New Directions in Statistical Physics

Econophysics, Bioinformatics, and Pattern Recognition

With 134 Figures
Including 8 Color Figures

Contents

Part I Fundamental Aspects	
Predicting the Direction of a Time Series Dimitrios D. Thomakos	3
1 Introduction . 2 Embedding in Direction Space . 3 Predicting the Direction . 4 Empirical Examples . 5 Concluding Remarks . References	3 4 7 11 14 14
On the Variability of Timing in a Spatially Continuous System with Heterogeneous Connectivity Viktor K. Jirsa	17
1 Introduction	17 18 21 23 25 26 26 27
5 Conclusions. References First Passage Time Problem:	28 29
A Fokker-Planck Approach Mingzhou Ding and Govindan Rangarajan	31
1 Introduction	31 32 38 45 45

	rst- and Last-Passage Algorithms in Diffusion Monte Carlo mes A. Given, Chi-Ok Hwang, and Michael Mascagni	47
1 Introduction		47 52 53 56 58 64 65
Par	rt II Econophysics	
Co in	Updated Review of the LLS Stock Market Model: mplex Market Ecology, Power Laws Wealth Distribution and Market Returns in Solomon and Moshe Levy	69
1 2 3	Introduction to the Levy-Levy-Solomon (LLS) Model	69 71 73 73 79
4	LLS with Many Species: Realistic Dynamics of Market Returns 4.1 Return Autocorrelations: Momentum and Mean-Reversion 4.2 Excess Volatility	80 80 81 81
5 6 7	The Emergence of Pareto's Law in LLS	82 84 86
8 Ref	Summaryferences	89 89
and	tterns, Trends and Predictions in Stock Market Indices d Foreign Currency Exchange Rates rcel Ausloos and Kristinka Ivanova	93
1	An Introduction with Some Historical Notes as "Symptoms"	95 96 97
3	Econophysics of Stock Market Indices	104

Contents	IX
3.1 DFA Analysis 3.2 Data and Analysis 3.3 Probing the Local Correlations 4 Conclusions References	108 110 112
Toward an Understanding of Financial Markets Using Multi-agent Games Neil F. Johnson, David Lamper, Paul Jefferies, and Michael L. Hart.	115
1 Introduction	115 115 119 121 123 124 126
Towards Understanding the Predictability of Stock Markets from the Perspective of Computational Complexity James Aspnes, David F. Fischer, Michael J. Fischer, Ming-Yang Kao, and Alok Kumar	129
1 Introduction	130 131 133 134 135
4.2 An Easy Case for Market Prediction: Many Traders but Few Strategies	138 141 149
Patterns in Economic Phenomena H. E. Stanley, P. Gopikrishnan, V. Plerou, and M. A. Salinger	153
1 Introduction to Patterns in Economics	156 157 161 162
6 Cross-Correlations in Price Fluctuations of Different Stocks	

37	a , ,
X	Contents

8 9 Ref	Universality of the Firm Growth Problem	166
Pa	rt III Bioinformatics	
	w Algorithms and the Physics of Protein Folding	170
Uir	ich H.E. Hansmann	
1	Introduction	
2	The Generalized-Ensemble Approach	
	2.2 1/k-Sampling	
	2.3 Simulated Tempering	
	2.4 Other Generalized Ensembles	
0	2.5 Parallel Tempering	
3	The Thermodynamics of Folding	
	3.2 Energy Landscape Analysis of Peptides	
4	Structure Prediction of Proteins	
5	Conclusion	190
Ref	ferences	190
Sec	quence Alignment in Bioinformatics	
	Kuo Yu	193
1	Introduction to Sequence Alignment	193
	1.1 The Holy Grail	
	1.2 Alignment Algorithms	
	1.3 Score Statistics	
2	1.4 Substitution (Scoring) Matrices	
2	2.1 Optimal Alignments	
	2.2 Hybrid Alignment	
	2.3 Open Problems	
Ref	ferences	211
in	solution of Some Paradoxes B-Cell Binding and Activation: A Computer Study an Bhanot	213
·		
$\frac{1}{2}$	Introduction	
3	The Dintzis Experimental Results and the Immunon Theory	
4	Modeling the B-Cell Receptor Binding to Antigen:	•
	Our Computer Experiment	217

		Contents	XI
5 Ref	Resultsferences		
Pr	oliferation and Competition in Discrete Biologica	l Systems	
You	ram Louzoun and Sorin Solomon		225
1	Introduction		
2	Dynamics of Discrete Proliferating Agents		
$\frac{3}{4}$	How Well Do Different Methods Deal with Discreteness Single S Analysis		
5	RG Analysis		
6	Mechanisms Limiting Population Growth		
	6.1 Local Competition		
	6.2 Global Competition		
_	6.3 Emergence of Complexity		
7	Discussion		
	7.2 Inter-Scale Information Flow		
Rei	ferences		
	ivacy and Data Exchanges		243
1	Introduction		
2	A Lightning Review of Cryptographic Techniques		
3	Secret Matching of Data Sets		
4	Private Surveys in the Public Arena		
5	Conclusion		
Rei	ferences		250
Pa	rt IV Pattern Recognition		
	atistical Physics and the Clustering Problem		
	pastiano Stramaglia, Carmela Marangi,		050
Lui	igi Nitti, and Mario Pellicoro		
1	Introduction		
2	Hierarchical Clustering for Phylogeny Reconstruction .		
	2.1 Coupled Map Clustering (CMC) Algorithm 2.2 Distance Measures		
	2.3 Experiment		
	2.4 Discussion		
3	The Auto-encoder Frame		261
	3.1 Cost Functions		261
	3.2 Deterministic Annealing		
	3.3 Experiments		264

VII	Contonto
A 1 I	Contents

	3.4	Resampling Technique for Unsupervised Estimation
		of the Number of Classes
	3.5	Discussion
4		clusions
Re	ferenc	es
$\mathbf{T}\mathbf{h}$	ıe Ch	allenges of Clustering High Dimensional Data
Mi	chael	Steinbach, Levent Ertöz, and Vipin Kumar
1	Intro	oduction
2	Basi	c Concepts and Techniques of Cluster Analysis
	2.1	What Cluster Analysis Is
	2.2	What Cluster Analysis Is Not
	2.3	The Data Matrix
	2.4	The Proximity Matrix
	2.5	The Proximity Graph
	2.6	Some Working Definitions of a Cluster
	2.7	Measures (Indices) of Similarity and Dissimilarity 279
	2.8	Hierarchical and Partitional Clustering
	2.9	Specific Partitional Clustering Techniques: K-Means 282
	2.10	Specific Hierarchical Clustering Techniques:
		MIN, MAX, Group Average
3	The	"Curse of Dimensionality"
4	Rece	ent Work in Clustering High Dimensional Data
	4.1	Clustering via Hypergraph Partitioning
	4.2	Grid Based Clustering Approaches
	4.3	Noise Modeling in Wavelet Space
	4.4	A "Concept-Based" Approach
		to Clustering High Dimensional Data
5	Con	clusions
Re	ferend	es
Pa	rt V	Other Applications
for Kr	Tre	statistical Physics Approaches Inds and Predictions in Meteorology Inds a Ivanova, Marcel Ausloos, Thomas Ackerman, In Shirer, and Eugene Clothiaux
1		oduction
0	1.1 Even	Techniques of Time Series Analysis
2		erimental Techniques and Data Acquisition
3		stationarity and Spectral Density
4		ghness and Detrended Fluctuation Analysis
5	Tim	e Dependence of the Correlations

			Contents	XIII
6	Mul	ti-affinity and Intermittency		. 324
7		clusions		
An		ix		
_	-	ces		
Ar	ı Init	ial Look		
\mathbf{at}	Acce	eleration-Modulated Thermal Convection		
Jef	frey I	L. Rogers, Michael F. Schatz, Werner Pesch,		
and	d Oliv	ver Brausch	• • • • • • • • • • • • • • • • • • • •	. 331
1		oduction		
2	$_{ m Lab}$	oratory		
	2.1	Experimental Apparatus		. 334
	2.2	Numerical Methods		
3	Ons	et, Time-Dependence, and Typical Patterns		
	3.1	Onset Measurements		
	3.2	Confirmation of Time-Dependence		
	3.3	Harmonic Patterns at Onset		
	3.4	Harmonic Patterns away from Onset		
	3.5	Subharmonic Patterns at Onset		
	3.6	Subharmonic Patterns away from Onset		. 343
4	Dire	ect Harmonic-Subharmonic Transition		. 344
	4.1	Transition from Pure Harmonics to Coexistence .		
	4.2	Transition from Pure Subharmonics to Coexistence	ce	. 347
5	Sup	erlattices		. 349
	5.1	Observations near Bicriticality		
	5.2	Observations away from Bicriticality		. 351
	5.3	Resonant Tetrads		. 352
	5.4	Other Frequencies		. 354
6	Disc	cussion		. 356
Re	feren	ces		. 356
In	dev	A.		359

1

ø.