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Abstract: Multi-fractal processes have been proposed as a new formalism for modeling the time 
series of returns in finance. The major attraction of these processes is their ability to generate 
various degrees of long memory in different powers of returns - a feature that has been found to 
characterize virtually all financial prices. Furthermore, elementary variants of multi-fractal models 
are very parsimonious formalizations as they are essentially one-parameter families of stochastic 
processes. The aim of this paper is to provide the characteristics of a causal multi-fractal model 
(replacing the earlier combinatorial approaches discussed in the literature), to estimate the 
parameters of this model and to use these estimates in forecasting financial volatility. We use the 
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consistently via GMM (Generalized Method of Moment). Simulations show that this approach leads 
to essentially unbiased estimates, which also have much smaller root mean squared errors than those 
obtained from the traditional ‘scaling’ approach. Our empirical estimates are used in out-of-sample 
forecasting of volatility for a number of important financial assets. Comparing the multi-fractal 
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1. Introduction 
 
While so-called uni-fractal or self-similar processes, such as fractional Brownian motion, have 

been known for quite some time in empirical finance, more general multi-fractal processes have 
been considered only very recently. After some earlier attempts at recovering traces of multi-fractal 
behavior (Vassilicos, Demos and Tata, 1993, Ghasghaie, S. et al., 1996) this topic has also  been 
taken up in a couple of recent papers. Among these contributions, Schmitt, Schertzer and Lovejoy 
(1999) and Vandewalle and Ausloos (1998a, b) concentrate on statistical analyses suggesting the 
multi-fractal nature of various financial records. Mandelbrot, Fisher and Calvet (1997), Mandelbrot 
(1999) and Calvet and Fisher (2002a) proceed one step further by proposing a compound stochastic 
process as a generating mechanism of stock returns and exchange rate changes in which a multi-
fractal cascade plays the role of a time transformation. The message of these papers is unequivocal 
in indicating that the data under consideration consistently exhibit features that have been found to 
characterize multi-fractality in other environments (e.g. statistical analyses of turbulence1). 
However, the methods employed by these authors differ quite fundamentally from the usual 
techniques used to estimate and evaluate time series models in economics. Although a comparison 
of simulated multi-fractal processes with empirical data (Fisher, Calvet and Mandelbrot, 1997; 
Mandelbrot, 1999) suggests that they are, in fact, able to reproduce to a large extent the empirical 
characteristics of financial returns, no assessment of goodness-of-fit is provided in these early 
papers. A comparison of the performance of multi-fractals with, for example, GARCH processes as 
a candidate alternative, was particularly hampered by the fact, that ‘time series’ of this first vintage 
of multi-fractal processes have been generated by algorithms that are of a combinatorial nature 
rather than by truly iterative mechanisms.  

 
The purpose of this paper is to go one (modest) step towards such an assessment of the empirical 

performance of multi-fractal cascade models. Following similar approaches by Breymann et al. 
(2000) and Calvet and Fisher (2001,2002b), we first set up a causal counterpart of one variant of the 
combinatorial multi-fractal model analyzed by Calvet and Fisher (2002a). The iterative nature of 
this process allows simulations of arbitrary length. We show that this process preserves the scaling 
laws of moments characterizing its combinatorial predecessor, so that we can also apply the ‘scaling 
estimator’ of Calvet and Fisher for estimating the parameters of the causal process. As an 
alternative, potentially more efficient framework for parameter estimation we consider Generalized 
Method of Moments (GMM) estimation. We discuss under what circumstances GMM might be 
applicable to this new class of long-memory models. For a certain selection of moment conditions, 
we explore the finite-sample properties of the GMM estimators via Monte Carlo simulations. As it 
turns out, the root mean-squared error (RMSE) from this procedure is much smaller than that of the 

                                                 
1 The similarities in the time series characteristics of financial data and data from turbulent flows has 

stimulated a discussion about potential similarities in the underlying data generating mechanisms among 
physicists, cf. Vassilicos, 1995; Gashghaie et al., 1996, and Mantegna and Stanley, 1996. 
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standard heuristic estimation method. Furthermore, the decrease of RMSE under increasing sample 
size nicely exhibits T1/2 consistency for all parameter choices and sets of moment conditions we 
have explored. When increasing the number of moment conditions, we find a continuous 
improvement in terms of mean squared errors of parameter estimates albeit with decreasing 
marginal returns from additional moment conditions. As concerns the distribution of the statistic 
used in Hansen’s related test of overidentifying restrictions, we found almost no variation with 
sample size, parameter values and number of moment conditions. Unfortunately, the distribution of 
p-values seems to have too much mass on the extreme left-hand side even for relatively large 
samples up to 1000 observations, and, therefore, too often rejects the underlying model.  
 

Equipped with these results, we estimate the parameters of the causal multi-fractal process for 
daily variations of various financial data: two stock market indices (the German DAX and the New 
York Stock Exchange Composite Index), an exchange rate (Deutsche Mark/U.S.$), and the daily 
price of gold from the London Precious Metal Exchange. Since the multi-fractal model allows to 
capture the long-term dependence of volatility and the scaling of various moments, one might also 
expect that it can be used as a tool for forecasting the time development of volatility over short and 
medium time horizons. The use of the multi-fractal (MF) model to this end is, however, hampered 
by the lack of identification of the individual volatility components (this unsolved task is known as 
the inverse multi-fractal problem in physics). Nevertheless, even without being able to identify the 
ruling individual components of the volatility dynamics, we can devise a best linear predictor using 
the aggregate information available in our time series. To this end, we construct best linear forecasts 
for future volatility within time horizons ranging from 1 day to 100 days. For comparison, we 
compute similar forecasts based on historical volatility (HV), GARCH and FIGARCH models. 
Overall, the performance of the MF model compares quite well to that of its competitors. It beats all 
other forecasts for the U.S.$-DEM exchange rate, while in forecasting the volatility of the gold 
price, it comes in second in a very narrow race with one specification of the FIGARCH model. 
Furthermore, while the gain in MSEs is probably negligible for small forecasting horizons in these 
cases, the gap between the multi-fractal (or the multi-fractal and the FIGARCH model) and 
alternative methods also widens with increasing time horizon and becomes quite sizable for larger 
forecasting horizons. For the two stock indices, results from HV, GARCH, FIGARCH and the 
multi-fractal model are almost indistinguishable, which might be explained by the tremendous 
increase of volatility in our out-of-sample period 1997/98. 

 
Our aims of constructing iterative multi-fractal cascades and developing rigorous estimation 

methods are shared by three other recent entries in the literature. Breymann et al. (2000) have 
developed a model very similar to the present one and explore some of its scaling characteristics. 
Another closely related version of a causal multi-fractal model is studied in Calvet and Fisher 
(2001, 2002b). In contrast to the present entry, they assume that the multipliers are drawn from a 
Binomial distribution which allows maximum likelihood estimation based on the Hamilton filter for 
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Markov-switching processes. Most interestingly, they have also been the first to investigate the 
performance of a multi-fractal model in forecasting volatility. However, for the one-day forecasting 
horizons considered in their paper, they were unable of finding an advantage of MF against standard 
GARCH models. We will point to the similarities and differences between our approach and results 
and theirs repeatedly over the course of the presentation. 

 
The paper proceeds as follows: sec. 2 introduces both the original combinatorial multi-fractal 

model with Lognormal multipliers as well as its causal counterpart used in the present study. Sec. 3 
presents the scaling estimator introduced by Calvet and Fisher (2002a) while sec. 4 develops our 
alternative GMM estimator and provides a comparative Monte Carlo study of the performance of 
both estimators. Sec. 5 deals with some problems of empirical implementation of the GMM 
approach and reports the results of estimating the multi-fractal model for four different financial 
time series. Sec. 6 continues with the forecasting competition between the MF model and three 
alternative approaches. Sec. 7 concludes. The Appendix contains derivations of various analytical 
moments of the multi-fractal process used in both GMM estimation and forecasting as well as 
details on our GARCH and FIGARCH estimates used in sec. 6. 

 
 
2. The Multi-Fractal Model: Combinatorial and Causal Versions  
 
The multi-fractal model put forward in Mandelbrot, Calvet and Fisher (1997) and Calvet and 

Fisher (2002a) postulates that returns { x(t) } follow a compound process: 
 
  (1) x(t) = BH[θ(t)]. 
 
In this notation, BH[ ] is a fractional Brownian motion with index H, and θ(t) is the distribution 

function of a multi-fractal measure which plays the role of a time-deformation. Both component 
processes are assumed to be independent of each other. With a time-homogeneous Brownian 
process BH, the multi-fractal measure θ(t) is responsible for changes in the scale of the fluctuations 
which generate heteroskedasticity of the overall dynamics. In contrast to the GARCH and stochastic 
volatility models and their descendants, the above cascade model is scale-free and, therefore, one 
and the same specification can be applied to data of different sampling frequencies. This feature is 
highlighted by Calvet and Fisher in their analysis of both high-frequency and daily returns of the 
Deutschmark/U.S.$ exchange rate. 

 
In our application, we simplify the general compound model by setting H = 0.5. This means we 

restrict the price process assuming that (in transformed time) the logs of prices follow a (Wiener) 
Brownian motion instead of fractal Brownian motion with arbitrary H. The reason is that empirical 
evidence in favor of H ≠ 0.5 is weak: statistical tests can usually not reject the null hypothesis H = 
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0.5 for raw returns (cf. Lo, 1991; Goetzman, 1991; Mills, 1993),2 while absolute and squared 
returns have values of H significantly exceeding 0.5. Hence, the picture from the literature (as well 
as from a preliminary analysis of our time series) is that long-term dependence (which shows up in 
an estimate H > 0.5) is confined to various powers of returns, but is almost absent in the raw data. In 
order to model long-term dependence in the powers, we do not need to assume a fractional 
Brownian motion of returns. This feature of the data can be accounted for by the introduction of the 
multi-fractal time-transformation alone. 

 
Inspired by the multi-fractal models for turbulent flows in physics several models of 

multiplicative cascades have been applied for modeling the time-transformation θ(t). Mandelbrot, 
Calvet and Fisher focus on the so-called Binomial and Log-normal cascades, while Schmitt, 
Schertzer and Lovejoy (1999) estimate the parameters of the Log-Levy model for a number of 
foreign exchange rates. To get a basic idea of this approach, it is useful to first have a look at one of 
the simplest cases, the Binomial model.  

 
In their original form, multi-fractal cascades are operations performed on probability measures. 3 

The ‘cascade’ starts with assigning uniform probability to the interval [0,1]. In the first step, this 
interval is split up into two subintervals of equal length, which receive a fraction m0 and 1 - m0, 
respectively, of the total probability mass. In the next step, each subinterval is again split up into 
two subintervals, which again receive fractions m0 and 1 - m0 of the probability mass of their 
‘mother’ intervals. In principle, this procedure is, then, repeated ad infinitum.  

 
It is easy to envisage more or less complicated variants of this general procedure: first, the 

probabilities could be assigned in a systematic fashion (e.g. always assigning probability m0 to the 
left hand descendant and 1 - m0 to the right-hand descendant of a mother interval). Alternatively, 
this assignment could be made randomly. Going beyond the Binomial model, one could think of 
more than two subintervals to be generated in each step (which leads to multinomial cascades) or of 
generating  random numbers for m0 in each iteration instead of using the same constant value 
throughout the formation of the cascade. The Log-normal and Log-Levy models mentioned above 
are examples of the latter type of multi-fractal measures. 

 
In the resulting final stage of the creation of a combinatorial cascade process consisting of, say, k 

such operations, the remaining subintervals all have size 2-k and do possess mass identical to the 
product of their k multipliers chosen at different levels of the cascade: 

 
                                                 
2 It is also well-known that the R/S and other estimation methods are positively biased around H = 0.5 which 

may explain some (seemingly significant) findings of H in excess of one half in the earlier literature (cf. 
North and Halliwell, 1994). 

3 Tel (1988), Falconer (1990) and Evertz and Mandelbrot (1992) are recommendable introductory sources to 
multi-fractal measures. 
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with j a partition of the unit interval, i.e. j is an index of subintervals with constant mass: 

}2,...,2,1j],2j,2)1j[(:{ kkk
j =⋅⋅−θ=θ −− . 

 
Depending on the type of process, the )i(

jm may represent independent draws from a Binomial, 

Lognormal or any other distribution one considers useful in this context. The defining characteristic 
of these measures is their non-linear scaling of moments, i.e. 

 

(3)  ( ) 1)q(kq
j 2][E

+τ−=θ  

 
with τ(q) a non-linear function of q. Various scaling functions for different underlying 

distributions of the multipliers can be found in Calvet, Fisher and Mandelbrot (1997).  Defining 
1Hq)q( q −⋅=τ , we can highlight the key difference between uni-fractal and multi-fractal 

processes: for the former Hq is a constant and, hence, τ(q) is linear in q. For multi-fractal processes, 
on the contrary, the nonlinear shape of τ(q) implies non-constant Hq. It is this feature which makes 
the later formalism an attractive model of financial returns. In fact, variability of H over various 
powers has been found to be a pervasive feature of financial data. The first systematic inquiry into 
the behavior of various measures of long-term dependence with varying powers q has been 
contributed by Ding, Engle and Granger (1993) and their findings have been confirmed in a number 
of other studies recently (Lux, 1996; Mills, 1997). The consensus now is that this feature appears in 
virtually all financial prices (Anderson and Bollerslev, 1997; Lobato and Savin, 1998). It is 
noteworthy that, although the above authors did not refer to multi-fractality in their papers, they did 
already point to empirical regularities of the type depicted in eq. (3) that are consistent with the 
multi-fractal model. Their basic message is, therefore, very similar to that of the recent contributions 
by Fisher, Calvet and Mandelbrot (1997), Schmitt, Schertzer and Lovejoy (1999), and Calvet and 
Fisher (2001, 2002a, b). The progress made by the later papers is, however, to go beyond a 
description of stylized facts and to propose a new class of models that genuinely allows to capture 
these facts. 

 
The approach proposed by Calvet and Fisher (2002a) consists in interpreting the order of the 

subsets of a multi-fractal measure within the interval [0, 1] as an ordering along the time axis so that 
jθ  can be used as a transformation of homogenous clock-time or, in an equivalent interpretation, as 

the local volatility of the process governing stock price changes. It is immediately obvious that one 
important limitation of this approach is the finite support of the resulting compound process. 
Although one imposes a temporal order on the subintervals, the whole ‘time path’ is still obtained 
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(or simulated) in one act which leaves no room for predicting the likely future development after the 
end of the current cascade. Furthermore, with an underlying cascade extending over k steps, we 
have exactly 2k different subintervals at our disposal and, therefore, could lodge only time series 
which are no longer than that. It is not clear how one should proceed when reaching the end point T 
= 2k, since starting with a new cascade, for example, would amount to a structural break at T 
without any dependence between the parts of the time series before and after that point.4 This 
underscores the need for an iterative framework instead of the traditional combinatorial approach. 

 
Expanding on a recent proposal by Breymann et al. (2000) and a similar approach found in Calvet 

and Fisher (2001, 2002b), we replace the non-causal construction outlined above by an iterative 
mechanism that preserves its essential features. This approach conserves the hierarchical nature of 
the volatility process but allows for stochastic changes of its individual components over time. The 
volatility components, )i(

tm  at time t (chronological time t now replacing the ordering j within the 

unit interval), are, then, replaced over time by new multipliers with certain probabilities. To 
replicate the structure of a binary cascade, the probability of replacement would have to be: 

 
(4)  Prob (new )i(

tm ) = 2-(k-i) . 

 
This implies that the last multiplier would be replaced with probability Prob (new )k(m ) = 1 at 

each time step, while the first, i = 1, would be replaced with probability Prob(new )1(m ) = 2-(k-1). 

Keeping in line with the spirit of the original non-causal model, replacement of an element )p(
tm  

would also have the consequence of replacement of all subordinated multipliers p+1, p+2, …, k at t. 
This is in contrast to the approach of Calvet and Fisher (2002b) who assume independent 
replacement operations at all levels of the cascade. 

 
The construction of our iterative cascade process is illustrated in Fig. 1. The first and second 

panel exhibit the developments of the multipliers of levels 2 and 6. The basic difference with 
respect to the combinatorial models is that their renewal occurs in irregular intervals determined as 
random events. For example, in a simulation of the same length the second level multiplier would 
have exactly four different realizations of exactly equal duration in the framework of Calvet and 
Fisher (2002a), while here it has 5 realizations of very different duration. The third panel shows the 
overall volatility process resulting from the superimposition of all active multipliers, while the  
bottom panel exhibits the dynamics of returns as a compound process with an incremental Wiener 

                                                 
4 Muzy et al. (2001) construct an iterative ‘multi-fractal random walk’ assuming a finite depth of its 

underlying volatility cascade and extract the number of valid multipliers, k, from the ‘zero-crossing’ of the 
auto-correlation function of absolute returns. However, under ‘true’ long-memory, autocorrelations should 
remain positive over all lags. In any case, even if there were a finite correlation length, the ‘zero-crossing’ 
might be hard to identify due to the noisiness of the autocorrelation function at long lags. 
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Brownian motion sampled at unit time intervals. This illustration is, in fact, similar to Fig. 1 in 
Calvet and Fisher (2001) although the model presented there is based on a continuous-time Poisson 
process governing the  replacement of multipliers. In its discretized version, the later is equivalent to 
the process studied here.  

 
 Insert Fig. 1  about here 

 
As a consequence of our construction, on average 2k-1 adjacent time steps share the same 

multiplier at level 1, 2k-2 the same multiplier at level 2 etc. Note that in the non-causal binary 
cascade model, there are (with a process consisting of k iterations) exactly 2k-1 adjacent subintervals 
with the same multiplier at level 1, 2k-2 subintervals with the same multiplier at level 2 etc. The 
iterative process, therefore, preserves the average duration of hierarchical components but allows for 
stochastic fluctuations in their realized durations. Like in the standard model, many choices for the 
selection of the )i(

tm  are possible. For the sake of comparability, a particularly well-known model is 

chosen here, the Lognormal model. This means that when a new multiplier is needed at any level, it 
will be determined via a random draw from a Log-Normal distribution: 

 
(5)  ( )22)i(

t )2ln(s),2ln(LN~m λ− , 

 
where the normalization of the parameters of the Lognormal  distribution via multiplication by 

ln(2) stems form consideration of binary intervals in the combinatorial process. To facilitate 
comparison with earlier literature, we keep this convention in our causal setting. 

 
Note, that in (5), the scale parameter, s2, of the Lognormal distribution must be determined from 

the restriction5  E[M] = 0.5, which in the combinatorial model is necessary to preserve average mass 
of the interval [0, 1] during the evolution of the cascade, and, therefore, prevents nonstationarity of 
the multi-fractal cascade dynamics (explosion to infinity or collapse to zero upon addition of further 
volatility components). With this restriction, we can substitute )2ln(/)1(2s2 −λ= and the 

Lognormal volatility process therefore, boils down to a one-parameter model which is fully defined 
by the parameter λ. 

 
To see the similarity to the model analyzed in Mandelbrot, Calvet and Fisher (1997) and Calvet 

and Fisher (2002a), we compute the unconditional moments of the resulting process. Let us denote 
by µt the causal multi-fractal process: 

 

(6)  ∏
=

=µ
k

1i

)i(
tt m  

                                                 
5 Note that without such restriction E[M] = exp(-λ ln(2) + 0.5 s2 (ln(2))2) 



 9

 
with replacement rule (4). Its q-th moment is given by: 
 

(7)  ( ) ( ) 






=






=µ
⋅qk)i(

t
q)k(

t
)2(

t
)1(

t
q mEm...mmE][E
t

 

 
since all the )i(

tm  are independent. For the Log-normal model, this leads to: 

 
(8)  ( )( ))2ln()1(q)2ln(qkexp][E 2q

t
−λ+λ−=µ  

 
 which can be transformed into: 
 

(9)  ( ) 1)q(kq 2][E
t

+τ−=µ   with: 1)1(qq)q( 2 −−λ−λ=τ . 

 
Since τ(q) is the celebrated scaling function of the Log-Normal model for turbulence first 

proposed in Mandelbrot (1974), the behavior of unconditional moments is identical to that of the 
traditional combinatorial model. Since the unconditional moments of the resulting volatility model 
are not affected by our randomization of replacement times, we can apply the traditional ‘scaling 
estimator’ built upon this relationship to estimate the parameters of the causal model (cf. Calvet and 
Fisher, 2002a). However, we will see that this estimator has relatively large bias and root mean 
squared error in finite samples and is dominated by a GMM estimator to be introduced in section 4 
below. 

 
Using the iterative version of the multi-fractal model instead of its combinatorial predecessor in 

the process (1), and confining attention to unit time intervals, the resulting dynamics can also be 
seen as a particular version of a stochastic volatility model. Rescaling the volatility dynamics in a 
way to preserve a mean value equal to 1 of the cascade, we can write returns over unit time intervals 
as the product of local volatility and Normally distributed increments: 

 

(10)    t
k

1i

)i(
t

k
t um2x ⋅σ⋅= ∏

=
 , 

 
in which the factor 2k compensates for the mean value equal to 0.5 of the k multipliers, ut is a 

standard Normal random variate ut ~ N(0,1), and σ is the standard deviation of the incremental 
process. 
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3. Estimation of the Multi-Fractal Parameters: The Scaling Approach 
 
 
In the physics literature, multi-fractal behavior is usually identified via analysis of the so-called 

partition function S t q( , )∆  of a time series. Denoting by p(t) the logarithm of the asset price at time 

t, it summarizes the behavior of moments q of increments (returns) computed over various time 
horizons ∆t: 

 

 (11) S t q( , )∆  = { ( ) ( ) }
int[ / ]

p t t p t
t

T t q

+ −
=
� ∆

∆

1
∼  )q(tτ∆    

 
In the pertinent literature, the parameters of multi-fractal cascades are usually not estimated 

directly from the scaling function τ(q), but rather from its Legendre transformation: 
 
(12)  f(α) = 

q
q qarg min[ ( )]α τ− . 

 
The resulting function f(α) can be interpreted as the distribution of so-called local Hölder 

exponents α (which as a continuum of local scaling factors replaces the unique Hurst exponent of 
uni-fractal processes such as fractional Brownian motion). In the case of the Log-normal model, 
both the τ(q) and f(α) functions depend on one parameter, the location parameter λ of the 
Lognormal distribution ( ))2ln()1(2),2ln(LN −λλ−  from which the volatility components are 

drawn. The pertinent fractal spectrum is given by (cf Calvet and Fisher, 2001a): 
 

(13)    fµ(α) = 1 − −
−

( )
( )
α λ
λ

2

4 1
. 

 
 In estimating the multi-fractal spectrum of returns time series, we note that under the assumption 

of Brownian motion of price changes in transformed time the spectrum of the compound process 
x(t) = BH[θ(t)] is related to the spectrum of the multi-fractal time-transformation µ(t) in the 
following way (cf. Mandelbrot, Calvet and Fisher, 1997): 

 
(14)     )(fx α  = )H(f αµ  = )2/(f αµ . 

 
Fig. 2 illustrates the traditional method of estimating the key parameter λ of the multi-fractal model. 
One starts with the empirical partition functions S t q( , )∆  which are, then, used to estimate the 

scaling function τ(q) from regressions in log co-ordinates. The upper panel of Fig. 2 shows a 
selection of partition functions for some low (left-hand side) and higher moments (right-hand side) 
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for the German stock market index DAX.6 As can be observed, the empirical behavior is very close 
to the presumed linear shape for moments of small order, while the fluctuations around the 
regression line become more pronounced for higher powers. This is, however, to be expected as the 
influence of chance fluctuations is magnified with higher powers q. The resulting scaling function 
for moments in the range [-10, 20] is exhibited in the lower left panel of Fig. 2,7 For comparison, 
the broken line shows the behavior expected with Wiener Brownian motion, i.e. scaling according 
to q/2 - 1. There is a clear deviation from pure Brownian motion. The qualitative picture is the same 
found by Mandelbrot et al. as well as Schmitt, Schertzer and Lovejoy. Finally, the last step consists 
in computing the multi-fractal f(α) spectrum.  The lower right-hand panel of Fig. 2 is a visualization 
of the Legendre transformation. The spectrum is obtained by drawing lines of slope q and intercept -
τ(q) for various q. If the underlying data indeed exhibits multi-fractal properties, these lines would 
turn out to constitute the envelop of the distribution f(α). As can be seen, a convex envelope 
emerges from our scaling functions. It seems worthwhile to emphasize that this outcome is shared 
by all other studies available hitherto, which may suggest that such a shape of the spectrum is a 
robust feature of financial data.  

 
 
 Insert Fig. 2  about here 

 
 
For fitting the empirical spectrum by its theoretical counterpart, the inverted parabolic shape of the 
Lognormal cascade (13), we have to keep in mind, that the cascade model is used for the volatility 
or time deformation µ(t) and that the returns themselves result from the compound process B.5[µ(t)]. 
We, therefore, have to take into account the shift in the spectrum as detailed in eq. (14). In order to 
arrive at parameter estimates for λ, the common approach pursued in physical applications is to 
compute the best fit to (14) for the empirical spectrum using a least square criterion. To this end, we 
restrict our attention to the positively sloped, left-hand part of the spectrum. The reason is, that the 
right-hand arm is computed from partition functions with negative powers and is, therefore, strongly 
affected by chance fluctuations due to the Brownian process. In fact, performing experiments with 
synthetic data from multi-fractal processes, we find that the location of the downward sloping part is 
strongly biased and, even with a symmetrical theoretical spectrum, often shows the same skewness 
as our empirical spectra. As a consequence, a fit based on the left-hand arm alone seems preferable.8 
Empirical results from this procedure are exhibited below in Table 4.  

 

                                                 
6 Plots from the other three time series are almost identical. 
7 Negative moments are only shown for illustration, but are discarded in the ensuing statistical analyses. 
8It may be added that fits with both arms gave inferior results throughout and sometimes even led to 

violations of the restrictions of the underlying model. Note also that a bias towards skewness on the right 
implies also that our empirical f(α) shape does not necessarily speak against the symmetric shape implied 
by the Log-normal model. 
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The physics literature notes biases and other problems of the scaling method (cf. Ouillon and 
Sornette, 1996; and Veneziano et al., 1995),  but to our knowledge, no systematic inquiry into the 
reliability and performance of the resulting estimates is available. In order to arrive at an assessment  
of the quality of the estimates and, in particular, to be able to compare it with that of the upcoming 
GMM estimates, we performed Monte Carlo experiments with simulated data. For these 
experiments, the set-up was as follows: 1,000 replications were run for six values of λ ( running 
from 1.05 to 1.30 in increments of 0.05) and sample sizes T equal to 2,000, 5,000 and 10,000. Each 
data set has been obtained as a random subsample from a longer simulation run with 105 iterations 
and underlying k = 15. A visual comparison with the upcoming results for the GMM estimator is 
provided in Fig. 3. Detailed results are shown in Table 1. Because of the similarity of our results 
from different parameter values, we only provide data for three entries of λ: 1.1, 1.2, and 1.3. As 
can be seen, for all parameter values, the estimates of λ are positively biased, while the reduction of 
the RMSE is often much slower than T-1/2 (the more so, the higher the true parameter λ).  

 
 
 Insert Table 1 and 2 about here 
 
 
  4. GMM Estimation of Multi-Fractal Models  
 
 
Unfortunately, no results on the consistency and asymptotic distribution of the f(α) estimates 

seem to be available in the relevant literature. This approach also does not provide us with estimates 
of the standard deviation σ of the incremental Brownian motion nor of the number of steps k to be 
used in the cascade. The later omission is somewhat natural since the underlying physical models 
assume an infinite progression of the cascade which is also the reason for their initially scale free 
approach.  

 
Besides that, the τ(q) and f(α) fits also require judgmental selection of the number and location of 

steps used for the scaling estimates of the moments and the non-linear least-square fit of the 
spectrum. However, in principle, the fitting of the spectrum amounts to matching the moments of 
the theoretical process. This may lead to the question whether one could not resort to the 
methodology introduced under the heading of Generalized Methods of Moments by Hansen (1982). 
The advantage of this later approach consists in the availability of results on the asymptotic 
distribution of the estimates as well as the possibility of testing well specified null hypotheses. We 
will discuss shortly, under what conditions we are allowed to apply GMM for the estimation of the 
multi-fractal model. 
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In the GMM approach, the vector of parameter estimates of a model, say ϕ, is obtained as 
 
(15)  ),(fA)'(fminargˆ TTTT ϕϕ=ϕ

Ω∈ϕ

 

 
where Ω is the parameter space, fT(ϕ) is the vector of differences between sample moments and 

analytical moments, and AT is a positive definite and possibly random weighting matrix. Under 
‘suitable regularity conditions’, detailed, for example in Harris and Mátyás (1999), Tϕ̂  is consistent 

and asymptotically Normal with  
 

(16) ),0(N~)ˆ(T 0T
2/1 Ξϕ−ϕ ,  with covariance matrix 1

T
1

T )FV'F( T
−−=Ξ  

 
and ϕ0 the true parameter vector, )ˆ(fvarTV̂ TT

1
T ϕ=−  the covariance matrix of the moment 

conditions, 
'

)(f)(F T
T ϕ∂

ϕ∂=ϕ  the matrix of first derivatives of the moment functions, and TV and 

TF  the constant limiting matrices to which TV̂  and FT converge. Knowledge about this asymptotic 

distribution can be used to construct a test of the null hypothesis that the model is the true data-
generating process. With the number of moment conditions  (say q) exceeding the number of model 
parameters (say p), we can test the model using Hansen’s statistic: ),ˆ(fÂ)'ˆ(fTJ TTTT ϕϕ⋅= which 

under the null hypothesis can be shown to converge to a χ2 distribution with q-p degrees of 
freedom. 

 
Now turn to the question of applicability of the GMM procedure. For models incorporating long-
term dependence, applicability of the ‘usual regularity conditions’ of GMM and other estimators is 
often questionable or simply not known. In fact, to the best of our knowledge, no rigorous proof of 
applicability of GMM to stochastic volatility models (even without the long-memory feature) has 
been provided in the literature so far.9 To see what kind of difficulties one encounters in the present 
framework, consider the following sets of conditions for consistency and asymptotic Normality of 
GMM estimators (cf. Harris and Mátyás, 1999). First, weak consistency can be shown to hold if: (i) 

)](f[E T ϕ  exists for all ϕ and is finite, (ii) there exists a ϕ0 such that )](f[E T ϕ  = 0 if and only if ϕ = 

ϕ0, (iii) the difference between average sample and population moments uniformly converges to 
zero in probability (i.e., fT(ϕ) satisfies a weak law of large numbers), and (iv) the sequence of 
(random) weighting matrices converges in probability to a constant matrix TA . For strong 
consistency, the assumed convergence in probability in (iii) and (iv) would have to be replaced by 
convergence almost surely. Furthermore, asymptotic Normality requires the following additional or 
sharper conditions: (v) fT(ϕ) needs to be continuously differentiable, (vi) the matrix of first 

                                                 
9 Melino and Turnbull (1990) note difficulties in evoking the usual large sample limit.  
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derivatives )(FT ϕ should converge to a constant matrix TF  for ϕ → ϕ0, and (vii) fT(ϕ) now needs 

to satisfy a central limit theorem (cf. Harris and Mátyás, 1999). 
 
Immediate problems may arise with (vii) and (iv): first, given the genuine long-memory features of 
the process under consideration, the moment functions will probably not satisfy a central limit law. 
In fact, whether or not a central limit law holds depends on the degree of dependence (cf. Beran, 
1994, c. 3). Unfortunately, the estimated parameters for the long-term dependence in, for example, 
absolute returns usually fall into the range of non-applicability of these central limit laws. If that is 
true, the usual estimators for the covariance matrix VT do also not fall into the classes for which 
consistency is guaranteed and will possibly not converge to a constant limiting matrix. One may 
circumvent this problem by resorting to other choices of the weighting matrix, e.g. a constant 
matrix, in order to guarantee consistency. However, abandoning the usual weighting according to 
the precision of the individual entry in the vector of moment conditions would greatly reduce the 
intuitive appeal of GMM. 
 
A possible way out of this dilemma is provided by differencing the data. As shown in the technical 
Appendix, log differences of either the multi-fractal process itself or the compound process for 
(absolute) returns yield a stationary stochastic process which definitely has no long memory. As is 
shown in the Appendix, this process, in fact, only has non-zero autocovariances at the first lag. For 
our GMM estimation approach, we, therefore, select moments of the transformed process:10 
 
(17)   TttT,t xlnxln −−=ξ . 

 
From (10), this transformation amounts to: 
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With all the entries on the right-hand side stemming from random Normal variates drawn at times t 
and t-T, it is almost obvious that this is a particularly harmless process which should be 
unproblematic in terms of the regularity conditions of GMM. One drawback (similar to the f(α) 
methodology) is that this transformation only allows to estimate the parameter λ of the Lognormal 
                                                 
10 In an earlier version of the paper, moments of raw differences instead of log differences have been used 

for GMM estimation. However, closer inspection showed that this transformation did still preserve the 
long-memory property of the multi-fractal model. Similar moment conditions have also been used for SMS 
(simulated method of moment) estimation in Calvet and Fisher (2002b). 
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distribution while the standard deviation from the Normally distributed increments drops out when 
computing log differences, and the depth of the cascade, k, as a discrete parameter is not amenable 
to GMM estimation anyway. Nevertheless, as shown in our simulation, this approach provides a 
tremendous reduction of bias and root mean squared error so that it seems worthwhile to pursue this 
avenue. In practical applications, the standard deviation of the time series can be used as an estimate 
of σ. As concerns the number of multipliers, k, we will try to extract a rough estimate from a chain 
of GMM estimates for λ as detailed below. 
 
Our choice of moment conditions tries to exploit the scaling properties of the multi-fractal 
processes. Like the original scaling estimator, our alternative GMM estimator, therefore, uses 
information over various time horizons, albeit for the log differenced process instead of the original 
one. In particular, we select covariances of the powers of ξt,T, i.e., moments of the following type: 
 
(19)  ][E)q,T(M q

Tt,
q

TT,t ξ⋅ξ= +   for different T and q = 1,2. 

 
Analytical expressions for all the relevant moments are to be found in the Technical Appendix. In 
order to assess the quality of the GMM estimates, we performed a chain of Monte Carlo simulations 
using lags T = 1,5,10, and 20. We started with a set of two moment equations, M(T=1,q=1) and 
M(T=1,q=2), i.e. autocovariances of the absolute and squared values of log differences computed 
over one lag. In order to see the influence of the number of moment conditions, we have 
subsequently enlarged the set of moments by including M(T=5,q=1) and M(T=5,q=2) when using 
four moments, M(T=10,q=1) and M(T=10,q=2) when using six moments, and finally, M(T=20,q=1) 
and M(T=20,q=2) when using eight moments. 
 

Now turn to the results of our Monte Carlo simulations. The design of our experiments is as 
follows: we have again chosen three sample sizes: T = 2,000, 5,000, and 10,000 in all cases. Each 
sample is again generated as a randomly drawn subsample from a longer simulation with k = 15 
(with a length of 105 observations). As with the f(α) Monte Carlo experiments, the parameter λ was 
allowed to vary from 1.05 to 1.30 using increments of size 0.05. Again, we only show the cases λ = 
1.2, 1.2, and 1.3 in Table 2 since behavior of the other cases is almost identical. Note that increasing 
the parameter λ amounts to generating more pronounced bursts of volatility. As is routinely done in 
the literature, we computed the optimal weighting matrix from the covariance matrix for which we 
applied the Newey-West autocorrelation and heteroskedasticity consistent estimator (which should 
be a consistent estimator for the covariance matrix of the moments of the transformed process). 
Furthermore, we used the iterative GMM in which a new weighting matrix is computed and the 
whole estimation process repeated until one gets convergence of both the estimates and the 
weighting matrix (cf. Hansen, Heaton and Yaron, 1996). 
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 As it turned out, results were almost identical over parameter values in terms of biases and root 
mean-squared errors. At most, one recovers a very slight tendency towards increasing RMSEs with 
higher λ. Furthermore, we found a continuous reduction of both the bias and the mean-squared error 
when increasing the number of moment conditions, albeit with a decreasing rate of return in terms 
of relative improvement per added moment. Hence, at least from our chosen set of up to eight 
moments, there seems to be no reason for restricting the number of moment conditions to be used in 
GMM estimation. This is in contrast to the results on GMM estimation of the stochastic volatility 
model, for which it has been shown by Andersen and Sørensen (1996) that using too many moment 
conditions leads to deterioration of the results.11  
 
Unfortunately, the results with respect to the p-values of Hansen’s test of overidentifying 
restrictions were rather disappointing (cf. Table 3). In particular, over all sampling horizons, 
parameter values, and moment conditions, a pronounced skewness on the left-hand side of the 
distributions of p-values was found. Closer inspection of the histograms, in fact, reveals, that the 
largest deviation from the expected Chi-square distribution always occurs in the leftmost ten or so 
percent of the data, while the remainder of the distribution is rather well-behaved. It, therefore, 
seems that with respect to Hansen’s test, asymptotic theory does not provide a good guidance for 
samples as large as 10,000 data points. One of the reasons for this poor behavior might be the 
influence of the borderline solution  λ = 1 at which the iterative GMM typically stops and fails to 
reinject the parameter estimates into the sensible region λ > 1 
 
 

Insert Fig. 3 about here. 
 
 

In summary, our Monte Carlo experiments suggest the following conclusions: 
 
(i) GMM by far outperforms the f(α) methodology in all cases. First, while the f(α) estimates 

have a large bias for all parameter values and sample sizes, the GMM estimates are 
essentially unbiased even with small sample size and few moments to match. Second, the 
RMSE of GMM estimates is also always smaller than that of the f(α) estimates at all sample 
sizes. When using only two moments, the RMSE can already  be reduced by about 30 to 50 
percent with GMM compared to that of the scaling estimator.  When using more than two 
moment conditions, the ratio of the RMSEs becomes even higher. In the case of eight 

                                                 
11 Results of our earlier analysis of moments of raw differences were different in many respects: (i) similar 

to the f(α) estimates, the former GMM estimates of λ had large biases which were increasing in the 
underlying true parameter value, (ii) there was definitely no indication of T1/2 consistency, (iii) RMSEs 
were smaller (larger) than the present ones for small (large) λ, (iv) best results were found with only few 
moment conditions with results deteriorating with an increase of the number of moments (similar to the 
findings of Andersen and Sørensen for stochastic volatility models) 
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moments, the RMSE of the GMM estimates is only of the order of 10 percent or less of that 
of the scaling estimator. It is worth emphasizing that this occurs despite the use of even more 
information in the f(α) approach since the later estimate is based on a much higher number of 
scaling laws for various powers q. Note also that GMM with eight conditions is still by far 
faster than the scaling approach.  

(ii) The decrease in RMSE  with sample size for the Binomial model is in good overall 
harmony with T1/2 consistency: proceeding from 10,000 to 5,000 and further to 2,000 
observations, the root mean-squared error, in fact, increases roughly with factors of about 2  
and 5.2 , respectively. Reduction of the (generally much larger) RMSEs from f(α) often 
occurs more slowly (particularly so for high values of the parameter λ).  

(iii) Turning to the distribution of p-values, we found that in all our scenarios, the GMM 
estimators suffer from skewness on the left-hand side (i.e., too many rejections of the null 
hypothesis). However, in contrast to the findings of Andersen and Sørensen (1996) for 
stochastic volatility models,  there seems to be no trade-off between the preferred number of 
moments for RMSE  (small) and specification tests (somewhat larger) in our setting. 

(iv) It also seems worth noting that in contrast to the case of stochastic volatility models, 
problems of non-convergence of the estimates were altogether absent in the present setting. 
On the contrary, it could be observed that the iterative GMM procedure very reliably 
converged to the same set of estimates with different choices of initial conditions. For 
extreme initial conditions, the number of iterations sometimes became relatively large (> 10) 
before the process eventually found its way to the apparent global minimum. 

 
 
5. Parameter Estimation and Forecasting of Volatility 
 
 
Equipped with these encouraging findings we proceed to empirical applications. Our empirical 

analysis uses data from four different financial markets: the New York Stock Exchange Composite 
Index, the German share price index DAX, the U.S. $-Deutsche Mark exchange rate and the price of 
gold. The stock market series were obtained from the New York and Frankfurt Stock Exchanges, 
the exchange rate and precious metal series were obtained from the financial database at the 
University of Bonn. Our sample covers twenty years starting on 1 January 1979 and ending on 31 
December 1998. For in-sample estimates we use the years 1979 to 1996 and leave the two 
remaining years for out-of-sample forecasts of volatility. This gives a number of in-sample 
observations of about 4,400 and 500 out-of-sample entries (with slight variations of the numbers 
between markets depending on the number of active days). 

 
Following the results of the Monte Carlo simulations, we attempt to estimate the parameter λ 

from the largest set of eight moment conditions after demeaning the data and filtering out linear 
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dependence. In estimating the multi-fractal model with empirical data, the question of appropriate 
selection of the depth of the cascade, i.e. the number k of multipliers, emerges. Of course, one 
would like to have some data-driven selection of k. Since multi-fractal processes with varying k can 
be viewed as nested alternatives, the following procedure seems a natural choice: estimate λ with 
varying k and record the value of Hansen’s statistic )ˆ(fÂ)'ˆ(fTJ TTTT ϕϕ⋅= . From this chain of 

estimates, choose the one with the minimum JT which apparently seems to provide the best fit of the 
underlying moments. Unfortunately, Monte Carlo simulations indicate that this algorithm would not 
work properly. We tried this method with ‘true’ k’s ranging from 4 to 14, a data size of T = 5000, 
and 500 replications for each k. ‘Estimation’ was done in each trial with k ranging from 1 to 20. 
Unfortunately, the JT minimizing choice showed no correlation at all with the ‘true’ parameter k but 
was strongly attracted towards the extreme ends of the admissible spectrum. In all cases considered  
we found a concentration at small values (k ≤ 3, accounting for about sixty percent of all 
experiments independent of true k) and at k = 20 (about twenty percent). Another chain of Monte 
Carlo experiments was carried out with different ‘true’ k’s (k = 1,2,3,5,10,15,20) and ‘assumed’ k’s 
used in estimating λ (the same values were used for the hypothesized number of multipliers). 
Combining all ‘true’ and ‘assumed’ k’s we found that the J test has very limited power against these 
closely related alternatives for sample size like those used in our empirical application. 

 
Since we found no indication of revelation of the true k with this approach, we resorted to 

heuristically  choosing k from a chain of GMM estimates (again ranging from k = 1 to 20) as the 
value from which onward the estimated λ practically remains constant. In fact, we typically found 
large variations of λ when initially increasing the number of cascade steps starting at k = 1, but after 
a number of steps, the outcome of the estimation did remain practically unchanged with addition of 
cascade branches. This could be taken as an indication of the number of relevant steps the algorithm 
could find in the data, and so we have chosen to select k as that value at which the estimated λ did 
not change by more than 0.001 compared to its value at k-1. Of course, one could imagine that the 
underlying process has a much larger number of volatility branches, but due to the limited size of 
the available time series, most of the higher multipliers are constant so that their influence remains 
invisible. However, in such a situation, it would probably be useful to only rely on the number of 
multipliers whose influence can be detected in the data when, for example, trying to forecast 
volatility. Luckily, misspecification of the model in the sense e of using the wrong number of 
cascade steps, seems to be relatively harmless within a rather large range of choices for k. This can 
be seen in another Monte Carlo experiment whose results are shown in Table 3. Similarly like in 
Tables 1 and 2, the underlying data are generated from a model with ‘true’ k = 15, but now λ has 
been estimated under the assumptions of k = 5, 10, and 20. As can be seen, the misspecifications k = 
10 and k = 20 do almost no harm to the resulting estimates we have generated. Ironically, the 
misspecified model with k = 20 even comes out marginally better with λ = 1.1 and 1.2 than the true 
model.  For the very different k = 5, the RMSE with eight moment conditions is in the range of what 
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one gets from the true model with two or four moments. However, both the bias and mean squared 
error are still much smaller than those of the scaling method.12 

 
Insert Table 3 about here 
 
These results seem encouraging enough to proceed with empirical estimation whose results are 

given in Table 4 together with the estimates produced from the f(α) estimator. 
 
With the scaling estimator, results show quite some variation ranging from a very low value of 

1.02 for the U.S. $-DEM exchange rate to the high 1.57 obtained for the NYSE index. Admittedly, 
our estimates are obtained by mechanical implementation of the scaling estimator based on (11) to 
(14) with a fixed number of moments and time steps used. In physical applications, typically much 
emphasis is laid on checking the visual appearance of the scaling behavior. However, while the 
visual appearance as illustrated in Fig. 1 seems in harmony with what one expects, different set-ups, 
in fact, sometimes lead to wide variations of the results. Comparison with the estimates obtained by 
Calvet and Fisher (1997) for the Lognormal model with the DM/U.S.$ exchange rate shows quite 
big a gap between our λ = 1.016 and their estimate of 1.09 for the case H = 0.5. The sources of this 
remarkable differences could only be recovered by a re-investigation of their data set. However, the 
large root mean-squared errors that we get in our Monte Carlo simulations for the estimates of the 
multipliers from the f(α) method may provide a partial explanation of the differences. 

 
 With the GMM approach, a certain difficulty was encountered with the German stock index 

DAX for which at all k, the iterative GMM with eight moment conditions converged to an estimate 
of λ̂  = 1. We conjecture that this is one of the cases where the GMM fails to reinject the estimate 
into the sensible parameter region after it had hit the lower boundary. In order to be able to report an 
estimate different form the degenerate and useless λ̂  = 1 for this case as well13, we used two 
different approaches: first, we reduced the number of moment conditions until we eventually 
obtained convergence to some λ̂  > 1 with only two moment conditions left, second, we also report 
results obtained with a weighting matrix equal to the identity matrix (since this is not really a GMM 
estimation, the reported objective function is relatively large in the later case).  

 
Comparing the numerical estimates obtained from the scaling and GMM estimator, we find that 

they differ more for the stock indices, but are relatively similar for the exchange rate and the price of 

                                                 
12 Interestingly, for this grossly misspecified model, RMSE also declines much slower than T1/2, while for k 

= 10 and k = 20, T1/2 consistency is nicely preserved. Note that we also checked for the influence of the 
choice of k (and pertinent estimate of λ) in our forecasting exercise reported below. Results paralleled 
those exhibited in Fig. 3 in that practically no differences in MSEs were obtained for alternative k’s in the 
vicinity of the original choice 

13 Note that according to eq. (10), λ = 1 effectively implies that returns are drawn from a standard Normal 
distribution. 
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gold. Remarkably, Hansen’s test is not able to reject the multi-fractal model as the underlying data 
generating process for any of our time series (except for the case of the identity matrix as the 
‘weighting’ matrix used for the DAX) at any conventional level of significance! This good fit is the 
more remarkable as we have seen that the test of overidentifying restrictions produces a large 
number of false rejections of the null in Monte Carlo simulations. It shows that the MF model 
provides a reasonable fit of the chosen moment conditions. It is interesting to note, that Lux (2001) 
was also unable to reject the MF model in tests of the Kolmogorov-Smirnov type for identity of the 
hypothesized unconditional distribution from the combinatorial MF model and the empirical 
distribution, for the same underlying time series. Comparing the results with those obtained from 
the standard GARCH(1,1) model and a GARCH model with Student-t innovations, he also found 
the MF model to dominate in terms of the Kolmogorov-Smirnov distance.  

 
 
 Insert Table 4 about here 
 

 
6. Forecasting Volatility: A Competition between MF, GARCH, FIGARCH and Historical 

Volatility 
 
 
According to the above results, the multi-fractal model appears capable of producing good fits to 

both the unconditional distribution and the conditional moments of empirical data.14 However, 
estimating the parameters of a new model alone does not proof that it might be a useful addition to 
the existing tool-box of empirical finance. Since the main motivation of the multi-fractal model is to 
capture the supposed hierarchical structure of the volatility dynamics, one of its contributions 
should be an improved ability to forecast financial volatility. In order to see how our estimates 
perform on this task, we have carried out a competition between forecasts of volatility derived from 
the Lognormal multi-fractal model with a number of well-known alternatives. Given that one of the 
virtues of the multi-fractal model is incorporation of long memory in various powers of returns, we 
found that we should test its forecasting performance over relatively long time horizons. Like many 
forecasting competitions, we start with 1 day and 5 day forecasts, but then proceed via 10 day 
increments to forecasts up to 100 periods ahead. 

 
 The competitors of our multi-fractal forecasts are (1) the naïve forecasts formed on the base of 

historical volatility, (2) forecasts computed from the standard GARCH(1,1) model and (3) forecasts 
derived from the FIGARCH(1,d,1) model first proposed by Baillie et al. (1996). Inclusion of the 
later seems sensible since it also has built-in long memory of volatility and, therefore, should be the 

                                                 
14 Of course, it remains to be shown whether estimates produced from different sets of moments are in 

harmony with each other. 
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main rival of the new multi-fractal model. While the derivation of efficient forecasts from GARCH 
and FIGARCH models is well-known, it is not clear how to construct efficient predictors from the 
new multi-fractal model. In principle, one would like to identify the ruling multipliers within the 
observable realizations of the process (in fact, identification of the multipliers within the last 
available entry of the time series would be sufficient), and from this knowledge, could probably 
compute most efficient forecasts on the base of expected future replacements of individual volatility 
components. Unfortunately, this identification problem (known as the inverse multi-fractal problem 
in physics) is still unsolved for the combinatorial models. Of course, our approach also provides no 
solution to this problem for the more complicated causal structures analyzed here. What one can do, 
however, is deriving forecasts based on best linear predictors for the multi-fractal model. The later 
only need analytical solutions for the autocovariances of 2

tx  which are provided in the Technical 

Appendix.  
 
With this information, forecasts of future volatility can be computed following the standard 

approach for best linear forecasts outlined, for example, in Brockwell and Davis (1991, c.3). 
Assuming that the data under scrutinity follow a stationary process { Xt  } with mean zero, h-step 
forecasts are obtained as: 

 

(19)   n
)h(

ni1n
n

1i

)h(
hn XX̂

ni
Xφ ⋅=⋅φ= −+

=
+ ∑  

 
with the vector of weights )',...,,( nn2n1n

)h(
n φφφ=φ  being any solution of )h(

n
)h(

nn γφΓ = , 

))'1hn(),...,1h(),h(()h(
n −+γ+γγ=γ  being the autocovariances for the data generating process of Xt 

at lags h and beyond, and n,...,1j,in )]ji([ =−γ=Γ the pertinent variance-covariance matrix. It is well 

known, that this is the best linear estimator under the criterion of minimization of mean squared 
error. It is also known that for long-memory processes, one should use as much information as 
available, i.e., the vector Xn should contain all past realizations of the process under study. In our 
application, the realizations Xt are given by: 
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with σ̂  the standard deviation of the time series which as an elementary estimate for the standard 

deviation of the incremental process enters besides our above estimates of λ and k.  Note that the 
HV predictor can be interpreted as a special case of (19) and (20) which emerges if weights of all 
past observations are identical equal to zero and, hence, one assumes absence of temporal 
dependency in the volatility dynamics. The computational burden of these predictors is immensely 
reduced by using the generalized Levinson-Durbin algorithm developed in Brockwell and Dahlhaus 
(2002, particularly their algorithm 6).  
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GARCH and FIGARCH estimates are obtained on the base of (quasi-) maximum likelihood 

estimates of the parameters of the following standard fomalizations: 
 
(21)   tt1tt hxx ε+⋅ρ+µ= −  with εt ∼  N(0, 1) 

 
and 
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for the GARCH(1,1) and FIGARCH(1,d,1) specification of the volatility dynamics, respectively. 

In GARCH and FIGARCH estimation, we have also demeaned the raw data and removed linear 
dependence (through eq. 21) as we did when developing the MF and HV forecasts. 

 
With respect to the FIGARCH model, we should note that the underlying concept and 

implementation has been extensively discussed in recent literature (cf. Chung, 2002; Zumbach, 
2002). Despite certain recently emphasized ambiguities of their parameterization, we stick to the 
original framework of Baillie et al. in our empirical implementation. With respect to the infinite 
number of lags incorporated in the fractional difference we followed most of the available literature 
by using a truncation lag of 1000 past observations in both estimation and forecasting (together with 
1000 presample values set equal to the variance of the in-sample observations). Alternatively, we 
also tried estimation and forecasting using  all available past data (again with 1000 presample 
observations), but results were practically identical. 

 
Before considering the results of our competition in detail, a short review of available empirical 

evidence on the forecasting performance of long-memory processes is in order.  To our great 
surprise, despite the immense literature on volatility forecasting (surveyed recently by Poon and 
Granger, 2003), entries comparing the forecasts from FIGARCH and more traditional GARCH 
models are extremely scarce and those available do not yield a clear indication for the long-memory 
variant to provide an advantage in this respect. Basically, only two papers with a direct comparison 
of FIGARCH and GARCH seem to be available at present: Vilasuso (2002) and Zumbach (2002), 
both considering forecasting of volatility in foreign exchange markets. While Vilasuso uses daily 
data of five currencies against the U.S. dollar, Zumbach’s data base consists of intra-daily variations 
of the Swiss Franc against the U.S. dollar. The later finds, that the original FIGARCH model as well 
as a variety of closely related specifications of long-memory models have a higher log-likelihood 
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than the basic GARCH(1,1) model, but provide only very modest gains in forecasting daily 
volatility on the order of 1 to 2 percent of MSE. Vilasuso, on the other hand, does not report figures 
for model selection criteria, but notes relatively large reductions of both mean squared error and 
mean absolute errors for all currencies over forecasting horizons of 1,5, and 10 days. The advantage 
of FIGARCH versus GARCH (as well as EGARCH) reported in this paper increases with 
forecasting horizon with the difference ranging between 8 and 37 percent at the 10 day horizon. To 
date, this study appears to be the only entry in the literature reporting a clear advantage of the  
FIGARCH model over simpler specifications (however, we were unable to replicate his results for 
the U.S. Dollar-DEM exchange rate). Another interesting comparison in our context is that by 
Calvet and Fisher (2002b) between GARCH, Markov-Switching GARCH and one variant of a 
causal multi-fractal model  They find, that their Binomial model mostly dominates GARCH and 
MS-GARCH in terms of AIC and BIC model selection criteria  (data are again daily returns of four 
currencies against the U.S. dollar). However, when it comes to forecasting at daily horizons, it 
mostly does marginally worse than GARCH(1,1). 

 
Under the light of the above review of similar literature, our ensuing results should be of interest 

under a variety of aspects: first, what evidence exists concerning the case of GARCH versus 
FIGARCH (or, more generally, short-memory vs. long-memory models), is limited to foreign 
exchange markets so that the analysis of stock and precious metal markets would give us some clue 
on whether the above results are typical or not. Second, evidence concerning the performance of 
multi-fractal models versus GARCH is confined to the recent entry by Calvet and Fisher (2002b), 
while it is non-existing for the MF versus FIGARCH case. The later, should, however, be 
particularly interesting since both models share the long-memory property observed in empirical 
data. Third, we also do have only comparative evidence on forecasting competitions for relatively 
small horizons (mostly one day comparisons). However, from their very construction, long-memory 
models should be able to play out their advantages more clearly over longer time horizons. To see 
whether they have any use, it would, therefore, be of relevance to compare their forecasting 
performance for long horizons with that of short-memory (GARCH) or no-memory (HV) 
approaches. 

 
With this background, turn to the results of our comparison. GARCH and FIGARCH estimates 

are given in Table A1 in the Appendix. We see that AIC and BIC selection criteria prefer 
FIGARCH for both stock indices as well as the price of gold, while for the exchange rate, GARCH 
seems more appropriate. A particularly interesting case, is, however, that of gold. For this time 
series, we actually could find two maxima of the FIGARCH log-likelihood: one global maximum at 
a corner solution with d = 0.999 (i.e. practically identical to an EGARCH specification) which 
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dominates an interior local maximum with d = 0.41.15 In our forecasting experiments, we report 
results from both specifications. 

 
The forecasting results are conveniently summarized graphically in Figs. 4 a to d. for the mean 

squared errors obtained for the four (five) models over forecasting horizons ranging from 1 day to 
100 days. Results for absolute errors are qualitatively similar so that we dispense with a detailed 
consideration of this quantity here.16 Starting with the NYSE composite index, we find a mixed 
picture: while FIGARCH and MF seem to dominate over GARCH and HV over short horizons. 
However, from about 30 days onward, HV comes in best followed by MF, GARCH, and 
FIGARCH, although differences appear to be negligible. The picture is only slightly different for the 
second stock index, the German DAX: here the time series models have also almost 
indistinguishable performance, but are uniformly somewhat better than historical volatility. 

 
 More interesting differences appear with the two remaining series: For the U.S. dollar-DEM 

exchange rate, the MF seems to dominate over all time horizons with the gap between its forecasts 
and those of all alternative models continuously increasing with forecasting horizon. Second comes 
FIGARCH which in turn is by far better than GARCH at long horizons (although the simpler 
GARCH would have been favored by model selection criteria). HV first provides the weakest 
forecasts, but from a horizon of about 30 days, dominates GARCH and eventually also gets a slight 
advantage against FIGARCH at the 100 day horizon. If we look at some of the details, we see that 
initially all the time series models have very similar MSEs which provide an improvement against 
HV of about 11 percent. However, while the advantage of GARCH is fading away quite quickly, 
FIGARCH and particularly MF manage to keep a certain advantage against HV for rather long 
forecasting horizons. In the case of MF, the difference is declining very slowly and stays in the 
range between 5 and 6 percent for all time horizons between 20 and 100 days. Taking into account, 
that HV uses the same estimate of the unconditional variance, this advantage has to be attributed to 
a successful  extraction of long-memory features.17 

 

                                                 
15 Parameter estimation was carried out under the restriction 0 < d ≤ 0.999, and repeated ten times with 

different starting values. Except for gold, we found only apparently unique maxima. 
16 We also computed R2’s from regression of actual volatility on its various forecasts. As it turned out, 

results were almost uncorrelated with the very clear picture that emerged from comparisons of MSE and 
MAE. Inspection suggests that the obvious violation of the linear model invalidates any inference drawn 
from this popular measure of forecasting accuracy. 

17 It should also be mentioned, however, that we were unable to replicate the dramatic reductions of MSE 
and AME from the FIGARCH model against GARCH at 1, 5, and 10 day horizons reported for the same 
data by Vilasuso (2002). Note that we have chosen exactly the same in-sample and out-of-sample periods. 
Although our time series is from a different source, we would not expect this to exert such a large 
influence on empirical results. One difference in specification is that Vilasuso only uses a truncation lag of 
250 past observations. We have repeated our exercise with this choice. What we found was, on the one 
hand, parameter estimates closer to the ones reported in his study, but, on the other hand, no change in 
forecasting quality. 
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 The case of gold also speaks in favor of the value added by long-memory models albeit with 
some differences in its details. First, the dominant FIGARCH1 specification performs very poorly 
and is the worst of all time series models considered, while the local maximum of FIGARCH2 is 
head to head with (and, in fact, slightly better than)  MF. Both are again much better than GARCH 
and HV. Here, the use of time series models in fact, leads to dramatic reductions of MSE against the 
naïve HV model. Initially, at the 1 day horizon, all models have MSEs as small as about 37 percent 
of that of HV. Although some of the advantage is melting away with higher time horizons, at lag 
100 we still have 8 percent difference between GARCH and HV and as much as 40 and 45 percent 
difference between MF and FIGARCH2, and HV, respectively. Again, this is  a clear indication of 
the potential usefulness of long-memory models for long-term volatility predictions.18 

 
Our results for the exchange rate and the price of gold underscore the value of long memory 

models for volatility predictions. Although it seems very natural that these models should play out 
their advantage at relatively long forecasting horizons, little supporting evidence had been brought 
forward for this conjecture in the available literature so far. The failure of both FIGARCH and MF 
to improve on the forecasting accurateness of GARCH and HV for the two stock market indices 
calls for more comparative research along the previous lines. The striking difference in the results is 
the more puzzling since the huge body of time series literature on volatility models did find only 
minor differences in the volatility dynamics of stock markets and foreign exchange markets. One 
potential reason for the lack of improvement for the NYSE and DAX indices might be a structural 
break occurring near the beginning of our out-of-sample period. In fact, volatility has increased 
dramatically for both markets in 1997/98 while it remained much closer to earlier periods for the 
exchange rate and for gold (this difference in out-of-sample periods can already be seen in the 
behavior of HV in Figs. 4a. – d.).  

 
As concerns the multi-fractal model as the main focus of this paper, we see that in those cases 

where we find any remarkable differences in forecasting performance at all, its forecasts come out 
very favorably. It dominates all other forecasts over long horizons for the U.S.$-DEM, and is only 
slight worse than FIGARCH2 for gold (however note that the later would have been discarded in 
favor of the poorly performing FIGARCH1 when selecting according to information criteria). This 
outcome seems the more promising taking into account, that for GARCH and FIGARCH we have 
used the most efficient forecasts under these data generating processes, while we have used only 

                                                 
18 One might ask, how the estimates obtained from the scaling estimator would have performed when used 

for forecasting future volatility. Somewhat ironically, results are not much different from those obtained 
with the GMM estimates. This similarity may have different sources: in the case of the stock markets, 
MSEs are apparently dominated by the increase in volatility in 1997/98 which all methods have 
difficulties to cope with. Hence, another MF estimator adds another time series model which is similarly 
insufficient to make any gain compared to its competitors. In the case of the exchange rate and the price of 
gold, the particular parameter estimates are not too different between the scaling estimator and GMM, so 
that forecasts are rather similar. 
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best linear forecasts for MF. There seems, thus, even scope for improvements on the performance of 
the new MF model. 

 
 
 Insert Fig. 4 about here 
 
 
7. Conclusion 
 
This paper has been concerned with estimation of a particular causal variant of the recently 

proposed new multi-fractal model for financial returns and its application in forecasting future 
volatility. From their very construction, multi-fractal processes account for the pervasive finding of 
long-memory effects in volatility. They also capture a broader spectrum of dependence structures 
than models of the uni-fractal type in that different degrees of auto-correlation in various powers of 
returns can be explained within these models.  

 
One of the contributions of this paper consisted in the development of consistent GMM 

estimators for the key parameter characterizing the underlying distribution of the multipliers.  It 
could be shown that this estimator had much better small sample properties than the traditional 
scaling method adopted from statistical physics. It should be straightforward to develop similar 
GMM estimators for various alternative multi-fractal models, e.g., the Binomial and Log-Levy types 
discussed in the literature. Our estimation method still shares one of the drawbacks of the scaling 
method: it does not deliver a GMM estimate of the number of cascade steps together with the 
distributional parameter. In order to complement our estimated parameter set, we, therefore, had to 
resort to a more heuristic approach for an assessment of the relevant number of multiplies. 
However, Monte Carlo simulations have also shown that misspecification within a certain range of 
the model at this end seems to do be rather harmless.  

 
Equipped with these results, we have estimated multi-fractal parameters for four important 

financial time series and used these estimates in out-of-sample forecasting of volatility over various 
time horizons.  Although results were not uniform, they indicate a certain potential of improvement 
over no-memory (HV) and short-memory (GARCH) approaches. While results for the U.S. and 
German stock market do not indicate a clear advantage of any of the four forecasts, for the U.S.$-
DEM and gold price, we can see a clear advantage of long-memory models. Furthermore, at least in 
one case, MF has the lead against FIGARCH. As an interesting additional insight, our results also 
indicate that model choice according to standard information criteria does not necessarily favor 
those models which provide the best forecasting performance. Note that if we would have only 
chosen the preferred member of the (FI)GARCH family as the rivals of the MF model, we could 
have reported a much clearer advantage for the later.  
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Our results underscore that the new family of hierarchical volatility models of the multi-fractal 

type should be a useful addition to the tool-box of financial economists. The early stage of research 
on these models suggests a number of avenues for future work: many alternative multi-fractal 
models with different numbers of states, different distributions of the volatility components and 
different marginal distributions could be explored along the above lines. Furthermore, one would 
like to see whether forecasting performance could be further improved by developing non-linear 
predictors taking account of the hierarchical nature of the underlying process. One would surely also 
like to know in how far our striking differences obtained for stock markets, on the one hand, and for 
foreign exchange and precious metal markets, on the other hand, are reflections of  intrinsic 
difference or are rather governed by the particular time interval chosen for  out-of-sample 
forecasting exercise. 
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Table 1: Simulated Biases, Standard Errors and RMSEs for Scaling and GMM Estimators 
 

  
Method 

 
n 

 
Bias( λ̂ ) 

 
SE( λ̂ ) 

 
RMSE( λ̂ ) 

 
Scaling 

2.000 
5.000 

10.000 

0.120  
0.074  
0.067 

0.185  
0.125  
0.115 

0.220  
0.145  
0.133 

 
GMM(2) 

2.000 
5.000 

10.000 

0.007  
0.002  
0.002 

0.119  
0.083  
0.065 

0.120  
0.083  
0.065 

 
GMM(4) 

2.000 
5.000 

10.000 

-0.011  
-0.001  
0.001 

0.071  
0.046  
0.032 

0.072  
0.046  
0.032 

 
GMM(6) 

2.000 
5.000 

10.000 

-0.005  
-0.000  
0.003 

0.050  
0.030  
0.021 

0.050  
0.030  
0.022 

 
 
 
 
 
 

λ =1.1 

 
GMM(8) 

2.000 
5.000 

10.000 

-0.007  
0.001  
0.003 

0.040  
0.024  
0.017 

0.041  
0.024  
0.017 

 
 

Scaling 

 
2.000 
5.000 

10.000 

 
0.115  
0.086  
0.067 

 
0.240  
0.199  
0.147 

 
0.266  
0.216  
0.161 

 
GMM(2) 

2.000 
5.000 

10.000 

-0.028  
-0.009  
-0.003 

0.142  
0.100  
0.070 

0.145  
0.100 
0.071 

 
GMM(4) 

2.000 
5.000 

10.000 

-0.019  
-0.004  
0.003 

0.082  
0.052  
0.036 

0.084  
0.052  
0.036 

 
GMM(6) 

2.000 
5.000 

10.000 

-0.015  
-0.003  
0.001 

0.058  
0.034  
0.024 

0.060  
0.034  
0.024 

 
 
 
 
 
 

 
λ = 1.2 

 
GMM(8) 

2.000 
5.000 

10.000 

-0.012  
-0.000  
0.001 

0.047  
0.029  
0.019 

0.049  
0.029  
0.019 

 
Scaling 

 
2.000 
5.000 

10.000 

 
0.125  
0.060  
0.044 

 
0.263  
0.208  
0.176 

 
0.291  
0.217  
0.181 

 
GMM(2) 

.000 
5.000 

10.000 

-0.035  
-0.012  
0.003 

0.169  
0.109  
0.072 

0.173  
0.109  
0.072 

 
GMM(4) 

2.000 
5.000 

10.000 

-0.026  
-0.006  
-0.002 

0.091  
0.055  
0.038 

0.094  
0.055  
0.038 

 
GMM(6) 

2.000 
5.000 

10.000 

-0.020  
-0.005  
0.000 

0.065  
0.040  
0.025 

0.068  
0.040  
0.025  

 
 
 
 
 
 

λ = 1.30 

 
GMM(8) 

2.000 
5.000 

10.000 

-0.017  
-0.004  
0.000 

0.055  
0.032  
0.022 

0.057  
0.032  
0.022 

Note: see main text for the design of the scaling estimator and the moment conditions used for GMM 
estimation. The depth of the cascade has been set equal to k = 15, the standard deviation of the increments 
is σ = 1. 
 



 31

Table 2: Simulated Fractiles of p Values for the Test of Overidentifying Restrictions 
 
 

  
Method 

 
n 

 
0.05 

 
0.1 

 
0.5 

 
0.9 

 
0.95 

 
GMM(2) 

 
2.000 
5.000 
10.000 

 
0.181  
0.129  
0.120 

 
0.262  
0.184  
0.176 

 
0.623  
0.596  
0.535 

 
0.940  
0.939  
0.906 

 
0.974  
0.975  
0.950 

 
 

λ =1.1 

 
GMM(8) 

 
2.000 
5.000 
10.000 

 
0.185  
0.137  
0.103 

 
0.237  
0.183  
0.144 

 
0.500  
0.458  
0.434 

 
0.865  
0.834  
0.843 

 
0.940  
0.917  
0.923 

 
GMM(2) 

 
2.000 
5.000 
10.000 

 
0.171  
0.115  
0.102 

 
0.213  
0.154  
0.157 

 
0.598  
0.543  
0.552 

 
0.917 
0.915  
0.914 

 
0.964  
0.965 
0.949 

 
 

λ = 1.2 

 
GMM(8) 

 
2.000 
5.000 
10.000 

 
0.187  
0.130  
0.111 

 
0.238  
0.166  
0.155 

 
0.520  
0.475  
0.481 

 
0.880  
0.892  
0.869 

 
0.955  
0.947  
0.931 

 
GMM(2) 

 
2.000 
5.000 
10.000 

 
0.127  
0.107  
0.100 

 
0.182  
0.168  
0.151 

 
0.575  
0.541  
0.550 

 
0.930  
0.901  
0.917 

 
0.960  
0.953  
0.962 

 
 
 

λ = 1.3 

 
GMM(8) 

 
2.000 
5.000 
10.000 

 
0.135  
0.144  
0.110 

 
0.176  
0.200  
0.145 

 
0.485 
0.500 
0.495 

 
0.877  
0.884  
0.894 

 
0.932  
0.938  
0.942 

 
Note: see main text for the moment conditions used for GMM estimation. The results are obtained with the 

same Monte Carlo simulations from which the results of Table 2 have been extracted. Hence, the depth of 
the cascade is k = 15, and  the standard deviation of the increments is σ = 1. Because of the homogeneity of 
the results over different sets of moments, only those for the sets of two and eight moment conditions are 
shown. 



 32

Table 3: Estimating λλλλ with the Wrong Number of Multipliers 
 

  
k used in 

GMM 

 
n 

 
Bias( λ̂ ) 

 
SE( λ̂ ) 

 
RMSE( λ̂ ) 

 
 
5 

 
2.000 
5.000 
10.000 

 
0.013  
0.021  
0.023 

 
0.048  
0.030  
0.021 

 
0.049  
0.037  
0.031 

 
10 

 
2.000 
5.000 
10.000 

 
-0.005  
0.003  
0.004 

 
0.040  
0.025  
0.017 

 
0.041  
0.025  
0.018 

 
 
 

λ =1.1, 
 

true k = 15, 
 
  

20 
 

2.000 
5.000 
10.000 

 
-0.006  
0.003  
0.003 

 
0.041  
0.024  
0.016 

 
0.041  
0.024  
0.017 

 
 
5 

 
2.000 
5.000 
10.000 

 
0.027  
0.038  
0.040 

 
0.052  
0.032  
0.024 

 
0.058  
0.050  
0.047 

 
10 

 
2.000 
5.000 
10.000 

 
-0.011  
0.000  
0.003 

 
0.047  
0.028  
0.019 

 
0.048  
0.028  
0.019 

 
 

 
λ =1.2, 

 
true k = 15, 

 
  

20 
 

2.000 
5.000 
10.000 

 
-0.013  
-0.002  
0.001 

 
0.046  
0.028  
0.019 

 
0.048  
0.028  
0.019 

 
 
5 

 
2.000 
5.000 
10.000 

 
0.035  
0.054 
0.056 

 
0.061  
0.038  
0.027 

 
0.070  
0.066  
0.062 

 
10 

 
2.000 
5.000 
10.000 

 
-0.015  
-0.004  
0.002 

 
0.054  
0.032  
0.022 

 
0.056  
0.032  
0.022 

 
 
 

λ =1.3, 
 

true k = 15, 
 

 
 

 

 
20 

 
2.000 
5.000 
10.000 

 
-0.020  
-0.005  
0.001 

 
0.054  
0.033  
0.022 

 
0.058  
0.033  
0.022 

 
Note: in this set of experiments, we investigate the behavior of the estimate of λ with misspecified depth 

parameter k. The ‘true’ k is equal to 15 in all experiments, σ = 1, and GMM specification is GMM(8). 
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Table 4: In-Sample Parameter Estimates from Scaling Estimator and GMM 
 

 
Data  

λ̂  from f(α) 

 

λ̂   from 
GMM(8) 

 (t-statistic) 

 
k̂  

J 
(p-value) 

NYCI 1.567 1.043 
(41.441) 

9 5.364 
(0.616) 

1.045a 
(47.324) 

10 9142.815 
(0.000) 

 
DAX 

 
1.172 

1.036b 
(11.184) 

6 0.035 
(0.852) 

US$-DEM 1.016 1.049 
 (44.082) 

10 7.029 
(0.426) 

Gold 1.117 1.123 
 (43.438) 

10 8.387 
(0.300) 

 
 

Note: The scaling estimator is implemented in the following way: 25 time increments ∆t ranging 
from ∆t = 5 to ∆t = T/5 (T the length of the time series) have been used which are equally spaced 
in logs (i.e. the next ∆t is computed as ∆t’ =  exp(ln(∆t) + ln(T/5)/25), only positive moments are 
used, q = 0.1, 0.2…(0.1)…3, 3.5,.   (0.5),… 10, and the estimate of λ is found by minimizing the 
squared deviation between the theoretical and empirical spectrum at the α coordinates of the 
empirical spectrum. For GMM estimation, the eight moment conditions listed in the main text 
have been used. In the case of the DAX, iterative GMM estimation with 8 moment conditions 
produced only degenerate results (estimated λ = 1). In this case, results  reported here have been 
obtained via the following modifications of the original set-up: a. estimation with only two 
moment conditions, M(T=1,q=1,2), and b. estimation with eight moment conditions, but with the 
identity matrix used as the ‘weighting’ matrix. The number of volatility components, k, is 
estimated via a chain of GMM runs with underlying k ranging from 1 to 20. When the estimate of 
λ changes by no more than 0.001 in successive steps, we choose the last k as the relevant number 
of multipliers. λ̂  and J are reported for this particular GMM run. The in-sample entries extend 
from 1 January 1979 to 31 December 1996. 
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Fig. 1: Simulation of a Causal Lognormal Cascade and its Use as a Local Volatility Process. 

For a cascade with k = 12 levels and parameter λ = 1.1, the upper panels of the figure show (from 
top to bottom) the time development of the multipliers of level 2 and 6, and the product of all 12 
multipliers. Note that with the original combinatorial cascade, one would expect evenly spaced 
change periods of the multipliers while here we have random survival times. In the lower panel, a 
compound process is illustrated in which the same cascade is used as a local volatility process. 
Superimposed is a Wiener Brownian motion (H = 0.5).  
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Fig. 2: Scaling and Multi-Fractal Spectrum of DAX Returns. The upper panel shows the 

partition functions obtained for a variety of (positive) moments ranging from q = 0.1 to q = 9. 
While we observe an almost perfectly linear relationship for the lower moments, there is more 
randomness in the scaling of higher moments. The bottom panel shows that the deviation form the 
expected behavior τ(q) = q/2 - 1 under Brownian motion (left), and the f(α) spectrum of Hölder 
exponents obtained from the Legendre transformation (right). 
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Fig. 3: RMSE of f(αααα) and GMM estimators of the parameter λλλλ of the Lognormal multi-fractal 

model. The  shaded bars illustrate the development of the RMSE with sample size for the scaling 

estimator, the unshaded bars illustrate that of the GMM estimator. 
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Fig. 4: Mean squared errors of volatility forecasts based on historical volatility (HV), GARCH 

(1,1), FIGARCH(1,d,1), and the Lognormal multi-fractal model (MF). Time horizons are: 1 

day, 5, 10, 20, …, 100 days. Estimates are based on the period 01/01/1979 to 12/31/1996 and out-

of-sample forecasts are computed for the time period 01/01/1997 to 12/31/1998. 


