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Zusammenfassung

Detektion einzelner Atome in Resonatoren niedriger Finesse

Im Rahmen dieser Doktorarbeit wurde der Grundstein gelegt für die Integration mikroop-
tischer Elements auf Atomchips. Dies beinhaltete theoretische und experimentelle Un-
tersuchungen zur Möglichkeit der Detektion einzelner Atome mit Hilfe von optischen
Resonatoren niedriger Güte. Hierfür wurde ein theoretisches Model zur Beschreibung
des gekoppelten Systems Atom-Resonator entwickelt. Angewandt auf einen optischen
Faserresonator auf dem Atomchip, sagt dieses Model das Erreichen eines Signal-zu-
Rausch-Verhältnisses von über 30 für die Einzelatomdetektion voraus, für Meßintervalle
von 10µs.
Des weiteren wurde ein Experiment mit kalten Rubidium Atomen aufgebaut, das den
ersten Atomchip mit integriertem Faserresonator aufnehmen wird. Eine Serie von Ex-
perimenten mit einem makroskopischen Testresonator, der in seinen Eigenschaften einem
Faserresonantor gleicht, wurde durchgeführt. Indem man den Resonator sehr nah am
konzentrischen Punkt betreibt, kann dessen Fokusbreite auf 12µm reduziert werden, bei
einer Finesse von 1200. Diese Parameter liegen in der gleichen Größenordnung wie die
eines Faserresonators. Experimente mit Atomen, die frei durch den Resonator fallen
oder mit Hilfe eines magnetischen Leiters hindurchgeführt werden, bestätigten die Vo-
raussagen der Theorie bezüglich des Einflusses der Atome auf das Resonatortransmis-
sionssignal.

Abstract

Single atom detection in low finesse cavities

Within the framework of this thesis the cornerstone for the integration of microoptical
elements for single atom manipulation on atom chips was laid. This involved theoretical
and experimental investigations of the possibility of single atom detection in optical low
finesse cavities. A theoretical model was developed to describe the coupled atom-cavity
system. This model was applied to an experimentally feasible on-chip optical fibre cavity.
A signal-to-noise ratio of above 30 for single atom detection with such a device within
10µs is predicted.
Furthermore, an experiment with cold rubidium atoms was constructed. It is going
to host the first fibre cavity chip. The theory was verified by a series of experiments
with a macroscopic test resonator modelling the fibre cavity setup. By operating the
resonator close to the concentric limit, the cavity mode waist was decreased to 12µm at
a finesse of 1200. This is on the same order of magnitude as the fibre cavity parameters.
Experiments with atoms falling freely or being magnetically guided through the cavity
have confirmed the theoretical predictions for the atomic effect on the cavity transmission
signal.
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1 Introduction

In the 100th year after Einstein’s first epoch making discoveries, this introduction into
the physics of atom-light interaction can not begin differently than by emphasizing his
big contributions to the subject. It all began with his Nobel-prize-awarded work ”On
a heuristic viewpoint concerning the production and transformation of light” [Ein05],
which proposed the existence of light quanta, later called photons, to describe the pho-
toelectric effect. Later in his work ”On the quantum theory of light”, he proposed the
process of stimulated emission besides absorption and spontaneous emission and set
up simple rate equations including the famous Einstein coefficients to describe those
processes [Ein17].
For a long time the spontaneous emission rate was believed to be an intrinsic property
of matter, until later it was understood that spontaneous emission is a property of
the coupled atom-vacuum system, strongly dependent on the surrounding environment,
which defines the local mode density. Purcell was able to quantify this phenomenon
through his spontaneous emission enhancement factor, given by the ratio of local mode
density close to a surface and the free space mode density [Pur46].
In the following times, the effect of boundary conditions on atomic radiation was inten-
sively studied by theorists [Bar70, Mor73, Mil73, Kle81] and, as soon as the required
techniques had been developed to prepare, control, and observe isolated atoms and
molecules close to surfaces, also experimental evidence was found. Pioneering experi-
ments have been carried out by Dexhage, examining the fluorescence of organic dyes
deposited on organic dyes above metallic mirrors [Dex74]. The first serious inhibition of
spontaneous emission by a factor of 20 for a Rydberg atom between parallel conducting
plates has been observed by the group of Kleppner in [Hul85], while the Haroche group
observed no spontaneous decay during 13 natural lifetimes of Cesium atoms placed in
a µm-sized gap between two metallic mirrors [Jhe87]. This results reflect the fact that
the mode density decreases drastically as soon as the atom surface distance falls below
half the wavelength.
Another milestone was reached after being able to build resonant cavities. If their
length is much larger then half the wavelength,these cavities enhance vacuum fluctua-
tions instead of surpressing them. The resulting enhancement of spontaneous emission
has been observed for the first time in experiments performed by the Haroche group,
where an enhancement factor of 500 for Sodium Rydberg atoms in a microwave cavity
was measured [Goy83]. By varying the cavity length over both regimes enhancement
as well as inhibition of spontaneous emission in the optical regime could be observed in
[Hei87a, DeM87].
All these first experiment were paving the way to a new field called cavity quantum
electrodynamics (CQED) [Ber94]. From then on a race started to constantly increase
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the quality of the cavities, in order to decreases the decay rate of the cavity field. An
important stage in this race was the transition from the weak to the strong coupling
regime, where the atom-light-coupling constant becomes larger than the cavity decay
rate and the spontaneous emission rate. A first example was an experiment performed
in the Walther group [Mes85]. As long as the cavity decay rate was much larger than
the rate at which atoms from an atomic beam were passing a microwave cavity, no
interaction was possible between an atom and a photon emitted by its forerunner. But
the more the cavity decay rate was reduced, the stronger the atom-field coupling became
and the stronger the field was building up in the cavity, until a steady state was reached,
called the single-atom maser.
From then on, more and more cavity QED effects could be observed. Changes in the
frequency and linewidth for spontaneous emission in a cavity have been found in [Hei87b],
the van der Waals interaction between an atom and its mirror image in the cavity walls
were measured in [San92], optical bistabillity was observed [Rem91], and the single atom
vacuum Rabi splitting could be resolved in [Tho92], reflecting the fact that the resonance
of an atom, which is dressed by the cavity field in the strong coupling regime is splitting
up into two normal modes as described by the Jaynes-Cummings model [Jay63, Tra68].
In the 90’s the field of cavity QED took advantage of the powerful recently gained ability
of cooling and trapping atoms by laser light. This technique was proposed already in
[Hae75] and a realization in form of the first magneto-optical trap for neutral atoms was
achieved in [Raa87]. From then on, cold atoms could be used to study their interaction
with cavity fields. This led to outstanding experiments mainly in the groups of Kimble
and Rempe. The most important among them were the observation of single atom
trajectories within a cavity [Hoo98], the trapping of single atoms with single photons
in a cavity [Pin00, Hoo00], the realization of an one atom laser [McK03], the cooling of
single atoms by a cavity [Mau04], and the observation of the normal mode splitting of
a single trapped atom [Mau05].
Besides experiments exploring the fundamental physics of coupled atom-cavity systems,
the first applications came about, like for instance a deterministic source of single pho-
tons [Kuh02, McK04], which is of big relevance in quantum communication [Ben92], or
the realization of a quantum phase gate [Rau99] and the engineering of multiparticle en-
tanglement [Rau00], both fundamental ingredients for quantum information processing
[Nie00].
This work presented in this thesis tries to combine the powerful technologies, developed
in the experiments described so far, with another, much younger field of quantum optics,
the manipulation of cold atoms on atom chips [Fol00, Fol02]. Atom chips are semicon-
ductor chips carrying nanofabricated metal structures [Gro04], which allow to produce
customized magnetic and electric potentials to implement a large variety of quantum
optical elements for cold atom manipulation. To give a few examples of what has been
achieved so far, besides the implementation of atomic waveguides [Luo04], beamsplitters
[Cas00], trap arrays [Kru03], and conveyer belts [Hae01], Bose-Einstein condensation
has been achieved in atom chip traps [Ott01, Hae01, Lea02, Sch03], and its coherence
properties have been studied [Tre04]. Considering that all this experiments can be com-
bined on a single device, the atom chip is quickly developing into a microfabricated,
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integrated quantum optics lab.
On the other hand, the elements which are so far integrated in the atom chip, are
using only electric and magnetic potentials to manipulate the atoms. The light which
is involved in every experiment with atom chips, is still coming from macroscopic laser
beams. In order to complete the concept of a fully integrated quantum optics toolbox,
the missing building block is integrated microoptics, which brings light to certain spots
in order to prepare, manipulate, and detect the atoms locally. To enhance the atom-
light interaction, central elements will be integrated microcavities and, as the trapping
potentials are on the way to precisely control the dynamics of single atoms, also the
microcavity should be able to resolve a single atom passing through the mode.
This thesis describes the first step towards this goal. In this work, the feasibility of
the concept of single-atom detection with an on-chip microcavity has been examined
theoretically and an experiment was set up to test all required components. The thesis is
structured in the following way: In Chapter 2 an introduction to the theory of resonators
is given, including first considerations about a possible microcavity geometry. Chapter
3 is devoted to the theory of atom-light interaction, and a model is developed, which
describes the coupled atom-microcavity system. At the end of this chapter a few remarks
on the generalization to many atom systems are made. In Chapter 4, the experimental
setup is presented, which consists in a source of cold Rubidium atoms, whose interactions
with a macroscopic test cavity are studied. Moreover, the first steps to include an
atomchip with integrated microcavity based on optical fibres are described. Chapter
5 presents first experiments with this test cavity which was constructed to model the
future microcavitiy setup. Finally in Chapter 5.5, some conclusions are drawn and an
outlook is given on future perspectives of integrated microcavities on atom chips.





2 Resonator Theory

Beside an introduction to the theory of optical resonators, in this Chapter, a resonator
geometry shell be identified, where the mode waist can be made extremely small, which
is favourable to enhance the interaction with atoms placed into the cavity waist, as it
will be explained in detail in Chapter 3. The experimental realizability and possible
constrains on this resonator geometry shell be discussed.
In Section 2.1 the wave equation for beam-like intensity distributions is derived and
Gaussian beams as its solutions are introduced. In Section 2.2 these concepts are ex-
tended from free space beams to resonator modes. The problem of matching the incom-
ing beam to the cavity mode is treated in Section 2.3. In Section 2.4.4 different cavity
geometries are introduced, their properties are discussed and their stability is evaluated.
Finally, a setup for an optical fibre resonator is proposed in Section 2.5.

2.1 Wave optics and Gaussian beams

2.1.1 Paraxial wave equation

Electromagnetic fields in free space are generally described by the Helmholtz-equation[
∇2 + k2

]
E(x, y, z) = 0. (2.1)

Let us consider a field distribution propagating beam-like in the z-direction, meaning
that the intensity distribution in the radial directions (x, y) is decreasing rapidly. The
main variation in the z-direction is a plain wave propagation factor which can be ex-
tracted E(x, y, z) = E(x, y, z)e−ikz. This leads to a reduced wave equation for E

∂2E
∂x2

+
∂2E
∂y2

+
∂2E
∂z2

− 2ik
∂E
∂z

= 0. (2.2)

Furthermore, the amplitude E(x, y, z) is generally varying much slower as a function of
z, than transversally, which can be expressed mathematically by the paraxial approxi-
mation ∣∣∣∣∂2E

∂z2

∣∣∣∣� ∣∣∣∣2k∂E∂z
∣∣∣∣ or

∣∣∣∣∂2E
∂x2

∣∣∣∣ or

∣∣∣∣∂2E
∂y2

∣∣∣∣ . (2.3)

In this approximation Equation 2.3 reduces to the paraxial wave equation

∂2E
∂x2

+
∂2E
∂y2

− 2ik
∂E
∂z

= 0. (2.4)
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This approximation is valid for describing almost all optical resonators. Discussions
about its breakdown in the context of strongly focussed beams, where the beam waist
becomes comparable with the wavelength, can be found in [vEnk00, vEnk01, vEnk04,
Dom02]. This situation is so far not encountered in the systems described here.

2.1.2 Gaussian beams

Very useful, exact solutions of the paraxial wave equation are normalized Gaussian
spherical waves, so called Gaussian beams (see [Sie86])

E(x, y, z) =

(
2

π

)1/2 exp
[
ikz − i arctan

(
λz

πw2
0

)]
w(z)

×

× exp

[
−x

2 + y2

w2(z)
+ ik

x2 + y2

2R(z)

]
, (2.5)

where R(z) is the wave-front curvature and w(z) the width of the transversal intensity
profile. The quantity w0 = w(0) is the waist of the beam. This parameters are depicted
in Figure 2.1. The quantity

Figure 2.1: The parameters that define a Gaussian beam are waist size w0 and the Rayleigh length
z0. They determine the spatial dependent beam width w(z) and radius of curvature R(z).

ϕ(z) = arctan

(
λz

πw2
0

)
= arctan

(
z

z0

)
, (2.6)

is called the Guoy phase [Guo90], which is the phase shift acquired by a Gaussian beam
in comparison to a spherical wave during the propagation in the axial direction z. The
quantity z0 is called the Rayleigh length

z0 =
πw2

0

λ
, (2.7)

and its physical meaning will become clear later in this section.
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The propagation of these Gaussian beams can be completely described by the so-called
complex source point coordinates q(z), defined as

1

q(z)
=

1

R(z)
+ i

λ

πw2(z)
, (2.8)

where the real part reflects the radius of curvature, and the imaginary part the beam
width. At the beam waist the radius of curvature diverges, which determines

q(0) = q0 = −iπw
2
0

λ
= iz0, (2.9)

The Guoy phase term can be simplified in these coordinates, and one finds

exp(−iϕ(z))

w(z)
=

q0
w0q(−z)

. (2.10)

Using this identity, the Gaussian spherical waves expressed in complex source point
coordinates simplify as follows

E(x, y, z) =

(
2

π

)1/2
q0

w0q(−z)
exp

[
ikz − ik

x2 + y2

2q(−z)

]
. (2.11)

Substituting this expression into the paraxial wave equation and assuming z = 0 to be
the position of the beam waist, one finds the simple z-dependence of the quantity q(z)

q(z) = q0 + z. (2.12)

Equating separately the real and imaginary part of Equation 2.12 one finds for the radius
of curvature

R(z) = z[1 + (z0/z)
2] (2.13)

and for the beam width

w(z) = w0

√
1 + (z/z0)2. (2.14)

Now the Rayleigh length z0 (see Equation 2.7) can be identified as the distance from
the beam waist, at which the beam width has expanded by a factor of

√
2. Finally the

divergence angle of a Gaussian beam at large distances z � z0 is given by

θ ≈ w(z)

z
≈ λ

πw0

. (2.15)

All this is sketched in Figure 2.1.
From these expressions describing a Gaussian beam, one sees that the field distribution
is completely determined by the wavelength λ, the position of the waist, and the waist
size w0. The only restriction to these parameters is the requirement w0 � λ which was
assumed for the derivation of the paraxial wave equation.
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Figure 2.2: Sketch of a resonator, formed by two spherical mirrors. For a given resonator length L,
the mirror positions z1,2 relative to the position of the mode waist w0, are determined by the radii of
curvature of the mirrors R1,2 as shown in Equations 2.18 and 2.19. At the Rayleigh length z0, the beam
has expanded by a factor of

√
2 compared to its waist.

2.2 Gaussian resonator modes

The characteristics of Gaussian beams will now be used to find a description of the
modes of optical resonators formed by two concave mirrors of curvatures R1 and R2.
The two mirrors are positioned on the z-axis at z1 and at z2 as depicted in Figure 2.2.

2.2.1 Mode geometry

A steady-state intensity pattern inside the cavity is usually refered to as the resonator
mode. A Gaussian beam can only exist inside a cavity, if there is a self consistent
solution for q(z) after one round trip within the optical system of the resonator. After
this round trip both real and imaginary part have to be equal to their previous value,
respectively. This implies that at the mirror positions the radius of curvature of the
mode has to match the radius of curvature of the mirrors 1

R(z1,2) = z1,2 +
z2
0

z1,2

= ∓R1,2. (2.16)

These two conditions together with the condition fixed by a given resonator length
L = z2−z1, provide a system of three equations, which determines the three parameters
z0, z1, and z2. If one now introduces the resonator g-parameters g1,2 = 1− L/R1,2, the

1Since the mirror at z1 is concave (positiv R1), the Gaussian mode is converging and has therefore a
negative curvature, −R1.
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solution is

z2
0 =

g1g2(1− g1g2)L
2

(g1 + g2 − 2g1g2)2
, (2.17)

z1 = − g2(1− g1)L

g1 + g2 − 2g1g2

, (2.18)

z2 =
g1(1− g2)L

g1 + g2 − 2g1g2

. (2.19)

Equations 2.18 and 2.19 determine the relative position of the mode waist, Equation
2.17 determines the waist size. Those are the only free parameters of a Gaussian beam,
as discussed in Section 2.1.2, thus the Gaussian resonator mode is completely defined.
The cavity mode waist and the beam width at the mirrors can now be expressed in
terms of the resonator g-parameters

w0 =

(
λL

π

)1/2(
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

)1/4

, (2.20)

w1,2 =

(
λL

π

)1/2(
g2,1

g1,2(1− g1g2)

)1/4

. (2.21)

2.2.2 Mode spectrum

To calculate the Eigenfrequencies of the resonator, one has to look at the phase change of
the Gaussian mode during one resonator round trip. To keep the cavity field unchanged
after a round trip, the relative phase has to be an integer multiple of 2π. Thus the phase
change from mirror to mirror has to be an integer multiple of π. Using the expression for
the phase along the resonator axis (x, y = 0) from Equation 2.5, this condition becomes

kz1 − arctan

(
λz1

πw2
0

)
− kz2 + arctan

(
λz2

πw2
0

)
= jπ, j = 0, 1, 2... (2.22)

Substituting the resonator conditions from Equations 2.18, 2.19, and 2.20 gives the cavity
Eigenvalues of k. They can be translated into a frequency condition using the dispersion
relation ν = kc/2π

νj =
c

2L

(
j +

1

π
arccos

√
g1g2

)
. (2.23)

Hence the free spectral range (FSR), which is the frequency spacing between two modes,
is given by

νFSR =
c

2L
. (2.24)

The resonance condition 2.23 allows for two counter-propagating Gaussian modes. The
intensity profile, given by the interference between these modes, create the standing
wave interference pattern

I(x, y, x) = |E(x, y, z) + E∗(x, y, z)|2 = |E0|2|ψ(x, y, z) + ψ∗(x, y, z)|2, (2.25)
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where the mode function ψ(x, y, z) is given by

ψ(x, y, z) =
1

2

w0

w(z)

exp [ikz − iϕ(z)]

w(z)
×

× exp

[
−x

2 + y2

w2(z)
− ik

x2 + y2

2R(z)

]
. (2.26)

The normalization is chosen such that the cavity mode volume becomes

Vm =

∫
d3r |ψ(~r)|2 =

π

4
w2

0L, (2.27)

which is equal to the volume of a cylinder of diameter w0 and length L.

2.2.3 Higher-order modes

A more general type of solutions of the paraxial wave equation are the Hermite-Gaussian
modes. They are indeed physical solutions of the stable two mirror resonator as well
[Sie86].

φ(x, y, z) =
1√

22+n+mn!m!

w0

w(z)
exp [ikz − i(m+ n+ 1)ϕ(z)]

×Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)
× exp

[
−x

2 + y2

w2(z)
+ ik

x2 + y2

2R(z)

]
. (2.28)

Hi is the Hermite polynomial of i-th order. The field amplitude is again normalized to
the mode volume Vm as given in Equation 2.27. Since the zero-order Hermite polynomial
H0(z) = 1, the zero-order Hermite-Gaussian mode is equivalent to the Gaussian beam
mode from Equation 2.26. The transversal intensity distribution of a few higher-order
examples can be seen in Figure 2.3.

Figure 2.3: Examples for the transversal intensity distribution of Hermite-Gaussian modes. The modes
are called TEM, for transversal electromagnetic, and labeled by the indices of the two corresponding
Hermite polynomials.

The properties of these higher order modes are the same as for the ground mode regarding
waist position (Equation 2.18 and 2.19), waist size (Equation 2.14), and beam width
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on the mirrors (Equation 2.21). The resonance frequency condition for the Hermite-
Gaussian mode of order m,n changes to

νjmn =
c

2L

(
j +

1

π
(m+ n+ 1) arccos

√
g1g2

)
, j,m, n ε {0, 1, 2, ...} . (2.29)

2.2.4 Resonator quality

A measure for the quality of a resonator is the time light cycles between the mirrors
without leaving the resonator. The number of round trips is given by the ratio between
time per round trip and the loss rate, which for a cavity of length L and decay rate κ is

nr =
c/2L

2κ
. (2.30)

Another figure of merit is the resonator finesse, given by the ratio of its free spectral
range and its linewidth (full width at half maximum, FWHM). This can be linked to
the number of round trips the following way

F =
FSR

∆ν
=

c/2L

2κ/2π
= 2πnr. (2.31)

In a perfect resonator the losses are caused only by transmission through the mirrors.
In this case the loss rate is κ = κT = cT/2L, where T is the mirror transmission. The
finesse then simply becomes

F =
π

T
. (2.32)

In the experiment, the real cavity decay will have additional contributions which can be
accounted for by an additional loss rate, giving a total loss rate

κ = κT + κlo. (2.33)

The transmitted fraction of the cavity input power is given by (see Section 3.3)

Pout =
(κT

κ

)2

Pin. (2.34)

2.3 Mode matching

To solve the problem of mode-matching of the incident laser beam to the cavity mode,
we can use the ABCD-matrix formalism acting on the complex source point coordinates
introduced in Equation 2.8.
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2.3.1 ABCD Matrices

As shown in the last section, a Gaussian beam remains a Gaussian beam during its
propagation in vacuum. It should now be investigated how optical elements change its
properties. Generally, these optical elements can be described by transformations of the
form

qb =
Aqa +B

Cqa +D
, (2.35)

where (
A B
C D

)
(2.36)

is a characteristic matrix for the optical element.
The trivial element, propagation in vacuum, does the following: If the beam parameters,
summarized by q, are known in a plane z = za, in a plane z = zb they are given at a
distance d = zb − za according to Equation 2.12 by

qb = qa + d. (2.37)

The corresponding translation matrix is(
A B
C D

)
=

(
1 d
0 1

)
. (2.38)

This is equivalent to the ray matrix used in geometrical optics [Col60], where the prop-
agation of ray vectors is described:(

rb

r′b

)
=

(
1 d
0 1

)(
ra

r′b

)
. (2.39)

The quantities ra,b are the radial displacement from the optical axis and r′a,b are the
slope with respect to this axis. It turns out that this is a general conclusion, the
ABCD-matrices which transform Gaussian beams are equivalent to the ray matrices
in geometrical optics [Sie86].
Beside the translation matrix, other important basic elements are the reflection matrix(

A B
C D

)
=

(
1 0

−2/R 1

)
, (2.40)

(R < 0 for convex, R > 0 for concave surfaces) and the refraction matrix(
A B
C D

)
=

(
1 0

n1−n2

n2R
n1

n2

)
. (2.41)

This matrix formulation allows to decompose complex optical systems into a series of
simple elements. The ABCD-matrix describing the whole system, is formed by multi-
plying the matrices of the basic elements.
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A biconcave lens (with refractive index n) is described by the matrix product of a
refraction matrix at the convex vacuum-glass interface, a translation matrix within the
glass part and another refraction matrix at the concave glass-vacuum interface. For a
thin lens, the translation matrix can be neglected and the product of the two refraction
matrices remain:(

1 0
n−1
R2

n
1

)(
1 0

1−n
nR1

1
n

)
=

(
1 0

−(n− 1)
(

1
R1
− 1

R1

)
1

)
=

(
1 0
− 1

f
1

)
, (2.42)

the non-zero off-diagonal element can be identified as the lens law and thus expressed
in terms of the focal length f .

2.3.2 Matching the cavity parameters

The above described formalism can now be used to find the mode matching conditions
for coupling a Gaussian beam into a cavity of length L formed by two mirrors with
radius of curvature R using a thin lens of focal length f . The incoming laser can be

Figure 2.4: The figure shows the solution of the mode matching equations 2.46 and 2.47. The required
focal length f (red curve) and the distance d between lens and cavity mirror (black curve) are plotted
as a function of the cavity length L.

assumed to be a Gaussian beam with infinite radius of curvature and waist win

qin = −iπw
2
in

λ
. (2.43)
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The optical system to couple into the cavity can be decomposed into a thin lens of focal
length f and a free propagation of distance d to the first cavity mirror(

A B
C D

)
=

(
1 d
0 1

)
×
(

1 0
−1/f 1

)
=

(
1− d/f d
−1/f 1

)
. (2.44)

The q-parameter of the incoming beam is transformed according to Equation 2.35.
Equating the real part and the imaginary part separately to the respective cavity pa-
rameters yields

<(qout) = −1/R, =(qout) =
λ

πw2
1

, (2.45)

where, as defined previously, R is the cavity mirror radius of curvature (the wave front
curvature has to be negative since the incoming beam is converging) and w1 is the beam
width on that mirror. To match the incoming beam to the cavity mode, the required
focal length is

f =
πw2

in

λ

[(
πwinw1

R1λ

)2

+

(
win

w1

)2

− 1

]−1/2

, (2.46)

and the mirror’s appropriate distance is

d =



s�
win
w1

�2
+R2

1

�
λ

πw2
1

�2��
win
w1

�2
−1

�
−R2

1

�
λ

πw2
1

�

1
R1

+R1

�
λ

πw2
1

�2 : L < R1,

s�
win
w1

�2
+R2

1

�
λ

πw2
1

�2��
win
w1

�2
−1

�
−1

1
R1

+R1

�
λ

πw2
1

�2 : L > R1.

(2.47)

Figure 2.4 shows an according graph for the cavity mirrors with R = 10mm, as used
in the experiment (see Section 4.5). The figure points up two important facts. Firstly,
the closer one gets to the point where L = 2R ( the concentric point, see Section
sec:stabil), the stronger the focussing lens has to be (shorter focal length) and secondly,
as shown in the inset, changing the length from the confocal to the concentric point,
the position of the pump beam focus changes from the first mirror to the centre of the
cavity (f − d = 10mm).

2.4 Resonator stability

To find a criterion for the stability of the resonator mode, one can take a deeper look
at Equation 2.20. The quantity w4

0 becomes negative if g1g2(1− g1g2) < 0, so that real
and finite solutions can exist only for

0 < g1g2 < 1. (2.48)
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This can be referred to as a stability criterion, since it coincides with the general con-
dition for stable solutions in a resonator formed by two spherical mirrors, as derived
by pure ray optics [Sie86, Hoc03]. This criterion is illustrated in the following stability
diagram (Figure 2.5), where the hatched areas, are those in which the condition 2.48 is
fulfilled.

Figure 2.5: The fibre shows the stability diagram for resonators formed by two spherical mirrors. As
a function of the two g parameters the stability criterion 2.48 is evaluate. The hatched area shows
the region where the cavities are stable. Of special interest is the diagonal line which corresponds to
symmetric cavities, and especially the confocal point in the centre and the planar and concentric limits
at the edges of the stability region.

Of special interest in this work is the diagonal line in the diagram, which corresponds
to symmetric resonators, where both mirror radii are equal. On this line there are three
characteristic points, which will be examined in more detail: the confocal point at the
centre and the the planar and the concentric limit at the edges of the stability region.

2.4.1 Near-planar resonators

When the radii of curvature of the resonator mirrors are equal and very large

R1 = R2 = R� L↔ g1 = g2 ≈ 1, (2.49)
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the resonator is called near-planar. It has the property that the beam width is large and
almost constant

w2
0 ≈ w2

1 = w2
2 ≈

Lλ

π

√
R

2L
, (2.50)

w0 being the beam waist and w1,2 the beam width at the mirrors. Since one aim of this
work is to decrease the mode waist as much as possible, the near-planar configuration is
not of special interest.

2.4.2 Confocal resonators

A resonator is called confocal if

L = R1 = R2 = R↔ g1 = g2 = 0. (2.51)

(i.e. the two focal points (at R/2) coincide. This is the configuration of highest stability
in the sense that it is highly insensitive to misalignment of one or the other mirror. This
is due to the fact that the centre of curvature stays at the other mirror surface, when one
of mirror is tilted. The Rayleigh length equals half the resonator length, so the beam
width at the mirrors is a factor of

√
2 larger than the waist (see also Figure 2.6).

w2
0 =

Lλ

2π
, w2

1 = w2
2 =

Lλ

π
. (2.52)

Figure 2.6 also shows that small waists are achieved close to the concentric limit. The

Figure 2.6: The plot shows the mode width at the waist position (red curve) and at the mirrors (black
curve) as a function of the resonator length for R = 10mm. The inset shows the rapid decrease of the
mode waist close to the concentric limit.

limit L→ 0 is hard to reach, since finite sized curved mirrors touch each other at some
point.
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2.4.3 Near-concentric resonators

When the resonator length is only slightly smaller than the the sum of both radii, the
resonator is called near-concentric

R1 = R2 ≈ L/2 + ∆L↔ g1 = g2 ≈ −1 + ∆L/R, ∆L� L. (2.53)

The beam width at the waist and at the mirrors is given by

w2
0 ≈

Lλ

π

√
∆L

4L
, w2

1,2 ≈
Lλ

π

√
4L

∆L
. (2.54)

The waist w0 and can theoretically be made arbitrarily small. The drawback is that this
point is close to the edge of the stability region and the more the concentric point is
approached, the more sensitive the cavity becomes. In fact, small mirror misalignment
cause larger and larger cavity axis misalignments as illustrated in Figure 2.7. Neverthe-
less, this is the point at which most of the experiments described in this thesis have been
carried out, since it allowed to decrease the mode waist independently of the resonator
length. This was necessary in order to combine a mode cross section not much larger
than the atomic scattering cross section with a mirror distance which allowed to send a
MOT-beam through the cavity (see Chapter 4).

Figure 2.7: The figure shows how small mirror tilts lead to big cavity axis tilts, close to the concentric
point.

2.4.4 Stability close to the concentric limit

To quantitatively estimate how far one can approach the concentric limit for a given
alignment accuracy, one can calculate the deviation of the mode position from the mirror
centre caused by a transversal displacement d of one of the mirrors as shown in Figure
2.7

∆x =
Rd

2R− L
, (2.55)
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or due to a tilt of one of the mirrors by an angle α where d = Rα for αß1

∆x =
R2α)

2R− L
. (2.56)

Both terms diverge for L→ 2R as shown in Figure 2.8. In the figure both mirrors have
a radius of curvature of R = 10mm, so that the concentric point is at L = 20mm. The
angular displacement is translated into a lateral misalignment of one of the micrometer
screws , controlling the mirror mount (at a distance of 4.5mm from the centre) (see Figure
4.10). An axial misalignment of 1µm by one of the crews causes a mirror tilt of 0.013◦.
The graph shows, as an example, the mode spot displacement on the cavity mirrors for
a transversal displacement of d = 1µm (black curve) or a longitudinal displacement of
one screw (red curve) by d = 1µm. It can be seen from the curves that this accuracy
would not allow to extend the length to more than 19.99mm, since the mode would start
to leave the mirrors (which are of 6mm diameter).

Figure 2.8: The figure quantifies the misalignment of the optical axis caused by small mirror misalign-
ments, depending on how close to the concentric point at 20mm the cavity is. Here ∆x denotes the
displacement of the mode from the mirror centre, caused by a transversal displacement d = 1µm (black
curve), or an axial displacement d = 1µm of one of the micrometer screws (which leads to a mirror tilt
of 0.013◦).

All this shows that in a realistic experiment with a near-concentric resonator, the mode
waist can not be decreased arbitrarily. Since below a certain distance to the concentric
point, the required stability becomes impossible to realize. But there is a way to over-
come this problem. In optical fibres the light is focussed much stronger which should
allow to build resonators with a much stronger coupling. One possible setup will be
desribed in the next section.
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2.5 Fibre gap cavity

A microsciopic cavity formed by two optical fibres has two advantages, beside the small
beam waist, it can be relatively easy integrated on an atom chip surface. A possible setup
is depicted in Figure 2.9. The resonator of length is formed by two mirrors implanted
into optical fibres at a distance L/2 from the fibre endface. Between the two fibres a
small gap of size d is left. The atoms to be detected are guided through this gap by
magnetic potentials created by a current carrying wire (see section 4.4). As shown in

Figure 2.9: Schematics of a possible cavity geometry. The cavity mirrors are implanted into a fibre,
the atoms are interacting withe the mode in a µm-wide gap

Figure 2.9, the cavity mirrors are not formed by the fibre endfaces, but are implanted
into the fibre, which has the technical reason that cavity length tuning can now be done
by simply stretching one of the fibre, while the fibre ends are robustly fixed to the chip
surface (see Section 4.8.4). For this configuration the cavity parameters will now be
calculated.

2.5.1 Cavity modes

The mode volume has to be split into 3 sections, the two fibre arms and the gap. The
electric fields in these sections can be expressed by a polarization vector ~e0, amplitudes
E±, and mode functions f±(~r), where the index + denotes modes traveling to the right,
− denotes modes traveling to the left.

~E(r) = ~e0 ×


E1+f1+(~r) + E1−f1−(~x) for z < −d/2,
E2+f2+(~r) + E2−f2−(~x) for |z| < d/2,
E3+f3+(~r) + E3−f3−(~x) for z > d/2.

(2.57)

Since this geometry is radially symmetric with respect to the optical axis, cylindrical
coordinates ~r = (r, φ, z) are going to be used.
The transverse profile of the fibre mode functions is Gaussian, axially these functions
are plane waves

f1±(~r) = e−r2/w2
0e±ik1(z+d/2), (2.58)

f3±(~r) = e−r2/w2
0e±ik1(z−d/2). (2.59)
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They emerge into Gaussian beams in the gap

f2+(~x) =
w0

w(z + d/2)
exp

[
− r2

w2(z + d/2)
(2.60)

+ik0
r2

2R(z + d/2)
+ ik0(z + d/2)− iϕ(z + d/2)

]
,

f2−(~x) =
w0

w(z − d/2)
exp

[
− r2

w2(z − d/2)
(2.61)

−ik0
r2

2R(z − d/2)
− ik0(z − d/2) + iϕ(z − d/2)

]
.

The usual Gaussian beam parameters are beam width w(z), radius of curvature R(z),
Guoy phase ϕ(z), and Rayleigh length z0, as introduced in Section 2.1. The parameters
k0, k1 are the longitudinal wave numbers in vacuum and in the fibre, respectively. λ0,1 =
2π
k0,1

are the corresponding wavelengths.

The mode inside the fibre is emerging into an expanding Gaussian beam in the gap.
Because of this divergence, the beam does not exactly match the fibre modes on the
other end of the gap. To calculate the corresponding losses, the gap modes are projected
onto the fibre mode at the fibre surface

f2−(r, z = −d/2) = Qf∗2+(r, z = −d/2) + f⊥2−(r, z = −d/2),

f2+(r, z = d/2) = Qf∗2−(r, z = d/2) + f⊥2+(r, z = d/2), (2.62)

where Q denotes the mode matched fraction of the amplitude, f ∗2± are the complex-
conjugate mode functions, while f⊥ denotes the field orthogonal to the fibre mode,
which is lost from the cavity. One finds

Q = |Q|eiφ =
w0

w(d/2)
eik0d−iφ(d/2). (2.63)

The leading term of the phase expansion of Q is linear in d/2z0 since

φ

(
d

2

)
= arctan

(
d

2z0

)
≈ d

2z0

+O
(
d

2z0

)3

, (2.64)

while the amplitude’s leading term is quadratic:

w0

w
(

d
2

) =
1√

1 +
(

d
2

)2 ≈ 1−
(
d

2

)2

+O
(
d

2z0

)4

. (2.65)

If one calculates the cavity modes in perturbation theory in d/2z0, first order terms
can be used to calculate the boundary conditions, which determine the cavity resonance
frequency. Second order terms can then be used to calculate the losses due to the mode
mismatch.
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The boundary conditions at the mirror and the continuity equations at the fibre-vacuum
interfaces lead to the following cavity resonance condition

d

2

(
2k0 −

1

z0

)
= mπ − 2 arctan

[
1

n
tan

(
k1
L

2

)]
, (2.66)

where m is an integer number and n = k1/k0 is the refractive index of the fibre. For the
electric field amplitudes the following relations are obtained:

|E1+| = |E1−| = |E3+| = |E3−|, (2.67)

|E2+| = |E2−| = |E1+|
∣∣∣∣1 + n− (1− n)e−ik1L

2

∣∣∣∣ . (2.68)

2.5.2 Cavity parameters

To calculate the cavity loss rate and the atom-cavity coupling strength, let us look first
at the energy flux through the cavity. The energy flux density is given by the Pointing
vector ~S = ~E × ~H. The energy flux is its z-component times the mode cross section

Sz =
π

4
w2

0cε0|E2+|2. (2.69)

This leads to a energy loss per round trip in the cavity of

Sloss = 2Sz(1− |Q|2). (2.70)

The total energy stored in every cavity mode is given by the energy density ε =
1
2
(ED +HB) = εε0|E|2 times the mode volume Vm = Lw2

0π/4 (neglecting the small
part stored in the gap):

W = 2n2ε0|E1+|
π

4
w2

0L. (2.71)

Beside the decay rate through the mirror κT , the cavity loss rate is given by the ratio
between energy loss Sloss and energy stored in both modes W , which, using Equation
2.68, becomes

2κgap =
c

L

(
d

z0

)2 ∣∣∣∣1 + n− (1− n)e−ik1L

4n

∣∣∣∣2 . (2.72)

In the experiment additional losses due to imperfect materials and surfaces will be
unavoidable, so the total cavity decay rate per round trip2 will be given by

2κ = 2κT + 2κgap + 2κadd. (2.73)

The coupling constant between atom and cavity field will be derived in detail in the
next chapter in Section 3.2.5. However, we can anticipate the results and write it here

2The quantity 2κ corresponds to the loss rate per full round trip (2L), measured by 2π × FWHM
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in terms of the cavity parameters. From Equation 3.38 using the cavity field in the gap
(on axis) one finds

g =
d10E0

~
=
∣∣1 + n− (1− n)e−ik1L

∣∣√ 3Γc

n2Lw2
0k

2
0

, (2.74)

where d10 is the electric dipole matrix element given by Equation 3.37, E0 is the field
amplitude. The cooperativity parameter (see Equation 3.32) then becomes

g2

κγ
=

48

w2
0k

2
0

(
T

|1 + n− (1− n) exp(−ik1L)|2
+

(
d

z0

)2
)−1

, (2.75)

where the prefactor 48
w2

0k2
0

is nothing but the ratio between atomic scattering cross section

σ and cavity mode cross section A = w2
0π/4. It is independent of the cavity length, which

is important, since this allows to arbitrarily choose the cavity length, without diminishing
the coupling to the atoms. The first term in the brackets arises due to the fact that
boundary conditions have to be matched at the mirrors and at the fibre endfaces. It
contains L but it shows an oscillating behavior with a period λ/n and can thus be tuned
to a maximum value by properly aligning fibre length and gap size.
Finally these quantities shell be filled with life. Cavity parameters will be estimated
which are feasible to reach under realistic conditions in the fabrication process and in
the experiment. If one assumes that the gap has to be at least 5µm wide, to be able to
send atoms through there without too much disturbance from the side walls, one finds
the following possible parameters

Cavity length L 20.8 mm Mode waist w0 2.92 µm
Fibre ind. of refra. n 1.5 FSR 2π × 7.2 GHz
Gap size d 5.08 µm Gap loss κgap 2π × 6.3 MHz
Mirror transm. T 0.004 Transm. rate κT 2π × 3.1 MHz
Finesse F 390 Coupling const. g 2π × 12.3 MHz

This cavity would than have a single-atom cooperativity parameter of

g2

κγ
= 5.3, (2.76)

which is already above one and thus on the way into the strong coupling regime (see
Section 3.2.4).



3 Theory of atom-light interaction in a
cavity

In this chapter the basic theory of the interaction of a classical light field with a two level
atom will be derived. Section 3.1 presents rough estimates, which shows the important
parameters governing the atom-light coupling. In Section 3.2 a semi-classical model for
the coupled system is developed and the enhancement of this coupling in a resonator is
discussed. Based on this model, the feasibility of using these resonators as single atom
detectors is discussed in Section 3.3 in the case of resonant pumping. In Section 3.4
non-resonant atom detection strategies are considered in the context of non-demolition
measurements. Finally, in Section 3.5 the validity limit of the model in the case of more
than one atom in the resonator is determined.

3.1 Simple Model

To enhance the atom-light interaction for the purpose of single atom detection, there are
two main strategies. The first is to focus the beam down to a cross section of the order
of the atomic scattering cross section. The second to enhance the interaction time.
For the first strategy, the signal-to-noise ratio can be estimated using a very simple
model. The incoming light is assumed to be in a coherent state with amplitude α0,
N0 = |α0|2 is the mean photon number per unit time. If this number is below the
saturation limit, in a measurement interval τ N0 will be changed due to scattering by
an atom by

∆N = N0 −N = N0
σA

A
. (3.1)

The ratio σA

A
of the resonant free space atomic scattering cross section σA = 3λ2

2π
[Jac99]

and the beam cross section A determines the fraction of the incoming photon number
being scattered by the atom. If one measures this change in photon number, the outcome
will be limited by the shot noise level

√
N , so the signal-to-noise ratio is given by

S =
∆N√
N
∼=
√
N0

σa

A
, (3.2)

which increases, with decreasing A. Note that this ratio cannot be maximized arbitrarily,
because if σa becomes comparable to the beam cross section A, the paraxial and dipole
approximations (see Section sec:parax), on which this expression is based, break down
[vEnk00, vEnk01, Dom02, vEnk04].
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The second strategy to enhance the atom-light coupling, namely increasing the interac-
tion time, can be realized by increasing the number of transits of every photon through
the interaction region by installing cavity mirrors around it. The mean scattered photon
number inside the cavity is then enhanced by the number of round trips in the cavity

∆Ncav = Nnr, (3.3)

which increases the signal-to-noise ratio to

Scav = nr

√
N0

σA

A
. (3.4)

The number of round trips is represented by the figure of merit for the quality of a
cavity, its finesse, which is given by F = 2πnrt (see Section 2.2.4).
The goal is now to find a combination of these two enhancement factors, which leads to
a single-atom signal-to-noise ratio > 1 and is experimentally realizable. To justify this
very naive approach to single atom detection, the mechanisms of atom-light interaction
will be examined in a more profund way.

3.2 Model of the coupled system atom-cavity

3.2.1 Quantum mechanical prerequisites

In the following, the light will be treated quasi-classically. Thus a coherent state is
assumed at all times. This is the state with the minimum uncertainty in both phase
space variables amplitude and phase, The photon number state expansion of the coherent
state is

|α〉 = exp

(
−1

2
|α|2
) ∞∑

n=0

αn

√
n!
|n〉. (3.5)

It is an Eigenstate of the photon annihilation operator a, thus

a|α〉 = α|α〉, 〈α|a† = 〈α|α∗, (3.6)

where the Eigenvalues are the coherent state amplitudes, from which the average photon
number can be directly computed

N = |α|2 = 〈α|a†a|α〉. (3.7)

In the following, the commutation relation of the photon creation and annihilation op-
erators will be of importance [

a, a†
]

= 1. (3.8)

The atoms are treated as two level systems with ground state |0〉 and excited state |1〉.
The raising σ+ = |1〉〈0| and lowering operators σ− = |0〉〈1| interchange between these
states

σ+|0〉 = |1〉, σ−|1〉 = |0〉. (3.9)
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The Hilbert space of the total system is given by the product of the Hilbert space of the
the atom and that of the radiation field. The atomic state and the state of the radiation
field are described by the reduced density operators ρA and ρR. The density matrix of
the total system is ρ = ρA ⊗ ρR. Given ρ, the reduced density matrices are obtained by
partially tracing out the other subsystem, e.g. for the atomic state

ρA = TrR(ρ), (3.10)

or in terms of matrix elements

ρA
ab = 〈a|ρA|b〉 =

∑
α

〈a, α|ρ|b, α〉 =
∑

α

ρaαbα. (3.11)

3.2.2 Hamiltonian

The coupled atom-cavity system will be described by the parameters depicted in Figure
3.1. The single-mode cavity of resonance frequency ωc is pumped with light of frequency
ω at a pumping rate η. The cavity decay rate κ accounts for the coupling to a reservoir.
The atom will be modeled by a two level system with a transition frequency ωa and an
excited state decay rate Γ. It is coupled to the cavity mode with the single-photon Rabi
frequency g(~r). Its position dependence is given by the mode shape.

Figure 3.1: Atom-cavity coupling model: ω is the pumping frequency, η the pump rate, ωc the cavity
resonance frequency, κ the cavity mode decay rate, ωa the atomic resonance frequency, Γ the decay rate
of the atomic excited state, and g the coupling constant.

In a frame rotating with pumping frequency ω the Hamlitonian looks as follows:

H = −~∆aσ
+σ−︸ ︷︷ ︸

atom

−~∆ca
†a︸ ︷︷ ︸

cavity field

−i~η
(
a− a†

)︸ ︷︷ ︸
pumpfield

−i~g
(
a†σ− − σ+a

)︸ ︷︷ ︸
interaction

, (3.12)

where ∆c = ω − ωc,∆a = ω − ωa. A Liouvillian damping term describes the damping
of the cavity with the decay rate κ and the damping of the atomic system with a
spontaneous emmission rate Γ

Lρ = −κ
(
{a†a, ρ}+ − 2aρa†

)
− Γ

(
{σ+σ−, ρ}+ − 2σ−ρσ+

)
. (3.13)

Throughout this work these decay rates denote 2π times half the width at half maximum
of the resonance lines.
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This leads to the full quantum master equation

ρ̇ = − i
~

[H, ρ] + Lρ. (3.14)

Expanded in terms of a and ρ the maser equation becomes

ρ̇ = i∆c

(
a†aρ− ρa†a

)
+ i∆a

(
σ+σ−ρ− ρσ+σ−

)
−

−g
(
a†σ−ρ− ρa†σ− − aσ+ρ− ρaσ+

)
− η

(
aρ− ρa− a†ρ+ ρa†

)
−

−κ
(
a†aρ+ ρa†a− 2aρa†

)
− Γ

(
σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+

)
. (3.15)

3.2.3 Equations of Motion

To convert the master equation 3.15 into an equivalent set of partial differential equa-
tions, the matrix elements of the atomic density operator have to be calculated by com-
puting the partial trace (Equation 3.11) and using the commutation relation in Equation
3.8. This generates three equations of motion for the atom

∂

∂t
ρA

00 = 2ΓρA
11 − g

(
α∗ρA

10 + αρA
01

)
, (3.16)

∂

∂t
ρA

11 = −2ΓρA
11 + g

(
α∗ρA

10 + αρA
01

)
, (3.17)

∂

∂t
ρA

01 = (−Γ− i∆a) ρ
A
01 + gα∗

(
ρA

00 − ρA
11

)
. (3.18)

The equation of motion for the field is derived from

α = 〈a〉 = Tr (ρa) (3.19)

and thus

α̇ = frac∂∂t〈a〉 =
∂

∂t
Tr (ρa) = Tr (ρ̇a) . (3.20)

By substituting into the master equation 3.15 one obtains

α̇ = i∆cTr
(
aa†ρRa⊗ ρA − ρA ⊗ ρRa†aa

)
+

i∆aTr
(
σ+σ−ρA ⊗ ρRa− ρAσ+σ− ⊗ ρRa

)
−

−igTr
(
σ+ρA ⊗ aρRa− ρAσ+ ⊗ ρRaa+ a†ρRa⊗ σ−ρA + ρRa†a⊗ ρAσ−

)
−

−ηTr
(
aρRa⊗ ρA − ρRaa⊗ ρA − a†ρRa⊗ ρA + ρRa†a⊗ ρA

)
−

−κTr
(
a†aρRa⊗ ρA + ρA ⊗ ρRa†aa− 2aρRa†a⊗ ρA

)
−

−ΓTr
(
σ+σ−ρA ⊗ ρRa+ ρRa⊗ ρAσ+σ− − 2σ−ρAσ+ ⊗ ρRa

)
. (3.21)

The trace over both subspaces can be decomposed into the partial traces

Tr (O) = TrA
[
TrR (OA ⊗OR)

]
= TrA (OA) TrR (OR) . (3.22)
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By making use of the invariance of the trace under cyclic permutations and the commu-
tation relation for the photonic operators, one finds

α̇ = (i∆c − κ)α− gρA
10 + η. (3.23)

From now on, the superscript A will be suppressed and the atomic matrix elements will
be denoted by ρij with i, jε {0, 1}.

3.2.4 Solutions

The stationary solutions of the above equations of motion can be determined by setting
the temporal derivatives to zero. For the atomic coherence one finds

ρ10 =
gα (ρ00 − ρ11)

Γ− i∆a

. (3.24)

Substituting this into Equation 3.17 and using the normalization of the atomic popula-
tions ρ00 + ρ11 = 1, one finds

ρ11 =
g2N

Γ2 + ∆2
a + 2g2N

, (3.25)

where N = |α|2 is the average intra-cavity photon number.
To determine the influence of the atom-light interaction on the radiation field amplitude,
one first inserts the solution for ρ11 into Equation 3.24 and obtains

gρ10 =
Γ + i∆a

Γ2 + ∆2
a + 2g2N

g2α =: (γ + iU)α, (3.26)

where

γ :=
g2Γ

Γ2 + ∆2
a + 2g2N

(3.27)

and

U :=
g2∆a

Γ2 + ∆2
a + 2g2N

. (3.28)

The stationary solution for the light amplitude, obtained from Equation 3.23, then
becomes

α =
η

(κ+ γ)− i (∆c − U)
. (3.29)

Now the physical meaning of the newly introduced terms becomes obvious: γ, being
added to the real part of the cavity field, is an additional decay rate due to spontaneous
scattering and therefore proportional to the atomic decay constant, while U adds to the
imaginary part and thus represents an additional phase shift, due to coherent scattering.
It is proportional to the detuning between light and atomic frequency.
This results in an averaged intra-cavity photon number

N = |α|2 =
η2

(κ+ γ)2 + (∆c − U)2 . (3.30)
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It should be noted that this expression is only an implicit solution for the photon number
since γ and U still contain N . But an explicit solution can be easily obtained by standard
numerical methods. In the limit of low atomic saturation (2Ng2 � Γ2), the photon
number is

N = η2

[(
κ+

g2Γ

Γ2 + ∆2
a

)2

+

(
∆c −

g2∆a

Γ2 + ∆2
a

)2
]−1

. (3.31)

To quantify the the atom-cavity coupling strength, one has to look for the condition
when the atom induced effects become important. This is the case when the coupling
constant g becomes larger than the cavity decay rate κ and bigger than the atomic decay
rate Γ. These conditions are combined in the definition of the cooperativity parameter
g2

κΓ
[Ber94]. Depending on this parameter being smaller or bigger than one, one speaks

of the weak or strong coupling regime

g2

κΓ
� 1 → weak coupling regime,

g2

κΓ
� 1 → strong coupling regime. (3.32)

This parameter will be used throughout this whole chapter to describe the coupling
strength and, as will be shown later in Section 3.3.1, it is a direct measure for the
single-atom detection feasibility of a cavity.

3.2.5 Refined model

Before discussing detection strategies, the parameters of the developed atom-cavity
model have to be defined more precisely. As depicted in Figure 3.2 the cavity length is

Figure 3.2: The cavity length is L, its decay rate given by the transmission rates through the mirrors
κT and the scattering rate into other modes κlo. The coupling constant g(~r) is position dependent. It
is given by a maximum value g0 times the mode function ψ(~r)

denoted by L, its decay rate κ = κT + κlo is given by the transmission rate through the
mirrors κT = cT

2L
(where T is the mirror transmission) and the loss rate into other modes
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κlo. The number of transmitted photons Nout can be related to the average photon
number inside the cavity N , and the cavity pump rate η can be related to the incident
laser power jin

Nout = NκT τ and η =
√
jinκT . (3.33)

The electric field in the cavity is position dependent, which can be expressed by
the mode function ψ(~r) which for the two counter-propagating modes yields ~E(~r) =
~E0 [ψ(~r) + ψ(~r)∗]. The integral over this mode function gives cavity mode volume (see
Equation 2.27)

Vm =

∫
d3r |ψ(~r)|2. (3.34)

The atom couples to the field of a cavity mode by the electric dipole transition and the
coupling constant therefore has the same position dependence as the mode field

g(~r) =
~d10 · ~E0ψ(~r)

~
= g0ψ(~r). (3.35)

The electric field strength per photon in the cavity can be calculated from the total
energy in the cavity

ε = ~ω =

∫
d3rε0| ~E(~r)|2 = ε02| ~E0|2Vm ⇒ | ~E0| =

√
~ω

2ε0Vm

. (3.36)

From Fermi’s golden rule an expression for the electric dipole transition matrix element
can be found

Γ =
γ3

6π~c3
|d10|2

ε0
⇒ d10 =

√
6πε0~c3Γ

ω3
, (3.37)

so the maximum coupling constant becomes

g0 =
~d10

~E0

~
=

√
d2

01ω

2~ε0Vm

=

√
3Γcλ2

4πVm

. (3.38)

If now the mode volume is expressed by the mode cross section A times cavity length L
and the the resonant atomic scattering cross section σa = 3λ2

2π
is introduced, one finds

g2
0 =

σa

A
Γ
c

2L
, (3.39)

which shows that the coupling strength can be decomposed into the scattering proba-
bility σ

A
(see Equation 3.1) times the atomic decay rate Γ divided by the cavity round

trip time 2L
c

.

In the following, the coupled atom-cavity model will be used to predict for the feasibility
of detecting the presence of a single atom in the cavity mode by measuring the cavity
transmission signal, especially for miniaturized cavities as described in Section 2.5.
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3.3 Resonant atom detection

The strategies to detect a single atom based on its interaction with the cavity mode
rely on the two effects the atom has on the cavity field (see Equations 3.27 and 3.28).
These are the enhanced decay rate due to spontaneous scattering and the additional
phase shift due to coherent scattering. The important parameters to choose are the
detunings of the pump light with respect to the atomic transition and with respect to
the cavity resonance frequency. In this section the case of resonant pumping is discussed,
the following section treats the off-resonant case.
In the resonant case the pump light frequency is chosen to be equal to the atomic
transition (∆a = 0), and the cavity frequency is tuned to this resonance (∆c = 0). The
number of photons transmitted through the cavity can be derived from Equation 3.30
to be

Nout =
η2

(κ+ γ)2κT τ = jinτ
(κT

κ

)2 κ2

(κ+ γ)2 = Nout,0
κ2

(κ+ γ)2 . (3.40)

Nout,0 is the number of photons transmitted through the empty cavity (γ = 0) which is

the the input power diminished by the factor
(

κT

κ

)2
, due to intra-cavity losses.

3.3.1 Signal-to-noise ratio

Hence the measurable signal due to a single atom in the cavity is

∆Nout = Nout,0 −Nout = jinτ
(κT

κ

)2
[
1− κ2

(κ+ γ)2

]
= Nout,0

[
1− κ2

(κ+ γ)2

]
. (3.41)

For the signal-to-noise ratio this yields

S =
∆Nout√
Nout

=
√
Nout,0

(
κ+ γ

κ
− κ

κ+ γ

)
=

√
Nout,0

(
1 +

γ

κ
− 1

1 + γ
κ

)
. (3.42)

The Figure 3.3 shows the results discussed above for resonant pumping and cavity
parameters chosen to be realistic for the fibre cavities discussed in Section 2.5, which are
(g, κT , κlo) = 2π × (12, 3, 6)MHz, corresponding to a fibre cavity of length L = 21mm
and waist w0 = 2.92µm. In Figure 3.3 (a), the cavity transmission Nout with an atom
present in the cavity mode (lower curve) and without (upper curve) are plotted. Beside
the number of outcoupled photons (solid lines), the quantum noise given by the width
of the Poissonian number distribution of the coherent state

√
Nout (dashed lines) are

plotted as a function of pumping power. The transmitted photon number is linear for
the cavity without atoms. For the case of an atom present in the cavity, this photon
number is strongly reduced as long as the atomic transition is not saturated. At the
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Figure 3.3: Figure (a) shows the transmitted photon number with (lower solid curve) and without
(upper solid curve) an atom present in the cavity, the dashed curves correspond to the quantum noise
level, the cavity parameters are (g, κT , κlo) = 2π × (12, 3, 6)MHz. Figure (b) shows the corresponding
signal-to-noise ratio, for the same cavity parameters except the mirror transmission is different for
the different curves. The cavity transmission rates κT , as listed in the inset, correspond to mirror
transmissions of (0.1, 0.2, 0.3, 0.4, 0.5, 1)% (from right to left).

saturation point this photon number bends, and for strong coupling the curves for Nout

and Nout,0 differ by a constant value, as predicted by Equation 3.49.

The atomic decay rate for the D2 transition of Rb is Γ = 2π×3 MHz. Now one can

compute the cooperativity parameter
g2
0

κΓ
= 5.3. Even though this is not yet deep in

the strong coupling regime (see Equation 3.32), a single atom detection in τ = 10µs
integration time is feasible with signal-to-noise ratio S > 30 , as shown in Figure 3.3
(b). In this plot the cavity parameters are the same as in (a), except for the mirror
transmission rate, which is varied over the different curves.

The maximum value is obtained at κT ≈ 2π × 3MHz, which is about half the loss rate
κlo = π×6.3MHz. The general relation between κT and κlo to get the best signal-to-noise
ratio can be found numerically to be

κT ≈ κlo/2, for
g(~r)2

κΓ
� 1 (weak coupling),

κT ≈ κlo, for
g(~r)2

κΓ
� 1 (strong coupling), (3.43)

To find the limit for single atom detection in the weak-coupling regime, the loss rate
is further increased, keeping the mirror transmission rate at the optimal value of κT =
κlo/2. Figure 3.4 shows the result in a log-log-plot again as a function of the pump rate.
Signal-to-noise ratios larger than 1 can be reached for loss rates up to κlo = 2π×500MHz,
which corresponds to a finesse of F = 2.4 for the fiber cavity described above.

This shows drastically, how well a small mode cross-section, providing a large coupling
constant g, compensates for high cavity decay rates. This is a motivation to push
miniaturization of optical cavities to enhance the atom-light interaction.
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Figure 3.4: The signal-to-noise is plotted as a function of pump power for different cavity loss rates κlo,
as listed in the inset. The mirror transmission rate was chosen to be optimal for every curve κT = κlo/2

Low atomic saturation

If one now assumes weak pumping (N � 1), which causes low atomic saturation
(2Ng(~r)2 � Γ2), the additional cavity decay rate (from Equation 3.27) can be sim-

plified to γ = g(~r)2

Γ
. The figure of merit for the signal-to-noise ratio is the ratio of the

additional cavity decay due to the atoms and the intrinsic decay rate

γ

κ
=
g(~r)2

κΓ
, (3.44)

This expression is identical to the cooperativity parameter, which has been identified
before (see Equation 3.32).

In the limit of weak coupling (g(~r)2

κΓ
� 1), Equation 3.42 reduces to

S = 2
√
Nout,0

g(~r)2

κΓ
= 2
√
jinτ

κT

κ

g(~r)2

κΓ
. (3.45)

Instead in the strong coupling limit (g(~r)2

κΓ
� 1), one finds

S =
√
Nout,0

g(~r)2

κΓ
=
√
jinτ

κT

κ

g(~r)2

κΓ
. (3.46)

Hence, for low atomic saturation the signal-to-noise ratio is proportional to the square
root of the pumping power jin and the integration time τ , but it is linear in the coop-
erativity parameter. Losses degrade the signal-to-noise by the factor κT/κ. Assuming
maximum coupling g(~r) = g0, Equation 3.38 can be used to express the cooperativity
parameter as

g2
0

κΓ
= 2

σa

A
nrt, (3.47)
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and thus the cavity enhanced signal-to-noise ratio is proportional to

S ∝
√
Nout,0

σa

A
nrt, (3.48)

as predicted by the simple model in Section 3.1. This reflects again the two strate-
gies useful to maximize the atom detection probability, namely to increase the number
of round trips by increasing the cavity quality and to decrease the cavity mode waist.
An interesting point is that the cooperativity parameter does not depend upon cav-
ity length1. This will be of importance later, when the miniaturization of cavities is
discussed.

High atomic saturation

In the opposite case of high atomic saturation (2Ng(~r)2 � Γ2) due to strong pumping
(N � 1), the additional cavity decay rate reduces to γ = Γ

2N
= Γκ2

2jinκT
, and since γ

κ
� 1

the transmitted photon number simplifies to

Nout = jinτ
(κT

κ

)2
(

1− Γκ

jinκT

)
= Nout,0 − Γτ

κT

κ
. (3.49)

This is the result for the empty cavity reduced by the number of scattered photons at
the saturation limit Msat = Γτ times the cavity transmittance factor κT

κ
.

For the signal to noise level one finds

S =
√
Nout,0

Γκ2

jinκT

=
√
jinτ

κT

κ

Γκ

jinκT

=

√
τ

jin
Γ. (3.50)

After the atomic transition is saturated, the signal-to-noise ratio decreases with the
inverse square root of the input power, since the number of photons scattered is limited
by the saturation value Msat = Γτ , while the noise level increases further

√
Nout =

√
jinτ .

The interesting fact here is that this result is independent of all cavity parameters.

3.3.2 Disturbance of the atom

Another quantity of interest is the average number of photons scattered by the atom
during a detection process. For a state preserving single atom detection, one only has
to make sure not to influence the atomic motion too much during the detection process,
in order to keep the atom within the mode volume as long as possible. The effect on
the atomic motion is discussed in detail in [Hor03]. For more ambitious goals like using
cavities for reversible quantum logic operations small or no spontaneous decay would
have to be required.

1This is valid as long as the cavity length does not influence the loss rate, which is true in the present
experiment, where losses are dominated by scattering at surfaces.
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The number of spontaneous emissions during the integration time is given by the decay
rate and the population of the excited state (Equation 3.25)

M = 2Γτρ11 = 2Γτ
g(~r)2N

Γ2 + 2g(~r)2N
. (3.51)

In the case of high saturation, as mentioned before, this number will be constant and
given by the saturation value

Msat = Γτ. (3.52)

Low atomic saturation

In the limit of low atomic saturation (2g(~r)2N � Γ2) this can be approximated by

M = 2τ
g(~r)2N

Γ
=

2τg(~r)2

Γ

jinκT

κ2

(
1

1 + g(~r)2

κΓ

)2

. (3.53)

In the weak-coupling limit
(

g(~r)2

κΓ
� 1

)
, N = N0 holds, and, expressed in terms of the

signal-to-noise ratio S in Equation 3.45, the number of spontaneous emissions becomes

M = 2τjin
κT

κ

g(~r)2

κΓ
= S2 1

2

κ

κT

(
g(~r)2

κΓ

)−1

. (3.54)

In the strong-coupling limit
(

g(~r)2

κΓ
� 1

)
, using Equation 3.46, one finds

M = 2τjin
κT

κ

(
g(~r)2

κΓ

)−1

= S2 2
κ

κT

(
g(~r)2

κΓ

)−3

. (3.55)

Hence, for a fixed signal-to-noise ratio in the strong-coupling regime, the number of
spontaneously scattered photons is inversely proportional to the cooperativity parame-
ter. This can be related to cavity finesse, since the cooperativity parameter is propor-
tional to the number of round trips nrt according to Equation 3.32) and consequently
proportional to the cavity finesse according to Equation 2.31. Which means that the
number of spontaneous scattering events, necessary to achieve a certain signal-to-noise
ratio, is proportional to F−3. This shows that the best strategy to drastically decrease
the number of spontaneous scattering events is to improve the cavity finesse.
In Figure 3.5 the number of spontaneously scattered photons is plotted for different
cavity loss rates, from κlo = 2π × 20MHz, a value which has been realized for a fibre
cavity already experimentally (see Section 4.8.4), to κlo = 2π× 6MHz, which is the fibre
cavity loss rate due the mode-mismatch in a 5µm gap (see Section 2.5). In the region
where the signal-to-noise ratio is highest, the number of spontaneous scattering events
is large. If one wants to disturb the atom as little as possible, the pump rates will have
to be kept small, as shown in Figure 3.6. This figure shows a zoom into the small input
power region of Figure 3.5. The figure shows that it is possible to push the number of
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Figure 3.5: Figure (a) shows the signal-to-noise ratio for cavities of different loss rates, as listed in the
inset, in Figure (b) the number of spontaneous emissions during the detection interval of τ = 10µs is
plotted for the same cavity parameters.

Figure 3.6: The plots represent a zoom into Figure 3.5 for small pump powers, to show the parameter
region where the disturbance of the atom during the detection process is smallest. The different cavity
loss rates for the curves are listed in the insets, respectively.

scattered photons far below one, while maintaining a signal-to-noise above one.

A technical problem may occur, since an increasing number of round trips decreases the
outcoupled photon number for the same atomic saturation level. This can be estimated
by looking at the number of transmitted photons during a detection process as a function
of the signal to noise ratio. In the weak coupling limit

Nout ≈ Nout,0 = S2 1

4

(
g(~r)2

κΓ

)−2

. (3.56)

Hence for fixed signal-to-noise ratio, the absolute signal level is proportional to 1/n2
rt,

which for cavities of higher finesse will require the use of very sensitive detectors, if one
wants to explore the low-saturation limit where a non-destructive detection of single
atoms is possible.
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In summary, single atom sensitivity can be achieved with a minimal backaction on
the atom due to a cavity-induced increased atom-coupling. This is a clear advantage
compared to conventional fluorescence imaging, where detection of single atoms is not
possible without strongly disturbing it.

3.4 Off-resonant atom detection

In the last section, cavity and atom were pumped resonantly. It has been shown that
single atom detection with a small number of scattering events is feasible, but this
requires quite strong coupling, causing small absolute signal amplitudes. The question
is now, whether larger absolute signals can be obtained by detuning the pump beam
from the atomic transition. The dispersive interaction of atoms and cavity would then
be used to detect the atom.
If one now assumes large atom-pump detuning (∆a � Γ), but keeps the cavity in
resonance with the pump beam (∆c = 0), the atom’s influence on the cavity decay rate
is much smaller than the influence on the light shift (γ � U). So Equation 3.29 becomes

α =
η

κ+ iU
=
η

κ

1

1− iφ
, (3.57)

where

φ = −U
κ
. (3.58)

If φ is small, Equation 3.57 can be written as

α =
η

κ
eiφ = α0e

iφ. (3.59)

This shows that φ actually causes a phase shift, rather than an amplitude change to
the cavity signal. The outcoupled photon number Nout = |α|2κT τ = α2

0κT τ = Nout,0 is
constant independent of the presence of an atom in the cavity. Hence, a phase sensitive
technique is needed to detect a change in the signal.

3.4.1 Homodyne detection

A phase sensitive technique is provided by homodyne detection [Aga97]. Here a strong
local oscillator, namely an additional laser beam that is phase coherent to the pumping
light, is overlapped with the cavity output beam on a 50/50 beamsplitter as depicted
in Figure 3.7. The amplitudes of the cavity beam α and the local oscillator iβ interfere
(|β|2=photon number per time), which leads to oscillating photon counts at the detectors
D1,2

N1,2 =

∣∣∣∣ 1√
2

(α
√
κT ± iβ)

∣∣∣∣2 τ =
1

2

∣∣(α0

√
κT e

iφ ± iβ
)∣∣2 τ =

=
1

2

(
α2

0κT + β2 ± 2α0

√
κTβ sinφ

)
τ. (3.60)
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Figure 3.7: The scheme of a homodyne detector: by measuring the interference signal between two
beams, the phase shift caused by an atom in the cavity in one of the arms can be detected.

If one subtracts the two detector signals under the assumption of small phase shifts φ,
one gets

∆N = N1 −N2 = 2α0

√
κTβτ sinφ ≈ 2

√
Nout,0τβφ, (3.61)

which is proportional to the phase shift induced by the atoms. For the signal-to-noise
ratio one finds

Shom =
∆N√
N1 +N2

=
2
√
Nout,0τβφ√

(α2
0κT + β2) τ

≈ 2
√
Nout,0φ. (3.62)

This is plotted in Figure 3.8 for the same cavity parameters (g, κlo) as in the resonant
case (see Figure 3.3 b), but a detuning of the pump beam of ∆a = 50Γ from the atomic
resonance is chosen. One finds from the plot that the maximum signal-to-noise ratio is
reached at κT ≈ 6MHz, which is equal to the cavity loss rate κlo. Again, it has been
found numerically that the generalization holds: Shom is maximized for κT ≈ κlo, so for
a given loss rate, the mirror transmission has to be larger than in the resonant case for
low saturation. The value of the maximum signal-to-noise ratio is only slightly smaller
than in the resonant case (see Figure 3.3).

Low atomic saturation

In the limit of low atomic saturation (2Ng(~r)2 � Γ2) the phase simplifies to φ = g2

κ∆a
,

which makes it possible to express Shom in terms of the signal to noise ratio for resonant
detection (Equation 3.45)

Shom = 2
√
jinτ

κT

κ

g(~r)2

κ∆a

=
Γ

∆a

S. (3.63)
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Figure 3.8: The homodyne signal-to-noise ratio as a function of the mirror transmission rate for the
usual cavity parameters (g, κlo) = 2π×(12, 6)MHz and a pump-atom detuning ∆a = 50Γ. The different
curves are given by different mirror transmission rates κT , as listed in the inset, corresponding to mirror
transmissions of (0.1, 0.4, 0.8, 1.2, 1.5, 2)% (from black to yellow).

This means that the signal-to-noise ratio obtained by homodyne detection is much
smaller than the signal-to-noise ratio in the resonant case for the same pumping power.
But in order to chose the most appropriate detection technique, one has to compare
resonant and non-resonant detection, considering the disturbance of the atom which is
necessary to achieve a certain signal-to-noise ratio. This will be done in Section 3.4.2.

High atomic saturation

In the case of high atomic saturation (2Ng(~r)2 � Γ2), the phase becomes φ = ∆a

2N0κ
.

The signal-to-noise ratio can be compared again to the resonant case (Equation 3.50)

Shom = 2
√
N0κT τ

∆a

2N0κ
=

√
τ

jin
∆a =

∆a

Γ
S, (3.64)

and is found to be larger by a factor ∆a

Γ
.

A plot of the homodyne signal-to-noise ratios for different cavity loss rates is shown in
Figure 3.9 (a), where the optimal ratio of the decay rates κT = κlo was chosen. All
other parameters are the same as in Figure 3.8. The result looks encouraging, but the
drawback in this case is that the disturbance of the atom is the same as in the resonant
case, since the number of scattered photons is given by the saturation value Msat = Γτ
as in the resonant case (see Equation 3.52).
In Figure 3.11(a) the numerical result for the signal-to-noise ratio (for the standard
cavity parameters and detection interval τ = 10µs) is shown together with the two
approximations for high an low atomic saturation, which agree well in the respective
limit.
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3.4.2 Backaction on the atom

The number of spontaneous emissions during the detection interval is again the product
of decay rate, measurement time, and excited state population:

M = 2Γτρ11 = 2Γτ
g(~r)2N

∆2
a + Γ2 + 2g(~r)2N

. (3.65)

This value is plotted in Figure 3.9 (b) as a function of the pump rate. The various
curves correspond to different cavity loss rates for the same parameters as in Figure
3.9 (a). As in the resonant case, zooming into these plots (see Figure 3.10), one finds

Figure 3.9: Figure (a) is showing the signal-to-noise ratios, Figure (b) the number of spontaneously
emitted photons in a detection interval of τ = 10µs. The different curves correspond to different cavity
loss rates κlo, as shown in the insets.

a pump intensity domain, where the number of spontaneous emissions is much smaller
than unity, while the signal-to-noise ratio is larger than unity in a measurement interval
of τ = 10µs.

Figure 3.10: This figure shows a zoom into Figure 3.9 for small pump powers. Here disturbance of the
atom during the detection process is smallest. The different cavity loss rates for the curves are listed
in the insets.
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This shows that also the non-resonant detection scheme is suitable for single-atom de-
tection with low disturbance of the atom.

Low atomic saturation

This results can be approximated for the low atomic saturation case (2Ng(~r)2� Γ2).

Turning to the number of scattered photons, since ρ11 = g2N0

∆a
, one finds

Mhom = 2Γτρ11 = 2jinτ
κT

κ

g(~r)2

κ∆a

Γ

∆a

, (3.66)

and expressed in terms of Shom

Mhom = S2
hom

1

2

κ

κT

(
g(~r)2

κΓ

)−1

. (3.67)

This a very important result, because this relation is the same as in the weak coupling
limit for the resonant case (Equation 3.54). Concerning the disturbance of the atoms, in
this limit one does not gain or lose anything by detuning the pump light, since the same
signal-to-noise ratio is only achieved at the same number of spontaneously scattered
photons. This is because the reduced atom-photon coupling in the far detuned limit has
to be compensated by a larger pump power which produces a larger number of scattered
photons.
In Figure 3.11(b) the numerical result for the number of spontaneous scattered photons
is shown together with the two approximations for low and high atomic saturation, which
well describe the two limits. In the high atomic saturation the result is just given by
the constant value Msat.

Figure 3.11: The figure shows the signal-to-noise ratio in (a) and the number of scattered photons in
(b) for a typical cavity with (g, κlo, κT ,∆a) = 2π×(12, 6, 6, 900)). Beside the exact numerical calculation
shown by the black curve, the two approximation for low and high atomic saturation are show in the
blue and in the violet curve respectively.

Is there an advantage of using non-resonant detection? Looking at the absolute signal
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level, the number of transmitted photons is found to be

Nout = Nout,0 = jinτ
(κT

κ

)2

=
1

4
S2

hom

(
g(~r)2

κΓ

)−2(
∆a

Γ

)2

(3.68)

which is by a factor
(

∆a

Γ

)2
higher than for the resonant scheme (see Equation 3.56).

Thus, by varying the detuning, one can choose a preferred signal height, depending on
the sensitivity of the detectors being used. This is a clear technical advantage, because
even for the comparably low finesse cavities descibed it is already an issue to chose the
right detector to resolve the small cavity signals.

3.5 Application to many atoms systems

So far, the detection of single atoms has been discussed. Adapting the theory to the
interaction of atomic clouds with the cavity mode is principally straightforward. The
two identified effects on the atoms one the cavity field, i.e. the additional decay rate
γ (Equation 3.27) and the additional phase shift U (Equation 3.28) scale linearly with
the number atoms. If all atoms would feel the same field and hence the same coupling
g0, the total coupling would be simply given by Na g0, the number of atoms times the
maximum single-atom coupling constant. But problems arise, as soon as these atoms
do not feel the same field. In the setup described in this thesis, where a cavity near the
concentric limit is used (see Section 4.5), the intensity varies not only radially but also
axially within the cavity. This, one can not assume a maximum coupling constant at all
position in the trap. This problem can be solved by multiplying the term Na g0 with the
overlap integral of atomic density and cavity mode function, in order to get an effective
many-atom coupling constant.

The atomic density normalized to unity is then

ρ(~r, t) =
1

(2π)
3
2σx(t)σy(t)σz(t)

exp

(
− (x− xc(t))

2

2σx(t)2
− y2

2σy(t)2
− z2

2σz(t)

)
, (3.69)

where the cloud is assumed to be of Gaussian shape, with widths σx(t), σy(t), σz(t).
These parameters are time dependent since the atoms are free falling or magnetically
guided through the cavity (see Section 4.4). In the free falling case the cloud expands
freely according to its Maxwell-Boltzmann velocity distribution. In the guided case, this
expansion is restricted to the free axis of the guide. A movement of the cloud centre
xc(t) is assumed only in the direction of gravity.

The mode function normalized to the mode volume (Equation 2.25 where pure phase
factors are neglected) is given by

ψ(~r) =
w0

w(z)
exp

(
−2

x2 + y2

w(z)2

)
cos(kz). (3.70)
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The atom-cavity coupling strength is given by the total atom number times the maximum
coupling weighted by the overlap integral∫

dV Na(~r, t)g(~r) = Na,max g0

∫
dV ρ(~r, t)|ψ(~r)|2. (3.71)

To analyze this overlap integral, first the integration is carried out along the x, y-
directions, transversal to the cavity axis. Averaging out the intensity modulation from
the standing wave packet, one gets

∫
dV ρ(~r, t)|ψ(~r)|2 =

∫ L/2

−L/2

dz
w2

0

8
√

2π

exp

(
− xc(t)2

2σx(t)2
�
1+

w(z)2

(2σx(t))2

� − z2

2σz(t)2

)
σx(t)σy(t)σz(t)

√
1 + w(z)2

(2σx(t))2

√
1 + w(z)2

(2σy(t))2

. (3.72)

Since the mode width w(z) is much smaller than the transversal width of the atomic cloud
2σx,y, their ratio can be neglected in comparison to 1, which simplifies the expression to

∫
dV ρ(~r, t)|ψ(~r)|2 =

∫ L/2

−L/2

dz
w2

0

8
√

2π

exp
(
− xc(t)2

2σx(t)2
− z2

2σz(t)2

)
σx(t)σy(t)σz(t)

. (3.73)

Finally the overlap integral can be expressed in terms of the error function erf(x) =
2√
π

∫ x

0
e−u2

du∫
dV ρ(~r, t)|ψ(~r)|2 =

w2
0

8σx(t)σy(t)
exp

(
− xc(t)

2

2σx(t)2

)
erf

(
L

2
√

2σz(t)

)
. (3.74)

This result shows a fundamental difference from the single atom experiment. Since this
overlap integral scales like the square of the mode waist, it seems favorable to increase
the mode cross section. This is of course the case for a detection of atomic clouds, since
the number of atoms in the high-intensity regions of the mode increases, and has to be
contrasted with the best condition for single atom detection, which require a small waist
for maximum cooperativity (see Equation 3.32).
Using this overlap integral another useful measure can be defined, namely an effective
number of atoms in the mode volume, which is given by

Neff(t) = Na,max

∫
dV ρ(~r, t)|ψ(~r)|2. (3.75)

This can be interpreted as the atom number, which would have an equal effect on a
cavity with the same mode volume, but a uniform field of with the maximum intensity
of the Gaussian mode. For comparison, to give the same mode volume, a uniform mode
would have to be of cylindrical shape with diameter w0 and length L, which is tiny
compared to the extensions of the Gaussian cavity field. So looking at the outcome of
the overlap integral in Figure 3.12, it is finally not surprising that this effective atom
number is very small, for example dropping a MOT of 107 atoms the effective atom
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Figure 3.12: Overlap integral of the normalized atomic density and the normalized cavity mode
function under typical experimental conditions: An atomic cloud of σ0 = 1.5mm, temperature T = 43µK
(v = 65mm/s mean thermal velocity) dropped from 2cm above the cavity with mode waist w0 = 12.0µm.
The red curve shows freely falling atoms, the black curve a cloud which is magnetically guided through
the cavity.)

number in the cavity would reach Neff ≈ 8 at its maximum. This gives already a flavor
of how experimentally challenging it will be, to place a single atom into the even smaller
mode volume of a fibre resonator see Chapter 5.5.
Also the cooperativity parameter scales now with the effective number of atoms in the
mode volume, so the new measure, wether the cavity is weakly or strongly coupled to
the many-atom system is given by the quantity∫

dV Na(~r, t)
g(~r)

κΓ
= Neff(t)

g0

κΓ
(3.76)

being smaller or bigger than 1.
There is a further problem, when the theory has to be applied to many atom systems,
caused by there is another term containing the spatial dependent coupling constant
2g(~r)N in the denominator of γ and U (Equations 3.27 and 3.28). Here the spatial
dependence can not be averaged out as easily. However, this term is negligible in the
low saturation regime 2g2N � Γ2, where the intra-cavity photon number remains small.
Hence, in the low saturation regime all the derived formulas remain valid for many atom
systems if one multiplies the single-atom coupling constant with the effective number
of atoms in the mode volume. In the high saturation regime, the theory obtained by
replacing the spatially dependent coupling constant in the nonlinear term 2g(~r)2N � Γ2

by the maximum coupling g0 will give an upper bound for the effects produced by the
atoms on the cavity field.
To quantify the power for which the saturation sets in, the Equation

2g2N

Γ
= 1 (3.77)
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is solved for the cavity pump power Pin, which is introduced into the Equation for the
intra-cavity photon number 3.30 via the cavity pump rate

η2 =
PinκT

~ω
. (3.78)

To receive a result which is comparable to the experimental data, the input power, which
is never measured directly, has to be translated into a transmitted power of the empty
cavity

Pout,0 = Pin

(κT

κ

)2

. (3.79)

Figure 3.13 shows the resulting saturation curve as a function of the effective atom num-
ber in the mode volume. The cavity parameters are (g0, κT , κlo) = 2π×(3.0, 1.2, 2.0)MHz.

Figure 3.13: The saturation curve as a function of the effective number of atoms in the mode volume.

3.5.1 Optical bistability

Another feature of this coupled atom-cavity system is optical bistability [Dru81, Lug84,
Rem91]. It sets in, when the nonlinearity between incoupled and outcoupled field be-
comes important,. It describes the discontinuous switching of the cavity output between
two stable states depending on the intra-cavity atom number.
First off all, it has to be pointed out that the onset of bistability is depending on whether
the atoms in the mode can be saturated. Because of spacial variation of the cavity waist,
and atomic density, this is extremely position dependent. While in the mode waist this
happens first,further out on the cavity axis the effect sets in much later. In the single-
atom model this manifests itself in the spacial dependency of the coupling constant in
the nonlinear term which describes saturation effects 2g(~r)2N , where ~r is the position
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of the atom. For the many-atom system, both atomic distribution and mode function
would have to be considered. In the following the effect will be discussed qualitatively,
assuming a uniform maximum coupling g0.
To identify the regime of optical bistability, the input power will be expressed as a
function of the transmitted power of the cavity. For this purpose Equation 3.30 is solved
for the pump rate

η2 = N
[
(κ+ γ)2 + (∆c − U)2] . (3.80)

Expressing η again by cavity pump power and the intra-cavity photon number N in
terms of the and the transmitted power

Pout = N~ωκT , (3.81)

and by making use of the effective atom number per mode volume, introduced in Equa-
tion 3.77, one finds

Pin =
Pout

κ2
T

(κ+
Neffg

2Γ

Γ2 + ∆2
a + 2g2 Pout

~ωκT

)2

+

(
∆c −

Neffg
2∆a

Γ2 + ∆2
a + 2g2 Pout

~ωκT

)2
 . (3.82)

For a given value of Pin this equation has in general three solutions for Pout. Figure
3.14 shows these solutions as a function of the atom number in the mode volume Neff .
The different curves correspond to different Pin (here from 0.32nW for the lowest curve
to 6.8nW for the highest). The figure shows that after a critical input power (here

Figure 3.14: The cavity output power as a function of the atom number in the cavity mode. The
different curves correspond to different input powers. For the left curve Pin is 0.32nW and increases to
6.8nW for the right curve in steps of 0.65nW. The inset shows the hysteresis curve of the cavity output
power if the atom number increases and decreases again, as the cloud falls through the cavity. The
cavity parameters are (g0, κT , κlo) = 2π × (2.5, 2.1, 10.8)MHz as for the cavity of length L = 19.86mm
and finesse F = 290 described in Chapter 5.
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≈ 2.2nW for the 4th curve from the left), the dependence of Pout from the atom number
per mode Neff becomes strongly nonlinear and for a certain input power range three
solutions exist. In the experiment, the input power is constant, let us say 6.8 nW, as
in the upper curve. Now the atoms are falling into the cavity, thus the effective atom
number in the cavity mode starts to increase. At a critical atom number, in this specific
case Neff = 94, the system enters the bistabllity region, where more than one stationary
solutions is possible. In this region the cavity is bistable, but as long as there are no
further influences, the output power will keep following the solution in the upper part
of the curve as the atom number increases. As soon as it reaches the opposite side of
the instability region, at the atom number Neff = 123, in order to follow the solution
for even higher atom number, the cavity is forced to switch to much smaller intra-cavity
photon number, which results in a drop of the output power by more than two orders
of magnitude (as shown in the inset of Figure 3.14).
After the centre of the atom cloud has crossed the cavity mode, the effective atom
number in the mode volume starts to decrease and the cavity output power is following
the curve upwards. Analogous to before, entering the bistability region at Neff = 123,
the solution continues to follow the lower part of the curve. The switching happens at
the end of the instability region for Neff = 94 (as shown in the inset). Correspondingly
a sudden increase in the output power is observed. Hence, the cavity output intensity
follows a hysteresis curve. This effect was experimentally observed e.g. in [Rem91].

Relevance for the experiment

The influence on the cavity transmission signal would look as depicted in Figure 3.15.
The cavity transmission signal is plotted as a function of falling time and maximum
atom number in the mode volume. For small atom numbers the signal shows a Gaussian
shaped dip, caused by the Gaussian shaped atom cloud, scattering light off the cavity
field. But for higher atomic densities bistability sets in, which completely switches off
the cavity output. The asymmetry between the points where the cavity switches off and
on again are a signature of the hysteresis described above.
Unfortunately, it is very hard to observe bistability in the weak coupling regime, where
all the experiments described in this work were in, due to the high effective atom number
needed in the mode volume for the onset of the switching. As it can be seen in Figure
3.14 for typical cavity parameters the critical atom number is Neff ≈ 50, below which
independently of the cavity power bistablillity does not occur.
The experiments described here were concentrated on the other side the parameter
space, namely to measure the the resolution limit of the cavity (see Chapter 5). So
the maximum effective atom numbers reached, were Neff ≈ 10. This is far away from
entering the bistable regime, particularly because the coupling constant was far away
from being maximal in the whole mode, which was assumed in the last section.
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Figure 3.15: The cavity transmission signal is plotted as a function of falling time and maximum
atom number in the mode volume. In the high saturation the signal is a Gaussian shaped dip. With
an increasing number of atoms the system becomes bistabil which leads to a discontinuous switching of
the cavity output signal.





4 Experimental setup

In this chapter the main elements of the experiment will be briefly described. The
setup consists of the vacuum chamber (Section 4.1), the laser system (Section 4.2) which
provides the light for a magneto-optical trap (MOT) (Section 4.3) and the cavity (Section
4.5), the magnetic guide (Section 4.4), the detectors to record the cavity transmission
signal (Section 4.6), and the computer control system (Section 4.7). Furthermore, the
planned experimental extensions to include an atom chip with integrated micro-cavity
are described (Section 4.8).

4.1 Vacuum system and coils

The vacuum chamber (see Figure 4.1) consists of a cross with six CF63 flanges which
connects the ion pump, the titanium sublimation pump, the turbo pump, gauge and a
flooding valve to the main chamber. This main chamber is made from stainless steel
of type 316LN (DIN 1.4429) with especially low magnetic permeability (µ < 1.005). It
has four small and one big viewport, made from high optical quality glass and sealed
with Helicoflex gaskets. A big flange holds the cavity mounting and another one the
rubidium dispensers. For the experiment described in this work, the main chamber
hosted a conventional six-beam MOT (see Figure 4.1), but it was designed to be easily
rebuilt into an atom chip setup (see Section 4.8).
The MOT quadrupole coils have been designed to minimize heating of the chamber, by
using copper wire of 4 mm2 cross section. This was necessary, since with the previous
coils of 1 mm2 wire a temperature increase of up to 90◦C was observed, which could lead
to unwanted cavity drifts. Figure 4.2 shows the chamber with mounted MOT coils and
a view inside the chamber.
For the future atom chip experiments, there will be no need of external anti-Helmholtz
coils. Instead a large current-carrying U-shaped copper structure below the chip, to-
gether with a homogeneous bias field will allow to create the quadrupole-like potential
(see Section 4.8.3 and [Wil04], more on wire traps can be found in [Wei95, Haa01]). The
required changes in the setup are sketched in Figure 4.3.

4.2 Laser system

In the experiment two main laser frequencies are involved to drive transitions between the
hyperfine states 52S1/2 and 52P3/2 of rubidium [Ari77] at 780nm. This light is produced
by laser diodes, two are needed for the MOT, one for cooling, one for repuming. In the
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Figure 4.1: The vacuum system, consisting of an experimental chamber with universal optical access,
which is connected via a six-way-cross to pumps and valves.

case of 85Rb the cooling transition is |52S1/2, F = 3〉 → |52P3/2, F = 4〉. The cooling cycle
is closed by repumping the atoms via the |52S1/2, F = 2〉 → |52P3/2, F = 3〉 transition
(see Figure 4.4).
A third laser is resonantly driving the cavity at the cooling transition, and a fourth
diode is injection-locked by the cavity laser and delivers an additional light beam for the
heterodyne detection scheme (see Section 4.6).

4.2.1 Frequency stabilization

The lasers are near-infrared laser diodes, three of them, the two for the MOT and one as
the cavity pump laser, are stabilized by an external cavity created by a grating in Littrow
configuration [Ric95], the fourth is injection looked [Roh96] by the cavity laser (details
about the latter in Section 4.6.2). For the active stabilization two different schemes are
used: a frequency modulation (FM) lock [Bjo79] to achieve permanent stabilization onto
the resonances of a Doppler-free saturation spectroscopy of Rb and a frequency offset
lock [Sch99] to preserve tunability within a few 100 MHz around these resonances.
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Figure 4.2: Views into the experimental chamber and a view onto the chamber with mounted MOT
coils.

Frequency modulation lock

To provide the two different frequencies needed for the cavity and for the MOT re-
pumping transitions, two lasers are locked independently using the frequency-modulation
technique [Bjo79].

The scheme is sketched in Figure 4.5 and its realization in this experiment is described in
detail in [Wil02]. The laser light is weakly modulated with a radio frequency from quartz
oscillator, in our case 20MHz. By sending this modulated beam through a rubidium
gas cell, the amplitude and the phase of carrier and side bands are changed due to
absorbtion and dispersion (the pump and probe technique avoids Doppler broadening
by just acting on the zero velocity atoms [Dem03]). Since the amplitude and phase
changes are frequency dependent, the beating between carrier and red sideband and
between carrier and blue sidebands, which normally cancels out, is now phase shifted.
One detects a beat note at the modulation frequency, whose amplitude is proportional
to the lasers frequency shift and thus can serve as an error signal.

For a low bandwidth stabilization, the FM error signal is fed back to a piezo crystal,
which moves the laser cavity grating. This slow feedback loop is limited by the piezo
resonance frequency around 8kHz. It leads to a laser linewidth reduction to 1.3MHz
from a few MHz for the free running diode. A second, fast feedback loop acts on the
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Figure 4.3: The figure shows the experimental chamber from the side. It shows, how easily the setup
can be adapted to host an atom chip with the corresponding reflection MOT. Furthermore, a novel
wire configuration below the chip, developed in our group [Wil04], allows to replace the big quadrupole
coils, which are still depicted in this figure.

laser current with a bandwidth of 1.1MHz. This reduces the laser linewidth again to less
than 500kHz [Wil02], which is good enough, since the atomic linewidth and the smallest
cavity linewidth were both about 6MHz.

Frequency offset lock

A third laser has to be tunable to a certain extend, since it serves as the MOT cooling
laser and is red detuned by 15 MHz with respect to the cooling transition,in the optical
molasses phase it has to be even further red-detuned (≈ 30 MHz), and finally it needs
to be tuned back exactly to the resonance for imaging the atoms (for details see Section
4.3).
This laser is stabilized relative to another one, in this specific case the cavity laser, with
a variable radio frequency offset [Sch99]. As depicted in Figure 4.6, a small part of the
light from the two lasers is overlapped and the beat note is measured with an avalanche
photodiode (APD). The amplified APD signal is mixed with a radio-frequency from
a voltage-controlled oscillator (VCO). A low pass filter transmits only the difference
frequency, which is then split and, after a delay line in one arm, recombined at a phase
detector. The phase shift, acquired during the splitting, is proportional to the detuning
between VCO and laser beating frequency. Thus the output amplitude of the phase
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Figure 4.4: The level scheme of 85Rb, the level spacing of the hyperfine structure is shown together
with the Landé-factors g, which become important for magnetical trapping (see Section 4.4). The MOT
is operated on the 780nm D2-line, as marked in red.

detector varies as the cosine of this phase shift. This creates an appropriate error signal
proportional to the cosine of the laser frequency difference (cooling laser-cavity laser)
minus the offset frequency. The limit to this offset frequency is the bandwidth of the
phase detector, which causes an envelope function on top of the error signal. The
bandwidth was chosen to be 100 MHz in this experiment. Working again with two
feedback circuits, a slow one acting on the piezo and a fast one for the laser current, a
linewidth reduction to < 1 MHz was achieved [Wil02].

4.2.2 Optical path

After laser stabilization, the available intensity is ≈ 15mW in each laser beam. The
optical path is depicted in Figure 4.7. To switch the MOT beam intensities, the laser
beams are sent through acousto-optical modulators (AOM) where about 85% of the
intensity is coupled into the first order. In the case of the repumper, which is locked
to the flank of the spectroscopy signal, the AOM frequency of 110MHz shifts the laser
frequency back to the atomic resonance. The cooling beam is shifted by 80MHz, which
is compensated by the offset locking scheme discussed above. After passing the AOMs,
both MOT beams are overlapped on a polarizing beam splitter cube (PBS) after their
polarizations have been adjusted properly by λ/2-plates. The beam waist is expanded
by a telescope to about 15mm, and the beams are split again by λ/2-plates and PBS into
three equally intense beams of ≈ 3mW, which are sent through the vacuum chamber
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Figure 4.5: FM lock scheme, for technical details see [Wil02]. The VCO modulates the laser. Mixing
it with the spectroscopy light allows to detect a beat node at this modulation frequency. A low pass filter
eliminates higher order terms and the phase shifter allows to switch between absorptive and dispersive
signal.

along orthogonal directions, after their polarizations have been changed to left, respec-
tively right circular as required for the MOT [Raa87]. The two horizontal beams are
crossing just above the cavity mounting, at a distance of 2mm from the cavity axis. The
third vertical beam is sent through a hole in the cavity mounting (see Figure 4.2). After
having crossed the chamber, the polarizations are rotated by 90◦ and the three beams
are retro-reflected, which in total provides the 6 MOT beams.
The cavity beam is sent through an AOM twice, in order to even stronger attenuate its
amplitude. Since the cavity laser is locked to the crossover peaks of the Doppler-free
saturation spectroscopy (between |52S1/2, F = 3〉 → |52P3/2, F = 2〉/|52P3/2, F = 3〉),
which is 152.5MHz away from the cooling transition, the AOM radio frequency is tuned
to 76.3MHz, which after the double passage exactly shifts the laser back to the cooling
transition resonance. The beam is then focussed by a lens and two mirrors into the
cavity inside the camber. By choosing the right focal length and lens distance, the beam
waist and the wave front curvature are matched to the cavity mode (see Section 2.3).

4.3 Cold Atom Source

The magneto-optical trap produces a cloud of cold rubidium atoms just above the cavity
mounting. The MOT is limited by the laser power of ≈ 1.2mW per beam and a beam
diameter of ca. 15mm. It was optimized to produce atom numbers of up to 108, which
were measured by focussing the fluorescence signal onto a calibrated photodiode. A
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Figure 4.6: Frequency offset locking scheme, for technical details see [Wil02]. After mixing the
beating signal with a radio frequency, the signal difference is extracted by a low-pass filter, is split and
recombined after a delay line introduced a phase shift in one arm. After the phase detector, and after
higher order contributions are eliminated by another low pass, the signal is proportional to the cosine
of the phase shift, which is proportional to the frequency difference of cooling laser and cavity laser plus
offset.

maximum atom number was found for a cooling beam detuning of 14MHz to the red,
and a magnetic field gradient of 14 G/cm [Wil02].
The temperature of the atoms was determined by time of flight imaging using a CCD
camera and by measuring analyzing the temporal width of the cavity signal (see Section
5.2.1). For freely expanding clouds temperatures of down to T ≈ 30µK have been
measured, which is far below the Doppler temperature of 141µK. This has been achieved
by polarization gradient cooling in the MOT and a following 20ms molasses phase, after
the magnetic quadrupole field has been switched off and the cooling laser detuning was
raised to 23MHz [Mat02].
The MOT can be shifted in all three directions by short ramps of homogeneous magnetic
offset fields, to find the best position for dropping the atoms into the cavity or to overlap
them with the minimum of the magnetic potential, which can be used to guide the atoms
through the cavity [Den99].

4.4 Magnetic guide

Besides dropping the atoms and letting them pass through the cavity in free fall, a
magnetic wire guide can be used to guide and compress the cloud. This has the advantage
that the crossing position can be chosen more precisely and the atomic cloud density
and size can be determined by the potential parameters [Haa01].
The magnetic trapping is based on the interaction of the magnetic dipole of the atom
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Figure 4.7: The optical beam path providing light for the MOT and the cavity, AOMs are switching
the beam intensities.

with an external magnetic field. The interaction energy is given by

Epot = −~µ · ~B = µB mF gF B, (4.1)

where µB is the Bohr magneton, mF the magnetic quantum number, gF the Landé
factor of the hyperfine state F . Since in free space magnetic maxima cannot be formed
by static fields [Ear42], only atoms in states attracted to magnetic field minima, the
so-called low-field-seeking states are trappable. In the case of 85Rb atoms these are the
states |F = 3,mF = 1, 2, 3〉, |F = 2,mF = −1,−2, 〉, since their Landé factors are
gF=3 = 1/3 and gF=2 = −1/3.
The necessary magnetic field geometry is created by a current carrying wire structure
and an external homogeneous magnetic bias field along the cavity axis [Den99]. This
potential is created by a wire current Iwire = 33A and a bias field Bbias = 10G which
were found to be the optimal values for loading the guide from the MOT (see Section
5.3.1). Ideally this potential should be quadrupole-like close to the minimum. Due to
the the non-perfect homogeneity of the bias field, which is produced by coils not in the
ideal Helmholtz-configuration, and due to a magnetic field contribution from the wire
leads it deviates from this quadrupole-shape. The field is for example non-zero at the
potential minimum, which is an advantage because it prevents non-adiabatic spin flips
[Maj32] into untrapped states which are lost from the trap. The results of realistic
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potential calculations are shown in Figure 4.8. Figure (a) and (b) show contour plots of
the potential perpendicular (a) and parallel (b) to the wire, the darkest area indicates
the potential minimum. Figure (c) and (d) are potential plot in the horizontal plane at
the position of this minimum. The trap trap depth at the MOT loading position slightly
below the upper bent of the wire was found to be T = 580µK.

Figure 4.8: The magnetic potential created by the bent wire structure is shown in the horizontal plane
containing the cavity axis in Figure (a) and in a central plane perpendicular to the cavity axis in Figure
(b). The potential increases from black to white. The trap parameter are wire current Iwire = 33A and
bias field Bbias = 10G.

The wire structure of 1mm diameter is attached to the cavity mounting via two Marcor
holders as shown in Figure 4.9. In the experiment it was possible to transfer 20% of the
atoms to the wire guide, which is about 50% of those in magnetically trappable states.
This could be increased by optically pumping [Ben65] all the atoms into the low-field-
seeking state which experiences the strongest trapping potential, i.e. |F = 3,mF = 3〉.
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Figure 4.9: Picture of the cavity mounting. The silver wire which creates the magnetic guiding
potential, is attached to the mounting by two Marcor holders.

4.5 Cavity setup

The cavity is designed to work at the quasi concentric limit at 20mm, since both mirrors
have a radius of curvature of R = 10mm. It was possible to increase the cavity length
up to 19.93mm (see Section 4.5.1). The mirrors have a diameter of 6mm and their
transmission was measured to be T = (0.9± 0.1)× 10−3 (see Section 5.1.3), which is in
good agreement with the specification of T = 1×10−3. This leads to a transmission rate
κT = 2π× 1.1MHz. According to Equation 2.32 this can maximally give a cavity finesse
of F = 3500, if all other losses are suppressed. The measured finesse was F = 1150. It
could be shown that this originates from imperfections and dirt on the mirrors, which
become become the dominating loss mechanism close to the concentric point since the
area on the mirrors which is covered by the beam becomes extremely large (see Section
5.1.3). This results in a loss rate of κlo = 2π × 2.2MHz.
This relatively low mirror quality, in comparison to present high finesse cavity exper-
iments [McK04, Mau04], where mirror transmissions of T = 4 × 10−6 lead to finesses
of 5 × 105 [Hoo01], was chosen on purpose, in order to reproduce a situation similar
to the one of the first on-chip fibre cavity experiment to come. In fact, the first fibre
cavities will not have better mirrors than this, if one follows the theoretical argument in
Section 3.3.1, in which for an optimal detection resolution, a mirror transmission rate
κT not higher than the cavity loss rates κlo is required. First experiences in fibre cavity
fabrication [Sch04] have shown that a loss rate below κT = 2π × 1.2MHz is not realistic
in the near future.
The cavity mounting can be seen as a construction drawing in Figure 4.10 (a) and as



4.5 Cavity setup 59

a photograph in Figure 4.10 (b). The mirrors are mounted on two massive aluminum
blocks. One of them can be moved like a sledge with respect to the other to roughly
adjust the cavity length. Fine tuning is done by three micrometer screws which also
allow to align the mirror angle. During the experiment the cavity length is stabilized by
a piezo below one of the mirrors. This work is described in detail in [Hoc03].

Figure 4.10: Cavity mounting, as a construction drawing in (a), and as a photograph in (b). One of
the mirrors is mounted to a piezo, which accounts for the axial stabilization, the angular alignment is
done by three micrometer screws

4.5.1 Stability

The operation point was chosen to be as close to the concentric point of 20mm as the
alignment methods allowed (see Section 2.4.4). Stable modes could be reached up to
a length of L = 19.93mm. The required alignment sensitivity (calculated according
to Equation 2.55 and 2.56) at this point can be seen in Figure 4.11. The red curve
shows the shift of the beam position on the mirror due to axial misalignment of one of
the micrometer screws, causing a mirror tilt. The black curve shows the response on a
transversal offset between the two mirrors.
This figure shows that the alignment accuracy and long time stability in all directions
has to be on the order of 1µm. Therefore the design of the mirror mounting structures
was chosen to be as robust as possible. Still the long time stability turned out to be
insufficient. It was noticeable that on long time scale even the switching of the MOT coils
led to a cavity misaligned. This could be due to the microsprings pressing the mirror
mount against the micrometer screws. Since these screws where slightly magnetic, they
moved by tiny amounts during the switching processes, which caused a misaligned to be
corrected every few weeks. This realignment was quite a complicated procedure since
the vacuum chamber had to be opened every time. To improve this situation a second
cavity mounting was developed where the second mirror sat on a ring-piezo consisting
of six sectors with six electrodes attached to them. By applying different voltages to
these electrodes the piezo could be tilted. Applying a voltage difference of up to 400V
between single sectors causes a displacement of ≈ 2.5µm, which tilts the cavity mirror
by ≈ 0.01◦. The tilting directions could be precisely chosen by addressing the electrodes
individually. This was sufficient to compensate for the instability effects and allowed for
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Figure 4.11: The cavity sensitivity versus mirror misalignment: the red curve shows the effect of an
axial misalignment of one of the micrometer-screws, which causes a mirror tilt (2.5µm=̂0.01◦), the black
curve shows the effect of a tangential offset between the two mirrors.

an in-situ realigning of the cavity axis without opening the chamber. Fears that adding
another piezo would degrade the cavity stability proved to be unmotivated.

4.5.2 Locking scheme

Beside the long term stability of the cavity axis, the cavity resonance frequency has to be
stabilized to the pump frequency. This is done by a technique similar to the frequency
modulation lock of the laser, the Pound-Drever-Hall method (PDH)[Dre83]. As for the
FM lock, the cavity pump light has to be modulated by a radio frequency. In the exper-
iment, the modulation from the laser lock can indeed be used again. The light intensity
reflected by the cavity is recorded by an APD. The frequency dependence of the cavity
transmission introduces an asymmetry in the beat node between the carrier frequency
and the side bands if the cavity and the pump light frequency are out of resonance. A
beat note at the modulation frequency arises, whose amplitude is proportional to this
frequency shift. This provides an error signal which is fed back to the piezo to control the
cavity length. For details on this method see [Bla01] and for the experimental realization
in this setup see [Hoc03]. A schematic picture is shown in Figure 4.12. Additionally,
the locking electronics have a TTL-input which allows to break the feedback circuit and
set the error signal constantly to zero as long as the TTL-input is high. This allows to
leave the cavity free running during the experiment and recapture it into the lock after
the experimental cycle, which typically lasts a few 100ms.
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Figure 4.12: PDH lock scheme, for technical details see [Hoc03]. a quartz oscillator modulates the
laser with ν = 20MHz. Mixing it with the reflected light from the cavity allows to detect a beat node at
the modulation frequency. A low pass filter eliminates higher order terms and the phase shifter allows
to switch between absorptive and dispersive signal.

4.6 Photo detectors

The experiments with the macroscopic cavity have been used to test various detection
schemes for their suitability to detect the changes in the cavity signal induced by atoms
inside the mode. If one drops the maximum atom number from the MOT through the
cavity, in a typical experiment the best signal-to-noise ratio can be detected when the
atoms in the cavity are saturated (see Section 3.3.1). In the experiments described
here this saturation happens at a transmitted powers of ≈ 100pW or equivalently at
a photon number of ≈ 0.4 × 109 per second (see Figure 3.13). Single photon counting
devices with the required time resolution to manage these numbers are still far from
being commercially available [Gol01]. The situation changes as soon as the experimental
sensitivity reaches the single atom level. To saturate a single atom, in the same cavity
it takes ≈ 2pW corresponding to ≈ 8.0× 106 photons per second. At this point single-
photon counting starts to become feasible. Until then, a method has to be found to
detect this amount of light without saturating, but still offering a low enough noise level
at a reasonable detection bandwidth. In the following, methods that have been tested
in the experiment will be briefly described.

4.6.1 Amplified Photodiode

First experiments have been performed using a fast photodiode and amplifying the pho-
tocurrent electronically. Using a gain of 109(V/A), for experiments with many atoms,
this method offers a high enough sensitivity of ≈ 10pW, but limits the detection band-
width to a few 100Hz. In order to see smaller numbers of atoms, the pump intensity
has to be drastically reduced, and sensitivity as well as time resolution are insufficient,
since the passage time of a single atom through a cavity of waist w0 = 12µm is ≈ 40µs
and the transmission signal from a saturated atom is ≈ 4pW.
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4.6.2 Homodyning/Heterodyning

A technique to optically amplify the signal and thus to maintain the full bandwidth is
the homodyne/heterodyne detection [Aga97], already sketched in Section 3.4. In the
experiment a heterodyne detector was realized as depicted in Figure 4.13.

Figure 4.13: The heterodyne detection setup. A strong local oscillator, here a slave laser, is overlapped
with the weak signal. Their beating signal is detected via two fast avalanche photodiodes (APD).

A small part of the pump beam is split off before the double pass AOM and is used to
injection-lock a slave laser, playing the role of the strong local oscillator. Due to the
double-pass AOM, there is a frequency offset of 152 MHz between slave-laser frequency
and cavity pump laser. The slave laser is overlapped with the cavity transmission sig-
nal, so that a beat node at this offset frequency can be detected, from which amplitude
and phase change of the light within the cavity can be extracted. Because of the offset
frequency, this is rather a heterodyne detector, while for homodyning one would overlap
two signals of the same frequency. To detect the phase difference between cavity trans-
mission beam and the beam from the slave laser, the beat note is split at a 50/50 beam
splitter and the light in both arms is detected using fast avalanche photodiodes (APD).
Since for an off-resonant cavity the phase difference is small, by subtracting the APD
signals one gets a signal proportional to the phase change induced by the atoms in the
cavity. Thus the cavity transmission signal is amplified by the high amplitude of the
local oscillator (see Section 3.4.1). In the case of a resonant cavity, the atom’s effect on
the transmission amplitude is much stronger and will overshadow the phase change. But
this amplitude change can still be detected with this setup by measuring the envelope
function of the beating signal. This can be realized using a simple envelope detector (see
Figure 4.14), which supplies a signal proportional to the amplitude of the high-frequency
beat node. One again profits from the optical amplification by the strong slave laser.
This detection scheme is limited in bandwidth only by the envelope detector, which can
be designed to cut off only at a few 100kHz.
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Figure 4.14: The circuit diagram of a simple realization of an envelope detector. A Schottky-diode
BAT42 was used, and R = 8kΩ, C = 1.2nF yielded a bandwidth (given by 1/RC) of 100kHz, which
gives the envelope of the 76MHz beating signal.

Since the extraction of the signal envelope can not be done arbitrarily cleanly, the
heterodyne detection is not the best method for resonant atom detection. As soon as
one wants to minimize the back-action onto the atoms by detuning the cavity from the
atomic resonance, however, it is the only way to detect a change in the transmission
signal, since the presence of atoms will rather have an influence on the phase than on
the amplitude of the light (compare Section 3.4).

4.6.3 Photomultiplier

Another possibility of low-noise amplification of optical signals is the use of a photo-
multiplier. In this experiment we have tested a photomultiplier tube (PMT) 1 with a
quantum efficiency of ≈ 8− 9% at 780nm and a measured gain of 7.6× 104. In our case
this is the best choice on the way to smaller atom numbers and single atoms, since the
sensitivity was below 1pW (see Section 5.4.1).

Since this device is very sensitive against any kind of stray light, the setup had to be
refined in the following way (see Figure 4.15): the transmitted light was sent into a 30cm
optically opaque tube, closed by a shutter. Inside it was focussed into a pinhole, made
from a closed iris, and then expanded to a beam diameter of 3mm, the width of the
photocathode. The PMT supply voltage of 1250V was automatically cut as soon as the
cavity pump laser exceeded a certain threshold intensity.

So far, the PMT signals are quite noisy (see Section 5.4.1), but the main noise sources
could be identified. Acoustic noise from the shutter, which protects the PMT from
the MOT light, is acting on the focussing optics in front of the PMT. This produces a
damped oscillation on top of the signal. The 70ms the atoms are falling after the MOT
is switched off are not sufficient to damp out this oscillations. But this can be fixed by
reducing the shutter size and by better isolating it from the optical setup. Noise directly
from the PMT can be combated by shieling it against magnetic fields, which are known
noise source for photomultipliers [Pay01].

1Hamamatsu R636-10
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Figure 4.15: Adapted setup for the Photomultiplier: The photomultiplier was protected against stray
light by a 30cm opaque tube, with a pinhole inside. A protection circuit cuts off the PMT supply
voltage as soon as the cavity laser exceeded a certain saturation power.

4.7 Experimental control

The experiment is controlled by a system based on the software LabVIEW. An operation
platform controls two PCI output cards, a National Instruments 6713 with 8 analogue
voltage outputs @12bit, and a National Instruments 6602 with 8 digital outputs @32bit
and a PCI input card (National Instruments 6035-E) with 16 analogue input channels
@16bit. These channels are connected via buffers and opto-couplers (to prevent ground
loops) to the experiment (for details see [Wil02]). Input and output cards are synchro-
nized by a master pulse. The other automatically controlled experimental parameters
are

Analouge Digital
Intensity cooling beam Masterpulse
Detuning cooling beam Switch quadrupole coil current
Intensity repumping beam Shutter MOT beams
Intensity cavity beam Shutter cavity beam
Current guiding wire Switch guiding wire
Current bias coil Switch bias coils
Current compensation coils up/down Cavity lock break
Current compensation east/west Camera trigger

For different experiments, time dependent parameter sequences are saved in so-called
frames. For further automation, e.g. temperature measurements, frame series can be
launched. The change of global parameters has been automatized by the definition of
variables that are used in various output channels at the same time. A typical control
computer screen shot is depicted in Figure 4.16.
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Figure 4.16: LabVIEW operation platform: The window to the left, contains all global parameters
and allows to save and load settings and acquired data, the central window shows an input channel ,
which is analyzed in the window to the upper right to calculate the atom number from the fluorescence
signal. The window to the lower right allows to edit the analog and digital output sequences.

The operation platform records one of the analog channel during the experimental cycle.
During the time of alignment and optimization this is usually a calibrated photodiode
looking at the MOT. From this data the atom number is calculated automatically.
During the cavity experiments, the transmission signal is recorded with a bandwidth
of 400 kHz, coming from one of the detectors described above. Additionally two CCD
cameras 2 are detecting the atomic fluorescence from the top and from the side, just
above the cavity mount. They are connected via a frame grabber to a camera computer,
where a graphical interface [Ums99] allows to automatically save the picture series as
bitmaps. Picture analysis is done automatically by MatLab scripts.

2Pulnix TM620
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4.7.1 Experimental cycle

A typical experimental cycle starts with a 3s MOT-loading phase, followed by 20ms
molasses phase, after the quadrupole field has been switched-off by a fast switch. Already
during this MOT phase the power supply for the bias field coils is ramped up, but still
disconnected by another switch. After the lasers are turned off, this switch allows to
quickly ramp up the bias field and the wire current to create the magnetic guiding
potential. After a guide loading phase of typically 20ms, the magnetic fields can be
ramped to different values to overlap the guide with the cavity mode. To protect the
atoms from stray light during the guiding phase, the cavity laser is locked to the smallest
possible power. Shortly before the guided atoms reach the cavity region, the cavity
laser lock is switched off, so the laser is free running during the actual experiment.
Additionally, the lasers intensity is set to the desired value. After the atoms have passed
through the cavity, a fluorescence image of the cloud is taken using a CCD camera
and the MOT beams at resonance. After this experimental cycle, the cavity laser is
recaptured by the lock and the MOT-beams and fields are switched on again.

4.8 Fibre cavity chip

While the experiments with the macroscopic cavity were performed to test the laser and
cavity locking schemes and to find an optimal detection scheme, the atom chip setup
with micro-optical elements was designed and fabricated. In the following the fabrication
of the first fibre cavity chip will be quickly sketched.

4.8.1 Chip production

The atom chip consists of µm-sized gold wire structures and electrodes which produce
magnetic and electrostatic potentials for atom manipulation. The heart of the chip
production process is the lithography mask, which is structured by an e−-beam machine.
All the structure information is transferred to the chip via the mask. After the mask
is fabricated, a photoresist covered Si or GaAs chip is exposed to UV light through the
mask. After a standard development procedure, photoresist remains only a the position
of the future gaps defining the wire structures. Then gold is evaporated onto the chip and
finally, remaining photoresist structures are removed by a lift-off process, which creates
the small gaps between the structures. Further details about the chip fabrication process
can be found in [Gro04].

4.8.2 Chip mask

The lithography mask for the first chip containing fibre-optical elements is shown in
Figure 4.17.

The chip design was kept as simple as possible. In the center there is a loading section,
a big Z-structure (500µm wide) with an additional U-structure (200µm-wide) on eigther
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Figure 4.17: Chip mask design: from a central loading zone the atoms will be guided to the detection
zones to the left and right, where the fibre optical elements are integrated

side. This allows to form Ioffe-Pritchard-like potentials with a wide range of trap pa-
rameters, including the option to strongly compress and cool the atoms into a phase
space regime, where Bose-Einstein condensation can be achieved [Hof04, Kru04].

From the loading zones there are two plain 5µm-wide wire guides leading to the chip’s
outer ends. They will be used to transport the atoms to two detection zones to the
left and to the right from the centre, where the fibre-optical elements are placed. The
green lines mark these detection zones. The left side the fibre cavity setup is placed
on as described in Section 4.8.4, on the right side two fibres are placed under an 90◦

angle for fluorescence detection (see Section 4.8.6). In the detection region no additional
traps were designed in order to avoid very cold atoms being reflected by small poten-
tial variations. Such small potential distortions are unavoidably created by transversal
connections to the guiding wire [Sch03]. This will be no longer a problem for future
multi-layer chips, where transversal structures can lead below the guiding wire, which
then should allow to retrap atoms in the detection zones.

4.8.3 Chip mounting

The chip mounting is based on a standard design developed during the 5 years since the
first atom chip experiment has been performed [Fol00]. The mounting adapted to this
experiment is shown in Figure 4.18.A Marcor body is placed on top of the mounting sits
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Figure 4.18: Chip mounting schematic (a), on the flange (b), the underlying copper structures (c) to
create the MOT and the magnetic trap fields

, which will hold the atom chip. Copper structures in U- and H-shape are imbedded,
so that the fields for a chip-MOT [Wil04] and for quadrupole- and Ioffe-Pritchard-like
magnetic traps [Haa01] can be created. Big cooper rods connect these structures to
high-current vacuum feedthroughs in a CF160 cluster flange, which opens up into three
tubes, each closed by a CF40 flange.

The chip is glued to the marcor body, its outer electrodes are wire-bonded to pin con-
tacts, which are connected to a 36-pin feedthrough on one of the CF40-flanges. The
optical fibres attached to the chip are brought into the chamber by Swagelock Teflon
feedthroughs following [Abr98], placed in the other CF40-flanges. Further details can
be found in [Wil20].

4.8.4 Fibre cavities

The fibre cavities have been produced according to the concepts in Section 2.5, namely
the mirrors which form the cavity are implanted into the fibres. First attempts to
write these mirrors directly into the fibre in the form of Bragg reflectors have been
made by shining a strong UV excimer laser through a phase grating and thus induce
an index of refraction modulation [Don93, Arc93]. The mirrors produced in this way
have been far too lossy, among other reasons presumably due to the fact that the grat-
ing had a 1.5µm periodicity which created second order mirrors for the 780nm light.
A more successful technique was to splice the fibre, to polish both ends, to bring a
dielectric layer onto one end by a transfer coating technique, and to glue the second
end back to it. Two of these fibres are then mounted face to face to form a cav-
ity. The cavity quality is optimized by successively renewing one or the other mirror
until the cavity linewidth is no longer decreasing. This process is described in de-
tail in [Sch04]. The parameters achieved for the first fibre cavity on an atom chip
are shown in the following table (measured and calculated according to Section 2.5.2)



4.8 Fibre cavity chip 69

Cavity length L 12 cm Fibre ind. of refra. n 1.5
Mode waist w0 2.92 µm Mode volume Vm 8.0× 10−4 mm3

Gap size d 6.4 µm Add. loss κlo 2π × 9.0 MHz
Mirror transm. T 0.01 Transm. rate κT 2π × 1.3 MHz
Cavity decay r. κ 2π × 10.3 MHz FSR 2π × 1.3 GHz
Finesse F 60 Coupling const. g0 2π × 4.4 MHz

Figure 4.19: Effects of a single atoms on the cavity. Figure (a) shows the transmitted photon number
within τ = 10µs for the empty cavity (black curve) and with an atom in the cavity (red curve) as a
function of the cavity pump rate. The dashed lines mark the shot noise. Figure (b) shows the resulting
signal-to-noise ratio for the detection of this photon number difference as a function of the pump rate

The cavity finesse is limited by the loss rate κlo, which is much higher than the loss
caused by the pure mode mismatch in the gap (κgap = 2π × 1.3MHz). This can be
attributed to losses in the mirrors, which are caused by the epoxy layers in between the
cavity fibre and the mirror coating. To avoid this problem in next generation cavities,
the transfer coating technique has to be replaced by direct mirror evaporation or by
a different attempt to write Bragg grating into the fibres,e.g. by using a grating for
780nm.

Nevertheless, the theory from Chapter 3 makes a promising prediction for a cavity with
parameters as in the table above. A single atoms should be resolvable with a resolution of
3σ. Figure 4.19 (a) shows the expected cavity transmission signal within an integration
time τ = 10µs of the empty cavity (black curve) and with an atom present in the mode
centre (red curve). Figure (b) shows the resulting signal-to-noise ratio.

4.8.5 Fibre alignment

First ideas how to place the fibre cavity on an atom chip, led, together with the company
MiLaSys [Mil05], to the development of vacuum fibre grippers. These devices hold the
fibre only from above, in order to allow the fibre alignment on the chip surface (see
Figure 4.20). This would have allowed to actively align one fibre with respect to the



70 Experimental setup

other, monitoring the light coupled from one to the other and instantaneously gluing
them to the surface.

Figure 4.20: Nanopositioning motors with vacuum fiber grippers, developed together with the com-
pany MiLaSys. They hold the fibres only from above, which allows active alignment on the chip

Finally another much more elegant technique was developed. It was developed in coop-
eration with the University of Mannheim [Liu05]. The fibres are now passively aligned in
U-shaped grooves in a photoresist layer on top of the gold surface. The atom chip with
the ready-structured gold surface is spin-coated with a photoresist called SU8, which
allows for very thick layers, in our case up to 100µm. This photoresist is developed
through a mask patterned by optical lithography. After a lift-off procedure, U-shaped
grooves, which exactly fit to the fibre size, remain on the chip. An usually unwanted im-
perfection even improves the alignment, since the fabrication does not produce straight
walls but a small undercut, as shown in Figure 4.21.

Figure 4.21: Figure (a) shows a microscope image of the fibre mounting structures, Figure (b) shows
a fibre inside one of the grooves held by the undercut.

Once the fibres are pressed into the grooves, they are locked there. Extensive tests have
shown that the passive alignment achieved in this way has a higher accuracy than an
active alignment using a commercial nano-positioning unit. These results are shown in
Figure 4.22, where the fibre cavity finesse is plotted as a function of the gap size between
the two fibres.
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Figure 4.22: Measured cavity finesse as a function of the gap width. The red points show an actively
aligned cavity, the blue points a cavity where the fibres are sitting in the alignment grooves. The
theoretical curve is calculated from the model in Section 2.5.2

The red points correspond to an actively aligned cavity, the blue points to a cavity, where
the fibres are located in the alignment grooves. The theoretical curve is calculated from
the model in section 2.5. The oscillations reflects the geometry of the fibre cavity, where
boundary conditions have to be matched at the cavity mirrors and the fibre endcaps
(see Section 2.5.2).

4.8.6 Other fibre optical elements

Besides this fibre cavity setup, two other experiments are planed to be performed with
the first fibre chip. At the same detection zone as the cavity (see Figure 4.17) a tapered
and lensed single-mode fibre is placed into an alignment groove. It produces a focus at
40µm with a waist of 2.5µm. Its focal point is overlapped with the centre above the
guiding wire, so that is allows to excite traversing atoms very efficiently. The light is
collected by a second, multi-mode fibre in an alignment groove one the other side of the
wire (see Figure 4.23 (a)). In this way it should be possible to detect an absorbtion
signal of atoms, which scatter light from the excitation beam.

Another tapered and lensed fibre of the same kind is placed in one of the angled grooves
at the other detection zone. It is used to resonantly excite the guided atoms. Now the
fluorescence light is collected by a second, multi-mode fibre placed under a 90◦ angle
in a groove at the other side of the guiding wire. This angle between excitation and
detection fibre avoids direct illumination by the excitation beam.

The completely mounted chip with the integrated fibre optical elements described above
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Figure 4.23: Beside the fibre cavity, two other fibre experiments are placed on the chip. Figure
(a) shows a microscope image of an absorbtion detection setup, Figure (b) the fibres for fluorescence
detection.

can be seen in Figure 4.24. The fibre mounting structures can be identified by their light
scattering in comparison to the otherwise perfectly reflecting gold surface.

Figure 4.24: The completely mounted chip with integrated fibre optical elements.
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In this chapter the experimental results will be presented. Section 5.1 describes methods
to precisely determine the cavity parameters, in Section 5.2 the cavity is used to deter-
mine the properties of the free falling atom clouds and the detection sensitivity of the
cavity is explored. In Section 5.3the detection of magnetically guided atoms is reported
and the guiding potential is used to align the position of the atoms with respect to the
cavity mode. In Section 5.4 various methods to detect the cavity transmission signal are
compared.

5.1 Cavity characterization

When the cavity was assembled, two important quantities had to be measured accurately
to decide whether it is suitable for experiments with cold atoms. The first is the cavity
length, which has to be extremely well known, especially close to the concentric point, as
the single-atom coupling constant critically depends on it 2.4.4. Secondly the finesse as a
measure of the cavity loss rate is important, since for optimal atom detection conditions
the theory has predicted constraints on these loss rates (see Section 3.3.1).

5.1.1 Length measurement

The length of the cavity was determined by the following method: the mode match-
ing optics was slightly misaligned in one spatial direction, which leads to an increase
of the higher order transversal modes (in this direction) in the spectrum (see Figure
Figure 5.1 (a)). For a perfectly mode matched pump beam these modes are strongly
suppressed. In this way the cavity length can be quantified by measuring the relative
positions of higher-order transversal resonances of different axial mode numbers (the
index j in Equation 2.29) and by comparing them, using the resonance condition in
Equation 2.29. A measurement with MHz accuracy corresponds to a spatial precision
of micrometers. Close to the concentric point, the spectrum becomes very clear. The
modes with the same axial mode numbers j now unravel and string in the right order
next to the ground mode as shown in Figure 5.1 (b). This simplifies the identification
of the modes, furthermore it is now possible to determine the cavity length with mi-
crometer precision by simply counting the number of higher order modes within one free
spectral range (between two ground modes). In Figure 5.1 (a) there are 27 mode within
one FSR which translates to a cavity length of 19.934± 0.002mm.
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Figure 5.1: The cavity spectrum used to determine the length: Figure (a) shows the measured spec-
trum over one full spectral range, Figure (b) shows the calculated resonance frequencies.

5.1.2 Finesse measurements

To measure the finesse of a cavity, a well established method is the so-called ring-down
measurement [Kee88, Rem92], where the decay of the cavity field is monitored after
switching of the pump beam. This allows to directly measure the decay rate κ, which,
given the free spectral range, determines the finesse

F =
FSRπ

κ
=

c

2L

π

κ
. (5.1)

In our case the decay rate is quite high, on the order of a few MHz. These measurements
would require a high time resolution. Thus it is more convenient to use an alternative
method: By tuning the cavity length over the pump laser resonance the resonance
linewidth can be measured. The necessary frequency calibration is done by using the
rf-sidebands as frequency markers. The sidebands are modulated on the pump beam
for the laser and cavity lock (see Section 4.2.1). By increasing the rf-modulation depth
on the laser, the sidebands become visible in the cavity length scan as shown in Figure
5.2. The modulation frequency can be precisely measured on a spectrum analyser,
which allows to calibrate the frequency axis in the scan. In Figure 5.2 the cavity length
was L = 19.93mm. The full width at half maximum ∆ν of the fitted Gaussian curve
determines the loss rate κ:

κ

π
= ∆ν = 6.5MHz, (5.2)

which yields a cavity finesse of F = 1160.

5.1.3 Finding an appropriate cavity length

Since an experimental goal was to minimize the cavity mode waist and thereby increase
the atom-light coupling, in order to simulate the conditions in a fibre resonator, the
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Figure 5.2: Cavity finesse measurement by evaluating the linewidth of the resonance curve. The
rf-sidebands at ±20.2MHz serve for frequency calibration.

cavity operation point had to be chosen as close as possible to the concentric limit (see
Section 2.4.4). On the other hand, a stable operation is necessary, with a loss rate not
much larger than the mirror transmission rate, as required for optimal atom detection
(see Section 3.3.1). Therefore, the finesse was measured repeatedly, as the cavity length
was increased. The results are shown in Figure 5.3.
Beyond a certain cavity length, the finesse starts to drastically drop. To analyse the
origin of this drop, the data points have been fitted by a finesse function with a cavity
loss factor which is proportional to the beam cross section on the mirror compared to
the confocal case (wm/wm,conf)

2:

F =
2πFSR

2(κT + κlo)
=

π

T + lo
(

wm

wm,conf

)2 =
π

T + lo√
1−g2

, (5.3)

with the cavity parameter g = 1−L/R. The maximum finesse is reached at the confocal
point (L = R). For perfectly reflecting mirrors (T=0), one finds

Fmax =
π

lo
. (5.4)

Expressing the finesse in terms of T and Fmax will gives the function that is fitted to the
data points in Figure 5.3

F =
Fmax

Fmax
T
π

+
[
1−

(
1− L

R

)2]−1 . (5.5)
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Figure 5.3: The figure shows finesse measurements for different cavity lengths. A finesse function with
a loss factor proportional to the beam cross section on the mirror is fitted to the data. The mirror
transmission is determined from the fit to be T = 0.9× 10−3.

Figure 5.3 shows that this function fits the data fairly well, which leads to the conclusion
that the losses are dominated by an effect which scales like the spot size on the mirrors.
This can be effects due to surface roughness. Such roughness gives rise to small angle
divergences for the backreflected light, which causes a mode mismatch and therefore
losses.

The mirror transmission, which was left as a fitting parameter was found to be (T =
0.9±0.1)×10−3. This is in perfect agreement with the specification of the manufacturer
of T = 10−3. The cavity mirror transmission rate then results in κT = 2π × 1.2MHz.

A direct way to determine the mirror transmission, is described in [Hoo01]. It involves
measuring both, reflected and transmitted signal of the cavity. For our purposes the
result of the extrapolation is sufficient.

As the cavity operation point, the length L = 19.93mm was chosen, just before the
finesse breaks down. At this length, a finesse F = 1160 was measured. Taking the mirror
transmission rate into account, this amounts to an additional loss rate κlo = 2π×2.0MHz.
The maximum coupling constant of such a cavity according to Equation 3.38 results in
g0 = 2π× 3.0MHz. The mode waist at the chosen cavity length is w0 = 12.1µm and the
overall mode volume becomes Vm = 2.3×10−3mm3. This is the limit of this macroscopic
setup. Still, the expected mode waist of a fibre cavity as described in Section 2.5.2 will
be 2.9µm, which would yield gain factor of 4 in the single atom cooperativity parameter,
determining the single atom detection efficiency (see Section 3.3.1).

Early experiments described in this work have been performed with another cavity mirror
charge, where the equivalent measurements gave a mirror transmission of T = 1.8 ×
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10−3 as described in [Hoc03]. The cavity length was then chosen to be L = 19.86mm,
corresponding to a waist of w0 = 14.4µm. At this length a finesse of F = 410 was
measured. The cavity parameters were (g, κT , κlo) = 2π × (2.5, 1.1, 7.1)MHz. For some
of the measurements presented here the finesse dropped even below a value of 410 due
to long time instabilities as described in Section 4.5.1. Nevertheless, as predicted in
Chapter 3 even these cavity parameters should still allow for single atom detection, if
one could position an atom into the centre of the mode where the coupling constant is
maximal. But with a system of many atoms, where the single atomic positions are not
controllable to that extent, one has to drop a fairly high number of atoms (≈ 106) to
reach an effective atom number of 1 in the cavity mode, as discussed in Section 3.5.

5.2 Free falling atoms

First experiments have been carried out with free-falling atoms. The atoms have been
loaded and cooled in a MOT, which finally was shifted to the right position above the
cavity to drop the cloud. The time needed by free falling atoms to traverse the distance
of ≈ 2cm to the cavity was ≈ 65ms. The first detected signals from atoms falling
through the cavity are shown in Figure 5.4. The red curve shows the gaussian shaped
dip, the black curve, for comparison, shows the same experimental cycle, but with the
quadrupole coils switched off, which inhibits the loading of a MOT.

Figure 5.4: First signal from an atomic cloud passing the cavity, when the atoms are dropped at t = 0
the cavity is switched to the desired pump intensity, the passing atoms produce a gaussian dip in the
signal (red curve). The black curve shows for comparison the same experiment when the MOT fields
stay off, i.e. the cavity transmission signal in absence of atoms.

In the experiment shown in Figure 5.4 a cloud of 2.3 × 106 atoms was dropped from
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a MOT into a cavity of L = 19.86mm and F = 410. After a free fall of 64ms, the
cloud, which has ballistically expanded to a width σ ≈ 4.3mm, reaches the cavity mode.
Following the method in Section 3.5, the overlap integral between atomic distribution
and cavity mode function can be calculated to determine the effective atom number in
the mode, corresponding to the atom number that couples with the maximum rate of
g0 = 2π × 2.5MHz to the cavity field. For the given parameters this was Neff ≈ 2.

5.2.1 Temperature

The cavity signal can be used to analyse the distribution of the falling atoms, e.g. to
determine their temperature.

Figure 5.5: A typical temperature measurement: the freely expanding atoms are imaged by a CCD
camera and the function 5.6 is fitted to the cloud. The temperature is given by the mean thermal
expansion velocity, in this case σv = 62mm/s, which corresponds to T = 39µK

.

The conventional method to measure the atomic temperature is time-of-flight imaging of
the atomic cloud using a CCD camera. The atom’s velocities obey a Maxwell-Bolzmann
distribution which in the quasi-harmonic potential of the MOT can be described by
Gaussian functions in real space as well as in velocity space. The atoms released from
the MOT are then expanding according to

σ(t) =
√
σ2

0 + σ2
vt

2. (5.6)
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Here σ0 is the initial width of the cloud and σv the width of the velocity distribution.
The cloud’s temperature is given by

T =
Mσ2

v

kB

, (5.7)

with kB the Boltzmann constant and M the atomic mass.
The result can now be compared with a method, in which the cavity signal is used to
determine the width of the atomic distribution. Assuming that the atoms fall freely in
the gravitational field, the cloud centre moves according to xc(t) = g

2
t2. The two times,

when the two flanks of the cloud are passing the cavity, can be translated into a cloud
width. This allows to calculate the thermal velocity of the atoms. The width of the
velocity distribution is given by

σv =

√
(gtcσt)2 − (σ0)2

tc − σt

, (5.8)

where σ0 is the initial width of the cloud, tc the time the cloud centre passes the cavity,
and σt the width of the cavity signal on the time axis. This measurement has been

Figure 5.6: A Gaussian fit to the time-dependent cavity signal allows to calculate the temperature of
the falling cloud, in this case it σv = 0.051mm/s corresponding to 27 µK

performed in parallel to the measurements in Figure 5.5. From a Gaussian fit to the
atomic dip in the cavity absorption signal as shown in Figure 5.6, the mean velocity was
determined to be σv = 0.051mm/s, which agrees sufficiently well with the width of the
velocity distribution σv = 0.062mm/s, obtained by time of flight imaging.

5.2.2 Atom number

Another goal of the experiments was to determine the absolute number of atoms inter-
acting. Measurements of the cavity transmission have been performed for varied cavity
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pump power. A typical result is shown in Figure 5.7. Figure 5.7 (a) shows the low satu-
ration regime measured with a photomultiplier, Figure 5.7 (b) shows the high saturation
curves measured with a photodiode.In this experiment a MOT containing 1.5×107 atoms
at a temperature T = 60µK was dropped into a cavity of L = 19.93mm.

Figure 5.7: The plots show the change of the cavity transmission signal induced by a MOT of 1.5 ×
107 atoms being dropped into the cavity. Figure (a) shows the low intensity measurements with the
photomultiplier. The background level was determined from measurements with a closed shutter to be
on average 0.7pW. Figure (b) shows measurements at higher intensities with a photodiode, the relatively
high background (respectively amplifier offset) of 80pW has already been subtracted.

The measurements have been performed in two pump power regimes. For the regime,
where the empty cavity transmission signals were below 10pW, the photomultiplier de-
scribed in Section 4.6.3 was used. Further details about this detection method can
be found in Section 5.4.1. Above the saturation limit of the photomultiplier, with
Pout = 10 − 500pW an amplified photodiode was used. Both devices have been cali-
brated, but to make sure that the two measurements can be compared to each other and
with the theory, the relative drop of the transmission signal must be considered.

Before being able to compare the predictions of the theory to the measured signal,
an important adaptation has to be made. The generalization of the theory for many
atoms as performed in Section 3.5 was restricted to the low saturation regime. For
pump powers around 10pW, the atomic transitions start to saturate (compare Figure
3.13). This means that the non-linear term 2g(~r)2N in the equation for the intra-cavity
photon number 3.30 is no longer negligible compared to the atomic decay rate Γ. Since
the coupling constant g(~r) cannot be assumed to be constant for all atoms, an effective
coupling constant will be introduced. It is the maximum coupling constant reduced
by a constant factor: geff = p g0. The more the atomic cloud is spread, over regions far
away from the cavity waist, where the cavity field strength is low, the smaller p becomes.
This adaptation provides an empirical improvement to the theory. The effective coupling
constant geff is obtained from a fit to the experimental data and is basically determind
by the cavity intensity for which saturation sets in. This manifests itself in a drop in
the relative absorption signal height.
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Figure 5.8: The Figure shows the relative drop in the cavity transmission signal due to the atoms in
the cavity. The theory was fitted to the experimental data with atom number and effective coupling
constant as fit parameters.

The relative drop in the cavity transmission is evaluated for different cavity pump power.
Figure 5.8 shows the result, the red data points correspond to the low saturation mea-
surements with the photomultiplier, the blue points to the high saturation measurements
performed with the photodiode. By fitting the theoretical model to this data, the effec-
tive coupling constant is determined to be geff = 0.1g0. The only other free parameter in
this fit is the total atom number in the cloud, which yields Na = 4×106 in this case. This
number is a factor of 4 away from what was measured in the MOT NMOT = 1.5× 107.
The apparent losses occur most likely during the fall of the cloud. These numbers result
in an effective atom number in the mode of Neff = 2.5.

The theoretical transmission curves calculated with these parameters are shown in Figure
5.9. The pump powers in Figure 5.9 (a) and (b) correspond to those in Figure 5.7 (a)
and (b). The comparison of these figures shows that the experimental results and the
theoretical predictions present very similar time variations.

5.2.3 Sensitivity of the cavity

One of the key experiments was to determine the minimum number of atoms the cavity
could resolve. Therefore the MOT atom number was reduced, by decreasing the Rb-
dispenser current.

A cloud containing 1.7×106 atoms was dropped under the same experimental conditions
as above. Figure 5.10 shows the cavity transmission signals for different pump powers,
again the low power regime in Figure (a) and the high power regime in Figure 5.10 (b).

A theoretical curve is fitted to the maximum relative signal as shown in Figure 5.11.
The fit gives a total atom number of Na = 0.94 × 106, which is again comparable with
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Figure 5.9: Cavity transmission signals which are predicted by the theory for pump intensities cor-
responding to those in Figure 5.7 for the PMT measurements in (a) and the PD measurements in
(b).

the estimate from the fluorescence detection within the MOT, if one assumes about 50%
losses during the fall. The effective coupling constant was found to be geff = 0.22g0,
which is by a factor of 2 higher than in the previous case. This reflects the fact that
the saturation sets in at smaller intensities. One possible explanation could be that the
cloud size was smaller so that a higher percentage of the atoms is concentrated in regions
with strong coupling close to the cavity mode waist. Due to the rather long falling time
this would be possible, only if the atoms were colder. The effective atom number in the
mode is found to be Neff = 0.64.
Figure 5.12 shows the transmission signal calculated from this fit parameters which again
agrees well with the experimental data in Figure 5.10 as long as the latter are above the
noise level.
Another attempt was made to further reduce the atom number in the MOT to 3.5×105.
The results are shown in Figure 5.13 (a). In the photomultiplier measurements for most
of the pump intensities the atom number is masked by the signal fluctuations. Only over
a very small region of pump powers the signal can be resolved by extremely smoothing
the data (adjacent averaging over 10ms time intervals). This means one can clearly state
that the sensitivity limit was reached.
The attempt to fit a theoretical curve to the strongly fluctuating relative signal heights
shown in Figure 5.14 gives a total atom number in the cloud of Na = 1.1 × 105 which
is not too far of from what was measured in the MOT. The effective coupling constant
was found to be geff = 0.63g0 which is again higher than the ones previously found. This
results in an effective atom number in the mode of Neff = 0.07.
The fit parameters are based on very small signals and thus not as exact as the ones
for higher atom numbers, but the mere fact that one can identify a drop in the cavity
signal when the atomic cloud is passing, justifies the statement that the sensitivity limit
of the cavity was found. The corresponding effective atom number in the mode is less
than 0.1.
In conclusion, a fibre cavity of the same parameters would clearly be suitable as a single
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Figure 5.10: Cavity transmission signal from a cloud of 1.7 × 106 atoms being dropped into the
cavity. Figure (a) shows the photomultiplier measurement for low intensities. The background level
was determined from measurements with a closed shutter to be on average 1.0pW. Figure (b) shows
measurements at higher intensities with a photodiode, the relatively high background (respectively
amplifier offset) of 81pW has already been subtracted.

atom detector. This holds, if one manages to place one atom into the waist of the mode,
where the coupling constant is maximal (see Section 5.6). If a system allows to place
the atoms there deterministically one by one, also step-like changes in the transmission
signal should be observable. This was not possible in this experiment, since there was
no way to control the atom positions and the atomic density to this extend. Here, the
signal arises from many weakly coupled atoms, which have the same influence on the
cavity field as 0.1 atoms in the mode waist would have.

5.3 Magnetically guided atoms

A more controllable way to bring the atoms towards the centre of the cavity mode is
loading them into the magnetic guide, which was part of the setup (see Section 4.4).

5.3.1 Guide loading

After switching off the MOT light, the guide is loaded by ramping up the current in
the guiding wire together with a homogeneous bias field. This creates a quadrupole-
like potential for the low-field seeking atomic states, which can be guided through the
cavity mode (see Section 4.4). The optimal loading parameters have been found at the
maximum achievable bias field of Bbias ≈ 10G, produced by a bias coil current of 7.5A,
and the maximum achievable wire current of 33A.
In a wire guide, the trap depth is ideally given by the magnetic moment times the
magnetic field µBbias [Den99]. But in reality, the measured trap depth for the state
with strongest magnetic dipole moment |F = 3,mF = 3〉, given in terms of an atomic
temperature of Ttrap = 580µK, slightly deviates from the value given by the bias field,
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Figure 5.11: Relative drop in the cavity transmission signal due to the atoms. The theory was fitted
to the experimental data with atom number and effective coupling constant as fit parameters.

as discussed in Section 4.4. The trap position is given by the position of the potential
minimum

rmin =
µ0

2π

Iwire

Bbias

= 6.4mm. (5.9)

The fact that the best loading is obtained by the maximizing bias field and wire current
is reasonable, since these parameters provide the largest possible trapped phase space
volume. Furthermore, it is favourable for matching the magnetic trap to the MOT,
which is operated as far as possible away from the shadows, the wire and its mounting
cast in the laser beams (see Figure 4.9).

The picture series in Figure 5.15 shows the loading of the magnetic guide. At t = 0
the MOT beams are switched of and the magnetic fields are ramped up, which quickly
repels the high-field seeking atoms. After 15ms one starts to see the slow splitting of
the remaining atoms into a free-falling fraction in the magnetic-field insensitive mF = 0
states and the magnetically guided atoms in the low-field seeking states. After 65ms the
guided cloud reaches the cavity mode. The intensity of the first picture cannot directly
be compared to the others, since there the atoms are still imaged with all the six MOT
beams on, while after 5ms the atoms move into the shadow of the cavity mounting,
which blocks the 4 horizontal beams.

From Gaussian fits to the free falling atoms and to the magnetically trapped cloud a
loading efficiency of 20% of the atoms from the MOT is measured. This is about 50%
of the fraction of atoms in the low-field seeking states, which would theoretically be
magnetically trappable. For experiments where a large atom number is of importance,
this theoretical limitation could be overcome by optical pumping all atoms into the
highest low-field seeking state [Ben65].
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Figure 5.12: Cavity transmission signals predicted by the theory for pump intensities corresponding
to those in Figure 5.10 for the PMT measurements in (a) and the PD measurements in (b).

Figure 5.13: Cavity transmission signal from a MOT of 3.5×105 atoms being dropped into the cavity.
Figure (a) shows the photomultiplier signals. The background level was determined f to be 0.87pW.
Figure (b) the theoretical curves, obtained by fitting the relative signal for the maximum absorbtion.

5.3.2 Signals from magnetically guided atoms

Figure 5.16 shows the first signals produced by magnetically guided atoms. The peak
signal of the guided atoms is about 60% of the signal from the free falling atoms. Since
the guide loading efficiency was measured to be 20%, the overlap integral of atomic
density distribution and cavity mode function (see Section 3.5) must have increased by
a factor of ≈ 2.8 thanks to the better localization into the cavity mode provided by
the magnetic guide. The theoretical results shown in Figure 3.12 yields a factor of 3.1,
which confirms the experimental result.
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Figure 5.14: The Figure shows the relative drop in the cavity transmission signal due to the atoms.
The theory was fitted to the experimental data with atom number and effective coupling constant as
fit parameters.

5.3.3 Matching potential parameter

To optimally benefit from the increase in atomic density offered by the guiding potential,
one has to match the position of the potential minimum to that of the cavity mode.
This is done by varying the wire current while keeping the magnetic bias field constant.
According to Equation 5.9, the guide position is changes linearly with the current. A
change in the wire current of 12A causes the potential minimum to shift by 2mm. The
bias field is kept constant to ensure a constant trap depth.
How the radial guiding potential shape changes is shown in Figure 5.17. The experi-
ment has been performed by loading the atoms into the magnetic guide at the optimal
position for the MOT and by afterwards ramping down the wire current within 20ms to
the different values. The results are shown in Figure 5.18, where the cavity transmis-
sion signal is plotted as a function of time and wire current. The absorption signal is
highest at a wire current of 24A. This means that the cavity is located at a distance of
4.3mm from the wire centre. Because of the width of the atomic cloud, and because the
signal starts to saturate for the best overlap, the resolution is not better than 1A which
corresponds to 200µm.
Having found the position for the best overlap one can now further compress the trap
. This is possible, without changing the minimum position, since the gradient of a wire
guide scales as

dB

dx
∝ Iwire

r2
min

∝ B2
bias

Iwire

. (5.10)

If the wire current and the bias field are increased by the same factor, the gradient is
increased by this factor, while the trap position stays constant. In the actual experiment
this was not possible, since the cavity was already quite far from the wire and the wire
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Figure 5.15: Picture series of the trap loading: The atoms are released from the MOT at t = 0
and the high-field seekers are quickly repelled. The picture series shows the slow splitting between the
free-falling mF = 0 states and trapped low-field seekers. At t = 65ms the guided atoms are passing the
cavity mode. The camera is looking from the top under a small angle so the atoms are falling slightly
to the left.

current and the bias field needed to bring the magnetic potential minimum to the cavity
mode were already close to the technical limit.

A compression of the magnetic guide has to be applied in the future chip experiments,
where the guiding potential created by micrometer-size wires have to be matched to
the even smaller mode waist (≈ 3µm) of the fibre cavity (see Section 4.8). To achieve a
reasonable probability to place single atoms into this mode waist, the magnetic potentials
have to be compressed to a size of the same order as the cavity waist. This requires a
much higher accuracy than what is currently needed to overlap guiding potential and
cavity mode.

5.4 Detector test

Another aspect in these experiments was to test several methods to detect the small
changes in the cavity transmission signals when a small number of atoms interacts with
a low-finesse, small-mode volume cavity. Some of the experiments have been performed
in the high saturation regime, where the cavity transmission signal was detected by a
strongly amplified photodiode (see Section 4.6.1). But as soon as smaller atom numbers
had to be resolved, the cavity field had to be reduced, since the best detection efficiency
was found to be at an intensity at which the atomic transition was just saturated (see
Section 3.3.1). The limits of this detection method have been reached in intensity as
well as in time resolution.
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Figure 5.16: The figure shows the first signal from magnetically guided atoms (black curve) in com-
parison to free-falling atoms (red curve) and no atoms in the cavity (blue curve). The gain in atomic
density for the guided atoms almost compensates the guide loading efficiency of only 20%. The general
rise of the background signal is due to experimental instabilities, which cause a frequency drift of the
cavity after it is released from the lock (see Section 4.5.2).

5.4.1 Photomultiplier

Alternatively a photomultiplier tube (PMT) was used to detect the low intensity trans-
mission signals. In this case, the PMT had a relatively high quantum efficiency of 8−9%,
which is still poor compared to other devices like avalanche photodiodes. But the big
advantage of photomultiplier tubes over these other systems is the intrinsic noise-free
amplification, due to the electron multiplication at the multiple dynodes. A gain of
7.6× 104 was measured for a supply voltage of 1250V.

The PMT was integrated into the experimental setup together with security devices
protecting it from being overexposed (see Section 4.6.3). An example of acquired data
using the PMT is shown in Figure 5.19. Besides the raw data from a single experimental
cycle in Figure 5.19 (a), the smoothed signal which was used for data analysis is shown
in Figure 5.19 (b). This smoothing was done by adjacent averaging over 2.5 ms. This
averaging makes the PMT signal fluctuations comparable to those of the photodiode,
since the latter has a time resolution of only 5ms due to the strong amplification.

The PMT signal was additionally amplified by a current amplifier with a gain of 107V/A,
which restricted the bandwidth to 20kHz. The noise on the data can be attributed to
two sources. The slow damped oscillations are due to acoustic noise by the shutter,
which protects the PMT from the MOT-light, acting on the PMT focussing optics.
Furthermore, there is a uniform intrinsic noise coming directly from the amplified pho-
tomultiplier. This was verified by illuminating the PMT directly, without further noise
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Figure 5.17: The change of the radial guiding potential is shown if the wire current is scanned at a
constant magnetic bias field.

sources involved. By Fourier-analyzing this data, no characteristic frequencies have been
found, it was basically white noise, whose amplitude increases as the square root of the
signal intensity, as show in Figure 5.20 in a log-log-plot. This corresponds exactly to
the scaling of Poissonian noise. The theoretical shot noise curve, calculated from the
specified values for the PMT quantum efficiency and its gain and from the amplifiers
gain and bandwidth is about a factor of two below the measured noise level. This could
be deviations of the properties of PMT and amplifier from the specified values.

5.4.2 Heterodyning

Furthermore, a heterodyne detector has been set up (see Section 4.6.2), mainly to ac-
cess the phase information imprinted on the cavity transmission signal by the atom, as
suggested in Section 3.4.1. Since so far only experiments with resonant cavities have
been performed, where the phase change due to the intra-cavity atoms is masked by a
large amplitude change, the heterodyne detection setup was used to extract also this
amplitude signal. A simple envelope detector extracted the amplitude change of the
152MHz beating between the cavity signal and a local oscillator (an injection locked
slave laser). With the heterodyne detection scheme the cavity transmission signal is
optically amplified, which has the advantage of producing a signal which is in principle
only shot noise limited and preserving the signal bandwidth. The detection resolution
is therefore only restricted by the cut-off frequency of the envelope detector, which was
chosen to be 100kHz (see Section 4.6.2). As a prove of principle, we have detected
atomic signals with this setup, which are shown in Figure 5.21. Figure 5.21 (a) shows
the experimental data at the full bandwidth, Figure 5.21 (b) the smoothed signal by
adjacent averaging over 2.5ms. It is obvious that the extraction of the amplitude, from
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Figure 5.18: Experimental data from the wire current scan. The cavity position can be identified
from the point of highest absorption at Iwire = 24A to be at a distance of 4.3mm from the wire centre.

the oscillating signal, did not succeed perfectly well, but the atomic signal can clearly be
extracted. Analysing these data, it was found that the strong, damped oscillations on
top of the signal are mainly caused by vibrations of the chamber due to the switching
of the big quadrupole coils and by the opening of the shutter before the measurements.
Both seem to cause vibrations of the cavity beam with respect to the beam from the
slave laser, which influences the interference pattern. It will be crucial to overcome this
problem if this setup is used for phase detection, since the detection of a small relative
phase between both signals will even more sensitive.
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Figure 5.19: The signal from the photomultiplier amplified with 20kHz bandwidth in (a) and averaged
over 2.5ms in (b).

Figure 5.20: Noise level of the Photomultiplier under direct illumination from an attenuated, locked
laser. The signal was amplified by a current amplifier with a gain of 107, The curve is fitted by a square
root function which reflects the Poissonian statistics. The theoretical shot noise level, which is added
to the plot, was calculated from the specified detector sensitivity and the amplifier bandwidth.
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Figure 5.21: Figure (a) shows the raw signal from the envelope detector in the heterodyne setup with
a bandwidth of 100kHz. Figure (b) shows the data after adjacent averaging over 2.5ms. The intensity
calibration has been done by measuring the background intensity with a calibrated photodiode.
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5.5 Results

In this thesis an experiment was designed and set up, with the goal of studying the
interaction of cold Rubidium atoms with strongly focussed light fields produced by
micro-optical elements, like fibre-cavities and fibre lenses. The philosophy behind these
experiments is to miniaturize the optics and thus the light fields they produce to such a
degree that the beam diameters approach the order of magnitude of the atomic scatter-
ing cross section (≈ 0.3µm2). This strongly enhances the interaction strength between
single atoms and these fields (see Section 3.1). The microoptical devices will then be
integrated on atom chips, where so far magnetic and electrostatic fields created by cur-
rent and charge carrying micro-structures are used to manipulate cold neutral atoms
[Fol00]. Among the applications for integrated microoptics on atom chips, one of the
most pressing is the task of single atom detection. Thus the experiment, which was set
up is mainly focussing on the implementation of an on-chip single atom detector.
The central feature of the designed detection scheme was a fibre-optical resonator as
described in Section 2.5. In parallel to the development of fabrication techniques for
the fibre cavities on atom chips (see Section 4.8.4), a test resonator was build from
macroscopic mirrors. This setup allowed to simulate the basic properties of a fibre
cavities, i.e. a small waist and relatively low quality mirror, resulting in a low finesse
(see Section 4.5). This was implemented by increasing the cavity length as close as
possible to the concentric limit of the stability region (see Section 2.4.4), to strongly
focus the cavity mode. In this experiment a mode waist of w0 = 12µm was reached,
which is only a factor of 4 larger than the waist of a fibre cavity (see Section 2.5). The
mirror quality was chosen to be comparable to those used for fibre cavity. This choise
led to a cavity finesses on the order of 1000 (see Section 5.1.3).
Even though this is more than 3 orders of magnitude below the values that are used
in CQED experiments with single atoms, the plan to build a single atom detector from
such devices is supported by a theory which was developed in the framework of this
thesis (see Chapter 3). The theory predicts that the low resonator quality is to some
extend compensated by the small mode cross section of the cavity, which enhances the
atom-light coupling (see Section 3.2.5). To quantify this prediction, even for the first
on-chip fibre cavities which have been produced in our labs (see Section 4.8.4), having
a finesse of only F = 60, in a single-atom detection experiment a signal-to-noise ratio of
S = 3 can be expected with an integration time τ = 10µs (see Figure 4.19).
The experiments, which have been performed with the macroscopic test cavity finesse
but has verified this theoretical prediction. Measurements with a cavity of waist of
w0 = 12µm and a finesse of F = 1200 could resolve an average effective atom numbers
of Neff < 0.1 within the cavity mode (see Section 5.2.3).
Beside testing the sensitivity of the cavity, experiments have been performed, where
atoms were guided to the cavity in a magnetic potential created by a current carrying
wire and an external bias field. This allowed to increase the atomic density within the
cavity mode (see Section 5.3) and allowed position matching of the atomic cloud and
the fibre mode. Thus, first elements of the atom chip technology have been employed.
All these experiments have been used to extensively test the experimental components
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under the aspect of their suitability for future atom chip experiments. Special attention
was devoted to the issue of detecting the small changes in the cavity transmission.
Therefore different detection schemes have been setup and tested (see Section 5.4).
Most of the results can be directly applied to the upcoming experiments with a fibre
cavity integrated on an atom-chip.

5.6 Future experimental challenges

Even though the experiments performed in this work were using a macroscopic cavity
and macroscopic wire structures to create the magnetic guiding potentials, some of the
biggest experimental challenges which will arise when the setup is rebuild into an atom
chip experiments could be identified. The main topic will be briefly discussed here.
These are the maintenance of a high enough atomic density during the transport to
the cavity and the interaction of the atom with stray light, before the cavity mode is
reached.

5.6.1 Atomic transport

The experimental results clearly verify the prediction of the theory that single atom
detection is possible even with low finesse cavities, due to the increased coupling because
of the small cavity mode waist. In a fibre cavity, the mode width is almost constant
along the axis in the detection gap (see Section 2.5). So, in contrast to the experiments
with near-concentric resonators performed in this thesis, the atom-light coupling does
not depend on the position along the cavity axis. The remaining challenge is to place an
atom into the cavity mode. A mode volume in the gap of only 43µm3 requires an atomic
density of 2 × 1010cm−3 at the position of the cavity, in order to find on average one
atom in the mode. This is very hard to achieve due the fact that the fibre chip cavity
is more than 1cm away from the loading region. So far a simple wire guide, confining
only in the two radial directions is intended to guide the atoms there. To be able to
also bring a high-density Bose-Einstein condensate to the detection zone, conveyer-belt
structures either created by dynamically switched magnetic fields [Hae01], or by moving
optical potentials [Kuh03] should be considered for next generation atom chips.
A further difficulty is the guidance of the atoms within the fibre gap, since the fibre
diameter is 125µm and the gap is only 6µm wide. This requires an extremely tight
confining potential to avoid the atoms being affected by the fibre endfaces. Additionally,
the vertical position of the atomic guide has to be matched to the position of the fibre
core with µm-accuracy. All together, a precise control of all involved magnetic fields is
required.

5.6.2 Stray light

A further experimental difficulty will be the problem of stray light. While the atoms are
magnetically guided, complete darkness is needed. On the other hand, the fibre cavity
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has to be frequency locked, which so far has been done with the same light beam as
the detection. This lock scheme requires constantly a certain amount of light. At every
cavity round trip a certain amount of this light is lost from the cavity mode due to the
imperfect mode matching of both fibres (see Section 2.5). This light will be scattered
into the fibre gap. So very likely, some light will hit the atoms before they reach the
cavity mode, which will cause strong losses from the magnetic guide.
There are two strategies to overcome this problem. Firstly one can add a strong second
laser, far detuned from the detection light to lock the cavity. The advantage would be
that this locking beam could additionally be used to form an intra-cavity dipole trap
holding the atoms in cavity mode [Mau05]. The experimental difficulty arising then
would be the complete spatially separate the strong locking beam from the weak signal
beam before the detection.
A second possibility would be to use a single frequency for cavity lock and detection,
but detune it by a few atomic linewidths from the atomic resonance. Regarding the
non-disturbance of the atoms in the detection process, this would allow to use a high
enough laser power for the lock without influencing the atoms to much before they reach
the cavity mode. But off-resonant pumping would require to detect the atoms via the
phase shift they imprint onto the cavity signal, which could be done by the heterodyne
detector, which was setup within this work (see Section 3.4.1 and 4.6.2).

5.7 Resonator geometries

Besides the fibre cavity setup which is realized now, there are a few alternative geometies,
which could be considered in future setups. A present problem is the imperfect mode
matching within the fibre gap due to the divergence of the mode outcoupled from a
fibre (see Section 2.5). A big improvement would be to introduce focussing elements.
The fabrication of concave mirror structures onto the fibre endfaces has already been
achieved in our labs as presented in [Sch04].
If one implemented this at both fibre endfaces, a resonator would be formed inside the
gap with a much higher finesse of up to F = 1000 [Sch04], not only because the mode
mismatch is eliminated, but also because the epoxy layers between fibres and mirror
coating, which are inside the cavity mirrors in the current setup and cause additional
losses, would then only be needed outside the cavity. On the other hand, a new difficulty
would be the tuning of this gap resonator. In the current this is done by stretching one
of the fibres. A compromise could be a resonator created by a concave mirror on one
side and a plane uncoated fibre on the other side, where the mirror is implanted in the
fibre, which allows to tune the cavity length by a fibre stretcher. More details can be
found in [Sch04].
Totally different approaches have followed in other groups working on the same subject.
Some of them are very promising, since they seem to be compatible with the atom chip
concept. Those will be briefly mentioned in the following. Besides Figure 5.22 (d), which
shows a Fabry-Pérot micropost, where the light is emitted vertically [Ger98], the other
resonator geometries in Figure 5.22 (a)-(c) are taking advantage the fact that in perfectly
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Figure 5.22: The figure shows various microresonator geometries: a microsphere [Ver98] in (a), a
microtoroid [Arm03]in (b), a microdisc [Gay99] in (c), and a micropost [Ger98] in (d).

round 2- or 3-dimensional structures light is circling in so-called whispering gallery modes
with extremely small loss rates. Figure 5.22 (a)-(c) shows in this order a microsphere
[Ver98], a microtoroid [Arm03], and a microdisc [Gay99]. For some of the devices their
feasibility for single-atom detection has already been estimated. Mircospheres were
studied in [Lon03] and microdiscs in [Ros04].
The resonator geometries in Figure 5.22 (b)-(d) are especially suited for an integration
on atom chips, since they could be grown directly onto the chip substrate. The biggest
experimental difficulty, if one wants atoms to interact with these resonators, arises from
the fact that the resonator modes are not directly accessible, since they travel inside
the substrates. The only way to couple atoms to these modes is via the evanescent
field, which is leaking out of the resonators. But since this evanescent field is decaying
exponentially fast on the scale of the light wavelength, an atom has to be brought as
close as ≈ 100nm to the surface for the atom-light coupling to be sufficiently strong. To
achieve this even in a system with extremely strong control on the atomic position as
the atom chip, this is very ambitious.

Figure 5.23: The figures shows two photonic bandgap resonators. In (a) the resonator is created by
a waveguide interrupted by two mirrors [Kra01]. Figure (b)shows the corresponding intensity pattern.
The crystal structure in (c) is optimized to achieve strong coupling to atoms which are dropped into
the central hole of the structure [Vuc01], Figure (d) shows the calculated intensities and Figure (e) a
possible wire configuration to trap the atoms.

Another interesting class of devices are photonic crystal resonators. These photonic
crystals are periodically structured materials (e.g by holes in a dielectric material). The
resulting modulation of the index of refraction affects the propagation of light inside
these materials. Photonic band gaps [Yab87, Saj87] are created in the same way as
electronic energy bands are formed in semiconductor crystals. This has strong effects
on the propagation of light. By introducing crystal defect structures, light propagation
in certain direction becomes possible again, which allows to create all kinds of optical
structures, like waveguides, mirrors, and resonators. Figure 5.23 shows two photonic
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crystal resonator geometries. In Figure 5.23 (a), a defect line(the one without holes)
creates a linear waveguide, which is interrupted by two holes at each side of the centre,
which form the resonator mirrors [Kra01]. The resulting intensity pattern is shown in
Figure 5.23 (b). Figure 5.23 (c) shows a resonator which is designed to achieve strong
coupling to single atoms dropped into the central hole [Vuc01]. Figure 5.23 (d) shows
the calculated intensity pattern and Figure 5.23 (e) shows the photonic crystal together
with a wire structure in a Weinstein-Libbrecht configuration [Wei95], which allows to
trap atoms just above the central hole [Lev03]. The feasibility of using these resonators
for single atom detection is discussed in [Lev04, Mab01].

The big advantage of the photonic crystal resonators is their extremely small mode vol-
ume, which can be decreased to the order of λ3. Concerning the integration on atom
chips photonic crystals seem to be very promising. So far, the semiconductor atom-chip
substrate serves only for carrying electrical wire structures and optical fibres. If one
integrated photonic bandgap structures into this substrate, it would be possible to cou-
ple light directly from a fibre into one point at the side of the chip, and to distribute
it by waveguide and beamsplitter structures [Bay00, Yu03] to local interaction region.
Furthermore, one could think of pushing the integration even further, by fabricating
semiconductor laser sources directly into the chip and similarly by integrating semicon-
ductor photo detectors. This would move the complete detection setup into the atom
chip.

5.8 Applications

5.8.1 Quantum information processing

Throughout this whole work, the use of small mode volume cavities for single atom de-
tection was discussed. A direct application for such a detector can be found in the field of
quantum information processing and computation (QIPC). A state-selective measure-
ment device is one of the five basic requirements for the implementation of quantum
computation listed by David Di Vincenzo [DiV00]. If the qubit is encoded in the two
hyperfine ground states of a Rubidium atom, two cavities, each in resonance with an
optical transition from one or the other hyperfine state, would represent such a device.
As shown in Section 3.4.2 a non-destructive detection is not far from being realized with
the microcavities discussed in this work.

Beside the use for detection, there is a variety proposals for applications of cavities in
quantum computation and quantum communication. In [Cir97, Mab01] quantum net-
works based on cavity quantum electrodynamics are proposed. The cavities allow to per-
form the transformation between storage/processing qubits, encoded in the long-living
internal states of trapped atoms, and flying qubits, implemented by optical photons.
This allows to exchange information and distribute entanglement between the different
storage, processing, and detection units.

Finally, there are several universal two qubit gate proposals involving entanglement
between an atom and a cavity mode [Dom95, Rau99], between two distant atoms in
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cavities [Sor03], between two cavities [Gio00], or between two different modes[Zub03] of
one cavity, mediated by an atom.

5.8.2 Sensors, switches, etc.

Besides the field of quantum information, there are other applications for matter inter-
acting with microcavities, which start to be implemented. The field of biochemical mi-
crosensors, where cavities are used to enhance the sensitivity of all kinds of spectroscopic
techniques and where completely new methods based on cavities have been developed,
e.g. the cavity-ring-down-spectroscopy [OKe88], is rapidly growing. Also in this field
there exists the trend towards miniaturized and integrated devices [Kri02a, Kri02b]. This
is summarized under the keyword lab-on-a-chip. Finally, microcavities play a more and
more important role in the field of telecommunication, where complete photonic circuits
are integrated on chips. In this context, one recent result was the implementation of an
all-optical switch based on a micro-resonator [Alm04].
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