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Inhalt

In dieser Arbeit werden Prokrustesprobleme in endlichdimensionalen Vektor-
räumen mit indefiniten Skalarprodukten formuliert und untersucht. Es handelt
sich dabei um Optimierungsaufgaben zur Bestimmung von Isometrien, mit deren
Hilfe zwei gegebene Tupel von Vektoren im Sinne einer optimalen Kongruenz
transformiert werden können. Als Kriterium für dieses Optimum werden Sum-
men von Abstandsquadraten optimiert (Methode der kleinsten Quadrate).

Zur analytischen Untersuchung dieser Probleme werden H-Polarzerlegungen
und die in dieser Arbeit eingeführten (G,H)-Polarzerlegungen verwendet. Dabei
werden einerseits Kriterien für die Existenz dieser Zerlegungen angegeben und
andererseits Verfahren zu ihrer numerische Berechnung entwickelt.

Nicht alle formulierten Prokrustesprobleme können analytisch gelöst werden.
Daher wird auch ein Newton-Verfahren bereitgestellt, mit dessen Hilfe die nu-
merische Lösung aller Optimierungsaufgaben zur Bestimmung von Isometrien
möglich ist, bei denen die Optimierungsfunktion durch eine quadratische Form
der vektorisierten Isometrie dargestellt werden kann. Diese Darstellung existiert
insbesondere im Fall der Prokrustesprobleme, aber auch H-Polarzerlegungen
können mit dem Verfahren berechnet werden.

Letztlich wird auch noch ein numerisches Verfahren entwickelt, mit dem
die kanonische Form eines Paares (A,H) bestehend aus einer H-hermiteschen
Matrix A und einer regulären hermiteschen Matrix H berechnet werden kann.
Dieses Verfahren beruht auf der Berechnung der Jordanschen Normalform der
Matrix A und einer Normalisierungsprozedur, die eine Verallgemeinerung des
Cholesky-Verfahrens darstellt.
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Chapter 1

Introduction

1.1 Overview

Let F be the field of real numbers R or complex numbers C and let Fn be
an n-dimensional vector space over F. Furthermore, let H ∈ Fn×n be a fixed
chosen nonsingular symmetric (F = R) or Hermitian (F = C) matrix and let
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Fn be column vectors. Then the bilinear
or sesquilinear functional

[x,y] = (Hx,y) where (x,y) =
n∑

α=1

xαyα (yα = yα if F = R)

defines an indefinite scalar product in Fn. Indefinite scalar products have almost
all the properties of ordinary scalar products, except for the fact that the value
of [x,x] for a vector x 6= 0 can be positive, negative or zero. A corresponding
vector is called positive (space-like), negative (time-like) or neutral (isotropic,
light-like), respectively. The H-adjoint A[∗] of an arbitrary matrix A ∈ Fn×n is
characterised by the property that

[Ax,y] = [x,A[∗]y] for all x,y ∈ Fn.

This is equivalent to the fact that between the H-adjoint A[∗] and the ordinary
adjoint A∗ = AT there exists the relationship

A[∗] = H−1A∗H.

If in particular A[∗] = A or A∗H = HA, one speaks of an H-selfadjoint or
H-symmetric or H-Hermitian matrix, and an invertible matrix U with U[∗] =
U−1 or U∗HU = H is called an H-isometry or an H-orthogonal or H-unitary
matrix [GLR]. If Fn provides several indefinite scalar products, we also write
[., .]H = (H., .) or AH = A[∗]H to indicate the matrix H on which a particular
scalar product is based.

Indefinite scalar products have been a central subject of research during re-
cent years as can be seen by a large number of related publications, for example
[BR], [BMRRR1–3], [GLR], [HO], [LMMR], [MMX]. Frequently, these publica-
tions generalise well-known results from an environment of ordinary (positive
definite) scalar products to an environment of indefinite scalar products. This is

1
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also the strategy of this thesis which is primarily concerned with the investiga-
tion of several variants of least-squares or Procrustes problems1. These problems
occur in a branch of mathematics, known in psychology as factor analysis or
multidimensional scaling (MDS) (for example see [BG], [D], [H]).

In a typical application of MDS test persons are first requested to estimate
the dissimilarity (or similarity) of specified objects which are selected terms
describing the subject of the analysis. In this way the comparison of N objects
in pairs produces similarity measures, called proximities, pkl, 1 ≤ k, l ≤ N ,
from which the distances dkl = f(pkl) are then determined using a function f ,
for example f(x) = ax + b, which is called the MDS model. Based on these
distances, the coordinates of points xk in an n-dimensional Euclidean space are
constructed such that ‖xk − xl‖ = dkl where ‖.‖ denotes the Euclidean norm.
Now each object is represented by a point in a coordinate system and the data
can be analysed with regard to their geometric properties.

The results of interrogating the test persons are often categorised in groups,
producing several descriptive constellations of points which must be mutually
compared in the analysis. To make such a comparison of two constellations xk

and yk possible, it is first of all necessary to compensate for irrelevant differ-
ences resulting from possibly different locations in space. This is done with an
orthogonal transformation U selected such that

∑
k ‖Uxk − yk‖2 is minimised.

Thereafter the constellations x′k = Uxk and yk are analysed.
The MDS model f is chosen in particular by adding a constant b (and by

making further assumptions such as dkk = 0), so that the triangle inequality is
fulfilled and therefore the points can be embedded in a Euclidean space [BG,
Chapter 18]. But this means that the transformed data dkl describe completely
different geometric properties than the original data pkl do. It would thus be
more reasonable to avoid the transformation and to interpret the proximities
itself as distances which is possible if a pseudo-Euclidean geometry is admitted.

Following this approach we will show how to construct vectors xk and an
indefinite scalar product [., .] = (H., .) such that [xk − xl,xk − xl] = qkl where
qkl are given real numbers. If these numbers are defined by qkl = p2

kl, then the
vectors xk represent the objects of the analysis in an indefinite scalar product
space and the proximities are their pseudo-Euclidean “distances”.

Now assume that the vectors yk represent a second set of proximities. Then,
before comparing the constellations, a pseudo-Euclidean “rotation” U must be
determined such that x′k = Uxk and yk are optimally congruent. This is the
central subject of this thesis in which the following problems are considered:

Let (x1, . . . ,xN ) and (y1, . . . ,yN ) be two N -tuples (N ≥ 1) of vectors in
Fn and let [., .]H be an indefinite scalar product. Then the basic task is to
determine a solution of the constrained optimisation problem

f(U) =
N∑

k=1

[Uxk − yk,Uxk − yk]H → opt with (1.1)

h(U) = U∗HU−H = 0

1Procrustes, a robber in Greek mythology, who lived near Eleusis in Attica. Originally
he was called Damastes or Polypemon. He was given the name Procrustes (“the stretcher”)
because he tortured his victims to fit them into a bed. If they were too tall, he chopped off
their limbs or formed them with a hammer. If they were too small, he stretched them. He
was overcome by Theseus who served him the same fate by chopping off his head to fit him
into the bed.
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which will be called the H-orthogonal or H-unitary Procrustes problem in agree-
ment with the Euclidean case investigated in [S]. The wanted optimum depends
on the matrix H. For example, if H is positive or negative definite, then the
minimum or maximum, respectively, of the function f has to be determined.

Whereas it turns out that (1.1) can always be solved in the case of a definite
matrix H, in the indefinite case it is possible that no solution exists. This leads
to the optimisation problem

f(U) =
N∑

k=1

[Uxk − yk,Uxk − yk]H → opt with (1.2)

h(U) = U∗HU−H = 0 and g(U) = U∗GU−G = 0,

which will be called the (G,H)-orthogonal or (G,H)-unitary Procrustes problem.
Here the geometry within the tuples is measured with the scalar product [., .]G
but the geometry between the tuples is measured with the scalar product [., .]H .
The wanted matrix U has to be both an H-isometry and a G-isometry.

In addition to this, the problem

f(U) =
N∑

k=1

[Uxk − yk,Uxk − yk]H → opt with (1.3)

g(U) = U∗GU−G = 0

will also be investigated. Again the distances inside the tuples are measured
with the internal metric G and the distances between the tuples are measured
with the external metric H. However, U is only required to be a G-isometry.

Here and elsewhere the matrix defining a (not necessarily indefinite) scalar
product is called a metric in accordance with its meaning in tensor algebra where
it, or more precisely its transpose, is called the metric tensor (for example see
[WEY, §5]).

1.2 The orthogonal Procrustes problem

Several matrix factorisations play an important role for the analysis of Pro-
crustes problems. In particular, the well-known singular value decomposition
(SVD) is very useful.

Proposition 1.1 (Singular value decomposition). Let F = R or F = C
and let A ∈ Fm×n. Then there exist orthogonal or unitary matrices P ∈ Fm×m

and Q ∈ Fn×n such that

P∗AQ = Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m,n),

where σ1 ≥ . . . ≥ σp ≥ 0.

Proof. See in textbooks on linear algebra, for example [GVL, Section 2.5.3].

Closely related to the SVD is the following factorisation which can be inter-
preted as a generalisation of the complex polar coordinates z = ei arg(z) |z|.
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Definition 1.2 (Polar decomposition). Let F = R or F = C and let A ∈
Fn×n. A factorisation of the form

A = UM with U∗U = I and M∗ = M,

where U ∈ Fn×n is an isometry and M ∈ Fn×n is selfadjoint, is called a polar
decomposition of A. ♦

Since the SVD of a matrix A ∈ Fn×n can be rewritten as

A = (PQ∗)(QΣQ∗) = UM,

it is clear that every square matrix admits a polar decomposition.
With this background we are able to look at a first Procrustes problem. Let

A,B ∈ RN×n. Then the least squares problem of determining an orthogonal
matrix T ∈ Rn×n such that the squared Frobenius norm of the residual matrix
AT−B is a minimum can be formulated as

tr[(AT−B)T (AT−B)] → min with TTT = I.

In this form the so-called orthogonal Procrustes problem was investigated by
Schönemann [S]. He showed that the solution is obtained from the singular
value decomposition (which he called “Eckart-Young decomposition”)

AT B = QΣPT

by forming
T = QPT .

Now, defining AT = X, BT = Y, TT = U and denoting the columns of X and
Y ∈ Rn×N by x1, . . . ,xN and y1, . . . ,yN , respectively, it immediately follows
that the transposed problem

tr[(UX−Y)T (UX−Y)] → min with UT U = I

or
N∑

k=1

(Uxk − yk,Uxk − yk) → min with UT U = I

is solved by the isometric factor of the polar decomposition

YXT = PΣQT = UM, U = PQT , M = QΣQT .

Thus we have already found the solution of the problem (1.1) in the case F = R
and H = I.

It does not surprise that for F = C and H = I an analogous statement
holds. Here the factor U of the complex polar decomposition YX∗ = UM is
the wanted isometry. However, when H is a selfadjoint matrix having positive
and negative eigenvalues, the things are getting more complicated. In this case
the addends in the objectives of (1.1) – (1.3) can be positive as well as negative,
so that even the criterion for the optimum of the function f has to be considered.
Nevertheless there are a lot of analogies to the definite Procrustes problems, and
it turns out that the following generalisation of the polar decomposition helps
to solve the indefinite problems.
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Definition 1.3 (H-polar decomposition). Let F = R or F = C and let
H ∈ Fn×n be nonsingular and selfadjoint. Furthermore, let A ∈ Fn×n. A
factorisation of the form

A = UM with U∗HU = H and M∗H = HM,

where U ∈ Fn×n is an H-isometry and M ∈ Fn×n is H-selfadjoint, is called an
H-polar decomposition of A. ♦

In contrast to the ordinary polar decomposition, not every square matrix
admits an H-polar decomposition, so that the theory of the latter is considerably
more complicated. We will therefore have to study H-polar decompositions
before the Procrustes problems can be investigated.

1.3 Contents and notation

In this thesis we will derive theoretical results and we will also develop numerical
methods with which these results can be applied. The presentation is divided
into seven chapters which are organised as follows:

In Chapter 2 some essential properties of indefinite scalar product spaces
are described. Several subspace decompositions are given and H-orthogonal
bases are discussed. The chapter ends with the introduction of the HQR de-
composition which is a generalisation of the QR decomposition in the presence
of an indefinite scalar product.

Chapter 3 is concerned with H-polar decompositions. Some important re-
sults of the related theory are summarised and a new criterion for the existence
of H-polar decompositions is given. Furthermore, the chapter presents algo-
rithms for the numerical computation of H-polar decompositions of a complex
matrix A for which either A[∗]A is diagonalisable or A[∗]A has no non-positive
eigenvalues. In this context the H-singular value decomposition is introduced.

Chapter 4 starts with an introduction to doubly structured indefinite po-
lar decompositions, called (G,H)-polar decompositions, followed by a method
for constructing points from given values of a quadratic form. Afterwards the
Procrustes problems (1.1) and (1.2) are solved with the help of H- or (G,H)-
polar decompositions, respectively. At the end of this chapter some more general
results on (G,H)-polar decompositions are derived.

In Chapter 5 a Newton method is developed with which all stated Pro-
crustes problems and further related problems can be solved numerically. This
method will in particular be adopted to solve the problem (1.3) for which no
analytic solution has been found.

Chapter 6 presents an algorithm for computing the canonical form of the
complex matrix pair (A,H) where A is H-Hermitian and H is nonsingular
and Hermitian. The algorithm is based on the numerical computation of the
Jordan normal form of A and a subsequent H-orthogonalisation of the bases
of the generalised eigenspaces. In connection with results from Chapter 3 this
algorithm allows to compute all H-polar decompositions of a matrix A for which
A[∗]A has no non-negative eigenvalues.

In the final Chapter 7 the most important results on the Procrustes prob-
lems are summarised and explained with an illustrative example.
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The chapters can more or less be read independently. For the presentation
the following notation is used:

The kernel (null space), the image (range) and the rank of a matrix A
are denoted by kerA, imA and rankA, respectively. If the matrix A is square,
then trA, detA and σ(A) are its trace, determinant and spectrum, respectively.
Furthermore, the abbreviation A−∗ = (A∗)−1 = (A−1)∗ is used.

The symbol 0 denotes zero vectors as well as zero matrices. In some places
it is additionally provided with size attributes 0p,q ∈ Fp×q or 0p ∈ Fp×p, but
lower indices may also be intended as enumeration indices. This is evident from
the respective context.

Ip, Np and Zp specify the p × p identity matrix, the p × p matrix with
ones on the superdiagonal and otherwise zeros, and the p× p matrix with ones
on the antidiagonal and otherwise zeros. In particular Jp(λ) = λIp + Np is an
upper Jordan block with eigenvalue λ and Zp is called a sip (standard involutary
permutation) block. In explicit formulas we have

Jp(λ) =




λ 1

λ
. . .
. . . 1

λ




and Zp =




1

. . .

1


 .

The notation A1 ⊕ . . . ⊕Ak represents a block diagonal matrix consisting
of the specified blocks, and diag(α1, . . . , αk) stands for a possibly rectangular
diagonal matrix with the specified diagonal elements. Moreover, X ⊕ Y also
denotes the direct sum of two subspaces X, Y ⊂ Fn.

Whereas only the Euclidean vector norm ‖x‖ =
√

x∗x is required, different
matrix norms are used. If A = [aij ] is an m× n matrix, then

‖A‖F =
√

trA∗A and ‖A‖1 = max
1≤j≤n

m∑

i=1

|aij |

are its Frobenius (Euclidean) norm and 1-norm, respectively.
Even when no further specifications are made, a nonsingular (real) symmetric

or (complex) Hermitian matrix is always meant by H.
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Chapter 2

Indefinite scalar product
spaces

2.1 Introduction

Let F = R or F = C and let Fn be a vector space in which the scalar product
[., .] = (H., .) is defined. Then the assumption that H has positive and negative
eigenvalues has far reaching consequences. In particular, the subspaces M ⊂ Fn

have properties which are not known from the subspaces of Euclidean or unitary
spaces.

In this chapter we will therefore prepare our further investigations by study-
ing some important aspects of indefinite scalar product spaces. In Section 2.2
several subspace decompositions will be derived. In Section 2.3 the construction
of H-orthogonal bases of subspaces and their extension to H-orthogonal bases
of Fn will be discussed. The results obtained in these studies will then be used
to generalise the well-known QR factorisation so that it allows to compute an
indefinite HQR factorisation. This takes place in the final Section 2.4.

2.2 Subspace decompositions

The properties of subspaces of real or complex indefinite scalar product spaces
are discussed in detail in [GLR, Chapter I.1]. We find the following basic defi-
nitions and statements there:

Definition 2.1.

(i) A subspace M ⊂ Fn is called positive (non-negative, neutral, non-positive,
negative) if

[x,x] > 0 ([x,x] ≥ 0, [x,x] = 0, [x,x] ≤ 0, [x,x] < 0)

is satisfied for all 0 6= x ∈ M .

(ii) A subspace M is called non-degenerate if x ∈ M and [x,y] = 0 for all
y ∈ M imply that x = 0, otherwise M is called degenerate.

8
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Proposition 2.2.

(i) Let M ⊂ Fn. The set defined by

M [⊥] = {x ∈ Fn : [x,y] = 0 for all y ∈ M}

is also a subspace of Fn and is termed the H-orthogonal companion of M .

(ii) It is true that

(M [⊥])[⊥] = M and dim M + dim M [⊥] = n.

(iii) It is true that

M ∩M [⊥] = {0} and M ⊕M [⊥] = Fn

if and only if M is non-degenerate2.

It is furthermore shown in [GLR, Theorem I.1.4] that every non-negative
(non-positive) subspace is a direct sum of a positive (negative) and a neutral
subspace. In addition to this, the following more general theorem holds, whose
proof is based on statements made in [GR, Sections 9.6, 9.7].

Theorem 2.3 (Decomposition of subspaces).

1. Every non-degenerate subspace M ⊂ Fn can be expressed as a direct sum
M = M+ ⊕M− where M+ is positive, M− is negative and the spaces are
H-orthogonal to each other.

2. Every subspace M ⊂ Fn can be expressed as a direct sum M = M0 ⊕M1

where M0 is neutral, M1 is non-degenerate and the spaces are H-orthogonal
to each other.

Proof. 1. Let M+ be a positive subspace of M with maximum dimension. Then
M+ is non-degenerate and M+ ⊕M

[⊥]
+ = Fn. Thus a representation

M+ ⊕ (M ∩M
[⊥]
+ ) = M, M− = M ∩M

[⊥]
+ ,

exists with two H-orthogonal addends, and it remains to show that M− is neg-
ative. Suppose that a vector x ∈ M− exists with [x,x] > 0. Then it would
follow that [x + y,x + y] = [x,x] + [y,y] > 0 for all y ∈ M+. But this would
mean that the subspace M+ ⊕ span{x} is also positive, in contradiction to the
maximality of M+. Thus M− is non-positive and the Schwarz inequality [GLR,
Chapter I.1.3]3

|[x,y]|2 ≤ [x,x][y,y] for all x,y ∈ M−

can be applied. Now assume that x0 ∈ M− with [x0,x0] = 0. Then the Schwarz
inequality shows that [x0,x] = 0 must hold for all x ∈ M−. Since it is also
true that [x0,y] = 0 for all y ∈ M+, it follows that [x0,z] = 0 for all z ∈ M .
Consequently x0 = 0, because M is non-degenerate.

2This is an essential difference compared with the ordinary scalar product, for which these
equations are always fulfilled for the ordinary orthogonal complement M⊥.

3There is a typing error contained in equation (1.8): It must be read |(Hy, z)|2 ≤
(Hy, y)(Hz, z).
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2. Let M0 = M ∩M [⊥]. Then M0 is neutral, because if a vector x ∈ M0 ⊂ M
were to exist with [x,x] 6= 0, it would follow that x /∈ M [⊥] ⊃ M0. Now let M1

be a complementary subspace, so that

(M ∩M [⊥])⊕M1 = M, M0 = M ∩M [⊥],

with two H-orthogonal addends is satisfied. To show that M1 is non-degenerate,
let x0 ∈ M1 with [x0,x] = 0 for all x ∈ M1. Furthermore, [x0,y] = 0 for all
y ∈ M0, so that [x0, z] = 0 for all z ∈ M . Thus it follows that x0 ∈ M1 and
x0 ∈ M0, so that x0 = 0.

On combining the two statements of the theorem, it is clear that every
subspace M ⊂ Fn can be expressed in the form

M = M+ ⊕M− ⊕M0

with a positive, a negative and a neutral — mutually H-orthogonal — subspace.
In order to deduce the dimensions of these subspaces, we refer to the following
classical result [GR, Sections 9.8, 9.9].

Remark 2.4 (Projection onto subspaces). Let M = span{x1, . . . ,xm} be
a subspace of Fn. Then every vector y ∈ M ,

y =
m∑

µ=1

ηµxµ,

can be represented uniquely by its coordinates ỹ = (η1, . . . , ηm)T ∈ Fm with
respect to the given basis of M . If now X = [x1 . . .xm] ∈ Fn×m is a matrix
whose columns are the basis vectors, then y = Xỹ and for H̃ = X∗HX ∈ Fm×m

we obtain

(Hy, z)n = (HXỹ,Xz̃)n = (X∗HXỹ, z̃)m = (H̃ỹ, z̃)m

where

(x,y)k =
k∑

α=1

xαyα.

Consequently the properties of the non-degenerate scalar product H : Fn×Fn →
F in the subspace M can be studied with the help of the possibly degenerate
scalar product H̃ : Fm×Fm → F. In particular, if σ(H̃) contains p positive and
q negative eigenvalues, and if r = m− p− q is the multiplicity of the eigenvalue
0, then for the decomposition of M described above it holds that

dimM+ = p, dim M− = q, dim M0 = r.

The dimensions of these subspaces are uniquely determined. This is a conse-
quence of Sylvester’s law of inertia, according to which the numbers of positive,
negative and vanishing elements are invariant for all diagonal representations
of H̃. Furthermore, the subspace M0 is uniquely determined by the nullspace
ker H̃ of the degenerate scalar product. In particular, if M is a non-degenerate
subspace, then det H̃ 6= 0, i.e. r = 0. In this case the maximum dimension of a
neutral subspace of M is given by min(p, q) which is proved in [GLR, Theorem
I.1.5]. ♦
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According to Proposition 2.2 (iii) a non-degenerate subspace M ⊂ Fn in-
duces a decomposition of Fn into the two complementary subspaces M and
M [⊥]. A generalisation of this statement is given by the following theorem. It
describes the interesting fact that an arbitrary (degenerate) subspace induces a
decomposition of Fn into four complementary subspaces.

Theorem 2.5 (Decomposition of the space). Let M ⊂ Fn. Then four
subspaces M1,M2,M

′
0,M

′′
0 ⊂ Fn exist with the following properties:

1. Fn = M0 ⊕M1 ⊕M2 with M0 = M ′
0 ⊕M ′′

0 .

2. M ′
0 = M ∩M [⊥] and M = M1 ⊕M ′

0 as well as M [⊥] = M2 ⊕M ′
0.

3. M0, M1, M2 are non-degenerate and mutually H-orthogonal.

4. M ′
0, M ′′

0 are neutral and dim M ′
0 = dim M ′′

0 .

Proof. Let M1 and M2 be the complements of M ′
0 which exist according to

Theorem 2.3 and for which the assertion 2. is fulfilled. Then M1 ⊂ M and
M2 ⊂ M [⊥] are H-orthogonal and non-degenerate, so that M1 ⊕ M2 is also
non-degenerate. Consequently

Fn = (M1 ⊕M2)⊕ (M1 ⊕M2)[⊥]

and, moreover, M ′
0 ⊂ (M1 ⊕M2)[⊥]. If we now choose M0 = (M1 ⊕M2)[⊥] =

M ′
0 ⊕M ′′

0 , then assertions 1. and 3. are fulfilled, too. From

Fn = (M1 ⊕M2 ⊕M ′
0)⊕M ′′

0 = (M + M [⊥])⊕M ′′
0

it furthermore follows that

dim M ′′
0 = n− dim(M + M [⊥])

= n− (dimM + dim M [⊥] − dim(M ∩M [⊥]))
= n− (n− dim M ′

0)
= dim M ′

0,

where the well-known dimension theorem [GR, Section 1.21]

dim M + dim N = dim(M + N) + dim(M ∩N) for M,N ⊂ Fn

and Proposition 2.2 (ii) have been applied.
It remains to show that M ′′

0 is neutral. Let r = dim M ′
0 = dim M ′′

0 . Then M0

is a 2r-dimensional non-degenerate subspace of Fn, which can be split according
to Theorem 2.1 into a positive and a negative subspace M0 = M+

0 ⊕M−
0 . Let

p = dim M+
0 and q = dim M−

0 . Since M0 must contain the r-dimensional
neutral subspace M ′

0 it follows that r ≤ min(p, q) and thus p ≥ r and q ≥ r
[GLR, Theorem I.1.5]. On the other hand p + q = 2r, so that p = q = r.
Therefore, the subspace M0 admits the decompositions

M0 = M+
0 ⊕M−

0 = M ′
0 ⊕M ′′

0 with

dim M+
0 = dim M−

0 = dim M ′
0 = dim M ′′

0
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and H-orthogonal spaces M+
0 , M−

0 , so that the three bases

M+
0 = span{x+

1 , . . . ,x+
r }, M−

0 = span{x−1 , . . . ,x−r }, M ′
0 = span{x′1, . . . ,x′r}

with [x+
k ,x+

l ] > 0, [x−k ,x−l ] < 0, [x+
k ,x−l ] = 0 and [x′k,x′l] = 0

for 1 ≤ k, l ≤ r can now be chosen. Since M+
0 is positive, M−

0 is negative and
M ′

0 is neutral, it must also be true that M+
0 ∩M ′

0 = M−
0 ∩M ′

0 = {0}, so that
each basis vector of M ′

0 can be expressed in the form

x′k =
r∑

i=1

αkix+
i +

r∑

i=1

βkix−i with (αk1, . . . , αkr)T , (βk1, . . . , βkr)T 6= 0.

Furthermore, the vectors defined by

x̃+
k =

r∑

i=1

αkix+
i and x̃−k =

r∑

i=1

βkix−i

can be used as a new basis of M+
0 , M−

0 . Indeed, if it is assumed that the
constants (λ1, . . . , λr) 6= 0 with λ1x̃+

1 + . . . , λrx̃+
r = 0 exist, then 0 6= λ1x′1 +

. . . + λrx′r = λ1(x̃+
1 + x̃−1 ) + . . . + λr(x̃+

r + x̃−r ) = λ1x̃−1 + . . . + λrx̃−r ∈ M−
0 and

thus M−
0 ∩M ′

0 6= {0}. The linear independence of the vectors x̃−1 , . . . , x̃−r can
be shown analogously. Finally, defining

x′′k = x̃+
k − x̃−k for 1 ≤ k ≤ r and M ′′

0 = span{x′′1 , . . . ,x′′r},

then M ′′
0 is on the one hand a neutral subspace because

[x′′k ,x′′l ] = [x̃+
k − x̃−k , x̃+

l − x̃−l ] = [x̃+
k , x̃+

l ] + [x̃−k , x̃−l ]

= [x̃+
k + x̃−k , x̃+

l + x̃−l ] = [x′k,x′l] = 0

and on the other hand

M0 = M+
0 ⊕M−

0

= span{x̃+
1 , . . . , x̃+

r } ⊕ span{x̃−1 , . . . , x̃−r }
= span{x̃+

1 + x̃−1 , . . . , x̃+
r + x̃−r } ⊕ span{x̃+

1 − x̃−1 , . . . , x̃+
r − x̃−r }

= M ′
0 ⊕M ′′

0 ,

so that the assertion 4. of the theorem is fulfilled, too.

2.3 H-orthogonal bases

Whereas the statements have been proved so far without reference to particular
bases, we will also have to use H-orthogonal bases. The following two theorems
contain generalisations of the Gram-Schmidt orthonormalisation method, with
the help of which such bases can be constructed. Both theorems will in particular
be applied for the H-orthogonalisation of eigenspaces of H-selfadjoint matrices
(Theorem 2.6 for eigenspaces belonging to real and Theorem 2.7 for eigenspaces
belonging to non-real eigenvalues).
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Theorem 2.6 (H-Orthonormalisation of bases). Let F = R or F = C
and let X be a subspace of Fn with dim X = m. Then there exists a basis
{u1, . . . ,um} of X such that

[uk,ul] = εkδkl, εk =





+1, for 1 ≤ k ≤ p

−1, for p + 1 ≤ k ≤ p + q

0, for p + q + 1 ≤ k ≤ p + q + r

where p + q + r = m. In particular, if X is non-degenerate, then r = 0.

Proof. (Induction) First assume that X is non-degenerate and let {x1, . . . ,xm}
be a basis of X. Also let k, l be two indices in {1, . . . , m} such that |[xk,xl]|
is maximised. Then it necessarily follows that [xk,xl] 6= 0, because otherwise
X would be degenerate. For the case k = l let the basis which is obtained by
interchanging x1 and xk still be denoted as {x1, . . . ,xm}. Otherwise, let

x̃k =
1√
2
(xk + ϕxl) and x̃l =

1√
2
(xk − ϕxl)

where ϕ = [xk,xl]/|[xk,xl]|. Then span{x̃k, x̃l} = span{xk,xl} and

[x̃k, x̃k] = α + |[xk,xl]| and [x̃l, x̃l] = α− |[xk,xl]|

where α = ([xk,xk] + [xl,xl])/2. Hence, for

ỹ =

{
x̃k, if α ≥ 0
x̃l, if α < 0

it is always true that [ỹ, ỹ] 6= 0. Let the particular basis obtained by replacing
xk,xl with x̃k, x̃l and then exchanging x1 and ỹ still be denoted as {x1, . . . ,xm}.
If we now set

u1 = x1/
√
|[x1,x1]| and ε1 = sign[x1,x1] ∈ {+1,−1},

then [u1,u1] = [x1,x1]/|[x1,x1]| = ε1 and for the vectors defined by

x′i = xi − ε1[xi,u1]u1 for 2 ≤ i ≤ m

we obtain
[x′i,u1] = [xi,u1]− ε1[xi,u1][u1,u1] = 0.

Thus X can be expressed as direct sum of its H-orthogonal subspaces span{u1}
and X ′ = span{x′2, . . . ,x′m}, so that X ′, too, is non-degenerate. Now according
to the induction hypothesis there exists a basis {u2, . . . ,um} of X ′ with the
demanded properties, so that finally {u1, . . . ,um} is the wanted basis of X, if
a suitable sorting is also made in the case of ε1 = −1.

If X is a degenerate subspace, the same construction can be applied, but
it then terminates after a certain number of steps, namely when no more non-
zero scalar products can be found. The remaining r vectors x′i then satisfy
[x′i,x

′
j ] = 0 for m− r + 1 ≤ i, j ≤ m.
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Theorem 2.7 (H-Orthonormalisation of pairs of bases). Let F = R or
F = C and let X, Y be two neutral subspaces of Fn with dim X = dim Y = m
and X ∩ Y = {0}. Then there exists a basis {u1, . . . ,um} of X and a basis
{v1, . . . ,vm} of Y such that

[uk,vl] = εkδkl, εk =

{
1, for 1 ≤ k ≤ p

0, for p + 1 ≤ k ≤ p + r

where p + r = m. In particular, if X ⊕ Y is non-degenerate, then r = 0.

Proof. (Induction) First assume that X ⊕ Y is non-degenerate and let {x1,
. . . ,xm} be a basis of X and {y1, . . . ,ym} be a basis of Y . Also let k, l be
two indices in {1, . . . , m} so that |[xk,yl]| is maximised. Then it necessarily
follows that [xk,yl] 6= 0, because otherwise X ⊕ Y would be degenerate. Let
the particular bases obtained by exchanging x1 and xk as well as y1 and yl still
be denoted as {x1, . . . ,xm} and {y1, . . . ,ym} respectively. In the case F = R
now let ε1 ∈ {+1,−1} such that λ1 = [x1, ε1y1] > 0 and let

u1 = x1/
√

λ1 and v1 = ε1y1/
√

λ1,

so that [u1,v1] = [x1, ε1y1]/[x1, ε1y1] = 1; in the case F = C let ω2
1 = λ1 =

[x1,y1] and let
u1 = x1/ω1 and v1 = y1/ω1,

so that [u1,v1] = [x1,y1]/[x1,y1] = 1. For the vectors defined by

x′i = xi − [xi,v1]u1 and y′i = yi − [yi,u1]v1 for 2 ≤ i ≤ m

we then obtain

[x′i,v1] = [xi,v1]− [xi,v1][u1,v1] = 0 and
[y′i,u1] = [yi,u1]− [yi,u1][v1,u1] = 0.

Thus X ⊕ Y can be expressed as direct sum of its H-orthogonal subspaces
span{u1,v1} and X ′ ⊕ Y ′ = span{x′2, . . . ,x′m} ⊕ span{y′2, . . . ,y′m}, so that
X ′ ⊕ Y ′, too, is non-degenerate. Now according to the induction hypothesis,
two bases {u2, . . . ,um} and {v2, . . . ,vm} of X ′ and Y ′ exist with the demanded
properties, so that finally {u1, . . . ,um} and {v1, . . . ,vm} are the wanted bases
of X and Y .

If X ⊕ Y is a degenerate subspace, the same construction can be applied,
but it then terminates after a certain number of steps, namely when no more
non-zero scalar products can be found. The remaining 2r vectors x′i,y

′
i then

satisfy [x′i,y
′
j ] = 0 for m− r + 1 ≤ i, j ≤ m.

These H-orthogonalisation methods are not only interesting for theoretical
purposes. With some slight modifications they are also useful numerical meth-
ods. But before explaining this, we will first continue to develop the theory
required for the investigation of H-polar decompositions in the next chapter.

By comparing Theorem 2.6 with Theorem 2.3 it is easily seen that the pos-
itive, negative and neutral vectors of the basis {u1, . . . ,um} form bases of the
subspaces M+, M−, and M0, respectively. A corresponding basis representation
of Theorem 2.5 is provided in the following statement, whose proof corrects an
error made in [BR, Theorem 4.1] and [BMRRR2, Theorem 2.1].
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Theorem 2.8 (Extension of bases). Let F = R or F = C and let X be a
subspace of Fn with dim X = m. Then there exists a basis {u1, . . . ,un} of Fn

which has the following properties:

1. If U = [u1 . . .un] is a matrix whose columns are the basis vectors, then

U∗HU =
[
Ip 0
0 −Iq

]
⊕

[
0 Ir

Ir 0

]
⊕

[
Is 0
0 −It

]

where p + q + r = m and p + q + 2r + s + t = n.

2. If the subspaces X1, X
′
0, X

′′
0 , X2 are defined by

X1 = span{u1, . . . ,up+q},
X ′

0 = span{up+q+1, . . . ,up+q+r},
X ′′

0 = span{up+q+r+1, . . . ,up+q+2r},
X2 = span{up+q+2r+1, . . . ,up+q+2r+s+t},

then X ′
0, X ′′

0 are neutral subspaces with equal dimensions, X1, X2 and
X0 = X ′

0 ⊕X ′′
0 are non-degenerate and mutually H-orthogonal, and Fn =

X0 ⊕X1 ⊕X2 as well as

X = X1 ⊕X ′
0, X [⊥] = X2 ⊕X ′

0, X ∩X [⊥] = X ′
0.

Proof. Let p + q + r = m and let E = {ei}m
i=1 be a basis of X which exists

according to Theorem 2.6 such that

[ei, ej ] =





+1, for r + 1 ≤ i = j ≤ r + p

−1, for r + p + 1 ≤ i = j ≤ r + p + q

0, otherwise
.

Furthermore, let Ẽ = {∼ei}m
i=1 be a dual basis with respect to E , i.e.

[ei,
∼
ej ] = δij for 1 ≤ i, j ≤ m.

Then the vectors defined by4

≈
ek =

∼
ek − 1

2

r∑
µ=1

[
∼
ek,

∼
eµ] eµ for 1 ≤ k ≤ r

satisfy

[
≈
ek,

≈
el] = 0 for 1 ≤ k, l ≤ r and

[ei,
≈
ek] = δik for 1 ≤ i ≤ m, 1 ≤ k ≤ r.

If we now set

e′k =
1√
2
(ek +

≈
ek) and e′′k =

1√
2
(ek − ≈

ek) for 1 ≤ k ≤ r,

4The same construction is also specified in [BR] and in [BMRRR2] within the scope of
the proof for Witt’s theorem. However, the necessary orthonormalisation of the vectors ẽk is
there not carried out completely, so that the basis {ei, e

′
k, e′′k} also constructed there is not

orthonormalised in general.
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then it follows that

[e′k, e′l] = δkl, [e′′k , e′′l ] = −δkl, [e′k, e′′l ] = 0 for 1 ≤ k, l ≤ r and
[ei, e′k] = 0, [ei, e′′k ] = 0 for r + 1 ≤ i ≤ m, 1 ≤ k ≤ r.

Thus the set of the vectors

{u1, . . . ,um+r} = {ei}m
i=r+1 ∪ {e′k}r

k=1 ∪ {e′′k}r
k=1

forms an orthonormalised basis of a non-degenerate subspace Y ⊂ Fn which can
be extended with n−m−r further vectors um+r+1, . . . ,un to an orthonormalised
basis of Fn

[ui,uj ] = εiδij , εi ∈ {+1,−1} for 1 ≤ i, j ≤ n.

For the matrix U consisting of these basis vectors we have

U∗HU = (Ip ⊕−Iq)⊕ (Ir ⊕−Ir)⊕ (Is ⊕−It),

where s specifies the number of positive and t specifies the number of nega-
tive extending vectors, and a suitable sorting is assumed. Instead of the basis
{u1, . . . ,un} it is also possible to use the basis

{u1, . . . ,up+q, ũp+q+1, . . . , ũp+q+2r,up+q+2r+1, . . . ,un}
with {ũp+q+1, . . . , ũp+q+2r} = {ek}r

k=1 ∪ {
≈
ek}r

k=1.

For the matrix Ũ consisting of these basis vectors we have

Ũ∗HŨ =
[
Ip 0
0 −Iq

]
⊕

[
0 Ir

Ir 0

]
⊕

[
Is 0
0 −It

]
,

and evidently the second part of the assertion is fulfilled by this basis, too.

An important application of this result is the following Theorem of Witt con-
cerning the extension of isometries, whose proof has been taken over from [BR,
Theorem 4.1] and [BMRRR2, Theorem 2.1]. Here π(H) denotes the number of
positive eigenvalues of the selfadjoint matrix H.

Theorem 2.9 (Witt, extension of isometries). Let F = R or F = C and
let [., .]1, [., .]2 be two indefinite scalar products in Fn with the underlying non-
singular selfadjoint matrices H1,H2 ∈ Fn×n for which π(H1) = π(H2). If X1

and X2 are subspaces of Fn and U0 : X1 → X2 is a nonsingular transformation
such that

[U0x,U0y]2 = [x,y]1 for all x,y ∈ X1,

then there exists a nonsingular transformation U : Fn → Fn such that

[Ux,Uy]2 = [x,y]1 for all x,y ∈ Fn and Ux = U0x for all x ∈ X1.

Proof. Let dim X1 = m and let {e1, . . . , em} be an orthonormalised (according
to Theorem 2.6) basis of X1 with

[ek,el] = εkδkl, εk =





+1, for 1 ≤ k ≤ p

−1, for p + 1 ≤ k ≤ p + q

0, for p + q + 1 ≤ k ≤ p + q + r
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and p + q + r = m. Then {f1, . . . , fm} with fk = U0 ek for 1 ≤ k ≤ m is an
orthonormalised basis of X2, and both bases can be extended to bases of Fn

according to Theorem 2.8. For the matrices R1 = [e1 . . . en] and R2 = [f1 . . . fn]
consisting of the extended basis vectors we have

R∗
1H1R1 = R∗

2H2R2 =
[
Ip 0
0 −Iq

]
⊕

[
0 Ir

Ir 0

]
⊕

[
Is 0
0 −It

]

with r + s + t = n−m. This results from the fact that the number of positive
and the number of negative vectors, s and t respectively, must be identical for
both bases, which is implied by the assumption of the equal signatures of the
matrices H1 and H2. Thus the transformation defined by

UR1 = R2 or U = R2R−1
1

fulfills the assertion of the theorem.

2.4 The HQR decomposition

The H-orthogonalisation methods described in Theorems 2.6 and 2.7 allow to
derive two matrix factorisations which may be seen as generalisations of the QR
factorisation with column pivoting [GVL, Section 5.4]. For this purpose it is
useful to make the following observations:

1st observation: The proof of Theorem 2.6 suggests to determine the pivot
vector y for the H-orthonormalisation step by selecting k and l such that
|[xk,xl]| is maximised and then to use

y =





xk, if k = l

x̃k, if k 6= l and |[x̃k, x̃k]| ≥ |[x̃l, x̃l]|
x̃l, if k 6= l and |[x̃k, x̃k]| < |[x̃l, x̃l]|

where

[x̃k x̃l] =
1√
2
[xk xl]

[
1 1
ϕ −ϕ

]
with ϕ =

[xk,xl]
|[xk,xl]| .

With this strategy it is ensured that [y,y] 6= 0, but it is not ensured that

|[y,y]| = max
1≤i<j≤m

{|[xi,xi]|, |[x̃i, x̃i]|, |[x̃j , x̃j ]|
}

(2.1)

which can be seen on the following example.

Example 2.10. Let H = diag(1,−1) and x1 = (2, 1)T , x2 = (1, 0)T . Then

[x1,x1] = 3, [x1,x2] = 2, [x2,x2] = 1.

On the other hand x̃1 = (x1 + x2)/
√

2 and x̃2 = (x1 − x2)/
√

2 fulfil

[x̃1, x̃1] = 4, [x̃2, x̃2] = 0,

so that |[x̃1, x̃1]| > |[x1,x1]| although |[x1,x1]| maximises |[xk,xl]|. ♦
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The method can thus be stabilised by determining y such that (2.1) holds
which is numerically uncritical because the transformed vectors satisfy

‖x̃k‖2 + ‖x̃l‖2 = ‖xk‖2 + ‖xl‖2.

2nd observation: The normalisation step in the proof of Theorem 2.7 can be
modified with a factor α by setting

u1 =
α√
λ1

x1, v1 =
ε1

α
√

λ1

y1 if F = R or

u1 =
α

ω1
x1, v1 =

1
αω1

y1 if F = C.

If the particular choice α =
√
‖y1‖/‖x1‖ is made, then ‖u1‖ = ‖v1‖ is ensured

which has a stabilising effect. This is demonstrated with the following example
in which ‖A‖F =

√
tr(A∗A) denotes the Frobenius norm and condF (A) =

‖A‖F ‖A−1‖F denotes the condition number of a matrix A.

Example 2.11. Let H = diag(1,−1) and x = (x, x)T , y = (y, −y)T with
x, y ∈ C\{0}. Then X = span{x} and Y = span{y} are neutral subspaces of
equal dimension and X ∩ Y = {0}, so that Theorem 2.7 can be applied. Let
λ = [x,y] = 2xy and let ω be one of the two square roots of λ. Then the
columns [x′ y′] of the matrix

X1 =




x

ω

y

ω
x

ω
− y

ω


 with X−1

1 =
|ω|2
2xy




y

ω

y

ω
x

ω
−x

ω




are the vectors obtained by orthonormalisation without modification and

condF (X1) =
|x|2 + |y|2
|x||y| because

‖X1‖2F =
2(|x|2 + |y|2)

|ω|2 , ‖X−1
1 ‖2F =

|ω|2(|x|2 + |y|2)
2|x|2|y|2 .

Now, let α =
√
‖y‖/‖x‖ =

√
|y|/|x|. Then the columns [x′′ y′′] of the matrix

X2 =




αx

ω

y

αω
αx

ω
− y

αω


 with X−1

2 =
|ω|2
2xy




y

αω

y

αω
αx

ω
−αx

ω




are the vectors obtained by orthonormalisation with modification and

condF (X2) =
α4|x|2 + |y|2

α2|x||y| = 2 because

‖X2‖2F =
2(α4|x|2 + |y|2)

α2|ω|2 , ‖X−1
1 ‖2F =

|ω|2(α4|x|2 + |y|2)
2α2|x|2|y|2 .

But for arbitrary real numbers a, b with ab > 0 it is true that 0 ≤ (a − b)2 =
a2− 2ab + b2 or 2 ≤ (a2 + b2)/ab, so that in particular condF (X1) ≥ 2 and thus

condF (X1) ≥ condF (X2).

Therefore, the matrix X2 obtained by modification is at least as well conditioned
as X1; but in the case |x| 6= |y| it is always better conditioned. ♦
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Now all preparations are complete and the matrix factorisations can be de-
scribed. We begin with the factorisation corresponding to Theorem 2.6 which
will be called the HQR decomposition. Let H ∈ Fn×n be nonsingular and self-
adjoint and let A ∈ Fn×m. Then the HQR decomposition of A is given by

AP = QR (2.2a)

where P ∈ Fm×m is unitary or orthogonal, Q ∈ Fn×m satisfies

Q∗HQ = D = D1 ⊕ 0 with D1 = diagp(±1) (2.2b)

and R ∈ Fm×m has the form

R =
[
R11 R12

0 I

]
(2.2c)

where R11 ∈ Fp×p is an upper triangular block such that D1R11 has positive
real diagonal elements. Note that the columns of A and Q correspond to the
vectors xi and ui used in the proof of Theorem 2.6.

The decomposition is obtained by stepwise transformation of Q0 = A into
Qp = Q. Suppose that after k steps

Qk = APkR−1
k , Q∗

kHQk = Dk ⊕Ck, Rk =
[
R(k)

11 R(k)
12

0 I

]

where Dk = diagk(±1) and R(k)
11 ∈ Fk×k. Then the symmetric or Hermitian

matrix Ck = [cij ] contains the scalar products of the not yet H-orthonormalised
columns of Qk. To determine the pivot vector let

χij =





cii, if i = j

(cii + cjj)/2 + |cij |, if i < j

(cii + cjj)/2− |cji|, if i > j

and let µ, ν be indices such that |χµν | = max |χij |. If χµν = 0, the transforma-
tion is complete. Otherwise, let

Uk = I⊕U22, U22 =





Π1µ, if µ = ν

Ωµν(cµν/|cµν |)Π1µ, if µ < ν

Ωνµ(cνµ/|cνµ|)Π1µ, if µ > ν

where Ωµν(ϕ) = [ωij ] and Πµν = [πij ] are defined by




ωµµ = ϕ/
√

2, ωµν = ϕ/
√

2,

ωνµ = 1/
√

2, ωνν = −1/
√

2,
ωij = δij otherwise



 and





πµµ = 0, πµν = 1,
πνµ = 1, πνν = 0,
πij = δij otherwise



 .

Then Uk is orthogonal or unitary and the transformation

Q′
k = APkR−1

k Uk = A(PkUk)(U∗
kRkUk)−1 = APk+1(R′

k)−1

can be made. Now we have

(Q′
k)∗H(Q′

k) = Dk ⊕C′
k, C′

k =
[
c′11 c′12
c′21 C′

22

]
, R′

k =
[
R(k)

11 R(k)
12 U22

0 I

]
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where c′11 = χµν , so that the k+1-th column of Q′
k actually contains the selected

pivot vector.
It remains to H-orthonormalise the columns of Q′

k. For this purpose let
λ1 =

√|c′11| and ε1 = sign(c′11). Then

C̃k = Λ−∗C′
kΛ

−1 =
[

ε1 c̃12

c̃21 C′
22

]
, c̃12 =

c′12
λ1

for Λ = λ1 ⊕ I

and

C′′
k = Γ−∗C̃kΓ−1 =

[
ε1 0
0 C′′

22

]
, C′′

22 = C′
22 −

c′21c
′
12

c′11
for Γ =

[
1 ε1c̃12

0 I

]
.

Hence, if we define

Wk = I⊕W22, W22 = ΓΛ =
[
λ1 ε1c̃12

0 I

]

and use the transformation

Qk+1 = APk+1(R′
k)−1W−1

k = APk+1(WkR′
k)−1 = APk+1R−1

k+1,

we obtain

Q∗
k+1HQk+1 = Dk ⊕C′′

k = Dk+1 ⊕Ck+1,

Rk+1 =
[
R(k)

11 R(k)
12 U22

0 W22

]
=

[
R(k+1)

11 R(k+1)
12

0 I

]
.

Thus, the transformation itself is described. However, we must also consider
that the computation of one scalar product

[x,y] =
n∑

α,β=1

hαβ xβ yα

already requires n2−1 additions and 2n2 multiplications. It would therefore be
too expensive to recompute the matrix Ck in each transformation step. This
can be avoided in the following way:

Suppose that the matrix R̃ is initialised with C0 = A∗HA and that after k
transformation steps

R̃k =
[
R̃(k)

11 R̃(k)
12

0 Ck

]
.

Then using

R̃′
k =

[
R̃(k)

11 R̃(k)
12 U22

0 U∗
22CkU22

]
, U∗

22CkU22 = C′
k

and

R̃k+1 =
[
R̃(k)

11 R̃(k)
12 U22

0 W−∗
22 C′

k

]
, W−∗

22 C′
k =

[
ε1λ1 c̃12

0 C′′
22

]

we find that

R̃k+1 =
[
R̃(k+1)

11 R̃(k+1)
12

0 Ck+1

]
, Ck+1 = C′′

22
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on the one hand contains the scalar products required for the next step. On the
other hand the comparison with the matrix Rk+1 shows that

R̃(k+1)
11 = Dk+1R

(k+1)
11 and R̃(k+1)

12 = Dk+1R
(k+1)
12 .

In other words, when the transformation terminates in the p-th step and the
block Cp = 0 of R̃p is replaced by I we have computed

R̃p = (Dp ⊕ I)Rp.

This has the further advantage that the signs of the first p diagonal elements of
R̃p are just the diagonal elements of Dp.

Finally, it must also be considered that the theoretical termination criterion
χµν = 0 is too hard and must be replaced by

χµν ≤ ε

where ε is some user supplied constant. An appropriate choice might be ε =
εmach‖H‖F ‖A‖2F ≥ εmach‖A∗HA‖F where εmach is the machine accuracy.

Combining all of the above we obtain the following algorithm which is de-
scribed using the “colon” notation

A = [aij ] ∈ Fm×n,

A(p : q, r : s) =




apr · · · aps

...
...

aqr · · · aqs


 ∈ F(q−p+1)×(s−r+1), (2.3)

A(p, r : s) = A(p : p, r : s), A(p, :) = A(p, 1 : n),
A(p : q, r) = A(p : q, r : r), A(:, r) = A(1 : m, r)

introduced in [GVL, Sections 1.1.8, 1.2.5].

Algorithm 2.12 (HQR decomposition). Given the matrices A ∈ Fn×m,
H ∈ Fn×n and a tolerance parameter ε > 0, the following algorithm computes
the HQR decomposition (2.2). The matrix A is overwritten with Q. The
matrices P and R are stored in separate arrays. To keep the algorithm short
the pivot transformation is given in matrix notation.

R = A∗HA, P = Im

for k = 1, . . . , m do
α = 0
for i = k, . . . , m do

if |R(i, i)| > |α| then
α = R(i, i), µ = i, ν = i

end if
for j = i + 1, . . . , m do

β =
(
R(i, i) + R(j, j)

)
/2 + sign

(
R(i, i) + R(j, j)

) |R(i, j)|
if |β| > |α| then

α = β, µ = i, ν = j
end if

end for
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end for
if |α| ≤ ε then

p = k − 1
R(k : m, k : m) = Im−p

return
end if
if µ 6= ν then

ρ = R(µ, ν)/|R(µ, ν)|
A = AΩµν(ρ), P = PΩµν(ρ), R = Ωµν(ρ)∗RΩµν(ρ)
if α < 0 then

µ = ν
end if

end if
if µ 6= k then

A = AΠµk, P = PΠµk, R = Π∗
µkRΠµk

end if
σ = sign(α)
α =

√
σα

R(k, k) = σα
ρ = 1/α
A(:, k) = ρA(:, k)
R(k, k + 1 : m) = ρR(k, k + 1 : m)
for j = k + 1, . . . , m do

ρ = σR(k, j)
A(:, j) = A(:, j)− ρA(:, k)
R(j, k + 1 : m) = R(j, k + 1 : m)− ρR(k, k + 1 : m)
R(j, k) = 0

end for
end for
p = m

In order to understand how the matrix Q has to be interpreted let

im(A) = A1 ⊕A0 with dim A1 = p and dim A0 = q

be a subspace decomposition (according to Theorem 2.3) such that A1 is non-
degenerate and A0 is neutral. Moreover, let

Q =
[
Q1 Q0

]

be a partitioning where Q1 ∈ Fn×p and Q0 ∈ Fn×(m−p). Then

im(Q1) = A1 and im(Q0) = A0,

so that Q1 always has full rank. However, the rank of Q0 depends on rank(A) =
p + q. Here the following cases can occur:

(1) q = 0, p + q = m: Q0 does not exist,

(2) q = 0, p + q < m: Q0 = 0,

(3) q > 0, p + q = m: Q0 has full rank,
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(4) q > 0, p + q < m: Q0 is rank defective.

Whereas the columns of Q0 in case (3) form a basis of the neutral space A0, in
case (4) they only form a spanning set. If actually a basis of A0 is required in case
(4), it can be obtained via a QR decomposition with column pivoting. A QR
decomposition (without column pivoting) may also be used to orthonormalise
the columns of Q0 in case (3). Clearly, the same results can also be obtained
via a further HQR decomposition by setting H = I.

We come to the matrix factorisation corresponding to Theorem 2.7 which
will be called the HQR-2 decomposition. Let H ∈ Fn×n be nonsingular and
selfadjoint and let A,B ∈ Fn×m. Then the HQR-2 decomposition of A and B
is given by

APA = QARA, BPB = QBRB (2.4a)

where PA,PB ∈ Fm×m are permutations (one of them possibly signed if F = R),
QA,QB ∈ Fn×m satisfy

Q∗
AHQB = D = Ip ⊕ 0 (2.4b)

and RA,RB ∈ Fm×m have the form

RA =
[
RA,11 RA,12

0 I

]
, RB =

[
RB,11 RB,12

0 I

]
(2.4c)

where RA,11,RB,11 ∈ Fp×p are upper triangular blocks with real or complex
diagonal elements. Note that the columns of A,B and QA,QB correspond to
the vectors xi,yj and ui,vj used in the proof of Theorem 2.7.

In the intended application of the HQR-2 decomposition the matrices A and
B satisfy

A∗HA = B∗HB = 0 and rank(A∗HB) = m.

This means that the columns of A and B form bases of the neutral subspaces
im(A) and im(B) for which C = im(A)⊕ im(B) is non-degenerate. In this case
the columns of QA and QB form a bi-H-orthogonal basis of C, but we do not
discuss the further situations which can occur.

The decomposition is computed analogously to the HQR decomposition, so
that not all the details need to be described again. For a better understanding
of the following algorithm it should only be mentioned that the matrix R,
initialised with C0 = A∗HB, is stepwise transformed such that

Rk =

[
R(k)

11 R(k)
B,12

R(k)∗
A,12 Ck

]
→ R =

[
R11 RB,12

R∗
A,12 I

]
.

Moreover, the scaling factors τk explained with Example 2.11 are computed in
each step. Let T = diag(τ1, . . . , τp) ⊕ I be a diagonal matrix containing this
factors and let RL,RD,RU contain the lower triangle, the diagonal and the
upper triangle of the final matrix R. Then at termination

RA = T−1R∗
D + R∗

L and RB = TRD + RU .

In the case F = R it must additionally be ensured that the scalar product
of the pivot vectors is positive for which a reflection with the sign matrix Σµ =
diag(σi) where

σi =

{
−1, if i = µ

+1, otherwise
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is applied, if necessary.

Algorithm 2.13 (HQR-2 decomposition). Given the matrices A,B ∈ Fn×m,
H ∈ Fn×n and a tolerance parameter ε > 0, the following algorithm computes
the HQR-2 decomposition (2.4). The matrices A and B are overwritten with
QA and QB . The matrix R and the scaling factors τ are stored in separate ar-
rays. The permutations PA and PB are stored in separate integer arrays5. To
keep the algorithm short the pivot transformation is given in matrix notation.

R = A∗HB, PA = Im, PB = Im

for k = 1, . . . , m do
α = 0
for i = k, . . . , m do

for j = i, . . . ,m do
if |R(i, j)| > |α| then

α = R(i, j), µ = i, ν = j
end if

end for
end for
if |α| ≤ ε then

p = k − 1
R(k : m, k : m) = Im−p

return
end if
if µ 6= k then

A = AΠµk, PA = PAΠµk, R = Π∗
µkR

end if
if ν 6= k then

B = BΠνk, PB = PBΠνk, R = RΠνk

end if
if F = R and α < 0 then

B = BΣk, PB = PBΣk, R = RΣk, α = −α
end if

τ(k) =
√
‖B(:, k)‖/‖A(:, k)‖

α =
√

α
R(k, k) = α
ρ = τ(k)/α
A(:, k) = ρA(:, k)
R(k, k + 1 : m) = ρR(k, k + 1 : m)
ρ = 1/α/τ(k)
B(:, k) = ρB(:, k)
R(k + 1 : m, k) = ρR(k + 1 : m, k)
for j = k + 1, . . . , m do

ρ = R(j, k)
A(:, j) = A(:, j)− ρA(:, k)
R(j, k + 1 : m) = R(j, k + 1 : m)− ρR(k, k + 1 : m)
ρ = R(k, j)

5The reflections with Σk can also be stored in the array (π1, . . . , πm) representing PB by
negating the k-th element. The corresponding matrix contains the columns sign(πµ) e|πµ|,
1 ≤ µ ≤ m, where {eµ} is the canonical basis of Fm.
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B(:, j) = B(:, j)− ρB(:, k)
end for

end for
p = m

There are several further decompositions which generalise the QR factori-
sation in the presence of an indefinite scalar product. In particular, the HR
decomposition (for example see [BU])

A = HR, H∗D1H = D2

where A,H,R ∈ Fn×n, R is upper triangular and D1,D2 = diagn(±1), is
closely related to the HQR decomposition. In order to avoid confusion let us
rename the H in this decomposition to Q. Then we obtain

A = QR, Q∗D1Q = D2

which shows that the HR decomposition is just a HQR decomposition for square
matrices in the particular case H = D1 and P = I. Of course the HR decompo-
sition breaks down when im(A) is degenerate. However, the particular choice
of the metric allows to use hyperbolic Householder or Givens rotations to com-
pute the HR decomposition. In contrast to this our approach is based on a
generalised modified Gram-Schmidt method and might therefore not always be
perfectly accurate. Nevertheless, we will see in the next chapter that the HQR
decomposition mostly produces very well results.

We end this section with a first application of the HQR decomposition. The
following method shows how an H-orthogonal basis of a subspace can be ex-
tended to a complete H-orthogonal basis of Fn. This application of Theorem
2.8 will help to compute an indefinite generalisation of the singular value de-
composition numerically.

Method 2.14 (Extension of bases). Let m < n and let X ∈ Fn×m be a
matrix with full column rank such that

X = (X1|X2), X∗HX = D1 ⊕ 0q, D1 = diagp(±1)

where X1 ∈ Fn×p, X2 ∈ Fn×q and p + q = m. Moreover, let

HX = UΣV∗ with U ∈ Fn×m and Σ,V ∈ Fm×m

be a thin singular value decomposition, and let

Y = (Y1|Y2) = UΣ−1V∗

where Y is partitioned according to X. Then Y∗HX = VΣ−1U∗UΣV∗ = Im,
so that the matrix defined by

X(1) = (X1|X2|Y2)

satisfies

X(1)∗HX(1) = D1 ⊕
[
0q Iq

Iq Y∗
2HY2

]
.
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Now the block Y∗
2HY2 must be eliminated and

[
I A
0 I

]∗ [
0 I
I G

] [
I A
0 I

]
=

[
0 I
I A + A∗ + G

]

with A = − 1
2G shows, that this can be done by applying the transformation

Ip ⊕
[
Iq − 1

2Y
∗
2HY2

0q Iq

]

to X(1). Hence, for

X(2) = (X1|X2|X3) with X3 = Y2 − 1
2X2(Y∗

2HY2)

it follows that

X(2)∗HX(2) = D1 ⊕D23, D23 =
[
0q Iq

Iq 0q

]
.

In order to extend X(2) to a nonsingular n× n matrix let

X(2) = QR with Q = (Q1|Q2|Q3|Q4) ∈ Fn×n

be a QR decomposition where Q is partitioned according to X. Then

X(3) = (X1|X2|X3|Q4) = (X(2)|Q4)

satisfies

X(3)∗HX(3) =
[
D1 ⊕D23 X(2)∗HQ4

Q∗
4HX(2) Q∗

4HQ4

]
.

Now the blocks X(2)∗HQ4 and Q∗
4HX(2) must be eliminated and

[
I A
0 I

]∗ [
E F
F∗ G

] [
I A
0 I

]
=

[
E EA + F

A∗E + F∗ A∗EA + F∗A + A∗F + G

]

with A = −E−1F shows, that this can be done by applying the transformation
[
Ip+2q −(D1 ⊕D23)−1X(2)∗HQ4

0 In−p−2q

]

to X(3). Hence, for

X(4) = (X1|X2|X3|Y4) with Y4 = Q4 −X(2)(D1 ⊕D23)X(2)∗HQ4

it follows that
X(4)∗HX(4) = D1 ⊕D23 ⊕Y∗

4HY4.

Finally, using a HQR decomposition

Y4P4 = X4R4 with X∗
4HX4 = D4 = diagn−p−2q(±1)

and setting
X(5) = (X1|X2|X3|X4)

we obtain
X(5)∗HX(5) = D1 ⊕D23 ⊕D4.

Thus the wanted extension of X has been determined. ♦



Chapter 3

H-polar decompositions

3.1 Introduction

In Definition 1.3 we have already introduced the H-polar decomposition of a
matrix A ∈ Fn×n as a factorisation of the form

A = UM (3.1)

where U is an H-isometry and M is H-selfadjoint. These decompositions are
investigated in detail in [BMRRR1–3] and [MRR] as well as in the further ref-
erences specified there. More specialised results concerning H-polar decomposi-
tions of H-normal matrices (i.e. matrices which commute with their H-adjoint)
are derived in [LMMR]. An essential result of these studies is the fact that not
every square matrix admits an H-polar decomposition unless H is definite.

H-polar decompositions are also the central subject of this chapter, in which
theoretical as well as practical questions are discussed. In Section 3.2 some
results of the investigations cited above are reviewed and in Section 3.3 a new
criterion for the existence of H-polar decompositions is derived. The remaining
Sections 3.4 – 3.6 are concerned with the numerical computation of H-polar
decompositions.

3.2 Canonical forms and H-polar decompositions

The summary of well-known results begins with a theorem on the canonical
form of a complex matrix pair (A,H) where A is H-Hermitian. This form is
obtained under a transformation of the kind (A,H) → (S−1AS,S∗HS). It goes
back to results of Kronecker and Weierstrass and is fundamental for exploring
H-Hermitian matrices.

Theorem 3.1 (Canonical form). Let H ∈ Cn×n be nonsingular and Hermi-
tian and let A ∈ Cn×n be H-Hermitian. Then there exists a nonsingular matrix
S ∈ Cn×n such that

S−1AS = A1 ⊕ . . .⊕Ak and S∗HS = H1 ⊕ . . .⊕Hk (3.2a)

where the blocks Aj and Hj are of equal size and each pair (Aj ,Hj) has one
and only one of the following forms:

27
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1. Pairs belonging to real eigenvalues

Aj = Jp(λ) and Hj = εZp (3.2b)

with λ ∈ R, p ∈ N and ε ∈ {+1,−1}.
2. Pairs belonging to non-real eigenvalues

Aj =
[
Jp(λ) 0

0 Jp(λ)

]
and Hj =

[
0 Zp

Zp 0

]
(3.2c)

with λ ∈ C\R, Im(λ) > 0 and p ∈ N.

Moreover, the canonical form (S−1AS,S∗HS) of (A,H) is uniquely determined
up to the permutation of blocks.

Proof. See [GLR, Theorem I.3.3].

The ordered set of the signs ε appearing in the blocks (3.2b) is an invariant
of the canonical form and is called its sign characteristic. It allows to classify H-
Hermitian matrices by H-unitary similarity [GLR, Section I.3.5]. Furthermore,
an analogous form also exists for real matrices [GLR, Theorem I.5.3], but this
is not required for our investigations.

The next statements summarise the most important results on the existence
of H-polar decompositions.

Theorem 3.2 (H-polar decomposition of real matrices). Let H ∈ Rn×n

be nonsingular and symmetric, and let A ∈ Rn×n. Then A admits a real H-
polar decomposition A = UrMr (Ur ∈ Rn×n is H-orthogonal, Mr ∈ Rn×n is H-
symmetric) if and only if it admits a complex H-polar decomposition A = UcMc

(Uc ∈ Cn×n is H-unitary, Mc ∈ Cn×nis H-Hermitian).

Proof. See [BMRRR1, Lemma 4.2].

Theorem 3.3 (Existence of H-polar decompositions). Let F = R or F =
C and let A ∈ Fn×n. Then A admits an H-polar decomposition if and only
if there exists an H-selfadjoint matrix M ∈ Fn×n such that M2 = A[∗]A and
kerM = kerA.

Proof. See [BMRRR1, Theorem 4.1] and [BR, Lemma 4.1].

Theorem 3.4 (Existence of H-selfadjoint square roots). Let F = R or
F = C and let A ∈ Fn×n. Then there exists an H-selfadjoint matrix M such
that M2 = A[∗]A and kerM = kerA if and only if the canonical form of the
pair (A[∗]A,H) satisfies the following conditions:

1. Blocks belonging to a negative real eigenvalue λ < 0 can be represented in
the form ( r⊕

i=1

[Jpi(λ)⊕ Jpi(λ)],
r⊕

i=1

[Zpi ⊕−Zpi ]
)

.
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2. Blocks belonging to the eigenvalue 0 can be represented in the form (J(1)⊕
J(2) ⊕ J(3),Z(1) ⊕ Z(2) ⊕ Z(3)) where

(J(1),Z(1)) =
( r⊕

i=1

[Npi
⊕Npi

],
r⊕

i=1

[Zpi
⊕−Zpi

]
)

with pi ≥ 1,

(J(2),Z(2)) =
( s⊕

j=1

[Npj ⊕Npj−1],
s⊕

j=1

[εjZpj ⊕ εjZpj−1]
)

with pj > 1,

(J(3),Z(3)) =
( t⊕

k=1

0,

t⊕

k=1

εk

)
.

3. If a basis in which the blocks from 2. exist is denoted with E1 ∪ E2 ∪ E3,

E1 = {e(1)
i,k} r

i=1
2pi

k=1 , E2 = {e(2)
i,k} s

i=1
2pi−1
k=1 , E3 = {e(3)

i,1 } t
i=1 ,

then such a basis must exist in which

kerA = span{e(1)
i,1 + e(1)

i,pi+1} r
i=1 ⊕ span{e(2)

i,1 } s
i=1 ⊕ span{e(3)

i,1 } t
i=1 .

(Remark: From this condition it follows that kerM = kerA.)

Proof. See [BMRRR1, Theorem 4.4] and [BMRRR3, Errata].

Whereas Theorem 3.2 makes it possible to transfer results concerning com-
plex H-polar decompositions to real decompositions, Theorem 3.3 — whose
proof is based on Witt’s theorem — and Theorem 3.4 constitute the essential
criterion for the existence of H-polar decompositions. Note that there is an error
in the original Theorem 4.4 in [BMRRR1] which is pointed out by the following
example.

Example 3.5. With the notation used in [BMRRR1], let

H =
[
1 0
0 −1

]
, X =

1√
1− ξ2

[
1 + ξ −1− ξ
1 + ξ −1− ξ

]
, X[∗]X =

[
0 0
0 0

]

with −1 < ξ < 1. Then according to the statement (ii) of Theorem 4.4
in [BMRRR1] the equation (X[∗]X,H) = (B0,H0) is satisfied and kerB0 =
span{e1, e2}. However, kerX = span{e1 + e2} 6= kerB0, so that according to
the statement (iii) of the theorem the H-polar decomposition

X = UA, U =
1√

1− ξ2

[
1 ξ
ξ 1

]
, A =

[
1 −1
1 −1

]

should not exist. ♦

This error is corrected by making a change in the second condition of The-
orem 3.4. For the size of the blocks from (J(1),Z(1)) now the condition pi ≥ 1
is imposed instead of the original condition pi > 1. This correction is made in
[BMRRR3, Errata] and the Theorem 3.21 contained in Section 3.4 also shows
the need for modifying the condition.

If a matrix admits an H-polar decomposition, then it mostly admits sev-
eral H-polar decompositions. The various decompositions are described in the
following result.



CHAPTER 3. H-POLAR DECOMPOSITIONS 30

Theorem 3.6 (Canonical forms of H-selfadjoint square roots). Let F =
R or F = C and let A ∈ Fn×n. If there exists an H-selfadjoint matrix M such
that M2 = A[∗]A and kerM = kerA, then the following relationships exist
between the (complex) canonical form of the pairs (M2,H) and (M,H):

a. Non-real eigenvalues. If the canonical form of (M2,H) contains a block
of the form

(Jp(α + iβ)⊕ Jp(α− iβ),Z2p) with α, β ∈ R and β > 0,

then the canonical form of (M,H) contains a block of the form

(Jp(λ)⊕ Jp(λ),Z2p) or (Jp(−λ)⊕ Jp(−λ),Z2p) with λ2 = α + iβ.

b. Positive real eigenvalues. If the canonical form of (M2,H) contains a
block of the form

(Jp(α2), εZp) with α > 0,

then the canonical form of (M,H) contains a block of the form

(Jp(α), εZp) or (Jp(−α), (−1)p+1εZp).

c. Negative real eigenvalues. If the canonical form of (M2,H) contains a
block of the form

(Jp(−β2)⊕ Jp(−β2),Zp ⊕−Zp) with β > 0,

then the canonical form of (M,H) contains a block of the form

(Jp(iβ)⊕ Jp(−iβ),Z2p).

d. First case with eigenvalue 0. If the canonical form of (M2,H) contains a
block of the form

(Np ⊕Np,Zp ⊕−Zp) ∈ (J(1),Z(1)),

then the canonical form of (M,H) contains a block of the form

(N2p,Z2p) or (N2p,−Z2p).

Moreover, a canonical basis can be chosen in such a way that the eigen-
vector of M coincides with the sum of the eigenvectors of the two Jordan
blocks of M2.

e. Second case with eigenvalue 0. If the canonical form of (M2,H) contains
a block of the form

(Np ⊕Np−1, εZp ⊕ εZp−1) ∈ (J(2),Z(2)),

then the canonical form of (M,H) contains a block of the form

(N2p−1, εZ2p−1).

Moreover, a canonical basis can be chosen in such a way that the eigen-
vector of M coincides with the eigenvector of the p × p Jordan block of
M2.
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f. Third case with eigenvalue 0. If the canonical form of (M2,H) contains
a block of the form

(0, ε) ∈ (J(3),Z(3)),

then the canonical form of (M,H) contains a block of the form

(0, ε).

Proof. See [BMRRR1, Lemma 7.8].

We end this summary with a useful corollary which is obtained by combining
the Theorems 3.3, 3.4 and 3.6 (a, b).

Corollary 3.7. Let F = R or F = C and let A ∈ Fn×n such that σ(A[∗]A) ⊂
C\(−∞, 0]. Then A admits an H-polar decomposition A = UM such that
σ(M) ⊂ {z ∈ C|Re(z) > 0}.

3.3 A new criterion for the existence of H-polar
decompositions

We will now derive a new criterion for the existence of H-polar decompositions.
Thereby H-Hermitian as well as Z-Hermitian matrices occur, so that the nota-
tion AH = A[∗]H will be used. The criterion is investigated only for complex
matrices, with regard to Theorem 3.2, and is based on the following observation.

Lemma 3.8. If A ∈ Cn×n admits an H-polar decomposition, then the canonical
forms of the pairs (AHA,H) and (AAH ,H) are identical.

Proof. Let A = UM be an H-polar decomposition of A. Then UH = U−1 and
MH = M imply

U−1AAHU = U−1(UM)(MHUH)U = M2 = (MHUH)(UM) = AHA,

so that AHA and AAH are H-unitary similar. If now (R−1AHAR,R∗HR) =
(J,Z) is the canonical form of the pair (AHA,H) and if S = UR, then
(S−1AAHS,S∗HS) = (R−1U−1AAHUR,R∗U∗HUR) = (J,Z) is the canon-
ical form of the pair (AAH ,H), too.

Clearly, the question arises whether the converse of this statement is also
true. For nonsingular matrices it can be answered with the help of the following
Lemma.

Lemma 3.9. If A ∈ Cn×n is nonsingular, then A has a square root which can
be expressed as an invertible polynomial in A.

Proof. Let R−1AR = Jp1(λ1)⊕ . . .⊕Jpk
(λk) be the Jordan normal form of A.

Then every matrix defined by

√
A = R

(√
Jp1(λ1)⊕ . . .⊕

√
Jpk

(λk)
)

R−1
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where

√
Jp(λ) =




f(λ)
f ′(λ)

1!
f ′′(λ)

2!
· · · f (p−1)(λ)

(p− 1)!

f(λ)
f ′(λ)

1!
. . .

...

f(λ)
. . . f ′′(λ)

2!
. . . f ′(λ)

1!
f(λ)




with f(λ) =
√

λ

is a square root of A. Moreover, if for all multiple eigenvalues λ0 ∈ σ(A) the
same (!) branch of the multi-valued function

√
λ0 is used in the blocks

√
Jp(λ0),

then
√

A according to [WED, Chapter VII, Theorem 2]6 can also be expressed
as an invertible polynomial in A.

Theorem 3.10. Let A ∈ Cn×n be nonsingular and let the canonical forms of
the pairs (AHA,H) and (AAH ,H) be identical. Then A admits an H-polar
decomposition.

Proof. Let R and S be nonsingular matrices in Cn×n such that

(R−1AHAR,R∗HR) = (J,Z) = (S−1AAHS,S∗HS)

is the canonical form of the pairs (AHA,H) and (AAH ,H). Then the nonsin-
gular matrix defined by

B = S−1AR

is Z-normal, as can be seen with Z−1 = Z∗ = Z from

(ZB∗Z)B = Z(R∗A∗S−∗)Z(S−1AR) = ZR∗A∗HAR

= R−1H−1A∗HAR = J,

B(ZB∗Z) = (S−1AR)Z(R∗A∗S−∗)Z = S−1AH−1A∗S−∗Z

= S−1AH−1A∗HS = J.

Let f(B) denote an arbitrary polynomial in B. Then the commutability of B
and ZB∗Z implies (ZB∗Z)f(B) = f(B)(ZB∗Z) or (Zf(B)∗Z)B = B(Zf(B)∗Z)
from which it follows that

(Zf(B)∗Z)f(B) = f(B)(Zf(B)∗Z).

Moreover, if f(B) is invertible, then f(B) = f(B)(Zf(B)∗Z)(Zf(B)−∗Z) =
(Zf(B)∗Z)f(B)(Zf(B)−∗Z), so that

(Zf(B)−∗Z)f(B) = f(B)(Zf(B)−∗Z).

Consequently, if
√

B is a square root of B such that
√

B = f(B), then the
matrices defined by

K = [Z(
√

B)∗Z](
√

B) = (
√

B)[Z(
√

B)∗Z],

T = (
√

B)[Z(
√

B)−∗Z] = [Z(
√

B)−∗Z](
√

B)

6For a deeper understanding of this statement, the corresponding fundamentals can be
studied in [WED, Chapters VII, VIII] and in [G, Chapters V, VIII].
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on the one hand satisfy

TK = (
√

B)[Z(
√

B)−∗Z][Z(
√

B)∗Z](
√

B) = (
√

B)2 = B,

KT = (
√

B)[Z(
√

B)∗Z][Z(
√

B)−∗Z](
√

B) = (
√

B)2 = B.

On the other hand it is also true that

K∗Z = (
√

B)∗Z(
√

B) = ZK,

T∗ZT = [Z(
√

B)−1Z](
√

B)∗Z(
√

B)[Z(
√

B)−∗Z]

= Z(
√

B)−1(
√

B)[Z(
√

B)∗Z][Z(
√

B)−∗Z] = Z,

so that B = TK = KT is a Z-polar decomposition of B with (in this case)
commuting factors. Finally, let

M = RKR−1 and U = STR−1.

Then

UM = (STR−1)(RKR−1) = SBR−1 = A,

M∗H = (R−∗K∗R∗)(R−∗ZR−1) = (R−∗ZR−1)(RKR−1) = HM,

U∗HU = (R−∗T∗S∗)H(STR−1) = R−∗(T∗ZT)R−1 = R−∗ZR−1 = H

is the wanted H-polar decomposition of A.

A matrix A satisfying AHA = AAH is called an H-normal matrix. It
is a trivial fact that for those matrices the canonical forms of (AHA,H) and
(AAH ,H) are identical, and that R = S in the proof of Theorem 3.10. This
immediately implies the next result which has also been proved in a different
way in [LMMR, Theorem 29].

Corollary 3.11. Every nonsingular H-normal matrix in Cn×n admits an H-
polar decomposition with commuting factors.

In the case of singular matrices the square root cannot be built according
to Lemma 3.9 and the question of the validity of a statement corresponding to
Theorem 3.10 has not yet been clarified completely. But it can be answered
for the case in which all blocks of the canonical form (J,Z) belonging to the
eigenvalue 0 are of size 1 (nilpotency of index 1).

Lemma 3.12. Let A ∈ Cn×n such that AHA = 0. Then A admits an H-polar
decomposition if and only if also AAH = 0.

Proof. [⇒]: Let A = UM be an H-polar decomposition of A. Then M2 =
AHA = 0 implies AAH = UM2UH = 0.

[⇐]: For all matrices A ∈ Cn×n the easily proved equations

imAH = (kerA)[⊥] and kerAH = (imA)[⊥]

are true [GLR, Proposition I.2.1], so that AAH = 0 on the one hand implies

(kerA)[⊥] = imAH ⊂ kerA, i.e. (kerA)[⊥] = kerA ∩ (kerA)[⊥],
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and AHA = 0 on the other hand implies

imA ⊂ kerAH = (imA)[⊥], i.e. imA = (imA)[⊥] ∩ imA.

Thus, if

r = rankA = dim(imA) = dim(imH−1A∗H) = dim(imAH) = rankAH ,

then Cn can be expressed according to Theorem 2.5 in the form

Cn = X1 ⊕X ′
0 ⊕X ′′

0 with kerA = X1 ⊕X ′
0 and X ′

0 = kerA ∩ (kerA)[⊥]

as well as in the form

Cn = Y2 ⊕ Y ′
0 ⊕ Y ′′

0 with (imA)[⊥] = Y2 ⊕ Y ′
0 and Y ′

0 = (imA)[⊥] ∩ imA

where X ′
0, X

′′
0 , Y ′

0 , Y ′′
0 are neutral subspaces of dimension r and X1, Y2 are non-

degenerate subspaces of dimension p + q = n− 2r.
Let {x1, . . . ,xp+q,x′1, . . . ,x

′
r} be an H-orthonormal basis of kerA. Then this

basis can be extended to a complete basis of Cn by r further vectors x′′1 , . . . ,x′′r
according to Theorem 2.8, so that the matrix

X = [x1 . . .xp+q x′1 . . .x′r x′′1 . . .x′′r ]

consisting of these basis vectors satisfies

X∗HX = Z with

Z =
[
Ip

−Iq

]
⊕

[
0r Ir

Ir 0r

]
and AX = [01 . . .0p+q+r y′1 . . .y′r].

Here {y′1, . . . ,y′r} is a basis of the neutral space imA, which can also be ex-
tended to a complete basis of Cn by p + q + r further vectors y1, . . . ,yp+q,
y′′1 , . . . ,y′′r according to Theorem 2.8, so that the matrix

Y = [y1 . . .yp+q y′1 . . .y′r y′′1 . . .y′′r ]

consisting of these basis vectors satisfies

Y∗HY = Z and

YK = [01 . . .0p+q+r y′1 . . .y′r] with K =
[
0p

0q

]
⊕

[
0r Ir

0r 0r

]
.

Moreover, the matrices Z and K fulfil AX = YK, Z−1 = Z∗ = Z and K∗Z =
0p+q ⊕ Ir ⊕ 0r = ZK. Finally, let

M = XKX−1 and U = YX−1.

Then

UM = Y(X−1X)KX−1 = YKX−1 = A,

M∗H = X−∗K∗(X∗H) = X−∗(K∗Z)X−1

= (X−∗Z)KX−1 = HXKX−1 = HM,

U∗HU = X−∗(Y∗HY)X−1 = X−∗ZX−1 = H

is the wanted H-polar decomposition of A.
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Remark 3.13. In addition to the H-polar decomposition of A given in the
proof,

AH = ŨM̃ with M̃ = UMU−1 = YKY−1 and Ũ = U−1 = XY−1

is an H-polar decomposition of AH and, furthermore, AHY = XK as can be
verified using AH = H−1A∗H. Thus the basis vectors can be assigned to the
subspaces as follows

x1, . . . ,xp+q,

imAH

︷ ︸︸ ︷
x′1, . . . ,x

′
r︸ ︷︷ ︸

kerA

,x′′1 , . . . ,x′′r , y1, . . . ,yp+q,

imA︷ ︸︸ ︷
y′1, . . . ,y

′
r︸ ︷︷ ︸

kerAH

,y′′1 , . . . ,y′′r .

This is also evident from the equations

imAH ⊂ kerA = (imAH)[⊥] and (kerAH)[⊥] = imA ⊂ kerAH

which were not used in the proof but are valid, too. ♦

The following examples explain Lemma 3.12 and allow to introduce the
concept of H-indecomposability.

Example 3.14.

1. If λ ∈ C\{0} and

H =
[

Ip

Ip

]
, A =

[
0p 0p

Jp(λ) Jp(λ)

]
, AH =

[
Jp(λ)∗ 0p

Jp(λ)∗ 0p

]
,

then AHA = 0 but AAH 6= 0. Therefore A has no H-polar decomposi-
tions.

2. If λ ∈ C\{0} and

H =
[

Ip

Ip

]
, A =

[
0p

Jp(λ)

]
, AH =

[
Jp(λ)∗

0p

]
,

then AHA = 0 and AAH = 0. Therefore A has H-polar decompositions,
for example

A = UM with U =
[

Jp(λ)−∗

Jp(λ)

]
, M =

[
Ip

0p

]
. ♦

A matrix A ∈ Cn×n is called H-decomposable if there exists a non-degenerate
proper subspace M ⊂ Cn such that both M and M [⊥] are invariant under A,
otherwise A is called H-indecomposable. In particular, it is shown in the proof
of [HO, Theorem 1] that the H-normal matrix A from the second example is
H-indecomposable. This is important in connection with normal forms of H-
normal matrices [LMMR, Theorem 10] and will help to give some explanations
at the end of this section.

The following sufficient condition for the existence of H-polar decompositions
can now be proved with the help of Lemma 3.12.
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Theorem 3.15. Let A ∈ Cn×n and let the canonical forms of the pairs (AHA,
H) and (AAH ,H) be identical. Furthermore, let all blocks of the canonical
form belonging to the eigenvalue 0 be of size 1. Then A admits an H-polar
decomposition.

Proof. Let R,S,J,Z and B be as in the proof of Theorem 3.10, so that BZB =
BBZ = J holds. Furthermore, let

J = J1 ⊕ J0, J0 ∈ Cm×m and Z = Z1 ⊕ Z0, Z0 ∈ Cm×m

where J0,Z0 denotes the part of the canonical form belonging to the eigenvalue
0. Then the spectra of the blocks J1 and J0 are disjoint and, moreover, the
matrices J and B commute, so that B must also have the form

B = B1 ⊕B0, B0 ∈ Cm×m.

Now BZ1
1 B1 = B1BZ1

1 = J1 implies that B1 is nonsingular and it consequently
admits a Z1-polar decomposition

B1 = T1K1 (= K1T1) with T∗1Z1T1 = Z1 and K∗
1Z1 = Z1K1

constructed according to Theorem 3.10. Moreover, the assumption of the the-
orem yields BZ0

0 B0 = B0BZ0
0 = J0 = 0m and therefore B0 admits a Z0-polar

decomposition

B0 = T0K0 with T∗0Z0T0 = Z0 and K∗
0Z0 = Z0K0

constructed according to Lemma 3.12. Finally, let

T = T1 ⊕T0, U = STR−1 and K = K1 ⊕K0, M = RKR−1.

Then TK is a Z-polar decomposition of B and UM is an H-polar decomposition
of A.

Corollary 3.16. Let A ∈ Cn×n be H-normal and let all blocks of the canonical
form of the pair (AHA,H) belonging to the eigenvalue 0 be of size 1. Then A
admits an H-polar decomposition.

Remark 3.17. If the assumption regarding the part of the canonical form be-
longing to the eigenvalue 0 is not made in Theorem 3.15, the matrix J0 from the
proof is a block diagonal matrix consisting of nilpotent Jordan blocks. Thus, if
it could be proved that every H-normal matrix A with (AHA)k = 0 for some k
in N admits an H-polar decomposition, then the present restrictions regarding
the block sizes for the eigenvalue 0 would no longer be needed. Moreover,
the corresponding corollary would state that every H-normal matrix admits
an H-polar decomposition. (Note: In the meantime it turned out that the
conjecture expressed with this remark actually holds. A corresponding proof
has been found by Mehl, Ran and Rodman [MERR, Theorem 4]. Corollary 5
and Corollary 6 of this paper show that Theorem 3.15 and Corollary 3.16 are
valid even if the blocks of the canonical form belonging to the eigenvalue 0 have
arbitrary structure.) ♦

A further criterion for the existence of H-polar decompositions of H-normal
matrices is given in Theorem 34 of [LMMR]. The theorem states that an H-
normal matrix X ∈ Cn×n admits an H-polar decomposition if each of its singular
H-indecomposable blocks over C (if any) either
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(i) has two distinct complex eigenvalues (one of them must be zero), or

(ii) is similar to one (necessary nilpotent) Jordan block.

In Theorem 35 of the same paper H-polar decompositions of singular H-normal
Matrices X = UA ∈ Cn×n with UH = U−1, AH = A are presented for all
possible nontrivial cases in which H has exactly two negative eigenvalues and
whose existence is not guaranteed by Theorem 34. In the listed cases, the index
of nilpotency k of the matrices XHX = XXH is

k =





1, in case(I),(VI)-(VII)
2, in case(II)-(III),(VIII)-(XII)
3, in case(IV)-(V)



 .

Thus, the existence of the given H-polar decompositions in the cases (I), (VI)-
(VII) is ensured by Corollary 3.16 and, moreover, the hypothesis expressed in
Remark 3.17 is supported, too. On the other hand for α ∈ R and

H =




1
1

1


 , X =




0 1 iα
0 1

0


 with XHX = XXH =




0 0 1
0 0

0




the existence of the H-polar decomposition

X = UA with U =




1 iα −1
2
α2 + iβ

1 iα
1


 , A =




0 1 0
0 1

0


 (β ∈ R)

is guaranteed by Theorem 34(ii) but not by Corollary 3.16, so that the two
criteria are mutually supplementary.

3.4 Canonical forms and H-polar decompositions
in the case of diagonalisable matrices

In addition to the theoretical results presented in the previous sections we will
now consider the numerical computation of H-polar decompositions. We start
with the following observation.

Theorem 3.18. Let F = R or F = C and let H ∈ Fn×n be selfadjoint and pos-
itive definite. Then every matrix A ∈ Fn×n admits an H-polar decomposition.

Proof. According to the assumption there always exists a nonsingular matrix
S ∈ Fn×n such that H = S∗S. For example, if H = LL∗ is a Cholesky de-
composition or H = RΛR∗ is an eigenvalue decomposition, then S = L∗ or
S =

√
ΛR∗ can be chosen. Let Ã = SAS−1 and let Ã = PΣQ∗ be a singular

value decomposition. Moreover, let

Ũ = PQ∗, M̃ = QΣQ∗ and U = S−1ŨS, M = S−1M̃S.

Then ŨM̃ obviously is an ordinary polar decomposition of Ã and UM is an
H-polar decomposition of A as a simple verification shows.
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The proof directly provides a numerical method. This suggests that in the
case of an indefinite matrix H a similar approach can be adopted to compute
an H-polar decomposition. However, there are currently no numerical methods
for the computation of H-singular value decompositions available, although a
related theory is already contained in [BR]. In Section 8 thereof as in Section 3.2
the statements regarding H-polar decomposition are derived from the canonical
form of the pair (A[∗]A,H). This suggests the following steps for computing an
H-polar decomposition:

1. Compute the canonical form of the pair (A[∗]A,H),

2. Compute an H-selfadjoint matrix M such that M2 = A[∗]A and kerM =
kerA,

3. Compute an H-isometry U such that A = UM.

In the following section we will specify a corresponding numerical method for
the case of a complex matrix A for which A[∗]A is diagonalisable. The necessary
preparations, contained in this section, begin with the description of a simplified
canonical form of the pair (A,H) where A is H-Hermitian and diagonalisable.
This form is based on the following facts taken from [GLR, Chapter I.2.2]:

Let A ∈ Cn×n be H-Hermitian. Then for every non-real eigenvalue λ ∈ σ(A)
also λ ∈ σ(A) and the Jordan structures of both eigenvalues are equal. Let

EA(λ) = {x ∈ Cn : (A− λI)kx = 0 for a k ∈ N}

be the generalised eigenspace for the eigenvalue λ. Moreover, let λ1, . . . , λr be
the real and λr+1, . . . , λs be the non-real eigenvalues with positive imaginary
parts, and let

Xi = EA(λi) for 1 ≤ i ≤ r and

Xi = Xi,1 ⊕Xi,2 = EA(λi)⊕EA(λi) for r + 1 ≤ i ≤ s.

Then Cn can be decomposed as the direct sum of the non-degenerate eigenspaces

Cn = X1 ⊕ . . .⊕Xr ⊕Xr+1 ⊕ . . .⊕Xs

and the following equations hold

[xk,xl] = 0 for xk ∈ Xk, xl ∈ Xl and 1 ≤ k 6= l ≤ s,

[xk,yk] = 0 for xk,yk ∈ Xk,1 or xk,yk ∈ Xk,2 and r + 1 ≤ k ≤ s.

Therefore, if R ∈ Cn×n is a matrix whose columns are bases of the subspaces
Xi, then R is nonsingular and

R−1AR = A1 ⊕ . . .⊕Ar ⊕
[
Ar+1,1 0

0 Ar+1,2

]
⊕ . . .⊕

[
As1 0
0 As2

]
,

R∗HR = H1 ⊕ . . .⊕Hr ⊕
[

0 Hr+1

H∗
r+1 0

]
⊕ . . .⊕

[
0 Hs

H∗
s 0

]
. (3.3)

Here the sizes of the blocks are given by pi = dim Xi for 1 ≤ i ≤ r and
pi = dim Xi,1 = dim Xi,2 for r+1 ≤ i ≤ s. In the special case of a diagonalisable
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matrix A the generalised eigenspaces contain exclusively eigenvectors and we
obtain the simplified form

R−1AR = λ1Ip1⊕. . .⊕λrIpr
⊕

[
λr+1Ipr+1 0

0 λr+1Ipr+1

]
⊕. . .⊕

[
λsIps 0

0 λsIps

]
,

R∗HR = H1 ⊕ . . .⊕Hr ⊕
[

0 Hr+1

H∗
r+1 0

]
⊕ . . .⊕

[
0 Hs

H∗
s 0

]
. (3.4)

The following theorem is easily derived from this representation. Its proof will
be given in two ways in order to, on the one hand, show the connection to The-
orem 3.1 and, on the other hand, to provide the foundation for a corresponding
numerical method.

Theorem 3.19 (Simplified canonical form). Let H ∈ Cn×n be nonsingular
and Hermitian and let A ∈ Cn×n be H-Hermitian and diagonalisable. Then
there exists a nonsingular matrix S ∈ Cn×n such that

S−1AS = A1 ⊕ . . .⊕Ak and S∗HS = H1 ⊕ . . .⊕Hk, (3.5a)

where the blocks Aj and Hj are of equal size and the pairs (Aj ,Hj) have one
and one only of the following forms:

1. Pairs belonging to real eigenvalues.

Aj = λIp and Hj =
[
Ip−q 0
0 −Iq

]
(3.5b)

with λ ∈ R and p, q ∈ N, q ≤ p.

2. Pairs belonging to non-real eigenvalues

Aj =
[
λIp 0
0 λIp

]
and Hj =

[
0 Ip

Ip 0

]
(3.5c)

with λ ∈ C\R, Im(λ) > 0 and p ∈ N.

Moreover, the simplified canonical form (S−1AS,S∗HS) of (A,H) is uniquely
determined up to the permutation of blocks.

First proof. According to Theorem 3.1 a nonsingular matrix S ∈ Cn×n exists
such that the pair (A,H) is in the canonical form (3.2). Because of the assumed
diagonalisability, the size of the blocks appearing therein is always 1. Now
combining all p blocks of the form (3.2b) or (3.2c) which belong to the same
eigenvalue λ ∈ R or λ ∈ C\R, respectively, then after a suitable permutation it
is always possible to build one block of the form (3.5b) or (3.5c). From p − q
blocks of (3.2b) with ε = +1 and q blocks of (3.2b) with ε = −1 this gives one
block of the form (3.5b).

Second proof. For all real eigenvalues λρ ∈ σ(A), 1 ≤ ρ ≤ r, let {u1, . . . ,up}ρ

be an H-orthonormalised (according to Theorem 2.6) basis of eigenvectors of
EA(λρ), ordered such that (Huj ,uj) = 1 for 1 ≤ j ≤ p− q and (Huj ,uj) = −1
for p− q +1 ≤ j ≤ p. For all non-real eigenvalues λσ, λσ ∈ σ(A), r +1 ≤ σ ≤ s,
let {u1, . . . ,up}σ and {v1, . . . ,vp}σ be two H-orthonormalised (according to
Theorem 2.7) bases of eigenvectors of EA(λσ) and EA(λσ). Now by combining
these bases as columns of the matrix S, the pair (S−1AS,S∗HS) takes on the
assumed form.
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A useful application of this theorem is the following corollary which is also
stated in [MMX, Corollary 2.4].

Corollary 3.20 (Non-defective matrix pencils). Let ρH −G ∈ Cn×n be
a non-defective Hermitian matrix pencil where both H and G are nonsingular.
Then there exists a nonsingular matrix S ∈ Cn×n such that

S−1H−1GS =
( r⊕

j=1

λjIpj

)
⊕

( s⊕

j=r+1

[
λjIpj

λjIpj

])
,

S∗HS =
( r⊕

j=1

[
Ipj−qj

−Iqj

])
⊕

( s⊕

j=r+1

[
Ipj

Ipj

])
,

S∗GS =
( r⊕

j=1

λj

[
Ipj−qj

−Iqj

])
⊕

( s⊕

j=r+1

[
λjIpj

λjIpj

])

where λ1, . . . , λr ∈ R\{0} and λr+1, . . . , λs ∈ C\R.

Proof. Since the pencil ρH −G is non-defective by definition there exist non-
singular matrices P,Q ∈ Cn×n such that both

ΛH = P−1HQ and ΛG = P−1GQ

are diagonal [MMX, Definition 1.3]. Thus the matrix H−1G = QΛ−1
H ΛGQ−1

is diagonalisable and because (H−1G)∗H = H(H−1G) it is H-Hermitian. The
assumption follows by application of Theorem 3.19.

The criteria for the existence of H-Hermitian square roots of a diagonalisable
matrix A[∗]A can also be simplified. The following theorem contains a corre-
sponding specialisation of Theorem 3.4. Its somewhat longer proof is presented
completely in order to derive a numerical method therefrom. Furthermore, it
corrects the error made in the proof of [BMRRR1, Theorem 4.4].

Theorem 3.21 (Existence of H-Hermitian square roots). Let A ∈ Cn×n

and let B = A[∗]A be diagonalisable. Then there exists an H-Hermitian matrix
M such that M2 = B and kerM = kerA if and only if the following conditions
are satisfied:

1. The part of the (simplified) canonical form of the pair (B,H) belonging to
negative real eigenvalues λ = −α2 consists of blocks of the form

Bj = −α2I2p and Hj =
[
Ip 0
0 −Ip

]

with α > 0 and p ∈ N.

2. The part of the (simplified) canonical form of the pair (B,H) belonging to
the eigenvalue 0 consists of the blocks

Bj = 0p and Hj =
[
Ir+s 0
0 −Ir+t

]

with p, r, s, t ∈ N, 2r + s + t = p. Moreover, there exists a basis

{e1, . . . , er+s, f1, . . . , fr+t}
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in which these blocks appear and for which

kerA = span{e1 + f1, . . . , er + fr}
⊕ span{er+1, . . . , er+s} ⊕ span{fr+1, . . . , fr+t}.

Proof. [⇒]: Let B ∈ Cn×n be a diagonalisable matrix and let

R−1BR = λ1Ip1 ⊕ . . .⊕ λkIpk

be its Jordan normal form, so that the columns of R form a basis of Cn consisting
of eigenvectors of B. Then every matrix M such that M2 = B can be expressed
in the form

M = R(
√

λ1Ip1 ⊕ . . .⊕
√

λkIpk
)R−1

where
√

λIp = Xp(
√

λIp−q ⊕−
√

λIq)X−1
p if λ 6= 0,

√
0p = Xp

([
Ir

0r

]
⊕ 0p−2r

)
X−1

p if λ = 0,

and Xp ∈ Cp×p denotes an arbitrary nonsingular matrix. The simplified canon-
ical form of an H-Hermitian matrix M whose square is diagonalisable

R−1MR = M1 ⊕ . . .⊕Mk, R∗HR = H1 ⊕ . . .⊕Hk

therefore consists of blocks (Mj ,Hj) of the form
([

λIp

λIp

]
,

[
Ip

Ip

])
if λ ∈ C\R,

(
λIp+q , Ip ⊕−Iq

)
if λ ∈ R\{0},

([
Ip+q

0p+q

]
⊕ 0s+t,

[
Ip ⊕−Iq

Ip ⊕−Iq

]
⊕ Is ⊕−It

)
if λ = 0,

where the blocks belonging to the eigenvalue 0 have been combined in evident
manner to the ordinary canonical form

M0 =
(p+q⊕

i=1

[
0 1
0 0

])
⊕

(s+t⊕

i=1

[0]
)

,

H0 =
( p⊕

i=1

[
0 1
1 0

]
⊕

q⊕

i=1

[
0 −1
−1 0

])
⊕

( s⊕

i=1

[1]⊕
t⊕

i=1

[−1]
)

.

Now, let (M,H) be such a simplified canonical form and let {g1, . . . ,gn} be the
basis in which it exists. Then the simplified canonical form of the pair (M2,H)
can be constructed as follows:

(i) If λ ∈ C\R ∪ iR and if the canonical form of (M,H) contains the blocks

Mj1 ⊕Mj2 =
[
λIp1

λIp1

]
⊕

[−λIp2

−λIp2

]
,

Hj1 ⊕Hj2 =
[

Ip1

Ip1

]
⊕

[
Ip2

Ip2

]
,
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then the canonical form of (M2,H) contains a pair of blocks of the form

M2
j =

[
λ2Ip1+p2

λ
2
Ip1+p2

]
, Hj =

[
Ip1+p2

Ip1+p2

]
.

(ii) If λ ∈ R\{0} and if the canonical form of (M,H) contains the blocks

Mj1 ⊕Mj2 = λIp1+q1 ⊕−λIp2+q2 ,

Hj1 ⊕Hj2 = (Ip1 ⊕−Iq1)⊕ (Ip2 ⊕−Iq2),

then the canonical form of (M2,H) contains a pair of blocks of the form

M2
j = λ2I(p1+p2)+(q1+q2), Hj = Ip1+p2 ⊕−Iq1+q2 .

(iii) If λ = iα ∈ iR\{0} and if the canonical form of (M,H) contains a pair
of blocks

Mj =
[
iαIp

−iαIp

]
, Hj =

[
Ip

Ip

]
,

then the canonical form of (M2,H) contains a pair of blocks

M2
j =

[−α2Ip

−α2Ip

]
and Hj .

If a new basis {e1, . . . , ep, f1, . . . , fp} is now chosen with

ek =
1√
2
(gk + gk+p), fk =

1√
2
(gk − gk+p) for 1 ≤ k ≤ p,

then

(Hjek, el) = δkl, (Hjek, fl) = 0, (Hjfk, fl) = −δkl for 1 ≤ k, l ≤ p

and the following blocks appear

M̃2
j = M2

j and H̃j =
[
Ip

−Ip

]
.

(iv) If λ = 0 and if the canonical form of (M,H) contains a pair of blocks

Mj =
[

Ip+q

0p+q

]
⊕ 0s+t, Hj =

[
Ip ⊕−Iq

Ip ⊕−Iq

]
⊕ Is ⊕−It,

then the canonical form of (M2,H) contains a pair of blocks

M2
j = 02p+2q+s+t and Hj .

If a new basis {e1, . . . , ep+q+s, f1, . . . , fp+q+t} is now chosen with

ek =
1√
2
(gk + gk+p+q), fk =

1√
2
(gk − gk+p+q) for 1 ≤ k ≤ p,

ek =
1√
2
(gk − gk+p+q), fk =

1√
2
(gk + gk+p+q) for p + 1 ≤ k ≤ p + q,

ek+p+q = gk+2p+2q for 1 ≤ k ≤ s,

fk+p+q = gk+2p+2q+s for 1 ≤ k ≤ t,
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then

(Hjek, el) = δkl, (Hjek, fν) = 0, (Hjfµ, fν) = −δµv

for 1 ≤ k, l ≤ p + q + s and 1 ≤ µ, ν ≤ p + q + t

and the following blocks appear

M̃2
j = M2

j and H̃j =
[
Ip+q+s

−Ip+q+t

]
.

Moreover, it is true that

kerM = span{g1, . . . ,gp+q,g2p+2q+1, . . . ,g2p+2q+s+t}
= span{e1 + f1, . . . , ep+q + fp+q}
⊕ span{ep+q+1, . . . , ep+q+s} ⊕ span{fp+q+1, . . . , fp+q+t}.

[⇐]: Let B be diagonalisable and let R−1BR = B1 ⊕ . . . ⊕ Bk, R∗HR =
H1⊕ . . .⊕Hk be the (simplified) canonical form of the pair (B,H) = (M2,H).
Furthermore, let the conditions 1. and 2. be satisfied, and let Σk be k × k
diagonal matrices with diagonal elements in {+1,−1}. Then the matrix M can
be constructed as follows:

(i) If λ = ω2 ∈ C\R and if the canonical form contains a pair of blocks of
the form

Bj =
[
λIp

λIp

]
and Hj =

[
Ip

Ip

]
,

then for

Mj =
[
ωΣp

ωΣp

]

the equations M2
j = Bj and M∗

jHj = HjMj are satisfied.
(ii) If λ ∈ R ∩ (0,∞) and if the canonical form contains a pair of blocks of

the form

Bj = λIp and Hj =
[
Ip−q

−Iq

]
,

then for
Mj =

√
λΣp

the equations M2
j = Bj and M∗

jHj = HjMj are satisfied.
(iii) If λ = −α2 ∈ R ∩ (−∞, 0) and if the canonical form contains a pair of

blocks of the form

Bj =
[−α2Ip

−α2Ip

]
and Hj =

[
Ip

−Ip

]
,

then for

M̃j =
[
iαΣp

−iαΣp

]
, H̃j =

[
Ip

Ip

]
and Sj =

1√
2

[
Ip Ip

Ip −Ip

]

the equations S−1
j BjSj = Bj = M̃2

j and S∗jHjSj = H̃j are satisfied (S−1
j =

S∗j = Sj). Therefore by setting

Mj = SjM̃jS−1
j =

[
iαΣp

iαΣp

]
,
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we obtain M2
j = Bj and M∗

jHj = HjMj .
(iv) If λ = 0, then by arranging the basis vectors in the order

{e1, . . . , er, f1, . . . , fr, er+1, . . . , er+s, fr+1, . . . , fr+t}
it is always possible to achieve that the blocks Bj and Hj exist in the form

Bj = 0p and Hj =
[
Ir 0
0 −Ir

]
⊕

[
Is 0
0 −It

]

and for

M̃j =
[
0 Σr

0 0

]
⊕ 0s+t, H̃j =

[
0 Ir

Ir 0

]
⊕

[
Is 0
0 −It

]

and Sj =
1√
2

[
Ir Ir

Ir −Ir

]
⊕ Is+t

the equations S−1
j BjSj = Bj = M̃2

j and S∗jHjSj = H̃j are satisfied (Sj = S∗j =
S−1

j ). Therefore by setting

Mj = SjM̃jS−1
j =

1
2

[
Σr −Σr

Σr −Σr

]
⊕ 0s+t

we obtain M2
j = Bj and M∗

jHj = HjMj and, moreover,

kerM = span{e1 + f1, . . . , er + fr,

er+1, . . . , er+s, fr+1, . . . , fr+t} = kerA.

Using the notation of Theorem 3.4, the part of the canonical form of the
pair (B,H) = (M2,H) belonging to the eigenvalue 0 in the basis

{e1, f1, . . . , er, fr, er+1, . . . , er+s, fr+1, . . . , fr+t}
can be expressed as

J(1) ⊕ J(3) =
( r⊕

i=1

[N1 ⊕N1]
)
⊕

( s⊕

j=1

0 ⊕
t⊕

k=1

0
)

,

Z(1) ⊕ Z(3) =
( r⊕

i=1

[Z1 ⊕−Z1]
)
⊕

( s⊕

j=1

1 ⊕
t⊕

k=1

−1
)

.

This confirms again the correction of Theorem 3.4 explained with Example
3.5. Furthermore, the diagonal matrices Σk used in the proof comply with the
relationships between the canonical forms of the pairs (M2,H) and (M,H) listed
in Theorem 3.6. Using a particular choice of these sign matrices we can easily
derive a statement concerning the class of H-polar decompositions described in
the following definition [BMRRR2, Section 5].

Definition 3.22 (Semidefinite H-polar decompositions). A matrix M is
said to be H-nonnegative, if HM is positive semidefinite. The particular H-polar
decompositions in which the matrix M is H-nonnegative are called semidefinite
H-polar decompositions. ♦
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Corollary 3.23 (Existence of H-nonnegative square roots). Let A ∈
Cn×n and let B = A[∗]A. Then there exists an H-nonnegative matrix M such
that M2 = B and kerM = kerA if and only if B is diagonalisable with σ(B) ⊂
[0,∞) and if condition 2. of Theorem 3.21 is satisfied.

Proof. If the matrix B from Theorem 3.21 has only non-negative eigenvalues,
λ1, . . . , λk > 0, λk+1 = 0, and if it is assumed that condition 2. holds, then the
blocks Mj =

√
λjΣp (1 ≤ j ≤ k) in case (ii) of the “if” part can be chosen such

that Σp = Ip−q ⊕ −Iq = Hj and the block M̃j (j = k + 1) in case (iv) can be
chosen such that Σr = Ir. Then the canonical form of the pair (M,H) has the
form

S−1MS =
k⊕

j=1

(ωjIpj−qj
⊕−ωjIqj

)⊕
[

Ir

0r

]
⊕

[
0s

0t

]
,

S∗HS =
k⊕

j=1

(Ipj−qj
⊕−Iqj

)⊕
[

Ir

Ir

]
⊕

[
Is

−It,

]
,

(3.6)

where ωj =
√

λj > 0. Thus

S∗HMS =
k⊕

j=1

ωjIpj ⊕ 0r ⊕ Ir ⊕ 0s+t,

so that the matrix HM is positive semidefinite Hermitian.
Conversely, if M is H-nonnegative, then the canonical form of the pair

(M,H) must have the form (3.6) in which some of the blocks may not exist.
This implies

S−1M2S =
k⊕

j=1

ω2
j Ipj ⊕ 02r+s+t,

so that B = M2 is diagonalisable and σ(B) ⊂ [0,∞).

A similar statement is also given in [BMRRR2, Theorem 5.3] where the
kernel condition is formulated slightly different.

3.5 Numerical computation of H-polar decom-
positions of a matrix A for which A[∗]A is
diagonalisable

Now we describe the method for computing H-polar decompositions of a complex
matrix A for which A[∗]A is diagonalisable. This method, suggested at the
beginning of the previous section, begins with the computation of a simplified
canonical form, so that a corresponding algorithm is derived first. Note that
this algorithm is a very simple version of the algorithm for computing a general
canonical form presented in Chapter 6.

Let A ∈ Cn×n be H-Hermitian and diagonalisable. Then, according to the
second proof of Theorem 3.19, the simplified canonical form of the pair (A,H)
can be determined with the following steps:
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Step 1. Computing the eigenvalues and eigenvectors. First of all the
Jordan normal form of A must be computed

R−1
1 AR1 = diag(λ1, . . . , λn).

Here λ1, . . . , λn are the eigenvalues and R1 = [r1 . . . rn] is a nonsingular ma-
trix consisting of corresponding eigenvectors. For this purpose usually the QR
algorithm should be used [F], [GVL, Section 7.5].

Step 2. Grouping the eigenvalues. Now the eigenvalues must be combined
in groups of numerical multiple eigenvalues, and the eigenvalues and eigenvec-
tors must be permuted such that eigenvalues belonging to the same group are
adjacent

R−1
2 AR2 = λ∗1Ip1 ⊕ . . .⊕ λ∗kIpk

.

Here λ∗1, . . . , λ
∗
k are the numerical multiple eigenvalues, which are the average

eigenvalues of the specified groups, and R2 is the permuted matrix of eigenvec-
tors.

For this purpose there are several algorithms available: Baveley and Steward
use norm estimates [BS], K̊agström and Ruhe use Gershgorin circles [KR1], we
will use a modified cluster analysis algorithm in Chapter 6. All these algorithms
require a user-supplied tolerance parameter, all work well when the eigenvalues
are well-separated, and all fail in particular cases. In other words, the group-
ing of the eigenvalues is an extremely difficult problem for which no absolute
reliant method exists. In our implementation, with which the numerical results
presented at the end of this section were obtained, we have chosen to apply the
following algorithm:

k = 0
i = 1
while i < n do

* Determine the pivot eigenvalue *
p = i
for j = i + 1, . . . , n do

if |λj | > |λp| then
p = j

end if
end for
if p 6= i then

λi ↔ λp, ri ↔ rp

p = i
end if
* Determine the adjacent eigenvalues *
α = λi

β = α
δrel = max(|α|δ, δ)
for j = i + 1, . . . , n do

if |λj − β| ≤ δrel then
p = p + 1
λj ↔ λp, rj ↔ rp

α = α + λp



CHAPTER 3. H-POLAR DECOMPOSITIONS 47

β = α/(p− i + 1)
end if

end for
* Update the eigenvalues *
for j = i, . . . , p do

λj = β
end for
* Store the block boundary *
k = k + 1
bk = p
i = p + 1

end while

Here δ > 0 is a tolerance parameter with which the relative tolerances δrel are
computed. When the algorithm terminates, k contains the number of groups,
the integer array b contains the block boundaries, and the eigenvalues are re-
placed by the average eigenvalues of the groups.

Step 3. Pairing the eigenvalues. Now the real eigenvalues and pairs of
non-real eigenvalues must be determined. A simple approach for this is to use
a further (or the same) tolerance parameter δ′ and to determine the pairs of
non-real eigenvalues by demanding that |λ∗i −λ∗j | ≤ δ′. However, this is not the
most reliant method. More stable results are obtained by considering that the
matrix

R∗
2HR2 = C =



C11 · · · C1k

...
...

Ck1 · · · Ckk




should theoretically have the form (3.4). Let π(i) be indices such that Ci,π(i) is
the block with the maximum Frobenius norm in row i for 1 ≤ i ≤ k. Then, if
π(i) = i, λ∗i is a real eigenvalue, and if π(i) = j and π(j) = i for i 6= j, (λ∗i , λ

∗
j )

is a pair of non-real eigenvalues. If this classification fails or the block sizes do
not satisfy pi = pj , the algorithm terminates with an error. Possibly it may
succeed with a better grouping parameter δ.

Step 4. H-orthonormalising the eigenvectors. Finally, the eigenvectors
contained in the blocks (Y1| . . . |Yk) of R2 must be H-orthonormalised. For this
purpose the HQR and HQR-2 decomposition were developed in Section 2.4. Let

YiPi = QiRi if λ∗i ∈ R and
{

YiPi = QiRi

YjPj = QjRj

}
if λ∗i = λ∗j ∈ C\R

be HQR and HQR-2 decompositions, respectively. Then the matrix R3 con-
sisting of the blocks (Q1| . . . |Qk) transforms the pair (A,H) into its simplified
canonical form (3.5). Note that the blocks Cii and Cij computed in the pre-
vious step should be used to initialise the HQR and HQR-2 decompositions, so
that they are not computed twice.

If the HQR and HQR-2 decompositions are not available, this step can also
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be performed in the following way: Let

Y∗
i HYi = Cii = UiΦiiU∗

i if λ∗i ∈ R and

Y∗
i HYj = Cij = UiΨijV∗

j if λ∗i = λ∗j ∈ C\R

be eigenvalue and singular value decompositions, respectively. Then Ui and
Vj are unitary, Φii is diagonal with non-zero real diagonal elements, and Ψij

is diagonal with positive real diagonal elements. Therefore, the matrix R3

consisting of the blocks

Qi = YiUi|Φii|−1/2 and Qi = YiUiΨ
−1/2
ij , Qj = YjVjΨ

−1/2
ij

also transforms the pair (A,H) into its simplified canonical form. ♦

To simplify the quotation of this algorithm we summarise as follows:

Method 3.24 (Simplified canonical form). Let A ∈ Cn×n be H-Hermitian
and diagonalisable. Then the steps 1 – 4 described above compute the simplified
canonical form of the pair (A,H).

Now, let A ∈ Cn×n be such that A[∗]A is diagonalisable. Then, according
to the proof of Theorem 3.21, an H-polar decomposition of A can be determined
with the following steps:

Step 1. Computing the canonical form. First of all the matrix B = A[∗]A
must be computed by solving the linear system

HB = A∗HA

for B. Then the simplified canonical form of the pair (B,H) must be determined
with Method 3.24. Assume that this form is given by

R−1A[∗]AR = J = J3 ⊕ J2 ⊕ J1 ⊕ J0,

J =
[
ω2Ip3

ω2Ip3

]
⊕

[
α2Ip2

α2Iq2

]
⊕

[−β2Ip1

−β2Ip1

]
⊕

[
0r+s

0r+t

]
,

R∗HR = ZJ = ZJ,3 ⊕ ZJ,2 ⊕ ZJ,1 ⊕ ZJ,0,

ZJ =
[

Ip3

Ip3

]
⊕

[
Ip2

−Iq2

]
⊕

[
Ip1

−Ip1

]
⊕

[
Ir+s

−Ir+t

]
,

R = (R3|R2|R1|R0)

where ω ∈ C\R ∪ iR, 0 < α, β ∈ R, and the rectangular blocks Rj , 0 ≤ j ≤ 3,
correspond to the blocks of J and ZJ .

Step 2. Computing the H-Hermitian square root. Now an H-Hermitian
square root M of the matrix A[∗]A must be determined using

S−1MS = K = K3 ⊕K2 ⊕K1 ⊕K0,

K =
[
ωIp3

ωIp3

]
⊕

[
αIp2

αIq2

]
⊕

[
iβIp1

iβIp1

]
⊕

([
Ir

0r

]
⊕

[
0s

0t

])
,
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S∗HS = ZK = ZK,3 ⊕ ZK,2 ⊕ ZK,1 ⊕ ZK,0,

ZK =
[

Ip3

Ip3

]
⊕

[
Ip2

−Iq2

]
⊕

[
Ip1

−Ip1

]
⊕

([
Ir

Ir

]
⊕

[
Is

−It

])
,

S = (R3|R2|R1|R′′
0)

where R′′
0 is defined by the kernel transformation described below. For the

negative eigenvalue −β2 this construction is possible only if condition 1. of
Theorem 3.21 holds, i.e. only if R1 consists of an equal number of positive and
negative eigenvectors. It would then also be possible to use the blocks

K′
1 =

[
iβIp1

−iβIp1

]
, Z′K,1 =

[
Ip1

Ip1

]
, R′

1 =
1√
2

R1

[
Ip1 Ip1

Ip1 −Ip1

]
,

but this is found to be less convenient when constructing the H-isometry in the
third step. Furthermore, in the blocks of K sign matrices Σp3 , Σp2 , Σq2 , Σp1 ,
Σr = diag(±1) could also be used instead of the identity matrices. This would
then produce another H-polar decomposition of A. For example, if A[∗]A has
only non-negative real eigenvalues, then by Corollary 3.23 a semidefinite H-polar
decomposition can be computed this way. Finally, the required treatment of the
eigenvalue 0 consists of the following transformation.

Kernel transformation. Let R0 = (R+|R−) be a partitioning where R+

contains the r + s positive and R− contains the r + t negative eigenvectors in
kerA[∗]A, so that

R∗
+HR+ = Ir+s and R∗

−HR− = −Ir+t.

Then, if condition 2. of Theorem 3.21 holds, there must exist unitary transfor-
mations T+ and T− such that

AR′
+ = [−a1 . . .− ar 01 . . .0s] and AR′

− = [a1 . . . ar 01 . . .0t]

is satisfied for

R′
+ = R+T+ = [e1 . . . er+s] and R′

− = R−T− = [f1 . . . fr+t].

To determine this transformations, let

AR+ = U+Σ+V∗
+ and AR− = U−Σ−V∗

−

be singular value decompositions. Then the ranks of Σ+ and Σ− must be equal

AR+V+ = U+Σ+ = [b1 . . .br 01 . . .0s], r = rank(Σ+),
AR−V− = U−Σ− = [a1 . . .ar 01 . . .0t], r = rank(Σ−),

and the matrix W ∈ Cr×r defined by [b1 . . .br]W = −[a1 . . . ar], i.e.

W = −(Σ+)−1
r (U∗

+U−)r(Σ−)r (r × r submatrices),

must be unitary, to ensure that

T+ = V+(W ⊕ Is) and T− = V−
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exist. Now permuting the columns of R′
0 = (R′

+|R′
−) into the order

R′
0 = [e1 . . . er f1 . . . fr er+1 . . . er+s fr+1 . . . fr+t]

we obtain

AR′
0 = [−a1 . . .− ar a1 . . .ar 01 . . .0s+t] and

(R′
0)
∗H(R′

0) = (Ir ⊕−Ir)⊕ (Is ⊕−It).

Hence, for

R′′
0 = R′

0

(
1√
2

[
Ir Ir

Ir −Ir

]
⊕ Is+t

)

it follows that

AR′′
0 = −

√
2 [01 . . .0r a1 . . . ar 01 . . .0s+t] and

(R′′
0)∗H(R′′

0) =
[

Ir

Ir

]
⊕

[
Is

−It

]
,

so that the wanted basis of kerA[∗]A has been determined. If the ranks of Σ+

and Σ− differ or the transformation W is not unitary, the matrix A does not
have H-polar decompositions.

In an implementation of this transformation the ranks must be computed
with the help of a tolerance parameter τ > 0. Suppose that the singular values
in Σ = diag(σ1, . . . , σm) are sorted in descending order. Then rank(Σ) is the
smallest index such that σr ≤ σ1τ or 0, if σ1 ≤ τ . Moreover, W may be regarded
as unitary when ‖W∗W − I‖F ≤ τ .

Step 3. Computing the H-isometry. After the second step M = SKS−1

is the H-Hermitian factor, and in the nonsingular case, in which the blocks J0,
ZJ,0, K0, ZK,0 do not exist, U = AM−1 = ASK−1S−1 is the H-unitary factor
of an H-polar decomposition of A. Here the inverse of S can be computed using
S−1 = ZKS∗H which follows from S∗HS = ZK . In the singular case let

K̃ = K3 ⊕K2 ⊕K1 ⊕ K̃0 with K̃0 = K̃−1
0 =

[
Ir

Ir

]
⊕ Is+t,

and also let

S0 = (S′0|S′′0 |S̃0) with S′0,S
′′
0 ∈ Cn×r and S̃0 ∈ Cn×(s+t)

be a partitioning of the matrix S0 = R′′
0 . Then we have

AS0 = (0n,r|T′0|0n,s+t) and S0K0 = (0n,r|S′0|0n,s+t)

where T′0 = −√2 [a1 . . .ar] by the kernel transformation. Therefore, the ma-
trices ASK̃−1 and MSK̃−1 have the form

ASK̃−1 = (AS3K−1
3 |AS2K−1

2 |AS1K−1
1 |AS0K̃−1

0 )
= (T3|T2|T1|T′0|0n,r+s+t),

MSK̃−1 = (S3K3K−1
3 |S2K2K−1

2 |S1K1K−1
1 |S0K̃0K̃−1

0 )
= (S3|S2|S1|S′0|0n,r+s+t)
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where Tj = ASjK−1
j for 1 ≤ j ≤ 3. Their respective first m = n − r − s − t

columns
(T)m = (ASK̃−1)m and (S)m = (MSK̃−1)m

are bases of im(A) and im(M) which satisfy

(T)∗mH(T)m = (S)∗mH(S)m = (ZK)m =[
Ip3

Ip3

]
⊕

[
Ip2

−Iq2

]
⊕

[
Ip1

−Ip1

]
⊕ 0r.

Now both bases can be extended according to Theorem 2.8 to bases of Cn,

(T)n = (T3|T2|T1|T′0|T′′0 |T̃0) and (S)n = (S3|S2|S1|S′0|S′′0 |S̃0),

for which (T)∗nH(T)n = (S)∗nH(S)n = ZK . This is obviously trivial in the case
of im(M), because here (S)n = S can be chosen. In the case of im(A) it is
convenient to start the necessary application of Method 2.14 with the matrix

(T̂)m = (T)m

(
1√
2

[
Ip3 Ip3

Ip3 −Ip3

]
⊕ Ip2+2p1+r

)
,

(T̂)∗mH(T̂)m =
[
Ip3

−Ip3

]
⊕

[
Ip2

−Iq2

]
⊕

[
Ip1

−Ip1

]
⊕ 0r,

whose columns already contain an H-orthonormal basis of im(A). Finally,

U = (T)n(S)−1
n = TS−1 = TZKS∗H

is an H-isometry such that UM is an H-polar decomposition of A. ♦

Altogether this gives:

Method 3.25 (H-polar decomposition). Let A ∈ Cn×n be such that A[∗]A
is diagonalisable. Then the steps 1 – 3 described above compute an H-polar
decomposition of A.

In some cases an H-polar decomposition can also be obtained without com-
puting the canonical form. This is described in the following remark.

Remark 3.26. If the matrix A[∗]A has only non-real λi, λi and positive eigen-
values µj > 0,

R−1A[∗]AR =
k⊕

i=1

(
λiIpi ⊕ λiIpi

)⊕
m⊕

j=1

(
µiIqi

)
,

the canonical form does not necessarily have to be computed. If in this case

K =
k⊕

i=1

(
ωiIpi ⊕ ωiIpi

)⊕
m⊕

j=1

(
εj
√

µjIqj

)

is a diagonal matrix with ω2
i = λi and εj ∈ {+1,−1}, then M = RKR−1 and

U = AM−1 are already the factors of an H-polar decomposition of A. In the
more general case considered above, the canonical form is required to decide
whether an H-Hermitian square root exists and to determine a suitable kernel
transformation. ♦
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With some minor modifications Method 3.25 also computes the factorisation

A = TKS−1 with T∗HT = S∗HS = Z and K∗Z = ZK (3.7)

where (K,Z) is a simplified canonical form and the index at Z = ZK is omitted.
It is only necessary to transform the blocks K1, Z1 into its canonical form K′

1,
Z′1 in step 2, and to return the transformation T instead of U. In this form the
method allows to derive all H-polar decompositions

A = UM with U = TΣS−1 and M = SΣKS−1 (3.8)

where Σ = Σ∗ = Σ−1 must be a sign matrix commuting with K and Z.
In the particular case H = I, the matrix K is a diagonal matrix with non-

negative diagonal elements and Z = I, too. In other words, in this case (3.7) is
just a singular value decomposition which leads to the following definition.

Definition 3.27 (H-singular value decomposition). Let F = R or F = C
and let A ∈ Fn×n. A factorisation of the form (3.7) is called an H-singular value
decomposition of A. ♦

This factorisation must in no way be mixed up with the trivial factorisation
described in the following remark.

Remark 3.28. Let H = diagn(±1) and let A ∈ Fn×n be nonsingular. Fur-
thermore, let RΛR∗ be an eigenvalue decomposition of AHA∗. Then R is
orthogonal or unitary, respectively, and the diagonal matrix of the real eigen-
values can be decomposed as Λ = ΩHΩ∗ where Ω = Ω∗ has positive diagonal
elements. Now AHA∗ = RΩHΩ∗R∗ implies that the matrix U defined by
AU = RΩ is an H-isometry, and therefore the decomposition A = RΩU−1 is
called a hyperbolic singular value decomposition by some authors [BOS]. ♦

In the rest of this section we present some statistical experiments which
were made to assess the numerical properties of the Methods 3.24 and 3.25.
The philosophy in implementing the test programme was to use highly reliant
standard linear algebra software in combination with our own building blocks.
Thus, we have chosen to implement the programme in Fortran 77 using the
DOUBLE COMPLEX versions of LAPACK and the BLAS [LUG]. Our extensions for
computing the HQR decompositions (Algorithms 2.12 and 2.13), the extension
of isometries (Method 2.14), and the further steps of methods were implemented
as careful as the LAPACK codes. All results were obtained on a PENTIUM 4
processor, for which the machine accuracy is

εmach ≈ 2.22 · 10−16.

To test the Method 3.24 we specified the canonical form

J = (λIp3 ⊕ λIp3)⊕ αIp2 ⊕ βIp1 ⊕ 0r,

Z =
[

Ip3

Ip3

]
⊕ diagp2

(±1)⊕ diagp1
(±1)⊕ diagr(±1),

p3 = 5, p2 = 10, p1 = 10, r = 10, n = 40

and used random eigenvalues λ ∈ C\R, α, β ∈ R\{0} and random transforma-
tions R ∈ Cn×n to construct the test matrices

A = R−1JR, H = R∗ZR.
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Here the transformation R and the non-zero eigenvalues of J were initialised
with normally distributed random numbers from the interval [−2, 2], but it was
controlled that the magnitudes of α, β and λ were at least 0.2.

Then the canonical form of the test matrix pair was computed

S−1AS = J, S∗HS = Z,

whose numerical accuracy is estimated via the residuals

rAJ = ‖AS− SJ‖F , rSZ = ‖S∗HS− Z‖F

and the reciprocal condition number

c−1
S = cond1(S)−1, cond1(S) = ‖S‖1 ‖S−1‖1.

The results of two experiments with K = 30 repetitions are presented in Table
3.1 where the columns “min” and “max” contain the observed minimum and
maximum values. The column “avg” lists the respective average values which
were computed as

avg(x) = 10x̄ with x̄ =
1
K

K∑

k=1

log(xk)

to avoid the domination of the large quantities. The tolerance parameter for
the grouping of the eigenvalues, required in step 2 of Method 3.24, was always
given by

δ = 10−8.

In the first experiment we used HQR and HQR-2 decompositions to H-
orthogonalise the eigenvectors in step 3 of Method 3.24. In the second experi-
ment this process was carried out with eigenvalue and singular value decompo-
sitions. To permit the comparability of the data, both experiments were made
with the same test matrices.

Before assessing the results in Table 3.1 it is first of all necessary to note that
the computed residuals are absolute errors of complex 40×40 matrices. In view
of this fact even the maximum values for rSZ appear to be acceptable, so that
the canonical forms were in any case computed with an acceptable accuracy.

The comparison of the two methods for H-orthogonalising the eigenvectors
shows that the eigenvalue and singular value decompositions were minimally
more accurate, whereas the HQR and HQR-2 decompositions produced mini-
mally better conditioned transformations. We may therefore conclude that both
variants produce qualitatively similar results.

Finally, we implemented and installed some benchmark routines and counted
the numbers of floating point operations (flops) which were required for com-
puting the canonical forms. The average values

flopsHQR/HQR−2 = 2.034 · 107 and flopsEV D/SV D = 2.043 · 107

reveal a minor advantage for the HQR/HQR-2 variant, but it is without signif-
icance in the overall process.
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Table 3.1: Results of two experiments with Method 3.24

with HQR/HQR-2 with EVD/SVD
min avg max min avg max

rAJ 3.44e-14 2.76e-13 5.17e-11 3.23e-14 2.69e-13 5.14e-11
rSZ 1.35e-13 1.14e-12 9.31e-11 1.12e-13 9.35e-13 7.55e-11
c−1
S 1.17e-04 7.80e-04 2.40e-03 1.29e-04 8.40e-04 3.50e-03

Table 3.2: Results of two experiments with Method 3.25

original transformations modified transformations
min avg max min avg max

rAK 2.30e-12 1.97e-11 7.17e-10 6.75e-12 9.27e-11 2.04e-09
rTZ 1.24e-11 7.94e-11 5.85e-10 5.14e-13 2.49e-12 1.05e-11
rSZ 2.40e-12 2.45e-11 3.08e-10 4.57e-14 1.04e-13 2.46e-13
c−1
T 1.03e-05 2.97e-05 1.20e-04 1.03e-05 2.97e-05 1.20e-04

c−1
S 2.96e-04 8.59e-04 2.70e-03 2.96e-04 8.59e-04 2.70e-03

rUM 9.82e-11 1.39e-09 3.73e-08 4.19e-11 6.33e-10 1.57e-08
rMH 4.27e-13 9.21e-13 2.18e-12 4.17e-13 9.14e-13 2.28e-12
rUH 7.99e-10 5.92e-09 5.19e-08 3.46e-11 1.86e-10 2.78e-09
c−1
U 3.35e-07 3.15e-06 2.53e-05 3.35e-07 3.15e-06 2.53e-05

To test the Method 3.25 which was implemented such that is computes an
H-singular value decomposition (H-SVD), we used a similar scenario. Here we
specified the canonical form

K = (λIp3 ⊕ λIp3)⊕ αIp2 ⊕ (iβIp1 ⊕−iβIp1)⊕ (02r ⊕ 0s),

Z =
[

Ip3

Ip3

]
⊕ diagp2

(±1)⊕
[

Ip1

Ip1

]
⊕

([
Ir

Ir

]
⊕ diags(±1)

)
,

p3 = 5, p2 = 10, p1 = 5, r = 3, s = 4, n = 40

and used random eigenvalues λ ∈ C\R, α, β ∈ R\{0}, random transformations
R ∈ Cn×n and random H-isometries V ∈ Cn×n to construct the test matrices

A = VR−1KR, H = R∗ZR. (3.9)

Whereas the transformation R and the non-zero eigenvalues of K were initialised
as in the tests of Method 3.24, the H-isometries V were built according to the
following remark.

Remark 3.29. Let w ∈ Fn be a non-neutral vector and let

W = I− 2
ww∗H
w∗Hw

∈ Fn×n

be a generalised Householder reflection. Then

W∗H = HW and W∗HW = H,

so that W is an H-selfadjoint H-isometry. However, if V is a product of at least
two generalised Householder reflections Wk (k = 1, 2, . . .), then it clearly is an
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H-isometry, but it is not H-selfadjoint in general. Therefore, if the reflections
are defined by some non-neutral random vectors wk, the matrix V is a random
H-isometry which has no further structure. ♦

For computing the test matrix A we applied two generalised Householder
reflections to the matrix R−1KR. The corresponding random vectors w1,w2

were initialised with normally distributed random numbers from the interval
[−1, 1]. To bound the norms of the reflections, the vectors wk were only accepted
when they satisfied |w∗

kHwk| ≥ 1.
Then an H-SVD of the test matrix

A = TKS−1, T∗HT = Z, S∗HS = Z

and also an H-polar decomposition

A = UM, U∗HU = H, M∗H = HM

was computed. Here the tolerance parameters for the grouping of the eigenvalues
in step 2 of Method 3.24 and the rank determination in the kernel transformation
of Method 3.25 were given by

δ = 10−8 and τ = 10−8.

Again two experiments with 30 repetitions we made. The results are presented
in Table 3.2 which contains the residuals

rAK = ‖AS−TK‖F ,

rTZ = ‖T∗HT− Z‖F ,

rSZ = ‖S∗HS− Z‖F ,

rUM = ‖A−UM‖F ,

rMH = ‖M∗H−HM‖F ,

rUH = ‖U∗HU−H‖F

(3.10)

as well as the reciprocal 1-condition numbers of T, S and U.
In the first experiment the H-polar decompositions were computed using

U = TSinv and M = SKSinv with Sinv = ZS∗H.

Although the residuals for the H-SVDs do not indicate serious errors, the resid-
uals rUM and rUH show a significant loss of accuracy for the H-unitary factor
of the H-polar decompositions. We therefore repeated the experiment and tried
to improve the transformations T and S. For this purpose the linear systems

(ZT∗H)Y = I and (ZS∗H)X = I (3.11a)

were solved and the modified transformations

T̃ = 1
2 (T + Y) and S̃ = 1

2 (S + X) (3.11b)

were used instead of T and S. Indeed this approach helped to reduce most of
the residuals. Only rAK was incremented a little.

Whereas these experiments indicate that Method 3.24 is stable for comput-
ing simplified canonical forms, we must admit that there is still some doubt
concerning the stability of Method 3.25. The major problems of this method
are:
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(a) If the matrix A is singular, then several matrix factorisations are required
for the kernel transformation and for the extension of the matrix T.

(b) If the matrix A is ill-conditioned, then the formation of A[∗]A can lead
to a severe loss of accuracy.

The first problem is obvious and the second is a well-known fact which for the
case H = I is discussed in many text books on numerical linear algebra (for
example see [GVL, Section 8.6.2] or [ST2, Kapitel 6.7]).

To solve these problems we have tried to modify the standard algorithm for
computing ordinary SVDs [GVL, Section 8.6] such that it computes H-SVDs.
This approach failed, because we were not able to determine the canonical form
of the pair (K,Z) by directly transforming A (and H). In the case H = I, this
form is simply (diag(κi), I) and the standard algorithm is inherently based on
this fact. A further approach succeeded and resulted in the algorithms presented
in the following section.

3.6 Numerical computation of H-polar decom-
positions of a matrix A for which A[∗]A has
no non-positive real eigenvalues

The numerical computation of ordinary polar decompositions is not only possi-
ble via the singular value decomposition. There also exists an iteration method
which is closely related to the Newton iteration for computing the matrix sign
function [HI1], [HMMT]. In this section we will adopt this method for comput-
ing H-polar decompositions and we will also describe an extension for computing
H-singular value decompositions.

Let A ∈ Fn×n be nonsingular. Then the iteration method

Xk+1 =
1
2
(Xk + X−∗

k ), X0 = A, k = 0, 1, . . . (3.12a)

quadratically converges to the isometric factor of an ordinary polar decomposi-
tion A = UM where U∗ = U−1 and M∗ = M. The optimum selfadjoint factor
corresponding to the approximate isometry

Ũ = Xk with ‖X∗
kXk − I‖F ≤ ε (3.12b)

is given by [HP, Lemma 2.1]

M̃ =
1
2
(Ũ∗A + A∗Ũ), (3.12c)

and, furthermore, the particular polar decomposition is computed for which M
is positive definite. By substituting the adjoints in (3.12) with H-adjoints we
obtain the iteration method

Xk+1 =
1
2
(Xk + X−H

k ), X0 = A, k = 0, 1, . . . , (3.13)

Ũ = Xk with ‖XH
k Xk − I‖F ≤ ε and M̃ =

1
2
(ŨHA + AHŨ).
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The following theorem shows that this method actually computes an H-polar
decomposition of A. Note that a similar result has been derived independently
by Higham [HI2, Theorem 5.2].

Theorem 3.30. Let F = R or F = C and let A ∈ Fn×n be a matrix such
that σ(AHA) ⊂ C\(−∞, 0]. Then the method (3.13) applied to A computes the
particular H-polar decomposition A = UM, for which σ(M) lies in the open
right complex half-plane.

Proof. Let A be a matrix such that σ(AHA) has the assumed property. Then
Corollary 3.7 implies that A admits an H-polar decomposition A = U0M0 such
that σ(M0) ⊂ {z ∈ C|Re(z) > 0}. Now applying (3.13) to A we obtain

2X1 = U0M0 + (U0M0)−H = U0M0 + (MH
0 UH

0 )−1

= U0M0 + (M0U−1
0 )−1 = U0M0 + U0M−1

0 = U0(M0 + M−1
0 )

or
X1 = U0M1 with M1 =

1
2
(M0 + M−1

0 ) = MH
1 ,

from which it follows that

Xk+1 = U0Mk+1 with Mk+1 =
1
2
(Mk + M−1

k ) = MH
k+1.

Moreover, Re λ > 0 for all λ ∈ σ(M0) according to [R] implies

lim
k→∞

Mk = I,

so that we finally have
lim

k→∞
Xk = U0.

In an implementation of method (3.13) the matrices X−H
k = H−1X−∗

k H
must be computed by solving the linear system (X∗

kH)Yk = H for Yk = X−H
k .

Analogously, the matrix M̃ must be computed by solving HY = (Ũ∗HA +
A∗HŨ)/2 for Y = M̃.

The termination criterion can be applied in the form ‖X∗
kHXk −H‖F ≤ ε.

It is based on an absolute error, but it is also possible to use a criterion based
on a relative error. To obtain the latter we have adopted a similar consideration
made in [HMMT, Section 4] and [HI2, Section 5]:

Let ‖.‖ be a submultiplicative matrix norm, and let U and ∆U satisfy

U∗HU = H and ‖∆U‖ ≤ ε‖U‖.

Then the inequality

‖(U + ∆U)∗H(U + ∆U)−H‖
= ‖U∗H(∆U) + (∆U)∗HU + (∆U)∗H(∆U)‖
≤ ‖U∗H(∆U)‖+ ‖(∆U)∗HU‖+ ‖(∆U)∗H(∆U)‖
≤ (2ε + ε2) ‖H‖ ‖U‖2
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shows that U is an H-isometry to working precision when it fulfills

ρUH =
‖U∗HU−H‖
‖H‖ ‖U‖2 ≈ εmach.

Hence, the iteration should be terminated when the iterate satisfies

ρ =
‖X∗

kHXk −H‖F

‖H‖F ‖Xk‖2F
≤ ε for some ε ≈ εmach. (3.14)

Here the submultiplicative property of the Frobenius norm has been used.

Algorithm 3.31. Given the matrices A,H ∈ Fn×n, a tolerance parameter
ε and a maximum number of iteration steps maxits, the following algorithm
performs method (3.13). The matrices U and M are stored in separate arrays
and W is a working array. The notation “WY = M → M = Y” is to be read
as “solve the system WY = M and overwrite M with Y”.

U = A
for its = 1, . . . ,maxits do

W = U∗H
M = H
M = WU−M (= U∗HU−H)
ρ = ‖M‖F (or ρ = ‖M‖F /‖H‖F /‖U‖F /‖U‖F )
if ρ ≤ ε then

break
end if
M = H
WY = M → M = Y
U = (U + M)/2

end for
if its > maxits then

return “divergent”
end if
M = WA (= U∗HA)
M = (M + M∗)/2
W = H
WY = M → M = Y
return “convergent”

This algorithm represents the basic form of the Newton iteration. It may be
improved with factors for convergence acceleration analogously to [HP, Section
2], but this is not considered here. We will rather turn our interest to the fact
that the algorithm only allows to compute two particular H-polar decomposi-
tions, namely, the decompositions (a) A = UM and (b) A = (−U)(−M) where
M is the principal square root of AHA. However, there are applications in which
another decomposition is required. In particular, it turns out that the solution
of the Procrustes problems requires semidefinite H-polar decompositions which
have been introduced in Definition 3.22. Now, assume that A ∈ Fn×n is non-
singular. Then, according to Corollary 3.23, an H-polar decomposition of A is
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definite if and only if the canonical form of the pair (M,H) is

S−1MS =
k⊕

j=1

(ωjIpj−qj ⊕−ωjIqj ), S∗HS =
k⊕

j=1

(Ipj−qj ⊕−Iqj )

where ωj > 0. This means that the decomposition (a) is definite when H
is positive definite, and the decomposition (b) is definite when H is negative
definite. But if H is indefinite, it is impossible to compute a definite H-polar
decomposition with Algorithm 3.31.

The solution of this problem is very simple. We only need to extend the
algorithm such that it computes an H-SVD and can then compute arbitrary
H-polar decompositions by applying Equation (3.8). The extension consists of
computing the canonical form of the pair (M,H) which for non-diagonalisable
H-Hermitian matrices is described in Chapter 6.

Algorithm 3.32. Let A ∈ Cn×n be a matrix such that σ(AHA) ⊂ C\(−∞, 0].
Then an H-SVD of A can be computed with the following steps:

1. Compute an H-polar decomposition A = UM with Algorithm 3.31.

2. Compute the canonical form (S−1MS,S∗HS) = (K,Z) of the pair (M,H)
with Method 3.24 or, if M is not diagonalisable, with the algorithm de-
scribed in Chapter 6.

3. Compute T = US, so that A = TKS−1 is an H-SVD.

Now, let A be a (nonsingular) matrix such that AHA is diagonalisable with
positive eigenvalues, and let A = TKS−1 be an an H-SVD computed with
Algorithm 3.32 or with Method 3.25. Then the application of (3.8) with Σ = Z
results in

A = UM with U = TS∗H and M = SKS∗H (3.15)

which is a definite H-polar decomposition of A. If A is singular and AHA is
diagonalisable with non-negative eigenvalues, the H-SVD can only be computed
with Method 3.25. Then (3.15) is a semidefinite H-polar decomposition of A.

To be able to test the algorithms we extended our software package with a
Fortran 77 implementation of Algorithm 3.31. Again the codes were written us-
ing the DOUBLE COMPLEX versions of LAPACK and the BLAS. Then we made some
experiments in which H-polar decompositions and definite H-polar decomposi-
tions were computed. For this purpose the canonical forms

K = Jp(λ)⊕ Jp(λ)⊕ Jq(α)⊕ Jr(β), Z = Z2p ⊕±Zq ⊕±Zr,

p = q = r = 10, n = 40

with λ ∈ C\R, α, β ∈ R\{0}, were specified to test Algorithm 3.31, and the
canonical forms

K =
4⊕

j=1

λjIpj , Z = diagn(±1), pj = 10, n = 40

with λj ∈ R\{0}, were specified to test Algorithm 3.32. Using randomly chosen
eigenvalues, transformations R ∈ Cn×n and H-isometries V ∈ Cn×n, the test
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Table 3.3: Results of two experiments with Algorithm 3.31

moderately conditioned badly conditioned
min avg max min avg max

c−1
A 1.15e-07 4.14e-06 2.65e-05 8.41e-12 5.60e-09 9.69e-08

rUM 2.31e-12 9.10e-11 4.75e-08 2.71e-09 3.65e-07 8.21e-04
rMH 6.79e-13 1.42e-12 5.63e-12 7.81e-13 1.68e-12 1.83e-11
rUH 1.68e-12 1.50e-11 1.69e-10 2.37e-12 1.93e-11 1.66e-09
c−1
U 7.91e-07 1.47e-05 1.47e-04 5.90e-08 9.91e-06 1.86e-04

its 6 7.33 8 7 8.20 10

Table 3.4: Results of two experiments with Algorithm 3.32 and Method 3.25

Algorithm 3.32 Method 3.25
min avg max min avg max

rAK 3.26e-13 8.02e-12 4.36e-10 9.94e-16 3.10e-15 1.64e-14
rTZ 5.13e-13 2.28e-12 1.14e-11 1.50e-12 2.13e-11 3.04e-10
rSZ 2.85e-13 1.40e-12 1.13e-11 1.84e-13 8.63e-13 1.75e-11
c−1
T 1.44e-05 9.21e-05 9.82e-04 6.78e-06 5.12e-05 3.07e-04

c−1
S 3.68e-04 9.94e-04 2.52e-03 4.12e-04 8.14e-04 2.85e-03

its 5 6.10 7
rUM 1.37e-11 1.67e-10 1.90e-09 1.19e-11 1.15e-10 2.36e-09
rMH 1.17e-12 2.76e-12 1.15e-11 8.26e-13 1.57e-12 4.92e-12
rUH 6.63e-11 3.85e-10 2.76e-09 1.39e-10 2.68e-09 6.53e-08
c−1
U 2.12e-07 3.31e-06 5.41e-05 1.45e-07 1.48e-06 2.64e-05

matrices A = VR−1KR and H = R∗ZR were constructed as in (3.9). The
magnitudes of the eigenvalues of K were at least 0.4. The machine accuracy
was εmach ≈ 2.22 · 10−16.

To test Algorithm 3.31 we made two experiments with 30 repetitions in which
moderately conditioned and badly conditioned test matrices were used. The
iteration was terminated when the relative error (3.14) was at most ε = 10−16.
The results are listed in Table 3.3 where c−1

A is the reciprocal 1-condition number
of the test matrix, its is the number of iteration steps and the further meanings
are as in (3.10).

The table shows that the iteration required only between 6 and 8 steps in
the first experiment and also the 7 to 10 steps used in the second experiment are
not too much. Taking into account that the absolute errors rUH correspond to
relative errors near machine accuracy, the precision of the computations is very
satisfactory. The only weak point is the residual rUM obtained for the badly
conditioned test matrices. In further experiments with ill-conditioned matrices
where c−1

A < 10−12, this residual often indicated that the computed H-polar
decomposition was utterly erroneous.

To test Algorithm 3.32 we made an experiment with 30 repetitions in which
H-SVDs and then definite H-polar decompositions were computed. The param-
eter for Algorithm 3.31 was ε = 10−16 and for Method 3.24 it was δ = 10−8. The
same experiment was also made with Method 3.25 which was configured with
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δ = τ = 10−8. To permit comparison of the algorithms the transformations T
and S were not modified according to (3.11). The results are listed in Table 3.4
which contains the residuals and reciprocal condition numbers for the H-SVDs
and for the definite H-polar decompositions.

The residuals obtained with Algorithm 3.32 are more balanced than those
obtained with Method 3.25. In particular the values of rUH suggest to consider
Algorithm 3.32 as the preferable method. However, its advantage is not tremen-
dous and we may conclude that both algorithms are appropriate for computing
H-SVDs and H-polar decompositions.



Chapter 4

Procrustes problems and
(G,H)-polar decompositions

4.1 Introduction

In Chapter 1 we have seen that classical multidimensional scaling (MDS) is a
technique for analysing empirical data which essentially consists of

(1) a method for constructing vectors xk such that ‖xk − xl‖ = dkl for given
distances dkl (1 ≤ k, l ≤ N) which satisfy the triangle inequality and

(2) a method for determining an isometry U such that
∑

k ‖Uxk − yk‖ is
minimal for given vectors xk and yk (1 ≤ k ≤ N).

Moreover, we have formulated the goal to generalise these methods for real and
complex indefinite scalar product spaces which requires

(1′) a method for constructing vectors xk and an indefinite scalar product such
that [xk − xl,xk − xl] = qkl for given real numbers qkl (1 ≤ k, l ≤ N) and

(2′) methods for solving the indefinite Procrustes problems (1.1) – (1.3).

In this chapter most of these generalisations are presented: In Section 4.3 the
method (1’) is given and in the Sections 4.4 and 4.5 the Procrustes problems
(1.1) and (1.2) are solved.

Whereas the discussion of problem (1.1) is possible with the results of the
previous chapter, the investigation of problem (1.2) requires some further state-
ments on doubly structured indefinite polar decompositions which are provided
in Section 4.2 and generalised in Section 4.6. In the final Section 4.7 the nu-
merical computation of these doubly structured decompositions is considered.

4.2 Introduction to (G,H)-polar decompositions

In the previous chapter H-polar decompositions of real and complex matrices
have been discussed extensively. In particular, the semidefinite H-polar decom-
positions introduced in Definition 3.22 and characterised in Corollary 3.23 are
an important tool for solving the Procrustes problems.

62
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This chapter will also make use of indefinite polar decompositions where the
factors U and M are doubly structured with respect to two selfadjoint matrices
G and H.

Definition 4.1. (F = R or F = C) Let G,H ∈ Fn×n be nonsingular and
selfadjoint and let A ∈ Fn×n. A factorisation of the form

A = UM with UH = UG = U−1 and MH = MG = M

is called a (G,H)-polar decomposition of A. A matrix having the properties of
U is said to be (G,H)-isometric (-orthogonal or -unitary), and a matrix having
the properties of M is said to be (G,H)-selfadjoint (-symmetric or -Hermitian).
If the factor M in particular is H-nonnegative (HM ≥ 0), the factorisation is
called an H-semidefinite (G,H)-polar decomposition. ♦

These factorisations will be of interest in the special case in which the ma-
trices G and H satisfy

H−1G = µ2G−1H for some µ ∈ R\{0}. (4.1)

A pair of matrices which has this property can be characterised as follows7.

Lemma 4.2. (F = R or F = C) Let G,H ∈ Fn×n be nonsingular and selfad-
joint. Then (4.1) is satisfied if and only if there exists a nonsingular matrix
S ∈ Fn×n such that

S∗HS = Ip ⊕−Iq ⊕ Ir ⊕−Is and S∗GS = µ(Ip ⊕−Iq ⊕−Ir ⊕ Is)

for suitable constants p, q, r, s ∈ N with p + q + r + s = n.

Proof. [⇒]: Let A ∈ Fn×n be a nonsingular matrix such that A = µ2A−1 for
some µ ∈ R\{0}. Then A2 = µ2I so that the Jordan normal form of A must
have the form

P−1AP = J = diag(±µ).

In particular, if A = H−1G, it follows that

(P∗HP)−1(P∗GP) = P−1H−1GP = J

= J∗ = P∗GH−1P−∗ = (P∗GP)(P∗HP)−1.

Thus the selfadjoint matrices P∗HP and P∗GP commute and can therefore be
diagonalised simultaneously, so that an orthogonal or unitary matrix Q consist-
ing of eigenvectors of P∗HP (or P∗GP) can now be chosen for which

P∗HP = QΛHQ∗ and P∗GP = QΛGQ∗

where ΛH , ΛG are diagonal matrices containing the real eigenvalues. This
means that

(Λ−1
H ΛG)2 =

(
Q∗(QΛHQ∗)−1(QΛGQ∗)Q

)2 = (Q∗JQ)2 = µ2I

7In the case F = C the statement of the lemma also follows from Corollary 3.20. Here we
have chosen to present a further proof which holds in the case F = R as well.
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and consequently Λ−1
H ΛG can also be written in the form8

Λ−1
H ΛG = µΣ with Σ = diag(±1).

Setting ΛH = |ΛH |ΣH , ΛG = |ΛG|ΣG, µ = ε|µ|, where ΣH = sign(ΛH),
ΣG = sign(ΛG), ε = sign(µ), we obtain

|ΛH |−1|ΛG| = |µ|I and ΣHΣG = εΣ.

Hence, for S = PQ|ΛH |−1/2 we finally have

S∗HS = (|ΛH |−1/2)∗Q∗P∗HPQ|ΛH |−1/2 = |ΛH |−1/2ΛH |ΛH |−1/2 = ΣH ,

S∗GS = (|ΛH |−1/2)∗Q∗P∗GPQ|ΛH |−1/2 = |ΛH |−1/2ΛG|ΛH |−1/2 = µ(εΣG).

The asserted form can always be obtained by suitable permutation. (The oper-
ations on Λ are to be applied to its diagonal elements.)
[⇐]: The assertion follows directly from H−1G = µS(Ip+q ⊕ −Ir+s)S−1 and
G−1H = µ−1S(Ip+q ⊕−Ir+s)S−1.

Obviously, a (G,H)-polar decomposition of a matrix A can exist only if

H−1A∗H = H−1M∗HH−1U∗H = G−1M∗GG−1U∗G = G−1A∗G

or AH = AG. These matrices allow the following representation.

Lemma 4.3. (F = R or F = C) Let G,H ∈ Fn×n be nonsingular and selfad-
joint such that (4.1) is satisfied and let A ∈ Fn×n such that AH = AG. Then
there exists a nonsingular matrix S ∈ Fn×n such that

S−1AS = A1 ⊕A2, S∗HS = J1 ⊕ J2, S∗GS = µJ1 ⊕−µJ2,

where A1 ∈ F(p+q)×(p+q), A2 ∈ F(r+s)×(r+s) and J1 = Ip⊕−Iq, J2 = Ir ⊕−Is.

Proof. For the nonsingular matrix S ∈ Fn×n from Lemma 4.2, the matrices
S∗HS and S∗GS take on the asserted form and H−1G = SFS−1 where F =
µIp+q ⊕ −µIr+s. According to the assumption HAH−1 = GAG−1 we also
have F(S−1AS) = S−1(H−1GA)S = S−1(AH−1G)S = (S−1AS)F, which is
possible only if S−1AS has the asserted form.

If the matrix A satisfies AH = AG and, furthermore, admits an H-polar
decomposition, then although

G−1M∗U∗G = H−1M∗U∗H = H−1M∗HH−1U∗H = MU−1

or M∗U∗GU = GM, it cannot be concluded that the matrix also admits a G-
or a (G,H)-polar decomposition. However, the following statement holds.

Lemma 4.4. (F = R or F = C) Let G,H,A,S ∈ Fn×n be as in Lemma 4.3.
Then A admits a (G,H)-polar decomposition if and only if A1 admits a J1-
polar decomposition and A2 admits a J2-polar decomposition. Moreover, such a
decomposition is H-semidefinite if and only if both Jk-polar decompositions are
semidefinite.

Proof. Let A = UM be a (G,H)-polar decomposition. Then UH = UG and
MH = MG imply S−1US = U1⊕U2 and S−1MS = M1⊕M2, where the blocks
Ak,Jk,Uk,Mk have the same size (k = 1, 2). A simple calculation shows that
UkMk is a Jk-polar decomposition of Ak.

8The matrices µΣ and J have the same diagonal elements, but their ordering may be
different.
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If conversely A1 = U1M1 and A2 = U2M2 are given J1- and J2-polar
decompositions, then these are also (µJ1)- and (−µJ2)-polar decompositions
and therefore A = UM with U = S(U1 ⊕U2)S−1 and M = S(M1 ⊕M2)S−1

is a (G,H)-polar decomposition.
The second part of the assertion follows from the fact that HM ≥ 0 if and

only if JkMk ≥ 0 for k = 1, 2.

A useful application of this lemma is the next result which ensures the exis-
tence of a (G,H)-polar decomposition in an important particular case.

Lemma 4.5. (F = R or F = C) Let G,H ∈ Fn×n be nonsingular and self-
adjoint such that (4.1) is satisfied and let A ∈ Fn×n such that AH = AG. If
A = UM is an H-polar decomposition with σ(M) ⊂ C+ = {z ∈ C|Re(z) > 0},
then this is also a G-polar decomposition.

Proof. Let S be as in Lemma 4.3. Then from σ(S−1AHAS) = σ(AHA) =
σ(M2) ⊂ C\(−∞, 0] and

(S−1H−1S−∗)(S∗A∗S−∗)(S∗HS)(S−1AS) =
2⊕

k=1

J−1
k A∗

kJkAk

it follows that σ(AJk

k Ak) ⊂ C\(−∞, 0] for k = 1, 2. Thus, according to
Corollary 3.7, both blocks Ak admit a Jk-polar decomposition UkMk with
σ(Mk) ⊂ C+. Moreover, Lemma 4.4 implies that

A = ŨM̃ with Ũ = S(U1 ⊕U2)S−1 and M̃ = S(M1 ⊕M2)S−1

is a (G,H)-polar decomposition with σ(M̃) ⊂ C+. On the other hand, according
to [PJ, Section 4], there exists one and only one matrix M for which AHA = M2

and σ(M) ⊂ C+, so that M = M̃ and thus also U = Ũ must be true.

In conclusion of this preparatory section, the statements of the lemmas will
be explained with the help of three examples. More general results on (G,H)-
polar decompositions will be discussed in Section 4.6.

Example 4.6. Let H = Ip ⊕ Ir and G = Ip ⊕ −Ir. Then a matrix A ∈
F(p+r)×(p+r) for which AH = AG, according to Lemma 4.3, takes on the form
A = A1 ⊕A2, where A1 ∈ Fp×p and A2 ∈ Fr×r. Let

A1 = P1Σ1Q∗
1 and A2 = P2Σ2Q∗

2

be singular value decompositions and let

U = P1Q∗
1 ⊕P2Q∗

2 and M = Q1Σ1Q∗
1 ⊕Q2Σ2Q∗

2.

Then A = UM is an H-semidefinite (G,H)-polar decomposition. ♦
Example 4.7. Let α, β, µ ∈ R with µ 6= 0 and let H = diag(1,−1, 1,−1) and
G = µ diag(1,−1,−1, 1). The matrix

A1 =
[
0 β
α 0

]
⊕

[
0 α
β 0

]
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satisfies AH
1 A1 = AG

1 A1 = diag(−α2,−β2,−β2,−α2) and admits the H-polar
decomposition

A1 = U1M1 with U1 =




−i 0
0 −i

−i 0
0 −i


 , M1 =




0 iα
iβ 0

0 iβ
iα 0


 .

But it is not a G-polar decomposition because U∗
1GU1 = −G and M∗

1G =
−GM1. In fact when α 6= β, the matrix pair (AG

1 A1,G), which is already in
canonical form, does not satisfy the condition 1. of Theorem 3.4. So A1 does
not have any G-polar decompositions in this case. The matrix

A2 =
[
0 β
α 0

]
⊕

[
0 β
α 0

]

satisfies AH
2 A2 = AG

2 A2 = diag(−α2,−β2,−α2,−β2) and admits the G-polar
decomposition

A2 = U2M2 with U2 =




0 −i
−i 0

0 −i
−i 0


 , M2 =




iα 0
0 iβ

iα 0
0 iβ


 .

But it is not an H-polar decomposition because U∗
2HU2 = −H and M∗

2H =
−HM2. Again when α 6= β, the matrix pair (AH

2 A2,H), which is already in
canonical form, does not satisfy the condition 1. of Theorem 3.4. So A2 does not
have any H-polar decompositions in this case. But if α = β, then A = A1 = A2

admits the (G,H)-polar decomposition

A = UM with U =
[−i

−i

]
⊕

[−i
−i

]
, M =

[
iα

iα

]
⊕

[
iα

iα

]

which evidently satisfies Lemma 4.4. ♦
Example 4.8. Let G,H be matrices with (4.1) and let A be a matrix with
AH = AG. If H is positive definite and A nonsingular, then there exists a
definite H-polar decomposition which, according to Lemma 4.5, is a G-polar
decomposition too. However, if A is singular or H is indefinite, this may not be
always true. Consider the (semi)definite H-polar decompositions

H1 = diag(1, 1, 1), G1 = diag(1, 1,−1), x ∈ R,

A1 =




cos(x) 0 0
sin(x) 0 0

0 0 0


 =




cos(x) 0 − sin(x)
sin(x) 0 cos(x)

0 1 0







1 0 0
0 0 0
0 0 0


 = U1M1

where σ(H1M1) = {0, 1} and

H2 = diag(1,−1), G2 = diag(1, 1), a > |b| > 0, u = b/a,

A2 =
[−√a2 − b2 0

0
√

a2 − b2

]
=

−1√
1− u2

[
1 u
u 1

] [
a b
−b −a

]
= U2M2.
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where σ(H2M2) = {a ± b}. Here U∗
1G1U1 = diag(1,−1, 1) 6= G1 and neither

U2 is orthogonal nor M2 symmetric, so that both factorisations are not G-
polar decompositions. In contrast to this, the “blockwise” (semi)definite H-polar
decompositions

A1 =
([

cos(x) − sin(x)
sin(x) cos(x)

]
⊕ 1

)
M1 and A2 = (−I2)(−A2),

according to Lemma 4.4, are also G-polar decompositions. ♦
With this background on (G,H)-polar decompositions we are now able to

investigate the problems stated in the introduction, starting with the deter-
mination of vectors x1, . . . ,xN and an indefinite scalar product [., .] such that
[xk − xl,xk − xl] = qkl for given real numbers qkl (1 ≤ k, l ≤ N).

4.3 Construction of vectors from values of a qua-
dratic form

The construction of vectors from given values of a quadratic form presented in
this section is a generalisation of the work [YH] for complex vector spaces and
indefinite scalar products.

Let F = R or F = C and let [., .] be an indefinite scalar product in Fn with
the underlying nonsingular symmetric or Hermitian matrix H ∈ Fn×n. Then
for arbitrary vectors x,y ∈ Fn in the case F = R it is true that

[x,y] =
1
2
([x,x] + [y,y]− [x− y,x− y]) (4.2a)

and in the case F = C we have

Re[x,y] =
1
2
([x,x] + [y,y]− [x− y,x− y])

=
1
2
([x,x] + [y,y]− [iy − ix, iy − ix]),

Im[x,y] =
1
2
([x,x] + [y,y]− [x− iy,x− iy])

= −1
2
([x,x] + [y,y]− [y − ix,y − ix]),

(4.2b)

so that the scalar products of the vectors can be expressed in terms of the
quadratic form Φ(x) = [x,x].

Now let N ≥ n vectors x1, . . . ,xN ∈ Fn be given and let X = [x1 . . .xN ] ∈
Fn×N be a matrix whose columns are these vectors. Then

W = X∗HX

is the Gramian matrix of the xk. Therefore, if span{x1, . . . ,xN} = Fn, then
the number of positive and negative eigenvalues of H and W are equal, and
furthermore the eigenvalue 0 appears in σ(W) with the multiplicity N − n
(Sylvester’s law of inertia, [GR, Chapter IX, §2]). Moreover, the elements wkl =
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[xl,xk] of the matrix W according to (4.2) can be expressed in the form

wkl =
1
2
(ρk + ρl − σkl) if F = R or (4.3a)

wkl =
1
2
(ρk + ρl − σkl) +

i

2
(ρk + ρl − τkl) if F = C. (4.3b)

where

ρk = [xk,xk], σkl = [xl − xk,xl − xk], τkl = [xl − ixk,xl − ixk] (4.4)
with ρk, σkl, τkl ∈ R, σkl = σlk, σkk = 0, τkl + τlk = 2(ρk + ρl) (4.5)

for 1 ≤ k, l ≤ N .
Conversely, let the real numbers ρk, σkl, τkl with (4.5) be given, and let the

elements of a matrix W be defined by (4.3). Then this matrix is symmetric or
Hermitian, respectively, and can therefore be written in the form

W = RΛR∗.

Here Λ is a diagonal matrix of the real eigenvalues λ1, . . . , λN of W and
R = [r1 . . . rN ] is a matrix whose columns form a basis of FN consisting of
orthonormalised eigenvectors. Now if p is the number of positive and n − p is
the number of negative eigenvalues and if it is assumed that

λ1, . . . , λp > 0, λp+1, . . . , λn < 0 and λn+1 = . . . = λN = 0,

then the matrices defined by

Λ1 = diag(λ1, . . . , λp, λp+1, . . . , λn) and R1 = [r1 . . . rn]

satisfy W = R1Λ1R∗
1 too. Consequently, if we set

Σ = diag(
√

λ1, . . . ,
√

λp,
√
−λp+1, . . . ,

√
−λn) and Hw = Ip ⊕−In−p,

then the matrix
X = Σ∗R∗

1 ∈ Fn×N

fulfills on the one hand rankX = n and on the other hand X∗HwX =
R1ΣHwΣ∗R∗

1 = R1Λ1R∗
1 = W. Therefore the columns x1, . . . ,xN ∈ Fn of X

constitute a spanning set (or system of generators) for Fn, and for the indefinite
scalar product defined by [x,y]w = (Hwx,y) it is true that wkl = [xl,xk]w.
This means that also

[xk,xk]w = wkk = ρk,

[xl − xk,xl − xk]w = wkk + wll − wkl − wlk = σkl,

[xl − ixk,xl − ixk]w = wkk + wll + iwkl − iwlk = τkl (if F = C),

so that the given numbers are values of the quadratic form Φw(x) = [x,x]w for
particular combinations of the constructed vectors. We thus have proved the
following theorem.

Theorem 4.9 (Construction of vectors). Let F = R or F = C and let
ρk, σkl be real numbers such that σkl = σlk and σkk = 0 for all k, l in {1, . . . , N}.
Furthermore, for the case F = C let τkl be real numbers such that τkl + τlk =
2(ρk+ρl) for all k, l in {1, . . . , N}. Then the following statements are equivalent:
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(i) There exist vectors x1, . . . ,xN ∈ Fn constituting a spanning set for Fn,
for which [xk,xk] = ρk as well as [xl − xk,xl − xk] = σkl, and in the
case F = C also [xl − ixk,xl − ixk] = τkl is satisfied. Thereby [., .] is an
indefinite scalar product in Fn with underlying nonsingular symmetric or
Hermitian matrix H ∈ Fn×n which has p positive eigenvalues.

(ii) The symmetric or Hermitian matrix W ∈ FN×N whose elements wkl are
defined by (4.3) has p positive and n − p negative eigenvalues, and the
eigenvalue 0 appears with multiplicity N − n.

For the case of a Euclidean or unitary space we immediately obtain the
following corollary in which ‖.‖ denotes the Euclidean norm.

Corollary 4.10. Let ρk, σkl, τkl ≥ 0 be as in Theorem 4.9. Then there exist
vectors xk such that ‖xk‖ =

√
ρk, ‖xl − xk‖ =

√
σkl, and in the case F = C

also ‖xl − ixk‖ =
√

τkl if and only if the matrix W is positive semidefinite.

Let F = R, N = 2 and ρ1, ρ2, σ12 ≥ 0. Then

detW =
1
2
(ρ1ρ2 + ρ1σ12 + ρ2σ12)− 1

4
(ρ2

1 + ρ2
2 + σ2

12)

=
1
4
(
σ12 − (

√
ρ1 −√ρ2)2

)(
(
√

ρ1 +
√

ρ2)2 − σ12

)

and this determinant is non-negative if and only if

|√ρ1 −√ρ2| ≤ √
σ12 and

√
σ12 ≤ √

ρ1 +
√

ρ2.

But this is just the triangle inequality, so that Corollary 4.10 gives a generali-
sation of this essential property of Euclidean geometry.

In addition to these investigations concerning the geometrical properties of
the vectors xk, the consideration of their physical properties provides some
useful information for the application of Theorem 4.9 in MDS.

Remark 4.11 (Tensor of inertia). On interpreting the vectors xk = (xα
k )

constructed in Theorem 4.9 as the locations of point objects of mass 1, the
matrix

T = XX∗, T =
[
Tαβ

]
with Tαβ =

N∑

k=1

xα
k xβ

k for 1 ≤ α, β ≤ n

gives their (contravariant) tensor of inertia in the sense of Hermann Weyl [WEY,
§6]9. Here T = Σ∗R∗

1R1Σ = Σ2 = diag(|λ1|, . . . , |λn|) is a diagonal matrix,
so that the axes of the coordinate system are also the inertial axes (principal
axes) of the constellation. Moreover, the absolute values of the eigenvalues are
the associated (contravariant) moments of inertia. From the viewpoint of MDS
this means that the coordinates of the vectors can be interpreted, as usual, as
the ratings of uncorrelated factors [BG, Section 7.10]. In addition to this, the
space-like, time-like or light-like property of the vectors xk and the canonical
basis vectors eα may also provide some useful information. ♦

9Weyl’s definition slightly differs from the definition given in the textbooks of classical
physics. Nevertheless, it is more reasonable when considering the rotational motion in n-
dimensional spaces.
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Remark 4.12 (Centroid). Let x1, . . . ,xN ∈ Rn be real vectors whose centroid
lies at the coordinates’ origin, i.e.

∑
k xk = 0, and let Φ(x) = [x,x]. Then the

scalar products satisfy

[xl,xk] =
1
2

(
1
N

N∑

j=1

Φ(xk − xj) +
1
N

N∑

i=1

Φ(xi − xl)

− Φ(xk − xl)− 1
N2

N∑

i=1

N∑

j=1

Φ(xi − xj)
)

,

as can easily be verified [T]. Conversely, let the real numbers σkl = σlk, σkk = 0,
1 ≤ k, l ≤ N be given. Then

wkl =
1
2

(
1
N

∑

j

σkj +
1
N

∑

i

σil − σkl − 1
N2

∑

i

∑

j

σij

)

defines the elements of a symmetric matrix W whose row and column sums
vanish. Using the method of Theorem 4.9 again vectors xk and an indefinite
scalar product can be constructed such that wkl = [xl,xk]. But now the centroid
of these vectors lies at the origin. An analogous construction also applies in the
complex case, but the conditions that must be assumed for the values τkl are
rather complicated there. ♦
Remark 4.13 (Approximation). Assume that the p positive and q = n− p
negative eigenvalues of W are sorted such that

λ1 ≥ . . . ≥ λp > 0 > λp+1 ≥ . . . λp+q

when defining H = Ip ⊕ −Iq and X. Moreover, let the columns of X∗ be
denoted by u1, . . . ,up;vq, . . . ,v1, so that u1 belongs to a maximal positive and
v1 belongs to a minimal negative eigenvalue. Then for H′ = Ir ⊕−Is and

(X′)∗ =





[u1 . . . ur;vs . . . v1], if r ≤ p and s ≤ q

[u1 . . . ur;0s . . . 0q+1 vq . . . v1], if r ≤ p and s > q

[u1 . . . up 0p+1 . . . 0r;vs . . . v1], if r > p and s ≤ q

[u1 . . . up 0p+1 . . . 0r;0s . . . 0q+1 vq . . . v1], if r > p and s > q

it holds that
X∗HX = (X′)∗(H′)(X′) + E

where the residual matrix E∗ = E ∈ FN×N satisfies

‖E‖2F =
n−s∑

α=r+1

λ2
α.

In other words, if r < p and s < q but the magnitudes of the eigenvalues
λr+1, . . . , λn−s are small, then it is still true that

X∗HX ≈ (X′)∗(H′)(X′),

so that the matrices X′ and H′ form an r + s-dimensional approximation of the
matrices X and H. On the other hand, if r ≥ p and s ≥ q, then it is always
true that

X∗HX = (X′)∗(H′)(X′).
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Consequently, if X1 ∈ F(p1+q1)×N and X2 ∈ F(p2+q2)×N fulfil

W1 = X∗
1H1X1, H1 = Ip1 ⊕−Iq1 ,

W2 = X∗
2H2X2, H2 = Ip2 ⊕−Iq2 ,

then it is always possible to choose matrices such that

W1 = (X′
1)
∗H(X′

1), W2 = (X′
2)
∗H(X′

2), H = Imax(p1,p2) ⊕−Imax(q1,q2).

Without loss of generality it can therefore be assumed that two constellations of
vectors constructed from values of a quadratic form are embedded in a common
indefinite scalar product space. ♦

4.4 Solution of the H-isometric Procrustes prob-
lem

Let x1, . . . ,xN ∈ Fn be the vectors and let [., .] = (H., .) be the indefinite scalar
product constructed from given scalars ρk, σkl, τkl according to Theorem 4.9, so
that (4.4) holds. For every H-isometry U ∈ Fn×n it then follows that

[Uxl,Uxk] = [xl,xk] = wkl

which can also be expressed in matrix equation form

X∗U∗HUX = X∗HX = W.

Thus the columns x′k = Uxk contained in the matrix X′ = UX satisfy (4.4),
too. Now assume that x1, . . . ,xN and y1, . . . ,yN are the vectors constructed
from two measurements of a quadratic form. Then on comparing the constella-
tions the question arises, what part of the observed differences is due to different
positions in space, and what part is due to actual differences in the inner struc-
ture of the constellations. Expressed mathematically, the task is to determine
an H-isometry U ∈ Fn×n which solves the optimisation problem

f(U) =
N∑

k=1

[Uxk − yk,Uxk − yk] →





min, if H > 0
max, if H < 0
min / max, otherwise

, (4.6a)

h(U) = U∗HU−H = 0.

The sum of scalar products arising therein can be expressed in the form of a
trace, so that an alternative expression with

f(U) = tr[(UX−Y)∗H(UX−Y)] (4.6b)

is given, where as above X = [x1 . . .xN ] and Y = [y1 . . .yN ]. Moreover, H < 0
(H > 0) stands for a positive (negative) definite matrix H and the symbol
“min / max” stands for a particular saddle point, which will be explained more
precisely below. Within the scope of Euclidean vector spaces a solution of this
problem was found in [S] where it was called the orthogonal Procrustes problem
(F = R, H = I). In the present context of indefinite scalar products it is
furthermore called the H-orthogonal or H-unitary Procrustes problem.
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The fact, that the addends in (4.6) can be positive as well as negative,
whenever H is indefinite, causes severe difficulties. On first sight one may thus
get the idea to avoid these difficulties by minimising one of the non-negative
functions

f1(U) = f(U)2 ≥ 0 or f2(U) =
∑

k[Uxk − yk,Uxk − yk]2 ≥ 0.

But the example H = diag(1,−1), Uxk = (ξ, ξ)T , yk = (η, η)T , i.e.

[Uxk − yk,Uxk − yk] = |ξ − η|2 − |ξ − η|2 = 0,

shows an addend which neither in f1 nor in f2 makes a contribution to the result
although |ξ− η| may be arbitrarily large. However, the intention of the optimi-
sation is to converge the constellations in the sense of an optimum congruence
which means, that the coordinate differences should become small. A first pos-
sibility to reach this goal is to measure the differences with a definite scalar
product, e.g. ‖Uxk−yk‖2. This approach will be discussed in the next section.
A further possibility is not to look for a minimum or maximum of the function
f , but to determine a particular saddle point “min /max” where the coordinate
differences are small. This is the subject of the following investigations.

Considering the case F = R first and introducing a matrix of the (unknown)
Lagrange multipliers L ∈ Rn×n, the constraints can be stated in the form

hL(U) = tr[L(U∗HU−H)]

and the necessary first order condition for solving the problem is

∂

∂U
(f + hL) = 0.

Differentiation of the trace [DP] gives

∂f

∂U
= 2HUXX∗ − 2HYX∗ and

∂hL

∂U
= HU(L + L∗),

so that U must satisfy the equation

UXX∗H + UΛH = YX∗H with Λ =
L + L∗

2
= Λ∗. (4.7)

Now defining M = (XX∗ + Λ)H, the necessary condition becomes

A = UM with A = YX∗H and U∗HU = H, M∗H = HM. (4.8)

Thus, if a solution of the problem exists, it can be determined by an H-polar
decomposition of the matrix A. (The question which of the H-isometries con-
tained in such an H-polar decomposition actually are solutions of the problem
will be discussed after the complex case is complete.)

In the case F = C the complex derivatives of f and hL do not exist. However,
the necessity for (4.8) can be shown by determining the real derivatives. For
this, let the real and imaginary part of the matrix A ∈ Cm×n be denoted by A1

and A2, respectively. Then the well-known linear map T : Cm×n → R2m×2n,

T (A) = Q∗
2m

[
A 0
0 A

]
Q2n =

[
A1 A2

−A2 A1

]
where Q2n =

√
2

2

[
In −iIn

iIn −In

]
,
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allows the real representation A∧ = T (A) of A. Moreover, for every Hermitian
matrix A it is true that 2 tr(A) = tr(A∧) which follows from the unitarity of
Q2n. Therefore, the objective function can be represented as

2f(U) = f(U∧) = tr[(U∧X∧ −Y∧)T H∧(U∧X∧ −Y∧)]

having the real derivatives

∂f(U∧)
∂U∧ =

[
∂f

∂U1

∂f
∂U2

− ∂f
∂U2

∂f
∂U1

]
= 2H∧U∧X∧(X∧)T − 2H∧Y∧(X∧)T .

The transformation of the constraints

h1(U) = Re(U∗HU−H) = 0 and h2(U) = Im(U∗HU−H) = 0

is more complicated. Introducing Lagrange multipliers L1,L2 ∈ Rn×n and using
H = H1 + iH2, U = U1 + iU2 we obtain

hL,1(U) = tr[L1(UT
1 H1U1 −UT

1 H2U2 + UT
2 H1U2 + UT

2 H2U1 −H1)],

hL,2(U) = tr[L2(UT
1 H1U2 + UT

1 H2U1 −UT
2 H1U1 + UT

2 H2U2 −H2)],

from which it follows that

∂hL,1

∂U1
= (H1U1 −H2U2)(L1 + LT

1 ),
∂hL,1

∂U2
= (H1U2 + H2U1)(L1 + LT

1 ),

∂hL,2

∂U1
= (H2U1 + H1U2)(L2 − LT

2 ),
∂hL,2

∂U2
= (H2U2 −H1U1)(L2 − LT

2 ),

where H1 = HT
1 and H2 = −HT

2 must be taken into account. Now setting

Λ1 =
L1 + LT

1

2
= ΛT

1 , Λ2 =
L2 − LT

2

2
= −ΛT

2 and Λ = Λ1 + iΛ2 = Λ∗,

it can be verified that

∂hL(U∧)
∂U∧ =




∂(hL,1+hL,2)
∂U1

∂(hL,1+hL,2)
∂U2

−∂(hL,1+hL,2)
∂U2

∂(hL,1+hL,2)
∂U1


 = 2H∧U∧(Λ)∧.

Consequently, the necessary first order conditions for an optimum

∂

∂U1
(f + hL,1 + hL,2) = 0 and

∂

∂U2
(f + hL,1 + hL,2) = 0

can be stated as

∂f(U∧)
∂U∧ +

∂hL(U∧)
∂U∧ = 2(HUXX∗ −HYX∗ + HUΛ)∧ = 0,

showing that (4.7) and (4.8) must be satisfied in the complex case, too. (The
conjugation is irrelevant since Λ may simply be renamed to Λ′.)

It remains to determine the particular H-polar decomposition (if existent)
which leads to the optimum congruence. For this, let UM be an H-polar de-
composition of the matrix A = YX∗H, and let

(R−1A[∗]AR,R∗HR) = (J,ZJ) and (S−1MS,S∗HS) = (K,ZK)
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be the canonical forms (see Theorem 3.1) of the pairs (A[∗]A,H) = (M2,H)
and (M,H), respectively. Returning to the initial equation (4.6b), we find that

f(U) = tr[(UX−Y)∗H(UX−Y)]
= tr(X∗U∗HUX−X∗U∗HY −Y∗HUX + Y∗HY)

= tr(X∗HX) + tr(Y∗HY)− 2 Re tr[(YX∗H)(H−1U∗H)]

= τ − 2Re tr(AU−1) = τ − 2 Re tr(UMU−1)

= τ − 2Re tr(SKS−1) = τ − 2Re tr(K)

where τ = tr(X∗HX) + tr(Y∗HY). The optimum can be found from this
equation by considering three cases:

Case (a): If H is definite, then the canonical forms are of the kind

(J,ZJ ) =




k⊕

j=1

λjIpj ⊕ 0r,

k⊕

j=1

εIpj ⊕ εIr




(K,ZK) =




k⊕

j=1

√
λjΣpj ⊕ 0r,

k⊕

j=1

εIpj ⊕ εIr


 .

Here λj > 0, Σpj = diag(±1) for 1 ≤ j ≤ k and ε = +1 if H > 0, ε = −1 if
H < 0. In the case H > 0 the value f(U) takes its minimum, when Σpj = +Ipj

is chosen and in the case H < 0 the value f(U) takes its maximum, when
Σpj = −Ipj is chosen. This means that in both cases

ZKK =
k⊕

j=1

√
λjIpj ⊕ 0r ≥ 0

and thus HM ≥ 0, so that the wanted result is obtained via a semidefinite
H-polar decomposition of A. In particular, if H = I, then the solution is
determined by an ordinary polar decomposition where U∗ = U−1 and M∗ = M
is positive semidefinite.

Case (b): If H is indefinite and if A admits a semidefinite H-polar decom-
position, then the following relationships exists between the canonical forms

J =
k⊕

j=1

[
λjIpj

λjIqj

]
⊕

[
0r+s

0r+t

]
,

ZJ =
k⊕

j=1

[
Ipj

−Iqj

]
⊕

[
Ir+s

−Ir+t

]
,

K =
k⊕

j=1

[√
λjΣpj √

λjΣqj

]
⊕

[
Σr

0r

]
⊕

[
0s

0t

]
,

ZK =
k⊕

j=1

[
Ipj

−Iqj

]
⊕

[
Ir

Ir

]
⊕

[
Is

−It

]
,

(4.9a)

where λj > 0 for 1 ≤ j ≤ k (see Corollary 3.23). If in this case Σpj = Ipj ,
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Σqj = −Iqj
and Σr = Ir is chosen, then again

ZKK =
k⊕

j=1

√
λjIpj+qj

⊕ 0r ⊕ Ir ⊕ 0s+t ≥ 0. (4.9b)

By this choice the contributions to f(U) take on their minimum along the posi-
tive space dimensions and their maximum along the negative space dimensions.
This is what is meant by “min / max” in (4.6a). Moreover, the resulting co-
ordinate differences are “small” which can be seen in the following way: Let
X′ = UX. Then

Y(X′)∗ = YX∗U∗ = UMH−1U∗

= U(SKS−1)(SZKS∗)U∗

= (US)KZK(US)∗

is positive semidefinite since ZK(ZKK)ZK = KZK is. Hence, the orthogonal
or unitary Procrustes problem

ϕ(T) = tr[(TX′ −Y)∗(TX′ −Y)] → min with T∗T = I, (4.10)

whose solution, according to case (a), is determined by an ordinary polar de-
composition

TM′ = Y(X′)∗ with M′ = (M′)∗ ≥ 0,

is solved for T = I. In other words, the coordinate differences
∑

k ‖x′k − yk‖2
obtained with the “min / max” solution x′k = Uxk are at minimum with respect
to an orthogonal or unitary transformation in the sense of problem (4.10). This
is exactly what one would expect of a transformation to an optimum congruence.

Case (c): If H is indefinite and if A admits an H-polar decomposition but
not a semidefinite H-polar decomposition, then by definition ZKK and thus also
KZK cannot be positive semidefinite. Therefore, there always exists a solution
T0 of the problem (4.10) for which ϕ(T0) < ϕ(I). Hence, the wanted result of
an optimum congruence of the constellations X′ and Y cannot be achieved in
this case.

This investigation shows that an H-isometry for which X′ = UX and Y
are at optimum congruence can only exist if A admits a semidefinite H-polar
decomposition. Conversely, let X′ and Y be matrices which are at optimum con-
gruence, i.e. for which Y(X′)∗ is positive semidefinite and selfadjoint. More-
over, let U be an H-isometry and let X = U−1X′. Then A = YX∗H =
Y(X′)∗HU admits the semidefinite H-polar decomposition A = UM where
M = U−1Y(X′)∗HU is H-nonnegative. All in all, we thus have found the
following result.

Theorem 4.14 (Solution of the H-isometric Procrustes problem). A
solution of the H-orthogonal or H-unitary Procrustes problem (4.6) exists if and
only if the matrix A = YX∗H admits a semidefinite H-polar decomposition. In
this case the H-isometry U contained in such a decomposition A = UM opti-
mises the function f . Moreover, X′ = UX and Y are at optimum congruence
in the sense, that the orthogonal or unitary Procrustes problem (4.10) is solved
for T = I.
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4.5 Solution of the (G,H)-isometric Procrustes
problem

Whereas the H-isometric Procrustes problem can always be solved in the case
of a definite matrix H, in the case of an indefinite matrix H it is possible that
no solution exists. But now let G and H be nonsingular selfadjoint matrices in
Fn×n, and let the geometry within the tuples (x1, . . . ,xN ) and (y1, . . . ,yN ) be
measured with the scalar product [., .]G = (G., .), but the geometry between the
tuples be measured with the scalar product [., .]H = (H., .). Then the problem
can be expressed, instead of (4.6), as

f(U) =
N∑

k=1

[Uxk − yk,Uxk − yk]H →





min, if H > 0
max, if H < 0
min / max, otherwise

with g(U) = U∗GU−G = 0 and h(U) = U∗HU−H = 0

(4.11a)

or in matrix notation

f(U) = tr[(UX−Y)∗H(UX−Y)] (4.11b)

which will be called the (G,H)-orthogonal or (G,H)-unitary Procrustes problem.
If the vectors xk and yk result from a construction according to Theorem 4.9,
the internal metric G is fixed, but the external metric H may be chosen within
the scope of the “compatibility condition”

H−1G = µ2G−1H for some µ ∈ R\{0} (4.12)

which is characterised in Lemma 4.2. If this choice is made such that H is
positive definite, then a sum of non-negative distance squares is minimised. In
this case a solution of (4.11) under the assumption (4.12) always exists which
will be shown in the sequel. (An analogous statement holds for a negative
definite matrix H.)

If again LG,LH ∈ Rn×n are matrices of the (unknown) Lagrange multipliers
and if the constraints in the case F = R are stated in the form

gL(U) = tr[LG(U∗GU−G)] and hL(U) = tr[LH(U∗HU−H)]

then the necessary first order condition

∂

∂U
(f + gL + hL) = 0

leads in the same way as above to the equation

GUA + HUB = C̃ with C̃ = HYX∗ and

A =
LG + L∗G

2
= A∗, B = XX∗ +

LH + L∗H
2

= B∗ (4.13)

which is also valid in the case F = C. Furthermore

GUG−1 = U−∗ = HUH−1,
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so that the transformations

C̃ = GUG−1GA + HUB = HUH−1GA + HUB = HU(H−1GA + B),

C̃ = GUA + HUH−1HB = GUA + GUG−1HB = GU(A + G−1HB)

can be made, yielding

UM = H−1C̃H + G−1C̃G = C with

M = H−1GAH + BH + AG + G−1HBG.
(4.14)

If now (4.12) is taken into account, then on the one hand

M∗H−HM = GBHG−1H−HG−1HBG = µ−2(GBG−GBG) = 0,

M∗G−GM = HAGH−1G−GH−1GAH = µ2(HAH−HAH) = 0

and on the other hand (4.14) implies

HCH−1 = C̃ + HG−1C̃GH−1 = (µ2/µ2)GH−1C̃HG−1 + C̃ = GCG−1

or H−1C∗H = G−1C∗G.

Therefore, if (4.12) holds and if U is a (G,H)-isometry and if there exist self-
adjoint matrices A,B which solve (4.13), then there exists a (G,H)-selfadjoint
matrix M such that UM is a (G,H)-polar decomposition of C. In particular, it
is true that CH = CG.

In order to prove that the existence of a (G,H)-polar decomposition UM=C
conversely implies the existence of the matrices A and B, assume that (4.12)
holds. Then, according to Lemma 4.4, there exists a nonsingular matrix S such
that

S∗HS = J1 ⊕ J2, S∗GS = µ(J1 ⊕−J2), (4.15a)

S−1US = U1 ⊕U2, S−1MS = M1 ⊕M2, S−1CS = C1 ⊕C2,

where Jk has the form diag(±1) and UkMk = Ck is a Jk-polar decomposition
(k = 1, 2). Let

S∗C̃S−∗ =
[
C̃11 C̃12

C̃21 C̃22

]
(4.15b)

and

S−1AS−∗ =
[
A11 A12

A∗
12 A22

]
, S−1BS−∗ =

[
B11 B12

B∗
12 B22

]
(4.15c)

be compatible partitionings. Then from (4.14) it follows that

U1M1 ⊕U2M2 = C1 ⊕C2 = 2(J1C̃11J1 ⊕ J2C̃22J2) or (4.15d)

C̃11 = 1
2 J1U1M1J1 and C̃22 = 1

2 J2U2M2J2.

On the other hand (4.13) requires GA + HB = U∗C̃ or
[

J1(µA11 + B11) J1(µA12 + B12)
J2(−µA∗

12 + B∗
12) J2(−µA22 + B22)

]
=

[
U∗

1C̃11 U∗
1C̃12

U∗
2C̃21 U∗

2C̃22

]
,
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yielding the system of equations

µA11 + B11 = J1U∗
1C̃11 = 1

2 M1J1, µA12 + B12 = J1U∗
1C̃12,

−µA22 + B22 = J2U∗
2C̃22 = 1

2 M2J2, −µA12 + B12 = C̃∗
21U2J2.

Therefore, by selecting arbitrary selfadjoint blocks B11,B22 and setting

A11 = 1
µ (1

2 M1J1 −B11) = A∗
11, A12 = 1

2µ (J1U∗
1C̃12 − C̃∗

21U2J2),

A22 = 1
µ (B22 − 1

2 M2J2) = A∗
22, B12 = 1

2 (J1U∗
1C̃12 + C̃∗

21U2J2),

the two selfadjoint matrices A and B which solve (4.13) are determined. If the
particular choice

B11 = 1
4 M1J1, B22 = 1

4 M2J2

is made, then
A11 = 1

4µ M1J1, A22 = −1
4µ M2J2

and thus

A = 1
2 (G−1U∗C̃ + C̃∗UG−1)− 1

4MG−1,

B = 1
2 (H−1U∗C̃ + C̃∗UH−1)− 1

4MH−1

which follows from (4.15). Summarising, the following result is proved.

Lemma 4.15. (F = R or F = C) Let G,H ∈ Fn×n be nonsingular selfadjoint
matrices which satisfy (4.12). Moreover, let U ∈ Fn×n be a (G,H)-isometry and
let C̃ ∈ Fn×n. Then the following statements are equivalent:

(i) There exist selfadjoint matrices A,B ∈ Fn×n such that

GUA + HUB = C̃.

(ii) There exists a (G,H)-selfadjoint matrix M ∈ Fn×n such that

UM = G−1C̃G + H−1C̃H.

Using this lemma, the necessary condition (4.13) for solving the Procrustes
problem (4.11) under the assumption (4.12) finally becomes

C = UM with C = YX∗H + G−1HYX∗G and

CH = CG, UH = UG = U−1, MH = MG = M.
(4.16)

Thus the solution of the problem can be determined by a (G,H)-polar decom-
position of the matrix C.

Again, it remains to determine the particular (G,H)-polar decomposition (if
existent) which leads to the optimum congruence. For this, let UM be a (G,H)-
polar decomposition of the matrix C. Moreover, let S be a nonsingular matrix
such that (4.15) holds and let

S−1X =
[
X1

X2

]
and S−1Y =

[
Y1

Y2

]
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be compatible partitionings. Then on the one hand from (4.13), (4.15a), (4.15b)
it follows that
[
C̃11 C̃12

C̃21 C̃22

]
= S∗C̃S−∗ = (S∗HS)(S−1Y)(S−1X)∗ =

[
J1Y1X∗

1 J1Y1X∗
2

J2Y2X∗
1 J2Y2X∗

2

]
,

so that according to (4.15d)

UkMk = Ck = 2JkC̃kkJk = 2YkX∗
kJk for k = 1, 2.

On the other hand we find from the initial equation (4.11b)

f(U) = tr
([

(S−1US)(S−1X)−(S−1Y)
]∗(S∗HS)

[
(S−1US)(S−1X)−(S−1Y)

])

= tr
([

U1X1 −Y1

U2X2 −Y2

]∗
(J1 ⊕ J2)

[
U1X1 −Y1

U2X2 −Y2

])

=
∑

k tr[(UkXk −Yk)∗Jk(UkXk −Yk)].

Now, using the canonical forms of the pairs (CJk

k Ck,Jk) = (M2
k,Jk) and

(Mk,Jk) the argumentation from Section 4.4 can be applied twice, showing
that the optimum congruence is achieved when UkMk are semidefinite Jk-polar
decompositions of the matrices Ck. If in this case we set

[
X′

1

X′
2

]
=

[
U1X1

U2X2

]
= S−1UX and

[
Y1

Y2

]
= S−1Y, (4.17a)

then the orthogonal or unitary Procrustes problems

ϕk(Tk) = tr[(TkX′
k −Yk)∗(TkX′

k −Yk)] → min with T∗kTk = I, (4.17b)

are solved for Tk = I. Moreover, if H > 0 (H < 0), then Jk = I (Jk = −I), so
that a solution then always exists (see Example 4.6). Summarising, the result
can be expressed by the following theorem.

Theorem 4.16 (Solution of the (G,H)-isometric Procrustes problem).
A solution of the (G,H)-orthogonal or (G,H)-unitary Procrustes problem (4.11)
under the assumption (4.12) exists if and only if the matrix C = YX∗H +
G−1HYX∗G admits an H-semidefinite (G,H)-polar decomposition. In this case
the (G,H)-isometry U contained in such a decomposition C = UM optimises
the function f . Moreover, X′ = UX and Y are at optimum congruence in the
sense, that the orthogonal or unitary Procrustes problems (4.17) are solved for
Tk = I.

4.6 More general results on (G,H)-polar decom-
positions

In the previous section it was found that the (G,H)-polar decompositions in-
troduced in Section 4.2 have useful applications. For this reason, we will now
generalise the Lemmas 4.2 – 4.4 for the case in which ρH−G is a non-defective
matrix pencil. In view of Theorem 3.2 only the case F = C is investigated.
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A pencil ρH−G is said to be non-defective, if there exist nonsingular ma-
trices P,Q such that both PGQ and PHQ are diagonal [MMX, Definition
1.3]. If G and H are in addition nonsingular and Hermitian, then these pencils
have a particularly simple canonical form which has already been described in
Corollary 3.20. Using this result, the following theorem is proved easily.

Theorem 4.17. Let ρH − G ∈ Cn×n be a non-defective Hermitian matrix
pencil where both H and G are nonsingular, and let A ∈ Cn×n be a matrix with
AH = AG. Then there exists a nonsingular matrix S ∈ Cn×n such that

S−1AS = A1 ⊕ . . .⊕Ak,

S∗HS = H1 ⊕ . . .⊕Hk,

S∗GS = G1 ⊕ . . .⊕Gk,

(4.18a)

where the blocks Aj, Hj and Gj are of equal size and each triple (Aj ,Hj ,Gj)
has one and only one of the following forms:

1. Triples belonging to real eigenvalues of the pencil

Aj ∈ Cp×p, Hj = Ip−q ⊕−Iq, Gj = µ(Ip−q ⊕−Iq) (4.18b)

with µ ∈ R\{0} and p, q ∈ N, q ≤ p.

2. Triples belonging to non-real eigenvalues of the pencil

Aj =
[
Aj,1

Aj,2

]
∈ C2p×2p, Hj =

[
Ip

Ip

]
, Gj =

[
µIp

µIp

]

(4.18c)
with µ ∈ C\R, Im(µ) > 0 and p ∈ N.

Moreover, the matrix A admits a (G,H)-polar decomposition if and only if each
block Aj of the form (4.18b) admits a Hj-polar decomposition and each block
of the form (4.18c) admits a decomposition such that

Aj =
[
Aj,1

Aj,2

]
=

[
Uj,1

U−∗
j,1

] [
Mj,1

M∗
j,1

]
= UjMj , (4.19)

where Uj,1,Mj,1 ∈ Cp×p.

Proof. According to Corollary 3.20 there exists a nonsingular matrix S ∈ Cn×n

such that H and G take on the asserted form and it holds that

S−1H−1GS =
r⊕

j=1

(µjIpj )⊕
s⊕

j=r+1

(µjIpj ⊕ µjIpj )

where µ1, . . . , µr are the real and µr+1, . . . , µs are the non-real eigenvalues with
positive imaginary part of ρH−G (µi 6= µj for i 6= j). Furthermore, HAH−1 =
GAG−1 implies that the matrices S−1AS and S−1H−1GS commute, so that
S−1AS must also have the asserted form.

Now, let UM be a (G,H)-polar decomposition of A. Then UH = UG = U−1

and MH = MG = M, so that U and M must have the same block structure as
A. Furthermore, U∗

jHjUj = Hj and M∗
jHj = HjMj , from which in the case

of the non-real eigenvalues it also follows that Uj,2 = U−∗
j,1 and Mj,2 = M∗

j,1.
Conversely, if each block Aj admits the asserted decomposition, then it is

easy to verify that U = S(U1 ⊕ . . .⊕Uk)S−1 and M = S(M1 ⊕ . . .⊕Mk)S−1

are the factors of a (G,H)-polar decomposition of A.
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Whereas the existence of the Hj-polar decomposition of the blocks (4.18b)
can be deduced from Theorem 3.3 and Theorem 3.4, there is not yet a criterion
for the existence of the decomposition (4.19) of the blocks (4.18c). However,
from (4.19) it follows that Mj,1 = U−1

j,1Aj,1 = A∗
j,2Uj,1, so that this decompo-

sition exists if and only if the equation Aj,1 = Uj,1A∗
j,2Uj,1 can be solved for

Uj,1. The investigation of this special non-Hermitian algebraic Riccati equation
requires some properties of the singular value decomposition which for clarity
are reviewed next.

Proposition 4.18. Let A ∈ Cm×n (m ≥ n) and let

A = U
[
Σ
0

]
V∗, Σ = diag(σ1, . . . , σn)

be a singular value decomposition where U ∈ Cm×m, V ∈ Cn×n are unitary and
σ1 ≥ . . . ≥ σn ≥ 0. Then the following statements hold:

(i) If rankA = rankΣ = r, and if the corresponding partitioning

U = [Ur Um−r], Σ = Σr ⊕ 0n−r, V = [Vr Vn−r]

is made, then the columns of Ur, Um−r, Vr and Vn−r form orthonormal
bases of the subspaces imA, (imA)⊥, (kerA)⊥ and kerA, respectively.

(ii) If rankA = rankΣ = n, then the columns of

B = U
[
Σ−1

0

]
V∗

form a basis which is dual with respect to the basis formed by the columns
of A.

Proof. (i) is obvious and (ii) follows from B∗A = In.

With the help of these properties the following theorem can now be proved.

Theorem 4.19. Let A,B ∈ Cn×n. Then there exists a nonsingular matrix
X ∈ Cn×n such that

A = XB∗X (4.20)

if and only if there exists a matrix M ∈ Cn×n such that

B∗A = M2 and kerA = kerM, kerB = kerM∗. (4.21)

Proof. [⇒]: Let X be a nonsingular solution of (4.20). For M = X−1A = B∗X
it then follows that B∗A = M2 as well as kerA = kerM. Since X∗B = M∗,
we also have kerB = kerM∗.

[⇐]: Let M be a matrix which satisfies (4.21) and let p = rankM. If p = n, then
A,B and M are nonsingular and therefore X = AM−1 is a solution of (4.20).
Now assume that p < n. Then there exists a singular value decomposition

M = PΣQ∗ =
[
P1 P2

] [
Σ1

0

] [
Q∗

1

Q∗
2

]
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where P1,Q1 ∈ Cn×p, P2,Q2 ∈ Cn×(n−p) and Σ1 = diag(σ1, . . . , σp), σi > 0
for 1 ≤ i ≤ p. Thus, on the one hand

MQ = [M1 0] with M1 = MQ1 = P1Σ1, M⊥
1 = P2 and

M∗P = [M2 0] with M2 = M∗P1 = Q1Σ1, M⊥
2 = Q2,

and since kerA = kerM and kerB = kerM∗ on the other hand

AQ = [A1 0] with A1 = AQ1 and
BP = [B2 0] with B2 = BP1.

Therefore, the matrix Y = P∗B∗AQ = P∗M2Q has the form

Y = Y1 ⊕ 0n−p with Y1 = B∗
2A1 = M∗

2M1 (= Σ1Q∗
1P1Σ1) ∈ Cp×p.

For q = rankY1 now two cases must be considered:

Case 1): If q = p, let A⊥
1 and B⊥

2 be matrices whose columns form bases of
(imA1)⊥ or (imB2)⊥, respectively, and let

A′
1 = (A1|B⊥

2 ), B′
2 = (B2|A⊥

1 ) and M′
1 = (M1|M⊥

2 ), M′
2 = (M2|M⊥

1 ).

Then
(B′

2)
∗A′

1 = Y1 ⊕YA and (M′
2)
∗M′

1 = Y1 ⊕YM

where YA,YM ∈ C(n−p)×(n−p) are nonsingular. Hence, for

A′′
1 = A′

1(Ip ⊕Y−1
A ) and M′′

1 = M′
1(Ip ⊕Y−1

M ),

we obtain
(B′

2)
∗A′′

1 = Y1 ⊕ In−p = (M′
2)
∗M′′

1 .

Thus, the matrix
X = A′′

1(M′′
1)−1

is a solution of (4.20).

Case 2): If q < p, there exists a singular value decomposition

Y1 = RΩS∗ with R,S ∈ Cp×p, Ω = Ω1 ⊕ 0p−q,

where Ω1 = diag(ω1, . . . , ωq) is nonsingular. By setting

A′
1 = A1S(Ω−1

1 ⊕ Ip−q), B′
2 = B2R and

M′
1 = M1S(Ω−1

1 ⊕ Ip−q), M′
2 = M2R,

we obtain
(B′

2)
∗A′

1 = (M′
2)
∗M′

1 = Iq ⊕ 0p−q.

Now, let D2 = [d1 . . .dp] and C1 = [c1 . . . cp] be matrices whose columns
form dual bases with respect to the bases of imA′

1 or imB′
2 formed by the

columns of A′
1 = [a1 . . .ap] or B′

2 = [b1 . . .bp], respectively. Then

(D2)∗A′
1 = (B′

2)
∗C1 = Ip,
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and thus the matrices defined by

A′′
1 = [a1 . . .aq aq+1 . . .ap cq+1 . . . cp] and

B′′
2 = [b1 . . .bq bq+1 . . .bp dq+1 . . .dp]

satisfy

(B′′
2)∗A′′

1 = Iq ⊕
[
0p−q Ip−q

Ip−q W

]

with W = [wµν ], wµν = (cq+ν ,dq+µ) for 1 ≤ µ, ν ≤ p − q. Consequently, the
matrix

A′′′
1 = [a1 . . .aq aq+1 . . .ap c′q+1 . . . c′p] with c′k = ck −

p∑

j=q+1

(ck,dj)aj

for q + 1 ≤ k ≤ p, fulfills

(B′′
2)∗A′′′

1 = Iq ⊕
[
0p−q Ip−q

Ip−q 0p−q

]
.

Again, let (A′′′
1 )⊥ and (B′′

2)⊥ be matrices whose columns form bases of
(imA′′′

1 )⊥ or (imB′′
2)⊥, respectively, and let

∼
A1 =

(
A′′′

1 |(B′′
2)⊥

)
and

∼
B2 =

(
B′′

2 |(A′′′
1 )⊥

)
.

Then

(
∼
B2)∗

∼
A1 = Iq ⊕

[
0p−q Ip−q

Ip−q 0p−q

]
⊕YA

where YA ∈ C(n−2p+q)×(n−2p+q) is nonsingular. Hence, for

≈
A1 =

∼
A1(I2p−q ⊕Y−1

A )

we finally obtain

(
∼
B2)∗

≈
A1 = Iq ⊕

[
0p−q Ip−q

Ip−q 0p−q

]
⊕ In−2p+q = Z with Z2 = I.

Starting with M′
1 and M′

2 in the same way the matrices
≈
M1 and

∼
M2 can be

constructed which also satisfy

(
∼
M2)∗

≈
M1 = Z.

Thus, the matrix

X =
≈
A1(

≈
M1)−1 =

≈
A1Z(

∼
M2)∗

is a solution of (4.20).

The square roots of B∗A can be calculated based on the well-known results
derived in [CL], [G, Chapter VIII, §7], [WED, Section 8.06]. A correspond-
ing numerical algorithm is given in [BF]. Thus, Theorem 4.17 presents a quite
general necessary and sufficient condition for the existence of (G,H)-polar de-
compositions which can be applied using the solution of the Riccati equation
A = XB∗X provided in Theorem 4.19.
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4.7 Numerical computation of (G,H)-polar de-
compositions

To be able to solve (G,H)-unitary Procrustes problems numerically this final
section explains how (G,H)-polar decompositions can be computed. For this
purpose not really new algorithms are required. It is merely necessary to apply
the methods from Section 3.5 and Section 3.6 correctly. For simplification of the
presentation it is assumed that G and H satisfy H−1G = µ2G−1H for some
real µ 6= 0.

Let A be a matrix such that AHA has no non-positive eigenvalues. Then
Algorithm 3.31 can be applied and according to Theorem 3.30 it computes the
particular H-polar decomposition A = U0M0 for which σ(M0) lies in the open
right complex half-plane. If AHA additionally is diagonalisable, this decompo-
sition can also be computed with the method given in Remark 3.26 where it
must be chosen such that Re(ωj) > 0 and εj = +1.

Now assume that A furthermore satisfies AH = AG. Then the computed
H-polar decomposition, according to Lemma 4.5, is a G-polar decomposition,
too10. If H additionally is positive or negative definite, then A = U0M0 or
A = (−U0)(−M0), respectively, is a definite H-polar decomposition (see the
explanations following Algorithm 3.31) and consequently it is also an H-definite
(G,H)-polar decomposition. Thus, in these cases an H-definite (G,H)-polar de-
composition is simply obtained by computing a definite H-polar decomposition
with Algorithm 3.31 or with the method described in Remark 3.26.

In general it is more difficult to compute such a decomposition. In fact,
Example 4.8 shows that if H is indefinite or A is singular, then a definite or
semidefinite H-polar decomposition of A need not be a G-polar decomposition,
too. Hence, in general it is necessary to transform A and H into the form
of Lemma 4.3 and then to compute (semi)definite Jk-polar decompositions of
the blocks Ak according to Lemma 4.4. The required transformation S can be
determined by computing the simplified canonical form of the pair (H−1G,H)
with Method 3.24. Thus we obtain the following algorithm.

Algorithm 4.20. Let A ∈ Cn×n be a matrix which has H-semidefinite (G,H)-
polar decompositions. Then such a decomposition A = UM can be computed
with the following steps:

1. Compute the simplified canonical form

(S−1H−1GS,S∗HS) = (µIp+q ⊕−µIr+s,J1 ⊕ J2)
J1 = Ip ⊕−Iq, J2 = Ir ⊕−Is

of the pair (H−1G,H) with Method 3.24.

2. Compute S−1AS = A1 ⊕A2.

3. Compute semidefinite Jk-polar decompositions Ak = UkMk for k = 1, 2.

4. Compute U = S(U1 ⊕U2)S−1 and M = S(M1 ⊕M2)S−1.

10This statement also holds when ρH−G is a non-defective Hermitian pencil which can be
shown using a corresponding generalisation of Lemma 4.5 obtained from Theorem 4.17 and
Theorem 4.19.
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This algorithm can easily be adopted for the case in which ρH − G is a
non-defective Hermitian pencil. For its application the following rules hold:

(a) The method for computing the decompositions in step (3) depends on the
matrices Ak and Jk. If Jk = ±I, then Ak = (±Uk)(±Mk) is an ordinary
polar decomposition. Otherwise, if Ak is nonsingular, then Method 3.25
or Algorithm 3.32 can be applied. If A is singular, then Method 3.25 must
be used.

(b) If the decompositions in step (3) are not semidefinite, the algorithm still
computes a (G,H)-polar decomposition, but it is not H-semidefinite.

In the most important application for solving the (G,H)-isometric Procrustes
problem Algorithm 4.20 becomes particularly simple. Indeed, if it is assumed
that the matrices X,Y ∈ Fn×N appearing in (4.11) are constructed by Theorem
4.9, then the internal metric has the form G = Ip ⊕ −In−p and the external
metric will usually be defined by H = In. Consequently, the matrix C from
(4.16) is given by

C = YX∗H + G−1HYX∗G = 2
[
Y1X∗

1 0
0 Y2X∗

2

]
for X =

[
X1

X2

]
, Y =

[
Y1

Y2

]

where X1,Y1 ∈ Fp×N and X2,Y2 ∈ F(n−p)×N . Since G, H and C are already in
the form of Lemma 4.3, only step (3) of Algorithm 4.20 is required to compute
an H-semidefinite (G,H)-polar decomposition of C. Moreover, J1 = Ip and
J2 = In−p, so that in step (3) merely the ordinary polar decompositions

Y1X1 = U1M1 and Y2X2 = U2M2

have to be computed where the factor 2 is taken into M1 and M2. Finally,
U = U1 ⊕U2 is the wanted (G,H)-isometry and

X′ = UX =
[
U1X1

U2X2

]

are the transformed coordinates for which X′ and Y are optimally congruent.



Chapter 5

A Newton method for the
numerical solution of
Procrustes problems

5.1 Introduction

In the previous chapter we discussed the Procrustes problems

f(U) = tr[(UX−Y)∗H(UX−Y)] →





min, if H > 0
max, if H < 0
min / max, otherwise

(5.1)

subject to the constraints

h(U) = U∗HU−H = 0 (5.2)

or
g(U) = U∗GU−G = 0 and h(U) = U∗HU−H = 0. (5.3)

The necessary conditions for solving these problems were obtained as

HU(XX∗ + ΛH) = HYX∗ (5.4)

or
GUΛG + HU(XX∗ + ΛH) = HYX∗, (5.5)

where ΛG and ΛH are unknown selfadjoint matrices of the Lagrange multipliers.
These equations were then transformed into the form

UM = A

where either
UH = U−1, MH = M

or
UH = UG = U−1, MG = MH = M

86
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which is trivial for (5.4) and is possible for (5.5) by assuming that

H−1G = µ2G−1H for some µ ∈ R\{0}.
In this way the wanted H- or (G,H)-isometry U can be expressed as the isomet-
ric factor of an H- or a (G,H)-polar decomposition of a known matrix A (see
Theorem 4.14 and Theorem 4.16).

In this chapter we are now interested in the optimisation of (5.1) subject to
the constraints

g(U) = U∗GU−G = 0, (5.6)

where the associated necessary condition becomes

GUΛG + HUXX∗ = HYX∗. (5.7)

To avoid that (5.7) can be reduced to (5.4) it is furthermore assumed that

G 6= µH for all µ ∈ R.

Clearly, the most interesting of these Procrustes problems are those in which
the internal metric G is indefinite but the external metric H is definite. For
example, if X and Y are constructed according to Theorem 4.9, the internal
metric has the form G = Ip⊕−In−p. If now U is determined such that f(U) is
a minimum for H = In, then the matrix X′ = UX minimises ‖X′−Y‖F under
the constraints (X′)∗G(X′) = X∗GX. This is exactly what is wanted.

Unfortunately, we were not able to transform (5.7) similar to (5.4) or (5.5)
and to derive a corresponding expression for U. Therefore, this chapter presents
a Newton method with which U can be determined numerically.

The method will be designed to solve various constrained optimisation prob-
lems where the constraints are given by (5.2), (5.3), or (5.6), respectively. Al-
though it even applies for optimising (5.1) in the case of an indefinite matrix
H, we will mostly consider the case in which H is positive definite. Then the
minimum of f has to be determined and since f(U) is bounded from below it
is ensured that it always exists.

The method is described in Section 5.2 where not only the algorithm is
derived but also its applicability is discussed. In Section 5.3 some numerical
results are presented.

5.2 Description of the method

For the description of the Newton method the notation

x · y =
n∑

α=1

xαyα where x = (xα), y = (yα) ∈ Fn

is used. Furthermore, the conjugation is written explicitly where it is to be
applied, so that the ordinary scalar product in the case F = C is given by

(x,y) = x · y.

The method is based on the following well-known results on constrained opti-
misation problems which, for example, are proved in [ER, Kapitel V.6].
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Let U ⊂ Rn be an open set and let C2(U) be the class of twice continuously
differentiable functions in U . Furthermore, let f : U → R be an objective
function in C2(U), g : U → Rm a constraint function in C2(U), and let solution
u ∈ U of the optimisation problem

{
f(u) → min
g(u) = 0

}
or





f → min
g1 = 0

...
gm = 0





(5.8)

to be determined. Then the associated Lagrange function is defined by

l(u, λ) = f(u) + λ · g(u) = f(u) +
m∑

j=1

λjgj(u) (5.9)

and the necessary first order condition for solving the problem is

F(u, λ) =
(∇f(u) + λ · ∇g(u)

g(u)

)
=




∂f

∂u1
+

∑m
j=1 λj

∂gj

∂u1
...

∂f

∂un
+

∑m
j=1 λj

∂gj

∂un
g1

...
gm




= 0. (5.10)

Here λ ∈ Rm represents the vector of the unknown Lagrange multipliers and
F(u, λ) the gradient of the Lagrange function. If (u0, λ0) is a solution of (5.10),
and

L(u, λ) = ∇2f(u) + λ · ∇2g(u) =


 ∂2f

∂uα∂uβ
+

m∑

j=1

λj
∂2gj

∂uα∂uβ


 (5.11)

denotes the associated Lagrange matrix (1 ≤ α, β ≤ n), and also

M = span{∇g1(u0), . . . ,∇gm(u0)},
M⊥ = {y ∈ Rm : x · y = 0 for all x ∈ M}, (5.12)

then the necessary second order condition for a minimum is

L(u0, λ0)y · y ≥ 0 for all y ∈ M⊥. (5.13)

If L(u0, λ0) is not only positive semidefinite, but positive definite on M⊥

L(u0, λ0)y · y > 0 for all y ∈ M⊥, (5.14)

the sufficient second order condition for a strict local minimum of f in u0 holds.
In order to apply these equations to a complex optimisation problem f :

U ⊂ Cn → R, g : U ⊂ Cn → Cm it suffices to split f and g into their real and
imaginary parts and to represent them as real functions f∧ : U∧ ⊂ R2n → R,
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g∧ : U∧ ⊂ R2n → R2m. Furthermore, the system of equations F(u, λ) = 0 can
be solved iteratively using the Newton method

zi+1 = zi −DF−1(zi)F(zi) with zi = (ui λi)T ∈ Rn+m, (5.15)

for which the components of the function F and the components of its Jacobi
matrix

DF(u, λ) =
[∇2f(u) + λ · ∇2g(u) ∇g(u)

∇g(u)T 0

]
=

[
L(u, λ) ∇g(u)
∇g(u)T 0

]
(5.16)

are required. If the Newton method converges to a solution (u0, λ0) of (5.10), i.e.
to a stationary point of (5.9), then DF(u0, λ0) contains the Lagrange matrix
L(u0, λ0) as well as a basis of M , with the help of which (5.14) can also be
verified.

On the basis of these principles, the next two subsections will be concerned
with bringing the objective functions (5.1) and the constraints (5.6) into a form
from which the components of F and DF can be calculated. Thereafter the
Newton method will be specified and its applicability and starting values will
be discussed.

5.2.1 Transformation of the objective function

To transform the objective function

f(U) = tr[(UX−Y)∗H(UX−Y)] (5.17)

into an appropriate form, the Kronecker product and vectorisation operator are
required.

Definition 5.1 (Kronecker product and vectorisation operator).

(i) Let A = [aµν ] ∈ Fm×n and let B ∈ Fp×q. The matrix

A⊗B =




a11B · · · a1nB
...

...
am1B · · · amnB


 ∈ Fmp×nq

is called the Kronecker product of the matrices A and B.

(ii) Let a1, . . . ,am be the row vectors of the matrix A ∈ Fm×n. The vector

vec(A) =




aT
1
...

aT
m


 ∈ Fmn

is called the vector of the matrix A.

The properties of these operators are discussed in detail in [GB, Chapter 8,
9], where in particular the bilinearity of the Kronecker product and the following
calculation rules are proved.

Lemma 5.2. Let A ∈ Fm×m, B ∈ Fn×n and U,V ∈ Fm×n. Then

(A⊗BT ) vec(U) = vec(AUB) and tr(V∗U) = vec(U) · vec(V).
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Using this lemma, the objective function (5.17) can be transformed into the
form

f(U)=tr(U∗HUXX∗)−2Re tr(U∗HYX∗)+tr(HYY∗)

=vec(HUXX∗) · vec(U)−2 Re vec(HYX∗) · vec(U)+tr(HYY∗)

=[H⊗ (XX∗)T ] vec(U) · vec(U)−2Re vec(HYX∗) · vec(U)+tr(HYY∗).

This corresponds to the general function

f(u) = Au · u− 2 Reb · u + γ with

A∗ = A ∈ Fn2×n2
, b ∈ Fn2

, γ ∈ R
(5.18)

of the vector u = vec(U) ∈ Fn2
by setting

A = H⊗ (XX∗)T , b = vec(HYX∗), γ = tr(HYY∗). (5.19)

In the case F = R the gradient of this quadratic form needed in (5.10) is
directly given as

∇f(u) = 2(Au− b). (5.20)

In the case F = C it can also be obtained by taking the real derivatives, for
which a real representation of (5.18) is required:

Let the real and imaginary part of a complex matrix A ∈ Cm×n be denoted
by A1 and A2, respectively, and let the same apply to complex vectors u =
u1 + iu2 ∈ Cn and complex scalars λ = λ1 + iλ2 ∈ C. Furthermore, let the real
representations of A and u of the first and second kind be defined by

A∧ =
[
A1 −A2

A2 A1

]
∈ R2m×2n, u∧ =

(
u1

u2

)
∈ R2n,

A∨ =
[

A2 A1

−A1 A2

]
∈ R2m×2n, u∨ =

(
u2

−u1

)
∈ R2n.

Then the following calculation rules hold, whose proof is obtained by simple
verification.

Lemma 5.3 (Real representation of complex matrix equations). Let
A,B ∈ Cm×n, C ∈ Cn×k, D ∈ Cp×q, u,v ∈ Cn and λ ∈ C. Then

1. (λA)∧ = λ1A∧ − λ2A∨, (λA)∨ = λ1A∨ + λ2A∧,

2. (λu)∧ = λ1u∧ − λ2u∨, (λu)∨ = λ1u∨ + λ2u∧

3. (A + B)∧ = A∧ + B∧, (A + B)∨ = A∨ + B∨,

4. (u + v)∧ = u∧ + v∧, (u + v)∨ = u∨ + v∨

5. (AC)∧ = A∧C∧ = −A∨C∨, (AC)∨ = A∧C∨ = A∨C∧,

6. (Au)∧ = A∧u∧ = −A∨u∨, (Au)∨ = A∧u∨ = A∨u∧,

7. Re(u · v) = u∧v∧ = u∨v∨, Im(u · v) = −u∧v∨ = u∨v∧,

8. (A⊗D)∧ = (A∧ ⊗D1 −A∨ ⊗D2),
(A⊗D)∨ = (A∨ ⊗D1 + A∧ ⊗D2),
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9. (A∗)∧ = (A
T
)∧ = (A∧)T , (A∗)∨ = (A

T
)∨ = −(A∨)T ,

10. A∧ = (A∧)T , A∨ = −(A∨)T , if m = n and A∗ = A,

11. B∧ = −(B∧)T , B∨ = (B∨)T , if m = n and B∗ = −B.

With the help of this Lemma it follows from (5.18) that

Au · u = Re(Au · u) = (Au)∧ · u∧ = A∧u∧ · u∧ and Re(b · u) = b∧ · u∧.

Hence, the equivalent real representation in the case F = C is given by the
quadratic form

f(u∧) = A∧u∧ · u∧ − 2b∧ · u∧ + γ = f(u) with

A∧ = (A∧)T ∈ R2n2×2n2
, b∧ ∈ R2n2

, γ ∈ R,
(5.21)

whose gradient is obtained as

∇f(u∧) = 2(A∧u∧ − b∧) = 2(Au− b)∧. (5.22)

Summarising, we have:

Lemma 5.4 (Representation of the objective function). The objective
function (5.17) can be expressed according to (5.18), (5.20) – (5.22) in the form

f(u) = Au · u− 2b · u + γ with
∇f(u) = 2(Au− b) if F = R,

f(u∧) = A∧u∧ · u∧ − 2b∧ · u∧ + γ with
∇f(u∧) = 2(A∧u∧ − b∧) if F = C,

where u = vec(U), A∗ = A, γ = γ and A, b, γ are defined by (5.19).

5.2.2 Transformation of the constraints

The constraints
g(U) = U∗GU−G = 0 (5.23)

consist of n2 equations g(U) = [γµν(U)], γµν = γνµ, which with G = [gµν ],
gµν = gνµ and U = [u1 . . .un] can be transformed into the form

γµν(U) = Guν · uµ − gµν = 0 for 1 ≤ µ, ν ≤ n.

Considering the case F = C first, a real representation according to Lemma 5.3
must be used again

Re(γµν) = G∧u∧ν · u∧µ − ĝµν = Re(γνµ) with ĝµν = Re(gµν),

Im(γµν) = G∨u∧ν · u∧µ − ǧµν = − Im(γνµ) with ǧµν = Im(gµν).

Because of the symmetry of the real parts and the antisymmetry of the imag-
inary parts, now all requirements imposed on U can be expressed as n2 real
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constraints

rµµ = 1
2 Re(γµν)

= 1
2 (G∧u∧µ · u∧µ − ĝµµ) for 1 ≤ µ ≤ n, (5.24a)

rµν = Re(γµν) = G∧u∧ν · u∧µ − ĝµν

= G∧u∧µ · u∧ν − ĝνµ for 1 ≤ µ < ν ≤ n, (5.24b)

rµν = Im(γµν) = G∨u∧ν · u∧µ − ǧµν

= −G∨u∧µ · u∧ν + ǧνµ for 1 ≤ ν < µ ≤ n, (5.24c)

in which the factor 1/2 has been introduced for simplification of the further
presentation. From these equations the gradients according to u∧α ∈ R2n can be
read immediately using the Kronecker symbol δαµ

∇αrµµ = G∧u∧µδαµ for 1 ≤ µ ≤ n,

∇αrµν = G∧u∧ν δαµ + G∧u∧µδαν for 1 ≤ µ < ν ≤ n,

∇αrµν = G∨u∧ν δαµ −G∨u∧µδαν for 1 ≤ ν < µ ≤ n,

and only need to be brought into the correct order for determining the gradients
according to u∧ ∈ R2n2

.
Considering for this purpose the matrices

Rµµ =
[ µ-th column

↓
0 . . . G∧u∧µ . . . 0

]
,

Rµν =
[ µ-th column

↓
ν-th column

↓
0 . . . G∧u∧ν . . . G∧u∧µ . . . 0

]
for µ < ν,

Rµν =
[ ν-th column

↓
µ-th column

↓
0 . . . −G∨u∧µ . . . G∨u∧ν . . . 0

]
for ν < µ,

and setting U = [uµν ], ûµν = Re(uµν), ǔµν = Im(uµν), it is found that their
elements are the partial derivatives of rµν according to û11, . . . , ûnn, ǔ11, . . . , ǔnn

Rµν =




∂rµν

∂û11
· · · ∂rµν

∂û1n
...

...
∂rµν

∂ûn1
· · · ∂rµν

∂ûnn
∂rµν

∂ǔ11
· · · ∂rµν

∂ǔ1n
...

...
∂rµν

∂ǔn1
· · · ∂rµν

∂ǔnn




=




rµν,1

...
rµν,n

rµν,n+1

...
rµν,2n




∈ R2n×n, (5.25a)

and that the gradient of rµν according to u∧ is given by a corresponding ar-
rangement of the row vectors

∇rµν = vec(Rµν) =




rT
µν,1
...

rT
µν,2n


 ∈ R2n2

. (5.25b)
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On the other hand, we can write

Rµµ = G∧
[
0 . . .

(µ)

u∧µ . . . 0

]
= G∧ÛJµµ, (5.26a)

Rµν = G∧
[
0 . . .

(µ)

u∧ν . . .
(ν)

u∧µ . . . 0

]
= G∧ÛJµν for µ < ν, (5.26b)

Rµν = G∨
[
0 . . .

(ν)

−u∧µ . . .
(µ)

u∧ν . . . 0

]
= G∨ÛKµν for ν < µ (5.26c)

by defining

Jµν =




0 0
1µν

1νµ

0 0


 , Kµν =




0 0
1νµ

−1µν

0 0


 ∈ Rn×n

and Û =
[
u∧1 . . . u∧n

] ∈ R2n×n. Here it is important to note that

Û =
[
U1

U2

]
6=

[
U1 −U2

U2 U1

]
= U∧, (5.27)

so that the position of the symbol ∧ is of decisive importance. The constraints
and their gradients are thus represented by the vector and the matrix

r(u∧) = r =
(
r11 . . . rnn

)T ∈ Rn2
and

∇r(u∧) = R =
[∇r11 . . .∇rnn

] ∈ R2n2×n2
,

(5.28)

whose components are arranged in the order

n︷ ︸︸ ︷
(11), . . . , (1n); . . . ;

n︷ ︸︸ ︷
(n1), . . . , (nn).

Now introducing the vector of the Lagrange multipliers

λ =
(
λ11 . . . λnn

)T ∈ Rn2
, (5.29)

it remains to find an easily differentiable, according to u∧, representation of
λ · ∇r(u∧) = Rλ. For this purpose we obtain from (5.26) – (5.29)
∑
µ,ν

Rµνλµν =
∑

µ≤ν

Rµνλµν +
∑
ν<µ

Rµνλµν =
∑

µ≤ν

G∧ÛJµνλµν +
∑
ν<µ

G∨ÛKµνλµν

= G∧Û
(∑

µ≤ν

λµνJµν

)
+ G∨Û

(∑
ν<µ

λµνKµν

)
= G∧ÛΛT

1 + G∨ÛΛT
2

where

Λ1 = ΛT
1 =




λ11 · · · λ1n

...
. . .

...
λ1n · · · λnn


 , Λ2 = −ΛT

2 =




0 · · · −λn1

...
. . .

...
λn1 · · · 0


 ∈ Rn×n.

Consequently, on account of vec(Û) = vec(U)∧ = u∧, Lemma 5.2 and Lemma
5.4 it follows that

Rλ = vec
(∑

µ,ν

Rµνλµν

)
= (G∧ ⊗Λ1)u∧ + (G∨ ⊗Λ2)u∧

= (G∧ ⊗ΛT
1 −G∨ ⊗ΛT

2 )u∧ = (G⊗ΛT )∧u∧ = (Bu)∧
(5.30)



CHAPTER 5. NEWTON METHOD 94

by defining
B = G⊗ΛT and Λ = Λ1 + iΛ2 = Λ∗. (5.31)

Thus, in the case F = C all preparations are complete for expressing the
Newton method. In the case F = R it is only necessary to note that the
imaginary constraints (5.24c) are not required and that no splitting into real
and imaginary parts is necessary. Hence, we obtain the following result.

Lemma 5.5 (Representation of the constraints). The constraints (5.23)
can be expressed according to (5.24), (5.28) in the form

R : r(u) = (rµν) ∈ Rn(n+1)
2 with rµν =

{
1
2
(Guµ · uµ − gµµ), 1 ≤ µ ≤ n

(Guν · uµ − gµν), 1 ≤ µ < ν ≤ n
,

C : r(u∧) = (rµν) ∈ Rn2
with rµν =





1
2
(G∧u∧µ · u∧µ − ĝµµ), 1 ≤ µ ≤ n

G∧u∧ν · u∧µ − ĝµν , 1 ≤ µ < ν ≤ n

G∨u∧ν · u∧µ − ǧµν , 1 ≤ ν < µ ≤ n

.

Their gradients can be expressed according to (5.25) – (5.28) in the form

R : R(u) = [vec(Rµν)] ∈ Rn2×n(n+1)
2 with Rµν =

{
GUJµν , 1 ≤ µ ≤ ν ≤ n ,

C : R(u∧) = [vec(Rµν)] ∈ R2n2×n2
with Rµν =

{
G∧ÛJµν , 1 ≤ µ ≤ ν ≤ n

G∨ÛKµν , 1 ≤ ν < µ ≤ n
.

Moreover, the product of the gradients with the Lagrange multipliers, according
to (5.29) – (5.31), satisfies

R : Rλ = Bu with B = G⊗ΛT , λ = (λµν) ∈ Rn(n+1)
2 , Λ = Λ1,

C : Rλ = (Bu)∧ with B = G⊗ΛT , λ = (λµν) ∈ Rn2
, Λ = Λ1 + iΛ2.

Here the elements of r, λ and the columns of R are arranged in the order

R :

n︷ ︸︸ ︷
(11), . . . , (1n);

n−1︷ ︸︸ ︷
(22), . . . , (2n); . . . ;

1︷︸︸︷
(nn) (= n(n+1)

2 components),

C :

n︷ ︸︸ ︷
(11), . . . , (1n); . . . ;

n︷ ︸︸ ︷
(n1), . . . , (nn) (= n2 components).

5.2.3 Specification of the method

To specify the Newton method for solving the optimisation problem

f(u) = Au · u− 2Reb · u + γ → min,

g(U) = U∗GU−G = 0,

it remains to insert the results of Lemma 5.4 and Lemma 5.5 into (5.15).
Considering the case F = C first, the gradient of the Lagrange function is

obtained as

F(u∧, λ) =
(∇f(u∧) + λ · ∇r(u∧)

r(u∧)

)
=

(
2(A∧u∧ − b∧) + Rλ

r

)
∈ R3n2
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which, after the permissible multiplication of the constraints by the factor 2
(taken into the Lagrange multipliers) becomes

F(u∧, λ) = 2
(
A∧u∧ − b∧ + Rλ

r

)
= 2

(
A∧u∧ − b∧ + B∧u∧

r

)
.

The Jacobi matrix of F according to

∂F
∂u∧

= 2
[
A∧ + B∧

RT

]
∈ R3n2×2n2

and
∂F
∂λ

= 2
[
R
0

]
∈ R3n2×n2

is given by

DF(u∧, λ) = 2
[
A∧ + B∧ R

RT 0

]
∈ R3n2×3n2

,

so that the corresponding method (after canceling the factor 1
2 · 2) is

(
u∧i+1

λi+1

)
=

(
u∧i
λi

)
−

[
A∧ + B∧

i Ri

RT
i 0

]−1 (
(A∧ + B∧

i )u∧i − b∧

ri

)
. (5.32a)

If the constraint h(U) = U∗HU−H = 0 is to be fulfilled instead of g(U) =
0, it is only necessary, when calculating the restrictions r and their gradients
R, to use the matrix H instead of the matrix G. But if both constraints are to
be fulfilled, and if

ω, Ω, s, S, C = H⊗ΩT

are the Lagrange multipliers, restrictions, restriction gradients and matrices
belonging to h(U) and

λ, Λ, r, R, B = G⊗ΛT

are those belonging to g(U), then the method



u∧i+1

λi+1

ωi+1


=




u∧i
λi

ωi


−



A∧ + B∧

i + C∧
i Ri Si

RT
i 0 0

ST
i 0 0



−1


(A∧ + B∧

i + C∧
i )u∧i − b∧

ri

si




(5.32b)
must be used, whose vectors now contain 4n2 components. Here cases can arise
in which the Jacobi matrix DF becomes singular which is possible when the
gradients of the constraints R and S are linearly dependent. Instead of the
Newton iteration

zi+1 = zi −DF−1(zi)F(zi) (5.33a)

it may then be possible to use the Gauß-Newton iteration

zi+1 = zi −DF+(zi)F(zi), (5.33b)

where DF+ denotes the pseudo inverse (Moore-Penrose inverse) of the Jacobi
matrix [ST1, Kapitel 4.8.5]. We will discuss this point in the next subsection.

Assuming suitable starting values U0, Λ0, Ω0, the iteration converges to a
vector zm,

‖F(zm)‖ < ε with ‖z‖ =
√

zT z, (5.34)
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from which the components of the matrices U = Um, Λ = Λm, Ω = Ωm can
be read according to

z = (u∧ λ)T = (û11 . . . ûnn ǔ11 . . . ǔnn λ11 . . . λnn)T or (5.35a)

z = (u∧ λ ω)T = (û11 . . . ûnn ǔ11 . . . ǔnn λ11 . . . λnn ω11 . . . ωnn)T . (5.35b)

It is now still necessary to ensure that the sufficient second order condition
for a minimum holds which is achieved as follows: Let

DF(zm) =
[
L M
M 0

]

be a partitioning of the Jacobi matrix obtained in the last iteration step, where
L ∈ Rp×p, M ∈ Rp×q and p = 2n2, q = n2 or p = q = 2n2, respectively. Then
L is the symmetric Lagrange matrix denoted by L(u0, λ0) in (5.14), and the
columns of M form a basis or possibly spanning set of the subspace M defined
in (5.12). Now a basis of M⊥ is required which can be derived from a QR
factorisation with column pivoting

MP = QR,

where Q ∈ Rp×p is orthogonal, P ∈ Rq×q is a permutation and R ∈ Rp×q

is trapezoidal [GVL, Chapter 5.4]. If r = rank(M), then Q and R can be
partitioned as

Q =
[
Q1 Q2

]
, R =

[
R11 R12

0 0

]
,

where R11 ∈ Rr×r is upper triangular and nonsingular and the columns of Q2 ∈
Rp×(p−r) form an orthogonal basis of M⊥ = Im(M)⊥. Hence, the sufficient
condition (5.14) holds, if and only if the symmetric matrix

K = QT
2 LQ2 ∈ R(p−r)×(p−r) (5.36)

is positive definite. This can be verified with an eigenvalue computation.
In the case F = R the equations stated above can be taken over by eliminat-

ing the operator ∧ from them. The arrays in the real version of (5.32a) obtained
this way are of order

n2 +
n(n + 1)

2
=

3n2 + n

2
(5.37a)

and those in the real version of (5.32b) are of order

n2 + 2
n(n + 1)

2
= 2n2 + n. (5.37b)

These dimensions are fairly smaller than the corresponding values of 3n2 or 4n2

in the case F = C, so that a real problem should not be solved with the complex
method. The results obtained so far are summarised in the following statement.

Method 5.6 (Newton method). Let f(U) be an objective function which
can be expressed in the form

f(u) = Au · u− 2Reb · u + γ,
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where u = vec(U), A∗ = A and γ = γ. Then the constrained optimisation
problem

f(u) → min with U∗GU = G and/or U∗HU = H

can be solved numerically using the Newton method (5.33a) or possibly the Gauß-
Newton method (5.33b), where z, F and DF are determined by (5.32) (in the
case F = R without the ∧ operator). If the iteration converges and the matrix
K defined by (5.36) is positive definite, then the matrix U determined by (5.35)
solves the considered problem.

If A, b and γ are chosen according to (5.19), the method is suitable for
minimising (5.17). But if we are interested in minimising

f(U) = tr[(UX−Y)∗Hf (UX−Y)] (5.38a)

subject to
U∗GU = G and/or U∗HU = H, (5.38b)

where the matrix Hf contained in the objective may not be equal to the matrix
H contained in the constraints, we must also use Hf in (5.19). Then the upper
left block of DF and the upper part of F are given by

A + B = Hf ⊗ (XX∗)T + G⊗ΛT ,

(A + B)u− b = vec(HfUXX∗ + GUΛ−HfYX∗),

A + B + C = Hf ⊗ (XX∗)T + G⊗ΛT + H⊗ΩT ,

(A + B + C)u− b = vec(HfUXX∗ + GUΛ + HUΩ−HfYX∗).

Hence, F(z) = 0 implies

HfUXX∗ + GUΛ = HfYX∗, (5.39a)

HfUXX∗ + GUΛ + HUΩ = HfYX∗ (5.39b)

which with Λ = ΛG, Ω = ΛH and Hf = H is just (5.7) or (5.5), respectively.
This confirms that the isometry U computed with the iteration satisfies the
necessary conditions for solving the problem (5.1) subject to the constraints
(5.6) or (5.3), respectively. Moreover, if Υ ∈ Fn×n is an arbitrary matrix and
we are defining

A = H⊗ I and b = vec(HΥH−1),

then (5.39a) with Hf = G = H becomes HU(I + Λ) = HΥH−1 or

UM = Υ. (5.40)

Here M = (I + Λ)H satisfies M∗H = HM, so that Method 5.6 also applies for
computing H-polar decompositions.

5.2.4 Application of the method

The iteration rules (5.32) need some refinements before they fit for the appli-
cation. We start with determining the vector dz = DF−1F, i.e. with solving
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the linear system DFdz = F, which is necessary in each iteration step. This
system has the general form

[
A B
BT 0

](
u
v

)
=

(
c
d

)
, (5.41)

where A = AT ∈ Rp×p, B ∈ Rp×q, u, c ∈ Rp and v,d ∈ Rq. It may be
rewritten as

([
I −X
0 I

]T [
A B
BT 0

] [
I −X
0 I

])([
I X
0 I

](
u
v

))
=

[
I −X
0 I

]T (
c
d

)
,

from which with X = A−1B ∈ Rp×q it follows that
[
A 0
0 −BT A−1B

](
u + A−1Bv

v

)
=

(
c

d−BT A−1c

)
.

This suggests the following algorithm for solving (5.41).

Algorithm 5.7.

(1) Solve AX = B for X.

(2) Solve (XT B)v = XT c− d for v.

(3) Solve Au = c−Bv for u.

In the case F = C the matrix A and the vectors u, c are real representations
of complex arrays and we shall exploit the further structure appearing in the
system [

A∧ B̂
B̂T 0

](
u∧

v

)
=

(
c∧

d

)
, (5.42)

where A = A∗ ∈ Cp×p, B ∈ Cp×q, u, c ∈ Cp and v,d ∈ Rq. Here the hat over
the B has the same meaning as in (5.27). Defining X = A−1B and using X̂
in the same sense, it can be verified that Algorithm 5.7 also applies for solving
(5.42). The only modification required is that the real system

Re(X∗B)v = Re(X∗c)− d (5.43a)

has to be used in step (2).
A further modification is necessary in the case that the gradients in iteration

(5.32b) are linearly dependent. Then the system (5.43a) is overdetermined, so
that v must be computed as a least squares solution of the problem

‖Re(X∗B)v − Re(X∗c) + d‖ → min . (5.43b)

However, it is not ensured that the iteration then always converges to the wanted
result.

Now considering the case A = G⊗C+H⊗D for some selfadjoint matrices
C,D,G,H ∈ Fn×n, we find that A is a general selfadjoint matrix, so that no
further simplification of Algorithm 5.7 is possible. But if G and H are diagonal
matrices

G = diag(g1, . . . , gn), H = diag(h1, . . . , hn),
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Table 5.1: Flop counts for some operations

Operation Flop Count
y = Ax + y, A ∈ Rm×n 2mn
C = AB + C, A ∈ Rm×p, B ∈ Rp×n, C ∈ Rm×n 2mnp
PAPT = LDLT , A ∈ Rn×n n3/3
LDLT Px = Pb, b ∈ Rn 2n2

then A is a block diagonal matrix

A = A1 ⊕ . . .⊕An with Aν = gνC + hνD ∈ Fn×n,

so that with

B =



B1

...
Bn


 , Bν ∈ Fn×q and c =




c1

...
cn


 , u =




u1

...
un


 , cν ,uν ∈ Fn

the following algorithm for solving (5.41) and (5.42) can be formulated.

Algorithm 5.8.

(1) For ν = 1, . . . , n: Solve AνXν = Bν for Xν .

(2) Solve
(∑

ν Re(X∗
νBν)

)
v =

(∑
ν Re(X∗

νcν)
)− d for v.

(3) For ν = 1, . . . , n: Solve Aνuν = cν −Bνv for uν .

In order to estimate the amount of work required for the algorithms it is
assumed that all the symmetric (or Hermitian) linear systems are solved with
the LDL∗ decomposition [GVL, Chapter 4.4] and that the decompositions for A
or Aν , respectively, are computed only once. Counting flops in the case F = R
based on Table 5.1 (see [GVL]) yields

fR,1 = p3/3 + 2p2q + 2p2 + 4pq + 2q2 + pq2 + q3/3 for Algorithm 5.7,

fR,2 = 7n3/3 + 2n3q + n2q2 + 4n2q + 2q2 + q3/3 for Algorithm 5.8.

Here the counts for computing XT B or
∑

ν XT
ν Bν are calculated by 2pq2/2 or

2n2q2/2, respectively, because the products are known to be symmetric. The
direct solution of (5.41) with the LDL∗ decomposition requires

fR,0 = (p + q)3/3 + 2(p + q)

flops, so that with p = n2 and q = n(n + 1)/2, according to (5.37a), it follows
that

fR,0 ≈ 9n6/8, fR,1 ≈ 13n6/8, fR,2 ≈ 7n6/24. (5.44a)

Setting p = n2 and q = n(n + 1), according to (5.37b), results in

fR,0 ≈ 8n6/3, fR,1 ≈ 11n6/3, fR,2 ≈ 4n6/3. (5.44b)

In other words, the amount of work for solving (5.41) with Algorithm 5.7 is by a
factor 13/9 ≈ 1.44 or 11/8 ≈ 1.38, respectively, larger than directly computing
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the solution. But if A is a block diagonal matrix, then the application of
Algorithm 5.8 reduces the amount of work by a factor 7/27 ≈ 0.26 or 1/2,
respectively.

In the case F = C an addition requires 2 and a multiplication requires 6 flops,
so that an average factor of 4 must be taken into account for the decomposition
of A and the solution of the systems in step (1) and (3) of Algorithm 5.7. The
number of flops for computing Re(X∗B) is estimated by 4

2·2 · 2pq2, because the
product is Hermitian and only its real part is required. The estimation for
Re(X∗c) or c−Bv is 4

2 · 2pq in each case, because only the real part is required
or v is real, respectively. Using analogously considerations for Algorithm 5.8
the flop counts in the case F = C are obtained as

fC,1 = 4p3/3 + 8p2q + 8p2 + 8pq + 2q2 + 2pq2 + q3/3 for Algorithm 5.7,

fC,2 = 28n3/3 + 8n3q + 2n2q2 + 8n2q + 2q2 + q3/3 for Algorithm 5.8.

The direct solution of (5.42) with the LDL∗ decomposition requires

fC,0 = (2p + q)3/3 + 2(2p + q)

flops, so that with p = q = n2, according to (5.32a), it follows that

fC,0 ≈ 9n6, fC,1 ≈ 35n6/3, fC,2 ≈ 7n6/3. (5.45a)

Setting p = n2 and q = 2n2, according to (5.32b), results in

fC,0 ≈ 64n6/3, fC,1 ≈ 28n6, fC,2 ≈ 32n6/3. (5.45b)

Thus in the complex case we obtain the factors 35/27 ≈ 1.30 or 21/16 ≈ 1.31
for Algorithm 5.7 and 7/29 ≈ 0.26 or 1/2 for Algorithm 5.8. This corresponds
to the real case discussed above. Moreover, the effort for solving (5.42) is ap-
proximately eight times larger than for solving (5.41) with equal dimensions p
and q.

These flop counts suggest to use Algorithm 5.8 instead of a direct solution
when A is block diagonal, but not to use Algorithm 5.7 instead of a direct
solution when A is a general selfadjoint matrix. However, flop counts do not
involve the costs for pivoting and subscripting which are smaller when using the
algorithms. Moreover, if the matrix B does not have full rank and (5.43b) is
to be applied, then the direct solution requires a singular value decomposition
of the whole matrix contained in (5.41) or (5.42), whereas an application of the
algorithms allows to compute only a singular value decomposition of B. Thus
it may be worth to consider Algorithm 5.7 for solving a corresponding linear
system, too.

We are now able to perform an individual iteration step using

DFi dzi = Fi and zi+1 = zi − dzi.

A more satisfactory convergence behaviour can be achieved with the line search
method

zi+1 = zi − ωi dzi, ωi = 2−r with

r = min{s ≥ 0 : ‖F(zi − 2−sdzi)‖ < ‖F(zi)‖},
(5.46)

whose properties are discussed in [ST1, Kapitel 5.4.2]. This iteration rule does
not only improve convergence. It furthermore allows to terminate the iteration
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in divergent cases when after a specified maximum number of bisection steps
smax no reduction of ‖F(zi)‖ is obtained. The iteration also fails when after
a specified maximum number of iteration steps imax the convergence criterion
(5.34) does not hold.

5.2.5 Specification of the starting values

It remains to specify the starting values for the iteration. Since the objective
(5.38a) with Hf = I also appears in the orthogonal or unitary Procrustes prob-
lem

tr[(UX−Y)∗(UX−Y)] → min with U∗U = I (5.47)

and in the unconstrained least squares problem

tr[(UX−Y)∗(UX−Y)] → min, (5.48)

we will make an attempt to derive U0, Λ0, Ω0 from the solutions of these
problems. Moreover, we will focus on the case that G, H and Hf are diagonal
matrices which is required for an implementation of the Newton method based
on Algorithm 5.8.

The orthogonal or unitary Procrustes problem (5.47) is solved by the isom-
etry U0 contained in the ordinary polar decomposition

YX∗ = U0M0,

where M0 is positive semidefinite and selfadjoint (see Section 1.2 and Theorem
4.14). Inserting this result into the necessary condition (5.39) implies

GU0Λ0 = HfU0(M0 −XX∗) or (5.49a)
GU0Λ0 + HU0Ω0 = HfU0(M0 −XX∗). (5.49b)

Hence, if G = εGI, H = εHI, and Hf = εfI with εG, εH , εf ∈ {+1,−1}, then
U0 on the one hand fulfills (5.38b), and on the other hand

Λ0 = εGεf (M0 −XX∗) or

Λ0 =
εGεf

2
(M0 −XX∗) and Ω0 =

εHεf

2
(M0 −XX∗)

are selfadjoint Lagrange multipliers such that (5.49) holds. Therefore, U0 is an
optimiser of (5.38a).

This observation suggests to determine the starting values in the case that
G, H and Hf are diagonal matrices having diagonal elements in {+1,−1} as
follows: Let P be a permutation matrix such that

P∗GP =
k⊕

i=1

ε
(i)
G Ipi , P∗HP =

k⊕

i=1

ε
(i)
H Ipi , P∗HfP =

k⊕

i=1

ε
(i)
f Ipi , (5.50)

where either (ε(i)
G , ε

(i)
f ) runs over all k = 4 or (ε(i)

G , ε
(i)
H , ε

(i)
f ) runs over all k = 8

combinations of signs. Now partitioning the matrices P∗YX∗P and P∗XX∗P
accordingly and computing from their diagonal blocks

(P∗YX∗P)i = U(i)
0 M(i)

0 and Λ(i)
0 = ε

(i)
G ε

(i)
f

(
M(i)

0 − (P∗XX∗P)i

)

(analogously in the case of two constraints)
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we obtain

UOP = P
( k⊕

i=1

U(i)
0

)
P∗, ΛOP = P

( k⊕

i=1

Λ(i)
0

)
P∗, ΩOP = P

( k⊕

i=1

Ω(i)
0

)
P∗.

(5.51)
If P∗YX∗P and P∗XX∗P are actually block diagonal matrices consisting of
the blocks used in the computation above, then UOP is a solution of (5.38)
and ΛOP , ΩOP satisfy (5.49). Although this situation almost never occurs
in practice, these matrices will be used as starting values for the iteration.
Moreover, if G, H and Hf are general nonsingular real diagonal matrices, the
matrix P is computed by using sign(G), sign(H) and sign(Hf ) in (5.50).

The second approach for specifying the starting values is derived from the
solution of the unconstrained least squares problem (5.48) which is given by (for
example see [GVL, Section 5.5.4], [ST1, Kapitel 4.8.5])

U0 = YX+.

If this choice is made, then

U0XX∗ = YX+XX∗ = Y(X+X)∗X∗ = Y(XX+X)∗ = YX∗

which implies
HfYX∗ −HfU0XX∗ = 0.

Consequently, the necessary condition (5.39) holds for every matrices G, H and
Hf by setting Λ0 = 0 and Ω0 = 0. However, U0 is in general not a solution of
(5.38) because it does not satisfy (5.38b). Nevertheless, we will try to use the
starting values

ULS = P
( k⊕

i=1

U(i)
0

)
P∗, ΛLS = 0, ΩLS = 0, (5.52)

where
U(i)

0 = (P∗YX∗P)i(P∗XX∗P)+i
and P is defined as above.

Finally, we will also make an attempt to use

U0 = I.

If in this case G = εGI, H = εHI, and Hf = εfI, then (5.39) is solved for

Λ0 = εGεf (YX∗ −XX∗) or

Λ0 =
εGεf

2
(YX∗ −XX∗) and Ω0 =

εHεf

2
(YX∗ −XX∗).

But these matrices are not selfadjoint in general, so that their symmetric or
Hermitian parts may be used instead. Hence, we will try to use

UI = I, ΛI = P
( k⊕

i=1

Λ(i)
0

)
P∗, ΩI = P

( k⊕

i=1

Ω(i)
0

)
P∗, (5.53)

where

Λ(i)
0 = ε

(i)
G ε

(i)
f

( (P∗YX∗P)i + (P∗XY∗P)i

2
− (P∗XX∗P)i

)

(analogously in the case of two constraints)

and P is defined as above.
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5.3 Numerical results

In order to test the performance and convergence behaviour we implemented
Method 5.6 for solving (5.38) with diagonal matrices G, H and Hf in the
case F = C. The implementation performs the iteration rule (5.46) and uses
Algorithm 5.8 for computing the vector dz. It was made in Fortran 77 using
the DOUBLE COMPLEX versions of LAPACK and the BLAS [LUG].

Although we have applied the algorithm for various combinations of matrices
G, H and Hf , we will present detailed results only for the most important case
where

G = In−p ⊕−Ip and Hf = In

and a G-isometry U is to be determined. In the tests the matrices X = [xα,k],
Y = [yα,k] ∈ Cn×N were initialised either with independent coordinates

xα,k = θa + iθb, yα,k = θc + iθd

or with dependent coordinates

xα,k = θa + iθb, yα,k = xα,k + 1
2 (θc + iθd),

where the θ’s denote normally distributed random numbers from the interval
[−1, +1]. Independent coordinates were additionally translated such that

∑
k xα,k = 0 and

∑
k yα,k = 0.

The machine accuracy computed with the LAPACK routine DLAMCH was

εmach ≈ 2.22 · 10−16.

In a first series of statistical experiments we tried to find out with which
starting values (U0,Λ0) the iteration converges. For this purpose the values

(UOP , ΛOP ) or (ULS , ΛLS = 0) or (UI = I, ΛI)

specified in (5.51) – (5.53) were tested and an additional attempt was made to
combine the three possibilities for U0 with Λ0 = I and with Λ0 = 0. Varying
the values for N , n, p and using dependent as well as independent coordinates
10 experiments were made in each case. Here the maximum number of iteration
steps, the maximum number of bisection steps and the convergence parameter
for the iteration were given by

imax = 48, smax = 16, ε = 10−3.

If an iteration converged, the matrix K defined in (5.36) was computed and the
iteration was classified to be successful when K had only non-negative eigenval-
ues. Then actually the constrained minimum of the objective f was determined.
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Table 5.2: Iteration results for dependent, unscaled coordinates
N , n, p UOP ULS I
9, 6, 1 Λ 10/10 ( 4.2/ 1.0) 10/10 ( 5.1/ 1.3) 10/10 ( 4.9/ 1.0)

I 10/10 ( 4.3/ 1.0) 10/10 ( 5.9/ 1.7) 10/10 ( 4.8/ 1.0)
0 10/10 ( 4.1/ 1.0) 10/10 ( 4.7/ 1.0)

9, 6, 3 Λ 10/10 ( 4.5/ 1.0) 10/10 ( 4.7/ 1.0) 10/10 ( 4.9/ 1.0)
I 10/10 ( 4.6/ 1.0) 10/10 ( 5.8/ 1.5) 10/10 ( 5.3/ 1.0)
0 10/10 ( 4.2/ 1.0) 10/10 ( 4.2/ 1.0)

12, 8, 1 Λ 10/10 ( 4.2/ 1.0) 10/10 ( 6.2/ 1.7) 9/ 8 ( 6.8/ 2.3)
I 10/10 ( 4.3/ 1.0) 10/10 ( 6.2/ 1.6) 10/10 ( 5.4/ 1.3)
0 10/10 ( 4.1/ 1.0) 10/10 ( 5.3/ 1.2)

12, 8, 4 Λ 10/10 ( 4.5/ 1.0) 10/10 ( 5.3/ 1.4) 10/10 ( 5.0/ 1.0)
I 10/10 ( 5.3/ 1.3) 10/10 ( 5.8/ 1.4) 10/10 ( 5.4/ 1.1)
0 10/10 ( 4.1/ 1.0) 10/10 ( 4.5/ 1.0)

15, 10, 1 Λ 10/10 ( 4.4/ 1.2) 10/10 ( 5.5/ 1.9) 10/ 8 ( 7.5/ 2.1)
I 10/10 ( 4.3/ 1.0) 10/10 ( 6.3/ 2.0) 9/ 9 ( 5.0/ 1.0)
0 10/10 ( 4.1/ 1.0) 10/10 ( 5.2/ 1.1)

15, 10, 5 Λ 10/10 ( 4.9/ 1.0) 10/10 ( 5.7/ 1.4) 10/10 ( 5.6/ 1.5)
I 10/10 ( 5.1/ 1.0) 10/10 ( 5.9/ 1.2) 10/10 ( 5.1/ 1.0)
0 10/10 ( 4.6/ 1.0) 10/10 ( 5.0/ 1.0)

Total Λ 60/60 ( 4.5/ 1.0) 60/60 ( 5.4/ 1.5) 59/56 ( 5.8/ 1.5)
I 60/60 ( 4.7/ 1.1) 60/60 ( 6.0/ 1.6) 59/59 ( 5.2/ 1.1)
0 60/60 ( 4.2/ 1.0) 60/60 ( 4.8/ 1.1)

Table 5.3: Iteration results for independent, unscaled coordinates
N , n, p UOP ULS I
9, 6, 1 Λ 10/ 5 ( 9.7/ 3.3) 7/ 5 (10.9/ 6.7) 6/ 0 (19.0/ 7.3)

I 10/ 8 ( 8.0/ 3.2) 8/ 4 (15.4/ 8.1) 1/ 0 (28.0/ 8.0)
0 9/ 7 ( 7.6/ 2.7) 3/ 0 (23.7/ 7.3)

9, 6, 3 Λ 5/ 2 (14.6/ 5.8) 5/ 2 (20.6/ 7.4) 5/ 0 (17.0/ 5.4)
I 3/ 3 ( 8.3/ 2.0) 7/ 4 (10.6/ 6.4) 1/ 0 (41.0/13.0)
0 8/ 5 ( 7.8/ 2.1) 3/ 0 (15.0/ 6.3)

12, 8, 1 Λ 9/ 1 (15.9/ 5.6) 9/ 3 (22.6/ 8.8) 2/ 0 (36.0/ 6.0)
I 8/ 4 (10.1/ 3.1) 6/ 2 (11.0/ 7.0) 1/ 0 (24.0/ 7.0)
0 8/ 6 ( 8.4/ 2.4) 0/ 0

12, 8, 4 Λ 1/ 0 (33.0/12.0) 4/ 1 (24.0/ 8.0) 0/ 0
I 3/ 2 (11.3/ 7.3) 3/ 1 (16.7/ 6.7) 1/ 0 (28.0/ 7.0)
0 5/ 4 (10.8/ 3.2) 2/ 0 (23.5/ 7.0)

15, 10, 1 Λ 8/ 6 (15.0/ 5.6) 6/ 6 (12.7/ 7.8) 0/ 0
I 9/ 8 ( 8.3/ 2.8) 4/ 3 (15.0/ 7.3) 1/ 0 (43.0/ 6.0)
0 8/ 6 ( 8.4/ 2.3) 0/ 0

15, 10, 5 Λ 0/ 0 3/ 1 (23.7/ 9.0) 1/ 0 (38.0/ 8.0)
I 3/ 1 (18.7/ 5.3) 1/ 0 (18.0/ 8.0) 0/ 0
0 7/ 3 (13.7/ 5.0) 0/ 0

Total Λ 33/14 (14.1/ 5.1) 34/18 (18.4/ 7.9) 14/ 0 (22.1/ 6.5)
I 36/26 ( 9.8/ 3.5) 29/14 (13.5/ 7.2) 5/ 0 (32.8/ 8.2)
0 45/31 ( 9.2/ 2.9) 8/ 0 (20.4/ 6.9)
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Figure 5.1: Comparison of the iteration results for UOP and ULS

The results of the experiments with dependent coordinates are listed in Ta-
ble 5.2, the results with independent coordinates are listed in Table 5.3. For
example, the entry

9/7 (7.6/2.7)

in the third row and third column of Table 5.3 describes the 10 experiments with
N = 9, n = 6, p = 1, the starting values (UOP ,0) and independent coordinates.
It means that 9 of the 10 iterations converged in an average of 7.6 iteration
steps and an average of at most 2.7 bisection steps. In 7 of the 9 convergent
cases the minimum was found.

The entries for the starting values (ULS ,0) are empty because they are equal
to those for (ULS ,ΛLS). Moreover, the last three rows of the tables show the
total results for the 60 experiments made with each combination of starting
values.

Table 5.2 shows that when dependent coordinates were given the iteration
in almost all experiments converged and determined the minimum. Thereby
only between 4 and 6 iteration steps were required in which mostly no bisection
steps were made. Only with the starting values (I,ΛI) and (I, I) the iteration
failed in some cases. Thus, in these experiments none of the other combinations
was found to be preferable.

The situation drastically changed when independent coordinates were given.
Here the last column of Table 5.3 reveals that with U0 = I only a few iterations
converged and none found the minimum. Thus U0 = I should not be used to
initialise the iteration.

In order to compare the results for UOP and ULS we have computed the
respective average numbers of successful iterations for each choice of N , n and
p. For example, in the case N = 9, n = 6, p = 1 the average for UOP is
(5 + 8 + 7)/3 and for ULS it is (5 + 4)/2. The results of these computations are
shown in Figure 5.1 where the horizontal axis represents the spatial dimension
n, the vertical axis the computed average and the cases p = 1 and p = n/2 are
drawn separately.

In both graphics the solid line, representing the averages for UOP , lies above
the dashed line, representing the averages for ULS . This indicates that UOP

is the better choice for U0 which can also be seen from the total results in
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Table 5.3. In particular, with the starting values (UOP ,0) the best results were
obtained.

To confirm these observations some further experiments were made with
N = 24, n = 16 and p = 1 or p = 8. When dependent coordinates were
given, the iteration found the minimum with all starting values, except for
(I,ΛI). When independent coordinates were given and p = 1, the starting
values (UOP ,0) again produced the best results: 7 iterations were convergent
and in 5 iterations the minimum was determined. However, in the case p = 8
none of all the iterations converged.

We have then tried to force convergence based on the following heuristics:
It is well-known that the Newton method converges only if the starting values
z0 are “sufficiently” closed to the solution z [ST1, Kapitel 5.3]. Now using

z =
(
u∧

λ

)
, u∧ = vec(U)∧, λ = vec







λ11 · · · Re(λ1n)
...

...
Im(λn1) · · · λnn







and the notation Diag(Λ) = diag(λ11, . . . , λnn) it can be verified that

‖z− z0‖2 = ‖U−U0‖2F + 1
2

(‖Λ−Λ0‖2F + ‖Diag(Λ)−Diag(Λ0)‖2F
)
.

Following the experiments described above the best choice to bound the right
hand side is to set U0 = UOP and Λ0 = 0 which implies

‖z− z0‖2 = ‖U−UOP ‖2F + 1
2

(‖Λ‖2F + ‖Diag(Λ)‖2F
)
. (5.54)

Moreover, if U solves (5.38), it also solves the scaled problems in which X and
Y in the objective are replaced by αX and αY for some α ∈ R\{0}. The
corresponding Lagrange multipliers, according to (5.39), then fulfil

GUΛ = Hf (αY)(αX)∗ −HfU(αX)(αX)∗,

from which with U∗GU = G it follows that

Λ = α2G−1U∗Hf (Y −UX)X∗.

Thus the terms containing Λ in (5.54) can be made arbitrarily small by choosing
α small. On the other hand, the matrices αX and αY must sufficiently differ
from 0 to avoid rounding errors. We have therefore intuitively chosen α such
that

‖αX‖F ‖αY‖F = 1 or α = (‖X‖F ‖Y‖F )−1/2 (5.55)

and repeated the experiments with the scaled independent coordinates.
Indeed it was found that the scaling approach succeeded for the starting

values (UOP ,0). The results will be discussed in detail below. Also for the
starting values (UOP ,ΛOP ) an improvement was observed. In the case p = 1
now 5 iterations converged and 3 found the minimum. However, when U0 =
ULS or U0 = I neither in the case p = 1 nor in the case p = 8 any of the
iterations converged.
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Table 5.4 contains the results of the experiments with the starting values
(UOP ,0). Here the meanings of the columns are as follows:

– k is the number of the experiment,

– ϕ(z0) = ‖F(z0)‖ is the Euclidean norm of F at the beginning of the
iteration,

– i is the number of iteration steps performed,

– s is the maximum number of bisection steps performed,

– c−1
A = min{cond1(Aν)−1} is the worst reciprocal 1-condition number

computed in step (1) of Algorithm 5.8 when solving DFdz = F,

– c−1
B = min{cond1(

∑
ν Re(X∗

νBν))−1} is the worst reciprocal 1-condition
number computed in step (2) of Algorithm 5.8,

– ϕ(z) = ‖F(z)‖ is the Euclidean norm of F at the end of the iteration,

– κ− is the number of non-positive eigenvalues of the matrix K or “−” if
the iteration did not converge,

– f(I) is the value of the objective for the identity matrix,

– f(U) is the value of the objective for the computed matrix U,

– rG = ‖U∗GU−G‖F is the residual estimating the G-unitarity of U,

– c−1
U = cond1(U)−1 is the reciprocal 1-condition number of U,

– time is the time in seconds used for the iteration.

In these experiments the maximum number of iteration steps imax, the max-
imum number of bisection steps smax, and the tolerance parameter ε were spec-
ified by

imax = 48, smax = 16, ε = 10−8.

Whereas the iteration in the experiments 1 – 8 and 11 – 16 converged with
ϕ(z) < ε, the experiments 10 and 17 – 20 were terminated after imax iteration
steps without satisfying the convergence criterion. Experiment 9 failed in the
30-th iteration step because ϕ(z) was not reduced after smax bisection steps.

In most experiments the reciprocal condition numbers c−1
A and c−1

B are suf-
ficiently larger than the machine accuracy εmach, so that the iterations may be
regarded as stable. Only in experiment 8 there is some doubt concerning the
accuracy of the vectors dz computed during the iteration.

The comparison of f(I) with f(U) reveals a convincing reduction of the ob-
jective in all experiments and also the reciprocal condition numbers c−1

U indicate
well-conditioned iteration results U. But, of course, only in the convergent cases
the residuals rG allow to interpret U as a G-isometry. Here the minimum and
maximum residual obtained in experiment 7 and 4 show that approximately
εmach ≤ rG ≤ √

εmach which is a satisfactory result.



CHAPTER 5. NEWTON METHOD 109

Table 5.5: Iteration results for various scaling factors

k βopt i s κ− k βopt i s κ−
1 2.2 – 2.4 7 1 0 17 1.4 – 1.6 45 6 0
2 0.8 – 1.0 9 3 0 12 1.4 – 2.2 13 3 0
3 2.2 – 2.4 8 3 0 20 1.4 – 2.4 15 4 1
4 0.6 10 4 0 13 1.4 – 1.8 22 5 0
5 1.2 – 1.4 15 4 0 14 1.8 15 4 0
6 1.4 26 5 0 11 2.0 – 2.4 16 4 0
7 2.0 – 2.4 8 2 1 19 1.2 15 4 1
8 1.6 – 2.4 9 2 1 15 1.0 35 6 0
9 0.6 16 3 0 18 2.2 – 2.4 12 3 4

10 0.8 11 3 0 16 1.0 39 7 0

Although the iterations in experiment 7 and 8 converged, they did not de-
termine the minimum since the real 256 × 256 matrix K had one non-positive
eigenvalue λ1 in each case. However, the ratio

|λ1|/
256∑

i=1

|λi|, λi ∈ σ(K)

was in both experiments very small, around 10−3 only. Thus the computed
matrices U are “nearly” solutions of the problems which were still useful in real
applications.

The numbers of iteration steps i show that the speed of convergence in the
case p = 8 was considerably slower than in the case p = 1. In particular,
the iteration in experiment 17 also converged when it was allowed to take 60
iteration steps. But these are too many steps, so that we have finally tried to
accelerate convergence by choosing more appropriate scaling factors.

For this purpose some further experiments were made in which the matrices
X and Y were scaled with various factors αβ where α was chosen according
to (5.55) and β such that 0.4 ≤ β ≤ 2.4. The best results are listed in Table
5.5. Here βopt denotes the observed optimum for β and the table is furthermore
organised such that experiments made with equal coordinates are contained in
one row.

The entries where βopt = 1.0 show that α was the best scaling factor only in
the experiments 2, 15 and 16. In the further experiments which converged with
factor α it was possible to reduce the number of iteration steps. In the remaining
experiments 9, 10 and 17 – 20 it was even possible to find the minimum or at
least a nearby solution. Thus the iteration always succeeded when a suitable
scaling factor was used.

Whereas these results are pleasant on the one hand, the different values
of βopt contained in one row also indicate that the optimum factor αopt =
αβopt does not only depend on the matrices X and Y. Unfortunately, we
are therefore not able to present an empirical formula with which it can be
determined. Nevertheless, the results obtained with the starting values (UOP ,0)
in combination with a scaling factor around α are very satisfactory.

The well behaviour of this combination has also been observed in tests with
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randomly initialised matrices G, H and Hf and computations for solving prob-
lems with one or two constraints. Moreover, the coordinates X and Y in real
multidimensional scaling applications are usually not totally independent, so
that the choice of appropriate starting values is not the major problem of the
method. It is rather the fact that the amount of work is of order n6. This also
explains the times listed in Table 5.4 which were measured on a 2GHz proces-
sor. We may therefore conclude that our algorithm is suitable for solving (5.38)
provided that the spatial dimension n is not too large.



Chapter 6

An algorithm for the
numerical computation of
canonical forms

6.1 Introduction

Almost all the results presented in Chapter 3 and Chapter 4 are based on The-
orem 3.1: If H ∈ Cn×n is nonsingular and Hermitian and A ∈ Cn×n is H-
Hermitian, then there exists a nonsingular matrix S ∈ Cn×n such that

S−1AS =
r⊕

i=1

Jpi(λi)⊕
s⊕

i=r+1

[
Jpi(λi)

Jpi(λi)

]
,

S∗HS =
r⊕

i=1

εiZpi ⊕
s⊕

i=r+1

[
Zpi

Zpi

] (6.1)

where λ1, . . . , λr ∈ R, ε1, . . . , εr ∈ {+1,−1} and λr+1, . . . , λs ∈ C\R.
Whereas this canonical form of the pair (A,H) in the case of a diagonalis-

able matrix A can easily be computed numerically using HQR and HQR-2 or
eigenvalue and singular value decompositions (see Method 3.24), its computa-
tion in the general case is a complicated problem. The major challenge is that
(6.1) contains the Jordan normal form (JNF) of the matrix A whose numerical
computation is known to be a very difficult task.

The most successful approach for computing the JNF was developed by
K̊agström and Ruhe [KR1]. Their procedure is available in the ACM algorithm
collection as the CALGO algorithm 560 written in the programming language
Fortran 66 [KR2]. Based on this work we present a method with which the
canonical form (S−1AS,S∗HS) and an associated transformation matrix S can
be computed numerically. The corresponding extension of the 560 algorithm
essentially consists of a normalisation step which constitutes a generalisation of
the Cholesky method.

The description of the algorithm is organised as follows: The required math-
ematical background is established in Section 6.2. In Section 6.3 the individual
steps of the method are explained and in Section 6.4 some numerical results

111
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are presented. The final Section 6.5 reconsiders the numerical computation of
H-polar decompositions.

6.2 Mathematical background

Let H ∈ Cn×n be nonsingular and Hermitian and let A ∈ Cn×n be H-Hermitian.
Then from Theorem 3.1 it follows that for every non-real eigenvalue λ ∈ σ(A)
also λ ∈ σ(A) and that the Jordan structures of the two eigenvalues are equal.
Let λ1, . . . , λr be the real and λr+1, . . . , λs be the non-real eigenvalues of A with
positive imaginary part. Moreover, let αi = α(λi) and ρi = ρ(λi) denote the
algebraic and geometric multiplicity of the eigenvalue λi, so that α(λi) = α(λi)
and ρ(λi) = ρ(λi) for r + 1 ≤ i ≤ s. Then the canonical form

(S−1AS,S∗HS) = (J,Z) (6.2)

of the pair (A,H) can be rewritten as

J =

[
r⊕

i=1

Ĵ(λi)

]
⊕

[
s⊕

i=r+1

J̌(λi)

]
, Z =

[
r⊕

i=1

Ẑi

]
⊕

[
s⊕

i=r+1

Ži

]
, (6.3a)

where the blocks which appear have the form

Ĵ(λi) = J
p
(i)
1

(λi)⊕ . . .⊕ J
p
(i)
ρi

(λi),

Ẑi = ε
(i)
1 Z

p
(i)
1
⊕ . . .⊕ ε(i)

ρi
Z

p
(i)
ρi

for 1 ≤ i ≤ r,
(6.3b)

J̌(λi) =

[
J

p
(i)
1

(λi)⊕ . . .⊕ J
p
(i)
ρi

(λi)

J
p
(i)
1

(λi)⊕ . . .⊕ J
p
(i)
ρi

(λi)

]
,

Ži =

[
Z

p
(i)
1
⊕ . . .⊕ Z

p
(i)
ρi

Z
p
(i)
1
⊕ . . .⊕ Z

p
(i)
ρi

]
for r + 1 ≤ i ≤ s.

(6.3c)

Furthermore, the eigenvalues can be sorted such that λ1 > . . . > λr and

Re(λr+1) ≥ . . . ≥ Re(λs) where Im(λi) > Im(λi+1) if Re(λi) = Re(λi+1)

and p
(i)
1 ≥ . . . ≥ p

(i)
ρi where p

(i)
1 + . . . + p

(i)
ρi = αi.

Now, let X ∈ Cn×n be a nonsingular matrix such that

X−1JX = J or JX = XJ.

Then the commutability of X and J implies [G, Chapter VIII, §2], that X must
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be a block diagonal matrix

X =

[
r⊕

i=1

X̂i

]
⊕

[
s⊕

i=r+1

X̌i

]
with X̂i =




X(i)
1,1 · · · X(i)

1,ρi

...
...

X(i)
ρi,1

· · · X(i)
ρi,ρi


 ,

X̌i =




X(i)
1,1 · · · X(i)

1,ρi
0 · · · 0

...
...

...
...

X(i)
ρi,1

· · · X(i)
ρi,ρi 0 · · · 0

0 · · · 0 Y(i)
1,1 · · · Y(i)

1,ρi

...
...

...
...

0 · · · 0 Y(i)
ρi,1

· · · Y(i)
ρi,ρi




, (6.4a)

whose blocks X(i)
kl and Y(i)

kl are p
(i)
k × p

(i)
l matrices of the upper triangular

Toeplitz form described by the examples

Xkl =




x y z
0 x y
0 0 x


,

(pk = pl = 3)

Xkl =




0 x y z
0 0 x y
0 0 0 x


,

(pk = 3, pl = 4)

Xkl =




x y z
0 x y
0 0 x
0 0 0


.

(pk = 4, pl = 3)

(6.4b)

Therefore, the matrix
C = X∗ZX

must be an Hermitian block diagonal matrix

C =

[
r⊕

i=1

Ĉi

]
⊕

[
s⊕

i=r+1

Či

]
with Ĉi =




C(i)
1,1 · · · C(i)

1,ρi

...
...

C(i)∗
1,ρi

· · · C(i)
ρi,ρi


 ,

Či =




0 · · · 0 C(i)∗
1,1 · · · C(i)∗

ρi,1
...

...
...

...
0 · · · 0 C(i)∗

1,ρi
· · · C(i)∗

ρi,ρi

C(i)
1,1 · · · C(i)

1,ρi
0 · · · 0

...
...

...
...

C(i)
ρi,1

· · · C(i)
ρi,ρi 0 · · · 0




, (6.5a)

whose blocks C(i)
kl are also p

(i)
k × p

(i)
l matrices, but now of the lower anti-

triangular Hankel form

Ckl =




0 0 a
0 a b
a b c


,

(pk = pl = 3)

Ckl =




0 0 0 a
0 0 a b
0 a b c


,

(pk = 3, pl = 4)

Ckl =




0 0 0
0 0 a
0 a b
a b c


.

(pk = 4, pl = 3)

(6.5b)



CHAPTER 6. CANONICAL FORMS 114

Furthermore, the diagonal blocks of the matrices Ĉi can contain only real ele-
ments. Summarising, we have

Theorem 6.1. Let H ∈ Cn×n be nonsingular and Hermitian and let A ∈ Cn×n

be H-Hermitian. Moreover, let R ∈ Cn×n be a nonsingular matrix such that
J = R−1AR is the Jordan normal form of A. Then the matrix C = R∗HR
has the form (6.5).

Proof. According to (6.2) it is true that J = R−1AR = R−1(SJS−1)R =
(S−1R)−1J(S−1R). Hence, for X = S−1R we obtain C = (S−1R)∗Z(S−1R) =
R∗(S−∗ZS−1)R = R∗HR.

Starting out from this theorem, the proposed algorithm for determining
the canonical form is first to compute the (numerical) Jordan normal form
J = R−1AR of A, and then to normalise the matrix C = R∗HR with a
transformation such that

X−1JX = J, X∗CX = Z. (6.6)

Then (S−1AS,S∗HS) = (J,Z) with S = RX gives the wanted canonical form.
Whereas the computation of the Jordan normal form can essentially be car-

ried out with the 560 algorithm by K̊agström and Ruhe, the normalisation step
(6.6) must be described next. For this purpose, we define

Np =




0 1

0
. . .
. . . 1

0




, Cp(α1.. αp) =




α1

. . . α2

. . . . . .
...

α1 α2 · · · αp




,

Nk
p,q =

[
Nk

q

0p−q,q

]
, Cp,q(α1.. αq) =

[
0p−q,q

Cq(α1.. αq)

]
for p ≥ q,

Nk
p,q =

[
0p,q−p Nk

p

]
, Cp,q(α1.. αp) =

[
0p,q−p Cp(α1.. αp)

]
for p ≤ q

where the powers of the nilpotent matrix Np are given by N0
p = Ip, N1

p = Np,

N2
p =




0 0 1

0 0
. . .

0
. . . 1
. . . 0

0




, . . . , Np−1
p =




0 0 0 1

0 0
. . .

0
. . . 0
. . . 0

0




,

and Np
p = 0p,p. Now, let

C =




Cp1(α
(1)
1 .. α

(p1)
1 ) Cp1,p2(ρ

(1)
12 .. ρ

(p2)
12 ) · · · Cp1,pm(ρ(1)

1m.. ρ
(pm)
1m )

Cp2,p1(ρ
(1)
21 .. ρ

(p2)
21 ) Cp2(α

(1)
2 .. α

(p2)
2 ) · · · Cp2,pm(ρ(1)

2m.. ρ
(pm)
2m )

...
...

...
Cpm,p1(ρ

(1)
m1.. ρ

(pm)
m1 ) Cpm,p2(ρ

(1)
m2.. ρ

(pm)
m2 ) · · · Cpm(α(1)

m .. α
(pm)
m )




(6.7)
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be a nonsingular matrix with p1 ≥ . . . ≥ pm, and assume that α
(1)
1 6= 0. Then

the elements ρ
(h)
1j , 2 ≤ j ≤ m, 1 ≤ h ≤ pj , can be eliminated successively by

multiplication on the right with the matrices

Uk =




Ip1 ϕ
(k)
12 Nk−1

p1,p2
ϕ

(k)
13 Nk−1

p1,p3
· · · ϕ

(k)
1mNk−1

p1,pm

Ip2 0p2,p3 · · · 0p2,pm

Ip3 · · · 0p3,pm

. . .
...

Ipm




, 1 ≤ k ≤ p2, (6.8a)

by setting

ϕ
(k)
1j =




− ρ

(k)
1j

α
(1)
1

, for 1 ≤ k ≤ pj

0, otherwise





, 2 ≤ j ≤ m. (6.8b)

In the same way the elements ρ
(h)
j1 , 2 ≤ j ≤ m, 1 ≤ h ≤ pj , can be eliminated

by multiplication on the left with the matrices

V∗
k =




Ip1 ψ
(k)

12 Nk−1
p1,p2

ψ
(k)

13 Nk−1
p1,p3

· · · ψ
(k)

1mNk−1
p1,pm

Ip2 0p2,p3 · · · 0p2,pm

Ip3 · · · 0p3,pm

. . .
...

Ipm




∗

, 1 ≤ k ≤ p2,

(6.9a)
by setting

ψ
(k)
j1 =




− ρ

(k)
j1

α
(1)
1

, for 1 ≤ k ≤ pj

0, otherwise





, 2 ≤ j ≤ m. (6.9b)

If C is even Hermitian, i.e. if α
(h)
j ∈ R and ρ

(h)
ji = ρ

(h)
ij ∈ C for 1 ≤ i, j ≤ m,

1 ≤ h ≤ pj , then in particular Uk = Vk.
The manner of designation is to be understood here such that the elements

modified by the multiplication with Uk and V∗
k, namely α̃

(h)
j , ρ̃

(h)
j1 , ρ̃

(k)
j1 = 0 and

α̃
(h)
j , ρ̃

(h)
1j , ρ̃

(k)
1j = 0, are renamed to α

(h)
j and ρ

(h)
j1 or ρ

(h)
1j before carrying out the

next transformation step (2 ≤ j ≤ m, k ≤ h ≤ pj). This process is symbolised
below as

C̃ = CUk → C and C̃ = V∗
kC → C.

Having performed all elimination steps we obtain the matrix

C′ = V∗
p2

. . .V∗
1CU1 . . .Up2

=




Cp1(α
(1)
1 .. α

(p1)
1 ) 0p1,p2 · · · 0p1,pm

0p2,p1 Cp2(α
(1)
2 .. α

(p2)
2 ) · · · Cp2,pm(ρ(1)

2m.. ρ
(pm)
2m )

...
...

...
0pm,p1 Cpm,p2(ρ

(1)
m2.. ρ

(pm)
m2 ) · · · Cpm(α(1)

m .. α
(pm)
m )




,

(6.10)
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whose (1, 1)-block remains unchanged. Using matrices of the form

W1 =




χ
(1)
1 Ip1

Ip2

. . .
Ipm


 ,

Wk =




Ip1 + χ
(k)
1 Nk−1

p1

Ip2

. . .
Ipm


 , 2 ≤ k ≤ p1,

(6.11a)

and transformations of the kind C̃′ = WT
k C′Wk → C′ it is furthermore possible

to normalise α
(1)
1 to ε1 = ±1, and the remaining elements α

(k)
1 , 2 ≤ k ≤ p1 can

be eliminated successively by setting

χ
(1)
1 =





1√
|α(1)

1 |
, if C∗ = C

1√
α

(1)
1

, otherwise





and χ
(k)
1 = −α

(k)
1

2ε1
, 2 ≤ k ≤ p1. (6.11b)

In the case C∗ = C the elements of Wk are real so that in particular WT
k = W∗

k.
After all elimination steps we obtain the matrix

C′′ = WT
p1

. . .WT
1 C′W1 . . .Wp1

=




ε1Zp1 0p1,p2 · · · 0p1,pm

0p2,p1 Cp2(α
(1)
2 .. α

(p2)
2 ) · · · Cp2,pm(ρ(1)

2m.. ρ
(pm)
2m )

...
...

...
0pm,p1 Cpm,p2(ρ

(1)
m2.. ρ

(pm)
m2 ) · · · Cpm(α(1)

m .. α
(pm)
m )


 (6.12)

where ε1 =
{±1, if C∗ = C

1, otherwise

}
.

However, the same result is also achieved when the transformations are carried
out in the order

C′′ = Y∗CX with
X = W1U1W2U2 . . .Wp2Up2Wp2+1 . . .Wp1 ,

Y = W1V1W2V2 . . .Wp2Vp2Wp2+1 . . .Wp1 ,

Y = X if C∗ = C.

(6.13a)

With this sequence the element α
(1)
1 takes on the constant value ε1 = ±1 after

the first transformation, and the parameters for the subsequent transformations
are

ϕ
(k)
1j = ±ρ

(k)
1j , ψ

(k)
j1 = ±ρ

(k)
j1 and χ

(k)
1 = ±α

(k)
1

2
. (6.13b)

Thus, the divisions by α
(1)
1 are not necessary, so that (6.13) presents the numer-

ically favourable order.
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To apply this transformation to a general nonsingular matrix C of the form
(6.7), we must now determine matrices P and Q such that

C̃ =
{

P∗CP, if C∗ = C
Q∗CP, otherwise

}
→ C

satisfies the condition α
(1)
1 6= 0. For this purpose, let µ be the index with

p = p1 = . . . = pµ > pµ+1 ≥ . . . ≥ pm, and let

Π(1) = Iq, Π(ν) =




0 Ip

I(ν−2)p

Ip 0
Iq−νp


 , 2 ≤ ν ≤ µ, q =

m∑

j=1

pj ,

be a permutation matrix. Furthermore, in the case C∗ 6= C, let ρ
(1)
jj = α

(1)
j , and

let κ, λ be indices such that |ρ(1)
κλ | = max |ρ(1)

ij | for 1 ≤ i, j ≤ µ. Then ρ
(1)
κλ 6= 0,

because otherwise C would have zero rows and columns and would therefore be
singular. Thus, the wanted result is obtained with

P = Π(λ) and Q = Π(κ). (6.14a)

In the case C∗ = C, let ν be an index such that |α(1)
ν | = max |α(1)

j | for 1 ≤ j ≤ µ.

If α
(1)
ν 6= 0, it is possible to use

P = Π(ν). (6.14b)

Otherwise α
(1)
1 = . . . = α

(1)
µ = 0, and let κ, λ be indices such that |ρ(1)

κλ | =
max |ρ(1)

ij | for 1 ≤ i < j ≤ µ. Then, with the same argumentation as above, it

must be true that ρ
(1)
κλ 6= 0. If now the unitary transformation

C̃ = Σ∗CΣ with Σ =




I(κ−1)p
eiϕ√

2
Ip

eiϕ√
2
Ip

I(λ−κ−1)p
1√
2
Ip

−1√
2
Ip

Iq−λp




for ϕ = arg(ρ(1)
κλ ) is applied, then α̃

(1)
κ = −α̃

(1)
λ = |ρ(1)

κλ |. With a subsequent
permutation

P = ΣΠ(κ) (6.14c)

or
P = ΣΠ(λ) (6.14d)

we can therefore also achieve that |α̃(1)
1 | = |ρ(1)

κλ | 6= 0.
If the elements α

(1)
κ , α

(1)
λ are non-zero when applying Σ, we obtain α̃

(1)
κ =

ω
(1)
κλ + |ρ(1)

κλ | and α̃
(1)
λ = ω

(1)
κλ −|ρ(1)

κλ |, where ω
(1)
κλ = (α(1)

κ +α
(1)
λ )/2. It thus makes

sense to specify the pivot element α
(1)
1 in the case C∗ = C as follows:

1. Determine ν such that |α(1)
ν | is at maximum.
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2. Determine κ, λ such that |ω(1)
κλ |+ |ρ(1)

κλ | is at maximum.

3. If |α(1)
ν | ≥ |ω(1)

κλ | + |ρ(1)
κλ | use (6.14b). Otherwise, if ω

(1)
κλ ≥ 0 use (6.14c).

Otherwise, use (6.14d).

In this way a high numeric robustness of the procedure is ensured.
Using the transformations described so far, any nonsingular matrix of the

form (6.7) can be transformed into the form

Y∗
1Q

∗
1CP1X1 =




ε1Zp1

C22 · · · C2m

...
...

Cm2 · · · Cmm


 . (6.15a)

Here the submatrix consisting of the blocks Cij , 2 ≤ i, j ≤ m, again is a
nonsingular (possibly Hermitian) matrix of the form (6.7), so that the inductive
application of the procedure yields

Y∗CX = Z = ε1Zp1 ⊕ . . .⊕ εmZpm with
X = P1X1 . . .PmXm, Y = Q1Y1 . . .QmYm,

Y = X, εj = ±1 if C∗ = C and εj = 1 if C∗ 6= C.

(6.15b)

Finally, considering that
[
X∗

Y∗

] [
C∗

C

] [
X

Y

]
=

[
X∗C∗Y

Y∗CX

]
=

[
Z

Z

]
, (6.15c)

we have all in all

Theorem 6.2. Let H ∈ Cn×n be nonsingular and Hermitian and let A ∈ Cn×n

be H-Hermitian. Moreover, let R ∈ Cn×n be a nonsingular matrix such that
J = R−1AR is the Jordan normal form of A and let C = R∗HR. Then there
exists a nonsingular matrix X satisfying JX = XJ such that Z = X∗CX has
the form (6.3).

Proof. Application of the procedure (6.7) – (6.15) to the blocks Ĉi and Či of
the matrix C according to (6.5) produces the blocks X̂i and X̌i of the matrix
X. These blocks commute with the blocks Ĵi and J̌i of a matrix J according to
(6.3). Furthermore, the blocks Ẑi = X̂∗

i ĈiX̂i and Ži = X̌∗
i ČiX̌i of the matrix

Z take on the asserted form.

This normalisation procedure seems to be difficult on first sight, but it is
in fact based on a simple relationship. To explain this, let n ≥ m and let
B ∈ Cn×m be a matrix with full column rank. Then B admits the well-known
and uniquely determined QR decomposition

B = QR, Q ∈ Cn×m, R ∈ Cm×m, R =




ρ11 · · · ρ1m

. . .
...

ρmm


 ,

where Q is a matrix with orthogonal columns Q∗Q = Im and R is an upper
triangular matrix with positive diagonal elements [ST1, Kapitel 4.7]. On the
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other hand, the matrix A = B∗B = A∗ ∈ Cm×m is positive definite, so that it
admits the uniquely determined Cholesky decomposition

A = LL∗, L ∈ Cm×m, L =




λ11

...
. . .

λm1 · · · λmm


 ,

where L is a lower triangular matrix with positive diagonal elements [ST1, Kapi-
tel 4.3]. Since LL∗ = A = B∗B = R∗Q∗QR = R∗R and both decompositions
are unique, it must be true that L∗ = R. Thus, the orthonormalisation of
the columns of B can also be obtained via a Cholesky decomposition of the
matrix A.

Now, let the matrix R from Theorem 6.2 be partitioned in

R =
[
R̂1 · · · R̂r Řr+1 · · · Řs

]
.

Then the matrix C consists of the blocks Ĉi = R̂∗
i HR̂i and Či = Ř∗

i HŘi.
Therefore, the transformations X̂∗

i ĈiX̂i = Ẑi and X̌∗
i ČiX̌i = Ži are merely

the H-orthogonalisation of the blocks of R via generalised (inverse) Cholesky
decompositions of the blocks of C. Here the following correspondences exist

B ↔ R̂i, Ři, In ↔ H, A ↔ Ĉi, Či, L ↔ X̂−∗
i , X̌−∗

i , Im ↔ Ẑi, Ži.

Moreover, the normalisation procedure is a generalisation of the HQR and
HQR-2 decomposition (Algorithm 2.12 and Algorithm 2.13), in which the rela-
tionship to the Cholesky decomposition is more obvious.

6.3 Description of the algorithm

This section describes the overall algorithm (CNF) which has been implemented
in ANSI Fortran 77 using the DOUBLE COMPLEX versions of LAPACK and the
BLAS [LUG]. The description contains both, the mathematical theory of the
steps performed as well as the most important details on the actual Fortran
implementation. Throughout the section (A,H) is assumed to be a matrix
pair, where A is H-Hermitian and H is nonsingular and Hermitian.

The two major tasks of the algorithm are the computation of the Jordan nor-
mal form of A (JNF) encapsulated in the subroutines ZGEES, ZTRGRP, ZTRBLK,
ZTRDFL, ZTRJNF, and the subsequent normalisation of the eigenspaces encapsu-
lated in the subroutine ZSPCNF11. Whereas the theory of the latter has essen-
tially been developed in Section 6.2, the theory for JNF is mostly taken over
from [KR1]. Nevertheless, we have modified some steps contained in the origi-
nal implementation which will be referred to as the 560 algorithm [KR2]. The
individual steps of CNF are:

11The naming scheme has been assimilated to LAPACK. The first letter Z indicates double
complex data type, and the matrix types GE, TR, SP denote general, triangular and sip block
matrices.
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Step 1. Computing the Schur decomposition (ZGEES) The matrix A is
transformed into upper triangular form using the Schur decomposition

Q∗AQ = T1 =




λ1 ∗ · · · ∗
λ2 · · · ∗

. . .
...

λn




computed with the LAPACK routine ZGEES. Here Q is unitary and λi, 1 ≤ 1 ≤ n,
are the eigenvalues of A. This well-known transformation is based on the QR
algorithm which is, for example, described in [GVL, Algorithm 7.5.2]. In the
560 algorithm, the LR algorithm is used to obtain T1.

Step 2. Grouping the eigenvalues (ZTRGRP) The grouping of the eigen-
values is the most sensitive step in the overall algorithm. K̊agström and Ruhe
use for this purpose eigenvalue estimates based on Gershgorin circles. However,
in practical application of the 560 algorithm it was found that these estimates
strongly depend on the tolerance parameter EIN, whose satisfactory choice is
not always easy. Our approach tries to avoid this difficulty by grouping the
eigenvalues with the help of a hierarchical clustering algorithm [A, Chapter 6]
which has been modified by introducing a maximum cluster distance.

Let x1, . . . ,xn be given points in Rm and let d be a real distance function
defined for two sets of points in Rm. Moreover, let pmin ∈ {1, . . . , n} and
δmax ∈ [0,∞) be parameters. Then the points can be partitioned into clusters
by applying the following algorithm.

Ci = {xi}, i = 1 . . . n
p = n
δ0 = 0
forever do

δ1 = ∞
for 1 ≤ i < j ≤ p do

if d(Ci, Cj) < δ1 then
δ1 = d(Ci, Cj), r = i, s = j

end if
end for
if p < pmin or δ1 > δmax then

break
end if
Cr = Cr ∪ Cs

Ci = Ci+1, i = s . . . p− 1
p = p− 1
δ0 = δ1

end forever

The number of clusters finally generated p satisfies p ≥ pmin. Moreover, the
maximum distance of the combined clusters δ0 and the minimum distance of
the remaining clusters δ1 fulfil δ0 ≤ δmax as well as δ0 ≤ δ1. Thereby one of the
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functions

dmin(X, Y ) = min ‖xi − yj‖2, dmax(X, Y ) = max ‖xi − yj‖2,

davg(X, Y ) =
1
rs

r∑

i=1

s∑

j=1

‖xi − yj‖2, dmean(X, Y ) =
∥∥∥∥

1
r

r∑

i=1

xi − 1
s

s∑

j=1

yj

∥∥∥∥
2

,

where xi ∈ X, 1 ≤ i ≤ r, and yj ∈ Y , 1 ≤ j ≤ s, may be used for the distance
determination.

A further distance function can be defined as follows: Let Z = {z1, . . . , zr}
be a set of points zj = (zi,j) ∈ Rm (1 ≤ i ≤ m, 1 ≤ j ≤ r). Then the vectors
µ = (µi) and σ2 = (σ2

i ) having the components

µi =
1
r

r∑

j=1

zi,j and σ2
i =

1
r − 1

r∑

j=1

(zi,j − µi)2 (σ2
i = 0 if r = 1)

contain the (empirical) averages and variances of the points. Therefore, the
non-negative scalar

σ2(Z) =
m∑

i=1

σ2
i

gives a total scatter measure for the set Z, and the function

dvar(X, Y ) = σ2(X ∪ Y )

defines a distance of some sets X and Y . This measure does not seem to be
known in the literature. Nevertheless, it has turned out to be particularly useful
for grouping the eigenvalues λ1, . . . , λn ∈ σ(A) which are considered as points
in R2 for this purpose.

The implementation in the routine ZTRGRP allows to specify the distance
measure to be used and to control the grouping by an expected number of
eigenvalues pmin and/or a maximum grouping tolerance δmax, respectively. It
returns the number of groups (clusters) finally generated p, the assignments of
the eigenvalues to the groups, and the distances δ0 and δ1.

Step 3. Sorting the eigenvalues (ZTRBLK, JOB=’S’) The matrix T1 is
unitarily transformed such that eigenvalues belonging to the same group are
adjacent

U∗T1U = T2 =




T11 T12 · · · T1p

T22 · · · T2p

. . .
...

Tpp


 .

Now each upper triangular Tkk block contains the tk eigenvalues which have
been assigned to cluster Ck for 1 ≤ k ≤ p.

This transformation is based on a sequence of eigenvalue interchanges which
is (for the case F = R) described in [GVL, Algorithm 7.6.1]. The implementation
in the routine ZTRBLK uses the LAPACK routine ZTREXC for this purpose. It
returns the number of diagonal blocks p in the variable LBLOCK and the block
boundaries

∑k
i=1 ti for 1 ≤ k ≤ p in the array BLOCK.
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Step 4. Computing the block diagonal form (ZTRBLK, JOB=’D’) The
matrix T2 is transformed into upper triangular block diagonal form

Y−1T2Y = T3 = T11 ⊕ . . .⊕Tpp

using the matrix

Y =




I Y12 · · · Y1p

I · · · Y2p

. . .
...
I




which is obtained by subsequent solutions of Sylvester equations as is described
in [GVL, Algorithm 7.6.3]. The norms of the spectral projectors

Pk =




Y1,k

...
Yk−1,k

I
0




[
0 I (Y−1)k,k+1 · · · (Y−1)k,p

]

satisfy the estimate

‖Pk‖2 ≤

1 +

√√√√
k−1∑

i=1

‖Yik‖2F





1 +

√√√√
p∑

j=k+1

‖(Y−1)kj‖2F


 , (6.16)

where (Y−1)kj stands for the corresponding block of Y−1. These norms are
relevant condition numbers for the associated groups of eigenvalues.

The implementation in the routine ZTRBLK uses the LAPACK routine ZTRSYL
to solve the Sylvester equations. It returns the reciprocal right hand sides of
(6.16) in the array COND.

Step 5. Computing unitary bases of the invariant subspaces (ZTRDFL,
JOB=’O’) Let S = QUY be the accumulated transformation matrix as com-
puted in the foregoing steps. Moreover, let Sk = Q′

kRk, 1 ≤ k ≤ p, be QR
decompositions of the n × tk blocks corresponding to the Tkk blocks. Then
Q′ = S(R1 ⊕ . . .⊕Rp)−1 consists of the unitary Q′

k blocks and

(Q′)−1A(Q′) = T′11 ⊕ . . .⊕T′pp,

where T′kk = RkTkkR−1
k is still upper triangular. It must be considered here,

that the S1 block is already unitary, so that its QR decomposition consists of
the factors Q′

1 = S1 and R1 = I.
After this orthogonalisation process the bases of the invariant subspaces

formed by the columns of the Q′
k blocks are unitary. In the 560 algorithm, the

modified Gram-Schmidt method is used to perform this transformation.

Step 6. Computing the block structure (ZTRDFL, JOB=’D’) Each T′kk

block is unitarily transformed such that

W∗
k(T′kk − λ∗kI)Wk = Ek + Bk, (6.17a)
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where λ∗k = tr(Tkk) / tk is the average eigenvalue and the blocks have the form

Ek =




E11

E21 E22

...
...

. . .
Eq1 Eq2 · · · Eqq


 , Bk =




0 B12 · · · B1q

0 · · · B2q

. . .
...
0


 . (6.17b)

The matrices Bk are nilpotent, the matrices Ek have a negligible Frobenius
norm ‖Ek‖F ≈ 0, and the sizes of the square diagonal blocks furthermore satisfy
m1 ≥ . . . ≥ mq. This transformation is based on the following algorithm:

Let A = A11 ∈ Ct×t and let

A11 = U1Σ1V∗
1

be a singular value decomposition, where the singular values are sorted in as-
cending order σ

(1)
1 ≤ . . . ≤ σ

(1)
t . Moreover, let τ > 0 be a constant and let m1

be an index such that σ
(1)
m1 ≤ τ < σ

(1)
m1+1. Then the singular values are just the

Euclidean column norms of

V∗
1A11V1 = V∗

1U1Σ1,

so that the partitioning

V∗
1A11V1 =

[
E11 B(1)

12

E(1)
21 A22

]
with E11 ∈ Cm1×m1 , η2

1 =
∥∥∥∥
E11

E(1)
21

∥∥∥∥
2

F

=
m1∑

i=1

[
σ

(1)
i

]2

can be made. The same procedure applied to A22 ∈ C(t−m1)×(t−m1) yields

V∗
2A22V2 =

[
E22 B(2)

23

E(2)
32 A33

]
with E22 ∈ Cm2×m2 , η2

2 =
∥∥∥∥
E22

E(2)
32

∥∥∥∥
2

F

=
m2∑

i=1

[
σ

(2)
i

]2
.

Hence, for

W2 = V1(Im1 ⊕V2) and

[
E(2)

21

E(2)
31

]
= V∗

2E
(1)
21 ,

[
B(2)

12 B(2)
13

]
= B(1)

12 V2

we obtain

W∗
2AW2 =




E11 0 0
E(2)

21 E22 0
E(2)

31 E(2)
32 A33


 +



0 B(2)

12 B(2)
13

0 0 B(2)
23

0 0 0


 = E2 + B2,

where ‖E2‖2F = η2
1 + η2

2 + ‖A33‖2F . The iteration can be continued until in the
q-th step either all mq = t−m1 − . . .−mq−1 singular values are smaller or all
are greater than the specified constant τ . Then

V∗
qAqqVq =

[
Eqq

]
with Eqq ∈ Cmq×mq , η2

q = ‖Eqq‖2F =
mq∑

i=1

[
σ

(q)
i

]2
.

Hence, for W = V1(Im1 ⊕V2) . . . (Im1+...+mq−1 ⊕Vq) we finally obtain

W∗AW = E + B,
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where E and B have the forms as in (6.17). Moreover, if σ
(q)
i ≤ τ , then ‖E‖2F =

η2
1 + . . . + η2

q ≤ (m1 + . . . + mq)τ2 = tτ2.
In the application of the algorithm for computing (6.17) it is important that

relations of the kind

σ(h)
mh

≤ τ1 ¿ τ2 < σ
(h)
mh+1, 1 ≤ h ≤ q,

hold at the splitting points. Namely, the coupling elements βh,j computed in
the next step from the blocks Bh,h+1 satisfy the estimate

|βh,j | > σ
(h)
mh+1 > τ2, 1 ≤ j ≤ mh+1,

and these elements must not become too small [KR1]. Therefore, the imple-
mentation in the routine ZTRDFL first of all determines the index mh with
σ

(h)
mh ≤ τ1 = TOL and checks the validity of the relation σ

(h)
mh+1 > τ2 = 103τ1

thereafter. If this check fails, mh is incremented by one. Furthermore, at least
one deflation step is performed, so that in the case σ

(h)
1 > τ1 the index mh = 1

is chosen. The relation of the constants τ2 = 103τ1 is thereby not compelling,
so that other factors were possible, too. The values of ‖Ek‖F are stored in the
array DELE to provide information on the deflation process. They should not
significantly exceed the optimum value ‖Ek‖F ≤ √

tk · TOL.
After this step, the structure of the diagonal blocks can be represented by

the block sizes

m̃1 m̃q1

m
(1)
1 , . . . , m

(1)
q1︸ ︷︷ ︸

t1

, . . . ,

m̃q1+...+qp−1+1 m̃q1+...+qp

m
(p)
1 , . . . , m

(p)
qp︸ ︷︷ ︸

tp

,

where m̃j is merely a consecutive numbering scheme for m
(k)
h . The routine

ZTRDFL stores
∑k

i=1 qi for 1 ≤ k ≤ p in the array DBLK and
∑h

j=1 m̃j for 1 ≤
h ≤ q1 + . . . + qp in the array DEFL. Thus, the block structure is represented
such that BLOCK(k) = DEFL(DBLK(k)) for 1 ≤ k ≤ p (see Step 3).

Whereas in the 560 algorithm the blocks T′kk are overwritten with Bk+λ∗kI+
(E11 ⊕ . . . ⊕ Epp), the routine ZTRDFL overwrites these blocks with Bk + λ∗kI.
This has no effect on the following transformations, but allows a more efficient
implementation.

Step 7. Computing the coupling elements (ZTRJNF, JOB=’C’) Each
Bk + λ∗kI block is transformed such that

M−1
k BkMk = B′

k, (6.18a)

where the blocks have the form

B′
k =




0 Σ12

0
. . .
. . . Σq−1,q

0




with Σh,h+1 =
[
βh,1 ⊕ . . .⊕ βh,mh+1

0

]
.

(6.18b)
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The non-zero real elements βhj are called the coupling elements. Their deter-
mination is based on the following algorithm which is sufficiently explained on
the example

B =




0 B12 B13 B14

0 B23 B24

0 B34

0


 = B(0).

Let B(0)
34 = U3Σ34V∗

4 be a singular value decomposition, and let M34 = I⊕ I⊕
U3 ⊕V4. Then

M∗
34B

(0)M34 =




0 B(0)
12 B(0)

13 U3 B(0)
14 V4

0 B(0)
23 U3 B(0)

24 V4

0 U∗
3B

(0)
34 V4

0


 = B(1).

Now using Gauss eliminations of the form

Gk
ij = I +

bij

bkj
eieT

k , (6.19)

where ei denotes the canonical basis of Ctk , the elements bij above the diagonal
elements bkj of the B(1)

34 = Σ34 block can subsequently be eliminated which is
all in all described by

G−1
34 B(1)G34 =




0 B(1)
12 B(1)

13 0
0 B(1)

23 0
0 Σ34

0


 = B(2).

Let B(2)
23 = Q2R23 be a QR decomposition, and let M23 = I⊕Q2⊕ I⊕ I. Then

M∗
23B

(2)M23 =




0 B(2)
12 Q2 B(2)

13 0
0 Q∗

2B
(2)
23 0

0 Σ34

0


 = B(3).

Again using Gauss eliminations of the form (6.19), the elements above the di-
agonal of the B(3)

23 = R23 block can subsequently be eliminated which is all in
all described by

G−1
23 B(3)G23 =



0 B(3)

12 0 0
0 Σ23 0

0 Σ34

0


 = B(4).

In the same manner the B(4)
12 block can be transformed, so that for M = M34G34

. . .M12G12 finally (6.18) holds.
This algorithm differs from the one given by K̊agström and Ruhe in that

it uses a singular value decomposition for the first elimination step. It has the
advantage that if the Bk block only contains a B12 block, the whole step can
be performed with a unitary transformation. In contrast to the 560 algorithm,
where the complete process is carried out with Gauss eliminations, the imple-
mentation in the routine ZTRJNF uses the algorithm described here.
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Step 8. Permuting the coupling elements (ZTRJNF, JOB=’P’) Each B′
k+

λ∗kI block is permuted such that

P∗k(B′
k + λ∗kI)Pk = J′k = J′r1

(λ∗k)⊕ . . .⊕ J′rm
(λ∗k),

where J′rs
(λ∗k) is a not yet normalised Jordan block of the form

J′rs
(λ∗k) =




λ∗k β1,s

λ∗k
. . .
. . . βrs−1,s

λ∗k




with rs = max{h | mh ≥ s} for 1 ≤ s ≤ m = m1. The permutation matrix
Pk required for this step is defined as follows: Let the canonical basis of Ctk be
partitioned in

{e1, . . . , eµ1} ∪ {eµ1+1, . . . , eµ2} ∪ . . . ∪ {eµq−1+1, . . . , eµq},

where µh =
∑h

i=1 mi. Now, taking from each of the sets the first vector and
inserting it as column of Pk, then taking the second vectors and continuing the
process until all vectors have been taken, we obtain

Pk = [ e1 eµ1+1 . . . eµq−1+1 ; . . . ; em eµ1+m . . . eµrm−1+m ].

This matrix contains m = m1 = µ1 groups of basis vectors corresponding to the
Jordan blocks. Inspecting the s-th group reveals that rs = max{h | µh−1 + s ≤
µh} = max{h | s ≤ mh} which explains the block sizes already specified above.

The implementation in the routine ZTRJNF updates the arrays DBLK and DEFL
such that they describe the Jordan structure analogously to Step 6. This and
all subsequent steps are not contained in the 560 algorithm.

Step 9. Normalising the coupling elements (ZTRJNF, JOB=’D’) Each J′k
block is transformed such that

DkJ′kD
−1
k = Jk = Jr1(λ

∗
k)⊕ . . .⊕ Jrm(λ∗k),

where Jrs(λ
∗
k) is a normalised Jordan block for 1 ≤ s ≤ m. The diagonal matrix

Dk required for this step is defined by

Dk = ∆1 ⊕ . . .⊕∆m with
∆s = 1⊕ β1,s ⊕ β1,sβ2,s ⊕ . . .⊕ β1,sβ2,s . . . βrs−1,s.

Step 10. Pairing the eigenvalues (ZSPCNF, JOB=’P’) Accumulating all
transformations made in the foregoing steps we obtain the matrix

R = QUY
( p⊕

k=1

R−1
k WkMkPkD−1

k

)
.

Now, according to Theorem 6.1, the matrices J = R−1AR and C = R∗HR
must theoretically have the form

J =

[
r⊕

i=1

Ĵ(λ∗i )

]
⊕

[
s⊕

i=r+1

J̌(λ∗i )

]
, C =

[
r⊕

i=1

Ĉi

]
⊕

[
s⊕

i=r+1

Či

]
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up to a permutation of the blocks. Here the notation of Section 6.2 is used, so
that λ∗1, . . . , λ

∗
r are the real and λ∗r+1, . . . , λ

∗
s are the non-real eigenvalues lying

in the open upper complex half-plane. In order to classify the blocks of

C =



C11 . . . C1p

...
...

Cp1 . . . Cpp


 (p = 2s− r)

accordingly, let π(k) be indices such that

‖Ck,π(k)‖F = max
1≤j≤p

‖Ckj‖F

for 1 ≤ k ≤ p. Now, if π(k) = k, the Ckk block is classified as a Ĉi block.
If π(k) = l and π(l) = k and if the Jordan structures of the corresponding
eigenvalues are equal, the Ckl and Clk block are classified to belong to a Či

block. Moreover, the Frobenius norms of the matrices

Ck = [Ck1 . . .Ck,π(k)−1 Ck,π(k)+1 . . .Ckp]

are used to estimate the H-orthogonality of the eigenspace EA(λ∗k) spanned by
the columns of Rk to its H-orthogonal companion EA(λ∗k)[⊥] spanned by the
columns of R without the Rπ(k) block. (For the definition and properties of the
H-orthogonal companion see Section 2.2.)

The implementation in the routine ZSPCNF returns the indices π(k) in the
array PAIR and the norms ‖Ck‖F in the array ORTH. It returns an error, if the
classification of the Ckl blocks fails.

Step 11. Normalising the eigenspaces (ZSPCNF, JOB=’N’) The Ckk

blocks and pairs of Ckl and Clk blocks are normalised such that

X∗
kCkkXk = Zkk = ε1Zr1 ⊕ . . .⊕ εmZrm (6.20a)

and [
Xk

Xl

]∗ [
Ckl

Clk

] [
Xk

Xl

]
=

[
Zkl

Zlk

]
(6.20b)

with Zkl = Zlk = Zr1 ⊕ . . .⊕ Zrm ,

where Xk and Xk ⊕Xl commute with Jk or Jk ⊕ Jl, respectively. Thereafter
the matrix S = R(X1 ⊕ . . . ⊕Xp) transforms the pair (A,H) to its canonical
form.

The implementation in the routine ZSPCNF uses the subroutine ZSPEVR to
compute (6.20a) and the subroutine ZSPEVC to compute (6.20b). These routines
implement the algorithm described in Section 6.2 for the cases C∗ = C and
C∗ 6= C, respectively. ZSPCNF returns the signs εs in the array SIGN.

In addition to the routines performing the individual steps, the driver routine
ZHHCNF12 has been implemented for convenience. This routine expects a matrix
pair (A,H) and computes its canonical form by subsequent calls to the routines
described above. Thereby the parameter STEP allows to specify which of the
steps are to be performed. If STEP is set to at most 9, the routine may also be
used for computing the Jordan normal form of an arbitrary matrix A.

12HH stands for H-Hermitian.
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6.4 Numerical results

In this section some numerical results of the routine ZHHCNF are presented. In
order to make the data more comprehensible we start with a brief discussion of
the parameters and control variables of the algorithm (see also [KR1]).

6.4.1 Parameters and control variables

The grouping of the eigenvalues is controlled by the method of distance determi-
nation JOBGRP and the parameters LBLOCK = pmin and/or DEL = δmax (see Step
2). Although the routine ZHHCNF allows to select any of the distance measures
described in the previous section, we recommend the utilisation of the function
dvar which has produced appropriate groupings in all examples investigated.

If the number of (multiple) eigenvalues of the matrix A is known to be pA,
the parameter configuration pmin = pA, δmax = ∞ should be used. Otherwise,
the configuration pmin = 1, δmax ≈ ‖A‖√εmach is a good initial guess. (εmach

denotes the machine accuracy.) If LBLOCK = p is the computed number of
groups and δ0, δ1 are the computed cluster distances, then any of the parameter
configurations pmin = p, δmax = ∞ or pmin = 1, δ0 ≤ δmax < δ1 produces
the same groups. Moreover, δ0 ≈ δ1 indicates, that the groups are not well
separated. In this case, the choice of either δmax ≥ δ1 or δmax < δ0 may be of
advantage.

Further information on the groups of eigenvalues is provided by the reciprocal
condition numbers COND(k) ≥ ‖Pk‖−1

2 (see Step 4) and the deflation norms
DELE(k) = ‖Ek‖F (see Step 6). Too small values of ‖Pk‖−1

2 (say ¿ √
εmach)

combined with too large values of ‖Ek‖F (say À √
εmach) indicate, that the

groups of eigenvalues should be made larger by increasing δmax or decreasing
pmin.

Too large values of ‖Ek‖F may also indicate, that the Jordan structure is
not well defined. In this case not all coupling elements βh,j are sufficiently larger
than ‖Ek‖F (see Step 6 and 7). If the computed Jordan chains are too long,
the deflation parameter TOL = τ must be increased, if too short, the parameter
must be decreased. A good initial value is τ ≈ √

εmach.
An easy way for inspecting the coupling elements is to perform the compu-

tations up to STEP = 8. Then the superdiagonal of the matrix A = J(8) contains
these elements. Moreover, the Euclidean norms of the corresponding principal
vectors ‖s(8)

i ‖2 contained in the matrix S = S(8) should also be inspected. Too
large norms may indicate inappropriate groups of eigenvalues.

If the computed Jordan normal form of A is incorrect, the classification
of the blocks of the matrix C usually fails (see Step 10). Otherwise, the H-
orthogonalities of the eigenspaces ORTH(k) = ‖Ck‖F estimate the deviation
of the numerical eigenspaces to their theoretical counterparts. If these values
are too large, the normalized transformation matrix S = S(11) obtained after
STEP = 11 cannot be expected to be perfectly accurate. Nevertheless, the
computed canonical form may still be correct, when the magnitudes of the
corresponding sip block elements of H = Z(11) are near unity. (All variables in
typewriter style denote parameters of the routine ZHHCNF.)
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6.4.2 Results of the routine ZHHCNF

We come to the presentation of some numerical results which were obtained
on an INTEL PENTIUM 4 processor (2GHz) in a Cygwin environment CYG-
WIN NT-5.1. The program binary was created with the GNU compiler g77/gcc
2.95.3-4, and the machine accuracy computed with the LAPACK routine DLAMCH
was

εmach ≈ 2.22 · 10−16.

In addition to the parameters and control variables discussed above, the residual

rAH = ‖A∗H−HA‖F

estimates the accuracy of the test matrices, and the residuals

rAJ = ‖AS− SJ‖F , rHZ = ‖S∗HS− Z‖F

as well as the condition number

cS = ‖S‖1 ‖S−1‖1
estimate the accuracy of the computed Jordan normal form S−1AS = J or
canonical form (S−1AS,S∗HS) = (J,Z), respectively. Moreover, gi denotes
the grade of the i-th principal vector.

For the first example the Jordan normal form of the test matrix

A(1) =




1 1 1 −2 1 −1 2 −2 4 −3
−1 2 3 −4 2 −2 4 −4 8 −6
−1 0 5 −5 3 −3 6 −6 12 −9
−1 0 3 −4 4 −4 8 −6 16 −12
−1 0 3 −6 5 −4 10 −10 20 −15
−1 0 3 −6 2 −2 12 −12 24 −18
−1 0 3 −6 2 −5 15 −13 28 −21
−1 0 3 −6 2 −5 12 −11 32 −24
−1 0 3 −6 2 −5 12 −14 37 −26
−1 0 3 −6 2 −5 12 −14 36 −25




has been computed. This example was taken from [KR1] to permit comparison
with the 560 algorithm. All variables contained in Table 6.1 indicate stable
computation of the Jordan Normal form

J(1) = [J2(3)⊕ J2(3)]⊕ [J3(2)⊕ J2(2)]⊕ J1(1)

which corresponds to the results presented by K̊agström and Ruhe.
The further examples from [KR1] have also been recomputed. In case of the

Frank matrix (n = 12) the parameters pmin = 12, δ0 = 0.0, δ1 = 1.7 ·10−4 apply
for computing the Jordan normal form J = λ1⊕ . . .⊕λ12 with rAJ = 4.76 ·10−14

and c−1
S = 5.03 · 10−9. In case of the “ill conditioned” matrix (α = 10−4) the

parameters pmin = 8, δ0 = 0.0, δ1 = 5.0 · 10−9 apply for computing the Jordan
normal form J = λ1 ⊕ . . . ⊕ λ8 with rAJ = 3.47 · 10−12 and c−1

S = 1.67 · 10−6.
Since both test matrices are diagonalisable, there are no deflation steps to be
performed, so that the parameter τ may be chosen arbitrarily. We do not present
all details on these examples, because the computation of a trivial Jordan normal
form is rather a test of the LAPACK routine ZGEES than of ZHHCNF.
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In order to present some results on the computation of canonical forms,
the literature was searched for corresponding examples. Although H-Hermitian
matrices frequently appear in theoretical books or papers, we have not found
concrete numerical examples which were large enough to give appropriate test
cases. Therefore, the matrix pair

ReA(2) =




2 0 0 −1 0 −1 −1 0 0 −1
−2 3 −4 2 −2 2 1 0 −3 2
−1 1 1 1 −1 1 1 0 0 1
0 −1 −3 0 −1 −1 −2 −1 −2 −1
−1 1 −3 1 0 1 0 0 −2 1
−1 1 0 1 −1 2 1 0 0 1
0 0 0 0 0 0 2 0 0 0
3 −2 7 −2 4 −2 0 2 5 −2
0 1 1 0 0 0 0 0 2 1
2 −1 4 −2 2 −2 −1 0 3 0




ImA(2) =




1 0 2 0 0 0 1 0 1 0
1 −1 −2 −1 0 −1 −1 0 −2 −3
0 0 −1 0 0 0 −1 0 0 0
3 −2 1 −2 2 −1 1 0 0 −3
1 −1 −1 −1 1 −1 −1 0 −1 −2
0 0 0 0 0 −1 −1 0 0 0
−1 0 0 0 −1 0 0 −1 0 1
−4 2 1 2 −2 2 1 −1 2 6
−1 1 −1 1 −1 1 1 0 0 1
−2 1 2 1 −1 1 1 −1 2 4




H(2) =




0 1 −1 1 0 2 i 1 0 0
1 0 2 + i 0 0 0 i 0 −1 0
−1 2− i 0 1 −1− i 1 i 1 1 + i −i
1 0 1 0 0 0 0 0 0 0
0 0 −1 + i 0 0 −i 0 0 0 0
2 0 1 0 i 0 0 0 −1 0
−i −i −i 0 0 0 0 −i 2 i
1 0 1 0 0 0 i 0 0 0
0 −1 1− i 0 0 −1 2 0 0 −1
0 0 i 0 0 0 −i 0 −1 0




has been constructed from the canonical form

J(2) = J2(2)⊕ J2(2)⊕
[
J2(1 + i)⊕ J1(1 + i)

J2(1− i)⊕ J1(1− i)

]
,

Z(2) = −Z2 ⊕ Z2 ⊕
[

Z2 ⊕ Z1

Z2 ⊕ Z1

]

to serve as the next example. The results presented in Table 6.2 report on
perfectly accurate computations resulting in very small residuals. It cannot be
seen in the table that the eigenvalues are correct up to an error of 10−15. They
are much closer to the theoretical values than those computed with ZGEES in
step 1 some of which had errors of order 10−8. A similar effect was observed in
all the computations made.
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For the last examples the canonical form

J(3) = J2(µ)⊕ J2(µ)⊕
[
J3(λ)⊕ J2(λ)⊕ J1(λ)

J3(λ)⊕ J2(λ)⊕ J1(λ)

]
,

Z(3) = −Z2 ⊕ Z2 ⊕
[

Z3 ⊕ Z2 ⊕ Z1

Z3 ⊕ Z2 ⊕ Z1

]

was specified and the test matrices were defined by

A(3) = R−1J(3)R and H(3) = R∗Z(3)R,

where

R = 2In +

n
2−1∑

i=1

(
Jn(0)

)2i −
n
2∑

i=1

(
Jn(0)∗

)2i−1 + iZn

for n = 16. For all examples we used µ = 0 but varied λ from 2+ i to 2+10−3i.
Table 6.3 contains the complete results for the case λ = 2 + i which are

as satisfactory as in the last example. In particular, the eigenspaces obtained
after step 9 were H-orthogonal up to machine precision (see ‖Ck‖F ) and allowed
to compute the canonical form with small residuals rAJ , rHZ and an excellent
reciprocal condition number c−1

S .
However, when moving λ closer to the real axis, the results were getting

worse. Table 6.4 shows an significant increase in ‖Ck‖F and thus also in rHZ

for the cases λ = 2 + 10−mi, m = 1, 2, 3. Nevertheless, all canonical forms
(J,Z) were computed correctly and the residuals rAJ and reciprocal condition
numbers cS even pretend to be excellent.

In order to determine the reason for this behaviour the algorithm was in any
case performed until step 4. Hence, the matrices QUY were computed such
that

(QUY)−1A(QUY) = T11(µ)⊕T22(λ)⊕T33(λ),

where Tkk(ω) denotes an upper triangular block having diagonal elements close
to ω. Theoretically, the matrices

F1 =
[
F12 F13

]
, F2 =

[
F21 F22

]
, F3 =

[
F31 F33

]

defined by the blocks of

(QUY)∗H(QUY) =



F11 F12 F13

F21 F22 F23

F31 F32 F33




should then have been equal to or at least near to zero. However, the Frobenius
norms ‖Fk‖F listed in Table 6.4 present another result. In other words, the
invariant subspaces spanned by the columns of QUY were already not as H-
orthogonal as they should have been.

Since the transformations Y according to the values of ‖Pk‖−1
2 must be

regarded as stable and the unitary transformations U are uncritical, the major
error was already made during the computation of the Schur decomposition
Q∗AQ = T. But the LAPACK routine ZGEES used for this purpose is well-known
for its stability, so that our last examples are at the bounds of the mathematical
possibilities. Nevertheless, these examples also report on the well behaviour of
the grouping algorithm and the stability of the overall transformations which
did not increase the errors ‖Fk‖F until the final steps as is indicated by ‖Ck‖F

and rHZ .
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Table 6.4: Further results for the test matrix pair (A(3),H(3))

k, π(k) λ∗k ‖Pk‖−1
2 ‖Ek‖F ‖Ck‖F ‖Fk‖F

1 (1) 0.0 2.91 · 10−1 1.11 · 10−15 1.56 · 10−14 5.70 · 10−14

2 (3) 2.0 + 0.1i 1.78 · 10−1 5.20 · 10−15 2.04 · 10−11 2.50 · 10−11

3 (2) 2.0− 0.1i 2.61 · 10−1 4.69 · 10−15 6.20 · 10−11 1.48 · 10−10

rAH , rAJ , rHZ , c−1
S : 4.78 · 10−14 5.39 · 10−15 1.47 · 10−11 7.03 · 10−2

1 (1) 0.0 2.91 · 10−1 1.15 · 10−15 1.31 · 10−14 6.27 · 10−14

2 (3) 2.0 + 0.01i 1.59 · 10−1 3.48 · 10−15 1.16 · 10−6 1.48 · 10−6

3 (2) 2.0− 0.01i 2.69 · 10−1 2.30 · 10−15 4.23 · 10−6 1.20 · 10−5

rAH , rAJ , rHZ , c−1
S : 4.88 · 10−14 3.69 · 10−15 9.90 · 10−7 7.03 · 10−2

1 (1) 0.0 2.91 · 10−1 6.18 · 10−16 1.33 · 10−14 6.06 · 10−14

2 (3) 2.0 + 0.001i 1.77 · 10−1 3.22 · 10−15 3.99 · 10−1 4.85 · 10−1

3 (2) 2.0− 0.001i 2.62 · 10−1 1.77 · 10−15 4.22 · 10−3 1.11 · 10−2

rAH , rAJ , rHZ , c−1
S : 5.55 · 10−14 3.46 · 10−15 9.01 · 10−2 6.99 · 10−2

6.4.3 Further numerical considerations

In addition to the examples presented we have performed many tests which
confirmed that the algorithm works well. But unfortunately we are not able to
present a detailed error analysis.

Clearly, the numerical computation of the Jordan normal form of A or the
canonical form of (A,H), respectively, is a discontinuous problem. A tiny per-
turbation may destroy the results in exact sense. Therefore, the algorithm tries
to find the nearest matrix Â or the nearest pair of matrices (Â, Ĥ), respectively,
such that

‖Â−A‖ < εA‖A‖, Ŝ−1ÂŜ = Ĵ,

‖Ĥ−H‖ < εH‖H‖, Ŝ∗ĤŜ = Ẑ,

where Ĵ, Ẑ, Ŝ are the computed matrices and εA, εH should be small constants.
Exact perturbation bounds for these constants are not available due to the
complexity of the overall process. For this reason, the analysis of the stability
information provided by the algorithm and the computation of the residuals,
condition number, and vector norms are the only possibilities for assessing the
quality of the computed normal forms.

6.5 Numerical computation of H-polar decom-
positions of arbitrary matrices

We conclude this chapter with some remarks on an extension of the CNF al-
gorithm for computing H-singular value decompositions or H-polar decomposi-
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tions, respectively. Consider the following diagram:

Method 3.24
A diagonalisable
(S−1AS,S∗HS)

�� ''OOOOOOOOOOO

Algorithm 3.31
σ(A[∗]A) ⊂ C\(−∞, 0]

A = UM

��

CNF
A arbitrary

(S−1AS,S∗HS)

xxppppppppppp

���
�
�

Method 3.25
A[∗]A diagonalisable

A = TKS−1

Algorithm 3.32
σ(A[∗]A) ⊂ C\(−∞, 0]

A = TKS−1

HSVD
A[∗]A arbitrary
A = TKS−1

The diagram shows the dependencies of the methods and algorithms presented
in Chapter 3. Here CNF is applied in step 2 of Algorithm 3.32 when the matrix
M, computed in step 1 with Algorithm 3.31, is not diagonalisable and Method
3.24 cannot be used for determining the canonical form of the pair (M,H). On
the other hand, Method 3.24 is the foundation for Method 3.25 which computes
an H-SVD (or H-polar decomposition) of a matrix A from the canonical form
of the pair (A[∗]A,H) provided that A[∗]A is diagonalisable. Now, using CNF
instead of Method 3.24, it is possible in principle to generalise Method 3.25 such
that H-SVDs of arbitrary matrices can be computed.

Assume that in step 1 of such an algorithm, called HSVD, the canonical form
(R−1A[∗]AR,R∗HR) = (J,Z) has been computed with CNF. Then in step 2
square roots of the Jordan blocks contained in J must be determined. For non-
zero eigenvalues this is possible using the formula given in Lemma 3.1 which
can be written in the form

Kp(µ) =




µ f1(µ) f2(µ) · · · fp−1(µ)

µ f1(µ)
. . .

...

µ
. . . f2(µ)
. . . f1(µ)

µ




where

fi(µ) =





1
2µ

, if i = 1

(−1)i+1(2i− 3)!!
(2i)!! µ2i−1

, if 2 ≤ i ≤ p− 1

with

i!! =

{
1 · 3 · . . . · i, if i is odd
2 · 4 · . . . · i, if i is even

.

These Toeplitz matrices satisfy Kp(µ)2 = Jp(µ2) for all µ ∈ C\{0}. Now, if
(J, Z) contains the blocks

(J(3), Z(3)) = (Jp(ω2)⊕ Jp(ω2), Z2p) with ω ∈ C\R ∪ iR,

(J(2), Z(2)) = (Jp(α2), εZp) with α ∈ R, ε = ±1,

(J(1), Z(1)) = (Jp(−β2)⊕ Jp(−β2), Zp ⊕−Zp) with β ∈ R,
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then the matrices defined by

K(3) = Kp(ω)⊕Kp(ω), K(2) = Kp(α) and (6.21)

K(1) = W−1
2p

(
Kp(iβ)⊕Kp(−iβ)

)
W2p with W2p =

1√
2

[
Ip Ip

Ip −Ip

]

fulfil (
K(j)

)2 = J(j) and
(
K(j)

)∗
Z(j) = Z(j)K(j)

for j = 1, 2, 3 (see [BMRRR1, Theorem 4.4]). Here the blocks belonging to
the negative eigenvalue −β2 must satisfy condition 1 of Theorem 3.4 because
otherwise the H-Hermitian square root cannot be formed.

Whereas these transformations are simple, the kernel transformation re-
quired in this step is extremely complicated. Let

J(0) =
r⊕

i=1

Npi
, Z(0) =

r⊕

i=1

εiZpi

be the part of the canonical form (J,Z) belonging to the eigenvalue 0 and let R(0)

be the corresponding (rectangular) block of R. Then the kernel transformation
is possible only if condition 2 of Theorem 3.4 holds. It then requires to determine
a matrix W(0) such that

J(0) =
(
W(0)

)−1
J(0)W(0), Z(0) =

(
W(0)

)∗
Z(0)W(0)

and such that the basis spanned by the columns of R(0)W(0) expresses ker(A) as
specified in condition 3 of Theorem 3.4. Here several possibilities for combining
the blocks of (J(0), Z(0)) exist. For example, if J(0) consists of the blocks N3,
N3, N2, N2, and Z(0) consists of the block Z3, −Z3, Z2, −Z2, then

J(0) = (N3 ⊕N3)⊕ (N2 ⊕N2), Z(0) = (Z3 ⊕−Z3)⊕ (Z2 ⊕−Z2)

as well as

J(0) = (N3 ⊕N2)⊕ (N3 ⊕N2), Z(0) = (Z3 ⊕ Z2)⊕ (−Z3 ⊕−Z2)

fulfil condition 2 of Theorem 3.4 (taken from [BMRRR1]). Moreover, even if it
is clear which of the blocks have to be combined for building the square roots,
it is still complicated to determine the transformations

Np ⊕Np = W−1
2p

(
Np ⊕Np

)
W2p,

Zp ⊕−Zp = W∗
2p

(
Zp ⊕−Zp

)
W2p

and
Np ⊕Np−1 = W−1

2p−1

(
Np ⊕Np−1

)
W2p−1,

Zp ⊕ Zp−1 = W∗
2p−1

(
Zp ⊕ Zp−1

)
W2p−1

which transform into an appropriate basis.
Confronted with these difficulties we have not found a way for the numer-

ical computation of the matrix W(0), so that this approach has not led to an
algorithm for computing H-SVDs of arbitrary matrices. Nevertheless, it is still
possible to combine (6.21) with the kernel transformation of Method 3.25 to
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obtain an algorithm for computing H-SVDs of matrices A, for which the part
of the canonical form of the pair (A[∗]A,H) belonging to the eigenvalue 0 has
the form (0p+q,p+q, Ip ⊕ −Iq). On the other hand, equation (5.40) shows that
the Newton method from Chapter 5 allows to compute H-polar decompositions
of arbitrary matrices. Hence, by using this method in step 1 of Algorithm 3.32,
we are in principle (and, in many cases, in practice) able to compute an H-SVD
of an arbitrary matrix A.



Chapter 7

Conclusions

This final chapter summarises the most important results on the Procrustes
problems and gives an illustrative example. Moreover, some suggestions for the
application in multidimensional scaling are made.

Let F = R or F = C and let G,H ∈ Fn×n be nonsingular and selfadjoint.
Furthermore, let X = [x1 . . . xN ], Y = [y1 . . . yN ] ∈ Fn×N be given coordi-
nates of vectors and let U ∈ Fn×n. Then the function

f(U) =
∑

k

[Uxk − yk,Uxk − yk]H = tr[(UX−Y)∗H(UX−Y)]

measures the congruence of the constellations and the constrained optimisation
problems

f(U) → opt with U∗HU = H, (7.1)
f(U) → opt with U∗HU = H and U∗GU = G, (7.2)
f(U) → opt with U∗GU = G (7.3)

determine isometries, with the help of which a transformation to an optimum
congruence can be achieved. The wanted optimum depends on the matrix H
and must be chosen according to

opt =





min, if H > 0 (positive definite)
max, if H < 0 (negative definite)
min / max, otherwise (indefinite)

where min / max describes a particular saddle point of the function f .
Our studies show that the H-isometric Procrustes problem (7.1) has a solu-

tion if and only if a semidefinite H-polar decomposition

A = YX∗H = UM with

UH = U−1, MH = M, HM ≥ 0

exists (see Section 4.4). Analogously, the (G,H)-isometric Procrustes problem
(7.2) has a solution if and only if an H-semidefinite (G,H)-polar decomposition

C = YX∗H + G−1HYX∗G = UM with

UH = UG = U−1, MH = MG = M, HM ≥ 0,
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exists (see Section 4.5). Here it is additionally assumed that G and H satisfy

H−1G = µ2G−1H for some µ ∈ R\{0}.
In both cases the matrix U contained in the decomposition is the wanted isom-
etry and the decomposition always exists when H is definite.

In contrast to these handy results, no analogous solution of the Procrustes
problem (7.3) has been found. Here the necessary condition for determining the
isometry is

GUΛ + HUXX∗ = HYX∗

where Λ = Λ∗ beside U is unknown. Moreover, the additional assumption

G 6= µH for all µ ∈ R
must be made to avoid that the problem can be reduced to (7.1). However,
under these prerequisites we were not able to express U as a factor of some
matrix decomposition (see Section 5.1).

For the numerical solution of the Procrustes problems the following methods
are given:

(a) the Method 3.25 for computing H-singular value and H-polar decomposi-
tions of a matrix A for which AHA is diagonalisable,

(b) the Algorithm 3.32 for computing H-singular value and H-polar decompo-
sitions of a matrix A for which AHA has no non-positive eigenvalues,

(c) the Algorithm 4.20 for computing (G,H)-polar decompositions of a matrix
A for which AHA is diagonalisable or has no non-positive eigenvalues,

(d) the Newton method from Chapter 4 for optimising functions of the form

f(u) = (Au,u)− 2Re(b,u) + γ with u = vec(U)

under the constraints UH = U−1 and/or UG = U−1.

(a) and (b) apply for solving (7.1), (c) applies for solving (7.2), and (d)
applies solving for (7.3).

Although (d) might also be used for computing solutions of (7.1) and (7.2),
the other methods are preferable because they are more efficient and allow
to decide whether the wanted decomposition exists. If the Newton method is
applied to solve a problem in which H is indefinite and the iteration diverges, we
can usually not decide whether this failure is caused by inappropriate starting
values or by the fact that the considered problem is unsolvable. Fortunately,
this difficulty does not arise in the case of a definite matrix H in which the
existence of a solution is guaranteed, so that in this case only suitable starting
values must be found.

In the following application the different Procrustes solutions are illustrated
with a concrete numerical example.

Example 7.1. For N = 5, n = 3, J2,1 = diag(1, 1,−1) and

XT =




−0.2373 0.5122 1.7640
1.2910 −0.8456 −0.8393
1.6640 0.0378 −0.8054
−2.3035 0.8568 0.3262
−0.4141 −0.5612 −0.4456




, YT =




−0.5979 0.5173 −1.8355
−0.5616 −1.2324 0.4944
−1.2682 −0.5380 0.4147
1.7739 1.4836 0.2375
0.6539 −0.2305 0.6889



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the solution of (7.1) with H = J2,1 computed with Algorithm 3.32 is

U1 =



−0.9676 −0.3915 −0.2991
−0.3681 0.9302 0.0268
−0.2677 −0.1360 −1.0441


 , XT

1 =




−0.4986 0.6111 −1.8480
−0.6670 −1.2842 0.6457
−1.3839 −0.5989 0.3903
1.7958 1.6536 0.1596
0.7537 −0.3815 0.6524




.

The solution of (7.2) with G = J2,1 and H = I3 computed with Algorithm 4.20
is

U2 =



−0.9021 −0.4315 0.0
−0.4315 0.9021 0.0

0.0 0.0 −1.0


 , XT

2 =




−0.0069 0.5645 −1.7640
−0.7998 −1.3198 0.8393
−1.5174 −0.6839 0.8054
1.7084 1.7668 −0.3262
0.6158 −0.3276 0.4456




and the solution of (7.3) with G = J2,1 and H = I3 determined with the Newton
method is

U3 =



−0.9773 −0.3858 −0.3226
−0.3744 0.9276 −0.0248
−0.3088 −0.0965 −1.0510


 , XT

3 =




−0.5347 0.5202 −1.8302
−0.6648 −1.2468 0.5650
−1.3811 −0.5679 0.3290
1.8155 1.6490 0.2858
0.7650 −0.3545 0.6503




.

The residuals after the transformation Xk = UkX are listed in the following
table in which X0 = X denotes the original coordinates.

congruence measure k = 0 k = 1 k = 2 k = 3
(a) tr[(Xk −Y)T (Xk −Y)] 48.4274 0.1427 1.2481 0.1015
(b) tr[(Xk −Y)T J2,1(Xk −Y)] 13.3900 0.0807 -0.0590 0.0691

As one would expect, the solution of (7.3) results in the best congruence
with respect to the Euclidean measure (a), but it is only a little better than
the saddle point solution of problem (7.1). For solving (7.2) only a rotation
in the xy-plane and a reflection along the z-axis is admitted (H = I2 ⊕ I1 and
G = I2⊕−I1), but this still produces an acceptable improvement in comparison
with the starting situation.

These results can also be observed in Figure 7.1 in which the Y constella-
tion is depicted with dashed lines and the Xk constellations are depicted with
solid lines. The respective first point (first row of the transposed matrix) is
surrounded by a circle and the figures show the projections onto the coordinate
planes. ♦

With this example our studies are complete and it would now be interesting
to apply the results in some real psychological multidimensional scaling investi-
gations. In this context it could be analysed whether the mathematical property
of vectors to be space-like, time-like or light-like can also be given a meaning in
psychology (see Remark 4.12). Moreover, it were possible to search for the laws
of cognition in indefinite scalar product spaces or even in Riemannian spaces.
For this purpose, the following approach may be used:
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Figure 7.1a: Projection onto the xy-plane

Figure 7.1b: Projections onto the xz- and yz-plane
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Let ωk be given objects and let p
(0)
kl , . . . , p

(T )
kl be sets of proximities measured

at the times t = 0, . . . , T (1 ≤ k, l ≤ N). Moreover, let x
(0)
k , . . . , x

(T )
k be

constellations of vectors, determined according to Theorem 4.9, such that

[
x(t)

k − x(t)
l ,x(t)

k − x(t)
l

]
=

(
p
(t)
kl

)2

where [., .] is an indefinite scalar product with underlying matrix G = Ip⊕−Iq.
Then by setting

y(0)
k = x(0)

k

and subsequently applying Procrustes solutions (for example of problem (7.2)
with H = Ip+q)

∑

k

[U(t)x(t)
k − y(t−1)

k ,U(t)x(t)
k − y(t−1)

k ] → opt, y(t)
k = U(t)x(t)

k

for t = 1, . . . , T , it can be achieved that adjacent constellations in y
(0)
k , . . . , y

(T )
k

are optimally congruent. Now, for example using n-dimensional cubic splines,
it is possible to determine curves yk(τ), τ ∈ [0, T ], such that

yk(t) = y(t)
k .

Each curve yk(t) describes the movement of an object ωk in an indefinite scalar
product space with metric G, and if it is assumed that these curves are sort of
“shortest curves” the situation appearing here has a well-known counterpart in
physics: Einstein’s theory of gravitation.

In general relativity the moving objects are cosmological objects such as
galaxies or planets, and the curves are the geodesics of an Riemannian space
with metric

G(x, y, z, t) =




−1
−1

−1
1


 + Ψ(x, y, z, t)

where Ψ(x, y, z, t) = [ψαβ(x, y, z, t)] is symmetric [SU]. Isn’t it possible that
similar laws apply in cognition and that the curves yk(t) are just geodesics
in an Riemannian space? If this is true, are there more and deeper analogies
between cognition and the universe?

Although this seem to be very interesting questions, their discussion is far
beyond the scope of this work, so that they must be clarified at another place.
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