
Dissertation

The Dual Simplex Method,

Techniques for a fast and stable
implementation

von

Dipl. Inform. Achim Koberstein

Schriftliche Arbeit zur Erlangung des akademischen Grades
doctor rerum politicarum (dr. rer. pol.)

im Fach Wirtschaftsinformatik

eingereicht an der
Fakultät für Wirtschaftswissenschaften der

Universität Paderborn

Gutachter:
1. Prof. Dr. Leena Suhl
2. Prof. Dr. Michael Jünger

Paderborn, im November 2005

To my family

v

Danksagungen

Die vorliegende Arbeit entstand in den vergangenen zweieinhalb Jahren, die ich als
Stipendiat der International Graduate School of Dynamic Intelligent Systems am
Decision Support & Operations Research (DSOR) Lab der Universität Paderborn
verbrachte. Ich möchte mich an dieser Stelle bei allen Menschen bedanken, die zum
Gelingen dieser Arbeit beigetragen haben.

Zuerst gilt mein besonderer und herzlicher Dank meinem ”Betreuerteam”, der
Leiterin des DSOR-Labs Prof. Dr. Leena Suhl und ihrem Mann Prof. Dr. Uwe
Suhl von der Freien Universität Berlin. Leena Suhl danke ich für das besondere Ver-
trauensverhältnis und die ständige fachliche und persönliche Unterstützung. Uwe
Suhl erwähnte zu Beginn meiner Promotionszeit eher beiläufig, dass der duale Sim-
plexalgorithmus ein lohnenswertes Thema wäre. Es ist vor allem ihm und seiner vo-
rausgegangenen fünfundzwanzigjährigen Entwicklungsarbeit an dem Optimierungssys-
tem MOPS zu verdanken, dass daraus dann tatsächlich eine Dissertation geworden
ist. Die enge und lehrreiche Zusammenarbeit mit ihm hat mir großen Spaß gemacht
und wird hoffentlich noch lange andauern.

Ich möchte mich außerdem bei allen Kollegen am DSOR-Lehrstuhl für die gute
Zusammenarbeit und die anregende Forschungsatmosphäre bedanken. Besonders
meiner Bürokollegin Natalia Kliewer (inzwischen Juniorprofessorin) gebührt mein
Dank für ihre freundschaftliche Unterstützung, viele erhellende und erheiternde philo-
sophisch-politische Gespräche über die Monitore hinweg und ihre verständnisvolle
Teilnahme an privaten und beruflichen Höhenflügen und Tiefschlägen der letzten
drei Jahre.

Ich danke auch der International Graduate School of Dynamic Intelligent Systems,
insbesondere dem Leiter Dr. Eckhard Steffen und dem ganzen Organisationsteam für
die engagierte Begleitung meiner Arbeit, die weit über die finanzielle Unterstützung
hinaus ging. Ich wünsche der IGS eine glänzende Zukunft und ihren jetzigen und
künftigen Stipendiaten eine erfolg- und lehrreiche Promotionszeit.

Ich danke allen, die mir bei der Korrektur des Manusskripts geholfen haben, ins-
besondere Astrid Lukas-Reiß, Sophie Koberstein und Markus Krause.

Schließlich möchte ich mich bei meiner Frau Sophie sowie meinen Eltern, Schwie-
gereltern und Freunden für ihren Rückhalt und ihre Unterstützung bedanken. Durch
euch weiß ich jeden Tag, was wirklich wichtig ist.

Vielen herzlichen Dank!

Paderborn, im Oktober 2005 Achim Koberstein

vi

vii

Contents

1 Introduction 1

I Fundamental algorithms 5

2 Foundations 7

2.1 The linear programming problem and its computational forms 7

2.2 Geometry . 9

2.3 LP Duality . 11

2.4 Basic solutions, feasibility, degeneracy and optimality 13

3 The Dual Simplex Method 17

3.1 The Revised Dual Simplex Algorithm 17

3.1.1 Basic idea . 17

3.1.2 Neighboring solutions . 18

3.1.3 Pricing . 19

3.1.4 Ratio test . 20

3.1.5 Basis change . 22

3.1.6 Algorithmic descriptions . 25

3.2 The Bound Flipping Ratio Test . 25

3.3 Dual steepest edge pricing . 30

3.4 Elaborated version of the Dual Simplex Algorithm 34

4 Dual Phase I Methods 37

4.1 Introduction . 37

4.1.1 Big-M method . 37

4.1.2 Dual feasibility correction . 37

4.2 Minimizing the sum of dual infeasibilities 38

4.2.1 Subproblem approach . 38

4.2.2 Algorithmic approach . 40

4.3 Artificial bounds . 45

4.4 Cost modification . 45

4.5 Pan’s method . 47

II Computational techniques 49

viii

5 Solving Systems of Linear Equations 51
5.1 Introduction . 51

5.1.1 Product form of the inverse 52
5.1.2 LU decomposition . 53

5.2 LU factorization . 54
5.3 LU update . 56

5.3.1 Forrest/Tomlin update . 57
5.3.2 Suhl/Suhl update . 59

5.4 Exploiting (hyper-)sparsity in FTran, BTran and LU-update 61
5.4.1 Algorithms for sparse and hypersparse triangular systems . . . 61
5.4.2 FTran and BTran with Suhl/Suhl update 65

6 Numerical Stability and Degeneracy 67
6.1 Introduction . 67

6.1.1 Numerical stability . 67
6.1.2 Degeneracy and cycling . 69

6.2 Techniques to ensure numerical stability 70
6.2.1 Numerical tolerances . 70
6.2.2 Stabilizing ratio tests . 71

6.2.2.1 Modified standard ratio test 72
6.2.2.2 Harris’ ratio test . 73
6.2.2.3 Shifting . 74
6.2.2.4 Stabilizing bound flipping ratio test 75

6.2.3 Refactorization, accuracy checks and stability control 77
6.2.3.1 Refactorization for speed 77
6.2.3.2 Refactorization for stability 79

6.3 Techniques to reduce degeneracy and prevent cycling 82
6.3.1 Perturbation . 82
6.3.2 Randomized pricing . 84

7 Further computational aspects 85
7.1 LP preprocessing, scaling and crash procedures 85
7.2 Computation of the pivot row . 87

III Implementation and results 89

8 Implementation 91
8.1 The Mathematical OPtimization System MOPS 91

8.1.1 MOPS and its history . 91
8.1.2 External system architecture 92
8.1.3 LP / MIP solution framework 93

8.2 The dual simplex code . 96
8.2.1 Basic data structures . 96
8.2.2 Pricing . 98

8.2.2.1 Initialization and update of DSE weights 98

ix

8.2.2.2 Vector of primal infeasibilities 100
8.2.2.3 Partial randomized pricing 101

8.2.3 Ratio test . 101
8.2.4 FTran, BTran, LU-Update and factorization 103

8.2.4.1 Data structures for the LU-factors 104
8.2.4.2 Exploiting hypersparsity 106
8.2.4.3 Forward Transformation (FTran) 108
8.2.4.4 LU-update and factorization 113

8.2.5 Overview . 114

9 Numerical results 117
9.1 Test problems . 117
9.2 Performance measures . 118
9.3 Study on dual phase 1 . 118
9.4 Chronological progress study . 121
9.5 Overall benchmarks . 124

10 Summary and Conclusion 129

Bibliography 131

A Tables 137

x

xi

List of Figures

2.1 A convex polyhedron in R2. 9

5.1 Forrest/Tomlin update . 58
5.2 Suhl/Suhl update . 60
5.3 An upper triangular matrix an the corresponding nonzero graph G . . 64

8.1 The external architecture of MOPS 94
8.2 LP/IP solution framework in MOPS 95
8.3 Columnwise compact storage for Ā before and after LP preprocessing. 96
8.4 Dense, indexed and packed storage for mathematical vectors. 97
8.5 Implementation of the bound flipping ratio test with Harris’ tolerance. 102
8.6 Data structure for Ũ . 104
8.7 Data structure for the eta vectors of L̃−1 (1). 105
8.8 Data structure for the eta vectors of L̃−1 (2). 106
8.9 Data structure for depth-first-search. 107
8.10 Data-flow of FTran operation. 108
8.11 Implementation overview: initialization, refactorization and dual phase

I. 115
8.12 Implementation overview: main loop. 116

9.1 Performance profile over phase 1 test set: solution time using four
different dual phase 1 methods. 120

9.2 Performance profile over all test models: solution time with reduced
and expanded bounds after LP preprocessing. 121

9.3 Chronological progress in the development process of the MOPS Dual
Simplex code. 123

9.4 Overall benchmarks. 125

xii

xiii

List of Tables

2.1 Primal-dual transformation rules. 12
2.2 Dual feasibility conditions. 15

6.1 Tolerances: notation and default values. 71

8.1 History of MOPS development. 92
8.2 Improvement of MOPS LP optimization on model oil. 92
8.3 Improvement of MOPS IP optimization on model oil. 93

9.1 Benchmark of dual phase 1 methods. 119
9.2 Benchmark with reduced and expanded bounds after LP-preprocessing

on original test set. 121
9.3 Progress in our dual simplex code: implementation techniques in

chronological order. 122
9.4 System benchmark: solution time (including time for LP preprocess-

ing) on 25 most difficult original models. 126
9.5 Benchmark of dual simplex codes (no LP preprocessing): solution

time on 25 most difficult models pretreated by COIN LP preprocessing.127

A.1 Model dimensions. 139
A.2 Results with Cplex 9.1 Dual Simplex. 141
A.3 Results with COIN LP 1.02.02 Dual Simplex. 143
A.4 Results with Soplex 1.2.1 Dual Simplex. 145
A.5 Results with MOPS 7.9 Dual Simplex. 147
A.6 Results with MOPS 7.9 Dual Simplex with expanded bounds after LP

preprocessing. 149
A.7 Results on Dual Phase 1: Combined Method ”Pan + Subproblem-

Approach”. 150
A.8 Results on Dual Phase 1: Pan’s method. 151
A.9 Results on Dual Phase 1: Minimization of the sum of dual infeasibil-

ities, subproblem approach. 152
A.10 Results on Dual Phase 1: Cost modification + Primal Simplex. 153
A.11 Progress in our dual simplex code: implementation techniques in

chronological order. 154
A.12 Chronological progress: solution time. 155
A.13 Chronological progress: total iteration count. 156

xiv

xv

List of Algorithms

1 Basic steps of the dual simplex method. 17
2 Dual simplex method with simple ratio test and update of d. 26
3 Dual simplex method with simple ratio test and update of y. 27
4 Selection of q with the BRFT. 31
5 Update of d and xB for the BRFT. 31
6 Update of xN for the BRFT. 31
7 Dual simplex method with dual steepest edge pricing, bound flipping ratio

test and update of d. 35
8 The 2-phases dual simplex method with subproblem dual phase I. 40
9 Dual phase 1: Minimizing the sum of dual infeasibilities with simple ratio

test. 43
10 Extended ratio test in dual phase I. 46
11 Dual phase 1: Pan’s method. 48
12 LU-factorization. 55
13 LU-Update Suhl/Suhl (in terms of Ũ) . 62
14 Ux = b – dense method (for dense b) . 63
15 Ux = b – sparse method (for sparse b) . 63
16 Ux = b – hyper-sparse method (for very sparse x) 65
17 Modified standard ratio test . 72
18 Bound flipping ratio test with Harris’ tolerance. 78
19 HypersparsityTest . 107
20 FTran (Pseudocode) . 109
21 FTranL-F sparse . 110
22 FTranL-U . 110
23 FTranU sparse() . 111
24 FTranU hyper . 111
25 FTranU hyper DFS . 112

xvi

1

Chapter 1

Introduction

In 1947, G.B. Dantzig stated the Linear Programming Problem (LP) and presented
the (primal) simplex method1 to solve it (cf. [18, 19, 21]). Since then many re-
searchers have strived to advance his ideas and made linear programming the most
frequently used optimization technique in science and industry. Besides the inves-
tigation of the theoretical properties of the simplex method the development of
increasingly powerful computer codes has always been a main goal of research in
this field. Boosted by the performance leaps of computer hardware, the continuous
improvement of its algorithmic and computational techniques is probably the main
reason for the success story of the simplex method. Orden [52] and Hoffmann [35]
were among the first to report computational results for their codes. In 1952, an
LP problem with 48 constraints and 71 variables took about 18 hours and 73 sim-
plex iterations to solve on a SEAC computer, which was the hardware available at
that time. The most difficult test problem2 used in this dissertation has 162,142
constraints and 1,479,833 variables and is solved by our dual simplex code in about
7 hours and about 422,000 simplex iterations on a standard personal computer (see
chapter 9). More information about the history of linear programming and LP com-
puter codes can be found in [43] and [51], respectively.

While the primal simplex algorithm was in the center of research interest for
decades and subject of countless publications, this was not the case regarding its
dual counterpart. After Lemke [42] had presented the dual simplex method in 1954,
it was not considered to be a competitive alternative to the primal simplex method
for nearly forty years. Commercial LP-systems of the late 1980s like MPSX/370,
MPS III or APEX-III featured only rudimentary implementations of it and did not
even include dual phase I methods to deal with dual infeasible starting bases (cf. [10]).
This eventually changed in the early 1990s mainly due to the contributions of Forrest
and Goldfarb [26], who developed a computationally relatively cheap dual version of
the steepest edge pricing rule.

During the last decade commercial solvers made great progress in establishing the
dual simplex method as a general solver for large-scale LP problems. Nowadays,
large scale LP problems can be solved either by an interior point, primal simplex
or dual simplex algorithm or a combination of such algorithms. In fact, extensive
computational studies indicate, that the overall performance of the dual simplex

1The historic circumstances of the early days of linear programming have been documented e.g.
by S.I. Gass [28] and A.J. Hoffman [36].

2LP-relaxation of the integer problem MUN1 M D, which is an instance of multi-commodity-flow
model used in a bus scheduling application [37].

2 Chapter 1 Introduction

may be superior to that of the primal simplex algorithm (cf. [10]). In practise, there
are often LP-models, for which one of the three methods clearly outperforms the
others. For instance, experiments showed, that the test problem mentioned above
can only be solved by the dual simplex method. Primal simplex codes do virtually
not converge on this problem due to degeneracy and interior point codes fail due to
extensive memory consumption.

Besides its relevance for the solution of large scale LP problems, it is long known,
that the dual simplex algorithm plays an important role for solving LP problems,
where some or all of the variables are constrained to integer values (mixed-integer
linear programming problems – MIPs). Virtually all state-of-the-art MIP-solvers are
based on a branch-and-bound approach, where dual bounds on the objective function
value are computed by successive reoptimization of LP-type subproblems. While the
interior-point method is conceptually ineligible to take advantage of a given nearly
optimal starting solution, the dual simplex method is particularly well suited for this
purpose. The reason is that for most of the branch-and-bound subproblems the last
LP-solution stays dual feasible and the execution of a dual phase I method is not
necessary. Therefore, the dual simplex method is typically far superior to the primal
simplex method in a branch-and-bound framework.

Despite of its success and relevance for future research only few publications in
research literature explicitly discuss implementation details of mathematical or com-
putational techniques proposed for the dual simplex algorithm. Furthermore, re-
ported computational results are often produced by out-dated simplex codes, which
do not feature indispensable techniques to solve large scale LPs (like a well imple-
mented LU factorization of the basis and a powerful LP preprocessor). Even if the
presented ideas look promising, it often remains unclear, how to implement them
within a state-of-the-art LP-system. Such techniques are for example:

• An enhanced dual ratio test for dual phase I and phase II. It was described by
Fourer [27] in an unpublished rather theoretical note about the dual simplex
method3. Maros [48, 47] and Kostina [41] published computational results for
this technique.

• Pan’s dual phase I method. Pan presented his algorithm in [54] and published
computational results in [55].

• A method to exploit hypersparsity. In the mid 1980’s Gilbert and Peierls [29]
published a technique to solve particularly sparse systems of linear equations.
In [10] Bixby indicates that this technique contributed to enormous improve-
ments of the Cplex LP-solver. However, he does not disclose implementation
details.

The lack of descriptions of implementation details in the research literature has led
to a great performance gap between open-source research codes4 and commercial LP-

3Apparently, the idea was published long before by Gabasov [57] in Russian language.
4An exception is the LP code, which is being developed in the COIN open-source initiave [44].

However, this code is largely undocumented and no research papers have yet been published
about its internals.

3

systems, which is frequently documented in independent benchmarks of optimization
software (cf. [4]).

The goals of this dissertation follow directly from the above discussion. We think,
that it is essential for future research in the field of linear and mixed integer program-
ming to dispose of a state-of-the art implementation of the dual simplex algorithm.
Therefore, we want

• to develop a dual simplex code, which is competitive to the best existing open-
source and commercial LP-systems,

• to identify, advance and document important implementation techniques, which
are responsible for the superiority of commercial simplex codes, and

• to conduct meaningful computational studies to evaluate promising mathemat-
ical and computational techniques.

Our work is based on the Mathematical OPtimization System (MOPS) (see [65, 66]),
which has been deployed in many practical applications for over two decades (see
e.g. [69], [67], [62] and [37]) and has continuously been improved in algorithms, soft-
ware design and implementation. The system started as a pure LP-solver based on a
high speed primal simplex algorithm. In its present form MOPS belongs to the few
competitive systems in the world to solve large-scale linear and mixed integer pro-
gramming problems. The algorithms and computational techniques used in MOPS
have been documented in numerous scientific publications (cf. section 8.1).

The remainder of this thesis is structured in three major parts. In part I, which
comprises the chapters 2 to 4, we give a detailed description of the relevant mathe-
matical algorithms. In chapter 2 we introduce fundamental concepts of linear pro-
gramming. Chapter 3 gives a detailed derivation of the dual simplex method. The
chapter ends with an algorithmic description of an elaborate version of the algorithm,
which represents the basis of the dual phase II part of our implementation. In chap-
ter 4 we give an overview of dual phase I algorithms. In particular, we show that
there are two mathematically equivalent approaches to minimize the sum of dual
infeasibilities and give the first algorithmic description of Pan’s method for general
LPs with explicit lower and upper bounds.

In part II, we describe computational techniques, which are crucial for the perfor-
mance and numerical stability of our code. Here, the efficient solution of the required
systems of linear equations in chapter 5 plays an important role. We particularly em-
phasize the exploitation of hypersparsity. Techniques to achieve numerical stability
and prevent degeneracy and cycling are presented in chapter 6. We discuss in detail,
how to combine Harris’ idea to use tolerances to improve numerical stability with the
bound flipping ratio test. The shorter chapter 7 is concerned with further important
points, e.g. LP preprocessing and the efficient computation of the transformed pivot
row.

Part III comprises the chapters 8 and 9. The first describes our implementation
of the mathematical algorithms and computational techniques presented in the pre-
vious parts. Focal points are efficient data structures, organization of the pricing
loop, the dual ratio test and the exploitation of hypersparsity. In the second chapter

4 Chapter 1 Introduction

of this part we evaluate the performance of our code compared to the best commer-
cial and open-source implementations of the dual simplex method on the basis of
computational results. Furthermore, we provide a study on the dual phase I and a
chronological progress study, which illustrates the impact of the specific implemen-
tation techniques on the overall performance of the code during our development
process.

Chapter 10 summarizes the contributions of this dissertation and discusses possible
directions of future research.

5

Part I

Fundamental algorithms

7

Chapter 2

Foundations

2.1 The linear programming problem and its
computational forms

A linear programming problem (LP) is the problem of minimizing (or maximizing)
a linear function subject to a finite number of linear constraints. In matrix notation
this definition corresponds to the following general form of the LP problem:

minimize c0 + cTx (2.1a)

subject to L ≤ Āx ≤ U (2.1b)

l ≤ x ≤ u, (2.1c)

where c0 ∈ R, c, x ∈ Rn̄, b ∈ Rm, Ā ∈ Rm×n̄, l, u ∈ (R ∪ {−∞,+∞})n̄ and
L,U ∈ (R∪{−∞,+∞})m with m, n̄ ∈ N. We call c the cost vector (c0 is a constant
component), x the vector of the decision variables, Ā the constraint matrix, L and
U the (lower and upper) range vectors and l and u the (lower and upper) bounds.
(2.1a) is called objective function, (2.1b) the set of joint constraints and (2.1c) the
individual bound constraints. We call a variable xj with j ∈ {1, . . . , n̄} free if lj = −∞
and uj = +∞. We call it boxed if lj > −∞ and uj < +∞. If lj = uj = a for some
a ∈ R we call it fixed.

It is easy to see that any kind of LP problem that may occur in a practical
application can be put into general form (2.1). If for i ∈ {1, . . . ,m} we have both
Li > −∞ and Ui < +∞ constraint i is a range constraint. If Li > −∞ and Ui = +∞
or Li = −∞ and Ui < +∞ constraint i is an inequality-constraint (≥ or ≤ resp.). If
−∞ < Li = Ui < +∞ it is an equality-constraint.

To be approachable by the simplex algorithm LP (2.1) has to be cast into a
computational form, that fulfills further requirements, i.e., the constraint matrix has
to have full row rank and only equality constraints are allowed:

min cTx (2.2a)

s.t. Ax = b (2.2b)

l ≤ x ≤ u. (2.2c)

Here, c, x ∈ Rn, b ∈ Rm, l, u ∈ (R∪{−∞,+∞})n and A ∈ Rm×n with rank(A) = m,
m,n ∈ N and m < n. In this representation we call b the right hand side (RHS)
vector. In the following we will denote by J = {1, . . . , n} the set of column indices.

8 Chapter 2 Foundations

To put an LP in general form (2.1) into one in computational form (2.2) inequal-
ity constraints are transformed into equality constraints by introducing slack- and
surplus-variables. In LP-systems (like MOPS) this is usually done in a standardized
way by adding a complete identity matrix to the constraint matrix:

min cTxS (2.3a)

s.t.
[
Ā | I

] [xS

xL

]
= 0 (2.3b)

l ≤
[
xS

xL

]
≤ u (2.3c)

The variables associated with Ā are called structural variables (short: structurals),
those associated with I are called logical variables (short: logicals). Ranges Li and
Ui are transferred to individual bounds on logical variables by setting ln̄+i = −Ui

and un̄+i = −Li. Consequently, equality constraints lead to fixed logical variables.
Note, that this scheme assures that both the full row rank assumption (because of
I) and the requirement that m < n (since n = n̄ + m) are fulfilled. We call (2.3)
the internal model representation (IMR) while the general form (2.1) is also called
external model representation (EMR).

For ease of notation we will mostly use the computational form (2.2) to describe
mathematical methods and techniques. We will always assume that it coincides with
the IMR (2.3). One obvious computational advantage of the IMR is for instance,
that the right hand side vector b is always 0, which means that it vanishes completely
in implementation. Nevertheless, we consider b in the algorithmic descriptions.

To examine the theoretical properties of LPs and also for educational purposes, an
even simpler yet mathematically equivalent representation is used in LP literature.
It is well known that every LP can be converted into the following standard form:

min cTx (2.4a)

s.t. Ax ≥ b (2.4b)

x ≥ 0. (2.4c)

The set X = {x ∈ Rn : Ax ≥ b, x ≥ 0} is called the feasible region of the LP (2.4)
and x ∈ Rn is called feasible if x ∈ X . If for every M ∈ R there is an x ∈ X
such that cTx < M , then (2.4) is called unbounded. If X = ∅ it is called infeasible.
Otherwise, an optimal solution x∗ ∈ X exists with objective function value z∗ = cTx∗

and z∗ ≤ cTx for all x ∈ X .
The simplex algorithm was originally developed for LPs in standard form (without

taking individual bounds into account implicitly). To apply the simplex algorithm
to (2.4) it has to be transformed as above to a form which we will call computational
standard form:

min cTx (2.5a)

s.t. Ax = b (2.5b)

x ≥ 0, (2.5c)

2.2 Geometry 9

G5

G4

G3

G2

G1

x1

x2

X

Figure 2.1: A convex polyhedron in R2.

where A ∈ Rm×n has full row rank m and m < n. We will use the standard form
and its computational variant only rarely since they are of minor importance for
practical LP systems.

2.2 Geometry

Each inequality1 in the set of joint and individual bound constraints can be inter-
preted geometrically as a half-space Hi = {x ∈ Rn : aix ≤ bi} in the space of the
decision variables Rn with a corresponding hyperplane Gi = {x ∈ Rn : aix = bi}.
Therefore, the feasible region X of any LP problem can be described as the inter-
section of a finite number of half-spaces, which is called a polyhedron. Polyhedra
are convex, since a half-space is a convex set, and the intersection of convex sets is
convex. A convex polyhedron in R2 is depicted in figure 2.1.

The extreme points of a polyhedron X , that cannot be written as a nontrivial linear
combination of other points in X , are called vertices. They lie in the intersection
of at most n hyperplanes, that define X . If more than n hyperplanes intersect
at a vertex, it is called degenerate. If the line emanating from a vertex along the
intersection of at least two hyperplanes is not bounded by another vertex, it is an
extreme ray of the polyhedron. Many results on polyhedra are known in the theory
of convex sets. The representation theorem says, that every nonempty polyhedron
X can be represented as the union of the convex hull of a finite set of vertices
S = {s1, . . . , sk} ⊆ X and the cone defined by a finite set of extreme directions
R = {r1, . . . , rq} ⊂ Rn. Furthermore, every point x ∈ X can be written as the
sum of a convex linear combination of the vertices and a linear combination of the
extreme directions:

1an equality can be transformed into one (if it includes a logical variable) or two inequalities

10 Chapter 2 Foundations

x =
k∑

i=1

λisi +

q∑
j=1

µjrj, with
k∑

i=1

λi = 1, λi ≥ 0 ∀i and µj ≥ 0 ∀j. (2.6)

With the help of this theorem one can proof a fundamental property of LP problems:
for every LP problem exactly one of the following three solution states is true (see
e.g. [46], p.25 for proof):

• The LP is infeasible. No feasible solution exists (X = ∅).

• The LP is unbounded. There is a vertex si ∈ S, an extreme direction rj ∈ R
such that for everyM ∈ R we can find a value µ ≥ 0 such that x∗ = si+µrj ∈ X
and cTx∗ < M .

• The LP has an optimal solution. There is an optimal vertex x∗ ∈ S such that
cTx∗ ≤ cTx for all x ∈ X .

Accordingly, if an LP problem has an optimal solution, it suffices to search the (finite
number of) vertices of the feasible region until a vertex with the optimal solution
value is found. From the two possible definitions of a vertex two different algebraic
representations can be derived. Defining a vertex as the intersection of hyperplanes
leads to the concept of a row basis. We will not further pursue this concept, since
in most cases it is computationally inferior to the concept of a column basis, which
follows from the vertex definition via nontrivial convex combinations.

Suppose, we have an LP given in computational standard form and X = {x ∈ Rn :
Ax = b, x ≥ 0}. A point x ∈ X is a vertex if and only if the column vectors of A, that
are associated with strictly positive entries in x, are linearly independent (see e.g. [16]
, p.9 for proof). As a direct consequence x can have at most m positive entries. If x
has strictly less than m positive entries, we can always expand the number of linearly
independent columns to m by adding columns associated with zero positions of x,
since A has full row rank (in this case, the vertex is degenerate). Therefore, every
vertex of the feasible region has at least one set of m linearly independent columns of
A associated with it. The set of indices of these columns is called a (column) basis.
Consequently, degenerate vertices have several bases.

The fundamental idea of the simplex algorithm is to search the finite number of
bases until a basis is found that belongs to the optimal vertex. Since there are

(
m
n

)
bases, this might take an exponential number of steps, which is in fact the theoretical
bound for the runtime of the method. In practise, it has surprisingly turned out to
perform much better (typically c ∗m number of steps, where c is a small constant).
It has been learned, that the performance heavily depends on sophisticated search
strategies.

2.3 LP Duality 11

2.3 LP Duality

The basic idea of LP duality can be seen best by considering an LP in standard form:

z∗ = min cTx

s.t. Ax ≥ b

x ≥ 0.

(2.7)

If we multiply every constraint i ∈ {1, . . . ,m} with a nonnegative number yi such
that yTaj ≤ cj for every j ∈ {1, . . . , n}, then yT b is a lower bound on the optimal
objective function value z∗, since yT b ≤ yTAx ≤ cTx (the first relation is true,
because y ≥ 0, the second is true, because x ≥ 0 and yTaj ≤ cj). This property is
called weak duality. Since it is satisfied by every y satisfying the restrictions above
we can find the best lower bound by solving the LP:

Z∗ = max bTy

s.t. ATy ≤ c

y ≥ 0.

(2.8)

This LP is called the dual LP (or short: the dual) of the LP (2.7). Both LPs are
called a primal-dual pair. Since any LP problem can be transformed into standard
form, we can associate a dual problem to it in the above sense.

Consider a primal constraint aix ≤ bi. By multiplying by −1, we get −ai ≥ −bi,
which is a constraint in standard form. In the dual program, a dual multiplier yi ≥ 0
gets assigned to it and −bi becomes its coefficient in the dual objective function,
while −(ai)T becomes its coefficient (column) in the dual constraint matrix. This is
equivalent to assigning a dual multiplier yi ≤ 0 right away and keeping bi and (ai)T as
coefficients in the dual objective function and constraint matrix respectively. Primal
equality constraints aix = bi can be replaced by two inequality constraints aix ≥ bi
and ai ≤ bi. In the dual program two dual variables y1

i ≥ 0 and y2
i ≤ 0 go with

them, which have identical coefficients bi and (ai)T in the dual objective function
and constraint matrix respectively. Hence, the coefficients can be factored out giving
bi(y

1
i + y2

i) and (ai)T (y1
i + y2

i) respectively. The sum y1
i + y2

i can assume any value
in R, so it can be substituted by a free dual variable yi. In a similar manner we
can derive further transformation rules for different types of primal variables. We
summarize them in table 2.1.

Now, reconsider an LP in computational form and suppose in the first instance,
that all individual bounds are finite, i.e., lj > −∞ and uj <∞ for all j ∈ J :

min cTx (2.9a)

s.t. Ax = b (2.9b)

l ≤ x ≤ u. (2.9c)

Then, we can treat the individual bounds (2.9c) like constraints and introduce dual
variables y ∈ Rm for the constraints (2.9b), v ∈ Rn for the lower bound constraints
and w ∈ Rn for the upper bound constraints in (2.9c). The constraints (2.9b) can be

12 Chapter 2 Foundations

primal dual
aix ≥ bi yi ≥ 0
aix ≤ bi yi ≤ 0
aix = bi yi free
x ≥ 0 aT

j y ≤ cj
x ≤ 0 aT

j y ≥ cj
x free aT

j y = cj

Table 2.1: Primal-dual transformation rules.

dualized by using the third transformation rule, the lower bounds by using the first
and the upper bounds by using the second rule. This leads to the following dual for
LP (2.9):

max bTy + lTv + uTw (2.10a)

s.t. ATy + v + w = c (2.10b)

v ≥ 0 (2.10c)

w ≤ 0 (2.10d)

We call vj and wj dual slack variables or dual logicals. By setting d = v+w = c−ATy
we see, that the sum of the dual slacks coincides with the reduced cost vector d. We
will come back to this correspondence in the next section.

If we permit individual bounds to take infinite value in the primal LP, we have to
be more careful in the dual LP. In fact, for infinite bounds no dual variables need
to be introduced. In our notation we keep the indexing of the dual variables from 1
to n, but all vj, wj for which lj = −∞, uj = ∞, respectively, vanish from the dual
program:

max bTy +
∑

{j : lj>−∞}

ljvj +
∑

{j : uj<∞}

ujwj (2.11a)

s.t. aT
j y = cj if lj = −∞ and uj =∞ (2.11b)

aT
j y + vj = cj if lj > −∞ and uj =∞ (2.11c)

aT
j y + wj = cj if lj = −∞ and uj <∞ (2.11d)

aT
j y + vj + wj = cj if lj > −∞ and uj <∞ (2.11e)

vj ≥ 0 if lj > −∞ (2.11f)

wj ≤ 0 if uj < −∞ (2.11g)

In the following sections we will use (2.11) to illustrate the mathematical concepts
of the dual simplex method (DSX). The DSX solves an LP given in computational
form (2.2), or rather in IMR (2.3), by implicitly applying the primal simplex to its
dual.

Consider LP (2.9) with permissible infinite individual bounds. Any vector x ∈ Rn

that satisfies (2.9b) is called a primal solution. If a primal solution x lies within the

2.4 Basic solutions, feasibility, degeneracy and optimality 13

individual bounds (2.9c) it is called a primal feasible solution. If no primal feasible
solution exists, (2.9) is said to be primal infeasible. Otherwise, it is primal feasible.
If for every M ∈ R there is a primal feasible solution x such that cTx < M then
(2.9) is primal unbounded.

Accordingly, any vector (yT , vT , wT)T ∈ Rm+2n that satisfies the dual constraints
(2.11b) – (2.11e) is called a dual solution. If a dual solution additionally satisfies
constraints (2.11f) and (2.11g), it is called a dual feasible solution. If no dual feasible
solution exists, (2.9) is said to be dual infeasible. Otherwise it is dual feasible. If
for every M ∈ R there is a dual feasible solution (yT , vT , wT)T such that bTy +∑

{j : lj>−∞} ljvj +
∑

{j : uj<∞} ujwj > M , then (2.9) is dual unbounded.
From weak duality, we can directly conclude that an LP must be primal infeasible

if it is dual unbounded. Likewise, if it is primal unbounded, it must be dual infeasible.
The converse need not be true, there are LPs that are both primal and dual infeasible.
In the next sections we will show that, if a primal optimal solution exists then there
is also a dual optimal solution with the same objective function value. This property
is called strong duality.

2.4 Basic solutions, feasibility, degeneracy and
optimality

As we have seen in section 2.2, a basis B = {k1, . . . , km} is an ordered subset of the
set of column indices J = {1, . . . , n}, such that the submatrix AB of the constraint
matrix A is nonsingular. For convenience we will denote the basis matrix by B,
i.e., B = AB = (ak1 , . . . , akm) ∈ Rm×m and refer to the i-th element of the basis
by the notation B(i), i.e., B(i) = ki. The set of nonbasic column indices is denoted
by N = J \ B. A variable xj is called basic if j ∈ B and nonbasic if j ∈ N . By
permuting the columns of the constraint matrix and the entries of x, c we can write
A = (B,AN), x =

(
xB
xN

)
and c =

(
cB
cN

)
. Accordingly, (2.9) can be expressed as

BxB + ANxN = b. (2.12)

Since B is nonsingular (and hence, its inverse B−1 exists,) we obtain

xB = B−1(b− ANxN). (2.13)

This equation shows that the nonbasic variables xN uniquely determine the values
of the nonbasic variables xB. In this sense, we can think of the basic variables as
dependent and the nonbasic variables as independent.

A primal solution x is called basic, if every nonbasic variable is at one of its finite
bounds or takes a predefined constant value a ∈ R in the case that no such bound
exists (= free variable). If x is basic and primal feasible we call it a primal feasible
basic solution and B a primal feasible basis. Since the n−m nonbasic variables of a
primal basic solution are feasible by definition, primal feasibility can be checked by

14 Chapter 2 Foundations

looking only at the m basic variables and testing, if they are within their bounds:

lB ≤ xB ≤ uB (2.14)

If at least one basic variable hits one of its finite bounds exactly, x and B are said
to be primal degenerate. The number of components of xB, for which this is true, is
called the degree of primal degeneracy.

Considering the dual LP (2.11) we can partition the constraints (2.11b) – (2.11e)
into basic (if j ∈ B) and nonbasic (if j ∈ N) ones. A dual solution (yT , vT , wT)T is
called basic if

BTy = cB

⇔ y = (BT)−1cB (2.15a)

and

vj = cj − aT
j y if lj > −∞ and uj =∞, (2.15b)

wj = cj − aT
j y if lj = −∞ and uj <∞, (2.15c)

vj = cj − aT
j y and wj = 0 if lj > −∞ and uj <∞ and xj = lj, (2.15d)

wj = cj − aT
j y and vj = 0 if lj > −∞ and uj <∞ and xj = uj. (2.15e)

In the following, we denote the vector of the reduced costs by

d = c− ATy. (2.16)

Now, we see that for a dual basic solution, we get

vj = dj if lj > −∞ and uj =∞, (2.17a)

wj = dj if lj = −∞ and uj <∞, (2.17b)

vj = dj and wj = 0 if lj > −∞ and uj <∞ and xj = lj, (2.17c)

wj = dj and vj = 0 if lj > −∞ and uj <∞ and xj = uj. (2.17d)

A dual basic solution is called feasible, if the constraints (2.11b), (2.11f) and (2.11g)
are satisfied for all j ∈ J . Note, that dual basic constraints are satisfied by definition
(those of type (2.11b) because of 2.15a, those of type (2.11f) and (2.11g), because
dj = cj − aT

j y = cj − aT
j (BT)−1cB = cj − eT

j cB = cj − cj = 0 for j ∈ B). The same is
true for constraints that are associated with fixed primal variables (lj = uj), because
we can choose between (2.17c) and (2.17d) depending on the sign of dj (if dj ≥ 0,
we choose (2.17c), and (2.17d) o.w.).

Therefore, to check dual feasibility, we only need to consider those j ∈ N , where
xj is neither basic nor fixed. In table 2.2 we summarize the dual feasibility conditions
in terms of the corresponding primal basic solution x and the reduced cost vector d.

If for at least one nonbasic variable we have dj = 0, (yT , vT , wT)T and B are
called dual degenerate. The number of zero entries in dN is called the degree of dual
degeneracy.

Now, suppose we are given a basis B with a primal basic solution x and a dual

2.4 Basic solutions, feasibility, degeneracy and optimality 15

status of xj dual feasible if
basic true
nonbasic fixed true
nonbasic at lower bound (xj = lj) dj ≥ 0
nonbasic at upper bound (xj = uj) dj ≤ 0
nonbasic free (xj = 0) dj = 0

Table 2.2: Dual feasibility conditions.

feasible basic solution (yT , vT , wT)T . Replacing x in the primal objective function,
we get the following:

cTx = cTBxB + cTNxN

= cTB(B−1b−B−1ANxN) + cTNxN by (2.13)

= yT b− yTANxN + cTNxN by (2.15a)

= yT b+ (cN − yTAN)TxN

= yT b+ dT
NxN by (2.16)

= yT b+ lTv + uTw by table 2.2

(2.18)

This means, that the primal and the dual objective function value is equal in this
case. Therefore, if x is also primal feasible, then it is optimal due to weak duality.
Hence, being both primal and dual feasible is a sufficient condition for a basis B to
be optimal. Vice versa, if we have an optimal primal basic solution, we can construct
a dual feasible basic solution, which is optimal for the dual LP.

From polyhedral theory we know, that if an LP has a primal feasible solution, then
it also has a primal feasible basic solution and if it has an optimal solution it also
has an optimal basic solution (both facts follow from the representation theorem, see
e.g. [46] for proof). The second fact together with (2.18) proofs strong duality : if
an LP has an optimal solution, then its dual also has an optimal solution and both
optimal solution values are equal.

16 Chapter 2 Foundations

17

Chapter 3

The Dual Simplex Method

3.1 The Revised Dual Simplex Algorithm

3.1.1 Basic idea

Simplex type algorithms search the space of basic solutions in a greedy way, until
either infeasibility or unboundedness is detected or an optimal basic solution is found.
While the primal simplex algorithm maintains primal feasibility and stops when dual
feasibility is established, the dual simplex algorithm starts with a dual feasible basis
and works towards primal feasibility.

Algorithm 1: Basic steps of the dual simplex method.

Input: LP in computational form (2.2), dual feasible basis B
Output: Optimal basis B or proof that LP is dual unbounded.

Pricing(Step 1)
Find a leaving variable p ∈ B, that is primal infeasible. If no such p
exists, then B is optimal → exit.

Ratio Test(Step 2)
Find an entering variable q ∈ N , such (B \ p) ∪ q is a again dual
feasible basis. If no such q exists, then the LP is dual unbounded →
exit.

Basis change(Step 3)
Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update problem data.

Go to step 1.

Algorithm 1 shows the basic steps of the dual simplex method. In each iteration
it moves from the current dual feasible basis to a neighboring basis by exchanging
a variable in B by a variable in N . Since we want to reduce primal infeasibility,
a primal infeasible basic variable is chosen to leave the basis in step 1 and is made
nonbasic (hence, primal feasible) by setting it to one of its finite bounds (free variables
are not eligible here). In section 3.1.3 we will see, that this selection also ensures a
nondecreasing dual objective function value. If no primal infeasible variable exist, we

18 Chapter 3 The Dual Simplex Method

know, that the current basis must be optimal, because it is primal and dual feasible.
In step 1 a nonbasic variable is selected to enter the basis, such that the new basis is
again dual feasible. We will see in section 3.1.4, that the LP is dual unbounded (i.e.
primal infeasible), if no entering variable can be determined. Finally, all necessary
update operations associated with the basis change are carried out in step 1.

To be able to apply algorithm 1 to some given LP we are left with the task to
obtain a dual feasible basis to start with. There are a variety of methods to do this,
which we will discuss in chapter 4. At first, we will describe in greater detail what
we mean by neighboring solution, dual pricing, ratio test and basis change.

3.1.2 Neighboring solutions

Let B = {k1, . . . , km} be a dual feasible basis, (yT , vT , wT)T a corresponding dual
feasible basic solution and x a corresponding primal basic solution. In this situation
we know, that the dual constraints (2.11c) – (2.11e) hold at equality for all j ∈ B
(we do not consider constraint (2.11b) here, because free variables are not eligible to
leave the basis) and that the corresponding dual logical variables are equal to zero. If
variable p = B(r) leaves the bases, then the r-th dual basic constraint may (but need
not) change from equality to inequality, while all other dual constraints associated
with basic variables keep holding at equality. Denoting the new dual solution by
(ȳT , v̄T , w̄T)T and the change in the r-th dual basic constraint by t ∈ R, such that

t = aT
p ȳ − aT

p y (3.1)

we get

aT
p ȳ − t = aT

p y (3.2a)

and

aT
j ȳ = aT

j y for all j ∈ B \ {p}, (3.2b)

which can be written concisely as

BT ȳ − er t = BTy. (3.3)

From equation 3.3 we get

ȳ = y + (BT)−1er t

= y + ρrt, (3.4)

where ρr = (BT)−1er denotes the r-th column of (BT)−1, as an update formula for
ȳ and

d̄ = c− AT ȳ

3.1 The Revised Dual Simplex Algorithm 19

= c− AT (y + ρrt)

= d− AT (BT)−1er t

= d− αr t, (3.5)

where αr = eT
r B

−1A denotes the r-th row of the transformed constraint matrix
B−1A, as an update formula for d.

Obviously, αr
j = eT

r B
−1aj = eT

r ej = 0 for all j ∈ B \ {p} and αr
p = eT

r B
−1ap =

eT
r er = 1. Hence, (3.5) can be stated more precisely as

d̄j = dj = 0 for all j ∈ B \ {p}, (3.6a)

d̄p = −t and (3.6b)

d̄j = dj − αr
j t for all j ∈ N . (3.6c)

The change in the r-th dual basic constraint has to be compensated by the corre-
sponding dual logical variable(s). We say, that the constraint is relaxed in a feasible
direction, if the dual logicals stay feasible. If it is a constraint of type (2.11c), we get
v̄p = −t, hence we need t ≤ 0. If it is a constraint of type (2.11d), we get w̄p = −t,
hence we need t ≥ 0. If it is a constraint of type (2.11e), both directions are feasible:
we set v̄p = −t, w̄p = 0 if t ≤ 0 and v̄p = 0, w̄p = −t if t ≥ 0.

In the next two sections, we will clarify, how to choose p and t, such that the dual
objective function improves and (ȳT , v̄T , w̄T)T is again a dual feasible basic solution.

3.1.3 Pricing

If we relax a dual basic constraint p in a dual feasible direction with the restriction,
that no d̄j with j ∈ N changes sign (or leaves zero), we get the following dual
objective function value Z̄ for the new dual solution (ȳT , v̄T , w̄T)T :

Z̄ = bT ȳ +
∑
j ∈J

lj>−∞

lj v̄j +
∑
j ∈J
uj<∞

ujw̄j

= bT ȳ +
∑
j ∈N
dj ≥ 0

lj d̄j +
∑
j ∈N
dj ≤ 0

uj d̄j − tu±
p , where u±

p =

{
lp if t ≤ 0

up if t ≥ 0

= bT (y + teT
r B

−1) +
∑
j ∈N
dj ≥ 0

lj(dj − teT
r B

−1aj) +
∑
j ∈N
dj ≤ 0

uj(dj − teT
r B

−1aj)− tu±
p

= Z + teT
r B

−1b−
∑
j ∈N
dj ≥ 0

teT
r B

−1ajlj −
∑
j ∈N
dj ≤ 0

teT
r B

−1ajuj − tu±
p

= Z + teT
r B

−1(b− ANxN)− tu±
p

= Z + teT
r xB − tu±

p

= Z + t(xp − u±
p)

20 Chapter 3 The Dual Simplex Method

= Z + ∆Z, where ∆Z =

{
t(xp − lp) if t ≤ 0

t(xp − up) if t ≥ 0.
(3.7)

Now we can determine p and the sign of t such that ∆Z is positive, since we want
the dual objective function to increase (maximization). We select p such that either
xp < lp and t ≤ 0 or xp > up and t ≥ 0. In both cases the leaving variable can be
set to a finite bound, such that it does not violate the dual feasibility conditions. If
t ≤ 0, xp = lp is dual feasible, since dp = −t ≥ 0. The same is true for the case
t ≥ 0: xp = up is dual feasible, since dp = −t ≤ 0. In the next section we will see,
how dual feasibility is maintained for the remaining nonbasic variables.

Note, that xp is eligible to leave the basis only if it is primal infeasible. If there is
no primal infeasible basic variable left, no further improvement in the dual objective
function can be accomplished. The decision which of the primal infeasible variables
to select as leaving variable has great impact on the number of total iterations of the
method. As in the primal simplex method, simple rules (like choosing the variable
with the greatest infeasibility) have turned out to be inefficient for the dual simplex
algorithm. We will discuss suitable pricing rules in section 3.3. In section 8.2.2 we
will describe further computational aspects that have to be taken into account for
an efficient implementation of the pricing step.

3.1.4 Ratio test

In the previous section we saw that the dual logical of the relaxed basic constraint
always remains dual feasible. Since all other basic constraints stay at equality, we
only have to consider the nonbasic dual logicals to fulfill the dual feasibility conditions
(see table 2.2). Furthermore, we can neglect dual logicals that are associated with
fixed primal variables because they can never go dual infeasible.

As t moves away from zero, we know, that the nonbasic dual logicals evolve ac-
cording to equation (3.6c):

d̄j = dj − αr
j t for all j ∈ N (3.8)

If xj = lj, dual feasibility is preserved as long as

d̄j ≥ 0

⇔ dj − αr
jt ≥ 0

⇔ t ≥ dj

αr
j

if αr
j < 0 and t ≤ dj

αr
j

if αr
j > 0.

(3.9)

If xj = uj, dual feasibility is preserved as long as

d̄j ≤ 0

⇔ dj − αr
jt ≤ 0

⇔ t ≥ dj

αr
j

if αr
j > 0 and t ≤ dj

αr
j

if αr
j < 0.

(3.10)

If xj is free, dual feasibility is preserved as long as

3.1 The Revised Dual Simplex Algorithm 21

d̄j = 0

⇔ dj − αr
jt = 0

⇔ t =
dj

αr
j

= 0 since dj = 0.

(3.11)

When a nonbasic constraint j becomes tight (i.e. d̄j = 0), it gets eligible to replace
the relaxed constraint p in the set of basic constraints. The constraints that become
tight first as t is increased (or decreased) define a bound θD on t, such that dual
feasibility is not violated. Among them, we select a constraint q to enter the basis.
The associated primal variable xq is called entering variable and θD is called dual step
length. We call a value of t, at which a constraint becomes tight, a breakpoint. If no
constraint becomes tight, no breakpoint exists and the problem is dual unbounded.

If t ≥ 0 is required, we can denote the set of subscripts, which are associated with
positive breakpoints, by

F+ = {j : j ∈ N , xj free or(xj = lj and αr
j > 0) or (xj = uj and αr

j < 0)}. (3.12)

If F+ = ∅, then there exists no bound on t and the problem is dual unbounded.
Otherwise, q and θD are determined1 by

q ∈ arg min
j∈F+

{
dj

αr
j

}
and θD =

dq

αq
j

. (3.13)

If t ≤ 0 is required, we can denote the set of subscripts, which are associated with
breakpoints, by

F− = {j : j ∈ N , xj free or(xj = lj and αr
j < 0) or (xj = uj and αr

j > 0)}. (3.14)

As above, if F− = ∅, the problem is dual unbounded. Otherwise, q and θD are
determined2 by

q ∈ arg max
j∈F−

{
dj

αr
j

}
and θD =

dq

αq
j

. (3.15)

To ease the algorithmic flow we can get rid of the negative case (t ≤ 0) by setting
α̃r

j = αr
j if t ≥ 0 and α̃r

j = −αr
j if t ≤ 0. Then, we can use only equations (3.12) and

(3.13) with α̃ instead of α to determine q and θD (see step 2 in algorithm 2).
Note, that there can be more then one choice for q in (3.13) and (3.15), since there

might be several breakpoints with the same minimal (or maximal) value. This is the
case for example, if the current basis is dual degenerate by a degree greater than one
(more than one nonbasic dj is zero). In that situation, we can choose the one among
them, that has favorable computational properties. If free nonbasic variables exist,
then the basis must be dual degenerate. Therefore, they are always eligible to enter

1In the absence of degeneracy the minimum in equation 3.13 is unique.
2In the absence of degeneracy the maximum in equation 3.15 is unique.

22 Chapter 3 The Dual Simplex Method

the basis right away.

3.1.5 Basis change

In the pricing step and the dual ratio test we have determined a variable that enters
and one that leaves the basis. In the basis change step we update all the vectors which
are required to start the next iteration with the new basis, i.e., the dual basic solution,
the primal basic solution, the objective function value and the representation of the
basis (and its inverse).

As we have seen before, the dual logicals v and w coincide with the reduced cost
vector d. Therefore, the dual basic solution can be represented by (yT , dT)T . In
section 3.1.2 we have already derived update formulae for y and d. Using the dual
step length θD for t, we get

ȳ = y + θDρr, where ρr = (BT)−1er, (3.16a)

for ȳ and

d̄p = −θD, (3.16b)

d̄q = 0, (3.16c)

d̄j = dj = 0 for all j ∈ B \ {p} (3.16d)

d̄j = dj − θDαr
j for all j ∈ N \ {q} (3.16e)

for d̄. Note, that it is not necessary though to update both vectors y and d. In most
presentations of the dual simplex method (as in ours so far), only an update of d
is needed. We can as well formulate a version of the algorithm, in which only y is
updated. In this case, those entries of dN , which are needed for the ratio test, must
be computed in place from their definition.

Considering the primal basic solution x, we know that the leaving variable xp

goes to one of its finite bounds and that the variable xq might leave its bound while
entering the basis. The displacement of xq is denoted by θP and called primal step
length. Hence, we get for the primal variables in N ∪ {p}:

x̄p =

{
lp if xp < lp

up if xp > up,
(3.17a)

x̄q = xq + θP and (3.17b)

x̄j = xj for all j ∈ N \ {q} (3.17c)

Let j = B(i) and ρi = (BT)−1ei. Then we can derive an update formula for basic
primal variables j ∈ B \ {p} from equation (2.13):

x̄j = ρi(b− AN x̄N)

3.1 The Revised Dual Simplex Algorithm 23

= ρib− αi
N x̄N

= ρib−
∑

j∈N\{q}

αi
jxj − αi

q(xq + θP)

= xj − θPαi
q (3.17d)

Finally, we can compute the primal step length θP by using (3.17d) for x̄p:

x̄p = xp − θPαp
q

⇔ θP =
xp − lp
αp

q
if xp < lp or θP =

xp − up

αp
q

if xp > up.
(3.18)

To represent the basis and its inverse in a suitable form is one of the most important
computational aspects of the (dual) simplex method. We will leave the computa-
tional techniques which are used to maintain these representations and to solve the
required systems of linear equations for chapter 5. For now, we will only investigate
how the basic submatrix B and its inverse alter in a basis change. We start by
restating the obvious update of the index sets B and N (which in a computational
context are called basis heading):

B̄ = (B \ p) ∪ q
N̄ = (N \ q) ∪ p.

(3.19)

The new basis matrix B̄ emerges from the old basis matrix B by substituting its
r-th column by the entering column aq, where p = B(r):

B̄ = B −Bere
T
r + aqe

T
r

= B + (aq −Ber) e
T
r

= B
(
I +B−1 (aq −Ber) e

T
r

)
= B

(
I + (αq − er) e

T
r

)
, (3.20)

where αq = B−1aq. Let F be defined as

F = I + (αq − er) e
T
r . (3.21)

Hence, F corresponds to an identity matrix, where the r-th column is replaced by
αq:

F =

1 α1

q
. . .

...
αr

q
...

. . .

αm
q 1

 . (3.22)

With equations (3.20) and (3.21) the basis matrix B̄ can be displayed as follows:

24 Chapter 3 The Dual Simplex Method

B̄ = BF. (3.23)

Let E = F−1, then we get for B̄−1:

B̄−1 = EB−1. (3.24)

The inverse of the new basis matrix is the result of the old basis inverse multiplied
with matrix E. It is easy to verify that E exists if and only if αr

q 6= 0 and then has
the form

E =

1 η1

. . .
...
ηr
...

. . .

ηm 1

 , (3.25)

where

ηr =
1

αr
q

and ηi = −
αi

q

αr
q

for i = 1, . . . ,m, i 6= r. (3.26)

A matrix of this type is called an elementary transformation matrix (ETM) or short:
eta-matrix. Let ρi, i = 1, . . . ,m, be the rows of B−1. Then, we get from equa-
tion (3.24) and the entries of η in (3.26) for the rows ρ̄i of B̄−1:

ρ̄r =
1

αr
q

ρr and (3.27)

ρ̄i = ρi −
αi

q

αr
q

ρr for i = 1, . . . ,m, i 6= r. (3.28)

Equation 3.24 is the basis for the so called PFI update (where PFI stands for product
form of the inverse). The idea is to represent the basis inverse as a product of
eta-matrices in order to efficiently solve the linear systems efficiently required in
the simplex method. This can be done by initializing the solution vector by the
right-hand-side of the system and the successively multiply it with the eta-matrices.
Depending on wether the system consists of the basis matrix or the transpose of the
basis matrix this procedure is performed from head to tail (called forward transition –
FTran) of the eta-sequence or from tail to head (called backward transition – BTran),
respectively. The sequence of eta-matrices can be stored in a very compact way since
only the nonzero elements in the r-column have to be remembered. However, the
PFI-update was replaced by the so called LU-update, which turned out to allow for
an even sparser representation and also proved to be numerically more stable. LU
factorization and update techniques will be described in great detail in chapter 5.

3.2 The Bound Flipping Ratio Test 25

3.1.6 Algorithmic descriptions

The revised dual simplex method with simple ratio test and update of d is sum-
marized in algorithm 2. Algorithm 3 is a variant where y is updated instead of d.
Although the first version seems to be clearly more efficient on the first sight, the
situation actually depends on sparsity characteristics of the problem instance and
the implementation of the steps Pivot Row and Ratio Test.

3.2 The Bound Flipping Ratio Test

The simple dual ratio test described in section 3.1.4 selects the entering index q
among those nonbasic positions that would become dual infeasible if the displacement
t of the r-th dual basic constraint was further increased (or decreased resp.). The
bound flipping ratio test (which is sometimes also called generalized ratio test or long
step rule) is based on the observation, that a boxed nonbasic variable xj can be
kept dual feasible even if its reduced cost value d̄j switches sign by setting it to its
opposite bound (see table 2.2). This means, that we may further increase the dual
step length and pass by breakpoints in the ratio test which are associated with boxed
primal variables as long as the dual objective function keeps improving. It can be
seen that the rate of improvement decreases with every bound flip. When it drops
below zero no further improvement can be made and the entering variable can be
selected from the current set of bounding breakpoints (all of which have the same
value).

According to Kostina [41] the basic idea of the bound flipping ratio test has been
first published in the Russian OR community by Gabasov, Kirillova and Kostyukova [57]
as early as 1979. In western OR literature mostly Fourer [27] is cited to be the first
one to publish it. In our description we follow Fourer and Maros [47].

To describe the bound flipping ratio test precisely let us consider the case where
xp > up and t > 0. In equation (3.7) we see, that the slope of the dual objective
function with respect to t is given by

δ1 = xp − up (3.29)

as long as no dj changes sign, i.e,

0 ≤ t ≤ θD
1 with q1 ∈ arg min

j∈Q+
1

{
dj

αr
j

}
, θD

1 =
dq1

αr
q1

and Q+
1 = F+. (3.30)

For t = θD
1 we have d̄q1 = dq1 − tαr

q1
= 0 and q1 is eligible to enter the basis. The

change ∆Z1 of the dual objective function up to this point is

∆Z1 = θD
1 δ

D
1 . (3.31)

If t is further increased, such that t > θD
1 , then we get two cases dependent on the

sign of αr
q1

.

• If αq1 > 0, then d̄q1 becomes negative and goes dual infeasible since in this

26 Chapter 3 The Dual Simplex Method

Algorithm 2: Dual simplex method with simple ratio test and up-
date of d.

Input: LP in computational form (2.2), dual feasible basis
B = {k1, . . . , km}, primal nonbasic solution vector xN

Output: Optimal basis B with optimal primal basic solution x and
optimal dual basic solution (yT , dT)T or proof that LP is
dual unbounded.

Initialization(Step 1)

Compute b̃ = b− ANxN and solve BxB = b̃ for xB.
Solve BTy = cB for y and compute dN = cN − AT

Ny.
Compute Z = cTx.

Pricing(Step 2)
If lB ≤ xB ≤ uB then terminate: B is an optimal basis.
Else select p = B(r) ∈ B with either xp < lp or xp > up.
If xp < lp set δ = xp − lp, if xp > up set δ = xp − up.

BTran(Step 3)
Solve BTρr = er for ρr.

Pivot row(Step 4)
Compute αr = AT

Nρr.

Ratio Test(Step 5)
If xp < lp set α̃r = −αr, if xp > up set α̃r = αr.
Let F = {j : j ∈ N , xj free or (xj = lj and α̃r

j > 0) or
(xj = uj and α̃r

j < 0)}.
If F = ∅ then terminate: the LP is dual unbounded.

Else determine q ∈ arg minj∈F

{
dj

α̃r
j

}
and θD = dq

αr
q
.

FTran(Step 6)
Solve Bαq = aq for αq.

Basis change and update(Step 7)
Set Z ← Z + θDδ.
Set dp ← −θD, dq ← 0 and dj ← dj − θDαr

j for all j ∈ N \ {q}.
Compute θP = δ

αp
q

and set xB ← xB − θPαq and xq ← xq + θP .

Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update B.

Go to step 2.

3.2 The Bound Flipping Ratio Test 27

Algorithm 3: Dual simplex method with simple ratio test and up-
date of y.

Input: LP in computational form (2.2), dual feasible basis
B = {k1, . . . , km}, primal nonbasic solution vector xN

Output: Optimal basis B with optimal primal basic solution x and
optimal dual basic solution (yT , dT)T or proof that LP is
dual unbounded.

Initialization(Step 1)

Compute b̃ = b− ANxN and solve BxB = b̃ for xB.
Solve BTy = cB for y.
Compute Z = cTx.

Pricing(Step 2)
If lB ≤ xB ≤ uB then terminate: B is an optimal basis.
Else select p = kr ∈ B with either xp < lp or xp > up.
If xp < lp set δ = xp − lp, if xp > up set δ = xp − up.

BTran(Step 3)
Solve BTρr = er for ρr.

Pivot row(Step 4)
Compute αr = AT

Nρr.

Ratio Test(Step 5)
If xp < lp set α̃r = −αr, if xp > up set α̃r = αr.
Let F = {j : j ∈ N , xj free or (xj = lj and α̃r

j > 0) or
(xj = uj and α̃r

j < 0)}.
If F = ∅ then terminate: the LP is dual unbounded.

Else determine q ∈ arg minj∈F

{
cj−yT aj

α̃r
j

}
and θD = cq−yT aq

αr
q

.

FTran(Step 6)
Solve Bαq = aq for αq.

Basis change and update(Step 7)
Set Z ← Z + θDδ.
Set y ← y + θDρr.
Compute θP = δ

αp
q

and set xB ← xB − θPαq and xq ← xq + θP .

Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update B.

Go to step 2.

28 Chapter 3 The Dual Simplex Method

case xq1 = lq1 (otherwise q1 would not define a breakpoint). If xq1 is a boxed
variable though, it can be kept dual feasible by setting it to uq1 .

• If αq1 < 0, then d̄q1 becomes positive and goes dual infeasible since in this
case xq1 = uq1 (otherwise q1 would not define a breakpoint). If xq1 is a boxed
variable though, it can be kept dual feasible by setting it to lq1 .

Since a bound flip of a nonbasic primal variable xq1 effects the values of the primal
basic variables and especially xp, also the slope of the dual objective function changes.
For xB we have

xB = B−1(b− ANxN)

= B−1b−B−1ANxN

= B−1b−
∑
j∈N

(B−1aj)xj

= B−1b−
∑
j∈N

αjxj. (3.32)

Consequently, if αq1 > 0 and xq1 is set from lq1 to uq1 , xp changes by an amount of
−αr

q1
uq1 + αr

q1
lq1 and we get for the slope beyond δD

1 :

δ2 = xp − αr
q1
uq1 + αr

q1
lq1 − up

= xp − (uq1 − lq1)α
r
q1
− up

= δ1 − (uq1 − lq1)α
r
q1
. (3.33)

If αq1 < 0 and xq1 is set from uq1 to lq1 , xp changes by an amount of αr
q1
uq1 − αr

q1
lq1

and we get for the slope beyond δD
1 :

δ2 = xp + αr
q1
uq1 − αr

q1
lq1 − up

= xp + (uq1 − lq1)α
r
q1
− up

= δ1 + (uq1 − lq1)α
r
q1
. (3.34)

Hence, in both cases the slope decreases by (uq1− lq1)|αr
q1
|. If the new slope δ2 is still

positive, it is worthwhile to increase t beyond θD
1 , until the next breakpoint θD

2 with

θD
2 =

dq2

αr
q2

with q2 ∈ arg min
j∈Q+

2

{
dj

αr
j

}
and Q+

2 = Q+
1 \ {q1}. (3.35)

is reached. The change of the dual objective function as t moves from θD
1 to θD

2 is

∆Z2 = (θD
2 − θD

1)δ2. (3.36)

This procedure can be iterated until either the slope becomes negative or dual un-
boundedness is detected in iteration i if Q+

i = ∅. In the framework of the dual
simplex algorithm these iterations are sometimes called mini iterations. As in the
simple ratio test the case for t < 0 is symmetric and can be transformed to the case

3.2 The Bound Flipping Ratio Test 29

t > 0 by switching the sign of αr. Only the slope has to be initialized differently by
setting δ1 = |xp − lp|.

One of the features of the BFRT is, that under certain conditions it is possible to
perform an improving basis change even if the current basis is dual degenerate. To
see this, suppose that the first k breakpoints θD

i , i = 1, . . . , k are zero (hence, dqi
= 0

for i = 1, . . . , k) and θD
k+1 > 0. Then the eventual step length θD = dq/α

r
q can be

strictly positive if and only if after k mini iterations the slope δk is still positive, i.e.

δk = δ1 −
k∑

i=1

(uqi
− lqi

)|αr
qi
| > 0 (3.37)

Obviously, it depends on the magnitude of the initial primal infeasibility δ1 and
the respective entries in the pivot row αr

qi
as well as on the distances between the

individual bounds wether or not this condition can be met. It turns out however, that
especially on the LP-relaxations of combinatorial optimization problems, which are
often highly degenerate, the BFRT works very well. This is why the implementation
of the BFRT is particularly important in dual simplex codes, which are supposed to
be integrated into a branch-and-bound based MIP-code like MOPS.

When an entering variable q = qk has eventually been determined after k iterations,
we have to update the primal basic variables xB according to the bound flips in
xN . Let T = {q1, . . . , qk} be the set of indices of all of the nonbasic variables,
which are to be set to their opposite bound, T + = {j ∈ T |αr

j > 0} the set of
indices of those nonbasic variables, which switch from lower to upper bound and
T − = {j ∈ T |αr

j < 0} the set of indices of those nonbasic variables, which switch
from upper to lower bound. Then, according to equation 3.32, xB can be updated
in the following way:

x̄B = xB −
∑
j∈T +

(uj − lj)αj −
∑
j∈T −

(lj − uj)αj

= xB −B−1

∑
j∈T +

(uj − lj)aj +
∑
j∈T −

(lj − uj)aj

= xB −∆xB, (3.38)

where ∆xB is the solution vector of the linear system

B∆xB = ã with ã =
∑
j∈T +

(uj − lj)aj +
∑
j∈T −

(lj − uj)aj. (3.39)

There are different ways to embed the bound flipping ratio test into the revised
dual simplex method given in the form of algorithm 2. In both Fourer’s and Maros’
description the selection of the leaving variable and the update operations for xB and
Z are integrated in the sense, that the sets T + and T − as well as the summation
of ã are done in the main selection loop for q. We will present a version that is
motivated by the dual simplex implementation in the COIN LP code [44], where the
update operations are strictly separated from the selection of the entering variable.

30 Chapter 3 The Dual Simplex Method

Even the bound flips are not recorded in the ratio test but during the update of the
reduced cost vector d. If an updated entry dj is detected to be dual infeasible, the
corresponding nonbasic primal variable (which must be boxed in this case) is marked
for a bound flip and column aj is added to ã. After the update of d, system (3.39)
is solved and xB is updated according to (3.38). The actual bound flips in xN are
only performed at the very end of a major iteration.

The three parts selection of the entering variable, update of d and xB and update
of xN are described in algorithms 4, 5 and 6 respectively. The update of the objective
function value can be done in two different ways. One way is to compute the objective
change in the selection loop for q in algorithm 4 by an operation of type (3.36). The
other way is to look at the objective function value from a primal perspective. From
equation (2.18) we know, that in every iteration of the dual simplex method the
primal and the dual objective function value is equal for the current primal and dual
solution (provided that v and w are set according to equation (2.17)):

cTBxB + cTNxN = bTy + lTv + uTw. (3.40)

Hence, we can as well compute the change in the objective function value by taking
into account the change of the primal basic and nonbasic variables caused by the
bound flips:

∆Z = −
∑
j∈B

cj∆xj +
∑
j∈T +

cj(uj − lj) +
∑
j∈T +

cj(uj − lj). (3.41)

Thus, also this update operation can be separated from the selection loop for q and
moved to algorithm 5.

3.3 Dual steepest edge pricing

In the pricing step of the dual simplex method we have to select a variable to leave
the basis among all of those variables which are primal infeasible. In geometrical
terms, this corresponds to choosing a search direction along one of the edges of the
dual polyhedron emanating from the vertex defined by the current basic solution,
which makes an acute3 angle with the gradient of the dual objective function. The
basic idea of dual steepest edge pricing (DSE) is to determine the edge direction that
forms the most acute angle with the dual gradient and is in this sense steepest.

We will follow the description of Forrest and Goldfarb [26], who described the
first practical steepest edge variants for the dual simplex method. Surprisingly, they
showed in numerical experiments, that their simplest version, which they call Dual
algorithm I performs best in most cases.

This variant of DSE is derived for a problem in computational standard form (2.5).

3since we are maximizing

3.3 Dual steepest edge pricing 31

Algorithm 4: Selection of q with the BRFT.

If xp < lp set α̃r ← −αr, if xp > up set α̃r ← αr.
Let Q ← {j : j ∈ N , xj free or (xj = lj and α̃r

j > 0) or
(xj = uj and α̃r

j < 0)}.
while Q 6= ∅ and δ ≥ 0 do

Select q ∈ arg minj∈Q

{
dj

α̃r
j

}
.

Set δ ← δ − (uq − lq)|αr
q|.

Set Q ← Q \ {q}.
end
If Q = ∅ then terminate: the LP is dual unbounded.
Set θD ← dq

αr
q
.

Algorithm 5: Update of d and xB for the BRFT.

Set ã← 0, T ← ∅ and ∆Z ← 0.
forall j ∈ N do

Set dj ← dj − θDαr
j .

if lj 6= uj then
if xj = lj and dj < 0 then

Set T ← T ∪ {j}.
Set ã← ã+ (uj − lj)aj.
Set ∆Z ← ∆Z + (uj − lj)cj.

else if xj = uj and dj > 0 then
Set T ← T ∪ {j}.
Set ã← ã+ (lj − uj)aj.
Set ∆Z ← ∆Z + (lj − uj)cj.

end

end

end
Set dp ← −θD.
if T 6= ∅ then

Solve B∆xB = ã for ∆xB.
Set xB ← xB −∆xB.
Set ∆Z ← ∆Z −

∑
j∈B cj∆xj.

end
Set Z ← Z + ∆Z.

Algorithm 6: Update of xN for the BRFT.

forall j ∈ T do
if xj = lj then

Set xj ← uj.
else

Set xj ← lj.
end

end

32 Chapter 3 The Dual Simplex Method

The dual of (2.5) reads:

Z∗ = max bTy (3.42a)

s.t. ATy ≤ c. (3.42b)

Given a basis B a dual solution y is basic for problem (3.42), if BTy = cB and
feasible, if AT

Ny ≤ cN . If the i-th tight basic constraint j ∈ B is relaxed, such that
aT

j ȳ + t = cj, i.e., aT
j y ≤ cj for t ≥ 0, then all other basic constraint stay tight, if

BT ȳ + tei = cB, which leads to ȳ = y − tρi with ρi = B−T ei. Hence, −ρi is the edge
direction associated with the i-th potential basic leaving variable.

Obviously, the gradient of the dual objective function (3.42a) is b. The angle γ
between b and −ρi is acute, if −ρT

i b = −eT
i B

−1b = −eT
i xB = −xB(i) is positive (xB(i)

primal infeasible with xB(i) ≤ 0). Furthermore, we have

− xB(i) = −bTρi = ‖b‖‖ρi‖ cos γ, (3.43)

where ‖ · ‖ is the Euclidian norm. Since ‖b‖ is constant for all edge directions, we
can determine the leaving variable p = B(r) with the steepest direction by

r ∈ arg max
i∈{1,...,m}

{
−xB(i)

‖ρi‖
: xB(i) < 0

}
. (3.44)

To compute the norms ‖ρi‖ from their definition would require the solution of up
to m systems of linear equations (one for each vector ρi) and just as many inner
products. The actual accomplishment of Forrest and Goldfarb is the presentation of
exact update formulas for the squares of these norms, which we will denote by

βi = ρT
i ρi = ‖ρi‖2. (3.45)

The values βi are called dual steepest edge weights. Using the weights instead of the
norms is straightforward, the selection rule (3.44) just has to be modified as follows:

r ∈ arg max
i∈{1,...,m}

{
(xB(i))

2

βi

: xB(i) < 0

}
. (3.46)

From the update formulas (3.27) for the ρi we can conclude, that the DSE weights
β̄i after the basis change are

β̄r = ρ̄T
r ρ̄r =

(
1

αr
q

)2

βr (3.47a)

and

β̄i = ρ̄T
i ρ̄i

=

(
ρT

i −
αi

q

αr
q

ρT
r

)(
ρi −

αi
q

αr
q

ρr

)

3.3 Dual steepest edge pricing 33

= βi − 2
αi

q

αr
q

ρT
r ρi +

(
αi

q

αr
q

)2

βr for i = 1, . . . ,m, i 6= p. (3.47b)

Since we do not want to calculate all the ρi explicitly during a dual iteration, it is
not obvious, how to efficiently compute the term ρT

r ρi. Fortunately, we can write

ρT
r ρi = ρT

i ρr = eT
i B

−1ρr = eT
i τ = τi, (3.48)

where τ = B−1ρr. Hence, it suffices to solve only one additional linear system for τ :

Bτ = ρr. (3.49)

Due to (3.48) equation (3.47b) can be rewritten as

β̄i = βi − 2
αi

q

αr
q

τi +

(
αi

q

αr
q

)2

βr. (3.50)

Note that numerical stability can be improved at small additional computational
costs by computing βr explicitly, since ρr is available from the computation of the
transformed pivot row (see step 2 in algorithm 2).

Besides the geometrical motivation of DSE pricing it can also be viewed as a
strategy to reduce or even eliminate misleading scaling effects when using the simple
Dantzig pricing rule. To make this clear, suppose the columns of A are scaled by
numbers 1

sj
> 0, such that âj = 1

sj
aj. Since ρ̂iâB(i) = 1, this leads to scaled vectors

ρ̂i = sB(i)ρi and hence, to scaled primal basic variables x̂B(i) = ρ̂ib = sB(i)ρib =
sB(i)xB(i). Consequently, the magnitude of the primal infeasibilities totally depends
on the (problem inherent) column scales, which may result in a suboptimal pricing
decision by the Dantzig rule. However, dividing the primal basic variables by the Eu-
clidian norms ‖ρ̂i‖ yields primal infeasibilities which are independent of the column
scales:

x̃B(i) =
x̂B(i)

‖ρ̂i‖
=
sB(i)xB(i)

‖sB(i)ρi‖
=
xB(i)

‖ρi‖
. (3.51)

In the case of the general computational form (2.2) and its dual (2.11) the edge
directions need to be extended by additional components for v and w. This leads
to computationally more expensive update formulas for the DSE weights (see [26]).
In fact, in this case one more linear system and an inner product have to be solved.
It has been shown that for most problems this additional effort does not pay off,
i.e., it is not compensated by the additional reduction in the total number of itera-
tions. Therefore, we keep using the DSE weights from above to normalize the primal
infeasibilities even if upper and lower bounds are present. Denoting the primal in-
feasibilities by

δi =

xB(i) − lB(i) if xB(i) < lB(i)

xB(i) − uB(i) if xB(i) > uB(i)

0 o.w.

(3.52)

34 Chapter 3 The Dual Simplex Method

the leaving variable is selected by

r ∈ arg max
i∈{1,...,m}

{
|δi|2

βi

: δi 6= 0

}
. (3.53)

This turns the method into a heuristic in the sense, that we cannot guarantee any-
more that always the leaving variable associated with the steepest edge direction
is chosen. The efficiency and actual performance of DSE pricing depends heavily
on implementation details. We give a detailed description of our DSE code in sec-
tion 8.2.2.

3.4 Elaborated version of the Dual Simplex Algorithm

Algorithm 7 shows a complete mathematical description of the dual simplex method
as it is implemented in MOPS. It can be seen as a variant of algorithm 2 enhanced by
steepest pricing (described in section 3.3) and the bound flipping ratio test (described
in section 3.2).

Note, that in this version of the method, up to four systems of linear equations
have to be solved in every iteration:

• BTρr = er in step 7 to compute the transformed pivot row αr = ρT
r AN , which

is needed in the ratio test,

• Bαq = aq in step 7 to compute the transformed pivot column αq, which is
needed to update xB and B,

• Bτ = ρr in step 7 to update the steepest edge weights and

• B∆xB = ã in algorithm 5 to update the primal basic variable if bound flips
have to be performed.

Besides the computation of the transformed pivot row in step 7 these are the most
time consuming operations for a great majority of problems. In chapter 5 we will
describe the computational techniques that are deployed to perform them efficiently.

Furthermore, algorithm 7 can only be applied if we have a dual feasible basic
solution to start with. If the default starting basis (usually consisting of the identity
matrix I associated with the logical variables) is not dual feasible we have to proceed
in two phases. In the first phase, we try to obtain a dual feasible basis by so called
dual phase I methods. A possible outcome of these methods is that no dual feasible
solution exists for the given LP problem and we have to terminate (or try to further
analyse, wether the problem is also primal infeasible or primal unbounded). If phase
I succeeds in obtaining a dual feasible basis we call algorithm 7 as a second phase to
prove optimality or dual unboundedness. In this sense, we will call algorithm 7 dual
phase II. In the following chapter 4 we will describe several dual phase I methods,
which we will evaluate and compare computationally in chapter 9.

3.4 Elaborated version of the Dual Simplex Algorithm 35

Algorithm 7: Dual simplex method with dual steepest edge pricing,
bound flipping ratio test and update of d.

Input: LP in computational form (2.2), dual feasible basis
B = {k1, . . . , km}, primal nonbasic solution vector xN

Output: Optimal basis B with optimal primal basic solution x and
optimal dual basic solution (yT , dT)T or proof that LP is
dual unbounded.

Initialization(Step 1)

Compute b̃ = b− ANxN and solve BxB = b̃ for xB.
Solve BTy = cB for y and compute dN = cN − AT

Ny.
Initialize β (set βT ← (1, . . . , 1)T if B = I).
Compute Z = cTx.

Pricing(Step 2)
If lB ≤ xB ≤ uB then terminate: B is an optimal basis.
Else select p = B(r) by formula (3.53).
If xp < lp set δ = xp − lp, if xp > up set δ = xp − up.

BTran(Step 3)
Solve BTρr = er for ρr.

Pivot row(Step 4)
Compute αr = AT

Nρr.

Ratio Test(Step 5)
Determine q by algorithm 4.

FTran(Step 6)
Solve Bαq = aq for αq.

DSE FTran(Step 7)
Solve Bτ = ρr for τ .

Basis change and update(Step 8)
Update d by algorithm 5.
Compute θP = δ

αp
q

and set xB ← xB − θPαq and xq ← xq + θP .

Update β by formulas (3.47a) and (3.50).
Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update B.
Flip bounds in xN by algorithm 6.
Set Z ← Z + θDδ.

Go to step 7.

36 Chapter 3 The Dual Simplex Method

37

Chapter 4

Dual Phase I Methods

4.1 Introduction

We refer to an algorithm which produces a dual feasible basis for an arbitrary LP as
a dual phase I method. The dual simplex method presented in the previous chapter
is called dual phase II in this context. Suppose in the following, that we are given a
(start) basis B and a corresponding primal basic solution x and dual basic solution
(yT , vT , wT)T , where v and w are set according to (2.17) with reduced costs d.

4.1.1 Big-M method

The simplest method to obtain a dual feasible basis for LP problems in computational
standard form (2.5) (no upper bounds, nonnegative variables only) is to introduce
an additional dual slack variable and punish its use in the dual objective function by
some sufficiently large cost coefficient M. This is equivalent to adding a constraint of
the form

∑
j∈J xj < M to the primal problem. To apply this method to a problem

in computational form (2.2) one could convert it to a problem in standard form by
introducing additional variables and constraints. This would increase the size of
the problem considerably. The other reason why this method is usually not used in
practise is that a high value of M can lead to numerical problems and high iteration
counts whereas a too small value might not produce a primal feasible solution. See
for example [53] for further details. In the following, we only consider methods, that
do not increase the size of the problem.

4.1.2 Dual feasibility correction

In most practical problems, many variables have finite lower and upper bounds. As
we have seen in the description of the bound flipping ratio test dual infeasible boxed
variables can be made dual feasible by setting them to their respective opposite
bound. As in section 3.2 we collect the variables which have to be flipped in two sets

T + = {j ∈ J : xj = lj and uj <∞ and dj < 0} (4.1a)

T − = {j ∈ J : xj = uj and lj >∞ and dj > 0}, (4.1b)

where again the variables in T + go from lower to upper bound and the variables
in T − go from upper to lower bound. Then, the primal basic variables xB and

38 Chapter 4 Dual Phase I Methods

the dual objective function value Z can be updated according to equations (3.38),
(3.39) and (3.41). Algorithmicly, this is equivalent to calling algorithms 5 and 6 with
θD = 0.

The above procedure is called dual feasibility correction (DFC) and can be per-
formed prior to a dual phase I method. Alternatively, we can mark boxed and fixed
variables as not eligible during dual phase I, and call DFC prior to dual phase II.
In any case this means, that only dual infeasibilities caused by non-boxed variables
have to be tackled by dual phase I algorithms, which is usually only a very small
fraction of the total number of variables.

4.2 Minimizing the sum of dual infeasibilities

The idea of this approach is to formulate the task of finding a dual feasible basic
solution as the subproblem of minimizing the total amount of dual infeasibility.
This subproblem can be formulated as an LP problem, which can either be solved
directly by the standard dual simplex method (phase II) or by specialized versions of
it which exploit its structural characteristics. In section 4.2.1 we present our version
of the subproblem approach which is similar to the procedure of Kostina in [41].
In section 4.2.2 we will describe the algorithmic approach following Maros [48]. It
differs from the version described by Fourer [27] only in the way the extended ratio
test is applied: while Fourer only allows flips from dual infeasible to dual feasible
Maros also allows the contrary, both under the precondition that the sum of dual
infeasibilities decreases. To put it differently: Fourer’s algorithm is monotone both
in the sum and in the number of dual infeasibilities, while Maros’s algorithm is
monotone only in the sum of dual infeasibilities.

4.2.1 Subproblem approach

As discussed in section 4.1.2 we only have to consider dual infeasibilities associated
with non-boxed primal variables. Let

J u = {j ∈ J : lj = −∞ and uj <∞} (4.2)

be the set of non-free variables that go dual infeasible if dj > 0,

J l = {j ∈ J : lj > −∞ and uj =∞} (4.3)

be the set of non-free variables that go dual infeasible if dj < 0 and

J f = {j ∈ J : lj = −∞ and uj =∞} (4.4)

be the set of free variables. Now, we can state the problem of finding a basis with a
minimal sum of dual infeasibilities as follows:

4.2 Minimizing the sum of dual infeasibilities 39

max Z0 =
∑

j∈J l∪J f

dj< 0

dj −
∑

j∈J u∪J f

dj> 0

dj (4.5a)

s.t. aT
j y + dj = cj for all j ∈ J l ∪ J u ∪ J f . (4.5b)

Problem (4.5) is equivalent to the following formulation:

max Z0 =
∑

j∈J l∪J f

wj −
∑

j∈J u∪J f

vj (4.6a)

s.t. aT
j y + vj + wj = cj for all j ∈ J l ∪ J u ∪ J f (4.6b)

vj ≥ 0 (4.6c)

wj ≤ 0. (4.6d)

The dual of problem (4.6) is

min z0 =
∑

j∈J l∪J u∪J f

cjxj (4.7a)

∑
j∈J l∪J u∪J f

ajxj = 0 (4.7b)

− 1 ≤ xj ≤ 0 for all j ∈ J u (4.7c)

0 ≤ xj ≤ 1 for all j ∈ J l (4.7d)

− 1 ≤ xj ≤ 1 for all j ∈ J f . (4.7e)

Note, that problem (4.7) is a reduced version of our original problem (2.2) in the
sense that it consists of a subset of the original set of columns and that bounds and
right-hand-side is changed. Since all variables of problem (4.7) are boxed every given
starting basis can be made dual feasible by dual feasibility correction and dual phase
II as described in algorithm 7 can directly be applied. If eventually it yields z0 = 0,
we have a dual feasible basis for our original problem and can start the dual phase
II on problem (2.2). If z0 < 0, the original problem is dual infeasible. The complete
approach is summarized in algorithm 8.

Fourer mentions in [27] that for model (4.5) the dual pricing step can be simplified:
only those variables need to be considered in the selection process, which will become
dual feasible after the basis change. Therefore, in our approach only those variables
are eligible to leave the basis, which go to their zero bound (being dual feasible in
the original problem).

Furthermore, we actually use a slightly modified version of the artificial prob-
lem (4.7) in our implementation. To favor free variables to be pivoted into the basis
we give a weight of 104 to them in the sum of dual infeasibilities (4.5a). This trans-
lates into modified individual bounds in the primal bound constraints (4.7e), which
change to

− 104 ≤ xj ≤ 104 for all j ∈ J f . (4.8)

40 Chapter 4 Dual Phase I Methods

Algorithm 8: The 2-phases dual simplex method with subproblem
dual phase I.

Input: LP in computational form (2.2).
Output: Optimal basis B or proof that LP is dual unbounded.
Mark boxed and fixed variables as not eligible.(Step 1)
Change the bounds of the remaining variables and the(Step 2)
right-hand-side vector according to problem (4.7).
Start with an initial basis and make it dual feasible by dual(Step 3)
feasibility correction (call algorithms 5 and 6 with θD = 0).
Execute algorithm 7 on auxiliary problem (4.7).(Step 4)
If z0 < 0, then original problem (2.2) is dual infeasible, stop.(Step 5)
If z0 = 0, the current basis is dual feasible for problem (2.2).(Step 6)
Unmark boxed and fixed variables and restore original bounds and(Step 7)
right-hand-side.
Execute algorithm 7 on the original problem (2.2).(Step 8)

4.2.2 Algorithmic approach

The goal of this section is to develop a specialized dual simplex type algorithm which
solves problem (4.5). Suppose, we are given a start basis B. For easier notation we
define two index sets

P = {j ∈ J u ∪ J f : dj > 0} (4.9)

and

M = {j ∈ J l ∪ J f : dj < 0}, (4.10)

which contain those (non-basic) variables that are dual infeasible with positive and
negative reduced costs, respectively. We do not need to consider boxed variables,
since they can be made dual feasible by feasibility correction (s. section 4.1.2).

Now we can rewrite the (negative) sum of dual infeasibilities as

Z0 =
∑
j∈M

dj −
∑
j∈P

dj. (4.11)

When we relax the r-th dual basic constraint (with B(r) = p) by an amount of t the
reduced costs change according to equations (3.6). If we select the leaving variable
and the direction of relaxation in such a way that it will be dual feasible after the
basis change, it will not contribute to the sum of infeasibilities. Hence, as long as no
nonbasic dj changes sign, Z0 can be expressed as a function of t:

Z0(t) =
∑
j∈M

dj(t)−
∑
j∈P

dj(t)

4.2 Minimizing the sum of dual infeasibilities 41

=
∑
j∈M

(dj − tαr
j)−

∑
j∈P

(dj − tαr
j)

= Z0 − t

(∑
j∈M

αr
j −

∑
j∈P

αr
j

)
= Z0 − tfr, (4.12)

where fr is the r-the entry of the dual phase I pricing vector

f =
∑
j∈M

αj −
∑
j∈P

αj = B−1

(∑
j∈M

aj −
∑
j∈P

aj

)
. (4.13)

Since we want to maximize Z0 we have to determine r and t such that −tfr is
positive. Furthermore, xp has be to dual feasible after the basis change, i.e., it has
to leave at the right finite bound given the sign of t. Hence,

if fr > 0 we need t < 0 and lB(r) > −∞ and (4.14)

if fr < 0 we need t > 0 and uB(r) <∞. (4.15)

If no such r exists, we can stop. If Z0 = 0, the current basis is dual feasible and
we can start dual phase II. If Z0 > 0, the problem is dual infeasible. Otherwise, we
choose a leaving index p = B(r) according to some reasonable pricing rule.

In the next step, we want to determine an entering index. As t is increased (or
decreased) from zero a nonbasic dual constraint j gets eligible to enter the basis when
it becomes tight, i.e., if

dj(t) = dj − tαr
j = 0

⇔ t =
dj

αr
j

.
(4.16)

Suppose for now, that t > 0. Then the set of positive breakpoints consists of those
nonbasic positions, where dj and αr

j have the same sign:

F+
0 = {j ∈ N : (dj ≥ 0 and αr

j > 0) or (dj ≤ 0 and αr
j < 0)}. (4.17)

If we choose the dual nonbasic constraint associated with the first (smallest) break-
point to enter the basis, i.e.,

q ∈ arg min
j∈F+

0

{
dj

αr
j

}
, θD =

dq

αr
q

, (4.18)

we can assure, that only this constraint possibly changes its feasibility status after
the basis change. We refer to the selection of the entering variable according to (4.18)
as simple ratio test in dual phase I.

If q is dual feasible (neither in P nor in M), then it stays dual feasible when it
enters the basis and the infeasibility sets do not change. In this case, we can conclude

42 Chapter 4 Dual Phase I Methods

from equations (4.13) and (3.24), that f can be updated by

f̄ = Ef. (4.19)

If q is dual infeasible with q ∈ P , it leaves P , which means, that αq has to be
withdrawn from the sum in (4.13). Hence, in this case the update formula for f
reads

f̄ = E(f + αq). (4.20)

Consequently, if q ∈M, it leavesM, and f can be updated by

f̄ = E(f − αq). (4.21)

Since Eαq = (0, . . . , 0)T , equation (4.19) is true in all of the three cases. It is
equivalent to the following update operations:

f̄i = fi −
fr

αr
q

αi
q for i = 1, . . . ,m, i 6= r (4.22a)

and f̄r = fr −
fr

αr
q

. (4.22b)

To finish the iteration it remains to update Z0 by

Z̄0 = Z0 − θDfr, (4.23)

and the reduced cost vector d and the basis information consisting of the sets B,
N and some representation of B−1 as discussed in section 3.1.5. The dual phase I
method by minimizing the sum of dual infeasibilities and simple ratio test is sum-
marized in algorithm 9.

As in dual phase II variants of the ratio test have been developed, which do not
necessarily select the leaving index corresponding to the first breakpoint. The idea
is to pass by breakpoints and increase t as long as the sum of dual infeasibilities
decreases. This is the case as long as fr does not switch sign. At the beginning of
the ratio test we have

fr =
∑
j∈M

αr
j −

∑
j∈P

αr
j . (4.24)

Every breakpoint j ∈ F+
0 falls in one of the following categories:

1. If j is dual infeasible with j ∈ P and j /∈ J f , it leaves P and becomes dual
feasible. Thus, we get for f̄r:

f̄r = fr + αr
j . (4.25)

2. If j is dual infeasible with j ∈ M and j /∈ J f , it leaves M and becomes dual
feasible. Thus, we get for f̄r:

f̄r = fr − αr
j . (4.26)

4.2 Minimizing the sum of dual infeasibilities 43

Algorithm 9: Dual phase 1: Minimizing the sum of dual infeasibil-
ities with simple ratio test.

Input: LP in computational form (2.2), start basis
B = {k1, . . . , km}

Output: Dual feasible basis B with dual feasible basic solution
(yT , dT)T or proof that LP is dual infeasible.

Initialization(Step 1)
Solve BTy = cB for y and compute dN = cN − AT

Ny.
Compute Z0 =

∑
j∈M dj +

∑
j∈P dj with P andM as in

equations (4.9) and (4.10).
Compute ã =

∑
j∈M aj −

∑
j∈P aj and solve Bf = ã for f .

Pricing(Step 2)
Let H = {i ∈ {1, . . . ,m} : (fi > 0 and lB(i) > −∞) or

(fi < 0 and lB(i) <∞)}.
If H = ∅ then terminate:

If Z0 = 0, B is a dual feasible basis.
If Z0 > 0, the problem is dual infeasible.

Else select r ∈ H, p = B(r) according to a reasonable pricing rule.

BTran(Step 3)
Solve BTρr = er for ρr.

Pivot row(Step 4)
Compute αr = AT

Nρr.

Simple ratio test(Step 5)
If fr > 0 set α̃r = −αr, if fr < 0 set α̃r = αr.
Let F = {j ∈ N : (dj ≥ 0 and αr

j > 0) or (dj ≤ 0 and αr
j < 0)}.

Determine q ∈ arg minj∈F

{
dj

α̃r
j

}
and θD = dq

αr
q
.

FTran(Step 6)
Solve Bαq = aq for αq.

Basis change and update(Step 7)
Set Z0 ← Z0 − θDf .
Set dp ← −θD, dq ← 0 and dj ← dj − θDαr

j for all j ∈ N \ {q}.
Set fi ← fi − fr

αr
q
αi

q for i = 1, . . . ,m, i 6= r and fr ← fr − fr

αr
q
.

Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update B.

Go to step 9.

44 Chapter 4 Dual Phase I Methods

3. If j is dual infeasible with j ∈ P and j ∈ J f , it leaves P and becomes dual
infeasible with j ∈M. Thus, we get for f̄r:

f̄r = fr + 2αr
j . (4.27)

4. If j is dual infeasible with j ∈ M and j ∈ J f , it leaves M and becomes dual
infeasible with j ∈ P . Thus, we get for f̄r:

f̄r = fr − 2αr
j . (4.28)

5. If j is feasible and αr
j < 0, it becomes dual infeasible and joins P . Thus, we

get for f̄r:
f̄r = fr − αr

j . (4.29)

6. If j is feasible and αr
j > 0, it becomes dual infeasible and joins M. Thus, we

get for f̄r:
f̄r = fr + αr

j . (4.30)

Due to the definition of F+
0 in the cases 2, 4 and 5, αr

j has to be negative. Hence,
when passing a positive breakpoint, fr changes as follows:

f̄r = fr +

|αr

j | if j ∈ J u ∪ J l,

|αr
j | if j ∈ J f and dj = 0,

2 |αr
j | if j ∈ J f and dj 6= 0,.

(4.31)

Since we assume t > 0, the fr is negative in the beginning. At every breakpoint it
increases by a positive value until it eventually turns positive. This means, that the
slope of Z0(t), which is −fr as shown in equation (4.12), becomes negative. At this
point no further improvement of the sum of dual infeasibilities can be achieved and
the current breakpoint determines the entering index.

In order to be able to update the phase I pricing vector f we have to keep track of
the changes in P and M. Let T +

P , T −P , T +
M, T −M be the sets of indices, which enter

and leave P andM, respectively. Then, we get for f̄ :

f̄ = f +
∑
j∈T −P

αj −
∑
j∈T +

P

αj +
∑

j∈T +
M

αj −
∑

j∈T −M

αj (4.32)

= f +B−1

∑
j∈T −P

aj −
∑
j∈T +

P

aj +
∑

j∈T +
M

aj −
∑

j∈T −M

aj

 (4.33)

= f + ∆f, (4.34)

where ∆f is the solution of the linear system

B∆f = ã, with ã =
∑
j∈T −P

aj −
∑
j∈T +

P

aj +
∑

j∈T +
M

aj −
∑

j∈T −M

aj. (4.35)

4.3 Artificial bounds 45

The extended ratio test for dual phase I is summarized in algorithm 10. For clarity,
we left out the update of Z0. It can replace step 9 in algorithm 9. It is not difficult
to see that the resulting algorithm is exactly the same as applying the dual phase
II (with bound flipping ratio test and the modified pricing) to the auxiliary prob-
lem (4.7) (see algorithm 8). The dual phase I pricing vector f naturally corresponds
to the primal basic solution vector xB in dual phase II. An advantage of the sub-
problem approach is though, that no new code is needed to implement it besides the
dual phase II code. Hence, every enhancement towards more numerical stability and
efficiency in the dual phase II code also improves the dual phase I.

4.3 Artificial bounds

The artificial bounds method is a dual version of the composite simplex method
which was originally developed for the primal simplex [74]. It can be seen as a one
phase approach where dual infeasible nonbasic variables are penalized in the dual
objective function by a high cost coefficient M . From the perspective of the primal
problem this means that dual infeasible variables are made dual feasible by setting
them to artificial bounds.

Suppose, some starting basis B is given and N = J \ B. We can make boxed
variables in N dual feasible by dual feasibility correction. If a variable j ∈ N is dual
infeasible at lower bound and uj =∞ , then an artificial bound uj = M is introduced
and xj is set to uj (dj is not changed by this operation so j is dual feasible now). If
a variable j ∈ N is dual infeasible at upper bound and lj = −∞, an artificial bound
lj is introduced and xj is set to lj. B is dual feasible now, so we start dual phase II
with one modification: when a variable with an artificial bound enters the basis, its
original bounds are restored. If the dual phase II terminates with an optimal solution
and no nonbasic variable is at an artificial bound, we are done. If there is a nonbasic
variable j at an artificial bound, there are two possibilities: either M was chosen
to small to remove all of the dual infeasibilities in the final basis or the problem is
primal unbounded. To find out, we increase M (by multiplying with some constant)
and start over. If M exceeds a certain threshold, we declare unboundedness.

Our first implementation of the dual simplex was based on this approach. One
disadvantage of this method is that we do not know how large to choose M . The
right value for M heavily depends on the problem characteristic. If we choose it to
small we risk many rounds of increasing and starting over. If we choose it to big we
might encounter numerical problems. For this reason we decided not to include this
method in our code.

4.4 Cost modification

The basic idea of the cost modification method is similar to that of the artificial
bounds method: making the starting basis dual feasible by modifying the problem
formulation and restoring the original problem while executing dual phase II. Here,
additionally, we may need to deploy the primal simplex method at the end.

46 Chapter 4 Dual Phase I Methods

Algorithm 10: Extended ratio test in dual phase I.

Set ã = 0, θD = 0.
If fr > 0 set α̃r = −αr and f̃r = −fr, if fr < 0 set α̃r = αr and f̃r = fr.
Let Q = {j ∈ N : (dj ≥ 0 and αr

j > 0) or (dj ≤ 0 and αr
j < 0)}.

while Q 6= ∅ and f̃r ≤ 0 do

Select q ∈ arg minj∈Q

{
dj

α̃r
j

}
.

Set Q ← Q \ {q}.
if j ∈ J f and dq 6= 0 then

f̃r ← f̃r + 2|αr
q|.

else

f̃r ← f̃r + |αr
q|.

end

if Q 6= ∅ and f̃r ≤ 0 then
if dq > 0 then

if q ∈ J f then
ã← ã+ 2aq.

else
ã← ã+ aq.

end

else if dq < 0 then
if q ∈ J f then

ã← ã− 2aq.
else

ã← ã− aq.
end

else
if αr

q > 0 then
ã← ã+ aq.

else
ã← ã− aq.

end

end

end

end

Set θD ← dq

αr
q
.

Solve B∆f = ã for ∆f and set f ← f + ∆f .

4.5 Pan’s method 47

Given a starting basis B with N = J \ B, boxed variables are made dual feasible
by flipping bounds. Then, for each remaining dual infeasible variable j ∈ N we shift
its cost coefficient by −dj, i.e, we set

c̃j = cj − dj. (4.36)

This leads to a new reduced cost value

d̃j = c̃j − aT
j y = cj − dj − aT

j y = 0, (4.37)

which makes j dual feasible. Note, that by each cost shifting at the start of the
method an additional degenerate nonbasic position is created. Therefore, in order to
reduce the danger of stalling during the further course of the algorithm, we perturb
the cost values by a small margin ε , which is randomly generated in the interval
[106, 105]. However, as our computational results will show, this procedure can only
lessen the effects of the inherent additional degeneracy caused by this method, but
not completely prevent them. When the dual phase II terminates with a primal
feasible basis, the original costs are restored. If the basis goes dual infeasible by this
operation, we switch to the primal simplex method (primal phase II).

This method is implemented in the LP code SoPlex [6], which was developed by
Wunderling [75]. He reports that it yields good iteration counts and that for many
problems it is not necessary to call the primal method at the end. This was not
confirmed in our numerical tests though, where it was outperformed by the other
methods.

4.5 Pan’s method

Pan proposed his method in [54] and further examined it computationally in [55].
The basic idea is to remove at least one dual infeasibility at every iteration without
giving any guarantee that no new infeasibilities are created. This risk is minimized
only by a proper, geometrically motivated selection of the leaving variable. We give
the first description of the method for general linear programs (containing upper
bounds) in algorithm 11. Before calling Pan’s method we make boxed variables dual
feasible by flipping bounds and do not consider them anymore in the further course
of the algorithm.

Note, that no ratio test is performed in this method, so we can guarantee neither
a monotone reduction of the sum of dual infeasibilities nor of the number of dual
infeasibilities. Also, there is no proof of convergence for this method. However,
in our computational experiments it converges with a low iteration count on the
vast majority of the tested instances. In that sense we can confirm Pan’s results
in [55]. On very few, mostly numerically difficult, instances it did not converge in an
acceptable number of iterations. In that case, we switch to one of the other methods.

48 Chapter 4 Dual Phase I Methods

Algorithm 11: Dual phase 1: Pan’s method.

Input: LP in computational form (2.2), start basis
B = {k1, . . . , km}

Output: Dual feasible basis B with dual feasible basic solution
(yT , dT)T or proof that LP is dual infeasible.

Initialization(Step 1)
Solve BTy = cB for y and compute dN = cN − AT

Ny.

Select entering variable(Step 2)
If P ∪M = ∅ then terminate: basis is dual feasible.
Else: select entering variable q ∈ arg maxj∈P∪M |dj|.

FTran(Step 3)
Solve Bαq = aq for αq.

Select leaving variable(Step 4)
Let H = {i ∈ {1, . . . ,m} : (lB(i) > −∞ and αi

q < 0) or
(uB(i) <∞ and αi

q > 0)}.
If H = ∅ then terminate: the problem is dual infeasible.
Else: select leaving variable p = B(r) with r ∈ arg maxi∈H |αi

q|.

Basis change and update(Step 5)
Set dp ← −θD, dq ← 0 and dj ← dj − θDαr

j for all j ∈ N \ {q}.
Set B ← (B \ p) ∪ q and N ← (N \ q) ∪ p.
Update B.

Go to step 9.

49

Part II

Computational techniques

51

Chapter 5

Solving Systems of Linear Equations

5.1 Introduction

The overall performance of simplex type algorithms heavily depends on the efficient
solution of systems of linear equations. In fact, four of these systems have to be
solved in every iteration of the elaborated dual simplex as presented in algorithm 7
(cf. section 3.4). We can distinguish two types of them. Those, which are defined
by the basis matrix B, we call

FTran: Bα = a, (5.1)

and those, which are defined by its transpose BT , we call

BTran: BTπ = h. (5.2)

Efficient solution methods have to take into account the special characteristics of
these systems and of their application within the (dual) simplex method.

• In general, the basis matrix has no special structure, is neither symmetric nor
positive definite.

• Especially during the first simplex iterations the basis matrix usually contains
many unit vectors stemming from logical variables.

• The columns of the structural part of the constraint matrix normally contain
very few nonzero elements. Therefore, the basis matrix stays sparse even if the
basis contains mostly structural variables.

• In every simplex iteration the basis matrix changes in only one column.

Due to these properties many classical solution methods for linear systems are not
suitable in the context of the simplex method. Conjugate gradient and other iterative
methods (see e.g. [7]) work well only for symmetric positive definite systems (or those,
which can be effectively preconditioned to gain this property). Some direct methods
based on Givens-rotations or Householder-reflextions (see e.g. [31]) have favorable
numerical features but are computationally too expensive.

In the framework of the simplex method other direct methods based on either
the product form of the inverse (PFI), the LU-decomposition or combinations of the

52 Chapter 5 Solving Systems of Linear Equations

two have been applied successfully. Historically, the PFI was developed shortly after
the introduction of the simplex method (cf. [20]) and made it possible to solve LP
problems, which were considered large at that time. Later it was superseded by the
LU-decomposition, which turned out to allow for a better exploitation of sparsity
during the solution process [13].

In the following we will outline the basic ideas of the PFI and LU-decomposition.
In the remainder of this chapter we will focus on the latter and give detailed descrip-
tions of the solution algorithms which are implemented in our code.

5.1.1 Product form of the inverse

The foundation for the PFI has been already laid out in section 3.1.5. The new basis
inverse B̄−1 after a usual simplex basis change can be constructed by

B̄−1 = EB−1, (5.3)

where B−1 is the old basis inverse and E is defined according to (3.25). The idea
of the PFI is to totally avoid the explicit representation of B−1 and replace it by a
sequence of eta-matrices, which is used to solve the required linear systems.

For this purpose an initial set of eta-matrices has to be derived prior to the start of
the (dual) simplex algorithm, which represents the inverse of the start basis matrix
B. If B = I we are done, since I−1 = I. Otherwise, the structural columns of B
can be successively transformed into unit vectors by Gaussian elimination1 (cf. [32,
p. 94ff.]). Every elimination step yields an eta-matrix, such that finally

EsEs−1 · · ·E1B = I, (5.4)

where s with s ≤ m is the number of non-unit vectors in B. Hence, the inverse of B
can be finally represented as

B−1 = EsEs−1 . . . E1. (5.5)

This procedure is called basis inversion. Both numerical stability and the amount
of non-zero elements, which is created in the eta-matrices (called fill-in), heavily
depend on the choice of the pivot element in the elimination process. For deeper
insights into the details of the PFI inversion procedure we refer to [46, p. 122ff.], [72]
and [34].

Given the sequence of k ≤ s + i − 1 eta-matrices in the i-th iteration after the
basis inversion the system (5.1) can be rewritten as

α = B−1a = EkEk−1 · · ·E1a. (5.6)

Equation (5.6) is solved recursively from right to left, the eta-matrices are applied
in the order of their generation. Therefore, this operation is called forward transfor-

1Every elimination step is equivalent to a simplex basis change starting from an identity matrix
and working towards the basis matrix B by choosing a leaving column from I and an entering
column from B.

5.1 Introduction 53

mation (FTran). Note, that an eta-matrix with pivot column r can be skipped, if
the r-th entry in the current intermediate result is zero.

Likewise, system (5.2) can be written as

πT = hTB−1 = hTEkEk−1 · · ·E1 (5.7)

and solved by applying the eta-matrices from left to right, i.e., in the reversed or-
der of their generation. Therefore, this operation is called backward transformation
(BTran). Here, the exploitation of sparsity as in FTran is not possible. However, in
every intermediate result the number of non-zeros can at most increase by one, since
only the r-th entry of the result vector changes if r is the position of the eta-column.

With the number of eta-matrices numerical inaccuracies, storage requirements
and computational effort in FTran and BTran increase in every simplex iteration.
Therefore, a reinversion of the basis is triggered either when a certain number of
iterations since the last inversion has passed or numerical or storage problems occur.

5.1.2 LU decomposition

Nowadays, virtually all competitive implementations of the simplex method use an
LU-decomposition of the basis matrix B, which goes back to the elimination form
of the inverse by Markowitz [45]. The idea is to represent the basis matrix B as
a product of an upper triangular matrix U and a lower triangular matrix L2. The
generation process of this representation is called LU-factorization. The solution of
the required linear systems can then be efficiently conducted by successive forward
and backward substitutions.

In the LU-factorization the basis B is transformed into an upper triangular matrix
U by Gaussian elimination3. In the i-th iteration of the elimination process the
element in the upper left corner of the matrix, which has not been transformed up
to this point (called active submatrix), is chosen as pivot element. Then a lower
triangular eta-matrix Li is generated, such that

Bi+1 = Li · · ·L1B. (5.8)

After m steps Bm+1 = U is upper triangular and

Lm · · ·L1B = U. (5.9)

This form constitutes the bases for the solution of the required linear systems and the
LU-update. Defining L−1 = Lm · · ·L1 and L = (L1)−1 · · · (Lm)−1 we can represent
B as the product of the triangular matrices L and U ,

B = LU, (5.10)

2Hence, the LU-decomposition is a representation of the basis matrix, while the PFI is a repre-
sentation of the basis inverse.

3This is similar to the elimination process in the PFI-inversion, where B is transformed into the
identity matrix I.

54 Chapter 5 Solving Systems of Linear Equations

which we will refer to as the LU-factorization of B. Given (5.10) we can rewrite
system (5.1) as

LUα = a. (5.11)

By substituting Uα by ᾱ we can solve (5.11) in two independent steps. In a first
step we solve

FTranL: Lᾱ = a ⇔ ᾱ = L−1a (5.12)

by applying the eta-matrices produced during LU-factorization to a, then we solve

FTranU: Uα = ᾱ (5.13)

by backward substitution. The same can be done for system (5.2) with

UTLTπ = h (5.14)

by substituting LTπ by π̄ and solving

BTranU: UT π̄ = h (5.15)

for π̄ followed by computing

BTranL: LTπ = π̄ ⇔ ᾱ = (LT)−1a (5.16)

for π.

5.2 LU factorization

Numerical stability and the amount of fill-in during the Gaussian elimination pro-
cedure depend heavily on the choice of the pivot elements during the factorization
procedure. To be free to choose a pivot element, which is advantageous with respect
to these two goals, row and column permutations are applied to B in every iteration.
The result can be represented in the form

LU = PBQ, (5.17)

where L and U are lower and upper triangular matrices, respectively, P is a row-
and Q is a column permutation matrix. By defining permuted versions L̃ = P−1LP
and Ũ = P−1UQ−1 of L and U equation (5.17) transforms to

PL̃P−1PŨQ = PBQ (5.18)

⇔ L̃Ũ = B (5.19)

⇔ L̃−1B = Ũ (5.20)

⇔ L̃−1B = P−1UQ−1. (5.21)

5.2 LU factorization 55

Algorithm 12: LU-factorization.

Input: Let Ũ = B, P = Q = 0, P = {1, . . . ,m}, Q = {1, . . . ,m}
and L̃i = I for i = 1, . . . ,m.

for k = 1 to m do
(Pivot-Selection)(Step 1)
Choose pivot element ũp

q 6= 0 with p ∈ P and q ∈ Q.

(Permutation)(Step 2)
Set Pp,k ← 1 and Qk,q ← 1.

(Reduce active submatrix)(Step 3)
Set P ← P \ {p}.
Set Q ← Q \ {q}.
(Elimination)(Step 4)

forall i ∈ {i′ ∈ P : ũi′
q 6= 0} do

Set L̃k
i,p ← −

ũi
q

ũp
q
.

Set ũi
q = 0.

forall j ∈ {j′ ∈ Q : ũp
j′ 6= 0} do

Set ũi
j = ũi

j + L̃k
i,p ∗ ũ

p
j .

end

end

end

Equations (5.19) to (5.21) can now be used to split each of the linear systems (5.1)
and (5.2) into efficiently solvable parts (cf. section 5.4.2).

Algorithm 12 shows how the elimination process can be organized on a conceptual
level. It obtains L̃−1 as a product of column-eta-matrices L̃i. Note, that if the pivot
column of the active submatrix is a column singleton (the set {i′ ∈ P : ũi′

q 6= 0} = ∅),
then no eta-matrix is generated in this iteration. Hence, algorithm 12 ends up with
an LU-factorization of the form

L̃s · · · L̃1B = Ũ = P−1UQ−1, (5.22)

where s is the number of non-trivial eta-matrices and L̃−1 = L̃s · · · L̃1. In equa-
tion (5.22) we can eliminate one permutation by multiplying with the term QP from
the right, which gives us:

L̃s · · · L̃1BQP = ŨQP = P−1UP. (5.23)

Note, that BQP and ŨQP emerge from B and Ũ , respectively, by column per-
mutation. Consequently, in our implementation we perform a physical columnwise
reordering of Ũ after every refactorization. Since B is not explicitly stored it suffices

56 Chapter 5 Solving Systems of Linear Equations

to adapt the mapping of the column indices of the basis matrix to the indices of the
basic variables (basis heading) accordingly. Thus, with

B ← BQP and (5.24)

Ũ ← ŨQP (5.25)

we get as the final output of the refactorization procedure the following representa-
tion of the LU-factorization:

L̃s · · · L̃1B = Ũ = P−1UP. (5.26)

We proceed with solving the required linear systems based on that new ordering,
since for the simplex method the order of the basic variables does not matter. For
further important details concerning pivot selection strategies and implementation
we confer to [68].

5.3 LU update

Both methods, PFI and LU-decomposition, were first used in combination (LU-de-
composition in reinversion and PFI during the simplex iterations). Later, an updat-
ing method for the LU-representation was presented by Bartels and Golub [8], which
was the basis for several variants developed by Forrest and Tomlin [24], Saunders
[60, 61], Reid [58] and Suhl and Suhl [63]. After a short introduction we will describe
and analyze the two related methods of Forrest/Tomlin and Suhl/Suhl. The latter
is the method, which is actually implemented in our code.

Recalling equation (5.19) the basis matrix can be represented as

B = L̃Ũ , (5.27)

where L̃ = P−1LP and Ũ = P−1UP (cf. equation 5.26) are permuted lower and up-
per triangular matrices, respectively. In each iteration of the (dual) simplex method
the entering column aq replaces the leaving column ap at position r in the basis
matrix (cf. equation (3.20)). Hence, for the new basis B̄, we get

B̄ = B −Bere
T
r + aqe

T
r

= B + (aq −Ber)e
T
r

= L̃Ũ + (aq − L̃Ũer)e
T
r . (5.28)

Multiplying with L̃−1 leads to

L̃−1B̄ = Ũ + (L̃−1aq − Ũer)e
T
r = Ṽ . (5.29)

Equation (5.29) shows, that in Ũ the r-th column is replaced by the vector ᾱ = L̃−1aq.
We denote the result by Ṽ . The vector ᾱ is called permuted spike and comes as the
intermediate FTranL result of the FTran operation, which computes the transformed
pivot column α in the dual simplex algorithm (cf. step 7 in algorithm 7).

5.3 LU update 57

To see, how the upper triangular matrix U changes, we further manipulate equa-
tion (5.29) in order to remove the permutation from the right hand side. Here, we
suppose, that the r-th row in I is the t-th row in P , i.e. Per = et and eT

r P
−1 = eT

t .
Multiplying (5.29) with P from the left and with P−1 from the right yields

PL̃−1B̄P−1 = U + (PL̃−1aq − UPer)e
T
r P

−1

= U + (PL̃−1aq − Uet)e
T
t = V. (5.30)

Consequently, the resulting matrix V differs from U only in the t-th column, which
contains the spike ᾱ′ = PL̃−1aq. The term spike becomes clear by looking at the
shape of the matrix V :

V =

u1

1 · · · ᾱ′1 · · · u1
m

. . .
...

...
ᾱ′t · · · ut

m
...

. . .
...

ᾱ′m um
m

 . (5.31)

Although in implementation we have to deal with Ṽ , LU-update methods are usu-
ally described in terms of V for easier conceivability. All of them restore upper
triangularity by factorizing V , after applying further permutations to it to mini-
mize the generation of additional fill-in and to improve numerical stability. Only
Forrest/Tomlin like methods preserve the symmetric permutation of U .

5.3.1 Forrest/Tomlin update

In thw update method presented by J. J. H. Forrest and J. A. Tomlin in [24] the
spike (the t-th column of V) is permuted to the last column position as in the
earlier method of Bartels and Golub [8]. But additionally, also the t-th row is
permuted to the last row position. This is done by a permutation matrix R = IS
with S = (1, . . . , t− 1, t+ 1, . . . ,m, t) and its inverse RT :

t
↓

R =

1
. . .

1
1

. . .

1
1

, RT =

1
. . .

1
1

1
. . .

1

← t (5.32)

The resulting matrix RV RT violates upper triangularity only in its last row (cf. 5.1).
This row contains the vector [0, . . . , 0, ut

t+1, . . . , u
t
m, ᾱ

′
t], which has to be eliminated

(except the diagonal element ᾱ′t) to obtain the upper triangular matrix Ū . In the

58 Chapter 5 Solving Systems of Linear Equations

update method of Forrest and Tomlin the pivot elements are chosen strictly down
the diagonal during the elimination process, so no further permutations are neces-
sary. Therefore, no fill-in can occur in Ū , however, numerical stability is completely
disregarded.

r

t

t

r

t

r

W W

t

l

t

0 0. . . 0 0. . .

t

r

t

r

r tr

m

m

m

l

l

t

V RV RT

Figure 5.1: Forrest/Tomlin update

During the elimination of the last row eta matrices L̂j (t + 1 ≤ j ≤ m) arise,
each with exactly one off-diagonal element µj in the last row and column j− 1. The

product of the eta-matrices L̂t+1, . . . , L̂m can be summarized in a single eta-matrix
L̂ with one row eta-vector:

t m− 1
↓ ↓

L̂ = L̂m · · · L̂t+1 =

1
. . .

1
. . .

1
µt+1 · · · µm 1

. (5.33)

It is not difficult to verify that the multipliers µj (t+1 ≤ j ≤ m) can be determined
by solving the following linear system:u

t+1
t+1
...

. . .

ut+1
m · · · um

m

µt+1

...
µm

 =

−u
t
t+1
...
−ut

m

 . (5.34)

The diagonal element ᾱ′t of V is situated in the lower right corner of Ū and must be
updated to

ūm
m =

m∑
i=t+1

µiᾱ
′
i + ᾱ′t. (5.35)

5.3 LU update 59

The result of the update procedure is the factorization of RV RT :

L̂RV RT = Ū . (5.36)

By replacing V by its definition (eq. (5.30)) and defining

P̄ = RP and (5.37)

L̄ = P̄−1L̂P̄ (5.38)

we can derive a new factorization of B̄:

L̂RPL̃−1B̄P−1R−1 = Ū (5.39)

⇔ L̂P̄ L̃−1B̄P̄−1 = Ū (5.40)

⇔ P̄ L̄L̃−1B̄P̄−1 = Ū (5.41)

⇔ L̄L̃−1B̄ = P̄−1Ū P̄ . (5.42)

Note, that in each iteration of the (dual) simplex method a rowwise eta-matrix of
the type L̄ is generated in the LU-update procedure. Obviously, these eta-matrices
have to be dealt with separately from the columnwise etas from LU-factorization in
FTran and BTran. In section 5.4.2 we will come back to this point in greater detail.

Stability test

As there is no flexibility in the choice of the pivot elements in the Forrest/Tomlin
update, numerical stability can not be taken in account during the elimination pro-
cess. However, it is possible to test numerical accuracy a posteriori. The following
equation is true after the update (for proof see [24, p. 272f.]):

αr
q =

ūm
m

ut
t

. (5.43)

If the deviation between the current simplex pivot element αr
q and the right-hand-

side of equation (5.43) is greater than some predefined tolerance the operation is
judged numerically instable. In this case the current simplex iteration is aborted
and a refactorization is triggered to obtain a more stable LU-representation of the
basis.

5.3.2 Suhl/Suhl update

The update method of L. M. Suhl and U. H. Suhl [63] is a variant of the For-
rest/Tomlin update, which exploits an observation of Saunders (cf. [60, 61]): the
t-th column and the t-th row are not permuted to the last position, respectively, but
to position l, which is the index of the last nonzero element in the spike ᾱ′. This is
done by a permutation matrix R = IS with S = (1, . . . , t−1, t+1, . . . , l, t, l+1, . . . ,m)
and its inverse RT .

Here, the matrix RV RT differs only in row l from an upper triangular form, which

60 Chapter 5 Solving Systems of Linear Equations

r

t

t

r

t

r

W W

t

l

t

0 0. . . 0 0. . .

t

r

t

r

r tr

m

m

m

l

l

t

V RV RT

Figure 5.2: Suhl/Suhl update

contains the vector [0, . . . , 0, ut
t+1, . . . , u

t
l , ᾱ

′
t, u

t
l+1, . . . , u

t
m] (cf. figure 5.2). The elimi-

nation of the elements ut
t+1, . . . , u

t
l is carried out along the lines of the Forrest/Tomlin

procedure. Since in this method row t is not permuted to the last position, fill-in
can occur in row l of Ū (hatched region in figure 5.2). In general, we can expect less
fill-in than with Forrest-Tomlin, since fewer eliminations have to be carried out (the
elements ᾱ′t, u

t
l+1, . . . , u

t
m need not to be eliminated).

During the elimination process eta-matrices L̂j (t+ 1 ≤ j ≤ l) arise, which can be

summarized in a single eta-matrix L̂ with a row-eta-vector in row l:

t l − 1
↓ ↓

L̂ = L̂l · · · L̂t+1 =

1
. . .

1
. . .

1
µt+1 · · · µl 1

. . .

1

← l

(5.44)

Similar to the Forrest/Tomlin update the multipiers µj (t + 1 ≤ j ≤ l) can be
determined by executing a (reduced) BTranU operation:u

t+1
t+1
...

. . .

ut+1
l · · · ul

l

µt+1

...
µl

 =

−u
t
t+1
...
−ut

l

 . (5.45)

For row l of the resulting upper triangular matrix Ū we get:

ūl
l =

l∑
i=t+1

µiᾱ
′
i + ᾱ′t and ūl

j =
l∑

i=t+1

µiu
i
j + ut

j for j = l + 1, . . . ,m. (5.46)

5.4 Exploiting (hyper-)sparsity in FTran, BTran and LU-update 61

Since we have ᾱ′i = 0 for i = l+1, . . . ,m, equation (5.46) yields the same value for ūl
l

as equation (5.35) for ūm
m in Forrest/Tomlin. Therefore, the stability test described in

the previous section can be applied as well in the context of the Suhl/Suhl update.
The same is true for the derivation of the new factorization in equations (5.36)
to (5.42).

Algorithm 13 shows the LU-update method of Suhl/Suhl in terms of Ũ . The sets
Ũj and Ũ i contain the indices of the nonzero elements of the j-th column and the
i-th row of Ũ , respectively. The permutations P and P−1 are maintained as arrays.
In algorithm 13 we use a functional notation, where P (j) = i is equivalent to P i

j = 1

and P−1(j) = i is equivalent to (P−1)i
j = 1. Intuitively, P maps indices of Ũ to

indices of U while P−1 does the opposite direction.

5.4 Exploiting (hyper-)sparsity in FTran, BTran and
LU-update

As mentioned before, the constrained matrix A of nearly all practical LP problems
is sparse, i.e., only a small fraction of its elements is different from zero. In fact, it
has been observed, that usually the matrix A contains only 5–10 nonzero elements
(short: nonzeros) per column independent of the size of the problem. Consequently
the same is true for the basis matrix B, which typically leads to sparse factors L̃ and
Ũ in LU-factorization. Concerning FTran, BTran and their suboperations, it turns
out that it is not only important to exploit the sparsity of L̃−1 and Ũ but also the
sparsity of the result vectors ᾱ, α, h and π. In section 5.4.1 we will describe solution
methods for triangular systems exhibiting different degrees of sparsity in their result
vectors. In section 5.4.2 we show how these methods can be combined to construct
powerful FTran and BTran operations.

5.4.1 Algorithms for sparse and hypersparse triangular systems

To illustrate the solution techniques we will take a closer look at the upper triangular
system Ux = b4:

u1
1 · · · u1

i · · · u1
m

. . .
...

...
ui

i · · · ui
m

. . .
...
um

m

x1
...
xi
...
xm

 =

b1
...
bi
...
bm

 . (5.47)

The vector x can be determined by backward substitution:

xi =
1

ui
i

(
bi −

m∑
j = i+1

ui
jxj

)
for i = m,m− 1, . . . , 1. (5.48)

4Here, x and b are just some arbitrary vectors in Rm.

62 Chapter 5 Solving Systems of Linear Equations

Algorithm 13: LU-Update Suhl/Suhl (in terms of Ũ)

// remove column r from Ũ

forall i ∈ Ũr do1

ũi
r ← 02

remove i from Ũr and r from Ũ i
3

end4

// insert vector ᾱ into column r of Ũ
forall i ∈ Iᾱ do5

ũi
r ← ᾱi6

add i to Ũr and r to Ũ i
7

end8

// eliminate elements ut
t+1, . . . , u

t
l, calculate multipliers µt+1, . . . , µl

for k = t+ 1 to l do9

i← P−1(k)10

if ũr
i 6= 0 then11

L̄r,i ← −
ũr

i

ũi
i

12

ũr
i ← 013

remove i from Ũ r and r from Ũi14

forall j ∈ Ũ i \ {i} do15

tmp← ũr
j16

ũr
j ← ũr

j + L̄r,i ∗ ũi
j17

if tmp = 0 ∧ ur
j 6= 0 then add r to Ũj and j to Ũ r

18

else if tmp 6= 0 ∧ ũr
j = 0 then remove r from Ũj and j from Ũ r

19

end20

end21

end22

// update permutation

for k = t+ 1 to l do23

i← P−1(k)24

P (i) = k − 125

P−1(k − 1) = i26

end27

5.4 Exploiting (hyper-)sparsity in FTran, BTran and LU-update 63

Algorithm 14: Ux = b – dense method (for dense b)

Input: Let x = b.
for i = m to 1 step −1 do1

forall j ∈ U i \ {i} do2

xi ← xi − ui
j ∗ xj3

end4

xi ← xi/u
i
i5

end6

Algorithm 15: Ux = b – sparse method (for sparse b)

Input: Let x = b.
for j = m to 1 step −1 do1

if xj 6= 0 then2

xj ← xj/u
j
j3

forall i ∈ Uj do4

xi ← xi − ui
j ∗ xj5

end6

end7

end8

Equation 5.48 directly translates into algorithm 14, which we refer to as dense
method. U i contains the indices of the nonzero elements of the i-th row of U .

Algorithm 14 only exploits the sparsity of U . However, we can utilize the fact that
in the summation term of equation 5.48 an entry xj is multiplied exclusively with
entries of the j-th column of U . If we reorganize the computation in a column-wise
fashion, we can skip columns of U where the corresponding entry in x is zero. This
is done in algorithm 15, which we call sparse method. Uj contains the indices of the
nonzero elements of the j-th column of U .

The sparse method is the most efficient solution technique for a sparse right-hand
side b and a moderately sparse (5% – 50% nonzeros) result vector x. This is the
typical situation for most practical LP problems. Only in cases where the right-hand
side vector is already quite dense (> 50% nonzeros) or the required data structures
are not available the dense method should be applied.

Exploitation of hyper-sparsity

To our knowledge it was first reported by Bixby [10] that for some LP problems fur-
ther remarkable improvements in performance can be achieved by exploiting sparsity
even more aggressively. This can be done by a technique published by J. R. Gilbert
and T. Peierls [29] as early as 1988 in the Linear Algebra community. In a first
symbolical phase a list and a feasible ordering of the nonzero positions in the result

64 Chapter 5 Solving Systems of Linear Equations

vector is determined. In the subsequent numerical phase the sparse solution method
(cf. algorithm 15) is performed based on this list.

In the symbolical phase the structure of U is viewed as a direct graph G with m
nodes and edges (j, i) from a node j to a node i if and only if ui

j 6= 0 and i 6= j
(cf. figure 5.3). Let I = {i : bi 6= 0} and O = {i : xi 6= 0} be the sets of nonzero
indices in the input vector b and the output vector x, respectively. Then according
to Gilbert and Peierls every node corresponding to an element in O can be reached
from a node corresponding to an element in I by a path in the graph G. Hence,
the elements in O can be determined by depth first search (DFS) starting from the
nodes in I.

× × ×
× × ×
× ×
×
× ×
×

4444 84444 764444 84444 76

rlen
rbeg

mi1

row i

i ...

val
cind
cptr

...

...

... ...

...

...

...

col i

i ...

rptr
rind
cval

...

...

...

... ...

...

...

#

cbeg
clen

mi1

...

...

...

...

...

...

...

...# #

#

free
space

free
space

L-1

L-1

val...

lbeg

...

1
...

netaf 2

......

...

......

neta

free
space

etas from LUF

rind.........*...*

cind*............

U

*

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

row-wise U

col-wise U

etas from LUU

1 netaf
...etacol

1 m
coleta

j

lenlu
lbeg(neta+1)+1 lbeg(netaf+1) lbeg(netaf+1)+1

1

4

3

6

5

2

lastrow
lastcol

p

...

......

r

s

lbeg(1)

lstart

Figure 5.3: An upper triangular matrix an the corresponding nonzero graph G

In the solution procedures presented above the entries xi of the result vector x are
computed in descending order i = m,m − 1, . . . , 1. However, we cannot guarantee
that the DFS on G finds the elements of O in exactly this order. Fortunately, the
elements of O can be brought in a valid order efficiently. To compute an entry xi

we need all those entries xj with xj 6= 0, ui
j 6= 0 and j > i. In the i-th row of U

we have in column j > i just those nonzero elements for which (j, i) is an edge in
G. Thus, we can compute entry xi as soon as all xj corresponding to an edge (j, i)
have been computed. Hence, the entries of x can be computed in a topological order
of the elements of O, which can easily be determined during the DFS. Let O′ be
an ordered list of the elements in O, which is empty at the beginning of the DFS.
Every time the DFS backtracks from node i to a preceding node j, node i is added
to the beginning of the list. After the DFS O′ contains a topological ordering of the
nonzero positions of x.

In the numerical phase the result vector x can now be determined by traversing
O′:

xi =

1

ui
i

(
bi −

∑
j∈(Ui\{i})∩O

ui
jxj

)
for i ∈ O′,

0 for i /∈ O′.
(5.49)

For the entries xi with i /∈ O′ we can guarantee xi = 0 and i /∈ O. The remaining
entries xi with i ∈ O′ are potential nonzero elements. However, the symbolical phase
does not consider cancellation, so some of the elements in O might as well be zero.
Although cancellation occurs very rarely, it should be considered in implementation
when a new index vector of the nonzero elements of the result vector x is constructed.
Algorithm 16 summarizes the hyper-sparse solution method.

5.4 Exploiting (hyper-)sparsity in FTran, BTran and LU-update 65

Algorithm 16: Ux = b – hyper-sparse method (for very sparse x)

Input: Let x = b.

Compute O′ in topological order by depth-first-search on column-wise1

representation of U .

foreach j ∈ O′ (ordered!) do2

if xj 6= 0 then3

xj ← xj/u
j
j4

forall i ∈ Uj do5

xi ← xi − ui
j ∗ xj6

end7

end8

end9

5.4.2 FTran and BTran with Suhl/Suhl update

In the following we will briefly discuss how the methods of the previous section can be
applied to FTran and BTran operations given a Forrest/Tomlin or Suhl/Suhl update,
respectively. In an arbitrary simplex iteration we are given an LU-factorization of
the form:

L̃k · · · L̃s+1L̃s · · · L̃1B = P−1UP = Ũ , (5.50)

where U is an upper triangular m×m matrix, P is an m×m permutation matrix,
L̃j (1 ≤ j ≤ s) are permuted lower triangular column-eta-matrices stemming from
LU-factorization and L̃j (s + 1 ≤ j ≤ k) are permuted row-eta-matrices stemming
from LU-update. Furthermore, we know that the product L̃s · · · L̃1 is a permuted
lower triangular m×m matrix. Given (5.50) we decompose the FTran operation 5.1
into three parts:

FTranL-F: Compute ¯̄α = L̃s · · · L̃1a. (5.51a)

FTranL-U: Compute ᾱ = L̃k · · · L̃s+1 ¯̄α. (5.51b)

FTranU: Solve P−1UPα = ᾱ for α. (5.51c)

In FTranL-F the column-eta-matrices from LU-factorization are successively multi-
plied with the input vector a in the order of their generation. An eta-matrix L̃j with
its eta-column in position j′ can be skipped, if the j′-th entry of the intermediate
result L̃j−1 · · · L̃1a is zero. Also a hyper-sparse method can be applied, since the
column-eta-vectors can be regarded as a column-wise representation of a (permuted)
lower triangular matrix. Both cannot be done in FTranL-U, since the eta-matrices
from LU-update are in row-wise format. In FTranU we can apply the algorithms
from the previous section if we handle the permutation properly. For the sparse- and
hypersparse method, a column-wise representation of U is required, which has to be
derived from the row-wise representation after each refactorization. If the FTran

66 Chapter 5 Solving Systems of Linear Equations

operation is called to compute the transformed incoming column, ᾱ is saved after
FTranL-U to be used as spike in LU-update.

Similarly, the BTran operation 5.2 is decomposed into three parts

BTranU: Solve P−1UTPπ̄ = h for π̄. (5.52a)

BTranL-U: Compute ¯̄π = (L̃s+1)T · · · (L̃k)T π̄. (5.52b)

BTranL-F: Compute π = (L̃1)T · · · (L̃s)T ¯̄π. (5.52c)

As in FTranU the slightly modified version of the sparse- and hypersparse solution
algorithms 15 and 16 can as well be applied in BTranU. Here, forward substitu-
tion has to be performed on a row-wise representation of U (which is equivalent
to a columnwise representation of UT). As before the permutation can be handled
efficiently. In BTranL-U the same techniques can be applied (which was not pos-
sible in FTranL-U), since the row-eta-vectors represent the non-trivial columns of
the transposed eta-matrices (L̃s+1)T , . . . , (L̃k)T . However, in BTranL-F a row-wise
representation of the product L̃s · · · L̃1 would be required to exploit sparsity and
hypersparsity of π. This is not done in our implementation.

67

Chapter 6

Numerical Stability and Degeneracy

6.1 Introduction

It might seem as a minimum requirement for an implemented numerical algorithm
that it terminates after a finite period of time with a correct answer for any prob-
lem instance belonging to the class of problems it was designed for. Unfortunately,
even if the algorithm can be proved to be correct with respect to these two goals
on a theoretical basis, the same cannot be guaranteed for its implementation in a
computational environment, which can only handle floating point numbers of finite
precision. For the simplex algorithm the situation is even worse: for the commonly
used pivot selection rules we can not even theoretically guarantee termination due to
the possibility of getting into an infinite cycle of degenerate bases. While this type
of pure cycling occurs rarely for practical LP problems degeneracy often retards con-
vergence by preventing improvement of the objective function for many consecutive
iterations (called stalling). Together with numerical inaccuracies the thread of nu-
merical cycling arises, where small deteriorations in the objective function may lead
into an infinite loop.

For these reasons we have to be more modest and lower our requirements to the
following goal: our code should give sufficiently correct results for the widest possible
range of LP problems or otherwise, fail in a controlled manner. In this chapter we
will discuss methods, which have been proposed in the literature and used in other
publicly available codes, and present the variants which we incorporated into the
MOPS dual simplex code to improve numerical stability, handle inaccuracies and
reduce the number of degenerate iterations. But before we come to methods we will
characterize the notions of numerical stability and degeneracy in more detail.

6.1.1 Numerical stability

As we mentioned before the representation of floating point numbers as well as all
arithmetic operations are of limited precision on commonly used computer technol-
ogy. On modern PC-environments 64-bit1 arithmetic leads to a relative numerical
error in the order of 10−16. Analyzing the numerical stability of an algorithms means
to understand how and under which circumstances these inevitable inaccuracies can
grow and accumulate and in the worst case, lead to unusable results. In the follow-

1Internally modern processor even work with 80-bit arithmetic. The results are then converted to
64-bit.

68 Chapter 6 Numerical Stability and Degeneracy

ing we will discuss two results from the field of numerical error analysis, which are
important in the context of the (dual) simplex algorithm.

The first one is an elementary result from backward error analysis of linear systems.
Our presentation is similar to [31, p. 50ff.]. Let B be a nonsingular m ×m-matrix
and consider the linear system

Bx = b (6.1)

with right-hand-side b and exact solution x. Let ∆B and ∆b be perturbations of the
problem data B and b such that x+∆xb and x+∆xB are solutions of the perturbed
systems

B(x+ ∆xb) = b+ ∆b (6.2)

and
(B + ∆B)(x+ ∆xB) = b, (6.3)

respectively. With these notations it is easy to see that the following upper bounds
hold for the relative error of the solution vector2:

‖∆xb‖
‖x‖

≤ ‖B−1‖‖B‖‖∆b‖
‖b‖

(6.4)

and
‖∆xB‖
‖x+ ∆xB‖

≤ ‖B−1‖‖B‖‖∆B‖
‖B‖

. (6.5)

In both of the inequalities the term ‖B−1‖‖B‖ reflects the maximum possible change
in the exact solution of a linear system induced by a change in the data. This quantity
is called condition number of a nonsingular matrix B and is defined by

cond(b) = ‖B−1‖‖B‖. (6.6)

From (6.4) and (6.5) we can conclude that for a well conditioned matrix B, where
cond(B) ≈ 1, the relative error in the solution vector x can not be much greater than
the inaccuracies in the problem data (possibly resulting from limited floating point
precision). On the other hand for an ill conditioned matrix B, where cond(B)� 1,
small errors in the problem data can lead to great changes in the solution of the
linear system.

We want to emphasize that the condition number is totally problem dependent
and can be determined a priori to its solution (which is very expensive though). In
the context of the simplex method often the condition of an optimal basis is taken
as a measure for the numerical difficulty of an LP problem. While the simplex
method must terminate with an optimal basis, the path it takes to reach this basis
greatly depends upon the deployed pivot selection strategies. Often, even problems,
which are well conditioned around their optimal solution, feature regions of badly
conditioned bases in their space of basic solutions. The goal of numerically stable
implementations must be to avoid these regions or leave them as soon as possible
when numerical difficulties occurred.

2Here we denote by ‖ · ‖ the euclidian norm with respect to vectors and the corresponding subor-
dinate norm w.r.t. matrices such that ‖B‖ = sup‖x‖=1 ‖Bx‖.

6.1 Introduction 69

The second long known result from error analysis (proof e.g. in [75, p. 54f.]) shows
how the condition might evolve in a simplex basis change. If B̄ denotes the new basis
matrix, which emanates from the old basis matrix B according to equation (5.28),
then the following upper bound on the condition number of the new basis can be
derived:

cond(B̄) ≤ 1

|αr
q|
· (1 + ‖αq‖) · (1 + ‖αq‖+ |αr

q|) · cond(B) (6.7)

The main consequence of inequality (6.7) is that small pivot elements should be
avoided to prevent a substantial increase of the condition number in a basis change.
In section 6.2.2 we will therefore discuss techniques to avoid the selection of small
pivot element in the simple and in the bound flipping dual ratio test. Unfortunately,
these techniques cannot guarantee stability under all possible circumstances, so we
need further strategies to detect and to handle numerical problems during the solu-
tion process. In particular we must minimize if not eliminate the risk of numerical
cycling. Such strategies are summarized in section 6.2.3. The remainder of the
chapter is devoted to techniques to lessen the detrimental effects of degeneracy.

6.1.2 Degeneracy and cycling

When we talk about degeneracy in this section we always mean dual degeneracy as
it is defined in section 2.4. In a degenerate iteration of the dual simplex method
the entering variable has zero reduced costs, which results in a dual step length of
zero and prevents an improvement of the objective function value. Note, that in the
bound flipping ratio test, a degenerate basis does not necessarily lead to a degenerate
iteration. Within a sequence of degenerate iterations and separated by the same
succession of entering and leaving variables the same basis can occur repeatedly and
the method can get stuck in an infinite cycle. This phenomenon is called cycling.
In non-degenerate iterations the method proceeds exclusively to bases with strictly
increasing objective function values, so no basis can be repeated. On some problems,
sequences of degenerate iterations can get very long even if no cycling occurs and
slow down the solution process considerably. Cunningham [17] introduced the term
stalling to describe this behavior.

As we have learned in the previous section finite precision arithmetic almost always
leads to tiny numerical inaccuracies in the results of practically all arithmetic oper-
ations. In the simplex method these inaccuracies act as small perturbations which
resolve ties in the ratio test. This is often said to be the reason why pure cycling
as defined above is very unlikely to occur in practise. Wunderling [75, p. 60] points
out though, that nowadays simplex algorithms are often deployed to solve the LP
relaxations of large, highly degenerated combinatorial optimization problems. These
problems typically feature perfectly conditioned 0/1 constraint matrices such that
virtually no numerical perturbations occur and degeneracy persists in its pure form.
On these problems, the effects of stalling aggravate and pure cycling poses a real
thread, which has to be handled properly.

Especially on badly conditioned problems and also as a possible consequence of
Harris’ ratio test (cf. section 6.2.2.1), small backward steps in the objective function

70 Chapter 6 Numerical Stability and Degeneracy

can occur, sometimes even accompanied by a loss of dual feasibility. When the
objective function value and the basic solution oscillate by very small amounts in
subsequent iterations numerical cycling can occur, although there is no degeneracy
present in the strict sense. This situation is well described in [25]. It constitutes one
of the major challenges to stability in implementations of the simplex method.

Bland [12] was the first, who developed a pivot selection strategy (smallest sub-
script or Bland’s rule) which guaranties termination of the simplex method in the
presence of degeneracy. Unfortunately, it turned out to be inefficient in practise since
it leads to a very large number of iterations. Since then, several anti-cycling and
anti-degeneracy techniques with better practical behavior have been proposed. The
most established are Wolfe’s ’ad hoc’ method [74, 59], perturbation techniques like
the one described in [9], the EXPAND procedure of [30] and shifting strategies like
in [75, p. 60f.]. A good overview and description of these techniques can be found
in [46, p. 230ff.]. They also seem to be well suited to prevent numerical cycling.
While these techniques mainly effect the dual ratio test it is well known that dual
steepest edge pricing (as described in section 3.3) can greatly reduce the number
of degenerate iterations (especially in conjunction with perturbation). In our tests
also a simple way of resolving ties in pricing by randomization turned out to be very
useful to reduce stalling and diminish the risk of cycling.

In section 6.3 we will present the strategies which we incorporated into our code.
They are based on the above ideas and came to our knowledge through the COIN
LP implementation of the dual simplex method [44].

6.2 Techniques to ensure numerical stability

The overall strategy of our code to prevent numerical failure consists of three pillars:

1. A numerically stable LU-factorization and -update procedure. Computation of
the initial primal and dual basic solutions (after refactorization) with highest
possible precision.

2. A stabilizing ratio test, which avoids the selection of small pivot elements.
Prohibition of very small pivot elements.

3. A ”multi-layer safety net” consisting of techniques like e.g. numerical accuracy
checks, optional abortion and restart of an iteration and double checking before
reporting final results.

Regarding the LU-factorization we confer to section 5.2 and [68]. The main focus
of this section lies on the points 2 (section 6.2.2) and 3 (section 6.2.3). We start by
introducing the concept of numerical tolerances.

6.2.1 Numerical tolerances

The most important underlying computational technique to realize these strategies
is the use of numerical tolerances. Table 6.1 gives an overview including notation
and default values in our implementation. By the first two feasibility tolerances the

6.2 Techniques to ensure numerical stability 71

primal feasibility tolerance εP 10−7

relative primal feasibility tolerance εr 10−9

dual feasibility tolerance εD 10−7

pivot tolerance εα [10−7, 10−5]
zero tolerance εz 10−12

drop tolerance ε0 10−14

Table 6.1: Tolerances: notation and default values.

feasibility definitions given in section 2.4 are slightly relaxed. Here, we say that a
basis B is primal feasible if

lj − ljεr − εP ≤ xj ≤ uj + ujε
r + εP for all j ∈ B (6.8)

and dual feasible if

dj ≥ −εD for all j ∈ Ñ with xj = lj, (6.9)

dj ≤ εD for all j ∈ Ñ with xj = uj and (6.10)

− εD ≤ dj ≤ εD for all j ∈ Ñ with xj free, (6.11)

where Ñ is the set of nonfixed nonbasic variables. Tolerances are indispensable to
account for the limited arithmetic precision. The reason why especially the feasibility
tolerances are much higher than machine precision (usually 10−16) is that from the
user’s point of view a final result satisfying machine precision is usually not needed.
Since primal feasibility is the stopping criterion of the dual simplex method (if an
optimal solution exists) unnecessary iterations can be spared. A similar purpose is
pursued by the use of a zero tolerance and a drop tolerance: arithmetic operations
on insignificant numerical values are skipped if they are below the zero tolerance
and physically set to zero if they are below the drop tolerance. Drop tolerances are
particularly important in LU-factorization and LU-update. Besides the increase of
efficiency tolerances are needed to improve numerical stability. Small pivot elements
which might lead to an ill-conditioned basis are prohibited by a pivot tolerance. If a
pivot element is below this threshold the iteration is aborted and no basis change is
performed. We will describe this mechanism in detail in section 6.2.3. In the next
section we will discuss how the dual feasibility tolerance can be used to allow for the
selection of better sized pivot elements.

6.2.2 Stabilizing ratio tests

The first who proposed to utilize feasibility tolerances to find better pivot elements
in the ratio test was P. Harris [33]. In the next two sections we will discuss several
variants of her idea for the simple and the bound flipping dual ratio test.

72 Chapter 6 Numerical Stability and Degeneracy

Algorithm 17: Modified standard ratio test

if xp < lp then set α̃r ← −αr, if xp > up then set α̃r ← αr.1

Let F = {j : j ∈ Ñ , xj free or (xj = lj and α̃r
j > εα) or2

(xj = uj and α̃r
j < −εα)}.3

if F = ∅ then abort iteration: the LP is tentatively dual unbounded.4

else5

θ ←∞6

foreach j ∈ F do7

if
dj

α̃r
j
< θ then8

θD ← dj

α̃r
j

9

q ← j10

else if
dj

α̃r
j
< θ + εz then11

if |α̃r
j | > |α̃r

q| then12

θ ← dj

α̃r
j

13

q ← j14

end15

end16

end17

θD ← dq

αr
q

18

end19

6.2.2.1 Modified standard ratio test

The main disadvantage of the ”textbook” ratio test as we described it in section 3.1.4
is that there is practically no freedom to choose between different entering variables
and their associated pivot elements. In fact, the minimum in equation (3.13) is
unique if neither the current nor the next iteration is dual degenerate. From a
numerical point of view even in these cases the minimum will be unique since most
ties are resolved by small numerical inaccuracies on the level of the machine precision.

A variant of the ”textbook” ratio test is shown in algorithm 17. It encourages the
selection of greater pivot elements in the case of near degeneracy. This is done at
the cost of creating small dual infeasibilities. Since the zero tolerance εz is several
magnitudes smaller than the dual feasibility tolerance εD, these newly created dual
infeasibilities usually do not entail a switch to dual phase I. However, the existence
even of small dual infeasibilities always brings about new numerical dangers. We will
come back to this issue at the end of this section. Algorithm 17 also prevents pivot
elements below the pivot tolerance. Since the pivot tolerance is several magnitudes
greater than machine precision we cannot declare dual unboundedness right away if
the candidate set F is empty. Therefore, we change into a tentative solution state,
which we try to verify in the further course of the method (cf. section 6.2.3). Since
algorithm 17 requires only one single loop over the transformed pivot row αr it is

6.2 Techniques to ensure numerical stability 73

called a one-pass ratio test.

6.2.2.2 Harris’ ratio test

To increase the flexibility of the ratio test even further, Harris [33] proposed to accept
the creation of infeasibilities within the full range of the feasibility tolerance. We will
describe her approach in the context of the dual ratio test for the case t ≥ 0. In a first
step (or pass) a bound Θmax on the dual step length θD is computed which ensures
that the respective strict dual feasibility conditions of the nonbasic nonfixed variables
are not violated by more than the dual feasibility tolerance. For this purpose we split
the candidate set F+ as define in equation (3.12) into two subsets

F+
l = {j ∈ N : (xj free or xj = lj) and αr

j > 0} and (6.12)

F+
u = {j ∈ N : (xj free or xj = uj) and αr

j < 0}. (6.13)

Then it is not difficult to see that Θmax can be computed as follows:

Θmax = min

{
min
j∈F+

l

{
dj + εD

αr
j

}
, min
j∈F+

u

{
dj − εD

αr
j

}}
. (6.14)

In a second pass, among all breakpoints which do not exceed the bound Θmax the
one with the pivot element of greatest absolute value |αr

j | is chosen to determine the
entering variable and the dual step length:

q ∈ arg max
j∈F+

{
|αr

j | :
dj

αr
j

≤ Θmax

}
and θD =

dq

αr
q

. (6.15)

Undoubtedly, Harris’ ratio test yields better sized pivot elements and therefore limits
the deterioration of the basis condition in the LU-update. However, it also comes
with two severe disadvantages:

1. The method requires in principle two passes of the transformed pivot row αr.
Although the second pass can be limited to the elements in the candidate set
F+, the computational effort is considerably higher compared to a one pass
method.

2. The creation of small dual infeasibilities is an inherent property of this ratio
test. If the methods selects such a slightly dual infeasible variable as leav-
ing variable, the corresponding breakpoint and therefore the dual step length
will be of wrong sign. This can have two perilous consequences. Firstly, the
dual objective function will move into the wrong direction which brings up
the danger of numerical cycling. Secondly, during the update of the reduced
cost vector other nonbasic variables belonging to the candidate set F− can be
pushed beyond the dual feasibility tolerance. This will provoke a call to the
dual phase I, which again results in a decreasing objective function value and
the thread of numerical cycling. To understand why this case can actually hap-
pen, imagine a nonbasic variable j ∈ F− with xj = lj, which is already at the

74 Chapter 6 Numerical Stability and Degeneracy

edge of dual infeasibility with dj = −εD. Even the smallest move with a dual
step length θD < 0 would push this variable beyond the tolerance. Although

in the case of backward steps the dual step length is bounded by −
∣∣∣ εD

αr
q

∣∣∣ from

below, variables in F− move by an amount of
∣∣∣εD αr

j

αr
q

∣∣∣ towards their infeasibil-

ity bound (or pass it by this amount in the worst case), which can be a high
multiple of the feasibility tolerance.

In implementation we skip candidates with pivot elements that fall below the pivot
tolerance (as in algorithm 17). We also made some good experiences with a variant,
where we use a special tolerance εH instead of εD in equation 6.14. Depending on the
current numerical status εH varies between εz and εD (a typical value is 0.01 ∗ εD).
The idea is to find a good compromise between the need for better pivot elements
in numerically difficult situations and the unnecessary creation of significant dual
infeasibilities. Note, that with εH < εD it may happen that Θmax < 0 if a reduced
cost value dj is slightly dual infeasible with εH < |dj| ≤ εD. This case can actually
occur since we always have to anticipate dual infeasibilites up to the dual feasibility
tolerance, which is also the stopping criterion for dual phase I. Theoretically it is no
problem but it has to be considered properly in implementation.

6.2.2.3 Shifting

As mentioned before we always have to be able to deal with dual infeasibilities within
the tolerance in the dual ratio test, no matter wether we use a Harris variant or not.
This is true due to two main reasons: 1. Usually, the dual phase I is terminated
when no dual infeasibility exceeds a certain phase I feasibility tolerance εD1 (e.g.
εD1 = 0.1 ∗ εD). So there may still exist dual infeasibilities below this tolerance. 2.
For numerically very difficult problems, numerical errors can reach the level of the
feasibility tolerances. One consequence can be that new dual infeasibilities (above or
below the tolerance) occur after the recomputation of the reduced cost in the context
of a refactorization.

While the above variant of Harris ratio test reduces the danger of ”really” loosing
dual feasibility (resulting in a call to dual phase I), we still have to avoid backward
steps to rule out the risk of numerical cycling. The main approach to do this is called
shifting and was worked out in detail for the primal simplex method in [30] in the
context of the anti-cycling procedure EXPAND. The idea is to locally manipulate the
problem data to avoid the negative step. For the dual simplex method this means
manipulations of cost coefficients. We discussed the same idea in section 4.4 as a
way to make an arbitrary basis dual feasible. Here, we use it to achieve a zero or
even slightly positive dual step length and still fulfill the dual basic constraint for
the entering variable, such that d̄q = 0 after the basis change.

Suppose, that we have determined a dual step length θD = dq

α̃r
q
< 0 at the end of

the dual ratio test. Then the following is done:

1. Set θD ← 0 (or alternatively: θD ← 10−12).

2. Compute shift ∆q ← θDα̃r
q − dq.

6.2 Techniques to ensure numerical stability 75

3. Set cq ← cq + ∆q.
Set dq ← dq + ∆q.

To avoid a negative step it suffices to set θD to zero in step 1. In the EXPAND
procedure it is recommended to set θD to a small positive value in the order of
the zero tolerance to achieve a guaranteed positive step and prevent cycling. This
can obviously make other nonbasic variables violate their feasibility bound after the
update of the reduced costs. Therefore, in the EXPAND concept the positive ”mini-
step” is accompanied by a small increase of the feasibility tolerance in every iteration.
The disadvantage of expanding the tolerance is though, that the new tolerance is
valid for all of the nonbasic variables and thus allows for greater infeasibilities in the
further course of the method. For this reason we choose an alternative way which is
inspired by the COIN implementation of the dual simplex method [44]. We perform
further shifts only for those reduced cost values which would violate the feasibility
tolerance. These shifts are computed as follows:

∆j =

{
max

{
θDα̃r

j − dj − εD, 0
}

if j ∈ Fl,

min
{
θDα̃r

j − dj + εD, 0
}

if j ∈ Fu.
(6.16)

Since θD = 10−12 is very small, only few of these additional shifts are different from
zero and among these most are in the range of 10−14 to 10−10. That way the changes
to the cost coefficients are kept as small as possible. We also experimented with ran-
dom shifts of greater magnitude to achieve a more significant positive step, a greater
distance to infeasibility and resolve degeneracy at the same time (a similar shifting
variant was proposed by [75, p. 61] to break stalling and prevent cycling). However,
our impression was that the COIN procedure is superior, if it is combined with the
perturbation procedure described in section 6.3.1. There we will also discussed how
the cost modifications are removed.

6.2.2.4 Stabilizing bound flipping ratio test

The bound flipping ratio test as described in section 3.2 and algorithm 4 already
offers a much greater flexibility to avoid small pivots that the standard ratio test.
Let

k ∈ {1, . . . , |F|} : δk ≥ 0 and δk+1 < 0 (6.17)

be the last mini-iteration before the slope δ becomes negative. If |α̃r
qk
| is too small

and much smaller the largest available pivot element we can always go back to a
preceding mini-iteration. The goal is the find a good compromise between a well sized
pivot element and a good progress in the objective function. However, especially for
problems with few boxed variables, the additional flexibility does not suffice. Also,
it might sometimes be more efficient to accept small infeasibilities and achieve a
lower iteration count by going the farthest possible step in the bound flipping ratio
test. Therefore, we will now describe, how Harris’ idea can be incorporated into the
BFRT.

We basically apply Harris’ ratio test in every mini-iteration. Let Qi be the set of

76 Chapter 6 Numerical Stability and Degeneracy

remaining breakpoints in mini-iteration i and

Qi
l =

{
j ∈ Qi : α̃r

j > 0
}

and (6.18)

Qi
u =

{
j ∈ Qi : α̃r

j < 0
}
. (6.19)

Then an upper bound Θi
max on the maximal step length in mini-iteration i can be

determined by

Θi
max = min

{
min
j∈Qi

l

{
dj + εD

α̃r
j

}
, min
j∈Qi

u

{
dj − εD

α̃r
j

}}
. (6.20)

Instead of looking at only one breakpoint per mini-iteration we then consider all
remaining breakpoints at once, which do not exceed the maximal step length Θi

max.
We denote the set of these breakpoints by Ki with

Ki =

{
j ∈ Qi :

dj

α̃r
j

≤ Θi
max

}
. (6.21)

Finally, we can determine the possible entering index qi and the corresponding dual
step length by

qi ∈ arg max
j∈Ki

{
|α̃r

j |
}

and θD
i =

dqi

α̃r
qi

(6.22)

and perform the update operations

Qi+1 = Qi \ Ki and (6.23)

δi+1 = δi −
∑
j∈Ki

(uj − lj)|α̃r
j |. (6.24)

Again we can go back to preceding mini-iterations if the pivot element corresponding
to the greatest possible step is not good enough. An important implementation issue
is choice of a adequate data structure for the set of breakpoints. The incorporation of
Harris’ ideas has significant consequences for this choice. [27] and [47] recommend to
organize the set of breakpoints as a heap data-structure to allow for a very fast access
to the next smallest breakpoint. This implicates a considerable computational effort
to build up the heap structure, which arises independently of the number of actually
performed mini-iterations. We conducted some experiments, which approved Maros’
observation, that the number of flipped variables may vary dramatically even in
subsequent iterations. Furthermore, on instances with few or no boxed variables
virtually no bound flips are possible at all. Therefore, we opted for an implementation
based on simple linear search combined with a forceful reduction technique for the
set of eligible candidate breakpoints.

Algorithm 18 describes our algorithmic realization of the BFRT with Harris’ toler-
ance, which is inspired by the dual simplex implementation of the COIN LP code [44].
It proceeds in three phases. In phase 1, which needs one pass of the transformed
pivot row, a complete set of breakpoints Q is determined. At the same time a Harris
bound Θmax is computed with respect to the first possible breakpoint. This bound

6.2 Techniques to ensure numerical stability 77

is used as a starting point in phase 2, which tries to reduce the set of candidate
breakpoints. This is done by doubling the dual step length and collecting passed
breakpoints until the slope changes sign. Only for these breakpoints the actual
BRFT+Harris procedure with its subsequent linear searches is conducted. Typically
the number of candidates can be greatly reduced by very few passes in phase 2 and
therefore, phase 3 can be carried out very efficiently.

6.2.3 Refactorization, accuracy checks and stability control

As described in chapter 5 the solution of the linear systems required by the dual sim-
plex method (up to three FTran and one BTran operation per iteration) is performed
via an LU-factorization of the basis, which is updated in every iteration. In each
execution of the LU-update procedure the LU-representation of the basis (cf. equa-
tion (5.50)) is extended by one additional row-eta-vector. Therefore, the compu-
tational effort to solve the linear systems constantly increases. On the other hand
the update procedures described in section 5.3 do not inherently consider numerical
stability. So even if a good pivot element in found in the ratio test, the numerical
stability of the LU-representation may deteriorate significantly due to small diagonal
elements used during the elimination process in the LU-update. Therefore, an im-
portant question of a simplex implementation is, how often a refactorization should
be performed to achieve both: speed and numerical stability. Modern simplex codes
all apply basically the same strategy: determine a refactorization frequency3 which
optimizes speed and perform additional refactorizations, when numerical problems
occur.

6.2.3.1 Refactorization for speed

The basic reasoning to find a refactorization frequency with respect to speed is the
following (cf. [15, p. 111.]). Let T0 be the time needed for refactorization and Ti be
the time spent on FTran and BTran operations in iteration i, then

T ∗r =
1

r

r∑
i=0

Ti (6.25)

is the average time required to solve the linear systems in the r-th iteration since the
last refactorization. Obviously, the T ∗1 , T

∗
2 , T

∗
3 , . . . first decrease, since the overhead

T0 gets distributed over more and more iterations, and then from a certain point
start to increase, since the growing number of L-eta-vectors begins to dominate the
solution process. Based on this simple observation, there are two relevant approaches
to determine a good refactorization frequency φ:

1. Constant frequency: φ is set to a constant value at the start of the algorithm
and is not changed during a solution run. The justification is, that the Ti can
be assumed to be proportional to the number of rows (size of the basis) with
some constant factor. Then the minimization of T ∗r leads to a constant value

3Number of iterations between two factorizations.

78 Chapter 6 Numerical Stability and Degeneracy

Algorithm 18: Bound flipping ratio test with Harris’ tolerance.

Phase 1: Determine candidate set.1

If xp < lp set α̃r ← −αr and δ0 ← lp − xp. If xp > up set α̃r ← αr and2

δ0 ← xp − up.
Compute Q ← {j : j ∈ N , xj free or (xj = lj and α̃r

j > 0) or3

(xj = uj and α̃r
j < 0)}.4

Compute Θmax ← min
{

minj∈Ql

{
dj+εD

α̃r
j

}
,minj∈Qu

{
dj−εD

α̃r
j

}}
.5

Phase 2: Reduce candidate set. Find interesting region for θD.6

Set θD ← 10.0 ∗Θmax.7

Set δ ← δ0.8

Set δ̂ ← 0.9

while δ − δ̂ ≥ 0 do10

Set δ ← δ − δ̂.11

Compute Q̃ ←
{
j ∈ Ql : dj − θDα̃r

j < −εD
}
∪
{
j ∈ Qu : dj − θDα̃r

j > εD
}
.12

Compute Θmax ← min
{

minj∈Ql

{
dj+εD

α̃r
j

}
,minj∈Qu

{
dj−εD

α̃r
j

}}
.13

Set Q ← Q \ Q̃.14

Set δ̂ ←
∑

j∈Q̃ (uj − lj)|α̃r
j |.15

Set θD ← 2.0 ∗Θmax.16

end17

Phase 3: Perform BFRT with Harris’ tolerance on interesting region.18

while Q̃ 6= ∅ and δ ≥ 0 do19

Compute Θmax ← min
{

minj∈Q̃l

{
dj+εD

α̃r
j

}
,minj∈Q̃u

{
dj−εD

α̃r
j

}}
.20

Let K =
{
j ∈ Q̃ :

dj

α̃r
j
≤ Θmax

}
.21

Select q ∈ arg maxj∈K
{
|α̃r

j |
}
.22

Set Q̃ ← Q̃ \ K.23

Set δ ← δ −
∑

j∈K (uj − lj)|α̃r
j |.24

end25

If Q̃ = ∅ then terminate: the LP is dual unbounded.26

Set θD ← dq

αr
q
.27

6.2 Techniques to ensure numerical stability 79

for φ. A semi-rigorous analysis (for PFI) for this approach can be found in [15,
p. 112f.]). For LU-factorization and update φ = 100 has turned out to be a
reasonable value. Fine-tuning for special problem classes is left to the user.

2. Dynamic frequency: φ is dynamically changed during the solution run. In
an analysis conducted by [75, p. 85f.] he assumes that the times T0 and Ti

mainly depend on the number of nonzero elements in the current basis matrix
and the updated LU-representation, respectively. By simple bookkeeping he
keeps track of the quantities T ∗r and triggers a refactorization, when they start
increasing.

In our implementation we made good experiences with the simpler constant refac-
torization frequency. We use a slightly modified variant, where we incorporate the
number of rows m in the determination of φ in the following way:

φ = min
{

100 +
m

200
, 2000

}
. (6.26)

The constants in (6.26) are dependent on the system architecture and individual
characteristics of the code and have been determined by extensive benchmarking.
The reason to choose a higher refactorization frequency for models with many rows
is, that the time for refactorization shows a greater dependency on the number of rows
than the solution times for FTran and BTran, especially for hypersparse problems.

6.2.3.2 Refactorization for stability

In every LU-update the numerical accuracy of the LU-factors decreases due to the
accumulation of small errors caused by the limited precision arithmetic. The degree
of accumulation and amplification depends on the condition number of the basis
matrix, which may worsen in basis changes with small pivot elements (< 10−4 usually
causes problems). For numerically easy problems (e.g. those with 0/1 problem
matrices and well modeled problems) both of these threads are irrelevant and no
additional refactorizations are necessary. For some problems, especially those which
are badly modeled, significant errors can occur, which in most cases can be fixed or
even prevented by a precocious refactorization and recomputation of the primal and
dual basic solution. In the following we give a list of computationally cheap accuracy
checks and ”numerical events”, which can be used to monitor the numerical status
of a solution run:

• Pivot element test. After the FTran operation in step 7 of elaborated dual
simplex method (algorithm 7), two versions of the pivot element αr

q are avail-
able. The first version, which we will denote by αBT , is the q-th entry of the
transformed pivot row, which was computed in step 7:

αBT = (AT
Nρr)q. (6.27)

The second version denoted by αFT is the r-th entry of the transformed pivot

80 Chapter 6 Numerical Stability and Degeneracy

column computed in step 7:

αFT = (B−1aq)r (6.28)

If the deviation |αBT −αFT | of these two quantities exceeds a certain threshold
εs, a refactorization is triggered. In our code we set

εs = 10−9 ∗ (1 + |αFT |) (6.29)

In general, αFT can be assumed to be numerically more precise than αBT ,
since besides the FTran operation no additional computations are involved.
Therefore, one option in implementation is to always proceed with αFT after
FTran and to (re-)compute the primal and dual step length. While the update
of the primal and dual basic solution vectors can be performed with greater
accuracy in this case, the new dual step length might slightly differ from the
value assumed in the dual ratio test. This can lead to the (uncontrolled) loss
of dual feasibility, since it clearly counteracts the shifting policy in the dual
ratio test. Therefore, we keep using αBT in spite of its potential numerical
weaknesses4.

• LU-update test. We already described this accuracy check in section 5.3.1
as a feature of the Forrest/Tomlin update procedure. If

|αr
q −

ūm
m

ut
t

| > εu (6.30)

the basis change is aborted and a refactorization is triggered. To prevent a
repetition the selected leaving variable is excluded from pricing for a certain
number of iterations. In our code we set

εu = 10−6 · |αr
q|. (6.31)

• DSE weight test. As mentioned in section 3.3 the dual steepest weight βr

corresponding to the leaving variable can be recomputed from its definition
at low costs since the r-th row of the basis matrix is readily available from
a previous step of the algorithm (computation of the transformed pivot row).
Let

βU
r = βr and (6.32a)

βR
r = ρT

r ρr (6.32b)

be the updated and the recomputed version of βr, respectively. Due to the
higher accuracy it is advisable to always replace βr by βR

r . Furthermore, the
deviation between these two version of βr can be used to get an impression of
the current accuracy of the DSE weights, which can have great impact on the
effectiveness of DSE pricing (bad accuracy can lead to a significant increase

4In the remainder of this text we always assume that αr
q = αBT .

6.2 Techniques to ensure numerical stability 81

of the total number of iterations). We do not use this test as a trigger for
refactorization or even recomputation of all DSE weights from their definition
(usually is very expensive), but as a tool in development and debugging to
improve the general numerical behavior of our code.

• Reduced cost test. For the reduced cost value dq associated with the entering
variable q the following is true:

dq = cq − yTaq = cq − cTBB−1aq = cq − cTBαq. (6.33)

Therefore, dq can be recomputed using the transformed pivot column αq after
the FTran operation in step 7 of algorithm 7. The recomputed version of dq is
in general more accurate than the updated version. The deviation between the
two versions can be used to measure the accuracy of the reduced cost vector
d. If it exceeds a certain threshold (e.g. 10−9), the recomputation of the dual
basic solution from its definition or a refactorization can be triggered. As in the
pivot element test one could also replace dq by the recomputed, more accurate
value. However, the induced change in the dual step length can lead to dual
infeasibilities and counteract the shifting strategy in the dual ratio test. In the
latest version we use this test merely as a tool in development and debugging.

• Primal and dual error. Let x̂B and ŷ be the primal and dual basic solution
vectors resulting from the solution of the corresponding systems 2.13 and 2.15a.
Then the (maximal) primal error errP and the (maximal) dual error errD are
defined as

errP = max
i∈{1,...,m}

{|(b̃−Bx̂B)i|} and (6.34)

errD = max
i∈{1,...,m}

{|(cB −BT ŷ)i|}. (6.35)

Computing errP and errD in this manner is rather expensive. Therefore we
use these measures only for development and debugging.

• Loss of feasibility. In spite of all precautions entries of the dual basic solu-
tion can become dual infeasible beyond the dual infeasibility tolerance due to
numerical errors. It is important to incorporate adequate test to detect these
entries. In our code this is done in the dual ratio test. When a reduced cost
value is found to be dual infeasible the iteration is aborted, a refactorization
and a switch to the dual phase I is triggered.

82 Chapter 6 Numerical Stability and Degeneracy

6.3 Techniques to reduce degeneracy and prevent
cycling

6.3.1 Perturbation

As one can conclude from the definitions in section 2.4, degeneracy is in the first
instance a property of a given LP problem. If most of the bases of an LP problem
are degenerate by a high degree (dual, primal or both), the problem is said to be
highly degenerate. Consequently, also the susceptibility to stalling is a property of
the problem data. It is well known, that particularly the LP relaxations of combi-
natorial optimization problems are often highly degenerate. The basic idea of the
perturbation technique is to lower the amount of problem-inherent degeneracy by
randomly changing the problem data by small margins. Primal degeneracy can be
resolved by perturbing the right-hand-side and/or the bounds of a problem. Dual
degeneracy can be resolved by perturbing the cost vector. In the following we will
consider only the latter.

Many variants of the perturbation method have been discussed in the literature.
They differ with respect to the following points:

• When to perturb? Is the perturbation applied at the start of the method
or only when stalling occurs?

• What to perturb? Do we perturb only the cost coefficients of the degenerate
positions or all of them?

• How to perturb? Do we perturb by random quantities within a fixed interval
or do we consider the size of the cost coefficients or other measures?

• How to remove the perturbation? Do we remove the perturbations during
or only at the end of the solution run? Which method is used to remove them?

Our perturbation procedure, which is similar to the one implemented in the COIN
LP code [44], is applied prior to the dual simplex method, if many cost coefficients
have the same value. In fact, we sort the structural part of the cost vector and
count the number of different values. If this number is less then one fourth of the
total number of structural variables, we assume the problem to be significantly dual
degenerate and perturb all structural non-fixed, non-free variables. If the problem
was not perturbed at the start and the objective function value does not improve for
at least maxcycle iterations (we use maxcycle = 3 ·φ, where φ is the refactorization
frequency), then we perturb only the degenerate positions of the above subset of the
cost vector.

The determination of the cost changes is the main difference compared to other
methods from the literature. While these methods aim solely at resolving degeneracy,
our perturbation procedure also tries to exploit degeneracy to keep the number of
nonzero elements in the basis matrix low. In general, the presence of degeneracy
increases the flexibility in the dual ratio test. If the problem is numerically stable,
this flexibility can be used to select entering variables with as few nonzero elements

6.3 Techniques to reduce degeneracy and prevent cycling 83

in their corresponding columns of the problem matrix as possible. The effect is,
that the spike in LU-update stays sparser and the number of nonzeros added to the
LU-factorization lower. But if the problem is perturbed at the start, most of this
flexibility is lost5. Therefore, the number of nonzero elements is considered in the
determination of the cost perturbations. The determination of a cost perturbation
ξj is performed in four steps:

1. Determine the right magnitude of ξj. Set ξj to a fixed value, which consists
of a constant fraction (typically 100 · εD) and a variable fraction dependent on
the size of the cost coefficient (typically ψ · cj, with ψ = 10−5).

2. Randomize ξj and set the right sign w.r.t. dual feasibility. This is done by
setting

ξj ←

{
−0.5ξj(1 + µ) if uj <∞,

0.5ξj(1 + µ) o.w.,
(6.36)

where µ is a random number within the interval [0, 1]. Note, that by using
equation (6.36) ξj basically keeps the size determined in step 1.

3. Incorporate nonzero counts. Dependent on the number νj of nonzero elements
in column aj, ξj is multiplied by a weighting factor wk:

ξj ← wνj
· ξj. (6.37)

The weight-vector w displays the tradeoff between the two goals ”resolve de-
generacy” and ”keep nonzero count low”. We use the following scheme:

wT = (10−2, 10−1, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 40.0, 100.0). (6.38)

If νj > 10 we use w10 = 100.0 in equation (6.37). As mentioned before most
practical LP problems have less than fifteen nonzero entries per column inde-
pendent of the number of rows.

4. Ensure that ξj stays within an interval [ξmin, ξmax] with

ξmin = min{10−2εD, ψ} and (6.39)

ξmax = max{103εD, ψ · 10 · 1
n

∑n

j=1
cj}. (6.40)

If ξj exceeds or falls below these thresholds, it is multiplied with 0.1 or 10,
respectively, until it falls into the above interval.

At the end of the dual simplex method we restore the original cost vector, which
can lead to a loss of dual feasibility of the current basic solution. If the method
terminated due to primal feasibility, we switch to the primal simplex method (to
be more precise: primal phase II) to restore dual feasibility (cf. [9]). Usually, only
few iterations are necessary to find a new optimal basis. If the method terminated

5In this sense the perturbation also works against Harris’ ratio test.

84 Chapter 6 Numerical Stability and Degeneracy

due to dual unboundedness, we just restore the cost vector and start over with the
dual phase I if necessary to confirm unboundedness. The same procedure is used to
remove the cost shiftings performed in the dual ratio test.

6.3.2 Randomized pricing

It is well known that dual steepest edge pricing as described in section 3.3 is by
itself an effective technique to reduce the number of degenerate iterations. The
leaving variable is determined by equation 3.53. While for most problems ties are
rather unlikely, they occur with increased frequency on well conditioned LP problems,
which are highly degenerate. One possible criterion to resolve a tie in dual pricing
is the number of nonzero elements in the corresponding column of the U -part of
the LU-factorization. However, we made better experiences with resolving the ties
totally randomly. On some problems this also lead to a dramatic reduction of (dual)
degenerate iteration. Implementation details are given in sections 8.2.2.

85

Chapter 7

Further computational aspects

7.1 LP preprocessing, scaling and crash procedures

LP preprocessing, scaling and crash procedures are performed prior to the (dual)
simplex algorithm. While preprocessing and scaling methods aim at improving the
model formulation given by the user, the crash procedure is supposed to quickly
obtain a starting basis which is superior to the all logical basis.

LP preprocessing

It is widely recognized that LP preprocessing is very important for solving large-scale
linear and integer optimization problems efficiently (cf. [14] and [49]). This is true for
both interior point and simplex algorithms. Although LP software and computers
have become much faster, LP models have increased in size. Furthermore, LP opti-
mizers are used in interactive applications and in integer programming where many
LP problems have to be solved. More efficient algorithms and improved implementa-
tion techniques are therefore still very important. Furthermore all practical LP/IP
models are generated by computer programs either directly or within a modeling
system. The model generator derives the computer model from the mathematical
model structure and the model data. Most model generators have very limited ca-
pabilities for data analysis. As a consequence, there is usually a significant part of
the model that is redundant. The main goals of LP preprocessing are:

• eliminate as many redundant constraints as possible

• fix as many variables as possible

• transform bounds of single structural variables (either tightening / relaxing
them during LP preprocessing or tightening bounds during IP preprocessing)

• reduce the number of variables and constraints by eliminations

We refer here to the techniques described in [49]. The standard LP-preprocessing
for LPs to be solved with an interior point or primal simplex algorithm uses bound
tightening in an early phase of the LP-preprocessing. At the end of LP-preprocessing
there is a reverse procedure where bounds are relaxed, i.e. redundant bounds are
removed from the model.

86 Chapter 7 Further computational aspects

As mentioned previously, boxed variables play a key role in the dual simplex
algorithm. Therefore tightened bounds are not relaxed if the dual simplex algorithm
is used in our code. In chapter 9 we demonstrate the surprising impact of this
strategy in our computational results.

Scaling

Scaling procedures try to decrease the numerical difficulty of a user given (or already
preprocessed) model by reducing the spread of magnitudes of nonzeros in the problem
data. This is done by multiplying the rows and columns of the constraint matrix with
real valued scaling factors. There are several methods in the literature to determine
these factors, surveys can be found in [73] and [46, p. 110ff.]. The method used
in MOPS was first presented in [9] and is implemented with minor modifications
described in [65].

Crash

The purpose of a crash procedure is to find a good starting basis for the (dual)
simplex method with the following properties:

1. Easy to factorize. The all logical basis is clearly the best choice with respect to
this requirement. However, it leaves no flexibility to take other considerations
into account. Therefore, most crash procedures try to generate a triangular or
near triangular basis as a good compromise.

2. As feasible, optimal and sparse as possible. Ties in the triangulation proce-
dure are resolved by a weight function preferring variables with a high primal
feasibility range and a low nonzero count in the corresponding column of the
constraint matrix. Free variables are tried to be pivoted into and fixed vari-
ables out of the basis. The probability of a variable to be part of an optimal
basis is estimated by the objective function coefficient and simple geometric
arguments (cf. [54]).

3. Numerically stable. As in the factorization procedure the threshold pivoting
criterion (cf. [23]) can be used to avoid the generation of an ill-conditioned
basis.

An overview of common crash procedures can be found in [46, p. 244ff.]. The method
included in the MOPS system is described in [65]. In the context of this dissertation
we did not change this procedure. However, we conducted some computational tests
with the result that we could not achieve a significant performance improvement
compared to the all logical basis. One important reason is the increased density of
a crash basis, which leads to slower iterations in the beginning of a solution run and
has to be overcompensated by a reduction of the total iteration count. In the context
of the dual simplex method this is problematic due to the other important reason,
which is dual steepest edge pricing. If we start the dual simplex method with an
all logical basis, then the dual steepest edge weights βi can be initialized with 1.0,

7.2 Computation of the pivot row 87

which is the correct value with respect to their definition. For any other starting
basis, we can either keep this cheap initialization as a heuristic or compute the exact
weights according to formula 3.45. This is computationally very expensive since it
requires the solution of up to m linear systems for ρi plus up to m inner products.
Using crash and the simple initialization lead to disastrous results: both the total
number of iteration and the total solution time increased dramatically for almost all
of the test models. Using the time consuming exact initialization was much more
promising. The total number of iterations could be reduced significantly in many
cases. However, this saving did not compensate the additional effort for most of the
test models. Therefore, our default is not to use a crash basis for the dual simplex
in MOPS.

7.2 Computation of the pivot row

The computation of the pivot row αr (step 7 of algorithm 7) is one of the most time
consuming operations of the dual simplex method. For some models it can take more
than 50% of the total solution time (cf. [11]) even for sophisticated implementations.
Therefore, this step has to be implemented with great care.

To begin with we recall that the problem data complies with the internal model
representation described in (2.3). From the definition of αr we can directly conclude,
that

αr
j = ρj−n̄

r if j > n̄. (7.1)

Thus no computation is necessary at all for columns corresponding to logical vari-
ables.

In principle, the structural part of αr can be computed in two different ways.
Using columnwise computation the entries αr

j are computed independently by the
inner product

αr
j = ρr

Taj =
∑

i∈I(aj)

ρi
ra

i
j, (7.2)

where I(aj) denotes the set of row indices of nonzero elements in column aj. In
equation (7.2) we can exploit sparsity of AN by using the columnwise compact storage
of Ā, which is available anyway. Basic and fixed variables can easily be skipped. It is
also easy to build up an index stack for those nonzero elements of αr, which exceed
the zero tolerance εz. The disadvantage of the columnwise computation is, that the
sparsity of ρr cannot be exploited.

In the rowwise computation αr is calculated as follows:

αr = AT
Nρr =

∑
i∈I(ρr)

ρi
ra

i
N , (7.3)

where ai
N denotes the i-th row of AN . Sparsity of AN can be exploited by using

a rowwise compact storage of Ā to calculate the product ρi
ra

i
N . This needs to be

done only for nonzero positions of ρr, which can drastically reduce the computational
effort, especially for hypersparse models.

88 Chapter 7 Further computational aspects

However, the rowwise computation also has some disadvantages. The need for
an additional rowwise datastructure for Ā significantly increases the memory re-
quirements of the method. Furthermore, positions of αr corresponding to basic or
fixed variables cannot easily be skipped. In [11] Bixby recommends to maintain a
rowwise data structure only for nonbasic nonfixed positions and update it in every
basis change. Inserting a column into the data structure is usually very cheap, since
the time required per nonzero element is constant. But for deleting a column this
time is linear in the number of nonzeros of the affected row, so this operation can
be quite expensive. In fact, in our tests we made bad experiences for models with
many more columns than rows. On the other hand we could not see a significant
speedup compared to the version without updating, so we decided to use a complete
rowwise storage of Ā in our implementation. When the dual simplex method is used
as a part of a branch-and-cut procedure for mixed-integer programming this data
structure has to be derived anyway for other purposes. A further disadvantage of the
rowwise computation is, that the build-up of an index stack requires an additional
pass over the nonzero elements, since αr has to be hold in a dense array to calculate
the sum in equation (7.3). For these reasons, we use both the columnwise and the
rowwise computation dependent on the density of ρr. If it exceeds 30% then the
columnwise computation is used. For models with a many more columns than rows
this threshold is lowered to 10%.

Finally we want to mention an interesting idea brought to our mind by P.Q.
Pan in personal conversation, which could be named partial ratio test. In a first pass
only those nonbasic nonfixed positions of the transformed pivot row are computed for
which the corresponding reduced cost entry is zero. As soon as one of these positions
defines a breakpoint (αr

j nonzero and of right sign), it is taken as the entering variable.
In this case the iteration must be degenerate and the further computation of the
transformed pivot row as well as the dual ratio test and the update of the reduced
cost vector can be skipped. Pan reports a significant improvement of his code by
this idea. Up to now, we have not tested this technique, since it obviously collides
with several other concepts in our code, as the bound flipping ratio test, the cost
shifting scheme and the perturbation.

89

Part III

Implementation and results

91

Chapter 8

Implementation

8.1 The Mathematical OPtimization System MOPS

8.1.1 MOPS and its history

MOPS1 is a high performance Mathematical Programming Software System for solv-
ing large-scale LP and mixed integer optimization problems (MIPs), which has chiefly
been developed by U. Suhl since the year 1987. The system is written in FOR-
TRAN77 and has been ported to various popular system platforms ranging from
Windows PCs and servers to mainframes. It has been deployed in many practical
applications for over two decades (see e.g. [69], [67], [62] and [37]) and has con-
tinuously been improved in algorithms, software design and implementation (see
table 8.1). The system started as a pure LP-solver based on a high speed primal
simplex algorithm. In its present form MOPS also features powerful dual simplex and
interior point engines, as well as an effective branch-and-cut procedure. It belongs
to the few competitive systems in the world to solve large-scale linear and mixed
integer programming problems. The algorithms and computational techniques used
in MOPS have been documented in several scientific publications

• on the primal simplex and system architecture [65, 66],

• on the LU-factorization [68] and LU-Update [63],

• LP-preprocessing [70, 49],

• super node processing [71],

• and on the dual simplex algorithm [38] and dual phase I [39].

The algorithmic improvements in the LP as well as in the IP part of MOPS can
be seen by considering the solution times of the benchmark model oil, which is small
by today’s standard. The model has 5563 constraints, 6181 structural variables, 74
are 0-1 variables and 39597 nonzeros in the coefficient matrix. Tables 8.2 and 8.3
show the improvements for LP- and IP-optimization on oil, respectively.

92 Chapter 8 Implementation

Year Version Description
1987 1.0 primal simplex, LU-factorization and PFI-update
1988 1.1 LU-update of the basis factorization
1989 1.2 LP-preprocessing, update
1991 1.3 new pivot row selection minimizing the sum of infeasibilities
1992 1.4 new scaling, ftran, devex
1994 2.0 mixed 0-1-programming with super node processing
1995 2.5 mixed integer programming with general node selection
1997 3.0 first version of dual simplex algorithm for branch-and-bound phase
1998 3.5 improved super node processing
1999 4.0 additional interior point algorithm to solve initial LP
2001 5.0 new memory management, improved numerical kernels
2003 6.0 improved super node processing with cover lifting
2003 7.0 fixed charge and general bound reduction by solving LPs
2004 7.6 new dual simplex algorithm for initial LP and branch & bound
2005 7.9 improved super node processing with Gomory cuts

Table 8.1: History of MOPS development.

Year Version Hardware platform Solution time (secs)
1991 1.4 I486 (25 MHz) 612.4
1995 2.5 P133 Win 3.11 20.7
1999 4.0 PIII (400 MHz), Win 98 5.1
2001 5.0 PIII (500 MHz), Win 98 3.9
2002 6.0 PIV (2,2 GHz), Win 2000 0.9
2005 7.9 PIV (3,0 GHz), Win 2000, primal 1.1
2005 7.9 PIV (3,0 GHz), Win 2000, dual 1.6
2005 7.9 PIV (3,0 GHz), Win 2000, IPM 0.6

Table 8.2: Improvement of MOPS LP optimization on model oil.

8.1.2 External system architecture

The external system architecture of MOPS is depicted in figure 8.1. All MOPS rou-
tines for model management and solution algorithms are part of a dynamic (mops.dll)
and a static (mops.lib) link library, which can be integrated into user’s applications.
Using the static library, the data structures of the internal model representation
(IMR, cf. model (2.3)) and the solution subroutines can directly be accessed via
the IMR- and the C/FORTRAN interface. For the DLL a special set of interface
functions is obtained.

For each system platform a MOPS executable (mops.exe) exists, which is con-
trolled via text files. The problem data can be imported either in standard mps-
format (cf. [50]) or a MOPS-specific triplet file format. Parameter settings are passed

1Mathematical OPtimization System

8.1 The Mathematical OPtimization System MOPS 93

Year Version Hardware platform Solution time (secs)
1994 2.0 PII (500 MHz) LIFO-MIP 1794.3
1995 2.5 PII (500 MHz), general node selection 450.1
1999 4.0 PIV (2,2 GHz), IPM for initial LP 75.2
2003 6.3 PIV (2,2 GHz) various improvements 39.6
2005 7.9 PIV (3,0 GHz) Gomory cuts, dual in bb 12.9

Table 8.3: Improvement of MOPS IP optimization on model oil.

to the solver via a text based profile (mops.pro). Further files are used for solution
data, statistics and the import and export of LP bases and B&B solution trees. Fur-
thermore, a DLL-based MS Excel Add-In (ClipMOPS) can be used as a user friendly
tool to edit and solve smaller LP and IP models.

8.1.3 LP / MIP solution framework

The internal solution architecture of MOPS for LP and MIP problems is displayed
in figure 8.2. For LP problems it comprises two and for MIP problems three major
phases. In the first phase, referred to as data management phase, memory is allocated
and the problem data is read or generated and converted into IMR format. MOPS
does its own memory management in the sense that no dynamic memory allocation
is used. Instead a large block of memory (default 512MB, adjustable by user) is
allocated prior to the model generation step. Then the arrays, which are needed for
the problem data and the requested solution method(s) are accommodated within
this block. Since the arrangement of the arrays is critical for a good cashing behavior,
those arrays are grouped together, which are accessed simultaneously in the inner
numerical kernels of the respective solution algorithm.

The LP solution phase starts with LP-preprocessing, which is run with slightly
different default parameter settings dependent on the solution context. If the solu-
tion method is primal simplex or interior point (IPM) and the model to solve is a
pure LP, then maximal preprocessing is used and reduced bounds are relaxed after
preprocessing. As mentioned in section 7.1 it turned out to be crucial for the dual
simplex method, that reduced bounds are kept after preprocessing. If the root LP
relaxation of a MIP model is solved, a slightly restricted preprocessing is applied,
since full preprocessing can lead to a less effective super node processing in the MIP
solution phase. If primal or dual simplex are selected as solution algorithm, the prob-
lem matrix is scaled and a starting basis is constructed (default for the dual simplex
is all-logical-basis). If the problem was perturbed the respective dual algorithm is
used to remove the perturbation (DSX removes primal pertrubation, PSX removes
dual perturbation). If the IPM solver is used and produces an optimal solution, it
is usually not basic. In such a case, an equivalent optimal basic solution has to be
identified by a simplex type crossover algorithm. The LP solution phase is com-
pleted by the LP postprocessing step, which maps the solution of the preprocessed
model to the original model. If the model does not contain any integer variables, the
solution process stops at this point.

94 Chapter 8 Implementation

mops.dll

mops.lib

user programs
Visual Basic /
Delphi / .Net

C / FORTRAN interface

Load Module
mops.exe

MS Excel Add-In
ClipMOPS

user programs
C / FORTRAN

numerical kernelsIMR interface

input / output routines

numerical
kernels solutionconvert

bcdout
tree save /

restore
punch
insert

M
O

PS

pr
of

ile

so
lu

tio
n

fil
es

m
ps

 d
at

a

IP
 tr

ee
s

LP
 b

as
es

Figure 8.1: The external architecture of MOPS

If the model does contain integer variables, the MIP solution phase is entered. The
first step is to apply super node processing techniques to the initial (MIP-)problem to
tighten its LP relaxation. An important role plays the derivation of cutting planes,
which are added to the model as additional constraints and as such increase the size
of the basis. Usually a great set of possible cuts can be derived. The difficulty is to
add only those cuts, which result in a considerable improvement of the LP relaxation
and do not cause too much fill-in in the LU-factorization. After the root node has
been processed, a primal MIP heuristic is applied to find a feasible MIP solution
and an upper bound (for minimization) on the MIP objective function value. Then
a branch-and-bound procedure is started, which by default uses the dual simplex
method to reoptimize after branching. Dependent on its progress further nodes are
chosen as super nodes and further cuts are generated.

8.2 The dual simplex code 95

Allocate memory

Generate / load a
model

Scaling

LP / IP Postsolve

(Crash)

Convert to IMR

LP-preprocessing

Mps-file

dll-
functions

Triplet-
file

Primal Dual Interior
Point

IP heuristic

Super node
processing

Crossover / Optimal
Basis Identification

Branch & Cut Partial super node
processing

Primal Simplex

data
management

phase

MIP solution
phase

LP solution
phaseDual Simplex

Figure 8.2: LP/IP solution framework in MOPS

96 Chapter 8 Implementation

...

...
xa
xia

xjcp

col 1 col 2 col xn
xnzero xnzmax

free space

1 2 xn xn+1

...

...
xa
xia

xjcp

col 1 col 2
xnzero xnzmax

free space

1 2 xn xn+1

inactive nzs col xn

LP preprocessing

before
LP preprocessing

after
LP preprocessing

Figure 8.3: Columnwise compact storage for Ā before and after LP preprocessing.

8.2 The dual simplex code

8.2.1 Basic data structures

As mentioned before all data structures in MOPS are based on arrays, which are
arranged within a large memory block b previous to the execution of a major so-
lution routine. The array b (default size: 512MB) is allocated at the start of the
system. In the following we will describe the data structures for problem data and,
more importantly, the intermediate and final solution vectors, which are constantly
accessed during the solution process.

Figure 8.3 shows the standard data structure, which is used to store the constraint
matrix Ā of the IMR (2.3) in columnwise compact form. Only nonzero entries in the
structural part are stored. Two arrays xa and xia are used to store the values and the
row indices, respectively. The column pointer arrays xjcp contains the start indices
of every column in xa and xia. In LP preprocessing many rows, column and nonzeros
of the constraint matrix may be deleted. To allow for restoring the original model
these entries are copied to the beginning of xa and xia and are excluded from further
consideration by setting xjcp[1] to the first active entry in these arrays. Furthermore,
the numbers of active rows xm, columns xn and variables xj = xm + xn are adjusted
to their new, smaller values and the original values are saved.

In the initialization phase of the dual simplex routine an additional rowwise copy
of Ā is generated following the same principles as above. Here only active parts of Ā
are considered. The rowwise compact storage of Ā is needed for an efficient rowwise

8.2 The dual simplex code 97

1.2 0.20.00.05.70.0

1 65432

1.2 0.25.7

1 65432

1.2 0.20.00.05.70.0

1 65432

1 631 63

dense packedindexed

Figure 8.4: Dense, indexed and packed storage for mathematical vectors.

computation of the transformed pivot row αr (cf. section 7.2).
Mathematical vectors can in principle be stored in three different ways (see fig-

ure 8.4):

• Dense storage means, that a simple array is used to store an exact image of
the mathematical vector, including zero entries.

• Indexed storage uses a second array for the indices of the nonzero elements in
addition to a dense array for zero and nonzero values.

• In packed storage only nonzero entries and their indices are stored, both in
compact form.

The remaining data of the IMR (c, l and u) is stored in simple dense arrays xcost,
xlb and xub. Although at the beginning cost coefficients of logical variables are zero,
it is of size xj to handle cost shiftings and perturbations. At the start a copy of the
cost vector is created, which is used at the end of the method to restore the original
cost vector after potential cost modifications. The current primal and dual basic
solution is stored in dense arrays xbxx (for xB), xx (for xN), xpi (for y) and xdjsc
(for dN). In our version of the dual simplex method we do not update xpi. It is
only used to recomputed the reduced cost vector after refactorization. The arrays
xx and xdjsc are of size xj. Entries corresponding to basic positions are either zero or
bear some undefined value. The nonbasic primal variables are updated mainly due
to historic reasons, because the first dual phase I method based on artificial bounds
(cf. section 4.3). For our version of the dual simplex method we actually need only
the status of the nonbasic primal variables (wether at upper or at lower bound). In
MOPS a large constant xinf = 1020 is used for infinite bounds. The set of indices
of basic variables (basis heading) is stored in the array xh. The order of the entries
in xh also reflects the columnwise permutation of the basis matrix B in the context
of the LU-factorization. The status of the primal variables is retained in a bitwise
coded integer array xkey of size xj. It allows for efficient tests on wether a variable is
basic, nonbasic at upper or at lower bound, wether it is a fixed or a free variable or
if it was rejected as a potential leaving variable in a previous iteration.

The data structures for the transformed pivot row αr, the transformed pivot col-
umn αq and the r-th row of the basis inverse ρr are particularly important for the
overall performance of the code. We use packed storage for the structural part of αr

and ρr (which is equivalent to the logical part of αr). This allows for very fast loops
during the rowwise computation of αr, the dual ratio test and the update of xdjsc

98 Chapter 8 Implementation

if αr and ρr are sparse. This is especially the case for large hypersparse problems.
While ρr is usually also sparse on typical medium sized and small problems, the
structural part of αr can get fairly dense. For these problems, where the density of
αr often exceeds 40% dense storage would pay off. To avoid further complication of
the code, we decided to pass on this option for now.

The input and output vectors of our FTran and BTran routines are all in indexed
storage. Consequently, we need a loop over the nonzero elements of ρr after the
BTran operation in step 7 to create the packed format. However, we also keep the
dense representation of ρr. This is needed as an input for the FTran operation in the
context of the update of the DSE weights and might be needed for the columnwise
computation of αr. For the transformed pivot column αq we use indexed storage,
which is readily obtained by the FTran operation in step 7. We decide upon the
density of αq, wether we use the corresponding index array during the update of
xbxx and the DSE weights, which are stored in a dense array xbeta. If it exceeds
30%, we use dense processing2.

While the packed arrays are overwritten in every iteration, the dense arrays for
ρr and αq have to be zero at the beginning of every iteration. We use the index
arrays to zero out the dense arrays after each iteration, which is crucial especially
for hypersparse problems (the careful organization of this clearing operation alone
saved about 15% of runtime on the large hypersparse NetLib model ken-18).

8.2.2 Pricing

As described in section 3.3, we use dual steepest edge pricing (DSE) based on the
method called ”Dual Algorithm I” by Forrest and Goldfarb [26] to select a variable
to leave the basis. Three tasks have to be covered to implement this strategy:

1. (Re-)Initialization of the vector of DSE weights.

2. Update of the DSE weights.

3. Efficient selection of a leaving variable by passing through the weighted primal
infeasibilities.

During the development process of our code we learned that the way each of these
three tasks is implemented has a great impact on the performance of the code. In the
following we will discuss the issues, that made a difference in our implementation.

8.2.2.1 Initialization and update of DSE weights

As mentioned before the DSE pricing strategy ”Dual Algorithm I” can be viewed
as a heuristic itself, since it does not guarantee that actually the leaving variable
corresponding to the steepest edge is selected if boxed variables are present. Never-
theless, we learned from the work with our code that the DSE weights have to be

2This entails that the code for the respective update routines practically doubles: one version
loops over the index array, the other version loops over xm.

8.2 The dual simplex code 99

initialized and updated with greatest possible accuracy. Even small errors can lead
to a substantial increase of the iteration count.

The update is conducted according to equations (3.47a) and (3.50). At first we
recompute the value of the weight βr = ρT

r ρr by its definition using the indexed
storage of ρr. Since βr is used in the update of all other weights, spending this extra
effort is worthwhile to avoid accumulation of errors. In debugging mode we also test
the numerical accuracy of βr at this point by comparing the recomputed value with
the updated version. To obtain the updated value β̄r according to equation (3.47a)
βr has to be divided by the square of the pivot element αr

q. In the context of the
DSE update we use the FTran version of it instead of the BTran version, since it
is generally of higher numerical precision (cf. section 6.2.3.2). Next we perform the
FTran operation on ρr to obtain the vector τ according to equation (3.49) and start
the update loop for the remaining weights. If αq is sparse we only loop over its
nonzero positions using the associated index vector.

In our very first DSE implementation we computed the update formula for the β̄i

exactly as it is stated in equation (3.50). We then tested the following reorganized
form (it is easy to see, that it is equivalent to (3.50)):

β̄i = βi + αi
q

(
αi

qβ̄r + κτi
)

with κ =
−2

αr
q

. (8.1)

In both cases we avoid negative weights by setting β̄i = max{β̄i, 10−4} as recom-
mended in [26]. On most models (8.1) worked substantially better than the original
version. The reason is clear: it avoids to square αi

q right away but performs the
division first. Therefore, smaller values are involved in the computations, which re-
duces the numerical error. We were surprised that the numerical accuracy of the
DSE weights had such great impact on their efficacy.

This was confirmed by testing several variants of initializing the weights. Comput-
ing the weights from their definition for an arbitrary basis is very expensive (up to
m BTran operations). For an all-logical basis we know that 1.0 is the correct initial
value. But even if we start with an all logical basis, it may change substantially
during the dual phase I, where we do not necessarily apply DSE pricing at all (e.g.
in Pan’s dual phase I, cf. section 4.5). Furthermore, due to the permutation of the
basis after each refactorization, the vector of DSE weights becomes invalid. Due to
these considerations we just reset the weights to 1.0 after every refactorization in an
early version of our code. Later, we changed this simple strategy as follows:

• If no crash is used we initialize the weights with 1.0, otherwise (with crash) we
do the expensive initialization from their definition (BTran is only necessary
for rows, which are not unit vectors).

• Prior to each refactorization the weights are copied to a dense vector of length
xj in such a way that weight βi is assigned to the position corresponding to the
index B(i) of the associated basic variable. After the factorization the weights
are reassigned taking into account the new permutation of the basis.

• To have the correct values in dual phase II, the weights are always updated in

100 Chapter 8 Implementation

dual phase I, even if they are not used (e.g. in Pan’s phase I algorithm).

• During the update of the weights we save the old values of the weights that
are changed in a packed array. If an iteration is aborted after the weights have
already been updated, we use this array to restore the original values. This
situation can occur if the stability test in LU-update fails.

With these changes we achieved a great improvement compared to the simpler imple-
mentation. A crashed starting bases lead to a reduction of the total iteration count
only if the DSE weights were correctly initialized. However, even then runtime did
not improve in most of the cases, since the average time per iteration increased.

If the dual simplex method is deployed to reoptimize during branch-and-bound,
there is no time to recompute the weights in every node of the B&B tree. Here, the
default is to reuse the weights of the last LP-iteration.

8.2.2.2 Vector of primal infeasibilities

In the actual pricing step 7 we have to loop through the weighted primal infeasibilities
to select the leaving variable. In the first version of our code we just implemented a
simple loop over the primal basic variables following equation 3.53. Primal feasibility
was tested within this loop.

Typically, 20–40% of the primal basic variables are infeasible at the start. For
some problems this fraction is even lower. During the solution process the number of
infeasibilities usually decreases continuously, until the basis is finally primal feasible.
To exploit this observation, we changed our code to maintain an explicit indexed
vector of the primal infeasibilities3. In the following xpifs denotes the dense array
of the squared infeasibilities and xpifsi denotes the corresponding index array. This
data structure is renewed after each recomputation (after each refactorization) and
adjusted during the update of the primal basic solution xB. Four cases can occur in
the update of a primal basic variable xB(i):

1. xB(i) stays primal feasible. The vector of primal infeasibilities does not change.

2. xB(i) becomes primal infeasible. The squared infeasibility is recorded in xpifs
and the index i is added to xpifsi, which length increases by one.

3. xB(i) becomes primal feasible. The i-th entry of xpifs is replaced by a small
constant 10−50 to signal feasibility. xpifsi is not changed.

4. xB(i) stays primal infeasible. xpifs[i] is adjusted. xpifsi is not changed.

Typically, the number of indices stored in xpifsi increases moderately between two
refactorizations and drops down to the actual number of infeasibilities after the next
recomputation of xB. Using this vector of infeasibilities lead to great improvements of
runtime especially on large models. But also on many smaller problems considerable
savings could be achieved.

3Actually, the squared infeasibilities (distances to the respective bounds) are stored to further
speed up the DSE pricing loop.

8.2 The dual simplex code 101

8.2.2.3 Partial randomized pricing

On large easy problems the computational effort spent in the pricing loop can be
further reduced by considering only a small fraction φ of the infeasible positions.
Only if all of these positions are actually feasible, further entries are examined to
guarantee the selection of a leaving variable unless the basis is optimal. In each
iteration φ is dynamically adjusted within an interval of 1

20
to 1 dependent on the

current relative iteration speed. As an estimate of the computational effort per
iteration we take a ratio of the number of nonzero elements in the LU-factors and
the number of rows xm. The default is φ = 1

8
, which is decreased if the ratio drops

below a value of 2.0 and increased if it exceeds a value of 10.0.
To give all primal infeasibilities the same probability to be considered we determine

a random starting point for the pricing loop. On some problems this randomization
of pricing also lead to fewer degenerate iteration. Furthermore, it reduces the risk of
numerical cycling (cf. section 6.3.2).

8.2.3 Ratio test

Our implementation of the bound flipping ratio test (BFRT) is similar to the rou-
tine ClpSimplexDual::dualColumn(. . .) of the COIN LP Dual Simplex code [44]. We
already gave an algorithmic description of this very sophisticated implementation in
section 6.2.2.4 and algorithm 18. In this section we will discuss data structures and
implementation details.

The crucial issue of the implementation of the BFRT is, how the set Q of candi-
date breakpoints is organized. Maros [47] and Fourer [27] recommend a heap data
structure for partially sorting the breakpoints, since it provides the best theoretical
complexity. The drawback of this approach is that a relatively expensive4 build-heap
operation has to be performed independently of the number of breakpoints, that can
actually be passed.

Therefore, the COIN code follows a different path. After the set of breakpoints Q
has been determined in a first pass over the transformed pivot row (phase 1 in algo-
rithm 18), this set is successively reduced to find a set of interesting breakpoints Q̃
(phase 2). Only for these breakpoints the BFRT with Harris’ tolerance is performed
in phase 3 as described in section 6.2.2.4.

The processing of the breakpoints in the three phases is depicted in figure 8.5. It
is organized by means of two packed vector data structures of length xj with value
arrays A[0] and A[1] and index arrays I[0] and I[1]. In phase 1, for every breakpoint
in Q the corresponding pivot row entry5 αr

j and the column index j is stored in A[0]
and I[0], respectively. These breakpoints constitute the set Q1 in phase 2. In the
first round of phase 2, temporary reduced cost values are computed for positions
in Q1 based on a first reasonable guess for the dual step length θD. If a position
stays dual feasible for this θD, it joins the set Q2 (the set of remaining breakpoints),
which is stored at the beginning of the second packed vector (A[1] and I[1]). If a
position becomes dual infeasible for this θD, it joins the set Q̃1 (the set of possibly

4though the theoritical complexity bound is O(n)
5actually α̃r

j

102 Chapter 8 Implementation

copy

I[i mod 2]
A[i mod 2]

I[(i− 1) mod 2]
A[(i− 1) mod 2]

Phase 3

I[i mod 2]
A[i mod 2]

Phase 2

Phase 1

I[(i− 1) mod 2]
A[(i− 1) mod 2]

I[0]

A[0]

Q

573526252416151097

. . .

. . .4

α57α35α26α25α24α16α15α10α9α7α4

. . .

. . .4

α4

α4

4

α16

16

α26

26

. . .

. . .

. . .

. . .

α29

2933

α33

Q̃i Ki−1

α16

16

α20

20

α26

26

. . .

. . .

Q̃i+1 Ki

α4 α10 α16 α25

4 . . .

. . .

10 16 25

Qi

α35

35

α57

57

α9

9

α7

7

Q̃i−1

. . .

. . .α26

26

. . .

. . .

. . .

. . .

α10

10

α25

25

α35

35

α4

4

α16

16

Qi+1 Q̃i

α26

26

Figure 8.5: Implementation of the bound flipping ratio test with Harris’ tolerance.

8.2 The dual simplex code 103

passed breakpoints), which is stored at the end of the second packed vector. In
the latter case also the sum of the slope changes δ̃ is adjusted. If at the end of
round 1 the sum of the slope changes δ̃ lets the remaining slope δ drop below zero,
phase 2 is terminated and Q̃1 is passed to phase 3. Otherwise, further bound flips
are possible and the next round of phase 2 is started with an increased θD on the
remaining breakpoints in Q2. This is done by simply flipping pointers of the two
packed vectors, such that vector 1 takes the role of vector 0 and vice versa.

Figure 8.5 shows the situation in round i. If i is odd, the candidate breakpoints
Qi are situated at the head of the source vector 0 (A[0] and I[0]) and the sets of
remaining and possibly flipped breakpoints are written to the head and the tail
of the target vector 1, respectively. If i is even, the vectors are switched. Note,
that at the end of round i we always have two sets of possibly flipped breakpoints
stored, namely Q̃i and Q̃i−1. If we proceed with the next round of phase 2, one of
these sets is discarded (i.e., overwritten). All of the entries of both sets represent
potential entering variables. Normally, we would discard Q̃i−1, since its entries are
associated with a smaller θD and therefore lead to a lower progress in the dual
objective function. Only if all of the αj’s in Q̃i are two small to guarantee a save
LU-update and considerably smaller than the greatest αj in Q̃i−1, we will discard
Q̃i and replace it by Q̃i−1. Thereby a small pivot with great step length is avoided
if a better sized pivot with smaller step length is available.

At the start of phase 3 the set of possibly flipped breakpoints Q̃i, which was
determined in the last iteration i of phase 2, is copied from the end of the current
target vector to the beginning of the current source vector. It must contain at
least one breakpoint, which is associated with a positive slope and a well sized
pivot element (if one exists). In every round i of phase 3 a Harris’ threshold Θmax

is determined for the breakpoints in Q̃i. Those breakpoints, which meet or fall
below Θmax form the current candidate set Ki. One of them is chosen to determine
the tentative entering variable. The other, remaining breakpoints are saved in the
set Q̃i+1. If the sum of the slope changes induced by the elements in Q̃i does not
result in a negative slope δ, the next round is started. Finally, at the end of phase
3, the shifting procedure described in section 6.2.2.3 is applied to the elements of Ki

to assure dual feasibility.

8.2.4 FTran, BTran, LU-Update and factorization

In chapter 5 we presented mathematical techniques and algorithms to solve the up
to four systems of linear equations in each iteration of the dual simplex method.
In this section we will show the data structures, which we use to implement these
methods. Furthermore, we will give a detailed description of the our FTran procedure
with an emphasis on hypersparsity issues. Finally, we will discuss an alternative
implementation based on the classical Forrest/Tomlin update, which has advantages
on extremely hypersparse models.

104 Chapter 8 Implementation

4444 84444 764444 84444 76

rlen

rbeg

mi1

row i

i ...

val

cind

cptr

...

...

... ...

...

...

...

col i

i ...

rptr

rind

cval

...

...

...

... ...

...

...

#

cbeg

clen

mi1

...

...

...

...

...

...

...

...# #

#

free
space

free
space

L-1

L-1

val...

lbeg

...

1
...

netaf 2

......

...

......

neta

free
space

etas from LUF

rind.........*...*

cind*............

U

*

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

row-wise

col-wise

etas from LUU

1 netaf

...etacol

1 m
coleta

j

lenlu
lbeg(neta+1)+1 lbeg(netaf+1) lbeg(netaf+1)+1

1

4

3

6

5

2

lastrow

lastcol

p

...

......

r

s

lbeg(1)

lstart

U~

U~

Figure 8.6: Data structure for Ũ .

8.2.4.1 Data structures for the LU-factors

Since the basis for our solution routines is the LU -factorization of the basis matrix
B given in equation 5.50, we need data structures for Ũ , the eta-matrices L̃j and the
permutation matrix P and its inverse. We store Ũ instead of U to be able to insert
the spike ᾱ = L̃−1aq without permutation.

The permuted upper triangular matrix Ũ Similar to the data structure for Ā (cf.
section 8.2.1) both a columnwise and rowwise representation of Ũ is stored in compact
form. Figure 8.6 illustrates the involved arrays and index variables. The nonzero
elements of a row and column are stored in the arrays val and cval, respectively6.
The corresponding column- and row-indices are placed in the arrays cind and rind.
Note, that these are the indices of Ũ = P−1UP and not those of the upper triangular
matrix U . Starting position and number of nonzeros of a row/column are saved in
rbeg/cbeg and rlen/clen, respectively. Thus, row i of Ũ starts at position rbeg[i] and
end at position rbeg[i] + rlen[i] – 1. Columns are accessed in the same manner. The
index variables lastrow and lastcol point to the last used positions in the rowwise and
columnwise representation, respectively.

The diagonal nonzero elements of Ũ are always stored at the starting position
of the respective row and column. Consequently, the diagonal element of row i can
simply be accessed by val[rbeg[i]], same for columns. Note, that due to the symmetric
permutation the diagonal elements of U coincide with the diagonal elements of Ũ

6We choose the identifier val instead of rval to make clear that this array is also used to store the
eta-vectors (see next paragraph).

8.2 The dual simplex code 105

4444 84444 764444 84444 76

rlen

rbeg

mi1

row i

i ...

val

cind

cptr

...

...

... ...

...

...

...

col i

i ...

rptr

rind

cval

...

...

...

... ...

...

...

#

cbeg

clen

mi1

...

...

...

...

...

...

...

...# #

#

free
space

free
space

L-1

L-1

val...

lbeg

...

1
...

netaf 2

......

...

......

neta

free
space

etas from LUF

rind.........*...*

cind*............

U

*

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

row-wise

col-wise

etas from LUU

1 netaf

...etacol

1 m
coleta

j

lenlu
lbeg(neta+1)+1 lbeg(netaf+1) lbeg(netaf+1)+1

1

4

3

6

5

2

lastrow

lastcol

p

...

......

r

s

lbeg(1)

lstart

U~

U~

Figure 8.7: Data structure for the eta vectors of L̃−1 (1).

(with changed positions). The order of the remaining elements is arbitrary.
Unlike the problem matrix Ā the matrix Ũ has to be updated in every iteration

in the LU -update procedure. To allow for an efficient update of its column- and
rowwise representation we deploy two further arrays cptr and rptr. For every nonzero
element of the rowwise representation cptr contains the corresponding index in the
columnwise representation, vice versa for rptr. Given these arrays it would actually
suffice to store the nonzeros of Ũ only once – say rowwise – columnwise access would
still be possible. However, this would result in a suboptimal usage of the processor’s
cache memory (cf. [68]). Therefore we keep holding two copies of the numerical
values.

Columns corresponding to logical variables are always permuted to the beginning
of Ũ . They are not stored explicitly, only their number is kept in the variable nlogic.

The eta-vectors of L̃−1 For the eta-matrices L̃j we partly use the same arrays as
for Ũ . Only the nonzero elements of the nontrivial column/row of an eta-matrix are
stored in the array val starting from its tail (see figure 8.7). The starting position
of each eta-vector is noted in the array lbeg. The first netaf entries correspond
to column-eta-vectors from the LU -factorization, followed by the row-eta-vectors
generated in LU -update. The total number of eta-vectors is neta. The arrays rind
and cind contain the associated row and column indices. Consequently, the areas in
figure 8.7, which are marked with a *, contain the same entry for all elements of an
eta-vector. In the variables lstart and lenlu we keep the first and the last position of
an element of L̃−1. nentl corresponds to the total number of nonzero elements of all
eta-vectors.

For each eta-matrix L̃j (1 ≤ j ≤ netaf) from LU -factorization we also store the
index of the nontrivial column in etacol[j]. The array coleta constitutes the inverse
of etacol (see figure 8.8). If for a column p no eta vector exists, we set coleta[p] = 0.

The permutation As mentioned before we store Ũ = P TUP and not U . To be able
to reconstruct U (e.g. in FTranU and BTranU) the permutation has to be stored and
updated explicitly. Since the rows and columns of U are permuted symmetrically,

106 Chapter 8 Implementation

4444 84444 764444 84444 76

rlen

rbeg

mi1

row i

i ...

val

cind

cptr

...

...

... ...

...

...

...

col i

i ...

rptr

rind

cval

...

...

...

... ...

...

...

#

cbeg

clen

mi1

...

...

...

...

...

...

...

...# #

#

free
space

free
space

L-1

L-1

val...

lbeg

...

1
...

netaf 2

......

...

......

neta

free
space

etas from LUF

rind.........*...*

cind*............

U

*

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

row-wise

col-wise

etas from LUU

1 netaf

...etacol

1 m
coleta

j

lenlu
lbeg(neta+1)+1 lbeg(netaf+1) lbeg(netaf+1)+1

1

4

3

6

5

2

lastrow

lastcol

p

...

......

r

s

lbeg(1)

lstart

U~

U~

Figure 8.8: Data structure for the eta vectors of L̃−1 (2).

only one single array perm is necessary. If perm[i] = j, then the i-th row/column
of U corresponds to the j-th row/column of Ũ . At some points of the code we also
need the inverse of perm (e.g., to determine the last nonzero position in the spike
ᾱ), which is stored in the array permback. Extending the example from above, we
have permback[j] = i meaning that the j-th row/column of Ũ corresponds to the
i-th row/column of U .

8.2.4.2 Exploiting hypersparsity

In section 5.4.1 we described the two-phase method of Gilbert and Peierls [29] to solve
hypersparse linear systems. Here, we will briefly discuss the data structures, which
we use to implement the depth-first-search in the symbolic phase of the method, and
how we switch between sparse and hypersparse solution methods.

Depth-first-search The depth-first-search (DFS) on the compact storage of Ũ
(which corresponds to the graph G in section 5.4.1) is implemented iteratively rather
than recursively. In algorithm 24 we give detailed pseudo code for the hypersparse
FTranU operation. Figure 8.9 shows the involved data structures. The array work
serves both as input and as output array for the numerical values of the right-hand
side and the result vector. nzlist contains the nonzero positions of the input vector.
Hence, both input and output vector are stored in indexed fashion. Four arrays of
size xm are used to organize the DFS:

dfsstack acts as a stack for indices of the visited but not yet scanned nodes.

dfsnext contains for every node in dfsstack the index of the next not yet visited node
among its adjacent nodes.

dfsmark is used to mark the visited nodes.

dfslist When a node is scanned and its index is deleted from dfsstack it is added to
dfslist, which eventually contains a topological ordering of the nonzero positions
of the result vector.

To achieve an optimal cashing behavior these four arrays are arranged in straight
succession in the global memory block b. The variables nnzlist, ndfstack and ndfslist
contain the number of entries in the corresponding arrays.

8.2 The dual simplex code 107

... ...1 01

mj1
... ...x

nzlist

work (inc)

dfslist

... ...x x

read

work (out)

push

pop
dfsstack

dfsnext

dfsmark

nnzlist

ndfsstack

ndfslist

1 m
... ...x ...x
... ...0 ... 01 1

nzlist

nnzlist

mark

work

FTRANL

1 m
... ...x ...x
... ...0 ...1 1

nnzlist

mark

spike x
1

nzlist

FTRANU

1 m
... ...x ...

nnzlistout

work x

nzlistout

xx

Figure 8.9: Data structure for depth-first-search.

Switching criteria According to our experience it is advisable to use the hyper-
sparse version rather than the sparse version of a solution method if the density of
the result vector of a linear system falls below 5%. For we do not know the number of
nonzero entries in a result vector in advance, we use a simple estimate, which is based
on the average number of resulting nonzeros in the same system over all previous
iterations since the last refactorization. Algorithm 19 shows the principle implemen-
tation of this idea. In sum we sum up the ratios of the number of nonzeros of the
result vectors by the number of input elements after numcalls number of calls of the
solution method of a linear subsystem (say FTranU). Divided by numcalls we get an
average value on how many output nonzeros were caused by one input nonzero. This
is used to compute the predicted number of output nonzeros predic in the current
linear subsystem. sum and numcalls are set to 0 after every refactorization.

Algorithm 19: HypersparsityTest

numcalls = numcalls + 1
numin = nnzlist
predic = numin ∗max(sum / numcalls, 1.0)
if (predic / xm) ≥ 0.05 then return false else return true

. . .
sum = sum + (nnzlistout / numin)

Note, that the statistic variables sum and numcalls have to be maintained inde-

108 Chapter 8 Implementation

... ...1 01

mj1
... ...x

nzlist

work (inc)

dfslist

... ...x x

read

work (out)

push

pop
dfsstack

dfsnext

dfsmark

nnzlist

ndfsstack

ndfslist

1 m
... ...x ...x
... ...0 ... 01 1

nzlist

nnzlist

mark

work

FTRANL

1 m
... ...x ...x
... ...0 ...1 1

nnzlist

mark

spike x
1

nzlist

FTRANU

1 m
... ...x ...

nnzlistout

work x

nzlistout

xx

Figure 8.10: Data-flow of FTran operation.

pendently for every hypersparse solution procedure. In our code specially tailored
versions are deployed in FTranL, FTranU, BTranU and LU-update.

8.2.4.3 Forward Transformation (FTran)

Three of the four linear systems, which have to be solved in each iteration of the
elaborated dual simplex algorithm, require an FTran operation. Due to this great
importance we will present detailed pseudo code of our FTran implementation in
this section, which is based on the mathematical description of section 5.4.2.

Figure 8.10 shows the datastructures used to manage the input vector, the output
vector and the spike ᾱ in the course of the FTran operation. All of the three vectors
are stored as indexed arrays, enhanced by an 0/1 vector mark, which is used during
the computations to identify the indices of potentially nonzero positions and collect
them in the respective index arrays (nzlist and nolistout). The floating point array
work is initialized with the input vector and contains the result vector at the end of
the operation.

Algorithm 20 serves as the driver routine of the FTran operation. Dependent on

8.2 The dual simplex code 109

the density of the intermediate results it branches to the sparse or hypersparse version
to solve the subsystems FTranL-F and FTranU (cf. equations 5.51). Furthermore it
copies the spike ᾱ after FTranL-U, which is only necessary in the FTran operation
in step 7 of algorithm 7. For both of the other FTran calls (update of DSE weights
and bound flipping ratio test), this part is skipped.

Algorithm 20: FTran (Pseudocode)

input : work, mark, nzlist, nnzlist
output: spike, mark, nzlist, nnzlist, work, nzlistout, nnzlistout, last

if HypersparsityTest(FTranL-F) = false then1

FTranL-F2

else3

FTranL-F hyper4

end5

FTranL-U6

// copy work into spike

for k = 1 to nnzlist do spike(nzlist(k)) = work(nzlist(k))7

if HypersparsityTest(FTranU) = false then8

FTranU sparse9

else10

FTranU hyper11

end12

The FTranL-part of the FTran operation comprises the subroutines FTranL-F sparse

(algorithm 21), FTranL-F hyper and FTranL-U (algorithm 22). We leave out the
pseudo-code for FTranL-F hyper, instead we give pseudo-code for FTranU hyper

(algorithm 24) as an example for the implementation of a hypersparse solution rou-
tine. In FTranL-U it is not possible to exploit (hyper-)sparsity, since the eta-vectors
generated in LU -update are in rowwise format.

An important detail is the efficient construction of the index vector of nonzero
elements nzlist. In our implementation of FTranL-F we we have to collect the nonzero
indices in the innermost loop, which is quite expensive. The reason is, that the outer
loop considers only positions, for which an eta-vector actually exists. Alternatively,
we could run over xm in the outer loop, perform the if -block, if a corresponding eta-
vector exists, and add nonzero indices at the end of that block (similar to FTranU).
However, we opt for the first variant, since netaf is often much smaller that xm.
In any case, the derivation of the index vectors causes a noticeable computational
overhead, which on some small and dense problems is not necessarily compensated
in other parts of the algorithm. However, they are indispensable for larger and
sparser problems and for dynamic switching between sparse and hypersparse solution
routines.
FTranU sparse corresponds to the columnwise solution method described in al-

gorithm 15. To exploit upper triangularity we run over the columns of U and find

110 Chapter 8 Implementation

Algorithm 21: FTranL-F sparse

for j = 1 to netaf do1

p = etacol(j)2

if abs(work(p)) > zerotol then3

ap = work(p)4

ks = lbeg(j + 1) + 1; ke = lbeg(j)5

for k = ks to ke do6

i = rind(k)7

work(i) = work(i) + val(k) ∗ ap8

if mark(i) = 0 then9

// put in result-list

mark(i) = 1; nnzlist = nnzlist + 1; nzlist(nnzlist) = i10

if permback(i) ≥ last then last = permback(i)11

end12

end13

end14

end15

Algorithm 22: FTranL-U

for k = lbeg(netaf + 1) to lbeg(neta + 1) + 1 step -1 do1

j = cind(k)2

if abs(work(j)) > zerotol then3

p = rind(k)4

work(p) = work(p) + val(k) ∗ work(j)5

// put in result-list

if mark(p) = 0 then6

// put in result-list

mark(p) = 1; nnzlist = nnzlist + 1; nzlist(nnzlist) = i7

if permback(p) ≥ last then last = permback(p)8

end9

end10

end11

8.2 The dual simplex code 111

Algorithm 23: FTranU sparse()

nnzlistout = 01

for k = last to nlogic + 1 step -1 do2

j = perm(k)3

if abs(work(j)) > zerotol then4

ks = cbeg(j); ke = ks + clen(j)− 15

aj = work(j)/cval(ks); work(j) = aj6

for kk = ks + 1 to ke do7

i = rind(kk)8

work(i) = work(i)− cval(kk) ∗ aj9

end10

// put in result-list

nnzlistout = nnzlistout + 1; nzlistout(nnzlistout) = j11

end12

end13

for k = nlogic to 1 step -1 do14

j = perm(k)15

if abs(work(j)) > zerotol then16

// put in result-list

nnzlistout = nnzlistout + 1; nzlistout(nnzlistout) = j17

end18

end19

Algorithm 24: FTranU hyper

FTranU hyper DFS1

for k = ndfslist to 1 step -1 do2

j = dfslist(k)3

dfsmark(j) = 04

see lines 4 - 12 from algorithm FTranU sparse5

end6

112 Chapter 8 Implementation

Algorithm 25: FTranU hyper DFS

// depth-first search: create list of nz positions in result

ndfsstack = 0; ndfslist = 01

for k = 1 to nnzlist do2

j = nzlist(k)3

if dfsmark(j) = 0 then4

if clen(j) > 1 then5

// put on stack

ndfsstack = 1; dfsstack(1) = j; dfsnext(1) = cbeg(j) + 16

else7

// no more nz in this column, mark and put in list

ndfslist = ndfslist + 1; dfslist(ndfslist) = j; dfsmark(j) = 18

end9

end10

while ndfsstack > 0 do11

finish = true12

j = dfsstack(ndfsstack)13

ks = dfsnext(ndfsstack); ke = cbeg(j) + clen(j)− 114

for kk = ks to ke do15

i = rind(kk)16

if dfsmark(i) = 0 then17

if clen(i) > 1 then18

// put on stack

dfsnext(ndfsstack) = kk + 1; ndfsstack = ndfsstack + 119

dfsstack(ndfsstack) = i; dfsnext(ndfsstack) = cbeg(i) + 120

finish = false21

exit for22

else23

// no more nz in this column, mark and put in list

ndfslist = ndfslist + 1; dfslist(ndfslist) = i; dfsmark(i) = 124

end25

end26

end27

if finish = true then28

// node scanned, take from stack, mark and put in list

ndfsstack = ndfsstack− 129

ndfslist = ndfslist + 1; dfslist(ndfslist) = j; dfsmark(j) = 130

end31

end32

end33

8.2 The dual simplex code 113

the corresponding column indices in Ũ via the permutation array perm. Two details
further improve the performance in FTranU sparse:

• We start iterating at the column index last instead of xm in U , which is the
last nonzero element in the input vector. last has to be determined anyway in
FTranL, since it is needed in LU -update as the last nonzero position l in the
non-permuted spike ᾱ′ (cf. section 5.3.2).

• As we mentioned before columns corresponding to logical variables are arranged
at the beginning of U . Since logical columns do not change the result, we stop
iterating at position nlogic+1. However, we have to keep going through the
logical columns in a second loop to complete the vector nzlistout of nonzero
indices.

The hypersparse version FTranU hyper basically coincides with FTranU sparse in
the numerical phase. However, it iterates only over the nonzero positions of the
result vector, which have been determined previously in FTranU hyper DFS. Since
the nonzero positions are always appended at the end of dfslist during the DFS, it has
to be traversed in reverse order to form a valid topological order (cf. section 5.4.1).

We already presented the data structures used in FTranU hyper DFS in section 8.2.4.2.
In the outer loop (line 2) a depth-first-search is started for every nonzero element
of the input vector work. If the current index j is not yet scanned (line 4) and the
respective column of Ũ contains further off-diagonal elements (which correspond to
adjacent edges of the node j in the graph G), we add j to the stack dfsstack (line 6)
as the starting point of the DFS. Otherwise we mark j as scanned and add it to the
list of nonzero positions dfslist (line 8). The DFS is started in line 11. Every time
a node is scanned the corresponding index is added to the nonzero vector (lines 28
to 31). Finally, dfslist contains the nonzero positions of the result vector in reversed
topological order.

8.2.4.4 LU-update and factorization

Since our implementation of the dual simplex method is based on the existing code
of the MOPS system, the routines for LU -factorization and update were already
available. Their implementation is described in [68] and [63]. While we left the
factorization routine unchanged, we extended the LU -update procedure to exploit
hypersparsity. As indicated in section 5.3.2 the computation of the entries of a row-
eta-matrix L̃j in lines 9 to 22 of algorithm 13 is equivalent to a reduced BTranU
operation. Therefore, we apply the same techniques to exploit hypersparsity as
discussed in the previous sections.

In our tests we learned, that the update of the permutation in the Suhl/Suhl
update (lines 23 to 27 of algorithm 22) can become a relatively time consuming
operation on very hypersparse models (like ken-18 from the NetLib [5] test set). In
our code we split this operation in two separate loops, one for the update operation
for perm (corresponding to P−1) in line 26 and one for permback (corresponding to
P) in line 25. Due to better data locality the loop for perm can be executed much
faster than that for permback. Alternatively, one could use a quite sophisticated

114 Chapter 8 Implementation

implementation of the classical Forrest/Tomlin update for this type of problems,
which we found in the COIN LP code [44]. Its description is beyond the scope
of this thesis. There, the update of the permutation vectors can be realized as
a constant time operation. However, it is well known that the Forrest/Tomlin is
generally inferior to the Suhl/Suhl update since it produces more fill-in. Therefore,
we to stick to the latter. It is an open question to us, wether a constant time update
of the perturbation can also be achieved for the Suhl/Suhl update.

8.2.5 Overview

The figures 8.11 and 8.12 give an overview of the main steps of our implementation
of the dual simplex method. The first of them comprises initialization, refactoriza-
tion and dual phase I while the latter shows the flow of the main loop. Note that
dependent on which type of method is used (cf.chapter 4) the dual phase I can be a
whole algorithm by itself (e.g. Pan’s method).

8.2 The dual simplex code 115

infeasible
dual

Refactorization

yes

no

no

yes

Is B dual feasible?

Dual phase I

Is B dual feasible?

Initialize dual steepest edge weights β

Perturb cost vector c, if necessary

Generate rowwise Ā

Compute dual basic solution (y, d)

Reassign DSE weights β to permuted rows

Save DSE weights β by variable indices

Generate list of primal infeasibilities δ

Compute primal basic solution xB

Factorize basis L̃−1B = Ũ

Initialization

Dual phase I

Figure 8.11: Implementation overview: initialization, refactorization and dual phase
I.

116 Chapter 8 Implementation

Unroll DSE weights

Update DSE weights β (save changed positions)

Update d, consider bound flips in xB and δ

no

no

(call primal simplex)

Remove perturbation

Remove perturbation

(call primal simplex)

unbounded
dual

yes

no

no

yes

optimal

yes

yes

Need to factorize?

Consider bound flips in xN

Update xB and δ

Error in LU-Update?

LU-Update

Compute pivot column: Bαq = aq

FTran αr
q ≈ BTran αr

q

Compute pivot row: BT ρr = er, αr = ρT
r AN

Found q?

BF ratio test: find entering variable q

Found p?

Main loop Pricing: find primal inf. leaving variable p

yes

no

Figure 8.12: Implementation overview: main loop.

117

Chapter 9

Numerical results

In this chapter we present computational results produced by our dual simplex code.
In sections 9.1 and 9.2 we describe the composition of our set of test problems and
the performance measures used in our analysis. We then present a study on the
dual phase 1 in section 9.3, where we evaluate the performance of the different dual
phase 1 methods described in chapter 4. In section 9.4 we document the continuous
progress during the development of our code and point out again the crucial imple-
mentation techniques. Finally, we benchmark the performance of our dual simplex
code compared to other renowned LP-systems in section 9.5.

9.1 Test problems

Table A.1 specifies names and dimensions of a set of one hundred test problems,
which constitute the basis for the computational results of this chapter. The prob-
lems are taken from five different sources (column Source):

n NetLib and Kennington test set [5], 17 problems.

m MipLib2003 test set [3], 17 problems1.

t Mittelmann test set [4], 21 problems.

c BPMPD test set [1], 20 problems.

o Other. 25 problems from our private test problem collection [2]. The prob-
lems HAL M D, MUN1 M D, MUN18 M D and PTV15 are multi-depot bus
scheduling models described in [37].

In addition, we generated a second, preprocessed version of each problem instance
by means of the COIN LP code2[44]. These pretreated instances will be used in
section 9.5 to benchmark the dual simplex implementations of the different LP-
systems independently of their respective LP-preprocessing. For both versions we
give the model dimensions in terms of the number of structural variables (column
Structs), the number of constraints (column Constrs) and the number of nonzero
entries in the constraint matrix (column Nzs).

1We only solve the LP-relaxation of these problems.
2At the beginning of the method ClpSimplexDual::dual(. . .) we write out the preprocessed model

in MPS format (see [50] for a description) using the method writeMps(. . .).

118 Chapter 9 Numerical results

9.2 Performance measures

The interpretation and analysis of data generated in a benchmarking process is not
a trivial task. The often used performance measures arithmetic mean (average) or
cumulative total (sum) have the significant drawback that a small number of the
most difficult problems tend to dominate the results. The geometric mean seems
to be more appropriate since it tends to represent the behavior on the majority of
test instances. The disadvantages of this measure are however, that it does not have
an intuitive meaning and that large deviations on few models are not represented
adequately. All of these ”numerical” measures have the problem that they cannot
deal with failures in a sound way.

For these reasons we use the visualization technique of performance profiles (see [22])
in addition to sum and geometric mean. Let S be the set of algorithms/solvers, which
are to be compared, and P the set of test instances. Since our main criterion for
comparison is CPU solution time, we define

tp,s = CPU time required to solve problem p ∈ P by solver s ∈ S.

The performance ratio

rp,s =
tp,a

min{tp,s′ : s′ ∈ S}
(9.1)

gives the performance of solver s on problem p compared to the best performance
by any solver in S on this problem. A parameter rM ≥ rp,s for all p, s is chosen and
rp,s is set to rM if and only if solver s fails to solve problem p.

Then, the performance profile of solver s is given by the function

τ 7→ 1

nP
|{p ∈ P : rp,s ≤ τ}|, (9.2)

where nP = |P|. It represents the fraction of problems, for which solver s has a
performance ratio of at most τ ∈ R. The right hand side of equation 9.2 can be
written as

P (rp,s ≤ τ : 1 ≤ s ≤ nS), (9.3)

since it is equivalent to the probability for solver s, that a performance ratio rp,s is
within a factor τ of the best possible ratio. In our diagrams we often use a logarithmic
scale for τ .

9.3 Study on dual phase 1

From the dual phase 1 methods presented in chapter 4 we implemented the two
approaches of minimizing the sum of the dual infeasibilities (subproblem (SP) and
algorithmic approach, algorithms 8 and 9, respectively), the method by cost modifi-
cation (CM) (section 4.4) and Pan’s method (algorithm 11).

After we implemented the subproblem approach and saw its mathematical equiv-
alence and convincing performance we did not proceed to advance the code of the
algorithmic approach. Since the latter did not benefit from the improvements in our

9.3 Study on dual phase 1 119

Pan + SP approach SP approach Cost Mod.
Sum CPU Time (secs) 8521.1 9254.9 11625.8
Geom. Mean CPU Time 30.1 31.3 32.7
Sum Total Iters 2093129 2160389 2183591
Geom. Mean Total Iters 18602.6 18910.7 19729.6
Sum Degen. Iters 260277 308879 649566
Sum Dual Phase 1 Iters 432107 461127 –
Geom. Mean Dual Phase 1 Iters 164.9 195.1 –
Sum Dual Simplex Iters 2079179 2146392 1676332
Sum Primal Simplex Iters 13950 13997 507259

Table 9.1: Benchmark of dual phase 1 methods.

dual phase 2 code, it is not competitive anymore and we will not present numerical
results for it.

As mentioned in section 4.5 Pan’s method does not provide a theoretical con-
vergence guarantee, which turned out to pose a problem on a handful of mostly
numerically difficult problems. Therefore we provided our Pan code with a simple
checking rule, which switches to the subproblem phase 1, if the number of dual in-
feasibilities does not decrease adequately. This variant will be denoted by Pan+SP.

We also tried two versions of the CM method: in the first version we restored the
original cost coefficients after each refactorization, if the corresponding reduced cost
values stay dual feasible, in the second version we do not touch the modified cost
vector until the end of the dual phase 2. Here, we will present results only for the
first variant, since it worked clearly better (as expected) than the second one.

Tables A.7 to A.10 show the detailed benchmarking results for the four different
methods on those 46 problems of our test set, for which the starting (all-logical) bases
is dual infeasible and cannot be made dual feasible by pure feasibility correction (cf.
section 4.1.2). These test runs were conducted under Windows XP Professional on
a standard Intel Pentium IV PC with 3,2 GHz and 1GB of main memory. Our code
was compiled with Compaq Visual Fortran Compiler V6.6. For each method we
give the total CPU solution time in seconds (including time for LP-preprocessing),
total number of iterations, number of degenerate iterations3, number of dual phase 1
iterations (except for the CM method) and the number of iterations spent in the dual
and the primal simplex4, respectively. Table 9.1 summarizes the results by listing
sums and geometric means (where appropriate) for runtime and iteration counts.
Pan’s method is not included since it failed on three problems to achieve a dual
feasible basis. Figure 9.1 shows a performance profile over runtime.

Each of the four method performs quite well on about two thirds of the test
instances compared to the respective best method, with a slight edge for Pan+SP.
On roughly 20% of the problems the original Pan method and the CM method show
significant difficulties. For the CM method these are mainly those problems, which

3We consider an iteration as degenerate, if θD < εD, where θD denotes the dual step length and
εD denotes the dual feasibility tolerance.

4The primal simplex is generally used at the end of the dual phase 2 to remove dual infeasibilities
caused by restoring the original cost vector after cost perturbation and shiftings.

120 Chapter 9 Numerical results

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0

Pan+SP

SP

CM

Pan

τ

P
(lo

g 2
(r p

,s
) ≤

 τ
 :

1
≤

s
≤

n s
)

Figure 9.1: Performance profile over phase 1 test set: solution time using four differ-
ent dual phase 1 methods.

need a large proportion of primal simplex5 iterations (WATSON 1, WATSON 2,
DEGEN4, ULEVIMIN). An exception is the instance DBIC1, on which the primal
simplex seems to be superior to the dual simplex. It can be seen as a fundamental
drawback of this method, that it is basically unpredictable how many iterations are
performed by the dual simplex and how many are performed by the primal simplex
method for a given problem. For our test set, almost 25% of the iterations were
in primal simplex (cf. table 9.1). This makes it almost impossible for the user to
choose the right solution algorithm for his LP model. Furthermore, this method
has an inherent tendency to increase the number of degenerate iterations. Pan has
problems on numerically difficult instances like P13, P14, P19 and P20. On these
problems, the SP method works significantly better. To summarize we can say, that
the combined method Pan+SP has the best overall performance, with a slight edge
compared to SP.

In a second experiment we investigate the impact of the treatment of the primal
bounds after LP preprocessing (cf. section 7.1). Two variants are compared on
the complete problem test set: the first one keeps the reduced bounds, the second
expands the bounds after LP preprocessing. As above the test runs were conducted
under Windows XP Professional on a standard Intel Pentium IV PC with 3,2 GHz
and 1GB of main memory, but here we use an executable generated by the Intel
Visual Fortran Compiler V9.0, which turned out to be superior to the Compaq
version. The detailed benchmarking data is given in tables A.5 (Original Models)
and A.6 and summarized in table 9.2 and the performance profile in figure 9.2.

5The primal simplex code in MOPS is inferior to the dual simplex code in particular on large
problems, since it still lacks some important implementation techniques (e.g. hypersparsity).
But even with an improved primal code the dual simplex is generally seen as superior to the
primal simplex (cf. [10]).

9.4 Chronological progress study 121

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0

reduced bounds after preprocessing

expanded bounds after preprocessing

τ

P
(lo

g 2
(r p

,s
) ≤

 τ
 :

1
≤

s
≤

n s
)

Figure 9.2: Performance profile over all test models: solution time with reduced and
expanded bounds after LP preprocessing.

Reduced Bounds Expanded Bounds
Sum CPU Time (secs) 38816.5 39643.8
Geom. Mean CPU Time 23.0 25.6
Sum Total Iters 3816302 3971111
Sum Degen. Iters 446812 460097
Sum Dual Phase 1 Iters 433351 497465
Number of Problems With Dual Phase 1 46 52

Table 9.2: Benchmark with reduced and expanded bounds after LP-preprocessing on
original test set.

The performance profile shows, that keeping the reduced bounds after LP prepro-
cessing clearly improves the overall performance of the dual simplex method. The
number of dual phase 1 iterations is significantly reduced for many models, for some
of the models the execution of a dual phase 1 method even becomes superfluous. This
is not surprising, since additional finite bounds tend to increase the number of boxed
variables, which are made dual feasible by feasibility correction. Furthermore, the
number of degenerate iterations decreases compared to the variant with expanded
bounds. Tighter bounds probably increase the impact of the bound flipping ratio
test, which can be seen as a anti-degeneracy technique.

9.4 Chronological progress study

In this section we present computational results produced by twelve different versions
of our code (see table 9.3), which reflect the progress of a two-years development pro-

122 Chapter 9 Numerical results

Version Added Implementation Technique / Modification
Ver. 1 First Version
Ver. 2 Dual Steepest Edge
Ver. 3 Packed Storage of αr

Ver. 4 Packed Storage of ρ
Ver. 5 Vector of Primal Infeasibilities
Ver. 6 Bound Flipping Ratio Test, Cost Perturbation
Ver. 7 Numerical Stability
Ver. 8 Hypersparse FTran,BTran
Ver. 9 Tight bounds after LP Preprocessing
Ver. 10 Revised Dual Steepest Edge
Ver. 11 Hypersparse LU-Update
Ver. 12 Randomized Partial Pricing

Table 9.3: Progress in our dual simplex code: implementation techniques in chrono-
logical order.

cess. The corresponding executables were generated with the Compaq Visual Fortran
Compiler V6.6 and the test runs were conducted under Windows XP Professional
on a standard Intel Pentium IV PC with 2,0 GHz and 512MB of main memory.
With the first versions of our code we could not solve some of the NetLib test prob-
lems due to numerical problems. Therefore, this study is limited to a selection of
thirteen large NetLib problems, which could already be solved with these early ver-
sions. Tables A.12 and A.13 show the detailed solution times and iteration counts,
respectively. Visualizations of the sums over time and iterations for each version are
depicted in figure 9.3.

The first version (Ver. 1) basically corresponded to algorithm 2 with Devex pric-
ing. The two required systems of linear equations per iteration were solved based
on the LU-factorization and -update described in chapter 5. Sparsity was exploited
in FTran and BTran and by a rowwise computation of the transformed pivot row,
if appropriate. Intermediate solution vectors like ρ, αq and αr were stored in dense
arrays. In this phase of development we tested our code mainly on the NetLib prob-
lems. It already worked quite well on well conditioned, not to sparse problems (like
MAROS-R7, D2Q06C, FIT2P). Some of the NetLib problems could not be solved
due to numerical problems (like GROW15, GROW22, GREENBEA, GREENBEB,
the PILOT-problems) and others due to missing techniques, mainly cost perturba-
tion and dual steepest edge pricing (like the PDS-models and our test models from
bus scheduling [37], the smallest of which is the model PTV15). The model KEN-
18 could be solved correctly, but our code was about 200 times slower in terms of
solution time than other state-of-the-art solvers (like Cplex 8.0).

The techniques in table 9.3 can be related to the three goals: 1. decrease number
of iterations, 2. decrease time per iteration, and 3. improve numerical stability.
Three techniques contributed to the first goal: dual steepest edge pricing, the bound
flipping ratio test and cost perturbation. In our first attempt to implement DSE
pricing (Ver. 2) we reset the DSE weights to 1.0 after every refactorization (as it

9.4 Chronological progress study 123

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5 Ver. 6 Ver. 7 Ver. 8 Ver. 9 Ver. 10 Ver. 11 Ver. 12

Version of Code

Su
m

 o
ve

r S
ol

ut
io

n
Ti

m
e

(s
ec

)

-47.6%

-11.2%-30.3%
-38.5%

-23.1%-6.3%
-40.1%

-42.6%

-7.3%
-17.3%

-15.0%

(a) Sum over solution time of 13 large NetLib models.

0

100000

200000

300000

400000

Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5 Ver. 6 Ver. 7 Ver. 8 Ver. 9 Ver. 10 Ver. 11 Ver. 12

Version of Code

Su
m

 o
ve

r I
te

ra
tio

n
C

ou
nt

-43.9%

-0.3%
-17.5%+2.2%-1.3%-2.9%

-23.3%

-8.0%-3.3%+1.4%

-0.4%

(b) Sum over iterations count of 13 large NetLib models.

Figure 9.3: Chronological progress in the development process of the MOPS Dual
Simplex code.

124 Chapter 9 Numerical results

was done with the Devex weights before). Later, we revised our implementation
(Ver. 10) according to our description in section 8.2.2.1 and were surprised when we
saw the effects. Also BFRT and cost perturbation (Ver. 6) reduced the number of
iterations significantly. On the test set used in this section, this is mainly due to the
ratio test. Cost perturbation turned out to be crucial to solve the PDS-models.

Time per iteration could be reduced significantly by incorporating the implemen-
tation techniques to exploit hypersparsity: packed data structures for intermediate
result vectors and reorganization of zeroing out operations (Ver. 3 and Ver. 4),
hypersparse FTran, BTran and LU-updated operations (Ver. 8 and Ver. 11) and
reorganization of the pricing loop (Ver. 5 and Ver. 12). These techniques lead
to a particular breakthrough on the KEN-problems, which now could be solved in
competitive time.

The breakthrough in terms of numerical stability was achieved in Ver. 7 with
the incorporation of Harris’ ratio test and the cost shifting technique described in
sections 6.2.2.3 and 6.2.2.4. This was the first version of our code, which solved all
of the NetLib test problems correctly.

9.5 Overall benchmarks

To evaluate the performance of the MOPS dual simplex code compared to dual sim-
plex implementations of the LP-systems Soplex 1.2.1, COIN LP (CLP) 1.02.02 and
Cplex 9.1 we conducted two types of benchmarks. In the first experiment we solved
the original version of our test set problems using the dual simplex method7 of the
four solvers with default settings and the respective system-specific LP preprocess-
ing. In the following we refer to this experiment as system benchmark. To be able to
analyze the performance the of dual simplex codes independently of the quite differ-
ent LP-preprocessors we wrote out unscaled versions of the test problems after the
COIN LP preprocessing in MPS-format and solved these modified problems. But
this time we turned off the LP preprocessors of the four solvers. We will refer to this
second experiment as dual benchmark.

The test runs were conducted under Windows XP Professional on a standard Intel
Pentium IV PC with 3,2 GHz and 1GB of main memory. The MOPS executable
was built by the Intel Visual Fortran Compiler V9.0, the Soplex and CLP code
was compiled using Microsoft Visual C++ V6.0. The detailed results are given
in the appendix in tables A.2 to A.5. Figure 9.4 shows two performance profiles
over solution time, one for the system and one for the dual benchmark. Tables 9.4
and 9.5 give an overview of the solution times for the most difficult among our test
set problems for the respective benchmark8.

The system performance profile shows, that MOPS clearly outperforms CLP and

7For Soplex, we used the entering algorithm, which conceptually can be seen as the primal simplex
method using the dual simplex method to achieve primal feasibility at the start. In practise
however, three fourths of the iterations (average, may vary tremendously on different problems)
are performed by the dual simplex part of the code.

8We sorted by the best (shortest) solution time required by any of the four solvers and extracted
the twenty-five problems with the longest solution time.

9.5 Overall benchmarks 125

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

MOPS

Cplex

COIN LP

Soplex

τ

P
(lo

g 2
(r p

,s
) ≤

 τ
 :

1
≤

s
≤

n s
)

(a) System benchmark: performance profile over solution time on original models in-
cluding LP-preprocessing.

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

MOPS

Cplex

COIN LP

Soplex

τ

P
(lo

g 2
(r p

,s
) ≤

 τ
 :

1
≤

s
≤

n s
)

(b) Benchmark of dual simplex codes (no LP-preprocessing): performance profile over
solution time on models produced by COIN LP-preprocessing.

Figure 9.4: Overall benchmarks.

126 Chapter 9 Numerical results

MOPS 7.9 Soplex 1.2.1 CLP 1.02.02 Cplex 9.1
MUN1 M D 15720.8 >72000.0 f 14295.8
RAIL4284 5944.9 10058.1 7417.0 4019.8
MUN18 M D 3142.3 >72000.0 f 5469.3
STP3D 2769.1 6726.7 1253.0 1021.2
STORMG2 1000 3464.4 15550.5 1747.4 537.9
NUG12 369.5 2763.4 430.4 189.4
QAP12 281.5 2271.5 339.4 188.5
WATSON 2 1301.7 6822.5 153.3 160.8
PDS-100 636.9 43859.1 193.8 143.2
DBIC1 871.3 26905.9 450.6 137.8
SELF 183.3 104.4 122.2 105.4
WORLD 97.5 1399.2 123.7 91.9
MOMENTUM3 980.6 894.5 1025.9 85.56

P13 195.7 f 396.0 80.3
MOD2 70.4 630.9 93.5 69.6
FOME11 57.8 173.4 74.3 59.6
NEMSWRLD 65.9 151.7 82.9 56.0
LP22 48.5 69.6 59.2 41.7
ULEVIMIN 41.5 22565.2 61.0 47.8
FA 44.3 197.8 54.8 40.4
DANO3MIP 105.6 98.2 73.3 39.8
HAL M D 55.2 286.3 67.6 37.6
ATLANTA-IP 37.3 68.5 38.8 56.6
LPL1 80.8 1748.7 51.0 36.7
PDS-40 86.4 2895.5 35.8 35.5

Table 9.4: System benchmark: solution time (including time for LP preprocessing)
on 25 most difficult original models.

9.5 Overall benchmarks 127

MOPS 7.9 Soplex 1.2.1 CLP 1.02.02 Cplex 9.1
MUN1 M D 14143.4 >72000.0 f 15382.9
RAIL4284 5865.1 10325.0 7132.2 5495.1
MUN18 M D 3181.6 >72000.0 f 12716.2
STP3D 1993.3 5275.1 1249.6 1519.4
STORMG2 1000 3894.7 12171.7 1727.6 492.3
NUG12 478.7 1791.2 430.4 463.9
QAP12 462.1 2961.2 339.4 455.7
MOMENTUM3 561.6 1045.3 1024.9 211.0
DBIC1 250.6 3678.1 448.9 144.9
WATSON 2 174.2 2943.4 143.1 225.4
PDS-100 319.1 47991.6 184.3 129.0
SELF 125.2 101.8 122.2 122.4
P16 93.6 506.4 101.0 246.4
WORLD 111.4 500.7 123.1 81.6
P15 67.9 390.1 380.6 152.1
MOD2 83.1 447.1 92.9 66.2
NEMSWRLD 69.6 171.3 82.6 60.1
P13 52.3 571.0 394.7 57.0
FOME11 52.2 141.2 73.6 78.5
LP22 48.4 74.1 59.1 47.0
FA 41.0 212.8 54.4 44.0
LPL1 81.7 704.1 49.8 40.3
HAL M D 38.6 286.9 67.2 42.2
ATLANTA-IP 40.0 63.0 38.3 52.6
P05 56.6 119.8 52.6 34.9

Table 9.5: Benchmark of dual simplex codes (no LP preprocessing): solution time
on 25 most difficult models pretreated by COIN LP preprocessing.

128 Chapter 9 Numerical results

Soplex, which both fail on two of the largest problems (MUN1 M D and MUN18 M D)9.
On about 20% of the test models, MOPS achieves the best solution time. However,
on this benchmark, Cplex 9.1 clearly yields the best overall performance. In the dual
benchmark however, MOPS achieves a better total solution time and is more stable
with respect to difficult problems. For about 30% of the problems it achieves the
best solution time and for about 80% of the problems it is at most two times slower
than the best solver.

It is interesting to see, that MOPS and Soplex show significantly better results on
the problems pretreated by the COIN LP preprocessing, while the results of Cplex 9.1
slightly worsen. Therefore we conclude, that great improvement of the performance
of the MOPS dual simplex code can be achieved by working on a better fine tuning
of the MOPS LP preprocessing (which is however already quite sophisticated).

9CLP fails to remove the cost perturbation, Soplex exceeds the 12 hour time limit.

129

Chapter 10

Summary and Conclusion

In this thesis we presented the mathematical algorithms, computational techniques
and implementation details of our dual simplex code, which outperforms the best
existing open-source and research codes and is competitive to the leading commercial
LP-systems.

In part I we laid out the algorithmic basis for our implementation of the dual
simplex method, which is a classical two-phases approach. After introducing basic
concepts in chapter 2 we developed a new elaborate algorithmic description of the
dual phase II in chapter 3, which incorporates the two crucial mathematical tech-
niques ”dual steepest edge pricing” and ”bound flipping ratio test” into the revised
dual simplex algorithm. In chapter 4 we described several dual phase I methods. We
showed, that the algorithmic approach to minimize the sum of dual infeasibilities can
be explicitly modeled as a subproblem, which is mathematically equivalent and can
directly be solved by the dual phase II. Therefore the subproblem approach is much
easier to implement. Furthermore, we gave the first description of Pan’s dual phase
I method for general LPs with explicit lower and upper bounds. We overcame the
main drawback of Pan’s method, which showed bad convergence on very few numer-
ically rather difficult test problems, by combining it with the subproblem approach.
The resulting algorithm outperformed the other methods in our computational tests.

In part II we gave detailed descriptions of techniques to achieve computational
efficiency and numerical stability. In chapter 5 we addressed the efficient solution
of the required systems of linear equations based on the LU-factorization of the
basis. To our knowledge we gave the first complete mathematical description of this
technique, which allows to use only one instead of two permutation matrices in the
FTran and BTran operations. Additionally, we discussed in detail, how the technique
of Gilbert and Peierls [29] to exploit hypersparsity can be efficiently incorporated into
this solution framework. In chapter 6 we described techniques to solve numerically
difficult LP problems and reduce the number of degenerate iterations. Our main
contribution is the integration of Harris’ ratio test with bound flipping and cost
shifting techniques. We also gave a detailed description of the cost perturbation
technique, which works well in our code.

In part III we discussed important implementation issues and presented compu-
tational results. Chapter 8 focussed on the implementation of the dual pricing step,
the dual ratio test and the exploitation of hypersparsity. The computational progress
achieved by the presented techniques was analyzed in chapter 9. Furthermore, this
chapter contained a study on the dual phase I and an overall benchmark study.

130 Chapter 10 Summary and Conclusion

We could show, that our new combined dual phase I approach outperforms other
methods from literature. We also studied the impact of the bound handling in LP
preprocessing on dual phase I and the overall performance. Finally, we compared the
performance of our code to that of the open-source codes COIN LP 1.02.02 and So-
plex 1.2.1 and the commercial code Cplex 9.1. While it turned out to be significantly
superior to Soplex and well better that COIN LP, it was slightly inferior to Cplex
9.1. We want to emphasize again, that neither the techniques used in the COIN LP
code nor the internals of the Cplex code are documented in research literature.

Future research in this field can pursue several possible directions. One direction
is to try to achieve further improvements in the given mathematical setting. Often
inconspicuous implementation details have a great impact on the performance of the
code (like the bound handling after LP preprocessing). To discover and document
such details it is necessary to investigate the behavior of our dual simplex code on
exceptionally difficult test problems. One important aspect is for instance to find
better criteria, which allow for a problem specific switching between the different
computational techniques (dense, sparse, hypersparse linear systems; simple and
bound flipping ratio test etc.). Another possible research direction is to improve the
dual simplex algorithm on the mathematical side. For instance, Pan proposed a new
promising formulation of the dual simplex algorithm in [56]. It is however not clear
yet, whether his algorithm is computationally competitive.

131

Bibliography

[1] Bpmpd test problems. http://www.sztaki.hu/∼meszaros/bpmpd/.

[2] Dsor test problems. http://dsor.upb.de/koberstein/lptestset/.

[3] Miplib 2003 test problems. http://miplib.zib.de/.

[4] Mittelmann test problems. ftp://plato.asu.edu/pub/lpfree.html.

[5] Netlib test problems. http://www.netlib.org/lp/data/.

[6] Sequential objectoriented simplex. http://www.zib.de/Optimization/Software/Soplex/,
1996.

[7] O. Axelsson. A survey of preconditioned iterative methods for linear systems of
algebraic equations. BIT, 25:166–187, 1985.

[8] R. H. Bartels and G. H. Golub. The simplex method of linear programming
using lu decomposition. Commun. ACM, 12(5):266–268, 1969.

[9] M. Benichou, J. Gautier, G. Hentges, and G. Ribiere. The efficient solution of
large-scale linear programming problems. Mathematical Programming, 13:280–
322, 1977.

[10] R. Bixby. Solving real-world linear programs: a decade and more of progress.
2002.

[11] R. E. Bixby and A. Martin. Parallelizing the dual simplex method. INFORMS
Journal on Computing, 12(1):45–56, 2000.

[12] R. Bland. New finite pivot rule for the simplex method. Mathematics of Oper-
ations Research, 2:103–107, 1977.

[13] R. K. Brayton, F. G. Gustavson, and R. A. Willoughby. Some results on sparse
matrices. Mathematics of Computation, 24(122):937–954, 1970.

[14] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical pro-
gramming problems prior to applying the simplex method. Mathematical Pro-
gramming, 8:54–83, 1975.

[15] V. Chvatal. Linear Programming. W. H. Freeman and Company, New York,
16th edition, 2002.

[16] L. Collatz and W. Wetterling. Optimierungsaufgaben. Springer-Verlag, Berlin,
1966.

132 Bibliography

[17] W. H. Cunningham. Theoretical properties of the network simplex method.
Mathematics of Operations Research, 4:196–208, 1979.

[18] G. B. Dantzig. Programming in a linear structure. U. S. Air Force Comptroller,
USAF, Washington, D.C., 1948.

[19] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In [40], pages 339–347.

[20] G. B. Dantzig and W. Orchard-Hays. The product form for the inverse in the
simplex method. Mathematical Tables and Other Aids toComputation, 8:64–67,
1954.

[21] G. B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of
Mathematics, 5:183–195, 1955.

[22] E. D. Dolan and J. J. More. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2):201–213, 2002.

[23] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, 1986.

[24] J. J. H. Forrest and J. A. Tomlin. Updating triangular factors of the basis to
maintain sparsity in the product form simplex method. Mathematical Program-
ming, 2:263–278, 1972.

[25] J. J. H. Forrest and J. A. Tomlin. Implementing the simplex method for the
optimization subroutine library. IBM Systems Journal, 31(1):11–25, 1992.

[26] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithms for
linear programming. Math. Program., 57(3):341–374, 1992.

[27] Robert Fourer. Notes on the dual simplex method. Draft report, 1994.

[28] S. I. Gass. The first linear-programming shoppe. Operations Research, 50(1):61–
68, 2002.

[29] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to
arithmetic operations. SIAM J. Sci. Statist. Comput., 9:862–874, 1988.

[30] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical anti-
cycling procedure for linearly constrained optimization. Mathematical Program-
ming, 45:437–474, 1989.

[31] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and Opti-
mization, volume 1. Addison-Wesley Publishing Company, 1991.

[32] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, London, 3 edition, 1996.

Bibliography 133

[33] P. M. J. Harris. Pivot selection methods of the DEVEX LP code. Math. Pro-
gramming, 5:1–28, 1973.

[34] E. Hellermann and D. Rarick. Reinversion with the preassigned pivot procedure.
Mathematical Programming, 1(2):195–215, 1971.

[35] A. Hoffman, M. Mannos, D. Sokolosky, and D. Wiegmann. Computational
experience in solving linear programs. SIAM Journal, 1:1–33, 1953.

[36] A. J. Hoffman. Linear programming at the national bureau of standards. In
[43].

[37] N. Kliewer, T. Mellouli, and L. Suhl. A time-space network based exact opti-
mization model for multi-depot bus scheduling. European Journal of Operations
Research, to appear 2005.

[38] A. Koberstein. Progress in the dual simplex algorithm for solving large scale
LP problems: Techniques for a fast and stable implementation. forthcoming.

[39] A. Koberstein and U.H. Suhl. Progress in the dual simplex algorithm for solv-
ing large scale lp problems: Practical dual phase 1 algorithms. to appear in:
Computational Optimization and Applications, 2005.

[40] T. C. Koopmans, editor. Activity Analysis of Production and Allocation, New
York, 1951. John Wiley and Sons.

[41] E. Kostina. The long step rule in the bounded-variable dual simplex method:
Numerical experiments. Mathematical Methods of Operations Research, 55:413–
429, 2002.

[42] C. E. Lemke. The dual method of solving the linear programming problem.
Naval Research Logistics Quarterly, 1:36–47, 1954.

[43] J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver, editors. History of
Mathematical Programming. North-Holland, Amsterdam, 1991.

[44] R. Lougee-Heimer, F. Barahona, B. Dietrich, J. P. Fasano, J. J. Forrest,
R. Harder, L. Ladanyi, T. Pfender, T. Ralphs, M. Saltzman, and K. Schien-
berger. The coin-or initiative: Open-source software accelerates operations re-
search progress. ORMS Today, 28(5):20–22, October 2001.

[45] H. M. Markowitz. The elimination form of the inverse and its applications to
linear programming. Management Science, 3:255–269, 1957.

[46] I. Maros. Computational techniques of the simplex method. Kluwer’s Interna-
tional Series, 2003.

[47] I. Maros. A generalized dual phase-2 simplex algorithm. European Journal of
Operational Research, 149(1):1–16, 2003.

134 Bibliography

[48] I. Maros. A piecewise linear dual phase-1 algorithm for the simplex method with
all types of variables. Computational Optimization and Applications, 26:63–81,
2003.

[49] C. Mészáros and U. H. Suhl. Advanced preprocessing techniques for linear and
quadratic programming. OR Spectrum, 25(4):575–595, 2003.

[50] B. A. Murtagh. Advanced Linear Programming: Computation and Practice.
McGraw-Hill, INC., 1981.

[51] W. Orchard-Hays. History of the development of lp solvers. Interfaces, 20(4):61–
73, July-August 1990.

[52] A. Orden. Solution of systems of linear inequalities on a digital computer.
Proceedings of the meeting of the ACM, May 2, 1952, Pittsburgh, PA, 1952. Di-
rectorate of Management Analysis, Headquarters, U.S. Air Force, Washington,
D.C.

[53] M. W. Padberg. Linear optimization and extensions. Springer, Berlin, 1995.

[54] P. Q. Pan. Practical finite pivoting rules for the simplex method. OR Spektrum,
12:219–225, 1990.

[55] P. Q. Pan. The most-obtuse-angle row pivot rule for achieving dual feasibility:
a computational study. European Journal of Operations Research, 101(1):167–
176, 1997.

[56] P. Q. Pan. A revised dual projective pivot algorithm for linear programming.
2004.

[57] F.M. Kirillova R. Gabasov and O.I. Kostyukova. A method of solving general
linear programming problems. Doklady AN BSSR, 23(3):197–200, 1979. (in
Russian).

[58] J. K. Reid. A sparsity-exploiting variant of the bartels-golub decomposition for
linear programming bases. Mathematical Programming, 24:55–69, 1982.

[59] D. Ryan and M. Osborne. On the solution of highly degenerate linear pro-
grammes. Mathematical Programming, 41:385–392, 1988.

[60] M. A. Saunders. The complexity of computational problem solving, chapter The
complexity of LU updating in the simplex method, pages 214–230. University
of Queensland Press, St. Lucia, Queensland, 1976.

[61] M. A. Saunders. Sparse Matrix Computations, chapter A fast, stable implemen-
tation of the simplex method using Bartels-Golub updating, pages 213–226.
Academic Press, New York et. al., 1976.

[62] I. Steinzen, A. Koberstein, and U.H. Suhl. Ein entscheidungsunterstützungssys-
tem zur zuschnittoptimierung von rollenstahl. In [64], pages 126–143.

Bibliography 135

[63] L. M. Suhl and U. H. Suhl. A fast lu-update for linear programming. Annals
of Operations Research, 43:33–47, 1993.

[64] L. M. Suhl and S. Voss, editors. Quantitative Methoden in ERP und SCM,
DSOR Beiträge zur Wirtschaftsinformatik. 2004.

[65] U. H. Suhl. Mops - mathematical optimization system. European Journal of
Operational Research, 72:312–322, 1994.

[66] U. H. Suhl. Mops - mathematical optimization system. OR News, 8:11–16,
2000.

[67] U. H. Suhl. It-gestützte, operative sortimentsplanung. In B. Jahnke and F. Wall,
editors, IT-gestützte betriebliche Entscheidungsprozesse, pages 175–194. Gabler,
2001.

[68] U. H. Suhl and L. M. Suhl. Computing sparse lu factorizations for large-scale
linear programming bases. ORSA Journal on Computing, 2(4):325–335, 1990.

[69] U. H. Suhl and L. M. Suhl. Operational Research in Industry, chapter Solving
Airline Fleet Scheduling Problems with Mixed-Integer Programming, pages 135–
156. MacMillan Press Ltd., 1999.

[70] U. H. Suhl and R. Szymanski. Supernode processing of mixed-integer models.
Computational Optimization and Applications, 3:317–331, 1994.

[71] U. H. Suhl and V. Waue. Fortschritte bei der lösung gemischt-ganzzahliger
optimierungsmodelle. In [64], pages 35–53.

[72] R. P. Tewarson. The product form of inverses of sparse matrices and graph
theory. SIAM Review, 9(1):91–99, 1967.

[73] J. A. Tomlin. On scaling linear programming problems. In M. L. Balinski and
E. Hellerman, editors, Computational Practise in Mathematical Programming,
chapter Mathematical Programming Study 4, pages 146–166. North-Holland,
Amsterdam, 1975.

[74] P. Wolfe. The composite simplex algorithm. SIAM Review, 7(1):42–54, 1965.

[75] R. Wunderling. Paralleler und objektorientierter simplex. Technical report,
Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1996.

136 Bibliography

137

Appendix A

Tables

138 Appendix A Tables

Original models COIN LPP models
Name Source Structs Constrs Nzs Structs Constrs Nzs
AA3 c 8627 825 70806 8560 757 67484
AIR04 m 8904 823 72965 8873 777 69933
ATLANTA-IP m 48738 21732 257532 17487 20004 183240
BAS1LP c 4461 5411 582411 4443 5409 582390
BAXTER t 15128 27441 95971 10738 18863 78420
CO9 c 14851 10965 166766 11045 7071 83093
CQ9 c 13778 9451 149212 11234 6645 77268
CRE-B n 72447 9648 256095 31668 5170 106881
CRE-D n 69980 8926 242646 25087 3985 82771
D2Q06C n 5167 2171 32417 4665 1787 30478
DANO3MIP m 13873 3202 79655 13825 3139 80277
DBIC1 t 183235 43200 1038761 140359 33688 781948
DBIR1 c 27355 18804 1058605 25015 7157 998555
DEGEN4 n 6711 4420 101377 6649 4353 101078
DFL001 n 12230 6071 35632 9915 3935 31754
DS m 67732 656 1024059 67732 656 1024059
EX3STA1 c 8156 17443 59419 7335 16622 58057
FA o 25324 12251 72520 21858 8824 63420
FAST0507 m 63009 507 409349 62173 484 401766
FIT2P n 13525 3000 50284 13525 3000 50284
FOME11 t 24460 12142 71264 19830 7870 63508
FOME20 t 105728 33874 230200 77464 8394 199524
FXM4 6 t 30732 22400 248989 27976 18020 219298
GEN4 t 4297 1537 107094 4173 1475 104228
GREENBEA n 5405 2392 30877 3361 1313 20932
GREENBEB n 5405 2392 30877 3354 1314 20824
HAL M D o 56334 15000 119242 55509 14169 117610
JENDREC1 c 4228 2109 89608 3535 2109 88915
KEN-13 n 42659 28632 97246 24815 10959 57064
KEN-18 n 154699 105127 358171 89445 39873 210544
LP22 t 13434 2958 65560 8693 2872 60181
LPL1 c 125000 39951 381259 82637 32460 252764
LPL3 c 33538 10828 100377 22575 7797 67493
MAROS-R7 n 9408 3136 144848 6605 2152 80194
MOD2 t 31728 35664 198250 28685 28651 124850
MODEL10 c 15447 4400 149000 10427 2894 94559
MOMENTUM2 m 3732 24237 227974 3408 20871 188584
MOMENTUM3 m 13532 56822 542009 13401 56490 541035
MSC98-IP m 21143 15850 92918 12824 15294 81668
MUN1 M D o 1479833 163142 3031285 1472987 156074 3020407
MUN18 M D o 675333 62148 1379406 674732 61528 1379589
MZZV11 m 10240 9499 134603 9514 8926 133951
MZZV42Z m 11717 10460 151261 11526 10379 150592
NEMSPMM2 c 8413 3089 78887 7363 1808 59246
NEMSWRLD c 27174 7138 190907 21878 4922 153345
NET12 m 14115 14021 80384 14115 14021 80384
NSCT2 t 14981 23003 675156 11304 7797 612116
NUG08 c 1632 912 7296 1632 912 7296
NUG12 c 8856 3192 38304 8856 3192 38304
OSA-30 n 100024 4350 600138 96128 4279 262890
OSA-60 n 232966 10280 1397793 224137 10209 584276
P01 o 3329 6448 25451 2916 3998 17208
P02 o 24316 22323 222175 7087 6358 104480
P03 o 34557 33482 105392 14474 13461 44941
P04 o 22707 19993 129622 6165 4417 61903
P05 o 121147 41695 351592 86745 28179 170523
P06 o 194445 76842 336264 97153 21174 172790
P07 o 139709 54057 330444 95092 41409 238280
P08 o 146840 58248 571495 52749 19056 269684
P09 o 21311 2501 255210 16191 1979 192070
P10 o 724096 508946 1431278 198189 6411 204429
P11 o 136265 66050 407668 66560 17036 166829
P12 o 23479 19368 208530 4583 3214 68332
P13 o 65111 57600 321992 12816 9803 108373
P14 o 102076 92048 589583 9398 5104 74260
P15 o 158347 57335 352509 68060 12514 151390
P16 o 178281 69163 673493 76772 12906 156212

– continued on next page –

139

– continued from previous page –
Original models COIN LPP models

Name Source Structs Constrs Nzs Structs Constrs Nzs
P17 o 28015 21484 91194 19781 14176 59184
P18 o 28709 21828 92944 20354 14458 60683
P19 o 32155 25400 265312 8483 5813 85256
P20 o 27256 26070 137367 5128 3982 51191
PDS-10 n 48763 16558 106436 31443 3845 83182
PDS-100 n 505360 156243 1086785 417201 78328 996496
PDS-20 t 105728 33874 230200 77464 8394 199524
PDS-40 t 212859 66844 462128 167622 22088 419586
PILOT n 3652 1441 43167 3161 1173 38791
PILOT87 n 4883 2030 73152 4416 1787 69910
PTV15 o 124383 14704 254418 121362 11857 248374
QAP12 t 8856 3192 38304 8856 3192 38304
RAIL4284 t 1092610 4284 11279748 1090563 4176 11174834
RAIL507 t 63009 507 409349 62172 484 401763
RAT5 c 9408 3136 137413 5408 1774 53548
RD-RPLUSC-21 m 622 125899 852384 543 54182 352312
SCFXM1-2R-256 c 57714 37980 213159 47966 25918 163902
SELF t 7364 960 1148845 7364 960 1148845
SEYMOUR m 1372 4944 33549 1153 4808 33047
SGPF5Y6 t 308634 246077 828070 42188 19499 118168
SLPTSK c 3347 2861 72465 3347 2861 72465
SOUTH31 c 35421 18738 112897 35223 17660 93077
SP97AR m 14101 1761 290968 14101 1706 283446
STORMG2 1000 t 1259121 528185 3341696 1110112 378036 2938345
STORMG2-125 t 157496 66185 418321 138869 47286 367623
STP3D m 204880 159488 662128 178873 139206 583370
T0331-4L c 46915 664 430982 21626 664 253203
T1717 m 73885 551 325689 16428 551 85108
ULEVIMIN c 44605 6590 162206 41227 4535 176452
VAN m 12481 27331 487296 7552 22400 482176
WATSON 1 t 383927 201155 1052028 188053 77474 660469
WATSON 2 t 671861 352013 1841028 331914 135714 1158510
WORLD t 32734 35510 198793 30273 28348 124841

Table A.1: Model dimensions.

140 Appendix A Tables

Cplex 9.1 Original models COIN LPP models
results Time Iters Phase 1 Time Iters Phase1
AA3 1.2 1952 0 1.9 3024 0
AIR04 2.8 3725 0 4.6 5536 0
ATLANTA-IP 56.6 29337 601 52.6 28522 765
BAS1LP 9.6 3683 0 9.7 3840 0
BAXTER 2.3 6019 0 2.3 5921 0
CO9 18.4 15882 5 25.6 17793 21
CQ9 11.1 13601 0 10.7 15508 0
CRE-B 4.0 10472 0 2.6 10287 0
CRE-D 1.6 7293 0 1.3 6900 0
D2Q06C 2.4 4238 235 2.2 4745 161
DANO3MIP 39.8 31579 23 32.1 26027 14
DBIC1 137.8 47719 0 144.9 50566 0
DBIR1 1.3 1604 0 0.4 1518 0
DEGEN4 7.6 4822 8 7.3 6670 0
DFL001 21.7 19152 0 25.8 23327 0
DS 26.7 7133 0 26.1 7133 0
EX3STA1 41.9 8531 1846 55.0 9461 3517
FA 40.4 38325 0 44.0 39771 0
FAST0507 18.1 5832 0 19.0 5909 0
FIT2P 4.0 5170 0 4.0 5170 0
FOME11 59.6 37745 0 78.5 47914 0
FOME20 8.0 16702 0 5.1 14681 0
FXM4 6 4.8 32677 14006 3.2 24985 9370
GEN4 1.6 542 0 2.5 650 9
GREENBEA 0.9 3379 1907 0.4 2393 231
GREENBEB 1.4 4170 168 0.7 3210 72
HAL M D 37.6 20204 0 42.2 21301 0
JENDREC1 2.2 3372 1236 2.1 3372 1236
KEN-13 1.3 13513 0 1.2 13797 0
KEN-18 9.8 49224 0 9.9 49625 0
LP22 41.7 22470 8 47.0 25914 33
LPL1 36.7 35442 0 40.3 35147 2
LPL3 2.4 6295 0 2.1 6339 0
MAROS-R7 3.0 2800 0 3.0 2751 0
MOD2 69.6 34799 0 66.2 43948 0
MODEL10 17.0 21203 0 18.3 23612 0
MOMENTUM2 3.4 16788 464 4.6 3982 74
MOMENTUM3 85.5 76718 1030 211.0 33636 8
MSC98-IP 75.7 40947 2255 73.6 38909 2448
MUN1 M D 14295.8 324017 0 15382.9 348118 0
MUN18 M D 5469.3 141395 0 12716.2 245630 0
MZZV11 141.3 55872 0 135.6 59700 1832
MZZV42Z 71.5 28882 0 97.7 46003 707
NEMSPMM2 4.9 6314 138 3.6 7056 169
NEMSWRLD 56.0 33274 0 60.1 39619 4
NET12 7.8 7927 0 7.7 7927 0
NSCT2 1.3 6313 0 0.9 6513 0
NUG08 1.8 6345 0 2.1 6751 0
NUG12 189.4 86232 0 463.9 150851 0
OSA-30 1.5 2285 0 1.0 2395 0
OSA-60 4.1 4790 0 2.4 4751 0
P01 1.7 3522 3 1.5 3428 0
P02 23.2 12728 208 28.0 13366 8
P03 4.3 2349 0 7.2 2380 0
P04 16.9 12523 163 14.8 10101 0
P05 33.8 34595 28 34.9 34733 1
P06 7.0 28519 0 5.6 28505 6
P07 15.0 30154 0 13.2 30274 0
P08 15.7 25085 0 18.8 33672 0
P09 6.0 7593 0 8.3 8847 0
P10 3.8 168 0 0.4 367 0
P11 1.3 3679 0 0.4 2495 0
P12 5.0 4719 0 4.8 4675 0
P13 80.3 29522 13 57.0 22199 0
P14 5.6 5671 0 4.1 4714 0
P15 42.2 7183 0 152.1 13136 0
P16 57.6 7602 0 246.4 14586 109

– continued on next page –

141

– continued from previous page –
Cplex 9.1 Original models COIN LPP models
results Time Iters Phase 1 Time Iters Phase1
P17 5.6 3014 0 6.2 2634 0
P18 2.6 2520 0 7.5 3314 0
P19 22.0 11613 4 23.4 10488 3
P20 17.6 13539 0 37.9 28925 1669
PDS-10 1.3 4978 0 0.7 4805 0
PDS-100 143.2 110512 0 129.0 106160 0
PDS-20 8.4 16702 0 4.9 14681 0
PDS-40 35.5 48835 0 23.3 41258 0
PILOT 3.2 3767 523 2.7 3400 17
PILOT87 30.6 14667 1370 13.2 7012 66
PTV15 15.9 15240 0 8.2 12793 0
QAP12 188.5 79902 0 455.7 151392 0
RAIL4284 4019.8 44114 1 5495.1 56886 0
RAIL507 11.6 3053 0 10.6 3219 0
RAT5 1.7 2336 0 1.7 2336 0
RD-RPLUSC-21 1.4 374 0 0.9 134 0
SCFXM1-2R-256 8.6 22344 0 13.3 24601 103
SELF 105.4 11694 0 122.4 13968 0
SEYMOUR 2.5 3291 0 2.2 3075 0
SGPF5Y6 3.2 16878 3042 1.2 18261 2952
SLPTSK 1.8 3207 2576 1.2 2214 1747
SOUTH31 56.1 24253 0 57.3 25099 0
SP97AR 1.5 1429 0 1.6 1565 0
STORMG2 1000 537.9 754914 0 492.3 693337 0
STORMG2-125 14.4 71442 0 13.7 78480 0
STP3D 1021.2 103469 0 1519.4 125533 0
T0331-4L 19.9 5915 0 25.2 7721 0
T1717 7.1 3925 0 6.9 4088 0
ULEVIMIN 47.8 42536 0 36.3 38506 0
VAN 18.3 10452 0 17.9 10841 0
WATSON 1 22.9 63944 179 21.2 70953 1851
WATSON 2 160.8 361486 296768 225.4 408280 330200
WORLD 91.9 41466 84 81.6 46492 84
Sum 28105.1 3542128 328892 39415.3 3849037 359489
Geo. Mean 14.3 – – 14.0 – –

Table A.2: Results with Cplex 9.1 Dual Simplex.

142 Appendix A Tables

CLP results Time PP Time Time in Dual Iters
AA3 2.0 0.1 1.9 2423
AIR04 4.3 0.1 4.2 4107
ATLANTA-IP 38.8 0.5 38.3 15190
BAS1LP 2.8 0.9 1.9 1094
BAXTER 2.1 0.2 1.9 3952
CO9 27.0 0.4 26.6 13996
CQ9 15.6 0.3 15.3 12502
CRE-B 7.1 0.4 6.7 8928
CRE-D 4.5 0.6 3.9 6513
D2Q06C 4.5 0.2 4.3 5842
DANO3MIP 73.3 0.2 73.1 30850
DBIC1 450.6 1.7 448.9 51128
DBIR1 5.8 1.3 4.5 2424
DEGEN4 9.9 0.2 9.7 7557
DFL001 33.6 0.3 33.3 22270
DS 32.3 0.0 32.3 5724
EX3STA1 73.8 0.1 73.6 12455
FA 54.8 0.4 54.4 38178
FAST0507 15.3 0.6 14.7 3504
FIT2P 6.9 0.0 6.9 4830
FOME11 74.3 0.7 73.6 39414
FOME20 9.0 2.0 7.0 13759
FXM4 6 4.9 0.8 4.2 19150
GEN4 92.5 0.2 92.3 3855
GREENBEA 0.7 0.1 0.6 2398
GREENBEB 1.2 0.1 1.1 3637
HAL M D 67.6 0.4 67.2 25863
JENDREC1 4.1 0.1 4.0 4142
KEN-13 2.7 0.5 2.2 13031
KEN-18 15.0 1.8 13.3 47761
LP22 59.2 0.1 59.1 22327
LPL1 51.0 1.2 49.8 28832
LPL3 1.4 0.3 1.2 4249
MAROS-R7 4.4 0.2 4.2 2467
MOD2 93.5 0.6 92.9 33269
MODEL10 37.7 0.4 37.3 24112
MOMENTUM2 26.7 0.3 26.3 9933
MOMENTUM3 1025.9 1.0 1024.9 75259
MSC98-IP 277.5 0.3 277.2 100222
MUN1 M D f f f f
MUN18 M D f f f f
MZZV11 9.3 0.3 9.0 10495
MZZV42Z 3.6 0.4 3.3 7044
NEMSPMM2 6.6 0.2 6.4 8974
NEMSWRLD 82.9 0.4 82.6 36940
NET12 1.9 0.0 1.9 2071
NSCT2 3.0 0.8 2.2 5482
NUG08 2.0 0.0 2.0 4126
NUG12 430.4 0.0 430.4 96853
OSA-30 4.0 0.9 3.1 2258
OSA-60 13.3 1.8 11.5 5013
P01 2.7 0.1 2.6 4059
P02 103.7 0.8 102.9 30581
P03 65.3 0.3 65.0 16924
P04 48.7 0.5 48.2 19126
P05 54.6 2.1 52.6 33935
P06 13.2 3.7 9.5 29179
P07 31.1 5.7 25.4 39590
P08 39.3 2.8 36.5 36509
P09 32.0 0.3 31.7 15379
P10 107.7 91.3 16.4 7251
P11 54.0 51.4 2.6 9914
P12 13.8 0.6 13.2 8311
P13 396.0 1.3 394.7 61403
P14 15.9 1.9 14.0 11955
P15 384.3 3.8 380.6 59969
P16 106.1 5.0 101.0 13775

– continued on next page –

143

– continued from previous page –
CLP results Time PP Time Time in Dual Iters
P17 34.5 0.4 34.2 14830
P18 21.5 0.4 21.2 7971
P19 143.3 0.9 142.5 34881
P20 49.3 0.5 48.9 22301
PDS-10 2.1 0.9 1.2 5183
PDS-100 193.8 9.4 184.3 149094
PDS-20 8.9 1.9 7.1 13759
PDS-40 35.8 4.0 31.8 41360
PILOT 5.0 0.1 4.9 3651
PILOT87 24.9 0.2 24.6 7876
PTV15 13.3 0.9 12.4 13370
QAP12 339.4 0.0 339.4 80891
RAIL4284 7417.0 284.8 7132.2 62140
RAIL507 16.1 0.6 15.6 2975
RAT5 2.8 0.1 2.6 2102
RD-RPLUSC-21 21.8 21.1 0.7 201
SCFXM1-2R-256 27.0 0.9 26.0 37318
SELF 122.2 0.0 122.2 4594
SEYMOUR 3.2 0.1 3.1 3131
SGPF5Y6 19.3 15.9 3.4 24111
SLPTSK 4.2 0.0 4.2 4381
SOUTH31 54.6 0.3 54.3 18315
SP97AR 2.1 0.4 1.8 1209
STORMG2 1000 1747.4 19.8 1727.6 582344
STORMG2-125 28.6 1.8 26.8 68532
STP3D 1253.0 3.3 1249.6 104809
T0331-4L 32.7 0.7 31.9 7749
T1717 11.3 1.0 10.4 4381
ULEVIMIN 61.0 1.4 59.6 30400
VAN 22.1 0.7 21.4 9239
WATSON 1 97.0 4.8 92.3 139347
WATSON 2 153.3 10.2 143.1 208336
WORLD 123.7 0.7 123.1 38306

Table A.3: Results with COIN LP 1.02.02 Dual Simplex.

144 Appendix A Tables

Soplex 1.2.1 Original models COIN LPP models
results Time Iters Dual Its Prim Its Time Iters Dual Its Prim Its
AA3 2.0 2171 2171 0 2.1 2236 2236 0
AIR04 4.4 3677 3677 0 4.5 3726 3726 0
ATLANTA-IP 68.5 16622 16358 264 63.0 15730 15578 152
BAS1LP 6.8 2995 2995 0 6.8 2994 2994 0
BAXTER 11.4 7845 7845 0 7.2 5924 5923 1
CO9 33.5 14853 14417 436 23.1 12658 12655 3
CQ9 28.8 15211 14886 325 17.8 12589 12587 2
CRE-B 64.6 22556 22556 0 14.6 12697 12697 0
CRE-D 58.0 20636 20636 0 6.9 9644 9644 0
D2Q06C 6.1 6596 5265 1331 4.5 5535 5251 284
DANO3MIP 98.2 42068 39076 2992 116.5 50451 41652 8799
DBIC1 26905.9 935458 745161 190297 3678.1 300344 300344 0
DBIR1 30.8 19478 5783 13695 12.1 4685 4685 0
DEGEN4 21.1 10459 6394 4065 26.5 12467 12467 0
DFL001 60.5 22013 22013 0 52.5 25126 25126 0
DS 22.0 4581 4581 0 22.0 4581 4581 0
EX3STA1 67.3 11694 0 11694 59.0 10606 0 10606
FA 197.8 58267 58267 0 212.8 63891 63891 0
FAST0507 21.0 4614 4614 0 17.6 4037 4037 0
FIT2P 6.5 5817 5817 0 6.9 7104 7104 0
FOME11 173.4 45672 45672 0 141.2 50097 50097 0
FOME20 250.3 52980 52980 0 112.0 36597 36597 0
FXM4 6 69.2 34346 24297 10049 63.5 41807 32880 8927
GEN4 51.9 1050 1050 0 7.9 638 638 0
GREENBEA 4.6 6050 3063 2987 1.5 3876 2819 1057
GREENBEB 6.4 7664 7372 292 2.7 5502 5453 49
HAL M D 286.3 44408 44408 0 286.9 44629 44629 0
JENDREC1 8.0 4490 2276 2214 8.0 4490 2276 2214
KEN-13 227.0 61007 61007 0 92.3 32801 32801 0
KEN-18 4243.6 237364 237364 0 1968.9 139824 139824 0
LP22 69.6 19191 19190 1 74.1 21979 21979 0
LPL1 1748.7 132277 132277 0 704.1 78228 78225 3
LPL3 3.2 4873 4873 0 1.9 4081 4081 0
MAROS-R7 23.9 6011 6011 0 4.6 2458 2458 0
MOD2 630.9 64736 64736 0 447.1 58386 58386 0
MODEL10 53.5 21585 13239 8346 62.6 30189 30175 14
MOMENTUM2 18.7 6205 6065 140 15.3 6333 6207 126
MOMENTUM3 894.5 47830 47726 104 1045.3 60610 60476 134
MSC98-IP 215.4 57066 54281 2785 117.8 33022 30540 2482
MUN1 M D >72000.0 – – – >72000.0 – – –
MUN18 M D >72000.0 – – – >72000.0 – – –
MZZV11 552.6 148557 148557 0 164.0 48543 48541 2
MZZV42Z 34.0 17589 17589 0 28.8 14784 14712 72
NEMSPMM2 14.2 11708 8474 3234 9.7 9820 7228 2592
NEMSWRLD 151.7 33812 32506 1306 171.3 42511 42510 1
NET12 2.4 1512 1512 0 2.4 1512 1512 0
NSCT2 8.8 8873 853 8020 6.9 7492 7482 10
NUG08 3.3 5331 5331 0 3.4 5331 5331 0
NUG12 2763.4 280440 280440 0 1791.2 196852 196852 0
OSA-30 18.7 3182 3182 0 58.6 8689 8689 0
OSA-60 107.8 6246 6246 0 331.3 16148 16148 0
P01 7.4 8568 4559 4009 2.4 4336 4335 1
P02 325.9 41620 23788 17832 251.0 65377 65376 1
P03 103.7 10415 117 10298 14.3 4852 4834 18
P04 387.5 55710 40176 15534 76.2 34307 34307 0
P05 174.5 37904 37898 6 119.8 33333 33325 8
P06 526.5 74077 74077 0 51.9 31082 31076 6
P07 2650.9 176179 176179 0 886.7 111165 111165 0
P08 2749.1 147692 146753 939 1007.8 125372 124464 908
P09 9.6 5962 5881 81 14.6 8344 8281 63
P10 2242.7 390429 390424 5 39.0 116884 116884 0
P11 216.0 55796 55784 12 18.3 29753 29753 0
P12 173.3 29597 14041 15556 24.3 14667 14667 0
P13 f f f f 571.0 107667 107666 1
P14 1900.5 95907 53994 41913 44.1 24030 24027 3
P15 3590.8 95562 21657 73905 390.1 32071 31652 419
P16 5126.7 115646 25861 89785 506.4 39365 39361 4

– continued on next page –

145

– continued from previous page –
Soplex 1.2.1 Original models COIN LPP models
results Time Iters Dual Its Prim Its Time Iters Dual Its Prim Its
P17 95.2 15451 454 14997 26.1 8850 8850 0
P18 111.1 17398 1214 16184 33.0 10306 10279 27
P19 f f f f 161.9 41118 41113 5
P20 f f f f 30.2 14541 13391 1150
PDS-10 25.4 18841 18841 0 8.0 11224 11224 0
PDS-100 43859.1 922628 922628 0 47991.6 1058917 1058917 0
PDS-20 250.8 52980 52980 0 112.8 36597 36597 0
PDS-40 2895.5 186524 186524 0 2443.7 198742 198742 0
PILOT 15.6 6578 566 6012 5.4 4447 4429 18
PILOT87 55.1 14062 7420 6642 44.4 12381 11644 737
PTV15 31.4 17682 17682 0 72.2 17497 17497 0
QAP12 2271.5 239642 239642 0 2961.2 360323 360323 0
RAIL4284 10058.1 62350 62340 10 10325.0 63067 63067 0
RAIL507 13.0 2791 2791 0 11.1 2676 2676 0
RAT5 40.6 9489 9489 0 3.1 2118 2118 0
RD-RPLUSC-21 5.4 339 338 1 12.5 304 304 0
SCFXM1-2R-256 155.8 45722 35114 10608 108.2 42314 42195 119
SELF 104.4 4392 4392 0 101.8 4392 4392 0
SEYMOUR 2.9 2731 2731 0 2.8 2565 2565 0
SGPF5Y6 733.6 124654 104834 19820 10.0 19406 19143 263
SLPTSK 8.1 3218 722 2496 9.1 3526 583 2943
SOUTH31 53.7 18689 18623 66 64.1 18536 18536 0
SP97AR 1.8 1223 1223 0 1.9 1291 1291 0
STORMG2 1000 15550.5 679823 679823 0 12171.7 630928 630928 0
STORMG2-125 210.2 84930 84930 0 160.1 79153 79153 0
STP3D 6726.7 153415 153409 6 5275.1 142454 142442 12
T0331-4L 69.1 10837 10837 0 42.0 9546 9546 0
T1717 33.2 4623 4623 0 9.9 4169 4169 0
ULEVIMIN 22565.2 4748307 3381593 1366714 76.1 24342 24310 32
VAN 15.2 8120 8085 35 16.6 8347 8300 47
WATSON 1 1943.5 184968 9087 175881 2552.7 386132 383204 2928
WATSON 2 6822.5 290751 406 290345 2943.4 238539 537 238002
WORLD 1399.2 123302 123302 0 500.7 61831 61768 63

Table A.4: Results with Soplex 1.2.1 Dual Simplex.

146 Appendix A Tables

MOPS 7.9 Original models COIN LPP models
results Time Iters Phase 1 Time Iters Phase1
AA3 1.5 2249 0 1.7 2367 0
AIR04 3.1 3784 0 3.5 4265 0
ATLANTA-IP 37.3 15802 0 40.0 16545 0
BAS1LP 2.0 1399 0 0.8 724 0
BAXTER 3.3 4736 0 2.5 4851 0
CO9 15.8 12096 77 15.1 12483 0
CQ9 14.3 13624 4 12.7 13336 0
CRE-B 6.4 7706 27 4.3 7755 0
CRE-D 3.5 5663 25 1.9 5574 0
D2Q06C 3.2 5463 77 3.0 5722 29
DANO3MIP 105.6 56184 0 89.6 50964 0
DBIC1 871.3 67597 1220 250.6 45106 0
DBIR1 1.8 1921 0 2.9 2538 0
DEGEN4 14.2 8767 1813 8.1 7483 0
DFL001 20.6 19185 30 20.8 20232 0
DS 29.7 4404 0 40.4 6402 0
EX3STA1 10.6 4230 1093 16.9 7203 5
FA 44.3 36125 0 41.0 35069 0
FAST0507 18.1 5012 0 18.1 5423 0
FIT2P 4.3 4880 0 4.5 5274 0
FOME11 57.8 38983 24 52.2 37849 0
FOME20 14.9 22682 0 7.4 13734 0
FXM4 6 6.6 23370 1944 6.6 22937 1684
GEN4 2.6 619 0 2.6 596 0
GREENBEA 0.7 3071 1453 0.4 2461 30
GREENBEB 1.2 3723 81 1.0 4435 2
HAL M D 55.2 26647 0 38.6 23526 0
JENDREC1 3.0 4377 2590 2.1 3132 993
KEN-13 3.4 15659 0 1.8 13107 0
KEN-18 29.8 53256 0 16.7 47642 0
LP22 48.5 22700 0 48.4 22994 0
LPL1 80.8 33883 0 81.7 34918 0
LPL3 1.1 4054 0 1.0 4177 0
MAROS-R7 3.8 2605 0 5.9 3587 0
MOD2 70.4 28801 1 83.1 33794 0
MODEL10 32.5 29331 1 21.7 23207 0
MOMENTUM2 32.2 12081 0 23.3 11033 0
MOMENTUM3 980.6 83498 0 561.6 53537 0
MSC98-IP 31.8 18676 0 3.6 5726 0
MUN1 M D 15720.8 422393 0 14143.4 394227 0
MUN18 M D 3142.3 139359 0 3181.6 141465 0
MZZV11 92.5 40079 4 11.0 11385 0
MZZV42Z 6.8 9221 0 4.5 7561 0
NEMSPMM2 5.6 8003 482 4.7 8498 74
NEMSWRLD 65.9 33202 0 69.6 39666 0
NET12 1.9 1732 25 1.7 2026 0
NSCT2 1.5 5660 0 1.8 5988 0
NUG08 1.8 4974 0 1.6 4135 0
NUG12 369.5 107631 0 478.7 123744 0
OSA-30 2.8 2139 0 1.9 2327 0
OSA-60 9.0 4331 0 7.3 5002 0
P01 1.4 2972 0 1.8 4387 0
P02 51.5 19947 1575 34.3 17379 0
P03 3.8 1860 0 7.7 4906 0
P04 41.9 22550 6137 21.0 14263 0
P05 67.5 38081 1 56.6 38246 8
P06 12.6 28527 21 10.3 31164 6
P07 51.3 52730 1757 36.9 42338 0
P08 455.9 81204 0 31.3 35040 0
P09 5.5 7919 1 22.6 19943 0
P10 8.2 7979 264 1.8 7406 0
P11 6.0 17905 430 1.5 9823 0
P12 22.6 14183 423 8.2 7631 0
P13 195.7 49475 10218 52.3 22583 0
P14 92.3 44092 7485 4.1 7074 0
P15 21.8 3816 0 67.9 12565 0
P16 28.1 4370 0 93.6 14210 0

– continued on next page –

147

– continued from previous page –
MOPS 7.9 Original models COIN LPP models
results Time Iters Phase 1 Time Iters Phase1
P17 3.9 2265 0 6.5 5033 0
P18 4.0 2284 0 7.1 5271 0
P19 251.4 65871 12706 19.5 10918 0
P20 45.6 26185 5855 30.2 22062 0
PDS-10 1.8 6833 0 1.0 5118 0
PDS-100 636.9 237628 0 319.1 151212 0
PDS-20 14.9 22682 0 7.1 13734 0
PDS-40 86.4 70158 0 37.8 42116 0
PILOT 3.8 3493 116 3.8 3796 0
PILOT87 31.5 11265 102 16.5 7035 0
PTV15 11.7 13564 0 8.8 13160 0
QAP12 281.5 80121 0 462.1 125538 0
RAIL4284 5944.9 56076 0 5865.1 56714 0
RAIL507 16.4 3405 0 12.4 2836 0
RAT5 1.9 2142 0 1.8 2137 0
RD-RPLUSC-21 17.8 210 1 0.4 179 0
SCFXM1-2R-256 28.3 35062 0 36.5 37667 0
SELF 183.3 8519 0 125.2 6024 0
SEYMOUR 3.5 4097 15 2.8 3664 0
SGPF5Y6 17.7 44023 12132 2.7 25767 0
SLPTSK 9.6 8300 7818 3.1 3868 3438
SOUTH31 30.2 18402 19 29.0 18264 0
SP97AR 1.3 1170 0 1.2 1159 0
STORMG2 1000 3464.4 506109 1000 3894.7 556389 0
STORMG2-125 38.9 62391 125 36.2 63794 0
STP3D 2769.1 149935 0 1993.3 122929 0
T0331-4L 23.8 5754 0 24.0 6488 0
T1717 11.5 3585 0 8.5 4401 0
ULEVIMIN 41.5 22282 1 18.0 15925 0
VAN 47.8 14198 0 14.1 8827 0
WATSON 1 238.2 145297 104811 140.9 137312 0
WATSON 2 1301.7 264235 249365 174.2 201317 10954
WORLD 97.5 33584 2 111.4 38704 97
Sum 38816.5 3816302 433351 33312.7 3376048 17320
Geo. Mean 23.0 – – 15.7 – –

Table A.5: Results with MOPS 7.9 Dual Simplex.

148 Appendix A Tables

MOPS 7.9 (expanded bounds) Total Total Degen. Phase 1
results Time Iters Iters Iters
AA3 1.6 1976 0 0
AIR04 3.2 3784 0 0
ATLANTA-IP 28.7 13069 4034 0
BAS1LP 2.1 1399 608 0
BAXTER 3.1 4621 438 0
CO9 18.6 13678 2708 776
CQ9 12.5 12329 454 65
CRE-B 6.1 7571 518 99
CRE-D 2.7 5524 361 82
D2Q06C 3.1 5012 652 356
DANO3MIP 101.5 54574 34062 0
DBIC1 880.9 64485 57299 2447
DBIR1 1.6 1881 244 0
DEGEN4 14.3 8767 2 1813
DFL001 24 17444 37 54
DS 41.6 6402 10 0
EX3STA1 10.5 4230 3129 1093
FA 43.6 35776 1 150
FAST0507 17.9 5012 84 0
FIT2P 4.4 4880 0 0
FOME11 67 35146 134 58
FOME20 14.6 20758 222 1549
FXM4 6 7.9 26597 3446 9165
GEN4 2.6 619 612 0
GREENBEA 0.9 2837 19 1361
GREENBEB 1.9 5032 245 227
HAL M D 56.8 26554 109 0
JENDREC1 3.2 4377 0 2590
KEN-13 3.3 15745 0 0
KEN-18 31.8 54582 3 0
LP22 43.3 20049 183 0
LPL1 97.3 32842 2 0
LPL3 1.1 3977 0 0
MAROS-R7 3.8 2605 9 0
MOD2 148 39037 4853 85
MODEL10 97.2 53714 1322 352
MOMENTUM2 18.6 9176 3177 0
MOMENTUM3 914.2 75332 24536 0
MSC98-IP 31.8 18676 15692 0
MUN1 M D 15702.6 419305 12796 0
MUN18 M D 3430.3 143738 5220 0
MZZV11 10.9 11174 844 0
MZZV42Z 6.6 9221 961 0
NEMSPMM2 7.2 8145 1503 728
NEMSWRLD 70.3 26783 736 133
NET12 1.5 1708 32 0
NSCT2 1.5 5740 30 0
NUG08 1.4 4016 54 0
NUG12 278.9 82180 7718 0
OSA-30 23.9 2834 30 0
OSA-60 82.4 5845 94 0
P01 2.1 3754 1330 0
P02 48.2 19394 77 5463
P03 3.7 1860 1748 0
P04 99.1 48999 49 10490
P05 67.7 38081 23 1
P06 16 30825 2145 71
P07 52.2 53345 22 1854
P08 500.7 84265 35598 0
P09 5.7 7919 1122 1
P10 8.4 7987 1 264
P11 6.3 18204 240 430
P12 33.3 19771 37 5254
P13 379.7 91668 208 12715
P14 47.7 23834 103 9198
P15 26.5 3901 3729 0
P16 30.5 4211 3968 0

– continued on next page –

149

– continued from previous page –
MOPS 7.9 (no bound red) Total Total Degen. Phase 1
results Time Iters Iters Iters
P17 3.8 2258 2165 0
P18 4.2 2275 2165 0
P19 282.1 68515 173 14100
P20 81.1 45522 6933 7788
PDS-10 2 6460 42 735
PDS-100 870.4 239575 5039 5760
PDS-20 14.4 20758 222 1549
PDS-40 126.2 66830 916 2830
PILOT 4.6 3888 47 232
PILOT87 33 11703 2633 175
PTV15 10.1 13432 0 0
QAP12 668.2 177774 16898 0
RAIL4284 5961.7 56076 1116 0
RAIL507 16.7 3405 119 0
RAT5 2.1 2142 0 0
RD-RPLUSC-21 18 210 5 1
SCFXM1-2R-256 38 33725 2560 1549
SELF 168 8591 3953 0
SEYMOUR 3.3 4097 41 15
SGPF5Y6 18 44023 27605 12132
SLPTSK 9.6 8300 0 7818
SOUTH31 30.1 18456 0 22
SP97AR 1.4 1170 108 0
STORMG2 1000 2766 506483 5237 2000
STORMG2-125 34 62497 648 250
STP3D 2773.4 149935 3092 0
T0331-4L 29.8 6687 5 0
T1717 13.4 4194 0 0
ULEVIMIN 41.5 22282 18 1
VAN 47.7 14198 3899 0
WATSON 1 342.6 153036 36051 122181
WATSON 2 1302.1 264235 92892 249365
WORLD 213.4 49603 5892 38
Sum 39643.8 3971111 460097 497465
Geom. Mean 25.6 – – –

Table A.6: Results with MOPS 7.9 Dual Simplex with expanded bounds after LP pre-
processing.

150 Appendix A Tables

Pan+SP CPU Total Degen. Phase 1 Dual Primal
results Time (secs) Iters Iters Iters Iters Iters
CO9 18.4 12394 2032 77 12392 2
CQ9 16.2 13578 371 4 13574 4
CRE-B 7.8 7884 556 27 7884 0
CRE-D 4.2 6086 411 25 6086 0
D2Q06C 3.4 5502 905 77 5502 0
DBIC1 1099.5 70493 61692 1220 70493 0
DEGEN4 15.3 8452 0 1813 8452 0
DFL001 22.1 17734 48 30 17632 102
EX3STA1 18.4 5359 4229 1093 5359 0
FOME11 57.2 35660 112 24 35444 216
FOME12 163.5 76982 174 58 76747 235
FOME13 427.2 147110 567 151 146004 1106
FXM4 6 6.1 22644 911 1944 22644 0
GREENBEB 1.5 4035 113 81 4035 0
JENDREC1 3.2 4377 0 2590 4377 0
MOD2 78.0 29430 4602 1 29430 0
MODEL10 37.6 28388 321 1 28345 43
MZZV11 88.9 35361 9116 4 35361 0
NEMSPMM2 6.4 8033 1308 482 8033 0
NET12 1.7 1644 33 25 1644 0
P02 68.7 24223 140 1575 24223 0
P04 51.5 24479 47 6137 24479 0
P05 69.7 38081 23 1 38081 0
P06 12.5 28379 1199 21 28379 0
P07 50.2 52376 23 1757 52375 1
P09 8.1 8204 1485 1 8179 25
P10 8.6 7979 1 264 7979 0
P11 5.8 17861 90 430 17861 0
P12 16.3 9579 86 423 9579 0
P13 490.6 111176 291 10218 111175 1
P14 70.2 31423 58 7485 31422 1
P19 266.8 58964 95 12706 58954 10
P20 40.6 23495 3367 5855 23264 231
PILOT 5.0 3977 71 116 3870 107
PILOT87 29.0 9426 2553 102 9383 43
RD-RPLUSC-21 17.7 212 5 1 212 0
SEYMOUR 3.3 3771 61 15 3771 0
SGPF5Y6 16.9 44023 27605 12132 44007 16
SLPTSK 3.4 3745 123 7818 3741 4
SOUTH31 32.8 18465 0 19 18465 0
STORMG2 1000 3456.8 505824 5136 1000 505824 0
STORMG2-125 37.5 63210 659 125 63210 0
ULEVIMIN 58.3 23557 25 1 23557 0
WATSON 1 253.2 148074 32780 104811 144549 3525
WATSON 2 1272.4 258304 91946 249365 250026 8278
WORLD 98.8 33176 4907 2 33176 0
Sum 8521.1 2093129 260277 432107 2079179 13950
Geom. Mean 30.1 18602.6 – 164.9 18551.1 –

Table A.7: Results on Dual Phase 1: Combined Method ”Pan + Subproblem-
Approach”.

151

Pan CPU Total Degen. Phase 1 Dual Primal
results Time (secs) Iters Iters Iters Iters Iters
CO9 18.7 12394 2032 77 12392 2
CQ9 16.2 13578 371 4 13568 10
CRE-B 7.8 7884 556 27 7884 0
CRE-D 4.3 6086 411 25 6086 0
D2Q06C 3.4 5502 905 76 5502 0
DBIC1 1119.3 70493 61692 1220 70493 0
DEGEN4 15.3 8452 0 1615 8452 0
DFL001 22.2 17734 48 30 17651 83
EX3STA1 18.4 5359 4229 757 5359 0
FOME11 57.3 35660 112 24 35490 170
FOME12 163.6 76982 174 58 76718 264
FOME13 427.9 147367 795 151 146334 1033
FXM4 6 6.1 22644 911 1944 22644 0
GREENBEB 1.5 4035 113 81 4035 0
JENDREC1 3.2 4377 0 2590 4377 0
MOD2 78.0 29430 4602 1 29430 0
MODEL10 37.6 28388 321 1 28339 49
MZZV11 89.0 35361 9116 4 35361 0
NEMSPMM2 6.4 8033 1308 724 8033 0
NET12 1.7 1644 33 25 1644 0
P02 68.7 24223 140 1528 24223 0
P04 f f f f f f
P05 70.2 38081 23 1 38081 0
P06 12.8 28379 1199 21 28379 0
P07 50.2 52376 23 1755 52375 1
P09 8.1 8204 1485 1 8171 33
P10 8.6 7979 1 264 7979 0
P11 5.8 17861 90 430 17860 1
P12 16.3 9579 86 457 9579 0
P13 f f f f f f
P14 69.0 32285 125 1843 32284 1
P19 f f f f f f
P20 233.2 227028 4326 207453 226400 628
PILOT 5.0 3977 71 116 3880 97
PILOT87 29.0 9426 2553 102 9405 21
RD-RPLUSC-21 17.8 212 5 1 212 0
SEYMOUR 3.3 3771 61 15 3771 0
SGPF5Y6 17.3 44023 27605 12132 44007 16
SLPTSK 3.4 3745 123 2813 3741 4
SOUTH31 32.9 18465 0 19 18465 0
STORMG2 1000 3456.4 505824 5136 1000 505824 0
STORMG2-125 37.5 63210 659 125 63210 0
ULEVIMIN 58.5 23557 25 1 23557 0
WATSON 1 282.6 133435 6548 93649 130124 3311
WATSON 2 2241.0 233271 11875 215752 223392 9879
WORLD 98.8 33176 4907 2 33176 0

Table A.8: Results on Dual Phase 1: Pan’s method.

152 Appendix A Tables

SP CPU Total Degen. Phase 1 Dual Primal
results Time (secs) Iters Iters Iters Iters Iters
CO9 21.0 12935 2455 82 12935 0
CQ9 18.2 13728 359 4 13720 8
CRE-B 8.2 7885 517 23 7885 0
CRE-D 4.0 5594 352 21 5594 0
D2Q06C 3.8 5641 931 90 5641 0
DBIC1 1700.4 107282 84034 12679 107282 0
DEGEN4 13.7 7552 1 851 7552 0
DFL001 23.7 18922 81 17 18804 118
EX3STA1 31.2 6979 6913 4000 6979 0
FOME11 64.1 38427 60 22 38315 112
FOME12 154.8 73181 182 46 72911 270
FOME13 430.3 147132 530 111 146351 781
FXM4 6 6.5 23234 1245 2363 23234 0
GREENBEB 1.3 3596 93 80 3596 0
JENDREC1 3.1 4193 0 2182 4193 0
MOD2 75.9 29029 4536 10 29029 0
MODEL10 37.5 28006 234 1 27955 51
MZZV11 69.0 29296 7203 11 29296 0
NEMSPMM2 6.7 7689 1497 278 7689 0
NET12 1.6 1454 37 27 1454 0
P02 65.6 22846 82 4790 22846 0
P04 125.3 57391 267 7365 57391 0
P05 79.2 38252 19 1 38252 0
P06 13.1 28389 1223 21 28389 0
P07 54.4 53199 22 1734 53198 1
P09 9.2 9752 1690 1 9678 74
P10 9.3 8082 1 264 8082 0
P11 6.1 17868 99 430 17867 1
P12 15.9 9515 66 753 9515 0
P13 514.1 119070 1009 14984 119070 0
P14 68.7 29510 60 7559 29509 1
P19 166.3 39116 96 7681 39106 10
P20 32.6 17940 3276 3306 17554 386
PILOT 4.8 3769 58 114 3703 66
PILOT87 28.3 9517 2671 275 9489 28
RD-RPLUSC-21 18.6 212 5 1 212 0
SEYMOUR 3.5 4114 45 15 4114 0
SGPF5Y6 19.4 53484 37781 22137 53426 58
SLPTSK 3.4 3974 340 3215 3970 4
SOUTH31 33.6 18363 0 14 18363 0
STORMG2 1000 3491.2 507286 5255 1000 507286 0
STORMG2-125 36.8 62252 642 125 62252 0
ULEVIMIN 57.7 22672 21 1 22672 0
WATSON 1 245.7 147753 34608 107433 144288 3465
WATSON 2 1376.3 270799 103393 254999 262236 8563
WORLD 101.1 33509 4890 11 33509 0
Sum 9254.9 2160389 308879 461127 2146392 13997
Geo Mean 31.3 18910.7 – 195.1 18857.7 –

Table A.9: Results on Dual Phase 1: Minimization of the sum of dual infeasibilities,
subproblem approach.

153

CM CPU Total Degen. Dual Primal
results Time (secs) Iters Iters Iters Iters
CO9 20.5 12879 2138 12867 12
CQ9 15.4 13022 352 13011 11
CRE-B 7.7 7713 571 7684 29
CRE-D 4.2 5682 505 5671 11
D2Q06C 3.7 6225 1044 5507 718
DBIC1 216.7 34056 22143 5824 28232
DEGEN4 61.0 36062 28679 10084 25978
DFL001 24.8 19459 32 19400 59
EX3STA1 13.3 3791 3672 0 3791
FOME11 63.9 38181 207 37904 277
FOME12 159.8 75132 146 74893 239
FOME13 458.4 152376 703 151426 950
FXM4 6 5.9 21584 2971 21584 0
GREENBEB 1.5 4471 399 3608 863
JENDREC1 2.6 3881 0 3148 733
MOD2 74.6 28718 4572 28718 0
MODEL10 38.6 28342 277 28289 53
MZZV11 63.8 30204 6370 29626 578
NEMSPMM2 6.8 7524 1677 7063 461
NET12 1.2 1943 1191 553 1390
P02 67.8 25188 11633 19284 5904
P04 65.4 29306 7490 29306 0
P05 72.9 38055 24 38055 0
P06 13.0 28336 1235 28328 8
P07 62.7 55016 1062 53473 1543
P09 5.2 12112 6229 477 11635
P10 10.1 8306 217 7940 366
P11 7.2 18483 334 17814 669
P12 23.3 15122 3706 11830 3292
P13 151.8 39728 17152 29486 10242
P14 25.2 13590 5423 7854 5736
P19 149.3 31506 8306 26833 4673
P20 101.3 100286 40490 1846 98440
PILOT 8.2 7081 822 3694 3387
PILOT87 42.2 14404 5270 13936 468
RD-RPLUSC-21 18.3 210 6 209 1
SEYMOUR 3.3 3846 47 3831 15
SGPF5Y6 57.9 51516 47191 44598 6918
SLPTSK 2.1 3272 639 3140 132
SOUTH31 33.6 18461 0 18458 3
STORMG2 1000 3477.8 505322 5219 505322 0
STORMG2-125 38.9 62747 663 62747 0
ULEVIMIN 180.6 49992 27992 34507 15485
WATSON 1 1606.9 175711 138869 65534 110177
WATSON 2 4054.3 311752 236991 147972 163780
WORLD 102.3 32998 4907 32998 0
Sum 11625.8 2183591 649566 1676332 507259
Geo Mean 32.7 19729.6 – – –

Table A.10: Results on Dual Phase 1: Cost modification + Primal Simplex.

154 Appendix A Tables

Version Added Implementation Technique / Modification
Ver. 1 First Version
Ver. 2 Dual Steepest Edge
Ver. 3 Sparse Pivot Row αr

Ver. 4 Sparse ρ
Ver. 5 Vector of Primal Infeasibilities
Ver. 6 Bound Flipping Ratio Test
Ver. 7 Numerical Stability
Ver. 8 Hypersparse FTran,BTran
Ver. 9 Tight bounds after LP Preprocessing
Ver. 10 Revised Dual Steepest Edge
Ver. 11 Hypersparse LU-Update
Ver. 12 Randomized Partial Pricing

Table A.11: Progress in our dual simplex code: implementation techniques in chrono-
logical order.

155

V
er

.
1

V
er

.
2

V
er

.
3

V
er

.
4

V
er

.
5

V
er

.
6

V
er

.
7

V
er

.
8

V
er

.
9

V
er

.
10

V
er

.
11

V
er

.
12

C
R

E
-B

.S
T
A

26
.5

6
35

.7
8

16
.2

0
19

.1
7

18
.4

7
21

.5
9

15
.7

6
18

.5
6

13
.8

0
14

.8
6

12
.4

8
11

.7
8

C
R

E
-D

.S
T
A

18
.9

4
31

.4
4

12
.0

0
9.

11
9.

08
9.

50
7.

68
6.

78
6.

55
5.

62
5.

70
4.

91
D

2Q
06

C
.S

T
A

11
.0

3
12

.5
0

12
.8

1
12

.9
8

12
.9

2
13

.2
0

12
.7

8
12

.9
7

8.
38

5.
80

5.
53

5.
77

D
F
L
00

1.
ST

A
72

.6
9

72
.2

7
73

.6
9

70
.5

8
61

.5
3

67
.5

3
63

.1
1

60
.2

0
64

.5
8

32
.4

7
33

.6
1

35
.2

6
F
IT

2D
.S

T
A

10
.3

1
10

.8
0

12
.3

1
11

.0
2

10
.9

7
1.

28
1.

27
1.

25
1.

25
0.

97
0.

97
1.

00
F
IT

2P
.S

T
A

17
.2

5
22

.1
1

15
.3

9
16

.3
3

15
.1

1
12

.4
8

11
.5

3
12

.4
7

12
.5

8
9.

52
9.

41
9.

38
K

E
N

-1
1.

ST
A

22
.7

5
14

.8
6

7.
53

7.
53

4.
66

3.
59

3.
32

2.
93

2.
10

1.
67

1.
41

1.
25

K
E

N
-1

3.
ST

A
19

4.
53

11
2.

41
75

.3
3

87
.9

4
46

.1
4

22
.7

4
19

.9
1

11
.7

9
13

.3
6

9.
42

7.
39

6.
27

K
E

N
-1

8.
ST

A
48

56
.2

5
22

68
.6

2
18

89
.3

9
17

20
.7

6
86

0.
84

37
1.

91
30

6.
48

15
9.

87
15

8.
46

11
2.

05
87

.1
6

59
.4

4
M

A
R

O
S-

R
7.

ST
A

5.
28

6.
48

6.
09

6.
11

6.
70

7.
78

7.
11

7.
03

7.
22

7.
11

7.
92

6.
81

O
SA

-1
4.

ST
A

4.
41

7.
25

9.
80

8.
41

9.
23

10
.5

8
14

.6
3

13
.1

7
3.

56
2.

09
2.

47
2.

17
O

SA
-3

0.
ST

A
15

.5
6

29
.5

6
43

.8
6

39
.8

9
43

.8
1

49
.9

5
55

.1
1

54
.6

5
11

.3
4

5.
80

5.
95

6.
42

O
SA

-6
0.

ST
A

71
.7

2
16

5.
84

13
2.

69
12

3.
48

12
4.

38
14

1.
03

16
8.

39
16

6.
78

21
.9

3
19

.3
1

21
.3

3
20

.6
7

Su
m

53
27

.2
8

27
89

.9
2

23
07

.0
9

21
33

.3
1

12
23

.8
4

73
3.

16
68

7.
08

52
8.

45
32

5.
11

22
6.

69
20

1.
33

17
1.

13

T
ab

le
A

.1
2:

C
h
ro

n
ol

og
ic

al
p
ro

gr
es

s:
so

lu
ti

on
ti

m
e.

156 Appendix A Tables

V
er

.
1

V
er

.
2

V
er

.
3

V
er

.
4

V
er

.
5

V
er

.
6

V
er

.
7

V
er

.
8

V
er

.
9

V
er

.
10

V
er

.
11

V
er

.
12

C
R

E
-B

86
24

86
05

75
61

82
00

82
00

81
32

72
77

74
53

89
92

79
29

75
18

74
12

C
R

E
-D

75
61

88
00

65
51

58
50

59
58

56
46

50
20

49
59

57
27

52
89

52
15

50
61

D
2Q

06
C

10
74

6
10

45
5

10
84

0
10

72
7

10
42

7
10

16
8

97
43

97
51

77
85

58
29

55
04

54
73

D
F
L
00

1
41

54
2

28
59

0
31

63
5

30
08

6
26

99
9

26
12

9
25

56
6

24
51

0
29

22
8

16
67

0
16

93
0

17
85

5
F
IT

2D
63

24
62

07
63

06
57

38
56

06
25

1
25

6
25

6
25

6
14

2
14

2
17

0
F
IT

2P
14

20
2

14
76

1
14

92
5

15
33

4
12

59
3

69
39

69
34

66
99

66
99

48
62

48
24

47
61

K
E

N
-1

1
14

66
3

94
70

94
27

95
96

97
72

80
46

81
00

81
27

80
42

76
08

76
09

76
09

K
E

N
-1

3
51

74
6

24
64

4
24

33
1

25
87

9
23

24
4

16
95

0
16

87
8

16
64

8
16

96
5

15
87

8
15

89
3

15
63

0
K

E
N

-1
8

24
33

49
10

53
54

10
86

10
10

14
76

91
27

9
63

62
9

61
37

8
60

70
8

60
53

7
53

80
0

53
65

2
53

06
9

M
A

R
O

S-
R

7
24

41
24

62
24

62
24

62
26

03
27

38
26

56
26

56
26

56
25

02
27

70
25

91
O

SA
-1

4
96

6
13

63
13

44
11

94
13

82
13

83
15

29
14

62
12

11
10

68
10

64
10

41
O

SA
-3

0
19

41
25

63
27

09
26

36
28

36
28

21
27

28
28

04
25

29
21

34
21

58
21

57
O

SA
-6

0
38

25
56

86
53

87
51

77
55

93
55

32
57

77
57

77
45

26
43

47
44

27
44

25
Su

m
40

79
30

22
89

60
23

20
88

22
43

55
20

64
92

15
83

64
15

38
42

15
18

10
15

51
53

12
80

58
12

77
06

12
72

54

T
ab

le
A

.1
3:

C
h
ro

n
ol

og
ic

al
p
ro

gr
es

s:
to

ta
l
it

er
at

io
n

co
u
n
t.

	Introduction
	Fundamental algorithms
	Foundations
	The linear programming problem and its computational forms
	Geometry
	LP Duality
	Basic solutions, feasibility, degeneracy and optimality

	The Dual Simplex Method
	The Revised Dual Simplex Algorithm
	Basic idea
	Neighboring solutions
	Pricing
	Ratio test
	Basis change
	Algorithmic descriptions

	The Bound Flipping Ratio Test
	Dual steepest edge pricing
	Elaborated version of the Dual Simplex Algorithm

	Dual Phase I Methods
	Introduction
	Big-M method
	Dual feasibility correction

	Minimizing the sum of dual infeasibilities
	Subproblem approach
	Algorithmic approach

	Artificial bounds
	Cost modification
	Pan's method

	Computational techniques
	Solving Systems of Linear Equations
	Introduction
	Product form of the inverse
	LU decomposition

	LU factorization
	LU update
	Forrest/Tomlin update
	Suhl/Suhl update

	Exploiting (hyper-)sparsity in FTran, BTran and LU-update
	Algorithms for sparse and hypersparse triangular systems
	FTran and BTran with Suhl/Suhl update

	Numerical Stability and Degeneracy
	Introduction
	Numerical stability
	Degeneracy and cycling

	Techniques to ensure numerical stability
	Numerical tolerances
	Stabilizing ratio tests
	Modified standard ratio test
	Harris' ratio test
	Shifting
	Stabilizing bound flipping ratio test

	Refactorization, accuracy checks and stability control
	Refactorization for speed
	Refactorization for stability

	Techniques to reduce degeneracy and prevent cycling
	Perturbation
	Randomized pricing

	Further computational aspects
	LP preprocessing, scaling and crash procedures
	Computation of the pivot row

	Implementation and results
	Implementation
	The Mathematical OPtimization System MOPS
	MOPS and its history
	External system architecture
	LP / MIP solution framework

	The dual simplex code
	Basic data structures
	Pricing
	Initialization and update of DSE weights
	Vector of primal infeasibilities
	Partial randomized pricing

	Ratio test
	FTran, BTran, LU-Update and factorization
	Data structures for the LU-factors
	Exploiting hypersparsity
	Forward Transformation (FTran)
	LU-update and factorization

	Overview

	Numerical results
	Test problems
	Performance measures
	Study on dual phase 1
	Chronological progress study
	Overall benchmarks

	Summary and Conclusion
	Bibliography
	Tables

