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Abstract

We study flavor-changing decays of hadrons and leptons in supersymmetric grand
unified theories with universal soft-breaking terms at the Planck scale. Specifi-
cally, we study an SO(10) model with a flavor structure motivated by the observed
large atmospheric mixing angle.

In such models, the large top Yukawa coupling leads to a predictive pattern
of flavor violation among the sfermion mass matrices both in the slepton and
squark sectors. The steps taken are the following.

• We perform the first study of this model utilizing a full renormalization-
group analysis to relate Planck-scale parameters to weak-scale parameters.
This allows us to impose constraints from direct searches and vacuum sta-
bility. We provide a prescription to compute the relevant weak-scale pa-
rameters from a few weak-scale inputs.

• We compute and discuss the effective Lagrangians for B − B̄ mixing, for
Bd → φKS for τ → µγ decay.

• A detailed numerical study of Bs−B̄s-mixing and BR(τ → µγ) allows us to
assess the best way to search for signals of, and possibly falsify, this model.

• As a by-product of our computation, we compute the full one-loop renormal-
ization-group equations in matrix form of the most general renormalizable
SUSY-SO(10) couplings of the matter fields.

We find that in Bs− B̄s mixing, a significant (about a factor of four), but not
an order-of-magnitude enhancement of the standard model prediction is possible.
For τ → µγ on the other hand, we find large signals close or even above the
experimental upper bound, so that in fact non-observation of this decay already
exludes part of the otherwise allowed parameter space.
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Chapter 1

Introduction

The standard model of strong and electroweak interactions is one of the great
success stories of physics. Starting from a situation in the 1960s when all one
had were phenomenological theories of limited predictivity describing the hun-
dreds of baryons and mesons, typically nonrenormalizable and satisfying various
approximate symmetries and conservation laws, a number of groundbreaking de-
velopments culminated in a simple and predictive description of essentially all
known phenomena of particle physics.

The first major development was the description of electromagnetic and weak
interactions by an SU(2) × U(1) gauge theory that is spontaneously broken to
electromagnetism by the Higgs mechanism [1, 2, 3], and which was soon shown
to be renormalizable [4]. Later it was realized that strong interactions could also
be described by a gauge theory [5, 6, 7, 8], unbroken, asymptotically free and
based on the group SU(3). At the end there stood a fully consistent theory
of quarks and leptons, with exact gauge symmetry (albeit partly hidden) and
renormalizable, and with a relatively small number of parameters: after the in-
clusion of the charm, bottom, and top quarks, but before the inclusion of neutrino
masses, there are just nineteen parameters, which already includes the masses of
all fundamental particles.

Soon after it was speculated from the fermion content of the standard model
that the nonsimple gauge group of the standard model may be the result of
another instance of spontaneous symmetry breaking, and that there may be an
underlying simple gauge group, first taken to be SU(5), which is the smallest
possible choice [9, 10]. This involved a unification of different standard-model
multiplets into irreducible representations of SU(5).

Furthermore, within the standard model the extrapolated running gauge cou-
plings approximately meet at a very high grand-unification scale of about 1015

GeV, which was seen as an additional hint at unification [10]. An even higher
degree of unification was possible with the gauge group SO(10) [11, 12], where
all fermions of a standard-model generation are unified within one irreducible
representation, at the cost of having to introduce a right-handed neutrino. Being

1



2 CHAPTER 1. INTRODUCTION

a gauge singlet below the GUT scale, nothing keeps it from acquiring a large
Majorana mass. In interplay with Yukawa couplings to the lepton and Higgs
doublets, this could give rise to the seesaw mechanism [13, 14, 15], predicting
tiny Majorana masses for the left-handed neutrinos. Together with proton decay,
this is one of the generic predictions of SO(10) grand unified theories.

Nevertheless, the standard model, even when embedded within a grand uni-
fied theory, is unsatisfying on theoretical grounds in a number of regards, the
most important of them being the hierarchy problem: the smallness of the elec-
troweak scale—setting the mass scale for the W and Z bosons—with respect to
a fundamental (Planck or grand unification) scale. This hierarchy is unstable
under radiative corrections, which are driving the electroweak scale toward the
highest mass scale in the theory.

An attractive solution, and indeed, within weakly coupled four-dimensional
quantum field theory, the unique one, was found in (softly broken) supersymme-
try. Making the theory supersymmetric, which involves introducing a bosonic
(fermionic) partner for each standard-model fermion (boson), can protect the
electroweak scale, or equivalently the Higgs mass, from quadratically divergent
corrections. Supersymmetry became even more attractive when more precise de-
terminations of the weak mixing angle from LEP data showed that unification
does not take place in the standard model without the introduction of new de-
grees of freedom [16]. On the other hand, the situation is much more promising
in the MSSM [17, 18], which is consistent with unification and at the same time
raises the grand unification scale to about

MGUT ≈ 1016GeV,

which might help with explaining the stability of the proton.
These nice theoretical arguments have, of course, to be confronted with the

experimental fact that not a single supersymmetric particle has been observed,
and that at this time, there is no conclusive indirect evidence pointing towards
supersymmetry (or at least against an SM valid up to the GUT scale). Both
directions are continually pursued, with the current potential for direct searches
given by the energy reach and performance of the Fermilab Tevatron, while a rich
potential source of indirect evidence comes, among other experiments, from the
B-factories Babar and Belle. This includes information on B − B̄ mixings and
decays as well as on lepton decays such as those of the τ .

A particularly interesting and important point in this respect is that super-
symmetric theories have, in their soft breaking terms, additional sources of flavor
violation beyond the CKM matrix of the standard model and that in grand-
unified schemes where the SUSY breaking is transmitted close to the Planck
scale in a flavor-universal form, the pattern as well as the size of flavor violation
can be related to the Yukawa couplings and mixings (such as the CKM matrix)
present in the low-energy theory. The nonuniversality arises from the GUT renor-
malization of the soft-breaking terms. The possibility of this effect was discovered
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long ago [19], but it was found to be small. Later, when the top quark was found
to be heavy, the authors of [20, 21, 22] reconsidered the effect and found it to
be potentially large in decay modes such as µ → eγ and τ → µγ, with weaker
signals in hadronic observables such as Bd-mixing, εK , and ε′. However, they
assumed the CKM matrix to be the only source of flavor (and CP) violation and
consequently found some processes, such as the flavor-changing τ decay, to occur
at a rather small rate.

The discovery of atmospheric neutrino oscillations [23] and a corresponding
large mixing angle has sparked renewed interest in supersymmetric seesaw mod-
els with and without SO(10) unification. Reference [24] and a number of other
authors have since then investigated the situation quantitatively within super-
symmetric SU(5) with right-handed neutrinos. Notably, there have been no such
studies within a true SO(10) model. In 2002, a simple SO(10) model incorpo-
rating the seesaw mechanism and the near-degenerate observed neutrino mass
spectrum was proposed by Chang, Masiero, and Murayama [25]. The alignment
of the right-handed (and consequently left-handed) neutrino Majorana mass ma-
trix with the up-type Yukawa couplings in that model automatically implies that
the large atmospheric mixing angle manifests itself in a large mixing not only
among sleptons, but also among down-type squarks.

In this dissertation, we will study the pattern of flavor violation of the CMM
model quantitatively, doing a full renormalization-group analysis and computing
several flavor-changing weak decays. In a numerical study, we use these results to
study and compare the mass difference ∆MBs and the branching ratio of τ → µγ.
Unlike the work of Barbieri et al. in the context of SO(10) with the CKM matrix
as only source of flavor violation, we find potentially large rates for the latter
decay.

The remainder of this thesis is organized as follows. In chapter 2, we review the
standard model and its minimal supersymmetric version and define our notation.
We study in detail the new sources of flavor violation and two often considered
patterns of the sfermion mass matrices. Chapter 3 is devoted to supersymmetric
grand unification. After a brief review of the field, we study the modifications
that arise in the scalar mass matrices at the qualitative level. In chapter 4, we
introduce the CMM model in detail and derive the Feynman rules needed to
obtain the effective Lagrangian for weak decays. Subsequently, in chapter 5, we
collect the renormalization group equations and their solutions for the relevant
parameters of the model. In the course of this, we derive renormalization-group
equations for the most general superpotential and soft-breaking terms involving
the SO(10) matter fields. We also discuss some issues related to the IR fixed-
point structure of SO(10). We conclude the chapter with a compact recipe giving
the pattern of the breaking terms at the weak scale in terms of a few inputs, also
defined at the weak scale. The relevant effective Lagrangians for Bs− B̄s mixing,
Bd → φKS decay, and τ → µγ are computed in chapter 6 and compared to
existing results in the literature. It is then argued qualitatively that effects in
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∆F = 1 Bd decay are small in the CMM model and that a quantitative predic-
tion, particularly of the CP asymmetry, is beset by large hadronic uncertainties.
Chapter 7 is concerned with a detailed numerical study of ∆Ms and τ → µγ.
We find a possible enhancement of the former of up to 300% with respect to
the standard model expectation. For the latter, the predicted rate either comes
close to or even exceeds the experimental upper bound in much of the otherwise
allowed parameter space. We conclude and give an outlook in chapter 8.



Chapter 2

The standard model and its
supersymmetric extension

In this chapter we give a brief overview of the standard model, introducing our
notation and focusing on flavor violation. We review the basics of softly broken
supersymmetry together with the minimal supersymmetric standard model, again
focusing on the additional sources of flavor violation. For other issues related to
gauge theory, the standard model, and supersymmetry, we refer to the rich text
book and review literature on these subjects where more detailed treatments can
be found.

2.1 Aspects and problems of the standard model

2.1.1 Field content and Lagrangian

The standard model is a quantum gauge theory of fermions augmented by a
fundamental (Higgs) scalar. The gauge group is SU(3)C × SU(2)W × U(1)Y ,
and the fermions can be described (for example) by left-handed Dirac spinors.
Then the irreducible representations under which the fermions and the Higgs
scalar transform are listed together with their quantum numbers in table 2.1.
The gauge singlet νci acts as a right-handed neutrino. It is not present in the
“traditional” standard model but has been included as it will appear later in this
thesis.

Denoting the gauge fields of the SU(3), SU(2), and U(1) factors by G,W,
and B, and introducing the gauge covariant derivative

Dµ = ∂µ + ig1Y Bµ + ig2T
a
WW

a
µ + ig3T

a
CG

a
µ, (2.1)

the Lagrangian of the standard model takes the form

LSM = q̄iiD/ qi + ūci iD/ u
c
i + ēci iD/ e

c
i + d̄ci iD/ d

c
i + l̄iiD/ li

5



6 CHAPTER 2. THE STANDARD MODEL AND ITS SUSY EXTENSION

Table 2.1: Standard model field (irrep) content. i = 1, 2, 3 denotes generations.

Field (RSU(3), RSU(2), Y )

qi (3, 2, 1/6)
uci (3̄, 1, -2/3)
eci (1, 1, 1)
dci (3̄, 1, 1/3)
li (1, 2, -1/2)
νci (1, 1, 0)

h (1, 2, -1/2)

−1

4
BµνB

µν − 1

4
W a
µνW

aµν − 1

4
Ga
µνG

aµν

−
{
Y U
ij qiu

c
jh

∗ + hY D
ij qid

c
j + hY E

ij lie
c
j + h.c.

}

−λ
4
(h∗h)2 − µ2

0h
∗h. (2.2)

Here h∗ is the adjoint of the Higgs field, which has the opposite hypercharge of
h. Dirac and gauge group representation indices have been suppressed, as have
charge-conjugation matrices and ε-tensors.

In the standard model, one has µ2
0 < 0, which leads to a vacuum expectation

value for h and spontaneous symmetry breakdown of the SU(2)W ×U(1)Y factor
to electromagnetic U(1)Q. By the Higgs mechanism, three gauge bosons, termed
W+,W−, and Z0, acquire masses, and so do the fermions through the Yukawa
terms in (2.2).

In order to describe neutrino masses, we omit a Yukawa term involving the
singlet neutrinos νci (which would give neutrinos Dirac masses) but instead allow
for a nonrenormalizable term

LM = −1

2

XM
ij

MR
(lih

∗) (ljh∗) + h.c. (2.3)

Such a term can arise via the seesaw mechanism [13, 14, 15] if flavor singlet
neutrinos exist and have very large Majorana masses as well as Yukawa couplings
(at a high scale) to h. Integrating out the νci then leads to the term LM . This
is the case in the model of Chang, Masiero, and Murayama [25] studied later in
this dissertation. After electroweak symmetry breaking, LM leads to a Majorana
mass matrix for the left-handed neutrinos.

2.1.2 Flavor violation

What is important for flavor physics is that the only generation-nonuniversal
couplings in the Lagrangian are the Yukawa matrices Y U , Y D, Y E , and the
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matrix XM . They are proportional to the fermion mass matrices Mu, Md, Me,
and Mν and can be made diagonal and real via unitary field redefinitions. In a
first step, we diagonalize Y U and XM ,

qi → U∗
Likqk = (qu, qc, qt), (2.4)

ucj → URjku
c
k = (uc, cc, tc), (2.5)

li → Viklk = (le, lµ, lτ ), (2.6)

Y U → U †
LY

UUR = diag(yu, yc, yt), (2.7)

XM → V TXMV = diag(x1, x2, x3). (2.8)

In the new basis, the remaining structures Y D and Y E have the form

Y D = K∗Ŷ DUD, (2.9)

Y E = U †Ŷ EUE , (2.10)

Ŷ D = diag(yd, ys, yb), (2.11)

Ŷ E = diag(ye, yµ, yτ ). (2.12)

The unitary matrices UD and UE can be eliminated via redefinitions of the fields
dci and eci without affecting the remainder of the Lagrangian. They are there-
fore unphysical. We remark already here that this is different in the minimal
supersymmetric standard model.

The unitary matrices K and U are physical. (However, some of their complex
phases can be eliminated, leaving three physical angles and one phase in K and
three angles and three phases in U .) Eliminating K and U from the Yukawa
terms by field redefinitions of the T3 = −1/2 components of the qi destroys the
manifest SU(2) invariance, and the matrices reappear in the couplings of the
W± bosons. K is known as the Cabibbo-Kobayashi-Maskawa matrix [26] and
U as the Maki-Nakagawa-Sakata matrix [27, 28], and they are the only physical
sources of flavor and CP violation in the standard model with massive left-handed
neutrinos.

2.1.3 Hierarchy problem

The standard model has worked extremely well and survived all experimental
tests so far. One may ask up to what energy scale the standard model remains
valid, so that only after that scale new degrees of freedom or more fundamental
changes have to be introduced. There are several indications that this funda-
mental scale may be very large compared to the electroweak scale. First, if one
considers the running of the three gauge couplings, they meet approximately at
a scale of about 1015 GeV. This could find its interpretation in a grand unifica-
tion of gauge couplings within a simple gauge group, sponaneously broken at this
grand unification (GUT) scale. Second, if neutrino masses are described by a
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nonrenormalizable term as in (2.3), the mass differences inferred from oscillation
experiments suggest that MR appearing in that equation should be of a similar
order of magnitude, if the elements of XM are not extremely small. Furthermore,
the Planck scale of roughly 1019 GeV, where gravitation is expected to become
strong, lies beyond that scale, although not too far so. This suggests that there
may be no need to give up four-dimensional flat-space field theory at a low-energy
scale.

Under these conditions, the smallness of the electroweak scale, or equiva-
lently of the parameter µ2

0, is technically unnatural [29, 30]. That is, it receives
quadratically divergent radiative corrections which cannot be eliminated by any
internal symmetry of the Lagrangian. This is related to the fact that there exists
no internal symmetry which forbids mass terms for any of the scalars in a the-
ory, unlike fermion masses which can be protected from quadratic divergences by
approximate chiral symmetries that—were they exact—would prohibit the mass
term.

One could attempt to “tune” the bare µ2
0 such that the desired hierarchy

results. However, the presence of any heavy particles, such as those associated
with the scale MR, will also contribute to the quadratic renormalization of µ2

0 so
one would have to do an extreme fine-tuning of the whole Lagrangian, if that is
possible at all. Otherwise, any hierarchy of scalar masses (or vacuum expectation
values) will be at most of order 1/α, where α is the relevant coupling constant at
a high-mass scale [30].

It is clear then that the addition of new particles between the weak and GUT
scales will aggravate instead of ameliorate the problem. There are two main ways
out of this problem beyond ignoring it. Either the four-dimensional description
breaks down not far beyond the weak scale, such as in models of large extra
dimensions [31, 32], or the theory or one has to make the theory supersymmet-
ric. (There are other possibilities that involve strongly coupled fields, such as
technicolor theories.)

2.2 The supersymmetric solution to the hierar-

chy problem

N = 1 supersymmetry [33, 34, 35] makes the hierarchy of the standard model
technically natural by relating bosonic and fermionic degrees of freedom. For
instance, supersymmetry implies equal masses for bosons and fermions, which in
turn can protect small scalar masses if the associated fermion mass is protected
by a chiral symmetry. In fact, supersymmetry eliminates all quadratic diver-
gences from the theory, leaving only logarithmic wave function renormalization.
Supersymmetry can be broken softly, i.e. without destroying the aforementioned
desirable properties, in a sufficiently general way to build phenomenologically ac-
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ceptable models. The selection of topics in supersymmetry here is guided by what
will be needed to define the model of Chang, Masiero, and Murayama and dis-
cuss it together with relevant properties of the minimal supersymmetric standard
model, which is its low-energy effective theory. We will use the elegant superfield
formalism [36, 37] which is suitable both for unbroken and softly broken super-
symmetry and allows for simple elimination of unphysical parameters from the
Lagrangian. For an exposition of the supersymmetry algebra, the superspace dif-
ferential operators D and D̄, and the construction of irreducible representations
and invariant Lagrangians in terms of superfields, we refer to [38, 39]. We use the
standard two-component notation as in [38] for this section, utilizing, however,
the standard (+,−,−,−) metric signature. General reviews of phenomenologi-
cal SUSY models, in particular the minimal supersymmetric standard model, are
found, for example, in [40, 41, 42].

2.2.1 Superfields

Superfields are fields defined on superspace, which is parameterized by a set
(xµ, θ, θ̄) of the usual four space-time coordinates and two anticommuting (Grass-
mann) coordinates which are Weyl spinors. The two relevant irreducible super-
field representations for us are the chiral and the vector superfield. An (ordinary,
left) chiral superfield is a scalar function Φ(θ, y) of θ and the “holomorphic”
coordinate

yµ = xµ + iθσµθ̄ (2.13)

and has the Taylor expansion

Φ(θ, y) = φ(y) +
√
2θψ(y) + θθF (y). (2.14)

Its adjoint is a function of θ̄ and

ȳµ = xµ − iθσµθ̄ (2.15)

and is called a right chiral superfield. The component fields ψ and φ describe a
chiral fermion and a complex scalar, called a sfermion. One can show that any
product of left (right) chiral superfields again is left (right) chiral and that the F
component is invariant under supersymmetry transformations if integrated over
all spacetime. Thus the coefficient of θθ in the superpotential

W({Φi}) =
∑
n

c
(n)
i1···inΦi1(θ, y) · · ·Φin(θ, y) (2.16)

can be used in invariant actions.
A vector (gauge) superfield, on the other hand, is self-adjoint and has the

expansion (in Wess-Zumino supergauge) of

V (θ, θ̄, x) = θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (2.17)
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In this case, the integral of the D component is invariant. The component vµ(x)
will act as a gauge field, and the neutral fermion λ is known as gaugino. A
composite term that transforms like a vector superfield is given by

Φ∗ exp (2gAV a
AT

a
A) Φ (2.18)

where we have generalized to an arbitrary semisimple gauge group with gauge
couplings gA and generators T aA. Furthermore it is useful to define the chiral
spinor fields

2gAT
a
AW

a
A =

1

4
D̄D̄ exp (−2gAT

a
AV

a
A)D exp (2gAT

a
AV

a
A) (2.19)

where now

W a
A(θ, y) = λaA(y) +

(
Da
A(y)−

i

2
σµσ̄νvaAµν

)
θ + iθθσµ∂µλ̄

a
A(y). (2.20)

The most general gauge and supersymmetry invariant action is then given via

S =
∫

d4x
(
d2θd2θ̄Φ∗

i exp (2gAT
a
AV

a
A)Φi +

{
d2θ

[
W({Φi}) + 1

4
W a
AW

a
A

]
+ h.c.

})
.

(2.21)
We remark that the D and F component fields are auxiliary since they do not
have a kinetic term, so they can be eliminated in favor of polynomials in the
scalar fields φ by the equations of motion. Before doing this, in order to interpret
the terms in (2.21), we spell them out in terms of component fields. First,∫

d2θd2θ̄Φ∗
i exp (2gAT

a
AV

a
A)Φi =∑

i

|Dµφi|2 + iψiσ
µDµψi − g

√
2
(
φ∗
iT

a
Aλ

a
Aψi + λ̄aAψiT

a
Aφi

)
+F ∗

i Fi + gAD
a
Ad

a
A (2.22)

where
daA = φ∗

iT
a
Aφi (2.23)

Thus this term describes gauge kinetic terms for the scalars and fermions of
the chiral multiplets. Furthermore, it contains a coupling between a fermion, a
sfermion and a gaugino. There is also a contribution to the scalar potential.

The superpotential term gives Yukawa couplings between fermions and sfermions
as well as another contribution to the scalar potential:∫

d2θW({Φi})
∣∣∣∣
θθ

= −Yij({φi})ψiψj + Fifi (2.24)

where

Yij({φi}) =
∂2W
∂Φi∂Φj

({φi}), (2.25)

fi =
∂W
∂Φi

({φi}). (2.26)
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Finally,

∫
d2θ

1

4
W a
AW

a
A + h.c. =

−1

4
vaAµνv

aµν
A +

(
iλaAσ

µ∂µλ̄
a
A − gAf

abc
A λaAσ

µvbAµλ̄
c
A

)
+

1

2
Da
AD

a
A (2.27)

provides kinetic and self-coupling terms for gauge fields and gauginos.
It is now easy to read off the equations of motion for the F and D fields,

Fi = −f ∗
i , (2.28)

Da
A = −daA, (2.29)

and the scalar potential thus is the sum of the two terms

VF ({φi}) = f ∗
i fi, (2.30)

VD({φi}) =
1

2
daAd

a
A. (2.31)

It is clear from eq. (2.25) and the form of VF that the theory is renormalizable
if and only if the degree of the superpotential is at most three. One can also
derive that the complex scalars and the chiral fermions come in supermultiplets
of degenerate mass.

2.2.2 Nonrenormalization theorem

The crucial property of the supersymmetric action (2.21) is that the superpo-
tential W is not renormalized [43]. More precisely, the only divergences of the
effective action have the form of θθθ̄θ̄ terms and only a logarithmic wave function
renormalization for the Φ and V superfields is required. Thus the coefficients
in W get only logarithmically renormalized, too. The same is true of the vac-
uum expectation values in spontaneously broken gauge theories. Thus a large
hierarchy, while not explained, becomes stable under radiative corrections.

2.2.3 Soft breaking

The fact that no scalar particles with the mass and electric charge of e.g. the
electron have been observed implies that supersymmetry must be broken. While
spontaneous supersymmetry breaking is possible by giving a vacuum expectation
value to an F or D component of a superfield, it generally is difficult to do this
in a phenomenologically viable way because the mass formulas [44] applicable to
such cases require at least some supersymmetric particles to be lighter than their
standard model partners. (Another concern is that the vaccuum energy no longer
vanishes (as it does in exact SUSY), leading to a large cosmological constant.)
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For this reason, it is customary to break supersymmetry explicitly. Doing
this, however, is restricted by requiring that the breaking be soft, i.e., that it
should not spoil the nonrenormalization theorem. The allowed soft breaking
terms have been analyzed for the renormalizable case by Girardello and Gris-
aru [45]. They can all be expressed in a manifestly supersymmetric notation by
introducing external vector and chiral spurion superfields U and η whose D and
F components (respectively) are given a nonzero value (thus breaking supersym-
metry). The most general renormalizable gauge-invariant soft-breaking action
can be written [45, 46]

Ssoft = −
∫

d4x
(
d2θ d2θ̄ UΦ∗

im
2
ijΦj +

{
d2θ

[
ηW̃({Φi}) + 1

2
mAηW

a
AW

a
A

]
+ h.c.

})
(2.32)

where

η = θθ, U = θθθ̄θ̄. (2.33)

W̃ is again a polynomial of at most degree three, now containing coefficients
of mass dimensions one to three. It simply gives a contribution to the scalar
potential of the form

VW̃ = W̃({φi}). (2.34)

The hermitian matrix m2
ij contributes to the scalar mass matrix and is restricted

by gauge invariance, while the mA, which may be complex, give mass to the
gauginos.

2.2.4 Nonrenormalizable case

The nonrenormalization theorem has not long ago been generalized by Wein-
berg [47] to the case of a very large class of nonrenormalizable theories; in par-
ticular, the superpotential may have arbitrary degree. This is important to us as
the specific model to be studied later contains nonrenormalizable terms. Unfor-
tunately, the last reference does not reanalyze the structure of the allowed soft
terms. We will assume, as is customary in the literature, that at least the terms
of (2.32) do not reintroduce quadratic divergences.

2.2.5 Eliminating parameters in softly broken supersym-
metry

We now come to a technical application of the superfield formalism, the question
of counting physical parameters or equivalently of what parameters can be elimi-
nated by field redefinitions. One can do this in component field language, but one
has to be careful about what redefinitions keep the manifest softly broken sym-
metry. For example, different rephasings for fermions and sfermions will make
the fermion-sfermion-gaugino couplings complex. Rephasing the gauginos can
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compensate for this and restore the manifest soft breaking, but in turn changes
the phase of the mass parameters, and so on.

In superfield notation, there are just two types of transformation that do not
spoil the general form of (2.21), (2.32). First, there are unitary transformations
among the chiral superfields Φ,

Φi → UikΦk. (2.35)

Second, one can rephase the Grassmann coordinates θ, θ̄, which can be considered
a special type of R transformation:

θ′ ≡ eiαθ, (2.36)

Φ(θ, y) = Φ(e−iαθ′, y), (2.37)

V (θ, θ̄, x) = V (e−iαθ′, eiαθ̄′, x), (2.38)

W (θ, y) = eiαW (e−iαθ′, y) (2.39)

(Note that the field strength superfield W automatically has R character 1/2.
Also note that dθ′ = e−iαdθ.) Going from θ to θ′, the dynamic component fields
transform as

λaA → e−iαλaA, (2.40)

ψi → e−iαψi, (2.41)

vµ → vµ, (2.42)

φi → φi. (2.43)

Thus the rephasing is equivalent to a set of field redefinitions. One has∫
d2θΦ1 · · ·Φn = e−2iα

∫
d2θ

′
Φ1 · · ·Φn, (2.44)∫

d2θ (θθ)Φ1 · · ·Φn =
∫

d2θ
′
(θ′θ′)Φ1 · · ·Φn, (2.45)∫

d2θ(θθ)W a
AW

a
A = e−2iα

∫
d2θ

′
(θ′θ′)W a

AW
a
A, (2.46)

with the remaining terms in the action invariant. A general R transformation
can be composed of the two transformations discussed so far. Both types of
transformation keep the form of (2.21) and (2.32).

As an application, we consider the following situation which arises in the
MSSM and the CMM model. Let

W = yΦ1Φ2Φ3, W̃ = AΦ1Φ2Φ3. (2.47)

Furthermore consider any one of the gaugino masses, m. For this case, one finds
the physical combination

arg y − argA+ argm = invariant (2.48)

where two of the three phases can be freely adjusted. Similarly, one can show
that the phase differences between the different gaugino masses are physical.
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Table 2.2: MSSM superfield content. i = 1, 2, 3 denotes generations.

superfield component fields

Qi (qi , q̃i)
U c
i (uci , ũ

c
i)

Ec
i (eci , ẽ

c
i)

Dc
i (dci , d̃

c
i)

Li (li, l̃i)

Hu (h̃u, hu)

Hd (h̃d, hd)

V1 (Bµ, g̃1)
V2 (Wµ, g̃2)
V3 (Gµ, g̃3)

2.3 The MSSM

The minimal supersymmetric standard model is found by promoting the standard
model chiral fermions and scalars to chiral supermultiplets as well as the gauge
bosons to vector multiplets and constructing the corresponding supersymmetric
gauge theory. The notation for all superfields and component fields is given in
table 2.2. Superpartners are denoted throughout with a tilde. The superpotential
is determined by the standard model Yukawa potential; however, the holomorphy
condition implies that one has to use two separate Higgs multiplets Hu, Hd in
place of h∗ and h. This is also necessary to make the theory anomaly free, as
there are now additional fermions, the higgsinos, in the theory. (Gauginos do not
contribute to anomalies.) One has

W = Y U
ij QiU

c
jHu +HdY

D
ij QiD

c
j +HdY

E
ij LiE

c
j + µHuHd. (2.49)

This is also the most general superpotential invariant under R parity (a Z2 sub-
group of an R symmetry where Hu, Hd have R character zero and all other chiral
superfields have R character 1/2). We note that the R parity of a particle can
be written [48]

R = (−)3B+L+2S (2.50)

where B, L, and S are the baryon number, lepton number, and spin of the par-
ticle. Under R parity, all standard model particles are even and all their SUSY
partners odd, which has the desirable consequence that the lightest supersym-
metric particle is stable. R parity conservation also ensures that baryon and
lepton number are preserved by the superpotential.
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2.3.1 Soft breaking terms and particle masses

The polynomial W̃ of eq. (2.32) is restricted by gauge invariance and R parity to
the form

W̃ = AUijQiU
c
jHu +HdA

D
ijQiD

c
j +HdA

E
ijLiE

c
j +m2

12HuHd. (2.51)

m2
12 is often parameterized as Bµ. The trilinear couplings are called A-terms.

Beyond this, there are mass terms for the three gauginos and explicit scalar
masses,

Lm = −1

2
mg̃1 g̃1g̃1 −

1

2
mg̃2 g̃2g̃2 −

1

2
mg̃3 g̃3g̃3

−m2
q̃ ij
q̃∗i q̃j −m2

ũij ũ
c∗
i ũ

c
j −m2

ẽ ij ẽ
c∗
i ẽ

c
j −m2

d̃ij
d̃c∗i d̃

c
j −m2

l̃ ij
l̃∗i l̃j

−m2
hu |hu|2 −m2

hd
|hd|2, (2.52)

where i, j are generation indices. Now there is no a priori reason for the scalar
mass matrices to have a specific form (other than merely hermitian). In partic-
ular, diagonalizing the superpotential couplings in generation space as in (2.4)–
(2.12) in general does not lead to diagonal sfermion masses. Moreover, the ma-
trices UD and UE of equations (2.9), (2.10) now are physical, as their absorption
into redefinitions of Dc

i and E
c
i affects the form of m2

d̃
and m2

ẽ. In general, the di-
agonalization of the sfermion mass matrices therefore introduces flavor-changing
fermion-sfermion-gaugino couplings beyond those involving charginos. This is a
potential source of large flavor and CP violation [49]. The same is true of the
A-terms.

2.3.2 Electroweak symmetry breaking

Without the soft terms, there would be no breakdown of SU(2) × U(1) to elec-
tromagnetism. After introducing the parameters m2

hu , m
2
hd
, and Bµ, breaking is

possible and both hu and hd can obtain vacuum expectation values vu, vd, giving
mass to the fermions and sfermions. An important parameter is the ratio

tanβ =
vu
vd
. (2.53)

For large tan β, the bottom and tau Yukawa couplings become large.
The scalar potential need not, however, have its minimum at this point. In

that case, charge and/or color would be broken. Demanding that the physical
vacuum be the true one (i.e., stable) leads to strong constraints on the A-terms.
See [50] and the review [51] as well as references therein. It is common and useful
to define rescaled A-terms (X = U,D,E)

aXi ≡ AXii
Y X
ii

. (2.54)
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Then at tree level, one has the conditions

|aU1 | <
√
3(m2

q̃1 +m2
ũ1 +m2

Hu
), (2.55)

|aD1 | <
√
3(m2

q̃1 +m2
d̃1
+m2

Hd
). (2.56)

These bounds are imposed at a low energy (electroweak) scale; there is no cor-
responding condition e.g. at the GUT scale where the tree potential is a bad
approximation to the effective potential. There are similar bounds for the flavor-
offdiagonal entries in the A matrices [50]. The A-term phases are generally con-
strained from CP-violating observables [49], at least for the first two generations.

The structure of the sfermion and bosino mass matrices is affected by elec-
troweak symmetry breakdown. There are both D-term corrections to the gauge
invariant sfermion masses in (2.52) and SU(2) × U(1)-breaking terms mixing
squarks of different chiralities (e.g. d̃i and d̃cj, where d̃i is the T3 = −1/2 com-
ponent of the doublet q̃i). They depend on the A-terms and the combinations
µY X ; for instance,

(M2
d̃
)LR ∝ −µ∗Md tanβ + AD. (2.57)

This left-right mixing is never large for the first two generations due to the
smallness of the Yukawa couplings and the A-terms; barring large tanβ, it is
only relevant for the stops at all. Since in this dissertation no scenarios of large
tan β will be considered and stop mixing will not be important either, we will
here ignore left-right mixing among the sfermions altogether.

The U(1) and SU(2) gauginos mix with the higgsinos into four Majorana
neutralinos and two Dirac charginos. Their respective mass matrices read (we
are using the basis of [52]; the notation there is different but can be related to
the one used here as µ↔ µ,M1 ↔ mg̃1,M2 ↔ mg̃2)

Mχ0 =


mg̃1 0 −MZ cos β sin θW MZ sin β sin θW
0 mg̃2 MZ cos β cos θW −MZ sin β cos θW

−MZ cos β sin θW MZ cos β cos θW 0 −µ
MZ sin β sin θW −MZ sin β cos θW −µ 0




(2.58)

and

Mχ+ =
(

mg̃2

√
2MW sin β√

2MW cos β µ

)
(2.59)

It is clear that even for small tan β, mixing between gauginos and higgsinos can
in general not be neglected, except when µ or the gaugino masses become large.

We now discuss two specific kinds of flavor structure.
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2.3.3 Minimal flavor violation

One way to reduce the number of parameters is to simply impose that the flavor
and CP structure of the new couplings is the same as in the standard model.
That is, the standard model field redefinitions (2.4)–(2.12) already diagonalize
the A-terms and the squark mass matrices. Note that this implies that m2

q̃ is
proportional to the unit matrix. Then the only flavor- and CP-violating couplings
are the couplings of charginos to quarks and squarks and of charged Higgs bosons
to quarks. Furthermore, these couplings contain the appropriate CKM matrix
element as a factor. This “scenario” is known as minimal flavor violation [53, 54].
This is not related to any specific breaking mechanism but is a limit which is
predictive and testable phenomenologically. As has been mentioned above, it can
be justified at least for the first two generations by the constraints coming from
K physics.

The contributions to the effective Lagrangians describing weak decays have
a very specific form within minimal flavor violation. In particular, there are, to
a good approximation, no new flavor and CP structures and no new operators
introduced in the Lagrangian, such that the physics is fully described by modified
Inami-Lim-type vertex functions [54]. This leads to specific signatures in flavor-
and CP-violating observables; in particular, it still allows for an extraction of the
unitarity triangle withouth knowledge of SUSY particle masses [55].

The MFV contributions persist in a situation with more general flavor viola-
tion; they therefore represent the “minimial” impact of supersymmetry on flavor
physics.

2.3.4 Universal boundary conditions

Many different mechanisms of supersymmetry breaking have been considered.
One particularly popular approach is minimal supergravity. Here the soft-breaking
terms are assumed to arise at the Planck scale from gravitational interactions and
have a universal form. That is, there is a universal scalar soft (mass)2, and the
A-terms are related to the Yukawa couplings by a universal parameter a0. Thus
at the Planck scale,

(m2
f̃
)ij = δijm

2
0, m2

Hu
= m2

Hd
= m2

0, Arij = a0Y
r
ij, (2.60)

with f̃ = q̃, d̃c, ũc, l̃, ẽc and r = U,D,E .
However, this universality is not preserved under renormalization group evo-

lution. Evolving the MSSM renormalization group equations [56, 57] down to
the weak scale, the nonuniversality of the Yukawa couplings is transferred to the
Higgs sector and the sfermion mass matrices. The former may have the conse-
quence that the electroweak symmetry is broken radiatively, in the sense that
the tree potential at the Planck scale has its minimum at the origin, while at
the electroweak scale the minimum is at nonvanishing values of the neutral Higgs
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fields. This was first discussed in [58]. With the measured large top quark mass,
radiative symmetry breaking is guaranteed.

Among the sfermions, for small tan β the effect is only large for the matrices
m2
q̃ and m2

ũ, since all Yukawa couplings except that of the top are very small.
Under this condition, in a basis where the matrix Y U is diagonal, they remain
diagonal under evolution and have the schematic form

m2
f̃
=



m2
f̃1

0 0

0 m2
f̃2

0

0 0 m2
f̃3
−∆f̃


 . (2.61)

at the weak scale. The nonvanishing splittings ∆ũ,∆q̃ are calculable by solving
the renormalization group equations.

As the sdown and slepton masses keep their universal form, the matrices UD
and UE are again rendered unphysical. Just as in the case of minimal flavor vi-
olation, the righthanded sdowns and the slepton doublets therefore do not have
chirality-preserving FCNC couplings. (As their left-right-mixings masses accord-
ing to (2.57) are also small (for small tanβ), chirality-flipping FCNC couplings
will be small; their effects may however be enhanced in certain processes such as
b→ sγ by a factor mg̃3/mb and can be constrained from phenomenology.)

Above the GUT scale the situation may change. First, there can be additional
large Yukawa couplings that are not simultaneously diagonal with Y U , destroying
the simple form of (2.61). Second and more model-independently, unification of
matter multiplets generally implies that above the GUT scale, the large top
Yukawa coupling affects the evolution of the other sfermion mass matrices as
well. This will be discussed in chapter 3.



Chapter 3

Supersymmetric grand
unification

In this chapter we review grand unification in the context of supersymmetry.
With respect to flavor physics, there are two main differences to the MSSM.
The first is qualitative: unification of what are separate gauge multiplets in the
standard model into larger representations implies correlations between flavor
structures, and the large top Yukawa coupling now affects additional sfermion
matrices. Furthermore, within SO(10) grand unification there is the prediction
of a right-handed neutrino, which by means of the seesaw mechanism can in-
duce small Majorana masses for the standard model left-handed neutrinos. The
other difference is quantitative, due to the larger group theoretical factors the
renormalization group running of the soft terms becomes much faster.

3.1 SO(10) unification of gauge and matter fields

We have said before that the MSSM improves the prediction for gauge coupling
unification, while at the same time raising the unification scale to

MGUT ≈ 1016GeV. (3.1)

Let us now turn to the unification of the irreducible representations of the stan-
dard model into one irreducible 16 of SO(10) per generation and the consequences
for flavor physics.

Within the original SU(5) model [9], the fermions of one standard model gen-
eration are unified into one five-dimensional and one ten-dimensional irreducible
representation of the gauge group, and they completely fill these representations.
Thus no additional unobserved fermions are predicted. Furthermore, this rep-
resentation content happens to make the GUT anomaly free, just as is the case
with the standard model. As a consequence of this unification, certain Yukawa

19
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couplings become related at MGUT, for instance yτ = yb in the absence of high-
dimensional Higgs representations.

Making the absence of additional fermions a requirement, SU(5) becomes the
unique GUT [9]. However, there is one other simple gauge group that almost ful-
fils the requirement, this is SO(10) [11, 12]. This group has a sixteen-dimensional
complex representation, and the additional degree of freedom is a standard model
gauge singlet, i.e., a right-handed neutrino (cf. table 2.1). Moreover, SU(5) is a
subgroup of SO(10) and the νc field is a singlet under SU(5), as well. We denote
the singlet neutrino superfields of the three generations by Ni.

3.1.1 Lagrangian

The sixteen-dimensional representation of SO(10) is a spinor representation. This
has, as is the case with Dirac spinors, the consequence that it can only enter the
Lagrangian in the form of bilinears. Decomposing

16× 16 = 10+ 120 + 126 (3.2)

and considering that a renormalizable superpotential has degree three (or less),
this implies that there are only three choices of Higgs representation that can
have couplings to the matter fields in a renormalizable context. Schematically,
one can write

W =
1

2
Y 10
ij 16i16j 10+

1

2
Y 120
ij 16i16j 120+

1

2
Y 126
ij 16i16j 126. (3.3)

Here we have suppressed group structure and omitted couplings not involving the
spinors. The necessary group theory is collected in appendix A.

Each of the three Higgs representations contains MSSM doublets with the
quantum numbers of Hu and Hd. The light doublets will, in general, be some
superposition of them. The resulting fermion mass matrices have been given
in [59, 60].

One important point is that the group-theoretical structure of the three terms
in (3.3) forces the matrices Y 10 and Y 126 to be symmetric and the matrix Y 120 to
be antisymmetric. This means that if one wants to have a nonsymmetric Yukawa
matrix for one of the light doublets, the corresponding SO(10) Higgs field must
transform reducibly, that is, it must be a linear combination of two or more
irreducibly transforming fields or it must be replaced by a nonrenormalizable
operator, as is done in the Chang-Masiero-Murayama model.

The choice of one of the large representations has the side effect that the
SO(10) gauge coupling is no longer asymptotically free, although it does not
become infinite before the Planck scale unless several large representations are
introduced. The A-terms have a structure analogous to W, and there is now just
one three-by-three soft mass matrix for the three generations of sfermions.
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3.1.2 Seesaw mechanism

The Ni, being singlets, can acquire a Majorana mass once SO(10) is broken:

WR =
1

2
MRijNiNj. (3.4)

A typical mass will be a bit below the GUT scale unless couplings are fine tuned.
In general, there will also be a Yukawa term; below MGUT this has the form

Wν = Y ν
ijLiNjHu. (3.5)

Integrating out the N fields then gives a nonrenormalizable operator that, after
breaking of GUT and SUSY to the standard model, will lead to the term LM of
eq. (2.3). This is the seesaw mechanism [13, 14, 15]. Small neutrino Majorana
masses are therefore a generic prediction of SO(10) grand unification. The seesaw
mechanism can be relevant in the SU(5) case as well, but in this case there is no
a priori reason to have right-handed neutrinos.

3.2 Universality breaking in SUSY GUTs

We now reexamine the issue of sfermion mass matrices and their flavor structure
first studied in sec. 2.3.1.

3.2.1 Radiative effects

Assuming that the SUSY breaking is again connected with Planck-scale physics
and has universal form at that scale, GUT radiative effects on the Higgs and
sfermion sectors were first considered in [61, 62, 63].

The situation is reminiscent of the MSSM case. This is true particularly when
there is only one large (top) Yukawa coupling in one of the matrices Y 10, Y 120,
and Y 126. In this case all soft mass matrices remain simultaneously diagonaliz-
able with relevant matrix. At the scale of SO(10) breaking, the unique SO(10)
sfermion (mass)2 matrix splits into the five of the MSSM (six if including the
righthanded sneutrinos). (This may happen in several steps if SO(10) is not
broken directly to the SM.) From there to the weak scale, the masses renormal-
ize differently; in the case of small tan β, only the matrices m2

q̃ and m2
ũ receive

additional nonuniversal corrections. All sfermion mass matrices have the form of
eq. (2.61) in a basis diagonalizing Y U .

3.2.2 D-terms from gauge group rank reduction

When, in breaking a softly broken supersymmetric gauge theory, the rank of
the gauge group is reduced, additional nonuniversal contributions to the scalar
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masses arise [64]. This can only happen when the soft terms are already nonuni-
versal at the breaking scale. Both conditions are satisfied in SO(10) with minimal
supergravity boundary conditions. The rank is 5, one greater than that of the
standard model group, and it contains a U(1) factor that commutes with the
SU(5) containing the standard model. This U(1) is commonly labeled X. The
various SU(5) (or standard model) representations arising after SO(10) break-
down have different U(1)X quantum numbers. Each multiplet gets a (mass)2 shift
proportional to its X charge. For the CMM model, this will be taken into account
in chapter 5. All shifts are generation universal for each MSSM multiplet.

The general sparticle spectrum including radiative and breaking effects has
been studied by a number of authors [65, 66, 67, 68]. (The last reference considers
very large tanβ.)

3.2.3 Flavor and CP phenomenology

Because of the similar form of the sfermion mass matrices under the conditions
spelled out above, also the flavor phenomenology resembles the MSSM. How-
ever, there are now possibly large mass splittings also among the righthanded
sdowns d̃ci and charged sleptons ẽci (as well as the lefthanded sleptons l̃i), and
as was mentioned at the end of section 2.3.4, this now gives physical relevance
to the matrices UE and UD related to the diagonalization of down and electron
masses (eqs. (2.9) and (2.10)). Diagonalizing the fermion masses leads to flavor-
changing couplings of gluinos, charginos and neutralinos. This in turn implies
contributions to flavor- and CP-violating observables. The effect was considered
in [19] and claimed to be small. After the top quark was found to be heavy, it
was reconsidered [20, 21, 22] and, after a quantitative analysis of the radiative
effects, found to be potentially important in decay modes such as µ → eγ and
τ → µγ. Generally, the effects on hadronic observables —Bd-mixing, εK , and
ε′—were found to be less important.

Nevertheless, the authors consider SU(5) without right-handed neutrinos and
SO(10) with only symmetric Yukawa matrices, and this implies that the effects
are “unnecessarily” small (governed by CKM elements) or absent.

Once neutrino masses are included, the MNS matrix U with its large mix-
ing angles and unconstrained phases enters. The situation has been investigated
within SU(5) unification in various places, for instance in [24]. For the case of
SO(10), a flavor structure was proposed in [25] which relates the matrix UD to U ,
however their analysis of the phenomenology is restricted to qualitative consid-
erations. In this dissertation, we explore their model quantitatively, calculating
both the radiative effects and the necessary low-energy effective interactions.



3.2. UNIVERSALITY BREAKING IN SUSY GUTS 23

3.2.4 A word on generic GUT problems

GUT theories make several generic predictions, most importantly the unification
of at least the bottom and tau Yukawa couplings, the decay of the proton and,
in the case of SO(10), the nonvanishing of neutrino masses.

Of the three, the last has been confirmed by experiment and the second can
be considered open but giving constraints on model parameters such as tanβ (see
e.g. [69]). The first is becoming more and more constraining due to the increasing
lower bound on the proton lifetime. In fact, nonsupersymmetric SU(5) is consid-
ered ruled out, while the situation for the supersymmetric variants is becoming
difficult. The main contributions here come from color triplet Higgs exchange
and suppressing them is related to the so-called doublet-splitting problem. For
a recent analysis, see [70]. While the problem has to be resolved for any SUSY
GUT theory, it appears to us to have little relation to the specific flavor structure
of the theory. For this reason, we will ignore the issue in this thesis and leave it
to be resolved elsewhere.
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Chapter 4

The Chang-Masiero-Murayama
model

The SUSY SO(10) theory introduced in this chapter has a very simple flavor
structure. The only large, renormalizable Yukawa coupling is that responsible
for the top quark mass, and the right-handed neutrino Majorana masses are si-
multaneously diagonal with the up-type-quark Yukawa couplings at a high-energy
scale. There is only one additional flavor structure that is not diagonal in this
basis—it is responsible for the down-type-quark and charged-lepton masses. In
particular, both the CKM and the MNS mixing matrices are encoded within it.
Radiative corrections from the range of validity of the GUT theory, and from
the (effective) MSSM below the GUT scale, evolve the universal soft parameters
at the Planck scale into nonuniversal soft masses at the weak scale, which are,
however, aligned (simultaneously diagonal) with the up-type-quark and neutrino
mass matrices. Therefore, mixing angles appear between the right-handed down-
type quarks and the corresponding squarks and also between the left-handed
leptons (charged ones as well as neutrinos) and their sfermionic partners. Fur-
thermore, these angles are correlated with the MNS mixing angles. The known
large atmospheric neutrino mixing then implies a large mixing among sfermions.

4.1 Field content and Lagrangian

An interesting supersymmetric SO(10) model has recently been proposed by
Chang, Masiero, and Murayama [25]. At the Planck scale, the quarks and lepton
fields of each standard model generation are unified together with a right-handed
neutrino into an irreducible, 16-dimensional (spinor) representation of the gauge
group SO(10). In addition, the model contains several Higgs multiplets: a 10H ,
a 16H or 126H , as well as a further nonrenormalizable term H′ (for definiteness,
45H × 10′

H) transforming reducibly. All of them have superpotential couplings
to the matter fields. Using matrix notation to describe the generation structure

25



26 CHAPTER 4. THE CHANG-MASIERO-MURAYAMA MODEL

of the couplings, the superpotential of the model reads

W10 =
1

2
16TY U16 10H +

1

MPl

1

2
16T Ỹ D16H′ +

1

MPl

1

2
16TY M1616H16H , (4.1)

with Y U , Ỹ D, and Y M three-by-three matrices, and 16 a vector, in generation
space. In the last term, the two factors of 16H could be replaced by a 126H ,
giving instead a renormalizable term

1

2
16TY M16126H (4.2)

In either case, there must be a Higgs in the conjugate representation to avoid
D-term SUSY breaking at the GUT scale. We will refer to the two variants of
the model as NR (nonrenormalizable) and R (renormalizable), according to the
Y M term. One difference between both cases is that in the NR case, the gauge
coupling is asymptotically free while in the R case it is not.

The soft SUSY-breaking terms involving the fields with large renormalizable
couplings to the matter fields in the CMM model take the form

L10
s = −1̃6

†
m2

161̃6−m2
101̃0

∗
H 1̃0H − 1

2
1̃6

T
AU 1̃6 1̃0H

−m2
126

˜126
∗
H

˜126H − 1

2
1̃6

T
AM 1̃6 ˜126H (4.3)

where the tildes indicate the scalar components of the superfields defined before.
The terms on the second line are absent in the nonrenormalizable case. The
breaking terms are assumed to be universal at the Planck scale:

m2
16 = m2

01, (4.4)

m2
10H

= m2
45 = m2

10′ = m2
16H

= m2
126 = m2

0, (4.5)

AU = a0Y
U , (4.6)

AM = a0Y
M . (4.7)

The matrix Y M , after breaking to SU(5), is responsible for Majorana masses for
the right-handed neutrinos once the 16H acquires a vacuum expectation value
breaking SO(10) to SU(5).

Y U and Ỹ D give mass to up- and down-type quarks, respectively, at the weak
scale. The symmetry factors are such that these, as well as the neutrino masses,
have their conventional normalization.

Because of the reducible transformation of H′, the matrix Ỹ D can have arbi-
trary flavor symmetry. On the other hand, Y U and Y M are complex symmetric
on group theoretical grounds (see appendix A) and can be diagonalized by a
unitary transformation in generation space.

The crucial assumption on the flavor structure in the Chang-Masiero-Murayama
model is that Y U and Y M can simultaneously be made diagonal (and hierarchical)
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due to appropriate flavor symmetries. The only large Yukawa couplings contribut-
ing to the renormalization of the theory are yt and possibly the third-generation
eigenvalue ym in Y M .

4.2 Symmetry breaking chain

The symmetry breaking down to the MSSM is assumed to take place via SU(5)
as an intermediate symmetry and in such a fashion that Y U and Ỹ D give Dirac
masses to the up-type-quark and neutrino supermultiplets and to the down-type-
quark and charged lepton fields, respectively. SO(10) is broken by vevs for the
16H and 16H (or the 126H and 126H) to SU(5) at the scale

M10 ≈ 1017GeV, (4.8)

which gives reasonable values for low-energy parameters if the largest eigenvalues

in Y U †
Y U , Ỹ D†Ỹ D, and Y M †

Y M are of order one and tan β is not too large.
(This is for case NR, in the renormalizable model the largest eigenvalue in Y M

must be smaller.) This step also breaks the U(1)X factor. The SO(10) multiplets
decompose as

10H = (∗, 5H) = (∗, (3H, Hu)), (4.9)

10′
H = (5H′, ∗) = ((3H , Hd), ∗), (4.10)

16i = (Ψi,Φi, Ni) = ((Qi, U
c
i , E

c
i ), (D

c
i , Li), Ni). (4.11)

Here the asterisks denote fields assumed to acquire masses of order M10. The
further decomposition into MSSM multiplets has already been indicated. Ψ, Φ,
and N transform as 10, 5, and 1 under SU(5), respectively. 3H and 3H are color-
triplet Higgses which must be made heavy through the details of the symmetry
breaking and nonrenormalizable couplings; this is the usual doublet-triplet split-
ting problem besetting all four-dimensional GUT theories with a simple gauge
group that was mentioned in section 3.2.4.

The effective SU(5) superpotential, for the NR variant and up to nonrenor-
malizable terms, is given by

W5 =
1

2
ΨTY UΨ 5H +ΨTY DΦ5H′ + ΦTY νN 5H +

1

2

1

MPl

NTY MN 12
H . (4.12)

Y D is related to Ỹ D via
Y D =

v45
MPl

Ỹ D, (4.13)

where v45 is the vacuum expectation value (also SO(10)-breaking) of the 45H .
1H is the SU(5) singlet in the 16H ; for the R scenario a single power of the
singlet in 126H appears instead and the suppressing factor of 1/MPl is absent.
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The SU(5) singlets Ni can be identified with right-handed neutrino superfields,
which obtain a Majorana mass somewhat below M10 from the vev of the Higgs
singlet. We only discuss the NR case, where a mass term

1

2
NTMNN, MN =

v216
MPl

Y M (4.14)

appears. At the scale M10, the following relation holds (up to threhold effects
and corrections from nonrenormalizable terms):

Y U = Y ν . (4.15)

It becomes invalid below that scale due to the different renormalization group
running of the Yukawa couplings. Likewise, the soft masses of the scalars in Ψ
and Φ are equal at M10 for each generations. At a scale close to their Majorana
masses, the right-handed neutrinos should be integrated out, giving a dimension-
five operator leading, after SU(5) and electroweak symmetry breakdown, to a
seesaw Majorana mass matrix for the left-handed neutrinos.

The effective SU(5) theory is valid down to the scale

MGUT ≈ 1016GeV, (4.16)

where it is broken further to the MSSM. Again neglecting effects from thresh-
old corrections and possible additional nonrenormalizable operators, the MSSM
superpotential relevant below the GUT scale becomes

WSM = QTY UU cHu + LTY ννcHu +QTY DDcHd + EcY ETLHd +
1

2
NTMNN.

(4.17)
We do not speculate on the origin of the µ term in eq. (2.49) and treat it as a
free parameter. At MGUT the SU(5) relation

Y D = Y ET (4.18)

holds; like (4.15) it is valid up to corrections from threshold effects and non-
renormalizable operators and becomes invalid as one scales down from the GUT
breaking scale, and one also has

m2
d̃ij

= m2
l̃ ji
, (4.19)

m2
ũij = m2

q̃ ij
= m2

ẽ ij. (4.20)

The further evolution to the weak scale is the usual MSSM one discussed quali-
tatively in chapter 2 and quantitatively in chapter 5.
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4.3 Radiative corrections and flavor violation

Before we study the weak-scale flavor violation of the CMM model, we consider
the phases of the important parameters above the GUT scale that enter the
renormalization group equations. These are the soft mass m2

0, the universal
A−parameter a0, the gaugino mass mg̃ and the large Yukawa couplings yt and,
if applicable, ym. Of these, all but m2

0 can a priori be complex. Performing an
R transformation as in section 2.2.5, the gaugino mass can be made real, at the
cost of changing the phase of a0. yt and ym can then be made real by respective
redefinitions of 10H and 126H , leaving a0 as the only complex parameter. This
phase must be physical, as was shown in section 2.2.5. At the symmetry breaking
scales, the parameters are continuous at leading order, so that no new phases are
introduced. In particular, the large Yukawa yν3 is real, and there will be no
complex gaugino masses within the MSSM.

We now specialize to a basis for the SO(10) spinors 16 where Y U and Y M

are diagonal. We will call this the (U) basis. Then, defining the SU(5) and SM
fields to be components of these basis spinors according to eq. (4.11), also the
matrix Y ν and the left-handed neutrino Majorana mass operator,

Y νM−1
N Y ν , (4.21)

have a diagonal flavor structure.
The only nondiagonal structures now are the matrices Y D and Y E , i.e., all

flavor mixing is contained in these matrices, parameterizable as in eqs. (2.9)
and (2.10).

Radiative corrections due to the large Yukawa coupling in Y U (and possibly in
Y M) above the GUT scale affect the soft masses of the third generation sfermions.
As we have argued in sections 3.2 and 2.3.4, the soft masses become nonuniversal
but stay diagonal in the (U) basis, which therefore is the universal mass eigenbasis
for all sfermions, if, as required above, Y D is assumed small. We are interested
in the right-handed sdowns and the doublet sleptons, for which one has

m
2,(U)

d̃
=



m2
d̃R

0 0

0 m2
d̃R

0

0 0 m2
d̃R

−∆d̃


 , (4.22)

m
2,(U)

l̃
=



m2
l̃1

0 0

0 m2
l̃1

0

0 0 m2
l̃1
−∆l̃


 . (4.23)

The splittings ∆d̃ and ∆l̃ denote the difference in radiative corrections between
the third and first generations from the Planck scale to the weak scale.

Below the electroweak symmetry breaking scale, however, the preferred bases
for down-type quarks and charged leptons are (respectively) those in which Y D
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�
l−i ν̃Lj

χ̃−
k

−i
(

e

sin θW
Z1i

+PL + yl−i
Z2i

−
∗
PR

)
Uij (4.27)

�
l−i l̃−Lj

χ̃0
k

i

([
e√

2cos θW
Z1k
N +

e√
2sin θW

Z2k
N

]
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Z3k
N

∗
PR

)
Uij (4.28)

Figure 4.1: The flavor-changing charged-lepton-sneutrino-chargino and charged-
lepton-charged-slepton-neutralino couplings. (All sfermions left chiral.)

and Y E, and with them the fermion mass matrices, are diagonal. According
to (2.9) and (2.10), and considering that the neutrino masses are also diagonal
in the (U) basis, the two matrices Y D and Y E are diagonalized by the biunitary
transformations

Y E = U †Ŷ EUE , (4.24)

Y D = K∗Ŷ DUD, (4.25)

where K and U are the CKM and MNS matrices. Thus the right-handed down-
type squark and doublet slepton mass eigenstates are related to the interaction
partners of the right-handed down-type quarks and left-handed charged leptons
by


 d̃

∗
R

s̃∗R
b̃∗R


 = UD



d̃∗R1

d̃∗R2

d̃∗R3


 ≡ UD



d̃
c,(U)
1

d̃
c,(U)
2

d̃
c,(U)
3


 ,


 l̃el̃µ
l̃τ


 = U∗


 l̃1l̃2
l̃3


 ≡ U∗



l̃
(U)
1

l̃
(U)
2

l̃
(U)
3


 .
(4.26)

Consequently, there are flavor-changing chargino and neutralino couplings.
For the lepton sector, they are governed by MNS elements, and the Feynman
rules are shown in fig. 4.1. The definition of the chargino and neutralino mixing
matrices Z+, Z−, and ZN is that of ref. [52]. These flavor-violating vertices suggest
that there may be large contributions to the decays τ → µγ and µ → eγ. Due to
the unitarity of the MNS matrix, these amplitudes are, respectively, proportional
to the products of matrix elements U∗

µ3Uτ3 and U
∗
e3Uµ3. We emphasize that there

is generally a large effect in the former decay but not necessarily in the latter
because there is only an upper bound on the element Ue3.
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This type of flavor-changing vertex also arises in the MSSM with righthanded
neutrinos and in supersymmetric SU(5) grand unification with gauge singlets;
consequently it has been studied by a number of authors after experimental evi-
dence for neutrino masses and mixings became available [71, 24, 72, 73, 74, 75].

However, the effects are generally smaller than in SO(10) and also depend on
the structure of the Majorana mass matrix for the singlets.

The new effect in the CMM model is that there is another vertex predicted
to have large flavor- and possibly CP violation. If (4.18) would hold exactly, the
matrices U and UD would be related by

UD = PU∗ (4.29)

where P is a diagonal matrix of phase factors; these serve to fix U in its six-
parameter standard parameterization. However, the bad GUT Yukawa relations
for the first two generations throw this assumption into question. Due to the
approximate third-generation bottom-tau unification, however, one still expects
the third rows of UD and U∗ to be roughly proportional, i.e., the physical bottom
and tau to be members of GUT multiplet. Then we can define a unitary matrix
M satisfying UD =MU∗, having the form

M =


M11 M12 0
M21 M22 0
0 0 eiφ


 , (4.30)

where φ is an unknown phase. Bounds from reactor neutrino oszillations [76,
77, 78, 79] imply that |Ue3| < 0.17 at 90% C.L. while atmospheric neutrino
observations suggest [79] that |Uµ3| ≈ |Uτ3| ≈ 1/

√
2 . Thus, appoximately,

|UD13| =
1√
2
|M12|, |UD23| =

1√
2
|M22|, |UD33| =

1√
2
. (4.31)

The matrix elements UDij enter the down-quark-down-squark-gluino vertex for a
right-handed down quark mass eigenstate dRi and a right-handed down squark
mass eigenstate d̃Rj (fig. 4.2). These vertices give potentially large contributions
to hadronic ∆F = 1 and ∆F = 2 processes.

A nonvanishingM12 will lead to potentially huge contributions to the Bd−B̄d

mixing and even to ∆MK and εK . This does not seem likely given the good
agreement between their standard model predictions as exhibited in CKM fits.
Then either the SUSY particles are very heavy, so that they decouple and their
flavor-changing effects are suppressed, or M12 must be small (and M22 close to
one in magnitude). Since decoupling the sparticles is against our wish to solve
the hierarchy problem, in the remainder of this dissertation we take the matrix
M to be diagonal. This, in turn, means that equation (4.29) remains valid.
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Figure 4.2: The flavor-changing quark-squark-gluino coupling.



Chapter 5

Renormalization of the CMM
model

In this chapter we discuss the renormalization group equations for the CMM
model and their solutions for the parameters needed in this dissertation. After
reviewing the situation in the MSSM and deriving the evolution of the relevant
parameters, we derive the renormalization-group equations of the most general
renormalizable SO(10)-invariant superpotential for the matter fields and of the
soft SUSY-breaking terms, which to our knowledge has not been done before in
the literature. The equations are then solved analytically for the CMM model
and the results compared to the literature. In parallel, we review the SU(5)
evolution. After the treatment of additional sources of nonuniversality due to the
reduction of the gauge group rank and the GUT threshold, a recipe for obtaining
weak-scale parameters from a number of weak-scale inputs concludes the chapter.

5.1 MSSM renormalization

5.1.1 SUSY threshold corrections at the electroweak scale

Our input parameters are physical particle masses and gauge couplings, with
the latter defined in the MS scheme with five active quark flavors. We convert
α̃s(MZ) to α̃DR3 (MZ) ≡ (gDR3 (MZ))

2/(4π)2 and mpole
t to ỹDRt (MZ), both corre-

sponding to the DR scheme suitable for softly broken supersymmetry. By a
tilde over any coupling constant, we denote here and in the following a factor of
1/(4π) to simplify many expressions. We take the full MSSM particle spectrum
to be present (i.e. dynamical) above the conversion scale MZ . The conversion is
achieved via the formulas [80, 69]

α̃3(MZ) =
α̃s(MZ)

1−∆αs
, (5.1)

33
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∆αs = 2α̃s(MZ)


1
2
− 2

3
log

(
mpole
t

MZ

)
− 2 log

(
mg̃

MZ

)
− 1

6

∑
q̃

log
(
mq̃

MZ

) , (5.2)

ỹDRt (MZ) =
1

4πv sin β


 mpole

t

1 + ∆mt

mt


 , (5.3)

∆mt

mt
= α̃3(MZ)


4 ln


 M2

Z

mpole
t

2


+

20

3
− 4

3

(
B1(0, mg̃, mt̃1) +B1(0, mg̃, mt̃2)

− sin(2θt)
mg̃

mpole
t

(B0(0, mg̃, mt̃1)− B0(0, mg̃, mt̃2))

)]
(5.4)

Eq. (5.4) is valid up to (small) electroweak corrections. The functions B0 and B1

are defined in [80]. We neglect weak-scale threshold corrections to g1, g2. That
is,

α̃2(MZ) =
αe
s2W

, (5.5)

α̃1(MZ) =
5

3

αe
c2W

. (5.6)

The soft term inputs are also taken at MZ in the DR scheme. In the following,
all masses and couplings are running DR parameters, even when the labels “DR”
are omitted, unless stated otherwise.

5.1.2 Renormalization-group equations

The renormalization group equations for the MSSM including arbitrary soft-
breaking parameters are known up to two loops and are collected for the MSSM
for example in [81].

For small tanβ, the top Yukawa coupling becomes close to its infrared quasi-
fixed point [82, 83, 84], and consequently the ratio yt/g can approach or exceed
its fixed point values in SU(5) and SO(10) discussed in section 5.2. This is im-
portant because it may lead to a qualitative change of the evolution aboveMGUT.
Therefore, we use two-loop equations for the dimensionless coulings g1, g2, g3, yt.
This is also important for reasons of scheme and scale independence, because we
also take threshold corrections into account and these are next-to-leading order
effects.

In view of the large uncertainties in supersymmetric parameters, we will work
with the one-loop equations for the soft parameters that afford simple and nu-
merically unproblematic analytical solutions.
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For convenience, we define the variable t = lnµ. Then the dimensionless
couplings satisfy [81]

d

dt
α̃1 = 2α̃2

1

(
33

5
+
(
199

25
α̃1 +

27

5
α̃2 +

88

5
α̃3

)
− 26

3
ỹ2t

)
, (5.7)

d

dt
α̃2 = 2α̃2

2

(
1 +

(
9

5
α̃1 + 25α̃2 + 24α̃3

)
− 6ỹ2t

)
, (5.8)

d

dt
α̃3 = 2α̃2

3

(
−3 +

(
11

5
α̃1 + 9α̃2 + 14α̃3

)
− 4ỹ2t

)
, (5.9)

d

dt
ỹt = ỹt

(
−16

3
α̃3 − 3α̃2 − 13

15
α̃1 + 6ỹ2t

+
(
−16

9
α̃2
3 + 8α̃3α̃2 +

136

45
α̃3α̃1 +

15

2
α̃2
2 + α̃2α̃1 +

2743

450
α̃2
1

)

+ỹ2t

(
16α̃3 + 6α̃2 +

6

5
α̃1

)
− 22(ỹ2t )

2
)
. (5.10)

For the dimensionful parameters, we first note that

mg̃i ∝ αi (5.11)

and that gaugino masses unify up to NLO threshold corrections at MGUT.
Let us consider the A-term matrices. Here we only study AD, because the

vacuum stability bound (2.56) can be used to constrain the Planck-scale universal
parameter a0, as we will see. This is not possible for AU , which has a more
involved RG evolution.

We neglect all Yukawa couplings except yt and work in a basis where Y U is
diagonal. Due to the fact that there is only wave-function renormalization in
supersymmetric theories, the renormalization group equations for the matrices
Y D and AD have the schematic form (we do not need them in more detail)

d

dt
Y D, AD = flavor-universal terms× Y D + flavor-universal terms×AD

+y2t


 0 0 ∗
0 0 ∗
∗ ∗ ∗


 . (5.12)

This is true as long as the Higgs multiplets appearing in the Y D term have no
large Yukawa coupling that might contribute to their own wave-function renor-
malization. This condition is satisfied both in the MSSM and in the CMM model
above the GUT scale (with universal soft terms at MPl). As a consequence, the
evolution of the upper-left 2 × 2 submatrices is universal. This in turn implies
that, if AD ∝ Y D at some scale, the same will be true at any scale up to a term
of the form of the matrix in eq. (5.12). Now considering the form (2.9) of Y D in
this basis together with (4.29) and the fact that Ue3 ≈ 0, the matrix AD in the
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basis where Y D is diagonal will have the form

AD
∣∣∣∣
D
= diagonal + f(y2t )


 0 ∗ ∗
0 ∗ ∗
∗ ∗ ∗


 . (5.13)

But this means that to find the (11) element in the basis where Y D is diagonal the
whole yt-dependent term can be dropped. (This works as well in the basis where
Y U is diagonal, but that basis is less useful for applying the vacuum stability
bound.) Defining now aD1 as in (2.54), the equation

d

dt
aD1 = +2(DD

3 α̃
2
3 +DD

2 α̃
2
2 +DD

1 α̃
2
1)
m̄g̃

¯̃α
(5.14)

holds, where
DD

3 = 16/3, DD
2 = 3, DD

1 = 7/15, (5.15)

and m̄g̃/¯̃α is the RG-invariant and universal ratio of gaugino mass and coupling
constant. It can be evaluated from any pair of corresponding gaugino mass and
coupling constant renormalized at an arbitrary scale. For definiteness, we will
evaluate it as mg̃3(MZ)/α̃3(MZ), which is useful because in the numerical analysis
mg̃3(MZ) will be chosen one of the input parameters.

A relation similar to (5.14) holds above MGUT, as will be seen shortly. Of
course the simple form of (5.14) depends crucially on neglecting Ue3; if this could
not be done, it would be difficult to find a simple correlation between a0 and
weak-scale parameters.

The evolution of aD1 is purely inhomogeneous and can be integrated, leading
to a mere shift. Because of gaugino mass unification, this shift is proportional to
any one of the gaugino masses and independent of other SUSY parameters. In
particular, the relation between aD1 at the weak and GUT scales is calculable in
terms of weak-scale inputs.

Now let us turn to the soft masses. Again neglecting small Yukawas, the
soft-mass evolution is very simple for the right-handed down-type squarks and
the sleptons of all three generations as well as for the up-type and doublet (left-
chiral) squarks of the first two generations, which is all we need in this thesis.
For the (mass)2 eigenvalues, one has

d

dt
m2
ũRj

=
(
−32

3
α̃3
3 −

32

15
α̃3
1

) m2
g̃3
(MZ)

α̃2
3(MZ)

− 4

5
α̃1S, (5.16)

d

dt
m2
d̃Ri

=
(
−32

3
α̃3
3 −

8

15
α̃3
1

) m2
g̃3(MZ)

α̃2
3(MZ)

+
2

5
α̃1S, (5.17)

d

dt
m2
q̃j

=
(
−32

3
α̃3
3 − 6α̃3

2 −
2

15
α̃3
1

) m2
g̃3
(MZ)

α̃2
3(MZ)

+
1

5
α̃1S, (5.18)

d

dt
m2
ẽi

=
(
−24

5
α̃3
1

) m2
g̃3(MZ)

α̃2
3(MZ)

+
6

5
α̃1S, (5.19)
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d

dt
m2
l̃i

=
(
−6α̃3

2 −
6

5
α̃3
1

) m2
g̃3(MZ)

α̃2
3(MZ)

− 3

5
α̃1S, (5.20)

where i = 1, 2, 3, j = 1, 2. The quantity S is defined in eq. (4.27) of [81]. For us,
it is only important that it is equal to m2

hu −m2
hd

at the GUT scale and satisfies

d

dt
S =

66

5
α̃1S. (5.21)

Comparing with (5.7), S/α̃1 = inv. follows. Thus in (5.16)–(5.20) one can replace

α̃1S −→ α̃2
1

S(MGUT)

α̃(MGUT)
. (5.22)

Again the equations (5.16)– (5.20) can be integrated and lead to shifts linear in
m2
g̃3
(MZ) and S(MGUT).

5.1.3 MSSM evolution

Integrating the right-hand sides of (5.14) and (5.16)–(5.20) gives the relations

m2
ũR1

(MZ) = m2
ũR1

(MGUT) + (δ3 + w2
uδ1)m

2
g̃3
(MZ)− wuξS(MGUT), (5.23)

m2
q̃1(MZ) = m2

q̃1(MGUT) + (δ3 + δ2 + w2
qδ1)m

2
g̃3(MZ)− wqξS(MGUT),(5.24)

m2
d̃Ri

(MZ) = m2
d̃Ri

(MGUT) + (δ3 + w2
dδ1)m

2
g̃3(MZ)− wdξS(MGUT), (5.25)

m2
l̃i
(MZ) = m2

l̃i
(MGUT) + (δ2 + w2

l δ1)m
2
g̃3
(MZ)− wlξS(MGUT), (5.26)

m2
ẽRi

(MW ) = m2
ẽRi

(MGUT) + w2
eδ1m

2
g̃3
(MZ)− weξS(MGUT), (5.27)

aD1 (MZ) = aD1 (MGUT)− (δ′3 + δ′2 +
1

2
(w2

d + w2
q + w2

hd
)δ′1)mg̃3(MZ),(5.28)

for i = 1, 2, 3. wf for f = u, q, d, l, e, hd denotes the hypercharges of the standard
model fields given in table 2.1. Furthermore, at the GUT scale,

m2
ũR1

= m2
q̃1 = m2

ẽRi
= m2

ψ1
, m2

d̃Ri
= m2

l̃i
= m2

φ1 . (5.29)

The other symbols have the following meaning:

δ3 =
32

3

1

α̃2
3(MZ)

∫ tGUT

tZ
α̃3
3(t)dt = 0.78, (5.30)

δ2 = 6
1

α̃2
3(MZ)

∫ tGUT

tZ
α̃3
2(t)dt = 0.059, (5.31)

δ1 =
24

5

1

α̃2
3(MZ)

∫ tGUT

tZ
α̃3
1(t)dt = 0.011, (5.32)

ξ =
1

α̃1(MGUT)

∫ tGUT

tZ
α̃2
1(t)dt = 0.027, (5.33)
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Table 5.1: Sample set of weak-scale parameters

mpole
t 174 GeV

MZ 91.2 GeV
MGUT 1016 GeV
MPl 1019 GeV
αs(MZ) 0.121
α2(MZ) 0.034
α1(MZ) 0.017
tanβ 3
mq̃ 300 GeV
mt̃1 200 GeV
mt̃2 300 GeV
θt̃ π/6
mg̃ 400 GeV

δ′3 =
32

3

1

α̃3(MZ)

∫ tGUT

tZ
α̃2
3(t)dt = 1.16, (5.34)

δ′2 = 6
1

α̃2(MZ)

∫ tGUT

tZ
α̃2
3(t)dt = 0.186, (5.35)

δ′1 =
1

α̃3(MZ)

∫ tGUT

tZ
α̃2
1(t)dt = 0.075. (5.36)

Here we have defined tZ = ln(MZ), tGUT = ln(MGUT). To get an impression
of the relative importance of the terms, we show typical numerical values that
correspond to the parameters of table 5.1.

We have not discussed the evolution of the soft parameters that are affected by
the top Yukawa coupling, as we will not need them later. Their evolution is more
involved but could be treated along the lines of the “bottom-up approach” [85],
after correcting for nonuniversal soft terms at MGUT.

The Higgs masses in particular depend on superpotential couplings above
MGUT that cannot be inferred from low-energy parameters, and we consider them
free parameters. They are not needed in our analysis either; we assume that their
values are such that no additional phenomenological constraints are violated.

5.2 GUT renormalization

5.2.1 Renormalization-group equations

Unlike in the MSSM case, the renormalization-group equations for a general
SUSY SO(10) theory are not known to the literature. There is one work [21]
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giving results for minimal SUSY SO(10), which would apply to the CMM model
if only the large Yukawa coupling to the 16H is kept, as we do, but upon checking
the computation we found disagreement. Because of this and possible general
interest in the needed techniques, which are hard to find in the literature, we
describe the calculation in some detail. Necessary group theory is collected in
appendix A along with the full one-loop RGEs in matrix form.

For the case of SU(5), [24] give sufficiently general results. We checked them,
too, since this is possible with little effort, and find agreement.

5.2.1.1 Gauge coupling

It is well known that the evolution of the gauge coupling constant at one loop
only depends on the representations of the gauge group present in the theory,
according to the formula

d

dt
α̃ = −2

(
3C2(G)−

∑
R

T (R)

)
α̃2 ≡ 2β0α̃

2 (5.37)

with R labeling the irreducible representations of the non-gauge superfields ap-
pearing in the theory. C2(R) and T (R) denote the quadratic Casimir invariant
and the Dynkin index of a representation. Specializing to the CMM model, one
obtains for the SU(5) and SO(10) theories:

β
SU(5)
0 = −3, (5.38)

β
SO(10),NR
0 = −4, (5.39)

β
SO(10),R
0 = 53. (5.40)

The superscripts “NR” and “R” pertain to the variants of the model with non-
renormalizable and renormalizable neutrino Majorana masses, respectively.

5.2.1.2 SO(10) case

The renormalization of the SO(10) superpotential and soft-breaking terms re-
quires first to find the group-theoretic structure of the same, which has always
been suppressed so far. This is somewhat more complicated than in the Standard
model due to the use of spinor representations for the matter fields. In turn, this
implies similarities to the Lorentz structures appearing in relativistic theories of
fermions. As explained in appendix A, irreducible SO(10) spinors are analogous
to chiral fermions, and their bilinears can (respectively) be coupled to 10-, 120-
and 126-dimensional tensor representations via antisymmetrized products of 1,
3, or 5 SO(10) gamma matrices and a “charge conjugation matrix”.

Following the notation introduced in said appendix, let us take m,n, r, s, t
to be fundamental SO(10) indices and enforce the constraint m < n < · · · in
sums. Furthermore, in the case of the 126-dimensional Higgs, we only sum over
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one half-set of possible five-indices. Let ψ, hR denote the scalar components
of the corresponding SO(10)-spinor and SO(10)-tensor superfields Ψ, HR. We
identify by g̃ the gaugino component of the gauge superfield and allow several
generations of spinors, distinguished by indices i and j. Then the most general
SO(10)-symmetric renormalizable superpotential along with the corresponding
soft terms reads

W =
1

2
Y 10
ij ΨT

i (CγmP
−
S ) Ψj H

10
m +

1

2
Y 120
ij ΨT

i (CγmγnγrP
−
S ) Ψj H

120
mnr

+
1

2
Y 126
ij ΨT

i (CγmγnγrγsγtP
−
S ) Ψj H

126
mnrst, (5.41)

Ls = −
{
1

2
A10
ij ψ

T
i (CγmP

−
S )ψj h

10
m +

1

2
A120
ij ψTi (CγmγnγrP

−
S )ψj h

120
mnr

+
1

2
A126
ij ψTi (CγmγnγrγsγtP

−
S )ψj h

126
mnrst + ψ†

i (m
2
ψ)ijψj −

1

2
mg̃g̃g̃

}
+ h.c.

−m2
10h

10†h10 −m2
120h

120†h120 −m2
126h

126†h126. (5.42)

In the bilinear terms, we have omitted the summed-over SO(10) indices. Ap-
plying the general expressions of [46, 81] leads to two types of loop expressions,
which are evaluated in the appendix,

tr(CΓi1···ikP
−
S (CΓj1···jlP

−
S )

†) = 16 δi1···ik,j1···jlδkl ≡ L δi1···ik,j1···jlδkl (5.43)

CΓi1···ikP
−
S (CΓi1···ikP

−
S )

† =
[
1

2

] (
10
k

)
P−
S = dim([k])P−

S (5.44)

The factor 1/2 in the second equation applies to the case of the 126. [k] denotes
an irreducible rank-k tensor representation (k = 1, 3, or 5). Compact formulas
using matrix notation for the flavor structures now subsume the renormalization
group equations:

d

dt
Ỹ R =

∑
S

dim(S)
(
Ỹ SỸ S†Ỹ R + Ỹ RỸ S†Ỹ S

)
+

1

2
Ltr(Ỹ RỸ R†)Ỹ R

−2α̃ (2C2(Ψ) + C2(R)) Ỹ
R (5.45)

d

dt
ÃR =

∑
S

dim(S)
(
(Ỹ SỸ S†ÃR + ÃRỸ S†Ỹ S) + 2(ÃSỸ S†Ỹ R + Ỹ RỸ S†ÃS)

)

+L
(
1

2
tr(Ỹ RỸ R†)ÃR + tr(ÃRỸ R†)Ỹ R

)

+2α̃ (2C2(Ψ) + C2(R)) (2mg̃Ỹ
R − ÃR) (5.46)

d

dt
m2
ψ =

∑
S

dim(S)
(
Ỹ S†Ỹ Sm2

ψ +m2
ψỸ

S†Ỹ S + 2Ỹ S†m2
ψ
T
Ỹ S

+2Ỹ S†Ỹ Sm2
S + 2ÃS†ÃS

)
−8αC2(Ψ)|mg̃|21 (5.47)
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d

dt
m2
R = LR

(
tr(Ỹ RỸ R†)m2

R + 2tr(Ỹ R†m2
ψ
T
Ỹ R) + tr(ÃRÃR†)

)
−8α̃C2(R)|mg̃|2
+ contributions from additional superfields (5.48)

As indicated in (5.48), the Higgs soft masses receive contributions from super-
potential couplings to fields with no couplings to the spinors. These are highly
model dependent; for the case of the CMM model discussed here, which at least
contains one 45 and a 126 in addition to the fields appearing above, we assume
that they are not large enough to significantly affect the evolution.

For the CMM model we need to also consider the evolution of the nonrenor-
malizable couplings Y D and the corresponding A-term AD. The first can be
found by applying the one-loop wavefunction renormalization to the term

Y D
ij 16i16j45H10

′
H. (5.49)

Only the renormalization of the spinors is affected by large Yukawa couplings,
therefore the yt-dependent term renormalization group equation for Y D has the
form of the matrix in (5.12). Following the reasoning below that equation, we
only need to calculate the yt-independent contribution. It is straightforward to do
this (for example by generalizing equations (2.7)–(2.9) in ref. [81]). One obtains

d

dt
Ỹ D = −2 α̃ (2C2(16) + C2(10) + C2(45)) Ỹ

D +O(y2t )

= −95

2
α̃Ỹ D +O(y2t ). (5.50)

The matrix AD satisifies

d

dt
ÃD = −95

2
α̃
(
ÃD − 2mg̃Ỹ

D
)
+O(y2t ). (5.51)

This brings us into a position where we can give the complete set of equations for
the relevant parameters in the range of SO(10) applicability. For convenience, let
us here and in the SU(5) case to follow denote by At, Am, Aν3 the large eigenvalues
of AU , AM , Aν , as well as define yd and Ad to be the (11) elements of the matrices
Y D and AD in the basis where those matrices are diagonal. Neglecting higher
orders of the small Yukawa couplings, but for now still allowing for a 126, we
obtain

d

dt
ỹt = (28 ỹ2t + 252 ỹ2m − 63

2
α̃)ỹt, (5.52)

d

dt
ỹm = (260 ỹ2m + 20 ỹ2t −

95

2
α̃)ỹm (5.53)

d

dt
ỹd = −95

2
α̃ ỹd, (5.54)
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d

dt
Ãt = (84 ỹ2t + 252 ỹ2m − 63

2
α̃)Ãt + 504 ỹtỹmÃm + 63 α̃ỹtmg̃ (5.55)

d

dt
Ãm = (20 ỹ2t + 780 ỹ2m − 95

2
α̃)Ãm + 40 ỹmỹtÃt + 95 α̃ỹmmg̃ (5.56)

d

dt
Ãd = −95

2
α̃Ãd + 95 α̃ ỹdmg̃ (5.57)

d

dt
m2

163 = (40 ỹ2t + 504 ỹ2m)m
2
163 + 20 ỹ2tm

2
10 + 252 ỹ2mm

2
126

+20 |Ãt|2 + 252 |Ãm|2 − 45α̃m2
g̃ (5.58)

d

dt
m2

161 = −45α̃m2
g̃ (5.59)

d

dt
m2

10 = 16 ỹ2tm
2
10 + 32 ỹ2tm

2
163

+ 16 |Ãt|2 − 36 α̃m2
g̃ (5.60)

d

dt
m2

126 = 16 ỹ2mm
2
126 + 32 ỹ2mm

2
163

+ 16 |Ãm|2 − 50 α̃m2
g̃, (5.61)

5.2.1.3 SU(5) case

Again we start by writing the group-theoretical structure of the superpotential.
Using a single lower greek letter for the fundamental representation and an upper
greek letter for its conjugate, the fields transform have the tensor structures

Ψα1α2 , Φα, 5
α
H′ , 5Hα (5.62)

where Ψ is antisymmetric in its indices. With the help of the totally antisymmet-
ric tensor εαβγδλ and requiring α1 < α2 for Ψ in sums, the superpotential reads
(setting the small Y D to zero and dropping the Majorana mass of the singlets):

W5 =
1

2
εα1α2β1β2γΨT

α1α2
Y UΨβ1β2 5Hγ + ΦαTY νN 5Hα (5.63)

Introducing the notation

I = (ι1ι2) (ι1 < ι2), (5.64)

EIKλ = ει1ι2κ1κ2λ (ι1 < ι2, κ1 < κ2), (5.65)

one has

W5 =
1

2
EABγΨT

AY
UΨB 5Hγ + ΦαTY νN 5Hα (5.66)

and can compute

EIKλEIKµ = 6δλµ, (5.67)

EIKλEMKλ = 3δIM . (5.68)

This is sufficient to find the renormalization-group equations for the couplings in
W5 evaluating the general expressions of [46, 81]. The group-theoretic structure
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of the soft-breaking terms likewise is straightforward to find, and (5.67, 5.68)
are sufficient to find their beta functions. Altogether, one obtains the matrix
equations listed in appendix B.2. They agree with the results of [24] when one
neglects higher orders of Y D. For the CMM model, keeping only yt, yν ,

d

dt
ỹt = (9 ỹ2t + ỹ2ν3 −

96

5
α̃)ỹt (5.69)

d

dt
ỹd = −84

5
α̃ ỹd, (5.70)

d

dt
ỹν3 = (7 ỹ2ν3 + 3 ỹ2t −

48

5
α̃)ỹν3, (5.71)

d

dt
Ãt = (27 ỹ2t + ỹ2ν3 −

96

5
α̃)Ãt + 2ỹtỹν3Ãν3 +

192

5
α̃ỹtmg̃, (5.72)

d

dt
Ãd =

84

5
α̃(2mg̃ ỹd − Ãd), (5.73)

d

dt
Ãν3 = (21 ỹ2ν3 + 3 ỹ2t −

48

5
α̃)Ãν3 + 6ỹν3ỹtÃt +

96

5
α̃ ỹν3mg̃, (5.74)

d

dt
m2
ψ3

= 6 ỹ2t (2m
2
ψ3

+m2
u) + 6 |Ãt|2 − 144

5
α̃m2

g̃ (5.75)

d

dt
m2
ψ1

= −144

5
α̃m2

g̃ (5.76)

d

dt
m2
φ3

= 2 ỹ2ν3(m
2
φ3

+m2
N3

+m2
u) + 2 |Ãν3|2 −

96

5
α̃m2

g̃ (5.77)

d

dt
m2
φ1

= −96

5
α̃m2

g̃ (5.78)

d

dt
m2
N3

= 10 ỹ2ν3(m
2
φ3

+m2
N3

+m2
u) + 10 |Ãν3|2 (5.79)

d

dt
m2
N1

= 0 (5.80)

d

dt
m2
u = 6 ỹ2t (2m

2
ψ3

+m2
u) + 6 |Ãt|2 + 2 ỹ2ν3(m

2
φ3 +m2

N3
+m2

u)

+2 |Ãν3|2 −
96

5
α̃m2

g̃ (5.81)

5.2.2 Solution for yt, fixed point of yt/g, and related con-

straint

5.2.2.1 SO(10) case

We start considering SO(10) with a slight digression. If the renormalizable Y M

term is used, the evolution of the two Yukawa couplings yt and ym is coupled,
which leads to an interesting RG flow. Fig. 5.1 depicts the evolution from MPl

to M10 of the pair (yt/g, ym/g). There is a “critical line” which separates two
regions, and if the starting value is in one of the two regions, the couplings stay
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there forever. The only “true” IR fixed point has yt = 0, while there is a saddle
point at ym = 0, yt �= 0. However, experimental data suggests [79] that the left-

0.5 1 1.5 2
y_t/g

0.2

0.4

0.6

0.8

1

y_m/g

Figure 5.1: SO(10) Yukawa evolution. Trajectory pieces correspond to evolution
from MPl to M10.

handed neutrino Majorana masses are of order 10−2 eV. For a vev of the 126
of O(M10), ym = O(10−2) and can be neglected. The saddle point therefore
effectively acts as IR fixed point for the evolution of yt.

For the further study of the GUT RGEs, it is useful to define the variable

Xt ≡ α

y2t
. (5.82)

From equations (5.39), (5.40), and (5.52), one sees that Xt satisfies

d

dt
Xt = 2(β0 + dt)α̃(Xt −Xc

t ) (5.83)

(with one of the two β0 values) and has a fixed point at

Xt = Xc
t ≡

ct
dt + β0

. (5.84)

In (5.83) and (5.84),

ct = 28, dt =
63

2
. (5.85)

Equation (5.83) has the analytical solution

Xt = Xc
t + (Xt(0)−Xc

t )

(
α

α(0)

)1+dt/β0

. (5.86)

Here Xt(0), α̃(0) correspond to some arbitrary initial scale.
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5.2.2.2 SU(5) case

At the scale M10, the single Yukawa coupling yt splits into two, corresponding to
Dirac masses for the top and the third-generation neutrino, which are denoted
by yt and yν3. Their evolution is coupled. However, since they start at a common
value, one can to a good approximation set yν3 → yt in eq. (5.69) and yt → yν3 in
eq. (5.71). We have checked explicitly that the error is less than one percent for
reasonable values of the Yukawa couplings. Then Xt andXν3 (defined analogously
to (5.82)) satisfy (5.83),(5.84), (5.86), mutatis mutandis, with

ct = 10, dt =
96

5
, cν3 = 10, dν3 =

48

5
. (5.87)

5.2.2.3 Qualitative behavior of yt

If yt/g is above (or below) the fixed point value at one scale, it will be so at any
other scale (within the same GUT). As can be seen from fig. 5.1, if yt/g is large,
the precice information about its starting value atMPl is quickly lost. Conversely,
yt/g above the fixed point at M10 means that yt can become very large and even
infinite before the Planck scale. In that case, the one-loop RGEs cannot be

trusted. This situation typically corresponds to very small tanβ
<
∼ 2 and leads to

a very large splitting between soft masses. On the other hand, if yt/g lies below
its fixed point at M10, it will remain there all the way to the Planck scale. Then
the radiative effects are bounded and, for given soft parameters at the Planck
scale (cleanly related to parameters at the weak scale, as we will show in the next
subsection), upper bounds on the splittings are given by taking yt/g at its SO(10)
fixed point. The numerical analysis in this dissertation focuses on this situation.
It is doubtful if one can make quantitative predictions in perturbation theory if
yt/g becomes large. See also [21], whose authors mention this fact but still allow
nonperturbatively large yt (and use the one-loop evolution) in their investigation.
Smaller yt corresponds to larger tan β, and considering the yt-dependence would
seem particularly interesting in connection with processes that depend directly
on tanβ instead of only indirectly through the sparticle mass splittings; however,
in this dissertation we do not study tan β-dominated effects.

5.2.3 Soft-term evolution

The renormalization of the soft terms is crucial for computing the down squark
mass splitting entering the phenomenological analysis.

The SU(5) and SO(10) evolution we need to know is more involved than in
the MSSM because we need to take into account the effects of the large Yukawa
couplings yt and yν3. We need to consider the matrices AU (and Aν in SU(5)) and
the nonrenormalizable term AD. AU enters the soft mass evolution; however, here
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we only need the large third-generation eigenvalue At. Knowing the evolution of
AD is necessary to find a0 from aD1 = ad/yd at the GUT scale. However, this ratio
satisfies an equation as simple as in the MSSM. It is possible to find analytical
solutions for all relevant A-terms in both SO(10) and SU(5) and for the soft
masses in SO(10). Only the relatively small corrections to the soft masses in
SU(5) have to be solved for numerically.

We explain here in some detail the analytical solutions. They solve the cor-
responding equations exactly and differ from analytical formulas given in the
literature by only higher-order terms, which means the latter also correctly re-
sum the leading logarithms.

5.2.3.1 A-terms

We define at = At/yt. In SO(10), it obeys

d

dt
at =

2Ct α̃

Xt
at + 2dtα̃

2mg̃(0)

α̃(0)
(5.88)

with (cf. section 5.2.2)

dt =
63

2
, Ct = ct = 28. (5.89)

and “0” denoting an initial scale. Changing the variable results in

dat
dα̃

=
ct
β0

1

αXt

at +
dt
β0

mg̃(0)

α̃(0)
. (5.90)

Defining

γt = 1 +
dt
β0
, u =

(
α(t)

α(0)

)γt
, (5.91)

I10 = u
Xt(0)

Xt
, ã10 =

dt
β0 + dt

1

Xt(0)
j

(
1

γt
− 2; u

)
, (5.92)

this has the solution
at(t) = I10 (at(0) + ã10mg̃(0)) (5.93)

where I10 solves the homogeneous equation and the function j is defined in ap-
pendix C.1.

BetweenM10 andMGUT, we set yν3 → yt and vice versa on the right-hand sides
of eqs. (5.72), (5.74), as we did in the Yukawa evolution. The SU(5) solutions
for aν3 and at are given by (5.91)–(5.93) with the replacements I10 → Iν3,t5 , Xt →
Xt, Xν3, and dt → dt, dν where now

dt =
96

5
, dν =

48

5
. (5.94)
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The equation for aD1 in SO(10) and SU(5) is

d

dt
aD1 = 2 cd α̃mg̃ (5.95)

with cd = 95/2 in SO(10) and cd = 84/5 in SU(5). As with eq. (5.14), it can be
integrated to give a simple shift proportional to mg̃. Then the relation between
the GUT-scale A-term aD1 (MGUT) and the universal A-term at the Planck scale,
a0, is

a0 = aD1 (MGUT)−
(
δ′5 +

α̃(M10)

α̃(MGUT)

)
mg̃(MGUT). (5.96)

In analogy with the MSSM, we have defined

δ′5 =
168

5

1

α̃(MGUT)

∫ t10

tGUT

α̃2(t)dt,

δ′10 = 95
1

α̃(M10)

∫ tPl

t10
α̃2(t)dt.

(5.97)

5.2.3.2 Soft mass parameters

The coupled SO(10) evolution (5.60), (5.58) of m2
10 and m2

163
can also be solved

analytically. Defining

m =
(
m2

10

m2
163

)
(5.98)

and
b = 4 c = 9, (5.99)

a change of basis

m̂ = B−1m, B−1 =
(
4 2
5 −1

)
, (5.100)

decouples the equations to

d

dt
m̂1 =

2ctα̃

Xt
m̂1 +

(
b
α̃

Xt
|at|2 − cα̃3mg̃(MGUT)

α̃(MGUT)

)
, (5.101)

d

dt
m̂2 = 0. (5.102)

The equation for m̂1 is of the same linear inhomogeneous form as (5.88) and can be
solved analogously, with all integrals having analytical solutions. All expressions
are collected in appendix C.1.

In SU(5), there does not seem to be an analytical solution to eqs. (5.75)–
(5.81). The solutions given in [21] for the A-terms and soft masses solve the
renormalization-group equations and agree with our analytical solutions where
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present, both up to higher-order terms. For the numerical analysis in this dis-
sertation, the coupled soft mass evolution in SU(5) is solved numerically. Both
because the group theoretical factors are smaller than in SO(10) and because the
evolution between M10 and MGUT is a short one, the radiative effects are small
compared to those from the SO(10) evolution.

For the first two generations, the soft-mass evolution is again very simple in
both SO(10) and SU(5), allowing to write

m2
ψ1
(MGUT) = m2

ψ1
(M10) + 3δ5m

2
g̃(MGUT)

m2
φ1
(MGUT) = m2

φ1
(M10) + 2δ5m

2
g̃(MGUT)

m2
161

(M10) = m2
0 + δ10

α2(M10)

α2(MGUT)
m2
g̃(MGUT)

(5.103)
where

δ5 =
48

5

1

α̃2(MGUT)

∫ t10

tGUT

α̃3(t)dt,

δ10 = 45
1

α̃2(M10)

∫ tPl

t10
α̃3(t)dt,

(5.104)

5.3 Additional sources of nonuniversality

5.3.1 D-terms from gauge group rank reduction

As has been mentioned in section 3.2.2, the breaking from SO(10) to SU(5)
can be thought of as taking place in two steps, via SU(5) × U(1)X to SU(5).
Upon breakdown of the U(1) factor, the gauge group rank is reduced by one, and
D-term contributions to the soft masses appear [64], which are proportional to
the U(1) charge of a multiplet and to mass splittings between SO(10) multiplets
already present at that scale.

Consequently, splittings between fields with identical SU(5)×U(1) quantum
numbers (but in different generations), like m2

φ3 −m2
φ1 , are not modified. On the

other hand, additional splittings between the soft masses of up squarks, down
squarks, and Higgses will appear. Their precise values depend on the soft masses
and U(1) charges of all scalars present in the theory. Their relative sizes however,
being proportional to their U(1) charges, can simply be parameterized [67] by a
dimensionful quantity D of order M2

SUSY. For the CMM model,

∆Dm2
N = 5D, ∆Dm2

ψ = D, ∆Dm2
φ = −3D, ∆Dm2

Hu
= −2D.

(5.105)
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5.3.1.1 Independence of SU(5) evolution and U(1) breakdown

Substituting the shifts of (5.105) into (5.75)–(5.81) leaves these equations invari-
ant. That means the exact scale of U(1)X breakdown is immaterial except for
the universal U(1)X gauge contributions which have been neglected in writing
the equations but should be small. Furthermore, in the CMM model as intro-
duced in chapter 4 the U(1) factor is directly broken atM10 (although this might
by different if the 45H receives the larger vev). In light of this, we perform the
D-term shifts at the scale M10. Then at that scale, the soft mass m2

161
is found

without ambiguity from the D-terms as

m2
161

(M10) =
1

4

(
3m2

ψ1
(M10) +m2

φ1(M10)
)

(5.106)

which combined with (5.103) gives

m2
161

(M10) =
1

4

(
3m2

ũR1
(MGUT) +m2

d̃R1
(MGUT)

)
− 11

4
δ5m

2
g̃(MGUT),(5.107)

m2
0 =

1

4

(
3m2

ũR1
(MGUT) +m2

d̃R1
(MGUT)

)

−
(
11

4
δ5 +

α2(M10)

α2(MGUT)
δ10

)
m2
g̃(MGUT) (5.108)

5.3.2 GUT threshold

Neglecting higher-order effects, the three gauge couplings should meet at the
GUT scale if grand unification occurs. NLO threshold corrections change this.
Unfortunately, these depend on the exact particle spectrum and Lagrangian of
the SU(5) GUT theory and are therefore not calculable. However, we adopt
the point of view that exact unification is too restrictive and allow for a slight
non-universality. This can be done in several ways. Our strategy is to require
g5(MGUT) = g1(MGUT) = g2(MGUT) while allowing g3 to differ. This seems
justified by the following observation: g1 and g2 at the weak scale are subject
to threshold corrections [69] which we also neglect. Furthermore, their mixing
into g3 under renormalization is an NLO effect and their mixing into yt is also
smaller because of both smaller coefficients and the relative smallness of α̃1, α̃2

with respect to α̃3 over most of the range of evolution. Conversely, g3 is larger
and much more strongly mixing with yt so a small change in g3 at MGUT can
have a more significant effect.

5.4 Weak-scale mass splitting from weak-scale

inputs

The relations between parameters at different scales derived so far in this chapter
enable one to translate the constraints imposed by the CMM structure into a
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recipe for finding the set of weak-scale parameters of interest from a minimal set
of input parameters.

The procedure consists of the following steps.

1. First the inputs αs(MZ), αe(MZ), and sin2 θW , the top mass, and tanβ
determine the values of the DR couplings α̃1, α̃2, α̃3, yt at the scale MZ by
means of eqs. (5.1)–(5.6). There is dependence on the details of the squark
mass spectrum, however it is a next-to-leading effect. Consequently, the
exact choice of squark masses is not too important and one can choose a
universal squark mass mq̃ in this step. The gluino mass mg̃3 also enters.

The resulting couplings are scaled up toMGUT,M10, andMPl via numerical
integration of the system (5.7)– (5.10), the one-loop-running unified gauge
coupling, and the analytical expression (5.86).

2. Next, the Planck-scale universal value a0 is found from the weak-scale value
of aD1 via equations (5.28) and (5.95). The universal soft mass m2

0 is ob-
tained from m2

d̃R1

and m2
ũR1

at the weak scale through equations (5.23),

(5.25), and (5.108). In both steps, the gluino mass enters as a parameter.

3. Lastly, the mass splittings between the light and heavy right-handed down-
type squarks and between the light and heavy left-handed sleptons at
the weak scale are found by computing the GUT splittings according to
sec. 5.2.3.2. The left-handed slepton masses can be related to the right-
handed sdown masses by means of (5.29),(5.26). (The parameter D can
also be found from mũR1

and md̃R1
, and the remaining sfermion masses

that are not affected by yt can be computed.)

The inputs and “outputs“ needed at each step are summarized in table 5.2.

Table 5.2: Input parameters and knowledge gained from them

Step input output equations

1. αs(MZ), αe(MZ), α̃3(µ), α̃2(µ), α̃1(µ), yt(µ) 5.1–5.6, 5.7–5.10, 5.86
sin2 θW , mq̃, mg̃3 , tan β

2. mg̃3, a
D
1 , md̃R1

, mũR1
a0, m

2
0 5.28, 5.95, 5.23, 5.25, 5.108

3. — md̃R3
, ml̃3

5.103; section 5.2.3.2



Chapter 6

Effective Lagrangian and
weak-scale observables

The present chapter is devoted to the study of the effective Lagrangians that
describe flavor-changing weak decays. We calculate the one-loop matching cor-
rections for the hadronic ∆B = 2 and ∆B = 1 Lagrangian as well as the leptonic
operator Q′

7 mediating the decay τ → µγ. They form the basis of our study of
Bs − B̄s mixing and τ → µγ in chapter 7. The ∆B = 1 Lagrangian could be
applied to the CP asymmetry in Bd → φKS, however this involves additional
steps that we have no room to discuss in this thesis. We will, however, argue
that we do not expect any significant change in the prediction from its standard
value from the contributions we compute.

6.1 ∆F = 2 processes

The ∆F = 2 hadronic effective Lagrangian at a low-energy scale µ takes the form

−L =
G2
FM

2
W

(4π)2
λ2t (CL(µ)OL(µ) + CR(µ)OR(µ)) + h.c., (6.1)

where

G2
FM

2
W

(4π)2
=

α2
2

8M2
W

, (6.2)

λt = V ∗
tiVtj , (6.3)

OL = q̄iLγµqjL q̄iLγ
µqjL, (6.4)

OR = q̄iRγµqjR q̄iRγ
µqjR. (6.5)

The flavor labels i, j take the pairs of values (i, j) = (s, b), (d, b), or (d, s) depen-
dently if the Bs, Bd, or K

0 system is considered.

51
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�
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dai

dci

ddj
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dci

ddj

g̃̃g

Figure 6.1: Gluino-squark box diagrams contributing to the ∆F = 2 and ∆F = 1
Lagrangian (with suitable external quark flavors).

Several remarks are in order. First, our matching computation is done in the
NDR-MS scheme, where also the standard-model renormalization-group evolu-
tion is conventionally performed. To be consistent with chapter 5, this means the
strong coupling constant αDR3 has to be converted back to αs, while the sparticle
masses, treated at the leading order in view on their unknown experimental val-
ues, are unchanged, as are α1 and α2. In eq. (6.2) and below, we therefore refer
to NDR-MS quantities, and αs = α(5)

s (MZ), unless otherwise stated.
In the standard model, only the operator OL has a non-vanishing Wilson

coefficient, which (factoring out the CKM factors as in (6.1)) is real and positive
and originates solely from box diagrams. The same is true separately for the
charged-Higgs and chargino contributions of supersymmetry with minimal flavor
violation, see e.g. [54]. Altogether one has

CL = 4ηS(xt) + 4η(H
+)S(H+)(xt, xHW )

+4η(χ
+)S(χ+)(xũW , xt̃iW , xχ+

i W
) (6.6)

with xab = m2
a/m

2
b . See the reference [54] for bounds on CL. The coefficients η

are discussed below.
The effects peculiar to the CMM model are encoded in the Wilson coefficient

CR of the parity-reflected operator OR. The dominant contribution is expected
to come from the squark-gluino box diagrams of fig. 6.1. Because there is flavor
mixing only among right-handed squarks and the gluinos couple right-handed
squarks only to their right-handed fermionic partners, no other chirality struc-
tures arise. Evaluating the diagrams, one obtains

CR =
Λ2

3

λ2t

(4π)2α2
s

4G2
FM

2
Wm

2
g̃

η(g̃)S(g̃)(x, y) = 2
Λ2

3

λ2t

α2
s

α2
2

M2
W

m2
g̃

η(g̃)S(g̃)(x, y), (6.7)

Λ3 = UD
∗
i3UDj3, (6.8)

where x = m2
d̃R1

/m2
g̃, y = m2

d̃R3

/m2
g̃, and where we now write mg̃ for the gluino

mass.
The loop functions are given in appendix C.2. Note that in general at least

for one of the two neutral B meson systems, the Wilson coefficient CR gets a
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large enhancement factor due to the large atmospheric neutrino mixing angle.
Following the reasoning of section 4.3, we take the (1, 3) element of UD to be
small. We then restrict our study to Bs − B̄s-mixing, where

|Λ3| = |Uµ3||Uτ3| ≈ 1

2
, (6.9)

with an unknown phase. The CKM element Vts is known from semileptonic
decays arising at the tree level, combined with the unitarity of the CKM matrix.
It has small phase.

In principle there also are neutralino and mixed gluino-neutralino contribu-
tions; they should be small due to the smaller couplings.

The coefficients η, η(H
+), and η(χ

+) account for QCD corrections including
the renormalization-group evolution from the matching scale µM to the hadronic
scale where the mixing amplitude is evaluated. One chooses µb ≈ mb for the
B system. The scale µM is chosen of the order of the heavy particles that are
integrated out. The factors also serve to make the amplitude stable against
variation of the matching scale and change of the renormalization scheme [86].
However, our η factors are not to be identified with η2, ηB, and so on, as the
dependence on the low-energy scale is included in our factors, following [87]. The
relevant expressions for the standard-model coefficient η at NLO are given in
[87].)

For the gluino contribution to B − B̄ mixing we use the LO evolution, which
is consistent with the LO matching calculaction, and set µM =MZ . Then

η(g̃) =

(
αs(MZ)

αs(µb)

) 6
23

(6.10)

While it might be more rigorous to choose µM = O(mg̃), we do not expect large
logarithmic corrections to be present that would invalidate our choice.

6.1.1 Mass differences

The fact that the only new operator is the parity reflection of the standard-
model operator OL is fortunate: Because QCD is parity symmetric, the hadronic
matrix elements of both are equal. This means that in amplitudes, the two
Wilson coefficients CL and CR can be summed into an “effective” coefficent Ceff

L =
CL+CR, and the standard-model expressions for the mixing amplitudes in terms
of CL and hadronic parameters can be taken over. Unfortunately, however, the
unknown relative phase between CL and CR introduces an uncertainty into the
amplitude.

The neutral B-meson mass difference (B = Bd, Bs) is given by [87]

∆MB =
G2
F

24π2
M2

WMBf
2
BB

V LL
1 (µ)|Ceff

L (µ)|. (6.11)
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Here fB is the B-meson decay constant and BV LL
1 (µ) is related to the matrix

element of the operator OL renormalized at the scale µ via

〈OL(µ)〉 = 1

3
MBf

2
BB

V LL
1 (µ). (6.12)

It is related to the RG- and scheme-invariant bag parameter B̂B through the
expression

B̂B = BV LL
1 (µ)

[
α(5)
s (µ))

]−6/23
[
1 +

α(5)
s (µ)

4π
J5

]
(6.13)

with

J5 =
γ(0)β1
2β2

0

− γ(1)

2β0
(6.14)

a (scheme-dependent) NLO coefficient. This is an NLO relation, and strictly
speaking it should be combined with an NLO computation of the Wilson coeffi-
cient Ceff

L (µ). However, as we have said above, the scheme and scale dependence
of the new-physics contribution is relatively small, and by the same token one can
combine (6.13) with the mixed LO-NLO expression we have for Ceff

L . Lattice-QCD
investigations [88] give a value of

fBs

√
B̂Bs = 276(38)MeV. (6.15)

Note that, unlike in the case of Bd mixing, this is not affected by potential large
extrapolation errors such as chiral logs [89], receiving much attention over the
last year and a half. After squaring, the relative error is less than 30 percent.
Combined with the rather precise knowledge of Vts, which is independent of loop-
level new-physics effects, a quite precise prediction of the mass difference for the
Bs system can be made both in the standard model and in the CMM model.
Experimentally, there is only a lower bound at 95% CL of [90]

∆MBs > 14.4 ps−1. (6.16)

For purposes of the numerical analysis in chapter 7, however, we prefer to con-
sider CR normalized with respect to the SM value for CL, which eliminates the
uncertainties from the hadronic matrix element as well as from the unknown
phase of CR and from the SUSY-MFV contributions (that depend on stop and
charged-Higgs masses).

6.1.2 CP violation

We have mentioned above that the phase of the CMM contribution CR in the
Bs system is unconstrained. This has to be contrasted with the standard-model
contribution, which is almost real. As a result, the prediction for the CP asym-
metry in decays such as Bs → ψφ is affected and in fact, for large CR, any value
for the asymmetry is possible.
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Figure 6.2: Chargino and neutralino penguins contributing to the effective La-
grangian for τ → µγ.

6.2 ∆F = 1 processes

6.2.1 τ → µγ

Within the standard model, this decay is strongly GIM-suppressed because the
neutrinos are almost degenerate in mass. As a consequence, the predicted decay
rate is many orders of magnitude below the experimental upper bounds com-
ing from Belle [91] and Babar [92], with the Belle 90% CL bound of BR(τ →
µγ) < 6 × 10−7 being the stronger one. Within the CMM model, the splitting
between the second- and third-generation slepton masses together with the large
atmospheric MNS angle leads to a potentially large decay rate. Neglecting left-
right mixing among sleptons, the effective Lagrangian contributing to the decay
τ → µγ computed from the diagrams of fig. 6.2 reads

−L = C ′
7Q

′
7 + h.c. (6.17)

where

Q′
7 = mτ µ̄Lσ

µνFµντR, (6.18)

C ′
7 =

e3

(4π)2 sin2 θW

∑
J

UτJU
∗
µJ (A+ + A0) (6.19)

Here A+ and A0 denote contributions from chargino and neutralino loops, which
have the form

A+ = −Z1i
+

∗
Z1i

+

H1(xJi)

m2
χ+
i

+
Z1i

+
∗
Z2i

−
∗

√
2 cos β

H2(xJi)

mχ+
i
MW

(6.20)

A0 =
1

2 cos2 θW

∣∣∣Z1i
N sin θW + Z2i

N cos θW
∣∣∣2 H3(yJi)

m2
χ0
i

− 1

2 cos2 θW cos β

(
Z1i
N

∗
sin θW + Z2i

N
∗
cos θW

)
Z3i
N

∗ H4(yJi)

mχ0
i
MW

(6.21)

with

xJi =
m2
ν̃J

m2
χ+
i

, yJi =
m2
l̃J

m2
χ0
i

(6.22)
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tan β is, as usual, the ratio of the vacuum expectation values vu and vd giving
mass to up- and down-type particles, respectively. The matrices Z+, Z− and ZN
arise from the diagonalization of the chargino and neutralino mass matrices given
in (2.59), (2.58). The notation follows [52]. Our results appear to disagree with
those of [24], which still has to be resolved.

Neglecting gaugino-higgsino mixing, Z+ and Z− would be unit matrices, and
so would be ZN except for the (3,4) sub-block, which describes maximal mixing
(i.e. all entries have magnitude 1/

√
2). Then the second terms in each of the ex-

pressions for A+ and A0, which involve the higgsino components of the charginos
and neutralinos and their couplings to the tau, would vanish.

Because this technically corresponds to the limit MW → 0 and MW appears
in the denominators of those terms, however, this might be a bad approximation
even though only a rough estimate is needed to test if the experimental bound
is satisfied for given parameter values; certainly it is not the leading term in an
expansion in MW or g1,2.

A better way is to expand the masses and Z matrices to first order in the
electroweak VEVs in the terms containing factors of 1/(cosβMW ). One has

mχ+
1
= mg̃2 , mχ+

2
= |µ|, (6.23)

mχ0
1
= mg̃1 , mχ0

2
= mg̃2 , mχ0

3
= mχ0

4
= |µ|, (6.24)

Z11
+

∗
Z21

−
∗ 1√

2 cos βmχ+
1
MW

= − mg̃2 + µ tanβ

mg̃2(µ
2 −m2

g̃2)
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1

2 cosβMW

(
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N

∗
Z33
N

∗

mχ0
3

+
Z24
N

∗
Z34
N

∗

mχ0
4

)
=

1

2

µ+mg̃2 tanβ

µ(µ2 −m2
g̃2)

. (6.30)

These expansions become invalid if tanβ is large, in which case the neglect of
left-right mixing can no longer be justified either. It is evident that the higgsino-
like contributions cannot be neglected and may even dominate the amplitudes.
For our numerical study, we therefore keep the complete amplitudes and do not
perform an expansion.
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The inclusive decay rate is given by

Γ(τ → µγ) =
m5
τ

16 π
|C ′

7|2. (6.31)

From this, one computes the branching ratio according to

BR(τ → µγ) = ττΓ(τ → µγ). (6.32)

This branching ratio will also be studied numerically in chapter 8.

6.2.2 Bd → φKS

A prototype decay mode probing new physics is the exclusive decay Bd → φKS,
which is triggered by the quark level decay b → ss̄s. In particular, the mixing-
induced CP asymmetry aCP (Bd → φKS) in this decay has been proposed as
a theoretically clean test of the Standard Model [93]: the CKM mechanism of
CP violation predicts the mixing-induced CP asymmetries in Bd → φKS and
Bd → ψKS to coincide within a few percent, and new physics in the loop-induced
b→ ss̄s decay amplitude can easily alter this prediction. Recently branching ra-
tios and CP asymmetries of Bd decays into light pseudoscalar and vector mesons
have been analyzed in the framework of QCD factorization [94]. On the experi-
mental side both Belle and Babar had consistently found a significant deviation
of aCP (B → φKS) from its SM value, the combined measurement being at vari-
ance at the 2.8 σ level [95, 96]. In summer 2003, the situation changed. The new
Babar result, which includes a reanalysis of the old data published in [95, 96], is
now consistent with the SM, while the new Belle result exhibits an even larger
discrepancy with the SM [97].

The CMM model involves new sources of bR − sR transitions stemming from
the squark mass matrix. It is well known that Bs−B̄s mixing is far more sensitive
to this effect than ∆B = 1 processes such as the decay amplitude of b→ ss̄s. For
a recent study in generic SUSY models, see [98]. We have computed the gluino-
gluon-penguin and gluino-box contributions to the ∆B = 1 Wilson coefficients
in the CMM model. The effective Lagrangian receives contributions from the
penguin and box diagrams of figs. 6.3 and 6.1 It has the form

−L =
GF√
2


 ∑
q=u,d,s,c,b

6∑
i=3

C ′
iQ

q
i
′
+ C ′

8Q
′
8


+ h.c., (6.33)

where the operators are spelled out

Qq
3
′ = s̄RαγµbRα q̄Rβ

γµqRβ, (6.34)

Qq
4
′ = s̄RαγµbRβ q̄Rβ

γµqRα, (6.35)

Qq
5
′ = s̄RαγµbRα q̄Lβ

γµqLβ , (6.36)
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Figure 6.3: Gluino-gluon penguins contributing to the hadronic ∆F = 1 La-
grangian (with suitable external quark flavors).

Qq
6
′ = s̄RαγµbRβ q̄Lβ

γµqLα, (6.37)

Q′
8 = − 1

16π2
mbs̄Rσ

µνGa
µνT

abL, (6.38)

and the Wilson coefficients are given by

Cq
i
′ = Cq,box

i + Cq,peng
i (i = 3 . . . 6), (6.39)
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√
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GF
P
(
7
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F1(xq̃L) +

1

6
G1(xq̃L)

)
, (6.47)

C ′
8 =

g23
4m2

g̃

sin(2 θR)e
iδRG8(xb, xs). (6.48)

Here we have defined

(UD)s3 = sin θ eiδ, (UD)b3 = cos θ (6.49)

(where θ ≈ π/4 and we have pulled out an unphysical phase),

P =
α2
s

2m2
g̃

sin(2θ)eiδ, (6.50)
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G8(xb, xs) = (−C2(8)C(xb) + C2(3)D(xb)− (xb → xs)), (6.51)

G4(xb, xs) = (C2(8)A(xb) + C2(3)B(xb)− (xb → xs)), (6.52)

F1(z) = F (xb, z)− F (xs, z), (6.53)

G1(z) = G(xb, z)−G(xs, z), (6.54)

F b
1 = cos2 θF1(xb) + sin2 θF1(xs), (6.55)

F s
1 = sin2 θF1(xb) + cos2 θG1(xs), (6.56)

Gb
1 = cos2 θG1(xb) + sin2 θF1(xs), (6.57)

Gs
1 = sin2 θG1(xb) + cos2 θG1(xs), (6.58)

xb =
m2
q̃R3

m2
g̃

, xs =
m2
q̃R1

m2
g̃

, xq̃R,L
=
m2
q̃R,L

m2
g̃

, (6.59)

with C2(8) = 3, C2(3) = 4/3. The loop functions A,B,C,D are defined in [99],
while F and G are defined in [100]. All are listed in appendix C.2.

For the penguin contributions, our results agree with the earlier computation
of [99]. We have compared the box contributions to eq. (5.1) of ref. [101], with
which we agree except for the sign of the G1 terms in our expressions for Cq,box

4 .
It should be noted that most authors treat the hadronic effective Lagrangian in
the mass-insertion approximation, which is inadequate if large sfermionic mixing
angles are present. For more general results in the MIA, see the recent paper [98],
which differs in the form of the LR-mixing contributions but agrees for the RR-
mixing with the older study in [49].

Qualitatively, it is clear that in our model effects are small and we can repro-
duce the Babar result but not the Belle result. A better quantitative statement
is difficult to make: once the SM and new physics contributions (which involve
different operators) interfere, hadronic uncertainties do not drop out anymore
from aCP (Bd → φKS). Unfortunately, the global analysis in [94] has shown that
QCD factorization fails badly in cases like Bd → φKS, where a q̄ and a q field of
the weak decay operator create a vector meson. This feature makes it difficult to
derive quantitative bounds on aCP (B → φKS) in our model.
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Chapter 7

Numerical study of the
phenomenology

Given the results of chapter 5, as summarized in section 5.4, we are now in a
position to study the sparticle spectrum and, subsequently, the Wilson coefficients
and observables of 6. In this chapter, after giving some details concerning the
numerical implementation of the formulas and procedures described in chapter 5,
we first discuss the mass differences between the sfermions of different generations
as functions of weak-scale input parameters, taking into account constraints from
direct searches and from the condition of correct electroweak symmetry breaking.
A subsequent section is devoted to the implications for B phenomenology and
leptonic flavor violation.

7.1 Fixed-point constraint and implementation

In section 5.2.2 we mentioned that upper bounds on the sparticle mass splittings
are given by taking the ration yt/g at its fixed-point value within SO(10), unless
the top Yukawa coupling is very large. We also argued that in the latter case, the
predictivity of the theory suffers and it may also become strongly coupled below
the Planck scale. For these reasons, we study the case where yt/g is at its GUT
fixed point, while varying the other parameters subject to this constraint.

This simply implies a relation between yDRt (MZ) and α1,2,3(MZ), which can be

used to find yDRt (MZ) from the three other parameters. In fact it turns out that

yDRt (MZ) is a rather smooth function of αDR3 (MZ) with very little dependence

on the remaining parameters. Consequently, we only need to compute αDR3 (MZ)
according to (5.1), (5.2) from the input parameters.

The remainder of this section gives some details on the numerical procedure
and is rather technical. Unless interested in reproducing the results, the reader
mainly interested in the physical results will lose little by skipping to the next
section.

61
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The formulas relevant for obtaining the right-handed sbottom mass and other
sfermion masses, and the gauge, Yukawa, and universal soft parameters in the
intermediate steps, were all programmed in Mathematica.

The FP constraint can be solved either iteratively, which is very slow due to
the numerical solution of the MSSM gauge and Yukawa evolution, or by interpo-
lation. Here we show that to a good approximation, yt(MZ) is a linear function
of α3(MZ), almost independent from the other parameters.

With exact unification of gauge couplings, there would be only one inde-
pendent gauge coupling, which could e.g. be chosen to be g1. Fig. 7.1 shows,
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Figure 7.1: Correlations from exact gauge coupling unification

unfortunately, a correlation between sin2 θW with α3(MZ) for this case that is
quite strong. (We plot on the vertical axis the ratio of α1(MZ), computed from
α3(MZ) and the requirement of unification, and its value as computed from the
electromagnetic coupling and the measured value of sin2 θW , which we fix at 0.23.)
While it might seem then that the correct value of α3(MZ) could be found from
the measured value of sin2 θW , the latter is affected by threshold corrections at
both the weak and GUT scales that we do not take into account. In accordance
with what was said in section 5.3.2, we therefore allow for α3(MGUT) to differ
from α5(MGUT) = α12(MGUT), by which we denote the assumed unified value of
α1 and α2. This unification is also subject to corrections, but we ignore these
consistently with the neglected weak-scale threshold corrections. The modified
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Figure 7.2: Correlations with partial coupling unification, as defined in text
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correlations for this “partial coupling unification” case are shown in fig. 7.2, for
three different values of α12(MGUT). The correlation between α3(MZ) and sin2 θW
is now much weaker. This means that we have found a consistent way of vary-
ing α3(MZ) (or, equivalently, αs(MZ) and the supersymmetric particle masses)
while keeping sin2 θW phenomenologically acceptable and, more importantly, un-
changed. (Even though the latter may receive large corrections at the weak scale,
these have little to do with the strong coupling constant.) One could relax the
unification condition further, allowing α1(MGUT) and α2(MGUT) to differ. In
view of the relatively small impact of the precise values of these couplings on the
evolution, we do not pursue this further.

Let us now consider the leading-order relation α5(MGUT) = α12(MGUT). The
value of α5(MGUT) now depends sensitively on sin2 θW , which, like the relation
itself, is subject to corrections that we either do not know or neglect. One can
consider the alternative (in partial unification) continuity relation α5(MGUT) =
α3(MGUT). We will refer to the two conditions as C12 and C3, respectively. The
differences between both approaches give an indication of the uncertainties due
to GUT- and weak-scale threshold corrections. Both are compared in fig. 7.3.
An uncertainty of yt(MZ) is present but is not large. For given top and SUSY
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Figure 7.3: yt(MZ) vs. α3(MZ) for two different GUT continuity conditions

particle masses, this translates into a value of tanβ with an uncertainty in the
1-2 percent range, which is quite precise. Furthermore, the dependence of yt on
α3(MZ) is evidently well approximated by a linear function.

Next, one can investigate the impact of different values of α12(MGUT) and
the two GUT-scale continuity conditions on the evolution of α3. The left plot in
fig. 7.4 compares four combinations; the differences are minimal. (Note that only
a very small range of α3(MZ) is shown, to make the deviations visible at all.)

To complete the picture, the impact of the same set of choices on the evolution
of α1, α2, more precisely on the unified value α12(MGUT), is investigated on the
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Figure 7.4: Impact of different strategies on the evolution of α3, α1, α2.

right of fig. 7.4. The variation due to α3(MZ) is below one percent, while the
choice of GUT continuity condition has tiny impact. We conclude that α3(MZ) =
α3(MZ)(yt(MZ)) is well approximated by linear interpolation.

7.2 Constraints on the input parameters

The supersymmetric particle masses needed to compute the radiative effects by
way of the procedure of section 5.4 are bounded from below from direct SUSY
searches. Additional bounds on the A-terms come from the requirement that the
vacuum exhibit the observed pattern of electroweak symmetry breaking.

For parameters not explicitly specified, we use the values of table 5.1. Note
that we do not need any input on mt and tan β, because yt is directly fixed by
the gauge couplings and the fixed-point constraint.

7.2.1 Direct searches

The experimental lower limits from Tevatron and LEP data are summarized in
table 7.1. Although strictly speaking the soft mass parameters of the first two
generations are universal in the CMM model only for vanishing GUT-scale D-
term and up to small corrections due to the different SU(2)×U(1) gauge quantum

numbers, we use a universal squark mass mq̃ in computing αDR3 (MZ) and neglect
the D-term shifts between members of the five- and ten-dimensional SU(5) mul-
tiplets. Adjusting presumably would allow one to relax somewhat the limits on
the parameter space we are going to find, as well as blur our predictions for the
flavor-violating observables.

7.2.2 Vacuum stability and correct symmetry breaking.

The A-terms at the weak scale can be constrained by requiring that the mini-
mum of the scalar potential is the physical one (and equivalently the latter is
stable). The relevant tree-level bounds have been given in eqs. (2.55),(2.56). The
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Table 7.1: Input parameter ranges. Source: ref. [79]

tan β FP constraint
|aD1 | as allowed by eq. (2.56)
arg(a0) free, see text
md̃R1

> 250 GeV

mũR1
> 250 GeV

mg̃3 > 195 GeV
md̃R3

> 91 GeV

ml̃3
> 76 GeV

mẽR3
> 76 GeV

parameters m2
hu and m2

hd
are affected by large Yukawa couplings and unknown

couplings among GUT Higgs multiplets. In light of these uncertainties, we will
use the condition

|aD1 | < 2.5m2
q̃. (7.1)

We will see that other constraints are always stronger than this bound.

7.3 Third-generation soft masses

Varying the input parameters in their allowed ranges, we will now investigate the
impact on the soft masses md̃R3

and ml̃3
entering the formulas for the observables

of chapter 6. We also consider mẽR3
because its lower experimental bound gives

an additional constraint.

7.3.1 Correlation of m0, a0, mg̃(MPl) with weak-scale inputs

The procedure of sec. 5.4 allows to find the universal Planck-scale parameters m0

and a0 (as well as the Planck-scale gaugino mass) from the weak-scale inputs aD1 ,
mq̃, mg̃3 , and the parameter S defined at the GUT scale. Figs. 7.5 and 7.6 show
the image in the (m̄0, a0) plane of the phenomenologically allowed area in the
(mq̃, a

D
1 ) plane (cut off at mq̃ = 1500 GeV) for two different values of the gluino

mass. m̄0 is defined as

m̄0 = sgn(m2
0)
√
|m2

0|. (7.2)

We observe that the relation between weak-scale and Planck-scale parameters is
rather smooth and conlude that choosing weak-scale inputs not only is desirable
on practical phenomenological grounds but also a good way of parameterizing
the radiative effects. The “focussing” effect on the left of the plots arises because
we constrain the ratio aD1 /mq̃ instead of aD1 itself, as the vacuum stability bound
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Figure 7.5: Image of an (mq̃, a
D
1 /mq̃) grid in the (m̄0, a0) plane, mg̃3 = 195 GeV,

mg̃(MPl) = 63− 67 GeV. For discussion of the grid, see text.
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1 /mq̃) grid in (m̄0, a0) plane, mg̃3 = 500 GeV, mg̃(MPl) =

168− 177 GeV
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Figure 7.7: md̃R3
in the (mq̃, a

D
1 ) plane. The left plot has mg̃3 = 195 GeV, the

right plot corresponds to mg̃3 = 500 GeV.

mandates. For this reason, the range of allowed a0 also becomes larger for larger
m2

0.

Also, no “conspiracy” of Planck-scale parameters is needed to obtain phe-
nomenologically allowed low-energy parameters, particularly not for light gluino
mass. If the gluino is heavier, for small/negative m2

0 large positive a0 is favored.
The phase of a0 is equal to that of aD1 , but it is not directly constrained from
(2.56). This phase does not enter the renormalization-group evolution of the soft
masses; however, it does have an impact on the magnitude of a0 for given |aD1 |
at MZ . This is because a0 and aD1 are related by a linear shift proportional to
mg̃3 due to the RG evolution, which can combine destructively or constructively
with |aD1 |. It is clear from this argument that it is sufficient to consider real aD1
of both signs to obtain the full allowed range for the radiative effects.

7.3.2 md̃R3
, ml̃3

, and mẽR3

We now discuss the relevant third-generation soft masses. Figs. 7.7–7.9 show
contour plots of md̃R3

, ml̃3
, and mẽR3

in the (mq̃, a
D
1 ) plane, again for two values

of the gluino mass. It is reassuring that for positive aD1 , the experimental lower
bounds, particularly that on mẽR3

, give stronger constraints than the somewhat

arbitrary vacuum-stability bound |aD1 | < 2.5mq̃. In other words, the parameter
values allowed from direct searches correspond to a stable physical vacuum.

Therefore, while smallest third-generation masses (corresponding to large
splittings and therefore to possibly large weak decay and mixing amplitudes) do
appear for large A-terms, there will be no dependence of the weak phenomenology
on the details of that bound.
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Figure 7.8: ml̃3
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Figure 7.10: ∆M
(max)
Bs

/∆M
(SM)
Bs

including impact of themτ̃R constraint, formg̃3 =
195 and 500 GeV. The shaded area is excluded. (Cf. fig. 7.9.)

7.4 ∆F = 1 and ∆F = 2 FCNC processes

We now turn to the investigation of the flavor-violating observables from chap-
ter 6.

7.4.1 Bs–B̄s mixing

The ratio of the mass difference in the Bs system, normalized to its standard
model value, is shown in the contour plots of fig. 7.10. In doing this, we add
the magnitudes of the standard and SUSY contributions linearly to obtain the
maximal effect. It is important to notice that the phase of the CMM contribu-
tion to Bs-mixing is unconstrained, and so it is also possible to have destructive
interference between the standard and SUSY contributions. The shaded area is
the one excluded by direct searches for the τ̃ particle. We find that the largest
effects arise for smallest gluino mass. Discarding the region excluded by the ẽR3

mass, an enhancement of the mass splitting of a factor of 3 with respect to the
standard model is possible. Larger splitting would be found for larger aD1 , which
is ruled out, showing the strong constraining impact of already the current sta-
tus of SUSY particle searches. For a larger gluino mass of 500 GeV, the effect
is unobservably small throughout the parameter space, due to the parametric
suppression of the mixing amplitude by m2

g̃3.

7.4.2 τ → µγ decay

The radiative flavor-changing τ decay, completely negligible in the Standard
model even with Neutrino masses, receives much larger contributions in the CMM
model due to the mass nonuniverality between left-handed sleptons of different
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generations. However, there is additional dependence on parameters from the
Higgs sector, notably tanβ and the µ parameter, both of which enter the chargino
and neutralino mass matrices. tan β also appears in the chargino coupling to
charged leptons and sneutrinos. However, the fixed-point constraint imposed by
us makes tan β a dependent parameter. One has to keep in mind, however, the
lower bounds on chargino and neutralino masses from direct searches. They trans-
late to constraints on µ, but also on mq̃, that are strongest for low gluino mass
due to the gaugino mass unification. (Recall that mq̃ enters the formula (5.2)
determining α3(MZ).).

Let us consider the impact in the (mq̃, µ) plane. This is shown in fig. 7.11.
The shaded areas are excluded due to an unphysically low lightest neutralino or
chargino mass. We see that for mg̃3 at its lowest experimentally allowed value,
only a small range of µ between about −75 GeV and −200 GeV is allowed.
(The lower limit depends on mq̃. The constraint gets relaxed very quickly with
increasing gluino mass.) The dependence on mq̃ is relatively mild; however, very
light squark masses < 350 GeV are excluded altogether. For heavier gluino mass,
there is just an excluded interval for µ ranging from about −55 GeV to 150 GeV,
practically independent of mq̃.

At this point we must mention that the sign of µ can constrained from the
decay b → sγ, see for instance [102, 103]. In our case, where the top squark A-
term At is close to its IR fixed point of about −2mg̃3 , positive µ would be favored.
That, in turn, would seem to exclude the light gluino mass of mg̃3 altogether,
where we found above that only µ < 0 is allowed. We caution, however, that
µ > 0 becomes allowed already for mg̃3 ≈ 210 GeV, or in any case for rather
light gluino. Furthermore, refs. [102, 103] work under the assumption of a (very)
heavy gluino, so their conclusion does not necessarily apply to the case at issue.
Finally, we opine that the status of theoretical errors in b→ sγ is not fully clear
at this time.

Figs. 7.12, 7.13 and 7.14 show BR(τ → µγ) for six representative cases. In
the figures, the shaded area has a branching ratio above the 90% upper limit from
Belle [91]. The impact of the τ̃ search is also shown, in the form of the continuous
black lines. Within much of the parameter space allowed by the direct searches,
the branching ratio is still below the experimental upper limit; however, for very
light third-generation sparticle the limit would generally be exceeded. In that
respect, the situation is similar to the Bs-mixing.
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Figure 7.11: Impact of the experimental lower bounds on mχ0
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(mq̃, µ) plane. Left plot corresponds to mg̃3 = 195 GeV, right plot to mg̃3 =
500 GeV. The shaded areas are excluded. The dashed and continuous contours
correspond to the experimental lower limits on mχ0

1
and mχ+

1
.

400 600 800 1000 1200 1400

-2

-1

0

1

2

6 · 10−7

10−6.5

10−7

mq̃

a
d
/m

q̃

mmin
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Figure 7.12: BR(τ → µγ) in the (mq̃, ad1) plane for mg̃3 = 195 GeV and µ = −75
GeV (left) and µ = −150 GeV (right).
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Figure 7.13: BR(τ → µγ) in the (mq̃, ad1) plane for mg̃3 = 500 GeV and µ = −55
GeV (left) and µ = −250 GeV (right).
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ẽR3

400 600 800 1000 1200 1400

-2

-1

0

1

2

6 · 10−7

10−6.5

10−7

10−7.5

10−8

mq̃

a
d
/m

q̃

mmin
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Figure 7.14: BR(τ → µγ) in the (mq̃, ad1) plane for mg̃3 = 500 GeV and µ = 175
GeV (left) and µ = 300 GeV (right).



Chapter 8

Conclusions and outlook

In this dissertation, we have studied hadronic and leptonic flavor violation in
supersymmetric unified theories. In particular, we have studied the impact of the
supersymmetric SO(10)-grand-unified model of Chang, Masiero, and Murayama,
which is motivated by the observed large atmospheric mixing angle together with
the approximate observed degeneracy of neutrino masses.

Our treatment is the first in this neutrino-mixing-inspired SO(10)-unified
model that relates the Planck-scale and weak-scale parameters via the renor-
malization group and takes into account the corresponding correlations and ex-
perimental constraints.

We have computed the renormalization-group running of the relevant param-
eters and provided a compact recipe to find their weak-scale values from a small
set of weak-scale input parameters, in the spirit of the “bottom-up approach” to
minimal supergravity [85]. As a by-product, we have computed the full one-loop
renormalization-group equations in matrix form of the most general superpoten-
tial for the matter sector of softly broken SUSY SO(10).

Furthermore we have computed the one-loop effective Lagrangian within the
CMM model for Bs mixing, for the hadronic ∆F = 1 decay Bd → φKS, and
for the leptonic flavor-violating decay τ → µγ. We find that the Bs-mixing
amplitude can get large contributions from gluino exchange due to the large
mixing angle in the right-handed down-squark mass matrix. For the case of
τ → µγ, our result differs in its analytical form from the computation by Hisano
et al. [24], which needs to be investigated. In the case of the decay Bd → φKS,
our penguin contributions to the Wilson coefficients agree with [99]. The box
contributions have been computed by the authors of [101]. We agree with them
except for two signs. We have argued that due to the chirality structure of
flavor violation in the CMM model, no large contributions to Bd → φKS are
to be expected. A quantitative analysis of this decay and of its CP asymmetry,
which has been getting much interest due to the unclear experimental status,
which shows a possible discrepancy with the standard model prediction and more
recently between the Belle and Babar experiments, involves a number of hadronic
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matrix elements and phases which at present are poorly known.
In a numerical study, we therefore focused on Bs − B̄s mixing as well as

τ → µγ. We first studied the correlation between the universal mass parameters
of the first two generations and the A-term of the down squark and the Planck-
scale values m2

0 and a0 and found a smooth relation, justifying the use of the
former in parameterizing the radiative effects of the CMM model. We considered
the constraining impact of lower bounds on sparticle masses from direct searches
and studied the flavor-violating hadronic and leptonic observables, illustrated by
suitable contour plots. In the Bs system, the standard model prediction for the
mass difference ∆MBs can be increased by a factor of up to four. For the τ decay,
we find a large effect over much of the parameter space, which, particularly in
the case of a light gluino, already rules out a significant portion of the otherwise
allowed parameter space. In conclusion, both findings suggest that this model is
most easily confirmed or excluded from the flavor-violating mode τ → µγ.

In both the hadronic and leptonic ∆F = 1 modes, it would be worthwile to
study the additional contributions for larger tan β, when left-right mixing among
the sfermions is no longer negligible. In the standard model, the ∆B = 1 operator
Q8 is of order (or has a Wilson coefficient of order) mb. Due to the left-right
mixing in the gluino mass term, there generally are corrections to the standard-
model coefficient C8 and to the coefficient C ′

8 of the parity-reflected operator Q′
8

in eq. (6.38) that are enhanced by mg̃/mb. However, a consistent study in the
case of B decays must also include contributions from Higgs penguins, beyond
the gluon penguins and boxes computed in this dissertation.

In the Bs mixing, there are no penguin contributions at one loop, and the
standard-model operator is not suppressed by mb/MW . Correspondingly, addi-
tional effects for moderate tanβ are not expected to be large: while additional
chirality structures may arise, there is no parametric enhancement and also, un-
like in the K0 system, no chiral enhancement of the hadronic matrix element.



Appendix A

Crash review of SO(10)

A.1 Lie Algebra of SO(10)

SO(N) is the group of orthogonal N -row matrices of determinant one. We are
mainly interested in the case of even N = 2n, making use of the symbol n when
talking about results special to this case. Sometimes we put N = 10, n = 5 to
obtain concrete SO(10) results.

The tangent space of SO(N) at the identity is the set of all traceless symmetric
matrices. Thus an obvious basis of the Lie algebra is given by(

T̃ij
)
mn

= i (δimδjn − δinδjm) (A.1)

and the basis vectors satisfy

[T̃ij , T̃kl] = i
(
δjkT̃il + δilT̃jk − δjlT̃ik − δikT̃jl

)
(A.2)

Here i, j, k, l,m, n run from 1 to N . This is the fundamental, N-dimensional
representation. It is real, as is evident from the structure constants. The T̃ij are
antisymmetric and also T̃ji = −T̃ij , so there are only N(N − 1)/2 = 45 linearly
independent generators.

To have a continous gauge coupling when breaking to SU(5), one should
rescale the generators by a factor 1/

√
2:

Tij =
1√
2
T̃ij (A.3)

This affects the Casimir invariants as conventionally defined in the particle physics
literature, and in this note.

A.2 Some tensor representations

From the tensor products of the fundamental representation, some useful irre-
ducible representations can be found.
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A.2.1 Adjoint representation

This is given by the antisymmetric tensor smn. Dimension N(N − 1)/2 = 45. It
is of course also found by the action of the Lie algebra on itself.

A.2.2 120-dimensional representation

The three-index antisymmetric tensor amnp contains
(
N
3

)
= 120 independent

entries. It forms the basis for an irreducible representation. We fix by convention
m < n < p, and likewise for higher antisymmetric tensors. This eliminates
overcounting factors if we sum over repeated indices.

A.2.3 252-dimensional reducible representation. Levi-Civita
tensor, duality transform, 252 = 126 + 126

am1···mn contains
(
N
n

)
= 252 independent entries. However, it is not irreducible:

There exists a unique N -dimensional completely antisymmetric tensor εm1···mN

with ε1···N = 1. It is invariant under SO(N). If am1···mk
is antisymmetric, so

is εn1···nN−km1···mk
am1···mk

. This defines a duality transformation from the rank-k
antisymmetric tensors to the rank-(N−k) ones. In the case of N = 2n, the space
of rank-n tensors is invariant. Let us define εLM to be a shorthand for n-indices
L = (l1, . . . , ln) and M = (m1, . . . , mn). As before, we restrict to l1 < l2 < . . .
and so on. (Note also that for n odd, εLM = −εML.) Then

ãL ≡ inεLMaM (A.4)

is the dual of a and, furthermore, ˜̃a = a. Consequently,

a± ≡ 1

2
(a± ã) (A.5)

a±L =
1

2
(δLM ± inεLM) aM (A.6)

≡ (P±
T )LMaM (A.7)

are eigentensors of the duality transform with eigenvalues ±1. They are invariant,
126-dimensional subspaces of the 252-dimensional representation. The tensor
projectors P±

T satisfy (with a a rank-five antisymmetric tensor):

(
P±
T

)2
= P±

T (A.8)

P±
T P

∓
T = 0 (A.9)

P+
T + P−

T = 1 (A.10)

P±
T a = aP∓

T (A.11)
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A.3 Spinor representations

The procedure follows that for the construction of Dirac spinors. This similarity
stems from the fact that the Lorentz group is SO(3,1), a close relative of SO(4).
For details, particularly on the construction of gamma matrices, see [104].

A.3.1 Clifford algebra and spinor generators

One can explicitly construct N matrices γm with 2n rows, satisfying

{γm, γn} = 2δmn1 (A.12)

(This holds also for odd N , with N = 2n+ 1.) Then the matrices

σ̃ij ≡ i

4
[γi, γj] (A.13)

represent the Lie algebra, since they satisfy (A.2). Consequently, they generate
a 2n-dimensional (spinor) representation. As with the generators of the funda-
mental representation, a rescaling

σij =
1√
2
σ̃ij (A.14)

is needed to have continuous coupling at the SO(10) and SU(5) breaking scales.
We also have

[
(∼)

σ ij , γm] = −(
(∼)

T ij)mnγn (A.15)

which allows to construct bilinears transforming like tensors of the fundamental
representation.

A.3.2 γ5, chirality projectors, Chisholm identity

If N = 2n, the matrix

γ5 ≡ (−i)nγ1 · · · γN (A.16)

anticommutes with all γ’s and commutes with the σ’s. Furthermore we have
γ25 = 1. Thus the spinor projectors

P±
S ≡ 1

2
(1± γ5) (A.17)

satisfy eqs. (A.8,A.9,A.10) and project onto invariant subspaces. That is, the 2n-
dimensional spinor representation decomposes into two 2n−1-dimensional “chiral”
irreps. (For odd N = 2n+1, there is no such extra matrix and there is only one,
2n-dimensional, spinor irrep.)
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A.3.2.1 Chisholm identity

Multiplying both sides of (A.16) from the left with γm1 · · · γmk
where all γ’s are

different, we can permute the product γ1 · · · γN on the right so that the first k
matrices appear as the sub-product γmk

· · · γm1 . We obtain

γm1 · · · γmk
γ5 = (−i)n(−)

(k−1)k
2 εm1···mkmk+1···mN

γmk+1
· · · γmN

. (A.18)

(No sum over repeated indices.) The indices mk+1 . . . mN label the remaining
γ’s in some arbitrary order, and the antisymmetric tensor element gives the sign
coming from permuting the γ’s. Multiplying both sides by this ε element (and
relabeling some indices as well as putting k → N − k), one obtains

γm1 · · · γmk
= (−i)n(−)

(k−1)k
2 εm1···mN

γmk+1
· · · γmN

γ5 (A.19)

This formula can be cast into one with summed indices if a symmetry factor
1/(N − k)! is introduced on the r.h.s. Note that it is only valid if all indices
on the left are different, which makes the expression on the l.h.s. completely
antisymmetric in its indices.

A.3.2.2 Connection between tensor and spinor projectors

Let Γm1···mk
≡ γm1 · · · γmk

. For strings of n gamma matrices, with L = (l1, · · · , ln),
(A.19) gives

ΓL = (−i)n2

εLMΓMγ5. (A.20)

Because we require m1 < m2 < · · ·, there is only one M with non-vanishing εLM
for a given L, so we can take the sum over M . Then

ΓLP
±
S = ΓL

1

2
(1± γ5) =

1

2
(ΓL ± (−i)n2

εLMΓM) (A.21)

A.3.3 Charge conjugation matrix, irreducible bilinears

The application of SO(10) to particle physics involves putting the fermions into
irreducible spinor representations both under SO(10) and the Lorentz group:

ψ−−
aα = P−

abΠ
−
αβψbβ (A.22)

where latin and greek letters pertain to SO(10) and the Lorentz group, respec-
tively. To avoid gauge invariant mass terms and obtain the correct V −A structure
at low energies, only one type of irrep should be present (by convention, we give
it negative chiralities under SO(10) and SO(3,1)).

The possible bilinears entering the Yukawa terms then have the SO(10) struc-
ture ψ−−

a Mabψ
−−
b with a suitable matrix M . (There may also be several different

incarnations (copies) of this irrep, in which case there is also a flavor structure.)
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A possible basis is the set of matrices Cγm1 · · · γmk
where C is an arbitrary non-

singular matrix and the indices mi can be chosen to be all different (making the
product antisymmetric in the indices). It is possible [104] to find unitary C such
that

CγmC
−1 = (−)nγTm, (A.23)

which has the consequence

Cγ5C
−1 = (−)nγT5 (A.24)

and motivates the name “charge-conjugation matrix”. Then using Fermi symme-
try one can show that all bilinears containing even numbers of γ’s vanish identi-
cally. Furthermore, by the Chisholm identity and the fact that our spinors are chi-
ral, it suffices to consider the cases k = 1, 3, 5. One finds that for k = 3 the flavor
structure is antisymmetric while for k = 1, 5 it is symmetric (for N = 2n = 10).
The spinor generators obey

CσmnC
−1 = −σTmn (A.25)

(for any n). Combining this with (A.15), we find that the bilinears transform like
antisymmetric tensors of ranks 1, 3, and 5 under SO(10). Invariant Yukawa terms
can now be formed by contracting the bilinears with suitable scalars transforming
like antisymmetric tensors. In the case of the rank-5 tensor, (A.21) means

ΓLP
−
S hL = ΓX(P

+
T )XLhL = ΓXh

+
X , (A.26)

so only the self-dual part of h couples. However, if hL was canonically normal-
ized, then h+ is not, because the “transformation” P+

T defining it is not unitary.
Furthermore every component appears twice (hL = ihM for εLM = +1), which
would require a suitable symmetry factor for the coupling term.

One way to fix this is to restrict the summation over L to one half-set of the
possible 256 indices and define h+L = 1/

√
2(hL + iεLMhM). This is what we will

do here.
Now all Yukawa couplings get the same symmetry factor 1/2 because of the

(anti)symmetry of the bilinears. Thus with i, j denoting families, the most general
Yukawa potential involving the matter fields is

L =
1

2
Y 10
ij ψTi (CγmP

−
S )ψj h

10
m +

1

2
Y 120
ij ψTi (CΓ[mnr]P

−
S )ψj h

120
[mnr]

+
1

2
Y 126
ij ψTi (CΓ[mnrst]P

−
S )ψj h

126
[mnrst]. (A.27)

Remark: In a supersymmetric theory, the superpotential has the same form
with all fields replaced by the superfields they belong to. The Fermi symmetry
is changed to Bose symmetry, but the Dirac charge conjugation matrix is also
absent. Both changes compensate each other such that the allowed bilinears are
again those transforming as tensors of rank 1, 3, or 5.

(The gauge coupling terms contain the antisymmetric bilinear ψ−−†
σ̃mnψ

−−,
the kinetic term ψ−−†

ψ−−).
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A.4 Loop calculations

SO(10) loop calculations involve group-theoretical factors resembling in part the
color factors in QCD calculations and, because SO(10) spinors are involved, the
traces over gamma matrices in Dirac algebra.

A.4.1 Casimir invariants

The Casimir invariants

trR(T
a(R)T b(R)) = T (R)δab (A.28)

(T a(R)T a(R))mn = C2(R)δmn (A.29)

can be found for the spinor and fundamental representations by explicit compu-
tation (we fix i < j, k < l):

tr(σijσklP
−
S ) = 2n−4δij,kl (A.30)

σijσijP
−
S =

N(N − 1)

16
P−
S (A.31)

tr(TijTkl) = δij,kl (A.32)

(TijTij)mn =
1

2
(N − 1)δmn (A.33)

and consequently

T (N) = 1, C2(N) =
1

2
(N − 1) =

9

2
, (A.34)

T (2n−1) = 2n−4 = 2, C2(2
n−1) =

N(N − 1)

16
=

45

8
(A.35)

For the higher representations, we follow the procedure given in [105] and find

(
2n
3

)
= 120 : T = (n− 1)(2n− 3) = 28, (A.36)

C2 =
3

2
(2n− 3) =

21

2
(A.37)

1

2

(
2n
n

)
= 126 : T =

1

2

(
2n− 2
n− 1

)
= 35, (A.38)

C2 =
1

2
n2 =

25

2
(A.39)

Remark: C,C2 as defined above obviously depend on the choice of basis (in-
cluding normalization) of the Lie algebra. A true Casimir operator, constant on
each irrep and invariant under change of basis, can be defined making use of the
Killing form. See e.g. [105].
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A.4.2 Loop factors and traces

The Feynman rules corresponding to the Yukawa couplings when combined with
a closed loop will lead to expressions like for example tr(CΓLP

−
S )

†CΓMP−
S which

we need to evaluate. To do this, we need the hermiticity properties of C,Γ, P−
S ,

and trace rules.

A.4.2.1 Hermiticity properties

From γ†m = γm we have

Γ†
L = (γl1 · · · γlk)† = γlk · · · γl1 = (−)(k−1)k/2ΓL (A.40)

The sign is positive for simple indices and five-indices, negative for a three-index.
Furthermore, γ5 is hermitian and so are the projectors. The charge conjugation
matrix is unitary.

A.4.2.2 Trace rules

This is completely analogous to the Lorentz case (including proofs):

tr(γm1 · · · γm2k+1
) = 0 (A.41)

tr(γm1 · · · γm2k+1
γ5) = 0 (k < n) (A.42)

tr(γm1 · · · γm2k
γ5) = 0 (k < n) (A.43)

tr(γm1 · · ·γmN
γ5) = −inεm1···mN

(A.44)

tr(γm1 · · · γm2k
) = 2nsm1···m2k

(A.45)

In the last line, the tensors s satisfy the recursion relation

sm1···m2k
= δm1m2sm3···m2k

− δm1m3sm2m4···m2k
+ · · · − · · · , (A.46)

sm1m2 = δm1m2 . (A.47)

A.4.2.3 Collection of loop factors

The two kinds of object that appear in one-loop calculations are

tr(CΓi1···ikP
−
S (CΓj1···jlP

−
S )

†), (A.48)

CΓi1···ikP
−
S (CΓi1···ikP

−
S )

†, (A.49)

the second of which involves an implicit sum over i1, . . . , ik. k, l = 1, . . . , 5, and
we restrict to i1 < · · · < ik etc.

We obtain

tr(CΓi1···ikP
−
S (CΓj1···jlP

−
S )

†) = 2n−1δi1···ik,j1···jlδkl (A.50)

CΓi1···ikP
−
S (CΓi1···ikP

−
S )

† =
[
1

2

] (
2n
k

)
P−
S (A.51)
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In the case of an n-index in (A.51), if the summation is only over half the
allowed indices, one has to insert the indicated factor of 1/2. Then for all k the
factor on the right-hand side is simply the dimension of the rank-k antisymmetric
tensor irreducible representation.



Appendix B

Renormalization group equations

In this appendix we collect the matrix-valued one-loop renormalization group
equations for the most general renormalizable SO(10) softly broken SUSY GUT,
neglecting only unknown Higgs self couplings. The superpotential and soft-
breaking terms are defined in equations (5.41) and (5.42).

We also list the RGEs for the minimal SU(5) model augmented with right-
handed neutrinos appearing as an intermediate effective theory in the CMM
model, with superpotential given in (4.12). In this case, however, we neglect the
Yukawa matrix Y D. Equations including the effect of Y D are given in [24]. They
agree with our equations if Y D is neglected.

B.1 SO(10)

Ẏ 10 = 20 Y 10Y 10†Y 10 + 8 tr(Y 10Y 10†)Y 10 − 63

2
g2Y 10

+120 (Y 120Y 120†Y 10 + Y 10Y 120†Y 120)

+126 (Y 126Y 126†Y 10 + Y 10Y 126†Y 126) (B.1)

Ẏ 120 = 240Y 120Y 120†Y 120 + 8 tr(Y 120Y 120†)Y 120 − 87

2
g2Y 120

+10 (Y 10Y 10†Y 120 + Y 120Y 10†Y 10)

+126 (Y 126Y 126†Y 120 + Y 120Y 126†Y 126) (B.2)

Ẏ 126 = 252 Y 126Y 126†Y 126 + 8 tr(Y 126Y 126†)Y 126 − 95

2
g2Y 126

+10 (Y 10Y 10†Y 126 + Y 126Y 10†Y 10)

+120 (Y 120Y 120†Y 126 + Y 126Y 120†Y 120) (B.3)

Ȧ10 = 30 (Y 10Y 10†A10 + A10Y 10†Y 10) + 8 tr(Y 10Y 10†)A10

+16 tr(A10Y 10†)Y 10 +
63

2
g2(2mg̃Y

10 −A10)
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+120 (Y 120Y 120†A10 + A10Y 120†Y 120

+2(A120Y 120†Y 10 + Y 10Y 120†A120))

+126 (Y 126Y 126†A10 + A10Y 126†Y 126

+2(A126Y 126†Y 10 + Y 10Y 126†A126)) (B.4)

Ȧ120 = 360 (Y 120Y 120†A120 + A120Y 120†Y 120) + 8 tr(Y 120Y 120†)A120

+16 tr(A120Y 120†)Y 120 +
87

2
g2(2mg̃Y

120 −A120)

+10 (Y 10Y 10†A120 + A120Y 10†Y 10

+2(A10Y 10†Y 120 + Y 120Y 10†A10))

+126 (Y 126Y 126†A120 + A120Y 126†Y 126

+2(A126Y 126†Y 120 + Y 120Y 126†A126)) (B.5)

Ȧ126 = 378 (Y 126Y 126†A126 + A126Y 126†Y 126) + 8 tr(Y 126Y 126†)A126

+16 tr(A126Y 126†)Y 126 +
95

2
g2(2mg̃Y

126 −A126)

+10 (Y 10Y 10†A126 + A126Y 10†Y 10

+2(A10Y 10†Y 126 + Y 126Y 10†A10))

+120 (Y 120Y 120†A126 + A126Y 120†Y 120

+2(A120Y 120†Y 126 + Y 126Y 120†A120)) (B.6)

ṁ2
Ψ = 10(Y 10Y 10†m2

Ψ +m2
ΨY

10†Y 10 + 2Y 10†m2
Ψ
T
Y 10

+2Y 10†Y 10m2
10 + 2A10†A10)

+120(Y 120Y 120†m2
Ψ +m2

ΨY
120†Y 120 + 2Y 120†m2

Ψ
T
Y 120

+2Y 120†Y 120m2
120 + 2A120†A120)

+126(Y 126Y 126†m2
Ψ +m2

ΨY
126†Y 126 + 2Y 126†m2

Ψ
T
Y 126

+2Y 126†Y 126m2
126 + 2A126†A126)

−45g2|mg̃|21 (B.7)

ṁ2
10 = 16tr(Y 10Y 10†)m2

10 + 32tr(Y 10†m2
Ψ
T
Y 10)

+16tr(A10A10†)− 36g2|mg̃|2 (B.8)

ṁ2
120 = 16tr(Y 120Y 120†)m2

120 + 32tr(Y 120†m2
Ψ
T
Y 120)

+16tr(A120A120†)− 84g2|mg̃|2 (B.9)

ṁ2
126 = 16tr(Y 126Y 126†)m2

126 + 32tr(Y 126†m2
Ψ
T
Y 126)

+16tr(A126A126†)− 100g2|mg̃|2 (B.10)
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B.2 SU(5)

Ẏ U = 6 Y UY U †
Y U + 3 tr(Y UY U †

)Y U + tr(Y νY ν†)Y U − 96

5
g2Y U (B.11)

Ẏ ν = 6 Y νY ν†Y ν + tr(Y νY ν†)Y ν + 3 tr(Y UY U †
)Y ν − 48

5
g2Y ν (B.12)

ȦU = 9
(
Y UY U †

AU + AUY U †
Y U

)
+
(
3 tr(Y UY U †

) + tr(Y νY ν†)
)
AU

+
(
6 tr(Y U †

AU) + 2 tr(Y ν†Aν)
)
Y U +

96

5
g2(2mg̃Y

U − AU) (B.13)

Ȧν = 11 Y νY ν†Aν + 7AνY ν†Y ν +
(
tr(Y νY ν†) + 3 tr(Y UY U †

)
)
Aν

+
(
2 tr(Y ν†Aν) + 6 tr(Y U †

AU)
)
+

48

5
g2(2mg̃Y

ν − Aν) (B.14)

ṁ2
ψ = 3 Y U †

Y Um2
ψ + 3m2

ψY
U †
Y U + 6 Y U †

(m2
ψ)
TY U + 6 Y U †

Y Um2
u

+6AU
†
AU − 144

5
g2|mg̃|21 (B.15)

ṁ2
φ = Y ν∗Y νTm2

φ +m2
φY

ν∗Y νT + 2 (Y νm2
NY

ν†)T + 2 Y ν∗Y νTm2
u

+2Aν∗AνT − 96

5
g2|mg̃|21 (B.16)

ṁ2
N = 5 Y ν†Y νm2

N + 5m2
NY

ν†Y ν + 10 Y ν†m2
φY

ν + 10 Y ν†Y νm2
u

+10Aν†Aν (B.17)

ṁ2
u =

(
6 tr(Y UY U †

) + 2 tr(Y νY ν†)
)
m2
u + 12 tr(Y Um2

ψY
U †
)

+2 tr(Y ν†(m2
φ)
TY ν) + 2 tr(Y νm2

NY
ν†) + 6 tr(AU

†
AU) + 2tr(Aν†Aν)

−96

5
g2|mg̃|2 (B.18)
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Appendix C

List of functions

Here we collect the various analytic functions appearing in chapters 5 and 6.

C.1 Renormalization group solutions

We list here the functions entering the analytic solutions of the GUT soft-term
evolution described in sec. 5.2.3. We denote X ≡ X(u), X0 = X(0), ∆0 =
X0 −Xc.

j(p, u) = up+1

(
X(u)

p + 2
+

Xc

(p+ 1)(p+ 2)

)
, (C.1)

m̂ = I(u)
(

b

2β0γ
X
(
|a0|2 i1(u) + 2Re(a0)mg̃ i2(u) +m2

g̃i3(u)
)

− c

2β0γX
m2
g̃ j

(
2

γ
− 2, u

))
, (C.2)

I(u) = u
X0

X
, (C.3)

i1(u) =
1

∆0X0
− 1

∆0(∆0u+Xc)
, (C.4)

i2(u) =
d

γβ0
l1

(
1

γ
− 2, u

)
, (C.5)

i3(u) =

(
d

γβ0X0

)2

l2

(
1

γ
− 2, u

)
, (C.6)

l1(p, u) =
1

X0 −Xc

1

p+ 1
(up+1 − 1)− 1

X
j(p, u), (C.7)

l2(p, u) =
Xc

∆0(p+ 1)2
(u2p+2 − 1) +

2

(p+ 2)(2p+ 3)
(u2p+3 − 1)

− 2J(p)

∆0(p+ 1)
(up+1 − 1)− 1

∆0X(u)
j(p, u)2, (C.8)
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J(p) =
Xc

p+ 1
+

∆0

p+ 2
(C.9)

C.2 Loop functions

This section lists the loop functions entering the effective Lagrangians for Bs

mixing, τ → µγ, and B → φKS.

Bs mixing

F (x, y) = − 1

x− y

[
x

(x− 1)2
log x− 1

x− 1
− (x↔ y)

]
(C.10)

G(x, y) =
1

x− y

[
x2

(x− 1)2
log x− 1

x− 1
− (x↔ y)

]
(C.11)

S(x, y) =
11

18
G(x, y)− 2

9
F (x, y) (C.12)

S(g)(x, y) = S(x, x)− 2S(x, y) + S(y, y) (C.13)

B → φKS

A(x) =
3− 3x+ ln x+ 2x ln x

6(x− 1)2
(C.14)

B(x) =
−11 + 18x− 9x2 + 2x3 − 6 lnx

18(x− 1)4
(C.15)

C(x) =
1− x2 + 2x log x

4(x− 1)3
(C.16)

D(x) =
−2− 3x+ 6x2 − x3 − 6x ln x

6(x− 1)4
(C.17)

τ → µγ

H1(x) =
1− 6x+ 3x2 + 2x3 − 6x2 ln x

12(x− 1)4
(C.18)

H2(x) =
−1 + 4x− 3x2 + 2x2 ln x

2(x− 1)3
(C.19)

H3(x) =
1

2
D(x) (C.20)

H4(x) = −2C(x) (C.21)
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