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Chapter 1

Introduction

This thesis is on defining and estimating of measures of prediction error with
incomplete data. We are in particular concerned with the very old question of
how to assess and compare probability distributions. In a regression situation we
accept as candidate predictions any specification of the conditional probability
distribution of a dependent outcome variable given a vector of covariates. This
shall include experts guesses or computer intensive methods that can not be con-
sidered regression models. Of particular interest are applications in the medical
field where one needs to validate a prognosis or diagnosis of a random quantity,
which could be any measurement or an event in time related to a particular dis-
ease. Since medical diagnoses and prognoses are special forms of predictions we
simply talk about predictions or forecasts in this thesis.

For situations with completely observable values of the outcome variable and
the covariates, ready made and widely accepted measures of prediction error exist.
For instance, in the classical linear regression model the well-known summary
statistic R? unifies multiple interpretations. Many extensions and generalizations
of R? exists. At a time, however, typically only one of its interpretations can
be preserved outside the linear model with normal errors (Kvalseth 1985). In
section 2.1 we recall the definition of R?, cite related quantities and illustrate
the problems that occur when one tries to generalize such summary measures to
incomplete data situations.

We are able to show that for continuous outcome variables R? can be too crude
even in the classical linear model. As a sensitive alternative we suggest prediction
error curves defined on the range of the outcome variable. These curves provide
a global picture of the predictive accuracy of a given forecast, provide appealing
diagnostic curves with multiple functionality, and are specifically useful if the
distribution of the outcome variable is not well described by its expectation and
variance. Moreover, prediction error curves can be consistently estimated for in-
complete data situations, in particular for right censored event times. Applied to
the classical linear model, our approach leads to the same conclusions as obtained
with R? in most situations, and may even show a little bit more under particular
circumstances. We explore these issues by means of worked examples in section



1.0

2.3.

The basic idea for our definition of prediction error curves is to replace classi-
cal squared residuals by squared differences of event indicators and corresponding
predicted event probabilities. This idea was established and utilized by meteorol-
ogists for the assessment of weather forecasts (Brier 1950). To make things work,
we have to assume that predictions are made in terms of predicted probabilities.
This means that a forecaster specifies a conditional probability distribution for
the outcome variable given the covariates. In terms of patients data this implies
that a valid prediction includes a probability distribution of the relevant outcome
variable for every patient. A forecast could be thought of as the decision of a
statistician by using a regression model: a set of estimated or predicted con-
ditional probabilities is of course part of the result of any statistical regression
model. A valid forecast could also be the result of a model selection procedure,
a classification scheme, or simply the guess of an expert based on patient specific
characteristics. We assume that forecasts are provided externally, for instance
based on a build data set. Estimation of the prediction error of a forecast will
then use an independent test data set. In applications where predictions are
derived from the same data that has to be used for validation, one would apply
resampling methods to get rid of the apparent error problem (Efron 1978). This
problem, however, is not addressed in this thesis.

We introduce to the special characteristics of our approach to the assessment
of prediction error and, particularly, to the concept of predictions made in terms
of probabilities in section 2.2. We define prediction error and related quantities as
population parameters. A population parameter is defined as an maybe infinite
dimensional parameter of the (unknown) underlying joint distribution function of
the outcome variable and the covariates. In particular, this includes that we do
not assume a parametric model for estimation. Instead we try to find measures of
prediction error that are means, or quasi means, of the losses incurred by the sin-
gle observations. Estimates of prediction error should be of nonparametric nature
if we want to arrive at conclusions that are objective with respect to the models
which are to be assessed. This is in agreement with commonly used estimators of
mean squared error of prediction (MSEP), respectively R?, in the classical linear
model that converge to a well defined parameter in the nonparametric model of
all possible distribution function. However, this is in contrast to the approach
of Korn and Simon (1990), who, in context of right censored survival data pro-
pose to estimate the prediction error of the result of a regression model under
the assumptions of the regression model. Our approach bases on and extends
the work of Graf (1998b). However, the model used by Graf for right censored
survival data is a semiparametric model, at least in the sense of Groeneboom
and Wellner (1994, definition 1.1), which we adopt throughout this thesis. We
provide nonparametric estimators of the measures of prediction error defined in
Graf (1998b) and Graf, Schmoor, and Schumacher (1999).
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In situations where a substantial set of values of the outcome variable is not
observable (with probability one), parameters such as MSE are not identifiable
from any model. Observations in such situations are called incomplete or coars-
ened. We provide a general definition of measures of prediction error that can be
nonparametrically estimated from the observable (maybe incomplete) data. Sta-
tistical models for the probability distribution underlying the incomplete data are
often called information loss models. This is due to the fact that the nonpara-
metric information bound, in the sense of Bickel, Klaassen, Ritov, and Wellner
(1993), for estimating a population parameter with incomplete data, is known to
be smaller compared to the corresponding information bound in the underlying
complete data model. In section 3.1 we recall the basic definitions needed for
identifiability and optimal estimation of real valued and of function valued pa-
rameters in a nonparametric model. The function valued parameters we have in
mind are the prediction error curves mentioned above.

In section 3.2 we study the incomplete data problem from an abstract view-
point: how can population parameters of a random variable of interest be esti-
mated if only a random transformation of the random variable is observable. We
discuss identifiability and asymptotically efficient estimation in information loss
models for the distribution of the observable random transformation. Throughout
this thesis, asymptotic efficiency is understood in terms of first order approxima-
tions of estimators and general convolution and minimax theorems. We refer
to Bickel, Klaassen, Ritov, and Wellner (1993) and Van der Vaart and Wellner
(1996) for proofs of these theorems in case of Banach space valued parameters.

Our elaborations lead us to a general definition of inverse probability of cen-
soring weighted estimators: complete observations are reweighted by the current
probability of being observed. We proceed along the lines of Van der Vaart (1991)
and derive nonparametric information bounds and efficient influence functions
for such estimators via spectral decomposition of certain conditional expectation
operators. The main cognition hereby is that the existence of asymptotically
consistent, Gaussian regular estimators requires further assumptions on the ori-
gin of the observable random transformation. The problem is well-known as the
non-identifiability of a competing risk.

Situations in which the outcome variable is subject to missing, grouping, or
censoring can be summarized under the keyword coarsened data. Justifying its
name, a coarsened observation is a random set that almost always includes the
values of the unobservable variable, but the information is lost which element of
the set the actual value is. In section 3.3 we show that under the coarsening at
random assumption (Gill, Van der Laan, and Robins 1995) statistical inference for
parameters of the unobservable variable can be performed by taking conditional
expectations over the observed set of values. We prove some of the results of
Gill, Van der Laan, and Robins (1995) in a setting that is suitable for our aims.
In particular, we discuss the connection of the coarsening at random assumption
and the conditional independence assumption in the special case of right censored

3
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survival data with covariates.

In section 3.4 we apply the developed tools in the situation of multivariate
right censored survival data. We obtain the efficient influence function in an
explicit formula for estimation of real and also for function valued parameters.

Among the results of chapter 3 are representations for the parameters of inter-
est in the incomplete data model that are integrated functionals of the so-called
inverse probability of censoring function. In our main example, multivariate right
censored event times, this function corresponds to the conditional distribution
function of the censoring variable given the covariates. Therefore, chapter 4 is
devoted to nonparametric estimation of such functionals. We start by studying
a closely related problem: optimal nonparametric estimation of integral density
derivatives (section 4.1). Borrowing the framework from the literature, see in par-
ticular Bickel and Ritov (1988) and Goldstein and Messer (1992), we find that
undersmoothed plug-in kernel estimators are asymptotically efficient. In section
4.2 parallel results are obtained for nonparametric functionals that integrate a
Hadamard differentiable functional of a conditional distribution function. The
reason for doing this is that in the right censoring situation it is well-known,
that the reciprocal of the Kaplan-Meier estimator (for the conditional censoring
distribution) is a Hadamard differentiable functional. Asymptotically efficient
estimators can be obtained by plugging-in a nonparametric estimator for the
conditional distribution function, e.g. a symmetrized nearest neighbor type esti-
mator (Stute 1986).

In chapter 5 we modify our abstract definition of prediction error. It is then
flexible enough to provide identifiable population parameters under a general
coarsening mechanism. In section 5.1 we also dicuss identifiability of the pre-
diction error curves. In section 5.2 we briefly discuss optimal estimation for
general coarsening at random situations; similar considerations can be found e.g.
in Van der Vaart (1998, section 25.5.3).

In section 5.3 we apply the methods and formulas developed throughout chap-
ters 3 and 4 to the estimation of measures of prediction error in the right cen-
sored survival model with covariates. A large number of papers address optimal
estimation of functionals for censored survival data. Without covariates, asymp-
totically optimal estimators for functionals of a survival distribution in presence
of independent right censoring can be obtained by plugging-in the Kaplan-Meier
estimator (Wellner 1982; Gill 1983; Schick, Susarla, and Koul 1988, only to name
a few). Estimation of general Kaplan-Meier integrals, where the integrated func-
tion is not necessarily of locally bounded variation has been studied in Stute and
Wang (1993) and Stute (1995). Analogous results for situations with covariates
can be found under the assumption that censoring is stochastically independent
of the survival time and the covariates (Stute 1993; Stute 1996). Also in the
paper of Graf, Schmoor, and Schumacher (1999) it is assumed that censoring is
independent of the covariates. We show that this assumption leads to an incom-
plete data model that is of semiparametric nature, where a semiparametric model

4
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is characterized by definition 1.1 of Groeneboom and Wellner (1994).

We generalize the work of Akritas (1994), as we are able to establish explicit
expressions for efficient influence functions and information bounds for linear
functionals of bivariate survival functions. Moreover, our results seem to be
valid for a general class of nonparametric estimators for the involved conditional
distribution functions; including the example treated in Hubbard, Van der Laan,
and Robins (1998) where we can simplify the formula for the efficient influence
function considerably. We arrive at explicit formulas describing the optimal limit
distribution for estimation of measures of prediction error, including the measures
defined by Graf (1998b), in the semiparametric model of Graf and also for a class
of nonparametric models. Finally, we illustrate the use of prediction error curves
for right censored survival data with a worked example in breast cancer.



Chapter 2

Measures of prediction error

A further requirement of a statistical model is that it allows a reasonable as-
sessment of the uncertainty in the primary conclusions. Moreover this should be
done without introducing unnecessary elaboration and complication. The argu-
ments against complication are nowadays not so much to reduce the burden of
computation but rather to make the path between the data and the conclusions
more direct and transparent so that sensitivity to assumptions and data deficien-
cies 1S easier to assess.

D.R. Cox (1995)

Let T: (2,I',P) — (IR, B) be the dependent outcome variable in a regression
problem, where (2,T",P) is a statistical experiment and IB is the Borel o-field
on IR. Let Z be a k-dimensional vector of covariate random or design variables.
We denote by Q the class of all joint probability distributions of (7, 7) that
are dominated by some o-finite measure u. Suppose the aim is to quantify the
predictive power of estimates of the conditional distribution function of 7" given
Z.

We shall work with the following definition of predictions made in terms of
probabilities. A prediction or forecast for the distribution of 7" based on covariate
information is any specification of the conditional distribution function of T" given
7. 'Throughout, we denote such predictions by the symbol 7. Recall that = :
IB x IR + [0, 1] being a conditional probability distribution implies that 7 (- | 2)
is a probability measure on the range of 7" for almost every z and that 7(B | -) is a
random variable for every B € IB. Predictions made in terms of probabilities are
part of the result of most of the commonly used regression models after fitting it
to a data set. However, we want to explicitely accept other sources of predictions,
such as computer intensive classification schemes or plainly guesses of experts.

We assume that forecast conditional probabilities 7 are established externally,
e.g. by fitting a regression model to a build data set. Predictions are not com-
pared to the underlying conditional distribution in terms of bias and standard

6
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error, say; rather we want to assess the performance of predictions based on 7 in
context with a test data set. Estimation of measures for the prediction error of
7 use an independent test data set. We take the role of the decision maker and
shall develop devices suitable for the assessment and comparison of competing
forecasts. It is important to note that our approach is related to the work of
Dawid (Dawid 1984; Dawid 1985).

In terms of a given test data set with covariate values for n different individu-
als, say, a valid forecast 7 is a prognostic system that provides n, not necessarily
different, probability distributions dependent on the covariate constellations. For
instance, point predictions for 7" can be obtained by computing the first (con-
ditional) moment of w(- | Z). The function z — m(m,z) = [tn(dt | 2), is a
forecast of the regression function z — m(z) = E (T | 2).

Remark 2.1
e For better discrimination all symbols used for quantities that depend on
the test data set are marked with a hat, and others, that depend on a build
data set or are derived completely data-free, such as = or m(n, Z), do not.

e If the first moment of a prediction made in terms of probabilities exists,
then this kind of predictions contain at least the same information as the
commonly used predictions of the most likely value of 7', from which, on
the other hand, it is clearly impossible to regain the complete probability
distribution provided by a forecaster.

O
Basically, there are three kinds of applications for which we want to provide tools
that preserve their applicability with incomplete data:

1. Comparison of the accuracy of predictions coming from different statistical
regression models and other sources.

2. Selection of covariates that have predictive power and explain variation of
the outcome of interest: on the one hand by adjusting a particular regression
model, on the other hand without model assumptions in a nonparametric
setup.

3. Visualize misspecification and overfitting of predicted probability distribu-
tions.

In section 2.1 we explain problems with the definition of prediction error out-
side the classical linear model and in particular for situations with incomplete
observations. This gives the motivation for choosing a different but more general
path that bases on the ideas of probability forecasting (section 2.2). We ex-
tend the concept of scoring rules that were originally invented for the assessment
of weather forecasts (Brier 1950; Winkler 1967) to applications with prognostic
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systems. In particular, we adapt and extent the ideas of Graf, Schmoor, and
Schumacher (1999). The quadratic score which is also known as Brier score will
be central to our approach, since it unifies several desirable properties (Savage
1971; Friedman 1983) and allows a decomposition into a calibration and a resolu-
tion term (Hand 1997). We keep the settings general, however, to cover measures
of predictive accuracy obtained with other loss functions as well, such as e.g. sum-
mary measures for time-dependent versions of receiver operating characteristics
(ROC) (Heagerty, Lumley, and Pepe 2000). Finally, in section 2.3 we introduce a
concept called prediction error curves and illustrate it with worked examples. We
introduce plug-in estimators of several parameters representing prediction error
and investigate their distributional properties in the situation where (7',Z) are
completely observable.

2.1 Prediction error beyond the linear model

The Brier score applied to time-to-event data is the best idea we have had in years
at our institute.

M. Schumacher (2002)

Assessment of the accuracy of predictions for a dependent variable T in a
regression problem and, closely related, assessment of the variance explained by
a model is of practical importance. For the classical linear regression model most,
if not all, commonly used measures of a model’s predictive capability are based
on the squared difference between observations of the outcome variable and point
predictions specified by a model. For a (test) data set of size n, {(T},Z;) : i =
1...n}, point predictions for T can be obtained by evaluating an estimate m(m)
of the regression function m(Z) = E(T | Z) at the points of realization. The
squared residuals are then given by {(T; —m(m, Z;))> : i = 1...n}. Suppose there
is a regression model involved for setting up m(m) and the aim is to assess the
predictive power of the model. If the model is established independently of the
data that is used for validation we call the expected value of the squared residuals
mean squared error of prediction (MSEP):

MSEP = E (T — m(r, Z))*.

We emphasize that the expectation in the latter display is taken with respect to
the unknown joint distribution of (7, Z) and not with respect to e.g. the model
that was used to build m(7).

In order to avoid the apparent error problem of estimation of MSEP (Efron
1978) one could split the data into a build or training data set and then validate
the result with a test data set. If there is not a training and a test data set

8
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available, one would try to make the 'test’ data set as independent as possible
of the model 7 by applying an appropriate resampling procedure (Efron 1986;
Efron and Tibshirani 1986). Any estimator of MSEP is considered a measure of
prediction error. The most prominent estimator is probably the statistic called
residual sum of squares:

n

RSS = % ST, — mir, )2

1=1

For a fixed m(m) RSS converges almost surely to MSEP by the law of large
numbers. The important point here is that RSS estimates MSEP consistently in
the nonparametric model of all distribution functions of (7', Z).

The statistic RSS occurs, appropriately reweighted, in the crucial part of many
goodness-of-fit statistics and model selection criteria, e.g. Mallows’ criterion, the
Akaike information and Schwarz’s criterion. Probably the most frequently used
estimator of explained variation involving the squared residuals is the coefficient
of determination R2. It is defined as one minus the ratio of the residual sum of
squares of the model and the so-called total sum of squares which corresponds to
the null model that ignores the covariates completely. The null model produces
constant point predictions for 7" that are equal to the ordinary mean, denoted by
T, of the observations (in the build data set)

R (- St

If m(r) is provided externally, i.e. based on an independent build data set, the
statistic R? asymptotically consistently estimates the parameter

(1 — Var(m(r, Z))/Var(T)).

For nonparametric estimation of this parameter it is sufficient to consider esti-
mation of MSEP for arbitrary estimates of the regression function, including the
naive estimator 7. Note that the U-statistic (1/(n — 1) >.(T; — T)? is a non-
parametric estimate of Var(7T); but m(m) estimates m consistently only if the
model is valid. Thus, if the model is valid, R? asymptotically estimates one mi-
nus the parameter Var(m(Z))/Var(T), which is known as Pearson’s correlation
coefficient.

In the classical linear model R? has multiple interpretations, as a measure
of goodness-of-fit, with the classical interpretation of how consistent the data
and the model are, as a measure of explained variation, that tells how valuable
the covariates are for explaining variation in the outcome values, and also as a
correlation coefficient. Apparently, all the nice attributes and multiple interpre-
tations of R? can typically not be preserved at the same time outside the clas-
sical linear model. See Helland (1987), Kvalseth (1985) and Zengh and Agresti

9
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(2000) for overviews on relevant statistics and common mistakes with the use
and the interpretation of R? in context with generalized linear models. Doksum
and Samarov (1995) investigate nonparametric methods for the assessment of
explanatory power of covariates with m(7) a nonparametric estimate of the re-
gression function. For the assessment of error rates with binary data we refer to
Efron (1978) who studies cross-validation and bootstrap strategies for unbiased
estimation of MSEP. Measures for the precision of diagnosis and prognosis of
binary outcome are ROC curves, where also time-dependent versions can be con-
sidered (Heagerty, Lumley, and Pepe 2000). Graf (1998a) reviews definitions of
and common mistakes with measures of explained variation and prediction error
proposed for use in survival analysis. Work in this area was done by Korn and Si-
mon (1990), Van Houwelingen and Le Cessie (1990), Schemper and Stare (1996),
Schemper and Henderson (2000) and Graf, Schmoor, and Schumacher (1999).

Typically, observations of survival times are right censored. This is a special
case of a broad class of situations for which we intend to define prediction error.
The problem that motivates us is that if a non neglectable set of values of the out-
come variable is unobservable with probability one, then the asymptotic value of
RSS is not identifiable from any model. Reweighting schemes can be used for con-
struction of asymptotically unbiased estimates of MSE if there is strictly positive
probability for observing all values in the range of (7', Z). However, commonly all
candidate prognostic systems perform bad if this probability is low. Perhaps the
most appealing way out of the dilemma is the loss function approach proposed
by Korn and Simon (1990). However, the authors circumvent the problem of
nonparametric estimation of MSE with incomplete data by assuming the model
which they intend to assess. The resulting measures do neither converge to an
uniquely defined population parameter for different models, nor do they provide
convenient strategies for approaching the apparent error problem. In our view,
the biggest problem with the approach of Korn and Simon (1990) is that predic-
tion error computed for different models, a semiparametric Cox regression model
and a fully parametric Cox regression model, say, are not directly comparable.

We close this section with a list of attributes that a good measure of predic-
tive accuracy should possess. Here we are selecting and extending the points of
Kvalseth (1985) for applications where prediction error has to be estimated from
incomplete data. One could substitute R? or any other relevant statistic for the
phrase 'prediction error‘ in the following table.

PE1 Prediction error must have an intuitively reasonable interpretation.

PE2 The potential range of prediction error has to be well defined with endpoints
corresponding to perfect fit and complete lack of fit.

PE3 Positive and negative deviations from the observations should be weighted
equally by prediction error.

10
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PE4 Prediction error should be sufficiently general to be applicable to any type
of model.

PE5 Prediction error should be such that its values for different models fitted to
the same data set are directly comparable.

PEG Prediction error should not be confined to any specific model-fitting tech-
nique, and should be independent of the model which is to be assessed.

PE7 Prediction error should be identifiable as a population parameter in situa-
tions with incomplete data.

2.2 Scoring probability forecasts and expected
loss

I think most of us feel that if we could use explicitly such variables as , e.q., what
people think prices or incomes are going to be, we would be able to establish
relations that could be more accurate and have more explanatory value. But
because the statistics on such variables are not very far developed, we do not
take the formulation of theories in terms of these variables seriously enough.

Leonard J Savage (1971)

In this section we introduce the basic concepts of probability forecasting.
Suppose that a number of experts have knowledge not generally available about
the probability distribution of 7', and the problem (of the decision maker) is one
of eliciting personal probability distributions. The idea is to use scoring rules to
encourage honesty (Dawid 1986). This means that a forecaster is motivated to
reveal the probability distribution she believes is the most accurate for prediction
of e.g. future events or of the most likely value of 7.

Suppose for the moment that the forecast 7 of the distribution of 7" does not
depend on Z. Let a be a deterministic function of 7'; the value of which has to
be predicted by using the forecast probability distribution 7. Write E a(T) for
the expectation of a with respect to the true distribution of 7" and let 7(a) =
J a(t) 7(dt) be the prediction of «(T) based on 7.

In the traditional approach « is an event indicator function of a set A € IB:
a(T) = 1{T € A}. A prediction or forecast for a based on 7 is then simply the
probability of the event A under 7: m(a) = m(A). Similarly, point predictions for
future values of T are obtained as [ tr(dt). Let S be a score function or scoring
rule, taking two arguments. The loss of 7, denoted by L(w), with respect to the
function « is defined by:

L(m,S,a) = E{S(a(T),n(a))}.

11



2.2

The function § is called proper scoring rule when the loss is minimized if w
agrees with the true underlying probability distribution of 7". If the minimum is
unique S is called strictly proper. Thus a (strictly) proper scoring rule motivates
a forecaster to use the probability distribution she believes is most accurate for
prediction of future values of a. In case of event indicator functions L(w,S) is
completely specified by the weighted sum of the two possible values:

L(r,S) = P(T € A)S(1,7(A)) + P(T & A) $(0,7(A)).

The loss incurred by a single observation T = t is S(a(t), 7(«)). Given a
dataset with values for T" corresponding to different individuals of a homogeneous
population the loss of m can be estimated by the average loss:

=1

It turns out that basically there are only two possibilities to construct proper
scoring rules; either rate the differences {a(t) — m(a)} or the ratio {a(t)/7(a)}
of the observations and the predictions. Savage (1971) shows that in the former
case reasonable loss functions (loss has to be nonnegative, zero at zero and not
zero everywhere) are of the form S(a(t), 7(a)) = M{a(t) — m(a)}?, where M is
some positive constant. The choice M = 1 corresponds to the Brier or quadratic
score (Brier 1950):

Sps(a(t),m(a)) = (a(t) — m(a))™.

Rating predictions via the ratio discrepancy is too quite restrictive: Savage (1971)
proves that proper scoring rules in this case are of the form S(a(t),7(a)) =
M{a(t)/n(a) — 1 = log(a(t)/m(a))}, for some positive constant M. If a(T) =
1{T € A} the logarithmic score is defined by

—log(m(a)) if a(t)

0’
—log(1 —m(a)) if at) =1.

Sps(a(t), m(@)) = {

Note that the usage of the logarithmic score for more general functions «(7T) is
limited to predictions 7, such that 7(«) > 0. Another special case in which the
logarithmic score is prominent is prediction of the density function ¢ = dQ/dg,
of () with respect to a dominating o-finite measure . Then o = ¢, predic-
tions are e.g. given by 7(a) = dn/dpu, and the logarithmic score is defined by
Srs(t,m(a)) = —log{(dn/du)(t)}. The distance function associated with Sig
is the well-known Kullback-Leibler information (Dawid 1986). The logarithmic
score and the Kullback-Leibler information are minimized if dr/dpu is the true
density function. However, it is neither obvious how to define logarithmic score
for arbitrary measurable functions of 7" nor how to generalize to forecasts that
depend on covariates. Therefore, we are mainly concerned with the Brier score in

12



2.2

this thesis, which is a proper scoring rule and which is also effective in the sense
of Friedman (1983).

Our intended definition of the prediction error of a forecast 7= takes into ac-
count that 7 may depend on covariates. We define an ‘aspect’ of the prediction
error of 7 as a measurable function of 7', for which accurate predictions are of
practical relevance. For instance, in the field of medical diagnosis and prognosis
prediction of events in the course of a disease are important. Thus, interesting
aspects are event indicator functions of 7. In a similar way one could be inter-
ested in predicting the conditional variance or the conditional quantiles of 7" and
use correspondingly defined aspects. Clearly, a forecast for those aspects can be
derived from a valid set of predictions made in terms of probabilities. From now
on we use the notation

S(t, 2) = S(alt), m (),

where 7z (a) = [ «(t) m(dt | Z) is the forecast of a based on .

Definition 2.2 (Abstract prediction error) Let S be a scoring rule, let o be
a function of T which is uniformly integrable on Q. The prediction error of ™
with respect to a and S s defined as the expected loss, via 1 : Q — IR:

W(Q) = L(r, o, §) = / S(t,2) Q(dt, dz).

O

We may think of the loss of m with respect to the function a as an aspect of
abstract prediction error of 7. It is clear that given to two such aspect functions,
a; and ay, and two predictions, m; and w9, the relation L(my, oy, S) > L(m, aq, S)
does not imply L(m, a9, S) > L(ms, ag,S). This shows that a sensible choice of
aspects of prediction error for each application has to be made beforehand. That
means the decision maker has to device a weights for all o € H for a reasonably
chosen class of aspect functions H.

Prediction error thus defined satisfies PE2 (c.f. section 2.1) if the scoring
rule is proper. Savage (1971) shows that the quadratic score is also the only
proper scoring rule that is symmetric and thus the only proper scoring rule that
satisfies PE3. PE4 is satisfied for every aspect a such that mz(«) is defined
and interpretable as a prediction of a. We take care of PE5 and PE6 by taking
the expectation in definition 2.2 with respect to the underlying distribution of
(T, Z) in the nonparametric model Q. Any consistent estimator of L(7, S, ) will
therefore be of nonparametric nature. PE7 will be dealt with in an analogous
definition of prediction error appropriate for situations with incomplete data in
chapter 5. At this point we only recall that the usual measures of prediction error
are not identifiable from any model if a subset of the range of (T',Z) which is not
a null set with respect to @), is not observable with probability one. This fact
motivated the abstract definition of prediction error given above. We will see in
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chapter 5 that it is flexible enough to provide measures of prediction error that
are identifiable as population parameters for situations with incomplete data.

Example 2.3 (MSEP)
Let a(t) = t be the identity function. The mean squared error of prediction of 7
is the expected Brier score corresponding to a:

E Sps(T, mz(a)) = E(T — m(m, Z))?,

where m(r, Z) = [tn(dt | Z).
Il

Example 2.4 (Brier score)
Let A be a subset of the range of T" and set a(t) = 1{t € A}. The expected Brier
score of 7 for A is given by

E Sps(a,m4(a))) = E(1{T € A} — n(A | 2))

O

It is well-known that MSEP can be represented as the sum of the variance and
the squared bias of the prediction 7. The decomposition into two terms, one for
calibration and one for resolution can be obtained for the more general situation
where « is any arbitrary measurable function, such that 7z (a) = [a(t)r(dt | Z)
exists almost surely:

E(a(T) = 7z(a))* = E(a(T) = E(a(T) | Z))* + E(E(aAT) | Z) = 72(c))”.

It should be clear that any estimate of an aspect of prediction error, such as
defined in 2.2, can be used for comparison of different forecast probabilities.
Choosing one such aspect we can also analyze the predictive power of a par-
ticular covariate in that direction. For instance, by using a regression model
framework and then comparison of the forecast when the model is adjusted for
the covariate against the forecast obtained when the covariate is omitted. This
works for all kinds of covariates that are consistent with the regression model
considered and the model can be adjusted for supplement covariates that have
potential influence on the outcome variable. Testing the predictive power of a
covariate without model assumptions requires a nonparametric estimate of the
conditional distribution of 7" given Z. This estimate could be validated by us-
ing an estimates of the expected loss for the nonparametric prediction obtained,
when subsequently including and excluding the candidate prognostic factor. For
instance Doksum and Samarov (1995) provide interesting results in that direction
for the complete data situation.

The next example shows that the Brier score can be used as a summary
measure for ROC diagnostics.

14
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Example 2.5 (ROC)

Suppose that T is a binary variable taking on the values 1 meaning ’diseased"
and 0 meaning ’disease free‘. A diagnostic test based on a continuous covariate
Z and cutpoint £ is a decision rule that says ’diseased‘ if Z > &, say, and ’disease
free‘ otherwise. The ROC curve is the monoton increasing function that assigns
to one minus the specificity at & of such a diagnostic test the corresponding value
for the sensitivity:

ROC(E) ={(1-P(Z2<¢|T=0)),P(Z>¢|T=1)}

Accordingly, an analogous function, called predictive value curve from now on,
assigns to one minus the positive predictive value at £, whichis P(T' =1 | Z > &),
the corresponding negative predictive value P(T' =0 | Z < &). The power of the
diagnostic test is high if commonly the four values, sensitivity, specificity, positive
and negative predictive values are close to one. This observation is taken into
account by most of the existing summary measures for the ROC curve, featuring
the area under the ROC curve as the most prominent example.

We observe that a diagnostic test provides a prediction made in terms of
probabilities that is specified by w(1 | Z) = 1{Z > ¢}, say. If o(T) = 1{T =1}
the expected Brier score of 7 (c.f. definition 2.2) reads

L(m,,885) =E({T =0} - {Z < &} +E(U{T =1} - 1{Z > &})°
={1-P(Z>&|T=1)}P(T=1) (2.1)
+{1-P(Z<E|T=0)}P(T=0).
The very right hand side of the previous display is a weighted sum of one minus
the sensitivity and one minus the specificity of 7. If the prevalence P(T = 1) is
high more weight is put on the sensitivity and on the specificity otherwise. This
shows that we can use the Brier score as a natural summary measure for the

diagnostic power of diagnostic tests. At the same time the expected Brier score
is a weighted sum of negative and positive predictive value, viz.

L(m a,Sps)={1-P(T=1|2Z> &Y P(Z > ¢)
L {1-P(T=0|Z<&}P(Z<¢).

A somewhat more general form of predictions made in terms of probabilities

in the present situation is determined by the two probabilities 7(1 | Z > &),

(1| Z <&); in which case the expected Brier score for the event 7' =1 is given

by

L(m,0,885) = (1—7m(1 | Z< )P P(Z<LET=1)

+(1-7(1|Z>€))P(Z>&T=1)
+(1=m(0]Z <€) P(Z<ET=0)
+(1-7(0]|Z>¢ (Z>¢T=0).

b (2.2)
P

)
)2
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Obviously, (2.2) generalizes (2.1). We note that ROC analysis is available only
for a limited class of predictions made in terms of probabilities, respectively
associated diagnostic tests, while the expected Brier score is applicable to any
classification rule that produces a decision for binary outcome based on covari-
ate information. For the assessment of the predictive power of one continuously
distributed prognostic factor, however, ROC analysis can be generalized for con-
tinuous outcome, which can be generalized to the right censored survival situation
(Heagerty, Lumley, and Pepe 2000).

g

2.3 Prediction error curves

Prediction error curves to be defined in this section provide a graphical represen-
tation of prediction error over the range of 7. We consider score processes much
in the spirit of Nolan (1992) with the main difference that we assume forecast
probabilities fixed and established externally. In situations, where the distri-
bution is not well described by its expectation and variance only, considering
prediction error curves should provide a more detailed picture of the predictive
accuracy of a forecast m. Moreover, the decision maker is given the opportunity
to define weighting schemes accordingly to the problem at hand to arrive at a
real valued summary measure of prediction error.

Definition 2.6 (Prediction error processes) Let S be a scoring rule, and let
H be a class of uniformly integrable functions of T'. The prediction error curve
with respect to S and H is defined as a functional on Q via 1) : Q — I*°(H)

¥(Q,a) = L(m, a, S) = / S(t,2) Q(dt, dz)

where [®°(H) is the set of bounded real functions on H with the uniform norm.

O

Suppose S is the quadratic score. Setting H = {1{7 > t} : t € IR} then
yields the following prediction error curve on the range of 7"

t s PEC(t) = /{1{3 > 1} — 1((t,00) | )2 Q(ds, d2). (2.3)

(Alternatively, we could use the class of functions {1{7 <t} : t € R}.)

Example 2.7 (Weighted prediction error)
A class of summary measures for the prediction error process is obtained by
averaging, suitably weighted to meet the problem at hand (Matheson and Winkler
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1976; Graf, Schmoor, and Schumacher 1999). Suppose w is a o-finite (probability)
measure on the range of 7', then a summary measure called weighted prediction
error or integrated Brier score is given by

WPE = / PEC(t) w( dt)
= [e{ [ >4 -t | 21} wtan
5 { [ar>10-n(@00 | 21 (i},

In practical applications where for some reason accurate predictions of low values
of T" are more important than for high values w would assign monotone decreasing
weights. If no such preferences are present the choice would be either uniform
weights (Graf, Schmoor, and Schumacher 1999) or weights according to the em-
pirical distribution function of T (Schemper and Henderson 2000).

[l

The rest of the section is used to define estimators for the parameters defined
in definitions 2.2 and 2.6. Let {(7;,7;) : i = 1...n} be an iid sample of (T',7).
For a given forecast m determines n not necessarily different probabilities: {7 (- |
Z;) :i=1...n}. The empirical measure is defined by

Qul) = S (T Z) € A),

=1

where A € B x IB¥. A natural nonparametric estimator of PEC is obtained by
pluggin in the empirical measure:
_— 1< )
PEC(t) = — HT; >t} — m((¢, Z)} . 24
(t) nE{{ p=m((t,00) [ Zi)} (2.4)

i=1

PEC is a step function that has jumps at the points of realizations {77, ...,T,}.
By using the notation

Sps(t; T, Z) = {{T >t} — n((t,00) | 2)}*
equation (2.3) reads

PEC(t) = /SBS(t; 8,2) Q(ds, dz).

Fix t € IR. By the strong law of large numbers the estimator

PEC(f) = / Sus(t: 5, 2) On(ds, dz) (2.5)

17



2.3

is consistent for estimating PEC(t). Since E (Sps(t))? < oo, we can apply the
central limit theorem to obtain for every ¢t € R(T") that

PEC(t) = N(0,%),

where the asymptotic variance is given by 3 = E {Sps(t; T, Z)*} — PEC(t)%. It
is well known, that the plug-in estimator is an asymptotically efficient estimator
and that 7! is the nonparametric information bound for estimation of PEC(#),
see BKRW. Similarly we obtain that the estimator

WPE = //{1{T > 1} — 7 ((t00) | Z)Pw(db) Op(ds, d2)

is an asymptotically efficient, Gaussian regular estimator for WPE.

Now consider estimation of the function valued estimator defined in 2.6. Due
to measurablility problems weak convergence of estimators with values in [*°(F),
where F is a class of functions, has to be understood in terms of outer measure.
Note, however, that this is not made visible here in the notation. We refer
to Van der Vaart and Wellner (1996) for a comprehensive representation of the
corresponding (empirical process) theory. In case of the function valued estimator

{PEC(t) : t € R},

where IFTE\C(t) is given in (2.5), it is comparably simple to arrive at a functional
central limit theorem. Before we write down the limit distribution of the estima-
tor. We briefly introduce some notions and notation of empirical process theory.
For any @Q-integrable function ¢, Q¢ is linear functional notation for [ ¢dQ. A
class F C £4(Q), where £,(Q) is the set of integrable functions of U, is called
@-Glivenko-Cantelli class if almost surely

sup,,(|@nyp — Qyl) — 0.

Introduce by G,, = \/ﬁ(Qn — @) the empirical process associated with @,. A class
F C L5(Q) is called @Q-Donsker class if G, converges weakly in [*°(F):

{Grp:peF} =G,

where G is a tight Borel measurable element in [*°(F). G is sometimes called
transformed @)-Brownian bridge because its covariance is similar to the covariance
of the ordinary Brownian bridge:

E(Gy) =0
E (G Gg) = Qpg — QeQy.

Whether a class F is Glivenko-Cantelli or Donsker depends merely on its size
which is usually measured in terms of entropy or bracketing numbers. If F is Q-
Donsker, the plug-in estimator (F,Q,) is an asymptotically efficient estimator
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for ¥(F,Q) (Van der Vaart and Wellner 1996, section 3.11.1). The empirical
process plug-in estimator for the prediction error curves corresponds to the class

of functions given by
F={Sps(t;T,Z) :t € R}. (2.6)

It is easy to show that the class F given in 2.6 is a so-called Vapnik—(u]ervonenkis
subgraph class (VC subgraph class) of functions. For, the class of half intervals
{(t,o0) : t € R} is a VC class of sets. Now, any VC subgraph class is a Donsker
class. The process {PTE\C(t) :t € R} converges outer weakly in [*°(F) to a mean
zero Brownian bridge process with asymptotic covariance matrix given by

E (SBs(t, T, Z), SBs(S;T, Z) = E{SBS(t, T, Z) SBs(S;T, Z)} —_ PEC(t)PEC(S)

Our first example with real data illustrates the usefulness of the prediction
error curves. It deals with a classical linear model and we can therefore compare
R? and a quasi-R? statistic based on WPE. Estimation of prediction error curves
is based on the plug-in estimators defined above.

—— Null model —-———Calcium omitted
- Full model
o
(Y)_ .
o
S & |
5 O
C
. -
=
O
©
© g |
O o
=
o

-0.5 0.0 0.5 1.0 15
log (Magnesium)

Figure 2.1: Prediction error curves for the full model, the null model and a
reduced model omitting the factor calcium concentration.

Example 2.8 (Predicting magnesium concentration)
In the following illustrative data analysis the concentration of magnesium in the
needles of trees is the dependent variable. The logarithm of the magnesium
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concentration can be considered normally distributed and the standard linear
regression model was the main tool for the statistical analysis Soil characteristics,
trace elements and the age of the trees were considered as prognostic factors. The
main effect was observed for the concentration of calcium in the needles. The
linear model with all covariates is called full model in the following. The graph
of the estimated prediction error curve for the full model should be compared
to the corresponding graph for the null model that ignores covariate information
completely and provides constant predictions for magnesium concentration (2.1).
Now, if we omit the most effective factor calcium concentration from the linear
model, the prediction error curve increases considerably (2.1). This reflects the
predictive power of the factor calcium concentration. The values of R? for the null
model, the full model and the reduced model are 0, 0.66 and 0.21, respectively.
Using uniform weights, WPE yields 0.157, 0.099 and 0.139 for the null model,
the full model and the reduced model, respectively. We can define a quasi-R?
statistic by 1 — WPE(full)/WPE(null), say, and obtain the values 1, 0.37 and
0.11 for the null model, the full model and the reduced model, respectively. We
may therefore conclude that the two approaches would lead to similar results, at
least in this example.

O

1.0

— Calcium
-- Age

0.8
|

AUC
0.6
|

0.4

0.2

0.0
|

log(Magnesium)

Figure 2.2: AUC process for the prognostic factors calcium concentration and
age.
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Example 2.9 (ROC time-dependent)

In the situation of example 2.5, let 7" now be a continuous random variable. We
apply ROC diagnostics to the sequence of binary variables D(t) = 1{T > t},
using markers determined by a continuous covariate Z. We suggest to consider
a summary measure of the ROC curves, for instance the area under the curve
(AUC), as a function of the cutpoint ¢. This defines a process on the range of T

{AUC(t) : t € R}.

Pluggin-in nonparametric estimators for the sensitivity function and the speci-
ficity function at each cutpoint £, yields an estimate of the AUC-process. This
suggests another graphical tool that shows the predictive power of Z. Figure
2.2 shows the estimated AUC-process for the data of example 2.8 where again
magnesium concentration is the dependent variable and we consider calcium con-
centration and age as prognostic factors. In contrast to the prediction error
curves estimated in example 2.8, the AUC-process does not depend on the linear
model fit; both types of diagnostic plots have in common that they may show
the predictive power of a particular covariate as a function of the values of the
outcome variable of interest.

g
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Chapter 3

Information bounds for
information loss models

At the end of the night this gives the influence function.

N.L. Hjort (1993)

This chapter deals with the correspondence of differentiability and the exis-
tence of regular estimators in incomplete data models. Some essentials of the
theory of identifiability and asymptotical efficiency of regular estimators with
values in IR or [* are recalled in section 3.1. We refer to Bickel, Klaassen, Ritov,
and Wellner (1993) (BKRW from now on) for a detailed discussion of parameters
with values in general Banach spaces.

In section 3.2 we derive conditions under which identifiability and differentia-
bility of functionals is preserved if only a random transformation X of a random
variable of interest U is observable. Information loss models are models for the
distribution of X. In section 3.2 we consider information loss models that are
indexed by the product of a model for the distribution of U and a model for
the conditional distributions of X given U. We are therefore in the situation
of section 5.5 of BKRW where the authors investigate models with composite
parameter spaces. By the familiar embedding of dominated statistical models
into Lo-spaces we are also treating a special case of models indexed by a Hilbert
space (see Van der Vaart (1991), Begun, Hall, Huang, and Wellner (1983) and
BKRW for the general case). Statistical inference for parameters of the distribu-
tion function of U based on iid observations of a random map X was studied by
Le Cam and Yang (1988) and Van der Vaart (1988). Their results include the
preservation of differentiability in quadratic mean of differentiable functionals.
We recall these results specialized for our aims. The elaborations lead almost
automatically to a general characterization of the class of inverse probability of
censoring weighting (IPCW) estimators.

In section 3.3 we study a class of information loss models called coarsening at

22



3.1

random (CAR) models. In section 3.4 we compute efficient influence functions
and compare information bounds for different CAR submodels in the example of
right censored event times with completely observable covariates.

3.1 Estimability and differentiability of function-
als

Let (2,1, P) be a statistical experiment, i.e. a probability space, a o-field and a
set of probability measures. Let U : (Q,I',P) — (E,&) be a random map with
values in a Borel space: there exists a complete and separable metric space such
that E is an element of the corresponding Borel o-field and £ is the intersection
of the Borel o-field with E. Let y be a o-finite measure on &; we define

Q = {all probability distributions on £ that are dominated by p}.

Here and then we use linear functional notation and write Qg = [ g(u) Q(du)
for the expectation of g under ). For any @ € Q we write Lo(F,E,Q) = L2(Q)
for the Hilbert space of £-measurable random variables that have finite variance
with respect to Q). On £5(Q) we have the usual inner product and norm

<p,g>0=Qvyg,  llella=<e.¢>q-

The subspace of £5(Q) that consists of mean zero variables is denoted by £3(Q).
We can view Q as a subset of £y(u) via the embedding @ +— (dQ/du)*/? and
for @ € Q fixed as a subspace of L5(Q) via

do’'/d 1/2

(dQ/dp)/2

We present the parameters of our interest in a general form such that all the
measures of prediction error defined in chapter 2 are included. For any class of

functions F C L5(Q) a class of real valued linear functionals of the distribution
function of U is defined by varying ¢ € F: ¥(p): Q — IR,

V(p, Q) = Q. (3.1)

- 1) 1{(dQ/ dw)'” > 0},

Recall that [*°(F) is the space of bounded functions with the uniform norm.
The corresponding function valued parameter ¥(F) : Q@ — [*°(F) is defined by

Y(F,Q) ={y— Qp}. (3.2)

For instance, ¢ will be the loss of a forecast conditional distribution 7 incurred
by a single observation. Similarly, prediction error curves are a special case of
the functionals defined in (3.2) (c.f. definitions 2.2 and 2.6).
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Note that the symbol 1 refers to the process {¢ — Qg} and is at the same
time used for the values 1(p, @) of the process. Likewise, in this chapter, we
write ¥ () and (F) for ¥(p,Q), and Y(F,Q), in cases where @ € Q is fixed.
The symbol 1 is used as a wildcard for a parameter on Q with values in either
R or I*°(F).

Let Uy, ...,U, be iid random variables with the same distribution as U. An
estimator zﬂn of 1) is any map from the product space F" = F x --- X E to the
range of ¢ which is assumed to be a subset of either IR or [*°(F). Before certain
requirements on the performance of estimators can be formulated, the parameter
1 has to be identifiable as a functional on Q. We denote R(U) for the range
of a random variable U; the following definition can be found in chapter 1 of
Prakasa Rao (1983).

Definition 3.1 The parameter 1 is estimable of degree n in Q if there exists a
map ¢ : E™ — R(¢) such that for every Q € Q

E(o(U1,...,Un)) = (Q).

Y is called identifiable (or asymptotically estimable) in Q if the preceding display
15 satisfied in the limit as n — oo.

The parameters defined in equation (3.1) are always estimable of degree one in
Q. Indeed, a necessary and sufficient condition for the existence of an unbiased
estimator of a functional of degree one is that it has a representation as an integral
operator of the first kind, see Prakasa Rao (1983).

The estimator 1, is called asymptotically consistent if (1, — ¥(Q)) = op(1)
and asymptotically \/n-consistent if (¢, — ¥(Q)) = Op(y/n) (in the familiar
op/Op-notation). Note that ¢(Q) is identifiable if and only if there exists an
asymptotically consistent estimator.

The estimator &n is called regular at ) € @ if there exists a tight, Borel
measurable random element G' € R(1)) such that \/n (1, —1(Q)) converges weakly
to G. If 1 is real valued and G is mean-zero Gaussian, the limit law is readily
characterized by the variance of G. In case of R(¢) = [*°(F) weak convergence is
understood in terms of outer expectations to avoid measurability problems (see
e.g. Van der Vaart and Wellner (1996) for the corresponding theory). Without
loss of generality the law of the limit process of regular estimators is determined
by the coordinate projections on [*(F), c.f. the discussion below theorem 5.2.3
of BKRW. Furthermore, if G' is a mean-zero Gaussian element of [*(F) the
covariance matrix determines the limit law.

Regular consistent estimators can be (locally) approximated by a linear func-
tional: if there exists a function vy(p) € £3(Q) such that

A~

V(da(p) = (e, Q) = Vi Qu(th () + op(1),
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where inz denotes expectation of QZ with respect to the empirical measure corre-
sponding to Uy, ..., Uy, then o (¢) is called an influence function of the estimator
Yn(p). The latter display is also known as a first order Von Mises (1947) expan-

sion of the functional ¢. The asymptotic covariance of the process ¢ — 1y(p; U)
is given by

EG(p)G(g) = / Joles w) Tolg; ) Q( ).

Before we define asymptotical efficiency for a sequence of estimators we discuss
differentiability of the functional ¢/ on Q, and introduce a tangent space for Q
and the efficient influence function for estimation of ).

Let ¢ denote the Radon-Nikodym derivative of ) with respect to the domi-
nating measure p. A tangent space Q = QQ for Q at @ is defined relative to a
class of submodels as the closure of the set of all score functions. A score func-
tion or tangent g is defined as the mean square or Hellinger derivative at ¢ of a
(one-dimensional) submodel {g. : |¢| < €} passing through g¢:

. 1,1 1,7
lim [ |=(¢¢ —¢?) —5¢2| g=0. (3:3)

=

€0 € 2

The idea of the tangent space, which we always assume to be a closed linear
subspace of £3(Q), is that all densities in a neighborhood of the underlying density
can be well approximated by elements of the tangent space. If the parameter
1) is sufficiently smooth, i.e. differentiable in an appropriate sense along all one-
dimensional submodels of Q that are under consideration, then in a neighborhood
of the value 1(Q), ¢ can be approximated by its derivative evaluated at elements
of the tangent space. Usually it is sufficient to consider only those paths along
which the parameter of interest is differentiable for setting up the tangent space.
However, since Q consists of all dominated distribution functions of U the tangent
space of Q at @ is full (or saturated): Q = £3(Q). It follows directly from
equation (3.3) that tangents are in £9(Q); to show that also Q D £3(Q) one
considers usually one-dimensional submodels of the type {Q(du) (1 + eg(u)) :
€ < €} where g ranges over a dense subset of £3(Q), e.g. the set of mean-zero
bounded or infinitely often differentiable functions.

Definition 3.2 The functional i is differentiable at Q) € Q relative to a col-
lection of submodels (passing through Q) if there exists a continuous linear map
¥ Q— R(¢) such that for every submodel with score function g

lim > [4(ge) — 9(a)] = ¥a(g) = ¥(9).

el0 €

The functional 9 is called differentiable on Q if it is differentiable at every ) € Q.
This notion of pathwise differentiability is precisely Hadamard differentiability of
1 tangentially to the tangent space Q, c.f. appendix A5 of BKRW. Note that in
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the present chapter, in the notation we suppress the dependence of the deriva-
tive of 1 on ¢. Differentiability of a functional is under additional assumptions
concerning weak convergence necessary and sufficient for the existence of efficient
estimators in the sense of Definition 3.4 (see Van der Vaart (1991) and theorem
5.2.3 of BKRW).

The functionals defined in (3.1) and (3.2) are differentiable at every @ € Q;
the following result (i) is due to Van der Vaart (1988), and the extension (ii) is
given in example 5.3.8 of BKRW.

Proposition 3.3
(i) If ¢ is uniformly integrable in Q, then ¥ (yp) : @ — R given in (3.1) is
pathwise differentiable on Q with derivative ¥(y) : 0 - R,

bo.g) = / (1) — Qu} 9(u) Q(du).

The efficient influence function for estimation of (3.1) is given by (¢, U) =
e(U) — Qep.

(ii) If the class F has a uniformly square integrable envelope function F, i.e.
such that supgy(QF?) < co. Then ¢(F,Q) as defined in (3.2) is pathwise

differentiable on Q with derivative given by ¢ : Q — 1°(F),
9(F,9)(e) = [ D, u)gn) Q).

The efficient influence function is given by {¢ — () : ¢ € F}.

O

The following definition of efficiency of regular estimators is justified by general
convolution and asymptotic optimality theorems (a complete representation can
be found e.g. in section 5.2 of BKRW). These theorems state that the asymptotic
distribution of efficient estimators is less dispersed at the true parameter than
that of any other regular estimator and, for real valued parameters are part of
traditional Hajek-le Cam theory.

Deﬁniiiion 3.4 The estimator zﬁn of 1 is called asymptotically efficient at Q) € Q
if Vn(t, —(Q)) converges weakly to a separable mean-zero Gaussian random

element G of R(Y), and the covariance matriz of G equals the inverse of the
nonparametric information bound, i.e. is given by

EG(y) Glg) = / e, u) (g, u) Q(du),

where @Z(gp) is the efficient influence function of the real parameter ¢ (¢,Q).
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By the convolution theorem the Gaussian limit law of any other regular esti-
mator is the law of the convolution of the limit of an efficient estimator with an
independent tight Borel measurable element in R(¢)). The asymptotic optimality
theorem shows that the asymptotic normal distribution of efficient estimators is
the best one can get with respect to the class of bowl-shaped loss functions. In
fact, the Gaussian distribution performs best with respect to these criteria.

The information bound for estimation of the parameter defined in (3.1) is
given by 5
I;1(p) = QU(p) = Qv* — QuQep.
The covariance structure of the process defined in (3.2) is characterized by the
so-called inverse information covariance functional: I L' FxF -,

I3 (.9) =< 0(¢).9(0) o= [ Ul (g ) Q(dw).

In view of the convolution theorem the information bound is a measure for the
lowest, variance we can achieve among asymptotically unbiased estimators.

3.2 Differentiability of functionals and informa-
tion loss

We have gradients and influence functions on two levels.

Van der Vaart (1991)

In the rest of this chapter we study identifiability and differentiability of func-
tionals if only a random transformation of U is observable. Let X be a random
element of a Borel space (S,X) and R a dominated model for the conditional
distribution of X given U: every R € R is a stochastic kernel on (E x X), such
that

e for every u € E, R(- | u) is a probability measure on X that is dominated
by a sigma finite measure n

e for every A € 3, R(A|-) is a o(U)-measurable function on (2,T',P).

By the factorization lemma (see e.g. theorem 4.2.8 of Dudley (1989)) any real,
o(U)-measurable function is equal to a Borel measurable function on (E,€).
Abusing notation as usual we write R(- | u) for the function that corresponds to
R(- | w). Since E and S are Borel spaces, the product of any R € R with any
Q@ € Q determines a o-finite measure on the product space (£ x S, @ ¥),

meg r(dz, du) = R(dz | v) Q(du).
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Note that mg g(- x S) is equal to ). (Appendix A2 of Last and Brandt (1995)
provides a comprehensive representation of these facts). Thus, varying Q € Q
and R € R gives rise to a model for the joint law of (U, X) and also determines
a model for the marginal law of X, which is given by

W = {(Won(dz) = /R(da: WO :RER,Qe QY. (34)

Note that Wg g is equal to mg g(E % -) on X.
The Radon-Nikodym density of R(-,u) with respect to n on § will be denoted
by (- | u): for every A € &

R(A | u) = /Ar(x ) n( d).

For @ € Q fixed recall that Q = £I(Q) is the tangent space of Q at Q. A tangent
space Rr = R for R at R can be obtained as follows: for b bounded consider all
submodels of R of the form

{re(-u) - el < e}
such that b is the tangent or mean square derivative at r(-, u):

oL u)h) = b u) (L wE| =0,

N[

€0 €

1
lim [— (re(-,u)
Since the bounded functions are dense in L3(Wg r) we have
R ={be LYmoRr) : /b(a:,u) R(dz | u) = 0 for almost all u € E}.

A tangent space V'VWQ,R =WV for W can now be obtained by using the results
of Le Cam and Yang (1988). Consider a class of submodels of the form {Wg_ g :
le| < €} passing through Wg g, such that @, has tangent g and R, has tangent
b. Then define the score operator [ : Q x R — LY(Wo.r) by

I(g,b) = E(9(U) +b(U, X) | X).

Differentiability in quadratic mean is preserved (see e.g. proposition A.5.5 of
BKRW):

1 1 1 1. 1 ]2
13{51 [E(dwés,Rs — dWé}R) — §l(g,b) dWigrl =0.
Thus, the score operator I maps score functions from Q, respectively R, to score
functions in W.

We define the parameter of interest in the information loss model W through
the relation

v(Wo.r) = ¢(Q) (3.5)

Parallel to definition 3.1 we have the following
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Definition 3.5 Let 1 be estimable of degree n in Q. The parameter v defined in
(3.5) is estimable of degree n in W if there exists a map ¢ : 8" — B such that
for every Q@ € Q and RER

E(6(X1,..., Xa)) =¥(Q),

where the expectation is with respect to Wo p € W. v s called identifiable in VW
if the preceding display is valid in the limait.

To find conditions for the existence of asymptotically unbiased estimators based
on incomplete observation is more involved. Assume that 1 is estimable of degree
one in Q. Estimability, respectively identifiability, with observations of X for all
non-constant functionals on Q is dictated by the dependence structure of X and
U. Clearly, if X is stochastically independent of U no reasonable functional is
identifiable.

We introduce the indicator variable A = 1{X = U} and assume that F is a
subset of S guaranteeing that A is well-defined. We use the notations

WW(dz) = P(X € dz,A=1)
and
wO(dz) = P(X € dz, A =0)

as short-hand for
/h(x)W(j)(dx) _ /h(x)P(X € dn,A=5), §=01

for all bounded Borel functions h. The relation W g(dx) = WU (dx)+W O (dz)
yields the following decomposition of the nonparametric tangent space

L5(Wo,r) = L5WY) @ L3W);

yet every h € L3(Wo g) can be split into h = Ah + (1 — A)h.

For identifiability of general parameters only the complete observations, where
X = {U}, are relevant. In addition, positive point mass of the kernel R at almost
every u € E given U = u is required as can be seen from the following lines:

W(l)(dx)—P(Xe dz, X = U)
PUe€ dz, X =U)
P X=z2|U=u)PU € du)
R(z | ) Q(dx).

We define the inverse probability of censoring function by

(3.6)

d(x) = R(z | z);
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thus almost surely W()(dx) = d(z) Q(dz). From equation (3.6) we claim that
identifiability of a functional 1(Q) is only possible restricted to the set where the
function d is strictly positive. For instance, if there is a set A € £ with Q(A) > 0,
such that d(u) = 0 for all u € A then the parameter ¥(Q) = [uQ(du) is not
identifiable in W.

The following propostion provides sufficient conditions for identifiability of
parameters that are estimable of degree one in Q).

Proposition 3.6
Let ¢ € L5(Q) and suppose that also d is identifiable in W. A sufficient condition
for identifiability of the parameter v(Wg r) = ¥(Q) = Qg in W is that

/ 1{d(w) > 0}p(u) Q( du) = / () Q( du). (3.7)

and ¢ € L;(WWD/d):

W (du)
— < 0. 3.8
[ =g <o (39
Proof: Let Wé” be the empirical measure corresponding to an 7id sample

Xi, ..., X, Since dis identifiable there exists an uniformly (in Q), asymptotically
consistent sequence of estimators d,,. Then as n — oo, by the law of large numbers

A HOIER M (du
/ 1{d, (u) > omm% = / 1{d(u) > OMU)WT;?)

If (3.8) holds then the right hand side is finite and equals Q¢ by (3.6) and (3.7).
U
Any estimator of the form

/ 1da(a) > 0ol 55,

where d,, is an estimator of d and WT(LI) is the empirical distribution of the obser-
vations with A = 1, is called inverse probability of censoring weighting (IPCW)
estimator. The name is due to Robins and Rotnitzky (1992), famous examples
are the Kaplan-Meier and the Horvitz-Thompson estimator. Note that in order
to achieve efficiency of IPCW estimators the observations with A = 0 have to be
used for the estimator of d.

Example 3.7 (Right censoring)

Suppose U is positive real, an event time, say, and X = (UAC,A = 1{U < C'}),
where (' is a censoring time. The inverse probability of censoring function is in
this situation given by

du)=P(X=U|U=u)=PUANC=u|U=u)=PC>u|U=u).
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If C is independent of U, then P(C' > u | U = u) = P(C > u) = G(u). Define
7 = inf, {P(UAC < u) = 1} and suppose 7 < oo. Clearly, the parameter
Y(Q) = [uQ(du) is not identifiable if P(U > 7) > 0. The survival function
of the censoring function G can be consistently estimated on the interval [0, 7)
by the so-called reverse Kaplan-Meier estimator. The question of almost sure
convergence of the Kaplan-Meier estimator on [0,7) is more delicate, see Stute
and Wang (1993) for necessary and sufficient conditions for the case where the
distributions of U and C do not jump in common, and Shorack and Wellner (1986,
page 306) for the general case. From a practical viewpoint the results of Wang
(1987) are important, see also Kosorok (2002) results for the bivariate survival
estimator. According to proposition 3.6, so-called Kaplan-Meier integrals of the
form Q¢ can be identified if

4 4 W( du
[ etwatan = [ owatan = ["ow T 5 <o

d

In the following paragraph we discuss the question when the indexed model W
for X is nonparametric, or equivalently when is the tangent space full: W =
LY(Wo.r). Let I; be the restriction of [ on Q and by I, the restriction of { on R.
The adjoint operator i} : R(l;) — Q of {; is uniquely determined by the equality

< lig,h >q=< g,Ih >Wao,r

for all functions g € Q and h € W. It is clear that i} is given by I3(b) = E (h(X) |
U); for, if g € Q and h € W, then

<lig.h >wy, =EE(g(U) | X)h(X)
=Eg(U)E(MX)|U) =< g,h >q .

We also compute Z;. For every b € R and every h € W we have

<lyb,h >w,, =EE (U, X) | X)h(X)

=EE (U, X) h(X) | X)
=EE (U, X){n(X) - E (r(X) | U)} | U)

+EE (U, X) | U)E(h(X) [ U)

= Eb(U, X) {h(X) - E(h(X) [ U)}

=< b,I3h >mg ns

since E(b(U,X) | U) = 0. Thus, the operator i maps functions that are in
L)(Wq,r) onto the orthogonal complement of £3(Q) in L£3(mg, g). This shows

that a necessary condition for a function in £3(Q) to be in the range of [ is that
it is contained in the range of /;. This observation is important for obtaining the
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efficient influence functions of parameters of the type v(Wg r) = ¥(Q) in W, see
theorem 3.8. To find the efficient influence function one can project an initial
influence function onto the orthogonal complement of the tangent space for the
nuisance parameter, which is R(ly) in the present situation.

The following decomposition of the Hilbert space £3(Wg r) holds simply be-
cause il is a linear operator:

L5(War) = {h:E(A(X) |U) =0} @ {h: E(R(X) |U) =0}"
= N(}) ® R(iy). (3.9)

Here A denotes the orthogonal complement of a set A. If we do not impose
restrictions for the conditional distribution of X given U, then obviously N(lf) -
R(ly) and it follows that the range of i is dense in £3(Wq r). However, in the
examples of interest the inverse probability of censoring function is not identifiable
unless a restricted model for the conditional distribution of X given U is assumed.
This is known as the non-identifiability of a competing risk. A necessary condition
for the existence of adaptive estimates of parameters of the distribution of U in
presence of the nuisance parameter d is that the range of [ is orthogonal to
the range of I (compare section 5.5 of BKRW). We want to briefly discuss this
problem here, and provide a solution in section 3.3. Suppose the ranges are
not orthogonal, i.e. there is a function in the intersection: hq € R(l;) N R(ly).
Then there are functions b € R and g € Q such that hy(z) = E (b(U, X) | X) and
ho(xz) = E(g(U) | X). The following equality holds if for all measurable functions
b and g,
EQ@U,X)gU) | X)=E@U,X) | X)E(yU) | X),

170 llwg n = E ho(X) ho(X)
=EE (U, X)g(U) | X)
— Eg(U)E (b(U,X) | U) = 0.

This shows that adaptive (IPCW) estimation is possible if (U, X) and U are
conditionally independent given X, or if R consists of measurable functions of X
only. In section 3.3 we discuss these issues in detail.

For differentiable functionals efficiency of an estimator can be conveniently
checked by comparison of the influence function of the estimator with the efficient
influence function. The following special case of theorem 3.1 of Van der Vaart
(1991) can be used to establish differentiability of identifiable parameters in the
model W. The original theorem treats general parameters with values in a Banach
space and models indexed by arbitrary Hilbert spaces. Our version is basically
corollary 5.5.1 of BKRW, specialized to functionals such as defined in (3.1) and
(3.2), and specialized to the information loss model defined in (3.4). The theorem
describes a method for finding the efficient influence function in models with
composite parameterspaces: an initial influence function has to be projected onto

32



3.3

the orthogonal complement of the tangent space for the nuisance parameter. In
the present situation the tangent space for the nuisance parameter is R(lg)_, and
the (Hilbert space) projection thereon will be denoted by Ily(-) = II(- | R(l2)).

Theorem 3.8 (Van der Vaart 1991)
Let (@) be an identifiable parameter in Q of the type given in (3.1) or (3.2). In

both cases denote by V¥ the derivative of ¥ at Q € Q and by 1)* the adjoint map
of .

(i) The functional v(Wg r) = ¥(Q) is differentiable at Wq r in the sense of
definition 3.2 if for every ¢ € F

R(y*) C R(ij(1 - T1y)). (3.10)

The efficient influence functions v(y) for estimation of the real parameters
V() = Qy solve the system of equations

b(p) = I1(1 — ) i5()
0=30(p).

(ii) Assume that R(ly) is orthogonal to R (l3). Then the conclusion of (i) holds
with [5(1 — II,) replaced by ;.

It follows that the information bound for estimation of v(Wg r) = Qy is given
by

Since * is a (semi-) contraction, there exists a number 6 < 1 such that
@) [lwen< 0 ¢l -

0 reflects the information loss, because ||1Z||2Q and || D||%,VQ’R are the variances of
efficient estimators in Q respectively in W.

The inverse information covariance functional for estimation of the function
valued parameter v(Wg r) = {¢ — Qg : ¢ € F} is given by

17 (0, 9) =< (), 2g) Sw 2= / 7, 2) g, ) Wo.n( da).
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3.3 Coarsening at random models

Locally, CAR is everything.

Gill, Robins, van der Laan (1997)

In this section we consider a class of information loss models that fall under
the keyword coarsening at random (CAR). These include grouped, missing and
censored data models and were studied by Heitjan and Rubin (1991), Jacobsen
and Keiding (1995) and Gill, Van der Laan, and Robins (1995). A coarsened
observation is obtained by a random many-to-one mapping of an unobservable
random variable U, and therefore can be identified with a set in the o-field of U.
The more values are assigned to the same value by the many-to-one mapping the
less information is carried by the coarsened observation, and thus the greater is
the observed set. Consequently, a missing value corresponds to case where the
observed set is equal to the range of U. The other extreme is where one observes
U respectively the singleton {U}.

Let U : (Q,I',P) — (E,&) be an unobservable random map with values in
a Borel space and X : (2,I,P) — (S,%) a set-valued random map where S is
a Borel subset of £ and ¥ the corresponding Borel o-field. We assume that &
contains all the singletons {u : u € E} and that U € X is measurable. For every
u € E we define the following set of sets that contain u:

A, ={Ae S ue A}l

(To emphasize that X is now set-valued we use the letters A, B, C'. .. for elements
of S. Sets in ¥, on the other hand, are denoted by letters A, B,C....)

Define Q and R as in the previous section to be the models of all dominated
probability distributions of U and all dominated stochastic kernels from E to S,
respectively. For any @) € Q and any R € R recall that mg g(du, dA) = R(dA |
u) Q(du) is the induced law on the product space (E x §,€ ® X). Since both, F
and S, are assumed Borel spaces, there exists also a stochastic kernel Vg r from
S to E, such that

MQ,R(d’LL, dA) = VQ}R( du | A) WQyR( dA),

where Wo r(dA) = [ R(dA | u) Q(du) is the induced marginal law on (S, X).
(We refer to the appendix of Last and Brandt (1995) for an overview of these
relations.)

Definition 3.9 Assume that 1{U € X} is measurable. X is called coarsening of
U (or coarsening variable) if

PUeX)=1. (3.11)
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Note that (3.11) is equivalent to P({w : X(w) € Ayw)}) = 1, where Ay is a
random set of sets. If we assume that X is a coarsening variable, then any model
for the conditional distribution of X given U is a subset of

Re={ReR:R(dA |u) =1{u € A}R(dA | u), for almost every u}.

We will use this fact repeatedly in the sequel. In contrast to the variable X
of the previous section, observations of a coarsening variable X of U are always
informative for statistical inference on parameters of the distribution of U, except
perhaps for the case X (w) = F which corresponds to a missing value. In some
instances there may even be enough additional information to recover the value
of U from the corresponding observation of X. For example, if the values of X
are symmetric sets and it is known that U is the central point. In the interesting
cases, however, such information is not available. In view of (3.11), U and X
can not be stochastically independent, since observing X (w) always tells that
U e X(w).

To identify parameters of the distribution of U a model is required for the
conditional distribution of U given X. Roughly speaking, assuming coarsening
at random (CAR) for a coarsening variable corresponds to a uniform model for
the conditional distributions of U given X, at least for the part which is contin-
uous with respect to the marginal distribution of U. The definition of CAR by
Gill, Van der Laan, and Robins (1995) is formulated in terms of the conditional
distribution of X given U:

Definition 3.10 A coarsening X of U is called coarsening at random (CAR) if
for all u,v € E and every A € A, N A,,

R(dA | u) = R(dA | v). (3.12)

(This is again shorthand for

/ h(AVR(dA | u) = / h(A)R(dA | v).

for all bounded Borel functions h with support on {A, N A,}.)

To explain the implications of CAR, we consider for a fixed set A € S the
following Lebesgue decomposition of Vg g(- | A) with respect to Q:

Vau(B | 4) = 1{Q(4) > 0} [ H2 = Qrau) +1(Q0) = 0}V (1| 4,

(3.13)
for B € E. V§x(- | A) is the singular part of Vo r(- | A) with respect to Q.
For singletons {u} € R(X) always the singular part of decomposition (3.13) is
active. Moreover, singletons are the only sets for which it is obvious how to
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use the coarsened information: if X = {u} then, in view of (3.11), it follows
immediately that U = u. In some applications of interest, however, there are sets
in R(X) that are not singletons but have Q-probability zero.

For all sets in R(X) a specification of how to infer on parameters of U is
required. The CAR assumption is one such specification and characterized by
Radon-Nikodym derivatives of the form given in the continuous part of (3.13).
Basically, the interpretation of CAR is that the information of the observation
X (w) = A is nothing else but the obvious U € A. This is seemingly best charac-
terized by a uniform density on the set A. In the special case where () is discrete,
all sets in S have positive Q-probability and CAR is be readily characterized by
the relation

Q(u)

Q(A)’

for every u and A, compare Gill, Van der Laan, and Robins (1995). If @ is
continuous and the singular part is active only for singletons A € {{u} : v € E},
then (3.13) would readily be good as a definition for CAR. However, as already
noted this is not true in general, and a great part of this section is used to find
decompositions of the kind given in (3.13) for general CAR models.

VQ}R<U | A) = l{u € A}

Example 3.11 (MAR)

In the notation of this section, a situation where U is either observed or completely
missing can be specified by setting A, = {{u}, E} for all u € E. Then the
conditional distribution of X given U = w is binary, and thus already specified
by the probability R(E | u) = ¢, where § € [0,1]. If X satisfies CAR, then by
(3.12) this probability is the same for all values of U. By taking complements we
see that the function R({u} | u) = (1 — 0) is also independent of w.

O
We write Rcar € Re for the submodel of all kernels that satisfy (3.11) and

(3.12), Recar for the tangent space of Rear and define the model for the marginal
distribution of a coarsening at random variable by

Wear = {Wor: Q € Q,R € Roar}-

It is valuable to analyze what the definition of CAR implies for the conditional
distribution of U given X. For this we recall that Rcagr is assumed dominated
by a o-finite measure  on S. We denote by r(- | u) the density that satisfies
almost surely for every A € X

R(A|u) = /AT(A | u)n(dA). (3.14)

If R € R¢, the function 7(A | u) = 1{u € A}r(A | u) also satisfies the preceding
display and in that case the integral in (3.14) is limited to A N A,,.
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The following lemma relates the CAR assumption to any conditional distri-
bution of U given X.

Lemma 3.12
Assume that R € Roar. Let V' be any stochastic kernel on (€ x S). For every
u € F, and every bounded Borel function h

/ V(A | A) > 0}h(A)R(dA | u) =

/{1{V(A | 4) > O}h(A)% 1{v e Apr(A | v) V(dv| A)} n(dA).

Proof:  Let h be a function such that h(A) = 1{V(A | A) > 0} h(A) for every
A € S. By (3.11) and since by definition A € A, for every v € A we have

/ B(A)r(A | u) 5(dA)
V(A]A)

_ /h(A) o € A} g AL wa(da) (3.15)

1 A
:/{h(A)% v e AVr(A | v) V(do | A)} n(dA).

O

We emphasize that lemma 3.12 holds for any conditional distribution of U given
X, in particular for Vg r and Q). With the help of lemma 3.12 we can show that
if R € Rcar there exists a version of the density function r given in (3.14) which
depends on U only through the condition given in (3.11). Note that this relates
the set-up of Gill, Van der Laan, and Robins (1995) to the treatment of CAR
in section 25.5.3 of Van der Vaart (1998), where CAR is defined such that there
exists a version of r that is a measurable function of X.

Lemma 3.13

Suppose R € Rcar and that equation (3.14) is satisfied for a o-finite measure 7
and a nonnegative function r. There exists a nonnegative function 7 : S — R
such that for every A € ¥

/R(dA|u)=/ 1{u € A} F(A) n(dA).
A A

Proof: By (3.11) Vor(A| A) = P(U € A| X = A) =1 > 0 for almost every
A € S. Using lemma 3.12 with V' = V{5 g suggests the function

#(A) E/m € A} r(A | v) Vor(dv | A).

Substituting Vg g for V and 1{A} for h in Equation (3.15) shows that 7 is a
solution.
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O

Example 3.14

Suppose X = ¢(U, C') where C is a censoring variable and ¢ a measurable map.
If C is stochastically independent of U, and X is a coarsening of U, then ¢(U, C)
satisfies CAR. Since X is a coarsening we have

PU,C) e dA|U=u)=1{u € A} P(¢(u,C) € dA),

thus r(A | u) does not depend on u € A. On the other hand, CAR does not
imply stochastic independence in general as can be easily seen by considering
E = {0, 1} for the range of U and S = {{0}, {1}, E'} for the range of X.

O

It is now possible to show that the tangent space of Wear at Wy g equals all
square integrable mean-zero functions, i.e. is saturated in the language of BKRW,
and that the score operators /; and [, (as defined in the previous section) map to

orthogonal spaces. The reason is that by lemma 3.13 score function in Rcar are
functions of X only and thus are not projected by the score operator.

Lem_ma 3.15 ‘ _ . _
Let I : @ — Wecar and ls : Rcar — Wcear be the conditional expectation
operators given X. Then

Weoar = R(lh) & R(lz) = L3 (Wo,r).
Proof: By lemma 3.13 every score function b € Roar satisfies
b(U,X) =1{U € X} b(X)

for some function b of X. By (3.11) almost surely

(I5b)(A) = E (1{U € X} | X = A)b(A) = b(A).
For any g € Q this yields

<lig.bb>=E {E(g(0) | X))} =B {g0) BEX) | V)} =0
since 1{u € X} =1 almost surely and since b € RCAR
EO(X)|U)=EQ{U e X}b(X) |U)=E (b(U,X) | U) = 0.

O

We have seen in the previous section how the complete observations, where X =
{U}, can be used to identify functionals of the type v(Wg r) = ¥(Q). Simply
omitting the incomplete observations usually leads to inefficient estimators. The
following theorem shows how under CAR the observations X # {U} can be used
for statistical inference on parameters of the distribution of U. It also shows that
the continuous part of the Lebesgue decomposition of Vg g(- | A) with respect to
() has the form specified in (3.13).
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Theorem 3.16
Assume R € Rcar and suppose that equation (3.14) is satisfied. Then, for every
A€ S with Q(A) >0

E(g(U)| X =A)=E(@U)|UeA). (3.16)

Proof:  Define 7 as in lemma 3.13. By lemma 3.13 we have for every bounded
Borel function h, that satisfies h(A) = 1{Q(A) > 0} h(A) for every A € S, that

[ rawan(aay = [ [ 1w By r(as | @i (s
- /h(A)/l{u € A}r(dA[u)Q(du)n(dA)
- /h(A)/l{u € A} r(A)Q(du) n(dA).

Let g be a bounded Borel function of U. Substituting () for V' in lemma 3.12 and
by Fubini’s theorem we have

/umE@wnx=An%£wm

// u) Vo,r(du | A) Wo,r(dA)

= [[ n gt reaa | @)

// l{u if} #(A)n(dA) Q(du)

/ / 0t if} Wa.r(dA) n(dA) Q(du)
_/ (4) / 9(“)% Q(du) Wo,r(dA)

= /h(A) E(g(U) | U € A) Wg,r(dA).

O

If Q(A) > 0 for all A € R(X) that are not singletons then CAR is equivalent
o (3.16). For, if A € A, N A,, then 1{u € A} = 1{v € A} almost surely and
(3.12) is satisfied. For real and continuously distributed U the assumption that
singletons are the only ()-probability zero sets in the range of X seems not to
be very restrictive: without loss, all problematic sets of @Q-probability zero are
unions of singletons {uy,...,u,} € A,, for i =1,...,n and we can replace each
element by a small interval that has positive probability under @, {[u; —¢€, u;+€]},
say. However, if X = (T, Z) takes values in IR x IR, say, then all sets of the form
A x {z} € Ay, are not singletons and have zero @-probability at least for
continuous Z. This discussion leads to the following corollaries of Theorem 3.16.
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Corollary 3.17

Suppose U is a (real) random variable and Q(A) > 0 for all A € S\{{u} : v € E}.
The coarsening variable X satisfies CAR if and only if for every A € R(X) not
a singleton

E(g(X) | X=A4)=E(yU)|Ue€A).

O
In the situation of corollary 3.17 the Lebesgue decomposition of Vi, g with respect
to @ is given by

Vau(B | 4)= [ 5 Qrau) + 104 = () Vi aldw)

Corollary 3.18

Suppose U = (T, Z), where T is real and Z is k-dimensional real. Assume that
Z is always observed, i.e. Ay, = {(A,{z}) : t € A} and X = (Xp,Z) for a
coarsening variable Xp of T. If the function z — Q((A,{z}) | Z = z) is strictly
positive for every (A,{z}) € S, then the coarsening variable X satisfies CAR if

and only if for every (A,{z}) € S\ {({t},{z}) : t € R}
E(g(T,2) | X0 =A,Z=2)=E(g(T,2) | T € A, Z = z2).

O

Corollary 3.18 is used in the next section for the analysis of right censored
event times in the presence of completely observed covariates. There are also
applications where U = (T, Z) and both variables coarsened, e.g. double censor-
ing or missing covariates with right censored survival data. Suppose Z is one-
dimensional and § is a Borel subset of the product o-field of U=(T",Z). Then
CAR implies for every A = (A4, A,)

Vou(B| 4)=1{Q() > 0} [ 2o M Q(du)

+1{Q.(A) > 0}/ 1{5 E At}

Q) > 0 [ HES 1{56‘4 }Qt<d§)
+ H{A = ({t},{z}) }VQ R(B A)

where (); and @, are the conditional distributions of Z given 7" = t and of T’
given Z = z, respectively, and where we have assumed that Q;(A,) > 0 and
Q.(A:) > 0. The singular part of the Lebesgue decomposition of Vj g is then ac-
tive only for complete observations in both components of U. Information bounds
for missing covariates and right censored survival data were recently obtained by
Nan (2001), who also corrected the bounds obtained by Robins, Rotnitzky, and

Q.(ds)
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Zhao (1994) for the linear model with missing covariates.

Now we discuss identifiability and differentiability of parameters of the type
v(Wo r) = ¢¥(Q) along the lines of the previous section. Theorem 3.16 and its
corollaries shows that under CAR the conditional expectation of functions of U
given that U € X (w) can be used for inference on (@) without introducing bias.
If we assume that Q(A) > 0 for all A € S that are not singletons, then the score
operator has the following representation: I :Q— WCAR,

(1g)(X) = E(9(U) | X) = E(Ag(U) | X) +E((1 = A)g(U) | U € X)

= Ag(X) + (;(XA)) /1{u € X}g(u)Q(du).
Here we use the indicator of complete observations A = 1{X = {U}}. Note
that this formula is similar to the one obtained for the relevant score operator
in the random censoring example, see BKRW and Van der Vaart (1991). Under
CAR the range of [} is a (dense) subset of the orthogonal complement of Q (c.f.
lemma 3.15), thus we can use (ii) of theorem 3.8 and establish that the efficient
influence function for estimation of functionals such as defined in (3.1) and (3.2)
are determined by the system of equations

P(e) =1}
0

l
<

()

v
ﬂ<§0)7 h >WQ,R :

for every h € R(ly) and ¢ € F

The rest of this section is used to derive more detailed conditions for differen-
tiability of functionals, where we try to extend the computations for univariate
random censoring of BKRW section 6.6. examples 3, respectively Van der Vaart
(1991, section 8). First note that by the spectral theorem (c.f. theorem 2.5.2
Davies (1995)) the self-adjoint operator i*l; : Q — Q is unitarily equivalent to a
multiplication operator D, i.e. there exists a bounded function d that character-
izes D through the following relation: for all g € £3(Q):

(Dg)(u) = d(u) g(u). (3.17)
Then there exists a unitary operator R, such that
Il =R 'DR.
The polar decomposition of the bounded linear operator Iy yields existence of

the square root ([*};)2 of [*l; and also that R([*) = R((i1l;)2) (c.f. Van der

Vaart (1991)). Moreover, if [*h=([*};)2g for some h € R(};) and some g €
R(l}), then (c.f. proposition A.1.6 of BKRW) ||A|w, .=|/g]lq- By the spectral
representation we have R({¥)=R(R 'DY2?R). Because of the unitary equivalence
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it is necessary and sufficient for a function g to be in R(i}) that Rg € £L2(Q/d).
This result can be used as follows to establish differentiability of v. The influence
function () lies in the range of [; if and only if

PO <.

By theorem 3.8 this is a sufficient condition for differentiability of v. For a
particular class of examples which includes random missing and random censoring
(c.f. section 3.4) it can be seen that d(u) = R{u} |u) = P(A=1|U = u) is
the inverse probability of censoring function. In these examples it is also possible
to explicitly determine the univariate operator R of the spectral representation.

Suppose for the moment that U is real. We introduce the martingal operator

Ly : Q@ — W that is an important tool for establishing the referenced form of
the spectral decomposition in an explicit way.

(uwg)@) = [ g, (318)
where M, is the martingal for the uncensored observations

Q(dv)

Muc(u)zl{Ugu,Azl}—/_u U >} E(A=1]U =) 520

Using counting process theory (Last and Brandt 1995, example 1.6.2) it can be
seen that the process 1{U < u, A = 1} is adapted to the filtration that is jointly
generated by 1{U < u}, A1{U < u}, and that the corresponding compensator
is given as in the definition of M,.. Observe also that M, is exactly analogous
to the martingal of section 6.6 in BKRW for a survival time 7" in the presence
of a right censoring variable C', where A = 1{T'A C = T'}: the counting process
HT'AC<t,A=1}=1{T <t,A =1} has compensator

/tl{T/\ C'> 1} A(ds) =/t1{T>t,A=1}A(ds),

where A is the cumulative hazard function corresponding to the distribution func-
tion of 7. For e.g. missing at random or (multivariate) right censoring, it can be
shown that (I*l,9)(u) = (R* £, L. Rg)(u), where R is a unitary operator. It fol-
lows from martingal calculus and equation (3.6) that (Dg)(u) = (L%, Lyuc9)(u) =
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R({u} | u)g(u):
< »Czc»cucga p >q =< *Cucga Eucﬂo >WQ,R

_k / 9(0)p(0)1{U > v,A =1} %

— v v Uy |V v, 00 M
=B [ g0eR(} 0000 510 (319)
_ / 9(0)p(W)R({v} | v) Q(dv)

=< R({v} | v) 9,9 >q -

3.4 Right censored regression with completely
observed covariates

Now we can flip the 'R‘ and the °L‘ operators.

Jon Wellner (2001)

In this section we derive explicit formulas for information bounds in the ran-
dom censoring model with covariates. We use spectral decompositions of the
involved score operators to find explicit formulas for the efficient influence func-
tions for estimation of parameters of the form v(Wg g) = 1(Q) along the lines of
the previous section. The formulas are obtained by using modifications of the 'R
and 'L‘ operators such as defined by Ritov and Wellner (1988) (see also appendix
Al of BKRW), adaptively modified to work in situations with right censoring
and covariates. Similar computations can be found in Nan (2001) for estimation
of the finite-dimensional parameters in the Cox regression model with covariates
subject to missing at random.

Suppose that the components of U = (T, Z) : (Q,T,P) — (R, x R¥) corre-
spond to the dependent variable in a regression problem, a positive event time,
say, and a k-dimensional vector of covariates, respectively. We consider a coars-
ening variable X = (X7, Xz), where X7 = 1{T < C} {T}+ 1{T > C}|C, o0) for
a positive censoring random variable C, and X = {Z}, reflecting that Z is not
coarsened. Examples where more than one component of a random vector are
subject to coarsening are bivariate right censoring (Van der Laan 1996) or a right
censored event time with missing covariates (Nan 2001). Obviously X is a coars-
ening of U, since P(T € Xr) = 1. The more familiar way is to code the observed
data X by the vector (Y =T A C,A =1{T < C}, Z) which we shall also call X
in what follows. We hope that this does not lead to confusions. Note that A is an
indicator variable for complete observations in agreement with A = 1{X = U}

43



3.4

used in the previous sections. Some additional notation is needed. Our model Q;
for the conditional distribution of 7" given Z is always a submodel of the set of all
probability kernels on B x IR* that are dominated in the first argument. Every
element of Q; is determined by the conditional cumulative distribution function
of T given Z, viz. F(t | z) = P(T <t| Z = z). We will see later, in chapter 4,
that for uniformly consistent estimation in case of Z continuous, the elements of
Q; have to satisfy a certain smoothness condition in the second argument.

The model for the marginal distribution of Z is denoted by Q, and consists of
all dominated distributions H(dz) = P(Z € dz) on B*. We assume CAR for the
conditional distribution of X given U which was seen in the previous section to
be implied by the more familiar assumption that C' is conditionally independent
of T given Z (c.f. example 3.14). Identifiability of the distribution of T" (see e.g.
Example 6.6.1 of BKRW) continues to hold under CAR (equations (3.20)-(3.22)
below).

It is easy to see (c.f. lemma 3.13) that under CAR the conditional distribution
of X given (T',7) is completely specified by the conditional cumulative distribu-
tion function of C' given Z, viz. G(t | z) = P(C <t | Z = z). We assume a model
G for the conditional distribution of C' given Z which is a submodel of the set of
all dominated probability kernels on B x IRF.

As in the previous section we can establish a model for the distribution of X,
indexed by Q = Q; X Qs and G. For this we introduce the following conditional
subdistribution functions

Wh(dy |2)=P(Y € dyA=1[Z=2)=(1-Gy|2)F(dy|2)

0 (3.20)
WO(dy|2)=P(Y € dyA=0|Z=2)=(1-F(y|2)G(dy|2),

where the last step follows by CAR. Then any distribution W of X can be
decomposed as

W(dy,d, dz) = W(dy,é | z) H(dz)
= {WW(dy | 2) H(d2)}’ + {W(dy | 2) H(d2)}"™").

This shows that W is uniquely determined by F,, G, and H, and hence we have
a model W for W that is indexed by Q; x Qs X G:

Wear = {Wr ne, - F. € Q1,H € Q5,G, € G}.

The conditional distributions of 7" and C' given Z can be identified by the well-
known product integral formulas: if for almost every z t — F(t | z) and t —
G(t | z) are continuous functions, which we assume for simplicity, then

Ew®(ds | 2
(1—F(t|z))=exp{—/0 (?/_ V(VOES || Z;)} (3.21)
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and

t (0) s |z
(1—G@|@%:wp{iA<?:éiJZ%}. (3.22)

Tangent spaces corresponding to Q1, Qs and G are respectively given by
={ae LYF xH):E((T,Z)| Z) =0}
Q, = L3(H)
G={celS(GxH):E((C Z)|Z)=0}.

The relevant score operators for estimation of parameters of the joint distribu-
tion of (T, Z) (c.f. section 3.2) are denoted by ln, I12, > and defined on Qy, O,, G,
respectively by:

(lha)(y,0,2) =E(a(T,2) | Y >y, A=06,Z = z)

=0a z & OOCLSZ S|z
=00(09)+ g 1z ), e F(ds 1)

(2 b)(y,6,2) =E(b(Z) | Y =y,A = 6,7 = z)
=b(z)
(lbe)(y,6,2) =E(c(C,2) | Y >y, A=6,Z = 2)

5 o0
=1 -0)c(y,2) + m/y c(s,z)G(ds | 2).

As a consequence of lemma 3.15 we find that the tangent space of Wcag at W
is full: ‘ ‘ . ‘
Wear = R(l1) @ R(l) @ R(ly) = LYW).

Furthermore, we denote

Wi = LYW,) = LYW & LYWD)
WQ = L:g(H)a
where LYW = {h:E(h(Y,4,2) | Z) =0, j = 1,2}; giving Wear = Wy X Wh.
The following functionals are of particular interest; see chapter 2 for examples.

For ¢ € F C Lo(F, x H) we define (¢, F, x H) now as a parameter of the
information loss model W: v(p) : W — IR,

. Wene.) = 0o P x H) = [ plt.2)F(dt | DH(d). (329
The corresponding function valued parameter is given by v(F) : W — [®(F)
V(F, Wran)(p) =1(p, F x H). (3.24)
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Our calculations of the efficient influence function for estimation of v in W
base on the following corollary of theorem 3.8. In view of proposition 3.3, it
clearly applies to the functionals defined in (3.23) and (3.24).

Corollary 3.19
Suppose v is differentiable on Q = Q; x Q, with efficient influence function

Y= 1211 + 1212; where
Uit 2) =9t 2)—BW | Z=2) e O
and

V12(2) =E(W) | Z=2) € Qs.
The parameter v defined by v(Wg, na,) = Y(F x H) is differentiable at W in

W, if and only if there exist a function v € VV that satisfies the following system
of equations:

I3,(9) = 1, I (7) = ¥ and () =0.

The 'R operator corresponding to the conditional distribution of T" given Z
is defined by Rp, : Q1 — Qy,

(REp, a)(t,z) =a(t,z) —E(a(T,2) | T >t,7Z = z)
o ooast(ds|z)
e, e '

It was shown by Ritov and Wellner (1988) that R, is a unitary, bounded operator
whose inverse R;zl equals the adjoint operator Ry, on Q;:

=a(t,z) —

(Ria)(t,2) = alt, 2) — /0 a(s,z)%.

Correspondingly, let Rai and Rg, denote the inverse and adjoint operators of
Re., then analogous relations holds. The ’L° operator corresponding to the
conditional distribution of 7" given Z = z is defined by Lp, : Q1 — W,

o F(ds| z)

(Cra)¥.8,9) = Aalv,2) + [ a2 el s

and similarly we shall define L¢, : G — W by

(Lo, o) (Y, A, 2) = (1— A)e(Y, 2) + /Yoo s, Z)%_
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Without right censoring, i.e. if C' = 0o, the 'L and the 'R‘ operators are inverses
and adjoints of each other on the set of mean zero square integrable functions
(Ritov and Wellner 1988). However, these relations do not maintain to hold for
censored data. We show that l11 = Lp, Rp, and Iy = Lg, Rg,. Let a € Ql, then

(EFz RFz a)(y,&,Z) = 5a(y,Z)
0

_—(1—F(y|z))/y a(s,z) F(ds | z)

- /y (s, ) F(ds|z) (3.25)
o (A=Fylz)

vore F(ds| z)
v et pas 1) TR

Fubini’s theorem and the fact that the relation

/b F(ds) 1 B 1
 {1-F(s)}? {1-F@0)} {1-F(a)}
holds for every distribution function F and any a < b can be used to show that

voree F(ds| z)
/0/5 a(u’Z)F(dS|2)(1—F(y|z))2

:/Oy [m_l] a(u, 2) F(du | 2)

1

+[m_1} /yooa(u,z)F(du|z)

B yasz F(ds| z)
- [ AT T
1

+m/y a(s,z)F(ds\z).

Substituting the last expression for the last term on the right hand side of (3.25)
yields 117 = Lp, Rp,. A similar computation shows that I, = L4, Re,. We can
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also compute L7, directly: for every h € W and a € Ql,

y M(ds |z
<£an,h>W:;/{(5a(y,z)—/o a(s,z)(rv_ Vif(zs:z;)}h(y’é’z) W(dy,o | 2)
— [y 1.ty ) WOy |2
— aly, 2) h 5,0,z 5,0 | z2)w z
/<1_W<y|z));/y h(s,6,2) W(ds, 6 | 2) WO (dy | 2)
1 o0
:/{h(y,l,z)— (1_W(y|z));/y h(s,é,z)W(ds\z)}

x aly,z) W (dy | 2)

- / ((Ra)(9,6.2)} aly, ) WO(dy | 2)

:/{(1—G(y|z))h(y,Lz)—u_;wz/wh(s,a,z)mds|z)}

x a(y,z)F(dy | 2)
= <a,Lph>p,

where we have implicitly defined the operator R, : W — LYW, R, satisfies
for every h and almost every z € R(Z) the equation

(LeM)(,2) = (1 =Gy | 2)) (Rih)(y, 2)
=1 -Gy |2){ny,1,2) —E(Y,A,2)|Y >y, Z =2)}.

Thus,

(Rih)(y, 2) = H(A = G(y | 2)) > 0} {h(y,1,2) —E (MY, A, 2) | Y >y,Z = 2)} .
Analogously, we define Ry : W — L3(W©) by

(Reh)(y,2) = HA = F(y | 2)) > 0}{h(y,0,2) —E(h(Y,A,2) | Y >y,Z = 2)}.

The operator Lf;, : W — G is determined by the almost sure identity Ly, =
(1—-F,)Rs.

We have established the following representations for the (adjoint) score op-
erators of corollary 3.19:

= (LeRe) =Ry Ly =Ri (1 - G)Ry
t,=E(|2)
I5=(Lc,Rg,)" = Rgzcgz = Rgz(l — F,)Rs.
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Note that these equations represent the spectral decomposition of the informa-
tion operators. We are now able to compute the efficient influence function for
parameters of the form v(Wg g n) = ¢(F x H). In view of corollary 3.19 we have
to find a function h € LI(W) that satisfies the following three equations (3.26)-
(3.28). The first equation is equivalent to %, (h) = ¢, (because R}, =Rp) and
holds restricted to the set {t: (1 — G,(t)) > 0}:

Ra)(0.2) = gy (R Pn)0:2)
= =g T (9 - BGw.2) | 2= 1)
=T ) {09 -EGw.a1 2=} Fas )
:Wlfgfﬂn‘uwaMz»émw%”F““Z’
(3.26)
The second equation is equivalent to [*,(h) = 115
E(h(Y,Z) | Z=2)=E@(Y,2)| Z = 2). (3.27)

And finally the third equation is equivalent to 5(h) = 0 (because Ry, = Rea))
and holds restricted to the set {¢: (1 — F(t)) > 0}:

v
(1= F(y|2)

A solution to this system of equations represents the efficient influence function
for estimation of ¥ = 9 in the information loss model. If )(F' x H) is differentiable
with efficient influence function QZ, then we obtain the efficient influence function
of vas 7:RT x {0,1} x R* — IR:

(Rah)(y, 2) = Re.(0) = 0. (3.28)

) L5 Y2
D(y,0,2) =19 (1-G(y|2))
(1-19) i
+a_wwu»é¢@@Fwﬂ@ 29

—/@WAM@&@@FMM@,

where
Y WOds|z) Y 1 G(ds | z)
(M“”‘AG—W@MV‘Au—W@muhﬂwm> (3.50)

is the well-known asymptotic variance of the Nelson-Aalen estimator for the con-
ditional cumulative hazard function of the censoring variable.
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Example 3.20 (Marginal surv1val functlon)

Let v(Wr, ng,) = ¥(F x H)( ffo (ds | 2)H(dz) = F(t), then it is
well-known that the efficient 1nﬂuence functmn in Q is given by () = 1{T <
t} — F(t). Substituting into (3.29) yields, after several applications of integration
by part, the efficient influence function of the Kaplan-Meier estimator:

N o s <t} s (ds)
5(y.6,2) = (1 — F(8) {57(1—W(3)) /0 —(1_W(s))2}. (3.31)

Here (1 — ffo (ds | z) H(dz) and W) is the marginal distribution of
AY. The mformatlon bound for estimation of the (marginal) survival function
at a fixed time is given by

tAs (1) s
BGAZP) =0 FOP [ gop

We shall provide an alternative path for establishing the system of equations
(3.26)-(3.28). The starting point is the following decomposition of a function
h € W (compare Nan (2001)):

WY, A, Z) = (L Rab)(Y, A, Z) +E (h | Z) + (Lo, Roh)(Y, A, Z).

We can recover (3.26)-(3.28) by 'flipping‘ operators and by noting the relations
Ly Lr, = (1—G;)and L§, Lg, = ( — F,), which can be obtained as a special
case of (3.19). Let (a,b,¢) € Q1 x QO x G and let h € W, then

< h, j(a, ¢, b) >w

=< L Rh+E(h|Z)+ L, Roh, Lr,Rr,a+b+ Lg, Ra.c>w

=< Lrp,Rih,Lr,Rra>y +<E((h|Z),b >y + < L5, Roh,Lg,Ra.c >w
=< Ly L, Rih,Rpa>p, +<E(h| Z),b>p + < L, La, Rah,Ra,c >a,
=< (1-G,)R1h,Rr,a>r, + <E(h|2),b > + < (1 — F,)R2h,Rq.c >q,
=<Rp(1—=G,)Rih,a>p, + <E(h| Z),b>g + <R (1 = F,)Rsh,c >q, .

Since the last preceding display holds for every choice (a,b,c) € Q1 X Qs X G we
can (in view of corollary 3.19) substitute ty; for a, 115 for b and 0 for ¢ which
then yields (3.26)-(3.28).

Next we show that the function defined in (3.29) solves (3.26)-(3.28). By
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Fubini’s theorem we have
MMKAZHZ:@:/&@@FMMQ
1 “ S, Z S (0) z
+/ <|)/¢(,)F(d\)W (dy | 2)

2) Jy
///m”;
(s, z) F(ds

WT,Z) | Z = 2);

this shows (3.27). The conditional expectations given Y > y and Z = z applied
to each of the three terms of the right hand side of (3.29) can be represented by
the following system of equations:

AY(Y, Z) A\ 1 > .
E{(l—G(Y\Z))'Y”’Z‘ }—u_W(y\z))/y (s, 2) Fds | 2),

1-A
E{<1_ (Y|Z / U(s,z) F(ds | )\Y>y,Z—z}
WO (ds | 2)

z>>/y AW )

—Wy /S wu,zF
o v WO (ds | z) T2 ul
ST, J, G ey e Pl

E(/C%YAﬂzm@Juw@\@|Y>%zzz)

1 o ~
—W(y|z)>/y ] Calo Al 290w Flau | 2y was | 2
:/Cz(y/\s|z)1Z(s,z)F(ds|z)

1 s W(O)(du|z) ~
+<1—W<y|z>>/y / = W(a| ) V(2 Elds 2.

Substituting these formulas into the definition of R, yields (3.26):
(Ri)(y,2) = 0(y,1,2) —E@Y,A,2) | Y >y,Z =2)
@(yu Z) 1 /OO 7
= — Y(s,z) F(ds |z
-Gl a-weranl, "IHe
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Similar computations can be used to check (3.28):

(Rov)(y,2) = 0(y,0,2) —E(0(Y,A,Z) | Y >y, Z = 2)
1 ©
(1_W(y‘z))/y B(s, 2) F(ds | 2)

1 oo
_(I—W(y|z))/y (s, z) F(ds | 2)
= 0.

Thus, by corollary 3.19 the efficient influence function of v(Wg, g, ) is given in
(3.29).

The efficient influence functions for estimating functionals of the type defined
in (3.23) and (3.24) are now obtained by substituting 1) = 111 + 112 into (3.29).
For instance, the efficient influence function for estimation of the functional de-
fined in (3.23) equals (compare proposition 3.3)

Ue)=¢-E(@|2) +E(p] 2)Qp
Substituting into (3.29)

(e z) = oy, 2) (1-09) h S, 2 5|z
ein0) = G Ty, e P

- /C’g(y/\ s|2)p(s,z) F(ds | z) —E(¢(T, Z)). (3.32)

Consequently, the efficient influence function of the function valued parameter
defined in (3.24) is given by o(F;y,d,2)(p) = {o — v(p;y,0,2)}.

The information bound I, for estimation of v(Wg, ne,) = [ @ d(F, x H) is
given by the inverse of the variance of 7(Y, A, Z):

I () = E{o(p; Y, A, Z)}.

v

For estimation of a function valued parameter such as defined in (3.24), the
inverse information covariance function (BKRW equation 5.2.23) becomes

I;l(gol,gog) E{o(p1; Y, A, Z) 0(pe; Y, A, Z2)}—E 0 (0 Y, A, Z)Ev(a; Y, A, Z).

Using relations (3.20)-(3.22) we can identify the functionals of our interest
as parameters of the model W. For instance, if ¢ € Lo(WM/G,), then v is
identifiable, by proposition 3.6:

1) s
v(e, Wran) = /80(75 )%

/ tzexp{/ WO ds|z)}W(dt,1,dz)
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This suggests an IPCW estimator that re-weights all uncensored observations
by the inverse of an estimate of the conditional survival function of the censor-
ing variable. Nonparametric consistent estimation of the conditional distribution
function G, however, requires some extra conditions: if the vector of covariates
is discrete, the stratified Kaplan-Meier estimator for the censoring distribution
can be used to estimate the conditional distribution function G,. Asymptotically
the stratified Kaplan-Meier estimator is unbiased. Otherwise, if Z has also con-
tinuous components, nonparametric, asymptotically unbiased estimates for G,
in nonparametric models can be achieved e.g. by window convolution smoothing
methods (c.f. chapter 4). In terms of a real data set these methods would ar-
tificially define strata by assuming that the distribution functions of individuals
with close covariate values are close with respect to an appropriate distance mea-
sure defined on the R(Z). In chapter 4 we investigate nonparametric estimation
of general parameters that integrate a Hadamard differentiable functional of a
conditional distribution function given a continuous covariate. The results will
then be applied to functionals of the form (3.33), i.e. to integrals of the Hadamard
differentiable functional

(1- Gl<t ) F {/ <1VK(OV)V(<(<15—‘ \2» } )

On the other hand, one specific semiparametric model is of particular inter-
est. If censoring is stochastically independent of the covariates, then re-weighting
with the Kaplan-Meier estimator for the marginal censoring distribution yields
asymptotically consistent estimators (Stute 1993). The model is semiparamet-
ric in the sense of Groeneboom and Wellner (1994, definition 1.1) because the
induced tangent space of the model for X under independent censoring is not
full.

23



Chapter 4

Nonparametric functional
estimation

In this chapter we investigate methods for constructing efficient estimators of
parameters that arise by integrating Hadamard differentiable functionals of a
smooth function. The results obtained here will be used in chapter 5 for showing
asymptotic efficiency of certain inverse probability of censoring weighting estima-
tors.

The empirical distribution is well-known to be an asymptotically efficient esti-
mator in nonparametric models. Moreover, it is known that asymptotic optimal-
ity can be preserved for plug-in estimators of functionals that are Hadamard or
compactly differentiable transformations of the underlying probability distribu-
tion (for details see e.g. Van der Vaart (1988) or Gill (1989)). We are concerned
with estimation of linear functionals of nonparametric functionals of a condi-
tional distribution function; the motivation comes from certain representations
of (prediction error) functionals in information loss models. How such functionals
can be estimated, can be learned from the large literature on a closely related
problem: estimation of integral functionals of density derivatives. This prob-
lem has been investigated by many authors, at hand its most famous example,
the integral of a squared density, which occurs for instance in the asymptotics
of the Hodges-Lehmann estimator and the Wilcoxon statistic, see e.g. Dmitriev
and Tarasenko (1974) or Schweder (1975) for pioneering work. Other motivation
for studying functionals of this type comes from practical problems such as es-
timation of integrated mean squared error of kernel density estimates in context
with nonparametric bandwidth selection (Hall and Marron 1987). For estima-
tion of nonparametric functionals of a regression function that are of practical
importance see e.g. Doksum and Samarov (1995).

Convergence rates for estimating high dimensional parameters, such as a den-
sity function or a conditional distribution function are typically slower than /n.
Stone (1980) has established the optimal rate of convergence for a general class
of nonparametric estimators of density and regression functions uniformly over
Sobolev classes of functions. Averaging smooth functionals defined on a function
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space, however, can recover the rate \/n provided that the underlying function
satisfies an appropriate Holder condition. Indeed, it was shown by Ritov and
Bickel (1990) (see also Birgé and Massart (1995) and Donoho and Liu (1991))
that for the existence of optimal nonparametric estimators of integrated density
derivatives a certain amount of smoothness of the underlying density function
is needed. For instance, no locally uniformly consistent estimator converges at
any positive rate uniformly in the class of bounded density functions on the line.
Similar minimal smoothness conditions have to be assumed for estimation of non-
parametric functionals of regression derivatives and for nonparametric estimation
in the white noise model (Brown and Low 1996; Nussbaum 1996; Efromovich and
Samarov 1996).

For integral functionals of density, different authors favor different methods
and models for the underlying density, they commonly achieve the rate y/n with
their estimators (Schweder 1975; Bickel and Ritov 1988; Hall and Marron 1987;
Laurent 1996).

Typically, the optimal rates of convergence and thus also the optimal smooth-
ing parameters depend on how smooth the underlying function is. But in practi-
cal applications the degree of smoothness of the underlying density or regression
function is typically unknown. It is therefore important to establish adaptive
estimates that have the same asymptotic performance as the rate-optimal esti-
mator obtained when the degree of smoothness is known (Hall and Johnstone
1992; Efromovich and Low 1996; Efromovich and Samarov 2000).

Another requirement for the existence of Gaussian regular, efficient estimators
is that the functional can be locally approximated by a smooth linear functional.
We adopt the classification of Goldstein and Messer (1992) to distinguish between
functionals that are smooth and others that have atomic components. In our set-
ting, integrating smooth and particular atomic functionals leads to smooth and
regularly estimable functionals. It turns out that plugging-in an undersmoothed
kernel type estimator for the density, respectively for the regression function, is
efficient. A kernel type estimator is called undersmoothed if the bandwidth is
smaller than the optimal bandwidth that corresponds to the optimal rate of con-
vergence, see e.g Goldstein and Khas'minskii (1996) for results in that direction.

Our main result will be an application of a version of the Delta method using
smoothed empirical distributions as plug-in estimators (section 4.1). We also
make use of results from empirical process theory (Van der Vaart 1994; Rost
2000) and extend the results obtained to general functionals and function valued
parameters. In section 4.2 we transport the results to the regression problem.
Also here undersmoothed multivariate kernel and symmetrized nearest neighbor
type estimators can be shown to be efficient.
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4.1 Efficient estimation of integral functionals
of a density

Suppose U is a real random variable with law ) and Radon-Nikodym density ¢
with respect to Lebesgue measure on (IR, B). In view of the results of Ritov and
Bickel (1990) we consider only models for @ that are included in the model of
all densities that satisfy the following (almost sure) Holder condition for some
a > 1/4: for some essentially bounded function g € Lo,

Q5 ={Q : g(u+v) — q(u)| < g(u) [v|*}. (4.1)
Lemma 1 of Bickel and Ritov (1988) then yields that
sup [¢(u) :u € R,Q € Qf| < o0;

whence Qf C L, N Ly. We endow QF with the supremum norm and denote the
closure by Q% = (9F, ||-||c).- Moreover, in this section, a particular sequence of
density estimators ¢, will be always connected to a choice of a submodel Q C Q¢,
such that convergence of §, to ¢ is uniform (for ¢ € Q). We also assume that Q
includes all infinitely often differentiable densities on the real line, which readily
implies that Q is a nonparametric model.

We start by motivating functionals of interest and candidate estimators. The
empirical measure Qn corresponding to iid copies Uy, ..., U, of U assigns uniform
mass to each observation: for every measurable set B and denoting Dirac measure
at zero by dy:

A 1 —
Qu(B)=—> 6(Ui = B),

i=1

where u — B={y:3b€ B: y=u— b}.

Let F C Ly C L9(Q) and recall the functional of @) defined for every ¢ € F
by
0(Q) = v(e,Q) = [ ¢ Q) = [ p(wa(w du (42)

It is well-known that the plug-in estimator

w@m=/¢mmam>

is an asymptotically efficient estimator of ¥)(@). Similarly, the process ¢ — Qy
can be efficiently estimated by ¢ — Q,¢ (c.f. chapter 3). It is known that
efficiency is preserved for the plug-in estimator under appropriately differentiable
transformations of @ (see e.g. Van der Vaart (1988)). For instance, the parameter

w@=/¢wa@@mm
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where ¢ is Hadamard differentiable, can be efficiently estimated by

H(On) = / o(W)$(Qn) Qn( du).

We are interested in analogous results for linear functionals where ¢ is a
function of ¢ instead of a function of ). A so-called ’direct’ estimator plugs-
in a (nonparametric) estimator of the density. Alternatively, one could use a
preliminary estimate of ¢ and then consider estimation of the quasi U-statistic
which results after substituting the estimate for the unknown density. In the
latter case one estimates a linear approximation of the influence function of the
functional of interest.

Smoothed empirical measures can be obtained by convolution of Qn with a se-
quence of signed, random measures of uniformly bounded variation that converge
weakly in probability to Dirac measure at zero (see e.g. Winter (1973)).

We consider a particular subclass of smoothed versions of Qn that is obtained
by kernel or window convolution. Throughout the rest of this and the next section
let K be a symmetric kernel density function of bounded variation, with mean
zero and such that [ |K(u)]du < M < oo for some constant M. Define also
a (data dependend) sequence of bandwidths a = a(n) such that a(n) — 0 as
n — oo. We use the notation K,(u) = (1/a)K(%) in what follows. Let Qxk, be
the probability measure defined on the range of U that has density with respect
to Lebesgue measure given by

() = / Ko — 0) On(dv) = (Ko % Q) ().

Then gk, is the well-known Rosenblatt-Parzen estimator. QKa is a smoothed
empirical measure which converges weakly to Dirac measure at zero, including
the cases with nonnegative kernel functions and randomly chosen bandwidth, for
instance by cross-validation.

The following result of real analysis is important for proving consistency of ker-
nel density estimators (for a proof see e.g. theorem 2.1.1 of Prakasa Rao (1983)).

Theorem 4.1
Let K be a kernel function such as specified above. If a(n) — 0 and ¢ : RF — R
is integrable and continuous, then

1,}{51(9*1(@)(“) = 13{51 g(v) Ko(u —v) dv = g(u).

If the function g is uniformly continuous then convergence in the last preceding
display is also uniform in u.

0
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Now we introduce functionals of the type that we want to estimate. Suppose
that ¢ : @ C Q* — L4 N L is Hadamard differentiable at ¢ € Q; that is, there
exists a continuous linear map ¢, : Q* — £, N L such that

H ¢(q+€9) — ¢(q)

€

~ae) o 43)
o

for any € — 0 uniformly for ¢ in every compact subset of Q. Note that in contrast

to chapter 3, we now make the dependence of the derivative on ¢ visible in the

notation.

For statistical applications a weaker form of Hadamard differentiability is
useful (Gill 1989): ¢ is called Hadamard differentiable tangentially to a subset
D C Q2 if (4.3) holds with g replaced by any sequence g, that converges to
g€ D.

A natural choice for D is the tangent space Q at g € Q. In the present
situation, the tangent space for Q% at ¢ equals £3(Q), because the continuous
functions are dense in £5(@Q), see example 2.1.4 of Pfanzagl (with the assistance of
W. Wefelmeyer) (1985). Any model whose tangent space is a proper subset of
the nonparametric tangent space could be called semiparametric (Groeneboom
and Wellner 1994, definition 1.1). In view of this, and our assumption that
Q includes all infinitely often differentiable densities we are dealing here with
nonparametric models. Hadamard differentiability tangentially to Q is sometimes
called pathwise differentiability. Note also that the set of local variations such
as used by Goldstein and Messer (1992), in a very similar situation, is closely
related to the tangent space.

Let F C L5 and define ¢ : @ x F = R

$(pq) = / () 3(q)(w) du, (4.4)

where Q@ C Q% Since ¢ € F is fixed most of the time we also write ¢ (q) for
¥(p,q). The most extensively studied example is perhaps the integrated square
of a density (see also example 4.9 below):

vl = [ ) du [ o) Qdu).

Define the plug-in estimator for (4.4) by

~

B = Vdn) = / () 8(dn) (u) ds, (4.5)

where ¢, is any nonparametric estimator of ¢g. Using the Rosenblatt-Parzen
estimator, the question of when the plug-in estimator is efficient reduces to the
question of how to choose the bandwidth in a given model Q — a rather delicate
problem.
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For our purposes it is important to have that the derivative (;'Sq at g € Q admits
a certain integral representation. Since Q@ C Q* we have that g — ¢,(g)(u) is
a bounded functional from (a subset of) the continuous functions to IR. We can
therefore use the Riesz representation theorem for linear functionals on Cy(IR)
(Rudin 1987, theorem 6.19) and establish the almost sure identity

bal9)(u) = / 9(v) g, dv), (4.6)

where p,(u,-) is a regular Borel measure on IB depending on ¢ and u. Clearly
boundedness of the function u + @,(g)(u) implies that u + [ g(v) pg(u, dv)
is bounded. Following Goldstein and Messer (1992) we call the functional bq
smooth if the representing measure has a Lebesgue density ¢,(u,-). And ¢ is
called smooth on @ if it has smooth derivatives at all ¢ € Q. On the other hand,
if the representing measure p, has discrete components the functional (ﬁq is called
atomic.

Typically, smooth functionals are regularly estimable and atomic functionals
are not. If ¢, is smooth at ¢ and assuming that the density of the representing
measure exists pointwise and is included in the tangent space Q of Q at q, then
ng(u, -) is called the efficient influence function for estimation of the real functional
o(q)(u). If ¢ is atomic it is typically not estimable at the y/n convergence rate,
hence there exists no efficient influence function.

However, even if ¢ is atomic it is often possible to construct a sequence of
smooth functionals whose (efficient) influence functions approximates /.

Definition 4.2 Let ¢ : Q = L1 N L be Hadamard differentiable tangentially to
QN Q. We call ¢, a generalized influence function for estimation of ¢ if there
exists a sequence of smooth functionals ¢ with influence function ¢, such that

fae(9) () = / 9(0) Bget v) dv — / 9(v) B4(u,v) dv

as € — 0.

If ¢ is atomic typically the generalized influence is a distribution. For (heuris-
ticall) illustration we consider the identity operator ¢(q) = ¢q. The Gateaux
derivative of the identity at ¢ in direction g € Q is given by

dale) = 2

= 5 d(q+eg) =g.

e=0

The functional ¢, is atomic, for it can be represented by a Dirac measure:
bul9)(w) = [ gluv) (o).
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Define the sequence

K,(z) = 4% for |z| <€
0 else.

Then ¢. = K¢ *(Q is a smooth functional that converges to ¢ (by theorem 4.1) as
e — 0 with influence function given by

Gge(U) = K (U) — 6.

Clearly (bq . converges to dy —q(U) as € — 0. The generalized influence function of
q — q is thus given by ¢,(u,v) = 6 (u — v) — g(u). Note that this construction is
related to how Hampel (1974) defined influence functions for functionals defined
on distribution functions.

We will now show that functionals of the type (4.4) are smooth and regularly
estimable on suitably defined models, if éq is either smooth or if the generalized
influence function ¢, (u,v) is of the form ¢,(u) do(u — v).

The following theorem is truly an application of the Delta method.

Theorem 4.3
Let Q C Q% let Q) be a sequence of smoothed empirical distributions with
Lebesgue density §, such that for every function f € Lo(Q)

V(@ = Q)(f) = Vn(Qn — Q)(f) + 0p(1).

Let ¢ : (Q,]“lls) = (£1N Loo, |- [loc) be Hadamard differentiable tangentially
to the tangent space Q at q such that the derivative ¢,

(i) is smooth at ¢ with influence function ¢,(u,v). Then the efficient influence
function for estimation of v in the model Q is given by

Y(U) = / o(U) ¢g(u,U) du—// u) ¢g(u, v) du Q(dv).

(i) is atomic with generalized influence function ¢,(u)d(u — v). Then the
efficient influence function for estimation of 1 in the model Q is given by

wm=wwwmw—/wm@mew

In both cases, if in addition Var(¢(U)) < oo, the plug-in estimator (4.5) is
asymptotically efficient for estimation of the functional 1 (q) defined in (4.4).
Moreover,

~

\/ﬁ(% - 1/}) = N<07 02)7
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where 02 = E (1@2) equals the nonparametric information bound for estimation of
(4.4):

o? = // v) pg(U, du) pg (U, dv) — {E/gp(u) 1q(U, du)}Z,

where ji,(u, dv) has either Lebesgue density (;Eq(u,v) or is represented by the
distribution ¢,(u) do(u — v).

Remark 4.4
From the form of the (efficient) influence function of 4 it becomes clear that we

can not regularly estimate the functional (4.4) if ¢, is atomic and p,(u, dv) =
¢q(u,v)0,(dv) for some value x # u, since then 1) is atomic.
U

Proof:
We first establish the linear expansion. Since

V| 6(Gn) — 6(a) — V1 dy(dn — @) |0 O,

by Hadamard differentiability of ¢ we can write

Vit =) = Vi [ o) {6(@) - 6(0)} du
=i [ elu) s = @) du-+ on(1).
(i) if 11g(u, dv) = @ (u,v) dv the right hand side of (4.7) equals
J[ et dw.) duvian(o) - a(w)} do
— [[ otw)du,v) duvin@; - @)av)

(4.7)

(ii) if pq(u, dv) = ¢g(u)do(u — v) the right hand side equals
[ 6 &) Vit i) = a(w)} du
= [ ot dufu) Vi Vi {Q; - @) (e

In both cases the functions under the outermost integral are square integrable
since u — ¢,(u, ) is bounded. Thus, the claim of the theorem follows from the
assumption that \/ﬁ(Q; — @) f is asymptotically equivalent to \/E(Qn —Q)f for
f € L£2(Q) and from the following lemma.

Il
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Lemma 4.5 (Efficient influence function)
Under the conditions of theorem 4.3, the functional (q) defined in (4.4) is

Hadamard differentiable tangentially to Q with derivative at g in direction g e Q
given by

Julg) = / () $a(9) () du

Dependent of whether ¢ is (i) smooth or (ii) atomic, the efficient influence function
for estimation of i is as given in theorem. 4.3.

Proof:  Let g be a path in Q with tangent g € 0, ie.

log(q.).
o 0g(qe)

gza

Then dq(g) is as given in the lemma, since
U() = 6(0) = blo) = [ o) {$@)) = 6(6)(0) = dulg) )} du
< sup [6(0)(w) ~ 0(a)(w) ~ dulo)(w)] [ ) du

= op(1), as € — 0.

Under (i) of the theorem, we can expand wq to

/ /%uv dvdu—// u) ¢g(u, v) du g(v) do.

Thus, [¢(u ) ¢4(u,U) du is an influence function. Similarly, under (ii) we can
expand 9, to

[ o [ ) sofu =) dv du = [ )6, 90)

which shows that ¢(U) ¢,(U) is an influence function. The respective efficient
influence functions are now obtained by projecting the influence functions onto
the tangent space Q.

O

It is natural to decompose a given nonparametric density estimator ¢, into
its bias and variance term, respectively given by E (§,) — ¢ and §,, — E (g,). If the
function ¢ in the definition of the functional (4.4) is uniformly continuous and
bounded then the kernel method satisfies the conditions of theorem 4.3.

Theorem 4.6 (Undersmoothed kernels)
Let g € Q C Q% let f € L3NC§ for some a > 0, let K, a kernel density function
such as specified above with bandwidth a(n). If\/ﬁa( ) — 0 then

Fu) . (u) —q(u)} du= [ f(u Q)(du) + op(1/v/n).
/ f
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Proof:  First note that E (§x,) = K, *¢q. Since y/na(n) — 0 and ¢ is uniformly
continuous it follows from theorem 4.1 that

\/ﬁsgp{E (Gr,)(u) —q(u)} = \/ﬁsgp{(Ka *q)(u) — q(u)} — 0,
whence
[ FOE )@ - aw} du = op(1/v)

By Fubini’s theorem and symmetry of K,
Vi [ ) () = B (G )} du
_ / / £ () Ko(u —v) duv/n{Qu( dv) — Q(dv)}
_ / {(f * Ka)(©) = f(0)} VA{Qu( dv) — Q(dv)}
+ [ 0) Vil Quav) - Q(av)}

The first term on the right hand side of the last preceding display is smaller or
equal to

sup{(f + Ka) () - (1)} / Vi{On(du) — Q(du)} = 0p(1).

by theorem 4.1, since f is assumed uniformly continuous. Combination of the
bias and variance term completes the proof.
O

Remark 4.7
e a(n) = op(1/y/n) is smaller than the optimal bandwidth as defined in
(Stone 1980). See also Goldstein and Messer (1992) or Goldstein and
Khas’minskii (1996) for undersmoothed kernel estimators of general func-
tionals that depend on the (unknown) degree of smoothness.

e In practical applications it is necessary to ’estimate‘’ the smoothing param-
eter from the data. For instance, the function f x K, in the preceding
theorem depends on the bandwidth and it is therefore necessary to allow
that a(n) is a random variable. If || f x K, — f||o converges in probability
to 0 and the class {f, = fx K, : a € [0,1]} is a Donsker class, then theorem
19.24 of Van der Vaart (1998) yields

\/ﬁ(Qn - Q)fa = N<O’ ||f||22)
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Theorem 4.6 shows that the conditions of theorem 4.3 are satisfied for the
undersmoothed kernel density estimator, either if ¢, is smooth and

u /go(v) bq(u,v) du

is integrable and uniformly continuous, or if ¢, is atomic and then

u = p(u) P (u)

is integrable and uniformly continuous.

The results of (Van der Vaart 1994) imply the conditions of theorem 4.3 also
for discontinuous functions ¢. Moreover, it seems possible to deduce a functional
limit theorem for the process {(p,q) : ¢ € F}.

Theorem 4.8 (Van der Vaart (1994))
Let A\, be a signed random measure of bounded variation that converges weakly

to Dirac measure at 0, such that QA; = A% Qn has a density function §, with
respect to Lebesgue measure. Let F be a (Q-Donsker class that is closed under
translation. If both terms,

(f[ 40— s Q(du))2
and

vn

I

/ {f@ +9) — f@)} Al dy) Q(du)

converges to 0 in outer probability uniformly in f € F, then the smoothed
empirical process /n(Q: — Q) converges weakly in distribution in [*°(F) to a
tight Brownian bridge process.

d

The problem with theorem 4.8 is that for applications one has to show that
the class of all translates of all functions in a Donsker class of interest maintains
the Donsker propertie. It is however not clear if the class of translates of a
single ()-square integrable function is again ()-square integrable. On the other
hand, if the class of translates of a single monotone function has measurable
envelope function, then it is a Vapnik—éervonenkis class of index 2 (Van der Vaart
and Wellner 1996, lemma 2.6.16). This indicates that theorem 4.8 considerably
enlarges the class of functions, where theorem 4.3 applies. However, in view
of our previous comment, it seems valuable to study the results of Rost (2000)
who is able to drop that F is translation invariant and still arrives at functional
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limit theorems for the smoothed empirical process. Moreover, the results of the
latter authors could be used to prove functional limit theorems for processes of
the type {¢¥(¢,q) : ¢ € F}. Thinking of functional central limit theorems for
prediction error curves (c.f. chapter 2) we note that the class of half intervals in
IR is translation invariant and a Vapnik—éervonenkis class, so that theorem 4.8
applies and it should be possible to establish confidence bands. However, this is
not achieved in the framework of this thesis.

Example 4.9 (Integral of a squared density)

Suppose Q C Q* and set ¢(¢) = [¢(u)? du, i.e. ¢ =1 and ¢ : Q — Q% is given
by ¢(q) = ¢*. ¢ is Hadamard differentiable with derivative at ¢ in direction ¢
given by (bq(g) = 2¢q. The function (ﬁq(-) is bounded and uniformly continuous;
and evaluated at u can be represented by the generalized influence function

éq(u, U)=2q(u) do(u—U):

Observe that ¢,(u,v) is the limit of 2 [ K (u — v) q(u) dv which is an influence
function for estimating the functional ¢.(Q) = ([ Kc(u —v) Q(dv))Q. The ef-
ficient influence function and the information bound for estimating ¢ can now
be obtained by substituting ¢ and ¢, into the formulas of theorem 4.3; they are
respectively given by:

H(U) = (U // ) by, U) Q(du)

and

o? =4 {EqQ(U) — 2Eq(U)/q2(u) du + </q(u)2 du>2}
:4{/q3(u) du — (/q(u)2 du>2}.

It follows readily from theorem 4.6 that by using a non-optimal bandwidth and
considering first order approximation only, the plug-in Rosenblatt-Parzen esti-
mator is efficient.

A number of papers address optimal estimation of the integral of the square
of a density assuming the degree of smoothness of the underlying density to be
known, see for instance Bickel and Ritov (1988), Hall and Marron (1987) and
Laurent (1996). See Hall, Hu, and Marron (1995), Efromovich and Samarov
(2000) and the references therein for methods that adaptively select the smooth-
ing parameter.

O
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4.2 Efficient estimation of nonlinear function-
als of conditional distribution and regres-
sion functions

In this section we analyze nonparametric estimators of integral functionals of
conditional distribution functions. Apparently, the representations obtained for
parameters of interest in the right censored regression setting are of this form (c.f.
equation (3.33)). We will make use of the results obtained in the current section
later, in chapter 5, to derive the asymptotics of inverse probability of censoring
weighting estimators. Since nonparametric density estimation is closely related
to nonparametric estimation of the regression function we can effectively use the
methods of the previous section.

Recall the regression problem of chapter 2 and suppose that U = (T, Z) is a
random vector with values in (IR x IR¥) and joint distribution ). Again we denote
F, for the conditional distribution function of 7" given Z and H for the marginal
distribution of Z. The relation Q = F, x H shows that any model for () can be
indexed by models for F, and H. Since nonparametric regression estimation is in
some sense equivalent to nonparametric density estimation we shall assume the
same amount of smoothness for the underlying conditional distribution function
as in the previous section: we assume submodels Q = Q; X Qy of Q% = OQFf X Qs,
where for some « > 1/4 and some essentially bounded function g € £o(H)

T={F Pt 2+ 8 — F(t|2)] <g(2)]2["},
Q, = {H : H is a continuous probability distribution on IR¥}.

We assume that Q; is nonparametric in the sense that it includes all conditional
distributions that are infinitely often differentiable in the conditioning argument.

Note that we do not assume a density for Z. If the vector Z is discret, or
has discrete components then a stratified empirical distribution could be used
for estimating F,. Although this case is not treated in an explicit way in this
section, for practical purposes it seems valuable to note that nearest neighbor
type smoothing methods would produce estimates that are equal to the stratified
empirical distribution if the sample size gets large.

Tangent spaces for Q; at F, and for Qs at H could be approached as in the
previous section. Since the infinitely often differentiable functions are dense in
Lo (see e.g. Levit (1978) for a similar argument), we have that

O ={aec LYF,xH):E(T, 2)|Z)=0}
and

QQ = Eg(H)-
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We then use Q = Q1 X Qg = Lo(F, x H) as a tangent space for Q.
For ¢ € F define the parameter ¢/ : @ — IR by

$(p.Q) = / o(t, 2) (F.)(t, 2) Q(dt, dz). (48)

Assume that ¢ : (Q1,[“[le) = (£oo(@),]l*]lec) is Hadamard differentiable tan-
gentially to the tangent space Q at (). Then, for any € — 0 and uniformly for GG,
in compact subsets of O,

‘ O(F, + €G,) — ¢(F)

— 0. (4.9)

o0

- (bq<GZ)

€

Parallel to the previous section we need an integral representation of the
derivative of the functional ¢. For simplicity we assume that £ = 1. In view
of applications treated in section 5.3, we concentrate on the case where (ﬁF(Gz)
is atomic in the conditioning argument, and assume the following almost sure
representation

(Gt 2) = / Gr(t 2 5) G(ds | 2),

where s — ¢p(t, 2, 5) an integrable function. The function (t,z) — ¢p(t, 2, ) is
essentially bounded since (t,z) — ¢p(t,2) is. In view of definition 4.2, ¢p is a
generalized influence function of the functional ¢.

Suppose we are given a nonparametric estimator of the conditional distribu-
tion function F, e.g. a Nadaraya-Watson type estimator:

Jy Koz =€) Qu(dt, d8).
J Kz — €) Hy(d€)

Flyn(t | 2) =

Here H, denotes the empirical measure corresponding to Zi,...,Z, and K, is
a kernel density function with bandwidth a(n) such as specified in the previous
section. Alternatively, a symmetrized nearest neighbor type estimator can be
used, such as was introduced by Yang (1981) and studied by Stute (1984, 1986):

Fyu(t | 2) = /0 Ko(Ha(2) — Ha(€)) On( t, de).

One advantage of E,n is that for showing asymptotic normality of the estima-
tor at a fixed covariate value, the distribution of Z need not have a density but
smoothness of the function z — F(dt | H(z)) in a neighborhood of z is suf-
ficient (Stute 1984). A comparison of the bias of the estimators Fl,n and FM
and their mean square error performance can be found in Carroll and Héardle
(1989). Other nonparametric methods for estimating conditional distributions
are possible, such as ordinary nearest neighbor, spline smoothing or orthogonal
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series, see e.g. Prakasa Rao (1983) for an overview. Some of these methods lead
to estimators that are special cases of the class proposed by Stone (1977):

FBn<t ‘ Z) = /Ot Bn(zag) Qn(dsa d’g)a (4'10)

where B,(z,£) = By(z,&, ﬁn) is a random sequence of weights that depend on
the Z-sample only. This class of estimators was generalized by Beran (1981)
to estimation of a conditional distribution function with randomly censored sur-
vival data (see also chapter 5.3). The general class includes the normalized sym-
metrized nearest neighbor type estimator proposed by Stute (1986), viz.

A

Jy Kl Ha(2) = Ha(€)) Qu(dt, &)
f KG(HTL(Z) - Hn('g)) Hn(dg)

Here is the analogue to theorem 4.3.

Eya(t]2) =

Theorem 4.10
Let Q; C Qf, let B, be a sequence of random weights determining a nonpara-

metric estimator F, B, of F, such that the following two conditions hold for every

f € Loo(Q) as n — oo:

sup sup/f(t,z) By (dt | 2)— F(dt | 2)} = 0

F,eQ1 =2
sup supv/n [ f(t,2) {Ba(z ) Q(dt, d§) — F(dt | 2)} — 0.
F,eQ1 =z

Let ¢ : (Q1, ] lloo) = (Lo(@),||llc) be Hadamard differentiable tangentially to
Q, such that the derivative ¢ at F, in direction G, € Q1 can be represented as

6r(G)(02) = [ Brlt 25 Glds| =)
where &F € Ql. Then the plug-in estimator

dn= [ o(t.2)6(Fn,) Quldt, d2)
efficiently estimates the functional ¢ defined in (4.8) in the model Q. Moreover,

\/ﬁ(’&n - ¢) = N(O’ 02)’
where 0> = E4)(T, Z)? is the infomation bound and

U(T, 2) = o(T, 2) (F)(T, Z) — v, Q) + / o(t, Z) dr(t, Z,T) F(dt | 2)

(4.11)
the efficient influence function of 1.
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Proof:  Expand the centered and scaled estimator as follows

Vil =) = Vi / o(t,2) {8(Fs,) — B(E)}(t,2) Qu(dt, d2) -
4.12
; / o(t,2) B(F,)(t, 2) V(G — Q)(d, d2).

The second term on the right hand side of (4.12) is a quasi U-statistic to which
the central limit theorem applies directly.

By Hadamard differentiability of ¢ the first term on the right hand side of (4.12)
equals

Vit [ o(t.2) br(Fa, ~ F.)(t,2) Qul dt, d2) + 0p(1)

— Vi [ [ (4.2 dr(t,2,5) {Fa, (d5,2) = F(ds | 2} Qu(d, d2) +0p(1)

— Vi [ [ o(t.) Br(t,55) {Fn, (a5 2) = F(ds | 2} {Qu(d. d2) = Q(k, d2))
v [[ ot Br(t.25) {Bal.€) Q(ds, dg) — F(ds | 2} Q(at, dz)

W / / o(t,2) Bt 2,8) Bu(z,€) Q(dt, dz)

x {Qn(ds, &) — Q(ds, &)} + op(1).
(4.13)

The first term on the very right hand side of (4.13) is bounded above by

sup { /&F(t,z, s){Fn(ds | z) — F(ds | z)}} \/ﬁ/gp(t,z) {Qn(dt, dz)—Q(dt, dz)}.

t,z

(4.14)
Since ¢ € L5(Q), the integral term is asymptotically tight by the central limit
theorem, thus by the first condition on B, the term in (4.14) is op(1). The second
term on the very right hand side of (4.13) is bounded above by

sup Vi [ et z,8) {Ba(2,€) Q(ds, d€) — F(ds | 2)}

x / o(t,2) {0l dt, d2) — Q(dt, dz)}.

By the second condition on B, this term in the last preceding display is op(1).
Finally, by similar arguments, the third term on the very right hand side of (4.13)
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can be expanded to

N0 / / o(t,2) it 2 5){Ba(2,€) Q(dt, dz) — F(dt | €)}
% {On(ds, d€) — Q(ds, d6)}
4 / / o(t,2) Br(t, 7 ) F(dt | €) Vir{On(ds, d€) — Q(ds, de)}

— / / o(t,2) bt $)P(dt | €) vi{On(ds, &) — Q(ds, d€)} + op(1)
- / / o(t,2) Br(t, 2, $)F(dt | €) ViiOu(ds, dE) + op(1),

where the last step follows since ¢r(t,z,:) € Oy, i.e. ¢p(t,z,T) has conditional
expectation given Z equal to zero almost surely. Combination of the last term
with the second term on the right hand side of (4.12) yields the expansion

Vit - 0) = Vi [ |62 10(F)0.2) - (e, Q)

+ /gp(s,z) <Z>F(s,z,t) F(ds| z) Qn(dt, dz)

+ Op(l).
Thus, the influence function is as given in the theorem.
O
Remark 4.11

Instead of integrating with respect to the empirical distribution function one
could asymptotically equivalently use a smoothed empirical distribution
(4.8). However, we prefer the estimator given in theorem 4.10, in view
of the special characteristics of the parameters in this thesis; that is, we
prefer estimates for measures of prediction error that are quasi means of
independent random variables.

Example 4.12 (Integral of a squared regression function)

The regression function is defined as the first moment of the conditional distri-
bution of T given Z: m(z) = E (T | Z = z). A familiar example of the functional
in (4.8) arises by setting

oF)(t2) =m(z? = { [ Fas z>}2

(i, m) = / o(z) m(z)? H(d2).
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The derivative of ¢ at F), can be represented by the generalized influence function
or(T,Z) =2{Tm(Z) - m*(Z)}.
The efficient influence function is thus obtained by substituting into (4.11):

(T, Z) = (Z) m(Z)* = ¢(p,m) + 2{Tm(Z) —m*(Z)}
= {2Tm(Z) — mQ(Z)} — (@, m).

This functional occurs in the asymptotics of nonparametric coefficients of deter-
mination (Doksum and Samarov 1995) and is important for the choice of the
smoothing parameters in nonparametric regression.
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Chapter 5

Efficient estimation of prediction
error with incomplete data

This chapter deals with efficient nonparametric functional estimation based on
incomplete data. In particular, we provide efficient estimators for parameters
that represent the prediction error of a regression model such as discussed in
chapter 2.

In section 5.1 we define measures of prediction error that are identifiable
as population parameters in general incomplete data situations. A necessary
condition for estimation of such parameters is that the inverse probability of
censoring function is itself identifiable from the coarsened data and bounded
away from zero on a substantial part of the range of the outcome variable (section
5.2). We suggest to use prediction error curves (see chapter 2) restricted to the
identifiable range of the outcome. In addition, weighted summary measures of the
restricted prediction error curve can serve as real valued measures of prediction
error. By using the results of chapters 3 and 4 we can establish efficient IPCW
estimates in the example of right censored survival data in presence of completely
observed covariates (section 5.3).

5.1 Definition of prediction error for coarsened
data

For convenience of the reader we shall briefly recall the relevant notation intro-
duced in the earlier chapters. Let (T, Z) be the dependent variable and a vector
of covariates with values in (IR x IR¥); let X be a coarsening of (T, Z), which is
a random map that takes values in a Borel subset of the o-field of the range of
(T,Z) and P((T,Z) € X) = 1.

Let Q; and Qs be nonparametric models for the conditional distribution F,
of T given Z and the marginal law H of Z, respectively, such that Q = Q7 x Qs
consists of all dominated probability distributions on (IR, IRF). The conditional
distribution of X given (7, Z) is denoted by R. We assume that X is a coarsening
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at random: R € R C Rcar (see section 3.3). For fixed Q € Q and R € R the
induced distribution of X is determined by:

[ @) Wan(da) = [ [ b Reds |0 @(dw) = [ hia)ria | w) (o) Q)

where 7 is defined in (3.14), n dominates R and the equality holds for bounded
Borel functions A, say. This gives rise to a model for the distribution of X:

WQWCARZ{WQ,RZRXQ: QEQ,RERCAR}.

Recall that by lemma 3.15 the tangent space of of Wear at Wo g equals £3(Wg g).
We assume throughout this section that W is nonparametric, in the sense (of
Groeneboom and Wellner (1994)) that is fulfilled if and only if

W - Eg(WQ’R).

The indicator of complete observations is assumed to be a deterministic func-
tion of X, i.e. observing X includes knowledge on whether the observation is
coarsened or not. Let W(1) = Wégliz and W© = ng}% denote the subdistribu-
tions of X corresponding to the events A = A(X) = 1 and A = A(X) = 0,
respectively. Throughout this chapter we use simplified notation for values of
X that are singletons, i.e. we write X = (7, Z) instead of X = ({T'},{Z}) and
R((t | z) | (t, 2)) for the conditional probability of the event X = ({t},{z}) given
T=tand Z = z.

A central concept is the inverse probability of censoring function which is now
given by

d(t,z) =d(R)(t,2) = P(A=1|T =t,Z =2) = R((t] 2), (¢, 2)).

We view d as a functional on R with values in (IR,IR*) and assume that d(R)
is identifiable on W. Then there exists a sequence of estimators czn that is uni-
formly consistent for d(R) (compare definition 3.5). Note that we suppress the
dependence of d on R in the notation whenever possible in the sequel.

By using the relation W) (dx) = R(z | ) Q(dz) = d(x) Q(dz), and accord-
ing to proposition 3.6 we have that the parameter v(Wg r) = ¢¥(Q) = Qp is
identifiable in W if

O (dx
/(P(ta Z) Q(dta dz) = /(P(x) 1{d($) > 0} WT.(T?) < Q.

It is now obvious that the mean squared error,
MSE = /(s _ / Fr(dt | 2)2Q(ds, dz),
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is identifiable only if d(7°, Z) > 0 almost surely with respect to (). This condition
fails, for instance, when a positive event time is the outcome of interest and one
has to deal with administrative end of study.

We want to explore what measures of prediction error are identifiable if

d(t,Z) > 0 almost surely, restricted to ¢ in a proper subset of the range of
T.

Definition 5.1 (Abstract prediction error for incomplete data) Suppose d
15 tdentifiable on W. Let S be a scoring rule, and o a deterministic function of
T, and 7 a forecast conditional probability. Set

S(t,z) = S(a(t), m,(a)),

where mz(a) = [a(t)w(dt,Z). Let S, a be such that he prediction error of w
with respect to S and « is well-defined via v(a, S) : W — RR:

W(1 W (dy, dz)
WQR /S Y,z d y’ ) < o0

O

We have to find aspects of prediction error that are supported on the set where
d > 0. Here is a special case, meeting in particular the conditions of our main
example, where the vector of covariates is always observed. Suppose M(Z) is
almost surely greater than zero and define

Iy =A{t:d(t,Z)> M(Z) >0 as.},

According to proposition 3.6, if d is identifiable, restricting the prediction error
curves defined in chapter 2 to Z,, provides a flexible measure of prediction error.

Definition 5.2 (Prediction error curves for incomplete data) Let S=Spg
be the Brier score; the prediction error curve t — PEC(t) is defined on Iy by

M (dy, dz)
d(y, z)

PEC(t / (1{y > £} — m((t, 00)) P2

Note that the present definition of prediction error requires also that the forecast
prediction 7 is defined on Z,;; otherwise we have to intersect Z,; with the set
where 7 yields valid predictions.

A class of real valued summary measures of the prediction error of 7 is ob-
tained by cumulating the prediction error curve suitably weighted to meet the
problem at hand. Suppose w is such a weighting scheme with support on Z,,,
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then define the weighted prediction error in accordance with chapter 2 by
WPE = / PEC(t) w( dt)
W (dy, dz
= [ [0t 0 - mat oo wan

(y,2)
W (dy, dz)
dy.z)

The very right hand side of the preceding display shows that WPE fits also in
the abstract form of definition 5.1 (by setting S = [ Spsdw). In case of uniform
weights Graf, Schmoor, and Schumacher (1999) called WPE integrated Brier

score.

= [ [aty> ) = m((t.o0) w2

5.2 Efficient estimation of inverse probability of
censoring functionals

In this section we shall (heuristically) discuss how to establish efficient estimators
of smooth parameters for general CAR situations. Similar methods have been
used by Hubbard, Van der Laan, and Robins (1998) and can be found in Van der
Vaart (1998, section 25.5.3). Throughout this section we use the notation

St 2) = S(a(t), m()),

for a deterministic function « of 7" and for a forecast conditional probability 7.

Recall that the efficient influence function of the parameter (Q) = QS is
given by S(7,Z) — ¢(Q). We want to find the efficient influence function of
v(Wo,r) = ¥(Q). Suppose first that R is known which implies that the inverse
probability of censoring function is known. Then the tangent set for the model
W for the distribution of X consists only of the range of the score operator [y
defined in section 3.2. In this case the efficient influence function for estimation
of the parameter

v(Wo,r) = /S (t,2) Q(dt, dz)
is given by
U(X)_d<T’Z)S(T,Z) /{d(T,Z)S(T’Z)} (5.1)
A(X) |




5.2

Since R is known we have l; = 0 and thus it is sufficient to show that ¥ is in the
range of [j:

[(0(X)) =E@(X) | T, Z) - v(Wo,r)

_EQAX) T, 2)
= d(T, Z) S(T, Z) — I/(WQ,R)
=S(T, 7) = (Q).

In applications, however, R is typically unknown and has to be estimated
from the data. Hence, identifiability of the function d is a necessary condition
for identifiability of v = 1) in presence of the nuisance parameter d. The function
v defined in (5.1) remains an influence function if R is not known but typically
looses the attribute efficient.

It is well-known that the efficient influence function is obtained as the pro-
jection of an influence function onto the orthogonal complement of the tangent
space for the nuisance parameter (c.f. theorem 3.8). However, it is in general
hard to explicitly compute the relevant projection (Van der Vaart 1998, lemma
25.41). For multivariate right censored data Hubbard, Van der Laan, and Robins
(1998, section 3.1) have directly computed the projection of an initial influence
function. In section 3.4 we have derived the spectral decomposition of the in-
volved information operator by tools from functional analysis, and established
the efficient influence function for functionals that include the one analyzed by
Hubbard, Van der Laan, and Robins (1998), see in particular the results of section
5.3.

In the rest of this section we want to guess the functional form of the efficient
influence function in the general coarsened data situation. Suppose that d is
identifiable on W and that there exists a Hadamard differentiable functional
(tangentially to W) ¢ : W — R x IR¥ such that

1

oWar)lt:2) = Gy

Then the functional
VM@M=/S®A@MMQM@WQMM)

is precisely of the form treated in section 4.2 (we see this by setting ¢(x) =
A(z) S(z)) in theorem 4.10. Assume that the efficient influence function for
estimation of ¢(Wq g) is given by (;NSWQ, (T,Z), and that there exists an efficient
estimator ¢, of ¢(Wq.r). In view of the results of Van der Vaart (1988), see in
particular (Van der Vaart 1998, theorem 25.48) we conjecture that the plug-in
estimator

m:/ﬂ@&@@mme>
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is efficient for v(Wg g). Here Wn is the empirical distribution of an iid sample
Xy,...,X,. By comparison with the influence function found in theorem 4.10
for a similar estimator we can guess the functional form of the efficient influence
function:

A(X) S(T, Z)

X) = S v Won) + [ S dwes(@)A@) Won(da).

The function in the preceding display is the projection of the initial influence
function given in (5.1) onto the orthogonal complement of the tangent space for
the nuisance parameter d. We have thus expressed the asymptotic distribution
of IPCW estimators as a function of the efficient (generalized) influence function
for estimation of the inverse probability of censoring function. See section 4.2 for
an example where ¢p is a generalized function (distribution).

5.3 Prediction error for right censored event times

In the right censoring situation with completely observable covariates of section
3.4 we use the methods developed in chapter 4 to show that certain plug-in estima-
tors are asymptotically efficient. A nonparametric model and a semiparametric
model and correspondingly defined efficient estimators are discussed, namely, un-
der conditionally independent censoring given the covariates a plug-in estimator
for the conditional censoring distribution (Akritas 1994), and, under independent
censoring of the covariates and the event time, the estimator of Stute (1996) and
Graf, Schmoor, and Schumacher (1999).

We shall briefly recall the notation of section 3.4. Set X = (Y, A, Z), where
Y=TACand A = 1{Y =T}. Welet F,,G, and H denote the conditional
distribution functions of 7" given Z and C' given Z and the marginal distribution
of Z, respectively. In what follows we denote W = W, g ¢, for the distribution
of X, i.e. supressing the dependence on F,,G, and H. Furthermore, we write
W, for the conditional distribution functions of (Y, A) given Z, and define by
W and W the conditional sub-distribution functions of AY and (1-A)Y
given Z, respectively. Throughout this section we assume that X satisfies CAR,
alternatively, that C is conditionally independent of T' (see example 3.14). The
density of W is given by

W(dy,d,dz) ={(1 =Gy | 2)) F(dy | 2) H(d2)}°
x {(1=F(y|2)G(dy | 2) H(dz)}'~

Let Wcar be the model for the distribution of X corresponding to the collection
of all density functions so obtained.
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The inverse probability of censoring function is now d(t,z) = (1 — G(t | 2))
and the function d is identifiable via the relation

a-cua=en - [T

We will consider estimation of (1 — G(¢ | z)) on [0, 7(z) — M(z)], where

T(z) = irtlf{P(Y <t]z) =1},

and for a deterministic function z — M (z) that is bounded away from zero. It
is important to emphasize that we do not assume that G is well-behaved near
7(z), with respect to (). Rather we constrain the functions S(¢, z) occurring in
our definition of prediction error to be almost surely zero on [7(z) — M(z); 00].
Then the inverse probability of censoring function 1/(1 — G(t | z)) is essentially
bounded with respect to the measure S(t,z) WM (dt, dz).

Straightforward computation (parallel to the univariate situation described
e.g. in BKRW (page 374)) yields that (1 — G,) is Hadamard differentiable with
(generalized) influence function given by

~(1-G(t] 2)) { (tf_A}gg ;f} _ (Y AL Z)}

where

Y WOds|2) (Y 1 G(ds | z2)
ey |2 = | <1—W(s\z>>2‘/o WG G-Ce-]a) 2

and (1 —-W(s|2))=(1-Wo(s|z)—WO(s|z)). Note that the conditional
distribution function G, is typically not nonparametrically estimable at rate \/n.
By interchanging the roles of T and C' and setting ¢(y,2) = 1{y < ¢} in (3.32)
we obtain the (generalized) influence function of (1 — G(t | z)) as given above
(after several applications of integration by part).

To achieve y/n convergence rate of nonparametric estimators of integrated
functionals of G, (see chapter 4) a Holder condition of level @ > 1/4 of the
underlying conditional distribution function is needed (Ritov and Bickel 1990).
Therefore, let W = W) x Wy C Wear, where for a > 1/4 and some essentially
bounded function g,

Wi C{W, = W + WS W2t | 24 6) = Wit | 2)] < g(2)]2[* 6 = 1,2}
and

W, C {H : H is a continuous probability distribution on IR*}.
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We assume that W, includes all conditional distribution functions that are in-
finitely often differentiable in the conditioning argument. The corresponding
tangent spaces for W, at W, and W, at H are given respectively by

Wi = Ly(W:) = LW & LW )
W, = LS(H).
In what follows we constrain the function ¢ — S(¢,z) to be zero for ¢ >

7(z) — M(z) and a strictly positive function z — M (z). Then the parameter ¢
defined by ¢ : W, — Lo (SWM)

= ;—ex t W(O)(ds|z)
oW2)62) = =Gty ~ P {/0 (1-W(s| Z>)}

is bounded. ¢ is also Hadamard differentiable tangentially to W, with generalized
influence function

- ~ 1 (1-A)1{Y <1}
00820 = gz o )~ G0 M D) 6

We can apply proposition 3.6 to show that measures of prediction error such
as defined in definition 5.1 are identifiable:

V(S,a, W) = / S(t,2) {o(W,)(t, 2) > 0} o(W,)(t, 2) W(dt, 1, dz).  (5.4)

This is due to the fact that under CAR
W(dt,1,dz) =(1—-G(t|z)) F(dt|z) H(dz)

(compare section 3.4).

We want to apply theorem 4.10; therefore, in the following paragraph, we de-
rive nonparametric estimators for W, when Z is one-dimensional and continuous.
The Beran estimate (Beran 1981) generalizes the class of estimators proposed
by Stone (1977) to the right censored situation (compare section 4.2). Several
instances have been studied e.g. by Dabrowska (1987).

Let Xi1,..., X, be an iid sample and H, the empirical distribution corre-
sponding to the observed covariates Zi,...,Z,. Then define random weights
depending on the sample of the covariates only by B,(z, Z;) = B,(z, Z;, fIn) A
class of smooth estimators for the conditional sub-distribution functions can now
be obtained by convolution of B, with the empirical distribution function, viz.

t
Wtz =" /0 § By (2, ) W, (ds, 8, d€)

6=0,1
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and

=Y | (L= 8) Bal,€) Wi(ds, 4, ).

6=0,1
Substituting Wéi) for Wf), and the estimate
(1= Wa,(t]2) =1~ Wg)(t|2) +Wg(t]2)

for (1 — W (t | z)) yields the following class of estimators for (1 — G(t | 2)):

. B W (ds | 2)
(1—GBn<t|z))—g{1—(1_WBH<S|Z»}- (5.5)

For instance, a symmetrized nearest neighbor type estimator (Stute 1986) is
obtained by setting

Ba(2) = / Ko(Ha(2) — H(€)),

where K, is a kernel function such as defined in chapter 4 and a(n) is a data de-
pendent sequence of bandwidth. Alternatively, one could use a Nadaraya-Watson
type estimator. Akritas (1994) uses Stute‘s results connected to a rectangular
kernel function for estimation of the bivariate survival function with univariate
censoring.

The following theorem is suitable for parameters that represent prediction
error such as defined in definition 5.1.

Theorem 5.3 R
Let B,, be a sequence of weights determining estimators ng (6 = 1,2) such that
for every f € L2(Q)

sup sup Z/f(y,z){Wgn)(dy\z)—W(é)(dy\z)}—)O

W.ewr =z 6=1,2

and

sup sup Vit 3 [ 102 (Bl WO (dy, d9) = W (dy | 2)} 0.

Wzewr 2 5=1,2

Consider a deterministic transformation « of T such that S(t, z) = S(a(t), 7, (a(T)))
is zero on [0,7(z) — M(z)] for almost every z and a given w. Then the IPCW
estimator

%=/MWMM®W@WM%LM)
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is asymptotically efficient for

vWe.c.) = 0(F. x H) = [ S(t.2)F(dt| 2) H(d2) (5.6)

in the model W = W, x W,. The efficient influence function for estimation of
v(W) is given by
AS(Y,Z)
(1-GY |2)
(1-4) / *
+ S(s,Z)F(ds | Z
i—w( 2y )y AT

— /CQ(Y/\S | Z2)S(s,Z) F(ds | Z),

5(Y,A, Z) =

—v(W)

where Cy is given in (5.2); the information bound is given by E (0(Y, A, Z)?).
Proof: ~ We draw the correspondences

T+ (Y, A) F, W,

QW o(Y,A Z) - AS(Y, Z),

and then apply theorem 4.10: for any Hadamard differentiable functional ¢ with
(generalized) influence function ¢, the following expansion holds

V(o - ) fzf[asy, (W) (5, 2) — v(W)}

6=1,2

+/S(t,z)q~ﬁwz(t,5,z,y)W (dt | 2)| Wi (dy,s, dz)
+0P(1).

We have seen above that ¢ : Wy — Lo(SW) defined by ¢(W,) = (1 - G,)™" is
Hadamard differentiable tangentially to WV, with generalized) influence function
given in (5.3). Substituting yields

) dy,(5 dz) -
Vil =) = Vi 3 [ s G = V)
6) {y < t}
> /] st { Pty ~ Cwntla)]
L WO(dt]2) S
TG o)) eldu 6 d2) +or(D).

Thus, the function 7 is an influence function of v in W. It follows from equation
(3.29) that it is the efficient influence function.
O
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Remark 5.4
e If the vector of covariates consists of discrete random variables only, i.e.
the probability of observing Z = z is strictly positive for all z € R(Z),
then a stratified version of the Kaplan-Meier estimator for the censoring
distribution can be used for estimation of G(¢ | z). In this case the efficient
influence function of the parameter (1 — G(t | z))™"! is as given in (5.3) and
it is obvious that the corresponding plug-in estimator is also efficient.

e Several authors address special cases of our theorem, see in particular Akri-
tas (1994) for estimation of the bivariate survival function and Hubbard,
Van der Laan, and Robins (1998) for the marginal survival function in
presence of covariates. The bivariate survival function is obtained by set-
ting S(t,z) = 1{t > s,z > £}, the marginal survival function by setting
S(t,z) = 1{t > s}. The efficient influence functions for these two examples
are obtained in a simplified form in corollary 5.5 below.

e If K, is twice continuously differentiable, a(n) — 0, and na(n)®> — oo then
the plug-in symmetrized nearest neighbor estimator satisfies the conditions
of the theorem (Stute 1986).

So far we have focused on inverse probability of censoring weighted estimators
for the parameter v(W). Here is another expansion which suggests an alternative
estimator:

$(Q) = / S(t,2) F(dt | 2) H(d2)
- [ st 0-Fe1) R
(1) p
=/S(t,z)(1—F(t|z))%
B o ] PwW(ds | z) | WW(de, dz)
‘/SW) p{ /o<1—w<s|z>>}<1—w<t|z>>
=v(W).

The plug-in estimator using this second representation of v is asymptotically
equivalent to the IPCW estimator introduced in theorem 5.3. In particular, the
estimator of Akritas (1994) for the bivariate survival function is asymptotically
equivalent to the corresponding IPCW estimator. If S is of bounded variation it
is possible to find an easier form for the efficient influence function of v. Also the
asymptotic variance simplifies considerably. The following result generalizes the
formulas of Gill (1983) and Schick, Susarla, and Koul (1988) to the multivariate
case.
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Corollary 5.5

Suppose t — S(t,z) is of bounded variation and equals zero almost surely for
all t > 7(z) — M(z) for some strictly positive function z — M(z). The efficient
influence function for estimation of the parameter (5.6) equals

H(Y.A, Z) = /S(S, Z)F(ds| Z) = v(W)

-5 _W?Y v /YOO@ _ F(s| 2))S(ds, Z)

+/0 / (1—F(u|Z))S(du, Z)C(ds | Z), (5.7)

where

e WM (ds | 2) _ 1 F(ds | 2)
C1(Z/|Z)—/0 (1_W(S|Z))2_/(1—W(s|z)) (1-F(s|=z))

The information bound for estimation of v is obtained as the inverse of
2
B (72) = / {/S(s, )F(ds | z)} H(dz) — v(W)?

+//{/s°°<1—F<u|Z))S(du,Z>}2 Ci(ds | 2) H(dz).

Proof: = The simplified form of 7 follows from the relation

1
(1-W(s|z))

Cy(s|z) = —1-Ci(s | 2)

and several applications of integration by parts. Note that the first two terms
of the representation (5.7) are asymptotically independent of the last two terms.
The variance of the last two terms generalizes the variance formula obtained by

Schick, Susarla, and Koul (1988).
[l

Example 5.6 (Estimation of the expected Brier score)

Fix some value t* € R(T) such that (1 — G(t* | Z)) > M(Z) > 0 almost surely.
Let 7 be a set of forecast conditional probabilities, let S(y, z) = Sgs(t*;y, z) be
the Brier score at t*:

Sps(t*;y,2) = {1{y > t*} — 7 ((t*,00) | 2)}”
=y > t"H{1 = 27((t", 00) | 2)} + m((t*, 00) | 2)°.
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First we check that the expected Brier score at t* is identifiable in W:

v(t*, Sps, W //SBS vy, 2)F(dy | 2) H(dz)
=1/( F(t* | 2){1 = 27((t",00) | 2)} H(dz)

+/7T((t*,oo) | 2)? H(dz).

Since (1 — G,(t*)) > M(z) almost surely, 1 — F(t* | Z) is identifiable in W (see
example 3.7).
Clearly the function y — Sps(t*;y, 2) is of bounded variation:

/(1 — F(y|2))Sps(t; dy,z) = (1 = F(t" [ 2)) (1 = 27((", 00) | 2)).

Thus, we can apply corollary 5.5 and obtain that the plug-in IPCW estimator
for estimation of the expected Brier score in W satisfies

Vn(on(t*, Sps) — v(t*, Sps, W)) = N(0,0°(t*, Sgs)).
Here the estimator is given by
ﬁn(t*a SBS) = /SBS(t*a Y, Z) ¢<WBn)(y7 Z) Wn(dyv 17 dZ),

Wn(dy, 1, dz)
(1-Gp,(y|2)

=/&w>ﬁﬂknwwﬂmna>
+/7T((t*,oo) | 2)2 Fln(dz),

H,, is the empirical distribution of the covariates only and ¢(Wp,) = (1—Gp, )"
is a nonparametric estimator of (1 — G,)™!, and the inverse information bound
is given by

o?(t*, Sps) = / {w((t*, oo) | 2)  + (1= F(t* | 2))* (1 — 27 ((t*, 00) | z))2} H(dz)
— V(t*,SBS,W)Z
P | s _or 1L s W (ds, dz)
+ [(= P 1) (1 =2n((¢ 00| D1 < )

Note that the first term of 02(¢*, Spg) is of similar form as the functional in exam-
ple (4.12). The asymptotic variance can be asymptotically consistently estimated
by

62(t", Sps) :/{W((t*,oo) | 2) o+ B, (¢ | 2)° (1= 27((¢",00) | 2))*} Ha(d2)
— 0n(t*, Sps)”

Wa, (ds, 1, dz)

[0 B 1) (L= 2n((#,00) | a1 < PO
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where F B, and WBn are nonparametric estimators for F, and W,, respectively.
O

Example 5.7 (Estimation of WPE: expected integrated Brier score)
Let w be a finite measure which is zero on the complement of

Iy={t:(1-G(t|2)) > M(Z) >0 as.}.

We want to derive the asymptotics of the IPCW estimator for the parameter
WPE, which is defined as the expected value of the scoring rule S,(y,z) =

[ Sps(t;y, z) w(dt):

WPE = / {Hy >t} —7((t,00) | 2)}w(dt) F(dy | z) H(dz)

// (£, 00) | 2)2w(dt) H(dz)
+ [[a=Fel2) - 2n(t00) | 2wl H(d2),
Note that the function
v Sulp2) = [ wl(ti00) | P tdn) + [ (1= 2((t.00) | )ldn
is also of bounded variation such that
J=Fw i) Sudn2) = [ =Pl | )0 - 2r((5.50) | 2) w(dy).

Thus, we may again apply corollary 5.5 to show that the plug-in IPCW estimator
for estimation of WPE in W satisfies

V(0 (S,) — v(S,, W)) = N(0,0°(S,)),

where now

= [ Sul:2) ) (0,2) Wl . 1. d2),

V(Su, W) = / Sy, 2) F(dy | 2) H(dz),

and the inverse information bound is obtained by substituting the corresponding
terms into the variance formula of corollary 5.5:

o(S,) = / {/ﬂ((t, ) |2+ (1 =F(t]=2)(1-2n((t,00) | z))w(dt)} H(dz)
— (S, W)?

[T amFe1 0200 ugag) e 4,
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As in our previous example the asymptotic variance can be consistently esti-
mated using a nonparametric estimator Wgn for plug-in estimation of (1 — F})
and (1 — W,), the empirical distribution corresponding to the uncensored ob-
servations for W) (ds, dz) and the empirical distribution corresponding to the
Z-sample for H.

O

In the following paragraph we investigate efficient estimation in the semipara-
metric situation where the censoring variable is stochastically independent of the
vector (7,7). This condition was used by Graf (1998b) and Graf, Schmoor,
and Schumacher (1999), and can be seen to be implied by the assumptions of
Stute (1993, Stute (1996). However, commonly these authors do not investigate
asymptotic efficiency of the proposed estimators. Efficiency of the plug-in esti-
mator with the (marginal) Kaplan-Meier estimator for the censoring distribution
is obtained below as a corollary of theorem 5.3.

The induced model for the distribution of X is now obtained by varying F, x H
over Q and G over all marginal probability distributions of C'. The corresponding
tangent space is clearly a proper subspace of the nonparametric tangent space
LY(W). To see this, consider the decomposition LY(W) = LYW W) @ LYW ()
and note that if C' is independent of (T, Z) then

wO(dt, dz) = (1 - F(t | 2)) G(dt) H(dz).

Clearly LYWW @ LY((1 — F(t | 2)) G(dt) H(dz)) is a proper subset of L}(W).
This shows that the models considered e.g. by Stute (1996) and Graf, Schmoor,
and Schumacher (1999) are semiparametric in the sense of Groeneboom and Well-
ner (1994, definition 1.1).

In the present situation the censoring survival function (1-G) is identifiable
via the relations

(1= W) = [(1=F(e| 2) H(d) (1 - G0),
and

(1-G(t) = exp{—/ot%}.

We obtain the following representation for v(Wp, g¢,) in the independent cen-
soring model:

V(W) = / S(t, 2) exp { /0 t (fV_(O)V(V‘t || 2)} W(dt,1, dz). (5.8)

If (1—G,,) is the reverse Kaplan-Meier estimator then 1/(1—G,,) equals the weight
that is assigned to each uncensored observation by the Kaplan-Meier estimator
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for the marginal survival function of 7. This justifies the name Kaplan-Meier
integrals for functionals of the type given in (5.8).

We can replace the conditional by the marginal survival function of the censor-
ing variable in all the computations that led to the efficient influence function in
section 3.4. In the present situation the efficient influence function for estimation
of v(W) is thus obtained as

S(y, 2)
(1-G))

ﬂ ” S, 2 S|z z
Aoy, 57 Flds |2 H(d)

(y,0,2) =06

(5.9)
- /C’Q(y/\s)S(s,z)F(ds | z) H(dz)
—E(5(T, 2)),

where

o G(ds)
)= | T e

is the asymptotic variance function of the Nelson-Aalen estimator for the (marginal)
cumulative hazard function of the censoring variable. The proof of the following
corollary follows either from theorem 5.3, noting that the marginal Kaplan-Meier
estimator for the censoring distribution satisfies the convergence conditions of the
theorem, or directly from the Delta method and its known relation to efficient
estimation (Van der Vaart 1998, section 25.7).

Corollary 5.8 X
Suppose C'is independent of (T, Z). Let (1—G,,) be the (marginal) Kaplan-Meier
estimator for the censoring distribution. The plug-in estimator

%z/ﬁmaﬁﬁ@iﬂﬁ
(1-Ga(t))

is efficient for estimation of

_ W (dt, dz)
qu_/sma—ajgar.

The general form of the efficient influence function is given by (5.9).

O

By minor modifications of the examples 5.6 and 5.7 we obtain the asymptotic
distribution for the estimators of Graf, Schmoor, and Schumacher (1999). The
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estimator for the expected Brier score at t* is given by

v W, (dy, 1, dz o0 W,(dy, s, dz
/ SBS(t*;yaz)#‘*'Z/ Ss(t;y, ) Ll 4.0, d2)
0 5 Jt

(1 - Gn(y_)) <1 - Gn(t*))
_ t*ﬂ ' oo ZQWn(dy,l,dz) e . , Wi(dy, s, dz)
IR v B A G Rl

where (1—@,,) is the Kaplan-Meier estimator for the censoring distribution. The
estimator is Gaussian regular and asymptotically efficient with variance given by

(4. Spe) — Z/{ Sis(t; y,)))+<1_ / Sps(t';5,€) Q(ds, de)

—/C'g(y/\ s)Sps(t*;s,€) Q(ds, d&) — v(W, SBS)} W(dy,d, dz).

The following worked example illustrates the use of prediction error curves for
right censored event times; the curves should be compared to example 2.8.

Example 5.9 (Prediction of event-free survival in breast cancer)

We compute prediction error curves for various predictions (made in terms of
forecast conditional probabilities) for event-free survival (first occurrence of ei-
ther locoregional or distant recurrence, contralateral tumor, secondary tumor or
death) in breast cancer with a build and a test data set. The build data set we
consider origins from a prospective, controlled multicenter clinical trial on the
treatment of node positive breast cancer conducted by the German Breast Can-
cer Study Group; it will be referred to as GBSG-2-study in the sequel. During six
years, 720 patients were recruited of whom about two thirds were randomized.
Complete data on the prognostic factors considered were available in 686 patient
who form the population of this study. After a median follow-up of about 5
years 299 events for event-free survival were observed. The probability of event-
free survival after 5 years was estimated as 50%. The data of this study are
available from http://www.blackwellpublishers.co.uk/rss/. The database of the
second study consists of all patients with primary, previously untreated breast
cancer who were operated between 1982 and 1987 in the Department of Gynecol-
ogy of the University of Freiburg and who fulfilled some retrospectively defined
inclusion criteria e.g. standardized treatment. This left 139 patients out of 218
originally investigated; this study will be referred to as the Freiburg-DNA study
in the sequel. Median follow-up was 6.9 years and 76 events with respect to event-
free-survival were observed. The probability of being event free after 5 years was
estimated as 50%. In both studies, information on the following prognostic fac-
tors is available in all patients (see Schumacher, Hollénder, and Schwarzer (2001)
for details).
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Besides age at diagnosis, number of positive lymph nodes and size of the
primary tumor, a grading score, as well as estrogen- and progesterone receptor
was recorded. Estrogen and progesterone values above 20 fmol/mg cytosol pro-
tein were considered positive, negative otherwise. We introduce the following
prognostic classification schemes, each determining a set of forecast conditional
probabilities m. From the data of the GBSG-2 study, various prognostic classifi-
cation schemes were derived by means of Cox regression models:

e marginal Kaplan-Meier estimator
e a full Cox model with all six predictors

e a selected Cox model obtained by backward elimination (selection level 5%)
containing tumor grade, number of lymph nodes and progesterone receptor

e a misspecified Cox model omitting the number of lymph nodes as the most
important predictor from the selected Cox model.

o
('\q -
e —— Kaplan Meier ... Cox (selected)
- - - Cox (full) — — Cox (nodes omitted)
9 |
o
o
(\! -
§ o
o
=ST,)
S
B8 o
2
o
o o
‘—! -
o
[Te)
Q -
o
o
O_ .
© I T T T T T 1
0 1 2 3 4 5 6
Years

Figure 5.1: Estimated prediction error curves for Cox models with varying co-
variate settings. The Kaplan-Meier curve yields a benchmark value (null model).
GBSG-2 data used for model fit and Freiburg-DNA study for estimation of Brier-
Score.
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Year 1 2 3 4 5 6
Kaplan Meier 0.023 0.083 0.127 0.155 0.174 0.186
Cox (full) 0.023 0.075 0.110 0.133 0.148 0.157

Cox (selected) 0.023 0.075 0.110 0.133 0.149 0.158
Cox (nodes omitted) 0.023 0.077 0.116 0.141 0.157 0.166

Table 5.1: Estimates of WPE, respectively integrated Brier score of prediction
error curves from time zero until years 1 to 6.

Figure 5.1 displays the prediction error curves corresponding to predictions
coming from various Cox regression models build in the GBSG-2-study, estimated
with the Freiburg-DNA study. The prediction error curves of the full Cox model
with all six predictors and of the selected Cox model containing tumor grade,
number of lymph nodes and progesterone receptor are nearly identical reflecting
the fact that the three other covariates do not exhibit strong effects in the presence
of the three selected covariates. If, however, the number of lymph nodes as the
most important predictor (relative risk equal to 2 for 4 - 9 and equal to 3.7 for
more than 10 nodes) is omitted from the selected Cox model, the prediction error
of this misspecified model is grossly inflated and comes closer to that obtained for
the naive prediction with the pooled Kaplan-Meier estimate ignoring all covariate
information. This reflects that at time zero individual vital status of all patients
is equal to one and hence equal to any valid survival distribution function at
that time. By symmetry, the expected prediction error curve would decrease to
zero for large times. Note that only the first fraction of the true curves can be
estimated for right-censored data. Hence the graphs of the curves have to stop
at the maximal follow-up time at latest. Using uniform weights on the intervals
[0,4], for i = 1,2,3,4,5,6 years, we have computed WPE for the prediction error
curves of figure 5.1 (see table 5.1).
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Chapter 6

Discussion

Predictions made in terms of probabilities

At a first glance, it might appear unnatural to use predicted probabilities instead
of point predictions. We argue that point predictions can always be obtained
from a given forecast conditional probability distribution, namely as the condi-
tional first moment. This conditional first moment is, when it exists, an estimate
or prediction of the regression function. Taking advantage of this fact, we find
well-known measures for the accuracy of point predictions as special cases of our
general definition of prediction error. The following reasoning for assessment of
predictions by means of predicted probabilities comes from the theory of elici-
tation of personal probabilities, see e.g. Savage (1971). A scoring rule is a tool
for comparison of observations and predictions. In our regression setting a scor-
ing rule is called proper if it is minimized when the true conditional distribution
of the outcome variable is used for establishing predictions. Moreover, assess-
ment of forecast probabilities with a proper scoring rule in terms of expected
loss is, to some extend, equivalent to direct assessment of point predictions; the
underlying principle is known as encouraging honesty: a forecaster would always
quote the probability distribution in which she believes and which she would use
to obtain accurate point prediction of the outcome variable. We may conclude
that predicted probabilities hold at least the same information as is provided by
point predictions and that predictions originating from a forecaster’s personal
probabilities can be appropriately assessed by using the score function approach.

Confidence intervals and efficient tests

In this thesis we have shown asymptotic efficiency for certain plug-in inverse
probability of censoring weighted estimators. In our main example, right cen-
sored survival data in presence of covariates, we have generalized results of Gill
(1983), Schick, Susarla, and Koul (1988), Akritas (1994), Stute (1996) and Hub-
bard, Van der Laan, and Robins (1998). However, as far as we know, there is
currently no statistical software (SAS, Splus and R) available for computation
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of nonparametric estimates of the conditional survival function given a contin-
uous covariate. The main problem here is clearly how to adaptively estimate
the smoothing parameters. A task of future research is the construction and
implementation of adaptive nonparametric estimates for situations where a non-
parametric plug-in estimator of a conditional distribution function is needed.

For applications where two or more predictions have to be compared, the
construction of confidence intervals for the estimates of prediction error is impor-
tant. In view of the explicit formulas obtained for the variances of the estimators
proposed in this thesis, see in particular examples 5.6 and 5.7, asymptotically
consistent estimation of confidence intervals can be obtained by implementing a
nonparametric estimator for the conditional distribution function. A little more
involved are confidence bands for function valued parameters, such as the pre-
diction error curves suggested here. One could try to use the results of Van der
Vaart (1994) and Rost (2000) to obtain a functional central limit theorem for the
estimators of these curves.

It would also be desirable to have statistical tests for the following types of
hypothesis:

e The (weighted) prediction error of 7 is equal to the prediction error of .

e The predictive power of the covariate Z; is equal to that of covariate Zs.

Again the results of this thesis can be used as a basis for the construction of
asymptotically efficient tests, see Van der Vaart (1998, section 25.6).

Bootstrap and cross-validation

Throughout this thesis we worked in a build-test data setup — which is clearly
not available in most applications. The apparent error problem occurs when the
prediction error is estimated with the same dataset which was used for estab-
lishing the prediction (Efron 1978). In future research we should be able to take
advantage of the well-known correspondence between 'working’ bootstrap and
differentiable parameters (Gill and der Vaart 1993; Van der Vaart 1998; Well-
ner 1992). In addition, resampling methods should be applicable for estimation
of confidence intervals and the construction of efficient tests. These issues need
careful analysis. Of particular importance is a comparison of the small sample
performance of bootstrapped confidence intervals, say, and confidence intervals
motivated by asymptotic representations.

Sensitivity analysis for CAR models

Our treatment of incomplete data in terms of abstract coarsening at random
variables is good for situations where one random variable is coarsened and an-
other random variable is completely observable. There are other examples of
incomplete data models where measures of prediction error are needed.
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A further aim of future research is a sensitivity analysis of the CAR assump-
tion. A different model could be used (not CAR) for the dependence of the
censoring (coarsening) mechanism and the unobservable variables, and then cor-
respondingly defined estimators could be compared to the estimators defined in
the CAR-model. An application would be the detection of a competing risk in
survival analysis.
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Symbol Regression setting

T Dependent variable in a regression problem

Z Vector of covariates

C Censoring variable

Y Minimum of 7" and C

A Indicator of complete observations

X (YA, Z)

F, Conditional distribution function of T' given Z

G, Conditional distribution function of C' given 7

H Marginal distribution function of Z

We, u,a. Induced distribution of X

W, Conditional distribution of X given Z

W Model for the conditional distribution of X given Z

W, Model for the marginal distribution of Z

. Conditional distribution function (predictions made in
terms of predicted probabilities)

m Regression function

m(m) Estimated regression function based on 7
Scoring rule

SBg Brier score

Srs Logarithmic score

o Measurable function on R(T')

H Class of measurable functions on R(7)

R? Measure of explained variation

MSE Mean squared error

MSEP Mean squared error of prediction

RSS Residual sum of squares

PEC Prediction error curve

WPE Weighted prediction error

ROC Receiver operating characteristic

AUC Area under the ROC-curve

Symbol Incomplete data setting

U Unobservable random map

X Observable random map (coarsening variable)
(E,€&) Range and corresponding Borel o-field of U
Q Distribution of U

q Density of @ with respect to u

(S, %) Range and corresponding Borel o-field of X
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Wear

l:u jla 1.2) l.lla 1.12

l*

Conditional probability distribution of X given Z
Conditional density of R

Induced conditional distribution of U given X
Induced distribution of X

Indicator of complete observations

Inverse probability of censoring function

Inverse probability of censoring weighting
Distributions of AX and (1 — A)X

Dominated model for the probability distribution of U
Tangent space of Q

Model for the conditional distribution of X given U
Tangent space of R

Coarsening at random

Missing at random

Subset of R that satisfies CAR

Model for W indexed by Q@ x R

Tangent space for W

Model for W indexed by Q X Rcar

Score operators
Adjoint of the (score) operator [

lﬂl Information operator
Hilbert space projection onto the orthogonal comple-
(1—1l,) ment of the tangent space for the nuisance parameter
(R(l2))
.~ Parameter, score function and influence functions corre-
V., sponding to U
L ! Information bound for estimation of v
.o~ Parameter, score function and influence functions corre-
v, U, U .
sponding to X
It Information bound for estimation of v
Lrp,,RE, ‘L’> and ‘R’ operators of F),
Le.. Re, ‘L’ and ‘R’ operators of G,
Symbol Density and distribution function estimation
oo Model of density functions that satisfy a Holder condi-
tion of degree «
Qn Nonparametric density estimator
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dx, Kernel density estimator
o Model of conditional distributions that satisfy a Holder

< condition of degree « in the second argument

Qs Model for the marginal distribution of Z

B a random sequence of weights that depend on the Z-
" sample only

FBn Nonparametric estimator of F,

G B, Nonparametric estimator of G,

WBn Nonparametric estimator of W,

A;‘; Smoothed empirical distribution

a(n) Data dependent bandwidth

K, Kernel density function

Kyxf Convolution of functions

K,*xQ Convolution of a function and a measure

Symbol Miscellaneous symbols

(Q,T,P) Statistical experiment

n Sample size

1d Independent and identical distributed

R(-) Range of an operator

N(-) Nullspace of an operator

E(X) Expectation of a random variable X

Qyp Integral of ¢ with respect to @

Var(X) Variance of a random variable X

At Orthogonal complement of A

(R, B) Real numbers and Borel o-field.

F Class of (square integrable) functions

L,(Q) Space of p-integrable functions with respect to @

£Y(Q) Subset of mean zero functions in £,(Q)

<+ >q e
L(Q)
Ly, Loo
1°(F)

o
0

Inner product and norm on £5(Q)

Space of essentially bounded functions with respect to
Q

L,-spaces with respect to Lebesgue measure

Bounded real valued functions on F with supremum
norm

Continuous functions on IR

Holder continuous functions of degree «
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R

BKRW

Minimum

Convergence

Function assignment

Weak convergence (also for nonmeasurable estimators)

Bickel, Klaassen, Ritov, and Wellner (1993)
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