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Introduction

More than 50 years after its publication, Shannon’s “A mathematical
theory of communication” [Sha48] still influences today’s physics. In
the late 50s Jaynes [Jay57a, Jay57b] succeeded in describing statistical
mechanics from an information theoretical point of view by using the
method of maximum-entropy inference (nowadays called Jaynes’ prin-
ciple). The reconciliation of information theory and quantum theory,
however, took much longer. The starting point was given by Benioff
in 1980 ([Ben80], see also [Deu85, Fey86]) where he gave a descrip-
tion of a Hamiltonian that can be interpreted as a Turing machine.
The vision of the quantum computer was born. In the following years
the capabilities of a quantum computer like the exponentially growing
speed-up in factorizing large numbers (Shor’s algorithm [Sho94]) or in
database searches (Grover’s algorithm [Gro96]) and the phenomenon
of quantum teleportation (see [BBC+93]) led to an almost exponential
interest in quantum computing from the military and the industrial
side. Recently, various proposals have been made on how to build such
a quantum computer. They involved ion traps, liquid NMR, quantum
dots and optical lattices. However, nowadays it seems as if for the next
ten years the quantum computer may remain a vision like the Holy
Grail due to the immense experimental demands.

Fortunately, in the light of this vision quantum information theory
evolved meanwhile to a large independent field of research. It has be-
come a widely structured field involving physicists, mathematicians,
computer scientists and electrical engineers. Its main pillars are quan-
tum computing, quantum communication and entanglement theory.

Quantum computation is concerned with the development of quan-
tum circuits and algorithms for future quantum computers. Latest
developments concern the hidden subgroup problem and search algo-
rithms. Methods of translating algorithms into quantum circuits have
already been developed. One of the major challenges is now to develop
good error correcting codes for arbitrary systems.
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Quantum communication comprises various communication pro-
tocols that have been developed for or adapted to quantum information.
Among the best known protocols are quantum key distribution, quan-
tum teleportation and superdense coding. Quantum key distribution
was the first application of quantum information to be realized in ex-
periments. In fact, first implementations are already available com-
mercially (see www.idquantique.com).

Entanglement has been revalued by quantum information theory
from a fundamental property of quantum systems to a new resource
which may be used up or used as a catalyst in quantum information
processing. It is the glue that connects the various elements of quan-
tum information theory and at the same time the most important new
ingredient that enables us to perform new quantum protocols. In 1935
Schrödinger [Sch35] coined the German word “Verschränktheit” for a
mysterious inseparability he encountered while investigating states of
compound systems. What he and Einstein, Podolsky and Rosen (see
[EPR35]) had found was the first instance of quantum correlations
among particles/parties. In the last few years, a growing interest has
been devoted to the theory of entanglement. Most of the results were
obtained for low dimensional systems (e.g. qubits) and for systems that
could be simplified making use of symmetries.
This thesis is devoted to the study of entanglement in multipartite sys-
tems. The characterisation of general multipartite states involves ap-
proximately d2N real parameters, where d is the dimension of the single
system and N is the number of systems. In order to be able to investi-
gate entanglement properties in multipartite systems, in chapter 2 we
therefore introduce families of multipartite states that can be described
with only few parameters. As a tool we use symmetry groups to reduce
the complexity of the problem. In chapter 3 we characterize the sepa-
rability/inseparability properties of this state family in the special case
of N = 3. Chapters 4 and 5 are concerned with the operational aspects
of the entanglement contained in these states. In chapter 4 we use the
introduced states, amongst other things, to demonstrate the security of
multipartite quantum data hiding and to give a constructive scheme of
this protocol. The last chapter relates entanglement sharing to quan-
tum telecloning.

Note to the reader: The experienced reader may skip the first chap-
ter which contains a very short overview of the concepts and mathe-
matical tools used in the following chapters. Chapters 3, 4 and 5 are
based on chapter 2 and can be read separately. A short summary of the
results presented in this thesis can be found on page 137.
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Chapter 1

Basic concepts

“Eh bien, l’algèbre est un outil, comme la
charrue ou le marteau, et un bon outil pour
qui sait l’employer.”

(Jules Verne, Autour de la Lune)

Quantum information theory can be seen as ‘ordinary’ quantum the-
ory from an information theoretical point of view. Many new aspects
of quantum theory arise from the peculiar quantum nature of quan-
tum information. Especially the rise of entanglement from the hidden
depths of the foundations of quantum theory to a central ingredient of
quantum information theory shows that they are worth being studied
beyond the level of standard quantum theory textbooks.

The purpose of this chapter is to provide the basic notions of quan-
tum theory and the mathematical tools as they will be used throughout
this thesis.

1.1 States and state transformations
In most textbooks states are described as wavefunctions and transfor-
mations are given by some Hamiltonian dynamics. All influences are
modelled by a corresponding Hamilton operator leading to an invert-
ible time evolution of the states. However, this is only true as long as
one can assume the system to be closed, i.e. as not interacting with
an external environment. Since the general situation in quantum in-
formation involves the interaction with an active environment causing
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decoherence (e.g. a heat bath or some experimentalists), we start by
recalling the more general formulations (see [Per93, Lud76]).

1.1.1 States and measurements
In the framework of quantum theory every system of degrees of free-
dom is described by a separable complex Hilbert space1 H. For example
a system with a finite number f of discrete degrees of freedom like a
spin is assigned the Hilbert spaceH =

�
f with the usual scalar product

〈ψ|ϕ〉 =∑f
i=1 ψiϕi. Every system can be prepared in various ways corre-

sponding to different configurations x of some set of configurations X.
A measurement corresponds to a test whether the system in question
has a certain property y out of some set of properties Y . Since quan-
tum theory is a statistical theory it describes only the statistics of the
outcome of a measurement, i.e. it gives the probability p(y|x) of the out-
come y (the system has property y) given that the system was prepared
according to x. A state describing a preparation procedure x ∈ X is
assigned a positive operator ρx ∈ B(H) with tr[ρx] = 1 called density op-
erator which is sometimes identified with the state itself. The tests are
modelled by a positive operator valued measure (POVM) called observ-
able, that is a set of positive operators {My|y ∈ Y } ⊂ B(H), respecting
the completeness condition

∑
y∈Y My = � . The probabilities are then

given by
p(y|x) = tr[Myρx]. (1.1)

A statistical mixture ρsm of states {ρi} is described by a convex combi-
nation of the corresponding density operators:

ρsm =
∑

i

λiρi where λi ≥ 0,
∑

i

λi = 1 (1.2)

giving the set of states S(H) the structure of a convex set. Conversely,
not all states can be written as a convex combination. In fact, there
are states that are special in the sense that they cannot be decomposed
into a convex combination of other states. These states are called ex-
tremal as they are the extremal points (see [Roc72]) of the convex set
S(H). For finite dimensional Hilbert spaces they correspond to rank

1A Hilbert space is said to be separable if it has a countable dense subset. In
Hilbert spaces lacking this property the superposition principle is no longer valid
(see [Per93]).
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one projections. Such projections encode the sharpest possible prepa-
ration procedures and are thus called pure states. These density oper-
ators can be written as

ρpure = |ψ〉〈ψ| (1.3)

for some vector |ψ〉 ∈ H. In this formulation all vectors eiϕ|ψ〉, ϕ ∈ � are
equivalent in the sense that they lead to the same density operator ρpure
so that they can be collected into a ray. Thus pure states correspond to
such a ray, rather than to a vector in Hilbert space.

A set of two independent systems is modelled by the tensor product
of the single Hilbert spaces2: HA&B = HA ⊗ HB. This formulation of
independence is motivated by the fact that a tensor product of mea-
surements on such independently prepared subsystems leads to the
product of the single probabilities as known from the description of
classical independent probability distributions:

tr[(Mi ⊗Nj)(ρ1 ⊗ ρ2)] = tr[Miρ1]tr[Njρ2]. (1.4)

More generally, one can give a description of the state of a subsystem
even in the case that the subsystems have not been prepared indepen-
dently. For this, one only has to ignore the outcomes of measurements
on the other subsystems to get a description of the subsystem of inter-
est: ∑

j∈J
tr[ρ(Mi ⊗Nj)] = tr[ρ(Mi ⊗ � )] def

= tr[ρAMi]. (1.5)

The density operator ρA is called the reduced density operator and cor-
responds to the analogue of a marginal probability distribution induced
by the state of the compound system. In the case of a pure state of a
compound system the reduced states are not necessarily pure. This can
be seen easily by looking at a bipartite system. Any vector |ψ〉 ∈ H1⊗H2

can be written with respect to a product basis as |ψ〉 =
∑d1,d2

i,j ψi,j|ei⊗fj〉.
In the special situation of a bipartite system it is possible to “diagonal-
ize3” the coefficient matrix ψi,j giving an even simpler description:

|ψ〉 =
min(d1,d2)∑

i=1

λi|ei ⊗ fi〉 λi ≥ 0. (1.6)

2The field underlying the Hilbert space of a quantum theory is closely connected
to the notion of statistical independence. Using a complex field leads to the tensor
product for independent systems in contrast to a real field (see [Fuc02]).

3In the case of a rectangular matrix it can be brought into diagonal form plus zero
rows or columns.
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For any vector on a bipartite system this so-called Schmidt decompo-
sition (see [Sch07]) exists and is unique up to a relabelling of the ele-
ments. Using this representation the reduced density operator of an ar-
bitrary pure state of a bipartite system reads ρA =

∑d1
i=1 λ

2
i |ei〉〈ei|. Con-

versely one can purify an arbitrary mixed state of a single system to
a pure state on a larger compound Hilbert space as long as the second
subsystem is chosen to be large enough. Taking the spectral decompo-
sition of the mixed state as ρ =

∑
i λ

2
i |ψi〉〈ψi| one directly gets a purifi-

cation via |ϕ〉 =∑i λi|ψi ⊗ ψi〉. This purification is of course not unique
since one can choose the dimension of the ancillary Hilbert space ar-
bitrarily as long as it is larger than or equal to that of the original
system.

Analogously, one can purify a POVM to a projective measurement
on a larger compound system. For an m-valued POVM one needs an
ancillary system of dimension m or greater for the purification. The
POVM elements Mi can be seen as the reduced operators of the ith
projection on the compound system (Naimark’s dilation theorem, see
[Hol82]).

For systems composed of more than two subsystems the Schmidt
decomposition does not exist in general. In very special cases there
exists a multiorthogonal4 decomposition, which is then unique [EB94].

1.1.2 State transformations
Often the system of interest is in some way coupled to its environment.
The evolution of the closed system, i.e. subsystem plus environment,
can then be described within the well-known Hamiltonian formalism.
In this case the Hamilton operator H generates a unitary time evolu-
tion:

ρt0+t = Utρt0U
∗
t , Ut = eiHt. (1.7)

Ignorance of the environment leads to a non-unitary (and thus not ne-
cessarily invertible) time evolution for the reduced state that can be
modelled with a Lindblad form, which is sometimes called the master
equation (e.g. in quantum optics) [Lin76]. However, this is still not the
most general description of a state transformation as it does not take

4One of the properties of the Schmidt decomposition is that the corresponding
bases {ei} and {fj} are biorthogonal, that is 〈ei|ei′〉 = δi,i′ and 〈fj |fj′〉 = δj,j′ . Sim-
ilarly, one can try to decompose a pure multipartite state into tensor products of
vectors forming “sitewise” an orthonormal basis.
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into account that the system itself may be transformed (e.g. a two-level
system into a three-level system).

From an abstract point of view a state transformation T :S(H1) →
S(H2) has to be a positive linear trace preserving map. Positivity and
trace preservation ensure that the outcome is again a density operator.
Linearity is necessary for the statistical mixture of states to be consis-
tent5. Now since the system under consideration can be a subsystem of
a larger one, positivity is not enough to guarantee that the outcome is a
valid state. In fact, it may well be that the map transforms the reduced
density operator correctly, but to be in compliance with the interpreta-
tion as a marginal probability distribution it also has to transform the
overall state correctly. For this we have to demand complete positivity
of the map T , i.e. T ⊗ idn has to be positive for all n ∈ � . In quantum in-
formation theory such completely positive linear trace preserving maps
have been called channels in analogy to classical information theory.
The quantum information of the input system H1 is processed by the
channel and encoded into the output system H2:

H1

T

H2

Figure 1.1: Black box picture of a quantum channel.

By Kraus’ representation theorem a channel T :S(H1) → S(H2) can
be mathematically described by a set of operators Ki:H1 → H2 (Kraus
operators) such that

T (ρ) =
N∑

i=1

KiρK
∗
i ,

N∑

i=1

K∗
iKi = � , (1.8)

where N ≤ dimH1 dimH2 Kraus operators suffice for modelling an ar-
bitrary channel T (see [Kra83]). However, this representation is not
unique. Different sets of Kraus operators can describe the same chan-
nel. The concept of a channel is very versatile. In fact all kinds of
operations (see below) can be described as special channels. A mea-
surement is a channel converting quantum into classical information.

5If we assume that the quantum dynamics is not linear, the evolved mixed state
is not the mixture of the evolved states and we lose the interpretation of “mixture”.
Such nonlinear quantum theories are usually nonlocal in the sense that they admit
superluminal signalling (see for instance [SBG01]).
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Classical information can be converted into quantum information by
a parameter dependent preparation. An instrument is a channel that
gives classical and quantum information from a quantum input.

The standard situation in quantum information is that a compound
system is being manipulated by various experimentalists in separate
laboratories. These manipulations called protocols or operations build
a second pillar of quantum information theory besides entanglement.
Depending on the amount, kind and direction of communication among
the different parties, there are different classes of protocols:

LOCC: If the parties are allowed to communicate only classically
and to do only local operations the protocol is said to be of LOCC
type (Local Operations and Classical Communication).

PPT: A protocol respecting the positivity of the partial transpose
(see 1.2.2) is called PPT.

1-way q/c: If the parties are allowed to transmit quantum/classi-
cal information in one direction the protocol is called a one-way
quantum/classical communication protocol.

2-way q/c: Analogously if the parties are allowed to exchange
quantum/classical information freely in both directions the pro-
tocol is said to be a two-way quantum/classical communication
protocol.

Proper mathematical characterizations of all these classes are not al-
ways possible. The LOCC protocols for example could involve an infi-
nite number of rounds of classical information transmission from one
party to another where each round could then depend on the informa-
tion transmitted in all the preceding rounds. Nevertheless a few facts
are known:

1. All these classes are closed under concatenation if the direction of
the communication is maintained for 1-way protocols.

2. The LOCC class is a strict subset of the PPT class (see chap. 4).

3. The 1-way classes are by definition a strict subset of the 2-way
classes which can be obtained by concatenating 1-way protocols
with different directions.

4. 1-way quantum communication is equivalent to shared entangle-
ment plus 1-way classical communication.
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The last fact is maybe the most surprising one. It stems from the proto-
col known as quantum teleportation. This protocol describes how to use
a shared maximally entangled pair (i.e. a quantumly correlated state,
see (1.12)) together with 1-way classical communication to teleport an
unknown quantum state without transmitting the quantum system it-
self [BBC+93].

1.1.3 Duality of states and state transformations
One new aspect of quantum theory due to quantum information is
a very intimate relation between channels and bipartite states. In
fact there is a very useful one-to-one mapping translating between
them which is sometimes referred to as the Jamiołkowski-dualism (see
[Jam72]):

Lemma 1.1.1: Let ρ be a state on H ⊗ K. Then there are a Hilbert
space H′, a pure state σ on H⊗H′ and a channel T :B(K)→ B(H′) such
that

ρ = (idB(H) ⊗ T )[σ]. (1.9)

If the restriction of σ to H′ is chosen to be non-singular this decomposi-
tion is unique up to unitary equivalence. That is, any other decomposi-
tion (idB(H)⊗T ′)[σ′] is of the form σ′ = UσU ∗ and T ′[X] = U ∗T [X]U with
some unitary operator U .
(See [Wer01b] for a proof.) Now fixing the pure state σ to be e.g. a
maximally entangled state |ψ+〉 (see (1.12) below) leads to a one-to-one
correspondence of states ρ and channels T (see subsection 5.2.1 for an
example).

Results of the entanglement theory of bipartite systems can thus
be translated to results on channels: Separable channels correspond
to separable states, PPT preserving channels to PPT states, isotropic
states to depolarizing channels, Werner states to depolarizing channels
followed by a transposition and so on.

1.2 Classical and quantum correlations
Any interaction between independently prepared subsystems usually
destroys the statistical independence. Let us take for example two in-
dependently prepared spin- 1

2
particles. If we let them interact via an

Ising- or Heisenberg-type interaction they may become correlated in
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the sense that the outcomes of measurements performed on the single
spins may be correlated due to the past interaction.

The classification and quantification of these correlations is known
as the theory of entanglement. Their exploitation for new protocols
was the starting point of quantum information theory. In recent years
the aspect of entanglement as a resource has led to a growing knowl-
edge of entanglement: It is needed for performing certain protocols, it
can be used up and sometimes even returned just like a catalyst. In
the following subsections we will summarize the classification of these
correlations and some means to measure their strength.

1.2.1 Classical vs. quantum correlations
In 1964 John Bell noticed that there was more to these correlations
between quantum mechanical subsystems than what was known from
classical probability distributions. He was able to derive an inequal-
ity that any local classical model must satisfy [Bel64]. However, with
a simple computation he showed that quantum theory can violate it.
This inequality was turned into a key experiment for the validity of
quantum theory. First reliable experimental tests were performed by
Aspect [AGR81] in 1981 supporting quantum theory.

The violation of Bell’s inequality was the first proof that quantum
theory is capable of correlating subsystems in a much “stronger” way
than classical theories can. Since then the threshold given by the in-
equality was used to distinguish between classical correlations, i.e. cor-
relations that can be described by a local classical model, and quantum
correlations. In 1989 Werner [Wer89] gave a mathematical characteri-
zation of those states that contain only classical correlations. He called
a state classically correlated (separable6) iff (if and only if) it can be
approximated (e.g. in trace norm) by density matrices of the form:

ρ =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i , ∀i: pi ≥ 0,

∑

i

pi = 1. (1.10)

Conversely any state that cannot be approximated in this way is called
entangled7. This definition of “classically correlated” states is intu-
itive since any such state can be prepared in the following way: Take

6The term separable was introduced by [Hor94] in the context of information-
ally coherent systems and has nothing to do with the separability of the underlying
Hilbert space.

7In 1935 Schrödinger coined the term “verschränkt” for it (see [Sch35]).
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two independent laboratories and one joint random number generator
characterized by the probability distribution {pi}. The random num-
bers are then communicated to both laboratories. Depending on these
numbers the experimentalists (Alice and Bob) perform parameter de-
pendent preparations of their systems preparing the states ρ(1)i and ρ(2)i
respectively. The state of the composite system is then of the form
(1.10) and was clearly prepared using classical correlations only (see
figure 1.2).

States showing the strongest classical correlations possible are called
maximally correlated and have the form8:

ρ =
∑

i,j

αij|ii〉〈jj|, (1.11)

with a hermitian α with unit trace (see [Rai99]). In fact, if Alice and
Bob share such a state they will always obtain the same results for
any measurement. Analogously there are states that are maximally
quantum correlated called maximally entangled. The prototype of such
a maximally entangled state is

|ψ+〉 =
1√
d

d∑

i=1

|ii〉. (1.12)

Both notions can be extended to multipartite states in a natural way.

ρ
1

i
{pi} ρ

2

i

Figure 1.2: Black box picture of a preparation procedure for separable
states.

In the same article Werner proved that the set of states obeying
Bell’s inequality and the set of classically correlated states are not
identical, i.e. there are entangled states that admit a local classical
model. As a first example he constructed a family of states (nowadays
called Werner states) for which we could easily compute the maximal
violation of Bell’s inequality (see subsection 3.2.2) and check the sepa-
rability. Both tasks, the computation of the maximal violation of Bell’s

8We slightly abuse the notation and write for short |ij〉 instead of |i〉⊗ |j〉 or |i⊗ j〉.
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inequality and the separability check in general are hard to accomplish
and in the special case of Werner states were only made possible by the
use of symmetry in the construction of that family of states. As we will
see below, symmetry helps to reduce the complexity of these tasks.

1.2.2 Separability criteria
Although the characterization of separable states is rather simple the
definition itself is easily applicable only in the case of pure states. In
that case one directly sees that they are separable iff they are product
states: |ψ〉〈ψ| = |ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2| ≡ |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|.

For mixed states, however, only in some simple cases (two-qubit9

systems, qubit-qutrit10 systems, symmetric states, Gaussian states)
analytical solutions have been achieved. Since the general situation is
still open a lot of necessary conditions have been derived. The most im-
portant separability criteria are: matrix reorderings, the reduction cri-
terion, conditional entropies and majorization. It is known that the ma-
trix reorderings can be used to derive the reduction criterion[VW02].
The relations of majorization to the first two classes are not known
whereas it was shown that the entropic criteria can be derived from
majorization [NK01].

1.2.2.1 Matrix reorderings

This set of criteria is based on the convexity of the trace norm11, i.e.
‖λρ1+(1−λ)ρ2‖1 ≤ λ‖ρ1‖1+(1−λ)‖ρ2‖1. Due to convexity, for any linear
map L acting on a composite system without increasing the trace norm
of a product state (‖L(⊗i ρi)‖1 ≤ 1) the inequality

‖L(ρseparable)‖1 ≤ 1 (1.13)

must hold for any separable state. In [HHH02, Fan02] it was shown
that this condition is not only necessary but also sufficient for separa-
bility, i.e. if a state ρ does not fulfill (1.13) for any such map L it has to
be entangled.

A special class of such contractive maps are matrix reorderings. Ab-
stractly speaking such a reordering corresponds to a permutation of the

9A qubit is a quantum bit, i.e. a two-level system like a spin-1/2 particle.
10A qutrit is a quantum trit corresponding to a three-level system like a spin-1

particle.
11The trace norm is given by ‖A‖1 = tr[|A|] = tr

[√
A∗A

]
.
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indices of the coefficient matrix:

(Rπρ)i1i2...iN j1j2...jN = ρπ(i1i2...iN j1j2...jN ) (1.14)

with ρi1i2...iN j1j2...jN = 〈i1i2 . . . iN |ρ|j1j2 . . . jN〉, where π denotes an ele-
ment of the permutation SN . In the case of bipartite systems (N = 2)
the possible reorderings lead to only two inequivalent separability cri-
teria. The corresponding linear maps are the partial transposition

Θ1(|i〉〈j| ⊗ |k〉〈l|) = |j〉〈i| ⊗ |k〉〈l| (1.15)

and
|i〉〈j| ⊗ |k〉〈l| 7→ |j〉〈k| ⊗ |i〉〈l| (1.16)

which corresponds to the realignment map

Lr(A⊗B) = |A〉〈B|, (1.17)

where the vectors of the last ketbra contain the entries of the operators
A and B realigned into vectors. The first criterion corresponds to the
positivity of the partial transpose also known as the Peres criterion
[Per96]:

‖Θ1(ρ)‖1 ≤ 1⇔ Θ1(ρ) ≥ 0 (1.18)

which for 2 × 2 and 2 × 3 systems is known to be sufficient [HHH96].
However, for higher dimensions entangled states having a positive par-
tial transpose exist as was shown for 3×3 systems in [Hor97] (so-called
bound entangled states, i.e. entangled states that cannot be distilled).
The second criterion is exactly Rudolph’s cross norm criterion [Rud00]
which can be written as

‖Θ1(ρ � )‖1 ≤ 1, (1.19)

with the Flip operator � , which is defined by � (ϕ ⊗ ψ) = ψ ⊗ ϕ for all
ϕ, ψ ∈ H.

1.2.2.2 The reduction criterion

In a similar way separability can be reformulated in terms of positive
maps instead of linear contractions [HHH96]. A state ρ of a bipar-
tite system H1 ⊗ H2 is separable if and only if for any positive map
Λ:B(H2)→ B(H1) the inequality

(idB(H1) ⊗ Λ)ρ ≥ 0 (1.20)
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holds. Thus taking any specific positive map gives a necessary condi-
tion for states to be separable. In the case of the reduction criterion
this map is

Λ(X) = tr[X] � −X. (1.21)

As one can see these positive maps need not be trace preserving as in
this case. The resulting criterion was very important in the context of
entanglement distillation (see (1.35)).

1.2.2.3 Conditional entropies

One of the most helpful analogies between quantum information theory
and classical information theory is that between a density operator ρ
and a classical probability distribution {px}. A lot of quantities have
thus been intuitively “quantized” like for example the Shannon entropy
H(X) of a probability distribution. In the classical theory entropy is a
well understood term given by12

H(X) = −
∑

x∈X
px log px (1.22)

and is seen as a measure quantifying the resources needed to store
information [NC00].

In the case of a joint probability distribution {px,y} for two random
variables one can ask how uncertain one is about the value of one vari-
able, say X, given that Y is known. A measure for this uncertainty is
the conditional entropy

H(X|Y ) = H(X,Y )−H(Y ), (1.23)

where H(X,Y ) = −∑x,y px,y log px,y denotes the joint entropy, i.e. the
usual entropy of the joint system. The quantum analogue of the Shan-
non entropy

S(ρ) = −tr[ρ log ρ] = −
∑

i

λi log λi, with λi eigenvalues of ρ (1.24)

is called von Neumann entropy and was used to derive similar quan-
tities like the conditional entropy of a composite quantum system ρAB:

S(ρA|ρB) = −tr
[
ρAB log ρAB

]
+ tr

[
ρB log ρB

]
, (1.25)

ρA and ρB denoting the respective reduced density operators of ρAB.
12The Shannon entropy is uniquely determined by a set of axioms (see [OP93]).
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For classical random variables H(X|Y ) is known to be positive. The
failure of this analogy for quantum systems can be used as a separa-
bility criterion. Using the reduction criterion (which is obviously met
by all separable states) and operator monotonicity of the logarithm one
can readily prove that the conditional entropy of separable states is
always positive:

S(ρA|ρB) = −tr
[
ρAB log ρAB

]
+ tr

[
ρB log ρB

]

= −tr
[
ρAB log ρAB

]
+ tr

[
ρAB(log ρB ⊗ � )]

≥ −tr
[
ρAB log ρAB

]
+ tr

[
ρAB log ρAB

]
= 0.

The same holds for a whole family of entropies

Sα(ρ) =
log tr[ρα]

1− α
(1.26)

known as quantum Rényi entropies which include the von Neumann
entropy for α = 1 [VW02].

1.2.2.4 Majorization

The last separability criterion we want to recall here is the majoriza-
tion criterion presented in [NK01]. It relies on the fact that the differ-
ence of the “mixedness” of a state and the “mixedness” of its reductions
is in some way related to its entanglement. In fact, whenever the re-
duced states are “more mixed” than the overall state, it is entangled.

Majorization is a mathematical tool used for measuring the disorder
of two d-dimensional vectors. For two vectors x = (x1, . . . , xd) ∈ � d and
y = (y1, . . . , yd) ∈ � d, x is said to be majorized by y (x ≺ y) iff

k∑

j=1

x↓j ≤
k∑

j=1

y↓j ∀k = 1, . . . , d (1.27)

where x↓ denotes the rearrangement of the entries of x in decreasing
order. This rather abstract notion of disorder can be motivated by the
fact that x is majorized by y if and only if x can be written as a convex
combination of permutations of y [Bha97]. From this point of view it
seems intuitive to think of x as being more disordered than y.

With this tool it is possible to show [NK01] that if a state ρAB is
separable, then

λ(ρAB) ≺ λ(ρA) and λ(ρAB) ≺ λ(ρB) (1.28)

where λ(ρx) denotes the vector given by the ordered set of eigenvalues
of the respective density operator.
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1.2.3 Quantifying entanglement
Entanglement is still a very new resource. It is thus not surprising
that it is not clear yet how to measure it or at least how to compute
the known measures of entanglement. Since it enables new protocols
like teleportation one could try to characterize the entanglement of a
state via the best possible accuracy with which it allows such a protocol
(operational measures). On the other hand one can see entanglement
from a geometrical perspective and characterize its amount by some
distance to the set of separable states (distance measures). A first ab-
stract attempt to characterize valid figures of merit mathematically
was given by [Vid00].

The status quo of abstract characterizations of such figures of merit
(real valued measures13) E is given by the following minimal set of
requirements (or axioms):

1. Any entanglement measure should vanish on separable states:

E(ρseparable) = 0. (M1)

2. Entanglement cannot increase under LOCC operations, i.e. for
any entanglement measure

E(LLOCC(ρ)) ≤ E(ρ) (M2)

must hold for any LOCC operation LLOCC and any state ρ.

3. Mixing of states decreases the overall entanglement and thus

E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1− λ)E(ρ2) (M3)

should hold for any pair of states ρ1 and ρ2.

4. Any entanglement measure should be continuous. For any two
sequences ρn, σn ∈ B(HA

n ⊗HB
n ) such that ‖ρn−σn‖1 → 0 for n→∞

E(ρn)− E(σn)

1 + log2 dimHA
n ⊗HB

n

→ 0 (M4)

should hold for n→∞.
13not in measure theoretical sense
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5. The last requirement is concerned with the character of entangle-
ment as a physical resource. If we take several entangled states
separately and join them to one composite system the overall en-
tanglement should be the sum of the amounts of the single states:

E(ρ⊗ σ) = E(ρ) + E(σ). (M5)

This property is called additivity of the entanglement measure.

5.’ Since requirement (M5) is quite restrictive it is sometimes weak-
ened to allow for a larger class of entanglement measures. Addi-
tivity in the strong sense of (M5) is then replaced by weak addi-
tivity:

E(ρ⊗N) = NE(ρ). (M5’)

Conditions (M1)-(M4) can sometimes be checked whereas (M5) and
(M5’) turned out to be hard to prove, at least for the known candi-
dates. Various alterations of (M5) have thus been proposed besides
(M5’) like asymptotic additivity or subadditivity in order to allow for
an even larger class of functionals.

As always due to the Schmidt decomposition (1.6) the situation for
pure bipartite states is quite clear. In that case the axioms (M1)-(M5)
uniquely define one functional, namely the von Neumann entropy of
the reduced density operator [DHR02]:

Epure(|ψ〉〈ψ|) = −tr[ρA log ρA] = −
∑

i

λ2i log λ
2
i , (1.29)

which can be easily expressed by the Shannon entropy of the squared
Schmidt coefficients.

It is not known whether this uniqueness holds when going to mixed
or multipartite states. Furthermore for multipartite systems it is clear
that one single figure of merit will not suffice to quantify the different
kinds of entanglement possible. In fact bipartite entanglement is not
the only kind of entanglement that occurs. If we take for example a
tripartite system (Alice, Bob and Charlie) then one can consider the
bipartite entanglement between Alice on one side and Bob and Char-
lie on the other (A|BC split) as being of the same kind to that of the
AB|C and CA|B splits but not to the tripartite entanglement present in
the overall system. That is, there exist states that are separable with
respect to all bipartite splits but not fully separable (see subsection
3.1.2).
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The most important measures used for the entanglement of mixed
states can be grouped into three sets, operational measures, distance
measures and measures induced by the convex roof construction. Since
distance measures are usually defined on a state space regardless of
the structure of the underlying system, these measures can be used to
quantify the N-partite entanglement of N-partite systems. In contrast
to that operational measures stem from protocols which usually use
bipartite setups and are thus applicable to bipartite entanglement only.

Due to the vast number of possibilities we limit ourselves to recall-
ing only the most important entanglement measures used:

Convex roof construction This construction is used to extend
a measure defined on pure states to the regime of mixed states.
In the case of the entanglement measure on pure states Epure this
leads to the so-called entanglement of formation:

EOF(ρ) = inf
{pi,ψi}

∑

i

piEpure(ψi),
∑

i

pi = 1, pi ≥ 0, (1.30)

where the infimum is taken over all ensembles {piψi} fulfilling
ρ =

∑
i pi|ψi〉〈ψi|.

Distance measures The first measure constructed from this geo-
metrical point of view was the relative entropy of entanglement
[VP98]:

ERE(ρ) = inf
σsep.

S(ρ, σ), (1.31)

with the von Neumann relative entropy S(ρ, σ) = tr[ρ log ρ− ρ log σ].
Similar measures can be derived by taking other distance func-
tions such as the trace norm difference ‖ρ − σ‖1, the relative en-
tropy with reversed entries (see [EAP02]) etc., or other sets like
the biseparable or the PPT set. However, the relative entropy has
one more property that singles it out as an appropriate distance
measure. In fact the maximal entropic distance to the separable
regime is bounded from above by log d regardless of the number of
involved parties: For bipartite systems we know that

log d ≤ sup
ρ

inf
σ∈B

S(ρ, σ) ≤ sup
ρ

inf
σ∈D

S(ρ, σ), (1.32)

where B denotes the set of biseparable states and D separable
states. Taking σ to be the separable maximally correlated state
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σ̃ = 1
d

∑
|kk · · · k〉〈kk · · · k|, this expression can be bounded from

above by

sup
ρ

inf
σ∈D

S(ρ, σ) ≤ sup
ρ
S(ρ, σ̃)

≤ sup
ψ
− log

1

d
·
∑

k

〈ψ|kk · · · k〉〈kk · · · k|ψ〉 = log d

(1.33)

where the last inequality follows from the joint convexity of the
relative entropy (see [OP93]).

Operational measures In this set there are the two extremal
entanglement measures: Entanglement cost EC and entangle-
ment of distillation ED. These two measures are called extremal
since for any functional E satisfying (M1)-(M5’) (and not neces-
sarily (M5))

ED(ρ) ≤ E(ρ) ≤ EC(ρ) (1.34)

holds for all ρ [DHR02].
In the case of a distillation protocol one is interested in extracting
as much entanglement as possible from a finite number of states
in the following sense: Given n copies of the same bipartite state
ρ one can try to approximate mn copies of the maximally entan-
gled state of two qubits applying a LOCC map corresponding to a
protocol P. The entanglement of distillation is then defined as:

ED(ρ) = sup
P

lim
n→∞

mn

n
, such that ‖ρ⊗n − ρ⊗mn

max ‖1 → 0. (1.35)

It is the optimal rate at which one can “distill” maximally entan-
gled states out of the given state ρ.
Entanglement cost is defined in a dual way as the optimal rate at
which mn maximally entangled states can be converted via some
protocol P into n copies of some target state ρ:

EC(ρ) = sup
P

lim
n→∞

mn

n
, ‖ρmn

max − ρ⊗n‖1 → 0. (1.36)

With these definitions of entanglement cost and entanglement of dis-
tillation one natural question to ask is whether entanglement trans-
formations are reversible. This intuition turned out to be false due
to the existence of bound entangled states (entangled states with zero
distillable entanglement) having nonzero entanglement cost [VC01].

17



1.3 Symmetries, groups and all that jazz
Symmetry is the key concept used throughout this thesis. To show
how it is related to the powerful tools of algebra we recall the basic
definitions and apply them to a simple example which we will use later
on (see chapter 3), namely the permutation group S3 of three elements.

Since in the end we are interested in concrete quantum systems we
finish this chapter with the notion of a C*-algebra which will contain
all the operators acting on our concrete systems.

1.3.1 Symmetries, groups and representations
Symmetry is a property of objects first introduced in aesthetics for de-
scribing the harmony of proportions14. The contemporary description
of a symmetric object is that it is invariant under the action of some
transformation mapping it onto itself (an automorphism), like a reflec-
tion or a rotation. As an example let us take as object the arrangement
of three “things” labelled A, B and C. If the “things” labelled A and B
are equal we call the arrangement symmetric as it is invariant under
the transformation g(12) permuting the labels A and B. This symme-
try transformation is obviously not the only one possible for the object
under consideration. If all three “things” were equal the arrangement
would be invariant under any permutation of the three labels. The
set of all possible symmetry transformations of such an abstract object
forms a group15 G, in our case the permutation group

S3 = {e, g(12), g(23), g(31), g(123), g(321)}. (1.37)

Such a group contains the identity e (the “do nothing” transformation),
the inverse g−1 of any element g ∈ G (the reverse transformation) and
is closed under the concatenation g1 ◦ g2 of transformations (sequential
application of transformations), i.e. g1 ◦ g2 ∈ G for all g1, g2 ∈ G. A
complete picture of the action of a group (concatenation) is given by the
group table:
As one can readily read off the group table the group action of the S3 is
not commutative, i.e. the group is not abelian. In that case the group

14One of the first if not the first to use the word symmetry was Polykleitos (see
[Pol74]). He used the word σνµµετρια (same measure) in the context of the bilateral
symmetry of bodies. He described the use of symmetry in his treatise called Canon
as a set of proportions to be used by sculptors in order to achieve “the beautiful” in it.

15A group may have a whole continuum of elements like in the case of rotations.
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◦ e g(12) g(23) g(31) g(123) g(321)

e e g(12) g(23) g(31) g(123) g(321)
g(12) g(12) e g(321) g(123) g(31) g(23)
g(23) g(23) g(123) e g(321) g(12) g(31)
g(31) g(31) g(321) g(123) e g(23) g(12)
g(123) g(123) g(23) g(31) g(12) g(321) e
g(321) g(321) g(31) g(12) g(23) e g(123)

Figure 1.3: The group table of S3.

table would have been invariant under transposition. Another fact one
can see looking at the group table is that the elements of the group can
be divided into conjugacy classes, i.e. into sets of group elements that
are related via the conjugation with a third group element:

a ∼ b⇔ ∃u ∈ G:u ◦ a ◦ u−1 = b, a, b ∈ G. (1.38)

S3 has three conjugacy classes that are characterized by the cycle re-
presentation16 of the permutations:

{e}, {g(12), g(23), g(31)}, {g(123), g(321)}. (1.39)

The abstract nature of the notion of a group is at the same time its
most appealing character since it can be applied to almost any kind of
underlying objects. When, however, dealing with concrete objects, say
three identical quantum systems as in our case, one needs a represen-
tation of the group. Such a representation is a mapping D of the group
onto the set of concrete transformations of the objects which respects
the concatenation, i.e. D(g1 ◦ g2) = D(g1)D(g2) (a homomorphism). In
case of three identical quantum systemsH = � d⊗ � d⊗ � d for example,
we could take the representation D:G → B( � d ⊗ � d ⊗ � d) mapping a
permutation g onto a unitary operator Vg which permutes the single
tensor factors:

D:π 7→ Vπ =
d∑

i,j,k=1

|π(ijk)〉〈ijk|, ∀π ∈ S3. (1.40)

The fact that this group of symmetry transformations can be imple-
mented by a set of unitary operators is not a coincidence. In fact Wigner

16A cycle of length r is the permutation i1 → i2 → · · · → ir → i1, i.e. it cyclically
permutes the subset (i1, i2, . . . , ir) of {1, 2, . . . , N} and leaves the rest unchanged. Any
permutation can be uniquely decomposed into disjoint cycles.
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[Wig31] proved that any linear bijective map T :S(H) → S(H) of the
state space of some Hilbert space onto itself (automorphism) can be
implemented as T (ρ) = UρU ∗ via a unitary or anti-unitary operator U
which is unique up to a phase17.

Any representation space supporting a unitary representation can
be decomposed into a direct sum of invariant subspaces, that is of sub-
spaces K ⊂ H with D(g)K ⊂ K for all g ∈ G. The representation D
induces a subrepresentation on each of these invariant subspaces. As
a result any unitary representation can be decomposed into a direct
sum of irreducible representations18, that is a sum of representations
on subspaces Ki having only the trivial invariant subspaces {0} and Ki

itself. The decomposition into irreducible subrepresentations is unique
(up to a relabelling). For our example we get the decomposition

D ∼=
⊕

ν+

D+ ⊕
⊕

ν−

D− ⊕
⊕

ν0

D0 (1.41)

into the trivial representation D+ corresponding to the Bose subspace,
the alternating representationD− corresponding to the Fermi subspace
and a two-dimensional19 representationD0 corresponding to parastatis-
tics, each with a respective multiplicity ν+/−/0.

Just like states are dual to observables20, there is an object dual to a
group G, namely the dual group Ĝ consisting of the functions ĝ:G → �

,
satisfying ĝ(h1 ◦ h2) = ĝ(h1)ĝ(h2), called characters. To each unitary
representation D of a group is associated the character

χ:G → �
, χ(g) = tr[D(g)]. (1.42)

Since any unitary representation can be decomposed into a direct sum
of irreducible components it is not surprising that any character can be
written as a sum of characters corresponding to the irreducible repre-
sentations. Due to the cyclicity of the trace it is clear that a character
is a constant function on the conjugacy classes. It is thus sufficient to

17If not chosen properly this phase can lead to a projective representation:
D(g1)D(g2) = eiϕ(g1,g2)D(g1 ◦ g2). The group can then be enlarged by adding these
phases to the group. The resulting group is called the central extension and can be
represented by a non-projective representation.

18Actually, this is only true for unitary representations of compact groups (see
[FH91]).

19The dimension of an irreducible representation is given by the dimension of the
respective invariant subspace and can be read off the character table as the value of
the corresponding character taken on the unit element.

20States can be seen as maps ρ:B(H)→ � via A ∈ B(H) 7→ tr[ρA] ∈ � .
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give its value for one element per conjugacy class only. The character
table of a group G thus gives full knowledge of the dual group Ĝ:

{e} {g(12), g(23), g(31)} {g(123), g(321)}
χ+ 1 1 1
χ− 1 −1 1
χ0 2 0 1

Figure 1.4: The character table of S3.

For the special case of the permutation group Sn acting on n “ob-
jects” there is a nice graphical method to represent the irreducible rep-
resentations. If we take n boxes and arrange them into a tabular in a
way that the number of boxes decreases from row to row and from col-
umn to column we get the so-called Young frames. For S3 these would
be

χ+
∼= χ0

∼= χ− ∼= (1.43)

Assigning the numbers 1, . . . , n to the boxes in ascending order we get
the Young tableaux:

1 2 3
1 2
3

1 3
2

1
2
3

(1.44)

The dimension of an irreducible representation can then be computed
by counting the number of Young tableaux of the corresponding Young
frame.

1.3.2 C*-algebras
The set of unitary operators D(g) has more properties than those defin-
ing a group. Besides concatenating two of them (operator product) we
can add operators and we can take their adjoints in B(H). Furthermore
we can take the norm given on B(H) and look at the closure of linear
combinations of unitary operators D(g). The result is a C*-algebra, i.e.
a normed algebra with a norm satisfying the Gelfand property

‖A∗A‖ = ‖A‖2. (1.45)
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These operations have no counterpart in the group itself but can be
used to define new objects. Taking formal linear combinations of the
group elements we get the structure of an algebra, the group algebra
A(G): ∑

g∈G
f(g)g ∈ A(G), f :G → �

(1.46)

(for simplicity we identify the element of the group algebra with its
characteristic function f ). As such it has a center

Z(A(G)) = {g ∈ A(G)|g ◦ h = h ◦ g,∀h ∈ A(G)} (1.47)

which contains the projections onto the irreducible representations some-
times called the central projections. In our case they can be constructed
easily by summing up the elements of the group weighted with the
value of the character for the respective element:

p+ =
1

6
(e+ g(12) + g(23) + g(31) + g(123) + g(321)),

p− =
1

6
(e− g(12) − g(23) − g(31) + g(123) + g(321)),

p0 =
1

3
(2e− g(123) − g(321)) = e− p+ − p−.

(1.48)

In the case of non finite groups the summation in (1.48) is a little
more subtle. For “nice” groups (locally compact unimodular groups)
we can substitute the sum with the integration over the Haar measure
[Sim96]:

1

|G|
∑

g∈G
f(g) −→

∫

g∈G
f(g)dµH(g). (1.49)

For such “nice” groups this measure is uniquely defined and bears the
invariance property
∫

g∈G
f(g ◦ h)dµH(g) =

∫

g∈G
f(h ◦ g)dµH(g) =

∫

g∈G
f(g)dµH(g), (1.50)

for all h ∈ G, i.e. it is left and right invariant under group multiplica-
tions.

The second operation, the adjunction, can be taken to be a general
star operation ∗, that is a map with the properties known from the
adjunction: A∗∗ = A, (AB)∗ = B∗A∗ and (λA)∗ = λA∗ for all λ ∈ �

. Once
equipped with the star operation the group algebra is not a C*-algebra
yet, but merely a *-algebra. To make it a C*-algebra we need to define
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a C*-norm on it but since this is a very subtle point we omit it here (see
[Ped79] instead).

The representation we had for the group G can be used as a re-
presentation of the group C*-algebra only if it is compatible with the
star operation. For this it has to respect the star operation, i.e. for
any element f of the group C*-algebra we must have D(f ∗) = D(f)∗

(*-homomorphism).
As for the group itself we can decompose the group C*-algebra (and

even every finite dimensional C*-algebra) into a direct sum of matrix
algebras corresponding to the invariant subspace of the irreducible rep-
resentations. In the case of an abelian group these will obviously be
functions on the complex numbers only.

Another object we will need later on is the so-called commutant of
an algebra. If we take a subalgebra A1 ⊂ A this is the set

A′1 = {a ∈ A|ab = ba,∀b ∈ A1} (1.51)

which again forms an algebra. The center of an algebra is thus the
abelian subalgebra given by the commutant with respect to itself.
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Chapter 2

Multipartite symmetric states

“Symmetry, as wide or narrow as you may
define its meaning, is one idea by which
man through the ages has tried to compre-
hend and create order, beauty, and perfec-
tion.”

(Herrmann Weyl, Symmetry)

One of the difficulties in the theory of entanglement is that state spaces
are usually fairly high dimensional convex sets. Therefore, to explore
in detail the potential of entangled states one often has to rely on lower
dimensional “laboratories”.

There are basically two different ways of reducing a high dimen-
sional convex set to lower dimensional sets. Firstly, we may consider
projections of the given set by considering only a subset of the coordi-
nates describing a point in the original convex set (see figure 2.1) and
ignoring the others. Secondly, we may consider sections of the convex
set, i.e. intersections with suitable lower dimensional hyperplanes (see
figure 2.1) by fixing some of the coordinates.

As one can see in figure 2.1 both methods lead to lower dimensional
sets but give only partial knowledge of the original higher dimensional
object. To have a representative description it would thus be best to
have a section being at the same time a projection (or vice versa) like
in figure 2.2.
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6=

projection section

Figure 2.1: Sketch of a projection and of a section of a convex set.

section &
projection

Figure 2.2: Sketch of a sec-
tion which at the same time
is a projection.

This is, of course, not always possible.
For example, the only sections of a 3-ball,
which are also images of a projection, are
the intersections with planes or lines go-
ing through the origin.

However, in the special case of
the presence of a compact group of
affine symmetries acting on the convex
set there is fortunately a constructive
method of obtaining such sections. The
fixed points under the group action can
be taken as a section. The correspond-
ing projection onto these fixed points is
then given by averaging over the group
action. This technique was first used for
the construction of a one-parameter fam-
ily of bipartite states [Wer89], which has
come to be known as “Werner states”.

Since this chapter will mainly deal
with generalizations of this example we
start by giving a detailed description of
how to apply the abstract idea to derive
it. In the following sections we will then present generalizations with
respect to the number of particles and to the group of symmetry trans-
formations. We conclude by proving some simple relations between
symmetric states of different numbers of subsystems.

Further examples of multipartite symmetric states can be construct-
ed by composing the basic examples presented here like UUV V -invari-
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ant states for instance (see [EVWW01]) or by taking appropriate sub-
groups like { � ⊗ � , σx⊗σx, σy⊗σy, σz⊗σz} ⊂ U(2)⊗U(2) (see [BDSW96]).

2.1 Werner states
By Wigner’s Theorem [Wig31] the symmetries of quantum state spaces
can be implemented by unitary operators. The section and the projec-
tion can thus be written as

[ρ, Ug]− = 0,∀g ∈ G ⇐⇒ ρ =

∫

G
UgρU

∗
g dµH(g)

def
= TG(ρ). (2.1)

For the study of entanglement the interesting groups are those which
respect the decomposition of the total Hilbert space into a tensor prod-
uct, i.e. local unitaries like U ⊗ V , U, V ∈ U(d). The section in question
can thus be written as [ρ, U ⊗ V ]− = 0 for all U, V ∈ U(d). The corre-
sponding projection is then given by the group average over the Haar
measure21 [Sim96]:

∫
(U ⊗ V )ρ(U ∗ ⊗ V ∗)dµH(U)dµH(V ). Unfortunately

this “twirling” operation leaves only one state invariant, namely the
completely chaotic one ρ = � /d2. This can be seen when looking at the
section. Since U(d) is an irreducible representation of itself it is clear
that the only invariant operators are multiples of the identity22 � and
by normalization the statement follows.

In order to have a slightly larger family of states it was thus con-
venient to take the smaller local group given by local unitary operators
of the form U ⊗ U . Generally averaging over a smaller group leads to a
larger commutant. For the group algebra of {U ⊗ U |U ∈ U(d)} one can
easily compute23 that the commutant is given by the set of operators
spanned by { � , � }. Therefore any density operator ρ ∈ B( � d ⊗ � d)
having “Werner symmetry” can be written as

ρW (f) =
1

d3 − d
[(d− f) � + (df − 1) � ] , −1 ≤ f ≤ 1 (2.2)

21If the group is chosen properly the commutant given by the section condition will
result into a finite set of operators {Oi}. In this case the integral will depend only on
the expectation values tr[ρOi] and needs therefore not to be computed explicitly by
parameterizing the Haar measure which can be quite cumbersome.

22Actually, the twirling leads to states having chaotic reductions. But since these
states would have to be invariant under any U ⊗ V operators, they have to commute
with all operators of an operator basis Ui ⊗ Uj and therefore have to be proportional
to the identity.

23 It suffices to take diagonal unitaries and row permutations as special U ⊗ U

rotations for the computation.
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with f = tr[ρW (f) � ]. This family of states can be described by one single
parameter instead of d4 − 1 which is the number of real parameters
needed for a general state on B( � d ⊗ �

d). Nonetheless it was versatile
enough to investigate the relation of entanglement to the violation of
Bell inequalities ([Wer89]). In fact in the same article the separable
Werner states were already characterized in the following way:
Lemma 2.1.1: A Werner state ρW (f) ∈ B( � d ⊗ �

d) is separable iff

f ≥ 0 (2.3)

holds.

Proof: The proof is very simple. We start by looking at where pure
product states |ϕ ⊗ ψ〉 are being twirled on, i.e. by looking at the ex-
pectation value 〈ϕ ⊗ ψ| � |ϕ ⊗ ψ〉 = |〈ϕ|ψ〉|2 ≥ 0. Since the expectation
value tr[ρ � ] is a linear function of the density operator ρ this condition
holds obviously for convex combinations too. Conversely any Werner
state having a non-negative expectation value f can be written as the
projection of a pure product state. Since the twirl operation is LOCC
by construction it is clear that the resulting Werner state has to be
separable. ¥

As already mentioned this family of states turned out to be very
useful for the investigation of entanglement [Pop95, HH99]. This was
first of all due to the fact that separability within this family could be
decided easily. Secondly there is a simple operation, the twirl (group
averaging), which can be used to come back to this family after some
manipulation of the state. Furthermore when mixing various states of
this family the result is still within this set.

Entropic quantities can easily be computed since this family of states
is commutative, i.e. any two such states commute. In addition the spec-
trum and eigenvectors are fixed by their simple structure: These states
have only two different eigenvalues λ+ = 1+f

2ν+
and λ− = 1−f

2ν−
with the

multiplicities ν+ = d2+d
2

and ν− = d2−d
2

. The corresponding eigenvectors
form a basis of the Bose (λ+) and Fermi (λ−) subspace respectively. In
fact the normalized symmetric and antisymmetric projectors ρ± = 	 ± 


d2±d
are the extremal Werner states, i.e. the endpoints of the line given by
f ∈ [−1, 1]. Once again this is not a coincidence but a manifestation
of the algebraic nature of these states as we will see in the following
sections.
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2.2 Multipartite Werner states
One obvious N -partite generalization of these states is, of course, to
take the group G = {U⊗N} with U ∈ U(d). The hard part will then be to
compute the commutant of its group algebra to have a parametrisation
of the resulting state SU⊗N family24. It is clear that a direct computa-
tion like in footnote 23 will not give such a general result. Fortunately
there are some sophisticated tools from representation theory that will
do it for us. Since the proof is rather lengthy and technical, a subsec-
tion of its own has been devoted to it. The second subsection will then
deal with commutative and thus even simpler subsets of this family of
states.

2.2.1 Duality of U(d) and SN

For the proof that the commutant of the algebra generated by {U⊗N} is
exactly the group algebra of the SN 25 we follow [Sim96] and begin with a
lemma characterizing the vector space generated by {x⊗· · ·⊗x|x ∈ H}:
Lemma 2.2.1 ([Sim96], IX.11.4): LetH be a Hilbert space and the SN
act on H⊗N by permuting the tensor factors. Also let SN(H) ⊂ H⊗N be
the set of vectors that are invariant under all permutations Vπ ∈ SN .
Then SN(H) is the smallest space containing the set {x⊗· · ·⊗x|x ∈ H}.

Proof. Take the map P :x 7→ x ⊗ · · · ⊗ x. By definition derivatives of
P are limits of sums of values P (x) and thus still lie in the smallest
space K generated by {x ⊗ · · · ⊗ x|x ∈ H}. On the other hand a direct
computation gives:

∂

∂λ2 · · · ∂λN
P (e1 + λ2e2 + · · ·+ λNeN)

∣∣∣∣
λ2=0,...,λN=0

=
∑

π∈SN

Vπ(e1 ⊗ · · · ⊗ eN) = N ! · SymN(e1 ⊗ · · · ⊗ eN), (2.4)

with the symmetrizer SymN = 1
N !

∑
π∈SN

Vπ. Then, varying the vectors
e1, . . . , eN over all elements of some basis of H, we obtain the result

24We will denote families of symmetric states with the symbol S like the usual state
space and attach the respective symmetry group as an index (U⊗N in this case).

25We distinguish here between the group SN itself and the group of the represen-
tatives of the group elements SN = {Vπ|π ∈ SN}. Unless stated otherwise we will
use the “natural” representation of the permutation group defined in (1.40) given by
the permutation of the tensor factors.
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that K ⊃ Range(SymN) = SN(H). But since P (x) ∈ SN(H) it is clear
that K ⊂ SN(H) holds and thus K = SN(H). ¥

With this lemma we can now prove that the SU(d) and the SN

act dually on the Hilbert space H = (
�
d)⊗N via the representations26

D1(π) = Vπ as in (1.40) and D2(U) = U⊗N in the sense that the group
algebras A(D2(SU(d))) and A(D1(SN)) are commutants of each other:

A(D1(SN))
′ = A(D2(SU(d))). (2.5)

Theorem 2.2.2 ([Sim96], IX.11.5): SU(d) and SN act dually on (
�
d)⊗N

via the representations D1(π) = Vπ ∈ SN as in (1.40) and D2(U) = U⊗N .

Proof. As always the proof splits into an easy and a hard part. In fact
it is obvious that the set {A⊗N |A ∈ SU(d)} and thus the algebra B it
generates lie in the commutant A(SN)′. Therefore only the converse
inclusion (the hard part) remains to be shown. For this we start by
noting that B is quite large as it contains {A⊗N |A ∈ B( � d)}. To see this
let X ∈ su(d)27. Then (etX)⊗N is in B and again by definition also its
derivative which is:

d

dt
(etX)⊗N

∣∣∣∣
t=0

= X ⊗ � ⊗ · · · ⊗ � + · · ·+ � ⊗ � ⊗ · · · ⊗X
def
= dΓ(X). (2.6)

Addition of multiples of the identity leads to dΓ(X+λ � ) = dΓ(X)+λN �
which is again in B. Furthermore we have it that for X,Y ∈ u(d)
dΓ(X) + idΓ(Y ) = dΓ(X + iY ) lies in B too and therefore also their
exponentials. Such exponentials can be written as A⊗N with an invert-
ible A ∈ B(H). Since the invertible operators are dense in B(H) and B
is closed we have proved that {A⊗N |A ∈ B(H)} ⊂ B. Finally we have

A(SN)′ = {Γ ∈ B((
� d)⊗N)|VπΓ = ΓVπ for all π ∈ SN}

= {Γ ∈ B(( � d)⊗N)|VπΓV −1π = Γ for all π ∈ SN}
= span{A⊗N |A ∈ B( � d)} ⊂ B.

(2.7)

To sum up we have proved that A(SN)′ = B = A(D2(SU(d))). ¥

As all permutation operators Vπ commute with � ⊗N it is clear that
this result extends to the commutant of {U⊗N |U ∈ U(d)}. Coming back
to the multipartite Werner states (SU⊗N ) this already gives a possibil-
ity of parametrising them in a similar way as for the bipartite case:

26Note that the concept of duality depends directly on the chosen representations.
27The su(d) is the group of generators of the Lie algebra SU(d).
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Any multipartite Werner state ρ ∈ SU⊗N is uniquely determined by the
N ! expectation values xπ = tr[ρVπ] just like a bipartite Werner state
is completely described by its expectation value with the Flip f (and
with the identity). This is a remarkable reduction of the complexity
if one compares these N ! − 1 parameters with the d2N − 1 needed for
characterizing an arbitrary state. Moreover this parameterisation is
independent of the dimension!

However, the constraints for these parameters to describe a state,
i.e. for the described operator to be positive and of unit trace, are not
easy to derive. For that it might be appropriate to go to another set of
parameters that are in that sense more suitable. One such set of pa-
rameters can be derived by taking a closer look at the representations
D1(SN) and D2(SU(d)). As one might think they are not irreducible. In
analogy to (1.41) they can be decomposed into

D1(SN) =
⊕

Y
PYD

1(SN)PY

and D2(SU(d)) =
⊕

Y
PYD

2(SU(d))PY ,
(2.8)

where the Y are the Young frames labelling the irreducible representa-
tions of SN and the PY are the projections onto the invariant subspaces
of the respective irreducible representations Y. Putting a little effort
into it we can prove the following:

Corollary 2.2.3: The Hilbert space H =
( � d

)⊗N and the representa-
tions D1 and D2 can be decomposed in the following way:

H =
⊕

Y
HY ⊗KY ,

D1(π) ∼=
⊕

Y
D1
Y(π)⊗ � KY , π ∈ SN ,

D2(U) ∼=
⊕

Y
� HY ⊗D2

Y(U), U ∈ U(d),

(2.9)

where the D1
Y and D2

Y are irreducible representations with multiplicity
1 of SN and SU(d) respectively.

Proof. The proof follows directly from the simple observation that the
subrepresentations in (2.8) act dually on

( � d
)⊗N , too. This means that

PYA (D1(SN))PY = PYA (D2(SU(d)))
′
PY . Now since we are dealing
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with finite dimensional C*-algebras we have that due to

PYA
(
D1(SN)

)
PY ∩ PYA

(
D1(SN)

)′
PY

= PYA
(
D1(SN)

)
PY ∩ PYA

(
D2(SU(d))

)
PY

=
� � ,

(2.10)

both PYA (D1(SN)PY and PYA (D2(SU(d)))PY must be factors (see for
example [BR79]), that is isomorphic to some B(H)⊗ � . For each Young
frame Y there are unitary operators U 1

Y and U 2
Y implementing these

isomorphisms such that

U 1
YPYD

1PYU
1∗
Y = D1

Y ⊗ � KY
and U 2

YPYD
2PYU

2∗
Y = � HY ⊗D2

Y ,
(2.11)

where the Di
Y are irreducible representations and the identity repre-

sents the corresponding multiplicity. Since the PY commute with D1

and D2 the decomposition (2.9) follows by summing over all Young
frames Y. ¥

As the D2
Y act irreducibly on the KY any operator X commuting with

all U⊗N rotations will be of of the form X =
⊕

Y X
1
Y ⊗ � KY . To charac-

terize such invariant operators it will thus be enough to have a set of
operators building a basis for the B(HY). This decomposition suggests
the following parametrisation: Take as basis operators the central pro-
jections onto the irreducible representations of the SN , i.e. the Young
projections PY . To each frame Y take a set of operators {RYi } that can
serve as the generators of su(dimY). The advantage of this set of pa-
rameters is that positivity and the unit trace can be checked on each
direct summand, i.e. for each Young frame Y, individually. For an ex-
ample see chapter 3 where we will treat the case N = 3 in detail.

2.2.2 Commutative subfamilies of states
One of the nice features of the family of bipartite Werner states is that
it is commutative. From the algebraic point of view this is obvious since
we are dealing with the group algebra of S2 which is an abelian alge-
bra. This, however, is no longer true for N > 2. As commutativity of
the states simplifies the computation of distance measures and entan-
glement monotones it would be interesting to have a “laboratory” for
multipartite systems bearing this property.

Fortunately there are various subsets of the multipartite Werner
states SU⊗N that have this nice property of being commutative. One
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such subset is given by the analogue of the extremal bipartite Werner
states, namely the states given by the normalized Young projections
ρY = { PY

tr[PY ]
}. These states span the fully permutation invariant mul-

tipartite Werner states28 SU⊗,N×SN ⊂ SU⊗,N . The corresponding state
space is a simplex and can be obtained from the state space of multi-
partite Werner states by the non-local twirling operation given by the
averaging over SN , i.e. ρ 7→ 1

N !

∑
π∈SN

V ∗π ρVπ. It is clear that due to the
non-locality of the twirling operation the entanglement will not be af-
fected in a monotonic way. This operation itself will therefore not be
useful for the investigation of multipartite entanglement. Neverthe-
less the state family itself can be used for this purpose.

As already mentioned, the corresponding state space is a simplex
spanned by the extremal states which are given by the normalized
Young projections. Any such state can thus be written as ρ =

∑
Y λYρY

where
∑
Y λY = 1 and λY ≥ 0. This again implies that the spectrum

and the eigenvectors are completely fixed in the following way: For
each Young frame we have as many different eigenvalues as the di-
mension of the corresponding irreducible representation dimY, each
with a dimension dependent multiplicity of tr[PY ]

dimY . The corresponding
eigenvectors can be chosen to be a basis of the respective invariant sub-
space PYH. For a concrete example we refer again to chapter 3 where
we will compute some entanglement monotones for the corresponding
permutation invariant states.

This is, however, neither the only commutative subfamiliy nor the
biggest possible. If we leave the center of the group algebra A(SN) we
can indeed find larger abelian subalgebras. All we need is to recall
that we are dealing with a finite dimensional C*-algebra which is as
such isomorphic to a direct sum of matrix algebras (see [BR79]). This
corresponds exactly to the decomposition into invariant subspaces of
corollary 2.2.3. To get a Cartan subalgebra29 we thus need only to
find a complete set of projections for each matrix algebra in the di-
rect sum. In our case if we take, for example, N = 3 the permutation
invariant subalgebra has the minimal projections P+, P− and P0 corre-

28Note that the concatenation of two twirls (TG and TH) does not lead to a twirl on
a larger group. However, this is true if the two representations of G and H act dually
(see (2.5)). In this case one obtains the twirl on the direct product of the two groups:
TH(TG(A)) = TH×G(A). If the two representations do not act dually one can show
that the iteration of both, TG ◦ TH and TH ◦ TG , leads to the intersection of the single
commutants as invariant subspace in the limit of infinite iterations.

29A Cartan subalgebra is a maximal abelian subalgebra, maximal in the sense that
it cannot be enlarged by adding more elements of the algebra.
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sponding to the trivial, the alternating and the standard representa-
tion (see [FH91]). The standard representation is two-dimensional and
has, therefore, two standard tableaux:

∼= 1 2
3

+ 1 3
2

. (2.12)

Just like for the frames there are projections onto the standard tableaux.
But contrary to those these projections are minimal for the whole group
algebra and not only for its center. In consequence the corresponding
minimal projections

1 2
3

∼= P0,1 = � + V(12) − V(13) − V(132)

1 3
2

∼= P0,2 = � − V(12) + V(13) − V(123)

(2.13)

do not lie in the center any more. Nevertheless we have P0 = P0,1 +
P0,2, so taking the algebra spanned by {P+, P−, P0,1, P0,2} we get a larger
abelian subalgebra which cannot be enlarged any further. This choice
is obviously not unique since we have the freedom to choose the basis
in the two-dimensional eigenspace of P0. It is therefore not surprising
that there are various equivalent Cartan subalgebras.

This second construction can be done explicitly for any N too. There
is an explicit method of deriving the projection onto a Young tableau
based on the corresponding standard tableau only (see [Sim96]). Since
the group algebra is a maximal abelian subalgebra it is clear that its
commutant is the subalgebra itself. Therefore we also have a corres-
ponding (non-local) twirl given by the averaging over the elements of
the maximal abelian subalgebra.

Comparing the second subfamiliy with the first one sees that all we
did was to divide the eigenspaces of the Young projections into finer
subspaces, namely the eigenspaces of the projections onto the stan-
dard tableaux. Any two different eigenvalues of a permutation invari-
ant state are now given different subspaces making the spectrum even
simpler. The corresponding eigenvectors can then be chosen to be a
basis of the projection onto the respective standard tableau.

2.3 Orthogonally symmetric states
Besides Werner states other families of bipartite symmetric states have
been of importance for quantum information like Bell-diagonal states,
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isotropic states, orthogonally invariant states etc. Both, the isotropic
states and the orthogonally invariant states, are closely related to the
Werner states.

Isotropic states have been named after the property of the corres-
ponding dual channel (see 1.1.3 and [HH99]), namely that it does not
prefer any direction in the state space. They are related to the Werner
states via partial transposition in the sense that the commutants of
{U ⊗ U} and {U ⊗ U} are mapped onto each other by the partial trans-
position30. In fact, a simple computation shows that the commutant of
{U ⊗ U} is spanned by { � , |Ω〉〈Ω|} with the maximally entangled state
|Ω〉 = 1√

d

∑d
i=1 |ii〉 (see (1.12)).

The orthogonally symmetric states have been introduced to have
a larger bipartite symmetric family than the Werner and the isotropic
ones. This family contains both the Werner and the isotropic states and
can be obtained by taking the smaller group given by U ⊗ U = U ⊗ U .
The result is the family of states that are invariant under real unitary
rotations, i.e. orthogonal rotationsO⊗O. The commutant of the smaller
group algebra of {O ⊗ O|O ∈ O(d)} is, of course, larger being spanned
by { � , � , |Ω〉〈Ω|}.

For both families multipartite generalizations are quite obvious.
This section is devoted to the largest among these families, namely
the O⊗N invariant states, and to a nice graphical representation of the
corresponding algebra.

2.3.1 The “chip” representation
The commutant of the O⊗N invariant states can be computed easily us-
ing the basic fact they are finite dimensional C*-algebras31. Therefore
we have (see [BR79]):

(
A(U⊗N) ∩ A(U⊗N−1 ⊗ U)

)′
= A(U⊗N)′ ∨ A(U⊗N−1 ⊗ U)′. (2.14)

From this we see that all groups with one complex conjugated site are
equivalent for our purpose, since they all generate the commutant for
O⊗N invariant operators. Furthermore it is clear that the algebra gen-
erated by the right side of (2.14) also contains all commutants of op-
erators being invariant under U⊗n ⊗ U⊗N−n for any 0 ≤ n ≤ N . To

30Note that partial transpositions and complex conjugations are basis-dependent.
31Finite dimensional C*-algebras are automatically weakly closed, i.e. von

Neumann-algebras.
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describe the commutant of {O⊗N |O ∈ O(d)} we can thus concentrate on
the commutants of {U⊗N |U ∈ U(d)} and {U⊗N−1 ⊗ U |U ∈ U(d)}.

One fundamental property will be the size of the generated group
algebra which will give a hint on the possible decompositions into irre-
ducible representations. To keep the computations simple we start by
introducing a graphical notation for the operators involved which we
will denote as the “chip” representation.

Any permutation operator Vπ of the “natural” representation of the
SN can be written in Dirac notation as

Vπ =

d,...,d∑

i1,...,iN

|π(i1, . . . , iN)〉〈i1, . . . , iN |, (2.15)

where π(i1, . . . , iN) denotes the π-permuted entries i1, . . . , iN . Graphi-
cally such a ketbra can be interpreted as a “chip” having N pins on the
right (inputs) and N pins on the left (outputs). A permutation operator
then corresponds to a “chip” connecting the inputs with the outputs via
the respective permutation:

V(2)(143) ≡

Figure 2.3: The visualization of a permutation as a “chip”.

The partial transpositions swap some of the inputs with the corres-
ponding outputs and can generate loops on both sides:

�
������

Figure 2.4: The action of a partial transposition on a “chip”.

Products of elements of the “chip” group can be computed easily by
joining the outputs of the first with the inputs of the second “chip”:
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� �

Figure 2.5: Building the product of two “chips”.

The adjoint operator is equal to the representing operator of the
inverse group element32 and can thus be obtained by interchanging
inputs and outputs:

∗

−→

Figure 2.6: Taking the adjoint of a “chip”.

Finally we can also compute the trace of a chip graphically. The
trace of a chip is equal to dl, where l is the number of loops that emerge
from connecting the inputs with the outputs:

��� �����

Figure 2.7: Computing the trace of a “chip”.

Using this graphical notation we can now easily count the number
of elements in the commutant of O⊗N .

Corollary 2.3.1: The commutant of A(O⊗N) is given by the “chip” al-
gebra, which is a finite dimensional C*-algebra of order (2N − 1)!!.

32This is, however, only due to the fact that we are using a unitary representation,
which is the general case.
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Proof. By construction we have already obtained that the “chip” alge-
bra is the commutant of A(O⊗N). What remains to be done is to count
the number of such “chips”. As any ketbra corresponds to one connec-
tion of two pins we can count the number of different sets of connec-
tions. For the first one we get 2N − 1 possible connections with the first
input pin. For the second connection we may not use the first input pin,
the corresponding connected pin and the next input pin leaving 2N − 3
possibilities and so on. ¥

If we take, for example, N = 2 we get dimA(O⊗2)′ = 3!! = 3 “chips”
which correspond to { � , � , |Ω〉〈Ω|}. To have an idea of the decomposi-
tion into irreducible representations we can use the orthogonality rela-
tions33. For N = 2 we have three “chips” leading to

3 = 12 ⊕ 12 ⊕ 12, (2.16)
i.e. three one-dimensional irreducible subrepresentations. For N = 3
we already have 15 elements and the orthogonality relations do not
help to find the decomposition. A straightforward but lengthy compu-
tation34 gives

15 = 12 ⊕ 12 ⊕ 22 ⊕ 32. (2.17)
Unfortunately the group given by the “chips” is by far not so well-
known as the permutation group so that there are no abstract tools
like the Young frames for computing the decomposition other than di-
rectly. The parametrisation of O⊗N invariant states is still possible via
the expectation values with the “chips”, but for testing positivity one
will first have to compute by hand the decomposition into irreducible
subrepresentations to boil the problem down to a parametrisation sim-
ilar to that of multipartite Werner states. Commutative subfamilies of
states (for N ≥ 3) can be obtained in the same way as for the multipar-
tite Werner states, but since the decomposition is not abstractly given
we refrain here from presenting examples.

2.4 The power of reduced states
The last section of this chapter is devoted to the behaviour of multi-
partite symmetric states upon reducing or extending the underlying

33Different irreducible representations are orthogonal to each other. In conse-
quence the order of the group is equal to the sum of the squares of the dimensions of
the irreducible representations (see [Sim96] Theorem III.1.3).

34For simplicity’s sake we implemented the “chip3” algebra in Mathematica c© to
compute the reduction.
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system. As one would expect, some symmetry will be left when adding
or removing subsystems. The more interesting observation, however, is
that when extending the system not only the symmetry but also most
of the information will already be fixed by the given reductions as was
first pointed out by [LPW02].

2.4.1 Reducing symmetric states
In the special case of multipartite Werner and orthogonal symmetric
states the reductions can be easily computed by using the correspond-
ing twirling operation. Due to the cyclicity of the trace it is clear that
the reduced states inherit the multipartite Werner symmetry:

trN {ρN} = trN

{∫

U(d)

U⊗NρNU
∗⊗NdH(U)

}

=

∫

U(d)

U⊗(N−1)ρN−1U
∗⊗(N−1)dH(U)

=

∫

U(d)

U⊗(N−1)trN{ρN}U ∗⊗(N−1)dH(U)

(2.18)

and likewise for the orthogonal symmetry. The same holds obviously
for the permutation invariance: Removing one subsystem leads to a
state invariant under all permutations of SN−1.

For extremal permutation invariant multipartite Werner states we
can even read off the reduced states from the corresponding Young
frame. But to see how to read them off we will need one more result
related to the branching laws of the SN . As we will not need this result
later on we restrict ourselves to stating it omitting the proof35.

Theorem 2.4.1 ([Sim96], VI.4.1): Let DY be the irreducible repre-
sentation of the SN corresponding to the Young frame Y. Then the
restriction of DY onto SN−1 can be decomposed into

Res
SN−1

SN
(DY(U)) =

⊕

Y ′CY
DY ′(U), (2.19)

where Y ′CY indicates that the Young frame Y ′ can be obtained from Y
by removing one square.

35When missing we refer for the proof to the cited number in the respective book.
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For the Young projections 36pY of the SN this implies that removing
one item (subsystem) leaves a sum of Young projections of the SN−1:

pY
Res

SN−1
SN−−−−−→

∑

Y ′CY
pY ′ . (2.20)

On the other hand this means that for the normalized Young projec-
tions eY = pY

dim(Y) we have the following N − 1-systems reductions:

eY
Res

SN−1
SN−−−−−→

∑
Y ′CY pY ′∑

Y ′CY dim(Y ′) =

∑
Y ′CY dim(Y ′)eY ′

dim(Y) . (2.21)

By construction the dimension of a representation does not change
upon restriction. Therefore dim(Y) = ∑Y ′CY dim(Y ′) holds. This result
translates directly to the corresponding extremal permutation invari-
ant Werner states:

ρY
trN−−→

∑

Y ′CY
λY ′ρY ′ , λY ′ =

dim(Y ′)∑
Y ′CY dim(Y ′) . (2.22)

The dimension of an irreducible representation can be read off the
corresponding Young frame via the Hook length rule:
Lemma 2.4.2 ([FH91], 4.12): Let Y be a Young frame of the SN , then
the dimension of the corresponding irreducible representation is given
by

dim(Y) = N !∏
Hook lengths

, (2.23)

where the Hook length of a box in a Young frame is the number of
squares directly below or directly to the right of the box, including the
box once.

For example, applying the Hook rule to a Young frame of the S8

gives

Hook rule−−−−−−−−→
6 4 3 1
4 2 1
1

. (2.24)

The corresponding dimension can then be calculated to be 8!
6·4·4·3·2 = 70.

Taking the Hook rule together with (2.22) we have derived a graph-
ical method for the computation of the reduced states. We summarize

36Note that we distinguish here between the Young projections in group Algebra
A(SN ) denoted by a small pY and the represented ones denoted by a capital PY .
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this method by giving an example. For this let N = 6, then our method
gives, for example,

Res
S5
S6−−−→ + (2.25)

and

ρ
tr6−→ 5

9
ρ +

4

9
ρ . (2.26)

As one might think we can see directly from the branching laws that
the reduced states will most often be not again extremal but a mixture
of the new extremal ones. There are, however, special situations where
extremality is inherited like

Res
S3
S4−−−→ . (2.27)

Two situations are in this sense very special as all restrictions from
N − 1 to 2 remain extremal, namely the totally symmetric and totally
antisymmetric states:

1 2 · · · N
ResSn

SN−−−−→ 1 2 · · · n and

1
2
...
N

ResSn
SN−−−−→

1
2
...
n

(2.28)

The completely antisymmetric states for N = d have recently been in-
vestigated in detail. In that case one has a pure state37 which can be
used to solve the N strangers problem, the secret sharing problem and
the liar detection problem [Cab02].

2.4.2 Extending symmetric states
Given a set of density operators it is not always possible to find an
extension to one overall state. The most prominent example of this is
certainly that three parties cannot be pairwise maximally entangled.

37In fact, this is the only pure state in the family of multipartite Werner states.
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In subsection 3.3.1 we will study when such an extension from bipartite
to tripartite Werner states is possible. This subsection, however, will
deal with the special properties that a symmetric extension has if it
exists.

Another specialty of the totally antisymmetric state with d = N is
that it is completely determined by its two particle reductions:
Lemma 2.4.3: Let ΨN

− ∈ H⊗N with dimH = N be the totally antisym-
metric singlet state

|ΨN
− 〉 =

1√
N !

∑

i1,...,iN

εi1,...,iN |i1, . . . , in〉. (2.29)

For any N this state is completely determined by its bipartite reduc-
tions, i.e. there is no other state such that all its two-party reduced
states are proportional to the projector P− = 	 −F

2
onto the antisymmet-

ric subspace.

Proof. The proof is based on the fact that Fermi-/Bose symmetry can
be decided on the level of bipartite reductions. Assume that we have
a state ρ with spectral decomposition ρ =

∑
i λi|λi〉〈λi| and bipartite

reductions proportional to P−. Then every eigenvector has to satisfy
〈λi| � ⊗ P+|λi〉 = 0 which implies ( � ⊗ P−)|λi〉 = |λi〉. Hence, we have
( � ⊗ � )|λi〉 = −|λi〉 (for every � ) such that every eigenvector of ρ has to
be totally antisymmetric. However, the totally antisymmetric subspace
for d = n is one-dimensional, and thus ρ = |ΨN

− 〉〈ΨN
− |. ¥

Although this situation may seem very special, in [LPW02, LW02]
it was shown that for pure states it is quite common. In fact, they
proved that almost every such pure state is completely determined by
reductions of not more than two third of the parties. For mixed states,
however, the situation is different. The extension is in general not
unique and symmetric N − 1 particle reductions do not even imply the
symmetry of the full state. Indeed, ρ + ε

⊗n
i Ai with tr[Ai] = 0 and ρ

having full support with ε sufficiently small has the same reductions
as ρ but need not be symmetric.

One possibility of distinguishing between one state ρ and the var-
ious possible extensions of its k particle reductions is to look at the
information contained in the states. In [LPW02] a measure was in-
troduced characterizing the extent to which lower order correlations
already determine higher ones that can be seen as an analogue to the
mutual information for the bipartite case. For a state ρ ∈ B

(
H⊗N

)
with
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k-party reductions ρK
def
= trN\K [ρ] where K ⊂ N = {1, . . . , n}, k = |K| the

measure proposed therein is then defined as

Mk := sup
ρ̃

|K|=k
ρ̃K=ρK

{S(ρ̃)− S(ρ)} , (2.30)

where S(ρ) is the von Neumann entropy. The symmetric extension
turns out to be among the few optimal ones for Werner states:

Lemma 2.4.4: Let the k-party reduced states of ρ have Werner sym-
metry, i.e.

[
U⊗k, ρK

]
− = 0, for all U ∈ U(d), then there exists an optimal

state ρ̃ achieving the supremum in (2.30) which has itself Werner sym-
metry with respect to all N tensor factors.

Proof. Assume that ρ̃ is any state having the reductions ρ̃K = ρK . Then
the twirled state

TU⊗N (ρ̃) =
∫

U(d)

U⊗N ρ̃U∗⊗NdU (2.31)

has the same k-party reductions as ρ if
[
U⊗k, ρK

]
− = 0 holds:

trN\K {TU⊗N (ρ̃)} =
∫

U∈U(d)
U⊗kρ̃KU

∗⊗kdU = ρK . (2.32)

Hence TU⊗N (ρ̃) is again a valid state for (2.30). Moreover, since TU⊗N (ρ̃)
is a convex mixture of states having the entropy S(ρ̃), and the von Neu-
mann entropy is concave, we have S (TU⊗N (ρ̃)) ≥ S (ρ̃). Therefore the
optimum in (2.30) is attained for a symmetric state TU⊗N (ρ̃) = ρ̃. ¥

In a similar way the symmetric extension turns out to be among the
optimal ones in the case of an additional permutation invariance:

Lemma 2.4.5: Let a permutation invariant state ρ have k-party reduc-
tions which have in turn Werner symmetry. Then there is an optimal
ρ̃, which has also Werner and permutation symmetry.

Proof. Due to Lemma 2.4.4 it only remains to be shown that the twirl
operation corresponding to permutation symmetry, i.e.

TSN
(ρ̃) =

1

N !

∑

π∈SN
Vπρ̃V

∗
π (2.33)

preserves the reductions ρ̃K . Following Lemma 2.4.5 we can assume
that there is an optimal ρ̃ having Werner symmetry, that is its k-party
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reductions are completely determined by the expectation values of the
permutation operators xσ(ρ̃) = tr[Vσρ̃], where σ ∈ Sk and Vσ is the iden-
tity on at least N − k sites. Moreover, permutation symmetry requires
that xσ(ρ̃) = xσ′(ρ̃) if σ and σ′ belong to the same conjugacy class, i.e. if
there is a π ∈ SN such that πσπ−1 = σ′. The reductions of the twirled
state are then characterized by

xσ (TSN
(ρ̃)) =

1

N !

∑

π∈SN

tr[ρ̃V ∗π VσVπ] = xσ(ρ̃). (2.34)

That is the permutation twirl in (2.33) preserves the reductions in the
considered case. ¥

Summarizing we can say that the twirling operations not only wipe
out the local information38 but also minimize39 the information differ-
ence between the overall state and its reductions.

38Single parties have a completely chaotic reduced state for Werner and orthogonal
symmetry.

39According to Jaynes’ principle (see [Jay57a, Jay57b]) the state fulfilling the ad-
ditional requirements that has maximal entropy is the most unbiased estimator and
thus leads to the minimal information.
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Chapter 3

Tripartite Werner states

“Three is a large number.”

(David Stove, The Plato Cult and Other
Philosophical Follies)

In this chapter we will explore the properties introduced in chapter 1
for an example of the states introduced in chapter 2. The simplest
non-trivial example is the family of tripartite Werner states. It is the
simplest since we will have to deal with only five parameters and it is
nontrivial as it already shows the peculiarity of multipartite entangle-
ment and of non-commutativity. We will start by studying the sepa-
rability properties comparing the analytical results with the strongest
separability criteria, namely the positivity of the partial transpose and
the cross norm criteria. Afterwards we move on to their entanglement
properties. Following chapter 2 we will then turn to the predictive
power of their reduced states and finish by taking a closer look at the
manifold generated by this state family relating it to the problem of
state estimation for this special class. Most of this chapter (though not
all) has already been published in [EW01].

As shown in subsection 2.2.1 tripartite Werner states can be written
in terms of the permutation operators of the S3:

ρ ∈ SU⊗3 ⇐⇒ ρ =
∑

π∈S3

µπVπ (3.1)

with unitary operators Vπ defined as in (2.15). The above equation,
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however, does not treat the question how to recognize density matrices
in terms of the six coefficients µπ. Hermiticity requires µπ−1 = µπ, leav-
ing, effectively, six real parameters. One more is fixed by normaliza-
tion, so that SU⊗3 is embedded in a five-dimensional real vector space.
In terms of the parameters µπ positivity is not easy to see. For this
reason we will take the second parametrisation presented in 2.2.1 and
consisting of the projections onto the irreducible representations P+,
P− and P0 and three more operators. Due to the fact that the third
irreducible representation is two-dimensional it is isomorphic to the
2 × 2-matrices. Therefore we can take the remaining three operators
R1, R2, R3 as analogue to the Pauli matrices. The new basis is then:

R+ = P+ =
1

6

( � + V(12) + V(23) + V(31) + V(123) + V(321)
)
,

R− = P− =
1

6

( � − V(12) − V(23) − V(31) + V(123) + V(321)
)
,

R0 = P0 =
1

3

(
2 · � − V(123) − V(321)

)
,

R1 =
1

3

(
2V(23) − V(31) − V(12)

)
,

R2 =
1√
3

(
V(12) − V(31)

)
,

R3 =
i√
3

(
V(123) − V(321)

)
.

(3.2)

In other words, the six hermitian operators R+, R−, R0, R1, R2, R3 are
characterized by the commutation relations RiR± = R±Ri = 0, R2

i = R0,
for i = 0, 1, 2, 3, and R1R2 = iR3 with cyclic permutations.

Now every operator ρ ∈ SU⊗3 can be decomposed into the orthogo-
nal parts R+ρ, R−ρ, and R0ρ, and positivity of ρ is equivalent to the
positivity of these three operators. This leads to the following lemma:
Lemma 3.0.6: For any operator ρ on H ⊗ H ⊗ H define the six pa-
rameters rk(ρ) = tr[ρRk], for k ∈ {+,−, 0, 1, 2, 3}. Then we have that
rk(TU⊗3(ρ)) = rk(ρ). Moreover, each ρ ∈ SU⊗3 is uniquely characterized
by the tuple (r+, r−, r0, r1, r2, r3) ∈ � 6, and such a tuple belongs to a
density matrix ρ ∈ SU⊗3 if and only if

r+, r−, r0 ≥ 0, r+ + r− + r0 = 1

and r21 + r22 + r23 ≤ r20. (3.3)

Proof. The positivity of r+, r− and r0 is given by definition as well as
the identity r+ + r− + r0 = 1. We then only have to check the positivity
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of the two-dimensional part which is isomorphic to

P0ρP0
∼= 1

2

(
r0 + r3 r1 − ir2
r1 + ir2 r0 − r3

)
. (3.4)

For 2× 2-matrices positivity is equivalent to positivity of the trace and
of the determinant. Since the trace gives tr[P0ρP0] = r0, it is already
positive and we only have to demand the positivity of the determinant,
i.e. detP0ρP0 = r20 − r21 − r22 − r23 ≥ 0. ¥

As already mentioned this parametrisation does not depend on the
dimension of the underlying Hilbert space except for one case: for d = 2
the antisymmetric projection R− is simply zero, so for qubits we get the
additional constraint r− = 0.

Taking r0 = 1 − r+ − r− to be redundant, we get a simple represen-
tation of SU⊗3 as a convex set in five dimensions. Unfortunately, five-
dimensional sets are still not very amenable to graphical representa-
tion. In order to visualize the sets we are going to describe analytically,
we will therefore use suitable two- and three-dimensional representa-
tions. Again, we have the possibility of using sections or projections of
SU⊗3 , and we will emphasize sections which can also be understood as
projections.

The simplest example of this is to take the subset SU⊗3,S3
⊂ SU⊗3 of

states, which also commute with all permutations. The corresponding
projection is simply averaging with respect to permutations. Clearly,
SU⊗3,S3

consists of those operators in SU⊗3 , which are linear combina-
tions of R+, R−, R0 alone. Taking r+ and r− as coordinates we get the
triangle in figure 3.1. Thus each point in this triangle represents a
density operator in SU⊗3,S3

. On the other hand, it represents the set of
states in SU⊗3 projecting to it on permutation averaging: this will be all
states with the given values of r+ and r− in the six-tuple, which there-
fore differ only in the values of r1, r2, and r3. Thus over every point of
the triangle in figure 3.1 we should imagine a Bloch sphere of radius r0.

If more detail is required, we will also use three-dimensional sec-
tions and/or projections of a similar nature. For example, if we average
only over the permutation V(23), we get the subset S (23)

U⊗3 ⊂ SU⊗3 with
r2 = r3 = 0 (see the dotted tetrahedron in figure 3.10). Averaging only
over cyclic permutations, we get the subset S cyc

U⊗3 ⊂ SU⊗3 with r1 = r2 = 0

(which gives the same tetrahedron as S (23)

U⊗3 with r1 substituted by r3.).
We note for later use that the expectation values rk are not the coef-
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Figure 3.1: Description of SU⊗3 in terms of the triangle SPU⊗3 and the cor-
responding Bloch sphere for each point in SPU⊗3 . The sphere represents
the two-dimensional representation χ0 whereas the triangle represents
the two one-dimensional ones χ+ and χ− (see (1.43)).

ficients in the sum
ρ =

∑

k=+,−,0,1,2,3
ckRk. (3.5)

These are related to the rk by the following dimension dependent trans-
formation (which is obtained by observing that tr[ � ] = d3, tr

[
V(12)

]
= d2,

and tr
[
V(123)

]
= d):

r+ =
d

6
(d2 + 3d+ 2)c+

r− =
d

6
(d2 − 3d+ 2)c−

ri =
2d

3
(d2 − 1)ci for i = 0, 1, 2, 3.

(3.6)

These dimension dependent factors stem from the representation used.
In fact, one can easily see that they correspond exactly to the multiplic-
ities in the decomposition given by (2.9). They are equal to the dimen-
sion of the Bose subspace tr[P+] =

1
6
(d3 +3d2 +2d), the dimension of the
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Fermi subspace tr[P−] =
1
6
(d3 − 3d2 + 2d) and to the dimension of the

complement tr[P0] = d3 − tr[P+]− tr[P−] =
2
3
(d3 − d).

With this characterization of tripartite Werner states at hand, we
can start exploring their separability properties.

3.1 Separability properties
We now describe the natural separability properties we will chart for
these special states.

Of course, we can split the system into just two subsystems and ap-
ply the usual separability/entanglement distinctions. A split 1|23 then
corresponds to the grouping of the Hilbert space H1 ⊗ H2 ⊗ H3 into
H1 ⊗ (H2 ⊗H3). We call a density operator ρ on this Hilbert space 1|23-
separable, or just biseparable if the partition is clear from the context,
if we can write

ρ =
∑

α

λα ρ
(1)
α ⊗ ρ(23)α , (3.7)

with λα ≥ 0 and density operators ρ(23)α on H2 ⊗ H3. We will denote
the set of such ρ by B1. This set will be computed in subsection 3.1.2.
Furthermore, as they are necessary conditions for biseparability (see
[Per96]), we are going to look at those states ρ having a positive partial
transpose with regard to such a split, denoted by ρ ∈ P1, and at those
states satisfying the realignment criteria (see [Fan02]). It is clear that
B1 ⊂ P1 holds, but as we will show in section 3.1.4 by computing P1,
this inclusion is strict except for d = 2.

As a genuinely “tripartite” notion of separability, we consider states,
called triseparable (or “three-way classically correlated”), which can be
decomposed as

ρ =
∑

α

λα ρ
(1)
α ⊗ ρ(2)α ⊗ ρ(3)α , (3.8)

where λα ≥ 0, and the ρ
(i)
α are density operators on the respective

Hilbert spaces. The set of such density operators will be denoted by T .
Of course, we may also consider states which are biseparable for all
three partitions. It is known from [BDM+99] that this does not im-
ply triseparability, i.e. T $ (B1 ∩ B2 ∩ B3). Further examples of states
showing triple biseparability but not triseparability will be found in
subsection 3.1.2. Since we will only be interested in a five-dimensional
set SU⊗3 of symmetric states, we will from now on use the symbols T ,B1

and P1 only for the corresponding subsets of SU⊗3 .
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Figure 3.2: Subsets of SU⊗3,S3
with different separability properties.

Black: triseparable states, dark grey: biseparable states, light grey:
images of biseparable states under permutation averaging. Special
points labelled by letters are explained in the text.

An overview of the main results of the separability properties is
given in figure 3.2. To keep the picture as simple as possible, we have
only depicted the set SU⊗3,S3

, i.e. the triangle in figure 3.1. Naturally,
this reduction does not allow the representation of our full results, i.e.
the detailed structure of the five-dimensional convex sets T , B1 and
P1, which will be described in the corresponding sections. However, we
found this diagram quite useful as a basic map in order not to lose our
way in five dimensions.

The shading in figure 3.2 marks different separability properties,
and the points labelled with capital letters arise by projecting pure
states with special properties with the twirl projection TU⊗3 . Some of
these points (D,E and F) do not lie in the plane SU⊗3,S3

, i.e. they have
non-zero coordinates (r1, r2, r3). They are represented by white circles,
in contrast to the black circles (A,B,C,G and H) representing permuta-
tion invariant states in the plane SU⊗3,S3

.
The triseparable states correspond to the black triangle 4(ABC).

It is easy to see that any triseparable state projected by permutation
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averaging to SU⊗3,S3
is again triseparable, i.e. the projection of T onto

SU⊗3,S3
coincides with T ∩ SU⊗3,S3

. The extreme points of this set are

A :|123〉 −→ (1/6, 1/6, 0, 0, 0), B : |111〉 −→ (1, 0, 0, 0, 0),

C :(|111〉 −
√
3|112〉+

√
3|121〉 − 3|122〉)/4 −→ (1/4, 0, 0, 0, 0),

(3.9)

where the notation Ψ −→ (r+, r−, r1, r2, r3) indicates that the pure state
|Ψ〉〈Ψ| is projected to this point by TU⊗3 . In other words, 〈Ψ|RkΨ〉 = rk
for k = +,−, 1, 2, 3. Note that all three vectors given are product vec-
tors, the one for C being the product of three vectors in the “Mercedes
star” configuration in the plane, at angle 120◦ from each other.

A quantitative description of the genuinely tripartite entanglement
of SU⊗3 is given in section 3.2 in terms of the relative entropy, the trace
norm distance and violations of tripartite Bell inequalities.

The biseparable set B1 is not permutation invariant, since the parti-
tion 1|23 clearly is not. As a consequence, the permutation average pro-
jecting SU⊗3 onto SU⊗3,S3

does not map B1 into itself, and we have to dis-
tinguish in our diagram between points (r+, r−) such that (r+, r−, 0, 0, 0)
is biseparable (i.e. the intersection B1∩SU⊗3,S3

), and points (r+, r−) such
that for some suitable (r1, r2, r3) the quintuple (r+, r−, r1, r2, r3) repre-
sents a point in B1, (i.e. the projection of B1 onto SU⊗3,S3

). In figure 3.2
the intersection is the triangle 4(GAB), drawn in a darker shade of
grey than the triangle 4 (EFB), which is the projection of the bisepa-
rable subset B1. Note that the shading reflects the inclusion relations,
i.e. triseparable states are, in particular, biseparable, and the section of
the biseparable set is contained in its projection. Of course, the states
in B1 ∩ SU⊗3,S3

are also biseparable for the other two partitions, since
they are permutation invariant. Similarly, the projections of B2 and B3

onto SU⊗3,S3
are the same.

Points of special interest for the biseparable set arise from the fol-
lowing vectors:

D :|122〉 −→ (1/3, 0, 2/3, 0, 0),

E :(|112〉 − |121〉)/
√
2 −→ (0, 0,−1, 0, 0),

F :(|123〉 − |132〉)/
√
2 −→ (0, 1/3,−2/3, 0, 0),

G :(|112〉 − |121〉 −
√
3|122〉)/

√
5 −→ (1/5, 0, 0, 0, 0).

(3.10)

Here the points B,D,E and F are extreme points of B1 and span a tetra-
hedron, which is equal to the subset B1∩S(23)

U⊗3 of states invariant under
the exchange 2 ↔ 3. The point G lies on the line connecting E and D
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and is the unique extreme point of B1 ∩ SU⊗3,S3
, which is not trisepa-

rable. In this sense it represents an extreme case demonstrating the
inequality T 6= (B1 ∩ B2 ∩ B3).

The set P1 of states with positive partial transpose with respect to
the partition 1|23 contains B1 strictly, but the difference cannot be seen
in this diagram. In fact, we will show in section 3.1.4 that even the
23-invariant subsets of P1 and B1 coincide, i.e. P1 ∩ S(23)

U⊗3 is spanned by
the same four extreme points B,D,E, and F.

As will be seen in section 3.1.4 there is a close connection between
the problems of finding P1 and finding states invariant under averaging
over all unitaries of the form U ⊗ U ⊗ U . It turns out that the sets of
triseparable and biseparable states commuting with such unitaries can
be obtained via a simple linear transformation from their counterparts
T ∩ SU⊗3 and B1 ∩ SU⊗3 computed in this paper. This mapping and a
sketch of the results are given in the subsection 3.1.3.

3.1.1 Fully separable states
If a state ρ is triseparable, hence has a decomposition of the form (3.8),
we may also find a decomposition in which all factors ρ

(i)
α are pure,

simply by decomposing each of these density operators into pure ones.
Applying to such a decomposition the projection TU⊗3 , we find that
ρ ∈ T ⊂ SU⊗3 if and only if ρ is a convex combination of states of
the form TU⊗3(|Ψ〉〈Ψ|), where Ψ = ψ1 ⊗ ψ2 ⊗ ψ3 is a normalized prod-
uct vector. Let us denote by Tpure ⊂ SU⊗3 the set of such states. Our
strategy for determining T will be to first get Tpure, and then to obtain
T as its convex hull. The resulting characterization of T is formulated
in Theorem 3.1.3.

Given a product vector Ψ = ψ1⊗ψ2⊗ψ3, it is easy to compute the pro-
jected state TU⊗3(|Ψ〉〈Ψ|): By Lemma 3.0.6 one just has to compute the
expectations of the permutation operators. For example, 〈Ψ|V(12)Ψ〉 =
〈ψ1⊗ψ2⊗ψ3|ψ2⊗ψ1⊗ψ3〉 = |〈ψ1|ψ2〉|2. In this way it is easily seen that
the expectations of all permutations are {1, a1, a2, a3, a4 + ia5, a4 − ia5},
where the five real parameters are given by

a1 = |〈ψ2|ψ3〉|2,
a2 = |〈ψ3|ψ1〉|2,
a3 = |〈ψ1|ψ2〉|2,
a4 = <e (〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉) ,
a5 = =m (〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉) .

(3.11)
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Since a pure state in d dimensions (taken up to a factor) is given by 2d−
2 real parameters, these five quantities are a considerable reduction
from the 6(d−1) parameters determining the three vectors ψi. However,
they are still not independent, due to the identity

f(a1, a2, a3, a4, a5) := a24 + a25 − a1a2a3 = 0. (3.12)

Since we want to determine Tpure exactly, we also have to find the exact
range of these parameters, as the ψi vary over all unit vectors. This is
done in the following lemma.

Lemma 3.1.1: A tuple (a1, a2, a3, a4, a5) ∈ � 5 arises via equations (3.11)
from three unit vectors ψ1, ψ2, ψ3 in a d-dimensional Hilbert space (with
d > 3), if and only if equation (3.12) is satisfied, 0 ≤ ai ≤ 1 for i = 1, 2, 3,
and

1− a1 − a2 − a3 + 2a4 ≥ 0. (3.13)

If d = 2 the lemma holds with last inequality replaced by equality.

Proof. Necessity of equation (3.12), and 0 ≤ ai ≤ 1 is clear. Inequal-
ity (3.13) is just the condition that the expectation of antisymmetric
projection should be positive. Since this projection vanishes for d = 2,
it is also clear that equality must hold in this case.

Suppose now that a1, . . . , a5 satisfying these constraints are given.
We have to reconstruct ψ1, ψ2, and ψ3 satisfying equations (3.11). These
equations essentially determine the 3× 3-matrix Mij = 〈ψi|ψj〉 of scalar
products. Of course, we already know the absolute values of its entries
(note Mii = 1). The phases are irrelevant up to some extent: multiply-
ing any row with a phase, and the corresponding column with its com-
plex conjugate will not change the ai after equation (3.11), and amounts
to multiplying one of the ψi with a phase. Hence we may assume that
the scalar products 〈ψ1|ψ2〉 and 〈ψ2|ψ3〉 are positive. The phase of the re-
maining scalar product 〈ψ3|ψ1〉 is then the same as the phase of a4+ ia5,
hence M is essentially uniquely determined by the ai.

Now a matrix M is a matrix of scalar products if and only if it is pos-
itive definite: on the one hand,

∑
ij uiujMij = ‖∑i uiψi‖2 ≥ 0. On the

other hand, we can construct a Hilbert space with such scalar prod-
ucts as the space of formal linear combinations of three vectors, with
scalar products of basis vectors defined by M . Positive definiteness of
M then ensures the positivity of the norm in this new Hilbert space.
The dimension of this space is the rank of M (number of linearly inde-
pendent rows/columns). So in the present case the dimension will be 3
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(but any larger space will also contain appropriate vectors) or ≤ 2, if M
is a singular matrix.

Positive definiteness of M is equivalent to the positivity of all sub-
determinants. The diagonal elements are 1, hence positive anyway.
Positivity of the three 2× 2 subdeterminants is equivalent to ai ≤ 1 for
i = 1, 2, 3. Finally, the full determinant of M , expressed in terms of the
ai gives the expression (3.13). It must be positive, and for d = 2 it must
vanish, since M is singular. ¥

Lemma 3.1.1 describes the set Tpure of projected pure product states
as a compact subset of the hypersurface in � 5 defined by equation
(3.12). Computing the convex hull of this set in � 5 is the same as
computing the convex hull of Tpure, because the expectations of permu-
tations or the operators Rk from (3.2) are affine functions of the ai.
Explicitly, the expectations rk = 〈Ψ|RkΨ〉, k = +,−, 0, 1, 2, 3, which we
have used as our standard coordinates in SU⊗3 are

r+ = 1
6
(1 + (a1 + a2 + a3) + 2a4), r− = 1

6
(1− (a1 + a2 + a3) + 2a4),

r0 =
2
3
(1− a4), r1 =

1
3
(2a1 − a2 − a3),

r2 =
1√
3
(a3 − a2), r3 =

2√
3
a5.

(3.14)
We begin by computing the projection of Tpure onto the (r+, r−)-plane, by
determining the possible range of the combinations m = (a1+a2+a3)/3
and a4. By choosing phases for the scalar products we can make a4 vary
in the range |a4| ≤ (a1a2a3)

1/2 = g3/2, where m and g are the arithmetic
and the geometric mean of a1, a2, a3. As is well known, g ≤ m, and
equality holds if a1 = a2 = a3. Hence the projection of Tpure is contained
between the parameterized lines

r+(m) =
1

6
(1 + 3m± 2m2/3) and r−(m) =

1

6
(1− 3m± 2m2/3). (3.15)

Plotting these curves gives figure 3.3. It is clear that the shape is not
convex, and its convex hull is the triangle 4(ABC).

A similar plot of the set Tpure including one more coordinate, r3, is
given in figure 3.4.

Again it is clear that no point on the surface can be an extreme point
of the convex hull of the surface, because the surface “curves the wrong
way”. This is the intuition behind the following lemma, by which we
will show that also in the full five-dimensional case the interior of Tpure
contains no extreme points.
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Figure 3.3: Section of the set Tpure with SPU⊗3 and its convex hull.
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Figure 3.4: Plot of the same section as above making additional use of
the coordinate r3.

Lemma 3.1.2: Let Nf = {x ∈ � n | f(x) = 0} be the zero surface of
a function f ∈ C2( � n, � ), and K ⊂ � n a compact convex set. Let U
be an open ball around a point xh ∈ Nf such that (U ∩ Nf ) ⊂ K, and
suppose that xh is hyperbolic in the following sense: ∇f(xh) 6= 0, and
the tangent plane through xh contains two lines such that the second
derivative of f is strictly positive along one and strictly negative along
the other. Then xh is not an extreme point of K.

Proof. Suppose xh is an extreme point of K. Then there must be a
supporting hyperplane, i.e. a hyperplane H through xh such that K lies
entirely in one of the closed subspaces bounded by H. We claim that
this implies that f , restricted to H, has to be either non-negative or
non-positive in a neighbourhood of xh.

Suppose to the contrary that there are points x+, x− ∈ H ∩ U such
that f(x+) > 0 > f(x−). We may then connect x+ and x− by a continu-
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ous curve lying entirely in U and also in one of the two open half spaces
bounded by H. Since f is continuous, any such a curve must contain a
point y with f(y) = 0, i.e. y ∈ (Nf ∩ U) ⊂ K. Since we can choose either
side of H for the connection, we find points y ∈ K on both sides of H,
hence H cannot be a supporting hyperplane.

This argument shows, in the first instance, that the only possible
supporting hyperplane at xh is the tangent hyperplane (look at the Tay-
lor approximation of f to first order). Applying the argument with the
second order Taylor approximation, we find that hyperbolic points can-
not have supporting hyperplanes, hence cannot be extremal. ¥

To apply this lemma to the function f from equation (3.12), we have
to pick two appropriate tangent lines at any point ~a = (a1, a2, a3, a4, a5)
on the surface. We parameterize such lines as ~a + t~b, t ∈ � so that
f(~a+ t~b ) = f(~a ) +Mt2. Two choices with opposite sign of M are

~b = (0, 0, 0, a5,−a4), M = (a24 + a25)
and ~b = (2a1, 2a2, 2a3, 3a4, 3a5), M = −3(a24 + a25),

(3.16)

where we have used the equation f(~a ) = 0 to evaluate the last expres-
sion. Hence every point of the surface Nf is hyperbolic.

By Lemma 3.1.2 we therefore only have to consider boundary points
of the surface, i.e. points for which at least one of the inequalities in
Lemma 3.1.1 is equality.

Let us begin with the equalities ai = 0, for at least one i ∈ {1, 2, 3}.
Then we have a4 = a5 = 0 by equation (3.12) and 0 ≤ aj + ak ≤ 1 (j 6= k)
by equation (3.13). As we are looking for extremal points we are left
with the cases aj = ak = 0 representing the triorthogonal states [EB94]
(i.e. point A=( 1

6
, 1
6
, 0, 0, 0) in the ri’s) or aj+ak = 1. All such points satisfy

r− = 0, hence they will be in our general discussion of cases with r− = 0.
The equalities ai = 1 lead by (3.13) to the inequality 0 ≤ 2a4 − (aj + ak)
and therefore to

a4 ≥
1

2
(aj + ak) ≥

√
ajak =

√
aiajak =

√
a24 + a25 ≥

√
a24 = |a4| ≥ a4.

(3.17)
From this we can see a5 = 0, aj = ak and a4 = aj = ak. Once again this
implies r− = 0 so that this remains the only case to be checked.

For r− = 0, we can express the ai by r+, r1, r2, r3, and solve equation
(3.12) for r3, obtaining a relation of the form

r3 = ±h(r+, r1, r2), (3.18)
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where h is the square root of a third order polynomial. Equation (3.18)
describes the surface of a convex set iff h is a concave function. This can
be checked by verifying that the Hessian of h is everywhere negative
semidefinite. Hence all points in Tpure with r− = 0 are extremal and are
characterized by equation (3.18). This completes the determination
of extreme points of T , summarized in the following theorem. It also
contains the dual description of T in terms of inequalities.

Theorem 3.1.3: The subset T ⊂ SU⊗3 of triseparable states has the
following extreme points described here in terms of the expectations
rk = tr[ρRk], k = +,−, 1, 2, 3:

1. 3r23 +(1− 3r+)
2 = (r1 + r+) · (r1−

√
3r2− 2r+) · (r1 +

√
3r2− 2r+) and

r− = 0,

2. The point A = (1/6, 1/6, 0, 0, 0).

A state ρ ∈ SU⊗3 is triseparable if and only if it corresponds to the point
A or the following inequalities are satisfied:

(a) 0 ≤ r− <
1
6
,

(b) 1
4
(1− 2r−) ≤ r+ ≤ 1− 5r−,

(c) (3r23+[1−3r+−3r−]2)(1−6r−) ≤ (r1+r+−r−) ((r1 − 2[r+ − r−])2 − 3r22) .

These inequalities are obtained by projecting the given point onto
the hyperplane r− = 0 from point A, and by checking whether the pro-
jected point satisfies the inequality |r3| ≤ h(r+, r1, r2) with h from equa-
tion (3.18)40. To get an idea of the shape of T we compute the section
with r+ = 0.27 and r− = 0.1 (see figure 3.5).

3.1.2 Biseparable states
In this section we are going to compute the set of biseparable states
with respect to the partition 1|23. The technique is exactly the same as
in the triseparable case: we first compute the set Bpure of states of the
form TU⊗3(|Ψ〉〈Ψ|) with |Ψ〉〈Ψ| biseparable, i.e. Ψ = ψ1⊗ψ2,3. In a second
step we get B1 as the convex hull of Bpure.

We are free to apply to our vector Ψ a U ⊗ U ⊗ U rotation without
changing the projection. In this way we may choose ψ1 = |1〉. Now the

40Note that this check is very important since we are dealing with a surface of third
order which would otherwise lead to an open and thus not necessarily convex set!
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Figure 3.5: Plotting the set T for the section r+ = 0.27, r− = 0.1 gives
a heart-shaped surface with trigonal symmetry which is contained in
the respective Bloch sphere.

rotated state Ψ′ is of the form Ψ′ =
∑

i,j ψij|1ij〉. The expectations of
permutations of such a vector, like 〈Ψ′|V(12)Ψ′〉 =

∑
i,j,k,l ψijψkl〈1ij|k1l〉 =∑

j |ψ1j|2 then depend linearly on the following real parameters:

c0 = |ψ11|2, c1 =
∑

j>1

|ψ1j|2, c2 =
∑

i>1

|ψi1|2,

c3 =
∑

i,j>1

ψijψji, c4 + ic5 =
∑

j>1

ψ1jψj1.
(3.19)

From this we obtain the following rk:

r+ = 1
6
(1 + 5c0 + c1 + c2 + c3 + 4c4), r− = 1

6
(1− c0 − c1 − c2 − c3),

r0 =
2
3
(1− c0 − c4), r1 =

1
3
(−c1 − c2 + 2c3 + 4c4),

r2 =
c1−c2√

3
, r3 =

2c5√
3
.

(3.20)
As in the tripartite case we need to determine the exact range of the
parameters ci. Let us assume d > 2 for the moment. By the definitions
of c0, c1 and c2 we have

c0, c1, c2 ≥ 0. (3.21)
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These parameters fix the weights of the blocks (i = 1, j = 1), (i = 1,
j > 1), and (i > 1, j = 1) in the normalization sum

∑d
i,j=1 |ψij|2 = 1.

c4 + ic5 can be read as the scalar product of two (d − 1)-dimensional
vectors ϕ1 = (ψ12, . . . , ψ1d) and ϕ2 = (ψ21, . . . , ψd1) with norm squares
‖ϕ1‖2 = c1 and ‖ϕ2‖2 = c2. By the Cauchy-Schwarz inequality we have:

c24 + c25 = |〈ϕ1|ϕ2〉|2 ≤ ‖ϕ1‖2‖ϕ2‖2 = c1c2, (3.22)

and any value of c4 + ic5 consistent with this can actually occur.
We arrange the remaining ψij (i, j > 1) into a (d − 1)2-dimensional

vector Ψ̃ = (ψ22, . . . , ψ2d, ψ32, . . . , ψdd) with ‖Ψ̃‖2 = 1 − c0 − c1 − c2. On
this (d− 1)2-dimensional vector space, let U denote the operator swap-
ping ψij and ψji. Then c3 = 〈Ψ̃|UΨ̃〉 is the expectation of an hermitian
operator with eigenvalues ±1. Hence

|c3| ≤ ‖Ψ̃‖2 = 1− c0 − c1 − c2, (3.23)

and all c3 ∈ � satisfying this inequality can occur.
Together with the obvious modifications in the case d = 2, when

there is only one index i > 1, we get the following lemma:

Lemma 3.1.4: A tuple (c0, c1, c2, c3, c4, c5) ∈ � 6 arises via equations
(3.19) from a unit vector Ψ in a d2-dimensional Hilbert space, if and
only if equations (3.21), (3.22) and (3.23) are satisfied, and, in the case
d = 2, equality holds in (3.22) and (3.23).

Let Γ denote the set of tuples (c0, c1, c2, c3, c4, c5) satisfying these con-
straints. The rk depend linearly on the ci, although the mapping is not
one-to-one. Nevertheless any extreme point of B1 must be the image of
an extreme point of the convex hull of Γ.

Hence we can proceed by first determining the extreme points of Γ.
Since the positive variables c0, |c3| and the sum (c1 + c2) are only con-
strained by inequality (3.23), every point in Γ is a convex combination
of tuples in which only one of these is equal to 1, and the other two
vanish. This gives the extreme points

1. c0 = 1⇔ ~r = (1, 0, 0, 0, 0) ≡ B,

2. c3 = +1⇔ ~r = (1
3
, 0, 2

3
, 0, 0) ≡ D,

3. c3 = −1⇔ ~r = (0, 1
3
,−2

3
, 0, 0) ≡ F ,

and furthermore some points with (c1+c2) = 1, c0 = c3 = 0. Eliminating
c2 = 1 − c1 we can write inequality (3.22) as c24 + c25 + (c1 − 1/2)2 ≤ 1/4.
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This is a ball with extreme points parameterized by

c0 = 0, c1 =
1+cos(ϑ)

2
, c2 =

1−cos(ϑ)
2

,

c3 = 0, c4 =
sin(ϑ) cos(ϕ)

2
, c5 =

sin(ϑ) sin(ϕ)
2

,
(3.24)

with ϕ, ϑ ∈ [0, 2π]. By mapping this description of Γ to the rk-parame-
terization we come to the following theorem:
Theorem 3.1.5: The subset B1 ⊂ SU⊗3 of biseparable states with re-
spect to the partition 1|23 has the following extreme points described
here in terms of the expectations rk = tr[ρRk], k = +,−, 1, 2, 3:

1. The sphere given by 1
4
(3r1 + 1)2+3r22 +3r23 = 1 with r+ = (r1+1)/2

and r− = 0 except for the point ( 2
3
, 0, 1

3
, 0, 0), which is decomposable

as (2
3
, 0, 1

3
, 0, 0) = 1

2
(B +D)

2. The point F = (0, 1
3
,−2

3
, 0, 0)

3. The point D = ( 1
3
, 0, 2

3
, 0, 0)

4. The point B = (1, 0, 0, 0, 0).

A state ρ ∈ SU⊗3 is biseparable with respect to the partition 1|23 if
and only if it corresponds to the points F, B or D or if the following
inequalities are satisfied:

(a) 0 ≤ r− <
1
3
,

(b) −1 < 1+r1−r−−2r+
1−3r− < 1,

(c) if −1 < 1+r1−r−−2r+
1−3r− ≤ 0 then

3r22 + 3r23 + (1 + 2r1 + r− − r+)
2 ≤ (2 + r1 − 4r− − 2r+)

2,

(d) if 0 ≤ 1+r1−r−−2r+
1−3r− < 1 then

3r22 + 3r23 + (1− 3r− − 3r+)
2 ≤ (r1 + 2r− − 2r+)

2.

Here again we omit the computation of these inequalities from the
known extreme points. They can be obtained by projecting from the
three points F,B and D onto the sphere of extremal points.

The projection of the set B1 onto SPU⊗3 comes to be equal to the pro-
jection of the set of pure B1-states and was already shown in figure 3.2
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Figure 3.6: Plot of the set B1 for r+ = 0.27 and r− = 0.1 embedded in the
respective Bloch sphere together with T .

together with the section B1∩SPU⊗3 . To compare B1 with T we plot again
the section with r+ = 0.27 and r− = 0.1 (see figure 3.6).

To make the inclusion T ( (B1 ∩B2 ∩B3) we mentioned earlier more
evident we can compute the sets B2 and B3 to build their intersection
with B1. Due to the permutation symmetry of the three subsystems
we can rotate B1 by ±2π

3
in the r1–r2–plane, instead. This leads to fig-

ure 3.7. One can clearly see that there is much room left between the
threefold biseparable states and the triseparable ones, especially for
r1 = r2 = 0.

3.1.3 Partially transposed permutations

Before analyzing the power of the separability criteria we will shortly
analyze the algebra of partially transposed permutation operators be-
cause we will need it for the analysis.

When ρ is a linear combination of permutation operators the par-
tially transposed density operator

Θ1 (ρ) =
∑

π

µπΘ1 (Vπ) (3.25)
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Figure 3.7: The intersection B1∩B2∩B3 is shown as a mesh on a trans-
parent surface allowing the set T to be seen. This plot is again com-
puted for the section r+ = 0.27 and r− = 0.1. The thick lines indicate
the intersection of two of the biseparable sets.

is likewise a linear combination of the six operators Θ1 (Vπ), and we
have to decide for which coefficients µπ such an operator is positive.
Since partial transposition is not a homomorphism, it would appear
that the linear combinations of the Θ1 (Vπ) can be a fairly arbitrary
space of operators, and deciding positivity could be quite difficult. How-
ever, it turns out that these linear combinations do form an algebra41,
so after the introduction of the right basis, deciding positivity is just as
easy as determining the state space of the tripartite Werner states.

The abstract reason for this “happy coincidence” is that the oper-
ators Θ1 (Vπ) span the set of fixed points of an averaging operation in
much the same way as the permutations span the set of fixed points of

41Note that the algebra generated by partially transposed permutation operators
is a subalgebra of the “chip”-algebra since it does not contain the permutations any
more.
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TU⊗3 . The corresponding averaging operator is

TU⊗U⊗2ρ =

∫
dU (U ⊗ U ⊗ U)ρ (U ⊗ U ⊗ U)∗. (3.26)

Its range consists of all operators commuting with all unitaries of the
form U ⊗ U ⊗ U , hence it is an algebra. The following lemma describes
the relation between TU⊗U⊗2 and TU⊗3 :

Lemma 3.1.6: Let A be any hermitian operator, then

1. TU⊗3A = A⇔ TU⊗U⊗2Θ1(A) = Θ1(A)

2. Θ1

(
TU⊗U⊗2A

)
= TU⊗3Θ1 (A).

Proof. For any hermitian operator A one has:

TU⊗U⊗2A = A⇔
[
U ⊗ U ⊗ U,A

]
− = 0

⇔ [U ⊗ U ⊗ U,Θ1(A)]− = 0

⇔ TU⊗3Θ1(A) = Θ1(A).

(3.27)

Furthermore we can compute directly:

TU⊗3Θ1(A) =

∫
dU(U ⊗ U ⊗ U)Θ1(A)(U ⊗ U ⊗ U)∗

=

∫
dUΘ1

(
(U ⊗ U ⊗ U)A(U ⊗ U ⊗ U)∗

)

= Θ1

(
TU⊗U⊗2A

)
,

(3.28)

finishing the proof of the lemma. ¥

In order to decide positivity of partial transposes we need a concrete
form of the algebra spanned by the partial transposes of the permuta-
tion operators. For example, we get the chip

Θ1

(
V(12)

)
=
∑

ijk

Θ1

(
|ijk〉〈jik|

)
=
∑

ijk

|jjk〉〈iik| = (|Φ〉〈Φ|)⊗ � , (3.29)

where Φ =
∑

i |ii〉 is a maximally entangled vector of norm d. The
partial transposes of the other permutations are computed similarly.
We can express all of them in terms of the first two:

X = Θ1

(
V(12)

)
and V = Θ1

(
V(23)

)
= V(23) (3.30)
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as
Θ1 ( � ) = � , Θ1

(
V(13)

)
= V XV,

Θ1

(
V(123)

)
= XV, Θ1

(
V(321)

)
= V X.

(3.31)

Then these operators satisfy the relations X∗ = X, and V ∗ = V , and

X2 = dX , V 2 = � , XV X = X. (3.32)

Due to these relations the set of linear combinations of the operators
{ � , X, V XV, V,XV, V X} is closed under adjoints and products. Positiv-
ity of such linear combinations, and hence the positivity of all partial
transposes of operators in SU⊗3 can therefore be decided by studying
the abstract algebra generated by two hermitian elements X and V
satisfying (3.32). As a six-dimensional non-commutative C*-algebra it
is isomorphic to the algebra generated by the permutations42 A(S3),
i.e. a sum of two one-dimensional and a two-dimensional matrix alge-
bra. But of course, the partial transpose operation mapping one into
the other is not a homomorphism.

From these considerations it is clear that all we have to do now is
to find a basis of the algebra generated by X and V analogous to the
basis (3.2). This computation is equivalent to finding the corresponding
irreducible representations and can be quite painful, so we recommend
the use of a symbolic algebra package like Mathematica c©. The result
is

S+ =
� + V

2

(
� − 2X

d+ 1

) � + V

2
,

S− =
� − V

2

(
� − 2X

d− 1

) � − V

2
,

S0 =
1

d2 − 1

(
d(X + V XV )− (XV + V X)

)
,

S1 =
1

d2 − 1

(
d(XV + V X)− (X + V XV )

)
,

S2 =
1√

d2 − 1

(
X − V XV

)
,

S3 =
i√

d2 − 1

(
XV − V X

)
.

(3.33)

These operators satisfy exactly the same relations as the Rk from (3.2)
and we will therefore denote the corresponding expectation values by

42Note that this isomorphism is just a lucky coincidence. In fact there are examples
of abelian algebras that are no longer commutative after the partial transposition (see
[VW01]).
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sk(ρ) := tr[ρSk]. The two projections S± correspond to the two one-
dimensional representations of the algebra, i.e. to the two realizations
of the relations by c-numbers, namely X = 0, V = 1 and X = 0, V = −1.

Since the two algebras are isomorphic, we can find an affine map-
ping translating the rk coordinates into the sk. A characterization of
the separability classes (T̃ , B̃1, and P̃1) of T̃U⊗3 can thus be deduced
from those of TU⊗3 without any computation due to this affine mapping.

The intimate relation between the two twirls emerged already in
Lemma 3.1.6 where we stated the existence of an isomorphism between
the two algebras spanning the eigenspaces of TU⊗3 and TU⊗U⊗2 . This iso-
morphism establishes an affine mapping ι between the two eigenspaces
that we used for computing P1. Due to the inclusion T ( B1 ( P1 it is
clear that the same mapping transports the sets T and B1 to their coun-
terparts T̃ and B̃1. The mapping ι can be computed by fixing the order-
ing { � , X, V, V XV,XV, V X} for the second algebra and concatenating
the transformations 3.2 and 3.33 getting ~s = ι · ~r with

ι =




d−1
d+1

0 d+2
2d+2

d+2
2d+2

0 0

0 d+1
d−1

d−2
2d−2

2−d
2d−2 0 0

2
d+1

− 2
d−1

1
d2−1 − d

d2−1 0 0
2
d+1

2
d−1 − d

d2−1
1

d2−1 0 0

0 0 0 0
√
3√

d2−1 0

0 0 0 0 0
√
3√

d2−1




. (3.34)

With this mapping we can directly compute the TU⊗U⊗2-projection of
the states A to G:

A :|123〉 −→ (1/2, 1/2, 0, 0, 0),

B :|111〉 −→
(
d− 1

d+ 1
, 0,

2

d+ 1
, 0, 0

)
,

C :(|111〉 −
√
3|112〉+

√
3|121〉 − 3|122〉)/4

−→
(
4 + 5d

8 + 8d
,
3d− 6

8d− 8
,
d+ 2

4− 4d2
, 0, 0

)
,

D :|122〉 −→ (1, 0, 0, 0, 0),

E :(|112〉 − |121〉)/
√
2 −→

(
0,
d− 2

d− 1
,

1

1− d
, 0, 0

)
,

F :(|123〉 − |132〉)/
√
2 −→ (0, 1, 0, 0, 0),

G :(|112〉 − |121〉 −
√
3|122〉)/

√
5 −→

(
3

5
,
2d− 4

5d− 5
,

2

5− 5d
, 0, 0

)
.

(3.35)
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Applying the transformation to the extremal points and inequalities
of Theorems 3.1.3, 3.1.5 and 3.1.10 (see section 3.1.4) then yields a
characterization of T̃ , B̃1 and P̃1.

We omit the results of these transformations here and give the pic-
ture corresponding to figure 3.2. In contrast to what can be seen in
figure 3.2, the projection of T̃ onto the s+–s−–plane differs from its sec-
tion with it, as one can see in figure 3.9.
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plane for d = 3. Black: section with T̃ , dark grey: projection of T̃ , light
grey: section with B̃1.

3.1.4 States having a positive partial transpose
The positivity of the partial transpose serves as a necessary condition
for separability43, which is even sufficient in 2⊗ 2 and 2⊗ 3 dimensions
(the Peres criterion [Per93]). Moreover, it is a necessary condition for
undistillability, and here it comes much closer to sufficiency even in
general situations. Both aspects play a role in the analysis of tripartite
states. Therefore, in this subsection we describe the subset P1 ⊂ SU⊗3

of states with positive 1-transpose.
43Actually, states that have a positive partial transpose show classical behaviour

with respect to certain aspects although they might be entangled (see [Wol02]).
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Figure 3.9: Zoomed region of figure 3.8.

Since the dimensions of this bipartite system are d ⊗ d2, positive
partial transpose does not automatically imply biseparability, i.e. the
inclusion B1 ⊂ P1 may be strict. However, since we are considering a
special class of states, it is also possible that in this class equality holds.
This does happen, for example, in the case of bipartite Werner states
[HH99]. In the tripartite case we will see that B1 = P1 for d = 2, but
not for higher dimensions, although the two sets come to be remark-
ably close (see figure 3.11). However, the exact description of P1 is also
important for distillation questions.

Before coming to the general case we start with the simpler sit-
uation of states that are invariant under permutation of the subsys-
tems B and C which form a three-dimensional object. In fact the V(23)-
invariance implies the conditions tr

[
ρV(23)

]
= 1, tr

[
ρV(12)

]
= tr

[
ρV(31)

]

and tr
[
ρV(123)

]
= tr

[
ρV(321)

]
. Therefore we have r2 = r3 = 0. In the

same way we obtain for a V(23)-invariant state ρ ∈ Θ1SU⊗3 the condi-
tions s2 = 0 and s3 = 0. Positivity of a V(23)-invariant state in SU⊗3 now
requires r+ ≥ 0, r− ≥ 0 and |r1| ≤ r0 = 1− r+ − r− (see (3.3)) giving rise
to a tetrahedron bounded by the hyperplanes

(h1) r+ = 0, (h2) r− = 0,
(h3) r1 = 1− r+ − r−, (h4) r1 = r+ + r− − 1,

(3.36)

and having the extreme points P1 = (0, 0, 1), P2 = (0, 0,−1), P3 = (0, 1, 0),
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and P4 = (1, 0, 0). The same computation can be done on the partially
transposed side leading to the tetrahedron confined by the hyperplanes

(h′1) s+ = 0, (h′2) s− = 0,
(h′3) s1 = 1− s+ − s− (h′4) s1 = s+ + s− − 1.

(3.37)

Using Lemma 3.1.6 we can express the sk by the rk of the correspond-
ing SU⊗3-state. Multiplying by positive constants one gets an easier
description of these hyperplanes:

(h′1) 2(1 + r1 − r− − 2r+) + d(1 + r1 − r− + r+) = 0,
(h′2) 2(−1 + r1 + 2r− + r+) + d(1− r1 + r− − r+) = 0,
(h′3) 1− r1 − 5r− − r+ = 0,
(h′4) 1 + r1 − r− − 5r+ = 0.

(3.38)

Its four extremal points are now Q1 = (2+d
3
, 0, 1−d

3
), Q2 = (0, 2−d

3
,−1+d

3
),

Q3 = (0, 1
3
,−2

3
) and Q4 = (1

3
, 0, 2

3
). Of course, these points have no reason

to correspond to positive states, and, indeed, only Q3 and Q4 lie inside
the state space, whereas Q1 and Q2 are outside the state space for all d.

As we are looking for those V(23)-invariant SU⊗3-states that have pos-
itive partial transpose, i.e. that lie in P1, we have now to look at the in-
tersection of these two tetrahedra. The resulting object is again a tetra-
hedron as one can see in figure 3.10. This is due to the fact that the
extremal points Pi and Qi for i = 1, 2, 3, 4 lie on just two straight lines,
namely P1Q4P4Q1 and Q2P2Q3P3. The intersection of the two tetrahedra
is hence again a tetrahedron, spanned by the extremal points P2, P4, Q3

and Q4 (called E, B, F , and D in (3.9) and (3.10), and is thus dimension
independent. But it is easily verified from Theorem 3.1.5 that these
four points are precisely the extreme points of the V(23)-invariant part
of B1. Since B1 ⊂ P1, we have shown the following:
Lemma 3.1.7: A V(23)-invariant SU⊗3-state has a positive partial trans-
pose if and only if it is biseparable.

As we will see below, the assumption of V(23)-invariance is essential,
i.e. the conclusion does not hold for general SU⊗3-states. In order to see
how V(23)-invariance helps, we conclude this subsection with a direct
proof of the above lemma for d = 2.

Proof. If ρ is a V(23)-invariant SU⊗3-state, then we can decompose it into
the following sum

ρ =
1

4

( � + V(23)
)
ρ
( � + V(23)

)
+

1

4

( � − V(23)
)
ρ
( � − V(23)

)
=: ρ+ + ρ−. (3.39)
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It is now clear that ρ has a positive partial transpose iff both ρ+ and ρ−
each have a positive partial transpose. ρ+ denotes the V(23)-symmetric
part of ρ, ρ− the antisymmetric part. Thus we know that ρ+ is a 2 × 3
density operator and ρ− a 2 × 1. For these systems the Peres criterion
holds strictly [HHH96], i.e. states have a positive partial transpose iff
they are separable or in our case biseparable over the 1|23 split. Bisep-
arability of ρ+ and ρ− is equivalent to the biseparability of ρ, which
proves the lemma. ¥

For a general linear combination of the operators Sk the positivity
conditions give the following result:

Lemma 3.1.8: Let ρ ∈ SU⊗3 be a density operator with expectations
rk = tr[ρRk], k = +,−, 1, 2, 3. Then the partial transpose of ρ with re-
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spect to the first tensor factor is positive,i.e. ρ ∈ P1, if and only if

(a) 0 ≤ r−, (b) 0 ≤ r1 − r+ − r− + 1,
(c) 0 ≤ 1− r1 − 5r− − r+, (d) 0 ≤ −1− r1 + r− + 5r+,
(e) r22 + r23 ≤ R1, (f) r22 + r23 ≤ R2,

(3.40)

where

R1 := (1− r1 − 5r− − r+)(−1− r1 + r− + 5r+)/3,

R2 := (1− r1 − r− − r+)(1 + r1 − r− − r+).
(3.41)

Proof. Recall that averaging with respect to V(23) projects P1 to the sec-
tion of P1 with r2 = r3. Therefore, the inequalities describing the tetra-
hedron discussed in the last subsection are optimal. These are the first
four inequalities. We therefore only have to describe the admissible set
of (r2, r3), given (r+, r−, r1). There are two conditions to consider, one
from the positivity of ρ, and one from the positivity of Θ1(ρ). As shown
in the first subsection, both these requirements have a very similar
form, namely the positivity of an element in an abstract algebra with
two one-dimensional summands and one summand isomorphic to the
2 × 2-matrices. Now in both cases one can readily see that (r+, r−, r1)
fix the weights of the one-dimensional parts, as well as the trace and
the expectation of the first Pauli matrix for the 2 × 2-part. This leaves
a condition of the form r22 + r23 ≤ R in both cases. The two conditions
are given in the lemma, where R2 = (1 − r+ − r−)2 − r21 expresses the
requirement ρ ≥ 0. The condition (3.40e) is obtained from Θ1(ρ) ≥ 0 by
expressing Θ1(ρ) in the basis Sk, and applying the same criterion to the
expectations sk. ¥

According to this lemma the set P1 can be visualized as follows:
firstly, one has to fix a point (r+, r−) in the permutation invariant tri-
angle (see figure 3.2). The possible choices of (r1, r2, r3) can then be
seen from figure 3.6. Apart from the heart-shaped tripartite set in the
center this figure contains three quadratic surfaces: the Bloch sphere
and the two surfaces bounding B1. Comparing condition (3.40d) of The-
orem 3.1.5 and the expression for R1 given in the above lemma, we
find that both constraints are given by the same hyperboloid, the one
wrapped around the tripartite set in figure 3.6. Hence in that figure
we can readily find P1 by extending this hyperboloid all the way to the
Bloch sphere and taking the intersection. This is shown in figure 3.11,
in the section r3 = 0.

Figure 3.11 shows the generic situation with r− 6= 0. When r− = 0,
in particular for systems of three qubits, the boundary ellipsoid of B1,
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and r3 = 0.

described by condition (c) of Theorem 3.1.5, coalesces with the Bloch
sphere. This leads to another instance where the Peres-Horodecki cri-
terion for separability holds:

Corollary 3.1.9: The intersections of B1 and P1 with the plane r− = 0
coincide. In particular, for 3-qubit SU⊗3-states, biseparability is equiva-
lent to the positivity of the partial transpose.

We conclude this subsection by the explicit determination of the ex-
treme points of P1. From figure 3.11 it might appear that all points
on the quadratic surfaces bounding P1 might be extremal. But this is
misleading, because we also have to take into account the possibility of
decompositions with different values of (r+, r−). In fact, for the inequal-
ities arising from ρ ≥ 0 it is evident that generically such decomposi-
tions are possible: given any (r+, r−, r1, r2, r3), which lies on the Bloch
sphere in figure 3.11, we can just change the weights of the three blocks
in the block decomposition of ρ according to (λ+r+, λ−r−, λ0r1, λ0r2, λ0r3),
as long as the λα are positive, and the normalization given by λ+r+ +
λ−r− + λ0(1 − r+ − r−) = 1 is respected. This leaves a two-dimensional
affine manifold through (r+, r−, r1, r2, r3). Hence, unless other condi-
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tions constraining P1 prevent the indicated decompositions, no such
point will be extremal. Of course, the second constraint (3.40e) has
the same structure, because the algebra of partial transposes is iso-
morphic to the algebra generated by the states. Hence in figure 3.11
only the points in the intersection of the hyperboloid and the Bloch
sphere remain as candidates for extreme points. This is analogous to
the extreme points of B1, which also consist of the intersection of two
quadratic surfaces in figure 3.11. For P1 we get
Theorem 3.1.10: The subset P1 ⊂ SU⊗3 of SU⊗3-states with positive 1-
transpose has the following extreme points, described here in terms of
the expectations rk = tr[ρRk], k = +,−, 1, 2, 3:

1. The points P2, Q3, P4, and Q4, which also span the V(23)-invariant
part of P1.

2. the remaining extreme points of B1, which form a sphere in the
r− = 0 plane (see Theorem 3.1.5).

3. The points for which (r+, r−, r1, 0, 0) lie in the interior of the V(23)-
invariant tetrahedron, and for which the inequalities (3.40e) and
(3.40f) are both satisfied with equality.

Proof. Let us first discuss the periphery of the tetrahedron. Every face
of the tetrahedron corresponds to a face of P1, namely the face of points
projecting to it upon V(23)-averaging. In Lemma 3.1.8 this corresponds
to the subsets for which one of the linear inequalities (3.40a) to (3.40d)
is equality. We will show first that each of these faces is actually con-
tained in B1. Indeed, when (3.40b), (3.40c) or (3.40d) are equalities, one
of the factors in R1 or R2 vanishes, forcing r2 = r3 = 0, reducing our
claim to Lemma 3.1.7. When (3.40a) is equality, i.e. r− = 0, the claim is
contained in corollary 3.1.9.

Now a point of P1 contained in one of these faces can only have
decompositions in the same face, hence in B1, hence for such a point
extremality in P1 and extremality in B1 are equivalent.

What remains to be done is to show item 3 of the theorem, i.e. to
characterize the extreme points of P1, whose V(23)-averages fall in the
interior of the tetrahedron. From the arguments preceding the theorem
it is clear that points for which only one of the inequalities (e) and (f) of
(3.40) are equalities cannot be extremal, since the surfaces defined by
these equations contain straight lines. Therefore, the condition stated
in the theorem is necessary for a point to be extremal. It remains to
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be shown that none of the points with R1 = R2 can be decomposed in a
proper convex combination.

Let us denote by M1 (resp. M2) the set of those points in the inte-
rior of the tetrahedron such that R1 ≤ R2 (respectively R2 ≤ R1). The
intersection M∗ = M1 ∩M2 of these sets is described by the condition
R1 = R2, or explicitly

r21 + 3r− + r1r− − 2r2− + 3r+ − r1r+ − 8r−r+ − 2r2+ = 1. (3.42)

This is a one-sheet hyperboloid, generated by two sets of straight
lines shown in figure 3.11. Consider a line segment

u 7→ (r̂+, r̂−, r̂1) + u(t+, t−, t1) (3.43)

through one of the points p̂ = (r̂+, r̂−, r̂1) ∈ M∗ of the hyperboloid. Con-
sider the radius functions

√
Ri, evaluated as a function of the param-

eter u. If such a function is affine (has a vanishing second derivative)
we can set (r1(u), r2(u)) = (cosα, sinα)

√
Ri with arbitrary α, to get a

straight line in the corresponding hypersurface in five dimensions. We
then call (t+, t−, t1) an affine direction for Ri. Along other directions,
Ri is strictly concave, so no decomposition along the segment (3.43) is
possible. For both radius functions, the set of affine directions is a two-
dimensional plane, and thus best described by its normal vector. That
is ~t = (t+, t−, t1) is an affine direction for Ri if ~t · ~Ai = 0, where

~A1 =




2− 3r̂1 − 12r̂−
−2− 3r̂1 + 12r̂+
−1 + 3r̂− + 3r̂+


 , ~A2 =




−r̂1
−r̂1

−1 + r̂− + r̂+


 . (3.44)

Assuming that a convex decomposition along (3.43) is possible, we
thus arrive at a threefold case distinction:

• The line segment lies entirely in M1.
Then it must be tangent to the hyperboloid M∗ and also an affine
direction for R1. The vector ~t is uniquely determined up to a factor
by these conditions. However, that does not mean that the corre-
sponding line segment lies in M1, and, in fact, one can show that
it never does. Hence this case is ruled out.

• The line segment lies entirely in M2.
This is ruled out analogously.
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Figure 3.12: Section of the intersecting tetrahedron with the separat-
ing one-leaf hyperboloid.

• The line segment crosses from M1 into M2.
Then ~t must be affine for both radius functions. Again, this de-
termines ~t up to a factor. But for a proper decomposition we must
also have that the slopes of

√
R1 and

√
R2 match at u = 0. One can

show that this never happens inside the tetrahedron we discuss,
so this case is also ruled out.

We conclude that no point on M∗ allows a convex decomposition in-
side P1, and the theorem is proved. ¥
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3.1.5 The realignment criteria
As already mentioned in subsection 1.2.2 the positivity of the partial
transpose belongs to the class of separability criteria given by matrix
reorderings. For tripartite systems there are, besides the three partial
transposes, six other criteria (see [Fan02]) of the form

‖Θi ( � ijρ) ‖1 ≤ 1 with i 6= j, i, j ∈ {1, 2, 3}. (3.45)
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Figure 3.13: The black region depicts the states fulfilling the matrix re-
ordering criterion, the dark grey area shows biseparable states (which
is identical to the ppt area for permutation invariant states), the light
grey area corresponds to fully separable states. The dimensions are
from left to right: d = 3, d = 13 and d = 137.

Fortunately the partial transpose of � ρ is still in the “chip” algebra
(see 2.3.1) so that the tracenorm can be computed analytically for gen-
eral partially transposed tripartite Werner states. However, since the
resulting expression is dimension dependent in contrast to the other
sets described so far, we refrain from writing down the long general
expression as it does not give much insight. As an example we com-
pute it, instead, for arbitrary permutation invariant tripartite Werner
states. In this case the six different criteria coincide and give one sin-
gle expression. The partially transposed states are linear combina-
tions of the fifteen “chips” that form a basis for the commutant of O⊗3-
symmetric operators. As such they can be represented by two complex
numbers, one 2×2 and one 3×3-matrix (see the decomposition in (2.17)).
The trace norm can then be computed for each matrix singularly and
summed up, weighted by the respective multiplicities. Finally we ob-
tain the inequality
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d+ 4r− + 3dr− − 4r+ + 3dr+ +
√
x

+ (d+ 1)|2(1 + r− − r+) + d(−1 + 5r− + r+)|
+ (d− 1)|2(1− r− + r+)− d(−1 + r− + 5r+)|

+ |d+ 4r− + 3dr− − 4r+ + 3dr+ −
√
x|
≤ 4(d2 − 1), (3.46)

with

x = 8(3r− + 3r+ − 1)

+ d2(9 + 25r2− − 2r−(9 + 7r+) + r+(25r+ − 18))

+ 8d(r− − r+)(1 + 3r− + 3r+). (3.47)

To get a better picture of the strength of this criterion we plotted the
region fulfilling inequality (3.46) in figure 3.13 for the dimensions d = 3,
d = 13 and d = 137. The realignment criterion seems to become weaker
with growing dimension. In all cases it turned out to be strictly weaker
than the Peres criterion, as one can see comparing the region fulfilling
the reordering criterion and the biseparable/separable region.

3.2 Entanglement monotones and Bell vio-
lations

In the tripartite case the difficulties in quantifying entanglement be-
gin already with the pure states, for which no canonical form as simple
as the Schmidt decomposition exists. One can, however, extend the
standard definition of the relation “more entangled than” to tripartite
states. It is clear what local quantum operations should be in the mul-
tipartite case, and we can describe classical communication between
many partners in much the same way as in the bipartite case. Once we
fix the rules of classical communication (e.g. “each partner may broad-
cast its results to all the others”), we will say that ρ is more entangled
than σ, (ρ Â σ), whenever we can reach σ from ρ by a sequence of local
operations and classical communication (LOCC).

A full characterization of this partial order relation is only known
in the case of bipartite pure states (Nielsen’s Theorem [Nie99]). Even
in the mixed bipartite case there is no straightforward way of deciding
whether one of two given density operators is more entangled than
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the other. Hence we cannot hope to give such a characterization in
the tripartite case. Nevertheless, the entanglement ordering is one
of the features one would like to explore and to chart in SU⊗3 . There
are various ways of approaching this. For example, we may start from
some state ρ ∈ SU⊗3 , apply many LOCC operations to it, and see where
we end up. We can always assume the operation to end up in SU⊗3 ,
because the twirl operation is itself a LOCC operation, which involves
the random choice of U by any one of the partners, the broadcasting of U
to the other two partners, and the unitary transformation by U at each
of the sites. For an initial survey, we may even study the relation in the
permutation invariant triangle SU⊗3,S3

, even though the permutation
of sites is definitely not a local operation. But if the initial state is
permutation invariant, and T is any LOCC operation, involving certain
specified tasks for Alice, Bob and Charly, the three may just throw dice
to decide who is to take which role. With this procedure they effectively
get the permutation average of the output state of T . With such studies,
we get sufficient conditions for ρ Â σ.

The first method of characterizing the amount of entanglement con-
tained in a state was to look at the strength of the violation of Bell type
inequalities. Although Bell violations are nowadays known to be not an
entanglement monotone44, we will take a quick glance at the violations
of various Bell type inequalities by tripartite Werner states.

3.2.1 Relative entropy and trace norm distance

In order to get necessary conditions the only approach is to find func-
tionals on the state space, which are monotone with respect to entan-
glement ordering. Luckily, one of the ideas for getting such monotones
can be transferred from the bipartite case. Obviously, the trisepara-
ble subset is invariant under LOCC operations, so the distance to T is
an entanglement monotone, provided the distance functional has ap-
propriate properties. One needs only one condition for a function ∆ to
define an appropriate “distance” ∆(ρ, σ) between arbitrary states of the
same tripartite system:

∆(Tρ, Tσ) ≤ ∆(ρ, σ) for any LOCC operation T. (3.48)

44In fact, the Bell violation can be raised if Alice and Bob apply an LOCC filter-
ing operation where Bob chooses his observable depending on the outcome of Alice’s
measurement.
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Then for the functional

E∆(ρ) = inf{∆(ρ, σ)|σ ∈ T } (3.49)

we get the inequalities

E∆(Tρ) ≤ inf{∆(Tρ, σ)|σ = Tσ′;σ′ ∈ T }
= inf{∆(Tρ, Tσ′)|σ′ ∈ T }
≤ inf{∆(ρ, σ′)|σ′ ∈ T } = E∆(ρ).

(3.50)

Hence E∆ is, indeed, a decreasing functional with respect to the order-
ing Â. Note that the only property of T needed to show this is that it
is mapped into itself under LOCC operations. Any other set with that
property (e.g. B1 or P1) will also lead to an entanglement monotone.

Two natural choices for ∆ satisfy requirement (3.48), and both of
them satisfy it with respect to arbitrary operations T (not just LOCC
operations): firstly the trace norm distance: ∆1(ρ, σ) = ‖ρ−σ‖1, and sec-
ondly the relative entropy ∆S(ρ, σ) = S(ρ, σ), leading to entanglement
monotones we denote by E1 and ES, respectively. In both cases, the
actual computation of the distance for ρ, σ ∈ SU⊗3 is greatly simplified
by the observation that we may consider both ρ and σ as states (pos-
itive normalized linear functionals) on the algebra generated by the
permutation operators, and that both the trace norm and the relative
entropy are naturally defined for such functionals [OP93]. Moreover,
as the twirl is a conditional expectation, the relative entropy of states
in SU⊗3 is independent of the algebra over which it is computed (see
Theorem 1.13, [OP93]). Now the six-dimensional algebra generated by
the permutations is independent of the dimension d, so that if we pa-
rameterize ρ and σ by the expectations of Rk as before, we find that
the entanglement monotones E∆ are independent of dimension. The
expression for the relative entropy involves, apart from the abelian
summands, the logarithm of a 2 × 2-matrix, which can also be writ-
ten explicitly in terms of the parameters rk and sk for the two states
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for E1.

involved:

S(ρ;σ) =r+ log(r+) + r− log(r−)− r+ log(s+)− r− log(s−)

+
r0 +

√
r21 + r22 + r23
2

log
r0 +

√
r21 + r22 + r23
2

+
r0 −

√
r21 + r22 + r23
2

log
r0 −

√
r21 + r22 + r23
2

− 1

2

(
r0 +

r1s1 + r2s2 + r3s3√
s21 + s22 + s23

)
log

[
s0 +

√
s21 + s22 + s23
2

]

− 1

2

(
r0 −

r1s1 + r2s2 + r3s3√
s21 + s22 + s23

)
log

[
s0 −

√
s21 + s22 + s23
2

]
.

(3.51)

The variational problem (3.49) can then be solved numerically for arbi-
trary states in SU⊗3 .

For states in SU⊗3,S3
the distance functions give even simpler expres-

sions:

S(ρ;σ) = r+ log(r+) + r− log(r−) + r0 log(r0)

− r+ log(s+)− r− log(s−)− r0 log(s0) (3.52)
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and
‖ρ− σ‖1 = |r+ − s+|+ |r− − s−|+ 2|r0 − s0|. (3.53)

The contour lines over SU⊗3,S3
of the resulting entanglement mono-

tones are plotted in figure 3.14 for E1, and in figure 3.15 for the rel-
ative entropy of tripartite entanglement ES. Note that the two nec-
essary conditions for ρ Â σ expressed in these diagrams complement
each other. In order not to complicate these graphs we have not drawn
the simplest sufficient condition for entanglement ordering: from any
state ρ, any state lying on a straight line segment ending in T is less
entangled than ρ.

As a second section of interest we chose the plane r− = 0 = r1 = r2,
which is relevant to qubit systems. Qualitatively, it gives the same
picture of level lines wrapped around the tripartite set (see figure 3.16).

For a maximally entangled state the entropic distance to the sepa-
rable regime is bounded from above by log d regardless of the number
of tensor factors (see (1.32) and (1.33)). Since both monotones are di-
mension independent for tripartite Werner states this can be seen as a
hint on the “classicality” of these states. In fact, this implies that the
ratio of the entanglement contained in a tripartite Werner state to the
maximal entanglement possible goes to zero for growing dimensions.
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3.2.2 Bell inequalities for dichotomic observables

The first method of testing the entanglement properties of a state was
to check whether it violates Bell type inequalities (see [Pop95]). These
inequalities were introduced by Bell in [Bel64] as a key experiment
between quantum mechanics and alternative theories involving local
hidden variables. Although they test the existence of a local classical
model able to reproduce the observed correlations, they can be used to
check separability. In fact, states violating Bell type inequalities are
necessarily entangled. However, the converse is not true (see [Wer89]),
i.e. there are entangled states that admit a local classical model and
thus do not violate these inequalities. Nevertheless, due to their his-
torical role, we will investigate them briefly for bipartite and tripartite
Werner states.

We start by recalling the CHSH45 version of Bell’s inequality. In
this formulation two parties (Alice and Bob) are given two ±1-valued
(dichotomic) observables46 each (A1, A2 andB1, B2) as possible measure-

45CHSH stands for the authors Clause, Horne, Shimony and Holt of [CHSH69].
46The widespread belief that an observable is represented by a hermitian operator

can be recovered from the POVM formalism. For a two-outcome POVM {A, � − A}
we just have to look at the difference of the outcomes X = 2A − � to get a hermitian
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ments. The existence of a local classical model is then equivalent to the
following inequality:

|tr[ρBBell]| ≤ 1, with BBell =
A1

2
⊗ (B1 +B2) +

A2

2
⊗ (B1 −B2). (3.54)

Actually the existence of a local classical model is (by definition) equiv-
alent to the satisfaction of a complete set of Bell inequalities. However,
for bipartite systems Fine [Fin82] showed that one such complete set is
given by the CHSH inequality and a second inequality which is satis-
fied trivially. The maximal violation of the CHSH inequality is known
to be

√
2, which is attained for the maximally entangled states of two

qubits like the antisymmetric Werner state of two qubits. Interestingly,
the violation due to Werner states vanishes for higher dimensions:
Lemma 3.2.1: Bipartite Werner states ρW (f) violate Bell inequalities
for dichotomic observables only for d = 2. The maximal violation is
given by

β(f) = max

{√
2
df − 1

d2 − 1
, 1

}
(3.55)

where f is the Flip expectation value f = tr[ρW (f) � ].
Proof. For the proof we basically need only two facts: First, whenever
two observables of the same site commute, a joint probability distribu-
tion for all the observables exists and the system can be regarded as
classical, i.e. no violation will be possible. Secondly, using the partial
trace we have trA [( � ± � )A⊗B] = tr[A] ·B ± A ·B. Since the maximal
violation

β(f) = sup
− 	 ≤Ai,Bj≤ 	

tr

[
ρW (f)

(
A1

2
⊗ (B1 +B2) +

A2

2
⊗ (B1 −B2)

)]
(3.56)

is the supremum of an affine functional on the convex set of observ-
ables, it is clear that it will be attained at the boundary given by
A2
i = B2

j = � . Computing the trace in (3.56) for a bipartite Werner
state ρW (f) = 1+f

2(d2+d)
( � + � ) + 1−f

2(d2−d)( � − � ) first over subsystem A we
get

β(f) =
1

2
sup

− 	 ≤Ai,Bj≤ 	
tr
[
{Â1(f) + Â2(f)} ·B1 + {Â1(f)− Â2(f)} ·B2

]

(3.57)

operator − � ≤ X ≤ � .
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with

Âi =
1 + f

2(d2 + d)
(tr[Ai] · � + Ai) +

1− f

2(d2 − d)
(tr[Ai] · � − Ai)

=
d− f

d3 − d
tr[Ai] · � + df − 1

d3 − d
Ai.

(3.58)

At this point the variation over the observables of site B can be
done separately and it is clear that the optimum will be achieved for
B1 = sign

[
Â1(f) + Â2(f)

]
and B2 = sign

[
Â1(f)− Â2(f)

]
leading to

β(f) =
1

2
sup

−  ≤Ai≤  tr
[
|Â1(f) + Â2(f)|+ |Â1(f)− Â2(f)|

]
. (3.59)

To complete the proof we just need to look at the optimal observables
Bi resulting from this variation. Up to signs and relabelling we have
the following cases:

tr[A1] > 0, tr[A2] > 0: In this case we have that due to

d− f + (df − 1) = (d− 1)(1 + f) ≥ 0 (3.60)

both Âi ≥ 0. Therefore the optimal B1 is the identity which obviously
commutes with all B2. In this case we will get no violation, that is
β(f) = 1.

tr[A1] < 0, tr[A2] > 0: Similarly we have that the optimal B2 is equal
to the identity and therefore again β(f) = 1.

tr[A1] = 0, tr[A2] > 0: Since the optimal observables must satisfy
A2
i = � they have whole-numbered traces. tr[A1] = 0 can thus hap-

pen only in even dimensions where tr[A2] > 0 is equivalent to tr[A2] ≥ 2
as all the eigenvalues are ±1. This, in turn, leads to Â1 ≥ 0 and Â2 ≥ 0

and moreover to B1 = B2 = � .

tr[A1] = tr[A2] = 0: Here we have Âi = df−1
d3−dAi and for the moduli:

|Â1 ± Â2|2 =

(
df − 1

d3 − d

)2

|A1 ± A2|2 (3.61)

=

(
df − 1

d3 − d

)2

(2 � ± [A1, A2]+).
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The anticommutator [A1, A2]+
def
= 2C commutes with the identity so that

the variation boils down to optimizing the function

β ′(A1, A2) = tr
[√ � + C +

√ � − C
]
. (3.62)

The supremum can then be calculated with functional calculus to be
attained at C = 0 leading to

1

2
sup
A1,A2

β ′(A1, A2) =
df − 1

d2 − 1

√
2. (3.63)

To get the maximal violation we have to take the maximum over all
possible values finishing the proof. ¥

Although this lemma demonstrates the existence of a local classi-
cal model for all Werner states for dimensions d > 2 we have to keep
in mind that it applies only to the case of two dichotomic observables
per site. Complete sets of Bell inequalities are not known yet for the
case of non-dichotomic observables or more than two dichotomic ob-
servables per site. However, numerical computations for a few known
Bell inequalities for bipartite systems with more than two dichotomic
observables per site suggest that this remains true.

For tripartite systems there are obviously more Bell type inequal-
ities than the well known CHSH inequality. A complete set of such
inequalities has been derived for arbitrary many parties in [WW01].
For tripartite systems the set contains, up to a relabelling of the ob-
servables, of the sites and of the outcomes, only five inequivalent in-
equalities given by the following Bell operators:

A1 ⊗B1 ⊗ C1,
1
4

∑
i,j,k Ai ⊗Bj ⊗ Ck − A1 ⊗B1 ⊗ C1,

1
2
[A1 ⊗ (B1 +B2) + A2 ⊗ (B1 −B2)]⊗ C1, (3.64)

1
2
[A1 ⊗B1 ⊗ (C1 + C2) + A2 ⊗B2 ⊗ (C1 − C2)],

1
2
[A1 ⊗B1 ⊗ C2 + A1 ⊗B2 ⊗ C1 + A2 ⊗B1 ⊗ C1 − A2 ⊗B2 ⊗ C2].

Unfortunately, the iteration used in Lemma 3.2.1 does not lead to an
analytical solution for tripartite Werner states for any of these Bell
inequalities. Nevertheless it can be used to implement a very fast nu-
merical search. In figure 3.17 we have plotted a line showing which
tripartite permutation symmetric Werner states violate the Mermin
inequality (the fifth in (3.64)). This line has been evaluated pointwise
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Figure 3.17: States above the black line violate the Mermin inequality
for d = 3.

via a seesaw-like search using the above optimization over single sites
recursively. Although the Mermin inequality is not the one showing
the largest violation by tripartite Werner states for d = 3, it is the
Bell inequality which always47 shows a quantumly possible maximal
violation of 2

N−1
2 , where N is the number of involved parties. The over-

all behaviour for tripartite Werner states is almost the same for the
four latter inequalities (the first one is trivial) so that figure 3.17 can
be taken as representative. Just like in the bipartite case numerical
investigations show that the Bell violations vanish for d > 3.

3.3 The power of reduced states
As already stated in section 2.4 the two party reduced density matrices
inherit the symmetry. In fact, in our case they are bipartite Werner
states. In the first part of this section we will therefore check whether
three bipartite Werner states are commensurable in the sense that
they can be interpreted as the reduced density operators of one com-
mon tripartite ancestor.

47That is, for any N , and two dichotomic obervables per site.
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In the second part of this section we will have a short look at the
information measure introduced in [LPW02] for the special case of per-
mutation invariant tripartite Werner states.

3.3.1 Embedding bipartite Werner states
In section 2.1 we had already seen that such a bipartite Werner state
is fully characterized by its Flip expectation. For our tripartite states
this corresponds to looking at the expectation values with the three
transpositions V(12), V(23) and V(31). To characterize the set of commen-
surable triples of bipartite Werner states, we can use the techniques
used for the characterization of the separability properties. That is we
can compute the three expectation values for the set of extreme points
and compute the convex hull afterwards. We recall that the extreme
points of the state space SU⊗3 are the two projections P+ and P− and
the Bloch sphere with radius 1. For the two projections P± the expecta-
tions are easy:

tr
[
V(12)P+

]
= tr

[
V(23)P+

]
= tr

[
V(31)P+

]
= 1,

tr
[
V(12)P−

]
= tr

[
V(23)P−

]
= tr

[
V(31)P−

]
= −1. (3.65)

For the Bloch sphere we can use the spherical coordinates r1 = cosϕ cosψ,
r2 = sinϕ cosψ and r3 = sinψ to get the following parametrisation:

f1 =
1

2

(
− cosϕ cosψ +

√
3 sinϕ cosψ

)
,

f2 = cosϕ cosψ,

f3 =
1

2

(
− cosϕ cosψ −

√
3 sinϕ cosψ

)
,

(3.66)

which depicts a tilted circle in the space given by the coordinates f1, f2
and f3 (see figure 3.18).

In very much the same way we can check whether the overall tripar-
tite state given by the three flip expectations is itself fully or only bisep-
arable leading to figures 3.18 and 3.19. Especially the shape showing
triseparable states is interesting as it reflects the separability proper-
ties of the reductions too. Taking a closer look at this shape one can see
that it is bounded from below by the three inequalities fi ≥ 0, i.e. it is
bounded by the fact that no restriction is allowed to be entangled and
thus to have a negative flip expectation. The curvature of the upper
boundary is a remnant of the heart-shaped set of triseparable states.
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Figure 3.18: The set of commensurable triples is drawn as a mesh con-
taining the set of triples leading to a triseparable tripartite Werner
state.

As one would expect it this figure shows the trigonal symmetry of ro-
tations by 2π

3
about the diagonal corresponding to a relabelling of the

sites. Similarly the biseparable shape in figure 3.19 can be seen as lim-
ited by the constraint that the state has to be separable over one split
and thus the shape to be confined by only two inequalities, f1 ≥ 0 and
f3 ≥ 0 in our case, breaking the trigonal symmetry.

As usual we could characterize all these shapes by computing the
defining inequalities. However, as this computation does not give more
insight than the pictures, we refrain from doing it and recall that they
can be easily derived by projecting recursively from one set of extremal
points to the others.

3.3.2 The Popescu information measure
Conversely to subsection 3.3.1 we can go back to subsection 2.4.2 and
ask how much information is already contained in the bipartite reduc-
tions. Or, in other words, how much information of a tripartite Werner

87



PSfrag replacements

0

0

0

0

0

0.2

0.4

0.5

0.5

0.5

0.5
0.5

0.6

0.8

1

1

1

11

−0.5

−0.5

−0.5

−0.5

−0.5

−1

−1

−1

−1

−1

f1f1

f2f2

f3

Figure 3.19: Analogously to figure 3.18 the mesh shows the set of
commensurable triples whereas the interior shape shows triples giv-
ing biseparable states.

state is contained in the three flip expectations?
In section 2.4.2 we have seen that the state with least bipartite in-

formation inherits both symmetries, the Werner symmetry (see (2.4.4))
and the permutation invariance (see (2.4.5)). In the following we will
utilize these two observations in order to calculate M2 for permutation
invariant tripartite Werner states. The three bipartite reduced states
coincide due to the permutation invariance and are thus characterized
by only one flip expectation value f = tr[ρK � ] = r+ − r−.

The above observations now tell us that for every permutation in-
variant tripartite Werner state the optimal state ρ̃ is again from this
set and lies in addition on the line r+ − r− = f . Hence, the set of
all proper ρ̃ can be parameterized by a single parameter λ. It is now
straightforward to write down the entropy and to solve the variation
with respect to λ numerically.

However, since not much insight is coming out of writing down the
formulas which are rather lengthy due to the logarithm (the solution
is the root of a polynomial with not whole-numbered exponents) we
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refrain from that and present, in figure 3.20, the obtained result .

Note that for the states corresponding to the projectors onto totally
symmetric respectively antisymmetric subspaces (i.e. r± = 1 ) we have
M2 = 0 (as for all states lying on the thin black curve). For d = 3
the antisymmetric state is pure (it is the spin-1 singlet state) and it is
completely determined by its bipartite reductions. This is, however, a
general feature of the n-party singlet states in d = n dimensions (see
Lemma (2.4.3)).
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3.4 Inner geometry and state estimation
Another question that arises naturally when dealing with a family of
states characterized by only few parameters is: Once one such state
has been prepared, how well can one determine the corresponding pa-
rameters via measurements on a certain number of copies of the state?
This question is well known in classical statistics under the keyword
parameter estimation. In our context it is closely related to the ques-
tion: How well can two states be distinguished statistically?

In [Woo81] Wootters, in a natural way, introduced a statistical dis-
tance between two pure states by investigating the maximum number
of intermediate, mutually distinguishable pure states in a finite num-
ber of trials. His astonishing result was that this statistical distance co-
incides with the usual geometrical distance measure in a Hilbert space
given by its inner product:

dW (ψ, ψ̃) = cos−1 |〈ψ|ψ̃〉|. (3.67)

A generalization to mixed state was then presented in [BC94], which
involved maximizing the Fisher information as optimization of the mea-
surements. The distance measure proposed therein turned out to be
the distance given by the Bures metric48 dB (up to a factor) for neigh-
boured states ρ and ρ + dρ. Topologically this distance measure is
equivalent to the trace norm distance even for arbitrary von Neumann-
algebras (e.g. infinite dimensional systems). In fact in [Had86] it was
already shown that all norms of the form49

dq(ψ1, ψ2) = sup
{{pi}|p2i=pi∧∑

i pi= 	 }

(
d∑

k=1

|〈ψ1|pk|ψ1〉
1
q − 〈ψ2|pk|ψ2〉

1
q |q
) 1

q

(3.68)

are uniformly equivalent. Now any such distance function dx induces
a volume element via its metric tensor gxij, which has a density with
respect to the Lebesgue measure given by:

µx =
√
| det gxij|. (3.69)

To have something like an “a priori” probability for a state to lie in
a certain region Γ of the state space, we can thus take the relative

48The Bures metric was introduced in [Bur69] in the context of state spaces of von
Neumann-algebras.

49Note that this family contains the trace norm distance for q = 1 and the Bures
metric for q = 2.
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volume of Γ with respect to the given metric. In the following we will
investigate these relative volumes for tripartite Werner states. We will
concentrate on the Bures metric alone for two reasons: Firstly, it is
connected to the problem of statistical distinguishability and secondly,
the metric induced by the trace norm is completely flat contrary to the
Bures metric, which leads to a riemannian metric.

For finite dimensional density matrices the Bures metric reduces to
the following distance function which is closely related to Uhlmann’s
transition probability for density operators (see [Uhl76]):

d2B(ρ, σ) = 2− 2tr

[√√
ρσ
√
ρ

]
, (3.70)

which for symmetric states can be computed on the algebra itself since
the dimension dependence drops out like for the entanglement mono-
tones in subsection 3.2.1. The corresponding metric tensor can then be
derived by

gBijdρ
idρj =

1

2

d2

dt2
d2B(ρ, ρ+ tdρ)

∣∣∣∣
t=0

. (3.71)

We start applying these ideas to bipartite Werner states. Any bipartite
Werner state can be written as

ρW = r+ρ+ + r−ρ− with r+ + r− = 1, (3.72)

where ρ± = P±/tr[P±]. The advantage of this representation is, of
course, that it is in a sense already the spectral decomposition of ρW .
Taking the two neighboured states ρ ≡ (r+, 1 − r+) and ρ + tdρ ≡
(r+ + tdr+, 1− r+ − tdr+) we get

d2B(ρ, ρ+ tdρ) = 2− 2
√
r+(r+ + tdr+)− 2

√
(1− r+)(1− r+ − tdr+) (3.73)

and, after normalization, the density

µB =
1

π
√
r+(1− r+)

. (3.74)

An “a priori” probability for a bipartite Werner state to be separable
can then be calculated by integrating this density over the parameter
range corresponding to separable states. As derived in Lemma (2.1.1),
this is the set of states with positive flip expectation value f ∈ [0, 1].
With f = r+ − r− and r− = 1− r+ we obtain:

pbip,sep =

∫ 1
2

0

1

π
√
r+(1− r+)

dr+ =
1

2
. (3.75)
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For bipartite Werner states we therefore have a 50% a priori probability
of their being separable and likewise of their being entangled.

In the same way we can compute the Bures distance for permuta-
tion invariant tripartite Werner states

d2B(ρ, ρ+ tdρ) =2− 2
√
r+(r+ + tdr+)− 2

√
(1− r+)(1− r+ − tdr+)

− 2
√

(1− r+ − r−)(1− r+ − r− − tdr+ − tdr−)
(3.76)

and the normalized density

µB =
1

2π
√
r+r−(1− r+ − r−)

. (3.77)

Integrating over the separable and biseparable triangles as given in
figure 3.2 we get the “a priori” probabilities

ptrip,perm,sep =
π

40

(
−16 + 6

√
6 + 5 log

3(6−
√
6)

6 +
√
6

)
≈ 0.170502 (3.78)

and

ptrip,perm,bisep =
π

10

(
1− 5

√
5 + 4

√
6− 10 log

(5 +
√
5)(6−

√
6)

(5−
√
5)(6 +

√
6)

)
≈ 0.179607,

(3.79)
which is remarkably close to the result for triseparable states. Since
for permutation invariant tripartite Werner states ppt is equivalent to
biseparability, there is nothing to calculate in that case.

Turning now to general tripartite Werner states the situation is a
little bit more complex due to the lack of commutativity. Fortunately,
we can compute the distance on the algebra so that we can represent
the state by

ρ ≡ r+ ⊕ r− ⊕
(
r0 + r3 r1 − ir2
r1 + ir2 r0 − r3

)
, (3.80)

boiling the problem down to computing the Bures distance for 2 × 2-
matrices. This was already done by [Hüb92] so that we can directly
write down the Bures distance as

d2B(ρ, ρ+ tdρ) = 2− 2
√
r+(r+ + dr+)− 2

√
r−(r− + dr−)

− 2

√
2r0(r0 + dr0) + 2~r · (~r + ~dr) +

√
r20 − ~r2

√
(r0 + dr0)− (~r + ~dr)2

(3.81)
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with r0 = 1 − r+ − r−, dr0 = −dr+ − dr−, ~r = (r1, r2, r3) and finally
~dr = (dr1, dr3, dr3). Again we can normalize the resulting density to be:

µB =
2

π3(1− r+ − r−)
√
r+r−((1− r+ − r−)2 − r21 − r22 − r23)

. (3.82)

Although all the preceding expressions were free of dimension, there
is one last dimension dependency hidden. In fact, for d = 2 there are
no antisymmetric states or equivalently the alternating representation
does not show up, i.e. P− = 0 for d = 2. Three qubit Werner states can
be parameterized with four parameters only. For the distance we need
just to set r− = 0, but for the volume element we have to make an
analogous computation to arrive at the density

µd=2
B =

3

4π2(1− r+)
√
r+((1− r+)2 − r21 − r22 − r23)

. (3.83)

Unfortunately, this time an analytic integration over the various sep-
arable sets fails. To have a rough estimate on the corresponding “a
priori” probabilities we computed, therefore, 600 Monte-Carlo integra-
tions with 100.000.000 samples each. Since the obtained averages and
variances stem from the same distribution, we can invoke the central
limit theorem to see that the averages are normally distributed. With a
simple calculation of the error propagation we obtain the results shown
in table 3.21.

class average error
PPT 12.0520× 10−3 0.0060× 10−3

bipartite 7.0610× 10−3 0.0028× 10−3

tripartite 1.3685× 10−3 0.0016× 10−3

Figure 3.21: A priori probabilities for arbitrary tripartite Werner states
calculated via Monte Carlo integrations.

The obtained a priori probabilities confirm the intuition from figures
3.11 and 3.6 that separable states are more or less concentrated in the
vicinity of the permutation invariant states.
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Chapter 4

Quantum data hiding

“The most exciting phrase to hear in sci-
ence, the one that heralds new discover-
ies, is not Eureka! (I found it!) but rather,
’hmm...that’s funny’.”

(Isaac Asimov)

Having introduced and characterized two families of symmetric multi-
partite states, in this chapter we will present an application of them.
We will use them to construct a protocol called quantum data hiding.
Quantum data hiding makes use of the difficulty in distinguishing two
symmetric states via LOCC operations only50 to establish an encryp-
tion protocol similar to but stronger than quantum secret sharing.

We begin by re-presenting the idea due to [TDL01]. We then en-
large their results on bipartite quantum data hiding giving a geometric
interpretation of quantum data hiding and show that the protocol re-
mains secure even when using separable states. In section 4.2 we will
generalize the protocol to multipartite systems and give a construction
scheme for the corresponding hiding states as well as various exam-
ples. Section 4.3 will then deal with the optimal quantum data hiding
for two qubits.

The construction scheme for multipartite quantum data hiding has

50Note that distinguishability heavily depends on the class of operations used to
make the distinction.
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been published in [EW02]. A longer, rigorous version can be found in
[EW] including most of this chapter.

4.1 Hiding classical bits
As we have already seen in Lemma 2.4.5, twirling is a very effective
way of wiping out local information and at the same time best for max-
imizing the information difference between the overall state and its
reduced states. It was therefore natural to use symmetric states in or-
der to “hide” information. In [TDL01, TDL02] Terhal et al. introduced
a protocol serving this purpose in the following way: Assume that one
person (say Donald Duck) has an important piece of information. Un-
fortunately, he has to leave without taking this classical information
with him. To store the information (one bit for simplicity) he decides to
prepare, according to the value of the secret bit, one out of two states
of a bipartite quantum system51. After the preparation procedure he
hands one subsystem to Huey and one to Dewey. The nephews will
stay in separate rooms, being able to communicate in a classical way
only (i.e. without the possibility of exchanging their systems). Obvi-
ously, they are curious to know the information and will try to extract
it. Donald’s task is therefore to prepare the systems in such a state that
the nephews will not be able to infer the bit unless they manage to come
together and join their systems. This application is long-known in clas-
sical information theory as Shamir’s secret sharing [Sha79]. The first
quantum version of it was termed quantum secret sharing [HBB99].
However, quantum data hiding is the stronger protocol since it guar-
antees the security of the hidden bit even in the case that all parties
are allowed to communicate classically unlike in quantum secret shar-
ing where one “bad” party is excluded from communication.

The crucial part for Donald is to model the set of operations his
nephews will be able to apply to their subsystems. Unfortunately,
the LOCC class is mathematically hard to characterize (see subsection
1.1.2). Therefore we will follow [TDL01] and take the class of oper-
ations having a positive partial transpose since it is a strict overset
of the LOCC operations and easier to characterize. In fact, for PPT-
measurements we have:

51For simplicity’s sake we will assume that the dimensions of the single subsystems
are equal. This is not a real restriction since we can always embed lower dimensional
systems into higher dimensional ones.
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Lemma 4.1.1: Let T : ρ 7→ s × Ts(ρ) be a PPT-instrument with the
“subchannels” Ts(ρ) = KsρK

∗
s and the corresponding POVM-elements

Ms = K∗
sKs. Then all POVM-elements are PPT themselves:

∀s : Θ2(Ms) ≥ 0. (4.1)

Proof. Let ρ be a density operator, then Θ2(Θ2(ρ)) = ρ ≥ 0. Since all the
Ts are PPT we have that Θ2(Ts(Θ2(ρ))) ≥ 0 holds and therefore

0 ≤ tr[Θ2(Ts(Θ2(ρ)))] = tr[Ts(Θ2(ρ))]
def
= tr[Θ2(ρ)Ms] = tr[ρΘ2(Ms)] (4.2)

for all positive ρ and thus Θ2(Ms) ≥ 0. ¥

For our purpose of hiding only one bit of information we can summa-
rize whatever operation the parties perform in a two outcome positive
operator valued measure (POVM) {M0,M1} ≡ {A, � − A}. The condi-
tional probabilities of obtaining the outcome i when the bit j is encoded
is then given by

pij = tr[Miρj]. (4.3)

As any experiment where these two probabilities sum up to 1 can be
implemented by simple coin tossing the interesting quantity is the
amount of information beyond it:

|1− p00 − p11| = |1− tr[Aρ0]− tr[( � − A)ρ1]| = |tr[A(ρ1 − ρ0)]|. (4.4)

The task in quantum data hiding is now to find a pair of states {ρ0, ρ1}
such that this quantity becomes arbitrarily small for all analyzing op-
erators A representing LOCC measurements:

|tr[(ρ1 − ρ0)A]| ≤ ε (4.5)

and at the same time arbitrarily close to unity for arbitrary analyzing
operators:

|tr[(ρ1 − ρ0)A]| ≥ 1− δ. (4.6)

The quantities ε and δ are called hiding quality and recovery accuracy.
The proof that this is always possible even for multipartite configura-
tions will be given in section 4.2. Furthermore we will see in that sec-
tion that both, ε and δ, behave like the inverse of the dimension of the
single subsystems. The security of this scheme is therefore achieved
only in the limit of high dimensions (asymptotic security).
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4.1.1 A geometrical interpretation
It is clear that the set of admissible analyzing operators will determine
the set of hiding states and vice versa. Therefore we first give a geo-
metric interpretation of this reciprocity to have a better intuition before
calculating simple examples of quantum data hiding.

The relationship between hiding states and analyzing operators can
be formulated in terms of the duality between base norm spaces and
order unit spaces (see [Nag73]). In this subsection we will show that
the hiding quality |tr[(ρ0 − ρ1)A]| corresponds exactly to a base norm,
and give simple examples to illustrate it.
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Figure 4.1: The left cone represents the positive (upper half) and neg-
ative operators (lower half). The basis is given by the combination of
the intersections tr[ρ] = 1 and tr[ρ] = −1. The cone at the right is the
dual cone to the cone of positive operators and depicts the order unit
space of selfadjoint operators and the corresponding unit ball. These
cones are dual in the sense that to each edge of one unit ball there are
corresponding faces in the other.

We start by noting that the set

E+(P) = {A|Θ2(A) ≥ 0} (4.7)

has the structure of a positive cone, since with every A which is in
E+(P), λ · A with λ ∈ R+ is in E+(P) too. Together with the order
unit � the cone E+(P) spans an order unit space denoted by E(P). The
POVMs the parties can implement can then be written as the elements
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belonging to the double cone:

E1(P) =
{
F

∣∣∣∣
� ± F

2
∈ E+(P)

}
(4.8)

which is equivalent to F being in the unit ball:

F ∈ B(P) = {F ∈ E(P)|‖ΘS(F )‖ ≤ 1∀S} . (4.9)

Associated to E+(P) there is its dual cone52, i.e. the cone of linear forms
that are positive on E+(P):

E+(P)∗ = {B|tr[B∗A] ≥ 0∀A ∈ E+(P)}. (4.10)

Furthermore the cone E+(P)∗ has a base given by

K(E+(P)∗) = {B ∈ E+(P)∗|tr[B] = 1} (4.11)

(K for short) and a base norm given by

‖σ‖∗] = inf{λ+ + λ−|σ = λ+σ+ − λ−σ−, λ± ≥ 0} (4.12)

with σ± ∈ K. E+(P)∗ equipped with ‖ · ‖] is a base norm space E(P)∗.
Since the dual of this base norm space is the order unit space E(P) we
have that E(P) has the norm dual to (4.12):

‖A‖] = sup{|tr[B∗A]||B ∈ co(K ∪ −K)} (4.13)

where co denotes the convex hull of the respective set. Alternatively
we can write this norm as

‖A‖] = sup
σ∈E(P)∗

|〈σ|A〉|
‖σ‖∗]

(4.14)

with 〈σ|A〉 denoting the Hilbert-Schmidt scalar product tr[σ∗A]. By the
polarity correspondence (see [Roc72]) we get

‖σ‖∗] = sup
A∈E(P)

|〈σ|A〉|
‖A‖]

. (4.15)

Writing the POVM element A in terms of elements of the unit ball
(A =  +F

2
) we can rewrite this norm for elements of the unit ball to

recover the hiding quality:

sup
F∈E1(P)

|tr[(ρ0 − ρ1)F ]| =
1

2
‖ρ0 − ρ1‖∗] . (4.16)

52This algebraic duality can be interpreted as duality with respect to the Hilbert-
Schmidt scalar product.
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4.1.2 Hiding bits in Werner/isotropic states
To give some intuition of these objects we compute, as an example, the
hiding quality of bipartite Werner states and of isotropic states. As
was already shown in [TDL01, TDL02], the optimal bipartite hiding
states with Werner symmetry are the normalized symmetric and anti-
symmetric projectors53 (see subsection 4.2.4):

ρ0 =
� + F
d2 + d

and ρ1 =
� − F
d2 − d

, (4.17)

where F is the Flip operator defined by F(ϕ⊗ψ) = ψ⊗ϕ for all ϕ, ψ ∈ Cd.
The POVM element A can be written as A = 	 +F

2
with F ∈ E1(P), i.e.

− � ≤ F ≤ � , − � ≤ Θ{2}(F ) ≤ � . (4.18)

Furthermore, for symmetric states it suffices to consider operators A
bearing the same symmetry. In fact, since we are looking at expecta-
tion values only, if we take symmetric states, i.e. states being invariant
under some twirling operation T , we can restrict ourselves to operators
A having the same symmetry:

tr[A(ρ1 − ρ0)] = tr[AT (ρ1 − ρ0)] = tr[T (A)(ρ1 − ρ0)], (4.19)

or in other words: to each operator A we can find a symmetric partner
T (A) = λ � + µF leading to the same conditional probabilities54. The
constraints of (4.18) turn then into

|λ± µ| ≤ 1, |λ| ≤ 1 and |λ+ µ · d| ≤ 1. (4.20)

In these parameters we get for the hiding quality:

|tr[(ρ0 − ρ1)A]| =
1

2
‖ρ0 − ρ1‖∗] = |µ|. (4.21)

Figure 4.2 shows a plot of the sets of operators F satisfying (4.18).
In contrast to the positivity constraint the ppt range is dimension de-
pendent and converges to the interval [−1, 1] of the abscissa. The opti-
mization of |µ| can now be done by inspection. There are, of course, two

53Actually they build the only pair of orthogonal states in the bipartite Werner
family.

54To obtain the last equality one needs the unimodularity of the Haar measure
involved in the twirling operation, the interchangeability of the trace and the inte-
gration for finite dimensions and the cyclicity of the trace.
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Figure 4.2: Positive and ppt operators of Werner symmetry. The ppt
range and the optimal POVM are displayed for the dimensions 2, 3, 4
and 5.

equivalent solutions, due to the absolute value, which correspond to the
interchange of A and � − A. The optimum converges together with the
ppt region towards a multiple of the identity which has no resolution
power, i.e. the chosen states hide the bit in the limit of d→∞.

For the isotropic states (ρ0 = |Ω〉〈Ω|, ρ1 =  −|Ω〉〈Ω|
d2−1 ) the calculation

is more or less the same up to the fact that the two sets of opera-
tors (positive and ppt) swap their rôles (cf. figure 4.3). Contrary to
the Werner picture the parallelogram describes the positive operators
and remains fixed whereas the rhombus is stretched by the dimension.
With A = λ � + µ|Ω〉〈Ω| the hiding quality is again equal to |µ|. The op-
timal POVM converges to the projector onto the maximally entangled
state. Hiding is therefore not possible since we have that ε ≥ d

d+1
.

4.1.3 Separable hiding states
As we will see in section 4.2.3, it is possible to enhance the hiding qual-
ity by taking more copies or higher dimensional systems. Therefore,
we are no longer restricted to taking orthogonal hiding states. In fact,
even separable non-orthogonal states can hide a classical bit, although
this might need more resources (=Hilbert space dimensions) as we need
more copies of them to achieve a given hiding quality.

To make this result easier to read we will not compute the hiding
quality in detail but use a simpler though weaker bound. This bound
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arises if we omit the positivity constraint enlarging the set of allowed
POVMs:

ε = sup
	 ≥A≥0

	 ≥Θ2(A)≥0

|tr[(ρ0 − ρ1)A]| =
1

2
sup
‖A‖≤1

‖Θ2(A)‖≤1

|tr[(ρ0 − ρ1)A]|

≤ 1

2
sup

‖Θ2(A)‖≤1
|tr[(ρ0 − ρ1)]A| =

1

2
sup

‖Θ2(A)‖≤1
|tr[Θ2 (ρ0 − ρ1)]Θ2(A)|

=
1

2
‖Θ2 (ρ0 − ρ1) ‖1.

(4.22)

A very simple bipartite hiding scheme with separable states was
already presented in [EW02]. As hiding states we used

ρ̂1 = ρ⊗K+ , ρ̂0 =

(
ρ+ + ρ−

2

)⊗K
, (4.23)

which are clearly separable [Wer89]. For the best possible analyzer
A = P⊗K+ we can compute the recovery accuracy to be δ = 2−K and use
(4.22) to estimate the hiding quality ε:

2ε ≤ ‖Θ2(ρ̂0 − ρ̂1)‖1 = ‖
(

P1

d2 + d
+

(1 + d)P0

d2 + d

)⊗K
−
(

P1

d2 − 1

)⊗K
‖1

= tr

[(
P0

d
+

P1

d2 + d

)⊗K
−
(

P1

d2 + d

)⊗K]

+ tr

[(∣∣∣∣∣

(
1

d2 + d

)K
−
(

1

d2 − 1

)K∣∣∣∣∣

)
P⊗K1

]

= 1 +

((
1

d2 − 1

)K
− 2

(
1

d2 + d

)K)(
d2 − 1

)K

= 2

(
1−

(
1− 1

d

)K)

(4.24)

with P0 = |Ω〉〈Ω| and P1 = � − P0. This simple example shows that
any finitely distinguishable pair can be used if one can afford enough
copies, i.e. a big enough Hilbert space.

4.1.4 Robustness of symmetric quantum data hiding
Since the security is crucial for such hiding protocols it is important
to know how they behave in the presence of prior entanglement. One
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Figure 4.3: Positive and ppt operators of isotropic symmetry. The opti-
mal POVM is figured for dimensions 2 and 3.

could think that for breaking a protocol hiding one classical bit one e-bit
might be enough. Fortunately, this is not true as a simple application
of (4.22) shows.

As an example we can take any bipartite hiding protocol with the
hiding states ρ0 and ρ1. Furthermore we allow the two parties to share
a maximally entangled state Ω of dimension D, getting a scheme with
the states ρi ⊗ |Ω〉〈Ω|. By virtue of (4.22) we get:

2ε ≤ ‖Θ2 ((ρ0 − ρ1)⊗ |Ω〉〈Ω|) ‖1 = D‖Θ2 (ρ0 − ρ1) ‖1. (4.25)

The behaviour of this new protocol is thus the same but for the dimen-
sion of the entanglement resource. To break the hiding scheme it would
be therefore necessary to have D = d, that is one would have to enable
the parties to teleport their particles.

4.2 Hiding bits in multipartite states
Hiding quantum data among more than two parties (e.g. with a third or
a fourth nephew55) naturally leads to more complicated configurations.
Let us assume that the classical bit has been encoded into the choice of

55In some comics like Donald Duck: Medaling Around (story W WDC 261-01) by
Carl Barks a fourth nephew, afterwards called Fooey or Phooey, has been drawn by
accident in some panels.

103



one out of two states of an N -partite system, where all the single site
Hilbert spaces have the same dimension d. After the encoder has made
his choice he passes the N particles to N different parties that may try
to recover the hidden bit performing some measurements and commu-
nicating classically. Moreover some of the parties can have quantum
lines of communication, i.e. they can be regarded as having more than
one of the particles. The idea is that the parties that can exchange
quantum information are stored in one lab and the different labs com-
municate via classical information exchange (phone lines etc.). The
different subsets belonging to different labs altogether form a parti-
tion P of the N sites which fully describes the communication possible.
This partition determines what can be called the local operations with
classical communication (P-LOCC operations) of the setup.

Figure 4.4: The partition P = {(4)(36)(125)} for a six-partite sys-
tem. Parties belonging to the same block can communicate quantumly
whereas the blocks can communicate only classically.

Again we will not use P-LOCC operations to demonstrate the se-
curity of the protocol but the corresponding lager class of P-PPT ob-
servables. A P-PPT observable will be described similarly to (4.1) by a
dichotomic POVM {M0,M1} ≡ {A, � − A}:
Lemma 4.2.1: Let S be any of the subsets of a partition P. A P-PPT
instrument T : ρ 7→ i × Ti(ρ) with “subchannels” Ti(ρ) = KiρK

∗
i and cor-

responding POVM-elements Mi = K∗
iKi fulfills

ΘS(Mi) ≥ 0 for all S ⊂ P . (4.26)

Proof. The proof is identical to the proof of Lemma 4.1.1 if one takes
the splits S|{S for all S ⊂ P instead of 1|2. ¥

In the protocol we present (see [EW02]) the encoder is allowed to
choose a set P of hiding partitions P for which he wants the bit to be
hidden, and conversely the bit to be recoverable for any partition P /∈ P.
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The set P is completely arbitrary up to the fact that choosing a finer
partition P, i.e. allowing less quantum communication lines, makes it
harder to recover the bit. The power of our scheme is summarized in
the following theorem:

Theorem 4.2.2: Consider any set P of hiding partitions containing
with each partition all finer ones. Then, for any given security ε ≥ 0
and accuracy of recovery δ ≥ 0, we can find a pair of hiding states ρ0, ρ1
such that:

1. For all partitions P ∈ P and all analyzing operators A which are
admissible for P we have

|tr[(ρ1 − ρ0)A]| ≤ ε.

2. For all partitions P 6∈ P there is an analyzing operator A which is
admissible for P such that

|tr[(ρ1 − ρ0)A]| ≥ 1− δ.

The proof of this theorem will be carried out in detail in the next
three sections. This scheme is fairly general but we remark that the
hiding and recovery qualities will determine the resources needed to
implement it. As we will prove in section 4.2.2 the qualities will behave
like the inverse of the single Hilbert space dimension.

4.2.1 Multipartite symmetric hiding states
As hiding states we will use the multipartite Werner states introduced
in chapter 2. In subsection 4.2.4 we will see that even permutation in-
variant multipartite Werner states already serve our purpose of hiding
a classical bit.

Besides the fact that these states are easy to characterize a second
advantage is that for symmetric states it suffices to consider operators
A bearing the same symmetry. The second ingredient (the POVM) will
now have the same symmetry as the states used:

A =
∑

π

aπVπ, π ∈ SN . (4.27)

In contrast to the plain positivity A ≥ 0, the positivity condition
ΘS(A) ≥ 0 written in terms of the coefficients aπ is heavily dimension
dependent, as we will show in this subsection. We start by exploring
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the consequences of the plain positivity and then turn to the positivity
of partially transposed As.

Let us consider the matrix M given by

d−Ntr[V ∗π Vσ] = δπ,σ + d−1Mπ,σ. (4.28)

Since tr[Vπ] = dc, where c is the number of cycles in π including those of
length 1 (alternatively this can be seen as the number of closed loops,
cf. figure 2.7), M is up to a factor a doubly stochastic matrix and thus
invertible, so we can invert the linear relation

tr[V ∗πA] =
∑

σ

tr[V ∗π Vσaσ] = dN
(
( � + d−1M)a

)
π
. (4.29)

Applying the inequality ‖M ·a‖max ≤ ‖M‖·‖a‖max to the maximum Norm
‖a‖max := maxπ |aπ| we get by summing the Neumann series [Bha97] for
the inverse of � + d−1M :

max
π
|aπ| ≤

maxπ

∣∣∣d−Ntr[V ∗πA]
∣∣∣

1− ‖M‖/d . (4.30)

As M is doubly stochastic (up to a factor) ‖M‖ is simply the sum of the
components of one of its rows or columns. A closer look at M reveals
that each row or column consists of all permutations but the identity
which has been subtracted in (4.28). The sum of one such row is thus
proportional to the dimension of the Bose projector:

‖M‖ = d
(
d−NN !tr[P+]− 1

)

= d

(
d−N

(d+N − 1)!

(d− 1)!
− 1

)

= d

(
d+N − 1

d
· · · · · d

d
− 1

)

= d

((
1 +

N − 1

d

)
· · · · ·

(
1 +

1

d

)
− 1

)

≤ d
(
e
N−1
d · · · e 1

d − 1
)

= d
(
e
N(N−1)

2d − 1
)

(4.31)

due to the relation 1 + x ≤ ex which holds for all nonnegative x. This
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leads to

max
π
|aπ| ≤

1

1− ‖M‖/d

=
1

2− e
N(N−1)

2d

= 1− N(N − 1)

2
· d−1 +O(d−2),

(4.32)

where we used the estimate |tr[VπA]| ≤ ‖Vπ‖1‖A‖ with

‖Vπ‖1 def
= tr

[√
V ∗π Vπ

]
= dN (4.33)

and ‖A‖ ≤ 1. From this we see that the positivity constraint 0 ≤ A ≤ �
already bounds the coefficients of A by 1.

For the partially transposed operators these bounds are even tighter.
This is best seen if we take a permutation σ that does not leave all the
subsets of P invariant. In that case we have

‖ΘS(Vσ)‖1 = tr
[√

ΘS(V ∗σ )Θ(Vσ)
]
= dN−lS(σ), (4.34)

where lS(σ) is the number of repeated indices in either ket or bra of the
“chip” ΘS(Vσ).

4.2.2 Tailoring the hiding property
In this subsection we will make use of these tighter bounds to show
how to construct states suitable for hiding.

In fact, for a permutation that is not adapted to P (4.28) gives:

d−N |tr[AVσ]| = d−N |tr[ΘS(A)ΘS(Vσ)]|
≤ d−N‖ΘS(Vσ)‖1‖ΘS(A)‖
≤ d−lS(σ)

(4.35)

because of ‖ΘS(A)‖ ≤ 1, and as for (4.30) we get

|aσ| ≤ d−lS(σ) +O(d−1). (4.36)

But this means that only those symmetric operators will distinguish
asymptotically between the two given symmetric states that respect
all S, since for all σ with lS(σ) > 0 for any S we have that |aσ| → 0 for
d→∞.
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As a first consequence of these bounds consider the case where no
quantum communication is allowed at all, i.e. P = ({1}{2} . . . {N}) .
The only permutation leaving P invariant is the identity which has the
same expectation for ρ0 and ρ1. Hence |tr[(ρ0 − ρ1)A]| decays as O(d−1)
and the bit is asymptotically hidden.

The idea of our construction scheme is now to choose ρ0 and ρ1 ex-
actly in this way, namely such that tr[ρ0Vπ] = tr[ρ1Vπ] for all π which
are adapted to any of the targeted hiding partitions P ∈ P. Although
this ensures that the classical bit is hidden it does not guarantee that
the resolution achievable is arbitrarily good. Fortunately, it will suffice
to have tr[(ρ0 − ρ1)Vπ] 6= 0 for one permutation adapted to any targeted
revealing partitions. No matter how small this resolution quality is, as
we will show in section 4.2.3, we can improve it to an arbitrarily good
resolution quality just by using multiple copies of the hiding states.

4.2.3 Tailoring the resolution property

As already mentioned in the preceding subsection, our construction so
far does not guarantee perfect distinction (δ = 0) for the partitions
meant to be revealing (see examples 4.2.4.1.3.2 and 4.2.4.1.3.3). In fact,
the difficulty of guaranteeing good recovery for all partitions P /∈ P re-
mains. One part of this can be achieved easily, namely by satisfying
condition 2 of the theorem for some δ < 1, uniformly in d. For that
we only need to take tr[(ρ1 − ρ0)Vπ] 6= 0, whenever π is adapted to any
P ∈ P. For if P /∈ P we can use a permutation π with cycle decomposi-
tion P, or rather a combination of Vπ, V ∗π , and � as analyzing operator.
This is then a local measurement, which does not even require commu-
nication, apart from the need to bring correlation data together.

Taking tr[(ρ1 − ρ0)Vπ] 6= 0 for a prescribed set of permutations is
always possible, even with the constraint that ρ0 and ρ1 both have to be
positive: we only need to take ρ0,1 ∝ � ± ε · δρ with sufficiently small ε,
and tr[δρ1 Vπ] zero or non-zero as desired. At the same time, this shows
that we can work with separable ρ0,1 (see subsection 4.1.3).

The recovery probability achieved in this way will be rather low.
However, we can boost it by taking multiple copies of ρi, i.e. we choose
ρ̂i = ρ⊗Ki (i = 0, 1) for large K as our hiding states. By construction, if
P /∈ P, we can find an admissible observable X =

∑
α ξαFα, with Fα ≥ 0

and
∑

α Fα = � such that tr[ρ0X] < tr[ρ1X]. As analyzing measure-
ment F to discriminate ρ̂0 and ρ̂1 we can therefore take a statistical
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measurement of X:

F =
∑

α1,...,αK
1
K

∑
i ξαi>x̌

Fα1 ⊗ · · · ⊗ FαK (4.37)

with x̌ being the mean value of X. This observable is measured on all
of the K copies giving the outcomes Xα, and when the mean of these K
results is ≤ x̌ the partners decide on “1” as the value of the hidden bit.

The large deviation estimates [Ell] assure us that the probability of
getting the wrong answer:

p1|0 = tr[ρ̂0F ] = P

(
1

K

K∑

α=1

Xα ≥ x̌

)
=

∑

x1,...,xK∑
α xα≥Kx̌

p(x1) · · · p(xK)

λ≥0
≤

∑

x1,...,xK

p(x1) · · · p(xK) · eλ
∑
α(xα−x̌) =

(
∑

x

p(x)eλ(x−x̌)
)K

(4.38)

is exponentially small in K.
Since the function f(λ) =

∑
x p(x)e

λ(x−ξ) is convex in λ and the first
order derivative is negative at λ = 0, (f ′(0) = 1

K

∑
i xαi−x̌) it is clear that

for positive λ we have f(λ) < f(0) = 1, giving an overall exponential
decay for the probability of guessing wrong.

What remains to be checked, however, is that this statistically en-
hanced detection scheme with its larger local Hilbert spaces does not
allow new, unwanted detection possibilities for the hiding partitions
P ∈ P. Fortunately, this is not the case. Admissible analyzing opera-
tors now have the form

A =
∑

~π=(π1,...,πK)

a(π1, . . . , πK)Vπ1 ⊗ · · · ⊗ VπK . (4.39)

By arguments completely analogous to the single copy case in sec-
tion 4.2.1, we have:

|tr
[(
V ∗σ1

⊗ · · · ⊗ V ∗σK
)
A
]
| = |tr

[(
ΘS

(
V ∗σ1

)
⊗ · · · ⊗ΘS

(
V ∗σK

)
ΘS (A)

)]
|

≤ ‖ΘS

(
V ∗σ1

)
⊗ · · · ⊗ΘS

(
V ∗σK

)
‖1 · ‖ΘS (A) ‖︸ ︷︷ ︸

≤1

≤
K∏

i=1

‖ΘS (Vσ1) ‖1 =
K∏

i=1

dN−lS(σ1).

(4.40)
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On the other hand we have:

|tr
[(
V ∗σ1

⊗ · · · ⊗ V ∗σK
)
A
]
| = |

∑

~π

tr
[(
V ∗σ1

Vπ1
⊗ · · · ⊗ V ∗σKVπK

)
a(~π)

]
|

= dN ·K
((

� ⊗K +
MK

d

)
a(~π)

)

~σ

(4.41)

where MK is defined analogously to (4.28). Putting (4.40) and (4.41)
together we obtain again:

max
~σ
|a(~σ)| ≤ max~σ

∏K
i=1 d

−lS(σi)

1− ‖MK‖
d

(4.42)

which goes to zero for d → ∞, whenever not all σi are adapted to the
chosen partition P . Using the shorthand notation Ri(π) = tr[σiVπ] we
finally get

tr[(ρ̂0 − ρ̂1)A] =
∑

~π

a(~π)

(
K∏

i=1

R0(πi)−
K∏

i=1

R1(πi)

)
. (4.43)

Now if all πi are adapted to P, then the difference in the bracket is zero.
If not, there must be some πi which is not adapted to P and the whole
expression goes to zero due to (4.42), i.e. multiple copies of symmetric
hiding states are again hiding.

Effectively we used one-site Hilbert spaces of dimension dK , which
is again in keeping with the “1/dimension” behaviour of errors in the
theorem. For hiding the classical bit we can thus first choose K large to
make δ small, and subsequently d large, in order to get ε = K/d+O(d−2)
small.

4.2.4 Examples

The main novelty when going from bipartite to multi-partite protocols
is the possibility that the parties may conspire. In order to reveal the
hidden bit they can come together in groups allowing quantum com-
munication to the members of the group and classical communication
to the rest. Excluding the trivial case where all parties come back to-
gether we show in this subsection how different coalitions can turn into
different degrees of concealment.
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4.2.4.1 Permutation invariant examples

To make the construction of our first examples even simpler we will re-
strict ourselves to permutation invariant partitions P . This will enable
us to read the desired hiding states directly off the character table of
the SN .

4.2.4.1.1 Weakest concealment The weakest concealment is at the
same time the easiest to realize. We could use, for instance, the nor-
malized symmetric and antisymmetric projections to encode the classi-
cal bit and the information a single party could gain on it would tend
asymptotically to zero. On the other hand, this concealment is the
weakest possible as a coalition of any two single parties would suffice to
detect the bit with certainty without any further communication with
the remaining parties. The two conspiring partners only have to test
their bipartite system with the symmetric/antisymmetric projectors of
their twofold tensor product. In this case the discrimination would be
perfect even when the two conspiring partners do not communicate at
all with the rest of the parties.

4.2.4.1.2 Strongest concealment As the strongest form of conceal-
ment we could try to hide the bit in such a way that it is asymptotically
secure against all possible coalitions (besides the trivial one joining all
parties).

Let us fix two states ρ0, ρ1 and take their difference δρ = ρ1 − ρ0.
In order to hide our bit against a coalition corresponding to a partition
P we must have tr[δρVπ] = 0 for all permutations adapted to P . This
means that in order to hide the bit against all possible coalitions we
have to use states such that δρ is orthogonal to all conjugacy classes
up to the one of the N -cycle. This tells us already how to construct our
states. In fact, all we have to do is to take a look at the character table
of the SN , that is the table of coefficients of the irreducible representa-
tions written in terms of conjugacy classes (see figure 4.5). The hiding
states can now be chosen as linear combinations of the projections onto
the irreducible representations such that their coefficients are equal on
every conjugacy class but the one of the N -cycle.

4.2.4.1.3 Fourpartite examples To make it clearer we apply the
receipt given above to the case of N = 4.
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K 5 G 5 5 5 G 5

Figure 4.5: The character table of S4.

The two states we want to construct have to be orthogonal, which
means that no irreducible representation can be in both linear combi-
nations. Furthermore the coefficients of the two linear combinations
written in conjugacy classes must be equal up to the last one belonging
to the 4-cycle. Now we can associate to each projector onto an irre-
ducible representation a state by normalizing it. A linear combination
on the level of the character table then corresponds to taking the linear
combination of the states weighted by the dimension of the respective
irreducible representation56. The two linear combinations we can use
for our purpose are

A 1 1 1 1 1
+ D 3 −1 −1 0 1
= 4 0 0 1 2

and
B 3 1 −1 0 −1

+ E 1 −1 1 1 −1
= 4 0 0 1 −2

corresponding to the states

ρ0 =
ρA + 3ρD

4
and ρ1 =

3ρB + ρE
4

. (4.44)

56This can be computed using the trace of the group algebra: Let Py be the projec-
tors onto the irreducible representations labelled by the Young frames. To each row
in figure 4.5 corresponds one such projector. The addition of two projections Py1 and
Py2 corresponds to the state Py1

+Py2

tr[Py1
+Py2

]
. Since the trace of such a projection taken with

the trace of the group algebra gives exactly the dimension of the representation we
get: tr[Py1 + Py2 ] = dy1 + dy2 and thus

Py1 + Py2
tr[Py1 + Py2 ]

=
dy1

dy1 + dy2
ρy1 +

dy2
dy1 + dy2

ρy2 .
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Since these states are orthogonal by construction we can take, as a
perfect analyzer, the projector onto one of the states, e.g. A = PA + PD.

Knowledge of the character table of the SN is therefore all one needs
to construct permutation invariant U⊗N -invariant states suitable for
hiding a classical bit against all possible (non-trivial) coalitions.

To show that this procedure is valid also for intermediate cases of
concealment we keep N = 4 and construct in the same manner the
examples we presented in [EW02].

4.2.4.1.3.1 Two pairs. One of the remaining possibilities forN =
4 is to allow the parties to form two pairs, e.g. P = ({1, 2}, {3, 4}).
These pairs may communicate only classically between them but can
exchange quantum information within the two pairs. Applying the
above technique to this case we have to build two linear combinations
of irreducible representations such that the coefficients of the (14), the
(2, 12), the (22) and perhaps even of the (41) conjugacy class are equal.
Again the computation is quite easy at this point:

A 1 1 1 1 1
+ E 1 −1 1 1 −1
= 2 0 2 2 0

and C 2 0 2 −1 0

leading to the states

ρ0 =
ρA + ρE

2
and ρ1 = ρC . (4.45)

With these states we are able to hide (asymptotically good) a classical
bit against the formation of two pairs. As a perfect analyzer we can use
A = 1

3
( � +R+L), where R (L) is the right (left) shift of the three-partite

system.

4.2.4.1.3.2 The 3:1 split. Another possibility for N = 4 is to hide
the bit against a coalition of any three of the four parties, partitions
like P = ({1, 2, 3}, {4}). To this end we take the following linear combi-
nations:

A 1 1 1 1 1
+ C 2 0 2 −1 0
= 3 1 3 0 1

and B 3 1 −1 0 −1

and the corresponding states

ρ0 =
ρA + 2ρC

3
and ρ1 = ρB. (4.46)
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No 3:1 split can separate them but any two pairs can (though not per-
fectly) with the analyzer A = 1

3
( � + T ⊗ T ), where T ⊗ T denotes the

tensor product of the transpositions in the two pairs.

4.2.4.1.3.3 The 2:1:1 split. The last possibility for N = 4 is to
hide against single pairs but not allowing the remaining two parties to
join into a second pair, e.g. P = ({1, 2}, {3}, {4}). The usual computation
then gives

C 2 0 2 −1 0
+ E 1 −1 1 1 −1
= 3 −1 3 0 −1

and D 3 −1 −1 0 1

and the corresponding states

ρ0 =
2ρC + ρE

3
and ρ1 = ρD. (4.47)

with the best possible (imperfect) analyzer A = ( � + V(12)(34))/2.
We conclude this subsection by stressing that the setups of two pairs

and one triplet are not comparable in terms of allowed amount of quan-
tum communication since two pairs can reveal a bit hidden for triplets
and vice versa. The hiding strength can thus not be measured on a one
parameter scale.

4.2.4.2 Beyond permutation invariance

All the examples given in the preceding subsection were easy to con-
struct because of their high symmetry. Of course, the invariance under
all permutations is not necessary for our scheme to work. In fact, when
dropping the permutation invariance we still have enough freedom to
keep the complete concealment scale.

In the case of N = 4 we could, for example, choose as hiding parti-
tions P = {(123)(4), (12)(3)(4), (13)(2)(4), (23)(1)(4), (1)(2)(3)(4))} which
fixes six out of 24 coefficients of δρ. The set of revealing partitions {P =
{(1234), (124)(3), (134)(2), (234)(1), (12)(34), (13)(24), (14)(23), (14)(2)(3),
(24)(1)(3), (34)(1)(2)} then consists of all those partitions where the
fourth party communicates quantumly with at least one other party
(see 4.2.6). By choosing the remaining coefficients of δρ properly we
can still implement the full concealment scale for the remaining 3 par-
ties in the following sense:

• The weakest concealment: Every 2:1:1 partition in {P can analyze.
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• Single pairs: No 2:1:1 partition in {P can analyze but all other
can.

• Two pairs: No 2:2 and no 2:1:1 partition in {P can analyze but all
other can.

• Triplets: No 3:1 and no 2:1:1 partition in {P can analyze but all
other can.

• The strongest concealment: No partition in {P can analyze but
(1234) can.

Of course, even this remaining symmetry is not necessary and was just
used for keeping the examples simple.

4.2.5 Hiding bit sequences
The estimates of section 4.2.3 can be used to prove that the symmetric
hiding of whole bit strings is secure. However, using the weaker bound
(4.22) one can already show the security of such schemes at least for
separable single bit hiding states.

Suppose the bit strings are encoded in the hiding states ρI = ρi1 ⊗
· · · ⊗ ρiL , where {ρ0, ρ1} build a separable bipartite hiding scheme with
security ε. The weaker bound then gives:

ε̃ ≤ 1

2
‖Θ2 (ρI − ρJ) ‖1 = ‖Θ2

(
L⊗

l=1

ρil −
L⊗

l=1

ρjl

)
‖1

≤ ‖Θ2

(
L⊗

l=1

ρil −
L−1⊗

l=1

ρil ⊗ ρjL

)
‖1

+ ‖Θ2

(
L−1⊗

l=1

ρil ⊗ ρjL −
L⊗

l=1

ρil

)
‖1

= ‖Θ2

(
L⊗

l=1

ρil −
L−1⊗

l=1

ρil ⊗ ρjL

)
‖1 + ε

and by iteration

≤ dH (I, J) · ε
(4.48)
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where dH (I, J) denotes the Hamming distance between the bit strings
I and J. The separability of the single bit hiding schemes may not be
necessary but it improves the bound as we do not gather factors from
the trace norm of their partial transpose which can reach d in the worst
case. The security of hidden bit strings thus scales with at most the
length of the strings for separable schemes.

4.2.6 Hiding quantum data
In [DHT03] the inventors of quantum data hiding have extended the
notion of data hiding to quantum data. In this new protocol Alice and
Bob are given 2n particles each encoding 2n classical bits and addi-
tionally one of the two (say Bob) has an n-qubit string which has been
unitarily rotated depending on the encoded bit string such that it is
locally undistinguishable from the chaotic state. Now, whenever Alice
and Bob are able to recover the encoded bit string Bob can invert the
rotation and get the original qubit string back. This is equivalent to
using a hidden classical key to lock away a quantum secret (or a ba-
nana).

In contrast to usual quantum data hiding this protocol singles out
one party which will be given the secret qubit string. When going to
a multipartite setting with a set P of hiding partitions there may be
partitions P which are not in P and which do not allow the exchange of
quantum information with the privileged party. In this case, as pointed
out by [DHT03], the conspiring parties may recover the hidden key but
not the quantum secret since it is out of reach for them. Fortunately,
there are setups where this situation does not occur. In fact, the crucial
point of hiding quantum data is that the secret-keeping party should
not be allowed to be part of a conspiracy, i.e. to communicate quantumly
with others. In this case (see subsection 4.2.4.2) every partition not in
the hiding set will correspond to a coalition capable of revealing the
quantum secret. Nonetheless, all the different degrees of security for
the hidden classical key are still possible.

4.3 Optimal bit-hiding in a pair of qubits
In all the preceding cases the security of the quantum data hiding pro-
tocol was achieved in the limit of an infinite single site dimension. This
is obviously a big problem for experimentalists which cannot imple-
ment such a limit. It is therefore natural to ask for an optimal protocol
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for a fixed dimension. In [But02] a characterization of optimal quan-
tum data hiding protocols for two qubits has been investigated in de-
tail. In this section we will give a short derivation of some of the results
obtained therein showing that optimal quantum data hiding for qubits
cannot be done perfectly well but still with a non-zero gain.

It is clear that a quantum data hiding protocol does not depend on
the hiding states but only on the difference δρ. The optimal hiding
strength of the protocol can be described with a norm similar to (4.16):

‖δρ‖hide = sup
0≤F,Θ2(F )≤  

|tr[δρ · F ]| (4.49)

Hiding states that optimize the hiding strength lead to a difference δρ
that minimizes this norm. Conversely, the hiding states can be best
distinguished if their difference δρ has a large tracenorm ‖δρ‖1. In fact,
if we write δρ = δρ+ − δρ− we have that:

‖δρ‖hide = sup
0≤F,Θ2(F )≤  

|tr[δρ+ · F ]− tr[δρ− · F ]|

≤ max

{
sup

0≤F,Θ2(F )≤  
|tr[δρ+ · F ]|, sup

0≤F,Θ2(F )≤  
|tr[δρ− · F ]|

}

=
‖δρ‖1
2

.

(4.50)

Therefore, to achieve a hiding strength of 1, one needs orthogonal hid-
ing states.

For an optimal protocol for quantum data hiding it is natural to de-
mand that the ratio of hiding strength to trace norm distance (analysa-
bility) is minimal:

γopt = inf
δρ

2 · ‖δρ‖hide
‖δρ‖1

, (4.51)

where the factor of two appears as a normalization. Hence, orthogonal
hiding states can (or at least could) achieve an optimal hiding qual-
ity of unity. However, since we are dealing with a finite dimensional
Hilbert space, it is clear that both norms, ‖ · ‖hide and ‖‖1, are topologi-
cally equivalent. In other words: There exist constants c± such that for
all differences δρ we have ‖δρ‖1 ≤ c+ · ‖δρ‖hide and ‖δρ‖hide ≤ c− · ‖δρ‖1.
The optimal hiding quality γopt is thus bounded from below by 1

c+
≤ γopt.

A perfect hiding is thus not possible for finite dimensions. Neverthe-
less, it is interesting to know the tightest bounds on the optimal hiding
quality.
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A lower bound on the optimal hiding quality can be obtained using
the norm of complete boundedness (see [Pau86]) defined on operations:

‖T‖cb = sup
1≤d≤∞

‖T ⊗ idd‖ = ‖T ⊗ idd′‖, (4.52)

with T :B( � d′)→ B( � d′). For the partial transposition Θ2:B(
�
d)→ B( � d)

the cb-norm gives:

‖Θ2‖cb = ‖Θ2 ⊗ idd‖ = sup
‖A‖≤1

‖Θ2(A)‖

= sup
‖A‖=1
‖ψ‖=1

|tr[Θ2(A) · |ψ〉〈ψ|]| = sup
‖A‖=1
‖ψ‖=1

|tr[A ·Θ2(|ψ〉〈ψ|)]|

= sup
‖ψ‖=1

‖Θ2(|ψ〉〈ψ|)‖1.

(4.53)

The last variation can be done by making use of the Schmidt decompo-
sition of ψ. It finally leads to

‖Θ2‖cb = d. (4.54)

Therefore, the set of POVM elements {‖A‖, ‖Θ2(A)‖ ≤ 1} in (4.50) can
be restricted to ‖A‖ ≤ 1

2
to get a lower bound on the optimal hiding

strength:

‖δρ‖hide = sup
0≤A,Θ2(A)≤ 	

|tr[δρ · A]| = sup
‖A‖,‖Θ2(A)‖≤1

|tr
[
δρ · � + A

2

]
|

=
1

2
sup

‖A‖,‖Θ2(A)‖≤1
|tr[δρ · A]| ≥ 1

2
sup
‖A‖≤ 1

2

|tr[δρ · A]|

=
1

4
sup
‖A‖≤1

|tr[δρ · A]| = ‖δρ‖1
4

,

(4.55)

and furthermore a lower bound on the optimal hiding quality: γopt ≥ 1
2
.

In order to obtain an upper bound we now turn to one last example
of quantum data hiding.

4.3.1 Hiding a bit in a pair of Bell-diagonal qubits
In the early days of quantum information a special basis for two-qubit
systems was given strong consideration. It was the so-called Bell ba-
sis, a basis consisting of maximally entangled pure states, i.e. states
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violating Bell’s inequality maximally:

|Φ+〉 =
1√
2
(|00〉+ |11〉) , |Φ−〉 =

1√
2
(|00〉 − |11〉) ,

|Ψ+〉 =
1√
2
(|01〉+ |10〉) , |Ψ−〉 =

1√
2
(|01〉 − |10〉) .

(4.56)

States that are diagonal in this special basis played a major rôle in
early entanglement theory. They can be obtained by averaging over
the discrete abelian group (twirling)

{ � ⊗ � , σx ⊗ σx, σy ⊗ σy, σz ⊗ σz}. (4.57)

This group is a discrete subgroup of {U ⊗ U |U ∈ U(2)}. It is thus not
surprising that the set of Bell-diagonal states contains the Werner-
symmetric states. Since the set of (4.57) is a self-dual hermitian op-
erator basis, the Bell-symmetric operators can be written as

TBell(A) =
3∑

i=0

λiσi ⊗ σi (4.58)

with σ0 = � , σ1 = σx etc. The coefficients λi fix the spectrum of Bell-
diagonal operators: spec(A) = {α, β, γ, δ} with α

def
= λ0 − λ1 − λ2 − λ3,

β
def
= λ0 + λ1 + λ2 − λ3, γ

def
= λ0 + λ1 − λ2 + λ3, δ

def
= λ0 − λ1 + λ2 + λ3 and

similarly of their partial transpose: spec(Θ2(A)) = {α′, β′, γ′, δ′} with
α′

def
= λ0 + λ1 − λ2 − λ3, β′

def
= λ0 − λ1 + λ2 − λ3, γ

def
= λ0 − λ1 − λ2 + λ3,

δ
def
= λ0+λ1+λ2+λ3. With these parameters the locality constraints for

Bell-diagonal POVMs read:

0 ≤ α, β, γ, δ ≤ 1

0 ≤ x− α, x− β, x− γ,−xδ ≤ 1 with x =
1

2
(α + β + γ + δ).

(4.59)

Since the group is abelian it is not surprising that the convex set deter-
mined by the positivity constraints (inequalities (4.59)) is a polytope.
The functional we want to maximize is convex in the POVM so that
it suffices to compute the values of the extreme points of the polytope.
The extreme points can be calculated by hand or using, for example,
the Avis-Fukuda algorithm57 (see [AF92]). Either way it turns out that
there are only eight extremal POVMs Ai:

57We used the Mathematica c© implementation VertexEnum.m due to K. Fukuda
and I. Mizukoshi, available at www.mathsource.com.
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i spec(Ai) (λi,0, λi,1, λi,2, λi,3)
1 (0, 0, 0, 0) (0, 0, 0, 0)
2 (0, 0, 1, 1) ( 1

2
, 0, 0, 1

2
)

3 (0, 1, 0, 1) ( 1
2
, 0, 1

2
, 0)

4 (0, 1, 1, 0) ( 1
2
, 1
2
, 0, 0)

5 (1, 0, 0, 1) ( 1
2
,−1

2
, 0, 0)

6 (1, 0, 1, 0) ( 1
2
, 0,−1

2
, 0)

7 (1, 1, 0, 0) ( 1
2
, 0, 0,−1

2
)

8 (1, 1, 1, 1) (1, 0, 0, 0)

With a Bell-diagonal difference δρ =
∑3

i=1 diσi⊗σi we get for the hiding
strength

‖δρ‖hide = max
Ai
|tr[δρ · Ai]| = max

i
|
∑

j,k

λi,jdktr[σjσk]tr[σjσk]|

= 4max
i
|

3∑

j=1

djλi,j| = 2 max
i=1,2,3

|di|.
(4.60)

The trace-norm of the difference δρ evaluates to

‖δρ‖1 = |d1+d2+d3|+ |d1+d2−d3|+ |d1−d2+d3|+ |−d1+d2+d3|. (4.61)

Without loss of generality we can assume 0 ≤ d1 ≤ d2 ≤ d3. Now,
if d3 ≥ d1 + d2 holds, we have that ‖δρ‖1 = 4d3. Otherwise we have
‖δρ‖1 = 2(d1 + d2 + d3) ≤ 6d3. For the optimal hiding quality for Bell-
diagonal states we finally obtain

γBell = inf
δρ=TBell(δρ)

2‖δρ‖hide
‖δρ‖1

≥ 2 · 2 · d3
6 · d3

=
2

3
. (4.62)

This value is achieved already for the Werner states used in subsection
4.1.2. Since the Bell-diagonal states build a larger state space than
the Werner states this optimum is not necessarily unique any more. In
fact, any difference with di ∈ {−1

3
, 1
3
} turns out to be optimal.

4.3.2 Beyond symmetry
So far we have obtained the bounds 1

2
≤ γopt ≤ 2

3
by making use of spe-

cial symmetric two-qubit states. However, it may well be that the op-
timal states for quantum data hiding are not symmetric. Fortunately,
there are two more observations that help to extend the obtained re-
sults to a larger set of two-qubit states: Firstly, the states need not be
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symmetric. It suffices to have a Bell-diagonal difference δρ to apply the
above result. Secondly, the optimal hiding quality is the quotient of
two unitarily invariant norms. Therefore, the result on Bell-diagonal
states extends naturally to those states that are Bell-diagonal up to lo-
cal unitary rotations. In this subsection we will show that this set of
states is quite large. Unfortunately, it will not enable us to prove the
following conjecture:

Conjecture 4.3.1: Werner states are optimal for quantum data hid-
ing, i.e. γopt = 2

3
.

To see which differences are Bell-diagonal up to local unitary rotations
we make use of the self-duality of the operator basis {σi ⊗ σj}. Any
operator A ∈ B( � 2 ⊗ � 2) can be represented by its coefficient matrix
with respect to this operator basis:

〈i|RAj〉 def
= tr[Aσi ⊗ σj]. (4.63)

This R-matrix bears a few interesting properties: it is diagonal for Bell-
diagonal operators, it is real-valued for selfadjoint operators, the par-
tial transposition acts by inverting the sign of the third column, local
unitary rotations U ⊗ V act as orthogonal rotations:

R(U⊗V )A(U∗⊗V ∗) = OU ·RA ·OV , (4.64)

with

OU =




1 0 0 0
0 u11 u12 u13
0 u21 u22 u23
0 u31 u32 u33


 , and OV =




1 0 0 0
0 v11 v12 v13
0 v21 v22 v23
0 v31 v32 v33


 . (4.65)

The coefficients of the reduced states can be readily read off the R-
matrix. The first row contains the coefficients of Bob’s reduced state,
the first column contains those of Alice. A Bell-diagonal difference δρ
corresponds to an R-matrix of the form

RδρBell
=




0 0 0 0
0 d1 0 0
0 0 d2 0
0 0 0 d3


 . (4.66)

On the other hand, due to the existence of the singular value decompo-
sition (see [Bha97]) we know that any real-valued matrix of the form
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


0 0 0 0
0 a11 a12 a13
0 a21 a22 a23
0 a31 a32 a33


 (4.67)

can be decomposed into two orthogonal rotations and a diagonal matrix
of the form (4.66). Therefore, the result on Bell-diagonal states extends
to all those state pairs that have identical restrictions, i.e. ρA0 = ρA0 and
ρB0 = ρB1 .

This observation is very interesting since it is intuitive that states
that differ already at the level of the reduced states cannot lead to
a better hiding quality. Furthermore the conjecture 4.3.1 is also in
line with the observations of section 2.4, where we had seen that the
symmetric overall state minimizes the information difference to the
reduced states. Nevertheless, it seems quite intuitive we were unfor-
tunately not able to prove conjecture 4.3.1 yet. Even sophisticated nu-
merical investigations (see [But02]) were not able to disprove it.
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Chapter 5

Shared Fidelity

Marriage – We affirm the sanctity of the
marriage covenant that is expressed in
love, mutual support, personal commit-
ment, and shared fidelity between a man
and a woman.

(The United Methodist Church)

In section 3.3.1 we encountered another purely quantum feature: Quan-
tum systems can be stressed even without closed loops. In contrast to
the classical situation, a common tripartite extension of two bipartite
quantum systems having a common reduction may fail to exist. In par-
ticular, one party, say Alice, cannot be maximally entangled with Bob
and Charly. In fact, if she were, she could teleport an unknown state to
both of her friends and establish, therefore, a perfect quantum cloning
machine, which is, however, prohibited by the linearity of quantum me-
chanics [WZ82].

However, we can ask for the maximal bipartite entanglement Alice
can simultaneously share with several other parties (see [CKW00] and
[DW01]). In this final chapter we address the question how one party
could maximize its bipartite entanglement with N other parties along
the lines between the various parties. This can be done in several dif-
ferent ways. First we have to fix a functional E which quantifies bipar-
tite entanglement. Then we may either maximize the entanglement
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Emin along the worst line

Emin = sup
ρ

min
{i,j}

E(ρij) (5.1)

or optimize the average entanglement Eav:

Eav = sup
ρ

1

#lines

∑

i

E(ρij), (5.2)

where ρ is the density matrix of the whole system and ρij denotes its
bipartite reduction with respect to the systems i and j.

We will in the following choose E to be the fully entangled fraction

E(ρij) = sup
U∈U(d)

〈ψU+|ρij|ψU+〉, (5.3)

that is the maximal fidelity between ρij and a maximally entangled
state |ψU+〉 = ( � ⊗U)|ψ+〉,with |ψ+〉 = 1√

d

∑
j |jj〉. This choice for E makes

the stated problems feasible since Eav reduces to an operator norm and
in this case turns out to be equal to Emin. However, we have to note that
the fully entangled fraction is no entanglement monotone since it can
increase under local operations and classical communication.

We will start by studying the optimal way to share fidelity among
three parties and by proving that the optimum is attained for the choice
of standard local bases for the reference states and equal weights in
averaging. The second part will show the intimate relation between
shared fidelity and cloning fidelity. In the last part of this chapter we
investigate the optimal way of sharing fidelity among maximally con-
nected clusters of parties (web-states).

5.1 Optimal fidelity sharing in tripartite
systems

Even for tripartite systems there are restrictions on the shared fidelity.
In fact, one can achieve that the parties AB and AC share a maximally
entangled reduced state. But then it is known that BC cannot share a
maximally entangled state. In this case the system is frustrated (see for
example [Wer94]). These limitations will be the object of this section.

When talking about the fidelity of one single bipartite reduction it
is clear that we can choose the local bases in such a way to measure
the fidelity with respect to a maximally entangled state in its standard
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form |Ψ+〉 = 1√
d

∑d
i=1 |ii〉. However, if we are interested in the opti-

mal average shared fidelity, we have to optimize over all three reduced
states at the same time. The freedom to choose the local bases freely is
then restricted to two subsystems. As a general set of reference states
we will therefore use |Ψ+〉〈Ψ+| for the reductions on BC and AC and
( � ⊗ U)|Ψ+〉〈Ψ+|( � ⊗ U ∗) with some unitary operator U for AB.

Furthermore it is still open which way to average may be best. We
will therefore optimize over all convex combinations {λ1, λ2, λ3}, too. In
these terms the optimal average shared fidelity we are interested in is

fmax = sup
ρ,U,{λ1,λ2,λ3}

tr[ρF ] = sup
U,{λ1,λ2,λ3}

‖F‖, (5.4)

with the fidelity operator

F = λ1 � 1 ⊗ |Ψ+〉〈Ψ+|23 + λ2 � 2 ⊗ |Ψ+〉〈Ψ+|31
+ λ3 � 3 ⊗ {( � ⊗ U)|Ψ+〉〈Ψ+|( � ⊗ U ∗)}12 . (5.5)

To keep the notation compact we write the tensor factor the operators
act on as an index and refrain from writing out correctly the reshuffled
tensor factors.

The main result of this section is the following

Lemma 5.1.1: The maximal shared fidelity is attained when all local
bases are equal to the standard computational basis and all weights
are equal leading to fmax =

1
3
(1 + 1

d
).

Proof. Instead of computing the norm (5.4) we begin by describing the
manifold of possible triples

~f =




tr[ρ � 1 ⊗ |Ψ+〉〈Ψ+|23]
tr[ρ � 2 ⊗ |Ψ+〉〈Ψ+|31]

tr[ρ � 3 ⊗ {( � ⊗ U)|Ψ+〉〈Ψ+|( � ⊗ U ∗)}12])


 (5.6)

of fidelities that are commensurable for a chosen unitary operator U .
The gradient of the plane which is given by the maximal average fi-
delity fmax = λ1f1 + λ2f2 + λ3f3 points in direction of the coefficient
vector ~λ = (λ1, λ2, λ3). For the variation of (5.4) we will therefore first
optimize the direction in order to maximize the fidelity and perform the
variation over the unitary operators afterwards.

The manifold we want to characterize is given by

K = {x ∈ � 3|xi = tr[ρPi]}, (5.7)
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where the Pi are the projections P1 = � 1⊗|Ψ+〉〈Ψ+|23, P2 = � 2⊗|Ψ+〉〈Ψ+|31
and P3 = � 3 ⊗ {( � ⊗ U)|Ψ+〉〈Ψ+|( � ⊗ U ∗)}12. Since a direct characteriza-
tion is difficult we first characterize its polar (see [Roc72]):

K◦ def
= {ξ ∈ � 3|∀~x ∈ K: ~ξ · ~x ≤ 1} = {~ξ|∀ρ:

∑

i

ξitr[ρPi] ≤ 1}

= {~ξ|
∑

i

ξiPi ≤ � } (5.8)

Obviously the fidelity operator is the sum of positive operators and
thus itself positive. Therefore there must be operators V such that
F = V V ∗. Furthermore, any operator has the same norm as its Gram
operator, i.e.

‖F‖ = ‖V V ∗‖ = ‖V ∗V ‖. (5.9)
We use V :

�
d ⊕ �

d ⊕ �
d → �

d ⊗ �
d ⊗ �

d with

V (⊕iϕi) =
√
λ1|ϕ1〉1 ⊗ |Ψ+〉23 +

√
λ2|ϕ2〉2 ⊗ |Ψ+〉31+√

λ3|ϕ3〉2 ⊗ |Ψ+〉12. (5.10)

With this operator we can rewrite the polar as:

K◦ = {~ξ|∀Φ = V (⊕iϕi): 〈Φ|
∑

i

ξiPiΦ〉 ≤ 〈Φ|Φ〉}

= {~ξ|(W −Wdiag[ξ]W ) ≥ 0} = {~ξ|diag[ξ] ≤ W−1}
(5.11)

with the Gram operator W = V ∗V . It can be seen as a 3 × 3 matrix of
d× d-blocks given by Wij = 〈V (ϕi)|V (ϕj)〉 leading to

W =




λ1 �
√
λ1λ2

d
� √

λ1λ3

d
UT

√
λ1λ2

d
� λ2 �

√
λ2λ3

d
U√

λ1λ3

d
U

√
λ2λ3

d
U ∗ λ3 �


 . (5.12)

Expression (5.11) for the polar can be simplified by scaling the ξi. In
fact, we can write W = ΛW ′Λ with Λ∗ = Λ = diag[(

√
λ1,
√
λ2,
√
λ3)] and

for the polar:

K◦ = {~ξ|Λ · diag[ξ] · Λ ≤ W ′−1} = {~ξ|diag[λiξi] ≤ W ′−1} (5.13)

with W ′ being the matrix

W ′ =




� 1
d
� 1

d
UT

1
d
� � 1

d
U

1
d
U 1

d
U ∗ �


 . (5.14)
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Applying the unitary transformation � ⊕ � ⊕ UT to W ′ we get

W̃ =




� 1
d
� 1

d
�

1
d
� � 1

d
UU

1
d
� 1

d
UTU∗ �


 . (5.15)

As these blocks commute, they can be diagonalized independently:



� 1
d
� 1

d
�

1
d
� � 1

d
UU

1
d
� 1

d
UTU∗ �


→




� 1
d
� 1

d
�

1
d
� � 1

d
Ũ

1
d
� 1

d
Ũ∗ �


 (5.16)

with some diagonal unitary operator Ũ . Furthermore, a matrix with
purely diagonal blocks can be written as the direct sum of matrices. In
our case we have W̃ = ⊕jwj with




� 1
d
� 1

d
�

1
d
� � 1

d
Ũ

1
d
� 1

d
Ũ∗ �


 =

d⊕

j=1




1 1
d

1
d

1
d

1 1
d
eiαj

1
d

1
d
e−iαj 1


 , (5.17)

where the eiαj are the eigenvalues of the diagonal unitary operator Ũ .
For the polar we get:

K◦ = {~ξ|diag[λiξi] ≤ W̃−1} = {~ξ|∀j: diag[λiξi] ≤ w−1j }. (5.18)

Positivity of the matrix w−1j − diag[λiξi] is equivalent to the inequalities

0 ≤ 1

det[wj]
(1− 1

d2
)− ξ̃i,

0 ≤ d3(1− ξ̃i)(1− ξ̃k) + 2 cos(αj)ξ̃iξ̃k + d(ξ̃i + ξ̃k − 3ξ̃iξ̃k),

0 ≤ d3(1− ξ̃1)(1− ξ̃2)(1− ξ̃3)− 2 cos(αj)ξ̃1ξ̃2ξ̃3

− d(ξ̃1ξ̃2 + ξ̃2ξ̃3 + ξ̃3ξ̃1 − 3ξ̃1ξ̃2ξ̃3),

(5.19)

with ξ̃i
def
= λiξi. The sought-after set of commensurable fidelity triplets

is given by those vectors pointing from the origin to the surface given
by the inequalities of (5.19) and can be plotted for some choice of d
and αj (see figure 5.1). It describes a convex shape with a trigonal
rotational symmetry around the diagonal in (1, 1, 1)-direction proving
that the optimum will be found in that direction. As we pointed out
already, the direction of the optimal vector is that of the gradient and
is given by (λ1, λ2, λ3). Therefore, the optimum lies at λ1 = λ2 = λ3.
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Figure 5.1: The surface of commensurable triples of single fidelities for
d = 2 and α = 0.

To end our computation of the norm of W we can restrict ourselves
to one single block and compute its eigenvalues analytically:

spec


1
3




1 1
d

1
d

1
d

1 1
d
eiα

1
d

1
d
e−iα 1




 =

1

3

{
1 +

2 cos(α
3
)

d
, 1− cos(α

3
)±

√
3 sin(α

3
)

d

}
.

(5.20)
Optimizing over the phase α leads then to α = 0 and fmax =

1
3
(1+ 2

d
). ¥

The final result tells us that the optimal average shared fidelity can
be achieved by using standard local bases and by weighing all single
fidelities equally. This leads then to an optimum of fmax = 1

3
(1 + 2

d
)

attained for any state of the form

V (ϕ⊕ϕ⊕ϕ) = 1√
3
(|ϕ〉1 ⊗ |Ψ+〉23 + |ϕ〉2 ⊗ |Ψ+〉31 + |ϕ〉2 ⊗ |Ψ+〉12) , (5.21)

with some ϕ ∈ �
d. Once these two assumptions are proved to be valid,

one can calculate the optimal value and the optimal state much easier
via the operator norm in (5.4) and (5.9). In fact, under these assump-
tions we can optimize the shared fidelity even for more complex con-
figurations than tripartite systems as we will see in the following two
sections.
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5.2 From shared fidelity to quantum tele-
cloning

One configuration which is of special interest is the 1 : N -star config-
uration. It is closely connected to the 1 : N -cloner and will lead us to
a state which implements an optimal 1 : N -telecloner. In this special

   
   

   
   

   
   

 
   

   
   

   
 

   
  

   
   

   
Figure 5.2: The starducks configuration (not to be confused with
Starbucksr). [The ducks are copyright of Disney Corporation.]

configuration one party is singled out since all other parties are con-
nected to this one and to this one only (see the starducks configuration
in figure 5.2).

Now assuming that standard bases and equal weights have been
chosen, the corresponding fidelity operator is

F1:N =
1

N

N+1∑

i=2

|Ψ+〉〈Ψ+|1i ⊗ � N+1/{1,i}. (5.22)

Similarly to (5.10) we take the operator V :
⊕N+1

i=1 ( � d)⊗(N−1) →⊗N+1
i=1 � d

to be

V (
N+1⊕

i=1

|ϕi〉) =
N+1∑

i=2

|ψ+〉1i ⊗ |ϕi〉, with |ϕi〉 ∈ ( � d)⊗(N−1). (5.23)

In order to optimize the fidelity we can use (5.9) and evaluate the supre-
mum of ‖V (

⊕N+1
i=2 ϕi)‖2 over the set of vectors satisfying the normaliza-

tion condition
∑N+1

i=2 ‖ϕi‖2 = 1. For this we will make use of the identity
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|ψ+〉2j⊗|ϕi〉 ≡ � 2j (|ψ+〉12 ⊗ |ϕi〉) with the Flip operators � ij interchang-
ing the i-th and j-th tensor factors of vectors. Then we can compute:

‖V ∗V ‖ = sup
N+1∑

i,j=2

tr[(|ψ+〉〈ψ+|12 ⊗ |ϕj〉〈ϕi|) � 2i � 2j ]

(∗)
=

1

d
sup

N+1∑

i,j=2

tr[( � 2 ⊗ |ϕj〉〈ϕi|) � 2i � 2j ]

= 1 +
1

d
sup

[
N+1∑

k=3

2<(〈ϕ2|ϕk〉) +
N+1∑

i6=j=3

〈ϕi| � ijϕj〉
]

≤ 1 +
1

d
sup

N+1∑

i6=j=2

‖ϕi‖‖ϕj‖,

(5.24)

where we traced out the first tensor factor in (∗) and made use of the
“magic formula” for flip operators tr[(A⊗B) � ] = tr[AB]. This varia-
tional problem is again symmetric under interchanging the labels so
that one can see (or compute by using Lagrangian multipliers) that
the maximum will be attained at ‖ϕi‖ = ‖ϕj‖. In fact, the inequal-
ity turns into an equality, if the optimal states satisfy |ϕk〉 = |ϕ2〉 and
|ϕi〉 = � i,j |ϕj〉. Hence, a state is optimal if and only if it corresponds
to vectors |ϕi〉 = |ϕ〉 ∈ �

d(N−1), which are totally symmetric with re-
spect to a permutation of the (N − 1) tensor factors. Furthermore, if
ϕ ∈ PBose(

�
d)⊗(N−1) we obtain the optimal value fmax = 1

N

(
1 + N−1

d

)
for

any state of the form

|Φϕ〉 =
1√
fmax

N+1∑

i=2

|ψ+〉1i ⊗ |ϕ〉 and any ϕ ∈ PBose(
� d)⊗(N−1). (5.25)

As we will see in the following subsections all these states implement
an optimal 1 : N -telecloner.

5.2.1 Cloning via teleportation
In this subsection we resume the idea of cloning a state via teleporta-
tion presented in [MJPV99]. To make N clones out of one original pure
state we will teleport the original to N distant parties that will receive
one clone each.

The tool we need for this purpose is the duality between channels
and states as introduced in [Jam72] (see also subsection 1.1.3). Con-
sider a channel T :B(H) → B(H⊗N), which can be interpreted as a 1 to
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N cloner. Then T corresponds to a state τ on H⊗(N+1) and vice versa via
the relations:

τ = ( � ⊗ T )(|ψ+〉〈ψ+|), and tr

[
τ

N+1⊗

i=1

Ai

]
=

1

d
tr

[
T (AT1 )

N+1⊗

i=2

Ai

]
(5.26)

where the matrix transposition is taken in the basis corresponding to
the maximally entangled state |ψ+〉. These equations lead to

tr

[
(
A0 ⊗ τ

)
|ψ+〉〈ψ+|01 ⊗

N+1⊗

k=2

Ak

]
=

1

d2
tr

[
T (A0)

N+1⊗

k=2

Ak

]
. (5.27)

This tells us now how to implement the cloner T probabilistically given
the state τ : Donald, who is assumed to posses the first particle of τ and
the state to be cloned (acting on system ’0’), measures in a basis con-
taining |ψ+〉. Whenever the outcome of his measurement corresponds
to |ψ+〉, he tells his N ‘nephews’ that they have succeeded58.

However, if the state corresponding to such a 1 : N -cloner commutes
with a group of local unitaries [τ, U ⊗ U⊗N ] = 0 and is thus an element
of the well-known “chip” algebra of chapter 2, we obtain a trace pre-
serving implementation if Donald measures in a maximally entangled
basis

|ψ+〉ij =
(
Uij ⊗ � )|ψ+〉, (5.28)

where the Uij, i, j = 1, . . . d form a basis of unitaries (see [Wer01a]),
and the ‘nephews’ undo the unitary operations corresponding to the
respective measurement result. In this case the cloner fulfills

T (UAU ∗) = U⊗NT (A)U ∗⊗N ∀U ∈ U(d), (5.29)

i.e. it does not prefer any original state and is thus a covariant cloner.
Then all the unitaries we have to insert in the l.h.s. of (5.27) cancel
and we have a trace preserving implementation of the channel T by a
standard teleportation scheme.

By now, we see that the states |Φϕ〉 which share the fidelity in an op-
timal way can be used as 1 : N -telecloner. In the upcoming subsection
we will show that the telecloner thus obtained is already an optimal
cloner.

58Note that this works analogously when cloning M copies of the original state to
N parties.
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5.2.2 Optimal telecloning
In order to prove optimality we have to relate the optimal fidelity shar-
ing states |Φϕ〉 with the telecloning states τ . To this end we first sym-
metrize the state |Φϕ〉:

τϕ
def
=

∫
dU(U ⊗ U⊗N)|Φϕ〉〈Φϕ|(U ⊗ U⊗N)∗

=

∫
dU |Φϕ(U)〉〈Φϕ(U)|,

(5.30)

where ϕ(U) = U⊗(N−1)ϕ and the integration is an averaging over uni-
taries with respect to the Haar measure. Note that τϕ again leads to
the optimal value for the shared fidelity fmax as it has support in the
subspace spanned by the vectors |Φϕ〉. The averaging can be seen as
applying an additional local unitary to each of the N outputs in the
teleportation protocol.

Before stating what we intend by optimal we have to define the fig-
ure of merit we want to optimize. There are different figures of merit
that compare the outputs of a cloning machine with its input. Fortu-
nately, for the cloning of pure states they all lead to the same optimal
universal cloner, which is mathematically given by tensoring the input
with a sufficiently large multiple of the identity and then projecting
onto the Bose subspace (see [Wer98, KW99]).

In the following we will use the cloning fidelity

F def
= inf
‖ψ‖=1

tr
[
T
(
|ψ〉〈ψ|

)
|ψ〉〈ψ|⊗N

]
(5.31)

in order to test the quality of the output. The symmetry of τϕ, i.e. the
covariance property of the respective channel T , ensures that the trace
in (5.31) does not depend on ψ. Hence, we can drop the infimum and
choose ψ to be real in the distinguished basis. Using (5.26) we have

F = dtr
[
τϕ(|ψ〉〈ψ|)⊗(N+1)

]
= d

∫
dU |〈Φϕ(U)|ψ⊗(N+1)〉|2

= c2N 2

∫
dU |〈ϕ|(Uψ)⊗(N−1)〉|2 = c2N 2〈ϕ|σ|ϕ〉,

(5.32)

with σ
def
=
∫
dU
(
U |ψ〉〈ψ|U ∗

)⊗(N−1).
Obviously, σ is a multipartite Werner state (see chapter 2) and there-

fore commutes with the Bose projection PBose, i.e. it is supported by
the Bose subspace PBoseH⊗(N−1) and commutes with all unitaries of the
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form U⊗(N−1). The latter, however, act irreducibly on the symmetric
subspace, which means that σ itself has to be a multiple of the projec-
tor PBose onto the Bose subspace. Since tr[σ] = 1, the missing factor is
just the dimension dim+[N − 1, d] of the symmetric subspace (for N − 1
tensor factors each of dimension d) and we have

F =
c2N2

dim+[N − 1, d]
〈ϕ|PBose|ϕ〉 =

d

dim+[N, d]
〈ϕ|PBose|ϕ〉, (5.33)

where dim+[M,d] =
(
d+M−1
M

)
.

Furthermore, if ϕ lies in the Bose subspace and therefore leads to
the optimal value for fmax, the fidelity in (5.33) is, in fact, the optimal
universal cloning fidelity derived in [Wer98].

5.3 Shared fidelity for entangled webs
As our last application of symmetric states we study the case of op-
timal fidelity sharing between maximally connected parties (complete
graphs). Such states may be of interest since the overall state is ro-
bustly entangled against disposal of particles as described in [Dür01].
It is intuitive that due to the high number of connections the optimiza-
tion should be more difficult than in the previous cases. However, max-
imally connected graphs (webs) have a high symmetry which we will
exploit for the optimization.

The fidelity operator testing the average fidelity for maximally con-
nected parties is

F =
N∑

i,j=1

� N/{i,j} ⊗ |ψ+〉〈ψ+|ij. (5.34)

Again the computation of its norm via the Gram operator (5.9) is quite
cumbersome. Therefore we will exploit the fact that the fidelity op-
erator is nonnegative, i.e. all entries of the matrix F are nonnegative
(Fij ≥ 0). This enables us to make use of results on nonnegative matri-
ces like the Perron-Frobenius Theorem (see [HJ95]) for proving:

Lemma 5.3.1: The maximal average fidelity for a maximally connected
set of N parties is:

for even N : f evenmax = 1
N−1(1 +

N−2
d

) and is attained for the state

|ψeven〉 = PBose(|Ψ+〉12 ⊗ · · · ⊗ |Ψ+〉N−1,N ).
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for odd N : f oddmax =
1
N
(1 + N−1

d
) and is attained for any state

|ψodd〉 = PBose(|Ψ+〉12 ⊗ · · · ⊗ |Ψ+〉N−2,N−1 ⊗ |i〉N),

with i ∈ {1, . . . , d}.
That is, the larger the number of parties, the smaller the optimal

shared fidelity between pairs of parties becomes. This result is in line
with [KBI00]. However, before proving this lemma we resume those
results on nonnegative matrices we will need (see chapters 6 and 8
of [HJ95] and [FHW79]). The entries of the matrix F ∈ B( � d⊗N) are
labelled by N -tuples (i1, i2, . . . , iN). Two such tuples (i1, i2, . . . , iN) and
(j1, j2, . . . , jN) are said to be connected by F if the corresponding matrix
element does not vanish: F~i,~j

def
= 〈i1, i2, . . . , iN |F |j1, j2, . . . , jN〉 6= 0 or if

there is a connecting path between them: F~i,~zF~z,~k · · ·F~y,~j 6= 0. The en-
tries of F can therefore be grouped into maximally connected subsets59.
These connected components are called Perron-Frobenius blocks. Each
such block contains only positive entries so that we can apply Perron’s
Theorem which states that any positive matrix (i.e. having positive en-
tries) has a unique maximal eigenvalue with a corresponding eigenvec-
tor with purely positive entries (see Theorem 8.2.11 of [HJ95]).

Proof. In order to characterize the Perron-Frobenius blocks of F we
start by describing its connected components by looking at the sin-
gle summands Pij

def
= � N/{i,j} ⊗ |ψ+〉〈ψ+|ij of F . Now, if all entries of

the tuples (i1, i2, . . . , iN) and (j1, j2, . . . , jN) are different we have that
〈(i1, i2, . . . , iN)|F |(j1, j2, . . . , jN)〉 = 0. Therefore, for two such tuples to
be connected there must be at least two identical entries in each tuple,
namely at the positions i and j. Denoting by ∼ the relation “connected
to” we have

(1, 1, α, β, rest) ∼ (α, α, α, β, rest) ∼ (β, α, β, β, rest)

∼ (α, α, β, α, rest ∼ (1, 1, β, α, rest)
(5.35)

and

(1, 1, α, rest) ∼ (α, α, α, rest) ∼ (α, 1, 1, rest). (5.36)

Pairs of equal entries can therefore be substituted by other pairs of
equal entries. Furthermore, equations (5.35) and (5.36) tell us that

59Note that since F is a positive semidefinite matrix it is symmetric. Therefore we
need not distinguish the directions of the connections.
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the connected components are invariant under permutation. In fact,
they depend only on the parities P def

= {α|#{i|αi = α} is odd} of the
tuples. The greatest eigenvalue of the single Perron-Frobenius blocks
will depend on p = |P| and N . For this we only need to look at tuples of
the form (1, 2, 3, . . . , p, x, x, y, y, . . .). Such tuples are represented by the
vector |φ̃〉 def

= |e1〉 ⊗ |e2〉 ⊗ · · · ⊗ |ep〉 ⊗ |ψ+〉 ⊗ · · · ⊗ |ψ+〉. For this vector
one can easily compute that Pkl|φ̃〉 = λklUπkl |φ̃〉 holds with the following
eigenvalues λkl and permutation operators Uπkl :

1. If (k, l) is one of the pairs: λkl = 1, πkl = id and #{k, l} = N−p
2

.

2. If (k, l) connects two different pairs, say (j, k) and (l,m): λkl = 1
d
,

π = (km) and #{k, l} = 4

(
N−p
2

2

)
.

3. If (k, l) connects q ∈ {1, . . . , p} with a pair, say (l,m): λkl = 1
d
,

π = (qm) and #{k, l} = p(N − p).

4. If (k, l) connects q1 and q2 with q1, q2 ∈ {1, . . . , p}: λkl = 0.

Furthermore, since F ≡∑π V
∗
π FVπ commutes with the Bose projection:

PBoseF =
1

N !

∑

σ,π

VσV
∗
π FVπ =

1

N !

∑

σ,π

Vσ◦π−1FVπ

=
1

N !

∑

σ,σ′

Vσ′−1FVσ′◦σ = FPBose,
(5.37)

we can use |φ〉 def
= PBose|φ̃〉 as Perron-Frobenius vector of F . This is in-

deed an eigenvector of F :

F |φ〉 = 1

N !

∑

π

FVπ|φ̃〉 = PBoseF |φ̃〉

=
∑

k,l

PBosePk,l|φ̃〉 =
∑

k,l

λklPBoseVπkl |φ̃〉 =
(
∑

k,l

λkl

)
|φ〉,

(5.38)

namely to the eigenvalue Λ =
∑

k,l λkl with purely positive entries. Per-
ron’s Theorem then ensures that Λ is the unique greatest eigenvalue of
F . To finish the optimization we only have to maximize Λ by varying
the parity p. The eigenvalue is

Λ =
N − p

2

(
1 +

N + p− 2

d

)
= x

(
1 +

2

d
(N − x− 1)

)
(5.39)
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with x = N−p
2

. Its maximum is achieved for p = 0 if N is even and for
p = 1 if N is odd, which finishes the proof. ¥

We finish by giving an example. If we take the web state for N = 4
(see figure 5.3), then our lemma directly gives that

|φ3〉 =
1√
3 + 6

d

(|ψ+〉12 ⊗ |ψ+〉34 + |ψ+〉13 ⊗ |ψ+〉24 + |ψ+〉14 ⊗ |ψ+〉23) (5.40)

is one of the states that give an optimal shared fidelity of 1
3
(1 + 2

d
).

Figure 5.3: The four-duck web configuration. [The ducks are copyright of Disney Corporation.]
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Summary

This dissertation describes the application of symmetry to multipartite
quantum systems from the viewpoint of quantum information theory.
It is written in the framework of abstract quantum information theory,
i.e. without distinguishing the physical nature of the d-level systems
considered. The results are mathematically rigorous and aim at inves-
tigating entanglement properties as well as operational properties of
states of multipartite systems.

In the following we give a chapter by chapter summary of the ob-
tained results.

Chapter 2: Multipartite symmetric states. The parametrization
of multipartite states is crucial when investigating multipartite entan-
glement and protocols. To avoid an exponential number of parameters
we introduce families of symmetric multipartite states with a dimen-
sion independent number of parameters. Results of representation the-
ory are used to give a parametrization and to construct commutative
subsets of these families of states. Furthermore we investigate reduc-
tions of these states to smaller numbers of subsystems as well as their
extensions to larger numbers of subsystems. For the two basic exam-
ples considered later – multipartite Werner states and multipartite or-
thogonally invariant states – we derive graphical notations to simplify
the computations.

Chapter 3: Tripartite Werner states. In this chapter we pick up
the multipartite Werner states for N = 3 and analyze them in de-
tail. We investigate the case of N = 3 since it is the simplest non-
trivial example of multipartite Werner states. They are simpler than
higher-partite states, showing at the same time all peculiarities of non-
commutativity. We fully characterize their separability properties and
analyze the strength of the known separability criteria. Furthermore
we investigate their entanglement properties in terms of the relative
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entropy of entanglement, the entanglement monotone induced by the
trace norm distance and the maximal violation of Bell inequalities. As
a third aspect we analyze the possibility of embedding bipartite Werner
states as reduced tripartite Werner states and investigate the predic-
tive power of these reductions. We finish by exploring the inner geome-
try of the manifold given by the statistical distance of two neighbouring
tripartite Werner states.

Chapter 4: Quantum data hiding. As an application of the multi-
partite Werner states introduced in the preceding chapters we extend
the protocol called quantum data hiding to multipartite systems. Us-
ing the graphical notations derived in chapter 2 we prove that this
protocol is at least asymptotically secure in the limit of large system
dimension. A constructive scheme for the hiding states is given mak-
ing use of the multipartite Werner states. We show by example that
the hiding strength cannot be measured by one single parameter. Fur-
thermore we show that even separable states can be used for quantum
data hiding and analyze the security in presence of prior shared entan-
glement and for hiding whole bit sequences. We finish by arguing that
Werner symmetry could already be optimal for quantum data hiding in
fixed dimensions.

Chapter 5: Shared fidelity. In the last chapter we show that multi-
partite symmetric states sometimes arise naturally when asking “sym-
metric questions”, i.e. questions that are invariant under the relabel-
ling of the parties. To this end we investigate to what extent single
parties can be entangled to others in terms of fidelity. In fact, as a
purely quantum feature, multipartite quantum systems can already
be frustrated even in absence of closed loops. We start by analyzing,
for a tripartite setup, what the optimal reference set of maximally en-
tangled states is, and which way of averaging leads to the best average
shared fidelity. We then turn to the 1 : N configuration and show that
the states optimizing the average shared fidelity correspond to optimal
telecloners. As a last example we investigate entangled webs, i.e. states
of maximally connected sets of parties. We derive the optimal states in
terms of average shared fidelity for an arbitrary number of parties.
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