Insects and Ecosystem Function

With 50 Figures and 12 Tables

Universitäts- und Landesbibliothek Darmstadt Bibliothek Diologia Inv.-Nr. 16253

Section I Introduction

1	The Various Effects of Insects on Ecosystem Functioning . W.W. WEISSER and E. SIEMANN	3
1.1	Summary	3
1.2	Introduction	3
1.3	A Brief Overview of Insect Effects on Ecosystem Function .	8
1.3.1	Insect Effects on Ecosystem Function	
	Via Interactions with Plants	8
1.3.1.1	Herbivory	8
1.3.1.2	Plant–Insect Mutualisms	14
1.3.2	Other Direct and Indirect Effects of Insects	
	on Ecosystem Function	14
1.4	The Aim and Structure of this Book	15
Reference		19

Section II Insects and the Belowground System

~

2	Insect Herbivores, Nutrient Cycling and Plant Productivity S.E. HARTLEY and T. H. JONES				
2.1	Summary	27			
2.2	Introduction	28			
2.3	Decomposition	28			
2.3.1	The Resources Available	28			
2.3.2	Effects of Insect Herbivory on Decomposition	31			

2.3.2.1	Herbivory and Litter Quality	31
2.3.2.2	Herbivory, Root Exudation and Root Biomass	32
2.4	Nutrient Cycling and Plant Productivity	33
2.4.1	Effects on Carbon and Nitrogen Cycling	34
2.4.1.1	Methane and Carbon Dioxide	34
2.4.1.2	Nitrogen and Phosphorus	35
2.4.1.3	Inputs from Aboveground Herbivores	36
2.4.1.4	The Importance of Belowground Biota: Evidence	
	from Controlled Environment Studies	39
2.4.1.5	Insect Herbivory and Spatial Variation	
	in Nutrient Availability	40
2.4.2	Herbivory and Plant Biomass	41
2.5	Conclusions	45
Referen	ces	46
	· · ·	
3	Indirect Effects of Invertebrate Herbivory	
	on the Decomposer Subsystem	53
	D.A. WARDLE and R.D. BARDGETT	
3.1	Summary	53
3.2	Introduction	54
3.3	Mechanistic Bases of Invertebrate Herbivore Effects	54
3.3.1	Immediate Effects on Resource Quantity	56
3.3.2	Longer-Term Effects on Resource Quantity	56
3.3.3	Effects of Changed Litter Quality	57
3.3.4	Return of Invertebrate Waste Products	58
3.3.5	Effects of Changes in Vegetation Composition	59
3.3.6	Feedbacks and Aboveground Consequences	61
3.4	Significance of Invertebrate Herbivore Outbreaks	61
3.5	Multiple Species Herbivore Communities	62
3.6	Comparisons of Ecosystems	64
3.7	Conclusions	65
Referen		66
Referen		00
4	Biotic Interactions in the Rhizosphere:	
-	Effects on Plant Growth and Herbivore Development	71
	M. Bonkowski and S. Scheu	/1
	M. DORKOWSKI and J. JOHED	
4.1	Summary	71
4.2	The Rhizosphere – Interface of Intense Microbial	
	and Faunal Interactions	72

4.2.1	Plants as Drivers of Rhizosphere Interactions	73
4.3	Belowground Interactions and the Herbivore System	74
4.3.1	Effects of Mycorrhiza and Rhizobacteria	
	on Aboveground Herbivores	76
4.3.2	Interactions with the Micro-Decomposer Food Web	77
4.3.2.1	The Bacterial Loop and Herbivore Performance	78
4.3.2.2	The Fungal Food Chain and Herbivore Performance	79
4.3.2.3	Ecosystem Engineers and Herbivore Performance	81
4.4	Top-Down Effects by Subsidizing Generalist Predators	83
Referenc	es	85
5	Belowground Herbivores and Ecosystem Processes G.J. MASTERS	93
5.1	Summary	93
5.2	Introduction	94
5.3	Experimenting with Belowground Insect Herbivores	94
5.4	Belowground Herbivory and Plant Productivity:	
	Allocation and Biomass	97
5.5	Implications of Belowground Herbivory	
	for Nutrient Cycling	101
5.6	Implications of Belowground Herbivory	
	for Multitrophic Interactions	104
5.7	Conclusion	109
Referenc	es	109

IX

Section III Plant-Insect Interactions and Ecosystem Processes

-

6	Bottom-Up Effects and Feedbacks in Simple and Diverse Experimental Grassland Communities J. J. JOSHI, S. J. OTWAY, J. KORICHEVA, A.B. PFISTERER, J. ALPHEI, B.A. ROY, M. SCHERER-LORENZEN, B. SCHMID, E. SPEHN and A. HECTOR	115
6.1	Summary	115
6.2	Introduction	116
6.3	Effects of Plant Diversity on Herbivorous Insects	
	Feeding Above Ground	117

6.3.1	Hypotheses Predicting the Response of Herbivores	
<	to Higher Plant Diversity	117
6.3,2	Responses of Specialist and Generalist Herbivores	
	in Plant Diversity Experiments	119
6.3.3	Concomitant Responses of Natural Enemies of Herbivores .	123
6.3.4	Insect Herbivores as Drivers of Ecosystem Processes	124
6.4	Effects of Plant Diversity on Pathogens	125
6.5	Belowground Food Web	126
6.5.1	Plant Biomass and Microbial Response	126
6.5.2	Soil Animals that Feed on Microbes	128
6.6	Conclusions	129
Referen	ces	130
7	The Potential of Phytophagous Insects in Restoring Invaded	
	Ecosystems: Examples from Biological Weed Control	135
	H. Zwölfer and H. Zimmermann	
7.1	Summary	135
7.2	Introduction	136
7.3	Success Rates and Successes in Biological Weed Control	137
7.4	Weed Characteristics and Positive Traits	
	of Insects in Biological Control	138
7.4.1	Weed Species	139
7.4.2	Insect Species	139
7.5	Three Examples of Successful Weed Control	140
7.5.1	Rhinocyllus conicus on Carduus nutans	140
7.5.2	Interactions Between Three Weevil Species in the Biocontrol	
	of the Invader Sesbania punicea in South Africa	143
7.5.2.1	The Seed-Destroying Agents: Trichapion lativentre	
	and Rhyssomatus marginatus	144
7.5.2.2	The Stem-Borer: Neodiplogrammus quadrivittatus	145
7.5.3	Aquatic Weeds	146
7.6	Discussion and Conclusions	147
Referen	ces	150
8	Plant-Insect-Pathogen Interactions on Local	
	and Regional Scales	155
	A. Kruess, S. Eber, S. Kluth and T. Tscharntke	
8.1	Summary	155
8.2	Introduction	156
~		

	8.3	Biological Weed Control, Interactions	
	0.5	and Ecosystem Processes	157
	8.3.1	Classical Biological Control	157
	8.3.2	Plant-Pathogen-Herbivore Interactions	158
	8.4	Creeping Thistle, Insects, Pathogens and Processes	160
	8.4.1	The Creeping Thistle (<i>Cirsium arvense</i>)	160
	8.4.2	Interactions Between Pathogens and Insect Vectors	100
	0.1.2	on a Local Scale	161
	8.4.3	Regional Dynamics of Cirsium arvense	101
	0.4.5	and an Associated Herbivore	163
	8.4.4	The Influence of Landscape Context	105
	0.1.1	at Different Spatial-Scales	165
	8.5	Conclusions and Future Outlook	165
		es	169
	Reference		109
	9	Food Web Interactions and Ecosystem Processes	175
		A. JANSSEN and M.W. SABELIS	
,		·	
	9.1	Summary	175
•	9.2	Introduction	175
	9.3	Interactions Among Entire Trophic Levels	178
	9.4	Effects of Diversity Within Trophic Levels	179
	9.4.1	Apparent Competition	180
	9.4.2		180
	9.4.3	Intraguild Predation	181
	9.4.4	Plant-Mediated Indirect Interactions Between Herbivores .	181
	9.4.5	Indirect Plant Defences	182
	9.4.6	Interactions Among Plants	183
	9.4.7	Behavioural Effects	184
	9.5	Conclusions and Perspectives	184
	Reference		186
	10	A General Rule for Predicting When Insects Will Have	
		Strong Top-Down Effects on Plant Communities:	
		On the Relationship Between Insect Outbreaks	
		and Host Concentration	193
		W.P. Carson, J. Patrick Cronin and Z.T. Long	
•	10.1	Summary	193
	10.2	Introduction	193
	10.3	The Significance of Insect Outbreaks	194

~

XII	(Contents
10.3.1	Insect Outbreaks Are Common	
	in Numerous Community-Types Worldwide	. 195
10.3.2	Insect Outbreaks Are More Common and More	
	Devastating per Host in Large, Dense and	
	Continuous Host Stands	. 199
10.3.3	Native Outbreaking Insects Function as Keystone Species	
	by Reducing the Abundance of the Dominant Species	
	and Increasing Diversity	. 200
10.3.4	Insect Outbreaks Are Common Relative	
	to Host Life Span Yet May Often Go Unnoticed	. 201
10.3.5	Chyrsomelid Beetles and Lepidoptera Seem	
	to be Responsible for the Majority of Outbreaks	. 201
10.4	The Host Concentration Model May Predict Insect Impact	
	on Plant Communities at Multiple Spatial Scales Better	
	Than Resource Supply Theory	
10.4.1	Resource Supply Theory	
10.4.2	The Host Concentration Model (HCM)	
10.4.3	Distinguishing Between the Two Models	. 204
10.5	Relationship to Other Related Processes Proposed	
	to Promote Diversity	
10.5.1	Does Pathogen Impact Increase with Host Concentration?	
Reference	2S	. 205
11	The Ecology Driving Nutrient Fluxes in Forests	. 213
11	B. STADLER, E. MÜHLENBERG and B. MICHALZIK	. 215
	D. OTADLER, L. MOTTLENDERG and D. MICHALZIR	
11.1	Summary	. 213
11.2	Introduction	
11.3	Life Histories of Canopy Insects	. 215
11.3.1	Aphids	. 215
11.3.2	Scale Insects	. 215
11.3.3	Lepidopterous Larvae	
11.4	Population Ecological Background of Nutrient Fluxes	. 217
11.4.1	Sites and Experimental Setup	. 219
11.4.2	Results	. 220
11.5	Trophic Effects and Organic Pathways	. 224
11.6	Herbivore-Mediated Changes in Quality	
	and Quantity of Nutrient Fluxes	
11.7	Synthesis and Conclusions	. 230
11.7.1	Understanding the Temporal Dynamics	
	of Energy and Nutrient Fluxes	. 230
11.7.2	Understanding the Spatial Variability in Fluxes	. 231

r

ç

Contents		XIII
11.7.3 11.7.4 Referenc	Understanding the Mechanics that Regulate Fluxes Generating Testable Hypotheses	232 233 235
Section I	V Methods: Reducing, Enhancing and Simulating Insect Herbivory	
12	Simulating Herbivory: Problems and Possibilities J. HJÄLTÉN	243
12.1	Summary :	243
12.2	Introduction to the Problem	244
12.3	Advantages of Simulated Herbivory	245
12.4	Disadvantages of Simulated Herbivory	247
12.4.1	Simple Biotic Interactions	247.
12.4.2	Complex Biotic Interactions	249
12.4.3	Basic Ecosystem Processes	250
12.5	Conclusions and Suggestions for the Future	251
Reference	es	253
12	The Hee and Heefelman of Attaic side the him and	
13	The Use and Usefulness of Artificial Herbivory in Plant–Herbivore Studies	257
	in Plant–Herbivore Studies К. Lентіlä and E. Boalт	257
13.1	Summary	257
13.2	Introduction	258
13.3	Material and Methods	258
13.4	Commonness of Differences Between Natural	
	and Artificial Herbivory	260
13.5	Strength of the Effect of Natural and Artificial Damage	266
13.6	Responses of Different Types of Response Traits	
	to Artificial and Natural Damage	267
13.7	Simulations of Mammalian and Invertebrate Herbivory	269
13.8	Attempts of Exact Simulation	270
13.9	Conclusions	271
Reference	es	273

tents

14	From Mesocosms to the Field: The Role and Value	
	of Cage Experiments in Understanding Top-Down Effects	
	in Ecosystems	277
	O.J. Schmitz	,
14.1	Summary	277
14.2	Introduction	278
14.3	Research Approach	281
14.4	In-Ecosystem Investigation Using Enclosure Experiments .	282
14.4.1	Natural History: Knowing the Players in the System	282
14.4.2	Enclosure Cages: Design and Biophysical Properties	285
14.4.3	Considerations for the Design of Cage Experiments	288
14.4.3.1	Artificial Complements of Populations or Communities	
	in Enclosure Cages Are Not Realistic	288
14.4.3.2	Experimental Outcome Could Be an Artifact of the Venue .	288
14.4.3.3	Enclosures Unrealistically Constrain Movement of Species .	289
14.4.3.4	Time Scale of Enclosure Experiments Exclude or Distort	
	Important Features of Communities and Ecosystems	290
14.4.4	Mechanistic Insights from Enclosure Cage Experiments	290
14.4.4	Identifying the Potential for Top-Down Control	291
14.4.5	Of-Ecosystem Studies: Testing the Reliability	
	of Mechanistic Insights from Cage Experiments	297
14.4.5.1	Direct and Indirect Effects of Top Predators	299
14.4.5.2	Top Predator Effects on Plant Diversity and Productivity	300
Referenc	es	300
15	Reducing Herbivory Using Insecticides	303
15.1	Summary	303
15.2	Basic Concepts	303
15.3	Using Insecticides to Infer the Role of Herbivores	304
15.4	Ghost of Herbivory Past	307
15.5	Artifacts of Method May Masquerade as Release	
	from Herbivory	308
15.5.1	What Types of Artifacts Are a Concern?	308
15.5.2	Overview of Published Studies	309
15.5.3	Quantification of Herbivore Damage	310
15.5.4	Phytotoxic Effects	311
15.5.5	Insecticides May Be Toxic to Several Groups of Insects	313
15.5.6	Effects of Insecticides on Non-Arthropods	314
15.5.7	Effects of Insecticides on Soil Organisms	314

XIV

17.4

15.5.8	Nutrient Inputs May Facilitate Plant Growth	315
15.5.9	Insect-Vectored Diseases	317
15.5.10	Community-Level Artifacts	318
15.6	Are There Better Types of Insecticides?	318
15.7	Conclusions	319
Appendix	Appendix: Results of Surveyed Studies	
Reference	°S	324

16	The Role of Herbivores in Exotic Plant Invasions: Insights Using a Combination of Methods to Enhance or Reduce Herbivory	329
	W.E. ROGERS and E. SIEMANN	
16.1	Summary	329
16.2	Introduction	329
16.3	The Role of Herbivores in Exotic Plant Invasions	330
16.4	Focal Plant Species	331
16.5	Experimental Methods for Assessing Herbivory Effects	331
16.5.1 16.5.2	Common Garden/Reciprocal Transplant Studies Reducing Herbivory on Target Plants	332
	Using Insecticide Sprays	336
16.5.3	Reducing Herbivory on Community Assemblages Using Insecticide Sprays	337
16.5.4	Factorial Manipulations of Herbivory, Resources	220
1655	and Competition	338 339
16.5.5 16.5.6	Simulating Herbivory Via Mechanical Leaf Damage Simulating Herbivory Via Mechanical Root Damage	339 341
16.5.7 16.5.8	Simulating Herbivory Using Herbicide Sprays	342
	and Enclosures	344
16.6	Implications and Potential Significance	347
Referenc	es	349
17	Herbivore-Specific Transcriptional Responses	
	and Their Research Potential for Ecosystem Studies C. VOELCKEL and I.T. BALDWIN	357
	C. YUELCKEL AIIU I. I. DALDWIN	
17.1	Summary	357
17.2	The Subtle Effects of Insects on Ecosystem Function	357
17.3	Transcriptional Regulation of Plant Responses	358

Insect-Induced Transcriptional Changes

362

Contents

17.5	How a Molecular Understanding of Plant–Insect	
	Interactions Can Help Elucidate Ecosystem Function	371
Referen	ces	375

Section V Synthesis

XVI

18	Testing the Role of Insects in Ecosystem Functioning	383
	E. SIEMANN and W.W. WEISSER	
	Ъ	
18.1	Summary	383
18.2	Introduction	384
18.3	Simple Models of Niche Space	385
18.3.1	Reduced Vigour Model	385
18.3.2	Reduced Range of Tolerance Model	387
18.3.3	Specialist Herbivores	388
18.4	Effects of Herbivores in Resource Competition Models	389
18.4.1	Specialist Herbivores in Resource Competition Models	391
18.4.2	Generalist Herbivores in Resource Competition Models	395
18.5	Differential Impacts on Plants with Different Traits	396
18.6	Conclusions from the Modelling Work	396
18.7	Suggestions for Future Studies	397
18.7.1	Exploring Below- and Aboveground Interactions	
	in More Detail	397
18.7.2	Measuring Herbivory Effects at Nominal Levels	
	as Well as in Outbreak Situations	398
18.7.3	Quantifying the Effects of Plant Resource Allocation	
	Under Herbivory for Ecosystem Functioning	399
18.7.4	Combining Various Methodologies to Achieve	
	an Understanding of Insect Effects on Ecosystem Function .	399
Referenc	es	400
Subject I	ndex	403
÷		
Taxonomic Index		409