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Zusammenfassung

In dieser Arbeit beschreibe ich meinen Ansatz zur Kombination von Methoden der
Fehlerfortpflanzung mit mehreren Algorithmen, die das Geometrie-basierte grou-
ping von Strukturen erlauben. Von der bekannten Literatur unterscheidet sich
meine Arbeit vor allem durch die Schwerpunktsetzung auf Anwendbarkeit: die
tatsächliche praktische Anwendung zeigt deutlich, welche zusätzlichen Möglichkei-
ten man durch Fehlerfortpflanzung gewinnt; andererseits habe ich, statt starr an
der exakten Lösung festzuhalten (die, wo möglich, natürlich gegeben wird) auch
untersucht, welche Auswirkungen die Verwendung von Näherungslösungen haben
kann — und in welchen, in der Literatur teilweise recht häufig anzutreffenden,
Fällen solche Näherungslösungen verheerende Auswirkungen auf die Korrektheit
(oder sogar Existenz) des Ergebnisses haben können.

Warum glaube ich, dass solch eine Arbeit nötig oder auch nur nützlich sein kann?
Zumal doch die Grundlagen der Fehlerfortpflanzung (wenn auch nicht in der pro-
jektiven Geometrie) seit vielen Jahrzehnten bekannt sind und oft genug bereits
in der Schule unterrichtet werden? Einer der Gründe für die geringe Verbreitung
der Fehlerfortpflanzung unter Bildverarbeitern liegt meiner Meinung nach in der
vorhandenen Literatur, deren Interesse stets der korrekten Lösung gilt, ohne Blick
auf die praktische Anwendbarkeit.

Im Gegensatz hierzu ist die vorliegende Arbeit aus der Praxis für die Praxis entstan-
den: ich zeige anhand von Beispielen, dass sich viele Probleme tatsächlich einfacher
lösen lassen, wenn man Grundlagen der Fehlerfortpflanzung berücksichtigt — oder
sogar nur dann; ich denke die Anwendung auf Zebrastreifen in Kapitel 5 meiner
Dissertation ist so ein Beispiel. Dabei behalte ich jedoch stets die algebraische und
algorithmische Komplexität der verwendeten Verfahren sowie die Notwendigkeit
zu ihrer Verwendung (oder, auch das kann passieren, die mangelnde Notwendig-
keit) im Auge. Aus diesem Grund beschreibe ich nicht nur die Kombination von
Fehlerfortpflanzung und projektiver Geometrie (die für den uneingeweihten einige
Schwierigkeiten bereithält) sondern demonstriere die Anwendung dieser Prinzipi-
en anhand von 3 sehr verschiedenen Beispielen. Im Folgenden beschreibe ich den
Aufbau meiner Arbeit.

Nach Einleitung und einführenden Erläuterungen zu projektiver Geometrie und
Fehlerfortpflanzung in den Kapiteln 1–3 beginnt der Hauptteil meiner Arbeit in
Kapitel 4, in dem die Verbindung zwischen Fehlerfortpflanzung und projektiver
Geometrie herausgearbeitet wird. Die zugrundeliegende Idee ist nicht neu und
geht auf Kanatanis N -Vektoren zurück; darüber hinausgehend beschreibe ich aber
auch die Anwendung der gleichen Grundsätze auf andere Parametrierungen und
leite eine Reihe neuer Ergebnisse her, wie zum Beispiel eine hervorragende Ap-
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proximation der Kovarianz eines an einige Edgel angepassten Linienstücks, eine
Abbruchbedingung für inkrementelle line-fits und einen neuen Algorithmus für die
Berechnung des Doppelverhältnisses von 4 Linien, welcher Aufgrund der Verwen-
dung von Fehlerfortpflanzung tatsächlich sogar schneller ist als bisherige Verfahren.
Desweiteren gebe ich eine Erklärung, warum die von vielen Autoren verwendete
sphärische Normalisierung von Koordinaten tatsächlich einer Euklidischen Norma-
lisierung überlegen ist; und schließlich gebe ich eine Übersicht darüber, wie viele
der häufigsten Messgrößen am sinnvollsten verglichen werden können — allein
dieser letzte Abschnitt könnte bereits viele der in der Bildverarbeitung so häufig
anzutreffenden, fein eingestellten Parameter überflüssig machen.

In den daran anschließenden drei Kapiteln beschreibe ich verschiedene Anwen-
dungsszenarien. Die erste Anwendung in Kapitel 5 ist die Erkennung von Zebra-
streifen (und anderer periodischer Strukturen). Es handelt sich hier um eine An-
wendung von der ich glaube, dass sie so ohne Fehlerfortpflanzung nicht möglich
gewesen wäre; besonders interessant an dieser Anwendung ist, wie einige wenige
Konfidenz-Tests eine Vielzahl manuell zu wählender Parameter ersetzen können,
wodurch ein extrem stabiles System entstanden ist.

Die Algorithmen, die in Kapitel 6 beschrieben werden, beschäftigen sich mit der
Segmentierung von Häuserfronten (orthogonalen und parallelen Strukturen) in Ein-
zelbildern. Es wird kein fertiger Algorithmus präsentiert, stattdessen wird dieses
Szenario genutzt, um eine Anzahl unterschiedlicher und auf unterschiedlichen Ska-
len operierender Techniken zu vergleichen. Der Schwerpunkt liegt auf der Bestim-
mung kollinearer Liniensegmente und von Fluchtpunkten.

Das letzte Anwendungskapitel, Kapitel 7, beschreibt schließlich Teile der Segmen-
tierungsroutinen, die meinen ältesten Publikationen über die Erkennung rotati-
onssymmetrischer Objekte zugrundeliegen. Ein wesentliches Merkmal ist dabei
das Bild der Rotationsachse. Dieses lässt sich theoretisch als eine Linie durch
die Schnittpunkte von Bitangenten berechnen. Da diese jedoch erheblich in ihrer
Genauigkeit variieren können, haben wir hier ein exzellentes Beispiel, um verschie-
dene Algorithmen zu vergleichen; ich zeige, wie selbst ein bekannter und häufig
genutzter Algorithmus wie die kleinste Summe der Fehlerquadrate zu unbrauchba-
ren Ergebnissen führen kann, wenn die zugrundeliegende Annahme unabhängiger,
isotroper und gleichverteilter Fehler nicht zutrifft, und stelle bessere Alternativen
vor.
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Symbols

x, X : scalars.
x, X : vectors. In a transformation, capital letters usually indicate the source

of a transformation, small letters indicate the target.
P : matrix.
Σ : covariance matrix.
Jyx : Jacobian; matrix of first derivatives of y with respect to x. This is

a matrix proper if x and y are both vectors, a vector (either row or
column) if one of the two is a scalar variable, and a scalar if both x
and y are scalar variables.

∝ : proportional to.
∞ : infinity.
IR : set of real numbers.

( · )− : pseudoinverse.

( · )−n : pseudoinverse computed by setting all eigenvalues except the first n to
zero.

| · | : determinant.
| · |n×n : determinant of the upper left n× n matrix.
‖ · ‖ : norm.
( · )T : transpose.
( · )−T : inverse of the transpose (or, of course, transpose of the inverse).
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Chapter 1

Introduction

The last thing we decide in writing a book is what to put first.

Blaise Pascal, 1623–1662
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12 Grouping and Error Propagation

1.1 Grouping and Error Propagation

This thesis describes the approach used for, and the improvements possible by, the
use of error propagation in conjunction with several algorithms for the grouping
of structures based on geometric entities. But rather than rigidly favouring the
exact solution each and every time1 I have put particular weight on practicability,
demonstrating the relative gain for many approaches and giving shortcuts where
the results are not marred by their use; but also demonstrating how common
shortcuts used by many authors can lead to disaster if the underlying assumptions
are violated.

1.1.1 Why Error Propagation?

Why do I believe that such a thesis is necessary and indeed valuable? The princi-
ples of linear error propagation, which I will use in this thesis, have been known
for a long time, often enough they are even taught in school; they are the staple
of photogrammetrists, geodesists, physicists, as well as many other scientists. But
— they are rarely enough used in computer vision. True, a number of publications
exist, starting with Kanatani’s work [70, 75] more than 13 years ago, and with
Förstner’s contribution to the “Handbook of Computational Geometry for Pat-
tern Recognition, Computer Vision, Neurocomputing and Robotics” [49] as the
latest, very nice, example2; but by and large error propagation has been all but
ignored by the computer vision community.

I believe that the reason for this disregard is twofold: for one thing error propaga-
tion is simply unknown in computer vision circles, and if Kanatani didn’t manage
to change this then surely this thesis won’t be able to either. But I also believe
that error propagation is seen as an unnecessary complication: “Let me solve this
really complicated and important problem first, and then I can worry about details
like error propagation” seems to be the attitude of many a researcher, or even
“Sorry, but error propagation is much too slow for any real(-time) application”.
And such a mind-set is unfortunately fostered by authors like Kanatani, who are
more interested in correct than in practicable solutions. And it is here that I hope
this thesis could have a small impact: demonstrating that many problems are
indeed much easier solved using error propagation, or indeed only solvable using
error propagation — I believe that the application described in Section 5 is such an
example — but all the time with a firm eye on computational complexity as well

1Exact in its derivation, that is.
2Chapter 4.1 lists more literature on the subject
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as the necessity for error propagation (or, as it sometimes happens, the lack of it).
It is to this end that I not only describe the combination of error propagation with
projective geometry, which for the unwary keeps a number of stumbling blocks at
hand, but also demonstrate 3 very different application domains. In the following
I’ll describe the outline of this thesis in more detail.

1.2 The Outline of this Thesis

The flow of this thesis goes from the theoretical foundations (projective geometry,
error propagation, and their combination) to practical applications showcasing one
or more of the previously described theoretical principles; within the application
chapters I go from the 2D case of a single planar homography to the case of
several homographies all within one image and from there to the case of an even
less restricted class of objects, surfaces of revolution.

In more detail, I’m starting this thesis with an overview of the state of the art in
projective geometry (Chapter 2) and error propagation (Chapter 3) respectively.
These chapters do not contain anything new and are for a huge part lifted straight
out of [103] and a couple of other books, in spirit if not in words. If you know
your way around projective geometry or error propagation I would recommend to
simply skip the respective chapter, they are here for completeness, and as a handy
reference for later work.

The actual thesis starts with Chapter 4, which combines projective geometry and
error propagation. The underlying idea is not new, and as far as the application
to homogeneous coordinates is concerned can be found in [75]; however, in this
chapter I also consider the application of these principles to other parameterisa-
tions than homogeneous coordinates and, starting from first principles, derive a
number of new results such as an excellent approximation to the covariance of a
line segment fitted to edgels, a new stopping-criterion for incremental fits based on
a χ2-test, and a new algorithm for the calculation of the cross-ratio of 4 lines which
due to the use of error propagation in fact performs faster than current algorithms.
I will also give an intuitive explanation why the spherical normalisation used by
many authors is indeed superior to an Euclidean normalisation; and finally I will
give an overview on how to compare a number of common stochastic entities. Just
this last section alone could already put away with many of the numerous, finely
tuned parameters so common to computer vision algorithms.

The next three chapters describe different application scenarios. In Chapter 5 I
describe the application of error-propagation principles to the grouping and recog-
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nition of zebra crossings and other repeated structure. This application was first
described by me in [6], and is a nice example of an implementation which I be-
lieve would have been impossible without the use of error propagation due to the
high variations of a zebra-crossing’s size and quality even within a single image;
of particular interest here is how only a few confidence-tests can replace a host of
manually chosen parameters, resulting in a uniquely stable algorithm. It describes
the groundbreaking work on which later publications such as [135] build.

In Chapter 6 I outline an algorithm for the grouping of houses (or, indeed, any
structure consisting of orthogonal and parallel elements). Over the years we
have seen a few algorithms for the reconstruction of buildings from monocular
images [36, 87, 97], however, in contrast to multi-view approaches these nearly
always require manual segmentation of image regions. The algorithm outlined in
this chapter could be seen as an attempt to remedy this situation. It is, however,
included in this thesis for a different reason: buildings show a number of diverse fea-
tures at different scales, and I will in particular have a closer look at collinear line
segments of only a few pixels to several hundreds of pixels in length and distance
as well as vanishing points, the image of intersection of parallel lines at infinity,
which can be anywhere from literally in the image to literally at infinity. What
is more, these features come with differing accuracies, and even one and the same
feature can have different accuracies attached to it depending on context. This
application is therefore well suited as a showcase for several different ideas and
approaches such as a new algorithm for the iterative improvement of vanishing-
point position and one for the automatic grouping of vanishing points; a new
objective function for the (partial) calibration of a camera from vanishing-points
which takes the different uncertainties in the positions of the vanishing points into
account and extends the usual Legoland assumption to more general setups; an
extension on previous work which takes the vanishing-point information into ac-
count when merging line-segments; and finally a comparison of the performance
of several different error-measures, both new ones first introduced in this thesis as
well as established ones from the literature, for the identification of collinear line
segments.

Chapter 7 finally describes part of the grouping algorithm underlying some of my
older publications on the recognition of surfaces of revolution such as [3–5, 9],
but also newer publications on their reconstruction, such as [8]. An important
feature for both recognition as well as reconstruction of SORs is the object’s axis.
The axis can be calculated, e. g., based on the intersections of bitangents, which
can vary considerably in their accuracy; it is therefore an excellent example to
compare the performance of a number of established algorithms on a number
of different features and to demonstrate how even a well-known and often-used
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algorithm like total least squares will fail if the underlying assumptions (iiid-data)
are violated; much better alternatives are introduced and an extensive comparison
and discussion shows the merit of error propagation for a problem which, in similar
form, one can see tackled with unsuitable tools at nearly any computer-vision
conference, even today. The comparisons are done on real contour-data derived
from real images which previously appeared in publications about the grouping
and recognition of SORs.

This thesis ends, as all theses do, with a conclusion and outlook in Chapter 8.

Due to the diverse nature of the underlying problems, ranging from projective
geometry to error propagation, from intrinsically two-dimensional problems like
the recognition of repeated structure to intrinsically three-dimensional problems
like the grouping of box-like and even (partly) free-form objects (surfaces of revo-
lution), there is no separate chapter entitled “literature survey”. Instead you can
find a small overview over the then relevant literature in each chapter’s introduc-
tion, and then again whenever a direct reference can help to set the work described
in context. The bibliography itself comes in two parts, starting with a list of my
own relevant work on page 217 and the bibliography proper on page 219.
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Chapter 2

Projective Geometry

. . . experience proves that anyone who has studied geometry is in-
finitely quicker to grasp difficult subjects than one who has not.

Plato, The Republic, Book 7, 375 B. C.
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18 Projective Transformations

2.1 Introduction

When working in computer vision and image understanding, one of the first things
one often seeks to describe is the image formation process, i. e. how are the real
world and any specific image of this world related to each other. This connection
can be made elegantly by projective geometry.

Projective geometry is much older than computer vision. According to [138] the
first systematic treatise on projective geometry was published 1822 by Poncelet
in his Traité des propriétés projectives des figures. Prompted by Felix Klein’s
Erlangen programme of 1872 [79] as well as a general interest in invariant theories,
projective geometry became rather fashionable among the mathematicians of the
late 19th and early 20th century (e. g. [39]). The book that by many in the vision
community is considered the standard reference on projective geometry, Algebraic
Projective Geometry by J. G. Semple and G. T. Kneebone [138], dates back to 1952.
Only comparatively recent trends in computer vision require a somewhat more
involved algebra; mostly tensor algebra as it is used in shape from multiple view
approaches [59]. However, since this thesis concentrates on single view geometry,
only standard projective geometry is used here.

This chapter describes the theory and principles of projective geometry as they
apply to this thesis. Starting from 2D projective transformations, the notion of
homogeneous coordinates is introduced and several subgroups of the projective
group are presented (Section 2.2). This leads naturally to the discussion of dif-
ferent camera models in Section 2.3. Points, lines and conics are introduced (Sec-
tions 2.4 and 2.5) as well as the crossratio of four collinear points or four coincident
lines respectively (Section 2.6). Finally some special transformations (canonical
frames in Section 2.7 and “projective symmetry” in Section 2.8) are presented,
and an alternative representation of the projective plane is introduced: the Gaus-
sian sphere (Section 2.9), which has proven useful for error-propagation purposes
or algorithms like the grouping by vanishing points discussed in Section 6. This
introduction is naturally a rather brief and incomplete one, the interested reader
can find additional information in, e. g., [43, 69, 103, 138, 146].

2.2 Projective Transformations

Projective geometry describes a group based on central (conic) projections. Con-
fining ourselves to an image’s two dimensions, each projection can be visualised
as a central projection from an arbitrary plane Π′ onto a second plane π, compare

Error Propagation in Geometry-Based Grouping
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x

y
Z

0
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X’
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z

π Π′

Figure 2.1: A central projection from one plane onto another.

Figure 2.1. The totality of all those projections from one plane onto another forms
the projective group [138].

Since any two-dimensional plane in 3D can be transferred into any other two-
dimensional plane by rotation and translation1, we can think of any plane Π′

as a rotated and translated version of the special plane Π formed by the points
X = (X,Y, 0)T. Any point X on Π is transformed into a new point X′ on an
arbitrary plane Π′ with

X′ = RX + t, (2.1)

where R ∈ IR3×3 is the matrix of rotation and t ∈ IR3 the vector of translation.

Since the third coordinate of X was chosen to be 0, the rigid transformations
between Π and Π′ (translation and rotation) can be combined into a single 3× 3
transformation matrix, namely




X ′

Y ′

Z′



 =




r11 r12 t1
r21 r22 t2
r31 r32 t3








X
Y
1



 . (2.2)

Here rij denotes the element in the ith row and jth column of R.

1Possibly by an infinite amount.
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The central projection from a point X′
∈ IR3 on the plane Π′ on to a point

x = (x, y, 1)T ∈ IR2 on the plane π is given by

x =
X ′

Z′
=

r11X + r12Y + t1
r31X + r32Y + t3

y =
Y ′

Z′
=

r21X + r22Y + t2
r31X + r32Y + t3

.

(2.3)

This makes the nonlinear nature of projection in Euclidean coordinates apparent.

Equation (2.3) does not yet describe the group of 2D projective transformations; in
particular the rij are not general, since they are columns of a rotation matrix with
only 3 degrees of freedom [103]. Repeated application of Equations (2.2) and (2.3)
leads to the form of a general projective transformation:

x =
X ′

Z′
=

p11X + p12Y + p13

p31X + p32Y + p33

y =
Y ′

Z′
=

p21X + p22Y + p23

p31X + p32Y + p33
.

(2.4)

This transformation has 8 degrees of freedom (DOF), despite having 9 parameters
pij — any one parameter pij 6= 0 can arbitrarily be set to pij = 1 by multiplying
both numerator and denominator with 1/pij . Such a transformation, and equally
any projective transformation from a space of dimensionality n into a space of the
same dimensionality n, is sometimes called a homography .

2.2.1 Homogeneous Coordinates

Equation (2.4) can be expressed by a single, linear matrix transformation such
that 


x1

x2

x3


 =




p11 p12 p13

p21 p22 p23

p31 p32 p33






X1

X2

X3


 (2.5)

or
x = PX, (2.6)

if the convention is adopted that

(
x
y

)
=

(
x1/x3

x2/x3

)
. (2.7)
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This 3-vector representation of a point is known as homogeneous coordinates . Its
main advantage is the fact that, using homogeneous coordinates, a projection
can be expressed by a single matrix multiplication, which hides the nonlinearity
inherent in projection and is therefore handy for computational purposes. For this
reason homogeneous coordinates will be used throughout the remainder of this
thesis, unless otherwise stated.

In homogeneous coordinates any finite two-dimensional point x = (x, y)T can be
expressed as the triplet X = (X,Y,Z)T with Z 6= 0. The conversion between the
two is




X
Y
Z


 = k




x
y
1


 (2.8)

(
x
y

)
=

(
X/Z
Y/Z

)
. (2.9)

From Equations (2.8) and (2.9) it is clear that the homogeneous representation X

is only defined up to an arbitrary scale factor k 6= 0; only the ratio of homogeneous
coordinates is significant. We also see from Equation (2.9) that in the limit Z → 0
a point at infinity can be expressed quite naturally as X = (X,Y, 0)T, compare
also Section 2.4.2. Any non-singular matrix P ∈ IR3×3 forms a valid projective
transformation with eight degrees of freedom (see above).

The group of projective transformations discussed above contains several sub-
groups. These are discussed in the next sections, going from the more special
to the more general.

2.2.2 The Euclidean Group

Equation (2.6) describes a Euclidean transform if

Peucl = k




r11 r12 tx
r21 r22 ty
0 0 1


 = k

(
R t

0 0 1

)
, (2.10)

where R ∈ IR2×2 is an orthogonal matrix, i. e.

RRT = RTR = I2. (2.11)

It is easy to show that all orthogonal matrices describe either rotations (det(R) =
1) or reflections (det(R) = −1). The usual parameterisations for a rotation or
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reflection are

Rrot =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(2.12)

Rrefl =

(
cos(α) sin(α)
sin(α) − cos(α)

)
. (2.13)

The Euclidean transformation therefore has 3 degrees of freedom (the angle of
rotation α and the vector of translation t = (tx, ty)T), and it is easy to see that
all transformations of this type form a group. Compare Figure 2.2(a) on Page 24
for examples of all possible Euclidean transformations.

2.2.3 The Similarity Group

The similarity group is a generalisation of the Euclidean group through the addi-
tion of a uniform scale-factor s to the matrix of rotation or reflection R. Equa-
tion (2.10) becomes

Psim = k




s · r11 s · r12 tx
s · r21 s · r22 ty

0 0 1


 = k

(
s ·R t

0 0 1

)
. (2.14)

Consequently, a similarity transformation has 4 degrees of freedom. It is again
easy to see that all similarity transformations form a group. Figure 2.2(b) on
Page 24 gives examples of similarity transformations.

2.2.4 The Affine Group

The affine group is derived from the similarity group through the inclusion of
anisotropic scaling and skew. This introduces two additional degrees of freedom,
resulting in 6 degrees of freedom altogether. An affine transformation has the
matrix

Paff =




a11 a12 a13

a21 a22 a23

0 0 a33



 (2.15)

where det(Paff) 6= 0. Skew alone can be described by a matrix

Pskew =




1 ax 0
ay 1 0
0 0 1


 , (2.16)
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where ax and ay describe skew in x-direction (i. e. parallel to the x-axis) and y-
direction respectively. For ax = −ay this also describes a rotation around the origin
and isotropic scaling; the effect of skew can conversely be created by a suitable
combination of rotations and anisotropic scaling. Figure 2.2(c) on Page 24 gives
examples of affine transformations, in particular skew in y-direction.

2.2.5 The Projective Group

The projective group finally can be derived from the affine group by introducing
so-called perspective skew in the x- and y-direction. This has also been called
projective shear or chirp and keystoning. This is simply the full matrix in Equa-
tion (2.5), or

Pproj = PaffPproj skew (2.17)

where the projective skew alone can be parametrised as

Pproj skew =




1 0 0
0 1 0
bx by 1


 (2.18)

if bx and by describe projective skew in x-direction (i. e. symmetric around the x-
axis) and y-direction respectively. An example of projective shear in one or both
directions can be seen in Figure 2.2(d).

Figure 2.2 and Table 2.1 give an overview over the projective group and its sub-
groups as well as some invariant features.
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(a) Rotation and trans-
lation.

(b) Isotropic scaling. (c) Anisotropic scaling
and skew.

(d) Projective skew.

Figure 2.2: Visual effects of different group-actions: (a) Euclidean, (b) Sim-
ilarity, (c) Affine, (d) Projective.
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Table 2.1: Common subgroups of the projective group and their geometric
properties. Groups lower in the table inherit from groups higher in the table
(but the converse is of course not true). See also [103, introduction].
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Figure 2.3: Generic camera Model.

2.3 Camera Models

This section describes the four camera models used in this thesis, namely the weak
perspective camera in Section 2.3.1, the affine camera in Section 2.3.2, the projec-
tive camera in Section 2.3.4 (preceded by a short description of the perspective
and constrained perspective camera models in Sections 2.3.3 and 2.3.5), and what
I call the quasi-calibrated camera in Section 2.3.6 — the most realistic and there-
fore the preferred model for most applications discussed later. These models are
all useful approximations of real cameras for certain applications, and each section
gives examples of such applications. Section 2.3.7 finally discusses the limits of
all these linear models when compared to real, nonlinear cameras. This section
is in its approach complementary to a good discussion of camera models in the
Appendix of [103].

The discussion is based on the simple model of a pinhole-camera depicted in Fig-
ure 2.3. Note the small difference in the placement of the origin between Figure 2.1
on Page 19 and Figure 2.3. The former is called a viewer-centred coordinate system,
while the latter is called image-centred [68]. It is easy to see from Figure 2.3 that
the projection from arbitrary homogeneous world-coordinates X = (X,Y,Z, 1)T
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0

Y

X

Z

Figure 2.4: The weak perspective camera.

onto homogeneous image coordinates x = (kx, ky, k)T is given by

x =




1 0 0 0
0 1 0 0
0 0 1

f 1



X. (2.19)

Different values for f (which is often taken to be the focal length, from which
it takes its name) lead to different camera models; we distinguish the two cases
f =∞ described in Sections 2.3.1 and 2.3.2 and f 6=∞ described in Sections 2.3.3
and 2.3.4.

2.3.1 The Weak Perspective Camera

The weak perspective camera is derived from Equation (2.19) in the limit f →∞.
This means that all rays are parallel to each other and orthogonal to the image
plane, as illustrated in Figure 2.4. In addition to this projection, the image plane
can undergo an arbitrary Euclidean transformation (see Equation (2.10)).

This model describes the case of a calibrated camera viewing a planar object in
a plane parallel to the image plane, and at a known distance. Only the object’s
position and orientation within that plane is assumed unknown. This setup is
sometimes found in inspection tasks, where a calibrated camera is installed at
a known distance above a conveyor-belt which carries flat objects with a fixed
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f

Figure 2.5: Normal lens (top) and telecentric lens (bottom).

orientation towards the camera (namely lying on the belt). If the distance between
the camera and the planar object (and therefore the object’s size in the image) is
not known, it is customary to replace the Euclidean transformation of the image
plane used above by a similarity transformation according to Equation (2.14). The
resulting model is often called scaled orthographic projection.

Special precautions have to be taken when applying this model to objects that
are neither planar nor parallel to the image plane. Telecentric lenses (as seen in
Figure 2.5) can be used and give a very good approximation of this model. The
size of the object is, however, limited by the diameter of the front lens, which has
to be bigger than the object. In practice the model of a weak perspective camera
is often used whenever the change in depth within the object is small compared
to the object’s distance from the camera. Since small is often taken to mean
a difference in size of an order of magnitude or more, this can usually only be
achieved with telephoto-lenses; an extreme example might be images of (stellar)
constellations taken through a telescope.
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Z

X

Y

0

Figure 2.6: The affine camera. Movement of the image plane around the
origin (plus scaling) is equivalent to an affine transformation of the image
plane.

Allowing an arbitrary object to freely change its orientation in 3D will usually
result in changes in the object’s appearance which cannot be modelled by a Eu-
clidean or similarity transformation. For planar objects, these changes can be
modelled by an affine transformation of the image plane (compare Equation (2.15)
and the affine camera described in the next section). For arbitrary, non-planar,
fully 3-dimensional objects this can become arbitrarily complex, and cannot nor-
mally be described by a transformation of the image plane. Note, however, that
in both cases the resulting effect is entirely due to changes in the object’s orienta-
tion relative to the camera; it is often possible to recover completely the object’s
orientation from its weak perspective image, which is not possible for any of the
other models discussed below (with the exception of the quasi-calibrated camera
under certain restrictions).

2.3.2 The Affine Camera

The affine camera, like the weak perspective camera in Section 2.3.1, assumes
f → ∞. However, the image plane can now undergo an arbitrary, unknown 2D
affine transformation. This is illustrated in Figure 2.6 by a movement of the
image plane around the origin, which together with scaling is equivalent to an
affine transformation. For planar objects in front of an affine camera, the result
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Y

X

Zf
0

Figure 2.7: The perspective camera.

of rotating the image plane is equivalent to rotating the object. This means that
it is not possible anymore to infer the object’s orientation from its image (as
was possible with the weak perspective camera), since it is not clear whether any
distortions are due to rotations of the object or of the image plane.

The affine camera can be used to model an uncalibrated CCD-camera under re-
strictions which are otherwise unchanged from that of a weak perspective camera
(i. e. the change in depth within the object is small compared to the object’s dis-
tance from the camera); the additional degrees of freedom introduced by the use of
an affine are used to approximate the unknown camera parameters, in particular
if the camera’s sensor is not orthogonal to the camera’s optical axis.

2.3.3 The Perspective Camera

The perspective camera or pin-hole camera depicted in Figure 2.7 is the linear
camera model which most closely resembles the real cameras used in computer
vision. Here f is the distance between the pin-hole and the image plane; this
corresponds to the distance between a camera’s lens and the image plane for real
cameras. This distance is therefore also called the focus-setting. For a camera
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focused at infinity this is equivalent to the camera’s focal length. More generally,
for a camera focused at a distance p and with focal length F this is

f =
pF

p− F
. (2.20)

In addition to the conic projection onto the image plane, the image plane itself
can be subject to an arbitrary affine transformation. Since this is equivalent to a
movement of the image plane around the origin (and subsequent scaling operation),
it corresponds well to the usual sources of mal-calibration in real cameras: a sensor-
array which is slightly tilted or displaced, a lens which is not exactly centred, an
unknown aspect-ratio and an unknown focus-setting f (and therefore overall scale).

The model’s main drawback, and the reason it is not often used in (uncalibrated)
computer vision, is its comparative complexity due to the fact that perspective
projections do not form a group — a perspective projection of a perspective pro-
jection is not necessarily a perspective projection. This can be avoided when using
the projective camera model described next.

2.3.4 The Projective Camera

The projective camera is similar to the perspective camera described above. The
only difference is that the image can undergo an arbitrary projective transforma-
tion (instead of an affine transformation). This has the advantage of improved
simplicity over the perspective camera (from a mathematicians point of view),
since projective transformations form a group. It also models the process of tak-
ing images of images. This has e. g. been used to deal with shadows [89, 154], see
Figure 2.8. The use of a projective camera model for this application is however
only necessary if both an object and its shadow are considered valid representa-
tions of the object, and this ability is also one of the model’s main disadvantages —
its inherent inability to distinguish between the image of an object and the image
of its shadow, at least from the outline alone.

A problem with all the models discussed so far is that a number of assumptions
which are sensible for real cameras are not easily incorporated into any of the above
camera models. This has given rise to what I call the constrained perspective and
the quasi-calibrated or “sensible” camera model, described in the next two sections.
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Zf

Figure 2.8: The projective camera. It is not possible to distinguish between
the object and its shadow from the images of their respective outlines.

2.3.5 The Constrained Perspective Camera

This is essentially a perspective camera as described in the previous section, but
with the added constraint that the image was taken by a human or otherwise
known operator from an ordinary perspective, and at a roughly known orientation
— i. e. we know which side of the image is up, and the horizontal and vertical
direction within the image are roughly known. This is true for almost all images
which we usually encounter and can provide rather strong constraints on possible
solutions as we will see in Sections 5–7.

2.3.6 The Quasi-Calibrated Camera

The “sensible” or quasi-calibrated camera, my preferred camera model for most of
the applications discussed later on, is also called natural camera in [87].
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Using a calibrated camera means that all internal camera-parameters — the image
coordinate scale factors (sx, sy)T, the principal point (tx, ty)T, and the focal length
f — as well as all external parameters (position and orientation of the camera) —
are known with high precision.

A quasi-calibrated camera, in this context, means a camera where only a rough
approximation for these values exist: the focal length as printed on the lens (or
simply an educated guess), the scale factors as found in the camera’s manual, the
image centre as principal point. While these values will not, as a rule, be very
accurate, they will certainly be within sensible bounds. It is possible to collect all
these parameters into a matrix of internal camera-parameters

Pcamera =




sx 0 tx
0 sy ty
0 0 1/f


 (2.21)

This is basically the same matrix as given in [103].

In addition it is also often possible to make a few generic assumptions about the
external camera parameters, in particular the height above ground (about head-
high, some 1.6m–1.8m), roll-angle (usually accurate to within a few degree) and
pitch-angle (horizon somewhere in the image) which can additionally constrain
possible interpretations of the image scene. The effects of the choice of camera
model will be discussed in detail in Sections 5–7.

2.3.7 Real Cameras

Of course all six models given above are only approximations of real cameras. They
all have in common that they only attempt to model linear effects. However, real
cameras suffer from several nonlinear effects. These range from comparatively sim-
ple nonlinear (barrel or pincushion) distortions [139] to complex effects dependent
on the particular wavelength. Although in my experience good lenses will not
suffer much from any of these problems up to a field of view of about 40 ◦, it is
none the less advisable to check for any of theses problems and correct for them,
if necessary. Algorithms can be found e. g. in [139]; [14] uses a very nice approach
in keeping with this thesis (minimising vanishing point dispersion), although the
actual implementation is in my opinion flawed. The need to correct for nonlinear
distortions can make the notion of uncalibrated cameras, which have become quite
fashionable since Faugeras published his landmark article in 1992 [44], seem less
appealing.
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2.4 Points and Lines

We saw in Section 2.2 that the two-dimensional point p = (x, y)T can be expressed
in homogeneous coordinates as a triplet P = (X,Y,Z)T = k(x, y, 1)T (compare
Equation (2.8)). If we define a line as the set of all points for which the equation

aX + bY + cZ = k(ax + by + c) = 0 (2.22)

holds, we can write this line as a 3-vector ℓ with

ℓ =




a
b
c


 (2.23)

and the equation that specifies all points P on the line as

ℓTP = PTℓ = 0. (2.24)

A line ℓ which passes through two points P1 and P2 satisfies ℓTP1 = 0 and
ℓTP2 = 0. Therefore ℓ can be calculated as

ℓ = P1 ×P2 (2.25)

where × denotes the cross-product.

2.4.1 Duality

Writing the line ℓ as an homogeneous 3-vector makes apparent the duality between
points and lines in plane projective geometry — points and lines cannot be distin-
guished from Equation (2.24). It is in fact possible for any result derived for points
to be applied to lines and vice versa; this will for example be used in Section 2.6
when introducing the crossratio.

Another example is the calculation of the intersection P of two lines ℓ1 and ℓ2.
This is the dual problem to finding the line through two points in Equation (2.25),
and the intersection of the two lines is therefore given by

P = ℓ1 × ℓ2. (2.26)

It should, however, be noted that, although the structure is the same for both
points and lines, this is not necessarily the case for the individual parameters of a
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transformation. If A describes the transformation from one plane Π onto a second
plane Π′, i. e. a point x is transformed into another point x′ as

x′ = Ax (2.27)

so is the transformation from a line ℓ on Π onto a line ℓ′ on Pi′ given by the
inverse of its transpose A−T, it is

ℓ′ = A−Tℓ (2.28)

as can be seen from

ℓ′
T
x′ = (A−Tℓ)T(Ax) = ℓTA−1Ax = ℓTx = 0 (2.29)

2.4.2 Special Points and Lines

We will now discuss several points and lines of particular interest. We can see from
Equations (2.8) and (2.9) on Page 21, which described the conversion between
Euclidean (image) and homogeneous coordinates, that not every homogeneous co-
ordinate corresponds to an image coordinate. We have already mentioned that the
set of points (X,Y, 0)T with X2 + Y 2 > 0, which cannot be mapped onto (finite)
image coordinates using Equation (2.9); these points are customarily treated as
points at infinity (in the direction indicated by X and Y ). This makes the point
(0, 0, 0)T the only point in homogeneous coordinates without a well-defined coun-
terpart in image coordinates; it is customary to exclude (0, 0, 0)T from the set of
homogeneous coordinates.

Conversely, for lines in homogeneous coordinates the special case is the line speci-
fied as (0, 0, c)T. It is easy to see that this has to be the line at infinity, since all
points at infinity (X,Y, 0)T lie on this line, it is (0, 0, c) (X,Y, 0)T = 0. Note that
there is only one line at infinity, since homogeneous coordinates are invariant to
uniform scaling; it is again customary to exclude the line (0, 0, 0)T from the set of
homogeneous coordinates. The line (a, b, 0)T, on the other hand, is simply the line
through the origin whose normal-vector is given by (a, b, k)T.

2.4.3 Vanishing Points and Lines

Additional distinguished points and lines are vanishing points and vanishing lines
respectively; these can be interpreted as projective transformations of points and
lines at infinity (in 3D). Lines that are parallel in the world (and could therefore
be said to intersect at a point at infinity) will not, in general, appear parallel
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vanishing line, horizonP1 P2

P3

Figure 2.9: Vanishing points and vanishing line.

under a projective transformation. Since order of contact is a projective invariant
(compare Table 2.1) this means that the lines’ original intersection at infinity will
be projected to a new location generally not at infinity. This point is called the
lines’ vanishing point since it is the point where infinitely long lines seem to vanish
when viewed in an image. Figure 2.9 shows examples of vanishing points.

Two such sets of lines, both parallel to the same plane, but not parallel to each
other, define two separate vanishing points which in turn define a line. This line is
called the plane’s vanishing line, since in an image it is the locus where the plane
seems to vanish. An image can contain several vanishing lines, each associated
with a different plane in 3D. An example for a vanishing line is given in Figure 2.9.
Additional vanishing lines (not shown in the figure) go through the point-pairs
(P1,P3) and (P2,P3).

2.4.4 The Horizon

One vanishing line of particular interest is the line customarily termed the horizon.
It is formed by two vanishing points corresponding to different directions parallel
to the ground-plane (compare Figure 2.9). The name horizon is adopted here
although it is somewhat misleading, since the horizon encountered in the real world
is not a line, but rather part of a conic (a hyperbola, to be precise). And although
the difference between the two is quite small in most images (usually within a
pixel), one should keep this difference in mind, since it can become arbitrarily
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large under certain conditions.

2.5 Conics

While the last section described important point and line-based features, such as
the duality between points and lines and special points and lines such as the van-
ishing point and vanishing line, these are by no means the only geometric entities
that are easily integrated into projective geometry. Another important geometric
structure are conics, which are self-similar under projective transformations. This
section describes their embedding into homogeneous coordinates and projective
geometry.

A conic curve in the plane, i. e. an ellipse, parabola, or hyperbola, is defined by
the quadratic homogeneous expression

AX2 + BXY + CY 2 + DXZ + EY Z + FZ2 = 0. (2.30)

Note that this homogeneous equation has 6 parameters, but only 5 degrees of
freedom, as only the ratio of parameters in Equation (2.30) is significant. It can
be written as

PTCP = 0 (2.31)

with a symmetric matrix C ∈ IR3×3 and vector P ∈ IR3 as follows

C =




A B
2

D
2

B
2 C E

2
D
2

E
2 F


 (2.32)

P = (X,Y,Z)T.

If a point P transforms as p = AP under the action of a matrix of transformation
A ∈ IR3×3, so is the corresponding conic C transformed as

c = A
−T

CA
−1. (2.33)

The resulting matrix c ∈ IR3×3 is again a symmetric matrix of the form given in
Equation (2.32) and therefore a conic, it is cT = (A−T

CA
−1)T = A

−T
CA

−1 = c.
It can indeed be shown that all conics are projectively equivalent, compare for
example the appendix of [103].
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centre

projected centre

Figure 2.10: A conic’s midpoint is not invariant to projective transformation.

It should be noted that a conic’s midpoint is of course not invariant under general
projective transformations, Figure 2.10 illustrates this effect. This is due to the
fact that the ratio of lengths is not an invariant under projective transformations,
as stated in Table 2.1 on Page 24.

2.5.1 Duality

Conics are so called self-dual figures. This means that they can be considered to
be both the locus of points as well as the envelope of tangent-lines. The latter
view is commonly referred to as a line-conic. The line-conic’s equation is

L = |C|C−1 (2.34)

where |C| is the determinant of C and ℓT
Lℓ = 0 for all tangent-lines ℓ; it transforms

as
l = ALA

T. (2.35)

2.5.2 Pole and Polar of a Conic

For any point P outside a conic there are two tangents from P to the conic C as
illustrated in Figure 2.11. The two points of tangency define a line ℓP which is
called the polar of point P with respect to the conic C. Conversely, the point P is
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P

ℓP

Figure 2.11: Pole and polar of a conic.

called the pole of line ℓP with respect to the conic C. The interrelation between
pole, polar, and conic is given by

ℓP = CP. (2.36)

Note that using Equation (2.36) it is also possible to calculate the polar which
corresponds to a pole inside the conic, although the notion of tangents is not
defined for these points (the polar corresponding to a point on the conic is the
tangent to the conic at that point).

2.6 The Crossratio

We can see from Table 2.1 on Page 24 that neither length nor the ratio of length
is preserved under projective transformation. Luckily there is one feature which
is preserved and this is the crossratio, or ratio of ratios of collinear lengths. The
crossratio is indeed by far the most important projective invariant, and Mundy
and Zisserman ventured in [103] that likely all invariant properties of a geometric
configuration can ultimately be interpreted in terms of some number of crossratio
constructions.

2.6.1 Definition

The crossratio of four collinear points {A,B,C,D} is defined with respect to
Figure 2.12, usually [72, 103, 138] as

cr(A,B,C,D) =
AC

BC
· BD

AD
=

C −A

C −B
· D −B

D − A
, (2.37)
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Figure 2.12: The crossratio. Capital letters denote points, and small letters
denote lines.

where AC is the directed Euclidean distance between point A and point C, and
{A,B,C,D} are scalars representing the corresponding Euclidean position of each
point along the line relative to an arbitrarily chosen origin. That the crossratio
is indeed a projective invariant can easily be proven by direct substitution and
cancellation of the resulting non-zero factor in each term [103, 138, 146].

2.6.2 The Six Crossratios of Four Points

The form of Equation (2.37) suggests that the value of the crossratio of four
collinear points depends on the order of these points. There are 4! = 24 possi-
ble permutations, suggesting the existence of 24 different values for the crossratio
cr. In fact there are at most 6 distinct values of the crossratio within these 24
permutations, as can easily be shown [103, 138, 146]. These are

{
cr, 1− cr,

1

cr
, 1− 1

cr
,

1

1− cr
,

cr

1− cr

}
. (2.38)

For a general set of four points {A,B,C,D} these 6 functions of cr will indeed
produce six distinct values. However, if the four points are related in a suitable
way, some of the six crossratios formed from Equation (2.38) may be equal. A
complete catalogue of these special cases can be calculated by equating cr with
each of the other expressions and solving for cr; following [138] the three special
cases are:

1. {1, 1, 0, 0,∞,∞}: two of the four points coincide.
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2. {−1,−1, 1/2, 1/2, 2, 2}: this case is called harmonic separation, see Sec-
tion 2.8.

3. {−ω,−ω,−ω,−ω2,−ω2,−ω2} with ω = e2πi/3: The four points, not all of
which can have real parameters, form an equianharmonic tetrad [138, Page
48].

It might be interesting to note that in every case all the values of the crossratio
occur the same number of times in the full set of 24: 4 times in the general case,
8 in case 1 and 2, and 12 in case 3.

The existence of 6 distinct values for the crossratio dependent on the order of
points could possibly cause problems for some applications where the order is not
known, especially since projective transformations do preserve order only up to a
cyclic permutation. A possible invariant which does not depend on the order can
be calculated as [103, 138]

I(cr) =
(cr2 − cr + 1)

3

cr2(cr− 1)
2 . (2.39)

The application of this equation allows one to use the crossratio without the need
to determine the order of points beforehand, as well as in cases where a cyclic
permutation of the points due to some projective transformation occurred.

2.6.3 The Crossratio of Four Lines

Since points and lines are dual, there must also be a crossratio of four coincident
lines (the dual of collinearity is incidence at a point). Such a set of coincident lines
is called a pencil. Where in the case of four points on a line the points could be
described by a single parameter position on the line, in the case of four coincident
lines it is possible to uniquely describe each line by its gradient. One possible
formulation for the crossratio of four lines {a,b, c,d} is in terms of the angles
between the lines [103] (see also Figure 2.12):

cr(a,b, c,d) =
sin(αac)

sin(αbc)
· sin(αbd)

sin(αad)
. (2.40)

Any fifth line x not coincident with the other four will intersect the pencil at four
points of intersection {A,B,C,D}. These intersections form in turn a crossratio
on the line, as illustrated in Figure 2.12. It is easy to prove that the two crossratios
are identical, cr(a,b, c,d) = cr(A,B,C,D), using only the law of sines, that is

sin(αac)

AC
=

sin(αXAC)

XC
. (2.41)
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and similarly for the other angles, compare Figure 2.12. Substituting these terms in
Equation (2.40) and cancelling out some of the terms one immediately gets (2.37).

2.6.4 Alternative Formulations of the Crossratio

Equations (2.37) and (2.40) are not particularly convenient for the actual computa-
tion of the crossratio, since it is always possible that one of the points {A,B,C,D}
is an ideal point at infinity, requiring the introduction of special cases when com-
puting the Euclidean distance used in Equation (2.37). Similar problems exist for
the calculation of the angles in Equation (2.40) if the pencil’s intersection is a
point at infinity, in which case all the lines are parallel.

Therefore the crossratio is often calculated using the equation

cr(A,B,C,D) =
|ACX|
|BCX| · |BDX|

|ADX| =
|acx|
|bcx| · |bdx|

|adx| = cr(a,b, c,d), (2.42)

where |ACX| is the determinant of a matrix formed by the three column-vectors
A, C, and X. The point X as well as the line x can be chosen arbitrarily as
long as none of the matrices in Equation (2.42) become singular2. This means in
particular that the point X must not be collinear with the points {A,B,C,D},
and the line x must not be coincident with the lines {a,b, c,d}. A proof that
Equation (2.42) is indeed equivalent to Equations (2.37) and (2.40) can e. g. be
found in [72]. An alternative proof is outlined below:

The determinant |ACX| can be written as

|ACX| = (A×C)TX. (2.43)

We have seen in Section 2.4 that A ×C = kx if x is the line through A and C.
Furthermore

A×C = ‖A‖2‖C‖2 sin(αAC)
x

‖x‖2
(2.44)

and consequently

|ACX| = (A×C)TX = ‖A‖2‖C‖2 sin(αAC)‖X‖ cos(αxX). (2.45)

Since the homogeneous points {A,B,C,D} are collinear, the line x goes through
all of them, resulting in similar equations for the other three combinations. From
there it is easy to see that Equation (2.42) is indeed equivalent to Equation (2.40).
Equation (2.45) suggests that X ∝ x ∝ (A × C) is a reasonable choice for X —
we will see in Section 4.5 that this is in fact not so.

2Note that any of the matrices will of course become singular if the two points (lines) used
are identical. However, if the four points (lines) are distinct from each other then either all the
matrices will be singular, or none, depending solely on X.
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Figure 2.13: A conic can be defined using the crossratio.

2.6.5 Conics and the Crossratio

Conics can be defined with respect to the crossratio: take four points A, B, C, D,
no three of which are collinear. Draw a pencil of lines from an arbitrary point E

to all four fixed points. The locus of the vertices X′ of all pencils with constant
crossratio is a conic, compare [103, p. 490] and Figure 2.13.

2.6.6 Projective Coordinates

The cross-ratio can be used to define projective coordinates. This is easy to see
in the case of projective coordinates on the line as in Figure 2.14(a). In the
Euclidean case two points on a line define a coordinate system where one point is
the origin and the second point’s position relative to the first determines the scale
factor. However, scale (or, more precisely, length) is not a projective invariant.
We therefore need to know a third point’s position along the line. Only then
is it possibly to describe every other point’s position on the line uniquely by its
crossratio with the three base-points. Conversely, it is also possible, given three
base-points and the crossratio, to compute the Euclidean position of the forth
point on the line by solving Equation (2.37) for this position; it is without loss of
generality (w. l. o. g.):

D =
B(A− C) + cr ·A(C −B)

(A− C) + cr · (C −B)
. (2.46)

The same is possible in the plane. Euclidean coordinates in the plane consist of
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D = B(A−C)+cr ·A(C−B)
(A−C)+cr · (C−B)

A B C D

(a) Projective coordinates on the line.

A1 A2

B C

D

(b) Projective coordinates on the plane.

Figure 2.14: Projective coordinates on the line and plane.

an origin and two orthonormal vectors which define two independent directions as
well as a scale-factor. Again, scale (length) is not a projective invariant, nor is
orthogonality. In order to construct a projective coordinate system of the plane 4
points are needed, no three of which are collinear. Several approaches have been
used to define projective coordinates on the plane using 4 reference-points; how-
ever, they are all equivalent since 5 points only have two functionally independent
invariants, corresponding to the planes 2 degrees of freedom.

One often used approach singles out one reference-point and draws lines from there
to the other 3 reference points, resulting in 3 coincident lines. Any fifth point would
add a forth line, and the crossratio of four lines would uniquely determine the ray
on which the forth point is located. Selecting a different base-point we end up
with a similar construction, giving a second ray. The point where the two rays
intersect is the fifth point (compare Figure 2.14(b)).

Another way to uniquely describe a points’ position on the plane is to solve for the
transformation that projects the base-points into a fixed position and determine
any other point’s position within this frame. This approach is discussed in the
next section.

Error Propagation in Geometry-Based Grouping



44 Canonical Frames
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Figure 2.15: The outline of a traffic-sign as seen in the image (left) and after
transformation into a canonical frame (right).

2.7 Canonical Frames

We have seen in the last section that the position of 4 points on a plane allows
us to uniquely specify the position of each additional point on that plane indepen-
dently of any projective transformation applied to that plane. These projective
coordinates are, however, not a particularly intuitive way to describe most image
features, and it is therefore often desirable to find some quasi-Euclidean represen-
tation instead. This can easily be done if the entire object plane is transformed
in such a way that the projective coordinates’ four reference-points (or lines) are
transformed onto four points (or lines) in a fixed position, the so called canonical
frame.

2.7.1 Motivation

Three possible uses for canonical frames are described below; all have been used
within this thesis.

Verification and Recognition: Canonical frames have traditionally been used
for verification and recognition purposes [127, 129][9], as they allow for the
direct comparison of features within a quasi-Euclidean framework. Possible
comparisons range from direct comparison of pixel-positions to the calcula-
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tion of higher order features of non-algebraic curves, where they considerably
reduce the number of derivatives required (from up to seventh order to only
first or second order [158]). It is noteworthy that all frames are mathemat-
ically equivalent in the absence of errors. This is however not the case for
practical applications, as we will see in, e. g., Section 4.4.2.

Recognition within a canonical frame can be implemented as simple as a
comparison with different models, and as complicated as the extraction of
invariants or the application of an index-function. Examples for both uses
are given in Section 7.

Backprojection: Normally, image pixels or low-level features like edgels or lines
are projected into the canonical frame in order to test a hypothesis. If instead
the known contour (or other features) of a hypothesis are projected from the
frame back into the image we talk about backprojection. This is often done
for verification directly in the image, recognising the fact that in practice,
and in the presence of errors, all canonical frames are not equal.

Another use is the prediction of additional image features from a hypothesis,
which, if found, would lend additional credibility to the particular hypothesis.
This is used in Section 5.

Fitting: Using the canonical frame to fit higher order structures to low-level fea-
tures (mainly edgels) allows us to enforce additional constraints not easily
enforced within the image. The basic idea here is to find the transformation
from the image into the canonical frame which minimises the error between
the transformed image features and a structure in the canonical frame. It is
then possible to invert the transformation in order to calculate the structure’s
position within the image.

This approach is of course only useful in the presence of errors (fitting would
not be required otherwise) and therefore discussed in more detail in Sec-
tion 4.4.2, where it is used.

2.7.2 Commonly used Frames

In the case of 4 points, commonly used frames include e. g. the unit square

{
(0, 0, 1)T, (1, 0, 1)T, (0, 1, 1)T, (1, 1, 1)T

}
(2.47)

and the triangle of reference and unit point

{
(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1, 1)T

}
, (2.48)
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aa

b

c

Figure 2.16: Some distinguished points: a. Bitangent-points, b. inflection, c.
casttangent-point.

where the first three points are called the vertices of the triangle of reference, while
the last point is called the unit point [103, 138]. Other canonical frames are often
based on the object’s appearance in the Euclidean world. Figure 2.15 shows an
example where the unit square is also the object’s natural frame. In the absence of
measurement errors, all canonical frames are of course mathematically equivalent.

2.7.3 Commonly used Image Features

A canonical frame describes a particular instance of a projectively transformed
plane (or, more general, space). In order to define this particular instance, it is
necessary to determine the projective transformation between the original space
and its representation within the canonical frame. In the case of planar structures
as discussed here, this transformation has 8 degrees of freedom, and it is clear that
the position within the image and frame of any structure which fixes at least 8
degrees of freedoms can be used to describe the transformation between the two
planes. In practice, however, this structure will nearly exclusively be made up
of points and lines. The reason for this is that the use of points and lines leads
to a set of linear equations (compare Section 2.7.4), while higher order algebraic
structures generally do not. Also, points (edgels) and lines (straight edgel chains)
are the most basic image features found.

Three different types of points are commonly used in computer vision:

1. Corners of grey-level discontinuities as found by corner detectors.

2. Intersections of higher-order algebraic features, usually lines fit to grey-level
discontinuities.

3. Distinguished points. These are points on a curve which are easily distin-
guishable from all the other points on the curve by order of contact, which
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is a projective invariant (compare Table 2.1). Examples are points of bitan-
gency or inflections (see Figure 2.16), which are easily identified using only
up to first or second order derivatives.

Once a point and a curve are identified it is often easy to create a number of addi-
tional distinguished points. Examples are rays cast from one distinguished point
and tangent to the curve at a second point, so called casttangents. This second
point, the casttangent-point, is another distinguished point. Another example is
the intersection of a line through two distinguished points and the curve (compare
Item 2), again generating extra distinguished points (although of course collinear
with the first two).

2.7.4 Calculation of Canonical Frames

Finding the transformation A ∈ IR3×3 such that N ≥ 4 image points Xi are
mapped onto the corresponding frame-points xi is easily done by solving the equa-
tion

AX = xk (2.49)

for A. X, x ∈ IR3×N are two matrices, where each column represents one image
or frame point respectively, and k ∈ IRN×N is a diagonal matrix of scale-factors
accounting for the fact that the overall scale of each homogeneous coordinate can
be chosen arbitrarily. The resulting equations are of the form:

a11Xi + a12Yi + a13Zi = kixi

a21Xi + a22Yi + a23Zi = kiyi

a31Xi + a32Yi + a33Zi = kizi

(2.50)

and it is always possible to eliminate ki. We assume that w. l. o. g. zi = 1 (this
is obviously not the case for the triangle of reference (2.48), but the underlying
principle is the same) and get

a11Xi + a12Yi + a13Zi = a31Xixi + a32Yixi + a33Zixi

a21Xi + a22Yi + a23Zi = a31Xiyi + a32Yiyi + a33Ziyi.
(2.51)
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Furthermore, since the overall scale of A is arbitrary we can choose w. l. o. g. a33 = 1
and get, for N = 4




X1 Y1 Z1 0 0 0 −X1x1 −Y1x1

0 0 0 X1 Y1 Z1 −X1y1 −Y1y1

X2 Y2 Z2 0 0 0 −X2x2 −Y2x2

0 0 0 X2 Y2 Z2 −X2y2 −Y2y2

X3 Y3 Z3 0 0 0 −X3x3 −Y3x3

0 0 0 X3 Y3 Z3 −X3y3 −Y3y3

X4 Y4 Z4 0 0 0 −X4x4 −Y4x4

0 0 0 X4 Y4 Z4 −X4y4 −Y4y4







a11

a12

a13

a21

a22

a23

a31

a32




=




Z1x1

Z1y1

Z2x2

Z2y2

Z3x3

Z3y3

Z4x4

Z4y4




. (2.52)

The existence of this linear system ensures the existence and uniqueness of a
solution for A given four point correspondences, provided that no three of the
points are collinear[103].

A more elegant implementation would use a singular value decomposition (SVD)
approach to calculate the eigenvector to the smallest (zero!) eigenvalue of the
system




...
Xi Yi Zi 0 0 0 −Xi

xi

zi
−Yi

xi

zi
−Zi

xi

zi

0 0 0 Xi Yi Zi −Xi
xi

zi
−Yi

xi

zi
−Zi

xi

zi

...







a11

a12

a13

a21

a22

a23

a31

a32




= 0. (2.53)

This way it is not necessary to single out any particular aij = 1. In addition, such
an approach will also work in the presence of errors, and given N 6= 4 point-pairs.
SVD is, however, computationally more expensive.

The same basic approach can be used when 4 lines are given, no three of which
are coincident, solving for A

−T instead (compare Equation (2.28)). Rearranging
Equation (2.28) to read L = ATℓk it is even possible to combine the equations
for points and lines into one system of equations; the equation for a line-pair
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corresponding to Equation (2.52) and w. l. o. g. Ci 6= 0 would read




...
ai 0 aiAi bi 0 biAi ci 0
0 ai aiBi 0 bi biBi 0 ci

...







a11

a12

a13

a21

a22

a23

a31

a32




=




...
ciAi

ciBi

...




. (2.54)

Closed form solutions for combinations with higher-order algebraic forms, e. g.
conics, are unfortunately not as easy to find.

2.7.5 Semi-Frames

So far, we have always assumed that a canonical frame fixes all of a planar trans-
formation’s 8 degrees of freedom. For many applications, however, this is not
necessary. Imagine a frame which solely consists of a set of horizontal lines with
fixed distance from the origin. Neither an anisotropic scaling factor in x direction,
nor any skew nor translation in that direction would change the appearance of
the frame. It would therefore be sufficient to solve for a 5 degrees of freedom
transformation and arbitrarily fix the remaining 3 degrees. This could, e. g., look
like

A = k




1 0 0
a21 a22 a23

a31 a32 a33


 . (2.55)

2.8 Symmetry under Projective Transformations

Symmetry plays a crucial role in everyday life; many man-made objects possess
symmetry, and this has been exploited in vision systems [55, 102, 120, 128], [5,
9]. It is therefore reasonable to ask what happens to symmetry under a general
projective transformation.

Two points are said to possess symmetry with respect to a line, the axis of sym-
metry, if the line is the perpendicular bisector of the line segment joining the two
points. They are said to be symmetric with respect to a third point, the centre of
symmetry, if the third point bisects the line joining the points [65]. Symmetry is
therefore an inherently non-projective quality, since it depends on the invariance of
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midpoints and, in the case of axial symmetry, angles3. It is nonetheless possible to
identify some properties of symmetry that do not rely on the invariance of angles
or the ratio of lengths and this will be done in Section 2.8.1. We will then see in
Section 2.8.2 that these properties describe a particular type of projective trans-
formation, namely a plane harmonic homology. Section 2.8.3 finally shows that a
plane harmonic homology maintains its structure under arbitrary projective trans-
formations, and therefore is the most appropriate description of symmetry under
projective transformations.

2.8.1 Properties of Symmetry

Symmetry can be described in terms of the transformation H ∈ IR3×3 which trans-
forms one side x into its symmetric complement x′, we get the necessary condition

Hx = k′x′

Hx′ = kx

=⇒ HHx′ = kk′x′

=⇒ HH = kk′I3. (2.56)

It is always possible to scale H so that kk′ = 1. H is called an involution or
automorphism.

Equation (2.56) is only the necessary condition for symmetry; additional restric-
tions are needed in order to ensure that H represents a symmetry transformation.
In the case of axial symmetry the transformation H obviously leaves the axis itself
unchanged; in other words, the axis forms a set of fixed points or united points.
In the case of point symmetry, the centre of symmetry is left unchanged. It turns
out on closer inspection that axial symmetry has another fixed point at infinity,
in the direction perpendicular to the axis, while point-symmetry has a fixed line
at infinity.

In the projective case, the condition above reduces to that of a fixed point and a
line of fixed points in arbitrary position, as long as the point is not located on the
line. Interestingly, this means that there is no intrinsic difference between axial
symmetry and point symmetry in a projective space.

Finally, symmetry is characterised by the fact that the line segment joining x and
its symmetric complement x′ is bisected by the axis of symmetry (in the case
of axial symmetry) or the point of symmetry (in the case of point symmetry).

3For an affine transformation the concept of skewed symmetry can be defined.
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The ratio of collinear lengths is, however, not a projective invariant; the closest
approximation within a projective space would be a constraint on the crossratio
which any pair of symmetric points forms with its midpoint and the point at
infinity: the crossratio is always cr = −1.This is called harmonic separation (see
Section 2.6.2).

To identify a transformation that could take the role of symmetry within a pro-
jective space, we are looking for a transformation with a line of fixed points and
an additional fixed point not on that line which fulfils Equation (2.56) and with
the required crossratio of cr = −1. We will see in the next section that a plane
harmonic homology has all these attributes.

2.8.2 Homologies

One condition on a transformation that could take the role of symmetry within a
projective space was the existence of a line of fixed points and an additional fixed
point not on that line. We can see from Equation (2.6) on Page 20 that any 2D
projective transformation of a homogeneous vector x ∈ IR3 can be expressed as
its multiplication with a matrix P ∈ IR3×3. This matrix will in general have 3
eigenvectors xi ∈ IR3, xi 6= 0 and corresponding eigenvalues λi, such that

Pxi = λixi. (2.57)

Since homogeneous coordinates are invariant to overall scale this means that a
general projective transformation will have at least 3 points which remain fixed
under this particular transformation4. Depending on the multiplicity of the λi

there are 6 distinctive cases. These are discussed in more detail in [138].

Here, we are only interested in cases that produce a line of united points, that is an
eigenvalue of geometric multiplicity 2. There are two and only two such cases, the
first case with one degenerate eigenvalue λ0 of algebraic and geometric multiplicity
2 and one simple eigenvalue λ2 and the second case of one degenerate eigenvalue
λ0 of algebraic multiplicity 3 and geometric multiplicity 2. These cases are custom-
arily called the plane homology and the special plane homology respectively, and
the corresponding set of united points is formed by a line ℓ ∈ IR3 of united points
and a single united point v ∈ IR3, also called the vertex. Of these two only the
plane homology is of interest to us, since in the case of the special plane homology
the line of united points and the single united point coincide, vTℓ = 0.

4It is possible that two of these points — or even all three — coincide. It is also possible
that more than 3 such points exist. A simple example for the latter is P = I3, the identical
transformation.
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According to [138] any plane homology H ∈ IR3×3 can always be parameterised as

H = I3 +
1− cr

cr
· vℓT

vTℓ
(2.58)

as long as vTℓ 6= 0, that is the homology is not a special plane homology. Accord-
ingly, any plane homology with crossratio cr = −1 can always be parametrised as

H = I3 − 2
vℓT

vTℓ
. (2.59)

This is called a plane harmonic homology . By construction, any plane harmonic
homology has a line of united points ℓ and a single united point v as well as
cr = −1. It also satisfies the necessary condition for symmetry (2.56), it is

HH = I3 − 4
vℓT

vTℓ
+ 4

vℓTvℓT

vTℓvTℓ

= I3 − 4
vℓT

vTℓ
+ 4

v(ℓTv)ℓT

vTℓ(ℓT
v)

= I3 − 4
vℓT

vTℓ
+ 4

vℓT

vTℓ

= I3. (2.60)

This shows that Equation (2.59) really describes a transformation as outlined
in Section 2.8.1. It also describes Euclidean symmetry: ℓ = (a, b, c)T and v =
(a, b, 0)T describe axial symmetry; v = (x, y, z)T and ℓ = (0, 0, 1)T describe point
symmetry.

2.8.3 Symmetry under Projection

Under an arbitrary projective transformation P ∈ IR3×3 with Pv = ṽ and P−Tℓ =
ℓ̃ the plane harmonic homology H transforms as H̃ = PHP

−1. That H̃ is again of
the form (2.59) can be seen from:

H̃ = PHP−1

= PI3P
−1 +

1− cr

cr
· PvℓTP−1

vTℓ

= PP−1I3 +
1− cr

cr
· Pv(P−Tℓ)T

vTPTP−Tℓ

= I3 +
1− cr

cr
· ṽℓ̃

T

ṽ
T
ℓ̃
. (2.61)
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(a) Symmetry with respect to
a line.

(b) Symmetry under affine
transformation.

(c) Symmetry under projective
transformation.

Figure 2.17: Symmetry under transformations.

It follows (from the previous section) that any symmetry-transformation is of
the form given in Equation (2.59), and (from Equation (2.61)) that all symmetry-
transformations keep this form under an arbitrary projective transformation. Con-
versely, it is always possible to find a projection matrix P such that PHP

−1 de-
scribes a symmetry. A plane harmonic homology therefore describes the form
of a symmetry-transformation under an arbitrary projective transformation. Fig-
ure 2.17 gives examples for symmetry under different transformations.

2.9 The Gaussian Sphere

Persons used to the Euclidean plane generally find it difficult to envisage the
projective plane with its ideal points at infinity, but without the usual invariance
of angles and length (or at least ratio of length). So it is only understandable that
other models have been proposed.

2.9.1 The Ray-Space Model

Perhaps the most widespread model is that of a ray space, a space of coincident rays
embedded into a three-dimensional space IR3, as described in e. g. [103]. In this
space each ray — all rays emanate from a common origin — represents a projective
point. Only the direction of the ray matters in this model. In projective space
the crossproduct of two points defines a line, see Section 2.4. Consequently in ray
space a line is represented by the crossproduct of two rays — a plane through the
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p1

r2

r1
image plane

p2
ideal pointY

X

Z

Figure 2.18: Ray-space model. Each ray corresponds to a point in the image
plane. Two rays span a plane, two planes define a ray. Ideal points correspond
to a ray parallel to the image plane.

Figure 2.19: Gaussian sphere model.
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origin spanned by the two rays. Conversely, the crossproduct of two planes is the
ray common to both planes, representing a projective point. This is illustrated in
Figure 2.18.

The process of image formation is modelled as the intersection of all theses rays
and planes with a plane not through the origin (note the similarity between this
model and the viewer centred camera model in Section 2.3). Consequently, ideal
points with respect to this image plane are represented by rays parallel to the
image plane, while a plane through the origin and parallel to the image plane
represents the ideal line. It is easy to see from this model that the distinction
between ideal points and other points is really quite arbitrary, since the image
plane can be chosen randomly. The same model can be used to describe the
mapping from one plane onto a second plane, where the origin of the rays is the
centre of projection, and it is possible to model arbitrary relationships between two
planes by a composition of rotations and anisotropic scaling in IR3, compare [103].

2.9.2 The Gaussian Sphere Model

A slightly different model, but based on the one above, is the model of a Gaussian
or unit sphere. A projective point corresponds to the point where a line from the
sphere’s origin to the projective point intersects the sphere, and a projective line
corresponds to the great circle that is the intersection between the sphere and a
plane through the sphere’s origin and the projective line (compare Figure 2.19).
Note that any line through the origin will intersect the sphere at 2 points on
opposite sides of the sphere. It is therefore customary to avoid this ambiguity by
considering only a semi-sphere.

It is obvious that the ray-space model can easily be converted into the Gaussian
sphere model by calculating the intersections between rays and planes on the one
side and the sphere on the other. Easier still, if a ray is expressed as k(x, y, z)T,
the corresponding point on the Gaussian sphere is simply its normalisation into a
unit-vector, 1√

x2+y2+z2
(x, y, z)T.

2.9.3 Calibrated Cameras and Gaussian Sphere

The Gaussian sphere model has some particularly convenient features when deal-
ing with calibrated cameras. It is then possible to calculate coordinates on the
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Gaussian sphere (x, y, z)T from image coordinates (X,Y )T as




x
y
z



 =
1√

X2 + Y 2 + f2




X
Y
f



 (2.62)

where f is the distance between the centre of projection and the image plane. It
is often called the camera’s focal length, although this is strictly only true for a
camera focused at a point at infinity, compare the discussion on Page 30. The
beauty of this construction is that directions which are perpendicular in reality
will also be perpendicular on the Gaussian sphere (compare the rays pointing
to the vanishing points in Figure 2.19), although they are not perpendicular in
the image5. Conversely, assuming that a sufficient number of directions in the
image are known to be perpendicular in reality, this can then be used to calibrate
an unknown camera, compare Section 6.3.2. In addition, Kanatani [69] showed
that using the model in Equation (2.62), which he called N -vectors6 , has several
advantages with respect to numerical computations as well as error distribution,
compare also Section 4.

5The same is of course also true for the ray-space model, into which the Gaussian sphere
model can be transformed.

6N standing for normalised.
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Chapter 3

Probability and Statistics

The most may err as grossly as the few.

John Dryden, Absalom and Achitophel, 1631–1700
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3.1 Introduction

Measurements in any discipline are generally encumbered with measurement errors.
This is particularly true for image measurements, where a less than ideal imaging-
process is followed by a discretisation of the image. It is, on the other hand, a
reasonable assumption that knowledge about the accuracy of our measurements is
essential when decisions based on these measurements are required. Systems which
ignore this are at best cumbersome, requiring the user to fine-tune a generally high
number of sometimes obscure parameters; at worst they will often simply fail.

Although this chapter covers the general aspects of statistical properties and error
propagation, I will use examples from computer vision throughout this chapter.
Virtually all image measurements boil down to measuring edgel positions, possi-
bly with subpixel accuracy. Section 3.2 gives a short introduction into the kinds
of errors customarily encountered when dealing with any measurements, as well as
some basic concepts used in statistics. The edgel positions are then used to con-
struct higher order structures — contours, line segments, conics, and ever more
complex configurations. Section 3.3 describes how the measurement error in im-
age coordinates — or any random variable — is propagated into derived quantities.
One of the standard tasks in computer vision is to decide whether some structure
derived from image measurements conforms to a given model. Section 3.4 explains
how confidence tests, and in particular the χ2-test can be used as a decision mak-
ing tool. Section 3.5 finally describes some common probability distributions on
the sphere; this is applicable to angles and other measurements with only finite
support.

Much of what is said in this chapter can be found e. g. in [29, 100], or [43, pp. 151–
164]. Books on photogrammetry [144]1 or [49] can be another rich source of in-
formation and inspiration for someone working in computer vision, in particular
where error propagation is concerned. An introduction into confidence testing can
be found in any textbook on statistics, examples are [81, 145]. Books concerned
with statistics on directional data in contrast are much harder to find, the reader
is referred to [95, 156].

1Note, however, that at least the 4th edition of the Manual of Photogrammetry contains
several gross errors.
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3.2 Basic Concepts in Statistics

The following gives a short introduction into the basic concepts of statistics, see [81,
100, 145] for more information.

3.2.1 Error Types

This entire chapter would not have been necessary if it were not for the fact that
any observation will always contain errors. These errors are traditionally grouped
into three categories: random errors, systematic errors, and blunders.

Blunders — or outliers , as they are customarily called in computer vision —
are gross errors generally due not to the observed process or variable, but
to the observer. If at all possible, they should be removed from the set of
observations. How to reliably classify outliers is unfortunately still an open
question, the reader is referred to [46, 67, 140, 151] for examples from nearly
20 years of outlier removal in computer vision. Particularly en vogue is cur-
rently once more a method called RANSAC — Random Sample Consensus
— which was introduced in 1981 by Fischler and Bolles [46].

Outliers are ignored in the following unless otherwise stated.

Systematic errors — or systematic effects , as they are commonly named in the
recent literature — are not really errors in the observations, but rather in
the underlying model. It is therefore usually possible to remove or avoid
systematic effects if an appropriate model is chosen, and part of Section 4 is
dedicated to the process of model-selection. An example of systematic effects
often encountered in computer vision are radial distortions of the image due
to an imperfect lens, see Section 4.2.1. It is well known how to model this
effect (usually by an odd polynomial of the distance to the principal point,
compare e. g. [139]), and therefore easy to account for it. This is usually
not done by incorporating the model of the radial distortion into that of
(perspective) projection — which would lead to rather intractable equations
— but by correcting the observations for this particular effect. In computer
vision, such corrections are often part of (partial) camera calibration.

Random errors are the only kind of effects with which traditional statistics is
concerned, although the use of the term “error” is deprecated in modern
literature, and the term statistical properties used instead. This captures
the fact that from a statistical standpoint, observations can be considered
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samples of an unknown probability distribution of a random variable. Dis-
crepancies between several observations are therefore not due to errors, but
simply serve to describe the particular probability distribution. It is statis-
tics’ task to gain as much information as possible about this distribution
from the observations.

So how can we describe the properties of our unknown probability distribution?
A very concise description can often be given by the use of moments, as described
in the next section.

3.2.2 Mean and Central Moments

Probability distributions can often be described in terms of their mean and central
moments. The population mean of a random variable x, also called first moment
or expectation, is denoted by E(x) and is defined (if it exists) as the average value
µx of the variable over all possible values, weighted by their respective probabilities
Px ∈ IR or probability density function2 px ∈ IR, it is

E(x) = µx =
n∑

i=1

xiPx(xi) (3.1)

or

E(x) = µx =

∫ ∞

−∞

x px(x) dx (3.2)

in the continuous case. Given two random variables x and y and three constants
a, b, c, the following rules hold [100]:

E(E(x)) = E(x) (3.3)

E(x + y) = E(x) + E(y) (3.4)

E(c) = c (3.5)

E(c · x) = c ·E(x) (3.6)

=⇒ E(a · x + b) = a ·E(x) + b. (3.7)

If x and y are independent random variables, it is also true that

E(x · y) = E(x) ·E(y). (3.8)

Note, however, that, in general, E(x2) 6= (E(x))2.

2In the following denoted by pdf.
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Central moments, which can be used to describe most pdfs, are expectations with
respect to the mean, where the kth central moment is defined as

mk = E
(
(x− E(x))

k
)

. (3.9)

One particularly important central moment is the second moment or variance σ2
x.

It is:

σ2
x = m2 = E

(
(x− E(x))2

)
= E

(
(x− µx)2

)
(3.10)

= E
(
x2 − 2xµx + µ2

x

)
(3.11)

= E
(
x2
)
− 2µxE(x) + µ2

x (3.12)

= E
(
x2
)
− µ2

x. (3.13)

The variance’s positive square root σ > 0 is called standard deviation. Note that
Equation (3.13) can easily lead to numeric problems for big values of µ2

x. The
equations corresponding to Equations (3.4)–(3.8) are:

σ2
x+y = σ2

x + σ2
y (3.14)

σ2
c = 0 (3.15)

σ2
c ·x = c2 ·σ2

x (3.16)

=⇒ σ2
a ·x+b = a2 ·σ2

x. (3.17)

Related to the concept of the variance is that of the cofactor q, which could be
viewed as a relative variance. It is

q2
x =

σ2
x

σ2
0

(3.18)

for a possibly unknown value of σ2
0 , the reference variance.

The Equations (3.2), (3.10), and (3.13) can only be used if the pdf px is already
known. In order to estimate the pdf from observations alone, we have to approx-
imate the population mean and population variance (and possibly higher order
moments) by the sample mean and sample variance. Given N measurements xi,
(i = 1 . . . N) the sample or empirical mean x is defined as the arithmetic mean:

x =
1

N

N∑

i=1

xi. (3.19)
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It is E(x) = µx. The sample variance is defined as

s2
x =

1

N − 1

N∑

i=1

(xi − x)
2

(3.20)

and it is E(s2
x) = σ2

x. Higher order moments can be approximated similarly.

3.2.3 Normal Distribution

The most important probability distribution, and one uniquely defined by mean
and variance, is the normal or Gaussian distribution

N(µx, σ2
x) =

1√
2πσ2

x

e
− 1

2
(x−µx)2

σ2
x . (3.21)

3.2.4 Multidimensional Extension

The above can easily be extended for multi-dimensional random variables. If
x ∈ IRn is a vector of N (not necessarily independent) random variables, so is the
expectation simply

E(x) = µx =
N∑

i=1

xi Px(xi) (3.22)

or

E(x) = µx =

∫ ∞

−∞

x px(x) dx (3.23)

in the continuous case, where the summation (or integration) can be performed
separately for each vector-element. Note that Px, px ∈ IR.

The central moments of order (k1 + · · ·+ kn) can be calculated as

E
(
(x1 − µx1)

k1 · · · · · (xn − µxn)kn

)
. (3.24)

Of particular importance are again the second order central moments of x ∈ IRn,
which can be set up as all combinations between each two elements of the vector.
The result can be arranged as a matrix Mxx ∈ IRn×n. This matrix is customarily
called the matrix of second central moments, the variance-covariance matrix or
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simply the covariance matrix. It is

Mxx = E((x− µx)(x −µx)T) =




mx1x1 mx1x2 · · · mx1xn

mx2x1 mx2x2 · · · mx2xn

...
...

. . .
...

mxnx1 mxnx2 · · · mxnxn




=




σ2
x1

σx1x2 · · · σx1xn

σx2x1 σ2
x2

· · · σx2xn

...
...

. . .
...

σxnx1 σxnx2 · · · σ2
xn


 = Σx. (3.25)

Note that this is a square symmetric matrix since

σxixj = E((xi − µxi) · (xj − µxj )) = E((xj − µxj ) · (xi − µxi)) = σxjxi . (3.26)

Using Equation (3.24) it is always possible to construct higher order central mo-
ments. The equations corresponding to Equations (3.3)– (3.7) and (3.14)– (3.17)
are (with random variables x,y ∈ IRn, constant vectors b, c ∈ IRm and a constant
matrix A ∈ IRm×n):

E(E(x)) = E(x) (3.27)

E(x + y) = E(x) + E(y) (3.28)

E(c) = c (3.29)

E(Ax) = AE(x) (3.30)

=⇒ E(Ax + b) = AE(x) + b (3.31)

Σx+y = Σx + Σy (3.32)

Σc = 0 (3.33)

ΣAx = AΣxA
T (3.34)

=⇒ ΣAx+b = AΣxAT. (3.35)

A cofactor matrix can be defined analogous to Equation (3.18), it is

Qx =
1

σ2
0

Σx. (3.36)

The sample mean x and sample covariance matrix Sx are defined in analogy to
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Equations (3.19) and (3.20) as

x =
1

N

N∑

i=1

xi (3.37)

Sx =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T. (3.38)

The n-dimensional normal distribution is given by

N(µx,Σx) =
1√

(2π)n|Σx|
exp(−1

2
(x− µx)TΣ

−1
x (x− µx)), (3.39)

where |Σx| is the determinant of Σx ∈ IRn×n. Additional distributions are given
in Section 3.4 (the χ2-distribution, used for testing) and 3.5 (an adaption of the
normal distribution to cyclic data), but the normal distribution is by far the most
important distribution used in this thesis. Its theoretical and practical importance
is due to the central limit theorem which states that the sum

∑n
i=1 xi of n inde-

pendent random variables x1, . . . , xn will be asymptotically normally distributed
as n → ∞. Normal distributions are encountered very often in practical applica-
tions; in particular, random variables that represent independent measurements in
photogrammetry, geodesy, or surveying are often nearly normally distributed [100].
Another reason for the normal distribution’s prominence is its simple form which is
completely described by mean and variance. This makes it particularly well suited
for the propagation of statistical properties as described in the next section.

3.3 Error Propagation

The idea of error propagation — or propagation of statistical properties — is the
following: given a vector of measurements x ∈ IRn with pdf px, and a derived
vector y ∈ IRm such that

g : x→ y = g(x) (3.40)

find the pdf py for y depending on x and px.

An example might make this more transparent: calculating the line ℓ passing
through the two points p1 and p2. Displacing one or both of the points will
generally change the position of the line. So if we know that the two points
(which could, e. g., be measured image coordinates) are random variables with
probability distributions pp1

and pp2
, it suggests itself to ask what the resulting

line’s probability distribution pℓ will be.
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3.3.1 Principle

For simplicity, let us consider the one-dimensional case first, i. e. random variables
x = x ∈ IR and y = y ∈ IR. We would expect that the probability for any event
x′ to fall into a small region dx around x should be equal to the probability of
an event y′ falling into the corresponding region dy around y in the limit dx→ 0.
This can be written as

px(x)|dx| = py(y)|dy|. (3.41)

If we assume that the inverse function

g−1 : y → x = g−1(y) (3.42)

is defined, we can write

px(x)|dx| = px

(
g−1(y)

) ∣∣∣∣
∂g−1(y)

∂y
dy

∣∣∣∣ = py(y)|dy| (3.43)

or

py(y) = px

(
g−1(y)

) ∣∣∣∣
∂g−1(y)

∂y

∣∣∣∣ . (3.44)

Taking the absolute value in Equations (3.43) and (3.44) ensures the correct sign of
py(y). This is not a problem, since both g(x) and g−1(y) are monotonic (otherwise
they would not be invertible).

The extension to the multidimensional case with x,y ∈ IRn is straightforward [100],
it is

py(y) = px

(
g−1(y)

)
|Jxy| , (3.45)

where |Jxy| = |∂x/∂y| is the determinant of the Jacobian of the inverse transfor-
mation x = g−1(y) with respect to y.

The difficulty with the propagation of distributions is that we have to assume
the existence of the inverse function. This means in particular that usually no
solution is possible for x ∈ IRn, y ∈ IRm, m 6= n, where, in general, no inverse
transformation exists. This is, for example, the case with our example of the line
through two points, since it is not possible to infer from the parameters of the line
the positions of the points. The necessity to use the inverse function severely limits
the usefulness of propagation of statistical properties. And even if Equations (3.44)
or (3.45) can be applied, so will the resulting pdf, in general, become arbitrarily
complex.
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3.3.2 Linear Case

All these problems do not exist if we concentrate on linear functions only, i. e.
functions of the form y = Ax+y0 with x ∈ IRn, y,y0 ∈ IRm, and A ∈ IRm×n. Lin-
ear functions will, in general, not change the particular type of distribution [100].
What is more, we have already seen from Equations 3.31 and 3.35 that

E(y) =E(Ax + b) = AE(x) + b (3.46)

Σy =ΣAx+b = AΣxA
T (3.47)

and in the case of a multidimensional normal distribution, we can directly write
down the new distribution3.

Unfortunately, most interesting functions are not linear. It is therefore necessary
to find a way to apply the above equations to any arbitrary, nonlinear function
g(x). This is usually done by approximating g(x) by a linear function f(x). Series
expansion, and Taylor series expansion4 in particular, is generally used for this
purpose. The next section gives a short introduction into Taylor series expansion
and the resulting laws for the propagation of statistical properties.

3.3.3 Explicit Functions

Any C1 function y = g(x) can be written as

y = g(x0 + ∆x) = g(x0) + Jyx0
∆x +O2(‖∆x‖2). (3.48)

In the vicinity of x0 this can usually be approximated by a linear function f (x)
with

y = g(x0 + ∆x) ≈ y′ = f (x0 + ∆x) = g(x0) + Jyx0
∆x = y0 + Jyx0

∆x, (3.49)

where Jyx0
= ∂y

∂x

∣∣∣
x0

is the Jacobian of g(x) with respect to x at the point x0.

Note that the statistical properties are now associated with ∆x instead of x, it is

E(∆x) = E(x − x0) = E(x)−E(x0) = µx − x0 (3.50)

Σ∆x = Σx−x0 = Σx + Σx0
= Σx. (3.51)

3It is possible to derive similar equations for higher-order central moments, independent of
the distribution [100].

4It should be noted that a Taylor series will not necessarily converge, and even if it does, it
will not necessarily converge towards the function g(x) it is meant to represent — although it
normally does.
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x

y
g(x)

f (x)

Figure 3.1: Bias and deformation of the pdf due to nonlinearities. The true
transformed pdf (grey) is deformed and also slightly offset with respect to the
linear approximation (black).

The linearisation will usually introduce an error. In order to keep this error small,
it is customary to set x0 = µx and therefore E(∆x) = 0. From there and Equa-
tion (3.49) we can calculate the mean and variance for the linearised function
y′ = f (x) as

E(y′) = E(y0 + Jyx0
∆x) = E(y0) + Jyx0

E(∆x)y0 = µy′ (3.52)

Σy′ = Σy0+Jyx0
∆x = Σy0

+ Jyx0
Σ∆xJT

yx0
= Jyx0

ΣxJ
T

yx0
(3.53)

with y0 = g(x0). Note that, in general, µy′ 6= µy = g(µx), that is the linearisation
introduces a bias. This is always the case if g(x) is not well approximated by its
tangent within the region of dispersion of its random variables, as seen in Figure 3.1.
This bias will always inflate the estimated covariance matrix, while the truncation
of the Taylor series could either increase or decrease the result [29].

Just how good or bad this approximation is within a given region ‖x−x0‖2 ≤ ∆x

can be computed by calculating an upper bound on the remainder O2(‖∆x‖2).
Four different forms for x,g(x) ∈ IR are given in [65], and these are easily extended
to x ∈ IRn, compare e. g. [22, p. 279]; in this thesis I will however only deal with
first order approximations.

It is worth noting that, although the application of Equation (3.52) and in partic-
ular Equation (3.53) can result in extremely complex expressions, generating and
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using these expressions is a purely mechanical task which can in theory5 be done
by any computer algebra program. For our example of a line ℓ ∈ IR3 though two
points p1,p2 ∈ IR3 this can be done as follows.

We know from Equation (2.25) that ℓ can be calculated as ℓ = p1 × p2, or alter-
natively as ℓ = p1×

p2 = p2×
p1 with

pi× =




0 −zi yi

zi 0 −xi

−yi xi 0



 . (3.54)

The Jacobian is therefore Jℓ pi
= (p2×

,p1×
). If we know that the two points are

normally distributed with covariance matrices Σp1
,Σp2

∈ IR3×3 we can calculate
the line’s covariance matrix as

Σℓ = (p2×
,p1×

)

(
Σp1

0

0 Σp2

)(
pT

2×

pT
1×

)
= p2×

Σp1
pT

2×
+ p1×

Σp2
pT

1×
(3.55)

using Equation (3.53). The mean is the line ℓ itself. Note that the covariance
matrices are of course all singular, since both points and lines only have 2 DOF
each. This will be discussed in more detail in Section 4.

3.3.4 Implicit Functions

In practice, a result y0 ∈ IRm is often not calculated by an explicit function,
but rather found as the set of parameters which extremises some function of the
original data, i. e. the function g(x) is not explicitly known (and its Jacobian
therefore cannot be calculated as usual). What is known instead is a cost-function
C(x,y) ∈ IR which we are trying to minimise. The necessary condition for an

extremum is ∂C(x,y)
∂y

|x0 = 0, and the implicit function theorem (compare [29, 43])

gives us the Jacobian Jy0x
for an unknown function y = g(x) as

Jy0x
= −

(
∂2C

∂y2

)−1(
∂2C

∂x∂y

)T
∣∣∣∣∣
y0

(3.56)

if the Hessian H =
(

∂2C
∂y2

)
∈ IRm×m is invertible at the minimum y0. Using the

idea of Lagrange multipliers, we can extend the above even further to constrained
minimisation, see [29, 43] for more details.

5I still have to meet a computer algebra program which produces C-code that will not happily
divide by zero or take the square-root of a negative argument.
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Note that using Equation (3.53) a result’s uncertainty can be calculated even if
the result itself has not been obtained as the solution to some optimal algorithm
minimising both the error and uncertainty of a particular calculation (a problem
which often has no closed form solution), but rather by some faster but less ac-
curate algorithm. However, using a faster, closed form solution might introduce
a considerable bias and blow up Σy′ , and the selection of a function g(x) that is
both fast and accurate enough can become somewhat of an artform. Section 4 is
practising this art for a number of common computer-vision constructs, mainly
the ones introduced in Section 2.

3.3.5 Monte-Carlo Simulations

A second method for the propagation of statistical properties which is completely
different from the analytical method given above is the Monte Carlo simulation.
The basic idea is simple: given a function y = g(x) and a vector x (assumed
perfectly known), a large number of corrupted vectors xi = x + ri is created,
where the ri are distributed according to the measurement error’s pdf p∆x (as-
sumed known). This large population is then used to estimate the pdf py of the
samples yi = g(xi). In particular, the mean µy and covariance matrix Σy can
be approximated by the sample mean y and sample covariance matrix Sy using
Equations (3.37) and (3.38). Note that g(x) does not need to be given explicitly;
the yi could just as well have been found by minimisation or any other technique.

The quality of Monte Carlo simulation relies only on the number of samples —
between 10,000 and 1,000,000 samples are not unusual — and the quality of the
pseudo random number generator, which should have a period at least 10 times
greater than the number of samples required [29].

The two methods — analytical first order error propagation and Monte Carlo
simulation — complement each other. First order error propagation is a fast and
— for sufficiently small errors — reliable method which gives an analytical, closed
form solution for py. However, the equations used can become unwieldy, and
it relies on the goodness of the linear approximation (which could in theory be
assessed by calculating an upper bound for the remainder O2(‖∆x‖2), compare
Section 3.3.3).

Monte Carlo simulation, on the other hand, makes no assumptions on the function
g(x) or resulting pdf py and is easy to program; these advantages are offset by an
extremely long execution time (several minutes or even hours). Also, the result of
Monte Carlo simulation is just a high number of points yi instead of a closed-form
probability density function.
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In practice, Monte Carlo simulation is therefore often used to assess the goodness
of the analytical solution found by first order error propagation; either visually,
plotting both the points found by Monte Carlo simulation as well as the confidence
regions found by first order error propagation, or analytically, where for example
the χ2 distribution described in the next section is used to compute the probability
that the points yi follow the distribution py.

3.4 χ
2 Testing

The following gives a very short introduction into confidence testing, namely the
χ2 confidence test. More detailed information could be found in any textbook on
statistics.

When using thresholds in a (computer-vision) algorithm, the underlying question
is very often: “Am I satisfied that the observed value is the one that I’m looking
for?”. In statistics, questions like this6 can be answered by confidence tests. The
test of choice if the underlying distribution is Gaussian, as is frequently the case
for measured values, is often the χ2-test. Its application is simple and will be
explained below for the example of two lines. The task is to decide whether a line
measured in the image should be considered identical to an ideal line or not.

Assume that the lines have been parametrised by their angle ϕ with the x-axis
and their distance d from the origin, ℓ = (ϕ, d)T, and that the measured line’s
covariance matrix is given by Σℓ ∈ IR2×2. Simply speaking, the χ2-test answers
the question: “Am I p% satisfied that the difference between ℓ1 and ℓ2 is due to
random fluctuations consistent with Σℓ?” by evaluating (ℓ1− ℓ2)

TΣ−1
ℓ (ℓ1− ℓ2) ≤

χ2
p,2, where the subscript 2 denotes the number of degrees of freedom (ϕ and d in

this case).

More generally we get (possibly after a suitable coordinate transform such that a
covariance matrix becomes diagonal)

N∑

i=1

d2
i

σ2
di

≤ χ2
p,ν (3.57)

where ν is the number of degrees of freedom (which need not be N , as we will see
when fitting a line to edgels in Section 4.3.3) and p is the amount of required cer-
tainty in percent, called the significance level, and traditionally also often denoted
by α or, confusingly, 1− α in some textbooks.

6Or, more accurately, the question “Am I not dissatisfied. . . ?”.
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αd αo

n
Figure 3.2: Difference between
the orientation αo ∈ [−π/2, π/2)
and the direction αd ∈ [−π, π) for
a greyscale-discontinuity.
The discontinuity’s normal vector
n = (sin(αd),− cos(αd))

T is point-
ing from dark to light.

3.5 Directional Statistics

Statistics commonly deals with distributions in IRn, most commonly with distri-
butions on a line (n = 1) or plane (n = 2). Many measurements, however, are
concerned with quantities of a cyclic nature, in computer vision usually angles.
Indeed, when Gauss developed the theory of errors he did so primarily to analyse
certain directional measurements in astronomy. It is one of the ironies of statis-
tics that the measurements under consideration were sufficiently accurate to allow
him to develop the theory in relation to an infinite linear continuum rather than
the actual topology, a sphere [95]. The subject of directional statistics received
increased interest only after the 1953 landmark-paper by R. A.Fisher [47] and is
thus a comparatively new branch of statistics.

The aim of this section is to introduce some very basic concepts of directional
statistics needed later on; the reader is referred to [95, 156] for good introductory
texts on the subjects.

3.5.1 Directions and Orientations

Directions in computer vision are usually associated with contours fitted to discon-
tinuities in luminance, where one side will be lighter than the other. We can then
differentiate between a contour’s orientation, which can take values in the interval
αo ∈ [−π/2, π/2), and its direction, taking values in the interval αd ∈ [−π, π).
The orientation describes a geometric entity; turning this entity by 180◦ does
not change it’s representation, and the possible range of orientations is therefore
limited to a semi-circle (semi-hypersphere) — the directions αo and αo+180◦ repre-
sent the same orientation αo. Data like this is called axial data. The direction, on
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the other hand, is uniquely defined by a normal vector n = (sin(αd),− cos(αd))
T

pointing from the dark to the light side of a grey-level discontinuity, as shown
in Figure 3.2, making each direction unique within one complete turn of a circle
(hypersphere).

3.5.2 Mean and Variance

Directional data requires a notion of mean and variance different from usual statis-
tics. Assume that two directions α1 = 1 ◦ and α2 = 359 ◦ are given. Naively
applying Equation (3.19) to calculate the mean would give a value of α = 180 ◦,
while intuition tells us that α = 0 ◦. If, however, directions are instead understood
as points on the unit-circle7 xi = (cos(αi), sin(αi)

T) (or, alternatively, vectors of
unit-length), we can calculate8:

(
C
S

)
=

N∑

i=1

(
cos(αi)
sin(αi)

)
(3.58)

α =






arctan(S/C) − π C < 0, S < 0
−π/2 C = 0, S < 0
arctan(S/C) C > 0
π/2 C = 0, S > 0
arctan(S/C) + π C < 0, S > 0

. (3.59)

It suggests itself to also calculate the length R =
√

C2 + S2 of the resulting vector,
the mean resultant length. It is easy to see that R will be close to its maximum
value R = N if the αi are very concentrated, while it will be close to its minimum
value R = 0 if the αi are very dispersed. Thus N − R is a sensible measure of
the dispersion of the whole sample about its estimated centre — analogous to the
variance on a straight line — and indeed

S0 =
N −R

N − 1
(3.60)

is called the (sample) spherical variance. Note that 0 ≤ S0 ≤ 1, while of course for
the variance on a line 0 ≤ σ2 ≤ ∞. A value which is more similar in magnitude
to the usual variance on the line is given by

s2
0 = −2 ln(1− S0). (3.61)

7Or hypersphere in the general case xi ∈ IRn.
8Many programming-languages provide a function atan2(x,y) for this purpose.
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For axial data (i. e. −π
2 ≤ αi < π

2 ) the corresponding equations are [95]:

(
C′

S′

)
=

N∑

i=1

(
cos(2αi)
sin(2αi)

)
(3.62)

α =
1

2
α′ (3.63)

S0 = 1− (1− S′
0)

1/4
. (3.64)

There is no known distribution on the circle which has all the properties of the
normal distribution. It is most closely approximated by the von Mises distribution
or the wrapped normal distribution, see e. g. [95, 156] for details.However, as
was the case for Gauss’ original use of his distribution on strictly speaking cyclic
data, I too found that for the applications discussed in this thesis the Gaussian
distribution is sufficient.
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Chapter 4

Combining Projective Geometry
and Error Propagation

. . . fügte ich rittlings zusammen, was zusammengehörte.

. . . astraddle I joined together what belonged together

Felix Salten, Josefine Mutzenbacher, 1869–1945
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4.1 Introduction

This chapter, which lies at the heart of this thesis, combines the projective geom-
etry constructs described in Chapter 2 with the statistical principles of Chapter 3,
and in particular error propagation.

Starting from first principles, with an error model for single edgels in Section 4.2,
I revisit the line-fitting problem in Section 4.3. There the covariance of a line is
computed, based on the covariances of the single edgels; for the case of indepen-
dently, identically, and isotropically distributed (iiid) edgels (which is the usual
assumption when fitting a line to edgels) I also present, in Section 4.3.2, an excel-
lent but previously unpublished approximation to that covariance based mainly
on line-length; and in Section 4.3.3 I introduce a new stopping-criterion for incre-
mental fits which is based on a χ2-test. Section 4.4 compares several algorithms
for vanishing-point calculation, clearly demonstrating that algorithms based on
Euclidean distance, which are unfortunately still all too common in the literature,
are inadequate for intersections far away from the image. In Section 4.5 I introduce
a new algorithm for the calculation of the cross-ratio of 4 lines, which performs
nearly as well as the best possible algorithms, but without knowledge about the
lines’ intersection — which makes the algorithm about an order of magnitude faster
than other algorithms with comparable performance. Extensive Monte Carlo sim-
ulations are used throughout this section to evaluate and compare the relative
performance of several competing algorithms both with regard to accuracy as well
as speed. Section 4.6 finally demonstrates how to compare stochastic projective
entities, and how to account for additional uncertainty in the model, e. g. due to
an imperfect world.

The use of error propagation, while being a staple of photogrammetrists, geodesists,
and many other scientists, has always been somewhat neglected in computer vision.
Most notable is probably the influence of Kanatani [71–75, 77], who can be said to
have pioneered this particular field. The main difference which sets this work apart
from Kanatani’s is its focus on applicability — whereas Kanatani concentrates on
the correct solution, I mostly concentrate on the most adequate solution, weighing
computational cost and implementational complexity against the gain in accuracy.
Also related to the work described here is the work by Brillault-O’Mahony [20, 21],
who used statistical considerations for vanishing-point detection, and grouping
and recognition of high-level 3D-structures (see Section 6). More recent work
includes [11, 52, 66, 115–117, 130, 141], of which the work by Pennec [116, 117]
is closest to the work presented here. A very recent addition is Förstner’s [49]
contribution to the “Handbook of Computational Geometry”, which collects a
number of simple to use tools for uncertain geometric reasoning, and in particular
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Figure 4.1: Surface discontinuities do not always lead to visible edges.

gives a number of explicitly calculated Jacobians which retain the elegance of
projective algebra. It can serve as a nice and concise introduction into my work;
however, as was the case with Kanatani’s work, Förstner’s focus is on elegant rather
than computationally efficient solutions, which are at the heart of this thesis; his
work differs also in the use of a less rigorous approach testing uncertain geometric
relations — he directly tests observed entities against each other, rather than
against the estimated true value, as I will recommend in e. g. Section 4.6.2. Finally
I should point out that I have already published some of the results presented here
in [6].

4.2 Edgels

The work described in this thesis is completely edge-based. All features described
later on can ultimately be reduced to edgels (edge-elements). We can distinguish
two kinds of edges in 3D. The first one corresponds to a change in luminance, hue,
saturation, or all three within one surface. These changes, which we will call sur-
face markings, are always detectable using an appropriate setup. The second kind
of edge corresponds to a surface discontinuity. This is not necessarily associated
with any apparent change in visual properties, and the detectability of these kinds
of edges within a certain image depends on the object’s orientation towards the
camera, lighting, and other external conditions. Figure 4.1 shows examples for
surface markings as well as visible and invisible surface-discontinuities.

These edgels are located, often with subpixel accuracy, in the image using an edge
detector [24]. The next two sections describe possible sources for error in the
location of the edgels and how to model this error, as well as a possible parame-
terisation of edgel location and its probability distribution.
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4.2.1 Error Sources

So what are the particular types of errors encountered in the imaging (and recon-
struction) process, and which of those will I address in this thesis? Aberrations of
the lens, which have been well documented in many publications [16, 18, 86, 144],
include chromatic (axial and lateral) as well as monochromatic aberrations (also
called Seidel aberrations after an 1857 paper by Ludwig von Seidel, i. e. spheri-
cal aberration, coma, astigmatism, field curvature and curvilinear — barrel and
pincushion — distortions). In practical applications we also see vignetting, flares
and diffraction — and of course simple defocus. Additional errors are being in-
troduced by the CCD chip, foremost of course the discretisation itself, but we are
also dealing with (thermal) pixel noise and with differences in the sensitivity of
neighbouring (or further away) sensors which create a bias. In most of todays
1-chip colour cameras we get additional errors due to the interpolation of colour
information from the mosaicing (usually Bayer) filter and possibly also from lossy
compression (usually jpeg), both of which are particularly pronounced near edges.
And finally, as a last source for error, we also have the effect of the edge detector
itself.

The error sources given above can be grouped into two different categories, re-
versible and non-reversible effects. Curvilinear distortions and bias in the individ-
ual pixel values are easily removed by a simple calibration of the camera; as such
they are really systematic errors and will be ignored in the following; the same is
true for some of the errors introduced by the edge detector [106].

Most of the other lens effects, however, although quite systematic in their forma-
tion, are not easily reversible. In their sum total they will serve to make the image
less sharp, and as such act as a low-pass filter blurring the image; approximating
their influence by a convolution with a Gaussian is not uncommon [86]. If we then
proceed to apply an edge filter like the well known Canny filter to the image this
additional, non-uniform blurring will have a negative effect on the positional accu-
racy of the edgels found [24], at least in the neighbourhood of texture or additional
edges. Lossy compression and demosaicing, on the other hand, tend to introduce
random artefacts near edges, as will the pixel noise of the CCD chip, and these
will directly influence the positional accuracy, since they violate the continuity
assumptions which are the foundation of subpixel approximation.

Accurately modelling all these different error sources and their effect on the posi-
tional accuracy of edgels is well beyond the scope of this thesis. However, Figure 4.2
shows the histogram of the positional errors for typical edgels along a typical (but
perfectly straight) line for images taken with two different cameras, as well as the
equivalent Gaussian distribution (i. e. one with the same standard deviation). And
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Figure 4.2: Typical distributions of positional error for a perfect line. Plotted
are the deviations of edgels from the true line for a Canon 6Mpxl camera (left)
and a Sony 800 kpxl camera (right). Overlayed are the equivalent Gaussian
distributions.

although the measured distributions are clearly not Gaussian (note in particular
the high number of nearly accurate edgels, about 5 % to 10 % for this particular
testcase), they are none the less reasonably well approximated by a Gaussian —
and this is in fact what I will do for the remainder of this thesis.

It might be worth pointing out that both histograms in Figure 4.2 have approx-
imately the same standard deviation (around σ ≈ 0.1pxl). This demonstrates
nicely that the locational error for a perfect line is mostly a function of the sensor
type used (a Bayer-type mosaicing filter in both cases). However, in reality most
lines aren’t quite perfect1, and might suffer additional distortion depending on
the lens used. So in addition to the one hand-selected (perfect) line above I also
calculated the histograms over all lines, and those are given in Figure 4.3. And
here the two variances are clearly different for the two cameras, with σ ≈ 0.27pxl
for the Canon but only σ ≈ 0.15pxl for the Sony — here the higher resolution
camera (the Canon) registers the higher standard deviation, since the same posi-
tional error in 3D will result in a bigger error (measured in pixel) in the image;
the better lens of the Canon, suffering from fewer of the above-mentioned defects
than the lens of the Sony, by comparison does not have as much of an effect due

1For this test I used lines printed on paper — and since the paper wasn’t perfectly flat when
the images were taken, not all lines are perfectly straight.
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Figure 4.3: Typical distributions
of positional errors (below) for all
edges within an image (to the left).
Plotted are the deviations of edgels
from the true edge for a Canon
6Mpxl camera (left) and a Sony
800 kpxl camera (right). Overlayed
are the equivalent Gaussian distri-
butions.
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Figure 4.4: Typical distribution
of positional errors for all edges
within a real-world image (Fig-
ure 5.5, σ ≈ 0.22pxl, and equiva-
lent Gaussian distribution.

to the particular test-image chosen.

Figure 4.2.1 finally shows the distribution of positional errors for a real-world
image (a street scene also used throughout most of Chapter 5, e. g. in Figure 5.5);
here too we see the typical, Gauss-like distribution with its overpronounced peak
for very small errors.

In this section we have seen that a Gaussian distribution is not altogether an
unrealistic approximation for the particular distribution of location errors when
fitting edgels. In the following I will describe how to represent the edgel coordinates
and their distribution.

4.2.2 Geometric Representation

Edgels can be represented by their Euclidean coordinates within the image plane
(x, y)T. Other possible representations include (pseudo) homogeneous coordinates,

x = (x, y, 1)T, (4.1)

which is the representations used throughout this chapter unless stated otherwise.
Kanatani [69] and others suggested a parametrisation (x, y, f)T with x2+y2+f2 =
1, where f is of the same order of magnitude as x and y, often the focal length the
image was taken with (if known, compare Section 2.9), the length of the image
diagonal, or some other image dimension.
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All coordinates computed in the image, independent of the parametrisation used,
will contain errors due to the measurement process. These can be characterised by
the edgels’ covariance matrix, which for the pseudo homogeneous representation
in Equation (4.1) would be structured as follows:

Σx =




σ2
x σxy 0

σxy σ2
y 0

0 0 0


 . (4.2)

If the error can be modelled by a Gaussian distribution, as is the case for many
practical applications [100], this covariance matrix is sufficient to completely char-
acterise the edgel’s distribution. Using Equation (3.53) it is possible to calculate
the covariance matrix for all other parametrisations from the covariance matrix
in Equation (4.2). Note that Σx is of course singular, since an edgel has only
two degrees of freedom, independent of the parametrisation used. It is therefore
not possible to directly compute its inverse. Instead the Moore-Penrose general-
ised or pseudo inverse should be used, or the problem should be reduced to the
equivalent problem in fewer dimensions, again using Equations (3.52) and (3.53).
However, in the context of projective geometry the latter is usually not desirable.
Section 4.3.2.2 shows that (4.2) can be approximated by a diagonal matrix for
many practical applications — the main thrust of the argument being that the
covariance along the edge is usually of no consequence.

4.3 Lines

Detecting lines or, more generally, linear structures within an image is a classical
problem in computer vision. Lines can convey valuable information about the
3D-structure depicted, particularly in our modern world, where parallel lines and
orthogonal corners abound. Computer vision was concerned from the beginning
with the construction of line drawings from natural scenes (and their subsequent
interpretation), an approach still used today [110, 112–114, 148]. But lines con-
vey valuable information about the structure of a scene even if no complete and
realizable graph is available, as the applications described in Sections 5 and 6 will
show.

Lines in computer vision are, in general, defined in terms of edgels, and it is there-
fore not too surprising that here too we distinguish lines due to surface markings
on the one hand and due to surface discontinuities on the other. Common to both
types of lines is the fact that the local neighbourhood of the line will be planar.
Although other contours might appear as a line under special circumstances, this is
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Figure 4.5: Nonlinear structures
might appear as lines under certain
conditions. In the image to the
left, the top structure looks line-
like except for the occasional high-
lights, although the shadow be-
low the structure reveals that it is
clearly not a line.

generally limited to one particular viewpoint and therefore of no interest to us (see
Figure 4.5). However, this particular case makes apparent one of the differences
between a line in the image and a line in 3D. We will in the following ignore the
pathological case and assume that any 2D-line corresponds to a linear structure
in 3D.

Finding the line ℓ that best approximates a set of points (or edgels) xi is a classical
problem [43]. We can differentiate between three cases:

1. Fitting a line to a fixed number of points.

2. Incrementally fitting a line to an (unknown) number of points along a con-
tour.

3. Fitting a line to an (unknown) subset of points.

Only the first two cases are discussed here, as I am concentrating on the effect of
errors in valid measurements rather than the effect of outliers; the third case was in
computer vision traditionally solved by a Hough transform [61], which can be used
to identify possible lines and the corresponding points, followed by the approach
used for Case 1. The Hough transform is however more and more replaced by
an algorithm called RANSAC [46], a method of robust statistics. Although not
discussed within this thesis, I would like to point out that RANSAC in particular
needs a method to distinguish between inliers and outliers which can model both
the noise of individual edgels as well as a line’s uncertainty, and should therefore
benefit especially from the methods described in Section 4.3.3.

The remainder of this section is structured as follows: Section 4.3.1 lists a number
of possible line-parameterisations. The basic principles when either directly (1) or
incrementally (2) fitting a line to points are the same and are therefore discussed
for the first case only (fixed number of points, Section 4.3.2). An iterative solution
first described by Kanatani [73, 77] is given in Section 4.3.2.1. In Section 4.3.2.2 I
next discuss in which cases this can be simplified so that a closed form solution is
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possible and give an excellent but previously unpublished approximation to that
covariance based mainly on line-length. In Section 4.3.3 finally I introduce a new
stopping-criterion for incremental fits which is based on a χ2-test; a summary is
given in Section 4.3.4.

4.3.1 Parameterisations

Representations of a line in the image plane require a minimum of two parameters
(a line on the plane has two degrees of freedom). Well known parametrisations
include slope-intercept (y = mx + b), intercept-intercept (x/a + y/b = 1), angle-
intercept, and angle and distance to the origin. It is well known that both slope
as well as intercept become infinite for vertical lines (and in the case of intercept-
intercept parametrisation also horizontal lines).

In addition there are a number of redundant representations for lines, using more
than 2 parameters. An example already discussed in Section 2.4 is the homo-
geneous 3-vector (a, b, c)T. With a2 + b2 = 1 this becomes the normal form.
Kanatani [69] and others suggested a parametrisation (a, b, c/f)T with a2 + b2 +
c2/f2 = 1, where f is a constant of the same order of magnitude as c, often the
focal length the image was taken with (compare Section 2.9), the diagonal length
of the image, or some other image dimension. Note that a covariance matrix for
any of these redundant representations will of course be singular.

Parametrisations particularly appropriate to line segments as measured in the im-
age have also been developed, e. g. using a line segment’s endpoints (x1, y1, x2, y2)
as cited in [140] or a line segment’s centre (mean edgel position) and angle with
the x-axis, (α, x̄, ȳ)T which I first presented in [6].

It is of course possible to convert any representation into any of the two-parameter
or redundant representations, but, in general, not into the line segment representa-
tions. However, these conversions, while theoretically possible, can become numer-
ically problematic; one example is the conversion from and to the slope-intercept
representation for near vertical lines. We will later see that some parametrisa-
tions are better suited to a certain task than others, and that in particular the
angle-centre representation is well suited for the line segments commonly fitted in
computer vision. The next section re-visits the line-fit problem, starting from first
principles.
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4.3.2 Fixed Number of Points

The problem of fitting a line to a fixed number of points can be stated as follows:
given n points xi, i = 1 . . . n, with distributions pxi(xi), find the line ℓ with
distribution pℓ(ℓ) that maximises the conditional probability

P (ℓ|x1 . . .xn) =
P (x1 . . .xn|ℓ)P (ℓ)

P (x1 . . .xn)
−→ max

ℓ
(4.3)

where P (ℓ|x1 . . .xn) is the probability of observing the line ℓ given the points
x1 . . .xn, P (x1 . . .xn|ℓ) is the probability to observe the set of points x1 . . .xn

given ℓ, P (ℓ) is the line’s a-priori probability, and P (x1 . . .xn) is the points’ a-
priori probability.

It is obvious that for any fixed set of points xi, i = 1 . . . n the term P (x1 . . .xn)
can have no influence on which line ℓ maximises Equation (4.3). Also, in nearly all
applications no knowledge exists about the individual lines’ a-priori probabilities
P (ℓ), which are therefore usually assumed constant2. This reduces Equation (4.3)
to

P (ℓ|x1 . . .xn) ∝ P (x1 . . .xn|ℓ) −→ max
ℓ

. (4.4)

If all the points xi, i = 1 . . . n are independently distributed observations of a
perfect line3, we can multiply the individual probabilities

P (x1 . . .xn|ℓ) =

n∏

i=1

P (xi|ℓ) −→ max
ℓ

. (4.5)

The individual point’s probability depends on its distance from the line and its
particular covariance matrix. If the point has the Euclidean coordinates (x, y)T

and the line is given by its normal form we can write

xi = (xi, yi, 1)
T (4.6)

Σxi
=




σ2
xi

σxiyi 0
σxiyi σ2

yi
0

0 0 0


 (4.7)

ℓ = (a, b, c)T = (sin(α),− cos(α), c)T. (4.8)

2If a particular application does provide a-priori knowledge about, for example, a line’s angle,
this should of course be used. However, I’ll assume that this is not the case here and, indeed, in
virtually all computer vision applications that deal with projective geometry.

3This is approximately the case.
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Using Equation (3.53) the individual point’s probability is then given by

P (xi|ℓ) =
1√

2πℓTΣxi
ℓ

exp

(
−1

2

ℓT
xix

T
i ℓ

ℓTΣxi
ℓ

)
. (4.9)

Maximising Equation (4.5) is therefore equal to minimising the sum of weighted
Euclidean distances

min
ℓ

1

n

n∑

i=1

ℓTxix
T
i ℓ

ℓTΣxiℓ
(4.10)

under the condition a2 + b2 = 1. There is, in general, no closed form solution to
Equation (4.10).

A slightly different approach was presented by Kanatani [73]. Instead of min-
imising Euclidean distance his approach minimises algebraic distance with vectors
ℓ = (a, b, c/f)T and xi = (x, y, f)T under the condition ‖ℓ‖2 = ‖xi‖2 = 1, where
f is again a constant in the order of magnitude of the focal length. This approach
was later extended to f = 1 by Kanazawa and Kanatani [77]. They employ an
elaborate scheme to avoid the bias which would be introduced by a naive iteration.
A short description of their algorithm can be found in the following section.

4.3.2.1 Iterative Solution

As mentioned before, no closed form solution exists for Equation (4.10). It might
seem reasonable though to rewrite Equation (4.10) as

min
ℓ

ℓTMℓ (4.11)

with M =
1

n

n∑

i=1

wixix
T

i (4.12)

and wi =
1

ℓ′
T
Σxi

ℓ′
(4.13)

and iteratively solve for ℓ, where ℓ′ is a previously found solution. It can, however,
be shown that this approach will lead to a biased solution for ℓ, and Kanazawa
and Kanatani [77] suggested the following approach instead:

1. Let c = 0 and wi = 1, i = 1 . . . n.

2. Compute the matrices M (compare Equation (4.12)) and

N =
1

n

n∑

i=1

wiΣxi
.
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3. Compute the smallest eigenvalue λ and corresponding eigenvector ℓ of

M̂ = M− cN.

4. If the iteration reached a stationary state (∆λ = 0, [77] uses λ ≈ 0) abort,
else update c and wi as follows and return to 2

c← c +
λ

ℓT
Nℓ

wi ←
1

ℓT
Σxi

ℓ
.

An estimate for the line’s covariance matrix is given by

Σℓ =
c

n− 2

(
M̂
)−

2
(4.14)

where ( · )−2 denotes the generalised inverse computed by ignoring the smallest
eigenvalue, which might not be exactly zero due to numerical reasons or a prema-
ture termination of the above steps [77].

It should be noted that using Equation (4.14) the line’s covariance can be calcu-
lated even if only the cofactor matrices are given for the individual points. This is
based on a χ2 distribution with n− 2 DOF. It is in this case, however, impossible
to make any statement about the quality of the fit.

The algebraic distance used above can be interpreted geometrically when using the
ray-space or Gaussian sphere model (Section 2.9): imagine a unit sphere touching
the image in the image centre. Each point in the image corresponds to the point on
the sphere where a line from the sphere’s origin to the image point intersects the
sphere; each line in the image corresponds to a great circle where a plane through
the origin and the original line in the image intersects the sphere. Minimising the
algebraic distance finds the plane through the origin with minimum mean squared
scaled orthographic distance from these points on the sphere. The intersection
between this plane and the image plane is the line with minimum algebraic distance
to the original points.

4.3.2.2 Direct Least Squares Solution

The iterative solution described above is comparatively slow. It would therefore
be useful if some faster algorithm could be devised, preferably some closed form
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solution, or an approximation to such a solution. In order to use a closed form
solution to Equation (4.10) we need to be able to approximate the denominator
by a term independent of ℓ. For this we need to know what the individual edgels’
covariance matrices look like. Most modern edge-finders will do a sub-pixel ap-
proximation orthogonal to the (perceived) edge direction, which might result in
different variances orthogonal to (σ2

⊥) or parallel with (σ2
‖) the edge, but to a good

approximation independent of the individual edgel itself4. The resulting covariance
matrix is

Σxi
= R−T




σ2
‖ 0 0

0 σ2
⊥ 0

0 0 0


R−1

with R =




cos(αi) − sin(αi) 0
sin(αi) cos(αi) 0

0 0 1




where αi is the estimated angle between the edge through xi and the x-axis5. The
denominator in Equation (4.10) then becomes

ℓTΣxi
ℓ = σ2

i = σ2
⊥ cos2(α− αi) + σ2

‖ sin2(α− αi) (4.15)

where α is the angle between the fitted line and the x-axis. Although, in general,
α 6= αi, the difference will nonetheless be small for any reasonable edge-finder.
Figure 4.6 shows some typical histograms over the deviation from the true angle
for 6 different angles 0 ≤ α ≤ 5

12π.

Since the difference between the perceived angle αi and true angle α is generally
well below 2◦, we can, with sin2(α − αi) ≤ 0.00122 and cos2(α − αi) ≥ 0.9988,
approximate Equation (4.15) with

ℓT
Σxiℓ ≈ σ2

⊥ = σ2 (4.16)

which is independent of xi and interestingly also σ2
‖. This conforms with the

intuition that in fitting a line to points the individual point’s position along the
direction of the line (and therefore also its covariance in that direction) is of small
or no consequence for the fitting process. The particular instance of the Canny
edge detector [24] used throughout this thesis results in a standard deviation of
0.1pxl ≤ σ ≤ 0.3pxl, depending on the sensor type and image quality. This finally

4σ2

⊥ and σ2

‖
might depend on the perceived edge direction, but this effect is generally suffi-

ciently small — and constant for any single line — to be safely ignored in this application.
5It is of course R−T = R.

Error Propagation in Geometry-Based Grouping



4.3.2 Fixed Number of Points 89

−4 −20 0 2 4 ∆α

.1

α = 0◦

−4 −20 0 2 4 ∆α

.1

α = 15◦

−4 −20 0 2 4 ∆α

.1

α = 30◦

−4 −20 0 2 4 ∆α

.1

α = 45◦

−4 −20 0 2 4 ∆α

.1

α = 60◦

−4 −20 0 2 4 ∆α

.1

α = 75◦

Figure 4.6: Estimated angle versus true angle for different angles. Plotted
are typical histograms over the deviation from the mean for lines at approxi-
mately 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦.

leads to the equation commonly minimised in orthogonal regression

min
ℓ

1

nσ2
ℓT

(
∑

i

xix
T

i

)
ℓ (4.17)

under the constraint a2 + b2 = 1. This is well known [40, 43] to be minimised by
the line ℓ that passes through the point

(
x̄
ȳ

)
=

1

n

n∑

i=1

(
xi

yi

)
(4.18)

(we will call this point the line’s centre point or simply centre) and whose normal-
vector is the eigenvector to the matrix’s

Mxx =
1

nσ2

n∑

i=1

(
(xi − x̄)2 xiyi − x̄ȳ
xiyi − x̄ȳ (yi − ȳ)2

)
(4.19)

smaller eigenvalue λmin, where the mean squared weighted orthographic distance
in Equation (4.17) corresponds to λmin.
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Once the line ℓ has been found, it is easy to calculate its covariance matrix using
Equation (3.53) for any of the representations mentioned in Section 4.3 (although
the actual equations involved can get somewhat lengthy, they are easily enough
created, as discussed in Section 3.3.3). Using the α, x̄, ȳ parametrisation has the
added advantage that the covariance matrix becomes to a very good approximation
block-diagonal, i. e.

Σℓ =




σ2

α 0 0
0 σ2

x̄ σx̄ȳ

0 σx̄ȳ σ2
ȳ



 (4.20)

and as small deviations in the centre-point’s position along the line are normally
of little importance this can be further approximated by a diagonal matrix with
σ2

x̄ = σ2
ȳ = 1

nσ2. This is in agreement with Equation (4.16) for the special case
that Σx describes a circular covariance region.

However, in many cases and for many applications it might not be necessary to
calculate explicitly the line’s covariance matrix using Equation (3.53). Since the
edgels along a line are usually quite evenly distributed, where the distance between
individual edgles depends mainly on the angle between the line and the x-axis, it
is perfectly reasonable to give a rule of thumb for the covariance matrix based
only on the length of the line l, the number of edgels n and the angle α. The
relationship in (4.21)– (4.22) have been found experimentally, however, they are a
nearly perfect representation of the true values, compare Figure 4.7.

σ2
α ≈ 12

σ2

n′3
(4.21)

with n′3 = l3
(
1 + 121/3 − 121/3 max(‖ cos(α)‖, ‖ cos(π/2− α)‖)

)
(4.22)

σ2
x̄,ȳ ≈

σ2

n
. (4.23)

Here n′ is the equivalent number of edgels, an empirically found, purely arith-
metic figure, it is usually n ≥ n′ ≥ l (unless the edgel-chain contained holes).
Equation (4.23) can immediately be derived from Equation (4.18).

Figure 4.7, which plots the linearised variance (12σ2/σ2
α)

1/3
over n′, shows how

well Equation (4.21) approximates the actual values for σ2
α measured for 5411 fitted

lines from 10 different images of various real-life street scenes. Equations (4.21)–
(4.23), which have never been published before, are similar in spirit to the depen-
dence of σ2

α on line-length l derived by Brillault [20] — however, her theoretical
approach, which considered only the endpoint-positions as a source for errors, gives
a completely different qualitative behaviour not consistent with reality. They can
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Figure 4.7: σ2
α as a function of l and α. The points show the linearised

variance (12σ2/σ2
α)

1/3
over n′ for 5411 fitted lines from 10 different images of

various real-life street scenes; the steps represent the function ⌈n′ + 0.5⌉.

be used to further speed up computations while retaining the full power of error
propagation.

4.3.3 Incremental Fit

Equation (4.17) is especially advantageous when doing an incremental fit along a
contour of linked edgels xi, adding one edgel at a time. Equation (4.18) and (4.19)
are easily updated using

x̄′ =
n · x̄ + xn+1

n + 1
(4.24)

Mx′x′ =
σ2nMxx + nx̄x̄T + xn+1x

T
n+1 − (n + 1)x̄′x̄′T

σ2(n + 1)
(4.25)
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Figure 4.8: Incrementally fitting a line and mean square error (residual).
The circles on the left hand side correspond to a 1σ-region around the edgels.

(compare (3.13) — these equations simplify considerably if we forego the normal-
isation in (4.19), which is only needed for the calculation of the error measure
λmin). In addition to computing the line ℓ with highest probability P (ℓ|x1 . . .xn),
the task is now also to decide which edgels actually form a line and when to
stop fitting. This is commonly done (e. g. in [127]) by finding a seed-region of
about a dozen edgels whose mean square error is below a given threshold (say
0.1pxl2). Once such a seed region has been found, further edgels will be added
using Equations (4.24) and (4.25) until the mean square error (4.17) exceeds the
fixed threshold.

There are three problems with this approach:

1. A comparatively large seed region is needed for the mean square error to be
meaningful. This makes it impossible to fit small line segments of only a few
pixels length.

2. Even then the seed-region is often fitted not to a real line segment but to the
slightly curved corner segment which frequently leads up to a line segment.

3. Once a line has reached a certain length, it is easy to overshoot its end,
since it takes several “bad” edgels to raise the mean square error above the
threshold.
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I will instead present in the following a new approach which remedies both Items 1
and 2 and helps to mitigate 3. Although fairly straightforward, this has to my
knowledge not been described outside [6], namely that incrementally fitting a line
to points can also be thought of as confidence testing, compare Section 3.4. Here
the hypothesis is that the point belongs to the line, and we test whether there is
sufficient reason for confidence in this hypothesis (or, rather, not enough reason to
disbelieve that hypothesis). One possible test is the χ2-test. Using a confidence
test corresponds to using a variable threshold, whose value increases with line-
length, instead of a fixed threshold. This is done by evaluating

λmin =
1

nσ2
ℓT

(
n∑

i=1

xix
T

i

)
ℓ ≤ χ2

p,n−2 (4.26)

(compare Equations (4.17) and (4.19) as well as Figure 4.8), where p is the required
probability (confidence level, really) of the outcome and n − 2 is the number
of degrees of freedom of fitting a line to n edgels. This approach allows us to
overcome problems 1 and 2, as can be seen from Fig. 4.8: the threshold depends
on the number of edgels to which we are currently fitting, so that we can easily
discriminate between linear and nonlinear patches even for very short line segments.
The third problem, the problem of overshooting, can unfortunately not be solved
but only mitigated by the use of a χ2 error measure — when fitting to some ten
edgels it is often possible that two or three bad edgels are needed to drive the
error measure (4.26) over the threshold. Other methods are therefore needed to
overcome this particular problem, e. g. refitting from the end of the line towards
the beginning, or a curvature analysis of the error-behaviour. In [127] the problem
is worked around by dropping the last m edgels.

4.3.4 Summary

In Section 4.3 I started with a list of previously used line-parameterisations and
introduced a new parameterisations, the (α, x, y)T parameterisation. Starting from
first principles in Section 4.3.2 I then revisited the problem of fitting a line through
a number of feature points. Two different methods were introduced in Section 4.3.2
— an iterative method developed by Kanatani and Kanazawa [73, 77], and a direct
least squares approach. In Section 4.3.2.2 I gave a detailed derivation under which
circumstances a direct least squares solution is reasonable and showed that in
fitting a line through edgels these can be said to be to a good approximation
independently, identically, and isotropically distributed (iiid). In this case virtually
no difference in accuracy exists between the two methods, and the direct approach
should be used, since it is always faster — Kanatani’s method solves a problem
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equivalent to the direct approach in each iteration. Kanatani’s method, on the
other hand, is preferable whenever points are used which cannot be said to be
identically and isotropically distributed, e. g. if points from other sources are used
in addition to edgels. This was not explicitly demonstrated in this section, but we
will see an example of this in Section 7.

I also gave a new approximate formula for the line’s covariance, which can be used
to further speed up calculations in the case where we are fitting to iiid edgels,
and I demonstrated its excellent agreement with the true covariance values. In
Section 4.3.3 I finally extended the direct least squares solution to incremental
line fits, where in each step an additional edgel is added to (or removed from) the
line. Here I described the use of a simple χ2 error measure as a sliding threshold
which allows to fit lines through fewer edgels than was previously possible.

4.4 Points

It has already been mentioned in Section 4.3 that lines can convey important infor-
mation about man-made environments. In particular I will define points mainly
as the intersection of lines. This is true both for corners, which can in general
be defined as the point of intersection of two or more spatially close lines, but in
particular also for parallel lines, which identify main directions in the world. These
lines, which are parallel in 3D, will be coincident (concurrent) in the image, and
it is therefore only logical to search for coincident lines — and their point of inter-
section — when looking for either corners or a structure that originally consisted
of parallel lines. In the following I will mainly concentrate on originally parallel
lines as this is generally the more complicated case. Corners, which are usually
only of interest in or near the image, follow the same approach, but generally are
easier to compute.

Calculating corners or vanishing points (the intersection of originally parallel
lines) really consists of two problems. First we need to identify possible candi-
date lines which we believe to intersect all in the same point; only then can we
compute the most likely intersection of all these candidate lines. Standard ap-
proaches for the former, which is not the subject of this section, are e. g. the
Hough transform [13, 51, 94, 107, 142, 159] (see [20, 93] for more references),
RANSAC [119, 134], or perceptual grouping algorithms [88, 89, 96]. The latter
are usually based on the assumption that a normal camera was used to create
the image rather than some arbitrary projective transformation. Section 5 gives
an example of a perceptual grouping algorithm used for vanishing-point detection,
where the individual lines bounding a pedestrian crossing are identified based
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on constraints on the camera-position; Section 6 gives another example where
constraints on nearness and direction are used to group candidates for corners.
Although not the subject of this thesis I would like to point out that of course
Hough and RANSAC like algorithms could benefit from a statistical approach too;
Hough through the use of covariance regions rather than lines when building the
array [99], while the χ2 measure suggests itself as a reliable criterion to determine
membership in a class when using RANSAC.

Once a set of candidate lines has been identified we are left with the task of finding
the point x which is the most likely intersection of n lines ℓi, i = 1 . . . n. This does
sound like the dual problem to fitting a line to n points as discussed in Section 4.3
— this is in fact not the case, since this intersection can potentially lie at infinity,
in which case the weighted Euclidean distance implicit in Equations (4.6) to (4.10)
is not defined — the reason we could use this approach in Section 4.3 is the fact
that both the edgels and a line fitted to these edgels are restrained to lie within
the image, which is not necessarily the case here. The approach by Kanatani
described in Section 4.3.2.1, which minimised algebraic distance (distances on the
surface of a unit sphere) rather than Euclidean one, is of course still usable and
will be discussed in Section 4.4.1.

Minimising algebraic distance (at least the particular one used by Kanatani) works
very well, and is indeed nearly always the method of choice when calculating in-
tersections. There exists, however, a very different interpretation to the problem
of vanishing-point detection, and it is quite instructive to have a closer look at
this approach. It is based on the assumption that the lines were indeed originally
parallel in 3D. Instead of calculating the location of the intersection in the im-
age, all lines are first transformed into a canonical frame of parallel lines. The
homography connecting the two frames directly specifies the location of the inter-
section. This is described in Section 4.4.2. If instead of the lines the original edgels
are transformed into this frame, we get a new set of lines for free which all pass
through the calculated intersection. This approach is described in Section 4.4.2.2.
A comparison of the individual approaches and their respective advantages and
disadvantages can be found in Section 4.4.3.

4.4.1 Minimising Algebraic Distance

Finding the point x with ‖x‖ = 1 which minimises the algebraic distance to n
lines ℓi, i = 1 . . . n, is the dual problem of finding the line ℓ with ‖ℓ‖ = 1 which
minimises the algebraic distance to a set of points as described in Section 4.3.2.1.
The algorithm given there can be applied here by interchanging all occurrences of
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x and ℓ, the distance measure to minimise then becomes

min
x

1

n

n∑

i=1

xTℓiℓ
T

i x

xTΣℓix
(4.27)

The geometric interpretation is similar to the one in Section 4.3.3, again using the
Gaussian sphere (or ray-space) model from Section 2.9: each line in the image
corresponds to a great circle on the unit sphere (a plane through the unit-sphere’s
origin), and minimising the algebraic distance finds the point x on the unit sphere
with minimum mean squared scaled orthographic distance to the great circles (the
planes). This is equivalent to representing each great circle (plane) by its normal-
vector (a point on the unit sphere) and finding the great circle (plane through the
sphere’s origin) which best fits these points — the problem solved in Section 4.3.2.1.
The great-circle’s (plane’s) normal vector corresponds to the intersection x.

We will see in Section 4.4.3 that the nonlinear distortion of the covariance-regions
inherent to the projection onto the unit sphere is in fact more adequate to the
problem than the original formulation on the Euclidean plane (although it is still
not perfect). This is one of the reasons why this approach works so well.

4.4.2 Canonical Frame Minimisation

The underlying assumption when looking for some lines’ common intersection is
often that the lines were originally parallel in 3D. So instead of looking for a point
closest in (algebraic) distance to a given set of lines, this approach tries to identify
a homography H into a canonical frame such that all lines become horizontal6

again. The intersection is then the point given by x = H−1(1, 0, 0)T (assuming
horizontal lines in this and the following equations).

A general homography H has 8 degrees of freedom. The condition that all lines
should be parallel after the transformation ℓ′i = H−Tℓi only fixes 2 DOF (one for
an intersection at infinity, and one for the angle which the lines form with the
x-axis). We therefore have to decide on a 2 degree of freedom parametrisation for

6Or any other predefined direction.
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H which uniquely identifies H. A possible parametrisation is given by

H =




1 0 0
0 1 0
p 0 1






cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


 (4.28)

H−T =




1 0 −p
0 1 0
0 0 1








cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1



 (4.29)

This parametrisation consists of a rotation around the image origin, followed by a
(possibly negative) projective foreshortening along the x-axis.

The homography H can now be used to transform the lines ℓi into a canonical
frame of horizontal lines ℓ′i = H−Tℓi, or alternatively to directly transform the
edgels xi,j which originally gave rise to the lines ℓi, x′

i,j = Hxi,j . The later would,

in addition to the lines’ intersection x, also calculate a new set of lines ℓ̂i, which will
all pass exactly through this intersection. Both approaches are described below.

4.4.2.1 Canonical Frame and Lines

We assume that the lines are given as a homogeneous 3-vector proportional to the
normal form characterised by the angle αi and the distance ci = −xi sin(αi) +

yi cos(αi) from the origin as ℓi = ki(sin(αi),− cos(αi), ci)
T
. These will then trans-

form as

ℓ′i = H
−Tℓi = ki




sin(αi + β)− cip
− cos(αi + β)

ci




T

(4.30)

Since we have no information about the transformed lines other than that they
should all be horizontal, we can only use the transformed lines’ angles to construct
an error measure. The angle is

α′
i = arctan

(
tan(αi + β)− cip

cos(αi + β)

)
(4.31)

Following an argument similar to the one in Section 4.3, the equation to minimise
would be

χ2 = min
β,p

n∑

i=1

α′
i
2

σ2
α′

i

(4.32)
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where σ2
α′

i
can be calculated using Equation (3.53) as

σ2
α′

i
= Jα′

i(αi,ci)J(αi,ci)ℓi
Σℓi

J
T

(αi,ci)ℓi
J

T

α′

i(αi,ci) (4.33)

with Jα′

i(αi,ci) =
(cip sin(αi + β)− 1 , p cos(αi + β))

2cip sin(αi + β)− p2c2
i − 1

(4.34)

and J(αi,ci)ℓi
=

(
1 0 0

−xi cos(αi)− yi sin(αi) − sin(α) cos(α)

)
(4.35)

if the line was given in (α, x, y)T notation — or similarly for any other notation.

If speed of computation is an issue, then the following approximation is viable: the
angle in Equation (4.32) is well approximated by the tangent function under the
assumption of small to medium sized errors (the relative error is only about 4%
for up to 20◦ of error in the orientation); we can therefore minimise the slightly
simpler function

χ2 = min
β,p

n∑

i=1

t′i
2

σ2
t′i

(4.36)

t′i
2

= tan(αi + β)− cip

cos(αi + β)
(4.37)

σ2
t′i

= Jt′i(αi,ci)J(αi,ci)ℓi
Σℓi

JT

(αi,ci)ℓi
JT

t′i(αi,ci) (4.38)

Jt′i(αi,ci) =

(
1− cip sin(αi + β)

cos2(αi + β)
, − p

cos(αi + β)

)
(4.39)

and (4.35) as given above.

The most likely intersection in this frame is located at (1, 0, 0)T (in homogeneous
coordinates), and this is mapped onto the homogeneous image coordinate

x =




cos(β)
− sin(β)
−p


 (4.40)

Its covariance matrix can be calculated using Equations (3.53) and (3.56) (using
the implicit function theorem).

Both Equation (4.32) and Equation (4.36) result in moderately complicated non-
linear functions of the parameters β and p, for which no closed form solution
exists. In order to locate the minimum, any of a number of numerical optimisa-
tion schemes [123] can be employed instead. A reasonable start-value is important
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to honour the small error assumption explicitly used for Equation (4.36), and im-
plicitly present in the use of Gaussian distributions for angles in Equation (4.32).
A reasonable start value could, for example, be found by one or two iterations of
the algebraic distance algorithm in Section 4.4.1.

4.4.2.2 Canonical Frame and Edgels

If the original edgels are still available, rather than just the lines, it is tempting
to directly transform the edgels into a canonical frame. Only the y-coordinates of
each transformed edgel are of interest (assuming once more a frame of horizontal
lines), and the function which is to be minimised becomes

χ2 = min
β,p

n∑

i=1

mi∑

j=1

(y′
i,j − ȳ′

i)
2

σ2
y′

i,j

(4.41)

where

y′
i,j =

xi,j sin(β) + yi,j cos(β)

pxi,j cos(β)− pyi,j sin(β) + 1
(4.42)

ȳ′
i =

mi∑

j=1

y′
i,j

σ2
y′

i,j

/

mi∑

j=1

1

σ2
y′

i,j

(4.43)

σ2
y′

i,j
= Jy′

i,jxi,j
Σxi,j

JT

y′

i,jxi,j
(4.44)

Jy′

i,jxi,j
=

(pyi,j − sin(β) , pxi,j + cos(β))

(pxi,j cos(β)− pyi,j sin(β) + 1)
2 . (4.45)

xi,j is the jth edgel of the ith line. Again, Equation (4.41) can only be minimised
numerically. In addition to the approach in Section 4.4.2.1, this strategy also
calculates a new set of lines of the form ℓ′i = (0,−1, ȳi)

T in the canonical frame or

ℓ̂i =
1√

p2ȳ2
i + 1




pȳi cos(β)− sin(β)
−pȳi sin(β)− cos(β)

ȳi


 (4.46)

in the image. Such refitted lines can, e. g., be used for the calculation of the cross-
ratio as described in Section 4.5, although in Section 4.5.2 I will present a new
method which allows the calculation of the cross-ratio without prior calculation of
the intersection and a new set of lines, at nearly the same accuracy.
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Figure 4.9: Monte Carlo simulation of the calculation of line-intersections for
three typical constellations. The two top figures demonstrate how well the the-
oretically derived covariance matrix (the ellipses, enclosing 99 % of all points)
and the Monte-Carlo simulation agree for intersections close to the image.
The bottom figure shows that for far away intersections (×) the covariance-
region becomes hyperbolic in Euclidean coordinates, which is poorly modelled
by Gaussian noise.
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Figure 4.10: The projection of a hyperbolic covariance region (left) onto a
sphere (middle and right) becomes elliptical. The image region is marked by
a dashed rectangle.

4.4.3 Comparison and Summary

A Monte Carlo simulation shows that both the algebraic distance as well as the
canonical frame algorithms work equally well under the condition of small errors.
Figure 4.9 shows sample scatter-diagrams for three typical constellations, using
the algorithm from [73] (both types of algorithms produce virtually identical dia-
grams). It becomes apparent that both types of algorithms work best when the
intersection is located in or near the image (Figure 4.9, top row). The hyper-
bolic covariance-region in Figure 4.9, bottom row, shows clearly why an Euclidean
model is not adequate for the calculation of these intersections, as was mentioned
in the introduction to this section.

The spherical normalisation, and in particular Kanatani’s N-vectors, are indeed
much better adapted to the problem than are Euclidean coordinates. We can
see in Figure 4.10 that the projection of a hyperbola onto the sphere will result
in an “elliptic” region, in this case with the midpoint close to “infinity” and the
covariance-region wrapping around both sides of the unit-(half)-sphere. The left
figure shows a setup similar to the one in Figure 4.9 (bottom), with the image
region marked by a dashed rectangle and the scatter-plot delimited by a hyperbola
containing 99 % of the intersections. Figure 4.10 (middle and right) show the
projection onto the unit sphere, using N-vectors, where the intersections are now
well contained within an approximately elliptical region on the sphere, which would
be well modelled by Gaussian error on the sphere.

The canonical-frame method is of course not affected by these considerations at
all, as it only uses angular distances, which do not suffer from these effects.

I have said that both types of algorithms produce comparable results. However,
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Kanatani’s method is up to an order of magnitude faster for small covariance
matrices, where it converges rapidly. Processing times for larger uncertainties are
about equal, but here Kanatani’s method calculates slightly more accurate results,
since the small-error condition needed for Equation (4.32) is not valid anymore,
and his algorithm is therefore the method of choice for the fast calculation of
line-intersections.

The decision whether to accept the hypothesis that the n lines tested were indeed
coincident can as usual be based on a χ2 test with ν = n− 2 degrees of freedom.

4.5 The Crossratio

The cross-ratio of 4 collinear points — or, alternatively, 4 coincident lines — is
one and probably the fundamental projective invariant. However, virtually no four
measured points will be collinear, nor will four measured lines be coincident, even
if we know that they should be. In the following we will mainly concentrate on
the crossratio of four lines, since for the reasons discussed in Sections 4.3 and 4.4
(fitting lines is easier than calculating their intersection) this is usually the more
error-prone case.

Two radically different approaches to the calculation of the crossratio are described
below. The family of solutions described in Section 4.5.1 calculates the lines’ in-
tersection first and the crossratio only afterwards, thereby following a more con-
servative approach. In contrast, the approach described in Section 4.5.2 does not
require any knowledge about the lines’ intersection. This is a direct consequence
of the application of error-propagation principles to the problem of the calculation
of the crossratio, and has to my knowledge not been discussed outside of [6] and
this thesis.

Section 4.5.3 compares the different approaches and shows clearly the crossratio’s
sensitivity to noise and to the particular method chosen to compute it — but also
that with some care and the tools of error-analysis and error propagation it is
possible to construct an algorithm which can calculate the cross-ratio as good as
the best algorithms, but in a fraction of the time usually needed.

4.5.1 Refitting Lines

The approach for the calculation of the crossratio described in this section could
be termed the classical approach. Given four lines ℓi, i ∈ {A,B,C,D}, which are
not quite coincident, one first calculates the lines’ most likely common intersection
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— hopefully by one of the methods discussed in Section 4.4. From there a new set
of lines ℓ̂i is calculated, which passes through this intersection. Only then is the
crossratio calculated, usually using Equation (2.42).

Three different representations of this approach are introduced in the following,
corresponding to the three methods for the calculation of the lines’ intersection in
Section 4.4.

4.5.1.1 Refitting in the Image Plane

In this approach, which was suggested by Kanatani[74] and others, one first cal-
culates the lines’ intersection in the image plane, using the algebraic distance
algorithm described in Section 4.4.1. From there a set of new lines ℓ̂i ∈ IR3 is cal-
culated which pass through this intersection and the original line segments’ centres.
One can then calculate the new lines’ crossratio using Equation (2.42),

cr(ℓ̂Aℓ̂B ℓ̂C ℓ̂D) =
|ℓ̂Aℓ̂CℓX |
|ℓ̂B ℓ̂CℓX |

· |ℓ̂B ℓ̂DℓX |
|ℓ̂Aℓ̂DℓX |

. (2.42 a)

ℓX can be any arbitrary 3-vector; the only formal criterion for ℓX is that the scalar
product with the vanishing point must not be 0 (the line ℓX must not pass through
the vanishing point). It is therefore often chosen to be the dual of the vanishing
point itself [72].

4.5.1.2 Canonical Frame and Lines

In this approach all four lines are transformed into a canonical frame of horizontal
lines, using the method described in Section 4.4.2.1. The crossratio is then calcu-
lated from the y-coordinates of the transformed lines’ centre points alone, using
e. g. Equation (2.37), i. e.

cr(ℓ̂Aℓ̂B ℓ̂C ℓ̂D) =
ŷC − ŷA

ŷC − ŷB
· ŷD − ŷB

ŷD − ŷA
. (2.37 a)

4.5.1.3 Canonical Frame and Edgels

Here the edgels are transformed into a canonical frame, instead of the lines, using
the approach described in Section 4.4.2.2. Only the ȳ′

i are then used for the
calculation of the crossratio, again using e. g. Equation (2.37).
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All three approaches described so far are basically equivalent in that they first
calculate the lines’ vanishing point (which is implicitly given by a canonical frame
representation) and only then proceed to calculate the crossratio, differing only in
the method used to calculate the vanishing point itself, and they will therefore all
give similar results. However, the necessity to find a good approximation of the
vanishing-point position means that all three algorithms are rather slow. While
this is not a problem if only one or two crossratios need to be calculated, it can
become a considerable burden if several thousand calculations are needed, e. g.
if the crossratio is used for classification into two or more populations, where the
biggest population would be due to random configurations of lines and could safely
be ignored. It would then be convenient if a fast method for the calculation of the
crossratio existed that would not require the calculation of the vanishing point. A
possible approach is presented in the next section.

4.5.2 Direct calculation of the Crossratio

The main problem with any approach for the calculation of the crossratio that
would not also calculate the vanishing point is of course the fact that a crossratio
is computed for 4 non-coincident lines, although it is only defined for coincident
ones (or equivalently 4 collinear points).

But what if we know that the original lines really were coincident? The formula
usually used to compute the cross-ratio

cr(ℓAℓBℓCℓD) =
|ℓAℓCℓX |
|ℓBℓCℓX |

· |ℓBℓDℓX |
|ℓAℓDℓX |

. (2.42 b)

which can e. g. be found in [72, 103], does not make explicit use of the condition of
coincidence. The result might be meaningless if the lines are not coincident (and
certainly highly dependent on ℓX , which can be arbitrarily chosen, as long as it
does not pass through the vanishing point), but it can be calculated.

It is therefore interesting to analyse the quality of the result. The key here is the
choice of ℓX in dependence of the four lines ℓi and their covariances. The optimal
choice for ℓX could in theory be computed by minimising the cross-ratio’s variance
— calculated using Equation (3.53) — with respect to ℓX . Unfortunately, no closed
form solution exists, and numerical minimisation would be just as computationally
expensive as the direct computation of the vanishing point in Section 4.5.1.

What can be said, however, is that ℓX should intersect the ℓi close to their centre
points, and at right angles. This can be seen if we interpret ℓX as a line intersecting
the other four lines ℓi, i ∈ {A,B,C,D}, as seen in Figure 4.11. If the lines ℓi are
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Figure 4.11: The choice of ℓX in-
fluences the accuracy of the fast al-
gorithm.

Figure 4.12: The sample crossra-
tio c̄r(αℓX

)±sc̄r(αℓX
) for different

angles αℓX , Monte-Carlo simula-
tion.

not perfect lines but ones fitted to a number of edgels, it is clear that the fitted lines
will become less and less accurate the further away from the line segments’ centre
points we go — the dotted hyperbolas to the left and right of each line segment
in Figure 4.11 represent the border of an n-σ-interval. This means conversely that
the resulting cross-ratio will be all the more reliable, the closer to their centre
points the lines ℓi will be intersected by ℓX , but also the closer to a right angle
the angle between ℓi and ℓX has been chosen. Figure 4.12 gives an error-bar
representation of the crossratio of 4 horizontal and equidistant lines (cr = 4/3) as
a function of that angle by plotting c̄r(αℓX ) ± sc̄r(αℓX ) (the sample variance) for
different angles αℓX

. It can clearly be seen that the calculated crossratio becomes
completely unreliable if the intersecting line ℓX is approximately collinear with the
line segments, but is else not overly sensitive to small changes in the orientation7 —
suggesting that it might indeed be possible to calculate a reasonable approximation
of the crossratio without prior calculation of the vanishing point.

Even if the accuracy of a cross-ratio thus calculated were lower than possible, one
could still use this as a first test using the χ2-test described in Section 4.6.4 and
only calculate the vanishing point and a better approximation8 to the cross-ratio
and its covariance if it did pass the test, using one of the approaches discussed in
Section 4.5.1.

This would already considerably speed up processing compared with the straight-

7More complicated line-constellations can of course results in a less benign relationship.
8It is worth remembering that any algorithm will only compute an approximation unless the

measured lines have been coincident to begin with.
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forward approach of first calculating the vanishing point and then the cross-ratio,
since the cross-ratio is both much faster to compute and usually has much higher
discriminating power9. Note that even if the new fast algorithm were less accurate
than the more conservative approach, no information will be lost. Only the num-
ber of false positives would increase. We will, however, see that with a carefully
chosen ℓX the accuracy of the fast algorithm can be virtually as good as that of
the more traditional ones.

The only remaining question is how to best choose the ℓX . We have seen above
that some weighted equilibrium needs to be found between a line ℓX which in-
tersects the ℓi as close as possible to their centres, and a right-angle intersection
between ℓX and the ℓis, since it is generally not possible to fulfil both require-
ments at the same time. In the following I will present two approaches which
put more weight on either the first or second condition; the approach described
in Section 4.5.2.1 tries to maintain as-close-as-possible right-angle intersections,
while the approach described in Section 4.5.2.2 tries to pass a line close to the
individual lines’ centre points. Many more approaches can be conceived; the two
approaches used here have mainly been chosen for their didactic properties — the
first one works particularly bad, the second one particularly good, mostly due to
the weighting chosen.

4.5.2.1 Right Angle Intersection

Keeping the intersections between ℓX and the ℓis as close as possible to a right
angle is equivalent to finding the line orthogonal to a line through the vanishing
point and with minimum average angular distance to the four lines ℓi. This de-
termines a family of parallel lines, and fixing the remaining parameter requires us
to specify a point through which ℓX is expected to pass, the mean position of the
four lines’ centre points suggesting itself.

However, the above description requires us to know the position of the vanishing
point. In order to avoid calculating the vanishing points position we will use a
slightly modified approach; we will choose a line which passes through the point
(x̄, ȳ)T and whose homogeneous normal vector n ∈ IR3 is given as the vector
pointing from that point into the direction of the intersection between ℓA and ℓD,

9For most scenes taken from human environments we will usually have only 2n + 1 (with n

small, often n = 1) vanishing points through which most lines pass, compare Section 6. Coinci-
dence alone therefore has only very little discriminating power.
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i. e.

n = (ℓA × ℓD)×




x̄
ȳ
1


 (4.47)

and the resulting line becomes

ℓX =




nx

ny

−x̄nx − ȳny


 . (4.48)

The point (x̄, ȳ)T itself, rather than using the centre-points’ mean position, will
be calculated as

(
x̄
ȳ

)
=




∑

i∈{A,B,C,D}

(
σ2

xi
0

0 σ2
yi

)


−1

∑

i∈{A,B,C,D}

(
σ2

xi
0

0 σ2
yi

)(
xi

yi

)
(4.49)

This will be done for didactic reasons only, generating comparable scales in Fig-
ure 4.14ff.

Calculating the direction of ℓX completely ignores the individual lines’ covariance
matrices, and it is therefore not overly surprising that the results achievable will
remain well below that of the standard approaches, as can be seen in Section 4.5.3.

4.5.2.2 Line Fit

This approach tries to fit ℓX to the ℓi’s centre points using a weighted fit. It is
easy to see from Figure 4.11 that the bigger the variance σ2

αi
in the angle αi, the

closer should ℓX be to the line’s centre point xi, and this makes minimising the
following equation a good candidate

min
ℓX

∑

i∈{A,B,C,D}

σ2
αi

ℓT

X

(
xi

1

)
(xi, 1)ℓX (4.50)

with ℓX ∈ IR3 and xi ∈ IR2 — the xi are centre points of measured line segments
and therefore never at infinity10. The resulting line ℓX passes through the point

x̄ =

(
x̄
ȳ

)
=

∑
i∈{A,B,C,D} σ2

αi
xi∑

i∈{A,B,C,D} σ2
αi

(4.51)

10If one or more of the lines stem from a different source and therefore do have their centre
points at infinity, then it is safe to ignore the lines as they must by necessity have a value of
σα = 0 or will be unusable.
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and its normal-vector is the eigenvector to the smaller eigenvalue of

∑

i∈{A,B,C,D}

σ2
αi

(
(xi − x̄)

2
(xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (yi − ȳ)
2

)
. (4.52)

This approach specifically calculates a solution based on the individual line’s vari-
ance σ2

αi
in the orientation αi, and it is therefore not surprising that it will gener-

ally surpass the approach discussed before. Section 4.5.3 will, in fact, show that
this method gives results comparable to the ones in Section 4.5.1, and that the
result’s pdf can be approximated well using Equations (3.52) and (3.53). However,
we will see in the next section that the qualitative (and, near enough, quantita-
tive) behaviour is the same for both the conservative, time consuming approach as
well as the fast approach presented in Section 4.5.2.2, and this shows impressively
the power of error propagation as a tool to devise both fast as well as accurate
algorithms.

4.5.3 Comparison and Summary

In the following, a number of Monte Carlo simulations run on several different line-
configurations are used to illustrate the respective merits of the two approaches
— the refitting algorithm mentioned in Section 4.5.1.1 as an example of the group
of algorithms mentioned in Section 4.5.1, and the direct calculations from Sec-
tion 4.5.2. It can be seen that with a proper selection of ℓX , results for the fast
algorithm are about as good as for the canonical-frame algorithm if the error is
small (compare Figures 4.14 through 4.18), whereas the calculation is much faster.
The individual line-sets used have all been calculated from one set of four equally
spaced, parallel lines as given in Figure 4.13. These have been subjected to a
projective transformation

P =




s cos(α) −s sin(α) stx
s sin(α) s cos(α) sty

px cos(α) + py sin(α) −px sin(α) + py cos(α) txpx + typy + 1



 . (4.53)

This is equivalent to a rotation around the origin with angle α, translation by
(tx, ty)T, projective distortion in x-direction with factor px — the horizontal van-
ishing point (the intersection of the four lines) is projected to (1/px, 0, 1) — pro-
jective distortion in y-direction with factor py — the point at infinity (0, 1, 0) is
projected to (0, 1/py , 1) — and a possible scaling of the entire set by s.

Note that the scaling operation is not equivalent to a change in resolution, as this
would influence σ2

α and σ2
x,y differently and in a nonlinear way (compare Figure 4.7
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Line 1 π 456 500 30 2.2̄ · 10−4 1.6̄ · 10−2 1.6̄ · 10−2

Line 2 2π 631 510 300 2.2̄ · 10−7 1.6̄ · 10−3 1.6̄ · 10−3

Line 3 π 645 520 250 3.84 · 10−7 2.0 · 10−3 2.0 · 10−3

Line 4 2π 671 530 200 7.5 · 10−7 2.5 · 10−3 2.5 · 10−3

Figure 4.13: Dataset used for Monte-Carlo simulations (cross-ratio).

and Equations (4.21)–(4.23)). We can therefore additionally subject the variances
in the table in Figure 4.13 to the following transformation:

σ′
α

2
= σ2

α/k3

σ′
x
2 = σ2

x/k

σ′
y
2

= σ2
y/k

. (4.54)

Changing only the scale s describes the case where, with constant line-length, the
distance between the lines varies; varying only the factor k would correspondingly
describe a setup in which the line-length varies, but the distance between the
lines is kept constant. Alternatively this also describes the case where the image
quality degrades or improves respectively. Varying both s and k by the same
amount finally corresponds to a change in image resolution.

In order to create datasets for Monte-Carlo simulations, Gaussian noise of the ap-
propriate variance is then added to the (α, x, y) values in Figure 4.13. The sample
size is 10 000 unless otherwise stated. Each parameter of Equation (4.53) has been
changed in turn, and a histogram of the values computed for the crossratio has
been plotted together with the predicted distribution as given by the median of the
crossratio (the expected value is 4/3) and median predicted variance. Each experi-
ment will be discussed in turn below; it will be seen from Figures 4.14 through 4.18
that the predicted and actual distributions agree nicely. In all experiments the left
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and middle graphs refer to the two fast methods, while the right one refers to the
traditional algorithm, compare e. g. Figure 4.14; the left one, labelled “Right angle”
and (a), refers to Section 4.5.2.1 where we tried to get a right-angle intersection,
while the middle one, labelled “Line fit” and (b), refers to Section 4.5.2.2 where
ℓX was chosen to pass as closely as possible through the centre points.
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(a) Right angle: rotation by α.
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(b) Line fit: rotation by α.
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Figure 4.14: Measured and predicted distribution of the crossratio for three
different algorithms and varying angle of rotation α.

Figure 4.14 shows histograms of the measured distributions for the crossratio under
different angles of rotation α as well as the predicted distribution (median values)
using the three methods discussed above; Figures 4.14(a) and 4.14(b) show typical
results for the direct (fast) method using different lines ℓX calculated according to
Section 4.5.2.1 in Figure 4.14(a) and Section 4.5.2.2 in Figure 4.14(b) respectively;
Figure 4.14(c) shows typical results for the slower, but more exact conservative
approach described in Section 4.5.1.1. It can be seen that the distributions are
independent of the rotation α, as could have been expected. Also, the measured
distribution (histogram) obviously corresponds well with the predicted distribution
(solid curve). Finally, it can be seen that for the direct method the distribution
of the crossratio depends on the particular line ℓX chosen, and can be nearly
as good as the much slower conventional method for a well-chosen ℓX — the
corresponding values for α = 0, e. g., are σ4.14(a) = 0.01973, σ4.14(b) = 0.00599,

σ4.14(c) = 0.00582, i. e. only a 3% difference between the last two.

Most of these observations — the very good correspondence between predicted
and measured distribution, the high quality of the direct approach if the line ℓX

is chosen by an inversely weighted line fit according to Section 4.5.2.2, and the
lower accuracy when choosing the line ℓX according to Section 4.5.2.1 — will also
be valid for variations of any of the other parameters; the main difference is how
the distribution varies with variations of the individual parameters.

Figure 4.15 shows the measured and predicted distribution for varying projective
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(c) Refit: projective distortion
py .

Figure 4.15: Measured and predicted distribution of the crossratio for three
different algorithms and varying projective skew in y-direction py.

distortions in y-direction, results are similar for distortions in x-direction. It can be
seen that results remain constant for a wide range of distortions 0 < px, py < 10−4

(which was not obvious from the problem itself) but degrade sharply between
10−4 < px, py < 10−2. This is, however, not overly surprising, as we are then
already dealing with rather severe distortions which seriously influence both the
actual as well as relative length of the individual lines, a behaviour not modelled
by Equations (4.53) and (4.54).
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(a) Right angle: scale s.
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(b) Line fit: scale s.
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(c) Refit: scale s.

Figure 4.16: Measured and predicted distribution of the crossratio for three
different algorithms and varying scale s.

Figure 4.16 shows the measured and predicted distributions for varying scales s,
varying the distance between the lines while keeping the line-length constant. As
was to be expected, the variance increases with decreasing scale (distance between
lines) and decreases with increasing scale. It is, however, quite interesting to note
that at least the latter is only the case within a relatively small interval around
the original setup (approx. 0.1 < s < 10).

Figure 4.17 shows the measured and predicted distributions for varying (relative)
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(a) Right angle: accuracy k.

1.267
1.300

1.333
1.367

1.400
cr 0.0625

0.25

1

4

16

 0%

10%

20%

30%

40%

count

k

(b) Line fit: accuracy k.
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(c) Refit: accuracy k.

Figure 4.17: Measured and predicted distribution of the crossratio for three
different algorithms and varying accuracy k.

accuracy k, corresponding to a fixed distance between the lines and either varying
line-length or varying quality of the original image (e. g., as is noticeable when
comparing images taken with a 3-chip RGB camera to those taken with a 1-chip
RGB camera). Here it is very clearly the case that the variance decreases with
increasing accuracy.
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(a) Right angle: resolution s =
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(b) Line Fit: resolution s = k.
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Figure 4.18: Measured and predicted distribution of the crossratio for three
different algorithms and varying resolution s = k.

Figure 4.17 shows the measured and predicted distributions for varying (relative)
resolutions s = k, i. e. varying both s and k simultaneously. This corresponds
directly to a change in resolution. Clearly the variance decreases with increasing
accuracy.

Figure 4.19 shows the functional relation between the cross-ratio’s variance σ2
cr

and the scale s (solid line), accuracies k (dashed line), and resolution s = k
(dotted line). Variance changed cubic with resolution, showing that in this case
the angle’s variance σ2

α is the dominating factor (compare (4.21)); the same is
true at low accuracies. For high accuracies (small σ2 of the edgels) we have an
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Figure 4.19: Variance of the crossratio as a function
of scale s (solid line), accuracy k (dashed line), and
resolution s = k (dotted line). Shown is the median
predicted variance when using the fast method de-
scribed in Section 4.5.2.2 (line fit weighted by σ2

α). It
is interesting to note that the variance changes cubic
with the resolution (compare Equation (4.21)) and
for low accuracies, quadratic for low scales, linear for
high accuracies, and is constant for high scales.

approximately linear dependency, which again is mirrored in (4.21) and (4.23).
Finally, when varying the scale we see an approximately quadratic relationship
at low scales, which becomes constant for higher scales — I’m not sure how to
interpret this.

Collectively all these results show that for a reasonable choice of line ℓX — based
on error-propagation principles — it is possible to rival the best algorithms for the
computation of the crossratio in accuracy at a fraction of their runtime.

4.6 Comparing Stochastic Entities

In comparing stochastic entities we are generally trying to answer the question
whether two observations x1,x2 ∈ IRn with known covariance matrices Σx1

,Σx2
∈

IRn×n could both be valid observations of the unknown true value µx
∈ IRn. We

assume that the observations xi ∈ IRn are Gaussian distributed with pdf

pxi
(xi) =

1√
(2π)

n|Σxi
|
exp

(
−1

2
(xi −µx)TΣ−1

xi
(xi − µx)

)
, (4.55)

where |Σxi
| is the determinant of Σxi

.

Assuming that the two observations x1 and x2 are independent of each other we
can simply multiply their probabilities; the joint probability that both observations
are valid observations of the same feature is then proportional to the sum

R = (x1 −µx)TΣ−1
x1

(x1 −µx) + (x2 −µx)TΣ−1
x2

(x2 −µx) . (4.56)
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The residuum R in (4.56) above is a function of the unknown original feature
vector µx; it is straightforward to show that it is minimised by the feature

µx =
(
Σ

−1
x1

+ Σ
−1
x2

)−1 (
Σ

−1
x1

x1 + Σ
−1
x2

x2

)
(4.57)

which has a (calculated) accuracy (covariance) of

Σ =
(
Σ−1

x1
+ Σ−1

x2

)−1
. (4.58)

Once the residuum R has been found we can then use a simple χ2-test to test
the hypothesis that the two measurements x1 and x2 are observations of the same
entity µx:

R
!
< χ2

p,2 . (4.59)

This basic approach is valid for all the examples given below. If the uncertainty of
the model is explicitly given (by a covariance matrix Σµx

) then it is straightforward
to add this matrix to all occurrences of Σxi , it is always Σ > Σµx

in (4.58).

In cases where the intrinsic dimensionality of the problem m is smaller than its
algebraic dimension n — this is always the case when dealing with homogeneous
coordinates, and in particular projectively transformed data — we would need to
replace the inverse Σ−1

xi
by the pseudoinverse (Σxi

)−m, and if necessary replace the
determinant in (4.55) by the product of its m nonzero eigenvalues. Usually we
will also need to normalise the measurements or otherwise make them comparable,
examples of this are given below. This is also one of the reasons why the otherwise
very elegant approach presented by Irani and Anandan in [64] can not be general-
ised beyond affine transformations. Their approach is based on transforming the
raw-data into a covariance-weighted data space, where the components of noise
are uncorrelated and identically distributed; however, so far the proof that the
optimal solution in this space will also be optimal in the original space is missing.
Still, the reader who is only dealing with affinely transformed data is urged to
have a look at their work.

4.6.1 Edgels

Edgels are the output of an edge-finder like Canny [24]. No scenario exists where it
would be required to compare two edgels. The simplest comparison would already
be between derived features like lines or points as described in the next section.
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Figure 4.20: The uncertainty in the distance from the origin c depends on
the location of the line segment.

4.6.2 Lines

When comparing “lines” it is important to realise that in images we are never really
dealing with (infinite) lines, but always with line segments only. When comparing
“lines” we are therefore in reality trying to answer the question whether two line
segments ℓ1 and ℓ2 could be considered independent observations of the same line
ℓ. This is the same as answering the question whether two line segments could be
considered collinear, a question posed in Section 6.

As mentioned in Section 4.3 there exists a multitude of different line-parameterisa-
tions. Particularly prevalent is the normal form (a, b, c)T with a2 + b2 = 1; this is
however not well suited to comparisons as the uncertainty in c can be considerable,
depending on the position of the line segment, compare Figure 4.20. This effect is
greatly mitigated by the use of spherically normalised parameters a2 + b2 + c2 = 1
and in particular Kanatani’s N -vectors; I would however like to advocate the use
of a new (α, x̄, ȳ)T parameterisation, which I believe to be the most convenient
for this particular application. We are then dealing with the two measurements
ℓ1 = (α1, x1, y1)

T and ℓ2 = (α2, x2, y2)
T with covariances Σℓ1 and Σℓ2 . Similar

to Section 4.6 we then have to find the ideal line ℓ = (α, x, y)T with minimum
weighted distance to the two lines.

It is however clear that the point (x, y)T can be chosen arbitrarily along the lines,
a direct comparison with (x1, y1)

T and (x2, y2)
T would not be meaningful. Instead

we use the distance between the points (xi, yi)
T and their projection onto the ideal

line, i. e. (xi− di sin(α), yi + di cos(α))T with di = xi sin(α)− yi cos(α)−x sin(α)+
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y cos(α), which is the distance from the point (xi, yi)
T to the ideal line11. We

therefore evaluate

minα,x,y



(α1 ⊖ α,−d1 sin(α), d1 cos(α))Σℓ1




α1 ⊖ α
−d1 sin(α)
d1 cos(α)





+ (α2 ⊖ α,−d2 sin(α), d2 cos(α))Σℓ2




α2 ⊖ α
−d2 sin(α)
d2 cos(α)







 ≤ χ2
p,2 (4.60)

in order to decide whether the two line segments should be considered collinear.
The symbol ⊖ denotes a cyclic subtraction such that −π ≤ α ⊖ β < π. We find
that the line ℓ which minimises Equation (4.60) is given by

ℓ =
(
Σ

−1
ℓ1

+ Σ
−1
ℓ2

)−1 (
Σ

−1
ℓ1

ℓ1 + Σ
−1
ℓ2

ℓ2

)
(4.61)

Σℓ =
(
Σ−1

ℓ1
+ Σ−1

ℓ2

)−1
(4.62)

and the minimum in Equation (4.60) is given by

R = (ℓ1 − ℓ2)
TJ

T
Σ

−1
ℓ1

ΣℓΣ
−1
ℓ2

J (ℓ1 − ℓ2) (4.63)

with the Jacobian

J =




1 0 0
0 sin2(α) − sin(α) cos(α)
0 − sin(α) cos(α) cos2(α)



 . (4.64)

Equations (4.61) and (4.62) can also be interpreted as the combination of two
line segments ℓ1 and ℓ1 into a new line segment ℓ3 = ℓ with covariance matrix
Σℓ3

= Σℓ, and it is possible to substitute the two original line segments by the
new segment formed this way in all future comparisons.

4.6.3 Points

In contrast to edgels, which are measurements directly on the image plane, points
are features calculated directly or indirectly from edgels, e. g. as the intersection
of two or more lines as described in Section 4.4 and used in Section 6. Points can
be parameterised using any of the approaches described for edgels in Section 4.2.

11Of course I could just as well have defined a measure which is directly based on this distance,
but the advantage of my approach is that the coordinates of the ideal line naturally come out in
(α,x, y)T format too.
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Common are an Euclidean parameterisation (x, y)T, to which (4.57)–(4.59) are di-
rectly applicable, and a parameterisation in homogeneous coordinates, k(x, y, w)T.
The latter parameterisation does not usually allow a direct application of (4.57)–
(4.59), as the difference of two measurements can be nonzero even if the two
measurements are exactly identical, it is in general

k1x = k2x (4.65)

k1x− k2x 6= 0 (4.66)

In order for (4.57)–(4.59) to be comparable we first need to normalise the measure-
ments to assure the equal-sign in (4.66). A normalisation w = 1 is essentially an
Euclidean parameterisation and shares with it the problem that points at infinity
can not be represented; also very common is a spherical normalisation which en-
forces xTx = 1. This is essentially the Gaussian sphere or N-vector representation
described in Section 2.9.2. Not only does this normalisation enforce the equal-sign
in (4.66), but the covariance-region on a sphere is indeed a much more adequate
model for points as intersections of lines than is the covariance-region on the plane
(as we have seen in Section 4.4.3 — and will again see in Section 7). After nor-
malisation, (4.57)–(4.59) can be applied if the pseudoinverse is used instead of the
inverse.

4.6.4 Crossratios

The comparison of cross-ratios is straightforward; one can simply use (4.56)– (4.59)
with n = 1 so that the covariance matrices become simple variances. We can then
calculate the most likely true crossratio as

cr =
cr1σ

2
cr2 + cr2σ

2
cr1

σ2
cr1 + σ2

cr2

(4.67)

which it was possible to calculate with accuracy (variance)

σ2 =
σ2

cr1σ
2
cr2

σ2
cr1 + σ2

cr2

. (4.68)

The hypothesis that the two measurements cr1 and cr2 are observations of the
same entity cr can then be tested using:

R =
(cr1 − cr2)

2

σ2
cr1 + σ2

cr2

!
< χ2

p,1 . (4.69)
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Chapter 5

Detecting Repeated Parallel
Structure

. . . Stripe for Stripe.

The Bible: Hebrew Exodus 21:23
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Figure 5.1: Examples of repeated parallel structure in images.

5.1 Introduction

This chapter, as well as Chapters 6 and 7, demonstrates the application of the
theories discussed in Chapter 4 to a real-world example.

The algorithm described here deals with the detection of repetitive structures
consisting of parallel line segments with a given crossratio. Some of the more
obvious examples for this are railway-sleepers, fences, and windows (particularly
in big office-buildings). Figure 5.1 shows some examples. The structure used
throughout most of this chapter is that of a pedestrian or zebra crossing . This was
originally implemented as part of the project MOVIS1 — Mobile Optoelectronic
Visual Interpretative System for the Blind and Visually Impaired — which took
place from 1995 to 1997 [1, 6]. Within this project, a first prototype of a portable
device for blind and visually impaired persons was created which was able to
recognise a small number of useful objects and signs customarily found in street
scenes. This prototype consisted of a spectacle-like device connected to an (at the
time stationary) computer doing the image processing. Figure 5.17 on Page 143
shows images of the actual device used. The theory is, however, independent of
this particular application and equally applicable to any other repeated structure
of parallel line segments.

Detecting zebra crossings may sound like an easy task. After all, they’re big, and
they’re designed to be fairly obvious. However, it isn’t. Reasons include:� The general amount of occlusion connected with street scenes, namely fellow

pedestrians who get in the way, lamp and sign posts, cars, and basically
everything that moves. Moreover, zebra crossings are particularly prone to

1MOVIS was funded by the BMBF, the German Ministry for Education and Research.
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Figure 5.2: Different views of a zebra crossing as seen from a car (left) and
a pedestrian (middle and right).

occlusion, since they are designed for people to walk on and for cars to drive
across.� Zebra crossings are often in bad repair, patches are missing, they have spots
or holes.� Due to varying viewing geometries the width of stripes in an image may vary
from dozens of pixels to only 2 to 4 pixels — even within one stripe.

The recognition of repeated parallel structures under perspectivity has tradition-
ally been dealt with in the context of texture analyses. In [84] an algorithm for the
recognition of arbitrary repeated structures is presented. However, this approach
requires a minimum amount of texture within each element of the structure and is
therefore unsuitable or at best problematic for structures with little or no texture
as they are presented here. Only after the work described here was first pub-
lished [6] did a small number of papers appear based on this work [134, 135, 137].

The work specific to zebra crossings on the other hand has nearly exclusively
assumed an autonomous vehicle’s (car’s) point of view [85, 108]. This way, the
camera’s orientation relative to the ground can be assumed known. Also, the
street’s left and right boundaries are generally well known, and these can be used to
identify the road’s (virtual) vanishing point [90], through which all lines bounding
a zebra crossing have to pass [108]. Finally, from the viewpoint of a car a zebra
crossing is always encountered head on, which means that all stripes will have
approximately the same width on any row of the image, and that the zebra crossing
will at most be occluded by objects directly on the road. Figure 5.2 (left) shows
an example of a zebra crossing as seen from a car.

None of the constraints mentioned above apply when dealing with a camera car-
ried by a pedestrian, as within MOVIS. Here, the camera’s orientation relative
to the ground is at best only approximately known (e. g. from motion sensors af-
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fixed to the camera), and no other constraints exist. Also, the zebra crossing will
often be heavily occluded, fracturing the individual stripes into several “stubs”.
Figure 5.2 (middle, right) shows two examples of a zebra crossing as seen from a
pedestrian’s point of view. This means that it is generally necessary to group sev-
eral separate patches into one zebra crossing. It is my experience that this is best
achieved using a line-based approach, which will be described in Section 5.3. Error
propagation plays a particularly important role here since a zebra-crossing’s size
and quality in the image can vary considerably from image to image — so much
in fact that a first prototype based on static thresholds never worked on more
than at most two images at the same time, while the approach presented here has
proven it’s stability on literally thousands of images. Work on the recognition of
pedestrian crossings from the viewpoint of a pedestrian only appeared after the
original publication of this work in [6], and building on it [135].

The remainder of this chapter is organised as follows: Section 5.2 describes the
underlying model used to group and recognise repeated parallel structures. The
example of a zebra crossing used is easily modified for other structures, possibly
simply replacing “horizontal” with “vertical” where appropriate. Section 5.3 de-
scribes the actual process of grouping and recognition based on the theory and
principles discussed in Chapter 4. This makes use of my new formulation for the
calculation of the cross-ratio described in Section 4.5.2. In addition I present a
new method for the transformation of lines into an only partly specified canonical
frame, i. e. one where only some structural information is given, in Section 5.3.3. To
my knowledge this was also the first application where the horizon was calculated
from image structure alone (now a staple of projective geometry). A heuristic, but
in my experience rather efficient method for merging hypotheses in the presence of
unquantified errors in the object’s geometry is given in Section 5.3.4. Although all
sections discuss the relative merits of different camera models, I have found that
it is the assumption of a quasi-calibrated (“sensible”) camera which allowed me to
implement an algorithm that is both fast and robust. Based on this camera model,
Section 5.4 describes a simple but at the time of implementation new approach
used for verification, which stands in the tradition of [97] and could well be seen
as the forerunner of algorithms such as [33, 34, 87]. Finally, Section 5.5 presents
some examples of successfully recognised zebra crossings and discusses the results.

5.2 Model

I will first discuss the underlying 3D-model in Section 5.2.1, followed by a discus-
sion of the different camera models in Sections 5.2.2 ff.
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5.2.1 3D Model

Zebra crossings can be found throughout Western Europe as well as in many
other parts of the world. In most countries, the following would be considered a
reasonable 3D-model of a zebra crossing:

1. Zebra crossings are planar.

2. They are located on the ground-plane.

3. They consist of light stripes on a darker surface.

4. All stripes are parallel.

5. All stripes are of equal width.

6. All gaps between stripes are of equal width2.

7. The ratio of the width of the stripes to the width of the gaps is known in
advance.

The main problem with the above description is that it is not, strictly speaking,
true. Streets are not entirely plane, but will generally slope to the sides to enable
rainwater to drain. Neither are the stripes entirely plane themselves (but will
generally extend somewhat above the street-surface) nor are they exactly parallel
nor exactly the same width or distance from each other3. Experiments show,
however, that these deviations are small for most images compared with resolution
related artifacts, and are well accounted for by simple error models and a stepwise
refinement approach used for grouping (described in Section 5.3) that requires only
three consecutive stripes at a time to conform to the above model.

The following sections describe how this 3D-model will be projected onto a 2D-
plane under the assumption of different camera models.

5.2.2 Projective Camera Model

This model was discussed in Section 2.3.4. It is the most general linear camera
model available, and can be parameterised by a general 8 DOF projective trans-
formation4. Using this model, only very little can be said about a zebra-crossing’s
appearance after projection:

2They are usually also approximately the same width as the stripes, but this is not a sine
qua non, but see also Item 7.

3Although German standards[23], for example, only allow for deviations in width or position
of a maximum of ±10 mm or 2% on new zebra crossings.

4Since we are only dealing with a transformation from one plane onto another, a homography.
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124 Model� All lines bounding the stripes are coincident (this follows from Items 1 and 4).� The crossratio is known in advance (from Items 1, 5, 6, and 7).� The lines bounding the stripes have alternating directions, i. e. cutting across
all lines we see a change in luminance from darker to lighter to darker5 (and
so forth — this follows from 3).

That the crossratio is known means in particular that from two stripes (four line
segments6) it is possible to predict the location of additional stripes within the
image, as will be done in Section 5.3.3.

5.2.3 Constrained Perspective Camera Model

This model is based on the model of a perspective camera described in Section 2.3.3,
but with the added constraint that the horizontal and vertical direction are ap-
proximately known within the image.

Assuming a level zebra crossing (i. e. the street does not go uphill), the stripes’
vanishing line coincides directly with the horizon. Although the location of the
horizon is of course arbitrary under a general projective transformations, it will
none the less be close to horizontal in virtually all images taken by human op-
erators. It is therefore possible to formulate some additional constraints on the
appearance of the zebra crossing within the image, in particular:� The vanishing line is located completely above the zebra crossing (from 2).� The vanishing line is approximately horizontal (see Items 1 and 2).� It is approximately within the image.

If, on the other hand, the image was taken by a robot, UGV or similar, additional
knowledge about the image’s orientation will often be available (as is, at least to
some extent, the case within MOVIS). The above conditions would then reduce to� The vanishing line approximately coincides with the (known) location of the

horizon.

Figure 5.3 shows an example of a drawing where this condition is violated; the
drawing does not represent a valid representation of a zebra crossing.

5For many images both the street’s surface as well as the zebra crossing’s have luminance
values lighter than the image’s mean luminance.

6Strictly speaking three line segments would be sufficient.
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Figure 5.3: Example of an impossible
Geometry. The vanishing point in this
street-sign from Uruguay is below the
zebra crossing, corresponding to a
scene viewed from below ground,
which does not agree with the
pedestrian’s position. Clearly this
would not be recognised as a valid
representation of a zebra crossing
under the assumption of a constrained
perspective or quasi-calibrated camera
model.

5.2.4 Quasi-Calibrated Camera Model

This model, which is based on the constrained perspective model described above,
further assumes that some approximate information about the imaging process is
available, such as the camera’s focal length and aspect ratio, and the camera’s
approximate height over ground. I will show in Section 5.4 that in conjunction
with Item 2 this information can be used for verification purposes.

5.3 Grouping

The following describes a bottom-up approach for the grouping and recognition
of partly occluded zebra crossings in natural images. The approach is completely
line-based and assumes that suitable line segments and their covariance matrices
have already been found using a sub-pixel accurate edge-finder [24] in connection
with the approach for line fitting described in Section 4.3.

Starting with the individual line segments, sets of four line segments are identified
(using perceptual grouping, two possible approaches are described in Section 5.3.1)
and tested for coincidence and crossratio (Section 5.3.2). These line segments are
then backprojected into the images, and additional stripes are identified (Sec-
tion 5.3.3), creating several hypotheses (see also Figure 5.4). Finally, overlapping
hypotheses are merged into a single hypothesis (Section 5.3.4).

Most of this approach is directly based on the ideas and principles described in
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Figure 5.4: Grouping zebra crossings. Starting with a set of 4 coincident
line segments (continuous lines), a vanishing line (dot-dashed line) is calcu-
lated and additional lines corresponding to adjacent stripes are hypothesised
(dashed lines).

Chapter 4, in which case only a short reference to the corresponding section is
given. Only where additional strategies were used is this explained in detail in the
text below.

5.3.1 Sets of 4 Lines

To take advantage of the constraint of a fixed crossratio — the only constraint
on the appearance of a zebra crossing after general projection — one first has to
identify 4 coincident lines. A very simple approach would be to directly test all
possible groups of 4 line segments for coincidence and crossratio. This has the
advantage that no additional knowledge is needed to identify possible sets of lines,
and is easily implemented. It will, however, lead to an algorithm of complexity
O(N4), where N is the number of line segments in the image. For cluttered images
of real street scenes, which can easily contain several hundred line segments, this
may lead to execution times of several hours or more even on today’s computers.

It is therefore advisable to employ a scheme for the identification of sets of lines
which makes use of structural information within the image. This kind of ap-
proach is called perceptual grouping and enjoyed growing popularity throughout
the computer-vision community during the 90s, in particular where the evalua-
tion of aerial images is concerned. We differentiate between a top-down approach,
whereby a bigger set of lines is reduced to four line segments, and a bottom-up
approach, which starts with the individual line segments. Both are described in
the following.
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Figure 5.5: A grey level image and the line segments fitted to grey-level
discontinuities. Each line segment is displayed as a black and white double
line, the black side corresponding to the darker side of the discontinuity, and
the white side to the lighter one.

5.3.1.1 Top-Down Approach

Finding sets of coincident line segments is equivalent to vanishing-point detection,
i. e. identifying the common intersection of a set of lines as well as the correspond-
ing set of lines. Once the vanishing point has been identified it is then possible to
parameterise these lines solely by their angle of orientation −π/2 ≤ αo < π/2 or
direction −π ≤ αd < π (refer to Section 3.5.1 for the definition of orientation and
direction). Finding all possible sets of lines that could form a zebra crossing is
then equivalent to finding all paths from any line to at least 3 other lines such that
the lines’ orientations increase monotonically, while their directions alternate. Fig-
ure 5.5 shows an actual image and all line segments, displayed as black and white
double lines, the black side corresponding to the darker side of the discontinuity,
and the white side to the lighter one.

The success of this approach does entirely rely on the output of the algorithm
used to identify the vanishing point and corresponding set of line segments. It has,
however, been pointed out in the literature [149] that this is not a particularly
reliable process if only a small percentage of the overall number of line segments
in the image actually converges to this particular vanishing point7, and especially
in the presence of clutter. For this reason a bottom-up approach was used within
the project MOVIS, which will be described in the following section.

7Vanishing point detection is used in Section 6, where the aim is to identify the main direc-
tions within an image rather than to identify a possible small (sub-) set of lines.
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(a) Stripe occluded by a light
object.

(b) Stripe is to small to fit a
line to the narrow side.

(c) Stripe in bad repair (and
badly illuminated), the connec-
tion between the two sides is
lost.

Figure 5.6: Some typical problems when recognising pedestrian crossings.

5.3.1.2 Bottom-Up Approach

This approach tries to group two line segments into a stripe based on structural
information within the image, or additional constraints known about the imaging
process. It then proceeds to group two stripes into a set of four line segments, which
can subsequently be tested for coincidence and crossratio (compare Section 5.3.2).
Several such approaches are conceivable, and in the following a few of them are
presented, together with their relative merits. Only the last one has been found
suitable within MOVIS, but several might be useful when dealing with structures
other than zebra crossings..

One approach is to identify all quadrangles that are lighter on the inside than on
the outside. Although this approach is the only one of the perceptual grouping
algorithms presented here that could work with arbitrary projections, it does have
some serious downsides. The main problem is occlusion. Since these can be of an
arbitrary shape, they can easily lead to nonlinear boundaries of a stripe. They
might even be of a lighter colour than the stripe, in which case any algorithm
looking for a light quadrangle on dark background will fail, as can be seen in
Figure 5.6(a). Finally, the two line segments corresponding to the long sides of a
stripe might only be separated by a few (e. g. 3) pixels, in which case no lines could
conceivably be fitted to the two smaller sides, making the search for a quadrilateral
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rather pointless, see Figure 5.6(b) — note that the edgels, although drawn at pixel-
position, have in fact been calculated with sub-pixel accuracy.

A second approach could be trying to identify a ⊔-like structure instead, where
two longer line segments are joined by one smaller one. This approach would only
work reasonably with at least the constrained perspective model, which would
allow us to constrain the possible angle between the two longer line segments. It
would then be able to cope with occlusions by nonlinear or lightly coloured objects
on at most one side of the stripe, but would otherwise share all the disadvantages
discussed above. In particular this approach too would not work for stripes which
are too narrow to fit a line to one of the short sides, Figure 5.6(b) again shows an
example.

Dropping the constraint that the two longer line segments should be connected by
a shorter line segment, we reach a model where it would be sufficient that the two
line segments are connected by any kind of edge. This model has actually proven
quite reasonable and will only fail in the case of badly preserved zebra crossings or
in cases where both ends of a stripe are occluded by an object similar in luminance
to the stripe. Badly preserved zebra crossings will often contain holes or spots and
might not allow fitting any consecutive edge from one side of the stripe to the
other, Figure 5.6(c) shows an example. It is only to accommodate these kinds of
zebra crossings that instead the approach below was used within MOVIS.

This approach does not rely in any way on connectivity between the two sides
of a zebra crossing. While this initially results in many more false positives, it
also avoids some of the false negatives which would otherwise be inevitable. The
approach is based on a constrained perspective model. This allows us to limit the
possible directions under which a zebra crossing can be seen, and as a consequence
limit how it would appear in the image. In particular, it is now possible to calculate
a maximum angle between the two line segments bounding a stripe, say ∆αo < 30◦.
For each line, only lines are considered as a match which

1. are entirely on the first line’s lighter side,

2. face that line (corresponding to a transition from dark to light to dark),

3. have a difference in orientation of at most ∆αo,

4. overlap each other to at least p%.

Where overlap, in this context, is defined as follows (compare Figure 5.7):
Project one line segment onto the other. The line segments are said to overlap to
p percent if the shorter line segment shares p% of its length with the longer one.
The overlap between the two line segments is the maximum overlap of projecting
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50%
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Figure 5.7: Overlap between two line segments.

each line segment onto the other.

Finally, stripes are grouped according to rules similar to the ones used above for
grouping line segments, but without taking the overlap into consideration, forming
the required sets of four line segments (two stripes).

5.3.2 Crossratio

Once four line segments have been identified, the first and only hard test of whether
the line segments might actually be part of a zebra crossing (or any other repeated
structure of given geometry) can be performed by calculating their crossratio and
comparing it to the original structure’s crossratio using Equation (4.69) from Sec-
tion 4.6.4. This is straightforward if the four line segments were found by a top-
down approach. In this case it is already known that the four lines share a common
intersection, as well as the intersection’s coordinates, and the crossratio can effi-
ciently be calculated using any of the methods described in Section 4.5.1.

Things are slightly more complicated if the four lines were found by a bottom-up
approach, as I will assume was done here. It is, in this case, not yet known whether
the four lines will indeed share a common intersection, nor where this intersection
could be found. Calculating the intersection using any of the methods described
in Section 4.4 is, however, expensive, especially since the overwhelming majority
of line-sets will not belong to any interesting structure, so that this computation
would ultimately be in vain.

It is therefore advisable to use a two-stage approach instead, as described in Sec-
tion 4.5.2, whereby in a first stage the fast algorithm described there is used
to calculate the crossratio. Only if this initial result passes the χ2-test in Equa-
tion (4.69) — possibly using a low value for p — is the lines’ intersection calculated
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Figure 5.8: Different crossratios
for white stripes (mostly cr > 4/3)
as opposed to black ones (mostly
cr < 4/3). The effect is due to a dif-
ference in height between the white
stripes and the surface of the road.

Figure 5.9: Distribution of 900
crossratios (white stripes only) cal-
culated from 10 images of real ze-
bra crossings (median cr = 1.39,
scr = 0.136, visual σcr ≈ 0.085).

and a second χ2-test used to evaluate whether the lines are actually coincident.
Only if this test too is passed successfully will a more accurate algorithm be used
to recalculate the crossratio and once more apply the χ2-test in Equation (4.69).
Only very few sets of line segments will remain after these three tests.

When used on images of real-world zebra crossings, an interesting effect can be
observed comparing the crossratio of two of the “white” stripes with the crossratio
of two of the “black” gaps between the stripes. These both have the same width
and should therefore result in a uniform crossratio of 4/3. In practice, however,
this is not the case. Figure 5.8 shows this for the zebra crossing depicted in
Figures 5.4, 5.5 and 5.15, second row, right. For this zebra crossing, each line
bounding a stripe is naturally divided into two line segments by an occluding
object. Calculating all possible crossratios of 4 consecutive line segments therefore
results in a sequence of 16 crossratios for the first two stripes, 16 crossratios for
the first two gaps, 16 crossratios for stripe two and three and so forth. It can be
seen that instead of a common crossratio of cr = 4/3 we get crossratios around
cr ≈ 1.4 (and growing) and cr ≈ 1.28 (and falling) respectively. For an observer
at a distance of approximately 15m and a height of approximately 1.8m this is
consistent with stripes that extend approximately 4mm above the surface of the
street (compare [23]).

It is not possible to account for this effect geometrically, since the effect can only be
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Figure 5.10: Finding additional line segments by backprojection.

corrected if a calibrated camera is used, and since the height of the stripes above
the surface of the street can vary considerably (the stripe can even be slightly
below the surface) and will generally be unknown. The effect has therefore to
be accounted for by some other means, and the factor σ2

cr2 in Equation (4.69)
presents one possible approach, although the use of this term implies that the
expected values for the crossratio will be Gaussian distributed, which is of course
not the case. Figure 5.9, which shows a histogram of the distribution of 900
different crossratios calculated from 10 images of real zebra crossings as well as
two fitted (both numerically and visually) Gaussian distribution, does however
show that the actual distribution is sufficiently “Gauss-like” to expect reasonable
results, and this is born out by the results described in Section 5.5.

5.3.3 Additional Lines

The condition on the crossratio used in the above section is only a necessary con-
dition to identify the structure we are looking for. Usually a number of additional
line-sets with similar crossratios exist in any given image. In MOVIS, I therefore
decided that finding two stripes (four lines) with given crossratio is not sufficient
evidence for a zebra crossing (the same argument could be made for any other
repeating structure). Instead, a minimum of three stripes (six lines) is required.

Luckily it is relatively easy to identify additional line segments by using an adap-
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Figure 5.11: Decomposition of T into two transformations T = T2T1, using
an intermediate canonical frame representation.

tion of the canonical-frame approach described in Section 4.5.1.2. Within the
canonical frame, the locations of all other lines potentially belonging to the struc-
ture in question are known. These can then be backprojected into the image to
get the approximate position of additional stripes in the image. If corresponding
stripes are found, these are then added to the set of four lines to form a hypothe-
sis. In addition, this also means that the location of the stripes’ vanishing line is
known (the backprojection of a line at infinity), in Section 5.4 this will be used for
verification — the backprojected vanishing line should coincide with the horizon
of the image. Figure 5.10 shows an example where the position of a minimum
of three lines within the image is sufficient to predict the position of an infinite
number of additional lines. In the following an alternative approach to the ones
described in Section 4.5.1.2 is given.

The most accurate way to achieve the backprojection is to find a (5 degrees of
freedom) transformation TT from a canonical frame (of, say, horizontal lines of
known position) into the image that minimises the distance between the proposed
and the measured lines. Once this transformation is found, it is then easy to
predict other lines by calculating TTℓ′′i , where ℓ′′i = (0, 1, c′′i )T is one of the lines
in the canonical frame (see Figure 5.11). By the same idea, the vanishing line
can be found by calculating T

T(0, 0, 1)T. As for many of the problems which we
encountered in Section 4 there is again no closed-form solution to the problem of
finding TT.

A somewhat similar but much faster approach finds the inverse transformation T−T

such that the distance between the proposed and measured lines becomes minimal
within the canonical frame (instead of the image). A very efficient approximation
for this transformation exists under the assumption of small errors. It is then
possible to decompose T into two matrices T1 and T2 for which we can solve
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Figure 5.12: Monte-Carlo simulation of vanishing-line calculation using the
canonical-frame algorithm for three typical constellations. Notice that small
errors in the vanishing-point coincide with big errors in the orientation of the
vanishing-line and vice-versa; compare also Figure 4.9, where the same lines
were used to calculate the vanishing-point.

separately. T
−T

1 transforms the lines into an intermediate canonical frame in which
all lines are (as near as possible) horizontal. T−T

2 is the transformation into the
final canonical frame, in which the individual lines will end up in definite positions
(compare Figure 5.11). It is immediately clear from the above that the matrix
in Equation (4.28) could be used as T1, as could be any other transformation
uniquely defined by the vanishing point; a nicer example is the matrix

T1 =




x y 0
−y x 0
−xz√
x2+y2

−yz√
x2+y2

√
x2 + y2


 (5.1)

if the vanishing point is given as (x, y, z)T and x2 + y2 6= 0, or the matrix

T1 =




0 0 1
0 1 0
1 0 0


 (5.2)

if x = y = 0. All that remains is to find the 3 degrees of freedom transformation

T2 =




1 0 0
0 1 ty
0 py s



 (5.3)

for which a closed form solution exists.

The decomposition of T into T1 and T2 is strictly speaking only possible if either
all lines ℓ′i in the intermediate canonical frame are exactly horizontal, or if py ≡ 0,
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since T2 with py 6= 0 will change the angle of all non-horizontal lines. However, if
the assumption that all lines were originally parallel is true, and if the vanishing
point used to determine T1 was calculated using one of the methods described in
Section 4.4, then we can also guarantee that the lines in the intermediate frame are
as horizontal as possible — any deviation must be an error in the measurements,
which should be corrected — and the change in the angle will be small (and can in
fact be ignored). The results of a Monte-Carlo simulation in Figure 5.12 show that
the above approximation works quite well, although it is clear that the small-error
assumption is not valid anymore for the resulting lines.

It is quite instructive to have a closer look at the matrix T = T2T1. It was already
mentioned that it has 5 degrees of freedom. These determine uniquely (up to scale)
the last two rows — the first row can be chosen arbitrarily as long as the matrix
does not become singular. We also see, when backprojecting the line at infinity
T

T(0, 0, 1)T, that the third row is nothing but the vanishing line in the image,
fixing 2 degrees of freedom. By the same argument we see that the second row
is the backprojection of the horizontal line through the origin (0, 1, 0)T, leaving 1
degree of freedom to be fixed. What is the remaining degree of freedom used for?
It is easy to see that any line passing through the vanishing point in the image
(and therefore horizontal in the canonical frame) can be constructed as a linear
combination of the second and third row by calculating T

T(0, b, 1 − b)T. The last
degree of freedom fixes where in the image a line with given b will be located; it
corresponds to a relative scale-factor or weight between the two lines. It should be
mentioned for completeness that the first row of T determines where the vertical
line through the origin (1, 0, 0) will be projected and its relative scale compared
with the third row gives the position of all other vertical lines after backprojection.

An alternative method for the calculation of additional lines should be mentioned
for completeness. This method uses three of the four lines as a projective base and
calculates the fourth line ℓi with given cross-ratio, compare [72, 138]. However,
this method has the two problems that it only uses three out of four lines (and
therefore discards one-fourth of the information) and in addition has to choose an
auxiliary vector ℓX as described in Section 4.5.2. Tests have shown that the results
are too unstable to be used under any but the most restrictive circumstances.

5.3.4 Merging Hypotheses

The preceding steps usually generate a high number of possible hypotheses. In
particular, for a completely flat zebra crossing with N uninterrupted stripes, (N −
1) identical hypotheses will ideally have been created, one for each pair of two
consecutive stripes. For real-world zebra crossings, this will not usually happen
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H1

H2

H3

H4

H1&H4

H1&H2&H4

H1&H2&H3&H4

Figure 5.13: Merging the four hypotheses H1–H4. The hypotheses are or-
dered by number of stripes within the hypotheses.

due to the street’s slightly nonplanar surface, which usually only allows to group
between 3 and 5 stripes into one hypothesis. But even these hypotheses will not
all be unique and will, as a rule, overlap to a considerable extent.

Also, if the zebra crossing was partly occluded, a single stripe will often fracture
into several smaller stripes, all of which will as a rule be part of some hypothesis
sharing stripes with other hypotheses. Merging hypotheses not only reduces the
number of hypotheses under consideration, but also connects the different parts of
a partly occluded stripe, as seen in Figures 5.4 (on Page 126), 5.5 (on Page 127)
and 5.15, second row, right image (on Page 141).

When merging hypotheses, it is in my experience advantageous to sort the indi-
vidual hypotheses by number of stripes, to start with the hypothesis with the
highest number of stripes, and cycle through all the other hypotheses (in order),
adding hypotheses where appropriate, until no additional hypothesis can be added.
The same step is repeated for the remaining hypotheses (using the second biggest
hypothesis) and so forth, until all hypotheses have been merged where possible.
Figure 5.13 show the individual steps and their results for the zebra crossing from
Figure 5.4 on Page 126. This removes all duplicates and typically leaves only a
small set of hypotheses. Which of these actually form zebra crossings, and which
just share a similar structure, cannot be decided using the projective model de-
scribed in Section 5.2.2. Only if one of the more constrained models is used are
additional test possible, and these are described in Section 5.4.
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H1
H2

Figure 5.14: Example of one stripe belonging to two unconnected hypotheses.
H1 has correctly been formed by two stripes, while H2 has been formed by
one stripe and one row of tiles from the pavement. Both hypotheses have the
correct crossratio, but different vanishing lines (hypothesisH2 would normally
have been filtered out during verification due to its necessarily non-horizontal
vanishing line).

The decision on whether a new hypothesis will be added to an existing one should
in theory be based on a χ2-test on the location of vanishing point, vanishing line,
a reference line and the crossratio. This approach is, however, handicapped by
the fact that the street’s surface is generally nonplanar and of a three-dimensional
form not easily modelled for error propagation. Within MOVIS I therefore used the
much simpler criterion that two hypotheses have to share at least a certain number
of stripes in order to be merged. A minimum of two stripes would be required for a
theoretically sound solution; I have, however, found that at least for the detection
of zebra crossings it is usually sufficient if the two hypotheses to be merged share
just one stripe. This can fail in the rare case (only observed once so far) that due
to an accidental constellation of additional line segments within the image, one
stripe belongs to two different hypotheses, which differ only in the location of the
vanishing line — the vanishing point should already be reasonably fixed by the
common stripe’s two line segments, one of which can double as a reference line.
Figure 5.14 shows an example for such a constellation; Figure 5.15, bottom right
(on Page 141), shows the only example of such a mismatch encountered so far.
Here, the last stripe of the zebra crossing forms a hypothesis with some of the
slabs on the pavement which does not match the other hypothesis generated.
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Complementing the condition of at least one common stripe by a χ2-test on the
vanishing line reduces the number of false positives (one stripe and the vanishing
line uniquely define the hypothesis’ geometry) but at the same time increases the
number of false negatives due to the street’s usually convex surface. The χ2-test
itself is considerably simpler than the one described in Section 4.6.2; the two
vanishing lines must, by necessity, not only share the angle and distance from the
origin, but also the centre point — the vanishing point (assuming a representation
by angle and centre, ℓ = (α, x, y)T). We can therefore test

(ℓ1 − ℓ2)
TΣ−1

1 (Σ−1
1 + Σ−1

2 )
−1

Σ−1
2 (ℓ1 − ℓ2) ≤ χ2

p,3. (5.4)

Replacing σ2
αi

in Σi with σ′
αi

2 = σ2
αi

+ σ2
α would allow for some variability in

the vanishing-line’s orientation; this is in accord with a street’s cylindrical surface,
with the cylinder’s axis parallel to the stripes, but of otherwise unknown shape,
which would affect only the vanishing-line’s orientation8.

5.4 Verification

Not many verifications can be done using the projective camera model described
in Section 5.2.2, and these have already been incorporated into the grouping al-
gorithm described above. However, the situation drastically improves once the
constrained perspective camera model or the quasi calibrated camera model are
used. The additional constraints these introduce are described below. While these
tests could be applied to the final hypotheses, it should be noted that it is generally
much more efficient to incorporate these constraints directly into the algorithm. It
is only for the sake of discussion that here they are listed separately.

5.4.1 Constrained Perspective Camera Model

The verifications possible when using the constrained perspective camera model
are a direct application of the constraints given in Section 5.2.3. We have seen in
Section 5.3.3 that, based on a set of four line segments with given crossratio, it is
possible to calculate the location of the horizon if the four lines were indeed part
of a zebra crossing. Under the constrained perspective camera model the horizon
has to be completely above the line segments, approximately horizontal and in or
near the image; and these constraints on the position of the horizon will conversely

8Assuming a convex surface, more detailed predictions are in fact possible. So should α

increase monotonically with increasing distance of the stripes from the observer.
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also constrain the stripes themselves to plausible image positions. Within MOVIS,
hard but very accommodating thresholds are used on the latter two conditions.

As mentioned above, it is prudent to include these checks directly into the above
algorithm, just after the calculation of the horizon, and before additional lines are
predicted. This will considerably reduce the number of hypotheses to be considered
in later steps.

5.4.2 Quasi-Calibrated Camera Model

Using a quasi calibrated camera means that rough approximations exist for the
camera’s intrinsic parameters (compare Section 2.3.6): the focal length as printed
on the lens (or simply an educated guess), the scale factors as found in the camera’s
manual, the image centre as principal point. In addition, it is very often possible
to give a good guess for an external parameter — the height from which the image
was taken. Based on these values, further verifications are possible as follows:

If we define the camera-position to be at the origin and use the coordinate system
from Figure 2.1 on page 19, we can calculate the camera’s orientation using the
vanishing-line’s position within the image and the internal camera parameters. If
we define the three angles (ϕx, ϕy, ϕz), where ϕx is a rotation around the x-axis
and Rx the corresponding matrix of rotation, we can combine these matrices into
a single matrix of projection P = PcameraRxRyRz such that the correspondence
between the vanishing line ℓ = (a, b, c)T measured in the image and the horizon
ℓ′′′ = (0, 1, 0)T becomes

ℓ = P−T

cameraRxRyRzℓ
′′′ (5.5)

ℓ′ = PT

cameraℓ = (a′, b′, c′)T (5.6)

ℓ′′ = RT

xPT

cameraℓ = (a′′, b′′, 0)T (5.7)

It is then easy to calculate the angles of rotations as

ϕx = arctan(c′/b′) = arctan

(
atx + bty + c/f

bsy

)
(5.8)

ϕy = ϕy (5.9)

ϕz = arctan(−a′′/b′′)

= arctan

(
− asx

bsy cos(ϕx) + (atx + bty + c/f) sin(ϕx)

)
(5.10)
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Note that ϕy can not be determined from the above, but could be arbitrarily set
to 0. Alternatively, a value could be calculated from the direction of the vanishing
point.

Once the matrix P is completely known we can calculate, for each pixel (x, y, 1)T

in the image, the corresponding ray of possible positions in 3D

λ




X
Y
Z



 = P
−1




x
y
1



 . (5.11)

If we further assume that the camera is located at a distance h above the ground
(i. e. the ground is parallel to the X-Y -plane at −h), the ray’s intersection with
the ground will be at (

−h
X

Z
,−h

Y

Z

)T

(5.12)

From there it is easy to calculate the hypothetical zebra-crossing’s position on the
ground.

The above can easily be used for validation purposes. If the height above ground h
is assumed known we can check for the individual stripe’s widths (these will all be
identical due to the particular construction chosen to compute the backprojection)
and see how good this conforms to a given width. If we assume h unknown we can
calculate the h that results in a given width of the stripes (50 cm for a German
zebra crossing) and check whether this height is within sensible bounds. The latter
corresponds to a particular canonical frame (compare Section 4.4.2.2) which can
be parameterised by the location of the vanishing line and the height.

If instead of a quasi-calibrated camera we use a fully calibrated camera (all internal
parameters and possibly the height above ground) as would have been the case
within a commercially available system (and within MOVIS we would also know
the pitch-angle), this simply allows the use of tighter bounds and could ultimately
lead to the application of additional (or a single, combined) χ2-test on, e. g., the
position of the horizon and reconstructed height of camera.

5.5 Results and Discussion

Figures 5.15 and 5.16 show several examples of hypotheses for zebra crossings that
were generated using the model of a quasi-calibrated camera as described above.
Although both the grouping as well as the verification are based on geometric
constraints alone, the recognition has nonetheless proven extremely reliable.
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Figure 5.15: Examples of recognised zebra crossings in outdoor-scenes.

Error Propagation in Geometry-Based Grouping



142 Results and Discussion

Figure 5.16: Examples of recognised zebra crossings in indoor-scenes. To
the left of each image you can see a simulated birds-eye view.
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Figure 5.17: The indoor-environment and hardware-prototype used for test-
ing MOVIS.

Figure 5.18: Sample views taken using the original MOVIS hardware.
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Extensive tests of the algorithm were performed as part of MOVIS. These in-
cluded 184 randomly taken images of street scenes, with image sizes varying from
439pxl × 299pxl up to 1024pxl × 682pxl and of varying quality. Figure 5.15
alone contains images taken by three different operators with four different cam-
eras (three SLR-cameras, scanned in using two different scanners, and one dig-
ital camera) in three different resolutions (1024pxl × 682pxl, 800 pxl × 600pxl,
439 pxl × 299pxl), but all recognised using the same set of parameters9 . In ad-
dition, the algorithm was tested within an indoor-environment using the actual
MOVIS-hardware which consisted of a portable spectacle-like device containing
two miniature colour cameras, connected to a stationary computer by a 30m ca-
ble. This hardware was capable of producing an image size of 512pxl × 286pxl
(using only half-frames). More than 300 of these images were tested off-line, and
several thousand online, as part of demonstrations given to interested visitors.
Figure 5.17 gives an idea of the indoor-environment and actual hardware used,
Figure 5.18 shows a number of sample-views taken with the MOVIS-Equipment.

All these tests impressively demonstrated that even with a haphazardly chosen
set of parameters constant over all images10 more than 70 % of all zebra crossings
with at least 3 visible stripes are correctly identified; and many of the approxi-
mately 30 % false negatives already failed due to problems during edge detection
(usually insufficient contrast or extremely narrow stripes). The only other note-
worthy source of false negatives was the perceptual-grouping approach introduced
in Section 5.3.1.2 for reasons of efficiency. The grouping itself, once a suitable set
of 4 lines had been found, performed extremely reliably.

What is more, so far not a single false positive has ever been observed, although it is
of course clear from the algorithm described above that false positives can occur.
It should, however, be noted that with the model of a quasi calibrated camera,
false positives are limited to two cases. In the first one, a structure will result in
a false positive only from a single position — slightly changing the position of the
observer will eliminate the false positive. This is therefore not a problem for an
application like MOVIS, where the observer is constantly moving. The other case
is that of markings on the ground that do have the geometry of a zebra crossing.
It is unclear how this could ever be distinguished from a real zebra crossing based
on geometry alone, as its geometry is effectively that of a zebra crossing.

The high reliability of the algorithm would not have been possible without the

9It would in fact be advisable to use a different set of parameters for the digital camera for
maximum performance, as it has a higher variance in the edgel positions due to the fact that it
is a 1-chip colour camera.

10Due to the differences in image geometry and optical resolution two sets of parameters were
used, one for the outdoor images, and one for the indoor ones.
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combination of projective geometry with statistical methods as described in Chap-
ter 4. A first implementation of the above algorithm, based only on the usual
methods of projective geometry, never recognised more than at most two zebra
crossings even with a finely tuned set of parameters. What is more, the current
algorithm is extremely stable with regards to variations in the parameters, as all
parameters basically only specify a probability, usually used in a χ2 test. And it
is this use of the χ2 test as the main decision instrument (rather than finely tuned
thresholds on direct measurements) which would allow us to easily incorporate
additional information or additional constraints — at least as long as those data
can be modelled by variance alone. The next chapter gives some more examples.
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Chapter 6

Detecting Orthogonal Structures

[The universe] cannot be read until we have learnt the language and
become familiar with the characters in which it is written. It is written in
mathematical language, and the letters are triangles, circles and other
geometrical figures, without which means it is humanly impossible to
comprehend a single word.

Galileo Galilei, Opere Il Saggiatore, 1564–1642

Error Propagation in Geometry-Based Grouping



148 Introduction

6.1 Introduction

When moving within a man-made environment we are surrounded by orthogo-
nal structures. This is particularly true for buildings, and a number of publica-
tions [36, 87, 97, 143] describe the reconstruction of such orthogonal structure
from single images rather than — or at least in addition to — the now custom-
ary multi-view approaches. However, all these reconstruction methods need as
input essentially manually grouped regions or features. This chapter outlines an
approach for the detection and grouping of orthogonal structures in images which
could eventually serve as input to these algorithms and thereby as a step towards a
fully automated single-view system. This particular application was chosen as the
diverse scales (vanishing points versus line-continuation) and accuracies (long line
segments versus short line segments, but also different accuracies for the 3D-model)
allow me to showcase a number of different ideas and approaches.

The appearance based grouping was inspired by work done by Brillault-O’Mahony
in the late 80s and early 90s [20, 21], where she presented an approach for the un-
supervised qualitative reconstruction of a scene from edges alone (to be matched
against a CAD-model) based on the assumption of a Legoland world, and where she
introduced the notion of subjective structure as well as some first attempts to take
errors into consideration. The use of orthogonality and vanishing points also owes
much to work done at the Departimento di Fisica dell’Università di Genova, e. g. by
Coelho, Straforini, Campani, Parodi, Piccioli, and Torre [15, 30, 108, 109, 111, 148].
The main difference here is that their work was based on the complete interpre-
tation of the graph of all edges, identifying realisable solutions using traditional
tools of consistent labelling. This approach of course only works well if a com-
plete (and consistent) graph is given; in contrast the algorithms outlined in this
chapter expect wrong and missing information and their performance therefore
degrades more gracefully. An additional difference is the assumption of an essen-
tially Legoland world (exactly 3 orthogonal directions) by Coelho et al., while most
of the algorithms presented here can not only deal with 2n + 1 directions (in n
orthogonal sets), but in fact benefit from the presence of more than 3 directions
(this is in particular true for the calibration described in Section 6.3.2).

The remainder of this chapter is organised as follows: Section 6.2 describes the 3D
and the camera models. Section 6.3 describes the different stages of grouping in or-
der, starting with the grouping of line segments by vanishing points in Section 6.3.1.
There I present a new algorithm for the iterative improvement of vanishing-point
positions in Section 6.3.1.1 and one for the automatic grouping of vanishing points
in Section 6.3.1.2. It is well known that a partial camera-calibration is possible
based on vanishing points, and in Section 6.3.2 I present a new objective function
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which takes the different uncertainties in the positions of the vanishing points into
account and naturally extends the usual Legoland assumption to more general se-
tups. Section 6.3.3 discusses how best to merge collinear line segments, extending
our work from [54] to make use of vanishing-point information, and presenting a
new algorithm which in the general case lowers the complexity of merging line
segments from O(N∈) to O(N log(N )). Section 6.3.4 finally combines the previ-
ous information, sketching a possible approach for grouping, again extending our
work from [54] with vanishing-point information. Section 6.4 then allows a closer
look at the performance of some of the algorithms outlined before, and with a
particular focus on the integration of error models for 2D and 3D: Section 6.4.1
compares the relative performance of several 2D-error models, both new ones first
introduced in this thesis as well as established ones from the literature, for the
identification of collinear line segments; we will see how many of the established
error measures perform rather poorly, but also how a computationally very sim-
ple measure performs much better than could have been expected. Following this
look at 2D-error models, Section 6.4.2 introduces a simple 3D-error model and its
application to the grouping of line segments by vanishing points in Section 6.4.2.1
and the merging of collinear line segments in Section 6.4.2.2. Section 6.5 finally
presents and discusses some results.

6.2 Model

The model is further subdivided into the underlying 3D-model (see Section 6.2.1)
and the camera models in Sections 6.2.2ff — the same as used in Sections 5.2.2ff
on the detection of repeated parallel structures with known cross-ratio.

6.2.1 3D Model

In order to model generic views of buildings and clusters of buildings, as well as
similar box-like structures, we will make the following abstractions:

1. All objects consist of planar faces only, mainly the walls.

2. All walls are vertical.

3. All intersections between walls are right-angles.

4. All walls contain mostly vertical and horizontal texture (e. g. the lines delim-
iting windows or doors).
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5. For each individual wall the vertical and horizontal line segments delimiting
windows and doors are mostly aligned with each other.

6. All remaining objects are essentially untextured or randomly textured.

Note that this model does not require individual buildings to be aligned in any
particular way, except for sharing a common vertical orientation. We will therefore
as a rule get one vertical direction and 2n horizontal directions (grouped into n
pairs of orthogonal directions, corresponding to one house-corner each), not all
of which are necessarily visible in any one image. Very often we will indeed only
have 3 dominant directions (n = 1), corresponding to three mutually orthogonal
directions in reality.

As was the case with the model of a zebra crossing in Section 5.2.1, the above is
only an approximation of the truth. Anybody who owns a house, and in partic-
ular an older one, knows that walls are rarely absolutely vertical, corners never
completely orthogonal, window sills are never absolutely accurately aligned, and
edges never completely parallel. And although these deviations are usually small
when compared to resolution related artifacts, it is none the less necessary to ac-
count for them by an adequate error model, as we will see below. In keeping with
the tenor of this thesis this error model will however only model slight (acciden-
tal) deviations from the above 3D-model, such as can reasonably be described by
Gaussians.

It is easily possible to incorporate saddle roofs into this model as the intersection
of two rectangular areas with corresponding angles with the ground-plane α and
π − α. It is, however, my experience that there is generally not enough evidence
for roofs in any given image (except for aerial images) to afford the automatic
segmentation of roofs from edges alone; this is only reasonably possible within a
supervised system (and even then evidence if often too scarce).

6.2.2 Projective Camera Model

This is the model discussed in Section 2.3.4, which is the most general linear
camera model available, and can be parameterised by the concatenation of a 3D–
2D projection and a general 8 DOF projective transformation. This model is used
here together with a Gaussian sphere parameterisation as described in Section 2.9,
which projects straight lines into great circles on the sphere and points onto points.

Only very little can be said about the structure’s appearance after projection in
the case n = 1, i. e. a so-called Legoland world with only three mutually orthogonal
directions, namely
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6.2.3 Constrained Perspective Camera Model 151� For each image, we will observe at most 2n horizontal and one vertical vanish-
ing-point belonging to the observed structure, as well as an unknown number
m of additional vanishing points not belonging to the observed structure; this
follows from Items 1, 4, and 6.� Line segments on parallel walls share the same two vanishing points; this
follows from Items 1 and 4� Line segments that were collinear in 3D are also collinear in the image, com-
pare Item 5.

The main reason that so little can be said about the structure’s appearance after
projection is due to the fact that for n = 1 and a projective camera it is impossible
to distinguish the vertical and horizontal directions (although it is possible to make
an educated guess based on the structure of Y-junctions). This changes, however,
as soon as n > 1 (or, more accurately, as soon as more than 2 horizontal directions
can be observed within the projection). We then get:� The vanishing points of all sets of horizontal line segments lie on a great circle

on the Gaussian sphere corresponding to the horizon; this follows from 4.� All vertical line segments on all walls intersect in one common vanishing
point on the Gaussian sphere which is not located on the great circle of
horizontal vanishing points; this follows from Items 2 and 4.

If saddle-roofs are taken into account it is also possible to state that all roofs
with the same gradient will produce vanishing points on a circle (not great circle)
located between the horizontal great circle and the vertical vanishing point. There
will, however, be generally insufficient data to observe this circle in actual images.

It is clear from the above that the grouping and recognition of orthogonal struc-
tures is difficult from arbitrary projective transformations, in particular as no
information about the possible viewpoint is given. This changes considerably once
a constrained perspective camera model is used as in the next section.

6.2.3 Constrained Perspective Camera Model

This camera model constrains the transformation from the 3D-world into the 2D-
image to be a perspective transformation as described in Section 2.3.3, and adds
the knowledge about an approximate horizontal and vertical direction within the
image, as well as the assumption that the underlying image was taken by a human
or otherwise known operator, i. e. from approximately head-height. This additional
knowledge allows us to differentiate between the two horizontal and the one vertical
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direction even for a Legoland world, giving us access to the full set of conditions
for the projective case above. In addition, we can also state that:� The horizon’s position is approximately known.� The horizon cuts across the individual walls, i. e. each wall will have corners

above as well as below the horizon.

The above allows us to distinguish between up and down in addition to horizontal
and vertical. This distinction can significantly aid the verification or reconstruc-
tion, as can a comparison of the horizon’s calculated position with its assumed
position. This is similar to the approach used in Section 5.4.1.

6.2.4 Quasi-Calibrated Camera Model

The quasi-calibrated camera model adds approximate knowledge about the cam-
era’s internal parameters — focal length f , aspect-ratio a, principal-point (x0, y0)

T,
and, for non-CCD cameras, skew s — as well as approximate knowledge about the
height h from which the image was taken. This is for example the case when an
image was taken with a known camera. This knowledge allows for a qualitative
(and nearly quantitative) reconstruction. In particular, we get:� vanishing points which are orthogonal in 3D will be nearly orthogonal on the

Gaussian sphere.

This allows for the automatic selection of three mutually orthogonal directions (not
possible under a less restrictive model), which can then be used for calibration of
the internal camera-parameters [26, 28, 41, 155, 157] described in Section 6.3.2,
which in turn allows for a possible reconstruction of the scene up to scale, which is
determined by the only approximately known height h from which the image was
taken.

6.3 Grouping

Based on the models described above it is possible to outline a scheme for the group-
ing and segmentation of orthogonal structures. In a first step a new algorithm for
the iterative refinement and automatic grouping of vanishing points is used to iden-
tify the main directions within the image, this is described in Section 6.3.1. These
vanishing points can then be used for a partial camera-calibration as described in
Section 6.3.2, where I present a new objective function which takes the different
uncertainties in the positions of the vanishing points into account and naturally
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extends the usual Legoland assumption to more general setups. Based on the
identification of the individual directions collinear line segments can be merged
(Section 6.3.3, which presents an extension from our work in [54] as well as a new
algorithm which in the general case lowers the complexity of merging line segments
from O(N∈) to O(N log(N ))); this information can then be used to identify areas
corresponding to individual walls (Section 6.3.4, which again extends [54] to make
use of vanishing-point information).

6.3.1 Vanishing Point Detection

Vanishing points or vanishing-directions1 are easily the single most important fea-
ture used here for the grouping and segmentation of orthogonal (block-like) struc-
ture — Parodi and Torre [110] showed in 1993 that using vanishing-point infor-
mation it is possible to reduce the algorithmic complexity of scene interpretation
from an NP-problem to linear time in the number of line segments, see also [109].

Traditionally, two different approaches for vanishing-point extraction exist and
have remained mainly unchanged ever since Barnard [13] and Magee and Ag-
garwal [94] published their algorithms in 1983 and 1984 respectively2. Both
suggested the use of the Gaussian sphere as an accumulator array for a Hough-
transform. Barnard suggested a Hough-transform on lines, while Magee and Ag-
garwal used a Hough-transform on line-intersections, which avoids many of the
pitfalls of Barnard’s approach but is essentially an O(N2) procedure, as opposed
to Barnard’s O(N) approach, where N is the number of line segments.

A plethora of algorithms for the detection of vanishing points have since been
suggested. Most of these are incremental improvements to Barnard’s [93, 107, 125,
142] or Magee’s and Aggarwal’s [15, 26] algorithms, although some interesting new
approaches have also been tried [20, 31, 99, 149, 157]. Some of these are limited
to particular applications, usually assuming one or more vanishing points either
at infinity or at known positions [51, 90, 98, 105, 147], or requiring a calibrated
camera [98].

As with edge detection, for which a similar number of algorithms exist, it is not
particularly important which algorithm is finally chosen, as long as it gets the job
done. I will in the following describe how, based on an initial vanishing-point posi-
tion, that point’s position can be improved upon in a way which fits well into the

1Using the ray-space or Gaussian-sphere model there is indeed no difference between a direc-
tion and its vanishing point, compare Section 2.9.

2What is now known as the Barnard algorithm was already published in 1982 by Fischler,
Barnard, Bolles, and Lowry[45].
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framework of this thesis due to its use of error propagation and statistical proper-
ties, as the final calculation of the vanishing point’s position from all corresponding
line segments is based on one of the accurate approaches described in Section 4.4.
For the examples in this thesis I simply calculated an initial position as the in-
tersection of two handpicked line segments, however, any of the above-mentioned
algorithms should be able to generate appropriate initialisations.

6.3.1.1 Implementation

The algorithm for the iterative improvement of vanishing points presented in this
section has, to my knowledge, not been presented before. It is both efficient as well
as highly accurate, taking into account the line-segments’ individual distributions
(which no other algorithm for the calculation of vanishing points does to this
extent, as far as I know). Its iterative nature is comparable to [31, 136, 150].

Starting with a number i = 1 . . . N of initial positions pi, possibly with covariance
matrix Σpi

1. For each i = 1 . . . N , repeat until convergence3:

(a) Calculate an updated vanishing point pi and covariance matrix Σpi

using all supporting line segments (i. e. that pass a χ2-test for a given
significance-level p0).

(b) Optionally: (temporarily) remove all supporting line segments, i. e. all
line segments consistent with the assumption that they could pass
through the given intersection pi (i. e. that pass a χ2-test for a given
significance-level p1 ≤ p0).

As for Step 1a it can not be stressed enough how important it is to use an ad-
equate model capable of handling intersections at infinity. The Gaussian sphere
(Section 2.9) is well suited for this purpose, as is the scaled version of a Gaussian
sphere proposed by Kanatani, the N -vectors. Any Euclidean model is unsuitable,
as intersections far away from the image centre will result in greatly overestimated
and biased error-regions, as we have seen in Section 4.4. And as the potential
vanishing point could be anywhere, from the image centre to infinity, and the line
segments vary greatly in length and therefore accuraccy, it is also necessary to
use an apropriate error model and χ2 value instead of a fixed threshold. In the
following I essentially use the same error measure which I also used when finding

3There is actually no guarantee that this iteration will converge at all, but experience shows
that a couple of iterations is usually all it takes, so you can simply iterate 10 times or until the
residuum (or the number of line segments) converges.
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the intersection of n lines in Section 4.4 — I will consider a line segment ℓ′ as
supporting a possible vanishing point p (both given as homogeneous N -vectors) if

pTℓ′ℓ′
T
p

pTΣ
′
ℓp + ℓ′

T
Σpℓ′

≤ χ2
p,1 (6.1)

where p is a suitably chosen required minimum probability (significance level).
Usually, p can be chosen rather small (around p = 5%) when looking for lines ℓ′

passing through the vanishing point p, since most outliers are clearly recognisable
as such; it might, however, be advisable to use a higher value (say p = 50%) when
selecting the line segments from which to calculate an updated position in Step 1a
or when removing line segments from the set of available line segments in Step 1b,
in order to avoid the use / removal of ambiguous line segments.

The covariance matrix Σ
′
ℓ can be calculated from the true covariance matrix Σℓ

of a line segment ℓ in (α, x, y)T format as follows:

Σ′
ℓ = Jℓ′ℓ




σ2

α + σ′
α

2
0 0

0 σ2
x + σ′

x
2

σxy

0 σxy σ2
y + σ′

y
2



 JT

ℓ′ℓ (6.2)

with Jℓ′ℓ =




cos(α) 0 0
sin(α) 0 0

−x cos(α)− y sin(α) − sin(α) cos(α)


 . (6.3)

Note the additional terms σ′
α

2
, σ′

x
2

and σ′
y
2
, which model the error in the 3D-model,

where even for new buildings not all line segments might be exactly horizontal or
vertical, and may not be exactly aligned either — and certainly they won’t be for
older buildings. Section 6.4.2.1 discusses the effect of these additional model-errors
in more detail.

6.3.1.2 Identification of Vanishing Points

In order to allow automatic grouping it is important to be able to distinguish
between vertical and horizontal vanishing points, and also to be able to group the
corresponding horizontal vanishing points, i. e. such which in 3D are orthogonal.
In the following I will describe possible approaches to solve both problems.

Differentiating between horizontal and vertical vanishing points is easy if we know
that we are dealing with a constrained- or quasi-calibrated camera: the vertical
vanishing point will be close to (0, 1, 0)T with most of it’s uncertainty along the
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y-position. All other vanishing points must by necessity be horizontal. For a pro-
jective camera model we will in general need 4 or more vanishing points to decide
which one is the vertical (i. e. a model with 2n+1, n > 1 vanishing-directions); we
can then fit a great circle through all vanishing points and, removing them individ-
ually, find the vanishing point whose removal decreases the fitting error the most
(alternatively we can start by fitting 2n + 1 great circles to 2n vanishing points
each, and see which one is the best fit — the numerical expense is comparable for
any reasonably small number n).

Grouping originally orthogonal pairs of vanishing points will be more complicated.
In the case of a quasi-calibrated camera we can simply group vanishing points
which are nearly orthogonal, but even for a constrained camera we will usually
need to get a better idea of the true focal length first. Different methods for the
calibration of a camera from vanishing points are described in the next Section,
including an algorithm which can calculate the focal length of an unknown camera
even if the correspondence between vanishing points is not yet known.

6.3.2 Focal Length Calculation

It is well known that vanishing points can be used to determine the internal camera-
parameters principal point and focal length, as well as the external rotation (or
rather a set of possible orientations, if the correlation between 2D vanishing points
and 3D orientations isn’t known) [26, 41, 164]. In the following I will concentrate
on the calculation of the internal parameters focal length and principal point, as
the skew and aspect-ratio are generally known for modern CCD-cameras. The
underlying idea here is that for a calibrated camera any two directions which are
orthogonal in 3D will also be orthogonal on the Gaussian sphere — as we have
seen in Section 2.9.3. And we have seen that condition 3 essentially results in
2n+1 vanishing directions in the image which form n sets of orthogonal directions
(where each set shares the same vertical vanishing point). So all we need to do is
to find the focal length f and principal point (tx, ty)T for which the 3 angles in a
set will be closest to a right-angle, i. e. we want to solve

min
f,tx,ty

n∑

k=1

2∑

i=1

3∑

j=i+1

(π

2
− α

(
pk,i,pk,j , f, tx, ty

))2

(6.4)

where pk,i is the ith vanishing point in the kth set; α
(
pk,i,pk,j , f, tx, ty

)
is the angle

between two such vanishing points as a function of the original vanishing points pk,i

and pk,j and the parameters f, tx, ty . Alternatively, if only the vertical vanishing-
direction is known, but no correlation between horizontal vanishing points, we get
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the equation

min
f,tx,ty

2n+1∑

k=2

(π

2
− α (p1,pk, f, tx, ty)

)2

(6.5)

assuming that p1 is the vertical vanishing point. Note that the sum in (6.4) has
3n terms, while the sum in (6.5) has only 2n terms. This is of particular relevance
in the common case n = 1; in that case there exists an exact solution for f, tx, ty
using (6.4), while based on (6.5) we can only calculate an (exact) solution for f
and either tx or ty. In both cases no error propagation will be needed (or, indeed,
can be used), as the solution is unambiguous.

The interesting case for the purpose of this thesis is the case where either n > 1,
or where we are calculating only f — e. g. in the lucky case where we are using
a zoom-lens of unknown focal length, but have a principal point exactly in the
middle of the image and therefore unaffected by zoom (for practical applications
the reader would be well advised to consider [60], which generally discourages the
calculation of the focal length without simultaneous calculation of the principal
point). Then it becomes possible to take the different uncertainty-regions of the
vanishing points into account, which as we have seen in Section 4.4.3 can vary
considerably: for vanishing points near infinity (this is usually the case for the one
vertical vanishing point) it will be a narrow but long region, while for vanishing
points closer to the image we will get a small and nearly circular region.

So what does the hitherto unknown function α (p1,pk, f, tx, ty) look like? Assum-
ing we already knew the focal length f and principal point (tx, ty) we can give the
“corrected” position p′

i of the real vanishing point pi on a Gaussian-sphere by

p′
i =

1√
(xi − zitx)

2
+ (yi − zity)

2
+ z2

i f2




xi − zitx
yi − zity

zif




T

. (6.6)

If the coordinates of the vanishing points are given by homogeneous coordinates
we can model this effect by multiplication with a matrix

T =




1 0 −tx
0 1 −ty
0 0 f



 (6.7)

and subsequent normalisation; if the vanishing points were already given using
Kanatani’s N -vectors, that is in a format (xi, yi, zif̂) with an approximate focal

length f̂ (which I would personally recommend), we can instead multiply with the

Error Propagation in Geometry-Based Grouping



158 Grouping

matrix

T =




1 0 −tx/f̂

0 1 −ty/f̂

0 0 f/f̂


 (6.8)

and, again, normalise. Note that we are of course not restricted to a 3 DOF matrix
T — setting tx = 0, ty = 0 would give a 1 DOF matrix which solves only for f ,
and we could also solve for additional parameters iff we have enough constraints
at our disposal.

The difference of angles in (6.4) and (6.5) is usually approximated by the cosine
of the angle, i. e.

π

2
− α

(
pk,i,pk,j , f, tx, ty

)
≈ cos

(
α
(
pk,i,pk,j , f, tx, ty

))
; (6.9)

this is done both to avoid the costly computation of the angle (which can be
replaced by a scalar product), but also since the cosine is an excellent approxima-
tion of the angle near the correct solution α

(
pk,i,pk,j , f, tx, ty

)
= π/2. We can

now replace the error-term in Equations (6.4) and (6.5) by

dkij = p′
k,i

T
p′

k,j = cos
(
α
(
pk,ipk,j , f, tx, ty

))
. (6.10)

Taking into account the vanishing-points’ covariances we can therefore replace (6.4)
and (6.5) with

min
f,tx,ty

n∑

k=1

2∑

i=1

3∑

j=i+1

d2
kij(T)

σ2
dij

(T)
(6.4a)

min
f,tx,ty

2n+1∑

k=2

d2
1k(T)

σ2
d1k

(T)
(6.5a)
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where the variance of the error measure (6.10) can be calculated using (3.53) as

dij = p′
i
T
p′

j =
pT

i TTTpj

‖Tpi‖ ‖Tpj‖
(6.11)

Jdijpi
=

pT
i

‖Tpi‖3‖Tpj‖
T

T
T
(
pip

T

j − pjp
T

i

)
T

T
T (6.12)

Jdijpj
=

pT
j

‖Tpi‖ ‖Tpj‖3
TTT

(
pjp

T

i − pip
T

j

)
TTT (6.13)

σdij = Jdijpi
Σpi

J
T

dijpi
+ Jdijpj

Σpj
J

T

dijpj

=
pT

i T
T
T
(
pip

T
j − pjp

T
i

)
T

T
TΣpi

T
T
T
(
pip

T
j − pjp

T
i

)
T

T
Tpi

‖Tpi‖6‖Tpj‖2
(6.14)

+
pT

j TTT
(
pjp

T
i − pip

T
j

)
TTTΣpj

TTT
(
pjp

T
i − pip

T
j

)
TTTpj

‖Tpj‖6‖Tpi‖2

Substituting (6.11) and (6.14) in (6.4a) we get a rather lengthy term, even though
‖Tpi‖2‖Tpj‖2 cancels out. However, this equation greatly simplifies if we assume

that we are already near the minimum, i. e. pT
i TTTpj ≈ 0, Equation (6.4a) can

then be written as

min
T

n∑

k=1

2∑

i=1

3∑

j=i+1

(
pT

k,iT
T
Tpk,j

)2

pT

k,jT
TTΣpk,i

TTTpk,j + pT

k,iT
TTΣpk,j

TTTpk,i

(6.4b)

6.3.3 Merging Line Segments

As stated in Constraint 5 on Page 150 I assumed that each face of a building is
essentially structured by horizontal and vertical line segments — the line segments
delimiting windows etc.— where several line segments align with each other. The
face itself could therefore be described by the lines passing through these line seg-
ments or, put another way, we could merge the individual small segments into
longer segments (and ultimately calculate the most likely line through these seg-
ments).

Joining collinear line segments into longer segments requires the comparison of each
line segment with all other line segments, this has a complexity of O(N2). If we
sort the line segments by vanishing point first (as all collinear line segments must
by necessity share the same vanishing point) we still end up with a complexity of

O(
∑k

i=1 N2
i ) ≈ O(N2), where Ni is the number of line segments belonging to the

Error Propagation in Geometry-Based Grouping



160 Grouping

ith vanishing point and N = N0+N1+· · ·+Nk, with N0 the number of outliers not
belonging to any vanishing point. However, sorting the line segments by inclination
allows us to compare each line segment with only a much smaller number of other
line segments. If σ̂α = max(σαi) is the maximum standard-deviation observed
for any line segment, then comparing only line segments with an angle αi to our
original line segment with angle αj so that αj − nσ̂α < αi < αj + nσ̂ (using <
in a cyclic sense, obviously) ensures that we will only miss very few line segments
— e. g. 0.3 % for n = 3 or 0.2 · 10−6 % for n = 6, which should be sufficient for
most applications. This reduces the average complexity to something nearer to
O(
∑k

i=1 Ni log(Ni)) ≈ O(N log(N)), the complexity of sorting the line segments
by angle. The worst case complexity will of course remain unchanged, the worst
case being represented by, e. g., N segments all belonging to only one line.

In addition to sorting the line segments by angle it can also be beneficial to limit
the maximum distance between either the segments’ centres or their endpoints.
The reason for this is simple: The further away we move from each line-segment’s
centre, the more tolerant the segment will become with regard to what other
line segments will be accepted as a match. Figure 6.1 shows such an erroneous
match. The distance from which on such erroneous matches are possible is largely
a function of σαi, and although the exact limit is, of course, somewhat arbitrary,
I found that a value of

d ≤ 7

tan (3σαi)
(6.15)

(i. e. as long as the 3-σ region does not deviate from the line for more than approxi-
mately 7 pxl) works reasonably well. It is, in fact, a good idea not only to limit the
maximum distance between segments, but to sort all segments by distance (from
the vanishing point, or some given segment), matching closest segments first and
only gradually expanding the distance over which we match. Such an approach
greatly reduces the risk of false positives, and in practice allows an approach where
two collinear line segments are immediately replaced by a single new line segment,
further reducing the number of comparisons required. Figure 6.2 shows an exam-
ple where segments belong to two close, parallel lines. If segments further away are
compared first, then there is a chance that segments from two different lines are
getting merged; all the segments in between would then not fit anymore. Fitting
neighbouring segments first greatly reduces this risk.

There is an additional problem with line segments near the horizon (or, indeed,
any line connecting two vanishing points), which can not usually be assigned to
just one vanishing point, compare Figure 6.3 on this point. In cases like the one
described in the next section, were it is assumed that the maximum extent of
a merged line segment is also the maximum extent of the underlying face, it is
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Figure 6.1: Beyond a certain distance line segments will often match erro-
neously.
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Figure 6.2: Line segments should be ordered by distance (left column) prior
to comparison.
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Figure 6.3: Unclear assignment of a line segment to more than one vanishing
point. Note how segments on the same line might belong to either the right
or left vanishing point.

important to avoid such wrong merges. The approach which I use is to only merge
line segments which can not be assigned to any other vanishing point (with a
certain probability, compare (6.1) — I would usually choose a significance level
around or below p = 1%). In addition to Section 6.3.4 below, which uses merged
line segments to define faces of a building, I will revisit the merging-process in
Section 6.4.2.2, where I will discuss the effects of different error models in more
detail.

6.3.4 Rectangular Areas

The information about the lines calculated in the previous section can be used to
identify rectangular areas. The approach presented here uses the maximum extent
of two crossing sets of collinear line segments belonging to different vanishing
points and was, in a similar form, but without the additional information about
the vanishing points, first presented by us in [54]. This approach relies heavily
on Features 4 and 5, i. e. collinear vertical and horizontal structure within a face,
usually from windows and doors. This structure will result in a high number
of collinear short line segments, which can be considered to be part of a set of
imaginary longer lines. Joining these segments, both in the vertical as well as
horizontal direction, will lead to a mesh of crossing lines. A face can then be defined
as the maximum extent of this mesh bounded by a quadrilateral corresponding to
the two vanishing points (called here the smallest bounding rectangle).

The algorithm itself is simple and consists of three steps, namely the identification
and assembly of collinear line segments into longer segments as described in Sec-
tion 6.3.3, the identification of intersecting line segments and their bounding box,
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Figure 6.4: Labelling line segments within a mesh can require recursive
look-up of labels.

and finally a process which will merge overlapping bounding boxes with the same
set of vanishing points (if desired). Each step will be outlined below.

Once the individual line segments have been merged into longer segments, we can
calculate the intersections between any two line segments from two different vanish-
ing points in a straightforward manner, the algorithmic complexity is in the order
of O(

∑k−1
i=1

∑k
j=i+1 NiNj) ≈ O(k2N2), where k is the number of vanishing points,

Ni the number of line segments belonging to the ith vanishing point, and N the
overall number of line segments. One then needs to classify the intersections into in-
ternal ones (i. e. the point of intersection is within both line segments) and external
ones (the point of intersection is only within at most 1 segment). This is the actual
approach used in the examples given in Section 6.5. It is however possible to reduce
the algorithmic complexity to something like O(

∑k−1
i=1

∑k
j=i+1 Ni +Nj) ≈ O(k2N)

if we instead plot the individual line segments into an image and only calculate
intersections if the new segment is passing through a pixel which is already occu-
pied by another segment. Some additional bookkeeping is needed to detect cases
where more than 2 line segments pass through the same pixel, but this is easily
incorporated.

Once all internal intersections have been found, we need to identify all line seg-
ments within a single mesh and the mesh’s bounding box. This can either be done
following the calculation of the intersections, or concurrently with it. In both cases
the approach is as follows: Each line segment is assigned a unique number, and a
table mapping from the segment’s original to its current number is created, where
at the beginning original and current number are identical. Every time two line
segments, potentially belonging to two so far separate clusters, have been classified
as intersecting each other, we assign both clusters the lower of the two numbers
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Figure 6.5: Calculating the bounding box as the maximum extent of angles.

165°

195°

15°

345°

Figure 6.6: Which of two angles is the minimum and which the maximum
depends on the position of the vanishing point relative to the segments.

— note that this will usually require a recursive identification of current numbers,
as some previous intersection might have lowered the number of a cluster without,
so far, affecting the numbers stored for all of it’s segments. A very simple example
is given in Figure 6.4: merging Segments 1 and 2 in Step 2 implicitly also changes
the number of Segment 3, which was merged with Segment 2 in the previous step.
However, only when Segments 3 and 4 are merged in Step 3 is this change noticed.
In general it will be necessary to add a final resolution step once all intersections
have been processed, in this step all current numbers are getting updated, start-
ing from the lowest to the highest segment-number — this guarantees, together
with the rule that a new cluster is always assigned the lower number of the two
intersecting segments, that a unique and consistent result can be reached. The
algorithmic complexity of the entire process is linear in the number of intersections
and therefore usually quadratic in the number of segments.

The final resolution step mentioned above can also be combined with the calcula-
tion of the final bounding boxes around each cluster. For each new cluster found
when consolidating the cluster-numbers we calculate the bounding box as the min-
imum and maximum angle with respect to the two vanishing points each. As each
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cluster originally consists of only one line segment this is always a region with vari-
ations in only one direction. As we identify additional segments belonging to the
same cluster, we can simply calculate the new bounding box as the minimum and
maximum of the delimiting angles of the two boxes being merged. This process
is exemplarily illustrated in Figure 6.5. The minimum and maximum must, of
course, be calculated in a fashion suitable for angles, the numerically bigger angle
can in fact be the smaller one for our purpose — but need not be — depending on
where the vanishing point is relative to the segments, compare Figure 6.6, where
min◦(15

◦, 345◦) = 345◦, but min◦(165
◦, 195◦) = 165◦.

Each bounding box, once found as described above, is then assumed to be com-
pletely inscribed into one face of, e. g., a building. The approach described above
has the advantage that it is relatively robust with respect to occlusions and miss-
ing lines, as long as the face in question is sufficiently highly structured (and the
occlusion isn’t). It is therefore more applicable to high-rises or apartment blocks
than to suburban one-family houses. Additional disadvantages are the algorithm’s
inability to differentiate effectively between a long building and a row of identi-
cally structured and aligned single buildings (other than by an arbitrarily chosen
parameter to describe what constitutes a gap), and that the algorithm is only ap-
plicable to rectangular (convex) areas. It never the less performs quite well even
in its very limited form outlined above, and Section 6.5 shows some examples of
detected buildings, highlighting both its strengths as well as its weaknesses.

6.4 Verification

This section takes a closer look at how well some of the theoretically derived
approaches described previously work for actual data. I start off with Section 6.4.1,
which takes a look at several different error models for the representation of line
segments in 2D. There I use the example of merging line segments as discussed in
Section 6.3.3, and we will see that the choice of error model critically influences
the accuracy with which we can detect collinear line segments. We then have
a look at two different variables which are meant as a (rough) model for errors
in 3D in Section 6.4.2, namely an additional positional or angular error-term as
discussed in Section 6.3.1.1. In Section 6.4.2.1 this is done for the task of assigning
the individual line segments to vanishing points, and we will see that for this
application an additional angular term is the most appropriate model, while for
the detection of collinear line segments discussed in Section 6.4.2.2 the additional
term for the positional error is the more influential one.
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6.4.1 Error Models for 2D

In the following I will have a closer look at identifying collinear line segments. Since
I stated in constraint 4 on page 149 that most structure in the (modelled) world
is either horizontal or vertical I can try to detect horizontal or vertical structure
in the image by first merging collinear line segments and later finding the area
were line segments from two different directions (vanishing points) intersect —
I described this in Section 6.3.4 and we used this in, e. g.,[54]. In order to use
such an approach I need to be able to find as many good line-continuation as
possible without finding too many bad ones. I therefore need an error measure
with a particularly high discriminative power. In Section 6.4.1.1 I will introduce
a number of different error measures known from the literature and compare their
respective performance with each other and the (α, x̄, ȳ)T parameterisation which
I introduced in Section 4.6.2. How this is done I will describe in Section 6.4.1.2,
and I will discuss the outcome, which clearly shows the superiority of the (α, x̄, ȳ)T

parameterisation over all other models, in Section 6.4.1.3.

6.4.1.1 Error Measures

Over the years a number of authors have discussed possible error measures for the
identification of line-continuation. Often this was done in the context of (erroneous)
edge-extraction, where gaps in the extracted contour — often due to junctions in
the original image — need to be bridged.4 The first such method which I will
use here was described by Coelho et al. in 1990 [30]. There he simply calculated
the maximum orthographic distance between each segment’s endpoints and the
line through the other segment, together with a limit on the maximum distance
between the two closest endpoints of the two segments. The orientation (angle)
of the lines is not considered at all. If by (xi,j , yi,j)

T we mean the jth endpoint of
the ith line, and by (ai, bi, ci)

T the normal form of the ith line, this can be written
as in (6.16).

The next error measure described here was theoretically derived by Imiya in 1996,
originally for lines in 3D [63]. For lines in 2D his measure simplifies to the an-
gular distance between the two vectors x1 and x2, which can be calculated as

α1,2 = arccos
(

xT

1x2

‖x1‖ ‖x2‖

)
. As this is of course dependent on the particular pa-

rameterisation chosen I use for the comparison both the customary (a, b, c)T pa-
rameterisation as well as Kanatani’s N -vectors. As there is a one-to-one mapping

4The correct solution in such cases is of course to improve the underlying lower-level algo-
rithms, as was done by us [19] as well as other authors [80] — but here we are discussing the case
where the underlying structure might be purely logical and hence not visible within the image.
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(ℓ1 − ℓ2)
TJTΣ−1

ℓ1
ΣℓΣ

−1
ℓ2

J (ℓ1 − ℓ2) ≤ χ2
p,2 Section 4.6.2 (4.63)

2
max
i,j=1

(
x(i+1) mod 2,jai + y(i+1) mod 2,jbi + ci

)
≤ T Coelho et al. [30] (6.16)

xT
1x2x

T
2x1

xT
1x1x

T
2x2

≤ T Imiya [63] (6.17)

xT

2x1

(
xT

2 Σx1
x2 + xT

1 Σx2
x1

)−
xT

1x2 ≤ χ2
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p,2 Förstner [49] (6.22)

Figure 6.7: Error measures compared in this section.

between the angle α1,2 and the cosine (at least for the range of angles in question,
0 ≤ α1,2 ≤ π/2) it is of course possible to use the cosine or even the squared value
of the cosine instead of the angle with exactly the same results, and this is what
I’ll do in the following. I will calculate this value both with and without error
propagation, resulting in 4 possible error measures based on the scalar-product of
two vectors: I use directly the scalar-product cos α, based on either the (a, b, c)T

parameterisation or Kanatani’s N -vectors, and do so with (6.18) or without (6.17)
error propagation.

A seemingly similar measure could be based on the cross-product of the two (nor-
malised) vectors, rather than on the scalar-product; the result would be a vector
whose length is a function sinα of the angular distance α between the two duals
— ideally the resulting vector should be the 0-vector. This measure can again be
calculated based on either the (a, b, c)T parameterisation or Kanatani’s N -vectors,
and with (6.20) or without (6.19) error propagation, resulting in another 4 possi-
ble measures. The version using error propagation has recently been proposed by
Förstner [49].

Finally, I can also directly compare the parameterisations of two lines based on
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the two line segments. In the following I’ll do so for, again, the (a, b, c)T pa-
rameterisation and Kanatani’s N -vectors, and do so both with and without error
propagation. Of course we need to normalise both parameterisations for a direct
comparison, as both parameterisations use 3 parameters to describe a 2 degree of
freedom object (a line) — compare Section 4.6.3. I use either a2+b2 = 1 or ‖x‖ = 1
as constraints. All in all I started off comparing the 145 partly redundant error
measures given in Figure 6.7, where ℓi is the line in (α, x̄, ȳ)T-parameterisation
as described in Section 4.6.2, (ai, bi, ci)

T is a line’s normal parameterisation with
a2

i + b2
i = 1, (xi,j , yi,j) is the jth endpoint of the ith line segment, xi is a line in

either (ai, bi, ci)
T parameterisation with a2

i +b2
i = 1 or one of Kanatani’s N -vectors

with ‖xi‖ = 1, Σxi
its covariance matrix, and S(xi) is the vector’s skew-symmetric

matrix used to calculate the cross-product, it is:

S(xi) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (6.23)

The next section describes the experimental setup on which these 14 different error
measures were tested.

6.4.1.2 Experimental Setup

The experimental setup consists of 4 lines split into 5 segments each, i. e. 20 seg-
ments altogether, as can be seen in Figure 6.8 (left). These line segments are
projectively disturbed by 15 different projective transformations

P =




1 0 0
0 1 0
px py 1


 (6.24)

with px ∈ {0, 1/10000, 1/1000} and py ∈ {0, 1/10000, 1/1000, 1/300, 1/100} resulting in de-
formations up to the one in Figure 6.8 (right). To each segments orientation and
position random Gaussian noise is then added according to the segment’s length
and Equations (4.21) and (4.23), and the distance between each segment and all
other segments is then calculated using each of the 14 error measures described in
Section 6.4.1.1 above. This was done 1000 times for each of the 15 projective de-
formations and each of the 40 known good and 150 known bad pairings, resulting
in 39900000 different computed values. For each error measure I have then plotted
the receiver-operator-characteristic curve (ROC), which is the percentage of true

5Equations (4.63) and (6.16) result in one error measure each, while the 6 Equations (6.17)–
(6.22) each produce two measures.
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Figure 6.8: Experimental setup containing collinear line segments (left) and
maximally distorted set (right). The inset detail shows how widely the small-
est line segments vary in both position and orientation; line segments that
small would not be used in practical applications but rather help to analyse
border-line conditions.

positives over the percentage of false positives. These curves will be discussed in
the next section.

6.4.1.3 Results

Figure 6.9 shows receiver-operator-characteristic curves (ROC-curves) for all 14
error measures when run on all 15 projectively distorted sets of line segments.
Ideally these curves would coincide with the left and top side of the box (i. e.
going from (0, 0) straight to (0, 100) and from there to (100, 100)). However, in
almost all practical applications the ROC-curves will deviate from this ideal form
to a bigger or lesser extent, and this deviation can be measured by the area above
the curve (aac6) — an aac of 50% (a diagonal curve) would be due to pure chance.

So what can be seen from Figure 6.9? We would expect the methods which
use error propagation (the “alpha-xy” measure, and all “weighted” measures) to
perform better than the ones without error propagation — if error propagation
really were linear, we would in fact expect all methods which use error propagation
to perform exactly identical. The superior performance of methods which use error
propagation is in fact partly born out by Figure 6.9, with the exception of the two

6Often the inverse of the curve is plotted and the area under curve, auc, is used. However, I
find the direction used here more natural.
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Figure 6.9: ROC-curve for all 14 error measures and all 15 projective distor-
tions. The area above the curve (aac) in percent is given in parentheses, the
smaller the area, the better is the performance of the algorithm.
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methods based on the scalar-product (denoted “weighted cos(alpha)”) — this will
be explained below.

The first thing I would like to discuss is, however, the fact that the 14 different
measures result in only 10 distinguishable curves in Figure 6.9. The first two curves
which nearly coincide are the “weighted sin(alpha)” ones, compare Equation (6.20).
Despite a considerable difference in the underlying parameterisation — (a, b, c)T

versus Kanatani’s N -vectors — there is virtually no difference in the measures’
performance, and this is clearly due to the proper use of error propagation, which
almost completely egalised the difference in scaling of the 3rd component.

The next set of curves with nearly identical performance are the ones labelled
“kanatani cos(alpha)” (6.17), “kanatani sin(alpha)” (6.19), and finally “kanatani”
(6.21). This might seem surprising at first, but is easily explained: the two N -
vectors x1 and x2 are points on the surface of a unit sphere which are quite close
together — the maximum distance between the two points for the undistorted set
of line segments was ‖x1−x2‖ = 0.065, and for differences that small it is, up to a
very good approximation, ‖x1 − x2‖ = α, which explains why all measures based
on the angular difference of two N -vectors as well as their direct distance would
perform equally well.

The last set of curves with nearly identical performance are the ones labelled “abc
cos(alpha)” (6.17) and “abc sin(alpha)” (6.19); the reason is once more that both
are functions of the same angular difference α. The interesting question here
is why the curve labelled “abc” (6.21) behaves differently; this is mostly due to
the fact that the calculation of the direct distance uses a different, non-spherical
normalisation (namely a2 + b2 = 1), but also that even for the undistorted set
any angles up to π/2 can be observed. The latter, together with the observation
that the majority of line segments will be normalised to approximately (0, 0, 1)T,
also explains those measures’ particularly bad discriminating power, which makes
them perform poorest out of this particular set.

In the following I will summarise the three groups as “weighted sin(alpha)”, “abc
alpha”, and “kanatani alpha” and talk of only 10 different groups.

So if error propagation is such a good thing — and it certainly is for this reason
that the first 4 out of 10 (5 out of 14) best-performing measures all use error
propagation — then how come that the “weighted kanat cos(alpha)” and “weighted
abc cos(alpha)” measures perform so poorly? The “kanatani cos(alpha)” version in
fact performs better than the version using error propagation! The reason is that
for these measures a scalar representation of what is essentially a 2 DOF distance
is calculated first, and only then is error propagation applied. However, one of the
reasons error propagation is needed here is that the directional information (coded
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Figure 6.10: Enlarged detail of Figure 6.9

in the first two elements of the vector x) has a variance completely different from
the positional information (coded in the third element). The scaling underlying
Kanatani’s N -vectors accounts for some of this difference, but since the scaling
needed is ultimately a function of the line-segment’s length there is no one single
scaling which could completely balance out the different variances for all segments;
any algorithm which calculates an error measure first and a scaling later is therefore
doomed to failure.

One other thing that strikes the eye is that all measures which use proper error
propagation exhibit an essentially concave curvature, while for all other error-mea-
sures the ROC-curves show two or more inflection points. The former suggests
that all error-conditions can indeed be caught equally well with just one threshold,
while the latter is du to an overlap of several curves with different thresholds for
different error-conditions.

The last point to note is the performance of the “max dist” (6.16) error measure,
the very simple one proposed by Coelho et al. [30] in 1990, which simply uses the
maximum orthographic distance between either line-segment’s endpoints and the
other line. At least for our test-set this measure performs nearly as well as the
direct distance using error propagation, and up to a true-positive rate of about
70% (and a false negative rate of only 0.15%) actually performs better than any
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Figure 6.11: ROC-curves and enlarged detail for the test-set with the
strongest projective distortion.

other measure, see Figure 6.10. It should, however, be noted that this is to some
extent at least a feature of our test-set rather than the algorithm. But even for the
set with the strongest projective distortion the “max dist” algorithm still performs
best up to a true-positive rate of about 30% (false negative rate 0.33%), see
Figure 6.11.

So which algorithm should one use? For most applications the answer really is quite
simple: only the (α, x̄, ȳ)T-measure proposed in Section 4.6.2 and the cross-ratio
based measure proposed by Förstner [49] perform consistently well over a wide
range of errors. In my tests the (α, x̄, ȳ)T-measure actually performs slightly better
than the cross-ratio based measures, but it should be noted that my test-setup
actually favours the (α, x̄, ȳ)T-measure, since in my opinion it captures the actual
errors most faithfully — virtually all line-fitting algorithms calculate a segment’s
centre point and angle, and this is where the errors are. The simple distance
measure proposed by Coelho et al. [30] can be an alternative only if speed is of
the essence and it is sufficient to find only a fraction of the true positives.
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Figure 6.12: Image of Leuven-Kasteel and straight line segments used in
this section, used with permission of Katholieke Universiteit Leuven, Robot
Vision Group (ESAT-PSI).

6.4.2 Error Models for 3D

In the previous section we have seen a comparison of different error models that
all describe errors in the image measurements themselves. However, when dealing
with real-life buildings objects there are also, as a rule, errors in 3D which we
need to deal with. This section outlines two possible ways to capture those errors
and, for a given image, demonstrates under which condition which model is most
adequate. In Section 6.4.2.1 I use the example of assigning line segments to van-
ishing points, and we will see that errors in 3D are best modelled by an additional
directional variance, while Section 6.4.2.2 deals with line-continuation, where the
influence of errors in 3D is dominated by an additional positional uncertainty.

6.4.2.1 Assigning Line Segments to Vanishing Points

Assigning individual line segments to vanishing points allows me to highlight the
effect of different approaches to model the uncertainty in the underlying 3D-model,
as mentioned in Sections 4 and 6.3.1. There exist essentially 3 different methods
to introduce the model’s uncertainty into the relevant equation, (6.1): we can
add a third term σmodel to the denominator, we can add additional terms to the
individual elements of the vanishing point’s covariance matrix Σp, or to the line’s
covariance matrix Σℓ, as was suggested in Section 6.3.1.2. Here, I will only have
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Figure 6.13: Number of line segments classified as belonging to each of the
three vanishing points for different values of σ′

α
2
.

a look at the latter method, since in Section 6.4.2.2 I will then study the effect
of the same parameters on finding and merging collinear line segments. I will
also simplify the 3D error-model somewhat and use σ′

y
2

= σ′
x
2
. This models a

circular uncertainty in the position of the line-segment’s centre point, while what
would really be needed is an uncertainty only perpendicular to the line segment.
However, since any small uncertainty along the direction of the line is actually of
little or no consequence this will not change the outcome dramatically.

In order to see the effect of these parameters, I have taken an example image
(Figure 6.12) and, by hand, identified the 3 vanishing points. This was done by se-
lecting a number of line segments for each direction and calculating the most likely
intersection as described in Sections 4.4.1 and 6.3.1. I then used Equation (6.1) to
find all line segments belonging to any of these three vanishing points for different
values of σ′

α
2 and σ′

x
2, where “belonging” was rather generously defined as an error

below χ2
5 %,1. Figure 6.13 gives the number of line segments classified to belong to

each of the 3 vanishing points for different values of σ′
α

2
. We see that for values

below approximately σ′
α

2
= 10−6, corresponding to an angle of about α = 0.06◦,

the number of line segments stays essentially constant. This is due to the fact that
in those cases σ′

α
2 ≪ σ2

α and therefore has little influence — σ2
α is usually in the

region of 10−6 ≤ σ2
α ≤ 10−5 and σ2

x in the region σ2
x ≈ 10−3. We also see that

for values above approximately σ′
α

2
= 10−1, corresponding to an angle of about

α = 18◦, the number of line segments per vanishing point becomes stationary once
again, this is simply due to the fact that for bigger values of σ′

α
2

any line segment,
be it as random as it may, can be assigned to at least one vanishing point — and
indeed, for σ′

α
2

= 1, corresponding to an angle of about α = 57◦, all 1019 line
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Figure 6.14: Number of line segments classified as belonging to each of the
three vanishing points for different values of σ′

x
2.

segments have been assigned to one of the three vanishing points.

The influence of σ′
x
2 is, in contrast, negligible. Figure 6.14 shows the analogous

plot for different values of σ′
x
2
. And although the tendency is of course the same —

no influence of σ′
x
2

below a certain value, and from there an increase until all line
segments are assigned to one vanishing point — is the interpretation completely
different: while for σ′

α
2 an influence was observable as soon as σ′

α
2 ≈ σ2

α, we now

only see an increase once σ′
x
2

> 104σ2
x — using the same range of relative values

as before we would hardly observe any increase at all.

But not only does the effect start later, the result is also less useful. A reasonable
value for σ′

α
2

and this particular image, which shows a rather old and not very well

aligned building, is σ′
α

2
= 10−3, corresponding to a variance of 1.8◦ and resulting

in 730 assigned line segments — approximately the same number of line segments
also get assigned to a vanishing point if we choose σ′

x
2 = 104, corresponding to a

variance of 100pxl. Figure 6.15 shows, in its top-row, the unassigned line segments.
We notice from Figure 6.15(b) that using σ′

x
2

= 104 missed more of the vertical

line segments than using σ′
α

2 = 10−3 (see Figure 6.15(a)), while at the same time
more of the segments belonging to the arcs above the doors and windows, which
come with random orientations, were assigned to one of the vanishing points. The
latter is corroborated by Figures 6.15(c) and 6.15(d) which show the line segments

belonging to the second vanishing point, which in the case σ′
x
2

= 104 clearly
contains a number of false classifications.
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(a) Unassigned segments, σ′
α

2 = 10−3. (b) Unassigned segments, σ′
x
2 = 104

(c) Second vanishing point, σ′
α

2 = 10−3. (d) Second vanishing point, σ′
x
2 = 104

Figure 6.15: Assigning line segments to vanishing points.
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Figure 6.16: Number of line segments that got merged, and number of line
segments they got merged into, for different values of σ′
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Figure 6.17: Number of line segments that got merged, and number of line
segments they got merged into, for different values of σ′

x
2.

6.4.2.2 Merging Line Segments

The same tests just run for vanishing points can of course also be run when it
comes to merging line segments. Here we would expect σ′

x
2 to be the important

contributing factor, and σ′
α

2
to be mostly irrelevant. A casual glance at Fig-
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1 · 10−1≡ 18.1◦ 294 131
1 · 100 ≡ 57.3◦ 461 190
1 · 101 ≡ 181.◦ 517 207

 0

 200

 400

 600

 800

 1000

 1e-07  1e-06  1e-05  1e-04  0.001  0.01  0.1  1  10

N
um

be
r 

of
 li

ne
-s

eg
m

en
ts

seg. merged...
...into seg.

σ′
α

2

Figure 6.18: Number of line segments that got merged, and number of
line segments they got merged into, for different values of σ′

α
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and a fixed
maximum distance between segments of 500pxl.

ures 6.16 and 6.17 seems to corroborate this expectation: From Figure 6.17 we
see that the influence of σ′

x
2
, which only started at around σ′

x
2 ≈ 104σ2

x ≈ 10 in

the last section, now starts at σ′
x
2 ≈ σ2

x ≈ 10−3, and it already levels of at around

σ′
x
2 ≈ 102 for the number of final line segments, and σ′

x
2 ≈ 105 for the number of

segments getting merged. The influence of σ′
α

2
, by comparison, seems negligible —

the number of segments merged is essentially constant for values around σ′
α

2 ≈ σ2
α,

and then actually levels off to 0.

This latter observation requires some explanation — it is, of course, unreasonable
to expect that with increasing σ′

α
2

fewer segments should get matched. The reason
for this behaviour is the limitation placed on the maximum distance discussed in
Section 6.3.3 and embodied in Equation (6.15), which is a function of the lines
effective σ2

α, which is in turn the sum of the segments true directional variance

and the added error-term, σ′
α

2 + σ2
α. For values of σ′

α
2 > 10−4 this term is clearly

getting dominated by σ′
α

2
; for σ′

α
2

= 10−4 the maximum distance is still 233 pxl,

but for σ′
α

2
= 10−3 this already gets reduced to 74pxl and then to 23pxl for

σ′
α

2 = 10−2 — it is clear, that this constraint considerably limits the potential
number of segments to merge.

I have therefore run the same tests with a fixed maximum distance of 500pxl.
For variations of σ′

x
2 the results are virtually the same (slightly more segments

get merged, most of them erroneously, due to the longer reach in particular when
dealing with smaller, more uncertain, segments), but for σ′

α
2

the results are quite
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(a) σ′
x
2 = 10−1, 294 segments merged into 122 (b) σ′

α
2 = 10−2, 263 segments merged into 116

Figure 6.19: Merged line segments generated for σ′
x
2 = 10−1 and σ′

α
2 = 10−2

respectively. The result for σ′
x
2

= 10−1 is clearly much better, although
approximately the same number of segments are being generated in both
cases.

different. Looking at Figure 6.18, we see that again the number of line segments
merged stays essentially constant for values of σ′

α
2 ≤ σ2

α; for bigger values of σ′
α

2

the number of line segments merged increases, but far below the increase which
we noted for variations in σ′

x
2, and levels off at much fewer line segments being

merged into more new line segments than happens for σ′
x
2
.

It is also interesting to look at the results of both algorithms respectively. At
σ′

x
2

= 10−1 ≈ 100σ2
x and σ′

α
2

= 10−2 ≈ 104σ2
α we get approximately the same

number of merged segments (122 versus 116 new segments, generated from 294

versus 263 original segments). Since σ′
α

2
= 10−2 actually merges fewer segments

we would also expect it to make fewer errors, but looking at Figure 6.19 we see
that although some erroneous segments were created in both cases (the values for

σ′
x
2

and σ′
α

2
were on purpose chosen somewhat too big), the errors are much more

pronounced (and much more clearly wrong) for σ′
α

2 = 10−2 in Figure 6.19(b).

The next section shows some results of the combined algorithm.
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6.5 Results and Discussion

In this section I show a number of results when running the algorithm described
above on a number of different datasets. None of the results are perfect, but many
are quite usable despite the algorithm’s extremely simple structure; it could be
(and, in fact, has been) easily improved by some simple modifications outside the
scope of this thesis. Using subjective structures as described by Brillault-O’Mahony
in [20, 21] or corner-information could be one such possible extension; in [54] we
successfully used the colour in a neighbourhood of the line segment; and one could
also combine this approach with colour or texture based region-merging — all this
will also be discussed in the outlook in Section 8.2.

Figure 6.20 shows a number of images with mostly correctly identified regions,
i. e. the regions found correspond to meaningful structures in the image, although
faces with little texture might not be represented correctly and most regions are
generally somewhat smaller than the actual face they are meant to represent, as
they are generated as the smallest rectangle containing all features. Additional
reasoning (or heuristics) would be needed to detect the entire face, but I will
discuss in Section 8.2 why I think that this job would be better left to colour- or
texture-based algorithms.

Figure 6.21 shows some typical errors. Accidental alignment of line segments as
seen in Figure 6.21(a) is maybe the most frequent error; in a town-setting, where
usually all lines along the side of the road share a common vanishing point, it
is quite difficult to prevent such unwanted accidental alignments of line segments
based on geometry alone. In [54] we used colour-information as an additional
feature, which worked quite well; other approaches could be based on precomputed
region-information, based on colour or texture. Figure 6.21(b) shows another, not
quite so common source for errors — here the accidental intersection of segments
creates spurious regions which do not correspond to actual faces on the house. In
Figure 6.21(c) we can observe the effect of occlusion, where a street-lamp in front
of the building is considered as part of the face, resulting in regions that extend
far beyond the actual border of the face. We also see that overlapping regions
with two different orientations are being found, this is partly correct (the top and
bottom portion of the building do have different, non-perpendicular orientations),
but due to the occlusion and another accidental alignment between a window-
frame and the “A” in the shop-sign both regions overlap. Such overlap can also be
observed in Figure 6.21(d), where here it is simply due to the fact that at different
heights the faces have a different extent. None of these problems can be solved by
geometric constraints alone, as is the topic of this thesis, but an additional region
based approach and possibly region- or corner based reasoning could well improve
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Figure 6.20: Regions correctly identified in images from different datasets.
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(a) Accidental alignment of segments. (b) Spurious regions.

(c) Overlapping regions. (d) Overlapping regions.

Figure 6.21: Incorrectly identified regions in images from different datasets.
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Figure 6.22: Grouping applied to a house by Hundertwasser. The algorithm
reveals that despite its unconventional exterior much of the original structure
of the house was retained.

the situation, see Section 8.2.

Figure 6.22 shows the application of the same algorithm to an image of a house by
Hundertwasser. These houses are well known for their lack of structure; however
they are essentially remodelled “normal” houses from around 1900 and can not
totally deny their heritage — we see that in particular in the vertical alignment
of windows enough information is retained to group a considerable portion of the
facade — although the poor quality of the image (a scanned in postcard) and the
non-orthodoxy of the building made it necessary to hand-tune some parameters
(mostly concerned with line-extraction though).

Figure 6.23 finally shows what a purely region-based reconstruction could look like
for properly identified regions — the regions for Figure 6.23 were in fact identified
by hand (but based on the mechanisms described above, only their extent was
slightly altered, most notably to provide a correct ground-line). The reconstruc-
tion looks quite reasonable even though no additional calibration of the camera
was performed. Note that this is only shown here as an example for what is
theoretically possible based on the individual building-blocks provided above; an
actual implementation would need additional modules based not just on geometry
to be successful.
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Figure 6.23: Monocular reconstruction with unknown camera.
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Chapter 7

Detecting Surfaces of
Revolution

Revolutions never occur in mathematics.

Michael Crowe, Historia Mathematica
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Figure 7.1: Some of the objects of revolution we encounter each day (as
found in the office at 46 Banburry Road, Oxford).

7.1 Introduction

This section mainly deals with the detection and grouping of surfaces of revolution
or SORs, and in particular with the calculation of the SOR’s axis. Objects of
revolution similar to the ones found in every household are shown in Figure 7.1.
Additionally, the algorithms for the calculation of the axis presented here are also
suitable for the detection and grouping of planar symmetric objects and even
applicable to arbitrary straight homogeneous generalised cylinders (SHGC). This
will be pointed out were applicable.

Planar symmetric objects, SORs and SHGCs in general, make up much of the man-
made environment which surrounds us, quite possibly surpassed only by orthogonal
structures as described in Section 6. It is therefore not surprising that the computer
vision community has, over the years, devoted some work towards the recognition
of such objects. Consequently, the work described here is based on earlier work
not only on the recognition of SORs, but also SHGCs, symmetry-detection and,
to a lesser extent, the detection of conics in images. All of these are discussed in
more detail below.

The expressiveness of the generalised cylinder representation, where a variable
planar cross section is swept along a space curve, the cylinder’s axis or spine,
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and is deformed according to a sweeping rule, has always been of interest to vision
researchers. I will however start this overview with the 1989 paper by Ponce et. al.,
which contains many references to previous work [121]. Prior to his publication,
researchers often assumed that the apparent contours on each side of an (SH)GC’s
axis were related by some sort of qualitative symmetry. Ponce et. al. were the
first to show that for a SHGC (and therefore also all more general GCs) no such
relation between the two contours exists. However, the same proof also shows
that for the more special case of an SOR the two contours are always symmetric
with respect to the image of the cylinder’s axis, or can be projectively transformed
into a frame where this is the case. His work was built on by Sato [131–133] and
others [58, 153, 163], however, they all assumed parallel projection; Abdallah [10]
was the first to present an extension to arbitrary projective views. His work in
turn was based on previous work on SORs [165][3–5, 9]. These too, either in their
own right [38, 50, 82, 91, 124, 160, 161][8], or as a subclass of SHGCs [57, 58, 104,
118, 121, 131–133, 153, 163], have seen considerable interest. Also of marginal
relevance in the context of this chapter is some of the work on symmetry under
projection with regard to polyhedral or planar objects [35, 53, 55, 56, 83, 92, 102,
128, 152, 162], which is needed as a prerequisite to the axis calculation, and work
on the detection of conics in images [17, 42, 48, 76, 78, 122, 126], on which the
reconstruction of SORs (not described here, but e. g. in [8]) builds.

This chapter concentrates on the calculation of an SOR’s (projected) axis; knowl-
edge of the axis is central to grouping [4, 9] as well as recognition [50, 91][5] and
reconstruction [32, 161][8]. The need to perform many such calculations in group-
ing makes it advisable to preface the snake-like algorithm which I gave in [9] and
which gives excellent results with a faster algorithm which can be used to weed out
many unwanted contour-pairings and provide the initialisation for the snake-like
algorithm. I therefore compare the performance of a number of established algo-
rithms on a number of different features and demonstrate that the most popular
algorithm, total least squares of Euclidean distances, is also the most error-prone
and essentially unusable for this application. These comparisons are done on real
contour-data derived from real images which previously appeared in publications
about the grouping and recognition of SORs.

The remainder of this chapter is structured as follows: in Section 7.2 I describe
both the object and camera model used. In Section 7.3 I present my algorithm for
the grouping and recognition of SORs with the detection of the SOR’s axis of sym-
metry as its main component. This is described in more detail in Section 7.4, where
I describe the different algorithms and feature-sets which can be used for the calcu-
lation of the axis. There a comparison of the algorithms’ absolute (Section 7.4.4.1)
and relative (Section 7.4.4.2) performance is given, and I will demonstrate that
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f(z)

parallels

meridians

Figure 7.2: The sweeping-
rule or generating curve f(z).

Figure 7.3: Parallels and meridians.

the most widely used algorithm is at the same time the least reliable, and rec-
ommend much better alternatives instead. Section 7.5 discusses some of the more
noteworthy observations made in the previous section, and Section 7.6 summarises
the main observations from the previous sections. In Section 7.7 finally I give a
short description on how the results discussed so far are applicable to objects with
a planar symmetric contour generator and SHGCs.

7.2 Model

In Section 7.2.1 I will discuss the underlying 3D-model of an SOR, followed by
a discussion of the different camera models in Sections 7.2.2 ff. In how far the
comparisons given here are also applicable to SHGCs and planar symmetric objects
is discussed in Section 7.7.

7.2.1 3D Model

There are two traditional models for the construction of Surfaces of Revolution.
Most commonly used is that of a generating function f(z) being rotated around
the axis of revolution, resulting in a surface

~S = (f(z) cos(ϕ), f(z) sin(ϕ), z)
T

, (7.1)
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contour
generator

image plane

object

focal point

contour

Figure 7.4: Contour and contour-generator of an SOR. Note that the con-
tour generator is a space curve on the surface of the SOR.

compare Fig. 7.2. My intentions, however, are better served if we understand an
SOR as a special case of a Straight Homogeneous Generalised Cylinder. A SHGC
can be constructed by sweeping a cross section of arbitrary (planar) shape along
a straight axis and scaling it according to to a sweeping rule or scaling function
f(z); an SOR is therefore a SHGC with a circular cross section, where the axis
goes through the centre of the cross section, and the cross section is orthogonal to
the axis; the sweeping rule f(z) is nothing but the generating function described
above. Figure 7.3 illustrates this model, where each parallel corresponds to a scaled
and translated version of the reference cross section; curves which are in a plane
with the axis are called meridians and are projections of the scaling-function. It
is customary to assume that the sweeping rule is a proper function of the position
along the axis z, but this is not required for grouping. Due to self-occlusion it is,
however, impossible to reconstruct any part of the sweeping rule which is not a
function of the axis position z from image contours alone.
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7.2.1.1 The Contour Generator

In contrast to objects with a planar outline there is, unfortunately, no straight-
forward invariant relation between an SOR’s contour in an image, when viewed
from an arbitrary direction, and the planar generating function. What is more,
even under weak perspective or orthographic projection there is no straightfor-
ward relation between views of the same object taken under different angles, and
2D invariants such as Arbter’s affine-invariant Fourier descriptors [12] can not be
used. The concept of the contour-generator is the main difference between SORs
and the cases discussed in Sections 5 and 6, where a contour in the image gener-
ally corresponded to a surface discontinuity in 3D, a so called edge or crease. For
SHGCs, however, the contour in the image is most often formed by the intersec-
tions between the image plane and rays through the image centre that are tangent
to the object; the curve on the object-surface where these rays touch is called
the contour-generator, and is due to so called limbs, rims, or occluding contours,
whose 3D position on the object is a function of the viewing position rather than
the object itself (see also Figure 7.4). It can be shown that the contour generator
of an SOR, is in general a space curve even under parallel projection and is in
general different for each individual viewing position.

7.2.2 Projective Camera Model

It is apparent from the above that very little of general validity can be said about
the appearance in an image of a group of objects as varied as SORs (or, in the
more general case, SHGCs):

1. For any two contour points on the same parallel (cross section), the tangents
to the contours (and, of course, also the cross section) at these points intersect
on the projection of the axis [121]. The location of the corresponding point
on the 3D-axis is viewpoint independent[50].

2. The curvature of a SHGC’s contour at a point is zero iff either the curvature
of the sweeping rule or that of the cross section is zero at this point [121].
This means in particular that, ignoring self-occlusion, any inflection of the
sweeping-rule results in an inflection of the contour (but not vice-versa).

3. The contours of an SOR to the left and right of the projection of the axis
are related by a plane harmonic homology [5]:

H = I3 − 2
vℓT

vTℓ
. (2.59)
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This is equivalent to projective symmetry as described in Section 2.8.

Additionally we can make the following statement about two cross sections of an
SOR

4. Two cross sections of a SHGC are related by a plane homology:

H = I3 +
1− cr

cr
· vℓT

vTℓ
(2.58)

with the vertex v on the axis of the SHGC, (a, b, c)Tv = 0. For any two
points on the same meridian, the tangents to the cross sections at these points
intersect on the vanishing line of a plane parallel to the cross sections [132].

So what additional information could we get from the use of more restrictive
camera models?

7.2.3 Quasi-Calibrated Camera Model

In the case of a quasi calibrated camera (here: an aspect-ratio of 1) we can replace
property 3 with a quasi-invariant approximation:

3b. The contours of an SOR to the left and right of the projection of the axis are
to a very good approximation related by a plane harmonic homology with
a fixed point at infinity, i. e. v = (ℓ1, ℓ2, 0)

T. This is equivalent to an affine
(skewed) symmetry between the two sides. This is only a quasi-invariant,
but usable for all but the most extreme of wide-angle lenses [5].

7.2.4 Weak Perspective Camera Model

The weak perspective camera model, as described in Section 2.3.1, assumes that
all rays are parallel to each other and orthogonal to the image plane. For normal
cameras, this is an accurate model only when viewing a planar object parallel to
the image plane; otherwise it is a valid simplification only if the extent of the
object’s depth is much smaller than its distance from the camera, requiring a
telephoto-lens. Although the weak perspective camera model is usually of only
limited practical value, it has none the less been added here as as it is the model
of choice for much of the literature on the subject [121, 131, 132, 153, 163].

The main reason for the prevalence of this model in much of the literature is that
the constraints 3 and 4 simplify considerably to:
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3c. The two contours of an SOR to the left and right of the projection of the
axis are related by a (Euclidean) symmetry-transformation, i. e. a particular
plane harmonic homology with v = (ℓ2,−ℓ1, 0)

T in Equation (2.59).

4c. Two cross sections of the same SHGC are related by a similarity transforma-
tion, i. e. a plane homology according to Equation (2.58) with ℓ = (0, 0, 1)T

and a direct relation between the cross-ratio and the sweeping-rule, cr =
f(z1)/f(z2), for cross sections at z1 and z2.

The latter constraint, which is not used in this thesis, makes reconstruction of the
objects considerably simpler.

7.3 Grouping

Grouping the outline of an SOR is essentially a three-step process. In a first
step we need to identify corresponding curve-fragments on both sides of the axis
based on local properties of the contour; how this is done will be described in
Section 7.3.1. Next we can use these corresponding curve-fragments to calculate
the axis ℓ and vertex v in constraint 3 above based on a number of distinguished
points from both sides of the outline and verify that the two sides are related by a
plane (harmonic) homology. This will be described in more detail in Section 7.3.2.
In Section 7.3.3 finally we group several outline-pairs which all share the same
plane harmonic homology into one object — this approach of course ignores the
possibility that two axes might have been aligned by accident, or might appear
aligned in one particular view only (the vertices are the same for all objects where
the axes were parallel in 3D, and therefore have little discriminating power).

The assumption of a common plane harmonic homology makes a reliable calcu-
lation of the axis and vertex parameters necessary, while the need to calculate
many such homologies makes a fast algorithm mandatory. It is for this reason
that particular attention has been payed to the calculation of the homology (and,
in particular, the axis). Section 7.4 compares several commonly used methods and
feature-sets.
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7.3.1 Matching Curves

Corresponding curve fragments on both side’s of an SOR’s contour are projectively
related1, as stated in Restriction 3 or 3b. They consequently have the same pro-
jective invariants. Associating corresponding curve fragments is then a matter of
matching curve segments with the same projective invariant. Using an index into
a hash-table, similar to [4], this is essentially an O(n) process in the number of
curve fragments n, although it can become O(n2) for pathologic cases. Invariants
for this task abound, possible candidates can be taken from [25, 35, 127] — us-
ing the invariants from [127], which are based on bitangents, has the additional
advantage that the number of features n is small, typically in the order of n = 25
bitangents [4]; it has the disadvantage that it constrains the set of recognisable
objects to have at least one pair of concavities.

Once pairs of matching contour fragments have been found, it is then possible to
find the transformation between each pair’s two segments and test whether the
transformation is a plane harmonic homology, as required by Restriction 3, see
the next section. This is necessary as many other contour-fragments will also
be related by a projective transformation, e. g. instances of repeated structure as
described in Section 5.

7.3.2 The Transformation

Once corresponding contour-segments have been found, we can then progress to-
wards the calculation of the plane harmonic homology according to Restriction 3
above. This is done using a two-step approach. First, an approximate solution is
calculated based on a small number of distinguished points (compare Section 2.7.3).
This is then followed by a slower but more accurate calculation which directly uses
the contour-information to fit a type of projective snake. As the convergence of
this latter algorithm depends on the quality of the former, we should already cal-
culate a good as possible approximation in that first step — this can then also be
used to weed out many obviously wrong hypotheses.

It is generally not trivial to decide which points from each side of the contour
correspond to each other. Only for a small number of distinguished points is this
correspondence easily found. Particularly useful in this respect are points of bi-
tangency as described in Section 2.7.3; corresponding bitangent-lines will intersect
each other on the (projection of the) axis of symmetry [50] — I will call this point

1In the case of an SOR and a quasi-calibrated camera or better this is to a very good
approximation an affine relation, see [5]
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Figure 7.5: Features used: bitangent intersections are marked i, crosspoints
are marked c. The points marked i′ and c′ are interpair features.

the (bitangent) intersection. It is marked i in Fig. 7.5. Additionally, for any two
pairs of distinguished points {x1,x

′
1}, {x2,x

′
2} the lines through the point-pairs

{x1,x
′
2} and {x2,x

′
1} will intersect on the axis too, I will call this point a cross-

point. It is marked c in Fig. 7.5. Other possible features with essentially the same
properties are inflections; however, these aren’t used here.

So far we considered each bitangent-pair separately, calculating only intra-pair
features. However, if more than two distinguished points on each side of the
contour are known, each pairing of two points and their corresponding points on
the other side of the contour can be used to calculate additional intersections and
crosspoints. Figure 7.5 shows a selection of such interpair features marked i

′ and
c′.

The entire approach therefore goes as follows. Given profile fragment pairings
(Section 7.3.1):

1. Find an approximate transformation between the two curve fragments by
matching a number of distinguished points.

2. Test whether the transformation could be a plane harmonic homology. This
could e. g. be done by calculating a number of cross-ratios and compare them
to the expected cross-ratio (which should be −1) using the approach from
Section 4.6.4; or by projecting points from one side of the contour onto
the other side using the equation in property 3 and calculate the distance
between the transformed point and its opposite number using the approach
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from Section 4.6.3.

3. If the transformation could be a plane harmonic homology, calculate a more
accurate transformation using a type of projective snake as described in [9].

7.3.3 Grouping Transformations

It then remains to group separate curve fragment (pairs) which may have arisen
from the same profile curve. Grouping is based on the similarity of the parameters
of the transformation (i. e. the symmetry axis and corresponding direction) and
corresponding pairs of matched concavities are aligned along their common central
axis. The associated outline curve fragments can be joined using existing local
edgel chain topology and smooth curve continuation, but this is outside the scope
of this section.

The comparison itself simply needs to compare the two axes, using the approach
described in Section 4.6.2, and the two vertices, using the approach described
in Section 4.6.3. As both approaches calculate a χ2 error measure we can then
simply add the two error measures in order to compute an error measure for the
entire plane harmonic homology (assuming that the cross-ratio has been fixed
at −1). However, the vertex-position comes with little discriminating power (all
objects with parallel axes in 3D will have the same vertex), and it might for many
applications be sufficient to only compare the axis, or compare the axis first and
use the combined error measure only if that initial test was passed.

7.4 The Calculation of the Homology

In the following I will mainly make use of constraint 3, which allows the compu-
tation of the plane harmonic homology relating the two sides of a projected SOR.
This, in turn, can be used for further grouping, recognition and reconstruction, as
we have seen in the previous section.

Rather than trying to solve for the plane harmonic homology all at once (for which
usually no closed form solution exists), it is far easier to compute separate results
for the axis and vertex. Doing so basically means to compute a best-fit line through
a number of points (the axis), and the most likely intersection of a number of lines
(the vertex). This is a standard problem in computer vision (and consequently
should have a standard solution), but nonetheless many different algorithms for
the solution of this problem are in widespread use, some of which were presented
in Section 4.3 and 4.4. I will show that the four most commonly used candidates
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can all be reduced to essentially the same equation, which together with 4 different
feature-sets allow us a systematic comparison of 16 different variants. These are
described in Sec. 7.4.1. We will see in Sec. 7.4.4 that the most commonly used
algorithm, total least squares on the Euclidean plane, which did so well for the
calculation of lines through edgels in Section 4.3, tends to be the least reliable
for this application. This is another nice example that no silver bullet exists in
projective geometry and that it always pays off to incorporate an analysis of the
error-behaviour of features. We also need a vertex v for the calculation of the
plane harmonic homology, and 3 different variants for the calculation of the vertex
will be discussed in Sec. 7.4.2, although I will show in Sec. 7.4.4 that the choice of
the vertex is of only secondary importance. Section 7.4.3 finally describes the error
measure which I will use to assess the goodness of the calculated transformation.

7.4.1 Axis Calculation

We have seen in Section 7.3.2 that the axis of an SOR can be found as a line through
a number of feature-points such as bitangent-intersections and cross-points. The
most common approach for the calculation of a line through points minimises the
orthogonal Euclidean distance between the points and the line:

min
a,b,c

1

N

N∑

i=1

(axi + byi + c)
2

+ λ(a2 + b2 − 1) . (7.2)

This is essentially (4.17); the functional implicitly assumes that the error in the
feature-points is Gaussian and independently, identically, and isotropically distrib-
uted (iiid). In the context of computer vision often a slightly different formulation
is chosen, based on homogeneous coordinates

min
a,b,c

1

N

N∑

i=1

(axi + byi + czi)
2

+ λ(a2 + b2 + c2 − 1) (7.3)

with x2
i + y2

i + z2
i = 1. This functional minimises (locally) orthogonal distances

between points on a unit sphere and a great circle representing the line. It is again
implicitly based on the assumption of iiid Gaussian noise, but this time on the unit
sphere — projecting this back into the image plane we will observe that points
further away from the image centre have a much larger standard deviation, and
that the error-distribution is a skewed Gaussian. This can be helpful to mirror
the fact that features further away from the image plane are indeed usually less
accurate than the ones closer to the image plane (as we observed in Section 4.4.3,
compare Figure 4.10 on Page 101) — but of course this need not be the case.
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Alternatively, both functionals can explicitly consider error-distribution of the fea-
ture points which more closely resemble their true distributions. In the following
I assume iiid Gaussian noise in the bitangent points and use standard linear er-
ror propagation to propagate these error to the feature-points, multiplying the
bitangent-points’ covariance matrix on both sides with the Jacobian of the feature
points. We then again get Gaussian noise, but now with a separate distribution
Σpi for each point pi = (xi.yi, zi)

T, and therefore

min
a,b,c

1

N

N∑

i=1

(axi + byi + c)
2

σ2
di

+ λ(a2 + b2 − 1) (7.4)

min
a,b,c

1

N

N∑

i=1

(axi + byi + czi)
2

σ2
di

+ λ(a2 + b2 + c2 − 1) (7.5)

where we can calculate the variance in the direction of the line as σ2
di

= ℓT
Σpiℓ

— the Jacobian of the distance turns out to be the line itself — this is essentially
what we started from when fitting a line to edgels in Section 4.3.

Closer inspection shows that the four equations (7.2)–(7.5) can be subsumed by
the more general expression

min
ℓ

1

N

N∑

i=1

ℓT
pip

T
i ℓ

ℓT
W

T
Σpi

Wℓ
+ λ(ℓTWℓ− 1) (7.6)

with ℓ = (a, b, c)T, pi = (xi, yi, zi)
T with either zi = 1 (Euclidean coordinates) or

x2
i + y2

i + z2
i = 1 (homogeneous coordinates), and different values for W and

Σpi
. The W is a diagonal matrix with either {1, 1, 0} (for Euclidean coordi-

nates) or {1, 1, 1} (for homogeneous coordinates) as its diagonal elements. The
Σpi

is either the identity-matrix (implicit error model) or a full covariance matrix
(explicit model). The minimum can be calculated explicitly if an implicit error-
model is used, or else using Kanatani’s unbiased estimator [77] as described in
Section 4.3.2.1.

In addition to differences in the geometric- and error model I can subdivide algo-
rithms by features used, compare Figure 7.5. These are in our case intersections
only versus intersections and crosspoints, intra-pair features only versus intra- and
interpair features.

I am coding the different combinations as follows:

8 4 2 1
Error Model Geom. Model Features Combinations
expl. / impl. xyz /xy1 i& c / i inter / intra

1/0 1/0 1/0 1/0
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This results in 16 different methods for the calculation of the axis, numbered 0–15.
Alg. 3 is the one most commonly used, while Alg. 10 was, e. g., used in [3–5].

7.4.2 Vertex Calculation

I have only implemented three different algorithms. We will, however, see in Sec-
tion 7.4.4 that for SORs the actual vertex model chosen makes little difference.
The three models are labelled 0 (an affine model without explicit error-model, im-
plemented as the average angle towards the vertex at infinity), 2 (a projective
model using Euclidean coordinates and no explicit error-model), and 14 (a pro-
jective model using homogeneous coordinates and an explicit error-model) — the
latter two are calculated by substituting ℓ with v in (7.6) and pi with the line
through two corresponding distinguished points. As for the number of features
used, each bitangent-pair creates exactly 2 lines through the vertex; pairing non-
corresponding distinguished points is not possible.

7.4.3 Error Measure

For contours related by a planar harmonic homology, it is directly possible to
quantify the quality of the calculated planar harmonic homology even without
ground truth — we can simply use H to map one side of the contour onto the other
side, and use some error measure between the two curves to assess the goodness of
fit. This is often done using the Hausdorff distance of the two contours, basically
the maximum distance between the two sets. This is, however, not a very intuitive
or descriptive measure, and I use instead the average difference between edgels on
each side of the contour,

ε =
1

y2 − y1

∫ y2

y1

‖pright(y)−Hpleft(y)‖d y , (7.7)

where (7.7) assumes that the object was rotated into an upright position. Note that
even for perfect symmetry this error measure or residual will not be zero, as the
position of the edgels along the contour will be noisy. We can therefore only expect
a value in the same order as the standard deviation of our edge detection algorithm
(or, more accurately,

√
2 times the standard deviation, as both sides will be subject

to measurement errors). In this thesis I used a very simple implementation of the
Canny edge finder [24] to extract the edges. Its standard deviation on grey-level
images is in the order of 0.1pxl ≤ σ ≤ 0.3pxl.
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7.4.4 Results

Each of the 16 algorithms for the calculation of the axis and 3 algorithms for the
calculation of the vertex were run on a total of 49 images2 of 6 SORs (see Fig. 7.6)
which have previously appeared in publications about the recognition of SORs [3–
5]. This resulted in 48 different values for the harmonic homology in each image
and 48 × 49 = 2352 different harmonic homologies overall. For each homology I
also calculated the residual as described in Sec. 7.4.3 and used this to determine
the relative goodness of fit for each approach.

When comparing these different algorithms it is important to remember that any
algorithm could perform best for one particular set of features due to statistical
fluctuations (and we will see in Sec. 8.1 that the particular shapes of some of the
objects do indeed skew the outcome). To alleviate these effects of random fluctu-
ations, I use different measures of fitness to assess the quality of the algorithms.
These measures are either based on the actual residual calculated (in Sec. 7.4.4.1),
or on an algorithm’s relative performance compared to all other algorithms, its
ranking (in Sec. 7.4.4.2).

7.4.4.1 Absolute Performance

Figure 7.7 shows the range (minimum, median, and maximum) of residuals en-
countered for each of the 48 combinations of axis- and vertex models, ordered by
axis model firstly and features used secondly. In the following I will mostly be
interested in the maximum residual calculated, as some algorithms could clearly
result in unacceptably wrong results, which of course need to be avoided if the
number of false negatives is to be kept small; only then will I consider the median
residual, which gives information about the algorithms’ average performance. The
minimum residual is of little interest to us as, given enough trials, it will always
be in the order of ε ≈

√
2σpi

.

I already mentioned before that the actual algorithm used for the calculation of
the vertex is of little importance for our comparison (assuming SORs), and this is
born out by Fig. 7.7, where results look similar for all three vertex models. I will
therefore discuss algorithms by axis model in the following.

Maybe the most interesting result, when studying Fig. 7.7, and at first glance
contrary to this thesis’ line of argument, is that a more complicated error-model
will not necessarily improve results; using more features, on the other hand, can in

2The relevant contours and bitangents were selected by hand, so as not to confound the
comparison with additional issues.
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Figure 7.6: 45 of the 49 images of SORs used.
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Figure 7.7: Range of residuals. For each algorithm the minimum, median
and maximum residual are plotted — note the discontinuity along the ordi-
nate. The table shows the numerical values for the second best vertex model.
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fact considerably decrease performance. The former can be easily seen in the case
where only intra-pair features are used (first and third block in Figure 7.7). These
features are reasonably reliable, so that good results can be obtained even without
an explicit error-model, while the error model used obviously isn’t completely
accurate at least for some cases — we see from the table to Fig. 7.7 that an
explicit error-model did in all cases reduce the median (and in most cases also
the minimum) error, just not the maximum error. However, even the maximum
error decreases once we are also using the less reliable interpair features together
with an explicit error-model (ignoring models 9 and 13 which, according to theory,
should have performed similarly, but surprisingly didn’t).

The latter, that more features can give worse results, can be seen when we compare
the algorithms using intra-pair bitangent-intersections, 0, 4, 8, and 12 (the first
block), with the ones using interpair intersections, 1, 5, 9, and 13 (the second block)
— the maximum and median error actually increase for the algorithms which do
not use an explicit error-model, although many more features are used (2N(N −1)
versus N features). The most striking example is provided by Algorithm 3, which
uses all available feature points and simple orthogonal regression in the image
plane. This is the most commonly used model for the calculation of a line through
several points, and the one which performed so well when fitting a line to edgels
in Section 4.3 — but clearly the solutions found by this approach cannot be relied
on at all for applications where the underlying assumption of iiid measurements
is not valid. Even the median residual for this method is higher than that from
any other model, and the maximum error can be absolutely intolerable. For the
algorithms with an explicit error model, on the other hand, the median error
decreases drastically by about 70 %. Figure 7.8 illustrates how the maximum
errors from Algorithms 3, 9 and 15 will affect the result, to give an idea how good
or bad the relative errors are.

The third thing to be learned from Fig. 7.7 is that the additional use of cross-
points will, as a rule, improve the results calculated. This is particularly true for
algorithms which use an explicit error-model.

To sum up: as expected a high number of features is indeed preferable, but only
if used together with an explicit error-model; without such a model the emphasis
should be put on accurate rather than numerous features — this is in direct conflict
with the assumption underlying many algorithms that more features are always
better. And although even the algorithm with the lowest maximum residual (axis
model 15, vertex-model 14 — the most refined model using the most features) will
produce noticeable errors for some input-constellations, we can see from Fig. 7.8,
right, that the results are even in the worst case much more usable than for some
of the other algorithms, Fig. 7.8 left and middle. It should also be noted that this
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Axis model 3
Vertex model 2

r = 122.763

Axis model 9
Vertex model 2

r = 14.5296

Axis model 15
Vertex model 14

r = 5.03427

Figure 7.8: Cases of maximum residual for three axis models (using the best
vertex-model). The graphs show the left contour mapped onto the right one

particular object is actually not quite symmetric, although in this case 8 out of
the 48 algorithms tested performed better. Ranking the relative performance of
all algorithms is indeed another possibility to determine fitness, and will be done
in the next section.

7.4.4.2 Relative Performance

Although any algorithm might return the smallest residual for one particular out-
line, we would nonetheless expect that the better an algorithm is suited for the
task, the more often should it show up among the best N algorithms; conversely
the more often it is placed among the worst N algorithms, the more unsuitable
would we deem this algorithm. Table 7.1 lists, for each algorithm, how often it was
observed among the best 3 algorithms. From this table it seems as if performance
is mostly a matter of features used — all algorithms from the first block (intra-pair
intersections only) perform considerably worse than any of the algorithms from the
last block, using the maximum number of features, and algorithms using an inter-
mediate number of features perform somewhere in between. The image becomes
somewhat clearer if we also consider the 3 worst algorithms, shown in Table 7.2.
The Algorithms 0–7, which use no explicit error model, account for 84 % of the
worst 3 algorithms.

The usefulness of an explicit error-model becomes even more apparent if we look
at a histogram of the ranks achieved with the Algorithms 6, 7, 11, and 15 (which,
according to Tables 7.1 and 7.2, all performed similarly, while in theory 11 and 15
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Table 7.1: How often out of 49 runs each algorithm was among the best 3

Axis Model Sum
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0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

0 3 2 4 3 2 4 9 7 7 8 5 5 2 14 8 8 91
2 2 1 1 1 3 2 1 2 2 1 6 22
14 1 1 3 2 2 2 2 2 3 2 5 9 34

Sum 3 2 5 4 7 5 12 10 7 13 9 8 7 18 14 23 147

Table 7.2: How often out of 49 runs each algorithm was among the worst 3

Axis Model Sum
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0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

0 8 5 1 11 2 1 2 1 1 2 2 19 2 1 1 59
2 5 1 1 11 1 1 1 4 19 1 45
14 6 1 11 1 1 2 1 18 2 43

Sum 19 5 2 2 33 4 1 4 1 1 5 7 56 5 1 1 147
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Figure 7.9: Histograms of rank for axis models 6, 7, 11, and 1
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Figure 7.10: The accuracy with which bitangent points can be located de-
pends on the contour’s curvature in that region. This has little influence on
bitangent-intersections, but can considerably influence the position of cross-
points and interpair intersections

should exhibit superior performance). Figure 7.9 shows a clear difference between
the algorithms which do not use an explicit error model (6 and 7, top row) on the
one hand and the ones which do (11 and 15, bottom row) on the other. The former
(as do most other models) show a nearly uniform distribution, which means that
they are similarly likely to be among the N best as well as the N worst algorithms,
while the latter’s distribution looks somewhat like a Poisson distribution, with
good ranks much more likely than bad ones. This shows that the overall likelihood
of an acceptable result is much higher for axis models which use as many features
as possible together with an explicit error-model.

I believe this to be strong evidence that the use of an explicit error-model, at
least when used together with many features of varying quality, can considerably
improve an algorithm’s performance.

7.5 Discussion

We have seen in Sec. 7.4.4.1 and 7.4.4.2 that using more features and an explicit
error-model will indeed overall improve the performance of an algorithm (as we
expected). However, we also noticed some inconsistencies, and these will be ex-
plained in the following.

Considering only the maximum residuals in Fig. 7.7 we noticed that algorithms
using more features (second and forth block in Fig. 7.7) can perform noticeably
worse than the corresponding algorithms which use fever features, in particular if
no explicit error-model is used. The reason for this is the particular shape of most
of our test-objects. Consulting Fig. 7.6 we notice that most objects contain sec-
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Figure 7.11: interpair intersections can be quite inaccurate for many com-
mon objects, yet at the same time far enough away from the object to have
considerable influence on the location of the axis

tions of extremely low curvature (nearly straight in fact), and that in most cases
a bitangent will touch the object in that area. This is true for the neck of the first
object and the foot of the second and sixths, which together contribute about 66 %
of all contours. The position of a bitangent point along such a low-curvature seg-
ment can only be calculated quite inaccurately, see Fig. 7.10, independent of the
algorithm used (I used a Houghbased algorithm with iterative refinement, [127]).
This has very little influence on the orientation of that particular bitangent (whose
accuracy basically depends on the distance between the two points of tangency),
and consequently little influence on the position of the bitangent-intersection (and,
in consequence, little influence on the axis models 0, 4, 8, and 12); it can, how-
ever, greatly influence the position of interpair intersections (1, 5, 9, and 13) —
Figure 7.11 gives an example. Given N bitangent-pairs, only 1 intersection (con-
taining the erroneous bitangent point) will be calculated correctly, but 2(N − 1)
intersections will be incorrect (compare Fig. 7.5). Additionally, many of those
intersections will be far away from the object, and will consequently have high
influence on the final result (in particular if Euclidean coordinates were used). It
is therefore not surprising that results can become nearly arbitrarily wrong. Using
crosspoints (models 3, 7, 11, 15) can mediate this effect; while their position will
be wrong too, they will actually be on the other side of the axis and therefore offset
some of the effect. The correct solution of course would be an error model which
computes a point’s accuracy along the bitangent based on the contour’s curvature
around the point. However, as curvature is impossible to compute accurately for
low-curvature contours (as I demonstrated in [7]), such a model will be difficult to
implement (see Sec. 7.6).
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7.6 Conclusions

A computer-vision system which aims to locate, group, identify and possibly re-
construct SORs needs to calculate the harmonic homology relating the two sides
of the contour. A very accurate algorithm for the calculation of the harmonic ho-
mology was given by me about 10 years ago [9], however, this algorithm is based
on numerical minimisation and, depending on the initial estimate of its parame-
ters, might require many iterations in order to converge. While not a problem for
a single outline (each iteration is quite fast), this can nonetheless severely limit
its usefulness in the case of cluttered images containing many possibly symmetric
objects, or in the case where huge numbers of images need to be analysed, as
for image-database applications or within webcrawlers. Having a faster algorithm
which serves both to weed out many wrong matches, as well as providing the
following stages with accurate initial values, can provide a considerable speedup.
Having an algorithm available which is based solely on distinguished points is also
of particular importance for SHGCs, where no better algorithm is known — see
also the discussion in Section 7.7.

In this section 48 different algorithms for this intermediate step have been com-
pared and it has been demonstrated that using an explicit error model can consid-
erably improve the results, in particular where many features of varying accuracy
are used. This can mean the difference between completely useless results in the
naive — but widely used — case on the one side and highly reliable results on the
other.

There is, however, still room for improvements. We have seen in Sec. 7.5 that the
proposed method, while already of very high accuracy even in the worst case, could
most likely be further improved by the use of a curvature-based error model. Once
such an error model were in place it would also enable us to use an additional kind
of distinguished point, namely inflections, isolated points of zero curvature. All the
properties of bitangent points given above also hold for inflections; it is however
difficult to accurately compute both their orientation (needed for the intersection)
and position (needed for crosspoints, interpair intersections and the calculation
of the vertex) simultaneously. A curvature-based error-model would allow us to
quantify this uncertainty and take it into account. While easily enough done
in theory it unfortunately suffers from the fact that curvature for low-curvature
regions cannot be calculated accurately in practice, as I demonstrated in [7].
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7.7 SHGCs and Symmetric Contours

Much of what has been said about SORs is also applicable to objects with a
planar symmetric contour generator and to SHGCs. The former is immediately
obvious from the fact that I only used property 3 explicitly, relating to the projec-
tive symmetry between the two sides of the contour of an SOR. This symmetry-
relationship of course also applies to all planar symmetric objects, as well as to all
three-dimensional objects which only have a planar outline — examples include
flying airplanes as viewed from the ground [12], tools like a pair of pliers or scis-
sors [27, 83, 92], objects like spoons or ashtrays [101], or individual faces of complex
objects [55, 128]. Properties 1 and 2 were only used implicitly, in the selection of
the distinguished points, but since order of contact is a projective invariant those
do of course hold here too.

Things are more difficult for SHGCs. Here only Properties 1 and 2 are valid; we can
use those to locate distinguished points and to compute the axis as a line through
the intersections of bitangents or inflections. However, neither cross sections nor
interpair features are meaningful for SHGCs, and pairing corresponding contour-
segments will usually be difficult. One possible approach is to use the Hough-like
algorithm proposed in [121] to identify candidate pairs and from there proceed
using bitangent points and intersections; otherwise we would have to investigate
all O(n2) possible combinations.
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Conclusion

“Tut, tut, child,” said the Duchess. “Everything’s got a moral if only you
can find it.”

Lewis Carrol, Alice’s Adventures in Wonderland, 1832–1898
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8.1 Discussion

In this thesis I have presented an approach for the combination of projective geom-
etry with error propagation. I also presented three different application domains
were the combination of projective geometry and error propagation was used suc-
cessfully to group diverse features of images of two- and three-dimensional struc-
tures. I believe that these examples favourably showcase the advantage of error-
propagation augmented projective geometry over standard projective geometry. In
the following I will recapitulate the individual chapters and their main observations
in more detail.

The thesis started with introductions into projective geometry in Chapter 2 and
error propagation in Chapter 3. These only serve as a summary and reminder
and do not contain any original material. The thesis proper started in Chapter 4,
which describes the combination of error-propagation principles with projective
geometry. Here I discussed a number of additional parameterisations, in addition
to standard homogeneous coordinates, exemplarily concentrating on the (α, x, y)T

parameterisation for lines in many examples. As a first example I revisited the
line-fitting problem in Section 4.3. Starting from first principles I demonstrated
that the usually employed algorithm, orthogonal regression or total least squares,
is only applicable for independently, identically, and isotropically distributed (iiid)
features; I then demonstrated that this is approximately the case for edgels — and,
later on in Chapter 7, demonstrated that a violation of this restriction can result in
completely unusable results. In addition to the exact solution for a line’s covariance
matrix I next gave an excellent and previously unpublished approximation to this
matrix, which allows us to reap all the advantages of error propagation at virtually
no extra costs — at least if fitting a line to iiid edgels (see Section 4.3.2.2). I next
considered the problem of incrementally fitting a line to edgels along an edgel-
chain. Here the main problems are to decide when to start fitting, and when to
stop, and in Section 4.3.3 I gave a χ2-based error measure which allows us to fit
lines to considerably fewer edgels than was previously possible (using a fixed error
measure).

I next had a look at the problem of finding a point as the intersection of lines
(Section 4.4). In projective geometry this is usually considered the dual problem
of the line-fit problem described above — however, I believe that I was able to
satisfactorily show that for practical problems in computer vision this is usually
not the case. I gave a number of different approaches which all manage to find
the most likely intersection of a number of lines with varying distributions, but
tackle the problem from different angles, thereby highlighting different aspects of
the underlying geometric problem. The results of a Monte-Carlo simulation for
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different line-constellations were then used to give an intuitive explanation why the
spherical normalisation used by many authors is indeed superior to a Euclidean
normalisation.

The first thing which springs to the mind of any person working in computer vision
when coincident lines or collinear points are mentioned is the cross-ratio of four
such points or lines. The accurate calculation of such a cross-ratio traditionally
requires the accurate calculation of the common line / point prior to the calculation
of the cross-ratio. However, if done correctly this can become a costly operation,
since we have seen in Sections 4.3 and 4.4 that in the general case (non-iiid features)
only iterative solutions exist. In Section 4.5 I therefore presented a new approach
which uses error-propagation principles to approximately minimise the error in the
cross-ratio without prior calculation of a common line / point. The results from this
approach can be virtually as good as the results of the best available algorithms,
but at a fraction of the cost. I believe that this example clearly demonstrates that
not only needs the use of error propagation not be costly, but it can in fact help
to both increase the accuracy and to speed up algorithms at the same time.

In Section 4.6 I finally demonstrated how to compare geometric features consid-
ering their relative uncertainty. This offers the unwary a few pitfalls not present
in standard stochastic: redundant parameterisations, which are very common in
computer vision and projective geometry, need to be normalised, and the usually
singular covariance matrices warrant special treatment. These are, however, easy
to deal with in practice, and the use of a statistical test (I recommend the χ2-test)
allows us to replace the fixed thresholds all too common in computer vision (“Is
the difference at most 10 pixel?”) with a much more meaningful measure based on
confidence in the result (“Is there at most a 5% chance that this observation does
contradict my assumption?”). The next three chapters then showed applications
of these principles.

In Chapter 5 I presented an application where originally parallel lines of a given
cross-ratio are grouped. The size of the features can vary considerably (by about a
factor of 10) from image to image, but also within a single image, where both the
width of a stripe (due to perspective foreshortening) as well as the length (due to
occlusions) can again easily vary by a factor of 10. In addition there are only very
lax bounds on the position of the line segments; the vanishing point can be located
in the image, at infinity, or anywhere in between. All this makes fixed thresholds
absolutely useless (a 10 pixel distance between lines and vanishing point is huge
if the point is visible in the image, but nothing if the vanishing point is close to
infinity), while the χ2 measures remains the same for all possible vanishing-point
locations. I do indeed believe that this problem can not be tackled without the use
of error propagation, and the fact that all papers based on my work [6][134, 135,
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137] either used at least some form of rudimentary error propagation or (usually)
only showed examples with much more homogeneous features (line segments of
similar length and distance, vanishing point and vanishing line of the structure far
outside the image) underscores this belief (a proof is, of course, impossible).

In Chapter 6 I presented an application where the same features, short line seg-
ments, are used both to calculate points far away as well as close to the image
(vanishing points), but also to group several short segments into one longer seg-
ment. Both operations are based on the same basic information derived from a
simple line fit and simultaneous calculation of the line-segments’ covariance matri-
ces as described in Section 4.3; however, here I also demonstrated how additional
knowledge about the uncertainty in the 3D-model can be incorporated. The van-
ishing points, assumed orthogonal in reality, are then used to calculate an approx-
imation of the focal length in a statistically sound way, which takes into account
the considerably different covariances of vanishing points at infinity compared to
such close to the image, compare Section 4.4. But here I also addressed a possible
representation of uncertainties both in 2D and 3D; in Section 6.4.1 I compared
the performance of several error models from the literature on the identification
of line-continuations, and in Section 6.4.2 I had a closer look at the effect that
positional and orientational errors in 3D can have on the calculation of vanishing
points (see Section 6.4.2.1) and line-continuations (see Section 6.4.2.2). The dif-
ferent pieces were finally used to outline how an algorithm for the grouping and
segmentation of the individual faces of houses (or similar structures) could look
like, and Section 6.5 presents a number of encouraging results even for so simple
an algorithm.

In Chapter 7 finally I revisited the problem of fitting a line to points, but instead
of iiid edgels, as was assumed in Section 4.3, I now used bitangent-intersections,
features which are very much neither identically nor isotropically distributed. I
compared several algorithms for the calculation of a line through these features
and demonstrated that the most commonly used algorithm, total least squares, can
fail completely under such a scenario (which violates the implicit assumption of
iiid data), while algorithms which do use error propagation and therefore take into
account the individual points’ covariances perform consistently well. All in all I
believe that Chapters 4–7 convincingly demonstrated both that error propagation
need not be painful or time-consuming, but also that error propagation can greatly
simplify or in fact afford computations which would otherwise have been difficult
or impossible.
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8.2 Research Directions

A number of incremental improvements suggest themselves: the algorithm pre-
sented in Section 6 could use corner-information and the subjective structures
introduced by Brillault-O’Mahony in [21]; the positional error in the bitangent
points in Chapter 7 should really be based on the curvature at that point —
however, since I proved in [7] that for all interesting cases curvature can not be
calculated from edgels alone this would either mean to find a new method for
curvature calculation (possibly based on the entire gradient-field as opposed to
just the gradient’s maximum) or an heuristic approximation to curvature. All this
is thematically well outside the scope of this thesis, but might make interesting
projects for a student-thesis. Incremental improvements are also possible in the
automatic determination of an edgel’s covariance depending on imaging device
and edge-finder used, or in the consideration of orientation dependent covariances;
these would again make for nice student-theses.

A much more serious problem which this thesis completely ignored is the prob-
lem of bias due to projective foreshortening. The originally Gaussian (or assumed
Gaussian) noise in the image can become strongly non-Gaussian when projected
back onto the object; in particular will the distribution’s mean in the image not nor-
mally be mapped onto the transformed distribution’s mean in the object frame,
but will have a systematic offset, and this offset can result in a bias of derived
features. It is possible to account for and correct this bias, but only if the trans-
formation between object and image is known up to an Euclidean transformation,
which is not normally the case; it might be interesting to see what corrections are
possible if only structural information is available as was the case for the examples
in Chapters 5–7.

8.2.1 Towards Multi-modal Representations

However, after several years of work in projective geometry, all of it contour based,
I have come to the conclusion that the confinement to edgels alone is simply too
limiting to allow for anything more than incremental improvements. Contour
based computer vision, which looked so promising 30 years ago, is really rather
like sitting in Plato’s cave, trying to guess what the world outside might look like
from shadows alone1. Getting rid of texture and shading, which looked like a
boon in the days when memory was counted in kilobytes and computing speed in

1We are, of course, in a much more fortunate position than the people in Plato’s cave, since
we do have a host of a-priori knowledge about the real world at our disposal
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Figure 8.1: Ambiguous image of either a vase
or two faces. The ambiguity cannot be resolved
without additional information such as shading.

kilohertz, has now come back to haunt us. True, we can deal with images like the
one in Figure 8.1 — if we know whether we are dealing with either SORs or human
faces — but the loss of information if only contours are considered is hard to make
up for. I still believe that the application described in Chapter 5 — the detection
of pedestrian crossings — is best done using a line-based algorithm; but grouping
the individual faces of houses in Chapter 6 is at least difficult without the use of
colour or texture, it becomes essentially unsolvable if we are dealing with things
like row- or terrace-houses, where individual houses differ by colour and texture
alone, but otherwise have exactly the same geometry.

And of course here too we are dealing with measurements — but how do we model
the error in, e. g., a colour? A hue based representation suggests itself, but what
about the brightness? Even on a planar surface this will rarely be uniform, and this
certainly isn’t the case for any non-planar surface. Should brightness be modelled
using a predictive filter? Some sort of Markov process? Maybe it shouldn’t be
modelled at all? Currently a host of different representations for colour coexist,
and this is the easy case — modelling the error in texture representations might
prove the real challenge. It is a wide field out there, and anybody not believing
that a mixture of Gaussians is the answer to everything has his work cut out.
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Index

aberration
chromatic, 78

axial, 78
lateral, 78

monochromatic, 78
astigmatism, 78
barrel distortion, 78
coma, 78
curvilinear distortion, 78
field curvature, 78
pincushion distortion, 78
spherical, 78

Seidel, 78
affine

camera, 28
group, 22
symmetry, 193
transformation, 22

algebraic distance, 86
analysis

texture, 121
angle-centre

line parameterisation, 84
angle-distance

line parameterisation, 84
angle-intercept

line parameterisation, 84
astigmatism, 78
automorphism, 50
axial chromatic aberration, 78
axial data, 71

axis
generalised cylinder, 188
of revolution, 190
of symmetry, 190

backprojection, 45
barrel distortion, 78
Bayer filter, 78
bitangent, 47
blunder, 59
bottom-up grouping, 128
bounding rectangle, 162
buildings

model, 149

camera
affine, 28
constrained perspective, 31
natural, 31
perspective, 29

constrained, 31
weak, 26

pin-hole, 29
projective, 30
quasi-calibrated, 31
real, 32
sensible, 31
weak perspective, 26

camera calibration, 156
canonical frame, 44
casttangent, 47
central limit theorem, 64
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central moments, 61
central projection, 18
centre-angle

line parameterisation, 84
chirp, 23
chromatic aberration, 78

axial, 78
lateral, 78

cofactor, 61
cofactor matrix, 63
coincident rays

space of, 53
coma, 78
comparing crossratios, 117
comparing lines, 115
comparing points, 116
compression

lossy, 78
conic

defined by crossratio, 42
definition, 36
line-conic, 37
self-dual, 37

conic projection, 18
constrained perspective camera, 31
contour

occluding, 192
contour-generator, 192
coordinates

homogeneous, 21
projective, 42

on the line, 42
on the plane, 42

coordinate system
image-centred, 25
viewer-centred, 25

covariance matrix, 63
sample, 63

covariance region
hyperbolic, 101

crease, 192
cross section, 188
crossratio, 38

alternative formulation, 41
calculation, 102

direct, 104
comparison, 117
defining conic, 42
definition, 38
of angles, 40
of coincident lines, 40
of collinear points, 38
special cases, 39

curvilinear distortion, 78
cylinder

generalised, 188
straight homogeneous generalised,

188, 189

data
axial, 71

defocus, 78
detection

vanishing point, 153
diffraction, 78
direction, 71
discretisation, 78
distance

algebraic, 86
distinguished point, 46, 195
distortion

curvilinear, 78
barrel, 78
pincushion, 78

distribution
Gauss, 62
normal, 62

duality, 33

edge, 192
edgel, 77
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edge element, 77
effect

systematic, 59
empirical mean, 61
endpoints

line parameterisation, 84
equianharmonic tetrad, 40
equivalent number of edgels, 90
error

blunder, 59
outlier, 59
random, 59
systematic, 59

error propagation, 64
error source, 78
Euclidean

group, 21
transformation, 21

expectation, 60

face (building), 162
field curvature, 78
filter

Bayer, 78
mosaicing, 78

fixed point, 50
flares, 78
focal length, 56

calculation, 156
focus-setting, 29
frame

canonical, 44
semi, 49

Gaussian sphere, 55
Gauss distribution, 62
generalised cylinder, 188

axis, 188
spine, 188

generating curve, 190
generating function, 190

great circle, 55
group

affine, 22
Euclidean, 21
projective, 19, 23
similarity, 22

grouping
bottom-up, 128
perceptual, 126
top-down, 127

hardware
MOVIS, 144

harmonic separation, 40, 51
homogeneous coordinates, 21
homogeneous vector

line parameterisation, 84
homography, 20
homology

plane, 51
special, 51

plane harmonic, 52
hyperbolic covariance region, 101
hypotheses

merging, 135

image-centred coordinate system, 25
implicit function theorem, 68
inflection, 47
intercept-intercept

line parameterisation, 84
involution, 50

Jacobian, 66

keystoning, 23

lateral chromatic aberration, 78
Legoland, 148
lens

telecentric, 27
limb, 192
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line
comparison, 115
covariance

approximation, 90
definition, 33
detection, 82

fixed number of points, 85
incremental, 91

parameterisation, 84
angle-centre, 84
angle-distance, 84
angle-intercept, 84
endpoints, 84
homogeneous vector, 84
intercept-intercept, 84
normal-form, 84
slope-intercept, 84

line-conic, 37
linearisation, 67
line segment, 84
lossy compression, 78

matrix
cofactor, 63
covariance, 63
of second central moments, 62
variance-covariance, 62

mean, 60
empirical, 61
population, 60
sample, 61, 63

mean resultant length, 72
merging hypotheses, 135
meridian, 191
model

buildings, 149
SORs, 190
zebra crossings, 123

moment
central, 61
first, see mean

second, see variance
monochromatic aberration, 78
mosaicing filter, 78
MOVIS, 120
MOVIS hardware, 144

N -vector, 56
natural camera, 31
normal-form

line parameterisation, 84
normal distribution, 62
number of edgels

equivalent, 90

occluding contour, 192
orientation, 71
outlier, 59
overlap, 129

parallel, 191
parallel structure

repeated, 120
pedestrian crossing, 120, 121
pencil, 40
perceptual grouping, 126
perspective

camera, 29
skew, 23
transformation, 30

pin-hole camera, 29
pincushion distortion, 78
pixel noise, 78
plane harmonic homology, 52
plane homology, 51

special, 51
points

comparison, 116
polar, 37
pole, 38
population mean, 60
projection
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central, 18
conic, 18
scaled orthographic, 27

projective
camera, 30
group, 19, 23
shear, 23
transformation, 23, 30

projective coordinates, 42
on the line, 42
on the plane, 42

projective symmetry, 53
propagation of errors, 64
propagation of statistical properties, 64
property

statistical, 59

quasi-calibrated camera, 31

random error, 59
random sample consensus, 59
RANSAC, 59
ray space, 53
real camera, 32
reference variance, 61
relative variance, 61
repeated parallel structure, 120
repeated structure

parallel, 120
revolution

axis of, 190
surface of, 188

rim, 192

sample covariance matrix, 63
sample mean, 61, 63
sample variance, 62
scaled orthographic projection, 27
scaling function, 191
second central moments

matrix of, 62

second moment, 61
segment

line, 84
Seidel aberration, 78
self-dual

conic, 37
semi-frame, 49
sensible camera, 31
separation

harmonic, 40, 51
shear

projective, 23
SHGC, 188, 189
significance level, 70
similarity

group, 22
transformation, 22

skew
perspective, 23

skewed symmetry, 50, 193
slope-intercept

line parameterisation, 84
smallest bounding rectangle, 162
SOR, 188

model, 190
space of coincident rays, 53
special plane homology, 51
sphere

Gaussian, 55
spherical aberration, 78
spherical variance, 72
spine, 188
square

unit, 45
standard deviation, 61
statistical property, 59
straight homogeneous generalised cylin-

der, 188, 189
structure

parallel
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repeated, 120
repeated

parallel, 120
surface of revolution, 188
sweeping rule, 189, 191
symmetry

affine, 193
projective, 53
skewed, 50, 193

symmetry axis, 190
systematic

effect, 59
error, 59

telecentric lens, 27
tetrad

equianharmonic, 40
texture analysis, 121
top-down grouping, 127
transformation

affine, 22
Euclidean, 21
perspective, 30
projective, 23, 30
similarity, 22

triangle of reference, 45, 46

united points, 50, 51
unit point, 45, 46
unit square, 45

vanishing line, 35
vanishing point, 35, 127
vanishing point detection, 153

iterative improvement, 154
variance, 61

reference, 61
relative, 61
sample, 62
spherical, 72

variance-covariance matrix, 62

vertex, 51
viewer-centred coordinate system, 25
vignetting, 78

weak perspective camera, 26

zebra crossing, 120, 121
model, 123
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