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Weiche diffraktive Hochenergiestreuung und Formfaktoren
in nichtperturbativer QCD

Zusammenfassung

In der vorliegenden Arbeit untersuchen wir weiche Hochenergie-Reaktionen im Rah-
men nichtperturbativer Modelle. Dazu verwenden wir ein auf einem Funktionalin-
tegral-Ansatz beruhendes Modell und leiten die Streuamplituden her, deren wesent-
licher Bestandteil Erwartungswerte von lichtartigen Wegner-Wilson Schleifen und
Linien sind, die dann im Modell des stochastischen Vakuums berechnet werden.
Mesonen beschreiben wir in einem einfachen Quark-Antiquark Bild, fiir Baryonen
nehmen wir eine Quark-Diquark Struktur an, als Hadron-Wellenfunktionen verwen-
den wir einen Wirbel-Stech-Bauer Ansatz. Aus den Streuamplituden berechnen wir
integrierte und differentielle Wirkungsquerschnitte sowohl fiir elastische und diffrak-
tive Proton-Proton als auch fiir Proton-Pion Streuung bei hohen Schwerpunktsen-
ergien und kleinen Impulsiibertragen und vergleichen mit experimentellen Daten.
Abhéngig von der Symmetrie des jeweiligen Endzustandes erhalten wir entweder
C = P = +1 (Pomeron) oder C' = P = —1 (Odderon) Austausch. Des weiteren
berechnen wir im Rahmen des Modells die Isovektor-Formfaktoren des Protons und
des Pions bei raumartigen Impulsiibertragen. Im abschliessenden Kapitel verwen-
den wir einen Dispersionsrelations-Ansatz zur Berechnung des Pion Formfaktors
bei zeitartigen Impulsiibertragen. Aus dem Vergleich mit experimentellen Daten
bestimmen wir die Massen und Kopplungskonstanten der p- und w-Mesonen.

Soft diffractive high energy scattering and form factors in
nonperturbative QCD

Abstract

In this work we study soft high energy reactions in the framework of nonperturbative
models. Using a functional integral approach we derive the scattering amplitudes,
which are governed by expectation values of light-like Wegner-Wilson loops and lines,
which then are then evaluated in the model of the stochastic vacuum. We describe
mesons in a simple quark-antiquark picture, for baryons we assume a quark-diquark
structure, as hadronic wave functions we apply a Wirbel-Stech-Bauer ansatz. In the
following we calculate integrated and differential cross sections from the scattering
amplitudes, as well for elastic and diffractive proton-proton as for proton-pion scat-
tering at high centre of mass energies and small momentum transfers and compare
to experimental data. Depending on the symmetry of the respective final state we
get either C'= P = +1 (pomeron) oder C' = P = —1 (odderon) exchange. Further-
more we calculate the isovector form factors of the proton and the pion at space-like
momentum transfers. In the final chapter we use a dispersion approach to calculate
the pion form factor at time-like momentum transfers and determine the masses and
coupling constants of the p- and w-mesons from a comparison to experimental data.
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Chapter 1

Introduction

Today it is common belief that Quantum Chromodynamics (QCD) is the theory
describing the physics of the strong interaction. QCD is a Yang-Mills theory [1]
with the gauge group SU(3). The Lagrangian of QCD is constructed from the basic
degrees of freedom, the quarks and gluons, in terms of which we should be able to
describe all strong processes. Due to the non-abelian structure of SU(3), both quarks
and gluons carry colour-charge. But in the real world we observe neither quarks nor
gluons as free particles. Instead, the particles we see in nature are hadrons, which are
colourless objects, in which the quarks and gluons are confined. The problem now is
to find a suitable transition from the level of quarks and gluons, whose transactions
are described by the QCD Lagrangian, to the level of hadrons, which are seen in
the real world processes. For certain circumstances we can solve this problem and
derive results from first principles, starting from the Lagrangian.

One case where this is possible is the field of short-distance phenomena. There,
all occurring momentum scales are much larger than the QCD scale parameter
Aqep = 200MeV. Due to asymptotic freedom [2], the QCD coupling parameter
becomes small for large momentum scales and therefore we can use perturbative
methods, which allow us for example to calculate the total cross section in electron-
positron annihilation or the total hadronic decay rate of the Z-boson. Another
example is the calculation of parton distribution functions for large Q? by means of
the DGLAP equation [3], which has been derived from perturbative QCD.

For long-distance phenomena, i.e. when all occurring momentum scales are only
of order Aqcp or smaller, the QCD coupling becomes too large and perturbation
theory breaks down. This is the regime of nonperturbative QCD, where we have to
use numerical methods to obtain results from first principles. One such numerical
method is lattice QCD [4,5]. Typical quantities that are calculated in this context
are e.g. hadron masses.

The subject of this work are soft high energy reactions, which are neither pure
short-distance, nor pure long-distance phenomena, because we deal with two mo-
mentum scales: the centre of mass (c.m.) energy is becoming large, \/s = 10 GeV,
the momentum transfer stays finite, \/m < 1 GeV. Therefore, neither perturbation

1



2 Chapter 1. Introduction

theory nor numerical methods such as lattice QCD can be applied directly and we
have to revert to models.

Until today, of course a lot of models have been developed to describe high
energy hadron-hadron scattering. Examples are the geometric model [6], the valon
model [7], topological expansions and strings [8], perturbative field theoretical calcu-
lations [9] and the work of Cheng and Wu on the behaviour of high energy scattering
amplitudes in quantum field theory based on perturbative calculations (see [10] and
references therein).

The experimentally observed increase of total cross sections for hadronic reac-
tions with the c.m. energy [11], starting at about /s = 10 GeV, has been described
phenomenologically by Donnachie and Landshoff [12] in the context of Regge the-
ory [13]. In this picture the pomeron behaves like a photon with C' = +1 and
couples to single quarks, the transition to the hadron level then leads to the addi-
tive quark rule [14]. The rise of the total hadronic cross sections can be described by
a pomeron with an intercept slightly larger than one [11,12]. For inelastic diffraction,
the pomeron-photon analogy was applied in [15] to relate the cross section of these
reactions in a quantitative way to the structure functions of deep inelastic electron-
proton scattering. For reviews on nonperturbative models we refer to [16-19].

A new nonperturbative description of soft hadronic high energy reactions, start-
ing from a microscopic level, was developed in [20] where in the case of an abelian
gluon model the pomeron properties were related to nonperturbative aspects of
the vacuum like the gluon condensate introduced by Shifman, Vainshtein and Za-
kharov [21]. These methods were generalised to QCD in [22]. In this model the ob-
jects governing the scattering amplitudes are correlation functions of Wegner-Wilson
lines and loops [23,24], which are then evaluated in the model of the stochastic vac-
uum [25] as formulated in Minkowski space in [23, 24, 26].

This method has been applied to various reactions, for example exclusive vector
meson production [27-29], elastic hadron-hadron scattering [30], and photo- and
electroproduction of pseudoscalar and tensor mesons [31,32]. In this work we will
extend the model to the description of inelastic diffractive hadron-hadron scattering.

In chapter 2 we present the basic principles of our model. Progressing as in [22-
24,26-30,33,34] we start from quark-quark scattering, where we apply a functional
integral approach and use an eikonal expansion to derive an expression for the quark-
quark scattering amplitudes at high energies and small momentum transfers. The
transition to the hadron level is performed by folding with suitably defined wave
functions. In this work, the constituent configuration of baryons is assumed to be
of the quark-diquark type for the reasons given in [35,36]. Then baryons act as
colour dipoles like mesons. Moreover we use two different models for the diffractive
final state X when describing inelastic diffractive scattering processes. The soft high
energy hadron-hadron scattering amplitudes for both elastic and inelastic diffractive
scattering are given at the end of this chapter.

The evaluation of the scattering amplitudes is the topic of the next chapter. We
first give a brief summery of the properties of the model of the stochastic vacuum and



then apply it in its Minkowskian formulation to calculate the correlation functions of
the light-like Wegner-Wilson loops, where we use two approaches. Then we discuss
the hadronic wave functions [37] for s- and p-wave states. Furthermore we define
wave functions incorporating the eigenfunctions of a two-dimensional harmonic os-
cillator which we need for one of the methods describing the diffractive final state
in inelastic diffractive scattering. Finally, we analyse symmetry properties of the
scattering amplitudes after inserting the wave functions and the expressions which
we obtain from the evaluation of the loop-loop correlation functions in the different
approaches. Based on symmetry considerations we find that our model gives either
C = P = +1, i.e. pomeron, exchange, or C' = P = —1, i.e. odderon, exchange,
depending on which reaction in particular we are studying. To be able to study
odderon exchange in the framework of our model in a purely hadronic reaction, we
have chosen a specific reaction which should have a clear experimental signature.

In chapter 4 we calculate integrated and differential cross sections from the scat-
tering amplitudes derived in chapters 2 and 3. We concentrate on proton-proton
and proton-pion scattering and compare our numerical results obtained from both
approaches to experimental data. In the case of pp-scattering we briefly review
previous results on the differential elastic cross section from [30]. We then turn to
single diffractive dissociation pp — pX. Most of the results shown in this context
are the basis for the publication [38], where in addition to hadron-hadron scatter-
ing also photo- and electroproduction of p’-mesons is discussed. Furthermore we
study the double diffractive excitation of the proton pp — N(1535)N(1535) which
is mediated by odderon exchange and give our predictions for the differential and
integrated cross section for this reaction. For proton-pion scattering we also start
with a review of the differential elastic cross section from [30] and then continue
with the study of single diffractive dissociation of the pion pr — pX.

The next chapter deals with the isovector proton and pion form factors at small
space-like momentum transfers. In the region of interest to us here, 0 < —¢? <
10 GeV?, the form factor is dominated by nonperturbative QCD effects [39], and can
for example be described by a picture based on the concept of constituent quarks
which effectively account for nonperturbative dynamics [40]. In this region all pre-
conditions for the application of our nonperturbative model are fulfilled. Therefore
we can calculate the proton and pion form factors in the framework of our model
and extract the electromagnetic radii from fits to experimental data. However, we
do not intend to perform a precision calculation of the form factors but apply the
calculation mainly to extract parameters we need in the definition of our hadron
wave functions. The results obtained here are also published in [38].

The aim of chapter 6 is to study the pion form factor for small time-like mo-
mentum transfers. In this region we can no longer apply the nonperturbative model
which we have used so far. There are many approaches to describe the time-like pion
form factor, including vector meson dominance [41], chiral perturbation theory [42]
and the application of dispersion relations [43]. In the following we apply consis-
tently a dispersion approach with prm, pKK, and gauge-invariant py couplings.
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The form factor is obtained by resummation of pion and kaon loops. For the loop
diagrams we use a dispersion representation and analyse ambiguities related to sub-
traction constants. The resulting representation for the form factor is shown to have
the form of the conventional vector meson dominance formula with one important
distinction - the effective p-meson decay constant f;ﬁ turns out to depend on the
momentum transfer. For the electromagnetic pion form factor we include in addition
the p — w mixing effects. We apply the representations obtained to the analysis of
the data on the pion form factors from e*e annihilation and 7 decay and extract
the p—, p° and w masses and coupling constants. The work of this chapter has been
published in [44].
Our conclusions and a summary are given in chapter 7.



Chapter 2

Derivation of the scattering
amplitudes

The formalism we are going to use, as developed in [22], is based on the following
general considerations. Imagine that we look at e.g. elastic hadron-hadron scattering

hi(Py) + ha(Ps) — hi(Ps) + ha(Py) (2.1)

at high energies and small momentum transfer through a “microscope”. This mi-
croscope has to have an appropriate resolution, which allows us to see the essential
features of the process but does not resolve the unimportant details of the internal
structure of the hadrons, which would only complicate the description. In [22] the
appropriate resolution has been estimated by a series of simple arguments based
on the uncertainty relation. For a time interval of approximately 7, ~ 2fm the
following assumptions concerning the scattering process can be made:

e The parton state of the hadrons does not change qualitatively, i.e. parton
annihilation and parton production processes are negligible.

e The partons are subject to soft elastic scattering.

e The partons move on essentially straight light-like worldlines.

To derive the scattering amplitudes for soft high energy hadron-hadron scattering,
we progress as follows: first, we consider quark-quark scattering in the framework
of the model. On this level, the essential features of the model will become ap-
parent and we will see that the strong interaction between the quarks is mediated
by the nonperturbative gluonic vacuum fluctuations. Then we discuss how to treat
antiquarks in our formalism and give simple rules for the construction of scattering
amplitudes for arbitrary systems of quarks and antiquarks in the framework of our
model. With these ingredients we can progress to the level of hadrons, which we
perform by folding the partonic scattering amplitudes by suitable hadronic wave
functions. In the last step we construct the hadronic 7-matrix elements for the
types of reactions we are interested in.
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2.1 Quark-quark scattering

Consider the scattering of two quarks ¢; and ¢

q1(p1) + @2(p2) = a3(p3) + qu(pa), (2.2)

where p;, © = 1...4 are the four-momenta of the quarks and the momentum transfer
is ¢ = p1 — p3. The normalisation of the quark states is given by

<Q(pj75j7Aj7fj)|q(kaSk7Ak7fk)>
55ja5k514j714k5fj:fk(27r)2\/2p]2pk5 ( pk) (2'3)
= 0(j, k).

As an abbreviation we use j(k) to denote the momentum p;) and the set of spin,
colour and flavour index s;x), Ak and fjx) of the quark g, respectively.

2.1.1 The functional integral approach

Applying the reduction formalism by Lehmann, Symanzik and Zimmermann to the
S-matrix element of reaction (2.2), we get an integral over the 4-point function of
the quark fields

Sri = (a3(p3)qa(pa)[S|a1 (1) g2 (p2))

= ZJQ/d4:E1d4x2d4x3d4x4 e~ i(P121+p2P2—Ps-T3—pa-Ta)

ﬂ4(i54 - m;4)ﬂ3(i53 —mg,)
(01T (q4(74)g3(73)q1 (71)G2(72))|0)
(1P, + m:h)ul(if% + m;2)u2- (2.4)

Here Z, is the wave function renormalisation constant and mq, are the renormalised
quark masses, defined by the location of the pole of Fourier transform of the full
Feynman propagator. The 4-point function can be calculated nonperturbatively
using the functional integral of QCD

(0]T(q4(z4) g3 (23) 01 (71) F2(22))[0)
=Z" /D (G,q,q) exp{ /dﬁ Locp(z )}Q4(SU4)CI3($3)Q1($1)QQ($2) (2.5)

with the partition function

2 = {0y |O5) = / D(G, q. ) exp {z / dxﬁQCD(x)}. (2.6)
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The QCD Lagrangian is given by
1 14
Locn = =5 Tr(Gu ()G (1) + Zq (iP=mq)q(w). (27)

Here g(z) are the quark fields with masses m,, ¢ = u,d, s, ¢,b,t counting the dif-
ferent quark flavours. In standard notation G,(x) denotes the matrix of the gluon
potential, G, (z) the matrix of the gluon field strength tensor.

@m:=mm%,
Gu(o) = 0,G(x) ~ 0,6, (x) +ig(Ga), G () 28)

Aa,a=1,..8 are the Gell-Mann matrices of SU(3) with colour index a, D, is the co-
variant derivative, defined by

D, =0, +i9G,,. (2.9)

As the Lagrangian is bilinear in the quark and antiquark fields we can directly
perform the integration over the fermionic degrees of freedom by a generalised Gaus-
sian integration and find

(01T(q4(74)q3(23) 71 (21)G2(22)) |0)

:Z_I/D(G) exp{—%/dwTI"(GW@)GW(x))}

H det [—i(i[p—my + i€)]

1
{5}03}01;51:'(1'3,3?1; G)5f4f2;5’p(x4,x2; G) — (3 < 4)} . (2.10)

Sr(xj, v; G) is the unrenormalised Green’s function for a quark in an external gluon
field G, (x) for which we have

(ilp—mg)Sp(x;, 23 G) = —06W (; — xp). (2.11)
The Lippmann-Schwinger equation

S (g, 04 G) = Sy, 1) — Sy, w0) (9G—0m) Sy, 243 G) (2.12)

relates the unrenormalised Green’s function to the free Green’s function S%(z;, zx)
with renormalised mass m' = m + dm. Using the shorthand notation

7)== gy, (py)e” P,
(J] = 4, (p;)eP ™,
—
) = Se(ig; +my)), (2.13)
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where |¢f;; ) are quark wave functions which satisfy the Dirac equation in an external
gluon potential

and the Lippmann-Schwinger equation, we get from (2.4)

St = =7, (810101, Bl9G—bmq, 165 (41 (9G—bmy ) |6f) — (3 4 4)) . (2.15)

In our notation we implicitly include the integrations over x;, zj, resulting from the
LSZ reduction formalism, when we write expressions of the form (k|¢fj ). To clear
up the notation further we have introduced the bracket symbol ()s of a function
F(G) as

FENe = 27 [D@ew{-] [armGume )

[ ] det [—i(ip—m, + i€)] F(G). (2.16)

In (2.15) we have two contributions, the one that is written out explicitely corre-
sponds to t-channel exchange, the one that we have written symbolically as (3 <> 4),
meaning that quark 3 has to be interchanged with quark 4, corresponds to an wu-
channel process. In high energy scattering with /s — oo and small /—t the
u-channel contributions are suppressed by a factor s~! at least and we therefore will
neglect them in the following. With the definition of quark scattering amplitudes

ME(G) = (K|(ip — ml, ) Sr(i; +m!,)]j)
= (kl(gG—0mg)E), (G =1,k=3), (=2 k=4,
(2.17)

which have the correct form for a scattering amplitude, i.e. an incoming complete
wave folded with the potential and an outgoing plane wave, we get from (2.15)

Sfi = —ZJZ 5f3f15f4f2<M§1(G)M52(G)>G- (2'18)

This equation can be interpreted as follows: the incoming quarks are scattered inde-
pendently on the gluon background fields. This is described by the quark scattering
amplitudes M1}, ME, which are evaluated independently. Then we have to average
over all gluon field configurations by performing the functional integration ().

The up to now undetermined wave function renormalisation constant Z, appears
in (2.18). However, one of the assumptions of our model is that over the time interval
considered by us, no parton creation or annihilation processes occur, meaning Z,
should be equal to 1. In [22] Z, has been calculated in the framework of the model
and one consistently finds Z;, = 1. In the following we therefore set the wave
function renormalisation constant to 1.
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Before we continue our programme and have to find a suitable high energy ap-
proximation that will allow us to calculate the quark scattering amplitudes ./\/lfj(G),
we note that the wave functions |¢fj) do not satisfy the desired boundary conditions
for 2° — +o0o. The transition from Feynman wave functions |1/;IZ;;) to retarded wave
functions [¢ ) can be performed using the Lippmann-Schwinger equation (2.12).
The wave functions possess the correct behaviour for 2° — —oo, namely that of a
incoming plain wave

0

[y,) "= 17). (2.19)
The replacement of MkF] with M, in (2.18), i.e. going from Feynman to retarded
boundary conditions, is a non-trivial step. It has been shown in [22] that this
replacement is valid in the high energy limit for gluon potentials G/, with an upper
bound for the frequency spectrum. This is in consistency with our model, where we
assumed that the partons undergo soft, elastic scattering. Therefore the functional
integral in (2.18) is dominated by gluons with a frequency that is sufficiently small
and we can write

Spi = =03 1,07, 1, (M3 (G)M 5 (G)) 6, (2.20)
with
1 (G) = (k[(gG—dmy,)|¢y,)- (2.21)

2.1.2 The eikonal expansion

As mentioned before now we have to calculate the quark scattering amplitudes which
involves solving the Dirac equation for a quark in an external gluon potential

(i—mq,)0y,) = (id—gG(x) — my, + Omg;) |1y ) =0 (2.22)

and respecting the boundary condition (2.19), which of course cannot be done ex-
actly. However, since we are only interested in the high energy limit of (2.4) for small
momentum transfers, the DeBroglie wavelength of the quarks propagating through
the gluon potentials are sufficiently small compared to the fluctuations of the gluonic
configurations governing the functional integral in (2.4) and we can use an eikonal
approximation. For this purpose it is convenient to use light-cone variables which
are defined by

ry = 2"+ 2 (2.23)

for any 4-vector x and to choose the centre of mass system as reference frame. In
the high energy limit the quark light-cone momenta then go to infinity and the
transverse momenta stay finite.

In the eikonal approximation we can now solve the differential equation (2.22)
and satisfy the boundary conditions (2.19). We proceed as explained in [22,33] and
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find as solutions for the quark wave functions in leading order

60 = Vel (1+0(-0) ) o)

P+
r 1 —ip2-T
0 (2) = Vi(zy, v ,x7) <1+(’)(—)> e~ P2 uy(pa), (2.24)
Pa—
with the eikonal phases

. T4
Vf(llhl‘,,XT) =P {exp [_%/ dx,—l— G(xl—l—ﬂxaxT)] }7

Vi(ry,z_,xr) = P {exp {—% /L da’ G+(:c+,:c',XT)] } : (2.25)
which satisfy the following boundary conditions and differential equations:
Vi(zy,z ,xp) 71,
0:Vi(zry, oo, x7) = —%Gi(x+,x_,xT) V(g x_,x7). (2.26)
Inserting (2.24) into (2.21) and taking into account (2.26) and the relations

uz(ps)vui(pr) = \/p3+p1+55351”ia
ua(pa)VHus(p2) = \/p4—p2—55452nlia

1
nly = 8 : (2.27)
+1

which are valid in the high energy limit pyy, p3, P2, P1i- & /S, P1_, D3, P2y, P1y = 0,
/s — 0o we find for the quark scattering amplitudes

0(G) = iv/PrBizOus, / do_ A%y ebs P)v-ilPs—porxr

[V*(OOVT*’XT) - 1]143141 )

22((}’) = 3 /p4_p2_55452/dy+ deT6%(p4—p2)7y+—i(p4—p2)T~yT
Vi(ys,00,57) = 1] 4, 4, - (2.28)

Now we insert these expressions for the quark scattering amplitudes into (2.20)
and make use of the translational invariance of the functional integral. With the
definition of the impact parameter by := x7 — y7 we obtain our final result for the
quark-quark scattering amplitude

Tri = —20505,5 05150 / d?bp e'arbr
bT bT
<[V_(oo, 0, %) - IL] [V+(o, 00, —=F) ~ 11] A4A2>G. (2.29)

Az Ay
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The momentum transfer ¢ = ¢q; — ¢3 is purely transverse in the high energy limit.

The underlying physical picture of this result is the following: The quarks move
along straight light-like lines through the external gluon potential and accumulate
non-abelian phase factors V., which are obtained by integration along their trajec-
tories, correlating their phases, which leads to the interaction of the quarks. To
obtain the scattering amplitude we finally have to perform a Fourier transform with
respect to the impact parameter by. In the high energy limit the quark helicities
are conserved during the interaction.

2.2 Description of antiquarks

So far we have discussed the wave functions for outgoing quarks, if we want to
describe arbitrary systems of partons we need the wave functions for incoming quarks
and incoming and outgoing antiquarks as well. We do not give wave functions for
gluons here, since in our simple ansatz for hadrons, which we will present in the
next chapter, hadrons consist of quarks and antiquarks - or diquarks in the case of
baryons - only and due to one of the assumptions of our model, no parton creation
(nor annihilation) occurs over the time interval of the scattering process.

) = S, +ml ),

(@] = (il(=ip; +m))S.,
(@] = (7)(=id; +m),)S:. (2.30)

Here a prime denotes that we are considering an antiquark and the index a stands
for advanced wave functions, which have to be used for incoming partons and fulfil
the advanced boundary conditions

7 20 +o0o /.
(g1 === (4] (2.31)
The antiquark spinors are given by
) = va.a,(py)e™
(]I| = 7751‘,14]‘ (pj)eilpj.zj- (2'32)
The advanced wave functions have to satisfy the Dirac equation
~ <
(W, (00 + gG+my, — dmg,) =0 (2.33)

to which we find the solutions

) = V) (1+0(50) ) e rum)

~;2 (x) = ‘7+(£L’+,£L‘_,XT) <1 + (’)(i)) e P2 y,(py), (2.34)



12 Chapter 2. Derivation of the scattering amplitudes

with the eikonal phases defined analogously to (2.25)

v_(x+,x_,xT) F{exp [%/ dz’, G_(x;,x_,xT)] },

T4

Vilry, oo, xr) = F{exp {%/ da’ G+(x+,x',xT)] } (2.35)

Here P denotes anti-path-ordering. For the phase factors analogue relations to (2.26)
hold

Vi(zo,z_,xp) =571
a:F ‘f;i(l‘-l-ax—axT)Vﬂ:(l‘-i-a:I;—axT):| = 0

V+ (‘T-l-a 0, XT)

V (00,2, XT) (2.36)

V:I:T(x+7x77XT)Vi(x+Jx77XT) = {

To calculate the scattering amplitude M. (G) of an antiquark ¢ in an external

gluon potential G, we note that this corresponds to the scattering of a quark ¢ in
the charge conjugated gluon potential G}, with

G, (r) = CG,(z)CT = =G, (2). (2.37)

Furthermore we note that replacing G, by G/, in Vi corresponds to complex conju-
gating the eikonal phase factor, i.e. to the replacement V, — V. Defining

1) = = (7165 — ml, i), (2.38)

we then obtain for the antiquark scattering amplitude

. PN W il .
y(G) = Z\/pg+p,1+5s35'1/dx_ d2ap o2 (Pa=P)+o-—iPs =Py )T X7

[Vj(OO,fIf_,XT) - ]]-] AQA'l )

ZQ’ (G) — Zﬂ ’pﬁl—pIQ—ésﬁlsz / d/y+ d2/yT e%(pzl_pfz)*er_i(p:;_pfz)T'YT
[Vi(ys,00,37) = 1] 4, - (2.39)

When calculating S-matrix elements for quarks and antiquarks we also have
to take into account contributions from disconnected diagrams when applying the
LSZ reduction formalism. These diagrams lead to delta functions 6(j, k) (6(5', k')
which cancel the 1 in the (anti-)quark scattering amplitudes My, (MJ}.). In the
high energy limit in leading order in s we then find a simple rule for the S-matrix
element: for each quark or antiquark we write a certain factor which we obtain from
the appropriate quark or antiquark scattering amplitude for fixed external gluon
potential G, (z). Then we multiply all these factors and average over all gluon
potentials by means of the functional integral (2.16).
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The factors are

e for a quark flying in positive 2% direction (j — k)

Suvlhd) = Vs, [ oy 0rmse epie
V_ (00, 2_,%X7) 4,4, (2.40)

e for a quark flying in negative 2 direction

Sp-(k,j) = /PhPj=Oses, / dary A2y €3 0k ps)-24i(Pimpy)rxr

V_ (74, 00,X7) 4,4, (2.41)

e for an antiquark flying in positive z* direction (5" — k')

Sq+(k \/pk+py+5s’ s /d:r; d®y 030k 7))+ —iPl =P

VZ(00, o, X7) ar a!, (2.42)

e and for an antiquark flying in negative x® direction

Si-(.7) = \Jorh G, [ e dag A0k iwiowrs
V

(24, 00,%7) A a7 (2.43)

2.3 Scattering of hadrons

In this section we want to study hadron-hadron scattering. We are interested in
two types of scattering reactions. We call the first one “exclusive” scattering, i.e.
the final state consists of two definite hadrons which we describe by their according
hadronic wave functions. Elastic scattering for example falls into this category,

hl(Pl) + hQ(PQ) — hl(Pg) + hQ(P4), (244)

but we do not have to limit ourselves to elastic scattering. The diffractive scattering
of the initial state hadrons h; and hs into e.g. excited states b} and h, is also covered
by our approach. More generally we write

hi(P) + hao(Py) = hs(Ps) + ha(Py), (2.45)

where hz and h4 can be any hadrons that are accessible by a soft diffractive process.
The second type of reactions we want to study are “semi-inclusive” processes, where
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one of the initial state hadrons stays intact and the other one diffractively dissociates
into a final state X

h1 (Pl) + hQ(PQ) — h1 (Pg) + X(P4), (246)

where X can be any diffractive excitation of hy. In both cases we use the convention
that the hadrons h, hs move in positive 2% direction and hs, hy or X, respectively,
in negative z3 direction, i.e. P;, Ps,, P,_, P,_ — oo in the high energy limit.

In our model we describe mesons as quark-antiquark pairs and the constituent
quark configuration of baryons is assumed to be of the quark-diquark type for the
reasons given in [35,36], where the point-like diquark is treated like an antiquark in
this approach. The baryons then act as colour dipoles like mesons.

The diffractive final state X is modelled by a ¢g-pair (or quark-diquark pair)
in a colour singlet state. Then we use two approaches. In the first method we
use free plane waves for the quark and antiquark and invoke quark-hadron duality.
Integration over all allowed values in phase space and the closure relation then yield
all possible diffractive final states X, where the case of elastic scattering also is
included. The second ansatz, applied to confirm the results of the first method
and to gain additional insight into the structure of the calculated differential cross
sections, uses the wave functions of a two-dimensional harmonic oscillator where
the ground state corresponds to hadron hy and the excited states to the diffractive
excitations of hs. Since these eigenfunctions form a basis, the contributions from
different excited states are orthogonal to each other and the calculation of cross
sections can be performed as follows: first the cross section for one specific excited
state with definite quantum numbers n, m is calculated and then the sum over all
excited states is taken to get the inelastic semi-inclusive diffractive cross section.

The momenta p of the quark and p’ of the antiquark (or diquark, respectively)
in a hadron (or the diffractive final state X') with momentum P are parametrised
using light-cone variables by

p+ = 2Py, Py = (1—2)Ps,

2.47
pr = ZzPr+ Arp, pr = (1—2)Pr— Ar. ( )

Here z is the longitudinal momentum fraction carried by the quark. The relative
transverse momentum between the quark and the antiquark (diquark) is given by

—_n 1

Lorentz invariance requires z to appear also in the transverse momenta py and p/;
as defined above.

2.3.1 Exclusive scattering

The hadronic scattering amplitude is obtained by folding the underlying partonic
S-matrix element with suitable hadronic wave functions, where the hadrons will be
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5
>

XT

yr
Figure 2.1: Two light-like Wegner-Wilson loops in position space

formed of parton wave packets as explained above. Proceeding as in [24, 33], i.e.
applying the rules (2.40)-(2.43) and with (2.47),(2.48), we find

7;% = s / deT @iqT-bT jexcl(bT)a (249)

with the exclusive profile function

1
Jexcl(bT) = —/d2$Td2yT/ dZdZ'w31(XT,Z)w42(YT,ZI)
0

1 1 1 1
(Wa(Gbr + (5 = 2xr xn)W-(=gbr + (5 = Z)yr.yr) = 1)
(2.50)
as has been found for the case of elastic scattering in [30]. Here W, are the light-like
Wegner-Wilson loops

Wiim guV(C) = guPep(—ig [ drGiw)).  (@25)
3 3 Cy g 2
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Figure 2.2: The orientation and extension of the light-like Wegner-Wilson loops in
a projection into transverse position space

where P denotes path ordering and C. is the curve consisting of two light-like
worldlines for the quark and the antiquark (or diquark, respectively) and connect-
ing pieces at oo (see Fig. 2.1), which ensure gauge invariance. xr and yr define
the extension and orientation in transverse position space of the two loops repre-
senting the two hadrons h; and hy respectively, z (2') parametrises the fraction of
the longitudinal momentum of hadron hy (hs) carried by the quark (see (2.47)). The
impact parameter is given by b, the light-cone barycentres of the loops are located
at by + (3 — 2)xr and —sbr + (5 — 2')yr, respectively (see [27] and Fig. 2.2). As
x-axis for the transverse vectors x7, yr and by we choose qr.

The symbol (...)s denotes the functional integration which correlates the two
loops. In (2.50) the loop-loop correlation function is multiplied with the functions
w31 (x7, 2) and wae(yr, 2'). These functions wy;(xr, z) denote the overlap between
initial state hadron h; and final state hadron hj for fixed transverse extension xr
and fixed longitudinal momentum fraction z. Then we have to integrate over all
extensions and orientations x7,yr of the loops in transverse space as well as over
the longitudinal momentum fractions z, 2’ respectively. Finally a Fourier transform
with respect to the impact parameter by has to be performed, as in the case of
quark-quark scattering.

2.3.2 Semi-inclusive scattering

Except for the replacement hy(Py) — X (P) everything remains unchanged when
we want to describe the inelastic diffractive dissociation reaction (2.46) and we find
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hy(Py) hy(Ps)

hQ(PQ) A4T} X(P4)

Figure 2.3: The semi-inclusive scattering reaction hy + hy — h; + X

in analogy to (2.49)
Sy = Oy +i(2m) 0D (Py+ Py — Py — Py) Ty
T = 2is / A2bp 9T Ty (2.52)

where we have to use the profile function jdiss now. As stated before, we are going
to use two different ansatze for X, leading to two expressions for the profile func-
tions, depending on which description for the diffractive final state we use in the
calculation.

For the plane wave description we obtain

1
jgi';;a“’(bT,z’) = —/deT d2yT/ dz ws (x7, 2)
0
V2my/22'(1 — 2') g HATYT oo (yr, 2')
1 1 1 1
(Wi Gbr + (5 = 2xr X)W (—5br + (5 = #)yryr) = 1)
(2.53)

where A, is the relative transverse momentum between the quark and the antiquark
(or diquark) of X (see (2.48) and Fig. 2.3). Instead of the overlap function wys
occurring in (2.50) here we have got the product of the plane wave and the wave
function ¢, of the incoming hadron hs.

For the oscillator description we obtain

1 1
205 () = — / ar Py / dz / 42" wa(xr, 2) X (7, 2) 02 (37, 7)
0 0
1 1 1 1,
<W+(§bT + (5 — 2)XT, XT)Wf(_ibT + (== 2)yr,yr) — 1>G-

2
(2.54)

Here X™™(yr, 2') stands for the two-dimensional harmonic oscillator wave function
with quantum numbers n, m. Again, this function has to be multiplied by @3, de-
scribing the incoming hadron hy. Inserting in (2.54) the ground state wave function
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X009 leads to the elastic scattering amplitude, which we also get from (2.49),(2.50)
with h4 = hQ, h3 = hl.

In the plane wave description 2’ is part of the specification of the final state
and thus appears as argument of jgi's"svave(bT, 2') in (2.53). The phase space integral
then includes an integration over z’. When using the second method involving the
two-dimensional oscillator functions to describe the diffractive final state, one has
to insert the function X™™ on the r.h.s. of (2.54) and to integrate over z’. Thus

j2d0sc(b) depends for given oscillator function X™™ on by only.



Chapter 3

Evaluation of the scattering
amplitudes

The next step is to evaluate the scattering amplitude (2.49), where the main part
will be to calculate the loop-loop correlation function appearing in (2.50), (2.53)
and (2.54), respectively. For this task we will make use of the model of the stochastic
vacuum (MSV), which has been introduced by Dosch and Simonov [25]. The model
is based on a small number of physically well motivated assumptions and allows us to
compute the relevant quantities we need for the description of high energy scattering,
e.g. the expectation values of Wegner-Wilson lines and loops. Furthermore we have
to specify suitable hadronic wave functions ¢; and to construct from them the
overlap functions wy; appearing in (2.50), (2.53) and (2.54). Once we know how to
calculate the correlation function by applying the model of the stochastic vacuum
and after defining the wave functions we can analyse the symmetry properties of the
scattering amplitudes. These considerations will allow us to classify which quantum
numbers can be exchanged in the different reactions we are studying.

3.1 The loop-loop correlation function in the model
of the stochastic vacuum

According to present knowledge the vacuum has a highly nontrivial structure gov-
erned by chromoelectric and -magnetic background fields. It has been first noted by
Savvidy [45] that the mean energy density of the vacuum can be lowered by adding
a constant chromomagnetic background field to the perturbative vacuum. The min-
imal value of the energy density is obtained for a value of the chromomagnetic field
strength B # 0, i.e. the vacuum spontaneously develops a chromomagnetic back-
ground field, analogous to the spontaneous magnetisation of ferromagnets below the
Curie temperature.

Of course the QCD vacuum state must be relativistically invariant and must
not have a preferred direction in ordinary and colour space. In analogy to Weiss

19
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domains in a ferromagnet, states composed of domains with random orientation of
the gluon field strength have been proposed. The vacuum state then is build of a
linear superposition of such states with various domains, where the fields inside the
domains are oriented in various directions. As well the boundaries of the domains
as the orientation of the fields inside of them will fluctuate.

An important step in the investigations of the QCD vacuum structure was
achieved by Shifman, Vainshtein and Zakharov [21] with the introduction of the
QCD condensates. In this way, nonperturbative components entered the perturba-
tive description of the QCD vacuum. With the introduction of nonlocal condensates
one can go even one step further and study long-distance effects as for example con-
finement. Because QCD is a non-abelian theory, nonlocal condensates can a priori
not be defined in a gauge-invariant way. To cure this problem we introduce so-called
connectors as the non-abelian generalisation of the Schwinger string of QED, which
allow us to define parallel-transported quantities such as the parallel-transported
gluon field strength (see Appendix B). Then we can define gauge-invariant nonlocal
condensates by shifting the occurring field strengths to a common reference point.

The model of the stochastic vacuum incorporates many of the above ideas. Its
strongest assumption is that the nonperturbative behaviour of QCD can be approx-
imated by a Gaussian process where the field strengths are the stochastic variables.
This assumption already allows us to derive confinement in the framework of the
model.

3.1.1 Properties of the model of the stochastic vacuum

In this section we will present the Minkowskian formulation of the model of the
stochastic vacuum. A more detailed presentation of the model can be found in
[23-26], where both the original formulation in Euclidian space-time and the analytic
continuation to Minkowskian space-time are discussed.

The starting point for the model is the correlator of two gluon field strength
tensors G, at points z1 and xy, parallel-transported to a common reference point
o along the two curves (), and C,:

9> - A
<—wa(0, z1; Cy ) GM (0, 29 Cx2)>G =

12 6% Epe (21, 2,05 Cy, Oy ). (3.1)

A~ =

The right hand side depends only on the points x1, x2 and the two curves Cy,, Cy,,
the common reference point o can be freely shifted along the curve Ciy = Cp, +Cp, .
Due to colour conservation, the correlation function is proportional to 6*°. In the
MSV the strong assumption is made that F),,,, is independent of the choice of the
connecting curve Cfs:
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Assumption I: F,,,, is independent of o0 and Cj,, C,,.

Then Poincaré and parity invariance require F,,,, to be of the following form:

Fupe(2) = 21_4G2{(gupgua — GuoGvp) [FD(2%) + (1 — k) Dy (27)]

dD, (22
(2o 20Gpp — ZpZv o + ZpZuGve — ZoZuGup) (1 — m)%}, (3.2)

2

s 07FF) = (0125 G, )G (0)]0), (3.3

472

Go

where z — 21 — x5.

Here G is proportional to the gluon condensate (0|Gf,(0)G**(0)10), D and D,
are invariant functions normalised to 1 at z = 0, D(0) = D;(0) = 1, and & is a
parameter determining the non-abelian character of the correlator. The properties
of the functions D and D; are further specified through the second assumption of
the MSV:

Assumption II: For space-like separations the functions D, D rapidly fall to zero
on a scale given by the correlation length a ~ 0.3 fm.

The Fourier decomposition of those functions is given by

D) = [ e DU,

Dy(22) = / Z%e—ikzﬁl(ﬁ). (3.4)

A suitable ansatz for D and D is given in [24]:

o 27(2)* ik?
D) (8a)? (k? — A2+ ie)*’
Dy (k?) 227(2r)" i (3.5)

3 (8a)2 (K2 — A2 +ie)

with the constant A = 8a/37. The functions of (3.4),(3.5) can be compared to lattice
calculations [46,47] for the Euclidian version of the correlator (3.1) and from a fit
one can extract the following ranges for the parameters Gs, a, x [47]:

kGaa' = 0.39...0.41,
k = 0.80...0.89,
= 0.33...0.37 fm. (3.6)
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Assumption ITI: The vacuum fluctuations of the field strengths are determined by
a Gaussian process.

This implies that correlators of more than two gluon field strengths factorise and
thus the process is completely defined by the second moment of its distribution.
The expectation value of one single parallel-transported gluon field strength tensor
vanishes due to colour conservation and the fact that the QCD vacuum has no
preferred direction in colour space:

~

(G(1))a =0, (3.7)

where we have used the abbreviation

~

G(i) = G, (0,75 Cy,). (3.8)

Due to the assumption of a Gaussian process and colour conservation all n-point
functions with odd n vanish as well and we are therefore left with

(G(1)...G2n)a= Y (Gi1)G(i2))a- . (Glizn-1)Gizn))c- (3.9)

all pairings

3.1.2 Application of the model of the stochastic vacuum to
the correlation function

Now we will make a cumulant expansion [33] for the loop-loop correlation function

<W+W_>G = <W+(%bT + (% — 2)X7, XT)W_(_%bT + (% - ZI)YTaYT)>G

(3.10)

in (2.50), or (2.53), (2.54), respectively, and then evaluate the result in the framework
of the MSV.

To expand the correlation function, we proceed as explained in [30]. First the line
integrals along the closed loops C are transformed to surface integrals with the help
of the non-abelian Stokes theorem where, following the authors of [24], we choose
the mantle of a double pyramid as the integration surface. The basis surfaces S
of the two pyramids are enclosed by the two loops Cy (see Fig. 3.1). The common
reference point o is chosen to be the apex, where both pyramids touch, and P,
and P_ are the mantle surfaces of the two pyramids, respectively. Following [30] we
rewrite the two traces over 3 X 3 matrices occurring in (3.10) after inserting (2.51) as
one trace (Try) of a matrix acting in the 9-dimensional tensor product space. With
the definition

(3.11)
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xO

212

Figure 3.1: The integration surfaces for the evaluation of the loop-loop correlation
function

we can write (3.10) as the expectation value of one ordered exponential in the
product space, where the integration surface is given by the mantle P = P, U P_ of
the double pyramid:

W W), = %Trg <Pexp (-% /P o™ () Gl (0, 7 cx)>> o 312)

e

The cumulant expansion of this expression up to the second term reads

1 1 1 L
<W+(§bT + (5 - Z)XTaXT)W—(_ibT + (5 —2)yr, yT)>G

1 2
= §Tr2 exp (—% /Pda“”(x)/PdUp”(x')
<P(Gt,uu(07 T, Cx)ét,pa(oa LL‘,; Cx’))>G)
1
= §T1"2 exp Co(br,x7,y71,2,2'), (3.13)

where C5 is a 9 X 9 matrix invariant unter SU(3) colour rotations. As shown in [30]
this finally leads to

2 . 1 .
Zeiax 4 geléx (3.14)

<W+W7>G = 3
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with

G27T2

x(br,xr,yr,2,2") = Y {I(raq, Tyq) + I(rag, vyg) — 1(Taq Tyg) — I(Tag, Tye)},

s ! lur, — r|\ lor, — 1y
Ienm) = nphry e d{<T> (1)
i Ty — vrg| 2K Ty — urg
) ? )

+(1 — k)Mt <w>3&, <LA“|> : (3.15)

Here G, A, k are as defined in (3.2),(3.5) and K, 3 are the modified Bessel functions
of second and third degree. The vectors r;; with ¢ = z,y and j = ¢, ¢ are those from
the coordinate origin to the positions of the quarks and antiquarks (or diquarks) in
transverse space as shown in Fig. 2.2. Separating the real and the imaginary part
of the above expression (x is a real function) we get

| | 1 1
<W+(§bT + (5 - Z)XT;XT)Wf(_QbT + (5 — 2y, yr) — 1>
e

2 1 1 2
- {g COS (gX(bT; Xr,¥Yr, %, Zl)) + g COs (gX(bT; Xr,¥r, %, Zl)) -1

2 1 1 2
_Zg sin (gX(bT; Xr,¥r, %, Zl)) + Zg sin <§X(bT7 Xr,¥Yr, %, ZI)) }
(3.16)

This is the final result for the correlation function of two light-like Wegner-Wilson
loops in the matrix cumulant method [30]. If we assume |x| < 1, (3.16) reduces to

1 !/
WW_ — 1), = {—§ X(br, X1, ¥y, 2,2 )2} , (3.17)

neglecting terms of order y® and higher. This is the result of the traditional expan-
sion method [24]. When computing the numerical results for the cross sections we
are interested in, we will use both (3.16) and (3.17) and compare with experimental
data.

3.2 The hadronic wave functions

We now have to specify the hadronic wave functions and overlap functions occurring
in (2.50), (2.53) and (2.54). As mentioned before we make a simple ansatz and
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construct mesons as quark-antiquark and baryons as quark-diquark wave packets,
where scalar diquarks should be favoured above vector diquarks due to dynamical
reasons [48]. This means that in our model the spin of a baryon is carried by the
quark.

In the following we will deal mainly with hadrons with angular momentum L = 0,
in particular the proton and the pion. When studying the scattering of protons
and pions we are only interested in unpolarised cross sections and due to helicity
conservation on the parton level in our model we can therefore limit ourselves to the
description of spinless s-wave states. For the corresponding wave functions we make
a Wirbel-Stech-Bauer ansatz [37], which assumes a Gaussian-shaped distribution for
both the longitudinal momentum fraction z carried by the quark in the hadron and
the transverse spatial extension x7 of the hadron

22(1 = 2) —(-}*/az3, o TR/ASE,

3.18
QWSEjIh]. ¢ ( )

Soj(XTa Z) =

where zj,, and Sj; are the parameters defining the widths of the longitudinal mo-
mentum and transverse extension distributions of hadron h;, respectively. The nor-
malisation constant I, is given by

1 132 o
I, :/ dz2(1 — 2) e 7220 (3.19)
0

Only in our study of the double diffractive excitation of two protons into excited
nucleon resonances, namely the N(1535), which has the quantum numbers I(J¥) =
%(%_) with L = 1 in the quark-diquark picture, we also need p-wave functions. To
construct the N(1535) wave function we have to couple a spin 1/2 state to a p-wave
in such a way that the total angular momentum J = 1/2, taking into account the
proper Clebsch-Gordan coefficients. This means that the spin of the quark, which
carries the total spin of the hadron, because we use scalar diquarks as explained
above, is antiparallel to the helicity of the p-wave. As our model conserves the
helicities on the parton level and again we are calculating unpolarised cross sections
only, the scattering of two protons into two excited resonances is reduced to the
scattering of two spinless s-waves in the initial state into two spinless p-waves with
fixed helicities in the final state. In the following we give only the A = +1 helicity
states of the wave function, since due to the replacement of the Gaussian-shaped z-
dependence of the Wirbel-Stech-Bauer ansatz by a delta function centred at z = 1/2
in the numerical analysis, the A = 0 state does not contribute, because it contains
a factor proportional to z — (1 — z), which is identical to 0 when z is fixed to
1/2. As the contribution of the A = 0 state is strongly suppressed compared to
those of the A\ = +1 states as well in the formulation using the Gaussian-shaped
z-distribution, which also is centred around z = 1/2, the replacement by the delta
function has no substantial impact on the numerical results. The reason for this
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approximation is discussed more detailed in chapter 4. To keep the expression for
the wave function short, we make this simplification here as well and thus avoid
the otherwise occurring A = 0 term. For the spinless p-wave we extend the original
Wirbel-Stech-Bauer ansatz to angular momentum L = 1 and obtain

2 2
—x7 /485
e 7/4S}

xr,2) = Lo A (2= 1), A= L (3.20)
\/67Sh,

Here 6, is the angle between xr and qr.

As the overlap function wyj(xr, 2) we define the overlap between hadron h; in
the initial and hadron h; in the final state for fixed transverse extension x7 and
fixed longitudinal momentum fraction z

wpy (xr, 2) = (o)) (xr,2))" 5 (. 2) (3.21)
where the helicity index A\ occurs only in case we deal with a p-wave in the final
state.

For the description of the diffractive final state X in semi-inclusive scattering we
use in our second ansatz the wave functions X™™, which consist of the eigenfunctions
X™™(yr, 2') of a two-dimensional harmonic oscillator [49] for the yp-dependence and
an additional part for the z’-dependence as in (3.18):

27 (1 = 2') —(-1yjaz2 -
J

X"(yrd) = ([T XM
i) 1 (]
X"Myr) = \/((n +m)/2) ((n—m)/2)! \/? <2S}%j + yr dyT>

n—m

[ 1 2 —y2/as?
Sl%j Yr - E - i € yT/ "3 6im9y (3 22)
2 25,% yr  dyr for52 ’
J

where 0, is the angle between yr and qr. Here of course, we also have angular
momentum L # 0 except for the ground state wave function X0,

3.3 The hadronic scattering amplitudes

In the following we will deal with three types of hadron-hadron reactions: the first
one is elastic scattering, which falls into the category of the exclusive processes
discussed in section 2.3.1. As a semi-inclusive process (see section 2.3.2) we will
study single diffractive dissociation. Double diffractive excitation, which again is
an exclusive process, is the third type of scattering reaction we are investigating.
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After having evaluated the loop-loop correlation function in 3.1.2 and with the
wave functions from the previous section, we give the expressions for the hadronic
scattering amplitudes for these processes and analyse their respective symmetry
properties.

3.3.1 Elastic scattering

We now put everything together, inserting the overlap functions (3.21) and the
results (3.16) or (3.17) for the correlation function of the Wegner-Wilson loops,
depending on which method is used in the evaluation, in (2.50), where we set hy =
]’Ll, h4 - hQ.

We can simplify the resulting expression by exploiting symmetry properties of
the wave and correlation functions. The replacements x7 — —xr and 2z — 1 — 2,
which exchange the quark with the corresponding diquark (or antiquark in the case
of mesons) in hadron hy, lead to x — —x (see Fig. 2.2 and (3.15)). On the other
hand these replacements leave the wave functions invariant and thus the integration
over xr and z averages out the sin x-terms of (3.16) when inserted in (2.50). We
can therefore replace (3.16) by

W W — 1), {g cos <%X> + %cos (§X> - 1} | (3.23)

In the expansion method (W, W_ — 1) in (3.17) is already even under y — —x.
In our model, therefore, the expression for the correlation function is purely real
in (3.17) and only the real part of (3.16) contributes. The 7-matrix element is
invariant under the exchange of hadron h; by its antihadron. Thus we get only
C = P = +1 (pomeron) exchange and no C' = P = —1 (odderon) exchange.

Furthermore it is useful to take advantage of global azimuthal invariance and
define as new integration variables the relative angles between the impact parameter
br and x7 and y7, respectively:

0, =0,—0, 6 =0,—0, (3.24)

With this choice of variables the elastic profile function becomes independent of 6,
and using the relation

2
/ 6, eV % = o ] (vt br), (3.25)
0

where J,, is the Bessel function of n-th degree, we can perform the integral over the
angle of the impact parameter in (2.49) analytically.
For elastic scattering our final result for the scattering amplitude then reads

Tpi = 4mis / dbr by Jo(vV—t br) Ja(br), (3.26)
0
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with the elastic profile function

1
Ja(br) = —/dQZL‘T deT/ dz d2'wy (x7, 2)waes (yr, 2')
0
2 1 1 2
{g cos (gX(bT,XT,YT,Za Zl)) + 3 Cos <§X(bT,XT,YT, Z,ZI)> - 1}
(3.27)
when using the matrix cumulant method and
. 1
Ja(br) = — /deT deT/ dz d2'wyy (x7, 2)wae (y7, 2')
0
1
{‘5 X(bT,XT,YT, Z, Z,)Q} (3-28)

when using the expansion method, respectively.

3.3.2 Single diffractive dissociation

In analogy to elastic scattering we insert the overlap function wy; and either (3.16) or
(3.17) into Jgiss, for which we have two expressions, (2.53) and (2.54), depending on
the choice of the plane wave or the harmonic oscillator description of the diffractive
final state X. If using the latter expression, we also have to input the excited state
wave functions X™™ given by (3.22).

We note that it is sufficient that one overlap function, here wi(xr, ), has the
symmetry properties discussed in the previous section, and thus the same arguments
as in the case of elastic scattering can be applied. Therefore we can replace (3.16)
by (3.23) for single diffractive dissociation as well.

The expression for the scattering amplitude is hence given by (2.52) with either
the profile function (2.53) for the plane wave description or (2.54) for the oscillator
description of X. In both cases the loop-loop correlation function evaluates to (3.23)
for the matrix cumulant method or (3.17) for the expansion method.

Furthermore, when calculating cross sections with the description of X given by
the oscillator method we can use analogous arguments. The simultaneous replace-
ments yr — —y7 and 2’ — 1 — 2’ and subsequent integration over yr and 2’ lead
to the cancellation of contributions with odd m in (2.54) because of the existence
of a factor ¢/ in X™™(yr). Since for these functions odd m only occur for odd
n, the sum over all excited states in the calculation of cross sections can be reduced
to the sum over the wave functions with even n and the corresponding m’s. Finally
we point out that here the integration over the angle 8, which we accomplish anal-
ogously to the case of elastic scattering by exploiting global azimuthal invariance
leads to Bessel functions of m-th degree. This is due to the factor e in X™™ and
relation (3.25).
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3.3.3 Double diffractive excitation

We have seen in the previous sections that both in elastic and single diffractive dis-
sociation we only get C' = P = +1, i.e. pomeron, exchange and no C' = P = —1, i.e.
odderon, exchange in our model. This is, as we have seen, due to the symmetry of
the hadron wave functions, where integration over all angles leads to a cancellation of
those terms of the correlation function that are odd under C' and P transformations.
This result is not a unique feature of our model but is rather model independent.
It relies on the fact that the quark-diquark density in a nucleon is nearly symmet-
ric under a parity transformation if the diquark is sufficiently small, whereas the
odderon coupling changes sign. To study odderon exchange in our model we have
to find a reaction where the odderon contribution is not cancelled after integration
due to the symmetry properties of the wave functions. This is possible in reactions,
where initial state nucleons are transformed diffractively into excited negative parity
states. In this case, even for point-like diquarks which we are using in our ansatz for
the wave functions, the odderon couples to the nucleon without any restriction [36].
Three reactions which permit odderon exchange but exclude pomeron exchange have
been suggested in high-energy photoproduction: exclusive neutral pseudoscalar me-
son production with nucleon break-up [31], f2(1270) and a3(1320) production with
nucleon break-up [32], and the asymmetry in the fractional energy of charm versus
anticharm jets, which is sensitive to odderon-pomeron interference [50].

Here we are going to study a hadronic reaction for which odderon exchange is
allowed, namely

p + p — N(1535) + N(1535). (3.29)

In addition, the N(1535) has a unique signature, being the only known baryon with
a strong NN decay [11]. One should note, however, that this decay provides some
difficulty for standard models of baryon spectroscopy, including the quark-diquark
model. It remains unclear why the N(1535) decay has such a large branching ratio
of about 30-55% into nN whereas this decay is negligible for the N(1520).

To construct the T-matrix element of reaction (3.29) we start from (2.50), where
the overlap functions w3, and w}, consist of one s-wave for the proton and one p-
wave for the N(1535) each. Now we are going to argue why it is sufficient to deal
with spinless s- and p-waves as stated in section 3.2: as we are using scalar diquarks
the spin of the proton and of the N(1535) is carried by the quark in the according
hadron. The spin conserving delta functions in (2.40)-(2.43) on the parton level then
ensure that the spins of the proton and of the excited nucleon resonance are aligned
parallel. As explained in section 3.2 we do not get any contributions from the states
with helicity A = 0 in our approximation. Since spin and angular momentum of the
N(1535) are antiparallel to each other in order to form a state with total angular
momentum J = 1/2, we can infer directly that the helicity of the p-wave describing
the N(1535) is oriented antiparallel to the spin of the incoming proton. This means
that from the originally 16 possible spin combinations of the 4 hadrons in initial and
final state only 4 survive due to spin conservation on the parton level. For those we
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immediately know which helicity state we have to assign to the N(1535) in the final
state. As we will calculate unpolarised cross sections in the following, i.e. we take
the average over the initial state spins and sum over all final state spins, we have
reduced the problem to the scattering of two initial state s-waves into two final state
p-waves with fixed helicities, as already stated when discussing the wave functions.
Moreover, looking at the expression for the p-wave (3.20), we note that on the level
of cross sections the following relations hold

(N4 (1535) Ny (1535)| Tlpp)|? = |(N_(1535) N_(1535)|T|pp)|*,
[(N1(1535) N_(1535)| T|pp)|> = |(N_(1535) N, (1535)|T pp)*, (3.30)

where £ indicates the helicity A = £1 of the N(1535). This means that only
the relative orientation of the helicities of the two N(1535) in the final state are
of importance and thus we only have to calculate two scattering amplitudes, one
where the helicities are aligned parallel, which we will call 7, and one where they
are aligned antiparallel, which we will call 7_.

Now we have to show that we indeed get C' = P = —1 exchange for this type of
reaction. The proof will rely on symmetry considerations, as in the case of elastic
scattering and single diffractive dissociation before. To simplify our notation we
define a reduced overlap function wy; which does not contain any terms due to the
angular dependence of the p-wave. Instead we explicitely write out this angular
dependence in the following because it is crucial for our argumentation:

w/?j(xT, Oz, 2) =: AeAP Wy (zr, 2). (3.31)

With this definition and (3.24), (3.25) we obtain for the scattering amplitude

T, = 4mis / dbr by Jo(vV/—=t br) Ji(br), (3.32)
0

where n = 2 for 7, and n = 0 for 7_. Here the profile function is given by

A

Ji(bT) = /dQI‘T deT 631(1‘7*, %) 11742(yT, %) COS(QCE + gy) { . .}, (333)

where {...} is an abbreviation for either (3.16) or (3.17). To obtain this result we
have used the invariance of the correlation function under the simultaneous trans-
formation of the variables 6, — —0, and 0, — —0,. Now we consider the symme-
try properties of the wave and correlation functions again. The argumentation is
analogous to the case of elastic scattering with the crucial difference being the addi-
tional factor cos(f, £ 6,) here, which changes sign when we make the replacement
X7 — —Xr or yr — —yr, respectively. Due to this factor the integration over x,
or yr now cancels the cos y-terms of (3.16) instead of the sin x-terms. Therefore, in
the context of this scattering reaction, (3.16) reduces to

WW_ — 1), i {—g sin <§X> + % sin <§X> } | (3.34)
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On the other hand, the expression (3.17), which we get from the expansion method
in the approximation up to O(x?) discussed there, is even under y — —y and thus
vanishes completely after integration over xr or yr. To be able to use here as well
a correlation function which has been evaluated in the expansion method, we have
to include terms of higher order in x. In [36,51] the relevant term of order x* has
been calculated in the framework of the expansion method and the result is

o1

W W_ — Il>g’) = {_18_1 X(br, X7, ¥T, 2, z')3} , (3.35)

where we have attached an index (3) to denote that we are only discussing the
third order term in y here. Comparing this result with the O(x?*)-term of the
expansion of (3.16) we notice that the former is larger by a factor 5/4. This is
a consequence of the truncation of the cumulant expansion at second order, due
to which we neglect terms proportional to y3. Taking into account the 4- and
6-cumulant we recover (3.35) as the term of order x* in an expansion [52].

To conclude, we note that for double diffractive excitation we have a purely imag-
inary contribution to the correlation function, either (3.34) for the matrix cumulant
method or (3.35) for the expansion method, where we have to include the next, i.e.
third, order in x to get a non-zero contribution. Due to the symmetry of the wave
and correlation functions we indeed get C' = P = —1, i.e. odderon, exchange.

Finally we point out that also in the case of elastic scattering and single diffractive
dissociation an imaginary part of the correlation function and C' = P = —1 exchange
terms both non-vanishing after integration with the overlap functions could arise
from the inclusion of higher cumulant terms in (3.13). This could also be the case if
we chose a more general description of the hadrons with different symmetries of the
wave functions which are essential for the cancellations after integration. Of course,
the analogue is true for double diffractive excitation, with the difference that these
changes would lead to C' = P = +1 exchange there.
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Chapter 4

Hadron-hadron cross sections

The focus of this chapter will be on proton-proton scattering, where a lot of data is
available in the energy range we are interested in, i.e. high centre of mass energy and
small momentum transfer. First we will review elastic scattering, which has been
calculated previously using the matrix cumulant method in [30]. Then the study will
be extended to single diffractive dissociation. We will conclude the investigation of
proton-proton scattering with the analysis of the reaction pp — N(1535) N(1535),
i.e. double diffractive excitation of the proton. Then we will consider proton-pion
scattering, i.e. we replace one of the incoming protons by a pion. In this context we
are going to study elastic scattering and single diffractive dissociation of the pion.

To calculate cross sections for the reactions we are considering, we have to fix
our free parameters, namely those of the MSV: (G5, a and k; and those of the wave
functions, the extension parameter Sy, and the width of the longitudinal momentum
distribution z;. The set of MSV parameters used in this work has been established
in [30] for the case of the matrix cumulant method giving (3.16). For the expansion
method giving (3.17) the set of parameters depends on whether we discuss C = P =
+1 exchange, for which we use the values given in [27], or C'= P = —1 exchange. In
order to obtain the latter contribution, a somewhat different approximation scheme
was used in [36,51] and therefore the resulting values are slightly modified. These
three parameter sets are compiled in Table 4.1.

expansion method
C=P=+1|C=P=-1
Go (529 MeV)* (501 MeV)* | (525 MeV)*

a 0.32 fm 0.346 fm 0.31 fm
K 0.74 0.74 0.74

matrix method

Table 4.1: The parameters of the MSV for the matrix cumulant and the expansion
method

The values given in Table 4.1 should be considered as effective values extracted from

33
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fits to high energy scattering data using two different approximate formulae. Thus
the differences between the values in the second and third (or fourth, respectively)
column of the table can be taken as a theoretical error estimate. With fixed param-
eters the model gives energy independent cross sections. It has been shown in [24]
that both the energy dependence of the cross section and of the slope parameter
b of elastic scattering can be well described by energy dependent hadron extension
parameters Sy, (s). In [30] it was found that in the framework of the matrix cumu-
lant method energy dependent extension parameters can even describe the energy
evolution of the whole differential elastic cross sections do/dt up to |t| ~ 1 GeV?.
When using the matrix cumulant method we adopt the parametrisation from [30]
for the extension parameter S, of the proton

S 0.700 (=) ¢ 4.1
s) = 0. — m. )
() (axz) (1)
This was obtained by fitting the total cross section as calculated from the optical
theorem with the 7-matrix element calculated within the model

1

t=0

to the soft pomeron part of the Donnachie-Landshoff (DL) parametrisation for
Otot [12]. For the expansion method we have established a similar connection between

Sp and s:
S

0.028
S, (s) = 0.624 (@) fm. (4.3)
At /s = 23.5 GeV, for instance, we get S, = 0.868 fm and S, = 0.745 fm from (4.1)
and (4.3), respectively. Since the MSV-parameters for C' = P = +1 exchange in the
expansion method are different from the ones used for the C' = P = —1 exchange
as stated above, of course the extension parameters differ as well. In the following
we only need the extension parameter of the proton at /s = 20 GeV for the latter.
To be consistent with the set of MSV-parameters, we use the value S, = 0.85fm
from [36,51]. The width of the longitudinal momentum distribution of the proton
has been chosen as z, = 0.4 which gives a best fit to the isovector form factor of the
proton calculated in the framework of our model (see chapter 5).

A different description of the energy dependence, motivated by the two pomeron
picture has been suggested in [53]. In this approach the correlation function x
instead of the hadron extension parameters is assumed to depend on the energy.
This is in line with other two component pictures as e.g. [54,55]. Of course this
leads to a different set of both MSV and wave function parameters. Since in this
work also the correlation functions D, D from (3.5) and the integration surface (see
Fig. 3.1) are modified compared to our ansatz, we will not use this approach in the
following.

After having fixed all parameters, the calculation of cross sections can be per-
formed numerically. All phase space integrals and the integrals occurring in the
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scattering amplitudes are evaluated using the Monte-Carlo integration subroutine
VEGAS [56] in an adapted version [57].

4.1 Proton-proton scattering

From the experimental side a lot of data on proton-proton scattering exists over a
wide range of energies. In particular the availability of data on soft diffractive scat-
tering at high centre of mass energies makes proton-proton scattering an interesting
field of application for our model.

4.1.1 Elastic scattering

Let us first consider elastic proton-proton scattering
p(P1) + p(P2) = p(P3) + p(Fy). (4.4)

The differential cross section dog /dt for this reaction has already been calculated
using the functional integral approach and the matrix cumulant method in [30],
however, as the results will be needed in the analysis of single diffractive dissociation,
we give a short reminder of the results obtained there. Moreover we calculate the
differential cross section using the expansion method and the integrated elastic cross
section applying both methods and compare the results.

For s > Mp2 the differential cross section is given by

11

dog = ——
Tel 167 52

|75 dt, (4.5)
where Ty; is our result (3.26) for the elastic scattering amplitude. Depending on
which method for the evaluation of the correlation function is used, we insert (3.27)
or (3.28), respectively.

In [27] it has been argued that the Gaussian shaped distribution of the longi-
tudinal momentum fraction z (2’) can be replaced by a delta-function centred at
z =1/2 (¢/ = 1/2), since the function x (3.15), which determines the shape of the
correlation function, depends only weakly on z (2’). A numerical investigation of
the total cross section calculated from the optical theorem shows that the resulting
difference for oy, is smaller than 1%. The profit one makes out of this simplification
is a much shorter computation time in the numerical analysis, as each additional
variable of integration means roughly a factor of 10 in the time needed to calculate
the cross section. In the following we will make use of this simplification if not
explicitly stated otherwise.

In Fig. 4.1 we compare the results from the matrix cumulant and expansion meth-
ods to experiment. The first method, i.e. using (3.23), gives a reasonable description
of the data for |t| < 1GeV? over many orders of magnitude but underestimates the
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Figure 4.1: The differential elastic cross section dog/dt at /s = 23.5 GeV calcu-
lated using the matrix cumulant method (dashed line) and the expansion method
(solid line) compared to the experimental data from [58]

data at small [¢|. The expansion method, i.e. using (3.17), gives a better description
of the data for |t| < 0.2GeV? but overshoots the data by orders of magnitude for
larger |t|. A fit of the form dog/dt = Aexpbt to the differential cross section gives
b = 13.8 £ 0.4GeV~? for the matrix cumulant method and b = 10.0 £ 0.2 GeV >
for the expansion method, respectively. From a fit to the experimental data [58]
we obtain b = 11.6 4 0.1 GeV 2. These fits have been performed within the range
0 < [t| < 0.2GeV?, since the description of the data over a larger |t|-range would
require an additional term oc #? in the exponent of the fit. If we calculate the
integrated elastic cross section at /s = 23.5 GeV, we obtain gg = 5.0mb in the
matrix cumulant method and o, = 7.3mb in the expansion method compared to
an experimental value of o = 6.81 + 0.19mb [11]. The fact that the elastic cross
section calculated by the expansion method is closer to the experimental value than
the one from the matrix cumulant method is easily understood from Fig. 4.1b. In
the integral over do/dt only the region || < 0.2 GeV? contributes significantly and
there the expansion method describes the data better. In the region || > 0.2 GeV?
the result from the expansion method is bigger than the experimental result, with
the consequence that the resulting integrated cross section is too big.

In Fig. 4.2 we show o for 10 GeV < /s < 10 TeV. The data are as well
from pp- as from pp-experiments [11]. As our approach does not include, in Regge
terminology, any non-leading trajectories, we cannot distinguish between these two
reactions and they are described by the same scattering amplitude. The calculation
agrees reasonably well with the experimental data. Due to the reasons discussed
above, the integrated cross sections obtained from the matrix cumulant method are
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Figure 4.2: The integrated elastic cross section as a function of /s calculated using
the matrix cumulant method (dashed line) and the expansion method (solid line)
compared to the experimental data from [11]

smaller than the experimental values. The difference we get from the two meth-
ods can thus be seen as a theoretical error estimate. The theoretical uncertainties
have their origin in the different schemes which we use to evaluate the correlation
function (3.10), which both of course make use of approximations, as has been dis-
cussed in section 3.1. In the case of the matrix cumulant expansion method the
approximation is due to the truncation of the cumulant expansion after the second
cumulant term, in the expansion method we expand directly in terms of the gluon
field strengths. This means that both methods do not necessarily contain the same
physical contributions when we compare the respective expressions order by order.
We have already pointed out this fact when discussing the scattering amplitude for
the C' = P = —1 exchange in section 3.3.3, where we noted that we would have
to include higher order cumulant contributions in the matrix cumulant method to
obtain the same result in O(x®) as in the expansion method.

4.1.2 Single diffractive dissociation

Now we turn to inelastic diffractive scattering

p(P1) + p(P2) = p(Ps) + X (Py). (4.6)
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Figure 4.3: The integrated single diffractive dissociation cross section as a function
of \/s calculated using the matrix cumulant method (dashed line) and the expansion
method (solid line)

Using the plane wave method (2.52), (2.53) we calculate the differential diffractive
cross section as

1
dogig = (27r)42—8 |75 d°P, (4.7)
where

1 1
(2m)% 4s2'(1 — 2')

d°P d? Pyrd?Ayrd?’ (4.8)
is the 5-dimensional phase space measure for the three particle final state formed
by the first proton which remains intact and the quark and the diquark which de-
scribe the second, diffractively excited proton. As stated above the description of
the diffractive final state X by a free quark-diquark pair also includes the case of
elastic scattering. To obtain the cross section o4 for single diffractive dissociation,
we have to subtract the elastic contribution and then multiply by 2 to account
for the reaction where the first proton breaks up and the second stays intact. We
find for the integrated single diffractive cross section as a function of /s the result
shown in Fig. 4.3. Comparing our results to experimental data, one has to keep in
mind that the overall normalisation uncertainty of the experiments is of O(10%).
Furthermore the derivation of integrated cross sections from experimental data in-
volves extrapolations of the measured data at given values of ¢t and £ = M% /s to
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regions where no data exist. The extrapolations depend on assumptions on the
shape of the t-distribution and the shape of the &-distribution. Different experi-
ments make different assumptions and thus the resulting integrated cross sections
differ from each other. The experimental values on the integrated single diffractive
dissociation cross section quoted here use & < 0.05 as an upper bound in the mass
distribution [59-61, 63], except for [62] where the range is extended to £ < 0.2. In
our calculation of 0,4 we integrate over all values of £&. Because the mass spectrum
obtained in our calculation decreases rapidly with increasing £ (see Fig. 4.6), our
numerical result of the integrated cross section is dominated by the low mass region
and is not sensible to the integration range being & < 0.05 or £ < 0.2. Again the dif-
ference between the cross sections obtained by the two methods can be understood
as an estimation of the theoretical errors which arise due to the approximations
made in the evaluation of the correlation function.

In Table 4.2 we give the ratio R of the single diffractive dissociation cross section
to the sum of the single diffractive dissociation and the elastic cross sections from our
model and from different experiments. For /s = 546 GeV and 1800 GeV we have
used the values of o, and oyq as quoted by the UA4, CDF and E710 experiments.
For the ISR energy range 20 GeV < /s < 60GeV a lot of data exist. Since the
cross sections do not vary much over this energy range, we have fitted both o, and
0sa as being proportional to a small power of /s and have then calculated R as a
function of /s using these fits. The quoted ISR R-value in Table 4.2 is evaluated
at an intermediate energy of /s = 38.5GeV. As can be seen, our model, and

GeV R = Usd/(ael + Usd)
Vs [GeV] matrix | expansion values calc. from exp.
23.5 0.40 0.47
38.5 0.39 0.47 0.49 +£0.07 ISR  [59,60]
62.3 0.39 0.46
0.41+0.02 UA4 [61]
046 0-36 045 0.38 +£0.01 CDF [62]
0.33+0.05 E710 [63]
1 . .44
800 035 0 0.32+0.01 CDF [62]

Table 4.2: The ratio R of the single diffractive dissociation to the sum of the
single diffractive dissociation and elastic cross sections from the model and from
experiments

more pronouncedly in the matrix cumulant method, predicts that the diffractive
dissociation cross section grows more slowly with increasing energy than the elastic
cross section. This is in qualitative agreement with experiment, where an even slower
rise of ogq compared to o is observed. The smaller R-values in the matrix cumulant
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Figure 4.4: The differential diffractive cross section dogq/dt at /s = 23.5 GeV cal-

culated using the matrix cumulant method (dashed line) and the expansion method
(solid line) compared to the experimental data from [59]

method compared to the expansion method are mainly due to the relatively small
integrated single diffractive dissociation cross sections in the former method.

The results for the differential cross section of the single diffractive dissociation
are shown in Fig. 4.4. The curve calculated in the framework of the expansion
method describes the slope of the diffractive reaction quite well even for larger val-
ues of |t|. Therefore the agreement with the experiment is reasonably good within
the |t|-range considered here. This could however be partly accidental. In pro-
cesses where the proton breaks up, the exchange of hard and semi-hard gluons will
play an important role. This exchange is not described by our model which is an
approximation for the infrared behaviour of QCD. We have seen in elastic scat-
tering that the expansion method overestimates the cross section for values of ||
larger than 0.2 GeV?, see Fig. 4.1, and this could simulate the expected contribu-
tion of hard or semi-hard gluon exchange in the diffractive dissociation reactions.
We stress however that the fast decrease of the single diffractive dissociation cross
section dogg/dt for |t| < 0.2GeV? is a firm prediction of our model. Performing a
fit over the range 0 < |t| < 0.2 GeV? of the form dogy/dt = Aexp bt like in the case
of elastic scattering we obtain b = 12.6 + 0.2GeV 2. For such small momentum
transfer no experimental data on the differential diffractive cross section exist. To
compare to experiment, we therefore apply the fit formula to both our result and
the experimental data in the range 0.2 GeV? < [t| < 0.5GeV?. For larger values
of |t| we would require an additional term oc #* in the exponent of the fit. The



4.1. Proton-proton scattering 41

fits then give b = 7.9 + 0.3 GeV ™2 for our calculation in the expansion method and
b = 7.0+ 0.3GeV ? for the data from [59]. Integration of our result for the dif-
ferential distribution over ¢ leads to integrated single diffractive dissociation cross
sections which are larger than the according experimental integrated cross sections.!
Those are calculated from the experimental differential cross sections under the as-
sumption of a linear extrapolation of the slope down to t = 0 GeV?. Therefore it is
the steep slope for |t| < 0.2 GeV? in our calculation that leads to larger integrated
cross sections than experimentally observed even though in the whole range where
experimental data on the differential ¢-distribution are available our calculation gives
smaller values than the experiment [59]. Since our model predicts an increasingly
steeper slope when we go to higher energies, this effect gets more pronounced for
large values of y/s. Therefore the agreement of our result for the integrated single
diffractive dissociation cross sections is not as good for the Tevatron data as it is for
the ISR data (see Fig. 4.3).

To check the validity of our description of the diffractive final state by a free
quark-diquark pair using plane waves, now we apply the second method, which
describes the diffractive final state X through a sum of wave functions of excited
states of a two-dimensional harmonic oscillator, as explained above in section 2.3.2.
In this description, the final state phase space is two-dimensional as in the case of
elastic scattering and the differential cross section is given by

dUSd 1 1 2
T - 1o s > Tl (4.9)
(n,m)#(0,0)

with 7; from (2.54). The sum runs over all even n for the reasons given in sec-
tion 3.3.2, the associated quantum number m runs over m = —n, —(n —2),...,n —
2,n. The numerical analysis shows that both calculations are in very good agree-
ment to each other and that summing up the contributions from values of n < 6
already gives ~ 98% of the result using plane waves.

So far we have only discussed the result for the differential cross section which
we obtain when we apply the expansion method. Fig. 4.4 also shows the result of
our calculation in the framework of the matrix cumulant method. As already seen in
elastic scattering, the result obtained from the matrix cumulant method is smaller
than the one from the expansion method. The same fit we have used for the expan-
sion method for the range 0 < [t| < 0.2GeV? here leads to b = 19.1 4 0.9 GeV 2.
This is in analogy to elastic scattering, where we have also found a steeper slope
for very small momentum transfers when comparing matrix cumulant with expan-
sion method. Repeating the fit in the range 0.2 GeV? < |t| < 0.5 GeV? we obtain
b =924 1.7GeV 2. However, in the range 0.1GeV? < |t| < 0.7GeV? the differ-
ential cross section develops a depression and in contrast to elastic scattering the

LOf course the physical region of ¢ is bounded by t,;,, which is a function of the mass of the
diffractive final state and of /s, but in the kinematical region which we are studying we have
tmin < 1073 and thus tpyi, can be safely set to 0.
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Figure 4.5: The contributions of harmonic oscillator wave functions with fixed
quantum numbers n, m to the differential diffractive cross section dogq/dt compared
to the result obtained by the plane wave description (solid line) of the diffractive
final state X

matrix cumulant method fails to describe the shape of the differential cross section.
This depression is the reason why, after integration over ¢, the integrated single
diffractive dissociation cross sections in the matrix cumulant method are noticeably
smaller than the ones extracted from the expansion method and experimental data.

To understand where this depression comes from, we again apply the second
method and describe the diffractive final state through the sum of the wave func-
tions X™™. Progressing analogously to the above study of the expansion method we
sum up all contributions with n < 6 and associated m’s and find as well very good
agreement to the plane wave description. This shows us that both descriptions of X
indeed are equivalent to each other. Now we take a closer look at the contributions
to the differential diffractive cross section from excited state wave functions X™™
with definite values of n and m. The reason why we can compare the contributions
from wave functions with definite quantum numbers directly to each other and to
the plane wave description is that due to orthogonality they add up on the level
of the cross section and not on the level of the scattering amplitudes. We have
already used this fact in (4.9). Therefore we can calculate differential diffractive
cross sections with the sum over n, m replaced by just one term with fixed quantum
numbers. Some of these contributions to the differential cross section are shown
in Fig. 4.5, where we have also included the result obtained by the plane wave de-
scription for comparison. We see that, like for elastic scattering as discussed in [30],
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various contributions to the differential cross sections develop a “dip”-structure, in
particular those with m = 0. The location of these dips is given by the [t|-value at
which the real part of the correlation function changes sign. At which exact value for
t < 0 this happens is governed by the details of the interplay of the Bessel function
J, that occurs in the scattering amplitude (see (3.25) and section 3.3.2), the wave
function X™™ and the correlation function. We note that for increasing quantum
number n the position of the dip moves to larger values of |t|. As the imaginary part
of the correlation function is cancelled after integration over the wave functions as
discussed above, the scattering amplitude is zero at these positions and therefore we
get an infinitely deep dip. As can be seen from Fig. 4.5 several dips develop in the
region 0.1 GeV? < |t| < 0.7GeV? for wave functions with n < 6. In particular the
contribution with the quantum numbers n = 2, m = 0 which accounts for the main
part in the sum has a dip at || &~ 0.3 GeV?. Performing the sum over n, m then leads
to the formation of the depression for this region of |t|. We expect the dips - and in
consequence the depression - to be at least partly filled up when we include higher
cumulant terms, which could lead to an imaginary part of the correlation function
non-vanishing after integration with the wave functions as discussed in more detail in
section 3.3. Also the description of the proton by a more general quark configuration
than the simple quark-diquark picture we have used here changes the symmetries of
the wave functions which are essential for the cancellation of the imaginary part of
the correlation function. The result would be a refined description of the differential
diffractive cross section in the matrix cumulant method and therefore, after inte-
gration over t, also a larger integrated single diffractive dissociation cross sections
which would be in better accord with experiment.

In the following we will consider the mass spectrum d?og/(dédt) of the single
diffractive dissociation reaction at /s = 23.5 GeV for + = —0.0525 GeV?, where &
is the squared mass of the diffractive final state divided by s. In our ansatz with
plane wave final states, ¢ then is given by

M3 _ A2+ (1 — z’)mg + z’mg_

&= s 2(1—2")s (4.10)

Here m, and m; are the masses of the quark and the diquark which describe the
excited proton state. To take thresholds into account the mass for the quark has
been chosen to be 330 MeV and for the diquark 660 MeV so that the sum roughly
gives the proton mass. Going back to (2.53) we recognise that now we can no
longer replace the Gaussian shaped longitudinal momentum distribution in the wave
function (3.18) for the hadron hs, which breaks up, by a delta function centred
around 1/2, as we have done in the calculations before, because 2’ determines the
value of ¢ in (4.10). This was different for the calculation of dog/dt, where we
performed an integration over the full range of A,r in phase space and were not
interested in any particular value of £&. As a consequence of the introduction of quark
masses the integration over 2z’ now does not run from 0 to 1, but the integration
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Figure 4.6: The diffractive mass spectrum d’y/(dédt) for ¢ = —0.0525 GeV? at
Vs = 23.5 GeV calculated using the matrix cumulant method (dashed line) and the
expansion method (solid line) together with the data from [60]

limits are given by

2
01— 9 2 s 4 2 s 2 s ' '

This ensures that the mass spectrum starts at M3 = M7 where M, is the proton
mass. Our plane wave description of the diffractive final state of course also includes
elastic scattering. To compare with experimental results on diffractive dissociation
we have to subtract the elastic contribution. To do so we argue as follows: to obtain
the elastic contribution, we integrate d?og/(dédt) over & from & = Mg/s up to
&1. We determine & in such a way that the integral gives the value of the elastic
differential cross section dog /dt. Now we interprete the mass spectrum as consisting
of the elastic part, which lies between & and & and the dissociation part, which
starts at & . This procedure allows us to separate the elastic and the dissociation
contributions.

The result of the calculation is shown in Fig. 4.6 for ¢ = —0.0525 GeV? and
the c.m. energy /s = 23.5 GeV together with the data points from [60]. For
the matrix cumulant method we determine & = 1.90 GeV?/s ~ 3.44 - 1073, for the
expansion method & = 1.63 GeVQ/s ~ 2.95-1073. Again the differential distribution
obtained by our calculation in the matrix cumulant method is smaller than the one
corresponding to the expansion method and starts for slightly larger &. This is
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not surprising because integrating d*oq/(dédt) over £ from &, to & = oo, following
the argumentation from above, we have to find the value for the differential single
dissociative cross section dogq/dt at t = —0.0525 GeVZ2. 2 As we have seen above,
this differential cross section is smaller for all values of ¢ in the matrix cumulant
method than in the expansion method and therefore the double differential cross
section also has to be smaller when calculated by means of the former method. The
comparison with the experimental data proves difficult, as the experimental values
are smeared out over a certain range of values for £ because of the detector mass
resolution function. This explains also the data for the unphysical negative £-values.
As a consequence the large peak of the diffractive mass spectrum is much more
pronounced in our calculation and the experimental distribution is flatter around
that peak. To compare directly with the experiment, we would have to fold our
results with the mass resolution function of the detector used in the experiments [60],
but unfortunately, this resolution function can no longer be reconstructed [64]. We
note that our model should give reliable results for small £. Indeed, for large values
of £ the model seems to underestimate the data considerably. But for this £ region
we expect, for instance, that our purely nonperturbative treatment of the scattering
must be supplemented by hard gluon radiation which should lead to high invariant
masses for the diffractively excited state. Furthermore our calculation treats the
final state as a quark-diquark pair and therefore no confinement effects are included
here.

4.1.3 Double diffractive excitation

Now we will study the double diffractive excitation of the proton
p(P1) + p(Py) — N(1535)(P3) + N(1535)(Py), (4.12)

where the N(1535) is an excited nucleon resonance with mass M, = 1535 MeV and

the quantum numbers I(J”) = 2(3 ). In the quark-diquark picture it has angular

momentum L = 1. The differential cross section is given by

11
o2

5 (TP +IT1) ar, (4.13)

dO’dd =
with 75 from (3.32). The scattering amplitudes contain the double diffractive profile
function J,, which depends explicitely on the relative orientation of the helicities
of the two excited nucleon resonances (see (3.33)). Depending on which method we
want to use, we use either (3.34) or (3.35) to evaluate the correlation function.
Unfortunately no experimental data exist on this reaction so far, so we can only
give predictions for future experiments. RHIC for example meets all the require-
ments to investigate this reaction. As we mentioned in section 3.3.3 this reaction

2In practice it is sufficient to perform the integral for a finite value of & = 25 GeV?> /s because
of the fast decrease of the calculated differential distribution for large values of &.
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Figure 4.7: The differential diffractive cross section dogq/dt at /s = 20 GeV cal-
culated using the matrix cumulant method (dashed line) and the expansion method
(solid line)

has an unique signature since the N(1535) is the only known baryon with a strong
nN decay. A clear signal in the detector for this reaction thus would be a final state
composed of 2 n’s and 2 nucleons. However, there is also the question open why
the N(1535) has a strong decay mode into n)N whereas the N(1520), which has the
same quantum numbers apart from .J = % instead of J = %, has not [11]. Standard
models of baryon spectroscopy, including the quark-diquark model we use here, have
difficulties explaining this experimentally well founded fact. We have to keep this in
mind as a possible source of theoretical uncertainties in our model when discussing
our results.

The differential cross section dogq/dt calculated in the framework of both meth-
ods is shown in Fig. 4.7. These distributions exhibit some qualitative features that
we have already discussed in section 4.1.2 when investigating single diffractive dis-
sociation. One similarity is that again the result obtained by the matrix cumulant
method is smaller compared to the one calculated with the expansion method. Go-
ing back to the discussion following (3.35) we recall that the two methods rely on
different approximation schemes that do not necessarily include the same contri-
butions at every order of x. We have seen for example that the term of O(x?) in
the expression for the correlation function is larger by a factor % in the expansion
method compared to the matrix cumulant method with truncation after the sec-
ond cumulant. To see where the difference between the methods comes from we
expand (3.34) to order x? giving —ié x? and calculate the differential cross section.
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Figure 4.8: The contribution of 7, and 7_ to the differential cross section dogq/dt
compared to the full result (solid line)

Naively we would expect the distribution obtained that way to be smaller by a fac-
tor (%)2 than the expansion method result for the reason given above. However, we
have to remember that the MSV parameters are different for the two methods and in
fact the distribution calculated with the expanded matrix cumulant result and the
original matrix cumulant parameters (second column of Table 4.1) is slightly larger
than the one calculated with the expansion method and the according parameters
(fourth column of Table 4.1). This is mainly due to the fact that the correlation
length enters the cross section to power a?*. Including step by step higher orders
in x we finally get back to the result for the matrix cumulant method shown in
Fig. 4.7. By this argument we see that the contributions from higher orders in
x have an essential influence on both the normalisation and the shape of the dif-
ferential cross section. For elastic scattering and for single diffractive dissociation,
where we have C' = P = +1 exchange instead of the C' = P = —1 exchange we are
discussing here, these arguments also hold true. In all cases we start from (3.16)
for the matrix cumulant method and depending on the symmetries of the wave and
correlation functions we keep either (3.23) or (3.34) after integration with the over-
lap functions. Expanding these expressions and calculating the contributions from
increasingly higher orders in y we see that also for C' = P = +1 exchange they
are crucial for the normalisation and the shape of the cross section. In particular
the position of the the dip structure seen in the differential distribution of elastic
scattering and the depression in the differential cross section of single diffractive
dissociation depend on how many orders in x we take into account.
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Another agreement with single diffractive dissociation is the development of a de-
pression in the differential distribution calculated with the matrix cumulant method
(compare Figs. 4.4 and 4.7). In analogy to section 4.1.2, where we have analysed
the origin of the depression by studying contributions of single oscillator functions
to the cross section, we now calculate the cross section from either 7, or 7_ alone
instead of immediately summing up both contributions. The respective results are
shown in Fig. 4.8. Again we find that the reason for the depression is the location
of a dip at |t| ~ 1.0 GeV? in the leading term of the sum, namely the one we get
from 7_.3 As already mentioned in section 4.1.2, the inclusion of higher cumulants
and a refined model for both the proton and the excited nucleon state could lead to
an improved description of the differential cross section.

Compared to elastic scattering or single diffractive dissociation we note that the
differential distribution for small values of |¢| is relatively flat. A fit to dogq/dt =
Aexpbt gives b = 8.2+ 0.1 GeV ™2 for the matrix cumulant and b = 5.7+0.1 GeV 2
for the expansion method. Our predictions for the integrated cross section for the
reaction pp — N(1535)N(1535) are 044 = 0.2mb when applying the matrix cumu-
lant and 043 = 0.7mb when applying the expansion method. These cross sections
are solely due to C' = P = —1, i.e. odderon, exchange. In the approximation we use
here, an a priori possible contribution through pomeron exchange is strictly zero.
This is in agreement with the Gribov-Morrison rule [65], but as neither this rule nor
our model are exact the possibility cannot be ruled out entirely. However, this can
be tested experimentally. As the odderon is known to couple at most very weakly
to the nucleon it will not contribute significantly to the reaction pp — p N(1535).
So if this reaction is observed at high energy, the natural interpretation is that it
is due to pomeron exchange and, using reggeon factorisation together with pp elas-
tic scattering, allows the pomeron contribution to pp — N(1535) N(1535) to be
obtained.

To conclude this section we note that a possible check of our results could be
obtained by calculating the electromagnetic p — N(1535) transition form factor.
However, in the formulation of the model used here, in particular due to the ap-
plication of the quark-diquark picture with scalar diquarks, this calculation is not
feasible. We will come back to this point when discussing the calculation of form
factors in the framework of our model.

4.2 Proton-pion scattering

We present calculations for the reaction p7* — pm and pr™ — p X, respectively.
Of course, the vacuum parameters (G5, a, k stay the same but we still have to fix the
pion extension parameters S; and 2 in (3.18). Proceeding as in the case of proton-
proton scattering we find for the parameters S, = 0.60 fm for the matrix cumulant

30f course it is not the leading term in the region of the dip, where its contribution tends to
7ero0.
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and S; = 0.55fm for the expansion method, respectively, at /s = 19.5 GeV. In

both methods we obtain the same value z, =

momentum distribution.

4.2.1 Elastic scattering
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Figure 4.9: The differential elastic cross section doe/dt at /s = 19.5 GeV calcu-
lated using the matrix cumulant method (dashed line) and the expansion method
(solid line) compared to the experimental data from [67]

Again we will first take a look at elastic scattering. For a c.m. energy of
Vs = 19.5 GeV we find for the integrated elastic cross sections e = 2.4 mb with
the matrix cumulant and o, = 3.1 mb with the expansion method, compared to an
experimental value of o = 3.30 £0.11 mb [66]. The differential elastic cross section
is shown in Fig. 4.9. The matrix cumulant method describes the differential distri-
bution reasonably well over many orders of magnitude and underestimates the data
for small |t|. This is the reason why the integrated cross section comes out too small
when applying the matrix cumulant method. The expansion method gives a better
description of the data for |t| < 0.2 GeV? but overestimates the data for larger values
of |t|, and therefore the integrated cross section as well. All this is in complete anal-
ogy to elastic proton-proton scattering. Fitting our result for the differential cross
section by dog/dt = Aexpbt we find b = 10.9 + 0.3 GeV? for the matrix cumulant
method and b = 8.7 + 0.3 GeV 2 for the expansion method. The experimentally
measured values are b = 7.9 £ 0.2GeV 2 for 7tp- and b = 8.4 + 0.1 GeV 2 for
7 p-scattering, respectively [67]. We cannot distinguish between these two reac-
tions and describe them by the same scattering amplitude because our model does
not include, in Regge terminology, any non-leading trajectories.
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4.2.2 Single diffractive dissociation

Moving on to the reaction where the pion breaks up diffractively, we calculate oy
and the R-value, which we define as in the case of proton-proton scattering. For
the matrix cumulant method we find 054 = 1.1 mb and R = 0.32, for the expansion
method ogg = 2.0mb and R = 0.39. The according experimental values are o4 =
1.90 £ 0.2mb and R = 0.37 £ 0.03 [68] which is in quite good agreement to the
results obtained from the expansion method. Differential cross section for proton-
pion scattering with diffractive break up of the pion are unfortunately not available
at c.m. energies which are high enough for our model to be applicable.



Chapter 5

Space-like form factors in the
model

In this chapter we will study form factors within our model. We do not intend to
perform a precision calculation of form factors but we will apply the calculation
to extract values for the width of the longitudinal momentum distributions of the
proton and the pion, z, and z,, respectively, by fitting our results to experimental
data.

5.1 The electromagnetic form factors of the pro-
ton
The coupling of the electromagnetic current to the proton can be described by

ity
2M,

Fy(Q%) | us(P),  (5.1)

where the momentum transfer is ¢ = P’ — P, Q* = —¢*, M, is the proton mass,
e = \/4m e m. and Fiy, Fy, are the Dirac and Pauli form factor of the proton, respec-
tively. Now we choose such a coordinate system so that ¢ is purely transverse:

1 1 1
Pt = 5 +nl_|t_ + §P_nli - §qu,
1 1 1
1
P T
= T ) + = )
0 0
+1
1
Po— Capranyp, (5.2
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In the high energy limit, Py — 0o, we get for the matrix element (5.1) (see [69])

o*qr-o

T/.pr2”(Q2) xs+0(1), (5.3)

(p(P',s")|j*(0)|p(P, s)) = e Penls Xl | Fip(Q7) —

where g, xs are the Pauli two-component spinors. Fj, multiplies the spin-non-flip
part, Fy, the spin-flip part of the matrix element. Calculating the spin average of
this expression leads to

5 S (P, ) @)lp(P,5)) = ¢ Pt Fy(Q7) + O(). (5.4

We describe the calculation of the Dirac form factor of the proton in the framework
of our model in appendix C. In the following we consider the matrix element of the
third component of the isospin current j4. Its matrix element between proton states
is as in (5.1),(5.3), with F;, replaced by Fj,, related to the form factors of proton
and neutron by

1 .
Fio =5 (Fp(@) - Fn(@))  (i=1,2). (5.5)
With the wave functions (3.18) we obtain

1

1 29,2 _z2q202
Fi(QY) = 5T dz22(1 — 2) e~ (72)"/2%%5 =5 5507 (5.6)
pJo

where I, is the normalisation factor (3.19). For this calculation we need only the
expectation value of one Wegner-Wilson loop. A straightforward calculation shows
that the expectation value over one single loop is 1 in both the matrix cumulant
method and the expansion method. Thus, in our model the form factor is just the
Fourier transform of the squared wave function.

We will now use (5.6) to determine z, and S,. It turns out that in the range
0 <@ <0.5GeV the form factor depends sensitively on S, but only weakly on z,.
From a fit to experiment in this region we obtain S, = 0.77fm. With S, fixed to
this value we show in Fig. 5.1 our result (5.6) for Fy, for different values of z,. The
experimental values have been calculated from the experimental data for G'g, and
Grp from [70,71] and a fit of the experimental data on G, and Gy, [72] according
to (5.5) and the relation between the Dirac (Fj,,) and the electric (Ggpn) and
magnetic (Gprp,) form factor of the proton and neutron, respectively:

Gen(Q*) + TG un(Q?) S Q°
1+7 ’ ~AME

Fin(Q?) = (N =p,n). (5.7)

The best fit is found for z, = 0.4. As can be seen from Fig. 5.1, z,, which fixes
the width of the longitudinal momentum distribution of the constituents, plays
no important role for @ < 0.5GeV. For larger values of Q however, our fit is
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Figure 5.1: The isovector form factor of the proton for S, = 0.77 fm and different
values of z, compared to the experimental data from [70-72]

substantially improved when using a Gaussian shaped z-dependence instead of a
delta-function centred around z = 1/2, which is equivalent to z, — 0.

It has to be noted that the proton extension parameter S, obtained from (5.6) is
not, and need not be, the same as the one used in the hadronic scattering processes in
the previous chapters. Whereas the hadronic extension parameter has been allowed
to be energy dependent (see (4.1),(4.3)) to account for the rise of oy, with /s, the
extension parameter connected with the form factor has a fixed value for all energies
as the form factor itself is energy independent and is related to the electromagnetic
radius of the proton as follows. Using the definitions

dGry (@Q7)
d@* |y

VAL (5.8)
relations (5.5),(5.7) and the experimental value

402

from thermal-neutron-electron scattering [73], we get from our model

(r’yy = -6

= 0.019 fm” (5.9)
Q*=0

P =0.81fm. (5.10)
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This coincides with the value one obtains for the proton electromagnetic radius when
describing the electric form factor of the proton by the dipole parametrisation [70],
which also results in 72 = 0.81fm. From scattering experiments one finds 7%, =
0.88 £ 0.03fm or 77, = 0.92 + 0.03fm, depending on which fit is used for the
experimental data on Gp,(Q?) for small Q* [70]. The Lamb shift measurements [74]
give 77 = 0.890 £ 0.014 fm. Thus our result (5.10), as well as the one calculated
from the dipole parametrisation, is smaller than the experimental value for r?_.
Our calculation as well as the dipole fit describe the data [71] for G, rather well
for @ 2 0.4GeV. But for smaller @ the data [70] indicate a rapid change in the
slope dGg,(Q?%)/dQ?* which is described neither by our model nor by the dipole
parametrisation. Such an “anomalous” behaviour of G'g, and G, for small Q? has
been related to QCD vacuum effects in [75].

5.2 The electromagnetic form factor of the pion
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0.6 |
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Figure 5.2: The pion form factor for S, = 0.68 fm and different values of 2z, com-
pared to the experimental data from [76]

For the charged pions 7% the matrix element of the electromagnetic and the third
component of the isospin current are equal. Choosing again the coordinate system
as in (5.2) with M, replaced by m, we get

(™ (P)|j*(0)|7* (P)) = e (Pin® + P_n*)Fy(Q). (5.11)
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Here the matrix element can be expressed by one form factor F} only. The calcula-
tion of this matrix element in our model leads to

1 ‘
FL(QY) = Ii / Az 22(1 — 2) e~(=3)/222 (=% 5207, (5.12)
mJo
We compare (5.12) to experimental data for F, from [76] in Fig. 5.2. As for the
proton the transverse extension parameter S; can be fitted in the range 0 < @ <
0.5 GeV with the result S, = 0.68fm. Using the analogue of relation (5.8) for the
pion, this value gives an electromagnetic radius 7] = 0.64 fm, which is consistent
with the experimental value rZ = 0.663 £ 0.006 fm [76]. For values @ 2 0.5 GeV
our fit becomes sensitive to the width of the longitudinal momentum distribution
of the constituents. For the pion, the best fit for the width of this distribution is
given by z, = 0.5. The broader distribution compared to the proton is related to
the smaller mass of the pion, which is in agreement with the parametrisation of the
hadron wave functions in [37].
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Chapter 6

The time-like pion form factor in a
dispersion approach

Our aim in this chapter is to develop a dedicated model of the time-like pion form
factor. In contrast to the previous chapter, where our main interest lay in the
extraction of the parameters z,, 2z, here we want to give a detailed description of
the behaviour of the form factor. First we will give an overview of some models and
the regions in which they are applicable. Then we will present our approach and
calculate the phase and the modulus of the electromagnetic and charged current
form factor. From fits to experimental data we will obtain the masses and decay
constants of the neutral and charged p-mesons and the w-meson.

We recall the definition of the electromagnetic form factor of the pion by the
matrix element of the electromagnetic current

(mH(P)](0)[7H(P)) = e(P + P')' Fe(q?), (6.1)

where the momentum transfer is ¢ = P’ — P. The form factor is normalised as
F.(0) = 1. As function of the complex variable s = ¢?, the form factor F,(s) has
a cut in the complex s-plane starting at the two-pion threshold s = 4m? which
corresponds to two-pion intermediate states. There are also cuts related to KK
intermediate states and multi-meson states (47, etc). The form factor in the time-
like region (s > 0) is

Fio(s +i€) = |Fy(s)]e®®), (6.2)

where d(s) is the phase. For the theoretical description of the form factor in different
regions of momentum transfers different theoretical approaches are used.

At large space-like momentum transfers, —g*> — oo, perturbative QCD (pQCD)
gives rigorous predictions for the asymptotic behaviour of the form factor [77]

Fr(q?) ~ —Sﬁf”fgﬁ‘q ) (6.3)

57
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where a; is the QCD coupling parameter and f, = 130.740.4 MeV is the pion decay
constant defined by the relation

(0]dy ysu|mt (P)) = i P* f,. (6.4)

As the space-like momentum transfer becomes smaller, the form factor turns out
to be the result of the interplay of perturbative and nonperturbative QCD effects,
with a strong evidence that nonperturbative QCD effects dominate in the region
0 < —¢®> < 10GeV? [39]. The picture based on the concept of constituent quarks
which effectively account for nonperturbative dynamics has proven to be efficient
for the description of the form factor in this region (see for instance [40]). In chap-
ter 5, we also have calculated F, for small space-like momentum transfers in the
framework of our nonperturbative model. This calculation is not intended as a pre-
cise determination of the form factor, since our model, in the formulation we use
here, was not developed with the attention on the calculation of form factors, but
rather on the description of soft high energy hadron-hadron scattering. However,
our model has allowed us to give a reasonable description of the experimental data.
The agreement could be improved by using a refined model, in particular when
using more sophisticated wave functions and more general quark configurations to
describe the proton and the pion. Moving on to large time-like momentum transfers,
s > 10GeV?, Fy(s) can be obtained from the analytic continuation of the pQCD
formula (6.3). At small time-like momentum transfers the situation is more com-
plicated since there dynamical details of the confinement mechanism are crucial.
Quarks and gluons are no longer the degrees of freedom of QCD leading to a simple
description of the form factor. At time-like momentum transfers we are essentially
in the region of hadronic singularities and typically one relies on methods based on
hadronic degrees of freedom. In the region of interest to us here, 0 < ¢* < 1.5 GeV?,
the lightest pseudoscalar mesons are most important.

There are many approaches to understand the behaviour of the pion form factor
at time-like momentum transfers from 0 to 1.5 GeV2. A time honoured approach is
based on the vector meson dominance (VMD) model [41]. In the simplest version
of VMD one assumes just the p-meson dominance, which leads to
__M
N M2 — s’

Fre(s) (6.5)
where M, is the mass of the p-meson. This simple formula works with a good
accuracy both for small space-like momentum transfers and time-like momentum
transfers below the 77 threshold: —1 GeV? < s < 4mfr. For s near the 7 threshold
one should take into account effects of the virtual pions. In this region momenta of
the intermediate pions are small and a consistent description of the form factor is
provided by chiral perturbation theory (ChPT) [42], the effective theory for QCD
at low energies.

For higher s, in the region of p and w resonances, a similar rigorous treatment
of the form factor is still lacking, and one has to rely on model considerations.
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Contributions of the two-pion intermediate states may be consistently described by
dispersion representations. The application of dispersion relations has led to the
famous Gounaris-Sakurai (GS) formula [43] which takes into account p-meson finite
width corrections due to virtual pions

M;? T Bpp(o)

File) = My —s— B,y(s)

(6.6)

The function B,,(s) corresponds to the two-pion loop diagram. The correspond-
ing Feynman integral is linearly divergent, but its imaginary part is defined in a
unique way. The real part is then reconstructed by a doubly-subtracted dispersion
representation. The Gounaris-Sakurai prescription to fix the subtraction constants
reads

d
Re Byy(s)lsmay =0, ——Re Byy(s)|sar = 0. (6.7)

The phase of the form factor

ImB,,(s)
M? — s —ReB,,(s)

P

tan d(s) =

(6.8)

for the GS prescription agrees well with the experimental data in the region 4m? <
s < 0.9GeV2. But (6.6) gives too small a value (by ~ 15%) for |Fy(s)| at s around
M 3.

On the other hand, one can consider a simple VMD ansatz taking only the p-
meson contribution into account. This should be a good approximation in the region
0.5GeV? < s < 0.8GeV?, except for the narrow interval near s ~ M2 where the
p—w mixing effects are important [78]. The simple VMD ansatz then is very similar
to (6.6), but with the numerator replaced by the v — p — 77 transition matrix
element:

%gpﬁﬂ'ﬁfp Mp

F = . .
(5) M7 — s = Bp(s) (6:9)
Here g, and f, are defined according to
1
(R TEITIPE ) = Spmsmm culhy — o) (6.10)
<O|Jﬂ|p0(5a k)> = prp € (6.11)

where ¢, is the p-meson polarisation and & is the 4-momentum vector. Now |Fy(s)|
from (6.9) describes well the data for s ~ M?. But extrapolating (6.9) to s = 0
gives F(0) ~ 1.15 in gross violation of the normalisation condition Fy(0) = 1.
Thus, neither (6.6) nor (6.9) can describe the form factor over the whole range
0 < s < 1.5GeV?: namely, (6.6) leads to a too small value of |Fr| at s = M7,
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whereas the form factor given by (6.9) is far above unity at s = 0. There were
many attempts to modify the vector meson dominance or to use related approaches
in order to bring the results on the pion form factor in agreement with the data
(see [79,80] and references therein).

In the following we apply consistently a dispersion approach to the pion form
factor in a model with prmw, pK K, wrm, and gauge-invariant p — v, w — v and
p —w couplings. Our approach allows a direct resummation of pion and kaon loops.
Ambiguities related to subtractions in linearly divergent meson loop diagrams are
absorbed in the physical meson masses and coupling constants. After taking into
account the p — w mixing effects the pion form factor in the range 0 < s < 1 GeV?
is well described both in magnitude and phase by a formula which is similar to the
VMD expressions (6.6) and (6.9) but avoids their pitfalls.

6.1 The dispersion approach

Our model makes use of conventional methods of dispersion theory. First we make
an ansatz for the effective couplings of the pseudoscalar mesons, vector mesons and
the photon. These couplings are used in essence only to calculate the absorptive
parts of the amplitudes. The complete amplitudes are then obtained by dispersion
relations and a Dyson resummation. We want to make clear from the outset that our
effective couplings discussed below are not to be compared directly to the effective
Lagrangian of ChPT [42] and resonance theory in the framework of ChPT [81]. We
shall see, however, that our model, used as explained above, respects all the known
results from ChPT for the pion form factor. Thus our model can be seen as an
alternative to the one of [80] where ChPT results are extended to Fy(s) in the range
0 < s < 1.5 GeV? using again a resummation scheme.

In our model pions interact with the p-mesons and generate in this way the finite
p-meson width. We do not include into consideration direct four-pion couplings. Ne-
glecting of the latter goes along the line of the resonance saturation in the ChPT [81]
which states that the coupling constants of the effective chiral Lagrangian at order
p* are essentially saturated by the meson resonance exchange. The p’-meson is
coupled to the conserved vector current of charged pions as follows:

Lyer = %g (nfo,m — dumtm) pt, (6.12)

where p* is the conserved vector field describing the p-meson. We denote in this
section g = g,—»r. Matching to the one-loop ChPT [42] leads to the relation

Gpsmr = 2M,/ fr. (6.13)

The photon is coupled to the charged pion through the usual minimal coupling,

Lnn = ie(n10,m — O m'm) A", (6.14)
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Figure 6.1: The pion form factor in the picture where pions interact via the p-
meson exchange and generate in this way the finite p-meson width. The photon is
coupled to the charged pions through the usual minimal coupling, and the direct
gauge-invariant p—-y coupling is assumed. No G-parity violating effects are included
at this stage.

We also add a direct gauge-invariant p — v coupling of the form

lefy
L, = —ZEF“ G\, (6.15)
where
Fu = 0,4, —0,A,, G =0,p, — 0,p,. (6.16)

This model is similar to the model of [82]. No G-parity violating wrm or direct
p — w couplings are included at this stage. As explained above, we calculate the
electromagnetic form factor in our model by the sum of the diagrams of Fig. 6.1.
Summing all the pion loop insertions, we obtain

QfTP,JS 19+ §Bpy(5)

M?2—s— B,,(s)

Mg - (1= 2f7p,,9)8+ {%g B,y (s) — Bpp(s)}

- ) _ (6.17)

F.(s) = 1+

The quantities B,,(s) and B,,(s) correspond to one-loop p — v and p — p self en-
ergy diagrams generated by the pion loop. The imaginary parts of these diagrams
can be calculated by setting the intermediate pions on mass shell. The full func-
tions B,,(s) and B,,(s) are constructed from their imaginary parts by means of the
spectral representation with a suitable number of subtractions and by adding the
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corresponding subtraction constants. This is the usual dispersion theory procedure
which we adopt since the Feynman integral for the pion one-loop diagram leads to
a divergent expression. For the 77 intermediate states the imaginary parts of the
functions B,,(s) and B,,(s) satisfy the relations

Im B,,(s) = gQIrn Brr(s),

Im B,,(s) = 2¢Im B.(s), (6.18)
where
1 AN
Im B =7 2) =  — . 1
m B,.(s) (s,m3) 1927rs< . ) (6.19)

For a realistic description we have to take into account also contributions of K TK™
and K°K? intermediate states. The coupling constant Jp—k Kk cannot be measured
directly. We use the relation

29p—>KK =Y9p—ar = Y, (620)

which is valid in the SU(3) limit. Repeating the procedure described above, summing
the pion and kaon loops, we find with (6.20)

1
Im Bpp = g2 (Im er + Z (IIII BK+K— + Im BK0K0)>

1
= gQ (Im Bﬂﬂ— + §Im BKK) s

2

1
Im B,, = 2g <Im B, +=Im BK+K>

1

and hence
1
59 Im B,,(s) — Im B,,(s) = 0. (6.22)

It follows from (6.22) that the difference 2gB,,(s) — By,(s) is a polynomial in s
determined by the subtraction conditions. Hence the numerator of the pion form
factor (6.17) is also a real polynomial. Therefore, the phase of the form factor is
completely determined by the denominator. The latter is the usual propagator of
the p-meson with the finite width corrections taken into account.

Let us now consider subtraction constants. The function B,,(s) describes the
coupling of the pion to the conserved electromagnetic current. Therefore we must
set

B,,(0) =0, (6.23)
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such that the charge of the pion remains unrenormalised by higher order corrections.
The function B,,(s) determines the behaviour of the 77 elastic J© = 17 partial wave
amplitude in which the p-meson pole is known to be present in the zero-width limit.
Therefore, we require

Re B, (M?) = 0. (6.24)
Without loss of generality the second subtraction constant may be fixed by setting
B,,(s =0) =0. (6.25)

Any other condition would just lead to rescaling of the parameters in the formula for
the form factor. Thus, the most general expression for the form factor incorporating

subtraction ambiguities in the 77 and KK loop diagrams contains three! constants
Mg, g, and f,:

Mg ( 2M 9)s

Fr(s) = =58, (6.26)
Here
By(s) = ¢°s (R(S, m2) — R(Mg, m2) + R(s, mi) _2R(Mp’mK)>
o (I(S’mf’) - I(STmZK)> ’ (6.27)

with I(s,m?) defined by (6.19), and

1 % 4
R(s,m?) = V.P. / < ”}
4

1927’(’2 m2 (

)
5o (l +&+ Q log (1+£>>
e (— — &% + &3 - arctan (%))

V)

M M
I

for s < 4m?,

/1 for s > 4m?,
\/7

(6.28)

where V.P. means the principle value. Let us point out that the numerator of the
form factor in (6.26) is not a constant, but a linear function of s. This s-dependence
appears as the direct consequence of current conservation. We can write (6.26) in
the form of the modified GS formula

%gp%wnf;ﬂ(s)Mp
M?—s— B,,(s)

Fr(s) = (6.29)

! Assuming more than two subtractions in the pion loop diagrams leads to more subtraction
constants. This is not dictated by the convergence properties of the loop diagrams, but is still
possible. We will not discuss such a case here.
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with the effective s-dependent p — v coupling constant

2(M? — s)

6.30
ST (6:30)

£(8) = oz +
p

One should be careful with the interpretation of this result: as is clear from (6.23),
there is no direct transition of the p-meson to the real photon as a consequence of
the gauge invariant p — v coupling. On the other hand, the effective coupling f;’ﬁ(s)
is clearly nonzero at s = 0. Therefore the pion form factor looks as if there was
direct p — v coupling also for the real photon. This is just the usual vector meson
dominance. The latter thus emerges as the direct consequence of our assumption
that the vector meson couples to the same pion current as the photon. For further
discussions of the relationship between VMD and gauge invariance we refer to [82].
If we use the ChPT relation (6.13), which agrees perfectly with the measured value
of gy—yrr, then (6.30) leads to an interesting relation

f5(s = 0) = fr. (6.31)

Notice that the phase of F,(s) in (6.29) is still given by (6.8) and is completely
determined by the function B,,(s).

6.2 The p —w mixing

In section 6.1 we discussed the p contribution due to the bare p plus the effects of the

p-meson width due to the light-meson loops to the pion form factor. This analysis

is sufficient for describing the pion form factor of the charged vector current using

the CVC relation. For the electromagnetic pion form factor it is necessary to take

into account the p — w mixing effects. The w is coupled to the pions and the photon

similarly to the p°-meson (see (6.12) and (6.15))
i

1
Lyrr = 5gwﬂw (ﬂ-’raﬂﬂ _ 3”7TT7T) wh, va — ——%F’“’G(“’)

1L e (6.32)
w, being a conserved vector field describing the w-meson and Gfﬁ‘,i) = 0wy, — Oy,

It has proven useful to classify various contributions to hadronic amplitudes
according to their formal order in the 1/N, expansion [42], where N.=3 is the number
of colours in QCD. In the language of the 1 /N, expansion the analysis of the previous
section corresponds to taking into account the leading order 1/N, process, which
corresponds to the resonance contribution in a zero-width approximation, and the
subleading O(1/N,) effects of the meson loops.? Performing a resummation of these
meson loops gave our dispersion description of the form factor.

2Recall that pion and kaon loop diagrams are of order 1/N, and of order p* of the momentum
expansion.
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Figure 6.2: Diagrams which contribute to the p — w mixing amplitude B,,. The
direct p — w mixing diagram is the only diagram which emerges to leading order in
1/N,, meson-loop diagrams are subleading 1/N, effects.

A corresponding treatment of the p — w mixing effects then requires taking into
account the leading and subleading 1/N, effects as well. To leading order in 1/N,,
meson loops do not contribute and therefore the only effect is the direct p — w
transition described in terms of the direct coupling (see Fig. 6.2).

At subleading 1/N,. order several meson loop diagrams shown in Fig. 6.2 emerge.
We make use of spectral representations for loop diagrams, i.e. we calculate directly
the imaginary parts and then reconstruct the full function by means of the spectral
integral with the relevant number of subtractions. Subtraction constants then are
either fixed by physical constraints or determined by the experimental data. Let
us point out an important feature related to our dispersion calculation: the direct
p — w coupling, which is a leading 1/N, process and the real part of the p — w
mixing loop diagrams at ¢* = M?, which is a subleading 1/N, process, contribute to
the form factor precisely in the same way, such that only their sum has a physical
meaning. We therefore account for the net effect of these two contributions by a
single subtraction constant and do not consider the direct p —w coupling separately.

We have analysed in section 6.1 the p-meson self-energy function B,, which
determines the propagator of the interacting p-meson. Let us now discuss a similar
self-energy function of the w-meson B, and the off-diagonal p — w function B,
which describes the p — w mixing.

The function B,,, determines the w propagator D,(s) = 1/(M? — s — B,,) in
the absence of the p — w mixing effects. The main contribution to Im B, is given
by the three-pion intermediate states. This Im B, should then be inserted into
a dispersion integral to obtain B,,. However, because of the small width of the w
resonance, it is sufficient for our analysis to consider as a simple ansatz a constant
wa

By, = il M,,. (6.33)

Possible processes which contribute to the p — w mixing amplitude B,, = B,, are
shown in Fig. 6.2. The coupling constants which determine the relative strength of
the diagrams in Fig. 6.2 are shown in Table 6.1.  One finds (see also [83]) that
the main contribution to the imaginary part of the p — w mixing amplitude B, is
given by the diagrams with two-pion and two-kaon intermediate states. To obtain
the full B,, we write again a dispersion representation with two subtractions. The
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| Res. | M [MeV] | T™ [MeV] |Tete- [keV] | Br(r'r7) | Br(z%y) |
" | 769.0+09 [150.7£2.9 [6.77+0.32 100% (6.8+1.7)-10 1
w | 782.57+0.12 | 8.44+0.09 | 0.60+£0.02 | (2.21+0.3)% | (8.540.5)-1072
‘ Res. H fv [MeV] ‘ Gv—on ‘
o 152+5 11.8+0.2

w 45.3£0.9 0.4+0.02

Table 6.1: Masses and rates for vector mesons from [11] and the corresponding
decay constants. Recall the SU(2)-limit relations f, = 3f,.

imaginary parts of these diagrams can be calculated in analogy to (6.18) in terms
of the coupling constants gy _,pp with V' = p,w, P = 7, K defined according to the
relation

(PUEVPHR)ITIVER) = Sovoree)(h — k)"

For instance, the imaginary part of the diagram with the 77 intermediate state is
equal t0 gp_srrGusarl (5, m2).

The same arguments as used to show the relation (6.22) between Im B,, and
Im B,, lead to

GpsrrIM By (S) — guosrrlm B,,(s) = 0. (6.34)

Hence, the combination g, zrBy, — gp—rrBpw is a polynomial of first order in s.
The p — w mixing effects are sizeable only in the narrow vicinity of s = M2, so we
may set

Gp—srrBpw — JuosanBpp = 5 A, (6.35)

and the value of A will be found from the fit to the pion form factor. As we have
explained above, the real part of the function B, at s ~ Mg’w includes the direct
p — w coupling.

6.3 The electromagnetic pion form factor with
p — W mixing

In the problem of the p — w mixing, the constant g, ,o, is a natural small param-
eter, and the expansion of the pion form factor in powers of this parameter can
be constructed. We can safely neglect all terms of order g2, _ and limit ourselves
to the first order analysis. The diagrams which describe the contributions to the
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Figure 6.3: Diagrams for the pion form factor which emerge at first order of the
expansion in g, .. In this figure the p and w propagators are D, = 1/(M?—s—B,,)
and D, = 1/(M? — s — B,,,), respectively.

form factor of first order in g, o, are shown in Fig. 6.3. Adding the corresponding
expressions to the result (6.29) we get for the pion form factor

59pomnfy (5)M, %gwﬁmeLj { My—s+4:s } +0(g%...)
M;? — s — By(s) wom
(6.36)

Fi(s) =
) = s B) M5 Bu(s)

We use this expression for the numerical analysis of the data for the electromagnetic
pion form factor in the next section.

6.4 Numerical analysis

In this section we apply the formulas obtained to the analysis of the data on the
electromagnetic and charged current pion form factors and extract in this way the
resonance masses and coupling constants. We include the contributions of the p(770)
and w(782) resonances and neglect the higher vector resonances p(1450) and p(1700)
(for a discussion of these latter see [84]). As can be seen from the analysis of [85],
the influence of the latter upon the pion form factor is negligible in the region s <1
GeV. We therefore extract the p and w parameters making use of the form factor
data for s <1 GeV.

6.4.1 The electromagnetic pion form factor

We fit the available data on the phase [86] and the modulus [76,87] of the electro-
magnetic pion form factor to (6.36) which includes the p — w mixing effects. The
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form factor turns out to be weakly sensitive to ¢,_.»» and f, for which we use the
values from Table 6.1.

The resonance parameters turn out to be rather sensitive to the upper limit
Vs < Qupper Of the data points included into the fit procedure. The extracted
masses and couplings from the best fit of the form factor, which was done separately
for the phase and the modulus, are shown in Table 6.2 and 6.3, respectively. This
dependence on (Qupper might signal that the errors in the extracted masses and
coupling constants are in fact sizeably greater than those quoted in [11]. Obviously,
the error estimates provided by the popular FuMILI [88] program should be taken
with some care.

| Qupper, MeV || 710 (5 pts) | 775 (10 pts) | 850 (15 pts) | 965 (20 pts) |

My, MeV || 7727213 | 773.4£08 | 773.0£0.6 | 771.1+0.6
[ 12.05+0.07 | 12.0£0.05 | 12.0+0.04 | 11.87£0.04

Table 6.2: The upper limit of the /s-range of the data from [86] used for fitting
the phase of the pion form factor and the corresponding fitted parameters M, and
Jp—2x- Error estimates as given by the FUMILI program are shown.

Qupper [MeV] || 820 (27 pts) | 950 (40 pts) | 1000 (45 pts) 9i0 4(54([))t2t[88[77]§5]
My MeV] || 774703 | 776.1+£02 | 773.6%0.2 T75.5+0.1
fo [MeV] |[ 1477402 | 1482+0.1 149.0 £ 0.1 149.4+0.1
9promin- || 11.37£0.03 | 11.3840.01 11.7+0.01 11.5+0.05
M, [MeV] |[ 7825+0.3 | 781.3+0.2 | 781.9+0.2 782.5+ 0.2

A 0.180£0.007 | 0.191+0.006 | 0.183%0.006 | 0.170 % 0.007

Table 6.3: The upper limit of the @-range of the data [76], used for fitting the
modulus of the pion form factor and the corresponding fitted parameters M,, f,,
Gp—2rs My, and A. The last column shows the result of the fit to the combined
data on |F;| from [76] and [87]. Error estimates as given by the FUMILI program
are shown.

Our best estimates for the p and w parameters from a combination of the fits
to the phase and the modulus are presented in Table 6.5. We obtain these values
as follows: the parameter values from the last columns of Tables 6.2 and 6.3 should
be the most reliable ones, since they correspond to the biggest data sets. On the
other hand, the errors given by the FUMILI program cannot be trusted. We took
the average of the values for Mg and ¢,_,rr, weighting the values from the modulus
fit by a factor 2/3 and those from the phase fit by 1/3. The errors in Table 6.5 are
our educated guesses.

The pion elastic form factor calculated with the central values of the parameters
from Table 6.5 is shown in Fig. 6.4. Both the phase and the magnitude of the form
factor are well described, except for the phase at /s > 0.9 GeV.
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Figure 6.4: The phase (a) and the modulus (b,c) of the pion form factor from the
p contribution (dotted line) and with p — w mixing effects (solid line) compared to
the data on the phase from [86] and the data on the modulus from [76] (solid circles)
and [87] (empty circles). For the calculation the central values of the parameters
from Table 6.5 have been used.
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6.4.2 The charged current pion form factor

The amplitude of the weak transition 7= — 7~ 7%, can be parametrised in terms

of the two 7~ — 7° transition form factors as follows

1

(m° (0 [urudlm™ (p) = TFJ( )(p’+p)u+ﬁF{(q2)qu- (6.37)
In the isospin limit F7 = 0 and FJ = F;. These relations should work well
for all ¢% except for the region of the p and w resonances: the form factor F
contains contributions of the p° and w resonance, whereas the contribution analogous
to w is absent in FF. Thus, the charged current form factor F© as measured in
the 7= — 77 v, decay is given in our model by the the modified p dominance
formula (6.29). Comparison with the ALEPH [85] and CLEO [89] data allows the
extraction of the masses and coupling constants of the p~. We give the corresponding
numbers in Table 6.4 and plot the form factor in Fig. 6.5.

| Qupper [MeV] || 760 (18 pts) | 900 (23 pts) | 1025 (28 pts) |
M,- [MeV] [ 768.840.3 | 775.14+0.1 | 776.940.1
f- [MeV] || 144.94+0.3 | 150.3+0.1 | 150.140.1
Jp-smom— || 11.224£0.02 | 11.34+0.01 | 11.80+0.05

Table 6.4: Fit to the charged current pion form factor from the CLEO data [89] on
the 7= — 7 7%, decay. The upper limit Q,pper Of the y/s-range of the data used
and the corresponding fitted parameters for the p~ meson. Error estimates as given
by the FUMILI program are shown.
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Figure 6.5: The charged current pion form factor calculated for the parameter set
obtained for Qupper = 900 MeV from Table 6.4 compared to the CLEO data [89]
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To conclude this chapter we summarise our final results for the p°, p~ and w
parameters which we extracted from fits to the data on the electromagnetic [76,86,87]
and charged current [85,89] pion form factors in Table 6.5. The masses, the weak
decay constants and the pionic coupling constants of the neutral and charged p-
mesons are found to be equal within the errors. Let us point out that our fitted
value for g, ,or agrees perfectly with the ChPT prediction g,o, = 2M,/ fz=11.7.
We notice that our central values of the p masses are 2-3 MeV higher than the
corresponding numbers obtained from the same reactions by [11]. A comparison of
the data and the theoretical curves for the electromagnetic and charged current pion
form factors is presented in Fig. 6.6. We point out that the p — w mixing gives a
sizeable contribution to the electromagnetic form factor in the region of the p and w
resonances, where it leads to an increase of |Fy|* by 10% at s = M? and by almost
30% at s = M2

| M,- [MeV] | My MeV] | M, [MeV] | f, MeV]|  gpnr | A |
| 7752 | 774+2 |782.0+05] 14941 |11.6+0.3 | 0.17+0.02 |

Table 6.5: The masses and decay constants of the vector mesons and the p — w
mixing parameter A (see (6.35)) as obtained by our analysis

| |
5 8

35

30

25

20

15

10

oo} HH‘H \‘\H\‘HH‘HH‘HH‘HH‘HH‘HH‘HH

o [T
>t
=]
~
e
3
ot
=]
o

0.85 9
Q [GeV]

Figure 6.6: Comparison of the electromagnetic (full circles) [76,87] and the charged
current form factor from the 7= — 7~ 7'y, decay (open squares) [89] with our fits.
The fits to the electromagnetic pion form factor show the p° contribution (dotted
line) and the result including p — w mixing (dashed line). The fit to the charged
current, pion form factor is the solid line.
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Chapter 7

Conclusions

In this work we examine soft high energy reactions in the framework of nonper-
turbative QCD. In the first part we calculate total and differential cross sections
for elastic and inelastic diffractive scattering. In our model we start from a mi-
croscopic description of the scattering of quark-antiquark and quark-diquark wave
packets and use functional integral methods to obtain expressions for the scattering
amplitudes. The correlation functions of light-like Wegner-Wilson loops governing
these amplitudes are evaluated in the framework of the model of the stochastic vac-
uum [23-26]. The hadron-hadron scattering amplitudes are obtained by multiplying
the parton scattering amplitudes with suitable hadronic wave functions [37]. Both a
matrix cumulant expansion for the correlation function of two Wegner-Wilson loops
as developed in [30] and an expansion method [24,27] are used.

The free parameters of our model are those of the model of the stochastic vacuum:
Go, a and k, and the ones of the wave functions: Sj, and z;,, determining the
width of the transverse and longitudinal momentum distributions of the constituents
of the hadrons, respectively. These parameters have been determined in previous
work [24,30] on elastic scattering. The extension parameters S, are allowed to
depend on the c.m. energy according to (4.1) and (4.3) respectively. In this sense
different hadrons are characterised through their radii, which come out close to the
corresponding electromagnetic radii of the hadrons for energies /s & 20 GeV. The
values for zj, are obtained from a calculation of form factors in our model.

With all parameters fixed, integrated and differential cross sections for proton-
proton and proton-pion scattering are calculated and compared to experimental
results [58-63,66-68]. Our model does not distinguish between pp and pp scattering
or prt and pr~ scattering, respectively.

The calculated integrated elastic cross sections agree with the experimental val-
ues within the numerical and experimental errors for a wide range of c.m. energies
starting at about /s = 20 GeV up to the Tevatron energy /s = 1800 GeV. The
differential elastic cross sections are described reasonably well over many orders of
magnitude by the matrix cumulant method, however, this method underestimates
the data for small |¢|. On the other hand the expansion method gives a good
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description of the differential cross sections for |t| < 0.2GeV? but overshoots the
data for larger values of |t|. As a consequence of the integrated cross sections being
mainly due to the contributions from small |¢|, the expansion method gives better
results here whereas the matrix cumulant method tends to underestimate the exper-
imental data. The difference between the results obtained from both methods can
be seen as a theoretical error estimate of our model, as they use different approxi-
mation schemes in the evaluation of the correlation function. In the approximation
we use in this work we have C' = P = +1 exchange only.

Furthermore the rise of the integrated cross sections in single diffractive disso-
ciation as a function of /s is calculated. Our calculated ratio ogq/(0e + 0sq) is
in rough agreement with experiment. The experimentally observed behaviour that
the diffractive dissociation part of the cross section increases more slowly with /s
than the elastic one is reproduced qualitatively in our calculation. The differential
distribution can be reasonably well described by the expansion method. The diffi-
culties we encounter in the description of dogq/d¢ by means of the matrix cumulant
method, i.e. the formation of a depression at |t| ~ 0.3 GeV?, are investigated in
a second approach. This approach uses two-dimensional harmonic oscillator wave
functions instead of plane waves for the description of the diffractive final state and
confirms the results found before, but allows us to analyse the origin of the observed
depression. Again the process is mediated by C' = P = +1 exchange only in our
approximation.

Turning to double diffractive excitation pp — N(1535)N(1535) we study C' =
P = —1 exchange in the framework of our model, which arises due to the symmetries
of the final state wave functions. The qualitative features of our predictions for
the integrated and differential cross sections resemble the ones of the results from
C = P = +1 exchange, the exception being a rather slow decrease of the differential
distribution with increasing momentum transfer. This behaviour is also known
from the helicity amplitude A? /o measured in the context of the electromagnetic
p — N(1535) transition form factor. However, due to restrictions of our model, in
particular the simple ansatz for baryons, which are given by wave packets of a quark
and a scalar diquark, we cannot calculate this helicity amplitude in our model and
therefore are not able to compare to experimental data.

The last chapter in the first part of our work deals with form factors at small
space-like momentum transfers, calculated in the framework of our model. Our
result for the isovector Dirac form factor of the proton and the electromagnetic
form factor of the pion, as well as the electromagnetic radii extracted from them,
compare reasonably well to experimental data.

To summarise the first part, our model is quite well suited to describe inelastic
diffractive hadronic reactions at high c.m. energies (y/s 2 20 GeV) and small mo-
mentum transfer. Further progress could be made when including higher cumulant
terms in (3.16) which would contribute to both C = P = 41 and C = P = —1
exchange. The hope is that these contributions could, at least partly, fill up the dips



I6)

encountered in various contributions to the differential cross sections and thus lead
to an improved description of the data. Also a more refined hadron model could
help avoid some shortcomings of the model as discussed in particular in the context
of the spin-flip contribution to the form factor.

The upcoming experiments e.g. at RHIC will be a rich source for new experi-
mental data for both single and double diffractive dissociation in hadronic reactions
at high c.m. energies. Therefore the study of inelastic diffractive scattering will
remain an interesting and instructive field of work, where effects of nonperturbative

QCD can be studied.

In the second part of our work we analyse the electromagnetic and charged
current, pion form factors at time-like momentum transfers in a dispersion approach.
Here we consider a model with prm, pK K, wrm, wK K and gauge-invariant p — y
and w — v couplings. The pion form factor is obtained by a resummation of pion
and kaon loops leading to the finite width of the p-meson. The resulting expression
for the pion form factor takes the form of the vector meson dominance formula with
one important distinction: the effective decay constant f,‘jﬁ depends linearly on the
momentum transfer squared. We also take into account the p — w mixing in the
electromagnetic pion form factor.

The values of the p° and w parameters are extracted from the fit to the electro-
magnetic pion form factor [76,86,87] at 0 < /s < 1.0 GeV where contributions of
higher vector meson resonances are negligible. The p — w mixing is found to give a
sizeable contribution to the electromagnetic form factor in the region of the p and w
resonances, where it leads to an increase of |Fy|* by 10% at s = M? and by almost
30% at s = M2

The values of the p~ parameters are obtained by the fit to the charged current
pion form factor measured in 7 decay [85,89].

Our best estimates for the p and w parameters are presented in Table 6.5. The
masses, the weak decay constants and the pionic coupling constants of the neutral
and charged p-mesons are found to be equal within the errors andour fitted value
for g,—,or agrees perfectly with the ChPT prediction g, o = 2M,/ f-=11.7.

To summarise the second part of our work, we have presented a model which
gives a good description the electromagnetic and charged current pion form factor
in the region 0 < /s < 1.0 GeV including the effects due to p — w mixing. The p
and w parameters which we obtain from our model are within errors in agreement
to experimental data [11].
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Appendix A

Conventions

Throughout this work we use natural units, in which

h=c=1. (A.1)

The fine structure constant of the electromagnetic interaction is given in Heaviside-
Lorentz units by
e 1

Qem. = 47T ~ E (AQ)

Latin indices i, 7, k etc. generally run over the three spatial coordinate labels, greek
indices u, v, p, ... generally run over the four spacetime coordinate labels.

The spacetime metric g, is diagonal with elements

goo =1, g1 =go2 =yg33=—1L. (A.3)

The Dirac matrices v* are defined so that

Y+t = 29" (A.4)
Moreover we define
vo= 'Y
ot = %(7"7" =) (A.5)

By letters in boldface we denote spatial three-vectors, e.g. x,p. A subscript T’
denotes that we are dealing with two-dimensional transverse vectors

x:<’;§>, XT:@;). (A.6)
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Light-cone variables are defined by
vy =2+ 23 (A7)

The measure of integration then is given by

1
T =dr dr dxr ax :—:1:+ X _ xIT. .
d*z = d2%datdz?da? 2d dz d? A8



Appendix B

Connectors

We define a connector V (y, z; C,,) between the points x and y along the curve C, as
the non-abelian generalisation of the Schwinger string of QED

Vi, 2:C,) = P {exp(—ig/ dz“G#(z))}. (B.1)

xr

Here P denotes path ordering. This connector has the following properties:

e The connector of the sum of two adjoined curves C and Cs is equal to the
product of the connectors of the single curves:

V(z,2;C 4 Co) = V(z,y;Cy) - V(y,2;Ch). (B.2)

e If C, is the curve connecting = and y and C, is the same curve but with
reversed orientation, i.e. running from y to x, then

V(y,2;Cs) - V(z,y; Cy) = L. (B.3)

e Hermitian conjugation corresponds to path reversal:

Vi(y,2;Cp) = V(z,y; Co) (B.4)

By applying connectors we can shift various quantities between two points in
space-time in a gauge covariant way. E.g. we define the shifted gluon field strength
tensor G which has been transported from x to y along the curve C, by

G (y) := V(y, 7;C2) G (2)V " (y, 7; C). (B.5)

Comparing to (2.25) we recognise that the connectors are in fact the eikonal phases
which we have introduced in the discussion of quark-quark scattering in chapter 2.
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Appendix C

Calculation of form factors in the
model

Starting point for the form factor calculation is the matrix element of the third
component of the isospin current at x = 0

I3 = (hs(P")175(0)[ha(P)) (C.1)

=S b (57) vio (©2)

Here Zw denotes the sum over quark fields u,d and 73 is the third Pauli isospin
matrix. The hadrons hi, hs are supposed to move in positive z3-direction with
Py = P, — oo (see (5.2)). In analogy to the description of hadron-hadron scatter-
ing we therefore denote the incoming hadron by h; and the outgoing hadron by hs.
The steps required to compute the form factor from this expression are completely
analogous to those discussed in chapter 2 that lead to the 7-matrix element (2.49),
with the difference that now there are additional contractions between the quarks
and diquarks (or antiquarks in the case of mesons) of the hadrons A, hs and the
quark fields of the current j5 when applying the L.SZ reduction formalism. By con-
sidering the isospin current we ensure that contributions which contain subdiagrams
arising from contractions between the quark fields of the current drop out because
they are proportional to tr73 = 0. Now we describe the form factor calculation for
the 77 meson, modelled as ud wave packet.

Using our notation from chapter 2 we obtain J{ (C.1) by first calculating the
matrix element of j§ between ¢ states and then folding with the wave functions of
the wave packets.

| . 1
/d A3T/ dzs (2m)i72 553 fsg(pS(ZS:ABT)ﬁ 0A5 A,

1 Tl T
/d A1T/ dz 2%)3/2_651 fslﬁpl(zlaAlT)\/gémA’l (ud|j§|ud), (C.3)

with
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Au Yd
7*(0) 3*(0)
Au Yd

Figure C.1: The two contributions to the matrix element (ud|j4|ud). The dashed
lines indicate that the loops have been closed by the wave functions.

with
(ud|j§|ud) = (u(ps, s3, As)d(ps, s, A5) |75 (0) [u(pr, 51, A)d(py, 51, A))),  (C.4)

where s;, A; are spin and colour indices, respectively and ¢; 3 are the Fourier trans-
forms of the wave functions (3.18)

~ 1 —1 X
0i(z, Ar) = %/d%T@ ATXT o (2, %7). (C.5)

Applying the LSZ reduction formalism we can express the matrix element (ud|j5|ud)
from (C.4) as an integral over the quark 6-point-function. We get only two terms
depicted graphically in Fig. C.1 which are to be interpreted as follows. We consider a
fixed gluon background. The quark and antiquark travel in this background and the
current either hooks onto the quark line (Fig. C.1a) or the antiquark line (Fig. C.1b).
As in chapter 2 the matrix element (C.4) is obtained by averaging over all gluon
potentials with the measure given by the functional integral (2.16). In the high
energy limit for u and d the scattering amplitudes in the fixed gluon background
reduce to Wegner-Wilson line operators which are closed to a loop W, by the meson
wave functions. This is indicated by the dashed lines in Fig. C.1. Combining
everything we obtain

Er PO ) = D2 [ [ i)

| | 1
(ez(l—z)QT'xT —l—e_zqu'xT) <W+(§XT7XT)> - (C.6)
G
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A straightforward calculation in the MSV shows that the expectation value of
the correlation function of one Wegner-Wilson loop is equal to 1. By a shift in the
integration variable the d2zp integration can be reduced to a Gaussian integral over
the wave functions and we find the final result for the matrix element (C.1)

123

(m (P75 ()| (P)) = —-

1 .
/ dz2z(1 — 2) o (32 oy Sk (C.7)
0

Let us turn to the proton form factors now. In our simple ansatz the proton
consists of a quark and a scalar diquark, which should be favoured above the vector
diquark due to dynamical reasons [48]. The spin of the proton then is carried by the
quark. This together with the spin conservation on the parton level draws conclusion
that, in our model, we get for the matrix element of j§ between proton states an
expression similar to (C.7):

(p(P', )5 (0) (P, 5)) = Prnfi x| Fio (@) (C.8)

with F1,(Q?) given in (5.6). Thus we get only a spin-non-flip and no spin-flip
contribution in the matrix element (5.3), that is, our model gives Fy,(Q?) = 0. This
is certainly not a very good approximation. But on the other hand the spin-flip part
in (5.3) is suppressed by |qr|/(2M,) for gy — 0. Thus the matrix element (5.3) is
still reasonably described by the model for small enough |qr|.

Here some remarks on the electromagnetic p — N(1535) transition form factor
are due. The transition current can be written in terms of the analogues Fi,, F5, of
the Pauli and Dirac form factor, respectively, (see [90,91])

(N(1535)(P", s)]3*(0)[p(P, 5))

= ct(P) s (v + ) Fie(@) + 0™, (@) ), (€9

where M, is the mass of the N(1535). A similar calculation to the one presented here
for the form factors of the proton shows that again Fi, multiplies the spin-non-flip
part and Fy, the spin-flip part. Since we cannot obtain the spin-flip contribution
in our model as shown above, we find F,,(Q?) = 0. We have argued that it is not
decisive for the description of the electromagnetic form factors of the proton at small
momentum transfers that the spin-flip contribution in our model is identical to zero.
However, this is different for the electromagnetic p— N(1535) transition form factor.
The quantities that are measured experimentally are the helicity amplitudes A} /2
and S¥ /- Each of these amplitudes are described by linear combinations of Fi, and
F5, and in this context F5, is not suppressed compared to Fi,. On the contrary, for
Aﬁ’/Q, which is due to transverse photons with helicity A = +1, F}, is suppressed by
lar|?/(M, + Mp) for gy — 0 (see [91]). Therefore, we cannot, calculate in a sensible
way a quantity which we could compare to experimental data. We only note that
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the experimentally observed slow decrease of A” Jo With Q? (see [92] and references
therein) is in qualitative agreement to our calculation of the differential cross for
pp — N(1535)N(1535), where we also find a relatively flat distribution in |¢|.

To summarise, we have outlined in this appendix a calculation of isovector form
factors using the same methods as for the scattering processes. The results are in
essence as in [69] taking our simple ansatz for the wave functions of the hadrons into
account.
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