
Design, Implementation and Application of a Reusable
Component Framework for Interactive Mathematical

eLearning Sites

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen
Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Tim Paehler
aus Köln

Berichter: Universitätsprofessor Dr. Ulrik Schroeder,

Universitätsprofessor Dr. Volker Enß

Tag der mündlichen Prüfung: 28. Februar 2005

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar

2

Für Petra

Contents

Introduction 9
Mathematics and eLearning . 9

Mathematical Literacy . 9
Learning by Doing . 10
The Role of eLearning in Mathematics 10
Technical and Didactic Foundations of Web-Based Learning 10
Goals . 11

The Mumie Project . 11
Organisation of this Document . 12

1 Technical Concepts and Existing Solutions 15
1.1 eLearning Sites . 15

1.1.1 Specific Structure of eLearning Sites . 15
1.1.2 Interactivity . 16
1.1.3 Stakeholders and Reusability . 18

1.2 Analysis of Existing Mathematical eLearning Sites 19
1.2.1 MIT OCW . 19
1.2.2 maths online . 21
1.2.3 Conclusions and Theses . 25

1.3 Towards a Reusable Component System . 26
1.3.1 Technical and Conceptual Reusability . 26
1.3.2 Levels of Technical Reusability . 26
1.3.3 Stakeholders and Reusability . 26
1.3.4 Existing Reusable Frameworks and Scalability 27
1.3.5 Need for Didactic Design Process . 28

2 Didactic Design 29
2.1 Didactic Design Process: A Meta-Model . 29
2.2 Learning Model . 30

2.2.1 Static and Dynamic Learning Models . 30
2.2.2 Interactivity: A Constructivistic Approach 31
2.2.3 From Learning to eLearning . 31

2.3 Content Model . 32
2.3.1 Bruners Theory of Representation . 32

2.4 Methodic Model . 35
2.4.1 Taxonomy of Learning Methods: Bloom et al. 35

5

6 CONTENTS

2.5 Consequences for Didactic Design . 36
2.5.1 Didactic Design Process . 36
2.5.2 Content Representation . 38
2.5.3 Methods and Tasks . 39
2.5.4 Learner Orientation . 40

3 The Component Framework 43
3.1 The MathletFactory from the Student’s Perspective 43

3.1.1 Mathematical Entities and their Representations 44
3.1.2 Formal Language Processing Capabilities 44
3.1.3 Generic Display and Interaction System 45
3.1.4 Number Handling . 45
3.1.5 Animations . 46

3.2 The MathletFactory from the Author’s Perspective 47
3.3 The MathletFactory from the Application Developer’s Perspective 48

3.3.1 MMObjects as Models for Mathematical Entities 49
3.3.2 MVC Architecture Supporting Multiple Representations 49
3.3.3 Number Handling . 49
3.3.4 Formal Language Processing Capabilities 50
3.3.5 Generic Display and Interaction System 51
3.3.6 Interactivity: Update Graphs . 51
3.3.7 Building Mathlets . 51
3.3.8 Reusability . 53

3.4 The TestletFactory . 54
3.4.1 Different Categories of Tests . 54

4 Application 57
4.1 Application Scenarios . 57
4.2 Applets in the Pyramit System . 57

4.2.1 Implementing the Didactic Model . 57
4.2.2 Applying the Didactic Design Process . 59
4.2.3 Evaluation Results . 62

4.3 Other Applications in Mathematical eLearning 63
4.3.1 Mathlets for Numerical Mathematics . 63
4.3.2 Additions in the Mumie Project . 64
4.3.3 School Applications . 66

4.4 Transferability . 67
4.4.1 Mathlets for Physics and Engineering . 68
4.4.2 TestletFactory . 68

5 Conclusions and Outlook 69
5.1 Summary . 69
5.2 Towards Critical Mass . 70

5.2.1 Integration with Other Platforms . 71
5.3 Further Fields of Research . 71

5.3.1 Large Scale eLearning Content . 71

CONTENTS 7

5.3.2 Navigability and Adaptivity . 71
5.3.3 Authoring Support . 72
5.3.4 Integration with Server Applications . 72

A Transformation examples of mathematical concepts 73

B Implementation Details 75
B.1 MVC Architecture of the MathletFactory . 75

B.1.1 Requirements . 75
B.1.2 Fundamental Concepts . 75
B.1.3 Model . 76
B.1.4 View . 77
B.1.5 Controller . 77

B.2 Arithmetic and Geometric Model . 77
B.2.1 Number Types . 77
B.2.2 Vectors, Vector spaces and Matrices . 78
B.2.3 Affine and Projective Geometry . 78
B.2.4 Numerical Computing . 78
B.2.5 Compound Example . 78

B.3 Algebraic Object Model and Formal Languages 79
B.3.1 Lexical, Syntactic and Semantic Analysis 79
B.3.2 Introduction to Formal Languages . 80
B.3.3 Types of Grammars . 82
B.3.4 From Syntactic to Semantic Analysis . 82
B.3.5 Formal Languages Used by the MathletFactory 82
B.3.6 Tree Architecture . 83
B.3.7 Basic Tree Model . 84
B.3.8 Object Model of Operations . 85
B.3.9 Object Model of Relations . 88
B.3.10 Applications . 89

B.4 Arithmetic and Geometric Symbolic View Architecture 92
B.5 Algebraic Symbolic View Architecture . 93

B.5.1 View Architecture of Operations . 93
B.5.2 View Architecture of Relations . 94
B.5.3 Metrics of View Components . 94

B.6 Graphical View and Controller Architecture . 95

C Design of the Pyramit Platform 97
C.1 Requirements . 97
C.2 Design and Implementation . 98

C.2.1 Data Model and Presentation Formats 98
C.3 Update Cycle of Documents . 100
C.4 Internationalisation . 101

D List of Mathlets and their Parameters 103
D.1 Generic Parameters for MathletFactory Applets 103
D.2 List of Mathlets . 105

8 CONTENTS

E Installation CD 131

Introduction

‘I find myself forced to the conclusion that our survival
may one day depend upon achieving a requisite math-
ematical literacy for rendering the seeming shocks of
change into something that is continuous and cumula-
tive.’
– Jerome S. Bruner

Mathematics and eLearning

The Modern Role of Mathematics

Being one of the driving forces for the rapid technological progress, the role of mathematics
in society is more and more shifting towards application in almost any context. Mathematics
allows not only the objective specification of natural and technical laws, but also their veri-
fication and publication in an increasingly distributed and diversified system of research and
development. Mathematics may therefore be regarded as being not only the ‘language in which
the book of nature is written’1, but also as building a cultural foundation for the scientific and
technological progress.

Mathematical Literacy

The computer era has reinforced this progress by making in-depth simulation and calcula-
tion software like computer algebra systems and numerical libraries widely available. These
programs take over routine actions from the user, but in turn ask for a new quality of under-
standing.
For example, computer assisted engineering allows to replace costly experiments with computer
simulations, making it possible to calculate parameter changes ‘on the fly’. But in order to
validate the results produced by these calculations, a deeper understanding is required, what
range of parameters fits the assumed model. Experience shows, that almost any calculation
software can be forced to produce nonsense results by feeding it with nonsense (i.e. out of range)
parameters. Unreflected use of these tools in construction may thus lead to disaster.2

This means that for vital decisions based on computational analysis, the ability to judge the

1A saying already attributed to Galilei.
2A prominent example of blind faith in computer calculations leading to disaster is the collapse of the Hartford

Civic Center Arena, [Ma99], [Pe85]. On the other hand there have also been disasters predicted correctly by
computer simulations being rejected by engineers, like the explosion of the Columbia shuttle, see [Fl03].

9

10 CONTENTS

adequacy of a mathematical model is as badly needed as the skill to roughly verify its results
using simplified (e.g. first-order approximations) calculations and common sense. The OECD
Pisa study covers both of these with promoting the concept of mathematical literacy:

’The term literacy has been chosen to emphasise that mathematical knowledge and skills as
defined within the traditional school mathematics curriculum do not constitute the primary focus
... Instead, the emphasis is on mathematical knowledge put to functional use in a multitude of
different contexts and a variety of ways that call for reflection and insight.’3

Learning by Doing

If we want to promote the reflected use of mathematics we have to transfer this practice-
orientation to our didactic model: Learning must be accounted as a self directed activity. This
is of course true for all subjects (and also the main axiom of modern learning theories), yet for
mathematics it has to be stressed, since many students get stuck in passively reading books or
hearing lectures and finally fail to reach the active part. By this they may never experience the
reward of mathematics as a useful tool. The reason of this is, that the successful application
of mathematics is based on a high amount of prerequisite knowledge and understanding, the
acquisition of which often obstructs the path to its universal use.

The Role of eLearning in Mathematics

This is where eLearning comes into play: By providing interactive media, the student is given
an opportunity to directly engage with mathematics without getting lost in calculations; by
giving different representations of mathematical concepts, he may gain and reflect insights on
different levels.
On the other hand mathematics seems quite well adapted to eLearning for it offers a consistent
structure, multiple representations and a formal language that can be interpreted by machines.
In addition to this, eLearning in general offers the opportunity to enforce the propagation
of learning content when it is ubiquitous and barrier free, thus strengthening the democratic
perspective of learning. This is especially true for the growing field of web-based learning.

Technical and Didactic Foundations of Web-Based Learning

With the WWW being only a little more than 10 years old, web-based Learning is a young
discipline, still addressing major technical issues as well as didactic ones. In the technical field,
some standards have been designed, some of them still waiting for their reference implementa-
tion. But as technical progress seems to be taking the leading role for inventions in eLearning,
the didactic design of web-based learning is still very closely connected to (and mostly limited
by) the technical capabilities. Therefore, the implementation of modern didactic concepts and
scenarios requires a sophisticated technical base.
Learning (and therefore eLearning), on the other hand, is a social activity, its success is mainly
determined by ’soft’ factors like pedagogic concepts and methods of communication. Until
widely accepted (and implemented) standards for didactic models of eLearning will be de-
veloped, maybe the most complex problem in eLearning is to resolve the interdependence of

3[OECD99]

CONTENTS 11

technical and didactic issues, where the former require analytic skills and the latter defy them
by their dialectical nature. This thesis proposes a solution, that tries to balance the technical
and the didactic aspects in a practice oriented design process.

Goals

Analysing existing solutions in mathematical web-based learning (see chapter 1), reveals, that
most eLearning sites offer too much static text and too few interactive learning materials. Ad-
ditionally, the interactive materials offered are not flexible enough for reuse by other authors,
thus making their development for a single purpose too costly. This again results from the fact,
that there are no architectural patterns, which allow the mass production (more than 100) of
interactive units.
We therefore come to the conclusion that mainly two threads of development have to be
strengthened to enable web-based self directed learning that leads eventually towards mathe-
matical literacy:

• The interactivity of mathematical eLearning has to be strengthened to encourage students
to actively play with mathematics.

• The flexibility and reusability of mathematical eLearning units has to be ensured to en-
courage authors and teachers to create materials for students.

We will address these needs by implementing a framework that allows the rapid creation of
flexible and reusable interactive units and evaluate it by the implementation and application
of a large number of these.

The Mumie Project

This document is a product of Mumie (Multimedial Mathematics Instruction for Engineers)4,
a project funded by the German Ministry of Education and Research (BmBF), whose aim is
to produce a reusable eLearning platform for mathematics education of engineers. This plat-
form consists of an authoring environment using a specified TEX dialect for the construction of
content (MMTex), an XML and Java based application server (JAPS) and a framework for con-
structing client side applications, the AppletFactory. While another work, [Je04], concentrates
on the construction and description of the authoring and server framework, this thesis puts the
focus on the client side applications, which are generated by two subpackages of the Mumie
AppletFactory: The MathletFactory for creating mathematical applets and the TestletFactory
for creating interactive tests.

4[Mu04]

12 CONTENTS

Fig. 1: A mathlet created by the MathletFactory and a puzzle testlet created by the TestletFactory

Though this framework was designed to fit in with the rest of the Mumie components, its
reusability within any other server framework has been specifically ensured – even offline uses
(e.g. publications on CDs) are possible. This corresponds to the public domain and open-source
approach consequently followed throughout the whole Mumie project.

Organisation of this Document

This thesis is the documentation of a complete evolution cycle in the process of constructing a
mathematical eLearning site. According to the usual models (such as described by the Unified
Process Model5), a software development process generally consists of four phases dealing with
the requirements analysis, design, implementation and evaluation/testing of the software.
Taking into account the considerable work already performed in the field of web-based mathe-
matical eLearning, we regard the process described in this document as a single iteration cycle
(a macro cycle) within the evolution of mathematical eLearning site development. We will
therefore pick up successful concepts from existing sites, try to improve them – technically and
didactically – and make them available and reusable for the next generation of mathematical
eLearning. Since this methodic model also applies to each iteration within our own project (a
micro cycle, where we improve those parts of our framework that are most needed or promising)
the complete process is best described by an evolutionary and object-oriented process model,
like the EOS-Model6. This model may be regarded as an object oriented improvement of the
Spiral Model7 and differs from the traditional Waterfall- and V-Model by its adaptability to
specification changes (which happen to occur frequently in practice-oriented software design).8

5[Sa02]
6[He02], [He98]
7[Bo88]
8[Ke98],[GS02]

CONTENTS 13

Mumie
[..]

[..]

I

T

D

A

I

T

D

A

Factory

[..]

I

T

D

A

[..]

Implementation

Design

Mathlet−

Implementation

Test

I

T

D

A

Implementation

Test Test

DesignI

T

D

A

I

T

D

A
I

T

D

A

Base Operations
Parser and

Test Suite

I

T

D

A

Interactivity
Rendering and

Transform

Simplification
Rules

3D−View

Vector & Matrix
Operations

I

T

D

A

Subsystem
Math. Operations

Framework

Studies of existing
Interaction
Frameworks

an Interaction
Specification of

mathlet collections
and mathlet frameworks

Mathlet−
Factory

I

T

D

A

Factory
Testlet−

Prototype

Mathlet−
Factory

Unit tests

Studies of math.

Exercises
Lectures and

System of Operations
Refining an existing
Refactoring and

Design	
Building and CAS−
Studies of Compiler

Math. Operations

Studies of existing

Analysis
Analysis

Analysis

Design

Fig. 2: Developing the Mumie AppletFactory as an evolutionary and object oriented process

This document is thus organised as in the following figure: Each chapter connects two phases
of the macro cycle, describing the steps that lead from the phase pointing to it to the next
phase.

Chapter 1 Chapter 5

Chapter 2 Chapter 4

Chapter 3

Analysis Test/Evaluation

Design Implementation

Fig. 3: The chapters of this document in the evolving process

After discussing the specifics of web based learning, we start with the practical evaluation
of existing eLearning sites in Chapter 1. This evaluation reveals, that current mathematical
eLearning sites mostly offer only isolated spots of interactive content; a fact that results from
the absence of a systematic approach for interactive client side applications and from a common
disregard of the complete set of stakeholders (namely the authors) involved. To lay the foun-
dation for the solution presented in this thesis, in Chapter 2 a didactic model for interactively
learning mathematics is introduced which may serve as a generic process framework for the pro-
duction of learner-oriented and modular learning content. Together with the practical results
of Chapter 1, this model can be used to specify the requirements for sustainable improvements
in mathematical eLearning.
The basic concepts of a component framework that meets these requirements are described in
Chapter 3. To prove the stakeholder-oriented approach of our solution, we present the compo-
nent framework from each of three different perspectives (the student’s, the author’s and the
application programmer’s perspective) and illustrate its user-specific interfaces. It can be seen,
that the process of developing and configuring applets with the framework is simple and flexible.
This is also demonstrated in Chapter 4, where we give a wide range of application scenarios and

14 CONTENTS

discuss the improvements and lessons learned following their evaluation. Moreover, the chapter
provides a look at the ‘big picture’ of developing, maintaining and extending interactive content
for mathematical eLearning sites. To demonstrate its impact on eLearning in general, we also
present the transfer of the framework to other fields of use (school scenarios, integration in
server frameworks, offline use) and to other fields of science (physics, engineering). A summary
of the results of this thesis and an outlook to further extensions is given in Chapter 5, thus
completing this cycle and initiating the next one, which might consist of integration steps to-
wards a comprehensive mathematical eLearning/-Teaching/-Research (eLTR) infrastructure as
well as towards a converging university-wide eLearning landscape.

Chapter 1

Technical Concepts and Existing
Solutions

In this chapter we illustrate the current state in mathematical eLearning by presenting two
prominent example sites. We also take a closer look at the specifics of web-based learning.

1.1 eLearning Sites

The need for web-based solutions in mathematics instruction has been recognised by many
institutions. For example, the Austrian government funds an international project that aims
to construct a website which covers all mathematical subjects from school to university level
with interactive examples. A different approach is taken by the Massachusets Institute of
Technology (MIT): It publishes an online version of all its university courses (not only that of
mathematical content) in an highly acclaimed open courseware program.1 In Germany, a wide
range of university eLearning projects have been funded by the government in a large scale
initiative to improve academic learning. More than six of these projects deal with instructing
mathematics.2

To examine the state of these efforts, we will analyse two exemplary mathematical eLearning
sites, concentrating on best practice solutions. However, in order to perform this analysis we
first need to state the concepts on which we concentrate, making it necessary to take a closer
look at the specific structural, technical and social aspects of web-based eLearning.

1.1.1 Specific Structure of eLearning Sites

There are many diverging categorisations of eLearning software.3 Most of these adhere to di-
dactic aspects like the cognitive level of the learning content or the tutoring capabilities of the
control mechanisms. Unfortunately, for the existing eLearning sites these categorisations do
not seem to be appropriate, because their stage of development is still in the phase of solving
the technological difficulties, leaving their didactic features yet quite undistinguished.
We therefore use a rather practical categorisation scheme that focuses on the basic technical

1[MIT03], [NY01], [Mo02], [Ze03]
2For a complete reference see [BmBF04].
3e.g. [Blu98],[Sch02]

15

16 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

and social aspects of an eLearning site and leave didactic considerations for Chapter 2.

Before we specify these aspects, we have to take a look at the technical constraints that make
web-based eLearning different to other forms of eLearning:

From the technical perspective, an eLearning site is simply a web server sending HTML
content and multimedia objects to a requesting user. For further analysis, we will adopt the
common structural view that distinguishes between macro level (server platform along with
static content and navigation unit) and micro level structure (single page content and multi-
media objects). For eLearning sites there is an additional logical substructure consisting of
courses and course sections. As it makes sense to associate these to the server framework (as
subdirectories or hierarchical database tables), the structural levels for eLearning sites are usu-
ally as follows:

site level

Micro Level

co
m

pl
ex

ity

course level

section level

Macro Level

page object level

page level

Fig. 4: Structural levels of an eLearning site

Macro Level

On the macro level the system consists of a web server that operates on a content base (files or
database) using a navigation structure and a global presentation style. For eLearning sites the
macro level structure of the system is closely related with the ‘global’ settings, i.e. organisation
and presentation of courses, user tracking, navigation, etc.

Micro Level

On the micro level the system consists of the single page delivered upon a user request along
with different media the user might work on to achieve the actual learning progress. For eLearn-
ing sites this is often closely related to the content provided by the system. Typical micro level
applications are executed on the users computer (e.g. Java applets, Flash programs, interactive
PDFs, etc.)

When speaking of certain aspects of eLearning sites, we often have to differentiate between
these levels. This is especially true for one of the main topics this thesis is about:

1.1.2 Interactivity

Interactivity is a key concept for eLearning as well as for multimedia in general, since it allows
a variety of learning activities that are impossible to realise with conventional media.
Because interactivity connects the technical perspective with the didactic one, we will present a

1.1. ELEARNING SITES 17

deeper analysis in Chapter 2. For our practical analysis it is sufficient to regard the interactivity
of a multimedia system as a measure for the quality and quantity of message loops in which a
user finds himself when working with it.
With respect to eLearning software [MO91] offer a classification of interactivity in terms of
navigability, adaptivity and reactivity:

diagnostic
test

drill &
practice

programming
environment

Reactivity

Adaptivity

Navigability

microworld

database

hypertext

encyclopedia

book
tutorial

simulation

game

intelligent
tutoring
system

Fig. 5: The interactivity space of Midoro/Olimpo et al.

In this classification, navigability is defined as ‘the capability of retrieving the proper material
from a bank of learning material’, adaptivity means ‘the capability of evaluating and executing
a set of functions available to the user’ and reactivity is ‘the ability of an instructional system
to adapt its behaviour according to the user’s behaviour’.
This means, for example, that conventional learning with a mathematical textbook would have
a rather low interactivity (navigability: Low – very often sequential reading is required, a little
increase by cross referencing and offering an index; reactivity: Almost none, maybe except
the possibility of writing annotations into it; adaptivity: Only little by offering exercises with
solutions), whereas a usual Computer Algebra System (CAS) worksheet would have a medium
interactivity resulting from a very high reactivity (by offering a programming language), com-
bined with low navigability (no hyperlinks) and low adaptivity (only syntactic errors are re-
ported, no semantic checking by the system).
In general (and as shown by the examples discussed in section 1.2), the navigability of web-
based eLearning has already reached a high level (though there are many hypertexts in the
web that adopt rather the structure of a book or an encyclopedia), whereas adaptivity and
reactivity still remain on a basic level.

eLearning Sites and Interactivity

For further analysis of eLearning sites it makes sense to relate this interactivity categorisation
scheme with our structural model and take into account the potential of web-based technology:

micro level macro level
navigability low high
adaptivity medium high
reactivity high low

18 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

In this table ‘high potential’ means that an implementation on the specified level is able to
provide features that enhance the specified dimension of interactivity, for example, it is easy
to enhance the adaptivity of an eLearning site by adding logic to the server framework, since
user specific parameters can easily be saved on the server. Single pages and applets only have
transient states and are normally not allowed to save data on the client computer. In turn
reactions of the server framework can only be initiated by a HTTP request, which always
induces the transfer of a file over the internet, slowing down actions below the usually accepted
response rate4, so reactivity has to be provided mainly on the micro level by using reactive
client applications.

1.1.3 Stakeholders and Reusability

Since the web is first and foremost a medium for communication, the role of each participant is
a decisive factor in the design and maintenance of websites. In this thesis we therefore regard
all social aspects for eLearning sites as the properties and interests of different stakeholders.
As the following analysis of the example site shows, the reusability of an eLearning site relies
strongly on the inclusion of stakeholders into the design process.

Stakeholders in eLearning: A Role Model

eLearning usually takes place not only in a technical environment but also in a diverse social
context (e.g. schools, universities). This makes it necessary to analyse the roles of the partici-
pants in the specific eLearning scenario.
We can compare the evolution of eLearning with the evolution of education as a whole: Edu-
cation started with the role of the teacher and a student (e.g. a sophist teaching a young man).
Today the role of the student remains almost unchanged while the role of the teacher has diver-
sified into many roles like textbook authors, lecturers, exercises managers, tutors, examiners,
etc.
The situation in eLearning is alike: The ‘big brother’ experimentator role from early computer
based training experimental studies has diversified with growing system complexity into differ-
ent roles determining the eLearning scenario. Up to now large scale settings require authors,
tutors, developers, administrators, etc.

The roles allocated by an eLearning system differ with its type: Standalone learning programs
exclusively address the student as a role, larger web-based learning systems additionally provide
an author role: Someone who creates content with an authoring tool or in a simple markup
language (e.g. HTML). To these two roles, blended learning scenarios (i.e. eLearning combined
with face-to-face learning) add the role of a tutor who watches and supports the interaction of
the student with the content.
In practice author and tutor are often the same person (e.g. schools, small university depart-
ments), we call this combined role the teacher.

4[Cr02] recommends that at least 50% of all actions performed in an interactive application should have
a response time below 0.5s – a task that is hard to achieve for HTTP applications using low band-width
connections.

1.2. ANALYSIS OF EXISTING MATHEMATICAL ELEARNING SITES 19

writes

Student Author/Teacher

Content
delivers

Tutor/Teacher

Fig. 6: Minimum role model for a blended learning scenario

Since the goal of our research is to provide a framework that can be used for a wide range of
learning systems, we need to consider at least the three elementary roles student, author and
tutor.

1.2 Analysis of Existing Mathematical eLearning Sites

In the following we will look at an existing mathematical eLearning site in order to demonstrate
the current state and conclude the necessary steps of improvement to be taken.
We will take a look at the – at the time of writing – most prominent mathematical eLearning
sites, MIT OCW and maths online.

1.2.1 MIT OCW

The MIT Open CourseWare System is an eLearning site that offers contents of all MIT’s
courses, not only mathematics. It describes itself as ‘a large-scale, Web-based electronic pub-
lishing initiative ... to provide free, searchable, access to MIT’s course materials for educators,
students, and self-learners around the world’; in our words this means, that the site aims at
blended learning as well as pure distant learning scenarios.
From a structural perspective, OCW is rather a macro level solution, delegating micro level
considerations to the individual lecturer. This results in a collection of diverse course materials
that vary highly in quantity and quality, using a wide range of media types, from commercial
software files to video lectures. Of course it is not possible to analyse this material as a whole –
not even for mathematics alone; we therefore take a brief glance on the courses ‘Calculus with
Applications’ and ‘Linear Algebra’, which cover the standard mathematics that every science
and engineering student learns in his first terms. We regard these courses under the perspective
of interactivity and the stakeholders involved.

20 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

Fig. 7: A page of the analysis course’s online textbook in MIT OCW

Interactivity

Since the primary goal of MIT OCW is to make their (sometimes already existing) course
materials available online, their structure is still tied to that of textbooks and lectures: The
‘Calculus with Applications’ course is mainly organised as an ‘online textbook’ with a linear
structure with almost no further navigability, The ‘Linear Algebra’ course offers in addition to
the usual assignment and exam sheets (as PDFs) a link to the book written by the lecturer and
a collection of video lectures. This means that the navigability on course level is only marginal
above that of conventional media (one is able to search the content, but this applies only to
HTML and PS/PDF materials).
In terms of adaptivity there are some assignments with solutions, varying on the specific course
(Calculus: questions in the text with links to solutions, Linear Algebra: Problem set PDF
sheets with corresponding solution sheets).
Regarding the reactivity of the materials, the calculus online textbook offers an advantage over
conventional media by providing more than 20 mathematical applets (spread among the about
180 pages of content). Though named as ‘tools’ they are each made for visualising a quite

1.2. ANALYSIS OF EXISTING MATHEMATICAL ELEARNING SITES 21

specific topic, allowing the user little interaction with the mathematical concepts presented. A
short look onto the other courses with mostly no applets (or any other interactive applications)
at all reveals that the chosen example already provides an outstanding amount of reactivity
within the OCW materials.

Stakeholders and Conclusions

The stakeholders addressed by MIT OCW are obviously foremost the student and the au-
thor/teacher, no explicit support for other roles is offered. The reason for this might be, that
(other than most modern universities) the MIT has a low students-per-teacher ratio, allowing
small team sizes for the teaching staff.
This almost ‘standalone’ role of the teacher gives him freedom to arrange learning materials to
fit his individual course structure on the one hand. On the other hand we observe the static
nature of most of these materials, which results from the fact that it is hard to expect additional
programming skills from a teacher (who is by the way also occupied with research, publication,
organisation of meetings, etc.). This leads us to the thesis, that for creating interactive math-
ematical eLearning media, the author role should be augmented by addressing an additional
developer role.

Student

Content
delivers

Tutor/Teacher
Author/Teacher

writes

writes Developer

Fig. 8: A developer is needed to assist the author in producing highly interactive content

We will now take a look at an eLearning site, that provides an increased amount of interactivity
due to the obvious work of developers.

1.2.2 maths online

maths online is a project based at the University of Vienna, Austria, and is running since March
1998. Its goal is ‘to contribute to the development of adequate standards for up to date maths
education in school, highschool, college, university, and adults’ qualification.’5

A closer look at the site will reveal that these standards concern mainly didactic and content
issues. For its authors, the site is characterised by the following elements:6

• A section of mathematical backgrounds that is regarded as the core element, ‘from which
the whole content material may be overlooked and accessed’. These elements are large

5[MO03]
6[Ob98]. Some of these elements are currently available only in the German version of math online.

22 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

pages holding a linear structure with hyperlinks to other – internal and external – pages.
There is also an encyclopedia for mathematical concepts linked with the backgrounds.

• A gallery that puts the focus on interactive multimedia units, mostly applets.

• A collection of interactive exercises and tests that consists mainly of graphical puzzles
and multiple choice test pages. Also a discussion of common mistakes is included.

Again, we apply onto these the criteria specified in 1.1.2 and 1.1.3.

Fig. 9: A section of math online’s mathematical backgrounds (note the length of the page indicated by the scrollbar)

Interactivity

One can see that each category of elements listed above deals with the dimensions specified by
[MO91]: The elements mathematical backgrounds and encyclopedia stress the concept of navi-
gability, the gallery gathers examples of high reactivity and the interactive exercises determine
the site’s adaptivity.

1.2. ANALYSIS OF EXISTING MATHEMATICAL ELEARNING SITES 23

Navigability While the body of the content presented in mathematical backgrounds resembles
the sections of a book, a multitude of internal and external links has been added, allowing the
user to jump to previous definitions, further explanations or linked topics. Compared to other
web pages the single documents are very large (up to 500-1000 lines) and will surely be hard to
read for a beginner in mathematics. This raises the question if the advantages in navigability
outweigh the difficulties of onscreen-reading compared to using a mathematical textbook, when
working with the site.7

Reactivity In the gallery math online provides (at the time of writing) 53 Java applets deal-
ing with various mathematical topics. These applets are worth a closer look, since their role as
a ‘key concept’ has been confirmed by all evaluation results (see page 24).

Fig. 10: A function plotter mathlet and a puzzle applet from maths online

The applets can be categorised into those that offer a visual and interactive interface to a
specific mathematical topic and those that allow the user to relate different (visual or textual)
representations of mathematical entities by drag & drop (see figure 10).
The latter are often called ’puzzles’, the former comply with the definition of a mathlet issued
by the Journal of Online Mathematics and its Applications8:

A mathlet is a small, interactive, platform-independent tool for teaching math – the equivalent
of a good example that you want to haul out, give (or show) to your students, and let them go
explore. Some will be more general purpose and of broader use, but the basic idea is that they
should be simple to explain and to use.

Adaptivity maths online offers puzzles and multiple choice tests as self assessment programs
for the user. Both give feedback in ‘points’ when the ‘evaluation’ button is clicked. The points
are not recorded, so it is up to the user to keep track of his learning success.

7The authors of math-online also list this as an acceptance problem in their experiences report [Em99].
8[JO03]

24 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

Stakeholders and Reusability

Originally, maths online was first designed as a CD-Rom standalone application addressing
only the role of the student. Over time this aim changed to a distant learning system adding
authoring-functionality. Also, some other projects involving blended learning scenarios anal-
ysed the role of a teacher in maths online. This gradually increasing range of stakeholders
addressed by the system may explain the rather poor support for the author role:

Content

Content

Content

Student Developer

produces

Teacher/Author

arranges
delivers

Fig. 11: Stakeholders in the maths online authoring system

The authoring system is designed for linking prefabricated content pieces of the system –
thus an author is not supported in creating his own content pages. Instead he may only add
comments or exercises to existing learning content, reducing the pages written by authors in
many cases to the one containing the links to pages of maths online. Also, most of the mathlets
provided by the system are insufficiently configurable. This approach was also criticised by the
teachers:

Evaluation Results

maths online has also been chosen as an example for an existing site because of its considerable
amount of empirical results.9

The project leader Franz Embacher devotes a large part of his report to the role of the teacher.
After describing a mathlet that visualises the derivative10 of a function he states:

However, several teachers asked for the possibility to vary the graph displayed. They did not
primarily look at the applet as a visualisation of a concept but as a tool, to be used in various
situations. They did not seem to accept intuitive understanding as a primary goal of a learning
unit, but were more focused on tools suitable to do something, and to learn by doing.

This need for tools does not only affect mathlets but also puzzles, for which a text-only
solution11 is offered:

There was a further series of reactions indicating that teachers wish to have tools at their
disposal, even if the adoption thereof for their lessons will cost a considerable amount of time.

9The most extensive evaluation can be found in [Os00], the authors sum up their experiences in [Em99].
External evaluations can be found in [Do02], [Kl02]

10http://www.univie.ac.at/future.media/moe/galerie/diff1/diff1.html#ableitung
11http://www.mathe-online.at/testpuzzle/testpuzzle.html

1.2. ANALYSIS OF EXISTING MATHEMATICAL ELEARNING SITES 25

... A frequent reaction of teachers was the need for customising their own puzzle applets. We
have provided a comfortable possibility to do so (input of the entries by web page).

This corresponds to the way teachers utilise mathlets and puzzles in their own lessons:
The overall approach of teachers towards the applets was seemingly to integrate them as in-

dividual units into their courses, separated from the rest of ”maths online”. Maybe this is a
reaction for individuals responsible for their educational activities. So far, we could not verify
the well-known phrase that teachers just want material whose use is strictly ruled. (On the
other hand, there are already materials in use which do not leave much room for customisation
– the maths textbooks. Maybe the situation bears some slight competition between book and web).
This reaction may be appreciated – nevertheless, it shows that suggesting a different pedagogical
approach of, say, a complete chapter as a whole is a rather difficult enterprise.

In our words this means, that maths online mistook the role of the teacher as that of a mere
tutor, depriving it of its authoring capabilities. But inventing the author role would lead to a
quite different technical environment: To allow authors to write their own lessons, the content
structure needs to be finer. This leads in practice to a shift towards micro level applications
(‘tools’) that can be easily integrated into any course constructed by the teacher. For an eLearn-
ing site this means that it should offer a collection of fine grained reusable content objects, like
the demanded mathlets.

The favoured interest in applets is also strongly backed by the evaluation performed by Os-
simitz12 in the European/Austrian project ‘mathe online im zweiten Bildungsweg’ (an adult
education study using maths online in a blended learning scenario): 88% of the students inter-
viewed after the course said they were most positively impressed either by the interactive tests
or the mathlets, the teachers in turn estimated that more than 70% of their working time with
maths online was used for working with mathlets and interactive tests.

1.2.3 Conclusions and Theses

What are the technical solutions that could improve mathematical eLearning for sites like maths
online and MIT OCW? In this document we concentrate on the following issues:

1. Improving Interactivity with Micro-Level Applications

The evaluation results of the previous section lead us to the thesis, that a sustainable improve-
ment of interactivity in web-based learning can only be achieved by extending the capabilities
of applications on the micro level. This requires the introduction of a developer role that acts
as an assistance of the author role.

2. Improving Reusability by Strengthening the Author Role

Why are the widely appreciated concepts of math online not used by other sites and why has
its content not been extended over the last years to meet the specified needs? It seems that the
standards set by maths online were mostly on the didactic level, but the technical standards –
if there were any – were not published to potential authors willing to follow suit. Therefore,

12[Os00]

26 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

the author role as a transmitter between developer and student was neglected, reducing the
role of the teacher to that of a tutor that had only marginal influence in the content presented
(i.e. he could only choose which sections to present to the students).

1.3 Towards a Reusable Component System

1.3.1 Technical and Conceptual Reusability

Though almost all results of this thesis can be reused on a conceptual level, our aim is to
develop a system that is also technically reusable for a wide range of applications. This means
that an author of an eLearning site may use the system and configure it at his wishes. This
configuration can be done on various technical levels:

1.3.2 Levels of Technical Reusability

If we wish to reuse portions of an eLearning site with applets in general, we can do this on each
of the structural levels defined in 1.1.1.
Moreover, we have seen in 1.2.2 that there is a specific need for flexible micro level applications
in mathematical eLearning. For applications written in an object oriented component based
language (such as Java) we thus need to extend the structural view below page object level in
order to increase the potential for reuse:

language level

[...]

component level

language object level

co
m

pl
ex

ity page object level (applet)

Fig. 12: Refining the structural view for applets (cf. Fig. 4)

This approach is especially promising for mathematical eLearning sites, because it is backed
by the fact that mathematics offers a highly formalised language which is independent of specific
contexts (see 2.5.2) and that its concepts can be visualised and interacted with in a somewhat
standardised way (see 3.3.2).
To demonstrate the practical effectiveness of this approach, we will provide a prototypical au-
thor platform that embeds the applets and that also offers reusability on page level (see section
4.2).

1.3.3 Stakeholders and Reusability

For a project aiming at the support of various mathematical eLearning scenarios it is required
to specify the roles that could possibly participate. We therefore include all scenarios that

1.3. TOWARDS A REUSABLE COMPONENT SYSTEM 27

include a subset of the following roles:13

Fig. 13: Possible roles in our eLearning scenario

In order to achieve reusability, we have to state, how a specific stakeholder may reuse the
system. This is already implied by the assignment of roles in figure 13: Each stakeholder reuses
content entities on the structural level(s) he is working on:

site level

co
m

pl
ex

ity

course level

section level

page level

language component level

language object level

language level

Application Developer
Authorpage object level (Applet)

System Developer

Tutor, Student

Fig. 14: The structural levels on which stakeholders reuse the system

1.3.4 Existing Reusable Frameworks and Scalability

The need for reusable frameworks in the production of mathematical applets has already been
recognised by various institutions, some have even produced solutions for this need: The Amer-
ican National Science Foundation (NSF) funded two projects for the development of a mathe-
matical Java component framework – Java Components for Mathematics (JCM)14 and Math-
ToolKit15.
As these frameworks were obviously designed for small collections of mathlets (and are techni-
cally somewhat out of date) we only give a brief description of them (for further information
please refer to the associated web sites).
The two component systems both offer a collection of function types, including a small parsing

13Remember that there is no obligation for a person to be limited to a single role, in fact almost all members
of our team had multiple roles

14[JCM01]
15[MT01], see also [Y01]

28 CHAPTER 1. TECHNICAL CONCEPTS AND EXISTING SOLUTIONS

unit and 2D graphical representations for calculus and differential equations. One can see from
the number of mathlets presented at the associated web sites (not much more than 10), that
these frameworks were not intended for scenarios we are aiming at (more than 100 mathlets). In
addition to the listed features we need at least representations of linear algebra entities (vectors,
matrices, etc.), a generic graphical interaction and navigation system and a 3D representation
system. We will present these and other features of our component system in Chapter 3.

Fig. 15: Examples of mathlets created with the JCM (left) and MathToolKit (right) framework

1.3.5 Need for Didactic Design Process

In the example sites we have seen that the didactic perspective is often superseded by technical
constraints: The amount of (didactically desirable) mathlets, was kept low due to the costs
of development, the author role was neglected due to problems in delivering an authoring
environment. This in mind, we need to carefully analyse the didactic requirements to set up
appropriate and useful eLearning scenarios. We do this in the following chapter by taking a
closer (specific didactic) look at the concept of ‘interactivity’. This will lead us to designing a
component system that allows the construction of didactically helpful applets.
Also, in terms of reusability we need a didactic model that tells us, which parts of a mathlet or
lesson are invariant under various use cases (should be reusable) and which parts are specific
for a certain use case (should be replaceable). We will return to this issue in 3.3.2.

Chapter 2

Didactic Design

After having examined the technical and the practical aspects of web-based eLearning, it is
time to complement these with a didactic perspective that shows, how learning as a subjec-
tive activity can be modelled and how eLearning media should be designed to encourage and
strengthen learning. We therefore first present a meta-model for the didactic design process
and then take a look at theories that might serve as a model for different learning scenarios.

2.1 Didactic Design Process: A Meta-Model

As didactics is made of a wide range of different theories there is also a wide range of didactic
processes for the preparation of instruction units. Most of these processes provide a detailed
scheme how to take into account all dependencies, like previous knowledge of the learner and
social-cultural relations of the subject matter, etc. Aiming at a simple process that guides the
development of eLearning media, we start with what [MJ91] call the ‘magic formula’ of consen-
sus of all didactic models and processes: The fact that almost any didactic theory regards an
instruction unit under the complementing perspectives of the specific goals, the content taught
and the methods used. All these perspectives depend on each other and on the general aims of
the instruction.

Content MethodsGoals

General
Aims

Fig. 16: The fundamental entities in a didactic process and their relations

According to this meta-model, the steps in specifying our didactic process would be to state
the general aims of teaching students mathematics and derive from these the necessary contents,
methods and specific goals for each learning unit.

29

30 CHAPTER 2. DIDACTIC DESIGN

But since our aim is to provide a reusable system that should serve a wide range of different
target groups and learning scenarios, we cannot state any aims other than that the subject
(mathematics) should be taught and presented in a wide range of different contexts. We
therefore first have to take a look at how learning can generally be understood by means of
a comprehensive learning model. This must be a theory that takes into account the practical
results of the previous chapter (e.g. the prominent role of interactivity).
After discussing an appropriate learning model, we will present further components to be used
in our didactic process.

2.2 Learning Model

2.2.1 Static and Dynamic Learning Models

Historically, the prevailing concept of learning regards the learner basically as a (more or less
complex) input/output machine which processes stimuli by giving according responses.1 The
learning progress was then ensured by comparing the output with the prescribed learning goals.
The result of this comparison was fed back to the learner, thus creating a cycle.

Learner

stimulus

response

Comparison with

learning goals

Fig. 17: Traditional (static) learning model

The deficiency of these models was, that they assumed the existence of an objective theory
stating how anyone can learn anything in any situation. As a result, the associated theories
concentrated on the static entities of learning (curricula, books, tests) without taking into
account the factors of learning that in practice have been the most successful: Communication
and interaction.
Along with the rise of large scale empirical studies, didactic theories shifted more and more
towards evaluating the interaction of learner and learning entities. Though the foundations of
the ’objective’ theories (behavioural biology and cognitive psychology) were not denied, their
lack of providing explanations for practical failures was criticised. This led to a paradigm shift
towards theories that focus on describing the dynamics encountered in practical situations.2

1This is especially true for eLearning, see for example, [Sch02], [Th99].
2[MJ91]

2.2. LEARNING MODEL 31

The most striking paradigm that evolved from this process is the concept of constructivism.3

The main difference to traditional learning theories contributes to the inability to objectively
measure subjective and social properties. In terms of education this means, that learning should
not be regarded as a clearly definable standalone activity of information absorption, but as a
dynamic process that is embedded in multiple subjective and social contexts.
For the design of learning media it thus makes sense to focus on its possible uses in a dynamic
learning scenario. For eLearning media this brings us back to the concept of interactivity.

2.2.2 Interactivity: A Constructivistic Approach

In his comprehensive structural definition of interactivity, [Ya99] puts the interaction loop at
the centre of learning:

Response Message/Action

Originating Message/Action

(Teacher, Book, ...)

Learner
Entity Entity

Learning

Fig. 18: Dynamic learning model: The interaction loop after [Ya99]

According to this model, a learning person (the learner entity) finds himself in a loop with a
learning (or teaching) entity, which might be a teacher, a book, a computer, etc. The learner
communicates and interacts with this entity, learning gradually by iteratively completing more
or less semantically rich interaction cycles. So what are the differences to the static learning
model in figure 17? Primarily, there are no more external learning aims or goals; in contrast,
the goals have to be stated by the learner him- or herself and depend on the chosen subject
matter. In order to use a dynamic learning model, we therefore will have to modify the meta
model in figure 16 for our didactic design process (see 2.5.1).

Yacci stresses, that the interaction between learner and content can be observed within two
domains: the cognitive domain and the affective domain. The learner can thus be regarded as
having two distinct subsystems that each use a different channel for communication. The clear
distinction of these two subsystems is backed by the fact, that biologists even have assigned
these two subsystems to different parts of the brain.4

2.2.3 From Learning to eLearning

We have seen, that communication has been underestimated in the traditional learning theories.
This is even more surprising as historically, learning has always been connected to communica-

3MV98
4[Ve78]

32 CHAPTER 2. DIDACTIC DESIGN

tion and social interaction. Platon, for example, considered the dialogue between a student and
his teacher as the most important way out of the cave of ignorance. In fact, no other method
has proven such practical success in the history of education than the link of learning with
human communication regardless of its structure being symmetric (communication between
learners) or asymmetric (communication between teacher and learner).
Under this perspective, eLearning takes a new direction by replacing face to face communication
with communication over a technical framework, making it much harder to react on any kind of
difficulty (which could be possibly handled much easier in face to face situations). Because this
is especially true for the affective domain, this document mainly concentrates on the cognitive
aspects of eLearning (in fact, our system initially rather aimed at blended learning scenarios,
where affective issues can still be handled with face-to-face communication). But the affective
component will be kept in mind, for example, when designing user friendly interfaces or using
colour schemes that permit association to positive feelings (see 2.5.4).

2.3 Content Model

Having pointed out the key role of interaction and communication in learning we will have to
offer a concept of content that makes the interaction between a human and learning content as
rich as possible. We will address this issue by referring to a theory that puts the focus on the
verbal and non-verbal representations of knowledge.

2.3.1 Bruners Theory of Representation

Jerome S. Bruner illuminated the pedagogic consequences of the results in cognition psychology
produced by the works of Jean Piaget. In doing so, he prepared the rise of cognitivistic instruc-
tion theories like those of Ausubel and Gagné,5 though his philosophical position is rather that
of a constructivist.6

In his works on instruction theory in the late 60’s, Bruner exposes the fundamental role of
language in learning as a ’calculus of thought’:

‘Teaching is vastly facilitated by the medium of language, which ends by being not only the
medium for exchange but the instrument that the learner can then use himself in bringing order
into the environment.’

The intersubjective quality of language and the availability of different abstraction levels in
language makes it even possible to structure learning content for different intellectual levels by
the complexity of the language needed for the discussion of it. For example, a basic task for a
student could be to explain something ’in his own words’, whereas advanced tasks could require
to explain it in terms of a scientific vocabulary.
This leads Bruner to a hypothesis that has provoked a lively, yet controversial debate in the
field of education:7

5[Sch02],[Ze95]
6[Br66], [Br56]
7[Wi81]

2.3. CONTENT MODEL 33

‘Any idea can be taught in intellectually respectable form to any child at any age or level of
development, provided that you do so in his own conceptual vocabulary.’

We will see in the following sections that the ’conceptual vocabularies’ can be constructed
not only in a verbal (symbolic) representation, but also for non-verbal ones, thus providing us
with a model that allows learning on a wide range of channels.8

The EIS (Enactive-Iconic-Symbolic) Representation-Scheme

A consequence of the discovered connection between language and intellectual development for
instruction could be to make learning completely language centred. In fact this has historically
been the predominant education model: Literacy, the ability to read, write and work with texts
has always been regarded as a strong measure of ‘higher’ education from the Greek sophists to
W. v. Humboldt. As mathematics has a highly formalised language, where each concept has an
exact definition, this perspective can be taken even more radically: Teach only the definitions
of mathematical concepts and give exercises that are free of applicational contexts.
Bruner takes a different path and leaves the strict cognitivistic model by introducing a scheme
that contains not only the symbolic language representation of reality but also two other modes
of representation. These modes and their effectiveness can best be understood from an evo-
lutionary perspective. We therefore illustrate them by taking a look at how children actually
manage to learn and communicate without language:

In the beginning children cannot talk about objects, but only point at them and perform
interactions with them. The set of possible actions which can be applied to an object, is what
Bruner calls its enactive representation. For example, the enactive representation of a tennis
ball could be denoted by a mapping of actions to consequences: Touch it and it feels soft; take
it in the mouth and it tastes hairy; throw it and it bounces etc. Thus by exploring the enactive
representation of an object, the child learns about its properties.

The other mode, in which children are able to learn without words is by using pictures, e.g. by
watching a picture-book or by drawing or painting. The ‘picture being sometimes more worth
than a thousand words’ stands for the independence of this visual (or more general: perceptual)
representations from symbolic or action-based knowledge. In case of the tennis ball, its iconic
representation would be determined by its geometry, colour and (depending on the level of
detail adjusted) by its fuzziness.

Differences to Other Schemes It should be noted that there are also other schemes of
content representation, the most prominent of which bases on the Dual-Coding Theory of A.
Paivio9 that differentiates between visual (‘imagens’) and verbal (‘logogens’) representations.
Compared to this scheme, the EIS scheme seems more appropriate for constructivistic learning
scenarios, because by adding the enactive representation level, it considers focus the interaction
between learner and content in constructivistic learning theories. Other theories, like ACT*
differentiate learning mainly in terms of predicative/declarative and and procedural/functional

8For a motivation of using different learning channels, see [Ve78].
9[CP91]

34 CHAPTER 2. DIDACTIC DESIGN

aspects,10. By mapping declarative content onto iconic and symbolic representations and pro-
cedural content onto enactive representations, the EIS-scheme can also be seen as an extension
of ACT*.
Above its didactic comprehensiveness, there is still another reason for choosing the EIS-scheme
as a model for the creation of interactive learning content: Its offers a concept-centered view
on learning content and therefore perfectly harmonises with an object oriented architecture as
implementation, which we will see in chapter 3.

Fig. 19: Modes of representation in Bruners EIS-Scheme

Regarding the different level of abstraction in the representation modes, one can easily guess
how learning of a concept (e.g. a ball) takes place: It usually starts with gaining immediate
experience by working with enactive representations (playing with a ball), then the visual ap-
pearance (real ball or picture of a ball) already brings the set of possible activities into presence.
Afterwards the word ‘ball’ (spoken or written), suffices to refer to the concept of a ball and
what can be done with it. The advance in learning and knowledge of concepts up to the highly
condensed symbol systems of mathematics can thus be regarded as a pyramid, in which each
step relies on a base of more concrete knowledge that has already been learned. In this hierar-
chy, a more abstract mode of representation cannot substitute its lower counterpart, while the
reverse is possible:
For example, one can hardly play football with the picture of a ball and the word ‘ball’ does
not look like a ball, but instead a real ball can replace an image of itself and everybody would
understand a picture of a ball within a text as substitute for the word. We will return to these
issues in 2.5.

10[AM98],[Sch03]

2.4. METHODIC MODEL 35

Enactive

Iconic

Verbal

Formal

Fig. 20: Hierarchy of abstraction in knowledge representation

2.4 Methodic Model

In this chapter we discuss the methods of interaction between learner and learning entities.
in doing so we will tightly connect the two meanings of ‘learning methods’, the methodic
knowledge of the subject matter and the methods of learning this knowledge. This connection
corresponds to the ‘learning by doing’ paradigm of constructivistic learning theories and its
obvious advantage (and, of course, possibly also its disadvantage) is, that it hands the control
of the learning process over to the learner. We will therefore use a conceptual framework that
helps the learner (and others) to assess his learning progress.

2.4.1 Taxonomy of Learning Methods: Bloom et al.

The EIS-Scheme gives us a powerful structuring method for the presentation of learning con-
tent. We now take a look at the level of interaction between learner and learning content by
introducing a method to evaluate the learning process in terms of ‘learning value’.
Obviously, the learning value of a lesson or other learning unit varies strongly with the kind of
interaction between learner and content:
If, for example, we want to discuss functions, we can do this on very different levels: we could
give the student a function definition for a function f and ask him to calculate f(x) for some
values of x, we could also ask him to sketch the graph of f or tell us about its properties, we
could even ask a student to model a given empirical distribution with a function and interpolate
or extrapolate values, making predictions for further measurements.
The complexity level of the approach can therefore be almost independent of the treated content.
This corresponds to Bruners thesis that any idea could be taught on any level of development
(see 2.3.1). A structure that allows to specify different levels of complexity is the taxonomy
of Bloom et al.11, a prominent result of the efforts in the 50s to homogenise American school
exams and curricula. This taxonomy is designed for the cognitive and the affective domain. For
analysing the interactive potential of learning content, we concentrate on the cognitive domain.
The taxonomy distinguishes between six levels of cognition:

Knowledge
i.e. the ability to observe and recall information, principles and methods for specifics as
well as for universals and abstractions.

11[Bl56]

36 CHAPTER 2. DIDACTIC DESIGN

Comprehension
i.e. the ability to understand information by being able to translate it into new repre-
sentations, to grasp meaning by interpreting facts and extrapolate information within a
specific subject matter

Application
i.e. the ability to use information, methods, concepts, theories in new situations and to
solve new problems using already acquired skills or knowledge.

Analysis
i.e. the ability to see patterns, the organisation of parts, the recognition of hidden mean-
ings and identification of essential components of the chosen subject matter.

Synthesis
i.e. the ability to use of old ideas and principles to create new ones, to generalise from
given facts or to relate knowledge from several areas, to predict and to draw conclusions.

Evaluation
i.e. the ability to compare and discriminate between ideas, to assess the value of theories
and presentations and to make choices based on reasoned argument, also to verify value
of evidence and recognise subjectivity.

This taxonomy fits almost perfectly into the scheme developed up to here:

• The successful application of knowledge is based on its proper comprehension, this corre-
sponds to our thesis, that teaching understanding in mathematics is indispensable to the
education of engineers.

• The definition of comprehension includes the ability of translating information from one
representation into another; this complies with the representational learning model of
Bruner.

• The taxonomy is designed to allow an objective assessment of learning progress. Using it
will enable us to design constructivistic learning scenarios, where a user may interactively
monitor his or her level of cognition achieved for each specific topic.

We will elaborate these points in the following section.

2.5 Consequences for Didactic Design

In this section we will present the didactic model for our mathematical eLearning site that
takes into account the concepts discussed in 2.1-2.4.

2.5.1 Didactic Design Process

According to the considerations in 2.2.2 we replace the predominance of the general aims (cf.
Fig. 16) by that of the ‘subject matter’ and the specific goals by learner specific issues (interests
of the target group, etc.).

2.5. CONSEQUENCES FOR DIDACTIC DESIGN 37

Subject
Matter

Learner Methods Content

Fig. 21: Fundamental entities regarded in our design process

Having pointed out the complementing relation of content representation, learning methods
and context-orientation, we will assume the following didactic design process for the rest of this
document:

Subject
Matter

Didactical Design ImplementationDidactical Analysis

Relate
Representations

Situations
Learner

Methods

Representations
Analyse Create Mathlets

Write DocumentsCreate Instr. Anchors/Evaluate Contexts/
Interests

Content

Create TestsFormulate TasksExtract Methods

Fig. 22: Activities in the didactic design process

We regard the didactic design process as a sequence of three phases that each address and
relate three different levels of dealing with the learning of an arbitrary subject matter. In the
didactic analysis phase, the author decides, which representations he deems appropriate for the
chosen subject matter, which methods are needed for working with it and in which real life
contexts the problems addressed by the subject matter do in fact occur. The results of this
analysis determines the choice of content representations, tasks and contexts that are elected
in the following design phase. These design decisions are strong guides for creating the learning
artefacts in the implementation phase, which are in our case mathlets, puzzles and interactive
tests and web pages. For an example of using this process, please see 4.2.2
Though the decisions on each of the levels may be considered quite independent from the other,
there is still an important amount of cohesion between them that should not be neglected.
For example, for a chosen context, a certain representation and a certain method may be
especially valuable, e.g. modelling real world curves by functions would extensively use iconic
representations, whereas using functions for analysing oscillations would more rely more heavily
on symbolic representations.

38 CHAPTER 2. DIDACTIC DESIGN

2.5.2 Content Representation

Mathematics as Formal Language

Though there are many different representations of mathematical entities there is consensus,
that when it comes to producing practical results its symbolic representation is by far the most
powerful. Bruner even states that ‘Mathematics is surely the most general metalanguage we
have developed’. Learning mathematics thus has to focus on working on its symbolic represen-
tations. This is of course also true for eLearning, for which a powerful symbolic computation
tool already exist: A Computer Algebra System (CAS) allows a learner to ‘talk in formal
mathematics’ to a system by entering arbitrary symbolic expressions that are computed by the
CAS. Since this allows real constructivistic self-directed learning (the author used it extensively
throughout his mathematics education), a modern mathematical eLearning site should at least
offer parsing functionality that works with user defined expressions.12

Using the EIS Scheme

Having stated the importance of symbolic representation for working with mathematics it is
now time to stress the role of non-symbolic representations in learning. As seen in section 2.3.1
actions and images can be used as a – sometimes more intuitive – substitute for words, we may
even call them each an informal ‘conceptual vocabulary’ of which informal ‘sentences’ may be
constructed.13 This is actually done quite often in everyday life (e.g. the meaning of ‘if you
throw away your ball, no one will fetch it for you’ can be taught by words or – sometimes more
convincingly – by actions).
Since it is our goal to make as many mathematical concepts enactively and visually experi-
enceable, we need to refer to a kind of pseudo-language for each domain, into which the formal
concepts of mathematics can be ’translated’. Here are some examples of possible transforma-
tions, a more extensive list can be found in A in the appendix:

Mathematical concept Iconic transformation Enactive transformation
Linear independence n vectors spanning an n-

dimensional subspace
Failing in constructing one
vector as a linear combina-
tion of the other.

Derivative of f Displaying the tangent’s
slope in points (x, f(x))

Constructing the derivative
by drawing the tangent’s
slope for several points of
the graph of f

There is of course often more than one transformation for a mathematical concept and some
abstract concepts may not even have a sensible transformation at all, but since there seems to
be a need for non-symbolic representations in communicating mathematics, almost all popular
mathematical concepts do have multiple representations.

12One could conclude to simply centre web-based eLearning about using a CAS; there are, however, several
reasons speaking against this, see 3.3.4.

13More precisely, we may regard them as what [Wa67] calls an analogic code: In contrast to a digital code
(human or formal language made of letters or phonemes), analogic codes resemble their referent and allow
continuous variations.

2.5. CONSEQUENCES FOR DIDACTIC DESIGN 39

Using these transformations we can design and implement mathematical eLearning media
with the help of Bruners EIS scheme.14 This is done for a chosen mathematical entity by
producing iconic and enactive transformations that suit both the mathematical application
context and the facilities offered by the technical environment:

Fig. 23: Representations used in mathematical eLearning media

From this figure it may be clear, that we need an architecture that allows the flexible use and
interaction with these different representations. This architecture will be presented in the next
chapter.

2.5.3 Methods and Tasks

For the methods and tasks we use the scheme provided by the taxonomy of Bloom. There
are already several applications of the taxonomy for mathematics education15 as well as for
eLearning in general16.
We concentrate on learners working with mathematical expressions (i.e. words of the formal
language addressed in 2.5.2), for which example applications will be given in 3.4.

Learning by Relating and Transforming Representations

Bloom regards understanding as the ability to ‘translate knowledge into new contexts’. Since
the representation of knowledge is context dependent, this also means that a learner must also
be able to relate and transform representations of a concept into another, thus allowing him to
perceive the ‘real world object’ behind the different representations. For this reason it is our aim
to construct applications that allow the user to initiate and watch interactions with different

14Note, that in order to do this, we have to put the mathematical object in place of the ‘real world object’,
something which is not unimaginable in Bruner’s constructivistic philosophical background.

15e.g. [Lo03], [Ga00], [Wo02]
16e.g. [Mu01], [Kn03]. However, there are no applications for mathematical eLearning.

40 CHAPTER 2. DIDACTIC DESIGN

representations (e.g. changing a parameter in a symbolic function definition and watching the
graph changing accordingly, see 3.2).

Different Levels of Working with Mathematics

If we regard Bloom’s taxonomy discussed in 2.4.1 it becomes obvious, that not every student
learning mathematics must do so on all levels. In fact, for engineering students the mathematical
repertoire needed primarily consists of practical skills (in contrast to students of mathemat-
ics who also need deeper understanding in analysis, synthesis and evaluation of mathematical
methods). We therefore concentrate on the first three levels of cognition in order to structure
mathematical content for students seeking mainly practical skills (see figure 24).

Fig. 24: Classification of cognitive levels in mathematics

Assessment Design

If we want to allow the student to assess his learning progress by himself, we need a model that
tells us, what kind of tests supports this. Traditional assessment design (basing on statistical
test theory17) concentrates on the reliability and validity, when designing tests. As from our
point of view these are primarily author issues, we focus on the representational system to
be used and the degree of freedom a student has. This means we do not exclusively use the
classical multiple choice scheme, but also other types like graphical puzzles and ‘constructed
response’ tests. This corresponds not only to the concept of learning stated above, but also uses
the assessment model of modern studies like TIMSS18 and PISA19, which aim at the evaluation
of high level cognitive skills.

2.5.4 Learner Orientation

Affective issues

As discussed above, the affective domain in learning and eLearning is a comprehensive field of
research of its own and beyond the scope of this analysis.20 We will, however, consider some
of its issues in our implementations, like aesthetics and usability of content representation and
choosing the right affective context for a certain subject matter:

17[Gr03]
18[ISC03]
19[OECD03]
20See, for example, [Ve78], [MJ91] for the psychological and pedagogical foundations.

2.5. CONSEQUENCES FOR DIDACTIC DESIGN 41

Aesthetics and Usability

In order to increase the affective linkage between learner and learning environment it is necessary
to reach a high amount of user-friendliness. This can be achieved by the design of an appealing
and reactive interface, that allows a variety of manipulations as well as a simple and elegant
access to the mathematical objects.21 The user interface presented in the next chapter has been
designed carefully and was rearranged in several evaluation cycles. To ensure a maximum of
recognition, the component architecture provides a strict layout.
The affective linkage is also increased by using a ‘leitmotiv’ that guides the user through the
whole system. For our platform this leitmotiv is the theme of ancient Egypt, where mathematics
played a decisive role in achieving cultural heights. As these heights are best symbolised by
the Egyptian pyramids, we use a stylised pyramid in the prototype system22 as metaphor for
lasting mathematical achievements.

Context Relation

As mathematics is the deductive foundation for all science, it can be presented in almost any
scientific context. In fact, mathematics and science didactics in Germany has been stressing
the use of contexts in teaching at school in the last decades.23

Because our research is based on a project for an engineering course, we use contexts and ex-
amples from physics and construction technology, especially mechanics (see figure 25).

Fig. 25: Engineering contexts for ‘integration’ in a predecessor of Mumie24

21For aesthetics and usability of web pages/sites see [Th04], [Si97].
22See section 4.2.
23[MSWWF99], [Mu95]
24[TUM01]

42 CHAPTER 2. DIDACTIC DESIGN

Chapter 3

The Component Framework

In this chapter we present a framework that takes into account the conclusions drawn in the
previous chapters. It consists of the MathletFactory, a component system for developing math-
lets and the TestletFactory, a framework for creating puzzles and tests. The latter addresses
authors, teachers and students, while the MathletFactory additionally regards the role of the
developer. We therefore give a brief overview from each of the roles discussed in 1.1.3, starting
with the student’s (and tutor’s) perspective, moving over to the author’s and application de-
veloper’s perspective. The system developer’s perspective (which requires delving deeper into
the architecture) is covered outside this chapter in Appendix B.

3.1 The MathletFactory from the Student’s Perspective

For the student all mathlets created by the MathletFactory show some common features that
allow him to learn quickly how to work and explore mathematics with them. These are the
mathematical entities and their representations used, the formal language processing capabil-
ities of the symbolic representations and the generic display and interaction system allowing
the user to interact with all mathlets in a common way.

Fig. 26: The common look and feel of all mathlets

43

44 CHAPTER 3. THE COMPONENT FRAMEWORK

3.1.1 Mathematical Entities and their Representations

Using the results of 2.5.2, mathlets put the mathematical entities at the centre of their stage,
showing mostly one or two mathematical entities to the user, that he may interact with. This
happens on different representation modes. For example, a three-dimensional vector may be
represented by an arrow in 3D space (iconic representation) and by a triplet of numbers (sym-
bolic representation). The student now has the opportunity to work on both levels with the
vector by either dragging the vector with the mouse or by altering its components with the
keyboard, watching the other representation changing accordingly.

Fig. 27: Iconic and symbolic representation of a 3D vector

3.1.2 Formal Language Processing Capabilities

Since mathematics puts a focus on working with symbolic representations, the MathletFac-
tory’s capability of processing formal languages is a vital feature. The MathletFactory allows
the student to enter almost any expressions for any mathematical entities that involve mathe-
matical operations or relations like functions, sequences, series, sets, equations, etc. Since the
syntax used is almost the same as one would write on paper, it requires no further study of al-
lowed expressions; in cases of doubt the generic help page displays the set of supported symbols.

Fig. 28: Entering a user defined relation for a set

3.1. THE MATHLETFACTORY FROM THE STUDENT’S PERSPECTIVE 45

3.1.3 Generic Display and Interaction System

Not only the symbolic representations but also the iconic and enactive representations allow
an intuitive and standardised way of navigation and interaction with the mathematical enti-
ties. This is ensured by the MathletFactory’s generic display and interaction system. From
the student’s perspective it results in a common user interface for all applets – no matter what
mathematical entities they are dealing with. For the scene (i.e. the canvas containing the graph-
ical representations of the mathematical entities) we have therefore added a double navigation
functionality: navigation by using icon buttons and navigation by mouse drag gestures. The
buttons (zoom in and -out, translation of the scene) can be seen in the following figures and
are widely self-explaining, making them ideal for beginners.

Fig. 29: The generic navigation system for 2D and 3D mathlets

The mouse drag gestures in turn allow a quicker and – for the experienced user – more intuitive
way of navigating the scene: by clicking on the scene and dragging, the user’s view of the object
may change, either translating, zooming or rotating the object.

3.1.4 Number Handling

Due to the fundamental role of numbers in mathematics, the MathletFactory has an optimised
user interface for numbers, allowing the student a high amount of comfort and flexibility when
handling numbers of different types. This includes the following:

• The system distinguishes between different number classes like integer, rational, real,
complex numbers, even the use of finite fields like Z/pZ is possible.

• For every number class it is possible to enter symbolic expressions, e.g. π
2

or
√

2 for real
numbers. It is also possible to re-edit these expressions.

46 CHAPTER 3. THE COMPONENT FRAMEWORK

• Additionally there is a slider representation for real numbers allowing the comfortable and
flexible manipulation of numbers, it is even possible to play an animation of the changing
parameter and its consequences.

Fig. 30: The generic slider panel for real numbers: In addition to dragging the slider bar with the mouse or editing
the values, the user may click on the play symbol to start an animated slide from left to right.

3.1.5 Animations

The flexibility of the mathlets allows their use for both demonstration and exploration pur-
poses, thus making them interesting for pure distant learning as well as augmenting presence
learning or blended learning scenarios. There are however cases, when a teacher or author
may want to show a certain construction process in mathematics without too much interaction
with the mathlet. For these cases an animation framework allows the student to be presented
exemplified mathematical concepts ‘live’ and with user defined start conditions. For example,
in figure 31 on the left, the vector addition can be animated for any two vectors preset by the
student (or teacher). The interface for using the animations is offered in two differing versions:
A simple solution embedding the animation into a single panel inside the mathlet window and
a comfortable implementation in a separate window, that also allows the user to vary the speed
of animation.

Fig. 31: Examples of mathlets using the animation system

3.2. THE MATHLETFACTORY FROM THE AUTHOR’S PERSPECTIVE 47

3.2 The MathletFactory from the Author’s Perspective

The author’s perspective on the MathletFactory mainly comprises that of the student’s per-
spective. But in addition, the author wishes to use existing applets for his own courses, for
which they need to offer some features of flexibility and reusability:

Reusability

The flexibility and reusability that is designed for the student of course also benefits the author.
For example, he could embed a mathlet in a web page along with some tasks to accomplish,
like ‘enter the value xy in the input field and move point yz to the origin’. But there is also a
separate approach that makes it easier for the author to configure prefabricated mathlets to fit
his needs: The use of applet parameters.1 We consider, for example, a parameterised function
plotter, i.e. a mathlet that displays a function depending on some constant t. The user is able
to change t with a slider and may therefore watch the resulting ‘continuous’ change in the
function graph. Such a mathlet could be used as a tool to explore any function the user has in
mind, but also as a demonstration unit within a specific lesson.

We illustrate this with a simple reusage scenario: For example, an author may want to point
out that the frequency of a sine function can be changed by altering t in ft(x) = sin(tx). He is
then able to do so by adding the mathlet to his instructive page setting the applet parameter
function to sin(tx). He could optionally add a task for the student to rearrange the term
so that t represents the amplitude of the graph, allowing symbolic manipulation technically by
setting the parameter functionEditable to true.2

<applet code=".../FunctionSlider">
<param name="lang" value="en" />
<param name="separateWindow" value="true" />
<param name="appletWidth" value="600" />
<param name="appletHeight" value="600" />
<param name="function" value="sin(tx)" />
<param name="functionEditable" value="true" />
<param name="parameterName" value="t" />
<param name="paramLeftBound" value="-10" />
<param name="paramRightBound" value="10" />
<param name="worldWidth" value="4" />
<param name="worldHeight" value="4" />
<param name="worldCenterX" value="0" />
<param name="worldCenterY" value="0" />

</applet>

Fig. 32: A parameter configuration of the FunctionSlider mathlet

He may, however, use the same mathlet for demonstrating, how the natural power functions
fn(x) = xn behave for n→∞ in a different page by setting function to x^n, parameterName
to n and paramAllowOnlyIntegers to true.

1[Sun04]
2The generic and specific parameters for mathlets are documented in Appendix D.

48 CHAPTER 3. THE COMPONENT FRAMEWORK

We see that the use of applet parameters strengthens the role of the author without program-
ming skills and introduces a new level of flexibility and thus reusability. We will make heavy
use of this mechanism in the application part. In addition, we will transfer it to the other parts
of the component system that are discussed in the next section.

<applet code=".../FunctionSlider">
<param name="lang" value="en" />
<param name="separateWindow" value="true" />
<param name="appletWidth" value="600" />
<param name="appletHeight" value="600" />
<param name="function" value="x^n" />
<param name="parameterName" value="n" />
<param name="paramAllowOnlyIntegers" value="true" />
<param name="paramLeftBound" value="-10" />
<param name="paramRightBound" value="10" />
<param name="worldWidth" value="4" />
<param name="worldHeight" value="4" />
<param name="worldCenterX" value="0" />
<param name="worldCenterY" value="0" />

</applet>

Fig. 33: The same mathlet with a different parameter configuration

3.3 The MathletFactory from the Application Developer’s

Perspective

This section describes the application developer’s perspective on the MathletFactory, the per-
spective of the system developer (which is necessary for adding new mathematical objects and
representations) is presented in Appendix B. For the developer, the MathletFactory is techni-
cally a Java class library of about 800 classes and 150.000 lines of code. Conceptually it is a
framework to speed up the production of high quality mathlets for an application programmer.
This is achieved by the following structural features:

• a model-view-controller (MVC) architecture that allows the flexible and reusable con-
struction of interactive mathematical exploration scenarios

• a component system that offers support for about 100 multimedial mathematical objects
(so called MMObjects) and their representations

• a generic display and interaction system that is independent of the graphical libraries
used

• a communication system that allows the MMObjects to interact with the user as well as
with each other

To elaborate the listed aspects and their origin in didactic design, we will give a short tour
d’horizon.

3.3. THE MATHLETFACTORY FROM THE APPLICATION DEVELOPER’S PERSPECTIVE49

3.3.1 MMObjects as Models for Mathematical Entities

As a conclusion of the focus on the subject matter (see 2.5.1) and its possible uses, the Math-
letFactory assigns a key role to the mathematical entities. Their functionality is represented
by the MMObjects, multimedial mathematical objects that form the basic components. The
core idea of the MathletFactory is that an application programmer should only ’plug together’
these components when building mathlets, reducing their production time to minutes rather
than hours and days.

3.3.2 MVC Architecture Supporting Multiple Representations

As stated in section 2.3.1 and 2.5.2 we need an architecture that separates the mathemati-
cal logic from its representation. The best way to achieve this is known as the model-view-
controller pattern3, which claims different modules for logic/data, presentation and interaction
code. This allows not only MMObjects to have different representations (flexibility) but also
different mathematical objects to have the same representations (reusability). For example, a
function object would have both a symbolic representation and a graphical (iconic) representa-
tion, whereas a spline would have the same graphical representation, but a different symbolic
representation.

Fig. 34: Mapping the didactic structure to a model-view-controller architecture

3.3.3 Number Handling

As mathematics often offers a common calculation but different representation for different
number classes (e.g. rational, real or complex numbers), it is important that mathlets on the
one hand support the use of different number classes, but on the other offer common methods
for computing with these. The MathletFactory addresses this problem by parameterising all
MMObjects by their number class, allowing them to determine the number class upon initiali-
sation or even at runtime.
For example, figure 35 presents the same mathlet with each a rational and a real configuration.

3[Bu96]

50 CHAPTER 3. THE COMPONENT FRAMEWORK

Fig. 35: A linear map mathlet with a rational and a real number configuration

3.3.4 Formal Language Processing Capabilities

In order to achieve a higher level of semantics in communication with mathematical objects we
have claimed in 2.5.2 the necessity of a ’mathematical language’ processing facility. Existing
CAS like Maple, Mathematica and MuPAD already offer this functionality for a wide range of
mathematical applications. Why not use them or integrate them into our framework? There
are several reasons that argue against it:

• There is no fully operable platform independent CAS4, making its use impossible in a
pure client side solution.

• Most of the prevalent CAS are not free, almost none of them is open-source, this contra-
dicts our free and open-source approach.

• Almost all CAS were primarily designed for research, thus often lack a lightweight intuitive
user interface. Additionally, since there is no standard CAS, there is also no standard
way of symbolic input. The standardised protocols MathML5 and OpenMath6 in turn
are too verbose and explicitly not designed for user input.

We therefore implement a small parser of our own, that performs the lexical and syntactic
analysis of mathematical expressions. The theory and implementation details of these are cov-
ered in Appendix B.

4An experimental version can be found under [Hm01].
5[W3C04]
6[OM04]

3.3. THE MATHLETFACTORY FROM THE APPLICATION DEVELOPER’S PERSPECTIVE51

3.3.5 Generic Display and Interaction System

From the application programmer’s perspective, it is also important that the dimensions of
display (2D on Screen, 3D on Screen, Head-Mounted-Displays, etc.) are independent from the
specific components. The MathletFactory’s display and interaction system is therefore inde-
pendent of the graphics library actually used.
Instead it offers a generic MMCanvas class that contains the MMObjects and bundles all func-
tionality related to displaying and rendering. So if an application developer wants to (iconically)
display a mathematical entity, all he has to do is to choose a template applet that contains a
specific (2D- or 3D-) MMCanvas and add the desired MMObject(s) to it (see code example on
page 53). The same is true for symbolic representations, except that they are directly added
to the applet, not to the canvas.

3.3.6 Interactivity: Update Graphs

We have seen how the MVC architecture allows the user to interact with the mathematical
objects thus allowing the prescribed amount of interactivity exposed by 1.2.3 and 2.2.2. But
for interactive learning we need more than this: For example, consider a student who should
iconically explore that the altitude lines of a triangle meet at the same point. A triangle is made
out of three points (represented by MMAffine2DPoints) that are connected by line segments
(MMAffine2DLineSegments). The user can now interact with the points by dragging them with
the mouse. But the system has to be told that each time the points change, the line segments
need to change accordingly. Also the MMObjects representing the altitude lines should be
redrawn each time the triangle changes. This means that for implementing interactive learning
situations it is crucial to provide a simple yet powerful update system that allows the commu-
nication between MMObjects.
This is achieved by creating a directed update graph that is traversed every time any of the
upper objects records a change.

Fig. 36: An interactive triangle with altitude lines and its update graph (marked = updating)

3.3.7 Building Mathlets

We now take a closer look at the main issue of the MathletFactory: Providing a rapid mathlet
development process to application developers. This is done by using the following linear

52 CHAPTER 3. THE COMPONENT FRAMEWORK

process model:

1. Choose the display type and numbers of displays to be used and extend the corresponding
mathlet skeleton.

2. Add the chosen MMObjects and their iconic or symbolic representations

3. Add necessary handlers

4. Create the update graph by adding updaters and creating dependencies

We demonstrate these steps for a mathlet, that displays an orthogonal vector of a user defined
2D vector:7

Fig. 37: The demonstration mathlet to be constructed

1. Choose the display type and numbers of displays to be used and extend the
corresponding mathlet skeleton
We wish to use a single 2D display for both the vectors, so our applet extends the corre-
sponding skeleton:

public class OrthogonalVector extends SingleG2DCanvasApplet {

2. Add the chosen MMObjects and their iconic or symbolic representations
We create a vector space and two vectors and add their iconic representations to the
canvas and their symbolic representations to the control panel of the mathlet:

7The complete source of the mathlet can be found under net.mumie.mathletfactory.test.algebra.OrthogonalVector.

3.3. THE MATHLETFACTORY FROM THE APPLICATION DEVELOPER’S PERSPECTIVE53

// create MMObjects
vectorSpace = new MMDefaultR2(MDouble.class);
vector1 = vectorSpace.getNewFromDefaultCoordinates(0.5,0.2);
vector2 = vectorSpace.getNewFromDefaultCoordinates(); // will be updated anyway

// add the iconic representations:
getCanvas().addObject(vector1);
getCanvas().addObject(vector2);

// add the symbolic representations:
addText("v₁ = ");
addMMObjectAsContainerContent(vector1);
insertHSpace(5);
addText("v₂ = ");
addMMObjectAsContainerContent(vector2);

3. Add necessary handlers
We only need to add a mouse handler to the first vector:

vector1.addHandler(new DefaultR2VectorMouseTranslateHandler(getCanvas()));

4. Create the update graph by adding updaters and creating dependencies
All we need is an updater that sets the coordinates of the second vector to ones that are
orthogonal to the first:

vector2.dependsOn(vector1, new DependencyAdapter(){
public void doUpdate() {

vector2.setCoordinates(vector1.getCoordinate(2).negated()
vector1.getCoordinate(1));

}
});

We see that this four step process is sufficient to produce a mathlet that complies with our
didactic model: A student may interactively experience the connection between the visual and
the symbolic properties of orthogonality.

3.3.8 Reusability

Of course the example above could be altered in various ways, at the pleasure (i.e. the di-
dactic intention) of the application developer. For example, one could ask the student to
find out the symbolic relation for orthogonality himself by entering the coordinates for v2

for given coordinates of v1. This would only require to remove the updater code and add a
vector2.setEditable(true) statement. This demonstrates that for developing mathlets their
reusability and flexibility bases on the flexibility of the MathletFactory components.

54 CHAPTER 3. THE COMPONENT FRAMEWORK

3.4 The TestletFactory

The mathlets developed with the MathletFactory give the student various opportunities to
explore the structure and relation of mathematics, thus supporting his understanding of math-
ematics. But in order to apply mathematics the student also needs learning units that demon-
strate the methods used in mathematics and give him tasks to practice these methods. One
way to accomplish this would be to give assignments that can be solved using mathlets – either
directly as a tool for producing the result, or in a more assisting way by helping to generate
ideas. We will present examples of these mathlet-based tasks in the application chapter.
But to put a real focus on the methods of mathematics it is necessary to offer not only com-
ponents that present the content in various ways but also tools that allow different levels of
interaction with mathematical methods. This is also a tribute to the fact that despite all tech-
nical progress there is still an urgent need for practising mathematics with pen and paper. We
therefore present a framework that allows the student a basic self-assessment of his skills in
mathematics for a specific topic with a wide range of didactic purposes.

3.4.1 Different Categories of Tests

Technically we distinguish between three types of assessment units: quizzes (multiple choice
tests), puzzles and word tests (also called constructed response tests). Didactically their cate-
gorisation also depends on the representations used. For example, a test that lets the student
relate the graph of functions with their symbolic expressions (iconic and symbolic representa-
tions) operates on a different didactic level than a test relating input-output-sets with function
expressions (symbolic representations only).
In the following we present the implementation of the different tests and show an example for
each type of testlet.

Quiz

<applet code="net/mumie/testletfactory/quiz/CheckBoxTest">

<param name="lang" value="en"/>

<param name="fontSize" value="13"/>

<param name="header0" value="Test 1"/>

...

<param name="main0" value="5 is equal to"/>

...

<param name="question0_0" value="log(100000)"/>

<param name="answer0_0" value="true"/>

<param name="question0_1"

value="ln(e⁵)"/>

<param name="answer0_1" value="true"/>

<param name="question0_2"

value="log(5⁵)"/>

<param name="answer0_2" value="false"/>

<param name="question0_3"

value="log₃(243)"/>

<param name="answer0_3" value="true"/>

</applet>

Fig. 38: A quiz example and its parameter configuration

The quiz testlet is an applet implementation of the standard multiple choice test. It allows
up to 100 multiple choice questions and keeps track on the number of correct and incorrect

3.4. THE TESTLETFACTORY 55

answers given by the user. It allows the usage of pictures in questions as well as in answers
(individually for each question and answer) thus being open for a wide range of different uses.

Puzzle

<applet code="net/mumie/testletfactory/puzzle/TabularPuzzle">

<param name="horizontal" value="true"/>

<param name="fontSize" value="20"/>

<param name="title" value="Guess the Function!"/>

<param name="question1" value="f(x) = sin(x)"/>

<param name="answer1"

value="http://www.pyramit.de/c_analysis/pre/pic/sinx.jpg"/>

<param name="question2" value="f(x) = cos(x)"/>

<param name="answer2"

value="http://www.pyramit.de/c_analysis/pre/pic/cosx.jpg"/>

<param name="question3" value="f(x) = ln(x)"/>

<param name="answer3"

value="http://www.pyramit.de/c_analysis/pre/pic/lnx.jpg"/>

<param name="question4" value="f(x) = exp(x)"/>

<param name="answer4"

value="http://www.pyramit.de/c_analysis/pre/pic/expx.jpg"/>

</applet>

Fig. 39: A puzzle example and its parameter configuration

The puzzle testlet as an applet that allows to ask a user to relate different questions with given
answers by moving the answers as puzzle pieces with the mouse (drag and drop). Like the quiz
it allows the usage of pictures in questions and answers and the solution can be checked by
printing the number of correctly placed pieces.

Word Test

<applet code="net/mumie/mathletfactory/.../OpTest">

<param name="useCanvas" value="true"/>

<param name="title" value="Guess the Function!"/>

<param name="answer0" value="x^2"/>

<param name="answer1" value="cos(x)"/>

<param name="answer2" value="2x+1"/>

<param name="answer3" value="x^2-2"/>

<param name="answer4" value="ln(x)"/>

<param name="answer5" value="tan(x)"/>

</applet>

56 CHAPTER 3. THE COMPONENT FRAMEWORK

<applet code="net/mumie/mathletfactory/.../OpTest">

<param name="lang" value="de"/>

<param name="title" value="Berechne die Ableitung!"/>

<param name="fontSize" value="25"/>

<param name="question0" value="f(x) = 3x2-4x"/>

<param name="answer0" value="6x-4"/>

<param name="question1" value="f(x) = cos(x2)"/>

<param name="answer1" value="-sin(x2)*2x"/>

<param name="question2" value="f(x) = ln(x3)"/>

<param name="answer2" value="3/x"/>

<param name="question3" value="f(x) = 1/sin(x2)"/>

<param name="answer3" value="-2x*cos(x2)/sin(x2)2"/>

</applet>

Fig. 40: Two word test examples and their parameter configurations

The word test is a sequential test that asks the user different questions, each of which the user
answers by typing a mathematical expression. There is a mummy figure commenting on the
correctness of the answer. Each time a question has been answered correctly, the user may
advance to the next question. Thus it is possible to create tests with an increasing difficulty
level. Additionally to posing free text questions the author can also switch to a mode, where
the expression asked for is drawn as a function graph – in order to create a ‘reverse function
plotter’ game.

Chapter 4

Application

4.1 Application Scenarios

As one might guess from the complexity of the component framework presented in the previous
chapter, it has not been developed in a single development cycle, but iteratively in several
meso- or micro cycles that arose from different application contexts. The scenarios presented
in this chapter therefore form a vital part of our research, because on the one hand they led to
a multitude of major improvements concerning the component framework, on the other hand
they exhibit its possible uses in teaching and learning mathematics and even its transferability
to other subjects.
The application scenarios presented in the next sections are in general chronologically sorted;
however, we start with the one that is mostly related to this document, because it demonstrates
the application of the component framework in a mathematical eLearning site that uses the
design process specified in 2.5.1.

4.2 Applets in the Pyramit System

The Pyramit System1 is a prototypical eLearning site that has been designed and implemented
at the RWTH Aachen university. It serves mainly two purposes: On the one hand it is a
functional preview of Mumie JAPS (Java Application Server); on the other hand its aim is the
public demonstration and evaluation of mathematical applets within the didactic model spec-
ified in Chapter 2. In this section we concentrate on the didactic impact of Pyramit, section
C.1 in the appendix gives a brief overview of the technical and practical aspects.

4.2.1 Implementing the Didactic Model

In order to use the didactic process specified in 2.5.1, we need a modular system that states
the entities of content, methods and learner orientation.

Concerning the content and methodic structure, Pyramit uses a modular concept. In this
structure the Lesson (a page represented in the browser) is the smallest independent part of

1[Py04]

57

58 CHAPTER 4. APPLICATION

the learning path.2

The process of working through a Lesson is called a Learning Unit. A Lesson is widely context
independent (and thus also independent from other Lessons) and should be worked through
without interruption.
The role of a Lesson in a course can be compared with a school lesson in the context of a
teaching sequence, although the average working time for a Lesson should be shorter.

Fig. 41: An example lesson and its corresponding learning unit

Like a School lesson, each Learning Unit is divided into different activity phases. These ac-
tivity phases are guided by Building Blocks in the Lesson. The Blocks are the smallest didactic
elements, though they are not context independent, but embedded in a specific learning unit
and its underlying Lesson.
In Pyramit, we have the following building blocks:

Element blocks contain definitions, theorems and proofs. To a certain
extent they are the mathematical foundations. In contrast to elements inside
a textbook, they are only mentioned when they are necessary in the context;
otherwise, the lecture notes are referred to as further reading.

Visualisation blocks serve for the depiction of mathematical content.
Their role is to connect the formal and the graphical view of a mathematical
object wherever possible. By interacting with the visualisation the user may
observe and understand the resulting changes on one view by manipulating
the other.

Annotation blocks should refer on the one hand to practical meanings of
mathematical facts and on the other hand to all sorts of potential sources of
misunderstanding.

Routine blocks refer to the practice of a certain computing calculation or
algorithm, which may – once internalised – be processed largely automatically.
Of course there are additional hints on the importance of basic comprehension
of what happens in a routine.

2With respect to the SCORM [ADL04] standard, a lesson can be regarded as a Shareable Content Object
(SCO), see also section 5.3.

4.2. APPLETS IN THE PYRAMIT SYSTEM 59

Brainteaser blocks contain questions that can be answered without the
need to perform written calculations. Their aim is to improve the intuitive
understanding of mathematical concepts.

Task blocks support the written learning, application and consolidation of
the content learned, but also lead to applicational contexts and extensions of
the content.

Basic blocks are hints to important knowledge that the student should al-
ready have from mathematics at school. They may partly contain short repeti-
tions but more often a request to the student to refer to a class or introductory
book.

Link blocks refer to an external resource associated with the subject
discussed. They should be used only, if no other block (e.g. annotation,
visualisation) seems suitable.

For both the content and methodic model, we apply the taxonomy of Bloom (see 2.4.1, 2.5.3)
to structure the building blocks as follow:

Fig. 42: The content block scheme of Pyramit (From the Pyramit documentation)

4.2.2 Applying the Didactic Design Process

We will now give an example, how the didactic design process developed in 2.5.1 could be
applied in practice. We do this by documenting the construction of a lesson (i.e. a single page)

60 CHAPTER 4. APPLICATION

in the Pyramit platform that deals with a core topic in mathematics: Polynomials.

Didactic Analysis Phase

According to our design process, this phase consists of analysing the subject matter with re-
spect to its content, methods and relation to the student. For our example this means, we have
to discuss the possible (enactive, iconic and symbolic) representations of polynomials, examine
the mathematical methods needed to work with them and look at the role polynomials play for
our designated learning group.
Possible representations of polynomials are: Polynomials as functions with their corresponding
graphs in R2, as vectors in the polynomial vector space (also symbolic and iconic), polynomials
as algorithms performing a sequence of arithmetic operations (e.g. Horner scheme), polynomials
as finite power sums, etc.
These representations also come with countless methods: Finding a zero of a polynomial, fac-
torisation and expansion of polynomials, finding a fast algorithm for evaluating polynomials,
etc.
Since the learner group consists of engineers in our case, we have to offer contexts that demon-
strate the necessity of understanding polynomials. These could be any formula involving poly-
nomial variables (e.g. computing the area or volume of geometric shapes in civil construction),
but also dealing with iconic capabilities of polynomials, like describing curves and curved shapes.
Furthermore the method of polynomial approximation is a powerful tool when working with
more complicated functions. After having examined the technical relevance of the mathemat-
ical topic, we also have to keep in mind the special interests of engineers. These are often
technology issues related with the ‘hobby-world’ like sports, cars or other things of daily life.

Fig. 43: The polynomial mathlet resulting from the described design process

Didactic Design Phase

After having collected possible representations, methods and contexts for polynomials, we now
need to select a subset of each to create a compact lesson that presents a meaningful arrange-
ment of related representations, methods and context applications. In our example, we pick
the aspect of curved shapes being described by polynomials, using the creation of car bodies
or bridge arcs as instruction anchor. Having selected this context, we need to focus on the
polynomial’s representation as function graph. If we want to compute the polynomial function

4.2. APPLETS IN THE PYRAMIT SYSTEM 61

from a sketched graph we also need a symbolic representation (a formula) and a method how
to derive it from specified graphical properties. This means, that a possible task could be
‘compute the polynomial that runs through the following points...’ with the associated method
of solving a linear equation system.

Implementation Phase

As a result of the design phase, we implement a mathlet that allows the creation of a polynomial
whose graph runs through a set of user defined points (see figure 43) and a page containing a
context block3, a visualisation block with the mathlet, a brainteaser block with two exercises
concerning the mathlet and a task block containing two exercises that ask the user to compute
a polynomial by setting up and solving a linear equation system.
The complete lesson then looks like the following:

Fig. 44: The lesson resulting from the described design process

3The images for the context blocks in Pyramit were taken from sites that contain either copyright-free or
education friendly copyright image sites, see [P4L04], [FI04]

62 CHAPTER 4. APPLICATION

4.2.3 Evaluation Results

As said before, the Pyramit Platform was used for mathlet and testlet evaluation in a minimal
eLearning site context in Winter Term 03/04 and Summer Term 04 in the course ‘Mathematik
für Bauingenieure I und II’ (mathematics for civil engineers) at the RWTH Aachen University.
Because during the course several organisational and technical problems arose (for example, a
lot of bugs were found by either the lecturer or the students), we cannot give an evaluation
report as comprehensive as the one presented in 1.2.2, but a few important observations have
been made by the team:

• As predicted, the students seemed to be mostly attracted by the interactive elements,
sometimes neglecting the static texts on the pages completely.

• When examining the applets, students preferred mathlets that had a connection to or
helped them for an assignment given in the course over those that were purely made
for enhancing understanding. This corresponds to the evaluation results of math online
discussed in 1.2.2.

• The lecturer in turn often asked for specialised mathlets that display a certain key con-
cept (but nevertheless including a considerable amount of flexibility, like free choice of
functions, points, etc.).

• A common point of critique from the lecturer’s colleagues was the risk of non-reflected use
of the applets and the danger of producing incorrect results by pushing mathlets beyond
their limitations. To go against this, the lecturer offered an extra weekly lecture in which
he showed the proper use of the applets and their limits as an example for the domain
limitations of mathematical software. Additionally, several warning dialogues were added
to avoid possible misconceptions:

Fig. 45: A generic warning pop-up for operations with definition gaps

4.3. OTHER APPLICATIONS IN MATHEMATICAL ELEARNING 63

These additional checks, again, were made possible by the use of symbolic computation (see
B.3.10 in the appendix for details).

4.3 Other Applications in Mathematical eLearning

Since the MathletFactory has been developed in a network of universities, there have been
numerous evaluations of mathlets in different contexts and locations. This ensures the practical
usability of the framework and led to the specification of further enhancements.

4.3.1 Mathlets for Numerical Mathematics

To test early alpha mathlets in a real life context, M. Holschneider, the head of the MathletFac-
tory project, decided to produce mathlets for his winter term 02/03 numerical mathematics for
engineers lecture at Potsdam University to visualise some numeric concepts. These mathlets
concentrated on the one hand on the computation and visualisation of polynomials (e.g. an
early version of the polynomial mathlet described in the previous section), splines and vector
fields, on the other hand on the implementation of fast numerical algorithms that allowed the
real time working with mathematical entities like solutions of differential equations etc.

Fig. 46: Two mathlets produced for a numerical mathematics lecture, the highlighted points with their computed
poly-lines may be each changed with the mouse without any perceived delay

Evaluation and Development Results

The application of the mathlets produced the following evaluation results:

• The mathlets were mostly presented in the lecture with a reference to the URL for the
students to try them at home.

64 CHAPTER 4. APPLICATION

• As part of the examinations of the lecture were in oral form, talks about mathlets were
also part of it, thus allowing the students to discuss algorithms and numerics ‘at work’.

• Technically, the evaluation led to a very fast display and computation system that allows
the user to continuously move vector fields or multiply iterated systems (see figure above).

4.3.2 Additions in the Mumie Project

For the integration of the Mumie JAPS system, some further additions to the AppletFactory
were made, which are also helpful in other scenarios, where a large number of applets has to
be handled. These are Quality Assurance and the management of applet metadata.

Applet Quality Assurance

In order to manage and assure the quality of a large number of applets in a distributed content
development scenario it is necessary to realise a process of Quality Assurance (QA). This process
was designed by the Mumie management group. It uses several states of quality and delegates
the responsibility to specific roles:

Fig. 47: The applet quality assurance process (from Mumie QA specification)

pre
The applet has been specified by a teacher/author and is in state of development but has
not completed any checks for technical correctness and consistency.

devel ok
The applet has been checked for technical correctness and consistency, but its didactic

4.3. OTHER APPLICATIONS IN MATHEMATICAL ELEARNING 65

properties (usability, colour scheme, initial conditions) and its completeness have not been
checked.

content ok
The applet has been technically checked by the developer and didactically checked by an
author or teacher, but requests for enhancements have been made.

content complete
The applet has been technically checked by the developer and didactically checked by an
author and its functionality has been considered complete.

ok for publication
As content ok, but the applet has additionally been checked by the tech checker, a role
that specialises on testing the robustness of applets against irregular behaviour like creat-
ing mathematically degenerated conditions (e.g. singular matrices, zero length distances,
etc.). This additional QA step has been made necessary by the fact that both author and
developer know about the didactic coverage of the applet and thus may not have in mind
any student interactions that are outside these considerations. Actually, the Mumie team
had often been confronted with technical and didactic errors produced by unexpected
student behaviour.

final
As ok for publication, but the applet’s functionality has also been considered complete.

Mathlet Metadata and Documentation Generation

The QA process is supported on the technical level by the addition of javadoc tags (author, QA
status, changelog, todo) to the applet source code. Combined with the implementation specific
doclets (Documentation generators using the javadoc API, see [Ja04]) this guarantees a quick
overview on the current status of all mathlets developed. Two lists are generated from this
metadata, one in HTML format with links to descriptive pages that also contain the mathlet
itself (see figure 48) and one in TEX/PDF-Format (see D.2 in the appendix).

Fig. 48: The list of available mathlets as a web page generated from mathlet source code files

66 CHAPTER 4. APPLICATION

4.3.3 School Applications

Because a lot of the mathlets created for Mumie focused on content also taught at school, the
idea of testing them for school applications was brought up. Showing the mathlets to teachers
and asking them, if they were relevant to school teaching resulted in a ratio of about 70% of
all mathlets. The testlets were even all considered useful for dealing with school math issues,
although most teachers at first seemed reluctant to create configurations of their own. But
using HTML-editors like FrontPage solved the problem even for teachers that had only basic
skills with computers.

Application scenario

To test mathlets in a ‘real life’ scenario, a teacher offered to prepare a series of lessons dealing
with numerical methods of finding zeros of a function. These lessons were held at an 11th grade
mathematics course in a German secondary school (Gymnasium). In the lessons two applets
(one for each lesson) were introduced: One for demonstrating Newton’s method and one for
demonstrating the interval bisection method.

Fig. 49: Newton’s and the interval bisection method mathlets used in the school scenario

Each of them was shown at first to the students, asking them to describe the algorithm that
was used by each. Afterwards they had to calculate by hand, what the computer had done
and to verify their results with the mathlets. Regarding the concept of reflected computer
use (see introduction), this was considered an important if not central part of the lesson.
Having completed some additional exercises for each of the methods they were asked to compare
them with each other, which resulted in a controversial discussion about the advantages and
disadvantages of the methods that was enriched by some examples thrown in by the teacher.

4.4. TRANSFERABILITY 67

Conclusions

In the evaluation questionnaire4, all students (fully or partially) agreed, that the mathlets
helped to understand the numerical methods, almost all agreed that it was worth the effort
using them. The teacher was also pleased by the results achieved and remarked the motivating
effects of the mathlets. Another teacher (owning only basic skills in computers) even reused
the series without further technical efforts for a teaching exam (‘Lehrprobe’), so that it can be
stated that once the basic conditions of having the pages written and installed on the school
computer system are met, there are only low technical barriers of using them. This seemed
especially to be true for the students, as the lessons revealed, that there were no problems with
the technical use of the mathlets and almost all students evaluated the handling of the mathlets
as ‘simple and intuitive’.5

The teachers in turn seemed a bit more reluctant, which is why we offered several training
events for teachers and compiled a CD as giveaway for increasing the acceptance of the Mumie
system (see Appendix E). This CD is easy to install and use, which is another advantage of
the AppletFactory using a purely client side approach.

4.4 Transferability

In order to sketch the transferability of the Mumie AppletFactory to extra-mathematical con-
texts, we give two short examples, how this has already been done.

Fig. 50: Two applets presenting subjects of physics and electrical engineering

4[Ma04]
5Cite URL with html pages and results

68 CHAPTER 4. APPLICATION

4.4.1 Mathlets for Physics and Engineering

In addition to using the mathlets for the creation of various mathematical eLearning sites, there
have been some efforts to use them also in other fields of science. This originated from the
interdisciplinary structure of the developer team including physicist and engineers as members.
For example, a student of basic studies in electrical engineering used the mathematical vector
field object to create a mathlet that displays the 2D electrical field of an arbitrary point charge
distribution. Another transfer involved a cooperation of the working group of mathematical
physics and the Institute of Solid State Physics, creating a mathlet that visualises phonon
energy configurations (see figure 50). In addition to these mathlets there are plans to produce
mathlets that specifically deal with specific topics of civil engineering (plain structures and
their associated linear equation systems, elastic deformation of beams, etc.).

4.4.2 TestletFactory

Transferability is an especially interesting aspect of the TestletFactory, for its design is already
quite independent from the content its instances are dealing with; additionally, almost any
scientific knowledge may be tested using a puzzle or quiz. This may explain, why there were
several requests for the system, ranging from members of psychology and medical faculties to
physics and chemistry. The cooperation most advanced at the time of writing was the sup-
port of an international project dealing with hydrology engineering. In order to construct an
eLearning system for the University of Cairo, the TestletFactory was used as a client side test-
ing framework, configured by dynamically generated server parameters from a database. One
critical issue considered, was the feedback of the student’s answers to the database. For this
reason the TestletFactory was enhanced by a communication protocol between the applets and
the enclosing page, using a Java-JavaScript link.6 This allows the number of question correctly
answered by the student to be sent back to the server, making it possible to save the result of
an online examination for a previously identified student.

Server Script
collecting
answer information

Correct Answer
Database

Question
Database

Server Script
generating
testing page

Dynamically generated Testlet

Student

answers

Fig. 51: Integrating testlets into a server side database framework

6For a demonstration, see [Te04].

Chapter 5

Conclusions and Outlook

5.1 Summary

Looking back at the previous chapters, we may state that focusing on interactivity and tech-
nical reusability has led to a fruitful amount of applets for mathematical eLearning sites. The
flexibility of the approach (platform and network independence) and the strong regard for re-
quirements in a role-based scenario model allowed its application in a multitude of different
scenarios.
The practical and didactic analysis of mathematical eLearning (Chapter 1 and 2) led us to the
development of schemes that are useful for designing mathematical eLearning content and to
methods guiding the design process. By differentiating between macro and micro level (Chapter
1), we were able to state a simple concept of reusability and to locate the functionality that
promises the highest amount of interactivity. These results were complemented by a didactic
perspective on interactivity (Chapter 2) that indentified its key role in a learner oriented and
constructivistic learning scenario. In addition to that, the resulting content model specified
in 2.3 also offers a perfect base for an implementation of interactive content within an object-
oriented Model-View-Controller architecture. Combined with the methodic model based on
Bloom’s Taxonomy and with some practical aspects of learner orientation we were able to
present a comprehensive didactic design process to be applied for the creation of any mathe-
matical eLearning site.
The implementation of the component system presented in Chapter 3 provides a rich and
generic interface to mathematical objects and allows the construction of complex mathemati-
cal dependencies, thus making it possible for application developers to rapidly implement the
visualisation of a specific mathematical scenario. By the use of applet parameters, the author
has the ability to configure compiled applets for his needs without having to deal with pro-
gramming issues. On the other hand the support for changing the applet’s behaviour at run
time by entering mathematical expression leads to an increase of flexibility and reusability also
for students and tutors.
The application scenarios presented in Chapter 4 show a wide range of different uses for the
component framework. Their evaluation and the quality assurance process mentioned in 4.3.2
led to substantial improvements of applets as well as the component system itself. For example,
the 3D navigation and the animation framework evolved through several cycles of development
and feedback from users. The various results of evaluation also give us confidence for the next
macro cycle (see page 12) we are aiming at: The convergence with other eLearning technologies

69

70 CHAPTER 5. CONCLUSIONS AND OUTLOOK

and the propagation of standards and reference systems in web-based mathematical eLearning.

5.2 Towards Critical Mass

The last chapter has shown, that by using the Mumie AppletFactory, the rapid development of
complete interactive courses in mathematical eLearning comes into reach. As said before, the
framework has been going through an extensive series of tests and applications, thus positioning
it as a fairly mature and stable system in the – yet sparsely cultivated – field of mathematical
web-based client frameworks.
To tap the full potential of mathematical eLearning systems, however, some crucial tasks have
to be accomplished, mostly concerning integration:

• Most authoring tools are still high-technology, requiring specialised knowledge. The Ap-
pletFactory alleviates this issue by making high quality applets available to content de-
velopers without specialised Java skills (application developers) or none at all (authors),
but basic HTML skills are still required for configuration. Though the use of editors like
FrontPage or Dreamweaver eases this problem, a more specialised authoring tool would
widen the range of potential authors. This problem can, however, only be addressed
together with the authoring of static content:

• The market of server platforms and authoring tools is still too fragmented and unstandard-
ised to initiate a wide movement of content creation. Pushing and narrowing standards
(XML, MathML, etc.) or de-facto standards (e.g. TEX) for eLearning would increase con-
tent stability with respect to migration to another platform. The Mumie project therefore
clings completely to standards and platform-independence, but even this leaves too much
room for arbitrary implementation in many cases. However, regarding other fields of
software development one might predict that an increasing convergence of platforms will
eventually lead to stability and standardisation.

• Though much progress has been made over the past years, the basic conditions of web-
based learning are still not at best in German universities. Showing a mathlet in audi-
torium, for example, required not only the laptop of the lecturer being connected to a
beamer, but also hiding all blackboards and thus all relating notes and formulas written
onto them. A tighter integration of electronic media and conventional hand writing by
using systems like E-Chalk1 or eCase2 has not yet outweighed the advantage of simplicity
of conventional chalkboard writing. But regarding the recent success story of electronic
presentation usage in lectures might give a guess, that future lecture rooms will be surely
adapted to media integration.

• The acceptance of mathematical eLearning (as academic eLearning in general) has not
yet reached a critical mass of users to reinforce the demand of further integration.

It is our thesis, that enforcing the latter issue will eventually also remedy the other problems.
That is why we tend towards implementing reference systems which demonstrate the state of
the art. Apart from the Mumie system this aims also at other platforms.

1[EC00],[EC04]
2[eC04]

5.3. FURTHER FIELDS OF RESEARCH 71

5.2.1 Integration with Other Platforms

At the RWTH Aachen University, a special task force of eLearning experts has been formed to
publish exemplary eLearning solutions in order to inspire and support other lecturers willing to
follow suit. For mathematical eLearning this could lead to the integration of Mumie content into
other platforms. This is actually planned for the Emilea-stat project, which offers an eLearning
site dealing with mathematical statistics.3 On the one hand this contributes to a coalescence of
contents that are of complementing mathematical subject, but whose publication faces the same
technical problems we described in 1.2 and C.1. On the other hand it serves as a demonstration,
that the content created is platform independent through the use of standards and de-facto
standards (Java, XML and TEX). Beyond this, there are considerable efforts of cooperation
in the convergence of mathematical eLearning/-Teaching/-Research (eLTR) technologies4 with
German and European universities that are documented by the proposals for the projects
‘ULearn(Math)’5 and ‘Multiverse’6. These activities both contribute to the establishment of
stable publishing standards and aim to attract further authors, who are right now waiting for
sustainable tools before investing considerable work in creating high quality eLearning courses.

5.3 Further Fields of Research

Now that a framework for the rapid development of mathematical content exists, there are
various branches of research that may extend the present work. In accordance with the last
section, these are mainly directed at the integration with other frameworks and applications.

5.3.1 Large Scale eLearning Content

To improve the acceptance of mathematical eLearning, practical results as well as research
in several disciplines are needed. Evaluation of applications within different courses will be
required, from a psychological and educational perspective as well as from a mathematical
and technical perspective. By the availability of a framework for the rapid development of
interactive content, it is now possible (and has only just begun) to create complete online
mathematics courses. This opens fields of further research for the generic structure of eLearning
media in contrast to conventional learning material especially with respect to sustainability and
maintenance.

5.3.2 Navigability and Adaptivity

The system presented in this document concentrates on the reactivity of mathematical eLearn-
ing, there are few theses about the adaptivity and navigability, delegating these issues to the
server framework. For a complete interactive system, however, they are nevertheless crucial.
We therefore observe studies in this field with growing interest.7 Technically, the ADL SCORM

3[Em04]
4[JSK04]
5[UL04]
6[Mv04],[1]
7There are, for example, several projects involving AI methods for user adaptivity in Mathematical eLearning,

like [AM04], [IM04].

72 CHAPTER 5. CONCLUSIONS AND OUTLOOK

Sequencing and Navigation Specification8 offers a detailed standard for Learning Management
Systems (LMS), how user navigation and tracking are to be implemented, so there is a good
chance, that future LMS might offer a good testing ground for developing content with im-
proved navigability and adaptivity. At the time of writing, the content presented by Pyramit
or JAPS does not yet provide SCORM-compliant metadata, but its modular structure will
easily allow the addition of metadata and its (re)use in various sequencing models.

5.3.3 Authoring Support

Though the task of strengthening the author role has been a crucial part of our research
activities, it is far from being complete. We experienced in our evaluations, that authors
need a minimum of technical complexity to be able to concentrate on the production of high
quality content. Anything that distracts from this task reduces the author’s willingness and
commitment, which may prove fatal for the usage of a tool, that is most often done with a
voluntary effort to improve the quality of teaching.
In the Mumie project, an authoring environment is in development, that integrates applet
testing and content production. In addition to that, we are aiming at a tighter integration with
existing authoring tools (e.g. HTML/XML editors).

5.3.4 Integration with Server Applications

Though we have achieved our goal of developing a reusable system for mathematical com-
ponents, the Mumie AppletFactory is but one contribution to the realisation of a seamless
electronic infrastructure in mathematics teaching and research. As one may see from the suc-
cess of office packages in modern computer usage, the success of a software depends heavily
on its integration with other programs. This is especially true in the WWW-server world.
We therefore have already added the support for applet parameters in order to let the server
dynamically create specific (even user-adapted) configurations of the same applet. But right
now, there is no mechanism yet that lets a mathlet tell a server, how the student interacted
with it. However, the first steps in this direction have already been taken by implementing a
callback mechanism for testlets (see 4.4.2).
Another promising direction would be the outsourcing of computing power to specialised sys-
tems like CAS or numerical calculation software, thus allowing even analysis of complex mathe-
matical expressions or the production of high precision results. A first step has also been taken
for this by adding Content MathML support to the MathletFactory Algebraic Object System,
thus allowing the easy export of mathematical expressions to CAS like Mathematica or Maple
(see Appendix B).

8[ADL04]

Appendix A

Transformation examples of
mathematical concepts

Here is a small list of informal example transformations of mathematical concepts into iconic
and enactive representations. It was used to design the mathlets created with the MathletFac-
tory. As said before there may be also no or more than one suitable transformation for each
mathematical concept – this list is merely a help for practical purposes.

Mathematical
Concept

Iconic Transformation Enactive Transformation Example Mathlet(s)

Number Measure (length, area or volume)
that is the multiple of a unit

Counting/Increasing a measure SeriesPlotter

Function Function graph or transforma-
tion of an equidistant point grid

Feeding an input/output ma-
chine with values, transforming
an iconic structure (line, collec-
tion of points,..)

FunctionPlotter,
FunctionAsDeformation

Composition
of functions

subsequently transformed point
grids

Feeding the input of the outer
function with the output of the
inner

CompositionAsDeformation,
FunctionCompositionPlot-
ter, FunctionCompositio-
nAnimation

Inverse func-
tion

function graph mirrored across
the line y = x

Swapping input and output InverseFunctionPlotter

Limit of a se-
quence

A point for which every ball (or
disc) around it leaves only a fi-
nite number of points outside

Coming closer to a point SequencePlotter

Continuity A contiguous graph of finite
length

Drawing a graph without rais-
ing the pen (roughly), finding an
ε(δ) relation (advanced)

EpsilonDelta,
DeltaOfEpsilon

Derivative of
f

Displaying the tangent’s slope in
points (x, f(x))

Constructing the derivative by
drawing the tangent’s slope for
several points of the graph of f

TangentAndDerivative

Integral∫ b
a
f(x)dx

Area between graph and x-axis Approximating the area with dif-
ferent methods (Upper and lower
sum, etc.)

StepFunctionPlotter,
LeftRightApproximation,
TrapezoidApproximation

Linear inde-
pendence

n vectors spanning an n-
dimensional subspace

Failing in constructing one vec-
tor as a linear combination of the
other

GeneratingSystemOfR2

73

74 APPENDIX A. TRANSFORMATION EXAMPLES OF MATHEMATICAL CONCEPTS

Appendix B

Implementation Details

This appendix contains an overview of the MathletFactory from a system developer’s perspec-
tive. This perspective is necessary for developing new MMObjects or display components that
extend the set of mathematical entities represented by the MathletFactory.
In the following sections we omit the details, which can be found at the API documentation
but give a structural overview that follows the Model-View-Controller architecture.

B.1 MVC Architecture of the MathletFactory

B.1.1 Requirements

Following the didactic model of Bruner, mathematics can be regarded as a system with three
complementing representations: The enactive representation of a mathematical entity is deter-
mined by what you can do with it, the iconic representation is an image or sketch that visualises
one or more of its properties and the symbolic representation denotes it in a formal language
system. One of the main conclusions of Bruner’s Theory is, that although professional math-
ematicians almost exclusively use symbolic representations, the other types of representations
play a vital role in learning mathematics.
If we use this didactic principle as a requirement for the architecture of a mathematics learning
framework, it makes sense to allow different representations for mathematical objects. This
can be done best by using the Model-View-Controller Pattern1, an architectural pattern that
separates the data of an entity from its presentation and application logic.

B.1.2 Fundamental Concepts

A good starting point when describing the MathletFactory is to describe what happens, when
a student uses an applet created with the MathletFactory.
If, for example, a student drags the graphical representation of a three dimensional vector on
a canvas with the mouse, the canvas generates an event that is sent to the CanvasController.
This instance checks all objects contained in the canvas if they are meant, by using the mouse
coordinates and the canvas’ internal projection parameters. If an object has been picked and
it can handle the type of event (by owning an appropriate handler), the event is delivered to

1[Bu96]

75

76 APPENDIX B. IMPLEMENTATION DETAILS

it by calling MMObjectIF.doAction(). The MMObject then delegates the event to the specified
handler, which processes the event (e.g. translating the end-point of the vector in a plane
parallel to the viewport by transforming the new mouse coordinates to world coordinates) and
modifies the state of the MMObject (e.g. setting its coordinates to new values). After this it is
checked, if any other objects depend on the vector (for example, the vector could be designated
as normal for a plane). For this it is checked, if any Updaters are associated to the object and if
so, their update() method is called, changing the state of any dependent objects (which in turn
might also have other updaters and so on). After the update graph traversal has been finished,
The views of the objects that were changed, are redrawn (both the graphical and the symbolic
representation), by invoking render() and draw() in all transformers of the MMObject. By
this the student is informed of the result of his action and may proceed with further actions.

Fig. 52: An action cycle in the MVC architecture

B.1.3 Model

The core model used in the MathletFactory is the MMObject, represented by a class that
implements the MMObjectIF interface. An instance of this class contains on the one hand the
mathematical information of the object, on the other hand it also owns references to the handlers
that allow its manipulation and to updaters that connects the object with other MMObjects
in the update graph. It also contains the link to the view components.

B.2. ARITHMETIC AND GEOMETRIC MODEL 77

B.1.4 View

The view component consists basically of two objects: The transformer (represented by a
subclass of GeneralTransformer) the drawable (represented by the interface Drawable). While
the drawable is the actual displaying unit, the transformer establishes a link between model
and drawable and knows how to repaint it, when the MMObject has changed.

B.1.5 Controller

In the controller section we differentiate between objects that directly manipulate MMObjects
and those that are responsible for constructing the update graph. The directly manipulating
objects are represented by two different classes: Handlers (subclasses of MMHandler) for manip-
ulating iconic representations in a canvas (e.g. selecting and dragging vectors with the mouse)
and panels (subclasses of MMPanel) for editing symbolic representations. Note that the panel
is also a drawable into which the controller-code (which consists of only a few lines) has been
integrated into.

B.2 Arithmetic and Geometric Model

In order to compute a wide variety of mathematical problems, the Mumie MathletFactory
offers a flexible and economic model for representing the geometric and arithmetic properties of
mathematical entities and allows an accessible interface for easy manipulation. In the following,
we briefly describe the model architecture of the basic entities.

B.2.1 Number Types

Starting with the specification that all mathematical objects – directly or indirectly – use num-
bers, we assign to each MMObject a specific number type that can be changed upon construction
or sometimes even at run time. By this it is, for example, possible to use the same sequence
object for displaying both real valued sequences and complex valued sequences. In the first case
the object is instantiated by invoking the constructor with the argument MComplex.class, the
second with the argument MDouble.class. The implementation is done using an abstract base
class MNumber of which all number types are subclasses. Currently, the following number types
exist:

Number Type Set of numbers
modelled

Internal Java type used

MNatural N BigInteger

MInteger Z double

MRational Q long

MBigRational Q BigInteger

MDouble R double

MComplex C double

MZmod5 Z/5Z int

78 APPENDIX B. IMPLEMENTATION DETAILS

The last is an experimental type that demonstrates the use of finite fields in the MathletFac-
tory and will soon be replaced by a generic class modelling Z/pZ.

B.2.2 Vectors, Vector spaces and Matrices

While the subclasses of MNumber provide the base for one-dimensional number computing, the
class NumberMatrix – representing an m×n-matrix – is fundamental for the calculation in lin-
ear spaces of higher dimension. As MMObjects it has also exclusively uses the generic number
interface allowing each instance of a NumberMatrix to represent a matrix of different number
type.
The NumberMatrix is extended by NumberTuple, a class that represents m × 1-matrices and
which is basically used as coordinates for vectors or matrix columns/rows. It therefore offers
additional functionality like the norm, the dot product, etc.
Vectors in turn are modelled by subclasses of the abstract NumberVector. It is a specific trait,
that each vector of the MathletFactory ‘knows’ the vector space in which it exists and is repre-
sented by coordinates that are relative to its associated basis. By this it is possible to transform
all vectors of a chosen vector space by changing the space’s basis. The NumberVectorSpace

class therefore provides a wide range of methods to manipulate its basis.

B.2.3 Affine and Projective Geometry

The vector space model is also used in the geometric classes. Like most CAG (Computer Aided
Geometry) Modelling software. All internal data is stored in homogeneous (i.e. projective
geometry) coordinates. This allows the easy transformation of mathematical entities also for
affine geometry. For example, when calculating the intersection of two planes in the three
dimensional space R (i.e. the intersection of 2D affine subspaces within a 3D affine space)
simply the projective hyperplanes have to be intersected, reducing the problem to finding the
null space of the matrix that contains the projective coordinates of the subspaces’ basis (see
extended description of this example below).

B.2.4 Numerical Computing

Numerically, almost all affine and projective geometric operations – like the example above
– base on the Gauss algorithm implemented in the class EchelonForm. This ensures a high
reusage and offers an easy optimisation opportunity: If the Gauss algorithm is made faster, a
wide range of computations will be executed faster.

B.2.5 Compound Example

To demonstrate, how all the concepts described above work together, we give a ‘real life’
example: In the mathlet depicted below, the intersection of two planes in three dimensional is
computed and displayed (For details refer to the documented source code):

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 79

AffineSpace.intersected()
|

AffineSpace.intersect()
|

ProjectiveSpace.intersected()
|

NumberVectorSpace.intersected()
|

SolveHomogen.intersection()
|

SolveHomogen.nullSpace()
|

EchelonForm.getREFMatrix()
|

EchelonForm.toReducedRowEchelonForm()

Fig. 53: The intersection of two planes in three-dimensional space and its stack trace to the Gauss algorithm

This starts in by invoking the method AffineSpace.intersected(AffineSpace with) in
one of the planes with the other as argument (the plane class descends from the affine space
class). This method does nothing but the invocation of its projective representation to intersect
with the projective representation of the other plane. This is done by giving their two vector
bases to the method SolveHomogen.intersection(NumberTuple[] span1, NumberTuple[]

span2) which in turn calls the nullSpace(NumberMatrix matrix) method with a (3×6) matrix
as argument that contains all the base vectors as columns. This method in turn uses the Gauss
algorithm implemented in EchelonForm.getREFMatrix(NumberMatrix matrix) to transform
the matrix to reduced echelon form to determine its null space basis. The null space basis is
then used as parameters for constructing the basis of the intersecting space, which is returned
by the intersected() method.

B.3 Algebraic Object Model and Formal Languages

Since often it is not only needed to let the application developer perform computations with the
MathletFactory but also the student (or teacher/tutor) himself, the arithmetic and geometric
model is complemented by an algebraic model that allows the input of expressions in a formal
language. By this, the flexibility of the mathlets is increased and allows them to be used as
tools in open learning scenarios.

B.3.1 Lexical, Syntactic and Semantic Analysis

In order to analyse and interpret a formal language, we need structures that operate on three
different levels of language: the first is the lexical analysis which analyses the alphabet of sym-
bols being used, the second is the syntactic analysis that applies the rules for building words
and sentences. On the third level we have the semantic analysis that analyses the meaning of
the words.

80 APPENDIX B. IMPLEMENTATION DETAILS

Fig. 54: The different stages in mathematical expressions analysis performed by the MathletFactory

In the MathletFactory, each stage of language processing is performed by a specific unit: The
lexical analysis is performed by a set of regular expressions (which also do some replacements
that allow an increased robustness like 2x → 2*x) and a small scanner unit. The syntactic
analysis is done by a parser that implements a context-free grammar (see below) and the
semantic analysis is left to a rule-based tree automaton that operates on the operation tree
generated by the parser.
Note that it is quite easy to reproduce a string out of the tree representation by doing a depth-
first order traversal, thus closing the sequence to a loop. This is very important for interactive
work with mathematics, where the user enters an expression, watches the response of the system
and may want to re-edit his input for a receiving a different result.

B.3.2 Introduction to Formal Languages

The main idea of the MathletFactory’s algebraic object model takes advantage of the formal
languages used in mathematics. Computer science has developed a rich set of methods to
interpret these formal languages of which we can only give a short introduction, see [HU79] for
details.
A formal language can be defined as a concatenation of symbols from an alphabet. These
concatenations are called the words. The formal language L(Σ) over an alphabet Σ that consists
of all possible words can thus inductively be defined as:

1. σ ∈ L for all σ ∈ Σ.

2. w ∈ L for w = u.σ with u ∈ L, σ ∈ Σ.

with . being the concatenation operator. The language that consists of all words over Σ is also
called Σ∗, where the ∗-operator means, that the resulting set contains all finite concatenations
σ1.σ2 . . . σn, n ∈ N of symbols σi ∈ Σ, and the empty word ε.

Of course we are more interested in languages that allow only certain words. For example, we
may want (x+1) to be a word of our language, but not +)1)x. We thus need a higher structure
that tells us, which words belong to the language, a grammar.
A grammar is defined by the accepted alphabet (the terminals) and by a set of explicit rules
how a word can be decomposed into these. For example, one could state the following rules for
simple arithmetic expressions of numbers represented by NUM:

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 81

1. +, -, *, / ∈ L, NUM ⊂ L,†

2. w ∈ L for w = u.*.v or w = u./.v with u, v ∈ L,

3. w ∈ L for w = u.+.v or w = u.+.v with u, v ∈ L.

We have already differentiated between products and sums of rational numbers, because for
the semantic analysis (i.e. evaluating the arithmetic expressions) it is necessary to consider the
precedence of operations. One could define grammars like we did in the example above, but
for handling more complex grammars it is useful to state a grammar in the Backus-Naur form
(BNF), which regards grammars as a tuple (T,N, s, R), where T = Σ is the set of terminals, N
is the set of nonterminal symbols (i.e. variables that may contain concatenations of terminals),
s is the name of the starting variable (i.e. the variable whose content is tested to be a valid
word of the specified language) and R ⊂ (N ∪ T)∗.N.(N ∪ T)∗ × (N ∪ T)∗ is the set of rules
that need to apply for a word of the specified language:

G(T,N,s,R)

T: NUM,’+’,’-’,’*’,’/’
N: expr, term, fac
s: expr
R:
(1) expr -> term { ’+’ term } | term { ’-’ term } .
(2) term -> fact { ’*’ fact } | fact { ’/’ fact } .
(3) fact -> NUM.

We see, that the operator precedence is ensured by using different variables for summands
and for factors. The expression 3*4+1 could thus be tested by the grammar as follows (we
enclose the symbol with its type in parentheses):

(expr 3*4+1)
(1)→ (term 3*4).+.(term 1)
(2)→ (fact 3).*.(fact 4).+.(fact 1)
(3)→ (NUM 3).*.(NUM 4).+.(NUM 1).

After this none of the rules can be applied to the expression anymore which means that 3*4+1
is a word specified by G. This testing method also gives an idea, how a parser that accepts
words of L(G) could be implemented: By a recursive reduction algorithm, where each rule is
modelled by an according method.2

†Note, that for avoiding trivial rules it is better to regard a number like 1234 to be represented by a single
symbol, not as a concatenation of symbols as one would presume by the fact that it is a concatenation of digits
in our common writing system. In the following we will also regard function identifier like cos as a single symbol
in order to keep our grammar compact.

2This is called the Top-Down approach, which is mainly used in functional or rule-based language imple-
mentations, imperative language implementations often also use a Bottom-Up approach, where for each step
only as much symbols are read in as needed for applying the next rule.

82 APPENDIX B. IMPLEMENTATION DETAILS

B.3.3 Types of Grammars

Noam Chomsky has provided a hierarchy of grammars where each type produces a language
that is a subset of a language produced by a lower type. The type of a grammar depends
completely on the specified rules R:

Type Name Constraints for R
1 context sensitive |u| ≤ |v| for all R : u 7→G v
2 context free R ⊆ N × (N ∪ T)∗

3 regular R ⊆ N × ({ε} ∪ T ∪N.V)∗

This means for example, that regular grammars produce only a subset of context free grammars,
which in turn produce a subset of context sensitive languages. Which type suits our needs?
There are some features for which we need at least a context free grammar. For example, an
expression containing parentheses is only valid in mathematics, when every opening parenthesis
has its closing counterpart. On the other hand we want to use parentheses on all levels. This
means we need a rule r ∈ R that has the form prim→ ’(’ expr ’)’, which is not possible for
regular grammars, which allow no terminals on both sides of a non-terminal. Context sensitive
grammars in turn would allow rules with non-terminals and terminals mixed on the left side
thus allowing a higher semantic analysis already in the syntax phase, one could, for example,
add something like with the following rule:
NUM ’*’ ’(’ VAR ’+’ VAR ’)’ → ’(’ NUM ’*’ VAR ’+’ NUM ’*’ VAR ’)’,
thus implementing the distributive law for words containing two variables VAR multiplied with a
number NUM. But as the reader might guess, a program that parses context sensitive languages
is hard to implement, so we do things like this in a separate semantic analysis step (see B.3.8).

B.3.4 From Syntactic to Semantic Analysis

After the parser has accepted the mathematical expression, we need to transform it into a data
structure that allows easy semantic analysis. In our case it is suitable to represent it as a syntax
tree or as a word of a regular tree language [Co03]. For example, sin(2x+π) is interpreted as
(sin (+ (* 2 x) pi)). The expression can then be symbolically transformed by using tree
automata (see below) or numerically evaluated, which is done by a recursive procedure that
evaluates the tree from the leaves (numbers or variables and parameters with assigned values)
up to the root node.

B.3.5 Formal Languages Used by the MathletFactory

The MathletFactory uses two formal languages, which are both context free and read by a
recursive descent parser [ASU86]: The operation language Op and the relation language Rel.

The Operation Language Op

The language Op is used for modelling algebraic operations as they occur in functions, equa-
tions, etc. It can be used by any mathematical object that can be characterised by a numerically

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 83

evaluable symbolic expression. The grammar of Op is as follows:

G(T,N,s,R)

T: NUM, VAR, SIN, COS, SINH, COSH, EXP, ASIN, ACOS, LN, SQRT, ’+’, ’-’, ’*’, ’/’, ’^’,

N: expr, term, fac, pot, prim

s: expr

R:

(1) expr -> term { ’+’ term } | term { ’-’ term } .

(2) term -> fact { ’*’ fact } | fact { ’/’ fact } .

(3) fact -> SIN pot | COS pot | SINH pot | COSH pot | EXP pot | LN pot | ABS pot

| ASIN pot | ACOS pot | TAN pot | ATAN pot | SQRT pot | FLOOR pot | pot.

(4) pot -> prim {’^’ prim}.

(5) prim -> VAR | NUM | ’(’ expr ’)’ | ’|’ expr ’|’ .

The Relation Language Rel

The language Rel is used for modelling algebraic relations as they occur in set definitions,
propositions, etc. As one might already guess from the fact that relations consist of operations,
words of Op are part of the letters of Rel. More precisely, the Rel terminal SIMP is a simple
relation that contains a left and right hand side expri ∈ Op, which are separated by a relation
sign (=,6=,≥,≤,> or <). The grammar of Rel is as follows:

G(T,N,s,R)

T: SIMP, NOT, AND, OR, NOT

N: rel, cla, sub, prim

s: rel

R:

(1) rel -> sub { OR sub }.

(2) sub -> cla { AND cla }.

(3) cla -> NOT prim | prim.

(4) prim -> SIMP | ALL | NULL | ’[’ rel ’]’.

Note that in Rel we use square brackets for overriding precedence, whereas in Op we use
parentheses, allowing to parse a complete relation containing operations in a single pass.

B.3.6 Tree Architecture

After the syntactic analysis (i.e. the construction of the operation/relation tree from a user/application
provided string), the semantic analysis (i.e. transformation or evaluation of the tree) takes place,
again initiated by user or application action. We demonstrate this in a short example:

x+

x 1

0

y

0

> >

v

Fig. 55

In the figure above the relation x + y + 1 > 0 ∧ x > 0 is displayed in its tree representation
(e.g. as a parsed result of the string ‘x+y+1>0 AND x>0’). This tree has two levels: a relation
level (the encircled nodes) and an operation level (the nodes below the relation nodes). The

84 APPENDIX B. IMPLEMENTATION DETAILS

relation consists of ∧-Conjunction as root node with two simple relations (x + y + 1 > 0 and
x > 0, the dashed boxes in the figure) as leaves. The relation leaves contain the operations
x + y + 1, 0 and x, 0. After binding x and y to certain numeric values, the relation can be
evaluated, returning either true or false, depending on the evaluation results of the operations.

The approach of using tree representations for mathematical expressions is adopted by all
modern Computer Algebra Systems (e.g. [Wo91], [Wa91], [Mo93]), but their almost purely
functional model allows neither typing (e.g. no type distinction between operations and rela-
tions)3 nor the integration in an object oriented graphical user interface.
For our requirements, we will adopt the concept of a functional representation, but merge it
with an object oriented model. This means for the architectural design that we use the different
types Operation (any symbolic expression that can be numerically evaluated) and Relation

(any symbolic expression that can be either true or false). We choose these entities because
they are closed under the most transformations we will apply onto them (for example, opposed
to the set of equations – the set of relations is closed under equivalence transformations, the set
of analytic operations is closed under derivation), so we can still use a functional model when
transforming trees of each type.

Tree Representation vs. Flat Representation

Apart from being a construct of formal languages over which human-computer interaction is
possible, a tree architecture also grants a greater flexibility than flat structures. For example,
if we want to model a finite representation of a Borel σ-algebra in R this could be imple-
mented by a single class, owning a list of intervals, upon which the operations intersect,
join, complement etc. are resolved. This can be quite costly if we want to compute the join
or intersection of two Borel sets that are widely ‘scattered’, though the user will usually test
inclusion in the result only for some points or a single interval displayed on the screen. Also,
we could not model the special case of infinite intervals like Z, R\2πZ, etc. which we need
when displaying periodic behaviours.
The solution to this problem is to implement the Borel set as a tree structure that has intervals
and ‘periodic intervals’ as leaves and operations upon Borel sets as inner nodes. When the
user wants the set to be displayed on the screen, the observed interval and an ε for precision
(e.g. pixel width) is given to the Borel set and a distribution of points and lines satisfying these
parameters is computed.
As this example suggests, constructing trees of mathematical entities allows a higher degree of
generalisation without losing flexibility and simplicity. We will also see in section B.3.10 that
trees are easily transformable, adding a lot of functionality to tree-structured mathematical
entities.

B.3.7 Basic Tree Model

All tree-organised implementations of mathematical entities share a common base class, the
AbstractTreeNode, which offers abstract tree functionality regardless of type, like adding or
removing children, searching and replacement of descendants, etc. From these, the basic nodes

3For example, in Maple variables can hold relations as well as boolean or numerical values, making expressions
like y = (y=1); or plot(sin(true),x=0..Pi); computable.

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 85

for mathematical entities are derived (at this time OpNode, RelNode and SetNode), the sub-
classes of which are the concrete implementations of mathematical operations and operands.
The tree of these nodes is referenced by the model of the mathematical entity (Operation,
Relation, BorelSet), which serves as static container and fixed reference when performing
tree transformations:

AbstractTreeNode

...

calculate()
getResult()

x>0

>

>

x>y x<0

U
[−2;0]

[−1,0)

U

(0,1]

AddOp

[...]

[...]

[...]

ComplexRel

SimpleRel

NotRel

NullRel

MultOp

VariableOp

FunctionOp

IntersectSet

JoinSet

FiniteSet

[...]

[...]

BorelSet

Relation

Operation

SetNode

RelNode

OpNode

...

evaluate()
negate()
...

contains()
getFiniteBorelSet()

...

getDepth()
replace()

root node

1

0..n

0..n

0..n

root node

root node

children

children

children

PeriodicIntervalSet

1

1

sina

∗

b π

+

Fig. 56: Inheritance and aggregation model of tree nodes

B.3.8 Object Model of Operations

Generation and Structure of Operations

The Language Op is syntactically analysed by an recursive descent parser. When parsing an
expression it creates a corresponding operation tree that is contained in an Operation object.
The operation tree consists of nodes that are of type OpNode and whose inner nodes are func-
tions and operations while the leaves are basically variables and numbers. For example, parsing
the expression ”sin(2x+π)” generates the operation tree (sin (+ (* 2 x) pi):

+

sin

*
x2

π

OpNode

Operation

new"sin(2x+)"

Parser

π
Operation−

Fig. 57

86 APPENDIX B. IMPLEMENTATION DETAILS

The Operation class bundles the functionality for any operation that can be found in a func-
tion or on the left or right hand side of an equation, etc. It contains a reference to the operation
tree and keeps track of state information like the variables used and normalisation status (see
below).
The operation tree is made of instances of the class OpNode, which is an abstract class that pro-
vides the common functionality for all operation nodes. It models an elementary operation with
a factor and an exponent so the above example could also have the form (sin (+ 2x pi)).
From the functional view the factor and the exponent are not essentially necessary, since there
are also nodes for power and multiplication operations, but with addition and multiplication
being the most common operations, this reduces the depth of most trees. This again decreases
the costs of analysis and synthesis of larger trees and allows a higher amount of order within the
trees (for example, children of a multiplication node can be ordered by power, making fraction
handling easier). Adding factor and exponent fields to an operation node is also a common
technique used in CAS [Bau02].
Below, a part of the definition of algebra.op.OpNode is shown:

...

public abstract class OpNode implements Cloneable, Comparable, NumberTypeDependentIF {

...

/** The base value, which is calculated in {@link #calculate}. */

protected MMNumber m_base;

/**

* A numerical factor is stored for each operation, to reduce the tree complexity

* and allow group actions.

*/

protected MMNumber m_factor;

/**

* The exponent is stored for each operation, to reduce the tree complexity

* and allow group actions.

*/

protected int m_exponent = 1;

/**

* The children of the node, may be null (leaves), one node (e.g.\ functions) or

* an arbitrary number of nodes (e.g.\ multiplication).

*/

protected OpNode[] m_children;

/** The direct ancestor of this node in the Operation Tree. */

protected OpNode m_parent;

/** The number class being used. */

protected Class m_numberClass;

...

Operation Transformations and Normal Form

As mathematics often consists of transforming expressions, operations can be transformed in
multiple ways. For example, the addition of the number 3 to an existing operation can be done
by creating a new addition node that has the old operation tree and a ’3’-node as children and
taking the addition node as the root node for the new operation. There are of course many other
possible transformations like substitution, separation of variables, factorisation, derivation, etc.
To implement these in an object model, a two level approach is used: Transformations that

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 87

create a new operation tree with specific rules for each node (like calculating the derivative or the
inverse) are handled by the node object itself, whereas transformations that alter the existing
tree structure (expansion, simplification, etc.) are handled by a transformer facility called
OpTransform. This two-level approach allows to combine the power of recursive algorithms
with the structural advantage of object-orientation.

yx x

*

*

* x 2

*

2

3

2y

2y

SummarizeEqualMultChildrenRule.transform()

Fig. 58: Transformation of a subtree by a rule

The OpTransform object is a tree automaton that transforms trees by using a set of rules
(located in the subpackage algebra.op.rule), which specify a certain subtree pattern and a
transformation that is performed if the tree matches the pattern.

For example, in the tree (* (* x2 x) (* 2y y)) (see figure) the condition for a multiplica-
tion node containing two or more equal children (without regarding their factors or exponents)
applies to both ’*’ children of the root node. The rule object therefore raises the power of the
first child by the number of the other children, transforming the tree to (* x3 2y2). This would
also apply to the root node if a previous application of CollapseEqualOpsRule had flattened
the tree to (* x2 x 2y y).

In order to apply a rule like in the example above, a certain structure of the tree has to be
assumed. For example, the tree (* (* (^ x 2)) x) is mathematically equivalent to (* x2 x),
but it is harder to analyse and transform. Because the rules should be kept as simple as possible
(since there are many of them and their set should be easily expandable), it is reasonable to
specify a normal form for operation trees.
The normalisation rules are located in algebra.op.rule.normalize. Here are some examples:

Name Application Example
NormalizeMultRule (* 4x 6y) → 24(* x y)
NormalizeExponentsRule (* x4 y6) → (* x2 y3)2

CollapsePowerRule (^ (^ x y) z) → (^ x (* y z))
HandleFunctionSymmetryRule (sin -x) → -(sin x)

This set can be easily expanded, most of the rules consist of less than 20 lines of code. All
the rules are applied in a deterministic order and since they always produce defined results, it
can be ensured that after none of the rules can be applied to any node in the tree anymore,
the operation has a unique defined form. This form is defined as the normal form of the

88 APPENDIX B. IMPLEMENTATION DETAILS

operation (for the specific rule-set). Trees having the same normal form are considered to be
mathematically equal by the system.

B.3.9 Object Model of Relations

Generation and Structure of Relations

Analogous to operations, relations are usually generated by parsing a word of Rel (see the
grammar in B.3.5) and by constructing a relation tree composed of RelNodes. The inner nodes
of the relation tree are the logical operations ∨, ∧ and ¬, while the leaves are either simple
relations (equations or inequations) or special nodes like AllRel and NullRel, which either
relate everything (making interpretation of the used domain necessary) or nothing.

Transformation of Relations, Normal Form

Like operations, relations can be transformed in multiple ways, the most used transformations
are the logic transformations that negate, conjunct or disjunct subtrees. But there are also
complex transformations that occur when a simple relation is transformed. For example, if the
inequation x2 − x > 0 is divided by x this leads to the equivalent complex relation
x− 1 > 0 ∧ 1

x
> 0 ∨ x− 1 < 0 ∧ 1

x
< 0 (see figure).

The functionality for handling relation transformations and its special cases are implemented
in the class RelTransform.

x2

x−1 x−1

x−1

x2

x−1 x−1

x−1

x−1

*

x2

v

*

0+

* 0

>

*

0+

−x

* 0

<

v

>

v

<
0+

−x

>

x

Fig. 59: Transformation of a relation

For comparation and simplification of relations, again, a higher order is needed for the trees
to facilitate the development of tree analysis and transformation code.
For example, the relation x = y ∧ y = x should be recognised as redundant by the system
and be simplified to x = y. As for operation trees, this is done by defining a normal form for
relations and implementing rules for normalisation.
The normalisation rules are located in algebra.rel.rule.normalize. Here are some exam-
ples:

Name Application Example
MoveOrUpwardsRule [[x=0 OR y=0] AND z=0] → [x=0 AND z=0] OR [y=0 AND z=0]
CollapseComplexRule [[x=0 AND y=0] AND [z=0] → [x=0 AND y=0 AND z=0]
RemoveNotRelRule [NOT [x>=y]] → [x < y]

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 89

B.3.10 Applications

To demonstrate the practical use of the algebraic object model, we give two application exam-
ples.

Symbolic Derivation

The symbolic derivative of a differentiable function can be computed automatically by simply
applying the well known rules for elementary functions and chaining them together for com-
pound functions, using the derivation rules for sums, products and compositions.

Fig. 60: The function and derivative plotter

The application presented to the user is an applet that plots an arbitrary function typed in
by the user and additionally computes and displays the derivative (if any exists).

90 APPENDIX B. IMPLEMENTATION DETAILS

+

*

*

cos

x

y

+

sin

*
x2 2π

2π

π

Operation

new

OpNode

OpNode

Operation

getDerivative("x")

Fig. 61: Object model for deriving operations

From a technical perspective this is done by using an MMFunctionDefinedByOperation object
from which another instance is created with an Operation that is returned by the getDerivative()
method of the first operation.
Deriving an operation can be implemented completely on a per-node basis, therefore the method
Operation.getDerivative() simply delegates the calculation to the root node of the opera-
tion tree. The derivation code of an operation node has two parts: a generic part that does
the derivation for the internal factor and exponent and a specific part that varies on the node
type. Below is a code snippet containing the node specific derivation code in the class SinOp:

/**

* Implements <i> (sin(f(x)))’ = cos(f(x)) * f‘(x) </i>.

*/

public OpNode getDerivative(String variable){

if(getMaxPowerOfVariable(variable) == 0)

return new NumberOp(m_numberClass, 0);

// cos(f(x))

OpNode cosOp = new CosOp(m_numberClass);

cosOp.setChildren(new OpNode[]{(OpNode)(m_children[0].clone())});

// f’(x)

OpNode derivedChild = m_children[0].getDerivative(variable);

// cos(f(x)) * f’(x)

MultOp derivedCosOp = new MultOp(m_numberClass);

derivedCosOp.setChildren(new OpNode[]{cosOp, derivedChild});

return deriveNode(derivedCosOp);

}

The generic part implemented in the abstract class OpNode is as follows

/**

* Implements <i>(m*a(x)^n)’ = (n*a(x) ^ (n-1) * m*a’(x)</i>.

* @param derivedNode a’(x)

*/

protected OpNode deriveNode(OpNode derivedNode){

if(m_exponent == 1){

derivedNode.setFactor(m_factor.copy());

return derivedNode;

}

MultOp derivedPower = new MultOp(m_numberClass);

OpNode newPower = (OpNode)clone();

newPower.m_factor.mult(NumberFactory.newInstance(m_numberClass, m_exponent));

newPower.m_exponent--;

derivedPower.setChildren(new OpNode[]{newPower, derivedNode});

return derivedPower;

}

B.3. ALGEBRAIC OBJECT MODEL AND FORMAL LANGUAGES 91

Definition Range of Operations

Another useful application of the MathletFactory algebraic object model is the ability to com-
pute the definition range of an operation. We have used this functionality to add an extra
warning when displaying mathematical entities that use operations which are only partially
defined (see 4.2.3).
When determining definition gaps, it poses a serious implementation problem to numerically
calculate the complete definition range and display it graphically for any function (as the ex-
ample f(x) = 1

sin(1
x

)
in the figure below shows).

The MathletFactory addresses this problem by displaying the definition range of a function
as a symbolic expression. Though this expression often has an implicit form (showing only a
relation of the used variables that must be satisfied) the user is warned of existing definition
gaps, and he is principally able to find out where they are.4

Fig. 62: The function plotter with definition range detector

From the technical perspective the computation of the definition range for an arbitrary oper-
ation is also solved on a per-node basis. By calling the method getDefinedRel() the OpNode

object creates a RelNode object which represents a relation that a member of the definition
range for the operation must satisfy. The RelNodes of the children of an OpNode are connected
by an AndRel conjunction, forming a relation tree that is at last anchored in a Relation object
by the enclosing Operation.getDefinedRelation() method. For the OpNodes there is – like
the computation of the derivative – a generic and a node-specific implementation. The generic
part, implemented in OpNode is as follows:

4Also, by using the Relation.toContentMathML() export method, an application programmer is able to
link it with a computer algebra system or to implement a numerical solution of his own.

92 APPENDIX B. IMPLEMENTATION DETAILS

/**

* Returns the relation for which the operation represented by this node is defined.

* @see #getDefinedRel(OpNode operand)

*/

public RelNode getDefinedRel(){

// by default the operation is defined totally for any variable

RelNode definedRel = new AllRel(m_numberClass);

// retrieve the definition range of this node with the child as argument

// (non unary operations overload this method)

if(m_children != null)

definedRel = getNodeDefinedRel(m_children[0]);

// for nodes with a negative exponent the base may not become zero

if(getExponent() < 0){

OpNode nodeWithoutExponent = (OpNode)clone();

nodeWithoutExponent.setExponent(1);

definedRel = new AndRel(definedRel, new NotRel(nodeWithoutExponent.getZeroRel()));

}

// intersect the defintion range of this node with the definion range of the children

if(m_children == null)

return definedRel;

else

return new AndRel(definedRel, getChildrenDefinedRel());

}

/**

* Returns the relation subtree for which this operation with

* <code>operand</code> as child is defined. It does not consider the

* exponent of this node, which is be checked in {@link #getDefinedRel}.

*/

public abstract RelNode getNodeDefinedRel(OpNode operand);

The specific part is implemented by the subclasses of OpNode in getNodeDefinedRel(). Here
is an example for TanOp returning a relation that says that the cosine of its operand may not
be zero:

public RelNode getNodeDefinedRel(OpNode operand){

return new NotRel(new CosOp(m_numberClass).getZeroRel((OpNode)operand.clone()));

}

B.4 Arithmetic and Geometric Symbolic View Architec-

ture

One pattern that has been consequently used in the development of the symbolic view archi-
tecture is, that every mathematical inclusion is transformed to a ‘containedness’ relation on
the view component level. This allows an easy development and support for a multitude of
symbolic representations. We illustrate this with the example of constructing the parametric
view for an affine plane in R3:

MMAffineSubspacePanel

MMNumberMatrixPanelMMNumberPanel

Fig. 63: The symbolic view of a plane and its structure

B.5. ALGEBRAIC SYMBOLIC VIEW ARCHITECTURE 93

On Java level, the view is simply a subclass of JPanel, namely an MMAffineSubspacePanel.
This class acts not only as a view for a plane in R3, but also for a line or point in R3 or
in R2, thus making it possible to use it as a view of a dynamically generated affine subspace
(like the intersection or join of other affine spaces). But let us first consider, that it displays
a regular (non-degenerated) plane. In this case, we need to display three vector displays: one
displaying the origin vector and two for the direction vectors. This is simply done by adding
three MMNumberMatrixPanels, which is the standard display component for a vector of any
dimension, but also of course for any number matrix of arbitrary form. These panels in turn
contain all entries as MMNumberPanel, the symbolic representation for numbers of any type.5

A simple update mechanism using the Java property support ensures, that changes performed
by the user are recorded by the master MMObject. On the other hand, if the mathematical
state of the MMObject changes (e.g. by updating or user interactions on the graphical level),
the changes are immediately displayed, allowing the user to continuously watch the symbolic
perspective of his actions.
This applies not only to changing the vectors of the affine subspace, but also to changing
its dimension: If the plane was the result of an intersection of two other planes (which were
geometrically identical) and one of these planes changed, making the intersection a line or an
empty space, the symbolic view adapts to these cases without complaints.

B.5 Algebraic Symbolic View Architecture

In the following, we will also sketch the view architecture used by the MathletFactory’s alge-
braic object model, for details the commented source code and API documentation should be
consulted.
The architecture for symbolically displaying algebraic entities is closely related to the structure
of the algebraic object model: A tree of operation nodes is mapped on a tree of view nodes
that recursively draw the expression on a panel, whereas a tree of relation nodes is mapped on
a tree of panels with each parent containing its children.

B.5.1 View Architecture of Operations

The implementation of the symbolic view for an operation is the OperationPanel. This is
a GUI component that draws the expression string on its screen area when asked to repaint.
This is done by view nodes (an analogon to the TEX noads6), each of which corresponds to
an operation node of the Operation. Apart from the reference to its operation node, a view
node keeps track of its metrics which is determined by the metrics of its children (if any) and
the font of the panel. For example, the view node for a square root must know the width and
height of its child expression in order to fully enclose the radicand (see figure).
So when a repaint event is sent to the operation panel, the panel asks its root view node to draw
itself on the panel. If the root view node has children, it asks them to calculate their metrics
(which in turn may depend on their children´s metrics, etc.) and then draws the expression it

5Note, that the inclusion does not end there, for the number panel itself contains an operation panel (see
below) to allow the display of constants like 3

2pi, etc.
6[Kn82]

94 APPENDIX B. IMPLEMENTATION DETAILS

represents accordingly.

a x

pow

sqrt

ax
display

Operation

OperationPanel

Fig. 64: Displaying operations, the dashed lines mark the OpViewNodes that draw on the OperationPanel.

B.5.2 View Architecture of Relations

The inclusion of operations in relations can also be transferred to the view architecture: The
view component for a simple relation, a SimpleRelationPanel is merely a panel containing two
OperationPanels with a relation sign label between them. Complex relations are displayed by
instances of RelationContainer: Panels that contain either SimpleRelationPanels or other
RelationContainers. The root node itself is contained in a component called RelationPanel.

and

x>y x=0

or

x=y

x=y

x=x>y >

>

0

display

Relation RelationPanel

Fig. 65: Relation trees are rendered in a container hierarchy rooted by an RelationPanel.

B.5.3 Metrics of View Components

The MathletFactory uses the standard metrics model of typography7: The metrics of each glyph
is characterised by its width, ascent and descent; for the rendering of fractions, sub- and super-
scripts the baseline must also be recorded. Operation view nodes keep their metrics parameters
in an object called ViewNodeMetrics. On the panel level (anything that uses OperationPanels
or container trees of these) this is done by implementing the interface Alignable, which de-
clares methods for retrieving the metrics parameters. By using this interface it is ensured that
two operations can be horizontally aligned (i.e. having the same baseline), even if they have
different heights or one of them has a border (e.g. for marking it as editable).

Typographybaseline
{ascent

{descent

Fig. 66: The baseline, ascent and descent of a font.

7[He93]

B.6. GRAPHICAL VIEW AND CONTROLLER ARCHITECTURE 95

B.6 Graphical View and Controller Architecture

At the time of writing, implementations for the Java2D system library and the Java3D API
exist, but previous prototype implementations have also been tested with the third party graph-
ics library JavaView8. The architecture works as follows: For each different display type there
exists a specific canvas (a subclass of MMCanvas) that can be added to an applet like any other
GUI component. If an application programmer wants to display a certain MMObject, he simply
calls addObject(MMObjectIF object) in the canvas with the MMObject as argument and the
systems automatically assigns the appropriate (or a previously chosen) visual representation.

Mouse Pointer

(X|Y) Screen Coordinates

world2Math

Math

World

Screen

(X|Y|Z)Math Coordinates

MMDefaultR3Vector
X
Y
Z

Visual Representation

Mathematical Object
(MMObject)

(Drawable)

(X|Y|Z)World Coordinates

screen2World

Fig. 67: Dragging a 3D vector: How the display and interaction system works

For example, when a user drags the end point of a 3D vector with the mouse, the mouse
coordinates (measured in pixels) are transformed by a matrix screen2World into world coordi-
nates. These describe a virtual space, where the visual representations of mathematical objects
‘live’. The mathematical objects themselves reside in a separate coordinate space called the
math space. This allows them to be independent of the worlds geometry and dimension, thus
allowing, for example, projections from a spherical geometry into the euclidian world coordi-
nate space. For euclidian math spaces the transformation is simply done by another matrix
called world2Math. So when the user drags the vector, the mouse coordinates are transformed
into world and math coordinates. The object’s coordinates are changed and the graphical view
updates accordingly, allowing further interaction. For 2D (or 1D) vectors the mechanism is the
same.

We have given only a short overview of a complex system; yet, an application developer needs
not know about all this, because there is a large set of prefabricated handlers that implement
almost all desired functionality for manipulating MMObjects. So if an application developer
wants to construct a mathlet, where the user may drag a vector (or any other MMObject), he
only has to add the appropriate handler to it.

8[JV04]

96 APPENDIX B. IMPLEMENTATION DETAILS

Appendix C

Design of the Pyramit Platform

This section contains a brief overview of the technical and practical aspects of the Pyramit
platform. It also illuminates some key issues for creating a server platform of mathematical
eLearning sites. Most of these requirements (and many more) are also met by the Mumie
JAPS1.

C.1 Requirements

In order to realise the intended functionality of Pyramit (see 4.2), the following requirements
were specified for the design and implementation of the platform:

• To reach a wide audience, different presentation formats have to be developed. On the
one hand, the platform should be multilingual to allow an international target group for
different scenarios, distant self-learners as well as local students. On the other hand we
need a multi-platform solution to support the most common browser types and operating
systems. For this it is necessary to support both a MathML/XHTML version (which
is the W3C-compliant standard for displaying mathematics on the web, but is currently
rendered only by Mozilla/Netscape or by MS Internet Explorer using a plugin) and a
plain HTML version (for any other browser). The use of Java as implementation language
already ensures that the applets can be viewed on almost any type of platform.

• The issue of different formats of mathematics shown to the student also raises the question
which representation to choose for the author: Both MathML and HTML symbols are
almost impossible to edit for large formulas. A comfortable solution would be to use the
widely accepted TEX notation.

• In order to support the didactic model specified in Chapter 2 we need a framework that
helps the author to distinguish between different levels of representation on the one hand
and between cognitive levels on the other by mapping these concepts onto the content
structure.

• To achieve a maximum of reusability, a modular concept for the content should be chosen.
This would make it also attractive to link to single modules from other sites.

1See [Je04].

97

98 APPENDIX C. DESIGN OF THE PYRAMIT PLATFORM

• To serve practical evaluation in an evolutionary software design, the platform needs to
offer quick update functionality. For example, an author should not have to check in
multiple objects into a database, when something in the content has changed, but issue
maximally one or two commands for the changes to take place.

C.2 Design and Implementation

In the following, we take a look at the implementation aspects of the requirements listed above.
Note that the didactic issues are covered in section 4.2.

C.2.1 Data Model and Presentation Formats

The need to have a single content to be presented in multiple formats is a common requirement
in web publishing. The latest solution to address it have been XML web publishing frame-
works2, which work by transforming XML data sources with XSL transformation style sheets.
We use the most prominent of these frameworks, Apache Cocoon, as base for the platform,
allowing authors to edit the content in a single XML file and students to view it either as
MathML/XHTML or as HTML.
Technically, the transformation to different views has been done by using the free software
tools TTH3 and itex2MML4 for TEX to HTML and TEX to MathML translation. The process
of translation is executed ‘on the fly’ upon user request within a Cocoon processing pipeline
containing wrapper components for each of the tools.

2[ML01]
3[TTH04]
4[I2M04]

C.2. DESIGN AND IMPLEMENTATION 99

Fig. 68: The author’s view to a lesson: an editable XML file

100 APPENDIX C. DESIGN OF THE PYRAMIT PLATFORM

HTML

XHTML/MathML

XML

Author’s View User’s View

Fig. 69: The author’s and user’s view to the content data

C.3 Update Cycle of Documents

The mechanism of transformation upon user request has a decisive advantage, when it comes to
frequent updates of documents. In the traditional model of TEX to web translation the author
had to start the (sometimes painstakingly slow) transformation process by hand each time he
changed the document. The Pyramit system does this automatically when a user requests the
document (and it discovers a change in the original data, otherwise it caches the output). This
mechanism is especially useful when performing a lot of small updates (which is the way most
authors are used to work since the emergence of WYSIWYG-tools).

C.4. INTERNATIONALISATION 101

C.4 Internationalisation

In order to offer an international and a local version, the MathletFactory and the TestletFactory
were internationalised, now allowing their localisation in any language without recompilation.
Also the Pyramit platform is multilingual, using the same logic and presentation style for
producing HTML pages, but storing different XML source files for each language.

102 APPENDIX C. DESIGN OF THE PYRAMIT PLATFORM

Appendix D

List of Mathlets and their Parameters

The following is a list of the currently implemented parameters and the mathlets available of
the time of this writing (October 2004). This list is automatically generated and the most
current version can be found under http://www.mathletfactory.de/doc/AppletListDoc.pdf.

D.1 Generic Parameters for MathletFactory Applets

Parameters recognised by BaseApplet

The following parameters are recognised by all MathletFactory applets:

Parameter allowed values Description
lang language codes: "en","de", etc. The language to be used (for interna-

tionalised applets).
separateWindow "true", "false" If set to "true", display applet in a sep-

arate Java frame otherwise the applet
will be embedded in the page.

buttonText arbitrary string (including html tags) The text to be displayed on the button.
appletWidth, appletHeight an integer number The initial width and height (in pix-

els) of the applet when displayed in a
separate window.

title arbitrary string (including html tags) The title of the window, displayed in a
centred label on top of all other win-
dow content.

helpUrl,aboutUrl a reachable URL URLs for the file that is displayed,
when the help- or about-button is
pressed.

MumieTheme.defaultTheme At the time only
"/resource/MumieClassicTheme.theme"

The default theme (Color of GUI-
Elements) to be used.

MumieTheme.appletSizeTheme "tiny-applet", "small-applet",
"big-applet"

The theme (Colour of GUI-Elements)
to be used for a specified size (tiny,
small, big).

Parameters recognised by SingleG2DCanvasApplet

The following parameters are recognised by all 2D MathletFactory applets with a single canvas:

Parameter allowed values Description
worldWidth, worldHeight a decimal number The height and width of the ”mathe-

matical world” to be initially displayed
in the canvas (default is 1x1).

worldCenterX, worldCenterY a decimal number The x and y coordinate in the ”mathe-
matical world” that are initially at the
center of the canvas (default is (0,0)).

103

104 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

Parameters recognised by SideBySideG2DCanvasApplet

The following parameters are recognised by all 2D MathletFactory applets with two horizon-
tally aligned canvases:

Parameter allowed values Description
worldWidthLeft,

worldHeightLeft,

worldWidthRight,

worldHeightRight

a decimal number The height and width of the ”mathe-
matical world” to be initially displayed
in the left or right canvas (default is
1x1).

worldCenterXLeft,

worldCenterYLeft,

worldCenterXRight,

worldCenterYRight

a decimal number The x and y coordinate in the ”mathe-
matical world” that are initially at the
center of the canvas (default is (0,0)).

Parameters recognised by UpperLowerG2DApplet

The following parameters are recognised by all 2D MathletFactory applets with two vertically
aligned canvases:

Parameter allowed values Description
worldWidthUpper,

worldHeightUpper,

worldWidthLower,

worldHeightLower

a decimal number The height and width of the ”mathe-
matical world” to be initially displayed
in the upper or lower canvas (default is
1x1).

worldCenterXUpper,

worldCenterYUpper,

worldCenterXLower,

worldCenterYLower

a decimal number The x and y coordinate in the ”mathe-
matical world” that are initially at the
center of the canvas (default is (0,0)).

Parameters recognised by SingleJ3DCanvasApplet

The following parameters are recognised by all 3D MathletFactory applets with a single canvas:

Parameter allowed values Description
worldPosition a triple in the form (x,y,z), where x,y

and z are decimal numbers
The position in 3D space (default is
”(0,-2.0,0)”).

worldDirection a triple in the form (x,y,z), where x,y
and z are decimal numbers

The direction in 3D space in which the
viewer faces (default is ”(0,1.0,0)”).

worldUpwards a triple in the form (x,y,z), where x,y
and z are decimal numbers

The direction in 3D space that is
”upwards” for the viewer (default is
”(0,0,1.0)”).

Parameters recognised by SideBySideJ3DApplet

The following parameters are recognised by all 3D MathletFactory applets with two horizon-
tally aligned canvases:

Parameter allowed values Description
worldPositionLeft,

worldPositionRight

a triple in the form (x,y,z), where x,y
and z are decimal numbers

the position in 3D space (default is
”(0,-2.0,0)”) for each canvas.

worldDirectionLeft,

worldDirectionRight

a triple in the form (x,y,z), where x,y
and z are decimal numbers

the direction in 3D space in which the
viewer faces (default is ”(0,1.0,0)”) for
each canvas.

worldUpwardsLeft,

worldUpwardsRight

a triple in the form (x,y,z), where x,y
and z are decimal numbers

the direction in 3D space that is
”upwards” for the viewer (default is
”(0,0,1.0)”) for each canvas.

D.2. LIST OF MATHLETS 105

D.2 List of Mathlets

AbsoluteR2 Author: Mrose

This applet visualizes a vector in R2 and its norm. The user may alter
the vector by changing its graphical or symbolic representation.
Parameters:

vCoords: Initial coordinates of vector, as ’(x,y)’ with double values x and y, default is ’(3.0,4.0)’

AbsoluteValue Author: Mrose

This applet visualizes a set in R given by an inequality of the form
|x− x 0| < a. The user may alter a or x 0 graphically.

AbsoluteValueFunctionPlotter Author: Mrose

This applet visualizes a user defined function and its absolute value. The
user may alter the function expression to be displayed.
Parameters:

function: An arbitrary expression of x

Bezier Author: Vossbeck, Paehler

This applet draws a bezier curve of degree 4 and its control polygon. The
user may drag the control points with the mouse and watch the curve
change accordingly.
Parameters:

coords[1-5]: Coordinates of the i-th control point as ’(x,y)’ with double values x and y

ChangeOfSign Author: Mrose

This applet allows to determine the changes of sign of an expression and
visualizes them. The user may inspect the sign for arbitrary values and
alter the expression.
Parameters:

function: An arbitrary expression of x

ComparisonOfFunctions Author: Mrose

This applet allows to compare two function graphs and the gradient of the
functions in a point. The user may enter arbitrary function expressions
for both functions and may also move the point in which the gradient is
computed.
Parameters:

function1: An arbitrary expression of x

function2: An arbitrary expression of x

106 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

Complex Author: Mrose

This applet visualizes the complex numbers as vectors in the complex
plane. The user may alter the number by dragging the vector with the
mouse or by editing the value in a textfield.
Parameters:

zValue: a complex number of form ’a+ib’, where a and b are double values

ComplexAbsAndConj Author: Mrose

This applet visualizes the conjugation and the norm of a complex number
in the complex plane. The user may alter the number by dragging the
vector with the mouse or by editing the value in a textfield.
Parameters:

zValue: a complex number of form ’a+ib’, where a and b are double values

ComplexComputation Author: Mrose

This applet visualizes basic arithmetic operations of complex numbers
in the complex plane. The user may alter the numbers by dragging the
vectors with the mouse or by editing the values in a textfield.
Parameters:

zValue1: a complex number of form ’a+ib’, where a and b are double values

zValue2: a complex number of form ’a+ib’, where a and b are double values

operation: ’+’, ’-’, ’*’ or ’/’

ComplexOscillation Author: Mrose

This applet visualizes a complex harmonic oscillation. The user may
alter each of the parameters by using a slider.
Parameters:

amplitudeParameterName: label for the amplitude, default is ’a’

angularFrequencyParameterName: label for the angular frequency, default is ’omega’

zeroPhaseParameterName: label for the zero phase, default is ’phi’

see HarmonicOscillation for other parameters

ComplexPower Author: Paehler

This applet visualizes the n-th power of a complex number in the complex
plane. The user may alter the number by dragging the vector with the
mouse or by editing the value in a textfield. Additionally he may increase
or decrease the power by using a slider.
Parameters:

zValue: a complex number of form ’a+ib’, where a and b are double values

nValue: the power to be displayed, an integer number

nLeftBound: the left bound of the n slider

nRightBound: the right bound of the n slider

D.2. LIST OF MATHLETS 107

ComplexRoot Author: Mrose

This applet visualizes the n-th roots of a complex number in the complex
plane. The user may alter the number by dragging the vector with the
mouse or by editing the value in a textfield. Additionally he may increase
or decrease the power by using a slider.
Parameters:

zValue: a complex number of form ’a+ib’, where a and b are double values

nValue: the roots to be displayed, an integer number

nLeftBound: the left bound of the n slider

nRightBound: the right bound of the n slider

ComplexSetPlotter Author: Paehler

This Applet visualises a subset of the gaussian plane defined by a relation.
The user may edit the set by entering an arbitrary relation.
Parameters:

relation: The relation of z defining the set

CompositionAsDeformation Author: Paehler

This applet demonstrates the composition of functions by using the ’func-
tion as deformation’ metapher. The user may move the set ’deformed’ by
the functions and may additionally enter arbitrary expressions for each
of the function.
Parameters:

gFunction: An arbitrary expression of x

hFunction: An arbitrary expression of x

ComputationOfPrimitive Author: Mrose

This applet visualizes the primitive for a given function. The user may
edit the function by entering an arbitrary expression, additionally he may
alter the integration constant by using a slider.
Parameters:

function: An arbitrary expression of x

ConvergenceRange Author: Paehler

This applet visualises the convergence range of a complex function series
by calculating the quotient c k/c k + 1 and dawing a dot if it is less than
1. The user may enter arbitrary expressions for the series, additionally
he may change the index for which the quotient is checked.
Parameters:

series: An arbitrary expression of z and k

calculateTo: The value for which the quotient is computed, default is 10

108 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

CoordinatesOfFunction Author: Mrose

This applet allows to determine the coordinates of a function in a point.
The user may move the point by dragging it with the mouse or enter an
arbitrary function expression.
Parameters:

function: An arbitrary expression of x

CreatePolynomial Author: Paehler

This applet allows the construction of a polynomial of degree lesser than
10 by letting the user create points in the plane and creating a polynomial
that runs through these points.

CreateSpline Author: Paehler

This applet allows the construction of a cubic spline running through up
to 10 points created by the user.

CurveInR2 Author: Paehler

This applet draws a parameterized curve in R2. The user may edit each
of the coordinate expressions and the boundaries of the domain interval.
Parameters:

xfunction: An arbitrary expression of t

yfunction: An arbitrary expression of t

ParamLeftBound: Left bound of the parameter t

ParamRightBound: Right bound of the parameter t

CurveInR3 Author: Paehler

This applet draws a parameterized curve in R2. The user may edit each
of the coordinate expressions and the boundaries of the domain interval.
Parameters:

xfunction: An arbitrary expression of t

yfunction: An arbitrary expression of t

zfunction: An arbitrary expression of t

ParamLeftBound: Left bound of the parameter t

ParamRightBound: Right bound of the parameter t

D.2. LIST OF MATHLETS 109

DampedOscillation Author: Mrose

This applet visualizes a damped harmonic oscillation. The user may alter
each of the parameters by using a slider.
Parameters:

dampingCoefficientParameterName: label for the damping coefficient, default is ’delta’

dampLeftBound: left bound of damping coefficient slider, default is 0

dampRightBound: left bound of damping coefficient slider, default is 5

dampInitValue: initial value of damping coefficient slider, default is 0

see HarmonicOscillation for other parameters

DeltaOfEpsilon Author: Mrose

This applet visualizes the epsilon-delta-criterion for continuous functions,
where delta is a function of epsilon. The user may edit the function
expression, the expression for delta(epsilon) and the value of epsilon to
be displayed.
Parameters:

function: An arbitrary expression of x

EllipseSlider Author: Liu

This applet shows an ellipse of which the user may alter the parameters
by using sliders.

EpsilonDelta Author: Mrose

This applet visualizes the epsilon-delta-criterion for continuous functions.
The user may alter the expression of the function by editing the text field
or change the values of delta and epsilon by using sliders.
Parameters:

function: An arbitrary expression of x

EpsilonDeltaPiecewise Author: Mrose

This applet visualizes the epsilon-delta-criterion for piecewise continuous
functions. The user may alter the expressions of the function by editing
the text field or change the values of delta and epsilon by using sliders.
Parameters:

function1: The first function expression of the piecewise function

interval1: The interval for the first function expression

function2: The second function expression of the piecewise function

interval2: The interval for the first function expression, and so on...

110 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

ExamplesOfPowerSeries Author: Mrose

This applet visualizes examples of power series. The user may switch
between the examples and may also change the n of the power series by
using a slider.

ExponentialAndPower Author: Mrose

This applet allows to compare the growth of exponential function and
power functions. The user may alter the exponent of the power by using
a slider.

ExponentialFunction Author: Mrose

This applet allows to compare the exponential series with the exponential
sequence. The user may alter the n for both the exponential sequence
and the exponential series by using a slider.

FixedPointPlotter Author: Paehler

This applet shows the construction of a recursive sequence by visualising
the expression as a function. The user may alter the sequence expression
and increase or decrease the number of iterations.
Parameters:

function: An arbitrary expression of x

FourierApproximation Author: Mrose

This applet approximates a given periodic function by the n-th partial
sum of its Fourier series. The user may alter the function expression, the
value for n and the period of the function.
Parameters:

function: An arbitrary expression of x

FunctionAndDerivativeOverR Author: Paehler

This applet computes for a given function the derivative and draws it.
The user may alter the function expression by editing its text field.
Parameters:

function: An arbitrary expression of x

D.2. LIST OF MATHLETS 111

FunctionAndDerivativeOverR2 Author: Paehler

This applet visualizes a function over R2 and its partial derivative. The
user may alter the function expression by editing its text field.
Parameters:

function: An arbitrary expression of x and y

FunctionAndInversePlotter Author: Paehler

This applet shows for a given function and domain the inverse function.
The user may alter the function expression by editing its text field, ad-
ditionally he may alter the domain interval by dragging its right border
with the mouse.
Parameters:

function: An arbitrary expression of x

FunctionAreaMeanApproximation Author: Mrose

This applet approximates the area under the graph of a function by step
functions. The user may either edit the function expression, alter its
domain or change the number of steps used in the approximation.
Parameters:

function: An arbitrary expression of x

FunctionAsDeformation Author: Paehler

This applet demonstrates the mapping aspect of a function by using
the ’function as deformation’ metapher. The user may alter the func-
tion expression. and move the interval to be ’deformed’ by dragging its
boundaries with the mouse.
Parameters:

function: An arbitrary expression of x

FunctionCompositionAnimation Author: Paehler

This applet constructs the composition of functions in an animation. The
user may edit each of the functions to be composed.
Parameters:

gFunction: An arbitrary expression of x

hFunction: An arbitrary expression of x

FunctionCompositionPlotter Author: Paehler

This applet constructs the composition of functions. The user may edit
each of the functions to be composed.
Parameters:

gFunction: An arbitrary expression of x

hFunction: An arbitrary expression of x

112 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

FunctionOperationPlotter Author: Paehler

This applet constructs operations (sum, product, quotient, composition)
of functions. The user may edit each of the operand functions.
Parameters:

gFunction: An arbitrary expression of x

hFunction: An arbitrary expression of x

FunctionPlotter Author: Paehler

This applet plots various functions. The user may edit the function by
entering an arbitrary expression of x.
Parameters:

function: An arbitrary expression of x

FunctionPlotterInClosedInterval Author: Paehler

This applet plots functions defined within a closed interval. The user may
edit the function by entering an arbitrary expression of x, additionally
he may change the domain interval by dragging its boundaries with the
mouse.
Parameters:

function: An arbitrary expression of x

FunctionSequencePlotter Author: Paehler

This applet visualises function sequences. The user may either edit the
function sequence expression or alter the n for which the function se-
quence is displayed.
Parameters:

sequence: An arbitrary expression of n and x

leftBound: Left bound of the slider

rightBound: Right bound of the slider

initialValue: Initial value of the slider

FunctionSeriesPlotter Author: Paehler

This applet visualises real valued function series. The user may either
edit the function series expression or alter the n up to which the function
series is displayed.
Parameters:

series: An arbitrary expression of x and k

leftBound: Left bound of the slider

rightBound: Right bound of the slider

initialValue: Initial value of the slider

D.2. LIST OF MATHLETS 113

FunctionSlider Author: Paehler

This applet visualises a parameterised function the parameter of which
can be altered by using a slider for each parameter. The user may edit the
function by entering an abritrary expression of x and the parameter(s).
Up to three parameters can be declared by the author.
Parameters:

function: An arbitrary expression of x

functionEditable: ’true’ or ’false’

paramName[2,3]: Label of the first [second, third] parameter, default is ’a’

paramAllowOnlyIntegers[2,3]: ’true’ or ’false’

paramInitialValue[2,3]: Initial value of the first [second, third] parameter slider, default is ’1’

paramLeftBound[2,3]: Left bound of the first [second, third] parameter slider, default is ’-2’

paramRightBound[2,3]: Right bound of the first [second, third] parameter slider, default is ’2’

HarmonicOscillation Author: Mrose

This applet visualizes a harmonic oscillation whose parameters may be
altered by sliders. The user may alter each of the parameters by using a
slider.
Parameters:

amplitudeParameterName: label for the amplitude, default is ’a’

angularFrequencyParameterName: label for the angular frequency, default is ’omega’

zeroPhaseParameterName: label for the zero phase, default is ’phi’

ampLeftBound: left bound of amplitude slider, default is 0

ampRightBound: right bound of amplitude slider, default is 3

ampInitValue: initial value of amplitude slider, default is 1

afLeftBound: left bound of angular frequency slider, default is 0

afRightBound: left bound of angular frequency slider, default is 3

afInitValue: initial value of angular frequency slider, default is 1

phaseLeftBound: left bound of zero phase slider, default is -3.14

phaseRightBound: left bound of zero phase slider, default is 3.14

phaseInitValue: initial value of zero phase slider, default is 0

HyperbolaSlider Author: Liu

This applet shows an hyperbola of which the user may alter the param-
eters by using sliders.

Integrator Author: Mrose

This applet computes and visualizes the integral of a function over an
interval. The user may alter the expression of the integrand and edit the
boundaries of integration.
Parameters:

function: An arbitrary expression of x

114 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

IntervalBisection Author: Paehler

An applet for visualising the Interval Bisection method of approximating
a zero of a function. The user may enter an arbitrary function expression
and increase the number of iterations.
Parameters:

function: An arbitrary expression of x

LeftRightApproximation Author: Mrose

This applet approximates the surface under the graph of a func-
tion by step functions. The user may switch between left- or right-
approximations, edit the function expression and alter the number of
steps using a slider.
Parameters:

function: An arbitrary expression of x

leftBound: Left bound of the interval, default is -6.28

rightBound: Right bound of the interval, default is 6.28

nInitialValue: Initial value of n, default is ’10’

nLeftBound: Left bound of n slider, default is ’1’

nRightBound: Right bound of n slider, default is ’50’

Logarithm Author: Mrose

This applet allows to compare the logarithm of arbitrary base with the
natural logarithm. The user may alter the base of the logarithm by using
a slider.

MeanValueTheorem Author: Mrose

This applet visualizes the mean value theorem for continuous functions:
For each secant, a tangent of equal slope can be found between the two
secant points. The user may edit the function expression or alter the
secant and tangent points.
Parameters:

function: An arbitrary expression of x

MultipleFunctionsPlotter Author: Paehler

This applet shows multiple functions. A user may edit the function
expressions and add and remove further functions.
Parameters:

function1: An arbitrary expression of x

function2: An arbitrary expression of x

D.2. LIST OF MATHLETS 115

Newton Author: Liu, Paehler

An applet for visualising the Newton method of approximating a zero of
a function. The user may edit the function expression and increase the
number of iterations.
Parameters:

function: An arbitrary expression of x

OscillationSuperposition Author: Mrose

This applet visualizes the superposition of two harmonic oscillations. The
user may alter each of the parameters by using a slider.
Parameters:

amplitudeParameter1Name: label for the amplitude of the 1st oscillation, default is ’a’

angularFrequency1ParameterName: label for the ang. freq. of the first oscillation, default is ’omega’

zeroPhaseParameter1Name: label for the zero phase of the 1st oscillation, default is ’phi’

amplitudeParameter2Name: label for the amplitude of the 2nd oscillation, default is ’n’

angularFrequency2ParameterName: label for the ang. freq. of the 2nd oscillation, default is ’gamma’

zeroPhaseParameter2Name: label for the zero phase of the 2nd oscillation, default is ’alpha’

see HarmonicOscillation for other parameters

ParabolaAndEllipseSlider Author: Liu

This applet visualises the approximation of a parabola by an ellipse. The
user may alter the ellipse parameter using a slider.

ParabolaAndHyperbolaSlider Author: Liu

This applet visualises the approximation of a parabola by a hyperbola.
The user may alter the hyperbola parameter using a slider.

ParameterisationInR2 Author: manya

This applet shows the construction of a parameterized curve in R2. The
user may edit each of the coordinate expressions and choose between the
display of some kinematic observables.

116 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

PiecewiseFunctionPlotter Author: Paehler

This applet plots various piecewise defined functions. The user may alter
any of the function’s expressions or domain intervals.
Parameters:

function1: The first function expression of the piecewise function

interval1: The interval for the first function expression

function2: The second function expression of the piecewise function

interval2: The interval for the first function expression, and so on...

PolarCoordinates Author: Mrose

This applet visualizes complex numbers in polar coordinates. The user
may alter the number by dragging the vector with the mouse or by editing
the value in a textfield.

PowerSeries Author: Mrose

This applet visualizes the n-th partial sum of a power series. The user
may edit the expression of the power series and alter the value of n for
which the series is displayed.
Parameters:

coefficient: An arbitrary expression of k

leftBound: Left bound of the slider, default is 0

rightBound: Right bound of the slider, default is 10

initialValue: Initial value of the slider, default is 0

ProofOfFundamentalTheoremOfAlgebra Author: manya

This applet shows a proof of fundamental theorem of algebra. The user
may edit the polynomial to be used and alter the radius of the circle to
be ’deformed’ by the polynomial by using a slider.

Quadric2DPlotter Author: Liu

This applet shows a 2D quadric of which the user may alter the param-
eters.

D.2. LIST OF MATHLETS 117

Quadric2DSlider Author: Liu

This applet shows a 2D quadric of which the user may alter the param-
eters by using sliders.

Quadric3DPlotter Author: Mrose

Plots a quadric in three dimensional space which can be determined by
the user by entering the quadric equation. The applet determines the
type of the quadric and plots the corresponding surface in R3.

Quadric3DSlider Author: Mrose

This applet visualizes a quadric in R3. The user may alter its parameters
by using sliders.

QuotientCriterion Author: Paehler

This applet visualises the quotient criterion for a real valued series. The
user may edit the series expression and specify the k up to which the
quotient is displayed.
Parameters:

series: An arbitrary expression of k

drawTo: The value up to which the criterion is drawn

QuotientCriterionParameterized Author: Paehler

This applet visualises the quotient criterion for a parameterised real val-
ued series. The user may edit the series expression and specify the k up
to which the quotient is displayed, additionally he may alter the param-
eter by using a slider.
Parameters:

series: An arbitrary expression of k

drawTo: The value up to which the criterion is drawn

paramLeftBound: The left bound of the parameter on the slider

paramRightBound: The left bound of the parameter on the slider

paramInitialValue: The initial value of the parameter on the slider

118 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

RealComputation Author: Mrose

This applet visualizes addition and subtraction in R2. The user may
alter the vectors by dragging them with the mouse or by editing their
coordinates.

RecursiveSequencePlotter Author: Paehler

This applet visualises recursive sequences. The user may alter the number
of sequence memebers to be displayed and the starting member a 0 by
using sliders.
Parameters:

sequence: An arbitrary expression of n

leftBound: Left bound of the slider

rightBound: Right bound of the slider

initialValue: Initial value of the slider

a0leftBound: Left bound of the a0 slider

a0rightBound: Right bound of the a0 slider

a0initialValue: Initial value of a0

RootsOfUnity Author: Mrose

This applet visualizes the n complex solutions of the n-th root of 1. The
user may increase or decrease the n.

SequencePlotter Author: Paehler

This applet visualises real and complex valued sequences. The user may
edit the sequence expression and alter the number of sequence members
to be displayed by using a slider.
Parameters:

numberClass: ’complex’ for complex valued sequences or ’double’ for real valued sequences

sequence: An arbitrary expression of n

leftBound: Left bound of the slider

rightBound: Right bound of the slider

initialValue: Initial value of the slider

D.2. LIST OF MATHLETS 119

SeriesPlotter Author: Paehler

This applet visualises a real valued series. The user may edit the series
expression and alter the number of series members to be displayed by
using a slider.
Parameters:

series: An arbitrary expression of k

leftBound: Left bound of the slider

rightBound: Right bound of the slider

initialValue: Initial value of the slider

SetPlotter Author: Paehler

This applet visualises a subset of the R2 that is defined by a relation.
The user may edit the set by entering an arbitrary relation.
Parameters:

relation: The relation of x and y defining the set

SimpleParameterisationInR2 Author: Paehler

This applet shows the construction of a parameterized curve in R2. The
user may edit each of the coordinate expressions and the boundaries of
the domain interval.
Parameters:

xFunction: An arbitrary expression of t

yFunction: An arbitrary expression of t

StepFunctionPlotter Author: Paehler

This applet draws a riemann sum for a given function. The user may
either edit the function expression, alter its domain or change the number
of steps used in the approximation.
Parameters:

function: An arbitrary expression of x

leftBound: Left bound of the interval, default is -6.28

rightBound: Right bound of the interval, default is 6.28

nInitialValue: Initial value of n, default is ’10’

nLeftBound: Left bound of n slider, default is ’1’

nRightBound: Right bound of n slider, default is ’50’

120 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

SurfaceInR3 Author: Paehler

This applet draws an arbitrary user defined parameterized surface in R3.
The user may edit each of the coordinate expressions and the boundaries
of the domain intervals.
Parameters:

xFunction: An arbitrary expression of u and v

yFunction: An arbitrary expression of u and v

zFunction: An arbitrary expression of u and v

Param1LeftBound: Left bound of the parameter u

Param1RightBound: Right bound of the parameter u

Param2LeftBound: Left bound of the parameter v

Param2RightBound: Right bound of the parameter v

TangentAndDerivative Author: Schimanowski

An applet for visualising the construction of the derivative by a moving
tangent for a differentiable function. The user may edit the function
expression and move the tangent by dragging it with the mouse.
Parameters:

function: An arbitrary expression of x

TangentAndSecant Author: Schimanowski

An applet for visualising the tangent and the secant of two points for a
differentiable function. The user may edit the function expression and
move the tangent and secant by dragging its points with the mouse.
Parameters:

function: An arbitrary expression of x

TaylorApproximation Author: Mrose

This applet approximates a given function in a point of expansion by
its Taylor polynomial of n-th degree. The user may edit the function
expression or set the value of n to be displayed, additionally he may
move the point of expansion by dragging it with the mouse.
Parameters:

function: An arbitrary expression of x

TrapezoidApproximation Author: Liu

An Applet that shows the approximation of the integral by using trape-
zoids. The user may either edit the function expression, alter its domain
or change the number of steps used in the approximation.
Parameters:

function: An arbitrary expression of x

D.2. LIST OF MATHLETS 121

TrigonometricFunctions Author: Mrose

This applet visualizes the definition of the trigonometric functions in the
unit circle. The user may choose between different functions and move
the point to be constructed on the circle.

ZerosDerivative Author: Mrose

Exercise for students to find the zeros of the derivative by analyzing the
graph of a function. The user may edit the function expressions and add
points for the guessed zeros of the derivative.
Parameters:

function: An arbitrary expression of x

ElectricPointCharge Author: gronau

Visualizes the electric field of a custom point charge distribution. The
user may add and move an arbitrary number of point charges with the
mouse, additionally he may alter their charge value.

AnimatedLinearMapWithEigenvectors Author: Mrose

Shows the behavior of a map given by a matrix specified by the user
and the associated eigenspaces. Additionally a vector and its image is
displayed, which can be altered by the user.

AnimatedVectorAddition Author: manya

This applet shows in animation the addition of two vectors.

AssociativityOfScalarMultiplication Author: manya

This applet shows the associativity of scalar multiplication of vector
spaces

AssociativityOfVectoraddition Author: manya

This applet shows the associativity of vectoraddition of vector spaces

122 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

BasisOfR2 Author: manya

This applet shows a genereted system of R2.

DeterminantInR2 Author: manya

This applet shows the geometric interpretation of 2x2 matrix

DistributiveLaw1 Author: manya

This applet shows the (first) distributive law of vector spaces.

DistributiveLaw2 Author: manya

This applet shows the (second) distributive law of vector spaces

DotProduct2D Author: Erkoc

Visualizes the scalar product of two vectors u and v in R2. The user
may alter the vectors by dragging them with the mouse or editing their
coordinates.
Parameters:

uCoords: Coordinates of vector u as ’(x,y)’ with double values x and y

vCoords: Coordinates of vector v as ’(x,y)’ with double values x and y

DotProduct3D Author: Erkoc

Visualizes the scalar product of two vectors u and v in R3. The user
may alter the vectors by dragging them with the mouse or editing their
coordinates.
Parameters:

uCoords: Coordinates of vector u as ’(x,y,z)’ with double values x,y and z

vCoords: Coordinates of vector v as ’(x,y,z)’ with double values x,y and z

D.2. LIST OF MATHLETS 123

EigenvalueAndEigenvector Author: Liu

This applet displays for an arbitrary 3x3 matrix the eigenvalues and
eigenvectors.
Parameters:

r1Coords: Coordinates of the matrix’ first row vector as ’(x,y,z)’ with double values x,y and z

r2Coords: Coordinates of the matrix’ second row vector as ’(x,y,z)’ with double values x,y and z

r3Coords: Coordinates of the matrix’ third row vector as ’(x,y,z)’ with double values x,y and z

GeneratingSystemOfR2 Author: manya

This applet shows a generating system of R2 with three vectors

InvertWithGauss Author: Liu

This applet lets a user interactively invert a matrix with the gauss al-
gorithm. The user may enter an arbitrary matrix and perform steps of
linear row manipulation.
Parameters:

r1Coords: Coordinates of the matrix’ first row vector as ’(x,y,z)’ with double values x,y and z

r2Coords: Coordinates of the matrix’ second row vector as ’(x,y,z)’ with double values x,y and z

r3Coords: Coordinates of the matrix’ third row vector as ’(x,y,z)’ with double values x,y and z

LaplacianDeterminantExample Author: Erkoc

This applet offers exercises for the computation of the determinant using
the laplacian expansion rule. The user may choose an expansion and test
his computed results.

LineInR2 Author: Paehler

Visualizes a line in R2 and its parametric definition. The user may
alter the line by dragging its vectors with the mouse or editing their
coordinates.
Parameters:

aCoords: Coordinates of origin vector as ’(x,y)’ with double values x and y

vCoords: Coordinates of direction vector as ’(x,y)’ with double values x and y

124 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

LineInR2Normal Author: Paehler

Visualizes a line in R2, its parametric definition and a normalized normal
vector. The user may alter the line by dragging its vectors with the mouse
or editing their coordinates.
Parameters:

aCoords: Coordinates of origin vector as ’(x,y)’ with double values x and y

vCoords: Coordinates of direction vector as ’(x,y)’ with double values x and y

LineInR3 Author: Paehler

Visualizes a line in R3 and its parametric definition. The user may
alter the line by dragging its vectors with the mouse or editing their
coordinates.
Parameters:

aCoords: Coordinates of origin vector as ’(x,y,z)’ with double values x,y and z

vCoords: Coordinates of direction vector as ’(x,y,z)’ with double values x,y and z

LineIntersectionInR2 Author: Paehler

Visualizes two lines and their intersection in R2. The user may alter the
lines by dragging its vectors with the mouse or editing their coordinates.
Parameters:

a1Coords: Coordinates of first line’s origin vector as ’(x,y)’ with double values x and y

v1Coords: Coordinates of first line’s direction vector as ’(x,y)’ with double values x and y

a2Coords: Coordinates of second line’s origin vector as ’(x,y)’ with double values x and y

v2Coords: Coordinates of second line’s direction vector as ’(x,y)’ with double values x and y

LineIntersectionInR3 Author: Paehler

Visualizes two lines and their intersection in R3. The user may alter the
lines by dragging its vectors with the mouse or editing their coordinates.
Parameters:

a1Coords: Coordinates of first line’s origin vector as ’(x,y,z)’ with double values x, y and z

v1Coords: Coordinates of first line’s direction vector as ’(x,y,z)’ with double values x, y and z

a2Coords: Coordinates of second line’s origin vector as ’(x,y,z)’ with double values x, y and z

v2Coords: Coordinates of second line’s direction vector as ’(x,y,z)’ with double values x, y and z

LinearCombinationAndLinearSystemOfEquation Author: manya

This applet shows the relationship between the linear combination of
vectors and a system of linear equations.

D.2. LIST OF MATHLETS 125

LinearImageMap Author: gronau

Demonstrates the usage of linear maps for image transformations.

LinearMapR2Simple Author: i.a. manya

This applet shows a linear map in R2. The user may alter the map
by either editing its matrix entries or by dragging the domain or range
vectors with the mouse.

LinearMapR3Simple Author: Paehler

This applet shows a linear map in R3. The user may alter the map
by either editing its matrix entries or by dragging the domain or range
vectors with the mouse.

LinearMapWithBaseChange Author: vossbeck, manya

This applet visualizes a linear map on R2 with respect to different bases
in domain and range. The user may alter the map by either editing
its matrix entries or by dragging the domain or range vectors with the
mouse.

LinearMapWithBaseChangeAndCoordinateTuples Author: vossbeck,

manya

This applet visualizes a linear map on R2 with respect to different bases
in domain and range. Furthermore it shows the equations of their appro-
priate coordinate representations. The user may alter the map by either
editing its matrix entries or by dragging the domain or range vectors
with the mouse.

LinearMapWithEigenvectors Author: Schimanowski

Shows the behavior of a map given by a matrix specified by the user
and the associated eigenspaces. Additionally a vector and its image is
displayed, which can be altered by the user.

126 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

LinearMapWithSpecialProperties Author: vossbeck, manya

This applet shows specific properties of a linear map. The user may alter
the map by either editing its matrix entries or by dragging the domain
or range vectors with the mouse.

LinearMapWithSumBasedOnDouble Author: i.a. manya

This applet shows a linear map in R2. The user may alter the map
by either editing its matrix entries or by dragging the domain or range
vectors with the mouse.

LinearMapWithSumBasedOnRational Author: i.a. manya

This applet shows a linear map in Q2. The user may alter the map
by either editing its matrix entries or by dragging the domain or range
vectors with the mouse.

LinearMapWithSyncBaseChange Author: vossbeck, manya

This applet visualizes a linear map on R2 with respect to different (or
same) bases in domain and range. The user may alter the map by either
editing its matrix entries or by dragging the domain or range vectors
with the mouse.

MatrixAdditionExample Author: klich

Shows examples of the addition of two matrices and computes their result.

MatrixAdditionExercise Author: klich

Applet to exercise the addition of two matrices.

MatrixAdditionFace Author: nobody

Visualizes the addition of two matrices as a superposition of two images.

D.2. LIST OF MATHLETS 127

MatrixMultiplicationAnimated Author: klich

This applet demonstrates the multiplication of two matrices.

MatrixMultiplicationExercise Author: klich

Applet to exercise the multiplication of two matrices.

MatrixScalarMultiplicationExercise Author: klich

Applet to exercise the multiplication of a matrix with a scalar.

PlaneInR3 Author: Paehler

Visualizes a plane in R3 and its parametric definition. The user may
alter the plane by dragging its vectors with the mouse or editing their
coordinates.
Parameters:

a1Coords: Coordinates of plane’s origin vector as ’(x,y,z)’ with double values x, y and z

v1Coords: Coordinates of plane’s first direction vector as ’(x,y,z)’ with double values x, y and z

v2Coords: Coordinates of plane’s second direction vector as ’(x,y,z)’ with double values x, y and z

PlaneInR3Normal Author: Paehler

Visualizes a plane and its normal in R3 and its parametric definition.
The user may alter the plane by dragging its vectors with the mouse or
editing their coordinates.
Parameters:

a1Coords: Coordinates of plane’s origin vector as ’(x,y,z)’ with double values x, y and z

v1Coords: Coordinates of plane’s first direction vector as ’(x,y,z)’ with double values x, y and z

v2Coords: Coordinates of plane’s second direction vector as ’(x,y,z)’ with double values x, y and z

128 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

PlaneIntersectionInR3 Author: Paehler

Visualizes two planes and their intersection inR3. The user may alter the
planes by dragging its vectors with the mouse or editing their coordinates.
Parameters:

a1Coords: Coordinates of first plane’s origin vector as ’(x,y,z)’ with double values x, y and z

v1Coords: Coordinates of first plane’s first direction vector as ’(x,y,z)’ with double values x, y and z

v2Coords: Coordinates of first plane’s second direction vector as ’(x,y,z)’ with double values x, y

and z

a2Coords: Coordinates of second plane’s origin vector as ’(x,y,z)’ with double values x, y and z

u1Coords: Coordinates of second plane’s first direction vector as ’(x,y,z)’ with double values x, y

and z

u2Coords: Coordinates of second plane’s second direction vector as ’(x,y,z)’ with double values x, y

and z

PointLineDistance2D Author: Erkoc

Visualizes the distance between a point and a line in R2. The user may
alter the line by dragging its vectors with the mouse or editing their
coordinates, the point can also be dragged.
Parameters:

rCoords: Coordinates of origin vector as ’(x,y)’ with double values x and y

lCoords: Coordinates of direction vector as ’(x,y)’ with double values x and y

pCoords: Coordinates of point as ’(x,y)’ with double values x and y

PointLineDistance3D Author: Erkoc

Visualizes the distance between a point and a line in R3.The user may
alter the line by dragging its vectors with the mouse or editing their
coordinates, the point can also be dragged.
Parameters:

rCoords: Coordinates of origin vector as ’(x,y,z)’ with double values x,y and z

lCoords: Coordinates of direction vector as ’(x,y,z)’ with double values x,y and z

pCoords: Coordinates of point as ’(x,y,z)’ with double values x,y and z

PointPlaneDistance Author: Erkoc

Visualizes the distance between a point and a plane in R3.The user may
alter the plane by dragging its vectors with the mouse or editing their
coordinates, the point can also be dragged.
Parameters:

aCoords: Coordinates of plane’s origin vector as ’(x,y,z)’ with double values x, y and z

v1Coords: Coordinates of plane’s first direction vector as ’(x,y,z)’ with double values x, y and z

v2Coords: Coordinates of plane’s second direction vector as ’(x,y,z)’ with double values x, y and z

pCoords: Coordinates of point as ’(x,y,z)’ with double values x,y and z

D.2. LIST OF MATHLETS 129

PolynomialVectorspace Author: paladini, manya

This applet vizualises the vector space of two polynoms.

PolynomialVectorspaceSimple Author: paladini, manya

This applet vizualises the vector space of two polynoms.

TrajectoryForLinODE Author: Paehler

This applet shows for a linear homogenuous system of ODEs the direction
field and allows the user to construct trajectories for certain starting
points. He may also alter the ODE system by editing its matrix entries
and trace the trajectories by using a slider or animation.

VectorAdditionAndScalarMultiplication Author: manya

This applet shows the scalar multiplication and the addition of two vec-
tors

VectorAdditionAndScalarMultiplicationExercise Author: klich

An applet to demonstrate and practice vectoraddition and multiplication
with scalars.

VectorFieldForLinODE Author: Paehler

This applet shows the direction field of a linear homogenuous system of
ODEs. The user may alter the ODE system by editing its matrix entries
and drag the point, for which the vector is displayed with the mouse.

130 APPENDIX D. LIST OF MATHLETS AND THEIR PARAMETERS

VectorProduct Author: Erkoc

Visualizes the vector product of two vectors u and v in R3.The user
may alter the vectors by dragging them with the mouse or editing their
coordinates.
Parameters:

uCoords: Coordinates of vector u as ’(x,y,z)’ with double values x,y and z

vCoords: Coordinates of vector v as ’(x,y,z)’ with double values x,y and z

VectorWithBaseChange Author: klich

Visualizes a vector on the one hand in a vectorspace of arrows and on
the other hand in a coordinates space respective to a chosen basis.

Appendix E

Installation CD

The CD included with this thesis was developped for allowing offline use of mathlets and
testlets. It contains a complete server image of http://mumie.iram.rwth-aachen.de. It can
be easily installed by running the script setup.bat on an MS Windows platform or by invoking
setup.sh on a Unix platform as root.

131

132 APPENDIX E. INSTALLATION CD

Bibliography

[ADL04] Advanced Distributed Learning. Sharable Content Object Reference Model (SCORM)
2004 2nd Edition. 2004.
http://www.adlnet.org

[AM98] J. R. Anderson, M. P. Matessa. The rational analysis of categorization and the ACT-
R architecture. In: M. Oaksford & N. Chater (Eds.) Rational models of cognition, pp.
197-217. Oxford: Oxford University Press. 1998.

[AM04] ActiveMath homepage. 2004.
http://www.activemath.org.

[ASU86] A: Aho, R. Sethi, J. Ullman. Compilers - Principles, Techniques and Tools. Addison
Wesley. 1996.

[Bau02] C. Bauer, A. Frink, R. Kreckel.
Introduction to the GiNaC Framework for Symbolic Computation within the C++ Pro-
gramming Language.
Journal of Symbolic Computation Volume 33, Number 1, 2002.

[Bl56] B.S. Bloom (Ed.) Taxonomy of educational objectives: The classification of educational
goals: Handbook I, cognitive domain. New York. 1956.

[Blu98] A. Blumstengel. Entwicklung hypermedialer Lernsysteme. Wissenschaftlicher Verlag
Berlin. 1998.
http://dsor.upb.de/de/forschung/publikationen/blumstengel-diss/main index titel.html

[BmBF04] Bundesministerium für Bildung und Forschung. Neue Medien in der Bildung –
Hochschulen. Kursbuch eLearning 2004 – Produkte aus dem Förderprogramm. 2004.
http://www.bmbf.de/pub/nmb kursbuch.pdf.

[Bo88] B.W. Boehm. A spiral model of software development and enhancement. IEEE Com-
puter, vol.21, No. 5, May 1988, pp 61-72.

[Br66] J.S. Bruner. Towards a Theory of Instruction. Harvard University Press. 1966.

[Br56] J.S. Bruner. A cognitive theory of personality: You are your constructs. Contemporary
Psychology, 1, 355-357. 1956.

[Bu96] F. Buschmann et al. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Addison-Wesley 1996.

133

134 BIBLIOGRAPHY

[Ch01] J.R. Chiles. Inviting Disaster: Lessons from the Edge of Technology HarperBusiness.
2001.

[Co03] H. Comon et al. Tree Automata Techniques and Applications. Preprint, 2003.
http://www.grappa.univ-lille3.fr/tata

[CP91] J. M. Clark, A. Paivio. Dual coding theory and education. Educational Psychology
Review, 3(3), 1991.

[Cr02] C. Crawford. The Art of Interactive Design. No Starch Press. 2002.

[Do02] H. Donker Didaktisches Interaktions-und Informationsdesign.
http://www.dissertation.de/PDF/hd519.pdf

[Do00] M. Dobes. Mathe-Online: Evaluation aus medienkritischer und unterrichtspraktischer
Sicht, TELL & CALL April 2000.
http://www.mathe-online.at/literatur/dobes tellcall.pdf

[EC00] Elektronische Kreide: Eine Java-Multimedia-Tafel für den Präsenz- und Fernunterricht,
R. Rojas, L. Knipping, W. Raffel, G. Friedland in Technical Report B-00-17, FU Berlin,
Institut für Informatik, Oktober 2000.
http://kazan.inf.fu-berlin.de/echalk/docs/report001031.pdf

[EC04] Electronic Chalkboard homepage. 2004.
http://www.e-chalk.de

[eC04] eCase – Mobile Unit for Lecture Recording homepage. 2004.
http://www-i7.informatik.rwth-aachen.de/d/projects/uli/ecase.html

[Em99] F. Embacher. Acceptance of a Maths Online Project. Paper prepared for the 10th In-
ternational Conference of the Society for Information Technology & Teacher Education
(SITE). San Antonio, Texas, February 28 – March 4, 1999. Association for the Advance-
ment of Computing in Education (AACE), Charlottesville, 1999, p. 955.
http://www.ap.univie.ac.at/users/fe/MERLIN MPI/site99.doc

[Em04] Emilea-stat homepage. 2004.
http://www.emilea.de

[FI04] FreeImages homepage. http://www.freeimages.co.uk/

[Fl03] Florida Today. Columbia Lost: NASA culture played down risks. Mar 30, 2003.
http://www.floridatoday.com/columbia/columbiastory2A47849A.htm

[Gr03] D. de Gruijter, L. van der Kamp. Statistical Test Theory For Education And Psychology.
2003.
http://icloniis.iclon.leidenuniv.nl/gruijter/

[Ga00] S. Garibaldi. Bloom’s taxonomy in mathematics. 2000.
http://www.mathcs.emory.edu/∼skip/prop/blooms.html

[GS02] H. Gumm, M. Sommer, W. Hesse, B. Seeger. Einführung in die Informatik. 2002.

BIBLIOGRAPHY 135

[He93] R. Hersch (Ed.). Visual and Technical Aspects of Type. Cambridge University Press.
1993.

[He02] W. Hesse. Evolutionary object oriented software development and project management.
2002.
http://www.mathematik.uni-marburg.de/∼hesse/papers/EOS.pdf

[He98] Wolfgang Hesse. Baustein-orientiert statt phasen-zentriert: Neue Entwicklungsmetho-
den erfordern neuartige Vorgehensmodelle. 1998.
http://www.mathematik.uni-marburg.de/∼hesse/papers.html#Hes 98a

[Hm01] HartMath Java Computer Algebra Tool homepage. 2001.
http://www.hartmath.com

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley. 1979.

[Il03] Ilias opensource homepage. 2003.
http://www.ilias.de

[IM04] In2Math homepage. 2004. http://www.in2math.de

[I2M04] itex2mml Translator homepage. 2004.
http://pear.math.pitt.edu/mathzilla/itex2mml.html

[ISC03] International Study Center. TIMSS 2003 Technical Report. 2003.
http://isc.bc.edu/timss2003.html

[Ja04] Javadoc Tool Documentation 1.3. 2004.
http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/

[1] [Je03] S. Jeschke, R. Keil-Slawik, R. Seiler, C. Thomsen, W. Veen. Multiverse - Mathe-
matics in Collaborative Virtual Knowledge Spaces (EU-Hearing). August 2003.
http://www.math.tu-berlin.de/ sabina/Talks/EU-Hearing 2003.ppt

[Je04] S. Jeschke. Mathematik in Virtuellen Wissensräumen – IuK-Strukturen und IT-
Technologien in Lehre und Forschung. 2004.
http://edocs.tu-berlin.de/diss/2004/jeschke sabina.htm

[JO03] Journal of Online Mathematics and its Applications. Mathlet Defintion. 2003.
http://www.mathdl.org/criteria.html#mathlet

[JSK04] S. Jeschke, M. Kohlhase, R. Seiler: eLearning-, eTeaching- & eResearch-Technologien
– Chancen und Potentiale für die Mathematik, DMV-Mitteilungen. No. 78, June 2004.

[JV04] JavaView homepage. 2004.
http://www.javaview.de

[JCM01] Java Components for Mathematics homepage. Hobart and William Smith Colleges.
2001.
http://math.hws.edu/javamath/

136 BIBLIOGRAPHY

[Ke98] C. Kettenbach. Analyse des V-Modells als Entwicklungsstandard für IT-Systeme des
Bundes – ein Konzept zur inkrementellen Softwareentwicklung. Diploma thesis. 1998.
http://www.v-modell.iabg.de/Diplom/Kettenbach.pdf

[Kl02] M. Klesse. Evaluation von ”mathe online” für den Übergang Schule/Hochschule, Semi-
nararbeit am Institut für Wirtschaftsinformatik, Universität St. Gallen. 2002.

[Kn03] G. Knolmayer, C. Montandon. Eignung multimedialer Lernobjekte zur Erreichung der
in Blooms Taxonomie unterschiedenen Lernziele. Internationale Tagung Wirtschaftsin-
formatik. 2003.
http://www.ie.iwi.unibe.ch/services/konferenzen/wi2003/resource/Dresden%20submitted%202003-05-

16.pdf

[Kn82] D. Knuth. Documented TEX source code. 1982.
http://www.ctan.org/tex-archive/systems/knuth/tex/tex.web.

[Lo03] V. Lowndes, S. Berry. In-Depth Learning in Mathematics Courses. MSOR Connections
Aug 2003 Vol 3 No 3.
http://ltsn.mathstore.ac.uk/newsletter/aug2003/indepthlearning.pdf.

[Ma99] R. Martin. Failure Case Studies in Civil Engineering Education. 1999.
http://www.eng.uab.edu/cee/reu nsf99/Report.PDF

[Ma04] Umfrageergebnisse zur Unterrichtsreihe “Newton- und Intervall-Halbierungsverfahren”
http://www.mathletfactory.de/application/bischof/statistik.html

[ML01] B. McLaughlin. Java and XML. O’Reilly. 22001.

[MIT03] MIT Open Courseware homepage. 2003.
http://ocw.mit.edu

[MJ91] W. Jank, Hilbert Meyer. Didaktische Modelle. Cornelsen Scriptor. 31991.

[Mo02] Le Massachusetts Institute of Technology choisit la gratuité sur le Web. In: Le Monde
October 21, 2002.
http://www.lemonde.fr/article/0,5987,3416–295113-,00.html

[MO91] V. Midoro, G. Olimpo et al. Multimedia Navigable Systems and Artificial Intelligence.
In: Lewis, Otsuki (eds). Advanced Research on Computers in Education. Proceedings of
the IFIP TC3 International Conference on Advanced Research on Computers in Educa-
tion. North Holland 1991.

[Mo93] K. Morisse. Datenstrukturen und Speicherverwaltung in MuPAD. In: mathPAD Vol. 3
No. 2. 1993.
http://www.mupad.de/mathpad.shtml

[MO03] maths online homepage. 2003.
http://www.univie.ac.at/future.media/moe

BIBLIOGRAPHY 137

[MSWWF99] Ministerium für Schule und Weiterbildung, Wissenschaft und Forschung des Lan-
des Nordrhein-Westfalen. Richtlinien und Lehrpläne für die Sekundarstufe II – Gymna-
sium/Gesamtschule in Nordrhein-Westfalen. 1999.
https://www.ritterbach-interaktiv.de/verlag/schulwelt/lp online.asp

[Mu95] H. Muckenfuß. Lernen in sinnstiftenden Kontexten. Berlin: Cornelsen. 1995.

[Mu04] Mumie Projekt homepage. 2003.
http://www.mumie.net

[Mu01] J. Muzio,T. Heins, R. Mundell. Experiences with Reusable eLearning Objects: From
Theory to Practice. 2001.
http://www.cedarlearning.com/CL/elo/eLearningObjects sml.pdf

[Mv04] Multiverse homepage. 2004.
http://www.math.tu-berlin.de/multiverse/

[MT01] Mathematical Java homepage. Division of Mathematics & Computer Science of Em-
poria State University. 2001
http://mathcsjava.emporia.edu/WebContent/default.htm

[MV98] H. R. Maturana, F. J. Varela The Tree of Knowledge. Boston, MA: Shambhala, 1998.

[Ni97] J. Nielsen. Changes in Web Usability Since 1994.
http://www.useit.com/alertbox/9712a.html 1997.

[NY01] Auditing Classes at M.I.T., on the Web and Free. In: New York Times April 4, 2001.
http://education.mit.edu/tep/11125/opencourse

[Ob98] P. Oberhuemer. mathe online. Beitrag zum 8. internationalen Symposium zur Didaktik
der Mathematik Universität Klagenfurt. 1998.
http://www.mathe-online.at/literatur/symp klu98.doc

[OM04] OpenMath homepage. 2004.
http://www.openmath.org

[Os00] G. Ossimitz. Gesamtbericht zur Evaluation von mathe-online. Report for the European
Social Fonds (ESF) ADAPT project. 2000.
http://www.mathe-online.at/zweiterbw/dokumente/endber.PDF

[OECD99] Organisation for Economic Co-operation and Development (OECD). Measuring
Student Knowledge and Skills: A New Framework for Assessment. 1999.
http://www.pisa.oecd.org/Publicatn/Assess2000.htm

[OECD03] Organisation for Economic Co-operation and Development (OECD). The PISA 2003
Assessment Framework. 2003.
http://www.pisa.oecd.org/Docs/Download/PISA2003Frameworks final.pdf

[P4L04] Pics4Learning – copyright friendly images for education. homepage. 2004
http://www.pics4learning.com/

138 BIBLIOGRAPHY

[Pe85] H. Petroski. From Slide Rule to Computer. In: To Engineer Is Human. St. Martins
Press, New York, NY. 1985.

[Py04] Pyramit homepage. 2004.
http://www.pyramit.de/

[Ve78] F. Vester. Denken, Lernen, Vergessen. dtv. 1978.

[Wa67] P. Watzlawick, J. Beavin, D. Jackson. The Pragmatics of Human Communication.
Norton, New York. 1967.

[Wa91] Maple Language Reference Manual. Waterloo Maple Publishing. 1991.

[WM97] R. Wilhelm, D. Maurer. Übersetzerbau. Springer. 1997.

[Wo91] S. Wolfram. The Mathematica Book. Cambridge. 1991.

[Wo02] L. Wood, G. Smith, P. Petocz, A. Reid. Correlation between student performance
in linear algebra and categories of a taxonomy. in: Proceedings of 2nd international
conference on the teaching of mathematics at the undergraduate level. Greece 2002.
http://www.math.uoc.gr/∼ictm2/Proceedings/pap338.pdf

[Sch02] R. Schulmeister. Grundlagen hypermedialer Lernsysteme. Oldenbourg Wis-
senschaftsverlag. 32002.

[Sa02] S. Si Alhir. Understanding the Unified Process. Published in: Methods & Tools (March
2002). http://home.earthlink.net/ salhir#understandingtheup

[Sch03] I. Schwank. Einführung in funktionales und prädikatives Denken. Zentralblatt für Di-
daktik der Mathematik 3/2003.

[Si97] D. Siegel. Creating killer websites. Indianapolis: Hayden Books. 1997.

[Sun04] Sun Java Tutorial. Defining and Using Applet Parameters. 2004.
http://java.sun.com/docs/books/tutorial/applet/appletsonly/param.html

[Te04] Mumie TestletFactory homepage. http://mumie.iram.rwth-aachen.de/testletfactory

[Th99] F. Thissen. Lerntheorien und ihre Umsetzung in multimedialen Lernprogrammen –
Analyse und Bewertung. In: BIBB Multimedia Guide Berufsbildung. Berlin 1999
http://www.frank-thissen.de/lernen.pdf

[Th04] L. Thorlacius. Aesthetics and function in web design. Published in: Proceedings of
European CADE (Computers in Art and Design Education) 2004.
http://http://asp.cbs.dk/cade2004/proceedings/fullpapers/14 thorlacius final fullpaper.pdf

[TTH04] TTH – The TEXto HTML Translator homepage. 2004.
http://hutchinson.belmont.ma.us/tth/

[TUM01] Integration in der Ingenieuranalysis homepage. 2002. http://www-hm.mathematik.tu-

muenchen.de/integration/branch.htm

[UL04] ULearn(Math) – Unified Learning in Mathematics. Projektantrag zum
Förderschwerpunkt “Neue Medien in der Bildung” – Förderlinie “eLearning-Transfer”
eingereicht beim Bundesministerium für Bildung und Forschung (BmBF). 2004.

[W3C04] W3C Math Home. 2004. http://www.w3.org/Math/

[Wi59] E. Wigner. The Unreasonable Effectiveness of Mathematics in the Natural Sciences.
Communications on pure and applied mathematics. Vol. XIII 001-14 (1960).

[Wi81] E. Wittmann. Grundfragen des Mathematikunterrichts. Braunschweig, Wiesbaden.
61981.

[Y01] J. Yanik. A Math Toolkit for Java Developers. Journal of Online Mathematics Vol.1, No.
2, 2001.
http://www.joma.org/vol1-2/articles/yanik/index.html

[Ya99] M. Yacci. Interactivity Demystified. A Structural Definition for Distance Education and
Intelligent CBT. In: Performance Improvement Quarterly, Vol 12, No. 3, 1999.
http://www.it.rit.edu/∼may/interactiv8.pdf

[Ze95] F. Zech. Grundkurs Mathematikdidaktik. Weinheim, Basel 91995

[Ze03] Die verschenkten Kronjuwelen. In: Die Zeit 28/03. 2003.
http://www.zeit.de/2003/28/C-Open Courseware

Danksagung

Die Entstehung dieser Arbeit ist durch das Zutun vieler Leute überhaupt erst möglich gewor-
den. Ich bedanke mich bei Ulrik Schroeder und Volker Enß für die Übernahme der Betreuung
der Arbeit und für den großen Freiraum, den sie mir bei ihrer Entwicklung und Ausgestaltung
gelassen haben. Den Mitarbeitern des Instituts für Reine und Angewandte Mathematik der
RWTH Aachen danke ich für ihre Unterstützung des Mumie-Projektes und die Bereitschaft,
einzelne Applets zu begutachten und zu testen; ebenso bedanke ich mich bei den Mumie-Teams
der TU Berlin und TU München für die gute Zusammenarbeit.
Unter den zahlreichen Lehrern, die mir beim Schuleinsatz der Applets behilflich waren möchte
ich besonders Markus Bischof hervorheben, der sich viel Zeit genommen hat, um eine Unter-
richtsreihe mit Mathlets zu entwickeln und dabei mit vielen wertvollen Rückmeldungen die
Entwicklung des Systems vorangebracht hat.
Meinen Kollegen Olaf Post und Fernando Lledó Macau danke ich für die alltäglichen Einladun-
gen zum Kaffee und für die Durchsicht des Manuskriptes.
Meinen Brüdern Jan und Moritz verdanke ich Hinweise auf sprachliche Fein- und Grobheiten.
Zum Schluss und vor allem möchte ich meinen Eltern danken, die mir meine Ausbildung
ermöglicht und mich in jeder Lebenssituation unterstützt haben.

Lebenslauf

03. 04. 1972 geboren in Köln; Eltern: Dr. jur. Hans H. Paehler,
Katrin Paehler geb. Perseke

1991 Abitur am Konrad Adenauer Gymnasium Meckenheim

1991 - 1992 Zivildienst an der Malteser Rettungswache Rheinbach;
Ausbildung zum Rettungssanitäter

1992 - 1994 Studium der Mathematik und Physik an der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1994 - 1999 Fortsetzung des Studiums an der Westfälischen
Wilhelms-Universität Münster (Zwischenprüfungen
1994 und 1996); Aufnahme des Studiums der Informatik

1995 - 1998 Gründung von netserve oHG/trisinus GmbH; Leitung
des Bereichs WWW-Entwicklung

1996 - 1998 Studentische Hilfskraft im Fachbereich Mathematik und
Informatik im Bereich Systemadministration

1998 - 1999 Studentische Hilfskraft am Institut für Geoinformatik
in den Bereichen Systemadministration und Software-
Entwicklung

1999/2000 1. Staatsexamen Sek II/I in Mathematik und Physik;
Staatsexamensarbeit: ‘Visualisierung von Funktionen
einer komplexen Veränderlichen insbesondere im Zusam-
menhang mit der Riemannschen ζ-Funktion’

2001 - 2002 Referendariat an der Ursulinenschule Köln; Leitung der
WWW-AG, Entwicklung eines Curriculums und einer
webgestützten Lehrerfortbildung zur Computergraphik

Mai - Juli 2002 Wissenschaftliche Hilfskraft am Institut für Geome-
trie und Praktische Mathematik (IGPM) der RWTH
Aachen, Betreuung des Mathematischen Praktikums
und Weiterentwicklung der Graphikbibliothek IGL

seit August 2002 Wissenschaftlicher Mitarbeiter am Institut für Reine und
Angewandte Mathematik (IRAM) der RWTH Aachen im
Projekt Multimediale Mathematik-Ausbildung für Inge-
nieure (Mumie)

