13). This ould also be the ase ifwe hose a more general desription of the hadrons with di�erent symmetries of thewave funtions whih are essential for the anellations after integration. Of ourse,the analogue is true for double di�rative exitation, with the di�erene that thesehanges would lead to C = P = +1 exhange there.



32 Chapter 3. Evaluation of the sattering amplitudes



Chapter 4Hadron-hadron ross setionsThe fous of this hapter will be on proton-proton sattering, where a lot of data isavailable in the energy range we are interested in, i.e. high entre of mass energy andsmall momentum transfer. First we will review elasti sattering, whih has beenalulated previously using the matrix umulant method in [30℄. Then the study willbe extended to single di�rative dissoiation. We will onlude the investigation ofproton-proton sattering with the analysis of the reation p p ! N(1535)N(1535),i.e. double di�rative exitation of the proton. Then we will onsider proton-pionsattering, i.e. we replae one of the inoming protons by a pion. In this ontext weare going to study elasti sattering and single di�rative dissoiation of the pion.To alulate ross setions for the reations we are onsidering, we have to �xour free parameters, namely those of the MSV: G2, a and �; and those of the wavefuntions, the extension parameter Shj and the width of the longitudinal momentumdistribution zhj . The set of MSV parameters used in this work has been establishedin [30℄ for the ase of the matrix umulant method giving (3.16). For the expansionmethod giving (3.17) the set of parameters depends on whether we disuss C = P =+1 exhange, for whih we use the values given in [27℄, or C = P = �1 exhange. Inorder to obtain the latter ontribution, a somewhat di�erent approximation shemewas used in [36, 51℄ and therefore the resulting values are slightly modi�ed. Thesethree parameter sets are ompiled in Table 4.1.expansion methodmatrix method C = P = +1 C = P = �1G2 (529 MeV)4 (501 MeV)4 (525 MeV)4a 0:32 fm 0:346 fm 0:31 fm� 0:74 0:74 0:74Table 4.1: The parameters of the MSV for the matrix umulant and the expansionmethodThe values given in Table 4.1 should be onsidered as e�etive values extrated from33



34 Chapter 4. Hadron-hadron ross setions�ts to high energy sattering data using two di�erent approximate formulae. Thusthe di�erenes between the values in the seond and third (or fourth, respetively)olumn of the table an be taken as a theoretial error estimate. With �xed param-eters the model gives energy independent ross setions. It has been shown in [24℄that both the energy dependene of the ross setion and of the slope parameterb of elasti sattering an be well desribed by energy dependent hadron extensionparameters Shi(s). In [30℄ it was found that in the framework of the matrix umu-lant method energy dependent extension parameters an even desribe the energyevolution of the whole di�erential elasti ross setions d�=dt up to jtj � 1GeV2.When using the matrix umulant method we adopt the parametrisation from [30℄for the extension parameter Sp of the protonSp(s) = 0:700� sGeV2�0:034 fm: (4.1)This was obtained by �tting the total ross setion as alulated from the optialtheorem with the T -matrix element alulated within the model�tot = 1s Im(Tfi)����t=0 (4.2)to the soft pomeron part of the Donnahie-Landsho� (DL) parametrisation for�tot [12℄. For the expansion method we have established a similar onnetion betweenSp and s: Sp(s) = 0:624� sGeV2�0:028 fm: (4.3)At ps = 23:5 GeV, for instane, we get Sp = 0:868 fm and Sp = 0:745 fm from (4.1)and (4.3), respetively. Sine the MSV-parameters for C = P = +1 exhange in theexpansion method are di�erent from the ones used for the C = P = �1 exhangeas stated above, of ourse the extension parameters di�er as well. In the followingwe only need the extension parameter of the proton at ps = 20 GeV for the latter.To be onsistent with the set of MSV-parameters, we use the value Sp = 0:85 fmfrom [36, 51℄. The width of the longitudinal momentum distribution of the protonhas been hosen as zp = 0:4 whih gives a best �t to the isovetor form fator of theproton alulated in the framework of our model (see hapter 5).A di�erent desription of the energy dependene, motivated by the two pomeronpiture has been suggested in [53℄. In this approah the orrelation funtion �instead of the hadron extension parameters is assumed to depend on the energy.This is in line with other two omponent pitures as e.g. [54, 55℄. Of ourse thisleads to a di�erent set of both MSV and wave funtion parameters. Sine in thiswork also the orrelation funtions eD; eD1 from (3.5) and the integration surfae (seeFig. 3.1) are modi�ed ompared to our ansatz, we will not use this approah in thefollowing.After having �xed all parameters, the alulation of ross setions an be per-formed numerially. All phase spae integrals and the integrals ourring in the



4.1. Proton-proton sattering 35sattering amplitudes are evaluated using the Monte-Carlo integration subroutineVegas [56℄ in an adapted version [57℄.4.1 Proton-proton satteringFrom the experimental side a lot of data on proton-proton sattering exists over awide range of energies. In partiular the availability of data on soft di�rative sat-tering at high entre of mass energies makes proton-proton sattering an interesting�eld of appliation for our model.4.1.1 Elasti satteringLet us �rst onsider elasti proton-proton satteringp(P1) + p(P2)! p(P3) + p(P4): (4.4)The di�erential ross setion d�el=dt for this reation has already been alulatedusing the funtional integral approah and the matrix umulant method in [30℄,however, as the results will be needed in the analysis of single di�rative dissoiation,we give a short reminder of the results obtained there. Moreover we alulate thedi�erential ross setion using the expansion method and the integrated elasti rosssetion applying both methods and ompare the results.For s�M2p the di�erential ross setion is given byd�el = 116� 1s2 jTfij2 dt; (4.5)where Tfi is our result (3.26) for the elasti sattering amplitude. Depending onwhih method for the evaluation of the orrelation funtion is used, we insert (3.27)or (3.28), respetively.In [27℄ it has been argued that the Gaussian shaped distribution of the longi-tudinal momentum fration z (z0) an be replaed by a delta-funtion entred atz = 1=2 (z0 = 1=2), sine the funtion � (3.15), whih determines the shape of theorrelation funtion, depends only weakly on z (z0). A numerial investigation ofthe total ross setion alulated from the optial theorem shows that the resultingdi�erene for �tot is smaller than 1%. The pro�t one makes out of this simpli�ationis a muh shorter omputation time in the numerial analysis, as eah additionalvariable of integration means roughly a fator of 10 in the time needed to alulatethe ross setion. In the following we will make use of this simpli�ation if notexpliitly stated otherwise.In Fig. 4.1 we ompare the results from the matrix umulant and expansion meth-ods to experiment. The �rst method, i.e. using (3.23), gives a reasonable desriptionof the data for jtj . 1GeV2 over many orders of magnitude but underestimates the
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Figure 4.1: The di�erential elasti ross setion d�el=dt at ps = 23:5 GeV alu-lated using the matrix umulant method (dashed line) and the expansion method(solid line) ompared to the experimental data from [58℄data at small jtj. The expansion method, i.e. using (3.17), gives a better desriptionof the data for jtj . 0:2GeV2 but overshoots the data by orders of magnitude forlarger jtj. A �t of the form d�el=dt = A exp b t to the di�erential ross setion givesb = 13:8 � 0:4GeV�2 for the matrix umulant method and b = 10:0 � 0:2GeV�2for the expansion method, respetively. From a �t to the experimental data [58℄we obtain b = 11:6 � 0:1GeV�2. These �ts have been performed within the range0 � jtj � 0:2GeV2, sine the desription of the data over a larger jtj-range wouldrequire an additional term / t2 in the exponent of the �t. If we alulate theintegrated elasti ross setion at ps = 23:5GeV, we obtain �el = 5:0mb in thematrix umulant method and �el = 7:3mb in the expansion method ompared toan experimental value of �el = 6:81 � 0:19mb [11℄. The fat that the elasti rosssetion alulated by the expansion method is loser to the experimental value thanthe one from the matrix umulant method is easily understood from Fig. 4.1b. Inthe integral over d�=dt only the region jtj . 0:2GeV2 ontributes signi�antly andthere the expansion method desribes the data better. In the region jtj & 0:2GeV2the result from the expansion method is bigger than the experimental result, withthe onsequene that the resulting integrated ross setion is too big.In Fig. 4.2 we show �el for 10 GeV � ps � 10 TeV. The data are as wellfrom pp- as from p�p-experiments [11℄. As our approah does not inlude, in Reggeterminology, any non-leading trajetories, we annot distinguish between these tworeations and they are desribed by the same sattering amplitude. The alulationagrees reasonably well with the experimental data. Due to the reasons disussedabove, the integrated ross setions obtained from the matrix umulant method are
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Figure 4.2: The integrated elasti ross setion as a funtion of ps alulated usingthe matrix umulant method (dashed line) and the expansion method (solid line)ompared to the experimental data from [11℄smaller than the experimental values. The di�erene we get from the two meth-ods an thus be seen as a theoretial error estimate. The theoretial unertaintieshave their origin in the di�erent shemes whih we use to evaluate the orrelationfuntion (3.10), whih both of ourse make use of approximations, as has been dis-ussed in setion 3.1. In the ase of the matrix umulant expansion method theapproximation is due to the trunation of the umulant expansion after the seondumulant term, in the expansion method we expand diretly in terms of the gluon�eld strengths. This means that both methods do not neessarily ontain the samephysial ontributions when we ompare the respetive expressions order by order.We have already pointed out this fat when disussing the sattering amplitude forthe C = P = �1 exhange in setion 3.3.3, where we noted that we would haveto inlude higher order umulant ontributions in the matrix umulant method toobtain the same result in O(�3) as in the expansion method.4.1.2 Single di�rative dissoiationNow we turn to inelasti di�rative satteringp(P1) + p(P2)! p(P3) + X(P4): (4.6)
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Figure 4.3: The integrated single di�rative dissoiation ross setion as a funtionof ps alulated using the matrix umulant method (dashed line) and the expansionmethod (solid line)Using the plane wave method (2.52), (2.53) we alulate the di�erential di�rativeross setion as d�di� = (2�)4 12s jTfij2 d5P; (4.7)where d5P = 1(2�)9 14sz0(1� z0)d2P4Td2�4Tdz0 (4.8)is the 5-dimensional phase spae measure for the three partile �nal state formedby the �rst proton whih remains intat and the quark and the diquark whih de-sribe the seond, di�ratively exited proton. As stated above the desription ofthe di�rative �nal state X by a free quark-diquark pair also inludes the ase ofelasti sattering. To obtain the ross setion �sd for single di�rative dissoiation,we have to subtrat the elasti ontribution and then multiply by 2 to aountfor the reation where the �rst proton breaks up and the seond stays intat. We�nd for the integrated single di�rative ross setion as a funtion of ps the resultshown in Fig. 4.3. Comparing our results to experimental data, one has to keep inmind that the overall normalisation unertainty of the experiments is of O(10%).Furthermore the derivation of integrated ross setions from experimental data in-volves extrapolations of the measured data at given values of t and � = M2X=s to



4.1. Proton-proton sattering 39regions where no data exist. The extrapolations depend on assumptions on theshape of the t-distribution and the shape of the �-distribution. Di�erent experi-ments make di�erent assumptions and thus the resulting integrated ross setionsdi�er from eah other. The experimental values on the integrated single di�rativedissoiation ross setion quoted here use � � 0:05 as an upper bound in the massdistribution [59{61, 63℄, exept for [62℄ where the range is extended to � � 0:2. Inour alulation of �sd we integrate over all values of �. Beause the mass spetrumobtained in our alulation dereases rapidly with inreasing � (see Fig. 4.6), ournumerial result of the integrated ross setion is dominated by the low mass regionand is not sensible to the integration range being � � 0:05 or � � 0:2. Again the dif-ferene between the ross setions obtained by the two methods an be understoodas an estimation of the theoretial errors whih arise due to the approximationsmade in the evaluation of the orrelation funtion.In Table 4.2 we give the ratio R of the single di�rative dissoiation ross setionto the sum of the single di�rative dissoiation and the elasti ross setions from ourmodel and from di�erent experiments. For ps = 546GeV and 1800 GeV we haveused the values of �el and �sd as quoted by the UA4, CDF and E710 experiments.For the ISR energy range 20GeV . ps . 60GeV a lot of data exist. Sine theross setions do not vary muh over this energy range, we have �tted both �el and�sd as being proportional to a small power of ps and have then alulated R as afuntion of ps using these �ts. The quoted ISR R-value in Table 4.2 is evaluatedat an intermediate energy of ps = 38:5GeV. As an be seen, our model, andR = �sd=(�el + �sd)ps [GeV℄ matrix expansion values al. from exp.23.5 0.40 0.4738.5 0.39 0.47 0:49� 0:07 ISR [59, 60℄62.3 0.39 0.46 0:41� 0:02 UA4 [61℄546 0.36 0.45 0:38� 0:01 CDF [62℄0:33� 0:05 E710 [63℄1800 0.35 0.44 0:32� 0:01 CDF [62℄Table 4.2: The ratio R of the single di�rative dissoiation to the sum of thesingle di�rative dissoiation and elasti ross setions from the model and fromexperimentsmore pronounedly in the matrix umulant method, predits that the di�rativedissoiation ross setion grows more slowly with inreasing energy than the elastiross setion. This is in qualitative agreement with experiment, where an even slowerrise of �sd ompared to �el is observed. The smaller R-values in the matrix umulant
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Figure 4.4: The di�erential di�rative ross setion d�sd=dt at ps = 23:5 GeV al-ulated using the matrix umulant method (dashed line) and the expansion method(solid line) ompared to the experimental data from [59℄method ompared to the expansion method are mainly due to the relatively smallintegrated single di�rative dissoiation ross setions in the former method.The results for the di�erential ross setion of the single di�rative dissoiationare shown in Fig. 4.4. The urve alulated in the framework of the expansionmethod desribes the slope of the di�rative reation quite well even for larger val-ues of jtj. Therefore the agreement with the experiment is reasonably good withinthe jtj-range onsidered here. This ould however be partly aidental. In pro-esses where the proton breaks up, the exhange of hard and semi-hard gluons willplay an important role. This exhange is not desribed by our model whih is anapproximation for the infrared behaviour of QCD. We have seen in elasti sat-tering that the expansion method overestimates the ross setion for values of jtjlarger than 0:2GeV2, see Fig. 4.1, and this ould simulate the expeted ontribu-tion of hard or semi-hard gluon exhange in the di�rative dissoiation reations.We stress however that the fast derease of the single di�rative dissoiation rosssetion d�sd=dt for jtj . 0:2GeV2 is a �rm predition of our model. Performing a�t over the range 0 � jtj � 0:2GeV2 of the form d�sd=dt = A exp bt like in the aseof elasti sattering we obtain b = 12:6 � 0:2GeV�2. For suh small momentumtransfer no experimental data on the di�erential di�rative ross setion exist. Toompare to experiment, we therefore apply the �t formula to both our result andthe experimental data in the range 0:2GeV2 � jtj � 0:5GeV2. For larger valuesof jtj we would require an additional term / t2 in the exponent of the �t. The



4.1. Proton-proton sattering 41�ts then give b = 7:9� 0:3GeV�2 for our alulation in the expansion method andb = 7:0 � 0:3GeV�2 for the data from [59℄. Integration of our result for the dif-ferential distribution over t leads to integrated single di�rative dissoiation rosssetions whih are larger than the aording experimental integrated ross setions.1Those are alulated from the experimental di�erential ross setions under the as-sumption of a linear extrapolation of the slope down to t = 0GeV2. Therefore it isthe steep slope for jtj . 0:2GeV2 in our alulation that leads to larger integratedross setions than experimentally observed even though in the whole range whereexperimental data on the di�erential t-distribution are available our alulation givessmaller values than the experiment [59℄. Sine our model predits an inreasinglysteeper slope when we go to higher energies, this e�et gets more pronouned forlarge values of ps. Therefore the agreement of our result for the integrated singledi�rative dissoiation ross setions is not as good for the Tevatron data as it is forthe ISR data (see Fig. 4.3).To hek the validity of our desription of the di�rative �nal state by a freequark-diquark pair using plane waves, now we apply the seond method, whihdesribes the di�rative �nal state X through a sum of wave funtions of exitedstates of a two-dimensional harmoni osillator, as explained above in setion 2.3.2.In this desription, the �nal state phase spae is two-dimensional as in the ase ofelasti sattering and the di�erential ross setion is given byd�sddt = 116� 1s2 X(n;m)6=(0;0) jTfij2 (4.9)with Tfi from (2.54). The sum runs over all even n for the reasons given in se-tion 3.3.2, the assoiated quantum number m runs over m = �n;�(n� 2); : : : ; n�2; n. The numerial analysis shows that both alulations are in very good agree-ment to eah other and that summing up the ontributions from values of n � 6already gives � 98% of the result using plane waves.So far we have only disussed the result for the di�erential ross setion whihwe obtain when we apply the expansion method. Fig. 4.4 also shows the result ofour alulation in the framework of the matrix umulant method. As already seen inelasti sattering, the result obtained from the matrix umulant method is smallerthan the one from the expansion method. The same �t we have used for the expan-sion method for the range 0 � jtj � 0:2GeV2 here leads to b = 19:1 � 0:9GeV�2.This is in analogy to elasti sattering, where we have also found a steeper slopefor very small momentum transfers when omparing matrix umulant with expan-sion method. Repeating the �t in the range 0:2GeV2 � jtj � 0:5GeV2 we obtainb = 9:2 � 1:7GeV�2. However, in the range 0:1GeV2 . jtj . 0:7GeV2 the di�er-ential ross setion develops a depression and in ontrast to elasti sattering the1Of ourse the physial region of t is bounded by tmin, whih is a funtion of the mass of thedi�rative �nal state and of ps, but in the kinematial region whih we are studying we havetmin . 10�3 and thus tmin an be safely set to 0.
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Figure 4.5: The ontributions of harmoni osillator wave funtions with �xedquantum numbers n;m to the di�erential di�rative ross setion d�sd=dt omparedto the result obtained by the plane wave desription (solid line) of the di�rative�nal state Xmatrix umulant method fails to desribe the shape of the di�erential ross setion.This depression is the reason why, after integration over t, the integrated singledi�rative dissoiation ross setions in the matrix umulant method are notieablysmaller than the ones extrated from the expansion method and experimental data.To understand where this depression omes from, we again apply the seondmethod and desribe the di�rative �nal state through the sum of the wave fun-tions Xn;m. Progressing analogously to the above study of the expansion method wesum up all ontributions with n � 6 and assoiated m's and �nd as well very goodagreement to the plane wave desription. This shows us that both desriptions of Xindeed are equivalent to eah other. Now we take a loser look at the ontributionsto the di�erential di�rative ross setion from exited state wave funtions Xn;mwith de�nite values of n and m. The reason why we an ompare the ontributionsfrom wave funtions with de�nite quantum numbers diretly to eah other and tothe plane wave desription is that due to orthogonality they add up on the levelof the ross setion and not on the level of the sattering amplitudes. We havealready used this fat in (4.9). Therefore we an alulate di�erential di�rativeross setions with the sum over n;m replaed by just one term with �xed quantumnumbers. Some of these ontributions to the di�erential ross setion are shownin Fig. 4.5, where we have also inluded the result obtained by the plane wave de-sription for omparison. We see that, like for elasti sattering as disussed in [30℄,



4.1. Proton-proton sattering 43various ontributions to the di�erential ross setions develop a \dip"-struture, inpartiular those with m = 0. The loation of these dips is given by the jtj-value atwhih the real part of the orrelation funtion hanges sign. At whih exat value fort < 0 this happens is governed by the details of the interplay of the Bessel funtionJm that ours in the sattering amplitude (see (3.25) and setion 3.3.2), the wavefuntion Xn;m and the orrelation funtion. We note that for inreasing quantumnumber n the position of the dip moves to larger values of jtj. As the imaginary partof the orrelation funtion is anelled after integration over the wave funtions asdisussed above, the sattering amplitude is zero at these positions and therefore weget an in�nitely deep dip. As an be seen from Fig. 4.5 several dips develop in theregion 0:1GeV2 � jtj � 0:7GeV2 for wave funtions with n � 6. In partiular theontribution with the quantum numbers n = 2; m = 0 whih aounts for the mainpart in the sum has a dip at jtj � 0:3GeV2. Performing the sum over n;m then leadsto the formation of the depression for this region of jtj. We expet the dips - and inonsequene the depression - to be at least partly �lled up when we inlude higherumulant terms, whih ould lead to an imaginary part of the orrelation funtionnon-vanishing after integration with the wave funtions as disussed in more detail insetion 3.3. Also the desription of the proton by a more general quark on�gurationthan the simple quark-diquark piture we have used here hanges the symmetries ofthe wave funtions whih are essential for the anellation of the imaginary part ofthe orrelation funtion. The result would be a re�ned desription of the di�erentialdi�rative ross setion in the matrix umulant method and therefore, after inte-gration over t, also a larger integrated single di�rative dissoiation ross setionswhih would be in better aord with experiment.In the following we will onsider the mass spetrum d2�sd=(d�dt) of the singledi�rative dissoiation reation at ps = 23:5 GeV for t = �0:0525 GeV2, where �is the squared mass of the di�rative �nal state divided by s. In our ansatz withplane wave �nal states, � then is given by� := M2Xs = �24T + (1� z0)m2q + z0m2�qz0(1� z0)s : (4.10)Here mq and m�q are the masses of the quark and the diquark whih desribe theexited proton state. To take thresholds into aount the mass for the quark hasbeen hosen to be 330 MeV and for the diquark 660 MeV so that the sum roughlygives the proton mass. Going bak to (2.53) we reognise that now we an nolonger replae the Gaussian shaped longitudinal momentum distribution in the wavefuntion (3.18) for the hadron h2, whih breaks up, by a delta funtion entredaround 1/2, as we have done in the alulations before, beause z0 determines thevalue of � in (4.10). This was di�erent for the alulation of d�sd=dt, where weperformed an integration over the full range of �4T in phase spae and were notinterested in any partiular value of �. As a onsequene of the introdution of quarkmasses the integration over z0 now does not run from 0 to 1, but the integration
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Figure 4.6: The di�rative mass spetrum d2�sd=(d�dt) for t = �0:0525 GeV2 atps = 23:5 GeV alulated using the matrix umulant method (dashed line) and theexpansion method (solid line) together with the data from [60℄limits are given byz00=1 = 12 � m2q �m2�q2�s �s14 � m2q +m2�q2�s + �m2q �m2�q2�s �2: (4.11)This ensures that the mass spetrum starts at M2X = M2p where Mp is the protonmass. Our plane wave desription of the di�rative �nal state of ourse also inludeselasti sattering. To ompare with experimental results on di�rative dissoiationwe have to subtrat the elasti ontribution. To do so we argue as follows: to obtainthe elasti ontribution, we integrate d2�sd=(d�dt) over � from �0 = M2p=s up to�1. We determine �1 in suh a way that the integral gives the value of the elastidi�erential ross setion d�el=dt. Now we interprete the mass spetrum as onsistingof the elasti part, whih lies between �0 and �1 and the dissoiation part, whihstarts at �1. This proedure allows us to separate the elasti and the dissoiationontributions.The result of the alulation is shown in Fig. 4.6 for t = �0:0525GeV2 andthe .m. energy ps = 23:5 GeV together with the data points from [60℄. Forthe matrix umulant method we determine �1 = 1:90GeV2=s � 3:44 � 10�3, for theexpansion method �1 = 1:63GeV2=s � 2:95�10�3. Again the di�erential distributionobtained by our alulation in the matrix umulant method is smaller than the oneorresponding to the expansion method and starts for slightly larger �1. This is



4.1. Proton-proton sattering 45not surprising beause integrating d2�sd=(d�dt) over � from �1 to �2 =1, followingthe argumentation from above, we have to �nd the value for the di�erential singledissoiative ross setion d�sd=dt at t = �0:0525GeV2. 2 As we have seen above,this di�erential ross setion is smaller for all values of t in the matrix umulantmethod than in the expansion method and therefore the double di�erential rosssetion also has to be smaller when alulated by means of the former method. Theomparison with the experimental data proves diÆult, as the experimental valuesare smeared out over a ertain range of values for � beause of the detetor massresolution funtion. This explains also the data for the unphysial negative �-values.As a onsequene the large peak of the di�rative mass spetrum is muh morepronouned in our alulation and the experimental distribution is atter aroundthat peak. To ompare diretly with the experiment, we would have to fold ourresults with the mass resolution funtion of the detetor used in the experiments [60℄,but unfortunately, this resolution funtion an no longer be reonstruted [64℄. Wenote that our model should give reliable results for small �. Indeed, for large valuesof � the model seems to underestimate the data onsiderably. But for this � regionwe expet, for instane, that our purely nonperturbative treatment of the satteringmust be supplemented by hard gluon radiation whih should lead to high invariantmasses for the di�ratively exited state. Furthermore our alulation treats the�nal state as a quark-diquark pair and therefore no on�nement e�ets are inludedhere.4.1.3 Double di�rative exitationNow we will study the double di�rative exitation of the protonp(P1) + p(P2)! N(1535)(P3) + N(1535)(P4); (4.12)where the N(1535) is an exited nuleon resonane with mass M� = 1535MeV andthe quantum numbers I(JP ) = 12(12�). In the quark-diquark piture it has angularmomentum L = 1. The di�erential ross setion is given byd�dd = 132� 1s2 � jT+j2 + jT�j2� dt; (4.13)with T� from (3.32). The sattering amplitudes ontain the double di�rative pro�lefuntion Ĵ�, whih depends expliitely on the relative orientation of the heliitiesof the two exited nuleon resonanes (see (3.33)). Depending on whih method wewant to use, we use either (3.34) or (3.35) to evaluate the orrelation funtion.Unfortunately no experimental data exist on this reation so far, so we an onlygive preditions for future experiments. RHIC for example meets all the require-ments to investigate this reation. As we mentioned in setion 3.3.3 this reation2In pratie it is suÆient to perform the integral for a �nite value of �2 � 25GeV2=s beauseof the fast derease of the alulated di�erential distribution for large values of �.
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Figure 4.7: The di�erential di�rative ross setion d�dd=dt at ps = 20 GeV al-ulated using the matrix umulant method (dashed line) and the expansion method(solid line)has an unique signature sine the N(1535) is the only known baryon with a strong�N deay. A lear signal in the detetor for this reation thus would be a �nal stateomposed of 2 �'s and 2 nuleons. However, there is also the question open whythe N(1535) has a strong deay mode into �N whereas the N(1520), whih has thesame quantum numbers apart from J = 32 instead of J = 12 , has not [11℄. Standardmodels of baryon spetrosopy, inluding the quark-diquark model we use here, havediÆulties explaining this experimentally well founded fat. We have to keep this inmind as a possible soure of theoretial unertainties in our model when disussingour results.The di�erential ross setion d�dd=dt alulated in the framework of both meth-ods is shown in Fig. 4.7. These distributions exhibit some qualitative features thatwe have already disussed in setion 4.1.2 when investigating single di�rative dis-soiation. One similarity is that again the result obtained by the matrix umulantmethod is smaller ompared to the one alulated with the expansion method. Go-ing bak to the disussion following (3.35) we reall that the two methods rely ondi�erent approximation shemes that do not neessarily inlude the same ontri-butions at every order of �. We have seen for example that the term of O(�3) inthe expression for the orrelation funtion is larger by a fator 54 in the expansionmethod ompared to the matrix umulant method with trunation after the se-ond umulant. To see where the di�erene between the methods omes from weexpand (3.34) to order �3 giving �i 181�3 and alulate the di�erential ross setion.



4.1. Proton-proton sattering 47
 
 
 

0 0:5 1:0 1:510�410�310�210�11
10 jT+j2 + jT�j2jT�j2jT+j2

jtj [GeV2℄
d� dd=dt[mb=G
eV2 ℄

Figure 4.8: The ontribution of T+ and T� to the di�erential ross setion d�dd=dtompared to the full result (solid line)Naively we would expet the distribution obtained that way to be smaller by a fa-tor (45)2 than the expansion method result for the reason given above. However, wehave to remember that the MSV parameters are di�erent for the two methods and infat the distribution alulated with the expanded matrix umulant result and theoriginal matrix umulant parameters (seond olumn of Table 4.1) is slightly largerthan the one alulated with the expansion method and the aording parameters(fourth olumn of Table 4.1). This is mainly due to the fat that the orrelationlength enters the ross setion to power a24. Inluding step by step higher ordersin � we �nally get bak to the result for the matrix umulant method shown inFig. 4.7. By this argument we see that the ontributions from higher orders in� have an essential inuene on both the normalisation and the shape of the dif-ferential ross setion. For elasti sattering and for single di�rative dissoiation,where we have C = P = +1 exhange instead of the C = P = �1 exhange we aredisussing here, these arguments also hold true. In all ases we start from (3.16)for the matrix umulant method and depending on the symmetries of the wave andorrelation funtions we keep either (3.23) or (3.34) after integration with the over-lap funtions. Expanding these expressions and alulating the ontributions frominreasingly higher orders in � we see that also for C = P = +1 exhange theyare ruial for the normalisation and the shape of the ross setion. In partiularthe position of the the dip struture seen in the di�erential distribution of elastisattering and the depression in the di�erential ross setion of single di�rativedissoiation depend on how many orders in � we take into aount.



48 Chapter 4. Hadron-hadron ross setionsAnother agreement with single di�rative dissoiation is the development of a de-pression in the di�erential distribution alulated with the matrix umulant method(ompare Figs. 4.4 and 4.7). In analogy to setion 4.1.2, where we have analysedthe origin of the depression by studying ontributions of single osillator funtionsto the ross setion, we now alulate the ross setion from either T+ or T� aloneinstead of immediately summing up both ontributions. The respetive results areshown in Fig. 4.8. Again we �nd that the reason for the depression is the loationof a dip at jtj � 1:0GeV2 in the leading term of the sum, namely the one we getfrom T�.3 As already mentioned in setion 4.1.2, the inlusion of higher umulantsand a re�ned model for both the proton and the exited nuleon state ould lead toan improved desription of the di�erential ross setion.Compared to elasti sattering or single di�rative dissoiation we note that thedi�erential distribution for small values of jtj is relatively at. A �t to d�dd=dt =A exp b t gives b = 8:2� 0:1GeV�2 for the matrix umulant and b = 5:7� 0:1GeV�2for the expansion method. Our preditions for the integrated ross setion for thereation pp ! N(1535)N(1535) are �dd = 0:2mb when applying the matrix umu-lant and �dd = 0:7mb when applying the expansion method. These ross setionsare solely due to C = P = �1, i.e. odderon, exhange. In the approximation we usehere, an a priori possible ontribution through pomeron exhange is stritly zero.This is in agreement with the Gribov-Morrison rule [65℄, but as neither this rule norour model are exat the possibility annot be ruled out entirely. However, this anbe tested experimentally. As the odderon is known to ouple at most very weaklyto the nuleon it will not ontribute signi�antly to the reation p p ! pN(1535).So if this reation is observed at high energy, the natural interpretation is that itis due to pomeron exhange and, using reggeon fatorisation together with pp elas-ti sattering, allows the pomeron ontribution to p p ! N(1535)N(1535) to beobtained.To onlude this setion we note that a possible hek of our results ould beobtained by alulating the eletromagneti p � N(1535) transition form fator.However, in the formulation of the model used here, in partiular due to the ap-pliation of the quark-diquark piture with salar diquarks, this alulation is notfeasible. We will ome bak to this point when disussing the alulation of formfators in the framework of our model.4.2 Proton-pion satteringWe present alulations for the reation p �� ! p � and p �� ! pX, respetively.Of ourse, the vauum parameters G2; a; � stay the same but we still have to �x thepion extension parameters S� and z� in (3.18). Proeeding as in the ase of proton-proton sattering we �nd for the parameters S� = 0:60 fm for the matrix umulant3Of ourse it is not the leading term in the region of the dip, where its ontribution tends tozero.



4.2. Proton-pion sattering 49and S� = 0:55 fm for the expansion method, respetively, at ps = 19:5 GeV. Inboth methods we obtain the same value z� = 0:5 for the width of the longitudinalmomentum distribution.4.2.1 Elasti sattering

0 0:5 1:0 1:510�410�310�210�11
101102

(a) jtj [GeV2℄
d� el=dt[mb=G
eV2 ℄

0 0:1 0:2 0:3 0:4 0:510�1
1

101
102

(b) jtj [GeV2℄
d� el=dt[mb=G
eV2 ℄

Figure 4.9: The di�erential elasti ross setion d�el=dt at ps = 19:5 GeV alu-lated using the matrix umulant method (dashed line) and the expansion method(solid line) ompared to the experimental data from [67℄Again we will �rst take a look at elasti sattering. For a .m. energy ofps = 19:5 GeV we �nd for the integrated elasti ross setions �el = 2:4mb withthe matrix umulant and �el = 3:1mb with the expansion method, ompared to anexperimental value of �el = 3:30� 0:11mb [66℄. The di�erential elasti ross setionis shown in Fig. 4.9. The matrix umulant method desribes the di�erential distri-bution reasonably well over many orders of magnitude and underestimates the datafor small jtj. This is the reason why the integrated ross setion omes out too smallwhen applying the matrix umulant method. The expansion method gives a betterdesription of the data for jtj . 0:2GeV2 but overestimates the data for larger valuesof jtj, and therefore the integrated ross setion as well. All this is in omplete anal-ogy to elasti proton-proton sattering. Fitting our result for the di�erential rosssetion by d�el=dt = A exp b t we �nd b = 10:9� 0:3GeV2 for the matrix umulantmethod and b = 8:7 � 0:3GeV�2 for the expansion method. The experimentallymeasured values are b = 7:9 � 0:2GeV�2 for �+p - and b = 8:4 � 0:1GeV�2 for��p -sattering, respetively [67℄. We annot distinguish between these two rea-tions and desribe them by the same sattering amplitude beause our model doesnot inlude, in Regge terminology, any non-leading trajetories.



50 Chapter 4. Hadron-hadron ross setions4.2.2 Single di�rative dissoiationMoving on to the reation where the pion breaks up di�ratively, we alulate �sdand the R-value, whih we de�ne as in the ase of proton-proton sattering. Forthe matrix umulant method we �nd �sd = 1:1mb and R = 0:32, for the expansionmethod �sd = 2:0mb and R = 0:39. The aording experimental values are �sd =1:90 � 0:2mb and R = 0:37 � 0:03 [68℄ whih is in quite good agreement to theresults obtained from the expansion method. Di�erential ross setion for proton-pion sattering with di�rative break up of the pion are unfortunately not availableat .m. energies whih are high enough for our model to be appliable.



Chapter 5Spae-like form fators in themodelIn this hapter we will study form fators within our model. We do not intend toperform a preision alulation of form fators but we will apply the alulationto extrat values for the width of the longitudinal momentum distributions of theproton and the pion, zp and z�, respetively, by �tting our results to experimentaldata.5.1 The eletromagneti form fators of the pro-tonThe oupling of the eletromagneti urrent to the proton an be desribed byhp(P 0; s0)jj�(0)jp(P; s)i = e �us0(P 0) ��F1p(Q2) + i���q�2Mp F2p(Q2)�us(P ); (5.1)where the momentum transfer is q = P 0 � P , Q2 = �q2, Mp is the proton mass,e = p4��e:m: and F1p; F2p are the Dira and Pauli form fator of the proton, respe-tively. Now we hoose suh a oordinate system so that q is purely transverse:P � = 12P+n�+ + 12P�n�� � 12q�;P 0� = 12P+n�+ + 12P�n�� + 12q�;q = 0� 0qT0 1A ; n� = 0BB� 100�1 1CCA ;P� = (14q2T +M2p )=P+: (5.2)51



52 Chapter 5. Spae-like form fators in the modelIn the high energy limit, P+ !1, we get for the matrix element (5.1) (see [69℄)hp(P 0; s0)jj�(0)jp(P; s)i = e P+n�+ �ys0 �F1p(Q2)� �3qT � �2Mp F2p(Q2)��s+O(1); (5.3)where �s; �s0 are the Pauli two-omponent spinors. F1p multiplies the spin-non-ippart, F2p the spin-ip part of the matrix element. Calulating the spin average ofthis expression leads to12Xs hp(P 0; s)jj�(x)jp(P; s)i = e P+n�+F1p(Q2) +O(1): (5.4)We desribe the alulation of the Dira form fator of the proton in the frameworkof our model in appendix C. In the following we onsider the matrix element of thethird omponent of the isospin urrent j�3 . Its matrix element between proton statesis as in (5.1),(5.3), with Fip replaed by Fiv, related to the form fators of protonand neutron by Fiv = 12 �Fip(Q2)� Fin(Q2)� (i = 1; 2): (5.5)With the wave funtions (3.18) we obtainF1v(Q2) = 12Ip Z 10 dz 2z(1� z) e�(z� 12 )2=2z2p e� z22 S2pQ2 ; (5.6)where Ip is the normalisation fator (3.19). For this alulation we need only theexpetation value of one Wegner-Wilson loop. A straightforward alulation showsthat the expetation value over one single loop is 1 in both the matrix umulantmethod and the expansion method. Thus, in our model the form fator is just theFourier transform of the squared wave funtion.We will now use (5.6) to determine zp and Sp. It turns out that in the range0 � Q � 0:5GeV the form fator depends sensitively on Sp but only weakly on zp.From a �t to experiment in this region we obtain Sp = 0:77 fm. With Sp �xed tothis value we show in Fig. 5.1 our result (5.6) for F1v for di�erent values of zp. Theexperimental values have been alulated from the experimental data for GEp andGMp from [70,71℄ and a �t of the experimental data on GEn and GMn [72℄ aordingto (5.5) and the relation between the Dira (F1p;n) and the eletri (GEp;n) andmagneti (GMp;n) form fator of the proton and neutron, respetively:F1N(Q2) = GEN(Q2) + �GMN (Q2)1 + � ; � = Q24M2N (N = p; n): (5.7)The best �t is found for zp = 0:4. As an be seen from Fig. 5.1, zp, whih �xesthe width of the longitudinal momentum distribution of the onstituents, playsno important role for Q . 0:5GeV. For larger values of Q however, our �t is
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Figure 5.1: The isovetor form fator of the proton for Sp = 0:77 fm and di�erentvalues of zp ompared to the experimental data from [70{72℄substantially improved when using a Gaussian shaped z-dependene instead of adelta-funtion entred around z = 1=2, whih is equivalent to zp ! 0.It has to be noted that the proton extension parameter Sp obtained from (5.6) isnot, and need not be, the same as the one used in the hadroni sattering proesses inthe previous hapters. Whereas the hadroni extension parameter has been allowedto be energy dependent (see (4.1),(4.3)) to aount for the rise of �tot with ps, theextension parameter onneted with the form fator has a �xed value for all energiesas the form fator itself is energy independent and is related to the eletromagnetiradius of the proton as follows. Using the de�nitionshr2ip = �6 dGEp(Q2)dQ2 ����Q2=0 ;rpem = phr2ip; (5.8)relations (5.5),(5.7) and the experimental valuedGEn(Q2)dQ2 ����Q2=0 = 0:019 fm2 (5.9)from thermal-neutron-eletron sattering [73℄, we get from our modelrpem = 0:81 fm: (5.10)



54 Chapter 5. Spae-like form fators in the modelThis oinides with the value one obtains for the proton eletromagneti radius whendesribing the eletri form fator of the proton by the dipole parametrisation [70℄,whih also results in rpem = 0:81 fm. From sattering experiments one �nds rpem =0:88 � 0:03 fm or rpem = 0:92 � 0:03 fm, depending on whih �t is used for theexperimental data on GEp(Q2) for small Q2 [70℄. The Lamb shift measurements [74℄give rpem = 0:890 � 0:014 fm. Thus our result (5.10), as well as the one alulatedfrom the dipole parametrisation, is smaller than the experimental value for rpem.Our alulation as well as the dipole �t desribe the data [71℄ for GEp rather wellfor Q & 0:4GeV. But for smaller Q the data [70℄ indiate a rapid hange in theslope dGEp(Q2)=dQ2 whih is desribed neither by our model nor by the dipoleparametrisation. Suh an \anomalous" behaviour of GEp and GEn for small Q2 hasbeen related to QCD vauum e�ets in [75℄.5.2 The eletromagneti form fator of the pion
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Figure 5.2: The pion form fator for S� = 0:68 fm and di�erent values of z� om-pared to the experimental data from [76℄For the harged pions �� the matrix element of the eletromagneti and the thirdomponent of the isospin urrent are equal. Choosing again the oordinate systemas in (5.2) with Mp replaed by m� we geth�+(P 0)jj�(0)j�+(P )i = e (P+n�+ + P�n��)F�(Q2): (5.11)



5.2. The eletromagneti form fator of the pion 55Here the matrix element an be expressed by one form fator F� only. The alula-tion of this matrix element in our model leads toF�(Q2) = 1I� Z 10 dz 2z(1� z) e�(z� 12 )2=2z2� e� z22 S2�Q2: (5.12)We ompare (5.12) to experimental data for F� from [76℄ in Fig. 5.2. As for theproton the transverse extension parameter S� an be �tted in the range 0 � Q �0:5GeV with the result S� = 0:68 fm. Using the analogue of relation (5.8) for thepion, this value gives an eletromagneti radius r�em = 0:64 fm, whih is onsistentwith the experimental value r�em = 0:663 � 0:006 fm [76℄. For values Q & 0:5GeVour �t beomes sensitive to the width of the longitudinal momentum distributionof the onstituents. For the pion, the best �t for the width of this distribution isgiven by z� = 0:5. The broader distribution ompared to the proton is related tothe smaller mass of the pion, whih is in agreement with the parametrisation of thehadron wave funtions in [37℄.



56 Chapter 5. Spae-like form fators in the model



Chapter 6The time-like pion form fator in adispersion approahOur aim in this hapter is to develop a dediated model of the time-like pion formfator. In ontrast to the previous hapter, where our main interest lay in theextration of the parameters zp; z�, here we want to give a detailed desription ofthe behaviour of the form fator. First we will give an overview of some models andthe regions in whih they are appliable. Then we will present our approah andalulate the phase and the modulus of the eletromagneti and harged urrentform fator. From �ts to experimental data we will obtain the masses and deayonstants of the neutral and harged �-mesons and the !-meson.We reall the de�nition of the eletromagneti form fator of the pion by thematrix element of the eletromagneti urrenth�+(P 0)jj�(0)j�+(P )i = e(P + P 0)�F�(q2); (6.1)where the momentum transfer is q = P 0 � P . The form fator is normalised asF�(0) = 1. As funtion of the omplex variable s = q2, the form fator F�(s) hasa ut in the omplex s-plane starting at the two-pion threshold s = 4m2� whihorresponds to two-pion intermediate states. There are also uts related to K �Kintermediate states and multi-meson states (4�, et). The form fator in the time-like region (s > 0) is F�(s+ i�) = jF�(s)jeiÆ(s); (6.2)where Æ(s) is the phase. For the theoretial desription of the form fator in di�erentregions of momentum transfers di�erent theoretial approahes are used.At large spae-like momentum transfers, �q2 !1, perturbative QCD (pQCD)gives rigorous preditions for the asymptoti behaviour of the form fator [77℄F�(q2) � 8�f��s(�q2)�q2 ; (6.3)57



58 Chapter 6. The time-like pion form fator in a dispersion approahwhere �s is the QCD oupling parameter and f� = 130:7�0:4MeV is the pion deayonstant de�ned by the relationh0j �d�5uj�+(P )i = iP �f�: (6.4)As the spae-like momentum transfer beomes smaller, the form fator turns outto be the result of the interplay of perturbative and nonperturbative QCD e�ets,with a strong evidene that nonperturbative QCD e�ets dominate in the region0 � �q2 � 10GeV2 [39℄. The piture based on the onept of onstituent quarkswhih e�etively aount for nonperturbative dynamis has proven to be eÆientfor the desription of the form fator in this region (see for instane [40℄). In hap-ter 5, we also have alulated F� for small spae-like momentum transfers in theframework of our nonperturbative model. This alulation is not intended as a pre-ise determination of the form fator, sine our model, in the formulation we usehere, was not developed with the attention on the alulation of form fators, butrather on the desription of soft high energy hadron-hadron sattering. However,our model has allowed us to give a reasonable desription of the experimental data.The agreement ould be improved by using a re�ned model, in partiular whenusing more sophistiated wave funtions and more general quark on�gurations todesribe the proton and the pion. Moving on to large time-like momentum transfers,s & 10GeV2, F�(s) an be obtained from the analyti ontinuation of the pQCDformula (6.3). At small time-like momentum transfers the situation is more om-pliated sine there dynamial details of the on�nement mehanism are ruial.Quarks and gluons are no longer the degrees of freedom of QCD leading to a simpledesription of the form fator. At time-like momentum transfers we are essentiallyin the region of hadroni singularities and typially one relies on methods based onhadroni degrees of freedom. In the region of interest to us here, 0 � q2 � 1:5GeV2,the lightest pseudosalar mesons are most important.There are many approahes to understand the behaviour of the pion form fatorat time-like momentum transfers from 0 to 1.5 GeV2. A time honoured approah isbased on the vetor meson dominane (VMD) model [41℄. In the simplest versionof VMD one assumes just the �-meson dominane, whih leads toF�(s) = M2�M2� � s; (6.5)where M� is the mass of the �-meson. This simple formula works with a goodauray both for small spae-like momentum transfers and time-like momentumtransfers below the �� threshold: �1GeV2 � s � 4m2�. For s near the �� thresholdone should take into aount e�ets of the virtual pions. In this region momenta ofthe intermediate pions are small and a onsistent desription of the form fator isprovided by hiral perturbation theory (ChPT) [42℄, the e�etive theory for QCDat low energies.For higher s, in the region of � and ! resonanes, a similar rigorous treatmentof the form fator is still laking, and one has to rely on model onsiderations.



59Contributions of the two-pion intermediate states may be onsistently desribed bydispersion representations. The appliation of dispersion relations has led to thefamous Gounaris-Sakurai (GS) formula [43℄ whih takes into aount �-meson �nitewidth orretions due to virtual pionsF�(s) = M2� � B��(0)M2� � s�B��(s) : (6.6)The funtion B��(s) orresponds to the two-pion loop diagram. The orrespond-ing Feynman integral is linearly divergent, but its imaginary part is de�ned in aunique way. The real part is then reonstruted by a doubly-subtrated dispersionrepresentation. The Gounaris-Sakurai presription to �x the subtration onstantsreads Re B��(s)js=M2� = 0; ddsRe B��(s)js=M2� = 0: (6.7)The phase of the form fatortan Æ(s) = ImB��(s)M2� � s� ReB��(s) : (6.8)for the GS presription agrees well with the experimental data in the region 4m2� <s < 0:9GeV2. But (6.6) gives too small a value (by � 15%) for jF�(s)j at s aroundM2� .On the other hand, one an onsider a simple VMD ansatz taking only the �-meson ontribution into aount. This should be a good approximation in the region0:5GeV2 � s � 0:8GeV2, exept for the narrow interval near s � M2! where the��! mixing e�ets are important [78℄. The simple VMD ansatz then is very similarto (6.6), but with the numerator replaed by the  ! � ! �� transition matrixelement: F�(s) = 12g�!��f� M�M2� � s�B��(s) : (6.9)Here g��� and f� are de�ned aording toh�(k1)�(k2)jT j�("; k)i = 12g�!�� "�(k1 � k2)�; (6.10)h0jJ�j�0("; k)i = f�M� "�; (6.11)where "� is the �-meson polarisation and k is the 4-momentum vetor. Now jF�(s)jfrom (6.9) desribes well the data for s � M2� . But extrapolating (6.9) to s = 0gives F�(0) � 1:15 in gross violation of the normalisation ondition F�(0) = 1.Thus, neither (6.6) nor (6.9) an desribe the form fator over the whole range0 � s � 1:5GeV2: namely, (6.6) leads to a too small value of jF�j at s = M2� ,



60 Chapter 6. The time-like pion form fator in a dispersion approahwhereas the form fator given by (6.9) is far above unity at s = 0. There weremany attempts to modify the vetor meson dominane or to use related approahesin order to bring the results on the pion form fator in agreement with the data(see [79, 80℄ and referenes therein).In the following we apply onsistently a dispersion approah to the pion formfator in a model with ���, �KK, !��, and gauge-invariant � � , ! �  and��! ouplings. Our approah allows a diret resummation of pion and kaon loops.Ambiguities related to subtrations in linearly divergent meson loop diagrams areabsorbed in the physial meson masses and oupling onstants. After taking intoaount the �� ! mixing e�ets the pion form fator in the range 0 � s � 1GeV2is well desribed both in magnitude and phase by a formula whih is similar to theVMD expressions (6.6) and (6.9) but avoids their pitfalls.6.1 The dispersion approahOur model makes use of onventional methods of dispersion theory. First we makean ansatz for the e�etive ouplings of the pseudosalar mesons, vetor mesons andthe photon. These ouplings are used in essene only to alulate the absorptiveparts of the amplitudes. The omplete amplitudes are then obtained by dispersionrelations and a Dyson resummation. We want to make lear from the outset that oure�etive ouplings disussed below are not to be ompared diretly to the e�etiveLagrangian of ChPT [42℄ and resonane theory in the framework of ChPT [81℄. Weshall see, however, that our model, used as explained above, respets all the knownresults from ChPT for the pion form fator. Thus our model an be seen as analternative to the one of [80℄ where ChPT results are extended to F�(s) in the range0 � s � 1:5GeV2 using again a resummation sheme.In our model pions interat with the �-mesons and generate in this way the �nite�-meson width. We do not inlude into onsideration diret four-pion ouplings. Ne-gleting of the latter goes along the line of the resonane saturation in the ChPT [81℄whih states that the oupling onstants of the e�etive hiral Lagrangian at orderp4 are essentially saturated by the meson resonane exhange. The �0-meson isoupled to the onserved vetor urrent of harged pions as follows:L��� = i2g ��y��� � ���y�� ��; (6.12)where �� is the onserved vetor �eld desribing the �-meson. We denote in thissetion g � g�!��. Mathing to the one-loop ChPT [42℄ leads to the relationg�!�� = 2M�=f�: (6.13)The photon is oupled to the harged pion through the usual minimal oupling,L�� = ie(�y��� � ���y�)A�: (6.14)



6.1. The dispersion approah 61

PSfrag replaements gggggg
gggg


 �� �� ������ �� ���� �� ��

�� ��
������ : : :+++++Figure 6.1: The pion form fator in the piture where pions interat via the �-meson exhange and generate in this way the �nite �-meson width. The photon isoupled to the harged pions through the usual minimal oupling, and the diretgauge-invariant �� oupling is assumed. No G-parity violating e�ets are inludedat this stage.We also add a diret gauge-invariant ��  oupling of the formL� = �14 ef�M�F ��G(�)�� ; (6.15)where F�� = ��A� � ��A�; G(�)�� = ���� � ����: (6.16)This model is similar to the model of [82℄. No G-parity violating !�� or diret� � ! ouplings are inluded at this stage. As explained above, we alulate theeletromagneti form fator in our model by the sum of the diagrams of Fig. 6.1.Summing all the pion loop insertions, we obtainF�(s) = 1 + f�2M� s � g + g2B�(s)M2� � s� B��(s)= M2� � (1� f�2M�g)s+ �12g B�(s)�B��(s)	M2� � s� B��(s) : (6.17)The quantities B��(s) and B�(s) orrespond to one-loop � �  and � � � self en-ergy diagrams generated by the pion loop. The imaginary parts of these diagramsan be alulated by setting the intermediate pions on mass shell. The full fun-tions B��(s) and B�(s) are onstruted from their imaginary parts by means of thespetral representation with a suitable number of subtrations and by adding the



62 Chapter 6. The time-like pion form fator in a dispersion approahorresponding subtration onstants. This is the usual dispersion theory proedurewhih we adopt sine the Feynman integral for the pion one-loop diagram leads toa divergent expression. For the �� intermediate states the imaginary parts of thefuntions B��(s) and B�(s) satisfy the relationsIm B��(s) = g2Im B��(s);Im B�(s) = 2g Im B��(s); (6.18)where Im B��(s) � I(s;m2�) = 1192�s�1� 4m2�s �3=2 : (6.19)For a realisti desription we have to take into aount also ontributions of K+K�and K0 �K0 intermediate states. The oupling onstant g�!KK annot be measureddiretly. We use the relation2g�!KK = g�!�� = g; (6.20)whih is valid in the SU(3) limit. Repeating the proedure desribed above, summingthe pion and kaon loops, we �nd with (6.20)Im B�� = g2�Im B�� + 14 (Im BK+K� + Im BK0 �K0)�= g2�Im B�� + 12Im BKK� ;Im B� = 2g�Im B�� + 12Im BK+K��= 2g�Im B�� + 12Im BKK� ; (6.21)and hene 12 g Im B�(s)� Im B��(s) = 0: (6.22)It follows from (6.22) that the di�erene 12gB�(s) � B��(s) is a polynomial in sdetermined by the subtration onditions. Hene the numerator of the pion formfator (6.17) is also a real polynomial. Therefore, the phase of the form fator isompletely determined by the denominator. The latter is the usual propagator ofthe �-meson with the �nite width orretions taken into aount.Let us now onsider subtration onstants. The funtion B�(s) desribes theoupling of the pion to the onserved eletromagneti urrent. Therefore we mustset B�(0) = 0; (6.23)



6.1. The dispersion approah 63suh that the harge of the pion remains unrenormalised by higher order orretions.The funtion B��(s) determines the behaviour of the �� elasti JP = 1� partial waveamplitude in whih the �-meson pole is known to be present in the zero-width limit.Therefore, we require Re B��(M2� ) = 0: (6.24)Without loss of generality the seond subtration onstant may be �xed by settingB��(s = 0) = 0: (6.25)Any other ondition would just lead to resaling of the parameters in the formula forthe form fator. Thus, the most general expression for the form fator inorporatingsubtration ambiguities in the �� and KK loop diagrams ontains three1 onstantsM2� , g, and f�: F�(s) = M2� � (1� f�2M�g)sM2� � s�B��(s) : (6.26)Here B��(s) = g2 s�R(s;m2�)� R(M2� ; m2�) + R(s;m2K)�R(M2� ; m2K)2 �+ ig2 �I(s;m2�) + I(s;m2K)2 � ; (6.27)with I(s;m2) de�ned by (6.19), andR(s;m2) = 1192�2 V:P: Z 14m2 ds0(s0 � s)s0 �1� 4m2s0 �3=2= 8<: 196�2 �13 + �2 + �32 log� 1��1+��� ; � =q1� 4m2s ; for s � 4m2;196�2 �13 � �2 + �3 � artan�1��� ; � =q4m2s � 1; for s < 4m2;(6.28)where V.P. means the priniple value. Let us point out that the numerator of theform fator in (6.26) is not a onstant, but a linear funtion of s. This s-dependeneappears as the diret onsequene of urrent onservation. We an write (6.26) inthe form of the modi�ed GS formulaF�(s) = 12g�!��f e�� (s)M�M2� � s� B��(s) (6.29)1Assuming more than two subtrations in the pion loop diagrams leads to more subtrationonstants. This is not ditated by the onvergene properties of the loop diagrams, but is stillpossible. We will not disuss suh a ase here.



64 Chapter 6. The time-like pion form fator in a dispersion approahwith the e�etive s-dependent ��  oupling onstantf e�� (s) = f� sM2� + 2(M2� � s)gM� : (6.30)One should be areful with the interpretation of this result: as is lear from (6.23),there is no diret transition of the �-meson to the real photon as a onsequene ofthe gauge invariant �� oupling. On the other hand, the e�etive oupling f e�� (s)is learly nonzero at s = 0. Therefore the pion form fator looks as if there wasdiret � �  oupling also for the real photon. This is just the usual vetor mesondominane. The latter thus emerges as the diret onsequene of our assumptionthat the vetor meson ouples to the same pion urrent as the photon. For furtherdisussions of the relationship between VMD and gauge invariane we refer to [82℄.If we use the ChPT relation (6.13), whih agrees perfetly with the measured valueof g�!��, then (6.30) leads to an interesting relationf e�� (s = 0) = f�: (6.31)Notie that the phase of F�(s) in (6.29) is still given by (6.8) and is ompletelydetermined by the funtion B��(s).6.2 The �� ! mixingIn setion 6.1 we disussed the � ontribution due to the bare � plus the e�ets of the�-meson width due to the light-meson loops to the pion form fator. This analysisis suÆient for desribing the pion form fator of the harged vetor urrent usingthe CVC relation. For the eletromagneti pion form fator it is neessary to takeinto aount the ��! mixing e�ets. The ! is oupled to the pions and the photonsimilarly to the �0-meson (see (6.12) and (6.15))L!�� = i2g!!�� ��y��� � ���y��!�; L! = �14 ef!M!F ��G(!)�� ; (6.32)!� being a onserved vetor �eld desribing the !-meson and G(!)�� = ��!� � ��!�.It has proven useful to lassify various ontributions to hadroni amplitudesaording to their formal order in the 1=N expansion [42℄, where N=3 is the numberof olours in QCD. In the language of the 1=N expansion the analysis of the previoussetion orresponds to taking into aount the leading order 1=N proess, whihorresponds to the resonane ontribution in a zero-width approximation, and thesubleading O(1=N) e�ets of the meson loops.2 Performing a resummation of thesemeson loops gave our dispersion desription of the form fator.2Reall that pion and kaon loop diagrams are of order 1=N and of order p4 of the momentumexpansion.
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+ ++++� � ����! ! ! ! !! KK ������Figure 6.2: Diagrams whih ontribute to the � � ! mixing amplitude B�!. Thediret �� ! mixing diagram is the only diagram whih emerges to leading order in1=N, meson-loop diagrams are subleading 1=N e�ets.A orresponding treatment of the �� ! mixing e�ets then requires taking intoaount the leading and subleading 1=N e�ets as well. To leading order in 1=N,meson loops do not ontribute and therefore the only e�et is the diret � � !transition desribed in terms of the diret oupling (see Fig. 6.2).At subleading 1=N order several meson loop diagrams shown in Fig. 6.2 emerge.We make use of spetral representations for loop diagrams, i.e. we alulate diretlythe imaginary parts and then reonstrut the full funtion by means of the spetralintegral with the relevant number of subtrations. Subtration onstants then areeither �xed by physial onstraints or determined by the experimental data. Letus point out an important feature related to our dispersion alulation: the diret� � ! oupling, whih is a leading 1=N proess and the real part of the � � !mixing loop diagrams at q2 =M2� , whih is a subleading 1=N proess, ontribute tothe form fator preisely in the same way, suh that only their sum has a physialmeaning. We therefore aount for the net e�et of these two ontributions by asingle subtration onstant and do not onsider the diret ��! oupling separately.We have analysed in setion 6.1 the �-meson self-energy funtion B�� whihdetermines the propagator of the interating �-meson. Let us now disuss a similarself-energy funtion of the !-meson B!! and the o�-diagonal � � ! funtion B�!whih desribes the �� ! mixing.The funtion B!! determines the ! propagator D!(s) = 1=(M2! � s � B!!) inthe absene of the �� ! mixing e�ets. The main ontribution to Im B!! is givenby the three-pion intermediate states. This Im B!! should then be inserted intoa dispersion integral to obtain B!!. However, beause of the small width of the !resonane, it is suÆient for our analysis to onsider as a simple ansatz a onstantB!! B!! = i�tot! M!: (6.33)Possible proesses whih ontribute to the � � ! mixing amplitude B�! = B!� areshown in Fig. 6.2. The oupling onstants whih determine the relative strength ofthe diagrams in Fig. 6.2 are shown in Table 6.1. One �nds (see also [83℄) thatthe main ontribution to the imaginary part of the �� ! mixing amplitude B�! isgiven by the diagrams with two-pion and two-kaon intermediate states. To obtainthe full B�! we write again a dispersion representation with two subtrations. The



66 Chapter 6. The time-like pion form fator in a dispersion approahRes. M [MeV℄ �tot [MeV℄ �e+e� [keV℄ Br(�+��) Br(�0)�0 769.0� 0.9 150.7� 2.9 6.77� 0.32 100% (6.8� 1.7)�10�4! 782.57� 0.12 8.44� 0.09 0.60� 0.02 (2.21� 0.3)% (8.5� 0.5)�10�2Res. fV [MeV℄ gV!2��0 152� 5 11.8� 0.2! 45.3� 0.9 0.4� 0.02Table 6.1: Masses and rates for vetor mesons from [11℄ and the orrespondingdeay onstants. Reall the SU(2)-limit relations f� = 3f!.imaginary parts of these diagrams an be alulated in analogy to (6.18) in termsof the oupling onstants gV!PP with V = �; !, P = �;K de�ned aording to therelation hP (k1) �P (k2)jT jV ("; k)i = 12gV!PP"(V )� (k1 � k2)�:For instane, the imaginary part of the diagram with the �� intermediate state isequal to g�!��g!!��I(s;m2�).The same arguments as used to show the relation (6.22) between Im B� andIm B�� lead to g�!��Im B�!(s)� g!!��Im B��(s) = 0: (6.34)Hene, the ombination g!!��B�� � g�!��B�! is a polynomial of �rst order in s.The �� ! mixing e�ets are sizeable only in the narrow viinity of s = M2!, so wemay set g�!��B�! � g!!��B�� = s �; (6.35)and the value of � will be found from the �t to the pion form fator. As we haveexplained above, the real part of the funtion B�! at s � M2�;! inludes the diret�� ! oupling.6.3 The eletromagneti pion form fator with�� ! mixingIn the problem of the � � ! mixing, the onstant g!!2� is a natural small param-eter, and the expansion of the pion form fator in powers of this parameter anbe onstruted. We an safely neglet all terms of order g2!!�� and limit ourselvesto the �rst order analysis. The diagrams whih desribe the ontributions to the
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Figure 6.3: Diagrams for the pion form fator whih emerge at �rst order of theexpansion in g!!��. In this �gure the � and ! propagators areD� = 1=(M2��s�B��)and D! = 1=(M2! � s� B!!), respetively.form fator of �rst order in g!!2� are shown in Fig. 6.3. Adding the orrespondingexpressions to the result (6.29) we get for the pion form fatorF�(s) = 12g�!��f e�� (s)M�M2� � s� B��(s) + 12g!!�� f!sM!M2! � s� B!!(s) � M2� � s+� � sM2� � s�B��(s)�+O(g2!!��):(6.36)We use this expression for the numerial analysis of the data for the eletromagnetipion form fator in the next setion.6.4 Numerial analysisIn this setion we apply the formulas obtained to the analysis of the data on theeletromagneti and harged urrent pion form fators and extrat in this way theresonane masses and oupling onstants. We inlude the ontributions of the �(770)and !(782) resonanes and neglet the higher vetor resonanes �(1450) and �(1700)(for a disussion of these latter see [84℄). As an be seen from the analysis of [85℄,the inuene of the latter upon the pion form fator is negligible in the region s � 1GeV. We therefore extrat the � and ! parameters making use of the form fatordata for s � 1 GeV.6.4.1 The eletromagneti pion form fatorWe �t the available data on the phase [86℄ and the modulus [76, 87℄ of the eletro-magneti pion form fator to (6.36) whih inludes the � � ! mixing e�ets. The



68 Chapter 6. The time-like pion form fator in a dispersion approahform fator turns out to be weakly sensitive to g!!�� and f! for whih we use thevalues from Table 6.1.The resonane parameters turn out to be rather sensitive to the upper limitps � Qupper of the data points inluded into the �t proedure. The extratedmasses and ouplings from the best �t of the form fator, whih was done separatelyfor the phase and the modulus, are shown in Table 6.2 and 6.3, respetively. Thisdependene on Qupper might signal that the errors in the extrated masses andoupling onstants are in fat sizeably greater than those quoted in [11℄. Obviously,the error estimates provided by the popular Fumili [88℄ program should be takenwith some are.Qupper, MeV 710 (5 pts) 775 (10 pts) 850 (15 pts) 965 (20 pts)M�0 , MeV 772.7� 1.3 773.4� 0.8 773.0� 0.6 771.1� 0.6g�0!�+�� 12.05� 0.07 12.0� 0.05 12.0� 0.04 11.87� 0.04Table 6.2: The upper limit of the ps-range of the data from [86℄ used for �ttingthe phase of the pion form fator and the orresponding �tted parameters M� andg�!2�. Error estimates as given by the Fumili program are shown.960 (40 pts [76℄Qupper [MeV℄ 820 (27 pts) 950 (40 pts) 1000 (45 pts) + 45 pts [87℄)M�0 [MeV℄ 774.7� 0.3 776.1� 0.2 773.6� 0.2 775.5� 0.1f�0 [MeV℄ 147.7� 0.2 148.2� 0.1 149.0� 0.1 149.4� 0.1g�0!�+�� 11.37� 0.03 11.38� 0.01 11.7� 0.01 11.5� 0.05M! [MeV℄ 782.5� 0.3 781.3� 0.2 781.9� 0.2 782.5� 0.2� 0.180� 0.007 0.191� 0.006 0.183� 0.006 0.170� 0.007Table 6.3: The upper limit of the Q-range of the data [76℄, used for �tting themodulus of the pion form fator and the orresponding �tted parameters M�, f�,g�!2�, M!, and �. The last olumn shows the result of the �t to the ombineddata on jF�j from [76℄ and [87℄. Error estimates as given by the Fumili programare shown.Our best estimates for the � and ! parameters from a ombination of the �tsto the phase and the modulus are presented in Table 6.5. We obtain these valuesas follows: the parameter values from the last olumns of Tables 6.2 and 6.3 shouldbe the most reliable ones, sine they orrespond to the biggest data sets. On theother hand, the errors given by the Fumili program annot be trusted. We tookthe average of the values for M0� and g�!��, weighting the values from the modulus�t by a fator 2/3 and those from the phase �t by 1/3. The errors in Table 6.5 areour eduated guesses.The pion elasti form fator alulated with the entral values of the parametersfrom Table 6.5 is shown in Fig. 6.4. Both the phase and the magnitude of the formfator are well desribed, exept for the phase at ps > 0:9 GeV.
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70 Chapter 6. The time-like pion form fator in a dispersion approah6.4.2 The harged urrent pion form fatorThe amplitude of the weak transition �� ! ���0�� an be parametrised in termsof the two �� ! �0 transition form fators as followsh�0(p0)j�u�dj��(p)i = 1p2F+� (q2)(p0 + p)� + 1p2F�� (q2)q�: (6.37)In the isospin limit F�� = 0 and F+� = F�. These relations should work wellfor all q2 exept for the region of the � and ! resonanes: the form fator F�ontains ontributions of the �0 and ! resonane, whereas the ontribution analogousto ! is absent in F+� . Thus, the harged urrent form fator F+� as measured inthe �� ! �0���� deay is given in our model by the the modi�ed � dominaneformula (6.29). Comparison with the ALEPH [85℄ and CLEO [89℄ data allows theextration of the masses and oupling onstants of the ��. We give the orrespondingnumbers in Table 6.4 and plot the form fator in Fig. 6.5.Qupper [MeV℄ 760 (18 pts) 900 (23 pts) 1025 (28 pts)M�� [MeV℄ 768.8� 0.3 775.1� 0.1 776.9� 0.1f�� [MeV℄ 144.9� 0.3 150.3� 0.1 150.1� 0.1g��!�0�� 11.22� 0.02 11.34� 0.01 11.80� 0.05Table 6.4: Fit to the harged urrent pion form fator from the CLEO data [89℄ onthe �� ! ���0�� deay. The upper limit Qupper of the ps-range of the data usedand the orresponding �tted parameters for the �� meson. Error estimates as givenby the Fumili program are shown.
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6.4. Numerial analysis 71To onlude this hapter we summarise our �nal results for the �0; �� and !parameters whih we extrated from �ts to the data on the eletromagneti [76,86,87℄and harged urrent [85, 89℄ pion form fators in Table 6.5. The masses, the weakdeay onstants and the pioni oupling onstants of the neutral and harged �-mesons are found to be equal within the errors. Let us point out that our �ttedvalue for g�!2� agrees perfetly with the ChPT predition g�!2� = 2M�=f�=11.7.We notie that our entral values of the � masses are 2-3 MeV higher than theorresponding numbers obtained from the same reations by [11℄. A omparison ofthe data and the theoretial urves for the eletromagneti and harged urrent pionform fators is presented in Fig. 6.6. We point out that the � � ! mixing gives asizeable ontribution to the eletromagneti form fator in the region of the � and !resonanes, where it leads to an inrease of jF�j2 by 10% at s = M2� and by almost30% at s =M2!.M�� [MeV℄ M�0 [MeV℄ M! [MeV℄ f� [MeV℄ g�!�� �775� 2 774� 2 782:0� 0:5 149� 1 11:6� 0:3 0:17� 0:02Table 6.5: The masses and deay onstants of the vetor mesons and the � � !mixing parameter � (see (6.35)) as obtained by our analysis
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Chapter 7ConlusionsIn this work we examine soft high energy reations in the framework of nonper-turbative QCD. In the �rst part we alulate total and di�erential ross setionsfor elasti and inelasti di�rative sattering. In our model we start from a mi-rosopi desription of the sattering of quark-antiquark and quark-diquark wavepakets and use funtional integral methods to obtain expressions for the satteringamplitudes. The orrelation funtions of light-like Wegner-Wilson loops governingthese amplitudes are evaluated in the framework of the model of the stohasti va-uum [23{26℄. The hadron-hadron sattering amplitudes are obtained by multiplyingthe parton sattering amplitudes with suitable hadroni wave funtions [37℄. Both amatrix umulant expansion for the orrelation funtion of two Wegner-Wilson loopsas developed in [30℄ and an expansion method [24, 27℄ are used.The free parameters of our model are those of the model of the stohasti vauum:G2, a and �, and the ones of the wave funtions: Shi and zhi , determining thewidth of the transverse and longitudinal momentum distributions of the onstituentsof the hadrons, respetively. These parameters have been determined in previouswork [24, 30℄ on elasti sattering. The extension parameters Shi are allowed todepend on the .m. energy aording to (4.1) and (4.3) respetively. In this sensedi�erent hadrons are haraterised through their radii, whih ome out lose to theorresponding eletromagneti radii of the hadrons for energies ps � 20 GeV. Thevalues for zhi are obtained from a alulation of form fators in our model.With all parameters �xed, integrated and di�erential ross setions for proton-proton and proton-pion sattering are alulated and ompared to experimentalresults [58{63,66{68℄. Our model does not distinguish between pp and p�p satteringor p�+ and p�� sattering, respetively.The alulated integrated elasti ross setions agree with the experimental val-ues within the numerial and experimental errors for a wide range of .m. energiesstarting at about ps = 20 GeV up to the Tevatron energy ps = 1800 GeV. Thedi�erential elasti ross setions are desribed reasonably well over many orders ofmagnitude by the matrix umulant method, however, this method underestimatesthe data for small jtj. On the other hand the expansion method gives a good73



74 Chapter 7. Conlusionsdesription of the di�erential ross setions for jtj . 0:2GeV2 but overshoots thedata for larger values of jtj. As a onsequene of the integrated ross setions beingmainly due to the ontributions from small jtj, the expansion method gives betterresults here whereas the matrix umulant method tends to underestimate the exper-imental data. The di�erene between the results obtained from both methods anbe seen as a theoretial error estimate of our model, as they use di�erent approxi-mation shemes in the evaluation of the orrelation funtion. In the approximationwe use in this work we have C = P = +1 exhange only.Furthermore the rise of the integrated ross setions in single di�rative disso-iation as a funtion of ps is alulated. Our alulated ratio �sd=(�el + �sd) isin rough agreement with experiment. The experimentally observed behaviour thatthe di�rative dissoiation part of the ross setion inreases more slowly with psthan the elasti one is reprodued qualitatively in our alulation. The di�erentialdistribution an be reasonably well desribed by the expansion method. The diÆ-ulties we enounter in the desription of d�sd=dt by means of the matrix umulantmethod, i.e. the formation of a depression at jtj � 0:3GeV2, are investigated ina seond approah. This approah uses two-dimensional harmoni osillator wavefuntions instead of plane waves for the desription of the di�rative �nal state andon�rms the results found before, but allows us to analyse the origin of the observeddepression. Again the proess is mediated by C = P = +1 exhange only in ourapproximation.Turning to double di�rative exitation pp ! N(1535)N(1535) we study C =P = �1 exhange in the framework of our model, whih arises due to the symmetriesof the �nal state wave funtions. The qualitative features of our preditions forthe integrated and di�erential ross setions resemble the ones of the results fromC = P = +1 exhange, the exeption being a rather slow derease of the di�erentialdistribution with inreasing momentum transfer. This behaviour is also knownfrom the heliity amplitude Ap1=2 measured in the ontext of the eletromagnetip � N(1535) transition form fator. However, due to restritions of our model, inpartiular the simple ansatz for baryons, whih are given by wave pakets of a quarkand a salar diquark, we annot alulate this heliity amplitude in our model andtherefore are not able to ompare to experimental data.The last hapter in the �rst part of our work deals with form fators at smallspae-like momentum transfers, alulated in the framework of our model. Ourresult for the isovetor Dira form fator of the proton and the eletromagnetiform fator of the pion, as well as the eletromagneti radii extrated from them,ompare reasonably well to experimental data.To summarise the �rst part, our model is quite well suited to desribe inelastidi�rative hadroni reations at high .m. energies (ps & 20 GeV) and small mo-mentum transfer. Further progress ould be made when inluding higher umulantterms in (3.16) whih would ontribute to both C = P = +1 and C = P = �1exhange. The hope is that these ontributions ould, at least partly, �ll up the dips



75enountered in various ontributions to the di�erential ross setions and thus leadto an improved desription of the data. Also a more re�ned hadron model ouldhelp avoid some shortomings of the model as disussed in partiular in the ontextof the spin-ip ontribution to the form fator.The upoming experiments e.g. at RHIC will be a rih soure for new experi-mental data for both single and double di�rative dissoiation in hadroni reationsat high .m. energies. Therefore the study of inelasti di�rative sattering willremain an interesting and instrutive �eld of work, where e�ets of nonperturbativeQCD an be studied.In the seond part of our work we analyse the eletromagneti and hargedurrent pion form fators at time-like momentum transfers in a dispersion approah.Here we onsider a model with ���, �KK, !��, !KK and gauge-invariant � � and ! �  ouplings. The pion form fator is obtained by a resummation of pionand kaon loops leading to the �nite width of the �-meson. The resulting expressionfor the pion form fator takes the form of the vetor meson dominane formula withone important distintion: the e�etive deay onstant f e�� depends linearly on themomentum transfer squared. We also take into aount the � � ! mixing in theeletromagneti pion form fator.The values of the �0 and ! parameters are extrated from the �t to the eletro-magneti pion form fator [76, 86, 87℄ at 0 � ps � 1:0GeV where ontributions ofhigher vetor meson resonanes are negligible. The �� ! mixing is found to give asizeable ontribution to the eletromagneti form fator in the region of the � and !resonanes, where it leads to an inrease of jF�j2 by 10% at s = M2� and by almost30% at s =M2!.The values of the �� parameters are obtained by the �t to the harged urrentpion form fator measured in � deay [85, 89℄.Our best estimates for the � and ! parameters are presented in Table 6.5. Themasses, the weak deay onstants and the pioni oupling onstants of the neutraland harged �-mesons are found to be equal within the errors andour �tted valuefor g�!2� agrees perfetly with the ChPT predition g�!2� = 2M�=f�=11.7.To summarise the seond part of our work, we have presented a model whihgives a good desription the eletromagneti and harged urrent pion form fatorin the region 0 � ps � 1:0GeV inluding the e�ets due to � � ! mixing. The �and ! parameters whih we obtain from our model are within errors in agreementto experimental data [11℄.



76 Chapter 7. Conlusions



Appendix AConventionsThroughout this work we use natural units, in whih~ =  = 1: (A.1)The �ne struture onstant of the eletromagneti interation is given in Heaviside-Lorentz units by �e:m: = e24� � 1137 : (A.2)Latin indies i; j; k et. generally run over the three spatial oordinate labels, greekindies �; �; �; : : : generally run over the four spaetime oordinate labels.The spaetime metri g�� is diagonal with elementsg00 = 1; g11 = g22 = g33 = �1: (A.3)The Dira matries � are de�ned so that�� + �� = 2g��: (A.4)Moreover we de�ne 5 = i0123;��� = i2(�� � ��): (A.5)By letters in boldfae we denote spatial three-vetors, e.g. x;p. A subsript Tdenotes that we are dealing with two-dimensional transverse vetorsx = � xTx3 � ; xT = � x1x2 � : (A.6)77



78 Appendix A. Conventions
Light-one variables are de�ned byx� = x0 � x3: (A.7)The measure of integration then is given byd4x = dx0dx1dx2dx3 = 12dx+dx�d2xT : (A.8)



Appendix BConnetorsWe de�ne a onnetor V (y; x;Cx) between the points x and y along the urve Cx asthe non-abelian generalisation of the Shwinger string of QEDV (y; x;Cx) := P�exp(�ig ZCx dz�G�(z))� : (B.1)Here P denotes path ordering. This onnetor has the following properties:� The onnetor of the sum of two adjoined urves C1 and C2 is equal to theprodut of the onnetors of the single urves:V (z; x;C1 + C2) = V (z; y;C2) � V (y; x;C1): (B.2)� If Cx is the urve onneting x and y and �Cx is the same urve but withreversed orientation, i.e. running from y to x, thenV (y; x;Cx) � V (x; y; �Cx) = 1: (B.3)� Hermitian onjugation orresponds to path reversal:V y(y; x;Cx) = V (x; y; �Cx) (B.4)By applying onnetors we an shift various quantities between two points inspae-time in a gauge ovariant way. E.g. we de�ne the shifted gluon �eld strengthtensor Ĝ whih has been transported from x to y along the urve Cx byĜ��(y) := V (y; x;Cx)G��(x)V �1(y; x;Cx): (B.5)Comparing to (2.25) we reognise that the onnetors are in fat the eikonal phaseswhih we have introdued in the disussion of quark-quark sattering in hapter 2.79
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Appendix CCalulation of form fators in themodelStarting point for the form fator alulation is the matrix element of the thirdomponent of the isospin urrent at x = 0J�3 � hh3(P 0)jj�3 (0)jh1(P )i (C.1)with j�3 (x) =X � (x)��12� 3� (x): (C.2)Here P denotes the sum over quark �elds u; d and � 3 is the third Pauli isospinmatrix. The hadrons h1; h3 are supposed to move in positive x3-diretion withP+ = P 0+ !1 (see (5.2)). In analogy to the desription of hadron-hadron satter-ing we therefore denote the inoming hadron by h1 and the outgoing hadron by h3.The steps required to ompute the form fator from this expression are ompletelyanalogous to those disussed in hapter 2 that lead to the T -matrix element (2.49),with the di�erene that now there are additional ontrations between the quarksand diquarks (or antiquarks in the ase of mesons) of the hadrons h1; h3 and thequark �elds of the urrent j�3 when applying the LSZ redution formalism. By on-sidering the isospin urrent we ensure that ontributions whih ontain subdiagramsarising from ontrations between the quark �elds of the urrent drop out beausethey are proportional to tr � 3 = 0. Now we desribe the form fator alulation forthe �+ meson, modelled as u �d wave paket.Using our notation from hapter 2 we obtain J�3 (C.1) by �rst alulating thematrix element of j�3 between q�q states and then folding with the wave funtions ofthe wave pakets.J�3 = Z d2�3T Z 10 dz3 1(2�)3=2 1p2 Æs3;�s03 ~'�3(z3;�3T ) 1p3 ÆA3A03Z d2�1T Z 10 dz1 1(2�)3=2 1p2 Æs1;�s01 ~'1(z1;�1T ) 1p3 ÆA1A01hu �djj�3 ju �di; (C.3)81
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�
�d u

uj�(0) �j
�(0) �d u�d(a) (b)Figure C.1: The two ontributions to the matrix element hu �djj�3 ju �di. The dashedlines indiate that the loops have been losed by the wave funtions.with hu �djj�3 ju �di � hu(p3; s3; A3) �d(p03; s03; A03)jj�3 (0)ju(p1; s1; A1) �d(p01; s01; A01)i; (C.4)where si; Ai are spin and olour indies, respetively and ~'1;3 are the Fourier trans-forms of the wave funtions (3.18)~'i(z;�T ) = 12� Z d2xT e�i�T �xT'i(z;xT ): (C.5)Applying the LSZ redution formalism we an express the matrix element hu �djj�3 ju �difrom (C.4) as an integral over the quark 6-point-funtion. We get only two termsdepited graphially in Fig. C.1 whih are to be interpreted as follows. We onsider a�xed gluon bakground. The quark and antiquark travel in this bakground and theurrent either hooks onto the quark line (Fig. C.1a) or the antiquark line (Fig. C.1b).As in hapter 2 the matrix element (C.4) is obtained by averaging over all gluonpotentials with the measure given by the funtional integral (2.16). In the highenergy limit for u and �d the sattering amplitudes in the �xed gluon bakgroundredue to Wegner-Wilson line operators whih are losed to a loopW+ by the mesonwave funtions. This is indiated by the dashed lines in Fig. C.1. Combiningeverything we obtainh�+(P 0)jj�3 (0)j�+(P )i = P1+n�+2 Z 10 dz Z d2xT '�3(z;xT )'1(z;xT ) ei(1�z)qT �xT + e�izqT �xT!�W+(12xT ;xT )�G : (C.6)



83A straightforward alulation in the MSV shows that the expetation value ofthe orrelation funtion of one Wegner-Wilson loop is equal to 1. By a shift in theintegration variable the d2xT integration an be redued to a Gaussian integral overthe wave funtions and we �nd the �nal result for the matrix element (C.1)h�+(P 0)jj�3 (0)j�+(P )i = P1+n�+I� Z 10 dz 2z(1� z) e�(z� 12 )2=2z2h e� z22 S2hq2T : (C.7)Let us turn to the proton form fators now. In our simple ansatz the protononsists of a quark and a salar diquark, whih should be favoured above the vetordiquark due to dynamial reasons [48℄. The spin of the proton then is arried by thequark. This together with the spin onservation on the parton level draws onlusionthat, in our model, we get for the matrix element of j�3 between proton states anexpression similar to (C.7):hp(P 0; s0)jj�3 (0)jp(P; s)i = P+n�+�ys0F1v(Q2)�s (C.8)with F1v(Q2) given in (5.6). Thus we get only a spin-non-ip and no spin-ipontribution in the matrix element (5.3), that is, our model gives F2v(Q2) = 0. Thisis ertainly not a very good approximation. But on the other hand the spin-ip partin (5.3) is suppressed by jqT j=(2Mp) for qT ! 0. Thus the matrix element (5.3) isstill reasonably desribed by the model for small enough jqT j.Here some remarks on the eletromagneti p � N(1535) transition form fatorare due. The transition urrent an be written in terms of the analogues F1�; F2� ofthe Pauli and Dira form fator, respetively, (see [90, 91℄)hN(1535)(P 0; s0)jj�(0)jp(P; s)i= e �us0(P 0) �5�� �Q2M� +MP + q��F1�(Q2) + i5���q�F2p(Q2)�us(P ); (C.9)whereM� is the mass of the N(1535). A similar alulation to the one presented herefor the form fators of the proton shows that again F1� multiplies the spin-non-ippart and F2� the spin-ip part. Sine we annot obtain the spin-ip ontributionin our model as shown above, we �nd F2�(Q2) = 0. We have argued that it is notdeisive for the desription of the eletromagneti form fators of the proton at smallmomentum transfers that the spin-ip ontribution in our model is idential to zero.However, this is di�erent for the eletromagneti p�N(1535) transition form fator.The quantities that are measured experimentally are the heliity amplitudes Ap1=2and Sp1=2. Eah of these amplitudes are desribed by linear ombinations of F1� andF2� and in this ontext F2� is not suppressed ompared to F1�. On the ontrary, forAp1=2, whih is due to transverse photons with heliity � = +1, F1� is suppressed byjqT j2=(M�+MP ) for qT ! 0 (see [91℄). Therefore, we annot alulate in a sensibleway a quantity whih we ould ompare to experimental data. We only note that



84 Appendix C. Calulation of form fators in the modelthe experimentally observed slow derease of Ap1=2 with Q2 (see [92℄ and referenestherein) is in qualitative agreement to our alulation of the di�erential ross forpp! N(1535)N(1535), where we also �nd a relatively at distribution in jtj.To summarise, we have outlined in this appendix a alulation of isovetor formfators using the same methods as for the sattering proesses. The results are inessene as in [69℄ taking our simple ansatz for the wave funtions of the hadrons intoaount.
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