Contents

	Preface V
	List of Contributors XXIII
1	The Interfacial Chemistry of Adhesion:
	Novel Routes to the Holy Grail?
	J. F. Watts
	Abstract 1
1.1	Introduction 1
1.2	Development of a Model Interphase 3
1.3	The Buried Interface 8
1.4	Conclusion 15
	Acknowledgments 15
	References 15
2	Modeling Fundamental Aspects of the Surface Chemistry
	of Oxides and their Interactions with Coupling Agents 17
	P. Schiffels, M. Amkreutz, A.T: Blumenau, T. Krüger, B. Schneider
	T: Frauenheim, and OD. Hennemann
	Abstract 17
2.1	Introduction: Atomistic Simulations in Adhesion 17
2.2	Prediction of Surface Properties: Ideal Reconstructions
	on a-SiO ₂ (0001) 19
2.3	Organic Components of the Adhesive and Substrate-Adhesive
	Interaction 23
2.4	Conclusion and Outlook 29
	References 30
3	Adhesion at the Nanoscale: an Approach by AFM 33
	M. Brogly, O. Noel, C. Castelein, and J. Schultz
	Abstract 33
3.1	Introduction 34
3.2	Materials and Methods 34

Adhesion — Current Research and Application. Wulff Possart Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-31263-3

AIII	Contents	
•	3.2.1	Preparation of Oxidized Silica Surface 35
	3.2.2	Grafting of Functionalized SAMs onto Silicon Wafer 35
	3.2.3	Crosslinking and Functionalization of PDMS Networks 35
	3.2.4	Characterization of the SAMs 36
	3.3	Results and Discussion 37
	3.3.1	Force–Distance Cume Measurements and AFM Calibration 37
	3.3.1.1	Force–Distance Cume Features 37
	3.3.1.2	The DD Curve (Contact Mode) 37
	3.3.1.3	AFM Calibration 38
	3.3.1.3.1	Determination of the Spring Constant of the Cantilever 38
	3.3.1.3.2	Nonlinearity of the Quadrant of Photodiodes 38
	3.3.1.3.3	Scan Rate of the Cantilever 38
	3.3.1.3.4	Systematic Check 39
	3.3.2	Force–Distance Curves on Rigid Systems of Controlled Surface Chemistry 39
	3.3.3	Force-Distance Measurements on Polymers 40
	3.3.3.1	Force-Indentation Measurements on Polymers 40
	3.3.3.2	Force-Indentation Curves on Systems of Controlled Surface
		Chemistry and Controlled Mechanical Properties 42
	3.4	Conclusion 45
		References 45
	4	Organization of PCL-b-PMMA Diblock Thin Films:
		Relationship to the Adsorption Substrate Chemistry 47
		T. Elzein, M. Brogly, and J. Schultz
		Abstract 47
	4.1	Introduction 47
	4.2	Materials and Methods 48
	4.2.1	PCL-b-PMMA Diblocks 48
	4.2.2	Infrared Spectroscopy 49
	4.2.2.1	Transmission 49
	4.2.2.2	Polarization-Modulation Infrared Reflection-Absorption Spectroscopy
		(PM-IRRAS) 49
	4.2.3	Atomic Force Microscopy (AFM) 50
	4.3	Results and Discussion 50
	4.3.1	PCL-b-PMMA Bulk Characterization 50
	4.3.2	PCL-b-PMMA Thin Films on OH-Functionalized Cold Substrates 51
	4.3.3	PCL-b-PMMAThin Films on Gold Substrates 55
	4.4	Conclusion 56
		References 57

	Adhesion and Friction Properties of Elastomers at Macroscopic
	and Nanoscopic Scales 59
	S. Bistac and A. Galliano
	Abstract 59
5.1	Introduction 59
5.2	Materials and Methods 60
5.3	Results and Discussion 62
5.3.1	Adherence Energy 62
5.3.2	Macroscale Faction 64
5.3.3	Nanoscale Friction and Adhesion 65
5.3.5 5.4	Conclusion 68
3.4	
	References 69
	Chemical Structure Formation and Morphology
	in Ultrathin Polyurethane Films on Metals 71
	C. Wehlack and W. Possart
<i>c</i> 1	Abstract 71
6.1	Introduction 71
6.2	Materials and Methods 72
6.2.1	Sample Preparation 72
6.2.2	Experimental Characterization 74
6.2.3	IR Spectra Calculation 74
6.2.4	IR Band Assignment 75
6.3	Results and Discussion 76
6.3.1	Curing at Room Temperature 76
6.3.2	Morphology of Thin Films 79
6.3.3	Chemical Structure of Cured Films 80
6.4	Conclusion 85
	Acknowledgments 86
	References 87
	Properties of the Interphase Epoxy-Amine/Metal:
	Influences from the Nature of the Amine and the Metal 89
	M. Aufray and A. A. Roche
	Abstract 89
7.1	Introduction 89
7.2	Materials and Methods 90
7.2.1	Materials 90
7.2.2	Thermal Analysis (DSC) 91
7.2.3	Micro-Infrared Spectroscopy (μ-FTIR) 91
7.2.4	Fourier Transform Near-Infrared Spectroscopy (FT-NIR) 92
7.2.5	Inductively Coupled Plasma Spectroscopy (ICP) 92
7.2.6	X-Ray Diffraction (XRD) 92
7.2.7	Polarized Optical Microscopy (POM) Coupled with a Hot Stage
•	Apparatus 92
	A.A.

х	Contents	
-	7.3	Results and Discussion 93
	7.3.1	Interphase Formation Mechanisms 93
	7.3.2	Formation of New Networks 94
	7.3.3	Crystallization of "Modified" IPDA 94
	7.3.4	Modification of Mechanical Properties 95
	7.3.5	Comparison of Coatings and Metal–Bulk Interphases 97
	7.3.6	Influence of the Stoichiometric Ratio 100
	7.4	Conclusion 101
		Acknowledgments 102
		References 102
	8	Mapping Epoxy Interphases 103
		M. Munz, J. Chung, and G. Kalinka
		Abstract 103
	8.1	Introduction 104
	8.2	Stiffness Mapping by Indentation Techniques 106
	8.2.1	SFM-Based Stiffness Mapping in Force Modulation Microscopy (FMM) Mode 106
	8.2.2	Depth-Sensing Micro-indentation (DSI) 108
	8.3	Some Fundamental Aspects of Interphase Mapping by Indentation
		Techniques 110
	8.3.1	Artifacts Induced by Topography 110
	8.3.2	Artifacts Induced by the Extent of the Stress Field Beneath
		the Indenter 114
	8.4	Two Cases of Mapped Epoxy Interphases 116
	8.4.1	The Cu/Epoxy Interphase 116
	8.4.2	The PVP/Epoxy Interphase 118
	8.5	Conclusion 121
		Acknowledgments 122
		References 122
	9	Mechanical Interphases in Epoxies as seen by Nondestructive
		High-Performance Brillouin Microscopy 125
		J. K. Krüger, U. Müller. R. Bactavatchalou, D. Liebschner, M. Sander. W. Possart, C. Wehlack, J. Baller, and D. Rouxel
	9.1	Abstract 125 Introduction 125
	9.1	Brillouin Spectroscopy on Thermal Phonons and Other Elementary
	9.2	Excitations 126
	9.2.1	An Introduction to the Physics of Classical Brillouin
	J.L. 1	Spectroscopy 126
	9.2.2	The Kinematic View of Brillouin Spectroscopy 129
	9.2.3	Scattening Geometries and Other Pitfalls 129
	9.2.4	Brillouin Microscopy 132
	9.3	Mechanical Interphases at Polymer–Substrate Interfaces 134

9.3.1	The Polymer Model System 134
9.3.2	Epoxy/Silicone Rubber Interphase 134
9.3.3	Epoxy/Metal Interphases 136
9.3.3.1	Technical Bulk Metals: Cu, Al 137
9.3.3.2	Thin Evaporated Metal Substrates: Al, Cu, Au, Mg 138
9.3.3.3	Discussion 141
9.4	Conclusion 142
	Acknowledgments 142
	References 142
	Structure Formation in Barnacle Adhesive 143
	M. Wiegemann
	Abstract 143
10.1	Introduction 143
10.2	Barnacles 144
10.2.1	General Aspects of Bamacle Settlement 144
10.2.2	Biochemical Characterization of Bamacle Cement 145
10.2.3	Substrate-Specific Formation of Bamacle Adhesive 146
10.2.4	Substrate-Specific Morphology of Bamacle Base 147
10.2.5	Phenomenological Approach to Adhesive Structure Formation
	and Morphology Changes 148
10.3	Homologous (?) Structure Formation of Biological Adherates
	on Hydrophobic Surfaces 150
10.4	Theoretical Colloid Approach to Structure Formation in Bamacle
	Adhesive 152
10.5	Conclusions 154
	Acknowledgments 154
	References 154
	Adhesion Molecule-Modified Cardiovascular Prostheses:
	Characterization of Cellular Adhesion in a Cell Culture Model
	and by Cellular Force Spectroscopy 157
	U. Bakowsky, C. Ehrhardt, C. Loehbach, P. Li, C. Kneuer, D. Jahn,
	D. Hoekstra, and CM. Lehr
	Abstract 157
11.1	Introduction 158
11.2	Materials and Methods 160
11.2.1	Chemicals for the Modification 160
11.2.2	Implant Materials 160
11.2.3	Modification of the PTFE Surface 160
11.2.4	Scanning Force Microscopy 162
11.2.5	Fourier Transform Infrared Spectroscopy 163
11.2.6	Environmental Scanning Electron Microscopy 163
11.2.7	Confocal Laser Scanning Microscopy (CLSM) 163
11.2.8	Isolation and Culture of HUVECs 164

XII	Contents	
	11.2.9	Endothelialization of PTFE Films 164
	11.3	Results and Discussion 165
	11.3.1	Wet-Chemical Modification of PTFE Polymer Film 165
	11.3.2	Cell Adhesion Experiments 166
	11.3.2.1	Adhesion and Cultivation in Static Culture 166
	11.3.2.2	Perfusion Experiments 166
	11.3.3	Cell Adhesion Force Measurements 167
	11.4	Conclusion 169
		Acknowledgments 170
		References 171
	12	Surface Engineering by Coating of Hydrophilic Layers:
		Bioadhesion and Biocontamination 175
		C. Legeay and F. Poncin-Epaillard
	40.4	Abstract 175
	12.1	Introduction 175
	12.1.1	The Need for Bioadhesion of Biomaterials 175
	12.1.2	Mechanism of Bioadhesion 176
	12.2	Surface Engineering 177
	12.2.1	Surface Preparation 177 Surface Sterilization 178
	12.2.2	
	12.3	Tresume and Discussion 1.0
	12.3.1 12.3.2	Hydrophobic Cold Plasma Treated Surfaces in Ophthalmology Hydrophilic Cold Plasma Treated Surfaces Based
	12.3.2	on Polyvinylpyrrolidone (PVP) or Natural Derivative Coatings 179
	12.3.2.1	Grafting of Monomer onto Plasma-Pretreated Surfaces 180
	12.3.2.1	Coating with Commercial Native or Synthetic Polymers 181
	12.3.3	Examples 183
	12.3.3.1	With Different Biomolecules, i.e., Proteins 184
	12.3.3.2	Implantation (ex in vivo) 184
	12.3.3.3	In vivo Implantation 185
	12.4	Conclusion 186
		References 187
	13	New Resins and Nanosysterns for High-Performance Adhesives 189
		R. Mülhaupt
		Abstract 189
	13.1	Introduction 190
	13.2	Tailor-Made Polymers and Properties on Demand 190
	13.2.1	Controlled Polymerization and Catalysis 191
	13.2.2	Functional Polymers from the Life Sciences 192
	13.2.3	Reactive Extrusion and Isocyanate-Free Polyurethane Chemistry 193
	13.3	Nanosystems 194
	13.3.1	The Nano Challenge 194
	13.3.2	Nanophase Separation 196

13.3.3	Nanomolecules as Molecular Nanoparticles 198
13.3.4	POSS and Nanocomposites 200
13.4	Conclusion 201
	Acknowledgments 202
	References 202
	Influence of Proton Donors on the Cationic Polymerization of Epoxides 205
	A. Hartwig, K. Koschek, and A. Lühring
	Abstract 205
14.1	Introduction 206
14.2	Initiators for the Cationic Polymerization of Epoxides 207
14.3	Influence of Moisture on the Polymerization Kinetics 209
14.4	Modification of the Polymerization Behavior by the Addition
	of Alcohols 212
14.5	Conclusion 215
11.5	Acknowledgments 215
	References 215
	N 14 1 B 2 1 B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Novel Adhesion Promoters Based on Hyperbranched Polymers 217 A. Buchman, H. Dodiuk-Kenig, T. Brand, Z. Cold, and S. Kenig
	Abstract 217
15.1	Introduction 218
15.2	Experimental 219
15.2.1	Bulk Hyperbranch Incorporation 219
15.2.2	HB Polymers as Adhesion Promoters 220
15.3	Results and Discussion 221
15.4	Conclusion 227
13	References 228
	Rheology of Hot-Melt PSAs: Influence of Polymer Structure 229 C. Derail and C. Marin
	Abstract 229
16.1	Introduction 229
16.1 16.2	Main Features of the Viscoelastic Behavior of the Pure Components,
10.2	Blends, and Full Adhesive Formulations 231
16.2.1	Rheological Experiments 231
16.2.2	Rheological Behavior of the Pure Components: [SI],[SIS],
10.2.2	and Pure Blends 231
16.2.3	Rheological Behavior of the Full Adhesive Formulations 233
16.3	A Model of the Rheological Behavior 236
16.3.1	A Model for the Pure Copolymers 236
16.3.2	A Model for the Blends [SIS–SI] 239
16.3.3	A Model for the Full Adhesive Formulations [SIS–SI–Resin] 239
16.4	Discussion 240

ΧIV	Contents	
	16.4.1	Molecular Design 240
	16.4.2	On the Variation of the Secondary Elastic Plateau Modulus 241
	16.5	Conclusions 245
		Adtnowledgments 247
		References 247
	17	Preparation and Characterization
		of UV-Gosslinkable Pressure-Sensitive Adhesives 249
		HS. Do , SE. Kim, and HJ. Kim Abstract 249
	17.1	Introduction 249
	17.2	Materials and Methods 252
	17.2.1	Preparation of UV-Crosslinkable Acrylic PSA 252
	17.2.2	Preparation of PSA Samples and UV Curing 253
	17.2.3	FTIR-ATR Spectroscopy 253
	17.2.4	DSC Measurement 254
	17.2.5	PSA Performance 254
	17.3	Results and Discussion 254
	17.3.1	FTIR-ATR Measurements 254
	17.3.2	PSA Performance 258
	17.3.2.1	Probe Tack 258
	17.3.2.2	Peel Strength 260
	17.3.2.3	Shear Adhesion Failure Temperature (SAFT) 261
	17.4	Conclusions 263
		References 263
	18	Contribution of Chemical Interactions to the Adhesion Between Evaporated Metals and Functional Groups of Different Types
		at Polymer Surfaces 265
		J. Friedrich, R. Mix, and C. Kühn
		Abstract 265
	18.1	Introduction 266
	18.1.1	Interactions Between Metal Atoms and Functional Groups at Polymer Surfaces 266
	18.1.2	Preparation of the Plasma-Modified Polymer Surfaces 267
	18.1.3	Interactions Between Evaporated Al and Functional Groups 269
	18.1.4	Adhesive Bond Strength and Concentration of Functional
		Groups 269
	18.2	Materials and Methods 270
	18.2.1	Materials 270
	18.2.2	Plasma Pretreatment of Polymers 271
	18.2.3	Deposition of Adhesion-Promoting Plasma Polymer Layers 271
	18.2.4	Surface Analysis 271
	18.2.5	Labeling of Functional Groups 272
	18.2.6	Contact Angle Measurements 272

18.2.7	Metal Deposition 272
18.2.8	Peel Strength Measurements 273
18.3	Results 273
18.3.1	Production of Polymer Surfaces Containing Functional Groups 273
18.3.2	Surface Free Energy Measurements 275
18.3.3	Peel Strength Measurements of Al-Plasma Modified
	PP Systems 276
18.3.4	Peel Strength of Al-Plasma-Produced Homopolymer-PP
	Systems 277
18.3.5	Peel Strength of Al-Plasma Copolymer-PP Systems 277
18.3.6	Plasma Pretreatment of PTFE Surfaces 279
18.3.7	Peel Strength Measurements of AI–PTFE Systems 281
18.3.7.1	Hydrogen Plasma Pretreatment of PTFE 281
18.3.7.2	Hydrogen Plasma Pretreatment of PTFE and Deposition
	of Plasma Polymer Layers 281
18.4	Discussion 282
18.4.1	Contribution of Chemical Bonds to the Resulting Adhesion
	Strength 282
18.4.2	Dependence of Adhesion Strength on Concentration of Functional
	Groups at the Polymer S 284
18.5	Conclusion 285
	References 286
	Alkene Pulsed Plasma Functionalized Surfaces:
	An Interfacial Diels-Alder Reaction Study 289
	F. Siffer, J. Schultz, and V. Roucoules
	Abstract 289
19.1	Introduction 289
19.2	Materials and Methods 290
19.3	Results and Discussion 292
19.3.1	Interfacial Chemistry 292
19.3.2	Cycloaddition 294
19.3.3	Kinetics 295
19.3.3.1	Monolayers 295
19.3.3.2	Plasma Polymer Thin Films 298
19.3.3.3	Comparison of Surface Reaction in Monolayers and Plasma Polymer
17.3.3.3	Thin Films 299
19.4	Conclusion 302
	References 303
	1010101000
	Laser Surface Treatment of Composite Materials
	to Enhance Adhesion Properties 305
	to Enhance Adhesion Properties 305 Q. Bénard, M. Fois, M. Crisel, and P. Laurens
20.1	
20.1 20.1.1	Q. Bénard, M. Fois, M. Crisel, and P. Laurens

Contents	
20.1.2	Available Treatments for Composite Surfaces 305
20.2	Materials and Methods 307
20.2.1	Composite Materials 307
20.2.2	Surface Analyses 307
20.2.3	Single Lap Shear Tests 308
20.3	Results and Discussion 308
20.3.1	Why Excimer Laser Treatment? 308
20.3.2	Excimer Laser Surface Treatment 310
20.3.2.1	Surface Charactenzation 310
	Mechanical Tests 312
20.4	Conclusion 317
	References 318
21	Effects of the Interphase on the Mechanical Behavior
	of Thin Adhesive Films – a Modeling Approach 319
	S. Diebels, H. Steeb, and W. Possart
	Abstract 319
21.1	Introduction 319
21.2	Theoretical Framework 322
21.3	Applications and Examples 325
21.3.1	Uniaxial Tension Test 326
21.3.2	Simple Shear Test 330
21.4	Conclusion 330
	References 333
22	Effect of the Diblock Content on the Adhesive and Deformation
	Properties of PSAs Based on Styrenic Block Copolymers 337
	C. Creton, A. Roos, and A. Chiche
22.1	Introduction 337
22.2	Block Copolymer Based Adhesives 339
22.3	Effect of the Diblock Content on Adhesive and Deformation Properties 348
22.4	Understanding the Structure of the Extended Foam 350
22.5	Interfacial Fracture 356
22.6	Summary 360
	Acknowledgments 361
	References 361
23	Contact Mechanics and Interfacial Fatigue Studies
	Between Thin Semicrystalline and Glassy Polymer Films. 365
	R.L. McSwain, A.R. Markowitz, and K.R. Shull
	Abstract 365
23.1	Introduction 365
23.2	Materials and Methods 369
23.2.1	Materials and Sample Preparation 369

23.2.2	Pull-Off Test 371
23.2.3	Cyclic Interfacial Fatigue Test 374
23.3	Results 374
23.4	Discussion 381
23.4.1	Wetting Behavior and PEO/TMPC Miscibility 381
23.4.2	PEO/TMPC Interfacial Width and Adhesion 382
23.4.3	PDMS Rupture 384
23.5	Conclusion 385
	Acknowledgments 385
	References 385
	Local and Global Aspects of Adhesion Phenornena
	in Soft Polymers 387
	MF. Vallat
	Abstract 387
24.1	Introduction 387
24.2	The Molecular Interphase 388
24.2.1	Autohesion of Polyisoprene 389
24.2.2	Autoadhesion of EPDM 393
24.3	Macroscopic Interphases 395
24.3.1	Vulcanized Elastomers 395
24.3.2	Polyurethane Joints 398
24.4	Conclusion 400
	References 401
	Calibration and Evaluation of Nonlinear Ultrasonic Transmission
	Measurernents of Thin-Bonded Interfaces 403
	S. Hirsekorn, A. Koka, S. Kurzenhäuser, and W. Arnold
	Abstract 403
25.1	Introduction 403
25.2	Experimental and Calibration Procedure 404
25.3	Calibrated Ultrasonic Transmission Measurements 406
25.4	Ultrasonic Measurement and Destructive Tests 410
25.5	Conclusion 418
	Acknowledgments 418
	References 419
	Debonding of Pressure-Sensitive Adhesives:
	A Cornbined Tack and Ultra-Small Angle X-Ray Scattering Study 421
	E. Maurer, S. Loi, and P. Müller-Buschbaum
	Abstract 421
26.1	Introduction 421
26.2	In-Situ Small Angle Scattering Using Synchrotron Radiation 423
26.3	Microscopically Inaccessible Substructures 426
26.4	Conclusion 432

	Acknowledgments 433 References 433
27	Nondestructive Testing of Adhesive Curing in Glass-Metal
	Compounds by Unilateral NMR 435
	K. Kremer, B. Blümich, FP. Schmitz, and J. Seitzer
0.77.4	Abstract 435
27.1	Introduction 436
27.2	Nuclear Magnetic Resonance (NMR) and the NMR-MOUSE 436
27.3	Quality Control 437
27.4	Application 438
27.5	Conclusion and Outlook 442
	Acknowledgments 442 References 443
	References 443
28	Chemical Processes During Aging in Ultra-thin Epoxy Films
	on Metals 445
	A. Meiser, C. Wehlack, and W. Possart
	Abstract 445
28.1	Introduction 445
28.2	Experimental 447
28.2.1	Sample Preparation 447
28.2.2	Aging Conditions 447
28.3	Results and Discussion 448
28.3.1	Crosslinking 448
28.3.2	Additional Aging Effects 451
28.3.3	Band Assignment and Chemical Aging Processes 458
28.4	Condusion 462
	Acknowledgments 463
	References 463
29	Depth-Resolved Analysis of the Aging Behavior
	of Epoxy Thin Films by Positron Spectroscopy 465
	J. Kanzow, F. Faupel, W. Egger, P. Sperr, C. Kögel, C. Wehlack, A. Meiser,
	and W. Possart
	Abstract 465
29.1	Introduction 465
29.2	Materials and Methods 466
29.3	Results 467
29.3.1	PALS Investigation of an Unaged Epoxy Film 468
29.3.2	PALS Investigation of Aged Epoxy Films 469
29.3.3	Further Investigations of Aged Epoxy Films 471
29.4	Discussion and Conclusion 474
	Acknowledgments 476
	References 476

	Epoxies on Stainless Steel – Curing and Aging 479
	D. Fata, C. Bockenheimer, and W. Possart
	Abstract 479
30.1	Introduction 480
30.2	Materials and Methods 481
30.2.1	Materials 481
30.2.2	Sample Preparation 482
30.2.3	Aging Experiments 482
30.2.4	Characterization of Aged Specimens 483
30.3	Results and Discussion 484
30.3.1	The RT Curing Epoxy System (EP1) 484
30.3.1.1	Curing of EP1 484
30.3.1.2	Thermal Aging of EP1 after Post-Curing at 40C 487
30.3.1.3	Hydro-thermal Aging of EP1 492
30.3.2	The Hot-Curing Epoxy System (EP2) 495
30.3.2.1	Curing of EP2 495
30.3.2.2	Thermal Aging of EP2 498
30.3.2.3	Hydro-thermal Aging of EP2 500
30.4	Conclusion 503
	Acknowledgment 505
	References 505
	Scanning Kelvin Probe Studies of Ion Transport
	and De-adhesion Processes at Polymer/Metal Interfaces 507
	K. Wapner and C. Grundmeier
	Abstract 507
31.1	Introduction 508
31.2	Theory and Experimental Set-Up of a Scanning Kelvin Probe 509
31.3	Applications of Scanning Kelvin Probe Studies in Adhesion
	Science 514
31.3.1	Diffusion of lons into Metal/Adhesive Interfaces 514
31.3.2	Corrosive Degradation of the Polymer/Metal Interface 516
31.3.2.1	Cathodic Delamination on Adhesive-Coated Iron 516
31.3.2.2	Anodic Delamination (Filiform Corrosion)
	on Coated Aluminum 518
31.3.3	Detection of Wet Debonding 520
31.3.4	A New Scanning Kelvin Probe Blister Test 521
J 21311	Acknowledgment 523
	References 523
	rectorences VLV

XX	Contents

32	Advanced Mass Transport Applications with Elastic Bonding
	of Sandwich Components 525
	S. Koch, A. Starlinger, and X. Wang
	Abstract 525
32.1	Introduction 525
32.2	Stress Distribution in Different Joints 526
32.2.1	Stress Distribution in Bolted Joints 527
32.2.2	Stress Distribution in a Stiff Adhesive Joint 528
32.2.3	Stress Distribution in an Elastic Adhesive Joint 529
32.3	Applications of Flexible Adhesives in Mass Transportation
	Systems 529
32.3.1	GRP Front Cab 530
32.3.2	Application in Tram Design 530
32.4	Methods of Modeling Flexible Adhesives 531
32.4.1	Modeling Methods for Detailed Local Analysis 532
32.4.2	Modeling Methods for Large Global Structural Analysis 533
32.4.3	Cornparison of the TR08 Results from Æ Analysis
	and from Measurement on Lathen Test Track 534
32.5	Joint Design, Production, and Testing 535
32.5.1	Production of Adhesive Joints 536
32.5.2	Joint Testing 536
32.6	Conclusion 537
	References 537
33	Adhesive Jointsfor Modular Cornponents
	in Railway Applications 539
	C. Nagel, M. Brede, M. Calomfirescu, J. Sauer, E.A. Ullrich, T. Fertig
	and OD. Hennemann
	Abstract 539
33.1	Introduction 539
33.2	Adhesives and Adherends 540
33.3	Surface Pretreatment 541
33.4	Mechanical Behavior of Adhesives and Joints 542
33.4.1	Elastic – Plastic Properties of Structural Adhesive Systems 543
33.4.2	Hyperelastic Properties of Flexible Adhesive Systems 544
33.4.3	Creep Behavior of Adhesive Joints 545
33.4.4	Fatigue Properties of Adhesive Joints 547
33.5	Environmental Influences and Design of Structures 550
33.6	Conclusion 553
	Acknowledgment 553
	References 554

	Including Thermally Expansive Microcapsules 555	
	Y. Nishiyama and C. Sato	
	Abstract 555	
34.1	introduction 555	
34.2	Materials and Methods 557	
34.2.1	Materials 557	
34.2.2	Volume Expansion of the Cured Bulk Adhesive 558	
34.2.3	Dismantlability of Joints Bonded with the Dismantlable	
	Adhesive 559	
34.2.4	Bond Strength of the Dismantlable Adhesive 559	
34.2.5	PVT (Pressure–Volume–Temperature) Tests 560	
34.3	Results and Discussion 561	
34.3.1	Volume Expansion of the Cured Bulk Adhesive 561	
34.3.2	Dismantlability of Joints Bonded with the Dismantlable	
	Adhesive 562	
34.3.3	Bond Strength of the Dismantlable Adhesive 564	
34.3.4	PVT Relationship of Microcapsules and Dismantlable Adhesive 56	65
34.3.5	Discussion 567	
34.5	Conclusion 567	
	References 568	

Behavior of Dismantlable Adhesives

Subject Index 569