George E. Exadaktylos Ioannis G. Vardoulakis Editors

Bifurcations, Instabilities, Degradation in Geomechanics

with 230 Figures and 17 Tables

Contents

Introduction	1
1 The Concept of Bifurcation in Geomechanics	3
Part I - Experimental Aspects	1
Third Invariant Dependent Single Yield Surface Model and	
tion Conditions for High Porosity Sandstone	1/
1 Introduction	18
2 Constitutive Relation	
3 Localization Conditions	
3.1 Hardening Modulus (h) Expression	
3.2 Determination of Critical Hardening Modulus (hcr)	
4 Results	
4.1 Specialized Deviatoric and Stress State Parameters	31
4.2 Band Orientation Predictions: Limiting Conditions	32
4.3 Axisymmetric Compression	
4.4 J ₃ Independent SYSM: P ₁ Stress State	
4.5 J ₃ Dependent SYSM: P ₁ Stress State, $\xi = \psi$	
4.6 J ₃ Dependent SYSM: P ₁ Stress State, $\xi \neq \psi$	40
5 Summary and Conclusions	43
Appendix A	46
Interpretation of the Scale Effect in Perforation Failure	53
1 Introduction	
2 Mathematical Model	
3 Model Calibration	
4 Results and Discussion	
5 Conclusions	69
Experimental Investigation of Instabilities of Granular Mat	erials in
Relation to Dilatancy and Fabric Issues	
1 Introduction	72

2 Proportional Strain Paths	
3 Biaxial Testing Apparatus74	
4 Proportional Strain Path Testing	,
4.1 7 mm Pentagonal Disks	, }
4.2 7 mm Circular Disks	,
4.3 5 mm Circular Disks	
5 Stress (Strain) Response Envelopes and Anisotropy	
5.1 Stress Response Envelope and Effect of Stress History	
5.2 Strain Response Envelopes and Uniqueness of Incremental Plastic	
Strain Direction)
6 Conclusions	
Compactive Cataclastic Flow in Tuffeau de Maastricht Calcarenite:	
Mechanical Deformation & Permeability Reduction95	5
1 Introduction	
2 Experimental Procedure and Mechanical Data	,
3 Infinitesimal Deformation Theory of Bifurcation of Elastopla-stic Solids	
- Calibration of the Lade and Kim's Model103	
3.1 General Analysis of the Deformation Bands103	
3.2 Constitutive Model Developed by Lade and Kim106	
3.2.1 Plastic Potential Function107	
3.2.2 Determination of the Parameters c_3 , c_0 , μ	;
3.2.3 Failure Criterion110)
3.2.4 Yield Criterion and Hardening/Softening Law)
3.2.5 Parameter Determination for Yield Criterion111	L
3.2.6 Hardening Law112	2
3.2.7 Variation of q114	ł
3.2.8 Softening Law115	
3.2.9 Determination of the Parameters A and B115	
3.3 Theoretical Parameters	
4 Back Test Analysis116	
5 Permeability Reduction119	
6 Concluding Remarks123	;
Local Second Gradient Models and Damage Mechanics: 1D Post-	
Localization Studies in Concrete Specimens	7

1 Introduction	
2 Scalar Damage Model	
3 Local Second Gradient Model	
4 1D Numerical Simulations	

5 Expansion of the Plastic Region137
6 Conclusions
Part II - Micromechanical Aspects143
Entropy and Material Instability in the Quasi-Static Mechanics of
Granular Media
1 Statistics of Kinematics and Stress
1.1 Delaunay Triangulation, Deformation and Stress
2 Maximum Entropy & Virtual Thermodynamics
3 Material Instability
4 Conclusions
A DEM Study of Compaction Band Formation155
1 Introduction
2 The Discrete Element Method
2.1 Simulations on Sandstone
2.2 Simulations on Sand
3 Results
3.1 Sand Simulations161
3.2 Sandstone Simulations164
4 Proposed Statistical Approach
5 Conclusions
Shear Zone Formation in 2D Random Granular Specimens within
Enhanced Hypoplasticity173
1 Introduction
2 Hypoplasticity175
3 Micro-Polar Hypoplastic Law178
4 Non-Local Hypoplastic Law181
5 Second-Gradient Hypoplastic Law
6 FE-Input Data
7 FE-Results
8 Conclusions
A Rational Approach to Stress-Dilatancy Modelling Using an Explicit
Micromechanical Formulation

1 Introduction	2
2 Rowe's Stress-Dilatancy Formulation Revisited	4
3 Effect of Fabric on Stress-Dilatancy Relations	6
3.1 Simple Cases: Regular Packing200	6
3.2 Random Packing	1
4 Stress-Dilatancy Formulation with Micromechanical Considerations .213	3
4.1 Stress-Dilatancy Formulation: Generalities	
4.2 Nominal Friction Angle φ_f on Sliding Plane and Critical State	
Friction Angle φ_{cv}	7
5 Verification	
6 Simplified Procedure and Modified Rowe's Stress-Dilatancy Relation	
	9
6.1 Mean Sliding Direction and Nominal Friction Angle φ_f	
6.2 Comments on and	
7 Closing Remarks	
Micro-Fracture Instabilities in Granular Solids	31
1 Introduction	51
2 RVE Problem	
3 Macroscopic Loss of Ellipticity	6
4 Numerical Examples and Discussion	7
4 Numerical Examples and Discussion	7
4 Numerical Examples and Discussion23	7
4 Numerical Examples and Discussion	7
4 Numerical Examples and Discussion	7
4 Numerical Examples and Discussion	17 13
4 Numerical Examples and Discussion	17 13
4 Numerical Examples and Discussion	17 13
4 Numerical Examples and Discussion	13 13 15
4 Numerical Examples and Discussion	13 13 15 16
4 Numerical Examples and Discussion	13 13 15 16
4 Numerical Examples and Discussion	17 13 15 16 18 18
4 Numerical Examples and Discussion	17 13 15 16 18 18
4 Numerical Examples and Discussion	13 13 15 16 18 18 19
4 Numerical Examples and Discussion	13 13 15 16 18 18 19 55
4 Numerical Examples and Discussion	13 15 16 18 18 19 55 0,
4 Numerical Examples and Discussion	13 15 16 18 19 55 55
4 Numerical Examples and Discussion	13 15 16 18 19 55 55
 4 Numerical Examples and Discussion	13 15 16 18 19 55 57
4 Numerical Examples and Discussion	13 15 16 18 19 55 57 58

3.5 Linking Macroscopic Stresses to Single-Crack Related Crack	262
Propagation Criteria	
Assessment of Griffith's Energy Release Rate Criterion	
4.1 Uniaxial Macroscopic Tension – Tensile Mode I Micro-cracking.	
 4.2 Uniaxial Macroscopic Compression – Axial Splitting 4.3 Determination of the Initial Microcrack Radius and of the Initial 	
Microcrack Half-Opening from the Uniaxial Tensile Strength and	
the Uniaxial Compressive Strength	
4.4 Confined Macroscopic Compression – Axial Splitting	
5 Conclusions	.272
Modeling the Influence of Pressure and Moisture Content on the	
Disintegration of Weathered Rockfill Materials	.277
1 Introduction	.278
2 Granular Hardness and Pressure Dependent Limit Void Ratios	.279
3 Hypoplastic Model	.284
3.1 Inelastic Material Properties	.284
3.2 Density, Pressure and Moisture Dependent Properties	.285
3.3 Comparison of Numerical Simulations with Experiments	
4 Shear Band Analysis or Plane Strain Compression	.292
5 Conclusions	.296
Shear Zone Formation in 2D Random Granular Specimens within	
Enhanced Hypoplasticity	.301
	• • •
1 Introduction	
2 Mechanism of Crack Propagation in Non-Uniform Stress Fields	.305
3 Statistical Properties of Non-Uniform Stress Field Created by Many	• • •
Wing Cracks	
4 A Mechanism of Splitting and Oblique Failure in Compression	
5 Conclusions	.315
	•••
A Rational Approach to Stress-Dilatancy Modelling Using an Explinit Micromechanical Formulation	
wicromechanical Formulation	.319
1 Introduction	210
2 Constitutive Models for Concrete	
2.1 Elasto-Plastic Model	
2.1 Elasto-Plastic Model	
3 Non-Local Approach	
J INON-LOCAL Approach	.523

4 FE - Simulations	
4.1 Uniaxial Tension	
4.1.1 Elasto-Plastic Model	
4.1.2 Damage Model	
4.2 Three-Point Bending	
4.2.1 Elasto-Plastic Model	
4.2.2 Damage model	
5 Conclusions	

Kinematics of Shear Zone Deformation in Soft Sensitive Clays.......341

1 Introduction	
2 Governing Equation for Coupled Flow	343
3 Pore Water Pressure Generation Dissipation Equation	345
4 Finite Element Simulation of Coupled Pore Water and Strain	
Localization	348
5 Results and Discussion	349
5.1 Evaluation of Strain Localization	349
5.2 Effect of Excess Pore Water Pressure	352
5.3 Material Behavior	353
6 Conclusions	356
6 Conclusions	356

Part	IV -	Numerical	Aspects		59
------	------	-----------	---------	--	----

1 Introduction	
2 Simulation Method	
2.1 Multiphase Mixture Theory	
2.2 General Setting	
2.3 Conservations of Mass	
2.4 Skeleton Stress	
2.5 Conservation of Momentum	
2.6 Conservation of Energy	
2.7 Suction-Saturation Relation	
3 Dissociation of Hydrates	
4 Constitutive Model for Soil	
4.1 Elasto-Viscoplastic Model for Unsaturated Soil	
4.2 Overconsolidation Boundary Surface	
4.3 Static Yield Surface	

4.4 Viscoplastic Potential Surface	
4.5 Viscoplastic Flow Rule	
5 Simulation Examples	
6 Conclusions	
Numerical Prediction of Impact Force of Geomaterial Flow a	
Retaining Structure using CIP Method	
1 Introduction	
2 Numerical Framework	
2.1 Constitutive Model	
2.2 Governing Equations	
2.3 Numerical Scheme	
3 Laboratory Experiment	
4 Conclusions	
Numerical Simulation of the Cracked Brazilian Disc under I	Diametral
Compression	
-	
1 Introduction	
2 The Problem	
2.1 The Scope	
2.2 The Intact Brazilian Disc	
2.3 The Cracked Brazilian Disc	
2.4 Geometry	
2.5 Material Models and Boundary Conditions	
3 Numerical Analysis and Results	
3.1 Stress Distributions	
3.2 Distributions of Stress Intensity Factors	
4 Discussion	
4.1 Stress - Griffith Strength Criterion	
4.2 Stress Intensity Factors	
5 Conclusions	
Stress Analysis of Multiply Fractured Porous Rocks	
1 Introduction	
2 Formulation of the (a) Short-Term and (b) Long-Term Problem	ns432
3 The First Fundamental Boundary Value Problem of the Cracke	
(Prescribed Normal and Tangential Stresses on Cracks)	
3.1 Formulation for a Single Crack	
3.2 Formulation for a System of Non-Intersecting Cracks	
,	

3.3 Numerical Solution for a Single Crack	443
3.4 Numerical Solution for a System of Non-Intersecting Cracks	
4 Solution of the Pore Pressure	448
5 Numerical Examples	449
5.1 Example 1: Single Linear Crack on Ox Axis	449
5.2 Example 2: System of Three Parallel Cracks	454
5.3 Example 3: Multiple (40) Cracks Ahead of a Horizontal Crack	under
Uniform Pore Pressure (Steady State)	458

Index
