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Zusammenfassung
Die vorliegende Arbeit befasst sich mit dem Problem der dreidimensionalen
Wahrnehmung von mobilen Robotern, wobei die Wahrnehmung aus drei
wichtigen Aufgabenbereichen besteht, nämlich der Datenaufnahme, der kon-
sistenten und effizienten Datenrepräsentation, sowie dem Hinzufügen von
semantischer Information durch Klassifikation der vorhandenen Objekte. Für
all diese drei Aufgabenbereiche werden neuartige Herangehensweisen be-
reitgestellt.

Zur Datenaufnahme stellen wir ein Robotersystem vor, welches aus einem
Manipulatormit vier Freiheitsgraden besteht, auf dem ein Laser-Entfernungs-
Sensor befestigt ist. Dieses System ist in der Lage, ein Objekt, das innerhalb
der Reichweite des Manipulators ist, adaptiv in 3D zu erfassen. Die Wege,
die der Laser-Sensor dabei abfährt, werden selbstständig geplant, indem der
erwartete Informationsgewinn entlang möglicher kollisionsfreier Wege maxi-
miert wird. Auf dieseWeisewird die Anzahl der Datenerfassungenminimiert
und die Sensorwege werden dem Objekt angepasst.

Für den zweiten Aufgabenbereich werden Methoden zur kompakten und
konsistenten Repräsentation von dreidimensionalen Daten vorgeschlagen. In
einem ersten Schritt entwickeln wir einen probabilistischen Algorithmus zur
Erkennung von planaren Strukturen in dreidimensoinalen Entfernungsdaten,
welcher auf einemhierarchischenBayesschenNetz basiert unddasPrinzipder
Erwartungswertmaximierung (engl: ExpectationMaximization, kurz: EM) an-
wendetumdieLagederEbenenzu schätzen. Diedabei erreichtenVerbesserun-
gen gegenüber bisherigenAnsätzen beruhen auf demEinbeziehen vonHaupt-
richtungen in den Prozess der Ebenenschätzung. Dabei werden Ebenen gleich-
zeitig so zu Teilmengen zusammengefasst, dass diese entweder parallel zu-
einander sind oder sich in einem bestimmten Winkel schneiden. Dadurch
können kleinere Fehler beim Übereinstimmen korrigiert werden. Deswei-
teren wird die Verwendung von Texturinformation zur Verbesserung der
Ebenenberechnung eingeführt. Im zweiten Schritt dieses Aufgabenbereiches
formulieren wir eine neue probabilistische Datenstruktur, die besonders zur
Bewegungsplanung und zur Navigation in Umgebungenmit mehreren Ober-
flächen auf verschiedenen Höhenniveaus geeignet ist. Diese Datenrepräsen-
tation bezeichnen wir als Mehrstufige Oberflächenkarte (engl: Multi-level
Surface Map, kurz: MLS map). Sie stellt eine Erweiterung der sogenannten
Erhebungskarten (engl.: elevation maps) dar. Der Vorteil von mehrstufi-
gen Oberflächenkarten gegenüber den bisherigen Erhebungskarten ist die
Fähigkeit, überhängende Objekte wie zum Beispiel Bäume, sowie mehrere
übereinander liegende Ebenen wie beispielsweise bei Brücken, darzustellen.
Auf diese Weise ist der Roboter in der Lage Wege zu planen, die unter einer
Brücke hindurch und gleichzeitig über sie hinweg verlaufen. Schließlich, im
dritten und letzten Schritt, schlagen wir einen Algorithmus vor, der global
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konsistente Kartendarstellungen aus lokalen 3D Ansichten berechnet, indem
die Roboterpositionen in sechs Freiheitsgraden mit Hilefe von Einschränkun-
gen optimiert werden (engl: constraint optimization). Hierbei können die
lokalen Ansichten sowohl in Form vonMLS-Karten, als auch von anderen 3D
Darstellungen wie beispielsweise Punktwolken vorliegen. Die Verbesserung,
die durchdie vorgestellte Registrierungsmethode erreichtwird, beruht auf der
Hinzunahme von globalen Einschränkungen an die Roboterpositionen, zusät-
zlich zuden lokalenEinschränkungen, die durchpaarweisesZusammenfügen
von zeitlich aufeinander folgenden lokalen Ansichten (engl.: scan matching)
entwickelt werden. Eine solche globale Einschränkung wird hergeleitet aus
Merkmalen in Form von Geradenstücken, die in verschiedenen lokalen An-
sichten vorkommenund einer gemeinsamenEbene zugeordnet sind. Die Lage
dieser Ebenen wird iterativ und zugleich mit der Berechnung der Roboterpo-
sitionen geschätzt. Das Ergebnis ist, dass der Registrierungsalgorithmus mit
weniger benötigten lokalen Ansichten zurechtkommt, die sich gegenseitig
zu geringeren Anteilen überlappen können. Außerdem wird kein Schleifen-
schließen (engl: loop closing) benötigt, um den angesammelten Positionie-
rungsfehler zu korrigieren.

Im dritten und letzten Aufgabenbereich stellen wir einen neuartigen
Ansatz zurKlassifikation von dreidimensionalenObjekten in eine vordefinierte
Menge von Klassen bereit. Der Ansatz wird im Kontext des überwachten Ler-
nens formuliert, bei dem zunächst eine Anzahl von Parametern im sogenan-
nten Lernschritt berechnet wird. Diese werden später im Inferenzschritt ver-
wendet, umdieObjektklassifikation durchzuführen. Die Grundidee des Klas-
sifizierungsalgorithmus entspricht dem der kollektiven Klassifikation, bei der
die Entscheidung über die Klassifizierung eines jeden Datenpunktes sowohl
von der lokalen Evidenz abhängt, dass dieser Datenpunkt zu einer bestimm-
ten Klasse gehört, als auch von der Klassifizierung der benachbarten Daten-
punkte. Dabei werden die statistischenAbhängigkeiten der Klassifizierungen
benachbarter Datenpunkte modelliert. Zur Beschreibung der A-Posteriori-
Verteilung der Klassenzuweisungen für eine gegebene Menge von Merk-
malsvektoren benutzen wir Assoziative Markov-Netze (engl.: Associative
Markov Networks, kurz: AMNs), die bereits zuvor erfolgreich eingesetzt
wurden, um 3D Objekte in Punktwolken zu klassifizieren. Wir erweitern
den AMN-Ansatz in zwei Aspekten. Einerseits entwickeln wir eine Technik
zur adaptiven Reduktion des Trainingsdatensatzes mit Hilfe von kd-Bäumen,
die in geeigneter Form beschnitten werden. Dadurch wird der Lernschritt
beschleunigt, ohne die Qualität der Klassifizierung zumindern. Zum anderen
kombinieren wir den AMN-Klassifikator mit einer instanzbasierten Nächste-
Nachbarn-Methode. Die Idee hierbei ist, die Merkmale so zu transformieren,
dass sie einfacher durch Hyperebenen trennbar sind, was eine der Bedingun-
gen für die Benutzung von AMNs darstellt. Dadurch wird die Klassifikation
verbessert im Vergleich zum Standard AMN-Ansatz.
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Schließlich stellenwir zweiAnwendungen fürdenvorgeschlagenenAnsatz
der 3D Wahrnehmung vor. Die erste Anwendung ist die Erstellung von
sehr großen, konsistenten MLS-Karten von Außenbereichen mit Hilfe eines
Roboterautos. Das Auto ist ausgestattet mit verschiedenen Sensoren zum
Lokalisieren und Kartenerstellen, wie z.B. einem GPS Empfänger, einem
Trägheitssensor, einemoptischenGyroskopund einem3DLaser-Entfernungs-
Sensor. Wir zeigen, dass trotz des sehr genauen Lokalisierungsmoduls des
Systems, basierend auf einem Informationsfilter, der hier vorgestellte globale
Registrierungsalgorithmus notwendig ist, um die Positionen des Fahrzeugs
zu korrigieren. Die zweite Anwendung beschäftigt sich mit dem Problem
der Okklusionen in 3D Entfernungsdaten. Hierzu wenden wir zunächst un-
sere Objekterkennungsmethode an, um die vorhandenen Objekte zu klassi-
fizieren. Objekte, die wegen Okklusionen vom Sensor nur teilweise erfasst
wurden, werden trotzdem richtig klassifiziert, solange ihr sichtbarer Anteil
großgenug ist. Dann werden alle Instanzen eines Objekttyps zusammenge-
fügt zu einem Prototypen. Dieser Prototyp enthält dann die Forminformation
von allen Klasseninstanzen und stellt daher eine genauere Beschreibung der
einzelnen Objekte dar. Insbesondere kann der verdeckte Teil eines Objektes
vervollständigt werden, indem das Objekt duch den Prototypen ersetzt wird.
Wir zeigen das am Beispiel eines verdeckten Fensters, bei dem die Okklusion
während des Prozesses der Datenaufnahme durch einen Baum hervorgerufen
wurde.
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Abstract
This thesis addresses the problem of three-dimensional perception for mobile
robots, where perception comprises three major tasks, namely data acquisi-
tion, consistent and efficient representation, and addition of semantic informa-
tion by classification of the encountered objects. For all three of these subtasks
we provide novel approaches.

For the data acquisition we present a robotic system consisting of a 4 DOF
manipulator that carries a laser range finder. This system is able to adaptively
scan an object that is positionedwithin the range of themanipulator. The paths
that are followed with the scanner are planned automatically by maximizing
the expected information gain along possible collision-free scan paths. This
way, the number of scans isminimized and the paths are adapted to the object.

For the second task we propose methods for a compact and consistent repre-
sentation of three-dimensional data. In a first step, we develop a probabilistic
algorithm that detects planar structures in 3D range scans, which is based on
a hierarchical Bayes net and uses expectation maximization (EM) to estimate
the positions of the planes. The improvements over existing approaches are
achieved by incorporating main directions into the plane estimation process.
Thisway, planes are simultaneously clustered so that they are either parallel or
intersecting in a certain angle and smaller alignment errors can be corrected.
Furthermore, the use of texture information is introduced as an improvement
of the plane estimation. In the second step, we formulate a new probabilistic
representation that is particularly suited for motion planning and navigation
in environments with several surfaces at different height levels. This repre-
sentation is called multi-level surface maps (MLS maps) and constitutes an
extension of the framework of elevation maps. The advantage of MLS maps
over standard elevation maps is the ability to represent overhanging objects
such as trees and multiple surface levels as in the case of bridges. This way
the robot is able to plan paths which pass under a bridge and cross over it at
the same time. Finally, in the third and last step, we propose an algorithm that
computes globally consistent map representations from local 3D views by us-
ing a constraint optimization of the robot poses in 6 degrees of freedom. Here,
the local views can be given as MLS maps or other 3D data representations
such as point clouds. The improvement achieved by the presented registration
method is based on the introduction of global constraints in addition to the
local constraints that are imposed by pairwise scan matching of consecutive
views. A global constraint is derived from line features in different scans that
correspond to a common plane. The position of these planes is estimated
iteratively during the computation of the robot poses. As a result, the reg-
istration algorithm can deal with less local views that overlap each other in
smaller portions. Also, no loop closing is required to correct for accumulated
positioning errors.
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In the third and last task we provide a novel approach to classify three-
dimensional objects into a predefined set of classes. The approach is formu-
lated in the context of supervised learning, where a set of parameters is first
computed in the learning step and later used to perform the object classification
in the inference step. The main idea of the classification algorithm is taken from
the framework of collective classification, where the labeling of each data point
is decided upon the local evidence that this point belongs to a certain class as
well as the labeling of the neighboring data points. This provides a method
to model the statistical dependence of class labels of nearby data points. To
describe the posterior distribution of the class labels for a given set of feature
vectors, we use associative Markov networks (AMNs), which have been suc-
cessfully used before to classify 3D objects in point cloud data. We extend
the AMN approach in two ways. First, we provide a technique for adaptively
reducing the training data set, which is based on kd-trees, that are pruned ap-
propriately. This results in a faster learning step without reducing the quality
of the classification results. Second, we combine the AMN classifier with an
instance-based nearest-neighbor method. The idea here is to transform the
features so that they are more easily separable by hyperplanes, which is one
requirement for the use of AMNs. As a result, the classification improves over
the standard AMN approach.

Finally, we present two applications of the proposed 3D perception ap-
proach. The first application is the computation of a large-scale consistent
MLSmap of outdoor environments by use of a robotic car. The car is equipped
with several sensors for localization and mapping, such as a GPS receiver, an
inertial measurement unit, an optical gyroscope, and a 3D laser range finder.
We show that, although the system includes a very accurate localization mod-
ule based on an information filter, the global registration algorithm is needed
for the correction of the vehicle poses. The second application addresses the
problem of occlusions in 3D range scan data. Here, we first apply our object
recognition technique to classify several objects in a range scan. Objects that
are only partially visible due to occlusions in the input data, are still classified
correctly, as long as their visible part is large enough. Then, all instances of
one object class are matched to one object prototype using scanmatching. The
resulting prototype contains the shape information from all class instances
and therefore provides a more accurate description of the objects. In particu-
lar, the occluded part of an object instance can be completed by replacing the
occluded object with the prototype. As an example, we show the completion
of an occluded window, where the occlusion was caused by a tree during the
data acquisition process.
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There are things known and there are things unknown, and
in between are the doors of perception

Aldous Huxley (1894-1963) 1
Introduction

During the last two decades, the use of mobile robots has gained substantially increasing
attraction. Nowadays, mobile robots are used more and more in real world applications.
Examples include the automated loading and unloading of goods in harbors, inspection
of pipelines that are dangerous or difficult to reach, or cleaning tasks in large-scale envi-
ronments such as airports. In order to perform these tasks reliably, a robot first needs to be
able to sense its environment accurately. To this end, many different kinds of sensors are
available, such as ultrasound sensors, CCD cameras, laser range finders, GPS receivers,
inertial measurement units, or odometers. The data that is acquired from these sensors
needs to be processed by the robot to perform appropriate actions. In principle, there
are two possible ways to choose these actions. The first one is a direct response to the
input data, where in the simplest case a table is stored that maps a certain data input to a
corresponding action. This is called the reactivemodel. The secondmethod is to maintain
a representation of the environment and to decide upon an action by using the current
sensor input and the knowledge taken from the stored representation. This is called the
model-based approach. In general, robots that use a model of the environment to decide on
their actions are more reliable and effective than reactive robots. For example, a cleaning
robot that is provided with a map of the area to be cleaned can plan the most effective
path so that the entire area is cleaned equally well, whereas a reactive cleaning robot that
simply turns whenever it hits an obstacle might not reach some areas to be cleaned in
a long time. However, when using models of the environment, three major questions
arise. First: how can we store the highest amount of needed information with the lowest
amount of memory? Second: how can we deal with erroneous measurements from the
sensors when using the sensor input to create environment models? And finally: what
type of information should be stored in an environment model?
The first question deals with the problem of a compact representation of the environ-
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2 CHAPTER 1. INTRODUCTION

ment that still contains the information needed for specific tasks such as navigation. Most
existing robot systems use two-dimensional map representations for this purpose. These
2D maps have the advantage that they require a comparably small amount of memory
while still providing a good approximation of the real world, especially in indoor en-
vironments. However, in many cases they fail to reflect the three-dimensional world
accurately enough to perform important tasks such as obstacle avoidance. Therefore, in
this work, we will address the problem of three-dimensional representations.

The second question addresses the problem of sensor noise and sensor imperfections
such as spurious measurements. These errors can lead to imprecise mappings of the
environment and – even worse – they can accumulate during the time of the mapping
process, which often makes the resulting environment map useless. In this thesis, we will
address this problem particularly for the case of 3D maps by providing a probabilistic
mapping technique than can deal with sensor noise and yields globally consistent maps.

The last question tries to clarify what kind of information is needed for a given task of
a robot. Many different approaches have been proposed for particular applications and
there is so far no technique that seems to be appropriate in all cases. Most of the existing
mapping approaches can be divided into one of two major categories: metric maps and
topological maps. A metric map tries to represent the geometry of the environment as
accurate as possible, whereas a topological map only contains semantic information such
as the type of places in the world and how they are connected to each other. In this work,
we will mainly deal with metric maps, because they are more useful for navigation tasks
that require a high precision. However, we will also consider to enrich these metric maps
with semantic information. This information will consist in annotations that are added
to the map representation and express the type of objects that are encountered in the
map. With such an annotated map, the robot can better reason about its environment and
the interaction between robots and humans becomes easier. For example, a robot that
operates in a home environment may detect different kinds of objects in different rooms
and use this information to conclude where the kitchen, the bathroom or the living room
is. A human user might then be able to communicate with the robot on a higher level by
giving it commands like ’go to the kitchen’, instead of having to show the robot where the
kitchen is. In this work, wewill not consider the problem of how this high-level reasoning
about the environment can be done. Instead, we focus on the task of annotating the map
with class labels such as ’chair’, ’table’, etc. Wewill formulate this in a supervised learning
framework, i.e. all objects that might potentially be recognized need to be shown to the
robot beforehand. By extracting features from the 3D input data and using an algorithm
that maps features to class labels, the robot is enabled to learn the shape of the objects.

For the scope of this work, we subsume all these three mentioned questions under
the notion of perception. By perception we mean a mapping from sensor inputs to a map
representation that is efficient, consistent and incorporates semantic information. For the
implementation of the perception task, we will split it into three steps: data acquisition,
efficient (and consistent) representation and scene analysis, where the latter is a more
general notion for the task of adding semantic information. These three steps will be
described more detailed in the following.
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Figure 1.1: The individual steps of 3D perception. The sensor that is mainly used in the 3D data
acquisition step is the laser range finder. However, we will also consider camera data and position

sensors such as GPS, IMU etc.

1.1 The Individual Steps of 3D Perception

As mentioned above, this thesis presents a contribution to accomplishing the perception
task for mobile robots where the sensor input consists mainly of three-dimensional (3D)
laser range measurements. In some cases we will also consider texture information
obtained from a CCD camera, and for outdoor applications we will use positioning
sensors such as a GPS receiver or an inertial measurement unit (IMU). These positioning
sensors will be needed to acquire consistent 3D range data from a moving vehicle. All
these sensor inputs are used for the first out of three steps in the perception process,
which is the data acquisition process. The other two steps are efficient representation and
scene analysis. Figure 1.1 shows a graphical description of all three steps. In the following,
we will further describe the efficient representation and the scene analysis, because they
are particularly addressed in this thesis.

Efficient Representation

In this step, the goal is to extract the information that is needed for the robot to accomplish
certain tasks and to reduce the amount of data acquired in the first step. The kind of
information that is extracted here depends strongly on the goal tasks of the robot. In
our case of a mobile robot, we will consider the navigation task, which includes path
planning and localization. The particular way this navigation task is accomplished is out
of the scope of this thesis. Instead, we will consider it as a design goal for an efficient data
representation in the second step of 3D perception. Two major aspects will be relevant in
this second step: consistency and efficiency. Here, consistency means that the reduced data
set obtained from the input data should be as close as possible to the real environment
in which the data was acquired. As an example, this includes the reduction of alignment
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errors between individual local views of the environment aswell as a reliable estimation of
the sensor noise. By efficiencywemean that the acquired 3D input data should be reduced
as much as possible, while still retaining the necessary information. The efficiency aspect
is very important, because usually the amount of rawdata acquiredwith 3D range sensors
grows very large. In some sense there is a trade-off between efficiency and consistency,
because a very strong reduction of the input data tends to be a poor estimate of the real
environment and therefore gets inconsistent.

Scene Analysis

The third step in the 3D perception task adds semantic knowledge to the acquired data.
This part distinguishes the 3D perception from the mere mapping task, because it in-
troduces a cognitive aspect. It also brings the entire approach closer to what we usually
associate with human perception, because it utilizes previously acquired knowledge to
better understand and interpret the sensor input. As we will see, this knowledge can be
acquired from 3D training data where the scene analysis step has been performed by a
human beforehand. This is called supervised learning. There are two major reasons why
a robot needs a good scene analysis included in the perception task. First, it enables the
robot to further reduce the amount of data required to represent the environment, because
it provides a higher level of abstraction. Second, it facilitates the robot’s interaction with
humans, and thus enlarges the range of applicability of robotic systems. As an example,
consider an application where a robot explores an unknown environment and provides a
human user with an annotated 3D map. In this case, the human does not have to do the
map annotation himself and he can communicate with the robot on a higher level, e.g. by
giving it commands like “Show me the nearest room”.
In Fig. 1.1, we depict the scene analysis as a step that directly follows the data acquisi-

tion and not the map building step, as the step ordering would suggest. This reflects the
fact that the scene analysis, as it is presented in this thesis, is somehow independent of
the mapping process. The advantage of this is that no information needed for the scene
analysis can get lost because we operate on the raw and uncompressed data. Of course,
one could think of a consecutive ordering of the steps. However, it is unclear whether it is
better to do the scene analysis on the reduced map representation or to create a map from
the annotated raw data. In the first case we might not be able to extract some important
features from the reduced data for the scene analysis, in the second case the raw data
might be too large to perform the scene analysis efficiently. For the scope of this thesis,
we will focus on the formulation and analysis of efficient algorithms for both steps and
leave the problem of an appropriate combination as future work.

1.2 Structure of the Thesis

This thesis is organized as follows: In the remainder of this chapter we present the major
contributions made in this thesis and discuss the related work. Then, the thesis is divided
into four parts. Part I consists of chapters 2 and 3 and introduces the basic mathematical
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concepts that are used later in the thesis. In particular, these are 3Dgeometry formulations
(chapter 2) and probabilistic reasoning techniques (chapter 3).
Part II is dedicated to the first and second step in the perception task. In chapter 4 we

discuss and compare the state-of-the-art methods to represent 3D data. We also give an
example of a 3D scanning device that consists of a manipulator with 4 degrees of freedom
and is able to autonomously acquire 3D point cloud data from its environment. Chapter 5
gives an overview of existing approaches to efficiently represent 3D data by approxi-
mating it with planar structures. We also present a new method based on a hierarchical
expectation maximization (EM) algorithm to find planes in 3D point clouds. In chapter 6
we focus on data structures that are particularly useful for the planning and localization
task. Here, we develop a new approach that solves the trade-off between efficiency and
consistency mentioned above. In chapter 7 we further address the consistency issue for
the case that several local maps have to be joined into one global map. In this context, we
suggest an improved global map registration algorithm that uses knowledge about the
environment for a more robust alignment of the local maps.
In Part III we are concerned with the scene analysis task. Chapter 8 summarizes the

major approaches that have been presented in this context. Although these approaches
have been applied successfully in the past, for example AdaBoost for face detection in
camera images, they lack the ability to model the statistical dependence of data points
that are close to each other. Recent methods that can deal with this statistical dependence
are known as collective classification algorithms and are the subject of chapter 9. Here, we
will present two novel extensions to an approach based on associative Markov networks
(AMNs), which lead to a faster performance of the learning step and a more robust
classification result.
Finally, in part IV, we present two example applications of the techniques developed

throughout the thesis. In chapter 10 we describe a robotic system that consists of a car
equipped with positioning sensors, 3D laser range finders and projective and omnidirec-
tional cameras. The goal of the system is to autonomously drive through an off-road or
urban environment while creating consistent 3D maps. We describe in detail, how the
mapping task is performed and show that it is possible to do this in real-time while the
vehicle moves. In chapter 11 we present an application of the scene analysis algorithm
developed in chapter 9. We will show how the problem of recovering the shape of objects
that are partially occluded by other objects can be addressed. This is done using a robust
object classification and a clustering algorithm that uses the shape of similar objects in
the same scene to learn object prototypes. Chapter 12 concludes the thesis and discusses
future work.

1.3 Contributions of this Thesis

The work presented in this thesis is based on several publications in major conferences
and journals. In the following, we group these by subjects and name the corresponding
chapters in the thesis.
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• Assembly of a 3D scanning system with path planning and exploration capabilities
(see Chapter 4, especially Section 4.4.2)

R. Triebel, B. Frank, J. Meyer, and W. Burgard. First steps towards a robotic system for flexible
volumetric mapping of indoor environments. In M.I. Ribeiro and J. Santos-Victor, editors, 5th
IFAC/Euron Symposium on Intelligent Autonomous Vehicles, 2004.

• Plane extraction from 3D range scans (see Chapter 5)
R. Triebel, W. Burgard, and F. Dellaert. Using hierarchical EM to extract planes from 3d range scans.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

H. Andreasson, R. Triebel, and W. Burgard. Improving plane extraction from 3d data by fusing laser
data and vision. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2005.

• A compact and efficient 3D map representation for outdoor environments (see
Chapter 6)

R. Triebel, P. Pfaff, and W. Burgard. Multi level surface maps for outdoor terrain mapping and loop
closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation maps for outdoor terrain
mapping and loop closing. International Journal of Robotics Research, 26(2), 2007.
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1.4 Related Work

In the following, we name the most relevant publications that are related to the context of
this thesis. We will order them roughly by the topics of the major contributions that have
been mentioned in the previous section. Some of the references might be cited under two
or more of these topics, because they are relevant in different contexts.

1.4.1 3D Data Acquisition with Laser Range Finders

In the past, many different authors have presented systems that are able to acquire three
dimensional range data by using laser range finders. These systems usually rely on scan-
ning devices that acquire range measurements in a plane that intersects the environment.
By moving such a 2D scanner in a predefined way, 3D point clouds are obtained. For
example, Allen et al. [2001] use a laser range scanner to obtain realistic 3D models of
buildings. Pervölz et al. [2004] use a 2D laser scanner that pitches up and down to scan
indoor environments. Früh and Zakhor [2004] present a system to map cities in 3D using
two laser scanners mounted on a truck, one vertically and one horizontally. Thrun et al.
[2000] also use two laser range scanners. The first is oriented horizontally to the front
and the second points towards the ceiling. By registering the horizontal scans the system
generates accurate three-dimensional models. An application of this was presented by
Thrun et al. [2003a] to obtain 3D models of underground mines. The same setup with
two scanners has been used by Hähnel et al. [2003] in indoor and outdoor applications,
as well as a robotic system that is equipped with a pan/tilt unit that carries a laser scan-
ner. Montemerlo and Thrun [2004] also use a pan/tilt unit, but the scanner is mounted
vertically and sweeps from left to right and back to scan the environment. A different
approach presented by Kohlhepp et al. [2003] uses a laser scanner mounted on a mobile
robot, where the scanner points forward and rotates around the front axis. In a similar
way, a rotating 2D laser setup is chosen by Wulf et al. [2004], where the scanner rotates
around the vertical axis and is mounted either vertically or pointing upwards.
In addition to these approaches which are mainly used in the context of mobile

robotics, several authors have studied the problem of creating high-resolution models
of scientifically interesting objects. For example, in the Michelangelo project presented
by Levoy et al. [2000], historic statues were scanned with a high-resolution 3D scanning
system. Lyons et al. [2000] present a system to obtain 3D models of fossils with a scanner
resolution of 100µm. In these approaches the major focus lies on the question of data ac-
quisition and registration of the individual scans. Color information is typically mapped
onto the resulting models after creating the three-dimensional structures.
All these approaches for 3D data acquisition have in common that the number of

degrees of freedom in which the scanner is moved is at most two, and that the scanning
process is passive. In chapter 4, we will present a new method to actively acquire 3D
range data using a manipulator with four degrees of freedom. By active scanning we
mean that the motion of the scanner is planned according to the surface structure of the
objects to be scanned. This way, we obtain a more efficient scanning process.
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1.4.2 Plane Extraction

The problem of extracting planes from three dimensional range data has been addressed
by many authors in the last two decades. We will give an overview of the existing
approaches and a more detailed comparison later in chapter 5. At this point, we only
name the most recent and most relevant contributions. For example, Hähnel et al. [2003]
use a region growing technique to detect planes in 3D laser range scans. Kohlhepp
et al. [2003] apply a modified split-and-merge technique based on point features such as
curvature to obtain planar surface patches. Qiang et al. [2003] apply a combination of
region-growing and planar patch merging. A region-growing technique is also applied
byWeingarten and Siegwart [2005], however not directly on the data points, but on planar
patches which are detected using RANSAC on points in regular 3D grid cells.
Recently, someauthors haveusedanew framework that addresses theplane extraction

problem in a probabilistic way. The idea here is to model the uncertainty of the range
measurements and to find a set of planes that maximizes the likelihood of the observed
data using expectation maximization (EM). For example, Liu et al. [2001] use EM to find
planes from 3D range scans. Thrun et al. [2003b] propose an online version of the EM
based plane extraction that runs in real-time. Most recently, Lakaemper and Latecki
[2006] have presented an extended version of the EM based plane extraction by inserting
a split-and-merge step that operates on planar patches rather than on infinite planes.
The novel approach which we will present in chapter 5 also applies the concept of

probabilistic modeling and uses EM. However, it extends the EM algorithm by using a
hierarchical Bayes net and estimates also main directions in addition to the position of the
most likely planes. In a further extension, we also use color information at each data point
and incorporate an extended metric based on color information into the EM framework.

1.4.3 3D Data Representations

In the area of efficient representations for three dimensional range data, several different
approaches have been used in the literature, which we will briefly summarize here. In
chapter 4 we will provide a more detailed overview. One of the most popular 3D data
representations are point clouds or triangle meshes. They have been used amongst others
by Allen et al. [2001], Levoy et al. [2000], Pervölz et al. [2004], and Thrun et al. [2003b].
These representations are highly accurate and can easily be textured, but their disadvan-
tage lies in the huge memory requirement, which grows linearly in the number of scans
taken. An alternative is to use three-dimensional grids, as presented by Moravec [1996]
or tree-based representations such as octrees (see Samet [1989]) or kd-trees (see Bentley
[1975]). As wewill see, these approaches aremore efficient than point clouds with respect
to memory requirements, but they are still too memory intensive and – in the case of
the tree structures – can not be updated efficiently. Therefore, several researchers have
considered elevation maps as an attractive alternative to avoid the complexity of full 3D
maps. The key idea underlying elevation maps is to store the height information of the
terrain in a two-dimensional grid. For example, Bares et al. [1989] as well as Hebert et al.
[1989] use elevation maps to represent the environment of a legged robot. They extract
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points with high surface curvatures and match these features to align maps constructed
from consecutive range scans. Parra et al. [1999] represent the ground floor by elevation
maps and use stereo vision to detect and track objects on the floor. Singh and Kelly
[1996] extract elevation maps from laser range data and use these maps for navigating an
all-terrain vehicle. Ye and Borenstein [1994] propose an algorithm to acquire elevation
maps with a moving vehicle carrying a tilted laser range scanner. They propose special
filtering algorithms to eliminate measurement errors or noise resulting from the scanner
and the motions of the vehicle. Lacroix et al. [2002] extract elevation maps from stereo
images. Hygounenc et al. [2004] construct elevation maps with an autonomous blimp
using 3D stereo vision. They propose an algorithm to track landmarks and to match local
elevation maps using these landmarks. Olson [2000] describes a probabilistic localization
algorithm for a planetary rover that uses elevation maps for terrain modeling.
The major disadvantage of elevation maps is the fact that at each xy-position always

the highest z-value is stored. This causes problems in the presence of overhanging objects
such as trees or when vertical gaps need to represented, for example in the case of
bridges. The area under a bridge is represented as a huge obstacle which makes path
planning impossible. This problem has been addressed by Pfaff and Burgard [2005].
They use extended elevation maps, which identify map cells that contain vertical gaps and
thus enable path planning under bridges. In chapter 6, we will extend this approach
even further by introducing multi-level surface maps. These maps can represent several
height values at each xy-position and provide the possibility of planning a path passing
under bridges and crossing over them at the same time. In a way, this is comparable to
an approach by Wellington et al. [2005], where each 2D grid cell stores a vertical voxel
column. However, in contrast to that work, MLS maps are not restricted to a particular
ordering of the types of terrain in a voxel column. Furthermore the height values are not
discretized, which leads to a more accurate representation.

1.4.4 Global Registration and SLAM

Whenever 3D laser range scans at several different positions are given, the problem arises
how to combine these local views into a consistent global map. This is called registration.
The most common technique to do 3D scan registration between two local views is the
iterative closest point (ICP) algorithm by Besl and McKay [1992]. A similar approach
presented by Chen and Medioni [1991] minimizes the point-to-plane distance between
the views instead of the point-to-point distance. Another extension of ICP is presented
by Granger and Pennec [2002]. They formulate the problem as a general maximum-
likelihood estimation that also incorporates the sensor noise variance and use expectation
maximization (EM) for the registration. They show that in the case of Gaussian noise the
algorithm is equal to ICP. In addition, several authors have considered to register all local
views of a 3D object at once. For example, Pulli [1999] present a multi-view registration
algorithm based on constraints that are derived from pairwise view matches. Huber and
Hebert [2003] build up amodel graph of single views and perform the global registration on
a spanning tree of this graph. In a similarway, global registration of 3D range scans is done
by Stamos and Leordeanu [2003], where each scan is aligned to a common anchor scan and
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Dijkstra’s algorithm is used to find a transformation path. Nüchter et al. [2005] align a set
of 3D indoor range scans by applying pairwise standard ICP and use a region growing
technique to register overlapping neighbor scans. Furthermore, there has been some
work on incorporating color information during the registration, such as the color ICP
presented by Johnson and Kang [1997] or the extension using illuminance and gradient
information proposed by Weik [1997]. Both of these approaches estimate the registration
from camera images only. A combination of laser and vision information is used in the
work by Yoshida and Saito [2002] who use texture information around each scan point to
select corresponding points for the registration of two scans.

Closely related to the global registration of 3D scans is the problem of simultaneous
mapping and localization (SLAM). It has been studied intensively in the past, where the
individual approaches can be classified along multiple dimensions which include impor-
tant aspects like the type of the representation of the environment and the question of
how the posterior about the robot’s pose and the map is represented. Extended Kalman
Filter methods belong to the most popular approaches and different variants of this tech-
nique have been proposed by Dissanayake et al. [2001], Guivant et al. [2000], Leonard
and Feder [1999], Moutarlier and Chatila [1989], and Thrun et al. [2004]. The key idea of
these techniques is to simultaneously estimate the poses of landmarks using an Extended
Kalman Filter or a variant of the Extended Information Filter. An alternative approach is
to compute the most likely map based on a graph of spatial relations. Approaches that
use such spatial relations have been proposed by Frese [2004], Gutmann and Konolige
[1999], Konolige [2004], and Lu andMilios [1997]. The advantage of such methods is that
they do not require predefined landmarks. Rather they can cope with arbitrary represen-
tations by considering so-called constraints between the poses where observations of the
environment were perceived. However, most of these approaches rely on the assumption
that the environment can be represented by a two-dimensional structure. In contrast,
Davison et al. [2004] presented an approach to vision-based SLAM with a single camera
moving freely through the environment. This approach uses an extended Kalman Filter
to simultaneously update the pose of the camera and the 3D feature points extracted from
the camera images.

The global 3D scan registration method which we will present in chapter 7 differs in
two major aspects from the approaches mentioned here. First, it applies the graph-based
global pose estimation scheme known from the 2D case to the 3D registration problem.
Thus, it does not require any edge elimination method of the model graph, such as
spanning tree, Dijkstra or region growing and hence does not disregard any information.
Second, it distinguishes between local and global constraints between the particular robot
poses. A local constraint is imposed by two consecutive poses with overlapping range
scans and a global constraint is introduced whenever two or more local scans contain
features (in our case lines), that belong to a commonmodel (in our case planes). We show
that by using these global constraints the algorithm can cope with fewer scans that even
have a smaller overlap. Also, no loop closing is required to obtain a globally consistent
representation.
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1.4.5 3D Object Recognition and Scene Analysis

As mentioned in Section 1.1, the second major step in the perception process is the acqui-
sition of semantic knowledge about the environment. This can be performed in several
ways, for example by classifying the objects that are encountered in the environment or
by annotating the acquired data with more high-level information, e.g. by labeling rooms
andhallways. For the latter application, there has been an approach presented byBuschka
and Saffiotti [2002], in which rooms and hallways are detected in 2D occupancy maps by
using image processing algorithms. The aim of the work is to obtain topological maps of
the environment. In amore recent work byMartínezMozos and Burgard [2006], the same
problemhas been addressed using a supervised learning technique, which ismore flexible
and requires less human input at the design level. However, these approaches operate on
2D occupancy maps and not on 3D point clouds, which is the aim of this thesis. Instead,
we will focus on the 3D object recognition task, which can be considered as an important
first step towards a more elaborate scene analysis. In the context of oject recognition,
the approaches that have been presented previously mainly differ in the selection of the
features to be extracted and in the learning strategies. For example, spin images have been
introduced as a type of rotation invariant features by Johnson [1997]. Also, de Alarcón
et al. [2002] use spin images and an indexing schema based on artificial neural networks
to retrieve 3D objects from a database. Ruiz-Correa et al. [2003b] apply spin images to
recognize deformable shapes. Frome et al. [2004] extend spin images to point descriptors
and apply a voting technique to recognize objects in range data. Vandapel et al. [2004]
extract saliency features based on the eigenvalues of local covariance matrices and apply
EM to learn a Gaussian Mixture Model classifier. Another object description technique is
called shape distributions and has been applied by Osada et al. [2001]. A shape distribution
is defined by a histogram of distances between randomly sampled points on the surface
of a 3D object. Furthermore, several other types of 3D features have been proposed,
including local tensors (see Mian et al. [2004]), shape maps (see Wu et al. [2004]), and
multi-scale features (see Li and Guskov [2005]).
A framework for 3D object detection that is based on detecting object parts has been

presented by Huber et al. [2004]. The idea of this is to learn a set of classes of object parts
and a mapping between part classes and object classes. A similar idea of detecting object
components has been presented by Ruiz-Correa et al. [2003a], who introduced symbolic
surface signatures to encode the geometrical relationships between the parts. Another
approach to object recognition proposed by Boykov and Huttenlocher [1999] is based on
Markov random fields (MRFs). They classify objects in camera images by incorporating
statistical relationships between nearby object parts. Wellington et al. [2005] also use
MRFs to do environment classification for agricultural applications. They compute the
elevation of the cell depending on the classification of the cell and its neighbors. A
relational approach using MRFs has been proposed by Limketkai et al. [2005]. The idea
here is to exploit the spatial relationship between nearby objects, which in this case consist
of 2D line segments. A similar idea is the basis of the work presented by Anguelov et al.
[2005], which uses a specialized instance of relational MRFs called associative Markov
networks (AMNs). AMNs provide an efficient implementation of the learning and the
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inference step.
The new approach for 3D object recognition which we will present in chapter 9

is mostly related to this last mentioned work by Anguelov et al. [2005]. It also uses
AMNs in a supervised learning approach and introduces two major extensions to the
classification algorithm. First, it adaptively selects data points from the training data set
and uses these points as representatives for neighboring points. This way, the training
data set is reduced in size to an abstraction of the original range scan. As a result,
our approach requires less complex constraints and, in turn, yields a faster training
phase without decreasing classification rates. Second, we combine the AMN approach
with techniques from instance-based classification to address the problem that AMNs
are restricted to linear separable feature spaces. By previously transforming the feature
space, this restriction is abolished and we obtain improved classification results.

1.4.6 3D Outdoor Mapping with Cars

In the context of autonomous cars, a series of successful systems have been developed
amongst others by Cremean et al. [2006], Thrun et al. [2006], and Urmson [2005] for the
DARPA Grand Challenge [2004], which was a desert race for autonomous vehicles along
an approximatively 130 mile course. As a result of this challenge, there exist autonomous
cars that reliably avoid obstacle and navigate at comparably high speeds. The focus of
the Grand Challenge was to finish the race as quickly as possible whereas certain issues
like building consistent large-scale maps of the environment have been neglected since
they where not needed for the race. In contrast, the novel approach towards mapping
large areas, which will be presented in chapter 10 has a different aim compared to the
vehicles participating to the Grand Challenge. We will apply the techniques described in
the preceding chapters to obtain globally consisted large-scale maps. Nevertheless, our
Smart car also benefits from different techniques used within the Grand Challenge. We
apply an approach to follow a given trajectory similar to the one of the winning vehicle
Stanley presented by Thrun et al. [2006].

1.4.7 Occlusion Handling in 3D Range Scans

Occlusions occur whenever an object is partially or totally hidden by another object and
thus can not be perceived entirely. This may occur with most kinds of sensors such as
cameras and 3D range scanners. In the literature, mostly algorithms to detect and handle
occlusions have been presented that operate on camera images. A good overview and
analysis of such approaches is given by Elmqvist and Tsigas [2007]. An example of an
occlusion handling algorithm for two-frame stereo was presented by Sun et al. [2005].
They define a symmetric visibility constraint on both images and estimate the disparity
and the occlusion iteratively in two separate steps. Another way to resolve occlusions is
by usingmultiple cameras. For example, Fleuret et al. [2005] detect and resolve occlusions
using such a multi-view approach.
To the best of our knowledge, no author has yet addressed the problem of occlusions

in 3D range scans, where the work of Rodgers et al. [2005] might be seen as an exception.
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They describe a method to detect different poses of partially occluded puppets and
humans in 3D range scans. However, the primary goal in their work is not to resolve
the occlusions, but to detect the particular poses. In chapter 11, we will present a novel
technique to resolve occlusions in 3D range scans by matching all objects that correspond
to the same object class to one prototype. This way, the occluded part of a particular
object can be filled with the corresponding part of another object of the same type. We
will show this in an example application where windows of a building are occluded by
a tree and where the fact that all windows have the same shape is used to resolve this
occlusion.
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Do not worry about your difficulties in Mathematics. I can
assure you mine are still greater.

Albert Einstein (1879 - 1955) 2
Mathematical Foundations and Notation

2.1 Introduction

In this chapter, we present the mathematical background which is used in the following
chapters. Of course, it is not possible to include all mathematical formulations that
are needed in this work in detail. Therefore, we focus only on the most often used
formulations and refer to the literature (for example Zwillinger, 1996) where a more
detailed description is needed.

2.2 Basics from Linear Algebra

2.2.1 Notation

Throughout this work, we will stick to the following notations:

• a d-dimensional vector will be notated with a bold letter, e.g. x = (x1, . . . , xd)T ∈ Rd.
If not otherwise noted, all vectors are considered as column vectors.

• amatrixwithm rows and n columnswill be denotedwith a capital letter, for example

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



. (2.1)

The transpose of a matrix A will be denoted as AT.

17
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• all types of sets will be denoted with calligraphic capital letters. For example, a set
containing N vectors x1, . . . , xN will be denoted as

X = {x1, . . . , xN} (2.2)

• angles will be denoted with small Greek letters, i.e. α, β, . . .

2.2.2 Matrix Properties

Here, we summarize some important properties of matrices:

• A matrix A is called symmetric iff AT = A

• A matrix A is called diagonal iff ai j = 0 for i , j. The identity matrix is a special
diagonal matrix and has only ones on the diagonal, i.e. ai j = 1 for i = j. The identity
matrix is denoted as I.

• A matrix A is called invertible iff detA , 0. Otherwise, A is called singular. If A is
invertible then A−1 is defined so that A−1A = I.

• A matrix A is called orthogonal iff ATA = I.

• A matrix A is called square iff the number of rows equals the number of columns,
i.e. m = n.

• A matrix A is called positive definite iff it is square and xTAx > 0 ∀x ∈ Rn. Accord-
ingly, a matrix can be positive semidefinite (if xTAx ≥ 0), negative definite and negative
semidefinite.

2.3 Dot product, Outer Product, Cross Product

For the sake of completeness we give the following definitions. They can be found in any
introductory mathematical textbook (for example in Fischer [1995]).

Definition 2.1. The dot product or inner product (·) between two vectors x = (x1, . . . , xd)T
and y = (y1, . . . , yd)T is defined as

x · y :=
d∑

i=1

xiyi = x
Ty = yTx (2.3)

From the definition it follows that the dot product is symmetric, i.e. x · y = y · x. The
dot product can be used to define a norm ‖.‖ of a vector x in the way that ‖x‖ :=

√
x · x.

Furthermore, the definition of an angle can be expressed by means of the dot product:

Definition 2.2. The angle α between two vectors x ∈ Rd and y ∈ Rd is defined as

α := arccos
(
x · y
‖x‖‖y‖

)
(2.4)
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From this definition, we can formulate a geometric interpretation of the dot product,
because it follows that

x · y = ‖x‖‖y‖ cos(α)
= ‖x‖‖y⊥‖ sign(cos(α)) (2.5)

where y⊥ is the orthogonal projection of y onto x. In the special case that x has unit length,
we can say that the absolute value of the dot product is the length of the orthogonal
projection of y onto x.
Anotheruseful operationonvectors is the outer product, which is givenby the following

Definition 2.3. The outer productbetween twovectors x = (x1, . . . , xd)T andy = (y1, . . . , yd)T

is defined as

x ◦ y :=




x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd
...

...
. . .

...
xdy1 xdy2 . . . xdyd



= xyT (2.6)

In contrast to the dot product, the outer product is not symmetric. A possible appli-
cation of the outer product can be given by the following

Example 2.1. The covariance matrix C of a set of d-dimensional data points p1, . . . ,pN ∈ Rd is
defined as

C :=
1
N

N∑

i=1

(pi − µ) ◦ (pi − µ) =
1
N

N∑

i=1

(pi − µ)(pi − µ)T (2.7)

where µ = N−1
∑N
i=1 pi is the mean of the data points. From this definition we can directly derive

the two main properties of covariance matrices, namely:

• symmetry: ((pi − µ)(pi − µ)T)T = ((pi − µ)T)T(pi − µ)T = (pi − µ)(pi − µ)T

• positive definiteness: xT((pi−µ)(pi−µ)T)x = (x · (pi−µ))(x · (pi−µ)) = (x · (pi−µ))2 > 0

For details about symmetry and positive definiteness of matrices seeHartley andZisserman [2000].

For the special case of vectors in 3 dimensions, we provide the following

Definition 2.4. The cross product between two vectors x = (x1, x2, x3)T and y = (y1, y2, y3)T

is defined as

x × y :=




x2y3 − y2x3
x3y1 − y3x1
x1y2 − y1x2


 (2.8)

One property of the cross product that follows from the definition is x × y = −y × x.
Geometrically, the cross product is the vector that is orthogonal to both x and y, provided
that x and y are linear independent, i.e. ∄λ ∈ R : x = λy. Otherwise, the cross product is
the zero vector.
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Figure 2.1: The normal vector of a plane can be described by the azimuth angle α and the
elevation angle ǫ.

2.4 Points, Lines and Planes

In most of the formulations throughout this work, we will deal with the basic geometrical
objects in the Euclidean 3D space. Therefore, we define

• a point as a 3D vector p ∈ R3

• a line l as the pair of vectors (p,v) where p,v ∈ R3 and ‖v‖ = 1. The set of all points
on the line l is then defined as {x ∈ R3 | ∃s ∈ R : x = p + sv}. This means, a line is
defined by its origin p and its direction v.

• a plane p as the pair (n, r) where n ∈ R3, r ∈ R and ‖n‖ = 1. The set of all points
on the plane p is then defined as {x ∈ R3 | n · x = r}. Thus, a plane is defined by its
normal vector n and its distance to the origin r.

A point in 3D has 3 degrees of freedom, which is obvious, because it is defined by the
3 components of its corresponding vector. A line has 4 degrees of freedom, which is more
difficult to see. We can say that the set of all lines passing through a point p which is
closest to the origin on the particular line, is identically defined by the three coordinates of
p. The remaining degree of freedom is the angle of rotation inside the plane (‖p‖−1p, ‖p‖)
around the axis defined by p. Finally, a plane has also 3 degrees of freedom, namely one
for the distance r to the origin and two for the unit normal vector n. The latter holds
because n is identically defined by its azimuth α and elevation ǫwhere

α = arctan2(ny,nx)

ǫ = arctan2(nz,
√
n2x + n

2
y)

(2.9)
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q − p

v(
q
− p
)

d(q, l)

Figure 2.2: The distance d(q, l) between a pointq and a line l can be computed using a rectangular
triangle. The length of the hypotenuse of this triangle equals the distance ‖q − p‖ between p and
q. Using Equation (2.5) it can be shown that the projection of the vector (q−p) onto v has length

v(q − p). Thus, with the Pythagorean theorem we can derive Equation (2.11).

and n = (nx,ny,nz)T. Here, we used the arctan2 function which is defined as

arctan2(a, b) :=



arctan( ab ) if b > 0

sign(a)π2 if b = 0

arctan( ab ) + sign(a)π if b < 0.

Figure 2.1 gives a graphical explanation of the azimuth and the elevation angles.

2.4.1 Distances

Inmany applications, the (Euclidean) distances between geometric objects such as points,
lines and planes are needed. Therefore, we will provide the formulae to compute these
distances here.

Definition 2.5. The distance d(., .) between two geometric objects is a binary function from
the set of geometric objects into the set of non-negative real numbers R+0 . In particular, it
is defined between

• a point q and a point p as

d(q,p) := ‖q − p‖ =
√
(q − p) · (q − p) (2.10)

• a point q and a line l = (p,v) where ‖v‖ = 1 as

d(q, l) :=
√
‖q − p‖2 − ‖v · (q − p)‖2 (2.11)

Fig. 2.2 gives an explanation of how this formula is derived.
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• a point q and a plane p = (n, r) where ‖n‖ = 1 as
d(q, p) := |q · n + r| (2.12)

• a line l1 = (p1,v1) to a line l2 = (p2,v2) as

d(l1, l2) :=



d(p1, l2) = d(p2, l1) if v1 × v2 = 0

|(p2 − p1) · (v1 × v2)|
‖v1 × v2‖

else.
(2.13)

• a line l = (p,v) to a plane p = (n, r) only if it is parallel to p, i.e. only if v ·n = 0. Then
the distance between l and p is

d(l, p) := |p · n + r| (2.14)

• a plane p1 = (n1, r1) and a plane p2 = (n2, r2) only if the planes are parallel, i.e. if
n1 · n2 = ±1. Then the distance is defined as

d(p1, p2) := |r1 − r2| (2.15)

2.5 Transforms in 3D

One of the most important operations on 3D objects described in the previous section
are transforms. A transform is a mapping from R3 to R3. Several transforms exist, e.g.
projective transforms, affine transforms etc. A good summary is given by Hartley and
Zisserman [2000]. For our purpose we focus on affine transforms, which are given by the
following

Definition 2.6. An affine transform T in 3D is a mapping from R3 to R3 so that

T(x) := Rx + t (2.16)

where R is a rotation matrix and t is a translation vector.

A rotation matrix is an orthogonal matrix whose determinant is 1. Each rotation
matrix R can be decomposed into three elementary rotations Rx(ϕ), Ry(ϑ), and Rz(ψ) as
follows

R = Rz(ψ)Ry(ϑ)Rx(ϕ) where

Rx(ϕ) =




1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ




Ry(ϑ) =




cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ




Rz(ψ) =




cosψ − sinψ 0
sinψ cosψ 0
0 0 1




(2.17)
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The three anglesϕ, ϑ andψ are called theEuler angles. There are 4 different representations
for a rotation in 3D: Euler angles, a rotation matrix, quaternions and the angle-axis
representation. For this work, we will generally stick to the matrix notation and use one
of the others where it is more convenient.

2.6 Model fitting

In this section, wewill describemethods of how to find a geometrical model that approxi-
mates best a given 3D data set. In general, any kind of geometrical model is possible here
(e.g. boxes, spheres etc.), but we will focus only on planes. The concepts derived here
will be used later in chapter 5 when we present new approaches to find planar models
for 3D data sets. First, we will derive the mathematical formulation for the problem of
fitting a plane into a point set, then we consider the case of a given set of lines where a
best approximating plane should be found.

2.6.1 Fitting Planes into Point Sets

Suppose we are given a set ofN points p1, . . . ,pN. The task of fitting amodel – in this case
a plane – into the data is defined as finding model parameters, so that the mean squared
distance of the points to the model is minimized. In our case, this means that we seek a
normal vector n and a distance value d so that the sum of squared distances of all points
to the plane defined by (n, d) is minimal. The minimization problem can be written as

minimize g(n, d) :=
1
N

N∑

i=1

(pi · n + d)2 such that ‖n‖ = 1 (2.18)

One necessary condition for a minimum is that the partial derivative with respect to d
vanishes. This means

∂g

∂d
=
1
N

N∑

i=1

2(pi · n + d)

=
2
N

N∑

i=1

pTi n + 2d
!
= 0 (2.19)

Solving for d in equation (2.19) yields

d = − 1
N



N∑

i=1

pTi


n

= −µTn (2.20)
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where µ is the mean of the data points pi (see example 2.1). Now we can plug this into
our minimization function from equation (2.18) and obtain

minimize g(n) :=
1
N

N∑

i=1

(pTi n − µTn)2 such that ‖n‖ = 1 (2.21)

Next, we perform some rearrangements of the distance function g

g(n) =
1
N

N∑

i=1

((pTi − µT)n)2

=
1
N

N∑

i=1

((pi − µ)Tn)((pi − µ)Tn)

=
1
N

N∑

i=1

(nT(pi − µ)(pi − µ)Tn)

= nT



1
N

N∑

i=1

(pi − µ)(pi − µ)T

n

= nTCn (2.22)

where C is the covariance matrix of the data points pi defined in equation (2.7). For the
minimization from equation (2.21) we need to incorporate the constraint that the normal
vector n has unit length. This can be done by minimizing g( n‖n‖ ) instead of g(n).

g
(
n

‖n‖

)
=
1
‖n‖n

TC
1
‖n‖n

=
1
‖n‖2n

TCn

=
nTCn

nTn
(2.23)

This last term is called a Rayleigh quotient and it is minimized by the eigenvector of C that
corresponds to the smallest eigenvalue. As we have seen in example 2.1, the covariance
matrix is symmetric and positive-definite, which means that its eigenvalues are all real
and positive. In other words, C can be factorized as C = UDUT where U is an orthogonal
matrix andD is a diagonal matrix containing the (positive) eigenvalues of C. The solution
to our minimization problem is given by the column vector of U that corresponds to the
smallest entry in D.
To summarize, we can say that the plane that fits best into a set of data pointsp1, . . . ,pN

in the sense of minimizing the mean squared distance must:

• contain the mean µ of the data points, because from equation (2.19) it follows that
µTn + d = 0.
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a. The plane that minimizes the mean
squared distance to all points contains the
mean of the point cloud and is perpendic-
ular to the eigenvector of the point cloud’s
covariance matrix corresponding to the

smallest eigenvalue

b. The plane that best fits into a given set
of lines has a normal vector that is mostly
orthogonal to the direction vectors of all
lines. Furthermore, it contains the point
that minimizes the mean squared distance

to all lines.

Figure 2.3: Fitting a plane into a set of points (a) and a set of lines (b). Note that the planes are
rendered with transparency to better visualize points and lines behind the planes.

• have a normal vector n that is equal to the eigenvalue of the covariance matrix C
corresponding to the smallest eigenvalue.

As an example, consider figure 2.3a. The plane that fits best into the point set is drawn
as a green square. The three eigenvectors of the point sets’ covariance matrix are depicted
as white arrows originating at the center of mass (mean) of the point set. The one that
corresponds to the smallest eigen value defines the normal vector of the plane.

2.6.2 Fitting Planes into Line Sets

In some situations it may be the case that instead of a point set we are given a set of lines
in 3D and we want to find a plane that best fits into these lines. The problem arising
here is that a formulation based on the mean squared error like in the previous section is
not appropriate, because the distance of a line l to a plane l is only defined if l and p are
parallel, and we want to find a fitting plane also in the case that not all lines are parallel.
Therefore, we proceed as follows. First, we seek a normal vector for the plane that is ”as
orthogonal as possible” to the direction vectors of all lines. Then, we find a point with a
minimal mean squared distance to all lines. This point should be contained in the plane.

Normal vector computation For a given set of N lines l1, . . . , lN with li = (pi,vi) we
want to find a plane normal vector n that is mostly orthogonal to all direction vectors
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vi. Here, we assume that N > 1 and not all lines are collinear (i.e. identical), because
otherwise there is no unique plane. Thus, our goal is to find n such that

vi · n = 0 ∀i = 1, . . . ,N (2.24)

If we stack all direction vectors vi as row vectors into amatrixM, then we can reformulate
equation (2.24) as

Mn =




vx1 v
y

1 vz1
vx2 v

y

2 vz2
...

...
...

vx
N
v
y

N
vz
N



n
!
=




0
0
...
0




(2.25)

In general, this problem can not be solved ifM has full rank. However, we can compute
a solution that minimizes the residual error r = ‖Mn‖. This is done by first computing
the singular value decomposition (SVD) ofM, which yields two orthogonal matrices U and
V and a diagonal matrix D such that M = UDVT. The dimensions of these matrices are
N × 3 for U and 3 × 3 for D and V. Now we obtain the following minimization problem

minimize ‖UDVTn‖ such that ‖n‖ = 1 (2.26)

Exploiting the fact that a multiplication with an orthogonal matrix does not change
the norm of a vector we can reformulate equation (2.26) as follows

minimize ‖Dy‖ such that ‖y‖ = 1 (2.27)

where y = VTn. Assuming that the (positive) diagonal entries of D are ordered decreas-
ingly, the unit length vector that minimizes (2.27) is given by y = (0, 0, 1)T. This means
that the normal vector minimizing (2.26) is given by

n = V




0
0
1


 (2.28)

In other words, the normal vector we seek for is the column vector of V that corresponds
to the smallest singular value of M. This is equivalent to the eigenvector of MTM that
corresponds to the smallest eigenvalue.

Point computation As mentioned above, we seek a point q that minimizes the mean
squared distance to all lines. Using equation (2.11) this means

g(q) :=
1
N

N∑

i=1

‖q − pi‖2 − ‖vi · (q − pi)‖2

=
1
N

N∑

i=1

(q − pi)T(q − pi) − (q − pi)TvivTi (q − pi)

=
1
N

N∑

i=1

(qTq − 2qTpi + pTi pi) −
1
N

N∑

i=1

(q − pi)TvivTi (q − pi) (2.29)
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By deriving this with respect to q and setting the result to 0 we obtain

∂g

∂q
=
1
N

N∑

i=1

(2q − 2pi) −
1
N

N∑

i=1

2vvTi (q − pi)
!
=




0
0
0


 (2.30)

Now we rearrange equation (2.30) as follows

2
N

N∑

i=1

(q − pi) =
2
N

N∑

i=1

vvTi (q − pi)

N∑

i=1

q −
N∑

i=1

pi =

N∑

i=1

viv
T
i q −

N∑

i=1

viv
T
i pi

N∑

i=1

q −
N∑

i=1

viv
T
i q =

N∑

i=1

pi −
N∑

i=1

viv
T
i pi



N∑

i=1

(I − vivTi )

q =

N∑

i=1

(I − vivTi )pi

q =



N∑

i=1

(I − vivTi )



−1 N∑

i=1

(I − vivTi )pi (2.31)

Roughly speaking, we can say that q is the weighted average of the points pi where the
weights are defined by matricesMi = I − vivTi :

q =



N∑

i=1

Mi




−1 N∑

i=1

Mipi (2.32)
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Not to be absolutely certain is, I think, one of
the essential things in rationality.

Bertrand Russell (1872 - 1970) 3
Probabilistic Reasoning with

Graphical Models

3.1 Basics from Probability Theory

3.1.1 Notions and Notations

• A sample space S is a set of outcomes of an experiment.

• A random variable is a function that assigns a real number to a subset of S. Random
variables will be denoted with a capital letter A,B, . . .

• A value of a random variable will be denoted with a small letter a, b, . . .

• For a given finite set of random variablesA = {A1,A2, . . . }where Ai takes the value
ai and i = 1, 2, . . . we say that the set of values a := (a1, a2, . . . ) is a configuration.

• A probability distribution p(.) assigns a positive real number to each configuration
of a set of random variablesA so that

∫
S p(A) = 1.

• The conditional probability p(A | B) is defined as p(A,B)p(B) .

Using these notations we can formulate the definition of conditional independency.
This will be an important notion in the remainder of this chapter and later in this work.

Definition 3.1. LetU = {A,B, . . . } be a finite set of discrete random variables and p be a
probability distribution over the variables inU. Then two arbitrary subsets X ⊂ U and
Y ⊂ U are said to be conditionally independent given a third subsetZ ⊂ U if

p(y, z) > 0⇒ p(x | y, z) = p(x | z) ∀x,y, z (3.1)

29
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where x, y and z are configurations ofX,Y andZ respectively. The conditional indepen-
dence of X andY givenZ under the distribution pwill be denoted as I(X,Y,Z)p.

To illustrate this definition, we will give a short

Example 3.1. Consider a mobile robot traveling around in an indoor environment. Assume the
robot is equipped with two different sensors of different reliability for detecting obstacles. We can
model this situation using the three different binary random variables O, S1 and S2 with possible
boolean values o, s1 and s2.

p(s1 | o, s2) = p(s1 | o) ∀s1, s2, o ∈ {0, 1} (3.2)

The conditional independence relationship I has four important properties:

• Symmetry: I(X,Y,Z)⇐⇒ I(Y,X,Z)

• Decomposition : I(X,Y,Z∪W) =⇒ I(X,Y,Z) ∧ I(X,Y,W)

• Weak union: I(X,Y,Z∪W) =⇒ I(X,Y ∪W,Z)

• Contraction: I(X,Y,Z) ∧ I(X,Y ∪Z,W) =⇒ I(X,Y,Z∪W)

3.2 Graphical Representations

When dealing with probability distributions of many random variables X1, . . . ,XN, the
question arises of how to represent this distribution. The simplest but most inefficient
way is by using a probability table. In such a table, the probability p(x1, . . . , xN) for each
single joint event event is stored. In the simplest case, where all variables are binary, this
requires a table of size 2N, which is intractable when the number of variables grows large.
A way to overcome this problem is to exploit the conditional independencies of some of
the random variables.

Example 3.2. Let us again consider the obstacle detecting robot from example 3.1. Assume that
sensor 1 detects an obstacle with probability 0.8 and sensor 2 with probability 0.95. Both sensors
sometimes give false positive measurements, where s1 does this with probability 0.1 and sensor 2
with probability 0.05. The probability of an obstacle is assumed to be 0.3. Thus we have:

p(s1 | o) = 0.8 p(s2 | o) = 0.95 p(o) = 0.3

p(s1 | ¬o) = 0.1 p(s2 | ¬o) = 0.05

With these values we can compute the joint distribution p(o, s1, s2) as follows

p(s1, s2, o) = p(s1 | s2, o)p(s2, o)
= p(s1 | o)p(s2 | o)p(o)

(3.3)

Using this formula we can compute all 8 probabilities and store them in a probability table:
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O

S1 S2

p(O)
0.3

O P(S1)
0 0.8
1 0.1

O P(S2)
0 0.95
1 0.05

Figure 3.1: Conditional independency graph for example 3.2

O S1 S2 p(o, s1, s2)
0 0 0 0.5985
0 0 1 0.0315
0 1 0 0.0665
0 1 1 0.0035
1 0 0 0.003
1 0 1 0.057
1 1 0 0.012
1 1 1 0.228

The example shows that the representation as a probability table is equivalent to
the one using only the conditional probabilities from equation (3.3), but it requires a lot
more memory. Of course this holds only if there are variables that are conditionally
independent, because only then we can do the decomposition in equation (3.3). Thus,
instead of storing the entire probability table, we only need to store the local tables for
each random variable. This is illustrated in Figure 3.1.
In the following, we will briefly summarize the concepts of directed and undirected

graphs and how they can be used to represent probability distributions. The notations
are taken from Pearl [1988] and we also refer there for any more detailed analysis.

3.3 Directed Graphs

Definition 3.2. A directed acyclic graph (DAG) D is defined as a pair D = (V,E) whereV
is the set of nodes and E ⊆ V ×V is the set of edges with

(v1, v2) ∈ E ⇒ (v2, v1) < E ∀v1, v2 ∈ V

For an edge e = (v1, v2), we say that it is outgoing for node v1 and ingoing for the node
v2. Furthermore we define a path between nodes v1 and v2 as a set of nodes w1, . . . ,wn
where w1 = v1, wn = v2 and for wi,wi+1 there is either an edge (wi,wi+1) or (wi+1,wi).

Definition 3.3 (D-Separation). SupposeX,Y, andZ are subsets of the nodesV of a DAG
D. Then we say thatZ d-separates X fromY if along every path between a node in X and
a node inY there is a node w so that one of the following conditions holds:
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1. w has ingoing edges and neither w nor any of its descendants is inZ.

2. w has no ingoing edges and is inZ

We will denote the fact thatZ d-separates X fromY as 〈X | Y | Z〉d.

3.3.1 Bayesian Networks

Definition 3.4. A DAG D is an I-map of a dependency model p if for all triples of disjoint
sets of vertices X,Y,Z it holds:

〈X | Y | Z〉d ⇒ I(X,Y,Z)p (3.4)

Furthermore, an I-map isminimal if by deleting any edge fromD condition (3.4) is violated.

Definition 3.5. LetU be a set of random variables and P be a probability distribution on
U. Then a DAG D is called a Bayesian network iff D is a minimal I-map of p.

Example 3.3. Using the three random variables from Example 3.2 as nodes we can draw a directed
graph D like the one in Figure 3.1. We can clearly see that the second condition from definition 3.3
is valid for the node O, which means that O d-separates S1 and S2. As we have seen already, for
the corresponding random variables O, S1 and S2 it holds I(S1,O,S2)p. This means, D is an I-map
of p. In addition, it is a minimal I-map, because if we remove one of the arrows, we would have an
isolated node in the graph.

3.4 Undirected Graphs

Similar to the definitions in the previous section, we provide the following

Definition 3.6. An undirected graph G is a pair (V,E) where V is a set of nodes and
E ⊆ V ×V is a set of edges, where, in contrast to a DAG, the edge relation is symmetric,
i.e.

(vi, v j) ∈ E ⇐⇒ (v j, vi) ∈ E.

A clique C of a graph G is a subset of the nodesV so that

(vi, v j) ∈ E ∀vi, v j ∈ C

Definition 3.7 (U-Separation). SupposeX,Y, andZ are subsets of the nodesV of a DAG
D. Then we say thatZ d-separates X fromY if along every path between a node in X and
a node inY there is a node w so that one of the following condition holds:

1. w has ingoing edges and neither w nor any of its descendants is inZ.

2. w has no ingoing edges and is inZ
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3.4.1 Markov Networks

Definition 3.8. An undirected graph G is an I-map of a dependency model M if for all
triples of disjoint sets of vertices X,Y,Z it holds:

〈X | Y | Z〉d ⇒ I(X,Y,Z)M (3.5)

Furthermore, an I-map isminimal if by deleting any edge fromD condition (3.5) is violated.

Definition 3.9. LetU be a set of random variables and P be a probability distribution on
U. Then an undirected graph G is called aMarkov network iff G is a minimal I-map of P.

Theorem 1 (Hammersley and Clifford). Let G = (V,E) be an arbitrary undirected graph
where each node V ∈ V corresponds to a discrete random variable X. Assume we are given a
potential function φ that assigns a positive value to any given subset of random variables. If we
denote the set of all cliques of G with C and the subset of random variables that correspond to a
clique c with Xc, then the probability function P formed as

P(X) =
∏
c∈C φ(Xc)∑

X′
∏
c∈C φ(X′c)

(3.6)

is a Markov network corresponding to G. In other words, G is a minimal I-map of P.

For the proof of this theorem we refer to Clifford [1990] and Besag [1974].

3.4.2 Conditional Markov Random Fields

The notion of conditional Markov random fields was first introduced by Lafferty et al.
[2001]. The idea is the following: when using probabilistic modeling to classify objects
– represented by feature vectors x – into a finite set of classes y1, . . . , yN, we are mainly
interested in the conditional probability p(y |x). Aswewill see in chapter 9, this conditional
probability can be used to do inference in a classification task. This means, after learning
the parameters of the distribution p(y | x) we can infer a label to a new given test example
x̂ by finding the class label y that maximizes p(y | x̂). In analogy to the Markov Networks
presented above, we can express the conditional probability as

P(y | x) =
∏
c∈C φ(xc,yc)∑

y′
∏
c∈C φ(x′c,yc)

. (3.7)

Here, we denote the set of all class labels with y, and the features and labels of a given
clique cwith xc and yc.
At this point, we will not discuss the mathematical details of conditional MRFs any

further and refer to the literature instead (for example Wallach [2002], Dietterich [2002],
but also Lafferty et al. [2001]). We only note that the potential function is now defined on
the features and the labels and that it is usually used to model the compatibility of a given
labeling to the features. Later in chapter 9, we will see how this is done in practice.
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You don’t understand anything until you
learn it more than one way.

Marvin Minsky (* 1927) 4
Representations of 3D Range Data

4.1 Introduction

This chapter gives an overview of possible approaches to represent 3D range data. We
will discuss advantages and drawbacks of the different data structures presented here.
These considerations will be important for developing new 3D data representations in
the following chapters. The chapter is organized as follows: First we present the concept
of point clouds, which is the most common way to store 3D data. In fact, all other data
structures mentioned here will be constructed from point clouds, because they store the
data as it comes from the 3D sensor, independent on the sensor (stereo camera, 3D laser
etc.). In section 4.3 we present tree structures as a more efficient way of storing 3D data,
especially for applications in which a search needs to be performed. We will focus on kD-
trees and OBB-trees, because they will be used later in this work. Section 4.4 introduces
3D occupancy grids, which store the information of an occupied or unoccupied region by
using binary random variables in a grid structure. This gives a powerful representation
and is useful for computing the expected information gain for exploration applications. This
will be shown in an example. Furthermore, wewill address data structures that provide a
polygonal representation of 3D data. In particular, we will show in section 4.5 how point
clouds can be enriched by connecting points to triangles. This is especially useful for
visualization purposes. We will compare three different triangulation strategies. Finally,
section 4.6 concludes the chapter with a comparison and a discussion on the different
approaches to represent 3D data.
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Figure 4.1: Point cloud representation of a barn. The data consists of 45013 points and was
acquired using two rotating laser range finders.

4.2 Point Clouds

A point cloud C is the simplest way of representing 3D range data. It consists of a
set of N 3D vectors p1, . . . ,pN that correspond to the coordinates of each point in C.
Figure 4.2 shows an example of a point cloud. The data set was acquired using two laser
range finders rotating about the vertical z-axis. The representation as a point cloud is
independent of the sensor used for data acquisition. For example, when using a stereo
camera rig a point cloud can be obtained by finding corresponding pixels in both camera
images and re-projecting these pixels into the 3D space. The advantage of point clouds
obtained from stereo rigs is that the color information of the points is provided directly
by the camera images. However, usual point clouds obtained from stereo cameras are
less dense than point clouds obtained with laser range finders. In the following, we will
show how point clouds can be computed from laser range data.

4.2.1 Computation of Point Clouds from Laser Range Data

Depending on the sensor used for acquiring 3Ddata, the formulation for computing point
clouds differs. As an example, we will show in the following the computation of point
coordinates from range data that are acquired by a 2D laser range scanner mounted on
a 4 DOF manipulator (see Figure 4.2c). The four joints of the manipulator are rotational
and will be denoted j1 through j4 (from bottom to top). Whereas the joints j1 and j3 rotate
about the vertical Z-axis from −π to π, j2 and j4 rotate about the horizontal X-axes from
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a. Photograph of the
manipulator.

b. Simplified model show-
ing the rotation axes.

c. The visualized configuration space consisting
of a big half sphere S↓ and a small half sphere S↑.

Figure 4.2: 4 DOF Manipulator with a laser range finder on top. All 4 joints are rotational and
consist of two blue cubes respectively (see Fig (a)). Fig. (b) shows the 4 different rotation axes of
the manipulator. The configuration space can be visualized as two half spheres (see Fig (c)).

−π2 to π
2 . Thus, the configuration space C of the manipulator is given as:

C =
{
j ∈ R4

∣∣∣∣∣
−π ≤ j1, j3 ≤ π,
−π2 ≤ j2, j4 ≤ π

2

}
(4.1)

Due to the length of the connections between the joints, the individual configurations
in C geometrically correspond to points on small half spheres S↑ whose centers lie on the
surface of a bigger half sphere S↓ (see Figure 4.2).

If we assign a local coordinate frame to each of the joints and one to the laser we
can define 5 different transformations T1, . . . ,T5 so that Ti(x) returns the coordinates of
the point x in the coordinate frame of joint i − 1. Here we assume that T1 converts to
coordinates in the global reference frame. For a given point pl in the local reference frame
of the laser, we can then compute its global coordinates pg as

pg = T1(T2(T3(T4(T5(pl))))) (4.2)

Each of the transformations T1, . . . ,T4 depends on the position of the joints j1, . . . , j4 re-
spectively while T5 consists of a fixed rotation and translation between the laser reference
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Figure 4.3: Local reference frame of the laser. The origin is defined as the center of the rotating
mirror inside the device. The azimuth angles α of the laser beams range from 0◦ to 180◦. As an

example, a laser beam at α = 20◦ is depicted.

frame and the reference frame that corresponds to j4. Thus, we have

T1(x) := Rz( j1)x + t1
T2(x) := Rx( j2)x + t2
T3(x) := Rz( j3)x + t3
T4(x) := Rx( j4)x + t4
T5(x) := Rx + t5

(4.3)

Here, we used the notation introduced in equation (2.17) for the rotations. The point
coordinates pl in the local reference frame of the laser are computed as

pl =




d · cos(α)
d · sin(α)
0


 (4.4)

where d is the distance measured by the laser and α is the corresponding beam angle (see
Fig. 4.3 for an explanation). In the case of the manipulator shown in Fig. 4.2, we obtain
the overall transform T⋆ as

T⋆(pl) = R
⋆pl + t

⋆ where

R⋆ =
(
cos j1 cos j3−sin j1 cos j2 sin j3 − cos j1 sin j3 cos j4−sin j1 cos j2 cos j3 cos j4+sin j1 sin j2 sin j4 − cos j1 sin j3 sin j4−sin j1 cos j2 cos j3 sin j4−sin j1 sin j2 cos j4
sin j1 cos j3+cos j1 cos j2 sin j3 − sin j1 sin j3 cos j4+cos j1 cos j2 cos j3 cos j4−cos j1 sin j2 sin j4 − sin j1 sin j3 sin j4+cos j1 cos j2 cos j3 sin j4+cos j1 sin j2 cos j4

− sin j2 sin j3 − sin j2 cos j3 cos j4−cos j2 sin j4 − sin j2 cos j3 sin j4+cos j2 cos j4

)

t⋆ = −R⋆
(
c1
c1
c2

)
+

( − sin( j1)·sin( j2)·c3+c1
cos( j1)·sin( j2)·c3+c1
cos( j2)·c3+c2−c3

)

where we use the three constants c1 = 0.045m, c2 = 0.73m and c3 = 0.47m, which were
taken from the specifications of the manipulator.
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4.3 Tree Structures

One problem when dealing with point clouds is the fact that special operations such as
searching for the nearest neighbor to a given query point can not be performed efficiently.
Especially when the point clouds are big (> 1, 000, 000 points), a linear search in the list
of all points is very inefficient.

4.3.1 3D-trees

A general data structure that allows efficient search algorithms is the kD-tree (see Bentley
[1975]). Here, k stands for the number of dimensions in which the input data points are
given, in our case k = 3. As one can imagine, a kD-tree stores the input data in a tree-like
structure. Each node in this tree is either a leaf node without successors or has exactly
two successor nodes or sub-trees, which we call the left and the right sub-tree. The data
are stored only in the leaf nodes, where each leaf node can contain many data points. A
parameter, usually called the bucket size, determines the maximum number of data points
in a leaf node. If the bucket size is exceeded for a given leaf node, this node needs to be
split into two sub-trees, and therefore turns into an inner node. The way this splitting is
done is handled by the splitting rule, another parameter of the kD-tree.
Many different splitting rules are possible, but they all separate the data using axis-

aligned hyperplanes (in our case planes) into two subsets. Depending on the position of
the hyperplanes, the resulting subsets are more or less balanced in size, which makes the
resulting tree more or less balanced. Of course, searching in a balanced tree is usually
more efficient because balanced trees tend to be flatter and therefore the search paths are
shorter. One simple splitting rule is themedian rule, where the hyperplanes are determined
by finding the median of the coordinates in the data at one given dimension and using
this median as the shift of the hyperplane from the origin. The dimension of this median
may be fixed or varying over the levels of the tree. For example, when applying this rule
to a 3D-tree, the plane at the root node will be orthogonal to the X-axis and its distance
from the origin will be the median of allX-values in the data. The hyperplanes at the next
level are then orthogonal to the Y-axis and their position is the median of all Y-values in
the subsets. This way the splitting goes on until all leaf nodes contain at most as many
data points as given by the bucket size.

Efficient searching in 3D-trees Several operations such as n-nearest neighbor search
or range search can be performed efficiently using kD-trees. As an example, we only
explain the computation of the nearest neighbor p from a point cloud C to a given query
point q. We assume that a Minkowski metric d(p,q) is defined on the data points as
follows:

d(p,q) := r

√√√
k∑

i=1

(pi − qi)r; p = (p1, . . . , pk), q = (q1, . . . , qk), r ∈ R. (4.5)
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Algorithm 1 searchNN(τ,q, (p, d)) – Nearest neighbor search using a kD-tree τ

Definitions:

τl : left subtree of τ
τr : right subtree of τ
Hτ : hyperplane at subtree τ

1: if isLea f (τ) then
2: (p, d)← searchBucket(τ,q, (p, d))
3: return (p, d)
4: end if

5: if isLe f tO f (q,Hτ) then
6: (p, d)← searchNN(τl,q, (p, d))
7: if intersects(Hτ, sphere(q, d)) then
8: (p, d)← searchNN(τr,q, (p, d))
9: end if

10: else

11: (p, d)← searchNN(τr,q, (p, d))
12: if intersects(Hτ, sphere(q, d)) then
13: (p, d)← searchNN(τl,q, (p, d))
14: end if

15: end if

16: return (p, d)

Assuming that C is represented as a kD-tree τ, we can now formulate the algorithm
to determine the nearest neighbor with respect to this metric to the query point q. It goes
back to Friedman et al. [1977] and is shown in Algorithm 1. The first call to the recursive
algorithm is made using an arbitrary point p and a distance d = ∞. First, the algorithm
searches for the leaf node where the query point q falls into. Then it determines the
closest point p in the corresponding bucket along with its distance d to q. Finally, the
hyperplanes of all subtrees on the way to the leaf node are tested on intersection with
the Sphere S = (p, r). If one such hyperplane intersects S, then the corresponding other
subtree may contain a point p′ that is closer to q than p. At the end, all potential subtrees
are searched and the result is the closest point p, along with its distance d to q.

Disadvantages of kD-trees One major drawback of kD-trees is that they are static.
This means that it is not possible to insert new data points into the tree without the need
to recompute the whole tree. Of course, one can think of inserting a new data point p
by extending the leaf node n into which p falls. However, this strategy may result in
arbitrarily unbalanced trees, because the insertion of p can affect the application of the
splitting rule in all nodes from n up to the root node.
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4.3.2 OBB-trees

The key operation that has to be carried out to avoid collisions of a mobile robot with
obstacles is the test whether there is an intersection of the robot’s shape with obstacles
stored in the map. A fast and robust method that uses 3D polygons to represent the
obstacles and the robot has been proposed by Gottschalk [2000]. In this approach the
collision check is performed using Oriented Bounded Boxes and by organizing these in
a tree-structure (OBB-tree). The tree is built from top to bottom for a given set of 3D
polygons. Each inner node of the tree consists of a 3D oriented bounding box for a subset
of the polygons. The bounding boxes are oriented along the principal directions of the
polygon vertices. This way we obtain a tight fit of the bounding boxes to the polygons.
The main idea is that the overlap test for two oriented bounding boxes can be per-

formed efficiently by projecting both boxes onto a line and checking the resulting line
segments for overlap. As Gottschalk [2000] shows, only 15 different line directions need
to be tested, namely the 6 principal directions of both boxes and the 9 mutual cross
products of these.
For a collision check between the robot and a set of obstacle polygons, an OBB-tree

is built both for the robot and for the obstacles. The collision check begins by testing
the root node boxes for overlap and then proceeds in both trees until a level is reached
where the boxes do not overlap or until a leaf node is encountered. In the first case, the
algorithm returns ’no collision’. In the second case the corresponding 3D polygons need
to be checked for intersection.

4.4 3D Occupancy Grids

Themajor drawbackwhen using point clouds for representing 3Ddata is the fact that each
point only represents the end point of the line of sight fromwhich the scenewas observed.
This means that the 3D coordinates of such a point represent the first occurrence of solid
matter while traveling along a linear beam. Depending on the sensor used for acquiring
the data, this beam starts at different positions in space and ends at different types of
material. The problem with this kind of data representation is that only the information
about occupied space is stored, while the fact that all space along this beam is free can not
be represented by a point cloud. This causes problems in cases where knowledge about
occupied and free space is needed, for example when a collision between moving objects
needs to be detected.
A data structure that takes also the free space into account is the occupancy grid [Elfes,

1989, Moravec, 1988]. We will briefly present the main ideas in the next section. A more
detailed analysis can be found in the book of Thrun et al. [2005].

4.4.1 Mathematical Formulation

The main idea of the occupancy grid is to subdivide the space into a finite set of grid
cells. Each of these cells reflects the fact that the space at the particular position is either
occupied or free. Mathematically, this is expressed in terms of a binary random variable
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mi where i is the index of the cell in the mapm. The probability that the cellmi is occupied
is then written as p(mi = 1) or simply p(mi). Now, the algorithm to build an occupancy
grid map is stated as a time-dependent method where at each time step t the information
zt that a robot acquires from its environment (also called themeasurements) is incorporated
while the robot travels around this environment. We assume that we are given the exact
robot position xt at each time step, which is why this concept is calledmapping with known
poses. Mathematically, the goal in building an occupancy map is defined as finding the
probability distribution

p(m | z1:t, x1:t) (4.6)

where z1:t denotes all measurements that the robot received at the time frames 1, . . . , t
and x1:t are the respective robot positions. For the computation of (4.6) we assume that
the particular grid cells are statistically independent. This is a strong assumption that is
violated in most cases, but it will serve us as a convenient approximation. We refer again
to Thrun et al. [2005] for further considerations on this topic. Thus, equation (4.6) turns
into

p(m | z1:t, x1:t) =
∏

i

p(mi | z1:t, x1:t)

=
∏

i

p(zt |mi, z1:t−1, x1:t)p(mi | z1:t−1, x1:t)
p(zt | z1:t−1, x1:t)

=
∏

i

p(zt |mi, x1:t)p(mi | z1:t−1, x1:t)
p(zt | z1:t−1, x1:t)

(4.7)

Here, we applied Bayes’ rule and exploited the independence of the currentmeasurement
zt from the previous ones z1:t−1 given the map mi. If we again apply Bayes’ rule for the
measurement model p(zt |mi, x1:t) we obtain

p(mi | zt, x1:t)p(zt | x1:t)p(mi | z1:t−1, x)
p(mi | x1:t)p(zt | x1:t)

(4.8)

Now, exploiting the fact that all mi are binary variables, we can compute the log odds ratio
instead of p(mi | z1:t, x1:t), which is defined by

li,t := log
p(mi | z1:t, x1:t)
1 − p(mi | z1:t, x1:t)

(4.9)

The log odds ratio is more convenient and computationally more stable for probabilities
close to 1 or 0. By deriving a similar expression as in Equation (4.8) for the opposite event
p(¬mi | z1:t, x1:t) = 1 − p(mi | z1:t, x1:t) and plugging both into equation (4.9), we obtain

li,t = log
p(mi | z1:t−1, xt)
1 − p(mi | z1:t−1, xt)

+ log
p(mi | zt, xt)
1 − p(mi | zt, xt)

− log p(mi)
1 − p(mi)

= li,t−1 + λ(mi, zt, xt) − l0 (4.10)

Here, we define the function λ as the log odds ratio of the inverse sensor model p(mi |zt, xt) at
time t and l0 as the log odds ratio of the map occupancy prior p(mi). For the computation
of the inverse sensor model there exist different strategies.
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4.4.2 An Application Example:
Using 3D Occupancy Grids for Autonomous Exploration

In this section, we want to show the representational power of 3D occupancy grids in a
concrete application example. We will see that the information stored in an occupancy
grid can be used to get an idea of what is known about the environment and what not.
Thiswill be expressedmathematically bymeans of the negative entropy. Using this, we can
estimate the amount of new information we will acquire when observing a given scene
from a different view point. This value is usually called the information gain. This means,
we can formulate an algorithm that explores an unknown environment by generating a set
of paths along which a robot observes a given scene. These paths can then be evaluated
with respect to the expected information gain by storing the acquired information in an
occupancy grid. When choosing the path which has the maximal expected information
gain, we obtain a greedy strategy for the problem of autonomous exploration in an
unknown environment.

The System

Consider the robotic manipulator with 4 degrees of freedom that was shown in figure 4.2.
At each position of the four joints, the laser can acquire a fixed set of measurements. We
will denote a joint position at a given time step twith xt ∈ Cwhere C is the configuration
space defined in equation (4.1). Themeasurements taken at a position xt consist ofN laser
beams and will be denoted as zt ∈ RN.
Due to the configuration of the manipulator, it can reach a 3D area of about 1m range.

Objects that are farther away, can also be scannedby the system, but then it ismoredifficult
to find different view points onto the object. In particular, it is not possible to scan objects
from their back side. Therefore, we restrict our attention to a cubical area Bwith 1m edge
length around the manipulator, which will be our region of interest. The information that
is acquired during the exploration process is represented in a 3D occupancy grid inside
B. In the remainder, B is also denoted the grid box. Now, we define the local exploration
task as follows: For our given 3d rectangular region Bwe search for a set of sensor paths
along which the acquired sensor information is maximized while the overall path cost is
minimized.

The Expected Information Gain

As already mentioned, we will use the negative entropy to measure the amount of infor-
mation acquired by the sensor. In the case of the binary random variablemi where i is the
index of the grid cell, the entropy H is defined as

H(mi) := −p(mi) log2 p(mi) − (1 − p(mi)) log2(1 − p(mi)) (4.11)

The entropy measures the amount of chaos or uncertainty about mi. It reaches the
maximum value 1 when p(mi) = 0.5 and the minimum value 0 for p(mi) = 0 or p(mi) = 1.
The negative entropy can be used to measure the information about mi. In cases where
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we are certain that mi is occupied (mi = 1) or free (mi = 0), the negative entropy −H(mi) is
maximal. After updating the occupancy probability of mi for a given new measurement
zt and a manipulator position xt according to equation (4.10), we obtain a new negative
entropy −H(mi | zt, xt). The difference of this new amount of information and the old one
is then defined as the information gain I:

I(mi | zt, xt) := H(mi) −H(mi | zt, xt) (4.12)

Basedon the informationgain andanappropriate path cost function f , we can evaluate
a possible path P of robot positions (x1, . . . , xT) by calculating the weighted difference
between the information gain and f (P) (see also Stachniss and Burgard [2003]). A typical
problem in this context is that the information gain cannot be calculated in advance as
one does not knowwhich measurement will be received alongP. The usual solution is to
compute the expected information gain by integrating over all possible measurements. In
our case, however, this is infeasible, since the number of possible measurements grows
exponentially with the number of time steps or with the length of P. Therefore, we
approximate the expected information gain by considering the most likely measurement
z̄ for each beam. This measurement is determined by traversing the grid in B along each
beam until a cell with probability higher than a given constant, which is set to 0.5 in our
example, is reached. The expected information gain EI of a particular path P is then
computed as:

EI(P) =
T∑

t=1

N∑

i=0

∑

m∈B(z̄t,i)
I(m | z̄t,i, xt), (4.13)

where T is length of the path P, N is the number of beams of each scan, and B(z̄t,i) is the
set of all cells intercepted by the beam with length z̄t,i.

The Utility of a Path

For a good path evaluationwe need a path cost function f that penalizes dangerous paths.
A good way to achieve this is by defining f as the inverse distance to the next object. We
approximate this value by creating a set of k sample points {s0, . . . , sk} inside the volume
of the manipulator and determining the sample with minimum distance to the grid box
B. Thus, we have

f (P) = argmin
i=1,...,k

{d(si,B)−1}. (4.14)

The distance d(si,B) from a sample si to the box B can be efficiently calculated using a
generalized voronoi diagram (GVD) of B, which is described in detail by Lin [1993]. A GVD
assigns to each face, each edge and each vertex of B a voronoi regionwhich is defined by the
set of all points to which the corresponding face, edge or vertex is closer than all others.
Given a GVD for B, we only need to check into which voronoi region si falls. Then, d(si,B)
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Figure 4.4: Creation of a possible exploration path. For each edge of the box B we determine a
plane that is tangent to the upper half sphere S↑. The points where these planes touch S↑ are then

connected to a sub-path.

is given as the distance to the box feature (face, edge or vertex) that corresponds to the
found voronoi region.
Using equations (4.12) and (4.14), we define the best exploration path P∗ as the one

that maximizes the utility:

P∗ = argmax
P∈P

{EI(P) − λ f (P)} (4.15)

where λ is a fixed weighing factor and P is the set of all possible paths.

The Exploration Algorithm

Themajor problem in evaluating equation (4.15) is thatP cannot be determined efficiently.
Therefore, we consider only a small subset S of P, which contains all paths that are
reachable by the manipulator and at the same time include good view points. These
paths should provide us a good coverage of the object(s) inside B, which is accomplished
when the laser sweeps across the edges {e1, . . . , e12} of B. The start and end points of such
paths can be determined by finding manipulator positions at which one of the edges ei is
inside the laser plane. Geometrically, this corresponds to points at which a plane passing
through a given ei is tangent to a given small sphere S↑. Thus, the set S of good view
paths is constructed as follows (see also Figure 4.4):
First, we create a set of points on the surface of the big half sphere S↓ so that no point is

nearer to B than themaximumdistance of the laser to the rotation axis of joint j3. This way
we ensure that the laser does not collide with B. For each of these points we determine
all points on the corresponding upper half sphere S↑ that lie on a plane tangent to S↑ and
passing through an ei as described. We obtain a set of vantage points v j together with the
corresponding edges of B. Those vantage points, for which the edges are parallel, are



48 CHAPTER 4. REPRESENTATIONS OF 3D RANGE DATA

a. Object b. Grid after one scan c. Grid after several scans

Figure 4.5: Example of a 3D occupancy grid after scanning the 3D object shown in Fig. (a).
After the first scan the grid looks like depicted in Fig. (b) and after several scans the grid results
like in Fig. (c). Blue grid cells represent a high occupancy probability, red cells are unknown areas.

then connected to sub-paths. These sub-paths correspond to different sweeping motions
of the scanner along the faces of B.
Given this set S of sub-paths we proceed as follows: Out of a set of h sub-paths that

are nearest to the current arm position we select the one with maximum utility. The value
h will be denoted as the exploration horizon. If the obtained utility is lower than a given
minimum utility umin, the sub-path is omitted and the next h sub-paths are considered. If a
sub-path is found, it is executed and the newly gathered information is incorporated into
the occupancy grid. The algorithm terminates if there is no sub-path left.

Implementation

Wehave tested this exploration strategywith a real 3d object, a piano stool (see figure 4.5a).
The stool was placed on top of a table in front of the manipulator. The cell size of the 3D
occupancy grid was 1cm. After the first scan we obtained the grid shown in figure 4.5b.
We can see that the front part of the object has been observed, but there are still many
occluded areas. Note also that there are unknown areas where the laser could not reach
due to its restricted angular resolution. For the exploration, we chose an exploration
horizon h of 10 paths. Initially, there were 424 sub-paths, out of which only 16 were
executed (the maximumwould have been 42). The occupancy grid that resulted from the
exploration is shown in figure 4.5c. We can see that all grid cells above the table are either
occupied (drawn in blue) or free (not drawn). Areas below the table were not reachable
by the scanner and therefore remain unobserved (red cells).
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4.5 3D Triangulations

So far we have seen data structures for 3D data that are point-based. Dealing with points
has the advantage of being easily representable. Also, point representations are “closer”
to the measurement representation of a 3D sensor, because a sensor usually provides
single (range) measurements and can not determine the geometrical structure of the
environment. However, in many applications this geometrical structure is needed. For
example, if a texture obtained from camera images is to bemapped onto the 3D data, then
the mapping can be substantially improved by exploiting planar structures like walls and
floors in the 3D data. This way a resolution independent mapping can be achieved by
assigning texture coordinates to the vertices of a planar polygon that was found in the
data. In a point-based setting like point clouds or occupancy grids, each point will have
an assigned color value, but the information about texture between the data points can
not be represented. Furthermore, a polygon-based 3D model is usually more compact
than a point-based model.
In the literature, many different approaches to find planar structures from point-based

3D data can be found. We will not give an overview of all these techniques here, but
instead show some simple approaches to obtain triangulated meshes from point-based
data. In chapter 5 we will present a new technique to detect planar structures in point
clouds using a probabilistic approach. References to other techniques will be given there.
In the following, we will describe and compare three different approaches to triangu-

late point clouds. The main focus in these techniques is to find a good visualization of the
data. This means that no polygons with more than three vertices are provided by these
algorithms, because triangles are sufficient, and in fact better suited for 3D visualization
engines like OpenGL based graphics processors.

4.5.1 Local Triangulations

The first idea to find a triangular mesh from a point cloud is by connecting neighboring
points to triangles. However, care has to be taken here, because in a general setting it is
not clear which points have to be connected to triangles. Therefore, we consider first a
special case in which knowledge about the data acquisition process can be used to do a
triangulation. Then, we formulate a possible solution for finding triangles in arbitrary
point clouds.

Exploiting 2D manifolds

In many cases, we are in a situation in which the point set that has to be triangulated
is acquired as a two dimensional projection of the 3D space. For example, when the
data is acquired with a 3D laser scanning device such as the one shown in figure 4.2, the
resulting data consists of several scan lines, one for each new position of the laser. Each
of these scan lines consists of a vector of laser range readings, from which the 3D points
are computed. Therefore, the 3D point cloud is stored in a 2D manifold, namely an array
of points with a line index i for each scan line and a column index j for each laser beam.
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Figure 4.6: Local triangulation of a point cloud that was computed from an indoor scan. For the
triangulation, the fact that all 3D points lie on a 2D manifold was used. The 3D scan consists of
scan lines and each scan line of 180 range readings. Thus, each point can be parameterized by the

scan line index and the beam index.

If we denote a data point that is computed from the laser range reading of the i-th scan
line and the j-th laser beam, we can triangulate the data using the following scheme
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As an example of this triangulationmethod, consider the indoor scene shown in figure 4.6.
The triangulation improves the visualization compared to a point cloud because the
triangular faces can be rendered with shading methods. Note that the vertices of the
triangles correspond to the raw sensor data, therefore the triangulation appears noisy.
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Local Triangulations of Arbitrary Point Clouds

In the case that the points are not given as a 2D manifold, there is no ordering of the
points and it is more difficult to determine which points should be connected to triangles.
One simple way to find an ordering is by means of a 3D grid structure. For example, one
could use a 3D histogram to estimate the density of the point cloud. Then, we can connect
neighboring cells to triangles whenever the neighbor cells reflect a sufficiently high data
density. Several possible ways to connect neighboring cells exist. One is by considering
the three squares adjacent to the current cell ci, j,k as in the following scheme

ci, j+1,k+1

ci, j,k+1

ttttttttt
ci+1, j,k+1

ci, j+1,k ci+1, j+1,k

ci, j,k

tttttttttt
ci+1, j,k

rrrrrrrrrr

Then, by subdividing these squares into triangles, we obtain a triangulation. An example
of this simple technique can be seen in Fig. 4.7a, where we used the point cloud data of
the piano stool shown in Fig. 4.5. As we can see, this triangulation gives a rather bad
result. The main reason for this is that the object to be modeled is not represented as a
polyhedron, where the surface consists of triangles that are adjacent so that at each edge
there are exactly two triangles. An approach that avoids this is presented in the following.

4.5.2 Contouring Algorithms

A major problem when using local triangulations is that the resulting model is not a
polyhedron, i.e. it does not consist of a closed 2D surface. This is because at a given
position in the point cloud it is impossible to say where the inside of the object is and
where the outside. A way to address this problem is by using contouring algorithms.
These operate on a grid similar to the occupancy grids presented in section 4.4. The
difference here is that each grid cell stores the signed distance to the surface of the 3D object
that is to be modeled. The contouring algorithm then finds a surface that intersects the
cells where the distance crosses zero. One popular contouring algorithm is the marching
cubes algorithm presented by Lorensen and Cline [1987], which is implemented in the
Visualization Toolkit (see Schroeder et al. [1997]). Another contouring algorithm is based
on the level set method by Sethian [1999].

The Normalized Density Function

The problem that arises when applying contouring algorithms to the mesh generation of
point clouds is that the signed distance function is not available. This is, as mentioned
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already, because the inside and the outside of the object can not be distinguished. Instead
of the signed distance we could use the unsigned, i.e. the Euclidean distance of each
cell in the grid to the closest point in the point cloud. However, then we can not use the
zero crossings for the contouring, because the unsigned distance function actually never
crosses zero. It reaches zero only when a data point falls exactly inside a cell of the grid,
which is very unlikely. In addition, the Euclidean distance function is not robust against
noise in the point cloud data and against the density of the point cloud. Therefore, we
use a different function, namely the normalized density function.
The normalized density function first computes for each cell in the 3D grid around the

point cloud the number of data points that are closer than a given distance. Then, these
numbers are divided by the maximum number of neighbors that have been encountered
in the grid. Thus, the values in the 3D grid range between 0 and 1. The advantage of
the normalized density function is that the value of 0 is definitely reached at cells that
are farther away than the chosen neighbor distance. Thus, we can use the zero level
as a contouring threshold. In practice however, it is recommendable to use a threshold
slightly higher than zero to obtain a contour that is closer to the point cloud data. Also,
the normalized distance function has the positive effect of smoothing the input data by
considering a vicinity of data points instead of the closest point. The grade of smoothing
can be adjusted by different choices of the neighbor distance.

The Mesh Generation Algorithm

The overall algorithm to generate meshes from point clouds, which we will use in this
work for comparison with other meshing techniques, can be described as follows: First,
we compute the oriented bounding box (OBB, see section 4.3.2) for the given point cloud.
This minimizes the amount of memory required for the 3D grid. Then, we divide the
OBB into equally sized voxels or grid cells and compute the normalized density function
for each voxel. Finally, we apply a contouring algorithm such as marching cubes with a
contouring threshold close to zero. As an example, we applied this algorithm to the point
cloud data of the piano stool shown in Fig. 4.5. The result is shown in Fig. 4.7b. As we can
see, the algorithm produces a closed surface, but it also introduces some artifacts from
the underlying grid structure. A method that addresses this problem will be presented
in the next section.

4.5.3 Alpha-shapes

One drawback of the contouring algorithms is that they require the evaluation of some
function at discrete points in 3D space. This has the effect that the 3D contours never look
perfectly smooth, because the steps from the grid structure will always be visible. For
a really smooth surface, the grid resolution must be very high, but this requires a huge
amount of memory and slows the contouring process down dramatically. Therefore,
Bernardini and Bajaj [1997] developed a triangulation method that uses the points in the
point cloud as vertices. It is based on the Delaunay triangulation of the points. For a
given value α the alpha-shape is defined by all simplices in the Delaunay triangulation
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a. local triangulation b. contouring c. alpha shape

Figure 4.7: Different types of triangulations of the piano stool shown in Fig. 4.5a. See text for a
detailed description of the different meshing algorithms.

Algorithm Computation Time Drawbacks

Local triangulation ++ no valid polyhedrons, artifacts
Contouring – artifacts due to grid structure
Alpha shapes + sensitive to noise in the data

Table 4.1: Comparison of the three presented 3D triangulation algorithms.

that have an empty circumsphere with a squared radius that is equal or smaller than
α. Here, a circumsphere is said to be empty if it does not contain any data points in its
interior, i.e. excluding the boundary. In general alpha-shapes are not connected, but the
α-value can be chosen so that the shape only consists of one connected component. This
is often a good choice, but it can also lead to wrong triangulations in object regions that
are sampled only sparsely. In such cases the α-value should be chosen appropriately.
The optimal choice of α, however, is difficult to find, which is a major drawback of the
triangulation method using alpha-shapes.

4.5.4 Comparison of 3D Triangulations

By looking at the different triangulation results in Figure 4.7 and by analyzing the algo-
rithms we can say the following:

• Local triangulation is fast and easy to implement, but gives poor results. It intro-
duces artifacts due to the underlying grid structure and does not result in correct
polyhedrons.
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• Contouring algorithms provide a closed surface of the object and they are relatively
robust against noise in the data. However, they are comparably slow in computation
time and also introduce artifacts.

• Alpha-shapes are faster to compute than contoured meshes and do not require the
computation of a 3D grid. However, they directly connect the input data points and
are therefore sensitive to noise in the data.

To summarize, we show the comparison of all three algorithms in Table 4.1. From this,
we conclude that both the contouring algorithm and the alpha-shapes can be used to
generate 3D mesh representations from point cloud data, where the alpha-shapes are
preferred when the noise in the data is low. In contrast, a contoured mesh should be
chosen when it is required to obtain a valid polyhedron with a closed surface.

4.6 Summary of Standard 3D Data Representations

In this section, we summarize the comparison of the standard 3D data presentations
presented in this chapter. In particular, the approaches have the following properties:

• Point clouds represent directly the raw 3D data. Their drawback is that their
memory requirement grows linear with the number of data points even if always
the same 3D region is scanned. Also, the search for a particular data point is not
efficient and the shape of 3D objects can not be modeled.

• Tree structures implement an efficient search for data points. However, they also
grow linearly with the number of stored points and provide no good shape repre-
sentation for 3D objects.

• Occupancy grids represent the environment more accurately because they also
model the free space. Theirmemory requirement does not increasewith the number
of data points, but with the volume of the scanned environment. Thus, for small
environments which are scanned very often they are very efficient.

• Triangular meshes require a memory size that is either linear in the number of data
points or proportional to the volume of the data, depending of the triangulation
algorithm. They are particularly useful for representing the shape of 3D objects.

Data structure Memory requirement Search time 3D shape representation

Point cloud O(n) O(n) −
Tree structures O(n) O(logn) −
Occupancy grid O(w · d · h) O(1) +

Triangular mesh O(w · d · h) or O(n) O(n) ++

Table 4.2: Comparison of standard 3D data representations. Here, n denotes the number of data
points and w, d and h denote the width, height and depth of the data respectively.
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Table 4.2 summarizes this comparison. For the context of mobile robotics we conclude
that occupancy grids and triangular meshes are well suited for representing 3D data,
but they both have drawbacks that limit their applicability. Especially for the task of
localization and path planning, they are not useful, as we will see later in chapter 6.
Therefore, new data representations have to be found, which will be the subject of the
next two chapters.
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If I have a thousand ideas and only one turns
out to be good, I am satisfied.

Alfred Nobel (1833 - 1896) 5
Planar Approximations

5.1 Introduction

As we have seen in the previous chapter, it is often cumbersome and inconvenient to
operatewith 3Ddata represented aspoint cloudsdirectly. Inmanyapplications, especially
in real-time scenarios, a more compact and abstract representation is required. Humans
build such compact models intuitively by visually inter- and extrapolating the perceived
set of 3D points. In essence, this is comparable to the matching of the point cloud
with known 3D patterns, such as planes, spheres, boxes, etc. In the computer vision
community this problem is known as range image segmentation and is defined as finding
three dimensional primitives (planes, boxes, cylinders, etc) that best explain the point
cloud data. In the literature, a whole body of work can be found on the topic of range
image segmentation. A good overview is given by Hoover et al. [1996], later work was
done by Pulli [1997].
For the scope of this work, we will focus on a specialized version of the range image

segmentation problem, namely the detection of planar structures in point clouds. Thus,
instead of matching arbitrary 3D shapes into the points, we want to fit planes and pla-
nar polygons into the data. For that purpose, the plane fitting techniques developed in
section 2.6 will serve us as the basic operations. The novel plane extraction technique
developed in this work is based on a probabilistic framework where the planes are con-
sidered as random variables underlying a Gaussian distribution. It uses the Expectation
Maximization (EM) algorithm applied to a hierarchical Bayesian Network which repre-
sents the joint probability of the point coordinates and the positions of the planes. The
contribution of the presented method is the introduction of main directions which consist
of normal vectors perpendicular to one or more of the planes to estimate. In addition to
the data points, these main directions constrain the position of the planes in the sense

57
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that planes that are nearly parallel, i.e. which belong to the same main direction, are very
likely to be perfectly parallel. This construct proves especially useful in indoor and other
man-made environments (e.g. cities like Manhattan), where most of the planes can be
clustered into three orthogonal main directions. As we will see, the new approach yields
better plane detection results than the standard probabilistic approach by Liu et al. [2001],
which does not incorporate main directions.
This chapter is organized as follows: In section 5.2 we will describe the principles

of state-of-the-art techniques to identify planes in point clouds. In particular, these
approaches can be subdivided into region-based and edge-based approaches, as has been
done by Fan et al. [1987] for the general range image segmentation problem. Region-
based approaches start with a planar region defined by a point that is selected from the
point cloud and try to enlarge this region by adding adjacent points until some planarity
condition is violated. A basic example will be given in section 5.2.1. In contrast, edge-
based approaches try to find the boundaries of the planar regions, defined as edges
and fit planes into these edges. A concrete solution using this approach is presented in
section 5.2.3. In addition, we show in section 5.2.2 the idea of using a three dimensional
Hough transform to find planes in point clouds. A rather new approach by Liu et al.
[2001] uses a probabilistic model, yielding better results, as we will see in section 5.3.
In section 5.4, we will present a first extension of this approach by introducing main
directions as mentioned above. It will be shown in experiments that this approach yields
better results. Then, in section 5.5 we will further extend the approach by adding color
information into the plane computation. Again, we show in experiments that the plane
detection results are substantially improved.

5.2 Plane Extraction: The State of the Art

In this section, we will briefly summarize the most common standard techniques for the
problem of plane extraction in range scan images. These techniques are region growing,
Hough transform and plane extraction based on edge detection.

5.2.1 Region Growing

A standard way of detecting planes in 3D point clouds is based on a region growing
algorithm that operates on the points together with the normal vectors computed for each
data point. Algorithm 2 shows the particular steps of this method. In line 1, a normal
vector n is computed for each data point z. This can be done in many different ways (see
Pulli and Pietikäinen [1993] for an overview). The most common approach is to perform
a Principle Component Analysis (PCA) on the vicinityVz of z. The first two eigen vectors
of this point cloudVz determine the plane that best fits the points ofVz, i.e. the neighbors
of z. The normal vector of this plane, which is equal to the third eigen vector, is then
defined as the vector n.
Once the normal vectors are computed, the algorithm proceeds as follows: As long as

not all points have been considered, it draws randomly a point z and the corresponding
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Algorithm 2 f indPlanesRegGrow(P) – Detect planar regions in 3D point cloud P with
region growing
1: N ←N(P)
2: R←ESOR()
3: while APC(P) do
4: (z,n)← R (P,N)
5: R ←ER()
6: Q←Q(z,n)
7: while E(Q) do
8: (z′,n′)←Q (Q)
9: if B(n,n′) < θ then
10: R ← R ∪ z′
11: S←N (z)
12: for (zs,ns) ∈ S do
13: if zs < R then
14: Q← Q (Q, z)
15: end if

16: end for

17: end if

18: end while

19: R← R ∪ R
20: end while

normal vector n from the set of points P. This single point z initializes a new planar
region R. Then, in line 6, a queue of neighboring points is created, where neighbors are
points that are not farther away than a given threshold. The idea is that all neighbors of z
together with all neighbors’ neighbors should be added to the queue, if they haven’t been
added to the region R already. This queue defines a set of candidates for addition to the
planar region R. All candidates that have a normal vector with a small angular deviation
from the initial normal vector n are added to R. This way it is guaranteed that the normal
vectors of all points in R are approximately collinear. Furthermore, R is guaranteed to
define a contiguous set of points, because all elements of R are neighbors of a smaller
subset of R.

Main Drawbacks of Region Growing

The advantage of the region growing approach is that it is relatively easy to implement
and that it is comparably fast in execution. However, some principle problems exist,
which we will describe in the following.

Normal vector computation: The algorithm depends on an accurate computation of
the normal vectors. This is not possible in general, e.g. in the case of isolated points that
have no or only a few neighbors. For these points, no normal vector can be computed.
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Also, it is difficult to find a radius for the neighborhood, on which the normals are
computed. Using a big radius smoothes the data too much and results in large areas at
the borders of a planar structure that should not be identified with the planar structure.
In addition, the time to compute the normal vectors grows dramatically when using a
big neighborhood radius, because the number of neighbors usually gets very large (in the
worst case of a densely sampled cube it is a cubic function of the radius). On the other side,
a small radius results in very noisy normal vectors, that can not be classified accurately.
One could think of an adaptive way to define the neighborhood radius, e.g. depending
on the data density. But it is difficult to define a functional relationship between the data
density and the optimal neighborhood radius.

Normal vector clustering: The approach presented in Algorithm 2 clusters the point
data into regions of similar normal vectors. One problem with this approach is that
the normals of all possible candidate points are compared to the normal vector of the –
randomly chosen – first data point in a region. This may result in sub-optimally detected
planar regions. For example, in the case of a single planar surface it may happen that
the first point that is drawn is close to the border, where the local normal vectors usually
deviate from the global plane normal. This results in a region where all normals are close
to the local estimate of the plane normal and not to the global plane normal.

Behavior at edges: Another problem with the standard region growing approach is
that points at sharp edges in the data can not be handled correctly. This is due to the
fact that the local normal vectors at edges where two planes meet, smoothly interpolate
between the global normal vectors of both planes. In other words, edges are rounded. This
results in edge regions that are detected as new planar regions with a normal vector that
interpolates between the two plane normals. This means that the obtained planes are a
smoothed approximation of the point data, which is unacceptable.

5.2.2 Hough Transform

Several authors have proposed to perform a Hough transform in three dimensions for
detecting planes (see for example Iocchi et al. [2000], Okada et al. [2001], Sabe et al. [2004]).
This is done as follows: First, a different representation for planes is used instead of the
standard notation. In particular, if n is the normal vector and d the distance of a plane p
to the origin, then the plane is usually defined by

pn,d = {x ∈ R3 | n · x = d}. (5.1)

This has the disadvantage that a plane is represented by four values, namely three for the
normal vector and one for the distance. But, as the normal vector has always unit length,
the number of degrees of freedom of a plane is only three (see section 2.4 for details).
Therefore, a different notation is used instead

pn,d = {(x1, x2, x3) ∈ R3 | x1 cosα cos ǫ + x2 sinα cos ǫ + x3 sin ǫ = d}, (5.2)
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where α and ǫ denote the azimuth and the elevation of the normal vector respectively.
Thus, a plane is defined by the values α, ǫ and d. Given this parametric representation
of a plane in 3D, the Hough transform proceeds as follows: All 3D input data points are
mapped into a 3D array, which covers the whole range of all possible values of α, ǫ and d.
This array is called the accumulator and initially contains zeros in all cells. The mapping is
done so that one point from the input data corresponds to a set of cells in the accumulator.
The cells are determined using Equation (5.2), i.e. a point x = (x1, x2, x3) is mapped to the
set of cells (α, ǫ, d), for which the equation holds. The values stored in all these cells are
incremented for each given point x. The motivation behind this is that each cell in the
accumulator corresponds to a plane in parametric representation. By incrementing the
values in the cells, all planes that possibly pass trough the input data point x are marked.
A plane that passes through many points is thus found by determining an accumulator
cell with a high value. The 3D index of that cell determines the parameters of the plane,
while the stored value corresponds to the number of points which are close to the plane.

Discussion Using the 3DHough transform todetect planes canbe seen as a clusteringof
planes in 3D parameter space using a histogram. Therefore, we are faced with the typical
problems of histogram based clustering, namely the selection of the histogram’s bin size
and the occurrence of local maxima in the histogram. The bin size, which determines the
resolution of the accumulator, is a delicate parameter: if it is too big, the resulting plane
parameters are inaccurate, while a too small bin size results in planes that fit only a small
number of points and therefore do not generalize. Another problem is that in the vicinity
of a local maximum in the accumulator, usually other local maxima occur. These other
maxima often correspond to the same plane in reality, but due to noise in the data and
the discretization of the parameter space, many different but similar planes may result.

5.2.3 Edge-based Approach

There are several techniques for range image segmentation that are based on the detection
of region borders. In our case the region borders consist of 3D line segments, becausewe are
interested in finding planes, or better planar polygons. The borders of these polygons are
defined by edges. In the following, we will give an example of a method to detect edges
in 3D range scans and, based on these, to find planes that fit into the edges. The example
is taken from the work Triebel and Burgard [2005], which is one of the contributions
mentioned in Section 1.3.

Edge Detection For a given point cloud, we can perform the following steps to extract
edges.

1. We detect a set of edge points (edgels). These are defined as those scan points of a
vertical scan line for which one vertically neighboring point is far away from the
view point compared to the edgel itself (see Fig. 5.1a). A vertical neighbor in this
context is defined as the scan point from the previous scan line with the same beam
index. In section 4.5.1, we mentioned already this definition of neighbor points.
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Edgels

d1
d2

dn−1
dn

a. Detection of edgels. An edgel is de-
fined as a scan point in a vertical scan line
that has a distance di from the view point
which is smaller than the difference of a
neighbor’s distance and a given threshold
τ, i.e.: di < di−1 − τ or di < di+1 − τ

b. Edge features extracted from a single 3D scan
of a building. For the plane detection, we are only
interested in long edges. In this case, all edges that are
longer than 3m are selected. Note that the edgels at
the building corner have not been detected because the
difference in range distance was below the threshold τ.

Figure 5.1: Edge detection in range scans. Figure (a) shows the definition of edge points (edgels),
in figure (b) we see an example of the edge detection in a real 3D scan. The two long edges are

sufficient to determine a plane for the front wall.

2. We calculate the tangent vectors t j for each edgel e j. Here, t j is defined by the first
principle direction for a set of edgels in the vicinity of e j. This principle direction is
computed as the eigenvector of the covariancematrix that corresponds to the largest
eigenvalue (see section 2.6.1 for a detailed description).

3. Next, we cluster the edgels twice. The first clustering is done with respect to the
tangent directions. We use a spherical histogram to find tangent vectors that point
into similar directions. The obtained clusters are then clustered with respect to the
positions of the edgels in space. This is done using a region growing technique.

4. All edgels in each cluster are connected to a poly-line. To this end, the edgels are
ordered according to their position on the 3D line. This means, we first project all
edgels onto the line that fits best into the cluster and then sort them along the line
direction.

Fig. 5.1a shows an example of a set of edge features extracted from a real 3D scan. In
this figure, only poly-lines with a minimum length of 3m are shown. Some edges, such
as the corner of the building or the edge between the wall and the floor, have not been
detected. This is because the difference in range distance between two vertical neighbor
points is not large enough. However, for the application in this example, it is not necessary
to detect these edges, as there are enough other ”sharp” edges that can be used to find
the planes.
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Fitting Planes into the Edges

Once the edge features have been extracted from the point cloud, we search for planes
that fit best into the edges. This is again a situation in which subsets (of edges) have
to be found which in some sense are best grouped together (to planes). However, it is
different from the classical clustering problem, because one edge can lie in several planes.
This means that standard clustering methods like region growing, k-means-clustering,
etc, cannot be applied. Therefore, we instead use a variant of the RANSAC algorithm by
Fischler and Bolles [1981].

1. We start by randomly sampling a pair (e1, e2) of non-collinear edges from the set
of all edges. The sampling is done with a probability proportional to the sum of
the length of both edges. This way we obtain with a higher likelihood planes that
correspond to large planar areas in the scan.

2. We find the plane pm whose normal vector is orthogonal to both edges of the pair.
Here we have to consider two different cases, namely that e1 and e2 are parallel, but
not collinear, or that e1 and e2 are not parallel:

• In the first case, an orthogonal vector to e1 and e2 is not uniquely defined.
Therefore, we define Pm in this case as the plane that minimizes the squared
distance to all edgels from e1 and e2. This is computed by the plane fitting
method from section 2.6.1.

• In the second case, the normal vector of Pm is defined by the cross product of
the main directions of e1 and e2 (see section 2.3).

3. We measure the quality of Pm by summing up the length of all edges in the scan
that lie entirely inside a given corridor around Pm. The set of these edges is called
the support of Pm, while the sum of the edge lengths is denoted as the support value.

4. We apply a hill climbing strategy to obtain more general planes by fitting a new
plane P′m into all edges from the support of plane Pm. This is done using the planes-
to-lines fitting algorithm presented in section 2.6.2, with the difference that the point
qwhich determines the position of the plane is computed as the mean of all edgels
in the support. This way we ensure that the resulting plane is close to the actual
edge segments and not to the lines defined by the edges. The hill climbing is done
by iteratively fitting a plane into the current support and computing a new support
for this new plane as long as the support value increases.

Later, in chapter 7, we will use this plane extraction algorithm in a situation where
a global 3D map representation and a set of optimal robot positions is computed from a
set of local 3D scans. This is usually referred to as simultaneous localization and mapping
(SLAM). We will see that the planes found by the algorithm can be used to introduce
global constraints between the robot poses, making the SLAM algorithm more robust.
The results of the plane extraction based on edges will be shown there.
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Discussion The plane extraction algorithm presented here works well in situations
where edgels can be extracted reliably, as it is the case for the presented example. Of
course, the edge detection that was used here is rather simple and there are much better
methods available. However, it still remains a problem to find planes where no or not
enough edges have been found. In addition, the algorithm requires many parameters
to be adjusted for a good plane detection. In fact, this is a drawback of most non-
probabilistic approaches (recall that region growing, for example, needs a threshold for
the angles between the normal vectors and one for determining the neighborhood). The
problem with these parameters is often that they are hard to determine intuitively and
must be tuned experimentally. In the following, we will present an algorithm based on a
probabilistic framework that uses only one parameter, which depends on the sensor and
not on the data set.

5.3 A Probabilistic Approach

Recently, a new method to detect planes from 3D range data has been proposed by Liu
et al. [2001]. This approach will be described in the remainder of this section, because
it forms the basis of the extensions presented in the following sections. The novelty of
Liu’s approach is that the planes to be detected are considered as random variables, as
well as the N data points, which will be denoted as the measurements Z = {z1, . . . , zN}.
The idea behind this is the following: Suppose we are given a plane θ with its normal
vector n and its distance d to the origin. Then there will be a certain probability that in
the vicinity of this plane there is a 3D point measurement z. This probability is called the
measurement model and will be denoted as p(z | θ). Its value is assumed to be proportional
to the Euclidean distance d(·, ·) between z and θ. If we assume Gaussian measurement
noise with variance ρ, we can formulate the measurement model as

p(zn | θm) =
1√
2πρ2

e
− 12
d(zn ,θm)2

ρ2 . (5.3)

Here the index n runs over all N measurements and the index m over all M planes. For
now,we assume that the numberMof planes is known, laterwewill drop this assumption.
In equation (5.3) we assumed that the measurement zn corresponds to the plane θm.

However, in general we are given a set of M planes θ1, . . . , θM and we do not know to
which of these planes zn corresponds. Therefore, we introduce a set of correspondence
variables An = {αn1, . . . , αnM}. Each of these variables is binary and reflects the fact that
measurement zn corresponds to plane θm. Eachmeasurement can correspond to only one
plane, therefore the sum of all variables in An is always 1.
Now, if we assume that allM correspondences are equally likely, we can formulate the

probability of a measurement zn and the correspondences An given the set of all planes
Θ = {θ1, . . . , θM} as

p(zn,An |Θ) =
1

M
√
2πρ2

e
− 12

∑M
m=1 αnm

d(zn ,θm)2

ρ2 . (5.4)
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a. Bayesian network used in plane
extraction using standard EM.

Θ

Φ
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b. Extended Bayesian network for plane extrac-
tion using hierarchical EM.

Figure 5.2: Bayesian networks used for plane extraction. Figure (a) shows the net used in the
standard approach. In figure (b) we see the extended network for the hierarchical approach.

Note that in this equation only one term in the sum is non-zero, namely the one for which
the correspondence between zn and a plane θm holds. Under the assumption that all
measurements are statistically independent, the overall data likelihood can be expressed
as

p(Z,A | θ) =
N∏

n=1

1

M
√
2πρ2

e
− 12

∑M
m=1 αnm

d(zn ,θm)2

ρ2 . (5.5)

The goal now is to find a set of planes θ that maximizes the data likelihood given
in equation (5.5). The problem here is that the correspondences A are not known and
can not be observed like the measurements. This means that they are hidden variables
in a Bayesian network like the one shown in figure 5.2a. A standard method to solve
such a problem is the expectation maximization (EM) algorithm described by Dempster
et al. [1977]. In our example this means that, instead of maximizing (5.5) directly we
maximize the expected log-likelihood where the expectation is computed over all possible
correspondences between points and planes, i.e. over all possible assignments ofA. Thus,
we have

LL := EA[log p(Z,A |Θ)]. (5.6)

Note that by taking the logarithm we alter the function to be maximized, but the value
Θ for which this maximum is reached stays the same, because the logarithm increases
monotonically. Later we will see why the computation in log-space is more convenient.
The problem arising here is that equation (5.6) can not be maximized directly, because

the computation of the expected value requires a fixed assignment to the plane variables
Θ. Therefore, the maximization is done iteratively. We start with an initial guess for the
plane variables Θ[0] and compute at each iteration i a new set of planes Θ[i+1], i.e.
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Θ[i+1] = argmax
Θ

EA[log p(Z,A |Θ) |Θ[i]]. (5.7)

In this equation, the notation EA[. |Θ[i]] is used to express the fact that for the computation
of the expected value over all possible assignments of A the planes Θ[i] are given.
For the computation of the expression given in (5.7), we first note that the logarithm

can be expressed in a more compact form. By taking the logarithm of equation (5.5) and
dropping a constant term which is irrelevant for the optimization, we obtain

log p(Z,A | Θ) = log
N∏

n=1

1

M
√
2πρ2

e
− 12

∑M
m=1 αnm

d(zn ,θm)2

ρ2

= −
N∑

n=1

log(M
√
2πρ2) − 1

2

N∑

n=1

M∑

m=1

αnm
d(zn, θm)2

ρ2

∝ − 1
ρ2

N∑

n=1

M∑

m=1

αnmd(zn, θm)2.

(5.8)

Plugging this into equation (5.7) yields

Θ[i+1] = argmax
Θ

EA


−
1
ρ2

N∑

n=1

M∑

m=1

αnmd(zn, θm)2 | Θ[i]



= argmax
Θ

−
1
ρ2

N∑

n=1

M∑

m=1

EA[αnm | zn,Θ[i]]d(zn, θm)2
 .

(5.9)

Here we used the fact that the expectation operator E[·] is linear and can therefore be
moved into the sum.
It remains to compute the expected value in equation (5.9). Using the fact that the

correspondence variables are binary and applying Bayes’ rule we can write

EA[αnm | zn,Θ] = p(αnm | zn,Θ)

=
p(zn | αnm,Θ)p(αnm | Θ)∑M
j=1 p(zn | αnj,Θ)p(αnj | Θ)

=

exp
{
−1
2

(
d(zn, θm)

ρ

)2}

M∑

j=1

exp
{
−1
2

(
d(zn, θ j)

ρ

)2} .

(5.10)

In the last step we used the independence of αnm and Θ and the assumption that the αnm
are distributed uniformally. Therefore, the term p(αnm | Θ) = p(αnm) = p(αnj) cancels out.
To summarize we can formulate the algorithm as follows:
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1. Initialize the plane parameters Θ[0]

2. Compute the expectations EA[αnm | zn,Θ[i]] for all n and all m according to equa-
tion (5.10)

3. Find new plane parameters Θ[i+1] that maximize equation (5.7). This can be done
in closed-form, as proposed by Liu et al. [2001] or by an iterative optimization
technique such as gradient-descent.

4. If the increase of the expected log-likelihood between step i and i + 1 is below a
given threshold, stop. Otherwise return to 2.

The convergence proof of the EM algorithm by Dempster et al. [1977] guarantees
that the algorithm always converges to a local maximum. However, as in other iterative
optimization techniques, EM does not generally find a global maximum of the likelihood
function. Therefore, a good initial guess improves the result of the estimation.

5.4 First Extension: Introduction of Main Directions

In addition to the derivation from the previous section, we will assume that we are
also given a set Φ of K main directions φk ∈ R3, k = 1, . . . ,K of these planes. Similarly,
we introduce correspondence variables βmk to indicate that a plane m belongs to main
direction k. Again, we collect the correspondence variables in the sets A = {αnm} and
B = {βnk}. Our new goal is to maximize the joint posterior p(Z,Θ,Φ,A,B). Exploiting the
independence between these variables this term can be rewritten as (see Anguelov et al.
[2002])

p(A,B,Φ,Θ,Z) ∝ p(Z | A,Θ)p(Θ | B,Φ)
∝ p(Z,A | Θ)p(Θ,B | Φ). (5.11)

This is similar to the likelihood function defined in equation (5.5) with the extension
of the likelihood model for the planes given the main directions. For the relationship
between a plane θm and a main direction ϕk we use a second distance function d2 defined
as

d2(θm, ϕk) =
√
1 − (nm · ϕk)2. (5.12)

This corresponds to the sine of the angle between the normal vector nm and the main
directionϕk. Again we assume that the planes belonging to amain direction are normally
distributed with variance σ. Given we know that plane θm belongs to main direction ϕk
we can calculate its likelihood as

p(θm | ϕk) =
1√
2πσ2

exp
{
−1
2

(
d2(θm, ϕk)

σ

)2}
. (5.13)
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In analogy to the derivation above we obtain

p(Θ,B | Φ) ∝ exp
{
−1
2

M∑

m=1

K∑

k=1

βmk

(
d2(θm, ϕk, )

σ

)2}
. (5.14)

This leads to the following expression for the joint posterior

p(A,B,Φ,Θ,Z) ∝ exp
{
−1
2

N∑

n=1

M∑

m=1

αnm

(
d1(zn, θm)

ρ

)2
− 1
2

M∑

m=1

K∑

k=1

βmk

(
d2(θm, ϕk)

σ

)2}
. (5.15)

Our goal is to determine the model (Θ∗,Φ∗) that maximizes the likelihood of the data Z.
The update rule for each iteration of the EM algorithm then becomes

(Θ[i+1],Φ[i+1]) = argmax
(Θ,Φ)

EAB
[
log p(A,B,Φ,Θ,Z) | Θ[i],Φ[i]

]
(5.16)

Inserting the expression (5.15) for the posterior into this equation and exploiting linearity
of the expectation we obtain

(Θ[i+1],Φ[i+1]) = argmax
(Θ,Φ)

{
− 1
ρ2

N∑

n=1

M∑

m=1

EA[αnm | Θ[i]](zn · nm − dm)2

− 1
σ2

M∑

m=1

K∑

k=1

EB[βmk | Φ[i]](1 − (nm · ϕk)2)
}
. (5.17)

The expectations E[αnm | Θ] are computed as in equation (5.10). Similarly, the E[βmk | Φ]
are obtained as

E[βmk | Φ] =
exp

{
−1
2

(
d2(θm, ϕk)

σ

)2}

K∑

j=1

exp
{
−1
2

(
d2(θm, ϕ j)

σ

)2} . (5.18)

The extended version of our EM based plane extraction now additionally involves
the computation of the expectations in equation (5.18) and the maximization of (5.17). In
contrast to the maximization step derived in the previous section, there is no closed-form
solution for the our extended version. Therefore, we need to use an iterative optimization
technique. For the example applications presented in the following, we used the Fletcher-
Reeves conjugate gradient algorithm to maximize the log-likelihood function.

5.4.1 Estimating the Model Complexity

So far, we assumed that the number of planes M and the number of main directions K
were given in advance. In practice, however, this is generally not the case. Instead, we
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a. A simulated data set
and its planar approxima-
tion obtained with the stan-
dard EM-based clustering
approach. The angle be-
tween the normals of the two
planes belonging to the par-
allel walls is 17.2 degrees.

b. Planes obtained by
the initialization process for
the data set shown in Fig-
ure 5.3a. In this case our al-
gorithm was initialized with
five planes and five main-
directions fromwhich several

were coplanar.

c. Model obtained with hi-
erarchical EM. Compared to
the model in Figure (a), the
angle between the normals
corresponding to the two par-
allel walls is 1.9 degrees.

Figure 5.3: Example data set and the results obtained by standard EM (a), initialization of planes
and main directions (b) and hierarchical EM (c).

need to estimateM and K – we will call this the model complexity – during the estimation
process. One standardway to achieve this is by applying the Bayesian Information Criterion
(see Schwarz [1978] for details), which is calculated as

BIC = −2L + (3M + 2K) ln(N). (5.19)

In this equation, L is the log likelihood of the data given the current model where the
factor −2 stems from the BIC formula. The term 3M + 2K corresponds to the number of
free parameters (3 for each plane and 2 for each main direction). The goal is to find a
model which has a minimal BIC value. As can be seen from Equation (5.19), a highmodel
complexity results in a large BIC value and hence less complex models are preferred.
To minimize the BIC we constantly monitor its value. High BIC-values, for example,

result from redundancy in the model. For example, it is possible that after convergence of
the EM-algorithm two planes are equal. This can happen if the two planes are initialized
too close to each other or if the data only supports a smaller number of planes. Such a
case of redundancy can be detected applying the leave-one-out rule: after convergence of
the EMwe calculate the BIC for all possible models, in which one plane is left out. If there
is a model that has a smaller BIC than the current one, then the plane, which has been left
out to obtain this particular model, must be redundant and can safely be removed. The
same strategy is applied to the main directions.

5.4.2 Implementation Details

Initialization

Since the EM-algorithm can get stuck in local optima of the log-likelihood function, it
needs to be initialized appropriately to converge to the global optimum, just like other
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optimization techniques, e.g., gradient-descent. In our case, the initialization is performed
by sampling randomly from all scan points. During this sampling process each point is
drawn with a probability proportional to the minimum distance to any of the already
existing planes. Thus, when no planes are given each point is equally likely to be drawn.
However in later initialization steps, the points that are badly explained by the current
model, are more likely to be drawn. To initialize a plane for a point drawn earlier we fit
a plane to the points in its local neighborhood. A typical result of the plane initialization
for the data depicted in Figure 5.3a is shown in Figure 5.3b. Here, the algorithm was
initialized with five planes and five main directions. Since the planes four and five and
the main-directions three to five are coplanar to existing planes andmain-directions, only
three planes and two main-directions are visible.

Weighting Factors for Planes

When clustering the planes into main directions, each plane has a contribution to the
resulting main direction according to its normal vector. This contribution is independent
on the number of points that were used to calculate the plane in the plane clustering
process. The problem that arises here is that planes which are obtained from less data
points (or with lower support) have the same influence as planes with a high support.
This may result in wrong main directions if, for example, a plane resulting from spurious
measurements, is clustered together with a wall.
Additionally, the number of planes typically is very small compared to the number

of data points. Thus, the influence of the main directions decreases the more data points
are given. In practical experiments it turned out to be very useful to introduce weighting
factors wm for the planes which are dependent on the support of a given plane θm

wm =

N∑

n=1

E[αnm | Θ]. (5.20)

In the EM we then use a modified distance function

d′2(θm, ϕk) =
√
wmd2(θm, ϕk). (5.21)

Sketch of the Algorithm

Our algorithm proceeds as follows:

1. Start with a fixed number ofM0 planes.

2. Initialize a main direction for each plane by taking the normal vector of that plane.
This means the initial number of main directions K0 equalsM0.

3. Apply EM until convergence

4. Drop one main direction as long as the BIC of the reduced model increases. This
results in a new number of main directions Ki+1 ≤ Ki
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5. Drop one plane as long as the BIC of the reduced model increases. This results in a
new number of planesMi+1 ≤Mi

6. Select a new plane from the initialization queue and take its normal vector as a new
main direction. Adding these to the model increases the complexity:

Ki+1 := Ki+1 + 1 andMi+1 :=Mi+1 + 1

7. If no such plane can be found, stop. Otherwise go back to 3).

Note that it is not possible that Ki exceedsMi in any time step i.

Post-Processing

So far, the goal of our algorithm was to find planes and main directions. In practice,
however, we want to represent the environment as a set of polygons, because they indicate
the faces of the objects in the environment. In general, a plane that is found in the data set
contains more than one polygon. A typical situation is a wall that is “interrupted” by a
doorway. In our implementation, we choose the following approach to extract polygons
from planes:

• Determine all scan points that are close to the given plane (in our case: less than
0.1m).

• Project all these points onto the plane.

• Perform a region growing on the points, where for each point all neighbors in a
certain distance ǫ are added to the region. This is done efficiently using a two-
dimensional kD-tree (that is, a 2D-tree).

• Create a two-dimensional α-shape (see section 4.5.3) from each region, where α = ǫ.

Experimental Results

The approach described above has been implemented and evaluated on real and simu-
lated 3D data. Figure 5.3c contains the resulting planes obtained for the data set shown in
Figure 5.3a. The hierarchical EM is able to exploit the constraints introduced by the main
directions of the planes and corrects the planes for the two parallel walls. In this example
the angular error between the plane normals decreases from 17.2 degrees to 1.9 degrees.

Experimental Evaluation on Real Data

The real data experiment was carried out with our mobile robot Zora shown in the left
image of Figure 5.4. Zora is a B21R platform equippedwith a 4DOFAMTECmanipulator
which carries a SICK PLS range scanner. This setup allows our robot to flexibly scan
complex scenes. The second image of Figure 5.4 shows a picture of a scene scanned with
our robot. The third image of this picture depicts a typical data set obtained for this
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a. Photograph of a newspaper
rack that was scanned by the
system. This scene contains
7 planes, namely the floor, the
wall, the ceiling (not shown
here) and the shelves of the
rack. The shelves are all par-

allel.

b. Triangular mesh of
the scanned scene. The
mesh has been gener-
ated from the original
point cloud with the lo-
cal triangulation tech-
nique described in sec-

tion 4.5.1.

c. Plane extraction result of the
hierarchical EM approach. All 7
planes have been detected correctly,
as well as the 3main directions (here
depicted in different colors). Note
that the green main direction vector
is coplanar with the other two vec-

tors.

Figure 5.4: Example of a real world scene and the resulting planes and main directions obtained
with the hierarchical EM approach.

Table 5.1: Results for the simulated data set. The values are angular deviations from the ground
truth in degrees.

Plane
plain EM hierarchical EM

1 2 3 1 2 3
θ1 0.220 0.234 0.227 0.155 0.208 0.224
θ2 0.382 0.415 0.408 0.381 0.415 0.423
θ3 0.479 0.512 0.492 0.289 0.067 0.190
θ4 5.879 4.297 2.128 3.023 2.033 1.101
θ5 0.105 0.070 0.083 1.524 0.318 0.121
θ6 2.070 0.453 0.321 1.720 0.365 0.181
θ7 0.672 0.940 0.889 0.244 0.608 0.624
θ8 1.606 1.915 1.780 0.650 0.883 0.895
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a. Evolution of the log-likelihood during
the estimation process.

Plane
plain EM hierarchical EM

x y z x y z

1 92.05 138.33 48.40 91.91 146.02 56.09

2 92.95 146.09 56.26 92.65 146.39 56.52

3 92.27 140.71 50.80 92.01 146.06 56.13

4 90.88 146.56 56.58 91.18 147.32 57.35

b. Angles in degrees of the normals for the four planes
in the newspaper rack in x, y and z direction.

Figure 5.5: Results of the simulated data set

scene. The scan shown there consists of 21.479 points. To enhance visibility the data
was smoothed and neighboring scan points were connected by triangles. The rightmost
image of Figure 5.4 shows the result obtained with our hierarchical EM. The colors/grey-
levels of the individual planes correspond to that of their main directions, which are also
visualized. The final model consists of 7 planes and 3 main directions. The planes for the
floor and the ceiling are only slightly corrected by the hierarchical EM. Whereas the plain
EM approach yields a deviation of 2 degrees for the ceiling and the floor, our algorithm
generated planes with an angular distance of 1.7 degrees between the two planes. The
most interesting part are the green/light grey planes for the newspaper rack. Note that
their main direction is neither orthogonal to the main direction for the ceiling and the
floor nor to that of the wall. Table 5.5b lists the individual angles of the normals for the
four planes found for the rack in x, y, and z direction obtainedwith the plain EMapproach
and with our hierarchical EM. As can be seen from the numbers, our approach reduces
the maximum deviation between the individual angles of the planes from 8 degrees to 2
degrees. Figure 5.5a plots the evolution of the log-likelihood during the hierarchical EM.
Note that the log-likelihood does not always increase because of the introduction and
removal of model components.

Quantitative Evaluation

Additionally, we performed several simulation experiments to evaluate the quality of the
resulting models compared to the ground truth. Figure 5.6a shows a simulated scene
used for these experiments. This scene represents a roomwith five corner walls, the floor,
and the ceiling. Additionally, it contains a horizontal plane with a box on top. The walls
are parallel to the coordinate axes, so that their normal vectors are the standard basis
vectors (1, 0, 0)T, (0, 1, 0)T, and (0, 0, 1)T. In total, there were eight visible planes. These
planes are enumerated from θ1 to θ8. To evaluate the capabilities of our algorithm we
performed three different experiments in which we varied the position of the small box
on the small horizontal plane. In the first case the box was placed in the right rear corner
of the horizontal plane. In the second experiment the box was placed halfway between
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theta1

theta7

theta5

theta3

theta8

theta2

theta4

theta6

a. Simulated 3d scene used to evaluate the quality
of the resultingmaps. On top of the horizontal plane
is a small cube that introduces errors in the plane

extraction.

b. Typical result obtained for the situation, in
which the box was placed at the right rear corner
of the small horizontal plane (see Figure 5.6a)

Figure 5.6: The simulated data set used in the experiments and the polygons resulting from the
hierarchical EM approach.

the center of the horizontal plane and its right rear corner. In the third situation the box
was located in the center of the horizontal plane. A typical model obtained with our
hierarchical EM applied to the third situation is depicted in Figure 5.6b.
The performance of the plain EM algorithm and our algorithm on these simulated

data is given in table 5.1. Each column contains for all three experiments the deviation in
degrees for each of the eight normal vectors from its respective ground truth. Especially
the table plane θ4 is corrected by the hierarchical EM. However, other planes like θ8 are
corrected using the knowledge of the main directions. Note that the error in some planes,
e.g., the walls θ1 and θ2 increases slightly. This is because the plane θ8, which has the
same main direction, has a higher deviation and therefore slightly increases the error of
the planes with the same main direction. In the final model obtained with our algorithm
all three planes are almost parallel which indicates that the error is introduced by the
constraints imposed by the corresponding main direction. The same holds for the planes
θ5 and θ6.

Models with More Than Three Main Directions

In indoor scenes with mostly orthogonal or perpendicular planar structures such as
offices, we only encounter three main directions. To illustrate that our algorithm can
deal with more than just three main directions we performed an experiment with the
simulated box world shown in Figure 5.7a. The 3d data used as input to our algorithm
is depicted in Figure 5.7b. Applied to this data set our algorithm found six planes and
fivemain directions (see Figure 5.7c). In this particular example, the hierarchical EM only
slightly corrects the two top planes of the two boxes. All other planes were identical to
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a. Example of a situation with
many main directions. The top
and bottom faces of both boxes
are parallel, all other box faces
define new main directions (in

total, there are 5).

b. Simulated data set obtained
by virtually scanning the two

boxes from figure a.

c. Result of the plane ex-
traction using hierarchical EM.
The algorithm found all 6 visi-
ble planes and all 5 main direc-

tions.

Figure 5.7: Simulated scene with more than 3 main directions (fig.a), simulated 3D-scan (b),
and resulting planes and main directions (c).

the planes obtained by the non-hierarchical EM, since there was exactly one plane for
each main direction.

5.5 Second Extension: Use of Color Information

In this section, we present a further refinement of the plane extraction algorithm using
hierarchical EM. We assume that in addition to the point cloud data we are given a color
vector cn assigned to each data point zn. Furthermore, we extend our plane model by
a color vector c̄m. This means that each plane θm is represented as a 3-tuple (nm, dm, c̄m)
consisting of the normal vector nm, the distance dm to the origin and the color c̄m. All
three parameters will be estimated during the maximum likelihood estimation process,
together with the main directions φk. Here, φk is represented as a unit vector in R3.
In order to calculate the probability that a measurement corresponds to a plane, we

first need to define an appropriate distance measure. In our application, where color
information is added to planes and scan points, this distance measure consists of a
geometrical part d1 and a visual part d2:

d1(zn, θm) = sn · nm − dm (5.22)

d2(zn, θm) = ‖cn − c̄m‖. (5.23)

If we assume that both the geometrical and the visual assignments between scan
points and planes underlie a Gaussian error with variances σ1 and σ2 respectively, we can
write

p(zn | θm) = η exp
{
−1
2

(
d1(zn, θm)2

σ21
+
d2(zn, θm)2

σ22

)}
. (5.24)

Here, η = (2πσ1σ2)−1 is the normalization factor that stems from the two independent
Gaussian distributions. As we have seen in our maximum likelihood estimation process
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described below this constant has no influence in the maximization step, so that we can
neglect it in the following.
If we incorporate the correspondence variables αmn, assuming that they are uniformly

distributed, we obtain

p(Z,A | Θ) ∝ exp
{
−1
2

∑

n

∑

m

αnm

(
d1(zn, θm)2

σ22
+
d2(zn, θm)2

σ22

)}
. (5.25)

With this modification, equation (5.17) becomes

(Θ[i+1],Φ[i+1]) = argmax
(Θ,Φ)

{
−

∑

nm

E[αnm | Θ[i]]


d1(zn, θm)2

σ21
+
d2(zn, θm)2

σ22




−
∑

mk

E[βmk | Φ[i]]
d3(θm, φk)2

σ23

}
.

(5.26)

Here we used the fact that the expectation operator is linear and that it needs to be
computed only over all possible values for the hidden variables αnm and βmk.

5.5.1 Experimental Results

The algorithm described above has been implemented and intensively tested using data
collectedwithourmobile robotZora (see Figure 5.8a). Zora is aB21r robot equippedwith a
4DOFAMTECmanipulatorwhich carries a SICKLMS range scanner. In addition it carries
a camera so that we can acquire color information for the individual three-dimensional
range data. To carry out the experiments described below, we relied on an accurate
calibration obtained with the algorithm presented in Andreasson et al. [2005]. The goal of
the experiments described below is to demonstrate that our algorithm can reliably extract
planar models from colored range data. We also illustrate that the combination of range
and color information yields more accurate results than can be obtained with previous
approaches relying solely on range data.

Real World Experiment

The first experiment described in this section has been carried out in a 20m long and 2m
wide corridor of building 78 at the University of Freiburg. This corridor contains four
doors, from which one is blue and the other three are yellow. The data set consists of 72
scans, which were taken at eight different positions each approximately 2m apart. The
need for taking 9 scans at each position is due to the limited opening angle of the camera.
To register the individual scans we applied the iterative closest point algorithm (ICP)
presented by Besl and McKay [1992]. After the alignment we only stored those 3D points
for which color information was available. We furthermore sub-sampled the model to
reduce its complexity.
Figure 5.8b shows a three-dimensional visualization of the corresponding data. In

this figure the view-point of the camera lies inside the corridor. Two virtual views from
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a. Robot in a corridor b. Data recorded with a mobile robot in a corridor environment at
the CS Department in Freiburg. The whole data set, which consists
of 2,159,137 points has been registered using the ICP algorithm.

Figure 5.8: Robot in corridor (a) and 3D data recorded in a hallway (b).

the outside are depicted in Figure 5.9. Note that the resulting data poses high challenges
for color-based plane extraction. Many surfaces in this corridor are rather shiny, so that
many data points have wrong colors. For example, there were several reflections of doors
and lights in data points belonging to the floor, the ceiling, and the walls.

Figure 5.9 depicts themodel obtainedwith our color-based plane extraction algorithm.
Shown are two side-views corresponding to the two views shown in Figure 5.9. As can
be seen from the figure the four doors, which have an indentation of 6, 14, 23, and 25cm
from the four walls, have correctly been extracted from the range data. Note that this
model shows yellow planes close to the blue door. These planes have been added due
to the reflections of the yellow door on the other side of this corridor. Furthermore, our
current algorithm to extract polygons from the data cannot handle holes in surfaces so
that the round windows in the doors are not visible in the resulting model.

We additionally carried out a series of experiments with a plane clustering algorithm
that does not utilize the color information. Thereby we tried to identify the optimal
value for the geometric variance parameter σ1 so that EM learns a model with individual
planes for all four doors. In all our experiments we could not find such a value. Whereas
too small values for σ1 result in a huge number of planes, whereas larger values for σ1
yield models with appropriately many planes but typically with one or even more doors
missing.
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a. Point model, front side

b. Plane model, front side

c. Point model, back side

d. Plane model, back side

Figure 5.9: Front and back-side view of the corridor data shown in Figure 5.8b.
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Figure 5.10: A blue jacket lying on a desk. Photograph of the scene (left) and 3D scan with color
information added. The example is used to evaluate the color-based plane extraction. Comparing
the plane extracted for the table top, we obtain an improved estimate over the non-color based plane

extraction (see text).

Quantitative Comparison to Non-Color-Based Clustering

The second experiment is designed to illustrate that our color-based plane clustering
approach yields more accurate results than an approach relying on range data only. In
this particular experiment we placed a blue jacket on top of a desk and generated one
scan with Zora. The corresponding situation in combination with the acquired scan is
depicted in Figure 5.10. Additionally we scanned the table without the jacket fromwhich
we determined an accurate estimate of the parameters of the table top. The errors in
the height of the plane reduces from 5.9cm for the non-color-based approach to 1.3cm.
Simultaneously our algorithm reduces the angular deviation from 4.4 degrees to 3.1
degrees.

Simulation Experiments

To evaluate the performance of our algorithm with respect to a known ground truth,
we created an artificial 3d environment which allows us to simulate colored three-
dimensional range scans. The scene used for the experiment described here is depicted
in Figure 5.11a. It represents a room with several planar structures of different colors,
sizes, and orientations. The planar structures used for the quantitative evaluation are also
labeled in this figure.
Table 5.11b shows the angular deviations of the plane normals from the ground

truth for eight different planes. Note that the planes θ2, θ3, and θ5 can not be found
without color information. For all other planes the estimates obtained with our color-
based approach were closer to the ground truth. Without the color information the



80 CHAPTER 5. PLANAR APPROXIMATIONS

θ1

θ2 θ3θ3

θ4

θ5

θ6

θ7
θ8

a. Artificial environment used for simulation
experiments.

Plane non-color based color based

θ1 1.97 0.25

θ2 — 0.54

θ3 — 0.49

θ4 0.13 0.11

θ5 — 0.12

θ6 0.15 0.08

θ7 0.28 0.25

θ8 0.22 0.06

b. Angular deviations from the ground truth in
degrees

Figure 5.11: Simulation results for texture based plane extraction.

EM cannot distinguish between data points belonging to different objects. For example,
the surface of the carpet lies slightly above the floor. The standard approach cannot
distinguish between the two point sets and usually clusters them into a single plane.
Our color-based algorithm, however, generates two different planes with more accurate
parameters. Whereas the height of the plane for the floor deviates from the ground truth
only by 2mm, the error in the height of the plane corresponding to the carpet is zero. The
non-color-based version, in contrast, generates only one plane with a distance of 5mm to
both objects. Here the height difference was determined as the distance of the plane to
the center of the rectangle corresponding to the floor.

5.6 Conclusions

In this chapter, we discussed several different techniques to find planar structures in three
dimensional range data. We showed that standard techniques such as region growing
do not reflect the statistical nature of the data and we introduced a new probabilistic
approach based on a hierarchical Bayes net. We further improved this approach by using
texture information obtained from camera images. As a result, we obtained a compact
3D data representation that is particularly useful for environments with many parallel
planes. Thus, it can be used not only indoors but also outdoors in urban environments
where the walls of buildings are mostly parallel.



In preparing for battle I have always found that plans are
useless, but planning is indispensable.

Dwight D. Eisenhower (1890 - 1969) 6
Efficient Map Representations for

Localization and Planning

6.1 Introduction

In chapter 4 we analyzed the most common approaches to represent three-dimensional
data. In particular, we discussed point clouds, 3D tree structures, 3D occupancy grids
and 3D triangulations. As we have seen, all these data structures have advantages and
drawbacks with respect to the required memory, the time required to search for a given
data point, and the possibility to visualize the underlying data so that it appears as
realistic as possible. However, none of these data structures was designed for one special
purpose, but rather formany kinds of applications. In this chapter, wewill instead present
a new kind of 3D data representation, which we will call multi-level surface map, that
is particularly useful for the tasks of localization and planning for a mobile robot. These
two tasks are crucial for any mobile robot and therefore it is very important to find an
efficient data structure that is especially suited for these tasks. In addition to this design
goal, we will show that the new data structure is also efficient with respect to the before
mentioned aspects of memory requirement, search efficiency and the ability to visualize
the 3D data.
The chapter is organized as follows. In Section 6.2 we will briefly summarize the

most important requirements for the localization and planning tasks. These will be the
primary design goals for the new data structure. Then we present two different state-of-
the-art approaches to accomplish these tasks, where the first one, presented in Section 6.3,
is referred to as elevation maps and is the most common one. The second one is an
extension of the elevation maps and is presented in Section 6.4. Then, in Section 6.5, we
introduce the new concept ofmulti-level surface (MLS)maps, which can also be seen as an

81



82 CHAPTER 6. MAP REPRESENTATIONS FOR LOCALIZATION AND PLANNING

extension to the framework of elevation maps, with the additional feature that multiple
height levels can be represented at any given xy position in the 2.5D grid representation.
Finally, Section 6.6 concludes the chapter.

6.2 Requirements for Localization and Planning

As mentioned already, special capabilities are required for the tasks of localization and
planning. In this section, we will name three major aspects for each task. Later we will
see how these issues are addressed in the different 3D data representations.

6.2.1 Localization

The following aspects are particularly relevant when designing amap representation that
is used to do localization of a mobile robot:

• Accuracy: For a good localization the map must be as accurate as possible because
the observations taken at each robot position in the real world must be compared
to the map. Accuracy also includes that special features of the environment such as
street lamps, trees, etc. should be mapped as similar as possible to their appearance
in the real world, because these features are very helpful in resolving ambiguities
and, therefore, to improve the localization.

• Compactness: Mobile robot localization is a task that needs to run in real time,
because the robot needs to know its position at each time frame while it is traveling
through the environment. A map representation that requires a huge amount of
memory, like point clouds, is therefore not appropriate, because it would take too
much time to search the map for the current position.

• Level of Abstraction: The biggest problem of mobile robot localization is that at
the time when the robot localizes itself in the map, it (nearly) never observes the
environment from the same point of view as when it has created the map. This
means that it will never find the exact same view of the environment in the set of
views thatwere used to create themap. Therefore, a goodmap representation needs
to abstract from the raw sensor input consisting of single measurements to higher
level representations like triangles or polygons.

6.2.2 Planning

In order to perform the planning task efficiently, a number of specialized properties
must be provided by the map representation. These depend strongly on the planning
algorithm that is used. However, most planning algorithms such as A∗, D∗ [Koenig
and Likhachev, 2002, Stentz, 1995], Field D∗ [Ferguson and Stentz, 2005], or probabilistic
roadmaps [Kavraki et al., 1996] require at least a memory efficient representation of the
state space and a fast way to perform a lookup of neighboring states in the state space.
Thus, the requirements with respect to the planning task can be described as follows:
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• Discretization: Most planning algorithms discretize the state space of the robot.
For two-dimensional environments, this is easily accomplished by using occupancy
grids. However, as we have seen in section 4.4, 3D occupancy grids have huge
memory requirements and can not be used in large-scale environments, especially
outdoors. Therefore, a discretization strategy that uses less memory is needed.

• Neighborhood computation: One of the most frequent operations that are per-
formed in state-based planning algorithms such as A∗ is the computation of all
neighboring states for a given state. This can be most efficiently done when using
grid-based map representations. Again, the 3D occupancy grid would be the best
choice here, but because of its memory complexity it is not useful.

• Cost computation: When planning a path through the environment, it is necessary
to evaluate the cost of this path. These cost usually depend on the length of the
path and on the ’danger’ that is caused by traveling over different kinds of terrain.
Therefore, a local path cost value must be stored at each position in the map. The
computation of this cost value must be efficient and it should reflect the level of
danger as accurate as possible.

In the past, there has been mainly one approach that fulfills most of the presented
requirements. This approach uses so called elevation maps, sometimes also referred to as
digital elevationmaps. In the following, wewill describe this data structure, as it constitutes
the basis of our new 3D map representation.

6.3 Elevation Maps

This section presents the main concepts underlying the framework of elevationmaps and
presents a list of previous works in which elevation maps have been applied successfully.

6.3.1 Main Concepts

The key idea underlying elevation maps is to store the height information of the environ-
ment in a 2 12 -dimensional grid structure. This means that an elevation map consists of
a two-dimensional grid that discretizes the ground plane on which the robot moves into
equally spaced intervals. Then, at each grid cell a height value is stored that corresponds
to the elevation of the terrain at that particular position. In addition to the height value,
other information can be stored in each grid cell. Examples include texture information,
geometric information such as normal vectors, and different measures of planarity of the
environment. A very common approach is to additionally represent the uncertainty of
the height measurements. This can be achieved by storing a mean value µ and a variance
σ for the height at each grid cell. This way, the reliability of the 3D sensor and the number
ofmeasurements per cell can be incorporated into the 3Dmap representation. A standard
way to compute µ and σ from the sensor data is bymeans of the update rule in the Kalman
filter. We will discuss this in detail in Sec. 6.4.
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a. Point cloud b. Elevation map

c. Extended elevation map d. Multi level surface map

Figure 6.1: Scan (point cloud) of a bridge (fig. a), standard elevation map computed from this
data set (fig. b), extended elevation map which correctly represents the underpass under the bridge
(fig. c), and multi level surface map that correctly represents the height of the vertical objects

(fig. d).

Two conceptually different methods of constructing elevation maps from 3D sensor
data such as point clouds or range images are possible. We will call these the forward
insertion and the backward interpolation. The forward insertion algorithm can be applied
either to range image data, where each pixel represents a depth value at a given discrete
horizontal and vertical angle, or to arbitrary point clouds where this information is not
available. It computes for each 3Ddata point the discrete xy-position of the corresponding
grid cell in themap and assigns the z-value of the data point to the grid cell. Alternatively,
the Kalman filter update rule can be applied to account for the uncertainty in the z-
value. The backward interpolation algorithm proceeds in the other direction. It iterates
over all discrete cells in the elevation map and finds the corresponding height value by
interpolating in the range image. It can not be applied for arbitrary point clouds, but
has the advantage that the resolution of the elevation map can be chosen arbitrarily. A
detailed description of this algorithm has been described by Hebert et al. [1989].

An example of an elevation map is shown in Figure 6.1b. It has been computed from
the point cloud data shown in Figure 6.1a. As we can see, the elevation map represents
the environment in a more natural and more general way, because each cell reflects a
planar patch of the surface. In addition, it is possible to do path planning for a mobile
robot using the map cells as possible discrete states of the robot. However, the particular
data set shown in the example also illustrates the main drawback of standard elevation
maps, namely the fact that overhanging objects and underpasses can not be represented
correctly. As a result, the robot is unable to plan a path that passes under the bridge as
shown in the example, because the bridge appears as a wall in the map. This problem can
be solved by using extended elevation maps, which will be described in detail in Section 6.4.
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6.3.2 Historical Background of Elevation Maps

In the past, elevation maps have been used by many different authors for different appli-
cations. For example, Bares et al. [1989] as well as Hebert et al. [1989] use elevation maps
to represent the environment of a legged robot. They extract points with high surface
curvatures and match these features to align maps constructed from consecutive range
scans. Parra et al. [1999] represent the ground floor by elevation maps and use stereo
vision to detect and track objects on the floor. Singh and Kelly [1996] extract elevation
maps from laser range data and use these maps for navigating an all-terrain vehicle. Ye
and Borenstein [1994] propose an algorithm to acquire elevation maps with a moving
vehicle carrying a tilted laser range scanner. They propose special filtering algorithms to
eliminate measurement errors or noise resulting from the scanner and the motions of the
vehicle. Lacroix et al. [2002] extract elevation maps from stereo images. Hygounenc et al.
[2004] construct elevation maps with an autonomous blimp using 3d stereo vision. They
propose an algorithm to track landmarks and to match local elevation maps using these
landmarks. Olson [2000] describes a probabilistic localization algorithm for a planetary
rover that uses elevation maps for terrain modeling. However, all these approaches can
not cope with the problem of overhanging objects and underpasses, as mentioned in
the previous section. Therefore, we introduce extended elevation maps, that have been
proposed by Pfaff and Burgard [2005], in the next section.

6.4 Extended Elevation Maps

The way in which extended elevation maps address the problem of overhanging objects
and bridges is to identify cells in the map where such problems occur. Then, a more
detailed analysis of the measurements in those cells is performed and a more plausible
height value is stored in the cell instead of the highest elevation. We will describe this
in Section 6.4.2 in more detail. Before, we show how the Kalman update rule is applied
to compute the elevations in the map while maintaining an estimate of the measurement
uncertainty.

6.4.1 Measurement Update

Ourgoal is to compute aheight value at eachgrid cell that canbeupdatedby incorporating
new height measurements and at the same time accounts for the uncertainty in the
measurement. A standard way to do this is by means of the update rule known from
Kalman filters. Assume we have a height measurement zt for a given map cell at time t,
along with a variance σt reflecting the uncertainty. Assume further that in the map cell
we already incorporated the height values and variances in time steps 1 through t − 1.
The resulting mean and variance will be denoted µ1:t−1 and σ1:t−1 respectively. Then,
we compute the new height value µ1:t and its variance σ1:t according to the following
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Figure 6.2: Variance of the height measurements depending on the distance of the beam. The
measurement uncertainty is assumed to underly an isotropic Gaussian distribution, which means

that the uncertainty in height is equal to the one in range.

equations (see Maybeck [1990]):

µ1:t =
σ2tµ1:t−1 + σ

2
1:t−1zt

σ21:t−1 + σ
2
t

(6.1)

σ21:t =
σ21:t−1σ

2
t

σ21:t−1 + σ
2
t

(6.2)

The measurement noise, which is represented by the variance σt, is given by the sensor
model. In our case, where the sensor is a 3D laser range finder, we apply a simplified
sensormodel by assuming isotropicGaussiannoise that depends linearly on themeasured
distance. This means that the noise variance increases with the measured range and that
the height variance σt is equal to this noise variance. Figure 6.2 illustrates this idea.
Although this approach is an approximation, there was never evidence from practical
experiments that it causes any noticeable errors.

6.4.2 Cell Analysis

Asmentioned above, extended elevationmaps perform an analysis of the individual cells
to allow amore accurate representation of bridges and overhanging objects. This analysis
is done by classifying the cells into four possible classes:

• horizontal and traversable cells: These represent regions that have been scanned
from above and that are planar enough for the robot to pass. Planarity can be
measured by fitting planes in the vicinity of the cell and thresholding the local
height variance.

• horizontal and non-traversable cells: These are horizontal cells where the planarity
criterion is notmet. The idea of these cells is to assign ahigh cost in the pathplanning
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Figure 6.3: Labeling of the data points depicted in Figure 6.1a according to their classification.
The four different classes are indicated by different colors. green is traversable, yellow is non-

traversable, red is vertical and blue are gap cells.

procedure to regions that are dangerous or impossible for the robot to traverse.

• vertical cells: These are identified by computing vertical intervals from all measure-
ments that correspond to a cell. If there is only one such interval or if the distance
between two consecutive intervals is so small that the robot can not pass the cell, it
is identified as a vertical object (e.g. a wall).

• gap cells: These cells account for all cases wheremultiple intervals have been found
in the height values of the measurement data and where the vertical intervals are
far enough apart from each other. For gap cells, the minimum traversable elevation
is used as height value.

An example of this classification is shown in Figure 6.3. The input data was the same
point cloud as shown in Figure 6.1. The visualization shows for each classified grid cell
all 3D data points that correspond to the cell. The four classes are distinguished with
colors: traversable cells are green, non-traversable cells yellow, vertical cells appear in
red and gap cells are blue. The extended elevation map computed from this data set is
shown in Figure 6.1c, in which we only plot the height values for the lowest interval in
each cell. As a result, the area under the bridge now appears as a traversable surface.
This allows the robot to plan a safe path through the underpass. However, as we can see
from the figure, the extended elevation map can only provide means to compute a path
either under the bridge or crossing over it, but not both. This is because there is still only
one height value stored at each grid cell. Therefore, we present in the next section a new
data structure that addresses this problem. We will call this a multi level surface map.
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6.5 Multi Level Surface Maps

Aswe have seen in themotivating example shown in Figure 6.1, multi level surfacemaps,
or MLS maps for short, aim at representing environments in which the robot can traverse
the same xy position at different height levels, e.g. bridges. The way this is done in MLS
maps is by storing multiple height values along with their variances at each grid cell. In
addition, the main concepts of extended elevation maps are also implemented in MLS
maps. In particular, the computation of vertical intervals and the Kalman update rule
for maintaining the measurement variance are applied in analogy to extended elevation
maps. The details are described in Section 6.5.2. Before, in Section 6.5.1, we show how the
3D data is represented inMLSmaps. Section 6.5.3 describes howMLSmaps are updated.
In Section 6.5.4 we deal with the extraction of features from MLS maps and Section 6.5.5
shows how MLS maps can be annotated. Finally, in Section 6.5.6 we present a method to
visualize MLS maps.
For the remainder of this section, we assume we are given a set of N 3D scan points

C = {p1, . . . ,pN}with pi ∈ R3, and a set of variances {σ21, . . . , σ2N}. As before, the variance σ2i
expresses the isotropic measurement uncertainty that grows with the measured distance.
Furthermore, we define a measurement z as a pair (p, σ2) of a 3D point and a variance.

6.5.1 Map Representation

A multi level surface map (MLS map) consists of a 2D grid of variable size where each
cell ci j, i, j ∈ Z in the grid stores a list of surface patches P1i j, . . . ,PKij. A surface patch in
this context is represented as the mean µk

i j
and variance σk

i j
of the measured heights at the

position of the cell ci j in the map. Each surface patch in a cell reflects the possibility of
traversing the 3D environment at the height given by the mean µk

i j
, while the uncertainty

of this height is represented by the variance σk
i j
.

In addition to the mean and variance of a surface patch, we also store a depth value
d for each patch. This depth value reflects the fact that a surface patch can be on top
of a vertical object like a building, bridge or ramp. In these cases, the depth is defined
by the difference of the height hk

i j
of the surface patch and the height h′

i j
k of the lowest

measurement that is considered to belong to the vertical object. For flat objects like the
floor, the depth is 0. Figure 6.4 depicts some examples of the map cells in an MLS map.

6.5.2 Map Creation

An MLS map can be generated in two different ways: either from a set of 3D measure-
ments, i.e. a point cloud with variances, or by joining two other MLSmaps into one. Both
ways are equivalent, i.e. if mapm1 is created from point cloud C1 andmapm2 from cloud
C2, then the map m3 that results from joiningm1 and m2 is identical to the map generated
by the joined point cloudC3 = C1∪C2. For a given point cloudCwith variances σ1, . . . , σn
the MLS map is created as follows:
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µ

σ

d
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Figure 6.4: Example of different cells in an MLSMap. Cells can have many surface patches (cell
A), represented by the mean and the variance of the measured height. Each surface patch can have
a depth, like the patch in cell B. Flat objects are represented by patches with depth 0, as shown by

the patch in cell C.

• Each map cell with index (i, j) collects all points p = (x, y, z), s.t. si ≤ x ≤ s(i+ 1) and
s j ≤ y ≤ s( j + 1) where s denotes the size (edge length) of a map cell.

• In each cell, we calculate a set of height intervals from the height values of the stored
points. As long as two consecutive height values are closer than a given gap size γ,
they belong to the same interval. This means that two intervals are at least γmeters
away from each other. The gap size should be chosen so that a robot that navigates
through themap can still pass the gap, i.e., it should be higher than the robot height.
In our implementation we choose 1.0m.

• The intervals are classified as a horizontal or a vertical structure. These structures are
distinguished according to the height of the interval. If it exceeds a thickness value
τ = 10cm, it is considered as vertical, otherwise it is horizontal.

• For each interval classified as vertical, we store themean and variance of the highest
measurement in the interval. The intuition behind this is that for traversability
only the highest measurement is relevant. Additionally, we store the length of the
interval, which is identified with the depth d mentioned above. This value is used
when matching two MLS maps together.

• For each horizontal object in a cell, we compute a mean µ and a variance σ from all
measurements in the interval. This is done by applying the Kalman update rule to
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a. For a given xy-cell, all 3D data points are
collected that fall into this cell. Then a set of
height intervals is computed for the cell. The
intervals are then classified into ’horizontal’ and

’vertical’.

b. A new measurement (here depicted as a red
line) can be either part of a horizontal object, e.g.
a surface, a vertical object, or it can correspond
to a new object that has not been mapped.

Figure 6.5: Creating and updating an MLS map

all measurements. The depth d of a horizontal object is set to 0.

Figure 6.5a demonstrates the map creation from point clouds. In this case, two vertical
intervals have been determined, where the upper one is classified as ’horizontal’ and the
lower one as ’vertical’. As we can see, the horizontal surface patch that was created has
no depth value.
After computing the means, variances and depths of the surface patches, we delete

the point cloud data. All further calculations are performed only on the map data. This
substantially reduces the memory required for an MLS map compared to point clouds
and at the same time achieves a highly accurate representation.

6.5.3 Map Update

Whenever a new measurement z = (p, σ) is inserted into an MLS map, we first need to
know whether the measurement belongs to an object that is already represented in the
map, or if it corresponds to a new object. To this end, we first determine the cell ci j in
which the measured point falls. Then we find the surface patch Pk

i j
= (µk

i j
, σk
i j
) in ci j whose

mean µk
i j
is closest to the height of z. If this patch is close enough, we update it with the

new measurement z, again using the Kalman update rule. In our implementation, we
define a surface patch to be close to a measurement z if the height value of z is within 3σ
of the patch.
If z is far from the nearest patch, it is still possible that it corresponds to a vertical

object. This can be found out by checking whether z is inside the occupancy of one of the
surface patches in the cell. In this case, the measurement z is simply disregarded, because
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a vertical object with an assigned patch already exists. Otherwise, z is introduced as a
new surface patch into the cell.
As an illustration, figure 6.5b shows the three different possibilities for a new mea-

surement z. In the figure, the measurement is represented as a vertical line, where the line
length represents the variance in height. In the example case, the upper measurement
will be identified with the horizontal surface patch and the patch height and variance
will be updated accordingly. The newmeasurement shown in the middle is assigned to a
vertical object, but not to its surface. Therefore it is simply disregarded. The lowest new
measurement, however is regarded as a new object and will cause the creation of a new
surface patch.

6.5.4 Feature extraction

In chapter 7 we will see that it is often required and convenient to reduce the information
that is stored in a 3D map by extracting features from the map. This is for example the
case when several partial maps are created from the same environment and have to be
matched to each other to form a global map. In these situations, it is more efficient to
perform the computations on a small set of features extracted from the maps instead of
using the entire map representation. The features we will use for this purpose consist
of 3D points that are computed from surface patches Pk

i j
in the MLS map. The x and

y-coordinates of the features are defined by the indices i and j of the patch, multiplied
with the cell size. The coordinate z of the feature is defined by the mean height µk

i j
of the

patch. Thus, the feature set is a point cloud where the x and y coordinates are distributed
on a regular grid.
The reduction of the feature set is performed by sampling from the feature point

cloud. This can be done using a fixed number of samples or adapted to the size of the
map. Also, one could think of a weighted sampling where the weight is defined by the
inverse measurement variance that corresponds to each feature. This would guarantee
that at regions in the mapwhere the measurements are more reliable, a feature is sampled
with a higher probability. For the purpose of matching local MLS maps together, which
we will describe in the next chapter, it is sufficient to use a simple fixed-size uniform
sampling strategy.
A further improvement of the feature extraction can be achieved by classifying the

surface patches of the MLS map before computing the feature points. The idea behind
this is the same as for the labeling technique used for the cells of extended elevationmaps.
The difference here is that no gaps may occur, because we label surface patches and not
the entire cell. The other three classes, namely ’horizontal and traversable’, ’horizontal
and not traversable’ and ’vertical’ in contrast are still meaningful here and may be used
for tasks like path planning or local map matching. The way in which surface patches
are classified is somewhat easier than the labeling of cells in extended elevation maps,
because patches with a non-zero depth value are already considered as vertical patches.
The distinction of the horizontal patches into traversable an non-traversable is again
performed by fitting planes in the vicinity of the patches and thresholding the height
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variance. As a result of the surface patch labeling, we obtain three different point clouds
from the feature extraction process, one for each class of surface patches.

6.5.5 Map Annotation

In many situations, it is convenient to store additional semantic information together
with the map representation. This can be any kind of information. For example, when
classifying the surface patches as described above, we can add an index to each surface
patch that is identified with one of the classes ’vertical’, ’horizontal and traversable’ and
’horizontal and not traversable’. For this reason, each surface patch stores an integer
value a in addition to µ, σ and d. This value will be referred to as the annotation and can
be interpreted in several different ways. Here, we name only three possible applications
of map annotation, which seem particularly useful:

• traversability: the integer value a is interpreted as an index of several different
levels of traversability.

• object classification: a classification algorithm detects the class of the object of
which the surface patch is part of. Examples of possible classification algorithms
will be presented in chapter 9.

• texture: the value a is interpreted as an index into a color lookup table. This lookup
table is computed from the texture information available for the given surface patch.

For theMLSmaps that are shown in the remainder of this thesiswewill use the traversabil-
ity scheme to do the map annotation. In the simplest case of two traversability levels this
can be implemented by distinguishing between horizontal and vertical surface patches.

6.5.6 Visualization

Asmentioned in Section 4.5, it is often important to find a 3D representation that is based
on polygons rather than on points. A polygon-based representation improves not only
the visual aspect of the underlying data, it also facilitates the task of texture mapping
onto the 3D structure whenever such texture information is available. Therefore, we are
interested in a method to triangulate the 3D data stored by an MLS map. One possible
way to do this is to assign to each surface patch a square that is parallel to the xy ground
plane and has a side length equal to the MLS map’s cell size. This has the advantage
that each surface patch can be visualized independently and that it is comparably easy
to implement. However, it gives a rather unrealistic result, because all polygons (i.e.
squares) are parallel and the height difference of the surface patches gets visible in the
form of a step field.
Therefore, we apply a more elaborate technique to visualize MLS maps. The idea

here is to use the 3D data points that correspond to the surface patches as corners in the
mesh representation. These corners are then connected to quadrangles, triangles or lines,
depending on the number of neighboring surface patches that exist for a given patch. A
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a. Point Cloud

b. MLS map

Figure 6.6: Visualization of MLS maps. Horizontal surface patches are shown in yellow and
vertical patches in blue. To reflect the vertical structures, all vertical patches are represented as

line segments.
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neighboring patch is here defined as one that is part of an adjacent cell and close enough
to the given surface patch. Again, we use a threshold of 3 times the standard deviation
in height to define which patches of an adjacent map cell are close (see Section 6.5.3).
The overall algorithm to compute a surface mesh from an MLS map can be sketched as
follows:

• Compute a 3D data point from each surface patch in the map. The obtained 3D
points are the same as the feature points described in Section 6.5.4.

• Maintain a lookup table L of data points. In this table, each 3D data point is
represented at most once and an index to it is stored. The index is needed to define
lines, triangles and quadrangles.

• Maintain a point cloud CI of isolated points.

• For all cells ci j in the map:

– For all surface patches Pk
i j
:

∗ Determine the neighboring patches of Pk
i j
from the cells ci+1, j ci, j+1 and

ci+1, j+1.
∗ If there are neighbors:
· Insert the neighbor points into the lookup table L if not yet done.
· Connect the corresponding 3D points to a line, a triangle or a quadran-
gle, depending on the number of neighbors. This is done by retrieving
the point indices from L.

∗ Otherwise, add the 3d point of Pk
i j
to CI.

As a result, we obtain a set of lines, triangles and quadrangles, as well as a point cloud
CI of isolated points. In addition, all vertical surface patches are visualized as vertical
line segments that are as long as the depth of the vertical patch. An example of a surface
mesh that was computed from an MLS map is shown in Figure 6.6. As can be seen, in
areas where the data is less dense, the map is represented by triangles, lines and isolated
points. Note that each vertex in the 3Dmesh corresponds to one surface patch in themap.

6.6 Conclusions

In this chapter, we presented different approaches to store 3D data that are particularly
useful for localization and planning in mobile robotics. We analyzed elevation maps,
extended elevation maps and multi-level surface maps, where the latter approach was
introduced as a new framework. The major advantage of MLS maps is their ability to
represent multiple height values and vertical objects such as buildings or trees. This
leads to more realistic maps while the memory requirements are still comparably low.
In the experiments shown in the next chapter, we will see that MLS maps are capable to
represent difficult environments such as bridges or underpasses and that they enable the
robot to plan a path for traversing the same xy position at different height levels.



7
Globally Consistent Maps

7.1 Introduction

In the last chapter, we saw how we can efficiently store 3D data from point clouds while
still maintaining accurate maps of the environment. However, these maps are still local
in the sense that they are computed from range data that was collected at one fixed robot
position1. This means for example, that occlusions appearing in the local map can not
be resolved, because the scene was only perceived from one point of view. Therefore,
we need to incorporate the data acquired from other positions into the map. To achieve
this, we need to find the correct 3D rigid body transformation between the particular
robot positions at which the local maps where acquired. For any pair of such robot
positions this can be done by finding data points in both maps that correspond to the
same object in reality and by subsequently computing a 3D rotation and translation
from these correspondences. This process is called map registration and is described in
section 7.2. The result of the map registration is a rotation and a translation that minimize
the sum of the distances between corresponding data points. This is in general an over-
constrained problem, whichmeans that it is impossible to find a transformwith a residual
error of zero. The problem arising here is that these residual errors accumulate when the
map registration is applied to a chain of subsequently acquired local maps. Especially,
this becomes apparent when the last and the first map of the chain are taken at similar
places. In this case, the accumulated registration error must be corrected globally. This
is usually called loop closing. In section 7.3, we describe an algorithm for the loop closing
problem which is based only on the results of the local map registration between nearby
robot poses. We will denote these as local constraints. In section 7.4 we show that this

1We note that for the context of this chapter, a map may be any possible 3D data representation, such as
point clouds, elevation maps, MLS maps etc.
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loop closing can be improved by incorporating global knowledge about the environment.
This is expressed in terms of global constraints between several different robot positions.
The result of this will be a globally consistent map of the environment, which means that
instances of objects that have been mapped in different local maps appear only as one
object in the global map.

7.2 Map Registration

As mentioned already, in map registration we compute a 3D rigid body transformation
between two local maps. If the particular local maps are totally disjoint from each other,
i.e. there is no overlap between any pair of maps, then we can not identify certain objects
from one map inside another one. In this case, we have no further information of how to
merge the maps other than the odometry of the robot. However, if there is some overlap
between pairs of maps, then we have an additional source of information, namely the fact
that objects from the real world that have been mapped in the overlap area must appear
in both maps. This enables us to determine a set of corresponding parts of the maps from
which a 3D transformation can be computed. This will be described in the following.

7.2.1 Registering Local Maps: The ICP Algorithm

Let us consider the case of two local maps that have some overlap, i.e. some parts of one
map can be found in the other one. We will assume that both maps are given as a data
point cloudD and a model point cloudM. This is the most general form of representing
3D data, because for any underlying map representation, such as MLS maps, we can
think of a feature extraction algorithm that computes point features from both maps (see
section 6.5.4). In the simplest case, these point features may be simply the center points
of the surface patches of the MLS map.
The standard algorithm to compute a 3D transformation betweenD andM is the ICP

algorithm, which stands for Iterative Closest Points. Sometimes it is also referred to as
the Iterative Corresponding Points algorithm, which reflects the nature of the algorithm
more precisely. The ICP algorithm was first stated by Besl and McKay 1992 and has
been extended and applied in many areas by various researchers. In algorithm 3 we see
the basic computational steps of ICP. In essence, they consist of iteratively determining
points inM closest to points in D, computing a 3D transform T = (R, t) and applying T
to the data pointsD. In detail, the steps are as follows.

Finding the Correspondences In this step, a set of point pairs is returned which are
considered as corresponding points. In the simplest case, this step computes for each
point p in the current point cloud Pk its closest point q inM. At the beginning, P0 is
initialized with the data pointsD. Later, we will see other possible computations for the
corresponding point pairs. In terms of running time, the correspondence computation is
the most demanding step in the ICP algorithm. The naïve implementation needs N com-
parisons withM points whereN is the size ofD andM the size ofM. This can be reduced
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Algorithm 3 Iterative Closest Point – find a translation t and a rotation R between two
point cloudsD andM
Definitions:

k : iteration counter
r−1, r0, . . . : residual at each step
τ : residual threshold
P0,P1, . . . : local point clouds
Y0,Y1, . . . : subsets ofM

1: P0 ←D
2: k← 0
3: r−1 ←∞
4: Yk ← CP(Pk,M)
5: (Rk, tk, rk)← T (D,Yk)
6: Pk+1 ←T(Rk, tk,D)
7: if rk−1 − rk < τ then
8: return (Rk, tk)
9: else

10: k← k + 1
11: goto 4
12: end if

when using kD-trees [Bentley, 1975; see also section 4.3.1]. The computation time is then
in O(N logM), but in cases with large point sets the corresponding points computation
is still slow. Therefore, other techniques such as sub-sampling can be applied. We will
return to this later.

Computation of the 3D Transformation Assume we have two sets of corresponding
pointsX = {x1, . . . , xN} andY = {xy1, . . . ,yN} as described in the previous paragraph. Our
goal now is to find a rotation matrix R and a translation vector t that minimizes the mean
squared distance between points in X and its corresponding transformed points in Y.
Thus, we minimize

e(R, t) :=
1
N

N∑

i=1

‖yi − (Rxi + t)‖2 (7.1)

Several possible ways to perform this minimization exist. The first one was presented
by Horn [1987] and used quaternions to represent the 3D rotation R. Later, there was
an approach by Umeyama [1991] which uses the singular value decomposition (SVD)
to compute the rotation. This approach is more elegant and easier to implement and
therefore we will shortly sketch it here.
First, we switch to a matrix representation of equation (7.1). This is done by introduc-

ing 3 × nmatrices X = [x1, . . . , xN] and Y = [y1, . . . ,yN] in which each data point is repre-
sented as a column. In addition, we define anN-dimensional vector h as h = (1, 1, . . . , 1)T.
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Then we can reformulate equation (7.1) as

e(R, t) :=
1
N
‖Y − RX − thT‖2 (7.2)

Next, we introduce a normalization matrix K = I − (1/N)hhT and substitute X by XK +
(1/N)XhhT and Y by YK + (1/N)YhhT. This yields

e(R, t) =
1
N
‖YK − RXK‖2 + ‖t′‖2 (7.3)

where

t′ = − 1
N
Yh +

1
N
RXh + t (7.4)

This means, that for the minimization, t′ must be 0, i.e.

t =
1
N
Yh − 1

N
RXh

= µY − RµX
(7.5)

where µX and µY are the means of the point clouds X and Y respectively. For the
computation of the optimal rotation matrix R we first define the cross covariance matrix
ΣXY as

ΣXY =
1
N

N∑

i=1

(yi − µY)(xi − µX)T (7.6)

and the singular value decomposition of ΣXY asUDVT. Using the lemma fromUmeyama
[1991], R is determined uniquely if the rank of ΣXY is at least 2. In this case, R is computed
as

R = USVT (7.7)

where

S =



I if det(ΣXY) > 0

or rank(ΣXY) = 2 ∧ det(U) det(V) = 1
diag(1, 1, . . . , 1,−1) if rank(ΣXY) = 2 ∧ det(U) det(V) = −1

or detΣXY < 0.

(7.8)

The distinctions in equation (7.8) are useful in cases where the cross covariance matrix
is rank deficient. An example of such a case is when both point clouds are distributed
on a plane. In this case, equation (7.7) yields a unique rotation even though the rotation
around the plane normal is not unique.
To summarize, the computation of the rotation and translation between point clouds

X andY is done as follows
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1. Compute the means µX and µY

2. Compute the cross covariance ΣXY according to equation (7.6)

3. Compute the SVD of ΣXY

4. Compute R according to equations (7.7) and (7.8)

5. Compute t according to equation (7.5)

In Besl and McKay [1992], a formal proof is given for the convergence of the ICP
algorithm to a local optimum. Furthermore, it is mentioned that a good initial estimate
of the rotation and translation to be computed increases the probability that the ICP
algorithm converges to the global optimum. In our application, such an initial estimate
can be obtained from the robot’s odometry measurements that are taken while the robot
travels from the positionwhere the first local map is acquired to the position of the second
local map.

7.2.2 Variants of the ICP Algorithm

In the literature, a series of different variants of the ICP algorithm can be found. A good
overview was given by Rusinkiewicz and Levoy [2001], where the authors compared the
existing approaches with respect to the following six aspects:

• Point set selection: Some algorithms use the whole point sets from the data and
the model points, others apply different kinds of sampling strategies to reduce the
complexity of the input data.

• Point matching strategy: This refers to different ways of defining a pair of corre-
sponding points. Examples range from simply taking the point that is closest to
each data point to projecting each data point (from D) into the mesh of the model
point setM.

• Correspondence pair weighting: Some approaches additionally define weights for
each corresponding point pair. These weights can for example be dependent on the
point-to-point distance or on the compatibility of the normal vectors (defined by
the dot product of the normals)

• Correspondence rejection: Similar to the weighting of correspondence pairs, this
is an attempt to classify into good and bad correspondences. For example, pairs of
points that are far away from each other might be rejected to obtain a more accurate
estimation of the 3s transform. Also, a certain percentage of point pairs can be
rejected. This is also referred to as the trimmed ICP algorithm [Pulli, 1999].

• Error metric assignment: Different error metrics may be used instead of the one
defined in equation (7.1). For example, the color information at each data point may
be included in the metric. Also, a point-to-plane metric has been proposed where
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Figure 7.1: Different stages of the ICP registration process. Shown is the initial displacement
(top left) and the matching result after 2, 5, and 15 iterations.

the distance of a data point fromD to the plane containing the corresponding point
in M and oriented perpendicular to its normal is computed [Chen and Medioni,
1991].

• Minimization approach: Apart from the standard minimization presented in the
previous section, the new 3D transform can be found by extrapolating the last 3
transforms at each iteration either linearly or quadratically. This accelerates the
convergence [Besl and McKay, 1992].

For the scopeof thiswork,wewill focusonlyona combinationof two ICPvariants, namely
the data reduction by sub-sampling and the rejection of bad point correspondences. These
two strategies have shown to be most effective with respect to run time reduction and
reducing the risk of running into local optima of the error metric. For a more detailed
discussion we again refer to Rusinkiewicz and Levoy [2001].
As an example, consider the two point clouds shown in figure 7.1. Theywere obtained

by extracting features from two different laser range scans (for details see Pfaff et al.
[2007a]). In the example, the ICP algorithm takes 15 iterations to converge to the correct
mapping. In particular, consider the street lamp in the background to see how the
alignment error is reduced.

7.2.3 Registration of MLS maps using ICP

In the special case that we are given two local MLS maps as presented in section 6.5, we
need to adapt the ICP based registration process to the MLS map structure. This means
that we need to extract point data from both MLS maps that can be used to define the
correspondences between the maps. In the case of horizontal surface patches this can
be done by simply taking the mean height of the patch and the xy-coordinates of the
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corresponding cell. For vertical cells we can sample uniformly from the vertical interval
defined by the patch. The number of samples should be dependent on the height of the
interval. In our experiments, we sampled four points per meter.
Furthermore, we modify the error equation (7.1) slightly by splitting it up into three

different sums of disjoint sets of correspondences. We use the classification of surface
patches into ’vertical’, ’horizontal and traversable’ and ’horizontal and not traversable’
which was presented in section 6.5.4. To formulate this mathematically, let us denote
the points that were sampled from vertical objects in the first map with uic and their
corresponding sample points in the other map with u jc where (i1, j1), . . . , (iC1 , jC1) are the
C1 pairs of corresponding indices. Similarly, we define vic and v

′
jc
as the corresponding

points from traversable patches and wic and w
′
jc
as points from non-traversable patches.

Then, the modified error equation is

e(R, t) =
C1∑

c=1

d(uic ,u
′
jc
)

︸         ︷︷         ︸
vertical cells

+

C2∑

c=1

d(vic ,v
′
jc
)

︸         ︷︷         ︸
traversable

+

C3∑

c=1

d(wic ,w
′
jc
).

︸            ︷︷            ︸
non-traversable

(7.9)

Note that this modified error equation does not change the computation of the optimal
transform. We still minimize the error e(R, t) as a whole rather than minimizing each sum
of distances separately. Equation (7.9) only says that the selection of correspondences is
done class-wise instead of simply taking the nearest neighbor of each data point. This
reduces the amount ofwrong correspondences, which are onemajor cause for poor results
of the ICP algorithm.

7.3 Closing the Loop using Local Constraints

Asmentioned already, the map registration process in general ends up in a small residual
error e(R, t), because corresponding data points between two consecutive maps can in
general not be identified with the same 3D location in the real environment. In fact,
assigning nearby data points from different maps to each other as corresponding points,
is an approximation. Theproblemwith this approximation is that it decreases the certainty
of the global transform between the first and the last local map in a chain of maps. The
longer such a chain of local maps grows, the higher is the uncertainty of the computed
robot position for the last local map. This means that when the robot returns to the
position where it acquired the first map in the chain, the overall scan matching error may
be so large that the resulting global map is inconsistent. Thus, the first and the last map
do not ”fit” together, although they have been acquired (nearly) at the same positions in
space. The knowledge that the first and the last position are close to each other, is not
incorporated in the registration process when it is based only on local scan matching.
Olson et al. [2006] present an approach to cope this problem by defining a network of robot
poses and minimizing a global error function. The main ideas are similar to the ones
by Lu and Milios [1997] and will be presented in the next section.
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Figure 7.2: Loop closing in a network of robot poses. Each node corresponds to a robot pose, i.e.
position and orientation in 3D space. An edge between two poses represents the local rigid-body
transform between the local maps at the poses. These transforms impose local constraints on the
robot poses. Note that the local constraints are not necessarily defined on consecutive poses.

7.3.1 Network-based Pose Optimization

Suppose the robot recorded local 3D maps at N different poses p1, . . . ,pN. A pose is
defined as a 6-tuple (x, y, z, ϕ, ϑ, ψ) of location (x, y, z) and orientation (ϕ, ϑ, ψ). Whenever
two local maps that have been acquired at poses pi and p j arematched to each other using
the map registration technique described above, a constraint is imposed on the poses pi
and p j. If we represent all these constraints as undirected edges in a graph, where the
nodes are defined by the robot poses, we obtain a network of robot poses. Figure 7.2 shows
an example of such a network. It can be used tominimize the global registration error. An
overview of techniques to achieve this has been presented by Olson et al. [2006]. There,
the authors show that the LU decomposition and a new modified stochastic gradient
descent (SGD) approach yield the best results. However, the experiments performed in
that work were only done on two-dimensional input data. In fact, it turns out that the
SGD approach can not be applied for the case of 3D data as presented by Olson et al.
[2006]. This is because the assumption of a linear angular subspace made there does not
apply for the 3D case. A 3D version of the SGD approach addressing this problem is
currently under investigation.

7.3.2 Local Constraints between Robot Poses

As described above, a local constraint between two robot poses pi and p j is an edge
between pi and p j in the network of poses. Mathematically, a local constraint corresponds
to the rigid-body transform Ti j between data points in the local reference frame at pi and
the corresponding points in the local reference frame at p j. This transform directly
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depends on the rotation Ri j and the translation ti j computed by themapmatching process
between the maps at pi and p j. We can see the pair (Ri j, ti j) as the transform between the
global coordinates of the points at pose pi and the global coordinates of the points at p j,
because the ICP algorithm takes as input an initial guess of the transform, which can also
be given by the initial estimates of pi and p j. This means, a local constraint Ti j is defined
by

Ti j(f) := P−1i (Ri jP j(f) + ti j), f ∈ R3 (7.10)

Here we use the notation P j(f) for the function that transforms a point f from the local
reference frame at the robot position p j to the global reference frame. Accordingly, P−1i
transforms a feature in global coordinates into the local reference frame at position pi.

7.3.3 The Optimization Algorithm

Using the above notation we can now formulate the pose optimization problem. For a
given set of initial robot poses p1, . . . ,pN the local map registration returns a set of local
constraints Ti j for i, j = 1, . . . ,N, i , j according to equation (7.10). These constraints are
then encoded in a goal vector g of length 6MwhereM is the number of constraints Ti j.

g := (. . . , xi j, yi j, zi j, ϕi j, ϑi j, ψi j, . . .) (7.11)

In other words, g contains all local constraints expressed as 3D translation and rotation.
Next we define the constraint function f : R6N → R6M that maps robot poses to local
constraints.

f (x1, . . . , ψ1, . . . , xN, . . . , ψN) :=




...

α(P−1
i
P j)

...




(7.12)

Herewe introduced the functionαwhich converts a pose transformP into its 6 parameters
(x, y, z, ϕ, ϑ, ψ). Using the constraint function f , we can formulate the loop closingproblem
as the minimization of the squared difference between f (p) and the goal vector g

p∗ = argmin
p
‖ f (p) − g‖2 (7.13)

Here, p denotes the vector of all robot poses p1, . . . ,pN and p∗ are the optimal poses to be
found. The constraint function f is non-linear due to the rotations. We therefore linearize
it according to f (p) ≈ F|p + J|p∆p where J|p is the Jacobian of the constraint function f at
p. At each iteration of the pose optimization F|p and J|p are recomputed for the new poses
and we will write simply F and J for better readability. Using this, we can reformulate
the global pose optimization as

p∗ ≈ argmin
d

‖ Jd − r ‖2 (7.14)
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Figure 7.3: The robot Herbert used for the 3D data acquisition in outdoor terrains. It is equipped
with an AMTEC pan/tilt unit that carries a SICK LMS 291 laser range finder. In addition, it has

a CCD camera which has not been used in our experiments.

Here we substituted ∆p by d and (F − g) by r.
By deriving with respect to d and setting to zero we obtain

JT Jd = JTr (7.15)

This is a standard linear algebra problem which can be solved by LU decomposition
or by multiplication with the pseudo-inverse of JT J. The overall algorithm can then be
described by iterating the following steps:

• Compute F and J from the poses p.

• Minimize (7.14) according to Equation (7.15).

• Compute new poses: p← p + d.

This is repeated as long as the residual r exceeds a threshold or a maximum number of
iterations is reached.

7.3.4 Experiments

As an application example of the loop closing algorithm derived above, we choose the
construction of a consistent 3D map of an outdoor environment, which in our case is the
campus of the computer science department at the university of Freiburg. The 3D data
was acquired using a SICK LMS 291 laser range finder mounted on an AMTEC wrist
module PW70. The robot platform we choose is a Pioneer II AT robot named Herbert.
Figure 7.3 shows a photograph of the assembled system.
To acquire the data, we steered the robot over the university campus and recorded

3D point cloud data at different robot positions. From each of these point clouds we
computed a local MLSmap as described in section 6.5. As long as the robot did not return
to a previously visited area, no loop closing could be performed and the registration of the
MLS maps was done as described in section 7.2.3. In cases where a loop could be closed,
we applied the algorithm described in the previous section. The decision of whether to
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close a loop was taken manually. In fact, for a better evaluation, the last robot position in
each experiment was chosen to be exactly the first position, which was marked before on
the ground. The aims of the experiments were the following:

• Show the high data reduction by using MLS maps

• Show the possibility of representing multiple levels

• Demonstrate the loop-closing technique in large loops

In total, two experiments were performed. In the first one, the robot acquired 77 scans
consisting of 20, 207, 000 data points. The area scanned by the robot spans approximately
195 by 146meters. During the data acquisition, the robot traversed a loopwith a length of
312m. Figure 7.4 shows two views of the resultingMLSmapwith a cell size of 10cm×10cm.
The yellow/light grey surface patches are classified as traversable. It requires 57.96MB to
store the computed map, where 24% of 2, 847, 300 cells are occupied. As can be seen from
the figures, the loop is closed properly and the resulting map is consistent. The final pose
deviation between the first and the last robot pose was only a few centimeters.
In this first experiment, the robotwas alwayspositionedat the ground level. Therefore,

to demonstrate the power of MLS maps in representing multiple levels, we performed a
second experiment, in which the robot traversed an underpass of a bridge and crossed
this same bridge later. Then, it drove down again to the ground level via a different
path, traversed the underpass a second time and returned to its start position. In total,
the collected data set consists of 172 individual scans with a total of 45, 139, 000 data
points. In contrast to the first experiment, this loop was too large to be closed, because
the accumulated registration error was too big to find accurate correspondences between
overlapping local maps. Therefore we proceeded as follows: Considering that the local
scanmatches between consecutive robot poses is highly accurate, wematched local maps
corresponding to 5 consecutive poses into new and bigger local maps. This means that
maps m1, . . . ,m5 are matched into the new map m̄1, maps m6, . . . ,m10 into m̄2 and so on.
This way we obtain a set of N5 new local maps, which reduces the pose optimization
problem. A further improvement can be achieved by increasing the overlap between
consecutive local maps m̄i and m̄i+1. This can be done by adding the last partial map from
m̄i to m̄i+1. For example, the local map m5 is then also a part of the new local map m̄2. In
this way, the scanmatching error between the joined local maps m̄i and m̄ j can be reduced
and the global pose optimization is more likely to converge to a global optimum.
TheMLSmap resulting from the second experiment is shown in Figure 7.5. Again, the

cell size was chosen to 10cm × 10cm and the yellow/light grey surface patches depict the
traversable areas. The area scanned by the robot spans approximately 299 by 147 meters
and the length of the loop traversed by the robot is 560m. The memory requirement of
the map is 73.33MB, where 20% of 4, 395, 300 cells are occupied. In addition to the fact
that the map is consistent and highly efficient in memory, we can see from the figure the
two different levels at which the robot was positioned during the data acquisition.
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Figure 7.4: Two views of the resulting MLS map of the first experiment with a cell size of 10cm
x 10cm. The area scanned by the robot spans approximately 195 by 146 meters. During the data
acquisition, where the robot collected 77 scans consisting of 20, 207, 000 data points, the robot

traversed a loop with a length of 312m.
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Figure 7.5: Resulting MLS map of the second experiment with a cell size of 10cm x 10cm. The
area scanned by the robot spans approximately 299 by 147 meters. During the data acquisition,
where the robot collected 172 scans consisting of 45,139,000 data points, the robot traversed a loop

with a length of 560m.

7.4 Closing the Loop using Local and Global Constraints

As we have seen in the previous section, in cases of large loops it may be difficult or
even impossible to compute a consistent map from the input data acquired by the robot.
The reason for this is that the map registration can be performed only on maps acquired
at consecutive robot poses because for other pairs of maps there is not enough overlap.
This means that the estimate of each robot position is only based on the (poor) estimate
of the previous position and the result of the scan matching. One way to cope with this
problem is to use other sources of information about the positions of the robot. This
can be done by exploiting the structure of the scene that is to be mapped by the robot.
The idea behind this is motivated by the fact that many man-made environments such
as buildings often contain features that can be observed in many views and at similar
places. For example, the windows belonging to one and the same level of a building
are typically at the same height on all sides of the building. Accordingly, the windows
introduce additional constraints on range scans even if the scans have only a small or
even no overlap. The key idea of the approach proposed in this section is to extract such
global constraints from three-dimensional range scans and to improve the optimization
process based on these global constraints.
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Figure 7.6: Extended robot pose network. In addition to the local constraints represented as
undirected edges between the nodes in the graph, we introduce global constraints represented as
hyper-edges. In this example, two global constraints are imposed, one between the poses p1, p2,

p3, pN−1, and pN, and one between the poses p3, p4, pN−2, and pN−1.

7.4.1 Extension of the Pose Network

As before, we assume we are givenN different local maps recorded at the robot positions
p1, . . . ,pN. To represent the estimation problem of these robot poses graphically, we
introduced in section 7.3.1 the pose network with nodes for each robot pose and edges
for each local constraint imposed on two robot poses. In this section, we extend the pose
network by introducing hyper-edges. A hyper-edge connects several different nodes in
the graph and is identified with a global constraint that is imposed on the corresponding
robot poses. Figure 7.6 shows an example of such an extended robot pose network. In the
example, two global constraints are added to the graph, one connecting five poses and
one with four poses.

7.4.2 Local and Global Constraints in a Common Error Function

In analogy to the casewherewe are given only local constraints (see section 7.3.3), our goal
for the case of local and global constraints is to minimize an appropriate error function
similar to the one from equation (7.13). However, as we will see later, for the type of
global constraints we use here, it is not possible to define a constraint function f as in
equation (7.12). We therefore express the pose optimization problem in a more general
form by defining an overall error function fe : R6N → R that is to be minimized

fe(p1, . . . ,pN) := γle(p1, . . . ,pN) + (1 − γ)ge(p1, . . . ,pN) (7.16)

Thus, the overall error fe is split up into an error function le that is assigned to all local
constraints and an error function ge corresponding to the global constraints. To weigh
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between the two types of errors we introduced the factor γ ∈ R. In the following, we will
describe the error functions le and ge in detail.

The Error Function Based on Local Constraints

In section 7.3.3 we defined the error that stems from the local constraints as the squared
distance between the 6D transform parameters (x, y, z, ϕ, ϑ, ψ) resulting from the ICP
matcher and the 6D parameters derived from the pose transforms Pi. This means that
the objective was to get as close as possible to the local transforms computed by the ICP
algorithm. The problem with this is that the uncertainty of these local transforms varies
over the transform parameters. The ICP algorithm, as it is described in section 7.2, does
not provide this different uncertainties, so we have to assume them to be equal2. The
result of this is that there may be a set of transform parameters that are similar to the
ones obtained with the global pose optimizer, but yield a better fitting of the individual
local maps. Thus, the actual objective of the pose optimization should be this fitting of
the local maps instead of trying to reach the error prone local transform parameters.
For this reason we define the error function le as the sum of the Euclidean distances

between corresponding points in the local maps. The local map at the robot position
pi in this context is represented by a set of 3D features Fi = {fi1, . . . , fis(i)} where s(i) is
the size of the map with index i. As mentioned above, these features can be interpreted
differently depending on the 3D map representation used. In the case of point clouds,
they correspond to the 3D coordinates of the data points. Using this, we define the error
that results from the local constraint between two robot positions pi and p j as

l(pi,p j) :=
C∑

k=1

‖Pi(fic1(k)) − P j(f
j

c2(k)
)‖2 (7.17)

where (c1(1), c2(1)), . . . , (c1(C), c2(C)) is the set of C correspondences between points from
the local maps at pi and p j that have been computed by the ICP algorithm after conver-
gence. In the equation, we use again the notation Pi(fi) for the transform of the feature fi

from local coordinates at pi to global coordinates (see equation (7.10)). If we assume we
are given L local constraints l1, . . . , lL as defined in equation (7.17), then the error function
le can be expressed as

le(p1, . . . ,pN) =
L∑

i=1

li(pν1(i),pν2(i)). (7.18)

In this equation, we introduce the index functions ν1 and ν2 that map each local constraint
index i = 1, . . . ,L to the index of the first and second robot pose ν1(i) and ν2(i) between
which the constraint is imposed.

2There exist approaches to estimate these uncertainties during the ICP computation. However, they
usually yield an approximation and are not feasible due to their high computational time requirements.
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The Error Function Based on Global Constraints

In general, a global constraint between different robot poses can be defined in many
possible ways. For example, if a set of 3D landmarks with known poses is given, then
each of these landmarks constitutes a global constraint on all robot poses from which
a partial view onto the landmark was taken. The error function that corresponds to
a global constraint may then defined by the squared Euclidean distance between one
of the landmarks and the view of the landmark in global coordinates as seen from the
corresponding robot pose.
In this context, we will not assume the existence of known landmarks. We rather

define the global constraints based on the object(s) seen from the different views. This
stems from the observation that many real world objects, such as buildings are highly
self-similar. For example, if a building is seen from two sides, it is very likely that specific
features that are extracted fromboth views (e.g., windows, the edge betweenwalls and the
roof etc.) are on the same absolute height in both views. In general, many different types
of features are possible, where high-level features such as windows, doors etc. constrain
the algorithm to be applicable for specific objects like buildings. We therefore rely on
low-level features, in particular 3D edges.
Before we discuss how to extract the edges, we will first describe how we actually

use them to generate global constraints. Assume we are given a set of edge features
Ei = {ei1, . . . , eiM} for the map at pi. We define a global constraint as a plane p that has
a sufficient support by edges detected in different maps. Here the support supp(p) of a
plane p is defined by all edges e that lie entirely inside a given corridor around p. For
convenience, we will denote the set of all edges e ∈ Ei that are in the support of p as Spi .
Now, we calculate the error resulting from the global constraint g between the K poses
pi1 , . . . ,piK as

g(pi1 , . . . ,piK) :=
K∑

k=1

∑

e∈Sp
ik

d(Pik(e), p) (7.19)

Here, d defines the squared distance of the transformed edge e to the plane p. To compute
it, we can not use equation (2.14) in general, because Pik(e) is usually not parallel to p.
Therefore, we compute d() as the sumof squared Euclidean distances between the vertices
of Pik(e) and p.
Using (7.19) we can express the error function ge for a given set ofG global constraints

g1, . . . , gG where the constraint gi is imposed on Ki different robot poses as

ge(p1, . . . ,pN) =
G∑

i=1

gi(pµ1(i), . . . ,pµKi (i)) (7.20)

Again, we use index functions µ1(i), µ2(i), . . . that map from constraint indices i = 1, . . . ,G
to pose indices n = 1, . . . ,N.
Plugging (7.18) and (7.20) into (7.16), we obtain for the overall error function fe:
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Algorithm 4 poseOpt(p1, . . . ,pN,F1, . . . ,FN, l1, . . . , lL) – Robot pose optimization using
local and global constraints
Inputs:

p1, . . . ,pN : initial estimate of N robot poses
F1, . . . ,FN : 3D features of N local maps
l1, . . . , lL : local constraints between pairs of robot poses

Outputs:

p1, . . . ,pN : optimized robot poses
1: iterations← 0
2: for i = 1, . . . ,L do
3: (ν1, ν2)← PI(li)
4: Ci ← C(pν1 ,pν2 ,Fν1 ,Fν2)
5: end for

6: g1, . . . , gG ← GC(p1, . . . ,pN,F1, . . . ,FN)
7: (p1, . . . ,pN)← P (p1, . . . ,pN,F1, . . . ,FN,C1, . . . ,CL, g1, . . . , gG)
8: if C(p1, . . . ,pN) < θ then
9: return (p1, . . . ,N)
10: else if iterations >MAX_ITERATIONS then
11: return FAILURE
12: else

13: iterations← iterations + 1
14: goto 1
15: end if

fe(p1, . . . ,pN) = γ
L∑

i=1

li(pν1(i),pν2(i)) + (1 − γ)
G∑

i=1

gi(pµ1(i), . . . ,pµKi (i)) (7.21)

This is the error equation that is to beminimized for the global pose estimation. A number
of different standard techniques are available to achieve this. In our implementation, we
used the Fletcher-Reeves gradient descent algorithm.
It should be noted that the globalminimum for the error function fe is not unique. This

is because both local and global constraints are only defined with respect to the relative
displacements between the robot poses and the global minimum of fe is invariant with
respect to affine transforms of the poses. In practice, this problem can be solved by fixing
one of the robot poses at its initial value. Then the other poses are optimized relative to
this fixed pose.

7.4.3 Details of the New Optimization Algorithm

When formulating equation (7.17) for the local constraints, we remarked that the cor-
respondences used in the error computation are obtained by applying the ICP algorithm
until convergence. As we have seen above, this requires a good estimate of the initial
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robot poses for the ICP to converge to a global optimum. However, in general the ini-
tial estimate of the robot poses is not good enough which results in a sub-optimal set
of correspondences obtained by the ICP algorithm. The same observation holds for the
estimation of the global constraints: A global constraint is defined by a plane that is com-
puted from edges found in the local maps. The global coordinates of these edges depend
on the estimated robot poses, which means that a bad pose estimate yields misplaced
planes and thus incorrect global constraints. This means that the definition of both the
local and the global constraints depend on a good initial estimate of the robot poses.
However, in experiments it turned out that even a poor initial pose estimate usually leads
to a sub-optimal, though acceptable estimation of correspondences and planes which
could be used to improve the robot poses in the optimization step. In other words, we
have a circular dependency between constraints and robot poses. Therefore, the idea is
to estimate both constraints and poses iteratively. Note that such an approach is applied
in many other iterative approximation methods such as Expectation Maximization (EM),
where a set of hidden random variables, that are dependent on the parameters, is esti-
mated and fed back to the optimization of the parameters. In contrast to the maximum
likelihood estimation process applied in an EM framework, our algorithm is not guaran-
teed to converge. However, in our experiments we found that by introducing the global
constraints the iterative optimization gets more stable with respect to convergence. Algo-
rithm 4 summarizes the individual steps of the overall pose optimization. The particular
sub-routines are described as follows:

• PI: For given local constraint, i.e. an edge in the pose network, this
function returns the indices of the robot poses that are connected by the edge.

• C: This function applies the ICP algorithm on the two
given local maps and uses the two given robot poses as initial estimates. After
convergence, the final set of correspondences is returned as pairs of indices (see the
explanation of equation (7.17)).

• GC: Here, we estimate the planes for the global con-
straints from the current robot poses. For this, we use the edge sets E1, . . . ,EN
computed for each local map F1, . . . ,FN. The details of the edge detection and the
computation of the planes are described in section 5.2.3.

• P: Using the current estimate of the robot poses, correspondences and
planes this function computes a new set of robot poses by minimizing (7.21) as
described above.

• C: This computes the Euclidean distance between the previous set of
robot poses and the newly obtained poses. If this distance is lower than a threshold
θ, the algorithm terminates.
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a b

Figure 7.7: Simulated scene used to verify the performance of the algorithm. left: 3D view of the
scene; right: 4 generated partial views shown in an explosion view drawing.

7.4.4 Experimental Results

To evaluate our algorithm we implemented it and tested it on real data as well as in
simulation runs. The goal of the experiments reported here is to illustrate that the
incorporation of global constraints increases the accuracy of the resulting models.

Real World Experiment

In order to analyze the performance of our registration algorithm in practice, we tested
it with a data set taken from a real world scene. The data set consisted of 6 different
three-dimensional scans taken from a building that is about 70m long, 20mwide and 11m
high from the ground to the roof edge.
Fig. 7.8 shows the result of the view registration using global constraints. As can

be seen, 5 different planes were detected by our algorithm. These planes were used as
global constraints in the network of robot poses. The figure also depicts close-up-views
of several parts of the model. Shown are the results obtained with our approach and with
local constraints only. As can be seen from the figure, the edges detected in the partial
views have been aligned more accurately to the planes using our approach. Especially
at the roof plane we can see that the views are all at the same level. To quantify the
improvement wemeasured the variance σα of the absolute angular deviation of the edges
from the corresponding plane tangent. For the global-constraint based registration we
obtained σα = 0.75. In contrast, the local constraints only produce a value of σα = 2.56.

Quantitative Results

To more systematically evaluate the quality of the models obtained with our algorithm
and in comparison with other approaches we performed a series of experiments using
the simulated scene shown in Figure 7.7. The object is 3m wide, 5m long and 3m high.
In the particular experiment reported here we generated 4 different scans. These scans



114 CHAPTER 7. GLOBALLY CONSISTENT MAPS

Local and Global Constraints

Local Constraints

Figure 7.8: Registered data set from an outdoor scene. Shown are the range data and the edges
used to extract the planes as global structures.

are shown in Figure 7.7 in an exploded view drawing. For the initial poses we added
Gaussian noise to the poses known from the ground truth. The noise added to the
angles had a variance that was different from the noise variance added to the positions.
We ran two different kinds of experiments where the noise variances were (0.0005|0.05)
and (0.0008|0.08) respectively. For both noise levels we started the optimization with 10
different initial sets of poses. We evaluated both the registration method using only local
constraints and the one using local and global constraints.
The results for the low variance case are summarized in Table 7.1. Shown are the

average deviations in angle µǫ and position µx from the ground truth. As can be seen,
the incorporation of global constraints improves the registration process. Especially the
angular deviation is smaller when using global constraints. This is because the global
planar constraints correct smaller errors that arise from the local scan matcher. These
errors are mainly encountered in the rotations.
In the case of a high noise variance, the algorithm that uses only local constraints

always diverged. This is because the local scan matching could not find enough corre-
spondences and therefore diverged. However, in some of these cases convergence could
be achieved by adding the global constraints.
In a further experimentwe demonstrate the performance of our approach in situations

where few overlap is given between the individual partial views. Again, we used the
scene shown in fig. 7.7. We ran the registration process using different numbers of partial
views, ranging from 6 down to 2, where the overlap decreased with the number of
views. Fig. 7.9 plots the rotational deviations from the ground truth. As can be seen,
our algorithm performs significantly better (α = 0.05) in situations with fewer overlap
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Table 7.1: Comparison of performance for different registration algorithmswith respect to average
angular deviation µǫ (in radians) and positional deviation µx (in meters)

Method µǫ µx

local constr. 0.0175 0.1595

global + local constr. 0.0071 0.1109

between the individual views.
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Figure 7.9: Statistical analysis of the registration process with respect to the angular rotation
from the ground truth

7.5 Conclusions

In this chapter, we showed how consistent 3D environment maps can be constructed
from a set of local maps that were acquired at different robot positions. In particular,
we presented an efficient variant of the Iterative Closest Point (ICP) algorithm and a
way to adapt this algorithm to the problem of registering MLS maps, which have been
presented in chapter 6. In addition, we investigated the problem of finding an optimal
set of robot poses where a local map representation was given for each robot pose and
during the trajectory of the robot areas are visited more than once, which is usually called
loop-closing. As a major contribution of this work, we extended the standard framework
of the robot pose network by introducing global constraints based on the observation that
many man-made structures have features that can be observed in different views (e.g.
the windows of a building). In experiments we showed that by exploiting this additional
knowledge the loop-closing can be performed even in cases where the local maps have
low overlap. In addition, the global constraints are helpful in map registration, even if
the robot trajectory is not a loop.
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Try to learn something about everything and
everything about something.

Thomas Huxley (1825 - 1895) 8
Object Classification by

Supervised Learning

8.1 Introduction

So far, we have been dealing with the first major part of the robot perception task, which
involves the accurate, compact and consistent representation of the input data. This is
usually called mapping. However, as explained in chapter 1, perception also includes the
semantic annotation of the data obtained from the sensors. We will refer to this as scene
analysis or object recognition. The main concept behind this is that of classification: For each
element x of a given setX of input datawe search a class label ywhich belongs to a setY of
possible labels. The mapping between X andY is called a classifier. Such a classifier can
be obtained by using supervised learning from a previously labeled input data set. We
will describe this briefly in section 8.2. Wewill also see that the approaches that exist to do
supervised learning can be subdivided into threemain categories, namely the discriminant
function, the discriminative model and the generative model approach. There is a large
number of different learning algorithms that can be found in the literature, where good
summaries are given in the textbooks byTheodoridis andKoutroumbas [2003] andBishop
[2006]. From these, wewill briefly describe three very common approacheswhichwewill
use later in chapter 9 for comparison and extension towards a new object classification
algorithm. These approaches are the naïve Bayes classifier (NBC) in Section 8.3, which
follows the generative model, the nearest-neighbor classifier (NN) in Section 8.4, which
uses a discriminative model, and the AdaBoost algorithm in Section 8.5, which learns a
discriminant function. A summary and the conclusions are given in Section 8.6.
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8.2 Supervised Learning

Assume we have a set P of input data that consists of N data points. This can, for
example, be a point cloud as described in Section 4.2. Our goal is to find a class label
yn, where n = 1, . . . ,N for each data point p1, . . . ,pN ∈ P. Usually, this is not done
directly on the input space, but rather on a set X of features that are computed from the
input data. This has the advantage that the labeling does not depend on the particular
3D coordinates of the data points. Instead, local properties of the environment such as
planarity or smoothness can be expressed with the features, which makes them more
useful for classification. If we assume that a vector xn ofM features is computed for each
data point pn, we can define a classifier as follows:

Definition 8.1. A hypothesis or a classifier is a mapping from a set X ⊂ RM of N feature
vectors x1, . . . , xN to a setY = {1, 2, . . . ,K} of class labels y1, . . . , yN.

A common way to obtain a classifier is known from the area of machine learning as
supervised learning (see for example Bishop [2006]), where a training data set X̂ is given,
for which the assigned class labels Ŷ are known. Then, a classifier is derived from this
training data set. There exist three distinct approaches to do this:

• The discriminant function h(x): This function maps from X to Y and is therfore a
classifier. An example is Fisher’s linear discriminant, which maximizes the ratio of
the between-class covariance to the within-class covariance of the training data set.
Details are described in Bishop [2006].

• The discriminative model p(y | x): This is a probabilistic approach that models the
conditional probability of a label ŷ for a given feature vector x̂ from the training set.
Then, a label can be found for a new input vector x by maximizing this conditional
probability.

• The generativemodel p(y, x): This approach is alsoprobabilistic, but it ismore complex
than the discriminative model. It seeks to model the joint distribution of features
and labels or, likewise, the probability p(x | y) and the class prior p(y). The posterior
p(y | x) is then obtained using Bayes’ rule.

There is an ongoing discussion in the literaturewhether to favor discriminative or genera-
tivemodels when using a probabilistic approach, while the tendency seems to be towards
discriminative models (see for example Goutte et al. [2004], Ng and Jordan [2002], Ulusoy
and Bishop [2005] ). In general, we can say that the generative model is more powerful,
because it can generate new data points by sampling from the learned distribution p(y, x).
It also seems to give better results when the training data set is small. However, if enough
training examples are given, discriminative approaches seem to perform better (see Ng
and Jordan [2002]). Compared to these two, the non-probabilistic discriminant function
approach is less complex, but it is not capable of modeling the posterior p(y | x), which is
useful and needed in many situations.
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8.2.1 Formulation of the Followed Approach

For the scope of this work, we will focus on the discriminative model, but we will also
compare the results of our discriminative classifier presented in chapter 9 to the naïve
Bayes classifier (NBC) described in Section 8.3, which is generative, and to AdaBoost
(see Section 8.5), which can be viewed as a discriminant function learner. Thus, in
this work we assume we are given a model description of the posterior distribution
pω(y1, . . . , yN | x1, . . . , xN) where ω is a set of parameters defining the actual posterior
distribution. As mentioned above, the posterior is obtained from a training data set X̂
of N̂ examples with known labels Ŷ. This is done by finding the model parameters ω
that maximize pω(ŷ1, . . . , ŷN̂ | x̂1, . . . , x̂N̂). We will refer to this as the learning step. Using
the parameters ω obtained in the learning step, we can find a set of labels y1, . . . , yN for
a given new set of features x1, . . . , xN so that the posterior pω(y1, . . . , yN | x1, . . . , xN) is
maximized. This means that we have a maximum-a-posteriori (MAP) formulation. To
simplify the notation, we will collect all feature vectors x1, . . . , xN in one vector x and all
class labels y1, . . . , yN in a vector y. Then, we can summarize the two steps performed in
supervised learning as

learning: given ŷ and x̂, find ω∗ = argmax
ω

pω(ŷ | x̂)

inference: given ω∗ and x, find y∗ = argmax
y

pω∗(y | x)
(8.1)

In the following sections wewill describe three standard approaches to do supervised
learning: the generative naïve Bayes classifier (NBC), the discriminative nearest-neighbor
classifier (NN), and the AdaBoost algorithm.

8.3 The Naïve Bayes Classifier

The idea of the naïve Bayes classifier is to find a model of the likelihood pω(xn | yn) and
the prior p(y). Thus, for each class label k = 1, . . . ,K and each data point pn that has an
associated feature vector xn ∈ RM of sizeMwe know pω(xn | yn = k) and pω(yn = k). From
this, we can compute the posterior pω(yn | xn) using Bayes’ rule:

pω(yn | xn) =
pω(xn | yn)p(yn)∑K

k=1 pω(xn | yn = k)p(yn = k)
. (8.2)

Usually, a Gaussian distribution is used to model the likelihood. This means that the
parameters ω are defined as the mean vectors µk and the covariance matrices Σk for each
class k = 1, . . . ,K. Thus, we can formulate the likelihood as

pω(xn | yn = k) =
1

(2π)M/2
√
det(Σk)

exp
(
−1
2
(xn − µk)TΣ−1k (x − µk)

)

where ω = (µ1,Σ1, . . . ,µK,ΣK)
(8.3)
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In the learning task the individual classmeans and covariances (µk,Σk) are computed. This
can be done by determining the sample mean and covariance matrix from the training
data set (see Theodoridis and Koutroumbas [2003]). For the prior p(y) we can either
assume a uniform distribution or estimate the probability p(y) = k for each class k from
the fraction of data points that belong to class k.
In the inference task we search for labels yn that maximize the posterior (8.2). This is

equal tomaximizing the numerator of the right hand side of 8.2, because the denominator
does not depend on yn. If we assume uniform priors, the inference task reduces further
to maximizing the likelihood term pω(xn | yn). This means that for each new data point xn
we simply compute the likelihood (8.3) for each class and assign it the label of the class
with maximal likelihood.

8.3.1 Discussion

The NBC is optimal in the sense that it minimizes the classification error probability
(see Theodoridis and Koutroumbas [2003]). It performs well in cases where the assump-
tion of aGaussian distribution of the feature vectors for each class is reasonable. However,
in many cases this does not hold. For example, if the feature vectors of a given class are
distributed in a multi-modal distribution, then the use of the class mean and covariance
matrix results in a bad approximation. Also, the class borders learned by the NBC are
restricted to be second order curves, which also reduces the flexibility of the classification
approach.

8.4 The Nearest-Neighbor Classifier

Asmentioned above, theNearest-Neighbor classifier (NN) is a discriminativemodel. The
idea of NN is to estimate the posterior directly from the training data by looking at a set
of l points in the training data set that are neighbors of an input data point x̃ to be labeled.
From these neighbors the local posterior pω(y | x̃) is estimated by computing the fractions
of neighboring points that belong to the particular classes. In the learning phase, the
NN classifier does not compute any parameters like the NBC, but instead simply stores
the entire training data set as parameters ω. Thus, the classification uses the particular
instances of data points from the training data set, which is why the NN classifier is called
an instance-based classifier.
Todescribe theNNclassifiermore formallyusing the general frameworkof supervised

learning from equation (8.1), we first define the local neighborhood N of size l for a data
point x̃ and a given data set X as

N(l, x̃;X) := {x ∈ X | card(R(x̃, x,X)) ≤ l}
where R(x1, x2,X) := {x ∈ X, x , x1 | d(x, x1) ≤ d(x2, x1)}

(8.4)

Here we used the function ’card()’ that returns the number of elements or the cardinality
of a given finite set. Using (8.4) we can estimate the posterior distribution as
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pω(yn = k | xn) =
card({x̂ ∈ N(l, xn, X̂) | ŷ = k})

l
, k = 1, . . . ,K (8.5)

where ω = (x̂1, ŷ1, . . . , x̂N̂, ŷN̂) is the parameter set obtained in the learning step. The
parameter l defines the size of the neighborhood and should not be a multiple of the
number of classes K (see Theodoridis and Koutroumbas [2003]). In the simplest case, l
is set to 1, which means that the classifier always assigns the label of the closest training
example in feature space.

8.4.1 Discussion

The major disadvantages that have been mentioned for the Bayes classifier do not apply
for the nearest-neighbor classifier. In particular, the NN classifier does not assume any
model for the distribution of the feature vectors. Thus, it can handle arbitrary distribu-
tions in the feature space. We can see this as a sample-based representation of the posterior
distribution, where the samples are the training examples, also called instances. This di-
rectly shows us the major drawbacks of the NN approach, namely the need of storing
many training instances to obtain an accurate representation of the posterior distribution.
Especially in cases where the feature space is high-dimensional this causes problems, be-
cause the number of required training instances grows exponentially with the dimension
of the feature space. This is sometimes referred to as the curse of dimensionality.

8.5 AdaBoost

The AdaBoost algorithm was introduced by Freund and Schapire [1996, 1997] as a special
case of boosting. The idea of boosting is to generate a classifier out of a set of given base
classifiers, that only give poor classification results. In the context of learnability, these
base classifiers are usually called weak classifiers, while the classifier that results after
boosting is a strong classifier. Intuitively, the distinction of strong and weak learning is
that a strong learner finds with high probability a classifier that is arbitrarily accurate. A
weak learner in contrast, has only a bounded accuracy. For example, an algorithm that
is only slightly better than random guessing is a weak learner. The concept of boosting
is based on Valiant [1984] who states that it is possible to construct a strong learner from
any given weak learner. A more formal definition of learnability and more details on this
can be found in Jain et al. [1999].
Algorithm 5 shows the AdaBoost algorithm for a 2-class problem. Here, it is assumed

that we are given a set of T weak classifiers h1, . . . , hT and a training data set X̂ with
known labels Ŷ. Each weak classifier returns either −1 for the first class or 1 for the
second class. The main idea of the algorithm is to introduce a vector w of importance
weights for each data point from the training data set (see line 1). These weights are
adapted in each iteration of the algorithm, where the loop runs over all weak classifiers
that are to be learned. In the first step of each iteration t, here shown in line 3, the weak
classifier ht is obtained from the training data with the current weight vector wt for the



124 CHAPTER 8. OBJECT CLASSIFICATION BY SUPERVISED LEARNING

Algorithm 5 AdaBoost – Compute a strong classifier h f from a set of weak classifiers ht
Input:

labeled training examples (X̂, Ŷ) = {(x̂1, ŷ1), . . . , (x̂N̂, ŷN̂)}
number of weak classifiers T

1: Initialize weights w1 ∈ RN̂ such that w1n = 1/N̂ for all n = 1, . . . , N̂
2: for t = 1, . . . ,T do
3: ht ← L(wt,Z)
4:

ǫt ←

N̂∑

i=1

wti |ht(x̂i) − ŷi|

2
N̂∑

i=1

wti

5:

αt ← ln
(1 − ǫt
ǫt

)

6:

wt+1n ← wtn exp
(
αt
|ht(xi) − yi|

2

)

7: end for

8:

h f (x)← sign


T∑

t=1

αtht(x)




data points. Then, in line 4, the performance of ht on the training data is measured using
theweighted average error ǫt. Here, we have to divide by two, because the absolute value
of the difference between ht(x̂i) and ŷi can be either 0 or 2 and we want to have a bounded
error measure between 0 and 1. Based on this error ǫt, we compute a coefficient αt for the
classifier ht in line 5. This coefficient is small for big errors and large when the error is
small. In line 6, the weights for the data points are updated according to the classification
error of the current classifier. This way, the data points that have been classified wrong
by ht will have a higher weight for the next weak classifier ht+1. The resulting strong
classifier h f is shown in line 8. It consists of a weighted sum of the weak classifiers, where
the weights are the learned coefficients αt.

8.5.1 Multiple Classes

The AdaBoost algorithm, as shown here, is designed for a 2-class problem. However,
it can be extended for cases with multiple classes. This can be done, for instance, by
concatenating several binary classifiers that distinguish one class from all others to obtain
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a sequential classifier. Here, the order in which the particular binary classifiers are applied
is important for the performance of the overall classifier. Also, amore elaborate technique
named AdaBoost.M2 has been proposed by Freund and Schapire [1995] to extend the
binary AdaBoost to multiple classes. At this point, we will not discuss these extensions
in more detail, but we instead refer to the masters thesis by Martínez Mozos [2004].

8.5.2 Discussion

The strength of the AdaBoost algorithm lies in its ability to use a set of classifiers that
perform comparably bad on the training data set to come upwith a classificationmethod,
that is adapted to the misclassified data points and performs better than all single classi-
fiers. Thus, it is particularly useful in cases where many features can be extracted from
the data points, which can be turned into weak classifiers by simple thresholding. In
this case, the subroutine weakLearn in line 3 of algorithm 5 returns the threshold that
minimizes the classification error when using the feature with index t.
However, as mentioned already, the AdaBoost algorithm can be viewed as a discrim-

inant function learner, because it only returns a direct mapping h f from the feature space
X to the set of class labels Y. There is no means to represent the uncertainty of the
classification.

8.6 Conclusion

In this chapter, we gave a short overview of existing techniques for object classification
using supervised learning. In particular, we described the three standard approaches
naïve Bayes, nearest-neighbor and AdaBoost, which all are examples of different super-
vised learning approaches. None of these approaches can be viewed as the method of
choice for all classification tasks. In fact, the choice of a classification algorithm depends
on the application for which it is needed, which is a major issue in the context of object
classification and pattern recognition. We refer to Theodoridis and Koutroumbas [2003]
for a more detailed discussion on this.
Despite the fact that all three approaches give good results in certain situations, they

all have in common that they operate on each input data point independently and do
not take into account the possible labeling of data points in the vicinity of the query data
point. This often leads to unrealistic classification results, because the features extracted
from nearby data points maybe different from each other due to noise or imperfections
during the feature extraction, although the probability that they belong to the same object
class is comparably high. For example, if we want to distinguish the two object classes
’wall’ and ’door’ in a 3D point cloud of a building andwe consider the local planarity of a
scan point as a feature, it may happen that the class label ‘wall’ is assigned to a data point,
although all other points in the vicinity of this point belong to the class ‘door’. Methods
that additionally incorporate the information of neighboring data points for classification
are called collective classification methods (see Chakrabarti and Indyk [1998]). They will
be the subject of the next chapter.
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It is dangerous to be right inmatters onwhich
the established authorities are wrong.

Voltaire (1694-1778) 9
Collective Classification

9.1 Introduction

In the previous chapter, we summarized some of the most common techniques for the
task of classification by supervised learning. One property that is common to all these
approaches is that the classification decision is made only on the basis of the local evidence
of the particular class label. This means that for any data point zi, the assignment of
a special class label only depends on the information that is available for zi. This local
information is usually collected in a feature vector xi. Statistically, we can say that the
label yi that is to be assigned to the data point zi is assumed to be independent of the label
assigned to any other data point z j in the vicinity of zi. Or, in other words, the conditional
probability p(yi | xi) is assumed to be equal to the probability p(yi | xi, y j) for i , j.
However, in most situations, this independence assumption is invalid. As a simple

example, consider the case where the classification of a set of 3D points is made based
on the orientation of the local normal vector at each particular data point. If we assign
the label ’floor’ to each data point where the normal vector points upwards and the label
’wall’ where the normal vector points to the side, it may happen due to noise in the data,
that a data point is labeled as ’floor’, even though all its neighboring points are labeled as
’wall’. Thus, we will have an incorrect labeling. To avoid such situations, we will apply
the concept of collective classification, in which the statistical dependency between labels
of neighboring data points is also considered. This is the subject of the remainder of the
chapter.
The chapter is organized as follows. In section 9.2 we present the major concepts of

associative Markov networks (AMNs), which are a special instance of relational Markov
randomfields (see Taskar et al. [2002]). AMNs have been introduced by Taskar [2004] as a
collective classification framework, for which efficient learning and inference algorithms
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can be formulated. In section 9.3 we show how the learning task can be performed
even more efficiently by appropriately reducing the training data set. In experiments,
we will see that this data reduction has no influence on the good classification results.
In section 9.4, we further extend the AMN based classification method by introducing
a feature transform τ, which is applied to the features before feeding them into the
AMN. This improves the classification result, because the feature space becomes better
separable by hyper planes. The improvement will be visible in our experiments. Finally,
we conclude the chapter in section 9.5.

9.2 Associative Markov Networks

In this section, we will describe the concept of associative Markov Networks (AMNs).
They have been introduced by Taskar [2004] and are a special case of conditional Markov
Random Fields, which were briefly presented in section 3.4.2. As we saw there, a condi-
tional Markov Random Field is an undirected graph with a set of cliques C and a clique
potential φc, which is a non-negative function associated to each c ∈ C. It defines the
distribution

P(y | x) =
∏
c∈C φc(xc,yc)∑

y′
∏
c∈C φc(xc,y′c)

(9.1)

where xc and yc are the features and labels of all nodes in the clique c. Here, the potential
φc is a mapping from features and labels to a positive value. This value is often called the
compatibility between the features and the labels of the data points in c. The higher the
compatibility is, the more likely it is that the labels yc are correct for the features xc.
The denominator in equation (9.1) is called the partition function, usually denoted Z,

and is essentially a sum over all possible labelings. In all but the simplest cases the
calculation of the partition function constitutes the major problem in the learning task
because of its exponential complexity. Wewill later see how learning can be donewithout
calculating Z.
In AMNs, the size of the cliques is usually restricted to be either one or two. This

results in a pairwiseMRF, where only node and edge potentials ϕ and ψ are considered. For
a pairwise MRF with the set of edges E = {(i j) | i < j} equation (9.1) simplifies to

P(y | x) = 1
Z

N∏

i=1

ϕ(xi, yi)
∏

(i j)∈E
ψ(xi j, yi, y j). (9.2)

Again, Z =
∑
y′

∏N
i=1 ϕ(xi, y

′
i
)
∏
(i j)∈E ψ(xi, y

′
i
, y′
j
) denotes the partition function. Note

that in equation (9.2) there is a distinction between node features xi ∈ Rdn and edge
features xi j ∈ Rde . Thus, the number dn of node features and the number de of edge
features is not necessarily the same.
It remains to describe the potentials ϕ and ψ. As mentioned above, the potentials

reflect how well the features fit to the labels. One simple way to define the potentials
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is the log-linear model (see Taskar et al. [2004]). In this model, a weight vector wk is
introduced for each class label k = 1, . . . ,K. The node potential ϕ is then defined so
that logϕ(xi, yi) = wkn · xi where k = yi. Accordingly, the edge potentials are defined as
logψ(xi j, yi, y j) = w

k,l
e · xi where k = yi and l = y j. Note that there are different weight

vectorswkn ∈ Rdn and wk,le ∈ Rde for the nodes and edges.
For the purpose of convenience we use a slightly different notation for the potentials,

namely

logϕ(xi, yi) =
K∑

k=1

(wkn · xi)yki (9.3)

logψ(xi j, yi, y j) =
K∑

k=1

K∑

l=1

(wk,le · xi j)yki ylj, (9.4)

where yk
i
is an indicator variable which is 1 if point pi has label k and 0, otherwise.

Additionally, a generalized version of the Potts model (see Potts [1952]) is applied for
the potentials in an AMN. This is done by introducing the constraints wk,le = 0 for k , l
and wk,ke ≥ 0 and results in ψ(xi j, k, l) = 1 for k , l and ψ(xi j, k, k) = λki j, where λki j ≥ 1.
The idea here is that edges between nodes with different labels should be penalized over
edges between equally labeled nodes.

9.2.1 Learning and Inference with AMNs

In this section, we describe how learning and inference can be donewithAMNs according
to equation (8.1). In a first step, we reformulate the problem so that, instead ofmaximizing
Pω(y | x), we maximize logPω(y | x). The parameters ω are represented by the weight
vectorsw = (wn,we). By plugging in equations (9.3) and (9.4), we obtain

max
N∑

i=1

K∑

k=1

(wkn · xi)yki +
∑

(i j)∈E

K∑

k=1

(wke · xi j)yki ykj − logZw(x). (9.5)

Note that the partition function Z only depends onw and x, but not on the labels y.

Learning

The problem arising in the learning task is that the partition function Z depends on the
weights w. This means that when maximizing logPw(ŷ | x) the intractable calculation of
Z needs to be done for eachw. However, if we instead maximize the margin between the
optimal labeling ŷ and any other labeling y defined by

logPω(ŷ | x) − logPω(y | x), (9.6)

the term Zw(x) cancels out and the maximization can be done efficiently. This method is
referred to as maximum margin optimization. The details of this formulation are omitted
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here for the sake of brevity. We only note that the problem is reduced to a quadratic
program (QP) of the form:

min
1
2
‖w‖2 + cξ (9.7)

s.t.wXŷ + ξ −
N∑

i=1

αi ≥ N; we ≥ 0;

αi −
∑

i j, ji∈E
αki j −wkn · xi ≥ −ŷki , ∀i, k;

αki j + α
k
ji −wke · xi j ≥ 0, αki j, αkji ≥ 0, ∀i j ∈ E, k

Here, the variables that are solved for in the QP are the weights w = (wn,we), a slack
variable ξ and additional variables αi, αi j and α ji. Again, we refer to Taskar et al. [2004]
for details.

Inference

Once the optimal weightsw are calculated, we can do inference on an unlabeled test data
set. This is done by finding the labels y that maximize logPw(y | x). As mentioned above,
Z does not depend on y so that the maximization in equation (9.5) can be done without
considering the last term. With the constraints imposed on the variables yk

i
this leads to

a linear program of the form

max
N∑

i=1

K∑

k=1

(wkn · xi)yki +
∑

i j∈E

K∑

k=1

(wke · xi j)yki j (9.8)

s.t. yki ≥ 0, ∀i, k;
K∑

k=1

yi = 1, ∀i

yki j ≤ yki , yki j ≤ ykj , ∀i j ∈ E, k

Here, we introduced variables yk
i j
representing the labels of two points connected by an

edge. The last two inequality conditions are a linearization of the constraint yk
i j
= yk

i
∧ yk

j
.

9.3 Reduction of the Training Data

Unfortunately, the learning task we described in the previous section is computationally
expensive in run time as well as in memory requirement. For each scan point there is
one variable and one constraint in the quadratic program (9.7). Furthermore, we have
two variables and two constraints per edge. This results in a large computational effort;
Anguelov et al. [2005] report one hour run time for about 30,000 scan points. Fortunately,
in usual data sets, a huge part of the data is redundant. For instance, to reduce the data
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Figure 9.1: Processing time for the learning task (red with crosses) and classification rate (green
with boxes) for different values of dmax. The left y-axis is for the time and is shown in log-scale,

the right one is for the classification results.

set we can randomly draw a smaller set of scan points from the whole scan. In our
experiments this gave good results. The run time dropped down from about 20 minutes
down to less than a minute while the detection rate was still around 92%. However, it
is not clear how many samples are necessary to obtain good detection rates, because this
depends on the data set. A scene with many small objects should not be down-sampled
as much as a scene with only few, big objects. Therefore we reduce the data adaptively.

9.3.1 Adaptive Reduction

The idea of adaptive data reduction is to obtain as much information as necessary from
the training data so that still a good recognition rate can be achieved. This is dependent
on the data set, so we need an adaptive data structure. One way to adaptively store 3D
data is by means of kD-trees, as we have seen in section 4.3.1. When using kD-trees we
can reduce the data set by considering only scan points in the tree that are stored in leaf
nodes up to a given maximum depth dmax. All points in deeper branches are then merged
into a new leaf node of depth dmax. The data point in this new leaf node is calculated as
the mean of all points from the corresponding subtree. Apart from the reduction in the
data complexity, this has the advantage of a sampling that is less dependent on the data
density. The only question here is how to select dmax.
To investigate the influence of the maximal tree depth we ran the recognition process

with different values for dmax. Figure 9.1 shows the time the training process took and
the corresponding classification rate for each value of dmax. What can be seen from the
figure is that the processing time grows exponentially whereas the recognition rate does
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a. Training data b. AMN of reduced data

Figure 9.2: Data set used for training (fig. a). The black points are unlabeled and are not
considered in the training process. Fig. b shows the resulting AMN after reducing the training
data. By applying the adaptive reduction, the borders between labeled regions are emphasized
while areas in which the labels do not change are represented in a higher level of abstraction.

not improve for dmax higher than 15. For dmax = 15 we obtained a classification rate of
92.9% while the run time for the training was only 2.5 minutes. In this case, the training
set consisted of 6558 points.

9.3.2 Parameterless Reduction

When using kD-trees to reduce the training data in the described way, it still remains to
find a good value for dmax. As for the uniform down-sampling, this is dependent on the
data set. In our current system, we therefore modify the reduction algorithm so that it is
parameter-free: We still use a kD-tree to store the data points, but instead of pruning at a
fixed level, we merge all points in a subtree whenever all of its labels are equal. The idea
here is that for large homogeneous areas, where all points have the same label, we can
assume a higher level of abstraction as in heterogeneous areas.

Figure 9.2 shows an example of a training set that was reduced in this way. The
original data set is shown in figure 9.2a. The reduced set consists only of 919 points, while
the original scan contained 16, 917 labeled points. As the next section will show, training
on a data set, which was reduced this way, took only a few seconds. This is a substantial
speed-up without a serious reduction of the classification performance.
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a. Bayes classifier b. AMN + adaptive reduction

Figure 9.3: Results of the inference on a test data set, where the learning was performed on
the training data from figure 9.2a. In figure (a) we see the classification result using Bayes
classification. Especially at the borders between classes the classification is poor. In contrast, the

AMN classifier reduces this problem as shown in figure (b).

Figure 9.4: Additional results on two other data sets for the AMN learner with adaptive data
reduction.
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9.3.3 Tests on a Real Data Set

We applied the described classification algorithm to real data collected with a SICK laser
range finder mounted on top of a pan/tilt unit. The data consisted of 3D outdoor scans
from a building with different kinds of windows. In a first step, we divided the data
into walls by using a simple plane extraction algorithm based on region growing (see
section 5.2.1). For each wall we obtained a normal vector n and a mean point q. Then we
extracted all points that had a distance of at most 0.5m from the planes. In this way we
achieve robustness against noise from the normal vector calculation.
The goal was to classify the scan points into the classes ‘window’, ‘wall’ and ‘gutter’.

One of the data sets together with its manually created labeling is shown in figure 9.2a. It
represents one wall of the building with only single-size windows. For the evaluation we
used three different scans of walls of the building with single- and double-size windows.

9.3.4 Feature Extraction

We evaluated different types of features. It turned out that good results can be achieved
with feature vectors that represent a local distribution of some value. One such distribu-
tion we used in the experiments was that of the cosine of the angles between the local
normal vectors in the vicinity of each point and the plane normal vector n. For a neighbor
p′
i
of a given scan point this value is calculated by α := p′

i
· n. The distribution over α is

represented as a local histogram.
Another set of features was obtained by considering the distribution of neighbors in

front of and behind the wall plane. To be more precise, at each scan point pi we counted
the number of neighbors p′

i
so that |p′

i
· n| > |p · n| + ǫ where ǫ was used as a threshold

to get robustness against noise. In our experiments, ǫ was set to 0.05m. Accordingly, we
counted the neighbors so that |p′

i
· n| < |p · n| − ǫ and |p · n| − ǫ ≤ |p′

i
· n| ≤ |p · n| + ǫ. This

way we obtained a histogram with three bins.
The last feature we used was the normalized height of each scan point. Here, we

assumed amaximum scan height hmax of 15mwhich is reasonable considering that objects
that are higher than 15m cannot be scanned accurately. For points with negative height,
this feature was set to 0. For all others it was the quotient of the local height and hmax.
This feature was especially used to distinguish ‘gutter’ from the other classes.

9.3.5 Building the Markov Network

An important implementation detail is the way the nodes are connected in the network.
If we take too many neighbors, the learning and the inference will be less efficient and
require a lot of time. Also, the way in which the connections are defined has an influence
on the classification result. For our experiments, it turned out that a sampling strategy
similar to the one reported by Anguelov et al. [2005] gives the best results. In our case, we
randomly sample neighbors for each scan point pi using a Gaussian distribution. Then
we connect pi to its neighbors so that no point is connected to more than three others.
This guarantees that learning and inference can be carried out efficiently and at the same
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time provides enough information from the neighboring points.

9.3.6 Evaluation

The experimental results are shown in Figures 9.3 and 9.4. For comparison, we ran a
Bayes classification on the same data set, yet with a different set of features. The reason
for this is that in Bayes classification the features are assumed to be distributed normally
and this did not hold in the case of our features. The best result we obtained is shown
in figure 9.3a. It can be seen that in some regions the classes are locally inconsistent.
Especially in the roof windows, the classification is wrong. This is because the Bayes
classifier only decides locally on the labels and does not take the neighbors into account.
Figure 9.3b, shows the result for the same data set obtained with the AMN approach.

Additionally, figure 9.4 shows the results for two other test instances. For solving the QP
in the learning step we used the C++ library OOQP Gertz and Wright [2003].
For quantitative evaluation we labeled one of the test sets by hand and compared the

results with this labeling. We obtained 85.5% correct classifications for the Bayes classifier
and 93.8% for the AMN with adaptive data reduction. The computation time for the
learning step was between 5 and 7 seconds on a Pentium 4 with 2.8 GHz.

9.4 Instance-based Extension

The main drawback of the AMN classifier, which is based on the log-linear model, is
that it separates the classes linearly. This assumes that the features are separable by
hyper-planes, which is not justified in all applications. This does not hold for instance-
based classifiers such as the nearest-neighbor classifier (NN). In NN classification, a query
data point p̃ is assigned to the label that corresponds to the training data point p whose
features x are closest to the features x̃ of p̃. In the learning step, NN simply stores the
entire training data set and does not compute a reduced set of training parameters, which
is why it is also called lazy classification.
The idea now is to combine the advantage of instance-based NN classification with

the AMN approach to obtain a collective classifier that is not restricted to the linear
separability requirement. This will be presented in the next section.

9.4.1 The Transformed Feature Vector

Consider a simple 2-class classification problem with 2 features for each data point.
Suppose that the training data consists of the feature space shown in Fig. 9.5 on the left.
We can see that the two classes can not be separated by a line. However, if we assume that
the correct label for a newquery data point p̃ corresponds to the label of its closest training
data point in feature space, then the NN algorithm yields the optimal classification. We
can think of this as first transforming each feature vector x̃ to the vector (d(x̃, x1), d(x̃, x2))
where x1 is the feature point of class 1 that is closest to x̃, x2 the closest class-2-point and
d(., .) is the distance in feature space. Applying this transform τ : R2 → R2, τ(x̃) =: t̃ to
each feature point x̃ yields a transformed feature space which can be separated by the
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Figure 9.5: Application of the feature transformation on a synthetic data set. (a): Original
feature space, (b): Feature space after applying transform τ. For details see text.

line t̃1 = t̃2 where t̃ = (t̃1, t̃2). In other words, all feature points for which t̃1 < t̃2 will be
classified as 1 and all points where t̃2 < t̃1 will be assigned the label 2.
In practice, it is not always possible to find the correct label using the NN rule.

However, if we instead assume that the probability that x̃ has label ỹ is proportional to the
distance of x̃ to its nearest neighbors in each class, we still obtain linear separability, even
though there will be some classification errors.
To illustrate this, we randomly drew 1000 samples from the feature space shown in

Fig. 9.5a. The label y that was assigned to each sample x̃was randomly drawn where the
probability of y = k was governed by a Gaussian distributionN(µk, σk) with µk = d(x̃, xk)
and k ∈ {1, 2}. This means, the closer x̃ is to a feature point xk with label k, the more likely
it is that label y = k is assigned to it. After applying the described feature transform τ
to these samples, we obtain the feature points shown in Fig. 9.5b. It can be seen that the
feature space is separable by a line passing through the origin, although there will always
be some classification error. However the classification result will be much better than
obtained by linearly separating the original feature space in Fig.9.5a.

9.4.2 M Nearest Neighbors

One problem of the NN classifier is that the assignment of a label to a query point p̃ only
depends on the labeling of one instance in the training set, namely the one whose feature
vector is closest to x̃. However, it is possible that the features of other training instances
are also very close to x̃, although they are labeled differently. For example, suppose that
the distances of x̃ to the two closest training features x̂1 and x̂2 are very similar, and the
corresponding labels ŷ1 and ŷ2 are different, the decision of assigning the label ŷ1 to p̃
may be wrong, especially in the presence of noise. Therefore we proceed as follows: For
the feature vector x̃ that corresponds to p̃we compute theM nearest training instances in
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each of theK classesC1, . . . ,CK and the corresponding distances d(x̃, x̂mk ) where k = 1, . . . ,K
and m = 1, . . . ,M. These are used to define the transformed feature vector τ(x̃) as

τ(x̃) = (. . . , d(x̃, x̂1k), . . . , d(x̃, x̂
M
k
), . . . ) (9.9)

Experiments show that higher values ofM increase the classification rate, but for largeM
the improvement is very small. In our experiments,M = 5 turned out to be a good choice.

9.4.3 Implementation Details

To speed up the learning process, we need to represent all feature vectors such that the a
nearest neighbor search in the feature space can be performed efficiently. To this end, we
use kD-trees K1, . . . ,KK to store the training feature vectors of each class C1, . . . ,CK. This
way, the computational effort of the nearest neighbor lookup becomes logarithmic in the
number of the stored instances.
Thus, the training step consists of computing the features for the training data, trans-

forming these features according to equation (9.9) and assigning the transformed features
to the nodes of the AMN. The edge features of the AMN consist of a constant scalar value,
as described by Anguelov et al. [2005]. After solving the quadratic program we obtain
the weight vectors wk. Then, in the inference step, we use the transformed features τ(x)
of the test data as node features for the AMN. Again, the edge features are constant.

Feature Computation Depending on the input data used, we computed different types
of features for the data points. In the case of the 2D grid data, each point in the map is
represented by a set of geometrical features which are extracted from a laser range scan
covering 360o field of view. Each laser is simulated and centered at each point in the map
representing a free spaceMartínezMozos et al. [2005]. Because the number of geometrical
features is big (more than 300) we select the best ones using the AdaBoost algorithm.
For the 3D data set we computed spin images Johnson [1997] with a size of 5× 10 bins.

The spherical neighborhood for computing the spin images had a radius between 10 and
15cm, depending on the resolution of the input data.

9.4.4 Experimental Results

We performed a series of experiments with 2D and 3D data to compare our instance–
based AMN (iAMN) algorithm, with the NN and the AMN classifier. The results of
these experiments demonstrate that our iAMN outperforms the two other algorithms,
independent of the features used.

2D Map Annotation

For the 2D classification experiment we used an occupancy grid map of the interior of a
building. The map was annotated with three different labels, namely ’corridor’, ’room’
and ’lobby’. Then the map was divided into two non-overlapping sub-maps, one for
training and one for testing. Fig. 9.6a shows the sub-map used for training and Fig. 9.6b
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a. Training data b. Test data (ground truth)

c. NN d. AMN

e. iAMN

Figure 9.6: Results on 2D data of an occupancy grid map.
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a. Ground truth b. NN

c. AMN d. iAMN

Figure 9.7: Classification results for one scene from theM data set.

the ground truth for the classification. The results obtainedwith the NN and the standard
AMN approach are shown in Figs. 9.6c and 9.6d, while Fig 9.6e shows the result of our
iAMN algorithm. It can be seen that the iAMN approach gives the best result. The
classification rate of the NN is with 92.2% higher than that of the standard AMN, which
was 89.8%, but the classification is very noisy. In contrast, the iAMN result is more
consistent with respect to neighboring data points and has the highest classification rate
with 95.5%.

3D Scan Point Classification

Furthermore, we evaluated the classification algorithms on three different 3D data sets
with an overall number of 38 scanned scenes. The scans were obtained with a 3D laser
range scanner. The first data set is called H and consists of 11 recorded scenes with
two humans in varying poses. The scans were labeled into the four classes ’head’, ’torso’,
’legs’, and ’arms’. The second data set named S consists of 20 different 3D scans of
the object classes ’chair’, ’table’, ’screen’, ’fan’, and ’trash can’. Each scan in the S
data set contains just one object of each class, apart from tables, which may have screens
standing on top of them. The last data set is named M and consists of seven scans
with multiple objects of the same types as in the S data set.
The H data set was evaluated using 11-fold cross validation. From the S

data set we created six training examples for each object and evaluated the classification
on the rest of the scans. For the M data set we used the object instances from the
S set for training, because those were not occluded by other objects.
Fig. 9.7 shows a typical classification result for a scan from the M test set. We can

see that NN assigns wrong labels to different points while their neighbors are classified
correctly. The AMN results show that areas of points tend to be classified with the same
label. However, due to the restriction to linear separable data, many object parts are
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Figure 9.9: Statistical analysis of the three different data sets. For theM data set we obtain
a significant improvement over NN and standard AMN classification

misclassified, especially in complex objects like chairs and fans. In contrast, the results
obtained with iAMN are better even in these complex objects, because the transformed
feature vectors computed by iAMN are better suited for a classification based on separat-
ing hyper-planes. Table 9.1 shows the resulting classification rates. We can see that the
iAMN classifier outperforms both of the others in all three data sets.
A statistical analysis is shown in Figure 9.9. As can be seen, for the M set our

algorithm performs significantly better than both, the iAMN and standard AMN. A
detailed analysis of the classification results is depicted in Figure 9.8. These results
demonstrate, that our iAMN yields highly accurate results for all three data sets.

9.5 Conclusions and Future Work

In this chapter, we presented a framework for classifying objects in 2D and 3D range data
sets, which follows the concept of collective classification. In collective classification, the
statistical independence assumption of neighboring data points is relaxedwhich leads to a
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Data set NN AMN iAMN

H 75% 69% 80%

S 81% 72% 89%

M 63% 62% 76%

Table 9.1: Classification results for all three data sets

more realistic modeling. As the core mechanism for the classification we used associative
Markov networks, which are a special instance of conditional Markov random fields. The
major contributions in this chapter are an intelligent way to reduce the training data set
for faster learning, and an extension of the AMN classifier that reduces the problems
arising from the linear separability requirement of AMNs. In extensive experiments we
showed the improvements of the new approaches over the standard AMN classification.
However, the work does not end here. Many issues are still to be solved, one of them
being the occurrence of more and more ambiguities as the number of classes increases.
A possible way to tackle this problem may be a hierarchical approach, in which a set
of geometric primitives are detected by one AMN, while another one on a higher level
detects more complex objects from these primitives. Current work is already directed
into this line of investigation.
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10
3D Mapping with a Robotic Car

10.1 Introduction

In this chapter, we want to give an example of how to apply the concepts of 3D map
building presented in chapters 6 and 7 to a real world problem. The work we will
present here has been part of a project that was mainly developed at the universities of
Lausanne, Switzerland and Freiburg, Germany. The goal of that project was to develop
an autonomous car that is able to create high-resolution and accurate 3D maps of the
environment while moving in this environment. A detailed description of the entire
project can be found in [Lamon et al., 2006a; Lamon et al., 2006b; Pfaff et al., 2007b]. In
the following, we will focus on the 3D mapping aspect of the system, rather than on the
autonomous driving, because it is more relevant to the aim of this thesis. In particular, we
will show how the concepts of building multi-level surface maps and loop closing can be
used in this particular application. The combination of a highly accurate pose estimation
algorithm developed in the project, together with the map registration and loop closing
techniques described earlier will be presented as a solution to the online 3D outdoor map
building problem.

The chapter is organized as follows: First we describe in section 10.2 the details of the
system used for the 3D mapping task. We will focus on the localization and the mapping
part, as these are particularly relevant for the presented application. Then, in section 10.3
we present the results of the extensive experiments that were carried out in the project.
Finally, section 10.4 concludes the chapter and presents future work.

145



146 CHAPTER 10. 3D MAPPINGWITH A ROBOTIC CAR

a. The ST robotic system for outdoor 3D terrain
mapping.

b. Close-up view of the rotating 3D laser
scanner.

Figure 10.1: The robotic car ST and its 3D scanning device.

10.2 Description of the System

Figure 10.1a shows a picture of the robotic car ST used in the 3D mapping experi-
ments. The car is a Smart ForTwo that has beenmodified for driving in off-road terrain. It
is equipped with a variety of different sensor systems, including an inertial measurement
unit (IMU), a differential GPS, omni-visual and perspective CCD cameras and five out-
door laser range finders by SICK. Two of these laser range finders are mounted vertically
onto a rotatable socket. The power supply and the data line of the scanners are provided
by means of sliding contacts inside the rotating device so that a constant one-directional
rotation can be performed. After each full rotation, a signal is triggered that indicates the
completion of the 360◦ rotation. Figure 10.1b shows a close-up view of this 3D scanning
device.
The software architecture used for the ST robot consists of many modules,

where two of them are particularly important. These are the localization module and the
3D mapping module, which we will describe in the following.

10.2.1 The Localization Module

As mentioned, several sensors are utilized for an accurate localization of the vehicle.
In particular, these consist of an IMU, a differential GPS, an optical gyroscope and the
odometry measurements from the car. The data acquired with these sensors is fed into
an information filter, which is the inverse form of a Kalman filter. The outcome of this
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a. Overlay of the estimated trajectory and the ortho-photo
of EPFL. The zones where the GPS was not available are
highlighted. The total traveled distance is 2350m.
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b. During the run, the GPS signal was disturbed by many objects
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represents only a part of the trajectory depicted in Fig.(a)

Figure 10.2: Example run of ST over the campus of EPFL in Lausanne.
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Figure 10.3: Example of a local MLS map. The map was computed from a point cloud while the
vehicle traveled through the campus environment shown in Fig.10.2a. The colors reflect the three
different classes of surface patches: traversable (yellow), non-traversable and horizontal(red) and

non-traversable and vertical (blue).

information filter is a very precise estimate of the 3D position and orientation of the
vehicle, even in cases where no GPS signal is available or when the GPS is disturbed
by buildings or other objects. The details of the algorithm are described in Lamon et al.
[2006b]. In Figure 10.2 we see an example of a run where the vehicle was driven over the
campus of EPFL in Lausanne. In some areas, no GPS signal was available because the car
traversed a parking garage or an underpass. This is shown as white boxes in the aerial
image in Fig. 10.2a. However, the estimated location of the vehicle is still very accurate.
Figure 10.2b shows the discrepancy between the raw GPS data and the estimated vehicle
path. As can be seen, the localization algorithm yields a position estimate even when
the GPS signal is disturbed or lost. The comparison of the estimated path with the aerial
image in Fig. 10.2a shows that the path fits very well into areas of paved ground. This
indicates the high accuracy of the localization module.

10.2.2 The 3D Mapping Module

The second major part of the system architecture is the 3D mapping module. It consists
of three sub-modules that fulfill different tasks for the 3D mapping process, mainly in
real time. The sub-modules are arranged in a data pipeline where the output of one is the
input of the next one. The sub-modules are:

1. The Point Cloud Generator: The inputs into this sub-module are the range mea-
surements from the rotating laser scanners (see Fig. 10.1b), the signals triggered by
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the rotation device, and the 6D position and orientation estimate from the localiza-
tion module. The point cloud generator computes a point cloud from all 3D range
measurements that are acquired during one rotation of the scanners. This is done
every 2 seconds.

2. The Local MLS Map Generator: This sub-module receives point clouds and com-
putes local MLS maps as described in section 6.5.2. It also classifies the surface
patches of the MLS map into the classes “traversable”, “non-traversable and hori-
zontal” and “non-traversable andvertical” (see sections 6.5.5 and 7.2.3). An example
of such a local MLS map is shown in Fig. 10.3.

3. The Global MLS Map Generator: The task of this sub-module is to compute
globally consistent MLS maps from the particular local maps. This is necessary,
because – despite the high accuracy of the localization module – the local maps are
still slightly misaligned. Therefore, we register consecutive local maps using the
method described in section 7.2.3. In addition, the loop closing algorithm described
in section 7.3.3 is applied whenever the vehicle is likely to close a loop. This is
implemented as an input signal to the global MLS mapper which is triggered either
manually or automatically from the localization estimate.

As mentioned, the whole 3D mapping module runs in real-time, with the exception
of the loop-closing procedure, which fails to fulfill the real-time constraint. For scenarios
wheremany big loops have to be closed, we therefore decided to compute the global MLS
map offline.

10.3 Experimental Results

We tested the described 3Dmapping systemon the 3Ddata set thatwas acquiredwhile the
vehicle traveled along the path shown in Fig. 10.2a. On this path, the robot encountered
five nested loops. Additionally, it traversed through an underground parking lot and
through several underpasses. The two main goals of our experiments where

• to demonstrate that the 3D map representation yields a significant reduction of
the memory requirements compared to a point cloud representation, while still
providing sufficient accuracy;

• to show the necessity of the loop closing procedure despite the high accuracy of the
localization module and the pose correction based on local map registration.

In the experiment we acquired 374 local point clouds consisting of 27, 264, 000 data
points. The area scanned by the robot spans approximately 300 by 250 meters and the
overall path length was approximately 2, 300m. Figure 10.4a shows a top view of the
resulting MLS map with a cell size of 50cm × 50cm. As before, the yellow surface patches
are classified as traversable. It requires 55.16MB to store the computed map, where 34%
of 300, 000 cells are occupied. Compared to this the storage of the 27, 264, 000 data points
requires 654, 33 megabytes.
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a. Top view of the resulting MLS map with a cell size of 50 × 50cm. The yellow surface
patches are classified as traversable.

b. Mapping result without loop closing. c. Mapping result with loop closing.

Figure 10.4: Full view of the campus map (a) and two close-up views of the lower left corner.
Fig. (b) depicts the resulting MLS map when only local map matching is applied. Fig. (c) displays

the same part of the MLS map where the loop closing algorithm was applied.
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Figure 10.5: The left image shows a top view of the resultingMLSmap of a military test site with
a cell size of 50cm× 50cm. The area scanned by the robot spans approximately 250 by 200 meters.
During the data acquisition, the robot traversed three nested loops with a length of approximately

1,200m. On the right hand side three cutouts with a visualized smart are depicted.

Figures 10.4b and 10.4c show two different MLS maps that were computed from the
same data set. The left image depicts the resulting MLS Map when only local map
matching is applied. The right image displays the same part of the MLS map where we
additionally applied our loop closing algorithm. We can see several inconsistencies in the
leftmap, especiallywhen looking at the vertical poles, which in reality correspond to street
lamps. Furthermore, several traversable patches have been classified as non-traversable
due to the misalignment of the maps.
In a second experiment, the robotic car was steered over a military test site. Here,

the robot’s path consisted of three nested loops. We acquired 312 local point clouds
consisting of 22, 700, 000 data points. The site area was approximately 250 meters long
and 200 meters wide. The distance traveled by the vehicle was about 1, 200m. Fig. 10.5
shows a top view of the resulting MLS map. Again, the cell size is 50 × 50cm. On the
right side of Fig. 10.5 we can see three cutouts with a visualized smart. In this case, the
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computed map requires 17.15MB of memory where 36% of 200, 300 cells are occupied. In
contrast, the memory required to store a point cloud of 22, 700, 000 data points would be
544, 8MB.

10.4 Conclusions and Future Work

In this chapter, we showed how the novel concept of multi-level surface maps and the
computation of globally consistent maps can be applied to a real-world problem, namely
the creation of accurate and compact 3D maps of large-scale outdoor environments.
Furthermore, we showed that the combination of an information-filter based localization
algorithm and an online version of the 3Dmap building algorithmdescribed in chapters 6
and 7 is capable of fulfilling this task. In particular, we saw that the loop-closing technique
described in section 7.3.3 is necessary and appropriate to obtain consistent 3D maps.
The next step is to show experimentally that these maps are useful and needed for

localization and planning, which was the design goal mentioned in chapter 6. This
will strengthen the theoretical considerations made there. Some first experiments have
already been made and the results were encouraging



Every man takes the limits of his own field of
vision for the limits of the world.

Arthur Schopenhauer (1788 - 1860) 11
Occlusion Handling

11.1 Introduction

As a second application example, we want to consider the problem of occlusions. Occlu-
sions may occur in any kind of perception task, i.e. in a 2D camera image, in a 3D range
scan or in data acquired with other sensors such as sonar measurements. An occlusion
occurswhenever an object is partially hidden by others and therefore can not be perceived
entirely. For example, when looking into a room from outside, we might see chairs and
tables, but they are only partially visible. Nonetheless, humans are still able to recognize
these objects correctly as chairs or tables, because they have some kind of knowledge
about the shape of the entire object. In this chapter, we will present a method to auto-
matically solve the occlusion problem in 3D laser range scans using previously acquired
knowledge about the shape of the objects. This will be done by first applying the object
recognition techniques developed in chapter 9. Once the inference task is performed on
a new test data set, the idea is to compare objects to each other to which the same class
label has been assigned. This enables us to infer the shape of a single object based on the
shapes of the other objects in the class. This assumption behind this is that the objects in
a class are somehow similar to each other. To compare the object entities of a given class,
we first cluster the corresponding set of data points into singular contiguous point clouds.
Then we match these point clouds to each other using the ICP algorithm described in
section 7.2. This results in a prototype of the particular object. In the next step, we create
a mesh representation out of this prototypical point cloud. The obtained mesh is then
remapped to the position where the original object entities were. As a result, the scene
representation is more realistic due to themesh computation and partial object occlusions
are resolved.
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The chapter is organized as follows. In Section 11.2 we describe the details of the
occlusion handling algorithm. Section 11.3 presents some experimental results.

11.2 Description of the Algorithm

Assume we are given a point cloud P of a 3D scene, that contains several entities of
different kinds of objects. In our example, we will use the wall of a building with
windows as shown in Fig. 9.3 and 9.4. Assume further that we have applied the AMN
classification method described in section 9.2 (or its improved version from section 9.4).
As a result, we have a class label li ∈ {1, . . . , c} for each data point pi ∈ P where c is
the number of classes. These class labels are used to split P into c subsets P1, . . . ,Pc so
that all points in a subset Pi have the same label li. Then, for each of these class specific
subsets, we perform the steps “clustering”, “entity matching” and “mesh generation and
remapping”. These steps will be described in the following.

11.2.1 Clustering

This step actually consists of two hierarchically applied clustering steps. The first clus-
tering is done in Euclidean 3D space on all data points of each cloud Pi. The aim of this
step is to find contiguous subsets in Pi that correspond to object entities. The clustering
is done using a region-growing algorithm similar to the one described in Algorithm 2 on
page 59 with the difference that no test is done on the angle of the normal vectors – in
fact no normal vectors are computed here. As a result, each cluster contains points that
are not farther away from each other than a given threshold. This threshold is defined in
the function N in line 11 of Algorithm 2. As before, the neighborhood of two
points is computed efficiently using a kD-tree to store the point cloud Pi. We will denote
the object entities found for the class Pi as Pi1,Pi2, . . . .
In the second clustering step, the entities are clustered into subclasses, which we will

call kinds. This is motivated by the fact that usually a class consists of different kinds of
objects, e.g. in a class “window” we can find single- and double-size windows as well
as windows of different shapes. Of course, the distinction of these subclasses could be
done when labeling the training data already. In this case the AMNwould automatically
yield appropriate labels for the individual subclasses. However, we decided to separate
the division into kinds from the labeling process, because it turned out to be difficult to
define features for the different entities on the point level. For this second clustering step,
we use three entity features based on the oriented bounding box (OBB) Bi

j
of the entity’s

point cloud Pi
j
(see also Section 4.3.2 on OBBs). The features are the volume of Bi

j
, the

quotient of the second-longest and the longest edge of Bi
j
and the radius of Pi

j
, defined by

the maximal distance of a point in Pi
j
and the centroid of Pi

j
. Again, for the clustering we

apply region-growing, in this case in 3D feature space. The result of this second clustering
step is a set of kinds K i1,K i2, . . . for the class i and a mapping that assigns to each entity
Pi
j
a kindK i

k
.
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11.2.2 Entity Matching

In the next step, the entities that belong to the same kind arematched to each other. This is
the step in which information about the shape of one entity is used to complete the shape
of another entity of the same kind. This assumes that all entities of a kind have the same
shape and that a good matching between entities can be found. The matching is done
using the Iterative Closest Point algorithm (ICP) described in Section 7.2.1, where one
entity is selected as a reference frame and all other entities of the same kind are matched
to this reference entity. This is a simple method and has the advantage that the number of
computedmatches is only linear in the number of entities of a given kind. One could also
think of connecting all entities into a clique and match all entities to each other. Then, the
matching errors could be reduced by performing a global optimization technique such
as the one described in Section 7.3.3 on all entity poses. This would result in a number
of matchings that is quadratic in the number of entities, and thus the process to find a
prototype for each kind would be much slower. In our experiments, we obtained good
results with the one-reference-frame technique. The result of the entity matching step is
a point cloud P̂i

k
for each kind K i

k
that consists of all matched entities of that kind. This

point cloud is defined as the prototype of the kindK i
k
.

11.2.3 Mesh Generation and Remapping

Finally, to get a better visualization, we generate triangulatedmeshes from the prototypes
P̂i
k
resulting from the previous step. This can be done with one of the triangulation

methods that are described in section 4.5. For our application, we used a contouring
algorithm which is mentioned in Section 4.5.2. The reason for this choice is that the
prototype point clouds often contain many isolated data points due to small errors in the
matching process or to imperfections of the scanning device. These outliers become more
apparent, the more entities are used for creating the prototype. Furthermore, the residual
error resulting from the entity matching process leads to uncertainties in the relative
positions of the entities to each other. This means that a triangulation that connects the
points of the prototype directly, such as an alpha-shape (see Section 4.5.3) would give a
poor result, because the position of these points is not certain. Instead, a triangulation
method that reflects this uncertainty, such as the grid-based contouring algorithm, gives
a better result. For a discussion on different triangulation methods see also Section 4.5.4.

After applying the marching-cubes contouring algorithm by Lorensen and Cline
[1987] (again, see Section 4.5.2 for details) on each of the prototypes P̂i

k
we obtain a

triangular mesh representation M̂i
k
, that approximates the volume represented by the

prototype P̂i
k
. These meshes are then mapped to all original positions of the singular

entities. The rotationand translationparameters of thismappingare obtainedby inverting
the affine transforms that resulted from the entity matching process.
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a. Original scan b. Plane extraction

c. Training data labeled by hand d. Output of AMN classifier(test set)

Figure 11.1: Example of the occlusion handling algorithm. First, the AMN classification
described in chapter 9 is applied: From the original 3D point cloud (a) we extract vertical planes
to get the walls of the building (b). Then, we label one of these walls – which becomes the training
data set – by hand (c). After applying the AMN classifier on a different wall (the test data set), we
obtain the classification in Figure (d). Note that some windows and the wall were occluded by a

tree during the data acquisition.
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a. Clustering b. Entity matching

Figure 11.2: The next steps of the occlusion handler. After the clustering step, we obtain three
different kinds of windows (see Figure (a)). For each of these kinds, we perform the entity matching

step and obtain a prototype. Figure (b) shows the prototype for the big windows.

11.3 Experimental Results

We implemented the described occlusion handling algorithm and tested it on the data
sets shown in Figure 9.2 and 9.3. As mentioned above, the first step is the application of
the AMN classifier to the test data set. The classes that were learned by the algorithm are
“window”, “wall” and “gutter”. The steps that were performed to obtain the training
and test data set, as well as the classification result are depicted in Figure 11.1, where the
latter is shown here for completeness. Again, we note that the shape of the windows in
the training data set differs slightly from that of the test data set, but the classifier was
still able to detect the windows. Furthermore note that there are gaps in the test data
set, which are caused by the occlusions of a tree in front of the building. This results in
windows that are only partially seen.
Figure 11.2 shows the results of the clustering and the entitymatching step. Aswe can

see from figure 11.2a, after clustering we obtain three different kinds of windows, namely
roof windows, double-size windows and basement windows of a smaller size. The two
big windows which are occluded are still correctly clustered, because their shape is most
similar to that of the other big windows. After matching all entities of big windows we
obtain the prototype point cloud shown in Figure 11.2b. We can see that the alignment is
not perfect and some outliers occur on the window borders. However, the window shape
is represented in more detail than by any of the point clouds from the particular entities.
The next step of the occlusion handling algorithm computes a triangular mesh from

the prototypes. This is visualized in Figure 11.3. We can see that the contouring algorithm
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a. Mesh generation I b. Mesh generation II

Figure 11.3: Last step of the occlusion handling. A 3D mesh is generated from each prototype.
Fig. (a) shows the mesh for the big windows and Fig. (b) the prototype mesh for the roof windows.

is relatively robust against outliers and that the shape of the windows is modeled very
accurately. Of coursewe also see the drawback of the contouring algorithmwhich consists
in the artifacts caused by the underlying 3D grid structure.
After applying the last step, namely the back-projection into the scene, we obtain the

mesh shown in Figure 11.4. In the scene, all objects have been replaced by the prototypes
of their respective kinds. Note that this holds for all objects in the scene, including thewall
and the gutter. The difference compared to the window class is only that for these classes
only one object occurs in the data. This means that the prototype of the class is equal to
the object encountered. However, for the partially occluded objects, the algorithm was
able to recover the full structure.

11.4 Conclusions and Future Work

We presented a possible application of the object classification algorithm derived in chap-
ter 9. Our goal was to recover the shape of objects that were partially occluded during the
data acquisition process. The way this is done is by using the knowledge about the shape
of other objects of the same kind that occur in the same scene. The motivation behind
this was that humans resolve occlusions in a similar way, although they don’t need to see
objects of the same kind in the same scene. Thus, a possible extension of the algorithm
would be to maintain a database of possible kinds of objects that can be used in the entity
matching step after the occluded object is recognized by the AMN classifier as an object
of a known kind. This would lead to a more general algorithmwhich is not limited to the
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Figure 11.4: Result obtained with our algorithm. Note that two windows in the second column
have been restored. In the original data (see Figure 11.1d) these windows were occluded by a tree.
Also note that the wall could not be restored, because only one wall object was encountered in the

data set so that no prototype containing data in the occluded areas was obtained.

occurrence of several objects of the same kind in the same scene.
Furthermore, we note that the shape of the objects from the data set used in our

experiment is comparably simple. Therefore, it is more likely that a good matching can
be found in the entity matching step. In the case of more complex objects such as chairs
or tables, this does not hold, because the scan matcher can get stuck in many more local
minima. Therefore, a more robust scan matching algorithm is required in such cases.
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I havemade this [letter] longer, because I have
not had the time to make it shorter.

Blaise Pascal (1623 - 1662) 12
Discussion

12.1 Conclusions

All mobile robots operate in real environments, either indoors, for example in office
environments, or outdoorswhere they have to copewith any different kind of terrain. The
common property of these environments is that they are – aswell as the robots themselves
– three-dimensional, i.e. the objects that are contained in the environment extend spatially
in the threedirectionswidth, depth andheight. Thismeans that anykindof representation
of the environment that is based on only 1 or 2 dimensions is a projection and therefore
involves the risk of omitting important information for a safe navigation through these
environments. In this thesis, we address this problem by providingmethods to efficiently
represent and process three-dimensional data both for the task of mapping (using the
MLSmaps in chapter 7) as well as for the recognition of objects (using the kd-tree pruning
in chapter 9). Furthermore, we showed that some problems from 3D environments can
be solved using methods from the 2D case and adapting them adequately. Examples
include the entropy-based exploration (see chapter 4) or the global scan registration (see
chapter 7). In addition to these insights, we followed a conceptual strategy in this thesis,
which we will present in the next section.

12.1.1 Main Concept Followed in this Thesis

This thesis presents a way to perform the task of three-dimensional perception for mobile
robots. The perception task mainly consists of a compact and consistent representation,
as well as the recognition of three-dimensional objects. For both of these subtasks we
presentedmethods that either improved existing approaches or introduced new concepts
to the field. The common concept to all these methods is the incorporation of additional
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knowledge about the particular problem. This knowledge is derived from observations
that a human makes when looking at the problem, but it is not hard-coded into the algo-
rithm. In contrast, the particular parameters that are needed to represent this additional
knowledge are always obtained by the algorithm itself, rather than by the human who
implements the algorithm. We believe that this combination of human modeling and
the automated learning of the model parameters is the key to address complex problems
in mobile robotics, not only in the field of robot perception. To illustrate the use of this
concept, we explicitly analyze it in three examples from this thesis.

• Plane Extraction (chapter 5): The main idea of the presented hierarchical EM ap-
proach is that in most indoor environments the planar structures that occur are
either parallel to each other or they intersect each other in a predefined angle, which
is in most cases 90 degrees. However, the algorithm does not assume this angle to
be fixed, but rather estimates it adaptively. This way, it can also deal with environ-
ments where the planes are not perpendicular to each other. Thus, the modeling of
the environment is made by the human, but the model parameters are estimated by
the algorithm.

• Global Pose Estimation (chapter 7): In this example the main idea is to incorporate
additional knowledge about the environment in terms of a repeated occurrence of
certain features. In the example we showed, a building is mapped from all sides
and the fact that certain line features extracted from the particular views also occur
in other views is used to improve the global view registration. Again, the model
assumption of this co-occurrence of features is made by a human, but the actual
position of these features is estimated adaptively by the algorithm. In essence, we
can say that the algorithm is told that there are common line features in different
views, but not where they are.

• 3DObject Recognition (chapter 9) : For this task, we apply and extend an approach
from the field of machine learning, that uses a predefined model of the posterior
distribution which is to be maximized. This model is a special instance of a Markov
randomfield (MRF) and incorporates the statistical dependence of neighboring data
points. However, the particular parameters of themodel, namely theweight vectors
that correspond to the feature vectors of each class, are learned by the algorithm. In
fact, the concept of combining a human modeler and a machine learning algorithm
is applied in all approaches where an MRF is given by its structure. In recent years
however, a new concept is followed in the machine learning community, which is
known as structural learning, where the number of nodes and the edges are also
learned by the algorithm. For our application, we consider this as an interesting
approach that should be followed in future work.

The main advantage of this concept is that the modeling can be made by a human
on a more abstract level, which makes the algorithms applicable in a more general set of
situations. The author is convinced that guiding research into this direction will lead to
more reliable and adaptable solutions to complex problems.
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12.2 Future Work

Althoughwe have shown that the 3D perception task can be performed in an efficient and
concise way, there still remain some open questions that should be addressed in future
work. We will name them here, separated by the subtasks of perception.

12.2.1 Efficient and Consistent 3D Mapping

The use of multi-level surface (MLS) maps provides a probabilistic framework to effi-
ciently and accurately store 3D data, as we have seen in chapter 6. This approach could
be further improved in several ways. For example, by adding further information such as
texture or local surface normals, the expressive power of MLS maps would be improved,
yet to the price of more memory requirement. This additional information would then
aid in the map matching process to disambiguate feature points that have to be matched.

12.2.2 3D Object Recognition and Scene Analysis

The results of the object recognition algorithm presented in chapter 9 are promising, but
they still offer room for some improvement. One problem seems to be the similarity of
different objects in small scale regions. For example, the surface of a table often appears
locally like the surface of a chair, because it is simply planar. Also other parts, such as
the legs of a chair might look similar to corresponding parts of other objects, such as
ventilators. A possible way to handle this problem might be to formulate a hierarchical
approach to recognize the objects. For example, onemight think of a low-level recognition
of object parts and a classifier operating on a higher level that incorporates the relationship
between nearby object parts. This high-level classifier might then also be collective and
relational to be able to model statistical dependencies between object parts.
Furthermore, future research should focus on the question of how the object classifi-

cation could generalize better. Until now, only objects can be recognized that have been
learned before in the exact same shape. In an application where objects of the same kind,
butwith different shapes need to be recognized, thismeans that each object shape needs to
be learned separately, which in general is impossible due to time andmemory constraints.
A possible way to address this problem might be to use a more abstract representation of
the objects, for example by computing a graph-based structure of the objects. This would
reduce the amount of data and at the same time extract more relevant features from the
raw input data.
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