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Abstract

We describe joint atomistic and continuum studies of deformation and failure in brittle
solids and thin film systems. The work is organized in four parts. In the first part, we
present a review on atomistic modeling and analysis tools, including a summary of recent
research activities in the field.

The second part is dedicated to joint continuum-atomistic modeling of dynamic frac-
ture of brittle materials, where we employ one-, two- and three-dimensional models. The
main focus is a systematic comparison of continuum mechanics theory with atomistic
viewpoints. An important point of interest is the role that material nonlinearities play
in the dynamics of fracture. The elasticity of a solid clearly depends on its state of defor-
mation. Metals will weaken or soften, and polymers may stiffen as the strain approaches
the state of materials failure. It is only for infinitesimal deformation that the elastic
moduli can be considered constant and the elasticity of the solid linear. However, many
existing theories model fracture using linear elasticity. Certainly, this can be considered
questionable since material fails at the tip of a dynamic crack because of extreme defor-
mation. We show by large-scale atomistic simulations that hyperelasticity, the elasticity
of large strains, can play a governing role in the dynamics of fracture and that linear
theory is incapable of capturing all phenomena. We introduce the concept of a charac-
teristic length scale for the energy flux near the crack tip and demonstrate that the local
hyperelastic wave speed governs the crack speed when the hyperelastic zone approaches
this energy length scale. This length scale implies that in order to sustain crack motion,
there is no need for long-range energy transport. Instead, only energy stored within a
region defined by the characteristic energy length scale needs to be transported toward
the crack tip in order to sustain its motion. This new concept helps to form a more
complete picture of the dynamics of fracture. For instance, the characteristic energy
length scale explains the observation of crack motion faster than all wave speeds in the
solid, including recent experimental reports of mode I cracks faster than the shear wave
speed. The existence of this novel length scale is verified for mode I and mode III cracks.
Further, we show that hyperelasticity also governs dynamic crack tip instabilities. Stiff-
ening material behavior allows for straight crack motion up to super-Rayleigh speeds,
and softening material behavior causes the crack tip instability to occur at speeds as low
as one third of the theoretical limiting speed, in accordance with experimental results.
Additional studies focus on the dynamics of suddenly stopping cracks as well as the
dynamics of fracture along interfaces of dissimilar materials. An important result in this
area is the discovery of a novel mother-daughter mechanism of mode I cracks moving
along interfaces of stiff and soft materials, leading to supersonic mode I fracture.

The third part is devoted to the mechanical properties of ultra thin submicron cop-
per films. We discuss a novel material defect referred to as a diffusion wedge, recently
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proposed theoretically and observed indirectly in experiment. The theory predicts that
tractions along the grain boundary are relaxed by diffusional creep and a diffusion wedge
is built up. Due to traction relaxation, the diffusion wedge behaves as a crack along the
grain boundary in the long-time limit. As a consequence, large resolved shear stresses on
glide planes parallel to the film surface develop that cause nucleation of dislocations on
glide planes parallel to the film surface and close to the film-substrate interface, referred
to as parallel glide dislocations. This new dislocation mechanism in thin films, though
standing in contrast to the well known Mathews-Freund-Nix mechanism of threading dis-
location propagation, has been observed recently in experiments of ultra thin submicron
copper films subject to thermal stress. We discuss joint atomistic-continuum modeling
of such diffusion wedges, with a focus on the relation of diffusion and nucleation of dislo-
cations. We propose a Rice-Thomson model for nucleation of parallel glide dislocations,
and report a critical condition for initiation of grain boundary diffusion in thin films
leading to a threshold stress for diffusion initiation independent of the film thickness.
We extend the existing continuum model to account for the new concept of a threshold
stress and model experimental thermal cycling curves. The new model improves the
stress-temperature curves particularly at high temperatures. By large-scale atomistic
modeling, we study the atomic details of buildup of the diffusion wedge and subsequent
parallel glide dislocation nucleation. Based on our atomistic simulation results, we cal-
culate a critical stress intensity factor as a condition for nucleation of parallel glide
dislocations. We show that this criterion can serve as input parameter for mesoscopic
discrete dislocation modeling of constrained diffusional creep. By atomistic studies of
polycrystalline thin films, we study the transition from classical threading dislocations
to parallel glide dislocations. In agreement with experimental findings and the classical
understanding, threading dislocations are found to dominate when tractions are not re-
laxed by diffusion. If grain boundary tractions are relaxed by diffusional creep, parallel
glide dislocations dominate due to the crack-like deformation field near the diffusion
wedge. Another result is that the structure of grain boundaries has impact on disloca-
tion nucleation and on the motion of dislocations along grain boundaries. Low-energy
grain boundaries provide more fertile sources for dislocations than high-energy grain
boundaries. We also discuss the role of the grain boundary structure on the diffusivi-
ties and show by large-scale atomistic studies of diffusional creep in polycrystalline thin
films that high-energy grain boundaries provide faster diffusion paths than low-energy
grain boundaries. Finally, a deformation map summarizes the range of dominance of
different strain relaxation mechanisms in ultra-thin films. We show that besides the
classical “threading dislocation” regime, there are numerous novel mechanisms once the
film thickness approaches nanoscale.

In the fourth and last part of this thesis, we emphasize the potentials and limitations
of molecular-dynamics simulations in studying small-scale materials phenomena, and
include a critical assessment of the simulation methods employed in this work and the
validity of the results. Finally, the most important results of this thesis are briefly
summarized and an outlook to possible future research is provided.
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tinit Fracture initiation time
T Temperature (in Kelvin)
H(s) Heaviside unit step function
δij Kronecker delta function
a Crack length
ȧ = v Time derivative of crack length(=crack speed)
ui Displacement vector
u̇i Particle velocity vector
c0 Wave speed in a one-dimensional model string of atoms
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Nomenclature

cr Rayleigh-wave speed
cs Shear wave speed
cl Longitudinal wave speed
Θ Angle in cylindrical coordinate system at crack tip
r Radial direction in cylindrical coordinate system at crack tip
σij Stress tensor
εij Strain tensor
σi, εi Principal stress/strain
σΘ, εΘ Hoop stress/hoop strain
σY Yield stress
σcr

0 Initiation stress for grain boundary diffusion
γs Fracture surface energy
G Energy release rate
K Stress intensity factor
F Dynamic J-integral
m Atomic mass
Ξ Elastic mismatch across bimaterial interface
ci Centrosymmetry parameter atom i
sα

i Slip vector atom α
bi, b Burgers vector
b Magnitude of Burgers vector (=| b |)
a0 Lattice constant of cubic metals
hf Film thickness
d Grain size
τ Characteristic time for stress relaxation
δz Diffusive displacement
Th Homologous temperature
δgbDgb Grain boundary diffusivity
Ds Surface diffusivity

40



1. Introduction

Understanding how materials fail has always been of great interest to human beings.
Over many thousands of years, the knowledge about materials has furnished the way for
our modern technologies. Stone age, bronze age... materials even served as eponyms for
civilization eras.

At this moment we are at the crossroads to a new era where humans, for the first
time, start creating technologies at the scale of single atoms. Such nanotechnology could
revolutionize the way we live, learn and organize our lives in the next decades. Computer
modeling is becoming increasingly important in the development of new technologies.
Since on the nanoscale the effects of single atoms dominate material behavior, atomistic
simulations are expected to be important not only for scientists but also for engineers.

This thesis focuses on atomistic modeling of small-scale dynamics phenomena with
large-scale simulations. The main question we are concerned with is how materials fail
under extreme conditions, and how the macroscopic failure process is related to atomistic
details?

1.1. Different classes of materials behavior

Figure 1.1.: Schematic of brittle (a) versus ductile (b) materials behavior.

When materials are deformed, they display a small regime where deformation is re-
versible, a behavior referred to as the elastic regime. Once the forces on the material
are increased, deformation becomes irreversible, and the deformation of a body caused
by an applied stress remains after the stress is removed. This behavior is referred to as
the plastic regime, and may cause the material to fail [51].

41



1. Introduction

Materials failure is classically divided into two generic types: brittle and ductile. In
the brittle case, atomic bonds are broken as material separates along a crack front. The
type of failure of such materials is often characterized by the simultaneous motion of
thousands of small cracks, as it is for example observed when glass shatters. This type
of failure usually happens rapidly, as cracks under large impact loading propagate at
velocities close to the speed of sound in materials [78, 81, 82]. An enormous amount of
research has been carried out over the last century, which has been summarized in recent
books [78, 29]. The origin of fracture research dates back to the early 20th century in
studies by Griffith [93] and Irwin [120]. The Griffith criterion provides a quantitative
estimate of the condition under which material fails, and is based on simple energetic
and thermodynamic arguments. The Griffith criterion states that materials fail when
the mechanical elastic energy released by crack propagation equals the fracture surface
energy 2γs:

G = 2γs, (1.1)

where G is the mechanical energy release rate [78]. This thermodynamic view of fracture
was the foundation for the field of fracture mechanics. The continuum mechanics theory
of fracture is a relatively well-established framework. In the continuum theory, the stress
field in the vicinity of the crack tip is given by the asymptotic solution [246, 22, 78] and
exhibits a universal character independent of the details of the applied loading. The
loading of cracks can be separated into three different modes. Mode I is opening loading,
mode II is shear loading and mode III is antiplane shear loading.

Figure 1.2.: Brittle (a) versus ductile (b) materials behavior, observed in atomistic com-
puter simulations. In brittle materials failure, thousands of cracks break the material.
In ductile failure, material is plastically deformed by motion of dislocations.

In ductile failure, a catastrophic event such as rapid propagation of thousands of cracks
does not occur. Tough materials like metals do not shatter; they bend easily because
plastic deformation occurs by the motion of dislocations in the material. Ductility is
sometimes defined as the property of a metal which allows it to be drawn into wires
or filaments. Since their discovery in the early 1930s, dislocations have helped explain
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1.1. Different classes of materials behavior

many of the perplexing physical and mechanical properties of metals, some of which
remained mysterious even until this date [209]. One of the topics that were discussed
controversially is that the resistance of materials to shear is significantly less than the
theoretical strength [209, 92, 149]. This phenomenon can only be explained by the
existence of dislocations and their motion. The behavior of dislocations in crystals
is very complex and involves multiple mechanisms for generation and annihilation, as
summarized in [109]. Collective events may occur through interaction among many
dislocations or between dislocations and other defects such as grain boundaries.

The tendency of materials to be ductile or brittle depends on the atomic microstruc-
ture. The face-centered-cubic (fcc) packing is known to have a strong propensity toward
ductility; body-centered-cubic (bcc) much less so. Glasses do not have extended crys-
tallinity because atoms are randomly packed. They have no slip-planes and mostly
exhibit brittle failure with little ductility. While atomic bonds are broken by stretching
the solid in brittle fracture, the sliding between planes is achieved by shearing the solid
in ductile failure. The ease of the atomic slip depends on the atomic arrangement of the
slip planes. The more compact and consequently less bumpy planes slip better. Ductile
versus brittle failure is schematically summarized in Figure 1.1. Figure 1.1 (a) shows
brittle materials failure by propagation of cracks, and Figure 1.1 (b) depicts ductile
failure by generation of dislocations at a crack tip. The atomic details of such different
behavior is shown in Figure 1.2. Although brittle and ductile failure have both been
studied extensively, for a long time it remained unclear what separates ductile from
brittle failure.

What is the origin of such fundamentally different behaviors? It was established that
the origin of brittle versus ductile behavior is at the atomic scale. Studies by Rice and
Thomson [181] revealed that there exists a competition between ductile (dislocation
emission) and brittle (cleavage) mechanisms at the tip of a micro-crack. Imperfections
such as micro-cracks are considered the seeds for failure and exist in real materials.
The model by Rice and Thomson has been extended recently to include a new material
parameter, the unstable stacking fault energy γus [178, 179]. The unstable stacking
fault energy describes the resistance of the material to motion of dislocations, while
the fracture surface energy describes the resistance of materials to fracture. At a crack
tip, the unstable stacking fault energy competes with the fracture surface energy γs [78]
Once these material parameters are known, it is often possible to quantitatively predict
material behavior.

Recent research results indicate that dislocation based processes and cleavage are not
the only mechanism for deformation of materials. Materials under geometrical confine-
ment, also referred to as materials in small dimensions, show a dramatically different
behavior. This is believed to be caused by the fact that the behavior of these materials
is characterized by the interplay of interfaces (e.g. grain boundaries), constraints (e.g.
substrates) and free surfaces. Examples for such materials are nanocrystalline materials
[240, 241] or ultra-thin sub-micron films [25]. It was also shown by computer simu-
lation that in materials with ultra-small grain sizes of tens of nanometers and below,
deformation can be completely dominated by grain boundary processes such as grain
boundary diffusion [240, 241]. Due to the small sizes of the grains, dislocations can
not be generated, because for instance Frank-Read sources are too large to fit within a
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grain, or because dislocations are energetically very expensive under very small geomet-
rical confinement [77, 167, 169]. Even though such material behavior is ductile (since
materials can be bent without cleavage), no dislocation motion is required. Another
recent observation in both computer simulation and experiment is that partial dislo-
cations dominate in nanostructured materials, as opposed to complete dislocations in
coarse-grained materials [235].

1.2. Motivation for the atomistic viewpoint: Nanoscale
governs dynamics of materials failure

Historically, the classical physics of continuum has been the basis for most theoretical
and computational tools of engineers. In early stages of computational plasticity, dislo-
cations and cracks were often treated using linear continuum mechanics theory, relying
on numerous phenomenological assumptions. Over the last decades, there has been a
new realization that understanding nanoscale behavior is required for understanding
how materials fail (e.g. [6, 149]). This is partly due to the increasing trend towards
miniaturization as relevant length scales of materials approach several nanometers in
modern technology. Once the dimensions of materials reach sub-micron length scales,
the continuum description of materials is questionable and the full atomistic information
is often necessary to study materials phenomena.

Atomistic simulations have proved to be a unique and powerful way to investigate
the complex behavior of dislocations, cracks and grain boundary processes at a very
fundamental level. Atomistic methods are increasingly important in modern materials
modeling. One of the strengths and the reason for the great success of atomistic methods
is its very fundamental viewpoint of materials phenomena. The only physical law that
is put into the simulations is Newton’s law and a definition of how atoms interact with
each other. Despite this very simple basis, very complex phenomena can be simulated.
Unlike many continuum mechanics approaches, atomistic techniques require no a priori
assumption on the defect dynamics. A drawback of atomistic simulations is the difficulty
of analyzing results and the large computational resources necessary to perform the
simulations. This becomes more evident as the simulation sizes increase to systems with
billions of atoms [12, 185]. Even with today’s largest computers, system sizes with only
a few billion atoms can be simulated, whereas a cubic centimeter of material already
contains more than 1023 atoms.

Once the atomic interactions are chosen, the complete material behavior is determined.
While in some cases it is difficult to find the correct potential for a specific material,
atomic interactions can often be chosen such that generic properties common to a large
class of materials are incorporated (e.g. ductile materials). This allows design of “model
materials” to study specific materials phenomena. Despite the fact that model building
has been in practice in fluid mechanics for many years, the concept of “model materials”
in materials science is relatively new [12]. On the other hand, atomic interactions can
be calculated very accurately for a specific atomic interaction using quantum mechanics
methods such as the density functional theory [202].

Richard Feynman says in his famous Feynman’s Lectures in Physics [67]:
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“If in some cataclysm all scientific knowledge were to be destroyed and only one
sentence passed on to the next generation of creatures, what statement would contain

the most information in the fewest words?
I believe it is the atomic hypothesis that all things are made of atoms - little particles
that move around in perpetual motion, attracting each other when they are a little

distance apart, but repelling upon being squeezed into one another. In that one
sentence, you will see there is an enormous amount of information about the world, if

just a little imagination and thinking are applied.”

This underlines atomistic simulations as a natural choice to study materials failure
at a fundamental level. The atomistic level provides the most fundamental, sometimes
referred to as the ab initio, description of the failure processes [6]. Many materials
phenomena are multi-scale phenomena. For a fundamental understanding, simulations
should ideally capture the elementary physics of single atoms and reach length scales
of thousands of atomic layers at the same time. Recently, an increasing number of
researchers consider the computer as a tool to do science, similar as experimentalists
use their lab to perform experiments. Computer simulations have thus sometimes been
referred to as “computer experiments”.

1.3. Organization of this thesis

Atomistic modeling of several mechanisms of dynamic materials failure is the focus of
this thesis. We will discuss brittle fracture as well as plasticity of ultra thin submicron
films. In all areas covered by this thesis, we try to answer these general questions:

• How can a coupling between continuum theories and atomistic methods be achieved?

• Can continuum mechanics theory be applied to study materials phenomena at very
small scales?

• In which fields can atomistic simulations be applied and where are the simulations
predictive?

This thesis is divided into four parts. In the first part, we present a review on atomistic
simulation tools. We cover classical molecular dynamics, ab initio techniques, computing
techniques as well as analysis approaches.

The second part is dedicated to dynamic fracture. We discuss a one-dimensional model
of dynamic fracture illustrating some fundamental concepts. We then concentrate on
two- and three dimensional models of mode I, mode II and mode III fracture. In the
main focus of the work is a systematic comparison of the continuum mechanics theory
with atomistic viewpoints. An important point of interest is the role that material
nonlinearities play in the dynamics of fracture. By using harmonic systems as reference
systems, we systematically increase the strength of the nonlinearities and show that
hyperelasticity, the elasticity of large strains, governs dynamic fracture under certain
conditions.

The third part is devoted to the mechanical properties of ultra thin submicron copper
films. We will discuss a novel material defect referred to as a diffusion wedge, recently
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proposed theoretically [88] and observed indirectly in experiment [25]. This new de-
fect causes an unexpected deformation mechanism in thin films, called “parallel glide”.
Further studies focus on modeling of experimental thermal cycling experiments with con-
tinuum mechanics theories. The work done in this field helps to clarify the deformation
mechanisms of ultra thin films.

The second and third part each feature a separate discussion and conclusion section.
In addition, the forth part contains a more general discussion of the results of the work
described in this thesis, including a critical evaluation of the simulation tools used and
the generality of the results. We conclude with an outlook to possible future work.
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Part I.

Review of atomistic simulation tools
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2. Modeling of dynamic materials
failure using atomistic methods

In this chapter we review modeling of dynamic materials failure using large-scale com-
puter simulations. In recent years numerous researchers proposed that in materials fail-
ure, atomic-scale mechanisms could play a key role [11, 12, 150, 148, 97, 220, 240, 242].
For a fundamental understanding of materials failure, the atomic length scale needs
to be incorporated into the modeling. In the last decades, ultra large-scale atomistic
computer simulations of dynamic materials failure spanning several length-scales from
Angstroms to micrometers within one simulation have emerged and the field is under
rapid development due to exponentially increasing computer capacity [12, 186, 221].

Here we describe computational techniques associated with large-scale computing,
review the most popular atomistic simulation methods and discuss several analysis tools.

2.1. Classical molecular-dynamics versus “ab initio”
methods: Potentials and applications

Adapting the atomistic viewpoint, a fundamental description of the materials can be
obtained. However, characterization of the interatomic interactions remains an impor-
tant issue, since these are the core of atomistic modeling and simulation methods. The
major differences between various atomistic methods are how atomic interactions are
calculated.

With the expression for the potential energy φi of a particle i given by the chosen
potential, the total energy of the system Etot can be obtained by summing over all
particles:

Etot =
N∑

i=1

φi, (2.1)

where N is the total number of particles. The force vector fi for a particle i is obtained
by the gradient of the potential energy with respect to the particle location in space:

fi = −∇φi. (2.2)

Numerous potentials with different levels of accuracy have been proposed, each having
its problems and strengths. The approaches range from accurate quantum-mechanics
based treatments (e.g. first-principle density functional theory methods [202], or tight-
binding potentials [40]), to multi-body potentials (e.g. embedded atom approaches as
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proposed in [71]) to the most simple and computationally least expensive pair poten-
tials (e.g. Lennard-Jones) [15, 46]. One of the first molecular-dynamics studies was a
Lennard-Jones model of argon in 1964 [175]. Previous studies used hard-sphere models
to describe phase transformations [13, 14].

In density functional theory and related methods [202], the full quantum mechanical
equations are solved to calculate the force on particles and are therefore numerically
most expensive. Since the full quantum mechanical information is incorporated, the
complete chemistry of atoms can be modeled (e.g. chemical reactions). Multi-body
potentials are often constructed based on quantum mechanical understanding of the
binding, which is then devised into an empirical equation (e.g. electrons are not treated
explicitly in EAM potentials but appear as electron density instead). Pair potentials
assume that the force between atoms only depends on the distance between neighboring
atoms. Empirical potentials have the advantage that they are computationally more
feasible to study large systems required for investigations of mechanical properties of
materials.

One of the most recent developments is ab initio molecular-dynamics, as reported
by the group around Parrinello (Car-Parrinello molecular-dynamics) [40, 152]. In this
method, only valence electrons are treated explicitly, and the interaction with the core
electrons is treated based on pseudopotentials. Most quantum-mechanics methods scale
as O(N3) or worse (the Car-Parrinello method, depending on the algorithm chosen, can
scale slightly better), while molecular-dynamics methods based on empirical potentials
scale linearly with the number of particles, as O(N). Any scaling other than linear is a
severe computational burden and basically inhibits usage of the method for very large
simulations.

An overview over the most prominent materials simulation techniques is shown in
Figure 2.1. In the plot we indicate which length- and timescale quantum mechanics-
based methods, classical molecular-dynamics methods as well as numerical continuum
mechanics methods can reach. Quantum-mechanics based treatments are still limited
to very short time- and length scales on the order of a few nanometers and picoseconds.
Once empirical interactions are assumed in classical molecular-dynamics schemes, the
length-and timescales achieved are dramatically increased, approaching micrometers and
nanoseconds [1, 12]. Continuum mechanics based simulation tools can treat virtually any
length scale, but they lack a proper description at small scales and are therefore often not
suitable to describe materials failure processes in full detail (see discussion in Section 1.2).
Mesoscopic simulation methods such as discrete dislocation dynamics can bridge the gap
between molecular-dynamics and continuum theories [147, 223, 47, 48, 49, 136, 137, 101].

The success of classical molecular-dynamics approach is further demonstrated in Fig-
ure 2.2. Over the last decades, the computer power available for atomistic simulations
has dramatically increased. The figure summarizes the increase in computer power over
the past, and illustrates how big systems could be treated using classical molecular-
dynamics. The need for military applications has strongly driven the development of
supercomputers (e.g. ASCI computers, which are among the most powerful supercom-
puters of the world, are being used to maintain the US stockpile of nuclear weapons).
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2.2. Empirical interatomic potentials

Figure 2.1.: Overview over different simulation tools and associated length-and time
scales.

The most important conclusion from the discussion of the different methods is that
the only feasible approach to study mechanical properties of materials at length scales
up to micrometers is classical molecular-dynamics. The remainder of this chapter will
be focused on the classical atomistic methods with empirical potentials.

2.2. Empirical interatomic potentials

Here we describe some of the most common empirical potentials.

2.2.1. Pair potentials

Pair potentials are the simplest choice for describing atomic interactions. For some
materials interatomic interactions are best described by pair potentials. Prominent
example are noble gases (e.g. argon) [175] and Coulomb interactions. Pair potentials
have also proven to be a good model for more complex materials such as SiO2 [214]. The
potential energy of an atom is given by

φi =

Ni∑
j=1

φij(rij) (2.3)

where Ni is the number of neighbors of atom i. Usually, the number of neighbors is lim-
ited to the second or third nearest neighbors. Popular pair potentials for the simulation
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2. Modeling of dynamic materials failure using atomistic methods

Figure 2.2.: Increase in computer power over the last decades and possible system sizes
for classical molecular-dynamics modeling. Petaflop computers expected by the end of
the current decade will allow simulations with hundreds of billions of atoms.

of metals include the Morse potential [160] and the Lennard-Jones (LJ) potential, which
are described for instance in [15, 231, 46]. The LJ 12:6 potential is defined as

φij(rij) = 4ε0

[(
σ

rij

)12

−
(

σ

rij

)6
]

. (2.4)

The LJ potential can be fitted to the elastic constants and lattice spacing of metals, but
the result has significant shortcomings with respect to the stacking fault energy and the
elasticity of metals. The term with power 12 represents atomic repulsion, and the term
with power 6 represents attractive interactions. The parameter σ scales the length, and
ε0 the energy of atomic bonds. Often, pair potentials are cutoff smoothly with a spline
cutoff function (see for instance [231] or [98]).

Another popular pair potential is the Morse potential, defined as

φij(rij) = D [1 − exp (−β(rij − r0))]
2 . (2.5)

Fit of this potential to different metals (as well as different forms of the Morse potential)
can be found for instance in [135]. The parameter r0 stands for the nearest neighbor
lattice spacing, and D and β are additional fitting parameters. The Morse potential
is computationally more expensive than the LJ potential due to the exponential term
(however, this is more realistic for many materials).

An indication to use pair potentials can also be the requirement to save computational
resources. Another important advantage is that fewer parameters are involved (simpli-
fying parameter studies and fit to different materials). For example the LJ potential has
only two parameters, and the Morse potential has only three.
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2.2. Empirical interatomic potentials

The potentials given by equations (2.4) and (2.5) are strongly nonlinear functions of
the radius r. In some cases it is advantageous to linearize the potentials around the
equilibrium position and define the so-called harmonic potential

φij(rij) = a0 +
1

2
k(rij − r0)

2 (2.6)

where k is the spring constant, and r0 the equilibrium spacing, and a0 is a constant
parameter. An important drawback of pair potentials is that elastic properties of metals
can not be modeled correctly. An implication of the fact that the energy of an atom de-
pends only on pair interactions is that the so-called Cauchy relation holds, and therefore
c1122 = c1212 [26]. This condition is violated in most real materials.

2.2.2. Multi-body potentials

The idea behind multi-body potentials is to incorporate more specific information on
the bonds between atoms than simply the distance between two neighbors. In such
potentials the energy of bonds therefore depends not only on the distance of atoms, but
also on its local environment.

This allows to include quantum mechanical effects such as the influence of the electron
gas in metals. In the case of metals, interactions of atoms can be quite accurately
described using embedded atom potentials (EAM) or n-body potentials (e.g., [71, 155]
or variations of the classical EAM potential [45, 26]). Other very similar multi-body
potentials are based on the effective medium theory (EMT) [237, 238]. Good models for
metals like copper and nickel have been published, while other metals (e.g. aluminum)
are more difficult to model with such approaches [260, 257]. The elastic constants can
be fitted much better to real materials when the Cauchy relation is violated.

The EAM potential for metals is typically given in the form

φi =

Ni∑
j=1

φij(rij) + fi(ρi), (2.7)

where ρi is the local electron density and fi is the embedding function. The electron
density ρi depends on the local environment of the atom i. The potential features a
contribution by a two-body term (repulsion and attraction of atoms), in conjunction
with a multi-body term that accounts for the local electronic environment of the atom.

For other materials like silicon, bond-order multi-body potentials have been proposed
(e.g. Tersoff potential [210], or Stillinger-Weber potential [204]; see also discussion in
[112]). This accounts for the fact that in many materials, the order of the bonding has
a significant effect on the strength of the material. Modified embedded atom potentials
(MEAM) have recently been proposed that can be parameterized for silicon [206]. Multi-
body potentials allow the elastic properties of metals to be better fitted (e.g. [26]).

In most empirical potentials, it is common that only the small-strain elastic proper-
ties are fitted. This could sometimes lead to problems in modeling strongly nonlinear
phenomena such as brittle fracture.
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2.3. Simulation methods

We review simulation methods that incorporate atomistic information.

2.3.1. Classical molecular-dynamics

The simplest tool for atomistic studies is classical molecular-dynamics [15]. Molecular-
dynamics predicts the motion of a large number of atoms governed by their mutual
interatomic interaction, and it requires numerical integration of the equations of motion.
This method was first introduced by Alder and Wainwright in the late 1950’s [13, 14]
to study the interactions of hard spheres, and was advanced to modeling water by
Rahman in 1964 [175]. The molecular-dynamics method is one of the simplest numerical
techniques in modern materials modeling. The governing equation of motion for every
atom is

f = mr̈, (2.8)

where f is the force vector on a atom and r̈ is the acceleration of an atom.

The equations of motion are integrated using a velocity verlet scheme [15, 207, 1],
which has proven to be an effective and reliable method for since long-term energy con-
servation is very good. The velocity verlet algorithm is obtained by a Taylor expansion
of the position of particle i at tn−1 and tn+1, and is a second order integration scheme.
In this scheme, the position vector r and velocity vector ṙ are obtained as

r(t + ∆t) = r(t) + ṙ(t)∆t + r̈(t)(∆t)2/2, (2.9)

ṙ(t + ∆t) = ṙ(t) + (r̈(t) + r̈(t + ∆t)) ∆t/2. (2.10)

The forces at each integration step are obtained by the formulas described in equa-
tion (2.2), and the acceleration r̈ in equation (2.9) and equation (2.10) is obtained by
r̈ = f/m. The time step ∆t must be chosen such that the atomic vibrations are accu-
rately modeled, and is usually taken on the order of several 10−15 seconds. In order to
simulate the dynamical evolution of atoms over the time span of one nanosecond, several
100,000 integration steps have to be performed.

Depending on which macroscopic observables are held constant, different ensembles
can be defined for the calculation. In the basic molecular-dynamics setting, the number
of particles N , the system volume V as well as the total energy E are held constant. After
the initial velocities of the particles are drawn from the appropriate Maxwell-Boltzmann
distribution, the system is simply evolved according to Newton’s law of motion. This
corresponds to the microcanonic NV E ensemble and is most frequently used because it is
the most reliable simulation scheme. However, different ensembles may be advantageous
for other purposes, such as the canonical NV T ensemble for studying non-equilibrium
processes at constant temperature or the isothermal-isobaric NPT ensemble to investi-
gate phase transitions. There are several subtleties associated with the NV T and NPT
ensemble [15]. In this thesis we mostly use an NV E ensemble.
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2.3.2. Advanced molecular-dynamics methods

In the classical molecular-dynamics schemes, it is in principle possible to simulate arbi-
trarily large systems, provided sufficiently large computers are available. However, the
time scale remains confined to several nanoseconds. Surprisingly, this is also true for
very small systems (independent of how large computers we use). The reason is that
very small systems can not be effectively parallelized. Also, time can not easily be par-
allelized. Therefore, surprisingly there exists little tradeoff between desired simulation
time and desired simulation size. This problem is referred to as the time-scale dilemma
of molecular-dynamics [229, 90, 213].

Many systems of interest spend a lot of time in local free energy minima before a
transition to another state occurs. In such cases, the free energy surface has several
local minima separated by large barriers. This is computationally highly inefficient for
simulations with classical molecular-dynamics methods.

An alternative to classical molecular-dynamics schemes is using Monte-Carlo tech-
niques such as the Metropolis algorithm. In such schemes, all events and their associated
energy must be known in advance. Note that in kinetic Monte-Carlo schemes all events
and associated activation energy that take place during the simulation should be known
in advance. For that purpose, the state space for the atoms has to be discretized on a
lattice. Besides having to know all events, another drawback of such methods is that no
real dynamics is obtained.

To overcome the time scale dilemma and still obtain real dynamics while not knowing
the events prior to the simulation, a number of different advanced simulation techniques
have been developed in recent years (for a more extensive list of references see [140]).
They are based on a variety of ideas, such as flattening the free energy surface, parallel
sampling for state transitions, finding the saddle points or trajectory based schemes.
Such techniques could find useful applications in problems in nano-dimensions. Time
spans of microseconds, seconds or even years may be possible with these methods. Ex-
amples of such techniques are the parallel-replica (PR) method [227, 159], the hyperdy-
namics method [226] and the temperature-accelerated dynamics (TAD) method [158].
These methods have been developed by the group around Voter [229] (further references
could be found therein) and allow calculating the real time-trajectory of atomistic sys-
tems over long time spans. Other methods have been proposed by the group around
Parrinello, who for instance developed a Non-Markovian coarse grain dynamics method
[140]. The method finds fast ways out of local free energy minima by adding a bias po-
tential wherever the system has been previously, thus quickly “filling up” local minima.

The methods discussed in these paragraphs could be useful for modeling deformation
of nano-sized structures and materials over long time spans, such as biological struc-
tures (e.g. mechanical deformation of proteins and properties at surfaces). A drawback
in many of these methods is that schemes to detect state transitions need to be known.
Also, the methods are often only effective for a particular class of problems and condi-
tions.

We give an example of using the temperature accelerated dynamics (TAD) method
in calculating the surface diffusivity of copper (modeled by an EAM potential [225]).
We briefly review the method. The simulation is speeded up by simulating the system
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Figure 2.3.: Atomistic model to study surface diffusion on a flat [100] copper surface.

at a temperature higher than the actual temperature of interest. Therefore, in this
method two temperatures are critical: The low temperature at which the dynamics of
the system is studied, and a high temperature where the system is sampled for state
transitions during a critical sampling time. This critical sampling time can be estimated
based on theoretical considerations in transition state theory [229]. For every state
transition, the time at low temperature is estimated based on the activation energy of
the event. Among all state transitions detected during the critical sampling time, only
the state transition that would have occurred at low temperature is selected to evolve
the system and the process is repeated.

To calculate the surface diffusivity of copper, we consider a single atom on top of a
flat [100] surface as shown in Figure 2.3. The atom is constrained to move at the surface.
The total simulation time approaches ∆t = 3 × 10−4 seconds. This is a very long time
scale compared to classical molecular-dynamics time scales (see Figure 2.1)! The surface
diffusivity is calculated according to

Ds = lim
t→∞

〈| xi(t) − xi(t0) |2〉
6(t − t0)

(2.11)

The simulation is carried out at a temperature of T ≈ 400 K with N = 385 atoms. The
high temperature in the TAD method is chosen to be 950 K. The integration time step
is δt = 2 × 10−15 seconds. We calculate the diffusivity to be

DMD
s = 7.53 × 10−14 m3/s. (2.12)

This value is comparable to experimental data Dexp
s ≈ 11× 10−14 m3/s [122]. In Figure

2.4 we show the diffusive displacement over a time interval 0 < t < 2.5 × 10−4 seconds
from which the diffusivity is calculated. The activation energy of all state transitions is
found to be 0.57 eV.

We show another example of how the temperature accelerated method could be used.
Here we consider the atomic activities near a surface step in a [100] copper surface. We
find that atoms at the surface step tend to hop away from the perfect step. This defines
two states (A), the perfect step, and (B), when the atom is hopped away from the step.
The simulation suggests that over time, the two states A and B interchange. Figure 2.5
shows the time-averaged stability of the two states as a function of temperature.
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Figure 2.4.: Diffusive displacement of a single copper atom on a flat [100] copper surface.
Since the atom is constrained to move on top of the surface, dz = 0.

State transition (from to) activation energy (eV)
A → B 0.609
B → A 0.217

Table 2.1.: Activation energy for different state transitions.

It can be observed that for low temperatures, the living time of state (B) is much
smaller compared to that of state (A). State (A) is observed to be stable up to several
hundred seconds. Figure 2.6 shows the two states in a three-dimensional atomic plot.
Table 2.1 summarizes the different activation energies. The activation energies to get
from state (A) to state (B) are different. This immediately explains why state (B) is
not as stable as state (A).

These examples illustrate the great appeal of these advanced simulation techniques.
Experimental techniques are currently not able to provide the resolution in space and
time to track the motion of single atoms. On the other hands, advanced molecular-
dynamics simulation techniques can track the motion of atoms on a surface on a relatively
long time scale, with a very high resolution of time.

2.3.3. Concurrent and hierarchical multi-scale methods

It is not always necessary to calculate the full atomistic information in the whole sim-
ulation domain. Some researchers have articulated the need for multi-scale methods
[134, 95, 38, 8, 208, 196] by combining atomistic simulations with continuum mechanics
methods (e.g. finite elements). A variety of different methods have to be developed to
achieve this. The primary motivation is to save computational time and by doing that,
to extend the scale accessible to the simulations. It is common to distinguish between
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Figure 2.5.: Study of atomic mechanisms near a surface step at a [100] copper surface.
Living time (stability) of states A (perfect step) and B (single atom hopped away from
step) as a function of temperature. The higher the temperature, the closer the living
times of states A and B get.

hierarchical multi-scale methods and on-the-fly concurrent multi-scale methods. In on-
the-fly multi-scale methods, the computational domain is divided into different regions
where different simulation methods are applied. A critical issue in all such methods
is the correct mechanical and thermodynamical coupling among different regions in a
concurrent approach and different methods in a hierarchical approach.

Progress in this field was reported by Gumbsch and Beltz [96] in 1995. They dis-
cuss simulations performed with a hybrid atomistic-finite element (FEAt) model, and
compared the results with the continuum-based Peirls-Nabarro model for different crack
orientations in a nickel crystal. The researchers demonstrated the basic assumptions of
the continuum model for dislocation nucleation, that is, stable incipient slip configura-
tions are formed prior to dislocation nucleation, and found relatively good agreement of
the FEAt model with the Peierls model for critical loading associated with dislocation
nucleation. In the FEAt model, the region with atomistic detail is determined prior to
computation, and can not be updated during the simulation.

A quasi-continuum (QC) model for quasi-static simulations was developed by Tadmor
and coworkers [208, 197, 196] starting in 1996. This method has the advantage of
an adaptive formulation of the atomistic region during simulation. The dislocation
core region is treated fully atomistically, while most of the bulk region is treated as a
continuum. The method is mostly limited to quasi-static conditions at zero temperature.
For higher dislocation densities, the computational effort approaches that of a fully
atomistic treatment.

The QC method could find useful applications in studies of thin films constrained by
substrates. A set of results for this case is shown in Figure 2.7. Here we investigate a
thin copper film with a (111) surface on a rigid substrate (the film thickness is hf ≈ 30
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Figure 2.6.: Snapshots of states A (perfect step) and B (single atom hopped away from
step).

nm). The interatomic interactions are modeled by Voter and Chen’s EAM potential for
copper [225, 228]. We consider a crack orthogonal to the surface. Such a crack could for
instance be created by grain boundary cracking or constrained grain boundary diffusion
[88]. Figure 2.7 (a) shows different snapshots as the lateral mode I opening loading of
the film is increased (the black line indicates the interface of substrate and thin film).
The atomic region adapts and expands, as dislocations gliding on glide planes parallel
to the film surface are nucleated and flow into the film material. Figure 2.7 (b) shows a
zoom into the crack tip region.

Abraham et al. [4, 8] (1998-2000) proposed a method to couple quantum mechanics
(QM), molecular-dynamics and finite element (FE) methods in a concurrent, seamless
way. The method is referred to as MAAD, which is short for “macro atomistic ab initio
dynamics”. As a sample problem, a finite-length penny-shaped crack in Silicon was
treated. So far, the method is only suitable for covalently bonded systems. A similar
approach is being developed for metals [123]. Further reports of multiscale simulations
of nanosystems describe hybrid FE, molecular-dynamics and QM calculations [163] for a
silicon crystal. The authors report several studies in this work, among them a simulation
of oxidation of a silicon [100] surface.

Another active field of research in the multi-scale area is hierarchical methods. In
such an approach, molecular-dynamics simulation results or results obtained from first
principle calculations serve as input parameters for higher-order simulations. A promi-
nent example in materials science is mesoscopic simulations. In mesoscopic methods,
dislocations are treated as particles embedded in a linear elastic continuum. An im-
portant issue in these approaches is to identify proper coupling variables to transition
between the different scales. Probably the most popular example of hierarchical simu-
lation methods is discrete dislocation dynamics (see, for instance [192, 223, 165, 147]).
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Figure 2.7.: Results of a simulation of a crack in a thin film constrained by a rigid
substrate, exemplifying a study using a concurrent multi-scale simulation method, the
quasi-continuum approach [208].

Here, dislocations interact according to their linear-elastic fields and move according to
empirical laws for dislocation mobility. All non-elastic reactions between dislocations
that potentially occur have to be put into the simulation setup as rules and laws. This
information can for instance be obtained from atomistic simulations.

A recent example for hierarchical multi-scale modeling is a study by Horstemeyer et
al.[114]. The authors investigated the shear strength of crystals based on a multi-scale
analysis, incorporating molecular-dynamics, crystal plasticity and macroscopic internal
state theory applied to the same system. The objective of the studies was to compare
different levels of description and to determine coupling parameters. Further studies of
climb dislocations in diffusional creep in thin films [101] and mesoscopic treatment of
grain boundaries during grain growth processes [102, 157] have also used hierarchical
simulation approaches.

We note that such coupling of length scales is just at its beginning and much research
remains to be done in the future. The most difficult issue is finding correct quantities
for correct coupling between the different simulation methods.

2.3.4. Continuum approaches incorporating atomistic information

Recently, a virtual internal bond (VIB) model has been proposed as a bridge of con-
tinuum models with cohesive surfaces and atomistic models with interatomic potentials
[129]. The VIB method differs from an atomistic model in a sense that a phenomeno-
logical “cohesive force law” is adapted to act between material particles, which are not
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necessarily atoms. A randomized network of cohesive bonds is statistically incorporated
into the constitutive response of the material based on the Cauchy-Born rule. This is
achieved by equating the strain energy function on the continuum level to the potential
energy stored in the cohesive bonds due to an imposed deformation. Other features of
the VIB model [129] could be found elsewhere.

The method has been used to study crack propagation in brittle materials, and is able
to reproduce many experimental phenomena such as crack tip instabilities or branching
of cracks at low velocities. An important implication of the VIB method is that it
provides a direct link between the atomic microstructure and its elastic properties, for
any given potential. The method was recently extended to model viscoelastic materials
behavior [164]. The fact that this method is able to perform simulations on entirely
different length scales makes it interesting for numerous applications particularly in
engineering, where more complex situations have to be modeled.

2.3.5. Discussion

We have presented a selection of four different popular simulation tools which all incorpo-
rate atomic information. Classical molecular-dynamics is the simplest approach among
all of them. It can reach length-scales up to micrometers, but is still severely limited
with respect to the time scale. Techniques for fast time sampling can achieve “paral-
lelization of time”, but are difficult to apply in general problems. Multiscale methods
are a promising field, but it remains challenging how to seamlessly couple the different
length and time scales where different simulation approaches are applied in real-time
within the domain. Hierarchical methods avoid some of the problems, but seem limited
in terms of applicability. For example, a new phenomenon or mechanism might occur
in the real system at a larger scale, but it is not resolved because a higher order tech-
nique is applied in the whole domain. Continuum mechanics methods such as VIB have
difficulties describing atomistic and atomic-scale processes, because the size of the finite
elements is often on the order of several hundred micrometers, far too large to capture
many atomic scale processes and phenomena.

In the remainder of this thesis we will limit our attention to model dynamic materials
failure based on classical molecular-dynamics.

2.4. Classical molecular-dynamics implemented on
supercomputers

Large-scale molecular-dynamics simulations often require an enormous amount of com-
puter power. Here we focus on the implementation of classical molecular-dynamics on
modern supercomputers, made out of hundreds of single computers.

It was only a few decades ago that computer scientists were concerned that the speed
of scientific computers could not go much beyond gigaflops (billion arithmetic opera-
tions per second). It was predicted that this plateau would be reached by the year 2000.
Computer scientists now expect petaflop computers by the middle or end of the current
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decade [221, 12]. Based on the concept of concurrent computing, modern parallel com-
puters are made out of hundreds or thousands of small computers (for example personal
computers) working simultaneously on different parts of the same problem. Informa-
tion between these small computers is shared by communicating, which is achieved by
message-passing procedures (MPI) [94].

Parallel molecular-dynamics is relatively straight-forward to implement with great ef-
ficiency in a message-passing environment. It is important to have an effective algorithm
for handling the summations of N interacting particles. If summations had to be carried
out for each particle over all particles, the problem would scale with N2. This is a com-
putational catastrophe for large systems! However, if the interactions between particles
are short ranged, the problem can be reduced so that the execution time scales linearly
with the number of particles (that is, execution time scales with N). The computational
space is divided up into cells such that in searching for neighbors interacting with a
given particle, only the cell in which it is located and the next-nearest neighbors have
to considered. Since placing the particles in the correct cells scales linearly with N ,
the problem originally scaling with N2 can therefore be reduced to N . With a parallel
computer whose number of processors increases with the number of cells (the number
of particles per cell does not change), the computational burden remains constant.

The speedup factor S is defined as the ratio of execution time on one processor (Ts)
over the execution time on p processors (Tp):

S =
Ts

Tp

. (2.13)

The perfectly efficient parallel computer would exhibit linear speedup. This would
mean that the computation time for p processors is 1/p times the execution time on
one processor. However, the speedup depends strongly on the fraction of the work done
in parallel. We refer the reader to Plimpton’s algorithms for molecular-dynamics with
short-range forces [173].

One of the major concerns in atomistic modeling has always been the need for huge
computational resources. Computational material scientists could only handle a few
hundred atoms in the 1960s, and this number increased up to 100,000 in the mid-80s.

The state-of-the art size of molecular-dynamics simulations is well into billions. With
the advent of teraflop (=one trillion floating point operations per second) computing us-
ing massively parallelized concurrent computers, systems with over 1,000,000,000 atoms
can be simulated today [12, 185]. In a recent publication by the group around Trebin
and coworkers [185], a molecular-dynamics simulation with over 5 Billion particles was
conducted. This allows for three-dimensional simulations of systems reaching microm-
eter size, a length scale associated with the behavior of dislocations. Even a few years
ago, it was not anticipated that molecular-dynamics simulations could be performed
with systems of micrometer size.

We emphasize that the “size” of the simulations does not determine how “useful” a
simulation is by itself. Instead, the most important issue and measure for a successful
simulation is always the physics that can be extracted from the simulation. This objec-
tive should dictate the system size. In many cases, such as for dislocation-dislocation
interaction, system sizes on the order of micrometers are needed (dislocation interaction
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is associated with a characteristic length scale of micrometers). This example illustrates
that there is still a need for the development of simulation techniques and more computer
power.

Future development using cheap off-the-shelve technology based on LINUX clusters
to build supercomputers (instead of using very expensive UNIX based supercomputers)
is promising, as indicated by recent publications [240, 241] (see also the discussion in
the Appendix, Section C.3).

2.5. Visualization and analysis techniques

Measures like strain, stress or potential energy of atoms are important quantities that can
be used to analyze atomistic data, in particular with respect to continuum mechanics
theories (for a definition of atomic stress and strain see the Appendix, Chapter A).
However, it is often advantageous to post-process the data and derive new quantities
providing more information of the defect structure. Here we discuss a few examples for
the analysis of crystal defects in metals that will become particularly important in the
third part of this thesis.

Richard Hamming’s saying “the purpose of scientific computing is insight, not num-
bers” underlines the importance of processing the raw simulation data appearing as
“useless” numbers in order to gain understanding. Visualization, defined as a method of
computing transforming the symbolic into the geometric, enables to observe simulations
and computations. Visualization is also considered an approach for seeing the unseen,
which enriches the process of scientific discovery and fosters profound and unexpected
insights. Visualization of computational results is undoubtedly becoming an increasingly
important and challenging task in supercomputing.

2.5.1. Energy method

To visualize crystal defects, the easiest approach is to use the energy method. This
method has frequently been used to “see” into the interior of the solid (e.g. [7, 12]).
In this method, only those atoms with potential energy greater than or equal to a
critical energy φcr above the bulk energy φb are shown. The energy method has been
very effective for displaying dislocations, microcracks and other imperfections in crystal
packing. This reduces the number of atoms being displayed by approximately two orders
of magnitude in three dimensions [12].

An example of an analysis of a dislocation network using the energy method is shown
in Figure 2.8. Figure 2.8 (a) shows the whole simulation cell with two cracks at the
surfaces serving as sources for dislocations, and Figure 2.8 (b) shows a zoom into a small
subvolume of the material revealing a complex dislocation microstructure. The data is
taken from a simulation of work-hardening in nickel that comprises of about 150,000,000
atoms [34].

Assuming a crystal defect is identified as a dislocation, it can be studied in more
detail based on a geometric analysis of the lattice close to the dislocation core allowing
to determine the Burgers vector and the slip plane. For that purpose, one can rotate
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Figure 2.8.: Analysis of a dislocation network using the energy filtering method in nickel
with 150,000,000 atoms [34, 35]. Subplot (a) shows the whole simulation cell with two
cracks at the surfaces serving as sources for dislocations, and subplot (b) shows a zoom
into a small subvolume. Partial dislocations appear as wiggly lines, and sessile defects
appear as straight lines with slightly higher potential energy.

the atomic lattice such that one is looking onto a {111}-plane, with the horizontal (x)
axis oriented into a < 110 > direction, and the vertical (y) axis aligned with a < 111 >
direction. To help visualizing dislocations, stretching the atomic lattice by a factor of
five to ten in the < 110 > direction is helpful. A systematic rotation of the atomic
lattice to investigate all possible Burgers vectors is then necessary. Instead of analyzing
a part of the atomic lattice containing many dislocations, one can choose a domain of
the atomic lattice which contains only one dislocation. This approach requires a very
detailed understanding of the lattice and dislocations [109, 118]. This way of analysis is
like analysis of TEM images from “real” laboratory experiments.

2.5.2. Centrosymmetry parameter

A more advanced analysis can be performed using the centrosymmetry technique pro-
posed by Kelchner and coworkers [126]. This method makes use of the fact that cen-
trosymmetric crystals remain centrosymmetric after homogeneous deformation. Each
atom has pairs of equal and opposite bonds with its nearest neighbors. During defor-
mation, bonds will change direction and/or length, but they remain equal and opposite
within the same pair. This rule breaks down when a defect is close to an atom under
consideration. The centrosymmetry method is particularly helpful to separate different
types of defects from one another, and to display stacking faults (in contrast, using the
energy method it is difficult to observe stacking faults). The centrosymmetry parameter
for an atom is defined as [126]

ci =
6∑

j=1

{
|

3∑
k=1

rk,j + rk,j+6 |2
}

, (2.14)

where rk,j is the k−th component of the bond vector(k = 1, 2, 3 corresponding to the
directions x, y and z) of atom i with its neighbor atom j, and rk,j+6 is the same quantity
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Figure 2.9.: The figure shows a close view on the defect structure in a simulation of
work-hardening in nickel analyzed using the centrosymmetry technique [34, 35]. The
plot shows the same subvolume as in Figure 2.8 (b).

Defect ci/a
2
0 range ∆ci/a

2
0

Perfect lattice 0.00 ci < 0.1
Partial dislocation 0.1423 0.01 ≤ ci < 2

Stacking fault 0.4966 0.2 ≤ ci < 1
Surface atom 1.6881 ci > 1

Table 2.2.: Centrosymmetry parameter ci for various types of defects, normalized by the
square of the lattice constant a2

0. In the visualization scheme, we choose intervals of ci

to separate different defects from each other.

with respect to the opposite neighbor. We summarize the interpretation of ci in Table 2.2
(assuming that the nearest neighbor distance does not change near a defect). For the
analysis, it is reasonable to display ranges of these parameters. The method can also be
applied at elevated temperature, which is not possible using the energy method due to
the thermal fluctuation of atoms.

An example using this centrosymmetry technique is shown in Figure 2.9. This plot
shows the same section as in Figure 2.8 (b). Unlike in the analysis with the energy
method, stacking fault regions can be visualized with the centrosymmetry technique.

2.5.3. Slip vector

Although the centrosymmetry technique can distinguish well between different defects,
it does not provide information about the Burgers vector of dislocations. The slip
vector approach was first introduced by Zimmerman and coworkers in an application
of molecular-dynamics studies of nano-indentation [258]. This parameter also contains
information about the slip plane and Burgers vector. The slip vector of an atom α is
defined as

sα
i = − 1

ns

nα∑
α �=β

{
xαβ

i − Xαβ
i

}
, (2.15)
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Figure 2.10.: Analysis of a dislocation using the slip vector approach. From the result
of the numerical analysis, direct information about the Burgers vector can be obtained.
The slip vector s is drawn at each atom as a small arrow. The Burgers vector b is
drawn at the dislocation (its actual length is exaggerated to make it better visible).
The dislocation line is approximated by discrete, straight dislocation segments. A line
element between “a” and “b” is considered.

where ns is the number of slipped atoms, xαβ
i is the vector difference of atoms α and

β at the current configuration, and Xαβ
i is the vector difference of atoms α and β

at the reference configuration at zero stress and no mechanical deformation. The slip
vector approach can be used for any material microstructure, unlike the centrosymmetry
parameter which can only be used for centrosymmetric microstructures.

Figure 2.10 shows the result of a slip vector analysis of a single dislocation in copper
[36]. The slip vector s is drawn at each atom as a small arrow. The Burgers vector b is
drawn at the dislocation, where its actual length is exaggerated to make it better visible.
The dislocation line can be determined from an energy analysis, and the line direction
of a segment between point “a” and “b” of the dislocation line is indicated by the vector
l. The Burgers vector b is given by the slip vector s directly. The analysis reveals
that the dislocation has Burgers vector b = 1

6
[112]. The unit vector of line direction

of the segment is l ≈ [−0.3618 0.8148 − 0.4530]. The length of the line segment is
approximately 9 nearest neighbor distances in the [110] direction. The slip plane normal
is given by the cross product ns = l × b ∼ [111], and the dislocation thus glides in the
(111) plane.

2.5.4. Other methods

Other researchers have used a common neighbor analysis to analyze their results [189,
64, 113]. In this method, the number of nearest neighbors is calculated, and that allows
to distinguish between different defects. Additional analysis to analyze more complex
structures such as grain boundaries is possible based on the medium-range-order (MRO)
analysis. This method is capable of determining the local crystallinity class. The MRO
analysis has been applied in the analysis of simulations of nanocrystalline materials,
where an exact characterization of the grain boundary structure is important (e.g. [56,
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66, 217]).
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Brittle fracture
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3. Modeling of brittle materials failure

As schematically visualized in Figure 3.1, brittle fracture is a complex multiscale process.
At the scale of several Ångstroms, interatomic bonding and the atomic microstructure
determine important material properties for fracture, as for instance the fracture sur-
face energy. At this scale, the chemistry of atomic interaction and therefore quantum
mechanics can play an important role. Breaking of atomic bonds occurs in the fracture
process zone at length scales of several nanometers [78]. In a region around the crack
tip extending a few tens of nanometers, the material experiences large deformation and
nonlinearities between stress and strain become apparent. The macroscopic fracture
process on a scale of several micrometers can only be understood if the mechanisms on
smaller length scales are properly taken into account.

Figure 3.1.: Different length scales associated with dynamic fracture. Relevant length
scales reach from the atomic scale of several Ångstrom to the macroscopic scale of
micrometers and more.

Despite the fact that there exists a nonlinear zone near the crack tip due to strong
material deformation, most existing theories [78, 29] assume linear elastic material be-
havior also in the vicinity of the crack. However, existing theories of fracture fail to
explain several phenomena observed in computer simulation and in experiment. Exam-
ples for discrepancies include significantly reduced maximum crack speeds in experiment
compared to theory prediction, and the observation of dynamic crack tip instabilities
at reduced speeds [69, 70]. We hypothesize that the discrepancies between experiment,
computer simulation and theory can be explained based on the erroneous assumption of
linear elastic material behavior in regions very close to the crack tip. Fracture is a highly
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nonlinear process and thus nonlinear theories are required to capture all phenomena!

The main focus of this part will be on understanding the role of material nonlinearities
in dynamic fracture. We will show that hyperelasticity, the elasticity of large strains,
governs dynamic fracture under certain conditions. Several existing theories fail to
describe the observations and must be replaced by nonlinear theories of fracture.

Modeling of dynamic fracture can be quite challenging. A variety of numerical tools
have been developed over the last decades. Modeling attempts focused on cohesive sur-
face models [65] and continuum models incorporating atomistic information like VIB
[129, 130] (see also discussion in Section 2.3.4), for instance. Since these methods are
based on continuum mechanics theories, a priori knowledge about the failure path must
be known. In contrast, atomistic methods require no a priori knowledge about the
failure. Studying rapidly propagating cracks using atomistic methods is particularly
attractive, because cracks propagate at speeds of km/sec, which corresponds to nm/ps.
This scale is readily accessible with classical molecular-dynamics methods. Much of the
research of dynamic fracture focused on understanding the atomic details of crack prop-
agation and its relation to macroscopic theories [78] as well as experiments of fracture
[69]. The first part of this review describes simulation work that mostly treats generic
“brittle model materials” rather than specific materials. Later we focus on simulations
that discuss fracture in specific materials.

3.1. Atomistic simulations of fracture

The earliest molecular-dynamics simulations of fracture were carried out almost 30 years
ago by Ashurst and Hoover [20]. Many features of dynamic fracture were described in
the paper, although their simulation size was extremely small (only 64× 16 atoms with
crack lengths around ten atoms).

A classical paper by Abraham and coworkers published in 1994 stimulated much
further research [5]. In this work, the authors reported molecular-dynamics simulations
of fracture in systems up to 500,000 atoms, which was a significant number at that time.
In these atomistic calculations, a Lennard-Jones potential as described in equation (2.4)
was used. The results in [5, 7] were striking because the molecular-dynamics simulations
reproduced phenomena that were discovered in experiments a few years earlier [69]. The
most important observation was the so-called “mirror-mist-hackle” transition. It was
observed that the crack face morphology changes as the crack speed increases. The
phenomenon is also referred to as dynamic instability of cracks. Up to a speed of about
one third of the Rayleigh wave speed, the crack surface is atomically flat (mirror regime).
For higher crack speeds the crack starts to roughen (mist regime) and eventually becomes
very rough (hackle regime), accompanied by dislocation emission. Such phenomena
were observed at similar velocities in experiments [69]. Since the molecular-dynamics
simulations are performed in a perfect lattice, it was concluded that these dynamic
instabilities are a universal property of cracks. The instabilities were subject to numerous
other studies (e.g. [150]) in following years.

A question that has attracted numerous researchers is that of the limiting speed of
cracks [78]. The crack speed is limited by an impenetrable barrier that is related to the
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speed of sound in the material. The limiting speed for mode I cracks is the Rayleigh
wave speed. For mode II cracks, velocities below the Rayleigh speed and those between
the shear wave speed and the longitudinal wave speeds are admissible. Between these
two regimes, there is an impenetrable velocity gap, which led to the uncertainty that
mode II cracks may also be limited by the Rayleigh wave speed.

In contrast, experiments have recently shown that shear-loaded (mode II) cracks
can move at intersonic velocities through a mother-daughter mechanism [184, 183].
Molecular-dynamics simulations by Abraham and Gao (2001) reproduced this obser-
vation, and provided a quantitative continuum mechanics analysis of this mechanism
[83]. A short distance ahead of the crack, a shear stress peak develops that causes nu-
cleation of a daughter crack at a velocity beyond the shear wave speed. This topic is an
example where atomistic simulations could immediately be coupled to experiments. This
also led to the development of the fundamental solution of intersonic mode II cracks by
Huang and Gao [116]. The fundamental solution was then used to construct the solution
describing the dynamics of a suddenly stopping intersonic crack [117].

Other research by Gao et al.[83] reported simultaneous continuum mechanics and
atomistic studies of rapidly propagating cracks. The main objective of the studies was to
investigate if the linear continuum theory can be applied to describe nanoscale dynamic
phenomena. The studies included the limiting speed of cracks and Griffith analysis [83].
The results suggest that continuum mechanics concepts could be applied to describe
crack dynamics even at nanoscale, underlining the power of the continuum approach.

Materials in small dimensions have also attracted interest in the area of dynamic frac-
ture. Studies of such kind involve crack dynamics at interfaces of different materials
(e.g. in composite materials). Since interfaces play an important role in the dynam-
ics of earthquakes, cracks at interfaces have been significantly studied in recent years
[89]. Some investigations revealed that shear-dominated cracks at interfaces between
dissimilar materials can move at intersonic and even supersonic velocities [11, 3]. If
shear dominated cracks propagate along interfaces between two dissimilar materials,
multiple mother-daughter mechanisms have been observed, and they were referred to as
mother-daughter-granddaughter mechanisms [11].

Other studies of brittle fracture were based on lattice models of dynamic fracture
[150, 148]. These models have the advantage that crack dynamics can be solved in
closed form for some simplified cases [148]. In contrast to the large-scale molecular-
dynamics models described above, lattice models are usually small and do not rely on
big computers.

In [112], the authors report an overview over atomistic and continuum mechanics
theories of dynamic fracture, emphasizing the importance of the atomic scale in under-
standing materials phenomena. They discuss scaling arguments allowing to study crack
dynamics in small atomic systems and scaling it up to larger length scales comparable
to experiment. A study of fracture in tetravalent silicon based on the Stillinger-Weber
(SW) potential is discussed. The authors state that the SW potential has problems de-
scribing brittle fracture in silicon well, since the experimentally preferred fracture planes
(111) and (110) could not be reproduced. The authors further discuss other possible
potentials for silicon in terms of their applicability to model fracture of silicon. A ve-
locity gap is discussed implying that at zero temperature there is a minimum speed at
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which cracks can propagate. Various simulations of fracture of silicon are summarized
[111]. In [148], further issues of atomic brittle fracture are discussed, such as lattice
trapping. Also, the author showed a relation of crack velocity and loading indicating
that there are regimes of forbidden velocities, so that the crack speed increases discretely
with increase of loading. In another publication they compared the crack velocity as a
function of energy release rate calculated by molecular-dynamics to experimental results
[104]. Further discussion on the role of the potential in dynamic fracture can be found
in a recent review article [3].

The group around Vashishta [220] reported large-scale atomistic studies of dynamic
fracture involving 10 to 100 million atoms. They studied fracture of silicon nitride,
fracture of graphite and fracture in gallium arsenide. They also report studies of
fiber-reinforced ceramic composites (silicon nitride reinforced with silica-coated carbide
fibers). More recently, the research group reported molecular-dynamics simulations with
up to one billion atoms [193, 221]. In a recent review, further approaches of modeling
dynamic fracture are summarized [186].

Gumbsch and coworkers [98] reported a series of molecular-dynamics simulations to
evaluate the influence of several aspects on the dynamic crack tip instability based on
various potentials. The authors also report a velocity gap for crack speeds. They use a
particular type of boundary conditions leaving the crack in an elliptical shaped boundary
with viscous damping at the outside to avoid reflection of waves from the boundary.
Due to its shape similar to a stadium, it was referred to as “stadium damping” by
Gumbsch and coworkers [98]. The crack propagates within an NV E ensemble in an
elliptical “stadium” that is characterized by center and stadium. Outside this inner
ellipse viscous damping or NV T temperature control is applied. This setup is chosen
because stress waves reflecting from the boundaries can severely influence the dynamics
of cracks, leading to crack arrest. The authors find that the limiting speed of cracks is
between 30-40 percent depending on the potential. It was reported that cracks release
the excess energy by emitting strong acoustic waves during breaking of every single
atomic bond. Further, the authors did not observe crack branching since the velocity
was too low for this phenomenon to be observed.

Other research in recent years focused on mechanical behavior of quasicrystals [154,
211]. Quasicrystals, for the first time observed 1984, show a symmetry “between crystal
and liquids” and can not be described as a Bravais lattice [128]. They are metallic
alloys whose positions of atoms are long range translationary ordered. Research in this
field focused on dislocation motion and crack propagation. Unlike in crystals where
dislocations leave the lattice undisturbed after they have passed, in quasicrystals they
leave a phason-wall that weakens the binding energy and may serve as paths for crack
propagation [153, 154, 211]. Atomic studies helped to clarify the fracture mechanism
in such materials.

3.2. Outline of the studies presented in this part

The studies in the area of dynamic fracture will be focused on the following points.

• How do atomistic simulations results compare with continuum mechanics theory
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predictions?

• What is the role of material nonlinearities (hyperelasticity) in dynamic fracture?

• What is the effect of geometric confinement and crack propagation along interfaces?

We start with a discussion of a one-dimensional model of fracture in Chapter 4. We
discuss a linear elastic continuum theory serving as a basis for the extension of the
analytical model to the nonlinear case. We report an atomistic model of one-dimensional
fracture and show that the continuum theories agree reasonably well with the atomistic
simulation results. It is shown that hyperelasticity can significantly alter the dynamics
of fracture, in agreement with the analytical model. The one-dimensional model allows
to study some of the phenomena that also appear in higher dimensional models in a
mathematical and numerical simple framework.

Chapter 5 is devoted to a discussion on mechanical and physical properties of two-
dimensional solids. Good understanding of these is critical in order to compare the
atomistic simulation results with continuum mechanics theories. We present methods
to calculate elastic properties and wave speeds from the interatomic potential. Various
choices of interatomic potentials are discussed. We also address the issue of calculating
the fracture surface energy.

In Chapter 6, we report joint continuum-atomistic studies of the deformation fields
near a moving mode I crack in a harmonic lattice. We show that in harmonic lattices
corresponding to linear elastic material, continuum mechanics theory is a reasonable
model. We compare the stress and strain fields, particle velocity distribution, potential
energy field and energy flow. We show that the predicted limiting speed of cracks agrees
with the simulation result and the harmonic atomistic model can be used as a reference
system.

Chapter 7 focuses on the role that material nonlinearities play on the limiting speed
of cracks propagating along a prescribed straight fracture path. We show that hypere-
lasticity can govern dynamic fracture when the size of the nonlinear region around the
crack tip approaches a newly discovered length scale associated with energy flux to the
crack tip. The characteristic energy length scale helps to explain many experimental
and computational results. The analysis illustrates that under certain conditions, cracks
can break through the sound barrier and move supersonically through materials. An
important aspect of the analysis is the prediction of intersonic mode I cracks.

Whereas the preceding chapter focused on the dynamics of constrained cracks, Chap-
ter 8 focuses on the dynamics of unconstrained cracks and the effect of hyperelasticity.
The main focus is an investigation of the critical crack speed when straight crack motion
becomes unstable. By a systematic study with different model materials representing
weak and strong hyperelastic effects we show that hyperelasticity governs the critical
speed of crack tip instabilities.

Chapter 9 discusses several aspects of dynamic fracture along interfaces of dissimilar
materials. We will show that mother-daughter mechanisms, formerly believed to exist
only under mode II loading, also exist in the dynamics of mode I cracks along interfaces of
elastically dissimilar materials. Further, we illustrate that mode II cracks moving along
interfaces of dissimilar materials feature a mother-daughter-granddaughter mechanism.
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In Chapter 10 we discuss inertia properties of cracks by investigating the dynamics
of suddenly stopping cracks. We will show good agreement of suddenly stopping mode
I cracks with theory and experiment [230, 78], and discuss the dynamics of suddenly
stopping mode II cracks with respect to recently developed continuum mechanics theories
[117]. We also address the role of material nonlinearities, and report a Griffith analysis
for crack initiation for different interatomic potentials.

The final two chapters are devoted to the dynamics of mode III cracks. Since mode
III cracks can only be modeled with three-dimensional models, we discuss mechanical
and physical properties of three-dimensional solids in Chapter 11. The results include
calculation of wave speeds for different potentials used.

Chapter 12 contains a discussion of the dynamics of mode III cracks. We will study
a crack in a stiff material layer embedded in a soft matrix, and confirm existence of
the characteristic length scale for energy flux also for mode III cracks. The results of
atomistic simulations are quantitatively compared with recently developed continuum
mechanics theory.
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4. A one-dimensional model of
dynamic fracture

Here we show by simultaneous continuum-atomistic studies of a one-dimensional model
of fracture that hyperelasticity, the elasticity of large strains, plays the governing role
in the dynamics of fracture in brittle materials and that linear theory is incapable of
capturing all phenomena, such as the speed of crack propagation in real materials.

The first part of the chapter is dedicated to a systematic comparison of the linear
elastic continuum model with molecular-dynamics simulations featuring harmonic inter-
atomic potentials. The results for wave propagation velocities, the critical condition for
fracture, inertia properties of the crack as well as stress and deformation fields around
the crack tip suggest good agreement of our atomistic model with the continuum theory.

In the second part of the chapter, the one-dimensional model is used to study crack
dynamics in nonlinear materials. Based on the concept of local elastic properties [81], an
analytical model is proposed for the dynamics of the crack and for the prediction of the
deformation field. An important prediction of this model is the possibility of supersonic
crack propagation if there is a local elastically stiff region close to the crack tip. By
atomistic simulations, we show that this hypothesis is true and that an elastically stiff
zone at the crack tip allows for supersonic crack propagation. This suggests that local
elasticity at the crack tip is crucial for the dynamics of fracture. In most classical theories
of fracture it is believed that there is a unique definition of how fast waves propagate in
solids. Our results prove that this concept can not capture all phenomena in dynamic
fracture, and instead should be replaced by the concept of local wave speeds.

4.1. Introduction

Most of the theoretical modeling and most computer simulations have been carried out
in two or more dimensions (e.g. [78, 29, 5, 11]). One of the important objectives in un-
derstanding hyperelasticity in dynamic fracture is to obtain analytical models. However,
finding analytical solutions for dynamic fracture in nonlinear materials seems extremely
difficult, if not impossible in many cases [99]. In order to investigate the nonlinear dy-
namics of fracture at a simple level, we propose a one-dimensional (1D) model of dynamic
fracture, as originally reported by Hellan [108] for linear elastic material behavior.

The model can be described as a straight, homogeneous bar under lateral loading σ0.
Part of the bar is attached to a rigid substrate, and this attachment can be broken,
so that a crack-like front of debonding moves along the bar (in the following, we refer
to the front of debonding as crack tip). The model is depicted in Figure 4.1. A com-
plete analytical solution of this problem is available based on linear elastic continuum
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4. A one-dimensional model of dynamic fracture

Figure 4.1.: Geometry of the one-dimensional model of fracture.

mechanics theory [108]. Theory predicts that the 1D model has many of the features
of higher-dimensional models of dynamic fracture. For instance, there exists a limiting
speed for the one-dimensional crack associated with the wave velocity, and a critical
condition for fracture initiation similar to the Griffith criterion can be formulated.

Due to its simplicity, the one-dimensional model of fracture seems an ideal starting
point for analyses of the complex dynamics of fracture in nonlinear materials, rather
than immediately relying on two-dimensional models. We show that it is possible to
extend the linear continuum model to describe the nonlinear dynamics of cracks for a
bilinear stress-strain law. This elastic behavior is characterized by two distinct Young’s
moduli, one for small strains and one for large strains, and provides the most simple
constitutive law of hyperelasticity. The new continuum model predicts that the crack
propagates supersonically, if there exists a local zone around the crack tip with stiffer
elastic properties than in the rest of the material (which is elastically softer).

Based on the continuum model, we construct an atomistic model as illustrated in
Figure 4.2. The model features a one-dimensional string of atoms. Part of the atoms
are bonded to a rigid substrate by a “weak potential”, whose bonds snap early leading
to a finite fracture energy. Bonds between the atoms never break. Using harmonic in-
teratomic potentials, the elasticity of a string of atoms corresponds to a straight linear
elastic bar of homogeneous material. Using nonlinear interatomic potentials, the atom-
istic model is readily able to model a nonlinear material response. A bilinear stress-strain
law as assumed in the continuum model can be mimicked at the atomic scale by using
a biharmonic potential. The new continuum model of one-dimensional fracture in non-
linear materials in conjunction with the nonlinear atomistic simulations allow to carry
out simultaneous atomistic-continuum studies of the nonlinear dynamics of fracture.

The plan of this chapter is as follows. After a review of the linear continuum theory of
one-dimensional dynamic fracture, we present the continuum model for one-dimensional
fracture in the nonlinear case. In joint continuum-atomistic studies, we investigate the
predictions of both linear and nonlinear continuum theory with atomistic simulation
results. We find reasonable agreement at the two scales. Our results provide evidence
that the predictions of the new continuum model for a bilinear stress-strain law are
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Figure 4.2.: One-dimensional atomistic model of dynamic fracture.

reasonable. We will show that the crack limiting velocity is indeed associated with the
elastic properties localized to the crack tip.

4.2. Linear-elastic continuum model

The analytical continuum solution is discussed in detail elsewhere [107, 76, 108]. We
only summarize the main results here. With particle displacement u, particle velocity
u̇ = ∂u/∂t, density ρ, coordinate system x and stress σ, the equation of motion in the
absence of body forces is

∂σ

∂x
= ρ

∂2u

∂t2
, (4.1)

where c0 is the wave velocity. This equation can be combined with Hooke’s law, given
by

σ = Eε = E
∂u

∂x
, (4.2)

with E as Young’s modulus and ε as strain. This leads to a partial differential equation
to be solved for u(x, t)

c2
0

∂u2

∂x2
=

∂2u

∂t2
(4.3)

where c0 is the wave velocity. It can be shown that equation (4.3) has solutions of the
form u = f(x ∓ c0t) = f(ξ), because

∂2u

∂x2
=

∂2f

∂ξ2
,

∂2u

∂t2
= c2

0

∂2f

∂ξ2
. (4.4)

This solution represents a signal travelling in the positive or negative x direction. Also,
it follows that a stress wave

σ = E
∂f

∂ξ
= E H(ξ) = E H(x ∓ c0t) (4.5)
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is moving with the sound velocity c0, and the particle velocity

u̇ = ∓c0
∂f

∂ξ
= ∓c0H(x ∓ c0t) = ∓c0

E
σ. (4.6)

In equations (4.5) and (4.6), the function H(s) is the unit step function (H(s) = 0 for
s < 0, and H(s) = 1 for s ≥ 0). In the model of one-dimensional fracture (as shown
in Figure 4.1), we assume that the left part of the string of atoms (which is free and
not attached to the substrate) is loaded with stress σ0. We assume that the crack front
moves at propagation velocity ȧ in the positive x direction. When the crack front has
moved by the length da = dtȧ, a point which has formerly been situated at the crack
tip is displaced backward by du = −εda, because the detached part of the string has
attained the axial strain ε. A crack represents a signal constrained to be travelling at a
lower velocity than ȧ ≤ c0. According to equation (4.6), this corresponds to the particle
velocity

u̇ = −εȧ = − ȧ

E
σt, (4.7)

where σt is the local stress to the left to the crack tip. Furthermore, we assume that the
stress behind the crack tip can be expressed as the sum of the initial stress σ0, and an
emitted stress wave to the separation, σe, so that

σt = σ0 + σe. (4.8)

The emitted stress wave is related to the particle velocity

u̇ =
c0

E
σe. (4.9)

Equations (4.7) through (4.9) can be solved for the three unknowns σt, σe and u̇. We
define α = ȧ/c0 as the ratio of crack propagation velocity to the sound velocity. The
particle velocity behind the crack tip is given by

u̇ = − ȧ

1 + α

σ0

E
, (4.10)

and the local stress wave behind the crack tip carries

σt =
1

1 + α
σ0. (4.11)

The emitted stress wave is

σe = − α

1 + α
σ0. (4.12)

The ratio of local to initial strain is

εt/ε0 =
1

1 + α
, (4.13)
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where ε0 is the initial strain prior to crack propagation. Also,

εt =
1

1 + α

σ0

E
. (4.14)

In these equations, the crack speed ȧ remains an unknown. However, we can make use
of the energy balance

G = W − dT

da
− dφ

da
= R(α), (4.15)

where W is the external work, dT is the increment of kinetic energy and dφ is the
increment of potential energy, and R(α) is the dynamic fracture resistance. Balancing
kinetic and potential energy using equations (4.9), (4.10) and (4.12) we arrive at G =
G0g(α) = R(α) with G0 = σ2

0/(2E), and

g(α) =
1 − α

1 + α
. (4.16)

We emphasize that the crack driving force vanishes for α → 1, independent of how large
we may choose G0, because g(ȧ) → 0 in this case, and therefore the sound velocity
provides an upper bound for the crack propagation velocity. An energy balance for
fracture initiation (ȧ = 0) in the spirit of Griffith’s analysis leads to an expression for
crack initiation

σ2
0

2E
= R0 (4.17)

where R0 is fracture surface energy defined as the energy required to break atomic bonds
per unit crack advance. Since R(ȧ) is generally not known, it has to be determined from
experiments or numerical calculations. In order to determine the curve R(α), one may
apply a stress σ0, measure the crack limiting speed α and calculate the value of R(α) as

R(α) =
σ2

0

2E

1 − α

1 + α
. (4.18)

If this curve is known, the crack equation of motion can be solved completely. A sim-
plification in order to make the one-dimensional problem solvable in closed form is to
assume a constant dynamic fracture toughness, thus R(α) = R0 g(α). This assumption
is usually a good approximation for low propagation velocities. For higher velocities
close to the crack limiting speed ȧ → c0, however, it is expected that even though the
stress is increased significantly, the crack speed will not change much [78, 108].

Equation (4.18) states that the dynamics of the crack responds immediately to a
change in loading or fracture energy, implying that the crack carries no inertia. However,
the information about the change in loading or fracture resistance is transmitted with
the sound velocity, as indicated by equation (4.5). When the crack suddenly stops from
a high propagation velocity, the local strain immediately changes from the magnitude
at high propagation velocity to εt = ε0 (static field solution). This can be verified using
equation (4.12). The crack carries no inertia since the crack immediately responds to a
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4. A one-dimensional model of dynamic fracture

Figure 4.3.: Bilinear stress-strain law as a simplistic model of hyperelasticity. The
parameter εon determines the critical strain where the elastic properties change from
local (El) to global (Eg).

change in the boundary conditions. The crack tip velocity responds instantaneously to
a change in fracture energy.

We summarize the predictions of the continuum model. A critical loading is necessary
to initiate fracture (that is, to break the first bond), similar to the Griffith condition.
While the crack propagates, it sends out a stress wave with a magnitude depending on
the crack propagation velocity. For α = 0, no stress wave is emitted and the local stress
σt = σ0. For α → 1, the local stress wave has magnitude σt = σ0/2. For intermediate
values of α, the stress wave magnitude decreases monotonically from σ0 to σ0/2, as α
increases from zero to one. The theory predicts that the largest velocity the crack may
achieve is the sound velocity c0, hence αmax = 1. As higher-dimensional cracks, it is
predicted that the 1D crack carries no inertia.

4.3. Hyperelastic continuum mechanics model for
bilinear stress-strain law

If the stress-strain dependence is not linear as assumed in equation (4.2), the theory
discussed in the last paragraph does not hold. However, the linear theory can be ex-
tended employing the concept of local elastic properties and local wave velocities, in the
spirit of the work discussed in [81]. It was hypothesized that hyperelastic effects become
important in the dynamics of cracks because of the strong deformation gradients in the
vicinity of the crack [81, 11]. Within a relatively small region, elastic properties may
change drastically due to hyperelastic effects. The term “local” is hereby referred to as
the region very close to the crack tip, and “global” refers to regions far away from the
crack tip.

A bilinear stress-strain law serves as a unique tool to study the nonlinear dynamics of
cracks: This model features two Young’s moduli, El associated with small perturbations
from the equilibrium position (strain smaller than εon), and Eg associated with large
deformations (strain larger or equal than εon). The parameter εon allows tuning the
strength of the hyperelastic effect. The bilinear stress-strain law is shown schematically
in Figure 4.3.
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There is a conceptual difference between the higher-dimensional models of fracture and
the one-dimensional model of fracture. In the higher-dimensional models of fracture, the
zone of large deformation is local to the crack tip, with large deformation gradients. In
the one-dimensional model of fracture, the zone of large-deformation is found in regions
far away from the crack tip, but the zone of small deformation close to the crack tip is
associated with large deformation gradients. Considering the stress field in the vicinity
of a moving crack based on the continuum model, this can be verified straightforwardly,
since 1/2σ0 ≤ σt ≤ σ0, and the stress ahead of the crack is zero, while it is σ0 far
behind the crack tip. Therefore, if the stress-strain law shows softening with increasing
strain, the elastic properties at the crack tip tend to be stiffer than in the far-field.
Even though there exists this qualitative difference of the elastic fields near a 1D and a
higher-dimensional crack, the dynamics of these systems can be compared immediately
if proper interpretation of the features of the deformation fields is done. A stiffening
potential in higher-dimensional models tends to yield an elastically stiff zone at the
crack tip. In the 1D model, a potential softening with strain is required to provide an
elastically stiff zone at the crack tip.

Here we focus on the case when El > Eg, which implies that there exists a region close
to the crack tip where the material is elastically stiffer than in regions far away. In a
string of atoms, the stress σ due to strain ε is given by

σ =

{
Elε if ε < εon,

Eg (ε − εon) + Elεon if ε ≥ εon,
(4.19)

where εon is the critical onset strain for hyperelasticity. Therefore, the initial equilibrium
strain due to an applied stress σ0 is given by

ε0 =

{
σ0/El if ε0 < εon,

σ0/Eg − εonEl/Eg + εon if ε0 ≥ εon.
(4.20)

In the remainder, we confine our investigations to the choice of El/Eg = 4. Equation
(4.20) is then simplified to

ε0 =

{
σ0/El if ε0 < εon,

4σ0/El − 3εon if ε0 ≥ εon.
(4.21)

The concept of local and global elastic properties leads to two reduced crack speeds
αg = v/cg and αl = v/cl. We note that

αg =

√
El

Eg

· αl, (4.22)

which yields αg = 2αl in the case considered here.

In the following, we derive expressions for the local strain field near the crack tip for
a crack moving in a hyperelastic material. We distinguish two cases:

83



4. A one-dimensional model of dynamic fracture

Figure 4.4.: Continuum model for local strain near a supersonic crack. The plot shows
a schematic of the two cases 1 (subplot (a)) and case 2 (subplot (b)).

• Case 1: The local strain near the crack tip εt, is smaller than the onset strain of
the hyperelastic effect, εon. The crack dynamics is governed by the local elastic
properties in this case, and due to the signal travelling to the left with lower strain,
the hyperelastic stiff region expands to the left of the crack (see Figure 4.4 (a)).

• Case 2: The local strain near the crack tip εt is larger than the onset strain of
the hyperelastic effect εon. Therefore, the region of hyperelastic material response
remains confined to the vicinity of the moving crack tip (see Figure 4.4 (b)).

4.3.1. Case 1: Expanding region of local elastic properties

We assume that the crack advance and material detachment occurs in a region with
local elastic properties (associated with El), as shown schematically in Figure 4.4 (a).
The local strain wave in the hyperelastic case is therefore predicted to be

εt =
1

1 + αl

σ0

El

. (4.23)

This equation is only valid if εt < εon, that is, the local strain wave lays completely within
the zone of local (stiff) elastic properties. An important implication of the assumption is
that the limiting speed of the crack is determined by the local elastic wave speed. Since
αmax

l = 1, and αg = 2αl, the crack can propagate supersonically with respect to the
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global elastic properties. The ratio of local strain to initial strain is given by combining
equation (4.23) and (4.20)

εt/ε0 =




1

1 + αl

if ε0 < εon,

1/(1 + αl)σ0/El

σ0/Eg − εonEl/Eg + εon

if ε0 ≥ εon.
(4.24)

4.3.2. Case 2: Local hyperelastic region

Here we consider the case when εt as given by equation (4.23) is larger than the onset
strain of the hyperelastic effect, that is εt ≥ εon. The emitted strain wave can not lay
within the soft material since crack motion is supersonic with respect to the global soft
elastic properties and no signal faster than the sound speed can be transported through
the material. Therefore, a shock wave will be induced when the elastic properties change
from stiff to soft. The signal of stress relief is transported through the soft material as
a secondary wave and represents a wave travelling at cg, the wave speed of the soft
material, independent of how fast the crack propagates.

In summary, there are two waves propagating behind the crack tip. The first wave
features a magnitude

ε
(1)
t = εon, (4.25)

independent of the crack speed. The second wave has magnitude

ε
(2)
t =

(
σ0/2

Eg

− εon
El

Eg

+ εon

)
+ εon (4.26)

representing a signal travelling in the soft material at the wave speed of the soft mate-
rial, also independent on the crack speed. The model is schematically summarized in
Figure 4.4 (b).

4.3.3. Summary of the predictions of the hyperelastic continuum
model

We summarize the major predictions of the hyperelastic continuum model for a bilinear
stress-strain law. We distinguish two cases, case 1 when the local strain near the moving
crack is smaller than the onset strain of the hyperelastic effect and case 2 when it is
larger.

In case 1, the local elastic properties completely govern the dynamics of the crack.
As a consequence, the model predicts that the crack can propagate supersonically. The
upper limit of the propagation speed is given by the wave speed associated with the
local elastic properties.

In case 2, detachment of the material occurs completely in the hyperelastic region and
remains confined during crack growth. In this case, two waves with magnitude ε

(1)
t and

ε
(2)
t are moving behind the crack tip, one is a shock front associated with the change

in elastic properties and the other represents a signal travelling in the elastically soft
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material carrying the stress relief due to crack propagation at the wave speed of the soft
material. As the size of the hyperelastic zone shrinks with decreasing εon, the limiting
crack speed is also expected to decrease and approach the limiting value of αg → 1
for εon → a0. This is because the material detachment eventually occurs completely
within the zone of soft elastic properties. On the other hand, if εon is chosen larger, the
stiff zone expands and eventually the situation corresponding to case 1 is attained when
εt < εon and the dynamics is completely governed by the local elastic properties.

In any case, when the crack propagates supersonically, a dramatic reduction in the
ratio εt/ε0 is possible due to the local stiffening effect.

4.4. Molecular-dynamics simulations of the
one-dimensional crack model: The harmonic case

According to Figure 4.2, the atoms are numbered from left to right with increasing
index, with a total number of atoms Nt. We assume that atoms with index i > Nf are
attached to the substrate, and atoms with i ≤ Nf are free and only interact with other
nearest neighbor atoms. The state of an atom i is uniquely defined by a position xi and
its velocity ẋi. The mass of each particle is m = 1. Only nearest neighbor interaction
is considered. The systems contain up to 20, 000 atoms, which equals a string of atoms
of length of about twenty micrometers in physical dimensions. In order to study one-
dimensional fracture, we have developed a specific molecular-dynamics code optimized
for one-dimensional analyses.

The basis for our atomic interactions is the Lennard-Jones interatomic potential de-
fined in equation (2.4). We express all quantities in reduced units, so lengths are scaled
by the LJ-parameter σ which is assumed to be unity in this study, and energies are scaled
by the parameter ε0 = 1/2, the depth of the minimum of the LJ potential. The reduced
temperature is kT/ε0 with k being the Boltzmann constant. To study a harmonic sys-
tem, we expand the LJ potential around its equilibrium position a0 = 21/6 ≈ 1.12246,
and consider only first order terms yielding harmonic atomic interactions.

In our simulation procedure, we distinguish an equilibration phase and a fracture
simulation phase. In the equilibration phase, we initialize the free part of the bar with
a prescribed homogeneous strain, given by ε0 = σ0/E and let the system equilibrate for
a longer time. During that time, we introduce a viscous damping force fd,i = −u̇i η into
the system with η = 0.3 in order to damp out waves generated during equilibration, so
that the particle velocities (and strain gradients) are damped out relatively fast. During
equilibration, atomic bonds glued to the substrate can never break, and the total energy
of the system is given by

U =
∑
i,j

(
1

2
k(rij − a0)

2

)
+
∑

i

(
1

2
H(i − Nf )kpr̂

2
i

)
(4.27)

where k is the spring constant for interatomic interaction, kp is the spring constant of
the pinning potential. The variable

r̂i =| x0,i − xi |, (4.28)
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and the variable xi is the current position of the atom i. The variable x0,i stands for the
initial position of atom i. We integrate the equations of motion using a velocity verlet
algorithm, and choose a time step ∆t = 0.000, 036 in reduced atomic units of σ

√
m/ε.

When all strain is equilibrated in the free standing part of the string, we begin the
fracture simulation phase where the bonds to substrate have finite energy. The total
energy of the system is then given by

U =
∑
i,j

(
1

2
k(rij − a0)

2

)
+
∑

i

(
1

2
H(i − Nf )H(rbreak − r̂i)kpr̂

2
i

)
(4.29)

where rbreak is the snapping bond distance for the pinning potential. The fracture energy
R0 in equation (4.17) is given by

R0 =
1

2

kpr̂
2

a0

, (4.30)

Assuming a stress-strain law as given by equation (4.2), we define a Young’s modulus
for a one-dimensional string of atoms [206]

E = k a0, (4.31)

The wave velocity in a string of atoms is given by

c0 =

√
E

ρ
(4.32)

with density ρ = m/a0 for the present one-dimensional lattice. For k = 28.5732, Young’s
modulus E = 32.07, and c0 ≈ 6. The elastic properties are determined numerically as a
check if the assumptions are valid.

We define an atomic strain of atom i which is directly related to the continuum me-
chanics concept of strain [260], considering only nearest neighbors in a one-dimensional
system

εi =
xi−1 − xi+1

2 a0

. (4.33)

In the remainder of this chapter, we preferably use the atomic strain to analyze our
simulation results, since it provides a useful way to study the state of deformation in
the atomic lattice.

We start with a comparison of the theoretical prediction of the elastic properties
of the one-dimensional string of atoms with atomistic simulations. The numerically
estimated elastic properties agree well with the theory. The measurements of applied
stress σ0 versus strain, and the numerically estimated local modulus in the string of atoms
match the theoretical predictions given by equation (5.13) well. Additional studies of
wave propagation velocity show good agreement of the predicted wave velocity with the
measured wave velocity. Simulations with other spring constants and consequently other
wave velocities provide evidence that the agreement of theory and simulation is generally
good.
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4. A one-dimensional model of dynamic fracture

kp/k Rpred
0 R0

10.0 0.0039 0.00014 × 10−4

1.0 0.0039 0.0015
0.1 0.0039 0.0030
0.01 0.0039 0.0040
0.003 0.0039 0.0040

Table 4.1.: Critical load R0 for fracture initiation, for different values of the spring
constant kp of the pinning potential. The results are in good agreement with the theory
prediction when kp becomes much smaller than k.

Figure 4.5.: Magnitude of the local stress wave for different crack propagation velocities
from atomistic simulations, in comparison with the theory prediction.

Griffith criterion predicts that fracture initiates when the elastic energy released per
unit crack advance equals the energy to create free surface per unit crack advance. The
fracture energy is given by equation (4.30). Setting this quantity equal to the energy
release rate allows to determine the critical load to initiate fracture. The computational
results are compared to the theory prediction in Table 4.1. A result of the simulations
is that the results converge to the theory prediction as kp becomes much smaller than
k, but we find larger disagreement with the theory prediction if kp is large. This could
be due to the fact that the fracture process zone becomes very small when kp is large,
leading to very large strain gradient at the crack.

Equation (4.12) predicts that the local stress wave depends on the crack propagation
velocity. Figure 4.5 plots the magnitude of the local stress wave for different propagation
velocities from atomistic simulations, in comparison with the theory prediction.

The dynamic fracture toughness is a function of α and σ0, and is given by equation
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Figure 4.6.: Dynamic fracture toughness for different crack propagation velocities.

(4.18). Atomistic simulations provide an ideal tool in order to provide information on this
curve. Figure 4.6 plots the dynamic fracture toughness for different crack propagation
velocities. As can be verified, the assumption that R0 = const. is reasonable as long
as the crack velocity is below 80 percent of the wave velocity. For larger velocities, the
curve deviates significantly from a constant and increases dramatically. This behavior
is expected from theory [107] (and also for higher dimensions, as discussed for instance
in [78]).

If α < 1, the crack front propagates slower than the local wave front behind the crack.
If the material left to the crack is of finite length, the reflected wave from the left end
will eventually hit the crack tip at a time

δt =
2L + ∆a

c0

, (4.34)

where L denotes the initial free length of the bar, and ∆a is the distance the crack
has travelled until it is hit. Once the reflected wave front impinges the crack, the
stress will suddenly increase causing a jump in crack propagation speed [107]. In the
atomistic simulations, we observe this effect, but note that the crack does not reach a
steady-state as predicted by the theory. Instead, the crack speed seemed to decrease
continuously, much below the value predicted by the theory. During this process, the
temperature in the system increased continuously and energy seems to be dissipated into
heat (“thermalization” process).

To investigate the dynamics of a suddenly stopping crack, we let the crack propagate
at a high velocity α ≈ 0.9, and then force the crack to stop. This is achieved by setting
r̂ to a large number r̂∞ � r̂ for all atoms with identification number greater than
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4. A one-dimensional model of dynamic fracture

Figure 4.7.: Strain field near a suddenly stopping one-dimensional crack. The crack is
forced to stop at x ≈ 790. As soon as the crack stops, the strain field of the static
solution is spread out with the wave speed.

istop > Nf . This forces the crack to suddenly stop once the crack tip reaches the atom
with index equal istop:

r̂(i) =

{
r̂0 if i < istop,

r̂∞ if i > istop.
(4.35)

The simulation results illustrate that the theory prediction is satisfied, and the local
strain immediately attains the magnitude ε0 as soon as the crack is stopped. The static
field spreads out with the wave velocity. The results are plotted in Figure 4.7.

The discussion of the suddenly stopping one-dimensional crack proves that a one-
dimensional crack carries no inertia. According to this observation, the crack tip velocity
should immediately respond to a change in the fracture energy. For example, if the crack
senses a higher fracture surface energy, the velocity should instantaneously decrease, and
if the crack senses a lower fracture surface energy, vice versa. We test this statement by
introducing a periodically varying fracture surface energy as the crack propagates along
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Figure 4.8.: Prescribed fracture toughness and measured crack velocity as the crack
proceeds along x.

x. The velocity should change in anti-phase with the change of fracture surface energy.
A variation in fracture energy is achieved by varying the bond snapping distance r̂ of
the pinning potential (see equation (4.30)) according to

r̂ = r̂0 + ∆r̂ sin(x/p), (4.36)

where r̂0 is the value around the snapping distance. The bond snapping distance oscil-
lates with amplitude ∆r̂ and period factor p.

In Figures 4.8 and 4.9, results are plotted for r̂0 = 0.008, ∆r̂ = 0.003 and p = 30. The
velocity oscillates around α ≈ 0.6, which is in agreement with the velocity of a crack
under loading σ0 = 0.02 and a fracture toughness of r̂ = 0.008. The same observation
applies to the upper and lower limit of the propagation velocity, which correspond to
the limiting velocity of the crack if it would be propagating along a path with constant
fracture energy of the corresponding magnitude. Therefore,

v = v̂0 + ∆v sin(x/p), (4.37)

where v0 is the velocity associated with r̂0, and ∆v ≈ 1.3 can be approximated by the
difference of the propagation velocity associated with r̂0 + ∆r̂.

4.5. Molecular-dynamics simulations of the
one-dimensional crack model: The supersonic case

This section is dedicated to molecular-dynamics simulations of supersonic cracks. In or-
der to achieve a bilinear stress-strain law according to equation (4.19), the total potential
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4. A one-dimensional model of dynamic fracture

Figure 4.9.: Strain field of a crack travelling in a material with periodically varying
fracture toughness.

energy of the nonlinear system is given by

U =
∑
i,j

(
1

2
k(rij − a0)

2 +
1

2
βk H(r − ron)(rij − ron)

2

)

+
∑

i

(
1

2
H(i − Nf )H(rbreak − r̂i)kpr̂

2
i

)
,

(4.38)

where ron is a potential parameter allowing for different onset points of the hyperelastic
effect (thus controlling the strength of the hyperelastic effect), and

εon =
ron − a0

a0

. (4.39)

The choice of β allows for different types of nonlinearities. If −1 < β ≤ 0, the potential
softens with strain, and if β = 0, the model reduces to harmonic interactions. The small-
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4.5. Molecular-dynamics simulations of the one-dimensional crack model: The supersonic case

Figure 4.10.: Elastic properties associated with the biharmonic interatomic potential,
for ron = 1.125 and Eg = 8 = 1/4El.

perturbation spring constant is always given by k0 = k, and the large-strain spring
constant is given by k1 = (1 + β)k. Elastic properties for β = −3/4 are shown in
Figure 4.10, which plots the atomic stress σ versus atomic separation and the tangent
modulus E. The local sound velocity c0,l is readily obtained from E. The Figure shows
that the tangent modulus softens with strain. We reiterate that if the stress-strain law
softens with strain, the elastic properties at the crack tip are stiffer than in the far-field.

The simulation procedure when using the bilinear stress-strain law is identical to the
previously described procedure. However, the dynamics of the crack with the bilinear
stress-strain law is significantly different from the harmonic case. We observe that
the crack can propagate supersonically with respect to the global elastic properties.
Figure 4.11 (a) plots the limiting velocity of the crack for different values of the potential
parameter ron. For large values of ron, the local hyperelastic zone becomes larger and
the limiting velocity approaches Mach 2, or αg ≈ 2. For ron → a0, the hyperelastic
zone shrinks and the velocity of the crack approaches αg ≈ 1. This plot proves that the
limiting velocity of the crack is very sensitive with respect to the potential parameter
ron. A small change in ron affects the extension of the hyperelastic area and has impact
on the limiting velocity. The simulation results prove that supersonic crack propagation
is possible even if the hyperelastic zone is very small.

When the crack is propagating at αg > 1, the local strain wave has a magnitude of
less than 50 percent of the equilibrium strain. This is in disagreement with the classical
theory stating that the local strain wave is always equal or larger than 50 percent of
the equilibrium strain for a crack propagating at the limiting speed (sound velocity).
However, these observations can be explained well by the new continuum model proposed
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4. A one-dimensional model of dynamic fracture

based on the concept of local elastic properties. Figure 4.11 (b) plots a comparison of
the continuum model with molecular-dynamics simulation results of supersonic crack
propagation. The agreement is reasonable. The regimes where case 1 and case 2 are
valid is also indicated. Figure 4.12 depicts the strain field in the vicinity of a supersonic
crack for ron = 1.124.

4.6. Discussion and conclusions

We have used a simple one-dimensional model of dynamic fracture to investigate fun-
damentals of the nonlinear dynamics of fracture. Based on the continuum model of
one-dimensional dynamic fracture, we have proposed an atomistic model of a string of
atoms. We have verified that the continuum model of one-dimensional dynamic fracture
can be successfully applied at the atomistic level, if harmonic interactions are assumed
between atoms. We have shown that the one-dimensional crack carries no inertia, a phe-
nomenon that is also found in higher dimensions [75, 230, 117]. The fact that we find
good agreement of the one-dimensional atomistic model featuring harmonic interactions
with the continuum theory corresponds to recent work on comparison of the atomistic
level with continuum theory [83] for mode II cracks.

Finding analytical solutions for dynamic fracture in hyperelastic materials in higher
dimensions is very difficult, if not impossible in many cases. However, analytical under-
standing of the nonlinear dynamics becomes possible based on the simple one-dimensional
model. We have proposed a continuum model based on the local elastic properties to
predict the elastic fields around the crack tip, when a bilinear stress-strain law is as-
sumed. The major prediction of the continuum model is supersonic crack propagation,
if there exists a local elastically stiff region confined to the crack tip. By molecular-
dynamics simulations, we have shown that the local elastic properties at the crack tip
indeed govern the dynamics of fracture, in agreement with the predictions of the model.
If there is an elastically stiff zone close to the crack tip, the crack can propagate super-
sonically through the material. We emphasize that this is true even if the hyperelastic
region is highly confined to the crack tip. The observation of supersonic crack motion
has been found by other researchers as well in 2D and 3D studies [11]. Our finding that
the dynamics of the crack is governed by the local elastic properties (the local wave
speed) has been predicted theoretically [81] and observed previously [11, 5]. The case
of stiffening material response corresponds to materials such as polymers, showing a
hyperelastic stiffening effect. Due to the large deformation in the vicinity of the crack,
the elastic properties in such materials are stiffer close to the crack than in regions far
away from the crack. Laboratory experiments of dynamic fracture in such materials
could provide further insight into the nature of hyperelastic stiffening dynamic fracture
and associated supersonic crack propagation.

In this chapter, we have concentrated on the case when local elastic properties are
stiffer than in the far-field elastic properties, crack propagation is supersonic. In the
same sense, if the local elastic properties are softer, crack propagation must be subsonic
on a local scale. We have also performed similar one-dimensional molecular-dynamics
simulations as reported in this work, and find similar results.
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Prior to this study, it has been widely believed that there is a unique definition of how
fast waves propagate in solids. Our results prove that this concept can not capture all
phenomena in dynamic fracture, and instead should be replaced by the concept of local
wave speeds. In materials where the large-strain elasticity differs significantly from the
small-strain elasticity, the concept of global wave velocities can not be used any more to
describe the dynamics of the crack. Instead, the concept of local elastic properties, and
associated local wave velocities govern the dynamics of the crack. Since “real” materials
all show strong nonlinear effects, this suggests that hyperelasticity is crucial for dynamic
fracture.

The one-dimensional model could find useful applications in addressing other funda-
mental questions of mechanics of materials. A potential application is strain gradient
effects in elasticity, and its possible implications on dynamic fracture. The mechan-
ics of one-dimensional structures could also be important in the newly emerging bio-
nano-technology, often involving functionalization of single molecules. An objective of
future studies could be the development of experimental techniques based on the one-
dimensional model of fracture.
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4. A one-dimensional model of dynamic fracture

Figure 4.11.: Subplot (a): Velocity of the crack for different values of the potential
parameter ron. The larger ron, the larger the stiff area around the crack tip. As the
hyperelastic area becomes sufficiently large, the crack speed approaches the local wave
speed αl = 1 corresponding to αg = 2. Subplot (b) shows a quantitative comparison
between theory and computation of the strain field near a supersonic crack as a function
of the potential parameter ron. The different regimes corresponding to case 1 and case
2 are indicated. The loading is chosen σ0 = 0.1, with kp/k = 0.1 and r̂ = 0.001.
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Figure 4.12.: Sequence of strain field near a rapidly propagating supersonic 1D crack
moving with Mach 1.85 for ron = 1.124. The primary (1) and secondary wave (2) are
indicated in the plot. The wave front (1) propagates supersonically through the material.
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5. Mechanical and physical properties
of two-dimensional solids

The one-dimensional model of dynamic fracture provided insight into the nonlinear dy-
namics of cracks. For studies of cracks under mode I and mode II loading as shown
schematically in Figure 5.1, two-dimensional atomistic models of dynamic fracture are
required. Since the mechanical and physical properties of two-dimensional models are
more complex than in the one-dimensional case, we dedicate this chapter to the discus-
sion of mechanical and physical properties of two-dimensional solids associated with a
triangular lattice. The aim is to develop several “model materials” for computer ex-
periments that will be used to study specific features of dynamic fracture later. In
the development of interatomic potentials for model materials, the major objective is
to model the generic properties of a class of materials rather than being specific to a
certain material.

Figure 5.1.: Schematic of cracks under mode I and mode II crack loading.

The outline of this chapter is as follows. After a theoretical consideration of calculation
of elastic properties, the wave speeds and the fracture surface energy in triangular lat-
tices, we discuss numerical results for different potentials. We discuss a Lennard-Jones,
a tethered Lennard-Jones potential, a harmonic potential with and without snapping
bonds and new a biharmonic potential similarly to that used in the previous chapter
(see Section (4.5)). For all potentials, we give expressions for the fracture surface energy.

5.1. Elastic properties and wave speeds

The need to advance methods that combine atomistic and continuum analysis is be-
coming increasingly compelling with rapid advance in computational resources. Many
supercomputer centers offer significant peak performances of several TFLOPs per sec-
ond, and system sizes with billions of particles can readily be simulated [12, 221]. In
order to compare atomistic simulations with continuum analysis level, it is necessary to
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5. Mechanical and physical properties of two-dimensional solids

use methods that allow transition between the two levels of descriptions [129, 252, 86].
Of particular interest is the relationship between interatomic potentials and associated
elastic properties. Many methods have been proposed in recent years, but still lack
proper interpretation and description of quantities like stresses and strains [130, 252].
A possible method of linking atomistic and continuum concepts is to use is the Cauchy-
Born rule [28, 115] which provides a relation between the energy created from a macro-
scopic strain field and the atomistic potential energy found in a stretched crystal lattice
[233, 129, 252, 86].

Classical hyperelastic continuum theory is based on the existence of a strain energy
function [170]. Using the Cauchy-Born rule, applied to the triangular lattice considered
in this chapter, the strain energy density per unit undeformed area is given by [28, 115,
81]

Φ =
2√
3

(φ(l1) + φ(l2) + φ(l3)) , (5.1)

where the values of li are determined from geometric relations of the triangular lattice
as shown in Figure 5.2. The function φ(r) refers to the interatomic potential. The
unknowns Eij are the Green-Lagrangian strain components [170, 151], and these can be
determined to be

Exx =
(
Λ2

1 − 1
)
/2, Eyy =

(
Λ2

2 − 1
)
/2, Exy = Eyx = Λ1Λ2 cos (Θ/2) . (5.2)

Here, Θ is the shear angle, while Λi describe the elongation of the sides of a lattice unit
cell as indicated in Figure 5.2. From geometric relations, it is found that

l1 =
√

1 + 2Exx, (5.3)

l2 =

√
1 + 1/2Exx + 3/2Eyy −

√
3/2(Exy + Eyx), (5.4)

and

l3 =

√
1 + 1/2Exx + 3/2Eyy +

√
3/2(Exy + Eyx). (5.5)

The symmetric second Piola-Kirchhoff stress tensor is given by

Sij =
∂Φ

∂Eij

. (5.6)

The “slope” of the S − E relationship is often called the material tangent modulus

Cijkl =
∂2Φ

∂Eij∂Ekl

. (5.7)

For infinitesimal strains, the Green-Lagrangian strain reduces to the stress tensor of
linear elasticity Eij → εij. The same argument can be used for the stresses, and the
second symmetric Piola-Kirchoff stress tensor reduces to the linear elasticity stress tensor
Sij → σij, as well as Cijkl → cijkl. This scheme is universally applicable, as long as the
interatomic potential and thus the strain energy function Φ is known (it can for instance
be applied to pair potentials or the embedded atom method for metals).
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Figure 5.2.: Subplot (a) Rectangular cell in a uniformly deformed triangular lattice;
subplot (b) the geometrical parameters used to calculate the continuum properties of
the lattice.

Poisson’s ratio ν is defined as the ratio of transverse strain to longitudinal strain in
the direction of stretching force. Poisson’s ratio can be found by choosing a Green-
Lagrangian strain Exx and finding a value for Eyy such that Syy assumes zero (and vice
versa). We can define

ν = −Eyy

Exx

(5.8)

as Poisson’s ratio valid also for large strain.
To obtain a linear elasticity formulation with first order stress-strain law, the strain

energy given in equation (5.1) is expanded up to second order terms. After some lengthy
calculations it can be shown that

Φ =

√
3

8
φ′′(r0)

(
3ε2

xx + 2εxxεyy + ε2
yy + (εxy + εyx)

2
)

(5.9)

where r0 is the nearest neighbor distance. Using

σij =
∂Φ

∂εij

, (5.10)

one can derive expressions for stress-strain relations, like for instance

σyy =
∂Φ

∂εyy

=

√
3

4
φ′′(r0) (εxx + 3εyy) . (5.11)

5.1.1. Lennard-Jones potential

We begin with the elastic properties of a solid in which atoms interact according to a LJ
potential as defined in equation (2.4) (we choose σ = ε0 = 1). LJ type potentials have
frequently been used in simulating fracture using molecular-dynamics [7]. Solids defined
by this potential behave as a very brittle material in a two-dimensional triangular lattice.
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Figure 5.3.: Elastic properties of the Lennard-Jones solid (continuous line) and elastic
properties associated with the harmonic potential (dashed line). The dash-dotted lines
in the upper plots show Poisson’s ratio.

Figure 5.3 shows numerical estimates of the elastic properties of a LJ solid. The systems
are loaded uniaxially in the two symmetry directions of the triangular lattice.

The plot of the LJ system shows that the y-direction requires a higher breaking strain
than in the x-direction (about 18 percent versus 12 percent). The tangent Young’s
modulus drops significantly from around 66 for small strain until it reaches zero when
the solid fails [170]. Poisson ratio remains around 1/3, but increases slightly when loaded
in the x-direction and decreases slightly when loaded in the orthogonal direction.

5.1.2. Nonlinear tethered LJ potential

The objective is to obtain a solid with the property that its tangent moduli stiffen with
strain, in contrast to the LJ potential described above [170]. In addition, the small-strain
elastic properties should be the same as in the LJ potential. The nonlinear tethered LJ
potential is obtained by modifying the well-known LJ 12:6 potential: The potential is
mirrored at r = r0 = 21/6 ≈ 1.12246, leading to a strong stiffening effect instead of the
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5.1. Elastic properties and wave speeds

Figure 5.4.: Elastic properties associated with the tethered LJ potential, and in compar-
ison, elastic properties associated with the harmonic potential (dashed line). Unlike in
the softening case, where Young’s modulus softens with strain (Figure 5.3), here Young’s
modulus stiffens with strain.

normal softening associated with atomic separation.

φij(rij) =




4ε0

(
1

r12
ij
− 1

r6
ij

)
if rij < r0,

4ε0

(
1

(2r0−rij)12
− 1

(2r0−rij)6

)
if rij ≥ r0,

(5.12)

where the parameter ε0 can be chosen to change the small-strain elastic properties (here
we assume σ = ε0 = 1) [6, 83].

Figure 5.4 plots the elastic properties associated with this potential for a two-dimensional
triangular lattice. The upper two subplots show the stress versus strain behavior under
uniaxial stress loading. The left refers to uniaxial stress loading in the x direction, and
the right plot shows the stresses for uniaxial y loading. The Poisson ratio is calculated
to be around ν ≈ 0.33. The nonlinear nature of this potential can clearly be identified in
these plots. The tangent moduli stiffen strongly with strain, and agree with the small-
strain elastic properties of the LJ potential. Therefore, the wave velocities assuming
small perturbation from the equilibrium position are the same in both the LJ and the
tethered LJ potential.
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5.1.3. Harmonic potential

We introduce a harmonic potential with the objective to mimic linear elastic material
behavior, as assumed in most theories of fracture. The linear spring potential given by
equation (2.6) corresponds to the “ball-spring” model of solids and yields a plane-stress
elastic sheet for a triangular lattice.

Using expressions similar to equation (5.11), Young’s modulus E and shear modulus
µ can be shown to be

E =
2√
3
k, µ =

√
3

4
k. (5.13)

When we assume k = 72 3
√

2 ≈ 57.14 so as to match the small-strain elastic properties
of the LJ potential, E ≈ 66 and µ ≈ 24.8. Equation (5.11) (expression for infinitesimal
strains) can be used to show that Poisson’s ratio ν = 1/3. Using the above given
values for elastic properties, the wave speeds can be obtained straightforwardly. The
longitudinal wave speed can be calculated from the elastic properties to be

cl =

√
3µ

ρ
(5.14)

with ρ = 2/21/3/
√

3 ≈ 0.9165 (assuming mass m = 1). The shear wave speed is given
by the square root of the ratio of the shear modulus µ to the density ρ thus

cs =

√
µ

ρ
. (5.15)

Finally, the speed of elastic surface waves, the Rayleigh speed, is given by

cr ≈ βcs. (5.16)

The value of β can be found by the following approach [21]. Considering a surface wave
in an isotropic half space, one can derive a formula to determine the surface wave velocity
as a function of the ratio of longitudinal to shear wave Γ = cs/cl:

β6 − 8β4 + 8
(
3 − 2Γ2

)
β2 − 16

(
1 − Γ2

)
= 0. (5.17)

Only one real and positive solution exists of the Rayleigh equation (5.17) [78, 21]. This
solution is found to be β ≈ 0.9225, which is a more accurate value than in used previous
papers (since an accurate value for the Rayleigh wave velocity is required).

The wave speeds are given by

cl = 9, cs = 5.2, and cr ≈ 4.8. (5.18)

Results for elastic properties and wave speeds are summarized in Table 5.1 for two
different choices of the spring constant.

To check if the predictions by equation (5.13) hold even for large strains, we investi-
gate the elastic properties numerically. The numerically estimated elastic properties for

104



5.1. Elastic properties and wave speeds

k E µ ν cl cs cr

36 3
√

2 ≈ 28.57 33 12.4 0.33 6.36 3.67 3.39

72 3
√

2 ≈ 57.14 66 24.8 0.33 9 5.2 4.8

Table 5.1.: Elastic properties and wave speeds associated with the harmonic potential
(see equation (2.6)) in a 2D solid for different choices of the spring constant k.

Figure 5.5.: Elastic properties of the triangular lattice with harmonic interactions, stress
versus strain (left) and tangent moduli Ex and Ey (right). The stress state is uniaxial
tension, that is the stress in the direction orthogonal to the loading is relaxed and zero.

uniaxial tension are shown in Figure 5.5 for the two different crystal orientations in a
triangular lattice and k ≈ 28.57. We find reasonable agreement, which could be verified
by comparing the values reported in Table 5.1 with the results shown in Figure 5.5.

Young’s moduli agree well with the continuum mechanics prediction for small strains.
However, we observe a slight stiffening effect for large strains, that is, E is increasing
with strain. As predicted, the lattice is found to be isotropic for small deformations,
but the results show there exists an anisotropy effect for large deformations. The values
of Poisson’s ratio match the linear approximation for small strains, but deviate slightly
for large strains. This suggests that even if harmonic potentials are introduced between
atoms, the triangular lattice structure yields a slightly nonlinear stress-strain law.

We note that the values for Young’s modulus associated with the LJ potential at
small strains are in consistency with the results using the harmonic potential with k ≈
57.14 (see Figure 5.3). The small-strain elastic properties also agree in the case of the
tethered LJ potential (see Figure 5.4). The comparison with the harmonic potential
nicely illustrates the softening and stiffening effect of the LJ and tethered LJ potential.
Since the small-strain elastic properties agree with the harmonic potential in both cases,
the small-strain wave speed is also identical and thus given by equations (5.14)-(5.16).
Note that there is no unique definition of the wave speed for large strains in the nonlinear
potentials.
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loading direction Poisson relaxation εbreak

x yes 0.08
y yes 0.1
x no 0.26
y no 0.09

Table 5.2.: Failure strain of the two-dimensional solid associated with the harmonic
potential with snapping bonds under different modes of uniaxial loading, for rbreak =
1.17.

5.1.4. Harmonic bond snapping potential

Figure 5.6.: The figure shows the stretching of the triangular lattice in two different
directions.

In contrast to the elastic properties of a solid that never breaks as reported in Sec-
tion 5.1.3, here we discuss the elastic properties of a triangular lattice with harmonic
interactions where the bonds break upon a critical separation r > rbreak. The interatomic
potential is defined as

φij(rij) =

{
a0 + 1

2
k(rij − r0)

2 if rij < rbreak,

a0 + 1
2
k(rbreak − r0)

2 if rij ≥ rbreak.
(5.19)

The elastic properties for rij < rbreak are identical to those discussed in Section 5.1.3 and
shown in Figure 5.5, but for large strains close to the failure of the solid there are strong
differences. We focus on the differences in elastic properties due to stretching in the x-
direction versus the y-direction. Figure 5.6 shows the crystal orientation for stretching
of the triangular lattice in the two different directions. We define two different bond
types r1 and r2: The bonds denoted by r1 have a component only in the x-direction,
whereas bonds r2 have a component in the x as well as in the y-direction.

We start with a discussion of stretching in the x-direction (Figure 5.6 (a)), and consider
stretching with and without Poisson relaxation. For uniaxial tension without Poisson
contraction, the length of both bonds r1 and r2 increases. In contrast, for uniaxial tension
with Poisson contraction, the length of bonds r1 increases, whereas the condition that
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σyy = 0 requires that | r2 |= r0. Therefore, with the assumption of Poisson relaxation,
for arbitrarily large strains in the x-direction, only two bonds r1 break while the other
four bonds r2 never break. However, these bonds do not contribute to the stress. In
contrast, if no Poisson relaxation is assumed, these bonds do indeed contribute to the
stress and fail at much higher strain than the first two bonds, this increasing the critical
strain for bond breaking. Such behavior is indeed observed in our numerical calculation
of the elastic properties. Figure 5.7 (left) shows uniaxial tension with Poisson relaxation.
Under stretch in the x direction, the solid fails at about 8 % strain. As could be verified
in Figure 5.8 (left), the solid fails at about 26 % strain when no Poisson relaxation is
assumed. A reduced modulus E ≈ 10 is found between the failure of the first two bonds
and the failure of the remaining four bonds. Note that in the figures, the number of
bonds is also indicated by the blue dotted line. The reason for the huge difference in the
two cases is, as outlined above by theoretical considerations, the contribution of the four
bonds r2 which only break at very high strains. Note that for any stress state not equal
to uniaxial tension, there will be a contribution to the stress from the two remaining
bonds.

Figure 5.7.: The figure plots the elastic properties under uniaxial loading with Poisson
relaxation for the harmonic potential. In the plot, stress versus strain, Poisson’s ratio
as well as the number of nearest neighbors are shown. The lower two subplots show
Young’s modulus

We continue with a discussion of stretching in the y-direction (Figure 5.6 (b)), and also
consider stretching with and without Poisson relaxation. For uniaxial tension without
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Poisson contraction, the length of both bonds r2 increases while the bond length of bonds
r2 remains r0 and does not contribute to the stress. Under unixial tension with Poisson
relaxation, the length of all bonds is adjusted to satisfy the condition that σxx = 0. In
both cases, upon a critical strain the number of bonds drops to two (since the four bonds
r2 break) and the remaining bonds r1 do not contribute to the stress in both cases with
and without Poisson relaxation. This is a significant difference to the behavior in the
other loading direction. As a consequence, the critical strain for failure is comparable
under both loading conditions in the y-direction. Such behavior is indeed observed in
our numerical calculation of the elastic properties. Figure 5.7 (right) shows uniaxial
tension with Poisson relaxation. Under stretch in the y direction, the solid fails at about
10 % strain. As could be verified in Figure 5.8 (right), the solid fails also at about 10 %
strain when no Poisson relaxation is assumed.

Figure 5.8.: The figure plots the elastic properties under uniaxial loading without Poisson
relaxation for the harmonic potential. In the plot, stress versus strain, as well as the
number of nearest neighbors are shown. The lower two subplots show Young’s modulus.

In summary, there is a strong dependence of the failure strain on the loading condition.
Table 5.2 summarizes the failure strains for different modes of loading in the x and y
direction.

Under large stretching, harmonic lattices behave differently than solids defined by
the LJ potential since bonds contribute little to the stress as they weaken strongly
with strain. Therefore, the direction with lowest breaking strain is associated with
loading in the x-direction, which is the direction with highest fracture surface energy.

108



5.1. Elastic properties and wave speeds

The consequence of this is that crack propagation is stable along the direction of high
fracture energy [2, 7]. Solids associated with harmonic bond snapping potentials show
a different behavior: In the harmonic bond snapping systems, the failure strain is larger
in the x-direction and smaller in the y-direction (see Figure 5.8). Cracks are therefore
expected to propagate stable along the direction of lower fracture surface energy (crack
extension along x-direction). We will verify this prediction with molecular-dynamics
results in a forthcoming chapter.

5.1.5. Biharmonic potential

Thus far, we have studied a LJ potential that yields elastic properties that soften strongly
with strain, a tethered LJ potential that yields a solid strongly stiffening with strain and a
harmonic potential. To be able to smoothly interpolate between harmonic potentials and
strongly nonlinear potentials, we adopt a biharmonic, interatomic potential composed
of two spring constants k0 and k1 similar to that discussed in Section 4.5 for the 1D case
(all quantities given are in dimensionless units).

We consider two “model materials”, one with elastic stiffening and the other with
elastic softening behavior. In the elastic stiffening system, the spring constant k0 is
associated with small perturbations from the equilibrium distance r0, and the second
spring constant k1 is associated with large bond stretching for r > ron. The role of k0

and k1 is reversed in the elastic softening system (k0 = 2k1, and k1 = 36/ 3
√

2).
Purely harmonic systems are obtained if ron is chosen to be larger than rbreak. Pois-

son’s ratio ν is found to be approximately independent of strain and around ν ≈ 0.33 for
all potentials. In the stiffening system, the small deformation (up to about 0.5 percent
of strain) Young’s modulus is E ≈ 33 with shear modulus µ ≈ 12.4, and the large defor-
mations tangent Young’s modulus is E ≈ 66 with shear modulus µ ≈ 28.8. The values
are reversed for the softening system where the small deformation Young’s modulus is
E ≈ 66, and the large deformation tangent Young’s modulus is E ≈ 33.

The biharmonic potential is defined as

φij(rij) =

{
a0 + 1

2
k0(rij − r0)

2 if rij < ron,

a1 + 1
2
k1(rij − r1)

2 if rij ≥ ron

(5.20)

where ron is the critical atomic separation for onset of the hyperelastic effect, and

a1 = a0 +
1

2
k0(ron − r0)

2 − 1

2
k1(ron − r1)

2 (5.21)

as well as

r1 =
1

2
(ron + r0) (5.22)

are found by continuity conditions of the potential at r = ron. The values of k0 and k1

refer to the small-strain and large-strain spring constants.
The elastic properties associated with the biharmonic potential are shown in Fig-

ure 5.9. The wave speeds for small and large strains are given by the values of the
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5. Mechanical and physical properties of two-dimensional solids

corresponding harmonic potentials. Therefore, the wave speeds associated with large
strains are given by cl,1 = κcl,0, cs,1 = κcs,0 and cr,1 = κcr,0 where κ =

√
k1/k0.

Similarly as described in the previous section, a critical bond breaking distance rbreak

can be introduced allowing for snapping bonds.

Figure 5.9.: Elastic properties of the triangular lattice with biharmonic interactions,
stress versus strain in the x-direction (a) and in the y direction (b). The stress state is
uniaxial tension, that is the stress in the direction orthogonal to the loading is relaxed
and zero.

5.2. Fracture surface energy

The fracture surface energy γs is an important quantity for the nucleation and propa-
gation of cracks. It is defined as the energy required to generate a unit distance of a
pair of new surfaces (cracks can be regarded as sinks for energy, where elastic energy
is converted into surface fracture energy). The Griffith criterion predicts that the crack
tip begins to propagate when the crack tip energy release rate G reaches the fracture
surface energy 2γs, G = 2γs [93]. The fracture surface energy can be expressed as

γs = −∆φ

d
, (5.23)

where d is the crack advance and ∆φ the energy necessary to break atomic bonds as the
crack advances a distance d. The bond breaking process is depicted in Figure 5.10 (a)
for cracks propagating along the direction with highest fracture surface energy. In this
case, four bonds break while the crack proceeds d =

√
3r0. Figure 5.10 (b) shows the
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5.2. Fracture surface energy

bond breaking process for crack orientation along the direction of lowest fracture surface
energy. In this direction, two bonds break while the crack advances d = r0.

Figure 5.10.: Bond breaking process along the fracture plane and calculation of fracture
surface energy for (a) direction of high fracture surface energy, and (b) direction of low
fracture surface energy.

For the case considered in the simulations, the fracture surface energy is determined
assuming that bonds between nearest neighbors snap during crack propagation. Unlike
the wave velocity, the fracture surface energy is well-defined for both linear and nonlinear
cases.

We summarize the results for different potentials described in this chapter.

5.2.1. Harmonic bond snapping potential

The fracture surface energy for the harmonic bond snapping model for crack propagation
along the direction of high fracture surface energy (as shown in Figure 5.10) is given by

γbs,h
s =

k(rbreak − r0)
2

√
3r0

=
E(rbreak − r0)

2

2r0

, (5.24)

which yields γbs = 0.0332 for rbreak = 1.17. For the direction of low fracture surface
energy,

γbs,l
s =

k(rbreak − r0)
2

2r0

, (5.25)

which yields γbs = 0.0288 for rbreak = 1.17 and is about 15 % smaller than in the other
direction.

5.2.2. Biharmonic bond snapping model

The surface energy for the biharmonic bond snapping model along the direction of high
fracture surface energy is given by

γbi,h
s =

2a1 + k1(r1 − rbreak)
2

√
3r0

=
E0(ron − r0)

2 − E1 [(ron − r1)
2 − (r1 − rbreak − r0)

2]

2r0

.

(5.26)
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Potential γh
s γl

s

harmonic (with rbreak = 1.17, k ≈ 28.57) 0.033 0.029
harmonic (with rbreak = 1.17, k ≈ 57.14) 0.066 0.057
Lennard-Jones 1.029 0.891
tethered LJ (with rbreak = 1.17) 0.119 0.103

Table 5.3.: Summary of fracture surface energies for a selection of different potentials.

For the purely harmonic case, the fracture surface energy reduces to the expression given
by equation (5.24). In the direction of lower fracture surface energy,

γbi,l
s =

2a1 + k1(r1 − rbreak)
2

2r0

=
E0(ron − r0)

2 − E1 [(ron − r1)
2 − (r1 − rbreak − r0)

2]

4/
√

3r0

.

(5.27)

5.2.3. Other potentials

For other potentials, we do not give the analytical expression but summarize the results
in Table 5.3. The results for harmonic and biharmonic potentials are also included.

5.3. Discussion

The studies shown in this chapter suggest that by designing the interatomic potential,
different elastic properties can be obtained.

The LJ system shows a strong softening of Young’s moduli with strains (see Fig-
ure 5.3). In contrast, the tethered LJ system yields a solid whose elastic properties
stiffen with strain (see Figure 5.4). The harmonic potential serves as a reference that
yields approximately linear elastic properties (see Figure 5.5). The LJ and tethered
LJ potential yield continuously changing Young’s moduli, which may complicate the
analysis of crack dynamics. Therefore, we proposed a simplistic potential to describe
hyperelastic effects, the biharmonic potential. The biharmonic potential is composed
of two harmonic potentials and yields bilinear elastic properties (see Figure 5.9). An
important feature of the biharmonic potential is that it allows to define unique wave
speeds for small and large strains.

The work described in this chapter exemplifies the development of model materials
for computer simulations. The potentials defined in this chapter will be used to study
specific aspects of dynamic fracture.
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6. Stress and deformation field near
rapidly propagating cracks in a
harmonic lattice

In this chapter, we report large-scale atomistic simulations to study the near-crack elas-
tic fields in mode I dynamic fracture from both atomistic and continuum mechanics
viewpoints. In the continuum theory, the stress field in the vicinity of the crack tip
is given by an asymptotic solution [246, 22, 78]. With KI(t, v) as the dynamic stress
intensity factor,

σij(Θ, v) =
KI(t, v)√

2πr
Σij(Θ, v) + σ

(1)
ij + O(1). (6.1)

The functions Σij(Θ, v) represent the variation of stress components with angle Θ for any
value of crack speed v [78]. These functions only depend on the ratio of crack speed to
wave speeds (see discussion in the Appendix, Chapter B). The asymptotic field strongly
depends on the crack velocity, and has universal character because it is independent of
the details of applied loading. The values of σ

(1)
ij and the first order contribution O(1)

are determined from the boundary conditions, and neglected in the remainder of this
work since the first term dominates very close to the crack tip.

In the literature, there is no systematic comparison of atomistic simulations and linear
elastic continuum theory of the stress and deformation field near rapidly propagating
cracks. In this chapter, the continuum prediction is compared quantitatively to atom-
istic simulation results. Harmonic interatomic potentials are used to model a linear
elastic plane-stress sheet. To compare the results for different crack velocities, we report
atomistic simulations with different loading rates driving the crack to different terminal
velocities.

Figure 6.1 shows the slab geometry used in the simulations. The slab size is given by
lx and ly. The crack propagates in the y direction, and its extension is denoted by a.
The crack propagates in a triangular hexagonal lattice with nearest neighbor distance
along the crystal orientation shown in Figure 6.1. A weak fracture layer is introduced
to avoid crack branching by assuming harmonic bonding in the bulk but a LJ potential
across the weak layer (see also [83]).

All simulations presented here are two-dimensional. Previous studies have provided
evidence that 2D molecular-dynamics is a good framework to investigate the dynamics
of fracture [11, 83]. This is because the atomistic simulations of a two-dimensional solid
and a three-dimensional solid show no difference in the details of the dynamics of the
crack. The 2D model captures important features of dynamic fracture such as surface
roughening and crack tip instabilities [5, 7]. Although the word “atomistic” is to some
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6. Stress and deformation field near rapidly propagating cracks in a harmonic lattice

Figure 6.1.: Simulation geometry and coordinate system for studies of rapidly propagat-
ing mode I cracks in harmonic lattices.

extent not accurate, it still seems to be the best approximation in describing 2D lattice
models which are now widely used to simulate dynamic fracture [256, 98, 150, 74].

The plan of this chapter is as follows. We show that in molecular-dynamics simulations
of cracks travelling in perfect harmonic lattices the prediction of stress and strain fields
by continuum mechanics is reproduced quantitatively. An important observation is that
the hoop stress becomes bimodal at about 73 percent of Rayleigh speed, in agreement
with the continuum theory. In addition, we report comparison of continuum theory with
molecular-dynamics simulation of the strain energy field near the crack tip as well as
the energy transport field near rapidly moving cracks.

6.1. Stress and deformation fields

In this section we compare stress and deformation field near a rapidly moving crack tip
with continuum mechanics theories.

6.1.1. Angular variation of stress

We analyze the angular variation of the principal stress and hoop stress close to the
crack tip and compare the results of the simulation to the continuum mechanics solution
given by equation (6.1). Atomic quantities are evaluated in a small region around a
constant radius of r ≈ 11 centered at the crack tip. The continuum theory solution and
the simulation results are both normalized with respect to the dynamic stress intensity
factor.
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6.1. Stress and deformation fields

We find that if the stress field measurements are taken while the crack accelerates too
rapidly, the agreement of measured field and continuum theory prediction can be poor.
Acceleration effects can severely change the resulting stress fields. Although the crack
tip is regarded as inertia-less since it responds immediately to a change in loading or
fracture surface energy, it takes time until the elastic fields corresponding to a specific
crack speed spread out! In fact, the fields spread out with the Rayleigh velocity behind,
and with the shear wave velocity ahead of the crack. In other regions around the crack
tip, the fields are reached in the long-time limit (t → ∞) [230, 78]. Therefore, we choose
a moderate strain rate ε̇xx = 0.000 01.

Figure 6.2.: Comparison between σxx from molecular-dynamics simulation with har-
monic potential and the prediction of the continuum mechanics theory for different
reduced crack speeds v/cr.

As a consequence of the relatively low strain rate and the finite slab size, the crack
only achieves about 87 % of Rayleigh-wave speed. We calculate the stress for different
crack speeds ranging from 0 to 87 % of the Rayleigh speed. Figures 6.2 to 6.4 show the
angular variation of σxx, σyy as well as σxy.

Figure 6.5 shows the angular variation of the hoop stress σΘ. Figure 6.6 shows the
angular variation of the maximum principal stress σ1 near the crack tip. In all figures,
the continuous line is the corresponding analytical continuum mechanics solution [78].
It can be observed from the plots that the hoop stress becomes bimodal at a velocity of
about 73 percent of the Rayleigh-wave velocity. This is in agreement with the predictions
by continuum mechanics theories [78].
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6. Stress and deformation field near rapidly propagating cracks in a harmonic lattice

Figure 6.3.: Comparison between σyy from molecular-dynamics simulation with har-
monic potential and the prediction of the continuum mechanics theory for different
reduced crack speeds v/cr.

6.1.2. Elastic fields near the crack tip

Here we use a higher strain rate of ε̇xx = 0.000 5 in order to drive the crack close to the
Rayleigh-wave speed.

The principal strain field is shown in Figure 6.7 for different velocities of v/cr ≈ 0,
v/cr ≈ 0.5 and v/cr ≈ 1. The upper plot is the simulation result, while the lower
part is the prediction by continuum mechanics. We note that the principal stress field
is in good agreement with the continuum theory. The typical trimodal structure of
the asymptotic principal strain and principal stress field develops close to the Rayleigh
velocity, in contrast to the bimodal structure at low crack speeds.

The stress fields σxx, σyy and σxy for a crack propagating close to the Rayleigh-wave
velocity are shown in Figure 6.8 (a)-(c). As before, the upper plot is the simulation
result, while the lower part plots the prediction by continuum mechanics.

Finally, Figure 6.7 plots the particle velocity near the crack tip for a crack propagating
close to the Rayleigh velocity. Figure 6.9 (a) shows u̇x, and Figure 6.9 (b) shows u̇y. The
continuum theory prediction and the atomistic simulation result match well. The particle
velocity field behind the crack tip is found to be smeared out more in the simulation
results due to thermalization effects not accounted for in the continuum theory.
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Figure 6.4.: Comparison between σxy from molecular-dynamics simulation with har-
monic potential and the prediction of the continuum mechanics theory for different
reduced crack speeds v/cr.

6.2. Energy flow near the crack tip

Here we discuss the energy flow near a crack tip in molecular-dynamics simulations
compared with the continuum theory [78]. A similar study has been reported recently
[74]. In contrast to our treatment of the dynamic Poynting vector for steady-state cracks
at high velocities (in analogy to the discussion in [78]), the authors in [74] only consider
the static Poynting vector to study energy radiation of rapidly moving cracks.

The dynamic Poynting vector for a crack moving at velocity v in the y-direction can
be expressed as

Pj = σiju̇i + (U + T )v δ2j, (6.2)

where δij is the Kronecker delta function. The kinetic energy is given by T = 1
2
ρu̇iu̇i, and

the strain energy density for an isotropic medium is given by [27]

U =
1

2E

[
σ2

11 + σ2
22 − 2νσ11σ22 + 2(1 + ν)σ2

12

]
. (6.3)

The magnitude of the dynamic Poynting vector is calculated as P =
√

P 2
1 + P 2

2 , and
can be identified as a measure for the local energy flow.

Figure 6.10 (a) shows the strain energy field near the crack tip predicted by both
the continuum theory prediction and the molecular-dynamics simulation result. Fig-
ure 6.10 (b) shows the magnitude of the dynamic Poynting vector field. Figure 6.11
shows in panel (a) the continuum mechanics prediction, and in panel (b) the molecular-
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6. Stress and deformation field near rapidly propagating cracks in a harmonic lattice

Figure 6.5.: Comparison between hoop stress from molecular-dynamics simulation with
harmonic potential and the prediction of the continuum mechanics theory for different
reduced crack speeds v/cr.

dynamics simulation result of the dynamic Poynting vector field in the vicinity of the
crack tip, for a crack propagating close to the Rayleigh speed.

6.3. Limiting velocities of cracks in harmonic lattices

We also study the dependence of crack dynamics in harmonic materials with different
spring constants. The discussion in Chapter 5 suggests that the limiting crack speed
for mode I cracks should only depend on the elastic properties, and therefore, in case
of harmonic potentials, on the spring constant k. For mode I cracks considered in this
chapter, the limiting speed is given by the Rayleigh-wave speed [78].

Figure 6.12 shows the crack tip history a(t) as well as the crack speed history ȧ(t)
for a soft as well as a stiff harmonic material. The results are in consistency with the
predicted limiting speed (see data in Table 5.1).

6.4. Discussion

Simulations of cracks propagating along a confined fracture path in a harmonic lattice
show that continuum mechanics theory of fracture can be successfully applied even at
the atomistic level. We compared the virial stress and strain from atomistic simula-
tion results with the continuum mechanics solution of the asymptotic field for different
propagation velocities.
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Figure 6.6.: Comparison between the maximum principal stress σ1 from molecular-
dynamics simulation with harmonic potential and the prediction of the continuum me-
chanics theory for different reduced crack speeds v/cr.

The results suggest that the agreement of molecular-dynamics simulations and con-
tinuum mechanics is generally good, as it is shown for the stress tensor components
σxx, σyy and σxy. We observe disagreement at large angles Θ > 150 degrees, probably
due to surface effects in the atomistic simulations. In Figure 6.2 we observe that for
σxx, the shape of σxx(Θ) is qualitatively reproduced well over the entire velocity regime
between 0 and 87 percent of Rayleigh speed. However, the angles of the local maxima
and minima are shifted to slightly smaller values compared to the theory prediction.

Figure 6.3 illustrates that the shift of the maximum in the σyy(Θ) curve from about
60 degrees to about 80 degrees is reproduced only qualitatively. For low velocities the
maximum is found at lower angles around 40 degrees, but it approaches the value of the
continuum theory at higher velocities. At 87 percent of Rayleigh speed, the difference
is only a few degrees. The shear stress σxy shown in Figure 6.4 also agrees qualitatively
with the continuum theory. As in the previous cases, the angles of local minima and
maxima are shifted to lower values in the simulation, but the agreement gets better
when the crack velocity is faster. Even though we see small deviations in σxx, σyy and
σxy, the hoop stress σΘ agrees quantitatively with the continuum theory as shown in
Figure 6.5.

The angles of the maxima and minima during crack acceleration compare well with
theory. However, the angles of the maxima and minima of the maximum principle stress
shown in Figures 6.6 are also shifted to slightly lower values. However, we observe that
two local maxima and one local minima develops at a velocity of about 73 percent in
quantitative agreement with continuum theory (“trimodal structure”). The magnitude
of the local maxima and minima also agree quantitatively.
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Figure 6.7.: Principal strain field at various crack velocities (a) v/cr ≈ 0, (b) v/cr ≈ 0.5,
(c) v/cr ≈ 1. In each of the plots (a)-(c), the upper plot is the simulation result and the
lower part is the prediction by continuum mechanics.

The analysis of the potential energy field near a crack close to the Rayleigh speed
agrees qualitatively with the prediction by the continuum mechanics theory. As Fig-
ure 6.10 (a) shows, in both theory and computation the field clearly shows two three
local maxima with respect to the angular variation (“trimodal structure”), similar to
the principal stress field. At larger distances away from the crack tip we observe that
other stress terms begin to dominate in the simulation, so the distribution of the poten-
tial energy deviates from the prediction by theory. As is expected since only the first
term of equation (6.1) is considered, these contributions are missing in the continuum
solution.

Similar observations also hold for the magnitude of the dynamic Poynting vector,
as it can be verified in Figure 6.10 (b). The dynamic Poynting vector field calculated
by molecular-dynamics is also in reasonable agreement with the continuum mechanics
prediction. This could be verified in Figure 6.11. In both theory (Figure 6.11 (a))
and molecular-dynamics calculation (Figure 6.11 (b)), the orientation of the dynamic
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Figure 6.8.: Stress fields close to the crack tip for a crack propagating close to the
Rayleigh velocity v/cr ≈ 1. Plots (a), (b) and (c) show σxx, σyy and σxy. In each of the
plots (a)-(c), the upper plot is the simulation result and the lower part is the prediction
by continuum mechanics.

Poynting vector is dominated by the direction opposite to crack motion. The vector
field seems to bow out around the crack tip, an effect that is more pronounced in the
simulation than predicted by theory. Also, the flow ahead of the crack is larger in
simulation than predicted by theory. At the free surface of the crack, the measurement
from the simulation and the prediction by theory show differences. This could be based
on the fact that the continuum theory does not treat surface effects properly, in particular
short-wave length Rayleigh waves (see also discussion in [74]).

Our calculation of the virial stress does not include the particle velocity contribution
(see Appendix, Chapter A). This is in consistency with the recent investigations of Zhou
and coworkers [253] on the linkage between virial stress and Cauchy stress of continuum
mechanics. Finally, we note that the virial expression of the stress tensor is classically
thought to be only valid under equilibrium conditions [212]. Our results reported in
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Figure 6.9.: Particle velocity field close to the crack tip for a crack propagating close to
the Rayleigh velocity, v/cr ≈ 1. Plots (a) shows u̇x and plot (b) shows u̇y. In each of
the plots (a) and (b), the upper plot is the simulation result and the lower part is the
prediction by continuum mechanics.

this chapter show that it is approximately valid even under dynamic fracture conditions
which are far from equilibrium.
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Figure 6.10.: Potential energy field and magnitude of the dynamic Poynting vector. (a)
Potential energy field near a crack close to the Rayleigh speed. (b) Energy flow near
a rapidly propagating crack. This plot shows the magnitude of the dynamic Poynting
vector in the vicinity of a crack propagating at a velocity close to the Rayleigh speed.

Figure 6.11.: Energy flow near a rapidly propagating crack. This plot shows (a) the
continuum mechanics prediction, and (b) the molecular-dynamics simulation result of
the dynamic Poynting vector field in the vicinity of the crack tip, for a crack propagating
close to the Rayleigh-wave speed.
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Figure 6.12.: Crack tip history as well as the crack speed history for a soft as well as a
stiff harmonic material (two different choices of spring constants as given in Table 5.1).
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7. Hyperelasticity governs dynamic
fracture at a critical length scale

The elasticity of a solid clearly depends on its state of deformation. Metals will weaken,
or soften, and polymers may stiffen as the strain approaches the state of materials failure.
It is only for infinitesimal deformation that the elastic moduli can be considered constant
and the elasticity of the solid linear. However, many existing theories model fracture
using linear elasticity. Certainly, this can be considered questionable since material is
failing at the tip of a dynamic crack because of the extreme deformation. We show by
large-scale atomistic simulations that hyperelasticity, the elasticity of large strains, can
play a governing role in the dynamics of fracture and that linear theory is incapable
of capturing all phenomena. We introduce the concept of a characteristic length scale
for the energy flux near the crack tip and demonstrate that the local hyperelastic wave
speed governs the crack speed when the hyperelastic zone approaches this energy length
scale.

7.1. Introduction

Why and how cracks spread in brittle materials is of essential interest to numerous
scientific disciplines and technological applications, and a theoretical understanding is
essential for numerous engineering applications. We show by large-scale atomistic sim-
ulation that hyperelasticity, the elasticity of large strains, can play a governing role in
the dynamics of brittle fracture. This is in contrast to many existing theories of dy-
namic fracture where the linear elastic behavior of solids is assumed sufficient to predict
materials failure [78, 29, 199].

Real solids have elastic properties that are significantly different for small and for
large deformations. Many phenomena associated with rapidly propagating cracks are
not thoroughly understood. Some experimental work [70, 176] as well as many computer
simulations [7, 5, 65] have shown a significantly reduced crack propagation speed in
comparison with the predictions by the theory. In contrast, other experiments indicated
that over 90 percent of the Rayleigh wave speed can be achieved [232, 194, 68, 52,
105, 104, 119]. Such discrepancies between theories, experiment and simulations can
not always be attributed to the fact that real solids have all sorts of imperfections such
as grain boundaries and microcracks (either pre-existing or created during the crack
propagation), as similar discrepancies also appear in molecular-dynamics simulations
of cracks travelling in perfect atomic lattices. Gao [81, 82] and Abraham [5, 7] have
independently proposed that hyperelastic effects at the crack tip may play an important
role in the dynamics of fracture. Their suggestions have been used to help explaining
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phenomena related to crack branching and dynamic crack tip instability, as well as
explaining the significantly lower maximum crack propagation speed observed in some
experiments and many computer simulations. However, it is not generally accepted that
hyperelasticity should play a significant role in dynamic fracture.

One reason for this belief stems from the fact that the zone of large deformation in a
loaded body with a crack is highly confined to the crack tip, so that the region where
linear elastic theory does not hold is extremely small compared to the extensions of the
specimen [78, 29]. In this study, we use large-scale molecular-dynamics simulations [11]
in conjunction with continuum mechanics concepts [78, 29] to prove that hyperelasticity
can be crucial for understanding dynamic fracture.

Our study shows that local hyperelasticity around the crack tip can significantly in-
fluence the limiting speed of cracks by enhancing or reducing local energy flow. This is
true even if the zone of hyperelasticity is small compared to the specimen dimensions.
The hyperelastic theory completely changes the concept of the maximum crack velocity
in the classical theories. For example, the classical theories clearly predict that mode I
cracks are limited by Rayleigh wave speed and mode II cracks are limited by longitudinal
wave speed. In contrast, both super-Rayleigh mode I and supersonic mode II cracks are
allowed by hyperelasticity and have been seen in computer simulations [6, 11].

In our simulations, we find that there exists a characteristic length scale associated
with energy flow near the crack tip such that hyperelasticity completely dominates crack
dynamics if the size of hyperelastic region approaches this characteristic length. In ear-
lier simulations [6, 11], a nonlinear interatomic stiffening was assumed, and there was
no sharp distinction between the linear and nonlinear elastic regimes for the stretched
solid. In contrast, our model is based on a biharmonic potential composed of two spring
constants, one associated with small deformations and the other associated with large
deformations (see discussion in Section 5.1.5). This serves as a simplistic model mate-
rial for hyperelasticity, allowing us to investigate the generic features of hyperelasticity
common to a large class of real materials.

7.2. Modeling

We consider propagation of a crack in a two-dimensional simulation geometry shown in
Figure 6.1. The slab size is given by lx and ly. The crack propagates in the y direction,
and its extension is denoted by a. The crack propagates in a triangular hexagonal
lattice with nearest neighbor distance along the crystal orientation shown in Figure 6.1.
To avoid crack branching, a weak fracture layer is introduced by assuming that atomic
bonds across the prospective crack path snap at a critical atomic snapping distance rbreak

while those in the rest of the slab never break. As outlined in Section 5.2, the snapping
distance can be used to adjust the fracture surface energy 2γ.

For a systematic study of hyperelastic effects in dynamic fracture, we adopt the bi-
harmonic potential defined in equation (4.19). This potential is composed of two spring
constants k0 and k1. Here we consider two “model materials”, one with elastic stiffening
and the other with elastic softening behavior. In the elastic stiffening system, the spring
constant k0 is associated with small perturbations from the equilibrium distance r0, and
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the second spring constant k1 is associated with large bond stretching for r > ron. The
role of k0 and k1 is reversed in the elastic softening system (k0 = 2k1, and k1 = 36/ 3

√
2).

The elastic properties associated with this potential are shown in Figure 5.9.
To strain the system, we use two approaches. The first is using a constant strain rate

applied over a loading time by displacing the outermost rows of atoms. After the loading
time, the boundaries are kept fixed. In the second method, we strain the system prior
to simulation in the loading direction, and keep the boundary fixed during simulation.
In either way, the crack starts to move once a critical strain is applied. It can be shown
that the stress intensity factor remains constant in a strip geometry inside a region of
[206]

3/4lx < a < (ly − 3/4lx). (7.1)

This ensures that the crack achieves a steady-state during propagation through the slab.
The slab is initialized at zero temperature prior to simulation.

The length ly is several times larger than lx, with the ratio ranging from two to
five. The slab width lx considered ranges from 1,150 (smallest) up to 4,597 (largest,
corresponding to micrometer length scale in physical dimensions). The largest model
contains over 70 million atoms. All quantities in this chapter are given in reduced units.
The condition for small-scale yielding is satisfied in all cases (with harmonic, stiffening
and softening potentials), since breaking of atomic bonds occurs over a region involving
only a few atoms along the weak layer (that is, very small fracture process zone). There
is no dislocation processes and the system is perfectly brittle. The slab is loaded with
a maximum of a few percent strain, according to the crack loading mode. The loading
is significantly lower than other studies [206]. A slit of length a is cut midway through
the slab as an initial, atomically sharp crack.

Accurate determination of crack tip velocity is important because we need to be able
to measure even smallest changes in the propagation speed. The crack tip position is
determined by finding the surface atom with maximum y position in the interior of a
search region inside the slab. This quantity is averaged over a small time interval to
eliminate very high frequency fluctuations. To obtain the steady state velocity of the
crack, the measurements are taken within a region of constant stress intensity factor
[206]. In addition to checking the velocity history, steady state is verified by path-
independency of the energy flux integral [78].

7.3. Crack speed and energy flow

We show by molecular-dynamics simulations that a localized, small hyperelastic region
around the crack tip can have significant effects on the dynamics of crack propagation.
In all simulations, the slab is statically loaded with 0.32 percent strain in mode I. The
strain energy density far ahead of the crack tip is given by

S =
ε2

xxlxE

2(1 − ν)2
, (7.2)

where E is the Young’s modulus at small strain. The linear elastic expression of strain
energy density is valid because material far ahead of the crack is strained always below
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7. Hyperelasticity governs dynamic fracture at a critical length scale

the onset threshold of the bilinear law, that is it remains in the linear elastic regime of
material response. The strain and strain energy density both vanish far behind of the
crack. For a unit distance of crack propagation, a strip of material with energy density
S ahead of the crack is replaced by an identical strip with zero strain energy behind the
crack.

Figure 7.1.: Hyperelastic region in a (a) softening and (b) stiffening system.

According to the linear elastodynamic theory of fracture [78], the crack speed should
satisfy the dynamic energy release rate equation

A(v/cr) =
2γ

S
(7.3)

where the function A(v/cr) is a universal function of crack velocity v for a given material.
Assuming that the small-strain elasticity completely governs the dynamics of fracture,
the linear theory predicts that crack velocity should depend only on the ratio S/γ.

During crack propagation, the energy stored ahead of the crack tip is partly converted
by the bond breaking process into fracture surface energy, and partly dissipated into
atomic motion. In the purely harmonic case, the fracture surface energy γ depends on
rbreak and E. In the biharmonic case, the fracture surface energy depends on rbreak, ron,
E0 and E1. Our strategy is to focus on the prediction from linear theory that crack
velocity depends only on the ratio S/γ. To achieve this objective, we keep the ratio
S/γ constant in all of the simulations. In the harmonic systems, as S ∼ E and γ ∼ E,
we choose the parameter rbreak to be identical in all cases. In the biharmonic systems,
we adjust the parameter rbreak, at given values of ron, E0 and E1, to always keep S/γ
constant.

We choose rbreak = 1.17 for the harmonic systems. The failure strain at the crack tip
can reach a magnitude of several per cent, which is comparable to many “real materials”.
In the harmonic systems (with Young’s modulus equal to E0 or E1), the crack achieves
the same propagation velocity around 80 percent of the Rayleigh wave speed. This is
consistent with the linear theory.

For the biharmonic systems, we choose ron = 1.1275 and rbreak = 1.1558 in the stiffen-
ing system and rbreak = 1.1919 in the softening system to keep S/γ constant. In contrast
to the linear theory prediction, we find that the crack propagation velocity is about 20
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per cent larger in the stiffening system and 30 per cent smaller in the softening system.
These deviations can not be explained by the linear theory. The fact that we change the
large-strain elasticity while keeping the small-strain elasticity constant indicates that
hyperelasticity is affecting crack dynamics.

7.3.1. Hyperelastic area

A geometric criterion based on the principal strain is used to characterize the area with
hyperelastic material response close to the crack tip. The region occupied by atoms
having a local maximum principal strain

ε1 ≥ εon =
ron − r0

r0

(7.4)

defines the hyperelastic area AH by an integral over the whole simulation domain Ω

AH =

∫
Ω

H(ε1 − εon) dΩ. (7.5)

Figure 7.1 (a) shows the hyperelastic area in the case of a stiffening material, and
Figure 7.1 (b) shows the hyperelastic area in the case of an elastically softening ma-
terial, indicating that the hyperelastic effect is highly localized to the crack tip (these
pictures show a portion of the simulation slab near the crack tip). However, the effect
of hyperelasticity on crack velocity is significant, independent of the slab size.

Figure 7.2.: Hyperelastic region and enhancement of energy flow in the (a) softening
and (b) stiffening system.

7.3.2. Enhancement or reduction of energy flow

A measure for the direction and magnitude of energy flow in the vicinity of the crack
tip is the dynamic Poynting vector [78, 74]. The magnitude of the dynamic Poynting
vector

P =
√

P 2
1 + P 2

2 (7.6)
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Change of net Change of Change of Change of
energy flow to energy flow energy flow away limiting

crack tip to crack tip from crack tip speed
Stiffening +19 % +20 % +25 % +20 %
Softening -32 % -32 % -35 % -30 %

Table 7.1.: Change of energy flow to the crack tip, due to a bilinear softening or stiffening
interatomic potential.

may be identified as a measure for the local energy flow.
A measure for the enhancement or reduction of energy flow is obtained by subtracting

the magnitude of the dynamic Poynting vector in the harmonic case from that in the
biharmonic case at every point in the slab

∆P = Pbiharm − Pharm. (7.7)

If the difference is negative, energy flow is reduced, and if the difference is positive,
energy flow is enhanced. The steady-state fields are averaged over space as well as time
to obtain good statistics.

Figure 7.2 shows the energy flow enhancement and reduction in the vicinity of the
crack tip for the elastically stiffening bilinear system (a) and for the elastically softening
system (b). In each plot, the local hyperelastic zone is indicated by a dotted line. The
energy flow in the vicinity of the crack tip is enhanced in the bilinear stiffening case and
reduced in the softening case. In these plots, we also indicate the direction of energy
flow with arrows and note that in the softening case, the energy flow ahead of the crack
almost vanishes.

The plots show that the local hyperelastic effect leads to an enhancement (stiffening
system) or reduction (softening system) in energy flow. The small hyperelastic regions
enhance the energy flow around the crack tip. The higher crack velocity in the stiff-
ening system and the lower velocity in the softening system are due to enhancement
or reduction of the energy flow in the vicinity of the crack tip. Table 7.1 summarizes
change of net energy flow, as well as change of energy flow toward and away from the
crack tip, in comparison to the harmonic system. The results quantify those depicted in
Figure 7.2 (a) and (b) and show that the net energy flow as well as the flow of energy
toward and away from the crack tip are all enhanced in the stiffening case, and reduced
in the softening case.

7.3.3. J-Integral analysis

The integral of energy flux, or path-independent dynamic J-integral is defined as

F (Γ) =

∫
Γ

(σij nj u̇i + (U + T )v n2) dΓ. (7.8)

It can be shown that its value is path-independent for steady-state crack motion [78].
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We find that F (Γ) around the crack tip increases by 19 percent in comparison with
the harmonic case for the stiffening system, while decreasing by 32 percent for the
softening system. The results are shown in Figure 7.3. To calculate the integral, we
choose a circular shape of Γ centered around the crack tip. Atomic quantities like stress
and particle velocity are averaged spatially and over time and then the line integral is
computed. The plot shows the value of the dynamic J-integral is independent of the
shape of Γ which proves that crack motion is in steady-state.

Figure 7.3.: J-integral analysis of a crack in a harmonic, softening and stiffening material,
for different choices of the integration path Γ. The straight lines are a linear fit to the
results based on the calculation of the MD simulation.

7.4. How fast can cracks propagate?

We have learned that a local hyperelastic zone around the crack tip can have significant
effect on the velocity of the crack. For a mode I tensile crack, linear theory predicts that
the energy release rate vanishes for all velocities in excess of the Rayleigh wave speed
[76], implying that a mode I crack cannot move faster than the Rayleigh wave speed.

This prediction is indeed confirmed in systems with the harmonic potential where crack
velocity approaches the Rayleigh wave speed independent of the slab size, provided that
the applied strain is larger than 1.08 per cent and the slab width is sufficiently large
(lx > 1, 000). The systems are loaded dynamically in this case. Our strain levels are
about 10 times lower than in many other studies [206].

We consider hyperelastic effects of different strengths by using a biharmonic potential
with different onset strains governed by the parameter ron. The parameter governs the
onset strain of the hyperelastic effect

εon =
ron − r0

r0

. (7.9)
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7. Hyperelasticity governs dynamic fracture at a critical length scale

Figure 7.4.: Change of the crack speed as a function of εon. The smaller εon, the larger
is the hyperelastic region and the larger is the crack speed.

The simulations reveal crack propagation at super-Rayleigh velocities in steady-state
with a local stiffening zone around the crack tip.

7.4.1. Intersonic mode I cracks

Figure 7.4 plots the crack velocity as a function of the hyperelasticity onset strain εon.
The crack speeds shown in Figure 7.4 are determined during steady-state propagation.
We observe that the earlier the hyperelastic effect is turned on, the larger the limiting
velocity. Measuring the hyperelastic area AH using the principal strain criterion, we
find that AH grows as εon becomes smaller. A correlation of the square root of the
hyperelastic area with the achieved limiting speed of the crack is shown in Figure 7.4.
In Figure 7.5, we depict the shape of the hyperelastic area near the crack tip for different
choices of εon. The shape and size of the hyperelastic region is found to be independent
of the slab width lx. In all cases, the hyperelastic area remains confined to the crack tip
and does not extend to the boundary of the simulation.

Figure 7.4 shows that the hyperelastic effect is very sensitive to the potential parameter
and the extension of the local hyperelastic zone. Mode I cracks can travel at steady-state
intersonic velocities if there exists a locally stiffening hyperelastic zone.

For example, when the large-strain spring constant is chosen to be k1 = 4k0, with
ron = 1.1375 and rbreak = 1.1483 (that is, “stronger” stiffening and thus larger local
wave velocity than before), the mode I crack propagates 21 per cent faster than the
Rayleigh speed of the soft material, and becomes intersonic, as shown by the Mach cone
of shear wave front depicted in Figure 7.6.
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7.5. Characteristic energy length scale in dynamic fracture

Figure 7.5.: Shape of the hyperelastic regions for different choices of εon. The smaller
εon, the larger is the hyperelastic region. The hyperelastic region takes a complex shape.

7.4.2. Supersonic mode II cracks

We have also simulated a shear-dominated mode II crack using the biharmonic stiffening
potential. We define rbreak = 1.17, and ron is chosen slightly below to keep the hyper-
elastic region small. The dynamic loading is stopped soon after the daughter crack is
nucleated [11, 6, 83]. The result is shown in Figure 7.7. The daughter crack nucleated
from the mother crack propagates supersonically through the material, although the
hyperelastic zone remains localized to the crack tip region.

Supersonic mode II crack propagation has been observed previously by Abraham and
co-workers [11] using an anharmonic stiffening potential. However, a clearly defined
hyperelastic zone could not be specified in their simulations. Our result proves that a
local hyperelastic stiffening effect at the crack tip causes supersonic crack propagation,
in clear contrast to the linear continuum theory. The observation of super-Rayleigh and
intersonic mode I cracks, as well as supersonic mode II cracks, clearly contradicts the
prediction by the classical theories of fracture.

7.5. Characteristic energy length scale in dynamic
fracture

The problem of a super-Rayleigh mode I crack in an elastically stiffening material is
somewhat analogous to Broberg’s [30] problem of a mode I crack propagating in a stiff
elastic strip embedded in a soft matrix.

The geometry of this problem is shown in Figure 7.9. Broberg [30] has shown that,
when such a crack propagates supersonically with respect to the wave speeds of the
surrounding matrix, the energy release rate can be expressed in the form

G =
σ2h

E
f(v, c0, c1) (7.10)

where σ is the applied stress, E the local Young’s modulus of the strip material, h is
the half width of the stiff layer and f is a non-dimensional function of crack velocity v
and wave speeds in the strip (c0) and the surrounding matrix (c1). The dynamic Griffith
energy balance requires G = 2γ, indicating that crack propagation velocity is a function
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Figure 7.6.: Intersonic mode I crack. The plot shows a mode I crack in a strongly
stiffening material (k1 = 4k0) propagating faster than the shear wave speed.

of the ratio h/χ where

χ ∼ γE

σ2
(7.11)

can be defined as a characteristic length scale for local energy flux. By dimensional
analysis, the energy release rate of our hyperelastic stiffening material is expected to have
similar features except that Broberg’s strip width h should be replaced by a characteristic
size of the hyperelastic region rH (note that rH could for instance be defined as the
square root of the hyperelastic area, rH =

√
AH). Therefore, we introduce the concept

of a characteristic length

χ = β
γE

σ2
(7.12)

for local energy flux near a crack tip. The coefficient β may depend on the ratio between
hyperelastic and linear elastic properties as well as on the dynamic energy balance. The
characteristic energy length scale is defined such that h/χ equals one when the increase
in crack speed is 50 % of the difference between the shear wave speed of soft and stiff
material.

We have simulated the Broberg problem and found that the mode I crack speed
approaches the local Rayleigh wave speed as soon as h/χ reaches values around 20.
Numerous simulations verify that the scaling law in equation (7.12) holds when γ, E
and σ are changed independently. The results are shown in Figure 7.10. From the
simulations, we estimate numerically β ≈ 4.4 and therefore χ ≈ 38. The potential
energy field near a crack propagating at an intersonic speed is shown in Figure 7.11.
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Figure 7.7.: Supersonic mode II crack. Cracks under mode II loading can propagate
faster than all wave speeds in the material if there exists a local stiffening zone near the
crack tip.

The transition from the limiting speed of the soft material to the limiting speed of
the stiff material depicted in Figure 7.10 is reminiscent of the observations in the one-
dimensional model of dynamic fracture (see Figure 4.11 (a) showing the dependence of
the crack speed as a function of the potential parameter ron).

The existence of a characteristic length χ for local energy flux near the crack tip has
not been discussed in the literature and plays the central role in understanding the effect
of hyperelasticity. Under a particular experimental or simulation condition, the relative
importance of hyperelasticity is determined by the ratio rH/χ. For small rH/χ, the
crack dynamics is dominated by the global linear elastic properties since much of the
energy transport necessary to sustain crack motion occurs in the linear elastic region.
However, when rH/χ approaches unity, as is the case in some of our molecular-dynamics
simulations, the dynamics of the crack is dominated by local elastic properties because
the energy transport required for crack motion occurs within the hyperelastic region.
The concept of energy characteristic length χ immediately provides an explanation how
the classical barrier for transport of energy over large distances can be undone by rapid
transport near the tip.
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Figure 7.8.: The plot shows a temporal sequence of supersonic mode II crack propaga-
tion. The field is colored according to the σxx stress component.

7.6. Discussion

We have shown that local hyperelasticity has a significant effect on the dynamics of brittle
crack speeds and have discovered a characteristic length associated with energy transport
near a crack tip. The assumption of linear elasticity fails if there is a hyperelastic zone in
the vicinity of the crack tip comparable to the energy characteristic length. Therefore, we
conclude that hyperelasticity is crucial for understanding and predicting the dynamics
of brittle fracture. Our simulations prove that even if the hyperelastic zone extends only
a small area around the crack tip, there may be crucial effects on the limiting speed
and the energy flow toward the crack tip, as illustrated in Figure 7.4. If there is a
local softening effect, we find that the limiting crack speed is lower than in the case of
harmonic solid.

Our study has shown that hyperelasticity dominates the energy transport process
when the size of hyperelastic zone becomes comparable to the characteristic length

χ ∼ γE/σ2. (7.13)

Under normal experimental conditions, the magnitude of stress may be one or two
orders smaller than that under molecular-dynamics simulations. In such cases, the
characteristic length χ is relatively large and the effect of hyperelasticity on effective
velocity of energy transport is relatively small. However, χ decreases with the square
of the applied stress. At about one percent of elastic strain as in our simulations, this
zone is already on the order of a few hundred atomic spacing and significant hyperelastic
effects are observed.
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Figure 7.9.: Geometry of the Broberg problem of a crack propagating in a thin stiff layer
embedded in soft matrix.

Our simulations indicate that the universal function A(v/cr) in the classical theory of
dynamic fracture is no longer valid once the hyperelastic zone size rH becomes compa-
rable to the energy characteristic length χ. Linear elastic fracture mechanics predicts
that the energy release rate of a mode I crack vanishes for all velocities in excess of the
Rayleigh wave speed. However, this is only true if rH/χ � 1. A hyperelastic theory of
dynamic fracture should incorporate this ratio into the universal function so that the
function should be generalized as

A(v/cr, rH/χ). (7.14)

The local hyperelastic zone changes not only the near-tip stress field within the hyper-
elastic region, but also induces a finite change in the integral of energy flux around the
crack tip.

We find that the dynamic J-integral around a super-Rayleigh mode I crack is still
path-independent but no longer vanishes in the presence of hyperelasticity. Similarly,
the supersonic mode II crack motion as shown in Figure 7.8 can only be understood from
the point of view of hyperelasticity. A single set of global wave speeds is not capable of
capturing all phenomena observed in dynamic fracture.

We believe that the length scale χ, heretofore missing in the existing theories of
dynamic fracture, will prove to be helpful in forming a comprehensive picture of crack
dynamics. In most engineering and geological applications, typical values of stress are
much smaller than those in molecular-dynamics simulations. In such cases, the ratio
rH/χ is small and effective speed of energy transport is close to predictions by linear
elastic theory. However, the effect of hyperelasticity will be important for nanoscale
materials, such as highly strained thin films or nanostructured materials, as well as high
speed impact phenomena.

Finally, we note that stimulated by the results discussed in this chapter [32], the
prediction of intersonic mode I cracks (see Figure 7.6) has recently been verified in
experiment [172].

137



7. Hyperelasticity governs dynamic fracture at a critical length scale

Figure 7.10.: Calculation results of the Broberg problem. The plot shows results of
different calculations where the applied stress, elastic properties and fracture surface
energy are independently varied. In accordance with the concept of the characteristic
energy length scale, all points fall onto the same curve and the velocity depends only on
the ratio h/χ.

Figure 7.11.: The plot shows the potential energy field during intersonic mode I crack
propagation in the Broberg problem. Since crack motion is intersonic, there is one Mach
cone associated with the shear wave speed of the solid.
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8. Hyperelasticity governs dynamic
crack tip instabilities

In the previous chapters we limited attention to crack propagation along a weak layer
serving as prescribed fracture path. Here we relieve this constraint and study crack
dynamics in homogeneous materials.

Figure 8.1.: Crack propagation in a LJ system as reported earlier in [5]. The plot shows
the σxx-field and indicates the mirror-mist-hackle transition.

Cracks propagating in homogeneous materials show a very interesting dynamics: From
experiment [69] and computer simulation [5, 7, 130, 129] it is known that cracks prop-
agate straight for low speeds with perfect cleavage (“mirror”), and become unstable
at higher speeds. The onset of instability results in an increasingly rough crack surface
(‘mist”), which becomes more intense when the crack speed increases further (“hackle”).
This phenomenon was referred to as the “mirror-mist-hackle” transition. Computer
simulation played an important role in this area [5], since it showed that the crack tip
instability also occurs in perfect atomic lattices and is therefore not due to material
imperfections. It was proposed [81, 5, 69] that the mirror-mist-hackle transition is due
to an intrinsic dynamic crack tip instability.

The dynamic crack tip instability can nicely be observed in LJ systems [5, 7]. A
simulation result of such a study is shown in Figure 8.1. After an initial phase where
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cleavage is mirror-like, the crack surface starts to roughen at about 30 percent of the
Rayleigh-wave speed. Eventually, the crack surface turns into a hackle region accompa-
nied by emission of dislocations. The final speed of the crack is around 50 percent of
the Rayleigh speed. These observations are in agreement with the results discussed in
[5, 7].

8.1. Introduction

There are several models for the instability problem proposed in the literature. Some
theories assume that the stress distribution ahead of the crack determines the onset of
instability [246, 78, 5], while others are based on energy flow in the vicinity of the crack
tip [81, 82].

In the classical literature based on linear elastic fracture mechanics, the instability was
explained by the fact that the circumferential or hoop stress σθ [246, 78] has a maximum
straight ahead of the crack at low speeds, but features two maxima in directions inclined
to the crack at high crack speeds (see Figure 6.5). According to this criterion, the insta-
bility should occur at speeds around 73 % of Rayleigh-wave speed. Other suggestions
were based on a perturbation analysis of the asymptotic stress field [80] that predicted
unstable crack motion at 65 % of Rayleigh-wave speed, thus at a comparable speed as
given by the Yoffe criterion. Both criteria predict that the crack changes to a another
cleavage plane inclined about 60◦ to the initial crack plane.

There are two experimental and computational observations that disagree with the
Yoffe criterion. Firstly, in most experimental and computational investigations, the
instability establishes as wiggly crack path with crack branches inclined 30◦ to the initial
crack plane. This is in contrast to Yoffe’s prediction of an angle of 60◦ relative to
the initial crack plane. In addition, in many experiments [69] as well as in computer
simulations [5, 7] the crack tip instability was observed at speeds as low as 30 % of the
theoretical limiting speed thus much lower than the theoretical prediction of 73 %.

In the literature it has been suggested that this lower critical speed for the instability
may be due to hyperelastic softening around the crack tip [5, 7, 5, 81, 82]. One attempt
of explanation was a nonlinear continuum analysis carried out by Gao [81, 82] focusing
on the energy transport near the moving crack. The model, for the first time, allowed
quantitative estimates for the instability speed. The main idea of the hyperelastic con-
tinuum mechanics analysis was that once the crack speed exceeds the speed of local
energy transport near the crack tip (the local wave speed), the crack becomes unstable.
Due to the strong softening of many materials, the speed of energy transport is signif-
icantly reduced in the vicinity of the crack tip. The theoretical analysis of the critical
instability speed [81] was in consistency with the value observed in molecular-dynamics
simulation for cracks propagating in LJ solids.

In contrast to Gao’s analysis, Abraham and coworkers [5, 7] proposed that due to the
local softening around the crack tip, the hoop stress becomes flattened at much lower
speed than predicted by the linear elastic continuum theories. It was also suggested
that the instability could be a consequence of lower lattice vibration frequencies in the
soft region near the crack tip. It was argued that once the crack starts to see local
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fluctuations of the atoms ahead of the crack tip, the crack becomes unstable. This was
assumed to occur when the time for the crack to traverse one lattice distance becomes
comparable to the lattice vibration period.

Despite important progress in the past, the existing literature does not provide a
satisfactory explanation of the role of hyperelastic effects in the instability dynamics of
fracture. We emphasize a few points:

• To our knowledge, up to date there is no systematic study showing the effect of
hyperelasticity on the instability speed. In most publications, the analysis was
performed only for a single potential (e.g. in [81, 5]). Also, most studies were
carried out in nonlinear materials, and no comparison of the instability dynamics
in linear elastic lattices with the linear continuum theory has been achieved.

• So far, only elastically softening effects were considered in the analysis. Dynamic
crack tip instabilities in elastically stiffening materials have not been investigated
up to date.

• An important aspect that remains unexplained as of today is the governing mech-
anisms for the instability. Whether the onset of instability is stress controlled as
in the Yoffe picture [246] or energy controlled as in Gao’s analysis [81] remains an
open question.

By systematically changing the large-strain elastic properties while keeping the small-
strain elastic properties constant and thus tuning the strength of the hyperelastic effect,
we will show that the elasticity of large strains governs the instability dynamics of cracks.
Linear elastic materials serve as reference systems for our studies, where we find that the
instability speed agrees well with the predicted value from Yoffe’s linear analysis [246].
Changing the strength and type of hyperelastic effect (stiffening versus softening) allows
tuning the instability speed.

We will show that Gao’s model of a local limiting speed can be successfully applied to
predict the instability speed in softening materials. In the stiffening case, we illustrate
that a generalized Yoffe model [246] helps to explain the computational results. We
propose that the onset of instability is stress controlled in harmonic and stiffening systems
and is energy flux controlled in softening systems.

The outline of this chapter is as follows. We start with a discussion on the direction of
stable crack propagation in harmonic lattices. In agreement with the analysis described
in Section 5.1.4, crack propagation is favored along the direction of lowest fracture surface
energy. In accordance with Yoffe’s analysis [246], cracks become unstable at a speed of
about 73 % of Rayleigh-wave speed in harmonic solids. We continue with models using
stiffening and softening potentials and show that the instability speed can be correlated
with the strength of the hyperelastic effect: Hyperelasticity, the elasticity of large strains,
plays the governing role in the stability of cracks. In softening systems, cracks become
unstable at speeds significantly below the Rayleigh-wave speed, and in stiffening systems,
the critical speeds for instability is shifted to higher speeds. In clear contradiction to
linear elastic theory [246, 78], cracks can propagate straight up to the Rayleigh-wave
speed in strongly softening solids! The simulation results are finally compared with the
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Figure 8.2.: Crack propagation in a harmonic homogeneous solid where the initial crack
is oriented along the direction of high fracture surface energy, which is the y direction.
As soon as the crack is nucleated, it starts to branch off at an angle of 30 degree toward
the direction of low fracture surface energy.

predictions by the continuum models. In the last section of the chapter, we discuss
a newly observed phenomenon of nucleation of intersonic cracks from mode I cracks
moving in homogeneous materials.

8.2. Crack tip instabilities in harmonic lattices

In this section we show agreement of the linear elastic theories of continuum mechanics
with atomistic simulations of cracks in harmonic lattices.

For the studies reported in this section we assume a harmonic bond snapping potential,
since we want to mimic a perfect linear elastic material. The loading rate is chosen very
low to ensure careful crack loading, slow acceleration and low crack speeds. The loading
rate is on the order of εxx ≈ 0.000, 005. We pre-strain the slab prior to simulation in
order to reduce the simulation time.

The triangular lattice features two symmetry directions. According to the discussion
in Section 5.1.4, if the crack is oriented in the direction of high fracture surface energy
crack propagation should not be stable and the crack should immediately branch toward
the direction of lower fracture surface energy. Indeed, the results in Figure 8.2 show that
in agreement with the predictions by the elastic analysis, the crack starts to branch off at
an angle of 30o as soon as the crack is nucleated. Due to the symmetry in the triangular-
lattice, this is the direction of lowest failure strain and low fracture surface energy. We
therefore choose crack propagation along the x-direction as the reference system for the
instability studies.

Figure 8.3 shows a crack moving in a harmonic lattice with snapping bonds along the
direction of lowest fracture surface energy, the stable crack propagation direction. The
most important result is that the crack initially propagates straight with perfect cleavage
where the crack faces are atomically flat. At a velocity of about 73 % of Rayleigh-
wave speed, the crack starts to oscillate and the crack surface roughens. This leads to
significantly reduced propagating speeds. Comparing this result to the predictions by
the continuum mechanics theories [246, 78], we find good agreement. The analysis of
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Figure 8.3.: Crack propagation in a harmonic homogeneous solid. The crack propagates
along the direction with high fracture surface energy. When the crack reaches a velocity
of about 73 percent of Rayleigh wave speed, the crack becomes unstable in the forward
direction and starts to branch at an angle of 60◦ (the dotted line indicates the 60◦

fracture plane).

the hoop stress shown in Figure 6.5 revealed that the hoop stress becomes bimodal upon
a critical speed of about 73 % of Rayleigh-wave speed.

An important observation is that at onset of instability, the crack branches at an angle
of 60◦. Since the hoop stress maximum is at about ±60◦, this observation corroborates
the notion that the hoop stress governs the instability in harmonic systems! In summary,
we have shown:

• The stable crack propagation direction is the crystal orientation with the smallest
fracture surface energy. This result is in agreement with the classical understanding
[78].

• The instability speed in harmonic lattices agrees reasonably well with the predic-
tion by linear elastic fracture theory. The observation of branching at an angle of
60◦ supports the notion that the hoop stress governs this mechanism [78].

8.3. Crack tip instabilities in biharmonic softening and
stiffening lattices

To check if the assertion is correct that the large-strain elastic properties govern the
critical speed for the instability, we propose to use a biharmonic potential similar, but
not identical to that employed in the previous chapter: We observed that the bond
snapping potential is problematic because crack acceleration is not smooth and the
loading rate needs to be extremely small in order to observe the instability (otherwise
see multiple cracking). Another issue is lattice trapping that results in finite minimum
crack speeds [150, 104]. In particular in softening systems where the instability speed
can be quite low, the crack becomes unstable very early after crack nucleation and thus
the instability speed is very difficult to determine exactly.

We believe that some of these problems may be due to the “artificial” bond snapping
processes. A slight modification of the potential by adding a smooth cutoff function
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8. Hyperelasticity governs dynamic crack tip instabilities

Figure 8.4.: Modified biharmonic bond snapping potential to study the dynamic crack
tip instability. It is composed of a biharmonic potential discussed earlier and a smooth
tail to account for smooth bond breaking and vanishing of the tangent Young’s modulus
at the breaking of atomic bonds. In the stiffening system, rfzero = 1.22.

helps to improve and allows for smooth crack acceleration also at higher strain rates.
The atomic force versus separation is shown in Figure 8.4 for the stiffening system and
the harmonic system in comparison. Another issue is the fact that all “real” materials
show a softening close to bond breaking, and thus the new potential provides a refinement
with respect to the original bond snapping potential.

The modified potential is given by equation (5.20) for r < rbreak. For r ≥ rbreak,

φij(rij) = − A

exp (rijξ)
+ Brij + C (8.1)

to model smoothly breaking bonds. The constant ξ can be chosen arbitrarily and de-
termines how fast the bonds weaken close to separation (usually, 50 < ξ < 100). The
parameters

A = −k1

ξ2
exp (rbreakξ) , (8.2)

B = k1(rbreak − r1) − Aξ

exp (rbreakξ)
, (8.3)

and

C = a1 +
1

2
k1(rbreak − r1)

2 − rbreakB +
A

exp (rbreakξ)
(8.4)

are determined from continuity of potential and force. The potential is cut off at rfzero

where the force drops to zero.
Besides allowing for smooth crack acceleration, another advantage of this potential is

that it can be used to define a strongly softening and stiffening solid while the crack
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8.3. Crack tip instabilities in biharmonic softening and stiffening lattices

Figure 8.5.: Critical instability speed as a function of the square root of the ratios of
large-strain versus small-strain spring constants. For softening materials, the prediction
of instability speed by Gao’s model [81] agrees well with simulation results, and for
stiffening materials, the instability speed deviates from the prediction by the Gao model.

k1/k0 ξ rbreak rfzero

1/4 50 1.17 1.26
1/2 50 1.17 1.25
1 50 1.17 1.26
2 75 1.16 1.22
4 100 1.15 1.22

Table 8.1.: Choice of ξ, rbreak and rrfzero for the different simulations of the instability
dynamics of cracks.

is constrained to propagate along a weak layer. For this purpose, rfzero is chosen finite
across a weak fracture layer and chosen much larger in the bulk. This approach allows to
search for signatures of the instability by driving the crack speed far beyond the critical
instability speed and then measuring the close-crack tip stress field.

We perform simulations with systematic variation of 1/4 < k1/k0 < 4. In all simula-
tions, the loading rate is chosen ε̇xx = 0.000 01 and the loading is never stopped. We
choose ron = 1.1375 to keep the hyperelastic zone highly confined at the crack tip. The
choice of ξ, rbreak and rrfzero is summarized in Table 8.1.

8.3.1. Simulation results

The main result is that depending on the ratio of k1/k0, the instability occurs at different
speeds: In the harmonic case corresponding to k1/k0 = 1, the instability occurs at about
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8. Hyperelasticity governs dynamic crack tip instabilities

63 % of Rayleigh-wave speed. This is slightly lower than in the pure harmonic case (see
previous section) but is explained by the softening in the potential at large strains. If
k1/k0 > 1, the instability speed is shifted to velocities beyond 63 % of Rayleigh-wave
speed, and if k1/k0 < 1, the instability is shifted to speeds below 63 % of Rayleigh-wave
speed. Figure 8.5 shows the critical instability speed over the square root of the ratio of
the large-strain versus small-strain spring constants. The plot also contains a linear fit
through the MD simulation results to illustrate the dependence of the instability on the
ratio

√
k1/k0.

For softening materials, the prediction of the instability speed based on Gao’s model
is consistent with the simulation results. For stiffening materials, the instability speed
deviates from the prediction by the Gao model and lies in between the prediction by the
generalized Yoffe criterion and the Gao model. The deviation of the results from the
generalized Yoffe criterion is explained by the fact that even in the stiffening systems,
there exists a small zone that is elastically soft (due to softening close to bond breaking).
The plot also indicates the predicted instability speed according to the linear elastic Yoffe
criterion. Since this model only considers the small-strain linear elastic properties, the
instability speed is predicted to be independent of

√
k1/k0 and therefore constant.

The finding that cracks become unstable at speeds significantly below the Rayleigh-
wave speed in softening systems is in agreement with experimental results [69] and
numerical modeling in softening materials [5].

In stiffening systems, the critical speed for instability is shifted to higher speeds. In
clear contradiction to linear elastic theory [246, 78], cracks can propagate straight up to
the Rayleigh-wave speed in strongly softening solids!

An important observation is that the critical speed for the instability is governed by the
local elastic properties at the crack tip (large-strain spring constant). The critical speed
for the instability is independent of the crack acceleration rate. In some simulations the
loading is stopped immediately after onset of crack motion. In this case no difference in
the dynamics is observed and the instability occurs at the same velocity. This provides
evidence that the instability is predominantly crack-speed controlled. What are the
underlying mechanisms of the dynamic crack tip instability? We address this question
in the forthcoming section.

8.3.2. Governing mechanism for instability

We have shown that hyperelasticity governs the critical speed of the instability. However,
it remains an open question what is the governing mechanism for the onset of instability.

We hypothesize that the instability is governed by a generalized Yoffe criterion in the
stiffening case, and governed by limited energy transport in the softening case.

Energy flux controlled mechanism or local limiting speed

Gao’s model [81] predicts an instability speed

ccrit/cr =

√
σcoh

ρc2
r

(8.5)

146



8.3. Crack tip instabilities in biharmonic softening and stiffening lattices

Figure 8.6.: The effect of a soft and stiff zone near the crack tip on the energy flux. In
softening materials, energy flux at the crack tip is reduced due to reduced local wave
speeds. In contrast, energy flux is enhanced in the vicinity of the crack tip in stiffening
materials.

where σcoh is the maximum stress under biaxial loading. This model is based on the
limitation of energy flux due to softening near the crack tip rather than considering the
deformation fields.

If the crack speed exceeds the speed of energy transport near the crack tip crack
motion becomes unstable. Crack motion must be subsonic on a local and a global scale!
Energy flow toward the crack tip is the dominating process in softening materials and
responsible for the instability.

In stiffening materials, energy transport is faster in the vicinity of the crack tip and
is therefore not expected to dominate the crack stability. Once energy is transported
into regions close to the crack tip, it can rapidly flow toward the crack tip and feed
its forward motion. If energy flow is not responsible for the instability, the change in
deformation fields is likely responsible for the instability.

Wether the instability is energy flux or deformation field controlled should have im-
portant consequences on the crack surface after the instability has occurred. If the
instability is energy flux controlled, the crack should start to oscillate around its for-
ward motion. The crack should not propagate off at inclined angles to the forward
motion.

The effect of a soft and stiff zone near the crack tip on the energy flux is summarized
schematically in Figure 8.6. We note that it was shown in Chapter 7 that hyperelasticity
can change the local energy flux at the crack tip (see also Figure 7.2).

Generalized Yoffe criterion

Linear elastic theory assumes that the deformation field near the crack tip only depends
on the ratio v/cr. It was proposed that if v/cr < 0.73, the field is of “low-inertia”
character, and that for v/cr ≥ 0.73 the field is of “high-inertia” character [81].

In the case of a bilinear hyperelastic material, we propose to extend this view according
to a suggestion in [81]. Therefore, the deformation field within the zone where large-
strain elastic properties dominate depends on v/cr,1 where cr,1 is the local Rayleigh-wave
speed associated with k1. If the crack moves in a stiffening material, for instance, the
local wave speeds are higher so that the deformation field are low-inertia on a local scale.
It is obvious that the critical speed for branching would be shifted to higher speeds. The
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8. Hyperelasticity governs dynamic crack tip instabilities

Figure 8.7.: Dynamic crack tip instability in softening and stiffening system. In the
softening case, the instability establishes as roughening of the crack surface, while in the
stiffening case, the instability corresponds to the nucleation of two crack branches.

critical speed according to the generalized Yoffe criterion is then given by

ccrit/cr = β

√
k1

k0

, (8.6)

where β = 0.73 according to the simulation results in the purely harmonic lattice.
If the crack tip instability is governed by the generalized Yoffe criterion and therefore

the maximum hoop stress, the crack should branch off at the onset of instability at
inclined angles with respect to the initial straight forward motion.

8.3.3. Comparison of simulation results with the proposed
governing mechanisms for instability

A snapshot of the crack surface reveals some insight on the governing mechanism for the
crack tip instability. Figure 8.7 shows how the crack surface changes once the critical
instability speed is exceeded. In the softening case, the crack exerts slight fluctuations
around its forward motion, and in the stiffening case the crack branches into two cracks
in agreement with the fact that the hoop stress shows two maxima at inclined angles.

The hypothesis that the deformation field does not govern the instability in softening
materials is supported by the following analysis. We investigate the hoop stress field
near a strongly softening system with k1/k0 = 1/4, when the crack is constrained to
propagate along a weak layer about 30 % beyond the instability speed (bonds never
break in the bulk but only in the weak layer). Despite the nonlinear character of the
elastic response close to the crack tip, the hoop stress agrees remarkably well with the
continuum mechanics prediction corresponding to the reduced crack speed v/cr,0 (relative
to the small-strain wave speed). The hoop stress field is shown in Figure 8.8 (a), and
the angular variation in combination with a comparison to continuum mechanics theory
is shown in Figure 8.8 (b). This result strongly suggests that the hoop stress does not
govern the onset of instability in softening materials!

In contrast to this observation in the softening case, in the stiffening case the hoop
stress does show two maxima at inclined angles at the onset of the instability. The
hoop stress field lags behind the continuum mechanics prediction and does not develop
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Figure 8.8.: Hoop stress near a rapidly propagating crack in a strongly softening solid
(k1/k0 = 1/4) at a speed 35 % beyond the critical speed of the instability. Subplot (a)
angular variation (at r ≈ 11), (b) hoop stress field.

a bimodal structure until the crack approaches speeds close to the instability. This
observation is not contradicting the notion of a local “low-inertia” zone due to material
stiffening close to the crack tip in the framework of the generalized Yoffe criterion! The
hoop stress analysis for different velocities is shown in Figure 8.9. The figure depicts
the angular variation of the hoop stress near a rapidly propagating crack in a strongly
stiffening solid (k1/k0 = 4). Acceleration effects only can not explain this observation
since the loading rate and crack acceleration is rather small. The loading rate is identical
as in Section 6.1.1 where excellent agreement of the hoop stress in simulation and theory
is observed.

Another important point is the change in the hoop strain field. Figure 8.10 shows
the angular variation of hoop strain for different crack speeds. At low speeds, there is a
clear maximum of the hoop strain ahead of the crack. However, the situation changes
drastically as the crack accelerates: The local maximum of the hoop strain ahead of
the crack remains also at higher speeds leading to a trimodal structure. This strain
distribution contradicts the single- or bimodal structure predicted by linear theory [78].
Most importantly, the crack does not get unstable until the local maximum of the hoop
stress ahead of the crack starts to vanish and the maximum at 60◦ dominates! This
analysis strongly indicates that the instability in stiffening systems is deformation field
controlled.

A comparison of the molecular-dynamics results of instability speed with predictions
from the generalized Yoffe criterion [246] as well as Gao’s model [81, 82] of local limiting
speed is shown in Figure 8.5. Equation (8.6) is used to predict the instability speed for
the generalized Yoffe criterion, and equation (8.5) is used to predict the instability speed
based on Gao’s model. Additional simulations with different softening potentials agree
well with the prediction of Gao’s model. In particular, by changing the cohesive stress
the shift in limiting speed is predicted correctly (results not shown here).

As predicted by our considerations, the MD results agree well with Gao’s model in
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Figure 8.9.: Hoop stress field (at r ≈ 11) near a rapidly propagating crack in a strongly
stiffening solid (k1/k0 = 4). The development of the bimodal hoop stress lags behind the
continuum mechanics prediction, suggesting a local “low-inertia” zone due to material
stiffening close to the crack tip.

the softening cases, but deviates strongly in the stiffening case. Although the instability
speed is higher than predicted by Gao’s model, we observe that in the harmonic and
stiffening case the agreement with the generalized Yoffe criterion is not as good. As
discussed earlier, a possible reason could be that there is still a small softening zone very
close to the crack tip, so that the energy flux plays at least some role.

8.4. Nucleation of intersonic shear cracks under mode I
loading in harmonic lattices

In this section we address crack dynamics in unconstrained harmonic lattices with snap-
ping bonds under high strain rates with cracks oriented in the direction of highest fracture
surface energy. As we have shown in Section 8.2, crack motion along this direction is not
stable. As a consequence, cracks on inclined cleavage planes will be nucleated. These
cracks experience no longer pure mode I loading but also mode II loading. It is known
that cracks under mode II loading can propagate at intersonic velocities. The question
we address here is: can secondary intersonic daughter cracks be nucleated from cracks
in unconstrained lattices under mode I loading?

The loading is applied more rapidly than in the previous sections (we choose ε̇xx =
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Figure 8.10.: Angular variation of hoop strain (at r ≈ 11) near a rapidly propagating
crack in a strongly stiffening solid (k1/k0 = 4). At the onset of the crack tip instability,
the hoop strain features a strong maximum close to 60◦ (study shown corresponds to√

k1/k0 = 2, case (2) in Figure 8.5).

0.000 05), so that the final strain in the systems is a few times larger. We use the
harmonic bond snapping potential.

We observe that shortly after nucleation of the crack the speed increases and ap-
proaches the critical speed of the instability. This causes the crack starting to wiggle,
and due to the large energy release rate multiple cracks are nucleated. The most im-
portant observation is that from some of the numerous small cracks, daughter cracks
travelling at intersonic velocities are generated! Such cracks are perfectly straight and
no crack tip instability is observed. Such intersonic cracks nucleated from mode I cracks
in harmonic lattices are shown in Figure 8.11. To our knowledge, this phenomenon has
not been reported in the literature.

This observation is in agreement with the concept that inclined cracks are not under
pure mode I loading but also feature mode II loading. The assertion of nucleation
of daughter cracks moving at intersonic velocities from mother cracks is supported by
the simulation results [83]. Figure 8.11 reveals that the intersonic daughter cracks all
propagate along 30o inclined planes, thus moving along the plane of low fracture surface
energy. In summary, there is a strong tendency to nucleate secondary daughter cracks
at intersonic velocities along cleavage planes with low fracture surface energy.

8.5. Discussion and summary

In this chapter we investigated the dynamics of crack tip instabilities. We find that the
onset of the instability is governed by a critical crack speed, the instability speed. This
agrees with earlier reports that cracks feature an intrinsic dynamic instability [78, 5, 150,
81]. The most important result of this chapter is that hyperelasticity, the elasticity of
large strains governs the instability speed. By keeping the small-strain elastic properties
constant and systematically changing the large-strain elasticity, we demonstrated that
the instability speed can be tuned to higher and lower values.

An important consequence of the results is that linear elastic theory can not be applied
to describe the instability dynamics in nonlinear materials. Since most real materials
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Figure 8.11.: Unconstrained fracture in a harmonic solid. The plot illustrates prop-
agation of intersonic cracks nucleated from mode I cracks at off-angle direction. An
intersonic crack is highlighted by a white circle.

show nonlinearities at large strains, linear elastic theory can not be applied to describe
crack dynamics in real materials!

Our results are in agreement with the hypothesis that the local wave speed near the
crack tip governs the dynamics [81]. This also explains experimental [69] and other
computational results [5, 7]. We summarize the main findings.

• Cracks in purely harmonic lattices with the harmonic bond snapping potential
move straight as long as the propagation speed is below about 73 % of the Rayleigh-
wave speed. This finding is in agreement with the classical theory proposed by Yoffe
[246]. This matches the results shown in Figure 6.5 where it was demonstrated
that this is the crack speed where the hoop stress develops a bimodal structure.

• Large-strain elastic properties and therefore the local wave speeds dominate the
instability dynamics. This result could be verified in Figure 8.5 where a correlation
of the instability speed to the local wave speed is shown.

• With respect to the governing mechanism of the dynamic crack tip instability, the
stiffening and softening case need to be distinguished. In softening systems, the
reduction in local energy flow governs the instability, and in stiffening systems, the
change in deformation field near the crack tip is responsible.

– In softening materials, limitation of energy flow toward the crack tip is the
dominating process and therefore responsible for the instability (see Fig-
ure 8.6). This hypothesis was supported by an analysis of the hoop stress
field showing that the hoop stress is not bimodal close to the crack tip at the
onset of instability.

– In stiffening materials, energy transport is faster in the vicinity of the crack
tip and is therefore not mainly influencing the crack stability (see Figure 8.6).
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governing mechanism
deformation field reduced energy transport

harmonic ×
stiffening ×
softening ×

Table 8.2.: Governing mechanism for the crack tip instability in the harmonic, stiffening
and the softening case.

In this case, the change in deformation field is responsible for the onset of the
instability. As shown in Figure 8.9, the hoop stress does not get bimodal up
to speeds beyond 93 % of Rayleigh-wave speed. The change in hoop stress
and development of a maximum at inclined angles with respect to the straight
crack direction could be correlated with the onset of instability.

The different failure mechanisms in the harmonic, stiffening and softening case are
summarized in Table 8.2.

• As shown in Figure 8.11 and highlighted by a white circle, intersonic daughter
cracks can be nucleated from sub-Rayleigh mode I mother cracks on the planes
with lowest fracture surface energy. This failure mode has, to our knowledge, not
been described before.

Hyperelasticity, the elasticity of large strains, governs dynamic crack tip instabilities.
This explains the discrepancy of measured instability speeds in “real materials” [69]
and predicted instability speeds by linear elastodynamic theory [78]. The reason is that
virtually all real materials show a strong softening close to materials failure. There has
been a discussion whether hyperelasticity [5, 81] or the existence of microcracks or other
material imperfections [70] are responsible for crack tip instabilities. Our simulation
results suggest that (1) the crack tip instability is an intrinsic dynamic phenomena, and
(2) the crack tip instability is not due to microcracking but instead governed by the
large-strain elastic properties.

Our simulation results are in qualitative agreement with experimental results of crack
tip instabilities at speeds as low as one third of the Rayleigh-wave speed [69, 70]. We note
that experiments for instabilities in stiffening materials are yet to be performed. How-
ever, recent observation of intersonic mode I cracks in homogeneous materials [172] are
not contradicting the notion that stiffening material response tends to stabilize straight
crack motion.

The main result of this chapter was to show that the instability speed is shifted to
lower crack velocities in softening systems, and shifted to higher velocities in stiffening
systems. However, there are several questions that remain yet to be answered. For
instance, preliminary results suggest that the choice of the potential parameters also
influences the instability speed. For instance, when the parameter rbreak is changed from
1.15 to 1.16 in the case when k1/k0 = 4 while all other parameters remain constant, the
crack propagates straight up to super-Rayleigh speed (105 % of cr) until the instability
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sets in! Future research in this field could therefore focus on the impact of the potential
shape at large strains (e.g. variation of the parameter ξ or rbreak). Such research could
elucidate some of the fundamental atomic mechanisms of crack advancement and bond
breaking, and help to develop better potentials to model fracture.
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9. Cracks at interfaces

In this chapter we study cracks propagating along interfaces between two dissimilar
materials, as schematically shown in Figure 9.1. Cracks at interfaces are technologically
important, since the bonding between two dissimilar materials as for instance between
epoxy and aluminum is usually weak and serves as a potential failure initiation point
of a structure. Our atomistic model featuring the weak layer could be regarded as an
idealization of such cases. Another important field where interfaces between dissimilar
materials play an important role is the dynamics of earthquakes.

Figure 9.1.: Geometry of the simulations of cracks at bimaterial interfaces.

Several theoretical studies were carried out on cracks in dissimilar media [180, 177, 58].
Most of the early investigations focused on static cracks. One of the interesting features
of the elastic interfacial crack problem is the characteristic oscillating stress singularity
that was determined by Williams [156]. This theoretical finding is incompatible with
real materials since the crack faces would penetrate each other at the crack tip. The
stress intensity factor is complex-valued for interfacial cracks and it is generally difficult
to define a crack nucleation criterion based on the Griffith condition [180].

In recent years, the dynamics of cracks along dissimilar interfaces was increasingly
researched. For instance, the asymptotic stress field near dynamic cracks at bimaterial
interfaces was studied [244, 145]. The analysis discussed in [244] assumed steady-state
crack propagation and provided the spatial structure of square-root singular stress field
very close to the dynamic crack tip. The analysis led to definition of a complex dy-
namic stress intensity factor. Later, this analysis was refined relaxing the steady-state
assumption and including higher order terms [145].

There are also experimental results available on interfacial cracks, as for instance
studies reported in [141, 182, 183] of cracks propagating along interfaces of PMMA
and metals. In [141], the researchers focused on the development of a crack growth
criterion along interfaces. They also compared the experimental results with theoretical
predictions of the stress field near the crack tip. Crack speeds that exceeded that of the
shear wave speed of the soft PMMA material were observed.
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However, very few molecular-dynamics simulations of dynamic fracture along bima-
terial interfaces have been reported. One example is recent molecular-dynamics sim-
ulations of mode II cracks along a weakly bonded interface of harmonic-anharmonic
materials (material defined by a harmonic potential neighboring a material defined by a
tethered LJ potential) [11].

In summary, for cracks at interfaces, existing theory and experiment predicts that

• The limiting speed of mode I cracks at bimaterial interfaces can exceed the Rayleigh-
wave speed of the soft material [145, 144]. However, intersonic or supersonic crack
propagation with respect to the soft material layer is not predicted by theory and
has not been observed in experiment.

• The limiting speed of mode II cracks is given by the longitudinal wave speed of
the stiff material and the crack speed can thus be truly supersonic with respect to
the soft material [182].

The most important research objective of our studies is the limiting speed of cracks:
The fact that the wave speed changes discontinuously across the interface makes it
difficult to define a unique wave speed near the interface, and thus difficult to predict
the limiting speed of the crack. Using molecular-dynamics, can we determine what is
the limiting speed of a crack along dissimilar materials?

In mode II cracks, in an earlier study a mother-daughter-granddaughter mechanism
was observed through which the crack finally approached a velocity faster than the
longitudinal wave speed of one of the layers [11]. In this setup, however, one of the half
spaces was modeled by harmonic interactions, and the other was modeled by a tethered
LJ potential. Although this setup constitutes an interface of different materials, the
wave speeds associated with each half space could not be clearly defined since one of
the material was hyperelastic. To obtain a more clean model of cracks at interfaces,
we propose to study two half spaces with harmonic interatomic potentials, but with
different spring constants k0 < k1. The ratio

Ξ =
k1

k0

(9.1)

measures the elastic mismatch of the two materials, and the wave speeds are thus dif-
ferent by a factor

√
Ξ.

The plan of this chapter is as follows. We start with simulations of mode I cracks
along interfaces and show that under sufficiently large loading, the crack approaches the
Rayleigh wave speed of the stiffer of the two materials via a mother-daughter mechanism.
We continue with a study of mode II cracks along interfaces. We show that a mother-
daughter-granddaughter mechanism, in agreement with previous analyses [11], exists
and allows the crack to approach the longitudinal wave speed of the stiffer of the two
materials. We finally discuss the simulation results and compare the elastic fields of
the mode I crack with the solution of continuum mechanics results and the results of
atomistic modeling as reported earlier in this thesis.
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Figure 9.2.: Crack tip history and crack velocity history for a mode I crack propagating
at an interface with Ξ = 10. Subplot (a) shows the crack tip history, and subplot (b)
shows the crack tip velocity over time. A secondary daughter crack is born propagating
at a supersonic speed with respect to the soft material layer.

9.1. Mode I cracks at bimaterial interfaces

In the simulations, the left part of the slab is the stiff solid, while the right part has lower
Young’s modulus and is soft. We consider the case when the elastic mismatch is Ξ = 10.
For comparison, the elastic mismatch as between PMMA and aluminum is about 15.
Figure 9.2 (a) shows the crack tip history, and Figure 9.2 (b) shows the crack tip velocity
over time. The crack nucleates at time t ≈ 35, and quickly approaches the Rayleigh
speed of the soft material v → cr,0 ≈ 3.4. As loading is increased, the crack speed
increases slightly and becomes super-Rayleigh. We observe a large jump in the crack
velocity at t ≈ 110, when a secondary crack is nucleated which quickly approaches the
Rayleigh speed of the stiff material v → √

Ξcr,0 ≈ 10.7517 > cl,0 ≈ 6.36. The secondary
crack is nucleated approximately at a distance ∆a = 11 ahead of the mother crack and
propagates with Mach 1.7 through the material! Nucleation of secondary cracks under
mode I loading is only found under high-strain rate loading (ε̇xx = 0.000 05). If the
strain rate is too low, the crack moves at a super-Rayleigh speed until the solid has
separated.
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Figure 9.3.: The plot shows the stress fields σxx, σyy and σxy for a crack at an interface
with elastic mismatch Ξ = 10, before a secondary crack is nucleated. In contrast to the
homogeneous case, the deformation field is asymmetric. The red color corresponds to
large stresses, and the blue color to small stresses.

The mechanism of nucleation of a secondary crack is reminiscent of the mother-
daughter mechanism, a phenomenon so far only observed in cracks under mode II load-
ing.

The result suggests that at a bimaterial interface, mode I cracks under very large
loading can propagate with the Rayleigh speed of the stiffer materials, and cracks can
reach speeds beyond the fastest wave speeds in the soft material. This observation is
surprising and has not been reported in experiment so far [183]. In experimental studies
of mode I cracks along interfaces, the crack slightly exceeds the Rayleigh speed of the
soft material but is never observed to become intersonic or supersonic.

Figure 9.3 shows the stress field, and Figure 9.4 the particle velocity field before the
secondary crack is nucleated. At the time the snapshots are taken, the crack propagates
at a super-Rayleigh speed through the material. Since crack motion is subsonic, no
shock front is established.

Figure 9.5 shows the potential energy field for a crack after the secondary crack is
nucleated and crack motion of the daughter crack is supersonic. Figures 9.6 and 9.7
show the stress field and the particle velocity field. The secondary crack propagates
supersonically through the material and the Mach cones in the right half space (soft
material) is clearly visible.

The mother-daughter mechanism in mode I cracks at interfaces is also observed for
elastic mismatch Ξ = 2, Ξ = 5, Ξ = 7 and Ξ = 10 (note that not in all cases crack
motion is supersonic with respect to the soft material since the Rayleigh-wave speed of
the stiff material is smaller than the longitudinal wave speed of the soft material).
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Figure 9.4.: The plot shows the particle velocity field (a) u̇x and (b) u̇y for a crack at
an interface with elastic mismatch Ξ = 10, before a secondary crack is nucleated. The
asymmetry of the particle velocity field is apparent.

9.2. Mode II cracks at bimaterial interfaces

For the studies of mode II cracks along interfaces we choose Ξ = 3. The crack tip history
is depicted in Figure 9.8. The loading rates are ε̇xx = 0.000 03 for slight mode I opening
loading and for the shear loading ε̇xy = 0.000 125.

Initially, the (mother) crack propagates close to the Rayleigh velocity of the soft slab
part (v ≈ 4.8). After a secondary daughter crack is born travelling at the longitudinal
wave speed of the soft material, a granddaughter crack is born at the longitudinal wave
speed of the stiff material. The granddaughter crack propagates at a supersonic speed
with respect to the soft material layer. If the loading is stopped after the granddaughter
crack has nucleated, this velocity is maintained until the whole slab is cracked. For
a choice of Ξ = 2, the qualitative behavior is the same. In Figure 9.9 (a) we depict
the potential energy field near a supersonic mode II crack along a bimaterial interface.
We mark the different cracks: (A) is the mother crack, (B) is the daughter crack and
(C) refers to the granddaughter crack. Figure 9.9 (b) shows a schematic of the allowed
limiting speeds and the observed jumps in crack speed.

The stress fields for two different instants in time are shown in Figure 9.10. Fig-
ure 9.10 (a) shows the stress field before nucleation of the daughter crack, and Fig-
ure 9.10 (b) shows the stress field after nucleation of the granddaughter crack. Fig-
ure 9.10 (c) shows a magnified view into the crack tip region.
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9. Cracks at interfaces

Figure 9.5.: The plot shows the potential energy field for a crack at an interface with
elastic mismatch Ξ = 10. Two Mach cones in the soft solid can clearly be observed.
Also, the mother and daughter crack can be seen. In the blow-up on the right, the
mother (A) and daughter crack (B) are marked.

9.3. Discussion

The studies reported in this section show that cracks at interfaces show a very different
dynamics than cracks in homogeneous materials. At the interface, the limiting crack
speed is not well-defined any more since the wave velocities change discontinuously
across the interface. Both mode I and mode II cracks can propagate supersonically with
respect to the wave speeds in the soft material. We summarize the main findings.

• In Mode I, we observe that the limiting speed of cracks at bimaterial interfaces
is the Rayleigh-wave speed of the stiff material. We observe nucleation of a sec-
ondary daughter crack from the primary mother crack. Supersonic crack motion
with respect to the soft layer is possible, and the mother-daughter crack mecha-
nism is reminiscent of the observations in mode II cracks in the homogeneous case.
This is a new phenomenon in dynamic fracture not reported in the literature. It
is also in contrast to published experimental results [183]. Preliminary continuum
mechanics analysis stimulated by our atomistic simulation results provides theo-
retical evidence that this dynamical phenomena is possible. The analysis revealed
that the energy release rate is positive for crack motion close to the Rayleigh-speed
of the stiff material [42].

• In mode II, we observe that the limiting speed is the longitudinal wave speed of the
stiff material. Supersonic crack motion with respect to the soft layer is possible,
and the we observe a mother-daughter-granddaughter mechanism [11]. This is
reminiscent of computer simulations reported previously. Our results also confirm
theoretical [145] as well as experimental results [182].
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Figure 9.6.: The plot shows the stress fields σxx, σyy and σxy for a crack at an interface
with elastic mismatch Ξ = 10. In all stress fields, the two Mach cones in the soft material
are seen. The mother crack appears as surface wave behind the daughter crack.

• The elastic fields in mode I and mode II cracks establish very differently from
homogeneous materials. If crack propagation is supersonic with respect one of the
half spaces, multiple shock fronts are observed as shown in Figure 9.10. If the
elastic mismatch is small or nucleation of daughter cracks is suppressed in mode I
cracks, the elastic fields in the left and right half are asymmetric. The asymmetric
shape of the asymptotic deformation fields matches the predictions by continuum
mechanics theories [145].

Atomistic simulations are a feasible approach to study the dynamics of cracks at inter-
faces. Future investigations could focus on the comparison of the asymptotic stress field
in simulation and theory, as well as on a more detailed and theoretical analysis of the ob-
served mother-daughter and mother-daughter-granddaughter mechanisms, particularly
focusing on the nucleation process of secondary cracks.
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9. Cracks at interfaces

Figure 9.7.: The plot shows the particle velocity field (a) u̇x and (b) u̇y for a crack at an
interface with elastic mismatch Ξ = 10. The shock fronts in the soft solid are obvious.

Figure 9.8.: Crack tip history for a mode II crack propagating at an interface with Ξ = 3.
The plot illustrates the mother-daughter-granddaughter mechanism. After a secondary
daughter crack is born travelling at the longitudinal wave speed of the soft material, a
granddaughter crack is born at the longitudinal wave speed of the stiff material. The
granddaughter crack propagates at a supersonic speed with respect to the soft material
layer.
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Figure 9.9.: Supersonic mode II crack motion at a bimaterial interface. Subplot (a):
Potential energy field of a mode II crack at a bimaterial interface with Ξ = 3, supersonic
crack motion. (A) mother crack, (B) daughter crack and (C) granddaughter crack.
Subplot (b): Allowed limiting speeds and the observed jumps in crack speed.

Figure 9.10.: The plot shows the σxx field of a mode II crack at a bimaterial interface
with Ξ = 3. Subplot (a) and (b) are consecutive time steps, and subplot (c) is a blowup.
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10. Suddenly stopping cracks

This chapter addresses the following question: “What happens if a crack propagating at
very high velocities suddenly comes to rest?” We all know that if we try to stop a heavy
object like a car, we feel considerable resistance due to its inertia. How does a crack
stop? Does the crack carry properties like “inertia” or mass? The research in the last
decades has shed light on these fundamental questions about the nature of fracture. It
was found that the stress field at the crack immediately responds to changes in loading
condition or fracture surface energy for velocities lower than or equal to the Rayleigh
wave speed. This result led to the terminology of the crack being “mass less”, because
it responds instantaneously to a change in crack driving force. If we turn back to the
analogy of stopping a heavy object, this implies that we could stop it instantly from
any velocity without feeling any resistance, and the object would react to any applied
force immediately without delay. In this chapter, we carry out large-scale atomistic
simulations to focus on the atomic details of the dynamics of suddenly stopping cracks.

10.1. Introduction

Large-scale atomistic simulations are used to study suddenly stopping cracks under mode
I (tensile) as well as mode II (shear) loading conditions. The crack velocity, denoted as
v, is related to the crack tip position a by v = ȧ = da/dt. The time history of the crack
tip velocity is arranged to be

v = v∗ − v∗H (t − tstop) . (10.1)

where t denotes the time, and H(s) is the unit step function. The variable v∗ stands for
the constant propagation velocity which corresponds to the limiting velocity of cracks
in our simulations. As shown by equation (10.1), we study a crack that propagates
at its limiting speed up to time tstop and then suddenly stops. The reason for crack
stopping could, for example, be that the resistance of the material to fracture increases
dramatically. This problem is important for constructing solutions for nonuniform crack
growth [78, 75, 62], and for understanding crack propagation in materials with changing
resistance to fracture.

The limiting speed of a mode I crack is the Rayleigh-wave velocity, therefore

v ≤ cr. (10.2)

In mode II, the allowed velocities are sub-Rayleigh (equation (10.2)) as well as intersonic
[11, 83, 183, 247]

cs < v ≤ cl (10.3)
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crack propagation speeds. There is a forbidden velocity regime

cr < v ≤ cs (10.4)

which can be overcome by a mother-daughter mechanism involving nucleation of a sec-
ondary crack (daughter crack) at some distance away from the primary crack (mother
crack) [83, 10, 16]. Intersonic crack propagation has also been reported in earthquakes
since 1982 [17] and has led to active research in this field. The discovery of intersonic
crack propagation has almost doubled the limiting crack velocity from Rayleigh to lon-
gitudinal wave speed. In the case of nonlinear materials, the limiting velocities can be
lifted to even higher speeds! This allows for supersonic crack propagation as reported
in Chapter 7. The allowed velocity regimes are depicted in Figure 10.1.

Figure 10.1.: Allowed velocities for mode I and mode II crack propagation, linear and
nonlinear stiffening case.

The stress field around a crack propagating rapidly (also referred to as the dynamic
field) is very different from the field around a static crack, as discussed in Chapter 6.
In mode I, the static field is expected to arise as soon as the crack stops and is emitted
with the shear wave speed. For sub-Rayleigh mode II cracks, the situation is the same.
For intersonic crack propagation in mode II, it has been shown [117] that the static
field spreads out with the shear wave speed as soon as the mother crack has “reached”
the daughter crack tip. In any loading case, the corresponding static field is established
instantaneously on a line ahead and behind the crack propagation direction (“prospective
crack plane”) [75], while in other areas around the crack tip this is achieved only in the
long-time limit (after a number of elastic eaves have been emitted) [78, 230]. Although
we do not study a mode III crack in this chapter, we would like to note that the static
field is radiated out behind a circular wave front and the region of instantaneous “switch”
to the static field is not confined to the prospective crack line [62]. First experimental
observations on nonuniform crack growth in the sub-Rayleigh regime were published in
[138].

We extend recently developed molecular-dynamics methods [6, 83, 148] to modeling
a suddenly stopping crack. Explaining this phenomenon at the atomistic scale will help
forming a more complete picture of dynamic fracture. We propose to study crack dy-
namics using a combination of continuum theory, laboratory experiments and computer
simulations. Important references for our study will be [78] and [230], where analytical
and experimental results for the mode I case are described. For the mode II case, we will
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compare our findings to the analytical work in [116, 117], where the fundamental solu-
tion for an intersonic mode II crack and the solution for a suddenly stopping crack was
derived. No laboratory experiments are available up to date for the suddenly stopping
intersonic mode II crack.

The outline of this chapter is as follows: For both mode I and mode II loading condi-
tions, linear system solutions are established by assuming the interaction between atoms
to be a central pair potential similar to a harmonic ball-spring model. It will be shown
that these simulations reproduce the continuum mechanics solution for the plane stress
case. Subsequently, we use the linear study as a reference to probe crack dynamics in
nonlinear materials characterized by an “anharmonic” tethered LJ potential [10, 83, 11].
The harmonic potential is the first-order approximation of the anharmonic potential. It
will be shown, for the first time at the atomistic scale, that the sub-Rayleigh crack indeed
behaves like a massless particle and that this feature does not hold for the intersonic
case. It will also be demonstrated that the massless feature of cracks does not hold for
nonlinear materials: The crack does not behave like a massless particle in the nonlinear
case. Cracks being strictly massless is therefore confined to sub-Rayleigh cracks.

10.2. Theoretical background of suddenly stopping
cracks

The suddenly stopping crack is important for studies related to non-uniform crack
growth. Solutions to this problem are often denoted as fundamental solutions for crack
growth. The core idea is to construct the solution of non-uniform crack growth from the
solution for uniform crack growth at constant velocity [75, 78]. This becomes possible
because the dynamic stress intensity factor can be written as a product of the static
stress intensity factor for given geometry and a universal function which depends only
on the propagation velocity. The dynamic stress intensity factor can be expressed by
[78]

KI,II(a, ȧ) = kI,II(ȧ)KI,II(a, ȧ = 0). (10.5)

The universal functions kI and kII may be approximated by [78]

k(ȧ)I ≈ 1 − ȧ/cr√
1 − ȧ/cl

(10.6)

and

k(ȧ)II ≈ 1 − ȧ/cr√
1 − ȧ/cs

(10.7)

for most practical purposes. The stress intensity factor responds instantaneously to a
change in propagation velocity. In fracture mechanics, one often writes the so-called
equation of motion of a crack as [78]

G(a, ȧ, loading , . . . ) = Γ(ȧ). (10.8)

where G denotes the dynamic energy release rate and Γ(ȧ) represents the dynamic
fracture toughness, a material property measuring the fracture resistance. For mode I,
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one can write more precisely,

EΓ(ȧ)

(1 − ν2)KI(a, 0)2
≈ g(ȧ). (10.9)

The right hand side can be shown to be [78, 206, 148]

g(ȧ) = 1 − ȧ/cr. (10.10)

In linear elastic fracture mechanics, the bulk elastic properties consist of elastic con-
stants, while the effects of loading and geometry are included in the expression for
KI(a, 0). Equations of this type can be integrated to obtain a solution for a(t), if Γ(ȧ)
and KI(a, 0) are both known. We would like to remark that the crack propagation his-
tory a(t) could in principle be solved using molecular-dynamics simulations. In contrast,
the dynamic fracture resistance Γ(ȧ) can not be determined from continuum mechanics
theory and is also difficult to be measured by experiments. The massless behavior of the
crack is also reflected by the fact that only the first derivative of the crack tip position
appears in the equation of motion (10.8). This is different from a moving dislocation: It
takes an infinite time for the static field to establish itself around a suddenly stopping
dislocation [109]. Equations (10.5)-(10.10) are only valid for sub-Rayleigh crack growth
[116, 117, 78, 230]. In the intersonic case, it will take some time after the crack has com-
pletely stopped before the shear and Rayleigh waves reach the tip, as will be discussed
shortly.

The analytical solution for the suddenly stopping crack can be derived using the
superposition principle: First, the solution for a crack propagating at a constant velocity
v is determined. Subsequently, the solution for a moving dislocation is superposed
to negate the crack opening displacement ahead of the crack tip where the crack has
stopped. The solution for mode I loading was derived in [75], and that for mode II sub-
Rayleigh cracks was first considered in [73]. The fundamental solution for the intersonic
crack was recently determined in [116, 117]. In this paper, the Wiener-Hopf technique
[78] was used to address this problem, by transforming the problem into the complex
space and then applying the theory of complex functions. A scalar Wiener-Hopf problem
is derived which can be solved by transforming the complex functions back to real space
employing the deHoop method of integral inversion.

10.3. Atomistic simulation setup

Figure 10.2 shows our simulation geometry which consists of a 2D atomic lattice with
dimensions lx and ly. The suddenly stopping crack is modeled by a finite length weak
layer. Once the crack tip reaches the end of the weak layer, it can not propagate any
further and is forced to stop. The crack tip does not sense the existence of the barrier
before it actually reaches it because the material is elastically homogeneous.

The simulations are performed using a microcanonical NV E ensemble (constant num-
ber of particles N , constant volume V , and constant energy E), an appropriate choice
for non-equilibrium phenomena such as dynamic fracture. The slab is initialized with
very low temperature, T ≈ 0, which increases during the simulation to slightly higher
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Figure 10.2.: Simulation geometry for the stopping crack simulation.

temperatures. The loading starts when the outermost rows are displaced according to a
given strain rate. To avoid wave emission from the boundaries, an initial velocity field
according to the prescribed strain rate is established prior to simulation. This procedure
is the same as that used in many other studies [5, 6, 7]. The simulations are done with a
slab size of 1512× 3024 atom rows, and the system contains about 4, 500, 000 particles.

10.3.1. Suddenly stopping mode I crack: Simulation setup

The crack is stopped after it reaches its limiting speed (the Rayleigh wave speed, or
higher for nonlinear simulations) and has travelled at this velocity for some time. The
value of ystop denotes the position at which the crack stops, corresponding to the coordi-
nate of the end of the weak layer (Figure 10.2). The system is loaded until time tl, after
which the boundaries are no longer displaced but held fixed. Somewhat different loading
histories are chosen for different simulations and will be indicated in the corresponding
sections.

10.3.2. Suddenly stopping mode II crack: Simulation setup

Similar to the mode I case, we also perform mode II simulations. For the mode II
simulations, the loading has to be significantly larger in order to achieve nucleation of the
daughter crack and the limiting speed. The large deformation around the crack tip leads
to large local dilatations soon after the crack has been stopped. In the simulation, this
could cause bonds to break as they are driven out of the cutoff radius. Nearest neighbors
are searched only within a cutoff radius (rcut = 2 in reduced atomic units). This leads
to finite values of rbreak instead of the theoretical, continuum mechanics assumption
rbreak → ∞. The variable rbreak stands for the atomic separation when atomic bonds
snap. Breaking of atomic bonds in the bulk is avoided by increasing the potential energy
barrier for higher strains by introducing a fourth order term in the potential. Modifying
the potential gives additional barrier for bond breaking without affecting the rest of the
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slab, where the strains are much lower. Only very localized to the crack tip, and only for
a very short time after the crack is stopped, this modification of the potential marginally
affects the dynamics. This procedure is not applied with the tethered LJ potential (see
Section 5.1.2), because the barrier for bond breaking has proven to be high enough due
to its natural stiffening. In addition to a slight opening displacement loading, we impose
a strong shear loading on the outermost rows, displacing the upper border atoms to the
left and the lower border atoms to the right during loading.

We quickly note here that without the additional potential barrier, dislocations would
be observed to emit when the crack is stopped. This phenomenon shows the competing
mechanisms of atom separation and atom sliding in nature [181]; the former yielding
brittle fracture and the latter giving ductile response. We deliberately avoid such effects
because we wish to focus on the crack dynamics.

10.3.3. Interatomic potentials

We briefly present an analysis of the interatomic pair potentials used for the simulations.
It is not yet feasible from a computational standpoint to apply a quantum mechanics
based treatment of the atomic interactions. We rely on empirical potentials and tailor
these to yield generic material properties. Our choice of simple interatomic force laws
is consistent with our objective to study generic properties of a many-body problem
common to a large class of real physical systems. We deliberately avoid the specific
complexities of a particular atomic force law. The simple interatomic force laws can be
regarded as providing model materials for computer experiments. In this study, we use
two model materials to study brittle fracture:

1. Linear elastic material with bond snapping across the weak layer,

2. Hyperelastic stiffening material, also with bond snapping across the weak layer.

We use pair potentials (for instance harmonic potentials or modified Lennard-Jones
potentials), rather than multi-body EAM potentials [71], to model a generic brittle
material. Results that have been obtained with such model materials have proven to be
useful in the past [5].

A horizontal slit of 400 atoms distance is cut midway along the left-hand vertical
slab boundary. The crack is oriented orthogonal to the close-packed direction of the the
triangular lattice. For positions y < ystop, atomic bonds are assumed to snap at rbreak =
1.1625 across the weak layer. The quantity rbreak can be used to control the fracture
surface energy distribution. This confines the crack to propagate along prescribed weak
layer without branching. With this approach, we deliberately try to suppress branching
and dislocation emission in the current work by introducing a weak interface.

For the linear spring potential, the value for k is assumed to be k = 140/r2
0. Wave

velocities are cs ≈ 7.10, cl ≈ 12.29, and cr ≈ 6.55 [21]. The nonlinear tethered LJ
potential is described in detail in Section 5.1.2, and we choose ε = 1.9444 to match
the small-strain elastic properties with the elastic properties of the harmonic potential
associated with the spring constant k = 140/r2

0.
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10.3.4. Griffith analysis

The question why, how and under which conditions cracks initiate can be investigated
by comparing atomistic and continuum predictions. We assume that the onset of crack
motion is governed by the Griffith criterion. The Griffith criterion predicts that the crack
tip begins to propagate when the crack tip energy release rate G reaches the fracture
surface energy 2γ:

G = 2γ. (10.11)

The energy release rate G can be universally expressed as

G =
K2

I + K2
II

E
, (10.12)

where KI,II are the mode I and mode II stress intensity factors. In both cases, bonds
across the weak layer breaks at rbreak = 1.1625. For the triangular lattice and the
given crack orientation, the fracture surface energy is γharm = 0.0914 for the harmonic
system. For the tethered LJ potential, the fracture surface energy is determined to be
γLJ = 0.1186 following the same approach described in Section 5.2.

Crack initiation time in an infinite solid with a semi-infinite crack

This analysis follows the considerations in [83] who studied a mode II crack using atom-
istic and continuum methods. To estimate the crack initiation time, an infinite plane
stress solid containing a semi-infinite crack is subject to far field tensile (mode I) and
shear (mode II) loading. Initially assuming a perfect solid without a crack, the back-
ground stress rate σ̇11 is given by

σ̇11 =

(
2λG

λ + 2G
+ 2G

)
ε̇11 (10.13)

with

λ =
νE

(1 + ν)(1 − 2ν)
, (10.14)

and

G =
E

2(1 + ν)
. (10.15)

The background shear rate is given by

σ̇12 = Gε̇12. (10.16)

The stress intensity factor KI can be determined as [78]

KI(t) =
4

3
σ̇11

√√
2 − 2ν(1 + ν)cst3

π
, (10.17)

and KII is found to be [78]

KII(t) =
4

3
σ̇12

√
2(1 + ν)cst3

π
. (10.18)
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Theory Simulation

Mode Linear tpred
init Nonlinear tpred

init Linear tinit Nonlinear tinit

I 41.51 45.19 42.12 46.26
II 28.26 30.76 32.04 35.82

Table 10.1.: Griffith analysis of the atomistic models, for mode I and mode II cracks
and different potentials. The predicted values based on continuum calculations agree
well with the molecular-dynamics simulation results.

Equations (10.17), (10.18) and (10.12) can be used to derive an expression for the initi-
ation time of crack motion:

tpred
init = 3

√√√√ 9πµγ

8cs

(
σ̇2

12 +
√

1−ν
2

σ̇2
11

) . (10.19)

In the case of pure mode I cracks, the shear rate σ̇12 is set to zero in (10.19).

Crack initiation time predictions

The loading strain rate for the mode I simulations is ε̇xx = 0.000 05. The predicted crack
initiation time for the mode I linear crack is tpred

init = 41.51. Assuming small perturbations,
the crack initiation time for the nonlinear mode I crack is predicted to be tpred

init = 45.19.
We may assume that the nonlinearity is localized to the crack tip, and the slab region
can be described by small perturbation elastic properties.

The values are summarized in Table 10.1. The initiation time decreases with stiffer
systems (larger linear spring constants), faster loading and smaller values of the fracture
surface energy.

For mode II, the loading rates are ε̇xx = 0.000 015, and ε̇xy = 0.000 2. We predict an

initiation time for the crack in an harmonic solid tpred
init = 28.26. For the nonlinear solid,

we predict a slightly higher value tpred
init = 30.76 because of the higher fracture energy. As

before, we assume that the nonlinearity is localized to the crack tip, and the slab region
can be described by small perturbation elastic properties. The values are summarized
in Table 10.1.

10.4. Atomistic simulation results of a suddenly
stopping mode I crack

In the following we present the results for a suddenly stopping mode I crack. The plan
is to start with the linear system, and subsequently move on to the nonlinear system.

10.4.1. Harmonic systems

The crack propagating close to the Rayleigh velocity displays a distinct signature from
cracks at lower speeds. We use the maximum principal stress field to analyze the simu-

172



10.4. Atomistic simulation results of a suddenly stopping mode I crack

lation results. We find this field to be a simple and powerful measure to be compared
with continuum solutions, because it displays a significant dependence on the propaga-
tion speed (and can therefore distinguish a static field from a dynamic field). The stress
field close to the crack tip is best described by the asymptotic solution of continuum
mechanics [78]. The field shows only one maximum for low speeds, and exhibits another
maximum for sufficiently high velocities. The stress state ahead of the crack at high
velocities is more complicated than at low velocities. The asymptotic field obtained by
atomistic simulation is shown in Figure 10.3 (a) for the quasi-static case (v = 0, and low
velocities), and for the case v = cr in Figure 10.3 (b).

(a) (b) (c)

Figure 10.3.: The asymptotic field of maximum principal stress near a moving crack
tip (a), when v = 0, (b) dynamic field for v ≈ cr, (c) dynamic field for super-Rayleigh
propagation velocities (v > cr).

Crack initiation time is determined as tinit = 42.12, in good agreements with the
continuum theory prediction 41.51. The loading is stopped at tl = 72.8 by setting the
strain rate to zero. The crack has a velocity v ≈ 6.45 before stopping, close to its
limiting speed. The crack speed does not increase significantly even if the loading is
kept for longer time. The maximum strain is εxx = 0.0073. The stress field, as well as
numerical estimation of the crack velocity clearly identifies a crack propagating close to
Rayleigh velocity. In Figure 10.4, the history of the crack length a(t) is shown.

Once the mode I crack is stopped, two circular waves are emitted from the crack tip.
The first wave front corresponds to the longitudinal wave front, while the second one
is the shear wave front. The Rayleigh surface wave can be seen on the plane behind
the crack. The static field was measured to spread out with a velocity v ≈ 7.05, and
the longitudinal wave emitted by the stopped crack is propagating at v ≈ 12.2. Both
values are, taking into account measurement errors, reasonably close to the continuum
mechanics prediction.

In the prospective crack plane, the stress field takes on its static counterpart immedi-
ately after the shear wave has passed. Behind the crack tip, the static field is established
after the Rayleigh wave has passed. In other areas, the static field is only reached in
the long-time limit. We observe continuous wave emission and rapid attenuation in
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Figure 10.4.: Crack extension history versus time for the suddenly stopping linear mode
I crack.

regions surrounding the crack tip. The frequency of these waves increases with time.
The wave period attains atomic distance rapidly and elastic energy is dissipated as heat
(thermalization). This is visualized in Figure 10.5.

It can be verified that at late stages (after the waves have attenuated), the static
field inside the shear wave front remains constant, and no additional wave emission is
identified (see lower right snapshot of Figure 10.5). The results confirm the experimental
observations in [230]: In Figure 10.6 (a), the evolution of the maximum principal stress
along the prospective crack line is shown. The evolution of potential energy is shown
in Figure 10.6 (b). The first kink in the plots refers to the longitudinal wave front and
a second kink corresponds to the shear wave front at which the static field is radiated.
Additional evidence is provided by different snapshots of the stress field after the crack
has been stopped. These are depicted in Figure 10.5.

The stresses ahead of the crack tip are closely related to the stress intensity factor
KI . We choose a fixed location to measure the stress over time. A similar approach was
used in experiments [230]. The result is depicted in Figure 10.7. The plot also shows
the results of experimental studies of a suddenly stopping mode I crack [230].

In both experiments and simulation, the stress decays slightly after the longitudinal
wave has reached the measurement location, and increase again soon afterwards. This
decrease in stress is related to the arrival of longitudinal wave and persists even when
we change the measurement location to different y positions. The stresses continuously
change until they reach the corresponding static solution. The result of Figure 10.7
agrees qualitatively with experimental data, as can be verified in the plot (see also
Figure 2 in [230]). In particular, we note that the step at t∗ ≈ 7 and the minimum at
t∗ ≈ 3 is qualitatively reproduced.

These results show good agreement among atomistic simulations, continuum theories
and experiments. The atomistic simulation demonstrated that the rapid thermalization
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Figure 10.5.: Maximum principal stress field for various instants in time, mode I linear
crack.

of elastic waves near the crack tip did not change the basic nature of crack tip stress
fields predicted by continuum mechanics. This result would not have been possible by
continuum mechanics alone.

10.4.2. Anharmonic systems

We have shown that the harmonic solid reproduces continuum mechanics solutions, and
may serve as a reference system when we further probe into nonlinear material behaviors.
Atomistic simulations provide an extremely helpful tool to investigate the nonlinear case
– a situation which usually can not be solved in closed form. We present simulations to
address the following questions:

• Does the result agree qualitatively and quantitatively with the linear solution?

• What is the “wave” speed in the nonlinear case, that is, how fast can the static
field be established?

We start with a simple Griffith analysis to calculate the time for the onset of fracture
due to the applied loading. Crack initiation time is found to be tinit ≈ 46.26. The
initiation time agrees well with the prediction tpred

init = 45.19. The loading is kept up to
tl = 144. The maximum strain we achieve is εxx = 0.0144. The limiting speed observed
is v ≈ 7.5. As soon as loading is stopped, the velocity remains at the value it has at the
moment where the strain rate is set to zero. We make a few remarks at this point:
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1. The crack speed is significantly higher than in the linear case (7.5 versus 6.45; this
is about 16 percent higher limiting speed than predicted by the linear theory).

2. The crack speed is also larger than the corresponding wave velocity in the far-field.
This second finding is in good agreement with other results we have obtained with
bilinear hyperelastic potentials (see chapter 7), as well as previous studies on the
topic of hyperelastic brittle fracture [81, 82]. These results indicate that the local
stress state at bond breaking is important [81, 82, 11]. The higher local wave speed
leads to a higher limiting velocity. The crack can funnel energy faster than the
far-field wave speeds would allow.

3. The dynamic maximum principal stress field provides signatures of nonlinear ma-
terial response. For a super-Rayleigh crack, this field is shown in Figure 10.3 (c).
The stresses are higher compared to the harmonic case, and the angular variation
of the asymptotic field is different.

The histories of crack tip position and the velocity for the super-Rayleigh crack can
be found in Figure 10.8 which plots the limiting speed calculated from our atomistic
simulations and visualizes how the crack accelerates and approaches its limiting speed.

The history of maximum principal stress in the line ahead of the crack tip is shown
in Figure 10.9 (a), and the potential energy field is shown in Figure 10.9 (b). Even in
the nonlinear case, we can identify “bulk wave fronts” associated with a localized group
of nonlinear waves. The distributions of stress and energy along y are different in the
linear and nonlinear cases.

In very early stages, the shear wave front propagates with vy ≈ 8.6. Later, when
the stress in y direction is reduced at the crack tip, we measure vy ≈ 7.3. The bulk
of longitudinal waves emitted from the stopped crack is moving at vy ≈ 15.3 in early
stages, and at vy ≈ 12.3 later, approaching the linear sound velocity. This can be
attributed to the fact that the material ahead of the stopped crack is not strained as
severely in the y direction. The propagation speed in the x direction (orthogonal to
the crack) remains higher than that in the linear case. The longitudinal wave front
orthogonal to propagating direction is moving faster than ahead of the crack at late
stages. Similar finding applies qualitatively to the shear wave front. The results show
that the wave velocity depends on the stress state, and is significantly affected by the
loading condition. The fact that the wave fronts propagate faster orthogonal to the
propagation direction leads to elliptical wave fronts. In particular, the local wave speeds
differ significantly from the linear elastic wave speeds. This observation is found in all of
our nonlinear simulations. The discontinuities of the longitudinal and shear wave front
are smeared out compared to the corresponding harmonic simulation. This observation
is again consistent with the idea that there is no unique wave speeds near the crack tip.
There exists a train of “longitudinal” and “shear” waves associated with the rapidly
changing stress state near the crack tip. Consequently, the static field is not established
as soon as the crack has stopped behind the shear wave. In one of our simulations, it
takes δt ≈ 61 since stopping of the crack for the stresses to reach a static, constant
value at δy = 15 ahead of the crack tip. This time is found to be shorter if the stresses
are measured closer to the crack tip. For example, at δy = 5 ahead of the crack tip,
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10.5. Atomistic simulation results of a suddenly stopping mode II crack

the time to establish the static field is determined to be δt ≈ 30. The closer to the
crack tip, the less the time required to establish the static field. The reason could be
nonlinear wave dispersion. We emphasize that such large changes in the stress after the
shear wave has passed are not observed in the linear case. The time it takes until the
stresses do not change any more depends on the strength of the nonlinearity and on
the amount of lateral loading. For our tethered LJ potential, we observe that for more
compliant systems and longer loading time this effect becomes more severe, presumably
due to larger displacements and more nonlinear dispersion. As in the harmonic case,
emission of elastic waves occurs soon after crack arrest, and subsequent thermalization
suppresses additional wave emission.

The maximum principal stress field is shown in Figure 10.10 for various instants in
time. The discontinuities are smeared out, and it becomes evident that the definition
of a unique wave front can be difficult. In comparing Figure 10.11 with Figure 10.5, it
is evident that in the nonlinear case the shape of the wave fronts is different (elliptical
versus circular).

The normalized maximum principal stress over time, recorded at a constant distance
ahead of the crack tip, is plotted in Figure 10.12 for an anharmonic simulation. One can
observe the difference in shape compared to the linear case shown in Figure10.7.

10.4.3. Discussion – mode I

One important observation in our simulation is that a large number of waves are gen-
erated after crack stopping. This effect is less significant in the prospective propaga-
tion direction and becomes more pronounced in other directions. The waves attenuate
quickly after the crack is stopped, and in the long-time limit become dissipated as heat
(“thermalizing”). In the nonlinear case, we summarize the following findings:

1. There is no unique wave velocity, and the static field does not spread out behind the
shear wave front. We find that there exists a train of “longitudinal” and “shear”
waves associated with the rapidly changing stress state near the crack tip. The
static field is not established until all waves have passed.

2. There is an anisotropy effect. Ahead of the crack, the wave speed approaches the
linear limit, and orthogonal to the crack, the wave speed is significantly larger. We
see elliptical wave fronts instead of circular wave fronts.

10.5. Atomistic simulation results of a suddenly
stopping mode II crack

We consider crack propagation under in-plane shear dominated loading, starting with
the linear case and moving subsequently to the nonlinear case. For all mode II simu-
lations, we observe a mother-daughter mechanism to overcome the forbidden velocity
zone. This mechanisms is assumed to be governed by a Burridge-Andrew mechanism
[16, 39]. A peak shear stress ahead of the crack continuously increases as the mother
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crack propagates through the material. Once this peak of shear stress reaches the co-
hesive strength of the interface, the daughter crack nucleates at some distance ahead of
the mother crack and starts to propagate at an intersonic speed. The observation re-
garding the mother-daughter mechanism and the limiting speed of cl is consistent with
the discussion in [10, 83].

10.5.1. Harmonic systems

The objective is to validate the theoretical results derived in [116, 117] using computer
experiments. In particular, we will show that the static field does not spread out until
the Rayleigh wave carrying the mother crack reaches the stopped daughter crack. We
will determine the stresses slightly ahead of the crack tip from our molecular-dynamics
data and show similarity to the continuum solution. The linear solution will serve as
the reference system when we probe into nonlinear material behaviors.

Crack initiation time is found to be tinit = 32.04, in good agreement to the continuum
theory prediction tpred

init = 28.26. The daughter crack nucleates at t = 82, this is δt ≈ 50
later than the initiation of the mother crack. The loading is stopped at tl ≈ 84 soon
after the daughter crack is nucleated. The mother crack hits the stopped daughter crack
at t = 105. The mother crack propagates at v ≈ 6.5, and the daughter crack quickly
attains a velocity v ≈ 12.3. The suddenly stopping intersonic crack shows the following
sequence of events. The daughter crack is stopped, and the mother crack continues until
it reaches the end of the weak layer. For each crack stopping event, two wave fronts are
emitted yielding a total number of four wave fronts. The mechanism of the suddenly
stopping intersonic crack is visualized schematically in Figure 10.13 (a) and (b) [117].

The stresses continuously change after the daughter crack is stopped [117]. Once
the mother crack hits the daughter crack, stresses begin to increase dramatically. The
static field radiates out from the crack tip with a velocity v ≈ 7.4. This velocity is the
shear wave velocity and the observation provides good agreement to the prediction by
continuum theory. Other propagation velocities measured from our data also agree with
the continuum mechanics predictions. In Figure 10.14 (a), the maximum principal stress
is shown, and in Figure 10.14 (b), the potential energy field is depicted some distance
ahead of the crack tip. The potential energy field is shown in Figure 10.15 at several
instants in time.

Figure 10.16 shows the normalized maximum principal stress at a fixed measurement
location some distance ahead of the crack. When comparing this quantity to the stress
intensity factor, care must be taken because the singularity changes continuously as
the crack passes through the distinct intersonic velocity phases. The arrival of the
shear wave front is characterized by a strong discontinuity induced by the Rayleigh
wave[116, 117, 83]. As soon as the shear wave reaches the measurement location, the
static field is established and the stress no longer changes afterwards.

The simulation results are not inconsistent with the analysis in [117].
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10.5. Atomistic simulation results of a suddenly stopping mode II crack

10.5.2. Anharmonic systems

The linear solution has reproduced results similar to the continuum mechanics solution
of the problem. We further consider the dynamics of a suddenly stopping crack in a
nonlinear material.

Crack initiation time is determined to be tinit = 35.82, which is somewhat larger than
the prediction tpred

init = 30.76. The loading is stopped at tl = 129.6, after nucleation of
the daughter crack at t ≈ 112. This leads to a far-field strain of εxx = 0.0039 and
εxy = 0.052. The crack propagation speeds we measure are v ≈ 8 for the mother crack,
and v ≈ 16.8 for the daughter crack. Both velocities are higher than the corresponding
velocities of the linear case (22 percent higher, and 36 percent higher for mother and
daughter crack respectively) due to material nonlinearities. The daughter crack propa-
gates supersonically through the material. Figure 10.17 plots the crack extension history
a(t). In this Figure, the mother-daughter mechanism can be identified straightforwardly.

The mother crack hits the daughter crack at t ≈ 197, δt ≈ 77 after the nucleation of
the daughter crack. This can also be estimated from Figure 10.17.

Like in the simulations of a mode I crack in nonlinear material, the wave fronts are
smeared out, but we can still identify a localized group of nonlinear waves which may be
interpreted as a “nonlinear wave front”. The first waves emitted after stopping of the
crack can be regarded as the longitudinal wave moving with a velocity v ≈ 16.4 through
the solid in the prospective crack line. The strong spike ahead of the crack corresponds
to the shear wave induced by the stopped daughter crack and is propagating with a
velocity v ≈ 10.5. Both values are higher than the corresponding linear shear wave
velocity. The propagation speed of the longitudinal wave is close to the velocity of
the daughter crack before stopping. The stopping mother crack leads to nucleation of
additional waves. We observe a discontinuity propagating at v ≈ 10.5, emitted when
the mother crack is stopped. We associate this with the shear wave front. It is difficult
to observe the longitudinal wave front from our molecular-dynamics data in this case.

Plots of the maximum principal stress field and the potential energy field ahead of
the crack tip in the prospective crack line are shown in Figures 10.18 (a) and 10.18 (b).
The plots look quite different from the harmonic case. The shape we have observed in
the harmonic counterpart, in particular the strong discontinuity before arrival of shear
wave front seems to have disappeared. The discontinuity associated with the shear wave
front of the daughter crack is more pronounced than in the linear case. The fact that
the discontinuities are smeared out can lead to stresses changing significantly even after
the bulk of the shear waves of the mother crack has passed. This effect is reminiscent of
the phenomenon observed in the nonlinear mode I crack. In this simulation, the static
stresses are reached soon after the bulk of shear waves has passed. The delay required
to establish the static field after the shear waves have passed, which we have observed
in the nonlinear mode I case, is not observed in this simulation, but appears in different
simulations when the impact of nonlinearities is stronger due to higher lateral strains
(see further discussion below).

The potential energy field around the crack tip is shown in Figure 10.19 for various
times. The velocity of the wave fronts depends on the angle. This leads to elliptical
shapes of the wave front, as also observed in the mode I case. Like in previous simula-
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tions, a thermalization effect is observed. In particular, after stopping of the daughter
crack, energy is found to be dissipated as heat, as can be verified from Figure 10.19
(right top). The normalized stresses σ∗ versus time are shown in Figure 10.20 for an
anharmonic simulation.

Comparing this result to the linear case, we find similarity until the shear wave arrives.
Unlike the linear case in which stresses decrease strongly after the mother crack arrives,
this stress remains constant until the mother crack arrives and then quickly increase to
the steady state value.

To investigate the nonlinear dynamics further, we will briefly discuss a second simu-
lation. To obtain softer elastic properties, we alter the tethered LJ potential and choose
ε0 = 1. The corresponding harmonic wave velocities are cr = 4.8, cs = 5.2 and cl = 9.
As we mention in Section 10.4.2, this softening in combination with higher lateral strain
allows us to study the nonlinear effect better. The loading is kept for a longer time
than in previous simulations. All other parameters are kept constant. The daughter
crack achieves a speed of v ≈ 12 and is truly supersonic. The mother crack propagates
at v ≈ 5.8, which is super-Rayleigh. The wave fronts become very difficult to identify,
because they are smeared out more than in the previous simulation. The shape of the
discontinuities is clearly elliptical. The longitudinal wave front of the stopped daugh-
ter crack is propagating with v ≈ 11.95, and the shear wave front is associated with a
strong discontinuity propagating at v ≈ 7.80 through the solid. We remark that the
velocity of the longitudinal wave front is almost identical to the propagation velocity of
the daughter crack. Once the mother crack reaches the stopped daughter crack, there
is no more significant discontinuity. This is very different from the harmonic case where
each wave front is clearly identified by a distinct discontinuity. We find that the mother
crack, represented by a surface wave after the secondary crack is nucleated, is smeared
out in the nonlinear case. Therefore the arrival of the mother crack is not the arrival of
a singularity, but of a distributed stress concentration. The static field is not instanta-
neously established. The stress intensity is continuously increases from the point where
the daughter crack has been stopped until the it becomes fully steady state. We observe
a slight increase of stresses until all waves have passed, just as in the nonlinear mode I
case.

This also helps to explain the difference in shape of energy and stress distribution
in the prospective crack line, when we compare the harmonic with the anharmonic
simulations. Moreover, the static field is not established until all waves have passed.

10.5.3. Discussion – mode II

We would like to start with the results for the linear case:

1. We have shown that static field does not establish until the mother crack reaches
the stopped daughter crack for the linear reference system.

2. After the mother crack has reached the stopped crack tip, the stress field (as well
as the energy field) ahead of the crack tip is static behind the shear wave front in,
and is static behind the Rayleigh surface wave behind the crack. Both observations
match the prediction by continuum mechanics.
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In the nonlinear case, the definition and observation of the longitudinal wave front is
difficult. The wave fronts are not as sharp and discontinuities not as strong, which may
cause the field behind the shear wave front of the mother crack to change continuously
during some transition time until all waves have passed.

10.6. Discussion

We have studied suddenly stopping cracks by atomistic simulations. We considered a
plane-stress elastic solid consisting of a two-dimensional, triangular atomic lattice. For
the interatomic interactions, we assumed a tethered Lennard-Jones potential, as well as
a harmonic potential. We presented four simulations for mode I and mode II loading
conditions, and linear and nonlinear simulation potentials. In addition to the atomistic
simulations, we have done continuum analyses to determine the crack initiation time
and wave velocities associated with the interatomic potentials.

The harmonic atomistic simulations have shown good agreement with the continuum
mechanics and experiments. We would like to summarize the main results below.

1. In mode I, the static solution spreads out as soon as the crack is stopped. This is
in agreement to the continuum theory [75].

2. In mode I, experiments and atomistic studies show similar results on very different
scales [230] (see Figure 10.7).

3. In mode II, the static solution spreads out as soon as the mother crack has reached
the stopped daughter crack. The nature of the mode II intersonic crack is very
different from the sub-Rayleigh crack [117].

4. In both mode I and mode II, we observe emission of waves from the stopped crack.
These waves attenuate quickly, in which process energy is dissipated as heat. This
does not change the basic nature of stress fields near the crack tip as predicted by
continuum mechanics.

The anharmonic simulations give somewhat different results, which can not be explained
by linear elastic fracture mechanics only. For the nonlinear case, we would like to
summarize the main findings as follows.

1. In both mode I and mode II, the wave fronts and discontinuities are not as sharp as
in the linear case. This nonlinear dispersion effect could cause the field to change
continuously even after the main wave discontinuities have passed.

2. For supersonic mode II cracks, the mother crack could transform from a stress
singularity into a less localized stress distribution. The static field is not instanta-
neously established but stresses increase continuously, until they eventually reach
steady state.

3. The nonlinearity can leads to an anisotropy effect of wave propagation. Instead of
circular wave fronts, we find elliptical wave fronts.
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10. Suddenly stopping cracks

Our simulations show that the linear model is a reasonable approximation even when
moderate nonlinearities are present. The simulations provide evidence that the crack
behaves like a massless particle only in the sub-Rayleigh regime. The Griffith criterion
works well in all simulations we presented.
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10.6. Discussion

Figure 10.6.: Evolution of principal maximum stress and potential energy along the
prospective crack line, for a linear mode I crack.
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Figure 10.7.: Variation of stress at fixed distance ahead of the stopped linear mode
I crack. At t ≈ 0, the longitudinal wave arrives at the location where the stress is
measured. At t ≈ 8, the shear wave arrives and the stress field behind the crack tip
is static. The plot also shows the results of experimental studies [230] of a suddenly
stopping mode I crack for qualitative comparison (the time is fitted to the MD result
such that the arrival of the shear wave and the minimum at t∗ ≈ 3 match).
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10.6. Discussion

Figure 10.8.: Crack tip history a(t) and crack tip velocity v as a function of time,
suddenly stopping mode I crack. The limiting speed according to the linear theory is
denoted by the black line (Rayleigh velocity), and the super-Rayleigh terminal speed of
the crack in the nonlinear material is given by the blueish line. When the crack stops,
the crack speed drops to zero.
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Figure 10.9.: Evolution of principal maximum stress and potential energy along the
prospective crack line; for a mode I nonlinear crack.

186



10.6. Discussion

Figure 10.10.: Maximum principal stress field for various instants in time, for mode I
nonlinear crack.

Figure 10.11.: Elliptical wave fronts in the mode I nonlinear crack.
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Figure 10.12.: Variation of stress at fixed distance ahead of the stopped nonlinear mode
I crack.

Figure 10.13.: Schematic of waves emitted at a suddenly stopping mode II crack; (a)
stopping of daughter crack, (b) stopping of mother crack.
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10.6. Discussion

Figure 10.14.: Evolution of (a) principal maximum stress and (b) potential energy along
the prospective crack line; for linear supersonic crack.

189



10. Suddenly stopping cracks

Figure 10.15.: Potential energy field for various instants in time, mode II linear crack.

Figure 10.16.: Variation of stress at fixed distance ahead of the stopped intersonic mode
II crack.
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10.6. Discussion

Figure 10.17.: Crack extension history versus time for the supersonic mode II crack.
The dashed line is used to estimate the time when the mother crack comes to rest.

191
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Figure 10.18.: Evolution of (a) principal maximum stress and (b) potential energy along
the prospective crack line; for nonlinear supersonic crack.
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10.6. Discussion

Figure 10.19.: Potential energy field around the crack tip for various times, suddenly
stopping mode II crack.

Figure 10.20.: Normalized stresses σ∗ versus time, suddenly stopping supersonic mode
II crack.
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11. Mechanical and physical properties
of three-dimensional solids

Thus far, we have focused attention to one- and two dimensional models of fracture. For
cracks under mode I and mode II loading, the 2D setup is a reasonable choice since the
elastic problem is of two-dimensional nature [78]. For mode III cracks under anti-plane
shear loading, however, two dimensional models can not be used and three dimensional
models are necessary.

We dedicate this chapter to the discussion of mechanical and physical properties of
three-dimensional solids associated with a face-centered cubic lattice. The aim is to
determine the elastic properties and fracture surface energy for computer experiments
of mode III cracks, similarly as done in Chapter 5 for the two-dimensional solids.

11.1. Elastic properties, wave speeds and fracture
surface energy for the harmonic potential

Here we focus on harmonic interactions between atoms as defined in equation (2.6).
As in the two-dimensional models, atoms only interact with their nearest neighbors.
Additional results for elastic properties will be given for LJ and EAM solids.

11.1.1. Elastic properties and wave speeds for cubical crystal
orientation

We assume that nearest neighbor distance is r0 = 21/6 ≈ 1.12246, so that the lattice
constant a0 =

√
2r0 = 21/6

√
2 ≈ 1.5874. For mass m = 1, the density is given by ρ ≈ 1,

since the volume of one unit cell is V = 4, and there are four atoms per unit cell with
mass unity. The atomic volume is Ω0 = 1.

In a fcc crystal with pair potential atomic interactions [26],

c1111 = b1111/Ω0, c1122 = c1212 = b1122/Ω0. (11.1)

The fact that c1122 = c1212 shows that the Cauchy relation holds. For a cubical crystal
orientation (that is, x = [100] and y = [010] and z = [001]), the nonzero factors bijkl are
given by

b1111 =
4φ′′ (a0/2)4(

a0/
√

2
)2 , b1122 = b1212 =

2φ′′ (a0/2)4(
a0/

√
2
)2 . (11.2)
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Crystal orientation k E µ ν cl cs cr

[100] 36 3
√

2 ≈ 28.57 48 18 0.33 8.48 4.24 3.86

[100] 72 3
√

2 ≈ 57.14 96 36 0.33 12 6 5.56

Table 11.1.: Elastic properties and wave speeds associated with the harmonic potential
(see equation (2.6)) in a 3D solid for different choices of the spring constant k, cubical
crystal orientation.

The second derivative of the potential φ′′ = k, where k is the spring constant associated
with the harmonic potential. The shear modulus can be expressed in terms of the spring
constant and the nearest neighbor distance as

µ =
r2
0

2
k. (11.3)

For k0 = 28.57 this leads to numerical values c1111 ≈ 36, and µ = c1122 = c1212 ≈ 18.
Note that λ = 2µ, and therefore Young’s modulus is

E =
µ (3λ + 2µ)

λ + µ
=

8

3
µ ≈ 48, (11.4)

and the shear modulus is µ = c1122 = c1212 ≈ 18. Poisson’s ratio is determined to be

ν =
λ

2(λ + µ)
= 1/3. (11.5)

This yields wave velocities

cl =

√
(1 − ν)

(1 + ν)(1 − 2ν)

E

ρ
≈ 8.48, cs =

√
µ

ρ
≈ 4.24, (11.6)

and finally the Rayleigh wave speed is given by

cr ≈ 0.91cs ≈ 3.86. (11.7)

For k1 = 2k0 ≈ 57.14, the wave speeds are a factor of
√

2 larger. The results are
summarized in Table 11.1.

Figure 11.1 shows the numerically estimated elastic properties associated with the
harmonic potential with k0 = 28.57 in the [100] crystal orientation, with Poisson relax-
ation. The values for the elastic properties show good agreement. Additional results are
shown in Figure 11.2 for uniaxial loading without Poisson relaxation, and in Figure 11.3
for triaxial loading. Note that under uniaxial loading as shown in Figure 11.1 and Fig-
ure 11.2, Young’s modulus increases slightly with strain, while it decreases with strain
under triaxial loading as shown in Figure 11.3.
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11.1. Elastic properties, wave speeds and fracture surface energy for the harmonic potential

Figure 11.1.: Elastic properties associated with the harmonic potential, [100] crystal
orientation, with Poisson relaxation. Poisson ratio is ν ≈ 0.33 and is approximately
independent of the applied strain. The plot shows the elastic properties as a function of
strain.

11.1.2. Elastic properties in different crystal orientations

Here we show some numerical results of elastic properties for uniaxial tension with
Poisson relaxation in the [110] and the [111] direction.

Figure 11.4 (a) plots the results for uniaxial tension with Poisson relaxation in the
[110] direction. Young’s modulus is approximately E ≈ 72. It is notable that Poisson’s
ratio is different in the y and the z direction. The relaxation in the z direction is νz ≈ 0.5,
and in the y direction there is no relaxation. This result, as well as the values for Young’s
modulus can also be obtained from continuum mechanics theories based on generalized
Hooke’s law (calculation not shown here). Unlike the two-dimensional triangular lattice,
the three-dimensional fcc lattice is not isotropic.

Figure 11.4 (b) plots the results for uniaxial tension with Poisson relaxation in the
[111] direction. Young’s modulus is approximately E ≈ 100. Poisson’s ratio is identical

197



11. Mechanical and physical properties of three-dimensional solids

Figure 11.2.: Elastic properties associated with the harmonic potential, [100] crystal
orientation, without Poisson relaxation. The plot shows the elastic properties as a
function of strain.

in the y and z direction, and is found to be ν ≈ 0.2. As for the loading in [110], this
result can also be obtained from continuum mechanics theories. The elastic properties
in the [110] and [111] direction are summarized in Table 11.2.

11.1.3. Fracture surface energy

The fracture surface energy can be expressed as

2γ = NbρA∆φ, (11.8)

where ρA = 2/a2
0 ≈ 0.794 is the density of surface atoms along the fracture plane, and

∆φ denotes the potential energy per bond. The factor Nb = 4 since each atom has 4
bonds across the [100] plane (thus (010) crack faces). The potential energy per bond is
given by

∆φ =
1

2
k0(rrbreak − r0)

2 (11.9)
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Figure 11.3.: Elastic properties associated with the harmonic potential, [100] crystal
orientation, triaxial loading. The plot shows the elastic properties as a function of
strain.

and is ∆φ ≈ 2.26 × 10−3 for rrbreak = 1.17 and k0 ≈ 57.32.
Therefore, the fracture surface energy 2γ ≈ 0.21. As in the two-dimensional case,

note that γ ∼ k0 and therefore γ ∼ E.

11.2. Elastic properties of LJ and EAM potentials

Figure 11.5 shows the stress-strain curves for a pair potential and a multi-body potential.
Figure 11.5 (a) shows the results for a LJ potential with nearest neighbor interaction,
and Figure 11.5 (b) shows the results for an EAM potential for nickel. In both cases,
the [110] direction is very weak and fails at about 12 percent strain in the case of an LJ
potential, and it fails at a strain of only 8 percent in the case of an EAM potential. In
contrast to this, the cohesive strain in the [100] direction is largest in the EAM potential
and smaller when the LJ potential is used. The critical cohesive strains are summarized
in Table 11.3.

An important difference to the harmonic potentials studied in the previous section is
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Loading direction k E νy νz

[110] 36 3
√

2 ≈ 28.57 72 0 0.5

[111] 36 3
√

2 ≈ 28.57 100 0.2 0.2

Table 11.2.: Elastic properties associated with the harmonic potential (see equation
(2.6)) in a 3D solid for different choices of the spring constant k and [110] and [111]
crystal orientation. The plot shows the elastic properties as a function of strain.

Potential ε
[100]
coh ε

[110]
coh ε

[111]
coh

LJ 0.25 0.17 0.13
EAM 0.35 0.23 0.08

Table 11.3.: Cohesive strains ε
[100]
coh , ε

[110]
coh and ε

[111]
coh for the LJ potential and the EAM

potential. In all potentials, the weakest pulling direction is the [110] direction. The plot
shows the elastic properties as a function of strain.

that Young’s modulus significantly decreases with strain, leading to a strong softening
effect.

11.3. Summary and discussion

The results reported in this chapter provide analytical expressions for the elastic prop-
erties of three-dimensional solids with harmonic interatomic potentials. The analytical
predictions were verified by numerical calculations of the elastic properties. We also
report results of elastic properties of fcc solids with LJ interatomic potential and EAM
potentials. An interesting observation was that when pulling in the [110] direction, the
solid fails at a very low strain (and at very low stress) compared to other pulling di-
rections ([100] and [111]). This phenomenon is likely due to the strong softening of the
bonds in the LJ and EAM potential. In contrast, such phenomenon does not appear in
the harmonic potential since the bonds do not weaken with stretching (see Figures 11.1
and Figure 11.4). In fact, Young’s modulus in the [110] direction is in between the values
of the [100] and [111] direction. Similar observations have been made in earlier studies
for LJ pair potentials [6]. Our results show that this also applies to EAM potentials.
Therefore, it is expected that this phenomenon should occur in metals.

The observation of this “weak” crystal orientation could potentially have impact on
the design of nanowires or interconnects in integrated circuits. Future research would
be necessary to clarify further impact of this finding.
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11.3. Summary and discussion

Figure 11.4.: Elastic properties associated with the harmonic potential, (a) [110] and
(b) [111] crystal orientation, uniaxial loading with Poisson relaxation. The plot shows
the elastic properties as a function of strain.
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11. Mechanical and physical properties of three-dimensional solids

Figure 11.5.: Elastic properties associated with (a) LJ potential, and (b) an EAM po-
tential for nickel [59], uniaxial loading in [100], [110] and [111] with Poisson relaxation.
The plot shows the elastic properties as a function of strain.

202



12. Dynamic fracture under mode III
loading

In this chapter, we study three-dimensional models of mode III cracks. A schematic of
the mode III antiplane shear crack loading is shown in Figure 12.1.

The study of mode III cracks is motivated by the fact that in mode III, there exists only
one wave speed associated with crack dynamics, the shear wave speed cs. This simplifies
the theoretical continuum mechanics analysis of the crack dynamics. Recently, a closed
form solution for the crack speed of a crack propagating in a stiff material layer embedded
in a soft matrix was derived [44]. The analysis revealed that the same concept of a
characteristic energy length scale χ also holds for mode III cracks. The most important
objective of this chapter is therefore to validate this finding using atomistic simulations
similar to those presented in Section 7.5.

To our knowledge, mode III cracks have rarely been studied with molecular-dynamics
methods before. Some simulations were reported in the literature, but these focused on
cracks in ductile materials under mode III loading [249, 191].

Figure 12.1.: Schematic of mode III crack loading.

According to classical linear elastic theories [78], for mode III cracks all velocities
below the shear wave speed are admitted, thus

v ≤ cs. (12.1)

The allowed crack propagation speeds for mode III cracks in linear and nonlinear solids
are shown in Figure 12.2. Similar to the results of mode I and mode II cracks where
cracks can move faster than the wave speeds in the material, mode III cracks can also
move faster than the shear wave speed and thus become supersonic once the material
stiffens with strain. This phenomenon was verified using a tethered LJ potential (results
not shown here).

The objectives of the studies in this chapter are summarized as follows. First, we
verify that the limiting speed associated with a crack propagating in a harmonic lat-
tice agrees with the theoretical prediction. We then discuss simulation results of crack
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12. Dynamic fracture under mode III loading

Figure 12.2.: Allowed velocities for mode III crack propagation, linear and nonlinear
case.

motion in a thin stiff layer embedded in a soft matrix, also yielding supersonic crack
motion (similarly to the Broberg problem discussed in Chapter 7). The recently derived
analytical continuum mechanics solution of the problem is quantitatively compared with
the molecular-dynamics results [44]. We find that the energy length scale described in
Chapter 7 also applies to mode III cracks.

12.1. Atomistic modeling of mode III cracks

Previous studies have provided evidence that 3D molecular-dynamics is a good frame-
work to investigate the dynamics of fracture. For instance, Abraham and coworkers
[6] studied dynamic fracture in a three-dimensional solid with LJ interactions. They
showed that unlike in two dimensions where the LJ potential yields a very brittle solid
(see Figure 8.1), in three dimensions the LJ potentials leads to a very ductile solid [12].
The researchers studied the dynamics of fracture in different crystal orientation and pro-
vided a Schmidt factor analysis [9]. Later, a three-dimensional model using harmonic
interactions in the bulk, and using the concept of a weak fracture path was adopted in
simulations of dynamic crack propagation [11]. This model corresponds to a perfectly
brittle system which allows to study the dynamics of fracture in a clean environment.

Here we adopt a similar approach and confine crack motion along a weak layer, which
is characterized by a fracture surface energy much smaller than in the bulk. This confined
fracture path helps to avoid crack branching and allows to purely focus on the dynamics
of cracks. In previous studies, a weak LJ layer was used to model the weak fracture
layer [11]. Here we assume a homogeneous material with harmonic interactions. The
interactions are defined according to equation (5.1.3) in the bulk, and according to
equation (5.19) across the weak fracture layer.

The slab is initialized at zero temperature and loaded according to mode III, and we
also give a slight mode I loading. The loading rates are ε̇xx = 0.000 1 for mode I and
the (engineering) shear rate γ̇xz = 0.000 2. The loading is kept up during a loading time
tl, and then the boundaries are held fixed.

12.2. Mode III cracks in a harmonic lattice–the
reference systems

The results show that the limiting speed of mode III cracks in a harmonic lattice is
given by the shear wave speed. This was verified for two choices of the spring constant
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12.3. Mode III crack propagation in a thin stiff layer embedded in a soft matrix

k1 ≈ 57.32 and k1 = k0/2. This observation is in agreement with the predictions by
continuum mechanics theories [78]. The crack tip history for the soft and stiff reference
system is shown in Figure 12.3. In both systems, the loading is stopped at tl = 135.
Both soft and stiff systems approach the theoretical limiting speeds. Fracture initiation
times are tsoft

init ≈ 47 for the soft system and tstiffinit ≈ 41.

Figure 12.3.: Crack tip velocity history for a mode III crack propagating in a harmonic
lattice for two different choices of the spring constant ki. The dotted line shows the
limiting speed of the stiff reference system, and the dashed line shows the limiting speed
of the soft reference system. Both soft and stiff systems approach the corresponding
theoretical limiting speeds.

12.3. Mode III crack propagation in a thin stiff layer
embedded in a soft matrix

Here we use the same geometry as shown in Figure 7.9, with the difference that the slab is
predominantly under mode III loading. The main objective is to compare the molecular-
dynamics simulation results of the curve v(h/χ) with the theoretical prediction.

According to theory [44], the energy release rate for a crack propagating in a stiff layer
with width h is given by

G =
hσ2

xz

µ
f(v, c0, c1) (12.2)

where f is a function only of the elastic properties of the layer and matrix material as well
as the crack propagation velocity. Using the Griffith condition G = 2γ, equation (12.2)
can be numerically solved for v. Therefore, the crack velocity can be expressed as

v = f̃(c0, c1, h/χ) (12.3)

where

χ = β
γµ

σ2
xz

(12.4)
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12. Dynamic fracture under mode III loading

Figure 12.4.: Mode III crack propagating in a thin elastic strip that is elastically stiff.
The potential energy field is shown while the crack propagates supersonically through
the solid. The stiff layer width is h = 50.

denotes the characteristic energy length scale. The characteristic energy length scale
is defined such that h/χ equals one when the increase in crack speed is 50 % of the
difference between the shear wave speed of soft and stiff material. Most importantly,
the crack speed should only depend on the ratio of the layer width h to the characteristic
energy length scale χ.

According to the values of γ, µ and the applied shear stress σxz for loading time of
tl = 135, γµ/σ2

xz ≈ 1.

Figure 12.4 shows a mode III crack propagating in a thin elastic strip which is elas-
tically stiff. The crack propagates supersonically through the solid, and the stiff layer
width is h = 50. Figure 12.5 depicts the results of a set of calculations to check of
the scaling law for mode III dynamic fracture. The continuous line corresponds to the
analytical continuum mechanics solution, and the data points are obtained for different
simulation conditions. In the molecular-dynamics simulations, the loading σxz, the frac-
ture surface energy γ as well the elastic properties E are changed independently. The
results show that all velocities fall on the same curve. From comparison of molecular-
dynamics results to the continuum solution, the parameter β ≈ 11 and therefore χ ≈ 11.
When the inner layer width h approaches this length scale, the crack speed has increased
50 % of the difference of soft and stiff shear wave speed.
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12.4. Suddenly stopping mode III crack

For realistic experimental conditions under 0.1 % shear strain and a crack propagating
within a thin steel layer, χ is on the order of millimeters. Further details will be included
in a forthcoming publication [43].

Figure 12.5.: Check of the scaling law of the mode III Broberg problem. The continuous
line refers to the analytical continuum mechanics solution [44] of the problem. The
parameters γ0 = 0.1029 and τ0 = 0.054.

12.4. Suddenly stopping mode III crack

In Chapter 10, we discussed suddenly stopping mode I and mode II cracks in linear and
nonlinear materials. We have conducted similar studies for a suddenly stopping mode
III crack. Theory predicts that the dynamics of the suddenly stopping mode III crack is
very similar to the mode I crack [78]. An important difference of the suddenly stopping
mode III crack to the mode I case is that the static field spreads out in the whole area
around the crack tip, and not only in the line ahead of the crack tip as in mode I [78].

Figure 12.6 shows the potential energy field close to a suddenly stopping mode III
crack. The simulation technique is the same as described in Chapter 10 with the only
difference that a three-dimensional model is used.

The result is very reminiscent of the mode I simulation results discussed in Chapter 10.
The static field spreads out with the shear wave speed as soon as the crack is stopped.
In snapshot “1” of Figure 12.6, the crack propagates at a velocity close to the shear
wave speed prior to stopping. Behind the crack, the static field is transported with the
Rayleigh wave speed. The Rayleigh surface wave can clearly be observed in Figure 12.6,
snapshots “3” and “4”. The static stress field spreads out in the whole area around the
crack tip, and not only in the line ahead of the crack tip as in mode I [78].
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12. Dynamic fracture under mode III loading

Figure 12.6.: Suddenly stopping mode III crack. The static field spreads out behind the
shear wave front after the crack is brought to rest.

12.5. Discussion

The limiting speeds of mode III cracks are found to be in agreement with the predicted
velocities from the continuum mechanics analysis. With the results reported in this
chapter, we conclude that for all three modes of loading, the predicted limiting speeds
agree well with the observation in atomistic simulations.

The most important result of this chapter is that the scaling law found for mode I
cracks also holds for the mode III case. A quantitative comparison with the theory
provided good agreement. This result strongly corroborates the concept of the energy
length scale proposed earlier. The results also suggest, in accordance with the continuum
analysis of the problem, that supersonic mode III crack motion is possible [44]. The
results are also in agreement with recent theoretical analysis of supersonic mode III
crack propagation in nonlinear stiffening materials [99]. Preliminary molecular-dynamics
simulations of crack motion in a material defined by the tethered LJ potentials have
also shown supersonic mode III crack propagation (the results will be discussed in a
forthcoming publication).

Further results of a suddenly stopping mode III crack agree qualitatively with the
continuum mechanics prediction of a suddenly stopping mode III crack. The static field
is found to spread out behind the shear wave front nucleated by the stopping crack.
In harmonic lattices, the mode III carries no inertia, as the mode I crack and the sub-
Rayleigh mode II crack.
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13. Summary and discussion of the
results in the area of brittle
fracture

The studies in the area of dynamic fracture focused on the following points.

• Comparison of atomistic results with continuum mechanics theory predictions (in
particular crack limiting speed, crack tip instability speed and deformation fields).

• Investigation of hyperelastic effects in dynamic fracture (in particular crack limit-
ing speed and crack tip instability speed).

• Effect of geometric confinement (cracks in thin layers) and crack propagation along
interfaces of dissimilar materials.

The first study discussed in Chapter 4 centered on a one-dimensional model of dy-
namic fracture. The appeal of the one-dimensional model is that many of the physical
phenomena of dynamic fracture, such as maximum crack speed and a condition for crack
initiation similar to the Griffith theory, also appear in this simple model. An important
aspect was that analytical expressions for the nonlinear dynamics of fracture could be
derived (see Section 4.3). The analytical model predicted crack motion faster than the
speed of sound, if there is an elastically stiff zone near the crack tip. The atomistic
model with harmonic interactions is found to reproduce the predictions of the linear
elastic continuum theory well. The simulations carried out with nonlinear interatomic
potentials revealed that a small zone with stiff elastic properties at the crack tip signif-
icantly changes the dynamics and allows the crack to break through the sound barrier.
This observation is in agreement with the theoretical predictions of the model described
in Section 4.3. As shown in Figure 4.11 (a), the crack propagation speed depends crit-
ically on the onset strain of the hyperelastic effect and therefore, the crack speed is
highly sensitive to the size of the hyperelastic region. The deformation fields near the
one-dimensional crack in nonlinear materials agrees reasonably well with the predictions
by continuum theory, as shown in Figure 4.11 (b).

After studying the one-dimensional crack, we moved on to two-dimensional models.
The first problem studied was the elastic properties of two-dimensional solids in Chap-
ter 5. We demonstrated that the choice of the potential allows to construct model
materials with the objective to probe the effect of specific material properties on the
dynamics of fracture. One of the examples of such model materials is the biharmonic
potential. This potential yields a solid composed of two linear elastic materials, with one
Young’s modulus associated with small strains and one with large strains, representing a
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13. Summary and discussion of the results in the area of brittle fracture

simplistic model material for hyperelasticity. Further, we calculated the fracture surface
energy for different choices of the interatomic potential serving as input parameter for
the prediction of crack initiation time by the Griffith model [78].

A quantitative comparison of the deformation fields near a rapidly propagating mode
I crack in a harmonic lattice revealed that the continuum theory predictions of angular
variation of stress and strain agree well with the results of atomistic simulations (Chap-
ter 6). We find that the prediction that the hoop stress becomes bimodal [246] at a
critical crack propagation speed is reproduced in atomistic calculations. The occurrence
of the bimodal hoop stress is an important aspect in the theories of crack tip instabilities.
In summary, the studies in Chapter 6 (together with the results of the one-dimensional
crack reported in Chapter 4) reveal that atomistic simulations with harmonic potentials
are a good model for the linear elastic continuum theory. The results in this chapter
and the results of the one-dimensional model with harmonic interactions both show
reasonable agreement with the linear elastic continuum theory [78].

In Chapter 7, we changed the large-strain elastic properties while keeping the small-
strain elastic properties constant to systematically investigate the effect on crack dynam-
ics. The main finding is that the elasticity of large strains can dominate the dynamics
of fracture, in contrast to the predictions by many existing theories [78]! With the new
concept of the characteristic energy length scale χ in dynamic fracture we could explain
experimental and computational results. This length scale immediately explains under
which conditions hyperelasticity is important and when it can be neglected. Cracks
moving in solids absorb and dissipate energy from the surrounding material. The new
length scale characterizes the zone near the crack tip from which the crack draws energy
to sustain its motion. When materials are under extreme stress, this length scale ex-
tends only a few dozens nanometers. One of the important consequences of this is that
cracks can move supersonically in contrast to existing theories. The finding that the
crack speed increases continuously as the size of the hyperelastic region expands (shown
in Figure 7.4 and Figure 7.5) can be explained by the interplay of the hyperelastic region
size and the characteristic energy length scale, and is in qualitative agreement with the
findings in the one-dimensional model depicted in Figure 4.11 (a). Stimulated by the
results reported in Chapter 7 [32], intersonic mode I cracks as shown in Figure 7.6 have
recently been verified in the laboratory [172].

In the following chapter, we investigated the effect of hyperelasticity on the stability
of cracks. It is known that cracks propagate straight at low velocities, but start to
wiggle when the crack speed gets larger [5, 70]. One of the theoretical explanations
[78, 246] is that the hoop stress becomes bimodal at a speed of 73 % of Rayleigh-wave
speed. Indeed, we find in our atomistic simulation that a crack in a harmonic lattice
becomes unstable at a speed of about 73 % of Rayleigh-wave speed, in good agreement
with the continuum theory. However, if a softening potential is used, the instability
occurs at lower speeds! In contrast, we demonstrated that if material stiffens with
strain, the instability occurs at higher speeds than predicted by theory (see Figure 8.5).
We therefore conclude that hyperelasticity governs the dynamic crack tip instability.
Another observation is the nucleation of intersonic daughter cracks from sub-Rayleigh
mother cracks as shown in Figure 8.11. Such deformation mode has, to our knowledge,
not been described before. This underlines the fact that sub-Rayleigh cracks may serve
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as ready sources for secondary cracks similarly to the mother-daughter mechanism known
from mode II cracks [83].

Additional studies focused on cracks at interfaces. We carried out studies of mode I
and mode II cracks along interfaces of elastically dissimilar materials. In mode I, we
observed that cracks are limited by the Rayleigh-wave speed of the stiffer of the two
materials provided that sufficient loading is applied. A mother-daughter mechanism,
similar as known to exist at interfaces of identical materials under mode II loading [83],
is observed that allows the crack to break through the sound barrier. In mode II, we find
that the crack speed is limited by the longitudinal wave speed of the stiff material and ob-
serve a mother-daughter-granddaughter crack mechanism. Whereas a mother-daughter
mechanism has not been observed in mode I cracks, the mother-daughter-granddaughter
mechanism has been observed in mode II cracks along interfaces of elastically harmonic
and anharmonic materials [11]. Most importantly, experimental evidence was reported
for the existence of such mechanisms for crack propagation along interfaces of aluminum
(stiff) and PMMA (soft) [182] corresponding to our atomistic model. Our molecular-
dynamics simulations reproduce some of the experimental findings.

The next chapter was devoted to a discussion of suddenly stopping cracks. The main
result was that mode I cracks in harmonic lattices carry no inertia, and the static field
spreads out behind the shear wave front immediately after the crack is stopped. This
result matches the prediction by continuum theory [78]. A comparison of the suddenly
stopping mode I cracks with experimental results [230] also reveals good agreement.
The results in reported in this Chapter are in accordance with the results of a suddenly
stopping one-dimensional crack shown in Figure 4.7. As soon as the crack stops, the
strain field of the solution corresponding to zero crack velocity is spread out. We have
then shown that mode II cracks behave differently than mode I cracks: In agreement
with the predictions by continuum mechanics theories of suddenly stopping intersonic
cracks [117], an intersonic mode II crack does carry inertia and the static field does
not spread out until the mother crack has reached the stopped daughter crack. In the
nonlinear cases of mode I and mode II cracks, the wave fronts are smeared out and the
static field is not instantaneously reached but after all trails of waves have passed.

In the last two remaining chapters we focused on the dynamics of mode III cracks by
using three-dimensional atomistic simulations. Firstly, we considered the mechanical and
physical properties of three-dimensional solids. We discussed the elastic properties and
compare theoretical predictions with numerical estimates for various crystal orientations
in an fcc crystal. As in the two-dimensional case, we also calculated the fracture surface
energy. The results of the preceding chapter on the mechanical and physical properties
of three-dimensional solids provide important information for the studies discussed in
Chapter 12. After studying cracks in harmonic lattices and showing agreement of the
corresponding limiting speed (the shear wave speed), we focused on the critical energy
length scale χ. We find that the same concept as that discovered in Chapter 7 also
holds for mode III cracks. A quantitative comparison with an analytical continuum
theory solution [44] showed good agreement. For realistic experimental conditions and
cracks propagation within a thin steel layer, the characteristic energy length scale was
estimated to be on the order of millimeters. Further studies of mode III cracks included
suddenly stopping cracks. We have shown that, as for sub-Rayleigh mode I and mode
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13. Summary and discussion of the results in the area of brittle fracture

II cracks, mode III cracks in harmonic lattices carry no inertia [78].

13.1. Hyperelasticity can govern dynamic fracture

In this thesis, the effect of the elasticity of large strains on the dynamics of fracture was
was one of the main points of interest. Here we discuss the role of hyperelasticity in
more general terms.

Our results suggest that hyperelasticity has (1) an effect on the crack speed as well
as (2) on the instability dynamics of cracks. Unlike in some previous studies (e.g.
[5]), we used the concept of the weak fracture layer to separate the two problems of
limiting speed and instability from one another to obtain clean simulation and analysis
conditions. This allowed us to investigate the conditions under which hyperelasticity
governs the dynamics of fracture.

Our approach of defining model materials seems to be a reasonable method to investi-
gate some of the fundamentals of dynamic fracture, and may be considered advantageous
over methods where the peculiarities of a specific material are accounted for. In several
previous studies, due to the complexities of the potential it was difficult to draw general
conclusions about crack dynamics in brittle solids (e.g. [111, 104]).

13.1.1. Limiting speed of cracks

We have shown that the key to understand the dynamics of cracks in hyperelastic ma-
terials is a new length scale that characterizes the zone near the crack tip from which
the crack draws energy to sustain its motion.

Figure 13.1.: Different length scales associated with dynamic fracture. Subplot (a) shows
the classical picture [78], and subplot (b) shows the picture with the new concept of the
characteristic energy length χ.

This characteristic length scale is found to be proportional to the fracture surface
energy and elastic modulus, and inversely proportional to the square of the applied
stress,

χ ∼ γE

σ2
. (13.1)

Contrary to the common belief, the crack does not need to transport energy from regions
far away from its tip, rather only from a small local region described by the characteristic
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13.1. Hyperelasticity can govern dynamic fracture

length scale. The assumption of linear elasticity, and hence the classical theories, fails if
the hyperelastic zone becomes comparable to the local energy flux zone. This is because
in soft materials energy is transported slower, in stiff materials faster. Correspondingly,
the crack velocity becomes slower or larger once the hyperelastic region is sufficiently
large. If the region around the crack tip becomes stiff due to hyperelasticity, more energy
can flow to the crack tip in shorter time. In the opposite, energy transport gets slower
when there is a local softening zone around the crack tip. Therefore, hyperelasticity is
crucial for understanding and predicting the dynamics of brittle fracture.

When hyperelasticity dominates, cracks can move faster than all elastic waves as
shown in Figure 7.8. This is in clear contrast to the classical theories in which it is
believed that the longitudinal elastic wave speed is an impenetrable upper limit of crack
speed. Such phenomenon can only be understood from the viewpoint of hyperelasticity.

Hyperelasticity dominates fracture energy transport when the size of the hyperelastic
zone approaches the energy characteristic length. Under normal experimental conditions,
the magnitude of stress may be one or two orders of magnitude smaller than that under
atomic simulations. In such cases, the characteristic length is relatively large and the
effect of hyperelasticity on effective velocity of energy transport is relatively small. At
about one percent of elastic strain, the energy characteristic length is on the order of a
few hundred atomic spacing and significant hyperelastic effects are observed. It seems
that hyperelasticity can play the governing role especially in nanostructured materials
such as thin films, or under high-impact conditions where huge stresses occur, so that
the region from which the crack needs to draw energy is small.

In the classical picture of dynamic fracture, there exist three important length scales
near the crack tip, as shown in Figure 13.1 (a). The fracture process zone in which
atomic bonds are broken is usually very small and extends only a few Angstroms in
perfectly brittle systems. Another important length scale is the K-dominance zone,
which is relatively large. In between the fracture process zone and the K-dominance
zone is the region where material response is hyperelastic. We proposed that there
exists an additional length scale near the dynamic crack, the characteristic energy length
scale. This new energy length scale is shown in Figure 13.1 (b), and it is in between
the K-dominance zone and the hyperelastic region. If the size of the hyperelastic region
becomes comparable to the energy length scale, hyperelasticity governs dynamic fracture.
If it is much smaller, hyperelasticity can be neglected.

13.1.2. Crack tip instabilities

We find that the large-strain elastic properties have a strong impact on the stability of
dynamic cracks. Therefore, the dynamics of fracture is predominantly governed by the
large-strain elastic properties of the interatomic potential.

This was exemplified in a study of a harmonic versus softening and stiffening po-
tentials. Whereas the crack becomes unstable at 73 % of the Rayleigh-wave speed
in materials with harmonic interactions, the crack becomes unstable at speeds much
smaller than the Rayleigh-wave speed in softening materials. In contrast, stiffening ma-
terial behavior allowed cracks close to Rayleigh-wave speed to propagate stable. Based
on systematically varying the ratio of large-strain elastic properties while keeping the
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13. Summary and discussion of the results in the area of brittle fracture

small-strain elastic properties constant, we showed that the instability speed depends
on the local wave speed (see correlation depicted in Figure 8.5). A generalized Yoffe
criterion [246] and Gao’s analysis [81] of local limiting speed helped to explain some of
the simulation results.

With respect to the governing mechanism of the dynamic crack tip instability, the
stiffening and softening case need to be distinguished. We illustrated that in softening
systems, the reduction in local energy flow governs the instability, and in stiffening
systems, the change in deformation field near the crack tip is responsible for the crack
to leave its straight forward motion and branch. Analysis of the stress and strain field
support these assumptions (Figures 8.9 and 8.10). Figure 8.6 summarizes the effect of
a local stiff and soft zone on the energy flux.

13.1.3. Main conclusion

The main conclusion of the studies on the role of hyperelasticity in dynamic fracture
is that hyperelasticity is crucial in order to form a clear picture of the failure process:
Both the maximum crack speed and the dynamic instability are strongly influenced by
the large-strain elastic properties.

13.2. Interfaces and geometric confinement

Interfaces and geometric confinement play an important role in the dynamics of cracks.
Crack propagation constrained along interfaces can significantly change the associated
maximum speeds of crack motion. This is illustrated for instance by the studies using the
concept of a weak fracture layer where the Rayleigh-wave speed of cracks can be attained
by cracks (see Chapter 6), versus the studies of cracks in homogeneous materials where
the crack starts to wiggle at 73 % of the theoretical limiting speed (see Figure 8.3).

If cracks propagate along interfaces of elastically dissimilar materials, the maximum
crack speed can significantly change and new mechanisms of crack propagation such as
daughter and granddaughter cracks appear. Geometric confinement as cracks moving
inside thin strips (the Broberg problem) has proven to provide strong impact on the
dynamics of cracks. If the crack propagates in a small strip with different elastic proper-
ties, a significant effect on the propagation speed of the crack is observed as illustrated
in Figure 7.10 for mode I and in Figure 12.5 for mode III cracks. An implication of crack
motion within a thin stiff layer is that mode I cracks can break through the shear wave
speed barrier and propagate at intersonic velocities as shown in Figure 7.11, and that
mode III cracks become supersonic as shown in Figure 12.4.

In summary, our studies suggest that geometric confinement has strong impact on
how cracks propagate. This is potentially important in composite materials where un-
derstanding of crack dynamics may be critical in designing robust and reliable devices.

The results presented in this thesis suggest that the definition of wave speeds according
to the small-strain elastic properties is questionable in many cases and should be replaced
by a local wave speed. Similar thoughts apply to the definition of wave speeds across
interfaces: When the elastic properties are discontinuous, no unique definition of the
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wave speed and therefore the crack limiting speed is possible.
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Part III.

Plasticity of submicron thin copper
films
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14. Mechanical properties of ultra thin
films

The study of the mechanical properties of materials at nano- and sub-micrometer scales
is motivated by increasing need for such materials due to miniaturization of engineering
and electronic components, development of nanostructured materials, thin film technol-
ogy and surface science. When the material volume is lowered, characteristic dimensions
are reduced that control the material properties and this often results in deviation from
the behavior of bulk materials. Small-scale materials are often referred to as materials
in small dimensions, and they are defined as materials where at least one dimension is
reduced. For instance, thin films bond to substrates are a relevant example of materials
in small dimensions since the film thickness hf is small compared to the planar extension
of the film and the thickness of the substrate. Thin films bond to substrates have become
an increasingly active area of research in the last decades. This can partly be attributed
to the fact that these materials are becoming critically important in today’s technolo-
gies, whereas changes in material behavior due to the effects of surfaces, interfaces and
constraints are not completely understood.

The focus of this part is on mechanical properties of ultra thin sub-micron copper
films on substrates. We will show that in such materials, important effects of the film
surface and grain boundaries are observed and that the constraint by the film-substrate
interface governs the mechanical behavior [222, 132, 127, 88, 131, 25, 223].

Polycrystalline thin copper films as shown schematically in Figure 14.1 are frequently
deposited on substrate materials to build complex microelectronic devices. In many
applications and during the manufacturing process, thin films are subjected to stresses
arising from thermal mismatch between the film material and the substrate. This can
have a significant effect on the production yield as well as on the performance and
reliability of devices in service. In past years, an ever increasing trend of miniaturization
in semiconductor and integrated circuit technologies has been observed, stimulating a
growing interest to investigate the deformation behavior of such ultra thin films with
film thicknesses well below 1 µm.

Different inelastic deformation mechanisms are known to operate relaxing the internal
and external stresses in a thin film. Experiment shows that for films of thicknesses
between approximately 2 and 0.5 µm, the flow stress increases in inverse proportion to the
film thickness (see for example [127, 132, 222]). This has been attributed to dislocation
channelling through the film [77, 167, 168], where a moving threading dislocation leaves
behind an interfacial segment. The relative energetic effort to generate these interfacial
dislocations increases with decreasing film thickness, which explains the higher strength
of thinner films. This model, however, could not completely explain the high strength
of thin films found in experiments [127]. More recent theoretical and experimental work
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Figure 14.1.: Polycrystalline thin film geometry. A thin polycrystalline copper film is
bond to a substrate (e.g. silicon). The grain boundaries are predominantly orthogonal
to the film surface.

[25, 55, 223, 143, 224] indicates that the strength of thin metal films often results from
a lack of active dislocation sources rather than from the energetic effort associated with
dislocation motion.

In copper films, the regime where plastic relaxation is limited by dislocation nucle-
ation and carried by glide of threading dislocations reaches down to film thicknesses
of about hf ≈ 400 nm [25]. For yet thinner films experiments reveal a film-thickness-
independent flow stress [24, 55, 25]. This observation is in clear contrast to the existing
theories of plasticity in thin films. In-situ transmission electron microscopy observa-
tions of the deformation of such ultra thin films reveal dislocation motion parallel to
the film-substrate interface [25, 55]. This glide mechanism is unexpected, because in the
global biaxial stress field there is no resolved shear stress on parallel glide planes. This
indicates that there must be a mechanism involving long-range internal stresses that
decay only slowly on the length scale of the film thickness. For sufficiently thin films
these internal stresses have a pronounced effect on the mechanical behavior. It has been
proposed that constrained diffusional creep may be the origin of this novel deformation
mechanism [88]. This deformation mechanism by parallel glide dislocations is not well
understood as of today. In this thesis, we therefore propose atomistic and continuum
studies to investigate the behavior of such thin films below 400 nm. The final objective
is to draw a deformation map that summarizes all relevant deformation mechanisms in
submicron thin films.

This review chapter features three main sections. The first section discusses mechan-
ical properties of materials under confinement, including nanostructured materials. In
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14.1. Deformation mechanisms in materials under geometric confinement

this section we discuss one of the key references for our modeling, a recent report of
modeling of Coble creep in nanocrystalline palladium with classical molecular-dynamics
[240]. The second section reviews research activities in the field of mechanical properties
of submicron thin metal films with a focus on diffusional processes. The third section
discusses atomistic modeling activities of plasticity, providing a basis for the modeling of
plasticity in submicron thin films reported in this work. Finally, we provide an outline
of the studies contained in this part.

14.1. Deformation mechanisms in materials under
geometric confinement

It is known that the strength of materials depends on their microstructure [19]. It has
been established that in most metals, by decreasing the grain size, the strength of the
material can be increased. Therefore, fine-grained materials are usually stronger than
coarse-grained materials. The yield strength increases according to

σY ∼ 1√
d

(14.1)

where d is the grain size. This is referred to as Hall-Petch behavior, and can be derived
based on considerations of dislocation pileups in the grains [19, 51]. It is a prominent
example of a geometric confinement effect.

However, materials can not get infinitely strong as suggested by equation (14.1). For
instance, at elevated temperatures [162, 50, 19, 51] deformation by creep plays an im-
portant role in materials with small grain sizes. Fine-grained materials thus tend to fail
rapidly under loading, and can not get infinitely strong contradicting the prediction of
equation (14.1).

More recent research results suggest that even at low temperatures, materials with
ultra fine grain sizes behave quite differently from coarse-grained materials. For instance,
in nanostructered materials, the role of grain boundaries becomes increasingly important
leading to previously unknown deformation mechanisms. Even though it is generally
accepted that grain boundaries provide sources and sinks for dislocations, its role in
doing so is still not well understood. One of the reasons for the increasing importance of
grain boundaries is that classical mechanisms of dislocation generation (e.g. Frank-Read-
sources) can not operate in nanocrystals, because they would not fit within the grain.
In addition, defects such as grain boundaries interact in complicated ways with other
defects like dislocations. An important consequence of this is that despite the prediction
by equation (14.1), the strength of nanomaterials does not increase continuously with
decreasing grain size. Below a critical grain size, experiments have shown that the
strength decreases again [166]. This is referred to as the inverse Hall-Petch effect [166,
19, 241]. In this regime, it was proposed that the yield stress scales as

σY ∼
√

d, (14.2)

although physical foundation of such material behavior is yet to be explored [235]. Such
behavior indicates that there may exist a maximum of strength for a certain grain size,
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14. Mechanical properties of ultra thin films

described as “the strongest size” by Yip in 1998 [245]. One of the major objectives
of recent research is to quantify this critical condition and understand the underlying
principles.

Applying classical molecular-dynamics to investigations of nanostructured materials is
particularly attractive because of the fact that the length scale of several tens of nanome-
ters fall well within the range accessible to molecular-dynamics simulation. Indeed,
classical molecular-dynamics methods have proven to be a very powerful tool for these
materials. Studying deformation of nanocrystalline materials with molecular-dynamics
still requires significant computer power. Atomistic studies of nanostructured materials
were reported by several groups (see, for example [216, 217, 66, 243, 240, 241, 121]).
In most of the molecular-dynamics studies, polycrystalline samples at nanoscale were
created (for example by a Voronoi construction), annealed, relaxed and then exposed to
tensile loading. In the following paragraphs we summarize the main results in this field
obtained for different geometries, materials and simulation conditions (e.g. variation
of temperature and loading conditions). Coble creep is a well-known mechanism for
creep of polycrystalline materials [50]. The characteristic time for exponential stress
relaxation scales as

τ ∼ d3 (14.3)

where d is the grain diameter. Appreciating that the grain size in nanostructured ma-
terials is on the order of tens of nanometers (in contrast to micrometer grain sizes in
coarse-grained materials), this scaling suggests that at very small grain size, diffusive
mechanisms at grain boundaries may play a dominating role in nanomaterials even at
moderate temperatures!

In recent publications, this was investigated using molecular-dynamics simulations at
elevated temperature [240, 235, 236]. The temperature was increased to render the pro-
cess of diffusion accessible to the molecular-dynamics time scale. The authors [240, 235]
used a fully three dimensional model of palladium with 16 grains having a truncated-
octahedral shape arranged on a three-dimensionally periodic bcc lattice. Grain sizes
range from d ≈ 3.8 nm to d ≈ 15 nm, and the grain boundary misorientations are cho-
sen such that only high-energy grain boundaries are present in the model. A multi-body
EAM potential was used to model the atomic interactions. They find that grain bound-
ary processes indeed play a dominating role and conclude that grain boundary diffusion
fully accounts for plasticity. Under lower strain rates than in molecular-dynamics sim-
ulation, this result could be valid even at room temperature, once microcracking and
dislocation nucleation are suppressed. Dislocation mechanisms are shut down due to the
small grain size and moderate loading of the sample! The authors derive a generalized
Coble-creep equation, and show that the grain-size dependence of the strain rate de-
creases from the 1/d3 scaling law appropriate for large grain size towards a 1/d2 scaling
law as expected in the limit of a very small grain size (critical grain size d ≈ 7 nm in
palladium). The grain size scaling observed in molecular-dynamics simulations indeed
agrees with this prediction [240]. It is also concluded that grain boundary diffusion creep
must be accommodated by grain boundary sliding (also referred to as Lifshitz sliding)
to avoid micro-cracking.

Experimental reports of the inverse Hall-Petch behavior inspired numerous simulation
studies by Schiotz and coworkers [188, 190] and Swygenhoven and coworkers [215, 219,
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14.1. Deformation mechanisms in materials under geometric confinement

218, 216, 56]. In contrast to the above research of Coble creep, these simulations are all
performed at low temperatures making it basically impossible to observe any Coble creep
at the present (molecular-dynamics-) time scale. In these studies, very large stresses in
the range of 1-3 GPa were applied. Schiotz et al. [188, 190] determined the yield stress σY

as a function of the grain size d. In contrast, the group around van Swygenhoven focused
attention on the strain rate. Both groups concluded that the deformation mechanism
is controlled by grain boundary processes and that the material softens with decreasing
grain size (inverse Hall-Petch effect). Nucleation of numerous partial dislocations was
observed in their simulations.

Schiotz and coworkers [188, 190] considered nanocrystalline copper with grain sizes
from 3.3 to 6.6 nm and showed that grain boundary sliding occurs together with grain
rotation. When the grain size was larger than about 5 nm, nucleation of partial dislo-
cation was identified under very large stresses. Similar observations were also reported
by van Swygenhoven and coworkers [218, 219] in simulations of nickel at average grain
sizes of about 5 nm at a temperature of 70 K. The results were confirmed with simu-
lations at higher temperature and for larger grain sizes [216]. The authors suggested
that grain boundary sliding occurs through atom shuffling and stress induced ather-
mal grain boundary diffusion. In a later paper by Wolf et al. [235], the missing issue
of the rate-limiting deformation mechanism was addressed. The authors suggest that
the accommodation mechanism in the simulations described by van Swygenhoven’s and
Schiotz’s group is the same as that in Coble creep, with the difference that there is no
activation energy for this athermal process. Therefore, the Coble creep equation should
apply. They verified this proposal by an analysis of the data in [218], proving that the
data points for the three smallest grain sizes fall on a straight line with a slope 2.73 in a
log-log plot of the ε̇/σ versus the grain size d (Figure 4 in [235]). It was concluded that
the athermal mode of Coble creep is due to the fact that the simulations are carried out
in a regime where molecular-dynamics can not be used. The fact that Coble creep still
dominates may indicate that grain boundary diffusion is a very robust mechanism for
stress relaxation [235].

Recent work by Hasnaoui et al. [103] discussed the influence of the grain bound-
ary misorientation on the ductility of nanocrystalline materials. It was shown that at
specific low-energy grain boundaries (e.g. twins), several neighboring grains can be
effectively immobilized, creating structures that offer significant resistance to plastic
deformation. The authors finally discuss the possibility to design more ductile nanos-
tructured materials that feature less low-energy grain boundaries and therefore lead to
a more homogeneous deformation.

Other studies were carried out on dislocation processes of nanocrystalline aluminum
[242]. The authors demonstrate that deformation twinning may play a very important
role in the deformation of nanocrystalline aluminum. The simulations demonstrate that
molecular-dynamics simulations have advanced to predict deformation mechanisms of
materials at a level of detail not yet accessible to experimental techniques. Observation
of twinning is quite surprising because of the small grain size and the high stacking
fault energy of aluminum [260]. The predictions by these simulations have recently been
verified experimentally [41]. Experimentalists conclude that twinning in aluminum only
occurs in nanocrystalline materials, while it is not observed in coarse-grained aluminum.

223



14. Mechanical properties of ultra thin films

The findings support the hypothesis that in the nanograin-regime, a transition occurs
from normal slip of complete dislocations to activities dominated by partial disloca-
tions. The critical stress for nucleation of dislocations in nanocrystalline aluminum was
estimated to be 2.3 GPa.

Not only has research focused on polycrystalline nanoscale materials, but also on the
mechanics of single crystals with nanometer extension. Such structures may become
increasingly important for example as interconnects in complex integrated circuits or
bio-electrical devices. Studies of defect-free single nano-crystals under tension (the crys-
tals had dimensions of several nanometers) have been carried out by Komanduri et al.
[135]. Due to the small structural size of the nanocrystals, the dislocations glide quickly
through the specimen leaving surface steps, and repeated glide admits plastic deforma-
tion. Similar research of mechanical properties of copper were carried out by Heino and
coworkers [106].

14.2. Continuum modeling of constrained diffusional
creep in thin metal films

Similarly as in bulk nanostructured materials, it has also been hypothesized that grain
boundary processes dominate the mechanical properties in ultra thin films [88, 234, 24,
55, 25].

Figure 14.2.: Mechanism of constrained diffusional creep in thin films as proposed by
Gao et al. [88].

In recent theoretical studies of diffusional creep in polycrystalline thin films deposited
on substrates, a new class of defects called the grain boundary diffusion wedges was pre-
dicted [88]. These diffusion wedges are formed by stress driven mass transport between
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the free surface of the film and the grain boundaries during the process of substrate-
constrained grain boundary diffusion. The diffusion wedges feature a crack-like opening
displacement, and due to the strong bonding between film and substrate, a stress concen-
tration at the root of the grain boundary builds up. This leads to a singular, crack-like
stress field in the film as the grain boundary tractions are relaxed. Because the material
inserted into the grain boundary by diffusion takes the shape of a wedge, this new class
of defects has been referred to as a diffusion wedge [88, 251]. An important implication
of the crack-like stress field at the diffusion wedges is that dislocations with Burgers vec-
tor parallel to the interface may be nucleated at the root of the grain boundary, at the
location with highest shear stress. This is a new dislocation mechanism in thin films that
contrasts to the well known Mathews-Freund-Nix mechanism of threading dislocation
propagation [77, 167, 168].

Indeed, results of recent TEM experiments show that, while threading dislocations
dominate in passivated metal films, parallel glide dislocations begin to dominate in
unpassivated copper films with thickness below 400 nm. The discovery of parallel glide
dislocations [24] provided experimental support for the constrained diffusional creep
model [88]. In turn, constrained diffusional creep provided the basis for interpretation
of certain experimental results, especially in regard to the mechanisms for the creation
and emission of parallel glide dislocations.

Figure 14.2 summarizes this model including the occurrence of parallel glide disloca-
tions in three stages: In stage one, material is transported from the surface into the grain
boundary. In stage two, mass transport leads to the formation of a diffusion wedge, as
more and more material flows into and accumulates in the grain boundary. The contin-
uum model predicts that the traction along the grain boundary diffusion wedge becomes
fully relaxed and crack-like on the scale of a characteristic time τ . The time scale at
that diffusion takes place is usually much larger than that of dislocation glide. However,
in the nano-scaled structures investigated here, the model can explain the observed de-
formation rates even at room temperature, because the time scale of diffusional creep
is inversely proportional to the cube of the characteristic structural length (similarly to
Coble creep, see equation (14.3)).

14.2.1. Mathematical basics

We review the continuum model since its predictions will later be compared to atomistic
simulation results. In the continuum model [88], diffusion is modeled as dislocation
climb in the grain boundary. The solution for a single edge dislocation near a surface
is used as the Green’s function to construct a solution with infinitesimal Volterra edge
dislocations [205, 109, 63]. The basis for the continuum modeling is the solution for the
normal traction σxx along the grain boundary due to insertion of a single dislocation
(material layer of thickness b) along (0, ζ) (corresponding to a climb edge dislocation).
The coordinate system is given in Figure 14.3.

The traction is then

σxx(ζ, ξ) =
Eb

4π(1 − ν2)
K(ζ, ξ), (14.4)
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Figure 14.3.: Geometry and coordinate system of the continuum mechanics model of
constrained diffusional creep.

where

K(ζ, ξ) =
1

ζ − ξ
− 1

ζ + ξ
− 2ζ(ζ − ξ)

(ζ + ξ)3
(14.5)

is the Cauchy kernel function for this particular problem. Further, E is Young’s modulus,
and ν is Poisson’s ratio. For an arbitrary opening function 2u(ζ) in a film with thickness
hf and applied stress σ0 in the absence of diffusion, the stress along the grain boundary
is given by

σxx(ζ, t) = σ0 − E

2π(1 − ν2)

hf∫
0

S(ζ, ξ)
∂u(ξ, t)

∂ξ
dξ, (14.6)

where S(ζ, ξ) is a Green’s function kernel for the continuous dislocation problem (Cauchy
kernel) and corresponds to the elasticity solution of a single array of dislocations near
a surface. For a dislocation near a free surface, S(ζ, ξ) = K(ζ, ξ). The kernel function
S(ζ, ξ) can also be established for a dislocation near a bimaterial interface [88, 251] or
for periodic wedges [88].

The chemical potential relative to the flat free surface (with atomic volume Ω = a3
0/4

in face centered cubic crystals where a0 is the lattice parameter) is given by

µ(ζ, t) = µ0 − σxx(ζ, t)Ω. (14.7)

The corresponding atomic flux per unit thickness in the ζ direction in the boundary is

j(ζ, t) = −δgbDgb

kT

∂µ(ζ, t)

∂ζ
=

δgbDgb

kT

∂σxx(ζ, t)

∂ζ
(14.8)

where δgbDgb is the grain boundary diffusivity, and kT is the Boltzmann constant multi-
plied by the absolute temperature. Equations (14.7) and (14.8) are coupled by arguments
of mass conservation, since the flux divergence for any ζ is related to the displacement
rate through

2
∂u

∂t
= −Ω

∂j(ζ, t)

∂ζ
, (14.9)
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which can be combined with equation (14.8) to obtain

∂u

∂t
= −δgbDgbΩ

2kT

∂2σxx(ζ, t)

∂ζ2
. (14.10)

The derivative of σxx(ζ, t) with respect to time is given by

∂σxx(ζ, t)

∂t
= − E

2π(1 − ν2)

hf∫
0

S(ζ, ξ)
∂2u(ξ)

∂ξ∂t
dξ, (14.11)

and inserting equation (14.10) into equation (14.11) yields

∂σxx(ζ, t)

∂t
=

EδgbDgbΩ

4π(1 − ν2)kT

hf∫
0

S(ζ, ξ)
∂3σxx(ξ, t)

∂ξ3
dξ (14.12)

for the grain boundary traction. Boundary and initial conditions are given as follows.
For the continuity of the chemical potential near the free surface,

σxx(ζ = 0, t) = 0, (14.13)

and for no sliding and no diffusion at the interface,

∂σxx

∂ζ
(ζ = hf , t) =

∂2σxx

∂ζ2
(ζ = hf , t) = 0. (14.14)

Finally,
σxx(ζ, t = 0) = σ0 (14.15)

sets the initial condition for the transient problem.
The problem given by equation (14.12) can be expressed by the method of separation

of variables in the form of an expansion series

σxx(ζ, t) = σ0

∞∑
n=1

cn exp (−λnt/τ)fn(ζ/hf) (14.16)

where

τ =
4π(1 − ν2)kTh3

f

EDgbδgbΩ
(14.17)

is a characteristic time, and λn and fn are eigenvalues and eigenfunctions. It is important
to note that τ ∼ h3

f , as in the classical Coble creep equation [50]. To solve the equations
numerically, the problem is transformed into a standard Cauchy-type singular equation
for f

′′′
n [88]. The Gauss-Chebyshev quadrature, developed by Erdogan et al. [61, 60]

can be used to solve the equations. The solution for the opening displacement u(z, t) is
given by

u(ζ, t) = −2π(1 − ν2)hfσ0

E

∞∑
n=1

cnλ
−1
n (1 − exp (−λnt/τ)) f

′′
n (ζ/hf). (14.18)
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Figure 14.4.: Development of grain boundary opening ux normalized by a Burgers vector
over time, for the case of a copper film on a rigid substrate. The loading σ0 is chosen
such that the opening displacement at the film surface (ζ = 0) at t → ∞ is one Burgers
vector [88].

The solution procedure can be summarized as follows. Steps: (1), find eigenvalues and
eigenfunctions, (2) find the coefficients cn and (3) calculate the traction and displacement
from equations (14.16) and (14.18).

The dislocations “stored” in the grain boundary are a measure of additional mate-
rial in the grain boundary. With respect to the lattice distortion around the diffusion
wedge, the dislocations in the grain boundary exemplify a type of geometrically neces-
sary dislocations [84] that cause nonuniform plastic deformation in the thin film. The
eigenvalues measure the rate of decay of each eigenmode. The results show that the
higher eigenmodes decay much faster than the first eigenmode, so that the diffusion
process is dominated by the first eigenmode.

The continuum mechanics model was further advanced to capture the effect of surface
diffusion [251]. No difference in the qualitative behavior was found, and stress decay in
the film is still exponential with a characteristic time proportional to the cube of the
film thickness. Further details could be found in [251].

In all cases considered in the literature [88, 251], with the proper definition of the
characteristic time τ , stress decay could be described by an exponential law of the form

σgb(t) = σ0 exp

(
−λ0

t

τ

)
(14.19)

with a geometry-dependent constant

λ0 = 8.10 + 30.65hf/d. (14.20)
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Note that d characterizes the grain size, and σ0 stands for the laterally applied stress as
discussed above. Equation (14.20) is an empirical formula and is valid for 0.2 ≤ hf/d ≤
10.

14.2.2. Numerical examples

Figure 14.5.: Traction along the grain boundary for various instants in time [88].

Figures 14.4, 14.5 and 14.6 show several numerical examples. Figure 14.4 shows the
opening displacement along the grain boundary for several instants in time. Figure 14.5
shows the traction along the grain boundary for various instants in time. These examples
show that in the long time limit t → ∞, the solution approaches the displacement of a
crack.

Figure 14.6 shows the stress intensity factor normalized by the corresponding value of
a crack over the reduced time t∗ = t/τ for identical elastic properties of substrate and
film material (isotropic case), rigid substrate (copper film and rigid substrate) and soft
substrate (aluminum film and epoxy substrate). The results indicate that in a film on
a soft substrate, the stress intensity factor of a crack is reached faster compared to the
homogeneous case. Similarly, the stress intensity factor of a crack is reached slower in
the case of a film on a soft substrate compared to the homogeneous case. Table 14.1
summarizes the material parameters used for the calculation.
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Figure 14.6.: Stress intensity factor normalized by the corresponding value of a crack over
the reduced time t∗ = t/τ for identical elastic properties of substrate and film material
(isotropic case), rigid substrate (copper film and rigid substrate) and soft substrate
(aluminum film and epoxy substrate) [88, 250, 251].

νfilm νsubs µfilm/µsubs

Cu/rigid 0.32 - 0
Al/epoxy 0.3 0.35 23.08
isotropic - - 1

Table 14.1.: Material parameters for calculation of stress intensity factor over the reduced
time.

14.3. Modeling plasticity using large-scale atomistic
simulations

Plastic deformation of metals is often described using continuum mechanics techniques,
such as crystal plasticity theories [200, 198, 161] or strain gradient formulations [72, 84].
Significant research effort has also been put into the development of mesoscopic discrete
dislocation dynamics techniques [147, 223, 47, 48, 49, 136, 137, 101]. Yet another,
unconventional approach that could be taken is to study plasticity using large scale
atomistic simulations [12, 186].

Unlike continuum mechanics approaches, atomistic techniques require no a priori as-
sumptions and no formulation of constitutive laws to model the behavior of dislocations
and thus describe mechanical properties of materials. “Everything”, that is the com-
plete material behavior, is determined once the atomic interactions are chosen. Atomic
interactions can be defined for a specific material such as copper based on quantum
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mechanics calculations. Alternatively, they can also be chosen such that generic prop-
erties common to a large class of materials are incorporated. This allows to develop
“model materials” to study specific materials phenomena. Models for ductile materials,
for example, thus allow studying the generic features of ductile material behavior.

The length and time range accessible to molecular-dynamics is suitable for studying
dislocation nucleation from defects such as cracks, as well as complicated dislocation
reactions. The method also intrinsically captures dynamics of other topological defects,
such as vacancies or grain boundaries and its interaction with dislocations. This is
an advantage over mesoscopic methods that require picking parameters and rules for
defect interaction. Also, using multi-body EAM potentials (e.g. [71]), reasonably good
models for some metals can be obtained. With sufficient computer resources it is possible
to study the collective behavior of a large number of dislocations in systems with high
dislocation density. Systems under large strain rates can be readily simulated. In discrete
dislocation dynamics methods, such conditions are difficult to achieve.

Two distinct length scales are involved in the mechanics of networks of crystal de-
fects. The micrometer length scale is characteristic of the mutual elastic interaction
among dislocations, but dislocation cores and formation of junctions and other reaction
products is characterized by the length scale of several Burgers vectors and occur at
the atomic length scale [109]. The two length scales span over several orders of mag-
nitude, indicating the computational challenge associated with modeling. The rapidly
advancing computing capabilities of supercomputers approaching TFLOPs and beyond
now allow simulations ranging from nanoscale to microscale within one simulation [12].
The state-of-the-art of of ultra large scale simulations can model billion atom systems
[185, 11, 12, 221].

We will continue with a review of some of the activities and the historical development
of atomistic simulations of dislocations and dislocation interactions in metals, and illus-
trate that progress in this field was highly coupled to advances in computer resources.

Early studies by Hoagland et al. [110] and deCelis et al. [54] treated only a few hun-
dred atoms. The researchers studied the competition of ductile versus brittle behaviors
of solids using quasi-static methods and investigated how and under which conditions
dislocations are generated at a crack tip. Such micro-cracks can be found in virtually
any real materials (referred to as material flaws), and serve as seeds for defect generation
(see also Figure 1.1 and the associated discussion). The studies were small in size, and
only a few dislocations could be simulated. Due to the lack of dynamic response and the
system size limitations, the treatments were valid only until the first dislocation moved
a small fraction of the sample size away from the crack tip.

Computational resources rapidly developed during the 1990s (see Figure 2.2). Cleri et
al. [46] studied the atomic-scale mechanism of crack-tip plasticity using around 80, 000
atoms. They investigated dislocation emission from a crack tip by extracting the atomic-
level displacement and stress fields, so as to link the molecular-dynamics results to
continuum mechanics descriptions of brittle versus ductile behavior in crack propagation
[178, 179, 181]. Zhou and coworkers [254] performed large-scale molecular-dynamics
simulations and carried out simulations of up to 35 million atoms to study ductile failure.
In these simulations, the atoms interact with Morse pair potentials as well as more
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realistic EAM potentials. They observed emission of dislocation loops from the crack
front, and find that the sequence of dislocation emission events strongly depends on the
crystallographic orientation of the crack front. They assumed that systems comprising
of 3.5 million atoms are sufficient to study the early stages of dislocation nucleation
(since they observed the same feature independent of the system size).

In 1997, Abraham and coworkers [7] performed simulations using 100 million atoms
and showed generation of “flower-of-loop” dislocations at a moving crack tip. It was
observed that generation of dislocation loops in a rapidly propagating crack occurs above
a critical crack speed, suggesting a dynamic brittle-to-ductile transition.

Other studies focused on the creation, motion and reaction of very few dislocations
in an fcc lattice, with the objective to understand the fundamental principles. Research
activity was centered on atomistic details of the dislocation core making use of the EAM
method [91, 53]. Zhou and Hoolian [255] performed molecular-dynamics simulations of
up to 3.5 million atoms interacting with EAM potentials (they used up to 35 million
atoms with pair potentials). They studied the intersection of extended dislocations
in copper and observed that the intersection process begins with junction formation,
followed by an unzipping event and partial dislocation bowing and cutting. These are
unique studies, whose results can be immediately applied in mesoscopic simulations.
Additional research was carried out to investigate the screw dislocation structure and
interaction in a nickel fcc lattice by Qi et al.[174], using a QM-Sutton-Chen many body
potential. The researchers studied the core geometry of partial dislocations, as well as
the motion and annihilation of oppositely signed dislocations, and discussed cross-slip
and associated energy barriers. Atomistic simulations have also been applied to study
the interaction of dislocations with other defects.

Further studies focused on the ductility of quasicrystals (see also discussion in Sec-
tion 3.1) [153, 154, 211]. Atomistic simulation particularly helped to explain the mecha-
nism of dislocation motion in quasicrystals. An important contribution was the observa-
tion of phason-walls that are attached to each moving dislocation. These phason-walls
helped to clarify some of the perplexing properties of quasicrystals found in experiments,
such as a brittle-to-ductile transition at about 80 % of the melting temperature. Most
recently, three-dimensional atomistic simulations at elevated temperatures were carried
out [187] where it was found that dislocation climb processes play an increasingly im-
portant role.

In summary, molecular-dynamics simulations of plasticity have advanced to a quite
sophisticated level. We propose that atomistic simulations with multi-body EAM po-
tentials can also be applied to describe mechanical properties of thin metal films.

14.4. Outline of the studies presented in this part

The main focus of this work can be summarized as follows.

• Further development of the continuum mechanics model. We address some missing
features of the existing continuum theory including a quantitative description of
diffusion initiation, and a model for nucleation process of parallel glide dislocations
from diffusion wedges.
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• Analysis of the atomistic details of parallel glide dislocation nucleation from grain
boundaries, diffusion wedges and cracks and comparison with the continuum me-
chanics model.

• Summary of the different deformation mechanisms that appear in ultra thin copper
films in a deformation map (e.g. threading dislocations versus diffusional creep).

Chapter 15 focuses on continuum mechanics modeling of constrained diffusional creep.
We discuss some missing features of the existing continuum theory, such as an initiation
condition for diffusion and dislocation nucleation from diffusion wedges. An initiation
condition for diffusion is proposed based on the consideration of discrete dislocations
close to the film surface. This concept has the important consequence that diffusion can
not operate below a threshold stress. Further discussion is devoted to the role of single
dislocations under nano-scale geometric confinement. We continue with a Rice-Thomson
model for nucleation of parallel glide dislocations from diffusion wedges.

In Chapter 16, a continuum mechanics model incorporating the concept of a threshold
stress for diffusion is presented. The model is then used to calculate the stress in the
thin film during thermal cycling experiments. Several numerical examples are provided
showing some qualitative agreement with the experimental results.

The following Chapter 17 is devoted to atomistic modeling of constrained diffusional
creep in a quasi-two dimensional bicrystal model under plain strain conditions. We show
that diffusional mass transport from the surface along the grain boundary leads to build
up of a new material defect referred to as diffusion wedge [88]. We also illustrate that
the deformation field near a diffusion wedge becomes crack like and causes emission of
parallel glide dislocations. We analyze and describe the atomic details of parallel glide
dislocation nucleation near a diffusion wedge and a crack and compare the results to the
continuum model presented in Chapter 15.

In the following chapters we will focus on plasticity of polycrystalline thin films. In
Chapter 18 we discuss dislocation nucleation from a grain triple junction where grain
boundary tractions are relieved by constrained diffusional creep. Atomistic simulation
are used to focus on the nucleation process of parallel glide dislocations from different
types of grain boundary structures.

Chapter 19 is dedicated to simulations of polycrystalline thin films. Our hexagonal
atomistic models feature a geometry similar to the microstructure found in the experi-
ments [25]. We show that traction relaxation along the grain boundaries by diffusional
creep leads to a fundamentally different mechanism of deformation. We study the tran-
sition from threading to parallel glide dislocations. Extending the quasi-two dimensional
modeling with the bicrystal, we report results of a study of constrained diffusional creep
in polycrystalline thin films. We observe nucleation of parallel glide dislocations from
grain boundary diffusion wedges.

Finally, Chapter 20 contains a discussion of the results of modeling in the part on thin
films and summarizes the findings in a deformation map of plasticity of ultra thin films.
We propose that beyond the classical regime of threading dislocations, there exist several
novel mechanisms that become active once the film thickness approaches nano-scale.
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15. Continuum modeling of
constrained diffusional creep in
thin submicron copper films

The review in Section 14.2 suggests that some important aspects are missing in the
existing continuum model. For instance, continuum theory neglected the fact that once
climb of edge dislocations occurs in the grain boundary, the view of discrete dislocations
becomes increasingly important. In particular when the film thickness reaches nanoscale,
single dislocations may play a governing role in the deformation mechanism.

A missing aspect is further a condition for initiation of diffusion. The continuum
theory [88] assumes that diffusion initiates at an infinitesimal stress and can thus com-
pletely relax tractions in the film. In contrast to these predictions, experimental results
have reported a threshold stress for diffusion in several studies by Kobrinsky et al.
[132, 133, 131].

Another important point is the nucleation condition for parallel glide dislocations.
Although continuum theory predicts that the deformation field near a diffusion wedge
becomes crack-like [88], no quantitative criterion for nucleation of dislocations was pro-
posed so far.

This chapter proceeds as follows. We discuss models for initiation of diffusion and
nucleation of parallel glide dislocations. We also discuss the energetical stability of a
single dislocation in a thin nano-sized film.

15.1. Initiation condition for diffusion

Here we propose a criterion for the initiation of grain boundary diffusion following the
spirit of the Rice-Thomson model. The main assumption is that grain boundary diffusion
initiates when spontaneous insertion of a climb dislocation into the grain boundary from
the free surface occurs. It is therefore postulated that the condition for initiation of
diffusion is a local criterion, independent of the film thickness.

Considering the force balance on the critical configuration of an edge dislocation one
Burgers vector away from the free surface (see also Figure 14.3), a critical lateral stress

σcr
0 >

E

8π(1 − ν2)
(15.1)

for initiation of grain boundary diffusion could be obtained. Note that E should here
be interpreted as the local modulus of the grain boundary near the surface that could
be much smaller than the bulk modulus. Another possible formulation that could be
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used is assuming that the critical stress level for a dislocation to exist in equilibrium at
distance dsrc from the surface is given as [109, 101]

σcr
0 =

E

8π(1 − ν2)

b

dsrc

. (15.2)

The parameter dsrc could be fitted to experimental or numerical results.
In any case, if the applied stress is smaller than that threshold, the image force will

drag the dislocation immediately to the free surface. The most important result of this
analysis is that a critical stress, independent of the film thickness, is required for the
onset of grain boundary diffusion. This is in contrast to the existing continuum modeling
of constrained diffusional creep where diffusion operates at infinitesimal stresses [88].

15.2. Single edge dislocations in nanoscale thin films

Mass transport from the surface into the grain boundary toward the substrate is modeled
as climb of edge dislocations [88]. Previous studies ([88, 251]) had neglected the discrete
atomistic viewpoint and therefore the fact that diffusion into the grain boundary has to
proceed with at least one atomic column, with a finite width. At nanoscale, the fact
that dislocation climb in the grain boundary is a discrete process becomes more evident.
Grain boundary diffusion requires insertion of climb dislocations into the grain boundary
one by one.

Figure 15.1.: Image stress on a single edge dislocation in nanoscale thin film constrained
by a rigid substrate.

To investigate the effect, we consider a single edge dislocation climbing in a grain
boundary in an elastic film of thickness hf on a rigid substrate. The elastic solution

236
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of edge dislocations in such a film can be obtained using the methods described in
[205, 250]. The geometry, as well as the coordinate system is shown in Figure 14.3. In
such a geometry, a dislocation placed inside the film is subject to image forces due to
the surface and the film-substrate interface.

The image stress on the dislocation for different film thicknesses is shown in Fig-
ure 15.1. The thinner the films, the stronger gets the effect of the geometric confinement.

Between the film surface and the film-substrate interface, the image force is found to
attain a minimum value at ζEQ ≈ 0.4hf . Therefore, from the energetic point of view, a
minimum critical stress is required to allow even a single climb edge dislocation to exist
in the grain boundary. The thicker the film, the smaller this critical stress.

This analysis suggests that consideration of single, discrete dislocations can become
very important for the nanoscale thin films. The requirement that an edge dislocation
in the film is in a stable configuration could be regarded as a necessary condition for
constrained grain boundary diffusion to initiate and proceed. If more than one dislo-
cations are stored in the grain boundary, even stronger image forces are expected since
different dislocations repel each other.

Figure 15.2.: Critical stress as a function of film thickness for stability of one, two and
three dislocations in a thin film. The critical stress for the stability of one dislocation
(continuous line) is taken from the analysis shown in Figure 15.1. The curves for more
dislocations (dashed lines) in the grain boundary are estimates.

Another consequence of the geometric confinement of dislocations is that discrete
dislocation effects can lead to quantization of stresses in nano-structured devices. Fig-
ure 15.2 shows the critical stress as a function of film thickness for stability of one, two
and three dislocations in a thin film. The critical stress for the stability of one dislo-
cation is taken from the analysis shown in Figure 15.1. The curves for two and more
dislocations in the grain boundary are estimates. For a given film thickness, for at least
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one dislocation to be stable inside the film, the critical stress needs to exceed a critical
value. For two dislocations to be stable inside the film, the critical stress is even higher.
Consequently, the stress relief due to insertion of dislocations will also be quantized.
Most importantly, as the film thickness increases the critical stresses for stable dislo-
cations in the film get smaller and smaller, eventually approaching the limit when the
role of single dislocations can be neglected and the quantization is negligible. Similar
observations have been made in discrete dislocation modeling of constrained diffusional
creep in thin films [101].

15.3. Rice-Thompson model for nucleation of parallel
glide dislocations

To characterize the nucleation condition of parallel glide dislocations, a criterion based
on a critical stress intensity factor KPG is proposed. The motivation is that the concept
of stress intensity factor is commonly used in the mechanics of materials community and
provides a possible link to mesoscopic simulation methods.

The critical value for nucleation of parallel glide dislocations from a diffusion wedge
could be thought of as a new material parameter. The stress intensity factor is defined
as

K = lim
ζ→hf

{[2π(ζ − hf)]
s σxx(0, z)} (15.3)

where s refers to the stress singularity exponent determined by [248]

cos(sπ) − 2
α − β

1 − β
(1 − s)2 +

α − β2

1 − β2
= 0. (15.4)

It is assumed that the diffusion wedge is located close to a rigid substrate and the
corresponding Dundurs parameters for this case are α = −1 and β = −0.2647. The
Dundurs parameter measure the elastic mismatch of film and substrate material [250].
The singularity exponent is found to be s ≈ 0.31 for the material combination considered
in our simulations (comparing to s = 0.5 in the case of a homogeneous material). Close
to the bimaterial interface, we calculate the stress intensity factor

K = A × lim
ζ→hf

(
∂ux(ζ)

∂ζ
(1 − (ζ/hf)

2)s

)
(πhf)

s, (15.5)

where

A =
E

1 − ν2

(1 − α)

4 sin(πs)

(
3 − 2s

1 + β
− 1 − 2s

1 − β

)
. (15.6)

The stress intensity factor provides an important link between the atomistic results
and continuum mechanics. To calculate the stress intensity factor from atomistic data,
the atomic displacements of the lattice close to the diffusion wedge are calculated and
the stress intensity factor is then determined using equation (15.5).

The Peach-Koehler force on a dislocation can be written as Fd = (σ · b) × dl, where
dl is a dislocation element and σ the local stress [109]. The variable bx stands for the
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magnitude of the Burgers vector in the x = [110] direction, and bx ≈ 3.615/
√

2 × 10−10

m for copper at 0 K. A dislocation is assumed to be in an equilibrium position when
Fd = 0. Following the approach of the Rice-Thomson model [181], we consider the
force balance on a probing dislocation in the vicinity of a dislocation source to define
the nucleation criterion. The probing dislocation is usually subject to an image force
attracting it toward the source and a force due to applied stress driving it away from
the source. The image force dominates at small distances and the driving force due to
applied stress dominates at large distances. There is thus a critical distance between the
dislocation and the source at which the dislocation is at unstable equilibrium. Sponta-
neous nucleation of a dislocation can be assumed to occur when the unstable equilibrium
position is within one Burgers vector of the source.

15.3.1. Nucleation mechanism of parallel glide dislocations

Figure 15.3.: Rice-Thomson model for nucleation of parallel glide dislocations. Subplot
(a) shows the force balance in case of a crack, and subplot (b) depicts the force balance
in case of a diffusion wedge.

Nucleation of parallel glide dislocations from a crack in comparison to that from a
diffusion wedge is shown in Figure 15.3. The crack is treated as by [181], and forces
involved are Fc due to the crack tip stress field, Fimage because of the free surface (image
dislocation) and Fstep due to creation of a surface step (in the following, we assume
Fstep � Fimage).

Close to a diffusion wedge, Fstep = 0 since no surface step is involved and a dipole must
be created in order to nucleate a parallel glide dislocation from the wedge. This leads to
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a dipole interaction force Fdipole. The dipole consists of a pair of dislocations of opposite
signs, one pinned at the source and the other trying to emerge and escape from the
source. The pinned end of the dipole has the opposite sign to the climb dislocations in
the diffusion wedge and can be annihilated via further climb within the grain boundary.
The annihilation breaks the dipole free and eliminates the dipole interaction force so
that the emergent end of the dipole moves away to complete the nucleation process.
Therefore, it seems that there could be two possible scenarios for dislocation nucleation
at a diffusion wedge. In the first scenario, the nucleation condition is controlled by a
critical stress required to overcome the dipole interaction force. In the second scenario,
the nucleation criterion is controlled by the kinetics of climb annihilation within the
grain boundary which breaks the dipole interaction by removing its pinned end and
setting the other end free. No matter which scenario controls the nucleation process, the
climb annihilation of edge dislocations in the grain boundary must be completed and
will be the rate limiting process. The force balance on the dislocation is illustrated in
Figure 15.3 (b) for two different, subsequent instants in time.

15.3.2. Critical stress intensity factor for dislocation nucleation in
homogeneous material

Figure 15.4.: Dislocation model for critical stress intensity factor for nucleation of parallel
glide dislocations.

It is now assumed that dislocation nucleation at a diffusion wedge is stress controlled
(rather than kinetics controlled) and adopt the first scenario of dislocation nucleation as
described above. This assumption will later be verified by molecular-dynamics simula-
tion results. With this assumption, it is possible to define a nucleation criterion in terms
of a critical stress intensity factor for both cracks and diffusion wedges. We illustrate
the critical condition for dislocation nucleation in Figure 15.4. A force balance on a
dislocation near a crack tip leads to the critical stress intensity factor for dislocation
nucleation from a crack

KPG
cr =

E(2πbx)
s

8π(1 − ν2)
. (15.7)

In comparison, a balance of critical stress required to break the dipole interaction in
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front of a diffusion wedge yields a similar nucleation criterion

KPG
dw =

E(2πbx)
s

4π(1 − ν2)
. (15.8)

For copper with E = 150 GPa, s = 0.31 and ν = 0.33 the predicted values are KPG
cr ≈

12.5 MPa×ms and KPG
dw ≈ 25 MPa×ms, and we note a factor of 2 difference in critical

K-values, KPG
dw /KPG

cr = 2, for dislocation nucleation at a diffusion wedge and at a crack
tip.

15.4. Discussion and summary

The main results of this chapter are summarized as follows.

• By considering climb of single edge dislocations in the grain boundary (as opposed
to taking the infinitesimal viewpoint assumed in equation (14.6)), we showed that
there exists a critical stress to initiate diffusion. This critical stress in independent
of the film thickness. An important implication is that diffusion can not relax
stresses in the film completely. This is in contradiction to the stress decay to
zero as predicted by equation (14.19). In the next chapter we will thus present a
modified continuum model that accounts for this difference.

• The study of single edge dislocation showed that in film thicknesses of several
nanometers, image stresses on climb edge dislocations can be as large as 1 GPa.
This further supports the hypothesis that single dislocations become important
in small dimensions and that the discrete viewpoint of dislocation climb needs to
be adapted. It also supports the view of a critical stress for diffusion initiation
described above.

• A criterion in the spirit of the Rice-Thomson model was proposed to describe
the conditions under which parallel glide dislocations are nucleated from diffusion
wedges and cracks. The most important prediction of this model is that the criti-
cal stress intensity factor for parallel glide dislocation nucleation from a diffusion
wedge is twice as large compared to the case of a crack.
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16. Continuum modeling of thermal
cycling experiments

It is known that mechanical stresses in thin films are often significantly higher than
those in the bulk form of the same material. At low temperatures, this has (as discussed
in Chapter 14) been mostly attributed to geometric confinement or lack of dislocation
sources. At higher temperatures, several experimental results indicate that diffusional
creep may play an increasingly important role [234].

Gao’s model of constrained diffusional creep [88] has been further developed in light of
experimental results to directly model the average stress in the film during the thermal
cycling experiments by introducing a convolution procedure [234, 25]. Weiss et al. [234]
invoked the constrained diffusional creep model to explain the occurrence of a stress drop
observed during the first heating cycle of thin copper films. They also used constrained
diffusional creep to model the stress-temperature curves measured during thermal cycling
of several films and found good agreement for a 500 nm copper film, albeit by assuming
a very large grain size.

In this chapter we propose a modification of the continuum model including a thresh-
old stress for diffusion initiation. The assumption of the threshold stress is motivated
by experimental results and the theoretical considerations about diffusion initiation dis-
cussed in Section 15.1. We will show that the modified model including the threshold
stress provides better agreement of the experimental results with the theory particularly
for higher temperatures.

The outline of this chapter is as follows. We first report the modified continuum model
to capture the threshold stress. We then compare thermal cycling curves predicted by
the new continuum mechanics model featuring a threshold stress with the experimental
results.

16.1. Continuum model of constrained grain boundary
diffusion with threshold stress

Equation (14.12) is the governing equation for the problem of constrained diffusional
creep. Assuming a threshold stress σt for grain boundary diffusion, the boundary con-
ditions are now modified as

σxx(ζ = 0, t) = σt, (16.1)

and
∂σxx

∂ζ
(ζ = hf , t) =

∂2σxx

∂ζ2
(ζ = hf , t) = 0. (16.2)
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The initial condition remains the same

σxx(ζ, t = 0) = σ0. (16.3)

We consider the possibility that σt may be different under tension and compression.
That is, no grain boundary diffusion can occur when

σ−
t < σxx(0, t) < σ+

t , (16.4)

where σxx(0, t) is the stress at the site of initiating climb edge dislocations near the
entrance to the grain boundary.

Using superposition,

σxx(ζ, t) = σt + σ̃(ζ, t), (16.5)

we obtain the governing equation for σ̃(ζ, t) as

∂σ̃xx(ζ, t)

∂t
=

EDgbδgbΩ

4π(1 − ν2)kT

hf∫
0

S(ζ, ξ)
∂3σ̃xx(ξ, t)

∂ξ3
dξ. (16.6)

The boundary conditions are

σ̃xx(ζ = 0, t) = 0, (16.7)

∂σ̃xx

∂ζ
(ζ = hf , t) =

∂2σ̃xx

∂ζ2
(ζ = hf , t) = 0. (16.8)

and the initial condition is

σ̃xx(ζ, t = 0) = σ0 − σt (16.9)

These equations are identical to those of [88] except that the initial condition is effectively
reduced. Therefore, we can simply use the previous solution to obtain the average stress
along the grain boundary as

σ̂gb(t) = (σ0 − σt) exp (−λ0t/τ) + σt (16.10)

with a geometry-dependent constant defined in equation (14.20).

Figure 16.1 shows a numerical example of the decay of the average stress in the film
as given by equation (16.13) with and without threshold stress (the characteristic time
is fitted to experimental results). The parameter σ+

t is assumed to be 65 MPa. For
comparison, experimental stress relaxation curves for 200 and 800 nm Cu films are
presented in Figure 16.1. The experimental results show that the film stress does not
decay to zero but instead approaches a plateau value.

We can now generalize the convolution procedure described by Weiss et al. [234]

dσ0

dT
= −∆αMf (16.11)
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Figure 16.1.: Experimental results of stress decay at 250 oC for hf = 200 nm and hf = 800
nm [23, 33], and prediction of stress decay by the continuum model with and without
threshold stress.

where Mf = E/(1 − ν) is the biaxial modulus and ∆α refers to the thermal mismatch
of film and substrate material. Then,

σ̂gb(t) =σt +
(
σstart

0 − σt

)
exp


−λ

T∫
Tstart

dζ

Ṫ τ(ζ)




− Mf∆αṪ

T∫
Tstart

exp


−λ

Ṫ


 T∫

ζ

dξ

τ(ξ)




 1

Ṫ
dζ.

(16.12)

The average stress σ in the film is related to σ0 and σ̂gb as

σ = σ0 − (σ0 − σ̂gb)Θ (16.13)

where

Θ =
4hf

d
tanh

(
d

4hf

)
. (16.14)

For a given experimentally measured stress σ, the average stress in the grain boundary
σ̂gb is given by

σ̂gb =
1

Θ
(σ − σ0) + σ0. (16.15)

The average film stress depends on the ratio of grain size to film thickness.
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16.2. Modeling of thermal cycling experiments by the
continuum theory

As reported in [234, 79], the grain boundary diffusivity for copper is given by

δgbDgb(T ) = 5 × 10−15 exp

(
− Qb

RT

)
m3s−1 (16.16)

with activation energy Qb = 104 kJ/mole. We consider two film thicknesses of 100
and 600 nm. The threshold stresses for the grain boundary average stress is estimated
from the experimentally measured average stress in the film by equation (16.15), and
are chosen to be σ+

t = 65 MPa and σ−
t = −65 MPa [33] (see also Figure 16.1). In

the following, we assume that E = 124 GPa, ν = 0.34 and the difference in thermal
expansion coefficients of film and substrate is ∆α = 1.3 × 10−5 K−1 (same parameters
as chosen in [234]).

Figure 16.2.: Fit of continuum model with threshold stress to the experimental data of
thermal cycling [23]. The film thickness is hf = 100 nm and grain boundary diffusivities
are as in [79].

In Figure 16.2 we show a comparison of experiment and the continuum model with
threshold stress for steady-state thermal cycling of thin films of thickness hf ≈ 100 nm.
In Figure 16.3 we show a comparison of experiment and the continuum model with
threshold stress for steady-state thermal cycling of a 600 nm film. The experimental
data is taken from [33, 23].
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Figure 16.3.: Fit of continuum model with threshold stress to experimental data of
thermal cycling [23]. The film thickness is hf = 600 nm and grain boundary diffusivities
are as in [79].

In both cases, some qualitative agreement is found, especially at elevated tempera-
tures. For the 600 nm film, the results at low temperatures during the cooling cycle
(upper curve) do not match as good as for high temperatures. This could partly be
explained by the fact that, due to the rather large film thickness, not only parallel
glide dislocations are present. In addition, threading dislocations are nucleated and re-
lieve stresses as has been confirmed experimentally [25]. Experiment clearly shows that
threading dislocations are nucleated in this regime [24, 55, 25]. Therefore, during cooling
of the film, diffusional creep dominates at high temperatures, but threading dislocations
dominate at low temperatures. Since the continuum model does not account for thread-
ing dislocations, the stresses at low temperatures (upper left corner in the plot) are
overestimated. At high temperatures during the heating cycle, the stress relaxes to the
value associated with the threshold stress σ−

t , and the experimental measurements and
continuum modeling agree quite well.

16.3. Estimation of diffusivities from experimental data

Another interesting aspect that we explored is the estimation of diffusivities from the
experimental data. It can be observed in Figure 16.3 that the stress decay in the first
heating cycle is larger in the experiment than in the simulation. When the classical
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diffusivities as reported in the literature are used, the maximum compressive stress is
overestimated by a factor of two (similar observation was also made in the paper by
Weiss et al. [234], Figure 10). This could be due to the fact that the diffusivities used
in the continuum mechanics model are smaller than the actual experimental value.

Figure 16.4 shows a fit of the continuum mechanics model to the experimental data,
with a threshold stress σ−

t = −65 MPa for a 600 nm film as obtained from experiment
(see discussion above). Fitting the maximum compressive stress to the experimental
results by adjusting the diffusivity yields a diffusivity 80 times higher than in the lit-
erature. Possible reasons for this could be the fact that the grain boundary structure
strongly influences the diffusivities. This point that was not addressed in most classical
theories of grain boundary diffusion. However, a strong dependence of the diffusivities
on the grain boundary structure has been proposed [235]. Taking such considerations
into account may explain the observations in the current studies.

Figure 16.4.: Fit of diffusivities to the experimental data based on the first heating curve
of the 600 nm film [23].

The fitted grain boundary diffusivity is given by

δgbDgb(T ) = 4 × 10−13 exp

(
− Qb

RT

)
m3s−1. (16.17)

The characteristic time for a film with hf = 20 nm at a temperature of about 90 percent
of the melting point is then on the order of 10−8 seconds. This supports the idea that
constrained grain boundary diffusion can be modeled with classical molecular-dynamics,
since such simulations are typically limited to a time scale of around 10−8 seconds.
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Finally, we compare thermal cycling experiments with the new estimate for diffusivities
to the experimental results. In Figure 16.5 we show a comparison of experiment and
the continuum model with threshold stress for steady-state thermal cycling of thin films
with film thickness hf ≈ 100 nm. In Figure 16.6 we show a comparison of experiment
and the continuum model with threshold stress for steady-state thermal cycling with
film thickness hf ≈ 600 nm.

Figure 16.5.: Fit of continuum model with threshold stress to experimental data of
thermal cycling [23]. The film thickness is hf = 100 nm and grain boundary diffusivities
are fitted to experimental data.

16.4. Discussion

The most important result reported in this chapter is the new concept of a threshold
stress for diffusional creep in thin films. With this modified continuum theory, we
could qualitatively reproduce results of the average film stress during thermal cycling
experiments.

The modeled thermal cycling curves show that the introduction of a threshold stress
based on experimental data represents some improvement of the previous model. Unlike
in [234] where the grain size was changed in order to improve agreement, the parameters
used here are identical to those in the experiments (same grain size, same ratio of grain
size to grain diameter, same cooling and heating rates, etc.).
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Figure 16.6.: Fit of continuum model with threshold stress to experimental data of
thermal cycling [23]. The film thickness is hf = 600 nm and grain boundary diffusivities
are fitted to experimental data.

The most important difference is that without the threshold stress, the numerically
estimated curves are very “thin” in contrast to the experimental results where the curves
are wider. Most importantly, the thermal slope, which is apparent at high temperatures
during the cooling cycle, can only be reproduced with a model featuring a threshold
stress.

Additional discussion was devoted to estimates of the grain boundary diffusivity from
experimental data. It was found that diffusivities may be higher than reported in the
literature [79]. It was proposed that this may be attributed to the dependence of diffu-
sivities on the grain boundary structure.
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17. Atomistic modeling of constrained
grain boundary diffusion in a
bicrystal model

While the continuum model [88, 251] of constrained diffusional creep has been very
successful in explaining the origin of the internal stresses in thin films, it can neither yield
a description of the nucleation process of parallel glide dislocations from the diffusion
wedge, nor can it incorporate the parallel glide mechanism into the prediction of residual
stresses in a film. Under the guidance of the continuum model [88, 250, 251], atomistic
simulations are an ideal tool to provide a detailed description of how parallel glide
dislocations are nucleated near a diffusion wedge.

Figure 17.1.: Sample geometry of the atomistic simulations of constrained diffusional
creep in a bicrystal model.

In this chapter, we describe large-scale atomistic simulations to study plastic deforma-
tion in sub-micron thin films on substrates. The simulations reveal that stresses in the
film are relaxed by mass diffusion from the surface into the grain boundary. This leads
to formation of a novel material defect referred to as the diffusion wedge. A crack-like
stress field is found to develop around the diffusion wedge as the traction along the grain
boundary is relaxed and the adhesion between the film and the substrate prohibits strain
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relaxation close to the interface. The diffusion wedge causes nucleation of dislocations
on slip planes parallel to the plane of the film. We find that nucleation of such parallel
glide dislocations from a diffusion wedge can be described by a critical stress intensity
factor similar to the case of a crack. Atomistic simulations of parallel glide dislocations
associated with the crack-like grain boundary diffusion wedge represent a significant
progress in the theory of diffusional creep in thin films on substrates since they close the
theory-experiment-simulation linkage.

17.1. Introduction and modeling procedure

Atomistic modeling of thin film mechanics becomes feasible with the advent of massively
parallel computers on time and length-scales comparable with those usually attained
in experimental investigations. Due to the time limitation of the classical molecular-
dynamics method (time intervals are typically < 10−8 s), we perform simulations at
elevated temperatures to accelerate the dynamics of grain boundary diffusion. To make
the diffusive processes accessible to the molecular-dynamics time scale, the simulations
are carried out at temperatures between 80 and 90 percent of the melting temperature.
Luckily, we find that the phenomenon of grain boundary diffusion wedge and the associ-
ated dislocation mechanisms persist at very high temperatures. This makes it possible
to simulate this specific phenomenon. Generally, it is still very difficult to simulate
diffusion related phenomena by molecular-dynamics.

Figure 17.2.: Disordered intergranular layer at high-energy grain boundary in copper at
elevated temperature (85 % of melting temperature).

At elevated temperatures, grain boundary diffusion in a bulk material was successfully
modeled recently [240, 241, 235], where grain sizes up to 15 nm were considered in a
model system of Pd. Recent work [240, 124, 125] suggests that at elevated temperatures,
the grain boundary structure of metals may transform into a liquid like structure with
a width of 1-2 nm referred to as “glassy phase”.

Glassy phases in grain boundaries were found in copper at homologous temperatures
as low as Th ≈ 0.4 [139, 125]. Experimental evidence for glassy intergranular phases was
discussed by [31]. We expect such phase transformation at the grain boundary to play
a significant role in the plastic properties at elevated temperatures because the different
grain boundary structure has significant influence on the diffusivities [125, 124]. Further
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discussion on the topic is found in a recent review article [235]. Figure 17.2 plots such
a disordered intergranular phase obtained in a thin film of copper.

17.1.1. Computational method and interatomic potential

We use a massively parallel classical molecular-dynamics code to model the problem
of constrained grain boundary diffusion. A multi-body potential [155] derived using
the embedded atom scheme is used, and we integrate the equations of motion using a
velocity verlet algorithm [15, 207]. The studies are carried out using a microcanonical
NV E ensemble.

The potential [155] shows good agreement with ab initio calculations in terms of elastic
properties, stacking fault energies and excited phases of copper [155]. We determine the
melting point to be close to the experimental value of Tm = 1360 K with this potential.

17.1.2. Modeling of a thin film on substrate

We establish the simulation sample by creating a < 111 > fcc lattice, rotating one half
counterclockwise and cutting out two rectangular pieces. This procedure leads to an
asymmetric < 111 > tilt grain boundary with approximately α ≈ 7◦ mismatch. Note
that the choice of this geometry and the tilt angle is motivated by recent experimental
results [25].

The simulation geometry is depicted in Figure 17.1. In some simulations, we further
rotate the tilted grain counterclockwise around its [112] axis, creating a higher energy
grain boundary.

The structure is periodic in the y-direction. We impose a homogeneous strain through-
out the sample to account for thermal expansion [155]. The boundary and substrate
atoms are chosen such that atoms inside the film do not sense the existence of the sur-
face. The atoms of the boundary and the substrate are held pinned at a prescribed
location by introducing an additional term in the potential energy of the form

φp =
1

2
k0r

2
xd−xc , (17.1)

where xd is the prescribed location of an atom, and xc is its current position. The
expression rxd−xc =| xd − xc | stands for the radius of separation of the desired and
present location, while k0 is a harmonic spring constant which is chosen k0 = 20 in
reduced atomic units. We prescribe locations of atoms in the substrate only in the x
and z direction, and leave the y direction unconstrained. The atoms in the boundary
are only constrained in the x direction, so that the boundary is allowed to relax in the
y and z direction.

In terms of a continuum mechanics interpretation of the simulation cell, this resembles
a plane strain case with a thin compliant (copper) film on a rigid substrate, with no
sliding and no diffusion at the film-substrate interface. The choice of the rigid substrate
is partly motivated by the finding that the stress intensity factor of a crack is reached
faster in the case of a rigid substrate than in the isotropic case or when the film is
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17. Atomistic modeling of constrained grain boundary diffusion in a bicrystal model

attached to a compliant substrate (see Figure 14.6 and associated discussion). After
the “raw” sample is created, a global energy minimization scheme is applied to relax
the structure. Subsequently, the sample is heated up to an elevated temperature and
annealed for a longer time so that the grain boundary structure relaxes and takes its
equilibrium configuration. We wait until the virial stresses [212] relax to zero in this
initial configuration.

To make the diffusive processes accessible to the molecular-dynamics time scale, the
simulations are carried out at elevated temperatures. The simulations to investigate
dislocation nucleation in conjunction with diffusional creep are performed at a homolo-
gous temperature of Th ≈ 0.8 and Th ≈ 0.9, while studies on diffusion alone are done at
temperatures as low as Th ≈ 0.6. At elevated temperature, the grain boundary exhibits
a highly confined glassy intergranular phase of less than 1 nm width, in accordance with
[125].

After annealing we proceed with applying a lateral strain. The prescribed positions
xd are calculated according to a homogeneous strain throughout the simulation sample.
We use a time step of ∆t ≈ 3 × 10−15 s for integration. The strain rate is on the order
of 107 s−1 corresponding to approximately 1 percent strain per nanosecond. The strain
rate is adjusted during the simulation such that the stress in the film remains low to
avoid nucleation of dislocations on inclined slip planes, similar to the procedure adopted
by [240]. The only deformation mechanism allowed is diffusional creep in the grain
boundary. Whenever activation of a different mechanism such as threading dislocations
is observed, the simulation is restarted at a lower stress and the strain rate is lowered.
This procedure has proven to allow more time for diffusive processes and effectively shut
down competing mechanisms. In the simulation with Th ≈ 0.8, the grain boundary
width remains less than 1 nm and increases slightly at higher temperatures when the
sample is loaded. In the simulation with Th ≈ 0.9 the grain boundary width is further
increased and is found to be around 1-2 nm.

The systems contain more than 1, 000, 000 particles, which is a significant number since
simulations are carried out over several nanoseconds. The film thickness ranges from
4.5 nm to 35 nm, the latter value becoming comparable to experimental investigations
where films between 35 and 50 nm were investigated [24, 55].

17.2. Formation of the diffusion wedge

In this section we discuss the change of the displacement field as the diffusion wedge
builds up and show that the displacement field becomes crack-like. Further, we show the
diffusive displacement of atoms and hence prove that diffusional mass transport from
the surface along the grain boundary leads to formation of a diffusion wedge.

17.2.1. Crack-like displacement near a diffusion wedge

We find in our simulations that a minimum stress around σxx ≈ 1.6 GPa independent of
the film thickness is required to initiate diffusion. In addition, we observe that the grain
boundary traction can not be relaxed below σxx ≈ 1.6 GPa for films thinner than ten
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17.2. Formation of the diffusion wedge

Figure 17.3.: Change of displacements in the vicinity of the diffusion wedge over time.
The continuous dark line corresponds to the continuum mechanics solution discussed in
Chapter 14.2.1.

nanometers. Diffusion can not relax stresses in such thin films completely! These facts
seem to be qualitatively consistent with the predictions of equation (15.1). The fact
that we have calculated stress by averaging over a finite region in the atomistic model
can not explain this finding. Similar calculations in a sample with a crack show that the
traction along the crack face approaches zero.

The snapshots in Figure 17.3 show how the displacement changes as material diffuses
into the grain boundary. The horizontal coordinates have been stretched by a factor of
ten in the x direction to make the crystal lines clearly visible

[x, y, z]new = [10 · x, y, z]orig. (17.2)

This visualization technique is applied throughout this chapter. We highlight the addi-
tional half planes of atoms close to the grain boundary. The continuous dark line corre-
sponds to the continuum mechanics solution in the long-time limit t → ∞ discussed in
Chapter 14.2.1. The results suggest that the displacement field near the diffusion wedge
approaches the continuum mechanics solution.

17.2.2. Diffusive displacement of atoms in the grain boundary

To illustrate diffusional motion of atoms in the grain boundary, we color each atom with
diffusive displacement δz larger than a few Burgers vectors. Figure 17.4 plots these fields
for several instants in time. Diffusion leads to significant surface grooving, with groove
depths up to several nm. One can clearly identify the wedge-shape of the diffused
atoms. The atomistic simulations show that atoms inserted into the grain boundary
instantaneously crystallize, rendering the structure of the grain boundary invariant (this
was observed for temperatures below 1150 K; at higher temperatures, the width of the
grain boundary increases slightly).

The atoms transported along the grain boundary add to either one of the two grains.
This result illustrates that the continuum mechanics assumptions [88, 250, 251] are valid
also on the atomistic level.

We also observe “classical” threading dislocations which become operative when stresses
in the film are high enough to allow nucleation of dislocations [240, 217]. A frequently
observed phenomenon is the emission of dislocations from the grain boundary on in-
clined < 111 > glide planes [168, 217]. In the sample with hf ≈ 30 nm, such threading
dislocations are nucleated at a stress level of σxx ≈ 2.4 GPa. We observe that thinner
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Figure 17.4.: Diffusional flow of material into the grain boundary. Atoms that diffused
into the grain boundary are highlighted.

films require a higher critical stress for dislocation nucleation from the grain bound-
ary, in qualitative agreement with the prediction by the 1/hf scaling law for the yield
stress. In films thinner than 10 nm it requires extremely high stresses to nucleate in-
clined dislocations, which renders this mechanism almost impossible. The studies show
that grain boundaries are, as proposed in the literature, fertile sources for dislocations
in small-grained materials [240, 217].

Another issue in terms of dislocation nucleation is the stability and mobility of the
grain boundary. We observe that the grain boundary forms jogs at elevated temperatures
and relatively low stresses (contrary to our intuition, at high stresses the grain boundary
remains straight). The diffusion path can be severely suppressed and the local stress
concentration at the kink serves as a ready source for dislocations. The grain boundary
does not remain straight and oscillates around the initial, straight position.

17.3. Development of the crack-like stress field and
nucleation of parallel glide dislocations

Here we summarize the main results of the atomistic simulations focused on nucleation
of parallel glide dislocations from diffusion wedges and cracks.
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T (K) hf (nm) KPG (MPa × ms)
Crack

300 27.2 4.95
Diffusion wedge

1150 27.2 11.91
1250 27.2 11.35
1250 34.2 11.23

Table 17.1.: Critical stress intensity factors KPG for nucleation of parallel glide disloca-
tions under various conditions, for a diffusion wedge and a crack.

17.3.1. Nucleation of parallel glide dislocations from a diffusion
wedge

Continuum theory assumes that dislocations are nucleated when the stress field around
the diffusion wedge becomes crack-like. Critical stress intensity factors for dislocation
nucleation measured from the atomistic simulations are shown in Table 17.1 for different
simulations. We use equation (15.5) to determine the stress intensity factor. The stress
intensity factor is found independent of geometry (film thickness) and also has similar
values at Th = 0.8 and Th = 0.9. We observe that nucleation of parallel glide dislo-
cations depends on the film thickness. In the present quasi-two-dimensional setup with
rigid boundaries, we observe that dislocations from the boundaries are nucleated when
very large strains are applied, thus imposing a condition on the minimum thickness for
nucleation of parallel glide dislocations.

Dislocation nucleation at a diffusion wedge can be divided into different stages shown
in Figure 17.5. After the critical stress intensity factor is achieved, a dislocation dipole
is formed. One end of the dipole is pinned in the grain boundary, while the dislocation
at the other end of the dipole slides away from the grain boundary. Subsequently,
the pinned dislocation is annihilated or “dissolves into” the grain boundary, while the
dislocation at the right end of the dipole begins to move away from the nucleation site.
As usually found in fcc metals, the dislocation is decomposed into two Shockley partials.
The parallel glide dislocation glides on a slip plane parallel to the plane of the film at
a distance of a few Burgers vectors above the film-substrate interface (and is therefore
completely inside the film material). The core width of the partials extends to about 6
Burgers vectors around 1.6 nm. The dislocation moves a small distance away from the
grain boundary to its equilibrium position. When stresses in the film become larger,
it responds by moving further away from the grain boundary. The nucleation process
is highly repeatable. Every time one parallel glide dislocation is nucleated, one climb
edge dislocation is annihilated, leading to a decay in stress intensity. The additional time
required to nucleate another parallel glide dislocation is determined by the time required
for diffusion to recover the critical stress intensity. This time is much less than the initial
time required to form the diffusion wedge. After the first dislocation is nucleated, more
and more parallel glide dislocations are observed. In our confined, finite simulation
geometry, the emitted parallel glide dislocations form a “secondary pileup” close to the
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Figure 17.5.: Nucleation of parallel glide dislocations from a diffusion wedge.

boundary of the simulation cell. In simulations at lower temperatures (T ≈ 800 K),
we also observe constrained grain boundary diffusion and the formation of a diffusion
wedge with a lattice displacement field similar to that of a crack. However, due to the
time constraints of molecular-dynamics, nucleation of parallel glide dislocation is not
observed.

17.3.2. Nucleation of parallel glide dislocations from a crack

The nucleation of parallel glide dislocations from a crack in a bimaterial layer is shown
in Figure 17.6. For numerical reasons, the loading rate is chosen higher than in the
previous case and the temperature in the simulations is about 300 K.

After an incipient dislocation is formed, a dislocation nucleates and moves away from
the crack tip. The crack tip is blunted, and each time a parallel glide dislocation is
nucleated, one surface step is formed. This process is also highly repeatable, as lateral
strain is increased. The nucleation of parallel glide dislocations from a crack tip is
observed at loading rate a few orders of magnitude higher than in the case of a diffusion
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Figure 17.6.: Nucleation of parallel glide dislocations from a crack.

wedge and there seems to be no rate limitation in the case of a crack. As in the case of
a diffusion wedge, the dislocation glides on a parallel glide plane a few Burgers vectors
above the film-substrate interface. For a crack, nucleation of parallel glide dislocations
is observed in films as thin as 5 nm. This may be because the critical stress intensity
factor is smaller than that for a diffusion wedge, as indicated in Table 17.1. The critical
stress intensity for parallel glide dislocation nucleation from a diffusion wedge is about
2.3 times larger than that for a crack. This value is in good agreement with the estimate
based on the Rice-Thomson model.

17.4. Discussion

When classical mechanisms of plastic deformation based on the creation and motion
of dislocations are severely hindered in thin films on substrates, constrained diffusional
creep becomes a major mechanism for stress relaxation, leading to the formation of a
new class of defects called the grain boundary diffusion wedge. Large-scale atomistic
simulations are performed to investigate the properties of such diffusion wedges. We
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have shown by atomistic simulations that material is indeed transported from the surface
into grain boundaries and that such transport leads to a crack-like stress field causing
nucleation of a novel dislocation mechanism of parallel glide dislocations near the film-
substrate interface. The atomistic simulations of parallel glide dislocations being emitted
near the root of the grain boundary have further clarified the mechanism of constrained
grain boundary diffusion in thin films and provided an important link between theory
and experiments.

17.4.1. Theoretical, experimental and simulation results

The experimental data suggests that nucleation occurs only at specific grain boundaries.
This can partially be explained by the strong dependence of diffusion coefficients on the
structure of the grain boundary [240, 125]. Using different types of grain boundaries,
we have verified that high-energy grain boundaries exhibit faster diffusivities than low-
energy grain boundaries. The viewpoint proposed in [125] is thus consistent with our
simulation results. The fact that this concept was shown to hold in covalently bonded
system, palladium as well as copper (the present study) shows that the transformation of
grain boundaries into liquid-like structures may be a more general concept independent
of the details of the atomic bonding. Experimentalists [55, 24] have found that nucle-
ation of parallel glide dislocation occurs repeatedly from grain boundary sources near
the film-substrate interface while strain is increased during thermal cycling. The same
phenomenon is observed in the atomistic simulations reported in this chapter, although
the conditions are quite different. Repeatedly emitted parallel glide dislocations form a
pileup when they move towards an obstacle, which can be other grain boundaries (e.g.
twins) in the experiments or boundary atoms in the simulations. Repeated nucleation
is possible because by each parallel glide nucleation, only one climb edge dislocation
in the grain boundary is annihilated while many of them remain “stored” in the grain
boundary. The total Burgers vector stored in the grain boundary is found to remain
constant.

Computer simulations provide evidence that diffusion initiation occurs at a critical
applied stress σ0 ≈ 1.6 GPa, independent of the film thickness. Continuum analysis in
equation (15.1) at T = 0 K for initiation of diffusion support this finding and predict
a critical stress σ0 ≈ 6 GPa, also independent of the film thickness. The fact that the
continuum analysis suggests a higher value could be explained by the higher temperature
used in the simulations. In other publications [181] it is proposed that the critical
stresses for dislocation nucleation are about five times smaller at room temperature, thus
attaining the value measured in the atomistic simulations. It has recently been shown
that stress distribution in thin films over different grains is highly inhomogeneous [201].
In some grains, extremely high stresses of several GPa are observed. This readily provides
sufficiently large stresses to initiate diffusion, and also helps to explain why parallel
glide dislocation nucleation only occurs at specific grain boundaries in the experiments.
Alternatively to equation (15.1), the critical stress for diffusion initiation can be defined
based on equation (15.2). In this case, the critical stress for the initiation of grain
boundary diffusion resulting from the molecular-dynamics simulations agrees well with
a value of dsrc = 3 b = 0.78 nm. Even in the molecular-dynamics simulation that does
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not a priori assume grain boundary diffusion to occur in form of dislocation climb,
there exists such a critical stress which is independent of the film thickness. From
the thermodynamic point of view, this is unexpected since diffusion should start at
infinitesimal stresses provided that sources for the diffusive processes are present. We
note here that the observed finite threshold stress could, in principle, be a consequence
quasi-two-dimensional geometry used in the simulations. However, in experiment it is
also observed that for stresses below a threshold magnitude of several hundred MPa,
no diffusion occurs even at elevated temperatures [55, 132]. We briefly note that the
concept of a threshold stress in diffusional creep has also been proposed by Arzt and
coworkers, due to the discreteness of the dislocations participating in the creep process
[18]. Further research may be necessary to clarify this point.

As discussed in Section 15.2, in films thinner than ten nanometers, image stresses on
climb dislocations can be as large as 1 GPa. This can severely hinder climb mediated
diffusional creep, suggesting that the behavior of discrete dislocations needs to be consid-
ered for the nanoscale thin films. This is also supported by the atomistic results showing
that stress can not be relaxed completely in extremely thin films. In addition to the
theoretical and computational evidence, our results are not contradicting experimental
results which often show large residual stresses in extremely thin films [132].

Employing our molecular-dynamics result that nucleation occurs at a critical stress
intensity factor KPG, we estimate the necessary lateral stress σ0 in order to achieve this
stress intensity factor at t → ∞. In films thinner than a critical thickness between 10
and 20 nm, the analysis predicts stresses reaching the cohesive strength of the mate-
rial. Hence, before nucleation of parallel glide dislocations the simulation sample will
be destroyed by homogeneous decohesion. In the present quasi-two-dimensional setup
with rigid boundaries, an additional issue is that dislocations from the boundaries are
nucleated when very large strains are applied.

These considerations suggest a minimum thickness for parallel glide dislocation nu-
cleation. The critical stress intensity factor for dislocation nucleation from a crack and
a diffusion wedge at 0 K are about three times larger than the values calculated from
atomistic simulation results at elevated temperature. This can be explained by the finite
temperature in the simulations. Yet it is important that both approaches suggest that
KPG

dw /KPG
cr ≈ 2.

The discussion reveals that the diffusion wedge has similar properties as a crack, but
requires a larger stress intensity factor to nucleate a dislocation. The reason for this is
that in the case of a diffusion wedge, a dislocation dipole needs to be formed and the
dipole interaction force is twice as strong the image force on an emergent dislocation
near a crack tip. This is an important result of atomistic modeling that corroborates
the assertion made in the development of the Rice-Thomson model in Section 15.3.

17.4.2. Diffusion wedge versus crack

We discuss some of the common and distinct properties observed in atomistic simulations
for the two kinds of defects (crack versus diffusion wedge), both are assumed to lie along
the grain boundary under elevated temperatures. For a crack, we observe

• As the applied stress σ0 is increased, the normal stress σxx along the grain boundary
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remains zero throughout the film thickness, in consistency with the traction free
crack condition.

• The loading rate for dislocation nucleation can be much higher than in the case of
diffusional creep; there is no rate limiting factor.

• Dislocation nucleation occurs at relatively small stress intensity factor.

• Dislocation nucleation starts with an incipient dislocation close to the crack tip.

In contrast, for a diffusion wedge, we observe

• The loading rate must be slow enough to allow for diffusion as a dominant relax-
ation mechanism. Otherwise dislocation activities on inclined planes are observed
instead of grain boundary diffusion.

• The stresses in the film are determined by the competition of processes caus-
ing stresses to be generated and inelastic deformation mechanisms that allow the
stresses to be relaxed.

• The nucleation process proceeds much slower, because in order to nucleate a par-
allel glide dislocation, dislocation climb in the grain boundary has to take place to
annihilate part of the newly created dipole. On atomistic time scales, nucleation
is an extremely slow process (for a crack, nucleation is very fast).

• Dislocation nucleation starts when the stress intensity factor is sufficiently large
to create a dislocation dipole near the diffusion wedge.

• There exists a minimal thickness for parallel glide dislocation nucleation. If the
film is very thin, the applied stress reaches the cohesive strength of the material
before the critical stress intensity factor KPG for dislocation nucleation is reached.

The two defects have major differences in the time scale associated with creation of
dislocations. A crack is a ready source for dislocations, while a diffusion wedge has
an intrinsic characteristic time associated with dislocation climb. We finally note that
no difference in the mechanism of parallel glide dislocation nucleation is observed at
different temperatures. We propose further investigations on discrete dislocation effects
at the nanoscale. In particular, it is important to develop continuum level solutions for
dislocation nucleation in the spirit of Rice’s analysis based on Peierls concept [178, 171].
It should also be interesting to study thin films creep using mesoscopic methods such
as discrete dislocation dynamics. Results of the molecular-dynamics simulations can be
used as input parameter in a multi-scale modeling procedure.

17.5. Conclusions

We have reported large scale atomistic simulations of constrained diffusional creep in
thin films on substrates. The following objectives have been achieved.
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1. We have confirmed the formation of diffusion wedges using atomistic simulations,
and have shown, in agreement with theory and experiment, that the flow of matter
from the film surface into grain boundaries represents a significant mechanism of
plasticity in submicron thin films.

2. We have verified that the diffusion wedge exhibits crack-like stress field at the
atomistic level, and this mechanism occurs even if the background stress in the
film is insufficient to create dislocations.

3. From the simulations, we have observed a critical stress intensity factor for nu-
cleation of parallel glide dislocations from the diffusion wedge. The critical stress
intensity is found to be independent of the film thickness and does not significantly
change in the temperature range of our investigation (from Th = 0.9 to Th = 0.8).
We have proposed a critical stress intensity as the nucleation criterion for disloca-
tions near both a crack and a diffusion wedge. We have shown that such criterion
yields predictions in reasonable agreement with atomistic simulation results.

The most important result of these simulations is that when grain boundary diffusion
is active, the grain boundary can be treated as a crack in a first approximation. In the
present chapter, we have only studied a two-dimensional geometry. In the following the
chapters we will show that the condition of traction relaxation along grain boundaries
also has dramatic consequences on the dislocation mechanisms in polycrystalline thin
films.
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18. Dislocation nucleation from grain
triple junction

In this chapter we focus on the details of dislocation nucleation close to a triple junction
between three grains misoriented with respect to one another. The simulation geometry
is shown in Figure 18.1.

Figure 18.1.: Geometry for studies of plasticity in grain triple junctions.

In contrast to the simple bicrystal geometry used in numerical studies discussed in the
preceding chapter, experiments are carried out in polycrystalline thin films [55, 25]. The
first goal of this and the following chapter is hence to extend the quasi-two dimensional
studies of constrained diffusional creep to more realistic polycrystalline microstructures.

We will investigate plasticity of thin films with traction relaxation along the grain
boundaries due to constrained diffusional creep. The continuum model and the quasi-two
dimensional geometry of previous atomistic simulation of plasticity in thin films could not
provide a clear understanding of dislocation nucleation processes from different types of
grain boundaries. Yet, experiments show a high selectivity of dislocation nucleation from
different grain boundaries [24, 25]. Understanding the features of the grain boundaries
as sources for dislocation nucleation is critically important to form a clear picture of thin
film plasticity. Therefore, an important objective of this chapter is to study the details of
the dislocation nucleation process near the grain boundary-substrate interface. We show
that the grain boundary structure indeed has a significant influence on the dislocation
nucleation process. Another interesting result is that the role of partial dislocations is
important in very thin films with very small grain diameters.
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18. Dislocation nucleation from grain triple junction

18.1. Atomistic modeling of the grain triple junction

Here we summarize the details of the atomistic modeling procedure. To focus on the
nucleation process of dislocations and the effect of different types of grain boundaries
in detail, we consider a tri-crystal model with a triple junction between three grains.
The model is constructed such that it features two high-energy and one low-energy grain
boundary. The schematic geometry is shown in Figure 18.1. As indicated in Figure 18.1,
cracked grain boundaries with traction-free surfaces along zc < z < hf are used to mimic
the existence of diffusion wedges in all of the grain boundaries. We choose zc ≈ 1.5
nm so that the crack does not reach the substrate (z = 0 at the substrate). This
is motivated by the results of molecular-dynamics simulations showing that the glide
plane of dislocations is not directly at the substrate but a few atomic layers above.

Loading is applied by prescribing a displacement to the outermost rows at the bound-
ary of the quadratic slab. Grain 1 has the reference configuration ([110] in the x direction,
[112] in the y direction). Grain 2 is rotated counterclockwise by 7.4 degrees, and grain
3 is rotated by 35 degrees with respect to grain 1. The low-energy grain boundary is
situated between grains 1 and 2, and the two high-energy grain boundaries are between
grains 2 and 3 and between 3 and 1.

The structure of the low-energy grain boundary is significantly different from that of
the high-energy ones. The former is essentially composed of a periodic array of misfit
dislocations, with a strongly inhomogeneous distribution of strain energy along the grain
boundary. In contrast, the strain energy along the high-energy grain boundaries is more
homogeneously distributed. After creation of the sample, the structure is annealed for a
few picoseconds and then relaxed for a few thousand integration steps using an energy
minimization scheme.

18.1.1. Boundary conditions and integration scheme

The boundary conditions of all models are chosen such that atoms close to the film-
substrate interface are pinned to their initial locations (and also moved according to the
applied strain field), mimicking perfect adhesion of a film on a stiff substrate. After the
initial atomic configuration is created, a global energy minimization scheme is applied
to relax the structure.

The studies are carried out using a microcanonical NV E ensemble with a quasi-static
energy minimization scheme. The strain in the samples is gradually increased up to 2.5
percent. The simulations are performed using the ITAP-IMD molecular-dynamics code
[203, 185] suitable for large-scale simulations. We use the same multi-body embedded
atom potential (EAM) potential for copper developed by Mishin and coworkers [155] as
in the studies on diffusion in the previous chapter.

18.1.2. Analysis techniques

The simulation results are analyzed with the centrosymmetry technique [126] which is
a convenient way to discriminate between different defects such as partial dislocations,
stacking faults, grain boundaries, surfaces, and surface steps. In some cases, we will
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also use the slip vector technique proposed recently [258]. This method allows us to
extract quantitative information about the Burgers vector and slip plane of dislocations
immediately from the simulation data.

18.2. Atomistic simulation results

We will investigate the details of parallel glide dislocation nucleation process near the
grain boundary-substrate interface. Dislocation mechanisms associated with grain bound-
ary cracks will be compared and related to experimental results.

18.2.1. Nucleation of parallel glide dislocations from a grain triple
junction

In this section we focus on the details of dislocation nucleation close to a triple junction
between three grains misoriented with respect to one another.

Figure 18.2.: Nucleation of parallel glide dislocations from a grain triple junction. The
plot shows a time sequence based on a centrosymmetry analysis.

As soon as a threshold stress is overcome during loading, the generation of parallel
glide dislocations from the grain boundaries is initiated. Snapshots of this processes are
shown in Figure 18.2.

We begin with a description of the nucleation process from the low-energy grain bound-
ary between grains 1 and 2. This boundary is composed of an array of misfit grain
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18. Dislocation nucleation from grain triple junction

Figure 18.3.: Schematic of dislocation nucleation from different types of grain bound-
aries. Misfit dislocations at low-energy grain boundaries serve as sources for dislocations.
At high-energy grain boundaries, there is not inherent nucleation site so that the point
of largest resolved shear stress serves as nucleation point.

boundary dislocations which serve simultaneously as multiple nucleation sites for new
dislocations. The nucleation sites are therefore not necessarily located close to the triple
junction, the region of largest shear stresses. This observation could be reproduced in
different geometries. A small number of incipient dislocations grow along the low-energy
grain boundary and coalesce to form dislocation half-loops. This mechanism is also vi-
sualized schematically in Figure 18.3. In Figure 18.4 we show that deformation twinning
occurs due to repeated nucleation of partial dislocations with the same Burgers vector.

Figure 18.4.: Deformation twinning by repeated nucleation of partial dislocations. Re-
peated slip of partial dislocations leads to generation of a twin grain boundary.

18.2.2. Jog dragging

An interesting observation in our simulations is that some dislocations are strongly
bowed at defect junctions. Dislocation junctions obstructing further glide motion are
highlighted in Figure 18.5. The reason for this effect is that the glide planes of the
incipient half-loops of partial dislocations are different, but have the same Burgers vector.
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Using the slip vector approach proposed by Zimmerman and coworkers [258], we have
verified that the Burgers vector of the dislocations nucleated in each grain are indeed
identical.

Figure 18.5.: Dislocation junction and bowing of dislocations by jog dragging. A trail
of point defects is produced at the jog in the leading dislocation, which is then repaired
by the following partial dislocation.

Once different half loops grow, they combine with each other while forming jogs since
they glide on different glide planes. The jog has a non-glissile component, and can not
move conservatively [109] thus causing generation of point defects. This, in turn, exerts
a drag force on dislocations causing the dislocation lines to bow.

A similar mechanism of jog dragging due to point defect generation is known from
dislocation cutting processes as depicted in Figure 18.6. As discussed in the literature
on dislocation mechanics [109], when two dislocations intersect each acquires a jog equal
in direction and length to the Burgers vector of the other dislocation. If two screw
dislocations intersect, this jog can not glide conservatively since it features a sessile edge
segment. However, if the applied stress is large enough, the dislocation with the jog
starts to glide and the jog leaves a trail of vacancies, or a trail of interstitials depending
on the line orientation and the Burgers vector of the reacting dislocations.

The mechanism observed in the simulations is similar. The difference is that no
dislocation cutting process occurs, but instead the jog in the dislocation line develops
due to nucleation of incipient dislocations on different glide planes. We observe that the
sessile component of the jog is rather small and is only a fraction of the partial Burgers
vector. Therefore, not a complete point defect is generated but only a trail of “partial
point defects”. Trails of “partial point defects” have recently also been observed in
large-scale computer simulations of work-hardening in ductile materials [35]. As shown
by calculations in [35], the dragging force of the partial point defects is estimated to be
about 20 % of the dragging force exerted by generation of complete vacancy tubes. If
these appear in large numbers, the effect on dislocation motion can be significant.
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Figure 18.6.: Generation of trails of point defects. Subplot (a): Dislocation cutting
processes with jog formation and generation of trails of point defects. Both dislocations
leave a trail of point defects after intersection. The blue arrows indicate the velocity
vector of the dislocations. Subplot (b): Nucleation of dislocations on different glide
planes from grain boundaries generate a jog in the dislocation line that causes generation
of trails of point defects.

18.2.3. High-energy versus low-energy grain boundaries

In the case of high-energy grain boundaries (as between grains 2 and 3) with a more ho-
mogeneous structure, nucleation of parallel glide dislocations is found to occur preferably
at the triple junction. The process proceeds with an incipient dislocation growing until
the second partial is emitted. The parallel glide dislocations often have semi-circular
shapes as observed in early stages of dislocation nucleation in experiment [24, 55].

In contrast to the low energy grain boundary where misfit dislocations serve as nucle-
ation sites for new dislocations, the triple junction acts as the main nucleation source
at high energy grain boundaries.

18.3. Discussion

Dislocation nucleation depends on the grain boundary structure: We observe that low-
energy grain boundaries composed of a periodic array of misfit dislocations provide more
fertile sources for threading dislocation nucleation.

At low-energy grain boundaries, dislocations are often observed to nucleate close to
grain boundary misfit dislocations. This can be referred to as an intrinsic condition,
because the concentration of internal grain boundary stresses serve as nucleation site for
dislocations. Since the incipient dislocations are often nucleated at different glide planes,
complex dislocation reactions take place when several of them combine to form a single
dislocation line. Such mechanisms can hinder dislocation motion and cause bowing of
the dislocation line. The observation of such nucleation induced jogs with subsequent
generation of trails of point defects has not been described in the literature. In other
computer simulation of ductile materials [35] similar mechanisms have been observed,
suggesting that this mechanism may play a role in hardening of materials.

In the more homogeneous high-energy grain boundaries there is inherently no preferred
nucleation site. Therefore, triple junctions of grain boundaries are preferred as nucleation
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sites. The overall stress field governs dislocation nucleation, since such a triple junction
provides a location with highest stress concentration. Different parallel glide dislocations
can interact in a complex way to form networks of dislocations, as shown in Figure 18.5.

Another finding is that partial dislocations dominate plasticity in the simulations, as
can be verified in Figure 18.4 where deformation twinning is depicted. This indicates
that partial dislocations dominate plasticity at nanoscale. Similar observations have
been reported by other groups [217, 235].
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18. Dislocation nucleation from grain triple junction
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19. Atomistic modeling of plasticity of
polycrystalline thin films

Atomistic modeling of plasticity in polycrystalline thin films is just at its beginning.
Few studies of such systems have been reported in the literature. Recently, atomistic
simulations of two-dimensional systems were reported by Shen [195]. In this study,
the increase in yield strength was investigated and nucleation and motion of threading
dislocations was in the focus. However, the model did not contain grain boundaries
despite the fact that grain boundaries can serve as fertile sources for dislocations. In
contrast to this simplistic model, we propose a three-dimensional model of thin films with
a more realistic microstructure. The model studied in this chapter is a polycrystalline
thin film consisting of hexagonal shaped grains, as shown in Figure 19.1. The choice of
this geometry is motivated by the grain microstructure found in experiments [24, 55].
An advantage of this model over the geometry studies in the preceding chapter is that
fully-periodic boundary conditions in the x- and y-direction can be assumed.

Here we will focus on dislocation nucleation and motion from grain boundaries and
a crack-grain boundary interface. One of the important objectives will be to study
the effect of grain boundary traction relaxation by diffusional creep on the dislocation
mechanism that operate in the film. Further studies will be focused on the details
of dislocation nucleation from different type of grain boundaries. As known from the
preceding chapter, the structure of the grain boundaries has strong influence on the
nucleation of dislocations.

The plan of this chapter is summarized as follows. After presenting details about
the atomistic modeling procedure, we will continue with a discussion of the results of
several large-scale atomistic studies comprising of up to 35 million particles. Even for
today’s supercomputers, this represents a significant system size. We will show that
grain boundary relaxation by diffusional creep gives rise to dominance of parallel glide
dislocations, in accordance with experiment. In contrast, if grain boundary tractions are
not relaxed, threading dislocations dominate plasticity. We show that low-energy grain
boundaries are more fertile sources for plasticity than more homogeneous high-energy
grain boundaries. This hypothesis is further supported by a set of atomistic simulations
of bulk nanocrystalline copper.

19.1. Atomistic modeling of polycrystalline thin films

As indicated in Figure 19.1, cracked grain boundaries with traction-free surfaces (along
zc < z < hf where zc ≈ 1.5 nm) are used to mimic the existence of diffusion wedges in
some of the grain boundaries. Grain 1 is in the reference configuration ([110] in the x
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19. Atomistic modeling of plasticity of polycrystalline thin films

Figure 19.1.: Geometry for the studies of plasticity in polycrystalline simulation sample.

direction, [112] in the y direction). Grain 2 is rotated counterclockwise by 7.4 degrees,
grain 3 is rotated by 35 degrees, and grain 4 is rotated by 21.8 degrees with respect to
grain 1. The model contains up to 35 million particles. With this procedure, a low-
energy grain boundary is constructed between grains 3 and 4. After creation of the
sample, the structure is relaxed for a few thousand integration steps using an energy
minimization scheme. Figure 19.2 shows the atomistic model of the polycrystalline thin
film. Only surfaces (yellowish color) and grain boundaries (bluish color) are shown.

Figure 19.2.: Atomistic model of the polycrystalline thin film. Only surfaces (yellowish
color) and grain boundaries (bluish color) are shown.

In contrast to the modeling with the tri-crystal model, the simulation cell is fully
periodic in the x and y direction. Loading is applied by homogeneously straining the
sample in the desired direction. Further details on the modeling technique can be found
in Section 18.1.
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19.2. Atomistic simulation results

19.2. Atomistic simulation results

We will investigate plasticity of thin films with and without traction relaxation and study
the details of the dislocation nucleation process near the grain boundary-substrate inter-
face. Dislocation mechanisms associated with grain boundary cracks will be compared
and related to experimental results.

The model of constrained diffusional creep [88] predicts that due to mass transport
from the surface into the grain boundary, the tractions along the grain boundary are
relaxed, and thus a crack-like stress field develops. This change should significantly alter
the dislocation microstructure that develops in the film under mechanical deformation.
While threading dislocations dominate plasticity in films where grain boundary diffusion
is shut down, in films where grain boundary diffusion is active parallel glide dislocations
are expected to dominate. Indeed, since the continuum model was proposed [88], an
experimental group has reported the observation of parallel glide dislocations in copper
films with thicknesses below 400 nm [25]. The researchers concluded that grain boundary
traction relaxation by diffusional creep leads to change in the deformation field near the
crack tip. Experimental results suggest that threading and parallel glide dislocations
are competing mechanisms [24, 55, 25] in submicron, uncapped thin films on substrates.

In this section we want to probe this hypothesis by large-scale atomistic simulations.
Atomistic modeling of thin film plasticity at the nanoscale provides an ideal tool to study
such competing mechanisms and to determine conditions under which they are active.

It is known that grain boundaries are important sources for dislocations in nanostruc-
tured materials. We illustrate that the structure of the grain boundaries has significant
influence on the motion of dislocations into the grain interior. Furthermore, we find
that the role of partial dislocations seems to be increasingly important as the grain size
approaches nanoscale.

19.2.1. Threading dislocations

We start with the polycrystalline sample without relaxation of tractions along the grain
boundaries, corresponding to the case when grain boundary diffusion is not active. The
simulation results are depicted in Figures 19.3 and 19.4. In this case, the dominating
inelastic deformation mechanism is clearly glide of threading dislocations on inclined
glide planes. No dislocations on glide planes parallel to the film surface are observed, as
expected because there is no resolved shear stress and thus no driving force for dislocation
nucleation on parallel glide planes.

Figure 19.3 (a) reveals a complex dislocation structure in the interior of the film. The
dislocation structure is analyzed with the centrosymmetry technique. Figure 19.3 (b)
shows a more detailed magnified view of a section of the film. Threading dislocations are
observed to leave behind interfacial dislocation segments at the film-substrate interface
and atomic steps at the film surface. Figure 19.4 shows snapshots of a top view of the
film surface at different times, including a magnified view of the surface at snapshot 4
in Figure 19.5. The surface steps emanate from the grain boundaries, suggesting that
dislocations are nucleated at the grain boundary-surface interface. From the direction
of the surface steps it is evident that different glide planes are activated.
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19. Atomistic modeling of plasticity of polycrystalline thin films

Figure 19.3.: Nucleation of threading dislocations in a polycrystalline thin film. Sub-
plot (a) shows a view into the interior, illustrating how threading dislocations glide by
leaving an interfacial segment. Subplot (b) shows a top view into the grain where the
surface is not shown. The plot reveals that the dislocation density is much higher in
grains 3 and 4.

From the number of surface steps (colored in red) created during plastic deforma-
tion, it seems that dislocation motion concentrates in grains adjacent to low-energy
grain boundaries which apparently provide more fertile sources for dislocation nucleation
(within grains 1 and 2). This can also be verified in Figure 19.3 (b). The dislocation
density in grains 3 and 4 is several times higher than that in grains 1 and 2.

Figure 19.6 shows a sequence of a nucleation of a threading dislocation from the
grain-boundary surface interface. The plot indeed shows that threading dislocations are
nucleated at the grain boundary surface interface and then the half loops grow into the
film until they reach the substrate. Due to the constraint by the substrate, threading
dislocations leave an interfacial segment. This observation is in agreement with the
classical understanding of threading dislocation nucleation and with experimental results
[127, 132, 222]. The threading dislocations intersect the surface at an angle of 90 degrees
[109].

19.2.2. Parallel glide dislocations

In the following, some of the grain boundaries are treated as traction-free cracks, as
shown in Figure 19.1. In Figure 19.7, we show several snapshots of the dislocation
structure. Parallel glide dislocations are generated close to the film-substrate interface.
Figure 19.7 (a) shows a top view while Figure 19.7 (b) shows a perspective side view of
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Figure 19.4.: Surface view of the film for different times. The threading dislocations
inside the film leave surface steps that appear as red lines in the visualization scheme
(color code see Figure 19.3). This plot further illustrates that the dislocation density in
grains 3 and 4 is much higher than in the two other grains.

Figure 19.5.: Detailed view onto the surface (magnified view of snapshot 4 in Fig-
ure 19.4). The plot shows creation of steps due to motion of threading dislocations
(color code see Figure 19.3). The surface steps emanate from the grain boundaries, sug-
gesting that dislocations are nucleated at the grain boundary-surface interface. From
the direction of the surface steps it is evident that different glide planes are activated.

the interior of the film.

The section shown has dimensions of approximately 120 nm × 150 nm, and the film
thickness is hf ≈ 15 nm. The grain diameter in the x-direction is approximately dx ≈ 40
nm. This plot reveals that not only parallel glide but also some threading dislocations
are generated at the grain boundary-surface interface. The plot shows that dislocation
activity centers on the grain boundary whose traction is relaxed. Due to the crack-like
deformation field, large shear stresses on glide planes parallel to the film surface de-
velop and cause nucleation of parallel glide dislocations. A complex dislocation network
develops on a time scale of several picoseconds after dislocation nucleation.

Figure 19.8 shows the simulation results for a larger grain size. The section shown
has dimensions of approximately 300 nm × 400 nm; the film thickness is hf ≈ 15 nm.
The grain diameter in the x-direction is approximately dx ≈ 180 nm, about four times
larger than in Figure 19.7 while the film thickness is kept constant at hf ≈ 15 nm.
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19. Atomistic modeling of plasticity of polycrystalline thin films

Figure 19.6.: Sequence of a nucleation of a threading dislocation, view at an inclined
angle from the film surface. Threading dislocations are preferably nucleated at the
grain boundary surface interface and half loops grow into the film until they reach
the substrate. Due to the constraint by the substrate, threading dislocations leave an
interfacial segment.

More dislocations are observed to nucleate than in Figure 19.7, indicating that more
dislocations “fit” into the larger grain, and consequently, a more complex dislocation
microstructure develops. As the laterally applied strain is continuously increased, the
first dislocations to be nucleated are occasionally complete dislocations, while the fol-
lowing dislocations are often pure partial dislocations. Figure 19.9 shows a view of the
surface of the results shown in snapshot 2 of Figure 19.8, revealing surface steps gen-
erated from the motion of threading dislocations. Even when the traction of some of
the grain boundaries are relaxed, threading dislocations occur. The figure shows that
threading dislocations are predominantly nucleated at the junction between traction-free
grain boundaries and normal grain boundaries where traction is not relaxed.

We observe that dislocations can not glide as easily along the low-energy grain bound-
aries as along the more homogeneous high-energy grain boundaries between grains 1 and
2. This can be verified in Figure 19.7 (a). While an extended dislocation (marked by
“PG”) in grain 1 is almost a straight line, all dislocations in grains 3 and 4 are strongly
curved.

Figure 19.10 shows the complex dislocation network of partial parallel glide dislo-
cations that develops inside the grains. In this plot, the stacking fault planes are not
shown. The bowing of the dislocations indicates that their motion is hindered by mutual
interaction. We observe that formation of jogs and creation of trails of point defects play
a very important role, as already discussed in Section 18.2.2.

19.3. Plasticity of nanocrystalline materials with twin
lamella

In the preceding sections, the role of low-energy versus high-energy grain boundary was
discussed. The importance of this concept is further underlined by the studies reported
in this section. Here we focus on polycrystalline bulk copper, where the grain size is on
the order of several nanometers to tens of nanometers.
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19.3. Plasticity of nanocrystalline materials with twin lamella

Figure 19.7.: Nucleation of parallel glide dislocations, small grain sizes. The plot shows
that dislocation activity centers on the grain boundary whose traction is relaxed. Due
to the crack-like deformation field, large shear stresses on glide planes parallel to the
film surface develop and cause nucleation of parallel glide (PG) dislocations. Subplot
(a) shows a top view, and subplot (b) a perspective view. The plot reveals that there
are also threading (T) dislocations nucleated from the grain triple junctions.

We consider a polycrystalline microstructure with hexagonal grains, but with different
grain orientations as in the previous case (see Figure 19.11 for details). To further study
the effect of geometric confinement on plasticity, we introduce a sub-nano structure in
the grains. This sub-nanostructure is established by assuming twin grain boundaries
forming very thin twin-lamella. Such microstructure can be produced experimentally in
copper [146]. With this model, we pursue two main objectives:

1. We show that in bulk nanostructured materials, the type of the grain boundary
plays a very important role for dislocation nucleation, as it was found for thin
films.

2. We show that the sub-nanostructure composed of twin grain boundaries provides a
very effective barrier for dislocation motion and therefore leads to a very “strong”
nanostructured material.

19.3.1. Modeling

To underline the first point regarding dislocation nucleation, we consider two samples.
The first sample (i) has the same grain misorientations as in Section 19.2 (and therefore
features a low-energy grain boundary between grains 3 and 4), and we construct a
second sample (ii) where all grain boundaries are of the same type. If the proposed
concept is correct that dislocation nucleation occurs predominantly from low-energy
grain boundaries, the dislocation density in sample (i) should be higher in grains 3 and
4, and should be comparable in all grains in sample (ii).

The simulation geometry is depicted in Figure 19.11. The blue lines inside the grains
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19. Atomistic modeling of plasticity of polycrystalline thin films

Figure 19.8.: Nucleation of parallel glide dislocations, large grains. The plot shows a top
view of two consecutive snapshots. The region “A” is shown as a blow-up in Figure 19.10.

refer to the intra-grain twin grain boundaries. The thickness of the twin lamella is
denoted by dT.

19.3.2. Simulation results

The material is loaded uniaxially in the x-direction. We start with sample (i), and we
consider is a grain size of 12.5 nm × 16.5 nm. The grains have the same misorientation
as in the study described above. We perform the simulation for two different lamella
sizes dT. The results are shown in Figure 19.12.

We observe that dislocations are generated exclusively from the low-energy grain
boundaries between grains 3 and 4. This is in agreement with the results of the poly-
crystalline thin films. The fact that we use a different grain orientation in this study
with different boundary conditions suggests that the nucleation conditions discussed
previously is a more general concept. The results indicate that the twin grain bound-
aries are an effective barrier for further dislocation motion, since we observe dislocation
pileups at the twin grain boundaries. An important consequence is that the thinner the
lamella structure (small dT), the less plasticity can transmitted via the motion of dislo-
cations. This indicates that grains with a nano-substructure of twin grain boundaries is
an effective hardening mechanism for materials.

We report another study with the same microstructure, but different grain misorien-
tation angles, sample (ii). In this case, we choose the grain boundary misorientation
identical in all grains. Grain 1 is in its reference configuration, grain 2 is rotated by
30o, grain 3 by 60o and grain 4 is misoriented by 90o. All grain boundaries are now
high-angle grain boundaries.

The results of this calculation are shown in Figure 19.13 (a). Unlike in Figure 19.12,
dislocations are now nucleated at all grain boundaries and the nucleation of dislocations
is governed by the resolved shear stress on different glide planes. We observe that dis-
locations can easily penetrate through the stacking fault planes generated by motion
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Figure 19.9.: Nucleation of parallel glide dislocations, large grains. The plot shows a
view of the surface. From the surface view it is evident that threading dislocations are
nucleated in addition to the parallel glide dislocations. These emanate preferably from
the interface of grain boundaries, traction-free grain boundaries and the surface.

of other partial dislocations, but build pileups at the twin grain boundaries. We also
observe that dislocations with opposite Burgers vector annihilate. Further, dislocations
cross slip (see highlighted region in the center of Figure 19.13 (b), region i.) in re-
gions with high dislocation densities. The activated primary and secondary glide planes
are highlighted in the plot. The primary glide planes are parallel to the twin grain
boundaries so that dislocation glide is not restricted. In contrast, once dislocations have
cross-slipped to the secondary glide plane their motion is restricted due to the twin
grain boundaries (see Figure 19.13 (b) ii.). Figure 19.13 (b) iii. shows intersection of
dislocations. A defect is left at the intersection of the stacking fault planes.

As in the previous studies of nanostructured materials [235], we also observe that
partial dislocations dominate plasticity. Dominance of partial dislocations is verified by
the fact that dislocations leave behind a stacking fault.

19.4. Modeling of constrained diffusional creep in
polycrystalline films

We have also modeled constrained grain boundary diffusion in polycrystalline thin
films, thus extending the two-dimensional studies reported in Chapter 17 to the three-
dimensional case. We apply biaxial loading rate on the order of 1 percent strain per
nanosecond. The temperature is, as in the two-dimensional studies, chosen around 90 %
of the melting temperature.

High-energy grain boundaries transform into liquid-like intergranular layers, while
low-energy grain boundaries establish as arrays of misfit dislocations.

We will show that the basic mechanism of parallel glide dislocation nucleation is
identical to the results observed in the two-dimensional case. The simulations provide
direct evidence that the diffusivities depend on the grain boundary structure.
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Figure 19.10.: Nucleation of parallel glide dislocations. The plot shows an analysis of
the complex dislocation network of partial parallel glide dislocations that develops inside
the grains (magnified view of the region “A” marked in Figure 19.8). All defects besides
stacking fault planes are shown in this plot.

19.4.1. Constrained grain boundary diffusion and dependence on
grain boundary structure

We model a film of thickness hf ≈ 11 nm with a grain diameter of about 22 nm in
the x-direction. The simulation sample is constructed such that we have high-energy
as well as low-energy grain boundaries. This is motivated by our desire to investigate
the effect of grain boundary structure on the deformation mechanisms. Grain 1 is
completely surrounded by high-energy grain boundaries, and the other grains feature
low-energy grain boundaries (grain 1 is in its reference configuration, grain 2 is rotated
by 35.4 degrees, grain 3 by 44.7 degrees and grain 4 by 53.4 degrees). We observe
that, in agreement with the predictions in the literature [235] that high-energy grain
boundaries provide very fast diffusion paths, in contrast to low-energy grain boundaries.
This strongly underlines the notion that the grain boundary structure needs to be taken
account when diffusivities are determined.

Formation of grain boundary diffusion wedges is accompanied by surface grooving at
the grain boundary interface. Therefore, the surface height profile provides a reasonable
indication of diffusive activities in the grain. Figure 19.14 (a) plots the surface profile
of a polycrystalline sample in early stages of the simulation. The observation of surface
grooves is in agreement with recent experimental reports [234].

Compared with all other diffusion paths, grain triple junctions provide the fastest
paths for diffusion. This is verified since at grain triple junctions, the surface grooves
are deepest. As in the two-dimensional case, we observe that the grain boundaries
become curved along the z-direction.
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Figure 19.11.: Nanostructured material with twin grain boundary nano-substructure.
The blue lines inside the grains refer to the intra-grain twin grain boundaries. The
thickness of the twin lamella is denoted by dT.

19.4.2. Nucleation of parallel glide dislocations

According to the hypothesis by continuum theory [88], parallel glide dislocations should
only be nucleated along grain boundaries whose tractions are relaxed by diffusional creep.
Since high-energy grain boundaries are predominant paths for diffusion, in grains neigh-
boring high-angle grain boundaries parallel glide dislocations should dominate plasticity.
In other grains, where tractions along the grain boundaries are not relaxed threading
dislocations should dominate.

This prediction is verified by our atomistic simulations. Nucleation of parallel glide
dislocation only occurs in grains that are completely surrounded by high-energy grain
boundaries. In our sample, there is no other dislocation activity than parallel glide
dislocations after diffusion has proceeded sufficiently long. We observe nucleation of
parallel glide dislocations at a biaxial strain of about εxx = εyy ≈ 1.6 %. In other
grains where little grain boundary relaxation is possible by diffusional creep, threading
dislocations are easily nucleated. Predominant nucleation site are, in agreement with
previous results, misfit dislocations at the grain boundary. The observation of threading
dislocations in other grains is consistent with the studies where some grain boundaries
were assumed traction free (see Figure 19.8).

This result of the study of constrained grain boundary diffusion in polycrystalline
films is documented in Figure 19.14 (b) and (c). The nucleated parallel glide dislocation
is shown in Figure 19.14 (c) as a black line. Its shape was determined using the energy
method shown in the blow-up of Figure 19.14 (c). Additional analysis was performed
based on geometrical methods identical to those applied in Chapter 17. After the first
parallel glide dislocation is nucleated, additional dislocations appear as the loading is
increased and the dislocations form a network that is similar to the results shown in
Figure 19.7. Note that even at higher loads, there are exclusively parallel glide disloca-
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Figure 19.12.: Simulation results of nanostructured material with twin lamella substruc-
ture under uniaxial loading for two different twin lamella thicknesses. Subplot (a) shows
the results for thick twin lamella (dT ≈ 15 nm > d) and subplot (b) for thinner twin
lamella (dT ≈ 2.5 nm). Motion of dislocations is effectively hindered at twin grain
boundaries.

tions in grain 1 as shown in Figure 19.7 (d). In other grains, we observe parallel glide
dislocations at later stages in addition to the threading dislocations.

The most important result of this section is that constrained diffusional creep and
nucleation of parallel glide dislocations can also be modeled in a polycrystalline model.
Further discussion on the simulation results will be left to future publications.

19.5. Discussion

The simulation results can be summarized as follows.

1. Threading dislocations dominate deformation when tractions along the grain bound-
aries are not relaxed. However, if the grain boundary tractions are relaxed, parallel
glide dislocations dominate the plasticity of ultrathin films (hf ≈ 15 nm). Almost
all plasticity is carried on glide planes that are very close to each other. This
transition of the maximum shear stress from inclined planes to planes parallel to
the film surface is illustrated in Figure 19.15.

2. Dislocation nucleation depends on the grain boundary structure: Low-energy grain
boundaries composed of an array of misfit dislocations provide more fertile sources
of dislocations than high-energy grain boundaries with a more homogeneous struc-
ture. We find that the dislocation density is a few times higher in grains connected
by low-angle grain boundaries. This assertion is further supported by the studies
of nanostructured bulk material described in Section 19.3.

3. Different parallel glide dislocations can interact in a complex way to form networks
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Figure 19.13.: Simulation results of nanostructured material with twin lamella substruc-
ture under uniaxial loading for two different twin lamella thicknesses, all high-energy
grain boundaries. Subplot (a) shows the potential energy field after uniaxial loading
was applied. Interesting regions are highlighted by a circle. Unlike in Figure 19.12,
dislocations are now nucleated at all grain boundaries. The nucleation of dislocations is
now governed by the resolved shear stress on different glide planes. Subplot (b) high-
lights an interesting region in the right half where i. cross-slip, ii. stacking fault planes
generated by motion of partial dislocations and iii. intersection of stacking fault planes
left by dislocations is observed.

of dislocations, as shown in Figure 19.10 (a blow-up picture, showing only partial
dislocations and grain boundaries while filtering out the stacking faults).

Our simulations show that relaxation of grain boundary tractions changes the dis-
location microstructure and triggers completely different stress relaxation mechanisms
in thin films. We have also investigated nucleation of parallel glide dislocations from
diffusion wedges using the quasi-continuum method. The results of this simulation are
discussed in Section 2.3.3 and results were shown in Figure 2.7, for instance. The same
behavior was observed in these simulations as with purely atomistic methods.

Without relaxation of grain boundary tractions, threading dislocations dominate thin
film plasticity, while under grain boundary diffusion, dislocations on parallel glide planes
dominate. Threading dislocations are found to be mostly complete dislocations, while
we see a strong tendency to nucleate partial dislocations in the case of parallel glide
dislocations in the nanometer-sized grains investigated here. This is qualitatively con-
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sistent with results of atomistic modeling of deformation of nanocrystalline materials
[217, 242, 235]. At nanoscale, the role of partial dislocations becomes increasingly
important! Twinning along parallel planes might become an important deformation
mechanism at high strain rates, as it is shown in Figure 18.4.

The transition of the deformation mechanism from threading dislocations to parallel
glide dislocations is also observed in recent experimental investigations [24, 55]. Experi-
ment clearly shows that once grain boundary diffusion is shut down in very thick films or
by a capping layer, threading dislocations dominate plasticity [24, 55, 25]. When grain
boundary diffusion is active because there is no capping layer or the film thickness is suf-
ficiently small, parallel glide dislocations dominate. This indicates that mechanisms re-
laxing the grain boundary tractions are active during the deformation of ultra-thin films.
Experimental results are in good qualitative agreement with the molecular-dynamics re-
sults reported in this work.

Another important feature is that parallel glide dislocations do not glide as easily
along inhomogeneous low-angle grain boundaries as they do along homogeneous high-
energy grain boundaries, as shown in Figure 19.8. This is explained by the fact that
the low-energy grain boundaries are composed of an array of misfit dislocations and
thus rather inhomogeneous. Similar mechanism has been observed in experiment. In
[25], it was reported that dislocations are effectively repelled from certain type of grain
boundaries causing significant bowing.

Figure 19.7 (b) reveals that not only parallel glide but also some threading dislocations
are generated at the grain boundary-surface interface. This observation is in qualitative
agreement with experiment [25]. Our studies of constrained grain boundary diffusion in
polycrystalline samples led to similar results and are also in qualitative agreement with
experiment.
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Figure 19.14.: Modeling of constrained diffusional creep in polycrystalline samples; nu-
cleation of threading versus parallel glide dislocations. The blowup in panel (c) shows
an energy analysis of the dislocation structure, and visualizes a parallel glide disloca-
tion nucleated from a grain boundary diffusion wedge. The surface steps indicate that
threading dislocations have moved through the grain, and no threading dislocations ex-
ist in grain 1. The black lines show the network of parallel glide dislocations in grain 1
(in other grains we also find parallel glide dislocations in snapshot (d) but they are not
shown).
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Figure 19.15.: Change of maximum shear stress due to formation of the diffusion wedge.
In the case of no traction relaxation along the grain boundary, the largest shear stress
occur on inclined glide planes relative to the free surface. When tractions are relaxed,
the largest shear stresses occur on glide planes parallel to the film surface.
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results of modeling of thin films

We have described a new deformation mechanism in submicron thin copper films referred
to as constrained diffusional creep with subsequent parallel glide dislocation nucleation.
Together with experimental observations [25], the results of atomistic modeling of con-
strained grain boundary diffusion provide evidence that it is an important deformation
mechanism in very thin uncapped copper films. The observation of parallel glide dislo-
cations nucleated at grain boundary diffusion wedges (shown in Figure 17.5) agrees with
experimental investigations of deformation of ultra thin copper films [24, 55, 25]. The
results also agree well with the predictions by recently developed continuum mechan-
ics theory [88, 251], thus closing the experiment-theory-simulation linkage. The most
important result is that once other stress relaxation mechanisms (e.g. by dislocation
motion) are shut down, diffusional flow of matter along grain boundaries dominate the
mechanical properties of thin metal films on substrates.

An important contribution of this work is the atomistic study of constrained diffusional
creep and subsequent parallel glide dislocation nucleation. We find that grain boundary
diffusion could be modeled by classical molecular-dynamics, in agreement with reports
in previous studies [240, 235]. However, modeling of grain boundary diffusion is diffi-
cult with classical molecular-dynamics and is only possible under large stress and high
temperatures. In our simulations, we apply several GPa stress and study diffusion at
elevated temperatures on the order of 90 % of the melting temperature of copper.

Modeling at the atomic scale helped to identify the key mechanism of dislocation
nucleation from a diffusion wedge. The simulations allowed to establish a detailed un-
derstanding of the dislocation nucleation process close to a diffusion wedge. This led to
the definition of a critical stress intensity factor for parallel glide dislocation nucleation.
The critical value for dislocation nucleation from a diffusion wedge is twice as large com-
pared to a crack. This was explained by the difference in force balance on the incipient
dislocation: For dislocation nucleation near a diffusion wedge, a dislocation dipole needs
to be generated where the dislocations are one Burgers vectors apart. In the case of a
crack, the incipient dislocation senses the image force of the surface corresponding to
a “virtual” dislocation dipole where the dislocations are two Burgers vectors apart (see
Figure 15.4 for a schematic visualization of these considerations). The atomic simulation
results support this theoretical model since the ratio of critical stress intensity factor of
a diffusion wedge to a crack is found to be around two.

As discussed in Section 17.4.2, a crack and a diffusion wedge have major differences
in the time scale associated with creation of dislocations. A crack is a ready source
for dislocations, while a diffusion wedge has an intrinsic characteristic time associated
with dislocation climb. In the long-time limit on the order of a characteristic time τ ,
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20. Summary and discussion of the results of modeling of thin films

the diffusion wedge behaves as a crack in agreement with theoretical considerations [88].
The change of maximum resolved shear stress due to climb of edge dislocations into the
grain boundary is schematically visualized in Figure 19.15.

Our studies also corroborate the hypothesis of a threshold stress for constrained grain
boundary diffusion. Unlike as proposed in the existing theories [88], we postulate that
diffusion can not completely relax stresses in the film and introduce the concept of a
threshold stress in the continuum theory. Experimental evidence of a threshold stress
[132, 133, 131] as well as our atomistic modeling support this concept. The modified
continuum theory was applied to modeling of the average stress in the film during thermal
cycling experiments, and this new concept of the threshold stress allowed for some
improvement in the agreement of the theory and the experimental data. In particular
at high temperatures where constrained diffusional creep dominates, the new model
describes the stress-temperature curves better (see, for instance in Figures 16.2 and
16.3). This suggests that the threshold stress for diffusion initiation is a useful concept.

Atomistic studies of polycrystalline thin films helped to clarify the nucleation mecha-
nisms of dislocations from different types of grain boundaries. We find that low-energy
grain boundaries provide more fertile sources for dislocations than high-energy grain
boundaries. This concept helps to explain why the dislocation density is several times
higher in grains neighboring to low-energy grain boundaries in our simulations.

We observe that mostly partial dislocations are nucleated from the grain boundaries
in nanostructured thin films. This contradicts the classical theories of deformation [109]
where it is predicted that complete dislocations dominate, but it is in agreement with
other studies of deformation of nanostructured bulk materials [215, 242, 217, 66, 41]. A
detailed investigation of the dislocation nucleation process from low-energy and high-
energy grain boundaries provided insight into the atomic mechanisms of this process.
One of the important observations is that dislocation half loops are generated on different
glide planes causing formation of sessile jogs in the dislocation line that generate point
defects as they move.

Additional simulations of constrained grain boundary diffusion in polycrystalline films
suggested that there is a strong dependence of the diffusivities on the grain boundary
structure. We could also show that parallel glide dislocations are nucleated along grain
boundaries with highest diffusivities. This result shows that diffusion and nucleation
of parallel glide dislocations are highly coupled, thus supporting the theoretical under-
standing of the process [88].

20.1. Usage of atomistic simulation results in
hierarchical multi-scale modeling

Classical molecular-dynamics is rather constrained with respect to the accessible time
scale. One of the drawbacks is that parameter studies with varying film thickness are
difficult, if not impossible to carry out with today’s computers. Therefore, hierarchical
multi-scale modeling may serve as a useful tool to reach higher length-and timescales.
Such studies are now being frequently applied in materials modeling (see, e.g. [102, 157,
224]). Here we briefly describe how a coupling of molecular-dynamics with mesoscopic
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Figure 20.1.: Flow stress σY versus the film thickness hf , as obtained from mesoscopic
simulations of constrained diffusional creep and parallel glide dislocation nucleation (data
taken from [101]). The results are shown for two different initiation criteria for diffusion
(constant source and therefore local criterion as proposed in equation (15.2), and a film-
dependent source). In the case of a local criterion for diffusion initiation, the yield stress
is film-thickness independent as observed in experiment [25].

simulations was achieved and review the results of a mesoscopic study that was carried
out based on the molecular-dynamics results discussed in this thesis.

Mesoscopic methods must rely on phenomenological input parameters or rules. The
most important contribution by the molecular-dynamics simulations was the concept
of a critical stress intensity factor which could be translated into a discrete dislocation
formulation of diffusional creep [101]. The mesoscopic model reported in [101] follows
the well-known discrete dislocation models in two and three dimension described in the
literature (see for example [192, 223, 224, 165] for thin film plasticity). In such models
dislocations are considered sources of stress and strain in a linear elastic continuum.

The proposed discrete dislocation model for diffusional creep in ultra-thin films proved
to be capable of predicting experimentally measurable quantities like the flow stress
[101]. The two-dimensional model reveals the existence of a threshold stress for grain
boundary diffusion, in agreement with atomistic simulations and experimental results.
The investigation of different conditions for nucleation of climb and glide dislocations,
as well as their interaction with grain boundaries, allowed to conclude that the diffusion
threshold stress should only depend on the strain in the top layer of the film, and thus
be independent of the film thickness. This gives rise to a thickness-independent flow
stress for ultra-thin films, in good agreement with the relevant experimental results [25].

An important point is that only a local criterion for initiation of diffusion as proposed
in equation (15.1) or equation (15.2) leads to a film thickness-independent yield stress.
If the source for diffusion initiation is chosen film-thickness dependent, the yield stress
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is also a function of the film thickness. Since the yield stress is found independent of
the film thickness in experiment [25], there is reason to believe that our assertion of
a local criterion for diffusion initiation is correct. This is in contrast to the nucleation
criterion for parallel glide dislocations, which is a global criterion dependent on the
film thickness. The results for the yield stress obtained from mesoscopic simulation
are summarized in Figure 20.1 [101]. The yield stress as a function of film thickness
is shown for two different initiation criteria for diffusion (constant source and therefore
local criterion as proposed in equation (15.2), and film-dependent source). In the case
of a local criterion for diffusion initiation, the yield stress is film-thickness independent
as observed in experiment [25]. The yield stress increases slightly for very thin films.

The results obtained by this hierarchical multi-scale simulation method illustrate the
usefulness of the atomistic approach and its possible transferability to other materials
phenomena for which fully atomistic simulations are not yet feasible.

20.2. Mechanisms of plastic deformation of ultra-thin
uncapped copper films

Prior to this study, no comprehensive overview over the deformation mechanisms in ultra
thin films was reported. The results of atomistic simulations, experiments, continuum
modeling as well as mesoscopic modeling have advanced to a level that they allow drawing
general conclusions about the deformation mechanism in ultra thin films. Here we
summarize the main results in a deformation map of thin films. The objective of this
is to provide a clear overview over the different deformation mechanisms in ultra thin
films.

20.2.1. Deformation map of thin films

The results from the numerical modeling reported in this thesis and in [101] together
with experimental findings reported by different authors [25] allow us to qualitatively
describe different deformation mechanisms that occur in thin films in the sub-micron
regime. We propose that there exist four different deformation regimes. These are

• Regime (A): Deformation with threading dislocations,

• Regime (B): Constrained diffusional creep with subsequent parallel glide,

• Regime (C): Constrained diffusional creep without parallel glide, and

• Regime (D): No stress relaxation mechanism with no diffusion and no dislocation
motion.

A schematic “deformation map” is plotted in Figure 20.2. This plot shows the critical
applied stress to initiate different mechanisms of deformation as a function of the film
thickness. We assume that the loading is applied very slowly, and the temperature is
sufficiently high such that diffusive processes are generally admitted.
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Figure 20.2.: Deformation map of thin films, different regimes. Thin films with thick-
nesses in the sub-micron regime feature several novel mechanisms next to the deformation
by threading dislocations (A). For example, plasticity can be dominated by diffusional
creep and parallel glide dislocations (B), purely diffusional creep (C) and no stress re-
laxation mechanism (D).

The critical applied stress to nucleate threading dislocations scales with 1/hf [77,
167, 169]. We note that the 1/hf-scaling has been found in two-dimensional molecular-
dynamics simulations [195] recently. Two-dimensional mesoscopic studies [165] revealed
qualitatively that the flow stress increases with decreasing film thickness.

For films thicker than a material dependent value, regime (A) is the dominating de-
formation mechanism. For thinner films, the stress necessary to nucleate threading
dislocations must be assumed larger than the stress to initiate grain boundary diffusion.
In this regime (B), diffusion dominates stress relaxation and causes a plateau in the flow
stress as shown by the discrete dislocation modeling.

Parallel glide helps to maintain grain boundary diffusion until the overall stress level is
below the diffusion threshold which is independent of the film thickness. For yet thinner
films grain boundary diffusion stops before a sufficient stress concentration to trigger
parallel slip is obtained, as suggested by our molecular-dynamics simulations.

The onset of regime (C) can be described with the scaling of the critical nucleation
stress for parallel glide with 1/hs

f (s ≈ 0.5). In this regime, the flow stress increases
again for smaller films, due to the back stress of the climb dislocations in the grain
boundary, effectively stopping further grain boundary diffusion. If the applied stress is
lower than the critical stress for diffusion, no stress relaxation mechanism is possible.
This is referred to as regime (D). The critical film thickness of 25 nm is estimated based
on the result for the critical KPG

dw from molecular-dynamics simulations.

Our investigations of ultra thin films show the richness of phenomena that occur as
the dimensions of materials are shrunk to nanometer scale. For tomorrow’s engineers,
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such knowledge may be the key to successful design.

20.2.2. Yield stress in ultra thin copper films

Figure 20.3.: Deformation map of thin copper films, yield stress. For films in the sub-
micron regime (thinner than about 400 nm), the yield stress shows a plateau. This is
the regime where diffusional creep and parallel glide dislocations dominate (regime (B)
in Figure 20.2).

The yield stress of thin films resulting from these considerations is summarized in
Figure 20.3 for different film thicknesses. For thicker films, the strength increases in-
versely proportional to the film thickness as has been shown in many theoretical and
experimental studies [127, 25, 167, 223]. If the films thickness is small enough such that
grain boundary diffusion and parallel glide are the prevailing deformation mechanisms,
the film strength is essentially independent of hf , as shown by the discrete dislocation
model (reviewed in Section 20.1) and seen in experiment [25]. However, for films thinner
than hf ≈ 25 nm, the modeling predicts an increase in strength with decreasing film
thickness (see also Figure 20.1).

In Figure 20.3, the film thickness of hf ≈ 400 nm below which the yield stress remains
constant, as well as the plateau yield stress of 0.64 GPa are taken from experimental
results of copper thin films [55, 25].

20.3. The role of interfaces and geometric confinement

Our studies show that interface properties and geometric confinement can govern the
deformation mechanisms in thin films. Important interfaces in thin films are

• the film surface,
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• the grain boundary between two neighboring grains,

• and the interface of film and substrate (geometrical constraint).

In the following paragraphs, we will discuss the role of these different interfaces and
constraints on the mechanical behavior.

20.3.1. Film surface

The film surface is important since it allows that atoms diffuse along the surface into the
grain boundary. As shown in [251], the slower of the processes surface or grain boundary
diffusion controls the dynamics of constrained diffusional creep.

20.3.2. Grain boundary structure

The governing character of the grain boundary structure in thin films is found either
when deformation is mediated by diffusional creep, or by dislocation motion: As dis-
cussed in [240], the grain boundary structure has a significant influence on the diffu-
sivities, and therefore determines how fast the tractions along the grain boundaries are
relaxed and a singular stress field develops. This is also shown in Figure 19.14 where the
depth of grain boundary grooves is deepest at high-energy grain boundaries correspond-
ing to the fastest diffusion paths. Another indication of this is that high-energy grain
boundaries lead to more pronounced surface grooves than low-energy grain boundaries
when grain boundary diffusion is active. If deformation is carried by nucleation and
motion of dislocations, the structure of the grain boundaries also has a significant influ-
ence on the details of deformation: Low-energy grain boundaries composed of arrays of
misfit dislocations are more fertile sources for dislocation nucleation than homogeneous
high-energy grain boundaries. On the other hand, motion of parallel glide dislocations
through grains may be hindered due to pinning of dislocations when such a inhomoge-
neous grain boundary structure is present (see discussion in Section 19.2.2).

20.3.3. Geometrical constraints

The geometrical constraint of no sliding at the interface of film and surface is the rea-
son for the singular stress field to develop around the diffusion wedge and is therefore
responsible for the occurrence of parallel glide dislocations [88].

The geometrical constraint imposed by the grain size strongly influences the dislo-
cation network that develops inside the grain. In very small grains of a few tens of
nanometers, only one or two dislocations fit into a grain. In larger grains of several
hundred nanometers, a much larger number of dislocations fit into each grain and may
form a more complicated network (see Figure 19.10). Similar considerations apply to
the Hall-Petch hardening [51].
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20.3.4. Deformation mechanisms of small-scale materials

The dominance of grain boundary processes during deformation of ultra thin films is in
qualitative agreement with recent investigations of other small-scale materials, such as
nanostructured materials [235].

The preliminary study on nanostructured materials discussed in Section 19.3 showed
that an intergranular nano-substructure constituted by twin lamellas could play an im-
portant role in effectively strengthening materials. Since twin grain boundaries are
relatively poor diffusion paths (since they are low-energy grain boundaries), such mate-
rials could potentially be successfully employed at elevated temperatures where “usual”
materials with ultra-fine grains can not be utilized since creep becomes the dominant
deformation mechanism. The study supports the notion that geometric confinement has
strong impact on the deformation, and could potentially be utilized to create materials
with superior mechanical properties.

20.4. Linking atomistic simulation results to continuum
mechanics theories of plasticity

Atomic measures for quantities like stress or elastic strain are well-described in the litera-
ture and it has been shown in several cases that good agreement of continuum mechanics
theories and atomistic simulation results can be obtained, even in the dynamic cases as
shown in this thesis (see, for instance the studies reported in Chapter 6). However, no
direct link between continuum mechanics concepts of plasticity such as strain gradient
theories of plasticity has been established so far. In this section we discuss how such
coupling could in principle be achieved.

Figure 20.4.: The multiplicative decomposition F = FeFp in continuum theory of plas-
ticity.

We assume that the deformation gradient is multiplicatively decomposed, thus F =
FeFp where the lattice distortion is assumed to be contained in the elastic part Fe, and
the plastic slip is contained in Fp [142]. Such deformation mapping is illustrated in Fig-
ure 20.4. In the continuum theory of plasticity, the geometrically necessary dislocation
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density tensor A is defined as [161, 100, 142]

A = det(Fe)F
−1
e (curlF−1

e )T =
1

det(Fe)
Fp(CurlF−1

p )T . (20.1)

Note that Curl is the curl differential operator with respect to the material point in the
reference configuration, while curl is the curl operator with respect to a material point
in the current configuration.

From an atomistic point of view, the dislocation density can be expressed as [142, 161,
100]

A = l ⊗ b
∆l

∆v
(20.2)

where l denotes the unit tangent vector along the dislocation line segment, ∆l is the
element of the dislocation line and ∆v is the elementary volume. The operator ⊗ denotes
a dyad product. Under the assumption of infinitesimal deformation and negligible elastic
strain, the dislocation density tensor is directly linked to the plastic distortion [161]. In
the case of multiple dislocation segments within a representative volume element, the
dislocation density tensor is defined by a linear combination of dislocations

A =
∑

k

ηklk ⊗ bk (20.3)

where

ηk =
dlk
dv

b. (20.4)

An integral formulation of equation (20.3) is given by

A =
1

∆v

∫
⊥ in ∆v

dl ⊗ b. (20.5)

Note that statistically stored dislocations do not contribute to A in crystal plastic-
ity since dislocation dipoles cancel. Curved dislocation lines can be approximated by
straight dislocation segments.

Equation (20.3) could be used to calculate the dislocation density tensor from atom-
istic data. The slip vector approach, as described in Section 2.5.3 is a possible candidate
for this purpose. As discussed earlier, Figure 2.10 shows the result of a slip vector analysis
of a single dislocation in copper. The quantitative information obtained from atomistic
results described in Section 2.5.3 can be used to calculate the dislocation density tensor.

20.5. Far-reaching implications and outlook to future
research

As illustrated in the studies carried out in this thesis, a complex interplay of diffusion and
“classical” dislocation mediated plasticity exists and governs the mechanical properties.
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In view of technological applications, this could lead to the question of how strong can
materials get? In thin films, experimental and numerical studies [101, 25] reveal that
the strength saturates at a plateau at the nanoscale, and the results suggest that grain
boundary processes such as grain boundary diffusion play an increasingly important role,
the smaller the relevant length scales in materials get.

This suggests that if means to inhibit grain boundary processes such as diffusion could
be found, the strength of nanostructured materials could be significantly increased. One
possible solution for thin film systems would be to design effective capping layers that
shut down grain boundary diffusion. The effect of capping layers on shutting down
diffusion in thin films has been demonstrated in experiment [234].

Considerations of how strong can materials get have recently also been carried out to
investigate the fracture strength of biological materials such as bones and teeth with a
nano-substructure [85]. Assisted by studying nature’s design of these materials, it was
found that at a critical characteristic length scale of several nanometers, brittle materials
become intolerant to flaws since the stress magnification at cracks vanishes at a critical
length scale. This concept could be employed to address an important open question
in the literature, which is to understand the fundamentally different behavior of coarse-
grained versus nano-grained metals [217, 242, 235]. A systematic study, possibly with a
microstructure as described in Section 19.2, could be used to investigate the transition
from dominance of partial dislocations to complete dislocations depending on the grain
size.

Figure 20.5.: The figure shows a summary of the investigation of constrained diffusional
creep of thin films with different approaches [101, 24, 55, 25, 88, 250, 251]. The green
arrow indicates agreement of the results obtained by different methods, the red arrow
refers to transport of information and predictions, and the blue arrows correspond to
general guidance for model development.

From a more philosophical viewpoint, the grain boundary appears to be behave some-
where in between a free surface (crack) and bulk material [88]. Indeed, from the energy

298



20.5. Far-reaching implications and outlook to future research

point of view it is well-known that the grain boundary energy is usually between the
free surface and the bulk material. The present study shows that constrained diffusional
creep provides a mechanism that slowly transforms the grain boundary into a crack-like
object due to applied stress.

Together with the work reported in the literature [24, 55, 101, 25], constrained diffu-
sional creep was investigated with a variety of methods, where each of the approaches
contributed an important part to the understanding of the mechanisms. A schematic
overview is depicted in Figure 20.5, and we summarize some important points:

• Continuum theory: Continuum theory predicted the existence of diffusion wedges,
which was later verified in experiment. Continuum theory also served as guidance
to develop molecular-dynamics simulations. In turn, molecular-dynamics simula-
tions helped to advance continuum theory, for instance by introducing the concept
of the threshold stress for diffusion initiation.

• Experiment: Experiment helped to guide development of continuum theory with
the new concept of a threshold stress. Experiments also confirmed the predictions
by the continuum modeling that crack-like diffusion wedges lead to parallel glide
dislocations.

• Atomistic simulations: The results in molecular-dynamics simulations confirmed
the conclusions that were drawn from experimentalists, for instance that diffusion
wedges are created featuring a crack-like stress field leading to nucleation of parallel
glide dislocations. Molecular-dynamics simulations guided mesoscopic simulations
that used the results of molecular-dynamics simulations as input parameters for
phenomenological rules. Atomistic simulations also confirmed the predicted Rice-
Thomson continuum model for nucleation of parallel glide dislocations.

• Mesoscopic simulations: The most important result of mesoscopic discrete dislo-
cation dynamics simulations is the prediction of a film thickness-independent yield
stress [101]. This observation is in direct agreement with experimental results,
even though no input parameters from experiments were used! This also validates
the molecular-dynamics simulation results.

Similar joint theoretical, experimental and numerical studies could be applied to other
materials phenomena in a similar manner.
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21. Discussion and summary

We have presented a set of studies where atomistic simulations were used in conjunction
with continuum mechanics concepts. The studies included

• dynamic fracture,

• diffusional creep in thin films and

• dislocation nucleation from grain boundaries and cracks.

It was illustrated that joint application of atomistic with continuum mechanics methods
can be a fruitful approach in studying materials phenomena at small scales: For in-
stance, continuum theory can guide atomistic simulations (e.g. modeling of constrained
diffusional creep), and simulation can also help to develop new continuum theories and
concepts (e.g. characteristic energy length scale in dynamic fracture). In some cases,
computer simulation results can also stimulate experimental work as in the case of inter-
sonic mode I cracks [32, 172]. This exemplifies that due to increasing computer power,
new physical phenomena may be discovered by computer simulation!

In this final chapter, we present a discussion of the approaches taken to solve the
problems reported in this thesis. We proceed as follows. We start with a critical assess-
ment of the simulation tools that we used in our studies. Then, we focus on possible
ways of coupling atomistic simulation results to other materials modeling concepts and
experimental data, and discuss the predicability of atomistic simulations. We conclude
with an outlook to possible future research.

21.1. Potential and limitations of the molecular
dynamics method

A critical limitation of applicability of atomistic methods is the available computer
power: Huge computers are required to simulate systems on a sufficiently long time scale,
or model systems that comprise of a large number of atoms. Lack of computer power
inhibits application of atomistic methods in many cases. Nevertheless, the enormous
increase in computer power in recent years allowed for very large atomistic simulations.
Recent reports of billion-atom simulations [12, 185, 193] show that such ultra-large
scale simulations are in principle feasible. Particularly during the analysis of these
ultra-large scale simulations [36], it has become apparent that methods to analyze and
link atomistic results to other modeling techniques and experimental results need to
be further developed [34]. The analysis of terabytes of data and extracting “useful”
information is a highly non-trivial task.
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21.1.1. Length- and timescale limitations

A simulation comprising a billion atoms undoubtedly represents a new level of achieve-
ment in atom system size. However, the crystal studied in [12], for example, still repre-
sents a very small solid, only 0.3 microns on a side. This illustrates that it is important
to further advance computing power in the future. The analyses described in [12, 36]
illustrate that despite certain shortcomings of the molecular-dynamics method, it can,
with the limitations understood, be used to study plasticity in crystals approaching the
micrometer scale. Recent reports of application of molecular-dynamics to study diffu-
sion [240, 235] in polycrystals with grain sizes of several tens of nanometers (as well as
the studies presented in this thesis) further illustrate to what level atomistic simulations
have advanced. Miniaturization of technology, while at the same time computer power
increases dramatically, will soon result in an overlap of the scale that is technologically
relevant, with the scale that is accessible to molecular-dynamics. We thus believe that
for tomorrow’s engineering applications, molecular-dynamics simulations will provide
an important tool: In some of tomorrow’s technology components, not 1023 atoms will
be contained, but only 1010 atoms, which is within the regime accessible to molecular-
dynamics simulations, but, however not within the scope of continuum methods!

The time scale limitation is more severe than the limitations with respect to system
size: In the classical molecular-dynamics schemes, it is in principle possible to simulate
arbitrarily large systems, provided sufficiently powerful computers are available. How-
ever, the time scale always remains confined to several nanoseconds. Surprisingly, this
is also true for very small systems independent of how large computers we use. The
reason is that very small systems can not be effectively parallelized. In addition, time
can not easily be parallelized. Surprisingly there exists little tradeoff between desired
simulation time and desired simulation size. This problem was recently referred to as
the “time-scale dilemma of molecular-dynamics” by Voter [229]. Many systems of inter-
est spend a lot of time in local free energy minima before a transition to another state
occurs. In such cases, the free energy surface has several local minima separated by
large barriers. This is computationally highly inefficient for simulations with classical
molecular-dynamics methods since the thermal vibrations of all atoms have to be sim-
ulated. An important field where classical molecular-dynamics is difficult to apply are
diffusive processes. Although we were able to model grain boundary diffusion with clas-
sical molecular-dynamics in this thesis, we could only achieve this at very high temper-
atures and under unrealistically high strain rates and stresses. Luckily, we find that the
mechanism of parallel glide dislocations is still active under these conditions. However,
in some other cases this may not be the case and therefore classical molecular-dynamics
may not be applicable at all. Advanced molecular-dynamics simulation methods as de-
scribed in Section 2.3.2 could be a possible approach to overcome the limitations. As
an example, we applied the temperature accelerated dynamics method to calculate the
surface diffusivity of copper, and to calculation of the atomic activity near a surface step
at a copper surface in Section 2.3.2. Development of such methods should, in our opin-
ion, be a very important future research objective. Advancing methods that would be
more generally applicable than today’s tools and yet overcome the time scale limitations
could potentially revolutionize the way how atomistic simulations are applied.
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21.1.2. Multi-scale simulations

A possible way to overcome the time-scale restrictions of purely atomistic simulations
is to take advantage of multi-scale simulations. As discussed in Section 2.3.3, in par-
ticular the development of hierarchical multi-scale simulation techniques is an emerging
field. Hierarchical multi-scale simulation consist of a series of simulation tools that feed
information to the next level of modeling. For instance, dislocation reactions could be
investigated on a fundamental level using classical molecular-dynamics and then inserted
into phenomenological rules. For hierarchical multi-scale simulations, the most difficult
issue is to couple the different simulation tools. The study of diffusional creep in thin
films using mesoscopic methods provided further evidence that such an approach is fea-
sible [101] and can lead to useful results. The study reported in [101] used the results
of atomistic simulations reported in this thesis as input parameters to define empirical
rules for parallel glide dislocation nucleation (see Section 20.1). The most important re-
sult presented in [101] was the observation of a film thickness independent flow stress, a
finding in direct agreement with experimental results [25] (see Figure 20.1). Mesoscopic
simulations fed by atomistic simulation results are virtually the only way to perform
such studies. We believe that hierarchical multi-scale simulations that base upon atom-
istic simulation results could be an important future modeling approach for a variety
of complex materials phenomena. This could be considered an important “niche” for
classical molecular-dynamics. Molecular-dynamics could play a role in helping to under-
stand atomic mechanisms (such as the details of nucleation of parallel glide dislocations,
for instance) as well as providing quantitative numbers (like the critical stress intensity
factor for nucleation of parallel glide dislocations).

Another promising area are concurrent multi-scale methods such as the quasi-continuum
method [208]. The method was exemplified in Section 2.3.3 to study parallel glide dis-
location nucleation in thin copper films constrained by substrates. The results of this
calculation are shown in Figure 2.7. The analysis shows good agreement with the results
in purely atomistic simulations, for instance shown in Figure 17.6. The advantage of the
quasi-continuum method is that the simulation time required to carry out such studies
is significantly reduced and that the simulations can be performed on a LINUX work-
station, instead of using a supercomputer! Compared to classical molecular-dynamics
simulations, concurrent multi-scale methods are often based on complicated numerical
procedures, and certainly much future research needs to be carried out to make them
applicable to more general cases. For instance, most of the available techniques are
only for quasi-static cases and are restricted to simulations at 0 K. Nevertheless, such
techniques have great potential and are expected to play an important role in the future.

21.1.3. Applicability and predicability of atomistic methods

Despite the appeal of atomistic methods, it is misleading to assume that molecular-
dynamics could be applied to any problems. One needs to be very critical where atomistic
methods can be utilized. Given that the bonding between atoms can be described
sufficiently accurate, in the field of dynamic fracture molecular-dynamics is undoubtedly
one of the methods with the greatest appeal. This is because the relevant time- and
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yes yes w/ no
limitations

Fracture in model materials ×
Fracture in real materials ×
GB diffusion at high temperatures ×
GB diffusion at low temperatures ×
Plasticity in model materials ×
Plasticity in real materials ×

Table 21.1.: Applicability of classical molecular-dynamics simulations to a selection of
problems in materials science.

length scales are well within the regime accessible to molecular-dynamics.

In other areas, for instance where activated events play a governing role, the usage
of classical molecular-dynamics may be questionable and its application needs to be
critically assessed. Other simulation techniques like finite element methods or mesoscopic
simulations may be advantageous in some cases. Applicability of molecular-dynamics to
different problems in materials science is summarized in Table 21.1.

An important issue in atomistic modeling is the description of the interatomic bonding.
Many researchers tried modeling the interatomic bonding according to specific materials.
A more unconventional, alternative approach is the development of “model materials” for
computer experiments as used in some parts of this thesis (see Chapter 5, for instance).
In such cases, interatomic potentials are not fit to model a specific material (e.g. copper),
but instead aim on describing generic features of a whole class of materials. Such model
materials have been developed for ductile and brittle materials (e.g. [12]), and are
becoming increasingly popular particularly in the mechanics community. However, one
needs to be critical with respect to the validity of the results when using such model
materials. For a discussion on the role of interatomic bonding in describing the dynamics
of fracture in different materials, see [3].

An important conclusion is that atomic simulations should be used with care: Al-
though they can be predictive in some cases, the severe length- and time scale limita-
tions can provide a serious burden. It is often only a small window where atomistic
simulations can be used. In order to carry out useful simulations, one needs to have
good understanding of this window. For instance, since diffusional creep can be stud-
ied with classical molecular-dynamics only in the high-temperature regime close to the
melting temperature, it may be questionable to extrapolate the results (e.g. the critical
stress intensity factor) to lower temperatures. This fact also underlines the importance
of validating the results of atomistic simulations with experimental work.
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21.2. Coupling between continuum theories and
atomistic methods

We have shown that continuum theories can be coupled to atomistic methods by a
variety of concepts. The most prominent concept is to use quantities like the virial stress
and virial strain as done in Chapter 6, for instance. Other quantities like energy flux,
particle velocity or potential energy field could also be directly used to link continuum
to atomistic methods.

In Chapter 17, the concept of a critical stress intensity factor was employed to define
critical conditions for nucleation of parallel glide dislocations. Essentially, this approach
relies on determination of displacements at the atomic scale and fitting the results to
continuum mechanics solutions. The stress intensity factor also served as a method to
couple atomistic and mesoscopic simulations [101].

For the analysis of dislocations, energy filtering techniques and more advanced meth-
ods such as the centrosymmetry parameter proved to be helpful as outlined in Chap-
ter 18, for instance. However, the analysis of networks of dislocations is generally not
as straightforward as the study of elastic deformation fields. In particular, the linkage
of atomistic simulation results to continuum theories of plasticity is not understood well
and remains yet to be explored. The development of analysis tools should thus be in
the focus of future research. In particular, tools to analyze the three-dimensional data
of complex dislocation topologies more conveniently and methods to express the results
in terms of quantities used in the continuum mechanics community should be further
developed [36]. A possible approach for coupling of dislocation simulation results with
continuum theories of plasticity is calculation of the dislocation density tensor from the
atomistic simulation results, as outlined in Section 20.4. We believe that due to the
complexity of the problem, the development of numerical tools to couple atomic scale
plasticity is just at its beginning and much further research needs to be completed.

21.3. Applicability of continuum mechanics concepts to
study materials phenomena at very small scales

Historically, the coupling of continuum mechanics with the atomistic viewpoint has
often been neglected. It is only in recent years that the increasing interest in nanoscale
phenomena has led to attempts to use continuum theories to describe deformation at
the nanoscale. This was exemplified for instance in numerous studies of the mechanical
properties of carbon nanotubes [239]. Most of the studies were confined to the static
case.

The studies in this thesis showed that continuum mechanics concepts can also be
applied to study dynamic materials phenomena at very small scales. Linear elastic
concepts can only be used when material nonlinearities are small, and they can not be
applied when nonlinearities are present, as illustrated in Chapter 7.

In the field of thin film mechanics, continuum theory proved to be a helpful guidance
to atomistic modeling. Some of the predictions by continuum theory, as for instance the
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crack-like displacement field near a diffusion wedge could be qualitatively reproduced at
the atomic scale as discussed in Chapter 17 (see Figure 17.3).

21.4. Outlook to future research

The studies reported in this thesis could lead to several new topics of research.

A possible area of future investigations would be the investigation of the Broberg
problem (crack propagating in a thin layer embedded in a matrix material with different
elastic properties) when the inner layer is softer than the surrounding material. The
existing solution for a mode I crack [30] suggests that there is no stress concentration
any more. It would be interesting to study the atomic details of failure in such a system.

From the theoretical viewpoint, development of analytical solutions treating cracks at
interfaces would be of interest. In particular the observed mother-daughter-granddaughter
mechanism (see Section 9.2) and the observation of daughter cracks in mode I crack-
ing along interfaces remain yet to be analyzed analytically. In addition, experimental
evidence of this dynamical phenomena needs to be provided.

In the field of mechanical properties of thin films, an interesting point of study would
be to investigate diffusional creep under compressive loading. This is motivated by
experimental thermal cycling experiments (see Figure 16.2, for instance) where the stress
at the grain boundary changes from compressive to tensile during cycling. A point of
particular interest is to study if there is a net mass transport out of the grain boundary,
possibly because of an asymmetry in the diffusional mass transport. Recent experimental
observations suggest that similar mechanisms may occur in thin films and could possibly
be explained by an asymmetry of mass transport [57].

The area of plasticity of polycrystalline materials is another point of future research.
As we have illustrated in this thesis, plasticity is dominated by partial dislocations in
grains with several tens of nanometers diameter. In contrast, it is known from experiment
that in larger grains complete dislocations prevail (e.g. [109, 118]). In the literature,
this issue has not been clarified so far. A systematic study with varying grain size could
shed light on this problem, if it would be possible to cover the transition from one to the
other mechanism by a series of molecular-dynamics simulations. Based on the atomistic
simulation results, new continuum mechanics theories could be developed.

A more unconventional approach is to combine classical materials science concepts
with biology and nanotechnology. We believe that classical molecular-dynamics could
also be a very useful approach in these fields. In recent years, a trend to combine
studies of classical materials science areas with biological applications became apparent.
Numerous studies focused on modeling of carbon nanotubes. In a recent paper by Gao
et al. [87], interaction of DNA with carbon nanotubes was studied. The authors showed
that upon a critical CNT radius, the DNA is spontaneously encapsulated into the carbon
nanotube.

Other studies could focus on the mechanical properties of carbon nanotubes (see, for
instance [239]). When the CNTs approach sizes close to micrometer dimensions, large-
scale computers become suitable tools for investigation. In Figure 21.1 we show several
snapshots of CNTs under compression. The plot shows an overview of deformation
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Figure 21.1.: Shell-rod-wire transition of carbon nanotubes as a function of length-to-
diameter ratio.

mechanisms of single wall carbon nanotubes in compression [37]. This could be referred
to as a shell-rod-wire transition as a function of the length-to-diameter aspect ratio of
the CNT. The plot shows different modes of deformation, (a) buckling of the cylindrical
shell structure, (b) rod-like behavior with localized buckling along the length of the
tube, and (c) a flexible macromolecule. Statistical mechanics and entropic forces may
play a role in the third class, the wire-like behavior of nanotubes with very large aspect
ratios. Statistical theories of macromolecules may be used to analyze the dynamics
of such nanostructures on the mesoscale. Thermodynamical properties of very long
and thin CNTs could be an interesting subject for further study. The observation of
a “self-folding” mechanism where different parts of the same CNT are brought into
adhesive contact indicates that CNTs become very flexible at very large aspect ratios.
In this case, different parts of the CNTs attract each other due to the van der Waals
interaction. It could be interesting to further study such self-folding under entropical
forces. An example of such a self-folded state is shown in Figure 21.2.

21.5. Summary

The main achievements are summarized as follows. In the area of brittle fracture

• We proposed an atomistic model of one-dimensional fracture, showing many of the
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Figure 21.2.: Self-folding of carbon nanotubes. Our simulation results suggest that the
folded state is in thermodynamical equilibrium at low temperature and unfolds at a
critical elevated temperature [37].

features of higher-dimensional models. The one-dimensional model could be used
to derive an analytical solution for cracks propagating in nonlinear materials, and
the solution predicted the deformation field near supersonic cracks.

• We studied the stress and strain fields, particle velocity fields and the energy flux
fields near rapidly propagating cracks in two-dimensional harmonic lattices and
showed that the predictions by linear elastic fracture mechanics [78] could well be
reproduced in atomistic simulations of cracks propagating in harmonic lattices.

• It was established that hyperelasticity can govern dynamic fracture, once the size of
the hyperelastic region becomes comparable to a critical length scale χ associated
with energy flux toward the crack tip. The new concept of the critical energy length
scale χ provides an immediate explanation of different experimental and numerical
results. One of the consequences of the results is the prediction of intersonic mode
I cracks and supersonic mode II cracks. The prediction by our simulations [32] was
recently verified in experiment [172] where intersonic mode I cracks were observed.

• We showed that hyperelasticity governs the dynamic crack tip instability. Cracks
in harmonic lattices propagate straight up to a critical velocity of 73 % of the
Rayleigh-wave speed, in agreement with linear elastic fracture mechanics [78, 246].
Hyperelasticity can significantly change the dynamics of cracks in homogeneous
materials. We found that mode I cracks in stiffening solids could propagate straight
with perfect mirror-like cleavage up to speeds close to the Rayleigh-wave speed. In
contrast, cracks in softening materials show a strong tendency to become unstable
at low velocities. The onset of instability is explained based on arguments of energy
flow in the softening case, and based on the change in deformation field near the
crack tip in the stiffening case.

• We showed that cracks at interfaces between dissimilar materials show a signifi-
cant different dynamics than cracks in homogeneous materials or along weak frac-
ture layers between identical materials. We observed that there exists a mother-
daughter mechanism for mode I cracks, and that the limiting speed for mode I
cracks is given by the Rayleigh-wave speed of the stiffer material. For mode II
cracks, we observed a mother-daughter-granddaughter mechanism. The limiting
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speed of mode II cracks along interfaces is given by the longitudinal wave speed of
the stiffer material, in agreement with recent experimental observation [182].

• We showed that mode I cracks carry no inertia, in agreement with experimental
results [230] and linear elastic fracture theories [78]. Intersonic mode II cracks
carry inertia, as predicted by recent theoretical progress [117]. In the nonlinear
cases, we find that the definition of a unique wave front is difficult and a trail
of waves appears. A consequence is that the crack can no longer assumed to be
inertia-less.

• We showed that the concept of the critical energy length scale χ also holds for mode
III cracks under anti-plane shear loading. A quantitative comparison of the crack
speed calculated from molecular-dynamics with recently developed continuum me-
chanics theory [44] provides additional evidence of the characteristic energy length
scale.

In the area of mechanical properties of thin films

• We proposed a criterion for initiation of diffusion. In contrast to previous studies,
we believe that constrained grain boundary diffusion can not operate below a
threshold stress. Recent experimental evidence [132, 33] supports our assumption.

• We showed that at nanoscale, the role of single dislocations becomes important. A
study of the image stress on climb edge dislocations in the GB of ultra thin films
revealed that the image stress can be on the order of GPa for extremely thin films.
Another result was that the critical stress for storage of dislocations in the GB is
quantized.

• A Rice-Thomson model was proposed to model the nucleation of parallel glide
dislocations from diffusion wedges and cracks in thin films. The model predicts
that the ratio of critical stress intensity of diffusion wedge to crack is two. This
was verified by atomistic simulations.

• We proposed a modified continuum model incorporating the concept of the thresh-
old stress and used this model to predict the stress during thermal cycling experi-
ments of thin films. A quantitative comparison with experimental results provided
some agreement. Compared to earlier modeling [234], the concept of a threshold
stress improved the agreement of the curves particularly for high temperatures.

• Using large-scale atomistic simulations we showed that mass transport from the
surface along the grain boundaries leads to formation of diffusion wedges, as pre-
dicted by theory [88]. A crack-like deformation field develops near the diffusion
wedge leading to high resolved shear stresses on glide planes parallel to the film
surface. This causes emission of dislocations that glide on glide planes parallel to
the film surface, therefore referred to as parallel glide dislocations. This simula-
tion result provides an immediate explanation of the experimental observation of
parallel glide dislocations. [24, 55, 25]. The observation of parallel glide disloca-
tions from diffusion wedges closes the theory-experiment-simulation linkage. An
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important result is that grain boundaries can be treated as traction free cracks in
a first approximation once constrained grain boundary diffusion is active.

• We studied dislocation nucleation from grain triple junctions, and showed that the
nucleation process strongly depends on the grain boundary structure. Dislocations
nucleate preferably at the grain boundary misfit dislocations of low-energy grain
boundaries.

• Large-scale atomistic simulations of polycrystalline thin films revealed that the
deformation mechanism changes completely when tractions along grain boundaries
are relaxed by diffusional creep. Whereas threading dislocations dominate in thin
films with no diffusion [127, 132, 222], parallel glide dislocations dominate in films
where diffusion is active. This finding is in agreement with recent experimental
progress [24, 55, 25]. We also observed that low-energy grain boundaries are more
fertile sources for dislocations than high-energy grain boundaries. The dislocation
density in grains neighboring low-energy grain boundaries is several times larger.
This was also confirmed in a study of nanocrystalline bulk copper.

• Different modes of deformation active in ultra thin copper films confined by sub-
strates were summarized in a deformation map. We propose that beyond the clas-
sical regime of threading dislocations, there exists several new mechanisms, one
of them being constrained diffusional creep with parallel glide dislocation nucle-
ation. Additionally, we plot the yield stress as a function of film thickness. Recent
results of mesoscopic modeling [101] used the critical conditions for nucleation of
parallel glide dislocations obtained from molecular-dynamics simulations as input
parameters and could successfully reproduce the experimental observation of a
thickness-independent yield stress when constrained diffusional creep dominates
plasticity.
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[106] P. Heino, H. Häkkinen, and K. Kaski. Molecular-dynamics study of mechanical
properties of copper. Europhysics Letters, 41:273–278, 1998.

[107] Hellan. Debond dynamics of an elastic strip, I: Timoshenko-beam properties and
steady motion. Int. Journal of Fracture, 14(1):91–100, 1978.

[108] K. Hellan. Introduction to Fracture Mechanics. McGraw-Hill, Inc., 1984.

319



Bibliography

[109] J.P. Hirth and J. Lothe. Theory of Dislocations. Wiley-Interscience, 1982.

[110] R.G. Hoagland, J.P. Hirth, and P.C. Gehlen. Atomic simulation of dislocation
core structure and Peierls stress in alkali-halide. Phil. Mag., 34(3):413–439, 1976.

[111] D. Holland and M. Marder. Ideal brittle fracture of silicon studied with molecular
dynamics. Phys. Rev. Lett., 80(4):746, 1998.

[112] D. Holland and M. Marder. Cracks and atoms. Advanced Materials, 11(10):793,
1999.

[113] J.D. Honeycutt and H.C. Andersen. Molecular dynamics study of melting and
freezing of small Lennard-Jones clusters. J. Phys. Chem., 91:4950, 1987.

[114] M.F. Horstemeyer, M.I. Baskes, V.C. Prandtl, J. Philliber, and S. Vonderheid.
A multiscale analysis of fixed-end simple shear using molecular-dynamics, crystal
plasticity and a macroscopic internal state variable theory. Model. Sim. Mat.
Science and Engr., 11:265–386, 2003.

[115] K. Huang. On the atomic theory of elasticity. Proc. R. Soc. London, 203:178–194,
2002.

[116] Y. Huang and H. Gao. Intersonic crack propagation–Part I: The fundamental
solution. Journal of Applied Mechanics, 68:169–175, 2001.

[117] Y. Huang and H. Gao. Intersonic crack propagation–Part II: The suddenly stop-
ping crack. Journal of Applied Mechanics, 69:76–79, 2002.

[118] D. Hull and D.J. Bacon. Introduction to Dislocations. Butterworth Heinemann,
2002.

[119] D. Hull and P. Beardmore. Velocity of propagation of cleavage cracks in Tungsten.
In. J. Fract., 2:468–488, 1966.

[120] G.R. Irwin. Fracture dynamics. in: Fracturing of Metals, pages 147–166, 1948.

[121] K.W. Jacobsen and J. Schiotz. Computational materials science - nanoscale plas-
ticity. Nature materials, 1:15–16, 2002.

[122] I. Kaur and W. Gust. Handbook of Grain and Interface Boundary Diffusion Data.
Ziegler Press, Stuttgart, 1989.

[123] E. Kaxiras. Personal communication.

[124] P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter. Continuous thermodynamic-
equilibrium glass transition in high energy grain boundaries? Phil. Mag. Letters,
76(3):143–151, 1997.

[125] P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter. Self-diffusion in high-angle
fcc metal grain boundaries by molecular dynamics simulation. Phil. Mag. Letters,
79(11):2735–2761, 1999.

320



Bibliography

[126] C. Kelchner, S.J. Plimpton, and J.C. Hamilton. Dislocation nucleation and defect
structure during surface-intendation. Phys. Rev. B, 58:11085–11088, 1998.

[127] R.-M. Keller, S. P. Baker, and E. Arzt. Stress-temperature behavior of unpassi-
vated thin copper films. Acta Materialia, 47(2):415–426, 1999.
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A. Virial stress and strain

Definitions of virial stress [212, 253, 259] and strain [260] allow a coupling of the atomistic
scale with continuum theories [212, 253]. The correct coupling of quantities like stress
or strain still remains an important issue in research. With its limitations understood,
the expressions of stress and strain allow for an immediate comparison of the different
levels of detail.

A.1. Virial stress

The virial stress is given by [212, 253]

σij =
1

2

∑
α,β

(
−1

r

∂φ

∂r
rirj |r=rαβ

)
(A.1)

where ri is the projection of the interatomic distance vector r along coordinate i. We
only consider the force part, excluding the part containing the effect of the velocity of
atoms (the kinetic part). It was recently shown [253] that the stress including the kinetic
contribution is not equivalent to the mechanical Cauchy stress.

The virial stress needs to be averaged over space and time to converge to the Cauchy
stress tensor. For further discussion on the virial stress and other definitions of the
Cauchy stress tensor (e.g. the Hardy stress) see [259].

A.2. Virial strain

The strain field is a measure of geometric deformation of the atomic lattice [260]. The
local atomic strain is calculated by comparing the local deviation of the lattice from a
reference configuration. Usually, the reference configuration is taken to be the unde-
formed lattice. In the atomistic simulations, the information about the position of every
atom is readily available, either in the current or in the reference configuration and thus
calculation of the virial strain is relatively straightforward.

We define the following tensor for atom l

ql
ij =

1

N

N∑
k=1

(
∆xkl

i ∆xkl
j

r2
0

)
, (A.2)

were ∆xkl
i = xl

i−xk
i and ∆xj = xl

j −xk
j . The quantity N refers to the number of nearest

neighbors considered. The left Cauchy-Green strain tensor is given by

bl
ij =

N

λ
ql
ij =
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λ

N∑
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(
∆xkl

i ∆xkl
j

r2
0

)
, (A.3)
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A. Virial stress and strain

where λ is a prefactor depending on the lattice considered. For a two-dimensional,
triangular lattice with nearest neighbor interaction λ = 3, λ = 2 for a square lattice
with nearest neighbor interaction and λ = 4/3 for a face-centered cubic lattice.

This definition provides an expression for a measure of deformation defined using
continuum mechanics and in terms of atomic positions. The Eulerian strain tensor
of atom l is obtained from equation (A.3), el

ij = 1
2

(
δij − bl

ij

)
. One can calculate the

engineering strain ε =
√

b − 1. Unlike the virial stress, the atomic strain is valid
instantaneously in space and time. However, the expression is only strictly applicable
away from surfaces and interfaces.
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B. Asymptotic stress field near a
rapidly propagating mode I crack

The functions Σij(Θ, v) that appear in equation (6.1) are defined as follows [78].

Σ11(Θ, v) =
1

D

{
(1 + α2

s)(1 + 2α2
l − α2

s)
cos(1/2Θl)√

γl

− 4αsαl
cos(1/2Θs)√

γs

}
, (B.1)

Σ12(Θ, v) =
2αl(1 + αs)

2

D

{
sin(1/2Θl)√

γl

− sin(1/2Θs)√
γs

}
, (B.2)

and

Σ22(Θ, v) = − 1

D

{
(1 + α2

s)
2 cos(1/2Θl)√

γl

− 4αdαs
cos(1/2Θs)√

γs

}
. (B.3)

Further,
γl =

√
1 − (v sin(Θl/cl)2), (B.4)

tan(Θl) = αl tan Θ, (B.5)

γs =
√

1 − (v sin(Θs/cs)2), (B.6)

and
tan(Θs) = αs tan Θ. (B.7)

The two factors αs and αl are defined as

αs =
√

1 − v2/c2
s (B.8)

and

αl =
√

1 − v2/c2
l . (B.9)

The asymptotic stress field in the vicinity of a dynamic crack depends only on the ratio
of crack speed to the wave velocities in the solid. Similar expressions for the asymptotic
field have also been derived for mode II cracks [78].
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C. Atomistic simulation procedure for
modeling of dynamic fracture

Our simulation tool is classical molecular-dynamics [15] as described in Section 2.3.1.
The slab size is chosen large enough such that waves reflected from the boundary do not
interfere with the propagating crack.

C.1. Geometry of the model and application of loading

To model weak layers or different interatomic interactions in different regions of the
simulation domain, we give atom a virtual type. Based on the type definition of inter-
acting pairs of atoms, we calculate the corresponding interaction. The initial crack is
also modeled this way by assuming no atomic interaction. An example for this type
decomposition is shown in Figure C.1.

We establish a linear velocity gradient prior to simulation to avoid shock wave gen-
eration from the boundaries (see also Figure C.1). To strain the system, we use two
approaches. The first is using a constant strain rate applied over a loading time by dis-
placing the outermost rows of atoms (usually we use 10 rows of atoms in the boundary).
After the loading time, the boundaries are kept fixed. In the second method, we strain
the system prior to simulation in the loading direction, and either keep the boundary
fixed during simulation or apply additional loading. In either way, the crack starts to
move once a critical strain is applied. The slab is initialized at zero temperature prior
to simulation.

The loading in the mode III crack problems is applied in a similar way, with the dif-
ference that the atoms in the boundary are moved out and into the plane corresponding
to the antiplane shear loading. Similar methods, based on domain decomposition with
virtual atom types, are also used in the modeling of thin films.

C.2. Measurement of crack speed

Accurate determination of crack tip velocity is important because we need to be able
to measure even smallest changes in the propagation speed. The crack tip position is
determined by finding the surface atom with maximum y position in the interior of a
search region inside the slab (or, if the crack is oriented in the other direction the atom
with maximum x position). This quantity is averaged over a small time interval to
eliminate very high frequency fluctuations.

To obtain the steady state velocity of the crack, the measurements are taken within
a region of constant stress intensity factor [206]. In addition to checking the velocity
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C. Atomistic simulation procedure for modeling of dynamic fracture

Figure C.1.: Simulation method of domain decomposition via the method of virtual
atom types.

history, steady state is verified by path-independency of the energy flux integral.

C.3. Computational method

A FORTRAN molecular-dynamics code parallelized with MPI [94] is used for the simu-
lations. We use the IBM XL FORTRAN Compiler for AIX for compilation of the source
code. Most simulations are carried out on IBM Power 4 Regatta nodes in the Max
Planck Society Supercomputer Center in Munich. This supercomputer consists of 25
nodes with 32 CPUs each in a shared memory environment, with 64 GByte RAM each.
Federation switches are used for internode communication.

Some simulations are carried out on a 84-processor LINUX cluster with INTEL XEON
CPUs at the MPI for Metals Research, Stuttgart. The cluster is based on 42 nodes
that contain 2 CPUs each, and the nodes are connected via a Gigabit communication
network. The total RAM of the system is 42 GByte. We used the PORTLAND GROUP
and INTEL C and FORTRAN compilers.

For some of the calculations used in this thesis, we used the ITAP-IMD molecular-
dynamics code suitable for large-scale atomistic simulations [185, 203]. This code is
written in C and also parallelized with MPI [94].
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D. Zusammenfassung (in German)

D.1. Einleitung

Die Kulturgeschichte der Menschheit ist von einem wachsenden Verständnis für Materi-
alien und deren Eigenschaften geprägt. Unsere Vorfahren lernten, aus Stein Faustkeile
herzustellen und verbesserten mit diesem neuen Werkzeug ihre Lebensbedingungen ent-
scheidend. Heute ist kaum eine neue technische Errungenschaft ohne moderne Material-
wissenschaften möglich. Die Entwicklung der modernen Metallurgie zum Beispiel eröff-
nete den Weg zu Materialien, die zugleich fest und zäh sind, wie beispielsweise viele
Stahllegierungen. Viele technische Systeme enthalten immer kleinere Strukturen, aus
der Mikrotechnologie der Halbleiterbranche entwickelt sich allmählich eine Nanotech-
nologie.

Das wirft die Frage auf, wie solche winzigen Strukturen auf mechanischen Stress
reagieren. Wir untersuchen das Materialversagen kleiner Nanokristalle unter extremer
Belastung mit Simulationen auf Supercomputern, die einzelne Atome berücksichtigen.
Grundlegend wird zwischen zwei Arten von Materialverhalten unterschieden, spröden
und duktilen Materialien (siehe Abbildungen 1.1 und 2.2). Spröde Materialien versagen
durch die Ausbreitung von Rissen (Beispiel Glas), und duktile Materialien versagen
durch die Ausbreitung von Versetzungen und lassen sich meist leicht verformen (Beispiel
Kupfer).

In dieser Arbeit sollen verschiedene Aspekte spröden Materialverhaltens sowie das
Verhalten von dünnen Schichten aus Kupfer unter mechanischer Belastung untersucht
werden.

D.2. Simulationsmethoden

Materialwissenschaftler bezeichnen ein Computermodell, das Materialien bis hinunter
zu einzelnen Atome auflöst, als atomistische Simulation. Solche Simulationen haben
sich in den vergangen Jahren zu einem unerwartet hilfreichen Werkzeug der Mate-
rialwissenschaften entwickelt - nicht zuletzt wegen der rasanten Entwicklung der Su-
percomputer (siehe Abbildungen 2.1 und 2.2). In solchen Simulationen werden die
Newtonschen Bewegungsgleichungen F = mä für mehrere Millionen Teilchen gelöst
[13, 14, 175, 15, 1, 173].

Die Längen- und Zeitskalen, die wir durch solche “Computerexperimente” studieren
können, bleiben bei Mikrostrukturen dem realen Laborexperiment noch weitgehend ver-
schlossen. Das gilt auch für die klassische Lehre von der Verformung von Festkörpern.
Diese basiert auf der Kontinuumstheorie, berücksichtigt also nicht einzelne Atome und
die Bindungen und Kräfte zwischen ihnen. Klassische Modelle besitzen somit keine in-
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ternen Längenskalen, die bei Mikrostrukturen jedoch eine wichtige Rolle spielen können:
Sie haben Einfluss darauf, wie das Material bei zu großen mechanischen Spannungen
durch Brechen oder Verformen nachgibt. Deshalb sind atomistische Simulationen in
solchen Fällen fast der einzige Weg, ein Phänomen des Materialverhaltens grundlegend
zu verstehen. Sie erlauben einen fundamentalen Einblick in das Materialverhalten, wie
keine andere numerische Methode in der Materialwissenschaft. Um mechanische Eigen-
schaften zu erforschen, ist es wichtig, dass die simulierten Systeme relativ viele Atome
beinhalten. Um Rechnungen mit bis zu 150 Millionen Atomen durchführen zu können,
verwenden wir daher klassische Molekulardynamik basierend auf empirischen Potentialen
[15, 1].

D.3. Modellierung von sprödem Materialversagen

Atomistische Simulationen stellen aufgrund der Längen- und Zeitskalen eine sehr gut
geeignete Methode zur Untersuchung der Rissdynamik dar, denn Risse breiten sich
mit einigen Kilometern pro Sekunde in Materialien aus, was einigen Nanometern pro
Pikosekunde entspricht (vgl. Abbildung 2.1).

Einige der fundamentalen Aspekte der Rissdynamik sind bis heute überhaupt nicht
oder nur unzureichend verstanden. Die wichtigsten Ziele der Arbeit im Bereich der
spröden Rissdynamik sind daher:

• Wie können die kontinuumsmechanische Theorie und die atomistische Betrachtungs-
weise aneinander gekoppelt werden, und wie gut sind die Vorhersagen der Kon-
tinuumstheorie auf atomistischer Ebene?

• Welche Rolle spielen Materialnichtlinearitäten in der Dynamik der Rissausbreitung
(vor allem bzgl. der maximal erreichbaren Rissgeschwindigkeit und dynamische
Rissinstabilitäten)?

• Wie wirken sich geometrische Einschränkungen auf die Rissdynamik aus (z.B.
Grenzflächen oder Risse in sehr dünnen Streifen)?

D.3.1. Ein-dimensionales Modell der Rissdynamik

Wir beginnen die Untersuchungen mit einem einfachen eindimensionalen Modell für
dynamische Rissausbreitung, das auf Hellan [107] zurückgeht.

Das eindimensionale Modell der Rissdynamik ist besonders attraktiv, da es erlaubt,
einige fundamentale Konzepte der Rissdynamik zu erklären, dabei mathematisch aber
recht einfach zu behandeln ist. Außerdem erlaubt es uns, im Gegensatz zu den weit
komplizierteren höherdimensionalen Fällen, die Bestimmung einer geschlossenen Lösung
für Rissdynamik in nichtlinearen Materialien. Eine wichtige Konsequenz aus dem neu
entwickelten nichtlinearen Modell ist, dass Rissausbreitung mit Überschallgeschwindigkeit
möglich wird, im Gegensatz zu den klassischen linearen Theorien. Rissausbreitung mit
Überschall wird möglich, wenn eine Zone in der Nähe des Risses entsteht, die elastisch
härter ist als das umgebende Material und damit eine hohe lokale Wellengeschwindigkeit
entsteht. Viele Werkstoffe wie Elastomere zeigen ein solches Verhalten.
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D.3. Modellierung von sprödem Materialversagen

Der erste Schritt ist die Entwicklung eines atomistischen Modells mit harmonischen
Wechselwirkungen zwischen Atomen. Dieses Modell entspricht der linear-elastischen
Theorie [107]. Wir zeigen, dass das atomistische Modell die Vorhersagen der Theorie
sehr gut widergibt, was in Abbildung 4.5 verifiziert werden kann. Im nächsten Schritt
erweitern wir das harmonische atomistische Modell, um Materialnichtilinearitäten zu
modellieren. Dies erlaubt es uns, die Spannungs- und Dehnungsfelder in der Nähe eines
Risses im nichtlineraren Material mit den Vorhersagen unserer Theorie zu vergleichen.
Die Vorhersagen des Modells werden relativ gut von den atomistischen Simulationen
wiedergegeben. Die Ergebnisse sind in Abbildung 4.11 dargestellt. Zum ersten Mal war
es hier möglich, für Rissausbreitung mit Überschall eine geschlossene Lösung für die
Deformationsfelder in der Nähe eines Risses zu finden.

D.3.2. Mechanische Eigenschaften zweidimensionaler Festkörper

Für Risse unter Modus I, Modus II und Modus III Belastung [78] sind zwei- und drei-
dimensionale atomistische Modelle notwendig. Zunächst konzentrieren wir uns auf die
Modellierung von Modus I und Modus II Rissen.

Das Studium der Rissdynamik mit Hilfe atomistischer Simulationen setzt die genaue
Kenntnis der mechanischen und physikalischen Eigenschaften der untersuchten Kristalle
voraus, sollen die Ergebnisse später mit kontinuumsmechanischen Theorien verglichen
werden. Man muss dabei verstehen, wie sich die Wahl des interatomaren Potentials auf
mechanische und physikalische Materialeigenschaften auswirkt. Unsere Untersuchun-
gen beziehen sich dabei auf analytische und numerische Methoden, wie schematisch in
Abbildung 5.2 dargestellt.

Ein wichtiger Aspekt dieses Teils der Arbeit ist die Entwicklung von “Modellmate-
rialien”. Dabei ist das Ziel nicht die Besonderheiten eines bestimmten Werkstoffes zu
modellieren, sondern die Eigenschaften einer ganzen Klasse von Werkstoffen abzudecken.
Die elastischen Eigenschaften für verschiedene Potentiale sind in den Abbildungen 5.3
(LJ), 5.4 (gefaltetes LJ), 5.9 (biharmonisches Potential), 5.5 (harmonisches Potential)
und 5.7 sowie 5.8 (harmonisches Potential mit “snapping bonds”) gezeigt. Eine detail-
lierte Analyse des Versagens in verschiedenen Kristallrichtungen liefert wichtige Erken-
ntnisse bezüglich der Stabilität der Rissausbreitung. Harmonische Potentiale führen zu
linear-elastischen Materialeigenschaften, genau so wie sie vielen klassischen Theorien der
Rissdynamik zugrunde liegen [78]. Diese Modelle dienen als Referenzsysteme, wobei die
anderen nichtlinearen Modellmaterialien dazu verwendet werden um die Änderung der
Rissdynamik aufgrund der Variation in den einzelnen Modellen zu studieren. Dadurch
lassen sich Erkenntnisse darüber gewinnen, wie sich bestimmte Details der atomistischen
Wechselwirkung auf die Dynamik auswirken.

Ferner dient die Berechnung der Rissoberflächenenergie als wichtige Komponente zu
Studien der Bedingungen für Rissinitiierung und Risswachstum im Rahmen der Griffith-
Theorie der Rissentstehung [93].
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D.3.3. Spannungs- und Dehnungsfelder in der Nähe eines Modus I
Risses

Hier untersuchen wir, wie die kontinuumsmechanische Theorie und die atomistische Be-
trachtungsweise aneinander gekoppelt werden können. Unter Verwendung der Konzepte
der Virialspannung und der Virialdehnung zeigen wir, dass die Theorie [78] die Defor-
mationsfelder in der Nähe des Risses recht gut vorhersagt. Wir verwenden dabei nur
harmonische Potentiale, und eines der Hauptziele dieses Teils der Arbeit ist zu zeigen,
dass die linearelastische Theorie die Dynamik und Deformationen gut beschreibt und die
Systeme mit harmonischen Wechselwirkungen daher als Referenzsysteme dienen können.

Die Simulationsgeometrie der Simulationen ist in Abbidlung 6.1 dargestellt. Ein
Vergleich zwischen Atomistik und kontinuumsmechanischer Theorie ist in den Abbil-
dungen 6.2 bis 6.6 für verschiedene Komponenten des Spannungstensors σij gezeigt.
In weiteren Untersuchungen haben wir auch die Dehnungsfelder, den Energiefluss, die
Dehnungsenergie sowie die Teilchengeschwindigkeit untersucht und gute Übereinstim-
mung mit der Risstheorie gefunden. Das wichtigste Ergebnis ist, dass die Simulationen
mit harmonischen Potentialen und linear-elastischem Verhalten sehr gut durch die linear-
elastische Kontinuumstheorie beschrieben werden können. In den folgenden Kapiteln
werden wir die Stärke der Nichtlinearität schrittweise erhöhen und zeigen, dass die
Ergebnisse immer mehr von den Vorhersagen der linearen Theorien abweichen.

D.3.4. Hyperelastizität dominiert die Rissdynamik bei einer
kritischen Längenskala

Glas zerbricht, Stahl reißt, Gummi platzt - es gibt vielerlei Arten, wie Materialien
bei Überbeanspruchung versagen können. Doch bis heute sind viele der atomaren Ur-
sachen für Materialversagen noch unbekannt. So werden manche Materialien bei großen
Dehnungen weich, andere wiederum hart - ein Phänomen, das man als Hyperelastizität
bezeichnet.

Das wichtigste Ergebnis der Arbeit ist, dass sich Risse mit Überschallgeschwindigkeit
ausbreiten können, wenn Hyperelastizität jenen Bereich um die Rissspitze dominiert, der
für den Energietransport wichtig ist. Die Entdeckung dieser neuen und in den bisheri-
gen Theorien bislang fehlenden Längenskala beschreibt jenen Bereich um den Riss, aus
dem Energie transportiert werden muss, damit der Riss seine Ausbreitung fortsetzen
kann. Diese charakteristische Längenskala ist proportional zur Rissoberflächenenergie
und den elastischen Eigenschaften und umgekehrt proportional zum Quadrat der an-
gelegten elastischen Spannung:

χ ∼ γE

σ2
(D.1)

Im Gegensatz zum bisherigen Verständnis ist kein Energietransport von weiter entfernten
Regionen zum Riss notwendig, sondern nur von einem kleinen, lokal begrenzten Bereich,
der durch die charakteristische Längenskala beschrieben ist! Dieses Skalierungsgesetz
wurde durch eine Serie von Simulationen nachgewiesen (Abbildung 7.10).

Unter Anderem haben wir gezeigt, dass sich Modus I Risse mit intersonischen Ge-
schwindigkeiten ausbreiten können (Abbildung 7.6). Diese Ergebnisse stehen in klarem
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Widerspruch zur klassischen Theorie [78], nach der die Geschwindigkeit von elastischen
Wellen - in Analogie zur Lichtgeschwindigkeit in der Relativitätstheorie - als Höchst-
geschwindigkeit für die Rissausdehnung in Materialien gilt. Die Vorhersagen unserer
theoretischen Arbeiten [32] wurden kürzlich in Experimenten verifiziert [172]: Dabei
wurde ein Modus I Riss in einem hyperelastisch verhärtenden Material mit intersonischer
Geschwindigkeit beobachtet.

Die Hyperelastizität dominiert den Energietransport zur Rissspitze, wenn sich die
Größe der hyperelastischen Zone der des kritischen Energieflussbereichs nähert. Unter
normalen experimentellen Bedingungen sind die Spannungen eine oder zwei Größen-
ordnungen kleiner als in atomistischen Simulationen. In diesen Fällen ist die charakter-
istische Länge des Energietransports relativ groß, und der Effekt von Hyperelastizität auf
die effektive Geschwindigkeit des Energietransports ist klein. Wir haben gezeigt, dass
- im Gegensatz dazu - bei nur einem Prozent Dehnung die charakteristische Länge für
den Energietransport nur noch einige hundert Atomabstände, also nur einige Dutzend
Nanometern groß ist. In diesem Fall treten sofort bedeutende hyperelastische Effekte
auf. Von daher vermuten wir, dass Hyperelastizität in nanostrukturierten Materialien
wie dünnen Schichten oder bei sehr schnellen Verformungsvorgängen die Rissentwick-
lung dominiert. Denn in beiden Fällen treten sehr hohe Spannungen auf, so dass die
Region, aus der Energie zum Riss fließen muss, relativ klein ist.

D.3.5. Rissinstabilitäten und der Einfluss von Hyperelastizität

In diesem Kapitel geht es um die Beschreibung von Rissinstabilitäten und den Zusam-
menhang mit Materialnichtlinearitäten. Viele experimentelle und numerische Ergebnisse
[5, 70] zeigen eine deutliche Abweichung vom klassischen linearelastischen Model der
Rissinstabilität, dem Yoffe Kriterium [246].

Risse breiten sich bei kleinen Geschwindigkeiten gerade aus und zeigen eine perfekte
atomar glatte Rissoberfläche. Ab einer gewissen kritischen Geschwindigkeit beginnt die
Oberfläche rau zu werden, und der Riss breitet sich nicht mehr strikt gerade aus sondern
wächst in einer Zickzack-Bewegung (siehe Abbildung 8.1). Dieses Phänomen wird als
dynamische Rissinstabilität bezeichnet.

Es wurde bereits früher vorgeschlagen [5, 81, 82], dass Hyperelastizität eine entschei-
dende Rolle für die kritische Rissgeschwindigkeit spielt, bei der die Rissinstabilität
auftritt. Wir zeigen nun mit Hilfe einer Serie von atomistischen Simulationen, bei der
die Potentialeigenschaften systematisch variiert werden, dass Hyperelastizität in der Tat
eine bestimmende Rolle spielt. Materialien, die bei großen Dehnungen elastisch weich
werden (z.B. Metalle) weisen eine deutlich niedrigere kritische Geschwindigkeit auf, und
Materialien, die bei großen Dehnungen elastisch hart werden, breiten sich sogar mit
Geschwindigkeiten über die Rayleigh-Wellengeschwindigkeit gerade aus (siehe Abbil-
dung 8.5). Wir erklären diese Phänomene mit Gao’s Model der Energieflusslimitierung
bei weich werdenden Materialien, und mit Hilfe eines generalisierten Yoffe Kriteriums
bei elastisch verhärtenden Stoffen. Diese Behauptung wird durch unsere Simulations-
ergebnisse untermauert (siehe Abbildungen 8.8, 8.9 und 8.10).
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D.3.6. Risse an Grenzflächen

Hier untersuchen wir die Dynamik von Rissen an Grenzflächen von elastisch verschiede-
nen Materialien. Solche Studien sind sowohl vom Blickwinkel der Geophysik als auch
technologisch interessant. In vielen Fällen dienen nämlich gerade die Grenzflächen zwi-
schen Materialien als bevorzugter Risspfad. Nun ist es in solchen Fällen nicht möglich,
eine eindeutige Wellengeschwindigkeit zu definieren, da sich die elastischen Eigenschaften
und damit auch die Wellengeschwindigkeiten beim Übertritt zwischen den Materialien
unstetig verhalten (Geometrie siehe Abbildung 9.1).

Wir konzentrieren uns auf Modus I und Modus II Risse. Ein wichtiges Ergebnis ist
die Entdeckung eines Mutter-Tochter Mechanismus bei Modus I Rissen an Grenzflächen.
Dabei wird ein Stück vor dem primären Mutterriss ein sekundärer Tochterriss erzeugt,
der sich mit Überschallgeschwindigkeit relativ zum weichen Material an der Grenzfläche
ausbreitet. Das Phänomen des Mutter-Tochterriss-Mechanismus war bislang nur aus
Modus II Rissen bekannt [11]. Die Grenzgeschwindigkeit des Risses ist daher durch
die Rayleigh-Wellengeschwindigkeit des elastisch härteren Materials gegeben, und der
Riss kann sich mit Überschallgeschwindigkeit relativ zum weichen Material ausbreiten.
Bislang wurde angenommen, dass die Rayleigh-Wellengeschwindigkeit des weicheren Ma-
terials eine Grenze darstellt. Vorläufige theoretische Überlegungen zeigen, dass solche
Phänomene möglich sind [42].

Bei Modus II Rissen an Grenzflächen beobachten wir einen Mutter-Tochter-Enkel-
Mechanismus. Die Grenzgeschwindigkeit des Risses ist durch die Longitudinalwellen-
geschwindigkeit des elastisch härteren Materials gegeben, und der Riss kann sich somit
mit Überschallgeschwindigkeit relativ zum weichen Material ausbreiten. Abbildung 9.9
zeigt den Mutter-, Tochter- und Enkelriss. Diese Beobachtung entspricht den Ergebnis-
sen aus experimentellen Arbeiten [182].

D.3.7. Unmittelbar stoppende Risse

Die Dynamik unmittelbar stoppender Risse ist von Interesse bezüglich des Vergleichs
von Theorie, Experiment und atomistischer Modellierung.

Das Hauptergebnis dieser Arbeit ist, dass sich Modus I Risse in linear-elastischen
Materialien, in Übereinstimmung mit der Theorie [78] und Experimenten [230], wie
ein masseloses Teilchen verhalten. Intersonische Modus II Risse, sowie Modus I und
Modus II Risse in nichlinearen Materialien (z.B. im Modellmaterial des gefalteten LJ
Potentials) verhalten sich dagegen nicht wie ein masseloses Teilchen. Teilweise wurden
diese Ergebnisse von kürzlich entwickelten Theorien [117] vorhergesagt. Die Verteilung
der Spannung in den verschiedenen Fällen wird mit den experimentellen und analytischen
Vorhersagen verglichen und qualitative Übereinstimmung gefunden (siehe beispielsweise
Abbildungen 10.7 und 10.16).
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D.3.8. Mechanische und physikalische Eigenschaften
dreidimensionaler Festkörper

Bislang konzentrierten wir uns auf die Dynamik von Modus I und Modus II Rissen, und
dafür waren zweidimensionale Modelle ausreichend. Nun erweitern wir unser Modell
und untersuchen auch Modus III Risse, wofür aber dreidimensionale Modelle notwendig
werden.

Ebenso wie für die Studien mit zweidimensionalen Rissen ist die Analyse der elast-
ischen und physikalischen Eigenschaften ein wichtiger Aspekt für die Untersuchung von
Rissdynamik mit Hilfe drei-dimensionaler Modelle. Die Ergebnisse numerischer und
analytischer Studien sind in Tabelle 11.1 und den Abbildungen 11.1, 11.2 sowie 11.3 für
verschiedene Belastungsarten zusammengefasst. Ein wichtiger Aspekt ist hier ebenso
die Berechnung der Rissoberflächenenergie.

D.3.9. Rissdynamik von Modus III Rissen

Die Belastungsart für Modus III Risse ist in Abbildung 12.1 gezeigt. Der Hauptaugen-
merk der Studien in diesem Teil liegt auf der Dynamik von Rissen, die sich in dünnen
elastisch harten Streifen eingebettet in einer weichen Matrix ausbreiten (siehe Abbil-
dung 7.9, aber mit Modus III Belastung des Systems). Wir möchten dann diese mit
einer kürzlich entwickelten kontinuumsmechanischen Theorie [44] für diesen Fall vergle-
ichen. Die Theorie sagt die Existenz der charakteristischen Längenskala für den Energi-
etransport, die bereits für Modus I Risse beschrieben wurde, auch für Modus III Risse
voraus. Daher geht es uns vor allem um den Vergleich der Geschwindigkeit des Risses
als Funktion der Materialparameter und der Geometrie.

Zunächst zeigen wir, dass die Grenzgeschwindigkeit homogener harmonischen Sys-
teme der Vorhersage der linear-elastischen Kontinuumstheorie entspricht (siehe Abbil-
dung 12.3). Wie in den vorigen Kapiteln erlaubt uns dies, die harmonischen Systeme
als Referenzsysteme zu betrachten. Das Hauptergebnis dieses Kapitels ist der Ver-
gleich von Simulation und Theorie [44], dargestellt in Abbildung 12.5. Die Simulations-
ergebnisse und die theoretischen Überlegungen beweisen die Existenz der charakteris-
tischen Längenskala auch bei Modus III Rissen, und zeigen zudem eine relativ gute
Übereinstimmung der Theorie mit den Simulationsergebnissen. Die Ergebnisse werden
genutzt, um die Größe der charakteristischen Längenskala für realistische experimentelle
Bedingungen abzuschätzen. Sie liegt für Risse in Metallen unter 0.1 % Scherbelastung
bei etwa 1 Millimeter.

D.3.10. Diskussion und Zusammenfassung

Der Hauptaugenmerk der Studien in diesem Teil der Arbeit bezog sich auf die Rolle
von Materialnichtlinearitäten in der Rissdynamik. Mit Hilfe von großen Computersimu-
lationen haben wir gezeigt, dass die klassische linear-elastische Theorie versagt, wenn
sich das Material mit zunehmender Dehnung nichlinear verhält. Da praktisch alle realen
Werkstoffe Nichtlinearitäten aufweisen, scheinen die klassischen Theorien in vielen Fällen
zweifelhaft zu sein. In der Tat deuten viele experimentelle Ergebnisse darauf hin, wie
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zum Beispiel die stark reduzierte Maximalrissgeschwindigkeiten in vielen Materialien
[69].

Ein wichtiger Punkt der Untersuchungen war die Grenzgeschwindigkeit der Risse. Mit
Hilfe des neuen Konzepts der charakteristischen Länge für den Energiefluss in der Nähe
eines Risses konnten einige experimentelle und numerische Ergebnisse erklärt werden.
Die neue Längenskala, in bisherigen Theorien nicht vorhanden, ist in Abbildung 13.1
dargestellt.

Weitere Studien zeigten, dass Hyperelastizität auch eine große Rolle bei der dy-
namischen Rissinstabilität spielt. Unsere Ergebnisse deuten ferner darauf hin, dass
geometrische Einschränkungen und Grenzflächen eine bedeutende Rolle für die Rissdy-
namik spielt. So kann sich ein Modus I Riss an einer Grenzfläche von weichen und harten
Materialien mit Hilfe eines Mutter-Tochter-Mechanismus mit Überschallgeschwindigkeit
ausbreiten, im klaren Widerspruch zur klassischen Theorie (siehe Abbildung 9.5).

D.4. Mechanische Eigenschaften ultra-dünner
Kupferschichten auf Substraten

In diesem Teil der Arbeit widmen wir uns den mechanischen Eigenschaften dünner
Kupferschichten, die auf Substraten (z.B. aus Silizium) aufgebracht sind. Ein solches
System ist in Abbildung 14.1 schematisch dargestellt. Dünne Schichten zeigen sehr in-
teressante mechanischen Eigenschaften, die in vielen Fällen als unzureichend verstanden
gelten. So zeigen Filme, die dünner sind als 400 nm eine von der Filmdicke unabhängige
Festigkeit [25]. Diese Beobachtung steht im Gegensatz zu einigen existierenden Theorien
der Eigenschaften dünner Schichten, wie dem Mathews-Freund-Nix Modell [77, 167, 168].
Diese Modelle sagen eine Steigerung der Festigkeit invers proportional zur Filmdicke vo-
raus.

Vor einigen Jahren wurde von Gao ein neues Modell vorgeschlagen [88], welches pos-
tuliert, dass in sehr dünnen Schichten Korngrenzendiffusion die Spannungen in der Korn-
grenze relaxiert, einen rissähnlichen Defekt erzeugt und dann Versetzungen auf Gleit-
ebenen parallel zur Rissoberfläche generiert werden. Dies stellt einen völlig neuen Defor-
mationsmechanismus dar. Dieser neuartige Defekt wird als Korngrenzen-Diffusionskeil
(grain boundary diffusion wedge) bezeichnet und steht im Mittelpunkt der Abhandlun-
gen in diesem Teil der Arbeit. Das Gao’sche Modell ist schematisch in Abbildung 14.2
zusammenfasst.

D.4.1. Entwicklung kontinuumsmechanischer Theorien zur
Initiierung von Diffusion und Nukleation von Versetzungen
an Diffusionskeilen

Als ersten Schritt leiten wir einige neue Aspekte der Kontinuumstheorie her. Ein
wichtiges Ergebnis ist die Bestimmung einer kritischen Spannung zur Initiierung von
Diffusion. Dieses Kriterium beruht auf der Annahme, dass zumindest eine Halbebene
von Atomen mit Breite eines Burgers Vektors spontan in die Korngrenze klettert. Dies
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führt auf eine von der Filmdicke unabhängige Schwellspannung für das Auftreten von
Diffusion.

Weitere Untersuchungen beziehen sich auf Bildspannungen, die auf Versetzungen
in extrem dünnen Schichten wirken (Abbildung 15.1). Wir konnten zeigen, dass bei
Schichten die nur einige Nanometer dick sind, Bildspannungen von der Größenordnung
GPa auftreten.

Das Hauptergebnis ist die Entwicklung eines Modells, welches die kritische Bedingung
für Nukleation von Versetzungen von Diffusionskeilen beschreibt. Dabei verwenden wir
die klassische Rice-Thomson-Theorie als Ansatz [181]. Das Modell ist schematisch in
Abbildung 15.3 gezeigt. Letzlich wird mit Hilfe dieses Modells ein kritischer Span-
nungsintensitätsfaktor ermittelt (Abbildung 15.4), dessen Wert später mit den Ergeb-
nissen atomistischer Simulationen verglichen wird.

D.4.2. Modellierung thermomechanischer Experimente

Eine wichtige experimentelle Technik zur Untersuchung, auf welche Art und Weise
dünne Schichten auf mechanischen Stress reagieren, sind thermomechanische Experi-
mente [234]. Dabei führt die Temperaturänderung aufgrund des Unterschiedes des ther-
mischen Ausdehnungskoeffizienten zu Zug-und Druckspannungen im Film.

Die existierende Theorie der Korngrenzendiffusion in dünnen Schichten nimmt an, dass
die Spannung in der Korngrenze komplett relaxiert werden kann [88]. Im Gegensatz dazu
findet man in Experimenten und numerischen Simulationen eine Schwellspannung, unter-
halb der keine Diffusion stattfindet [132, 133, 131]. Die existierende Theorie des Modells
der Korngrenzendiffusion wird daher so abgeändert, dass eine Schwellspannung für das
Auftreten von Diffusion eingeführt wird. Im Gegensatz zum klassischen Verständnis [88]
kann damit die Spannung an der Korngrenze nicht mehr komplett relaxieren.

Wir nutzen nun das modifizierte Modell, um thermische Zyklenexperimente zu mo-
dellieren und die Spannungen als Funktion der Temperatur zu bestimmen. Das neue
Modell erlaubt eine Verbesserung der Modellierung insbesondere bei hohen Tempera-
turen während des Zyklus [234]. Die Ergebnisse sind in den Abbildungen 16.2 und 16.3
dargestellt.

D.4.3. Atomistische Modellierung von Kriechvorgängen in dünnen
Schichten

Wir verwenden klassische Molekulardynamik, um den Vorgang des Kriechens in dünnen
Schichten näher zu untersuchen. Durch die Limitierung der Simulationszeit auf maxi-
mal etwa 10 Nanosekunden in der klassischen Molekulardynamik beschränken wir uns
auf Untersuchungen bei erhöhten Temperaturen um die 90 Prozent der Schmelztem-
peratur sowie sehr hohen Spannungen. Die Berechnungen zeigen, dass Material von
der Oberfläche entlang der Korngrenze in Richtung Substrat transportiert wird, in
Übereinstimmung mit den Vorhersagen der kontinuumsmechanischen Theorie [88] (Ab-
bildung 17.3).

Ein weiteres wichtiges Ergebnis ist die Beobachtung der Nukleation von Versetzungen
die parallel zur Filmoberfläche in der Nähe der Grenzfläche Substrat-Film gleiten (paral-
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lel glide dislocations), wie in Abbildung 17.5 gezeigt. Solche Versetzungen wurden auch
in Experimenten beobachtet [24, 55], und deuten darauf hin, dass bei sehr dünnnen
Kupferschichten diese Art der Deformationsvorgänge dominieren.

Die Ergebnisse der atomistischen Simulationen werden verwendet, um eine kritische
Bedingung für die Nukleation solcher Versetzungen abzuleiten. Dabei benutzen wir das
Konzept des kritischen Spannungsintensitätsfaktors und vergleichen die Werte der ato-
mistischen Rechnungen mit den Vorhersagen der neu entwickelten Theorie (Tabelle 17.1).
Das Kriterium, basierend auf dem Spannungsintensitätsfaktor, konnte auch erfolgreich
in mesoskopischen Modellierungsansätzen verwendet werden [101]. Dabei dienen dann
die Ergebnisse der molekulardynamischen Rechnungen als Eingabeparameter.

D.4.4. Atomistische Modelle von Korngrenzentrippelpunkten

Hier betrachten wir ein Modell mit drei Körnern, das einen Korngrenzentrippelpunkt
enthält (Geometrie siehe Abbildung 18.1). Dabei konstruieren wir unser Modell so, dass
zwei verschiedenen Arten von Korngrenzen vorhanden sind: Zum einen hochenergetische
Korngrenzen mit homogener Verteilung der Energie, und zum anderen niedrigenergetis-
che Korngrenzen, welche aus Misfit-Versetzungen aufgebaut sind.

Wir konnten zeigen, dass die niedrigenergetischen Korngrenzen gute Quellen für Ver-
setzungen darstellen. Insbesondere beobachten wir, dass misfit Versetzungen selbst als
Nukleationspunkt dienen. Im Gegensatz dazu gibt es bei homogenen Korngrenzen keinen
intrinschen Nukleationspunkt, und Versetzungen werden an den Stellen höchster Schub-
spannungskonzentration nukleiert (siehe Abbildung 18.2 und 18.3). Wir beobachten
auch, dass in solch kleinen nanostrukturierten Materialien partielle Versetzungen do-
minieren und eine starke Tendenz zur Ausbildung von Zwillingsgrenzflächen auftritt
(siehe Abbildung 18.4). Eine weitere Beobachtung ist die Generierung von Punktdefek-
ten als Reaktionsprodukt verschiedener Versetzungen. Diese Defekte werden dadurch
erklärt, dass Versetzungen auf verschiedenen Gleitebenen nukleiert werden und sich bei
Schnitt und Vereinigung der Versetzungen Jogs bilden, die eine nichtgleitfähige Kom-
ponente enthalten. Diese nichtgleitfähige Komponente der Versetzung kann nur durch
Klettern, oder durch Generierung von Punktdefekten bewegt werden und übt im letz-
teren Fall eine Rückhaltekraft auf die Versetzung aus [109].

D.4.5. Polykristalline Modelle

Wir haben polykristalline Modelle entwickelt, um unsere atomistischen Simulationen an
die experimentellen Begebenheiten anzunähern (schematische Geometrie der Modelle
siehe Abbildung 19.1).

Ein wichtiges Computerexperiment war die Simulation von Filmen mit und ohne Re-
laxation der Spannung an der Korngrenze. Es zeigte sich, in Übereinstimmung mit
den Ergebnissen der experimentellen Arbeiten [25], dass sogenannte “threading” Ver-
setzungen die Plastizität dominieren, wenn die Korngrenzentraktion nicht relaxiert ist
(Abbildung 19.3). Im Gegenzug findet man vorwiegend Versetzungen auf Gleitebenen
parallel zur Filmoberfläche, wenn die Korngrenzenspannung z.B. durch Korngrenzendif-
fusion relaxiert ist (siehe Abbildungen 19.7 und 19.8). Dieses Ergebnis stimmt auch mit
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den qualitativen Vorhersagen der Theorie [88] überein.

Neben diesen Untersuchungen haben wir Diffusion in polykristallinen Modellen unter-
sucht. Ein wichtiges Ergebnis ist die Beobachtung der Ausbildung von Diffusionskeilen
und die darauffolgende Nukleation von Versetzungen auf Gleitebenen parallel zur Film-
oberfläche (Abbildung 19.14). Diese Ergebnisse verdeutlichen noch einmal die wichtige
Rolle diffusiver Prozesse in dünnen Kupferschichten und zeigen eine gute Übereinstim-
mung mit den experimentellen Ergebnissen [24, 55, 25], denn wie im Experiment werden
Halbschleifen aus Versetzungen auf Gleitebenen parallel zur Oberfläche nukleiert.

Die Ausbildung der Diffusionskeile ist stark von der Korngrenzenstruktur und der
daraus resultierenden Diffusivität abhängig.

D.4.6. Zusammenfassung und Diskussion

Die wichtigsten Ergebnisse dieser Arbeit und die vorhergehender theoretischer und ex-
perimenteller Beiträge wurden am Ende in einer grafischen Übersicht zusammengefasst.
Diese zeigt die verschiedenen Mechanismen als Funktion der Filmdicke und der an-
gelegten Spannung (siehe Abbildung 20.2).

Wir schlagen vier verschiedene Deformationsmechanismen ultra-dünner Kupferschichten
vor. Diese sind: (A) klassische “threading” Versetzungen, (B) Kriechvorgänge (con-
strained diffusional creep) mit Nukleation von Versetzungen auf Gleitebenen parallel
zur Filmoberfläche, (C) Kriechvorgänge ohne Nukleation von Versetzungen und (D)
keinerlei Relaxationsmechanismen. Der Bereich (D) tritt bei sehr dünnen Schichten und
niedrigen Spannungen auf. Bislang wurde nur der Bereich (A) beschrieben, und dieses
Ergebnis zeigt, dass viele neue Effekte auftreten können, wenn die Dimensionen der Ma-
terialien den Bereich von Nanometern erreichen. Für die Entwicklung neuer Materialien
könnte das Verständnis solcher Effekte aber sehr wichtig werden.

D.5. Zusammenfassung und Diskussion

Es wurden atomistische Computersimulationen zusammen mit Konzepten der Kontinu-
umsmechanik verwendet, um verschiedene Aspekte des Versagens und Deformation von
Materialien zu untersuchen.

Der erste Teil der Arbeit widmete sich der Dynamik spröder Rissausbreitung. Es
stellte sich heraus, dass einige der Theorien der Rissdynamik auch auf atomarer Ebene
eine recht gute Beschreibung geben, sofern harmonische Wechselwirkungen zwischen
Atomen angenommen werden. So ist die Grenzgeschwindigkeit in der Simulation in recht
guter Übereinstimmung mit der Vorhersage, und auch die Spannungs- und Dehnungs-
felder in der Nähe des Risses sind recht gut durch die Theorie beschrieben. Werden
dagegen nichlineare Materialien simuliert, so versagt in vielen Fällen die linear-elastische
Theorie und sie muss durch nichtlineare Ansätze ersetzt werden. Dies zeigte sich bei-
spielsweise an Studien zur Grenzgeschwindigkeit von Rissen oder bei den Untersuchun-
gen zur dynamischen Rissinstabilität. Die Simulationsergebnisse halfen bei der Iden-
tifizierung einiger wichtiger atomistischer Aspekte, die zum Verständnis der nichtlin-
earen Rissdynamik wichtig sind. Das wichtigste Beispiel ist die Entdeckung einer neuen
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charakteristischen Längenskala für den Energiefluss zur Rissspitze.
Im zweiten Teil der Arbeit wurden die mechanischen Eigenschaften dünner Kupfer-

filme untersucht. Im Mittelpunkt stand dabei ein neuer Materialdefekt, ein rissähnlicher
Diffusionskeil. Atomistische Simulationen wurden durchgeführt, um die Entstehung
von Versetzungen an solchen Diffusionskeilen näher zu untersuchen. Unsere Ergebnisse
deuten darauf hin, dass solche Defekte in der Tat in sehr dünnen Kupferschichten unter
400 nm eine wichtige Rolle spielen. Unsere Ergebnisse sind in Übereinstimmung mit ex-
perimentellen und theoretischen Arbeiten [24, 55, 25, 88] und schließen daher die Lücke
zwischen Experiment und Theorie. Während wir im ersten Teil der Arbeit die Kontinu-
umsmechanik vorwiegend mit Hilfe der Virialspannung und der Virialdehnung gekoppelt
haben, benutzten wir im zweiten Teil das Konzept des Spannungsintensitätsfaktors. Die
Ergebnisse zeigen damit exemplarisch Methoden auf, wie atomistische Konzepte mit
Methoden der Kontinuumsmechanik gekoppelt werden können.

350



Index

Ab initio MD, 50
Advanced molecular-dynamics methods,

55
Aluminum

nanocrystalline, 223
Analysis, 63
Analysis techniques, 267
Atomic hypothesis, 44
Atomic interactions, 44
Atomistic simulations, 44

Barrier
dislocation motion, 280

bcc packing, 43
Biharmonic potential, 144
Billion-atom simulation, 231
Bimaterial interface, 155, 226
Bio-nano-systems, 308
Boundary conditions, 253
Brittle failure, 42
Brittle versus ductile, 42
Brittle-to-ductile transition, 232

Carbon nanotubes, 309
folding, 309
shell-rod-wire, 309

Centrosymmetry parameter, 64
Centrosymmetry technique, 267
Chemical potential, 226
Classical molecular-dynamics, 49, 51, 54
Coble creep, 222
Common neighbor analysis, 67
Computational techniques, 49
Computer experiments, 45
Computer power, 50

Concurrent multi-scale simulation tools,
57

Confinement, 133, 205, 294
Constrained grain boundary diffusion, 224

atomistic simulations, 251
bicrystal model, 251
continuum model, 225
experimental evidence, 225
mathematical basics, 225

Continuum mechanics, 44
Continuum model

threshold stress, 243
Copper

nanocrystalline, 223
nanostructured, 278

Coupling
atomistic-continuum, 238
atomistic-continuum theories of plas-

ticity, 296
atomistic-experiment, 137, 174, 252
atomistic-mesoscopic scale, 291
strain, 333
stress, 333

Crack, 254, 276
diffusion wedge, 225
hyperelasticity, 82, 125, 139
initiation time, 172
instability, 139
parallel glide dislocations, 258
versus diffusion wedge, 261

Deformation
diffusive, 222
elastic, 41
nanocrystalline materials, 222

351



Index

plastic, 41, 221
thin films, 285

Deformation map, 292
Deformation mechanisms, 221
Density functional theory, 50
Diffusion, 43, 222
Diffusion initiation, 235, 255
Diffusion wedge, 239, 251, 266

crack like, 254
dislocation glide, 266
formation, 254
versus crack, 261, 263, 299

Diffusion wedges, 225
Diffusive displacement, 255
Diffusivity

copper, 56
dependence, 294
surface, 56

Discrete dislocations, 235
Dislocation

cross slip, 281
pileup, 258
pilups, 281

Dislocation bowing, 268
Dislocation channelling, 219
Dislocation climb, 225
Dislocation density, 276

tensor, 297
Dislocation dipole, 241, 257
Dislocation motion

grain boundaries, 278
Dislocation network, 277
Dislocations, 42, 230

discrete, 235
interaction, 280

Ductile failure, 42
Dundur’s parameter, 238
Dynamic materials failure, 41

Elastic regime, 41
Electron gas, 53
Embedded atom potential, 50
Empirical potentials, 51
Energy length scale

characteristic, 75, 125, 133, 203

Energy method, 63
Ensemble, 54
Equation of motion, 54
Experiments

polycrystalline films, 265

Failure, 41, 44
fcc lattice, 195
fcc packing, 43
Force vector, 49
Fracture, 42
Fracture strength

nanostructures, 298
Fracture surface energy, 110, 198
Free energy minima, 55

Geometric analysis, 63
Geometric confinement, 43, 219, 221
Geometrically necessary dislocations, 228
Glassy phase, 252
Glide

parallel glide dislocations, 266
Grain boundary, 255

dislocation source, 270, 273
jogs, 256
stability, 256

Grain boundary diffusivities
estimation, 247

Grain boundary diffusivity, 246
Grain boundary processes, 222
Grain boundary structure, 248

elevated temperature, 254
Grain boundary traction relaxation, 267,

273
Grain boundary tractions, 285
Grain triple junction, 265
Griffith condition, 42, 171

Hall-Petch, 221
Hardening, 280
Harmonic potential, 53, 99, 195
Hierarchical multi-scale methods, 59
High-energy grain boundary, 266, 270
Homologous temperature, 254

Image force, 237

352



Index

Image stress, 261
Initiation condition

diffusion, 235
Interface

crack-grain boundary, 276
Interface effect, 219
Interfaces, 155, 294

dissimilar materials, 155
Interfaces and geometric confinement, 294
Interfacial dislocations, 219, 276
Intersonic mode I cracks, 132
Inverse Hall-Petch effect, 221

Jog dragging, 268
Jogs, 269

Large-scale computations, 49
Length-and time scale

Classical molecular-dynamics, 231
Lennard-Jones, 50, 52
LINUX

supercomputers, 63
Liquid-like grain boundary, 252
Loading

strain field, 253
Long-time limit, 57
Low-energy grain boundary, 266

MAAD approach, 59
Materials failure, 44

ductile, 63
nickel, 63

Materials in small dimensions, 219
Materials science, 41
Mathews-Freund-Nix mechanism, 225
Mechanical properties, 195
Medium-range-order analysis, 67
Melting temperature

copper, 253
Mesoscopic simulations, 50, 292
Message passing, 62
Microcracks, 43
Microelectronic devices, 219
Micrometer scale, 49
Miniaturization, 219
Mode I fracture, 99

Mother-daughter mechanism, 157
Mode II fracture, 133, 159
Mode III fracture, 195, 203
Model materials, 44, 231
Modified biharmonic potential, 144
Molecular-dynamics

limitation, 303
potential, 303

Morse potential, 52
Mother-daughter mechanism, 157
Mother-daughter-granddaughter mecha-

nism, 159
MPI, 62
Multi-body potential, 53
Multi-scale, 57
Multi-scale phenomena, 45
Multi-scale simulations

hierarchical, 290

Nanocrystalline materials, 43
Nanoscale, 44, 219

confinement, 236
deformation phenomena, 294

Nanostructured materials, 222, 298
strain rate, 223
yield stress, 223

Nanotechnology, 41, 219
Nickel, 63

nanocrystalline, 223
Numerical examples

constraine grain boundary diffusion,
229

One-dimensional model of fracture, 77

Pair potential, 50
Parallel glide dislocations, 59, 220, 276

experimental evidence, 225
minimum film thickness, 257
nucleation, 235, 238, 251, 256
nucleation mechanism, 239

Parallel molecular-dynamics, 62
Parallelization of time, 61
Partial dislocations, 278
Partial point defects, 269
Peach-Koehler force, 237

353



Index

Petaflop computers, 62
Pinning potential, 253
Plane strain, 253
Plastic deformation, 41
Plasticity, 230

atomistic modeling, 273
nanocrystalline materials, 278
polycrystalline thin films, 273
thin films, 265

Point defect generation, 269
Polycrystalline films, 265
Polycrystalline thin films

atomistic modeling, 273
Polycrystalline thin metal films, 219
Post-processing, 63

Quantization
stress, 237

Quasi-continuum method, 58
Quasicrystals, 74, 232

Brittle fracture, 74
Dislocations, 232
Ductile failure, 232

Relaxation, 254
Relaxation mechanisms, 285
Rice-Thomson model, 259
Rigid boundaries, 257

Silicon, 53
Simulation techniques, 50
Single atoms, 57
Single edge dislocations, 236
Slip vector, 65, 267, 269, 297
Speedup, 62
State transition, 57
Strain rate, 171, 254
Stress intensity, 238
Stress intensity factor, 171, 229, 240

parallel glide dislocations, 257
Sub-micron scale, 219
Sub-nano structure, 278
Submicron thin films, 220
Suddenly stopping crack, 165

mode I, 172
mode II, 177, 179

mode III, 207
Super-Rayleigh fracture, 131, 176
Supercomputing, 61, 231
Supersonic fracture, 82, 85, 157, 179
Supersonic mode I cracks, 157
Supersonic mode II cracks, 133
Surface diffusion, 56
Surface diffusivity, 56
Surface effects, 219, 294
Surface step, 56
Surface steps, 275

Temperature accelerated method, 56
Teraflop, 62
The strongest size, 222
Thermal cycling, 243
Thermal cycling experiments, 249
Thin films, 59, 219

deformation map, 292
stress distribution, 260
yield stress, 220, 291, 294

Threading dislocations, 219, 225, 255, 275
versus parallel glide dislocations, 275,

286
Three-dimensional molecular-dynamics sim-

ulations, 195
Threshold stress, 235, 243, 255, 261, 291
Tight-binding potential, 50
Tilt grain boundary, 253
Time scale, 262

dilemma, 55, 304
Transformation

grain boundary-crack, 299
Triple junction, 267
Twin grain boundary, 280
Twin lamella, 278
Two-dimensional molecular-dynamics sim-

ulations, 99

Unstable stacking fault energy, 43

Velocity verlet, 253
Virial strain, 333
Virial stress, 333
Virtual internal bond method, 60
Viscoelasticity, 61

354



Index

Visualization, 63, 255
Volterra edge dislocations, 225

Yield stress, 294
Young’s modulus, 79, 104, 195

bilinear, 82, 109
fcc, 195, 198

355


