
Lehrstuhl für Mensch-Maschine-Kommunikation
Technische Universität München

Efficient Integration of Hierarchical Knowledge
Sources and the Estimation of

Semantic Confidences
for Automatic Speech Interpretation

Robert Lieb

Vollständiger Abdruck der
von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München
zur Erlangung des akademischen Grades

eines Doktor-Ingenieurs genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Georg Färber

Prüfer der Dissertation:

1. apl. Prof. Dr.-Ing., Dr.-Ing. habil. Günther Ruske
2. Univ-Prof. Dr.-Ing. Gernot A. Fink (Universität Dortmund)

Die Dissertation wurde am 19.06.2006 bei der
Technischen Universität München eingereicht und durch die

Fakultät für Elektrotechnik und Informationstechnik
am 03.11.2006 angenommen.

Abstract

This thesis presents a system for the interpretation of natural speech which serves
as input module for a spoken dialog system. It carries out the task of extracting
application-specific pieces of information from the user utterance in order to pass
them to the control module of the dialog system.

By following the approach of integrating speech recognition and speech interpre-
tation, the system is able to determine the spoken word sequence together with the
hierarchical utterance structure that is necessary for the extraction of information
directly from the recorded speech signal.

The efficient implementation of the underlying decoder is based on the powerful
tool of weighted finite state transducers (WFSTs). This tool allows to compile all
involved knowledge sources into an optimized network representation of the search
space which is constructed dynamically during the ongoing decoding process.

In addition to the best-matching result, the integrated decoder architecture
allows to determine grammatical alternatives which are exploited to estimate
semantic confidence values for the extracted pieces of information. This new method
improves the robustness against interpretation errors without requiring any addi-
tional knowledge source.

iii

Zusammenfassung

Diese Arbeit beschreibt ein System zur Interpretation von natürlicher Sprache, das
als Teil eines automatischen Dialogsystems applikations-spezifische Informationen
aus Benutzeräußerungen extrahiert. Durch die Vereinigung von Spracherkennung
und -interpretation gelingt es, die für die Informationsextraktion erforderliche hier-
archische Struktur einer Äußerung direkt aus dem Sprachsignal zu gewinnen.

Die effiziente Realisierung des Dekoders beruht auf dem mächtigen Kalkül der
gewichteten endlichen Transduktoren (engl. WFST), der voranschreitend mit dem
Ablauf des Dekodiervorgangs aus allen involvierten Wissensquellen eine optimale
Netzwerkdarstellung des aktiven Suchraums generiert.

Neben dem besten Ergebnis erlaubt die integrierte Dekoderarchitektur die Erzeu-
gung von grammatischen Alternativen, auf deren Basis semantische Konfidenzen für
die extrahierten Informationen geschätzt werden. Damit wird die Fehlerrobustheit
erhöht, ohne dass hierfür eine weitere Wissensquelle erforderlich ist.

iv

Danksagungen

Ich möchte mich herzlich bei meinem ehemaligen Kollegen Matthias Thomae für die
sehr gute Zusammenarbeit während unserer gemeinsamen Forschungstätigkeit am
Lehrstuhl für Mensch-Maschine-Kommunikation bedanken.

Dank gebührt natürlich ebenso Prof. Ruske, welcher mich während dieser Zeit
bestens betreut hat; seine Bürotüre stand stets offen für Fragen und Diskussio-
nen. Vielen Dank auch an den Zweitgutachter Prof. Fink, an den Lehrstuhlinhaber
Prof. Rigoll, sowie an die BMW AG, welche durch die Förderung von Forschungs-
Projekten diese Arbeit finanziert und somit möglich gemacht hat.

“Last but not least” möchte ich mich bei meiner Frau Ofelia bedanken, die mir
auch in schwierigen Phasen der Doktorarbeit stets den Rücken freigehalten hat.

Robert Lieb
München, Januar 2007

v

Contents

1 Introduction 1
1.1 Spoken language understanding . 4

1.1.1 Speech recognition . 5
1.1.2 Natural language understanding 5
1.1.3 Coupling speech recognition and interpretation 6

1.2 Issue of robustness . 7
1.3 Thesis contribution . 8

2 Word-based speech recognition 13
2.1 Decoding problem for speech recognition 13
2.2 Acoustic modeling by Hidden Markov Models 14
2.3 HMM parameter estimation . 16
2.4 Isolated word recognition . 16
2.5 Continuous speech recognition . 17

2.5.1 Language model . 18
2.5.2 Integrated search network . 18
2.5.3 Time-synchronous Viterbi decoding 19
2.5.4 Backtracking . 20
2.5.5 Representation of probabilities 20

2.6 Sub-word modeling . 20
2.6.1 Phonemes as sub-word units 21
2.6.2 Context-dependent phoneme models 21

3 Modeling approach for one-stage speech interpretation 23
3.1 Representation and processing of formal languages 23

3.1.1 Context-free and regular grammars 23
3.1.2 Finite-state automata and regular expressions 25
3.1.3 Parsing algorithms . 27
3.1.4 Recursive transition networks 28
3.1.5 Stochastic weights . 28

3.2 Generalizing vs. application-specific semantics 29
3.2.1 Feature grammars and first order logic 29
3.2.2 Semantic grammars and slot-value pairs 30

3.3 One-stage speech interpretation . 32
3.3.1 Tight coupling approach . 32
3.3.2 Weighted transition network hierarchy (WTNH) 34
3.3.3 Creation of the hierarchical language model (HLM) 34

vi

CONTENTS

4 Integration of speech recognition and interpretation 39
4.1 Static search space organization . 39
4.2 Introduction to WFST-based speech recognition 42

4.2.1 Efficient integration of knowledge sources in LVSR 42
4.2.2 Definition of WFSTs . 43
4.2.3 Automaton representation of knowledge sources 44
4.2.4 Composition and Determinization 45
4.2.5 Problem of “determinizability” 52
4.2.6 On-demand computation of local automata operations 52

4.3 WFST-based integration of recognition and parsing 55
4.3.1 Weighted finite-state acceptor representing the HLM 55
4.3.2 Lexicon transducer . 60
4.3.3 Acoustic model transducer 62
4.3.4 Triphone context-dependency transducer 63

4.4 Viterbi decoding of best-matching parse tree 65
4.4.1 Token passing in on-demand created search space 65
4.4.2 Estimated rank pruning of improbable tokens 69

4.5 Performance comparison of decoder implementations 70

5 Grammatical alternatives and semantic confidences 73
5.1 Word lattices . 73
5.2 Flat lattice and lattice hierarchy representation 74

5.2.1 N -best token-passing for flat lattice generation 77
5.2.2 Construction of lattice hierarchy on flat lattice 80
5.2.3 Determination of the N -best parse trees 84

5.3 Estimation of semantic confidences 84
5.3.1 Word-based confidence measures 85
5.3.2 Estimation of parse tree node confidences 88
5.3.3 Confidence-based pruning of flat lattice 89
5.3.4 Slot- and Value confidences 90

6 Evaluation methods and experimental results 93
6.1 Off-line evaluation methods . 93

6.1.1 Word-based evaluation . 94
6.1.2 Tree-based evaluation . 95
6.1.3 Performance of information extraction 97
6.1.4 Evaluation of confidence estimation 98

6.2 Airport information corpus . 100
6.2.1 Data collection . 100
6.2.2 Experimental setup . 101

6.3 Experimental results . 103
6.3.1 Evaluation of parse tree node confidences 104
6.3.2 Comparison with explicit out-of-vocabulary model 106

7 Conclusion 109

Bibliography 114

vii

List of Figures

2.1 Example for a continuous HMM used for speech processing, repre-
sented by the parameter set λ = (p(x|si), aij , ei, e

′
i). 14

2.2 Example of integrated search network for continuous speech recogni-
tion. “Enter” and “Exit” refer to a silence model at the start and the
end of the utterance. 17

3.1 Finite-state automaton accepting the language {ambn|m,n > 0} . . . 26
3.2 Snippet of a semantic grammar in ABNF format that describes the

expression of the time of day in German language. 31
3.3 Snippet of exemplary WTNH representing all relevant knowledge

sources on semantic-syntactic, lexical and acoustic-phonetic level. . . 33
3.4 Generation and application of the hierarchical language model (HLM)

in the context of a spoken dialog system. 35

4.1 Example demonstrating the static token passing strategy for the WTNH
which relies on sharing the memory reserved for tokens. 40

4.2 “Toy” language model represented by the weighted acceptor G. . . . 45
4.3 Phonetic lexicon for language model G represented by transducer L. 45
4.4 Composition of “toy” lexicon L and language model G. 47
4.5 Example from [MPR02] for the composition of ε-free WFSTs. 47
4.6 Optimized representation of L ◦G resulting from determinization. . 49
4.7 Example from [Moh97] for the determinization of WFSAs. 49
4.8 Example for a stochastic context-free grammar represented as hierar-

chical language model (HLM). 56
4.9 Representation of the HLM as weighted finite-state acceptor G̃. . . . 56
4.10 Layout of the phonetic lexicon transducer L̃ suited for the composition

with the HLM acceptor G̃. 61
4.11 Layout of the acoustic model transducer H̃ suited for the composition

with the result of det(L̃ ◦ G̃). 61
4.12 Snippet explaining the layout of the intra-word triphone transcuder

C̃ suited for the composition with the result of det(L̃ ◦ G̃). 63
4.13 Performance comparison of decoder implementations that use the

static and the dynamic search space organization. 71

5.1 Snippet of exemplary flat lattice, that captures grammatical con-
straints by pairs of opening (εsub) and closing lattice nodes (e.g.
“WC Hour”). 75

viii

LIST OF FIGURES

5.2 Snippet of lattice hierarchy that corresponds to flat lattice example. 75
5.3 Example demonstrating the generation of the flat lattice for the static

search space organization. 77
5.4 Illustration of the recombination of tokens inside the search space

transducer that is constructed by on-demand WFST operations. . . 78
5.5 Example demonstrating the generation of the flat lattice for the dy-

namic search space organization via the on-demand composition of
the search space transducer. 80

5.6 Example which shows the construction of the lattice hierarchy on the
flat lattice. 81

5.7 Best parse tree which corresponds to the sequence of visited sub-
lattice instances when walking along the best path in figure 5.6. . . . 82

5.8 Example illustrating the calculation of word confidences by carrying
out the forward-backward algorithm on the word lattice. 85

5.9 Example showing the extraction of slot-value pairs and their corre-
sponding confidences from a decoded parse tree that contains a flight
code. 91

6.1 Example for the alignment of hypothesis (a) and corresponding ref-
erence parse tree (b) that identifies correct, substituted, inserted and
deleted tree nodes. 96

6.2 ROC-curves for confidence definitions C and Csec for relevant tree
nodes on concept (CO), word class (WC) and word (W) hierarchy
level, as well as over all relevant tree nodes (TOT). 105

ix

List of Tables

3.1 Chomsky’s hierarchy of formal grammars and their equivalent ab-
stract machines. 25

3.2 Operations used in regular expressions. 27

6.1 Amount of data collected for the airport information domain in lab-
oratory and car environments. 101

6.2 Partitioning of airport information corpus and statistics of the parse
tree annotation which is generated with the aid of the handcrafted
semantic grammar. 102

6.3 Results of the experiment with the baseline speech interpretation sys-
tem; determined on the basis of words (Accword), parse tree nodes
(Acctree), relevant parse tree nodes (Accrel

tree) and slot-value pairs (F -
Measure, Accslot). 103

6.4 Tree node accuracy and confidence error rate for confidence definitions
C and Csec for relevant tree nodes on concept (CO), word class (WC)
and word (W) hierarchy level, as well as for all relevant tree nodes
(TOT). 104

6.5 Comparison of improvements in information extraction performance
achieved by exploiting the estimated slot confidences and by using an
explicit out-of-vocabulary model. 106

x

LIST OF TABLES

xi

Chapter 1

Introduction

Spoken language is the most natural and direct means of interpersonal commu-
nication and one of the most important skills that make up the human intellect.
Therefore, it is not astonishing that the vision of artificial intelligence paints the
picture of machines that have the ability to communicate with humans by spoken
language. Almost everybody knows the science fiction scenarios where intelligent
machines with conversational skills, like androids or space ships, play the role of
omniscient counselors which help humans to solve complex problems or to make
difficult decisions.

The belief that those visions will once come true has been nourished by the over-
whelming development of the computer technology that brought us the so-called
“Age of Information”. It is actually true that our daily interaction with information
processing systems provides many reasonable usage scenarios for the communica-
tion between man and machine by spoken language. Spoken language is particu-
larly interesting in usage scenarios where conventional input and output devices like
keyboards or displays are not available, or can be provided only in a reduced form.
This may be the case due to the limited size of the corresponding electronic device or
because the user’s tactile and visual communication channels are reserved for other
tasks. Examples for such usage scenarios are mobile phones or personal digital as-
sistants, onboard-computers in automobiles and voice portals. Typical applications
provided in such environments are the management of the user’s personal commu-
nication (e.g. phone calls, messages, addresses and phone numbers), the handling
of the large amount of functions available in vehicle cockpits (e.g. the control of the
car’s navigation and entertainment systems), public information services (e.g. news,
weather, train or flight schedules) and customer services (e.g. product information,
online-shopping).

In comparison to other communication modalities, spoken language has the ap-
pealing advantage that it combines intuitive usage with universal expressiveness. On
the one hand the interaction with spoken language does not require the handling of
some complex input device, which may distract the user from other tasks. On the
other hand, almost everything can be expressed by spoken language, such that there
is almost no restriction concerning the semantic complexity of the transported infor-
mation. There are only a few examples, like the adjustment of continuous parameters
(e.g. the volume of the car radio), where spoken language is less appropriate.

1

Chapter 1. Introduction

While there is no doubt about the great potential of spoken language for human-
machine communication, the realization of technical systems that actually tap this
potential remains an open challenge which is still subject of intensive scientific re-
search. The encountered difficulties are above all the consequence of the fact that
when using our natural way to communicate we usually tend to assume a dialog
partner with human intellect that can only be simulated to a very limited extend
by means of today’s computing machines. At the same time, many of the above
mentioned applications actually aim on replacing humans in situations where they
are not available or in order to save payroll costs.

In contrast to science-fiction scenarios where the final barrier between man and
machine is often drawn with respect to human emotions, in reality difficulties arise
on a much lower level. One of the main problems is to find an adequate knowledge
representation and a corresponding formalism that in the end allows to determine
the appropriate system reaction. A plethora of different knowledge representation
and processing formalisms has been suggested so far. Unfortunately, all of them
turned out to be brittle when attempting to create a general ontology, that cap-
tures the whole world’s knowledge in order to provide a basis for the simulation of
domain-independent conversational skills. Furthermore, the use of spoken language
additionally entails the problem of processing the speech signal which represents the
contained information in a non-symbolic way. On the input side, this affords the
heavy reduction and normalization of the observed signal data in order to extract
the transported high-level information. For the output of spoken language just the
opposite problem has to be solved, namely the diversification and individualization
of the high-level information in order to achieve a natural wording and voice.

A pragmatic way to tackle the above mentioned problems is to give up the am-
bitious goal to find an universal approach to the simulation of domain-independent
conversational skills. Therefore, without worrying too much about the lack of a
general theory, engineers are developing spoken dialog systems that are tailored for
specific application domains. Spoken dialog systems are based on the interconnection
of software modules which are responsible for speech recognition and understand-
ing, dialog and database management, as well as response generation and speech
synthesis. These modules usually exploit separate knowledge sources and exchange
information over a specific communication protocol. The interaction with the user
usually takes place in the following manner: the dialog is initiated with a system
prompt that greets the user. Then, the system waits for the user utterance, which is
processed by the speech recognition and understanding module in order to extract
the application-specific information which is passed to the module responsible for
the dialog management. By processing the extracted information, the dialog man-
agement determines the appropriate system reaction which is then translated into an
adequate wording that is finally passed to the speech synthesis module which plays
the system response to the user. During the ongoing conversation which consists of a
sequence of such dialog cycles the dialog system has to cope with the demanding task
to extract the relevant information from consecutive user utterances and to translate
this knowledge into a cooperative policy that supports the user in accomplishing the
intended actions.

In practice, spoken dialog systems are often integrated into multi-modal user
interfaces that allow the use of spoken language in combination with haptic input

2

devices and displays. In many cases this leaded to solutions which provide rather a
voice control of the conventional human-machine interface than a real conversational
interface. Typical for those kind of systems is a small vocabulary that only allows
utterances in a command-like style. In the case of complex actions that require the
input of several pieces of information, the dialog is heavily directed by the system
which asks the user in a predefined order to provide each piece of information in
a separate utterance. Voice interfaces with these restricted capabilities have the
advantage of an easy-to-manage configuration that can be rapidly developed and
tested in a consistent way and thus represent the state-of-the-art in today’s com-
mercial solutions. However, they achieve only a moderate acceptance due to the
simple reason that for many users the use of spoken language implies conversational
skills that the system does not provide. The gap between their own conversational
competence and the restricted system capabilities makes those users feel uncomfort-
able such that they prefer conventional interaction modalities which might be more
cumbersome to use but provide a handling that is clearly defined.

Therefore, a major goal of the ongoing scientific research is to equip spoken
dialog systems with more powerful conversational capabilities, which in particular
are natural language understanding and a mixed-initiative dialog management. The
latter allows the user to decide freely about the complexity of his utterances. This
means, independently of the current dialog context, the user has the choice either
to use a complex utterance which contains several pieces of information or to give
only a part of the necessary information. In this case the system has to answer with
corresponding queries that ask the user to provide the missing pieces of informa-
tion, which can even be the subject of the request itself. Furthermore, the user may
reject system responses in order correct himself or interpretation errors committed
by the system. An important prerequisite for the application of dialog management
techniques that provide such advanced conversational capabilities is the process-
ing of complex utterances in natural language, in order to extract the contained
application-specific information. The task of spoken language understanding is the
central subject of the present work and will be introduced in the following section.

At the end of this general introduction to the background of the present work, it
should be mentioned that it is still questionable whether the just mentioned conver-
sational skills are actually realizable with reasonable effort, even when the dialog is
restricted to specific application domains. The reason for this is frightening simple
and typical for large software projects (what spoken dialog systems finally are): the
more complex a system gets, the more unmanageable becomes its administration
which in the context of a spoken dialog systems means that it becomes impractica-
ble to eliminate causes of erroneous system behavior due to the complex network of
dependencies that make up such systems. It remains to be seen whether in the near
future a compromise between the offered conversational skills and their technical
feasibility can be established, that is widely accepted by the users. When focusing
only on the effort to approach the ideal of human conversational skills, this goal may
become difficult to reach. On the other hand, it helps a lot to give conversational
interfaces a uniform design which makes the user change his mental model of a talk-
ing machine – away from the idea of a human dialog partner in direction to what
the user is actually talking to, namely a technical device which requires a specific
mode of verbal communication.

3

Chapter 1. Introduction

1.1 Spoken language understanding

The present thesis focuses on the task of extracting application-specific information
from the recorded speech signal of user utterances in natural language. Linguists,
who consider the underlying problem from a more general point of view, have divided
the involved knowledge into several conceptual levels (see [All95]):

• Acoustic-phonetic level. The acoustic-phonetic level describes the connec-
tion between the acoustic speech signal and a symbolic representation of the
pronunciation of words or parts of it.

• Morphological level. The morphological level considers the formation of
words from orthographical units (e.g. inflections, compound words, etc.)

• Syntactic level. The syntactic level deals with the construction of valid
sentences that follow specific grammatical rules.

• Semantic level. The semantic level considers the meaning of words and
phrase segments independently of the context of a particular sentence.

• Pragmatic level. The pragmatic level deals with knowledge which is not
explicitly expressed by a particular phrase but is necessary for its successful
interpretation (“world” knowledge).

• Discourse level. The discourse level considers how preceding sentences in-
fluences the interpretation of the next sentence.

The linguistic knowledge classification scheme provides a starting point to identify
subtasks that can be solved independently. However, when going into the details it
rapidly turns out that it is very difficult to isolate separate knowledge representa-
tions, due to the fact that the conceptual levels don’t represent a strict hierarchy
but tend to intersect each other.

The most obvious intermediate knowledge representation is the orthographic
transcription of a particular user utterance, which consists of a sequence of words. In
consequence, this representation links two different scientific communities, namely
the speech recognition community, which deals with digital signal processing and
pattern recognition, and the community of computational linguistics which addresses
the problem of natural language understanding. The goal of speech recognition is
to find out the correct word sequence from the speech signal of the user utterance,
whereas the goal of natural language understanding is to extract the semantic con-
tent which is transported by the wording of the user utterance. These two tasks
have quite different prerequisites: with the word sequence, speech recognition has a
well-defined output, but entails the problem of processing the noisy speech signal,
which shows great variance from various points of view, like for example the pronun-
ciation of words or the acoustic characteristics of different speakers and recording
conditions. To the contrary, natural language understanding has a well-defined in-
put, whereas the subtle outcome “semantic content” is so difficult to grasp, that
no widely accepted canonical representation could be established, so far. Moreover,
speech recognition can be seen as a segmentation task, which reveals the map-
ping between consecutive sections of the speech signal and the corresponding words,

4

1.1. Spoken language understanding

whereas the task of natural language understanding generally cannot be considered
on the basis of such a simple relation between input and output.

1.1.1 Speech recognition

Currently, the by far most successful approach to tackle the task of speech recogni-
tion is by means of statistical models which describe the variety of acoustical patterns
that may occur for each unit of a phonetic alphabet (see for example [Rab89]). This
alphabet provides all phonetic units which are necessary to put together the pro-
nunciation of arbitrary words from a particular language. The acoustic-phonetic
models for the pronunciation of words are combined with a so-called “language
model”, which describes the variety of possible word sequences usually in form of a
prior distribution. A speech recognition system compiles all those knowledge sources
into an integrated search space and uses an efficient decoding algorithm to deter-
mine the predicted word sequence which best matches the observed speech signal.
The straightforwardly structured knowledge representation (word sequence, word,
phonetic unit and corresponding acoustic pattern) permits a very successful appli-
cation of data-driven training algorithms which allow to estimate the large amount
of model parameters. Provided comprehensive data collections, speaker-invariant
acoustic models can be built almost automatically from the recorded speech signal
data and the corresponding orthographic corpus transcription.

1.1.2 Natural language understanding

In contrast to the case of speech recognition, the field of natural language under-
standing did not experience a comparable breakthrough of a singular problem solving
approach. This is above all the consequence of the difficulty of defining the task of
natural language understanding itself. From the linguistic point of view, this defi-
nition implies an overwhelming amount of complex knowledge involving all higher
conceptual levels of the just discussed knowledge classification scheme (morphologi-
cal, syntactic, semantic, pragmatic and discourse level). As already mentioned, the
currently known representation methods and processing formalisms do not allow
such a broad approach that considers all this knowledge in general. Therefore, in
the narrow context of spoken dialog systems, the understanding task is usually de-
fined as the extraction of application-specific information. The crucial question how
to process this information in order to determine an appropriate system reaction is
not included in this problem definition and is simply declared to be part of the dialog
management, which receives the extracted information. Because the term “under-
standing” may nevertheless imply some kind of system reaction, in the following the
less ambitious term “semantic interpretation” will be preferred instead.

Despite of being limited to a specific application domain, the problem of rep-
resenting and processing the knowledge which is necessary to extract application-
specific information from the wording of possible user utterances still remains diffi-
cult to grasp. In fact, it is even hard to give a unique definition for the “application-
specific information” itself, which heavily depends on the nature of the approach
which further processes the extracted information. In consequence to this great
degree of freedom concerning the actual problem definition, in scientific literature

5

Chapter 1. Introduction

one can find a multitude of approaches to domain-specific semantic interpretation
which are difficult to compare. In general, one can distinguish between approaches
that rely on rule-based knowledge that is handcrafted following linguistically moti-
vated guidelines (e.g. MIT’s TINA and SRI’s Gemini systems, see [Sen92, DG93])
and approaches which favor the application of machine-learning techniques simi-
lar to those which have been applied with great success in the discipline of speech
recognition (e.g. AT&T’s Chronous and BBN’s HUM systems, see [PT92, MB95]).
Unfortunately, this crude classification has often been overstressed, in order to evoke
a superficial discussion about the question whether machine-learning approaches are
more adequate than rule-based approaches. The truth however is, that in the con-
text of semantic interpretation, the application of machine-learning techniques still
requires a considerable amount of expert knowledge which provides the structural
framework for the training of statistical parameters, or which guides the translation
of the captured application-specific information into its final form. Therefore, the
actual question concerns the adequate design of the handcrafted knowledge which
allows a reasonable application of machine-learning techniques in order to infer at
least some knowledge from data, in particular those which is hard to specify for a
human expert. Until today, there are ongoing research activities in order to find con-
sistent solutions for this difficult problem, most often by incorporating knowledge
representations which abandon important linguistic principles, like a clear distinction
between syntax and semantics, whereas purely linguistically motivated representa-
tions are more and more considered as old-fashioned (see for example [HY05]).

Unfortunately, in practice, the size of domain-specific user utterance collections
is often limited due to the effort to conduct the necessary experiments, which re-
duces the impact of sophisticated machine-learning techniques. Since this has been
the case in the context of the present work, this thesis adopts a standard approach
to semantic interpretation, which is based on handcrafted semantic-syntactic knowl-
edge in form of a so-called “semantic grammar”. This approach is widely used in
practical applications and part of an upcoming industry standard (see [W3C04]). Se-
mantic grammars incorporate context-free grammar rules that associate the word-
ing of possible user utterances with a domain-specific hierarchical structure, that
guides the intended extraction of application-specific information. This information
is represented in form of “slot-value-pairs” (semantic variables), which provides a
straightforward interface to the dialog management. The extraction of slot-value
pairs however involves additional rules that are executed during the structural ana-
lysis that is effected by the aid of a parser that applies the given semantic grammar
to the wording of a specific user utterance.

1.1.3 Coupling speech recognition and interpretation

This thesis addresses above all the processing of spoken language, which requires
the coupling of speech recognition and semantic interpretation. The recognized word
sequence provides a simple interface for a serial coupling of the standard tools speech
recognizer and parser, which have emerged separately in the scientific communities
of speech recognition and natural language processing. However, the serial or “loose”
coupling has been criticized a lot, because of the fact that the knowledge sources of
speech recognizer and parser contain redundant information and cannot be applied

6

1.2. Issue of robustness

simultaneously. For the task to determine the semantic interpretation that best
matches the recorded speech signal, this approach is definitely suboptimal and may
even lead to unrecoverable errors in the case of inconsistencies in the redundant parts
of the involved knowledge sources. This happens if the language model predicts word
sequences that are not covered by the parser grammar, or vice versa (especially
stochastic language models incorporate constraints which do not match with the
rule-based structure of a semantic grammar).

Nevertheless, because of its straightforward realization, the sequential coupling of
recognizer and parser is common practice. In addition, it has been suggested to pass
a whole bunch of possible word sequences to the parser in order to have a backup
for the case that the best-matching word sequence is not included in the parser
grammar (see [CRAR99, HW01]), respectively to utilize robust parsing techniques
which allow to skip words which don’t fit into the parser grammar (see [Abn96]).
These precautions allow to weaken the just mentioned drawbacks and even provide
some robustness against interpretation errors. However, the usage of redundant and
partially inconsistent knowledge sources hamper the practical administration of the
speech interpretation system with respect to the intended application as a part of a
spoken dialog system (for example when having to eliminate specific interpretation
errors or when having to exchange parts of the knowledge sources). Therefore, it
has been suggested to harmonize the knowledge sources of speech recognizer and
parser, for example by utilizing the parser grammar itself as language model. This
is the method of choice in several commercial solutions for speech interpretation and
involves the compilation of the parser grammar into a word-based language model,
that can be processed by the speech recognizer (see for example [Nua01, HH00]).
Unfortunately, this solution still has the disadvantage of the sequential application
of speech recognizer and parser, which may cause a delay in the system reaction, if
the parser cannot determine the result in a short amount of time. Another drawback
is the initialization effort for the compilation of the semantic grammar, which has
to be repeated when exchanging parts of the semantic grammar during the ongoing
dialog.

These circumstances motivate the actual subject of this thesis, which is the
integration of speech recognition and semantic interpretation by a an approach that
tightly couples acoustic phonetic decoding and parsing and therefore applies all
involved knowledge sources simultaneously (see section 1.3).

1.2 Issue of robustness

In practice, it cannot be avoided that user utterances may contain parts which are
not included in the limited scope of the semantic-syntactic knowledge source. After
all, when suggesting natural speech input, one cannot expect from a user that he
knows exactly which particular wording is covered and which not. Furthermore,
even if the wording is theoretically part of the semantic-syntactic knowledge source,
there may still occur an interpretation error due to imperfect models on the acoustic-
phonetic level.

The problem of uncovered utterance parts becomes especially critical when as-
suming a tight integration of speech recognition and semantic interpretation. With-

7

Chapter 1. Introduction

out further precautions, there is no certitude about whether an extracted piece of
information relies on a good or a bad match between the integrated knowledge
sources and the observed speech signal. The knowledge about potential interpreta-
tion errors, respectively their prevention, is however very important for the further
processing of the extracted information inside the dialog management which plans
the following system reactions. During the corresponding decision process, the dia-
log management should not rely on unsafely extracted information that may cause
a misdirected dialog course which confuses the user. Potential interpretation errors
should either be discarded or exploited to trigger a dialog step which asks the user
to clarify his last statement. At the same time, the dialog management should not
pursue an overcautious strategy which asks the user to confirm pieces of information
that actually have been extracted correctly.

This thesis will present methods to improve the robustness against interpretation
errors, particularly by taking advantage of the pursued integrated speech interpre-
tation approach. These methods are based on two popular approaches that allow
to prevent recognition errors in word-based speech recognition systems. The first of
these approaches consists in integrating a general model for unknown words into the
language model, such that these words can be identified immediately by the recogni-
tion process. However, it cannot be prevented that the general model for unknown
words, which is also called “out-of-vocabulary” model, conflicts with the acoustic-
phonetic modeling that is provided for the explicitly known words. Therefore, in
practice this allows only a compromise which tries to identify as much unknown
words as possible, however without committing too many errors on known words,
which would be recognized correctly without the integration of the out-of-vocabulary
model (see [Baz02]). The same underlying method of integrating explicit models is
also applied to cope with disfluencies occurring in natural speech, like for example
pauses, laughter, coughing, hesitations or cut-off words.

In contrast the use of explicit models that capture uninterpretable parts of the
user utterance directly, the other approach for gaining robustness relies on an im-
plicit estimation of confidence values which measure the reliability of each word in
the recognized word sequence. A popular method effects this estimation on a net-
work representing probable alternatives to the recognized word sequence which can
be created by the integrated decoding algorithm without the need of any additional
knowledge source (see [WSMN01]). Similar to the case of the out-of-vocabulary
modeling approach, the confidence estimation is only an approximation which gen-
erally does not allow to identify all recognition errors without committing some
errors on correctly recognized words, which implies a trade-off between errors due
to the false acceptance or the false rejection of particular words.

1.3 Thesis contribution

Before presenting the detailed objective of this thesis, it is worthwhile to give a
brief overview about the particular environment in which the actual scientific work
took place. The framework of this work was provided by the industry-funded re-
search project NaDia (“Natürlichsprachliche Dialogführung für die Nutzung kom-
plexer Informationsdienste im Automobil”), which investigated the application of a

8

1.3. Thesis contribution

multi-modal dialog system with natural speech input in order to provide an intuitive
user interface for information services offered by the on-board computer of future
automobiles.

The prerequisites of the project concerning the natural speech input were the fol-
lowing: In order to keep things manageable, it has been decided to utilize the already
mentioned standard approach to semantic interpretation via the use of handcrafted
semantic grammars which include context-free grammar rules as well as additional
rules controlling the extraction of slot-value pairs that can be passed to the dialog
management. Nevertheless, the goal was to develop a mixed-initiative dialog sys-
tem, that has to cope with user utterances containing several pieces of information.
In consequence, the manual design of the necessary semantic grammar becomes a
pretty demanding task. The responsible expert could however take advantage of a
corpus of user utterances that was collected during several experiments that invited
test subjects to interact with a simulated dialog system. The exemplary application
domain was an airport information service that provides various information about
arriving and departing flights.

Provided these prerequisites, the major objective was to devise an efficient ap-
proach to speech interpretation that tightly integrates speech recognition and parsing
and incorporates methods which improve the robustness against interpretation er-
rors. Another goal was to find a reasonable way to augment the semantic grammar
by stochastic weights, which can be estimated by the aid of the relatively small-
sized data collection. The approach to automatic speech interpretation which is
presented in this thesis meets these requirements in the following way: Instead of
grammar rules, it utilizes the equivalent representation of the semantic grammar
in form of a hierarchy of transition networks. The network representation of the
semantic grammar allows a seamless integration of the other knowledge sources nec-
essary for speech recognition (acoustic models and phonetic lexicon), which has the
great advantage of retaining the basic decoding principle that is commonly used
in word-based speech recognition systems. In contrast to a precompilation of the
entire semantic grammar into a flat word-based language model, the presented de-
coding method requires only to precompile each grammar rule individually, which
explicitly preserves the hierarchical structure of the underlying semantic grammar.
Hence, the software tool which implements the decoding algorithm is called “one-
stage decoder”, because it time-synchronously decodes the best-matching parse tree
directly from the recorded speech signal. The extraction of the application-specific
information is effected in a post-processing step which applies the semantic gram-
mar along the decoded parse tree and carries out the embedded rules for extracting
the contained slot-value pairs which are finally passed to the dialog management.
Furthermore, the network representation of the semantic grammar allows a straight-
forward incorporation of stochastic weights. These are determined on the collection
of domain-specific user utterances which initially served as an aid during the manual
design of the semantic grammar. The developed semantic grammar is then again
applied to generate a parse tree annotation of the corpus, which allows to determine
the stochastic weighting for each transition network individually. The resulting hi-
erarchy of weighted transition networks is called “hierarchical language model”.

In order to improve the robustness against interpretation errors, the thesis con-
siders the above mentioned approaches, namely the explicit modeling of out-of-

9

Chapter 1. Introduction

vocabulary words and the estimation of confidences, which are both refined in a
way that they fit into the one-stage decoding framework. Concerning the out-of-
vocabulary modeling method, this refinement consists in the integration of pronun-
ciation models for out-of-vocabulary words and disfluencies of natural speech into
the hierarchical language model, which allows an immediate “recognition” of unin-
terpretable utterance parts. Concerning the estimation of confidences, this thesis
presents a novel method for estimating semantic confidences that measure the reli-
ability of particular nodes of a decoded parse tree. These confidences are translated
into confidences for the extracted slot-value pairs which can be exploited by the
dialog management in order to decide how to proceed with the extracted informa-
tion. The estimation of the parse tree node confidences is effected on a compact
representation of grammatical alternatives to the best-matching parse tree, which is
generated during the integrated decoding process.

Last but not least, it is important to point out that the present thesis touches
substantial parts of the work of Thomae (see [Tho06]). This is the consequence of
the intensive collaboration of the involved authors that generated a lot of synergies
which have been exploited on both sides. Nevertheless, the authors agreed on a dif-
ferent thematic orientation of each thesis: Thomae’s thesis focuses on the creation
of the hierarchical language model including out-of-vocabulary models, whereas this
thesis addresses the one-stage decoder itself, in particular its efficient realization, the
generation of grammatical alternatives and their application for the estimation of se-
mantic confidences. For the sake of completeness, Thomae’s thesis already includes a
conceptional description of a possible one-stage decoder architecture, which however
implies a static search space organization that prevents an efficient integration of the
involved knowledge sources. This thesis presents a more sophisticated architecture
that allows the dynamic compilation of the search space which is effected during
the ongoing decoding process. The computational overhead of the on-demand con-
struction is compensated by the application of the sophisticated calculus defined on
weighted finite state transducers (WFSTs) which allows the global optimization of
the search space topology and therefore achieves a significant speed-up of the overall
decoding process. Another important aspect is that the present thesis considers the
actual information extraction (in form of slot-value pairs), whereas Thomae leaves
this question open and evaluates the speech interpretation performance only on the
basis of the decoded parse trees. On the other hand, details about the adjustment
of the stochastic weights inside the hierarchical language model as well as details
about the generation and the integration of the out-of-vocabulary models can be
found in [Tho06].

The present thesis has the following structure: In order to prepare the reader for
the intended integration of speech recognition and parsing, Chapter 2 provides the
necessary theoretical background concerning the techniques which are commonly
used in word-based speech recognition. Chapter 3 begins with an excerpt of for-
mal language theory that leads straightforwardly to the discussion of the utilized
approach to semantic interpretation by semantic grammars. After considering dif-
ferent strategies to couple speech recognition and parsing, the pursued one-stage
decoding approach which relies on the network representation of the semantic gram-
mar is introduced. The remainder of the chapter explains the creation process of the

10

1.3. Thesis contribution

hierarchical language model, which represents the semantic grammar in form of a
hierarchy of transition networks and contains stochastic weights which are estimated
on the parse tree annotation of the domain-specific utterance collection.

Chapter 4 contains the detailed presentation of the one-stage decoder architec-
ture and begins with the description of the decoder version that uses the already
mentioned static search space organization. Before discussing the decoder architec-
ture incorporating the dynamic search space compilation, the chapter provides an in-
troduction to the necessary theoretical background, which is the theory of weighted
finite state transducers (WFSTs). Then, it will be explained how the involved
knowledge sources (hierarchical language model, pronunciation lexicon and acoustic
models) are represented by WFSTs in order to apply automata operations that effi-
ciently compose and optimize the search space. The decoding algorithm which uses
the on-demand compilation of the search space will be presented in pseudo-code.
The chapter is concluded by a performance comparison showing the improvement
in efficiency that has been achieved by the dynamic search space compilation and
optimization.

The first part of Chapter 5 shows how the commonly used lattice representation
for word-based alternatives has been extended to provide a compact representation
for grammatical alternatives in the form of a hierarchy of lattices. After providing
the corresponding definition, it will be explained in which way the lattice hierarchy
is generated from bookkeeping information that is recorded during the integrated
decoding process. Furthermore, there is a section about the generation of a ranked
list of parse trees, which can be used to generate alternatives on the basis of the ex-
tracted slot-value pairs. The second part of Chapter 5 explains the enhancement of a
word-based confidence estimation method which uses the generated grammatical al-
ternatives in order to estimate semantic confidences for each node of a decoded parse
tree. The last section of the chapter presents the rule-based policy that associates
the estimated parse tree node confidences with the extracted slot-value pairs.

Chapter 6 presents the employed methods for measuring the speech interpreta-
tion performance and discusses the obtained experimental results. The interpreta-
tion performance is considered on the basis of the decoded parse trees as well as on
the basis of the extracted information. Because the subject of dialog management is
beyond the scope of this work, the evaluation will include only off-line experiments
that are carried out on a test subset of the domain-specific utterance collection. The
conducted experiments have the main purpose to assess the quality of the confidence
estimation, in particular in comparison to the method which explicitly models un-
interpretable utterance parts by using out-of-vocabulary models. Furthermore, the
chapter provides details about the domain-specific data collection (airport informa-
tion corpus) and presents the setup of the one-stage decoder which has been used
during the experiments. Finally, Chapter 7 summarizes the most important aspects
of this thesis and provides an outlook to future work.

11

12

Chapter 2

Word-based speech recognition

This chapter is intended to give an introduction to word-based speech recognition,
which is the task of determining the particular word sequence from a variety of
predicted ones, that best matches the recorded speech signal. The standard acoustic
modeling approach with the aid of “Hidden Markov Models” will be explained, as
well as the “Viterbi” decoding algorithm that is used for recognition.

The techniques presented in this chapter will provide the basis for the main sub-
ject of this thesis, which is the tight integration of speech recognition and semantic
interpretation (see chapters 3 and 4).

2.1 Decoding problem for speech recognition

The most common way to formulate the decoding problem for continuous speech
recognition is the famous maximum likelihood approach [BJM83]: If X denotes the
observed sequence of acoustic feature vectors extracted from the preprocessed speech
signal1 and W possible word sequences, then the decoding problem is to find the
word sequence W ∗ that has the maximum posterior probability

W ∗ = arg max
W

P (W |X) . (2.1)

Unfortunately, it’s infeasible to estimate the posterior probabilities P (W |X) di-
rectly. This is why equation 2.1 is transformed by the aid of Bayes’ law to

W ∗ = arg max
W

P (W)P (X|W)
P (X)

= arg max
W

P (W)P (X|W) , (2.2)

neglecting the term P (X) which is not relevant for the maximization. Thus, an-
other equivalent view onto the decoding problem is the maximization of the joint
probability P (X,W) = P (W) P (X|W) . The factor P (W) is the prior distribu-
tion over all possible word sequences, which is called language model. The other
factor P (X|W) associates possible word sequences with the acoustic feature vector
sequence extracted from the recorded speech signal and therefore is called acoustic
model. The important difference to the posterior probability P (W |X) is the ex-
change of W and X in the probability’s condition: Because P (X|W) is conditioned

1For a detailed description of the standard preprocessing techniques which are applied in the
context of this thesis, see [YEK+02].

13

Chapter 2. Word-based speech recognition

s1 s2 s3

a13

a12 a23

a22 a33a11

e1

e2

e
′

3

e
′

2

Figure 2.1: Example for a continuous HMM used for speech processing, represented
by the parameter set λ = (p(x|si), aij , ei, e

′
i).

on discrete symbol sequences and not on the highly-dimensional and continuous
space of possible feature vector sequences, the estimation for the acoustic model’s
probability distribution becomes a feasible task.

Equation 2.2 only poses the decoding problem and doesn’t represent its solution.
Nevertheless, it reveals some important concepts of possible implementations:

• The language model represents the space of possible recognition results and
assigns a specific probability to every possible word sequence.

• The acoustic model assigns a specific probability for every possible word se-
quence considering the observed feature vector sequence.

• Both models have to be used simultaneously during the decoding process,
which maximizes the product of language and acoustic model probability.

However, equation 2.2 doesn’t give an answer to the following crucial problems:

• The acoustic model’s probability distribution P (X|W), referring to sequences
of feature vectors and words, is still too complex to be specified directly. How
can the acoustic model be split up to allow the processing of consecutive feature
vectors, respectively words?

• The maximization of the product of language and acoustic model probability
is a complex optimization task, that cannot be solved by a brute-force ap-
proach, evaluating all possible solutions. Which algorithms solve this problem
efficiently?

Both questions lead to the use of Hidden Markov Models, which are a well-known
tool among scientists dealing with speech recognition. For the sake of clarity, Hid-
den Markov Models are briefly revised in the following section; for a more detailed
introduction to this subject see [Rab89] and also [Rus94].

2.2 Acoustic modeling by Hidden Markov Models

In the previous section it has been suggested to split up the complex acoustic model
P (X|W) into a set of models, which on the one hand correspond to the language
model and on the other hand are able to process feature vectors consecutively, one

14

2.2. Acoustic modeling by Hidden Markov Models

after another. This is exactly what can be achieved by Hidden Markov Models.
Because words are the symbolic units of the language model, it is straightforward
to have as many acoustic models as there are different words in the language model.
Every word can be represented by a Hidden Markov Model (HMM), which is a state
transition model. It consists of a specific number of interconnected states si, like
the example shown in figure 2.1. Regarding the intended processing of the acoustic
feature vector sequence X, the HMM’s parameter set λ contains the probability
density functions p(x|si), which represent the probability that a particular feature
vector x is emitted in state si. The term “emitting” points out that the HMM
has to be regarded as a model that determines the probability with which it can
generate the observed feature vector sequence. This model definition is also called
continuous HMM, in contrast to discrete HMMs that process symbol sequences
instead of vector sequences. The transition weights aij represent the probabilities
for selecting state sj to emit the next feature vector if the previous feature vector
has been emitted in state si. The entry vector ei specifies the probability of emitting
the first vector x1 of the feature vector sequence X in state si. Similarly, the exit
vector e′i specifies the probability for emitting the last feature vector xT in state si.
Transition probabilities, entry and exit vectors follow stochastic constraints:

aij , ei, e
′
i ≥ 0,

∑

j

aij =
∑

i

ei =
∑

i

e′i = 1 (2.3)

Because the sequence of acoustic feature vectors represents a temporal pattern, the
HMMs used for speech processing usually only include transitions that are moving
forward in time (aij = 0 for all j < i). A commonly used transition configuration is
called “Bakis” model, which is depicted in figure 2.1. It connects every state with
the following two states, allowing a self transition, a transition to the next state and
skipping one state. The self transitions aii are of particular importance, because
they allow arbitrary long subsequences of feature vectors to be associated with the
same state. This eliminates the dependency between state index and feature vector
index and considers all possible alignments between states and feature vectors.

Besides generating the multitude of possible state to feature vector alignments,
the HMM is able to assign a probability to each of them. The generation of align-
ment hypotheses and their probabilities is done in a recursive manner: If there is an
alignment hypothesis (x1, . . . ,xt−1, σ1, . . . , σt−1 = si) at state si and there is a pos-
sible transition to state sj , the hypothesis is propagated further by multiplying its
probability with the transition weight aij and the probability density value p(xt|sj)
of the emission2 of the current feature vector xt in the destination state sj :

p (x1, . . . ,xt, σ1, . . . , σt−1 = si, σt = sj) =
aij p (x1, . . . ,xt−1, σ1, . . . , σt−1 = si) p (xt|sj)

(2.4)

2Strictly speaking, a probability density has to be integrated over a specific volume in the feature
vector space to get a proper probability. For the sake of simplicity this is neglected, assuming a
constant integration volume around the feature vector xt with equal probability density p(xt|sj).

15

Chapter 2. Word-based speech recognition

2.3 HMM parameter estimation

The most common way to approximate the emission probability densities p(xt|si) is
by means of Gaussian mixture densities:

p (xt|si) =
∑
m

cm,siN (xt,µm,si ,Σm,si) (2.5)

N(x,µ,Σ) denotes the multidimensional Gaussian probability density with mean
vector µ and covariance matrix Σ:

N (xt,µ,Σ) = 1√
(2π)n|Σ| e−

1
2 (xt−µ)′Σ−1(xt−µ) (2.6)

The problem of obtaining the parameters for each HMM of the recognition system
is solved by estimating the parameters from a labeled speech corpus, which contains
the orthographic transcriptions of all recorded utterances. If the corpus comprises
a lot of utterances of a lot of speakers, it’s possible to estimate model parameters
that allow speaker independent speech recognition. The parameters are estimated
by an iterative training procedure relying on the “Baum-Welch algorithm”, which
allows to adjust the HMM parameters in a way that the acoustic model probability
P (X|W) is locally optimized for all training utterances.

The training of the HMM parameters is a demanding task, involving complex
algorithms, which are difficult to develop. However, today there are efficient imple-
mentations of the training algorithms freely available, e.g. [YEK+02].

2.4 Isolated word recognition

If the speech recognition task is restricted to isolated words, the acoustic model
probability P (X|w) for a single word w can be computed by summing up the prob-
abilities of all possible alignment hypotheses:

P (X|w) = PHMM (X|λw) =
∑

∀(x1,...xT ,σ1,...,σT)

p (x1, . . .xT , σ1, . . . , σT) (2.7)

The probability of production PHMM(X|λw) of the word w by the corresponding
HMM can be expressed recursively by the probability for aligning state sj and feature
vector xt, which is p(x1, . . . ,xt, σt = sj). Applying equation 2.4 and summing all
“incoming” probabilities at state sj yields:

p (x1, . . . ,xt, σt = sj) =

[∑

i

aijp (x1, . . .xt−1, σt−1 = si)

]
p (xt|sj) (2.8)

which is also called forward probability, because the recursion is driven forwardly
in time, from feature vector index t − 1 to t. The initialization of the recursion is
expressed by the aid of the entry vector ei:

p (x1, σ1 = si) = eip (x1|si) (2.9)

16

2.5. Continuous speech recognition

Enter Exit

w1

w2 w3

Figure 2.2: Example of integrated search network for continuous speech recognition.
“Enter” and “Exit” refer to a silence model at the start and the end of the utterance.

The production probability PHMM (X|λw) is the sum of all p(x1, . . . ,xT , σT = si)
weighted with the exit vector e′i:

PHMM (X|λw) =
∑

i

e′ip (x1, . . .xT , σT = si) (2.10)

Because nearly every feature vector can be emitted in nearly every state, the actual
alignment between states and feature vectors remains hidden, which is the reason
for the term “hidden” Markov model.

Thus, in the case of isolated word recognition, the theoretical approach

w∗ = arg max
w

P (w) P (X|w)

for finding the most probable word w∗ can literally be applied, which means to calcu-
late the product of prior probability P (w) and production probability PHMM(X|λw)
for every word w and then selecting the word w∗ with maximum joint probability.

2.5 Continuous speech recognition

For continuous speech recognition, the space of possible solutions cannot be enu-
merated, because the language model may allow arbitrary long word sequences.
Therefore, the brute-force approach of assembling an HMM for every possible recog-
nition outcome and näıvely applying equation 2.2 to find the word sequence with
maximum joint probability becomes impracticable.

The solution for this problem is the consideration of the most probable alignment
hypothesis between HMM state and feature vector sequence. Although the corre-
sponding word sequence now is only an approximation for the theoretical solution

17

Chapter 2. Word-based speech recognition

given by equation 2.2, this approach has great importance in practice, because it
leads to an efficient decoding algorithm, which operates on a single integrated search
network combining language model and Hidden Markov Models.

2.5.1 Language model

The language model specifies a probability distribution over sequences of words.
The most frequently used language model for continuous speech recognition is the
n-gram language model (see [Jel76]). It assigns a probability for each word in the
specific context of the preceding n− 1 words. The probability for a word sequence
W is the product of the n-gram probabilities for each word wi:

Pn−gram (W) =
∏

i

P
(
wi|wi−1

i−n+1

)
(2.11)

The context wi−1
i−n+1 of the preceding n−1 words is also called history. The estimation

of the n-gram probabilities requires a large text corpus from the application domain.
The problem of data sparsity, which arises in this context, is handled by smoothing-
techniques that allow to determine n-gram probabilities for histories that occur
too rarely, or not at all in the training corpus. A comprehensive study of various
smoothing-techniques can be found in [CG98].

2.5.2 Integrated search network

In order to build up the integrated search network, the language model itself has to
be represented by a weighted transition network, which is possible for a wide range
of commonly used language model types. Possible word sequences are represented
by paths through this network, where every network node corresponds to a specific
word in a specific context. The language model probability P (W) for a particu-
lar word sequence W is calculated by multiplying the weights of the edges which
are traversed by the corresponding path. Assuming unique HMM parameters for a
particular word independent of its context in the language model network, the inte-
grated search network is generated by replacing the word nodes by instances of the
corresponding Hidden Markov Models, which is depicted in figure 2.2. For model
interconnections every HMM instance in the integrated search network has an entry
and exit node, which are also called “link” nodes.3 These nodes interconnect HMM
instances with a minimum number of network edges and don’t process any feature
vectors like the emitting states si. An entry node forwards incoming alignment hy-
potheses to possible emitting states via the entry vector ei, whereas an exit node
receives alignment hypotheses leaving the model via the exit vector e′i. The edges
between exit and entry nodes of different HMM instances carry the weights of the
corresponding edges in the language model network.

3There may be also link nodes in the language model network, which are also called “null” nodes
and don’t represent a particular word. They remain in the integrated search network after the
HMM replacement and are handled in the same way as entry and exit link nodes.

18

2.5. Continuous speech recognition

2.5.3 Time-synchronous Viterbi decoding

The decoding algorithm that operates on the integrated search network is known by
the names “Viterbi algorithm” or “dynamic programming”. It is based on a principle
called “recombination”, which means to propagate only the most probable alignment
hypothesis at each considered node of the integrated search network. Concerning
HMM states, the recombination principle can be expressed by the probability of the
alignment hypothesis p(x1, . . . ,xt, σ1, . . . , σt = sj), which survives in state sj and
emits the feature vector xt:

p (x1, . . . ,xt, σ1, . . . , σt = sj) =
max

i
[aij p (x1, . . . ,xt−1, σ1, . . . , σt−1 = si)] p (xt|sj) (2.12)

This implies the time-synchronous, or breadth-first organization of the Viterbi de-
coding algorithm, because all recombining alignment hypotheses must have pro-
cessed the same number of feature vectors to have a fair comparison for choosing
the best one.4 The principle of recombination holds as well for the link nodes of the
integrated search network, like entry and exit nodes. Because these nodes don’t pro-
cess any feature vectors, the difference to HMM states is that alignment hypotheses
surviving in these nodes have to be propagated further in the same time step.

A well known way to organize time-synchronous Viterbi decoding on the inte-
grated search network is called “token passing” (see [YRT89]), which in this context
means the propagation of alignment hypotheses. A token represents an alignment
hypothesis residing at a specific node or HMM state in the integrated search net-
work. The propagation of a particular token means to send a copy of the token to
each reachable node or HMM state and then to delete the original token.

In order to initialize the token passing, an initial token with probability one is
put into the entry node of the integrated search network. Then, the token passing
is carried out by the execution of the following steps for every feature vector xt:

• As long as there are link nodes which have a token attached to them, each
of these tokens has to be propagated to the corresponding adjacent nodes or
HMM states, multiplying its probability with the weight of the traversed edge,
which is a language model weight or an entry vector weight ei. Recombination
takes place if the destination node or state already contains a token.

• Now there are only tokens residing at HMM states. The probability of each
token is multiplied with the emission probability density p(xt|si) of the corre-
sponding HMM state.

• Each token at an HMM state is propagated to the adjacent HMM states or exit
nodes, multiplying its probability with the corresponding transition weight aij

or exit vector weight e′i. Recombination again takes place if the destination
node or state already contains a token. However, the difference to the propa-
gation of tokens residing at link nodes is that incoming and outgoing tokens
have to be handled separately, to prevent the asynchronous propagation of
tokens.

4There are other decoding algorithms, like for example the A∗ algorithm, which operates with
a depth-first strategy. This thesis only considers the time-synchronous Viterbi decoding principle;
for alternative approaches see [Ort98, Wil00].

19

Chapter 2. Word-based speech recognition

An important extension of the decoding algorithm is the pruning of improbable
alignment hypotheses. The pruning of hypotheses is effected during each time step
of the decoding algorithm, where it discards all hypotheses having a probability
score that exceeds the one of the currently best hypothesis by a specific value, which
either can be a simple constant or may be adjusted dynamically.

2.5.4 Backtracking

Besides the propagation and recombination of tokens, it’s important to keep book of
the individual path which each token takes through the integrated search network.
This allows to find out the recognition result, which is the sequence of words visited
by the best alignment hypothesis. The best alignment hypothesis corresponds to
the token that ultimately survives at the exit node of the integrated search network
after processing the last5 feature vector of the recorded user utterance. Because one
is interested in the sequence of visited words, and not in the sequence of visited
HMM states, the recording of traversed words only takes place at the exit nodes of
the corresponding HMM instances. Usually, besides the traversed word, the current
feature vector index is saved as well, which allows to determine the duration of every
recognized word. The recording of words and feature vector indices is commonly
organized by adding an entry in front of a linked list which is attached to each
propagated token. This happens before the tokens are propagated to adjacent nodes
in the first step of the token passing procedure. The recognized word sequence and
the corresponding temporal segmentation is discovered by “backtracking”, which
simply means to reverse the linked list of words that belongs to the token which
finally made its way to the exit node of the integrated search network.

2.5.5 Representation of probabilities

In practice, probabilities are represented on logarithmic scale, where they are called
“scores”. This is done for a better numerical representation of the small values
resulting from the emission probability densities p(xt|si). In order to control the
influence of the language model, the language model weights are multiplied with a
constant factor before they are added to the current score of a specific token. This
language model factor usually is adjusted empirically by the evaluation of the speech
recognition system on test utterances (held-out data, which is not used for the final
evaluation).

2.6 Sub-word modeling

Modeling each word by a specific HMM with its own parameter set is only practicable
in the case of a small recognition vocabulary, like for example digits or key words. For
vocabularies comprising thousands of words, this modeling approach would result
into a huge amount parameters, which cannot be estimated with sufficient statistical
significance on the limited amount of training data.

5In the case of online speech recognition, the end of the utterance usually is detected by a speech
activity detector.

20

2.6. Sub-word modeling

This problem is solved by composing words by phonetic subunits. Because there
are much less phonetic subunits than words, the HMM parameters can be estimated
in a robust way. Further, the subunits can be composed to new words, which are
not part of the training corpus. This allows a real separation of language model and
acoustic model: The acoustic model training can be performed independently of the
later application domain on utterances with arbitrary “phonetically rich” content.

2.6.1 Phonemes as sub-word units

Usually, words are composed of “phonemes”, which are the smallest possible phonetic
subunits6. The set of possible phonemes for a specific language has been defined
and standardized by phoneticians. Most European languages comprise not more
than about forty or fifty different phonemes. Possible pronunciations are usually
passed to the speech recognition system in form of pronunciation lexica, which store
possible sequences of phonemes for every registered word.

Creating pronunciation lexica for large recognition vocabularies is a tedious task,
which is difficult to automate. Although there is an inherent correlation between
orthography and pronunciation, there are also a lot of exceptions, which are hard to
find out automatically.

2.6.2 Context-dependent phoneme models

Because the acoustic properties of phonemes depend a lot on the context of articula-
tion, an independent model for all possible contexts is only a crude approximation.
A common method for a better representation of the effect of coarticulation is the
use of context-dependent phoneme models. In the case of “triphone” models for ex-
ample, phonemes of the same class are modeled with a particular HMM parameter
set for each possible combination of left and right context phonemes that appears in
the pronunciation lexicon. The problem of data sparsity, which inhibits the estima-
tion of distinct parameters for every possible triphone combination, can be solved
by a method called “decision tree clustering” (see [Beu99]). This method is based
on the strategy of “parameter tying”, which means to share parameters in different
models. A phonetic decision tree, which is built up on the training data, allows to
find out, which HMM parameters can be shared between different contexts of the
same phoneme. Furthermore, it permits to assemble HMM parameters for triphone
combinations that didn’t occurred in the training data at all, which preserves the
independence of training and recognition vocabulary.

The extension of context-independent phonemes to triphones is often restricted
to word internal phonemes. In this case, phonemes at word-boundaries are only
extended to biphones, respectively left as they are if the word only consists of a
single phoneme. This preserves the assumption that there is only a single acoustic-
phonetic model for each word, independently of possible neighboring words which are
predicted by the language model. So-called “cross-word triphones” allow the correct
context extension even at word boundaries, which however makes the construction
of the integrated search network much more complicated.

6The term “phoneme” denotes the class of a specific speech sound; the speech sound itself is also
called “phone”. Therefore, a phone is the realization of a specific phoneme.

21

22

Chapter 3

Modeling approach for
one-stage speech interpretation

This chapter introduces the knowledge representation framework for semantic in-
terpretation which is used in the context of this thesis. It follows the standard
method of semantic grammars, which directly capture application-specific seman-
tics, without explicitly separating syntax and semantics. The elected representation
of grammatical constraints in the form of a weighted transition network hierarchy
has the primary purpose to facilitate the intended tight coupling of speech recog-
nition and parsing (one-stage speech interpretation). Moreover, this representation
allows a straightforward incorporation of stochastic weights, which can be estimated
from collected application-specific data.

The chapter begins with a brief introduction to the theory of “formal languages”
(see [HU79]), which provides the basis for the following sections that discuss the
modeling framework used for semantic interpretation and point out the differences
with respect to other approaches that propose more sophisticated formalisms. The
presentation of the modeling framework will be given from the perspective of its
application and does not provide details on the creation process of the semantic-
syntactic model, which is one of the main subjects of Thomae’s thesis (see [Tho06]).

3.1 Representation and processing of formal languages

A formal language comprises a set of symbol sequences which all follow specific
constraints. The simplest way to define a formal language is to write down the set
of valid symbol sequences. However, valid symbol sequences may have arbitrary
length. Therefore, it is necessary to have a compact representation of formal lan-
guage constraints. This compact representation can be provided by formal grammars
or abstract machines. The following sections explain both representation methods
and their strong relation.

3.1.1 Context-free and regular grammars

Grammars are made of production rules that define possible transformations of
symbol sequences by the replacement of non-terminal symbols by sequences of non-

23

Chapter 3. Modeling approach for one-stage speech interpretation

terminal and terminal symbols. The repeated application of production rules gen-
erates sequences of terminal symbols which are declared to be part of the corre-
sponding formal language. The application of production rules starts with an initial
non-terminal symbol and produces a valid sequence of terminal symbols each time
when after a specific sequence of rule expansions all non-terminal symbols have been
replaced by terminal ones. This leads to the problem of enumerating valid symbol
sequences that belong to the formal language in a specific order. On the other
hand, one can ask if a given symbol sequence belongs to the formal language. The
operation which systematically solves this problem is called “parsing”.

Formally, a grammar G = (N,Σ, S, P) is specified by the alphabet N of non-
terminal symbols, the alphabet Σ of terminal symbols, the initial non-terminal sym-
bol S and a set of production rules P . Different constraints on production rules
yield different types of grammars. The resulting classification scheme that ranks
grammars and corresponding formal languages due to their expressive power has
been introduced by the famous linguist Chomsky and therefore is called Chomsky
hierarchy (see table 3.1).

The most general type of grammar, which is on the top of the Chomsky hierarchy,
are “unrestricted” grammars. They allow production rules of the form α → β, where
α and β denote arbitrary sequences of non-terminal and terminal symbols with the
only constraint that α contains at least one non-terminal symbol.

When going down the Chomsky hierarchy, the next lower level always represents
a specialization of the grammar type on the corresponding higher level. The first
specialization are “context-sensitive” grammars. They have production rules of the
form αAβ → αγβ, which means that a non-terminal symbol A which occurs in the
context of the symbol sequences α and β can be replaced by the symbol sequence
γ, with the constraint1 that γ cannot be the empty symbol ε.

Theoretically, both unrestricted and context-sensitive grammars have the power
of describing complex languages, like natural languages. Paradoxically, it is just
their own superior expressive power which makes the actual use of such grammars
difficult. The consistent specification, as well as the algorithmic processing of the
huge set of necessary rules becomes intractable in practice.

Therefore, the grammar types with less expressive power, which are situated
at the bottom of the Chomsky hierarchy have much greater impact on practical
applications than unrestricted or context-sensitive grammars. These grammars are
called “context-free” and “regular” grammars. A context-free grammar has produc-
tion rules of the form A → γ, which means that a non-terminal symbol A can be
replaced by a sequence of non-terminal and terminal symbols γ, independently of
the context in which occurs A.

Regular grammars have the lowest expressive power in the Chomsky hierarchy
and include context-free grammars with the constraint that their production rules
can be transformed by the introduction of intermediate non-terminal symbols into
a set of rules where all rules have either the form A → aB and A → a or the form
A → Ba and A → a. The distinction between context-free and regular grammars
becomes more obvious when looking at their equivalent automaton representations,

1Without this constraint, it can be shown that context-sensitive rules would have the same
expressive power as unrestricted production rules.

24

3.1. Representation and processing of formal languages

equivalentgrammar type machine production rules example

α → βunrestricted Turing machine
α, β ∈ (N ∪ Σ)∗

(see footnote)

αAβ → αγβlinear-bounded
α, β, γ ∈ (N ∪ Σ)∗context-sensitive automaton

A ∈ N, γ 6= ε
{anbncn|n > 0}

push-down A → γcontext-free automaton A ∈ N, γ ∈ (N ∪ Σ)∗ {anbn|n > 0}
A → aB or A → Bafinite-state

A → a {ambn|m,n > 0}regular automaton
A,B ∈ N, a ∈ Σ

Table 3.1: Chomsky’s hierarchy of formal grammars and their equivalent abstract
machines.

which is done in the next section. Table 3.1 shows the Chomsky hierarchy including
typical examples for formal languages that require2 the corresponding grammar type
to be specified.

3.1.2 Finite-state automata and regular expressions

The other way to define formal languages is by means of abstract machines. The
simplest one, which is called “finite-state” automaton comprises a set of states and
a set of transitions between states. Transitions are associated with symbols from
the alphabet of the formal language. Like grammars, abstract machines can be
regarded from the point of view that they can generate valid symbol sequences of
the corresponding formal language. In the case of the finite-state automaton, valid
symbol sequences correspond to paths through the automaton, beginning from a
specific initial state and ending at specific final states.

On the other hand, asking the question whether a given symbol sequence is part
of the formal language, leads to the problem to decide if the corresponding abstract
machine “accepts” the given symbol sequence. For a finite-state automaton this
means to find out whether there is a path from the initial state to a final state which
matches the given symbol sequence.

Formally, a finite-state automaton A = (Σ, Q, E, i, F) is defined by

• the alphabet Σ of the formal language,

• the set of states Q,

• the set of transitions E ⊂ Q × (Σ ∪ ε) × Q, which is a subset of all possible
combinations of source and destination states and symbols including the empty
symbol ε,

2From literature it doesn’t get quite clear if there is a simple example for a formal language that
definitely requires an unrestricted grammar to be specified.

25

Chapter 3. Modeling approach for one-stage speech interpretation

a b

a b

Figure 3.1: Finite-state automaton accepting the language {ambn|m,n > 0}

• the initial state i ∈ Q,

• and the set of final states F ⊂ Q.

The common way to represent finite-state automata graphically, is shown in fig-
ure 3.1. Transitions are depicted by arcs that connect source and destination states
and carry a specific symbol. The initial state is indicated by bold print and the final
states by concentric circles.

As indicated by the Chomsky hierarchy in table 3.1, it can be shown that finite-
state automata have the same expressive power like regular grammars. Therefore,
the subclass of regular languages is simply the class of formal languages which can
be represented by finite-state automata.

All other grammar types have equivalent abstract machines, too. For instance,
the example language {anbn|n > 0} does not belong to the subclass of regular
languages and therefore cannot be represented by a finite-state automaton. The
abstract machine representation for this context-free language requires the concept
of a push-down automaton. This is a finite-state automaton which is extended by a
stack that can store symbol sequences from an auxiliary alphabet of stack symbols.
In addition to the symbol of the language alphabet, transitions between states are
associated with the symbol which is currently on the top of the stack and with
a specific manipulation of the stack itself. Higher-order abstract machines further
relax the constraints on the storage device. For instance, Turing machines allow the
manipulation of an infinite tape of symbols.

As reflected by their complicated description, abstract machines don’t provide a
practical way for manually specifying language constraints. For humans, the speci-
fication of automata is usually more difficult to manipulate than their equivalent
grammatical representation. Just like higher-order grammars, higher-order abstract
machines are mainly of theoretical interest. Apart from the problem of specifying
such machines, elementary problems, like deciding if a symbol sequence is accepted
or not, become intractable or even unsolvable.

In contrast to higher-order abstract machines, finite-state automata are of great
importance in practice. Their inherent principle of connectivity captures many prac-
tical problems and leads straightforwardly to algorithms that can efficiently solve
these problems. For example, the methods used for automatic speech recognition,
which have been presented in the last chapter, are closely related to finite-state
automata.

As stated before, context-free production rules do not obviously reflect the con-
straint of regular languages. This is what can be achieved by “regular expressions”.
Just like the attribute “regular” implies, this notation exactly captures regular lan-

26

3.1. Representation and processing of formal languages

operation common notation explication
concatenation ab a followed by b

choice a|b a or b

option [a] a or nothing
repetition a+ one or several a’s

optional repetition a∗ the same as [a+]
bracketing a(b|a) scope and precedence

Table 3.2: Operations used in regular expressions.

guages and thus provides an equivalent representation of finite-state automata. Reg-
ular expressions are based on a calculus defined on symbols. Table 3.2 shows the set
of operations which are commonly used in regular expressions. Regular expressions
allow the specification of regular language constraints in a human readable form.
They also facilitate the manual specification of context-free grammars. The result-
ing specification format, which is known by the name “extended Backus-Naur form”
(EBNF), compactly represents possible productions of a particular non-terminal
symbol by a corresponding regular expression.

An important extension to finite-state automata is the introduction of output
symbols, which allows to translate symbol sequences over a source alphabet into
symbol sequences over a destination alphabet. The production of output symbols
can either be associated to states or to transitions, yielding two different finite-
state automaton representations, which are called “Moore”, respectively “Mealy”
representation.3 Both representations are equivalent and are convertible into each
other (see [HU79]). Because of their ability to translate symbol sequences from one
alphabet into another, this kind of automata are also called “transducers”. They
are of particular interest in the context of this thesis, because they provide the basis
for an efficient integration of speech recognition and interpretation (see section 4.2).

3.1.3 Parsing algorithms

As mentioned earlier, parsing solves the problem to decide if a specific symbol se-
quence belongs to the formal language which is given by a formal grammar. Parsing
algorithms systematically try to reveal the sequence of production rules that lead
from the initial non-terminal symbol to the given sequence of terminal symbols.
If such a derivation can be determined, the symbol sequence is part of the formal
language. In practice, the derivation itself is of major interest. The “parse tree”
reflects the grammatical structure of the symbol sequence, which is exploited for the
actual purpose of parsing, namely to translate the symbol sequence into some other
representation.

There are many parsing algorithms that differ in various aspects. For instance,
the strategy to reveal the parse tree either bottom-up, starting from the given symbol
sequence or top-down, starting from the initial non-terminal symbol, distinguishes

3The term “Moore”-automaton is also used for finite-state automata with a single alphabet and
symbols that are attached to states instead of transitions.

27

Chapter 3. Modeling approach for one-stage speech interpretation

the classes of LR and LL parsing algorithms. LR-parsers are often involved in
the construction of compilers that translate source code into executable machine
code. LL and LR parsers can only process particular subclasses of context-free
languages and cannot output multiple parse trees in case of ambiguous grammars.
This restrictions don’t have much relevance when processing purely formal input, like
programming languages, but get important for natural language processing. For this
purpose serve chart parsing techniques, like the Early algorithm (see [Ear70]), which
don’t have these restrictions. However, instead of linear complexity, chart parsers
have cubic complexity with respect to the length of the input symbol sequence.

An important extension is offered by robust parsing algorithms which have the
ability to process ungrammatical input. They can find a partial derivation by skip-
ping terminal symbols that do not match the given formal grammar (see [Abn96]).

3.1.4 Recursive transition networks

Recursive transition networks are the logical consequence of the compact represen-
tation of context-free production rules by regular expressions. Having in mind that
regular expressions are equivalent with finite-state automata, a context-free gram-
mar can intuitively be interpreted as a hierarchy of finite-state automata. Each
transition (or state, if preferring the Moore automaton representation) which is la-
beled with a non-terminal symbol refers to the corresponding sub automaton.

Although being illustrative, the idea of a hierarchy of transition networks is
not entirely correct, because production rules may recursively refer to each other.
Therefore, the term “recursive transition network”, which has been introduced by
Woods (see [Woo70]), is preferred in literature. This term, however, does not imply
that it actually refers to a collection of transition networks.

In this thesis, the recursive transition network representation is of particular
interest, because it provides a straightforward way to impose context-free grammar
constraints on the standard decoding method used for speech recognition. This
avoids the complex modification of a symbolic parsing algorithm, like the Early-
algorithm, which is necessary to make the parser work on the non-symbolic input
given by the recorded speech signal (see section 3.3.1).

3.1.5 Stochastic weights

The introduction of stochastic weights is an important extension to the framework
of formal language description. The most obvious application of stochastic weights
in this context is the solution of the problem of disambiguation: If a grammar allows
more than a single derivation for a specific input, possible solutions may be ranked
due to their probability, which allows to select the most probable derivation.

When dealing with uncertain input, the purpose of stochastic weights goes fur-
ther: in the case of speech recognition, a prior distribution over possible word se-
quences is combined with the statistical models used for the recognition of acoustic-
phonetic patterns. As explained in chapter 2, this method allows to determine the
solution that best meats the given constraints over all modeling levels.

Of course, the use of stochastic weights relies on collected example data which
allows their estimation. This estimation assumes a specific model of syntactic con-

28

3.2. Generalizing vs. application-specific semantics

straints. A simple model that is frequently used in speech recognition, is the n-gram
model, which provides a probability for a word given the (n− 1) predecessor words
(see section 2.5.1). The stochastic weights can be determined by quite simple count-
ing and smoothing techniques and the model can be represented by a weighted
finite-state automaton.

Also the definition of context-free grammars can be extended to include stochas-
tic weights. This is done by assigning a probability to every possible production of
a specific non-terminal symbol. Following the stochastic constraint, all probabilities
for a particular non-terminal must sum to one. The estimation of the grammar
weights by means of simple counting requires a collection of parse trees for all ex-
ample phrases.

To build up such a collection of parse trees may afford a considerable amount
of manual work, which would be nice to avoid. There is actually a method which
allows the estimation of grammar weights without the explicit need for annotated
parse trees. It is the iterative “inside-outside” algorithm which is based on the same
“expectation maximization” principle (EM) like the Baum-Welch training algorithm
that is used for the training of Hidden Markov Models (see [LY90]). Theoretically,
this estimation algorithm even includes the possibility for the structural inference
of grammar rules. Without imposing any further constraints on the structure of the
grammar, the totally data-driven algorithm however fails to infer rules which may
serve for the purpose of semantic interpretation (see end of section 3.3.3).

3.2 Generalizing vs. application-specific semantics

After the short overview of formal language theory, this section presents its appli-
cation to the task of semantic interpretation, which is in the focus of this thesis.
The section will point out the difficulties arising from linguistically motivated ap-
proaches to semantic interpretation which justify the application-specific approach
of semantic grammars which is used in this thesis.

3.2.1 Feature grammars and first order logic

Motivated by the underlying theory of linguistics, the the natural language pro-
cessing community regards semantic interpretation as a formalism that relies on the
syntactic structure of a sentence, which can be described by a formal grammar. Such
a grammar contains non-terminal symbols that represent linguistic phrase units, like
noun or verbal phrases, and word categories, like nouns or adjectives. However, for-
mal grammars do not serve well for specifying the syntax of natural language, which
usually affects the morphology of the underlying words. This is not necessarily a
consequence of the limited generative power of the used formal grammar type. Ac-
tually, linguists argue about the question whether the class of context-free grammars
suffice to represent the constraints of natural language. Regardless of this question,
the actual problem in practice is the systematical specification of the large set of nec-
essary rules. To address this problem, the original definition of production rules has
been augmented to allow the specification of particular “features” that accompany
non-terminal and terminal symbols. Such features may represent syntactic proper-
ties like person and number (e.g. “third person singular”) and are used to restrict

29

Chapter 3. Modeling approach for one-stage speech interpretation

valid grammatical derivations by imposing the condition of identical feature values
for all involved constituents. The use of features allows a compact representation of
syntactically valid phrases that result from the set of all possible feature value con-
figurations. Beyond the specification of syntactic constraints, the feature paradigm
can also be used for semantic interpretation. The evaluation of semantic features
during parsing allows the generation of logical forms that represent semantics by
means of first-order logic. First order logic is a quite general formalism to represent
semantic knowledge and which allows to specify queries that can automatically be
answered by an inference algorithm.

Actually, the last paragraph does not refer to a specific approach. It is intended
as an outline of a whole class of approaches which follow the tradition of natural
language processing. These approaches lead deeply into the field of artificial in-
telligence and relate closely to expert systems based on logic programming. For a
detailed introduction into this subject, see [All95].

Anyway, the common objective of all linguistically motivated approaches is to
achieve a high degree of generality with respect to the class of representable syntactic
constraints and semantic content. However, the specification and the handling of the
complex set of augmented grammar rules require highly specialized human experts.
Unfortunately, up to now, it has not been achieved to provide front-ends for such
generalizing descriptions of syntax and semantics, which could easily be used by
non-experts to specialize the general knowledge representation for the realization of
a particular application.

Another substantial problem arises when dealing with spoken language. User
utterances in the context of practical applications may simply not be grammatical
from the linguistic point of view, which puts the great effort on syntactic correctness
into question.

3.2.2 Semantic grammars and slot-value pairs

The fact that linguistically motivated approaches to semantic interpretation are dif-
ficult to use in practice is reflected by the situation that such approaches are not part
of the evolving industry standard for the specification of spoken dialog systems of
the world wide web consortium W3C (interaction domain “Voice Browser” Activity,
see [W3C04]).

The W3C standard favors the use of “semantic grammars”, which are context-
free grammars with a set of non-terminal symbols that directly capture application-
specific semantics. Syntactical or morphological constraints are only considered as
far as they directly affect this application-specific semantics. The proposed semantic
representation of user utterances happens by collections of simple variables, which
in the following are called slot-value pairs. Their creation is controlled by script-
ing commands which are embedded into the regular expressions that specify the
right hand side of context-free production rules. While the parser applies a spe-
cific production rule, these scripting commands are executed in order to create new
slots that are filled with an arbitrary combination of hard-coded information and
the values of slots which have been extracted during the application of subordinate
production rules. Scripting facilities, like arithmetical operators or string processing
commands, provide a flexible way to extract information and to translate it into the

30

3.2. Generalizing vs. application-specific semantics

public $WC_Hour24 =
ein { 1 } | zwei { 2 } | ... | dreiundzwanzig { 23 } ;

...
public $C_MinuteRel =
viertel vor { -15 }

| viertel nach { 15 }
| drei viertel { -15 }
| halb { -30 }
...
public $C_Time =
$WC_Hour24 { h = $WC_Hour24; m = 0 } Uhr
[$WC_Minute { m = $WC_Minute }]

| $WC_Hour24 { h = $WC_Hour24; m = 0 }
$WC_Minute { m = $WC_Minute }

| $C_MinuteRel $WC_Hour12 { h = $WC_Hour12; m = $C_MinuteRel } ;

Figure 3.2: Snippet of a semantic grammar in ABNF format that describes the
expression of the time of day in German language.

desired format that for example meets the requirements of later data base queries.
A severe problem in domain-independent approaches to semantic interpretation

is ambiguity: words or phrase parts may have several meanings which depend on
the pragmatic context of the corresponding utterance. In the limited domain of a
specific dialog application, however, user utterances usually have a low degree of
ambiguity. Therefore, ambiguous grammar rules can be avoided and the few cases
of slot-value pairs with ambiguous interpretations are handled by the dialog system
with initiating a dialog step that asks the user to resolve the ambiguous piece of
information. Accidental rule ambiguities which may occur due to an imperfect design
of the manually crafted interpretation grammar, can be resolved by the stochastic
weighting of the grammar (see section 3.3.3).

Figure 3.2 shows a snippet of a semantic grammar in the standardized ABNF
format (augmented Backus-Naur form, see [W3C04]) that provides a rudimentary
representation of possible expressions of the time of day in German language. For
example, when parsing the word sequence “drei Uhr zehn” (ten past three) the
result in form of the slot-value pair collection is {h = 3,m = 10}. Inside a slot filling
command the reference to a non-terminal symbol addresses the slots which have
been created during the application of the corresponding subordinate production
rule. The interpretation of “halb drei“ (half past two), which is {h = 3, m = −30},
is intended to give an example for the case that the interpretation formalism does
not suffice to translate the information into the final format which may afford some
kind of post-processing on the extracted collection of slot-value pairs.

Semantic grammars surely have many weak points, like the high dependency on
the application domain or the inability to represent complex semantical relations.
But they allow the rapid design of practical applications from scratch without the
requirement that the application developer is an expert in computational linguistics.

31

Chapter 3. Modeling approach for one-stage speech interpretation

3.3 One-stage speech interpretation

As already pointed out in the introduction, this thesis follows the standard approach
to semantic-syntactic modeling via the use of semantic grammars, but extends the
basic idea in two aspects: The first aspect is the choice of a representation which
favors the tight coupling of speech recognition and parsing, which is called one-stage
speech interpretation. The second aspect concerns the consideration of stochastic
weights. This section introduces the utilized tight coupling approach and describes
the selected representation of the semantic grammar and the corresponding stochas-
tic weighting in form of a weighted transition network hierarchy (WTNH).

3.3.1 Tight coupling approach

As pointed out in the introduction, the sequential coupling of speech recognition
and parsing involves severe problems, which can be avoided by a tight integration
of parsing and acoustic-phonetic decoding. However, a parsing algorithm inherently
works on symbolic input, which is not provided when having to process the recorded
speech signal. Therefore, the parser has to be extended to consider acoustic-phonetic
models, which are usually Hidden Markov Models (see section 2.2). Unfortunately,
there is no straightforward solution to this problem, because the evaluation of the
acoustic-phonetic models neither provides certainty about actual symbol identities,
nor certainty about the temporal boundaries between symbols. Thus, the parser has
to keep track of multiple hypotheses that correspond to different time alignments of
possible input symbol sequences. Among these hypotheses the parser has to find out
the one that best matches the recorded speech signal. During this search process,
hypotheses have to be propagated for every extracted feature vector that corre-
sponds to a speech signal segment of about ten milliseconds. Therefore, the actual
challenge of tight coupling is to find a way to keep the bookkeeping of hypotheses
computationally tractable.

About the question whether tight coupling is feasible or not, one can find some
kind of controversy in technical literature. Since the early nineties, many tight cou-
pling approaches have been published for various types of parsing techniques and
different types of grammars or even more sophisticated semantic-syntactic models
(e.g. [KTK89, Ney91, GZ92, JWT+95, WFS97, Sta97]). Nevertheless, there have
been doubts about the computational tractability of such approaches due to the
cubic time complexity of the involved parsing algorithms with respect to the size of
the input, which instead of the number of words is now determined by the much
greater number of extracted feature vectors (see [HJM+94, Rin95]). However, this
argument may underestimate the positive effect of the pruning of improbable hy-
potheses, which is one of the great advantages of an integrated decoding algorithm.

In contrast to the just mentioned approaches, the tight coupling approach which
is presented in this thesis, avoids the use of a parsing algorithm and takes advantage
of the equivalence of a context-free grammar and a hierarchy of transition networks.
The shift from grammar rules to transition networks avoids the complex integration
of the acoustic-phonetic decoding into the architecture of a symbolic parser and
allows to use the Viterbi decoding principle which is commonly applied in speech
recognition (see section 2.5.3). This kind of strategy has first been suggested by

32

3.3. One-stage speech interpretation

nach

halb

vierteldrei

vor

viertel
ein

zwei

dreiundzwanzig

fuenf

zehn

fuenfundfuenfzig

eins

zwei

zwoelf

WC MinuteC MinuteRel

WC Hour24 Uhr WC Minute

C MinuteRel WC Hour12

f I6 t @ l t s

aI

v

o:

t aI

viertel zwei

WC Hour24 WC Hour12

C Time

C Time

C Dest
C FlightId

Root

Figure 3.3: Snippet of exemplary WTNH representing all relevant knowledge sources
on semantic-syntactic, lexical and acoustic-phonetic level.

33

Chapter 3. Modeling approach for one-stage speech interpretation

Moore, Pereira and Murvit (see [MPM89], and also [Dup93]).

3.3.2 Weighted transition network hierarchy (WTNH)

The selected representation of semantic grammars in form of a hierarchy of weighted
transition networks provides a uniform modeling framework which is also suited
for the representation of the lexical and acoustic-phonetic knowledge sources. The
pronunciation of specific words, as well as the Hidden Markov Models for the acoustic
modeling of specific phonemes can be represented by weighted transition networks
and thus fit into the network hierarchy.

Figure 3.3 shows a snippet of an exemplary WTNH that models user utterances
for the airport information system, which is the application scenario used in this
thesis (see section 6.2). The figure particularly includes those subnets that corre-
spond to the semantic grammar part given in figure 3.2, which describes the time of
day in German language. By convention every subnet has a single entry and a single
exit node which do not refer to any subnet. The dashed edges connect subnet nodes
(or parent networks) with their corresponding subnets. Regarding these edges, sub-
nets can also be interpreted as nodes of a “super network” which represents the
dependencies between parent and child networks.

The WTNH representation provides the basis for a one-stage decoding algorithm
that tightly integrates all included knowledge sources and is able to determine the
best-matching parse tree directly from the recorded speech signal. The final result
in form of the slot-value pair collection can be extracted by applying the semantic
grammar along the decoded parse tree. A detailed discussion of the actual realization
of the one-stage decoding algorithm will be given in the next chapter. The remaining
part of this chapter briefly describes the generation process of the “hierarchical
language model” (HLM, for details see [Tho06]).

The HLM is the semantic-syntactic part of the WTNH which corresponds to
the semantic grammar. Due to the equivalence of regular expressions and finite-
state automata, the structure of each subnet of the hierarchical language model can
automatically be constructed from the regular expression that specifies the right
hand side of the corresponding grammar rule. The AT&T Lextools served for the
conversion of regular expressions into finite-state automata (see [Spr03]); a detailed
description of the conversion algorithm can be found in [HU79].

3.3.3 Creation of the hierarchical language model (HLM)

The training procedure for the HLM described in [Tho06] is effected on a set of
user utterances collected during an experiment which simulates the spoken dialog
application (Wizard-of-Oz experiment, see section 6.2). Beyond the orthographic
transcription, the annotation of each user utterance has to include the parse tree
which follows the semantic grammar that has been developed for the extraction of
the slot-value pairs. Actually, the primary knowledge source in [Tho06] is not the
semantic grammar, but the hierarchical annotation which is constructed manually
with the aid of graphical annotation tools. In the context of this thesis, however,
the collection of parse trees is created automatically by parsing the orthographic
corpus transcription with the hand-crafted semantic grammar. The training pro-

34

3.3. One-stage speech interpretation

Semantic
Grammar

Parser

HLM

parse tree
annotation

orth. corpus
transcript.

Counting
& Smooth.

n-gram
Estimation

HLM
Generation

One-Stage
Decoder

Slot
Extraction

Phonetic
Lexicon

Dialog
Control

Acoustic
Models

speech parse tree slots

System design phase

Application
Data Base

Dialog
Context

Runtime Interface

Figure 3.4: Generation and application of the hierarchical language model (HLM)
in the context of a spoken dialog system.

cedure for the HLM is used to estimate the stochastic weighting for the transition
network hierarchy which is automatically created from the structure of the semantic
grammar. Figure 3.4 shows a block diagram that points out the generation and also
the application of the HLM inside a spoken dialog system (see also [LTR+05]).

The main assumption of the training procedure is the independence of the
stochastic weighting of a subnet from the context of its use in possible parent net-
works. The hierarchical annotation in form of the parse trees provides the set of all
appearing sequences of subnet nodes for every subnet that represents a non-terminal
symbol of the semantic grammar. This assumption of independence allows to apply
conventional language modeling techniques to estimate the distribution of weights
in every subnet from the observed collections of subnet node sequences.

For each subnet, the grammar developer can choose from the following weighting
techniques:

• n-gram weight distribution. For the case that a rule of the semantic gram-
mar allows an arbitrary sequence from a set of specific non-terminal or terminal
symbols, the corresponding subnet can be constructed from a n-gram model
estimated over the set of observed subnet node sequences. An example for
such a rule is the head rule of the semantic grammar, which usually allows an
arbitrary sequence of main rules, to permit the user to pass a variable number
of semantic slots in a single utterance. This is indicated by the topology of

35

Chapter 3. Modeling approach for one-stage speech interpretation

the top-level network in the example for the WTNH in figure 3.3.

Any n-gram model can automatically be converted into a finite-state network,
for example using the SRILM toolkit [Sto02]. In this way the HLM allows the
combination of n-gram and context-free grammar constraints. To cope with
the problem of data sparsity, various smoothing techniques have been tested in
[Tho06] with an HLM for the airport information application domain, however
without observing great differences in the obtained performance improvements.
For the experiments carried out in the context of this thesis, the smoothing
was done with Katz’s method yielding a so-called “back-off” n-gram model
(see [Kat87]).

• Counting and smoothing. If a grammar rule translates into a network with
several different path alternatives that correspond to wordings that are used
differently often, these paths can be weighted according to their occurrence
in the training corpus. The weight of a network edge is estimated from the
number of traversals counted while walking through the parse trees of the
training corpus. To take into account unused parts of the semantic grammar
and to balance unreliable counts caused by data sparsity, the resulting weights
are smoothed with the Good-Turing discounting method (see [Goo53]).

• Uniform weight distribution. There are also many grammar rules whose
corresponding subnets should not be weighted from the training corpus, be-
cause all paths are equally probable and their distribution in the training
corpus has no general significance. This mainly concerns subnets which rep-
resent information from the application data base. As indicated in figure 3.4,
the content of such subnets may also be updated by the dialog management
module during the runtime of the spoken dialog system. To achieve a uniform
weight distribution in these subnets, the outgoing edges of every network node
are weighted equally.

Another important issue are natural speech disfluencies, like pauses, non-speech
sounds, filler words, cut-off words or self-corrections.4 In order to prevent the mis-
interpretation of these disfluencies, they should be included in the HLM. For pauses
and non-speech sounds there are explicit Hidden Markov Models, just like for the
normal phonemes. Filler words, like hesitations (“uhm”) are modeled by special
lexical entries. Cutoff words or general out-of-vocabulary words can be represented
by lexical models that predict possible phoneme sequences (see [TFLR05]).

Besides the creation of acoustic and lexical models for natural speech phenomena,
there is also the problem to integrate them into the HLM. To release the grammar
developer from guessing where inside the semantic grammar he has to include ref-
erences to filler and out-of-vocabulary models, the location of such references is
automatically determined from the corpus annotation. For this purpose natural
speech phenomena have to be annotated during the orthographic transcription of
the user utterances. The parser which is used to generate the parse tree annotation

4Self-corrections are handled by the n-gram top-level network, which allows the arbitrary repe-
tition of main rules; the value of the corresponding semantic slot is simply overwritten in the order
of occurrence.

36

3.3. One-stage speech interpretation

of the orthographic corpus transcription is a robust parser5 which is able to cope
with partly ungrammatical utterances. It allows the occurrence of sequences of filler
words and unmatched words between grammatical correct words and determines
the parse tree that includes the minimum number of unmatched words. During the
generation of the structure of the HLM from the semantic grammar, subnet nodes
referring to filler or out-of-vocabulary (unmatched) words are automatically inserted
at the locations which have been determined by the robust parser. This is actually
done by merging each subnet which is constructed from a specific grammar rule with
the subnet constructed from the collection of annotated child node sequences, which
can be found for the corresponding non-terminal symbol in the corpus of parse trees.

The integration of an out-of-vocabulary model is optional. An alternative for
avoiding the misinterpretation of ungrammatical utterance parts is the estimation
of semantic confidences, which will be presented later on (see sections 5.3 and 6.3.2).

Admittedly, the suggested creation process of the HLM affords a considerable
amount of manual work, which has to be done by the responsible grammar devel-
oper. This work includes the crafting of the semantic grammar from the abstract
specification of the particular dialog application and its test and refinement on the
application-specific corpus, which also has to be collected in advance. Furthermore,
for the estimation of the stochastic weights of the corresponding HLM, the kind of
weighting (n-gram, counting and smoothing, or uniform distribution) has to be se-
lected manually for every subnet. On the other hand, this approach provides a strict
control of the resulting model which prevents situations where the developer is not
able to fix a particular failure situation, because he cannot influence the outcome of
some sophisticated rule inference algorithm.

Nevertheless, approaches to semantic-syntactic modeling which afford less hand-
crafted work are definitely desirable. As already mentioned in section 3.1.5, there is a
training algorithm for stochastic grammars that has the ability of structural inference
(inside-outside algorithm, EM principle, see [LY90]). However, the unconstrained
version of this algorithm, which is totally data-driven, is not able to determine a
grammatical structure that can serve for the purpose of semantic interpretation.
Thus, it is crucial for practical applications to put tight constraints on the degree of
freedom of the assumed grammatical structure to achieve a systematical relation with
the semantic content that finally has to be extracted. In [HY05] and [WDA05] one
can find promising approaches for the application of an EM-based training algorithm
that assumes a restricted context-free grammar structure. These approaches only
require a specification of the dominance relationships of the set of necessary non-
terminal symbols and a semantic annotation for every training utterance that serves
as an additional constraint during the iterative training procedure. The semantic
annotation of a specific corpus utterance only includes the hierarchy of the involved
non-terminal symbols and does not demand a manual specification of the mapping
to the corresponding word sequence, which is learned automatically.

5The robust parser was provided by an industry partner of the NaDia project; details about its
realization are not publicly available.

37

38

Chapter 4

Integration of speech
recognition and interpretation

This chapter presents the detailed description of the efficient implementation of
the one-stage decoding algorithm which uses the WTNH representation of semantic
grammars introduced in the last chapter in order to determine the best-matching
parse tree directly from the recorded speech signal. In contrast to the one-stage
decoder implementation described in [Tho06], which used a static search space or-
ganization and was intended for carrying out off-line experiments, the efficient imple-
mentation of the one-stage decoding algorithm is intended for real time processing
of utterances inside a spoken dialog system. Algorithmic efficency plays a crucial
role in this context, because the processing of spoken utterances in real-time is a
prerequisite for the dialog itself: During conversation, the user expects an immediate
reaction of the dialog system, only a short time after finishing his utterance.

The gain in efficency is achieved by organizing the search space dynamically
by the use of on-demand operations on finite-state automata. These operations
allow the composition and optimization of the integrated search network during the
progress of the decoding process. This provides a good trade-off between decoding
speed, memory consumption and initialization effort.

The chapter starts with the description of the one-stage decoder implementation
with the static search space organization. After a presentation of the calculus on
weighted finite-state transducers (WFST) from the perspective of its well-known
application to speech recognition, it will be shown how this approach has been used
to improve the efficiency of the one-stage decoder.

4.1 Static search space organization

As stated in the last chapter, the representation by means of the weighted transition
network hierarchy (WTNH) covers all knowlegde sources that are involved in the
speech interpretation task.1 The uniform representation of the acoustic-phonetic,
lexical and semantic-syntactic knowledge provides a straightforward way to deter-
mine the parse tree, which best matches the recorded speech signal by searching the

1Except for the scripting commands of the semantic grammar which extract the slot-value pairs
from a decoded parse tree.

39

Chapter 4. Integration of speech recognition and interpretation

WC Place

aus

von

WC Placenach

Berlin

Bonn

b O n

{ }
{ }

b E6 l i: n

{ }

{ }

C Origin

C Dest

WC Place

Bonn

Berlin

b

Figure 4.1: Example demonstrating the static token passing strategy for the WTNH
which relies on sharing the memory reserved for tokens.

best path through the through the WTNH.
The problem of finding the best path through the WTNH can be solved with

the Viterbi decoding algorithm and the token passing principle, which have been
presented in section 2.5 in the context of word-based continuous speech recognition.
The difference to the simpler case of a word-based language model, is that the
WTNH representation generalizes the principle of substitution. When constructing
the integrated search network for a word-based language model, there are usually
only two levels of substitution: words are replaced by their pronunciation, and
phonemes by their corresponding Hidden Markov Models. For determining the best-
matching word sequence, only the exit nodes of words have to be recorded during
token passing search. The WTNH representation, however, allows arbitrary deeply
nested substitutions of network nodes. To reveal the best-matching parse tree, one
has to record all nodes that represent symbols of the underlying semantic grammar.

For extending the token passing algorithm to work on the WTNH representa-
tion it is necessary to prevent the recombination of tokens which reside in different
instances of the same subnet which result from using the same subnet in different
contexts. A simple way to achieve this is to duplicate the topology of a particular
subnet each time when it is used in some context of another subnet. This approach

40

4.1. Static search space organization

simply compiles the network hierarchy into a flat network which is processed with
the standard token passing search.

The duplication of the network topology on each use of a subnet appears costly,
especially if the whole compilation of the WTNH has to be carried out in advance.
To prevent this, another possibility is to duplicate only the memory reserved for the
tokens, and not the network topology. In this case, the token passing algorithm has
to be extended to allow the propagation of tokens from different subnet instances
in parallel along the subnet’s uniquely stored network topology. This approach has
been selected for the first implementation of the one-stage decoder (see [Tho06]).

Tokens which correspond to different instances of the same subnet are separated
by their socalled “token history”. This is the sequence of passed subnet nodes
while walking down the network hierarchy. In the actual implementation of the
decoder, the token history is not explicitly stored with each token, but is implicitly
represented by sharing the memory reserved for tokens between parent and child
networks. The memory reserved for the token collection at a subnet node is also
used for the token collection at the entry node of the corresponding child network.
Provided that during token propagation child networks are processed after their
parent networks, this strategy ensures that all tokens are automatically carried down
the network hierarchy until they all reside on the level of Hidden Markov Models
which represent the acoustic models of specific phonemes.

After the downward propagation, the evaluation of the emission probability den-
sity function at each HMM state considers the current acoustic feature vector which
has been extracted from the speech signal. Then, the updated tokens have to be
propagated again upwards in the network hierarchy. This is achieved by sharing
the memory for tokens between subnet nodes and exit nodes of subnets. All tokens
which reside at an exit node of a subnet are also referenced by the corresponding
subnet nodes inside the parent networks. By processing the subnets in reverse or-
der, which means child networks before parent networks, all tokens automatically
climb up the network hierarchy and are propagated further during the downward
propagation phase of the next time step.

Figure 4.1 shows this token passing strategy for a snippet of the WTNH from the
airport information domain. A subnet node has references to incoming and outgoing
tokens. During downward propagation, incoming tokens are written into a specific
location of the token collection at the entry node of the corresponding subnet. On
the other hand, outgoing tokens are taken from the same location of the token
collection at the exit node. Link nodes which do not refer to a subnet (including
entry and exit node) have identical incoming and outgoing tokens. The order in
which subnets have to be processed during the token propagation phases results
from the topological order of the super network that represents the dependencies
between subnets. Inside each subnet, the order in which network nodes are processed
is not critical, as long as no tokens remain on a link node which is not the exit node.
To prevent this, network nodes are also sorted in topological order if this is possible.
For cyclic subnets, which have no topological order, the token propagation has to
be carried on until there are no tokens left on link nodes.

The allocation of the necessary token memory and the initialization of the ref-
erences to incoming and outgoing token collections for every subnet node have to
be carried out in advance. This is done by enumerating all contexts in which a

41

Chapter 4. Integration of speech recognition and interpretation

particular subnet occurs in the WTNH, which is the number of different paths in
the super network that lead from the root subnet to that particular subnet.

It is true that this approach prevents the duplication of the topology of subnets.
However, the search space layout can only be optimized locally for each particular
subnet. Redundant paths in different subnets cannot be merged together, which
is important to achieve a significant increase in decoding speed. Furthermore, the
static reservation of the search space does not support recursive relations between
subnets.

To achieve an efficient implementation which is suited for the real-time use in a
spoken dialog system, the initial one-stage decoder architecture has been redesigned
to support the dynamic replacement of subnets and a global search space optimiza-
tion by means of the weighted finite-state transducer calculus.

4.2 Introduction to WFST-based speech recognition

For an introduction to the theory of weighted finite-state transducers (WFST) and
to its application to the problem of the efficient integration of knowledge sources
in speech recognition, this section provides a brief summary of the most impor-
tant publications on this subject (e.g. [MPR02, PR97, Moh97]). This introduction
should give the reader the necessary background information to comprehend the
application of the WFST framework in the context of this thesis. However, a de-
tailed presentation of the underlying theory of semirings and rational power series
is beyond the scope of this work.

The section begins with a discussion about the great impact of the WFST cal-
culus on large vocabulary speech recognition systems.

4.2.1 Efficient integration of knowledge sources in LVSR

Especially speech recognition for large vocabularies (LVSR) requires a decoder ar-
chitecture which efficiently combines the knowledge sources language model, pro-
nunciation lexicon and acoustic models to build up the search space, in which the
best-matching hypothesis is determined by the decoding algorithm. Examples for
typical LVSR-techniques using n-gram language models are (see [Ort98]):

• Tree-structured lexicon. To reduce the size of the search space the pro-
nunciation lexicon is represented by a prefix tree. The combination with the
language model requires the management of various copies of the lexicon tree,
one for each n-gram history.

• Language model look-ahead. With the use of the lexicon tree, the identity
of a word remains undefined until a specific hypothesis has reached a tree leaf.
To prevent the late evaluation of the language model, the language model
probabilities are distributed over the edges of each lexicon tree copy.

These techniques allow efficient implementations, but lead to very complex decoder
architectures, especially when considering cross-word context dependent phone mod-
els. Another disadvantage of these implementations is the hard-coded interface with

42

4.2. Introduction to WFST-based speech recognition

the n-gram language model, which doesn’t allow to switch easily to another type of
language model.

An alternative approach is the use of weighted finite-state transducers (WFST)
and the associated calculus, which has been introduced to the speech recognition
community by Mohri, Pereira and Riley (see [MPR02]). This theory provides the
foundation for a uniform combination of knowledge sources that can be represented
by finite-state autotmata, which is usually the case for the knowledge sources in-
volved in speech recognition. The concatenation of automata operations allows to
integrate all knowledge sources into a single finite-state automaton, yielding an op-
timal representation of the search space, which can be processed very efficiently by
time-synchronous Viterbi decoding. The implementation of the decoding algorithm
remains quite simple, because the complex integration of the knowledge sources is
uniformly handled by the WFST calculus. It turned out that all hard-coded opti-
mizations in conventional LVSR decoders can be realized by corresponding automata
operations. Actually, the WFST approach is even more efficient, because it achieves
a global optimization of the search space. At the same time, it offers more flexibility
concerning the integration of different knowledge sources into the speech recognition
system (see [KNRM02]).

What makes the WFST approach even more appealing, is the possibility to carry
out the automata operations on-demand. This means that the search space doesn’t
have to be built up in advance, but can be constructed progressively, driven by the
set of active hypotheses which is tracked by the decoding algorithm. The pruning
of hypotheses leaves those parts of the search space unconstructed, which badly
match the observed speech signal. This saves memory consumption and reduces the
time necessary for the initialization phase. Because the construction of the whole
search space may lead to very large automata, these advantages are very relevant in
practice and justify the loss of decoding speed that is caused by the overhead of the
on-demand construction. Furthermore, the on-demand construction of the search
space allows to handle knowledge sources, which cannot be represented by a finite
number of automaton states, like recursive grammars.

4.2.2 Definition of WFSTs

A finite-state transducer is a finite-state automaton that has input and output labels
attached to its transitions.2 The paths through the transducer map input label
sequences to output label sequences. A weighted transducer also includes weights
on the transitons, which usually represent probabilities. This allows to compute an
overall probability of an input-to-output label mapping along a specific path through
the transducer.

The arithmetic used to calculate with weights is defined by the algebraic concept
of a “semiring”. A semiring (K,⊕,⊗, 0̄, 1̄) is defined over the set of weights K by a
logical “plus” operation ⊕ and a logical “times” operation ⊗ and their corresponding
identity weights 0̄ and 1̄. These operations are used by the automata operations to
calculate sums or products of weights. For the application to speech recognition,
the “tropical” semiring (R+ ∪ ∞, min, ·,∞, 0) provides an appropriate definition,

2Mohri et al. prefer the term “label” instead of “symbol”.

43

Chapter 4. Integration of speech recognition and interpretation

because it reflects the representation of probabilities on logarithmic scale and the
Viterbi (best path) approximization, which replaces the complex logarithmic sum
− ln(e−a + e−b) by the minimum of the two weights a and b.3

Formally, a WFST T = (Σ, Ω, Q, E, i, F, ρ) is represented by

• the label sets Σ and Ω of input and output alphabet,

• the set of states Q,

• the set of transitions E ⊂ Q× (Σ ∪ ε)× (Ω ∪ ε)×K×Q, which is a subset of
all combinations of source and destination states, input and output labels and
weights,

• the initial state i ∈ Q,

• the set of final states F ⊆ Q,

• and the final weight function ρ : F → K.

In the original definition of [MPR02], there is also an initial weight λ, which is
however neglected in practice and thus left apart by setting it always to 1̄.

A transition t = (p[t], `i[t], `o[t], w[t], n[t]) is defined by a source state p[t], a
destination state n[t], an input label `i[t], an output label `o[t] and a weight w[t].
The label ε is a special label which denotes an “empty” label. A “successful” path
π is a sequence of consecutive transitions t1, . . . , tn, which starts at the initial state
i and ends at a final state f ∈ F . The weight w[π] of a successful path π is the
⊗-product of the transition weights and the final weight ρ(n[t]):

w[π] = w[t1]⊗ . . .⊗ w[tn]⊗ ρ(n[tn])

WFSTs are a generalization of weighted finite-state acceptors (WFSA), that have
only a single label attached to each transition. Automata operations defined for
WFSTs treat a WFSA like a WFST with identical input and output labels.

In graphical representations of WFSTs, like in figure 4.5, transitions are depicted
by arcs4, which connect source and destination state and carry a concatenated label
with the format `i[t] : `o[t]/w[t]. The initial state is symbolized by bold print; the
final states are symbolized by concentric circles.

4.2.3 Automaton representation of knowledge sources

Interdependent knowledge sources can be represented by transducers mapping from
labels on a lower conceptual level to labels on a higher conceptual level. For the
common knowledge sources used in speech recognition this is

• an acoustic model transducer H, which maps from a sequence of Hidden
Markov Model states to phonemes,

3The exotic term “tropical semiring” honors the extensive work of Imre Simon on this subject,
which he has done in Brazil.

4In the following transitions of finite-state automata are simply called arcs.

44

4.2. Introduction to WFST-based speech recognition

Enter

John/0.51 plays/0.69 chess/0.22

Jim/0.92 played/0.69 checkers/1.61

Exit

G

Figure 4.2: “Toy” language model represented by the weighted acceptor G.

jh : John

aa : ε

jh : Jim

ih : ε

m : ε

l : ε ey : ε

z : ε

l : ε ey : ε

p : plays

p : played

eh : ε

eh : ε k : ε ex : ε

ch : chess

ch : checkers

d : ε

s : ε

z : ε

n : ε

sil : Enter

sil : Exit

L

Figure 4.3: Phonetic lexicon for language model G represented by transducer L.

• a pronunciation lexicon transducer L which maps from a sequence of phonemes
to words.

• and a weighted acceptor G representing the language model, which assigns
weights to possible word sequences.

In the case of context-dependent phoneme models there is also a transducer C which
maps context-dependent phonemes to simple phonemes.

A “toy” example of a language model acceptor and the corresponding lexicon
transducer is shown in figures 4.2 and 4.3.

4.2.4 Composition and Determinization

There are several operations defined on WFSTs, but the most important ones, con-
cerning the intended integration of knowledge sources are “composition” and “de-
terminization”. The composition operation allows to combine two automata which
represent interdependent knowledge sources like language model and pronunciation

45

Chapter 4. Integration of speech recognition and interpretation

lexicon. The determinization operation is used to transform an automaton into an
equivalent deterministic automaton, where each state has outgoing arcs with unique
input labels. Determinization is usually applied to the outcome of a composition
operation to remove redundant paths, which causes the speedup of the decoding
process. Therefore, the concatenation of composition and determinization opera-
tions permits a standardization of the network topology of the search space, which
significantly reduces the necessary number of states and arcs.

The operation “weighted minimization”, which is actually a combination of the
“weight pushing” and the “minimization” operation, allows even further optimiza-
tion of the search space representation (see [Moh97, MR01]). However, since the
software library [KN04] which has been used in the context of this thesis doesn’t
include on-demand implementations of the corresponding algorithms, the “weighted
minimization” operation has not been exploited in the presented work.

Composition

The composition operation, which is denoted by the symbol “◦”, combines two
weighted transducers T1(Σ,Γ, QT1 , . . .) and T2(Γ, ∆, QT2 , . . .) and yields the weighted
transducer T (Σ,∆, QT , . . .). It maps label sequences in the input alphabet Σ of
the first transducer T1 to label sequences in the output alphabet ∆ of the second
transducer T2.

Figure 4.4 shows the transducer resulting from the composition of the exam-
ple automata L and G, representing pronunciation lexicon and language model in
speech recognition. This transducer maps from phoneme sequences to weighted
word sequences, which follow the language model. By another composition with the
acoustic model transducer H, the resulting cascade of compositions H ◦L ◦G maps
from HMM state sequences to word sequences and represents the final search space
on which operates the Viterbi decoder.

At first glance, the composition operation has the same effect like a context-free
substitution of arcs by corresponding sub-automata. For the simple example of figure
4.4 this is true, but the difference between the two operations is that composition
involves only two automata, whereas the substitution operation needs a separate
automaton representation for each label to replace. Thus, composition operates in a
more “compact” fashion than substitution. Moreover, the composition operation is
able to carry out context-sensitive substitutions inside label sequences represented
by arbitrary automata, which no longer can be achieved by simple context-free
substitutions. An application for this kind of composition is the context-dependent
phoneme transducer C, which is composed with L◦G to generate a transducer with
context-dependent phoneme labels on the input side (see section 4.3.4).

The pseudo-code fragment 4.1 and figure 4.5 illustrate what actually happens
during the composition of two ε-free WFSTs, T = T1 ◦ T2. The set of states QT of
the composed transducer correspond to pairs of states from left and right operand:
QT ⊆ QT1 × QT2 . The composition starts from the pair of initial states (iT1 , iT2).
If the current state pair is (q1, q2), a new pair of states (n[t1], n[t2]) is added to the
state set if there is an arc from q1 to n[t1] in T1 and an arc q2 to n[t2] in T2 which
have matching input and output labels `o[t1] = `i[t2]. The new arc which connects
(q1, q2) and (n[t1], n[t2]) in the composed transducer carries the input label `i[t1] of

46

4.2. Introduction to WFST-based speech recognition

sil : Enter

aa : ε

jh : John/0.51 jh : Jim/0.92

ih : ε

n : ε m : ε

p : plays/0.69

p : played/0.69

l : ε

l : ε

ey : ε

ey : ε

z : ε

d : ε

ch : chess/0.22

ch : checkers/1.61

eh : ε eh : ε

k : ε

ex : εz : ε

s : ε

sil : Exit

L ◦ G

Figure 4.4: Composition of “toy” lexicon L and language model G.

0

1

2

3/0.6

a : β/0.1 a : α/0.4

b : α/0.2 b : β/0.5

c : α/0.3

0 1 2/0.7
β : C/0.3 α : B/0.4

α : B/0.6

(0, 0) (1, 1)

(1, 2)

(3, 2)/1.3
a : C/0.4

c : B/0.7 a : B/1.0

a : B/0.8

c : B/0.9

T1 T2

T1 ◦ T2

Figure 4.5: Example from [MPR02] for the composition of ε-free WFSTs.

47

Chapter 4. Integration of speech recognition and interpretation

Pseudo-code fragment 4.1 Composition of two ε-free transducers, T = T1 ◦ T2.
S represents a stack, which stores pairs of state indices (see [KN04]).

iT ← (iT1 , iT2) . Initialize stack with pair of initial states.
S ← iT
while S 6= ∅ do . Do while stack is not empty.

(q1, q2) ← S . Pop next state pair (q1, q2) from stack.
QT ← QT ∪ (q1, q2) . Add state pair to state set of composed trasducer.
if q1 ∈ FT1 ∧ q2 ∈ FT2 then . Both final states?

FT ← FT ∪ (q1, q2) . Yes, add state pair to final state set.
ρT ((q1, q2)) ← ρT1(q1)⊗ ρT2(q2) . Calculate final weight product.

end if
for each (p[t1], `i[t1], `o[t1], n[t1]) ∈ ET1 , p[t1] = q1 do

. For each outgoing arc of state q1.
for each (p[t2], `i[t2], `o[t2], n[t2]) ∈ ET2 , p[t2] = q2 ∧ `o[t1] = `i[t2] do

. For each outgoing arc of state q2 with matching output label.
ET ← ET ∪ ((p[t1], p[t2]), `i[t1], `o[t2], w[t1]⊗ w[t2], (n[t1], n[t2]))

. Add arc with corresponding labels and weight product to arc set.
if (n[t1], n[t2]) /∈ QT then

. Is destination state pair a new state of composed transducer?
S ← (n[t1], n[t2]) . Yes, push state pair on stack.

end if
end for

end for
end while

the arc in T1 and the output label `o[t2] of the arc in T2. Its weight is the ⊗-product
of the corresponding arc weights w[t1] and w[t2]. Newly discovered state pairs are
pushed onto a stack S, which is processed until all final composed states are reached.

The composition of WFSTs with ε labels, which is usually the case in practice, is
more complex and requires an intermediate composition with a “filter” transducer
(see [PR97]). This intermediate composition can be realized in an “unrolled” fashion,
which allows efficient implementations of the general composition algorithm, like
those in [MPR98, KN04, Het04].

Determinization

The transducer L ◦G of figure 4.4 has various states which have outgoing arcs that
carry the same input label. The determinization operation, which is denoted by
det(), merges this states and redistributes weights and output labels. This yields an
equivalent deterministic transducer, which only has states that have outgoing edges
with unique input labels.

Figure 4.6 shows the transducer resulting from det(L ◦G) if assuming the trop-
ical semiring to combine the involved weights. The resulting transducer provides
an optimized version of the original transducer which represents the same weighted
input-to-output label mapping with less states and arcs. The determinization oper-
ation has a similar effect like the construction of lexicon trees in conventional LVSR

48

4.2. Introduction to WFST-based speech recognition

sil : Enter

jh : ε/0.51

ih : Jim/0.41

n : ε m : ε

p : ε/0.69 l : ε ey : ε

ch : ε/0.22

eh : ε

k : checkers/1.39

ex : εz : ε
sil : Exit

aa : John

z : plays

d : played

s : chess

det(L ◦ G)

Figure 4.6: Optimized representation of L ◦G resulting from determinization.

0

2

3/0

1/0

b/4

a/3

b/3

b/3

a/1 b/1

b/1 b/5

{(1,2),(2,0)}/2

{(1,0),(2,3)}/0

{(3,0)}/0{(0,0)}

a/1 b/1

b/1 b/3

A1

det(A1)

Figure 4.7: Example from [Moh97] for the determinization of WFSAs.

49

Chapter 4. Integration of speech recognition and interpretation

decoder implementations, but works in a much more general manner. It generates
partial lexicon tree copies which individually fit into each context of an arbitrary
language model given by a finite-state automaton.

The algorithm realizing the determinization operation is based on the construc-
tion of subsets, which include states that are reachable from the initial state by the
same input label sequence (see [Moh97]). Similar to the state pairs in the composi-
tion algorithm, subsets represent “abstract” states of the determinized automaton,
which are accessed in practical implementations of the algorithm by sophisticated
hashing techniques.

For the sake of clarity, this section only presents the determinization algorithm
for the case of weighted acceptors. An example for A2 = det(A1), assuming the
tropical semiring, is depicted in figure 4.7; the algorithm is given by the pseudo-code
fragment 4.2. A state of the determinized acceptor A2 corresponds to a subset, which
is a set of pairs (q1, x) consisting of a state of the original acceptor A1 and a residual
weight x. Residual weights are used to redistribute weights when merging states that
can be reached by same input label sequence. The construction of the determinized
acceptor starts with the initial subset {(i1, 1̄)}. For each label a which occurs on
arcs that leave states q1 in the current subset q2, a new subset is constructed in
the following way: First one has to determine the weight w[t2] of the arc leading
to the state in the determinized acceptor A2 that corresponds to the subset which
is to be constructed. The weight w[t2] is calculated by summing all products of
residual weights x corresponding to states q1 with the sum over all weights w[t1] on
outgoing arcs of q1 with label a. Then, by the aid of the inverse weight (w[t2])−1 the
residual weights of the new subset can be calculated. The inverse weight satisfies
(w[t2])−1⊗w[t2] = 1̄; in the case of the tropical semiring this is simply the negative
weight −w[t2]. The new subset consists of states q′1, which at least have one incoming
arc with label a from a source state p[t1] in the current subset q2. The residual
weights corresponding to the states q′1 are calculated by a sum over products. Each
product includes the inverse weight (w[t2])−1, the residual weight x corresponding
to the source state p[t1], and the arc weight w[t1]. The sum is carried out over all
arcs with label a which lead to q′1 and come from a source state p[t1] in the current
subset q2. Thus, the inverse weight (w[t2])−1 liberates the residual weights from
the contribution of the weight of the newly created arc with label a, which leads
to the state corresponding to the constructed subset. If this subset has never been
constructed before, it is pushed onto the stack S, which is processed until all final
determinized states are reached.

In the more general case of determinization of weighted transducers, also output
labels have to be redistributed in the resulting transducer. To achieve this, in addi-
tion to residual weights, the extended algorithm also considers residual output label
sequences, which are determined by the aid of the least common prefix operation
defined on label sequences. Efficient implementations of this extended algorithm
get quite complex, especially because of the sophisticated hashing techniques, which
are necessary for a quick access of the abstract states, which now represent sets of
triples including a state, a residual weight and a residual output label sequence (for
further details, see published implementations of [KN04] and [Het04]).

50

4.2. Introduction to WFST-based speech recognition

Pseudo-code fragment 4.2 Determinization of weighted acceptor, A2 = det(A1).
S represents a stack storing subsets, which contain pairs of states and residual
weights (see [Moh97]).

iA2 ← {(iA1 , 1̄)} . Initialize stack with initial subset pair.
S ← iA2

while S 6= ∅ do . Do while stack is not empty.
q2 ← S . Pop next subset from stack.
QA2 ← QA2 ∪ q2 . Add subset to state set of determinized acceptor.
if (q1, x) ∈ q2 ∧ q1 ∈ FA1 then . Subset contains a final state?

FA2 ← FA2 ∪ q2 . Yes, add subset to set of final states.
ρA2(q2) ←

⊕
(q1,x)∈q2∧q1∈FA1

x⊗ ρA1(q1)

. The sum is calculated over all final subset states.
end if
for each a ∈ ΣA1 , (p[t1], a, w[t1], n[t1]) ∈ EA1 ∧ (p[t1], x) ∈ q2 do

. For each label “a” on outgoing arcs of subset states.
w[t2] ← 0̄ . Initialize new arc weight.
for each (q1, x) ∈ q2, (q1, a, w[t1], n[t1]) ∈ EA1 do

. For each subset pair that has an outgoing arc with label “a”.

w[t2] ← w[t2]⊕
(

x⊗ ⊕
(q1,a,w[t1],n[t1])∈EA1

w[t1]

)
. The sum is calculated

over all outgoing arcs with label “a”, leaving the subset state.
end for
n[t2] ← ∅ . Initialize new destination subset.
for each q′1 ∈ QA1 , (p[t1], a, w[t1], q′1) ∈ EA1 ∧ (p[t1], x) ∈ q2 do
. For each destination state of arcs with label “a” leaving a subset state.

n[t2] ← n[t2] ∪
{(

q′1,
⊕

(p[t1],a,w[t1],q′1)∈EA1
∧(p[t1],x)∈q2

(w[t2])
−1 ⊗ x⊗ w[t1]

)}

. The sum is calculated over all incoming arcs which carry the label “a” and
leave a subset state.

end for
EA2 ← EA2 ∪ (q2, a, w[t2], n[t2]) . Add arc with label “a” to arc set.
if n[t2] /∈ QA2 then

. Is destination subset new state of determinized acceptor?
S ← n[t2] . Yes, push subset on stack.

end if
end for

end while

51

Chapter 4. Integration of speech recognition and interpretation

4.2.5 Problem of “determinizability”

Unfortunately, the determinization algorithm does not terminate for arbitrary input
automata. In the case of transducers, this happens if there are paths with the same
input label sequence that map to different sequences of output labels. This problem
is not restricted to artificially constructed examples, but occurs quite frequently in
practical applications: the determinization of the combined transducer of phonetic
lexicon and language model L ◦ G may fail for the case that the lexicon contains
homophones, which are words with different orthography but equal pronunciation.

A possible approach to prevent the infinite subset construction inside the deter-
minization algorithm is to insert arcs carrying special “disambiguation” labels at
adequate locations in the input transducer. After successfull determinization, these
labels are replaced by ε labels. Corresponding arcs may be deleted by the application
of an operation called “ε-removal” (see [Moh02]).

For the special case of the lexicon transducer, the disambiguation labels can be
inserted on arcs which return from the last state of a path representing a specific
word back to the initial state. So, disambiguation labels correspond to special
phonemes appended to the end of the phonetic transcription of each word. The
simplest solution is to use the word label itself as disambiguation label. Actually,
one needs less different disambiguation labels: only as much as there are homophones
plus another one marking the end of a word (see [MPR02]). However, this optimal
strategy works only for the special case of phonetic lexicon transducers. A general
algorithm which can render arbitrary automata “determinizable” with a minimum
number of modifications of the input automaton has been presented by [AM03].
However, probably due to its high complexity, this algorithm is not part of the
open-source implementations [KN04, Het04].

Therefore, in the context of the decoder implementation which accompanies this
thesis, the problem of determinzability has been solved by copying each output la-
bel as disambiguation label on the input side of a corresponding transducer arc.
This simple method to allocate and distribute disambiguation labels produces more
computational overhead than actually necessary. However, because of the moderate
vocabulary sizes of the semantic grammars used for the intended speech interpre-
tation task, the overhead produced by the disambiguation labels does not have a
considerable impact on the efficiency of the decoding process. The details on how
to use output labels for disambiguation are explained later on, when presenting the
exact layouts of the automata wich represent the knowledge sources processed by the
one-stage decoder that integrates speech recognition and parsing (see section 4.3).

4.2.6 On-demand computation of local automata operations

An interesting property of the composition and the determinization operation is the
fact that they can be carried out “locally”. The creation of an output state depends
only on input states which are included in the corresponding abstract state. Creating
a new output state actually means creating its outgoing arcs which involves the
allocation of the abstract states corresponding to their destination states. Abstract
states are allocated beginning from the initial one that only includes initial states
of the input automata. Thus, the result of a local operation can be constructed

52

4.2. Introduction to WFST-based speech recognition

Pseudo-code fragment 4.3 Interface of the abstract base class for automata, that
allow the on-demand computation of local automata operations (see [KN04]).

class Automaton
class Arc

StateId target() . Returns target state id.
Weight weight()
LabelId input()
LabelId output()

end class
class State

StateId id()
Weight final() . Returns final weight.
ArcIterator begin() . Iterators for accessing outgoing arcs.
ArcIterator end()

end class
StateId inititalStateId() . Returns the id of the initial state.
State getState(StateId) . Returns the state instance corresponding to the

passed state id.
end class

progressively starting from the initial states of the input automata. The power of
the progressive construction becomes obvious when concatenating local automata
operations. This allows to access states of the automaton which results from the
concatenation of several operations, whithout having to construct the intermediate
automata entirely. The states of the intermediate automata are constructed on-
demand while traversing the final automaton.

The software design which realizes the on-demand computation of local automata
operations has been introduced by [MPR98]. Expressed in terms of object-orientated
programming, this concept relies on an abstract base class for automata providing
the interface which is shown in the pseudo-code fragment 4.3. Classes derived from
the abstract base class Automaton represent either automata resulting from a
specific local operation, or the static automaton which is entirely present in memory.
A class representing a specific automata operation accesses the input automata
of the operation via the Automaton interface. States and their corresponding
abstract states are accessed by integer identifiers which are denoted by “StateId”.
The outgoing arcs of a specific state can be enumerated by corresponding iterators
provided by the interface class State. Instances of the class Arc store the state
identifier of the arc’s destination state, which is accessed by the target() member
function.

The member function initialStateId() of the Automaton class allocates the
initial abstract state and returns its state identifier. Output states resulting from
a specific automata operation are created by the member function getState().
The passed state identifier refers to the abstract state from which the on-demand
construction is spanned further. The abstract state corresponds to the newly cre-
ated state which is returned by the getState() member function. The generation
of its outgoing arcs includes the allocation of abstract states which correspond to

53

Chapter 4. Integration of speech recognition and interpretation

Pseudo-code fragment 4.4 Application of the on-demand construction of the
determinized composition det(L ◦G) of phonetic lexicon and language model.

function Automaton compose(Automaton a1, Automaton a2)
return new ComposeAutomaton(a1, a2)

end function

function Automaton determinize(Automaton a)
return new DeterminizeAutomaton(a1)

end function
. . .

. Load lexicon and language model as static automaton into memory.
lex ← new StaticAutomaton()
lm ← new StaticAutomaton()
read(lex, file1)
read(lm, file2)

. Creates the automaton resulting from determinization and composition,
without actually creating its states.
detLexLm ← determinize(compose(lex, lm))

. Begin with traversal of resulting automaton
stateId ← detLexLm.initialStateId()
state ← detLexLm.getState(initialId)
for each arc of state do

. . .
end for

their destination states. The allocation of abstract states again involves calls to
the getState() member function of the input automata. This triggers the pro-
gressive construction of intermediate states of input automata that are themselves
constructed on-demand. The chain of recursive calls ends when calling the get-
State() member function of a static automaton, which usally represents a specific
knowledge source loaded entirely into memory.

The pseudo-code fragment 4.4 shows the application of the on-demand con-
struction for the example of figure 4.6 which reflects the determinized composition
det(L ◦G) of phonetic lexicon L and language model G. The functions compose()
and determinize() return automata which provide the corresponding on-demand
implementations of these operations by their getState() method. These functions
are used to create the automaton which results from the concatenation of the de-
terminization and the composition operation that is effected on the static automata
representing phonetic lexicon and language model. The states of this automaton
are constructed on-demand during its traversal, which starts from the initial state.
In practice, also the other knowledge sources necessary for speech recognition are
integrated in this fashion. This enables the on-demand construction of the final
search space while traversing it under the control of the Viterbi decoder.

54

4.3. WFST-based integration of recognition and parsing

As mentioned before, the software design for the on-demand computation of local
automata operations has been introduced by Mohri, Pereira and Riley (see [MPR98]).
However, their software library has been made publilcly available only on the level of
command line tools, without providing an interface for the on-demand computation.
Finally, after a couple of years, other scientists published their own source code of
efficiently implemented on-demand algorithms (see [KN04, Het04]). These libraries
don’t cover the whole functionality of the current library version of [MPR98], which
still remains unpublished, but include the most important algorithms, like com-
position and determinization. In the context of this thesis, the library of [KN04]
has successfully been used to achieve an efficient implementation of the one-stage
decoder which operates on stochastic context-free grammars.

4.3 WFST-based integration of recognition and parsing

This section focuses on how the WFST approach has been applied to integrate speech
recognition and parsing on the basis of stochastic context-free grammars. This is
achieved by a search space layout that preserves the hierarchical relations between
terminal and non-terminal grammar symbols. By using Viterbi decoding, this allows
to determine the best-matching parse tree directly from the speech signal. During the
decoding process, the search space is constructed on-demand by the concatenation of
WFST operations which act on the automata that represent the involved knowledge
sources, like stochastic context free grammar, phonetic lexicon and acoustic model.

As discussed in chapter 3, a stochastic context free grammar used for semantic
interpretation is represented by a corresponding hierarchical language model (HLM)
which is a hierarchy of weighted transition networks (WTNH). The following subsec-
tions present the exact layout of the finite-state automata for the semantic-syntactic,
lexical and acoustic-phonetic knowledge sources which will be combined using the
WFST approach, beginning with the automaton that represents the HLM.

4.3.1 Weighted finite-state acceptor representing the HLM

In order to integrate a stochastic context-free grammar into the WFST decoding
framework, its representation by the corresponding HLM has to be transformed into
a corresponding weighted finite-state automaton. Figure 4.8 and 4.9 present an
example5 which shows the relation between both representations.

In the HLM of figure 4.8 the non-terminal subnet nodes Ai refer to subnets with
the same label. The subnet nodes ai are terminal nodes which represent specific
words. Subnet edges carry the weights wi. By definition every subnet must have a
single entry and a single exit node6, which are depicted by black circles.

Figure 4.9 shows the corresponding weighted finite-state automaton G̃, which is
a WFSA since input and output labels are identical. The alphabet includes all labels
of terminal and non-terminal subnet nodes in the HLM. The automaton provides a
“flat” representation of the HLM, which means that non-terminal subnet nodes are

5This is a simplistic example with the only purpose to explain the transformation of the HLM
into a single weighted finite-state automaton; it doesn’t make much sense in practice.

6To distinguish clearly between subnets and finite-state automata, the terms “node” and “edge”
correspond to subnets, while “state” and “arc” correspond to finite-state automata.

55

Chapter 4. Integration of speech recognition and interpretation

A2

A3

w1 w3

w2 w4

A4

A5

w5 w7

w6
w8

A5

A6

w9 w11

w10
w12

a3

a4

w17

w19

w18 w20

a5

a6

w21

w23

w22 w24

a1

a2

w13

w15

w14 w16

A1

A4 A6A5

A2 A3

Figure 4.8: Example for a stochastic context-free grammar represented as hierarchi-
cal language model (HLM).

εsub/w1

εsub/w2

εsub/w5

εsub/w6

εsub/w9

εsub/w10

a1/w13

a2/w14

a3/w17

a4/w18

a3/w17

a4/w18

a5/w21

a6/w22

A4/w15

A4/w16

A2/w7

A2/w8

A5/w19

A5/w20

A5/w19

A5/w20

A6/w23

A6/w24

A3/w11

A3/w12

ε/w3

ε/w4

Figure 4.9: Representation of the HLM as weighted finite-state acceptor G̃.

56

4.3. WFST-based integration of recognition and parsing

Pseudo-code fragment 4.5 Gets automaton state id which corresponds to a sub-
net node in a specific network context (helper function).

function HlmFsa.getStateId(hierStates, parentCtx, node)
stateId ← parentCtx[node.getIndex()]
if stateId = undef then . Node index not found in parent context hash?

stateId ← hierStates.getSize() . Yes, allocate next automaton state id.
childCtx ← undef
if node.isNonTerm() then . Is node non-terminal?

childCtx ← new NetCtx(stateId) . Yes, create new child context.
childCtx[0] ← stateId . Add entry node index to child context hash.

end if
parentCtx[node.getIndex()] ← stateId . Update parent context hash.
hierStates[stateId] ← new HierState(parentCtx, childCtx, node)

. Create hierarchical state saving network contexts and subnet node.
end if
return stateId . Return automaton state id.

end function

recursively replaced by instances of the corresponding subnets.7 Node labels in the
HLM become arc labels in the finite-state automaton, which reflects the conversion
from Moore to Mealy automaton representation. Each subnet instance in the finite-
state automaton starts with an arc carrying the special “opening” label εsub and
ends with arcs carrying the “closing” label, which is the label of the subnet itself.
However, in the top-level subnet instance the closing label is replaced by the label ε
because there is no corresponding opening label εsub. This kind of “bracketing”
later allows the construction of the parse tree from the best matching path which is
determined by the Viterbi decoder.

The relations between automaton states and subnet nodes are the following:

• The destination state of an arc carrying the opening label εsub corresponds to
the entry node of a subnet.

• The destination state of an arc carrying a terminal label simply corresponds
to the terminal subnet node.

• The destination state of an arc carrying a closing label corresponds to the exit
node of the subnet, as well as to the parent subnet node, which refers to the
subnet instance.

Subnets may also contain “link” nodes that don’t refer to specific words or subnets,
just like entry and exit nodes. They serve for saving space when interconnecting
several nodes.8 When building the HLM acceptor, link nodes are treated just like
terminal subnet nodes. However, in contrast to the terminal labels which are later
expanded by the pronunciation of the corresponding words, the link node label is

7The composition operation has not been used, since it doesn’t serve well for the successive
replacement of specific labels; it’s convenient when all labels have to be replaced a single time, like
in the case of the composition with the phonetic lexicon transducer.

8Link nodes appear for example in the automaton representation of a backoff n-gram model.

57

Chapter 4. Integration of speech recognition and interpretation

Pseudo-code fragment 4.6 On-the-fly generation of automaton representing the
hierarchical language model (HLM).

function HlmFsa.getState(hierStates, stateId)
state ← new State(stateId) . Create new automaton state.
node ← hierStates[stateId].getSubNetNode()

. Get current subnet node from corresponding hierarchical state.
netCtx ← hierStates[stateId].getParentCtx() . Assume terminal node.
if node.isNonTerm() then . Is node non-terminal?

netCtx ← hierStates[stateId].getChildCtx() . Yes, get child context.
subNet ← node.getSubNet()
node ← subNet.getNode(0) . Set node to entry node of subnet.

else if node.isExitNode() then . Is node exit node of subnet?
stateId ← netCtx.getStateId() . Yes, get state id of parent context.
if stateId = 0 then . Is current subnet on top-level?

state.setFinal() . Yes, set final state.
else

. No, get parent node and context from corresponding hierarchical state.
node ← hierStates[stateId].getSubNetNode()
netCtx ← hierStates[stateId].getParentCtx()

end if
end if
for each edge of node do . For each outgoing edge of current node.

destNode ← edge.getNode()
label ← destNode.getLabel()

. Assume terminal destination node and set arc label to node label.
if destNode.isNonTerm() then . Is destination node non-terminal?

label ← εsub . Yes, set arc label to opening label εsub.
else if destNode.isExitNode() then . Is destination node exit node?

if netCtx.getStateId() = 0 then . Is current subnet on top-level?
label ← ε . Yes, set arc label to ε.

else
subNet ← node.getNetwork()
label ← subNet.getLabel() . No, set arc label to subnet label.

end if
end if
destStateId ← HlmFsa.getStateId(netCtx, destNode)

. Call helper function to get destination state id.
state.addArc(destStateId, edge.getWeight(), label)

. Create new automaton arc with edge weight.
end for
return state . Return newly created automaton state.

end function

58

4.3. WFST-based integration of recognition and parsing

Pseudo-code fragment 4.7 Returns id of initial state of the HLM automaton.
function HlmFsa.initialStateId(hierStates, topLevelNet)

initNode ← topLevelNet.getNode(0) . Get entry node of top-level subnet.
netCtx ← undef
if hierStates.getSize() = 0 then . Called for the first time?

netCtx ← NetCtx(0) . Yes, create new network context.
else

netCtx ← hierStates[0].getParentCtx()
. No, get from hierarchical state.

end if
return HlmFsa.getStateId(hierStates, netCtx, initNode)

. Call helper function which returns zero for initial state id.
end function

treated as a disambiguation label, since its occurrence may distinguish ambiguous
paths, that would cause problems during subsequent determinization operations (see
section 4.3.2).

The whole finite-state automaton can be created at once. But the resulting
automaton may become very large and in the case that the HLM represents a re-
cursive grammar this is even impossible, because the automaton would have an
infinite number of states. Thus, the principle of on-demand construction, which has
been introduced in section 4.2.6, is applied to the HLM acceptor as well: Given a
state identifier, the corresponding state with all outgoing arcs is created on-demand.
The creation of an automaton arc doesn’t include the creation of the destination
state, only the allocation of the corresponding state identifier. The pseudo-code
fragment 4.6 shows the implementation of the function getState(), which creates
states of the HLM acceptor following the principle of on-demand construction. It is
a member function of the class HlmFsa, which represents the HLM acceptor and
implements the abstract base class Automaton (see pseudo-code fragment 4.3).

The linkage between automaton states and subnet nodes is managed by the
classes HierState and NetCtx. The member variable “hierStates” of the HlmFsa
class stores a hierarchical state for every created automaton state. A hierarchical
state, which follows the concept of an “abstract state”, contains a reference to the
corresponding subnet node inside the HLM and references to the parent and child
network context. A network context (class NetCtx) stores the mapping between
subnet node indices and allocated automaton state identifiers for a specific subnet
instance, as well as the state identifier which corresponds to the subnet node in the
parent subnet instance. This parent state identifier allows to “return” to the parent
subnet instance when reaching an automaton state corresponding to an exit node.

The helper function getStateId(), which is shown in the pseudo-code frag-
ment 4.5, gets the automaton state identifier which corresponds to a subnet node in
a specific network context. If not already done, this function allocates an automaton
state identifier and creates a new hierarchical state. If the passed subnet node is
non-terminal, it creates a child network context, which allows to “enter” the subnet
instance when actually creating the automaton state.

The helper function is used by getState() to allocate the state identifiers which

59

Chapter 4. Integration of speech recognition and interpretation

correspond to the destination subnet nodes of the outgoing edges of the current
subnet node. Automaton arcs receive the weight of the corresponding subnet edge.
The arc label results from the kind of the edge’s destination subnet node:

• Non-terminal subnet node. Entering a subnet instance is indicated with
the opening label εsub.

• Terminal subnet node. In this case the label simply receives the label of
the terminal subnet node.

• Exit node. If the current subnet instance is not on top-level, the arc label
is set to the closing label which is the name of the subnet. In the top-level
subnet the closing label is set to the label ε.

The member function initialStateId() returns the initial state of the HLM
acceptor, which results from the passed “top-level” subnet, from which the on-
demand construction starts.

Although corresponding to an automaton with an unbounded number of states,
recursive grammars can be handled thanks to the on-demand construction: due to
the pruning of hypothesises, the decoding algorithm doesn’t need to traverse the
whole automaton, which limits the number of constructed states. However, since
the used Viterbi decoding principle works with the “breath first” strategy, it doesn’t
allow left recursion. This means, that a recursion cycle in the HLM must contain at
least one terminal subnet node, which refers to a lexical entry that consumes time
frames (acoustic feature vectors) in its subordinate acoustic models.9

4.3.2 Lexicon transducer

The phonetic lexicon transducer L̃ which suits the HLM acceptor G̃ with respect to
their composition is shown in figure 4.10. Every terminal label ai appears on the
output side of an arc which leads from the initial state into a branch of the automaton
that represents possible pronunciations of the corresponding word. Pronunciations
are given by input label sequences over the phonemes pi that result from paths
through that automaton branch. The layout of the lexicon transducer is similar to
the one of the “toy” example of figure 4.3. However, there are some extensions which
are necessary to keep the result of the composition always determinizable. The self-
loops at the inital state, which carry the non-terminal labels Ai of the HLM acceptor,
serve for this purpose. They preserve the non-terminal labels on the input side of
the arcs in the composed transducer. This guarantees determinizability for the case
that the HLM represents an ambiguous grammar. For the same reason, every arc
returning from a branch describing possible pronunciations of a specific word carries
the corresponding terminal label ai on its input side. This keeps the composed
automaton determinizable for the case of homophones, which occur if the same
sequence of phonemes can be mapped to different terminal labels. Strictly speaking,
the special opening label εsub is not necessary for disambiguation. Nevertheless it
is treated just like a disambiguation label to prevent input ε labels, which would
complicate subsequent composition operations.

9The semantic grammar for the airport information domain that has been used for the experi-
ments conducted in the context of this thesis does not contain any recursive rule dependencies.

60

4.3. WFST-based integration of recognition and parsing

p1 : a1

p2 : ε

εsep : ε

p3 : a2

p4 : ε

εsep : εa1 : ε

a2 : ε

εsub : εsub

A2 : A2

A3 : A3

Figure 4.10: Layout of the phonetic lexicon transducer L̃ suited for the composition
with the HLM acceptor G̃.

sp1

1
: p1/e

p1

1

sp1

3
: ε/ap1

13

sp1

2
: ε/ap1

12
sp1

3
: ε/ap1

23

ε : ε/e′
2

p1

ε : ε/e′
3

p1

sp1

2
: p1/e

p1

2

sp1

1
: ε/ap1

11
sp1

2
: ε/ap1

22
sp1

3
: ε/ap1

33

εsep : εsep

a1 : a1

εsub : εsub

A1 : A1

sp2

3
: ε/ap2

13

sp2

2
: ε/ap2

12
sp2

3
: ε/ap2

23

sp2

1
: ε/ap2

11
sp2

2
: ε/ap2

22
sp2

2
: ε/ap2

33

sp2

1
: p2/e

p2

1

sp2

2
: p2/e

p2

2

ε : ε/e′
2

p2

ε : ε/e′
3

p2

Figure 4.11: Layout of the acoustic model transducer H̃ suited for the composition
with the result of det(L̃ ◦ G̃).

61

Chapter 4. Integration of speech recognition and interpretation

The special “seperator” label εsep is used to mark the end of words. Just like
disambiguation labels, the seperator label has to remain on the input side during
subsequent composition operations. This prevents its displacement with respect to
time, which usually happens to output labels when applying the determinization
operation (see figure 4.6). However, in contrast to disambiguation labels, which are
removed after the final determinization operation, arcs carrying the seperator label
are necessary to reconstruct the exact time alignment of the best matching path
returned by the Viterbi decoder.

The lexicon transducer may also include complex pronunciation models, like
the model for out-of-vocabulary words which has already been mentioned in sec-
tion 3.3.3. The only prerequisite is that such a model can be represented by a
weighted finite-state automaton, like for example an n-gram model predicting pos-
sible phoneme sequences.

4.3.3 Acoustic model transducer

The acoustic model consists of a collection of Hidden Markov Models that each
represent a specific phoneme pi. Hidden Markov Models, which have been introduced
in section 2.2, are usually represented by automata in Moore format like the one of
figure 2.1. In the usual case of continuous HMMs, a state si of such an automaton
contains a specific probability density function p(x|si), which processes acoustic
feature vectors x.

Figure 4.11 shows the layout of the acoutic model transducer H̃ which maps from
sequences of HMM states to phonemes. This transducer is suited for the composition
with the transducer resulting from the determinization of the composition of the
lexicon transducer L̃ and the HLM acceptor G̃. The result of H̃ ◦ det(L̃ ◦ G̃) maps
from HMM state sequences to bracketed sequences of terminal and non-terminal
labels. This represents the final search space over possible parse trees in G̃, which
integrates the acoustic-phonetic and lexical knowledge sources H̃ and L̃.

Similar to the lexicon transducer where every word corresponds to a specific
branch of the automaton that represents its pronunciation, the acoustic model trans-
ducer has branches which represent the Hidden Markov Models for each particular
phoneme pi. Such a branch provides the equivalent Mealy representation of the
HMM, which means that the HMM state identifiers si now appear in form of input
labels on the arcs of the automaton.

In figure 4.11 the HMM transition probabilities ei, aij , and e′i are included as
weights on the corresponding arcs. Assuming the tropical semiring for the weight
calculus during automata operations, the HMM transition probabilities have to be
converted to arc weights on logarithmic scale. However, in the practical implemen-
tation, these arc weights are encoded as a part of the corresponding input labels.10

The encoding of weights allows the hypothesis management of the Viterbi decoder to
accumulate scores from acoustic model and scores from the HLM separately. This
becomes necessary if the contribution of acoustic model and language model has
to be reweighted, which happens for example during the estimation of confidence
measures (see section 5.3.2).

10A transition weight is encoded into the input label by appending an identifier which is generated
from the identifier of the tied transition matrix and the corresponding row and column indices.

62

4.3. WFST-based integration of recognition and parsing

ε, ε

ε, x

ε : x

ε, x′

ε : sp

x, ε′

x, ε

sp : ε

%-x+% : εsep

εsep : ε

%-x+% : εsep

x, y

%-x+y : y

x, y′

ε : sp

x, y′′

%-x+y : y

sp : ε

y, z

x -y+z : z
y, z′′

x -y+z : z

sp : ε

y, ε

x -y+% : εsep

y, ε′

x -y+% : εsep

sp : εεsep : ε

y, z′

ε : sp
a1 : a1

εsub : εsub

A1 : A1

Figure 4.12: Snippet explaining the layout of the intra-word triphone transcuder C̃
suited for the composition with the result of det(L̃ ◦ G̃).

The encoding is resolved by a mapping from input label identifiers to pairs which
contain the HMM state identifier and the corresponding arc weight. This mapping
is initialized during the construction of the acoustic model transducer from the set
of HMM parameter definitions for each phoneme.

Just like the lexicon transducer L̃, the acoustic model transducer H̃ contains self-
loops at the initial state which carry disambiguation labels. During the composition
with det(L̃ ◦ G̃), these self-loops preserve arcs carrying disambiguation labels which
are necessary for the success of the subsequent determinization operation.

4.3.4 Triphone context-dependency transducer

As already mentioned in section 4.2.3, a special transducer can be applied in the
case of context-dependent acoustic phoneme models, like triphones (see also sec-
tion 2.6.2). This transducer is able to transform the outcome of det(L̃ ◦ G̃) with
monophones on the input side to a transducer with triphones on the input side.
This kind of transducers have also been introduced by Riley, Pereira and Mohri,
who call them “context-dependency transducers” (see [RPM97]). For simplicity, in
their publications the layout of the triphone context-dependency transducer is al-
ways presented for a phoneme set with only two phonemes. Figure 4.12 shows a
snippet of the triphone context-dependency transducer, which explains its layout

63

Chapter 4. Integration of speech recognition and interpretation

in greater detail, and also includes the special phoneme “sp” which models a short
pause and is an example for a phoneme that is context-independent and must not
be included in the context of other phonemes.

A triphone is denoted with “l-m+r”, where l is the left, r the right context
phoneme and m the phoneme itself. The transducer of figure 4.12 works for intra-
word triphones. Thus, the first translated triphone of a word has an undefined left
context “%-...” and the last translated triphone an undefined right context “...+%”.
Words with a single phoneme x are translated to the monophone “%-x+%”. Each
state corresponds to the left context and the middle phoneme of the triphones that
occur on its outgoing edges. Thus, the translation from monophones to triphones
is deferred by one phoneme (the monophone which is on the output side translates
to the right context phoneme of the triphone label on the input side). This makes
the handling of the context-free phoneme sp more complicated. A simple self loop
that preserves the sp-phoneme on the input side does not work, because the sp-
phoneme is displaced by one phoneme and occurs too early in the transducer which
is the result of the composition operation. The correct processing of the sp-phoneme
requires two auxiliary states for every state representing a specific combination of left
context and middle phoneme. Figure 4.12 shows only a small part of all connections,
just as much as are necessary to explain the principle of the combinatoric generation
of the transducer, which is done by a threefoldly nested loop over the set of possible
phonemes.

Actually, for the case of intra-word triphones, a context-dependency transducer
is not absolutely necessary, because the triphones can be generated in a simpler way
directly from the phonetic lexicon. However, the context-dependency transducer
becomes essential, if the lexicon transducer contains a complex pronunciation model,
like an out-of-vocabulary model. The context-dependency transducer is able to
transform any finite-state model topology from monophones to triphones, which
allows to train the out-of-vocabulary model on the basis of monophones and to
augment the model with triphones during the runtime of the decoder.

Because the search space will be created on-demand during the decoding pro-
cess, the set of occurring triphones is not known in advance, but is necessary for
constructing the acoustic model transducer (see last section). Thus, the set of pos-
sible triphones has to be determined by preanalyzing the lexicon transducer L̃.

As stated in [RPM97], the context-dependency transducer is particularly suited
for automatically constructing the complex search space layout for the case of large
vocabulary regognition with cross-word triphones, where the network topology has
to be split up for a correct junction of left and right context phonemes at word
boundaries (“fanout”). Actually, the transducer C̃ could be further extended to
support also cross-word triphones. This requires the special handling of the sp-
phoneme and of the word end marker εsep to ensure the correct placing of these
labels at the actual word boundaries in the resulting transducer. Furthermore, the
self loops carrying the disambiguation labels, which for the intra-word triphone
transducer only have to be generated at the initial state, have to be copied to the
inner states of the cross-word triphone transducer, which could be done on-demand.

However, facing the great effort and the questionable performance gain in the
considered application domain, which only has a medium sized vocabulary, it has
been decided to conduct no experiments with cross-word triphones in the context

64

4.4. Viterbi decoding of best-matching parse tree

of this thesis (the use of cross-word triphones even requires a special training of the
underlying Hidden Markov Models, see [Beu99]).

4.4 Viterbi decoding of best-matching parse tree

The layout of the HLM acceptor preserves the hierarchical relations between non-
terminal and terminal labels by bracketing each subnet instance by an initial arc
carrying the opening label εsub and final arcs carrying the closing label, which is the
label of the subnet itself. Thus, paths through the automaton implicitly represent
the set of possible parse trees following the context-free grammar that corresponds
to the HLM. By integrating the acoustic-phonetic and lexical knowledge sources
via WFST operations, the best-matching parse tree can efficiently be determined
directly from the speech signal, using the Viterbi algorithm and the token passing
principle (see section 2.5).

4.4.1 Token passing in on-demand created search space

The main procedure of the Viterbi decoder is shown in pseudo-code fragment 4.8. It
operates on the WFST representation of the search space N (variable “searchFst”),
which results from the cascade of automata operations that combines the finite-state
automaton representations of all involved knowledge sources11 (see [MPR02]):

N = πε(det(H̃ ◦ det(L̃ ◦ G̃))) (4.1)

The operation πε replaces all disambiguation symbols on the input side with an ε-
label and removes arcs that have an ε-label both on the input and the output side.
The resulting search space transducer N maps from possible sequences of HMM
states to bracketed sequences of non-terminal and terminal grammar symbols which
represent possible parse trees.

The token propagation starts with the insertion of the “mother” token at the
initial state of the search space transducer. The main loop of the search process is re-
peated as long as new feature vectors can be provided by the acoustic preprocessing
module that processes the recorded speech signal. For every time frame all tokens
have to be propagated in two consecutive steps. First, all tokens are repeatedly
propagated until they reside at states that have outgoing “emitting” arcs, which
means that the input label of such arcs refers to a specific HMM state. Then, all
tokens have to be propagated a single time over these emitting arcs which includes
the evaluation of the HMM state probability density functions with the current fea-
ture vector and the accumulation of the resulting acoustic score in every propagated
token.

After the last feature vector, the repeated token propagation is carried out an-
other time to assure that a token of the last time frame reaches the final state of
the search space transducer, which has been discovered during the search process.12

11Formula 4.1 may also include the transducer for context-dependent phoneme models C̃ (see
section 4.3.4)

12A search error because of a too tightly configured pruning threshold has happened if the final
state has not been found or does not contain a token.

65

Chapter 4. Integration of speech recognition and interpretation

Pseudo-code fragment 4.8 Main procedure of time-synchronous Viterbi decoding.
procedure viterbi(searchFst, prunDist, lmFactor)

stateTokens ← new Array() . Manages token recombination.
activeStates ← new Queue() . For repeated token propagation in the

current time frame.
emittingStates ← new List() . For time-synchronous propagation of tokens

that pass arcs referring to HMM states.

stateId ← searchFst.initialStateId() . Insert “mother” token at
stateTokens[stateId] ← new Token(0, undef, undef) . initial state.
activeStates.enqueue(stateId)
finalStateId ← undef
prunThres ←∞

. While new feature vectors can be extracted from the speech signal...
while calcNextFeatureVector() do

. Do repeated token propagation for the current time frame.
propagateActive(searchFst, activeStates,

stateTokens, emittingStates, prunThres, finalStateId, lmFactor)
. Do time-synchronous propagation of tokens passing “emitting” arcs.

propagateEmitting(searchFst, stateTokens,
activeStates, emittingStates, lmFactor)

. Determine pruning threshold for next time frame.
prunThres ← calcPrunThres(prunDist)

end while
. Propagate last tokens towards final state.

propagateActive(searchFst, stateTokens,
activeStates, emittingStates, prunThres, finalStateId, lmFactor)

. No search error (token present at final state)?
if finalsStateId 6= undef and stateTokens[finalStateId] 6= undef then

. Reveal parse tree from sequence of recorded output labels.
backtrack(stateTokens[finalStateId])

end if
end procedure

Starting from the token at the final state, the best-matching parse tree is revealed
by backtracking the output label sequence, which has been recorded during the
propagation of tokens.

The pseudo-code fragment 4.9 shows the subroutine propagateActive() which
executes the repeated propagtion of tokens until states with emitting arcs are reached.
The recombination of tokens is managed by an array of tokens that dynamically
grows with the state identifiers that result from the on-demand creation of the
search space transducer (variable “stateTokens”). The propagation of a token over
a specific automaton arc and its recombination at the destination state is done by the
subroutine recombineToken() which is shown in the pseudo-code fragment 4.10.
A token, which represents a specific alignment hypothesis that resides at a specific

66

4.4. Viterbi decoding of best-matching parse tree

Pseudo-code fragment 4.9 Does repeated token propagation until all tokens are
waiting at states with “emitting” arcs.

procedure propagateActive(searchFst, stateTokens,
activeStates, emittingStates, prunThres, finalState)

. While there are active states for the current time frame...
while not activeStates.isEmpty() do

stateId ← activeStates.dequeue()
token ← stateTokens[stateId] . Gets token at active state.
if token = undef then . Token already propagated?

continue . Yes, continue with next active state
end if
if token.score() < prunThres then . Token pruned?

token.record() . No, record token if necessary.
isEmitting ← false . Assuming state without emitting arcs.
state ← searchFst.getState(stateId) . On-demand construction!
for each arc of state do

if not arc.isEmitting() then . Arc referring to HMM state?
. No, propagate token to destination state and perform recombination.

recombineToken(stateTokens,
activeStates, arc, token, lmFactor)

else
isEmitting ← true . Indicate a state with emitting arcs.

end if
end for . State with emitting arc or final state?
if isEmitting = true or state.isFinal() then

emittingStates.insert(stateId) . Yes, add state to list of states
waiting for the emission of the current feature vector.

if state.isFinal() then . Final state has been found?
finalStateId ← stateId . Yes, save it.

end if
else stateTokens[stateId] ← undef . Clears propagated token.
end if

else stateTokens[stateId] ← undef . Clears pruned token.
end if

end while
end procedure

automaton state, stores the accumulated score, the last passed automaton arc and
a reference to the backtracking token. In the actual decoder implementation, the
accumulated score is stored separately for acoustic and language model, which al-
lows a later rescoring. Furthermore, the token saves the current time frame, which
allows to reconstruct the temporal segmentation.

Before a token is propagated, a call to the method record() checks if the token
has entered the state over an arc that contains an output label that refers to the
opening label εsub or to a grammar symbol, respectively contains the input label
εsep, which marks a word boundary. In this case the token creates a copy of itself

67

Chapter 4. Integration of speech recognition and interpretation

Pseudo-code fragment 4.10 Propagates token over specific automaton arc and
recombines it at the destination state. Returns score of recombined token.

function recombineToken(stateTokens, activeStates, arc, token, lmFactor)

. Add language model score from HLM.
newScore ← token.score() + arc.weight() * lmFactor
if arc.input() 6= ε then . Arc encodes any HMM parameters?

if arc.isEmitting() then . Arc referring to HMM state?
newScore ← newScore + getHmmEmission(arc.input)

. Yes, add score for hmm emission density encoded in input label.
end if
newScore ← newScore + getHmmTransition(arc.input)

. Add score for hmm transition weight encoded in input label.
end if

destId ← arc.target() . Get destination state.
activeStates.enqueue(destId) . Add destination state to active state queue.

if stateTokens[destId] = undef then . Any token at destination state?
. No, create new token at destination state.

stateTokens[destId] ← new Token(newScore, arc, token.backTrack())
else if newScore < stateTokens[destId].score() then . Recombination?

. Yes, replace token at destination state.
stateTokens[destId] ← new Token(newScore, arc, token.backTrack())

end if

return stateTokens[destId].score() . Return score of destination token.
end function

and refers to this copy by adjusting the reference to the backtracking token.

When a token is propagated to a destination state, this state is automatically
inserted into the queue of active states (variable “activeStates”), which has to be
made empty before the time-synchronous propagation via emitting arcs can take
place. The selected queue discipline is not critical, because tokens will recombine at
the latest in states where tokens wait for the time-synchronous propagation step.13

The time-synchronous propagation of tokens via emitting arcs is done by the sub-
routine propagateEmitting(), which is shown in the pseudo-code fragment 4.11.
Before their propagation, all tokens are moved from the array managing the recom-
bination into a separate list (variable “emittingTokens”). This prevents the invalid
recombination of tokens that correspond to different time frames.

13A partial topological order of the automaton states could prevent late recombination and may
speed up the process of token propagation, but is difficult to determine because of the on-demand
construction of the search space transducer.

68

4.4. Viterbi decoding of best-matching parse tree

Pseudo-code fragment 4.11 Time-synchronously propagates all tokens that wait
at states with “emitting” arcs.

procedure propagateEmitting(searchFst,
stateTokens, activeStates, emittingStates)

. Copy tokens from recombination locations into a list.
emittingTokens ← new List()
for each stateId of emittingStates do

token ← stateTokens[stateId]
if token 6= undef then . Token already copied?

emittingTokens.insert(token) . No, save reference in list.
stateTokens[stateId] ← undef . Clear location of recombination.

end if
end for
emittingStates.clear()

for each token of emittingTokens do . Propagate all tokens in list.
stateId ← token.getArc().target() . Get state from token’s arc.
state ← searchFst.getState(stateId)
for each arc of state do

if arc.isEmitting() then . Arc referring to HMM state?
score ← recombineToken(stateTokens,

activeStates, arc, token, lmFactor)
updateBestScore(score) . For calculation of pruning threshold.

end if
end for

end for
end procedure

4.4.2 Estimated rank pruning of improbable tokens

After the propagation over an emitting arc, the score of the resulting token is used
to update the best score of the current time frame. The best score is needed to
set the pruning threshold for the next time frame, which is used in the subroutine
propagateActive() to eliminate improbable tokens, which are not propagated
further if their score is below the pruning threshold. This allows a significant speed-
up of the decoding process.

In the pseudo-code, the pruning threshold is simply determined by subtracting
a fixed pruning distance (variable “prunDist”) from the best score of the last time
frame. By the aid of the pruning distance, the trade-off between decoding speed and
recognition performance can be adjusted. Because hypotheses are only considered
inside a specific “beam” with respect to the best one, this simple method is called
“beam pruning” (see [Low76]).

The disadvantage of the simple beam pruning method is the fluctuating process-
ing load during the token passing search. To achieve a stable processing load, which
is independent of the processed utterance, the number of tokens which have to be

69

Chapter 4. Integration of speech recognition and interpretation

propagated in every time frame has to be bounded explicitly. Thus, the pruning
distance has to be adjusted dynamically for every time step such that a fixed num-
ber of tokens will survive. A well-known method to achieve this is called “histogram
pruning”; it determines the distribution of tokens over the range of score values
in form of a histogram, which is then used to calculate the pruning distance that
includes the selected number of tokens (see [STN94]).

However, the determination of the histogram costs computing time and memory
space. This overhead can be saved by approximating the score distribution by a
specific model. Therefore, the actual one-stage decoder implementation uses an
approach, which assumes an exponential dependency between the number of tokens
Ni(t) and their distance t to the best score of the current time frame i (“estimated
rank pruning”, see [JKO01]):

Ni(t) ≈ aie
bi·t (4.2)

The parameters ai and bi can be determined by counting the actual number of tokens
for two settings t′ and t′′. These two values are simply set to the pruning distance
estimated for the last time frame, t′ = ti−1, and to some fixed displacement in
direction to the best score, which is t′′ = (1− δ)ti−1.

14 Then, the estimation for the
pruning distance ti for the current time frame is calculated by inserting the selected
target for the number of tokens Nopt into the exponential distribution 4.2. This
estimation is bounded by a given value that defines a minimum pruning distance
and which is also used to initialize t′ for the first time frame.

Because the assumption of an exponential score distribution is only an approx-
imation, the actual number of tokens Ni(ti) scatters around the target value Nopt.
Anyway, this pruning technique achieves an acceptable stability of the processing
load, regarding the very little overhead which is necessary in comparison to other
approaches.

4.5 Performance comparison of decoder implementations

In order to compare the performance of the decoder implementations for dynamic
and static search space organization, the trade-off between decoding speed and
achieved recognition accuracy is considered. The decoding speed is measured by
the average of the real-time factor, which is the ratio of the decoding time and the
actual length of a decoded utterance.15 The recognition accuracy is specified by the
socalled “tree node accuracy” which gives the fraction of correctly identified parse
tree nodes which are relevant during the extraction of the slot-value pairs. A de-
tailed description of this evaluation measure and of the experimental setup for the
airport information domain used for testing will be given later on (see sections 6.1.2
and 6.2).

Figure 4.13 shows the performance comparison between static and dynamic
search space organization for two different modeling setups. The modeling setup
which achieves higher accuracy values, but also affords more decoding time, includes

14The selection of δ is uncritical; a value of 0.2 has been used, as suggested in [JKO01].
15All presented real-time factors were determined on a standard desktop system (2,8GHz PIV).

70

4.5. Performance comparison of decoder implementations

T
re

e
N

o
d
e

A
cc

u
ra

cy
[%

]

60

65

70

75

80

85

90

95

0 0.5 1.0 1.5 2.0 2.5 3.0

b

b

b
b

b b

b

b

b
b b

u

u

u

u
u

u
u

u

u

u

u

u
u

Legend
b dyn. WFST search
b static search
u dyn. WFST search (OoV)
u static search (OoV)

Mean Real Time Factor

Figure 4.13: Performance comparison of decoder implementations that use the static
and the dynamic search space organization.

a lexical out-of-vocubulary model which reduces the misinterpretation of ungram-
matical utterance parts (see section 6.3.2). The curves depicted in figure 4.13 result
from the variation of the maximum number of active tokens Nopt which controls the
operation of the estimated rank pruning method that has been presented in the last
section.

The decoder implementation using the WFST-based on-demand construction of
the search space clearly outperforms the former decoder implementation using the
static search space organization (see section 4.1). Obviously, the overhead of the
on-demand construction costs much less processing time than the amount which is
saved by the global search space optimization via the determinization operation. On
the other hand, the results concerning the decoder implementation with the static
search space organization show a minimum processing load that cannot be influenced
by the pruning configuration, which inhibits the adjustment of real-time operation
for the case of the modeling setup using the out-of-vocabulary model.

Thus, the goal to provide an implementation of the one-stage decoder that can be
configured to operate under real-time conditions, even when using computationally
expensive pronunciation models for out-of-vocabulary words, has been achieved by
the aid of the powerful WFST calculus.

71

72

Chapter 5

Grammatical alternatives and
semantic confidences

The generation of alternatives in form of word lattices or N -best lists is usually
applied to make the sequential coupling of speech recognition and semantic inter-
pretation more robust in comparison to the simple interface that only relies on the
best-matching word sequence. The tight-coupling approach presented in the last
chapter avoids the use of intermediately generated alternatives and directly deter-
mines the best-matching parse tree from the speech signal. Nevertheless, possible
alternatives are of great interest, because the decoding process provides no certainty
about the actual correctness of the resulting best-matching parse tree. The problem
to measure the reliability of the content which is extracted from a user utterance is
an important issue in the context of spoken dialog systems, because this provides a
way to avoid interpretation errors and misguided dialog steps.

This chapter presents the compact representation of alternative parse trees by a
hierarchy of lattices and explains its generation from the backtracking information
which is stored during the one-stage decoding process. The lattice hierarchy rep-
resentation provides the basis for an algorithm that allows the uniform estimation
of semantic confidences for every particular node of a decoded parse tree. The pre-
sented approach is an extension of a well-known method to estimate confidences in
word-based recognition systems by the calculation of posterior probabilities on word
lattices. The chapter is concluded with a section that explains the translation of the
estimated tree node confidences into confidences for the extracted slot-value pairs
and how these confidences can be exploited by the dialog management of a spoken
dialog system.

5.1 Word lattices

A word lattice serves for the compact representation of the part of the search space
that was explored during the recognition of a specific utterance. Expressed more
precisely, a word lattice captures the explored part of the search space in a form
which is unrolled with respect to time. Therefore, a word lattice can be represented
by an acyclic graph, which, in addition to the best-matching word sequence, contains
other less probable alternatives. In a word lattice, the occurrence of a specific word

73

Chapter 5. Grammatical alternatives and semantic confidences

is represented by an edge between two nodes that carry starting and ending time.
The label of the word can be associated with either the edge or the node, which
corresponds to the equivalent “Mealy” and “Moore” representation of automata
(see end of section 3.1.2). In the context of this thesis, lattices are generated in
the “Moore” representation, which means that every node corresponds to the end
of a specific word. Anyway, an edge carries the score differences that resulted from
the application of acoustic and language model given the corresponding word. The
separation of acoustic and language model scores allows to “rescore” a word lattice,
for example with a different language model.

Unfortunately, the term “word lattice” is not uniformly used in the technical lit-
erature about this subject. Some authors state that a “word lattice” only describes
a table of unconnected word hypotheses, which had been the output of early speech
recognition systems, and thus prefer the term “word graph”. Nevertheless, in many
publications both terms are used synonymously for the acyclic graph representa-
tion.1 In addition to this inconsistency in terms, there is no common opinion about
the actual algorithm that generates a word lattice. Several approaches to lattice
generation have been published (e.g. [ON93, NA94]). However, because such an
algorithm is always an inherent part of a particular speech recognizer and greatly
depends on the underlying architecture, there is no standardized algorithm.

In the context of this thesis, the approach of “n-best” token passing has been
used for the generation of lattices (see [YRT89]). In every time step of the token
passing search, this approach records the n-best tokens that recombine at each word
node in the integrated search network. Instead of a simple recombination, which
discards a defeated token, the n-best approach ranks competing tokens due to their
accumulated scores and chains them together in a linked list, just like the linkage
to their predecessors with respect to time. The lattice is generated during the
backtracking phase by tracing the recorded tokens in both linkage directions in a
depth-first manner. Each created lattice edge represents a connection between two
consecutively recorded nodes in the integrated search network. The acyclic graph
structure of the lattice emerges from connecting tracked paths with existing lattice
nodes, that have been created earlier in the ongoing lattice generation process. The
resulting size of the lattice is affected by the maximum number of recorded tokens n
and the tightness of the pruning configuration. As indicated in [YRT89], the lattices
generated by this method do not necessarily include the global N -best sentences,
but contain useful alternatives in addition to the best-matching sentence.

5.2 Flat lattice and lattice hierarchy representation

When applying the n-best token paradigm to the one-stage decoding algorithm for
the weighted transition network hierarchy (WTNH, see section 3.3.2), the result-
ing lattices capture the imposed context-free grammatical constraints like in the
example shown in figure 5.1. This snippet could be part of the lattice which is
backtracked for an utterance like “Der Flug nach Hamburg, zehn Uhr dreissig; wie
ist die Flugnummer?” (The flight to Hamburg, ten thirty; what is the flight code?).

1For example, in the widely used speech recognition toolkit HTK, the file format for the output
of word graphs (and the input for language models) is called “standard lattice format”.

74

5.2. Flat lattice and lattice hierarchy representation

C Origin

εsub εsub

zehn

WC Hour Uhr C Time εsub

fuenfzehn

εsubεsub

C Dest

Figure 5.1: Snippet of exemplary flat lattice, that captures grammatical constraints
by pairs of opening (εsub) and closing lattice nodes (e.g. “WC Hour”).

C Origin

C Time

C Dest

C Time1

C Time2

WC Hour Uhr
WC Hour1 Uhr1

zehn
zehn1

WC Hour1

C Time1

WC Hour Uhr
WC Hour2 Uhr1

C Time2

fuenfzehn
fuenfzehn1

WC Hour2

Figure 5.2: Snippet of lattice hierarchy that corresponds to flat lattice example.

75

Chapter 5. Grammatical alternatives and semantic confidences

Lattice nodes that carry the opening label εsub and a corresponding closing label
(“C ...” or “WC ...”) mark the start and the end of a specific occurrence of a
particular non-terminal symbol of the corresponding context-free grammar. Due to
the lack of space, the start nodes which correspond to nodes that carry terminal
symbols (words) are not included in figure 5.1.

This representation captures grammatical constraints only implicitly, and there-
fore is called “flat” lattice. Possible alternatives on the level of a particular grammar
rule can only be revealed by traversing the subordinate parts of the lattice which
are located in-between consecutive nodes on that specific level.

Figure 5.1 shows two important features of the flat lattice representation:

• End nodes that mark the occurrence of a particular non-terminal symbol may
correspond to several start nodes and vice versa. In the figure, the non-terminal
symbol “C Time” occurs with a single end node but two possible start nodes.

• Paths between different pairs of start and end nodes of a specific occurrence
of a non-terminal symbol may intersect. In the figure, this is the case for
the terminal symbol “Uhr”, which lies on both paths that correspond to the
non-terminal symbol “C Time”.

These properties motivate the following definition of a hierarchy of lattices, which
allows an explicit representation of alternatives on each grammatical level:

• Every pair of connected start and end nodes defines a sub-lattice instance of
the corresponding non-terminal symbol.

• Sub-lattice instances are referenced on corresponding edges inside their parent
lattice instances.

All lattice instances consist of nodes that mark the end of a specific non-terminal
or terminal symbol, and edges that each carry an instance index that identifies
the corresponding sub-lattice instance. Edges that correspond to terminal words
refer to trivial sub-lattice instances, which only contain a single word. Due to
the limited drawing area, trivial word instances are not included in the graphical
representation of lattice hierarchies. By definition, a sub-lattice instance always has
a single entry and a single exit node, that correspond to the start and end node
inside the flat lattice. Figure 5.2 shows the snippet of the lattice hierarchy which
can be constructed on the flat lattice of figure 5.1. According to the structure of
the flat lattice example, the lattice hierarchy contains two sub-lattice instances of
the non-terminal symbol “C Time” which share a single instance of the terminal
symbol “Uhr”.

The lattice hierarchy provides an explicit structural representation of the flat
lattice, that allows to access alternatives on the level of a specific grammar rule
without having to consider subordinate alternatives, which are encapsulated inside
the sub-lattice instances. The following subsections explain the generation of the flat
lattice from the backtracking information recorded during the n-best token-passing
search, as well as the construction of the corresponding lattice hierarchy and the
generation of ranked parse tree alternatives.

76

5.2. Flat lattice and lattice hierarchy representation

C MinuteRel

t aIvs

zwei

zwei

drei

WC Minute

vor

nach

WC Minute

d aIr

drei

WC Minute

zwei

drei

εsub

εsub

εsubεsub

flat lattice

n-best tokens

search network hierachy (WTNH)

Figure 5.3: Example demonstrating the generation of the flat lattice for the static
search space organization.

5.2.1 N -best token-passing for flat lattice generation

The generation of the flat lattice requires different implementations for the two ar-
chitectures of the one-stage decoder which have been presented in the last chapter.
In the case of the static search space organization, where the search network hier-
archy is explicitly preserved, the generation of the flat lattice can be realized quite
straightforwardly by evaluating the backtracking information recorded during the
n-best token-passing search. The token passing principle inside the search network
hierarchy has been illustrated by figure 4.1 (see p. 40), which serves as well to ex-
plain the n-best token passing: at each of the recombination locations, which are
attached to the entry and the exit node of every subnet, the n-best incoming tokens
are recorded for every time step of the processed speech signal. Because the seg-
mentation is sufficient on word-level, tokens don’t have to be recorded on the lowest
subnet level that includes the acoustic models. Recording the n-best tokens at a
specific recombination location actually means to link them together and to store
the corresponding subnet node in a copy of the best token, which then is propagated
further.

After the n-best token-passing search, the flat lattice is generated by tracing the

77

Chapter 5. Grammatical alternatives and semantic confidences

i1 : o1

i2 : o2

a1

a2

π1

π2

Figure 5.4: Illustration of the recombination of tokens inside the search space trans-
ducer that is constructed by on-demand WFST operations.

recorded tokens starting from the token recorded in the last time step at the exit
node of the top-level network in the search network hierarchy. Because the tokens
are recorded at the entry and at the exit node of each passed subnet, the revealed
lattice has the required layout of the flat lattice that captures the grammatical
constraints by marking the start and the end of a specific non-terminal or terminal
symbol with corresponding lattice nodes. The lattice construction is carried out in
a similar way like in the case of word lattices. Figure 5.3 illustrates the operation
of the algorithm that constructs the flat lattice from the recorded n-best tokens,
which are symbolized by the linked squares in the middle of the figure.2 The first
token of each n-best list refers to an entry or an exit node in the search network
hierarchy, which is depicted in the lower part of the figure. The upper part of the
figure shows the flat lattice, which is generated by a depth-first processing of the
linked n-best lists. The arcs pointing from the n-best lists into the flat lattice stand
for the generation of each particular lattice node.

For the decoder architecture which uses the dynamic search space construction
by the on-demand concatenation of WFST operations (see section 4.4), the organi-
zation of the n-best token-passing and the following construction of the flat lattice
becomes more difficult to implement. The reason for this is the fact that the search
space transducer, which is the outcome of many complex finite-state automata oper-
ations, has no predictable layout. The determinization operation may move output
labels to unpredictable locations inside the search space transducer which inhibits
a straightforward handling of the recombination and the recording of the n-best
tokens at locations which are known in advance, like in the case of the static search
space organization.

Figure 5.4 illustrates the situation where two tokens recombine at a specific state
of the search space transducer. For a correct handling of the recombination, it has
to be decided whether an incoming token represents a new hypothesis with respect
to the tokens, which already made their way to that particular state. In the case

2In figure 5.3, there are at most two tokens inside each n-best list.

78

5.2. Flat lattice and lattice hierarchy representation

of a new hypothesis, the token has to be inserted in the n-best list; otherwise, it
has to be recombined with the token in the n-best list that corresponds to the same
hypothesis. The first criterion for the recombination of tokens is whether the output
labels o1 and o2 on the incoming automaton arcs are the same. If this is the case, the
second criterion for recombination is that the automaton arcs a1 and a2, which have
been recorded in the backtracking tokens, are also equal (π1 and π2 represent path
sections over emitting arcs that only refer to HMM parameters and thus have not
been recorded). If both conditions hold, the tokens have to be recombined, because
they descend from the same state and don’t represent different hypotheses.

Tokens are only recorded if they pass a non-empty output label or a word bound-
ary which is marked by the special input label εsep. Thus, there is no guaranty that
the n-best tokens are recorded at states where several paths of different hypotheses
converge. In figure 5.4, this happens when o1 and o2 are the empty ε-label and the
tokens have passed different arcs a1 and a2. Unfortunately, there is no straightfor-
ward way to identify these particular states in the progressively constructed search
space transducer. Therefore, in contrast to the case of the static search space orga-
nization, not only the best token, but the whole n-best list is propagated to adjacent
states, which assures that alternatives don’t get lost and do reach a state where their
recording takes place. The merging of n-best lists is organized in two steps: first,
every token in the n-best list of the source state is propagated via the connecting
arc into the n-best list of the destination state. If a matching token is found in the
destination list, both tokens are recombined. If no matching token is found, the
new token is appended to the destination list. After all source tokens have been
processed, the resulting destination list is sorted due to the accumulated scores of
the contained tokens. Finally, the length of the list is limited to the preset value of
n by deleting all surplus tokens.

Beside the n-best token-passing, also the generation of the flat lattice itself be-
comes more complicated for the WFST decoding approach. The main difference
with respect to the flat lattice generation for the static search space organization is
that the search space transducer has “Mealy”-format (labels at arcs), which means
that the lattice generation process has to convert the backtracking information into
the “Moore”-format of the flat lattice (labels at nodes). Thus, during the generation
of the flat lattice, the processing of a backtracked n-best list of tokens may include
the creation and the connection of more than a single lattice node. On the other
hand, if the recorded arcs of several tokens carry the same output label, only a single
lattice node has to be created. This is the case in the example depicted in figure 5.5,
where the two tokens of the n-best list, which corresponds to the rightmost state of
the depicted part of the search space transducer, point to arcs that carry the same
label “WC Minute”.

Another difficulty arises from the fact that, during the construction of the search
space transducer, output labels referring to terminal word symbols may be shifted
to any location inside the word, such that the correct temporal segmentation, as well
as the corresponding acoustic score difference cannot be revealed correctly from sub-
sequently recorded output labels. Therefore, word boundaries are explicitly marked
by arcs that carry the special input label εsep, which are infiltrated into the search
space transducer via the lexicon transducer (see section 4.3.2). In the resulting
linkage of the recorded tokens, the information about the temporal segmentation

79

Chapter 5. Grammatical alternatives and semantic confidences

WC Minute

zwei

drei

εsubεsubεsub

flat lattice

ε : WC Minute

ε : WC Minute

εsep : ε

εsep : ε

ix : zwei

iy : drei

ε : εsubε : εsub

n-best tokens

search space transducer

Figure 5.5: Example demonstrating the generation of the flat lattice for the dy-
namic search space organization via the on-demand composition of the search space
transducer.

and the acoustic score difference appears “in between” the recorded labels of the
corresponding words. For example, in figure 5.5 the lattice nodes for the words
“zwei” and “drei” have to be created with references to the time step that has been
recorded in the preceding tokens that refer to the arcs that mark the word boundary
with the label εsep. The output labels “zwei” and “drei” can appear at any position
inside the word, which is indicated by the undetermined input labels ix and iy that
refer to particular HMM states and depend on how far the output labels are shifted
towards the end of the word by the successive determinization operations that have
been carried out for the on-demand construction of the search space transducer. The
same consideration applies for the acoustic score differences of both words, which
have to be calculated by the aid of the recorded word boundary as well. Generally,
the construction algorithm can rely on the fact that a recorded word label is always
preceded by a recorded word boundary and that this word starts at another word
boundary or at a recorded start or end of a non-terminal symbol.

5.2.2 Construction of lattice hierarchy on flat lattice

The construction of the lattice hierarchy requires the creation of a sub-lattice in-
stance for every pair of corresponding start and end nodes of particular grammar
symbols, which can be found in the flat lattice. For a better comprehension of the
operation of the construction algorithm, a complete example for a flat lattice and

80

5.2. Flat lattice and lattice hierarchy representation

!ENTER

εsub

εsub

aehm

WC Fill

C FillSeq

um

εsub

εsub

fuenf fuenf

WC Hour24 WC Minute

Uhr vor

εsub εsub

C MinuteRel

zehn zehn

WC Minute WC Hour12

C Time

!ENTER

εsub

C TimeRange

!EXIT

C FillSeq

C TimeRange

WC Fill

C Time

um C Time

C MinuteRel

WC Hour24 Uhr WC Minute

WC Hour12

WC Minute vor

fuenf fuenf

zehn zehn

!ENTER

!ENTER !EXIT

WC Hour121 WC Minute2

WC Hour241 WC Minute1

aehm

WC Fill1

C MinuteRel1

C FillSeq1

C Time1

C TimeRange1

C TimeRange2

Root

εsub

εsub

Figure 5.6: Example which shows the construction of the lattice hierarchy on the
flat lattice.

81

Chapter 5. Grammatical alternatives and semantic confidences

concept

concept

concept

word class

word

b

C TimeRange

um

C Time

C MinuteRel

WC Minute

fuenf vor

WC Hour12

zehn

Figure 5.7: Best parse tree which corresponds to the sequence of visited sub-lattice
instances when walking along the best path in figure 5.6.

the corresponding lattice hierarchy is given in figure 5.6. This example includes
several utterances, which are phonetically similar in German language and express
two different times of day: “aehm fuenf Uhr zehn” (uhm ten past five), “um fuenf
Uhr zehn” (at ten past five), “aehm fuenf vor zehn” (uhm five to ten) and “um fuenf
vor zehn” (at five to ten).3

The left side of figure 5.6 depicts the flat lattice which is generated during the
backtracking phase of the n-best token-passing. On the right side of the figure,
one can see the corresponding lattice hierarchy, which is revealed by processing the
flat lattice nodes in depth-first order starting from the last node of the flat lattice.
The recursive construction algorithm processes a flat lattice node in the following
manner, depending on whether it is an end node or a start node:

• End node. If the current flat lattice node corresponds to the end of a non-
terminal symbol, a new recursion on a lower sub-lattice level is initiated by
the creation of a new temporary sub-lattice.

• Start node (label εsub). If the current flat lattice node corresponds to the
start of a non-terminal symbol, the currently tracked path of the temporary
sub-lattice is completed with the creation of an entry node. The recursive
depth-first processing of the flat lattice is interrupted, which allows to reveal
the rest of the temporary sub-lattice, including other possible entry nodes.

If all entry nodes of a temporary sub-lattice have been discovered, the construction
of the lattice hierarchy can go on. A new sub-lattice instance has to be created for
every entry node of the temporary sub-lattice. Each sub-lattice instance is generated
by copying all nodes and edges which are found “between” the particular entry

3The word “aehm” is a German filler word which often occurs in conversational speech and which
is explicitly represented by the grammar rules “WC Fill” and “C FillSeq”, which model a sequence
of filler words.

82

5.2. Flat lattice and lattice hierarchy representation

node and the single exit node of the temporary sub-lattice. At the same time,
the temporary sub-lattice on the next higher level is updated by adding an edge
for every created sub-lattice instance. Each edge refers to the corresponding sub-
lattice instance by concatenating the name of its destination node and the allocated
instance index (e.g. “WC Minute1 and “WC Minute2”). After the construction of
the sub-lattice instances the depth-first recursion is continued from the flat lattice
nodes that correspond to the entry nodes of the temporary sub-lattice, which can
be discarded.

For example, in figure 5.6, after processing the node “!EXIT”, which is the
terminal symbol for the piece of silence at the end of the utterance, the construc-
tion algorithm will create temporary sub-lattices for the encountered end nodes
“C TimeRange”4, “C Time” and “WC Hour12”. The first sub-lattice instance which
is created is “WC Hour121”; the following are “WC Minute1”, “C MinuteRel1,
“WC Minute2, “WC Hour241, “C Time1”, etc. The temporary sub-lattice for the
non-terminal symbol “C TimeRange” has two different entry nodes, whose corre-
sponding flat lattice nodes are connected with the nodes “C FillSeq” and “!EN-
TER”, respectively. Thus, two sub-lattice instances for “C TimeRange” are created
which share the same sub-lattice instance of “C Time”.

In order to prevent the creation of redundant paths inside sub-lattices it is im-
portant to remember the flat lattice nodes which already have been visited during
the construction of the current temporary sub-lattice. If an encountered node is
visited a second time, the currently tracked path is connected to the existing node
of the temporary sub-lattice without continuing the depth-first recursion on the flat
lattice. Just as well, each created sub-lattice instance has to be remembered with
the corresponding end node inside the flat lattice. This allows to reuse sub-lattice
instances when creating temporary sub-lattices with the same non-terminal symbol,
which however correspond to a different end node inside the flat lattice.

Actually, the flat lattice also contains start nodes for nodes that carry terminal
symbols, which however are not depicted in the graphical representations due to the
lack of space. Therefore, the construction algorithm handles flat lattice nodes in the
same way, no matter if they correspond to non-terminal or terminal symbols.

The best-matching path which is determined by the token-passing search is also
the best path inside the flat lattice. In figure 5.6, this best-matching path is em-
phasized by the bold print of the corresponding lattice edges. Due to the depth-first
processing of the recorded n-best tokens (best token first), the best-matching path
is simply the first path which is revealed during the construction of the flat lattice.
The corresponding best parse tree can easily be determined by projecting the best
path of the flat lattice into the lattice hierarchy: The depth-first order of the parse
tree nodes is exactly the order in which the corresponding sub-lattice instances are
traversed when walking along the best path of the flat lattice. Figure 5.7 shows the
parse tree that results from the order in which the bold-printed sub-lattice instances
in figure 5.6 are visited, when walking along the best path.

4The non-terminal “C TimeRange” also refers to a single time of day, which corresponds to a
time range with zero duration.

83

Chapter 5. Grammatical alternatives and semantic confidences

5.2.3 Determination of the N -best parse trees

For the intended application of the one-stage decoder inside a spoken dialog system,
a decoded parse tree has to be evaluated with the underlying semantic grammar to
extract the contained slot-value pairs (see figure 3.4, p. 35). The dialog management
may provide the ability to process several alternatives of probable slot-value pair
collections, for example in order to have a backup in the case of a misguided dialog
course, or in order to ask the user to clarify which of the alternatives he actually
wanted to communicate to the system.

The lattice hierarchy compactly represents alternatives for probable parse trees
including the best-matching one. However, the slot-value pair extraction may be
able to process only a single parse tree at the same time. On the other hand,
due to the one-stage decoding approach, the slot-value pair extraction affords little
computational cost, because the semantic grammar, which contains the slot creation
commands, is evaluated along the decoded tree without doing a full parse. Therefore,
in order to get a ranked list of probable slot-value pair collections that can be passed
to the dialog management, simply the N -best parse trees are determined and fed
consecutively into the slot-value pair extraction.

For this purpose, an algorithm determines the N -best paths inside the flat lattice.
The cost of a path is determined by accumulating the acoustic and language model
score differences which are attached to the passed lattice edges. Each discovered
path in the flat lattice corresponds to a particular sequence of visited sub-lattice
instances inside the lattice hierarchy, which defines the according parse tree. The
algorithm which is used to determine the N -best paths is called “recursive enu-
meration algorithm” (REA) and has been published by Jeminéz and Marzal (see
[JM99]). An interesting feature of the REA algorithm is its ability to determine the
N -best paths progressively, without having to specify the number N . This solves
the problem that not every determined parse tree leads to a unique collection of
slot-value pairs, which happens because parse trees may differ in nodes which are
not considered during the slot-value pair extraction. With the progressive construc-
tion of the next best parse tree, the dialog management has the ability to continue
the processing of next best parse trees until the desired number of unique slot-value
pair collections have been extracted or no more paths are found in the flat lattice.

5.3 Estimation of semantic confidences

As already mentioned in the introduction of this chapter, alternatives in the form
of lattices can be exploited for the estimation of confidences. Confidences measure
the reliability of specific parts of a decoded recognition result, usually on word
basis. The basic idea behind the lattice-based approach is that the confidence for
a particular word in the lattice can be defined as its posterior probability. The
posterior probability is calculated by the so-called “forward-backward algorithm”
which is carried out on the lattice and considers the score values which are attached
to the lattice edges.

The estimation of word confidences via posterior probabilities is a well-known
method which has been discussed in great detail by Wessel et. al (see [WSMN01]).
This publication confirms that in comparison with other approaches to the estima-

84

5.3. Estimation of semantic confidences

t

nummer

um

nummer

neun!ENTER

!ENTER null

!EXIT

word w
end time tj

scores
aij, lij

!ENTER nummer neun !EXIT

aeh

best words

f1 = 0

×
+

2 4
5

3

6

7
8

9

10

bN = 0

+

×

fN = b0

word lattice

1
N

Figure 5.8: Example illustrating the calculation of word confidences by carrying out
the forward-backward algorithm on the word lattice.

tion of confidences, like for example “acoustic stability” or “hypothesis density”, the
posterior probability approach leads to the best results. In comparison to the iden-
tification of uninterpretable utterance parts via the use of explicit out-of-vocabulary
models (see [TFLR05]), the posterior probability approach has the important advan-
tage that no additional knowledge sources are needed for the confidence estimation.

The following subsections recapitulate the word-based posterior probability es-
timation and show how this method is extended to allow the estimation of semantic
confidences which correspond to the nodes of a decoded parse tree. The tree node
confidences are estimated by the aid of the lattice hierarchy representation which
has been introduced in the last section. Furthermore, it will be shown how the esti-
mated confidences are used to reduce the size of the lattice hierarchy, such that only
the most probable alternatives are included. The final subsection explains the trans-
lation of the estimated tree node confidences into distinct confidences for the slot
and the value of each extracted slot-value pair and discusses how these confidences
can be exploited for the selection of the dialog strategy.

5.3.1 Word-based confidence measures

Figure 5.8 illustrates the estimation of word confidences on an exemplary word
lattice. The confidence of a specific word w which is located between the lattice nodes
i and j, can be expressed with the posterior probability p

(
[w; ti, tj]|xT

1

)
, where ti and

tj denote start and end time of the word w. The posterior probability is conditioned
on the observed acoustic feature vector sequence xT

1 and can be expressed by the
aid of forward and backward probability (see [WSMN01]5):

p
(
[w; ti, tj] |xT

1

)
=

pf (i) p
(
xtj

ti
| [w; ti, tj]

)
pb (j)

∑
∀wN

1

p
(
xT

1 |wN
1

) (5.1)

5The difference to the definition in [WSMN01] is the assumption of a word lattice in “Moore”-
format (word labels attached to nodes) and not in “Mealy”-format (word labels attached to edges).

85

Chapter 5. Grammatical alternatives and semantic confidences

pf (i) =
∑

∀wi
1∈F (i)

p
(
xti

1 |wi
1

)
, pb (j) =

∑
∀wN

j ∈B(j)

p
(
xT

tj |wN
j

)
(5.2)

∑

∀wN
1

p
(
xT

1 |wN
1

)
= pf (N) = pb (1) (5.3)

The forward probability pf (i) is the sum of the probabilities of all paths wi
1 belonging

to the set of paths F (i) which start at the entry node and lead to the node i. In a
similar manner, the backward probability pb(j) is the sum of the probabilities of all
paths in the set B(j), which includes the paths wN

j that lead from node j to the exit
node of the lattice. The denominator of equation 5.1 corresponds to the sum of the
probabilities of all paths inside the flat lattice and can be determined either from the
forward probability at the exit node, or from the backward probability at the entry
node, which by symmetry have the same value. The probability p(xtj

ti
| [w; ti, tj])

for the feature vectors xtj
ti

under the condition of the corresponding word [w; ti, tj]
is determined from the score differences for acoustic modeling aij and language
modeling lij , which are attached to the lattice edge:

− ln p
(
xtj

ti
| [w; ti, tj]

)
= αaij + βlij (5.4)

By the aid of the scaling factors α and β it is possible to readjust the impact of
acoustic and language model on the confidence estimation. Empirical tests showed
that α = 1/s and β = 1.0 is an adequate setting which produces good results
independently of the application domain (s is the language model factor which is
used during the decoding process).

The forward, as well as the backward probability is determined by the recursive
forward-backward algorithm that processes the score differences aij and lij . This
happens by summing up the terms αaij + βlij along passed lattice edges (which is
indicated in figure 5.8 by the symbol ⊗) and by carrying out the logarithmic sum
over converging or diverging edges (indicated in figure 5.8 by the symbol ⊕).

For the calculation of the negative logarithm of the forward probabilities fi =
− ln pf (i), the algorithm is:

f1 = 0, ∀i > 1 : fi = ∞ (5.5)

∀
top. order

i ∈ {1, . . . , N} :

∀k ∈ n (i) : f̂k = − ln
(
e−fk + e−(fi+αaik+βlik)

)
(5.6)

The recursive algorithm starts with the initialization (5.5) that sets the forward
probability at the entry node of the lattice to one (zero on logarithmic scale) and
the forward probabilities at all other nodes to zero (infinity on logarithmic scale, in
practice a big number). Then, all lattice nodes have to be processed in topological
order, which ensures that the score contributions of all predecessor nodes have been
accumulated at the current node i, before this node is processed itself. For each
of its successor nodes n(i), the corresponding value fk is updated via equation 5.6.

86

5.3. Estimation of semantic confidences

After processing the last lattice node, all fi contain the negative logarithms of the
corresponding forward probabilities.

The analogous algorithm to calculate the negative logarithm of the backward
probabilities bj = − ln pb (j) is:

bN = 0, ∀j < N : bj = ∞ (5.7)

∀
rev. top. order

j ∈ {N, . . . , 1} :

∀k ∈ p (j) : b̂k = − ln
(
e−bk + e−(bj+αakj+βlkj)

)
(5.8)

Here, the lattice nodes have to be processed in reverse topological order and the
update formula 5.8 has to be carried out for all predecessor nodes p(j) of the current
node j.

The confidence C([w; ti, tj]) of a particular lattice edge [w; ti, tj] is defined as
the negative logarithm of the corresponding posterior probability, which has been
defined in equation 5.1 and can now be expressed on logarithmic scale using the
forward and backward scores fi and bj :

C ([w; ti, tj]) = − ln p
(
[w; ti, tj] |xT

1

)

= fi + αaij + βlij + bj − fN (5.9)

In figure 5.8, the best-matching word sequence is depicted above the word lattice.
Usually, one is interested in the confidence for every word in the recognition result,
which are simply the confidences of the corresponding lattice edges. The decision,
whether a word should be accepted or rejected6 is made by the comparison of the
confidence with a specific threshold. By the variation of this threshold one can
adjust the ratio of the number of errors committed by false acceptance and false
rejection (see section 6.1.4).

Besides the simple definition (5.9), the authors of [WSMN01] suggest an extended
confidence definition, which in addition to the best path considers all other paths in
the word lattice that contain the particular word w for a time interval that intersects
the time interval of the word w in the best path. This approach is motivated by
the consideration that the confidence of a word is higher if it also occurs for similar
time intervals in other paths than the best-matching one. For example, this is the
case for the word “nummer” in figure 5.8.

Thus, the extended confidence definition takes the logarithmic sum over all con-
fidences of words [w; tk, tl] that intersect the time interval {ti, . . . , tj} of the word w
in the recognized word sequence:

Csec ([w; ti, tj]) = − ln
∑

∀ [w; tk, tl] :
{tk, . . . , tl} ∩ {ti, . . . , tj} 6= ∅

e−C([w;tk,tl]) (5.10)

The extended confidence definition does not fulfill the original constraint of a poste-
rior probability: Csec does not necessarily meet the condition Csec ≥ 0 and thus may

6What is actually meant by “accepted” and “rejected” depends on the application of the confi-
dences, e.g. the deletion of rejected words.

87

Chapter 5. Grammatical alternatives and semantic confidences

correspond to an invalid probability which is greater than one. In practice, however,
the definition Csec consistently leads to better results than the simple definition C,
which has been confirmed empirically by the authors of [WSMN01], who carried out
various experiments on different test corpora.

5.3.2 Estimation of parse tree node confidences

After the introduction of the word-based confidence estimation, this section explains
the extension of the underlying posterior probability approach to support the esti-
mation of confidences for each node of a decoded parse tree (see also [LFRT04]). The
confidence of a parse tree node should quantify its reliability independently of its
child nodes. For example, if a decoded parse tree contains the node “C Time”, the
corresponding confidence should allow a decision about whether the user mentioned
a time of day at all or not, no matter what particular time has been recognized.
The reliability for this particular time of day is given by the confidences for the
tree leafs that contain the corresponding words. Later on, it will be explained how
the confidences for parse tree nodes are transformed into confidences for slots and
values, that are extracted from a decoded parse tree (see section 5.3.4).

As stated before, each node of a decoded parse tree corresponds to a particular
sub-lattice instance in the constructed lattice hierarchy (see end of section 5.2.2).
Such a sub-lattice instance is denoted by [IL; ti, tj]; L is the label of the sub-lattice
instance, which is equal with the label of the corresponding tree node; ti and tj de-
note the time steps which are attached to the nodes i and j inside the flat lattice that
correspond to the entry and the exit node of the sub-lattice instance. Equation 5.9,
which gives the definition for the word confidence, can be modified to allow the
calculation of the confidence of a sub-lattice instance that corresponds to a specific
parse tree node:

C ([IL; ti, tj]) = fi + fij + bj − fN (5.11)

fi and bj represent the forward and the backward score, which are calculated for
the start node i and the end node j of the sub-lattice instance inside the flat lattice.
The symbol fij replaces the original term αaij + βlij in equation 5.9 and denotes
the forward score of the part of the flat lattice that is located between the start
and the end node of the sub-lattice instance. The calculation of fij is similar to the
calculation of the original forward score (see recursion formulas 5.5 and 5.6), but
only considers flat lattice nodes between the entry node i and the exit node j:

fi = 0, ∀
i<p≤j

p : fp = ∞ (5.12)

∀
top. order

p ∈ {i, . . . , (j − 1)} :

∀q ∈ n (p) : f̂q = − ln
(
e−fq + e−(fp+αapq+βlpq)

)
(5.13)

After processing all involved lattice nodes, the value for fij is equal to the forward
score fj , which has been accumulated at the end node j. When determining the
confidence for a leaf node of the parse tree that contains a particular word, fij is just

88

5.3. Estimation of semantic confidences

the original term αaij + βlij , because the corresponding sub-lattice instance refers
to a single edge in the flat lattice.

The fact that word lattices may contain the same word with intersecting time
intervals motivated the extended word-confidence definition Csec (see equation 5.10).
Similarly, the lattice hierarchy may contain several sub-lattice instances which have
the same label and intersecting time intervals. Therefore, the confidence definition
for a parse tree node that corresponds to the sub-lattice instance [IL; ti, tj] is ex-
tended to consider all other sub-lattice instances in the lattice hierarchy that have
the same label L and intersect the time interval {ti, . . . , tj}:

Csec ([IL; ti, tj]) = − ln
∑

∀ [IL; tk, tl] :
{tk, . . . , tl} ∩ {ti, . . . , tj} 6= ∅

asec (ti, tj , tk, tl) e−C([IL;tk,tl]) (5.14)

In order to achieve a better approximation of the logarithmic probability constraint
Csec ≥ 0, equation 5.14 contains the intersection ratio asec, that scales posterior
probabilities according to the degree of intersection of the time intervals of the
current sub-lattice instance [IL; tk, tl] and the sub-lattice instance [IL; ti, tj], which
corresponds to the node of the decoded parse tree, for which the confidence is esti-
mated. Assuming intersecting time intervals, asec is calculated by

asec (ti, tj , tk, tl) =
min (tj , tl)−max (ti, tk)

max (tj − ti, tl − tk)
(5.15)

As expected from the results reported on word-basis, the extended confidence defi-
nition Csec performs better than the simple definition C when evaluating the quality
of the confidence estimation for parse tree nodes (see section 6.3.1).

5.3.3 Confidence-based pruning of flat lattice

A practical problem results from the fact that a backtracked flat lattice can get
very large, depending on the parameter selection for the n-best token passing search
(pruning settings and the value of n). Unfortunately, these settings don’t allow a
proper filtering of improbable path alternatives, such that it is necessary to gener-
ate a large flat lattice to ensure that the majority of probable path alternatives is
included.

The computational cost for the construction of the lattice hierarchy on a large
flat lattice may cause a noticeable delay in the reaction of the dialog system, which
could be avoided by removing improbable paths from the flat lattice. A quite obvious
approach to solve this problem is to prune the flat lattice by the aid of the estimated
confidences. For word lattices, this strategy has been used successfully by the authors
of [WSMN01]; they applied the lattice pruning approach presented in [SO99].

In the present work, the strategy of exploiting confidence values to delete im-
probable paths from the flat lattice has been realized in the following way: the
criterion for pruning a flat lattice edge is the distance of its confidence with respect
to the average confidence of the lattice edges that belong to the best path through
the flat lattice. The pruning criterion is only evaluated for flat lattice edges that

89

Chapter 5. Grammatical alternatives and semantic confidences

correspond to words and therefore consume a specific time interval {tl, . . . , tk}. The
condition for deleting a word edge [w; tl, tk] from the flat lattice is:

C
(
[w; tk, tl] |xT

1

)
>

tk∑
t=tl

Cbest [t]

tk − tl
+ Cdist (5.16)

The confidence C([w; tk, tl] |xT
1) is determined via the estimation formula 5.9. The

array Cbest[t] contains the confidence values of the word edges that belong to the best
path for each time step t of the acoustic signal preprocessing. For example, for a par-
ticular lattice edge [wbest; ti, tj] on the best path, the values {Cbest[ti], . . . , Cbest[tj − 1]}
are all set to the specific confidence value C([wbest; ti, tj]). Thus, the condition 5.16
for deleting a word edge refers to the distance to the average confidence of the best
path, which is calculated over the corresponding time interval.

The pruning condition is tested for each word edge inside the flat lattice, which
is encountered during a depth-first search in forward direction. During this depth-
first search, a particular word edge is only passed if its confidence doesn’t meet
the pruning condition 5.16. A subsequent depth-first search in backward direction
finally determines all co-accessible7 lattice nodes and eliminates all “dead ends” in
the pruned flat lattice.

An important feature of this approach is the fact that the best path in the flat
lattice is always preserved, because it provides the reference confidence in the pruning
condition 5.16. The maximum confidence distance Cdist is a free parameter, just
like the pruning distance for the token-passing search, which has to be adjusted by
empirical tests. During such tests, a drastic reduction of the average flat lattice sizes
could be achieved without negatively affecting the overall quality of the confidence
estimation. At the same time, the computational cost for the construction of the
lattice hierarchy and the calculation of the tree node confidences can be kept on a
low level, such that there is no noticeable delay in the reaction of the dialog system.

5.3.4 Slot- and Value confidences

The estimation method which has been presented in section 5.3.2 allows to determine
a confidence for every node of a decoded parse tree. However, inside a spoken dialog
system, the dialog management processes a collection of slot-value pairs which is
extracted from a decoded parse tree. Thus, it is necessary to find a reasonable way
to assign the estimated tree node confidences to the extracted slot-value pairs.

To tap the potential of the tree node confidences, it has been decided to define a
separate confidence for the slot and the value for every extracted slot-value pair (see
also [LTR+05]). For example, if the decoded parse tree contains a time of day, one
can distinguish between the confidence that the user uttered a time of day at all (slot
confidence), and the confidence for that particular time which has been extracted
(value confidence). Please note, that this distinction is not possible by using simple
word confidences, because a slot may have high confidence, although the confidences
for the particular words that determine its value are low.

7A “co-accessible” node can be reached from the start node of the lattice when passing the lattice
edges in forward direction, as well as from the end node when going in backward direction.

90

5.3. Estimation of semantic confidences

C_FlightCode

0.02
→ ... | $WC_AirlineCode { fcode.airline = $WC_AirlineCode }

$C_FlightNumber { fcode.number = $C_FlightNumber } | ...

WC_AirlineCode

0.28

C_FlightNumber

0.04

WC_Digit

0.04

WC_Digit

0.01

WC_Digit

0.06
→ ... | l_h
{ $ = LH } | ...

→ ... | neun
{ $ = 9 } | ...

l_h

0.35

zwei

0.09

acht

0.02

neun

0.13

... | $WC_Digit { $ = str($WC_Digit) }
$WC_Digit { $ = $ + str($WC_Digit) }
$WC_Digit { $ = $ + str($WC_Digit) } | ...

... ...

→

⇒ ... fcode.airline [0.28] = LH [0.35]
fcode.number [0.06] = 289 [0.13] ...

Figure 5.9: Example showing the extraction of slot-value pairs and their correspond-
ing confidences from a decoded parse tree that contains a flight code.

In order to translate tree node confidences into slot and value confidences, a
rule-based technique is employed. It considers the way in which the slot extraction
commands of the semantic grammar are applied during the post-processing of a
decoded parse tree (see section 3.2.2). For the case that a slot is created and filled
without referring to subordinate slots, the slot confidence is set to the confidence of
the current tree node, in which the slot is created. The value confidence is calculated
by taking the maximum over the confidences belonging to the sibling nodes in the
scope of the semantic tag, that contains the slot creation command. In the other
case, where subordinate slots are involved, the confidence of the newly created slot
is set to the maximum over the confidence of the current tree node and the slot
confidences of the subordinate slots. The value confidence of the new slot is set to
the maximum of the value confidences of the subordinate slots.

The reason for choosing the maximum operator to combine several tree node
confidences, is the pessimistic assumption that the worst confidence of the particular
set of involved tree nodes determines the confidence of the corresponding slot or
value.8 Figure 5.9 shows the extracted slot and value confidences that result from
the depicted parse tree when applying the rule-based approach as specified above.
In the case that the user may have made a self-correction, such that a specific slot is
extracted a second time, the new value replaces the old value only if the confidence
of the new slot is below the confidence threshold used for discarding slots.

A simple policy for exploiting the slot and value confidences in the dialog man-
agement is the following: If the slot confidence is above a certain threshold, the
slot is completely discarded. If the slot confidence holds, but the value confidence
is above the threshold, the dialog management initiates a step to clarify the slot

8Because beeing defined as the negative logarithm of a posterior probability, a big value means
a bad confidence.

91

Chapter 5. Grammatical alternatives and semantic confidences

content. If slot and value confidences are both accepted, the dialog management
can safely rely on the slot-value pair when making decisions that determine the
subsequent dialog steps.

In addition to the best-matching parse tree, the slot and value confidences can
be determined for the N -best parse trees, too. However, an investigation on so-
phisticated dialog management techniques that, when processing a user utterance,
are able to exploit several alternatives for possible slot-value pair collections by the
aid of the contained semantic confidences is beyond the scope of this work. By all
means, the semantic confidences presented in this work are particularly worthful
in conjunction with approaches to statistically driven dialog management (see for
example [YWS+05]).

92

Chapter 6

Evaluation methods and
experimental results

In order to test the developed one-stage speech interpretation system and the esti-
mation of semantic confidences, several recognition experiments have been carried
out on a corpus of user utterances that has been recorded during the simulation
of a spoken dialog system providing an airport information service (NaDia research
project, see section 1.3).

This chapter includes a detailed description of the properties of the airport infor-
mation corpus and explains the experimental setup which has been used to produce
the presented results. The experimental results are expressed by means of several
evaluation measures that quantify the achieved interpretation performance.

Apart from verifying the gain in computational efficiency that is achieved by
the one-stage decoder implementation using the finite-state transducer technique
(see section 4.5), the conducted experiments have the main purpose to evaluate the
quality of the semantic confidence estimation discussed in the last chapter.

6.1 Off-line evaluation methods

The evaluation methods used in the context of this thesis only consider the speech
interpretation task without taking into account the other components of the spoken
dialog system. The common principle of such off-line evaluation methods is a com-
parison of the recognition outcome with a reference transcription that provides the
correct result. The comparison of “hypothesis” and “reference” reveals the commit-
ted errors, which are accumulated over the collection of test utterances. The result
of the evaluation is a recognition rate which is determined from the observed error
counts.

The considered evaluation methods differ in the kind of the transcription which is
the subject of the comparison between hypothesis and reference. The simplest case
is a word-based transcription, which however does not consider the variable infor-
mation content of specific words. In order to get a better measure for the achieved
interpretation performance, the evaluation is carried out on the basis of decoded
parse trees and on the transcription of extracted slot-value pairs (see sections 6.1.2
and 6.1.3).

93

Chapter 6. Evaluation methods and experimental results

The obtained results for the information extraction performance allow to com-
pare different system setups in order to verify improvements achieved by adjusting
free system parameters or altering the knowledge sources involved in the speech
interpretation task. However, it is questionable whether the off-line evaluation of
the information extraction performance provides an adequate quality measure for
speech interpretation with respect to its application inside the spoken dialog sys-
tem, since the history of consecutive dialog turns cannot be considered. This would
require a test environment that actually allows the interaction between user and
dialog system. If conducted with real users, such tests are expensive to perform
and do not allow extensive experiments for optimizing the system configuration, like
they are possible when doing an automatic off-line evaluation. In order to solve
this problem, there are approaches to simulate the user, such that the dialog system
can be evaluated automatically (at least on the basis of utterance transcriptions,
excluding the speech recognition task). User simulation techniques also allow to ap-
ply machine-learning approaches to dialog management (see for example [SGY05]).
This complex subject is however beyond the scope of this work, which will only
report results obtained by off-line evaluations.

6.1.1 Word-based evaluation

The traditional performance measure used in automatic speech recognition is the
“word error rate”. This measure is based on the mapping with “minimum edit
distance” that is determined for a recognized word sequence and its corresponding
reference transcription. A specific mapping between two symbol sequences S1[i] and
S2[j] is defined by a list of particular “edit operations” i 7→ j, which are necessary
to transform the first symbol sequence into the second one (each symbol denotes a
specific word). Possible edit operations are “substitution”, “insertion” and “dele-
tion”. A substitution can either be “correct” or “wrong”, depending on whether
S1[i] = S2[j] is true. An insertion or deletion means that either i or j denote the
empty symbol ε. For the calculation of the edit distance, one has to define a cost
function. The commonly used NIST standard defines the following costs: 4 for a
wrong substitution, 3 for insertion and deletion and 0 for a correct substitution
(see [FF93]). This cost definition prefers a substitution with respect to the equiva-
lent succession of insertion and deletion. The edit distance of two symbol sequences
are the accumulated costs for all involved edit operations. In order to find the min-
imum edit distance, one can apply the “dynamic programming” algorithm that also
returns the corresponding sequence mapping (see [SK83]).

To determine the word error rate on a specific collection of test utterances, it
is necessary to determine the sequence mapping with minimum edit distance for
each test utterance and to accumulate the number of correct substitutions NC , the
number of wrong substitutions NS , the number of insertions NI and the number of
deletions ND. The word error rate is defined as:

WER =
NS + ND + NI

NC + NS + ND
(6.1)

The denominator NC + NS + ND is equal to the number of words in the reference
transcription. Because this definition counts insertions as errors, the word error rate

94

6.1. Off-line evaluation methods

is not bounded to one. The recognition performance can also be expressed with the
equivalent recognition rate, called “word accuracy”:

Acc = 1−WER

=
NC −NI

NC + NS + ND
(6.2)

The word-based evaluation treats all words equally and therefore assumes that each
word carries the same amount of information. This assumption is acceptable for
applications where the recognized word sequence is more or less the final result,
like in the case of an automatic dictation system. For the task of automatic speech
interpretation, the assumption that each word of a recognized utterance contributes
equally to the extracted information is definitely wrong. Furthermore, the word-
based evaluation does not consider the grammatical structure that guides the se-
mantic interpretation.

The consequence of these shortcomings is that the word-based evaluation does
not provide a reliable measure for the speech interpretation performance: there is
no guarantee that a system configuration which is optimized on the word error rate
also achieves the best possible error rate with respect to the extracted information
(see also [WAC03]). The following subsections present evaluation methods which
take into account the structure of the decoded parse trees or directly consider the
extracted information on the basis of slot-value pairs.

6.1.2 Tree-based evaluation

Because the result of the one-stage decoding process are parse trees, it stands to
reason to extend the sequence-based evaluation method in a way that it allows the
comparison of parse trees. It is actually possible to define the basic edit operations
“substitution”, “deletion” and “insertion” for tree nodes and to provide a dynamic
programming algorithm that determines the minimum “tree edit distance” between
two trees (see [SZ97]). This “tree matching” algorithm has successfully been applied
to determine a “tree node accuracy” that allows to measure the average structural
concordance of a test set of decoded parse trees with their corresponding reference
parse trees (see [TFLR03]).

The reference parse trees are automatically generated by parsing the ortho-
graphic transcription of the test utterances with the semantic grammar. This means
that the evaluation is actually a comparison of the output of the one-stage decoder
which processes the speech signal with the output of the robust parser which pro-
cesses the manually transcribed utterance representation. Therefore, the evaluation
does not reveal conceptual errors of the handcrafted semantic grammar. Conse-
quently, a prerequisite for the evaluation is a consistent grammar design that allows
to process the orthographic transcription of all test utterances correctly, such that
every relevant piece of application-specific information can be extracted from the
reference parse trees.

Figure 6.1 shows an example for the alignment of a decoded parse tree and
its corresponding reference parse tree. This alignment is the outcome of the tree
matching algorithm which finds the minimum tree edit distance. The determined
alignment classifies each involved tree node either as correct or substituted (tree

95

Chapter 6. Evaluation methods and experimental results

(a)

concept

concept

word class

word

b

C FlightCode

WC AirlineCode

d i

C FlightNumber

WC Digit

drei

WC Digit

sieben

WC Digit

drei

C Origin

aus

WC Place

Hamburg

(b)

concept

word class

word

b

C FlightNumber

WC Digit

drei

WC Digit

zwei

WC Digit

sieben

WC Digit

drei

C Dest

nach

WC Place

Hamburg

Figure 6.1: Example for the alignment of hypothesis (a) and corresponding reference
parse tree (b) that identifies correct, substituted, inserted and deleted tree nodes.

nodes emphasized in gray color) or as inserted or deleted (tree nodes emphasized by
hatch pattern, insertions in the hypothesis and deletions in the reference).

The tree matching is effected on all pairs of hypothesis and reference parse trees
of the test set, such that the total number of correct, substituted, inserted and
deleted tree nodes can be determined (NC , NS , NI , and ND). By inserting these
counts in equation 6.2 one obtains the so-called tree node accuracy, which specifies
the fraction of correctly identified tree nodes (less the incorrectly inserted ones) with
respect to the total number of tree nodes in the collection of reference parse trees.

As indicated on the left hand side of figure 6.1, the nodes of a parse tree cor-
respond to different hierarchy levels that result from the nested structure of the
corresponding grammar rules. This allows to subdivide the tree nodes due to their
hierarchy level and to carry out the evaluation for each partition of tree nodes sepa-
rately. It has been decided to define three different hierarchy level types: the “word”
level, the “word class” level and the “concept” level. The word level simply refers
to the leaf nodes of the parse trees which always contain words (terminal symbols).
The word class level includes all “pre-terminal” tree nodes, which contain only a
single word. These nodes (and the corresponding grammar rules) are indicated by
the prefix “WC ...”. All higher-ranked tree nodes are assigned to the concept hi-
erarchy level, which is indicated by the prefix “C ...”.1 The hierarchy level type is
also considered during the tree matching: a substitution is only allowed if both tree
nodes have the same level type.

The separate evaluation for each hierarchy level type allows a more detailed
analysis of the obtained results. For example, the separate evaluation shows that the

1The prefixes have the additional purpose to prevent name clashes between non-terminal and
terminal symbols.

96

6.1. Off-line evaluation methods

proposed method for the estimation of tree node confidences works uniformly well,
independent of the hierarchy level of a particular parse tree node (see section 6.3.1).

Parse trees may contain nodes that are not relevant during the extraction of the
information that is further processed by the dialog management. For example, in
the airport information domain, phrase parts like “Where...”, “At which gate...”, or
“Please tell me the gate...” may all be handled by a specific grammar rule that fills
the slot for the subject of the user request with the value “gate”, independently of
the exact wording. The evaluation, however, should consider only those tree nodes
which are actually involved in the final information extraction. The consideration of
irrelevant parse tree nodes can be prevented by manually classifying particular non-
terminal symbols as “type relevant” or “value relevant”. This classification scheme
is used to select all relevant nodes of a given parse tree: Each type relevant node
is preserved as well as all of its parent nodes, up to the root of the parse tree. In
turn, each value relevant node additionally preserves all of its child nodes. The
filtering is applied to every pair of hypothesis and reference tree, before the tree
matching is carried out. For example, if the non-terminal symbols “C Origin” and
“C Dest” are classified as type relevant and the non-terminal symbol “WC Place”
as value relevant and the filtering is carried out for figure 6.1, the word nodes “aus”
(from) and “nach” (to) are deleted from hypothesis and reference tree. This is
actually intended, because the filtering prevents that the error of confusing arrival
and departure is counted twice.

6.1.3 Performance of information extraction

As explained in section 3.2.2, the semantic grammar provides embedded scripting
commands that control the slot-value pair extraction. During parsing, those rules
are applied to extract a specific collection of slot-value pairs for the resulting parse
tree. If the parse tree is the output of the one-stage decoder, the slot-value pair
extraction is done in a post-processing step that applies the semantic grammar
along the decoded parse tree.

Consequently, the evaluation can be carried out on the basis of slot-value pairs.
This actually means to compare the slot-value pair collections which are extracted
from the decoded parse trees with the corresponding slot-value pair collections that
are extracted by parsing the orthographic transcriptions of the test utterance set.
When comparing the hypothesis and the reference slot-value pair collection of a
particular utterance, a slot is counted as correct if it can be found in both hypothesis
and reference and if the values of both slots are equal. If the values are not the same
the slot is counted as substituted. An insertion is counted if the slot occurs only
in the hypothesis, a deletion if it occurs only in the reference. A sequence aligning
is not necessary, because the slots are processed independently of the order of their
extraction.2

The comparison of hypothesis and reference slot-value pair collections on a test
set provides the total number of correct (NC), substituted (NS), inserted (NI) and
deleted (ND) slots. Common measures for the performance of information extraction

2A specific slot may occur only once in the slot-value pair collection extracted for a particular
utterance, because for the case that a slot is extracted multiple times, the corresponding value is
replaced in the order of occurrence.

97

Chapter 6. Evaluation methods and experimental results

are the “precision” (P) and “recall” rate (R), as well as the “F -Measure”, which
are all defined by means of the observed slot counts (see [MKSW99]):

P =
NC

NC + NS + NI
(6.3)

R =
NC

NC + NS + ND
(6.4)

F =
2PR

P + R
=

NC

NC + NS + 1
2 (NI + ND)

(6.5)

The F -Measure has been introduced to have a single performance measure and is
defined as the harmonic mean of precision and recall rate. This definition, however,
has been criticized by the authors of [MKSW99], because it attenuates the negative
effects of insertions and deletions. They suggest a definition which is equivalent to
the word error rate (see equation 6.1) which they call accordingly “slot error rate”.
In this work, results are uniformly given in form of recognition rates. Thus, the
results presented at the end of this chapter will be expressed by the obtained “slot
accuracy” (1 - “slot error rate”, see equation 6.2).

A legitimate question is, whether the tree-based evaluation is still valuable when
having the possibility to do the evaluation on the basis of the extracted information.
A potential advantage of the tree-based evaluation is the better “resolution” due
to the pieces of information, which are combined when doing the slot-value pair
extraction. On the other hand, the argument that a slot should be counted as
totally wrong, even when parts of the contained information are correct, is also
valid because in many cases it is highly questionable whether the dialog system can
really profit from extracted information that is only partially correct.

In the context of this discussion one already reaches the limits of what can be
achieved by an off-line evaluation of the speech interpretation module, without con-
sidering the whole dialog system and the history of consecutive dialog turns (see
beginning of section). For producing the results presented in this work, it has been
decided to adjust the parameter configuration of the speech interpretation system on
a separate “cross-validation” utterance set to achieve a maximum tree node accuracy
for nodes which are relevant for information extraction. This parameter configura-
tion is then applied to produce the presented results on the actual test utterance set.
The obtained results have the main purpose to quantify the improvements which can
be achieved by exploiting the estimated tree node confidences.

6.1.4 Evaluation of confidence estimation

In order to measure the quality of the estimated parse tree node confidences (see
section 5.3.2), two different evaluation methods are used: the “confidence error
rate” and the “receiver-operator characteristic”. These measures are suggested in
[WSMN01] for the evaluation of word confidences. Thanks to the tree matching
algorithm, both measures can also be used for the evaluation of the confidences for
parse tree nodes (see also [LFRT04]).

In order to decide whether a specific node of a decoded parse tree should be
accepted or rejected, it is necessary to define a particular threshold ε. The tree node
is classified as “accepted” if its confidence is below this threshold, otherwise it is

98

6.1. Off-line evaluation methods

“rejected”. For the evaluation of the quality of the confidence estimation one has to
count the errors which are committed when making this decision: if a tree node is
classified as accepted, but the tree matching algorithm identifies this node either as
“substituted” or “inserted”, an error is counted for “false acceptance”. Respectively,
if the tree node is classified as rejected, but is actually “correct”, an error is counted
for “false rejection”. In this way one can determine the total number of falsely
accepted and falsely rejected tree nodes over all test utterances (NFA and NFR).

The confidence estimation can only identify errors which are caused by substitu-
tion or insertion. Nodes which are deleted with respect to the reference parse trees
cannot be identified. Thus, the confidence error rate CER is defined as the ratio
of the total number of errors committed by false acceptance and false rejection and
the total number of tree nodes in the hypothesis:

CER =
NFA + NFR

NC + NS + NI
(6.6)

The confidence error rate depends on the setting of the classification threshold ε,
which is adjusted on the test utterance set used for cross-validation. In order to mea-
sure the improvement which can be achieved by considering the confidence values,
the confidence error rate is compared with the “decoder baseline”. The baseline is
the confidence error rate which results from classifying all tree nodes as “accepted”,
without taking into account any confidence value at all. Thus, the baseline CERBL

includes errors that result from the false acceptance of substituted and inserted tree
nodes:

CERBL =
NS + NI

NC + NS + NI
(6.7)

If the confidence estimation performs well, the confidence error rate drops below the
decoder baseline, because the analysis of the confidences identifies more substitutions
and insertions than it produces errors on correctly decoded parse tree nodes.

Another appropriate method to measure the quality of the confidence estimation
is the receiver-operator characteristic, which is depicted by “ROC-curves”. This
diagram shows the false acceptance rate FAR and the false rejection rate FRR for
a variable setting of the classification threshold ε. The false acceptance rate is the
ratio of the number of false accepted and the number of substituted and inserted
tree nodes. Respectively, the false rejection rate is the ratio of the number of false
rejected and correctly decoded tree nodes:

FAR =
NFA

NS + NI
, FRR =

NFR

NC
(6.8)

The ROC-curve shows the trade-off which is achieved between false acceptance and
false rejection rate. For a well performing confidence estimation, the ROC-curve
runs close to abscissa and ordinate of the diagram.

In section 5.3.4 it has been explained how to translate the estimated tree node
confidences into confidences for the slot and the value of each slot-value pair that
is extracted from a decoded parse tree. The benefit of the determined slot confi-
dences can be evaluated by the gain of the information extraction performance (see
equations 6.3 et. seqq.) which can be achieved by discarding slots that have bad

99

Chapter 6. Evaluation methods and experimental results

confidence. This evaluation also allows a comparison with the use of an explicit
out-of-vocabulary model, that directly recognizes utterance parts which cannot be
interpreted with the semantic grammar (see section 6.3.2).

6.2 Airport information corpus

The application domain used in the context of this thesis is a spoken dialog system
that offers an airport information service in German language. The usage scenario
assumes that the system is part of the man machine interface of future automobiles,
which besides the conventional haptic-visual interface allows the interaction via na-
tural speech. When going to the airport, the driver can use the airport information
system to request various information about arriving or departing flights: the exact
arrival or departure time, the flight number, the airline, the origin or destination
of a flight, the gate, the status (on time or delayed), the airplane type and the
appropriate location to park his vehicle. In order to obtain this information, the
user has to provide either the flight code or the rough arrival or departure time and
the destination or origin of the flight. The dialog system allows a “mixed initiative”
interaction, which means that the dialog starts with an open-ended system prompt
(”How may I help you?”) and the user does not need to follow a predetermined dialog
flow. In the case that the user has difficulties to provide the information necessary
for his query, the dialog behaves cooperatively by asking the user to clarify his intent
or to give particular information. The user may follow the suggested dialog flow, but
can take the initiative at any time by changing the subject under discussion or by
rejecting the last system prompt in order to correcting himself or the system which
committed an interpretation error.

6.2.1 Data collection

The development of essential parts of a spoken dialog system, like the speech in-
terpretation module, affords the collection of application-specific data. This data
collection, however, requires a runnable version of the spoken dialog system. A com-
mon solution to this problem is to conduct so-called “Wizard-of-Oz” experiments
(see [DJA93]). In such experiments a human “wizard” simulates the missing sys-
tem modules. The test subjects are usually not aware of this simulation. They are
told that they are interacting with a fully automatic system, which makes the test
environment more realistic.

The Wizard-of-Oz experiment conducted for the airport information domain con-
sisted of a number of tasks which had to be performed by the test subjects. Each
task was characterized by a short description which was read to the test subjects by
the supervisor responsible for conducting the experiment (e.g. “Your friend is on a
machine which arrives from Nuremberg between five and six o’clock in the evening.
Find out the exact arrival time!”). During listening to the task description, the test
subjects had to memorize the necessary information for their next interaction with
the airport information system. In order to cover the range of functionality of the
airport information application, each test subject had to complete about sixteen dif-
ferent tasks. The deployed Wizard-of-Oz system already included a working version
of the dialog management module. Therefore, the major task of the supervisor was

100

6.2. Airport information corpus

lab car
test subjects 38 17
user utterances 3414 1323
words 10191 7642

Table 6.1: Amount of data collected for the airport information domain in laboratory
and car environments.

to simulate the speech interpretation module (speech recognition and extraction of
slot-value pairs). The system response was generated automatically from the man-
ually extracted information and checked by the supervisor before playing it to the
test subject. During the manual information extraction, the supervisor deliberately
committed interpretation errors to provoke user utterances for rejecting or correcting
the system response.

The airport information corpus has been collected in several test series in two
different environments (see table 6.1). About two thirds of the corpus has been
recorded under “laboratory conditions”, where the test subjects sat in front of a
desktop computer system that ran an artificial driving task for simulating the dis-
traction caused by driving the car and keeping track of the traffic situation. The
rest of the corpus was collected under realistic conditions inside a driving car which
was steered by the test subjects during a ride through the city traffic of Munich.
In both environments, the voice of the test subjects was recorded by a close-talking
microphone, in order to minimize the negative influence of background noise.

6.2.2 Experimental setup

The collected airport information corpus has been split into three parts. The train-
ing utterance set (“train”), which comprises about two thirds of the whole corpus is
reserved for developing the handcrafted semantic grammar and for estimating the
stochastic weights of the corresponding hierarchical language model. The remaining
part of the corpus serves for testing the one-stage decoder and the information ex-
traction with the constructed hierarchical language model. The test corpus is again
split into two equal sized parts. The first part, called “cross-validation” utterance
set (“xval”), is used for finding the optimum settings for all free parameters involved
in the one-stage decoding process, like for example the language model scaling fac-
tor or the threshold setting when exploiting the estimated confidences. The second
part is the actual test utterance set (“eval”), which serves for producing the results
presented in this work using the parameter settings adjusted on the cross-validation
utterance set. Table 6.2 shows the exact partitioning of the airport information
corpus into the three sub corpora.

The handcrafted semantic grammar comprises 570 different words (terminal sym-
bols) and 82 different rules (non-terminal symbols). The embedded slot creation
commands allow the extraction of 35 different slots. The parse tree annotation is
generated by applying the semantic grammar on the orthographic corpus annotation
via the use of a robust parser. Table 6.2 shows the total number of annotated tree
nodes and the corresponding average per utterance for each of the three hierarchy

101

Chapter 6. Evaluation methods and experimental results

train eval xval
test subjects 43 6 6
user utterances 3752 448 537
word nodes 12892 2541 2400
words nodes per utt. 3.4 5.7 4.5
word class nodes 5300 1112 1082
word class nodes per utt. 1.4 2.5 2.0
concept nodes 10976 1836 1856
concept nodes per utt. 2.9 4.1 3.5
slots 5957 985 1072
slots per utt. 1.6 2.2 2.0
different word nodes 730 295 266
different word class nodes 14 10 11
different concept nodes 68 48 47
different slots 35 24 25
unmatched word rate 7.7% 7.6% 5.2%

Table 6.2: Partitioning of airport information corpus and statistics of the parse tree
annotation which is generated with the aid of the handcrafted semantic grammar.

level types introduced in section 6.1.2 (“word”, “word class” and “concept”), as well
as the corresponding figures for the extracted slots. The “unmatched word rate”
specifies the fraction of words which during the robust parsing could not be assigned
to any grammatical rule and thus are classified as “out-of-vocabulary”.3

The reader may have noticed that, in the average, the training corpus contains
shorter utterances than the test sub corpora and that the test sub corpora do not
cover the complete semantic grammar. The reason for this circumstance is that the
semantic grammar contains rules for domain-independent user commands that are
necessary to integrate the flight information application into the greater context of
a demonstration system (for example commands for switching the domain, getting
help, etc.). Because the corresponding user utterances are very short and simple,
they have been excluded from the evaluation.

The parse tree annotation of the training corpus is used to estimate the stochastic
weights of the hierarchical language model (HLM), which is created from the seman-
tic grammar by converting it into a transition network hierarchy (see section 3.3.3).
The top-level network of the HLM used for the experiments contains a bi-gram over
all main rules of the semantic grammar.

Apart from the semantic-syntactic model (semantic grammar and correspond-
ing HLM), the experimental setup also includes the acoustic-phonetic modeling.
The phonetic lexicon has been created manually by the aid of comprehensive pho-
netic lexicon resources (e.g. Phonolex, see [pho04]). The acoustic modeling is done

3The detection of these words in the training corpus can be exploited for automatically deter-
mining the locations where to integrate an out-of-vocabulary model inside the hierarchical language
model (see section 3.3.3). When occurring inside the sub corpora which are used for testing, those
words are simply deleted before carrying out the evaluation.

102

6.3. Experimental results

Accword Acctree Accrel
tree F -Measure Accslot

78.6% 79.9% 85.4% 90.3% 83.9%

Table 6.3: Results of the experiment with the baseline speech interpretation system;
determined on the basis of words (Accword), parse tree nodes (Acctree), relevant
parse tree nodes (Accrel

tree) and slot-value pairs (F -Measure, Accslot).

by speaker-independent continuous-density Hidden Markov Models for intra-word
triphones. For the creation of speaker-independent acoustic models, the airport in-
formation corpus is too small. Therefore, it has been decided to use a larger data
collection from the German Verbmobil project for the acoustic model training. The
application scenario of this data collection are dialogs about the scheduling of ap-
pointments between two human dialog partners (the major goal of the Verbmobil
project was automatic translation, see [Wah00]).

The used version of the Verbmobil data collection includes about 11000 spon-
taneous utterances in German language of about 600 different speakers, which is a
sufficient size for creating speaker-independent Hidden Markov Models. The training
is effected with the popular HTK-Toolkit by following the strategy proposed in the
provided documentation (see [YEK+02]). It begins by the creation of an initial set of
context-independent HMMs for 50 different German phonemes, including a silence
model for short and long pauses and a model for non-speech sounds. The HMMs
have “Bakis” topology (see figure 2.1, p. 14) and include one, three or four emitting
states depending on the phoneme (a single emitting state for the short pause, four
states for diphthongs and tree states for all other phonemes). The HMM probability
densities are modeled by Gaussian distributions with diagonal covariance matrices.

The initial context-independent HMMs are extended to intra-word triphone
HMMs by using the common parameter tying approach (see section 2.6.2). The
quality of the HMMs is further improved by applying the suggested method of
“mixture splitting”, which iteratively increments the number of Gaussian mixture
components. The resulting set of HMMs contains about 25000 Gaussian mixture
components. Finally, the HMM set is adapted on a selection of utterances from nine
speakers of the training subset of the airport information corpus by using standard
acoustic model adaptation methods (combination of “maximum a posteriori” (MAP)
and “maximum likelihood linear regression” (MLLR) approaches, see [YEK+02]).

The preprocessing used for the extraction of acoustic feature vectors is configured
with the common setting that computes 12 MFCC coefficients, the normalized signal
energy and the corresponding temporal derivations of first and second order, yielding
feature vectors with 39 components.

6.3 Experimental results

The presented experimental results have the major purpose to evaluate the quality
of the semantic confidence estimation. This is done by the comparison with a base-
line configuration of the speech interpretation system which does not make use of
the estimated confidences. Table 6.3 shows the results produced with the baseline

103

Chapter 6. Evaluation methods and experimental results

% Accrel
tree CERBL CER[C] CER[Csec]

CO 80.9 14.4 12.8 10.1
WC 93.4 4.8 4.2 2.2
W 87.2 9.6 8.5 5.4

TOT 85.4 11.0 9.8 7.1

Table 6.4: Tree node accuracy and confidence error rate for confidence definitions C
and Csec for relevant tree nodes on concept (CO), word class (WC) and word (W)
hierarchy level, as well as for all relevant tree nodes (TOT).

interpretation system. As expected, the obtained recognition rates depend highly
on the corresponding evaluation method (see section 6.1). The evaluations based
on words (Accword) and on unfiltered parse trees (Acctree) yield a lower recognition
rate, because spurious errors committed on irrelevant words or tree nodes are not
suppressed. The evaluation based on parse tree nodes which are relevant for infor-
mation extraction allows to consider partially correct information. Therefore, the
corresponding accuracy Accrel

tree has a higher value than the slot accuracy Accslot.
Due to the attenuation of insertion and deletion errors, the F -Measure yields the
highest value.

Because of the nature of off-line evaluations, it is difficult to say which evaluation
measure (Accrel

tree, Accslot or F -Measure) is more adequate when comparing differ-
ent configurations of the interpretation system. As already mentioned, it has been
decided to take the accuracy of relevant tree nodes Accrel

tree as optimization criterion
when empirically adjusting the free system parameters on the cross-validation utter-
ance set. This parameter setting is used during the experiments on the actual test
utterance set. The comparison between the baseline configuration and the system
configuration which exploits the estimated confidences is then given for all presented
evaluation measures.

6.3.1 Evaluation of parse tree node confidences

At first, the results for the quality of the confidence estimation will be given on the
basis of the tree-matching evaluation method. In order to show that the confidence
estimation for parse tree nodes works uniformly well over all hierarchical levels, the
evaluation is carried out separately for tree nodes belonging to the already men-
tioned hierarchy level types “word”, “word class” and “concept” (see section 6.1.2).
Table 6.4 shows the results for the comparison of the confidence error rate CER for
the baseline system and for the two presented tree node confidence definitions C and
Csec (see section 5.3.2). On all hierarchy levels, one can achieve a significant reduc-
tion of the confidence error rate with a uniform setting of the confidence threshold ε
which has been adjusted on the cross-validation utterance set. The consideration
of sub-lattice instances with the same label and intersecting time intervals with re-
spect to the nodes of the decoded parse tree improves the confidence estimation; the
extended confidence definition Csec performs significantly better than the simple
definition C.

104

6.3. Experimental results

Csec

C

Concept level (CO)

F
R

R
[%

]

10080604020

100

80

60

40

20

0

Csec

C

Word class level (WC)

10080604020

100

80

60

40

20

0

Csec

C

Word level (W)

FAR [%]

F
R

R
[%

]

10080604020

100

80

60

40

20

0

Csec

C

total evaluation (TOT)

FAR [%]

10080604020

100

80

60

40

20

0

Figure 6.2: ROC-curves for confidence definitions C and Csec for relevant tree nodes
on concept (CO), word class (WC) and word (W) hierarchy level, as well as over
all relevant tree nodes (TOT).

105

Chapter 6. Evaluation methods and experimental results

% P R F -Measure Accslot

Baseline 88.3 92.3 90.3 83.9
Slot-Conf. 92.1 91.2 91.6 86.3

OoV-Model 93.2 93.1 93.1 87.9

Table 6.5: Comparison of improvements in information extraction performance
achieved by exploiting the estimated slot confidences and by using an explicit out-
of-vocabulary model.

The obtained ROC-curves shown in figure 6.2 confirm the results of the evalu-
ation of the confidence error rate. For all hierarchy levels, the ROC-curve of the
confidence definition Csec runs below the ROC-curve of definition C, at least in
the area near the abscissa which is interesting for the application. When having a
high recognition rate, which is the case in the experiments, the threshold ε which
is adjusted to achieve a low confidence error leads to an operating point near the
abscissa. For example, the setting of ε that produces the results for Csec in table 6.4,
leads to the operating point {FAR, FRR} = {53.2%, 1.4%} inside the ROC-curve
for all relevant tree nodes (TOT). This means, that it is possible to identify about
the half of all inserted and substituted tree nodes with only rejecting a few percent
of correctly decoded tree nodes.

The quality of the confidence estimation depends on the size of the generated
lattices. On the one hand, the average lattice size has to be large enough to prevent
a degradation of the confidence estimation. On the other hand, the computational
effort during the backtracking phase of the decoding process has to be kept in rea-
sonable limits. The size of a lattice can be expressed by the lattice density, which
is the ratio of the number of lattice edges and the number of lattice nodes. By
applying the lattice pruning approach discussed in section 5.3.3, the average density
of the generated flat lattices has been limited to a value of about 30. This allows to
effect the lattice hierarchy construction and the confidence estimation without any
noticeable time delay. At the same time, there is no significant loss in the quality of
the confidence estimation due to this limitation of the average lattice size.

6.3.2 Comparison with explicit out-of-vocabulary model

The evaluation of the confidence estimation shows quite encouraging results on the
basis of relevant parse tree nodes. However, as explained in section 5.3.4, the tree
node confidences are translated into confidences for the slot-value pairs, which are
extracted from the decoded parse trees. A possible way to verify whether the im-
provements can also be achieved on the basis of slot-value pairs is to consider the
identification of wrongly inserted slots by their bad slot confidence. If the slot con-
fidences work well, this allows to increase the information extraction performance,
because it is possible to identify more wrongly inserted slots than committing addi-
tional errors by deleting correct slots. Table 6.5 shows the comparison between the
baseline information extraction performance and the performance which is obtained
when deleting slots with a confidence below the confidence threshold ε. The gain
of the precision rate P is greater than the loss of the recall rate R, which actually

106

6.3. Experimental results

improves the obtained values for the F -Measure and for the slot accuracy Accslot.
For a better assessment of the achieved improvement, it is worthwhile to con-

sider a system setup that includes an explicit out-of-vocabulary model which al-
lows to identify uninterpretable parts of user utterances immediately during the
one-stage decoding process. Such an experiment has been carried out using an
out-of-vocabulary model which is a phoneme trigram. The trigram is estimated on
the comprehensive German phonetic lexicon “Phonolex” (see [pho04]). In order to
keep the computational effort during the one-stage decoding process manageable,
the automaton representation of the trigram is reduced by pruning methods to a
size of about 350 nodes and 800 edges. This out-of-vocabulary model has been in-
tegrated into the hierarchical language model by using the approach presented in
section 3.3.3.

As one can see from table 6.5, the system with out-of-vocabulary model achieves
an improvement which is about twice as high as the improvement of the system con-
figuration which exploits the slot confidences. This is the benefit of the effort which
is necessary to create and integrate the out-of-vocabulary model. In addition to
its ability to identify the out-of-vocabulary words themselves, the out-of-vocabulary
model also improves the recognition of the surrounding utterance parts. On the
other hand, the evaluation of the estimated confidences show that it is possible to
gain robustness with respect to the extracted information without the need for an
additional knowledge source.

107

108

Chapter 7

Conclusion

The subject of this thesis is the task of automatic speech interpretation in the context
of spoken dialog systems that provide access to information services by natural
speech input. Here, automatic speech interpretation means to extract application-
specific information from a user utterance that can be processed further by the
spoken dialog system in order to generate the appropriate system response.

The most important resource for achieving this task provides the semantic-
syntactic knowledge which describes the phrase structure of expected user utter-
ances with respect to the application-specific information that has to be extracted.
In order to represent the necessary semantic-syntactic knowledge source, this thesis
adopts the commonly used approach of semantic grammars. Semantic grammars
combine context-free grammar rules for the description of the phrase structure with
additional rules that allow to extract application-specific information in form of slot-
value pairs (semantic variables). The rules for the extraction of slot-value pairs are
evaluated during the construction of the parse tree, which is done by a parser that
applies the semantic grammar to the wording of a user utterance.

The major aspect of this thesis is the coupling between the task of speech recog-
nition and the just mentioned task of semantic interpretation. A commonly used
approach to solve this problem is the sequential coupling of the standard software
tools speech recognizer and parser. In this setup, the speech recognizer creates an
intermediate result on the basis of words, which is further processed by the parser
which does the information extraction. This approach is easy to realize but has the
drawback of the potential inconsistency between the knowledge sources of speech
recognizer and parser, which may lead to irrecoverable interpretation errors. In or-
der to avoid inconsistent knowledge sources, a straightforward solution is to utilize
the semantic grammar as a language model which guides the speech recognition pro-
cess. With the sequential coupling of speech recognizer and parser, this is usually
realized by compiling the semantic grammar into a word network that can be loaded
into the speech recognizer.

This thesis, however, pursues the approach to extend the word-based speech
recognition algorithm in order to allow a tight coupling of speech recognition and
parsing. The corresponding software tool which has been developed in the context
of this thesis is called “one-stage decoder” because it is able to determine the best-
matching grammatical parse tree directly from the speech signal. The one-stage

109

Chapter 7. Conclusion

decoder processes the semantic grammar in its equivalent network representation,
which is a hierarchy of of transition networks that is called hierarchical language
model. This model is augmented by stochastic weights which are estimated on a
corpus of training utterances that has been parsed with the semantic grammar. The
other knowledge sources involved in the speech recognition task, namely phonetic
lexicon and acoustic models, can be represented in form of weighted transition net-
works, too. The resulting uniform representation of the hierarchical search space
allows to determine the parse tree which best matches the recorded speech signal by
applying an extended version of the Viterbi decoding algorithm which is commonly
used in word-based speech recognition systems. A post-processing step applies the
semantic grammar along the decoded parse tree in order to extract the contained
collection of slot-value pairs that can then be passed to the dialog management
module of the dialog system.

Presuming an efficient implementation, the one-stage decoder offers the advan-
tage of a time-synchronous processing of the recorded speech signal, which may be
a problem in a two-stage interpretation system, because the parser has to wait un-
til the recognizer provides the intermediate result. Another advantage is the fast
initialization of the one-stage decoder. This is the consequence of the fact that the
compilation of the semantic grammar does not have to be carried out in advance,
but is embedded in the underlying decoding algorithm. If requested by the dialog
system, this allows a quick modification of the active semantic grammar during the
time that elapses when the user is listening to the system response.

A major goal of this thesis was to provide an efficient implementation for the one-
stage decoder that allows the real-time processing of user utterances on a standard
desktop computer system. This goal has been achieved by employing the calcu-
lus on weighted finite-state transducers (WFSTs) in order to compile the uniform
knowledge representation by the weighted transition network hierarchy into the inte-
grated search network which is required to perform the Viterbi decoding algorithm.
The great benefit of this technique, which already has been used with great success
in the context of large vocabulary speech recognition systems, is the possibility to
perform the search space compilation on-demand. This means that the integrated
search network has to be constructed only partially for the “beam” of those hy-
potheses which are probable enough to be propagated during the decoding process.
Furthermore, the involved automata operations optimize the topology of the inte-
grated search network which leads to a significant speed-up of the decoding process.
This speed-up has actually been observed during a comparison of the achieved run-
time performance with respect to a previous version of the one-stage decoder which
uses a static search space organization without applying the finite-state transducer
calculus.

Apart from the realization of the speech interpretation task itself, another im-
portant subject is the “robustness” against the inevitable remainder of errors that
occurs even in the case of very well-elaborated knowledge sources. During the com-
plex task to determine an appropriate system response by processing the information
which has been extracted from preceding user utterances, the dialog management
benefits a great deal from the ability to detect interpretation errors. The knowledge
about potential errors can be exploited to avoid misleading system responses caused
by undetected interpretation errors, as well as unnecessary dialog steps which ask

110

the user to confirm a piece of information that has been recognized correctly.
The present work investigates the approach to detect interpretation errors by

the estimation of confidence measures. Without requiring an additional knowledge
source, the confidence estimation can be carried out on a set of alternatives that is
generated by the decoder in addition to the best-matching result. In conventional
speech recognition systems this method has successfully been used to determine
confidences for each recognized word via the estimation of posterior probabilities
on a word lattice that represents probable alternatives to the best-matching word
sequence.

During the compilation of the integrated search network, the one-stage decoder
explicitly preserves the underlying structure of the semantic grammar. This has
been exploited to extend the algorithm for the generation of word lattices such that
it is possible to construct a set of probable alternatives to the best-matching parse
tree which is compactly represented by a hierarchy of lattices. The application of
the posterior probability estimation method to the representation of grammatical
alternatives allows to determine confidences for every node of a decoded parse tree.
The confidence of a particular parse tree node measures its reliability independently
of its child nodes. By assigning the tree node confidences to the slot-value pairs
which are extracted from the decoded parse tree, one can distinguish between the
reliability for the type and for the value of a specific piece of extracted information,
which is not possible when only considering word confidences.

The quality of the confidence estimation has been evaluated on a corpus of user
utterances collected during an experiment with several test subjects that interacted
with a simulated spoken dialog system offering an airport information service. This
evaluation showed that the estimated confidences allow to identify about the half
of all incorrectly decoded parse tree nodes with rejecting only a small percentage
of the correctly decoded ones. If exploited during the information extraction by
filtering out unsafely extracted slot-value pairs, the confidences yielded a significant
improvement of the average information extraction performance. The magnitude
of this improvement was at least half as large as the one which could be achieved
when making the effort to integrate an additional knowledge source which detects
uninterpretable parts of the user utterance directly during the decoding process.

The main contribution of this thesis is the development and the detailed descrip-
tion of the innovative one-stage decoder architecture that makes the most important
features of word-based speech recognition systems, like the integrated decoding algo-
rithm, the generation of alternatives and the estimation of confidences, available for
the task of automatic speech interpretation. However, the creation of the semantic-
syntactic model still requires a lot of expert knowledge in form the handcrafted
semantic grammar that describes the application-specific phrase structure and the
rules for extracting the corresponding information. Unfortunately, there is no consis-
tent strategy to accomplish the task of designing a semantic grammar for a specific
application domain, like the airport information service. Therefore, one has to rely
on the instinct of the grammar developer, who conceives an adequate grammatical
structure more or less by trail and error. Apparently, this solution has many draw-
backs which make the development process of spoken dialog systems costly and very
dependent on the particular application and the particular developer who designs
the knowledge sources. Nevertheless, the manual design of semantic grammars is

111

Chapter 7. Conclusion

common practice, since the data-driven structural inference of semantic-syntactic
models is a very demanding task that has not been solved satisfactorily, so far. Re-
cently, interesting approaches have been published that propose to define only the
set of possible semantic units and their dominance relationships. Their relation to
the expected wording has to be specified only partially, particularly for the semantic
units that represent information from the application data base. This knowledge
and the observed set of different words defines the generic structure of an initial
semantic-syntactic model. This model learns the unspecified relations with the ex-
pected wording by an iterative training of the contained stochastic weights on a
corpus of domain-specific user utterances.

However, it remains to be seen how successful such approaches are in practice
where the size of domain-specific corpora is often limited by the effort to conduct the
necessary data collection. By all means, machine-learning approaches to semantic
interpretation or even to the management of the whole dialog system have to be
designed in a way that they yield controllable system configurations, which allow
the systematic elimination of unacceptable errors in the resulting system behavior
that occur due to the sparsity of the available data.

112

113

Bibliography

[Abn96] Steven Abney. Tagging and Partial Parsing. In K. Church, S. Young,
and G. Bloothooft, editors, Corpus-Based Methods in Language and
Speech, Dordrecht, 1996. Kluwer Academic Publishers.

[All95] James Allen. Natural Language Understanding. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California,
1995.

[AM03] Cyril Allauzen and Mehryar Mohri. An Efficient Pre-Determinization
Algorithm. In Eighth International Conference on Automata (CIAA),
Santa Barbara, July 2003.

[Baz02] I. Bazzi. Modelling Out-of-Vocabulary Words for Robust Speech Recogni-
tion. PhD thesis, MIT Department of Electrical Engineering and Com-
puter Science, Cambridge, Massachusetts, June 2002.

[Beu99] K. Beulen. Phonetische Entscheidungsbäume für die Spracherkennung
mit großem Vokabular. PhD thesis, RWTH Aachen, Lehrstuhl für In-
formatik VI, Aachen, Germany, 1999.

[BJM83] L.R. Bahl, F. Jelinek, and R.L. Mercer. A maximum likelihood approach
to continuous speech recognition. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, volume 5, pages 179–190, 1983.

[CG98] S.F. Chen and J. Goodman. An Empirical Study of Smooting Tech-
niques for Language Modeling. Technical Report TR-10-98, Center for
Research in Computing Technology, Harvard University, Cambridge,
Massachusetts, August 1998.

[CRAR99] J.-C. Chappelier, M. Rajman, R. Aragües, and A. Rozenknop. Lattice
Parsing for Speech Recognition. In Proceedings of the 6th Annual Con-
ference on Natural Language Processing (TALN 99), Cargèse, Corsica,
July 1999.

[DG93] J. Dowding and J. Gawron. Gemini: a natural language system for
spoken language understanding. In Proceedings of the Spoken Language
Systems Technology Workshop. MIT Press, Cambridge, Massachusetts,
1993.

114

BIBLIOGRAPHY

[DJA93] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of Oz Studies –
Why and How. In Workshop on Intelligent User Interfaces, Orlando,
Florida, 1993.

[Dup93] P. Dupont. Dynamic Use of Syntactical Knowlegde in Continuous
Speech Recognition. In Proceedings 3rd European Conference on Speech
Communication and Technology, pages 1959–1962, Berlin, Germany,
September 1993.

[Ear70] J. Early. An Efficient Context-Free Parsing Algorithm. Communications
of the Association Computing Machinery, 13(2):94–102, 1970.

[FF93] William M. Fisher and Jonathan G. Fiscus. Better Alignment Pro-
cedures for Speech Recognition Evaluation. In Proc. ICASSP, pages
59–62, Minneapolis, Minnesota, 1993.

[Goo53] I.J. Good. The Population Frequencies of Species and the Estimation
of Population Parameters. Biometrika, 40:237–264, 1953.

[GZ92] D. Goddeau and V. Zue. Integrating probabilistic LR parsing into
speech understanding systems. In Proceedings ICASSP-92, San Fran-
cisco, California, March 1992.

[Het04] Lee Hetherington. The MIT Finite-State Transducer Toolkit for Speech
and Language Processing. In Proc. ICSLP, Jeju Island, Korea, October
2004.

[HH00] M.E. Hennecke and G. Hanrieder. Easy Configuration of Natural Lan-
guage Understanding Systems. In Proceedings of Voice Operated Tele-
com Services, Do they have a bright future?, 2000.

[HJM+94] M.P. Harper, L.H. Jamieson, C.D. Mitchell, G. Ying, and et al. Inte-
grating language models with speech recognition. In Proceedings of the
AAAI-94 Workshop on the Integration of Natural Language and Speech
Processing, Seattle, Washington, July 1994.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

[HW01] K. Hacioglu and W. Ward. A Word Graph Interface for a Flexible
Concept Based Speech Understanding Framework. In Proc. Eurospeech,
Aalborg, Denmark, September 2001.

[HY05] Y. He and S. Young. Semantic Processing using the Hidden Vector
State Model. Computer Speech and Language, 19(1):85–106, 2005.

[Jel76] F. Jelinek. Continuous Speech Recognition by Statistical Methods. Pro-
ceedings of the IEEE, 64(4):532–556, 1976.

[JKO01] N. Jevtic, A. Klautau, and A. Orlitsky. Estimated rank pruning and
Java-based speech recognition. In Proceedings ASRU, Madonna di
Campiglio, Italy, December 2001.

115

BIBLIOGRAPHY

[JM99] V.M. Jiminéz and A. Marzal. Computing the K Shortest Paths: A New
Algorithm and an Experimental Comparison. In J.S. Vitter and C.D.
Zaroliagis, editors, Algorithm Engineering, 3rd International Workshop,
WAE ’99, London, UK, July 19-21, 1999, volume 1668 of Lecture Notes
in Computer Science, pages 15–29. Springer, 1999.

[JWT+95] D. Jurafsky, C. Wooters, G. Tajchman, J. Segal, A. Stolcke, E. Fos-
ler, and N. Morgan. Using a Stochastic Context-Free Grammar as a
Language Model for Speech Recognition. In Proceedings ICASSP-95,
Detroit, Michigan, May 1995.

[Kat87] Slava M. Katz. Estimation of Probabilities from Sparse Data for the
Language Model Component of a Speech Recognizer. IEEE Transac-
tions on Acoustics, Speech and Signal Processing, 35(3):400–401, March
1987.

[KN04] Stephan Kanthak and Hermann Ney. FSA: An Efficient and Flexible
C++ Toolkit for Finite State Automata Using On-Demand Computa-
tion. In ACL, pages 510–517, 2004.

[KNRM02] Stephan Kanthak, Hermann Ney, Michael Riley, and Mehryar Mohri. A
Comparison of Two LVR Search Optimization Techniques. In Proceed-
ings of the 7th International Conference on Spoken Language Processing,
Denver, Colorado, USA, September 2002. ISCA.

[KTK89] K. Kita and H. Saito T. Kawabata. HMM Continuous Speech Recog-
nition Using Predictive LR Parsing. In Proc. ICASSP, pages 703–706,
Glasgow, Scottland, 1989.

[LFRT04] Robert Lieb, Tibor Fabian, Günther Ruske, and Matthias Thomae. Es-
timation of Semantic Confidences on Lattice Hierarchies. In Proceedings
of the 8th International Conference on Spoken Language Processing (IC-
SLP 2004), pages 569–572, Jeju Island, Korea, October 2004.

[Low76] B.T. Lowerre. The HARPY Speech Recognition System. PhD thesis,
Carnegie-Mellon University, Department of Computer Science, Pitts-
burgh, 1976.

[LTR+05] Robert Lieb, Matthias Thomae, Günther Ruske, Daniel Bobbert, and
Frank Althoff. A Flexible and Integrated Interface between Speech
Recognition, Speech Interpretation and Dialog Management. In Pro-
ceedings of the 9th European Conference on Speech Communication and
Technology (Eurospeech 2005), Lisbon, Portugal, September 2005.

[LY90] K. Lari and S.J. Young. The Estimation of Stochastic Context-Free
Grammars Using the Inside-Outside Algorithm. Computer Speech and
Language, 4:35–56, 1990.

[MB95] S. Miller and M. Bates. Recent progress in hidden understanding mod-
els. In Proceedings of the ARPA Spoken Language Systems Technology

116

BIBLIOGRAPHY

Workshop, pages 22–25, Austin, Texas, 1995. Morgan Kaufmann Pub-
lishers, Palo Altos, California.

[MKSW99] J. Makhoul, F. Kubala, R. Schartz, and R. Weischedel. Performance
Measures for Information Extraction. In DARPA Broadcast News Work-
shop, Herndon, Virginia, February 1999.

[Moh97] Mehryar Mohri. Finite-State Transducers in Language and Speech Pro-
cessing. Computational Linguistics, 23(2), 1997.

[Moh02] Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-
normalization Algorithms for Weighted Transducers. International
Journal of Foundations of Computer Science, 13(1):129–143, 2002.

[MPM89] R. Moore, F. Pereira, and H. Murvit. Integrating Speech and Natu-
ral Language Processing. In Proceedings Speech and Natural Language
Workshop, pages 243–247, Philadelphia, Pennsylvania, February 1989.
Morgan Kaufmann Publishers, Inc., San Mateo, California.

[MPR98] M. Mohri, F. Pereira, and M.D. Riley. A Rational Design for a Weighted
Finite-State Transducer Library. In Derick Wood and Sheng Yu, edi-
tors, Automata Implementation, Second International Workshop on Im-
plementing Automata, WIA ’97, London, Ontario, Canada, September
18-20, 1997, volume 1436 of Lecture Notes in Computer Science, pages
144–158, London, Ontario, Canada, 1998. Springer.

[MPR02] M. Mohri, F. Pereira, and M.D. Riley. Weighted Finite-State Transduc-
ers in Speech Recognition. Computer Speech and Language, 16(1):69–88,
2002.

[MR01] Mehryar Mohri and Michael Riley. A Weight Pushing Algorithm for
Large Vocabulary Speech Recognition. In Proc. Eurospeech, Aalborg,
Denmark, September 2001.

[NA94] H. Ney and X. Aubert. A Word Graph Algorithm for Large Vocabu-
lary, Continuous Speech Recognition. In Proceedings ICSLP, Yokohama,
Japan, September 1994.

[Ney91] H. Ney. Dynamic programming parsing for Context-Free grammars in
Continous speech recognition. IEEE Transactions on Signal Processing,
39(2):336–340, 1991.

[Nua01] Nuance Communications, Menlo Park, California. Nuance Speech Recog-
nition System, Version 7.0, Grammar Developer’s Guide, 2001.

[ON93] M. Oerder and H. Ney. Word Graphs: An Efficient Interface Between
Continuous Speech Recognition and Language Understanding. In Pro-
ceedings ICASSP-93, Minneapolis, Minnesota, April 1993.

[Ort98] S. Ortmanns. Effiziente Suchverfahren zur Erkennung kontinuierlich
gesprochener Sprache. PhD thesis, RWTH Aachen, Lehrstuhl für Infor-
matik VI, Aachen, Germany, 1998.

117

BIBLIOGRAPHY

[pho04] Pronunciation Lexicon PHONOLEX. Bavarian Archive for Speech Sig-
nals, June 2004. Version 3.11.

[PR97] F. Pereira and M. Riley. Speech recognition by composition of weighted
finite automata. In Emmanuel Roche and Yves Schabes, editors,
Finite-State Language Processing, Cambridge, Massachusetts, 1997.
MIT Press.

[PT92] R. Pieraccini and E. Tzoukermann. Progress report on the chronus
system: ATIS benchmark results. In Proceedings of the DARPA Speech
and Natural Language Workshop. Morgan Kaufmann Publishers, Los
Altos, California, 1992.

[Rab89] L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. Proceedings of the IEEE, 77 2:257–285,
1989.

[Rin95] E.K. Ringger. A Robust Loose Coupling for Speech Recognition and
Natural Language Understanding. Technical Report 592, University of
Rochester, Computer Science Department, September 1995.

[RPM97] M. Riley, F. Pereira, and M. Mohri. Transducer composition for context-
dependent network expansion. In Proceedings of the 5th European Con-
ference on Speech Communication and Technology, pages 1427–1430,
Rhodes, Greece, September 1997.

[Rus94] G. Ruske. Automatische Spracherkennung: Methoden der Klassifikation
und Merkmalsextraktion. Oldenbourg-Verlag, München, Germany, 2nd,
extended edition, 1994.

[Sen92] S. Seneff. TINA: a natural language system for spoken language appli-
cations. Computational Linguistics, 18(1), 1992.

[SGY05] J. Schatzmann, K. Georgila, and S. Young. Quantitative Evaluation of
User Simulation Techniques for Spoken Dialogue Systems. In 6th SIG-
dial Workshop on Discourse and Dialogue, Lisbon, Portugal, September
2005.

[SK83] D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison.
Addison Wesley, 1983.

[SO99] A. Sixtus and S. Ortmanns. High quality word graphs using forward-
backward pruning. In Proceedings ICASSP-99, Phoenix, Arizona, March
1999.

[Spr03] R. Sproat. Lextools: a toolkit for finite-state linguistic analysis. Tech-
nical report, 2003.

[Sta97] H. Stahl. Konsistente Integration stochastischer Wissensquellen zur se-
mantischen Decodierung gesprochener Äußerungen. PhD thesis, TU

118

BIBLIOGRAPHY

München, Fakultät für Elektrotechnik und Informationstechnik, Mu-
nich, Germany, 1997.

[STN94] V. Steinbiss, B.H. Tran, and H. Ney. Improvements in Beam Search.
In Proceedings ICSLP, pages 2143–2146, Yokohama, Japan, September
1994.

[Sto02] Andreas Stolcke. SRILM - An Extensible Language Modeling Toolkit.
In Proceedings of the 7th International Conference on Spoken Language
Processing, Denver, Colorado, USA, September 2002. ISCA.

[SZ97] D. Shasha and K. Zhang. Approximate Tree Pattern Matching. In
A. Apostolico and Z. Galil, editors, Pattern Matching Algorithms, chap-
ter 14. Oxford University Press, 1997.

[TFLR03] Matthias Thomae, Tibor Fabian, Robert Lieb, and Günther Ruske.
Tree Matching for Evaluation of Speech Interpretation Systems. In Pro-
ceedings of the IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU 2003), pages 477–482, St. Thomas, U.S. Virgin Is-
lands, November 2003.

[TFLR05] Matthias Thomae, Tibor Fabian, Robert Lieb, and Günther Ruske. Lex-
ical Out-of-Vocabulary Models for One-Stage Speech Interpretation. In
Proceedings of the 9th European Conference on Speech Communication
and Technology (Eurospeech 2005), Lisbon, Portugal, September 2005.

[Tho06] M. Thomae. Hierarchical Language Modeling for One-Stage Stochastic
Interpretation of Natural Speech. PhD thesis, TU München, Fakultät
für Elektrotechnik und Informationstechnik, Munich, Germany, 2006.

[W3C04] W3C Voice Browser Working Group. Speech Recognition Grammar
Specification. 2004.

[WAC03] Y. Wang, A. Acero, and C. Chelba. Is Word Error Rate a Good Indi-
cator for Spoken Language Understanding Accuracy. In Proceedings of
the IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU 2003), St. Thomas, U.S. Virgin Islands, November 2003.

[Wah00] W. Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech
Translation. Springer, Berlin, Germany, 2000.

[WDA05] Y. Wang, L. Deng, and A. Acero. Spoken Language Understanding.
IEEE Signal Processing Magazine, 22(5):16–31, 2005.

[WFS97] S. Wachsmuth, G.A. Fink, and G. Sagerer. Integration of parsing and
incremental speech recognition. In Proceedings of the 5th European
Conference on Speech Communication and Technology, pages 371–375,
Rhodes, Greece, September 1997.

[Wil00] Daniel Willett. Beiträge zur statistischen Modellierung und effizien-
ten Dekodierung in der automatischen Spracherkennung. PhD thesis,
Gerhard-Mercator-Universität, Duisburg, Germany, 2000.

119

BIBLIOGRAPHY

[Woo70] W.A. Woods. Transition Network Grammars for Natural Language
Analysis. Communications of the Association Computing Machinery,
13(10):591–606, 1970.

[WSMN01] F. Wessel, R. Schlüter, K. Macherey, and H. Ney. Confidence Measures
for Large Vocabulary Continuous Speech Recognition. IEEE Transac-
tions on Speech and Audio Processing, 9(3), 2001.

[YEK+02] Steve Young, Gunnar Evermann, Dan Kershaw, Gareth Moore, Julian
Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil Wood-
land. The HTK Book (for HTK Version 3.2). Cambridge University
Engineering Department, 2002.

[YRT89] S.J. Young, N.H. Russell, and J.H.S. Thornton. Token Passing: A Sim-
ple Conceptual Model for Connected Speech Recognition Systems. Tech-
nical Report CUED/F–INFENG/TR.38, Cambridge University Engi-
neering Department, July 1989.

[YWS+05] S.J. Young, J. Williams, J. Schatzmann, M. Stuttle, and K. Weilham-
mer. The Hidden Information State Approach to Dialogue Manage-
ment. Technical Report CUED/F–INFENG/TR.544, Cambridge Uni-
versity Engineering Department, October 2005.

120

	Abstract
	Zusammenfassung
	Danksagungen
	Introduction
	Spoken language understanding
	Speech recognition
	Natural language understanding
	Coupling speech recognition and interpretation

	Issue of robustness
	Thesis contribution

	Word-based speech recognition
	Decoding problem for speech recognition
	Acoustic modeling by Hidden Markov Models
	HMM parameter estimation
	Isolated word recognition
	Continuous speech recognition
	Language model
	Integrated search network
	Time-synchronous Viterbi decoding
	Backtracking
	Representation of probabilities

	Sub-word modeling
	Phonemes as sub-word units
	Context-dependent phoneme models

	Modeling approach for one-stage speech interpretation
	Representation and processing of formal languages
	Context-free and regular grammars
	Finite-state automata and regular expressions
	Parsing algorithms
	Recursive transition networks
	Stochastic weights

	Generalizing vs. application-specific semantics
	Feature grammars and first order logic
	Semantic grammars and slot-value pairs

	One-stage speech interpretation
	Tight coupling approach
	Weighted transition network hierarchy (WTNH)
	Creation of the hierarchical language model (HLM)

	Integration of speech recognition and interpretation
	Static search space organization
	Introduction to WFST-based speech recognition
	Efficient integration of knowledge sources in LVSR
	Definition of WFSTs
	Automaton representation of knowledge sources
	Composition and Determinization
	Problem of ``determinizability''
	On-demand computation of local automata operations

	WFST-based integration of recognition and parsing
	Weighted finite-state acceptor representing the HLM
	Lexicon transducer
	Acoustic model transducer
	Triphone context-dependency transducer

	Viterbi decoding of best-matching parse tree
	Token passing in on-demand created search space
	Estimated rank pruning of improbable tokens

	Performance comparison of decoder implementations

	Grammatical alternatives and semantic confidences
	Word lattices
	Flat lattice and lattice hierarchy representation
	N-best token-passing for flat lattice generation
	Construction of lattice hierarchy on flat lattice
	Determination of the N-best parse trees

	Estimation of semantic confidences
	Word-based confidence measures
	Estimation of parse tree node confidences
	Confidence-based pruning of flat lattice
	Slot- and Value confidences

	Evaluation methods and experimental results
	Off-line evaluation methods
	Word-based evaluation
	Tree-based evaluation
	Performance of information extraction
	Evaluation of confidence estimation

	Airport information corpus
	Data collection
	Experimental setup

	Experimental results
	Evaluation of parse tree node confidences
	Comparison with explicit out-of-vocabulary model

	Conclusion
	Bibliography

