
Computational Methods
for

Riemann Surfaces
and

Helicoids with Handles

vorgelegt von
Diplom-Mathematiker

Markus Schmies
Berlin

Fakultät II - Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Ruedi Seiler
Gutachter/Berichter: Prof. Dr. Alexander I. Bobenko

Prof. Dr. Ulrich Pinkall

Tag der wissenschaftlichen Aussprache: 16. September 2005

Berlin 2005

D 83

Acknowledgments

There are some people that I would like to thank for their contribution to this
thesis.

First of all I want to express my gratitude and my appreciation to my advisor
Prof. Alexander I. Bobenko, who introduced me to the field of Riemann sur-
faces and integrable systems, the theoretical foundations of this thesis. I am also
very grateful to co-advisor Prof. Ulrich Pinkall for many deep insights, especially
about myself. I would like to thank Prof. John Sullivan for many fruitful discus-
sions during the last 18 months. I am especially grateful to Peter Brinkmann for
editing and proofreading the first four chapters. Furthermore, I want to thank
Charles Gunn for helping me to overcome many problems I had in understanding
the English language. I also like to thank Uli Heller for proofreading the final
chapter, and for his contribution to the jtem-project, which provides the basis for
the numerics presented here. A special word of thanks goes to Holger Pietsch for
his inspiring collaboration in many software projects, especially in the Oorange-
project which enabled many of my numerical experiments. I thank Tim Hoffman
for providing the software-render backend for the jReality-viewer which I used to
render all 3d-images. I would also like to express my gratitude to my colleagues
Christoph Bohle, Paul Peters, and Boris Springborn for their generous support.
Last but not least I like to thank my friends and family for their love, support,
and patience.

iii

Abstract

We develop methods for the numerical treatment of Riemann surfaces and
apply them to the problem of computing and visualizing helicoids with handles.

Using Schottky uniformization to represent Riemann surfaces, we explicitly
express differentials and integrals of the Riemann surfaces as series, and we find a
priori criteria for their convergence that can be evaluated efficiently. We also de-
velop algorithms for the evaluation of these series within prescribed error bounds
and study their efficiency.

Riemann theta functions are a basic technical tool for the description of finite
gap solutions of integrable systems. We give a survey of computational methods
for their evaluation and present new implementations as well as new algorithms
and compare them with current methods.

As an application we perform numerical experiments resulting in images of
helicoids with up to six handles. Our numerical experiments strongly suggest
that there exists exactly one embedded helicoid of a given genus. We also obtain
immersed examples of genus-one helicoids with less symmetry than previously
known examples.

We close with a description of the software libraries that have been created
in the context of this thesis.

v

Contents

Acknowledgments iii

Abstract v

Chapter 1. Introduction and Summary 1
1.1. Introduction 1
1.2. Summary 7

Chapter 2. Numerical Methods for Schottky Uniformization 9
2.1. Introduction to Schottky Uniformization 9
2.2. Convergence of Schottky Series 13
2.3. Error Estimates for Schottky Series 20
2.4. Evaluation Methods for Schottky Series 24
Appendix: Improving Estimates of Schottky Series 30

Chapter 3. Computing Riemann Theta Functions 39
3.1. Definition 39
3.2. Pointwise Approximation 40
3.3. Uniform Approximation 41
3.4. The Modular Transformation Property 46
3.5. Theta Functions with Characteristics 49

Chapter 4. Computing Helicoids With Handles 51
4.1. Mathematical Foundations of Helicoids With Handles 51
4.2. Schottky Uniformization of Helicoids with Handles 56
4.3. Numerical Construction 59
4.4. Numerical Analysis of the Examples 66

Chapter 5. jtem - Numerical Libraries 93
5.1. Introduction 93
5.2. Design of the JTEM - Numerical Libraries 94
5.3. The numericalMethods project 96
5.4. The mfc Project 109
5.5. The blas Project 112
5.6. The riemann Project 113

Bibliography 127

vii

CHAPTER 1

Introduction and Summary

1.1. Introduction

The purpose of this thesis is a numerical investiga-
tion of helicoids with handles. Helicoids with handles
are complete minimal surfaces of finite topology, i.e., they
have finite genus and finitely many ends. In fact, heli-
coids have just one end, which is asymptotic to the simple
helicoid.

Among all minimal immersions the embedded exam-
ples are the most interesting. Embedded minimal surface
of infinite topology abound. In the 19th century Scherk
discovered his famous families of singly and doubly pe-
riodic embedded examples. Since then, many more ex-
amples of infinite topology have been constructed, but
until 1984 the only known embedded examples of finite
topology were the plane, the catenoid (Euler, c. 1744),
and the helicoid (Meusnier, 1776).

In 1984 Costa [Cos84] wrote down the Weierstrass
data for his famous minimal torus having one planar
and two catenoidal ends that are all disjoint and sep-
arately embedded. The following year David Hoffman
and William Meeks, working with Jim Hoffman, were
able to generate computer pictures of the Costa surface
indicating that it is embedded, which they proved soon
afterward [HM85].

The family of complete minimal surfaces has an im-
portant subclass of surfaces with finite total curvature
given by all surfaces M for which the integral of the ab-
solute Gauss curvature

∫
M
|K| dA is finite. Costa’s sur-

face has finite total curvature, and many more examples
of finite total curvature have been generated since. The
minimal surfaces that we are concerned with have infinite

1

2 1. INTRODUCTION AND SUMMARY

total curvature because the helicoidal end has infinite total curvature.
In 1993, Hoffman, Karcher, and Wei added a single handle to the helicoid, cre-

ating the first infinite total curvature example of finite positive genus [HWK93].
This helicoid with one handle (He1) inspired the theory of infinite total curvature
minimal surfaces much like Costa’s surface did the finite curvature case. Once
again, plots of the surface strongly suggest that it is embedded, and Weber, Hoff-
mann, and Wolf recently proved this by exposing He1 as the limit of a family of
embedded minimal surfaces that are invariant under screw-motion [WHW03].

In 1997 Collin proved a generalization of Nitsche’s Conjecture that implies
the following result.

Theorem 1.1.1. [Col97] A properly embedded minimal surface of finite topol-
ogy and infinite total curvature has at most one end.

This result is intuitively clear for surfaces with helicoidal ends. It complements
a theorem of Osserman’s that states that finite total curvature implies finite
genus [Oss64, Oss86].

Since all known examples of properly embedded infinite total curvature are
asymptotic to the helicoid, it is natural to ask whether this is true for all such
surfaces. Increasingly more general results toward this end appeared in Hoffman
and McCuan [HM03] and Hauswirth, Perez and Romon [HPR01]. Finally
Meeks and Rosenberg introduced the important class of Weierstrass data of finite
type (see (1.1.1) below) and established the following remarkable theorem in 2001.

Theorem 1.1.2. [MR01] If M is a properly embedded nonplanar minimal
surface with finite genus g and one end, then M is asymptotic to a helicoid and
of finite type.

In 1997 Bobenko gave explicit formulas for global conformal parameterizations
of all infinite total curvature minimal immersions of finite topology with one he-
licoidal end of finite type using the spinor Weierstrass representation [Bob98].
Because of Theorem 1.1.2 his formulas describe in particular all properly embed-
ded nonplanar minimal surface of finite genus.

The aim of this thesis is a systematic numerical exploration of this class of
minimal immersions using analytic methods of the theory of integrable systems as
described in [Bob98]. We hope that the insights gained from our computational
analysis will contribute to the theory of minimal surface and inspire new results
for higher genus infinite total curvature surfaces, like earlier experiments did for
the genus-one case and the finite total curvature case.

The numerics we developed for this task is not specific to this problem, but
applicable to the computation of all finite genus minimal surfaces of finite type.
Our starting point is the spinor Weierstrass representation for minimal surfaces,
which first appeared in notes of Dennis P. Sullivan and later was reinvented in
[Bob94] and [KS93].

1.1. INTRODUCTION 3

Theorem 1.1.3. [Bob94, KS93] Let a,b be two holomorphic sections (spinors)
of a spin bundle S over a Riemann surface R that do not vanish simultaneously.
Then

F (P) = Re

∫ P

Q

(
−a2 + b2, i

(
a2 + b2

)
, 2ab

)

defines a conformal minimal immersion F : R → R
3. All conformal minimal

immersions are described this way.

The parameterization F is of finite type if R is a compact Riemann surface
C of genus g with a finite number of punctures {P0, . . . , Pn}, and the 1-Forms

(1.1.1)
b

a
d
a

b
and ab

extend meromorphically to the punctures. This is a proper generalization of
meromorphic spinors a, b. The latter class has been shown by Ossermann to
describe all finite total curvature surfaces [Oss64].

To specify F one needs to prescribe the compact Riemann surface C, the
punctures {P0, . . . , Pn}, and the spin structure S. Additional data describes the
specific properties of the spinors. For helicoids of finite genus the spinors have
special essential singularity at the puncture (end) and are uniquely determined
by an element v of the tangent space at the puncture P0 and by the spin structure
S. The quadruple (C,P0, v, S) depends on 6g − 2 real parameters. A priori, F
given by such spinors is multivalued, and it only defines a closed surface if the
Weierstrass integrals vanish along all 2g cycles of a holonomy basis of <. This
yields 6g constraints, which shows that the period problem is not generically solv-
able, i.e., there exists no helicoid with generic conformal structure. An analysis
of the He1 shows that its symmetries can be exploited to reduce the number of
constraints, but only one of the symmetries – a 180◦ rotation about a line or-
thogonal to the surface – actually reduces this number to match the number of
free parameters. The same phenomenon can be observed in the higher genus case
also. This motivates the following conjecture:

Conjecture 1.1.4. [Bob98] Any immersed minimal surface of finite topol-
ogy with one helicoidal end is invariant under a 180◦ rotation about a line or-
thogonal to the surface (normal symmetry).

An immediate consequence of this conjecture and Theorem 1.1.2 is that any
properly embedded minimal surface of finite genus is invariant under a 180◦ ro-
tation about a line orthogonal to the surface. The class of surfaces satisfying
this property contains the surfaces that have been under consideration so far:
the simple helicoid, He1, and the experimental genus-two and -three examples of
Traizet (see [WHW03, HW02]).

Efficient numerical methods for generic Riemann surfaces of higher genus are
the key ingredient of our computational analysis. Until recently general numerical
tools were limited to elliptic functions. Heil developed algorithms for hyperelliptic

4 1. INTRODUCTION AND SUMMARY

Riemann surfaces [Hei95], and Deconinck and Hoeij offer Maple packages for
computations of algebraic curves [DvH01].

Common numerical methods represent Riemann surface through algebraic
curves. This approach has serious disadvantages: if one is interested in the
corresponding Riemann surface only one needs to factorize algebraic curves with
respect to birational maps. This complicates the corresponding parameterization
of Riemann surfaces. Moreover, a representation of a Riemann surfaces as a
ramified multisheet covering complicates the description of the homology and
integration paths, which yields complex algorithms. Schottky uniformization is
an attractive alternative to describing Riemann surfaces in terms of algebraic
curves.

A Schottky group is a free, finitely generated, discontinuous group G that
is purely loxodromic, i.e., a Schottky group of rank N can always be generated
by N loxodromic transformations σ1, . . . , σN . A classical theorem states that for
any Riemann surface R there exists a Schottky group G such that R is confor-
mally equivalent to the quotient Ω/G, where Ω denotes the set of discontinuity of
G [For29]. The number N of generators of the Schottky group equals the genus
of the associated Riemann surface. A loxodromic transformation σi is determined
by its fixed points Ai and Bi and the loxodromic factor µi. In other words, a
Schottky group can be parameterized by the data

S = {A1, B1, µ1, . . . , AN , BN , µN} ,

which are fixed points and loxodromic factors of their generators σ1, . . . , σN . This
provides a canonical way of parameterizing Riemann surfaces.

Functions and differentials of the Riemann surface Ω/G are automorphic on
Ω. This yields explicit representations for functions, differentials, and integrals in
terms of Poincare theta series. For example, normalized differentials of the first
kind can be expressed as (-2)-dimensional Poincare theta series:

ωn (z) =
∑

σ∈Gn\G

(
1

σ (z) − Bn

− 1

σ (z) − An

)
dσ (z) .

These series do not always converge. Some sufficient convergence criteria
have been developed and numerically tested (see [BBE+94]). We developed
sufficient a priori convergence criteria that can be evaluated efficiently as well as
algorithms for the evaluation of these series in prescribed error bounds. Finding
general convergence criteria remains an interesting open problem.

The holomorphic spinors are given in terms of Riemann theta functions, which
are the basic technical tool for the description of finite gap solutions of integrable
systems. The Riemann theta function is a complex-valued function of g complex
variables and is defined by

θ (z |B) =
∑

n∈Zg

e
1
2
〈n,B·n〉+〈z,n〉,

1.1. INTRODUCTION 5

where z ∈ C
g and B is a symmetric g-dimensional matrix with strictly negative

definite real part. In 1995, M. Heil developed algorithms for evaluating Riemann
theta function in higher dimensions [Hei95] and established the foundations of
current methods [DHB+04]. Although the series of the Riemann theta function
converges exponentially fast, its evaluation usually accounts for a large portion
of the total computational performance because in higher dimensions the sum
may consists of tens of thousands of terms. We present refinements of existing
methods that accelerate the evaluation process for higher genus helicoids by a
factor of ten. This improvement shifts the computational bottleneck from the
evaluation of Riemann theta functions to the evaluation of the Schottky series
and enables the treatment of examples beyond genus 10.

Our numerical tools work with Schottky groups that have a canonical classical
fundamental domain F ⊂ Ω ⊂ C with exactly N pairs of boundary circles. Each
pair is determined by one of the generators σi. Numerical integration in the
fundamental domain F is considerably simpler than integration in a branched
covering because it obviates the need to keep track of the current sheet. The
fundamental domain F yields a canonical homology basis. This is important for
the final step of the numerical analysis, i.e., solving the period problem.

Finding parameters satisfying the periodicity conditions is theoretically and
numerically a challenging task. For one free real parameter the period problem
can be solved by an intermediate-value argument, which is used for most known
examples. Two-parameter problems are much more difficult and have only been
solved sporadically, e.g., for He1. For higher dimensions direct methods for solv-
ing the period problem have not been successful as of yet. Wolf and Weber re-
cently developed a completely different method using techniques from Teichmüller
theory, which is not currently applicable to our situation [WW02, Web]. For
the time being, we are left with computational methods.

Root finding is a standard task in numerics and there exist a great variety
of methods, but in a high dimensional space it remains the proverbial search for
a needle in a haystack. Even if the numerical root finder succeeds, how do we
know that its result is really a root and not just a numerical artifact? Without a
formal proof we never can be sure, but this does not mean that we have to rely on
images showing convincingly closed surfaces. Our numerical analysis allows us to
distinguish between artifacts, like local minima, and roots, and it also provides
estimates of numerical errors.

In our constructions, we only consider surfaces that possess the normal sym-
metry (Conjecture 1.1.4). Our systems of equations would be overdetermined
without the conjectured holomorphic involution π : C → C of the Riemann
surface. There are two kinds of extremal examples related to the two-sheeted
ramified covering C → C0 = C/π associated to this involution. One extreme
consists of hyperelliptic examples for which the genus of C0 is zero (g0 = 0). Here
one expects the handles to be located along the normal line of symmetry. The
other extreme contains coverings with only two branch points. In this case, the

6 1. INTRODUCTION AND SUMMARY

Two minimal immersions with helicoidal end with associated Rie-
mann surface C of genus 2. In the genus 2 case, there exist only two
kinds of two-sheeted covers C → C0. On the left, C0 is the complex
plane and the handles are horizontally aligned along the normal line
of symmetry. On the right, C0 is a torus and the handles are dis-
placed vertically. Although the periods of both immersions appear
to be closed, this is only true for the helicoid on the left, the He2.
Numerical analysis suggests that there are no closed examples with
vertically displaced handles.

genus of C equals twice the genus of C0 (g = 2g0). The normal line of symmetry
intersects the surface only at the two branch points and one expects vertically
displaced handles. Our numerical analysis only produced hyperelliptic examples,
and it suggests that the other cases are impossible.

Up to genus 10 we have found numerical evidence of hyperelliptic examples;
up to genus 6, we were able to give error estimates. All these examples have addi-
tional symmetries: 180◦ rotations about a vertical and a horizontal line contained
in the helicoid. Some of the results presented here took weeks of computation
on a cluster of twenty-five 2GHz PCs. Using this combination of efficient nu-
merical tools and raw computational power we were able to scan the parameter
space for genus one and two, eventually finding a unique solution of each genus.
This corroborates a conjecture of Weber, Hoffmann, and Wolf stating that for
genus-one, there is only one properly embedded minimal surface of infinite total
curvature [WHW03]. All this evidence supports the following generalization of
their conjecture.

1.2. SUMMARY 7

Conjecture 1.1.5. For each genus g there exists a unique properly embedded
minimal surface M with infinite total curvature. M is hyperelliptic and contains
a vertical and a horizontal axis and is normal to a third. All three axes intersect
orthogonally in one point. M is invariant under 180◦ rotations about any of the
three axes.

We note that this conjecture is a stronger version of a conjecture of Meeks
and Rosenberg that states that the moduli space of properly embedded one-ended
minimal surfaces of genus g consists of a finite number of points [MR01].

The situation is different if we consider general minimal immersions. For the
genus-one case we found sequences of several hundred, non-embedded rhombic
tori with the same symmetries as He1. We also found a couple of examples of
non-rhombic conformal type. In particular these immersions of genus-one with a
helicoidal end do not have all the symmetries of He1. It appears that embedded-
ness has far-reaching consequences, for symmetries as well as uniqueness.

1.2. Summary

In Chapter 2 we introduce numerical methods for Schottky uniformization.
After a short introduction to this uniformization theory we prove a priori criteria
for the convergence of series that describe differentials and integrals on Riemann
surfaces in this uniformization picture. We present algorithms allowing an effi-
cient evaluation of these series within prescribed error bounds and study their
efficiency by means of selected examples.

In Chapter 3 we give a survey of computational methods for evaluating Rie-
mann theta functions, and we present refinements of existing methods as well as
new algorithms that significantly improve upon current methods.

In Chapter 4 we apply our numerical methods to the problem of computing
and visualizing helicoids with handles. After introducing the theory of helicoids
with handles we express the problem in terms of Schottky uniformization. We
discuss those numerical methods that have not been the subject of previous chap-
ters, but are necessary for the computation of helicoids. In particular we focus
on different integration methods and root finding algorithms for functions of sev-
eral variables and analyze the stability of solutions. We report on our numerical
experiments and their results including pictures and data tables of the surfaces
we found.

Chapter 5 deals with the software implementation of our numerical methods.
This code was the origin of the core libraries of the jtem project. We give an
introduction to these libraries including example implementations for the most
important numerical tasks.

CHAPTER 2

Numerical Methods for Schottky Uniformization

Helicoids with handles are defined by Weierstrass data on Riemann surfaces.
For computational purposes we know two suitable representations for Riemann
surfaces: algebraic curves and Schottky groups. Historically, algebraic cuves can
be considered the origin of Riemann surfaces and may therefore be a natrual
representation. Nevertheless, the representation by Schottky groups, also known
as Schottky uniformization, is often more useful.

The space of solutions of a given problem is usually (atleast partially) para-
metrized by Riemann surfaces. Thus if the solution is supposed to meet additional
constrains, e.g. periodicity conditions, it is crucial that the moduli space of
Riemann surfaces associated to the problem can be explicitly parametrized. All
Schottky groups representing a Riemann surface of genus g can be described by
a set of 3g complex variables, the Schottky data, which encodes the generators
of the group.

Schottky uniformization also provides generic closed formulas for differentials
and integrals of different kinds, including period matrices, in terms of infinite
series1. Unfortunately these series do not allways converge and, even worse,
there are no general convergence criteria. The aim of this chapter is to develop
sufficient convergence critera for the various Schottky series as well as efficient
evaluation algorithms for those series when practicable.

2.1. Introduction to Schottky Uniformization

Loxodromic Transformations.

Definition 2.1.1. Let

Mσ =

(
α β
γ δ

)
∈ PSL (2, C)

be the matrix representation of the linear fractional transformation σ (z) = αz+β
γz+δ

and
√

µ, 1/
√

µ its eigenvalues. σ is called loxodromic iff |µ| 6= 1.

Transformations with real trace are classified according to the following defi-
nition:

1The normalized differentials of first kind are given as (-2)-dimensional Poincare theta
series.

9

10 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Definition. A Möbius transformation σ represented by Mσ ∈ PSL (2, C)
with κ = TrMσ ∈ R is called elliptic, parabolic, or hyperbolic respectively if
|κ| < 2, |κ| = 2 ,or |κ| > 2.

Usually loxodromic transformations are defined to be those with nonreal trace.
However, Definition 2.1.1 only requires that they be nonelliptic and nonparabolic,
therefore they may be hyperbolic.

A nonparabolic transformation σ has exactly two fixed points A and B. If its
fixed points are finite, then:

(2.1.1)

(
α β
γ δ

)
=

1

A − B

(
A
√

µ − B 1√
µ

AB
(

1√
µ
−√

µ
)

√
µ − 1√

µ
A 1√

µ
− B

√
µ

)
∈ PSL (2, C)

is its matrix representation with eigenvalues
√

µ and 1/
√

µ. The circle C of radius
1/ |γ| centered at

σ−1 (∞) = − δ

γ
=

A 1√
µ
− B

√
µ

1√
µ
−√

µ

is mapped onto a circle C ′ of the same radius centered at σ (∞) = α/γ. C and
C ′ are called the isometric circles of the transformation σ.

Schottky Uniformization. A free, finitely generated, discontinuous, purely
loxodromic group G is called Schottky group. A more explicit, but equivalent
[Mas67], approach to characterize Schottky groups is the following:

Definition 2.1.2. Let C1, C
′
1, . . . , CN , C ′

N be a set of 2N mutually disjoint
Jordan curves on C forming the boundary of a 2N -connected domain F (Figure
2.1.1). The loxodromic transformations σn, n = 1, . . . , N , defined by

σn (z) − Bn

σn (z) − An

= µ
z − Bn

z − An

, |µ| < 1

transform the outside of the boundary curves Cn onto the inside of the boundary
curves C ′

n. Therefore their fixed points An and Bn lie inside Cn respectively C ′
n.

They generate a group G that is called a Schottky group. Such a representation
is called classical if all the boundary curves are circles.

Denote by Ω the set of discontinuity of the Schottky group G, generated by
σ1, . . . , σN , then Ω/G is a Riemann surface R of genus N [For29]. If we choose
N homologically independent simple disjoint loops v1 . . . , vN on R, and cut R
along these loops, then we obtain a plane region that can be mapped conformally
to the fundamental domain F of G. The loops vk are exactly mapped onto the
curves Ck and C ′

k. Thus the boundary of F is the image of the loops v1 . . . , vN .
Schottky uniformication states that all Riemann surfaces can be represented

in this way [For29]. However, it is unknown whether all Riemann surfaces can be
uniformized using classical Schottky groups. The task of explicitly determining

2.1. INTRODUCTION TO SCHOTTKY UNIFORMIZATION 11

A

A

a

a2

b b

C’

C

C

1

2

1

1

2

2
1

1

C’2

B 1

2B

Figure 2.1.1. The fundamental domain F . an coincides with the
positively oriented C ′

n ; bn runs on F between the points zn ∈ Cn

and σnzn ∈ C ′
n; b-cycles do not mutually intersect. an and bn form

a Schottky generic basis of cycles.

the set S = {A1, B1, µ1, . . . , AN , BN , µN} of uniformization parameters represent-
ing a given Riemann surface is also unsolved. Nevertheless, we can use the data
to parameterize the moduli space of compact Riemann surfaces of genus N . The
complex dimension of the moduli space of compact Riemann surfaces is 1 for genus
N = 1 and 3N − 3 for genus N ≥ 2, hence the S set of parameters is dependent:
Conjugating the Schottky group G with a linear fractional transformation τ yields
to a Riemann surface τ (Ω) /τGτ−1 that is mapped conformally by τ−1onto Ω/G.
The Schottky data transforms to {τ · A1, τ · B1, µ1, . . . , τ · AN , τ · BN , µN}, which
reduces the number of free complex parameter to the dimension of the moduli
space of compact Riemann surfaces.

To compute the period matrix we need to fix a canonical basis of cycles.

Definition 2.1.3. Let Cn, C
′
n, σn, G and F be as in Definition 2.1.2. A canon-

ical Basis of cycles is called Schottky generic if the a-cycles coincide with positively
oriented C ′

n, and the b-cycles bn connect zn ∈ Cn with σn (zn) ∈ C ′
n in F such

that they do not mutually intersect.

Figure 2.1.1 shows a Schottky generic basis of cycles. Its definition does not
uniquely determine the b-cycles and we have to be aware of this when we calculate
period matrices.

12 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Let G be the free group generated by σ1, . . . , σN ∈ G. Each σ ∈ G has a
unique representation

σ = σj1
i1

. . . σjk

ik

with jl ∈ {−1, 1} , il ∈ {1, . . . , N}, and jlil 6= −jl+1ij+1. Denote by

[σ] = [j1i1, . . . , jkik]

the word of σ associated to the generators σ1, . . . , σN and by |σ| = k its length.
Denote further by Gn the subgroup generated by σn and define its cosets as:

G/Gn = {σ |[σ] = [. . . , r] , |r| 6= n}
Gn \ G = {σ |[σ] = [s, . . .] , |s| 6= n}

Gm \ G/Gn = {σ |[σ] = [s, . . . r] , |s| 6= m ∧ |r| 6= n} .

The following lemma is one of the major ingredients of the numerical solution
of our problem. It was adapted in [BBE+94] from the classical papers [Bak97,

Bur92].

Lemma 2.1.4. Let σn, An, Bn, µn and G be as in Definition 2.1.2. If the series

(2.1.2) ωn (z) =
∑

σ∈G/Gn

(
1

z − σ (Bn)
− 1

z − σ (An)

)
dz

are absolutely convergent, then they define holomorphic differentials normalized
over a Schottky generic basis. Their integrals are then given by

(2.1.3) Ωn (z) =

∫ z

∞
ωn =

∑

σ∈G/Gn

log
z − σ (Bn)

z − σ (An)

and the period matrix by

Bnm = δnm log µn +
∑

σ∈Gm\G/Gn,σ 6=id

log {Bm, Am, σ (Bn) , σ (An)} ,(2.1.4)

where the curly brackets indicate the cross-ratio

{a, b, c, d} =
a − c

a − d
· b − d

b − c
.

The Schottky series (2.1.2), (5.6.2), and (5.6.3) do not necessarily converge
in the general case. In fact it is unknown whether an absolute convergent series
exists for a given Riemann surface. Nevertheless, in certain situations absolute
convergence can be guaranteed.

2.2. CONVERGENCE OF SCHOTTKY SERIES 13

Figure 2.2.1. Isometric circles of a decomposable classical Schot-
tky group (black) with a system of decomposing circles (red).

2.2. Convergence of Schottky Series

Before we analyze Schottky series, we want to introduce a very geometric,
and therefore quite elegant, criterion for their convergence.

Let Cn, C
′
n, σn, N,G and F be as in Definition 2.1.2. A classical Schottky

group G is called circle decomposable [BBE+94] if there exists a system of circles
L1, . . . , L2N−3 satisfying the following conditions:

(1) The circles L1, . . . , L2N−3,C1, C
′
1, . . . , CN , C ′

N are mutually disjoint.
(2) The circles L1, . . . , L2N−3 divide F into 2N − 2 regions T1, . . . , T2N−2.
(3) Each Ti has exactly three boundary circles.

Theorem 2.2.1. [FK65] For circle decomposable Schottky groups the Schot-
tky series (2.1.2), (5.6.2), and (5.6.3) are absolutely convergent.

Figure 2.2.1 shows an example of a circle decomposable Schottky group. It is not
trivial to determine the system of 2N − 3 circles decomposing the fundamental
domain by an algorithm. This makes it hard to use this concept to estimate the
numerical error, but it guarantees the convergence for a large number of surfaces.

We seek criteria that allow us to control the errors in terms of the Schot-
tky uniformization data alone, and guarantees convergence for sufficiently small
isometric circles C and C ′. Such estimates have been given first by Burn-
side [Bur92], see also [FK65, Bak97]. However, these authors considered only

14 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

principle mathematical questions about the convergence. They used rather prim-
itive estimates to show that for sufficiently small cirlces the series converge. For
numerics (error estimates) we obtain much more improved versions of these clas-
sical results.

We call a classical Schottky group iso-classical if all the boundary circles are
isometric. Let Cn (C ′

n) be isometric circles of the iso-classical Schottky group G
as in Definition 2.1.2 and denote Cn (C ′

n) by C1
n (C−1

n) and its open interior by
Dn or D1

n (D′
n or D−1

n). Note that

σi
m

(
C \ Di

m

)
= D−i

m ,

because Schottky groups map the outside of Cn onto the inside of C ′
n. This yields

Lemma 2.2.2. For σ(l) = σi1
m1

· . . . · σil
ml

∈ G we have

σ(l+1)

(
C \ D

il+1
ml+1

)
= σ(l)

(
D−il+1

ml+1

)
⊂ σ(l)

(
C \ Dil

ml

)
.

For σ with [σ] = [im, . . .] we have σ (F) ⊆ D−i
m which implies that for all

σ ∈ Gn \G holds σ (F)∩D±1
n = ∅, and dist (σ (F) , F) > 0 for all σ ∈ G, |σ| > 1.

We now define constants measuring the displacement of the fundamental domain
F under an element of the Schottky group. Let σ ∈ G and define

(2.2.1)
k (P ; σ) = minz∈F |P − σ (z)|

K (P ; σ) = maxz∈F |P − σ (z)| .
Let σ(l) = σi1

m1
· . . . · σil

ml
∈ G and P /∈ D−i1

m1
. We conclude that

(2.2.2)
0 ≤ k

(
P ; σ(1)

)
< k

(
P ; σ(2)

)
< . . . < liml→∞ k

(
P ; σ(l)

)

∞ > K
(
P ; σ(1)

)
> K

(
P ; σ(2)

)
> . . . > liml→∞ K

(
P ; σ(l)

)
.

For iso-classical Schottky groups, the limits coincide, i.e.,

(2.2.3) lim
l→∞

k
(
P ; σ(l)

)
= lim

l→∞
K
(
P ; σ(l)

)
,

which follows from the next lemma.

Lemma 2.2.3. Let G be a iso-classical Schottky group and σ(l) = σi1
m1

·. . .·σil
ml

∈
G be a infinite sequence. Then the depending sequence of sets σ(l) (F) contracts
to a point.

Proof. We will show that
∣∣σσ

(l) (z)
∣∣ =

∣∣∣
(
σi1

m1

)′ (
σi2

m2
· . . . · σil

ml
(z)
)∣∣∣ · . . . ·

∣∣∣∣
(
σil−1

ml−1

)′ (
σil

ml
(z)
)∣∣∣∣ ·
∣∣∣
(
σil

ml

)′
(z)
∣∣∣

vanishes in the limit. A computation shows that

∣∣∣
(
σi

n

)′
(z)
∣∣∣ =

(
Rn

|z − P i
n|

)2

,

2.2. CONVERGENCE OF SCHOTTKY SERIES 15

where P i
n is the center and Rn the radius of C i

n. Therefore |σi
n
′ (z)| < 1 for all

z /∈ Di
n. For τ = σi

nσ we define:

θ (τ) = max
z∈F

∣∣∣
(
σi

n

)′
(σ (z))

∣∣∣ = max
z∈F

Rn

|σ (z) − P i
n|

=
Rn

k (P i
n; σ)

.

Thus we have ∣∣σ′
(l) (z)

∣∣ ≤ θ2
(
σ(l)

)
· . . . · θ2

(
σ(1)

)
.

which proves the claim because Lemma 2.2.2 guarantees that

(2.2.4) θ
(
σ(l)

)
< θ

(
σ(l−1)

)
< . . . < θ

(
σ(1)

)
= 1 .

�

We are now ready to give a criterion for the absolute convergence of Series
(5.6.2), and (5.6.3).

Theorem 2.2.4. Let G be iso-classical Schottky group of rank N . If there
exists an index l with

(2.2.5) 2N − 1 < θ−2
l ,

where θl = maxσ∈G,|σ|=l+1 θ (σ), then its corresponding Series (5.6.2), and (5.6.3)
giving the normalized integrals of first kind and the corresponding period matrix
are absolutely convergent.

Proof. Inequality (2.2.4) implies that the sequence of θl is strictly monotone,
i.e.,

0 < θ∞ < . . . < θl+1 < θl < . . . < θ0 = 1 .

If (2.2.5) holds for one index, it will also be true for all larger indices and for the
limit as well. Let

Gn (σ) = log
z − σ (Bn)

z − σ (An)

denote a term of the infinite Sum (5.6.2). Substituting log (z − w) = f (w) in
Gn (σ) yields

|Gn (σ)| = |f (σ (Bn)) − f (σ (An))|
≤ max

w∈σ(F)
|f ′ (w)| · |σ (Bn) − σ (An)|

=
1

k (z; σ)
|σ (Bn) − σ (An)| .

Let σ(l) = σil
ml

· . . . · σi1
m1

∈ G be an infinite sequence growing this time to the left.
Then we have

∣∣σ(l+1) (z) − σ(l+1) (w)
∣∣ ≤ θ2

(
σ(l+1)

) ∣∣σ(l) (z) − σ(l) (w)
∣∣ ,

so that
∣∣Gn

(
σ(l+k)

)∣∣ ≤
∣∣σ(l) (Bn) − σ(l) (An)

∣∣
k
(
z; σ(l+k)

) θ2k
l .

16 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

We would like to bound k
(
z; σ(l+k)

)
(from below) by k

(
z; σ(l)

)
, but we cannot

directly take advantage of (2.2.2) because σ(l) had to grow to the right, but it
grows to the left. To fix this we introduce

k (z; l) = min
σ∈G,|σ|=l

k (z; σ) ,

for which holds k (z; l) < k (z; l + 1). Thus we have k
(
z; σ(l+k)

)
< k (z; l + k),

which implies

(2.2.6)
∣∣Gn

(
σ(l+k)

)∣∣ ≤
∣∣σ(l+k) (Bn) − σ(l+k) (An)

∣∣
k (z; l + k)

≤
∣∣σ(l) (Bn) − σ(l) (An)

∣∣
k (z; l)

θ2k
l .

This proves the convergence of Series (5.6.2), because G/Gn includes exactly

(2N − 2) (2N − 1)l elements of length l+1. The convergence of the Series (5.6.3)
for the period matrix is a consequence of the convergence of (5.6.2) because

Bnm (σ) = log {Bm, Am, σ (Bn) , σ (An)} = Gm (An) + Gm (Bn) .

�

Inequality (2.2.6) will be essential when we develop apostiori criteria for an
evaluation algorithm in Section 2.4.

The proof of the convergence of the Poincare theta series is done with a slightly
different representation of the Series (2.1.2). Let

Hn (z; σ) =

(
1

σ (z) − Bn

− 1

σ (z) − An

)
(γσz + δσ)−2

where (
ασ βσ

γσ δσ

)
∈ PSL (2, C)

denotes the matrix representation of a linear fractional transformation σ. A short
computation shows that for all σ ∈ G we have

(2.2.7) H (z; σ) =
1

z − σ−1 (Bn)
− 1

z − σ−1 (An)
,

so that

(2.2.8) ωn (z) =
∑

σ∈Gn\G
Hn (z; σ) dz ,

which is a (-2)-dimensional Poincare theta series.

Theorem 2.2.5. The theta series (2.2.8) corresponding to a Schottky group
G are absolutely convergent iff

(2.2.9) Γn =
∑

σ∈Gn\G,σ 6=id

1

|γσ|2
< ∞ .

2.2. CONVERGENCE OF SCHOTTKY SERIES 17

Proof. For genus N = 1 the coset Gn\G includes the identity only, therefore
there is nothing to show. For N > 1 let σ ∈ Gn \G. Since σ−1 (∞) = −δσ/γσ we
have

|γσz + δσ| =

∣∣∣∣z +
δσ

γσ

∣∣∣∣ =
∣∣z − σ−1 (∞)

∣∣ |γσ| ,

so that

(2.2.10)
l (σ, n)

K (z; σ−1)2

1

|γσ|2
≤ |Hn (z; σ)| ≤ L (σ, n)

k (z; σ−1)2

1

|γσ|2
,

where

l (σ, n) =
|An − Bn|

K (An; σ) K (Bn; σ)
and L (σ, n) =

|An − Bn|
k (An; σ) k (Bn; σ)

.

Because of (2.2.3) we can guarantee positive upper and lower bounds for all
|σ| > 1, which proves the claim. �

For N > 1, we have Gn \ G ⊂ G = ∪n=1,...,NGn \ G, so that

Γn < Γ <
N∑

n=1

Γn with Γ =
∑

σ∈G,σ 6=id

1

|γσ|2
,

which implies that all ωn, n = 1, . . . , N converge absolutely iff Γ < ∞. This also
holds for N = 1. A short computation shows that

1

|γσk | 2 =
|A − B|2∣∣∣1 −
√

µk

∣∣∣
2 |µ|

k ≤
(

|A − B|
1 −

∣∣√µ
∣∣

)2

|µ|k

and therefore

Γ <

(
|A − B|
1 −

∣∣√µ
∣∣

)2
2 |µ|

1 − |µ| < ∞

for genus 1.

Corollary 2.2.6. All ωn, n = 1, . . . , N converge absolutely iff Γ < ∞ .

Another consequence of Theorem 2.2.5 is that if ωn converges absolutely for
one z0 ∈ F , then it also converges for all z ∈ F . None of these results allow us to
estimate any error or deliver a criterion that can be evaluated computationally.
This is also true for the next lemma, but it shows the right direction.

Lemma 2.2.7. For σ ∈ G with [σ] = [il, . . . , jr], let

κL (σ) =

∣∣∣∣∣
γσ

γσ−j
l

σ

∣∣∣∣∣ and κR (σ) =

∣∣∣∣
γσ

γσσ−i
r

∣∣∣∣ .

Then κL (σ) = κR (σ−1), and Γ converges absolutely if

2N − 1 < κ2 with κ = inf
σ∈G,|σ|>1

κL/R (σ) .

18 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Proof. For any κ̃ < κ, and hence also for all κ̃ ∈]2N − 1, κ[there exists a k0

such that κ̃ < κL/R (σ) for all σ ∈ G with |σ| ≥ k0 and thus for σ(k) = σi1
s1
· . . . ·σik

sk

we have
∣∣∣γσ(k)σ

∣∣∣ =

∣∣∣∣∣
γσ(k)σ

γσ(k−1)σ

∣∣∣∣∣ . . .
∣∣∣∣∣
γσ(k0+1)σ

γσ(k0)

∣∣∣∣∣
∣∣∣γσ(k0)

∣∣∣ > κk−k0

∣∣∣γσ(k0)

∣∣∣ .

Therefore, and because of the fact that there are exactly 2N (2N − 1)k−1

transformations of length k, we have

∑

|σ|≥k0

1

|γσ|2
≤
∑

|σ|≥k0

κ̃2k0−2|σ|
∣∣∣γσ(k0)

∣∣∣
2 ≤ κ̃2k0

γ2
k0

∑

|σ|≥k0

1

κ̃2|σ| ≤
κ̃2k0

γ2
k0

2N

2N − 1

k∑

i=k0

(
2N − 1

κ̃2

)k

where γn = min|σ|=n |γσ|. �

To obtain error estimates one has to control κL/R.

Lemma 2.2.8. Let G be a Schottky group generated by σ1, . . . , σN with fixed
points An, Bn, n = 1, . . . , N . For σ ∈ G with [σ] = [. . . , ir] we have
(2.2.11)

κR (σ) =
1

|Ar − Br|
max

s

∣∣∣∣C
s
r +

δτ

γτ

∣∣∣∣
√
|µis

r | −
∣∣∣∣C

−s
r +

δτ

γτ

∣∣∣∣
√
|µ−is

r | = κL

(
σ−1
)

with C1
r = Ar, C

−1
r = Br and τ = σσ−i

r .

Proof. We have γσ = γτασi
r
+ δτγσi

r
. Using Representation (2.1.1) one sees

that
γσ

γτ

= ασi
r
+ γσi

r

δτ

γτ

=
1

Ar − Br

(
Ar

√
µi

r − Br/
√

µi
r +

(√
µi

r − 1/
√

µi
r

) δτ

γτ

)

=
1

Ar − Br

((
Ar +

δτ

γτ

)√
µi

r −
(

Br +
δτ

γτ

)√
µ−i

r

)
.

�

The fact that τ−1 (∞) = −δτ/γτ yields

k
(
Cs

r ; τ
−1
)
≤
∣∣∣∣C

s
r +

δτ

γτ

∣∣∣∣ ≤ K
(
Cs

r ; τ
−1
)

.

Let σ = τσi
r with |σ| > 0. We let

κR (σ) =
1

|Ar − Br|
(
k
(
C s̃

r ; τ
−1
)√

|µis̃
r | − K

(
C−s̃

r ; τ−1
)√

|µ−is̃
r |
)

,

where s̃ realizes the maximum in (2.2.11), e.g.

κR (σ) =
1

|Ar − Br|

(∣∣∣∣C
s̃
r +

δτ

γτ

∣∣∣∣
√

|µis̃
r | −

∣∣∣∣C
−s̃
r +

δτ

γτ

∣∣∣∣
√

|µ−is̃
r |
)

.

2.2. CONVERGENCE OF SCHOTTKY SERIES 19

Note that κR (σ) < κR (σ).

Lemma 2.2.9. Let G be a iso-classical Schottky group. Then for all ε > 0
there exists an nε such that

κR (σ) − κR (σ) < ε ∀ |σ| ≥ nε .

Proof. A computation yields

κR (σ) − κR (σ) ≤
√
|µis̃

r | +
√
|µ−is̃

r |
|Ar − Br|

Diam
(
τ−1 (F)

)
,

which implies the claim along the lines of the proof of Lemma 2.2.3. �

This leads to a result that allows us to check for 2N − 1 < κ2 by evaluating
κR (σ) for finitely many transformations σ.

Lemma 2.2.10. Let G be a iso-classical Schottky group and

κn = min
|σ|=n

κR (σ) .

Then κn ≤ κ|σ| ≤ κR (σ) < κR (σ) for all n ≤ |σ|, and we have

κ1 < . . . < κn < . . . < κ∞ = κ .

Proof. Let σ = σj
l τσi

r with |σ| = n+1 and κn+1 = κR (σ). Inequality (2.2.2)
guarantees

k
(
C s̃

r ; σ
)

> k
(
C s̃

r ; τσi
r

)
and K

(
C s̃

r ; σ
)

< K
(
C s̃

r ; τσi
r

)
,

so that
κn ≤ κR

(
τσi

r

)
< κR (σ) = κn+1 .

To prove that κ∞ = κ, let σ(n) be a sequence fulfilling κn = κR

(
σ(n)

)
and υ(n)

one with the property
κR

(
υ(n)

)
= min

|σ|=n
κR (σ) .

Moreover, is limn→∞ κR

(
υ(n)

)
= κ implies

κn = κR

(
σ(n)

)
≤ κR

(
υ(n)

)
< κR

(
υ(n)

)
< κ + ε ,

so that κ∞ ≤ κ . On the other hand, Lemma 2.2.9 guarantees that κR

(
σ(l)

)
and

κR

(
σ(l)

)
have the same limit and thus κ ≥ limn→∞ κR

(
σ(n)

)
= κ. �

The following theorem summerizes the last result, Theorem 2.2.5, and Lemma
2.2.7 as an evaluable criterion for the convergence of the Poincare theta series
giving normalized differentials of first kind.

Theorem 2.2.11. Let G be a iso-classical Schottky group of rank N . If there
exists an index l with

2N − 1 < κ2
l ,

then the series (2) giving normalized differentials of first kind are absolute con-
vergent.

20 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

The latter is analogous to Theorem 2.2.4, which handles the case of the nor-
malized integrals.

2.3. Error Estimates for Schottky Series

Throughout this section, let G be always a iso-classical Schottky group. For
a subset S of G/Gn, we approximate Ωn by

Ω̂n (z; S) =
∑

σ∈S

G (σ)

with associated error

εΩn
(z; S) =

∣∣∣Ωn (z) − Ω̂n (z; S)
∣∣∣ .

Let σ(l) = σil
nl
· . . . ·σi1

n1
be a leftward growing sequence in G/Gn i.e., n1 6= n. Then

the proof of Theorem 2.2.4 provides us with estimates for Gn (Inequality 2.2.6)

(2.3.1)
∣∣Gn

(
σ(l+k)

)∣∣ ≤ CΩn

(
z; σ(l+k)

)
≤ CΩn

(
z; σ(l)

)
θ2k

l ,

with

CΩn
(z; σ) =

|σ (Bn) − σ (An)|
k (z; |σ|) .

Let σ = σik
nk

· . . . · σi1
n1

∈ G. Then σ(l) = σil
nl
· . . . · σi1

n1
, l = 1, . . . , k are called

suffixes of σ. The id is a suffix of any group element. If a set S includes all the
suffixes of its elements it is called suffix colsed. The set of suffixes of a subset S
of G is called suffix closure and denoted by S

s
. Relation (2.3.1) shows that the

subset S of G/Gn ⊂ G which is used for approximation should be suffix closed.
The boundary ∂sS of a suffix closed subset S, given by

∂sS =
{

σ ∈ S−1
∣∣∣{σ}s ∩ S−1 = {σ}

}
,

has the property that for all σ ∈ S−1 it includes exactly one element that is a
suffix of σ. This enables a natural projection

πS : S−1 → ∂sS

σ 7→ ∂sS ∩ {σ}s
.

The set π−1
S (τ) consists of all σ ∈ S−1 that have τ as suffix. The set π−1

S (τ) is
the suffix cone Cones (τ), i.e.

Cones (τ) =
{

σ ∈ G
∣∣∣τ ∈ {σ}s

}
,

which yields

Corollary 2.3.1. Let S be a suffix closed subset. Then we have

S−1 = ∪̇σ∈∂sSCones (σ) .

2.3. ERROR ESTIMATES FOR SCHOTTKY SERIES 21

Lemma 2.3.2. Let S be a suffix closed subset of G/Gn. If 2N − 1 < θ−2
|τ | for

all τ ∈ ∂sS , then

εΩn
(z; S) =

∣∣∣Ωn (z) − Ω̂n (z; S)
∣∣∣ <

∑

τ∈∂sS

ε̂Ωn
(z; τ) = ε̂Ωn

(z; S) ,

with ε̂Ωn
(z; τ) = CΩn

(z; τ) R
(
θ2
|τ |

)
and

R (q) =
∑

σ∈Cones(τ)

q|σ|−|τ | = (1 − (2N − 1) q)−1 .

Proof. We have
∣∣∣Ωn (z) − Ω̂n (z; S)

∣∣∣ <
∑

σ∈S−1

|Gn (z; σ)| ,

so that in light of Corollary 2.3.1 we need to show
∑

σ∈Cones(τ)

|Gn (z; σ)| < ε̂Ωn
(z; τ) .

Relation (2.3.1) yields
∑

σ∈Cones(τ)

CΩn
(z; σ) < CΩn

(z; τ)
∑

σ∈Cones(τ)

θ
2(|σ|−|τ |)
|τ | = ε̂Ωn

(z; τ) ,

because there are exactly (2N − 1)k transformations in Cones (τ) of length |τ |+
k. �

To approximate the elements of the period matrix Bnm by

B̂nm =
∑

σ∈S

Bnm (σ) ,

let now S be a suffix closed subset of Gm \ G/Gn. The associated error will be
defined like the one above and denoted by εBnm

(S) . We have already seen that
Bnm (σ) = Gm (An) + Gm (Bn), thus in analogy to (2.2.5) we have

∣∣Bnm

(
σ(l+k)

)∣∣ ≤ CBnm

(
σ(l+k)

)
≤ CBnm

(
σ(l)

)
θ2k

l ,

with

CBnm
(σ) = CΩm

(An) + CΩm
(Bn) .

Summing up the error is more difficult then before. We have

εBnm
(S) =

∣∣∣Bnm − B̂nm (S)
∣∣∣ <

∑

σ∈Gm\G/Gn\S
|Bnm (σ)| .

22 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Since S ⊂ Gm \G/Gn = (Gm \ G)∩ (G/Gn) , we get a simular result to Corollary
2.3.1:

(Gm \ G/Gn) \ S = (Gm \ G) ∩ ((G/Gn) \ S)

= (Gm \ G) ∩ ∪̇σ∈∂sSCones (σ)

= ∪̇σ∈∂sSLeftm (σ) ,

where Cones
m (σ) = Cones (σ) ∩ Gm \ G. This yields further

εBnm
(S) <

∑

τ∈∂sS

∑

σ∈Cones
m(τ)

|Bnm (σ)| <
∑

τ∈∂sS

CBnm
(τ)

∑

σ∈Cones
m(τ)

θ
2(|σ|−|τ |)
|τ | ,

which leads to

Lemma 2.3.3. Let S be a suffix closed subset of Gm \G/Gn. If 2N − 1 < θ−2
|τ |

for all τ ∈ ∂sS, then

εBnm
(S) =

∣∣∣Bnm (z) − B̂nm (S)
∣∣∣ <

∑

τ∈∂sS

ε̂B̂nm
(τ) = ε̂Bnm

(S)

with ε̂Bnm
(τ) = CBnm

(τ) Rm (τ ; q) and

Rm (σ; q) =
∑

σ∈Cones
m(τ)

q|σ|−|τ | = (2N − 2)
q

1 + q
R (q) +

{
1

1+q
σ ∈ Gm \ G

0 otherwise .

We could have estimated Rm (τ ; q) by R (q), but we need the accuracy of
Lemma 2.3.3. We derive the expressions for Rm (τ ; q) in the Appendix. Figure
2.3.1 shows the two ratios φN (q) = Rm (σ; q) /R (q) with σ ∈ Gm\G and ϕN (q) =
Rm (σ; q) /R (q) with σ /∈ Gm \G for positive q < 1/ (2N − 1) and different ranks
(N = 2, 3, 4, 5) of the Schottky group G. For slowly converging series where
q almost equals 1/ (2N − 1) we get an improvement by a factor of 1 − q. For
small q, i.e., for fast converging series, Rm (σ; q) and R (q) almost coincide for
σ ∈ Gm \ G, but for σ /∈ Gm \ G Rm (σ; q) gets small compared to R (q).

Analogous to Ωn we approximate ωn by

ω̂n (z; S) =
∑

σ∈S

Hn

(
z; σ−1

)
dz

and denote the associated error by εωn
(z; S). The proof of Theorem 2.2.5 provides

estimates for Hn. Relation (2.2.10) guarantees:

∣∣Hn

(
z; σ−1

)∣∣ ≤ L (σ−1, n)

k (z; σ)2

1

|γσ| 2
,

Let σ(l) = σil
nl
· . . . ·σi1

n1
be a leftward growing sequence in G/Gn, i.e., n1 6= n. The

definition of L and Inequality (2.2.2) imply that L
(
σ−1

(l+k)

)
< L

(
σ−1

(l)

)
, which

yields in combination with k
(
z; σ(l+k)

)
< k (z; l) and Lemma 2.2.10

(2.3.2)
∣∣∣Hn

(
z; σ−1

(l+k)

)∣∣∣ ≤ Cωn

(
z; σ(l+k)

)
≤ Cωn

(
z; σ(l)

)
κ−2k

l ,

2.3. ERROR ESTIMATES FOR SCHOTTKY SERIES 23

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.3.1. The improvement of the estimates achieved by us-
ing Rm (σ; q) instead of R (q) expressed by their ratio given as
φN(dark) or ϕN(light) for N = 2(gray), 3(red), 4(green), 5(blue).

where l > 1,

Cωn
(z; σ) =

L (σ−1, n)

k (z; |σ|)2

1

|γσ|2
.

Analogous to Lemma 2.3.2, we conclude

Lemma 2.3.4. Let S be a suffix closed a subset of G/Gn. If 2N − 1 < κ2
|τ | for

all τ ∈ ∂sS, then

εωn
(z; S) = |ωn (z) − ω̂n (z; S)| <

∑

τ∈∂sS

ε̂ωn
(z; τ) = ε̂ωn

(z; S)

with ε̂ωn
(z; τ) = Cωn

(z; τ) R
(
τ ; κ−2

|τ |

)
.

The weak spot of our estimates is that we majorize 1/k (z; σ−1) with 1/k (z; |σ|).
This can be rather bad if the radii of the isometric circles differ significantly. The
Appendix deals with this problem and improves the estimates at the cost of
technical complications.

24 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

2.4. Evaluation Methods for Schottky Series

Theorems 2.2.4 and 2.2.11 provide us with criteria for the convergence of the
Schottky series. Ωn and Bnm converge if

(2.4.1) qΩ
∞ = (2N − 1) θ2

∞ < 1 ,

and ωn converges if

(2.4.2) qω
∞ = (2N − 1) κ−2

l̃
< 1 .

The monotone series (q?
l) converges very fast and experiments show that three

terms suffice to extrapolate the limit with a high accuracy. Figure 2.4.1 shows
the analysis of the convergence Criteria (2.4.1) and (2.4.2) for several examples
taken from the family of Riemann surfaces that are associated with constant
mean curvature tori in R3, S3, H3 [Bob91]. These Schottky groups allow an
anti-holomorphic involution in addition to their hyper-elliptic and are Fuchsian
groups of the second kind, for which the Schottky series converges [BBE+94].
For our examples of genus 2 this is obvious because they are circle decomposable.
The examples show that our criteria can guarantee convergence for integrals, and
simultaneously fail for differentials. In all cases we have examined the integrals
converge faster than the differentials. It is astonishing that the criteria can still
guarantee convergence when the circles almost touche. The q?

∞ are good indica-
tors for the speed of convergence. For good numerical results these values should
not be too close to 1. The first example in Figure 2.4.1, which belongs to the
famous Wente torus having a threefold symmetry [Hei95, page 38], is already at
the limit of what we can handle with this method. It is a good candidate for test
cases.

We need to determine a suffix closed subset S? (z; ε) of G/Gn for a given
accuracy ε > 0 such that ε? (z; S? (z; ε)) < ε. For efficiency reasons and numerical
stability as well the subset should be as small as possible.

Let G be a iso-classical Schottky group and l the smallest integer such that
q?
l < 1. In order to use one of Lemmas 2.3.2, 2.3.3, and 2.3.4 any suffix closed

subset must contain all elements with a word length less than or equal to l. We
denote the set of those elements with

Sn (l) = {σ ∈ G/Gn ||σ| ≤ l} ,

which is also a suffix closed subset.
A straightforward approach to determine a smallest suffix closed subset is the

following

Algorithm 2.4.1. Let ε > 0, G a iso-classical Schottky group and l the
smallest integer such that q?

l < 1:
1. Let S(i=1) = Sn (l) .

2. If ε̂
(
z; S(i)

)
< ε, let S? (z; ε) = S(i) and finish.

3. Seek σ(i) ∈ ∂sS(i) with C?

(
z; σ(i)

)
= maxσ∈S(i)

C? (z; σ) .

2.4. EVALUATION METHODS FOR SCHOTTKY SERIES 25

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 1.5729726
2 2.1919203 0.6089423
3 0.7095799 0.6026912
4 0.7008699 0.5972790
5 0.6937671 0.5972347
6 0.6937057 0.5971962

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 2.9883689
2 5.5728355 0.9239982
3 1.1721161 0.9228728
4 1.1678997 0.8975555
5 1.1295999 0.8975374
6 1.1295356 0.8971324

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 2.4897787
2 6.5114680 1.1106899
3 1.6407322 1.0831381
4 1.5694645 1.0162737
5 1.4367818 1.0148276
6 1.4333759 1.0113023

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 0.2075865
2 0.2221489 0.1390086
3 0.1452401 0.1379418
4 0.1440661 0.1378807
5 0.1439990 0.1378796
6 0.1439978 0.1378795

Figure 2.4.1. Analysis of the convergence Criteria (2.4.1) and
(2.4.2) for several examples taken from the family of Riemann sur-
faces delivering all constant mean curvature tori in R3, S3, H3. The
first example in Figure 2.4.1 is the Riemann surface of the famous
Wente torus having threefold symmetry.

26 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

4. Let S(i+1) = S(i) ∪
{
σ(i)

}
.

5. Let i = i + 1 and continue with Step 2.

The algorithm above is simple and gives the optimal result, but the search
in Step 3. makes it rather expensive. A different approach is inspired by the
following property of the boundary of a suffix closed subset:

Corollary 2.4.2. Let S be a suffix closed subset G/Gn. Then

1 =
2N − 1

2N − 2

∑

σ∈∂sS

(2N − 1)−|σ| .

Proof. Let l = maxσ∈S |σ|. Then the boundary ∂sSn (l) ⊂ S−1. π−1
S (σ)

contains exactly (2N − 1)l+1−|σ| transformations of word length l + 1, i.e.,

#
(
π−1

S|∂sSn(l)

)
= (2N − 1)l+1−|σ| ,

which implies

1 =
1

(2N − 2) (2N − 1)l

∑

σ∈∂sSn(l)

1

=
1

(2N − 2) (2N − 1)l

∑

σ∈∂sS

∑

σ̂∈π−1
S|∂sSn(l)

1

=
1

(2N − 2) (2N − 1)l

∑

σ∈∂sS

(2N − 1)l+1−|σ| .

�

This partition of 1 like property yields

Algorithm 2.4.3. Let ε > 0, G a iso-classical Schottky group and l the
smallest integer such that q?

l <1:
1. Let S(i=1) = Sn (l) .

2. Let S̃(i) =
{

σ ∈ ∂sS(i)

∣∣∣ε̂? (z; σ) > 2N−1
2N−2

(2N − 1)−|σ| ε
}

.

3. If S̃(i) = {∅}, let S? (z; ε) = S(i) and finish.

4. Let S(i+1) = S(i) ∪ S̃(i) .
5. Let i = i + 1 and continue with Step 2.

This method offers a good trade-off between the size of S? (z; ε) on one hand
and computational cost on the other. Figure 2.4.2 shows the results of Algorithm
2.4.3 for the differential of first kind ω1 for the example of the Wente tours with
threefold symmetry. The algorithm manages to keep the error ε̂ω1 in the selected
clipping within a range of [3.3, 5.3] · 10−4. Simultaneously the number of terms
used in the approximation of #Sω1 (z; 10−3) varies in the range of [113, 962]. Great
values occur only at “hot spots”, where fixed points of elements of the Schottky

2.4. EVALUATION METHODS FOR SCHOTTKY SERIES 27

Figure 2.4.2. Results of Algorithm 2.4.3: #Sω1 (z; 10−3) (top)
and ε̂ω1 (z; Sω1 (z; 10−3)) for the Wente torus with threefold sym-
metry.

group get close to the boundary of the fundamental domain F . However, most
of the fundamental domain is covered by values at the lower bound of the range,
from which the numerical performance benefits.

In Step 2 of Algorithm 2.4.3 we stay for all σ ∈ ∂sS(i)\S̃(i) below the threshhold
ε̂? (z; σ). We can therefore increase the ε by

2N − 1

2N − 2
(2N − 1)−|σ| ε − ε̂? (z; σ)

28 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

after each test. We will refer to this optimized version as Algorithm 2.4.3?. The
optimized algorithm reduces the range of ε̂ω1 (z; Sω1 (z; 10−3)) in the case above
to [4.0, 6.8] · 10−4 and #Sω1 (z; 10−3) to [87, 812], an improvement of 20%. Figure
2.4.6 (also) shows analogous plots to those in Figure 2.4.2 for Algorithm 2.4.3?,
which lacks symmetry as a result of optimization.

The crucial constants C? (z; σ) separate into a fairly inexpensive computable
z-independent factor and an expensive z-dependent factor k|σ| (z)−p? , with p = 1
for Ωn and Bnm, and p = 2 for ωn. The complexity of the computation of kl (z)
grows exponentially in l, thus it is inevitable to replace kl (z) by kl̃ (z) with a small

l̃ = 1, 2, 3 ≤ l. This is negligible, because kl (z) converges very fast, particularly
with regard to the fact that we earlier replaced k (z; σ) by k|σ| (z) (Appendix).
Just as the computation of q?

l . We do not determine more of them then we have
already computed for checking convergence. At this point we have reduced our
evaluation methods to more or less elementary operations. Figures 2.4.4 and
2.4.3 shows plots, again for the Wente torus having threefold symmetry, of the
integral Ω1 respectively for the differential ω1 of first kind. Even the integral has
periods its absolute value is continues. To realize a period of 2πi its argument
values have to switch their sign at the cut. The plots of the differential of first
kind nicely show its 2N − 2 roots. Each corresponds to an isometric circle, only
the pair of circles of the generator giving the coset related to that differential lack
roots.

After all that effort a natural questions arises: How strict are our estimates?
We estimated the absolute series and thus we can only be as good as these. Let
us denote them with |Ω|n and |ω|n. We define their approximation for a given
suffix closed subset S of G/Gn as

∣∣∣Ω̂
∣∣∣
n
(z; S) =

∑

σ∈S

|Gn (z; σ)| and

|ω̂|n (z; S) =
∑

σ∈S

∣∣Hn

(
z; σ−1

)∣∣ .

Plots of the defects d? (z; ε) = |?|n (z) − |?̂|n (z; S? (z; ε)) will reveal the results
of our effort and show how strict our estimates are. To approximate the defect
d? (z; ε) we approximate |?|n (z) by |?̂|n (z; S? (z; ε̃)), where ε̃ is significant by
smaller than ε. For a relative error of 10% ε̃ should be 10 times smaller than
the resulting minimum of d? (z; ε). Figures 2.4.5 and 2.4.6 shows #S? (z; 10−3),
ε̂? (z; S? (z; 10−3)), and d? (z; 10−3) for Ω1 and ω1 respectively. The algorithm
manages to keep the defect dΩ1 (z; 10−3) in the selected clipping in the range of
[1.5, 2.3] · 10−4 and dω1 (z; 10−3) in [0.7, 2.3] · 10−4.

Caching many of the costly entities is important if one wants to evaluate the
Schottky series multiple times for constant Schottky data. For example we can
reduce the effort of the test in line 2 of Algorithm 2.4.3 to a single multiplication,

2.4. EVALUATION METHODS FOR SCHOTTKY SERIES 29

Figure 2.4.3. Absolute (top) and argument value (bottom) of
ω1 for the Wente torus with threefold symmetry. Symmetry faces
ω1 (z) = ω2 (z̄).

if we cache the values

ρ? (σ) = ε̂? (z; σ)
2N − 2

2N − 1
(2N − 1)|σ| k

(
z; l̃
)p?

.

The value k
(
z; l̃
)

is independent of σ and is therefore only computed once per

evaluation and should be chached, because we can use it for all ωn (z) , Ωn (z),
n = 1, . . . , N .

30 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Figure 2.4.4. Absolute (top) and argument value (bottom) of
Ω1 for the Wente torus with threefold symmetry. Symmetry faces
Ω1 (z) = Ω2 (z̄).

Appendix: Improving Estimates of Schottky Series

The disadvantage of the estimates yielding Lemma 2.3.2, 2.3.3, and 2.3.4, is
that we replace 1/k (z; σ) by 1/k (z; |σ|) with

k (z; s) = min
σ∈G,|σ|=s

k (z; σ) .

A poorly conditioned scenario arrises when we evaluate ωn or Ωn at points that
are close or even on one of the isometric circles. Suppose z ∈ C−i

n . Then k (z; σ)

APPENDIX: IMPROVING ESTIMATES OF SCHOTTKY SERIES 31

Figure 2.4.5. Results of Algorithm 2.4.3? and anal-
ysis of strictness of estimates: #SΩ1 (z; 10−3) (top),
ε̂Ω1 (z; SΩ1 (z; 10−3))(center), and dΩ1 (z; 10−3) ≈∣∣∣Ω̂
∣∣∣
1
(z; SΩ1 (z; 10−6)) −

∣∣∣Ω̂
∣∣∣
1
(z; SΩ1 (z; 10−3))(bottom) for the

Wente torus with threefold symmetry.

32 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Figure 2.4.6. Results of Algorithm 2.4.3? and
analysis of strictness of estimates: #Sω1 (z; 10−3)
(top), ε̂ω1 (z; Sω1 (z; 10−3))(center), and dω1 (z; 10−3) ≈
|ω̂|1 (z; Sω1 (z; 10−6)) − |ω̂|1 (z; Sω1 (z; 10−3))(bottom) for the
Wente torus with threefold symmetry.

APPENDIX: IMPROVING ESTIMATES OF SCHOTTKY SERIES 33

will be relatively small for all σ having σi
n as a suffix, i.e., [σ] = [in, . . .], and

relatively large for all others. This is significant if the iso-classical Schottky
group has small isometric circles compared to their distance. In such a case we
almost lose a factor of 2N −1 in the accuracy of our estimates. A straightforward
approach to fix this is to disassemble Cones (σ) into appropriate subsets, such as

Λj
m (τ) =

{
σ ∈ Cones (τ)

∣∣[σ] =
[
σj

m, . . .
]}

.

Note that Cones (τ) = ∪̇j,mΛj
m (τ). We use this to improve the estimates for ωn:

∑

σ∈Cones(τ)

∣∣Hn

(
z; σ−1

)∣∣ ≤
∑

σ∈Cones(τ)

L (σ−1, n)

|γσ|2
k (z; σ)−2

≤ L (τ−1, n)

|γτ |2
∑

σ∈Cones(τ)

κ
−2(|σ|−|τ |)
|τ | k (z; σ)−2

=
L (τ−1, n)

|γτ |2
∑

j,m

∑

σ∈Λj
m(τ)

κ
−2(|σ|−|τ |)
|τ | k (z; σ)−2

≤ L (τ−1, n)

|γτ |2
∑

j,m

kj
m (z; |σ|)−2

∑

σ∈Λj
m(τ)

κ
−2(|σ|−|τ |)
|τ | ,

where

kj
m (z; l) = min

σ∈G,|σ|=l,[σ]=[σj
m,...]

k (z; σ) .

Obvious that kj
m (z; l) < kj

m (z; l + k) just like k (z, l) < k (z, l + k). We need to
compute the series

(2.4.3) Qj
m (σ; q) =

∑

σ̃∈Λj
m(σ)

q|σ̃|−|σ| .

To count the number of elements of Λj
m (σ) of a certain word length we denote

these subsets by

Λj
m (σ, k) =

{
σ̃ ∈ Λj

m (σ) ||σ̃| − |σ| = k
}

.

Now let [σ] = [. . . , in]. We have

#Λi
n (σ, k + 1) = (2N − 1)k − #Λ−i

n (σ, k) #Λi
n (σ, 0) = 1

#Λ−i
n (σ, k + 1) = (2N − 1)k − #Λi

n (σ, k) #Λ−i
n (σ, 0) = 0

#Λj
m (σ, k + 1) = (2N − 1)k − #Λj

m (σ, k) #Λj
m (σ, 0) = 0 m 6= n.

Rewriting the recursive formulas yields

#Λj
m (σ, k) = (−1)k−1∑k−1

ν=0 (1 − 2N)ν = rk m 6= n

#Λ−i
n (σ, k) = rk + (−1)k−1

2

#Λi
n (σ, k) = rk + (−1)k+1

2
.

34 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

For m 6= n we have:

Qj
m (σ; q) =

∑

σ̃∈Λj
m(σ)

q|σ̃|−|σ|

=
∞∑

k=0

(−1)k−1
k−1∑

ν=0

(1 − 2N)ν qν

=
∞∑

ν=0

(1 − 2N)ν
∞∑

k=ν+1

(−1)k−1 qν

=
∞∑

ν=0

(1 − 2N)ν − (−q)ν+1

1 + q

=
q

1 + q

1

1 − (2N − 1) q

= r (q)

The Qj
m (σ; q) coincide for m 6= n. For the two cases with m = n we obtain:

Q−i
n (σ; q) = r− (q) = r (q) − q

1 − q2

Qi
n (σ; q) = r+ (q) = r (q) +

1

1 − q2
.

By the definition of Λi
n we have

R (q) =
∑

σ∈Cones(τ)

q|σ|−|τ | =
∑

ι,µ

Qι
µ (σ; q) .

Simularly,

Rm (q; σ) =
∑

σ∈Cones
m(τ)

q|σ|−|τ | =
∑

ι,µ 6=m

Qι
µ (σ; q) ,

which yields the expression we have used in Lemma 2.3.3. Finally we have:

∑

σ̃∈Cones(σ)

|Hn (z; σ)| < ε̃ωn
(z; σ) ≤ ε̂ωn

(z; σ) ,

where

ε̃ωn
(z; σ) =

L(σ−1,n)
|γσ |2

∑
ι,µ kι

µ (z; |σ|)−2 Qι
µ

(
σ; κ−2

|σ|

)
.

APPENDIX: IMPROVING ESTIMATES OF SCHOTTKY SERIES 35

Simular results can be obtained for Ωn and Bnm:

ε̃Ωn
(z; σ) = |σ (Bn) − σ (An)|

∑

ι,µ

Qι
µ

(
σ; θ−2

|σ|

)

kι
µ (z; |σ|)

ε̃Bnm
(σ) = |σ (Bn) − σ (An)|

∑

ι,µ 6=m

Qι
µ

(
σ; θ−2

|σ|

)

kι
µ (Am; |σ|) +

Qι
µ

(
σ; θ−2

|σ|

)

kι
µ (Bm; |σ|) .

The constants ε̃? look much more complicated than the ε̂?, but these constants
are equally expensive computationally costs because we have to evaluate k (z; σ)
for all σ̃ ∈ G with |σ̃| = |σ| for both. To take full advantage of these estimates
we only have to replace each occurrence of ε̂? in Section 2.4 by ε̃?. Figures 2.4.7
and 2.4.8 demonstrate the results of our improvements for the examples of the
Schottky data of He3 and the Wente torus with threefold symmetry [Hei95,
page 38]. We evaluate an integral of the first kind in the fundamental domain F
and plot the size of SΩ?

(z; ?) generated by Algorithm 2.4.3 using the optimized
error ε̃Ω?

and the unoptimized error ε̂Ω?
. The analysis shows that the optimized

estimates yield significant smaller sets SΩ?
(z; ?) for those z close to the hot spots

in the Schottky domain.

36 2. NUMERICAL METHODS FOR SCHOTTKY UNIFORMIZATION

Figure 2.4.7. Size of SΩ1 (z; 10−9) generated by Algorithm 2.4.3
using the optimized error ε̃Ω1(top) and the unoptimized error
ε̂Ω1(bottom) for the Schottky data of He3.

APPENDIX: IMPROVING ESTIMATES OF SCHOTTKY SERIES 37

Figure 2.4.8. Size of SΩ1 (z; 10−5) generated by Algorithm 2.4.3
using the optimized error ε̃Ω1(top) and the unoptimized error
ε̂Ω1(bottom) for the Wente torus with threefold symmetry.

CHAPTER 3

Computing Riemann Theta Functions

This chapter addresses the problem of computing values of Riemann theta
functions. We give a brief summery of the approximation estimates and methods
we developed in [DHB+04], emphasizing the computational aspects. In partic-
ular, we compare the performance of pointwise and uniform approximation for
different cases. We also present a new algorithm for the problem of selecting
summation indices for the uniform approximation of the Riemanns theta func-
tion and discuss some improvements in the pointwise case. The algorithms are
implemented in Java and belong to the jtem package riemann (Chapter 5).

3.1. Definition

The Riemann theta function is a complex-valued function of g complex vari-
ables and given by

(3.1.1) θ (z |B) =
∑

n∈Zg

e
1
2
〈n,B·n〉+〈z,n〉,

where z ∈ C
g and B is a symmetric g-dimensional matrix with strictly negative

definite real part1. The Fourier series representation (3.1.1) converges absolutely
in z and B and therefore defines a homomorphic function in both entries. An
overview of the theory of theta functions can be found in [Mum83, Mum84,

Mum91, BBE+94].

1There are many conventions for writing the theta functions, but they are the same up to
rescaling the arguments.

39

40 3. COMPUTING RIEMANN THETA FUNCTIONS

3.2. Pointwise Approximation

To obtain good approximation formulas for (3.1.1) we have to determine the
dominant terms of the infinite sum. For z = x + iy and B = X + iY we have

θ (z |B) =
∑

n∈Zg

e
1
2
〈n,B·n〉+〈z,n〉

=
∑

n∈Zg

e
1
2
〈n,X·n〉+〈x,n〉 e

i
2
〈n,Y ·n〉+i〈y,n〉

=
∑

n∈Zg

e
1
2〈n+X−1·x,X·(n+X−1·x)〉− 1

2〈x,X−1·x〉 e
i
2
〈n,Y ·n〉+i〈y,n〉

= e−
1
2〈x,X−1·x〉 θΣ (z |B) ,

where

θΣ (z |B) =
∑

n∈Zg

e
1
2〈n+X−1·x,X·(n+X−1·x)〉 e

i
2
〈n,Y ·n〉+i〈y,n〉

is the oscillating part, and e−
1
2〈x,X−1·x〉 is of exponential growth. In most appli-

cations the theta functions are used to compute Abelian functions, which can be
expressed as ratios of theta functions. The exponential factors usually cancel and
it suffices to approximate θΣ.

The most dominant term in the oscillating sum is the one with summation
index n that is closest to V = −X−1 · x. To emphasize this, let [V] be the vector
with integer component closest to V , and [[V]] = V − [V]. By shifting the index
n by [X−1 · x] we get:

θΣ (z |B) =
∑

n∈Zg

e
1
2〈n+[X−1·x]+[[X−1·x]],X·(n+[X−1·x]+[[X−1·x]])〉

× e
i
2
〈n,Y ·n〉+i〈y,n〉

=
∑

n∈Zg

e
1
2〈n+[[X−1·x]],X·(n+[[X−1·x]])〉

× e
i
2〈n−[X−1·x],Y ·(n−[X−1·x])〉+i〈y,n−[X−1·x]〉 .

The dominating terms lie inside ellipsoids of the form

SR (z, B) =

{
n ∈ Z

g

∣∣∣∣
1

2

〈
n +

[[
X−1 · x

]]
, (−X) ·

(
n +

[[
X−1 · x

]])〉
< R2

}
.

Let −X = T T · T be the Cholesky decomposition and let

Λ (z, B) =

{
1√
2
T ·
(
n +

[[
X−1 · x

]])
|n ∈ Z

g

}
,

then we can identify SR (z, B) as union of all lattice points of Λ (z, B) inside the
g-dimensional sphere:

SR (z, B) = {v ∈ Λ (z, B) | ||v|| < R} .

3.3. UNIFORM APPROXIMATION 41

This gives rise to an approximation of the Riemann theta function. Let us
denote the pointwise approximation of θΣ (z |B) as

θ
SR(z,B)
Σ (z |B) =

∑

n∈SR

e−
1
2 ||T ·(n+[[X−1·x]])||2

× e−
i
2〈n−[X−1·x],Y ·(n−[X−1·x])〉+i〈y,n−[X−1·x]〉 .

Then we have

θ (z |B) = e
1
2〈x,X−1·x〉 lim

R→∞
θ

SR(z,B)
Σ (z |B) ,

which shows again that the Riemann theta functions are well-defined. Moreover,
this representation provides error estimates.

Theorem 3.2.1. [DHB+04] (Pointwise approximation) Let ρ be the shortest
distance between any two points of the lattice Λ (z, B) and let R be the maximum

of
√

g/2 + ρ/2 and the real positive solution of

(3.2.1) ε = g 2g−1Γ
(
g/2, (R − ρ/2)2) /ρg .

Then ∣∣∣θSR(z,B)
Σ (z |B) − θΣ (z |B)

∣∣∣ < ε .

To apply this method we first compute the shortest lattice vector ρ of Λ (z, B),
which is independent of z. Then we solve for the prescribed error bound ε Equa-
tion 3.2.1 to get the radius R, and finally determine all elements of SR (z, B),
using an algorithm first presented in [Hei95]2. In the next section we give a
variation of this method for solving a simular problem, that arises in the case of
uniform approximation.

Finding the shortest lattice vector is a challenge. It is related to lattice reduc-
tion, one of the main tasks in the study of lattices. Lattice reduction searches for
a standard form for the matrix of generating vectors ti, i = 1, . . . , g, of a lattice,
that is in a certain sense minimal and enables an easier treatment of problems
intrinsic to the lattice, such as finding the shortest lattice vector. The problem of
finding a standard form for the generating vectors, the “reduced basis”, is known
to be NP hard [Val90]. However, there is a polynomial hard approximation al-
gorithm due to Lenstra, Lenstra, and Lovasz (the LLL algorithm). For g ≤ 3 the
LLL algorithm delivers the exact solution and provides additionally upper and
lower bounds for the shortest lattice vector ρ [LLL82]3 .

3.3. Uniform Approximation

The results of the previous section can be extended to obtain uniform ap-
proximations. The shape of the ellipsoid that determines the summation indices

2See riemann.theta.LatticePointsInEllipsoid for an implementation.
3ρ̂ 2(g−1)/2 ≤ ρ ≤ ρ̂, where ρ̂ is the result of the LLL algorithm.

42 3. COMPUTING RIEMANN THETA FUNCTIONS

in the approximation of θΣ only depends on the period matrix B. The argu-
ment z only influences the center of the ellipsoid c = [[−X−1 · x]], which lies in a
g-dimensional cube of volume 1, centered at the origin. Letting

UR (B) =

{
n ∈ Z

g

∣∣∣∣
1

2
〈n − c, (−X) · (n − c)〉 < R2, c ∈ Cg

}
,

with Cg =
{
c ∈ R

g
∣∣|ci| < 1

2
, i = 1, . . . , g

}
, we see that

UR (B) =
⋃

c∈C

SR (c, B) .

Moreover, analogous to the pointwise approximation with SR (z, B) and θ
SR(z,B)
Σ ,

we denote by

θ
UR(B)
Σ (z |B) =

∑

n∈SR

e−
1
2 ||T ·(n+[[X−1·x]])||2

× e−
i
2〈n−[X−1·x],Y ·(n−[X−1·x])〉+i〈y,n−[X−1·x]〉 .

the uniform approximation of θΣ (z |B). This leads to the following theorem.

Theorem 3.3.1. [DHB+04](Uniform approximation) Let ρ be the shortest
distance between any two points of the lattice Λ (0, B) and let R be the maximum

of
√

g/2+ρ/2 and the real positive solution of ε = g 2g−1Γ
(
g/2, (R − ρ/2)2) /ρg.

Then ∣∣∣θUR(B)
Σ (z |B) − θΣ (z |B)

∣∣∣ < ε .

Clearly, the uniform approximation needs more terms than the pointwise one,
and this penalty grows exponentially with the genus g. On the other hand, the
determination of SR (z, B) is not cheap, and in many applications one needs to
evaluate the Riemann theta function with constant period matrix many times4.
Ultimately, the application determines whether uniform approximation is prefer-
able to pointwise approximation (3.3.3).

For the uniform approximation we need to determine the set UR (B). This is a
difficult task, so that we have to be satisfied with an approximation. The simplest
one is the bounding box of UR (B), but we would incorporate an unacceptable
penalty in higher dimensions. Bounding UR (B) by a larger ellipsoid is more
practical, but this is still hard even if one does not want to determine the smallest.

3.3.1. Approximating UR (B). We use a variation of the algorithm pre-
sented in [Hei95, DHB+04], which is guaranteed to deliver an approximation
enclosing all of UR (B). The algorithms solves a more general problem: Let
M = T T · T be the Cholesky decomposition of the positive definite g × g-matrix
M and let c the center of the cube

Cg
c,δ {x ∈ R

g ||ci − x| < δi, i = 1, . . . , g} .

4Computing helicoids with handles can consume several million evaluations of the theta
function .

3.3. UNIFORM APPROXIMATION 43

The goal is to find all lattice points n ∈ Z
g with

(3.3.1) ||T (n − x)|| < R .

with x ∈ Cg
c,δ. Since T is upper triangular, this implies |Tgg (ng − xg)| < R, or

cg − δg −
R

Tgg

< ng < cg + δg +
R

Tgg

.

This gives a range of admssible values for ng. For each we write

n =

(
n̂
ng

)
, c =

(
ĉ
cg

)
, δ =

(
δ̂
δg

)
, x =

(
x̂
xg

)
, T =

(
T̂ t̂
0 Tgg

)
,

and

R̃2 = R2 −





(ng − cg + δg)
2 ng − cg < −δg

(ng − cg − δg)
2 ng − cg > +δg

0 otherwise

c̃ = ĉ − T̂−1t̂ (ng − cg)

d̃ = d̂ +
∣∣∣T̂−1t̂

∣∣∣ δg .

Now
∣∣∣
∣∣∣T̂ (n̂ − x̃)

∣∣∣
∣∣∣ < R̃ with x̃ ∈ Cg−1

c̃,δ̃
implies (3.3.1) because

||T (n − x)||2 < R2

⇐⇒ T 2
gg (ng − xg)

2 +
∣∣∣
∣∣∣T̂ (n̂ − x̂) + t̂ (ng − xg)

∣∣∣
∣∣∣
2

< R2

⇒
∣∣∣
∣∣∣T̂
(
n̂ −

(
x̂ − T̂−1t̂ (ng − xg)

))∣∣∣
∣∣∣
2

< R2 − min
|cg−xg |<δi

(ng − xg)
2 .

At this point we have reduced the problem to a similar problem in one dimension
lower. We iterate this procedure5. For δ = 0 the algorithm equals the original
and delivers exactly the integer vectors inside the ellipsoid ||T (n − c)|| < R.

Figure 3.3.1 shows the results of the above algorithm. The new algorithm
picked 21 indices as an approximation for UR (B), which has 17 elements.

3.3.2. Evaluating uniform approximation. The evaluation method for
uniform approximations takes fixed indices sets, because they enable precalcula-
tions. These precalculations naturally start with the determination of the approx-
imation of the index set itself. The next optimization uses the semiperiodicity of
theta functions:

(3.3.2) θ (z |B) = e−
1
2
〈m,B·m+z〉θ (z + 2πi n + B · m |B) ,

with n,m ∈ Z
g. Using this transformation on n = 0 and m = − [X−1 · x] we get

θ (z |B) = eϕ(z|B)θ (τ (z |B) |B)

5See riemann.theta.LatticePointsForUniformApproximation for an implementation.

44 3. COMPUTING RIEMANN THETA FUNCTIONS

Figure 3.3.1. Results of algorithms to approximate UR (B),
which elements are colored in red. Indices determined by
our new algorithm are colored in yellow, indices enclosed by
∪z=(±1/2,±1/2)SR (z|B) are colored in blue.

with ϕ (z |B) = − 1
2
〈[X−1 · x] , B · [X−1 · x] + z〉, and τ (z |B) = z−B ·[X−1 · x]6.

Since [X−1 · <τ (z |B)] = 0 the series for θΣ (τ (z |B) |B) can be drastically sim-
plified:

θΣ (τ (z |B) |B) =
∑

n∈Zg

e−
1
2 ||T ·(n+X−1·<τ(z|B))||2− i

2
〈n,Y ·n〉+i〈=τ(z|B),n〉 .

The values i
2
〈n, Y · n〉 can be tabled in a precalculation step. Therefore evalu-

ating a single term of the sum costs only g2/2 + g/2 + 1 multiplications and one
evaluation of a complex exponential function. If the intermediate result satisfies

1

2

∣∣∣∣T ·
(
n + X−1 · <τ (z |B)

)∣∣∣∣2 ≥ R2

we can discard the whole term. Thus awe practically compute the pointwise

approximation θ
SR(τ(z|B),B)
Σ (τ (z |B) |B).

3.3.3. Pointwise vs. uniform approximation. For helicoids of higher
genus g ≥ 4, the associated ellipsoids are rather eccentric7. Several eigenvalues
λi, i = 1, . . . , g0 are smaller than R2. Thus one can find 2g0 ellipsoids SR (zi, B),
zi ∈ Cg that only have a small overlap. In these cases #UR (B) is about 2g times
bigger than #SR (z, B). If the eigenvalues become small compared to R2, the
situation gets worse. In all these cases the pointwise approximation is superior

6With riemann.theta.TransformationPropertySupport we supply a class performing this
transformations.

7Even after applying the Siegel reduction algorithm, see Section 3.4.

3.3. UNIFORM APPROXIMATION 45

g

1
2
3
4
5
6
7
8

PA UA PA/UA

4.5 7 0.6456

14.0 25 0.5580

37.0 111 0.3337

88.5 435 0.2034

200.6 1649 0.1216

413.1 6655 0.0620

974.5 33233 0.0293

1187.7 85733 0.0138

PA UA PA/UA

6.8 9 0.7608

29.4 47 0.6247

107.6 235 0.4577

335.5 1013 0.3311

929.1 5013 0.1853

2428.5 22615 0.1073

6369.9 113493 0.0561

10200.0 342379 0.0297

(ε = 10−5) (ε = 10−15)

Table 1. Number of terms needed by the pointwise approxima-
tion (PA) and the uniform approximation (UA) for the theta func-
tion associated to the symmetric helicoids Heg of genus g = 1, . . . , 8
for error bounds ε = 10−5, 10−15.

g

1
2
3
4
5
6
7
8

PA UA PA/UA

0.03 0.02 1.5454

0.05 0.03 1.8679

0.06 0.15 0.3571

0.48 0.40 1.2177

0.33 1.92 0.1718

2.09 6.05 0.3454

6.07 32.04 0.1894

4.70 79.72 0.0590

PA UA PA/UA

0.04 0.02 2.1695

0.08 0.04 1.7913

0.16 0.21 0.7740

0.83 0.84 0.9916

3.46 4.34 0.7972

8.29 20.78 0.3989

24.49 108.20 0.2263

42.81 321.88 0.1329

(ε = 10−5) (ε = 10−15)

Table 2. Average evaluation duration (milli seconds) of the point-
wise approximation (PA) and the uniform approximation (UA) for
the theta function associated to a squared lattice (B = −2πI) of
genus g = 1, . . . , 8 for error bounds ε = 10−5, 10−15.9

to the uniform and requires new ways of optimizing the algorithm computing
the elements of SR (z, B). We translated the recursive algorighm from above
into an iterative one, which allows to iterate conveniently and effectively through
all indices8. For the period matrices of the symmetric helicoids Heg of genus
g = 1, . . . , 8 (see 4.4.3) Tables 1 and 2 list the Riemann theta function for 1000

8See riemann.theta.LatticePointsInEllipsoidIterator for an implementation.

46 3. COMPUTING RIEMANN THETA FUNCTIONS

randomized arguments zi and different error bounds ε. Table 1 compares the
average size of SR (zi, B) with the of UR (B) for ε = 10−5, 10−15. For the period
matrix of the He8 the uniform approximation (UA) needs 342379 terms for the
error ε = 10−15 compared to the average 10200.0 terms of the pointwise approxi-
mation (PA). Even the UA needs more then 30 times more terms then the PA, it
is only less then 10 times slower, which means that determining the indices takes
in this case more then 3 times longer then computing the term itself. Table 2 lists
the average duration of an evaluation of the theta functions for the same setup as
Table 1. It shows that for genus g ≥ 5 the pointwise approximation was always
faster, gaining a factor 2 in each dimension. For squared lattices, given by the
period matrices Bg = −2πI, the ratio #SR (z, B) /#UR (B) can be considered
maximal. Once again, the pointwise approximation outperformed the uniform
one for genus g ≥ 5 because the main advantage of the uniform approximation,
i.e., the tabling of precalculations, becomes a burden if the data exceeds the size
of the caches of the processor.

3.4. The Modular Transformation Property

Unlike the semiperiodicity property (Section 3.4) the modular transforma-
tion property is a deep result in the theory of Riemann theta functions [Igu72,

Mum84]. The Riemann matrix B usually originates as a period matrix of a Rie-
mann surface, which incorporates a choice of a canonical intersection basis of its
homology group. If B = {a1, b1, . . . , ag, bg} is the canonical basis generating the
period matrix B, then any canonical homology basis can be written as σ (B) = B ′

with

a′
i = dj

iaj + bj
i bj

b′i = aj
i bj + bj

iaj

}
where σ =

(
a b
c d

)
∈ SP (2g, Z) .

The modular group SP (2g, Z) is a subgroup of GL (2g, Z) and consists of all
those elements that leaves the standard symplectic structure invariant, i.e.,

σT

(
0 I
−I 0

)
σ =

(
0 I
−I 0

)
.

Then the transformed basis σ (B) generates the transformed period matrix

σ (B) = 2πi (aB + 2πib) (cB + 2πid)−1 .

This can be read as an equivalence relation on the set of Riemann matrices, which
yields equivalence classes [B] = {σB |σ ∈ SP (2g, Z)}.

Since Riemann theta functions are used to construct meromorphic functions,
which do not depend on the choice of a homology basis, it is not surprising that
theta functions possess a transformation property that relates equivalent period
matrices:

3.4. THE MODULAR TRANSFORMATION PROPERTY 47

(3.4.1) θ (z |B) = k efσ(z|B) θ (σ (z |B) |σ (B))

with

σ (B) = 2πi (aB + 2πib) (cB + 2πid)−1 ,

fσ (z |B) = Rσ (B)T z − zT Aσ (B) z + δσ (B)

σ (z |B) = Hσ (B) z + Sσ (B)

and

Rσ (B) = πi (cB + 2πid)−1 diag
(
cdT
)

Aσ (B) =
1

2
(cB + 2πid)−1 c

δσ (B) =
1

8
diag

(
cdT
)T

σ (B) diag
(
cdT
)

−g

2
log (2πi) − log

√
det (cB + 2πid)

Hσ (B) = 2πi
(
(cB + 2πid)−1)T

Sσ (B) = πi diag
(
abT
)

+
1

2
σ (B) diag

(
cdT
)

.

Finally k is an 8th-root of unity that can usually be ignored because one only
deals with ratios of theta functions. The formulas above are implemented in
riemann.theta.ModularPropertySupport, which provides a convenient frontend to
this property of the theta functions (Section 5.6.2.2).

The importance of the modular transformation property lies in the fact that
modular equivalent period matrices can behave completely different in the ap-
proximation process, e.g., some need many terms to approximate the oscillatory
part of the Riemann theta function θΣ (z |B) and some only a few. An example:
consider the period matrix

B = −
(

cos 1 sin 1
− sin 1 cos 1

)(
3 0
0 1

3

)(
cos 1 sin 1
− sin 1 cos 1

)
,

with a moderate eccentricity of 8/9. To reach an error of ε = 10−12 for z = 0
one needs 107 terms associated to indices enclosed by the ellipse SR (0 |B), with
R ≈ 5.763 (left hand side of Figure 3.4.1). The right hand side of the same
figure shows the ellipse and the enclosed indices for the same error and the same
position, but for the modular transformed period matrix

σ (B) ≈ −
(

cos α sin α
− sin α cos α

)(
34.235 0

0 45.525

)(
cos α − sin α
sin α cos α

)
,

48 3. COMPUTING RIEMANN THETA FUNCTIONS

(a) before Siegel reduction (b) after Siegel reduction

Figure 3.4.1. Ellipses associated to the approximation of theta
functions with modular equivalent period matrices.

with α = −1.181 and

σ =




0 0 1 0
0 0 1 1
−1 1 0 0
0 1 0 0


 .

The ellipse SR (0 |σB), with R ≈ 7.189, of the modular transformed period ma-
trix only encloses 5 indices. The benefits of modular property transformation
grow exponentially with the genus. The Siegel reduction algorithm computes the
desired modular transformation. It finds a sequence of modular transformation
matrices successively improving the period matrix [Sie89, Hei95, DHB+04].
The algorithm does not find an optimal solution, but it produces satisfactory
results, as the above example shows. It also guarantees bounds for the reduced
period matrix and the associated lattice.

Theorem 3.4.1. (Siegel reduction). For every Riemann matrix B = X +
iY Siegel’s reduction algorithm delivers a modular transformation σ, such that
σ (B) = B̂ = X̂ + iŶ , X̂ = −T T T , with X̂(Ŷ) the real (imaginary) part of B̂
and T upper triangular, and

1.
∣∣∣Ŷij

∣∣∣ ≤ π, i, j = 1, . . . , g,

2. the length of the shortest lattice vector ρ of the lattice generated by the

columns of T is bounded below by
√√

3π, and

3.5. THETA FUNCTIONS WITH CHARACTERISTICS 49

3. max {|Nj| |||T · N ≤ R,R > 0, fixed N ∈ Z
g } has an upper bound that only

depends on g and R.

The proof is constructive, following the steps of Siegel’s reduction algorithm10

[Sie89]. In the elliptic case Siegel’s algorithm always succeeds and finds the
optimal result, which lies in the fundamental domain of the modulus.

3.5. Theta Functions with Characteristics

The multi-dimensional Fourier series

θ [(α, β)] (z |B) =
∑

n∈Zg

e
1
2〈n+ 1

2
α,B·(n+ 1

2
α)〉+〈z+πiβ,n〉 ,

where α, β ∈ R
g, is called Riemann theta function with characteristics [(α, β)].

Every point e ∈ C
g is written uniquely as

P = (α, β)

(
2πi
B

)
.

Thus a theta function with characteristic [(α, β)] just uses a different reference
point P of the Abelian torus Cg/Λ, Λ = 2πi n + B · m, n,m ∈ Z

g, in its Fourier
series, instead of 0 like the ordinary one. But also theta functions with non-zero
characteristics can be expressed in terms of the ordinary theta function:

(3.5.1) θ [(α, β)] (z |B) = e
1
8
〈α,Bα〉+ 1

2
〈z+π i β,α〉θ

(
z + π i β +

1

2
αB |B

)
.

Usually one is only concerned with integer characteristics (α, β ∈ Z
g) and

especially with those having only 0 and 1 as entries. The latter are called half-
period characteristics. For integer characteristics (3.5.1) implies that

θ [(α + 2α′, β + 2β ′)] (z |B) = (−1)〈α
′,β′〉 θ [(α, β)] (z |B) ,

θ [(α, β)] (−z |B) = (−1)〈α
′,β′〉 θ [(α, β)] (z |B) .

This yields 22g different theta functions with half-period characteristics. If 〈α, β〉
is even (odd) the characteristic is also called even (odd). 2g−1 (2g + 1) of the 22g

different characteristics are even, 2g−1 (2g − 1) odd11.
The modular transformation property can be expressed more natural by us-

ing theta function with characteristics, because the modular transformation of
the period matrix induces a change of the Abelian torus, which can be further
translated into a transformation of the characteristics:

σ (α, β) = (α, β) σ−1 +
(
diag

(
cdT
)
, diag

(
abT
))

.

10See riemann.theta.SiegelReduction for an implementation.
11riemann.theta.ThetaCharIterator is a support class that allows toggling through even

and odd half-period characteristics (Section 5.6.3.1).

50 3. COMPUTING RIEMANN THETA FUNCTIONS

Then the modular transformation becomes

θ [(α, β)] (z |B) =
C efσ(z|B)

√
det (cB + 2πid)

θ [σ (α, β)] (σ (z |B) |σ (B))

with

fσ (z |B) = −1

2

∑

i≤j

zi zj ∂/∂Bij log det (cB + 2πid)

σ (z |B) = 2πi
(
(cB + 2πid)−1)T z

where C is a constant independent of z and B.
Unfortunately, the code does not benefit from this representation. The class

riemann.theta.ThetaWithChar uses Equation 3.5.1 to reduce the computation
of theta function with characteristics to the implementation of ordinary theta
functions. In Section 5.6.3.1, we give a more complex example, showing the
evaluation of products of spinors describing all helicoids with handles.

CHAPTER 4

Computing Helicoids With Handles

Bobenko defined helicoids of higher genus and gave explicit formulas in terms
of theta functions.

Computing the Weierstrass spinors involves the evaluation of Riemann theta
functions with characteristics and the calculation of differentials and integrals
of different kinds for higher genus Riemann surfaces, which are not necessarily
hyperelliptic.

To realize the minimal surface the spinors have to be integrated. Generic
examples introduce translation periods, which have to be closed by a root-finder.
The numerical computations may take weeks and cannot guaranteed to succeed
it needs luck, because closed examples are rare.

We start with a brief introduction to the theory of helicoids with handles as
it is presented in [Bob98]. In the second section we consider the problem of
describing the data, which determines the helicoids using Schottky uniformiza-
tion. The next section details the numerical construction for the actual problem
and compares different approaches. In the final section we present various case
studies as well as the examples we have found.

4.1. Mathematical Foundations of Helicoids With Handles

4.1.1. Helicoid and helicoidal end singularity. The starting point is the
helicoid, the minimal immersion of the plane,

F (x + iy) = 2




sinh x sin y
− sinh x cos y

−y




which is represented by the holomorphic Weierstrass data

g = exp z,

ζ = i dz

To emphasize helicoidal asymptotics we change coordinates and choose w = 1/z
as local parameter which vanishes at the singularity. Then the helicoid is given
as the minimal immersion of the punctured sphere C \ {0} with the Weierstrass

51

52 4. COMPUTING HELICOIDS WITH HANDLES

data

g = exp (1/w) ,

ζ =
−i

w2
dw.

This classical data translates to the holomorphic spinors

(4.1.1)

a = e−
πi
4 e

1
2w

√
dw

w
,

b = e−
πi
4 e

−1
2w

√
dw

w
,

on C \ {0}.

Definition 4.1.1. We call a minimal immersion F : R = C\ {P0}→R
3 a heli-

coid of genus g if C is of genus g and the Weierstrass spinors a, b are holomorphic
on R and have the asymptotics

(4.1.2)
a = e−

πi
4 (1 + o (1)) e

1
2w

√
dw

w ,

b = e−
πi
4 (1 + o (1)) e

−1
2w

√
dw

w
, w → 0

at the puncture P0(where w is a holomorphic coordinate with w (P0) = 0).

4.1.2. The Weierstrass data for helicoids with handles.

Theorem 4.1.2. [Bob98] Let B = {a1, b1, . . . , ag, bg} be a canonical homology
basis of the compact Riemann surface C of genus g, P0 a point on C and w a chart
that vanishes at P0. Let v1, . . . , vg be the normalized (

∫
ai

vi = 2πi) differentials of

first kind and
∫ P

P0
Ω be the normalized (

∫
ai

Ω = 0) Abelian integral of second kind
with the asymptotics

∫ P

P0
Ω = 1

w (P)
+ o (1) , P → P0

at P0. Let V be the derivative of the Abel map at P0 (Vkdw = vk (P0)). Then
there generically (i.e., θ[ε] (V/2) 6= 0) exist for each theta characteristics ε unique
spinors a, b, on C \ {P0} , with Asymptotics (4.1.2) at the puncture P0. These

4.1. MATHEMATICAL FOUNDATIONS OF HELICOIDS WITH HANDLES 53

spinors are given by the formulas

(4.1.3)

a (P) = cδe
−πi

4

θ [ε]

(∫ P

P0

v − 1

2
V

)

θ [δ]

(∫ P

P0

v

)
θ [ε]

(
1

2
V

)e

1

2

∫ P

P0

Ω
hδ (P) ,

b (P) = cδe
−πi

4

θ [ε]

(∫ P

P0

v +
1

2
V

)

θ [δ]

(∫ P

P0

v

)
θ [ε]

(
−1

2
V

)e
−1

2

∫ P

P0

Ω
hδ (P) ,

where δ is a non-singular (Dθ [δ]|0 6= 0) odd theta characteristics and all integra-
tion paths coincide. The holomorphic spinor hδ and normalization constant cδ

are given by

hδ =
√

Dθ [δ]|0 · v and cδ =
√

Dθ [δ]|0 · V .

The pairing [B, ε] represents a quadratic form

s : H1 (C) → Z2 ,

that is

s (γ1 + γ2) = s (γ1) + γ1 ◦ γ2 + s (γ2)

and taking the values of the characteristics on the basis cycles, i.e.,

s (ai) = αi and s (bi) = βi ,

where ε = [α, β]. Let σ be an element of the modular group Sp (2g, Z) and
B′ = σ (B) (Section 3.4). Then the pairing [B′, ε′] represents the same quadratic
form as [B, ε] iff ε′ = σ (ε) (Section 3.5). Applying these transformations to the
Weierstrass data in Theorem 4.1.2 reveals that it only depends on the quadratic
form s.

We call two pairings [B, ε] and [B′, ε′] equivalent iff they define the same
quadratic form. The quadratic form s has a simple but important geometric
meaning. Let M (γ) ∈ Z be the number of twists of the normal field along the
contour γ. Then

M (ai) = s (ai)
M (bi) = s (bi)

mod 2

We call two local parameters w and w̃ at P0 equivalent if they vanish in
P0, i.e., w (P0) = w̃ (P0) = 0, and dw̃/dw = 1. The corresponding equivalence
class [w] can be identified as an element of the tangent space TP0C. Therefore
equivalent local parameters generate the same Weierstrass data.

Thus the data {C,P0, [w] , s} uniquely determine Weierstrass data with Asymp-
totics (4.1.2) at the puncture P0, but it only defines a helicoid if this data leads

54 4. COMPUTING HELICOIDS WITH HANDLES

to a minimal immersion F : R = C\ {P0}→R
3. This is the case only if all the

translation periods vanish, i.e.,

(4.1.4) Re

∫

γ

(
−a2 + b2, i

(
a2 + b2

)
, 2ab

)
= 0 ∀γ ∈ B

4.1.3. Periodicity conditions. The last subsection outlines our numeri-
cal analysis. First we must be able to evaluate for given data {C,P0, [w] , s}
the related helicoidal Weierstrass data and integrate it along a homology basis.
Generically this will deliver translation periods that we will try to annihilate
by varying the data. We need to parameterize the data {C,P0, [w] , s}, but we
can only hope to succeed if the number of free parameters exceeds or equals the
number of constraints given by Equation 4.1.4. The moduli space of compact
Riemann surfaces of genus g ≥ 2 has complex dimension 3g − 3. P0 and [w] add
another complex dimension each, so that we have

dimR {C,P0, [w] , s} = 6g − 2,

which is not enough. But we know at least one example: the Karcher-Hoffmann-
Wei genus 1 helicoid [HWK93]. It possesses a normal symmetry, i.e., 180◦

rotation about a line that intersects it orthogonally. This can be translated into
a symmetry condition on the data that reduces the number of free parameters to
the number of periodicity conditions.

Let C → C0 be a ramified double covering of genus g = 2g0 +N of a compact
Riemann surface C0 of genus g0 with 2N + 2 branch points and let π : C → C
be the conformal involution that exchanges the two sheets of that covering.

Definition 4.1.3. The data {C,P0, [w] , s} is called admissible if
1. C → C0 is a two-sheeted ramified covering as described above,
2. P0 is a branch point of the covering; π (P0) = P0,
3. π∗ [w] = − [w], and
4. π∗s = s.

Theorem 4.1.4. [Bob98] Minimal immersions with admissible data {C,P0, [w] , s}
possess normal symmetry, i.e., a 180◦ rotation about the first coordinate axis

(F1, F2, F3) → (F1,−F2,−F3) .

A Riemann surface from the definition above admits a canonical basis

B =
{

a1, b1, . . . , ag0 , bg0 , ã1, b̃1, . . . , ãg0 , b̃g0 , â1, b̂1, . . . , âN , b̂N

}

of H1 (C, Z) such that a1, b1, . . . , ag0 , bg0 is a canonical basis of H1 (C0, Z) and

(4.1.5)
π (ai) = −ãi , π (bi) = −b̃i

π (âj) = −âj , π
(
b̂j

)
= −b̂j .

4.1. MATHEMATICAL FOUNDATIONS OF HELICOIDS WITH HANDLES 55

For such a basis B the constraint on the spin in Definition 4.1.3 translates to
a condition on the theta characteristics:

ε =
[
(α, α̃, α̂) ,

(
β, β̃, β̂

)]

with α = α̃ and β = β̃.

Theorem 4.1.5. [Bob98]The space of admissible data {C,P0, [w] , s} has real
dimension

6g0 + 4N .

It coincides with number of independent period conditions. For a canonical basis
B as described above

Re
∫

γ
(−a2 + b2, i(a2 + b2) , 2ab) = 0 with γ = a1, b1, . . . , ag0 , bg0 ,

Re
∫

γ
(i(a2 + b2) , 2ab) = 0 with γ = â1, b̂1, . . . , âN , b̂N

define a set of independent period conditions.

The helicoid of Karcher-Hoffmann-Wei has another symmetry, a 180◦ rotation
about a line that lies on it. This symmetry corresponds to an antiholomorphic
involution of the Riemann surface.

Let τ : C → C be an anti-holomorphic involution of the Riemann surface
with exactly one real oval with the puncture P0 on it.

Definition 4.1.6. The data {C,P0, [w] , s} is called symmetric if
1. τ : C → C is an anti-holomorphic involution as described above,
2. P0 lies on the real oval of τ ; τ (P0) = P0,
3. τ ∗ [w] = [w̄], and
4. τ ∗s = s .

Theorem 4.1.7. Minimal immersions with symmetric data {C,P0, [w] , s}
possess symmetry, i.e. a 180◦ rotation about the vertical axis

(F1, F2, F3) → (−F1,−F2, F3) .

We choose again a special canonical basis a1, b1, . . . , ag, bg of H1 (C, Z) such
that

(4.1.6)
τ (ai) = ±ai ,

τ (bi) = ∓bi + Hj
i aj ,

with Hj
i ∈ Z2. We will call such a basis positive symmetric if τ (ai) = +ai and

negative symmetric otherwise.

Theorem 4.1.8. The space of symmetric data {C,P0, [w] , s} has real dimen-
sion 3g − 1. The number of independent periodicity conditions is 3g. For a

56 4. COMPUTING HELICOIDS WITH HANDLES

positive symmetric basis B+, the integrals

Re

∫

ai

(
−a2 + b2, i

(
a2 + b2

))
= 0 ,

Re

∫

bi

(2ab) = 0 .

(with i = 1, . . . , g) define a set of 3g independent period conditions. Similarly,
for a negative symmetric basis B− the set of 3g independent period conditions is

Re

∫

ai

(2ab) = 0 .

Re

∫

bi

(
−a2 + b2, i

(
a2 + b2

))
= 0 .

This shows that an immersion with symmetry τ must have additional sym-
metries, motivating the following conjecture.

Conjecture 4.1.9. [Bob98]Any immersed minimal surface of finite topology
with one helicoidal end is invariant under a 180◦ rotation about a line orthogonal
to the surface.

For admissible and symmetric data {C,P0, [w] , s}, τ ◦ π generates an other
symmetry, a 180◦ rotation about the second coordinate axis of the minimal im-
mersion:

(F1, F2, F3) → (−F1, F2,−F3) .

The dimension of the space of admissible symmetric data is 3g0+2N and therefore
half the dimension of the general space of admissible data.

The spectrum of admissible data has two extremes related to the covering
C → C0. One end is formed by the hyperelliptic examples (g0 = 0, N = g),
which includes the genus 1 helicoid of Karcher-Hoffmann-Wei. Here one expects
the handles to be located along the normal line of symmetry. The other contains
coverings with only two branch points (g0 = g, N = 0). In this case, the normal
symmetry line intersects the surface only at the branch point P 6= P0 and one
should expect vertical displaced handles. Our numerical analysis only found
hyperelliptic examples. In all the other cases we examined, the numerics strongly
suggest that these surfaces do not exist.

Conjecture 4.1.10. Any immersed minimal surface of finite topology with
one helicoidal end is a hyperelliptic Riemann surface.

4.2. Schottky Uniformization of Helicoids with Handles

In the previous section we saw that for admissible data {C,P0, [w] , s} with
s = [B, ε] we may hope to find examples with closed periods. Cutting C along

4.2. SCHOTTKY UNIFORMIZATION OF HELICOIDS WITH HANDLES 57

simple disjoint loops

(4.2.1) v1, . . . , vg0 , ṽ1, . . . , ṽg0 , v̂1, . . . , v̂N

homologically equivalent to the a-cycles of the admissible homology basis B yields
a plane region, which, according to a classical theorem [For29], can be confor-
mally mapped to the fundamental domain F of a corresponding Schottky group
G. The boundary of F consists of the images of the Loops (4.2.1) forming pairs
of curves

(4.2.2) (C1, C
′
1), . . . , (Cg0 , C

′
g0

), (C̃1, C̃
′
1), . . . , (C̃g0 , C̃

′
g0

), (Ĉ1, Ĉ
′
1), . . . , (ĈN , Ĉ ′

N) ,

which are mapped onto each other by the generators

σ1, . . . , σg0 , σ̃1, . . . , σ̃g0 , σ̂1, . . . , σ̂N

of the Schottky group G. If the isometric circles of the purely loxodromic gen-
erators and their inverses are external to one another the loops defined in Equa-
tion 4.2.1 can be altered such that the pairs of curves given in Equation 4.2.2
become the isometric circles.

The numerical methods we described in Chapter 2 are restricted to iso-
classical Schottky uniformization. From now on let G be a iso-classical Schottky
group and let the curves in Equation 4.2.2 be its isometric circles. The holomor-
phic involution π on C defines then a holomorphic involution πF on F that maps
a plane region bounded by a finite number of complete circles onto itself; πF is
linear fractional [For29, p. 282]. By construction, we have

(4.2.3)
σi πF = πF σ̃i,
σ̂j πF = πF σ̂j,

Since πF is an involution on the whole of CP 1 it can be transformed into the 180◦

rotation about the origin by conjugation with a linear transformation ρ, i.e.,

ρ πF ρ−1 = −id .

The linear transformation ρ is only defined up to scaling and an inversion at the
unit circle, which we will use later. Transforming the classical Schottky group G
by conjugation with ρ,

G → ρGρ−1, F → ρ (F)

we achieve a different Schottky uniformization of the Riemann surface C, which
may not be classical any more. Then Equations 4.2.3 translate to

σi (z) = −σ̃i (−z) ,

σ̂j (z) = −σ̂j (−z) .

The admissible data not only consists of the Riemann surface C admitting a
holomorphic involution π, but also of an equivalence class [w] of local parameters
at a specific point P0, which is one of the 2N + 2 fixed points of the involution
π. Each of the v̂1, . . . , v̂N loops touches exactly two fixed points; without loss of

58 4. COMPUTING HELICOIDS WITH HANDLES

generality we could have chosen these loops such that none of them touches the
point P0. Thus P0 is conformally mapped to one of the two fixed points of πF ,
which is, after conjugation, either 0 or ∞. The other 2N fixed points are given
by σ̂j (z) = −z,

(
z − Âj

)2

= µ̂j

(
z + B̂j

)2

, j = 1, . . . , N

and lie in pairs on the isometric circles Ĉj and therefore also on Ĉ ′
j. The trans-

formation ρ is uniquely defined if we demand that P0 be sent to ∞ and that
[w] = [1/z]. The uniformization data

(4.2.4)

S = {A1, B1, µ1, . . . , Ag0 , Bg0 , µg0 ,

Ã1, B̃1, µ̃1, . . . , Ãg0 , B̃g0 , µ̃g0 ,

Â1, B̂1, µ̂1, . . . , ÂN , B̂N , µ̂N

}

with

(4.2.5) Ai = −Ãi, Bi = −B̃i, µi = µ̃i, Âj = −B̂j

defines canonically admissible data apart from the spin structure s . By con-
struction, the Schottky basis has the symmetry required in Equation 4.1.5. The
number of free real parameters of S is 6g0 + 4N and therefore coincides with the
dimension of the space of admissible data. Thus we can parameterize all of the
surfaces we are able to compute with means presented in Section 2.

A similar argument holds for symmetric data. The anti-holomorphic involu-
tion can be chosen as τ (z) = z̄. This yields the uniformization data

S = {A1, B1, µ1, . . . , Ag, Bg, µg}
with

(4.2.6) Ai = Bj, Bi = Aj, µi = µj ⇐⇒ τ ◦ σi = σ−1
j ◦ τ,

or alternatively

(4.2.7) Ai = −Aj, Bi = −Bj, µi = µj ⇐⇒ τ ◦ σi = σj ◦ τ

with i, j = 1, . . . , g. The number of free parameters of S coincide again with
the dimension of the space of symmetric data. The Schottky data with Con-
straints (4.2.6) have an associated positive symmetric homology basis, and while
Constraints (4.2.7) generate a negative symmetric basis.

To achieve positive (negative) symmetric admissible data the Constraints
(4.2.5) and (4.2.6) (resp. (4.2.7)) have only to be combined in the obvious way. All
the a-cycles of any Schottky basis associated to symmetric admissible Schottky
data fulfill the Constraints (4.1.5) for an admissible basis as well as the Con-
straints (4.1.6) for a symmetric basis. The b-cycles of such a Schottky basis can
be chosen so that they fulfil both requirements when we allow them to intersect
in the origin.

4.3. NUMERICAL CONSTRUCTION 59

Lemma 4.2.1. For positive symmetric admissible Schottky data and associated
basis B+ as described above,

Re
∫

γ
(−a2 + b2, i(a2 + b2)) = 0 with γ = a1, . . . , ag0 ,

Re
∫

γ
(i(a2 + b2)) = 0 with γ = â1, . . . , âN ,

Re
∫

γ
(2ab) = 0 with γ = b1, . . . , bg0 , b̂1, . . . , b̂N .

define a set of 3g0 + 2N independent period conditions. For negative symmetric
admissible Schottky data and associated basis B− the set of 3g0 +2N independent
period conditions is

Re
∫

γ
(−a2 + b2, i(a2 + b2)) = 0 with γ = b1, . . . , bg0 ,

Re
∫

γ
(i(a2 + b2)) = 0 with γ = b̂1, . . . , b̂N

Re
∫

γ
(2ab) = 0 with γ = a1, . . . , ag0 , â1, . . . , âN .

4.3. Numerical Construction

4.3.1. Numerical evaluation of spinors. The Spinors (4.1.3) require the
evaluation of Riemann theta functions. The methods described in [DHB+04]
are implemented in the jtem1 project riemann2, enabling us to evaluate Riemann
theta functions effectively within prescribed error bounds.

In Chapter 2 we dealt with the evaluation of Abelian differentials and integrals
on Schottky uniformized Riemann surfaces. This, too, is part of the project
riemann.

The only entity that is not covered by the above is the normalized Abelian

integral of second kind
∫ P

P0
Ω with asymptotics

∫ P

P0
Ω = 1

w(P)
+ o (1) , P → P0 .

P0 had be chosen to be ∞. Because of the holomorphic involution π : z 7→ −z
we have ∫ z

∞
Ω =

∫ z

0

Ω +

∫ 0

∞
Ω =

∫ z

0

Ω + kπi.

The generators of an admissible Schottky group can always be chosen such
that k = g (or k = g mod 2). The differential of second kind only appears
as the argument of the exponential function, so that kπi at most generates
a sign, which will evantually cancel when we compute the Weierstrass forms
−a2 + b2, i(a2 + b2) , 2ab. By defining

∫ z

0

Ω =
∑

σ∈G

σ (z) − σ (0)

1http://www.jtem.de
2http://www.jtem.de/riemann

60 4. COMPUTING HELICOIDS WITH HANDLES

one can verify that
∫ z

0
Ω and

∫ z

∞ Ω have the desired asymptotics:
∫ z

0

Ω = z +
∑

σ∈G,σ 6=id

σ (∞) − σ (0) + o (1)

= z +
∑

σ∈G,σ 6=id

ασ

γσ

− βσ

δσ

+ o (1) , where σ =

(
ασ βσ

γσ δσ

)

= z +
∑

σ∈G,σ 6=id

1

γσδσ

+ o (1) , z → ∞,

because ασδσ − βσγσ = 1. The Schottky group G admits the holomorphic invo-
lution, thus we have with σ ∈ G also z 7→ −σ (−z) ∈ G, i.e.

(
−α β
γ −δ

)
∈ G ⇐⇒

(
α β
γ δ

)
∈ G .

Then
∑

σ∈G,σ 6=id
1

γσδσ
= 0 and the integral has the desired asymptotics.

The evaluation methods for the integral of first kind presented in Chapter 2
can be adapted to work for this integral of second kind. Now that we have the
last ingredient we can construct the spinor, but we have to be aware of some
pitfalls.

To circumvent the burden of choosing the right branch of the roots involved
in the holomorphic section

hδ =
√

Dθ [δ]|0 · v
and normalization constant

cδ =
√

Dθ [δ]|0 · V

we actually compute

a2 (P) = C (P) θ [ε]2
(∫ P

Po

v − 1

2
V

)

b2 (P) = C (P) θ [ε]2
(∫ P

Po

v +
1

2
V

)
(4.3.1)

ab (P) = (−1)<ε> C (P) θ [ε]

(∫ P

Po

v − 1

2
V

)
θ [ε]

(∫ P

P0

v +
1

2
V

)

with the common factor

C (P) = −i
Dθ [δ]|0 · V
θ [ε]2

(
1
2
V
)

Dθ [δ]|0 · v
θ [δ]2

(∫ P

P0
v
) exp

(∫ P

P0

Ω

)
.

Here we used θ[ε](−V/2) = (−1)<ε>θ[ε](V/2), where < α, β >= α · β is called
the parity of the spin structure.

4.3. NUMERICAL CONSTRUCTION 61

The normalized Abelian differentials vi are produced by Poincare theta series.
The derivative V of the Abel map at P0 = ∞ can be computed using the Riemann
bilinear relation for normalized Abelian differentials of the first and the second
kind:

Vn = −
∫

bn

Ω .

Let zn be a point on the circle Cn. Then bn joins zn with σn (zn), and we have:

Vn = −
∫ σn(zn)

zn

Ω

=
∑

σ∈G

σ (zn) − σ (σn (zn))(4.3.2)

=
∑

σ∈G/Gn

∞∑

k=−∞
σ ◦ σk

n (zn) − σ ◦ σk+1
n (zn)

=
∑

σ∈G/Gn

σ (An) − σ (Bn) .(4.3.3)

Formula (4.3.3) is much more efficient than (4.3.2) and needs only a slightly
different algorithmic treatment3. The fact that the b-cycles of the homology
basis associated to a Schottky group are only defined up to a-cycles causes no
problems here because Ω is normalized to integrate to zero around a-cycles.

The situation is different for the period matrix. The Schottky series 5.6.3
only determines the period matrix, as well as the Abel map, up to periods of
the logarithm function. This ambiguity can be encoded in a class of modular
transformations for the Schottky basis:

a′
i = Dj

i aj + Cj
i bj ,

b′i = Aj
i bj + Bj

i aj

with Dj
i = Aj

i = δj
i , Cj

i = 0. This would result in a change of the characteristics

α′
i = Di

jαj ,
β′

i = βj − Bi
jαj + Bi

i

which would in general change the values of the spinors. Thus we have to hold the
b-cycles fixed, and determine the correct branch of the logarithm. We do this by
integrating the holomorphic differentials along the b-cycles. The integration does
not need to be accurate, because we only use it to determine the right period.
Because of the quasi-periodicity of the θ-function the ambiguity of the Abel map
has no impact on the spinors.

3Skipping this optimization is excusable because V only needs to be calculated once per
surface, so that it only a minor impact on the total computational cost, anyhow we are using
it.

62 4. COMPUTING HELICOIDS WITH HANDLES

A last issue is related to the roots of θ [δ]
(∫ P

P0
v
)

that cancel with the roots

of the holomorphic section hδ. From the point of view of numerics this is rather
delicate. One might hope that the Jacobian variety is large enough and that we
practically never hit one of the g − 1 roots of θ [δ], but even getting close would
spoil the accuracy. As a matter of fact, in the hyperelliptic case the g − 1 roots
are a subset of the 2N + 2 fixed points of the involution π. These fixed points
will play an important role when we generate cycles taking advantage of the full
symmetry of the surface. But fortunately there is an easy solution: the spinors
are independent of the choice of the odd characteristics δ. Whenever the absolute
value of the θ-function drops below a certain threshold, which means we “may
approach” a root, we only need to go through the 2g−1 (2g − 1) odd characteristics
until we find one that generates no root.

At this point we are able to evaluate the spinors in a stable manner. In Section
5.6.3.1 we present an unoptimized implementation of the above using the jtem
project riemann.

4.3.2. Choosing a concrete homology basis. The evaluation of Weier-
strass forms is rather expensive, so that it pays to take advantage of the surface
symmetries. The estimates in Section 2.4 and Figures 2.4.5, 2.4.6, and 2.4.7 show
that the evaluation of the Poincare theta series gets more expensive as we get
close to the isometric circles. We will try to choose all cycles such that they
stay as far away from the boundary of the fundamental domain F as possible.
However, b-cycle must cross the associated isometric circles, so the best that we
can do here is to make it cross orthogonally.

The following strategy works. For each isometric circle C define a concentric
circle C∗ with radius equal to half the minimum distance of C to all other iso-
metric circles. Discretize4 these circles and use half of them as a-cycles. Because
of the holomorphic involution none of these circles has the origin as an inner
point. To construct the b-cycles proceed as follows. For each generator σi choose
a point zi on the associated isometric circle C around the repelling fixed point.
If C contains fixed points, choose zi to be one of these. Connect zi to the origin
with a path γi that proceeds first radially until it reaches C∗

i and then proceeds to
the origin, bypassing the interior of all circles C∗ or at least their discretization.
Proceed similarly to get a path γ∗

i connecting σi (zi) and the origin. If zi is a fixed
point of the holomorphic involution choose γ∗

i = −π∗γ. Finally we let bi = γi−γ∗
i .

Such a homology basis satisfies the symmetry requirements in Equation 4.1.5 for
Theorem 4.1.5, which now yields a set of independent period conditions. In
the case of symmetric admissible Schottky data, choose aj = τai = ±aj and

γj = τγi = γi for those generators with σj (z) = σ−1
j (z) (resp. σj (z) = σj (z))

and find a Schottky basis stisfying the hypotheses of Lemma 4.2.1 (Figure 4.3.1).

4We are using squares having one diagonal alined with the origin.

4.3. NUMERICAL CONSTRUCTION 63

Figure 4.3.1. a-cycles and paths γi for a symmetric hyperelliptic
example of genus 4

4.3.3. Integrating Weierstrass forms. Compared to the cost of evaluat-
ing spinors the cost of the actual integration method is negligible. Evaluating one
coordinate of the Weierstrass representation is as expensive as evaluating them
all, thus the integration should process all three coordinates simultaneously. Fur-
thermore the integrator must be adaptive because the conformal factor can vary
by several orders of magnitude and takes its highest values close to the bound-
ary of the fundamental domain F , which cannot be avoided in the integration
process.

Integrators based on adaptive ODE-solvers using an extrapolating scheme
worked best. These methods allow a dynamic change of the integration order,
which is especially suitable for analytic functions. In theory, this makes them
superior to single-step methods like Runge-Kutta-Fehlberg (RKF), which sur-
prisingly performed better in our case than the classical extrapolating method of
Burlisch-Stoer (BS) [PTVF92, SB90]. The single-step method of RKF some-
times had problems reaching the prescribed precision. Both RKF and BS have
the problem that the number of evaluations they need to reach a precision grows
almost quadratically with it. The “Extrap” [HNW93] ODE-solver by E. Hairer
and G. Wanner was the most successful: the number of evaluations grows just
linearly with the precision and it always reached the prescribed error bound (Ta-
ble 1,2).

We can read off the accuracy of integration methods from the first coordinate
of â-cycle periods, which have to vanish according to Theorem 4.1.5 (Table 2).

We discuss an implementation in Section 5.3.2.6.

4.3.4. Solving the period condition. Theorem 4.1.5 and Lemma 4.2.1
guarantees that we have exactly as many free parameters as we have independent
period conditions. Thus we have a classical root finding problem. Even though

64 4. COMPUTING HELICOIDS WITH HANDLES

precision Extrap BS RKF

10−1 148 247 256
10−2 169 582 409
10−3 231 2660 1441
10−4 364 38456 20346
10−5 448 not reached 81712
10−6 542 not reached
10−7 698
10−8 858
10−9 980

Table 1. Number of spinor evaluations for the helicoid He3 (Sec-
tion 4.4.3) using the adaptive ODE-solver Extrap, Bulirsch-Stoer
(BS), and Runge-Kutta-Fehlberg(RKF).

this sounds like a standard task in numerics, there are just no good, general
methods for solving systems of more then one nonlinear equations. Furthermore,
we are not able to compute the derivative of our problem analytically.

For minimization problems there exist methods that do not need any deriva-
tives. We translated the root finding problem into a minimization problem using
the target energy

Es (x1, . . . , xn) =
1

2

∑

γ=a1,b1,...,ag ,bg

(
Re

∫

γ

(
−a2 + b2, i

(
a2 + b2

)
, 2ab

))2

,

where the subscript s indicates the spin structure. Finding a root of the energy
is equivalent to solving the period condition. The parameters x1, . . . , xn param-
eterize the Schottky data. For the minimization process it is important that the
parameters be all of the same magnitude. This is given for the fixed points of
involution, but not for the loxodromic factors µi, whose magnitudes ranges for
example for the He8 from 10−2 to 10−10 . It turned out to be best to represent
the loxodromic factors in polar coordinates and scale the the parameter for the
absolute value to be of order 1.

For the actual minimization process we mainly used variations of Powell’s
directions set method [Bre02] and the downhill simplex method of Nelder and
Mead [NM65]. These methods require only function evaluations, not deriva-
tives. In some versions Powell’s method converges quadratically. Thus for well-
conditioned problems Powells’s method is almost surely faster than the downhill
simplex method, which, on the other hand, is known to be extremely robust. Our
experiments confirm this. For genus 1 and 2 Powell’s methods was clearly faster,
but already for genus 3 the simplex downhill method produced better results
(Section 5.3.2.3).

4.3. NUMERICAL CONSTRUCTION 65

precision Extrap BS RKF

10−1 0.11·10−1 0.07·10−1 0.07·10−1

10−2 0.24·10−2 0.05·10−2 0.18·10−2

10−3 0.05·10−3 0.07·10−3 2.3·10−3

10−4 0.20·10−4 0.55·10−4 2.0·10−4

10−5 0.17·10−5 not reached 15·10−5

10−6 0.26·10−6 not reached
10−7 0.12·10−7

10−8 0.22·10−8

10−9 0.49·10−9

Table 2. Numererical error of numerical integration of the first co-
ordinate of â-cycle periods of the helicoid He3(Section 4.4.3). The
integration was performed using the adaptive ODE-solver Extrap,
Bulirsch-Stoer (BS), and Runge-Kutta-Fehlberg(RKF).

Whether a minimum of the target function is a root or not cannot be decided
by just looking at the target function. An error tolerance of 10−15 for the inte-
grator is the best what we can expect from double precision5. Thus pushing Es

below
1

2

∑

γ=a1,b1,...,ag ,bg

((
10−13, 10−13, 10−13

))2
= 3g10−30

is the most what we can hope to achieve.
To distinguish a solution of the period problem from a local minimum of the

target function, we go back to the original root finding problem. In order to check
whether xr ∈ R

n is a root of a map F : R
n → R

n, we check the convergence of the
quasi-Newton method. In the absence of a an analytic derivative, approximate
the derivative numerically at xr

6. Perform some iterations of the quasi-Newton
method:

x0 = xr

xn+1 = xn − DF−1
|xr

· F (xn) .

If it does not diverge it will jump around in a neighborhood of the numerical
solution xr. Let us denote the center of mass of the set {xn} by c and

d (xr) = max
n

∣∣xi
n − ci

∣∣ ei

5Double precision representation allows 16 decimals, so that in this representation is 1 +
10−16 = 1.

6We are using an algorithm given by Ridders [Rid, PTVF92] based on the general idea
of “Richardson’s deferred approach to the limit”. Ridders’ method also provides an estimate
of the error in the derivative (Section 5.3.2.2).

66 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.1. Cycles a+(green), a−(blue), b+(pink), and b.(red)
of the Schottky basis B+ = {a+, b+}, B− = {a−, b−}, and B0 =
{b+, b−} associated to the Schottky data S+, S−, and S0 respec-
tively for the He1.

the quasi-Newton deviation vector of the root xr, which has proven to be a good
measure for the precision of xr (Section 4.4.1).

4.4. Numerical Analysis of the Examples

4.4.1. The Symmetric Genus One Case. We start our analysis with the
symmetric genus one case for which we know the existence of at least one example:
the famous helicoid of Karcher-Hoffmann-Wei, which we will refer to as He1.

According to Section 4.2, we have two principle possibilities to generate sym-
metric admissible Schottky data:

S+ = {ix,−ix, y} or S− = {x,−x, y}
with x, y ∈ R (Figure 4.4.2). Figure 4.4.1 shows a close-up of these cycles
on the He1 and the three symmetry axes. The x-axis (purple) intersects the
surface orthogonally in the three finite fixed points (black, red, and pink) of the
holomorphic involution π. Any 180◦ rotation about one of the three coordinate
axes will map the a-cycles a+ and a− onto themselves. The b-cycles are only
invariant under the 180◦ rotation about the x-axis. A 180◦ rotation about the
other coordinate axis (yellow, cyan) will map b+ onto b− and vice-versa.

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 67

A(1)

B(1)

(a) Cycles and symmetries for S+

A(1) B(1)

(b) Cycles and symmetries for S
−

A(1)

B(1)

(c) Cycles and symmetries for S0

Figure 4.4.2. Cycles a+(green), a−(blue), b+(pink), and b.(red)
of the Schottky basis B+ = {a+, b+}, B− = {a−, b−}, and B0 =
{b+, b−} associated to the Schottky data S+, S−, and S0 respec-
tively for the He1. The vertical symmetry axis is colored in yellow,
the horizontal one in cyan. The three fixed points of the holo-
morphic involution π are marked by small circles (black, red, and
pink).

68 4. COMPUTING HELICOIDS WITH HANDLES

In the positive symmetric case with Schottky data S+ the vertical symmetry
line is broken by the isometric circles. The same holds for S− and the horizontal
symmetry line. A short computation shows that in the case of negative µ the in-
tersections of the axis with circles are identified in such a way that the associated
anti-holomorphic involutions comprise exactly one real oval as desired in Defini-
tion 4.1.6 for symmetric data7. A computation in the symmetric case shows that
the isometric circles intersect for µ <

√
8 − 3 ≈ −0.172, so that µ ∈

]√
8 − 3, 0

[
.

Tracking the cycles in Figure 4.4.1, we can see that the a-cycles a+ and a−
are twisted because the spin structure respects the anti-holomorphic involution
τ , i.e. τ ∗s = s. For both symmetric bases we have

τb± = b± = −b± − a± .

This yields a condition on the characteristics ε = (α, β). We have

β = s (b±) = τ ∗s (b±) = s (−b± − a±) = s (b±) + s (a±) + a± ◦ b± = β + α + 1 ,

so that α = 1 and ε is either (1, 0) or (1, 1). This means that for symmetric
Schottky data the a-cycle is twisted and that one has a choice of an untwisted or
twisted b−cycle. For He1, b+ and b−are untwisted, so that ε = (1, 0).

We could also have chosen b+ and b− as a homology basis, which is not sym-
metric but still admissible. Then the Schottky data is given by S0 = {A,−A, µ}
with A, µ ∈ C (Equation 4.2.4). The resulting uniformization picture is also
shown in Figure 4.4.2. For this asymmetric uniformization the characteristics
must equal (0, 0) to generate the properly embedded He1. As a matter of fact,
when describing embeddings one can always choose a basis such that ε = (0, 0).

For the genus one case it is possible to compute how admissible Schottky data
transforms under a transformation of the homology basis. Let S ′ = {A′,−A′, µ′}
be generic admissible Schottky data and {a′, b′} the associated basis. Let

(
α β
γ δ

)
∈ SP (2, Z)

be a modular or Siegel transformation. This yields a new homology basis {a′′, b′′}
with

a′′ = δa′ + γb′ ,

b′′ = αb′ + βa′.

According to a classic result [BBE+94, Mum83] the period matrix B ′ = log µ′

transforms to

B′′ = 2πi
αB′ + 2πiβ

γB′ + 2πiδ
,

which results in:

µ′′ = exp

(
2πi

α log µ′ + 2πiβ

γ log µ′ + 2πiδ

)
.

7A positive µ leads to two real ovals.

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 69

to B+ to B− to B0

from B+

(
1 0
0 1

) (
−1 1
−2 1

) (
1 0

−1 1

)

from B−

(
1 −1
2 −1

) (
1 0
0 1

) (
−1 1
−1 0

)

from B0

(
1 0
1 1

) (
0 −1
1 −1

) (
1 0
0 1

)

Table 4. Modular transformations that transforms the Schottky
basis B+ = {a+, b+}, B− = {a−, b−}, and B0 = {b+, b−} associated
to the Schottky data S+, S−, and S0 into each other.

To compute A′′ we use V , the derivative of the Abel map at ∞, and Equa-
tion 4.3.3. We obtain

V = A − B = 2A .

Let us denote by ω′ and ω′′ the normalized holomorphic differentials integrating
to 2πi on a′and a′′respectively. Then

ω′′ =
2πi∫
a′′ ω′ω

′ =
2πi∫

δa′+γb′
ω′ω

′ =
2πi

δ2πi + γ log µ′ω
′

and finally we get:

A′′ =
2πi

δ2πi + γ log µ′A
′ .

For the symmetric Schottky data S+ and S− and negative µ the period matrix
is of the form B± = x + πi with x ∈ R. Transforming the associated basis B+

and B− to B0 using the modular transformations listed in Table 4, we obtain

B0 = ±2πi
x ∓ πi

x ± πi
.

Then |B0| = 2π so that the underlying torus is rhombic, which had to be the case
by construction.

According to Lemma 4.2.1 the independent period conditions for the positive
symmetric admissible Schottky data S+ are

f (x, y) = Re

∫

a

i
(
a2 + b2

)
(4.4.1)

and g (x, y) = Re

∫

b

2ab .(4.4.2)

70 4. COMPUTING HELICOIDS WITH HANDLES

(a) δ = 10−11 (b) δ = 10−12 (c) δ = 10−13

Figure 4.4.3. Series of magnifications of the vicinity of the root
(xr, yr) associated to the Schottky data for the He1. The plots
show f and g in the domains Dδ (xr, yr) with δ =
10−11, 10−12, and 10−13.

Integrating the periods takes less then a millisecond on a modern PC8. This
enables us to scan the domain in a wide range with a high resolution. For Figures
4.4.4 and 4.4.5, we integrated the periods of 2 million surfaces9 . The figures
suggest that there are infinite many untwisted and twisted closed symmetric
helicoids of genus one. The only embedded example seems to be He1, which is
marked in Figure 4.4.4 by a circle and shown in Figure 4.4.6 . Figure 4.4.7 shows
the most simple twisted example which is also marked by circle in Figure 4.4.5.

The Schottky data for the He1 is S+ = {ixr,−ixr, yr}with

xr = 1.276472774241 and yr = 6.578689918442 · 10−2 .

The periods f (xr, yr) and g (xr, yr) are about 10−13 and realize the chosen ac-
curacy for the integrator10. In this case the target energy Es (xr, yr) = 2 · 10−26

reaches the predicted optimal value. However, noe of this tells us any thing about
the precision of the Schottky data.

The two-dimensional root problem admits a nice graphical analysis of the
precision of root (xr, yr). We magnify the vicinity of the root until we approach
the ultimate resolution. The failure of the numerics will blur the picture. Figure

8Intel Pentium 5, 2.5GHz
9The plots have been generated using a standard “marching squares” algorithm (numeri-

calMethods.geometry.hyperSurfaces.MarchingSqaures).
We chopped off the lower right part of the plots, which is heavily effected by numerical

noise. The noise is due to the fact that 2a(z)b(z) and i exp(z) have the same asymptotics and
thus g grows exponentially in x (with constant y).

10We choose the accuracy for the θ-function and Schottky series always two digits more
accurate than the of the integration.

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 71

Figure 4.4.4. Zero level lines of the two independent period con-
ditions f(x, y) = Re

∫
a
i(a2 + b2) (red) and g(x, y) = Re

∫
b
2ab

(blue) in the domain]0, 30π[×]−0.15, 0[for symmetric genus one
case with characteristics ε = (1, 0) . The example of Karcher-
Hoffmann-Wei is marked by a circle (Figure 4.4.6).

72 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.5. Zero level lines of the two independent period con-
ditions f(x, y) = Re

∫
a
i(a2 + b2) (red) and g(x, y) = Re

∫
b
2ab

(blue) in the domain]0, 30π[×]−0.15, 0[for symmetric genus one
case with characteristics ε = (1, 1) . The most simple example of a
twisted genus-one helicoid is marked by a circle (Figure 4.4.7).

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 73

Figure 4.4.6. He1, the example of Karcher-Hoffmann-Wei.

74 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.7. The most simplest twisted symmetric genus-one
helicoid, which was found in [Bob98].

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 75

(a) δ = 10−13 (b) δ = 10−13

Figure 4.4.8. Quasi-Newton iteration for he root (xr, yr) associ-
ated to the Schottky data for the He1, using the highly accurate
numerical Derivative (4.4.4) on the left and the coarse Approxima-
tion (4.4.5) on the right.

4.4.3 shows a series of zooms: the plots show f and g in the domains

(4.4.3) Dδ (xr, yr) = [(1 − δ) xr, (1 + δ) xr] × [(1 − δ) yr, (1 + δ) yr]

with δ = 10−11, 10−12, and 10−13. The series shows that we can take 12 digits for
granted

We now compare the above with the quasi-Newton deviation method we de-
scribed at the end of Section 4.3.4. This method has, compared to any graph-
ical method, the advantage that it works for any number of parameters. The
drawback of this method is that it requires the derivative, which we have to ap-
proximate numerically. Fortunately the method is very robust concerning the
accuracy of the derivative. Ridders’ method predicts an accuracy of 10−10 for the
derivative
(4.4.4)

DF|(xr,yr) =

(
∂xf ∂yf
∂xg ∂yg

)

|(xr,yr)

≈
(

2.5723986145 −65.957791646
−5.8519250933 −28.707915932

)
.

Figure 4.4.8 shows on the left hand side the point cloud generated by the quasi-
Newton method using the approximation above. The maximal deviation is less
then 0.5 · 10−14. On the right hand side Figure 4.4.8 we show the result of the
quasi-Newton iteration using the matrix

(4.4.5)

(
2 −60

−5 −20

)

as approximation of the derivative. Although this matrix is, with a relative error
of more then 20%, just a coarse approximation of the derivative, the methods
still predicts with 0.9 · 10−14 a suitable precision.

76 4. COMPUTING HELICOIDS WITH HANDLES

 0

 1

 2

 3

 4

 5

 6

Figure 4.4.9. Magnification of upper left part of Figure 4.4.4
showing the zero levels of f and g in the domain]0, 9π[×]−0.02, 0[.
The indexed black points mark the projections of the Schottky data
S0 (Table 5) of closed asymmetric helicoids to the symmetric data
S+.

4.4.2. The Asymmetric Genus One Case. In this case the Riemann
surface has no anti-holomorphic involution. In the previous section we saw that
a rhombic torus can be uniformized by the unsymmetric Schottky data S0. To
deterimine whether a torus is rhombic we have to transform the modulus B =
log µ using the right modular transformation into the fundamental domain of the
modular group. This task is easy for a torus ([Hei95, p. 25-26]) and handled by
Siegel’s reduction algorithm [Sie89, Hei95, DHB+04], which also does the job
also for higher genus (Section 3.4). Once we have the reduced modulus, we only
have to check whether its absolute value equals 2π.

A µ 1
2π

|Br|
0 0.34087472626 + 5.89807485189 i -0.0118611871544 - 0.0033906555950 i 1.0616787876

1 1.255994424 + 12.366740055 i -0.00213350902 - 0.0010667089 i 1.05131502

2 1.498577 + 18.714425 i -0.000953910 - 0.00038601 i 1.179504

3 0.872954 + 18.723598 i -0.00547658 - 0.0011283 i 1.035305

4 1.6347 + 25.03044 i -0.0005440 - 0.000183 i 1.269

5 1.14437 + 25.0353 i -0.003015 - 0.000623 i 1.032

6 0.6621 + 25.040 i -0.007688 - 0.00088 i 1.021

Table 5. Schottky data and the absolute value of their reduced
modulus normalized by 2π of asymmetric helicoids with character-
istics ε = (1, 0).

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 77

Figure 4.4.10. Magnification of a traversal intersection of the
vertical axis (yellow) with the asymmetric Example 2 (Table 5).

The Schottky data for the asymmetric case is given by S0 = {A,−A, µ} with
no additional constraints. In principle we have the choice of all four different
characteristics, but we stick to those two from the symmetric case. Then the
symmetric cases with the Schottky data S+ and S− becomes a subset of S0.

The plots shown in Figure 4.4.4 and 4.4.5 were a crucial step toward finding
asymmetric examples. I noticed that the zero level lines of f (Equation 4.4.1) and
g (Equation 4.4.2) in some regions almost touch: there I started to search again
and succeeded. Figure 4.4.9 is a magnification of upper left part of Figure 4.4.4
showing the zero levels in the domain]0, 9π[×]−0.02, 0[. The black points mark
the projections of the Schottky data S0 of the closed asymmetric examples we
have found to the symmetric data S+. The points all lie close to the intersection
of a “blue line” and a parameter line x = 2nπ 11. Table 5 lists their Schottky data
as well as the absolute value of their reduced modulus normalized by 2π. The
displayed digits can be taken as precise according to the quasi-Newton deviation
test. The figures for the fourth series with Examples 4, 5, and 6 laying close to
the parameter line x = 8π already have a pure precision, and we do not give more
examples.

11For the twisted examples the situation is quite simular, just that the examples lie close
to the parameter lines x = (2n + 1) π.

78 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.11. Asymmetric Example 2 (Table 5).

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 79

Figure 4.4.12. Strip of constant width whose center line is the
image of the imaginary axis of the asymmetric Example 2 (Table 5).

80 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.13. Loops on He2

Unfortunately, none of these asymmetric examples are embedded and they
intersect in a complicated manner (Figure 4.4.11) . In contrast to the symmetric
case the vertical axis does not lie on asymmetric examples. Figure 4.4.10 is a
magnification of a traversal intersection of the vertical axis with Example 2 (Table
5). To give a better visual idea of the surface we plotted a strip of constant width
that converges asymptotically to the vertical axis (Figure 4.4.12).

4.4.3. Symmetric Hyperelliptic Higher Genus Examples. For the higher
genus examples we restrict ourselves to the symmetric case. According to the
definition of admissible data the Riemann surface C → C0 is, a ramified double
covering of genus g = 2g0 + N of a compact Riemann surface C0 of genus g0

with 2N + 2 branch points, the fixed points of the involution π. For g0 = 0
the Riemann surface C is hyperelliptic. All examples we have found are of this
type. The numerical analysis of some nonhyperelliptic examples in Section 4.4.4
strongly suggest that these surface do not exist.

From now on we always will use the negative symmetric Schottky uniformiza-
tion data (4.2.6) because we experienced faster convergence of the Schottky series
than for positive Data (4.2.7). For genus g = 2 we have:

S−,2 =
{
A,−A, µ,−A,A, µ

}

with A, µ ∈ C. Figure 4.4.14 shows the associated fundamental domain and
Schottky basis. The five fixed points of the hyperelliptic involution π (marked
again as small circles colored black,red,pink,green, and blue) will be the intersec-
tion of the helicoid with the x-axis. Thus we can expect the cycles to be displaced

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 81

Figure 4.4.14. Schottky uniformization of He2.

horizontally along the x-axis, the b-cycles in the center, and the a-cycles to the
outside. Figure 4.4.13 shows a close-up of these cycles on the He2, the embedded
symmetric hyperelliptic of genus 2 (Figure 4.4.15) . A 180◦ rotation about the
x-axis maps all cycles onto themselves. A 180◦ rotation about the other two co-
ordinate axes exchange the a-cycles and b−cycles in each case. All the cycles are
untwisted, which refers to the characteristics ε = ((0, 0) , (0, 0)). This “reverse
engineering” is not the preferred course of action when one wants to model a
surface. Usually one has a “qualitatively correct” picture in mind, like this one
of four untwisted horizontal displaced cycles with the prescribed symmetry.

In general the negative Schottky data for the hyperelliptic examples are

S−,2n+1 =
{
x,−x, y, A1,−A1, µ1,−A1, A1, µ1, . . . , An,−An, µn,−An, An, µn

}

for odd genus g = 2n + 1 and

S−,2n =
{
A1,−A1, µ1,−A1, A1, µ1, . . . , An,−An, µn,−An, An, µn

}

for even genus g = 2n. The embedded examples must have characteristics

ε2n+1 = ((1, 0, . . . , 0) , (0, . . . , 0)) and ε2n = ((0, . . . , 0) , (0, . . . , 0)) .

We have been able to determine the data for the embedded symmetric exam-
ples up to genus 6 (Tables 6 and 7). The displayed digits are all confirmed by
the quasi-Newton deviation test and its convergence suggests that these surface
all exist. The numerics also handles even higher genus than six, but unfortu-
nately we have not yet been able to close the periods. For genus seven and eight
the target energy is small enough for plotting convincing pictures, but the quasi-
Newton deviation test does not converge. The minimization process for such high
genus is laborious: the evaluation of the periods in the genus 6(8) case takes on
average about 70 (450) seconds and the number of free parameters is 12 (16). It
took weeks to determine the data for He6, and it was only possible because we
were able to generate good start positions for the minimization process.

The Schottky uniformization method enables us to extrapolate the Schottky
data for higher genus examples from the known data of lower genus cases. To

82 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.15. He2, the embedded symmetric hyperelliptic heli-
coid of genus 2

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 83

(a) He3

(b) He4

(c) He5

Figure 4.4.16. The embedded symmetric hyperelliptic helicoids
of genus 3, 4, and 5.

84 4. COMPUTING HELICOIDS WITH HANDLES

g x A1 A2

1 1.473599588787236

3 1.368669935 3.25927558 + 1.402595892 i

5 1.3167 2.87 + 1.3521 i 5.31 + 1.5106 i

g y 106 · µ1 109 · µ2

1 -0.026602460340538755

3 -0.02798164608 2.0792494 - 1.4477405 i

5 -0.028697 5.53 - 3.73 i 6.5 - 3.6 i

Table 6. Negative symmetric Schottky data for He1, He3, and He5.

g A1 A2 A3

2 1.8997448266 + 1.3383277988 i

4 1.73010822 + 1.27451238 i 4.1722873 + 1.5234329 i

6 1.638957 + 1.2357420 i 3.646450 + 1.501396 i 6.16028 + 1.54885 i

g 10−4 · µ1 10−7 · µ2 10−10 · µ1

2 0.877611203 - 1.056423685 i

4 1.3708127 - 1.4972566 i 1.0581083 - 0.8072951 i

6 1.736253 - 1.776168 i 3.72284 - 3.16433 i 6.1778 - 3.1884 i

Table 7. Negative symmetric Schottky data for He2, He4, and He6.

extrapolate the data for genus g we take the data from the genus g − 2 case and
add suitable parameters A[g/2] and µ[g/2]. If we choose the parameter µ[g/2] to
be small12, the associated generators have no effect on the Weierstrass spinors
(4.1.3) and we just plugged four tiny holes into the helicoid at the images of
A[g/2],−A[g/2],A[g/2], and −A[g/2]. Out of these holes we will grow a new pair
of handles, but we still have to decide where we want to “plant” them. The
real part of A[g/2] encodes the distance of the new pair of handles from the z-
axis. It is the only parameter that models the initial position. The imaginary
part of A[g/2] can be determined by a variation process such that the holes have
only vertical offsets. In a second pre-minimization step we vary the three real
parameters =A[g/2], <µ[g/2], and =µ[g/2], which will let grow the holes toward
eachother. In the third minimization step we vary all parameters and reach for
the final solution. If <A[g/2] was chosen large enough the target energy is already
small after this second step and we always get a visually convincing picture. For
finding the right data, which masters the quasi-Newton deviation test, it takes

12Choosing the parameter µ[g/2] to be zero has the effect that we identify the fix points

A[g/2] with −A[g/2] and A[g/2] with −A[g/2], which means we add two nodes to the Riemann
surface. Thus giving µ[g/2] a very small value can be understood as opening up the nodes or as

a numerical desingularization.

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 85

g r1 r2,3 r4,5

1 1.290

3 0.701 0.485

5 0.470 0.341

g d1 d2,3 d4,5

1 0

3 0 20.208

5 0 13.323 173.11

Table 8. Necksizes ri and distances of the handle di from the
center of He1, He3, and He5.

g r1,2 r3,4 r5,6

2 0.689

4 0.632 0.398

6 0.595 0.393 0.304

g d1,2 d3,4 d5,6

2 5.726

4 4.547 59.985

6 3.990 34.558 447.86

Table 9. Necksizes ri and distances of the handle di from the
center of He2, He4, and He6.

many approaches. The additional outer handles push the inner more towards the
z-axis and let their necksizes shrink (Tables 8 and 9). If we have chosen the
initial value for <A[g/2] too big, then new pair will not push the inner handles
together, but if it is too small, we will disturb the lower genus picture and get no
result at all. A successful approach has to balance these phenomena.

The distance of the the handles from the z-axis grows exponentially with the
genus. In the geuns 6 case the most outer pair of handles is about 100 times
further from the center than the inner most pair (Table 9).

Algebraic Data of the Hyperelliptic Examples. In the case of symmetric hyper-
elliptic examples, we can explicitly represent the Riemann surface as an algebraic
curve. A hyperellitpic curve of genus g is given by the equation

(4.4.6) µ2 =

2g+2∏

j=1

(λ − λj) .

In the hyperelliptic case with holomorphic involution π (z) = −z the coordi-
nate function λ can be written as

(4.4.7) λ (z) = q
∑

σ∈G

σ (z)2 − σ (0)2

[Bob91, BBE+94, p. 179]. The branch points λi are the fixed points of the
hyperelliptic involution. In terms of the Schottky parametrization they are the
images λi = λ (Λi) of 0, ∞, or one of the 2g solutions of the equations

σ̂j (z) = π (z) = −z , j = 1, . . . , g ,

86 4. COMPUTING HELICOIDS WITH HANDLES

g = 2 g = 4 g = 6

b1 = b2 1.482155 + 4.728121 i 1.048956 + 4.017513 i 0.853747 + 3.642826 i

b3 = b4 2.196811 + 5.445948 i 1.741124 + 4.811201 i 1.521140 + 4.470075 i

b5 = b6 15.059780 + 12.693695 i 10.991637 + 10.917349 i

b7 = b8 15.166960 + 12.735775 i 11.149793 + 10.989604 i

b9 = b10 35.570792 + 19.081307 i

b11 = b12 35.587271 + 19.085591 i

Table 10. Branch points of hyperelliptic curve for He2, He4, and
He6. Uncertain digits are printed in italics.

g = 1 g = 3 g = 5

b1 = b2 0.818063 + 2.543532 i 0.646490 + 2.237452 i 0.569868 + 2.090695 i

b3 = b4 7.634140 + 9.147499 i 5.448675 + 7.767172 i

b5 = b6 7.914972 + 9.300899 i 5.799157 + 7.991905 i

b7 = b8 25.146739 + 16.072406 i

b9 = b10 25.187059 + 16.084873 i

Table 11. Branch points of hyperelliptic curve for He1, He3, and
He5. Uncertain digits are printed in italics.

which is equivalent to
(
z − Âj

)2

= µ̂j

(
z + B̂j

)2

, j = 1, . . . , g ,

with S−,g =
{

Â1, B̂1, µ̂1, . . . , Âg, B̂g, µ̂g

}
.

The scaling factor q in (4.4.7) can be chosen to be 1 because scaling the branch
points does not change the Riemann surface represented by the curve 4.4.6. The
solutions lie in pairs on the isometric cirlces Ĉj and Ĉ ′

j which are identified by
σ̂j (Section 4.2). For small ismoetric circles the pairs of solutions are close to
oneanother which carries over to the associated pair of branch points. In the
case of negative symmetric Schottky data S−,g we have τ ◦ σi = σj ◦ τ ,where
τ (z) = z. The additional antiholomorphic involution yields conjugate pairs of
solutions Λi = Λj as well as associated conjugate pairs λi = λj of branch points
(Figure 4.4.17). Tables 11 and 10 lists the conjugate pairs of branch points for
Heg, g = 1, . . . , 6 derived from its Schottky data as described above.

4.4.4. The Nonhyperelliptic Case. We already mentioned that we did
not find any closed nonhyperelliptic examples. We conjecture that any immersed
minimal surface of finite topology with one helicoidal end can be parameterized
by a hyperelliptic Riemann surface. We will present the analysis that motivated
this conjecture. An other purpose of this section is to show that the Schottky

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 87

 1

 0

 2

 3

 4

 5

 6

Figure 4.4.17. Branch point diagram of He3. The branch cuts
relate to the a-cycles of the Schottky basis.

uniformization method allows an uncomplicated treatment of nonhyperelliptic
situations. In conlusion we add with Figures 4.4.20 and 4.4.21 two more episodes
to the chronicle of the death of visual proof.

For genus g = 2 the only nonhyperelliptic Riemann surface is a twofold covered
torus (g0 = 1, N = 0) that is modeled by the positive symmetric Schottky data

S+,1,1 =
{
A,−A, y,−A,A, y

}

with A ∈ C, y ∈ R. On the left of Figure 4.4.18 we show the Schottky uniformiza-
tion picture for the data A = 1.50448 + 3i, y = −0.026722. Figure 4.4.20 shows
the associated helicoid with its two vertically displaced handles. Its period does
not quite close. The error imposes translation periods of a magnitude of about
a percent of the necksize of the handles, which is not noticeable any more in the
picture. When we first tried to realize this example the minimizer almost imme-
diately came up with a reasonable value for the target energy E. As we tried to
improve this we noticed that the data did not converge, but slowly increased the
imaginary part of A. To quantize this behavior we minimized the target energy E
for fixed values of =A and only varying <A and y. The resulting graph E (=A),
shown in Figure 4.4.19 , confirmed our conjecture that the handles repel each
other. <A(=A) and y (=A) converge to the corresponding values of the negative
symmetric Schottky data S− of the He1as =A goes to infinity, which is indeed
not a surprise.

88 4. COMPUTING HELICOIDS WITH HANDLES

All nonhyperelliptic examples incorporate a vertical displacement of handles
and in all our experiments13, we had the same kind of repelling phenomena.

To illustrate how to model surface properties using Schottky uniformization
we give another symmetric nonhyperelliptic example. On the right of Figure
4.4.18 we show the uniformization picture of a genus 4 example. We just “added”
the Schottky data for the He2 with the previous example. The resulting helicoid
is shown in Figure 4.4.21. Although it is not noticeable in the picture, its periods
do not close. A further minimization of the target function would send the outer
pair of handles to infinity and leave us with the He2.

13We also tested asymmetric examples.

(a) Cycles and symmetries for S
−,1,1 (b) Cycles and symmetries for S

−,1,2,1

Figure 4.4.18. Uniformization pictures of nonhyperelliptic examples

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 89

5 10 15 20 25

-15

-12.5

-10

-7.5

-5

-2.5

L
og(E

)

Im(A)

Figure 4.4.19. The target energy E as a function of =A.

90 4. COMPUTING HELICOIDS WITH HANDLES

Figure 4.4.20. Nonexisting nonhyperelliptic symmetric genus 2 example.

4.4. NUMERICAL ANALYSIS OF THE EXAMPLES 91

Figure 4.4.21. Nonexisting nonhyperelliptic symmetric genus 4 example.

CHAPTER 5

jtem - Numerical Libraries

5.1. Introduction

The core of the jtem1 project consists of a collection of scientific, mostly math-
ematical, libraries implemented in pure standard Java2. The project is develeoped
according to the following major guidelines:

(1) using only pure Java as programming language, and
(2) separating applications and the application generation process from the

mathematical content.

These decisions were driven by the experiences we gained from previous work.
From 1994 to 1997 we developed a prototyping environment for experimental
mathematics: Oorange (Object ORiented Analysis Numerics and Graphics En-
vironment) [GOP+97]. The Oorange project had a hybrid language scheme:
numerics and graphics were implemented in Objective-C ; the graphical program-
ming environment used Tcl for scripting purposes. To accomplish our demanding
goals more computer languages and non main stream software had to be incor-
porated. In combination with the approach to develop a generic tool designed
for several different tasks the project came to the edge of maintainability.

Java offered main stream solutions for all major technical problems we had to
deal with in the original Oorange project. This enabled us to focus on contents,
which we broke up into three seperated projects: Java Oorange3, jreality4, and
jtem.

With Java Oorange we refined the concepts for graphical programming and
rapid prototyping developed for the original Oorange.

jReality, a Java 3D viewer for mathematics, took over the part of the 3d
graphics system.

jtem provides a collection of numerical libraries for the scientific and math-
ematical content. The project currently offers almost a dozen different sub-
projects, but its core and origin are three numerical libraries: numericalMethods,
mfc, and riemann, which are the subject of this chapter.

1http://www.jtem.de
2Java is an object oriented programming language and trademark of Sun Microsystems.
3http://www.oorange.de
4http://www.jreality.de

93

94 5. JTEM - NUMERICAL LIBRARIES

5.2. Design of the JTEM - Numerical Libraries

The basic design consists of two major layers, which divides the code into
two, for mathematicians natural, categories:

(1) algorithms, and
(2) mathematical objects

These categories reflect also two basic approaches in software design: procedural
and object oriented. The design of the jtem libraries tries to bring these two
concepts together in order to achieve maximal flexibility.

The bottom layer is formed by a library of algorithms and numerical pro-
cedures bundled in the project numericalMethods. The implementation strives
for a pure procedural realization by static methods using only primitive types,
arrays of primitive types, or Java foundation classes. Thes functions have a high
reusabiltiy value if they avoid internal dependencies. Firstly, they can be refer-
enced by others without imposing any changes to their code. Secondly, the code
of such methods can be easily incorporated in different projects. This allows
people to avoid the dependency to our project, or to enable them to adapt the
code to their needs.

It is clear that such a pure approach can not be kept up in an object oriented
language like Java without counteracting its design. Very often it is not sensible
or even possible to avoid classes and interface. But the definition of classes and
interfaces is kept as local as possible avoiding any kind of fancy hierarchies in
order to maximize the reusability value as described above.

On the other hand, the ascetic design helps to incorporate code from others
as the project numericalMethods imposes almost no restrictions to the code. For
many algorithms implementations exist in C or FORTRAN. In most situations
the only way to incorporate the sources into a pure Java project5 is to translate
them manually. This can be a tedious task and it helps a lot to stick to the
blueprint, which has normally a procedural design, as close as possible.

The second layer consist of a hierarchy of libraries providing implementations
of mathematical terms in a classical object oriented manner. The spectrum of
classes reach from basic terms like complex numbers, vectors, and matrices to
highly sophisticated notions like Riemann surfaces. Many of these classes just
wrap the functionality of the numericalMethods package and provid a convenient
front-end. This seems to generate an unnecessary overhead, but it keeps the front-
end simple. Numerical routines tend to have many tuning parameters, which
need specialized knowledge about the algorithm. This should be not visible in
the API of the easy-to-use classes. If an application needs special treatment, i.e.,
the default setup does not suffice, the developer can directly use the hard core
routines in the numericalMethods package.

Currently there are four numerical libraries available to the public:

5This excludes native libraries or special virtual machines.

5.2. DESIGN OF THE JTEM - NUMERICAL LIBRARIES 95

Figure 5.2.1. A layer diagram showing the dependencies of the
jtem numerical libraries.

(1) mfc - mathematical foundation classes,
(2) blas - basic linear algebra system,
(3) riemann - tools for the study of riemann surfaces, and
(4) ellipticFunctions - a collection of elliptic Functions.

Figure 5.2.1 shows their dependencies. In the following sections we give descrip-
tion of these projects.

96 5. JTEM - NUMERICAL LIBRARIES

5.3. The numericalMethods project

The numericalMethods package is the foundation of the numerical jtem-
projects. It is a library of numerical routines solving algebraic, analytic and
geometric problems which is reflected in its three main sub-packages numeri-
calMethods.algebra, numericalMethods.calculus, and numericalMethods.geometry.
The design of the code follows a procedural approach typical for numerical rou-
tines (Section 5.2). The main packages have very few inter-dependencies. All of
them are caused by references to algebra routines, which is a necessity.

5.3.1. numericalMethods.algebra. The algebra package currently pro-
vides numerical routines in three topics: groups, polynomials, and linear algebra.
Figure 5.3.1 shows an UML class an package diagram6. Unlike FORTRAN, Java
has no complex primitive type. For complex arithmetic one either has to provide
a class or simply work with existing primitve types. We decided for the last and
provide no class implementation of a complex number in the numericalMethods
project7 for several reasons:

The existence of a complex type would unstoppably cause a dependency of
huge part of the project on this type and heavily reduce its reusability. Further,
the complex type would certainly appear in the API and cause also the user
of the library to use it. Even if complex numbers are widely used, not ever
implementation is useful for every application. Even the realization of such a
trivial notion as a complex number involves several basic design decisions. A
necessity for one application can be a restriction for an other. As an example we
raise the question whether a complex number should be mutable8, so we can reuse
the instances and relieve the garbage collector9, or should it be better immutable
so we can share instances safely.

Another reason is that numerical routines should neither force nor support
the creation of objects, because this can reduce the performance drastically. Rep-
resenting each entry of a large complex matrix by an object would be an example
for a particularly bad design. Thus in the linear-algebra packages a complex
matrix is always represented by two real matrices, its real and imaginary part.

The linear-algebra routines are the working horses for many applications, thus
their implementation should be especially efficient. Vectors and matrices are

6UML (unified modeling language) diagram types [FS97].
7An implementation of complex number is provided in the mfc project, mfc.field.Complex

and mfc.field.ComplexConstant.
8immutable objects can not be changed, mutable can.
9Java has a build-in memory management: allocated memory can not be freed manually; it

is done automatically by the “garbage collector”. The garbage collector analysis all currently
existing objects in the virtual machine and determines those objects which can not be referred
anymore by the program and frees them.

5.3. THE NUMERICALMETHODS PROJECT 97

Figure 5.3.1. UML diagram of classes and packages in numerical.algebra.

represented as one-dimensional and rectangular two-dimensional arrays10. Due
to performance reasons the routines never check whether a two-dimensional array
is rectangular. This responsibility is left to the application programmer11.

Unnecessary object creation can significantly reduce the performance of an
application. Many algorithms need to create storage for temporary data. The
API offers for those algorithms for which this is significant the possibility to pass

10The first index represents the row, the second the column. This is standard, because it
is optimal for matrix-vector multiplications.

11The utility class numericalMethods.algebra.linear.MatrixOperations provides a static
methods boolean isRectangular(double[][]) for this task.

98 5. JTEM - NUMERICAL LIBRARIES

the temporary data to it. This is important in situations where you call this
function with similar data for many times. In situations where this is not an
issue you might prefer to use the method with an easy-to-use signature, which is
always provided.

An example: Inverting a real matrix. This task is handled by two methods in
the class numericalMethods.algebra.linear.Inversion:

(1) static boolean compute(double[][] A, double[][] I)
(2) static boolean compute(double[][] A, double[][] t0, double[] t1, double[] t2)

The signature of the first method is almost self-explanatory: the method com-
putes the inverse of the matrix A and returns the result in the matrix I ; if the
computation was not successful, i.e., A is (numerically) singular, the methods re-
turns false otherwise true . The implementation assumes that both arguments
are consistent. The second signature is the front-end to the core algorithm and
more complicate: firstly, there are the arguments t0,t1,t2 for the temporary
storage, they may be null, which forces the routine to create the data. Sec-
ondly, it lacks the argument for the result. It is quite common that numerical
procedures destroy the input or, like here, overrides the input with the output.
This implies the necessity to copy the argument beforehand if it still needed.

Below we give an example implementation; a method that inverts an array of
matrices in-place which have all the same shape:

public void invert(double [][][] listOfSquaredMatrices) {

final int n = listOfSquaredMatrices[0].length;

final double [][] t0 = new double[n][n];

final double [] t1 = new double[n];

final double [] t2 = new double[n];

for(int i=0; i<listOfSquaredMatrices.length; i++) {
final int A = listOfSquaredMatrices[i];

numericalMethods.algebra.linear.

Inversion.compute(A, t0, t1, t2);

}
}

5.3.2. numericalMethods.calculus. The calculus sub-package is the most
extensive among the main package of the numericalMethods project. It currently
provides routines for integration and differentiation, function minimization, root
finding, function interpolation and approximation, and some special functions
(Figure 5.3.2). It is the nature of this topic that it deals with functions, thus it
is neither surprising nor avoidable that most of the sup-packages depend on the
package which provides their definitions:

5.3.2.1. numericalMethods.calculus.function. Interfaces impose only relative
small restrictions to the user code. They can easily be added to or removed from
code and with the use of anonymous classes they can be even defined locally. The

5.3. THE NUMERICALMETHODS PROJECT 99

Figure 5.3.2. UML diagram of classes and packages in numerical.calculus.

100 5. JTEM - NUMERICAL LIBRARIES

function package provides interfaces for real functions for four different types with
and without derivative information:

(1) RealFunctionOfOneVariable (f : R → R),
(2) RealFunctionOfSeveralVariables (f : R

n → R),
(3) VectorValuedFunctionOfOneVariable (γ : R → R

n), and
(4) VectorValuedFunctionOfSeveralVariables (F : R

n → R
n).

The interfaces that provides additional derivative information extend those with-
out and are respectively called

(1) RealFunctionOfOneVariableWithDerivative ,
(2) RealFunctionOfSeveralVariablesWithGradient ,
(3) VectorValuedFunctionOfOneVariableWithDerivative , and
(4) VectorValuedFunctionOfSeveralVariablesWithJacobian .

The length of the indeed very descriptive names are no handicap, because for
modern IDE12 name-completion is a standard feature.

To show how these interfaces work we give an example implementation for

(5.3.1) f (x, y) = sin (x) cos (y) ,

which is a function of type 2. The interface RealFunctionOfSeveralVariables
consists of two methods

(1) public double eval(double[] x) , and
(2) public int getNumberOfVariables().

The interface is self-explanatory; the code below creates an instance of an anony-
mous class implementing the interface.

RealFunctionOfSeveralVariables f = new RealFunctionOfSeveralVariables() {

public double eval(double[] x) {
double s = x[0];

double t = x[1];

return Math.cos(t)*Math.sin(s);

}

public int getNumberOfVariables() {
return 2;

}
};

The interface RealFunctionOfSeveralVariablesWithGradient extends the pre-
vious interface by the single method:

public double eval(double[] x, double[] gradient).

The method returns the function value at the position x and computes the gra-
dient of the function which is written into gradient. An implementation for

12IDE - Integrated Developer Environment.

5.3. THE NUMERICALMETHODS PROJECT 101

the function f from above with

∇f =

(
− sin (t) sin (s)

cos (t) cos (s)

)

could look like

public double eval(double[] x, double[] gradient) {
double s = x[0];

double t = x[1];

gradient[0] = -Math.sin(t)*Math.sin(s);

gradient[1] = Math.cos(t)*Math.cos(s);

return Math.cos(t)*Math.sin(s);

}

5.3.2.2. numericalMethods.calculus.differentiation. In many cases the deriv-
ative is very hard to compute analytically and a numerical approximation is
the only choice to gain derivative information. This always involves specific
knowledge about the function. We are using an algorithm given by Ridders13

[Rid, PTVF92] based on the general idea of “Richardson’s deferred approach to
the limit”. Ridders’ method is especially robust and also provides error estimates
for the derivative. For an easy generation of numerical derivative information the
package provides a factory class: NumericalDerivative. Is f an instance of any
of the four function interfaces, then

NumericalDerivative.create(f, h, maxTableLength)

creates an instance of the related interface with derivative information which
computes the differential using Ridders method14.

13numericalMethods.calculus.differentiation.Ridders
14The parameters h and maxTableLength determine the initial step-size and the maximal

length of the extrapolation table, consult the class documentation or [Rid, PTVF92] for
details.

102 5. JTEM - NUMERICAL LIBRARIES

5.3.2.3. numericalMethods.calculus.minimizing. This was the first package of
all, which already shows the importance for our work. Unfortunately, this can
also be seen in the code and thus the hole package will soon be subject to a
major refactoring. The package provides various methods for one- and multi-
dimensional minimization. Apart form the downhill simplex method of Nelder
and Mead [NM65], which has an entirely self-contained strategy, all other algo-
rithms reduce multidimensional minimization problems to the one-dimensional
case. The algorithms finally differ merely in ther choce of the directions for
their next line search. The steepest descent method and the conjugate gradi-
ent method use derivative information for this. However, Powell’s directions set
method [Bre02] and the downhill simplex method of Nelder and Mead [NM65]
require only function evaluations.

All one-dimensional minimum search algorithms assume that you are able to
bracket the minimum, i.e., you can provide positions a, b, c such that the function
values at a and c are bigger the value at b. Finding the initial bracket is therefore
always the first step in any minimum search, which is done by a bracketer. The
minimizing algorithms separate into three different categories:

(1) bracketer,
(2) one-dimensional, and
(3) multidimensional search algorithms.

A choice of a multidimensional method also involves a choice of a one-dimensional
search algorithm and a bracketer. Which combination is best depends on the
target-function.

Below we give an example implementation for minimizing the target-function

f (s, t) = cos (t) sin (s) ,

which we already used in Section 5.3.2.1 to illustrate the function interfaces, with
several different minimizers. The code below uses a typical alternative implemen-
tation, avoiding code doublication:

5.3. THE NUMERICALMETHODS PROJECT 103

package helicoid.example;

import numericalMethods.calculus.minimizing.*;

public class FunctionMinimizingWithDerivatives {

RealFunctionOfSeveralVariablesWithGradient

f = new RealFunctionOfSeveralVariablesWithGradient() {

public double eval(double[] x, double[]

gradient) {
double s = x[0];

double t = x[1];

if(gradient != null) {
gradient[0] =

-Math.sin(t)*Math.sin(s);

gradient[1] =

Math.cos(t)*Math.cos(s);

}
return Math.cos(t)*Math.sin(s);

}

public double eval(double[] x) {
return eval(x, null);

}

public int getNumberOfVariables() {
return 2;

}
};

/** minimizes function f(s,t)=cos(t)sin(s) with prescribed error tolerance

* and start position using Powell’s direction set methods. */

public double minimizeByPowell(double[] startPos, double tol) {
return Powell.search(startPos, tol, f);

}

/** minimizes function f(s,t)=cos(t)sin(s) with prescribed error tolerance

* and start position using the downhill simplex method of Nelder & Mead. */

public double minimizeByNelderMead(double[] startPos, double tol) {
return NelderMead.search(startPos, tol, f);

}

/** minimizes function f(s,t)=cos(t)sin(s) with prescribed error tolerance

* and start position using the conjugate gradient method. */

public double minimizeByConjugateGradient(double[] startPos, double tol) {
return ConjugateGradient.search(startPos, tol, f);

}

/** minimizes function f(s,t)=cos(t)sin(s) with prescribed error tolerance

* and start position using the steepest descent method.

public double minimizeBySteepestDescent(double[] startPos, double tol) {
return SteepestDescent.search(startPos, tol, f);

}
}

104 5. JTEM - NUMERICAL LIBRARIES

5.3.2.4. Root Finding and Nonlinear Equations. Root finding in several di-
mensions is always a challenge. There are just no good general solutions for this
problem and it is very likely that there will never be any [PTVF92, page 379].
However, with an adoption of Newton’s method15 and Broyden’s multidimen-
sional secant method16 we provide two globally convergent methods for nonlinear
systems of equations. Both methods need derivative information as they trans-
late the root finding problem into a minimizing problem and perform a steepest
descent step as long they are not close to a solution.

5.3.2.5. numericalMethods.calculus.odeSolving. This package provides four al-
gorithms for the integration of ordinary differential equations (ODEs): Runge-
Kutta17, Runge-Kutta-Fehlberg18 (RKF), Bulirsch-Stoer19 (BS), and the Extrap20

ODE-solver by E. Hairer and G. Wanner [HNW93]. BS and Extrap are adap-
tive solvers using an extrapolating scheme. They allow dynamic changes of the
integration order. For analytic functions, these methods are superior to single-
step-methods21 like RKF. However, single-step-methods are more robust in dis-
continuities. Only the classical Runge-Kutta has a fixed step size and no error
control. It is useful in situations where precision is less important then perfor-
mance, as in a graphics application.

A generic problem in ODEs can be reduces to the study of a set of N coupled
first-order differential equations

d

dt
yi (t) = fi (t, y1 (t) , . . . , yN (t)) ,

for the functions yi : R → R, with i = 1, . . . , N , where the functions fi : R×R
N →

R are given. Similar to the function interfaces in Section 5.3.2.1 is the interface
ODE defining and ordinary differential equation. It consists of two methods

(1) public int getNumberOfEqations() , and
(2) public void eval(double t, double[] y, double [] f).

The first method is self-explanatory. For the given time t and position y, the
second method provides the values of the functions fi, which are written into f .

As an example we like to give the implementation of the mathematical pen-
dulum: ẍ = − sin x − c ẋ. This second order ODE is equivalent to

ẋ = v ,

v̇ = − sin x − c v ,

15numericalMethods.calculus.rootFinding.Newton
16numericalMethods.calculus.rootFinding.Broyden
17numericalMethods.calculus.odeSolving.RungeKutta
18numericalMethods.calculus.odeSolving.RungeKuttaFehlberg
19numericalMethods.calculus.odeSolving.BulirschStoer
20numericalMethods.calculus.odeSolving.Extrap
21Unfortunately we do not have multi-step methods yet [SB90, p. 113ff].

5.3. THE NUMERICALMETHODS PROJECT 105

which is a first order ODE in the phasespace (x, v). An implementation could
like:

ODE pendulum = new ODE() {

double c = 42;

public double eval(double t, double[] y, double [] f) {
double x = y[0];

double v = y[1];

f[0] = v;

f[1] = -Math.sin(x)-c*x;

}

public int getNumberOfEquations() {
return 2;

}
};

To solve an ODE using one of the adaptive solvers you can simply call the static
method

solve(ODE ode, double [] y, double t0, double t1, double tol) ,
which is defined for all the corresponding classes. The method integrates the ODE
ode with the initial values given in y from t0 to t1 . On output y contains the
values at time t1 which should lie within the error tolerance tol . To solve the
mathematical pendulum with given initial values x and v at time t0 for the final
time t1 and an error tolerance tol using the Extrap solver one writes:

double [] y = new double[] {x,v};
Extrap.solve(pendulum, y, t0, t1, tol);

Figure 5.3.3 shows a snap-shot of a webstart application visualizing planar vector
fields. The application was generated using Java Oorange22 and uses different
ODE solvers of this package. This and other applications using the jtem library
can be downloaded from http://www.math.tu-berlin.de/geometrie/lab/ .

22Java Oorange is a rapid prototyping environment for scientific software;
http://www.oorange.de .

106 5. JTEM - NUMERICAL LIBRARIES

Figure 5.3.3. Snap-shot of a webstart application visualizing
planar vector fields. The application can be downloaded from
http://www.math.tu-berlin.de/geometrie/lab/calculus.shtml .

5.3.2.6. numericalMethods.calculus.integration. Numerical integration is a
well-studied field and thus there are many algorithms available. Among these
are the classical formulas for equally spaced abscissas: the closed Newton-Cotes
formulas. The class NewtonCotes provides all classical quadrature formulas up
to order 9. In situation when you have specific information about the function
or the integral’s accuracy is less significant the Newton-Cotes formulas can be a
good choice, because the integration method incorporates almost no additional
costs. However, in many situations the fixed step-size is a huge drawback. Thus,
modern methods always use a variable or adaptive step-size which automatically
incorporates an error prediction. The algorithms in the odeSolving package use
this concepts and since integration is just the easiest case of an ODE, we can
provide efficient integrators based on the adaptive ode solvers.

The example code below integrates the holomorphic Weierstrass data

g = exp z,

ζ = i dz

representing the simple helicoid. For the complex arithmetic it uses the class
Complex of the mfc project, see Section 5.6 for details.

5.3. THE NUMERICALMETHODS PROJECT 107

package helicoid.example;

import numericalMethods.calculus.integration.ExtrapIntegrator;

import numericalMethods.calculus.function.RealVectorValuedFunctionOfOneVariable;

import mfc.field.Complex;

public class HelicoidIntegration {

final Complex P = new Complex();

final Complex Q = new Complex();

RealVectorValuedFunctionOfOneVariable helicoid

= new RealVectorValuedFunctionOfOneVariable() {

public int getNumberOfFunctions() {
return 3; // three coordinate functions to integrate

}

public void eval(double x, double[] values, int offset) {
Complex z = P.plus(Q.minus(P).times(x));

Complex g = z.exp();

Complex zetta = Complex.I;

Complex phi1 = g.invert().minus(g).times(zetta);

Complex phi2 = g.invert().plus (g).times(zetta).timesI();

Complex phi3 = zetta.times(2);

values[offset] = phi1.re;

values[offset + 1] = phi2.re;

values[offset + 2] = phi3.re;

}
};

/**

* Integrates Weierstrass data on segment given

* by endpoints P and Q with prescribed precision eps.

*/

public double [] integrate(Complex P, Complex Q, double eps) {

this.P.assign(P);

this.Q.assign(Q);

double [] integral = new double[3];

ExtrapIntegrator.integrate(integral, helicoid, 0, 1, eps);

return integral;

}
}

108 5. JTEM - NUMERICAL LIBRARIES

Figure 5.3.4. UML diagram of classes and packages in numerical.geometry.

5.3.3. numericalMethods.geometry. This package is a potpourri of rou-
tines and solutions for geometrical tasks. Unfortunately, only three of this pack-
ages have been released so far (Figure 5.3.4). Two of these, meshGeneration and
latticeReduction, are of particular importance for the computation of helicoids
with handles.

5.3.3.1. numericalMethods.geometry.latticeReduction. The LLL23 lattice re-
duction algorithm [LLL82] is the technical core of the implementation of Siegel’s
reduction algorithm24 , which itself is crucial for the computation of Riemann
theta functions, see Chapter 3 and Section 5.6.2.

5.3.3.2. numericalMethods.geometry.meshGeneration. This package has cur-
rently one publicly available sub-package, called ruppert, that implements algo-
rithms for two-dimensional quality mesh generation and construction of Delau-
nay triangulations, constrained Delaunay triangulations, and Voronöı diagrams.
The class have been implemented by Heller [Hel02]. His code follows the ideas
of triangle25, a C program by Jonathan R Shewchuk. The program allows the
triangulation of non-simply connected plain regions with polygonal boundary.
The core is Ruppert’s algorithm for two-dimensional quality mesh generation
[Rup95], which “is perhaps the first theoretically guaranteed meshing algorithm
to be truly satisfactory in practice”. It produces meshes with no small angles,
using relatively few triangles (though the density of triangles can be increased

23numericalMethods.geometry.latticeReduction.LLL
24riemann.theta.SiegelReduction
25see http://www-2.cs.cmu.edu/˜quake/tripaper/triangle0.html for information about the

C program triangle, which is freely available at http://www.cs.cmu.edu/˜quake/triangle.html
and from Netlib.

5.4. THE MFC PROJECT 109

(a) S+ for He 1 (b) S
−,2 for He 2

Figure 5.3.5. Triangulations of the fundamental domain of
Schottky groups associated to Helicoids with handles.

under user control) and allowing the density of triangles to vary quickly over
short distances. Figure 5.3.5 shows the result of the algorithms for two domains
associated to the Schottky data S+ and S−,2 generating the surfaces He1 and He2

(Sections 4.4.1 and 4.4.3).

5.4. The mfc Project

The mfc (Mathematical Foundation Classes) project provides high level classes
for basic mathematical purposes: complex numbers, polynomials, special groups,
or lie-algebras . In addition, the package also contains GUI components, editors
and panels implementing the associated Java Beans interfaces (Figure 5.4.1).

The APIs of all the classes are very similar and easy to use. Internally, all data
is administered with publicly accessible primitive data typesdue to performance

reasons. The four complex entries of a complex 2-by-2 matrix26
„

a b

c d

«

are rep-

resented by eight doubles: aRe, aIm, bRe, bIm, cRe, cIm, dRe, dIm . This
is sometimes cumbersome, but creating five instead of a single instance can have
a major impact as we will see later in this section. Anyhow, the APIs of these
classes offer a convenient front-end, which do not force the user to deal with their
internal structure.

26mfc.matrix.Complex2By2

110 5. JTEM - NUMERICAL LIBRARIES

Figure 5.4.1. UML diagram of classes and packages in mfc.

An instance of a mathematical class of this project usually represents an
element of an algebraic category: group, algebra, field, or vector space. Thus the
nature of these classes is to represent a value, in Java normally implemented as an
immutable type. Hence instances can not be changed; their state is totally defined
at the time they are created. Many of the basic Java Foundation Classes 27 are
of this kind: String, Double, or Color. Immutable types have many advantages,
they allow convenient and safe implementations. Nevertheless the types of this
package are mutable, thus representing a variable rather then a constant. The

27The Java Foundation Classes is an extensive collection of standard classes which are
incorporated in the Java language.

5.4. THE MFC PROJECT 111

reason for this is that in a computational setup performance is always critical
and the creation of objects in large amounts has to be avoided.

Even our objects are mutable they still provide functions which allow for
a programming style similar to an immutable implementation. To multiply to
complex numbers a and b , for example, and to store the result in c , you can
either call

(1) c = a.times(b), or
(2) c.assignTimes(a, b).

The first method returns the result, the product, in a newly created instance.
Its reference is stored in c . Thus, this method could be also defined on an
immutable type. The second function assigns to the instance c the product,
which is certainly only possible with a mutable type. The immutable style is
much easier to read especially if you have nested expressions. We want to give
another example: If you need to compute d = a · (b + c) you can write

(1) d = a.times(b.plus(c)) , or
(2) d.assignPlus(b, c); d.assignTimes(a) .

Of course, (1) us much easier to read than (2). The only problem with the first
expression is that it creates an unnecessary instance for the intermediate result
b + c. This can have a dramatic negative impact on the performance, as the
following shows: Let us compare two implementations for the exponential series

exp z =
∞∑

i=0

zi

i!
.

public Complex exp(Complex z) {
Complex sum = new Complex(1);

Complex term = new Complex(z);

for(int i=2; i<=N; i++) {
term = term.times(z).divide(i);

sum = sum.plus(term);

}
return sum;

}

The implementation above creates 3N − 1 instances compared to 2 of the
implementation below, which is 6 times faster (N > 50)28 then the first.

28measured on Linux system with a Java(TM) 2 Runtime Environment, Standard Edition
(build 1.4.2-b28) with Java HotSpot(TM) Client VM (build 1.4.2-b28, mixed mode).

112 5. JTEM - NUMERICAL LIBRARIES

Figure 5.5.1. UML diagram of classes and packages in blas.

public Complex exp(Complex z) {
Complex sum = new Complex(1);

Complex term = new Complex(z);

for(int i=2; i<=N; i++) {
term.assignTimes(z);

term.assignDivide(i);

sum.assignPlus(term);

}
return sum;

}

Suns 1.4. Java Hot Spot Compiler inlines all method calls in the loop, which
makes the code very efficient and comparable highly performing than a plain C29

implementation.

5.5. The blas Project

This package is a basic linear algebra system for integer, real, and complex
matrices and vectors. It mainly wraps the functionality of the algebra section
of the numericalMethods project and provides a convenient front-end, including
Bean conform editors and panels, following the same principles as the mfc project.
Figure 5.4.1 shows an UML class and package diagram of the blas project.

29measured on Linux system with the GCC 3.3.2 C compiler.

5.6. THE RIEMANN PROJECT 113

Figure 5.6.1. UML diagram of classes and packages in riemann.

One of its major advantages is the wide range of operations that mix the dif-
ferent types. For example by writing a.times(b) you multiply any instances
of the types IntegerVector, RealVector, ComplexVector, IntegerMatrix, RealMa-
trix, or ComplexMatrix with any other instance of these types plus the scalar
type int, double and Complex.

Vectors and matrices are internally represented as arrays of ordinary types (int
and double). These arrays are one-dimensional for vectors and two-dimensional
for matrices and can be accessed by and easily passed to external routines.

5.6. The riemann Project

The riemann project currently contains two public sub-packages (Figure 5.6.1).
Both packages implement the current state of research in this field. A third pack-
age concerning algebraic curves and coverings is subject of a major refactoring
and will be published as soon as possible.

114 5. JTEM - NUMERICAL LIBRARIES

5.6.1. riemann.schottky. This package implements the numerical methods
and algorithms presented in Chapter 2 for the evaluation of certain automorphic
functions and forms in the context of Schottky uniformization. A classical theo-
rem states that for any Riemann surface R exists a Schottky group G such that
R is conformally equivalent to the quotient Ω/G, where Ω denotes the set of
discontinuity of G. A Schottky group is a free, finitely generated, discontinu-
ous group G that is purely loxodromic, i.e., a Schottky group of rank N , which
equals the genus of the associated Riemann surface, can always be generated by
N loxodromic transformations σ1, . . . , σN . Further a loxodromic transformation
σi can be defined by its fixed points Ai and Bi and the loxodromic factor µi, with
|µi| < 1.

Thus all Schottky groups of rank N can be associated to a list of 3N complex
values

S = {A1, B1, µ1, . . . , AN , BN , µN} ,

which is called the Schottky data. Not any 3N complex numbers define a Schot-
tky group, but there exists a convenient sufficient criterion which is related to
the notion of iso-classical Schottky groups. For any loxodromic transformation
exists a unique pair of circles having the same radii, which are mapped by the
transformation onto each other. These circles are called isometric circles. The
differential of the transformation takes on the absolute value 1 one the circle. A
Schottky group is called iso-classical if all the isometric circles of the generators
are exterior to each other. This can be easily checked for a set of generators and
it is easy to see that such a set generates a free, finitely generated, discontinuous
group, which is therefore a Schottky group. The exterior of the isometric circles
of a classical Schottky group define a fundamental domain for the quotient Ω/G,
i.e., it maps conformally one-to-one to the associated Riemann surface. It is not
clear that all Riemann surfaces can be uniformized by a iso-classical Schottky
group. Thus, the fact that the numerics only deals with iso-classical Schottky
groups means a limitation.

The strength of this approach is that functions and differentials of the Rie-
mann surface Ω/G must be automorphic on Ω. For normalized30 differentials of
first kind exist closed representations as (-2)-dimensional Poincare theta series:

(5.6.1) ωn (z) =
∑

σ∈Gn\G

(
1

σ (z) − Bn

− 1

σ (z) − An

)
(γσz + δσ)−2 dz ,

where Gn denotes the subgroup of G generated by the generator γn and Gn \ G
defines the cosets. Elementary computations deliver further formulas for the

30The a-cycles coincide with isometric circles.

5.6. THE RIEMANN PROJECT 115

integrals of first kind

(5.6.2) Ωn (z) =

∫ z

∞
ωn =

∑

σ∈G/Gn

log
z − σ (Bn)

z − σ (An)

and the period matrix

(5.6.3) Bnm = δnm log µn +
∑

σ∈Gm\G/Gn,σ 6=id

log {Bm, Am, σ (Bn) , σ (An)} ,

where the curly brackets indicate the cross-ratio {a, b, c, d} = a−c
a−d

b−d
b−c

. The
series above do not always converge and it is challenging to evaluate them in a
stable manner.

The numerics in this package allow the evaluation of several other series:

(1) Normalized differentials and integrals of third kind having simple poles
at A and B with residues −1 and 1:

(5.6.4) ω (z) =
∑

σ∈G

(
1

σ (z) − B
− 1

σ (z) − A

)
(γσz + δσ)−2 dz

and

(5.6.5) Ω (z) =

∫ z

∞
ω =

∑

σ∈G

log
z − σ (B)

z − σ (A)
.

(2) Series of the form

(5.6.6) Σk (z, w) =
∑

σ∈G

σ (z)k − σ (w)k

(3) The constants given by the series of the form

(5.6.7) Vn,k =
∑

σ∈Gn\G
σ (An)k − σ (Bn)k

(4) The constant

(5.6.8) γ =
∑

σ∈G

1

γ2
σ

The major drawback of this method is that the series above, which we will simply
refer to as Schottky series, do not converge in the general case and that there is
no general criteria in sight. However, for many special cases criteria exist.

In Chapter 2 we presented sufficient criteria that can be easily evaluated by
a computer. The (integral) series (5.6.2), (5.6.3), (5.6.5), (5.6.6), and (5.6.7)
converge if the limit qΩ

∞ of the monotonously decreasing series qΩ
k is smaller then

1. The (differential) series (5.6.1), (5.6.4), and (5.6.8) have similar critirea. They
converge if the limit of the monotonously decreasing series (qω

k) is smaller than 1.
The computation of q?

l involves to generate all group elements up to word length
l + 1. For groups of higher order one should therefore choose carefully how many

116 5. JTEM - NUMERICAL LIBRARIES

terms of the series (q?
l) are used to check the criteria. The monotone series (q?

l)
converge very fast and in our experience, one should give up if the third term
is still not smaller one. The series can only be evaluated stably, if it converges
sufficiently fast, which only is the case if the limit is significant smaller then one.

The front-end for the evaluation of the Schottky series is provided by the
class Schottky which extends the class SchottkyData. The main purpose of the
class SchotttkyData is to provide a nice front end to configure Schottky data and
to check whether the data generates a classical Schottky group. SchottkyData
provides a huge variety of methods allowing the manipulation of a fixed number
of generators. We recommend to create the Schottky data using this class and
finally passing the data to an instance of the evaluation class Schottky. To create
the Schottky data

S−,2 =
{
A,−A, µ,−A,A, µ

}

with A, µ ∈ C for the Helicoid He2 (Section 4.4.3) you can either write
schottkyData = new SchottkyData(new Complex[]

{ A, A.neg(), mu,A.conjugate().neg(), A.conjugate(), mu })

or configure the object sequentially and write

schottkyData = new SchottkyData(2);

schottkyData.setA(0, A);

schottkyData.setB(0, A.neg());

schottkyData.setMu(0, mu);

schottkyData.setA(1, A.conjugate().neg());

schottkyData.setB(1, A.conjugate());

schottkyData.setMu(1, mu);

Before you pass the Schottky data to the evaluator class Schottky , you should
check whether the data generates a classical schottky group and call

schottkyData.isClassical() .
Otherwise you run the risk of getting a RuntimeException31 when you pass the
data to the evaluator, which you can do at its instanciatino:

schottky = new Schottky(schottkyData);

or afterwards with
schottky.setUniformizationData(schottkyData) .

At this moment some precomputation steps are performed including the genera-
tion of all elements of the Schottky group up to word length 2. All other elements
are computed and stored in a tree the first time they are needed for the evaluation
of a term. Once elements are added to the tree, they are not removed unless the
entire instance is destroyed. When the group is changed, i.e., the Schottky data
changes, the instances for the group elements are merely updated (but only on
demand). This is crucial for the performance, because the tree can get very big.

31RuntimeException is a basic Exception type, consult the documentation of the Java
foundation classes for details.

5.6. THE RIEMANN PROJECT 117

We had examples where we dealt with several hundred thousand group elements.
The default accuracy for the evaluation of the Schottky series is 10−7, which is
mutable bean property32of class Schottky .

Before you start to compute the Schottky series you should assure that the
implemented algorithms are able to evaluate them. According to the discussion
above we have different criteria for “differential” and “integral” series, which you
can query by calling

schottky.isDifferentialSeriesEvaluable() 33

and
schottky.isIntegralSeriesEvaluable() 34.

The methods checks for q?
l < C, with the default values l = 2 and C = 0.75.

These default values are also mutable properties of the class Schottky , but they
should only be altered with care (see discussion above). Now you are ready to
evaluate the Schottky series.

To evaluate the period matrix you can simply write
ComplexMatrix B = schottky.getPeriodMatrix().

The Abelian differential ωn are evaluated at the position z in the fundamental
domain F by

Complex r = schottky.abelianDifferentialOf1stKind(z, n)

and the integral of first kind by
Complex r = schottky.abelianIntegralOf1stKind(z, n) .

Because of performance reasons the code does not check whether the position z
is valid. If the the argument z is in one of the isometric circles the algorithm
can fail and the code will throw a RuntimeException , but first it will create the
maximum number of possible group elements (default: 200,000). This is certainly
to be avoided; if your are not sure that an argument is valid, you should test this
with

schottky.isInFundamentalDomain(z)

in forehand.
All methods for evaluating Schottky series are overwritten with versions that

allow the prescription of a specific accuracy, e.g. ,
ComplexMatrix B = schottky.getPeriodMatrix(0.001)

evaluates the period matrix with an accuracy of 0.001 instead of the default
accuracy. A different type of overwritten methods enables to provide an instance
for the result, which helps to relieve the garbage collector. The call

schottky.abelianDifferentialOf1stKind(r, z, n)

evaluates ωn at z and returns the result in r, for example.

32Property is notion in the context of java programming and related to “Bean” conventions,
see [Eng97].

33the Bean convention allows for boolean Properties (apart form the standard “get”) only
the singular “is” as prefix and no “are”, which would lead to better readable method name in
this case.

34There is also an abbreviation to test both at once: isSeriesEvaluable().

118 5. JTEM - NUMERICAL LIBRARIES

The subject of the next Section is the riemann.theta package. In Section
5.6.3 we combine riemann.schottky and riemann.theta and give example
implementations for some real mathematical problems.

5.6.2. riemann.theta. This package implements the methods and algo-
rithms presented in Chapter 3 for computing riemann theta functions including
those with characteristics. An important ingredient for the computation of Rie-
mann theta function are modular transformations and Siegel´s Reduction algo-
rithm for which the package also offers public interfaces, see Figure 5.6.1 for a
UML class diagram.

5.6.2.1. Computing Riemann theta functions. The Riemann theta function is
a complex-valued function of g complex variables and defined by

θ (z |B) =
∑

n∈Zg

e
1
2
〈n,B·n〉+〈z,n〉,

where z ∈ C
g and B is a symmetric g-dimensional matrix with strictly negative

definite real part. Be aware that there are many different conventions of writing
the theta functions and that you therefore might have to perform a scaling of the
arguments to adapt it to yours.

The complex matrix B is usually the period matrix of a given Riemann sur-
face and computing it is a hole different story. The Schottky uniformization as
described in the previous Section offers one way of calculating it.

Suppose you have a valid period matrix B: To evaluate Riemann theta func-
tions create an instance of the central class of this package:

theta = new Theta(B).

The period matrix is the most important property of the class Theta. You can
change it by calling

theta.setPeriodMatrix(B).

This will trigger some pre-calculation steps. The implementation is optimized
to evaluate the Riemann theta function many times for a fixed period matrix.
Thus, setting the period matrix takes much longer then evaluating the function.
Unfortunately, it is not possible to be more precise, because the expenditure
depends on the period matrix (especially its genus) and the configuration of the
evaluating instance.

Complex r = theta.theta(z)

evaluates the Riemann theta function at the argument z ∈ C
g. Following the

philosophy of the whole project, there exist also overloaded methods which allow
to prescribe the result as a parameter:

theta.theta(z, r).

These functions are not particularly useful because the Riemann theta function
grows exponentially and in practice you might easily leave the range of the double
precession representation. It is therefore necessary to separate the exponential

5.6. THE RIEMANN PROJECT 119

growth from the oscillating part of the function:

θ (z |B) = ef(z|B) · θΣ (z |B) ,

with f (z |B) being a quadratic function in z, see Chapter 3.
theta.theta(z, f, o)

evaluates the Riemann theta function in the form from above with f = f (z |B)
and o = θΣ (z |B). The accuracy of the evaluation always refers to the oscillating
part o only and is by default 10−7. In almost all applications theta functions
are used to compute Abelian functions, which can be expressed as ratios of theta
functions. Thus, the exponential factors usually almost cancel. Typical examples
are of the form:

f (z) =
θ (z + a |B)

θ (z + b |B)
= ef(z+a|B)−f(z+b|B) · θΣ (z + a |B)

θΣ (z + b |B)
.

Since the vectors a, b ∈ C
g are relatively small the exponential factor is about 1.

An implementation of this function could look like:

package helicoid.example;

import mfc.field.Complex;

import blas.ComplexMatrix;

import blas.ComplexVector;

import riemann.theta.Theta;

public class SimpleAbelianFunction {

ComplexMatrix B;

ComplexVector a, b;

Theta theta;

public SimpleAbelieanFunction(ComplexMatrix B,

ComplexVector a,

ComplexVector b) {
this.B = new ComplexMatrix(B);

this.a = new ComplexVector(a);

tihs.b = new ComplexVector(b);

theta=new Theta(B);

}

public Complex valueAt(ComplexVector z) {
theta.theta(z.plus(a), f a, o a);

theta.theta(z.plus(b), f b, o b);

return Complex.exp(f a.miuns(f b))

.times(o a).divide(o b);

}
}

The implementation is not optimal if the function needs to be evaluated many
times, because it creates six unnecessary instances for intermediate results. This
can be avoided by using the mutable programming style presented in Section 5.6.

The API also offers functions for the first and second derivative of the theta
function with respect to z.

120 5. JTEM - NUMERICAL LIBRARIES

Complex r = dTheta.theta(z, X)

computes the partial derivative of theta in direction of X. Again this method is
overloaded by a version that separates the exponential growth of the derivative
from the oscillating part:

DXθ (z |B) = ef(z|B) · (DXθ)Σ (z |B) ,

with f being the same quadratic function as for the Riemann theta function itself.
dTheta.theta(z, X, f, o, dxo)

evaluates the function and the derivative simultaneously with f = f (z |B), o =
θΣ (z |B), and dxo = (DXθ)Σ (z |B). Evaluating the function causes almost no
extra cost and in many applications, e.g., logarithmic derivatives, you need the
function value in addition to its derivative. Evaluating the second derivative
works similar.

The error estimates for the derivative of the Riemann theta function are much
more complicated than for the function itself. Therefore, we implemented the
derivatives of the approximation instead of approximating the derivative. In
almost 10 years experience in computing theta functions we never encountered
any practical problems caused by inaccuracies of the derivatives, but in theory
badly conditioned scenarios are likely to occur for large arguments z.

There are three important boolean properties that configure the evaluation
algorithm of the Riemann theta function:

(1) fillFactorErrorUsed

(2) uniformApproximationUsed

(3) siegelReductionPerformed

By default all properties are set to true, but in certain situations different con-
figurations may lead to better results.

The fill factor error (FFE) is a heuristic value to sharpen the error estimates
for theta functions, which can drastically reduce the number of terms needed to
approximate the oscillating part, see [DHB+04] for details. The drawback of
using the FFE is that the prescribed accuracy is not guaranteed anymore. Tests
have shown that in practice the FFE is usually good enough. When accuracy
is your concern rather than performance you might want to set this property to
false.

The second property allow for the choice between uniform and pointwise ap-
proximation. For genus smaller than five uniform approximation is usually faster
than pointwise. For higher genus pointwise approximation seems better, but that
always depends on the specific case. The uniform approximation consumes some
pre-calculation time, thus, if you only need to evaluate the theta function a few
times for a fixed period matrix the pointwise approximation can also perform
better for small genus. If performance is an important issue in your applica-
tion you should try both possibilities; consult Section 3.3.3 for a more complete
discussion.

5.6. THE RIEMANN PROJECT 121

The last propertiy controls whether Siegel’s reduction algorithm is performed
when the period matrix is set. Switching it off is only sensible in situations where
you already know that your period matrix is not reducible by Siegel’s algorithm.
But this will only have a significant impact if you have no more than a few
function evaluations for a fixed period matrix.

5.6.2.2. Siegel’s Reduction algorithm and Modular Transformations. Siegel’s
reduction algorithm and modular transformation of Riemann matrices are closely
related to Riemann theta functions, which just as the elliptic functions and the
Jacobian theta functions have a modular transformation property. The modular
transformation is a transformation on the Riemann (period) matrix B:

B′ =
1

2πi
(aB + 2πi b) (cB = 2πi d)−1 .

B and B′ define the “same” theta function up to an affine transformation of the
argument z and an overall scaling factor. The computation of these transforma-
tions and factors is performed by the class ModularTransformationSupport.

Siegel’s reduction algorithm finds an element of the modular group Sp (2g, Z),
a modular transformation, which transforms a given period matrix into the fun-
damental domain of Riemann matrices. The classes SiegelReduction, Modular-
Transformation, and ModularTransformationSupport are members of the package
riemann.theta. We illustrate the usage of these classes by means of an example
from section 4.4.2.

For the asymmetric Example 0 (Table 5) we have

µ = −0.0118611871544 − 0.0033906555595 i and

B = log µ = −.39520911583988 − 2.8631569862600 i .

|B| < 2π and therefore it is not in the fundamental domain of the modular
group35. But to check whether B is a rhombic torus we need a representative of
the fundamental domain. Siegel’s reduction algorithm determines the modular
transformation

σ =

(
1 1

−1 0

)

that yields

B′ = −6.3061076416625 − 2.1752178192847 i ,

which has an absolute value bigger then 2π and an absolute value of its imaginary
part smaller then π. Thus B ′ is in the fundamental domain and not rhombic.

35Integrals of first kind are normalized along a-cycles to 2πi.

122 5. JTEM - NUMERICAL LIBRARIES

package helicoid.example;

import mfc.field.Complex;

import blas.ComplexMatrix;

import riemann.theta.ModularPropertySupport;

import riemann.theta.ModularTransformation;

import riemann.theta.SiegelReduction;

public class SiegelReductionAndTransformation {

public void main(String [] arg) {

// mu of the asymmetric example #0

Complex mu = new

Complex(-0.0118611871544, -0.0033906555950);

// creating a "period matrix", e.g. setting

the modulus

ComplexMatrix B = new ComplexMatrix(1);

B.set(0,0, mu.log());

// create an instance of the Siegel-reduction

algorithm for B SiegelReduction

siegelReduction = new SiegelReduction(B);

// query the reduced period matrix herefor

ComplexMatrix rB1 =

siegelReduction.getReducedPeriodMatrix();

// query the modular transformation realizing

the reduction

ModularTransformation mt =

siegelReduction.getModularTransformation();

// performing a modular transformation of a

period matrix rB1 and rB2 are equal

ComplexMatrix rB2 =

ModularPropertySupport.transformPeriodMatrix(B, mt);

}
}

5.6.3. Examples. We like to give two mathematical challenging example
implementations which combine the capabilities of the riemann.schottky and
riemann.theta packages.

5.6.3.1. Calculating the products a2,b2, and ab of the helicoidal spinors. The
code below computes the products a2,b2, and ab of the helicoidal spinors follow-
ing the ideas of Section 4.3.1. For the sake of simplicity we used the inefficient
immutable programming style (Section 5.6). This causes the creation of many
instances storing intermediate results. This should be avoided using the muta-
ble style, because the spinors are evaluated very often in the process of surface
integration.

5.6. THE RIEMANN PROJECT 123

package helicoid.example;

import mfc.field.Complex;

import riemann.schottky.*;

import riemann.theta.*;

import blas.*;

public class ProductsOfHelicoidalSpinors {
Schottky schottky;

ThetaWithChar eta, delta;

ThetaCharIterator deltaIterator;

ComplexVector V, halfV, zero;

Complex etaOfHalfV;

public ProductsOfHelicoidalSpinorsCalculator(

double [] schottkyData, ComplexVector [] bCycles,

IntegerVector alpha, IntegerVector beta, double eps) {

schottky = new Schottky(schottkyData, eps);

ComplexMatrix periodMatrix = schottky.getPeriodMatrix(bCycles);

V = schottky.getV();

halfV = V.divide(2);

Theta theta = new Theta(periodMatrix, eps);

delta = new ThetaWithChar(theta);

eta = new ThetaWithChar(theta);

eta.setAlpha(alpha);

eta.setBeta(beta);

deltaIterator = new ThetaCharIterator(delta);

zero = new ComplexVector(eta.dim());

etaOfHalfV = eta.theta(halfV);

}

public void calculatorProductsOfSpinors(

Complex z, Complex aa, Complex bb, Complex ab) {

ComplexVector w = schottky.abelianDifferentialOf1stKind(z);

ComplexVector W = schottky.abelianIntegralOf1stKind(z);

Complex omega = schottky.sigma(z, Complex.ZERO);

deltaIterator.startOddCharIteration();

Complex thetaDelta = delta.theta(W);

while (thetaDelta.absSqr() < 1e-3) {
if (!deltaIterator.iterateOddChar())

throw new RuntimeException("could not avoid zero");

thetaDelta = delta.theta(W);

}

Complex scalar = delta.dTheta(zero, V)

.divide(eta.theta(V.divide(2)).sqr()).neg();

Complex sqrOfC = delta.dTheta(zero,V);

Complex sqrOfH = delta.dTheta(zero,w);

Complex commonFactor = sqrOfC.times(sqrOfH).times(omega.exp())

.divide(delta.theta(W).times(etaOfHalfV).sqr());

Complex etaOfWPlusHalfV = eta.theta(W.plus(halfV));

Complex etaOfWMinusHalfV = eta.theta(W.minus(halfV));

aa = commonFactor.times(etaOfWMinusHalfV.sqr());

bb = commonFactor.times(etaOfWPlusHalfV.sqr());

ab = commonFactor.times(etaOfWMinusHalfV.times(etaOfWPlusHalfV))

.times(eta.parityOfSpin() % 2 == 1 ? -1:1);

}
}

124 5. JTEM - NUMERICAL LIBRARIES

5.6.4. KP2 Equation - Shallow Water Waves. The equations

4uxt + 3
(
u2
)

xx
± uxxxx − 3uyy = 0

discovered by Kadomtsev & Petviashvili (KP) are a generalization of the Korte-
weg & deVries (KdV)36 equation. For positive sign of the uxxxx term it is called
KP2 equation. Solutions of the KP2 equation describe the evolution of gravity-
induced waves of moderate amplitude on shallow water of uniform depth when
the waves are nearly one-dimensional.

For Schottky data

S = {A1, B1, µ1, . . . , AN , BN , µN}

with Bi = Āi and µi ∈ R yield all real non-singular finite-gap solutions of the
KP2 equation and can be described by Krichever’s formula [Kri78]

u (x, y, t) = 2
∂2

∂x2
log θ (U x + V y + W t + D |B) + 2c ,

see also [Dub81]. The parameters in this formula can be given by Poincare
series [BBE+94]

U = Vn,1 =
∑

σ∈Gn\G σ (An) − σ (Bn) ,

V = Vn,2 =
∑

σ∈Gn\G σ (An)2 − σ (Bn)2 ,

W = Vn,3 =
∑

σ∈Gn\G σ (An)3 − σ (Bn)3 ,

c = γ =
∑

σ∈G
1
γ2

σ

and D is an arbitrary imaginary vector.
The code below shows an implementation of this solution using the efficient

mutable programming style presented in Section 5.6.3.

36ut +
(
3u2
)
x

+ uxxx = 0

5.6. THE RIEMANN PROJECT 125

package helicoid.example;

import mfc.field.Complex;

import riemann.schottky.*;

import riemann.theta.*;

import blas.*;

public class KP2 {
Schottky schottky;

Theta theta;

ComplexVector U, V, W, Z, T;

Complex c;

public KP2(Complex [] A, double [] mu, double eps) {

SchottkyData data = new SchottkyData(

A.length);

for(int i=0; i<A.length; i++) {
data.setA(i, A[i]);

data.setB(i, A[i].conjugate());

data.setMu(i, mu[i], 0);

}

if(!schottkyData.isClassical())

throw new IllegalArgumentException

("schottky data is not classical");

schottky = new Schottky(schottkyData, eps);

if(!schottky.isSeriesEvaluable())

throw new IllegalArgumentException

("can not evaluate series");

U = schottky.getV();

V = schottky.getV(2);

W = schottky.getV(3);

c = schottky.gamma();

Z = new ComplexVector(U.size());

T = new ComplexVector(U.size());

Theta theta = new Theta(schottky.getPeriodMatrix(), eps);

}

public Complex valueAt(double x, double y, double t) {

Z.assignTimes(U, x);

T.assignTimes(V, y); Z.assignPlus(T);

T.assignTimes(W, t); Z.assignPlus(T);

Complex result = theta.ddLogTheta(Z, U, U);

result.assignPlus(c);

result,assignTimes(2);

return result;

}
}

Figure 5.6.2 shows a snap-shot of a webstart application visualizing shallow
water waves computed as solutions of the KP2 equation using Schottky uni-
formization as described above. The application was generated using Java Oor-
ange. This and other applications using the jtem library can be downloaded from
http://www.math.tu-berlin.de/geometrie/lab/ .

126 5. JTEM - NUMERICAL LIBRARIES

Figure 5.6.2. Snap-shot of a webstart application visualizing
shallow water waves computed as solutions of the KP2 equation
using Schottky uniformization. The application can be downloaded
from http://www.math.tu-berlin.de/geometrie/lab/ds.shtml .

Bibliography

[Bak97] H. F. Baker. Abel’s Theroem and the Allied Therory Including the Theory of Theta
Functions. Cambridge University Press, 1897.

[BBE+94] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev.
Algebro-Geometric Approach to Nonlinear Integrable Equations. Nonlinear Dynam-
ics. Springer Verlag, 1994.

[Bob91] A.I. Bobenko. Constant mean curvature surfaces and integrable equations. Russ.
Math. Surv., 46(4):1–45, 1991.

[Bob94] A. I. Bobenko. Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In
Harmonic maps and integrable systems, Aspects Math., E23, pages 83–127. Vieweg,
Braunschweig, 1994.

[Bob98] A. I. Bobenko. Helicoids with handles and Baker-Akhiezer spinors. Math. Z.,
229(1):9–29, 1998.

[Bre02] R. P. Brent. Algorithms for minimization without derivatives. Dover Publications
Inc., Mineola, NY, 2002. Reprint of the 1973 original [Prentice-Hall, Inc., Englewood
Cliffs, NJ.

[Bur92] W. Burnside. Proc, London Math. Soc., 1892.
[Col97] P. Collin. Topologie et courbure des surfaces minimales proprement plongées de R3.

Ann. of Math. (2), 145(1):1–31, 1997.
[Cos84] C. J. Costa. Example of a complete minimal immersion in R3 of genus one and

three embedded ends. Bol. Soc. Brasil. Mat., 15(1-2):47–54, 1984.
[DHB+04] B. Deconinck, M. Heil, A. I. Bobenko, M. van Hoeij, and M. Schmies. Computing

Riemann theta functions. Math. Comp., 73(247):1417–1442 (electronic), 2004.
[Dub81] B.A. Dubrovin. Theta functions and non-linear equations. Russ. Math. Surv.,

36(2):11–92, 1981.
[DvH01] B. Deconinck and M. van Hoeij. Computing Riemann matrices of algebraic curves.

Phys. D, 152/153:28–46, 2001. Advances in nonlinear mathematics and science.
[Eng97] R. Englander. Developing Java Beans. O’Reilly, 1997.
[FK65] R. Fricke and F. Klein. Vorlesungen über die Theorie der automorphen Funktionen.

Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretis-
chen Ausführungen und die Andwendungen, volume 4 of Bibliotheca Mathematica
Teubneriana, Bände 3. Johnson Reprint Corp., New York, 1965.

[For29] L. R. Ford. Automorphic Functions. McGraw-Hill, New York, 1929.
[FS97] M. Flower and K. Scott. UML Distilled: Applying the Standard Object Modeling

Language. Addison Wesley Longman, Reading, MA, 1997.
[GOP+97] C. Gunn, A. Ortamann, U. Pinkall, K. Polthier, and U. Schwarz. Oorange: A virtual

laboratory for experimental mathematics. Sfb 288 Preprint No. 260, 1997.
[Hei95] M. Heil. Numerical Tools for the study of finite gap solutions of integrable systems.

PhD thesis, Technische Universität Berlin, 1995.
[Hel02] Ullrich Heller. Construction, Transformation, and Visualization of Willmore Sur-

faces. PhD thesis, University of Massachusetts, Amherst, 2002.

127

128 BIBLIOGRAPHY

[HM85] D. A. Hoffman and W. Meeks, III. A complete embedded minimal surface in R3

with genus one and three ends. J. Differential Geom., 21(1):109–127, 1985.
[HM03] D. Hoffman and J. McCuan. Embedded minimal ends asymptotic to the helicoid.

Comm. Anal. Geom., 11(4):721–735, 2003.
[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I,

volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
second edition, 1993. Nonstiff problems.

[HPR01] L. Hauswirth, J. Pérez, and P. Romon. Embedded minimal ends of finite type.
Trans. Amer. Math. Soc., 353(4):1335–1370 (electronic), 2001.

[HW02] D. Hoffman and F. Wei. Deforming the singly periodic genus-one helicoid. Experi-
ment. Math., 11(2):207–218, 2002.

[HWK93] D. Hoffman, F. Wei, and H. Karcher. Adding handles to the helicoid. Bull. Amer.
Math. Soc. (N.S.), 29(1):77–84, 1993.

[Igu72] J. Igusa. Theta functions. Springer-Verlag, New York, 1972. Die Grundlehren der
mathematischen Wissenschaften, Band 194.

[Kri78] I.M. Krichever. Algebraic curves and non-linear difference equations. Russ. Math.
Surv., 33(4):255–256, 1978.

[KS93] R. Kustner and N. Schmitt. The spinor representation of minimal surfacs in space.
GANG Preprint, Preprint III.27 (1993).

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with ra-
tional coefficients. Math. Ann., 261(4):515–534, 1982.

[Mas67] B. Maskit. A characteri that are practicable in many cases as well as efficient eval-
uation algorithms for those series. zation of Schottky groups. J. Analyse Math.,
19:227–230, 1967.

[MR01] W. H. Meeks, III and H. Rosenberg. The uniqueness of the helicoid and the as-
ymptotic geometry of properly embedded minimal surfaces with finite topology”.
Preprint, 2001.

[Mum83] D. Mumford. Tata lectures on theta. I, volume 28 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1983. With the assistance of C. Musili, M.
Nori, E. Previato and M. Stillman.

[Mum84] D. Mumford. Tata lectures on theta. II, volume 43 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1984. Jacobian theta functions and differential
equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman
and H. Umemura.

[Mum91] D. Mumford. Tata lectures on theta. III, volume 97 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1991. With the collaboration of Madhav Nori
and Peter Norman.

[NM65] J. A. Nelder and R. Mead. A simplex method for function minimization. The Com-
puter Journal, 7(4):308–313, 1965.

[Oss64] R. Osserman. Global properties of minimal surfaces in E3 and En. Ann. of Math.
(2), 80:340–364, 1964.

[Oss86] R. Osserman. A survey of minimal surfaces. Dover Publications Inc., New York,
second edition, 1986.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in C. Cambridge University Press, Cambridge, second edition, 1992. The art
of scientific computing.

[Rid] C. J. F. Ridders. Advances in Engineering Software, 4(2):75–76.
[Rup95] J Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh gener-

ation. J. Algorithms, 18(3):548–585, 1995. Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) (Austin, TX, 1993).

BIBLIOGRAPHY 129

[SB90] J. Stoer and R. Bulirsch. Numerische Mathematik. 2. Springer-Lehrbuch. [Springer
Textbook]. Springer-Verlag, Berlin, third edition, 1990. Eine Einführung—unter
Berücksichtigung von Vorlesungen von F. L. Bauer. [An introduction, with reference
to lectures by F. L. Bauer].

[Sie89] C. L. Siegel. Topics in complex function theory. Vol. III. Wiley Classics Library.
John Wiley & Sons Inc., New York, 1989. Abelian functions and modular func-
tions of several variables, Translated from the German by E. Gottschling and M.
Tretkoff, With a preface by Wilhelm Magnus, Reprint of the 1973 original, A Wiley-
Interscience Publication.

[Val90] B. Vallée. A central problem in the algorithmic geometry of numbers: lattice reduc-
tion. CWI Quarterly, 3(2):95–120, 1990.

[Web] M. Weber. On the embeddedness of the genus one helicoid. Habilitationsschrift,
University of Bonn, 2000.

[WHW03] M. Weber, D. Hoffman, and M. Wolf. An embedded genus-one helicoid. Preprint,
2003.

[WW02] M. Weber and M. Wolf. Teichmüller theory and handle addition for minimal sur-
faces. Ann. of Math. (2), 156(3):713–795, 2002.

