
Conditions for Stable Propagation of

Synchronous Spiking in Cortical Neural Networks

Single Neuron Dynamics and Network Properties

DISSERTATION
zur

Erlangung des Grades

”
Doktor der Naturwissenschaften“

an der Fakultät für Physik und Astronomie
der Ruhr-Universität Bochum

von
Markus Diesmann

aus Bochum

Göttingen, Mai 2002



R6

Die Arbeit wurde unter der Verantwortung von Prof. Christoph von der Malsburg am
29.5.2002 bei der Fakultät für Physik und Astronomie der Ruhr-Universität Bochum ein-
gereicht und mit der Disputation am 25.11.2002 angenommen. Die Gutachter waren Prof.
Christoph von der Malsburg und Prof. Gregor Schöner.
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Zusammenfassung

Einführung

Die höheren Hirnfunktionen werden dem entwicklungsgeschichtlich jüngsten Teil des Gehirns,
dem nur bei Säugern auftretenden Neocortex, zugeschrieben. Die vorliegende Arbeit will
einen Beitrag zur Aufklärung der informationsverarbeitenden Prozesse im Neocortex und
deren dynamische Eigenschaften liefern.

Es ist allgemein akzeptiert, daß ein wesentlicher Teil der Informationsverarbeitung im
Gehirn durch elektrische Aktivität von Nervenzellen getragen wird. Nervenzellen halten ei-
ne Potentialdifferenz zwischen dem Zellinneren und dem extrazellulären Medium aufrecht
(Membranpotential). Die Wechselwirkung zwischen den Nervenzellen (Neuronen) wird über
scharfe Spannungspulse, sogenannte Aktionspotentiale (Spikes), vermittelt. Die Kontaktstel-
len zwischen Neuronen (Synapsen) sind gerichtet. Erzeugt ein Neuron einen Spike, so löst
dies nach einer Zeitverzögerung von einigen Millisekunden in den Zielneuronen eine kleine
Auslenkung des Membranpotentials, das postsynaptische Potential (PSP), aus. Stark verein-
facht kann man sich die Dynamik einer Nervenzelle so vorstellen, daß ein Spike emittiert wird,
wenn das Membranpotential durch die Überlagerung genügend vieler PSPs einen Schwellwert
überschreitet (aktuelle Darstellungen findet man z.B. in Johnston & Wu, 1995; Koch, 1999;
Nicholls, Martin, Wallace, & Fuchs, 2001). Direkt nach der Erzeugung eines Spikes kann ein
Neuron für einige ms (Refraktärzeit) keinen weiteren Spike emittieren. Diese Beschreibung
neuronaler Dynamik wird im weiteren Sinne als

”
Integrate-and-Fire“ Modell bezeichnet.

Der Verknüpfungsgrad des cortikalen Netzwerkes läßt sich durch folgende Angaben ver-
anschaulichen. In einem Kubikmillimeter Cortex befinden sich ca. 105 Neuronen. 80% der
Neuronen sind erregend (exzitatorisch), d.h. sie lösen im postsynaptischen Neuron eine Mem-
branpotentialauslenkung in Richtung des Schwellwertes aus, 20% sind hemmend (inhibito-
risch). Ein einzelnes Neuron erhält Eingang über etwa 9000 exzitatorische und 2000 inhi-
bitorische Synapsen von Neuronen aus dem lokalen Volumen (1 mm3). Zusätzlich besitzt
ein Neuron weitere 9000 exzitatorische Synapsen mit presynaptischen Neuronen aus weiter
entfernten Bereichen (eine Diskussion der cortikalen Anatomie findet man in Braitenberg &
Schüz, 1998; Abeles, 1991).

Der Zeitverlauf des Membranpotentials einzelner Neuronen kann im intakten Tier (in vi-
vo) gemessen werden (z.B. Douglas & Martin, 1991b). Dabei zeigen sich starke Fluktuationen
des Membranpotentials, die der Überlagerung von ständig auftretenden, exzitatorischen und
inhibitorischen synaptischen Ereignissen (Hintergrundaktivität) zugeschrieben werden. In
Abwesenheit kontrollierter Stimuli beobachtet man eine geringe Spontanaktivität der Neu-
ronen. Scheinbar zufällig emittieren die Neuronen Spikes mit einer Rate von unter 1 Hz bis

ix



x Zusammenfassung

zu wenigen 10 Hz (z.B. Burns & Webb, 1976; Abeles, Vaadia, & Bergman, 1990), also weit
unterhalb der durch die Einzelneurondynamik begrenzten maximalen Rate. In jüngerer Zeit
ist es gelungen, erste Modelle des lokalen Netzwerkes zu formulieren, in denen eine geringe
Spontanaktivität ein stabiler Zustand des Systems, und sowohl Resultat als auch Ursache
der Hintergrundaktivität ist (van Vreeswijk & Sompolinsky, 1996; Amit & Brunel, 1997).
In diesen Modellnetzwerken ist die Verknüpfung der Neuronen als zufällig angenommen,
parametrisiert durch die oben erwähnten Größen aus der statistischen Anatomie.

Die parallele und verteilte Architektur des Cortex legt es nahe, kollektive Eigenschaften
des Netzwerkes zu untersuchen. Hebb (1949) formulierte die Hypothese, daß Ensembles von
Neuronen die Grundlage neuronaler Prozesse bilden. Die Zugehörigkeit zu einem

”
Cell As-

sembly“ soll sich dabei durch die kohärente Aktivität der beteiligten Neuronen ausdrücken.
Aufgrund konzeptueller Überlegungen und aufgrund der biophysikalischen Eigenschaften cor-
tikaler Neuronen (von der Malsburg, 1981; Abeles, 1982a; von der Malsburg, 1986a; Gerstein,
Bedenbaugh, & Aertsen, 1989; Palm, 1990; Abeles, 1991; Singer, 1993) wurde die Vorstellung
entwickelt, daß die geforderte kohärente Aktivität durch die genaue zeitliche Organisation
(Korrelation) der Spikezeitpunkte der beteiligten Neuronen realisiert sein könnte.

In elektrophysiologischen Experimenten kann seit einiger Zeit auch die Spikeaktivität
mehrerer individueller Neuronen parallel aufgezeichnet werden. Dazu werden mehrere Elek-
troden in ein kleines Hirnvolumen eingebracht. Aktionspotentiale von Neuronen, die sich in
der Nähe des nicht isolierten Bereiches der Elekroden befinden, führen zu charakteristischen
Spannungsänderungen an den Elektroden. Diese Experimente können sowohl an anästhe-
sierten als auch an wachen Tieren durchgeführt werden. Im letzten Fall ist es möglich, das
Tier in ein Verhaltensexperiment einzubeziehen, sodaß die aufgezeichnete neuronale Akti-
vität mit der Reizsituation oder dem Verhalten in Verbindung gebracht werden kann. Durch
die gleichzeitige Beobachtung der Aktivität mehrerer Neuronen ist es möglich, nicht nur die
Aktivität einzelner Neuronen zu charakterisieren, sondern auch kooperative Phänomene zu
studieren.

Schon früh wurde die Beziehung der Aktivität zwischen Paaren von Neuronen untersucht,
indem die Kreuzkorrelation der Spikefolgen berechnet wurde (Perkel, Gerstein, & Moore,
1967b). Seit einigen Jahren wird auch die Dynamik der korrelierten Aktivität in Abhängig-
keit von experimentellen Bedingungen studiert (z.B. Aertsen, Gerstein, Habib, & Palm,
1989; Vaadia et al., 1995). Es konnte gezeigt werden, daß sich die Korrelation in Abhängig-
keit von der experimentellen Situation dramatisch ändern kann. Unter Benutzung einer Vi-
sualisierungstechnik für Korrelationen zwischen drei gleichzeitig aufgezeichneten Spikefolgen
(Perkel, Gerstein, Smith, & Tatton, 1975) beobachtete Abeles (1982a) das Auftreten von
bestimmten Spikemustern. In diesen Mustern sind die Spikes der Neuronen mit einer Ge-
nauigkeit von wenigen ms plaziert, wobei der zeitliche Abstand der Spikes im Muster bis zu
hunderten von ms betragen kann. Die Realisierung eines solchen Ereignisses beeinträchtigt
nicht das Auftreten von weiteren Spikes zwischen den zum Muster gehörenden Spikes. In
Anbetracht der großen Membranpotentialfluktuationen und der damit verbundenen Variabi-
lität neuronaler Spikefolgen stellt sich die Frage, wie solch hochpräzise Spikemuster zustande
kommen können. Die Muster werden als hochpräzise bezeichnet, da ihre zeitliche Unschärfe
im Vergleich zu einer weiteren wichtigen Zeitskala neuronaler Dynamik, der Membranzeit-
konstante, um eine Größenordnung geringer ist (z.B. Connors, Gutnick, & Prince, 1982).
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Abbildung 1 Skizze einer Synfire Chain. Gruppen von Neuronen sind zu einer gerichteten kettenartigen
Struktur verknüpft, welche als Subnetzwerk eines größeren Netzwerkes aufgefaßt wird. Im einfachsten Fall
besitzt jedes Neuron genau eine Verbindung mit jedem Neuron der nächsten Gruppe.

Die Membranzeitkonstate gibt die Zeitskala an, mit der das Membranpotential nach einer
Auslenkung passiv auf den Ruhewert relaxiert.

Das Auftreten präziser Spikemuster ist von Interesse, da sie Ausdruck der Aktivierung
eines Cell Assemblies sein könnten. Entsprechend den Anforderungen an ein Cell Assembly,
ist die Repräsentation verteilt und die Zusammengehörigkeit der Neuronen wird durch zeit-
liche Beziehungen ausgedrückt. Das Cell Assembly Konzept würde demnach voraussagen,
daß Neuronen zu verschiedenen Zeiten und unter verschiedenen experimentellen Situationen
Spikemuster mit unterschiedlichen Partnerneuronen aufweisen. Tatsächlich wurden unter
Verwendung verschiedener Analysemethoden (Abeles, Bergman, Margalit, & Vaadia, 1993;
Riehle, Grün, Diesmann, & Aertsen, 1997; Prut et al., 1998; Grün, Diesmann, & Aertsen,
2002b) Hinweise auf einen Verhaltensbezug und auf ein in der Zeit moduliertes Auftreten
von Spikemustern gefunden.

Unabhängig von der funktionellen Bedeutung, beschränken wir uns in dieser Arbeit dar-
auf zu untersuchen, ob ein bestimmtes Netzwerkmodell, welches zur Erklärung der präzisen
Spikemuster vorgeschlagen wurde, unter den im Cortex gegebenen Bedingungen plausibel
erscheint. In der gleichen Monographie (Abeles, 1982a), in der von Dreierkorrelationen be-
richtet wird, schlägt Abeles das Modell der

”
Synfire Chain“ vor, um zeitlich ausgedehnte

Spikemuster zu erklären. Die in Fig. 1 gezeigte Netzwerkstruktur geht auf eine Arbeit von
Griffith (1963) zurück, der diese Struktur allerdings unter dem Aspekt der Stabilisierung
globaler Netzwerkaktivität behandelte. In der Synfire Chain sind exzitatorisch gekoppel-
te Neuronen zu einer Sequenz von Gruppen organisiert. Die Vorstellung ist nun, daß bei
gleichzeitiger Aktivierung der Neuronen einer Gruppe die jeweils nächste Gruppe ebenfalls
zuverlässig aktiviert wird. Damit läuft ein Paket synchroner Spikes durch das Netzwerk,
wobei eine Neuronengruppe gleichzeitig Empfänger und Erzeuger synchroner Spikeaktivität
ist.

Es sollte betont werden, daß die Darstellung einer Synfire Chain (Fig. 1) nicht die ana-
tomische Anordnung der Neuronen repräsentiert, sondern ausschliesslich die sequenzielle
Anordnung symbolisiert, in der die Neuronen in der Zeit aktiviert werden. Grundsätzlich
können einzelne Neuronen immer wieder in der Kette teilnehmen, wobei ein minimaler Ab-
stand durch die Refraktärzeit vorgegeben ist. Da ein Neuron bei Aktivierung einer Kette nur
jeweils einen Spike beiträgt, kann es ohne weiteres an mehreren Ketten teilnehmen.

Werden nun die Spikefolgen zweier Neuronen aufgezeichnet, die sich in einer Gruppe
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befinden, wird ein räumliches Muster beobachtet, in dem beide Neuronen mit hoher Präzision
gleichzeitig einen Spike emittieren. Nimmt ein Neuron in verschiedenen Gruppen teil, findet
man ein rein zeitliches Muster. Zwei Neuronen aus verschiedenen Gruppen erzeugen ein
raum-zeitliches Muster, wobei der zeitliche Abstand der Spikes vom Abstand der beiden
Neuronengruppen in der Synfire Chain abhängt.

Die strikt vorwärtsverschaltete Synfire Chain wird als ein behandelbares abstraktes Sub-
netzwerk des Cortex eingeführt. Um eine realistische Hintergrundaktivtät zu modellieren,
erhält jedes Neuron in der Synfire Chain zusätzlich Eingang von vielen anderen Neuronen
aus dem einbettenden Gesamtnetzwerk. Die Rückprojektion von Neuronen der Synfire Chain
in das Gesamtnetzwerk wird hier vernachlässigt. Grundsätzlich stellt sich die Frage, ob diver-
gent/konvergent verschaltete Neuronengruppen ein lokales Organisationsprinzip des Cortex
sein können.

Fragestellung

Die vorliegende Arbeit befaßt sich mit der Frage, ob das von Abeles vorgeschlagene Modell
der Synfire Chain, unter den im Cortex gegebenen Randbedingungen, tatsächlich in der La-
ge ist, synchrone Spikeaktivität stabil fortzuleiten. Dazu muß zunächst geklärt werden, in
welchem Sinne propagierende synchrone Spikeaktivität einen stabilen Zustand des Systems
darstellt, und wie die Robustheit eines solchen Zustandes demonstriert werden kann. Der
Mechanismus der Spikesynchronisation soll aufgeklärt und die Bedingungen für die Existenz
eines stabilen Zustandes herausgearbeitet werden. Um eine Überprüfung der Konsistenz der
Synfire Hypothese mit experimentellen Daten zu ermöglichen, soll im Modell der Zusam-
menhang zwischen der Präzison der Spikesynchronisation und den Parametern des einzelnen
Neurons hergestellt werden.
In einer komplementären Studie (Gewaltig, 2000) wurde die Spikeaktivität in Synfire Chains
in Netzwerksimulationen untersucht, und eine kontinuierliche Beschreibung der Aktivitäts-
ausbreitung auf der Ebene von Neuronengruppen entwickelt.

Die Übertragungsfunktion

Die Spikeaktivität in einer Synfire Chain (Fig. 1) ist gekennzeichnet durch die sequentielle
Erregung der Neuronengruppen. Dabei sendet jede Gruppe eine Anzahl von Spikes aus, die
eine gewisse zeitliche Dispersion aufweisen. Die Entscheidung, ob ein bestimmtes Neuron
einen Spike emittiert, und dessen genaue zeitliche Position erscheinen zufällig. Um die Dy-
namik einer Synfire Chain aufklären zu können, muß untersucht werden, wie ein einzelnes
Neuron auf das Eintreffen einer Salve mehr oder weniger synchroner Spikes reagiert. Das
Konzept des Pulspakets (Fig. 2A) ermöglicht es, eine Übertragungsfunktion (Fig. 2B) zu
definieren (Kapitel 3), die den Zusammenhang zwischen synchron eintreffenden Spikes und
der neuronalen Antwort kompakt beschreibt. In dieser Übertragungsfunktion T wird ein
Eingangspaket, parametrisiert durch die Anzahl von Spikes und deren zeitliche Unschärfe
(a, σin), abgebildet auf ein Tupel (α, σout), welches die Wahrscheinlichkeit eines Antwortspikes
und dessen zeitliche Dispersion angibt. Im Gegensatz zu der

”
klassischen“ Entladungskurve



xiii

A

σ

a
t

σin

ain

t

σout

α

t

B

Abbildung 2 Representation (A) propagierender synchroner Spikeaktivität durch Pulspakete und Quanti-
fizierung (B) des Antwortverhaltens eines einzelnen Neurons auf ein eintreffendes Pulspaket. A Skizze des
zu untersuchenden Subnetzwerks (oben), angeordnet zu einer Sequenz von Gruppen von Neuronen (1., 2.
und eine weitere Gruppe gezeigt, vgl. Fig. 1). Darunter (mittig) ist die typische Spikeaktivität von drei
ausgewählten Neuronengruppen gezeigt (Rasterdiagramm). Punkte markieren das Auftreten von Spikes in
der Zeit (horizontal). Die Netzwerkaktivität wird durch eine Abfolge von Spikepaketen beschrieben (unten),
welche durch die Anzahl der enthaltenen Spikes a und einem Maß für die zeitliche Unschärfe σ parametri-
siert werden. B Ein Modellneuron (mittig, grau) wird wiederholt mit Pulspaketen stimuliert, indem jeweils
ain Spikezeitpunkte aus einer Gaußverteilung mit Standardabweichung σin gezogen werden (links). Um die
Hintergrundaktivität im Netzwerk zu berücksichtigen, werden die Pakete in zufällige, exzitatorische und
inhibitorische Spikefolgen (nicht gezeigt) eingebettet. Die Antwort des Neurons auf ein eintreffendes Paket
besteht typischerweise aus höchstens einem Spike (rechts). Mit einem Histogramm wird die Wahrscheinlich-
keit α einen Spike zu emittieren und die zeitliche Unschärfe σout des Antwortspikes bestimmt. Diese Prozedur
definiert die Übertragungsfunktion (ain, σin) → (α, σout).

(discharge curve), die in Kapitel 2 kurz diskutiert werden wird, beschreibt die hier vorge-
schlagene Übertragungsfunktion die transiente Antwort des Neurons auf einen transienten
Stimulus.

Zustandsraum und Mittelwertsdynamik

In einer vollständig verknüpften Kette mit w Neuronen pro Gruppe ist die erwartete Anzahl
von Antwortspikes durch das Produkt der Antwortwahrscheinlichkeit α und der Gruppen-
breite w gegeben. Der Strukturparameter w verbindet also die Eigenschaften des einzelnen
Neurons mit der im Netzwerk zu beobachtenden Aktivität. Damit kann eine iterative Ab-
bildung Tw (Propagator) angegeben werden, welche die Entwicklung synchroner Aktivität
entlang der Kette beschreibt (Kapitel 4).

Die Frage nach dem Auftreten synchroner Aktivität in unserer Netzwerkstruktur redu-
ziert sich auf das Auffinden von Fixpunkten in der iterativen Abbildung. In dieser Sichtweise
spannen a und σ den Zustandsraum unseres Systems auf. Unter realistischen Annahmen für
die Werte der im Modell enthaltenen Parameter zeigt sich, daß in der Tat ein Attraktor für
synchrone Aktivität existiert. Der Attraktor ist umgeben von einem Basin, welches Robust-
heit gegenüber Störungen garantiert. Ein Sattelpunkt bestimmt den Verlauf von charakte-
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Abbildung 3 Zustandsraum für synchrone Spikeaktivität in einer Synfire Chain und w-Bifurkation. A a
(vertikal) und σ (horizontal) spannen den Zustandsraum auf. Der Propagator Tw : (ai, σi) → (ai+1, σi+1)
beschreibt die Fortpflanzung eines Pulspakets von einer Neuronengruppe zur nächsten (Pfeile). Für eine ge-
gebene Anzahl von Neuronen pro Gruppe (hier w = 100), ergibt sich der Propagator aus der Übertragungs-
funktion (Fig. 2B) durch Identifikation σi+1 = σout und Nutzung der erwarteten Anzahl von Antwortspikes
ai+1 = wα. Die Trajektorien zeigen die Entwicklung eines propagierenden Pulspakets für verschiedene An-
fangsbedingungen. Im Attraktorbecken (grau) ist stabile Propagation synchroner Spikeaktivität garantiert.
Im Attraktor wird eine nahezu vollständige Aktivierung aller Neuronen einer Gruppe erreicht, wobei eine
gewisse zeitliche Unschärfe verbleibt. B Gleiche Darstellung wie in A für eine Gruppenbreite von w = 80.
Der Attraktor für synchrone Spikeaktivität ist hier verschwunden, jegliche Anfangsaktivität stirbt aus.

ristischen Trajektorien im (a, σ)-Raum. Die durch die iterative Abbildung vorhergesagten
Trajektorien stimmen gut mit Ergebnissen aus Netzwerksimulationen überein. Tatsächlich
wurde die nichtmonotone Entwicklung von a und σ für Trajektorien in der Nähe der Separa-
trix, die das Attraktorbecken begrenzt, erst in Rasterdiagrammen beobachtet, nachdem sie
in der iterativen Abbildung gefunden worden war.

Der Einfluß kritischer Parameter für die Fortpflanzung synchroner Aktivität sollte sich
in verschiedenen Bifurkationsszenarien im (a, σ)-Raum ausdrücken. Ein offensichtlicher Pa-
rameter ist w (Anzahl der Neuronen pro Gruppe), welcher direkt die Anzahl der in einem
Paket enthaltenen Spikes skaliert. Es zeigt sich, daß unter Variation von w eine Sattel-Knoten
Bifurkation auftritt, in welcher der Attraktor für synchrone Aktivität vernichtet wird (Kapi-
tel 4). Damit existiert eine untere Grenze für die Gruppenbreite, eine Größe, die insbesondere
in Überlegungen zur anatomischen Existenz von vorwärtsverschalteten Subnetzwerken von
Bedeutung ist (Abeles, 1991; Hehl et al., 2001).

Hintergrundaktivität

In der vorliegenden Studie wird die Dynamik eines einzelnen Neurons als deterministisch
angenommen. Große Fluktuationen des Membranpotentials entstehen durch die Einbettung
in das cortikale Netzwerk, aus welchem die Neuronen ständig exzitatorische und inhibito-
rische Eingänge erhalten. Die Stärke der Fluktuationen bestimmt die Spontanaktivität der
Neuronen, und als einzige Rauschquelle im System bestimmt sie auch die Streuung der
Antwortspikes bei Eintreffen eines Pulspakets. Gleichzeitig stellen die Membranpotential-
fluktuationen eine Größe dar, die sich im Laufe eines Experiments ändern kann. Im Kontext
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Abbildung 4 Vernichtung des Attraktors für synchrone Spikeaktivität durch erhöhte Membranpotenti-
alfluktuationen und der konstruktive Effekt von Hintergrundaktivität. A Gleiche Darstellung und gleiche
Anzahl von Neuronen pro Gruppe wie in Fig. 3A. Durch eine Vergrößerung der Amplitude der Membranpo-
tentialfluktuationen (von σV = 2.5 mV auf 4.5 mV) verschwindet der Attraktor für synchrone Spikeaktivität
(σV -Bifurkation). B Gleiche Membranpotentialfluktuationen wie in A bei einer auf w = 140 erhöhten Anzahl
von Neuronen pro Gruppe. Der Attraktor existiert. Die graue Fläche zeigt die Vergrößerung des Attraktor-
beckens im Vergleich zum rauschfreien Fall (dicke Kurve). C Reduktion von σV auf 3.5 mV bei w = 140.
Für konstantes w erreicht das Attraktorbecken seine größte Ausdehnung bei einem bestimmten σV .

dieser Arbeit wird daher auch die Standardabweichung der Membranpotentialverteilung σV

als Parameter der Dynamik betrachtet (Kapitel 5).

Es ist also zu untersuchen, wie sich die Dynamik der Synfire Chain in Abhängigkeit von
σV verändert. Unter Änderung dieses Parameters tritt ebenfalls eine Sattel-Knoten Bifurka-
tion auf, die den Attraktor vernichtet (Fig. 4A). Allerdings ist hier das globale Verhalten
komplizierter als bei der w-Bifurkation. Für Gruppenbreiten größer als die minimal erfor-
derliche zeigt sich, daß die Membranpotentialfluktationen einen konstruktiven Effekt auf die
synchrone Aktivität ausüben (Kapitel 6). Mit wachsendem σV vergrößert sich das Attrak-
torbasin zunächst (Fig. 4C), sodaß Pakete, die bei kleineren σV aussterben würden, in den
Attraktor gezogen werden. Bei weiter steigendem σV schrumpft das Attraktorbasin wieder
zusammen (Fig. 4B). Dieser Effekt lät sich mit der aperiodischen stochastischen Resonanz
(Collins, Chow, Capela, & Imhoff, 1996) in Verbindung bringen. Im Kontext der Informa-
tionsverarbeitung wird von einigen Autoren die Möglichkeit einer Aktivitätskontrolle durch
Hintergrundaktivität diskutiert (z.B. Braitenberg & Schüz, 1998; Boven & Aertsen, 1990).
In der hier vorliegenden Arbeit zeigt sich dieser Effekt in einem konkreten Netzwerkmodell.

Auch für kleine Membranpotentialfluktuationen bleibt die generelle Form der Separatrix,
die den Zustandsraum in einen Bereich, der Pakete in den Attraktor zieht, von einem Be-
reich, in dem Pakete aussterben, trennt, erhalten. Bei kleiner werdendem Membranpotential
werden allerdings immer weniger Schritte benötigt, um in die Nähe des Attraktors zu gelan-
gen, und die Aktivität bekommt ein schwellwertartiges Verhalten. Dies führt auf die Frage
nach dem Verhalten des Systems im rauschfreien Fall, und ob sich verstehen läßt, wie die
Struktur des Zustandsraums entsteht.
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Der rauschfreie Fall

Im rauschfreien Fall wird die Lage der Separatrix wesentlich von der Form des PSPs be-
stimmt. Die Erzeugung eines Antwortspikes hängt nur davon ab, ob die durch das Eintreffen
eines Pakets ausgelöste Membranpotentialänderung (Paketpotential) den Schwellwert er-
reicht oder nicht. Wird der Schwellwert erreicht, dann erzeugen alle Neuronen der betreffen-
den Gruppe gleichzeitig einen Spike. Die Separatrix ist daher gegeben durch die Paare (a, σ),
für die das Maximum des Paketpotentials den Schwellwert gerade erreicht. Es stellt sich her-
aus, daß der Zerfall des Paketpotentials mit wachsender Streuung der Eingangsspikes σ die
Lage der Separatrix bestimmt. In Anwesenheit von Rauschen steigt die Antwortwahrschein-
lichkeit für schwellennahe Paketpotentiale steil an und erreicht 50% für Paketpotentiale, die
gerade die Schwelle erreichen, da die Verteilung der Membranpotentialwerte als symmetrisch
angenommen werden kann. Eine Abschätzung der minimalen Gruppenbreite w∗ erhält man
daher aus der Bedingung, daß eine Neuronengruppe mindestens die Anzahl von Spikes re-
produzieren muß, die es an ihrem Eingang erhält. Es werden also zwei mal so viele Neuronen
benötigt wie Spikes notwendig sind, um den Schwellwert zu erreichen.

Im Gegensatz zu dem stufenförmigen Anstieg der Antwortwahrscheinlichkeit von 0 auf 1
im rauschfreien Fall, ist der Anstieg in Anwesenheit von Rauschen sigmoidal. Die Steilheit
der Schwellencharakteristik wird durch Membranpotentialfluktuationen bestimmt. Während
im rauschfreien Fall die Separatrix unabhängig von der Gruppenbreite ist, können durch eine
Gruppenbreite größer als w∗ im rauschbehafteten Fall auch

”
unterschwellige“ Pakete (α <

0.5) eine Anzahl von Antwortspikes hervorrufen, die größer als die Zahl der Eingangsspikes
ist. Somit können auch unterschwellige Pakete in den Attraktor gezogen werden. Dies erklärt
den konstruktiven Effekt der Membranpotentialfluktuationen (Kapitel 6).

Anstiegszeit des Potentials

Es ist anschaulich klar, daß die im Attraktor erreichbare Synchronisation der Spikes von der
Anstiegszeit der PSPs begrenzt sein muß. Selbst wenn die Eingangsspikes voll synchronisiert
sind, bewirkt die endliche Steigung des Paketpotentials am Punkt des Schwellendurchsto-
ßes eine Streuung der Antwortspikes durch Membranpotentialfluktuationen. Damit ist die
Anstiegszeit des postsynaptischen Potentials als weiterer relevanter Parameter identifiziert.

Die Untersuchung der Synchronisationsdynamik in Abhängigkeit von der Anstiegszeit τ0

des PSPs (Chap. 7) zeigt zunächst ein überraschendes Ergebnis. Wie erwartet verschiebt sich
mit zunehmender Anstiegszeit die im Attraktor erreichbare Synchronisation zu größeren σ.
Die Anzahl der Spikes im Attraktor ändert sich jedoch kaum (Fig. 5A). Auch der Sattelpunkt
verschiebt sich zu größeren σ und leicht geringeren Spikezahlen, sodaß sich mit wachsendem
τ0 das Attraktorbecken vergrößert und nicht etwa zusammenschrumpft (Kapitel 7).

Das obige Resultat erhält man, indem die Anstiegszeit des PSPs unter Konstanthaltung
seiner Amplitude variiert wird. Dies erscheint zweckmäßig, da wir bereits gesehen haben,
daß die Amplitude des PSPs eine wichtige Rolle in der Synchronisationsdynamik spielt. Mit
Änderung der Anstiegszeit ändert sich unter Amplitudennormierung zwangsläufig die Fläche
F 1 unter dem PSP. Mit wachsendem σ tauschen jedoch die Amplitude des PSPs und dessen
Fläche ihre Rollen in Hinsicht auf ihren Einfluß auf die Amplitude des Paketpotentials.
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Abbildung 5 Abhängigkeit der im Attraktor erreichbaren zeitlichen Präzision von der Anstiegszeit des
postsynaptischen Potentials und Vernichtung des Attraktors bei Vergrößerung der Anstiegszeit des PSPs
unter Flächenerhaltung. A Gleiche Darstellung und Parameter wie in Fig. 3A. Durch Vergrößerung der
Anstiegszeit des PSPs von τ0 = 1.7 ms auf 6ms, bei konstanter Amplitude, liegen Attraktor und Sattelpunkt
bei größerer zeitlicher Unschärfe. B Gleiche Vergrößerung der Anstiegszeit wie in A, jedoch unter Kon-
stanthaltung der Fläche des PSPs. Eine stabile Propagation synchroner Spikeaktivität ist hier nicht mehr
möglich.

Während bei hoher Synchronisation die Amplitude des Paketpotentials von der Amplitude
des PSPs bestimmt wird, so wird sie bei großer Streuung der Spikes von F 1 bestimmt. Eine
große Anstiegszeit des PSPs führt zu einer Verschiebung der Fixpunkte hin zu größerer
zeitlicher Streuung, gleichzeitig nimmt die Amplitude des Paketpotentials mit wachsendem
σ jedoch weniger schnell ab als bei kleinerer Anstiegszeit des PSPs. Dieser Effekt stabilisiert
die Dynamik bei größerem σ.

Untersuchen wir jedoch die Änderung der Synchronisationsdynamik bei Änderung von τ0

unter Flächennormierung, ergibt sich ein vollständig anderes Bild. Der Attraktor verschiebt
sich weiterhin zu größeren σ. Der Sattelpunkt kann jedoch nicht mehr zu größeren σ vor-
dringen, die erforderliche Anzahl von Spikes nimmt jedoch zu, sodaß das Attraktorbecken
schrumpft, bis sich die beiden Fixpunkte vernichten (Fig. 5B).

Zusammenfassend kann man über den Einfluß der Anstiegszeit des postsynaptischen
Potentials sagen, daß sie die erreichbare zeitliche Präzision der Spikes bestimmt, nicht aber
das Auftreten stabiler Spikesynchronisation selbst. Sollte allerdings eine größere Anstiegszeit
mit einer kleineren Amplitude gekoppelt sein, beispielsweise durch die Forderung des Erhalts
der durch ein einzelnes PSP transportierten Ladung, ergibt sich eine kritische Anstiegszeit,
oberhalb derer keine Spikesynchronisation mehr möglich ist (Kapitel 7).

Variabilität von Einzelrealisierungen

Durch die Konstruktion einer Mittelwertsdynamik konnten die dynamischen Eigenschaften
der zu untersuchenden Netzwerkstruktur in einer zweidimensionalen iterativen Abbildung
zusammengefaßt werden. Dieses Vorgehen ermöglicht es, den Effekt der für die Synchro-
nisationsdynamik wesentlichen Parameter zu studieren: Anzahl der Neuronen pro Gruppe
w, Amplitude der Membranpotentialfluktuationen σV , und Anstiegszeit des postsynapti-
schen Potentials τ0. In Zusammenhang mit der Untersuchung des rauschfreien Falls wurde
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klar, daß die Amplitude des PSPs û und der Abstand des mittleren Membranpotentials
zur Spikeschwelle nicht als eigenständige Parameter untersucht werden müssen, da sich alle
Spannungsgrößen skaliert auf diesen Abstand betrachten lassen.

Es konnte gezeigt werden, daß für die Amplitude der Membranpotentialauslenkung, die
ein Neuron bei Eintreffen eines Pakets erfährt, nur das Produkt (wα)û relevant ist. Daraus
ergibt sich ein Skalierungsgesetz, nach welchem die Synchronisationsdynamik unverändert
bleiben sollte, wenn die Gruppenbreite w um einen Faktor κ vermindert und gleichzeitig
die PSP Amplitude um 1/κ erhöht wird. Mit der Reduktion der Anzahl von Neuronen pro
Gruppe wächst allerdings der Beitrag jedes einzelnen Spikes am Paketpotential. Es stellt sich
dann die Frage, wie gut die Mittelwertsdynamik noch die Aktivität in einzelnen Realisationen
beschreibt. Die Existenz des Attraktorbeckens sichert eine gewisse Robustheit gegen Fluk-
tuationen in der Anzahl der Spikes und deren zeitlicher Streuung. Eine einzelne Realisation
der Netzwerkaktivität wird sich nur dann qualitativ von der Vorhersage der Mittelwertsdy-
namik unterscheiden, wenn in der Propagation von einer Neuronengruppe zur nächsten die
Separatrix des deterministischen Modells überschritten wird. Aus diesem Grund wird die
Variabilität einzelner Realisationen in einer neuen Größe, der Überlebenswahrscheinlichkeit
S(a, σ), zusammengefaßt. Sie ist definiert als das Verhältnis der Anzahl der am Ort (a, σ)
gestarteten Trajektorien, die den Attraktor erreichen, zur Gesamtzahl der gestarteten Tra-
jektorien. Im deterministischen Fall ist diese Größe im Attraktorbecken 1 und fällt an der
Separatrix instantan auf 0 ab. Indem wir die deterministische iterative Abbildung um geeig-
nete probabilistische Komponenten für a und σ erweitern, können wir einen Eindruck davon
gewinnen, wie gut die deterministische Beschreibung die wirkliche Dynamik erfaßt. Die Über-
lebenswahrscheinlichkeit kann jetzt für verschiedene w und skalierte û, also Situationen in
denen die deterministische Dynamik unverändert bleibt, untersucht werden.

Unter Variation von w wird der scharfe Übergang der Überlebenswahrscheinlichkeit an
der Separatrix aufgeweicht. Mit kleiner werdendem w wird der Übergang weniger steil. Selbst
bei einer Gruppenbreite von 10 bleibt jedoch eine Umgebung um den Attraktor erhalten,
in der die Überlebenswahrscheinlichkeit praktisch 1 ist. In der Nähe der Separatrix können
jedoch Trajektorien, die in der Mittelwertsdynamik den Attraktor erreichen, durchaus aus-
ssterben. Auch der gegenteilige Fall kann auftreten: Trajektorien, die nach der Mittelwerts-
dynamik aussterben, können in der Einzelrealisierung in das Attraktorbecken springen.

Die probabilistische Erweiterung der iterativen Abbildung sagt voraus, daß die Mittel-
wertsdynamik eine gute Beschreibung für die Aktivität von Einzelrealisationen liefert (Ka-
pitel 8). Dieser Befund läßt sich in Netzwerksimulationen bestätigen (Gewaltig, Diesmann,
& Aertsen, 2001b).

Herkunft der Übertragungsfunktion

Durch die Einführung der Übertragungsfunktion für transiente Eingangsaktivität (Kapitel 3)
konnte ein realistisches Neuronenmodell untersucht, und der Einfluß von physiologisch in-
terpretierbaren Parametern auf die Synchronisationsdynamik studiert werden. Der Frage,
wie sich die Übertragungsfunktion aus dem konkreten Neuronenmodell ergibt, kommt keine
zentrale Bedeutung zu, da sie durch das beschriebene Konstruktionsverfahren für arbiträre
Neuronenmodelle erzeugt werden kann. Selbst wenn für ein bestimmtes Neuronenmodell die
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Übertragungsfunktion in geschlossener Form vorliegen würde, liefert nur die Analyse des
Zustandsraumes eine Erklärung für den Mechanismus der Spikesynchronisation.

Allerdings wäre ein geschlossener Ausdruck für die Übertragungsfunktion wünschenswert,
um ein besseres Verständnis der Parameterabhängigkeit der Übertragungsfunktion selbst zu
erreichen. Um einen Einblick in das Entstehen der Übertragungsfunktion zu bekommen, er-
weitern wir einen Ansatz von Abeles (1991), der sich auf eine Abschätzung der Streuung der
Spikezeitpunkte bezieht, sodaß auch Antwortwahrscheinlichkeiten kleiner 1 berücksichtigt
werden können (Kapitel 9). Dadurch erhalten wir einen Ansatz, der beide Variablen (a, σ)
und alle diskutierten Parameter enthält. Einige grundlegende Eigenschaften der so erhalte-
nen Übertragungsfunktion und die Abweichungen vom vollständigen Modell können somit
diskutiert werden. Der Zusammenhang mit Intensitätsmodellen (z.B. Rotter, 1994; Gewal-
tig, 2000), die für eine weitere Behandlung vielversprechend erscheinen, wird diskutiert. Es
wird gezeigt, daß die Ableitung des Paketpotentials nach der Zeit wesentlich in die Intensität
eingeht.

Ergebnisse

Auf der Grundlage des Integrate-and-Fire Modells für das einzelne Neuron konnte gezeigt
werden, daß die stabile Fortpflanzung synchroner Spikeaktivität in vorwärtsverschalteten
Subnetzwerken unter den physiologischen Randbedingungen des Cortex möglich ist. Um die
Analyse durchzuführen, wurde eine neue Übertragungsfunktion definiert und eine zweidi-
mensionale iterative Abbildung konstruiert, welche die Dynamik im vorliegenden Netzwerk
erfaßt. Mit Hilfe der eingeführten Werkzeuge konnte die Abhängigkeit der Dynamik von drei
unabhängigen Parametern –Anzahl der Neuronen pro Gruppe, Amplitude der Membranpo-
tentialfluktuationen und Anstiegszeit des postsynaptischen Potentials– studiert werden. Es
zeigt sich, daß alle drei Größen Bifurkationsparameter der Dynamik darstellen, die den At-
traktor für synchrone Spikeaktivität vernichten können. Allerdings steht für alle drei Größen
ein Intervall im physiologischen Bereich zur Verfügung, in dem der Attraktor existiert. Jeder
Parameter hat spezifische Auswirkungen auf die zu beobachtende Netzwerkaktivität.

Ausblick

Die Übertragungsfunktion ist im Prinzip auch experimentell zugänglich. Zunächst können in
einem in vitro Experiment die synaptische Aktivität, sowohl für eintreffende Pakete als auch
für die Hintergrundaktivität, durch Strominjektion nachgebildet werden (Rodriguez et al.,
2001). Aus diesen Experimenten erwarten wir Erkenntnisse darüber, in wieweit das hier
verwendete Neuronenmodell das Antwortverhalten eines cortikalen Neurons für transiente
Stimuli beschreibt.

In der vorliegenden Arbeit wurden zwei Beschreibungsebenen cortikaler Aktivität mitein-
ander verbunden: einerseits das Auftreten raum-zeitlicher Spikemuster, beruhend auf Daten
von parallelen extrazellulären Ableitungen individueller Spikeaktivitäten vieler Neuronen,
und andererseits unterschwellige Membranpotentialfluktuationen sowie Parameter einzelner
postsynaptischer Potentiale, wie sie aus intrazellulären Einzelneuronableitungen gewonnen
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werden können. Wenn nun Daten vorlägen, in denen die Spikeaktivität vieler Neuronen
aufgezeichnet und gleichzeitig die unterschwellige Aktivität einzelner Neuronen beobachtet
wurde, ließe sich die Konsistenz des Modells überprüfen.

In der durchgeführten Analyse wurde vorausgesetzt, daß das cortikale Netzwerk einen
stabilen Grundzustand einnimmt, in dem die Neuronen bei niedrigen Raten unkorreliert aktiv
sind, und daß dieser Zustand durch die Existenz des vorwärtsverschalteten Subnetzwerks
nicht gestört wird. Die Stabilität des Grundzustands ist Gegenstand gegenwärtiger Forschung
(Tetzlaff, Geisel, & Diesmann, 2001).

Bei der Konstruktion der iterativen Abbildung wurden die zeitlichen Aspekte der Dy-
namik eliminiert. Die Abbildung liefert keine Information darüber, nach welcher Zeit eine
bestimmte Neuronengruppe aktiviert wird. Netzwerksimulationen haben jedoch gezeigt, daß
bei Stimulation mit schwachen Paketen der Aktivierungszeitpunkt einer bestimmten Neuro-
nengruppe um einige ms schwanken kann. Diese Unschärfe in der Kopplung an den Stimulus
baut sich bereits in den ersten Neuronengruppen auf. Sobald der Attraktor erreicht ist, bleibt
die Präzision der Kopplung praktisch stationär (Gewaltig, Diesmann, & Aertsen, 2001b). In
experimentellen Daten treten raum-zeitliche Spikemuster allerdings nur lose gekoppelt an
den Stimulus auf, mit einer Unschärfe von ca. 10 − 100 ms. In ersten Simulationen (Grün,
1996) konnte gezeigt werden, daß ein vorwärtsverschaltetes Subnetzwerk, welches durch eine
Ratenerhöhung in einer Reihe von aufeinanderfolgenden Neuronengruppen aktiviert wird,
einerseits Aktivität aufweist, die sich zu synchronen Paketen organisiert und dann stabil
propagiert wird, andererseits aber keine scharfe Kopplung an den Stimulus existiert. Der
Mechanismus dieses Übergangs von asynchroner Aktivierung zu synchroner Aktivität muß
noch geklärt werden und wird in aktuellen Arbeiten untersucht.

Die oben beschriebenen weitergehenden Fragestellungen bewegen sich alle im Rahmen
des Ansatzes, der in dieser Arbeit vorgestellt wurde. Ein Subnetzwerk wird isoliert vom Ge-
samtnetzwerk betrachtet, um einer Analyse zugänglich zu sein. Über den Grundzustand von
Zufallsnetzwerken ist inzwischen viel bekannt (van Vreeswijk & Sompolinsky, 1996; Amit
& Brunel, 1997) und ebenso über die Dynamik vorwärtsverschalteter Subnetzwerke. Daher
erscheint es an der Zeit, die beiden extremen Modelle zusammenzuführen. Netzwerke der er-
forderlichen Größe können inzwischen mit vertretbarem Aufwand simuliert werden (Mehring
et al., 2003). Ist das einbettende Netzwerk nicht vollständig zufällig verknüpft, stellt sich die
Frage nach der räumlichen Anordnung der Neuronen einer Synfire Chain (Hehl et al., 2001).

Mit dem letzten Absatz eng verbunden ist die Frage nach der richtigen Nullhypothese
für die Suche nach raum-zeitlichen Spikemustern in experimentellen Daten (siehe z.B. Grün,
Diesmann, & Aertsen, 2002b). Die angemessene Modellierung eines Cortexvolumens wird es
erlauben, Analyseverfahren anhand der Spontanaktivität des Netzwerkes zu kalibrieren.

Möchte man die Möglichkeit des Cortex, synchrone Spikeaktivität in vorwärtsverschalte-
ten Subnetzwerken stabil zu transportieren, nicht nur als mögliche Dynamik auffassen, die
eventuell nur als Nebeneffekt in Erscheinung tritt, so besteht eine große Herausforderung
darin, eine funktionelle Verwendung dieses Mechanismus zu finden. Ein plausibles Netz-
werkmodell, das vorwärtsverschaltete Subnetzwerke nutzt, um eine bestimmte Leistung zu
vollbringen und Vorteile gegenüber anderen Lösungen demonstriert (siehe z.B. die Ansätze
in Abeles et al., 1993b; Bienenstock, 1995), würde eine starke Unterstützung der

”
Synfire“-

Hypothese bedeuten und eventuell neue Vorhersagen für experimentelle Studien liefern.



Chapter 1

Introduction

The present work seeks to contribute to our understanding of the dynamical properties of
the mammalian brain, specifically the neocortical network. The first section of this chapter
introduces the basic structure and dynamics of the mammalian cortex. The following section
briefly reviews experimental results and theoretical concepts on the dynamics of the cortical
network. Sec. 1.3 concentrates on the study of correlations in the activity of nerve cells
which motivated the present work. A specific subnetwork architecture, the “synfire chain”,
was proposed to explain a certain type of correlations, “spatio-temporal spike patterns”, in
the experimental data. Sec. 1.4 introduces the model and illustrates its typical dynamics.
The network model has raised a number of questions regarding its dynamical properties and
its plausibility given the conditions in the cortex. The focus of the present study, described
in Sec. 1.5, is derived from the need to gain an understanding of fundamental properties of
this system. The last section provides an outline of the investigation.

1.1 The Cortical Network

The mammalian brain contains a large number of nerve cells (1014 in humans). It is com-
monly accepted that information processing in the brain is primarily based on the electrical
activity of this specific class of cells, also called neurons. Neurons maintain a potential
(membrane potential) difference across their membrane, separating the intracellular from
the extracellular medium. The interaction between neurons is mediated by the occurrence
of sharp voltage transients (duration 1 ms), called action potentials or spikes, in individual
neurons. The contacts between neurons, called synapses, are directed. A spike in the pre-
synaptic neuron causes, after a fixed time delay of a few ms, a small membrane potential
excursion (post-synaptic potential, PSP) in the post-synaptic neuron. In a strongly simpli-
fied view of neuronal dynamics, an action potential is emitted when the superposition of a
sufficient number of post-synaptic potentials reaches a certain voltage threshold (for recent
introductory texts see e.g. Kandel, Schwartz, & Jessel, 1991; Johnston & Wu, 1995; Koch,
1999; Nicholls, Martin, Wallace, & Fuchs, 2001). The generation of an action potential is
followed by a period of refractoriness in which no further spike can occur. A cortical neuron
is the target site of about 20, 000 connections. 80% percent of the synapses are excita-
tory, the remaining ones inhibitory (Braitenberg & Schüz, 1998). Inhibitory synapses drive
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the membrane potential away from spike threshold. The action potential itself is strongly
driven by the internal dynamics of the neuron and, hence, does not depend on the details
of the membrane potential excursion causing the spike. Thus, in this simplified picture, the
sequence of spike times determines the state of the network.

In electrophysiological experiments, one or more microelectrodes are inserted into the
brain (e.g. Abeles, 1982a; Gerstein, Bloom, Espinosa, & Evanczuk, 1983; Kandel, Schwartz,
& Jessel, 1991; Nicolelis, 1998; Nicholls, Martin, Wallace, & Fuchs, 2001). Spikes of neurons
in the neighborhood of the unisolated tip of an electrode are seen as potential fluctuations
compared to a reference electrode. Because of volume conductance and the different morpho-
logical structure of neurons, spikes from a few individual neurons can often be identified by
data processing of the action potential wave shapes (for a recent review see Lewicki, 1998).
It should be noted, however, that many problems remain and the quality of spike sorting is
debated and an active field of research.

1.2 Cooperative Effects

Being able to record the electrical activity of neurons in the intact animal (anesthetized
or awake) allowed researchers to directly study the dynamics of the neural network. The
principal tools are to correlate neural activity with stimulus or behavioral events, and to
correlate the activity of different recorded neurons amongst each other (Perkel & Bullock,
1968).

Initially, recording techniques were limited to recordings from one channel at a time.
Here, the recording was optimized to obtain the spikes from a single neuron only, or the
spikes where left unidentified (e.g. in recordings from nerve fibers). Due to this limitation
and also guided by early considerations about the integrative properties of the neuron (Sher-
rington, 1906; Eccles, 1957) researchers concentrated on reproducible changes in the spike
rate. Adrian (1928) observed that the spike rate of neurons is related to changes in the
environment and concluded that the intensity of sensation is proportional to sensory spike
rates. Single neurons with their specific characteristics became the building blocks of cortical
processing (Barlow, 1972; Barlow, 1992, for reviews see Martin, 1994; Martin, 2000). This
approach led to fundamental insights into the neuronal mechanisms of brain function (e.g.
Lettvin, Maturana, McCulloch, & Pitts, 1959; Hubel & Wiesel, 1968) and to important the-
oretical works on information processing by neuronal networks (McCulloch & Pitts, 1943).
The influential book by Minsky and Papert (1988) pointed out the limitation of this concept
(see also von der Malsburg, 1986b).

The parallel and distributed architecture of the cortex suggested the investigation of the
collective properties of neural networks. Hebb (1949) proposed that ensembles of neurons,
“cell assemblies”, constitute the units of neuronal processing. In this view, functional groups
are formed by the coherent activity of the participating neurons. This hypothesis provided
the conceptual framework for successful theoretical work on neural networks (e.g. Hopfield,
1982; Rummelhart, McClelland, & the PDP Research Group, 1986; Amit, 1989; Amit &
Brunel, 1997). These models exhibit multiple attractor states, the attractors being groups
of neurons with elevated spike rates. A prominent example from the experimental literature
demonstrating the representation of information by ensembles of neurons is (Georgopoulos,
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Kettner, & Schwartz, 1988; Georgopoulos et al., 1989).
In parallel, however, conceptual difficulties of the representation of assembly membership

by spike rate were pointed out (von der Malsburg, 1981; von der Malsburg, 1986a). The
notion was developed that, alternatively, assembly membership could be expressed in the
temporal organization of spiking activity (von der Malsburg, 1981; Abeles, 1982a; von der
Malsburg, 1986a; Palm, 1990; Abeles, 1991; Gerstein, Bedenbaugh, & Aertsen, 1989; Singer,
1993). Consequently, neuronal processing should be reflected in dynamical changes of spike
time correlation.

Dynamic modulations of spike correlation at various scales of precision have, in fact, been
observed in different cortical areas: visual (Eckhorn et al., 1988; Gray & Singer, 1989) for
reviews see (Engel, König, Schillen, & Singer, 1992; Aertsen & Arndt, 1993; Singer & Gray,
1995; Roelfsema, Engel, König, & Singer, 1996; Singer et al., 1997; Singer, 1999b), auditory
(Ahissar, Ahissar, Bergman, & Vaadia, 1992; Eggermont, 1992; deCharms & Merzenich,
1996; Sakurai, 1996), somato-sensory (Laubach, Wessberg, & Nicolelis, 2000; Nicolelis, Bac-
cala, Lin, & Chapin, 1995; Steinmetz et al., 2000), motor (Murthy & Fetz, 1992; Sanes &
Donoghue, 1993; Riehle, Grün, Diesmann, & Aertsen, 1997; Hatsopoulos, Ojakangas, Panin-
ski, & Donoghue, 1998), and frontal (Aertsen et al., 1991; Abeles, Bergman, Margalit, &
Vaadia, 1993; Vaadia et al., 1995; Prut et al., 1998; Grün, Diesmann, & Aertsen, 2002b).

Fujii et al. (1996) provides an extensive review on the conceptual framework of the cell
assembly hypothesis with a focus on its implementation by spike time correlation. A review
of the various aspects of the electrophysiological data supporting the different concepts of
neuronal processing can be found in (Vaadia & Aertsen, 1992). More recent reviews on
neural coding are (Shadlen & Movshon, 1999; Singer, 1999a; Salinas & Sejnowski, 2001).

1.3 Modulations of Spike Time Correlations

Searching for correlations as a signature of cooperative phenomena in the brain, researchers
found that, indeed, the spiking activity recorded on different channels may be correlated.
The signals of two channels are classified as being correlated if channel 2 reports a spike
at certain delays after (or before) the occurrence of a spike in channel 1 more often than
expected assuming independence. In order to detect the activity of cell assemblies and their
interactions, simultaneous recordings should be obtained from as many neurons as possible.
Recording from awake animals involved in a behavioral paradigm enables the experimenter
to observe the correlation structure while the neurons are carrying out computational tasks.

Cross-Correlation Studies

An important first step was to demonstrate that the correlation between neurons may be
context dependent. Gray, Singer, Eckhorn, and their co-workers showed that, depending on
the stimulus, neurons in the visual cortex exhibit changes in the correlation of the spiking
activity (Gray & Singer, 1987; Eckhorn et al., 1988; Gray & Singer, 1989; Gray, König,
Engel, & Singer, 1989). In these findings, the pronounced oscillatory structure of the cross-
correlogram with a central peak was interpreted as evidence that the neurons entered a syn-
chronous oscillatory state. The correlations observed in neuronal data cannot be attributed
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to the underlying network structure alone (Aertsen, Gerstein, Habib, & Palm, 1989; Aert-
sen et al., 1991). Parameter changes seem to be able to drive the network into different
dynamical regimes or activate different subnetworks.

Having established stimulus and behavioral dependence of spike time correlations, the
next step in the investigation of cortical processing was to study the dynamics of correla-
tions. New tools like the Joint-PSTH (Aertsen, Gerstein, Habib, & Palm, 1989, based on
earlier work, Gerstein & Perkel, 1969) allowed for an analysis of the dynamics of spike time
correlation of two neurons with respect to a stimulus or behavioral event. Thus, Vaadia
et al. (1995) reported changes in correlations within fractions of a second. Under different
experimental conditions a different time course of the correlation is exhibited.

Still, the tools presented so far are restricted to the simultaneous analysis of only two
neurons. With state of the art technology, experimenters are now able to record the indi-
vidual spiking activity of in the order of 10-100 of the 105 neurons in a local volume. Thus,
to increase chances to uncover the nature of cortical dynamics and to exploit the available
data, methods are desired which analyze as many channels as are available as a whole, rather
than as a collection of single units or pairs of units.

Analyzing Multiple Single Neuron Recordings

The method of “gravitational clustering” (Gerstein & Aertsen, 1985) expresses the correla-
tion between neurons by the distances between abstract particles in N -space. The dynamics
of the correlation structure is mapped onto the relative movements of the particles. Here,
for the first time, the correlation dynamics of a population of neurons could be analyzed
and visualized. If neurons of a functional group exhibit correlated activity for a period of
time long enough for the “gravitation” to become effective, the subset of neurons composing
the group forms a cluster. Different functional groups activated at different times should
give rise to different clusters at the corresponding times. The common membership of a
neuron in several functional groups could result in movements of the corresponding particle
from one cluster to the other. However, the interaction between particles is a two-body
interaction, therefore strict statements about higher-order correlation could not be made.
Two uncorrelated particles may approach each other because they are both correlated to a
third one. At the same time, three neurons firing in synchrony more often than expected
may not particularly attract each other because the pairwise synchrony does not exceed
expectation (Baker & Gerstein, 2000 discuss 3-particle interaction). A further limitation
is that the attractive force has to be specified by a temporally restricted interaction kernel
depending on the distance between spikes. Therefore, the interaction kernel determines the
type of correlation which is searched for. Usually an interaction kernel with a center of mass
close to zero is chosen. This is consistent with the finding that most cross-correlations with
significant contributions show high amplitudes close to the origin (see Vaadia & Aertsen,
1992 for a review).

A clear signature of the activation of a functional group of neurons should be the oc-
currence of higher-order correlations under specific behavioral conditions. The reasoning
here was that membership in a functional group might be expressed by the contribution of
single well placed spikes, not necessarily at zero delay to other spikes. Using a visualization
technique for triple correlations (Gerstein & Perkel, 1972; Perkel, Gerstein, Smith, & Tat-
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ton, 1975), Abeles (1982a) found that in sets of three neurons particular spike constellations
(i, j, k; t1, t2) occur much more often than expected by chance. These triplets are events
where following a spike in neuron i, neuron j generates a spike at delay t1, which is at delay
t2 followed by a spike of neuron k.

The timing of spikes in the triplets was found to be at ±1 ms precision. Surprisingly, the
time delays often spanned hundreds of ms. In principle, reflections of such spike patterns
should be visible in the classical (two neuron) cross-correlogram, assuming they occur often
enough to stand out against the background level. However, narrow delayed peaks are
only seldomly observed. Abeles (1991) explained this finding by the view that neurons are
engaged in a large number of different processes. The process which generates the specific
pattern that both neurons are involved in occurs only occasionally. Therefore, the specific
time-locked activity is buried in the spikes generated by other processes. By having available
the data of three or more neurons, involved in the same process, chances are much better to
be able to distinguish the specific spike constellation from uncorrelated activity. It should
be noted here that the absence of indications for precise spike patterns in the pairwise cross-
correlograms does not imply that the correlograms are flat.

Spatio-Temporal Spike Patterns

In the same book (Abeles, 1982a) reporting the spike triplets, Abeles introduced the model
of a “synfire chain” to explain the occurrence of temporally extended spike patterns. The
dynamical properties of the synfire chain model and its plausibility are the focus of the
present work. Before we describe the synfire model in detail in the next section (Sec. 1.4),
let us briefly review the experimental evidence for spike patterns along with the further
development of tools for their analysis. With our current knowledge we cannot separate
the experimental evidence from the available and applicable analysis tools, because different
experimental situations have required different analysis tools, and different analysis tools
highlight different aspects of cortical activity.

Thus, giving up the dynamical aspects of spike time correlation, Abeles and Gerstein
(1988) designed an algorithm to search N parallel spike trains for the occurrence of spatio-
temporal spike patterns. The term “spatio-temporal pattern” indicates the two domains
of a spike pattern: the temporal domain and the domain of neuron identifiers. A purely
spatial pattern consists of spikes from different neurons occurring simultaneously, a purely
temporal pattern consists of consecutive spikes from a single neuron. A number of studies
has demonstrated that precise spatio-temporal spike patterns do occur in the experimental
data. Confirming the 1982a finding, spike patterns often exhibit spike time delays of up
to several hundred ms. In addition, patterns occur related to the behavioral context. A
particular pattern might occur in one experimental condition but not in another. Typically,
patterns are only weakly time-locked to external stimuli (Abeles, Vaadia, & Bergman, 1990;
Villa & Abeles, 1990; Abeles et al., 1993b; Abeles, Bergman, Margalit, & Vaadia, 1993;
Abeles et al., 1993a; Abeles, Prut, Bergman, & Vaadia, 1994). Fig. 1.1 exemplifies the
typical appearance of a spatio-temporal firing pattern in neuronal data.

Concentrating on triplets, Prut (1995) designed a statistical test, demonstrating that the
precise temporal patterns found in the experimental data could not be explained by pairwise
correlations. Prut et al. (1998) provides a detailed study on the properties of spatio-temporal
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Figure 1.1 Typical appearance of spatio-temporal spike patterns in the dot display. A Dots in boxes labeled
1 to 3 represent spike times of three simultaneously recorded neurons. In each box, one vertical position is
reserved for every repetition (30 trials) of the experiment. Time t is advancing along the horizontal axis.
The spike data displayed are generated from independent Poisson processes with rates 5 Hz (box 1), 20 Hz
(2), and 7 Hz (3). Parallel processes are observed for 1000 ms starting at an arbitrary point in time (0 ms). A
spatio-temporal spike pattern (2, 1, 3; 50 ms, 100 ms) is injected into the data homogeneously distributed over
an interval ±200 ms around t = 500ms at a rate of 3Hz. In addition each spike time in a pattern is subject
to a Gaussian distributed temporal jitter of 1.5 ms standard deviation. A constant spike rate of individual
neurons is maintained by correcting the independent base rates for the additional spike rate caused by the
pattern in the corresponding time intervals. C Same data as in A. Only the trials in which the injected
pattern occurred at least once are shown. Here, trials are aligned on the spike neuron 1 contributes to the
first occurrence of the pattern in the trial (t = 0ms). Compared to A, vertical positions of the trials are
reorganized. Trials containing the pattern occupy the top vertical positions to visualize their proportion
(18 of 30). Alignment of the spikes of neuron 1 at t = 0ms is perfect by definition. Spikes of neuron
2 and 3 appear aligned at t = −50 ms, and t = 100ms respectively, exhibiting the internal jitter in the
pattern. B Same spike rates and procedure as in A, different realization. Three purely spatial patterns
are injected at different points in time: (2, 3; 0 ms) at rate 4 Hz homogeneously distributed in an interval
±50 ms centered at t = 150ms, (1, 3; 0 ms) with 4 Hz at t = 450ms± 50 ms, (1, 2, 3; 0 ms, 0 ms) with 3 Hz at
850 ms±50 ms. D Same data as in B. Using an analysis window of 100 ms and requiring a significance level of
0.01, the injected coincidences appear as significant in UE-analysis (binwidth 1ms). Here, spikes belonging
to an injected pattern are marked by squares. UE-analysis would, in addition, mark chance coincidences
surrounding the injected patterns. For early experimental data displayed as in C see Abeles (1982a) and
for recent results Prut et al. (1998), for D see e.g. Riehle, Grün, Diesmann, and Aertsen (1997) and Grün,
Diesmann, and Aertsen (2002b).
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patterns, and their relation to behavior. She also showed that the patterns were not generated
by slow temporal changes of correlation, such that identification of a pattern would critically
depend on the significance threshold. In comparison to spike constellations with slightly
different time delays, a dramatic increase in significance was observed. Spatio-temporal
patterns classified as significant remain significant for almost arbitrarily high thresholds.

The search for spatio-temporal patterns revealed that temporally extended precise cor-
relations do exist. However, in contrast to the JPSTH and gravitational clustering, the
dynamics of correlations cannot be studied. This is basically due to the fact that long pieces
of continuous data are needed for the identification of the patterns. If a pattern occurs
non-homogeneously distributed over time, the number of occurrences can be non-significant
although it would be significant in a specific time interval of the experiment. If, however, a
pattern occurs homogeneously distributed, but the spike rate of the neurons is changing in
time, a pattern may be significant in one time interval of the experiment, but not in another.
In addition, the observation of changes in pattern constellation in a time resolved manner
may provide information about the nature of neuronal processing.

An independent motivation to return to a time resolved measure are technical consider-
ations on the computation of reliable expectations (see Grün, Diesmann, & Aertsen, 2002b
and the references cited therein). By restricting the analysis to purely spatial patterns, so
called “unitary events” (UEs), Grün (1996) was able to define a measure, the joint-surprise,
that indicates the presence of an unexpected spike constellation in short windows in the
order of 100 ms. In contrast to Prut (1995), the method is designed for a large number of
parallel processes, and can analyze the data for all possible patterns simultaneously. Sliding
the analysis window over the data, conspicuous spike patterns can be marked at the point of
their occurrence in time. The result is a visualization of the correlation structure of the data
as a function of time. The appearance and disappearance of spike patterns can be compared
with the stages of the experimental protocol. The time course of pattern occurrence can also
be compared to the time course of other time varying features of the data, such as the spike
rate.

Analyzing data from monkey primary motor cortex, we found (Riehle, Grün, Diesmann,
& Aertsen, 1997) that unitary events appear at points in time where the animal could expect
a stimulus to occur, without the stimulus actually being presented. Here, typically no change
in spike rate was observed. By contrast, when unitary events occurred in relation to external
events such as a stimulus or a behavioral event, they were typically accompanied by changes
in spike rate. The composition of the unitary events was different for different movement
directions. No strict locking of unitary events to stimuli, expected events, or behavioral
events was observed. However, typically unitary events appeared clustered in time. Analysis
of data from frontal cortex (Grün, 1996; Grün, Diesmann, & Aertsen, 2002b) showed that
the appearance and composition of unitary events is task dependent. A particular neuron
generated a unitary event with one neuron in a first task, and formed a unitary event
with another neuron in a second task. It was also observed that during the course of an
experiment, neurons formed unitary events with different partners.

However, in the light of the methodological difficulties (see e.g. Brody, 1999b; Brody,
1999a; Grün et al., 1999; Roy, Steinmetz, & Niebur, 2000; Pauluis & Baker, 2000; Baker &
Gerstein, 2000; Baker & Gerstein, 2001; Grün, Riehle, & Diesmann, 2001; Gütig, Aertsen,



8 Introduction

& Rotter, 2002), the search for cooperative phenomena in multiple single unit recordings
and the development of appropriate analysis tools remains a challenging field of research. In
the next section we will discuss how spike synchronization and the occurrence of temporally
extended spike patterns may be explained in a consistent framework.

1.4 The Synfire Model

Classically (Sherrington, 1906; Eccles, 1957), the mode of operation of a neuron is described
as that of an integrator. This is also suggested by our description of the basic dynamics of a
neuron in Sec. 1.1: synaptic inputs are integrated until a threshold is reached and a spike is
emitted. However, in his 1982a monograph Abeles demonstrated that under the conditions
prevailing in the cortex, neuronal dynamics allows for a different interpretation. The effect
of the activation of a single excitatory synapse on the post-synaptic neuron is small in the
sense that the probability of spike generation in response to that input is low. However,
the effect of a single synapse is not so small if the amplitude of the post-synaptic potential
is considered. The superposition of a few tens of post-synaptic potentials is sufficient to
elevate the membrane potential from its mean to spike threshold. Let us assume that the
response probability to a single input is 0.001, and that 50 spikes are needed to reach spike
threshold, both representing realistic numbers. In this case, 500 asynchronous input spikes
are required to expect 0.5 output spikes, whereas 50 spikes are sufficient in the synchronous
case. According to this consideration, synchronous input is about 10 times more effective
than asynchronous input. Thus, Abeles (1982a) concluded that the cortical neuron can act
as a coincidence detector. In a quantitative analysis (Abeles, 1982b; Abeles, 1991) it could
be shown that in the parameter regime of interest, synchronous activity is more effective in
adding spikes to the post-synaptic spike train than the corresponding asynchronous activity
(see Murthy & Fetz, 1993; Bernander, Koch, & Usher, 1994; Murthy & Fetz, 1994 for the
limiting case where more spikes are synchronized than required to elicit an output spike,
“overcrowding” reduces the output spike rate).

The delay between a pre-synaptic spike and a post-synaptic response spike is in the order
of a few ms. Abeles (1982a) pointed out that if the occurrence of a spike pattern spanning
hundreds of ms should be explainable by a flow of activity from a neuron early in the pattern
to a later one, many synaptic stages would have to be involved. However, because of the weak
coupling mediated by a single synapse, a chain of hundreds of neurons connected by single
synapses cannot explain the strong coupling expressed in the spike patterns. As we have seen
above, an effective way to cause a neuron to generate a response spike is to supply it with a
large enough number of synchronous input spikes. Such input can be provided by a group of
neurons projecting to the target neuron (Fig. 1.2A). Thus, the occurrence of synchronous
spikes in neuronal data could be regarded as an indication that, consecutively, other neurons
in the system might be reliably activated. If two neurons receive the same input, they will
tend to generate spikes at the same points in time. Hence, synchronous activity can be the
result of common input (Fig. 1.2B). In this view the occurrence of synchronous spikes in
neuronal data is explained by the presence of common input.

The combination of the two principles: (1) convergent input from a group of source
neurons (Fig. 1.2A), and (2) common input to a group of target neurons (Fig. 1.2B) leads to
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A B C

Figure 1.2 Propagation of synchronous spiking in locally feed-forward arrangements of cortical neurons. A
Effect of tight spike correlation by convergence onto a target neuron. B Generation of tight spike correlation
among target neurons by shared input activity. Two simultaneously recorded neurons are indicated by high-
lighting. C Combination of arrangements A and B leads to a volley of coincident spikes which, by repeating
the arrangement, is propagated from one group of neurons to the next: a “synfire chain”. Depending on
neuron and network properties and on the initial spike volley configuration, such propagation can either be
maintained in stable fashion or become instable (cf. Fig. 1.3).

a local network structure in which synchronous activity in one neuron group is the generator
of synchronous activity in another neuron group (Fig. 1.2C). This structure is called a
divergent/convergent link. Connectivity is divergent from the point of view of a source
neuron and convergent from the point of view of a target neuron. Now, the target group
reproduces the synchronous activity of the source group. Hence, the target group can act as
the source to yet another neuron group. By repeating this arrangement, long chains of groups
of neurons can be formed. In the simplest case, each neuron establishes exactly one synapse
with each neuron of the preceding group. At each stage, synchronous activity occurring in
the preceding group is reproduced. Thus, if the neurons in the first group spike in synchrony
a volley of spikes travels through the network activating one neuron group after the other.
The use of groups of neurons instead of individual ones overcomes the weak synaptic coupling
between individual neurons. This feed-forward arrangement of groups of excitatory neurons
allowing the propagation of volleys of synchronous spikes is called “synfire chain” (Abeles,
1982a).

The occurrence of spatio-temporal spike patterns can now be explained by assigning the
neurons contributing to a pattern appropriate locations in a synfire chain. A spatial pattern
is generated by neurons that are members of the same neuron group. A temporal pattern
with long time intervals between the spikes times is generated by neurons located in distant
neuron groups. The number of intermediate neuron groups is proportional to the temporal
delay between the spikes. In the experimental data, spatio-temporal spike patterns are
embedded in spiking activity which seems to be uncorrelated to the process generating the
pattern. Therefore, it is an essential property of the synfire chain that on each activation the
participating neurons are contributing only a single spike. Between activations of a specific
chain, a neuron can take part in many other processes. The participation of a neuron in
several different patterns is explained by the membership of the neuron in several, partly
overlapping chains.

It should be pointed out that we are here facing a cooperative effect. Membership of a
neuron in a synfire chain cannot be deduced by observation of the spike train of the single
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neuron. If activation of the chain is not strictly locked to an event under the control of the
experimenter, the single spike contributed by the activation of the chain is indistinguishable
from other spiking activity. The occurrence of a spike in experimental data not contributing
to any pattern does not mean that the spike is not generated by synfire activtity. It may
just mean that we have missed to record from the appropriate partner neurons. We have
seen above that the number of neurons we can record from is small compared to the total
number of neurons in the local volume. Since every neuron may participate in many different
processes, and since there is a large number of potential partner neurons available, it is
unlikely that our sample of neurons is sufficient to resolve all the neuronal processes. An
extreme view would require all spiking activity to be generated by synfire activity (see
Chap. 10).

The concept of a synfire chain does not require intra-chain synapses to be stronger than
other synapses in the network. Assume that we are recording from two neurons from two
successive neuron groups. If the pre-synaptic neuron is individually stimulated in some way
(e.g. current injection), the cross-correlation between the two shows only a weak coupling
between the neurons. If the source neuron group is activated, the coupling will suddenly
appear to be strong. Whether activation of the synfire chain is noticeable in the cross-
correlation depends on the number of these activations compared to the uncorrelated spikes
of the neurons. If the synfire chain is repeatedly active (in time or across trials) in one phase
of the experiment and not in a different phase, the cross-correlation would exhibit dynamical
changes.

Analysis of the spatio-temporal spike patterns occurring in experimental data revealed
(Abeles, Bergman, Margalit, & Vaadia, 1993; Prut et al., 1998) that often an individual neu-
ron is contributing several spikes to the pattern. The synfire model explains this phenomenon
by the participation of a neuron in several successive neuron groups (Abeles, 1982a). The
sparse reoccurrence of neurons in later groups does not perturb the propagation of syn-
chronous activity along the chain. The type of activity exhibited by a network structure
which is locally feed-forward, supporting the propagation of synchronous activity from one
neuron group to the next, but on a more global scale has recurrent structure, is termed
“synfire reverberation” (Abeles, Bergman, Margalit, & Vaadia, 1993). Under certain condi-
tions, activity may re-excite itself while still supporting precise spike patterns. Properties
of synfire reverberations and implications are studied using network simulations in (Abeles
et al., 1993b; Abeles, Prut, Bergman, & Vaadia, 1994).

The discussion in the previous paragraph made clear that the graphical representation
of a synfire chain (Fig. 1.2C) should not be understood as a visualization of the anatomical
arrangement of the neurons in the cortex. The feed-forward arrangement of neuron groups
from left to right solely symbolizes the order in which the neurons are activated. According
to this graph-like model, the location of the neurons in the cortex is arbitrary. The graph
like-model of a synfire chain describes a distributed system (Rummelhart, McClelland, &
the PDP Research Group, 1986), not restricted by cortical space (see Hehl et al., 2001 for
a discussion of spatial constraints). We would like to speak of neuron groups rather than
“layers”, to avoid confusion with the anatomical layers of the cortex and the distinct mean-
ing of a layer in artifical neural networks (e.g. Haykin, 1998). Abeles also uses the terms
“nodes” (Abeles, 1991) and “pools” (Abeles et al., 1993b). In the foregoing we assumed that
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the chain is fully connected in the sense that each neuron in the source group projects to
each neuron in the target group. Griffith (1963) discussed such structures in the context of
stability of network activity and termed a fully connected chain a “complete transmission
line”. He noticed that a chain-like structure should allow for the reliable transport of exci-
tation through a network without excitation of the whole system. The preferential mode of
activity being synchronous volleys of spikes (see also Beurle (1956) for an early study on the
propagation of activity in excitatory networks).

Anatomical considerations suggest that, at least locally in a 1mm3 volume, the cortical
network has the properties of a random graph (Braitenberg & Schüz, 1998; Hellwig, 2000).
The probability of two nearby neurons having (direct) synaptic contact is about 0.3. As-
suming that network connectivity is random was also successful in uncovering fundamental
properties of the dynamics of large spiking neural networks at low spontaneous firing rates
(van Vreeswijk & Sompolinsky, 1996; van Vreeswijk & Sompolinsky, 1998; Amit & Brunel,
1997; Brunel & Hakim, 1999; Brunel, 2000). It is therefore a natural question to ask whether
the cortex would allow for the existence of synfire structures. The answer is twofold. Com-
plete (i.e. fully connected) chains are very unlikely to exist. However, incomplete or diluted
chains in which only a fraction (about 1/3) of the possible connections is realized are likely
to exist (Abeles, 1991; Hehl et al., 2001). The dynamics of an incomplete chain can be
expected to be comparable to that of a complete chain if the number of neurons per group
is scaled up to keep the number of inputs to individual neurons constant (Hehl, Aertsen, &
Diesmann, 2001a). Therefore, we can concentrate on complete chains when analyzing the
fundamental dynamical properties of such feed-forward type structures.

Evidence from Single Neuron Dynamics

The argument of Abeles (1982a) that synchronous input is more effective than asynchronous
input is based on assuming deterministic dynamics of the single neuron. Also the assumed
property in the synfire model that neurons receiving the same input will synchronously gen-
erate spikes is based on deterministic single neuron dynamics. In both cases, the stochastic
element is introduced by the large fluctuations of the membrane potential caused by the
excitatory and inhibitory activity coming in from the many thousands pre-synaptic neurons
in the remainder of the network. In a locally feed-forward architecture these fluctuations
would be overcome by the large current transients caused by synchronously arriving spikes.
An incoming volley of synchronous spikes drives the membrane potential to spike thresh-
old, making the spike generation and the timing of the response spike quasi-independent of
the ongoing fluctuations. In this view, synchronous activity is at the same time the result
(Fig. 1.2B) and the generator (Fig. 1.2A) of sharp transients in membrane potential.

Thus, independent evidence for the idea that synchronous activity is a natural mode of
operation of the cortex can be provided by appropriate single neuron studies. A demonstra-
tion that the cortical neuron has the required dynamical properties evidently cannot show
that synfire chains exist and are used by the brain. However, it delivers strong support for
the claim that synfire activity constitutes a possible mode of activity. In contrast to the
search for spatio-temporal firing patterns in multiple single neuron recordings, dynamical
properties of single neurons can be investigated without the need for advanced statistical
tools and data processing (however, see early reports e.g. Calvin & Stevens, 1968; Bryant &
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Segundo, 1976 for the efforts required in those days), and the corresponding difficulties in
interpretation.

An early study on the sources of variability in spike timing was performed by Calvin and
Stevens (1968). These researchers performed a study on spinal motoneurons in the either de-
cerebrated or anesthetized cat. By comparing intracellular recordings under the injection of
a constant (DC) current with simulations of a neuron model with deterministic spike genera-
tion, they concluded that the major source of variability in spike timing comes from synaptic
activity. A later in vitro study (Bryant & Segundo, 1976) in aplysia neurons investigated
the neuronal response to Gaussian white noise current (in the absence of synaptic activity).
It could be shown that the neurons emit a highly reproducible spike train in response to
repetitions of the same piece of noise current realization (“frozen noise”). Preferentially,
the neurons responded to transients in the input current. A simple model with a deter-
ministic threshold was sufficient to explain most of the results. The main effect is carried
by the amplitude of the current, however, also slope and acceleration contributed. Mainen
and Sejnowski (1995) reconsidered the older studies and could clarify some of the confusion
on the precision of spike timing in intracellular studies (see also Nowak, Sanchez-Vives, &
McCormick, 1997). In an in vitro preparation of rat neocortical slice, the spiking activity
was recorded in response to DC current and to filtered Gaussian white noise. In the DC
protocol, spikes were initially locked to the onset of the current, however, locking was lost
for later spikes, and spike timing became unpredictable on repetitions of the experiment. If,
however, a frozen noise current was injected into the same neuron, the results of Bryant and
Segundo (1976) were reproduced. Now the spike trains were almost identical on repetition
of the stimulus.

We can conclude that cortical neurons exhibit a low intrinsic noise level in spike genera-
tion. Under static, supra-threshold input conditions, this jitter builds up from spike to spike
leading to unpredictable spike timing (see Rotter, 1994 and the many references therein
for a description of variability in the absence of synaptic input). Under the influence of
strongly fluctuating input, spikes are generated by excursions of the membrane potential.
Spikes in repetitive trials are synchronized up to some residual jitter, spike timing becomes
independent of the time of the last spike. We can think of the first situation (DC current
injection) as having a set of imperfect identical clocks, which progressively show different
readings after an initial synchronization. In the second case (frozen noise current injection),
the set of clocks is enslaved by an external (aperiodic) reference signal, basically rendering
clock ticks independent of the internal dynamics.

Let us now introduce the typical form of activity occurring in a synfire chain. Fig. 1.3
shows four examples of activity occurring in the same network for four different initial con-
ditions. Details of the model are given in Chap. 2. Here, we concentrate on the qualitative
results. At least for a specific setting of model parameters, the synfire chain indeed supports
stable propagation of synchronous activity (Fig. 1.3A). However, synchronous activity is
only evoked by certain initial conditions. In the absence of temporal spread, only a small
number spikes is needed (Fig. 1.3A). By contrast, at considerable temporal spread only a
large number of spikes is sufficient (Fig. 1.3B). The network structure has a stabilizing effect
on synchronous activity with respect to two different qualities. In Fig. 1.3B, the synchro-
nization reached in the final group is better than the initial synchronization. In Fig. 1.3A,
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Figure 1.3 Four qualitatively different developments of spiking activity in a complete synfire chain. Panels
A to D show spiking activity in the same network for different initial conditions. The synfire chain consists
of 10 consecutive groups with 100 neurons per group. In addition to the input from the preceding group, each
neuron independently receives excitatory and inhibitory input from a large number of synapses, modeling
the membrane potential fluctuations observed in vivo. All synapses have the same strength. Dots in boxes 1
to 10 represent individual spike times of all neurons. Labeling corresponds to group number. In each box one
vertical position is reserved for every neuron of the group (100 positions). Time (t) is advancing along the
horizontal axis. The first group (1) is stimulated by a packet of spikes drawn from a Gaussian distribution.
Time zero is the center of this spike time distribution. A synaptic delay of 1 ms is assumed for all synapses
(incl. the synapses mediating the stimulus). The spike times of the stimulus are shown in box 0. In panels
A and C, stimulus spikes are fully synchronized. Spikes occupy the top vertical positions to visualize the
relative activation of the virtual group. A 51 perfectly synchronized spikes elicit a packet of spikes traveling
through the network. While gaining spikes, activity initially spreads out in time, however synchronizes again
in later groups. B With 100 dispersed (σ = 4.8 ms) stimulus spikes, activity is able to synchronize under
an intermediate loss in the number of spikes in the packet. C Lower number of spikes than in A (47). The
packet maintains activity for a few stages and spreads out in time. At later stages, further spreading is
combined with a loss in spike number. Synchronous activity vanishes before the end of the chain is reached.
D Larger temporal spread than in B (σ = 5.8 ms). The packet synchronizes, however, under a steady loss in
spike number. Eventually, synchronous activity ceases to exist. The neurons are spontaneously active (dots
occurring before the arrival of the packet) because of membrane potential fluctuations. Spontaneous activity
appears to be reduced after the packet has passed because the neurons are synchronously refractory.
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the final number of spikes is larger than the number of spikes in the stimulus. Historically,
the non-monotonic development in the two qualities was discovered only after it had been
observed in an iterative mapping (Diesmann, Gewaltig, & Aertsen, 1999) which we intro-
duce in Chap. 4. Fig. 1.3C and Fig. 1.3D represent cases in which synchronous activity
cannot be sustained. Note that the speed at which the spike volley propagates through the
network (measured in number of successively activated groups per unit time) increases with
the synchronization of the spikes in the volley.

1.5 Focus of the Study

The network simulations presented in the previous section illustrate the occurrence of syn-
chronous spiking activity in a feed-forward network, depending on initial conditions. Thus,
the “synfire chain” model of Abeles is in principle able to generate volleys of synchronous
spiking, and therefore can be the origin of spatio-temporal spike patterns. Whether this
is a suitable mode of operation for the cortex depends on the compatibility of the model
assumptions with the conditions in the cortex. The central topic of the present work are the
synchronization dynamics and the conditions under which stable synchronous spiking can
occur. In order to gain insight into the system’s dynamics and the parameter dependence
we have to answer the following questions:

• In which sense does a propagating volley of synchronous spikes represent a stable state
(attractor) of the system?

• How can we demonstrate robustness of this state and what are conditions for its exis-
tence?

• How does the temporal spread depend on single neuron and network parameters?

• Is the temporal spread predicted by the model consistent with that found in experi-
mentally observed spike patterns?

1.6 Outline of the Investigation

The investigation is organized in 10 chapters. The introduction is followed by 3 chapters
providing the tools to study the synchronization dynamics. The next 5 chapters exploit
these tools to answer the questions stated above. The last chapter discusses the results.

Neuron and Network

The next chapter (Chap. 2) introduces the network and neuron model used throughout the
study. The parameters determining subthreshold dynamics of the membrane potential and
synaptic events are introduced. On the basis of the neuron model, the properties of cortical
neurons are described.
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Transmission Function

The following chapter (Chap. 3) introduces a pair of variables to describe a volley of syn-
chronous spikes. A new transmission function, is defined which characterizes a neuron’s
response to such input packets. Here, we discuss a specific neuron model, however, the
definition of the transmission function is model independent.

State Space

The transmission function allows for the construction of a two-dimensional iterative mapping,
describing the propagation of a packet of spikes from one neuron group to the next (Chap. 4).
With the above tools at hand and using the methods of non-linear dynamics, we demonstrate
that an attractor for synchronous activity can exist. The attractor is surrounded by a basin
providing robustness against perturbations. The number of neurons per group is shown to
constitute a bifurcation parameter of the system.

Background Activity

The language developed in the preceding chapters will now be used to discuss the role of
several physiologically relevant parameters. In Chap. 5 the effect of membrane potential
fluctuations on the synchronization dynamics is investigated. Large membrane potential
fluctuations consistent with in vivo conditions can be tolerated, and can even be helpful.
However, at a certain amount of fluctuations a bifurcation occurs and the attractor is de-
stroyed.

Vanishing Noise

The case of vanishing membrane potential fluctuations (Chap. 6) allows us to investigate the
origin of the most prominent structure in state space: the border (separatrix) between the
basin of attraction for the synchronous state and the regime in which initial activity ceases.
The separatrix is largely determined by the shape of the post-synaptic potential. Analysis
of the transition to finite membrane potential fluctuations shows that fluctuations can in-
crease the basin of attraction and, thus, exhibit a constructive effect on the synchronization
dynamics.

Rise Time of the Potential

The next chapter (Chap. 7) discusses the rise time of the post-synaptic potential as a
parameter of the dynamics. Rise time is strongly influencing the temporal spread in the
attractor. Depending on the normalization of the post-synaptic potential, different effects
on the basin of attraction are observed. Under amplitude normalization, the basin increases
with increasing rise time. Area normalization leads to a bifurcation in which the attractor
is destroyed.
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Variability

The reduction of network activity to two variables was possible by considering only the
dynamics of the mean. To obtain an estimate of the variability in single realizations of
network activity, we introduce in the next chapter (Chap. 8) the survival probability of
synchronous activity. It turns out that the system behaves quasi-deterministically. The
survival probability exhibits a sharp transition from 0 to 1 at the border of the basin of
attraction. However, the slope of the transition depends on the number of neurons per
group. For the dynamics of the mean, a scaling law predicts that narrow groups exhibit
the same dynamics as broader groups, provided that the amplitudes of the post-synaptic
potentials are adjusted such that the product of group size and PSP amplitudes remains
constant. In such narrow groups with rescaled PSP amplitudes, the dynamics becomes less
deterministic. However, down to a group size of some ten neurons, the attractor is still
surrounded by a neighborhood in which the survival probability is practically unity.

Origin of the Transmission Function

The definition of the transmission function is independent of the neuron model. This al-
lows us to compute the transmission function for a realistic neuron model and to study
the dependence of synchronization dynamics on physiologically relevant parameters without
further approximations. However, up to this point it is unclear how critically the transmis-
sion function used in the present work depends on our particular choice of neuron model.
Some intuition on how the transmission function originates from the properties of the neuron
model is required to judge its robustness against model structure. We therefore conclude our
investigation (Chap. 9) with a simplified model for the origin of the transmission function,
still containing all parameters. The relationship with models based on an instantaneous
spike intensity is discussed.

Discussion

In the final chapter (Chap. 10) we summarize the results and critically review the model
assumptions. Two types of experiments are proposed to verify the predictions of the present
work and to exploit the relationship between the parameters of the subthreshold dynamics
and the synchronous spiking for consistency checks. The chapter closes with a discussion of
open questions and directions for further research.



Chapter 2

Neuron and Network Model

The preceding chapter introduced the basic abstractions used in the description of the struc-
ture of the cortical network and the interaction of its elements. In the present chapter we
motivate and specify the model of single neuron dynamics we will use. The neuron model is a
variant of the leaky integrate-and-fire model, a standard model in the study of the dynamics
of neuronal networks. As an extension, a finite rise-time of the post-synaptic potential is
included. Later chapters demonstrate that this rise-time is an important constraining pa-
rameter of spike synchronization. Comparison of the statistical properties of the membrane
potential in the in vitro and in vivo preparation shows that the feed-forward structures
subject to the present study cannot be studied in isolation. The structures need to be inves-
tigated in their embedding in a large network in order to obtain realistic results. A simple
and self-consistent model of “background activity” providing such embedding is introduced.

2.1 Membrane Equation

The time course of the membrane potential of a cortical neuron looks very different in
the in vitro and in vivo preparations. In the in vitro preparation, recordings are obtained
from a thin brain slice (for details see e.g. McCormick, Connors, Lighthall, & Prince, 1985;
Sherman-Gold, 1993; Nicholls, Martin, Wallace, & Fuchs, 2001) which can be sustained in
a dish for several hours. In the in vivo preparation, recordings are obtained from the intact
brain (for details see e.g. Douglas & Martin, 1991b; Bringuier, Chavane, Glaeser, & Frégnac,
1999; Azouz & Gray, 1999; Lampl, Reichova, & Ferster, 1999; Nicholls, Martin, Wallace, &
Fuchs, 2001). Fig. 2.1 contrasts the typical time courses of the membrane potential in the
two preparations (taken here from simulations). In the in vitro preparation the membrane
potential fluctuates around a resting potential V0. Fluctuations are small compared to the
distance from resting level to spike threshold θ. These fluctuations are caused by thermal
noise, spontaneous ion channel openings, and few synaptic events (e.g. Katz, 1966; Johnston
& Wu, 1995). In the in vivo situation, however, the mean of the membrane potential is
elevated by some value η. Fluctuations around this mean are large compared to the distance
from η to spike threshold. The variability is attributed to the ongoing synaptic bombardment
of the cell with excitatory and inhibitory synaptic events (e.g. Calvin & Stevens, 1968;
Holt, Softky, Koch, & Douglas, 1996). It is assumed that the cell is silent in the in vitro
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Figure 2.1 Sketches of typical membrane potential time courses in vitro (A) and in vivo (B) in the absence
of specific stimuli. A Membrane potential V (ordinate) as a function of time (abscissa). V exhibits small
fluctuations around a resting level V0 (here, −70 mV). The dashed horizontal line indicates the potential
V0 + θ (here, θ = 15mV) at which an action potential could be elicited. Typically, in this situation action
potentials do not occur. B Same display as in A. The mean V0 + ηV of the membrane potential is elevated
from resting level (here, ηV = 7.95 mV). Fluctuations (here, σV = 2.85 mV) fill the space from V0 (long
dashed line) to spike threshold (short dashed). Action potentials (spikes) are generated at a low rate (here,
2 Hz), occurrence of a spike at t = 300ms (arbitrary origin of t) indicated by vertical line above short dashed
line). Panels show simulated data.

preparation because neurons in the slice have lost most of their connections and, thus, the
residual network cannot sustain spontaneous activity.

The leaky integrate-and-fire model can be motivated by an experiment performed on the
in vitro preparation. Fig. 2.2A shows membrane potential traces as they would typically be
recorded in an electrophysiological experiment during short epochs of DC current injection.
A positive current depolarizes the membrane and, provided the membrane potential remains
subthreshold, a new stationary voltage is approached. A negative current hyperpolarizes the
membrane, again up to a new stationary value. In both cases the membrane potential starts
to decay to resting level as soon as the external current is switched off. This subthreshold
behavior of the cell can well be described by an RC circuit or “leaky integrator”: a capac-
itance with a parallel (leak) resistance (Fig. 2.2B). The resting potential V0 observed with
no external current applied is generated by ion-pumps, maintaining constant concentration
gradients (see e.g. Nicholls, Martin, Wallace, & Fuchs, 2001; Johnston & Wu, 1995). In the
model circuit, V0 can be expressed by a battery in series to the resistor. However, in a model
neuron where V0 merely represents a constant offset to the time course of the membrane
potential V (t), V0 is usually assumed to be zero. It is the relationship between membrane
potential V (t) and external current I(t) which is described by the leaky integrator equation

V̇ +
1

τm

V =
1

C
I. (2.1)

C is the membrane capacitance. Membrane time constant τm = RC depends on both
resistance R and capacitance C.

In the leaky integrate-and-fire model, the mechanisms which generate an action poten-
tial (AP) and the following after-hyperpolarization (AHP) are represented by a threshold
operation. Once the membrane potential reaches a certain threshold θ, the information that
the model just generated an action potential is made available to the observer and poten-
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Figure 2.2 Characterization of the isolated neuron. A Sketch of typical membrane potential (V ) traces of a
cortical neuron in the in vitro preparation subject to current injection. Fluctuations are assumed to be zero
(V0 and θ as in Fig. 2.1). Curves show voltage responses for four DC currents applied for 150ms starting
at t = 25 ms (from bottom to top I = −380, −200, 200, and 380 pA). Only for the largest current applied
the threshold is reached and a sequence of spikes is emitted (indicated by vertical lines above dashed line,
see Fig. 2.7A for I-dependence of spike rate). At threshold, V is reset and clamped to V0 for τr = 2 ms
(caricature of after-hyperpolarization (AHP), no adaptation in this model). B Equivalent circuit of the
biological membrane (leaky integrator model) describing the subthreshold dynamics. Membrane capacitance
C (250 pF) and resistance R (40 MΩ) define the membrane time constant τm = RC (10 ms). The resting
potential of the cell is represented by a battery (V0). I is a, potentially time dependent, current injected
into the cell. V measures the voltage across the membrane.

tially other neurons in the network. The membrane potential is instantaneously reset to
resting level. For a period of absolute refractoriness τr the neuron is short-circuited, and the
membrane potential is clamped to V0. After-hyperpolarization and relative refractoriness
are both expressed in the neuron model’s recovery from reset, governed by the membrane
time constant τm. The effect of this sequence of events on V (t) is visualized in the mem-
brane potential time course for the largest input current in Fig. 2.2A. Equation (2.1) for the
subthreshold dynamics combined with variants of the threshold operation described above
constitute the leaky integrate-and-fire model, or Lapicque model in the older literature (e.g.
Lapicque, 1907; Eccles, 1957; Stein, 1965; Knight, 1972; MacGregor, 1987; Tuckwell, 1988a;
Koch, 1999). A simulation scheme for networks of such units is described in Appendix A.
In the present study the term “I&F model” is used interchangeably with “leaky integrate-
and-fire model”, a perfect integrator is not considered. The phenomenology of Fig. 2.2A
is utilized to motivate the neuron model. No attempt is made to derive the model from
more detailed biophysical descriptions of the membrane potential and the (Hodgkin-Huxley
type) mechanisms of action potential generation (see Hodgkin & Huxley, 1952; Cronin, 1987;
Tuckwell, 1988a; Tuckwell, 1988b; Kandel, Schwartz, & Jessel, 1991; Johnston & Wu, 1995;
Koch, 1999).

Some studies use normalized variables where τm is unity and voltage is normalized by the
distance from resting potential 0 to spike threshold to demonstrate qualitative model proper-
ties. Central to the present work is the question whether stable propagation of synchronous
spiking is possible in a physiologically plausible range of parameter values. Therefore, we
refrain from general normalization of variables to facilitate comparison with physiological
data and interpretation of the model results at all stages of the argument.
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2.2 Post-Synaptic Potential

In the preceding section, we have constructed a model for the neuron’s response to a gen-
eral time dependent input current I(t). We now have to specify how a pre-synaptic spike
arriving at the synapse is converted into a post-synaptic potential (PSP). In the context
of I&F models, synaptic events are often modeled by a small (compared to the distance
from membrane potential mean to spike threshold) instantaneous increment in membrane
potential (e.g. Tuckwell, 1988a; Amit & Brunel, 1997; Brunel, 2000). The choice is jus-
tified by the fact that the time constant governing the rise time of the synaptic currents
typically is an order of magnitude smaller than the membrane time constant. Physiolog-
ically measured post-synaptic potentials have rise times from fractions of a millisecond to
several milliseconds, which is considerably smaller than the membrane time constant (e.g.
Fetz, Toyama, & Smith, 1991; Mason, Nicoll, & Stratford, 1991; Matsumura et al., 1996).
However, the spike synchronization to be studied occurs at the millisecond time scale, and
we will see later (Chap. 7) that the rise time of the PSP is indeed an important parameter
of the synchronization dynamics. Therefore, a more detailed model allowing for a finite rise
time of synaptic currents is needed. A function commonly used to describe the time course
of synaptic currents or conductance changes is the so called α-function (e.g. Jack, Noble, &
Tsien, 1983; Bernard et al., 1994)

ι(t) = ι̂ · e

τα

te−t/τα , t ≥ 0. (2.2)

Apart from the amplitude of the synaptic current ι̂, (2.2) introduces a new time constant τα,
the rise time of the post-synaptic current (PSC). (2.2) is a solution of a time-invariant
linear system of two differential equations. Thus, the total current coming in from an
arbitrarily large number of such synapses can be described by only two state variables.
Appendix A shows how the properties of the α-function can be exploited to incorporate this
model of synaptic currents into an accurate and efficient simulation scheme suitable for large
networks (Rotter & Diesmann, 1999; Diesmann, Gewaltig, Rotter, & Aertsen, 2001). The
post-synaptic potential generated when the leaky integrator equation (2.1) is subject to a
post-synaptic current (2.2) can be written in closed form

u(t) = ι̂ · 1

C

e

τα

(
e−t/τm − e−t/τα

(1/τα − 1/τm)2
− te−t/τα

1/τα − 1/τm

)
, t ≥ 0. (2.3)

Equation (2.3) is easily obtained by convolving (2.2) with the impulse response

1

C
e−t/τm , t ≥ 0

of (2.1). The detailed shape of (2.3) will become relevant in later chapters, but it is of
no importance for the purpose of the present chapter, where only certain integrals of u(t)
are exploited (the time course of the PSP is visualized in Fig. 6.2 on page 63). The fact
that the generator of (2.3) is a time-invariant linear system of differential equations has an
interesting consequence. At any given point in time, the value of the neuron’s membrane
potential is completely described by the linear superposition of the post-synaptic potentials



2.3 Membrane Potential Fluctuations 21

that occurred in the past. It should be pointed out that this property is neither a prerequisite
in the definition of the state space for synchronous activity (Chap. 3, Chap. 4), nor for its
numerical analysis (Chap. 4, Chap. 5, Chap. 7). However, linearity is exploited in many
aspects of the analytical work (e.g. Sec. 2.3 and Chap. 6). Limitations of the model of
synaptic effects presented above are discussed in Chap. 10.

2.3 Membrane Potential Fluctuations

Fluctuations of the membrane potential of a single neuron observed in vivo are caused by
the synaptic bombardment (see Sec. 2.1). We can now combine knowledge of the statistical
properties of the membrane potential fluctuations (Fig. 2.1) with our model of a single post-
synaptic potential (2.3) to relate the single neuron dynamics to network structure. Let us
assume that N neurons, independently spiking at rate λ, are projecting to the same post-
synaptic neuron, and that all input spikes generate an identical excitatory PSP. For sparsely
firing neurons in the cortex, it is a reasonable approximation to describe spike generation by
a Poisson process (e.g. Gerstein & Mandelbrot, 1964; Stein, 1972; Tuckwell, 1988b; Abeles,
1991; Softky & Koch, 1993; Shadlen & Newsome, 1998). Details of the individual processes
are, however, washed out in the superposition of a large number of independent processes
(Cox & Isham, 1980). Thus, we can replace the N independent processes by a single Poisson
process of rate Nλ. In this situation, the membrane potential fluctuations resulting from the
superposition of the individual PSPs elicited by the point events impinging on the neuron are
called shotnoise (Campbell, 1909; Rice, 1944; Goldstein, 1960; Papoulis, 1991). Campbell’s
theorem (e.g. Papoulis, 1991) states that mean ηV and standard deviation σV of the shotnoise
process are given by

ηV = NλF 1 (2.4)

σ2
V = NλF 2. (2.5)

The F k are form factors which depend on the amplitude and shape of the post-synaptic
potential

F k =

∫ ∞

−∞
uk(t)dt. (2.6)

F 1 describes the area under the post-synaptic potential, and F 2 is a measure of its peaked-
ness. For (2.3) we obtain

F 1 =
τm

C
· ι̂eτα (2.7)

F 2 =
τ 2
m

C2
· τα (τα + 2τm)

(τα + τm)2 · 1

4
ι̂ 2e2τα. (2.8)

Let us now check if this model of the background activity received by a cortical neuron
can explain the measured membrane potential. Fig. 2.3A shows the dependence of ηV and
σV on background rate λ for a realistic set of further parameters. Before σV reaches realistic
values above 1 mV, ηV has already entered the supra-threshold regime. Thus, a model of
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Figure 2.3 Membrane potential fluctuations generated by purely excitatory input spike trains. A Mean
ηV (neglecting the offset V0) and standard deviation σV of membrane potential as a function of input
spike rate λ. The total input to the neuron is composed of 10, 000 independent excitatory Poisson spike
trains of rate λ. The amplitude of an individual post-synaptic potential (PSP) is 0.14 mV with a rise-time
of 1.7 ms, further parameters as in Fig. 2.2). The location of spike threshold θ is indicated by the short
dashed line, and a realistic level of membrane potential fluctuations by the long dashed line (cf. Fig. 2.1B).
B Quadratic relationship of mean ηV (ordinate) and standard deviation σV (abscissa) of the membrane
potential fluctuations specified in A (λ eliminated). The two reference values indicated by dashed lines in
A are now located on separate axes.

background activity which assumes purely excitatory inputs is inconsistent with the large
fluctuations and at the same time low firing rate observed in vivo. The model neuron would
compensate the supra-threshold input current with a high firing rate, resulting in a regular
firing pattern. Consequently, the membrane potential distribution would strongly deviate
from a Gaussian distribution. (2.5) can be used to eliminate λN from (2.4)

ηV = σ2
V ·

F 1

F 2
(2.9)

demonstrating the quadratic dependence of ηV on σV . This relationship is visualized in
Fig. 2.3B. For realistic PSP shapes the ratio of PSP area F 1 and peakedness F 2 is much
larger than unity (here, F 1/F 2 ≈ 10 mV−1). We have to conclude that for realistic PSP
shapes, excitatory processes alone cannot explain the membrane potential statistics. How-
ever, this conclusion is based on the assumption, that the N processes are sufficiently in-
dependent. If the input to a neuron is considerably more structured, the argument does
not apply (e.g. Levitan, Segundo, Moore, & Perkel, 1968; Kuhn, Rotter, & Aertsen, 2002;
Tetzlaff, Buschermöhle, Geisel, & Diesmann, 2003).

It is known that about 80% of the synapses a neuron receives are excitatory and about
20% are inhibitory (Braitenberg & Schüz, 1991; Abeles, 1991). Up to now we have only
considered excitatory post-synaptic potentials (EPSPs), i.e. synaptic events that drive the
membrane potential into the direction of spike threshold. We define inhibitory post-synaptic
potentials (IPSPs) as synaptic events that drive the membrane potential away from thresh-
old. Following physiological in vivo data (Matsumura et al., 1996), it is assumed that IPSPs
have the same shape as EPSPs, with only the sign of the membrane potential excursion
reversed. Thus, (2.3) also holds for the IPSP, with ι̂− = −ι̂+.

It should be noted that in more detailed neuron models, the labels “excitatory” and
“inhibitory” specify the functional role of the synapse in the typical range of membrane
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Figure 2.4 Embedding of an individual neuron in the recurrent cortical model network. A The excitatory
(+) neuron under consideration (n), as any other neuron, receives N+ randomly selected inputs from a large
(� N+) population (contour enclosing symbol) of excitatory neurons and N− inputs from an inhibitory
population (single neuron spike rates λ+, λ−). The spike rate λ of n (straight arrow) should be consistent
with λ+. The curved arrows indicate the four possible combinations of pre- and post-synaptic neuron type.
In the model, the amplitude of the synaptic current (ι̂+, ι̂−) depends only the pre-synaptic neuron type. B
More detailed model of network structure as in A. Neurons receive about 50% of the excitatory inputs from
local sources. Nonlocal sources (curve) are not affected by the recurrent local dynamics.

potential values, not the sign of the membrane potential excursion. In that case, synaptic
currents ι(t) = g(t)(E − V ) are described by specific conductances g and reversal potentials
E, depending on the type of the synapse. In general, depending on the sign of the difference
between the membrane potential V of the cell and the reversal potential E, an inhibitory
synapse can either cause a negative or a positive current. The same is true for an excitatory
synapse. These considerations also show that the amplitude of the PSP depends on the
membrane potential. This effect is stronger for inhibitory synapses, because their reversal
potential is closer to the typical regime of the membrane potential (see Tuckwell, 1988b;
Johnston & Wu, 1995; Kandel, Schwartz, & Jessel, 1991; Nicholls, Martin, Wallace, &
Fuchs, 2001 for detailed discussions).

Fig. 2.4 sketches a network model where the neuron under consideration receives excita-
tory inputs from N+ neurons with individual firing rate λ+ and inhibitory inputs from N−
neurons with individual firing rate λ−. The contribution of the N+ excitatory inputs to the
membrane potential is again described by equations (2.4) and (2.5), with the total number
of inputs N replaced by N+. Also the joint effect of the inhibitory inputs can be described
by the same set of equations, with F 1

− = −F 1
+ but F 2

− = F 2
+. Therefore, we now have two

contributions to the mean and variance of the membrane potential. As a direct consequence
of the statistical properties of the sum of two independent random variables (e.g. Papoulis,
1991) we have

ηV = ηV + + ηV − (2.10)

σ2
V = σ2

V + + σ2
V −. (2.11)

Note that the two contributions to the mean of the membrane potential have opposite sign
and therefore can partly cancel each other. The variances, however, are both positive and,
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thus, add up to a larger total variance. We can rewrite equations (2.10) and (2.11) in matrix
form [

ηV

σ2
V

]
=

[
F 1N+ −F 1N−
F 2N+ F 2N−

]
·
[
λ+

λ−

]
. (2.12)

Form factors do not carry a label specifying the type of synapse, because absolute values are
identical. The sign of the matrix elements is made explicit. The matrix can be decomposed
into [

F 1N+ −F 1N−
F 2N+ F 2N−

]
=

[
F 1 0
0 F 2

]
·
[
1 −1
1 1

] [
N+ 0
0 N−

]
. (2.13)

A scaling matrix which weighs λ+ and λ− by the number of corresponding inputs is followed
by a π/4 rotation into the new coordinates with an additional isotropic scaling of

√
2. Finally,

another scaling matrix weighs the new coordinates by the appropriate form factors of u(t).
The three transformations are invertible and, hence, so is (2.12):[

λ+

λ−

]
=

[
1

2F 1N+

1
2F 2N+

− 1
2F 1N−

1
2F 2N−

]
·
[
ηV

σ2
V

]
. (2.14)

For any combination (ηV , σ2
V ), we can now find a combination of generating background

rates (λ+, λ−). This is in contrast to the situation in (2.4), (2.5). (2.14) is only limited by
the constraint that firing rates are bound to be non-negative. In the context of the present
study, we are particularly interested in the ability to control the fluctuations (σ2

V ) while
keeping the membrane potential mean (ηV ) at a constant distance from spike threshold.
The study of the dependence of spike synchronization on membrane potential fluctuations
presented in Chap. 5 exploits this scaling property. The lower row of (2.14) immediately
shows that fluctuations cannot be reduced to 0 for a given non-zero mean. λ− would need to
be negative in a situation where σ2

V vanishes and ηV has a finite positive value. The minimal
σ2

V , obtained for λ− = 0, is given by

0 = − 1

2F 1N−
ηV +

1

2F 2N−
σ2

V 0 (2.15)

σ2
V 0 =

F2

F1

· ηV . (2.16)

This is the result we already obtained in (2.9). At λ− = 0, only the excitatory shotnoise is
contributing to the fluctuations. The minimal fluctuations are obtained if only the excitatory
shotnoise is present. For a higher mean ηV , a larger σV 0 has to be tolerated. The minimal
rate λ+0 needed to sustain ηV is obtained from the upper row of (2.14) by insertion of the
minimal σV (2.16)

λ+0 =
1

F 1N+

ηV . (2.17)

The dependence of background firing rates on membrane potential fluctuations is illustrated
in Fig. 2.5. Smaller fluctuations can only be generated if an additional current from an
external source contributes to the mean (cf. Fig. 2.5B, see also van Vreeswijk & Sompolinsky,
1996; Amit & Brunel, 1997; van Vreeswijk & Sompolinsky, 1998).
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Figure 2.5 The combination of background spike rates generating membrane potential fluctuations σV at
a given membrane potential mean V0 + ηV . A Spike rates (ordinate) of the excitatory (λ+) and inhibitory
(λ−) background neurons as a function of the standard deviation σV (abscissa) of the membrane potential.
Quadratic scaling is used on the abscissa (the linear measure on this axis is the variance σ2

V ). The elevation
from the resting potential V0 caused by the background rates is held constant at ηV = 7.95 mV (N+ = 17600
(88%) of all synapses, N− = 2400 (12%), PSPs as in Fig. 2.3 with reversed sign for inhibitory synapses). The
dashed horizontal line indicates the minimal allowed input spike rate (0 Hz). The inset shows an enlargement
of the region (identical units) where λ+ and λ− approach the origin. The requirement of non-negative spike
rates defines the minimal standard deviation σV 0 (dashed vertical line) of the membrane potential. At this
value λ− is zero and λ+ has a finite value λ+0. B Same curves as in A for ηV = 0mV. Membrane potential
fluctuations vanish at vanishing background spike rates λ+ = λ− = 0Hz.

2.4 Spontaneous Spiking Activity

The most important use of (2.12) is that it relates network activity to the membrane po-
tential statistics of an individual neuron. Thereby, (2.12) provides the bridge connecting the
model of spike generation obtained from in vitro studies to a model for the neuron’s embed-
ding in a large neural network under in vivo conditions. Now, two levels of description of
neuronal dynamics can be checked for consistency: (1) the statistics of membrane potential
fluctuations and (2) the statistics of the generated spike trains.

Let us find a self-consistent solution, where the spike rate of the neuron equals the low
spike rate assumed for the excitatory neurons in the remainder of the network:

λ+ = λ(λ+, λ−), (2.18)

where λ denotes the (output) spike rate of our model neuron. It turns out that (2.18)
can easily be fulfilled by adjusting the inhibitory background rate λ− using simulations.
Approximative analytical expression for (2.18) are available (e.g. Amit & Brunel, 1997;
Ricciardi, Di Crescenzo, Giorno, & Nobile, 1999; Tetzlaff, Geisel, & Diesmann, 2002). The
following table summarizes model parameters and the resulting membrane potential statistics
at the self-consistent rates

N+ 17600 (88%) λ = λ+ 2.0 Hz ηV 7.95 mV
N− 2400 (12%) λ− 12.61 Hz σV 2.85 mV

for a particular choice of N+ and N− (further parameters specified in Fig. 2.6). Note that
the inhibitory spike rate is higher than the excitatory firing rate, compensating for the
lower number of inhibitory inputs. The assumed excitatory spike rate is well within the
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Figure 2.6 Membrane potential distribution and spike interval distribution. A Distribution ρV of membrane
potential values V in the presence of background activity (black curve, simulation time 100 s, step size 0.1 ms,
bin size 0.05 mV). V does not exceed V0+θ (position indicated by dashed vertical line, cf. Fig. 2.1 ). Clamping
of V at resting potential V0 = −70 mV for the absolute refractory period τr = 2ms following the generation
of a spike causes the peak at V0 (spike rate 2 Hz). The gray curve represents ρV not perturbed by spike
generation. The Gaussian is parameterized by mean ηV = 7.95 mV (shifted by V0) and standard deviation
σV = 2.85 mV of the fluctuations caused by background activity: λ+ = 2Hz, λ− = 12.61 Hz (cf. Fig. 2.5,
corresponding to voltage trace Fig. 2.1B). B Inter-spike interval (ISI) distribution (black curve) of the
situation described in A. The lack of short intervals t is explained by the absolute and relative refractory
period (noisy appearance due to the limited simulation time of 10, 000 s, bin size 5ms). For comparison, the
gray curve shows the exponential ρISI of a Poisson process with parameter λ = 2Hz.

physiological in vivo regime (e.g. Burns & Webb, 1976; Abeles, Vaadia, & Bergman, 1990).
The fact that the spike rate of inhibitory neurons is higher than the spike rate of excitatory
neurons is consistent with the literature (e.g. Connors & Gutnick, 1990). Alternatively,
we can enforce λ+ = λ− and achieve self-consistency by adjusting the amplitude of the
inhibitory post-synaptic potentials (F k

− 6= F k
+ Amit & Brunel, 1997). Also, for this type of

scaling, support can be found in the experimental literature. However, the main result of
the discussion above is that the membrane potential statistics, resulting from the adjusted
spike rates, appears to be consistent with the experimental in vivo literature (e.g. Douglas &
Martin, 1991b), as are the rates. The distribution of membrane potential values is close to
a Gaussian (Fig. 2.6A). In addition, the interval distribution (inter-spike interval (ISI), see
Perkel, Gerstein, & Moore, 1967a; Tuckwell, 1988b; Koch, 1999) of the spike trains generated
by the model neuron approximates the interval distribution of a Poisson process, the type
of process assumed for neurons providing input to the model neuron (Fig. 2.6B).

Recently, van Vreeswijk and Sompolinsky (1996) and also Amit and Brunel (1997) inves-
tigated the stability of random networks of excitatory and inhibitory model neurons at low
spike rates. For the present purpose, the central finding in both studies is that with only few
and plausible additional assumptions about network structure, a state of independent irreg-
ular spiking at low rates is not only consistent with the parameters, but is also stable. At the
same time the quiescent state can be made unstable. This finding constitutes a significant
achievement because earlier network models required some form of global inhibition which is
probably physiologically not realistic. van Vreeswijk and Sompolinsky (1996) used a binary
(formal) neuron model, whereas Amit and Brunel (1997) used a neuron model very similar
to the model used in the present study. Both studies assume that neurons receive a large
number of inputs, which is however small compared to the total number of neurons in the
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network. Only part of the excitatory input to a neuron is assumed to come from the local
recurrent network (Fig. 2.4B, Braitenberg & Schüz, 1998; Abeles, 1991). The large fluctua-
tions are generated in the local network, the non-local input can be assumed non-fluctuating.
In the steady state, the mean of the excitatory input and the mean of the inhibitory input
closely balance each other. Stable irregular spiking at low rates is achieved within a deter-
ministic neuron model and without the need for “artificial” sources of noise. Simple and
plausible relationships between the strength of excitatory and inhibitory synapses guarantee
that the activity in the network is stable at low spike rates. The relative adjustment of
time constants of the excitatory and inhibitory neurons is not necessary (see van Vreeswijk
& Sompolinsky, 1998; Brunel & Hakim, 1999; Brunel, 2000 for a detailed analysis of these
systems).

However, in the present study we are not concerned with the stability of firing rate in
recurrent random networks itself. The question under study is whether synchronous activity
in feed-forward structures can be sustained under the conditions of an embedding in a large
random network (the in vivo situation). A possible interaction from synchronous activity
in the feed-forward structure back onto the asynchronous network activity is neglected here.
In this view, the random network provides the “background activity”, against which the
dynamics of synchronous activity is studied. The next two chapters (Chap. 3, Chap. 4)
describe this approach in detail. The material presented in this section insures us that
we can construct a simple and consistent model of background activity. The presence of
background activity explains the large fluctuations of the membrane potential. The model
allows us to control the amount of membrane potential fluctuations, which turn out to be
an important parameter of the synchronization dynamics (Chap. 5). Clearly, the distinction
between irregular background activity and synchronous activity in feed-forward sub-networks
is an artificial one, motivated mainly by theoretical tractability. We return to approaches
pursuing an integration of the different types of activity within a common framework in the
discussion (Chap. 10).

2.5 Classical Transmission Function

Since the early studies of neuronal physiology, researchers have tried to summarize the re-
sponse properties of neurons in “transmission functions” (e.g. Adrian, 1928). In accordance
with the approach of systems theory (e.g. Wiener, 1948), some output variable is plotted as
a function of an input variable under the control of the experimenter. Transmission func-
tions yield a compact characterization of neuronal dynamics, allow for a fit of neuron models
to experimental data, and can connect single neuron properties to network dynamics. We
have already seen one example of a transmission function in (2.18). It allows for a stability
analysis of spike rate in a recurrent neural network. However, this transmission function is
experimentally of little relevance, because the rate of synaptic inputs can usually not be con-
trolled in quantitative fashion and independently of output spike rate (but see Hentschke &
Antkowiak, 1999). The analysis of spike synchronization in feed-forward networks developed
in the next chapters is based on a new neuronal transmission function which is introduced
in Chap. 3. Therefore, it is instructive to first introduce the “classical” case, and use our
neuron model as an example. The success of the integrate-and-fire model of a cortical neuron
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Figure 2.7 Discharge curve for the leaky integrate-and-fire model with and without membrane potential
fluctuations. A Spike rate λ (ordinate) as a function of a DC input current I (abscissa). In the absence of
membrane potential fluctuations, spike rate (gray curve) is 0 until a critical current Iθ is reached (here 375 pA,
further model parameters see Fig. 2.2). In the presence of fluctuations (corresponding to Fig. 2.6), spike rate
increases smoothly (black curve). For comparability, in the latter case I specifies the total injected current,
including the mean current (τm/C)ηV = 198.66 pA contributed by the background activity. B Spike rate
(ordinate) as a function of membrane potential fluctuations σV (abscissa) at constant mean ηV . Variables
σV and ηV specify the “free” membrane potential statistics, ignoring the threshold process (cf. Fig. 2.6A).
Quadratic scaling of the abscissa (cf. Fig. 2.5). Different ranges of ordinates in A and B.

is partly based on the fact that it accurately reproduces the classical neuronal transmission
function. Deviations of the basic models predictions from the experimental data are well
understood (e.g. Connors, Gutnick, & Prince, 1982; Connors & Gutnick, 1990) and appro-
priate additional mechanisms can be integrated into the model (see Koch, 1999 for a recent
summary on models of spike rate adaptation and relative refractoriness). The classical trans-
mission function is the so called frequency-current curve, f -I curve, or discharge curve (λ-I
curve in our variables). It describes the stationary firing rate as a function of the amplitude
of an applied constant current (Lapicque, 1907; Agin, 1964; Stein, 1967a; Jack, Noble, &
Tsien, 1983; Tuckwell, 1988a). Here, it is assumed that the neuron does not receive addi-
tional input, as it is true in the slice preparation (Sec. 2.1). Fig. 2.7A (gray curve) shows
the λ-I curve for our neuron model. There is no spiking activity below a certain threshold
current

Iθ =
C

τm

θ (2.19)

because the membrane potential saturates at a subthreshold value. Iθ is called the rheobase.
For supra-threshold currents, the membrane is charged until the threshold θ is reached. A
spike is emitted and the membrane potential is reset, eliminating all the charge. For a time
period τr the input current is shunted before the membrane is charged up to threshold level
again. Thus, at supra-threshold currents, the spike rate λ is given by

λ(I) =
1

τr − τm ln
(
1− θC

Iτm

) . (2.20)

In this mode of operation, where the input current to the cell is supra-threshold, the station-
ary state can be described by an equilibrium between the charge transported into the cell
during an inter-spike interval, and the charge transported out of the cell (or shunted) due
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to the after-spike effects. The distribution of membrane potential values is not Gaussian (as
it would result from shotnoise input) and mainly reflects the repolarization and after-spike
effects. Note that in our model, the generated spike train is periodic with period 1/λ from
the first spike on. This is due to the absence of noise and the strict reset of the membrane
potential to resting level. Firing rate is limited by 1/τr, a rate which can only be reached at
unphysiologically high input currents. The black curve in Fig. 2.7A represents the λ-I curve
in the presence of large membrane potential fluctuations. Now, we observe a low spontaneous
activity at subthreshold DC input currents (cf. Stein, 1967b).

With increasing current, the spike rate rises smoothly (effect known as stochastic lin-
earization (Stemmler, 1996)) in a sigmoidal fashion. This relationship motivates the sig-
moidal activation function commonly used in abstract neural network models (e.g. Hopfield,
1984, see Dayan & Abbott, 2001 for a recent review). At low input currents, the output
spike train is irregular. Spike generation is mainly driven by the shotnoise input, before
the neuron reaches threshold again, the reset following the preceding spike is “forgotten”.
At high input current, the regularity of the output spike train becomes more pronounced.
Fig. 2.7B shows for comparison the dependence of output spike rate on the standard devi-
ation of the membrane potential fluctuations. Here, the mean of the input current remains
constant at a subthreshold value. Fluctuations are generated using (2.12).

The classical transmission function describes the stationary part of the neuronal response
to a stationary stimulus. The next chapter (Chap. 3) shows that in order to understand the
dynamics in feed-forward networks, the complementary relationship is needed: the transient
neuronal response to a transient stimulus. We conclude this chapter with the remark that
the λ-I curve of the integrate-and-fire neuron is in good agreement with the experimental
literature. Whether the same neuron model also successfully predicts experimental results
for the new transmission function is the subject of ongoing experimental research (Chap. 10).





Chapter 3

Transmission Function for Transient
Input

The synfire model (Sec. 1.4) states that the cortical network can sustain synchrony in prop-
agating volleys of spikes. In order to understand the synchronization dynamics and the
conditions under which synchronization can occur, we introduce collective variables describ-
ing the development of activity in the network and characterize the relevant single neuron
properties. The analysis is based on the conditions in the cortical network discussed in the
preceding chapter (Chap. 2). We have already described in Sec. 1.4 that in a locally feed-
forward network, spike volleys are at the same time the generator and the result of transients
in the neuronal input. The first section of the present chapter (Sec. 3.1) introduces the no-
tion of a pulse packet to quantify the degree of synchrony in a propagating spike volley.
Sec. 3.2 identifies the single neuron’s response to transient input as the basis for understand-
ing the network dynamics. The concept of pulse packets allows for the construction of an
appropriate single neuron simulation experiment. The last section (Sec. 3.3) introduces a
two-dimensional transmission function to represent neuronal response properties in compact
form. In contrast to the “classical” transmission function (Sec. 2.5), the new transmission
function characterizes the transient neuronal response to transient input. Properties of the
transmission function are illustrated for the specific neuron model (Chap. 2) used throughout
the present study. However, the definition of the transmission function is independent of
the choice of the neuron model. The next chapter (Chap. 4) combines the characterization
of single neuron properties derived in the present chapter with a description of the network
structure, allowing for an analysis of synchronization dynamics.

3.1 Pulse Packets

In Sec. 1.4 the synfire chain was introduced as a model for the occurrence of spatio-temporal
spike patterns in neuronal data. In such subnetworks groups of neurons are connected in
a feed-forward manner. In the simplest case each neuron in group i receives input from all
neurons in group i− 1 and projects to all neurons in group i + 1 (cf. Fig. 1.2). The typical
spiking activity in these subnetworks are volleys of spikes emitted by successive neuron
groups. We have seen examples of this activity in Fig. 1.3. Changing our perspective from

31
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Figure 3.1 Pulse packet representation of a propagating volley of synchronous spikes. A Sketch of the
subnetwork organized in a sequence of groups of neurons (cf. Fig. 1.2). The first, the second and a group at
a position further in the chain are shown as representatives. B Sketch of activity in the network. Each box
indicates the spiking activity of a corresponding neuron group. The horizontal arrangement of neuron groups
in A is translated into the vertical arrangement of boxes. Dots within boxes indicate individual spike times.
In each box one vertical position is reserved for any neuron of the group (cf. Fig. 1.3). Time is advancing
along the horizontal axis. C Activity in the network is represented as a sequence of packets parameterized
by the number of spikes a in the corresponding spike volley (B) and by a measure of the temporal spread of
spike times σ. The tuple (a, σ) specifies a pulse packet.

the individual neuron group to the network level we can also describe the development of
activity as a single volley of spikes traveling through the network. On its path through the
network the volley undergoes transformation of its shape at each neuron group. Typical
developments of the volley are the four cases shown in Fig. 1.3. Here, different initial
conditions lead to qualitatively different spiking activities. The most prominent effect is
that the number of spikes a in the volley is not constant. The number of spikes can grow
(Fig. 1.3A) as well as decline (Fig. 1.3D). The other immediately observable effect is that
also the temporal spread of spikes in the volley is subject to change. Temporal spread can
grow (Fig. 1.3C) as well as decline (Fig. 1.3B). A direct measure for the temporal spread
in the volley is the standard deviation σ of the spike times. Our strategy now is to express
network activity in terms of a and σ, and to try to gain an understanding of synfire dynamics
in terms of these collective variables.

The approach is depicted in Fig. 3.1. The individual configuration of spikes arriving at
a neuron group is collectively described by just two variables (ain, σin): the input packet. In
response the group will itself emit a pulse packet (aout, σout), again in this picture the detailed
timing of the individual response spikes is ignored. Alternatively, we can say that the neuron
group transforms the incoming packet (ain, σin) to the outgoing packet (aout, σout). Thus, we
would like to describe the dynamics of a neuron group by a propagator for pulse packets

(ain, σin) → (aout, σout). (3.1)

Doing so we have reduced the problem of understanding synfire dynamics to the construction
and analysis of a propagator for a two-dimensional iterative system (Strogatz, 1994; Kaplan
& Glass, 1995; Elaydi, 1999). Obviously, it may still turn out that the reduction to two
variables is not sufficient to describe the effects observed in network simulations. Before we
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Figure 3.2 Illustration of the procedure quantifying the neuronal response to pulse packet input. A cortical
model neuron (center, gray) is stimulated with a pulse packet (upper graph in B) by drawing ain spike times
(vertical bars) from a gaussian probability density function (A) with standard deviation σin. The pulse
packet is embedded in random excitatory and inhibitory spike trains (not shown), mimicking the ongoing
synaptic bombardment due to background activity. The response (upper graph in C) of the neuron to
such pulse packet input typically consists of at most one spike (vertical bar), the timing of which depends
on the realizations of background activity and the incoming pulse packet. The process is repeated many
times (indicated by vertical sequence of graphs in B and C) to obtain a histogram (D) of the neuronal
spike response to pulse packets parameterized by (ain, σin). The probability α to observe a response spike is
determined by the net area of the output distribution, the temporal spread σout is measured by the standard
deviation.

can construct the propagator in the next chapter we first have to analyze the single neuron’s
response to an incoming pulse packet.

3.2 Reduction to Single Neuron Properties

In a complete synfire chain every neuron of a particular neuron group receives exactly the
same pulse packet from the preceding group. Let us assume that all the neurons in a group
are identical and differ only in their independent dynamical state. In this situation, having
a quantitative description of the single neuron’s response to an incoming pulse packet (a, σ)
should be sufficient to predict the group response. In the case of a stationary input current,
neuronal response properties are successfully captured by the “classical” transmission func-
tion. The so called λ-I curve (cf. Fig. 2.7) neglects all details of spike timing. The λ-I curve
is a model-free compact description of neuronal dynamics. This transmission function there-
fore allows direct comparison of experimental results with a neuron model and in addition
the comparison of different neuron models. Following this line of thought, we will now try
to construct a transmission function suitable for the case of transient input.

First we need to design a method to average over individual pulse packet realizations,
because in our approach pulse packets with identical (a, σ) should be equivalent with respect
to their effect on a target neuron. However, the detailed neuronal response will, obviously,
depend on the configuration of spike times in the incoming pulse packet realization. Let us



34 Transmission Function for Transient Input

assume that pulse packets are well described by a gaussian shape. This is a shape completely
specified by its standard deviation σ. The mean of the temporal distribution of input spikes
is arbitrary because we assume homogeneous synaptic delays. Therefore, we can define the
origin of the temporal axis as the point in time where the mean of the gaussian distribution
“arrives” at the target neuron. Thus, for the purpose of the construction of an appropriate
transmission function we refine the definition of a pulse packet as follows: A pulse packet
(a, σ) is a volley of a spikes individually drawn from a gaussian spike time distribution with
standard deviation σ. In order to suppress details of individual spike timing, we define
the response to an input packet (a, σ) as the neuronal response averaged over all possible
realizations.

The feed-forward structure is assumed to be embedded in a large cortical network. Each
neuron is subject to an ongoing synaptic bombardment with excitatory and inhibitory inputs
(background activity). Consequently, the membrane potential exhibits large fluctuations on
the mV scale. We can assume that because of the structure and the dynamics of the em-
bedding balanced network (Chap. 2), the membrane potential time courses of the neurons in
the feed-forward subnetwork are independent. Thus, although the single neuron dynamics
is assumed to be deterministic, the neuronal response to an incoming pulse packet exhibits
variability because of the random nature of thousands of input channels. The synapses con-
necting a neuron with the preceding group constitute only a small fraction of the neuron’s
total number of post-synaptic sites. When studying the neuronal response to pulse packet
input this fact has to be taken into account. Fig. 3.2 (Diesmann, Gewaltig, & Aertsen, 1996a;
Aertsen, Diesmann, & Gewaltig, 1996; Diesmann, Gewaltig, & Aertsen, 1999) illustrates the
single neuron simulation experiment suggested by our considerations. Here, we simultane-
ously average over realizations of membrane potential time courses and realizations of pulse
packets. While the former capture the variability of the dynamical states of the neurons
in a group receiving the packet, the latter are only due to our definition of a pulse packet.
In the propagation of a pulse packet from one neuron group to the next, the identical con-
figuration of spike times is received by all the neurons of the target group. It turns out,
however, that membrane potential fluctuations are the predominant source of variability in
this system (Chap. 5, Chap. 8). Therefore, the additional variability introduced by pulse
packet realizations does not perturb the results.

The neuronal response to an incoming pulse packet typically consists of not more than
a single spike. This is due to the refractory period of the neuron. When the neuron recov-
ers from refractoriness the excitation caused by the input packet has already substantially
decayed and, therefore, no further spike is generated. In addition, part of the input current
is lost due to the increased conductance following the onset of spike dynamics (modeled
in Chap. 2 by clamping the membrane potential to the resting level during the absolute
refractory period). The response spikes can be recorded in a peri-stimulus time histogram
(PSTH) triggered to the mean of the distribution the input spikes are drawn from. Thus,
by normalizing the response histogram by the number of trials performed, the area of the
histogram can be interpreted as the probability α of the neuron to emit a spike in response
to an incoming pulse packet (ain, σin). The standard deviation σout of the output distribution
is a measure for the temporal jitter in neuronal response to an input packet (ain, σin). Hence,
by comparing σin with σout we can directly determine whether the timing of the neuronal
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response is more (σin < σout) or less (σin > σout) precise than the spike timing at its input.
While σout is a measure for the temporal precision, α is a measure for the reliability of the
neuronal response. To investigate the parametric dependence of the spike response distribu-
tion on the degree of input synchrony, we can now repeat the experiment for a range of values
of input parameters ain and σin, and in each case determine the associated response param-
eters (α, σout). In summary, we have defined a new transmission function T characterizing
the transient response of a single neuron to transient input

(α, σout) = (Tα(ain, σin), T
σ(ain, σin)) (3.2)

= T (ain, σin), (3.3)

where Tα and T σ denote the two output components of T . In contrast to the λ-I curve,
where a scalar variable is mapped to a scalar, T maps a pair of input variables to a pair of
output variables.

There is a third parameter which can directly be extracted from the response histograms:
the mean response time. In general, also this parameter is dependent on the input pair
(ain, σin). Thus, the speed of propagation of synchronous activity is determined by the con-
stant synaptic delay and a dynamic component depending on the state of the system. In
the process of computing the transmission function from the collection of histograms, the
mean response time can be determined without additional costs. However, the next chapter
(Chap. 4) demonstrates that time can be eliminated from the dynamics of synchronous activ-
ity and that for stability analysis it is sufficient to analyze an iterative mapping. Therefore,
an analysis of the mean response time is outside the scope of the present study. Elsewhere
(Gewaltig, Diesmann, & Aertsen, 2001b) we have investigated the speed of propagation us-
ing network simulations, additional information can be found in (Wennekers & Palm, 1996).
The remainder of the present work makes no reference to the mean response time. The next
section discusses quantitative aspects of the transmission function (3.3) and its graphical
representation.

3.3 Quantitative Description of the Response

The preceding section outlines how the histograms obtained by the protocol (Fig. 3.2) defin-
ing the transmission function (3.3) are reduced to two parameters (α, σout). Fig. 3.3 shows
response histograms for four extreme choices of input variables (ain, σin) and explains the
details of parameter extraction (Diesmann, Rotter, Gewaltig, & Aertsen, 1996). Response
parameters cannot directly be obtained from the raw histograms because of the presence of
spontaneous spiking activity and the limited amount of data available. The reduction to
variables α and σout requires some criterion to separate the “response” from spontaneous
activity. Clearly, the histograms cannot simply be described by the superposition of a homo-
geneous (unperturbed) distribution and a bell shaped response. Observe the reduction of the
activity level in the top left panel of Fig. 3.3 around t = 10 ms compared to the spontaneous
level for t < 0. (even more pronounced in Fig. 9.4 on page 112). In any case, consistent
results are obtained by subtracting the spontaneous level from the histograms and by com-
puting α and σout from the remainder. The histograms contain only a finite amount of data
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Figure 3.3 Response of the integrate-and-fire model to pulse packet input. Panels showing data for extreme
input packets (a, σ) are arranged as follows: a vertical, bottom (45) to top (115) and σ horizontal, left (0 ms)
to right (5 ms). The origin of the temporal axes (horizontal) is defined by the center of mass of the distribution
the input spikes are drawn from (cf. Fig. 3.2). The gray area represents the distribution of the neuronal spike
response estimated over 10, 000 repetitions as a histogram with temporal resolution 0.1 ms. The histogram
is normalized by the number of repetitions and temporal resolution, expressing the response (vertical axes)
in units of spike rate. The black curve shows the same data smoothed by a symmetrical Savitzky-Golay
filter (left column: carrier ±0.5 ms, order 4; right column: carrier ±2 ms, order 2). The negativity at the
onset of the up-slope in the top left panel is an artefact of filtering. Peak values of histograms shown
truncated are: 470Hz (bottom left), 2600Hz (top left), and 135 Hz (top right). Histogram counts (gray
bars) falling below the black curve are not visible due to the finite linewidth of the graphical representation.
Dashed vertical lines indicate the points in time where, viewed from the peak, the up-slope and the down-
slope of the smoothed histogram intersect λ0 + ε for the first time. Raw histograms are computed on a
[−20 ms,+25ms] carrier (observe reduction on both ends by filtering). When there is no intersection in the
interval, the corresponding limit is used (e.g. lower right panel). λ0 is the spontaneous spike rate (here:
1 Hz at σV = 2.5 mV, ηV = 8mV), and ε an arbitrary offset (0.2 Hz). The left vertical line defines the onset
of the response (line not distinguishable from up-slope in upper left panel) . To the right of the onset only
the first spike is included in the gray histogram. At the given parameter settings, second spikes are only
rarely observed (dark gray bars on the down-slope of upper right and around t = 20 ms in upper left panel).
Response probability α and temporal spread (standard deviation) of the response σout are computed on
the interval enclosed by vertical lines, using the smoothed histogram with λ0 subtracted. Details of neuron
model and unspecified parameters as in Chap. 2. See Fig. 9.4 on page 112 for example data at σV = 4.5 mV.
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(spike times) and are, therefore, subject to statistical fluctuations. Robustness is achieved
by smoothing the histograms and extracting the peak region as described in Fig. 3.3.

We are interested in the temporal spread of the response. Therefore, any operation on
the data corrupting the peak width of the histogram or restricting the measure of temporal
spread in any other way has to be avoided. Savitzky-Golay smoothing filters (Savitzky &
Golay, 1964; Ziegler, 1981; Press, Teukolsky, Vetterling, & Flannery, 1992) are ideally suited
for our purposes because they conserve the second moment and, depending on the order
of the filter, also higher moments of the data. This is in contrast to the moving window
average or boxcar filter, preserving only the zeroth moment (area) and the mean response
time (provided the filter is symmetric). The idea of Savitzky-Golay filtering is to fit a poly-
nomial to the data points in the moving window, and then to evaluate that polynomial at
the central position. The reduction in noise level achieved by filtering can be observed in
the peak region of the data in the bottom right panel of Fig. 3.3. The smoothed histogram
(black curve) exhibits little remaining fluctuations and crosses through the erratic gray bars
representing the raw data. Note that this does not indicate a degradation of the peak value
of the histogram. The fluctuations in the gray histogram leading to values below the black
curve are not visible because in the graphical representation the gray bars are overlapping.
The extreme input conditions in Fig. 3.3 demonstrate two potential sources of error in the
estimation of response parameters. First, if the filter cannot follow an abrupt change in
spike density (gray), an excursion to negative spike rates may be generated, leading to an
underestimation of the temporal extent of the peak region (black curve drops below zero at
the onset of the response in top left panel). Second, if the response fails to drop back to the
spontaneous level in the time interval spanned by the histogram, the temporal extent of the
peak region may be underestimated (positioning of the right vertical line in bottom right
panel). Fig. 3.3 illustrates that neuronal responses cover a wide range of shapes, from needle-
like excursions of high amplitude to broad and shallow bumps. Unfortunately, the necessary
compromise between sufficient smoothing and accurate description of the data requires the
use of different filters for different shapes of the response. Filter parameters are adjusted by
visual comparison of the filter results with the raw histograms (see Press, Teukolsky, Vetter-
ling, & Flannery, 1992 and the references therein for more advanced methods). It turns out
that three sets of filter parameters are sufficient to achieve reliable results. The choice of
filter parameters should not be made dependent on the input variables (ain, σin) to avoid the
danger of a predetermination of the results of later analysis. Anyway, the filter parameters
applied are organized, here, in terms of the input variable σin for clarity: 0 ≤ σin ≤ 0.5 ms:
(±0.5 ms, 4), 0.5 < σin ≤ 2.5 ms: (±1 ms, 2), 2.5 < σin ≤ 5 ms: (±2 ms, 2), where the first
parameter in the parentheses is the symmetric half-width of the filter and the second pa-
rameter is the order of the polynomial. Filter parameters are kept constant throughout
the present study. For responses to ain < 15 a larger filter width is required. However,
subsequent chapters show that this regime is of no relevance for our purposes. In two other
studies (Gewaltig, Diesmann, & Aertsen, 2001b; Hehl, Aertsen, & Diesmann, 2001b) we have
used different methods of parameter estimation leading to results consistent with the present
work. The histograms are computed by performing a constant number of repetitions of the
simulation experiment (Fig. 3.2). Therefore, the histograms for input packets causing a
broad response profile or having low response probability exhibit a larger relative variability
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Figure 3.4 Two-dimensional transmission function for pulse packet input. Dependence of the two output
variables on the two input variables (ain, σin). Each output variable is a function of the two input variables.
Data are represented by two simultaneous three-dimensional surface plots, one for each of the output variables
α (A) and σout (B). The grid (lines of constant ain and σin, respectively) is shown for orientation. Simulations
are performed on a grid with spacing ∆ain = 10 and ∆σin = 0.25 ms. Linear interpolation is used for input
pairs (ain, σin) not corresponding to sample points. Thick curves indicate the location of four characteristic
sections of the transmission function (σin = const in A, ain = const in B) used throughout the study
(cf. Fig. 3.5). Gray shading of surface indicates value of output variable (same information as vertical axis).
A different range of ain is used in A and B. Fluctuations observable in B at low ain are due to the limited
accuracy of parameter estimation. Parameters and neuron model as in Fig. 3.3.

of neighboring bins. Independent of input parameters (ain, σin), a more advanced simulation
scheme would use an adaptive number of repetitions to achieve a predefined accuracy goal.

The two surface plots in Fig. 3.4 constitute a complete representation of the transmission
function (3.3). The complexity of the matrix of histograms obtained by simulation has been
reduced here to a continuous two-dimensional map. As expected, the response probability α
(Fig. 3.4A) increases with the number of input spikes ain. For a fixed temporal spread of the
input σin, α depends on ain in sigmoidal fashion. With increasing temporal jitter in the input
packet, the slope of the sigmoid becomes less steep and the point of inflection moves to larger
ain. At perfect synchronization of the input spikes (σin = 0 ms), the interval from 0 to 100
input spikes exploits the full range from vanishing α to a response probability approaching
unity. While the response probability reaches zero for vanishing ain independent of input
synchrony, the number of input spikes required to reach saturation at the upper limit of the
response probability depends on σin. α is restricted to the unit interval. Note that ain, σin,
and σout are defined on the positive half of the real axis (ain restricted to integers). Thus,
the lower limit of the range of values considered for ain and σin is well defined. At this stage
the upper limit of ain and σin in Fig. 3.4 appears to be arbitrary. However, the next chapter
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Figure 3.5 Compact representation of the transmission function (Fig. 3.4) used in the remainder of the
study. A Response probability as a function of the number of input spikes α(ain) for constant temporal
spread σin of the input. From left to right: σin = 0, 1, 3, 5 ms. Same data as thick curves in Fig. 3.4A. B
Temporal spread of the response as a function of input synchrony σout(σin) for a constant number of input
spikes ain. From top to bottom: ain = 45, 65, 75, 115. Same data as thick curves in Fig. 3.4B. The dashed
line indicates the diagonal.

demonstrates that the regime relevant for an analysis of the dynamics of synchronous activity
in feed-forward networks is fully covered.

Fig. 3.4B shows the dependence of the temporal spread of the response spike σout on
the temporal spread in the input packet σin and the number of input spikes ain. Compared
to Fig. 3.4A, the orientation of the axes of the surface plot spanning the (ain,σin)-plane are
exchanged to suggest a correspondence between input and output variables: σin → σout,
ain → α. The temporal spread of the response distribution increases with increasing σin and
decreasing number of input spikes ain. Even for perfect synchronization of input spikes σin =
0 ms, a finite spread of the response spikes remains, reflecting the influence of background
activity. The magnitude of this residual jitter depends on the number of synchronous input
spikes. Interestingly, at a given ain the slope of σout(σin) is smaller than unity: the output
jitter increases slower than the input jitter. The combination of the two features, residual
jitter at σin = 0 ms and a slope below 1, implies that for any ain there is a a critical input
spread above which the synchronization of the output is better than the synchronization in
the input. Below the critical input spread, the neuronal response is less precise than the jitter
of the input: synchronous input is desynchronized. Fig. 3.5 constitutes a further reduction
of the representation in Fig. 3.4. Fig. 3.5A is constructed from Fig. 3.4A by projecting the
three-dimensional data points into the facing plane, collapsing the dimension extending into
the depth of the page. Fig. 3.5B is constructed analogously. For clarity, only curves for four
representative values of the collapsed dimension are shown. We call Fig. 3.5A the α-section
of the transmission function. The curves for constant σin, resembling the well-known sigmoid
activation function (e.g. Amit, 1989), are called activation curves. The limiting character
of perfect synchronization of the input is now apparent. No input packet can exceed the
response probability of the topmost curve in Fig. 3.5A. Due to the saturation of response
probability for vanishing ain as well as for large ain, the effect of input spread on the response
probability is most pronounced at intermediate ain. We call Fig. 3.5B the σ-section of the
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transmission function and σout(σin) the dispersion curves. Having identical physical units
on both axes allows us to discuss the location of the dispersion curves with respect to the
diagonal. The intersection of a dispersion curve with the diagonal defines the critical σin

proposed above. The slope of σout(σin) is only weakly dependent on ain; the number of input
spikes merely controls an offset in output jitter.

Our neuron model contains a number of physiologically relevant parameters like the rise-
time of the post-synaptic potential and the magnitude of membrane potential fluctuations.
The remainder of the present work utilizes the α- and σ-sections (Fig. 3.5) of the transmission
function to document and to compare the basic effects of various parameters.

To conclude, in the presence of large membrane potential fluctuations the cortical neuron
is able to emit spikes with a temporal precision exceeding the precision of spike timing in its
input. The temporal precision that can be reached is limited. A situation where the spread of
the output equals the spread in the input would be a point on the diagonal of Fig. 3.5B. Given
a limited number of neurons emitting the input packet (say, 100) there is a maximal number
of input spikes ain. Having these spikes available would, in principle, permit a fixpoint
temporal precision σ in the sub-millisecond range. However, the transmission function does
not reveal whether such a state exists and whether it is stable. Further considerations beyond
the single neuron level are required. The next chapter relates the transmission function to
network structure, providing the desired propagator (3.1) and the tools for an analysis of
the stability of synchronous spiking.



Chapter 4

State Space of Synfire Activity

The preceding chapter (Chap. 3) introduced variables to describe synchronous spiking ac-
tivity and a new transmission function to characterize the single neuron dynamics. Here,
we combine the transmission function with a parameter characterizing network structure to
construct an iterative mapping determining the propagation of synchronous activity in a
synfire chain (Sec. 4.1). The state space introduced in this chapter provides a general frame-
work for an analysis of the dependence of the synchronization dynamics on the parameters
of the system. It turns out that within this framework the question whether the cortical
neuron supports precise spike timing can meaningfully be stated and addressed. Now, the
tools are available to derive the central result of the present study (Sec. 4.2). On the basis of
our neuron and network model (Chap. 2), we demonstrate that there is an attractor for syn-
chronous activity governing the synchronization dynamics. Within the basin of attraction,
synchronous spiking activity can propagate in stable fashion. Different initial conditions
lead to qualitatively different trajectories. The last section (Sec. 4.3) demonstrates that the
number of neurons per group w is a bifurcation parameter of the system. At a minimal w the
attractor for synchronous activity vanishes. In three following chapters (Chap. 5, Chap. 7,
Chap. 8) we will exploit the techniques developed here to investigate the dependence of syn-
chronization dynamics on various physiologically relevant parameters. Chap. 6 and Chap. 9
explore the origin of parameter dependence.

4.1 Construction of State Space

The transmission function introduced in the preceding chapter shows that the temporal jitter
of a single neuron’s response to pulse packet input can be smaller than the temporal spread
of the input packet (cf. Fig. 3.5B). Since each neuron typically responds to an incoming
pulse packet with only a single spike (Fig. 3.3), stable propagation of synchronous volleys
of spikes inevitably requires the activation of successive, large enough groups of neurons
(cf. Fig. 1.2C). For a group of identical, otherwise independent neurons, the temporal dis-
tribution of the group’s response spikes to an input pulse packet is identical to the response
distribution for a single neuron (cf. Fig. 3.1). Hence, the temporal spread of the group’s
response spikes equals the single neuron’s response dispersion σout. Similarly, the expected
number of response spikes aout in a group of w neurons equals the single neuron response

41
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Figure 4.1 Input-Output relation Tw describing pulse packet transmission by a group of w = 100 neurons.
A Number of output spikes aout as a function of the number of input spikes ain. Curves are for constant
temporal spread of the input packet: σin = 0, 1, 3, 5 ms (left to right). The graph is constructed from
Fig. 3.5A by multiplying values on the ordinate with w. B Temporal spread σout of the output packet as
as function of the temporal spread in the input packet σin. The panel is identical to Fig. 3.5B. The dashed
lines indicate the diagonals.

probability α (Fig. 3.5A), multiplied by the group size w. Thus, concentrating on expec-
tation values, we can write the propagator asked for in (3.1) in terms of the single neuron
transmission function (3.3):

Tw = (wTα, T σ). (4.1)

The variability of the group response is discussed in Chap. 8. Fig. 4.1 shows Tw for a partic-
ular choice of group size w = 100. Now, the output of a neuron group is described in terms
of the same variables as the input. Note that to achieve this goal, a parameter describing
network architecture (w) enters the mapping. In Fig. 3.5B we discussed the neuronal ability
to decrease the temporal spread of an incoming pulse packet by comparing the dispersion
curves to the diagonal of the σ-section of T . The same analysis can now be carried out
for the number of spikes in the pulse packet. In contrast to Fig. 3.5A, Fig. 4.1A has a
meaningful diagonal (same physical units on both axes). Clearly, there is a regime where
the number of response spikes aout exceeds the number of input spikes ain. Provided that
the temporal spread in the input packet is sufficiently small, the neuron group can increase
the number of spikes in a propagating pulse packet. Thus, the two properties, reduction
of temporal spread and elevation of spike count, already indicate that the network has the
potential to sustain synchronous spiking. However, the two variables are not independent.
A positive gain for the number of spikes is only observed for a limited range of input jitter.
Likewise, a reduction in temporal spread can only be achieved if a sufficient number of input
spikes is available. The observations made above for the individual sections of the mapping
(4.1) are necessary requirements for stable propagation of synchronous activity, but are not
sufficient. The two sections have to be treated simultaneously as a single dynamical system.

Assuming that our system is fully described by the two variables (a, σ), the dynamics is
specified by a two-dimensional iterative mapping

(ai+1, σi+1) = Tw(ai, σi). (4.2)
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Figure 4.2 Simultaneous operation of the iterative mapping Tw on variables a and σ spanning the state
space of synchronous spiking activity. A Graphical representation of the state space. By convention, the
first component (number of spikes) of the tuple (a, σ) spans the vertical axis and the second (temporal
spread) the horizontal axis. Lattice sites indicate an arbitrary subset of possible initial conditions (a, σ).
The spacing of the lattice in σ-direction is ∆σ = 0.2 ms, ∆a = 100/3 ms ·∆a is adjusted to yield a visually
identical spacing in both directions at the particular aspect ratio of this graph. The lower left coordinate of
the lattice is (35, 0.2 ms). B Deformation of the lattice in a single iteration step (Tw of Fig. 4.1 applied once
to each lattice site). Gray area indicates initial position of the lattice for comparison.

A pulse packet (ai, σi) emitted by neuron group i causes neuron group i + 1 to respond
with (ai+1, σi+1). Variables a and σ span the two-dimensional state space of our system.
Fig. 4.2A is a representation of state space. This is the orientation of axes used throughout
the present work. Due to the limited group size w, there is a natural lower (0) and upper
(w) bound for a. In contrast, σ only has a lower (0 ms) bound. The finite range shown
in Fig. 4.2A is arbitrary. The simultaneous operation of the mapping on both coordinates
can be visualized by the deformation of a lattice in Fig. 4.2 . It is immediately observable
that the mapping exhibits considerable overall smoothness. Neighboring lattice sites remain
neighbors in (a, σ)-space. No folding occurs. The lattice undergoes a compression in σ-
direction to intermediate values of σ. Lattice sites at low dispersion move to larger temporal
spread and strong broad packets are synchronized. In addition the lattice is tilted: at large
a synchronization dominates, and at low a the increase in dispersion. At the same time
there is a downward as well as an upward expansion of the lattice spacing in a-direction at
intermediate values of a. The lattice sites concentrate at large a. We do not observe this at
low a, due to the restricted range of the initial lattice. Roughly, the lattice deformation is
explained by the slopes of the intersections of the a-section (Fig. 4.1A) and the σ-section
(Fig. 4.1B) with their respective diagonal. While the nature of the intersections is attractive
in Fig. 4.1B, it is repelling in Fig. 4.1A. It seems that there is a region of state space at low
σ and large a where the mapping has a constructive effect, simultaneously in both variables.
In order to obtain a more detailed picture of the dynamics of the system, the next section
turns to individual trajectories.
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Figure 4.3 State space portrait for a propagating pulse packet (a, σ). Trajectories (sequences of arrows)
for different initial conditions on the rim of the region of state space (introduced in Fig. 4.2A) show the
development of (a, σ) as the spike volleys move from one neuron group to the next. The four labeled
trajectories enclosing the saddle point (central black dot, (60, 1.5 ms)) exhibit the non-monotonic evolution
of the two variables. (��, ��) is a trajectory where a continuously increases (��) and σ initially increases (�)
before it declines again (�), other combinations encoded respectively for further reference. A separatrix (gray
curve) divides state space into a regime (above gray curve) where synchronous spiking stabilizes (attractor
at (99, 0.2 ms)) and a regime (below gray curve) where any initial activity eventually vanishes. The labeled
trajectories correspond to the network simulations shown in Fig. 1.3, where the relative location of the
trajectories in state space defines the arrangement of the panels.

4.2 Trajectories

In the last section we have studied the deformation of an initial state space volume under
a single application of the propagator for pulse packets. Applying the iterative mapping
(4.2) repeatedly, starting with some initial condition (a0, σ0), we can describe the evolution
of synchronous activity on its path through the cortical network. The history of spiking
activity, hopping from neuron group to neuron group, is recorded in the sequence

{(a0, σ0), (a1, σ1), (a2, σ2), . . . , (ai, σi), . . .} , (4.3)

defining a trajectory in state space. (ai, σi) specifies the pulse packet emitted by the ith
neuron group. The smoothness of the mapping suggests that a few characteristic trajectories
might be sufficient to reveal the overall structure of state space. Fig. 4.3 shows the resulting
state space portrait of our system. The prominent and most important feature is that, indeed,
there is an attractor for synchronous spiking governing the synchronization dynamics. The
attractor is surrounded by a basin of attraction. A spike volley starting anywhere inside this
regime rapidly (i.e. after only a few stages) reaches the vicinity of the attractor. Thus, we
have demonstrated that pulse packets with sub-millisecond precision recruiting nearly all
the neurons of a group can stably propagate through the network. A saddle point controls
the part of the border of the basin of attraction not predetermined by the definition of the
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Figure 4.4 Projection of trajectories into the a-section and the σ-section of the iterative mapping. Gray
curves are identical to the curves in Fig. 4.1 (σ restricted to 3 ms to increase resolution). Trajectories and
labeling correspond to the four labeled trajectories of Fig. 4.3. The starting point of a trajectory indicates
the particular initial condition (a0, σ0). One coordinate can be read of from the horizontal axis, the other
is specified by the gray curve the starting point is located on (for clarity trajectories with large σ0 start at
σ = 3ms). In A the arrangement of the trajectories with respect to the saddle seen in Fig. 4.3 remains
unchanged. In B the vertical arrangement is exchanged, the horizontal one preserved. The attractor for
synchronous spiking is projected to the upper right corner of A and the lower left corner of B.

variables (0 ≤ a ≤ w and σ ≥ 0). We call the set of states (a, σ) reaching the saddle for
i → ∞, the separatrix of the system. The i → −∞ separatrix is of no special relevance in
the remainder of the present work. At larger initial spread more input spikes are required to
reach the attractor. Spike volleys starting outside the basin decay after only a few stages:
synchronous activity which is too weak (few spikes) or too dispersed rapidly dies out. The
“trivial” attractor for vanishing activity is not of interest for the scope of the present study.
We return to this point in the discussion (Sec. 10.2). If not stated otherwise, by attractor
we refer to the attractor guaranteeing stable propagation of synchronous spiking.

Note that neither a nor σ alone describe the dynamics of the system. This is particularly
clear from the non-monotonic way in which each of them evolves along a trajectory (Fig. 4.3,
labeled curves). An initial increase in temporal spread may still lead to stable propagation,
provided that the number of spikes in the initial volley was large enough (��, ��). If, however,
this number is too small, the volley dies out, in spite of the initial increase in spike number
(��, ��). Conversely, an initial decrease in the temporal spread may still lead to vanishing
synchronous activity (��, ��). If, however, the initial number of spikes in the volley is large
enough, the volley survives (��, ��). Thus, neither the relation between numbers of input and
output spikes (Fig. 4.1A), nor the relation between input and output jitter (Fig. 4.1B)
alone determine whether synchronous activity survives; the evolution to the stable fixpoint
is governed by the interaction of the two state variables (Fig. 4.3). Careful visual inspection
of Fig. 1.3 reveals that the non-monotonicity predicted by our iterative mapping can indeed
be observed in individual realizations of (simulated) network activity.

Let us conclude the discussion of individual trajectories by projecting them back into
our representation of the iterative mapping (Fig. 4.1). Fig. 4.4 shows projections of the four
labeled trajectories of Fig. 4.3 into the a-section (Fig. 4.4A) and the σ-section (Fig. 4.4B) of
Tw. In a fixpoint of the iterative mapping we have (aout, σout) = (ain, σin). Thus, fixpoints are



46 State Space of Synfire Activity

0 20 40 60 80 100
0

20

40

60

80

100

ain

a
o
u
t

Figure 4.5 Threshold packet and condition for the existence of an attractor for synchronous spiking activity.
The gray curves show the a-section of the iterative mapping (Fig. 4.1A). The intersection of the diagonal
(long dashed) with the activation curve for perfect synchronization (top gray) defines the threshold packet.
Pulse packets with fewer spikes (threshold a indicated by long dashed vertical line) cannot survive. The
location of the diagonal relative to the activation curves is determined by group size w (here, 100). At a
certain minimal w (79, new diagonal short dashed) all activation curves run below the diagonal (point of
contact with (σin = 0)-curve indicated by short dashed vertical line): stable propagation of synchronous
spiking is excluded.

simultaneously located on the diagonals of the a-section (aout = ain) and the σ-section (σout =
σin). The two trajectories starting on the curve for perfect synchronization of the input in
Fig. 4.4A both have an initial number of spikes above the diagonal. Nevertheless, one of
the trajectories reaches the attractor, the other one crosses the diagonal and activity decays.
The curve for σin = 3 ms in Fig. 4.4A runs completely below the diagonal. Nevertheless, one
of the two trajectories started here reaches the attractor. Although the sigmoidal activation
curves strongly shape the overall appearance of the trajectories, the variable a is not sufficient
to describe the dynamics (e.g. by the usual cobweb construction). Propagation involves
shifting to other activation curves. Similar statements can be made for the variable σ.
Trajectory (��, ��) in Fig. 4.4B would converge to temporal spread > 1 ms in a one-dimensional
consideration. However, the diagonal is crossed from above and the attractor for synchronous
spiking is reached. Trajectory (��, ��) starts on a dispersion curve leading to low temporal
spread if Fig. 4.4B is considered as a one-dimensional mapping. Nevertheless, the diagonal
is crossed from below and temporal spread starts to grow again.

The present section shows that an additional parameter w describing network structure
has to be incorporated into the transmission function T before the question whether the
cortical neuron supports precise spike timing can be answered. For the examples in this
section we decided for the arbitrary value of w = 100 (in fact, Chap. 6 demonstrates that
given the single neuron parameters, this is a canonical choice). Consequently, the next
section has to analyze the role of parameter w for the synchronization dynamics.
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Figure 4.6 The isoclines of the iterative mapping. A The temporal spread σ (ordinate) of a pulse packet re-
quired for a given number of spikes a (abscissa) to be invariantly transmitted by a neuron group (constructed
using Fig. 4.1A). There is a lower and an upper limit of the interval of a in which invariant transmission
is possible. B The number of spikes a (ordinate) of a pulse packet required for a given temporal spread σ
(abscissa) to be invariantly transmitted by a neuron group (constructed using Fig. 4.1B). The minimal σ
for which invariant transmission is possible is given by the maximum value of a (= w). C Projections of the
two curves into the (a, σ) state space define the a-isocline (A, solid) and the σ-isocline (B, dashed) of the
system. Intersections of the two isoclines are fixpoints of the dynamics (cf. Fig. 4.3).

4.3 Minimal Number of Neurons per Group

Evidently, the number of neurons per group w should influence the evolution of synchronous
activity. Consider again the a-section of the iterative mapping (Fig. 4.5). The activation
curves cross the diagonal in two points (apart from the trivial crossing at the origin 0).
Here, the number of output spikes equals the number of input spikes. The lowest of these
intersections occurs with the curve for perfectly synchronized input defining a lower bound
for the number of spikes required to reach the attractor. For ain below this threshold, we
necessarily have aout < ain. Independent of temporal spread, pulse packets with fewer spikes
cannot survive, since for all other activation curves the number of output spikes is even
smaller. Decreasing the group size rotates the diagonal counter-clockwise around the origin
(illustrated in Fig. 4.5). As a consequence, the intersection points with a given activation
curve move closer together, and the number of spikes in the threshold packet increases.
For lower w, more curves fall below the diagonal, until, at a certain value of w, even the
curve for fully synchronized input only touches the diagonal in a single point. At smaller
neuron group sizes, all curves run below the diagonal: the attractor vanishes and stable
propagation of synchronous spiking is no longer possible. Thus, variation of w causes a
structural change in state space. We have derived a lower bound on group sizes potentially
supporting synchronous spiking. In order to determine how many neurons are, in fact, needed
to guarantee that their synchronous activity survives in the network, we have to examine
how the structure of the (a, σ) state space depends on the group size.

The isocline for the state variable a is defined as the collection of states for which the
number of spikes in a volley does not change from one iteration to the next, irrespective
of the behavior of σ. This set can be constructed by traveling along the diagonal of the
a-section of the iterative mapping Fig. 4.1A and recording the σin of the activation curve
intersection with the diagonal at the current a for all points on the diagonal. The resulting
curve is shown in Fig. 4.6A. Obviously, the a-isocline is only defined for the regime of a
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Figure 4.7 Dependence of spike synchronization on neuron group size. The panels show state space portraits
(cf. Fig. 4.3) for four group sizes w (110, 100, 90, and 80, decreasing from top left to bottom right panel).
The basin of attraction for synchronous spiking is indicated by the gray area. The region of state space
shown is arbitrarily restricted to a maximum temporal spread of 3 ms. The upper (large a) boundary of
the basin of attraction is defined by the group size (a ≤ w). The a-isocline and the σ-isocline (cf. Fig. 4.6)
are represented by the thick solid curve and the thick dashed curve, respectively. The σ-isocline is identical
in all panels. At w = 80 the isoclines do not intersect. Fixpoints are given by the intersections of the two
isoclines.

where the activation curve for perfect synchronization runs above the diagonal. Similarly,
the σ-isocline contains all states which maintain their temporal spread, irrespective of a.
The curve constructed using Fig. 4.1B is shown in Fig. 4.6B. Finally, the position of the
two isoclines in state space is shown in Fig. 4.6C. By definition, the isoclines are the loci
of horizontal (a-isocline) and vertical (σ-isocline) flow, respectively. The fixpoints, defined
by the requirement that neither a nor σ changes as the activity propagates, are given by
the intersections of the two isoclines. Thus, we have a method at hand to determine the
fixpoints of the dynamics directly from Fig. 4.1, not involving the use of test trajectories as
in Fig. 4.3. Temporal spread of the response spike is a single neuron property (cf. Fig. 4.1B)
and, therefore, independent of w. Thus, the σ-isocline remains unchanged under variation
of w. The situation is different for the a-isocline of the mapping. Here, the isocline changes
as the diagonal rotates with respect to the activation curves.

Fig. 4.7 shows the state space portrait for four values of w. The qualitative change caused
by w is immediately visible. Starting from our reference value of w = 100 (top right panel),
increasing w moves the two fixpoints further apart, increasing the basin of attraction. As a
result, the regime over which synchronous spiking is able to survive in the network increases.
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Figure 4.8 Bifurcation diagram for parameter neuron group size w. The graphs are constructed by comput-
ing the isoclines (cf. Fig. 4.6) for each value of w and recording only the coordinates of their intersections.
A a-projection of the w-bifurcation. The a components (ordinate) of the attractor (solid) and the saddle
point (dashed) are shown as a function of w (abscissa). Fixpoints are born at w = 85 with an initial number
of spikes of a = 75 and separate with increasing w. B σ-projection of the w-bifurcation. The σ components
(ordinate) of the two fixpoints as a function of w (abscissa). The temporal dispersion in the initial fixpoint
is σ = 0.5 ms. C Trace of the two fixpoints in state space following w-bifurcation (fixpoints created at dot,
arrows indicate direction of increasing w). While the attractor gains more and more spikes, the saddle point
moves out into the regime of larger temporal spread.

By contrast, for smaller numbers of neurons per group, the two fixpoints move closer together,
until at some critical value the attractor and the saddle-point annihilate each other. Below
this critical value, no fixpoint exists and all trajectories lead to extinction. Thus, the group
size w acts as a bifurcation parameter, controlling the existence and separation of fixpoints
in state space. A minimum of some 90 neurons per group is required to reliably maintain
precise spike synchrony.

The isoclines reveal the mechanism of the bifurcation. As discussed above, in the w-
bifurcation the σ-isocline remains unchanged. However, the a-isocline depends on w. The
range of a over which the a-isocline is defined shrinks with decreasing w. Simultaneously,
the a-isocline withdraws from the regime of large temporal spread. In this process the
intersection points of the isoclines approach each other along a path prescribed by the static
σ-isocline. Eventually, the a-isocline contacts the static σ-isocline only in a single point, with
a further decrease in w the contact is lost. Continuing reduction of w finally abolishes the
a-isocline (see Fig. 4.5). Fig. 4.8 reduces the relative movement of isoclines to a description of
the movements of the fixpoints with the help of bifurcation diagrams. While Fig. 4.8A and
Fig. 4.8B illustrate the explicit dependence of the state space coordinates of the fixpoints
on parameter w, Fig. 4.8C presents their locations in the two-dimensional state space as an
implicit function of w. The same sequence of graphs is also used in later chapters (Chap. 5,
Chap. 7) to document the dependence of state space structure on further parameters of
the dynamics. In Chap. 10 the bifurcation diagrams are compared, uncovering the specific
contribution of each parameter to the structure of state space.

Taken together, the results of the present chapter suggest that the answer to the ques-
tion whether the cortical neuron supports precise spike timing is positive. However, it
turns out that the question can not meaningfully be stated on the basis of single neuron
properties alone (Chap. 3). Single neuron properties have to be combined with network
structure. The concept of pulse packets allows us to demonstrate that there is an attractor
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for synchronous activity governing the synchronization dynamics. The attractor describes
a stationary configuration of activity in the (a, σ)-space. At the same time, it describes
a dynamic configuration of activity in neuron space, with different groups of neurons, one
after the other, contributing single spikes to the propagating pulse of activity. The attractor
is characterized by a relatively large fraction (about 90%) of activated neurons per group,
firing at sub-millisecond synchrony. Convergence into the vicinity of the attractor typically
takes only a few successive group firings. The stable state is surrounded by a basin of at-
traction, the extent of which depends on the group size. The basin of attraction guarantees
robustness of the propagating synchrony against perturbations of various sorts, which might
affect the spike time distribution and/or the number of responsive neurons per group by an
amount which exceeds the response variability accounted for by the transmission function.
Perturbations such as temporal dispersion due to differences in axonal or dendritic delays,
fluctuations in synaptic transfer properties, or correlated background fluctuations will not
destroy the synchronous transmission as long as they do not push the network outside its
basin of attraction. Essentially all the spikes of a volley in the stable state fall within a win-
dow of 1-2 ms. This temporal precision is consistent with the high accuracy of experimentally
observed spike patterns in cortical recordings, both in vivo (e.g. Abeles, Bergman, Margalit,
& Vaadia, 1993; Riehle, Grün, Diesmann, & Aertsen, 1997 and in vitro (e.g. Mainen &
Sejnowski, 1995). Thus, in contrast to other model studies (e.g. Shadlen & Newsome, 1994),
we conclude that highly precise synchronous firing of cortical neurons is indeed feasible, in
spite of the large membrane time constant of 10 ms or more. Further interpretation and
literature are given in Chap. 10.



Chapter 5

Background Activity

In the preceding chapters we have studied pulse packet transmission for a fixed level of
membrane potential fluctuations (σV = 2.5 mV). These fluctuations are assumed to arise
from the superposition of excitatory and inhibitory post-synaptic potentials, caused by the
continuous synaptic bombardment. The value of σV was chosen to describe a realistic setting
in the living brain in agreement with the physiological data (see Chap. 2 and Chap. 3). We
now have to study how the observed effects depend on the magnitude of membrane potential
fluctuations in the physiologically accessible range of fluctuations. First, we demonstrate that
at a certain level of background activity the attractor for synchronous activity vanishes and
discuss the properties of this bifurcation. The spontaneous activity of a neuron is a function
of background activity. Sec. 5.2 analyzes the contribution of spontaneous spiking to the
destruction of the attractor. At large σV the attractor can be recovered by increasing the
number of neurons per group w (Sec. 5.3). The next chapter describes how the state space
structure for finite σV develops from the noise-free case. It turns out that under certain
conditions, background activity can increase the basin of attraction (Chap. 6). A simple
model for the noise dependence of the transmission function is introduced in Chap. 9.

0 500 0 500 0 500
t (ms)

V
A B C

Figure 5.1 Example traces of simulated membrane potential fluctuations. The standard deviation of the
fluctuations σV = 1.0, 2.5, 4.5 mV is increasing from left to right. Traces of 1000 ms duration are recorded
in a situation where the mean ηV (solid horizontal line) of the membrane potential V has reached a steady
state. The dashed horizontal line indicates spike threshold (θ− ηV = 7mV), the dash-dotted horizontal line
the resting potential. A Gaussian distribution (truncated at threshold) with mean and standard deviation
corresponding to the fluctuations is plotted to the left of the ordinate (area shaded gray).

51
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5.1 Background Fluctuations as Bifurcation Parame-

ter

Fig. 5.1 shows three example traces obtained from single neuron simulations as described
in Chap. 2. The standard deviation of the membrane potential is controlled by simulta-
neous changes in excitatory and inhibitory background spike rate, leaving the mean of the
membrane potential unchanged (see Chap. 2). The spike threshold constitutes an upper
bound for the membrane potential (our model does not describe the action potential itself).
A Gaussian amplitude distribution with the same mean and standard deviation as the free
membrane potential (without the threshold boundary) is a good approximation for this shot-
noise process. The distribution is truncated at spike threshold and renormalized. Panel B
represents our standard situation at σV = 2.5 mV and low spontaneous activity. In panel C
the standard deviation is increased to σV = 4.5 mV. Here, the fluctuations already fill the
physiologically available range, the distance between mean and spike threshold being

θ − ηV < 2 · σV . (5.1)

In the latter case, the spontaneous activity is already about 10 Hz. In panel A, fluctua-
tions (σV = 1.0 mV) are reduced close to the minimal fluctuations caused by the excitation
needed to overcome the distance from resting potential to the required mean (see Chap. 2).
The distribution of membrane potential values is well separated from spike threshold and
spontaneous activity is practically zero. Let us now investigate how the transmission func-
tion for synchronous activity depends on the membrane potential fluctuations. Fig. 5.2
shows the α(ain) and σout(σin) sections of the transmission function introduced in Chap. 3
for four different levels of membrane potential fluctuations (σV = 1.5, 2.5, 3.5, 4.5 mV). We
first concentrate on the changes observed in the σout(σin) curves. Starting from our original
magnitude of fluctuations 2.5 mV (second row from top) with decreasing σV the curves drop
to lower values of σout. However, increasing σV does not have a large influence on the spread
of response spikes σout. Only for strong input packets ain = 115 the output spread increases
by a small amount. The fluctuations in the σout curves for weak input packets ain = 45
are probably caused by the parameter estimation. In the case of small membrane potential
fluctuations σV = 1.5 mV and weak input packets a new effect appears far away from the
diagonal which brings the σout-curves close together. We will come back to this effect in
Chap. 9. More pronounced changes can be observed in the α-curves. For constant σin the
activation curves exhibit a sigmoidal shape. At σV = 2.5 mV, the point of inflection is close
to the number of input spikes aθ where for a fixed σin the maximum Û of the membrane
potential excursion caused by the incoming packet just overcomes the distance from mean
to threshold

θ − ηV = Û (aθ, σin) . (5.2)

For the example curves shown the values (rounded to integers, see also Fig. 6.7) are

σin/ms 0 1 3 5
aθ(σin) 50 55 73 91

.

It turns out that the behavior of Û (aθ, σin) is crucial for the structure of the (a, σ) state
space. We will come back to this function and the assumption needed to define it in Chap. 6.
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Figure 5.2 Dependence of transmission function on membrane potential fluctuations. The standard devi-
ation of the fluctuations is increasing from top to bottom σV = 1.5, 2.5, 3.5, 4.5 mV (four rows). The left
column displays the α(ain) section of the transmission function. The four curves represent different constant
input spread σin = 0, 1, 3, 5 ms (from left to right). The right column displays the σout(σin) section of the
transmission function. The four curves represent different constant input activity ain = 45, 65, 75, 115 (from
top to bottom). The dashed line indicates the diagonal.
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Figure 5.3 Dependence of state space structure on magnitude of membrane potential fluctuations. Four
portraits of (a, σ) state space (σ horizontal, a vertical). The number of neurons per group is identical
in all four cases (w = 100). Fluctuations σV are increasing from left to right and from top to bottom
1.5, 2.5, 3.5, 4.5 mV. Selected trajectories starting at the border of the displayed region of state space indicate
the position of fixpoints. Arrows depict the development of activity along a chain from one neuron group
to the next. A structural change occurs between σV = 3.5 mV and 4.5 mV: the two fixpoints present in the
first three portraits disappear, and all trajectories flow to the trivial attractor.

Response probability at the point of inflection is about 0.5 (larger for larger σin). The
sigmoids become steeper with decreasing σin. The curve for σin = 0 ms represents a limiting
curve. No α(ain, σin = const) is steeper and reaches higher response probabilities than the
one for σin = 0 ms. When σV is decreased all activation curves become steeper leaving
the point of inflection at about the same value of ain. Thus, for particular ain the difference
between the response probabilities for different σin increases. With increasing σV the response
probability at the point of inflection drops to a lower value. The sigmoidal shape now
becomes asymmetrical: at ain = 0 the response probability is still zero, however to the right
of the point of inflection the range of ain shown in the graphs now covers only a part of the
sigmoid. Even for the maximal ain shown in the graph and full synchronization the upper
saturation level is no longer reached.

The resulting state space structures for groups of w = 100 neurons is shown in Fig. 5.3.
Again, we start the description with σV = 2.5 mV (upper right), the situation which we
already discussed in Chap. 4. When the membrane potential fluctuations are decreased
(σV = 1.5 mV, upper left) both fixpoints move. The attractor moves to lower spread and
larger activity. Only small changes can be observed in the position of the separatrix. The
saddle point basically moves along the separatrix to lower temporal spread. Comparing
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corresponding trajectories with the case of σV = 2.5 mV, the system is somewhat faster now
(the effect increases for smaller σV ). When the membrane potential fluctuations are increased
to σV = 3.5 mV (lower left), the change is dominated by a shift of the separatrix to higher
activities and a stronger bend, such that no stable trajectories exist for temporal spread
larger than 2 ms and the basin of attraction is considerably reduced. Surprisingly (but in
consequence of the separatrix) the increased fluctuations move the saddle point back to lower
temporal spread. At the same time, the saddle point is moved to larger activity and comes
closer to the attractor, which itself is moved to a lower activiy and only slightly larger spread.
Similarly to the w-bifurcation studied in Chap. 4, a further increase of σV to 4.5 mV leads
to a dramatic change in state-space structure. The two fixpoints vanish, and synchronous
activity cannot survive anymore. The local picture of this bifurcation is the same as for
the w-bifurcation. However, globally the movement of the fixpoints is more complicated. In
the w-bifurcation, the two fixpoints separate monotonously. With increasing w, the saddle
point consistently moves to lower activity and higher temporal spread, the attractor moves
in the opposite direction. Observe that in the w-bifurcation the separatrix does not change
its position much. Under variation of σV , the separatrix shows little change for large σV ,
the regime in which the bifurcation occurs. However, for low σV it turns to low temporal
spread, even for small activities. The determination of α and σout in our simulation study
is difficult and, accordingly, imprecise for input packets with only a small number of spikes
and large temporal spread. Here results may depend on the method of parameter estimation
employed. Further work will be needed to explore the precise dynamics in the instable
regime. No attempt will be made in the present study to describe this regime in detail.
However, for vanishing membrane potential fluctuations we obtain some results in Chap. 6.
A perspective is given in the discussion.

Let us now turn to the movement of the isoclines under variation of σV to understand
how the σV -bifurcation occurs and how it differs from the w-bifurcation. Fig. 5.4 shows the
isoclines correspondig to the four values of σV shown in Fig. 5.3. As in the w-bifurcation,
the parabolic shape of the a-isocline contracts when the bifurcation parameter is changed
into the direction where the stability is finally lost (here increasing σV ). The a-isocline starts
at a large activity value and zero spread. With decreasing a, the temporal spread on the
isocline increases until a maximal spread is reached. For further decreasing a, the temporal
spread decreases again, until at a certain activity value the limiting zero spread is reached
again. With increasing σV the amplitude of this excursion into the direction of larger σ
decreases. As in the w-bifurcation, the decrease in amplitude is combined with a decrease of
the distance between the two activity levels where the a-isocline hits the σ = 0 axis. For small
membrane potential fluctuations σV , the shape of the a-isocline becomes asymmetrical. The
upper branch (for large a) approaches the σ-axis (horizontal line in our representation) at
full activation (here a = 100). Interestingly, the lower branch (for low a) seems to approach
the separatrix. In contrast to the w-bifurcation, σV cannot extend the a-isocline to values
below aθ. In Sec. 6.5 we will see why these effects occur. For a discussion on the σ-isocline
we return to our reference situation (σV = 2.5 mV). With increasing σV , the isocline does
not change much. For a given a it moves to slightly larger σ with increasing σV . The
effect seems to be strongest for intermediate values of a. In this regime of large fluctuations
the situation is comparable to the w-bifurcation where the σ-isocline is invariant, because
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Figure 5.4 Dependence of isoclines on membrane potential fluctuations. The four graphs correspond to the(
a, σ

)
state space portraits shown in Figure 5.3 (σ horizontal, a vertical). Fluctuations σV are increasing

from left to right and from top to bottom 1.5, 2.5, 3.5, 4.5 mV. The solid curve represents the a-isocline,
the set of points in state space for which in the next iteration the number of spikes does not change (the
loci of horizontal flow). The dashed curve is the σ-isocline, the set of points in state space for which in
the next iteration the temporal spread remains unchanged (the loci of vertical flow). Fixpoints occur at the
intersections of the two isoclines (no flow). As for σV = 2.5, 3.5 mV (upper right and lower left) the a-isocline
is a continuous curve at σV = 1.5 mV (upper left). The maximal extend in σ direction is not visible due to
the arbitrary restriction of the region of state space shown to σ ≤ 3 ms. The σ-isocline is not computed for
a values below 40 because of insufficient smoothness of the estimate of the underlying transmission function
determined by simulations. At σV = 4.5 mV the number of response spikes aout is always smaller than ain

no a-isocline exists.

w operates exclusively on the aout component of the map (see Chap. 4). However, with
decreasing σV the σ-isocline changes dramatically. For low background activity the isocline
bends to lower temporal spread. Comparing the cases σV = 2.5 mV (upper right in Fig. 5.4)
and σV = 1.5 mV (upper left in Fig. 5.4), the change in the isocline considerably moves the
saddle point to lower temporal spread. For σV = 1.5 mV, the σ-isocline is vertically oriented.
Together with the fact that it represents the loci of vertical flow, this explains the vertical
orientation of the instable trajectories. Because under variation of σV both isoclines move,
the picture is more complicated than in the case of the w-bifurcation.

We are now in a position to summarize the movement of the fixpoints with the help
of the isoclines. Starting at small and continuously increasing membrane fluctuations, the
attractor moves to larger temporal spread because of the bending of the σ-isocline. At larger
fluctuations the shrinkage of the a-isocline becomes dominant and the attractor moves to
lower activity with only a small increase in temporal spread. The saddle point moves to
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Figure 5.5 Bifurcation diagram for the parameter membrane potential fluctuations σV at w = 100 (at-
tractor: solid line, saddle: dashed line). A a-projection of the σV -bifurcation. B σ-projection of the
σV -bifurcation. C Trace of the two fixpoints in state space in σV -bifurcation. With increasing membrane
potential fluctuations, the attractor and saddle approach an intermediate a. Temporal spread in the at-
tractor increases moderately. By contrast, the temporal spread of the saddle exhibits a non-monotonous
behavior. Initially, the temporal spread increases, reaches a maximum of 1.5 ms at σV = 2.5 mV, and then
shrinks again until the two fixpoints collide (point of collision not shown).

larger temporal spread and larger activity, mainly by the increasing bend of the σ-isocline.
At larger membrane potential fluctuations, the σ-isocline becomes stationary and the now
considerably shrinking a-isocline moves the saddle point back to lower temporal spread, at
still increasing activity, until it collides with the attractor. In Fig. 5.5 we summarize the
complex movement of the fixpoints in a bifurcation diagram. While we lose the information
how the isoclines contribute to the movement, the general behavior of the system is now very
simple to describe. The construction of the diagrams is the same as for the w-bifurcation in
Fig. 4.8.

5.2 Effect of Spontaneous Activity

An increase in membrane potential fluctuations naturally leads to an increase in so called
“spontaneous” activity. While the spontaneous activity is about 1 Hz at σV = 2.5 mV, it
has increased to 10.3 Hz at σV = 4.5 mV (see Chap. 2 for a calibration curve). In the neuron
model we use, the threshold crossing is followed by a period of absolute refractoriness, during
which the membrane potential is clamped to resting level. Under continuous fluctuations
it now recovers to its mean with the time constant of the membrane. Clearly, the ability
of the neuron to respond to an incoming pulse packet is reduced in this period. The effect
increases with increasing spontaneous spike rate, because the probability that an incoming
pulse packet strikes a neuron shortly after it spontaneously generated a spike increases. We
have to conclude that the precise effect of spontaneous activity on pulse packet transmission
may depend on the details of our model of the after-hyperpolarization. Therefore, it would be
instructive to learn how the transmission function we measured at large membrane potential
fluctuations (say σV = 4.5 mV) is influenced by the spontaneous activity. It is not obvious
whether at this level of fluctuations the refractory effects already dominate the picture, or
if it is still largely determined by the statistics of the membrane potential fluctuations.

The naive approach would be to prohibit the generation of spontaneous spikes and to
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Figure 5.6 Effect of spontaneous activity on response probability. Gray curves in A represent the α(ain)
section of the transmission function for fluctuations σV = 2.5 mV and corresponding spontaneous rate 1 Hz
(σin = 0, 1, 3, 5 ms, compare Fig. 5.2 second row). Superimposed solid curves are obtained under same
conditions with spontaneous firing rate raised to 10.3 Hz by eliciting additional spikes at random times.
Gray curves in B represent α(ain) for σV = 4.5 mV and corresponding spontaneous rate 10.3 Hz (Fig. 5.2
bottom row). Solid curves are identical to the solid curves in A (10.3 Hz, but σV = 2.5 mV).

compare the result with the original simulation. However, this turns out to be problematic.
Increasing the threshold value prevents the generation of spontaneous spikes, but at the
same time influences the response to an incoming pulse packet. A more elaborate scheme
which prevents firing until the first spike of the pulse packet reaches the neuron is no cure
to the principal problem. Because the neuron has never fired before, the spontaneous firing
probability is high when spiking is first allowed, and from there on declines to a stationary
level. In the response to an incoming pulse packet the above described non-stationarity will
be present and, hence, perturb the estimation of (α, σout). Depending on the parameters,
the spike probability density may even be bimodal.

Fortunately, there is an alternative approach which does not suffer from the problems
described above. Instead of eliminating spontaneous spikes in the case of large fluctuations,
we introduce additional spontaneous spikes in a simulation with small membrane potential
fluctuations. Fig. 5.6 shows the original α(ain) curves for σV = 2.5 mV (A) and σV = 4.5 mV
(B) as gray curves. Superimposed as solid curves in both A and B are the results of a
simulation at σV = 2.5 mV, but with the spontaneous activity artificially raised to the level
of spontaneous activity in the case of σV = 4.5 mV. This was achieved by eliciting, in
addition to the spikes naturally occuring at σV = 2.5 mV, spikes in the neuron at random
points in time, irrespective of the value of the membrane potential at that point. Let us
first concentrate on panel A. As expected, the increase in spontaneous activity leads to
a decrease in the responsiveness of the neuron. The overall shape of the activity curves
remains the same. However, a detailed comparison shows that the gray curves can neither
be transformed into the solid curves by multiplication with a scalar, nor by the addition
of a constant. Multiplication with a scalar would be equivalent to assuming an effective
absolute deadtime. It describes the deviations between the two sets of curves well in the
regime where they do not approach saturation at high values of ain. In the saturation
regime, however, the amplitude of the packet potentials is much larger than the distance from
mean membrane potential to spike threshold. Therefore, a reduced mean of the membrane
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potential in some distance from the last (spontaneous) spike does not considerably affect the
response probability, whereas for weaker packets the distance from the last spike can decide
between being sub- or supra-threshold.

Panel B illustrates the difference between the two sets of curves obtained at the same
spontaneous rate. The gray curves apply in the regime of large membrane potential fluctua-
tions σV = 4.5 mV, the solid curves at smaller fluctuations σV = 2.5 mV. Clearly, the fluctu-
ations determine the shape of the activation curves, and not the level of spontaneous activity.
We have seen in the discussion of panel A that part of the reduction in response probability
for large input activity can be explained by the increase in spontaneous activity. However,
if the level of spontaneous activity is held constant, the activation curves for σV = 4.5 mV
at large input activities still run below the corresponding curves for σV = 2.5 mV.

We conclude that in the regime where the σV -bifurcation occurs, the change in the trans-
mission function caused by the increased membrane potential fluctuations is the dominating
effect, not the increased spontaneous activity. Hence, the details of our model of after-
hyperpolarization are of minor importance for this issue.

5.3 Compensation of Background Fluctuations

We have seen in Chap. 4 that in our system the number of neurons per group is a bifurcation
parameter. Above a certain number of neurons the two fixpoints appear, and with further
increasing group size the basin of attraction increases. The question arises whether in a
situation where stability is lost because of large fluctuations (bifurcation parameter σV ), we
can possibly recover the fixpoints by increasing the number of neurons per group (bifurcation
parameter w).

Fig. 5.7 shows the isoclines and state space structure at large membrane potential fluc-
tuations σV = 4.5 mV for two different group sizes, 115 (upper row) and 130 (lower row)
neurons per group. In both cases stability is recovered. The group size w provides the trans-
formation from response probability α to the number of output spikes aout. At σV = 4.5 mV
and ain = 100, the response probability reaches a value of 0.9 (compare Fig. 5.6B). There-
fore, a group size of 115 already constitutes a strong compensation for the reduced response
probability. For 100 completely synchronized input spikes we now expect 115 · 0.9 = 103
response spikes. The resulting state space structure is comparable to the case of smaller
fluctuations at σV = 3.5 mV (compare Fig. 5.7 upper right panel with Fig. 5.3 lower left
panel). The saddle point is at approximately the same position, leading to a comparable
basin of attraction. The attractor is located at similar temporal spread, however, the stable
activity level is somewhat higher for the parameter set (σV = 4.5 mV, w = 115) than for
(σV = 3.5 mV, w = 100). We already observed above that the σ-isocline for large fluctua-
tions only weakly depends on σV . In addition, the σ-isocline does not depend on w. Thus,
it is approximately the same for the two parameter sets. Upscaling of w has recovered the
a-isocline for σV = 4.5 mV. Its comparable extension into the σ direction explains the corre-
spondence of the positions of the saddle points. There is, however, a characteristic difference.
Because the slope of the activation curves is less steep for σV = 4.5 mV, the interval of a over
which the a-isocline exists is larger. Upper and lower limits of the interval are defined by
the intersections of the activation curve for σin = 0 ms with the diagonal. The effect is more
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Figure 5.7 Interchangeability of bifurcation parameters σV and w. Isoclines (left column, graphs as in
Fig. 5.4) and state space portrait (right column, graphs as in Fig. 5.3) at large membrane potential fluctu-
ations σV = 4.5 mV. Number of neurons per group is w = 115 in the upper row and w = 130 in the lower
row. In contrast to w = 100 (Fig. 5.3, lower right panel) at w = 115 the attractor for synchronous activity
(upper intersection of isoclines) exists and the basin of attraction is increased for w = 130. Scaling of a-axes
(vertical) different from scaling in Fig. 5.4 and Fig. 5.3.

pronounced for large a, where the activation curves approach saturation, than for smaller a,
where the activation curves are steep. Therefore the attractor is moved to larger activities
in the case of σV = 4.5 mV, compared to σV = 3.5 mV. The σ-isocline runs almost verti-
cally in this regime, thus the temporal spread in the attractor is the same. The description
given above still holds if the group width is further increased to w = 130. Now the state
space structure is comparable to membrane potential fluctuations σV = 2.5 mV (compare
Fig. 5.7 lower right panel with Fig. 5.3 upper right panel). Again the saddle point is at a
comparable location and the attractor appears at a larger activity. The interval over which
the a-isocline is defined now also extends to lower a for (σV = 4.5 mV, w = 130) compared
to (σV = 2.5 mV, w = 100).

We conclude that in a situation where the attractor for synchronous activity is lost due to
large membrane potential fluctuations, stable propagation can be recovered by an increased
number of neurons per group. Possible limitations of this compensation are described in
Chap. 10.



Chapter 6

Vanishing Noise

In the preceding chapter we described the dependence of the structure of state space on
the fluctuations of the membrane potential. When the fixpoints exist, the basin of attrac-
tion exhibits a characteristic shape. The dominant feature is the separatix, running from
low activity at small temporal spread to large activity at large temporal spread, dividing
the state space into the basin of attraction and the regime where activity dies out. The
basin of attraction grows or shrinks, depending on the two bifurcation parameters w and
σV we isolated. The overall shape, however, remains characteristic for the system under
consideration. In the present chapter we study the case of vanishing fluctuations to un-
cover the origin of the shape of the separatrix. The transition to finite membrane potential
fluctuations (Sec. 6.5) shows that background activity can have a constructive effect on the
synchronization dynamics.

6.1 Characteristic Excursions

Vanishing background activity is a situation where the total input current a neuron receives
from the network is constant. To achieve a state comparable to our model of in vivo fluc-
tuations, the membrane potential should be equal to the mean of the shot-noise potential.
The expression for the time course u(t) of a PSP (2.3) shows that PSP amplitude scales
linearly with the amplitude ι̂ of the corresponding PSC. We can therefore define ι̂0 as the
PSC amplitude at which the amplitude of the PSP û equals unity

ι̂0 = ι̂ : û(ι̂ ) = 1. (6.1)

The resulting PSP of unit amplitude is called υ0(t), where the meaning of index 0 will
become clear below. Thus, the PSP can be decomposed into an amplitude factor and a
function characterizing its time ourse

u(t) = û · υ0(t). (6.2)

With (2.6) it is easy to see that we can write the form factors F 1 (2.7) and F 2 (2.8) as

F 1 = û · F 1
0 (6.3)

F 2 = û2 · F 2
0 , (6.4)
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Figure 6.1 Characteristic membrane potential excursion caused by an incoming pulse packet. The charac-
teristic excursion υσ (leftmost graph) is given by the convolution of a Gaussian of unit area gσ (center graph)
and a PSP of unit amplitude u/û (rightmost graph). For a given input packet (a, σ) the actual membrane
potential excursion can be computed by multiplying the characteristic excursion υσ with the product of the
number of incoming spikes a and the amplitude of a single PSP û.

where F 1
0 and F 2

0 are the form factors of υ0(t). Mean and variance of the membrane potential
under shot-noise conditions are given by

ηV = Kû · λF 1
0 (6.5)

σ2
V = Kû2 · λF 2

0 . (6.6)

For simplicity we assume only one type of input (excitatory or inhibitory) here (see (2.12)
for the full model). K is the number of inputs, and λ the firing rate of a single (input)
neuron. In the limit

lim
K→∞
Kû=c

σ2
V = lim

K→∞
Kû=c

1

K
c2 · λF 2

0 (6.7)

ηV is constant and the standard deviation tends to zero with 1/
√

K, c denotes a constant
equal to some intitial product K ′û′. The only source of randomness that remains and would
therefore become dominant at very small membrane potential fluctuations is the fact that
different pulse packet realizations (with identical (a, σ)) cause different membrane potential
excursions (see Sec. 10.2). However, if we assume that the synapses connecting the neurons in
a synfire chain and the synapses delivering background activity are equally strong, the effect
of one neuron group on the next will decrease with decreasing û. Using the same argument
as for the background activity, namely that the total input should remain constant in the
limit of vanishing û, we have to up-scale the group width accordingly: w · û = const. Now
all pulse packet realizations cause identical membrane potential excursions. Thus, using the
same limit as in (6.7) in which we down-scale the amplitude of the post-synaptic potentials
and hold the product of participating neurons and PSP amplitude constant, we have rendered
our system completely deterministic. We call this the limit of small PSPs.

In this limit, evidently for a given pulse packet (a, σ) there are only two possible outcomes:
either the packet potential reaches spike threshold and elicits a spike precisely at the same
point in time in each trial, or it remains subthreshold and the response probability is zero.
To compute the membrane potential excursion caused by an incoming pulse packet, we can
now replace the sum of the post-synaptic potentials starting at individual input spike times
by the convolution of a Gaussian input spike density of area a with a single PSP of amplitude
û:

U(t) = a û · (gσ ∗
1

û
u)(t) (6.8)

= a û · (gσ ∗ υ0)(t). (6.9)
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Figure 6.2 Four different post-synaptic potential shapes of unit amplitude. A The different shapes are
aligned at the onset of the membrane potential excursion. The curves with finite rise times (solid 1.7 ms,
dot-dashed 6 ms) are used as a realistic model for a PSP, the assumed post-synaptic current is an α-function
ι̂(e/τα)te−t/τα (τα = 0.33 ms, 1.73 ms respectively). The truncated exponential (dashed) is the limiting case
of vanishing rise time. In all three cases the decay of the membrane potential excursion is dominated by a
membrane time constant τm of 10ms. A rectangular potential shape (dotted) of duration 1ms is shown for
comparison. B The same shapes aligned at their maximum.

agσ(t) is the Gaussian spike density and we have substituted (6.2). Because the convolution
is linear, a and û can immediately be taken out of the integral. The remaining convolu-
tion represents the characteristic, normalized membrane potential excursion, illustrated in
Fig. 6.1:

υσ(t) = (gσ ∗ υ0)(t). (6.10)

At vanishing temporal spread σ = 0 ms, υσ(t) reduces to a PSP of unit amplitude which
is therefore denoted as υ0(t) (cf. (6.2)). The maximum υ̂ (σ) of υσ(t) only depends on the
shape of the PSP (see example shapes in Fig. 6.2 and Chap. 2 for details of the PSP model)
and σ. Therefore, the function υ̂ (σ) is characteristic for a given PSP shape (see Fig. 6.3A).

We now have to relate the packet potential to the spike threshold to see under which con-
ditions a response spike is generated. Consider a situation where a certain packet potential
is subthreshold. Clearly, if the membrane potential excursion is increased by an arbitrary
change in the parameters of the packet potential, it will reach threshold first at its maxi-
mum value. Let θ̄ denote the difference in membrane potential from the mean ηV to spike
threshold θ. For a given threshold the lowest number of spikes a at which the threshold is
crossed is given by

a · û · υ̂ (σ) = θ̄ (6.11)

⇒ a =
θ̄

û · υ̂ (σ)
. (6.12)

The next task is to define variables independent of a specific choice of θ. We express the
membrane potential in units of the threshold value, and define uθ as the relative input
potential and ua as the relative input strength

uθ =
1

θ̄
· u (6.13)

ua = a · uθ. (6.14)
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Figure 6.3 Characteristic amplitude υ̂ (σ) A and minimal relative input strength ûa (σ) B as a function
of input spread. PSP shapes, parameters, and notation as in Fig. 6.2. A By definition υ̂ (σ) is unity at
full synchronization. With increasing temporal spread, the characteristic amplitude declines. Curves for
finite rise time (solid, dot-dashed) approach the maximum with vanishing slope in a concave manner, the
point of inflection is determined by the rise time. At a given spread, curves for larger rise time maintain a
higher characteristic amplitude. After a brief plateau, the amplitude for the rectangular PSP of duration
1 ms (dotted) rapidly decays compared to the other curves (membrane time constant τm = 10 ms). B By
definition, ûa (σ) is unity at full synchronization. With increasing temporal spread a larger minimal input
strength is required to reach threshold. Curves for finite rise time (solid, dot-dashed) approach the minimum
with vanishing slope in a convex manner. At a given spread, curves for larger rise time afford a lower relative
input strength. The rectangular PSP (dotted) rapidly requires a large relative input strength. Curves in
B simply constitute the reciprocal values of the data shown in A. Gray curves represent approximations
(dashed (6.17) and solid (6.18) for PSP with rise-time 1.7 ms) of the σ dependence of υ̂ (σ).

In these variables, the threshold condition reads

ûa · υ̂ (σ) = 1 (6.15)

and we define

ûa (σ) =
1

υ̂ (σ)
. (6.16)

Thus, the minimal relative input strength needed to reach threshold is inversely proportional
to the characteristic amplitude υ̂ (σ). Fig. 6.3B illustrates the relationship for different PSP
shapes. For any input packet (a, σ), we can obtain from this graph whether it elicits a
response spike or not, using (6.16).

For large σ, the Gaussian input distribution dominates the convolution with the post-
synaptic potential. The maximum of the normalized Gaussian is 1/(σ

√
2π). Thus, in the

limit of large σ we can approximate the characteristic amplitude by

υ̂(σ) ≈ F 1
0√
2π
· 1

σ
. (6.17)

Fig. 6.3 illustrates the approximation as the dashed gray curve in both panels. Large devi-
ations are observed for small σ, here υ̂(σ) is dominated by the amplitude normalized PSP.
A better approximation can be achieved when the divergence at σ = 0 ms is removed by
addition of the appropriate constant

υ̂(σ) ≈ F 1
0

û
√

2π
·
(

F 1
0

û
√

2π
+ σ

)−1

. (6.18)
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The result is shown in Fig. 6.3 as the solid gray curve in both panels. Although (6.18) well
describes the overall decay of υ̂ (σ), the plateau at small σ introduced by PSP rise-time is
not captured.

In the present section we have seen that it is sufficient to consider a post-synaptic po-
tential of unit amplitude to describe the characteristic decay of the amplitude of the packet
potential with increasing input spread. When the influence of changes in PSP shape on
the stability of synchronous activity is discussed in Chap. 7, we will see that we have to
distinguish between amplitude and area normalization to understand the effects of the rise
time of the PSP.

6.2 Transmission Function

The results obtained in the section above allow us to construct the transmission function for
the case of zero noise. The neuron emits a spike if and only if the packet potential reaches
threshold. There are no fluctuations in the background activity, and the packet potential is
completely deterministic. Thus, the temporal spread of the output spikes is 0. If the packet
potential remains subthreshold, the output spread is not defined, as there are no response
spikes. However, in our simulation study at small membrane potential fluctuations we have
seen that the outspread tends to zero also for small input packets (Chap. 5). To achieve a
picture consistent with finite levels of noise, we define the output spread to be zero in case
the input packet generates a subthreshold response and, thus, no output spike is emitted.
Evidently, for the study of the synchronization dynamics the detailed position of the attrator
for vanishing activity is of no importance (see Sec. 10.2 for discussion) because the system
can never regain activity.

The transmission function then simply reads

T
(
ûa, σ

)
=

{(
1, 0

)
, ûa · υ̂ (σ) ≥ 1(

0, 0
)
, else

. (6.19)

Fig. 6.4 displays the transmission function in our standard representation, introduced in
Chap. 3. Because we use maximum relative input strength ûa instead of ain here, the graphs
are independent of the specific choice of spike threshold and of the amplitude of the post-
synaptic potential. The sigmoidal shape of α(ain) we observe for finite noise has now reduced
to a Heaviside function. At full synchronization of the input, υ̂ obtains its maximal value
1. Therefore, the minimal input strength at which an output spike can be genereated is
unity. With increasing input spread, the transition from response probability 0 to 1 oc-
curs at larger relative input strengths. We now understand the non-equidistant transistion
points (for equidistant σ) we already observed in the simulations at finite noise (e.g. com-
pare Fig. 5.2). The distance between transition points is determined by the characteristic
amplitude υ̂ (σ) and, hence, by the shape of the post-synaptic potential. However, σout is
always 0. The arrows in the σout(σin) graph (Fig. 6.4B) indicate the points where for a given
ûa the spike probability drops from 1 to 0. Again, the spacing is non-equidistant because,
reversing the argument, an equidistant spacing ûa(σ) leads to a non-equidistant spacing of
the corresponding values of σ. The spacing becomes equidistant for large σ, because 1/υ̂ (σ)
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Figure 6.4 Transmission function in the noise-free case. A α(ain) section of the transmission function.
ûa (product of number of input spikes and amplitude of a single PSP divided by spike threshold) is used
for labeling the abscissa. Depending on σin = 0, 1, 2, 3, 4 ms (from left to right) response probability jumps
from 0 to 1 at increasing values of ûa (here for the PSP with rise time 1.7 ms described in Fig. 6.2). B
σout(σin) section of the transmission function. Output spread is 0 for supra-threshold packet potentials and
defined to be also 0 for subthreshold packet potentials. Arrows indicate input spread σin at which for a given
ûa = 1.0, 1.1, 1.2, 1.3, 1.4 (from left to right) the corresponding packet potential transits from the supra- to
the subthreshold regime.

then approaches a straight line. (6.18) gives an estimate for the slope of 1/υ̂ (σ), see also
Sec. 7.4 for the dependence on the rise-time of the PSP.

6.3 Iterative Mapping

As in the case of non-vanishing noise, we can use the transmission function (6.19) in the
zero-noise case to construct an iterative mapping Tw, enabling us to study the development
of activtiy in a synfire chain. The iterative mapping Tw is constructed from (6.19) by
multiplying the firing probability with the number of neurons per group w:

Tw(a, σ) =


(
w, 0

)
, a · ûθ · υ̂ (σ) ≥ 1(

0, 0
)
, else

. (6.20)

Here, we used (6.14) to make the (a, σ) dependence of the threshold condition explicit. Let
us now study the dynamics of this system. From an arbitrary initial state (a, σ), the system
jumps into one of two possible output states {(w, 0), (0, 0)} in one step:

(a, σ)
(
w, 0

) (
w, 0

)

(
0, 0

) (
0, 0

)

a · ûθ · υ̂ (σ) ≥ 1 w · ûθ ≥ 1

else else . (6.21)

In (6.21) we have for generality not assumed that a ≤ w, as it is necessarily the case for
activity inside a chain. One can imagine a situation where the first group of a chain of width
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w receives input from a group of considerably more than w neurons. If (a, σ) fulfills the
threshold condition, the system goes into (w, 0). However, activity can only survive if also
(w, 0) fulfills the threshold condition w · ûθ ≥ 1 (υ̂ (0) = 1). Clearly, stable transmission of
activity is only possible if w · ûθ ≥ 1. Both, (w, 0) and (0, 0) are fixpoints of Tw, and they
both are stable. From small perturbations, the system will always return to its original state,
unless the perturbation changes the result of the threshold condition from one direction or
the other. We can solve the threshold condition w · ûθ = 1 for the minimal w for which stable
transmission of activity is possible:

wb =
1

ûθ

=
θ̄

û
. (6.22)

Here, wb is the chain width at which in the case of zero noise the bifurcation occurs. It is
equal to the number of input spikes needed to reach threshold at full synchronization. Note,
that for w = wb the attractor for non-vanishing activity is only stable from one side. Any
perturbation which decreases the packet potential will throw the system into the quiescent
state. A discussion of the iterative map should be performed in terms of the number of spikes
a. However, we have already seen that the quantity relevant for the threshold condition is the
product a · ûθ. Thus, our result still depends on the amplitude of the post-synaptic potential.
Using (6.14) and (6.22), we can express the number of spikes in units of the minimal group
size

awb
= a · 1

wb

= ûa. (6.23)

Fortunately, we can identify this value to be ûa. Thereby, we have removed the amplitude
of the post-synaptic potential from the iterative map

Tw(awb
, σ) =

( w
wb

, 0), awb
· υ̂ (σ) ≥ 1

(0, 0), else
. (6.24)

6.4 Structure of State Space

Fig. 6.5A illustrates the aout(ain) relation (in units of wb) for a relative group width of
w/wb = 2. This ratio is typical for a chain in which, in the presence of fluctuations, stable
propagation of activity is possible, e.g. {û = 0.14 mV, θ̄ = 7 mV, w = 100}. Panel B
displays the state space of this system. The minimal relative input strength (6.16), naturally
expressed in units of wb

as
wb

=
1

υ̂ (σ)
, (6.25)

is unity at σ = 0 ms, and requires larger activity with increasing input spread. Thus, as
wb

is the separatrix. All initial activity above the separatrix reaches the attractor in one step,
all activity below the separatrix vanishes in the next iteration step. We conclude that the
state space structure is dominated by the shape of the post-synaptic potential. The PSP
determines the border between the stable and the instable regime. The state space itself
is limited to the first quadrant by the restriction of our variables to positive values. In
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Figure 6.5 State space in the noise-free case. A Number of output spikes as a function of number of
input spikes in units of the minimal group size wb for a chain of width w = 2wb (other parameters as in
Fig. 6.4A). Diagonal (dashed) for orientation. B (a, σ)-space (a vertical in units of wb and σ horizontal)
resulting from parameters in A. Black dots mark fixpoints: the attractor for synchonous activity

(
2, 0

)
and

the attracting quiescent state at
(
0, 0

)
. Minimal relative input strength 1/υ̂ (σ) (center curve) separates the

basin of attraction for synchronous activity (marked “1”) from the regime where activity dies out (marked
“0”). The horizontal line at awb = 2 is the a-isocline (trivial a-isocline for a = 0 not considered), the vertical
line at σ = 0 ms is the σ-isocline. Arrows indicate the direction of flow. The region of state space shown is
arbitrarily restricted to temporal spread below 3 ms (compare solid curve in Fig. 6.3B).

addition, the number of spikes is limited by the group width, thus only the lower part of
the first quadrant is accessible. The state space is open only into the direction of increasing
σ. However, the basin of attraction is limited also in this direction. The shape of the PSP
determines the maximal input spread from which the attractor can be reached. This value
can be computed by solving (6.25) for σ at maximal group activation w/wb:

σw = υ̂−1
(wb

w

)
. (6.26)

For the parameters used in Fig. 6.5, the maximally allowed spread in the basin of attraction
is about σw = 6.5 ms (compare solid curve in Fig. 6.3B). Apart from 0, w is the only allowed
activity value. The activity w is kept as long as the initial state (w, σ) fulfills σ ≤ σw. The
σ-isocline is the vertical line from (0, 0) to (w, 0): temporal spread is always equal to zero.
Note that for a group size of w = 100 we find a remarkable agreement between the basin
of attraction in the noise-free case and at considerable membrane potential fluctuations (see
Fig. 6.6). This effect will be explained in the next section.

6.5 Transition to Non-Vanishing Fluctations

Let us now study how the isoclines we observed at non-vanishing background activity emerge
from the noise-free situation. The fact that the basin of attraction is limited to small
σ already demonstrates the asymmetry of the activation curves with respect to the two
limiting activity levels 0 and w. Activity level 0 can be reached from any temporal spread,
whereas activity level w can only be reached from a certain σ range. We already discussed
the asymmetry of the activation curves in the case of non-vanishing noise in Sec. 5.1. The
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Figure 6.6 Comparison of state space structure with and without background activity. State space portrait
for a group size of w = 100 and membrane potential fluctuations σV = 2.5 mV (same data as in Fig. 5.3
upper right). The basin of attraction is shaded in gray. For comparison the separatrix in the corresponding
noise-free case is shown as a thick curve (cf. Fig. 6.5B).

a-isocline is constructed by undertaking a journey along the diagonal in the (ain, aout) graph
(Fig. 6.5A), and collecting the set of points (a, σ) where a is the current position on the
diagonal and σ is the temporal spread of the activation curve which crosses the diagonal at
this a. At zero noise all activation curves meet the diagonal at w (Fig. 6.5A). However,
at non-vanishing noise the activation curves do not reach aout = w at ain = w. Instead,
depending on σin, each one crosses the diagonal at a different a. The larger the temporal
spread σin, the larger the input activity ain at which the diagonal is crossed. Activation curves
for large σin reaching threshold in the case of zero noise can now fall below the diagonal.
Thus, the upper branch of the a-isocline observed at finite background fluctuations emerges
from the horizontal line at a = w extending from σ = 0 to the limiting temporal spread σw

given by (6.26). With increasing σV , the extent into σ direction decreases, and the a-isocline
is bent downwards.

Fig. 6.7 compares the activation curves in the noise-free case with the activation curves
for finite membrane potential fluctuations. The curves for corresponding σin-values cross
each other close to the point of inflection of the curve for finite σV (gray). At zero noise the
transition from 0 to 100% response probability for a given σin occurs when the maximum
of the packet potential reaches threshold. Thus, the point of inflection for finite σV is
located at the number of input spikes ain where in the noise-free case the packet potential
reaches threshold. A simple model for this effect is introduced in Chap. 9. At the point of
inflection, the response probability is about 50% for narrow input packets (small σin) and
larger for broad packets. In Fig. 6.7A, the group size was chosen to be w = 100. We
have seen above that about 50 fully synchronized spikes are needed to reach threshold. At
(ain = 50, σin = 0 ms) the activation curve is at the point of inflection, and the response
probability is α = 50%. With aout = w · α we expect 50 response spikes. Thus, at full
synchronization the number of output spikes equals the number of input spikes at the point
of inflection. This situation is depicted in Fig. 6.7A, where the diagonal intersects the
activation curve for σin = 0 ms at the point of inflection. For larger σin the point of inflection
falls below the diagonal. Above we discussed how with increasing σV , the upper branch of the
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Figure 6.7 Comparison of activation curves aout(ain) for zero and non-vanishing noise. A Group width
w = 100. Each set of four curves is obtained at input spreads (from left to right) σin = 0, 1, 3, 5 ms. Black
solid curves represent the noise-free case (cf. Fig. 6.4), gray curves are for membrane potential fluctuations
of σV = 2.5 mV (cf. Fig. 5.2 second row). Other parameters as in Fig. 6.4A. Dashed line marks the diagonal
on which the number of output spikes equals the number of input spikes. Dotted horizontal line indicates
the 50% response probability level. B Same graph as A for a group size of w = 145. Thick dots mark points
where for non-vanishing noise the number of output spikes equals the number of input spikes.

a-isocline develops from a straight line at a = w. Now we also understand the emergence of
the lower branch: The combinations (ain, σin) at which the response probability jumps from
0 to 1 define the separatrix in the case of σV = 0 mV. The intersections of the diagonal with
the activation curves in the case of finite σV , however, define the a-isocline. In the discussion
of Fig. 5.2 we have seen that the position of the point of inflection does not depend on σV .
At a group size of 100, the lower branch of the a-isocline is close to the separatrix. With
decreasing σV , it approaches the separatrix, until in the limit σV = 0 mV the two curves
merge and the lower branch of the a-isocline ceases to exist. We conclude that the lower
part of the a-isocline emerges from the separatrix for the noise-free case. The saddle point
observed at non-vanishing σV is born at

(
1, 0

)
, when the activation curve obtains a finite

slope at the intersection with the diagonal and, hence, allows for the existence of a fixpoint.
With increasing σV the σ-isocline rapidly moves and bends to considerable values of σ and
drags the saddle point along the a-isocline to larger temporal spread. We will come back to
the properties of the temporal spread of response spikes in Chap. 9.

The group size w = 100 is a “magic” number in the sense that only at this value the
diagonal intersects the activation curve at the point of inflection (for small σin) and, thus,
makes the lower part of the a-isocline only weakly dependent on σV . Knowing that at the
point of inflection the response probability is 50%, and using (6.22) we can write

w∗ = 2 · θ̄

û
(6.27)

as the condition for the “magic” w. This is the value used to create Fig. 6.5. We now have
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Figure 6.8 Constructive effect of background activity. State space portraits for four different levels of
membrane potential fluctuations σV = 1.5, 2.5, 3.5, 4.5 mV increasing from left to right and from top to
bottom. Group size w = 145 is the same as in Fig. 6.7B, larger than 2wb. The separatrix for the noise-free
case is shown for comparison as a thick curve. The enlargement of the basin of attraction compared to
the noise-free case is shaded in gray. With increasing σV , the basin of attraction first increases and then
decreases again. Compare with Fig. 5.3, same data and arrangement but for w = 100 = 2wb.

to investigate how critical the correspondence discussed above depends on the specific choice
of w. Panel B of Fig. 6.7 is the same graph as panel A, only the group size is increased to
w = 145. Clearly, the intersection with the diagonal and the point of inflection do no longer
coincide. The intersection with the diagonal now occurs already at a lower number of input
spikes (dots on the activation curves in panel B). Hence, a larger regime of input activity
is accessible for the a-isocline. However, let us assume that σV is continuously decreased.
The activation curves become steeper and, consequently, the intersections with the diagonal
approach the value where in the case of zero noise the threshold crossing occurs (intersection
of dashed diagonal with solid vertical lines). Thus, for small σV , the a-isocline becomes
independent of w. As a consequence, the a-isocline which is determined by the separatrix
of the noise-free case remains characteristic for the system for group sizes which do not
precisely fulfill (6.27). Essential in this argument is that the separatrix does not depend
on the group size in the noise-free case (compare position of solid vertical lines in panels
A and B of Fig. 6.7 and (6.25)). Increasing the group size does not extend the basin of
attraction to lower number of input spikes. However, if the group size is larger than the
“magic” group size w∗, finite noise can increase the extent of the a-isocline to lower numbers
of input spikes. In particular, packet potentials which are subthreshold in the case of zero
noise can elicit more response spikes than there are spikes in the input packet (Fig. 6.7B the
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Figure 6.9 Bifurcation diagram for parameter membrane potential fluctuations σV at w = 145 (attractor:
solid line, saddle: dashed line). A a-projection of the σV -bifurcation. B σ-projection of the σV -bifurcation.
C Trace of the two fixpoints in state space in σV -bifurcation. With increasing membrane potential fluc-
tuations, the attractor and saddle approach an intermediate a. Temporal spread in the attractor increases
slightly. Temporal spread of the saddle increases until a maximum is reached at σV = 3mV, and then shrinks
again until the two fixpoints collide (point of collision not shown). Fluctuations seen in the trajectory of the
saddle point at small a are due to the limited precision of the transmission function obtained from simulation
data.

regime between leftmost dot on the diagonal and leftmost solid vertical line). An increase
in background noise σV increases this regime. Therefore, an increase in noise can increase
the basin of attraction. Eventually, when the noise becomes too large, the overall response
probability drops, and the basin of attraction must decrease again. Already for w = 145
(the value used in Fig. 6.7B) the effect can clearly be observed. Fig. 6.8 illustrates the
increase of the basin of attraction, compared to the zero-noise case, as a function of the
magnitude of the membrane potential fluctuations. We can relate this effect to an aperiodic
version of stochastic resonance, an effect recently observed in several systems including I&F
neuron models (see Sec. 10.1.5 and the corresponding references there). Note the qualitative
difference between Fig. 5.3 (w = w∗) and Fig. 6.7 (w > w∗). In the first case, the basin of
attraction decreases and is lost at σV = 4.5 mV, in the second case, the noise increases the
basin of attraction, and at σV = 4.5 mV it is still bigger than in the case of zero noise.

The bifurcation scenario at w = 145 is depicted in Fig. 6.9. Compared to Fig. 5.5, the
domain covered by trajectories of the fixpoints appears enlarged in a and in σ direction. The
fact that the saddle point initially stays at approximately the same a and moves out into
the direction of larger temporal spread results in an increase of the basin of attraction.



Chapter 7

Rise Time of the Post-Synaptic
Potential

In the preceding chapters we have studied pulse packet transmission for a fixed shape of
the post-synaptic potential under the influence of different levels of membrane potential
fluctuations. At a critical amount of fluctuations the system undergoes a bifurcation, beyond
which the attractor for synchronous activity has vanished. However, an analysis of the noise-
free case revealed that the shape of the PSP determines typical features of the structure of
the state space. In particular, the separatrix depends on the decay of the amplitude of
the packet potential with increasing input spread. This decay is different for different PSP
shapes. The temporal spread remaining in the attractor, vanishing in the noise-free case,
depends on the up-slope of the PSP. Physiological data show that the rise time of the PSP
can vary, depending on the type of synapse, typical values ranging from 1 to 6 ms (e.g. Fetz,
Toyama, & Smith, 1991; Mason, Nicoll, & Stratford, 1991; Matsumura et al., 1996). The
down-slope is dominated by the time constant of the membrane, and is not as critically
determined by the synaptic current as the rise time is. In the present chapter we investigate
how the state-space structure depends on the rise time of the post-synapic potential. With
increasing rise time, the attractor moves to larger temporal spread. Surprisingly, though,
an increase in rise time does not necessarily destabilize the system. We demonstrate that
different normalizations are appropriate in different regions of the state space. It depends on
the choice of the normalization whether the PSP rise time acts as a bifurcation parameter.

7.1 Transmission Function

Let us now investigate how the transmission function for synchronous activity depends on
the rise time of the post-synaptic potential. Fig. 7.1 shows the α(ain) and σout(σin) sections
of the transmission function introduced in Chap. 3 for four different rise times τ0. The rise
time of the PSP is adjusted by changing the time constant τα of the post-synaptic current
using the methods introduced in Chap. 2, while holding the amplitude constant at the
standard value. We first concentrate on the changes observed in the σout(σin) curves (right
column). The top panel shows the result for the original rise time 1.7 ms. With increasing
rise time, changes are most pronounced for highly synchronized input spikes, whereas for less

73
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Figure 7.1 Dependence of the transmission function on the rise time of the post-synaptic potential. The
rise time is increasing from top to bottom τ0 = 1.7, 2.0, 4.0, 6.0 ms (four rows), respectively . The left column
displays the α(ain) section of the transmission function. In each panel, the four curves represent different
constant input spread σin = 0, 1, 3, 5 ms (from left to right). The right column displays the σout(σin) section
of the transmission function. The four curves represent different constant input activity ain = 45, 65, 75, 115
(from top to bottom). The dashed line indicates the diagonal. Fluctuations of membrane potential are
σV = 2.5 mV in all cases.
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synchronized input spikes the curves remain largely unchanged. Here, the rise time of the
packet potential is dominated by the Gaussian input, and the specific value of the rise time
of the individual PSP has little influcence. However, the amplitude of the packet potential
decreases less fast with increasing σin for larger PSP rise times (see Fig. 6.2). The effect
on σout is small. It can best be observed for the bottom curve (ain = 115). At σin = 5 ms
(largest σin in panels), the output spread declines from 3 ms for a rise time of 1.7 ms to 2.5 ms
for a rise time of 6 ms. We come back to this effect later in this chapter. For input spread
below 2 ms, the transmission curves move upwards to larger temporal spread of the output
spikes. The larger the rise time of the PSP, the larger the temporal spread of the response
spikes. For a fixed input spread, a larger number of input spikes is required to reach the
regime where the output spread is smaller than the input spread (i.e. where synchronization
occurs). We discussed in Chap. 3 that a lower bound for the precision of synchronization
achieved in the stationary situation is given by the intersection of the curve for the maximal
number of input spikes w with the diagonal. Thus, from the sequence of panels in Fig. 7.1
we can already conclude that if the attractor for synchronous spiking exists at all, it moves
to larger temporal spread with increasing rise time of the PSP. As judged from these graphs,
the lower bound approximately is σ = 0.3 ms for a rise time of 1.7 ms, and σ = 1 ms for a
rise time of 6 ms, in each case assuming a group size w = 100. Indeed, these results are in
excellent agreement with the corresponding simulations (cf. Fig. 7.2).

Let us employ a relationship derived in a later chapter to give a direct interpretation
of the above results. In Sec. 9.3 we introduce an approximation relating the output spread
to the membrane potential fluctations and the slope of the packet potential in the case of
strong input packets. Here, we can verify that this approximation gives accurate results
under variation of the rise time of the PSP and, thereby, of the slope of the packet potential.
In the regime σout > σin, the slope of the transmission curve σout(σin) is practically zero
for strong input packets. To obtain the intersection with the diagonal for w = 100 we can
therefore replace the rise time of the packet potential by the rise time of the PSP, and use
(9.21) to compute the lower bounds:

1.7 ms

100 · 0.14 mV
· 2.5 mV = 0.30 ms (7.1)

6.0 ms

100 · 0.14 mV
· 2.5 mV = 1.07 ms. (7.2)

We now turn to the activation curves (left column in Fig. 7.1). Whereas the effect of
PSP rise time on the σout(σin) curves (right column) is large for small σin and small for large
σin, the situation is reversed for the α(ain) curves (left column). Here, the effect is small
for small σin and large for large σin. The curve for σin = 0 ms (top curve) is essentially
identical for the four PSP rise times shown. In the slow noise model (Chap. 9) we show
that the response probability is mainly determined by the amplitude of the packet potential
and not by its rise time. At σin = 0 ms, however, the amplitude of the packet potential is
independent of the rise time of the PSP (see Fig. 6.3). Thus, the response probability is
independent of the PSP rise time. For larger input spread, however, the effect of increasing
rise time is considerable. The curves for constant σin approach the limiting activation curve
(σin = 0 ms) from below. At a rise time of 6 ms (bottom panel), the activation curve for the
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Figure 7.2 Dependence of state space structure on PSP rise time. Four portraits of (a, σ) state space (σ
horizontal, a vertical). The number of neurons per group is identical in all four cases w = 100. Rise time of
the post-synaptic potential is increasing from left to right and from top to bottom τ0 = 1.7, 2.0, 4.0, 6.0 ms.
Selected trajectories starting at the border of the displayed region of state space indicate the position of
fixpoints. Arrows depict the development of activity along a chain from one neuron group to the next. No
structural change occurs in the parameter range of interest.

largest input spread σin = 5 ms shown (bottom curve) is close to saturation at ain = 100.
Thus, as the curve for vanishing spread, it fully exhibits the sigmoidal shape in the range
of available spikes in a system with 100 neurons per group. This property allows for the
existence of fixpoints at much larger temporal spread compared to the situation with a rise
time of 1.7 ms (top panels). Assume that the α-axis is scaled with the group size w = 100,
then for large σin the bottom panel curves have a regime above the diagonal, whereas in the
top panel they run below the diagonal. Again, we can use Fig. 6.3 to explain the effect. For
σin > 0, the amplitude of the packet potential depends on the rise time of the PSP. The
amplitdue decreases much slower with incresing σin for PSPs with a larger rise time.

7.2 State Space Portraits

The state space structure for a group size of w = 100 resulting from the transmission
functions discussed above is shown in Fig. 7.2. As predicted from the transmission function,
with increasing rise time the attractor moves to larger temporal spread. The activity level
reached in the attractor is not impaired by the rise time. However, the prominent property of
the state space portraits is that the basin of attraction is increasing in the direction of larger
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temporal spread. Although the neuronal response is less precise for larger rise times, the gain
in response probability due to the slower decay of packet potential amplitude leads to an
increase of the basin of attraction, especially in the direction of larger temporal spread. We
have seen in Fig. 5.2 that at σ = 0, the response probability is practically identical in all four
cases, whereas output spread is increasing. Nevertheless, the separatrix is shifted to lower
number of input spikes also for σ = 0. This is explained by the following mechanism. In the
sequence of three iteration steps (a0, 0) → (a1, σ1) → (a2, σ2), the number of response spikes
a2 is considerably larger for larger rise times, despite the larger loss in timing precision
σ1 in the preceding step. The trajectories in Fig. 7.2 show that the number of iteration
steps needed to reach the vicinity of the attractor does not change with rise time. The
overall picture of the deformation of state space has the appearance of an inhomogeneous
scaling of the σ-axis. This observation is in contrast with the results for the σV -bifurcation
(Fig. 5.3). Here, increasing membrane potential fluctuations have the effect of slowing down
the development of activity in the system. The different behavior under variation of the
parameters σV and τ0 is explained by the parameter dependence of the activation curves
aout(ain). The slope of aout(ain) becomes less steep with increasing σV , in particular for
σin = 0 ms, limiting the change of variable a in one iteration step. Variation of τ0 does not
change the slope of aout(ain) for σin = 0 ms, while for σin > 0 ms an increase in τ0 moderately
increases the slope of aout(ain).

At large rise times, the separatrix loses its dependence on σin, and bisects the state
space almost horizontally (constant a). The decline in packet potential amplitude ν̂σ with
increasing σ is small (cf. Fig. 6.3A), the activation curves aout(ain) for different σin approach
the curve for σin = 0 ms. Therefore, the position of the separatrix is mainly determined
by the minimal number of input spikes needed at full synchronization to achieve a larger
number of response spikes (Fig. 7.2, lower right panel).

7.3 Isoclines

The isoclines corresponding to the state space portraits in Fig. 7.2 are shown in Fig. 7.3.
The origins of the two branches of the a-isocline at σ = 0 ms practically do not change with
increasing rise time. This is explained by the fact that the activation curve for σin = 0 ms
does not change. The maximal σ for which the number of output spikes equals the number
of input spikes, however, increases with rise time. This is caused by the above discussed
effect that the activation curves aout(ain) for increasing τ0 approach the activation curve for
σ = 0 ms and, thus, the activation curve which just touches the diagonal aout = ain occurs
at a larger σin. The behavior of the a-isocline under variation of τ0 differs from the behavior
under variation of σV (Fig. 5.4). While the origin of the upper branch moves to smaller a
for increasing σV , it remains unchanged under variation of τ0. The lower branch approaches
a horizontal line for large τ0, whereas the limiting curve in the case of σV depends on the
shape of the PSP. Let us compare the separatrices in the two cases before we come back
to the isoclines. In Sec. 6.5 we demonstrated that at σV = 0 mV, the lower branch of the
a-isocline coincides with the separatrix and is given by a = (θ̄/û)/ν̂σ (6.25). At large τ0, the
separatrix occurs at an almost constant a, independent of σ (a horizontal line in the state
space portrait), and runs close to the lower branch of the a-isocline, even for considerable
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Figure 7.3 Dependence of isoclines on PSP rise time. The four panels correspond to the (a, σ) state space
portraits shown in Fig. 7.2 (σ horizontal, a vertical). Rise time of the post-synaptic potential is increasing
from left to right and from top to bottom τ0 = 1.7, 2.0, 4.0, 6.0 ms. The solid curve represents the a-isocline,
the set of points in state space for which in the next iteration the number of spikes does not change (the
loci of horizontal flow). The dashed curve is the σ-isocline, the set of points in state space for which in the
next iteration the temporal spread remains unchanged (the loci of vertical flow). Fixpoints occur at the
intersections of the two isoclines (no flow). As for rise times 1.7, 2.0 ms (upper left and upper right) the
a-isocline is a continuous curve at 4.0 ms (lower left) and 6.0 ms (lower right); the maximal extent of the
latter two curves in σ direction is not visible, due to the arbitrary restriction of the displayed region of state
space to σ ≤ 3 ms.

σV . Thus, in both cases, small σV and large τ0, the lower branch of the isocline coincides
with the separatrix. In the first case the activation curve aout(ain) crosses the diagonal
aout = ain at different values for ain, depending on the input spread σin (isocline). If an input
packet (a, σ) crosses the diagonal, the activity reaches the attractor because the temporal
spread immediately vanishes (separatrix). In the second case, the activation curve crosses
the diagonal at an ain independent of σin (isocline). If an input packet crosses the diagonal,
the activity reaches the attractor independent of the initial σ. The latter case shows that
the effect of the parameter σV –finite, σin-dependent output spread– is rendered ineffective
at large τ0 by removing the σ-dependence of the activation curve. This is the reason why
the relation between the lower branch of the a-isocline and the separatrix is the same as in
the case of vanishing membrane potential fluctuations.

The σ-isocline loses its τ0-dependence for large temporal spread (dashed curves in Fig. 7.3
have comparable values at σ = 3 ms). Here, the width of the Gaussian spike packet becomes
dominant, and only the area of the post-synaptic potential enters the up-slope of the packet
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Figure 7.4 Comparison of the differential effects of normalization of amplitude and area of the post-synaptic
potential on the packet potential amplitude. Packet potential amplitude as a function of input spread σ,
here for an input packet of area 1. Solid curve is the result for a PSP of rise time 1.7 ms and amplitude
0.14 mV, the upper dashed curve for a rise time of 6.0 ms and identical amplitude, the lower dashed curve
for rise time 6.0 ms and area identical to the case with 1.7 ms rise time. The origin of the graph is located
at about half the initial amplitude (0 ms, 0.06 mV). The area shaded in gray marks the regime where the
a-isocline reaches maximal extent in σ-direction at rise time 1.7 ms (Fig. 7.3, upper left panel).

potential. Compare σout(σin)-curves for different τ0 at large σin in Fig. 7.1. However, the
spike time precision which can be reached in the attractor is strongly determined by τ0. The
invariant σ at maximal activation (a = 100 in Fig. 7.3) moves to larger σ for increasing τ0.

Again, the dependence of the σ-isocline on the parameter τ0 is qualitatively different
from its dependence on the parameter σV (cf. Fig. 5.4). We have seen in Chap. 5 that
at membrane potential fluctuations which cover a considerable portion of the up-slope, the
σ-isocline depends only weakly on σV (compare σ-isocline between panels in Fig. 5.4). For
small σin, the temporal spread of the response spikes is limited by the rise time of the post-
synaptic potential. At small σV the σ-isocline bends strongly downwards to much smaller σ
(upper left panel in Fig. 5.4) compared to our standard value σV = 2.5 mV.

From the comparison of Fig. 7.3 and Fig. 5.4 we can conclude that the two parameters of
the dynamics τ0, and σV , play different roles in different parts of the isocline. The behavior
at small σ is determined by the rise time of the post-synaptic potential τ0, the dependence
on membrane potential fluctuations σV in this regime is comparatively small. By contrast,
in the large σ regime, the position of the σ-isocline is determined by the membrane potential
fluctuations, whereas the dependence on the rise time τ0 of the PSP is comparatively small.

7.4 Normalization of PSP

In the preceding sections, the rise time of the post-synaptic potential τ0 was treated as
a parameter of the dynamics. Thus, τ0 was varied, while holding the amplitude of the
PSP constant. Using this parameterization, the area of the PSP necessarily increases with
increasing rise time.

Ultimately, the rise time of the packet potential and its amplitude determine the response
to an incoming pulse packet. At small σ, the amplitude of the packet potential is mainly
determined by the amplitude of the PSP. However, at large σ the amplitude of the packet
potential is determined by the area of the PSP. In the convolution of the PSP with the broad
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Gaussian input packet, the shape of the PSP becomes irrelevant, and only its “mass” enters
the resulting membrane potential time course.

To disentangle the role of the rise time of the post-synaptic potential and the PSP area,
we have to study the effects of rise time under normalization of PSP area, and compare the
resulting state space structure with the results obtained earlier under normalization of PSP
amplitude.

Fig. 7.4 shows the decline of packet potential amplitude with increasing temporal spread
of the input packet. The solid curve represents the result for our standard PSP with rise time
1.7 ms. The upper dashed curve shows the result for a PSP with τ0 = 6 ms normalized to
the same amplitude (0.14 mV). Here we assumed that the packet potential is a deterministic
function, resulting from the convolution of a single PSP with a Gaussian pulse density
distribution (see Chap. 6 and Fig. 6.3A). The area of the pulse density was assumed to be
unity for this graph. For large σ, the PSP with larger rise time maintains a considerably
larger amplitude of the packet potential. By contrast, the lower dashed curve shows the
result for a PSP with rise time 6 ms (identical to upper dashed curve) with an area identical
to the area of the PSP with rise time 1.7 ms (solid curve). Thus, area normalization forces
the amplitude of the PSP to be lower when the rise time (temporal extent) is increased, most
prominently at σ = 0 ms. As expected, at large σ the amplitudes of the packet potentials
for τ0 = 1.7 ms and τ0 = 6 ms approach each other (solid curve and lower dashed curve).
Fig. 7.4 exemplifies that amplitude normalization of the PSP renders the packet potentials
comparable at small σ, whereas area normalization allows comparison at large σ.

The task now is to investigate the change in state space structure for area normalized
PSPs. Fortunately, it turns out that the transmission function can be obtained by appro-
priate scaling of the transmission function for amplitude normalized PSPs.

Let u1(t), u2(t) be PSP shapes for two different rise times (τ10 and τ20) and identical
amplitudes (û1 = û2). From (6.9) we know that we can write the packet potential as

U2(t) = a · (gσ ∗ u2)(t). (7.3)

In Chap. 2 we denoted the area of the PSP by a form factor F 1

F 1
i =

∫ ∞

−∞
ui(t) dt. (7.4)

Therefore, the packet potential for rise time τ20 with PSP area identical to the case τ10 is

U2(t) = a · (gσ ∗
F 1

1

F 1
2

u2)(t) (7.5)

=
F 1

1

F 1
2

a · (gσ ∗ u2)(t). (7.6)

Obviously, PSP area can be compensated by the number of input spikes a. Let T2(a, σ) be
the transmission function for an amplitude normalized PSP of rise time τ20, as obtained in
Sec. 7.1. The corresponding mapping for an area normalized PSP then is

(aout, σout) = T2w(
F 1

1

F 1
2

· ain, σin), (7.7)
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Figure 7.5 Dependence of state space structure on PSP rise time for PSPs with identical area. Four
portraits of (a, σ) state space (σ horizontal, a vertical). The number of neurons per group is identical in
all four cases (w = 100). Rise time of the post-synaptic potential is increasing from left to right and from
top to bottom τ0 = 1.7, 2.0, 4.0, 6.0 ms. Selected trajectories starting at the border of the displayed region of
state space indicate the position of fixpoints. Arrows depict the development of activity along a chain from
one neuron group to the next. A structural change occurs between rise times 4.0 ms and 6.0 mV: the two
fixpoints, present in the first three portraits, disappear.

with F 1
1 /F 1

2 < 1 if τ10 < τ20. Note, that in contrast to the w-scaling (Sec. 4.1), which operates
on the α component i.e. the output of the transmission function, the present scaling operates
on one of the arguments of the transmission function. Thus, it affects both the aout(ain) and
the σout(σin) section of the transmission function.

Fig. 7.5 displays the state space portraits resulting from the area normalized transmission
function (7.7). Other parameters are identical to the amplitude normalized version (Fig. 7.2).
Observe that the development of the state space structure with increasing rise time has
changed qualitatively. Now, the two fixpoints approach each other with increasing rise time
of the PSP. The saddle point remains approximately stationary, while the attractor moves
to larger temporal spread and lower activity levels. Between τ0 = 4 ms (lower left) and
τ0 = 6 ms (lower right) the two fixpoints disappear and stable propagation of synchronous
activity is no longer possible. The overall picture is similar to the σV -bifurcation Fig. 5.3.
However, the trench along which the (a, σ)-packets travel towards extinction is now located
at larger temporal spread, particularly for high values of a. As already observed in Fig. 7.2,
the development of activity in (a, σ)-space appears to be more rapid at larger rise times,
because larger distances in σ-direction are covered by one iteration step. In terms of the
number of iteration steps needed to reach equivalent regions in state space, the situation is
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Figure 7.6 Dependence of isoclines on PSP rise time for PSPs with identical area. The four panels cor-
respond to the (a, σ) state space portraits shown in Fig. 7.2 (σ horizontal, a vertical). Rise time of the
post-synaptic potential is increasing from left to right and from top to bottom τ0 = 1.7, 2.0, 4.0, 6.0 ms. The
solid curve represents the a-isocline, the dashed curve is the σ-isocline. Fixpoints occur at the intersections
of the two isoclines (no flow). At rise time 6.0 ms (lower right) the number of response spikes aout is always
smaller than ain, therefore no a-isocline exists. The solid gray curve is the a-isocline for unchanged packet
potential amplitude, compared to a rise time of 1.7 ms (copied from upper left panel). The dashed gray curve
is the σ-isocline obtained under normalization of PSP amplitude (copied from Fig. 7.3, lower right panel).

comparable to the w-bifurcation at the same magnitude of membrane potential fluctuations
Fig. 4.7.

Comparison of the isoclines between the two normalization schemes (Fig. 7.6 and Fig. 7.3)
confirms that the behavior of the system under variation of parameter τ0 has changed dra-
matically. The additional factor in the transmission function (7.7) leads to a relabeling of
the curves for constant a in the σout(σin) sections of the transmission functions in Fig. 7.1
(right column). A σout(σin) curve for a specific constant ainû under amplitude normalization
now describes the system for an ainF 1 under area normalization

ainF 1 =

(
F 1

1

F 1
2

)−1

· ainû. (7.8)

Note that ainF 1 is increasing with increasing rise time of the PSP. Thus, the σ-isoclines
under area normalization result from the σ-isoclines under amplitude normalization by a
scaling with (F 1

1 /F 1
2 )−1 in a-direction (compare dashed curves in Fig. 7.6 and Fig. 7.3, lower

rows). As a result the σ-isocline is located at larger values of a. For the aout(ain) section
of the iterative mapping (Fig. 7.1, left column with w-scaled ordinate aout = wα), area
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Figure 7.7 Bifurcation diagram for the parameter PSP rise time τ0 under amplitude normalization of the
PSP (attractor: solid line, saddle: dashed line). A a-projection of the τ0-bifurcation. B σ-projection of the
τ0-bifurcation. C Trace of the two fixpoints in state space in τ0-bifurcation. While the a coordinate of the
fixpoints remains approximately constant, both move to larger temporal spread (horizontally, left to right).

normalization results in a scaling of the ain-axis. High response probabilities are reached only
for a larger number of input spikes. Consequently, for a given number of neurons w available,
a smaller part of the activation curve lies above the diagonal in the aout(ain) representation.
It is important to point out that the above statement also holds for full synchronization of
the input (σin = 0 ms). The scaling of the argument in aout(ain) translates to a change in the
a-isocline (Fig. 7.6, solid curves). The onsets of the two branches of the a-isocline at σ = 0 ms
are given by the intersections of aout(ain) with the diagonal at σ = 0 ms. Thus, for increasing
rise time the two onsets approach each other, the lower bound moving upwards, the upper
bound moving downwards. Under amplitude normalization, the onsets of the a-isocline
remained approximately unchanged. For large σ, the shrinkage of the a-isocline compared
to the situation obtained under amplitude normalization is most prominent. However, at
large σ the amplitude of the packet potential becomes independent of PSP rise time, if area
normalization is applied (compare Fig. 7.4 solid and lower dashed curves). Therefore, for
large σ we expect the a-isocline to remain unchanged, compared to the original rise time
(upper left panel in Fig. 7.6). Fig. 7.6 clearly demonstrates that this is not the case. In the
critical σ-regime, where the maximal extent of the a-isocline into σ direction is located (at
original τ0), the decline in packet potential amplitude is still considerable (gray shaded regime
in Fig. 7.4). At those σ values where the packet potential amplitude for τ0 = 6 ms becomes
indistinguishable from the corresponding value for τ0 = 1.7 ms, the a-isocline has already
vanished. Thus, the a-isocline shrinks with increasing τ0 to lower σ, also in comparison
to the original rise time. The bifurcation observed in Fig. 7.5 is caused by both effects:
shrinkage of the a-isocline with respect to σ, and movement of the σ-isocline to larger a.
The contribution of the change in σ-isocline to the τ0-bifurcation is more pronounced than
in the σV -bifurcation (Fig. 5.4).

The bifurcation scenarios of the two normalization schemes are summarized in Fig. 7.7
and Fig. 7.8. The construction of the diagrams is the same as we used for the w-bifurcation
(Fig. 4.8).
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Figure 7.8 Bifurcation diagram for the parameter PSP rise time τ0 under area normalization of the PSP
(attractor: solid line, saddle: dashed line). A a-projection of the τ0-bifurcation. B σ-projection of the τ0-
bifurcation. C Trace of the two fixpoints in state space in τ0-bifurcation. Attractor and saddle approach an
intermediate a. The temporal spread σ of the saddle remains approximately constant, whereas the temporal
spread in the attractor grows, until the two fixpoints collide and vanish.

7.5 Packet Potential Normalization

We have shown above that the activation curves aout(ain) primarily depend on the develop-
ment of the packet potential amplitude. Thus, in an ideal compensation for an increased rise
time, the amplitude of the packet potential remains identical to the amplitude at the original
rise time τ10 for all σin the a-isocline should remain unchanged under variation of τ0. In this
situation, the τ0-bifurcation is purely caused by the change in the σ-isocline (influence on
output spread). This is in contrast to the w-bifurcation, where the change in state space
structure is caused purely by a change in the a-isocline.

Similar to (7.6), we can obtain appropriate packet potentials by the following normaliza-
tion

U2(t) =
Û1(σ)

Û2(σ)
a · (gσ ∗ u2)(t), (7.9)

with Ûi(σ) representing the maximum of the packet potential for rise time τi0. Again rescaling
of one argument is sufficient to obtain the corresponding mapping from the transmission
function computed for amplitude normalized PSPs:

(aout, σout) = T2w(
Û1(σin)

Û2(σin)
· ain, σin). (7.10)

The lower right panel in Fig. 7.6 includes the a-isocline at the original rise time as the
solid gray curve. This is the a-isocline as it would be maintained under normalization of
the amplitude of the packet potential. The dashed gray curve in the same panel is the
σ-isocline obtained under normalization of PSP amplitude at the corresponding rise time
(τ0 = 6 ms). Because the solid curve in Fig. 7.4 (τ0 = 1.7 ms) runs between the two dashed
curves (τ0 = 6 ms), the σ-isocline for (7.10) would run between the dashed black curve and
the dashed gray curve in Fig. 7.6, lower right panel. Thus, under normalization of the packet
potential amplitude, the fixpoints still exist at τ0 = 6 ms. The σ-isocline intersects the a-
isocline (solid gray curve) somewhere between the dashed black curve and the dashed gray
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curve. However, at larger τ0 the bifurcation will occur (not shown), because the σ-isocline
moves upwards and the a-isocline remains stationary. The scaling introduced in (7.10) is
qualitatively different from the scaling used in (7.7), since in (7.10) the scaling factor itself
depends on the temporal spread of the input packet σin.

A biophysical interpretation of such scaling would be that the amplitude of individual
post-synaptic potentials depends on the temporal spread in the input packet. Large ampli-
tude for high synchronization, and low amplitude at large dispersion. In order to explain
(7.10) the magnitude of the effect would have to increase with the rise time of the PSP. Spikes
in a pulse packet are arriving at individual synapses of the (post-synaptic) target neuron.
Hence, a specific type of interaction between synaptic currents, outside the scope of the
model discussed in the present work, would be necessary. A simple example for the presence
of such interaction is the fact that synaptic conductances affect the integration properties
of the membrane (e.g. Wilson, 1995; Contreras, Timofeev, & Steriade, 1996) and thus, the
resulting membrane potential excursions. However, the primary motivation to consider a
dynamic normalization (7.10) is not to provide a realistic setting for comparison of PSPs
with different rise times, but to disentangle the effects of PSP rise time and packet potential
amplitude.

In summary: the PSP rise time governs the spike timing precision reached in the attractor.
τ0 controls the magnitude of the temporal spread of the response spikes in σout(σin) and
operates on the σ-isocline, whereas w controls the number of response spikes in aout(ain)
and operates on the a-isocline. σV controls the shape of aout(ain) and σout(σin), determining
the curvature of the a-isocline and the σ-isocline. The alternative approach of using packet
potential amplitude and rise time instead of (a, σ) as variables to describe pulse packet
dynamics is discussed in Chap. 10.





Chapter 8

Amplitude of the Post-Synaptic
Potential

In Chap. 4 we constructed a deterministic iterative mapping to describe the propagation
of synchronous spiking activity in a feed-forward network. The analysis is based on the
idea of treating the expected number of spikes emitted by each neuron group as a dynamic
variable, defining the state of the system. In Chap. 6 we argued that at full synchronization
the packet potential is simply given by the shape of a single post-synaptic potential (PSP)
multiplied by a factor wα. Thus, in our parameterization of the PSP, the amplitude of the
packet potential depends on the product of the expected number of spikes and the unit PSP
amplitude (wα) · û. Here, a smaller number of neurons per group can be compensated for
by a larger amplitude of the individual PSP. This property is of relevance because for a
fixed û, the group size w is a bifurcation parameter of the system (Chap. 4) and anatomical
considerations may restrict the available range of w (Chap. 10).

Using the above scaling property, the relative contribution of individual synapses to the
total membrane potential excursion increases with decreasing group size. In the present chap-
ter we investigate the effect of PSP amplitude on the propagation of synchronous activity.
It turns out that fluctuations in the activity of a neuron group increase with increasing PSP
amplitude. While the system behaves deterministically for small PSP amplitudes, justifying
the deterministic iterative mapping, increasing variability is exhibited at larger amplitudes.
However, reliable transmission of synchronous activity is possible even if PSP amplitudes
need to be increased by an order of magnitude compared to our standard situation (Chap. 4).
Thus, PSP amplitudes suitable for stable propagation of synchronous spiking largely cover
the physiologically available range.

The methods, developed in the present chapter for the analysis of PSP amplitude, allow
for an extension of the deterministic iterative mapping to a stochastic mapping which may
be utilized to describe the variability observed in simulations of the corresponding neuronal
network structures.

87
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8.1 Relative Group Activation

Given an input configuration (ain, σin), the probability α for each neuron in a group receiving
that input to generate a response spike is, as defined in (3.3), given by

(α, σout) = (α(ain, σin), σout(ain, σin)) = T (ain, σin). (8.1)

Considering a group of w neurons, the probability that exactly k response spikes are gener-
ated is αk(1− α)w−k times the number of ways to choose a subset of k elements out of a set
of w elements. This is the binomial distribution

Bw,α(k) =

(
w

k

)
αk(1− α)w−k. (8.2)

Thus, the number of response spikes is a random variable

Bw[α] ∼ Bw,α(k). (8.3)

The expectation value of (8.2) is wα. Use of this expectation value allowed us in Chap. 4
to transform the single neuron transmission function into an iterative mapping (4.1) for the
entire group T → Tw:

(ai+1, σi+1) = (wα(ai, σi), σout(ai, σi)) = Tw(ai, σi). (8.4)

This mapping describes the dynamics of mean activity along a chain.
Exploiting the scaling property of packet potentials (6.9), let us now assume that the

transmission function T1 obtained for a specific PSP amplitude û1 can be used to construct
the transmission function T2 valid for a new PSP amplitude û2

T2(ain, σin) = T1(
û2

û1

ain, σin). (8.5)

Consequently, the response obtained in the mean for an input packet (a2, σ) with PSP
amplitude û2 is identical to the response to (a1, σ) with amplitude û1 if we have the following
relation

a2û2 = a1û1. (8.6)

Thus, in two synfire chains constructed with PSP amplitudes û1 and û2, respectively, we
expect according to the above scaling-law the same dynamic behavior if

w2û2 = w1û1. (8.7)

In order to be able to compare the variable a of the dynamics in both cases, we introduce
the relative group activation

ã =
1

w
a. (8.8)

Relating (8.8) and (8.4), we observe that the expectation value of ã is nothing but the single
neuron spike probability α.
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Figure 8.1 Variability in the number of response spikes of a neuron group. A Relative variability σ̃a as a
function of the number of neurons per group (group size) w for different response probabilities α (solid 0.5,
dashed 0.8, dot-dashed 0.95). σ̃a is the standard deviation of the number of spikes divided by the maximal
number of spikes w. Maximum variability occurs at a response probability α of 0.5 (gray area indicates
allowed values of σ̃a). B Distribution of relative group activation Bw,α(ã) for different group sizes w. ã is
the number of response spikes divided by the maximal number of response spikes w. For a given response
probability (α = 0.8, disks connected by solid lines) distributions for different w (black disks 100, white
disks 20, gray disks 10) have identical expectation values equal to α. The number of support points w + 1
decreases with group size. Distribution for w = 20 and α = 0.6 (disks connected by dashed lines) shown
for comparison. Assuming a threshold activation of θ̃ = 0.7, the dark gray region indicates the part of the
distributions in which the number of spikes suffices for the survival of activity. Whereas for w = 100 the full
distribution is in this regime, for w = 20 and w = 10 considerable parts are outside.

The variance of the number of response spikes from realization to realization is then given
by the variance of the binomial distribution (8.2)

σ2
a = wα(1− α). (8.9)

The standard deviation σa is a measure for the uncertainty in the number of response spikes.
Hence, for a fixed spike probability α, the uncertainty in the number of response spikes
increases with

√
w.

However, σa is still expressed in the absolute number of response spikes. Therefore, we
define σ̃a = 1

w
σa as the standard deviation of the relative group activation

σ̃a =
1

w

√
w ·
√

α(1− α) (8.10)

=
1√
w
·
√

α(1− α). (8.11)

Although the variability measured in absolute spike number increases with
√

w, the variabil-
ity of the relative group activation decreases with 1/

√
w. Thus, (8.11) resolves the apparent

contradiction between the fact that the variance of the binomial distribution increases with
the size of the set, and the intuition that the response of a larger group of neurons, with
each unit carrying only little weight, should show less variability than a smaller group.

We can restate this surprising result as a general property of the binomial distribution.
Given n bins with individual occupation probability p. The number of bins occupied in the
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Figure 8.2 Survival probability as a function of group size w for a given response probability α = 0.8 and
threshold θ̃ = 0.7. The survival probability at a particular w is indicated by a dot. In addition values for
consecutive w are connected by a black line, demonstrating a saw-tooth like pattern. The upper boundary
of the gray area connects the local maxima in survival probability, the lower boundary connects the local
minima.

mean is np, and the variance of this number is np(1− p). However, if the n bins are viewed
as partitioning the unit interval [0, 1], the fraction of the interval occupied in the mean is p
and the variance of this number is 1

n
p(1− p).

Fig. 8.1A shows the variability of the relative group activation as a function of the number
of neurons per group for three different response probabilities. The hyperbolic decline of
variability with increasing group size is clearly visible. Note that for a given group size w,
there is an upper bound on relative variability given by 1/(2

√
w). Since the distribution of

relative group activation is defined on a finite carrier [0, 1], variability vanishes for α → 0
as well as for α → 1 and reaches a maximum at α = 1/2. The gray area in Fig. 8.1A
indicates the regime of values σ̃a can obtain. For a response probability α above 0.8, relative
variability falls below 10% for all group sizes larger than 10. The quantitative analysis of
Fig. 8.1A is illustrated in Fig. 8.1B, where the distribution of relative group activation for
three different group sizes is compared at a fixed response probability. The broadening of
the discrete distribution, and the reduction in the number of support points, can clearly be
observed.

8.2 Reliability of Transmission

The broadening of the distribution of relative group activation with decreasing w described
in the preceding section suggests that narrow chains are more susceptible to failures in the
propagation of synchronous activity. In the present section we investigate how the limited
number of neurons in a group restricts the reliability of the system. The next section connects
these considerations to the dynamics of the system. Let us assume the existence of a threshold
θ̃ in relative group activation above which the activity is known to be still in the basin of
attraction. For a threshold value of 0.7 the situation is illustrated in Fig. 8.1B. In the case of
w = 100 practically the whole distribution is located to the right of the threshold, therefore
there is a high probability that synchronous activity is sustained. The distribution is narrow
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compared to the unit interval on which ã is defined and, therefore, we expect only small
deviations between different realizations. For groups with a lower number of neurons, but
with the same expectation value, however, the distributions show contributions to the left
of the threshold. This indicates that realizations can occur, in which synchronous activity
is not sustained. On the other hand, with low number of neurons per group there is a finite
probability at sub-threshold expectation values (see Fig. 8.1B, dashed curve) that activity
spontaneously jumps into the basin of attraction.

Let us temporarily give a definition of survival probability which only depends on network
structure and an assumed threshold θ̃,

Sw,θ̃ (α) =
w∑

k=dwθ̃e

Bw,α (k) . (8.12)

This static picture allows us to investigate the properties of survival probability due to the
discrete nature of the distribution of response spikes in the absence of effects introduced by
the dynamics Tw of the system. The model is completed in the next section by using Tw to
relate α and θ̃ to the dynamic state of the system (a, σ).

Fig. 8.2 shows the dependence of Sw,θ̃ (α) on group size. As expected, generally, survival
probability decreases with decreasing w. However, if we take a detailed look and decrease
the group size neuron by neuron, a saw-tooth pattern emerges. Starting at a group size
corresponding to a local peak in Sw,θ̃ (α), survival probability drops into a local minimum
when w is decreased by a single neuron, but climbs up again with further decreasing w
until the next peak is reached. The saw-toothed shape occurs because of the competition
of two effects. With decreasing w each possible outcome of ã (support points in Fig. 8.1B)
gains more weight. At the same time, however, the first support point in the distribution
to the right of the threshold moves closer to the threshold. At a certain w → (w − 1)
this support point transits from the right to the left side of the threshold, thus Sw,θ̃ (α)
abruptly drops. Because the loss of a support point is a 1/w-type process, the size of the
tooths is increasing with decreasing w. We can distinguish a set of group sizes generating
particularly large survival probabilities and a set of group sizes generating particularly low
survival probabilities

L↑(θ̃) =
{

w :
⌈
(w − 1)θ̃

⌉
=
⌈
wθ̃
⌉}

(8.13)

L↓(θ̃) =
{

w :
⌈
wθ̃
⌉

=
⌈
(w + 1)θ̃

⌉}
. (8.14)

The upper boundary of the gray area in Fig. 8.2 connects the elements of L↑(θ̃), the lower
boundary the elements of L↓(θ̃).

With increasing expectation value α, the bell-shaped binomial distribution shifts to the
right (cf. Fig. 8.1A, distributions marked by white disks) passing the threshold. Therefore,
Sw,θ̃ (α) depends on α in a sigmoidal fashion, with the point of inflection at threshold value
(Fig. 8.3A). The sigmoid is a smooth function of α and becomes less steep with decreasing
w. This is because under variation of α, in contrast to the w-dependence of survival proba-
bility (cf. Fig. 8.2), the location of support points relative to θ̃ remains unchanged. Only the
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Figure 8.3 Survival probability as a function of spike probability α (A) and threshold activation θ̃ (B)
for three group sizes w = 100 (thick solid), 20 (dashed), and 10 (thin solid). A The gray vertical lines
indicate threshold values θ̃ = 0.7 and 0.6. Survival probability smoothly increases with α in sigmoidal
fashion. Curves computed for 0.7 intersect approximately at threshold value. Curve for θ̃ = 0.6 and w = 20
shown for comparison. B The gray vertical lines indicate spike probability values α = 0.8 and 0.6. With
increasing θ̃ survival probability declines in staircase like manner. Curves for α = 0.8 have largest step at
corresponding θ̃. Curve for α = 0.6 and w = 20 shown for comparison.

relative weight of the support points changes. At activation threshold θ̃, the survival prob-
ability is larger than 0.5 because the distribution of spike counts is discrete and, according
to our definition (8.12), a relative group activation equal to θ̃ is sufficient for survival.

The last parameter of (8.12) we need to look at is the threshold value θ̃. With increasing
threshold, Sw,θ̃ (α) decreases in staircase like manner where the width of the steps is 1

w

(Fig. 8.3B). This is because the distribution is given only at discrete support points and
hence, for intermediate values of θ̃ the sum over all probabilities to the right of the threshold
remains unchanged. The decline in survival probability becomes less steep, however more
discrete, with decreasing w.

8.3 Survival Probability

Let us utilize the results of the last section to construct a model of survival probability
for the propagation of synchronous activity. The single neuron spike probability α(wã, σin)
considered in Fig. 8.3 is a function of relative input activity ã and temporal input spread σin.
Thus, for the probability that synchronous activity survives the transmission by the neuron
group we can write

Sw,θ̃ (α, σ) = Sw,θ̃ (α(wã, σ)) . (8.15)

The dependence of survival probability on relative input activity ã is shown in Fig. 8.4. Here,
we still assume an arbitrary threshold θ̃. The slope of α(ã, σin) is less steep than the slope
of Sw,θ̃ (α). Therefore, the slope of Sw,θ̃ (α(ã, σin)) is governed by Sw,θ̃. Now, the temporal
spread of the input spikes σin has entered survival probability via the α-section (cf. Fig. 3.4)
of the transmission function T . The relative input activity where the survival probability
rises abruptly from 0 to 1 strongly depends on input spread σin.
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Figure 8.4 Survival probability predicted by performing a single iteration step. Black solid curves (thick:
w = 100, thin: w = 10) show survival probability as a function of relative input activity ã for different
temporal input spread (from left to right σin = 0.5, 1.5, 2.5 ms). Response probability α (see Fig. 8.3) is
computed using the α-component of the transmission function α(wã, σin) (shown as gray curves for compar-
ison). Activation threshold θ̃ is 0.7 (dashed horizontal line). The point of inflection of survival probability
occurs where α(wã, σin) reaches θ̃ (intersections of gray curves with dashed horizontal line).

The next task is to replace the arbitrary threshold θ̃ by a meaningful measure derived
from the dynamics of the system. In the deterministic case (Chap. 4) a separatrix (see
Fig. 4.3) divides the state space into a regime where all initial activity reaches the attractor
for synchronous activity and a regime in which all initial activity eventually vanishes. The
state variable a is the expected number of response spikes wα, no transition from one regime
to the other is possible. At a given temporal spread σ, comparison of a with the location
of the separatrix as(σ) determines whether activity survives or dies out. However, for the
purposes of the present chapter we treat the number of response spikes as a random variable
Bw[α] (8.3). Thus, activity (ai, σi) initially above the separatrix can leave the basin of
attraction if the number of spikes in the next iteration step Bw[α(ai, σi)] falls below the
location of the separatrix as(σi+1) at the resulting temporal spread. Conversely, activity
initially below the separatrix can jump into the basin of attraction. We can conclude that
for the response pair (α, σout) the appropriate threshold value θ̃ is given by

θ̃(σout) =
1

w
as(σout), (8.16)

where the factor 1/w occurs because θ̃ is defined in terms of relative group activation.
In the preceding two paragraphs we have discussed how our abstract ansatz for survival

probability (8.12) can be related to the dynamics of the system. The arbitrary value of
the threshold is removed by identification with the separatrix, and effects of the dynamical
variable σ on the response probability as well as on the threshold value are considered. The
refined model of survival probability now reads

Sw (ã, σ) = Sw,θ̃(σout(wã,σ)) (α(wã, σ)) . (8.17)

There are two critical assumptions inherent in this model. First, it is assumed that for all
possible configurations of initial activity (ã, σ), the probability of survival can be estimated
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Figure 8.5 Survival probability considering a single iteration step. A Response probability α(a, σ) as a
function of the number of spikes a (vertical) and the temporal spread of the input packet σ (horizontal). The
number of neurons per group w = 100 and the amplitude of the post-synaptic potential (PSP) û = 0.14 mV
correspond to the standard situation used throughout the study (cf. Fig. 3.4A). α is represented by a
density plot with linear dependence of gray level on the response probability (black: 1, lightest gray: 0).
The separatrix of the deterministic dynamics (cf. Fig. 4.3) is shown for orientation (white curve). Parameters
and representation identical in all panels. B Survival probability for each location in state space assuming
a fixed relative threshold activity of θ̃ = 0.5 (here, 50 spikes). The gray level indicates the probability that
activity in the next iteration step is larger or equal to θ̃. C Survival probability for each (a, σ) configuration
assuming that activity survives if in the next iteration step the system is found in the basin of attraction of
the deterministic case (white curve: border of basin). The observed discretization in gray levels comes from
the natural restriction of a to integer numbers and the arbitrary restriction of the resolution to 0.25 ms in
σ-direction.

by considering only a single iteration step. Second, it is required that the temporal spread
of the response spikes σout can be treated as a deterministic variable.

Fig. 8.5C illustrates the dependence of the survival probability resulting from (8.17) on
the state-space coordinates. There is a steep increase of survival probability precisely at the
location of the separatrix. The steepness of the slope justifies our deterministic treatment
of the dynamics. The probability that activity starting below the separatrix will enter the
basin of attraction is practically zero, and the probability that activity starting in the basin
reaches the attractor approaches unity. Only in the vicinity of the separatrix some variability
is exhibited. Note that we have exploited knowledge of the location of separatrix in our model
of survival probability. Therefore, we cannot draw strong conclusions about the fact that
the position in state space where survival probability has peak derivative coincides with the
position of the separatrix.

The influence of the presence of the separatrix can be judged by comparing Fig. 8.5C
with Fig. 8.5B. Here, the σ dependent threshold in (8.17) represented by the separatrix is
replaced by a constant value. Clearly, the location of the up-slope in survival probability
exhibits σ-dependence and is not predefined by the threshold value. In the latter case, the up-
slope would appear in the state-space portrait along a horizontal line, parallel to the σ-axis.
The observed bending of iso-Sw (ã, σ) curves towards larger spike numbers with increasing
σ stems from the σ-dependence of response probability α, displayed in Fig. 8.5A. The σ-
dependence of the separatrix enhances the effect. In addition, the increase in slope from
α(wã, σ) to Sw (ã, σ), we already discussed using Fig. 8.4, can easily be seen by comparing
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Figure 8.6 Survival probability in networks of different group sizes on the basis of the variability of a in a
single iteration step and the location of the separatrix. The number of neurons per group w is decreasing
from left to right (w = 100, 20, 10) while the amplitude of the post-synaptic potential û is up-scaled leaving
the product wû invariant. Same representation as in Fig. 8.5C, the left panel is identical to Fig. 8.5C. In
vertical direction, survival probability is evaluated on the natural grid (integer spike numbers). The area
covered by the density plot increases with decreasing w to keep rectangles representing survival probability
of (a, σ) centered at the grid coordinate.

Fig. 8.5A and Fig. 8.5B.

Now, the tools are at hand to investigate the reliability of the system when the scaling
law (8.7) is used to construct networks with fewer neurons per group but appropriately
increased PSP amplitudes. Fig. 8.6 shows the survival probability for three different group
sizes, with the number of neurons decreasing from left to right. Despite the fact that the
PSP amplitude changes by an order of magnitude, a considerable regime where survival
probability is practically unity remains. As expected (cf. Fig. 8.3A), the slope of survival
probability declines with decreasing w. Consequently, the regime close to the separatrix
where variability allows the system to spontaneously enter or leave the basin of attraction
enlarges.

We conclude that with enough neurons available there is no advantage for the propagation
of synchronous activity in using a few, specifically strong synapses. On the other hand, the
physiologically relevant range of post-synaptic amplitudes, say from 0.1 mV to 1 mV (e.g.
Matsumura et al., 1996), does not impose severe constraints on the reliable transmission
of synchronous activity. Before we discuss some limitations of the transmission function at
large PSP amplitudes at the end of the chapter, let us first evaluate the major assumption in
the above analysis. Central to the arguments is knowledge of the location of the separatrix
in the deterministic case. No independent information is available that in the presence of
variability in the number of response spikes, the separatrix still characterizes the initial
number of spikes required to reach the attractor with high probability. However, the next
section demonstrates that when a stochastic mapping is constructed which does not make use
of the separatrix, results are consistent with the analysis of the present section considering
only a single iteration step.
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Figure 8.7 Survival probability taking into account variability of a and σ, computed at the natural resolution
of integer spike counts (vertical). Columns from left to right show results for group sizes w = 100, 20, and 10
with invariant wû. Resolution for σ (horizontal) is 0.25 ms. For each initial condition on the grid, survival
probability is estimated on the basis of 50 realizations. Activity is assumed to decay if it falls below a† (20, 4,
3) within the first l = 7 iteration steps. The upper row uses the same representation of survival probability
as in Fig. 8.6 (black: 1, lightest gray: 0). The lower row shows the same data as the upper row as contour
plots with 10 iso-survival-probability curves (contours) to enhance the structure of the slope. Area between
contours indicates magnitude of survival probability, same gray coding as in upper row. In all panels the
separatrix of the deterministic system is shown superimposed (white curve) for comparison.

8.4 Monte-Carlo Approach to Survival Probability

In Chap. 4 the transmission function T was used to construct the deterministic iterative
mapping Tw (4.1):

(ai, σi) (α, σi+1)

(ai+1, σi+1)

T

ai+1 = wα

Tw

. (8.18)

Here, the mean spike count of (8.2) wα is used to specify the number of spikes ai+1 in the
next iteration step. In order to incorporate the variability in spike count into the dynamics
we can introduce a new operator

Aw(α, σ) = (Bw[α], σ) (8.19)
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which replaces the mean spike count by the appropriate random variable (8.3)

(ai, σi) (α, σi+1) (ai+1, σi+1)
T Aw . (8.20)

This is a stochastic mapping, generating random trajectories in state space. If activity is
repeatedly started at some initial (a0, σ0), a certain fraction of the trajectories ends up in
the vicinity of the attractor while the remaining ones eventually decay. Survival probability
S(a, σ) is now naturally given by the fraction of trajectories reaching the attractor, and,
generally, depends on the location of the initial activity (a, σ) in state space. Knowledge of
the behavior of the deterministic system is no longer required for the definition of survival
probability.

Even if there is a location in state space which serves as an attractor for synchronous
activity, the system exhibits ongoing random fluctuations in its vicinity due to the stochastic
nature of the mapping. Therefore, it seems to be better suited to identify the fraction of
trajectories on which activity eventually vanishes and to use the complement of this fraction
as the survival probability. When the number of spikes in a packet has reached a low
value, say 10 in the case of w = 100, synchronous activity dies out with a probability of
practically 1. Thus, we can introduce a threshold a† to stop the iteration process once
ai falls below this value. Obviously, this threshold needs to be chosen far away from the
location of the separatrix of the deterministic dynamics not to predetermine an outcome
of the analysis trivially compatible with the results of the previous section (cf. Fig. 8.5).
The lower limit of the threshold value is given by the limited precision of the transmission
function for low numbers of input spikes. In this regime response probability is low. Thus,
an increasing number of simulation runs (Chap. 3) would be required to determine a and
σout with appropriate accuracy. The termination condition introduced above is not sufficient
to enable determination of S(a, σ) by Monte-Carlo simulations. A maximum number of
iteration steps needs to be introduced to stop the iteration process when the system has
reached a regime where it is unlikely that activity will vanish in future iterations. Strictly,
survival probability can only be defined for a given number of iteration steps. Because α is
always below unity, some residual variability remains. Consequently, with an infinite number
of iteration steps, any initial activity will eventually die out. However, we have seen in
Chap. 4 that the development into the neighborhood of the attractor and the decay of activity
occur within a few iteration steps. Once activity has reached the vicinity of the attractor,
the magnitude of response probability and the size of the basin of attraction guarantee that
activity does not leave this area of state space again. Thus, we can expect that evaluation
for a number of iteration steps large enough to capture the transient behavior of the system
provides an adequate measure of survival probability, meaningful also for larger numbers of
iteration steps. Note the fundamental asymmetry in our model: initial full activation (a = w)
can, in principle, decay but non-vanishing activity cannot develop from the silent state (a =
0). The asymmetry results from the fact that the spontaneous formation of pulse packets
is not considered in the transmission function (Chap. 3). Only the neuronal self-inhibition
caused by spontaneous activity (see also Fig. 5.6) is taken into account. Preliminary results
(Tetzlaff, Geisel, & Diesmann, 2002) indicate that, in the parameter regime investigated
here, the probability that synchronous activity develops spontaneously is exceedingly low.
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In conclusion, survival probability is defined as the fraction of trajectories starting at (a, σ)
for which in l iteration steps ai has not fallen below a†.

In the above framework we restrict ourselves to a numerical evaluation of survival prob-
ability. However, up to now variability was considered only for variable a, as in Sec. 8.3
temporal spread σ is still considered to be a deterministic variable. When a neuron receives
a packet of spikes, the temporal spread of spike times determines the neuronal response. In
the deterministic dynamics, temporal spread is described by the standard deviation σ of the
temporal distribution individual spike times are drawn from. Nevertheless, the temporal
spread of a particular realization of spike times can considerably deviate from σ. Hence,
the transmission function T (a, σ) may over- or underestimate the effectiveness of an input
packet, depending on the actual configuration of spike times in the packet. We can obtain
a better estimate of the relevant temporal spread by recomputing σ on the basis of the set
of spike times in each realization. From this point of view, spike time is a random variable
G[σ] drawn from a Gaussian distribution with standard deviation σ

G[σ] ∼ 1

σ
√

2π
e
− t2

2σ2 . (8.21)

Time zero is the expected response time of the preceding neuron group emitting the pulse
packet. The delay between the emission of the packet and the time of impact is of no
importance because we assume synaptic delays to be homogeneous and non-fluctuating.
Similar to (8.19) we introduce a new operator S(a, σ) estimating the temporal spread of the
a random spike times in the packet

S(a, σ) = (a,

√√√√1

a

a∑
k=1

G2
k[σ]). (8.22)

This time, the operator leaves the first component unchanged and operates exclusively on
the second component. The sequence of operations in one iteration step now reads

(ai, σi) (α, σ) (ai+1, σ) (ai+1, σi+1)
T Aw S . (8.23)

The formal expression of survival probability taking into account variability in a and σ finally
is

δl(a, σ) =

{
0 ; ∃ ai < a† with (ai, σi) =

[
S ◦ Aw ◦ T

]i
(a, σ), i ∈ 0 . . . l

1 ; else
(8.24)

Sw,l(a, σ) =
〈
δl(a, σ)

〉
trials

. (8.25)

Fig. 8.7 and Fig. 8.8 are computed with the newly defined stochastic process. Comparison
of the upper row of Fig. 8.8 with Fig. 8.6 shows that the variability of a in the vicinity of
the separatrix (8.17) already explains most of the variability of the system. The contour
plots (Fig. 8.8, lower row) represent a smoothed version of the original data highlighting
the broadening of the up-slope in survival probability with decreasing w. Comparison of
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Figure 8.8 Effect of discretization by possible spike counts 1 . . . w on the slope of survival probability. Same
arrangement and representation as in Fig. 8.7. For comparison the state space is sampled using the same
relative spacing of the grid in all cases (columns from left to right: w = 100, 20, 10). Horizontal resolution is
0.25 ms as in Fig. 8.7. 10 steps are used to sample the range of spike counts (vertical). This is the maximal
number of steps available at a group size of w = 10 (right column identical to right column in Fig. 8.7).

corresponding panels in the upper and the lower row convinces us that the arbitrary selection
of contours has not distorted the visual impression of the raw data at a given w. Note, that
in contrast to the approach taken in (8.17), the separatrix of the deterministic mapping
does not enter the computation of survival probability in (8.25). It is therefore reassuring
that the curve in state space where survival probability abruptly increases, coincides with the
separatrix of the deterministic mapping (Chap. 4). A sharp transition in survival probability
defines the basin of attraction for synchronous activity.

With decreasing group size w, the number of support points at which for a given σ
survival probability can be computed naturally decreases because of the restriction of spike
counts to integer values 1 . . . w. The question arises whether the w-dependence of the slope
of survival probability observed in Fig. 8.6 and Fig. 8.7 is trivially due to this choice of initial
conditions. In Fig. 8.8, the number of support points is artificially restricted to 10 for all 3
group sizes. While the discretization is now clearly visible also for w = 100 (compare upper
left panels of Fig. 8.8 and Fig. 8.7), it does not explain the changes in the slope of survival
probability. Thus, we have confirmed that the increase in variability with decreasing group
size is an inherent property of the system

The results on survival probability are in good correspondence with results from network
simulations (Gewaltig, Diesmann, & Aertsen, 2001b). Now, in principle, also the variability
of individual trajectories (cf. Gewaltig, Diesmann, & Aertsen, 2001b) can be investigated.
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However, a detailed comparison of our stochastic mapping with results from network simu-
lations is outside the scope of the present study.

Let us end the chapter with a discussion of the limitations of our analysis of PSP am-
plitude. The comparison of different PSP amplitudes is based on the scaling property (8.7).
The transmission function obtained for a particular PSP amplitude can be rescaled to de-
scribe the dynamics for systems with different PSP amplitudes. The procedure by which
the transmission function is obtained (Chap. 3) assumes that all input packets (a, σ) cause
a statistically equivalent neuronal response. In the limit of small PSP amplitudes, this con-
dition is fulfilled because the packet potential does no longer depend on the detailed spike
time configuration. We have exploited this property in Chap. 6, where the packet poten-
tial is expressed by the convolution of the PSP and the Gaussian spike time distribution.
The situation changes when group size is reduced to a few neurons and PSP amplitudes
are large. In the absence of membrane potential fluctuations, the timing of the response
spike is completely determined by the timing of the input spikes. Thus, the distribution of
response spikes as measured by the transmission function originates from differences in the
packet potentials caused by individual spike time configurations. However, the situation in
the feed-forward network is dramatically different. Every neuron in a group receives exactly
the same configuration of input spikes (the effect is washed out for randomly diluted chains,
Hehl, Aertsen, & Diesmann, 2001a). Thus, all neurons generate a response spike at the
same point in time. In other words, on the ms time scale, the transmission function ignores
the fact that the neurons of a group receive correlated spike input. The average over trials
entering the transmission function overestimates the distribution of response spikes. The
difference increases with decreasing group size. Here, the contribution of individual PSPs
to the packet potential increases. Therefore, we have to expect deviations from our predic-
tions at small group sizes even if the scaling property (8.7) is fulfilled. In the presence of
membrane potential fluctuations, the transmission function captures the combined effect of
the different spike time configurations and the different membrane potential time courses in
different trials. Indeed, in the network the membrane potential is different for every neuron
in the group. The configuration of input spikes, however, is identical. Nevertheless, the
transmission function successfully describes the neuronal response at moderate group sizes
because the temporal spread of the input spikes is small compared to the time constants
of the PSP. Details of the spike time configuration are smoothed by convolution with the
PSP. In addition, the temporal spread of response spikes caused by realistic membrane po-
tential fluctuations is much larger than the temporal spread caused by different input spike
configurations rendering the latter irrelevant.

A more elaborate procedure for constructing the transmission function should first de-
termine response parameters for individual input spike configurations and only in a second
step average response parameters over input spike configurations to arrive at (α, σout). The
effect of PSP amplitude (subject to the scaling law) on the locking of synchronous activity
is discussed in Sec. 10.1.2.



Chapter 9

Slow Fluctuations Model

The transmission function for synchronous input introduced in Chap. 3 allowed us to inves-
tigate the dependence of the synchronization dynamics on several physiologically relevant
measures. Parameters describing network structure like the number of neurons per group
w (Chap. 4, see also Chap. 8 for the role of PSP amplitude) are relevant for network dy-
namics (4.2) but do not alter the transmission function itself. In contrast, the magnitude of
membrane potential fluctuations σV (Chap. 5) and the rise time of the PSP τ0 (Chap. 7) de-
termine the shape of the transmission function. The limit of vanishing membrane potential
fluctuations (Chap. 6) allowed us to derive that the shape of the PSP controls the border
of the basin of attraction for synchronous activity. In addition, the basic dependence of
the activation curves on input spread and the potentially constructive effect of background
activity are uncovered in the limit of vanishing σV . However, in this limit no statements
can be made about the temporal spread of response spikes, and also the detailed shape of
the activation curves remains unexplained. In order to gain some insight into the origin
of the transmission function, an analytical description is desired that is parameterized by
physiologically interpretable parameters σV and τ0. In his 1991 monograph Abeles states
that for a large number of synchronized input spikes, the temporal spread of the response
spike σδ should be governed by

σδ =
1

D̄
σV , (9.1)

where D̄ is the average derivative of the up-slope of the packet potential. The model is
based on the assumption that on the time-scale of the rise time of the PSP the (background)
membrane potential is only slowly fluctuating. The input packet is assumed to cause a supra-
threshold response (say, packet potential amplitude being twice the distance from membrane
potential mean to spike threshold), independent of the initial value of the membrane poten-
tial. Under these conditions, spikes occur on the up-slope of the packet potential and, thus,
the random variable spike time δ is a function of the random variable V . If the up-slope is
sufficiently well described by D̄, the distribution of V is linearly mapped to the distribution
of δ, and therefore we obtain (9.1). The present chapter generalizes this model to arbitrary
input packets. The distribution of spike times, and therefore the temporal spread as well
as the response probability can be computed. While the model explains important aspects
of the transmission function, especially the interaction between membrane potential fluctu-
ations and PSP rise time, significant deviations from the transmission function obtained in

101
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simulations of the full I&F model (Chap. 3) remain. A comparison of the two models using
the concept of spike intensity (Sec. 9.5) allows us to discuss the model components which a
complete theory of pulse packet transmission needs to include.

9.1 Spike Generation on Packet Potential Up-slope

Consider the membrane potential V caused by background activity to be a random variable
which varies much slower in time than the membrane potential excursion caused by an
incoming pulse packet. The threshold condition reads

θ = V + U(t), (9.2)

where U(t) denotes the packet potential. The origin of time t can be defined as the point
in time where the mean of the pulse density causing the packet potential reaches the target
neuron (in Chap. 6 there was no need to specify the origin, because we were only interested
in the maximum of the packet potential, not in its timing). Because we assumed the pulse
density to be a Gaussian distribution, U(t) deviates from zero for arbitrary times before
t = 0. In practice, however, the limited number of spikes in a pulse packet and the mem-
brane potential noise restricts U(t) to some finite time interval. At the point in time where
the neuron first experiences an appreciable increase in membrane potential caused by an in-
coming pulse packet, the membrane potential due to background activity has some random
value V . V is considered to be constant over the time course of U(t). In this situation, (9.2)
determines the time of threshold crossing δ (if V + U(t) becomes supra-threshold at all)

δ = U−1(θ − V ) for Û ≥ θ − V . (9.3)

Thus, the time of threshold crossing δ is a function of the random variable V and, therefore,
by itself a random variable. Note that as a consequence of our assumption that V is constant
over the time course of U(t), spikes can occur only on the rising phase of the packet potential.
Following the impact of a pulse packet, the membrane potential covers a limited interval of
membrane potential values V, V + Û . Each value is visited twice: first on the rising phase
of the packet potential and later during the decay of the potential. If, and only if, the
threshold value is included in the interval, a response spike is generated. The threshold is
reached first on the rising phase, and therefore it is here where the spike will be generated.
If we assume that the refractoriness of the neuron is longer than the time span over which
V + U(t) is above threshold, no further spike is generated. Under this condition, the spike
time δ is a function of the value of the membrane potential. The task now is to compute the
probability density of spike times ρ(δ) from the probability density of membrane potential
values V . The two densities are connected by the fundamental theorem on functions of a
random variable (Papoulis, 1991; Chap. 5).

ρδ(δ) =
ρV (V )∣∣ d

dV
U−1(θ − V )

∣∣ . (9.4)

Due to the presence of the spike threshold, ρV (V ) is not a Gaussian distribution as predicted
from a free shot-noise process (Sec. 2.3). We compensate for the presence of the boundary



9.1 Spike Generation on Packet Potential Up-slope 103

-20 0 20 40
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

5

10

15

20

25

σ (ms)t (ms)

τ
σ

(m
s)

υ
σ

A B

Figure 9.1 Rise time approximation for packet potential. A The gray curve shows the characteristic
membrane potential excursion υσ, caused by an incoming pulse packet (here, σ = 2 ms for a post-synaptic
potential with rise time τ0 = 1.7 ms). Rise time of a packet potential is defined by a straight line (solid)
starting at the peak of υσ(t) and intersecting the up-slope at half height. The temporal distance between the
point in time where the line intersects the abscissa and the point in time at which the peak is reached is called
rise time τσ, (9.5). B Dependence of packet potential rise time on input spread σ (solid curve). Applying
the definition of rise time used in A to a Gaussian yields 2

√
2 ln 2σ. An explicit expression approximating

τσ (gray curve) is given by 2
√

2 ln 2σ + τ0, (9.24). For comparison, the definition used in A is also applied
to the down-slope of υσ (dashed curves in both panels).

by renormalizing the truncated Gaussian on the interval (−∞, θ). In the following the
normalization factor is omitted from the equations for clarity. In addition the Gaussian is
distorted by the AHP following a spike, the distortion depending on the details of the AHP
model (e.g. reset to V0, cf. Fig. 2.6) and on the spike rate. Exploiting the assumption we
made throughout the present work that we are operating in a regime of low spontaneous
firing rates, this distortion is neglected. With the same argument, the normalization factor
described above is close to unity.

To obtain insight in the properties of (9.4) and to avoid the complication that we have to
relate the time of threshold crossing to the origin of the incoming pulse packet, we introduce
a linear approximation of the rising phase of the packet potential. However, expressions
for (α, σout) can also be derived for arbitrary shapes of the rising phase (Sec. 9.5). The
requirement is that a suitable expression for the root of (θ − V )− U(t) (9.3) can be found.
We define the rise time of the packet potential τσ as twice the temporal distance of the
maximum of the characteristic membrane potential excursion υσ (6.10) to its half height in
the rising phase:

υσ(t̂− 1

2
τσ) =

1

2
υ̂σ, τσ > 0. (9.5)

Here, t̂ denotes the position of the maximum of υσ(t). The approximation of the rising phase
is

U(t) ≈ aûυ̂σ ·
1

τσ

t, (9.6)

where we have made the variable substitution t + (τσ − t̂ ) → t, such that the maximum is
reached at τσ and the origin is at the onset of the approximated packet potential (9.6). By
solving (9.6) for t and inserting into (9.3) we obtain

δ(V ) =
τσ

aûυ̂σ

(θ − V ) , (9.7)
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and ∣∣∣∣ d

dV
U−1(θ − V )

∣∣∣∣ =
τσ

aûυ̂σ

. (9.8)

Therefore, the corresponding probability density for δ is

ρδ(δ) =
aûυ̂σ

τσ

· ρV

(
θ − aûυ̂σ

τσ

δ

)
, 0 ≤ δ ≤ τσ. (9.9)

The argument of ρV is only a scaling, followed by shifting of δ. Moreover, the factor of ρV

does not depend on δ. Thus, if the rising phase of the packet potential can be approximated
by a linear slope, ρδ is a Gaussian. Within our simplified model, ρδ describes the spike density
in response to an incoming pulse packet. The fact that the Gaussian input packet results in
a Gaussian response density justifies our interpretation of the transmission function as an
iterative mapping, and the description of the pulse packet by just two parameters: area and
standard deviation (we return to this point in Chap. 10). Note that the Gaussian shape of
the response packet does not stem from the Gaussian shape of the input packet. The input
packet only enters with the linear slope of the packet potential. It is the Gaussian nature of
the membrane potential fluctuations which causes the response packet to be Gaussian. The
mechanism controlling the transmission of synchronous activity has an intrinsic tendency to
generate Gaussian shaped pulse packets.

However, in general we can not assume that a packet potential reaches threshold for
arbitrarily low values of V . Only under this condition the response density would indeed be
a complete Gaussian and the response probability would be unity. The lowest membrane
potential value Vτσ at which a spike can be generated at all is given by the maximum of the
packet potential

θ − Vτσ = aûυ̂σ. (9.10)

Here, the spike occurs at the latest possible point in time τσ. If Vτσ � η, Vτσ is already in
the lower tail of the distribution of membrane potential values, and the response probability
is close to 1. If not, however, only part of the membrane potential distribution is accessible
for the packet potential, and, hence, the response probability (using (9.9)) is

α =

∫ τσ

0

ρδ(δ) dδ =

∫ θ

θ−aûυ̂σ

ρV (V ) dV (9.11)

= erf

[
θ − η

σV

]
− erf

[
θ − η − aûυ̂σ

σV

]
, (9.12)

with erf denoting the error function (e.g. Papoulis, 1991). Likewise, we compute the mean
response time ηδ

ηδ =
1

α

∫ τσ

0

δρδ(δ) dδ (9.13)

=

(
τσ

aûυ̂σ

)[
θ − 1

α

∫ θ

θ−aûυ̂σ

V ρV (V ) dV

]
(9.14)

=

(
τσ

aûυ̂σ

)[
(θ − η)− σV

α
√

2π

(
e
− (θ−η−aûυ̂σ)2

2σ2
V − e

− (θ−η)2

2σ2
V

)]
(9.15)
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and the standard deviation σδ of the truncated Gaussian

σ2
δ =

1

α

∫ τσ

0

(δ − ηδ)
2ρδ(δ) dδ (9.16)

=

(
τσ

aûυ̂σ

)2[
−
(

(θ − η)−
(

aûυ̂σ

τσ

)
ηδ

)2

+
1

α

∫ θ

θ−aûυ̂σ

(V − η)2ρV (V ) dV

] (9.17)

=

(
τσ

aûυ̂σ

)2[
−
(

(θ − η)−
(

aûυ̂σ

τσ

)
ηδ

)2

+ σ2
V

(
1 +

1

α
√

2π

(
θ − η − aûυ̂σ

σV

e
− (θ−η−aûυ̂σ)2

2σ2
V

− θ − η

σV

e
− (θ−η)2

2σ2
V

))]
.

(9.18)

Thus, within our simplified model we now have expressions to compute the output pair(
α, σout = σδ

)
as a function of the input pair

(
ain = a, σin = σ

)
on the basis of the shape

of the post-synaptic potential and the membrane potential statistics.

9.2 Activation Curves

Let us now compare the resulting transmission function (Fig. 9.2) with the transmission
function we obtain in simulations of the I&F model (Fig. 5.2). The activation curves (left
column) are in good agreement with the simulation results. Using (9.12) it can easily be
shown that the point of inflection occurs at

d2 α

d a2
= 0 ⇒ a =

θ − η

ûυ̂σ

. (9.19)

A larger input spread σin leads to a smaller characteristic amplitude υ̂σ. Thus, with increasing
σin the point of inflection occurs at larger values of input activity a. At the point of inflection,
the response probability is 0.5. We now understand the origin of this value (see Sec. 6.5).
Here, the amplitude of the packet potential just covers the distance from spike threshold
to the mean of the membrane potential. Thus, if the distribution of membrane potential
values is not considerably truncated by the threshold, a response spike is generated for 50%
of all possible membrane potential values. The input spread determines the characteristic
amplitude and, thereby, effectively scales the input activity axis. At a given a, the response
probability declines with increasing σin because the amplitude of the packet potential drops
and, consequently, the fraction of all membrane potential values which allow for a response
spike. The rows in Fig. 9.2 illustrate how the activation curves (left column) depend on
the amount of membrane potential fluctuations. For small (amplitude below θ − η) input
packets, increased fluctuations σV have a constructive effect: at a given a the probability
to hit a membrane potential value close enough to threshold is increased. The situation is
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Figure 9.2 Dependence of transmission function on membrane potential fluctuations in the slow fluctuations
model. Same parameters and arrangement as in the corresponding figure for the I&F model (Fig. 5.2). The
standard deviation of the fluctuations is increasing from top to bottom σV = 1.5, 2.5, 3.5, 4.5 mV (four rows).
The left column displays the α(ain) section of the transmission function. The four curves represent different
constant input spread σin = 0, 1, 3, 5 ms (from left to right). The right column displays the σout(σin) section
of the transmission function. The four curves represent different constant input activity ain = 45, 65, 75, 115
(from top to bottom). The dashed line indicates the diagonal.
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reversed for large (amplitude above θ − η) input packets. Here, an increase in fluctuations
increases the probability that the membrane potential is far away from the threshold. Thus,
the probability that for a given input packet the membrane potential is close enough to
threshold to cause a response spike is decreased.

9.3 Output Spread

The overall shape of the σout-curves (Fig. 9.2, right column) has many characteristics of the
curves obtained for the full I&F model. For sufficiently strong input packets, the integral
(9.17) extends over most of the Gaussian membrane potential distribution and we have

σδ =

(
τσ

aûυ̂σ

)
σV . (9.20)

The σout-curves show a finite spread, even at full input synchronization. This is caused by
the finite rise time of the post-synaptic potential τ0. At σin = 0 ms, (9.20) reduces to

σδ =

(
τ0

aû

)
σV . (9.21)

Thus, the finite slope of the packet potential at full input synchronization determines the
output spread. We have recomputed Abeles’ approximation (9.1), verified in Sec. 7.1 on
page 75. Output spread is smaller for a larger number of input spikes, and increases with
membrane potential fluctuations. Above a certain value, however, the input spread is no
longer larger than the output spread

σδ < σin. (9.22)

With (9.20) this leads to:
τσ

σin

<
aûυ̂σ

σV

. (9.23)

This inequality is the condition under which strong input packets exhibit a synchronizing
behavior. It relates the temporal domain (l.h.s.) to the membrane potential domain (r.h.s.).
Synchronization occurs if the ratio of rise time and temporal spread of the input packet
is smaller than the ratio of the maximum of the membrane potential excursion and the
membrane potential fluctuations.

At vanishing input spread, the rise time of the packet potential equals the rise time of the
post-synaptic potential τ0. At large σin, the rise time of the packet potential is dominated
by the rise time of the Gaussian. Thus, we can use the sum of the two rise times (that
of the PSP and that of the Gaussian) as an approximation for the rise time of the packet
potential. The rise time of the Gaussian we define by the half height approximation we
already introduced for the packet potential above (see (9.5), Fig. 9.1B for illustration)

τσ ≈ 2
√

2 ln 2σ + τ0. (9.24)
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By inserting the approximations for υ̂σ (6.17) and τσ into (9.20) we obtain

σδ =
σV

√
2π

aF 1

(
2
√

2 ln 2σin + τ0

)
σin. (9.25)

Thus, the strong packet approximation (9.25) predicts that σδ depends on σin in a quadratic
manner. For large enough input spread, the output spread eventually surpasses the input
spread. The condition for synchronization (9.22) reads

σin <

(
aF 1

σV

√
2π
− τ0

)
1

2
√

2 ln 2
. (9.26)

(9.23) is valid for strong input packets. In this regime, the r.h.s. of (9.26) is positive. With
all other parameters held constant, synchronization is only possible for an input spread below
a critical value. However, for a given input spread σin, the condition for synchronization can
always be met by adopting a large enough number of input spikes a.

In contrast to the strong packet approximation (9.20), both simulations (Fig. 5.2) and
the slow fluctuations model (Fig. 9.2) show that for large σin, the output spread does not
quadratically increase with input spread. For larger input spread, σδ increases linearly with
σin, the slope depending on the membrane potential fluctuations. Interestingly, the slope is
less than unity, with the result that for large σin the system exhibits a synchronizing behavior
even for weak (low a, large σin) input packets. Here, the strong packet approximation breaks
down, because a new mechanism limiting the output spread comes into play. By the con-
struction of our process, spikes can only be generated on the up-slope of the packet potential.
Therefore, the maximal spread occurs when the response spikes are evenly distributed over
the time span of the up-slope (rise time):

σout =
1

2
√

3
τσ. (9.27)

The factor 1/(2
√

3) is the standard deviation of a rectangular distribution extending over
the unit interval (e.g. [−1/2, +1/2], Nawrot, Aertsen, & Rotter, 1999). Using the rise time
approximation (9.24) we see that

σout =
1

2
√

3

(
2
√

2 ln 2σin + τ0

)
. (9.28)

Thus, the upper limit for the output spread is a linear function of the input spread. The
slope is well below 1, ensuring the synchronizing property of the system

σout ∝
√

2 ln 2

3
· σin (9.29)

∝ 0.68 · σin. (9.30)

Comparison of (9.28) with the synchronization condition (9.22) leads to the relationship

σout < σin for σin >
1

2(
√

3−
√

2 ln 2)
· τ0 (9.31)

> 1.11 · τ0. (9.32)
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According to this result, we expect the output spread to be smaller than the input spread
when the input spread is somewhat (by 11%) larger than the rise time of the post-synaptic
potential. Note that it is the rise time of the post-synaptic potential τ0 which appears in the
inequality, not the σin-dependent rise time of the packet potential τσ. Fig. 9.2 shows that the
inequality indeed holds for the slow fluctuations model. Simulation results of the full model
(Fig. 5.2) show that for packets with a low number of spikes and at large membrane potential
fluctuations, the intersection with the (σout = σin)-diagonal occurs at a temporal spread
considerably larger than τ0. However, the general property following from our considerations
that for large membrane potential fluctuations output spread saturates can also be observed
in the simulation results (cf. Fig. 5.2). The effects leading to further broadening not captured
by the slow fluctuations model are discussed below in Sec. 9.5.

9.4 Vanishing Fluctuations

We have seen so far that generally the output spread increases with increasing input spread.
However, for a given input spread there is always an input activity which leads to an output
spread smaller than the input spread (9.26). In addition, the maximal output spread for
our process is limited by the rise time of the PSP (9.27). Above a certain σin, σout is always
smaller than σin. For small membrane potential fluctuations we can observe additional
effects. First, output spread is low in general, well below our maximal spread estimation
(9.28). Second, for weak input packets (low a) we observe that after the initial increase,
output spread can reach a maximum and decrease again. The effect visible at σV = 1.5 mV
in the I&F simulation (see Fig. 5.2) is also clearly present in the simplified model (Fig. 9.2).
Curves for different constant numbers of input spikes cross each other. At a certain σin a
curve for a large number of spikes may have a larger output spread than a curve for a lower
number of input spikes.

The complex picture arises because at low membrane potential fluctuations we have a
competition of several mechanisms. An increase in input spread increases the rise time of
the packet potential and simultaneously causes a drop in amplitude. Both measures control
the factor connecting ρV with ρδ in (9.9). The effects on the standard deviation of ρδ (output
spread σδ) are studied above (9.20) using the assumption that the full shape of the membrane
potential distribution is accessible by the packet potential. To understand the behavior of
σδ at low membrane potential fluctuations we have to study changes in the accessible shape
of ρV itself.

Let us consider packet potentials with amplitudes comparable to the distance from mem-
brane potential mean to spike threshold θ − η. At small membrane potential fluctuations
the distribution of membrane potential values does not evenly fill the space between mem-
brane potential mean and threshold. Thus, an incoming pulse packet has a low probability
to hit a membrane potential value V close to threshold and, consequently, to generate a
response spike close to the onset of the packet potential. The probability to hit a membrane
potential value around the mean of the membrane potential, hence in the peak region of the
membrane potential distribution, is much larger. If a spike is generated at all, it is in this
case generated late in the rising phase of the packet potential. Going downwards from a
membrane potential value close to threshold, the slope of the Gaussian membrane potential
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Figure 9.3 Model for the interaction of small membrane potential fluctuations and packet potentials of
moderate amplitude. A The rectangular distribution ρV (gray) of membrane potential V (vertical) is
centered around the mean η (lower dashed line). The part of the distribution having a smaller distance
to spike threshold θ (upper dashed line) than η is labeld “+”, the part having a larger distance “-”. The
width of ρV is small compared to θ − η. The packet potential (thick curve) is drawn upside down with an
offset of θ (minimum of thick curve represents peak of packet potential). The projection (thin lines) of the
part of ρV accessible by the packet potential onto the temporal axis (horizontal) defines the distribution of
response spikes ρδ (black rectangle). The highest existing V results in the earliest response time δ (thin
line starting at upper margin of gray rectangle and ending at left margin of black rectangle). The lowest
reachable V results in the latest response time (thin line connecting the gray rectangle with the right margin
of the black rectangle via the peak of the packet potential). B Different representation of the situation in A.
Membrane potential is constant at η (lower dashed line), spike threshold is a random variable (distribution
indicated by gray rectangle) centered at θ (upper dashed line). The packet potential (thick curve) is added
to the mean membrane potential η. A low threshold in B corresponds to a high membrane potential in A
(“+”). An increase in σin has two competing effects: broadening of ρδ because of increased rise time of the
packet potential, narrowing of ρδ because of decreased amplitude.

probability density is small first, increases rapidly until the point of inflection is reached
and declines again until the maximum of the probability density is reached at η. ρδ is only
a linear transformation of the part of ρV accessible by the packet potential. Thus, ρδ has
a regime of low response probability and a regime of high response probability. Again we
can introduce an approximation valid in a specific parameter regime to gain insight into the
behavior of the full equation (9.18).

Consider the membrane potential probability density to be of a rectangular shape cen-
tered at η. In terms of its standard deviation it extends

√
3σV into the direction of the

threshold value with equal magnitude into the direction of resting potential. The situation
is illustrated in Fig. 9.3A. We construct the firing probability density by first drawing the
packet potential upside down with the origin at threshold value. Let us assume that the
amplitude of the packet potential does not extend into the tail of the membrane potential
distribution below η −

√
3σV . In this case the latest point in time (and lowest membrane

potential value) at which a spike occurs is given by τσ. The first point in time δl is de-
termined by the largest existing membrane potential value η +

√
3σV and the slope of the

packet potential

θ − (η +
√

3σV ) =
aûυ̂σ

τσ

δl. (9.33)
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Thus, the standard deviation of the response probability density is given by

σδ =
1

2
√

3
(τσ − δl) (9.34)

=
1

2
√

3

(
1− (θ − η)−

√
3σV

aûυ̂σ

)
τσ. (9.35)

Here, the region of low probability density for large membrane potential values is approxi-
mated by 0 and the region of high probability density by a constant value. Only the region
of high probability density contributes to the standard deviation.

In the expression for maximal output spread (9.27) σδ is determined by the rise time
of the packet potential τσ. This dependency reoccurs as the first term in the parenthesized
expression of (9.35). The second term is controlled by the characteristic amplitude υ̂σ;
it reduces the rise time to the range effectively available for the generation of response
spikes. (9.35) is a manifestation of the competing effects determining the development of
output spread with increasing σin. Increasing rise time increases the output spread. The
declining characteristic amplitude, however, decreases the output spread. Insertion of the
approximations for τσ (9.24) and υ̂σ (6.17) into (9.35) exhibits the quadratic dependence of
σout on σin with the leading coefficient being negative. At small σin the increase in rise time
dominates and the output spread increases until it reaches a maximum. At larger σin the
effect of the declining amplitude dominates and output spread decreases again.

A different way to visualize the model of background fluctuations appropriate in this
parameter regime is shown in Fig. 9.3B. Here, the rectangular distribution of membrane
potential values is shown as a gray “band” centered at the threshold θ. The packet potential
is now drawn in its natural orientation with the origin at mean membrane potential η. Only
the part of the packet potential extending into the noise band can cause a response spike
and consequently its temporal spread is restricted to the time interval which the up-slope of
the packet potential spends in the noise band.

The above approximation was constructed for packet potentials of moderate amplitude
which reach well into the peak region of the membrane potential distribution. The model
cannot be valid for small packet potentials which live in the tail of the membrane potential
distribution. Here, a new approximation needs to be developed. However, the regime of
small packet potentials is of no importance for the stability of synchronous activity and the
synchronization dynamics, and is therefore outside the scope of the present study. Outside
the basin of attraction for synchronous activity (Fig. 4.3), any initial activity (a, σ) eventually
reaches the regime where pulse packets contain, in the above sense, only a low number of
spikes a. For the completion of the description of our system it is an interesting question
where the attractor for vanishing activity, suggested by our limited data (cf. Fig. 5.3), is
located and how its location depends on the membrane potential fluctuations σV . The
dependence of the trajectories leading toward vanishing activity on σV in Fig. 5.3 clearly
demonstrates the role of membrane potential fluctuations. In the next and final section of
this chapter we discuss limitations of the slow fluctuations model, which turn out to be
particularly relevant at low activity.
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Figure 9.4 Comparison of the time course of the packet potential and the resulting spike response of the
integrate-and-fire model. Panels showing data for extreme input packets (a, σ) are arranged as the variables
of (a, σ)-space (cf. Fig. 4.3): a vertical, bottom (45) to top (115) and σ horizontal, left (0 ms) to right (5 ms).
Thin black curve is the membrane potential excursion (packet potential) U caused by the incoming pulse
packet (a, σ). The origin of the temporal axes is defined by the center of mass of the distribution the input
spikes are drawn from. The gray area represents the time course of the neuronal spike response averaged
over 10, 000 repetitions as a histogram with temporal resolution 0.1 ms. The histogram is normalized by
the number of repetitions and temporal resolution, expressing the response (vertical axes) in units of spike
rate. The dashed vertical line indicates the onset of the response (see Fig. 3.3 for definition). To the left
of the onset the gray histogram and the thick black curve are identical, demonstrating a spontaneous firing
rate of 10.3 Hz (caused by membrane potential fluctuations σV = 4.5 mV). To the right of the onset, the
thick black curve represents a histogram ρδ of the first spike in the response. The peaks of the histograms
for perfectly synchronized input (left column) are truncated, peak values are: 350Hz (bottom) and 1700 Hz
(top). Maximal U (115 · 0.14 mV, upper left) is scaled to fit displayed range of ρδ (16.1 mV corresponds
to 110 Hz). Identical scaling for ρδ and U in all panels. The case of large σV is chosen to highlight the
occurrence of second spikes (cf. Fig. 3.3).

9.5 Relation to Intensity Models

The slow fluctuations model described above explains important features of the response
of the full integrate-and-fire system to synchronous input. The model allows us to express
the probability density of the response spike directly in terms of the parameters of the I&F
system. No adjustment of arbitrary parameters is required. Being restricted to the up-slope
of the packet potential, the model underestimates the temporal spread of response spikes
especially for weak (small a) input packets (cf. Fig. 9.2). There is another class of models
of spike response which we will call intensity models. Here, the instantaneous probability
density to emit a spike is described by an intensity f(δ) = f(U(δ)) depending only on the
contribution U to the total membrane potential caused by the input under consideration.
The effects of the unobserved background activity on membrane potential and, potentially,
also other sources of noise are summarized in the shape of f .

Let us now assume that before the input packet arrives the neuron is in a state of low
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spontaneous firing rate. The probability density of the first response spike ρδ, as it would
be observed by averaging over many repetitions of the experiment, is then given by

ρδ(δ) = f(δ)(1−
∫ δ

0

ρδ(t)dt). (9.36)

Thus, the probability density of a response spike at time δ is given by the intensity f at that
point in time provided that the neuron has not already emitted a spike before. Relation
(9.36) clarifies why f is sometimes also called free intensity for better distinction of ρδ and
f . The term

Q(δ) = 1−
∫ δ

0

ρδ(t)dt (9.37)

is called survival probability or survivor function. It is a standard result of renewal theory
(Cox, 1967) that ρδ can also be written as

ρδ(δ) = f(δ) exp(−
∫ δ

0

f(t)dt) (9.38)

removing the recursion in (9.36). The theory sketched above is developed in (Cox, 1967) and
generalized for application to neuronal processes in (Rotter, 1994). Gewaltig (2000) was able
to remove the restriction to the first spike and to consistently incorporate an equilibrium
probability density by introducing a finite refractory kernel.

The concept of an intensity f(U) raises two questions, regarding the nature of spike
generation and the relationship between the different types of models. First, the slow noise
model is based on the observation that spikes are much more likely to occur on the up-slope
than on the down-slope of the packet potential. Slow fluctuations naturally introduces this
asymmetry: threshold cannot be crossed on the down-slope because the required random
membrane potential V implies that θ would already have been crossed on the up-slope. In
the intensity model a unique intensity f is assigned to a particular U independent of its
occurrence on the up-slope or on the down-slope. However, our observable is spike density
ρδ, and here asymmetry is introduced by the effect of the survivor function (9.36). The fact
that spikes do occur on the down-slope requires us to ask whether the observed asymmetry
can be explained by (9.36), and, consequently, f(U) constitutes a more complete model
of spike generation than the slow fluctuations approach. The second question is to what
extent far the two models are compatible. Whereas in the case of the slow fluctuations
model we can derive ρδ directly from the assumptions, we do not have a direct route to
construct an appropriate f (see Abeles, 1991; Gewaltig, Diesmann, Rotter, & Aertsen, 1997;
Gewaltig, 2000; Plesser & Gerstner, 2000 for discussion). If the slow fluctuations approach
can mathematically be mapped to an intensity model this gives us insight into the relevant
ingredients of f .

Fig. 9.4 illustrates four characteristic spike probability densities in comparison to the
time course of the packet potential. For a strong and well synchronized input packet (upper
left) spikes occur on the narrow up-slope of the packet potential. Following the high spike
density and synchronization on the up-slope, spike density drops below the spontaneous
level because here the neuron is refractory in most of the trials. After the neuron recovers
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from refractoriness, activity does not exceed the spontaneous level and is composed of sec-
ond spikes. A few first spike responses occur on the down-slope in the peak region of the
packet potential. For a weaker input packet with identical synchronization (lower left) a
trough caused by refractoriness cannot be observed. Now, a considerable percentage of the
response spikes occurs on the down-slope of the packet potential. Again, second spikes do
not contribute to the shape of the peak in spike density. A strong but dispersed input packet
(upper right) results in an almost symmetric probability density. The peak in probability
density occurs on the up-slope of the packet potential, close to the point of inflection of the
voltage excursion. Second spikes occur on the down-slope of the packet potential. While at
full synchronization of the input (upper left) the synchronization of the first response spikes
causes a clear separation of the distributions of first and second spikes, the two distributions
merge in the case of large input jitter (upper right). Note that the presence of second spikes
does not explain the deviations of the slow fluctuations model from the I&F simulations.
Only first spikes enter the transmission function for synchronous input (Chap. 3). Thus,
deviations must be explained in terms of the probability density for first spikes. Weak and
dispersed input packets (Fig. 9.4, lower right) cause only a small excursion in probability.
At the same voltage, the spike probability density on the down-slope of the packet potential
is of the same order as on the up-slope. In Fig. 9.4 the origin of the temporal axes is defined
by the time of impact of the center of mass of the input packet. Therefore input packets
with large temporal spread (right column) can cause deviations of ρδ from the spontaneous
level at negative times.

Having made the above observations, let us now try to interpret the histograms of Fig. 9.4
in terms of our simple intensity model (9.36). Given the histogram of the first spikes ρδ we
can write (9.36) as

f(δ) =
ρδ(δ)

Q(δ)
. (9.39)

Here, the origin of δ is defined as the point in time where the collection of the first response
spikes starts. In principle, it is sufficient to place the origin of δ at an arbitrary point in
time where the input packet has not already affected the probability density. In the regime
of spontaneous spiking, intensity f is a constant, with (9.38) leading to an exponentially
decaying probability density. Thus, locating δ = 0 ms at a point in time long before the
response to the input packet occurs reduces the probability to observe the first spike in
the regime of interest. With a finite amount of data (repetitions) available, f can still be
computed, however, the accuracy of the estimate may considerably be degraded. Therefore,
we position the origin at the onset of the response. This onset was already introduced in
Chap. 3 to extract response probability α and temporal spread of the response σout.

In the histograms for large input spread (Fig. 9.4, right column) the selected point in
time of the onset seems to be somewhat arbitrary. However, one should be reminded that
the histogram shows the raw simulation data. In contrast, the onset is estimated from a
smoothed version of the histogram to improve robustness.

Fig. 9.5A shows the survivor functions Q(δ) computed from the histograms in Fig. 9.4.
The steep decline in the left column reflects the narrowness of the excitation at full synchro-
nization of the input spikes. For a strong input packet (large a, upper left) the probability
that the neuron has not emitted a spike drops to zero after a few ms. For a weaker input
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Figure 9.5 Survivor function Q(δ) and intensity f(δ). A Probability to have not generated a response
spike until time δ measured from the onset of the response (computed from data shown in Fig. 9.4). Same
arrangement of graphs as in Fig. 9.4, number of input spikes a increases vertically, temporal spread σ
horizontally. Right endpoints of curves in left column indicate limit of data set (cf. shift of temporal axes
Fig. 9.4). In the first 30ms following the onset of the response the total drop in Q is determined by a and the
steepness of the decline by σ. B Intensity (black curve) compared to shape of packet potential U (gray area).
Data and arrangement of graphs correspond to A and Fig. 9.4. The peaks of f for perfectly synchronized
input (left column) are truncated, peak values are: 400 Hz (bottom) and 3000Hz (top). Maximal U (115 ·
0.14 mV, upper left) is scaled to fit displayed range of f (16.1 mV corresponds to 200 Hz). Identical scaling for
f and U in all panels. Fluctuations in f are due to the limited amount of data in the histograms determining
ρδ (cf. Fig. 9.4). Discretization by spike counts 0, 1, 2 (0.1 ms bin-width) clearly visible for δ > 10 ms in
upper left graph.

packet (small a, lower left) the initial decline is as rapid. However, there is a considerable
probability to survive the peak region of the packet potential. The picture is similar for
large input spread (right column). Here, the decline in Q is less steep. Independent of the
input packet, Q(δ) eventually goes to zero (not shown) because of the spontaneous spikes
resulting from background activity.

Having constructed probability density (Fig. 9.4) and survival probability (Fig. 9.5A)
we are now in a position to compute spike intensity f(δ) using (9.39). Results are shown
in Fig. 9.5B. The time course of f is surprisingly similar to the time course of ρδ. f rep-
resents the instantaneous excitability of the neuron, all effects of refractoriness entering ρδ

are removed. Thus, we can already conclude that refractoriness is not the main mechanism
limiting the temporal spread of the neuronal response to an incoming pulse packet. Further-
more, qualitative comparison of f(δ) with the time course of the packet potential reveals that
spike intensity cannot be represented as function of U(δ). At the same membrane potential
U , intensity is clearly larger on the up-slope of the packet potential than on the down-slope.

In Fig. 9.5B we have compared intensity f(δ) and membrane potential excursion U(δ)
by superposition of the two graphs involving arbitrary scaling of the relative amplitudes. In
order to get a more quantitative understanding of the dependence of f on the properties of
U(δ) we can eliminate time from the pair (f(δ), U(δ)) and study the implicitly defined graph
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Figure 9.6 Spike intensity f versus membrane potential excursion U . Same data and arrangement as
in Fig. 9.5B. Time is eliminated from the combination of f(δ) and U(δ) in Fig. 9.5B using the implicit
representation (f(δ), U(δ)). Starting at U = 0, intensity continuously increases on the up-slope of the packet
potential (ignoring fluctuations in f , see Fig. 9.5B), reaches a maximum before the peak in U is reached, and
continues to decline on the down-slope (on curve (f, U), time proceeds in clockwise fashion). For the same
value of U , f obtains larger values on the up-slope than on the down-slope of the packet potential (f is not
a function of U). On the up-slope, f obtains identical values for different values of U (f is not monotonous
in U). Curve for low number of input spikes and perfect synchronization (bottom left) gains higher peak
intensity but lower peak voltage as curve for large a and large σ (top right). Graphs are individually scaled
to show full extend of the hysteresis of (f, U) for each pair of input parameters (a, σ).

(f, U)ain,σin
. (9.40)

Results for our four parameter sets are shown in Fig. 9.6. While the range of values cov-
ered by (f, U) varies by more than an order of magnitude in f and a factor of 5 in U , a
pronounced hysteresis is observable in all four cases. Given an intensity function f(U), no
hysteresis should occur. Once the system has reached the peak amplitude in U , it should
return on the same path (f, U) it had taken on the up-slope of the packet potential. Com-
pared to the up-slope, intensity is much reduced on the down-slope of the packet potential.
In addition, for a given value of U the intensity on the up-slope is different for the differ-
ent input packets. Intensity is much higher for packet potentials with a rapid increase in
membrane potential (Fig. 9.6, left column). For packet potentials with a gentle increase
in packet potential (Fig. 9.6, right column), intensity increases with increasing membrane
potential. However, for packet potentials with a steep up-slope a clear derivative dependence
is observable. Intensity reaches its maximum in the region where the slope of the membrane
potential is maximal and returns to low values in the peak region of the packet potential. It
is instructive to compare the two cases for perfectly synchronized input packets (Fig. 9.6, left
column). With 45 input spikes (lower left panel) the packet potential reaches a maximum
value of about 6 mV. At the peak, intensity has already dropped off to 50 Hz. A strong
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Figure 9.7 Development of spike intensity in response to pulse packet input at different levels of membrane
potential fluctuations σV . B (f, U) curves of Fig. 9.6 combined into a single graph. Gray curves show data
for σ = 0ms (left column in Fig. 9.6, intensity of upper graph truncated), black curves for large σ (right
column in Fig. 9.6). Arrows indicate direction of time. At this scale, intensity on up- and down-slope caused
by (45, 5 ms) (bottom right graph in Fig. 9.6) cannot be differentiated (blackening between U = 0 . . . 4 mV).
A Same analysis and input parameters as in B for smaller σV (= 2.5 mV). Intensity is lower at small U
but reaches larger peak values (6000 Hz on truncated curve) compared to the corresponding curves in B
(σV = 4.5 mV) on the down-slope intensity is reduced. The figure illustrates the limited predictive power of
U concerning f .

packet with 115 spikes (upper left panel) causes an intensity of about 2000 Hz at 6 mV and
is still on its way to peak intensity.

Let us summarize our results for the intensity describing the response of the integrate-
and-fire model to pulse packet input by displaying the graphs for different input parameters
(a, σ) in a single diagram. Fig. 9.7B corresponds to the data shown in Fig. 9.6. The
range of different intensity values available at a single value of U now becomes apparent. A
well synchronized input packet with low packet potential amplitude (45, 0 ms) can generate
a larger peak intensity than an input packet causing a larger packet potential amplitude
but being less synchronized (115, 5 ms). There is intensity on the down-slope of the packet
potential, albeit on a much smaller scale than on the up-slope. Fig. 9.7A displays the
results for the same sets of input parameters but for our standard value for membrane
potential fluctuations σV = 2.5 mV. The most prominent difference between the two levels
of membrane potential fluctuations is the reduction in intensity on the down-slope for the
smaller σV . A possible explanation of the effect would be that larger fluctuations (σV =
4.5 mV compared to σV = 2.5 mV) increase the probability that threshold is reached on the
down-slope if the neuron failed to reach threshold on the up-slope. The response to input
packet (115, 5 ms) reaches a larger peak intensity at σV = 2.5 mV than at σV = 4.5 mV.
We already argued in Sec. 5.2 that the broader distribution of membrane potential values
at σV = 4.5 mV increases the probability that the input packet impinges on the neuron in
a state too polarized to reach threshold. The observed narrowing of f(U) for σV = 2.5 mV
compared to σV = 4.5 mV may be explained by the stronger concentration of membrane
potential values around the mean at σV = 2.5 mV.

We should reiterate that the effects summarized above are based on an analysis of the
free intensity and, therefore, cannot be explained by refractoriness. An intensity model
based only on the instantaneous value of membrane potential would collapse the observed
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Figure 9.8 Comparison of the time course of the packet potential and the resulting spike response of the
slow fluctuations model. Same input parameters and arrangement of panels as in Fig. 9.4, σV = 2.5 mV.
Dashed black curve is the membrane potential excursion (packet potential) U(δ) caused by the incoming
pulse packet (a, σ). The origin of the temporal axes is defined by the onset of packet potential up-slope
in linear approximation (9.5). Solid black curve is the spike probability density ρδ computed for the linear
up-slope, peak values (not shown) in left column are: 400 Hz (bottom) and 1100 Hz (top). Scaling of ρδ-axis
and relative scaling of ρδ and U identical to Fig. 9.4. For a large number of input spikes (top row), ρδ

exhibits a maximum on the up-slope. At the peak of the packet potential, ρδ obtains a non-zero value and
discontinuously drops to zero (by definition) for later times. The gray area represents the time course of the
spike probability density taking into account the detailed shape of the up-slope, peak values (not shown) are:
500 Hz (bottom left), 3100Hz (top left), and 130 Hz (top right). After reaching a maximum on the up-slope
of U , ρδ continuously declines before it vanishes at the peak of the packet potential in all cases.

complexity of Fig. 9.7 to a single curve (function) without hysteresis.

Intensity in the Slow Fluctuations Model

The slow fluctuations model yields an expression for spike probability density ρδ not involving
the concept of an intensity. One may ask the question if an analysis of this model in terms
of intensity gives us insight into the ingredients of a successful intensity function and aspects
of the integrate-and-fire dynamics that cannot be explained in the slow fluctuations model.

Let us start by comparing the time course of ρδ to the time course of the packet potential
as we have done for the I&F dynamics in Fig. 9.4. In the linear approximation of the up-
slope of the packet potential (9.6), the onset of the voltage and spike response is well defined.
Therefore, δ = 0 ms is immediately used as the origin of the temporal axes in Fig. 9.8. At
negative times ρδ is zero because spontaneous activity is not included in the model. Also by
definition, probability density is zero on the down-slope of the packet potential. ρδ reaches
a peak on the up-slope if the amplitude of the packet potential is large enough to drive
the membrane potential to threshold starting from initial values below the mean of the
membrane potential distribution. The two cases for large spread of input spikes (Fig. 9.8,
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Figure 9.9 Dependence of spike intensity f on membrane potential excursion U in the slow fluctuations
model assuming a linear up-slope of the packet potential. A (f, U)-representation with scaling and input
parameters identical to Fig. 9.7A showing corresponding curves for the integrate-and-fire model. f exhibits
an expansive dependence on U . At a given U , however, intensity still depends on input parameters (a, σ) (cf.
Fig. 9.7A). The peak intensity occurs at peak voltage, no saturation in peak region is observed (data not
shown for curve closest to arrows). B Ambiguity of f with respect to U is completely removed if the quotient
f/U̇ is considered. Same input parameters as in A. U̇ = aûυ̂σ/τσ depends on (a, σ) and is constant on the
up-slope. Small deviations between f/U̇ for different (a, σ) are due to limited precision of the numerics.

right column) exemplify the fact that in the linear up-slope approximation the probability
density obtains a finite value at the peak of the packet potential and is truncated to zero for
later times. This is in contrast to the probability density of I&F dynamics which exhibits
a smooth decline in the peak region of the packet potential. The formal expression for ρδ

(9.4) shows that spike probability vanishes when the derivative of the packet potential is
zero. Thus, the linear approximation of the up-slope causes an overestimation of probability
density in the peak region of the packet potential. The finite slope at δ = 0 ms is of minor
importance because in this regime ρV is negligible.

The behavior of the intensity in the peak region of the packet potential is of interest
in the comparison to I&F dynamics (see Fig. 9.4). To distinguish general properties of
the slow fluctuations model from effects introduced by the linear approximation we will for
the remainder of the chapter consider the exact shape of the up-slope in parallel to the
approximation. According to (9.4) ρδ can also be solved for the exact shape of the up-slope.
For convenience we define δ = 0 ms as the onset of the response, using the rise time of
the linear approximation τσ for the coordinate transformation as in (9.6). The resulting
probability density is shown in Fig. 9.8 as the gray area. As expected from the above
discussion the exact shape leads to a narrowing of the density, approaching zero at the peak
of the packet potential and at the onset.

Inserting ρδ for the linear up-slope (9.9) into (9.39) yields a surprisingly simple expression
for the intensity

f(δ) =
aûυ̂σ

τσ

·
ρV (θ − aûυ̂σ

τσ
δ)

1−
∫ θ

θ−aûυ̂σ
τσ

δ
ρV (V ) dV

. (9.41)

Results for our four typical input packets corresponding to the graphs in Fig. 9.7A are
shown in Fig. 9.9A. The qualitative and quantitative correspondence of the two figures is
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Figure 9.10 Dependence of spike intensity f on membrane potential excursion U in the slow fluctuations
model assuming the detailed shape of packet potential up-slope. Graphs and input parameters identical to
Fig. 9.9. A For a given pair (a, σ), f is not a monotonous function of U . Intensity reaches a maximum
on the up-slope, decays, and vanishes at the peak voltage. Collection of (f, U)-curves is in agreement with
the results for the integrate-and-fire model (Fig. 9.7A), see Fig. 9.11. B As in Fig. 9.9B, ambiguity of f
with respect to U is completely removed if the quotient f/U̇ is considered. In contrast to Fig. 9.9B, U̇
is a function of time. f/U̇ recovers the expansive dependence on U and is identical for the linear and the
detailed model of the up-slope of the packet potential. Small deviations between f/U̇ for different (a, σ) are
due to limited precision of the numerics.

immediately apparent. The hysteresis is trivially introduced by defining probability density
to be zero on the down-slope of the packet potential. However, the fact that a steeper up-
slope results in a larger intensity is an inherent property of the model. The intensity is not
an instantaneous function of membrane potential only. Indeed (9.41) is a product of the
(constant) slope of the membrane potential excursion and a term depending only on the
instantaneous value of the packet potential U

f/

(
aûυ̂σ

τσ

)
=

ρV (θ − U)

1−
∫ θ

θ−U
ρV (V ) dV

. (9.42)

Fig. 9.9B illustrates how, in the parameter regime of interest, (9.42) maps the complex
dependence of intensity on the input parameters a and σ to a single expansive function of
U .

Repeating the calculation which led to (9.41) for the exact shape of the up-slope demon-
strates that a relation of the type (9.42) holds for arbitrary (monotonous) up-slopes of the
packet potential

f(U, U̇) = U̇ · ρV (θ − U)

1−
∫ θ

θ−U
ρV (V ) dV

. (9.43)

In our formal expression for the intensity (9.39) f carries the argument δ because it may be
an explicit function of time. However, (9.43) demonstrates that the intensity we constructed
fully qualifies as a component of an intensity model in the sense that it only depends on the
instantaneous properties of the membrane potential excursion. In contrast to earlier models,
the instantaneous value of the packet potential and its derivative determine spike intensity.
f is an expansive function of U (cf. Fig. 9.10B) and proportional to U̇ .



9.5 Relation to Intensity Models 121

0 2 4 6 8 10 12 14 16
0

200

400

600

0 2 4 6 8 10 12 14 16
0

200

400

600

U (mV)U (mV)

f
(H

z)

f
(H

z)

A B

Figure 9.11 Comparison of spike intensity in the integrate-and-fire model and the slow fluctuations model
at different levels of membrane potential fluctuations σV . Same graphs and input parameters as in Fig. 9.7.
The black curves show simulation results for the integrate-and-fire model (same data as in Fig. 9.7). Gray
curves show corresponding results for the slow fluctuations model. A σV = 2.5 mV, gray curves are the
redisplayed curves of Fig. 9.10. The two models are qualitatively and quantitatively in good agreement. The
slow fluctuations model does not make predictions for the intensity on the down-slope. B σV = 4.5 mV,
gray curves computed as in Fig. 9.8. Deviations are more pronounced than in A.

Fig. 9.10 displays the results for the same situation as in Fig. 9.9 for the exact up-slope
of the packet potential. Similar to the results for the probability density (Fig. 9.8) intensity
now exhibits a maximum before the packet potential reaches its maximum and drops to
zero at the peak of the voltage excursion. Fig. 9.10B verifies that voltage and derivative
dependence of f can be separated.

Finally, we can directly compare the intensity computed for the slow fluctuations model
to the results for I&F dynamics. Fig. 9.11 shows the two sets of curves superimposed for
two different levels of membrane potential fluctuations. The intensity model captures the
details of the I&F dynamics. In particular also the regime shortly before the peak of the
packet potential is reached is well described. The deformation in the shape of intensity
curves caused by an increase in membrane potential fluctuations is well captured. The
intensity model slightly overestimates the responsiveness of the neuron in the peak region of
intensity. The effect is more pronounced at large σV . This may be due to the presence of
spontaneous activity which we have neglected in our intensity model. Spontaneous spikes
occurring before the pulse packet arrives render the neuron refractory and thereby reduce
the intensity f as defined here. The fact that spontaneous activity increases with membrane
potential fluctuations is consistent with the observed reduction in intensity (compare panels
A and B in Fig. 9.11).

Note that we derived an expression for intensity in terms of the parameters of the I&F
model without the need of adjusting model parameters or introducing arbitrary free param-
eters. Interestingly, in (9.43) the conversion of units from V−1 to s−1 is naturally provided
by the derivative of the packet potential. In an early ansatz of Abeles (1982b) the inte-

gral
∫ θ

θ−U
ρV (V ) dV is used to model the excitability of the neuron. It is argued that the

conversion of this quantity to units of spike probability density should be provided by the
inverse of a time constant related to the refractoriness of the neuron. While the model was
successfully applied (Boven & Aertsen, 1990) to study the response to a single synaptic event
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in dependence of background activity, it fails to give results consistent with I&F dynamics
for input packets with varying number of spikes. For a different number of input spikes a
different constant is required to give accurate results, a fact which in the light of U̇ is now
easy to interpret.

The study of the relationship between the slow fluctuations model and an intensity model
enabled us to gain insight into the origin of the spikes occurring on the down-slope of the
packet potential and to differentiate the roles of model components like refractoriness, mem-
brane potential fluctuations, and the derivative of the packet potential. The construction of
a full intensity model incorporating spontaneous activity, the down-slope, and finite refrac-
toriness is outside the scope of the present study and may require more advanced methods
as discussed in the works of Rotter (1994), Gewaltig (2000), Plesser and Gerstner (2000),
and Câteau and Fukai (2001). However, we are now in possession of considerable constraints
a successful intensity model is required to fulfill.



Chapter 10

Discussion

10.1 Results and Interpretation

10.1.1 Summary of Results

At the outset of the present study we asked the question in which sense a propagating volley
of synchronous spikes represents a stable state (attractor) of the network. It turns out that it
is sufficient to characterize volleys of synchronous spikes (“pulse packets”) by two variables:
the number of spikes in the packet a, and a measure for their temporal spread σ. Propagation
of synchronous activity in the network is then described by the sequence of (ai, σi) pairs,
occurring in consecutive neuron groups, consisting of w neurons each. For an analysis of the
synchronization dynamics in the network, the equations describing network activity should
be expressed in terms of the variables a and σ. The iterative nature of the network structure
suggests the construction of an iterative mapping Tw, defining the transformation a pulse
packet undergoes while propagating from group i to group i + 1. A stationary state is
reached if the packet (a, σ) traveling from group to group is no longer changing, neither
in the number of spikes, nor in its temporal dispersion. In this sense network activity has
reached a fixpoint. If the fixpoint is surrounded by a basin within which all initial activity
ultimately reaches the fixpoint, it is an attractor of the system. It should be pointed out
that this attractor is different from the well known Hopfield-attractor (Hopfield, 1982) of
network activity in two important aspects. First, the Hopfield-attractor describes a state of
stationary spike rates, whereas in our case transients in activity are considered. Second, the
Hopfield-attractor describes a stationary rate configuration in neuron space, whereas in the
case of pulse packet activity, it describes a propagating spike volley, transmitted from one
neuron group to the next, each neuron typically participating with one spike per volley.

Chap. 3 defines a new single neuron transmission function T , describing the neuron’s
response to transient input. The next chapter (Chap. 4) shows that knowledge of T is
sufficient to construct the propagator for pulse packets Tw. This iterative mapping describes
network activity in the mean-field picture. It provides the expected number of response spikes
and the width of the distribution that the individual spike times are drawn from. In turn,
it is constructed under the assumption that a input spikes drawn from a distribution with
temporal spread σ affect the target neuron, irrespective of the detailed configuration of spike
times in the input packet. In addition, we assume that the distribution of response spikes can
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be approximated by a Gaussian. This assumptions seems critical, because in the mapping
Tw, the variables (a, σ) are in each iteration step assumed to describe a Gaussian packet. If
the group response is not Gaussian one can imagine a scenario where Tw predicts the decay
of synchronous activity in the mean whereas the activity in actual network simulations
stabilizes. This could, for example, be the case if the distribution of the response spike has a
considerable tail, which leads to a large estimate of σ and, at the same time, the peak region of
the distribution, which effectively drives the neuron in the succeeding group, is quite narrow.
Also the reverse situation is conceivable. In order to exclude these possibilities, a model was
desired in which the full shape of the pulse packet can be iterated, and the invariant pulse
packet shape can directly be observed (Gewaltig, Diesmann, Rotter, & Aertsen, 1997).

Gewaltig (2000) developed such a continuous model for a neuron group, transforming an
incoming pulse density to an outgoing pulse density. The model is based on a stochastic
description of the single neuron, in which the spike “intensity” (see also Rotter, 1994) is
a function of the deterministic membrane potential caused by the incoming pulse density.
All stochasticity is captured in the dependence of the intensity f on the instantaneous
membrane potential: f(U(t)). Independence of stochastic effects influencing the system at
times t1 and t2 is assumed. The resulting dynamics of the pulse density indeed reproduces the
four characteristic routes of network activity shown in Fig. 1.3. Pulse density propagations
mapped into the (a, σ)-space reproduce the state space structure of Tw. There is an invariant
pulse density corresponding to the (a, σ)-attractor. Hence, we can be confident that the (a, σ)
description of pulse packet propagation captures the network dynamics in sufficient detail.
A different approach to test the validity of the (a, σ) description is to reconstruct the state-
space portrait from network simulations (like the examples in Chap. 1). This allowed us to
verify that network simulations correspond well to the predictions of the iterative mapping,
and to characterize the variability in individual realizations of network activity (Gewaltig,
2000; Gewaltig, Diesmann, & Aertsen, 2001a; Gewaltig, Diesmann, & Aertsen, 2001b, see
also Chap. 8). Thus, the results of Chap. 4 enable us to reduce the detailed dynamics of the
spiking neural network to a deterministic two-dimensional iterative mapping, describing the
dynamics in the mean.

Robustness is demonstrated by an analysis of the (a, σ) state space. For realistic pa-
rameter values, an attractor close to full activation and at some residual temporal spread is
surrounded by a basin of attraction. A separatrix divides the state space into a regime where
activity synchronizes and reaches the attractor, and a regime where activity eventually van-
ishes. The propagator comprises two classes of parameters. First, single neuron properties
such as membrane time constant, rise time of the post-synaptic current, and spike threshold.
Second, network properties like the number of neurons in a group and the amount of fluctu-
ations of the membrane potential due to background activity. Single neuron parameters and
the statistics of membrane potential fluctuations are experimentally accessible. However, the
experimental literature shows that these parameters are not universal. Instead, it appears
that for each parameter there is a plausible range, the specific value being dependent on
the type of neuron, the type of synapse, or even on the state of the unit. The number of
neurons per group cannot directly be determined experimentally, and is a central parameter
in anatomical considerations about the plausibility of feed-forward subnetworks. Therefore,
the parameter dependence of the dynamics is an important aspect of the present study. The
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dependence of the dynamics on the group size w is studied in Chap. 4. It turns out that w
is a bifurcation parameter of the system. The attractor for synchronous activity requires a
certain minimal group size. The effect of membrane potential fluctuations σV is studied in
Chap. 5. Here, the bifurcation scenario is more complex and, in addition, exhibits a charac-
teristic dependence on the parameter w. At small group sizes, increasing fluctuations rapidly
destroy the attractor, while for large group sizes moderate fluctuations actually increase the
basin of attraction before it shrinks again at even larger fluctuations. The discussion of
the noise-free case (Chap. 6) provides insight into several aspects of the synchronization
dynamics. We can define the packet potential as the membrane potential excursion, caused
by an incoming pulse packet (a, σ). The minimal number of spikes required for the packet
potential to reach spike threshold at a given σ defines the separatrix in the noise-free case.

At finite levels of membrane potential fluctuations, position and curvature of the sep-
aratrix deviate from the noise-free case. However, the shape of the separatrix observed in
the noise free case remains the dominant feature of the state space structure. Therefore,
the shape of the post-synaptic potential, which is experimentally accessible, determines the
structure of state space (Chap. 6). In the framework of the noise-free case, a simple estimate
is derived for the minimal group size. One would expect that the magnitude of the effect a
single neuron in group i exerts on a single neuron in group i + 1 should enter this minimal
group size. Indeed, the minimal group size is proportional to the ratio of the amplitude of
the post-synaptic potential and the distance from membrane potential mean to spike thresh-
old. The constructive effect of the membrane potential fluctuations (background activity) on
the propagation of synchronous activity can be understood by analyzing how the a-sections
of the iterative mapping (i.e. the activation curves) develop under the transition to finite
background activity.

A parameter summarizing many details of the single neuron model is the rise time of the
post-synaptic potential τ0. Chap. 7 shows that the rise time controls the residual temporal
spread in the attractor. This effect can be explained by a simple model (Chap. 9) for the
interaction of the packet potential and the membrane potential fluctuations. In this model,
the resulting temporal spread of the response spike is proportional to the magnitude of the
fluctuations and inversely proportional to the slope of the packet potential.

The study of the rise time of the post-synaptic potential also reveals another important
property of the packet potential. In Chap. 6 we have seen that the separatrix is determined
by the dependence of the packet potential amplitude on the temporal spread of the input
packet. For vanishing temporal dispersion of the input, the amplitude of the packet poten-
tial is determined by the amplitude of the post-synaptic potential. Here, the rise time of
the post-synaptic potential does not affect the position of the separatrix. However, at large
temporal dispersion the amplitude of the packet potential is determined by the area of the
post-synaptic potential. Thus, the effect of the rise time on the position of the separatrix
depends on the normalization of the post-synaptic potential. If the rise time is increased
under conservation of PSP amplitude, the area of the post-synaptic potential increases with
rise time. Consequently, we expect the separatrix to bend to lower values of a when the input
spread becomes comparable to the temporal extent of the post-synaptic potential. If, how-
ever, the rise time is increased under conservation of PSP area, the amplitude of the packet
potential remains unaffected, except for low temporal dispersion. Therefore, the increased
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rise time now mainly affects the temporal dispersion of the response. The two conservation
schemes lead to different bifurcation scenarios. Under amplitude normalization the attractor
moves to larger temporal spread and the basin of attraction extends to lower values of a.
The situation is dramatically different under area normalization. Here, the attractor also
moves to larger temporal spread. However, the separatrix rapidly moves upwards to larger
a, and eventually destroys the attractor. This destruction of the attractor due to an increase
in rise time with practically invariant activation curves is a further confirmation that both
variables a and σ are required to describe the synchronization dynamics, and that any single
one does not suffice.

Fig. 10.1 summarizes the effect of the neuron and network parameters on the synchro-
nization dynamics. The three bifurcation parameters distinctly operate on the position of
the fixpoints. w controls the activity in the attractor and the temporal spread reached in the
saddle point. The bifurcation is governed by the movement of the saddle point to the smaller
temporal spread reached in the attractor. For the bifurcation parameter τ0, the situation is
reversed (under area normalization). τ0 controls the residual temporal spread in the attrac-
tor and the activity at the saddle point. The bifurcation is governed by the movement of the
attractor to the larger temporal spread reached at the saddle point. The influence of σV on
the position of the attractor is small. While increasing σV monotonically shifts the saddle
point to larger a, the temporal spread at the saddle point exhibits a non-monotonic move-
ment. Initially, it shifts to larger temporal spread, reaches a maximum, and consecutively
approaches the small temporal spread in the attractor. The extent of the excursion of the
saddle point into the regime of large temporal spread is controlled by w. Non-monotonicity
of the development is reflected in the dependence of the size of the basin of attraction on the
various bifurcation parameters. Under variation of w, the basin is continuously increasing or
decreasing, respectively. Variation of σV results in a clear maximum of basin size, where two
opposing changes in the distribution of membrane potential values compensate each other
(Chap. 5).

10.1.2 Spatio-Temporal Spike Patterns

Having successfully answered the methodological questions posed in the introduction, we can
now turn to the question whether locally feed-forward structures as studied here are plausible
generators of spatio-temporal spike patterns in the light of the available experimental data
(Sec. 1.5). One of the prominent features in experimentally observed spike patterns is the
precision of spike timing in different realizations of the same pattern (Abeles, Bergman,
Margalit, & Vaadia, 1993; Prut et al., 1998). The reported patterns have a precision of
±1 ms. For data obtained with a temporal resolution h = 1 ms, this translates to the
statement that most of the realizations of a specific spike in a pattern fall into a time
window of ∆ = 3 ms width. In some studies in the motor cortex spike synchronization
appears to be somewhat less precise (Riehle, Grün, Diesmann, & Aertsen, 1997; however see
Riehle, Grammont, Diesmann, & Grün, 2000). Let us reconsider the relation of the precision
of spike timing observed in the attractor of the iterative mapping and the temporal spread
observed in physiological spike patterns. In the context of the synfire model, the repeated
occurrence of simultaneous spikes (coincidences) above chance level (Grün, Diesmann, &
Aertsen, 2002a) is interpreted as activity recorded from units of the same neuron group.
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Figure 10.1 Summary of parameters determining the synchronization dynamics. w specifies the number
of neurons in each group of the feed-forward network. With decreasing w, the attractor (solid) moves to a
lower number of spikes (vertical) and the saddle point (dashed) to smaller temporal spread (horizontal in
ms). Here, a constant amplitude (û) of the post-synaptic potential (PSP) is assumed. Increasing w increases
the basin of attraction. σV describes the membrane potential fluctuations. Movement of the saddle point
is non-monotonic, it undergoes an excursion to large temporal spread. The size of the basin reaches a
maximum, the effect being stronger for w well above w∗ characterizing the number of neurons required
for stable propagation. Under amplitude normalization of the PSP, increasing the rise time of the PSP τ0

shifts the attractor and the saddle to larger temporal spread. Under area (F 1) normalization, the situation
is reversed, compared to the w-bifurcation. The attractor now moves to larger temporal spread, and the
saddle point moves to a larger number of spikes.
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Thus, the temporal spread in the attractor should be directly comparable to the precision
of spike coincidences. Because of the Gaussian nature of the spike time distribution, the
observation that most of the spikes are found within a 3 ms time window would result in the
requirement that the temporal spread in the attractor is

σ ≈ 1√
2
· 1

6
∆ = 0.35 ms. (10.1)

The parameter of our model most effectively controlling the temporal spread is the rise time
of the post-synaptic potential (Chap. 7). The experimentally observed temporal spread is
in good agreement with PSP rise times of about 2 ms (Fig. 7.7). The factor 1/

√
2 in (10.1)

takes into account that we are observing the difference of two spike time realizations, and
not a spike time realization with respect to the origin of the underlying distribution.

The iterative mapping is constructed on the basis of single neuron response properties.
It does not contain direct information about the build-up of temporal jitter in the network
with respect to some external reference. In other words, in the iterative mapping, the time
variable is eliminated from the dynamics. In a temporal spike pattern, spikes may occur at
intervals of up to a few hundred ms. Assuming a synaptic delay of 2 ms, tens of neuron
groups may need to be passed to transport activity from the neuron group emitting the first
spike in the pattern to the neuron group emitting the second spike. In the framework of
the iterative mapping, the locking of a spike in the lth group to a spike in the 0th group
(cf. Fig. 1.3) can be estimated as follows. Let us assume that the 0th group is ignited at time
0 (center of the Gaussian spike time distribution). With a synaptic delay τd, the expected
arrival time of the packet at the 1st group is τd with a jitter of arrival time σ0/

√
w (standard

deviation of the mean). Here, we assume that we are in the attractor (invariant spread σ0),
and that practically all neurons are emitting a spike (invariant number of spikes a0 ≈ w).
With respect to the origin, a response in the 1st group has a variance of (σ0/

√
w)2 + σ2

0.
Triggering on a spike of the 0th group we have (σ0/

√
w)2 + 2σ2

0. Thus, for the temporal
spread of a spike in the lth group with respect to a spike in the 0th group we have

σl = σ0

√
l

w
+ 2. (10.2)

The temporal jitter in spike locking σl is twice the intrinsic jitter σ0 when the activity has
passed l = 2w groups. For our default group size of w = 100, this occurs in a group distance
of 200 or, equivalently, in a spike distance of 200τd = 400 ms. The effect is stronger in narrow
groups (see the discussion of narrow groups below). In principle, analysis of the dependence
of the variance σ2

l on the temporal distance of spikes in the patterns lτd can be used to test
the relationship predicted by the model. Assuming a fixed synaptic delay τd, estimations of
w and σ0 can be obtained from the coefficients of the fitting line. Fig. 10.2 illustrates such
an analysis. However, variability in w and contributions to temporal jitter not considered in
the model may require more advanced data analysis, or may even prohibit conclusive results.
It is interesting, though, that we have derived here a relationship that enables us to use the
electrophysiological data (spike patterns) to draw conclusions about anatomical structure
(w). We were recently able to verify in network simulations (Gewaltig, Diesmann, & Aertsen,
2001b) that the build-up of temporal jitter in the locking of activity in feed-forward chains to
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Figure 10.2 Illustration of possible analysis of temporal jitter in spatio-temporal spike patterns. Temporal
jitter of two consecutive spikes in a pattern as a function of the number of intermediate neuron groups
(∝ temporal distance). Data points (dots) are obtained from simulations in which spike times of a neuron
group are drawn from a Gaussian distribution of width σ0, centered at the mean time of impact of the
incoming pulse packet. Full activation of the neuron groups is assumed (a0 = w). Number of groups l
varied from 5 to 245 in steps of 10, intrinsic temporal jitter σ0 = 0.5 ms (lower dashed horizontal line), 400
occurrences of each pattern are considered. Upper dots w = 20 neurons per group, lower dots w = 100.
Solid curves represent the theoretical relationship. Vertical dashed lines mark the number of groups required
(40, 200) for the temporal jitter in the pattern to equal twice the intrinsic jitter (σl = 1 ms, upper dashed
horizontal line). Minimal jitter observed at l = 0 independent of w is

√
2σ0.

an initial stimulating pulse packet is indeed small, as predicted by (10.2). Considerable jitter
occurs if the stimulating pulse packet is weak and, therefore, on its way to the attractor the
standard deviation of impact time is still large. The model of spike synchronization predicts
a residual temporal spread (σ in the attractor). Hence, experimental multiple single unit
data analyzed for spatio-temporal spike patterns (including coincidences) with a gradually
increasing measure of the allowed temporal spread should exhibit a characteristic dependence
of the number of patterns on the allowed jitter width. A strong initial increase in the number
of patterns should reduce to the expected increase when the allowed jitter width has passed
the natural precision in the attractor (assuming comparable measures for jitter width and
precision in the attractor). An increase in the number of patterns is expected even in the
absence of correlated activity, due to the increased probability to find random (background)
spikes at the appropriate distances. The significance of the number of patterns, however,
should show a maximum at the point where jitter width corresponds to temporal precision
in the attractor. First results (Prut, 1995; Grün et al., 1999) indicate that a preferred
synchronization width indeed exists and can be measured. The latter study provides a clear
example where the significance of the number of coincidences found in a data set exhibits
a global maximum at particular jitter width. However, appropriate tools are still under
development (Grün & Diesmann, 2000) and no systematic study has been carried out yet.

10.1.3 Connection to Subthreshold Dynamics

From the above discussion we can conclude that our model of spike synchronization consis-
tently connects experimental measurements at two levels of description: temporal precision of
spike patterns observed in multiple single unit recordings and rise time of the post-synaptic
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potential as observed in spike triggered averaging (STA) of intracellular recordings. Rise
times of individual post-synaptic potentials reported in the literature range from fractions
of a ms to several ms (Fetz, Toyama, & Smith, 1991; Mason, Nicoll, & Stratford, 1991;
Matsumura et al., 1996). Fig. 10.1 shows that a large rise time alone does not prevent the
occurrence of spike synchronization, it merely limits the temporal spread reached in the at-
tractor. If the amplitude of the post-synaptic potential and the number of neurons per group
allow for it, synchronous activity can be stabilized at large temporal spread. The range of
stable temporal spreads illustrated in Fig. 10.1 well covers the range observed in electrophys-
iological data. Recently, the technology is becoming available to record intracellularly from
neurons in the mammalian cortex in vivo (e.g. Azouz & Gray, 1999; Bringuier et al., 1997;
Matsumura et al., 1996; Lampl, Reichova, & Ferster, 1999; Heck, Léger, Stern, & Aertsen,
2000). Combination of this technology with extracellular multiple single unit recordings will
greatly enhance testability of model predictions. Requiring simultaneous consistency of the
model on both, the network level (spike patterns) and the level of subthreshold processes
in individual neurons (e.g. PSP rise time, PSP amplitude, also see discussion of membrane
potential fluctuations below) would equip us with more stringent constraints than can be
imposed today. As an example, being able to correlate pattern precision with the rise time
of the typical post-synaptic potential in different preparations (brain region, species) will
provide a test of such multiple level spanning predictions. Amplitudes of post-synaptic
potentials reported in the experimental literature span an order of magnitude from below
0.1 mV to the multiple mV scale (e.g. Fetz, Toyama, & Smith, 1991; Thomson, Deuchars,
& West, 1993; Markram & Tsodyks, 1996). This range probably reflects the natural inter-
synaptic variability and possibly also differences with age of the preparation (newborn vs.
mature). It should be noted that measurements are mostly obtained in vitro (see Léger,
Stern, Aertsen, & Heck, 2002 for differences of factor 2 or more between down-state (∼ in
vitro) and up-state (∼ in vivo)). In addition the PSP amplitude is subject to plasticity. In
the present study, PSP amplitude was held constant at a value closer to the lower end of
the plausible regime. We were able to demonstrate that for the attractor to exist, synaptic
potentials in a feed-forward subnetwork are not required to be of larger amplitude than the
synaptic potentials assumed for the background activity. We also showed that a scaling law
connects the PSP amplitude û and the number of neurons in a group w. Network dynamics
as described by the iterative mapping is invariant under changes in û, provided the product
wû remains unchanged (Chap. 8). In contrast, the locking between spikes from different
neuron groups discussed above (10.2) directly depends on w. In a network where w is re-
duced from 100 to 25, and amplitudes of intra-chain synapses are scaled up accordingly, the
state space portrait is practically unchanged. However, the locking of synchronous activity
to the stimulus now degrades two times faster (2/

√
100 = 1/

√
25). Thus, with knowledge

about PSP amplitude independent estimates of û and w can be obtained.

10.1.4 Existence of Feed-Forward Subnetworks

The iterative mapping describes the development of spiking activity in feed-forward struc-
tures as a deterministic system. The last paragraphs showed that the finite number of spikes
has to be taken into account to understand the effects of time locking. With the dynam-
ics of the mean unchanged, locking deteriorates faster in narrow chains. This raises the
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question how useful the deterministic description is to characterize the stochastic spiking
activity in the network. Chap. 8 extends the model by a stochastic component to study the
survival probability of activity on its way into the attractor. Analytical considerations and
Monte-Carlo simulations show that the system indeed behaves quasi-deterministically. At
the location of the separatrix, computed for the deterministic case, the survival probability
shows a sharp transition from vanishing survival probability outside the basin of attraction
to a survival probability approaching unity inside the basin of attraction. Only close to the
separatrix may the activity be driven out of or into the basin of attraction by random fluctu-
ations. Results are in good agreement with network simulations (Gewaltig, 2000; Gewaltig,
Diesmann, & Aertsen, 2001b). The slope of the survival probability at the separatrix be-
comes less steep with decreasing numbers of neurons per group w (under û compensation).
An intuitive explanation is that in a group of size w, each spike contributes a weight of 1/w
to the group’s activity. Thus, if a neuron fails to emit a response spike in a narrow chain, a
larger fraction of the total activity is missing. In the context of locking, the effect shows up
in the temporal domain. Here, the main effect is on the variability of the group activity.

Minimal group size is an important parameter for anatomical considerations. Using argu-
ments from random graph theory (Palmer, 1985; Janson, Rucinski, Luczak, & Uczak, 2000)
and anatomical data on cortical connectivity (e.g. Braitenberg & Schüz, 1998; Hellwig, 2000)
Abeles (1991) has shown for globally random networks and Hehl et al. (2001) for random
networks with a space constant that completely connected feed-forward subnetworks are very
unlikely to exist in the neocortex. At the same time, both studies show that “incomplete”
or “diluted” chains are certain to exist. The effect can be traced back to the well known
threshold-like appearance of subnetwork structures in random graphs. The above findings
are critical in the light of the common assumption that in the adult cortex new synapses can-
not be formed (however, recent studies (Matus, 1999; Maletic-Savatic, Malinow, & Svoboda,
1999; Engert & Bonhoeffer, 1999) indicate that the network may be more plastic than hith-
erto thought). Moreover, synaptic plasticity can strengthen the synapses of a chain, thereby
reducing the required number of neurons per group. In fact, plasticity which depends on
the relative timing of the pre- an the post-synaptic spike (Markram, Lübke, Frotscher, &
Sakmann, 1997; Zhang et al., 1998) has recently attracted much interest (Song, Miller, &
Abbott, 2000; Rubin, Lee, & Sompolinsky, 2001; Gütig et al., 2001) and seems to be suited
to strengthen synchronous activity in feed-forward subnetworks. However, classical synaptic
plasticity requires that the neuronal substrate, the graph, is already installed. Furthermore,
plasticity can strengthen individual synapses only within certain limits, and we have seen
above that too narrow chains should be avoided because of their increased susceptibility
to noise. The charm of weak intra-chain synapses would be that individual neurons can
be members of a large number of chains, allowing for the superposition of chains and po-
tentially richer combinatorics, which might be of functional relevance (Bienenstock, 1991b;
Bienenstock, 1996).

Thus, if complete chains do exist in the cortex, they are probably generated by a specific
growth process during development. It is possible that the global picture of a cortical column
still retains many properties of a random graph, because of the superposition of many locally
feed-forward subnetworks with other subnetworks. Therefore, deviations from randomness
may so far have been overlooked (we come back to this point in the outlook section). Note
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that the above process is to be distinguished from the development of chains in a random
network with initially homogenous distribution of synaptic weights (Bienenstock, 1991a; Bi-
enenstock, 1995; Herrmann, Hertz, & Prügel-Bennett, 1995; Hertz & Prügel-Bennet, 1996),
which is sometimes termed a “growth” process.

Because of the above considerations it seems useful to study diluted feed-forward net-
works as structures which do exist in random networks and at the same time do not require
specifically strong synapses. Preliminary results indicate that diluted chains can sustain
synchronous activity, and that their main features can well be described within the frame-
work developed in the present study (Hehl, Aertsen, & Diesmann, 2001a). Their detailed
dynamics is the subject of ongoing research (Hehl, Aertsen, & Diesmann, 2001b). As the
simplest example, let us consider a chain where each neuron projects to dw′ neurons in the
consecutive group, and each neuron receives input from dw′ neurons of the preceding group.
Here, d is called the dilution factor (0 ≤ d ≤ 1). In this case, the dynamics in the chain
is equivalent to the dynamics of a complete chain with group size w = dw′. The argument
can be reversed: if the dynamics requires a minimal group size w∗ and a dilution factor
d is required by anatomy, then the minimal group size of an operational diluted chain is
w′ = w∗/d (e.g. w∗ = 100, d = 0.3: w′ = 300). One may speculate that the main task of a
structuring mechanism (“learning”) would not be to strengthen connections in diluted feed-
forward subnetworks, but to degrade connections to neurons receiving some, but insufficient
(< dw), convergence from neurons of a preceding group. Thereby, activity would be focused
on pathways that successfully transmit synchronous activity. Diffusive spread of activity
triggering the inhibitory subnetwork is prevented. Neurons that by their anatomical connec-
tivity do not qualify as members of a particular feed-forward subnetwork are left undisturbed
by the subnetwork’s activity, and may become members of other feed-forward subnetworks,
to which they have better connectivity. Thus, the structuring mechanism reorganizes the
initially random network into a network of (overlapping) diluted feed-forward subnetworks
by drawing neurons into one or the other subnetwork. Figuratively speaking, the contrast
between different subnetworks is enhanced and activity to some extent decoupled (see the
remark about the potential functional relevance of coupling below).

10.1.5 Background Activity

Having discussed the consequences and predictions of our results for the parameters rise
time τ0 and group width w, and their interaction with the amplitude of the post-synaptic
potential û, let us now come back to the discussion of membrane potential fluctuations σV

which we have left in Sec. 10.1.1. The range of membrane potential fluctuations investigated
in the present study well covers the physiologically plausible range. The lower bound, the
noise-free case, is approximately realized in neurons in the in vitro preparation. Remaining
fluctuations in this preparation are due to few synaptic inputs, spontaneous releases, and
thermal fluctuations. The use of studying the noise-free case is that basic mechanisms de-
termining the structure of state space can be uncovered. The upper bound is determined
by the available regime between spike threshold and resting potential. The large membrane
potential fluctuations studied practically fill this regime. We demonstrated that the tem-
poral spread introduced by membrane potential fluctuations is limited when the membrane
potential fluctuations are large enough to distribute the response spike over the rise time
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of the packet potential (Chap. 9). The relationship between the parameters τ0 and σV can
be summarized as follows: τ0 determines the time window over which response spikes can
be distributed, and σV determines the fraction of this time window exploited. Membrane
potential fluctuations control the spontaneous spike rate of the neurons. The model achieves
consistency with the spontaneous spike rates observed in vivo, thus providing evidence inde-
pendent from the model of subthreshold activity that the appropriate range of fluctuations
is studied. However, a high level of spontaneous activity may introduce additional effects,
not captured by our model of pulse packet propagation (see discussion below). At large σV ,
the voltage excursions driving the membrane potential away from spike threshold (hyper-
polarizing direction) already reach unrealistically large (negative) values. In our model,
synaptic currents are independent of membrane potential, and can therefore drive the po-
tential to arbitrarily negative values. However, in real neurons, inhibitory synapses cannot
drive membrane potential below the reversal potential of the respective currents. Thus,
at large fluctuations our model may underestimate the neuron’s ability to respond to an
incoming pulse packet. The physiological range of membrane potential fluctuations σV is
limited, and we have seen (Chap. 5) that within this range a moderate increase in w can
compensate for the effect of fluctuations on the existence of the attractor for synchronous
activity. We can conclude that the large membrane potential fluctuations observed in vivo
do not prohibit the existence of the attractor and, hence, propagation of synchronous ac-
tivity. This is in contrast to the conclusion of earlier studies (Shadlen & Newsome, 1994;
Shadlen & Newsome, 1995; Shadlen & Newsome, 1998) claiming the reverse; that cortical
neurons would not be able to reliably respond to input spike constellations. These studies
basically demonstrated that under conditions of uncorrelated excitatory input to a neuron,
there is no considerable correlation of output spikes with excitatory input spike constella-
tions. However, this finding is perfectly consistent with our findings. The argument involves
two steps. First, the argument that uncorrelated input spike trains do not contain spike
constellations able to reliably elicit response spikes does not exclude that correlated input
spike trains can do so. The neural transmission function for transient input we introduced
(Chap. 3) precisely quantifies the required relationship: the dependence of the reliability of
neural response on the correlation of input spikes. Let us assume for the sake of argument
that the term “reliable neuronal response” is defined by having, say, 80% response proba-
bility within a time window of 3 ms. The shape of the transmission function shows that a
large enough number of spikes arriving in a short enough time interval can reliably drive
a neuron. Thus, uncorrelated activity cannot reliably drive a neuron whereas correlated
activity can. Second, the finding that uncorrelated input spike trains do not contain spike
constellations able to reliably drive a neuron is in fact a requirement for synchronous activity
to be a meaningful mode of operation. Synchronous activity in a feed-forward network can
only transmit information if it is not elicited spontaneously from random fluctuations. A
stable ground state of uncorrelated spontaneous activity is required.

It has now become clear why the question whether the cortical neuron can support
precise spike timing, a question raised many years ago (Abeles, 1982b) and revived recently
(Shadlen & Newsome, 1994; Shadlen & Newsome, 1995; Shadlen & Newsome, 1998; König,
Engel, & Singer, 1996), could not be resolved in earlier studies. Several studies found that
neuronal response is more reliable if input spikes are correlated (Abeles, 1982b; Murthy &
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Fetz, 1993; Murthy & Fetz, 1994; Bernander, Koch, & Usher, 1994). Others (Abeles, 1991;
Marsalek, Koch, & Maunsel, 1997; Kisley & Gerstein, 1999) found that the temporal jitter
of the spike response (precision) of a neuron can be smaller than the temporal jitter in input
spikes. However, because of the presence of background activity, the reliability is not 100%
and temporal spread is not vanishing. Therefore, no definitive answer to the question could
be provided. Our study showed that the two variables have to be treated simultaneously.
Whether the temporal precision in a packet of spikes is large enough depends on the number
of spikes available, and –vice versa– whether the number of spikes is sufficient depends on
their temporal precision. Furthermore, it turns out that the question cannot be answered
independently of the network structure. A single neuron converts the number of spikes at its
input into a response probability. Knowledge about the network structure (w in our case)
is required to obtain comparable measures on the input and the output side. The basic
result is inherent in the discussion of synfire activity by Abeles (1991), and formalized in the
construction and analysis of the iterative (a, σ)-mapping (Diesmann, Gewaltig, & Aertsen,
1996b; Diesmann, Gewaltig, & Aertsen, 1997).

In fact, we have seen that moderate membrane potential fluctuations consistent with
low spontaneous activity have a constructive effect on the size of the basin of attraction
(Chap. 6). The effect can be compared to aperiodic stochastic resonance (Collins, Chow, &
Imhoff, 1995; Collins, Chow, Capela, & Imhoff, 1996; Heneghan et al., 1996). In aperiodic
stochastic resonance, the ability of a system to respond to an aperiodic signal is measured
by the cross-correlation. Postma and Hudson (1996) observed the effect in a discrete-time
feed-forward network, ignoring temporal spread, and they related the effect to stochastic
resonance. Unaware of the work on stochastic resonance, Boven and Aertsen (1990) noted
the constructive effect of excitatory background activity on the coupling strength of a single
synapse. Different from the standard situation for stochastic resonance, the elevated back-
ground activity increases both: membrane potential fluctuations σV and the mean of the
membrane potential ηV . The conceptual framework to study the dynamics of the coupling
between neurons in experimental data and the notion of “effective connectivity” was intro-
duced by Aertsen, Gerstein, Habib, and Palm (1989), extending earlier work by Gerstein and
Perkel (1969). First examples for the fact that the cross-correlation of two neurons cannot
simply be interpreted in terms of anatomical connection, but may change in dependence of
stimulus context and behavioral state are presented in (Aertsen et al., 1991). Background
activity exploits stochastic resonance and enhances the effect by controlling the distance
between membrane potential mean and spike threshold. Boven and Aertsen (1990) specu-
lated that neural systems could use background activity as “gating” mechanism for synaptic
pathways (see also Aertsen, Erb, & Palm, 1994). The potential role of background activ-
ity as a gating mechanism becomes exceptionally clear in the synfire model. Especially for
weak pulse packets close to the separatrix, the level of background activity can determine
whether synchronous activity decays or propagates through the network in stable fashion.
By contrast, pulse packets which have already reached the vicinity of the attractor are not
affected by the precise position of the separatrix and thus, the level of background activity.
This introduces a hysteresis, not present in stochastic resonance itself. Once an elevation in
background activity has stabilized a pulse packet, the network can sustain the propagating
synchronous activity, even if background activity falls back to its original level. Background
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activity may need to drop to considerably lower levels to switch off synchronous activity
again. Here we have described an interaction between the asynchronous general excitation
level in the network and synchronous spiking activity. The fact that such interaction can
be achieved in the absence of changes in mean membrane potential may be relevant in the
context of balanced neural networks (van Vreeswijk & Sompolinsky, 1996; Amit & Brunel,
1997; van Vreeswijk & Sompolinsky, 1998).

Both types of activity, incoming pulse packets and background activity, may be tempo-
rally modulated allowing for rich dynamics, potentially relevant for neural computation. Let
us illustrate the possible network architectures by an example. Consider a local network with
several embedded feed-forward subnetworks, each one able to sustain synchronous activity.
Modulated background activity can sequentially “load” independent entities of synchronous
activity into the network. The entities are weak pulse packets, received by particular feed-
forward subnetworks from outside the local network, when background activity has entered
a high rate regime. Because synchronous activity rapidly reaches the attractor, it is not
destroyed when the overall activity level goes down again. However, in this state the local
network is decoupled from the rest of the brain with respect to pulse packet input. Note,
that there is again a form of hysteresis here. To kick the pulse packet out of the basin of
attraction, background activity has to fall below the level required to drive a “weak” packet
into the basin. In the general context of cell assemblies, background activity is not restricted
to two states and may rather form a continuum. The level of activity controls sensitivity
and selectivity of the system. The idea of using threshold control in neuronal processing by
cell assemblies was introduced by Braitenberg (1978) and elaborated in (Palm, 1982; Brait-
enberg, 1984; Braitenberg & Schüz, 1998). In the above example, we have connected the
concept of a temporally modulated threshold to the stabilization of synchronous activity in
a specific type of subnetwork. In our picture, threshold modulation is implemented by the
dynamics of background activity. Remember that the discussion of membrane potential fluc-
tuations has shown that threshold modulation does not require a change in the distance from
membrane potential mean to spike threshold. A change in membrane potential fluctuations
generated by balanced network activity is sufficient. Thus, we have described two extreme
mechanisms leading to dynamic changes in the correlation of neuronal spike trains. In the
first, a neuron which is part of several feed-forward subnetworks contributes to different
spatio-temporal spike patterns, depending on the activated subnetwork. In the second, un-
correlated background activity controls the effective or functional coupling between neurons.
The example above illustrates how the two mechanisms may cooperate.

10.1.6 Subthreshold Oscillations

In the cortical network, the membrane potential time course of a single neuron will not be
completely unstructured. Likewise, the membrane potential time courses of two arbitrary
neurons will not always be completely uncorrelated. Especially subthreshold oscillations
(SOs) of membrane potential in the γ-range have gained a considerable amount of attention
(e.g. Lampl & Yarom, 1993; Lampl & Yarom, 1997; Volgushev, Christakova, & Singer,
1998). Interestingly, γ-range oscillations and the membrane potential excursions caused by
an incoming pulse packet are on a comparable time scale, allowing for an interaction of the
two processes. Thus, now that we have understood the interaction of pulse packet input
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with unstructured membrane potential fluctuations, we can address the question how pulse
packets interact with other types of ongoing activity in the brain. It turns out that the
interaction between pulse packet input and SOs can be visualized and quantified with a
two-dimensional timing diagram (the “BiPSTH”) similar to the JPSTH (Aertsen, Gerstein,
Habib, & Palm, 1989). Whereas the JPSTH compares the position of two spikes in reference
to a single trigger event, the BiPSTH relates the timing of a single response spike to two
independent trigger events (Mohns, Diesmann, Grün, & Aertsen, 1999; Mohns, 2000). Also
in this setting, relevant conclusions cannot be made without taking into account the amount
of fluctuations caused by random background activity. For example, because of classical
stochastic resonance, the integrate-and-fire model in the presence of noise (fluctuations) is
sensitive to subthreshold oscillations. The range of SO amplitudes for which the output
spike train does not become periodic itself is limited by the magnitude of the membrane
potential fluctuations. This constraint is relevant, because the strength of the interaction
between pulse packet input and SOs depends on the amplitude of the oscillations and hence,
on the expected amount of fluctuations. Depending on the shape and amplitude of the two
signals, the response spike can be locked to either one of the signals, or to both of them.
The results can be interpreted in terms of two possible network effects of subthreshold
oscillations. First, weak input packets may be kicked in or out of the basin of attraction for
synchronous activity, depending on their time of impact relative to the phase of the SO. Thus,
subthreshold oscillations are able to control the propagation of synchronous spiking activity.
Second, the cross-correlation between the response spike and a spike of the input packet
(“external”) is weaker than the correlation between different realizations of the response
spike at constant phase (“internal”). The terms “external” and “internal” are used here
because from the point of view of a neuron group in a feed-forward subnetwork, the former
is measured between a neuron in the group and a source outside the group, whereas the
latter is measured between two members of the group. If neurons of one group take part in
the same SO and neurons of other groups are not taking part in this SO, an asymmetry is
introduced between delayed and zero-delay cross-correlations. Although synchronous activity
propagates with low internal temporal spread, the presence of subthreshold oscillations can
degrade the delayed correlation between neurons from different groups while enhancing the
correlation between neurons from the same group. This effect might explain why many
of the observed tight correlations between single neurons are centered on zero (Vaadia &
Aertsen, 1992). Here we used subthreshold oscillations as a toy model to discuss possible
interactions of pulse packet input with other, more structured, types of ongoing activity.
The timing diagram is not restricted to periodic processes, however, e.g. engagement of
neurons in multiple synfire chains, “pulse packet – pulse packet” interactions may also be of
interest. In Sec. 10.1.7 we work out in some detail a research plan to measure the neuronal
transmission for transient input in vitro. With the technology developed in this project,
also the interaction of pulse packet input with subthreshold oscillations can be investigated
(Chakalova, 1998). Using extracellular stimulation and intracellularly applied sinusoidal
current, earlier studies (Volgushev, Christakova, & Singer, 1998) already indicated that,
at least in the absence of background activity, effects not captured by the integrate-and-
fire model do occur. Wennekers (1998a) discusses integrative scenarios of γ-oscillations
and synfire activity. The two dimensional BiPSTH timing diagram does not depend on a
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particular neuron model and can, therefore, be used to analyze experimental data and to
directly compare experimental results with model predictions.

The combination of intracellular recording from a single neuron (or some other appropri-
ate technique measuring the trans-membrane potential) and multiple single neuron record-
ings in vivo will help us to uncover the origin of the dynamics of correlations between
neuronal spike trains. If phases of high correlation in neuronal spike trains are by themself
correlated with increased membrane potential fluctuations, this indicates that background
activity is controlling effective connectivity. Assuming that all neurons in the local volume
receive the same level of background activity, the analysis can be performed for all simul-
taneously recorded neurons. Unfortunately, not much can be learned from a comparison of
fluctuations with temporal jitter in spike patterns. In Chap. 5, we have seen that in the
realistic regime of large membrane potential fluctuations, the temporal jitter is insensitive
to changes in the magnitude of fluctuations. Immediately the question arises what the sta-
tistical properties of the membrane potential can tell us about the ongoing processes. If
spikes are elicited in response to incoming pulse packets, the action potentials should “ride”
on characteristic membrane potential excursions (packet potentials) which may be distin-
guishable from the fluctuations causing a spike under spontaneous conditions. Kisley and
Gerstein (1999) suggest to compare the slope of the membrane potential preceding a spike
with predictions for spikes, generated under spontaneous conditions and as the result of pulse
packet input. Packet potentials should also affect the distribution of membrane potential
values. The occurrence of packet potentials should distort the Gaussian membrane potential
distribution predicted by shot noise theory towards close to threshold values. If convergent
synchronous input would be a prominent feature of subthreshold activity, spike triggered
averaging (STA) of the membrane potential of a post-synaptic neuron should often exhibit
residual potentials, deviating from an individual post-synaptic potential. Such compound
PSPs are generated if the triggering pre-synaptic neuron spikes in synchrony with a group
of other pre-synaptic neurons. The resulting packet potential is the superposition of the in-
dividual post-synaptic potentials. Using the spikes from a single pre-synaptic neuron as the
trigger, the observed potential is the packet potential, convolved again with the (Gaussian)
spike time distribution. Therefore it is typical for packet potentials as observed in STA that
the potential starts to deviate from baseline already before the trigger spike has reached
the target neuron (Matsumura et al., 1996). Knowledge of the shape of an individual post-
synaptic potential allows for an estimate of the shape of the spike time distribution, and of
the number of spikes involved by deconvolution of the packet potential (Aertsen, 1995). The
development of detailed predictions remains for future work (see also Heck, Léger, Stern, &
Aertsen, 2000).

10.1.7 Experimental Determination of the Transmission Function

The experimental tests proposed in the preceding paragraphs are concerned with passive
observation of activity in the brain. The main purpose is to check the consistency of the
model by observing different measures (e.g. temporal jitter of spikes and rise time of the
PSP) in the same system. Certain relationships between these measures predicted by the
model can be tested. The advantage of these studies is that they can be performed on al-
most arbitrary data sets, because we are only interested in statistical results. The details
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of the experimental protocol are of limited importance. However, the framework developed
in the present study allows for a more direct test in which the system is not only passively
observed, but also actively manipulated. The analysis of the state space for synchronous
spiking activity is based on the definition of a new transmission function for the single neu-
ron (Chap. 3). The definition essentially is model free. It only assumes a system interacting
with its environment by receiving point events (spikes) and emitting point events. We have
developed a protocol and the data processing tools that allow for the reconstruction of the
transmission function from a series of single neuron experiments. This protocol was used
to obtain the transmission function for the specific neuron model used in the present study
(Chap. 2). Obviously, the details of the transmission function will be different for differ-
ent neuron models. The integrate-and-fire model is known to describe the properties of a
cortical neuron under DC current injection in the regime of low membrane potential fluc-
tuations. Although experiments show that a neuron responds to fluctuating input current
with highly reproducible spike trains (Bryant & Segundo, 1976; Mainen & Sejnowski, 1995;
Nowak, Sanchez-Vives, & McCormick, 1997; Warzecha, Kretzberg, & Egelhaaf, 2000), little
is known about the details of the neuronal response to highly transient, supra-threshold in-
put currents. Thus, the present study draws conclusions from a model which is operated in
a parameter regime it originally was not constructed for. It is therefore essential to be able
to directly measure the transmission function of cortical neurons. The purpose is twofold.
First, since only a numerical representation of the transmission function is required for state
space analysis, results of the present study can immediately be recomputed for the experi-
mental data. Second, deviations of the experimentally obtained transmission function from
the transmission function computed for the integrate-and-fire model can be used to develop
a neuron model which better describes neuronal responses to transient stimuli. For exam-
ple, likely candidates for such deviations from the model are two competing effects. Spike
generation may not only depend on a voltage threshold but also on a component depending
on the slope of the membrane potential (Ebbinghaus, Diesmann, Rotter, & Aertsen, 1997;
Ebbinghaus, 1997; Rotter, Diesmann, Frégnac, & Aertsen, 2001; Azouz & Gray, 1999; Azouz
& Gray, 2000). At fast transients, the efficiency of spike generation may be reduced, due to
the limited time the membrane potential spends at particular membrane potential values.

The protocol requires that for a given neuron a specific number of synapses can be sup-
plied with input spikes of a pre-determined temporal relationship. With current technology
it seems infeasible to orchestrate the activation of synapses in such well defined manner. We
have stated in Chap. 2 that in an in vitro slice preparation of cortical tissue, the membrane
potential can be recorded by an intracellular electrode. Simultaneous to the observation of
the membrane potential, a current can be injected into the soma of the neuron. This is the
setup in which the classical λ-I curves (Chap. 2) are obtained. As an approximation to the
original protocol we suggest (Kampa, 1998; Kampa et al., 1999) to inject a current into a
neuron as it would be generated by the impact of a pulse packet (a, σ). In each trial, the
required current is computed by convolving the specific realization of spike times with the
shape of a post-synaptic current as measured at the soma. This procedure is justified by the
fact that experimentally, post-synaptic potentials (PSPs) or post-synaptic currents (PSCs)
are usually measured at the soma. Thus, as in our model neuron, we assume deterministic
synapses and linear superposition of PSCs (cf. Heck, Léger, Stern, & Aertsen, 2000). Conse-
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quently, results of the proposed experiment do not allow for conclusions about the influence
of the stochastic nature of synapse, voltage dependence of synaptic currents, and nonlinear
processes in the dendrite. Basically we have reduced the neuron to a system with passive
spread of current from the recording site into the cell, and a spike generation mechanism.
In Chap. 2 we described that in the in vitro preparation, most of the inputs to a neuron are
missing and, therefore, the mean membrane potential is close to resting level and exhibits
little fluctuations. As in the noise-free case studied in Chap. 6, the membrane potential
needs to be elevated to reach a dynamical regime, comparable to the in vivo situation. This
can be achieved by injection of an appropriate constant current in addition to the currents
mimicking pulse packet input.

The protocol has to sample the (a, σ) space with some resolution (∆a, ∆σ). The prepa-
ration is likely to only remain stable for up to a few hours, and intervals of a few hundred
ms are required between individual stimuli to allow for full recovery of the neuron. This
allows for in the order of 10, 000 stimulations. Note that in the case of the model neuron, we
performed 10, 000 realizations at each location in (a, σ) input space. If we regard 100 spikes
as the minimal number of response spikes required for reliable estimation of the response
parameters α and σout of the output density, a grid of 10 by 10 data points seems to be avail-
able to map (a, σ) space. However, not every input packet elicits a response spike. In the
region of interest where the packet potential reaches spike threshold the response probability
is only 0.5. Therefore, a grid of 5 by 5 data points is more realistic. With current technology
it seems to be unavoidable to select a few σ values, and to concentrate a values in a region
where the transition from low to high response probability is expected. Stimuli should be
presented in random sequence to minimize systematic effects, and to leave the experimenter
with a complete as possible data set when at some point the recording becomes unstable.

The stimulus protocol developed so far does not require feed-back from the outcome of
the experiment. The sequence of stimulating currents can be computed prior to the ex-
periment and e.g. stored on CD. When the outcome of a trial (spike or no spike) becomes
available to the stimulus generator, a number of optimizations are possible. First, the stimu-
lation software can count the performed number of trials and the number of response spikes
individually for each point in stimulus space. As soon as the required number of response
spikes (say 100) is obtained, the corresponding (a, σ) pair is excluded from the stimulation
procedure, reserving more time for the less successful parameter sets. Second, the recovery
period may be shortened to some minimal value when no response spike occurred because
most of the recovery effects are assumed to originate from action potential generation (time
constant of the passive membrane versus time constants of the after hyper-polarization,
AHP). Still, the procedure requires preselection of a few points in the (a, σ) space at which
the experiment is performed. More support points are needed in regions where the slope of
the transmission function is steep than in regions where the response probability is either
very low or close to unity. Whether the efficacy of neuronal response will closely follow the
theoretical predictions in the region of interest is unknown prior to the experiment. With
the help of some online analysis, it should be possible to develop an algorithm that optimizes
the positioning of stimulus parameters according to the actual neuronal responses. In the
present simulation study, no attempt was made to implement such optimization. In any
case, online optimization should be developed and tested in a simulated environment. It will
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be important to compare the noise in the experimentally obtained transmission function to
the variability of the transmission functions across neurons. If this variability is low, one
may finally decide to average the transmission function over neurons to reduce noise. It is
a dilemma that in the simplest experiment, where the membrane potential fluctuations are
left at their negligible level, the determination of the transmission function is most difficult
because of the steepness of the slopes.

The next step in bringing the experimental protocol closer to the dynamic regime of
the intact brain is to restore background activity. Much in the same way as we introduced
background activity in the model neuron, a shotnoise current can be injected into the neuron
to generate realistic membrane potential fluctuations (Stevens & Zador, 1998; Nawrot et al.,
2001b). This allows us to verify if integrate-and-fire dynamics presents a valid model for
the interaction of membrane potential fluctuations and pulse packet input. Since the slopes
in the transmission decrease with increasing fluctuations, the experimental determination
of the transmission function is now less difficult than in the case of vanishing fluctuations.
The injection of shotnoise current cannot simulate the changes in conductance caused by the
synaptic bombardment in vivo (see e.g. Paré et al., 1998) . Conductance changes may be
important for the transmission of synchronous activity, because of its effect on the neuron’s
ability to integrate currents. In the integrate-and-fire model this corresponds to the fact that
the coefficient termed membrane time constant becomes time dependent. The “dynamic
clamp” procedure (Sharp, O’Neil, Abbott, & Marder, 1993a; Sharp, O’Neil, Abbott, &
Marder, 1993b; O’Neil et al., 1995) can replace the time-dependent current injected into the
neuron by an imposed time-dependent conductance. In this setup, a current described by an
equation like I(t) = g(t)(E−V (t)) is injected into the neuron, where E is an arbitrary reversal
potential, V (t) the membrane potential of the neuron, and g(t) the desired conductance
time course. By rapidly switching between current injection and voltage measurement, such
dynamic clamp can be achieved using a single electrode. Thus, the protocol for measuring
the transmission function changes only in so far that now a synaptic conductance time
course (and a corresponding reversal potential) has to be supplied, instead of a current
time course. In fact, in a different context the developers of the dynamic clamp recently
proposed its use to mimic effects of (balanced) background activity in vitro (Chance &
Abbott, 2000; Abbott & Nelson, 2000). A completely different approach to the problem of
generating realistic membrane potential fluctuations is the attempt to directly activate the
remaining network in the slice. To this end, the cortical slice is loaded with a caged version
of the excitatory transmitter glutamate, which can be activated by a UV-laser beam. By
sequentially stimulating randomly chosen sites in the slice, the spike rates of neurons are
increased and in vivo like membrane potential fluctuations can be observed (Kampa et al.,
2000; Nawrot et al., 2001a).

Experimental determination of the transmission function is an ongoing project which
has already inspired more general methodological work (Mehring et al., 2001). Although
preliminary results in the regime of vanishing fluctuations have been obtained (Kampa et al.,
1999; Rodriguez et al., 2001), demonstrating the principal feasibility of the approach, more
work is needed to carry out the research program as described above. As we have already
noted in Sec. 10.1.6, the protocol being developed in this project can also be used to obtain
first insights into the interaction of pulse packet input and other types of ongoing activity.
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10.2 Open Questions and Outlook

After having interpreted the results of the present work and discussed its immediate predic-
tions, let us now summarize some of the questions generated by the study. In addition to
questions directly related to the analysis in the present work, we shall also discuss the next
and medium-term steps that can be taken to further investigate the origin of synchronous
spiking activity in cortical networks. It turns out that the next target would be to simulate
a small volume of cortex. Within this model, theoretical results about the existence of a
stable state at low spike rates in a cortical network (Amit & Brunel, 1997; van Vreeswijk &
Sompolinsky, 1996; Brunel, 2000) and results about the propagation of synchronous activity
(Abeles, 1991; Diesmann, Gewaltig, & Aertsen, 1999) can be reintegrated. Most impor-
tantly, virtual multiple single-neuron recordings will provide us with better predictions for
the occurrence of spike patterns than are available to the present day (Grün, Diesmann, &
Aertsen, 2002b; Grün, Riehle, & Diesmann, 2001).

We have discussed in Sec. 10.1.7 that an important next step is an experimental one.
For further theoretical work on network dynamics it is essential to establish whether the
integrate-and-fire model is appropriate under conditions of transient stimuli. The relation-
ship of the neuronal transmission function to the development of synchronous activity in
the network allows us to judge the significance of experimentally observed deviations from
model predictions. In case of relevant deviations, it will be interesting to explore possible
biophysical mechanisms, to modify the neuron model accordingly, and to propose new ex-
periments to validate the model. Compartmental modeling (see e.g. Segev, Burke, & Hines,
1998) can be used to check whether the potentially observed deviations are due to the specific
simplifications in the integrate-and-fire model. Possible candidates are the reduction of the
passive electrical properties to a point-neuron model and the reduction of Hodgkin-Huxley
(Cronin, 1987) dynamics to a voltage threshold (e.g. Azouz & Gray, 1999).

Several technical questions arise within the framework of the present study, which are
presented here in listed form:

• a and σ seem to be natural variables for the characterization of a volley of spikes.
However, the results of Chap. 6 suggest that with respect to the threshold process of
the integrate-and-fire model, the amplitude and rise time (or slope, compare Kisley
& Gerstein, 1999) of the packet potential could lead to a simpler structure of the
state space. Thus, it appears worthwhile to investigate whether there are better suited
variables than a and σ.

• The state space portraits suggest that for decaying trajectories there is also an attrac-
tor at vanishing activity and finite temporal spread. This regime is, unfortunately,
numerically extremely difficult to study. Two effects compete: whereas the broadening
of the packet potential increases the spread of the response spikes, the decrease in am-
plitude leads to a decrease in temporal spread because spikes can only be created in a
narrowing peak region. In addition the position of the attractor for vanishing activity
depends on background activity because the shape of the part of the membrane poten-
tial distribution interacting with the packet potential determines temporal spread (cf.
Chap. 9). Investigation of the regime of vanishing activity may lead to deeper insights
into the threshold process.
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• A spike intensity model would be better suited for analysis than the integrate-and-fire
model because of the connection to the mathematical framework of point processes
(see e.g. Rotter, 1994). If we regard the integrate-and-fire model as an accurate
description of neuronal dynamics, a mapping to an intensity description valid in the
desired dynamical regime needs to be constructed. The database of response spike
distributions for individual input parameter sets (a, σ) can be used to compute the
spike intensity, and to study its dependence on the input. Such investigation may
clarify the interesting observation that the slow fluctuation model presented in Chap. 9,
as well as an intensity model assuming arbitrarily fast fluctuations (Gewaltig, 2000),
capture essential aspects of the synchronization dynamics (see also Plesser & Gerstner,
2000 and references therein). First steps are undertaken in Sec. 9.5.

• In the construction of the transmission function, we averaged over many realizations of
input packets with identical parameters (a, σ). By contrast, in a completely connected
feed-forward network each neuron in a group receives the identical configuration of
input spikes. At large membrane potential fluctuations this difference is irrelevant.
The situation might change in a regime of small fluctuations, and in networks with a
low number of neurons per group but large post-synaptic potentials.

• The ad hoc procedure applied in the present study to estimate a and σ from the re-
sponse spike distributions in the presence of background activity leads to consistent
results. However, it is conceptually not satisfying, one should look for a better inte-
gration into the framework of stochastic point processes.

10.2.1 Ground State of Synfire Activity

The (a, σ) state space picture implicitly assumes that there is a stable ground state of
the system. Only when excited by an incoming pulse packet, synchronous activity travels
through the network. The ground state is characterized by independent activity of the
neurons at a low spike rate. In Chap. 4 we have shown that increasing the group size
extends the basin of attraction to pulse packets with lower number of input spikes. This
was interpreted as stabilizing synchronous activity, because also initially weak packets can
reach the attractor, and synchronous activity becomes more robust against fluctuations in
the number of spikes and their temporal spread. However, we have recently shown (Tetzlaff,
Geisel, & Diesmann, 2001) that at large group sizes, the ground state can lose its stability.
Above a critical w, synchronous activity forms spontaneously and repetitively, destroying
the possible functional relevance of the excited state. While the process is clearly mediated
by an instability in spike rate in the feed-forward network, the details of the transition from
uncorrelated spike rate to synchronous activity remain for further investigation. One option
is that in a situation where the basin of attraction for synchronous activity extends to the
regime of packets with only a few spikes, these packets could form spontaneously for a certain
spike rate. Thus, because of fluctuations in the number of spikes arriving from the previous
group in a certain time interval, activity can spontaneously jump into the basin of attraction.
It seems that there is not only a lower limit for the number of neurons in a group but also
an upper one, providing us with a further constraint.
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10.2.2 High Rate Limit of Synfire Activity

The finding of a possible upper bound for synfire chain width is related to another important
question, the high rate limit of synchronous activity. In different cortical areas the mean spike
rates differ. In the prefrontal cortex, spike rates are at the level of a few Hz (Abeles, Vaadia,
& Bergman, 1990), they seem to be of the order of a few 10 Hz (e.g. Taira & Georgopoulos,
1993) in the motor cortex. If spatio-temporal patterns would be observed in neurons with
mean spike rates incompatible with the existence of a stable ground state, this would clearly
indicate that the occurrence of the patterns cannot be explained by the synfire model. For a
given group size several scenarios are possible how spontaneous spiking activity can destroy
the functionality of synchronous activity. For example, the spike rate in the ground state
could be large enough to spontaneously create pulse packets which can reach the attractor.
In a different scenario, the spike rate reduces the ability of the neurons to respond to an
incoming pulse packet, due to an increased probability to be refractory (absolute or relative),
to a degree that the network cannot sustain synchronous activity. In yet another scenario, the
high spike rate has decreased the critical group size, above which the ground state becomes
instable, down to a value where the network cannot sustain synchronous activity. One of the
strongest assumptions made in the present study is that we can investigate the dynamics of
a feed-forward subnetwork, without considering its feed-back connections to the embedding
network. This assumption allowed us to assume that background activity composed of
excitatory and inhibitory inputs is stationary. The assumption is valid in a large random
network, where the propagating pulse packet represents only a negligible fraction of the total
excitatory activity. Apart from the feed-forward connections, neurons of a particular group
have little overlap in their target neurons (convergence). Therefore, activity changes induced
outside the feed-forward subnetwork are practically absent and, consequently, no feed-back
can be observed. Consistent with the above assumptions is the further requirement that
background activity received by any two neurons is independent. Once the rate instability
occurs, the above assumptions may no longer hold. Neurons in the feed-forward subnetwork
exhibit a sustained high spike rate, inconsistent with the balanced state of the entire network.
Thus, the network will counteract the increase by inhibitory activity. Thereby, a coupling
is introduced between the background activity of neurons in different groups. Complicated
network dynamics may arise, depending on the fraction which the feed-forward subnetwork
contributes to the total number of neurons in the network, and the details of the excitatory
and inhibitory single neuron dynamics (time constants). Thus, the investigation of large
group sizes and the high rate limit requires consideration of recurrent networks. As a rate
model proven to be useful to understand instability of the ground state in the feed-forward
subnetwork (Tetzlaff, Geisel, & Diesmann, 2001), it will be interesting to see if the approach
(Amit & Brunel, 1997; Dayan & Abbott, 2001) can successfully be applied to describe
the recurrent network, and to explore how the rate description and spike synchronization
interact.

10.2.3 Spatial Constraints of Embedding

The consideration of large group sizes and inhibitory feed-back immediately raises the ques-
tion on the details of the embedding of a feed-forward structure in the cortical network.
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Obviously, the cortical network cannot be described by an random graph on arbitrary spa-
tial scales. Considering only local connections, it is known that the probability of synaptic
contact between two arbitrary neurons decreases with the spatial distance between the neu-
rons’ somata. In an elegant study, Hellwig (2000) showed quantitatively that the probability
of synaptic contact falls off with spatial distance in a Gaussian manner. The reconstructed
arborization of arbitrary cortical pyramidal cells was used to compute statistics of the num-
ber of synaptic contacts as a function of the horizontal distance of the two neurons. Based
on anatomical observations, the algorithm assumes that synapses are formed wherever axon
and dendrite approach each other within the resolution of some minimal volume element.
As a first step towards a more realistic model of the cortical network, this knowledge can be
used to construct random networks with a space constant.

Surprisingly, it turns out that in such networks, feed-forward subnetworks are confined
to a cortical volume on the order of the axono-dendritic connectivity radius of two neurons
(Hehl et al., 2001). Thus, assuming localized random connectivity, in the order of 1 mm3 of
cortex is available for a feed-forward subnetwork. This clearly constrains the effective size of
the embedding network which plays a role in the stabilization of network activity as described
in this study. Furthermore, we can safely assume that also inhibitory neurons collect and
distribute activity on a local scale. Their spatial structure cannot be neglected in the study
of network dynamics. One should be reminded though, that the studies by Hellwig (2000)
and Hehl et al. (2001) only considered the local connections of a cortical neuron, which
make up about 50% of the total number of inputs to a neuron. Further studies will have
to address the question whether synchronous activity is possibly propagated through the
patchy connectivity (Amir, Harel, & Malach, 1993) surrounding the local volume, or by
global convergence of termination sites in long range connections (Schüz, 1994; Schüz &
Liewald, 2001).

We have discussed above that in random networks as well as in random networks with a
space constant, network connectivity plays the role of a threshold variable for the occurrence
of feed-forward subnetworks. In both types of networks, the available connectivity does
not support the existence of completely connected chains, analyzed in the present study.
Only feed-forward subnetworks with small group sizes have non-vanishing probability of
existence. It would be plausible that the large amplitudes of post-synaptic potentials required
by small group sizes are created by suitable mechanisms of synaptic potentiation (e.g. Song,
Miller, & Abbott, 2000; Abbott & Nelson, 2000). However, large PSP amplitudes limit the
reliability of transmission (Chap. 8) and reduce the combinatorial possibilities to arrange
neurons into different functional groups. By contrast, incomplete or diluted feed-forward
subnetworks can exist, given a certain network connectivity and dilution parameter. The
detailed dynamics of diluted chains and the dependence on the dilution scheme still need to be
investigated. Preliminary results of graph theoretical considerations (Hehl et al., 2001) and
network simulations (Mehring et al., 2003) suggest that, once the existence of subnetworks
with a certain inter-group connectivity becomes likely, more than the required number of
target neurons is available. In addition, a number of neurons exist that do not receive
sufficient convergent input from a neuron group to qualify as members of a successive group.
However, the convergence at these “halo” neurons can still be large enough to lead to an
undesired unspecific spread of activity into the remainder of the network. In this light we have
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speculated above, that the task of a potentiation mechanism stabilizing the propagation of
synchronous activity would not so much be to strengthen intergroup connections, but rather
to degrade connections from the chain into the embedding network, leading to unspecific
spread of activity. At the same time, some explicit or implicit normalization is desired to limit
the group size to values not considerably larger than that required to sustain synchronous
activity. Such normalization schemes were discussed by Bienenstock (1995) and Doursat
(1991). Earlier results on the ‘growth’ of feed-forward subnetworks (Hertz & Prügel-Bennet,
1996) may have to be reviewed in the light of spike time dependent plasticity (Markram,
Lübke, Frotscher, & Sakmann, 1997; Zhang et al., 1998). If such growth rules, combined
with local inhibition, provide a mechanism to increase the probability that neuron groups
are formed in some distance to the preceding group, and thereby the strong localization
suggested by the random placement of neurons in succeeding groups can be overcome, needs
to be investigated.

10.2.4 From Random Graphs to Cortical Anatomy

Taken together, our findings suggest a plan for future research in which the dynamics of
a small volume (about 1 mm3) of cortex is the next strategic target. This will require the
simulation of a minimum of 105 model neurons of the type discussed in the present work. This
is within the reach of today’s computer systems. In these networks, neurons can be simulated
with a realistic number of synapses and PSP amplitudes. It is no longer required to speculate
how effects observed in the dynamics scale with network size. Artificially large overlap in the
input of two arbitrary neurons can be avoided. In the same way as the simulation of isolated
feed-forward structures has guided our research in recent years in terms of the development
of abstract descriptions of network dynamics and comparability of simulation results with
experimental data, the small volume of cortex can now take that role. The minimal volume
is determined by the connectivity radius of an individual neuron. The network size should
be large enough to allow neurons with sufficient spatial distance to receive non-overlapping
inputs. The immediate task is twofold. On the one hand, results obtained for the isolated
chain should be checked in simulations of the full network. The first step towards a realistic
network structure is to move from a random graph to the local connectivity rule. On the other
hand, simulations should be used to perform virtual multiple single-unit recordings, combined
with a realistic number of intracellular recordings. Analysis of these data will provide better
predictions for the occurrence of spatio-temporal patterns in neuronal spike data. The typical
cross- and higher order correlations occurring in such networks can be compared to effects
observed in experimental data (Vaadia & Aertsen, 1992; Vaadia et al., 1995; Grün, Diesmann,
& Aertsen, 2002b). Comparison of the results in different parameter regimes (Brunel, 2000)
may give insight into the nature of the cortical network. As discussed above, especially the
comparison of multiple single-unit spiking activity and intracellularly recorded subthreshold
activity will provide us with valuable information and constraints for the network models.
Simple hypotheses like the one that spatio-temporal patterns naturally occur in a random
network in response to some unspecific excitation remote from the recording site can then
easily be tested in the model. Having understood the basic properties of the network model
now enables us to implement several feed-forward subnetworks within the global network
to investigate their interaction with the inhibitory subnetwork and the interactions between
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the feed-forward subnetworks. The synfire chain model, which has formerly been treated
as a graph with arbitrary spatial arrangement, is now embedded into the space constrained
by cortical connectivity and by the inhibitory subnetwork. In principle, measures relevant
for the interpretation of data like the probability to observe the activity of a feed-forward
subnetwork with a given number of electrodes and given electrode distance can be tackled.
Another example is the relationship between the number of spatio-temporal and purely
temporal (auto-) patterns expected to be found in neuronal data.

In the above discussion, the cortex was essentially treated as a two-dimensional sheet
of neurons, the vertical structure (Braitenberg & Schüz, 1998; Nicholls, Martin, Wallace,
& Fuchs, 2001) has been ignored. Neurons in different layers of the cortex have different
properties. Also, the number of inputs into a local column and the number of outputs
from a local column differ between layers. In addition, there are indications for a specific
wiring pattern between layers (e.g. Douglas & Martin, 1991a; Lübke, Markram, Frotscher,
& Sakmann, 1996; Lübke, Egger, Sakmann, & Feldmeyer, 2000). Thus, on a longer time
scale the three-dimensional structure of the cortex should be considered. In this strategy, we
use the occurrence of synchronous activity and other cooperative phenomena on the level of
spike times as a guideline, while constructing a model of the cortex.

10.2.5 Functional Relevance

In the present work we have purposely avoided to discuss the potential functional role of
synfire chains. Instead, we have concentrated on the detailed dynamics of such subnetworks,
and their dependence on experimentally accessible parameters. It is plausible that the corti-
cal network can support synchronous spiking activity, and many constraints are now known.
The dynamics was discussed in the framework of a single synfire chain. However, the dy-
namics neither prohibits that an individual neuron recurs at different locations in a single
chain, nor that an individual neuron takes part in multiple chains. Thus, each neuron may
participate –spike by spike– in multiple volleys with different neuron compositions, provided
its engagements differ by more than the refractory period. Several such volleys may propa-
gate through the network simultaneously, allowing multiple synchronous processes to coexist
while maintaining their identities. Therefore, one should probably rephrase the main result
of the present study as follows: A group of neurons can reproduce synchronous activity in
its input at its output. Hence, to support synchronous spiking activity, the network only
needs to be locally feed-forward.

Some of our results, such as the transmission function for transient input, the discussion
of the temporal precision of neuronal response, and the role of background activity, may be
useful beyond the framework of feed-forward subnetworks. Others have discussed the po-
tential functional role of synfire activity. The literature ranges from abstract considerations
(Bienenstock, 1991a; Bienenstock, 1991b; Bienenstock, 1995; Herrmann, Hertz, & Prügel-
Bennett, 1995; Arnoldi & Brauer, 1996) to detailed implementations (Abeles et al., 1993a;
Arnoldi, 1996; Arnoldi, Englmaier, & Brauer, 1999; Wennekers, 1998b). These researchers
argue that the combinatorial possibilities of synfire chains, together with a mechanism to
dynamically bind activity between chains, make them an ideal substrate for neuronal pro-
cessing. Whether the brain uses feed-forward subnetworks to carry out its tasks, and how
these operations are performed, is outside the scope of the present study and remains for
further investigation.



Appendix A

Exact Integration

Here we briefly describe the numerical methods used to solve the neuron and network model
introduced in Chap. 2. It turns out that by restricting all spikes in the system to an evenly
spaced temporal grid, the subthreshold dynamics can efficiently be integrated without fur-
ther approximation. Hence, the name “Exact Integration”. A detailed description of the
general approach and its application to integrate-and-fire dynamics can be found in (Rotter
& Diesmann, 1999). The first section shows that the subthreshold dynamics of a model
neuron is captured by a three-dimensional state vector, an appropriate propagator is con-
structed. The next section specifies the mechanism of spike generation and the interaction
between model neurons.

Subthreshold Dynamics

The membrane properties are described by a first order linear differential equation (2.1).
The α-function (2.2), describing the time course of a post-synaptic current, is a solution of a
time-invariant two-dimensional system of first order linear differential equations (cf. Wilson
& Bower, 1989; Bernard et al., 1994). Therefore, a post-synaptic potential (2.3) can be
generated by

ẏ = Ay + x, (A.1)

where y(t) is the time-dependent state of the system, x(t) is the time-dependent input to
the system, and A is a matrix of constants characterizing the system. Identifying y3 = V
and using the substitutions y2 = ι, y1 = 1

τα
ι + d

dt
ι we have

A =

− 1
τα

0 0

1 − 1
τα

0

0 1
C

− 1
τm

 . (A.2)

A single PSP (2.3) is generated at time tk for

x(t) =

ι̂ e
τα

0
0

 δ(t− tk). (A.3)
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Let us now assume that we are interested in the response y(t) of the system (A.1) to
more general input x(t) on an evenly spaced temporal grid tk = kh, where h is a fixed time
step (here 0.1 ms). We write yk ≡ y(tk) for brevity. If the input is a “pulse train” restricted
to the temporal grid

x(t) =
∑

k

xkδ(t− tk) (A.4)

the system can be integrated using

yk+1 = eAhyk + xk+1, (A.5)

where we have exploited the general solution (Hirsch & Smale, 1974; Arnol’d, 1992; Bronstein
et al., 1996)

y(t) = eA(t−s)y(s) +

∫ t

s+

eA(t−t′)x(t′)dt′ (A.6)

of (A.1), y(s) representing the initial conditions. Having an exact solution available for
our system is of interest because with time constants differing by more than an order of
magnitude it already represents a moderately stiff system (Mascagni, 1989; Press, Teukolsky,
Vetterling, & Flannery, 1992). The matrix exponential eAh is time-independent and is called
the propagator of the system

P (h) = eAh (A.7)
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 . (A.8)

The analytic calculation of the matrix eAh can be performed either by hand (Hirsch &
Smale, 1974; Colquhoun & Hawkes, 1995; Leonard, 1996) or with the help of a software
package such as Mathematica (Wolfram, 1996). Algorithms for the numerical computation
of the matrix exponential are available (Moler & van Loan, 1978; Golub & van Loan, 1996;
Druskin, Greenbaum, & Knizhnerman, 1998; Kenny & Laub, 1998) and implemented (e.g.
MathWorks, 1998).

Because of the linearity of (A.1), the effects of the input spikes arriving at the excitatory
and inhibitory synapses of the neuron can be summarized in a single input pulse train (A.4).
The xk represent the sums of the initial conditions (A.3) of all synaptic events elicited by
spikes arriving at the neuron at tk. The dynamics of an arbitrary number of synapses is
captured by just three state variables. Note that amplitude and sign of the PSP can be
different for different synapses, only the time constant is required to be identical. The state
vector y(t) reflects the history of all input spikes that have occurred up to time t. There
is no need to keep a list of input events. The propagator matrix (A.8) is lower triangular.
Therefore, the iteration step (A.5) does not require a full matrix multiplication. In addition,
the update of y from one time step to the next can be carried out “in place”, starting at
the bottom row and working upwards. Consequently, the overhead in computational costs
compared to other integration methods is negligible.
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(y; r) at t = hk

y ← P (h) y + x
k+1

r > 0

y3 ≥ θ

r ← r − 1

r ← τr

y3 ← 0

(y; r) at t = h(k + 1)

T

F

T

F

Figure A.1 Propagator of the integrate-and-fire neuron model. The state of the system (y; r) is described
by the state vector y of the subthreshold dynamics and integer r, counting the remaining time steps the
neuron has to spend in the absolute refractory period. The sequence of Exact Integration of the subthreshold
dynamics and algorithmic components for spike generation propagate the state of the system from time hk
to time h(k + 1). xk+1 is the input to the neuron arriving at time h(k + 1).

The above described approach can be extended to a larger class of input functions x(t)
by adding equations to the system (Rotter & Diesmann, 1999), e.g. DC or sinusoidal input
currents.

Integration Scheme

The neuron model is defined by the subthreshold dynamics discussed in the previous section
and an algorithmic threshold operation (cf. Fig. 2.2). Following threshold crossing, the
membrane potential is clamped to resting level for an absolute refractory period τr. Fig. A.1
illustrates the complete propagator of the neuron model. The membrane potential is checked
for threshold crossing on the temporal grid. If the membrane potential is above threshold, a
spike is immediately reported with the help of an additonal state variable r. At the time of
spike generation we have r = τr. The neuron is able to emit a new spike if r = 0. At spike
generation the membrane potential is immediately reset. In the state vector supra-threshold
values can never be observed. The sequence of operations specified by Fig. A.1 ensures that
the effect of an incoming spike is directly observable in the state of the system. Compatible
with the restriction on input spikes, output spikes are bound to the temporal grid.
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In networks of such units a minimal delay of one time step for synaptic interactions
enforces causality of the system and is required by a parallel update scheme. Each neuron
receives pulse train input, and is itself the generator of a pulse train. Since pulse train inputs
are well suited for Exact Integration, the method constitutes a natural choice for integrate-
and-fire type models. If the value of the membrane potential represented in the state vector is
of no concern, the propagator can be further simplified by resetting the membrane potential
at the end of the refractory period only.

The threshold operation on a fixed temporal grid introduces two types of integration
errors. First, spikes can only be reported on the temporal grid. This effect can partially
be overcome by determining the precise time of threshold crossing using linear interpolation
(Hansel, Mato, Meunier, & Neltner, 1998). Second, threshold crossings can be completely
overlooked, if the integration step is to large and the membrane potential returns to sub-
threshold values within one iteration step. In (Rotter & Diesmann, 1999) Exact Integration
is compared to a number of integration methods routinely used in neuronal modeling. It
turns out that Exact Integration generally yields reliable simulations and more accurate re-
sults. The neuron model as described above is implemented in the simulation tool SYNOD
(Diesmann, Gewaltig, & Aertsen, 1995).
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List of Symbols

Symbol Description

a number of spikes in a pulse packet

σ temporal spread of a pulse packet

α response probability

w number of neurons per group

T (ain, σin) → (α, σout), transmission function

Tw (ain, σin) → (aout, σout), iterative mapping

as(σ) separatrix

R membrane resistance

C membrane capacitance

I membrane current

τm membrane time constant

V membrane potential

V0 resting potential

θ V0 + θ is threshold potential

τr absolute refractory period

λ spike rate

ι(t) post-synaptic current (PSC)

τα rise time of PSC

u(t) post-synaptic potential (PSP)

υ0(t) PSP of unit amplitude

τ0 rise time of PSP

F 1 form factor PSP area

F 2 form factor PSP peakedness

continued
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Symbol Description

ηV V0 + ηV is membranepotential mean

σV standard deviation of membrane potential

ρV (V ) probability density of V

θ̄ θ − ηV

gσ Gaussian with standard deviation σ

U(t) packet potential

υσ(t) characteristic membrane potential excursion

υ̂(σ) characteristic amplitude

τσ rise time of packet potential

ã relative group activation

σ̃a standard deviation of ã

Bw,α(ã) distribution of ã

Aw(α, σ) operator, generates (a, σ) with random a

S(a, σ) operator, generates (a, σ) with random σ

Sw(a, σ) survival probability

ρδ(δ) spike probability density

Q(δ) survivor function

f(δ) spike intensity

h step size of simulation

P (h) propagator of subthreshold dynamics

• x̂ denotes the peak value of a function x(t) with a single and well defined maximum

• x+ and x− specify x for excitatory and inhibitory processes, respectively
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gen Neurobiology Conference, Stuttgart, pp. 254. Thieme.

Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-
and-fire neural networks. Neural Comput. 10 (2), 467–483.

Hatsopoulos, N. G., Ojakangas, C. L., Paninski, L., & Donoghue, J. P. (1998). Information about
movement direction obtained from synchronous activity of motor cortical areas. Proc. Natl.
Acad. Sci. USA 95, 15706–15711.

Haykin, S. S. (1998). Neural Networks: A Comprehensive Foundation (2 ed.). Upper Saddle River:
Prentice Hall.

Hebb, D. O. (1949). Organization of behavior. A neurophysiological theory. New York: John Wiley
& Sons.
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