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Abstract

Tests of causality in variance in multiple time series have been proposed recently,
based on residuals of estimated univariate models. Although such tests are applied
frequently little is known about their power properties. In this paper we show that
a convenient alternative to residual based testing is to specify a multivariate volatil-
ity model, such as multivariate GARCH (or BEKK), and construct a Wald test on
noncausality in variance. We compare both approaches to testing causality in vari-
ance in terms of asymptotic and finite sample properties. The Wald test is shown to
have superior power properties under a sequence of local alternatives. Furthermore,
we show by simulation that the Wald test is quite robust to misspecification of the
order of the BEKK model, but that empirical power decreases substantially when
asymmetries in volatility are ignored.
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1 Introduction

Causal relationships in systems of economic time series variables are often defined accord-
ing to forecasting principles exploiting the idea that a cause must precede its effect in
time. Tests of Granger causality (Granger (1969), Granger (1980), Granger (1988)) have
become a standard step when analyzing linear systems of time series. In light of a still
growing interest in dynamics of financial data recent work on causality also addresses the
issue of second order causality and/or causality in variance (Granger, Robins and Engle
(1986), Cheung and Ng (1996), Comte and Liebermann (2000)).

For testing the hypothesis of noncausality in variance two approaches have been fol-
lowed in the literature. On the one hand two step methodologies have been introduced
which concentrate on the cross correlation function (CCF) of univariate residual estimates.
Building upon tests on causality in mean (Haugh (1976), Pierce and Haugh (1977)) Che-
ung and Ng (1996) follow these lines to infer on cross sectional dependence of squared
GARCH innovations. Kanas and Kouretas (2002) employ the CCF-test introduced by
Cheung and Ng (1996) to detect volatility spillovers between official and black currency
markets.

Alternatively, causality in variance is often diagnosed by means of (Quasi) Maximum-
Likelihood ((Q)ML) methods which utilize a parametric specification of volatility dynam-
ics of systems of financial data. In particular, the BEKK form of the multivariate GARCH
model (Engle and Kroner, 1995) allows to establish a one-to-one relation between non-
causality in variance and particular testable zero restrictions imposed on the parametric
model. One of the arguments of Cheung and Ng (1996) against using specifications of
multivariate GARCH models was that a rigorous proof of asymptotic QML theory in the
multivariate GARCH framework was still missing. This argument, however, is no longer
valid after recent progress on the theoretical side, e.g., by Comte and Lieberman (2003).

Comte and Lieberman (2000) provide a unified treatment of first and second order
causality in the framework of VARMA models with multivariate GARCH error terms.
The BEKK model is widely used to test causal relationships between financial time series
(see e.g. Hafner and Herwartz (1998), Herwartz and Lütkepohl (2000), Caporale, Spittis
and Spagnolo (2002)). It is worthwhile to mention that both approaches to inference on
causality, the two step and the ((Q)ML) methodology, have not yet been compared in
terms of their empirical properties.

In this paper we pick up the definitions of causality in variance and linear causality
in variance given in Comte and Lieberman (2000) for the multivariate GARCH model
and relate it to the notions of strong, semi-strong and weak GARCH processes going
back to Drost and Nijman (1993). We give sufficient and necessary conditions for (lin-
ear) noncausality in variance and derive testable parametric restrictions covering these
restrictions. We provide a local power analysis and a Monte Carlo study to investigate
the relative performance of the CCF-test and Wald-type tests derived from asymptotic
(Q)ML theory. The robustness of the latter methodology under misspecification of the
(quasi) log-likelihood function is also addressed.

The remainder of the paper is organized as follows: Section 2 provides the method-
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ological framework for our analysis, the multivariate GARCH model and its VARMA
representation. In Section 3 causality in variance and linear causality in variance are
defined and competing tests of the null hypothesis of higher order noncausality are mo-
tivated. A local power investigation compares two approaches to causality testing which
are frequently used, the CCF and the Wald test. A Monte Carlo study in Section 4
is provided to assess the finite sample properties of alternative tests on noncausality in
variance. Section 5 briefly summarizes our main results and underscores their scope for
empirical multivariate volatility modelling. Proofs and details of implementing the Wald
test are given in Appendices A and B.

2 Multivariate GARCH Models

Let us first introduce the terminology of weak, semi-strong and strong multivariate GARCH
models, analogously to the univariate case. Later we will define causality in variance con-
cepts that naturally apply these alternative notions of GARCH models.

Definition 1 (Multivariate GARCH) Let εt denote a stochastic vector process with
K components and E[εt | Ft−1] = 0. Now define a positive definite and symmetric matrix
Ht such that ht = vech(Ht) has the representation

ht = ω +

q∑
i=1

Aiηt−i +

p∑
j=1

Bjht−j, (1)

where ω = vech(Ω), ηt = vech(εtε
′
t) and Ω, Ai, Bj, are K∗ ×K∗ parameter matrices with

K∗ = K(K + 1)/2. Then we say that εt is a

1. strong multivariate GARCH(p, q) process, if ξt = H
−1/2
t εt is an i.i.d. process with

mean zero and variance the identity matrix,

2. semi-strong multivariate GARCH(p, q) process, if Var(εt | Ft−1) = Ht,

3. weak multivariate GARCH(p, q) process, if ht is the best linear predictor of ηt in
terms of a constant and lagged values of ηt, that is

ht = P (ηt | Ht−1) = [P (ηt,1 | Ht−1), . . . , P (ηt,K∗ | Ht−1)]
′

where Ht denotes the Hilbert space spanned by a constant and ηt−τ,1, . . . , ηt−τ,K∗,
τ ≥ 0.

A strong multivariate GARCH(p, q) process is also semi-strong, and a semi-strong
multivariate GARCH(p, q) process is also weak, which justifies the terminology.

To establish the analogy to VARMA models, rewrite the process (1) as

ηt = ω +

max(p,q)∑
i=1

(Ai + Bi)ηt−i −
p∑

j=1

Bjut−j + ut, (2)
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with ut = ηt−ht and where we set Aq+1 = . . . = Ap = 0 if p > q and Bp+1 = . . . = Bq = 0
if q > p. It now depends on the properties of ut if we can consider (2) as a VARMA
process.

Assumption 1 The covariance matrix of ut, Σu = E[utu
′
t], is assumed to be finite and

positive definite.

For the case of a strong multivariate GARCH(p, q) model with spherical distribution of ξt,
necessary and sufficient conditions for Assumption 1 to hold are given in Hafner (2003).
We now have the following result.

Lemma 1 Under Assumption 1, if {εt} is

1. strong or semi-strong multivariate GARCH(p, q), then {ut} in (2) is a martingale
difference process.

2. weak multivariate GARCH(p, q), then {ut} is weak white noise in the sense that
E[ut] = 0, E[utu

′
s] = 0, ∀t 6= s, and E[utu

′
t] = Σu < ∞.

As a result of this lemma, {ηt} in (2) follows a VARMA(max(p, q), p) process under
Assumption 1. In the case of strong and semi-strong multivariate GARCH, this VARMA
process characterizes the conditional mean of ηt, whereas in the case of weak multivariate
GARCH, it characterizes the best linear predictor of ηt in terms of lagged values of ηt.
Thus, when defining causality concepts we will have to distinguish between concepts that
are based on the conditional mean and concepts based on best linear predictors.

In the following we will assume covariance stationarity of the process εt.

Assumption 2 All eigenvalues of the matrix
∑max(p,q)

i=1 (Ai + Bi) have modulus smaller
than one.

The multivariate GARCH(p, q) process εt is covariance stationary if and only if Assump-
tion 2 holds, see e.g. Engle and Kroner (1995). In that case, the components of the
unconditional covariance matrix Σ = Var(εt) are given by

σ = vech(Σ) =


IK∗ −

max(p,q)∑
i=1

(Ai + Bi)



−1

ω. (3)

Under Assumption 2, one obtains the VMA(∞) representation from the VARMA
representation (2),

ηt = σ +
∞∑
i=0

Φiut−i, (4)

where the K∗ ×K∗ matrices Φi can be determined recursively by Φ0 = IK∗ ,

Φi = −Bi +
i∑

j=1

(Aj + Bj)Φi−j, i = 1, 2, . . . , (5)

4



see Lütkepohl (1993, pp. 220).
In practice it is often easier to work with the so-called BEKK model of Engle and

Kroner (1995), which is a special case of the vec model. The BEKK model involves less
parameters to be estimated and ensures positive definiteness of Ht under weak conditions.
In its general form, the BEKK(p, q, S) model can be written as

Ht = CC ′ +
S∑

s=1

q∑
i=1

A∗
siεt−iε

′
t−iA

∗′
si +

S∑
s=1

p∑
i=1

B∗
siHt−iB

∗′
si, (6)

where C is a lower triangular matrix and A∗
si and B∗

si are K × K parameter matrices.
For illustrative purposes, we will only consider the case p = q = S = 1, which is also the
mostly applied model order. Thus, the model simplifies to

Ht = CC ′ + A∗εt−1ε
′
t−1A

∗′ + B∗Ht−1B
∗′, (7)

with
ϑ = (vech(C)′, vec(A∗)′, vec(B∗)′)′ (8)

being a K(5K + 1)/2-dimensional parameter vector. Note that each BEKK model has a
corresponding unique vec representation, but not vice versa, see Engle and Kroner (1995).

3 Causality Tests

In order to define causality concepts for the variance of a vector process εt, we make in
the following two assumptions that simplify the presentation and allow us to focus on the
issue of inference for causality. The first assumption is that the conditional mean is zero,
i.e., E[εt | Ft−1] = 0. Without this assumption, there would be a difference between a
concept that corrects for the mean using all available information and one that corrects
for the mean using only the information of the variable that is to be caused by the others.
The first notion was introduced by Granger, Robins and Engle (1986), and the second
one by Comte and Lieberman (2000). Under the assumption E[εt | Ft−1] = 0, however,
both notions are equivalent.

The second simplifying assumption concerns the number of sub-groups of the vector εt.
We assume that there are only two sub-groups, and we investigate concepts of causality
between these two groups. As is well known, e.g. from Dufour and Renault (1998),
in such setups it suffices to investigate the causality horizon of one period. If there is
noncausality at horizon one, then there is noncausality at every horizon. If there were
more sub-groups of the vector εt, and we were investigating the causality between the first
two sub-groups, say, then there could be causality at larger horizons even though there
may not be causality at horizon one. The intuitive reason is that there may be a causality
chain going from the causing sub-group to a third sub-group, and then in a later period
from this third sub-group to the sub-group to be caused. Thus, our restriction to only
two sub-groups means that we can restrict our attention to a horizon of one period, which
is notationally convenient. About all results of Dufour and Renault (1998) apply in our

5



setting as well, so that we only discuss the simple case here and all extensions follow by
analogy.

First, define the index sets I = (i1, . . . , ik) and J = (j1, . . . , jK−k), where I ∪ J =
(1, . . . , K) and I∩J = ∅. We will investigate the issue whether the variables indexed by J
cause the variables indexed by I. We define the sub-vectors of εt by εIt = (εt,i1 , . . . , εt,ik)

′

and εJt = (εt,j1 , . . . , εt,jK−k
)′, and let ηIt = vech(εIt εI′t ), which is a vector of length k∗ =

k(k + 1)/2. The σ-algebras generated by εIs and εJs , s ≤ t, are denoted by FI
t and

FJ
t , respectively. Moreover, denote by HI

t the Hilbert space spanned by the variables
ηIs,1, . . . , η

I
s,k∗ , s ≤ t.

Now, similar to Comte and Lieberman (2000), we define causality in variance and
linear causality in variance.

Definition 2 We say that

• εJt does not cause εIt in variance, denoted by εJt
V9 εIt , if

Var(εIt | Ft−1) = Var(εIt | FI
t−1)

• εJt does not cause εIt linearly in variance, denoted by εJt
LV9 εIt , if

P (ηIt | Ht−1) = P (ηIt | HI
t−1)

3.1 The CCF test

Based on squared residuals ξ̂2
i,t = ε2

i,t/σ̂
2
i,t, where σ̂2

i,t is the estimated conditional variance
of εi,t using univariate GARCH, Cheung and Ng (1996) introduce a portmanteau statistic
to test the null hypothesis of noncausality in variance,

H0 : εj,t
V9 εi,t, ∀i ∈ I,∀j ∈ J .

The test statistic builds upon sample cross correlations and reads as

Pm = T

m∑

l=1

r2
ij,l, i ∈ I, j ∈ J , (9)

where

rij,l =
cij,l√

cii,0cjj,0

, cij,l =
1

T

T∑
t=1

(ξ2
i,t − ξ2

i )(ξ
2
j,t−l − ξ2

j ),

and where ξ2
i = T−1

∑T
t=1 ξ2

i,t.
In practice, the choice of m should allow to cover the highest potential lag of causality

in variance. Cheung and Ng (1996) prove that under consistent estimation of the uni-
variate GARCH parameters, Pm follows asymptotically a χ2(m)-distribution under the
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null hypothesis. Analogous statistics can be defined for testing the hypothesis of bidirec-
tional causality. Also, in small samples one can use modified portmanteau statistics in
the standard manner.

The CCF test has the appealing feature to be easily computable. A drawback, however,
is that the order m has to be determined. If m is chosen too small, one may miss causalities
at higher lags, if it is chosen too large, the degrees of freedom increase and, hence, the
power of the test decreases. We will show later that the CCF test has very poor power
properties if the alternative is multivariate GARCH, irrespective of the choice of m.

3.2 A pseudo likelihood ratio statistic

The CCF test estimates univariate GARCH models and then tests for cross-correlations
between standardized (squared) residuals. If there are only two series, it can be thought
of estimating the model under the null hypothesis of no bi-directional causality, so that it
is in the spirit of Lagrange multiplier statistics. In the next section we are going to discuss
Wald type statistics. It is also possible to consider statistics in the spirit of likelihood
ratio statistics, where both univariate and multivariate models are estimated. Likelihood
ratio tests of causality in linear VARMA type models have been introduced by Geweke
(1982) and extended to multivariate GARCH models by Hafner (2003).

To define the test statistic, consider a bivariate GARCH process and its VARMA
representation (2), where the error term ut has, by Assumption 1, finite covariance matrix
Σu. Having a sample of T observations and considering causality in variance from ε2t to
ε1t, we may alternatively estimate a univariate GARCH model of appropriate order for
ε1t, obtain its ARMA representation and the corresponding residual variance, σ2

v say. Now
the statistic is given by

LR = T log
σ2

v

Σu,11

. (10)

In VARMA models with Gaussian errors, (10) is the usual likelihood ratio statistic. The
problem in multivariate GARCH models is that the errors of the VARMA representation
(2) are not Gaussian and typically highly skewed. Thus, (10) is not the true LR statistic
and will be biased if compared with a χ2 distribution. Nevertheless, it might be useful for
descriptive purposes. We have used bootstrapped versions of the statistic (10) to correct
for the size, but the power turned out to be equally poor as for the CCF test. Therefore,
we do not report these results in this paper to economize on space.

3.3 Tests based on multivariate GARCH models

Noncausality in variance amounts to certain zero restrictions of the matrices Ai and Bj

in (1). To find these restrictions, we first define the index

kK
ij = i + (j − 1)

(
K − j

2

)
(11)
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for i, j ∈ I ∪ J and i ≥ j, which is the position of the (i, j)-th element of a (K × K)
symmetric matrix M in the vector vech(M). Recall that vech(M) contains K∗ = K(K +
1)/2 elements. Moreover, we define the index sets

I∗ = {kK
ij | i, j ∈ I} (12)

and
J ∗ = {1, . . . , K∗} \ I∗. (13)

This notation at hand, we can now give conditions for noncausality in variance. Let
us consider the following two conditions,

[Φn]ij = 0, ∀n ≥ 1, ∀i ∈ I∗, ∀j ∈ J ∗, (14)

and

[Aa]ij = 0, a = 1, . . . , q, [Bb]ij = 0, b = 1, . . . , p, ∀i ∈ I∗, ∀j ∈ J ∗. (15)

Theorem 1 If εt is a weak multivariate GARCH process, then condition (14) is neces-

sary and sufficient and condition (15) is sufficient for εJt
LV9 εIt . If εt is a semi-strong

multivariate GARCH process, then each one of conditions (14) and (15) is sufficient for

εJt
V9 εIt .

Proof: see Appendix.
The first part of Theorem 1 is well known, see e.g. Lütkepohl (1993, p. 236f.). Unlike

in the first part, no equivalence between Condition (14) and variance noncausality can
be established in the second part. The reason for this is that, if εt is a semi-strong
multivariate GARCH process, then a subprocess is only weak GARCH, see Nijman and
Sentana (1996). Thus, the conditional expectation of a subprocess of ηt may not be a
linear function of lagged ηt, and the restrictions that variance noncausality implies become
impossible to express in terms of the moving average coefficients Φn.

Turning to the testing problem, note that Condition (14) is infeasible to test due to
the large number of coefficient matrices to be tested. We therefore focus attention on
testing Condition (15), but according to Theorem 1 it is only a sufficient condition for
variance noncausality, even in the linear causality sense. Fortunately, for the often used
multivariate GARCH(1,1) model,

ht = ω + Aηt−1 + Bht−1, (16)

where Condition (15) simplifies to

[A]ij = 0, [B]ij = 0, ∀i ∈ I∗, ∀j ∈ J ∗, (17)

it turns out that both conditions are equivalent under an additional assumption.

Lemma 2 In the multivariate GARCH(1,1) model (16), if A is invertible, then conditions
(14) and (17) are equivalent.
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Proof: see Appendix.
As a consequence of this lemma, if A is invertible, then testing (17) is equivalent

to testing variance noncausality and linear variance noncausality, respectively. Note the
difference to VARMA(1,1) models where (17) is only a sufficient condition for noncausality,
see e.g. Lütkepohl (1993, p. 236f.). The reason for this difference is the particular
parameter structure of GARCH models, that is, the sum of the autoregressive parameter
matrix (A+B) and the moving average matrix (−B) is just equal to A, giving Φ1 = A, so
that A directly inherits the properties of Φ1. In the VARMA(1,1) model, Φ1 is equal to the
sum of the autoregressive and moving average parameter matrices, so that a restriction
of Φ1 does not necessarily convey to each one of these.

Since Condition (17) in weak GARCH(1,1) models is not only sufficient but also nec-
essary for linear noncausality in variance, testing this condition under the null hypothesis
of no linear causality in variance should provide correct Type I and Type II errors. It
is also likely to have more power than alternative tests that are based on only necessary
conditions for noncausality, such as the CCF test of Cheung and Ng (1996).

In the following we will only discuss testing in GARCH(1,1) models, so that we will
only consider tests of Condition (17). It is now straightforward to define a test statistic
that tests the zero restrictions on A and B. Let us first define the following restriction
matrix.

Definition 3 Let R̃ be a matrix of dimension k∗(K∗− k∗)× (K∗)2, of rank k∗(K∗− k∗).
The (r, τ) element of R̃ is defined by

R̃r,τ =

{
1, τ = smn

0, τ 6= smn

where r = m + (n− 1)k∗, smn = im + (jn − 1)K∗, im ∈ I∗, jn ∈ J ∗, and m = 1, . . . , k∗,
n = 1, . . . , K∗ − k∗.

Each row of R̃ contains a one at the i + (j − 1)K∗-th position, where i ∈ I∗ and j ∈ J ∗,
and zeros elsewhere. Appendix B gives some examples how to find the restriction matrix
R̃.

The null hypothesis of no causality can be written as

H0 : Rθ = 0 (18)

with θ = (ω′, vec(A)′, vec(B)′)′, and

R = [0(k∗(K∗−k∗)×K∗), R̃, R̃]

If the BEKK(1,1,1) model (7) model is used, then equivalent conditions can be found
that involve less equations. To formalize this idea, let us define the restriction matrix Q̃
associated with the BEKK model.
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Definition 4 Let Q̃ be a matrix of dimension k(K − k)× (K)2, of rank k(K − k). The
(r, τ) element of Q̃ is defined by

Q̃r,τ =

{
1, τ = smn

0, τ 6= smn

where r = m + (n − 1)k, smn = im + (jn − 1)K, im ∈ I, jn ∈ J , and m = 1, . . . , k,
n = 1 . . . , K − k.

The null hypothesis of no causality in the BEKK(1,1,1) model can now be written as

H0 : Qϑ = 0 (19)

with ϑ given by (8), and where

Q = [0(k(K−k)×K), Q̃, Q̃].

The following theorem states the equivalence of the conditions (18) and (19).

Theorem 2 If the multivariate GARCH model has the BEKK(1,1,1) representation (7),
then the noncausality conditions (18) and (19) are equivalent.

Proof: see Appendix.
Note that, although equivalent, condition (19) only involves k(K − k) equations as

opposed to the (k∗(K∗ − k∗) equations of condition (18). In standard likelihood based
tests, the reduction in degrees of freedom may therefore result in more power if a BEKK
model is used instead of a vec model, provided the data are well described by a BEKK
model. Essentially, many conditions of (18) are redundant and just implied by (19). For
example, if K = 2 and k = 1, then (18) has two equations and (19) only one.

Suppose now that we have T observations, ε1, . . . , εT . We assume in the following that
the true process is known to belong to the BEKK class, for which asymptotic theory of
estimation and inference is well developed, see Comte and Lieberman (2003). Denote a
consistent estimator of the true parameter vector ϑ0 by ϑ̂ and assume that its asymptotic
distribution is given by √

T (ϑ̂− ϑ0)
L−→ N (0, Σϑ) , (20)

with some positive definite and symmetric matrix Σϑ. Assume also that a consistent
estimate for Σϑ is given by Σ̂ϑ. For example, if QML estimation is used, then (20) holds
under regularity conditions listed by Comte and Lieberman (2003), and Σϑ is given by

Σϑ = S−1DS−1,

where

D = E

[
∂lt(ϑ)

∂ϑ

∂lt(ϑ)

∂ϑ′

∣∣∣∣
ϑ0

]
, S = −E

[
∂2lt(ϑ)

∂ϑ∂ϑ′

∣∣∣∣
ϑ0

]
,
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with

lt(ϑ) = −K

2
ln(2π)− 1

2
ln |Ht(ϑ)| − 1

2
ε′tH

−1
t (ϑ)εt. (21)

Hafner and Herwartz (2003) provide expressions for D and S and of their estimates.
For significance testing Hafner and Herwartz (2003) show that making use of analytical
expressions for Σϑ is by far superior to using numerical derivatives in terms of empirical
size and power estimates.

We propose the following standard Wald statistic for testing the hypothesis (19),

WT = T (Qϑ̂)′(QΣ̂ϑQ
′)−1(Qϑ̂). (22)

Using (20) and Proposition C.4 of Lütkepohl (1993), the asymptotic distribution of the
Wald statistic is given by

WT
L−→ χ2

k(K−k).

An analogous statistic can be defined for the vec model based on the null hypothesis
(18), provided that conditions for asymptotic normality of estimators hold, which is as
yet unknown. Note that the degrees of freedom of the Wald statistic for the vec model
would be k∗(K∗ − k∗).

3.4 A power comparison

We now investigate the asymptotic power of the Wald and the CCF tests under a sequence
of local alternatives. To ensure that all asymptotic results are valid we still assume that
the model is known to belong to the BEKK class. Consider the parameter vector

ϑ0T = ϑ0 + δ/
√

T

where ϑ0 is the parameter vector under the null hypothesis and δ is a fixed vector of the
same length as ϑ0. Under local alternatives, we have the asymptotic distribution

√
T (ϑ̂− ϑ0T ) =

√
T (ϑ̂− ϑ0) + δ

L−→ N (δ, Σϑ) . (23)

As a consequence, the Wald statistic in (22) has the following asymptotic distribution
under local alternatives,

WT
L−→ χ2

k(K−k)(λ),

i.e., a noncentral χ2 distribution with k(K − k) degrees of freedom and noncentrality
parameter λ given by

λ = (δ′Q′)(QΣϑQ
′)−1Qδ.

One can now derive the asymptotic power of WT as a function of δ. If only one element
of δ is different from zero, then one can plot the asymptotic power as a function of this
element, as done in Figure 1 for the process defined in the next section.
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Next, we can derive the asymptotic power of the CCF test under a sequence of local
alternatives ϑ0T that characterizes a multivariate GARCH alternative. We obtain, using
a Taylor expansion around ϑ0,

√
T r̂ij,l(ϑ0T ) =

√
T r̂ij,l(ϑ0) +

∂r̂ij,l

∂ϑ′

∣∣∣∣
ϑ0

δ + Op(T
−1/2).

Assuming consistency of correlation estimates, i.e., plim r̂ij,l(ϑ0) = rij,l(ϑ0), we obtain for
the vector of correlations up to lag m,

√
T r̂m

ij (ϑ0T )
L−→ N

(
∂rm

ij

∂ϑ′

∣∣∣∣
ϑ0

δ, Im

)
.

where rm
ij = (rij,1, . . . , rij,m)′. Hence, the CCF statistic

Pm = T

m∑

l=1

r2
ij,l

L−→ χ2
m(λ)

has, asymptotically, a noncentral χ2 distribution with m degrees of freedom and noncen-
trality parameter λ given by

λ = δ′
∂rm′

ij

∂ϑ

∣∣∣∣
ϑ0

∂rm
ij

∂ϑ′

∣∣∣∣
ϑ0

δ.

The derivative can be calculated numerically. We generate 500 bivariate diagonal
BEKK processes with T = 10000, estimate univariate GARCH processes, obtain residuals
ξ̂1,t and ξ̂2,t and calculate correlations r̂m

ij . The same is done for a bivariate BEKK process
with lower left element of the A∗ matrix changed to -0.01 and 0.01, and the mean of the
corresponding derivatives of r̂m

ij is a good approximation of ∂rm
ij /∂ϑ′. For the BEKK(1,1,1)

process (7) with parameters specified in Section 4, the asymptotic power function of the
CCF test is depicted in Figure 1 together with the corresponding function for the Wald
test, assuming Gaussian innovations. Clearly, the Wald test has uniformly higher power
in a neighborhood of ϑ0. We get a very similar picture in Figure 2 when assuming
multivariate t8 distributed innovations, where the power drops slightly for both the Wald
and the CCF tests.

4 Finite sample performance

The following Monte Carlo investigation is thought to shed light on the empirical per-
formance of two strategies for inference on noncausality in variance. We compare the
empirical properties of the Wald statistic in (22) on the one hand and of the CCF test
introduced by Cheung and Ng (1996) on the other hand.
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4.1 The Monte Carlo design - Wald vs. CCF

To illustrate the empirical size properties of competing approaches to test noncausality
in variance we simulate bivariate GARCH-processes of the BEKK-form (S = p = q = 1)
according to the following choice of parameter matrices:

C =

(
1.10 0.00
0.30 0.90

)
, A∗ =

(
0.25 0.00
0.00 0.25

)
, B∗ =

(
0.90 0.00
0.00 0.90

)
. (24)

We test three null hypotheses. The first null hypothesis states that there is no causality
in variance in the system at all. The second and third null hypothesis formalize that
ε1t does not cause ε2t in variance and vice versa. In summary we test the following null
hypotheses:

H
(1)
0 : ε1t

V9 ε2t, ε2t
V9 ε1t,

H
(2)
0 : ε1t

V9 ε2t,

H
(3)
0 : ε2t

V9 ε1t.

We also provide empirical power estimates for the cases when testing H
(1)
0 or H

(2)
0 . Under

the alternative hypotheses we choose the parameter matrices A∗ and B∗ as

A∗ =

(
.250 .000
.025 .250

)
, B∗ =

(
.900 .000
.025 .900

)
. (25)

To indicate the relative performance of exact ML inference on the one hand and
the QML methodology on the other hand we draw underlying innovations alternatively
from a bivariate Gaussian distribution or as standardized and independent innovations
from a t−distribution with 8 degrees of freedom. Note that under Gaussian innovations
estimating the asymptotic covariance matrix as Σ̂ϑ = Ŝ−1D̂Ŝ−1, could be inefficient in
small samples (Hafner and Herwartz (2003)). Under conditional leptokurtosis making use
of a covariance estimator Σ̂ϑ = D̂−1 will result in size distortions. We consider sample
sizes T = 1000, 2000, 4000, 8000. The nominal significance level for all performed tests is
α = 0.05. Each process is generated 2000 times.

4.2 Simulation results

Table 1 shows empirical rejection frequencies for the Wald statistics implemented alter-
natively with covariance estimators D̂−1 (W1) and Ŝ−1D̂Ŝ−1(W2). Overall the empirical
size estimates are larger than their nominal counterparts, and often exceed the latter
significantly at the 5% level even in large samples (T = 8000). Empirical size esti-

mates are in almost any case somewhat larger when testing on overall noncausality (H
(1)
0 )

in comparison to testing on unidirectional noncausality (H
(2)
0 , H

(3)
0 ). Under leptokurtic

(standardized t−distributed) innovations ξt, W1 shows huge size distortions whereas the
empirical size estimates obtained for W2 come close to the nominal level as the sample
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size increases (T = 8000). Moreover, under conditional normality estimating the asymp-
totic covariance matrix as Σ̂ϑ = Ŝ−1D̂Ŝ−1 yields higher size estimates in comparison with
W1. For instance, testing H

(1)
0 under conditional normality in samples of size T = 1000

obtains empirical rejection frequencies of α̂ = 0.077 and α̂ = 0.121 for W1 and W2, re-
spectively. Relative to the nominal level of α = 0.05 it is evident, that the choice of the
robust covariance estimator may go at the cost of size distortions.

With respect to power properties testing overall noncausality (H
(1)
0 ) turns out to be less

effective than unidirectional testing (H
(2)
0 ) when actually ε1t is causing ε2t and ε2,t

V9 ε1,t.
Under conditional normality (conditional leptokurtosis), for instance, W1 (W2) delivers

empirical rejection frequencies which are up to 9% higher when testing H
(2)
0 instead of

H
(1)
0 .

Table 2 displays selected simulation results for the CCF-test, namely size estimates
for the case T = 1000 and power estimates for samples of size T = 8000 under both,
conditional normality and leptokurtosis. Results are shown for alternative test orders
(m). Apparently the size properties obtained from CCF are close to the nominal level
and therefore superior relative to the performance of the Wald statistics. In terms of
power, however, the CCF approach performs rather poor. For example, testing under
Gaussian innovations in samples of size T = 8000 the most favorable rejection frequency
obtained for the CCF-test is 15.75% which is by far inferior to the Wald test delivering
empirical power estimates of about 80.0%.

Given that W1 and W2 tend to reject under the null hypothesis more often than
CCF it is sensible to compare size adjusted power estimates. For this purpose Table
3 displays rejection frequencies obtained when testing H

(1)
0 and H

(2)
0 for the Gaussian

model with ε1t causing ε2t in variance. Size adjustment is here achieved by tuning the
nominal level of the CCF test such that under the null hypothesis both test procedures,
the Wald and the CCF, give identical empirical size estimates. Apparently, W1 clearly
outperforms the CCF-test after size adjustment. In samples with T = 4000 or T = 8000
size adjusted power estimates of W1 are up to five times larger than the corresponding
estimates obtained for the CCF-test. Note that the latter result is particularly important
for practical purposes. Adopting the CCF approach to test for causality in variance will
often fail to uncover causal relationships and will thereby tend to preclude multivariate
volatility models allowing cross equation dynamics, as e.g. the BEKK-model.

4.3 The Wald test under misspecification of the DGP

As outlined before the Wald statistic is obtained from QML-estimation of the multivariate
GARCH process. To indicate the impact of misspecification of the underlying DGP and,
thus, of the (quasi) log-likelihood function we follow two lines. First, we estimate BEKK
models of order S = p = q = 1 when the true DGP has a higher BEKK order, namely
S = 2. In this case we use the following parameter choices to evaluate size and power
properties, respectively:
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• Size:

A∗
11 =

(
0.20 0.00
0.00 0.15

)
, A∗

21 =

(
0.15 0.00
0.00 0.20

)
, B∗

11 = B∗
21 =

(
0.90 0.00
0.00 0.90

)
.

(26)

• Power

A∗
11 =

(
.200 .000
.025 .150

)
, A∗

21 =

(
.150 .000
.000 .200

)
, B∗

11 = B∗
21 =

(
.900 .000
.025 .900

)
.

(27)

Second, we estimate symmetric multivariate GARCH models in case the true under-
lying DGP exhibits an asymmetric impact of current (co)variances to lagged innovations.
For this purpose we use a bivariate threshold GARCH specification as in Hafner and
Herwartz (1998) or Herwartz and Lütkepohl (2000) generalizing the univariate process
introduced by Glosten, Jaganathan and Runkle (1993). Formally the asymmetric DGP is

specified by means of a state dependent parameter matrix Ã∗
11 replacing the corresponding

parameters in (6). The latter is chosen as

Ã∗
11 = A∗

11I(ε1,t−1 < 0) + A∗
21I(ε2,t−1 < 0), (28)

where I(·) is an indicator function and A∗
11 and A∗

21 are given in (26) and (27) for assessing
size and power properties, respectively. With respect to the choice of the matrix B∗

11 the
asymmetric process is identical to the symmetric specification with parameters given in
(24) and (25).

4.4 QML under misspecification - Simulation results

Table 4 shows empirical size and power estimates for QML inference under conditional
normality. Empirical size estimates of both Wald tests, W1 and W2, are almost unaffected
when modelling a process parameterized with (26) under misspecification of the order

parameter S. When testing H
(1)
0 or H

(2)
0 under the alternative of causal relations, however,

underestimating the BEKK order involves losses in terms of power. For instance, in
case T = 8000 testing H

(2)
0 in presence of causal relationships yields empirical rejection

frequencies for W1 of .851 and .716 if the BEKK order of the underlying model is S = 1
and S = 2, respectively. Under the null hypothesis W1 shows an empirical size of 5.09%
for both (true) BEKK orders underlying the DGP. In comparison with misspecifying the
BEKK order, ignoring the potential of an asymmetric response of volatility with respect
to the sign of lagged error terms εt−1 involves slightly higher empirical size distortions
under the null hypothesis but huge power losses under the alternative. For example,
employing the symmetric BEKK model to test on overall noncausality (H

(1)
0 ) by means of

W1 and in case T = 8000 yields empirical size and power estimates of 6.35% and 77.75%
(7.9% and 19.05%) if the true DGP exhibits a symmetric (asymmetric) impact of εt−1 on
volatility.
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5 Conclusions

We formalize the concepts of strong, semi strong, and weak multivariate GARCH. Using
the general vec representation of this model and building on Comte and Lieberman (2000)
we prove sufficiency or necessity of particular parameter restrictions for noncausality in
variance (linear causality in variance). Two approaches to testing for causality in variance,
namely the CCF test introduced by Cheung and Ng (1996) and a Wald test based on
(Q)ML theory are discussed. Evaluating the asymptotic local power properties we find
that the CCF test is inferior.

A Monte Carlo investigation indicates that the CCF test has more favorable empirical
size properties in comparison with the Wald test. The former test, however, is also
characterized by a severe shortfall in terms of empirical power. As a particular drawback
of the (Q)ML based approach one may regard the necessity of a (potentially misspecified)
parametric model to formalize the log likelihood function. Our results indicate that
ignoring an asymmetric impact of volatility on lagged innovations will involve significant
power losses in causality testing whereas underestimating the so-called BEKK order of a
particular DGP appears to have less severe implications for the power of Wald type tests.

For practical aspects of (co)variance modelling our results imply that using the CCF
test will in general mitigate the evidence in favor of volatility spillovers. Moreover, spec-
ification tests on asymmetric impacts of lagged innovations on current volatility should
be applied before formalizing higher dimensional parametric volatility models.

Appendix A

Definition 5 Let K = {1, . . . , K}, K ≥ 2, and I ⊂ K. Let X be a square matrix of
order K. Then X is said to be 0I if

Xij = 0 ∀i ∈ I, ∀j /∈ I.

Lemma 3 Let X and Y be some square matrices of order K ≥ 2, and I ⊂ {1, . . . , K}.
If both X and Y are 0I, then the matrix product XY is also 0I.

Proof: By definition of the Cayley matrix product,

[XY ]ij =
∑

k∈I
XikYkj +

∑

k/∈I
XikYkj. (29)

Now ∀i ∈ I∗ and ∀j ∈ J ∗ the first term on the right hand side of (29) is zero because
Ykj = 0, and the second term is zero because Xik = 0. Thus, XY is 0I . Q.E.D.

Lemma 4 If A(L) = IK +
∑∞

n=1 AnLn is an invertible linear filter and An is 0I ∀n ≥ 1,
then A(L)−1 = Π(L) = IK −

∑∞
n=1 ΠnLn is such that Πn is 0I ∀n ≥ 1.

Proof: The inverse filter is obtained recursively by Π1 = A1 and Πn = An−
∑n−1

m=1 Πn−mAm,
see Lütkepohl (1993, p.219). Applying Lemma 3 recursively yields the statement. Q.E.D.
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Lemma 5 Condition (15) implies Condition (14).

Proof: Follows immediately by applying Lemma 3 recursively to the matrices Φn defined
by (5). Q.E.D.

Proof of Theorem 1: The first part follows by the fact that weak multivariate
GARCH allows for the VARMA representation (2). The definition of linear causality in
variance corresponds to the definition of causality employed by Lütkepohl (1993). Hence,
the equivalence of (14) and linear noncausality in variance follows by Proposition 2.2
of Lütkepohl (1993), and the sufficiency of (15) follows by Proposition 6.3 of Lütkepohl
(1993).

In the second part of the theorem, εt is a semi-strong multivariate GARCH process.
Due to Lemma 5, we only need to show that Condition (14) implies variance noncausality.
Note first that

Var(εIt | FI
t−1) = E[ηIt | FI

t−1]

= E[E[ηIt | Ft−1] | FI
t−1]

= E[hIt | FI
t−1],

which follows because of FI
t−1 ⊂ Ft−1. Thus, using Definition 2 and the measurability of

ht with respect to Ft−1, we have that εJt
V9 εIt is equivalent to

E[ht,i | FI
t−1] = E[ht,i | Ft−1] = ht,i, ∀i ∈ I∗. (30)

Under Assumption 2, the process ht can be written as ht = Φ(1)−1σ+(IK∗−Φ(L)−1)ηt.
Denoting Φ(L)−1 = Π(L) = IK −∑∞

n=1 ΠnL
n, we obtain ht = Φ(1)−1σ +

∑∞
n=1 Πnηt−n.

Thus, we have ∀i ∈ I∗,

E[ht,i | FI
t−1] =

[
Φ(1)−1σ

]
i
+

∑

i′∈I∗
[Π(L)]ii′ηt,i′ +

∑
j∈J ∗

[Π(L)]ijE[ηt,j | FI
t−1]. (31)

Under Condition (14), all Φn are 0I∗ and by Lemma 4 all Πn are also 0I∗ . Thus, the third
term on the right hand side of (31) is zero and (30) holds, which proves the result. Q.E.D.

Proof of Lemma 2: For the multivariate GARCH(1,1) model, Φn = (A + B)n−1A,
and Condition (14) becomes (A+B)n−1A is 0I∗ , ∀n ≥ 1. The proof then follows the same
line of argument as the proof of Lemma 2 in Comte and Lieberman (2000). Q.E.D.

Proof of Theorem 2: We first show that (18) implies (19). From the BEKK
representation (7), the equivalent vec representation (1) can be obtained by setting
ω = vech(CC ′), A = D+

K(A∗ ⊗ A∗)DK and B = D+
K(B∗ ⊗ B∗)DK , where DK is the

duplication matrix and D+
K its generalized inverse. Thus, the condition R̃vec(A) = 0

is equivalent to R̃(D′
K ⊗ D+

K)vec(A∗ ⊗ A∗) = 0. Now vec(A∗ ⊗ A∗) can be written as
(IK ⊗ CKK ⊗ IK)vec(a∗a∗′), where a∗ = vec(A∗) and CKK is the commutation matrix.
(For a definition of DK and CKK see, e.g., Lütkepohl, 1996). Thus, R̃vec(A) = 0 is
equivalent to R̃ZKvec(a∗a∗′) = 0, with ZK = (D′

K ⊗ D+
K)(IK ⊗ CKK ⊗ IK). The ma-

trix R̃ZK contains in its uth row a 1 at the v-th position and zeros elsewhere, where
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u = (j − 1)k∗(K − k) + i + (i − 1)(k − i/2) and v = {i + (j − 1)K}(K2 + 1) −K2, for
i ∈ I and j ∈ J . However, v is just the index of the i + (j − 1)Kth diagonal element
of a∗a∗′ in the vector vec(a∗a∗′). Thus, the corresponding equation reads (A∗

ij)
2 = 0 or,

equivalently, A∗
ij = 0. This condition is equivalent to the m + (n− 1)kth row of condition

(19), where m is the index of i in I and n is the index of j in J . This holds for all i ∈ I
and j ∈ J , which proves that (18) implies (19).

Conversely, assume that A∗
ij = 0 for all i ∈ I and j ∈ J . Then, A = D+

K(A∗⊗A∗)DK

is such that Ai∗,j∗ = 0 for all i∗ ∈ I∗ and j∗ ∈ J ∗. But this is equivalent to condition
(18). Hence, (19) implies (18) and we have established the equivalence of conditions (19)
and (18). Q.E.D.

Appendix B

In the following, let us give some examples how to find the restriction matrices R̃ and
Q̃. Suppose we are interested in the conditions for εJt 9 εIt (V or LV ), where only the
composition of I and J change.

1. K = 2: Let I = {1} and J = {2}. Then, I∗ = {1} and J ∗ = {2, 3}. The matrix
R̃ is of dimension 2× 9 and given by

R̃ =

[
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0,

]

whereas Q̃ is of dimension 1× 4, given by

Q̃ =
[

0 0 1 0
]
.

2. K = 3

(a) First let I = {1, 2} and J = {3}. Then, I∗ = {1, 2, 4} and J ∗ = {3, 5, 6}.
The matrix R̃ is of dimension 9× 36. The positions of the 1 in the respective
rows are given by 13,14,16, 25,26,28,31,32,34.

The matrix Q̃ is of dimension 2× 9 and given by

Q̃ =

[
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0,

]

(b) Now consider the reverse causality direction, I = {3} and J = {1, 2}. Then
I∗ = {6} and J ∗ = {1, 2, 3, 4, 5}. The matrix R is of dimension 5× 36, with a
1 in the respective rows at the positions 6,12,18,24,30.

The matrix Q̃ is now given by

Q̃ =

[
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0,

]
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3. K = 4

(a) First let I = {1, 2} and J = {3, 4}. Then, I∗ = {1, 2, 5} and J ∗ = {3, 4, 6, 7, 8, 9, 10}.
The matrix R̃ is of dimension 21×100. The positions of the 1 in the respective
rows are given by 21,22,25,31,32,35,51,52,55,61,62,65,71,72,75,81,82,85,91,92,95.
The matrix Q̃ is of dimension 4× 16 and given by

Q̃ =




0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0




(b) Now let I = {1} and J = {2, 3, 4}. Then I∗ = {1} and J ∗ = {2, 3, 4, 5, 6, 7, 8, 9, 10}.
The matrix R̃ is of dimension 9× 100, with positions of the 1 in the respective
rows given by 11,21,31,41,51,61,71,81,91. Q̃ is now (3× 16) and given by

Q̃ =




0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.



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Size Power
T 1000 2000 4000 8000 1000 2000 4000 8000

Gaussian model

H
(1)
0 W1: D−1 .0765 .0795 .0640 .0635 .1285 .2135 .4370 .7775

W2: S−1DS−1 .1205 .0970 .0730 .0740 .1870 .2530 .4740 .7895

H
(2)
0 W1: D−1 .0570 .0665 .0605 .0590 .1430 .2825 .5505 .8510

W2: S−1DS−1 .0925 .0790 .0655 .0620 .1970 .3180 .5630 .8595

H
(3)
0 W1: D−1 .0555 .0720 .0645 .0560 .0690 .0700 .0580 .0610

W2: S−1DS−1 .0800 .0835 .0695 .0625 .0990 .0885 .0685 .0610
t-model

H
(1)
0 W1: D−1 .2625 .2950 .2885 .2450 .3505 .5220 .7310 .9250

W2: S−1DS−1 .1315 .1110 .0825 .0735 .1905 .2535 .4545 .7370

H
(2)
0 W1: D−1 .2110 .2250 .2110 .2005 .3335 .5290 .7580 .9405

W2: S−1DS−1 .0950 .0915 .0810 .0685 .2005 .3310 .5490 .8305

H
(3)
0 W1: D−1 .1930 .2210 .2030 .1820 .1965 .2140 .1945 .1665

W2: S−1DS−1 .0885 .0825 .0690 .0595 .0910 .0905 .0755 .0595

Table 1: Size and power estimates for the Wald statistics (W1 and W2).
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Size T = 1000 Power T = 8000
Gaussian model
m = 1 5 10 1 5 10 df

H
(1)
0 .0475 .0590 .0545 .0575 .0820 .1105 2m

H
(2)
0 .0500 .0590 .0585 .0625 .1115 .1575 m

H
(3)
0 .0510 .0500 .0480 .0485 .0475 .0460 m

t-model

H
(1)
0 .0555 .0665 .0780 .0620 .0915 .1280 2m

H
(2)
0 .0460 .0600 .0650 .0650 .1085 .1565 m

H
(3)
0 .0460 .0625 .0795 .0420 .0465 .0560 m

Table 2: Selected size and power estimates for CCF tests of alternative orders m. df
denotes the degrees of freedom under the null hypothesis.

Wald CCF
T 1000 2000 4000 8000 1000 2000 4000 8000

H
(1)
0 .1285 .2135 .4370 .7775 .0929 .0982 .1088 .1490

H
(2)
0 .1430 .2825 .5505 .8510 .0767 .1118 .1182 .1868

Table 3: Size adjusted power estimates for the Wald test using D̂−1 as covariance estimator
(W1) and the CCF test (m = 10) under conditional normality of the DGP.
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Size estimates Power estimates
T 1000 2000 4000 8000 1000 2000 4000 8000

True BEKK order S = 2

H
(1)
0 : W1: D−1 .0820 .0815 .0625 .0645 .1070 .1690 .3260 .6220

W2: S−1DS−1 .1210 .0995 .0735 .0765 .1715 .2020 .3475 .6335

H
(2)
0 : W1: D−1 .0605 .0670 .0620 .0590 .1135 .2230 .4165 .7155

W2: S−1DS−1 .0950 .0800 .0675 .0610 .1540 .2485 .4450 .7300

H
(3)
0 : W1: D−1 .0585 .0730 .0655 .0575 .0655 .0710 .0585 .0605

W2: S−1DS−1 .0830 .0850 .0710 .0630 .0940 .0855 .0700 .0615
Bivariate threshold GARCH

H
(1)
0 : W1: D−1 .0590 .0640 .0645 .0790 .0540 .0725 .0975 .1905

W2: S−1DS−1 .0840 .0880 .0740 .0815 .0710 .0875 .1000 .1880

H
(2)
0 : W1: D−1 .0280 .0455 .0555 .0700 .0335 .0630 .1230 .2525

W2: S−1DS−1 .0560 .0570 .0615 .0720 .0610 .0775 .1355 .2510

H
(3)
0 : W1: D−1 .0280 .0435 .0475 .0655 .0275 .0405 .0500 .0675

W2: S−1DS−1 .0475 .0460 .0580 .0650 .0405 .0520 .0565 .0675

Table 4: Size and power estimates for the Wald statistics (W1 and W2) under misspecifi-
cation of the (quasi) log-likelihood function. Upper block: Underestimation of the BEKK
order S. Lower block: Asymmetry of the underlying volatility process.
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Figure 1: Asymptotic power functions of the Wald test (solid), the
CCF test with m = 1 (dotted) and the CCF test with m = 10
(dashed) assuming Gaussian innovations. The abscissa is the lower
left element of the BEKK matrix A∗ multiplied by

√
T .

Figure 2: Asymptotic power functions of the Wald test (solid), the
CCF test with m = 1 (dotted) and the CCF test with m = 10
(dashed) assuming t8 distributed innovations. The abscissa is the
lower left element of the BEKK matrix A∗ multiplied by

√
T .
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