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Preface

Incidence geometry and group theory

Incidence geometry arises from the points, lines and planes of elementary geometry,
in accordance to some properties, which can be stated in terms of inclusion and
intersection. Of course this subject can be generalised in various directions like
projective spaces, linear spaces or buildings, etcetera.

 e role of symmetry in science and of its mathematical counterparts, i.e. auto-
morphisms, isomorphisms, morphisms, groups and categories is well understood
today. In particular the use of symmetry may simplify certain problems and be the
key to their solutions.

 e idea of describing a geometry
�
by a transformation group (symmetry group)

leaving the geometry
�
invariant, was pointed out by Felix Klein, see [62]. He de-

manded an interaction between geometry and group theory. Klein realized that a
certain class of geometries

�
could be described via invariants of the automorphism

group Aut � ��� of � .
 e program of Klein, the Erlangen Program, provides a wonderful device to create
geometries. Consider a geometry

�
consisting of points, lines and planes and an

incidence relation (a binary symmetric relation on the objects of
�
, such that two

di�erent objects in relation are not of the same type) and some set of axioms of
�
,

which will not be speci�ed for the moment. Suppose there exists a subgroup G of
the automorphism group of

�
, which acts transitively on the triples � p, l,P � , called

ags, where pis a point, l is a line, P is a plane and the objects p, l and P are pairwise
incident. We �x such a triple say � p0, l0,P0 � and consider the stabilisers Gp0 , Gl0
and GP0 in G. Our next step is to describe all objects of

�
using only the group

G and the subgroups Gp0 , Gl0 and GP0 . We can identify the set of points, denoted
by � , of the geometry � via the bijection G � Gp0 � � with gGp � g � p� . More
generally we have a bijection between all objects of the geometry

�
, so between the

points, lines and plane of
�
, and the le� coset of the subgroups Gp0 , Gl0 and GP0

in G. We also want to recover the incidence relations between the points, lines and
planes of

�
. Suppose p is a point incident to the line l, then we can determine a

plane P incident to p and l. By the assumption that G acts transitively on the ags
of
�
, we �nd a group element g in G, such that g � p0 � , g � l0 � , g � P0 � coincides with

p, l,P implying g � gGp0 	 gGl0 �
�� .  erefore the objects represented by cosets,
whose intersection is nonempty, are incident and vice versa. Using this programwe
have turned a geometry in the spirit of Klein into group theoretical data.

We can also reverse this idea, in the sense of describing groups by geometries. We
start with a group G and subgroups G0, G1, G2. We de�ne an incidence system Γ
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with respect to G0,G1,G2.  e objects of Γ are the cosets gG0 of G0, the cosets
gG1 of G1 and the cosets gG2 of G2 for g � G. Two di�erent coset gGi and hGj are
incident for i �
 j and some g,h � G if and only if gGi 	 hGj �
 � . Note that Γ is
not necessarily a geometry, by theorem 8.3.10 of [16]. It turns out that G acts on the
incidence system Γ as a group of automorphisms by le� translation, but this action
might not be ag transitive.  erefore the technique for deriving from a geometry
some group theoretical data describing this geometry is only partially reversed by
turning a group with certain subgroups into a geometry, as studied by M. Stroppel
in [83].

Another idea is to search for de�ning relations of groups by means of simple con-
nectedness of certain geometries. Tits’ lemma, see [94], states that a ag transitive
geometry is simply connected if and only if the selected subgroup of automorphisms
of the geometry is the universal completion of the amalgamof itsmaximal parabolic
subgroupswith respect to somemaximal ag, i.e. stabilisers of elements of thismax-
imal ag. Tits’ lemma is a fantastic tool for proving group theoretical statements in
terms of geometric results. Sometimes it is possible to use local characterisations of
a geometry instead of proving simple-connectivity for this geometry. Such a local
approach to geometries is also inspired by group theory. In particular �nite simple
groups are sometimes characterised by local information.  e point is the follow-
ing: If there is a unique geometry up to isomorphism with certain local properties,
then a characterisation of this geometry obtained from these local properties im-
plies simple connectedness of the geometry. Indeed the universal cover of a geom-
etry also has the local properties and is by de�nition simply connected. If one also
proves that a subgroup of automorphisms of the geometry acts ag transitively then
the characterisation obtain from the local properties allows an identi�cation of this
subgroup from local conditions like centralisers of involutions.  e local charac-
terisation of the Kneser graph K � n,2 � for n �

7 in [48] can be used to characterise
alternating and symmetric groups (of su�ciently large degree) by centralisers of
various of their elements via theorem 27.1, part I chapter 1 of [29]. If one starts with
a connected graph Γ having certain local properties, like that all induced subgraphs
on the neighbours of a vertex are isomorphic, then a local characterisation of this
graph has also an application in group theory. Again via theorem 27.1, part I chapter
1 of [29], if a locally recognisable graph Γ admits a subgroup G of automorphisms
that acts transitively on the set of ordered triangles of Γ, then the local recognition
of the graph Γ implies a local recognition of the subgroup G. As example we refer
to the results in [38] and [39].

The present thesis

In this thesis we present several local characterisation results for di�erent graphs
and geometries.  e group theoretical consequences of these results can be ob-
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tained in the same way as its respective analogues in [38] and [39]. In chapter 2,
we study graphs on lines of a complex vector space endowed with the inner prod-
uct, where two di�erent lines are adjacent if one line is contained in the orthogonal
space of the other line and vice versa.  ese graphs can also be described in terms
of fundamental SU2 � C � subgroups of the group SUn � C � .  e graph on the funda-
mental SU2 � C � subgroups of SUn � C � with the commutation relation as adjacency
relation is also a description of a line graph over a complex vector space with the
standard scalar product. In the �rst couple sections of this chapter we concentrate
on the line graph of a complex vector space with an anisotropic form of dimension
greater or equal to �ve. We show that from the line graph we can determine a geom-
etry, which is isomorphic to the point-line geometry of the complex polar space in
certain dimension. Hence the reconstruction of the complex projective space and
the polarity is possible. In the last section of chapter 2 we look at connected graphs
which are locally the line graph of an at least seven dimensional complex vector
space with an anisotropic form. A local recognition theorem will be obtained for
these graphs via the computation of the diameter.

Chapter 3 is very similar to chapter 2. Here we study the graph on the hyperbolic
lines (non-degenerate lines) of a unitary vector space over a �nite �eld Fq2 of di-
mension at least seven, where two di�erent hyperbolic lines are adjacent if and only
if one hyperbolic line is in the polar space of the other hyperbolic line. As before
in the �rst couple sections of this chapter we focus on the hyperbolic line graph
obtained from a unitary vector space over Fq2 of dimension at least �ve. In par-
ticular we study all hyperbolic lines of an at least �ve-dimensional unitary vector
space over Fq2 and their relative positions to each other. As result of this process we
obtain a point-line-geometry which we can identify via theorem 3.4.1 proved by H.
Cuypers, see also theorem 1.2 of [25].  e last section of chapter 3 deals with con-
nected locally hyperbolic lines graphs. We prove that the diameter of the considered
graphs is two, which enables us to classify all these graphs by their internal prop-
erties. Also this local recognition theorem is achieved under the use of theorem
3.4.1.  e hyperbolic line graphs are of interest as the hyperbolic lines of a unitary
n-dimensional vector space overFq2 are in one-to-one correspondence with funda-
mental SU2 � Fq2 � subgroups of the special unitary group SUn � Fq2 � . Moreover the
two di�erent fundamental SU2 � Fq2 � subgroups of SUn � Fq2 � commute if and only if
the corresponding hyperbolic lines are adjacent.  e local recognition of connected
graphs that are locally the hyperbolic line graph of a unitary vector space over Fq2

of dimension at least seven implies a local recognition of the group PSUn � Fq2 � for
n

�
7.

In the last chapter of this thesis, we return to the setting of chapter 2. We start with
a connected graph which is locally the line graph of a six-dimensional complex vec-
tor space endowed with an anisotropic form. Section 4.3 of this chapter describes
one way to �nd automorphisms of such a graph.  us we obtain some subgroup
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of the automorphism group of the considered graphs.  is subgroup has further-
more the special property that it contains for each vertex of the graph a subgroup
isomorphic to SU2 � C � �xing the neighbourhood graph of this vertex elementwise
and acting naturally on the two-dimensional vector subspace, to which the �xed
vertex belongs to. It is possible to identify this subgroup of automorphisms via a
locally W � A5

�
reection graph, which will be constructed in section 4.4, and the

theory of weak Phan systems.  e result is that the subgroup will be isomorphic to
some central quotient of either SU8 � C � or of the simple connected version of E6, � 78

is achieved in section 4.6. Furthermore we study in section 4.7 the fundamental
SU2 � C � subgroups graph of SU8 � C � and E6, � 78. We prove for both graphs, that the
induced graph on the neighborhood for every vertex is isomorphic to the line graph
of a six-dimensional complex vector space endowed with an anisotropic form. We
also achieve the result that both graphs are simply connected. Taking this result we
obtain the following: Let Γ be any connected graph, which is locally the line graph
of a six dimensional complex vector space endowed with an anisotropic form sat-
isfying some further technical property.  en the universal cover of the graph Γ
is isomorphic either to the fundamental SU2 � C � subgroups graph of SU8 � C � or to
the fundamental SU2 � C � subgroups graph of a compact real form of E6 � C � . As be-
fore the local recognition of these graphs implies a local recognition of the groups
PSU8 � C � and the adjoint version of E6, � 78.
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For my son Bjarne Grothe

Given him a page, where he can start to read this thesis.  at is a poem of James
Krüss.

Was denken in der Neujahrsnacht die Tiere und die Menschen?

Was denken in der Neujahrsnacht
Die Kater und die Katzen?
Sie denken, daß im alten Jahr
Der Mausefang bescheiden war,
Und strecken in das neue Jahr
Begehrlich ihre Tatzen.

Was denken in der Neujahrsnacht
Die Pudel und die Möpse?
Sie denken, daß nicht jeden Tag
Ein Knochen auf dem Teller lag,
Und wünschen für den Neujahrstag
Sich Leberwurst und Klöpse.

Was denken in der Neujahrsnacht
Die Vögel hierzulande?

Sie denken an die Storchenschar,
Die hier im Sommer fröhlich war
Und die nun wandelt, Paar um Paar,
Im warmen Wüstensande.

Was denken in der Neujahrsnacht
Die Knäblein und die Knaben?
Sie denken, ob der Frost bald weicht
Und ob ein Mensch den Mond erreicht
Und ob sie nächstes Jahr vielleicht
Schuhgröße vierzig haben.

Was denken in der Neujahrsnacht
In aller Welt die Mädchen?

Die Mädchen denken unentwegt
Und angeregt und aufgeregt

An das, was man im Sommer trägt,
Ob Gretchen oder Kätchen.

Was denken in der Neujahrsnacht
Die alten, alten Leute?

Sie denken unterm weißen Haar,
Wie sonderbar das Leben war
Und daß das Glück sie wunderbar

Geleitet hat bis heute.

v



Einleitung

Inzidenzgeometrie und Gruppentheorie

Die  eorie der Inzidenzgeometrie wird ausgehend von den Grundobjekten der
elementaren Geometrie, also den Punkten, Geraden und Ebenen, durch einige wei-
tere Eigenscha�en de�niert, welche sichmit Hilfe von Durchschnitten undVereini-
gungen von Mengen beschreiben lassen. Durch die allgemeine De�nition von Inzi-
denzgeometrien ist die abstrakte Beschreibung verschiedener weiterer Strukturen
wie die des Projektiven Raumes, die des Linearen Raumes oder die der Gebäuden,
et cetera möglich.

Die Rolle von Symmetrien in naturwissenscha�lichen Fragestellungen und die ma-
thematische Darstellung von Symmetrien in Form von Automorphismen, Isomor-
phismen, Morphismen, Gruppen oder Kategorien ist heutzutage gut verstanden.
Insbesondere können Symmetrien in hohem Maße Problemstellungen vereinfa-
chen oder zur Lösung von Fragestellungen beizutragen.

Auf die Möglichkeit eine Geometrie
�
durch eine Transformationsgruppe, welche

die Geometrie
�
invariant läßt, zu beschreiben, wurde erstmals von Felix Klein in

[62] hingewiesen. Er suchte nach einer Verbindung zwischen der Gruppentheorie
und der  eorie der Geometrie. Klein stellte für einige Klassen von Geometrien
fest, daß Invariante der Automorphismengruppe Aut � ��� die Geometrie � eindeu-
tig beschreiben können.

Felix Klein formuliert im Erlanger Programm einen wunderbaren Algorithmus um
GeometrienmittelsGruppentheorie zu de�nieren.Dazu betrachtetenwir eineGeo-
metrien

�
bestehend aus Punkten, Geraden und Ebenen und einer Inzidenzrela-

tion (eine binäre symmetrische Relation auf den Objekten von
�
mit der Eigen-

scha�, daß zwei verschiedene Objekte von
�
nur dann in Relation zu einander sein

können, wenn sie von verschiedenem Typ sind) sowie einigen weiteren Bedingun-
gen an

�
.

Angenommen es gibt eine Untergruppe G der Automorphismengruppe Aut � ���
von

�
, die transitive auf der Menge aller Tripels � p, l,P � , auch Fahnen genannt,

wirkt, wobei p ein Punkt, l eine Gerade und P eine Ebene ist und die Objekte p, l
und P paarweise inzident sind. Wir wählen eine Fahne � p0, l0,P0 � und betrachten
die Stabilisatoren Gp0 , Gl0 and GP0 von p0, l0 und P0 in der Gruppe G. Man ver-
sucht nun alle Objekte und Relationen der Geometrie

�
durch die Untergruppen

Gp0 , Gl0 and GP0 zu beschreiben. Die Menge aller Punkte � von
�
kann eindeutig

durch die Bijektion G � Gp0 � � mit gGp � g � p� identi�ziert werden. Allgemein
gilt, es gibt ein Bijektion zwischen den Objekten von

�
, also allen Punkten, Gera-

den und Ebenen, und den Linksnebenklassen der Untergruppen Gp0 , Gl0 und GP0
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in G. Auch die Inzidenzrelation zwischen den Punkten, Geraden und Ebenen der
Geometrie

�
kann durch Eigenscha�en der Untergruppen Gp0 , Gl0 und GP0 zu-

einander repräsentiert werden. Sei p ein Punkt inzident zur Geraden l und P eine
Ebene inzident zu pund l. Da die Gruppe G transitiv auf den Fahnen von

�
wirkt,

gibt es ein Gruppenelement g inG, so daß die Fahne � g � p0 � , g � l0 � , g � P0 � � mit der
Fahne � p, l,P � übereinstimmt, woraus folgt daß g � gGp0 	 gGl0 �
�� . Daher gilt,
daß zueinander inzidente Objekte der Geometrie durch Linksnebenklassen, deren
Schnittmenge nicht leer ist, repräsentiert werden und umgekehrt. Dieser Algorith-
mus verwandelt also eine Geometrie mit fahnentransitiver Automorphismusgrup-
pe im Sinne von Klein in gruppentheoretische Daten.

Natürlich kann man versuchen diese Algorithmus umzukehren um Gruppen mit
Hilfe von Geometrien zu beschreiben .Wir starten mit einer GruppeG und Unter-
gruppen G0, G1, G2 von G und de�nieren ein Inzidenzsystem Γ bezüglich der Un-
tergruppenG0,G1,G2. Die Objekte von Γ sind die Linksnebenklassen gG0,gG1 und
gG2 von G0, G1 und G2 für g � G und zwei verschiedene Linksnebenklassen gGi

and hGj sind genau dann inzident für i �
 jund g,h � G wenn gGi 	 hGj �
 � . Satz
8.3.10 in [16] zeigt, daß das Inzidenzsystem Γ nicht notwendigerweise eine Geome-
trie ist. Die GrupppeG wirkt auf dem Inzidenzsystem Γ durch Linksmultiplikation
als Automorphismengruppe. Jedoch ist dieseWirkung nicht immer fahnentransitiv
ist. Daher ist die Technik von einer Geometrie gruppentheoretische Daten zu ex-
trahieren, die diese Geometrie eindeutig beschreibt, nur unvollständig umkehrbar.
Die Idee ausgehend von einer Gruppe und einigen Untergruppen eine Geometrie
zu de�nieren wurde von M. Stroppel in [83] studiert.

Ein anderer Ansatz um Geometrien mittels Gruppen und Untergruppen zu be-
schreiben ist die Suche nach de�nierenden Relationen mit Hilfe des Einfachen-
zusammenhanges. Insbesondere besagt Tits’ Lemma, sieh [94], daß eine fahnen-
transitive Geometrie genau dann einfachzusammenhängend ist, wenn eine fahnen-
transitive Untergruppe der Automorphismengruppe der Geometrie der universelle
Abschluß des Amalgans der maximal parabolischen Untergruppen bezüglich einer
maximalen Fahne, daher der universelle Abschluß des Amalgans der Stabilisatoren
der Elemente einer maximalen Fahne, ist. Tits’ Lemma ist ein ideales Werkzeug um
gruppentheoretische Aussagen mit Hilfe von geometrischen Resultaten zu bewei-
sen.

Manchmal ist es auch möglich lokale Charakerisierungen von Geometrien zu be-
nutzen anstatt den Einfachenzusammenhang für diese Geometrien zu beweisen.
Solch eine lokale Betrachtungsweise wurde durch die Gruppentheorie angeregt.
Insbesondere können einige endlichen einfachen Gruppen durch lokale Informa-
tionen charakterisiert werden. Der entscheidene Punkt ist der folgende: Gibt es eine
eindeutige Geometrie bis auf Isometrie mit lokale Bedingungen, dann impliziert
die Charakterisierung der Geometrie durch diese lokalen Bedingungen den Ein-
fachenzusammenhang der Geometrie, da die universelle Überlagerung der Geo-
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metrie auch die lokalen Bedingungen erfüllt und per De�nition einfach zusam-
menhängend ist. Kann man weiterhin zeigen, daß es eine fahnentransitive Unter-
gruppe der Automorphismengruppe der Geometrie gibt, dann erlaubt die lokale
Erkennung der Geometrie eine Klassi�zierung der Untergruppe aus lokalen Be-
dingungen, wie zum Beispiel den Zentralisator von Involutionen.

Ein Beispiel für das beschriebene Vorgehen ist die lokale Charakterisierung des
Knesergraphens K � n,2 � für n �

7 in [48]. Die Beschreibung des Knesergraphens
K � n,2 � für n �

7 durch lokale Daten wird dazu benutzt alternierende und symme-
trische Gruppen (von ausreichend Grad) durch Zentralisatoren von verschiedenar-
tig Elementen dieser Gruppen mittels  eorem 27.1, Abschnitt I Kapitel 1 von [29],
zu charakterisieren.

Wenn man mit einem zusammenhängende Graphen Γ beginnt, der bestimmte lo-
kale Eigenscha�en, etwa daß alle induzierten Nachbarscha�sgraphen einer Ecke
isomorph sind, besitzt, dann hat eine Charakterisierung von Γ durch die lokalen
Eigenscha�en einige gruppentheoretische Anwendungen. Wiederummittels eo-
rem 27.1, Abschnitt I Kapitel 1 von [29], erhalten wir folgende Aussage: Sei Γ ein
lokal erkennbarer Graph mit Automorphismenuntergruppe G, die transitiv auf der
Menge der geordneten Dreiecken von Gamma wirkt. Dann impliziert die lokale
Charakterisierung des Graphens Γ eine lokale Erkennung der Gruppe G. Beispiele
für dieses Vorgehen sind die Resultate in [38] und [39].

Zusammenfassung

In dieser Dissertation werden einige lokale Erkennungsresultate für verschiede-
ne Graphen und Geometrien vorgestellt. Die gruppentheoretischen Konsequenzen
von diesen Resultaten erhält man in der gleichen Art und Weise wie ihr entspre-
chenden Analoga in [38] und [39].

In Kapitel 2 studieren wir den Geradengraphen des komplexen Vektorraumes mit
einer anisotropen Form, wobei genau dann zwei verschiedene Geraden im Gra-
phen benachbart sind, wenn eine Gerade im Senkrechtraum der anderen Gerade
liegt und umgekehrt. Diese Graphen können auch mittels fundamentaler SU2 � C �
Untergruppen der Gruppe SUn � C � de�niert werden. Der Graph auf den funda-
mentalen SU2 � C � Untergruppen derGruppe SUn � C � mit der Kommutatorrelation
alsNachbarscha�srelation ist daher eineweitere Beschreibung desGeradengraphen
des komplexen Vektorraumes mit einer anisotropen Form. In den ersten Abschnit-
ten dieses Kapitels fokussieren wie auf den Geradengraphen des komplexes Vektor-
raumes der Dimension größer gleich fünf mit einer anisotropen Form. Ausgehend
vom Geradengraphen de�nieren wir eine Geometrie, welche isomorph zur Punkt-
Geraden-Geometrie des komplexen Polarraumes einer bestimmten Dimension ist.
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Folglich ist eine Rekonstruktion des komplexen Projektiven Raumes und der Po-
larität möglich. Im letzten Abschnitt dieses Kapitels werden zusammenhängende
Graphen, welche lokal der Geradengraph des mindestens sieben-dimensionalen
komplexen Vektorraumes mit einer anisotropen Form ist, studiert. Durch die Be-
stimmung der Durchmessers kann ein lokaler Erkennungssatz für diese Graphen
bewiesen werden.

Kapitel 3 ist sehr ähnlich zu dem vorangegangenen Kapitel 2. Wir studieren den
Graphen auf den hyperbolischenGeraden (nicht degeneriertenGeraden) des unitä-
ren Vektorraums über den endlichen Körpers Fq2 von Dimension mindestens sie-
ben, wobei genau dann zwei verschiedene hyperbolische Geraden benachbart sind,
wenn eine hyperbolische Gerade im Senkrechtraum der anderen hyperbolischen
Gerade ist und umgekehrt. In den erstenAbschnitten diesesKapitels werden grund-
legende Eigenscha�en des hyperbolischenGeradengraphens einesmindestens fünf-
dimensionalen unitären Vektorraumes über Fq2 bewiesen. Insbesondere wird der
Abstand und die Lage zweier verschiedener hyperbolischer Geraden zueinander
in einem unitären Vektorraumes der Dimension größer gleich fünf über Fq2 be-
stimmt. Ausgehend von diesen grundlegenden Eigenscha�en des hyperbolischen
Geradengraphens ist es mögliche eine Punkt-Geraden Geometrie zu de�nieren,
welche mittels dem Satz 3.4.1 von H. Cuypers, eorem 1.2 in [25], klassi�ziert wer-
den kann. Im letzten Abschnitt dieses Kapitels werden zusammenhängende lokal
hyperbolische Geradengraphen studiert. Wir beweisen, daß der Durchmesser der
betrachteten Graphen zwei ist. Dieses Resultat ermöglicht die Klassi�zierung aller
zusammenhängenden lokal hyperbolische Geradengraphen ab der Dimension sie-
ben. Auch dieser lokale Erkennungssatz wird mittels dem Satz 3.4.1 von H. Cuypers
erreicht.

Die hyperbolischen Geradengraphen sind von Bedeutung, da die hyperbolischen
Geraden eines n-dimensionalen unitären Vektorraumes über Fq2 in Bijektion zu
den fundamentalen SU2 � Fq2 � Untergruppen von SUn � Fq2 � stehen. Darüber hin-
aus gilt, daß zwei verschiedene fundamentale SU2 � Fq2 � Untergruppen genau dann
kommutieren, wenn die korrespondierenden hyperbolischen Geraden im hyper-
bolischen Geradegraphen benachbart sind. Daher impliziert die lokale Erkennung
eines zusammenhängenden Graphens, der lokal der hyperbolische Geradengraph
eines mindestens sieben-dimensionalen unitären Vektorraumes überFq2 ist, die lo-
kale Erkennung der Gruppe PSUn � Fq2 � für n �

7.

Im letztenKapitel dieserDissertation gehenwir noch einmal zurück zur Situation in
Kapitel 2. Wir starten mit dem zusammenhängenden Graphen, der lokal der Gera-
dengraph eines sechs-dimensionalen komplexen Vektorraumes mit einer anisotro-
pen Form ist. Abschnitt 4.3 dieses Kapitels beschreibt eine Methode Automorphis-
men dieses Graphen zu konstruieren. Mit dieser Methode erhalten wir eine Unter-
gruppe der Automorphismengruppe des Graphens mit folgender speziellen Eigen-
scha�: Die Untergruppe enthält für jede Ecke des Graphens eine Untergrupe iso-
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morph zu SU2 � C � , welche den induzierten Nachbarscha�sgraphen der ausgewähl-
ten Ecke �xiert und auf natürlicheArt undWeise auf demzwei-dimensionalenVek-
torraum, welcher zu der ausgewählten Ecke gehört, wirkt. Diese Untergruppe von
Automorphismen ist isomorph zu einemzentralenQuotienten derGruppe SU 8 � C �
oder der Gruppe E6, � 78. Dieses Resultat wird in Abschnitt 4.6 mit Hilfe eines lokal
W � A5

�
-Spiegelungsgraphens, welche inAbschnitt 4.4 de�niert wird, und der eo-

rie über schwache Phan-Systeme bewiesen.

In Abschnitt 4.7 wird der fundamentale SU2 � C � Untergruppengraph von SU8 � C �
und von E6, � 78 studiert. Wir beweisen für diese beiden Graphen, daß der indu-
zierte Nachbarscha�sgraph einer jeden Ecke isomorph ist zumGeradengraph eines
sechs-dimensionalen komplexen Vektorraumes mit einer anisotropen Form. Des-
weiteren wird gezeigt, daß diese Graphen einfachzusammenhängend sind.

Damit erhalten wir folgendes Resultat: Für jeden zusammenhängenden Graphen,
welcher lokal der Geradengraph eines sechs-dimensionalen komplexen Vektorrau-
mes mit einer anisotropen Form ist und der eine weitere technische Eigenscha�
besitzt, gilt, daß die universelle Überlagerung des Graphens isomorph ist zum fun-
damentalen SU2 � C � Untergruppengraph von SU8 � C � oder zum fundamentalen
SU2 � C � Untergruppengraph von E6, � 78. Dieser lokalen Erkennungsatz impliziert
die lokale Erkennung der Gruppen PSU8 � C � und der adjungierten Version von
E6, � 78.

x
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C H A P T E R ONE

Introduction

A central problem in synthetic geometry is the characterisation of graphs and ge-
ometries.  e local recognition of locally homogeneous graphs forms one category
of such characterisations, which works as follows:

Let ∆ be a graph. A graph Γ is called locally ∆ if for each vertex x of Γ the graph
Γx is isomorphic to ∆, where Γx is the induced subgraph of Γ on the set of vertices
adjacent to x. It is a natural question to ask for all (connected) graphs, which are
locally some graph ∆.  is classi�cation question is called the local recognition
problem for graphs that are locally ∆, which can be found in great quantities in the
literature. One of the earliest and most inuential is [17].  e present thesis solves
a number of open local recognition problems.

Projective geometry

Let V be a �nite dimensional vector space over a �eld F.  e set of subspaces of V
of dimension k is known as the Grassmannian Gk � V

�
.  e projective geometry

P � V � 
 P � V ,F
�
resp. the projective space P � V � , see also section A.1, is the par-

tially ordered set of all subspaces of V. We call the elements of G1 � V � the points
of P � V � , the elements of G2 � V � the lines of P � V � and the elements of G3 � V �
the planes of P � V � . If V is an n-dimensional vector space then the members of
Gn � 1 � V � are the hyperplanes of P � V � and the elements ofGn � 2 � V � are the hyper-
lines of P � V � .
Let U andW be subspaces of V then U � W 
�� U,W � is the subspace spanned by
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1 Introduction

U andW, so the smallest subspace of V containing U andW. Similar � v1, . . . ,vn �
is the subspace of V spanned by the vectors v1, . . . ,vn.

We can also use the following axiomatic approach to �nite dimensional projective
geometries, which by the fundamental theoremof projective geometry, see theorem
1.1.1 or [60], describes a �nite dimensional projective geometry � isomorphic to
P � V ,F

�
for su�ciently large dimension. We start with some set P, whose elements

we call points, together with a collection L of subsets of P of size at least two, whose
members we call lines. Two di�erent point a and b are collinear if there is a line
l containing a and b.  e pair � 
 � P,L � is a projective space resp. projective
geometry if the following axioms are satis�ed:

• If a and b are distinct points, then there is exactly one line l, which contains
both a and b.

• Each line contains at least three points.

•  ere is at least one line and not all points are on that line.

• Veblen-Young Axiom
If a,b, c,d are pairwise distinct point such that the line through a and b and
the line through c and d are incident to some point e, then also the line
through a and c and the line through b and d are incident to some point
f.

A set of points is said to be a subspace , if, whenever it contains two di�erent points
a and b on a line l, then it contains the entire line l passing through a and b. We
call a chain of distinct non-empty subsets

B0 � B1 � B2 ����� Bn
a ag of length n. A projective geometry is of �nite dimension if the length of
all its ags has an upper bound.  e dimension of a �nite dimensional projective
geometry is the length of a maximal ag. We have the following classi�cation by
the fundamental theorem of projective geometry, theorem E.11 of [60].

 eorem 1.1.1 (fundamental theorem of projective geometry )
Existence Part: Given an projective geometry � of dimension 3 �

n
���
, there is a

division ringD and a right vector space V over D such that � is isomorphic to P � V � .
Uniqueness Part: Suppose V is a right vector space over a division ring D, where
3

�
dim � V � ���

, andW is a right vector space over a division ring S such that there
exists an isomorphismφ � P � V ,D

�
� P � W,S

�
.  en there exists a ring isomorphism

σ � D � S and an invertible semi-linear transformation T � V � W, i.e. T � xλ � 

T � x � σ � λ � and T � x � y � 
 T � x � � T � y � for all λ � D and x, y � V , such that
φ � xD � 
 T � x � S.

2



Polarities and forms

For the next part let V be a �nite dimensional vector space over F. A correlation,
also called duality, of a projective geometry P � V � is an incidence preserving bijec-
tion from P � V � to P � V � , which reverses inclusion.  us a correlation sends points
to hyperplanes and hyperplanes to points. A polarity of P � V � is a correlation π of
order two, so π � π 
 id and the pair � P � V � ,π � is called a polar geometry.
 e next criterion gives us easy conditions to check whether a bijection π of P � V �
is a duality resp. polarity or not.

Lemma 1.1.2 (lemma 9.1.5 of [16]) Any duality of a projective space P of �nite di-
mension n, is determined by a mapping δ of the set of points of P onto the set of
hyperplanes of P with the property that the points a,b, c are collinear in P if and only
if δ � a � ,δ � b � and δ � c � are hyperplanes having pairwise the same intersection.

Lemma 1.1.3 (lemma 9.1.6 of [16]) Any polarity of a projective space P of �nite di-
mension n, is determined by a mapping π of the set of points of P onto the set of
hyperplanes of P with the property that a � π � b � implies b � π � a � for all points
a,b � P.

 e polarities of P � V � can be classi�ed for dim � V � �
3 in terms of sesquilinear

forms.  is leads to our next topic.

An anti-automorphism of a skew �eld F, is a bijection σ � F � F with the proper-
ties

σ � c1 � c2 � 
 σ � c1 � � σ � c2 � ,
σ � c1 � c2

� 
 σ � c2 � � σ � c1 � .
Every automorphism of a (commutative) �eld is an anti-automorphism.

If σ is an anti-automorphismof a (commutative) �eldF, then a σ-sesquilinear form
on a vector space V over F is a map β � V � V � F such that

β � v1 � v2,u � 
 β � v1,u � � β � v2,u � ,

β � u,v1 � v2 � 
 β � u,v1 � � β � u,v2 � and
β � λu, µv � 
 λσ � µ � β � u,v �

for all λ, µ � F,u,v,u1 ,u2,v1,v2 � V.
A non-zero vector v � V is isotropic or singular if β � v,v � 
 0 and otherwise if
β � v,v � �
 0 then v is a regular vector. Two di�erent vectors u,v are said to be
orthogonal resp. perpendicular if β � u,v � 
 0. For a subspace X �

V the subspace

3



1 Introduction

Xπ � 
�� v � V � β � v,u � 
 0 for all u � X � is called the orthogonal subspace, also
polar subspace or perpendicular subspace,ofX. Certainly the following identities
are satis�ed for all subspaces U,W of V.

U
�
W impliesWπ �

Uπ

� W � U � π 
 � W,U � π 
 Wπ 	 Uπ and � W 	 U
� π 
 Wπ � Uπ

A σ-sesquilinear form β is callednon-degenerate if β � u,v � 
 0 for allu � V implies
v 
 0 or, equivalently, if β � u,v � 
 0 for all v � V implies u 
 0. If β is a non-
degenerate σ-sesquilinear form of a vector space V , then

dim � U � � dim � Uπ � 
 dim � V �

for every subspace U of V and we refer to the subspace Xπ as orthogonal com-
plement of X for any subspace X of V . Furthermore a σ-sesquilinear form β such
that β � u,v � 
 0 implies β � v,u � 
 0 for all u,v � V is said to be reexive. A
non-degenerate sesquilinear β is reexive if and only if � Uπ � π 
 Uππ 
 U for
very subspace U

�
V. We call a subspace U of V non-degenerate resp. regular

if β �U � U � U � U � F is non-degenerate. On the other hand a subspace U of
V is degenerate resp. singular if β �U � U is not a non-degenerate form, so β �U � U is
a degenerate or singular form. A subspace U of V on which β vanishes identi-
cally, is called totally singular.  e vector space V is anisotropic if β � v,v � �
 0 for
all v � V � � 0 � . Moreover a hyperbolic line of V is a two-dimensional subspace l
spanned by some singular non-zero vectors x and y such that β � x, y � 
 1.
Let β be a σ-sesquilinear form on V, then the radical of V , denoted by rad � V � , is
the subspace � v � V � β � v,u � 
 0 for all u � V � . We call two σ-sesquilinear forms α
and β of V isometric if there is a linear map φ � V � V such that β � φ � v � ,φ � u � � 

α � v,u � for all u,v � V .
 e relation between polarities ofP � V � andnon-degenerate reexive σ-sesquilinear
forms β of �nite dimensional vector spaces V over F can be described as follows.

 eorem 1.1.4 (theorem 9.2.10 and theorem 9.3.7 of [16]) Let V be a vector space
of �nite dimension and β be a non-degenerate reexive σ-sesquilinear form on V .
 en the mapping δβ � � a � � � a � π for all non-zero vectors a � V determines a
polarity of P � V � .

 eorem 1.1.5 (Birkho�-von Neumann, theorem 7.1 of [86]) If dim � V � �
3 and

if π is a polarity of P � V � , then π arises from a non-degenerate reexive σ-sesquilinear
from β of one of the following types:

• alternating or symplectic
in this case F is a �eld, σ 
 id

F
and β � v,v � 
 0 for all v � V .

4



• symmetric
in this case F is a �eld, σ 
 id

F
and β � u,v � 
 β � v,u � for all u,v � V.

• hermitian
in this case σ2 
 id

F
, σ �
 id

F
and β � u,v � 
 σ � β � v,u � � for all u,v � V .

 e polar geometry � P � V � ,π � is known as a symplectic, orthogonal or unitary
geometry according to which case of the theorem from above holds.

Next we will concentrate on hermitian forms of an n-dimensional vector space V
over F.  us let β be a σ-hermitian form ofV and κ � v1, . . . ,vn be a basis ofV .  e
Grammatrix of βwith respect to the basis κ is the matrix

G
β
κ

 � uij � 1 � i,j� n 
 � β � vi,vj � � 1 � i,j� n.

Certainly G
β
κ is a hermitian matrix, thus G

β
κ

 σ � Gβ

κ
� T. LetW be a vector subspace

complement of rad � V � , i.e. V 
 W � rad � V � .  en the restriction β �W � W of β to
the subspaceW is a non-degenerate σ-hermitian form ofW.

Let F0 denote the �x �eld of σ, i.e.

F0

 � x � F � x 
 σ � x � 
 x � .

 us F0 is a sub�eld of Fwith dimF0 � F
� 
 2, where we consider F as a vector space

over F0. Furthermore the group homomorphisms

tr � F � F0 � x � x � σ � x � and N � F � � F
�
0 � x � x � σ � x �

are called trace and norm, respectively. Since tr is an F0-linear map and not every
element s of F maps under tr to zero, the trace maps F onto F0. In this context
it follows immediately that any non-degenerate subspace U of V with respect to
the σ-hermitian form β, contains some non-degenerate one-dimensional subspace
p

�
U. Indeed, suppose for all vectors u � U we have β � u,u � 
 0, then we �x two

non-zero vectors u and w such that β � u,w � �
 0, which is possible as U is a regular
subspace of V. We have 0 
 β � u � λw,u � λw � 
 σ � λ � β � u,w � � λσ � β � w,u � � for
all λ � F implying

β � w,u �
β � u,w �


�� 1.  erefore σ � λ � 
 λ for all λ � F, a contradiction to

the fact that dimF0 � F
� 
 2.

Next we choose a regular vector w1 in the �nite dimensional subspace W, then
W 
 � w1 ��� � w1 � π and by induction we have W 
 � w1 ��� . . . � � wm � , where the
vectors w1, . . . ,wm are regular and mutually orthogonal.  us with respect to an
orthogonal basis δ � w1, . . . ,wm, r1, . . . , rn � m of V, where

� r1, . . . , rn � m � 
 rad � V � ,
the Gram matrix of βwith respect to δ is of the form

G
β
δ

 diag � β � w1,w1

�
, . . . ,β � wm,wm � ,0, . . . ,0 � .

5
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Recall, that for each vector v � V the scalar β � v,v � is in F0, as β � v,v � 
 σ � β � v,v � � ,
cf. theorem 1.1.5 hermitian case. Let α1, . . . ,αp be a transversal of the coset parti-
tionF

�
0 � im � N

�
, where the subgroup im � N � is the image of the normmap.  en for

each index i � � 1, . . . ,m � we can scale the basis vectorwi of the basis δ in the follow-
ing sense. As β � wi,wi � 
 λσ � λ � αj for a unique j � � 1, . . . , p� and λσ � λ � � im � N �
we set ui


 w1

λ
and determine that β � ui,ui � 
 λσ � λ � β � wi,wi � 
 αj 
 � αji .  ere-

fore with respect to the scaled orthogonal basis δscaled � u1, . . . ,um, r1, . . . , rn � m of
V, the Gram matrix of βwith respect to δscaled is

G
β
δscaled


 diag � αj1 , . . . ,αjm ,0, . . . ,0
�
.

 us we have the following general result.

Proposition 1.1.6 (Sylvester) Let V be an n-dimensional vector space over a �eld F

and β a σ-hermitian form on V for an anti-automorphism σ on F.  en there exists
an orthogonal basis δ � v1, . . . ,vn of V such that β � vi,vi � 
 αji � � α1, . . . ,αp � for
1

�
i

�
m

�
n, where α1, . . . ,αm is a transversal of F

�
0 � im � N

�
, β � vi,vi � 
 0 for

m � 1 �
i

�
n and the Gram matrix is

G
β
δ

 diag � αj1 , . . . ,αjm ,0, . . . ,0

�
.

Furthermore, the number n0 of zero-diagonal entries in G
β
δ does not depend on the

choice of δ.

We obtain a similar result for an orthogonal form b on an n-dimensional vector
space V over a �eld F with char � F � �
 2 via investigation of F � � � F � � 2, cf. [71].
A better result is possible if F is an ordered �eld. Two n � nmatrices A and Bwith
entries in F are cogredient if there exists an invertible n � nmatrix P with entries
in F such that A 
 PBPT .

 eorem 1.1.7 (Sylvester, theorem 6.7 of [58]) Let F be an ordered �eld and sup-
pose the diagonal matrices

D 
 diag � b1, . . . ,br,0 . . . ,0 � with bi �
 0

M 
 diag � b̂1, . . . , b̂r,0 . . . ,0 � with b̂i �
 0
are called cogredient.  en the number of positive bi is the same as the number of

positive b̂i.

We have a classi�cation of anisotropic resp. non-degenerate σ-hermitian forms of
V over F, if F is a �nite �eld or F 
 C.

6



First letF be a �nite �eld.  en there is a unique anisotropic σ-hermitian formof the
n-dimensional vector space V over F 
 Fq2 if and only if n

�
1, see  eorem 6.3.4

of [20]. Let σ be an automorphism of order two, so σ2 
 id
F
and F



Fq2 for some

prime power q, implying σ is the �eld automorphism a � aq 
 a by § 12, chapter
V of [13]. Moreover the norm map N is surjective, since the multiplicative group
of a �nite �eld is cyclic and ker � N � 
 � a � F

� � aq � 1 
 1 � .  erefore im � N � 
 F
�
0

and F
�
0 � im � N

� 
 � 1 � im � N � � . Under these conditions, proposition 1.1.6 implies
the next proposition.

Proposition 1.1.8 Let β be a non-degenerate σ-hermitian form of an n-dimensional
vector space V over a �nite �eld Fq2 .  en there exists an orthonormal basis δ of V

such that G
β
δ

 I, and furthermore all non-degenerate σ-hermitian forms of V over

Fq2 are isometric.

For F



C we have the following results. Let σ be the complex conjugation of
the complex numbers, then N � C � � 
 im � N � 
 R

� 
 � r � R � r �
0 � , thus

R
� � im � N � 
 � 1R � , � 1R � � . By proposition 1.1.6 and theorem 1.1.7 we obtain the
following classi�cation.

Proposition 1.1.9  e only anisotropic σ-hermitian forms of a �nite dimensional

vector space V over C are positive or negative de�nite.  us either G
β
δ

 I or Gβ

δ

 � I

for some suitable orthonormal basis δ of V .

A non-degenerate σ-hermitian form of an n-dimensional vector space V over C has
the Gram matrix

G
β
δ


�
I

� I �
with respect to an orthonormal basis δ � v1, . . . ,vp,w1, . . . ,wn � p of V, where the
number of positive diagonal entries is p and the number of negative diagonal entries
is n � p.

Graph theory

In the next little part we will just collect some notions of graph theory which we
will use later on.

A graph Γ is a set � 
 � � Γ � together with a distinguished collection E 
 E � Γ � �� � � of (unordered) pairs of elements of � .  e elements of � are the vertices
of the graph Γ and the elements of E are its edges. A graph with vertex set � is
said to be a graph on � .  us a graph is completely described by specifying the
pair ��� ,E � . Two vertices x and y of Γ are adjacent or neighbours if � x, y � is an
edge of Γ. Let Γ 
 ��� ,E � and Γ � 
 ����� ,E � � be two graphs. We call the both graphs

7



1 Introduction

Γ and Γ � isomorphic and write Γ � Γ � if there is a bijection φ � � � � � with� x, y � � E if and only if � φ � x � ,φ � y � � � E � . Furthermore let Γ 
 ��� ,E � be a
graph and

� � � , then we de�ne E � to be the collection of all edges � x, y � � E
with x, y � � . A graph Γ � 
 � � ,E � � is a subgraph of Γ if and only if � � �
and E � �

E � . A subgraph Γ � 
 � � ,E � � is called an induced subgraph if and only
if E � 
 E � , that is, any adjacency among vertices of � is already represented by
an edge in E � .  us induced subgraphs are completely determined by their set of
vertices. For that reason, we will o�en denote induced subgraphs by their vertex
set. Let Γi


 � � i,Ei � for i 
 1,2 be two subgraphs of the graph Γ 
 ��� ,E � .  e
intersection of these two subgraphs is the subgraph Γ1 	 Γ2 
 �

�
1 	
�
2,E1 	 E2

�
.

Certainly if Γi

 � � i,Ei 
 E � i

� 
 �
i is an induced subgraph for i


 1,2 then
Γ1 	 Γ2 


�
1 	
�
2 is the induced subgraph on

�
1 	
�
2.

A path in a graph Γ 
 ��� ,E � is a �nite sequence of vertices
γ 
 � v0,v1, � ,vn

�

such that � vi,vi � 1 � � E for 0 �
i

�
n � 1.  e length of the path γ is the natural

number n. Two vertices x and yof Γ are connected if there is a path γ 
 � v0, � ,vn
�

in Γwith v0

 x and y 
 vn.  e distance between two connected vertices x and y

of Γ is the length of the shortest path between x and y and denoted by dΓ � x, y � . A
graph Γ 
 ��� ,E � is connected if any two di�erent vertices of Γ are connected by a
path in Γ. For a connected graph Γwe de�ne the diameter of Γ to be the supremum
of the numbers � dΓ � x, y � � x, y � � � .
Moreover for each vertex x � � of a graph Γ ��� ,E � we have the induced subgraph
Γx, also called the neighbourhood graph of x, on the vertices which are adjacent
to x, hence � y � � � x is adjacent to y � 
 Γx 
 � x. For a subset � � � the induced
subgraph on the common neighbours of

�
is the subgraph Γ� 
�� x � � Γx. Let Σ be

some graph. We de�ne a graph Γ locally Σ if for each vertex x of Γ the graph Γx is
isomorphic to Σ.

The present thesis

In this thesis we will study on one hand the graphs which are locally the line graph
of an n-dimensional unitary vector space of C with respect to the scalar product
� � , �
�
for n

�
6. On the other hand we consider all graphs which are locally the

hyperbolic line graph of an n-dimensional unitary vector space of Fq2 with respect
to an hermitian form � � , �

�
for n

�
7. In each case we will describe and classify all

possibilities for a connected graph Γ, which is either locally S � Vn � for n �
6 or

locally G � Un
�
for n

�
7.

De�nition 1.1.10 Let n � N, let V 
 Vn be an n-dimensional vector space over the
complex numbers and let � � , �

�
be an anisotropic form (the scalar product or the

8



negative of the scalar product) on V � V . For a subspace U
�
V the polar of U is

Uπ 
 � x � V � � x,u � 
 0 for all u � U � .  e line graph S � Vn � of the complex
vector space Vn is the graph on the two-dimensional subspaces of Vn, where two
distinct lines l and k of Vn are adjacent, in symbols k � l, if and only if l �

kπ or,
equivalently, if k

�
lπ.

Let Un

 U denote an n-dimensional vector space over Fq2 endowed with a non-

degenerate hermitian form � � , �
�
. Certainly for a subspaceW

�
U the orthogonal

space of W is Wπ 
 � x � U � � x,w � 
 0 for all w � W � .  e hyperbolic line
graph G � Un

�
is the graph on the hyperbolic lines, i.e., the non-degenerate two-

dimensional subspaces, ofUn, where hyperbolic lines l andm are adjacent, in sym-
bols l � m, if and only if l is perpendicular to mwith respect to the unitary form.

Now let x be a vertex of S � Vn � , the local graph S � Vn � x 
 � x
�
is the subgraph induced

by S � Vn � on the set of vertices � y � S � Vn � � x � y � , the neighbours of x in the graph
S � Vn � . For a set of vertices X of S � Vn � the graph X

�
is de�ned as � x � X x

�
.

We will use the same notation for the hyperbolic line graph G � Un
�
.  erefore for

a vertex x in G � Un
�
we denote the neighbourhood graph of x with G � Un

�
x

 x �

and for a set of vertices X of G � Un
�
we de�ne G � Un

�
X

 �

x � X x
� 
 X �

.

Fundamental SL2 � F � subgroups and fundamental SU2 � F � subgroups

In the last part of this introduction we will de�ne the notion of a fundamental
SL2 � F � subgroup of the group SLn � F � respectively a fundamental SU2 � F � sub-
group of the group SUn � F � .
We consider the n-dimensional vector space V over F and let GL � V � be all F-
linear invertible endomorphisms of V, the general linear group of V . Certainly
GL � V � � GLn � F � , the group of all invertible n � nmatrices with entries in F.  e
determinant map fromGL � V � � GLn � F � to the multiplicative group F

� is a group
homomorphism onto F

� .  e kernel of this map is the group SL � V � , consisting
of all invertible automorphism of V of determinant one, which is isomorphic to
SLn � F � , where SLn � F � is the group of all invertible n � nmatrices of determinant
one. We call SL � V � the special linear group of V . Certainly the groups GL � V �
and SL � V � act naturally on the vector space V . For g � GL � V � , we set �

g,V � 
� gv � v � v � V � and CV � g � 
 � v � V � gv 
 v � .  e subspace
�
g,V � is the centre

of g and CV � g � is its axis if dim �
�
g,V � � 
 1. For a subgroupU �

GL � V � we de�ne
the commutator to be

�
U,V � 
 � gv � v � g � U, v � V �

and the centraliser to be the subspace

CV � U � 
 � v � V � gv 
 v for all g � U � .

9



1 Introduction

A fundamental SL2 � F � subgroup of SL � V � is a subgroup F of SL � V � isomorphic
to SL2 � F � such that dim �

�
F,V � � 
 2 and dim � CV � F � � 
 n � 2.  ere is a one-

to-one correspondence between the non-intersecting line-hyperline pairs � l,L � of
the vector space V and the fundamental SL2 � F � subgroups of SL � V � . Indeed the
mapping F � � �

F,V � ,CV � F � � , where F is a fundamental SL2 � F � subgroup of
SL � V � describes the claimed correspondence.
Let β be a σ-hermitian form on the vector space V, so β � u,v � 
 σ � β � v,u � � for
all u,v � V .  e general unitary group GU � V � consists of all linear transfor-
mation φ � GL � V � such that β � φ � v � ,φ � u � � 
 λβ � v,u � for some λ � F0.  e
elements φ � GL � V � with β � φ � v � ,φ � u � � 
 β � v,u � form the unitary groupU � V �
of V .  is group is isomorphic to Un � F � 
 � M � GLn � F � � β � M � v � ,M � u � � 

β � v,u � for all u,v � V � .  e special unitary group SU � V � ofV is de�ned to be the
kernel of the surjective group homomorphism φ � det � φ � between U � V � and the
group � a � F

� � aσ � a � 
 1 � , so SU � V � 
 U � V � 	 SL � V
� 
 � φ � U � V � � det � φ � 


1 � � SUn � F � 
 � M � Un � F � � det � M � 
 1 � . A fundamental SU2 � F � subgroup of
SU � V � is a subgroup F of SU � V � isomorphic to SU2 � F � such that dim �

�
F,V � � 
 2

and dim � CV � F � � 
 n � 2. Here we have a one-to-one correspondence between the
non-degenerate lines of the vector space V with respect to β and the fundamen-
tal SU2 � F � subgroups of SU � V � .  e map F �

�
F,V � , where F is a fundamental

SU2 � F � subgroup of SU � V � determines this bijective correspondences.
 e fundamental SU2 � F � subgroups graph F � SU � V � � 
 F � V � is the graph on
the fundamental SU2 � F � subgroups of SU � V � , where two di�erent fundamental
SU2 � F � subgroups F andH are adjacent if and only if F andH commute in SU � V � ,
so

�
F,H � 
 1.

Proposition 1.1.11 LetVn be an n-dimensional vector space overFwith a non-degene-
rate reexive σ-sesquilinear from β.  en the line graph S � Vn � and the fundamental
SU2 � C � subgroups graph F � Vn � are isomorphic if F 


C and β is an anisotropic
hermitian form on Vn.

Also the hyperbolic line graphG � Vn � and the fundamental SU2 � Fq2 � subgroups graph
F � Vn � are isomorphic if F 
 Fq2 and β is a non-degenerate hermitian form on Vn.

Proof: See proposition 4.7.30 and the pages 176, 178. ■

10



C H A P T E R TWO

On the complex unitary geometry for n � 7

2.1 Local recognition of the line graph of complex unitary
space for n � 7

In this chapter we focus on the line graph of an n-dimensional unitary vector space
over C.  us we recall the de�nition of the graph S � Vn � for n � N.

De�nition 2.1.1 Let n � N, let V 
 Vn be an n-dimensional vector space over the
complex numbers and let � � , �

�
be an anisotropic form (the scalar product or the

negative of the scalar product) on V � V . For a subspace U
�
V the polar of U is

Uπ 
 � x � V � � x,u � 
 0 for all u � U � .  e line graph S � Vn � of the complex
vector space Vn is the graph on the two-dimensional subspaces of Vn, the lines of
Vn, where two distinct lines l and k of Vn are adjacent, in symbols k � l, if and only
if l

�
kπ or, equivalently, if k

�
lπ.

For a vertex x of S � Vn � , the neighbourhood graph S � Vn � x 
 x
�
is the subgraph

induced by S � Vn � on the set of vertices � y � S � Vn � � x � y � . For a set of vertices X
of S � Vn � the graph X

�
is de�ned as � x � X x

�
.

For n
�
5 it is possible to reconstruct the space P � V � and the unitary vector space

Vn over C from a graph Σ isomorphic to the line graph S � Vn � . From this recon-
struction we will obtain the automorphism group of S � Vn � . Later on we study con-
nected graphs Γ, which are locally S � Vn � for n �

7.  e main result of this part is
the following local recognition theorem.

11



2 On the complex unitary geometry for n � 7

 eorem 2.1.2 Let n
�
7 and let Γ be a connected locally S � Vn � graph.  en Γ is

isomorphic to S � Vn � 2 � .
 is result depends on the computation of the diameter of a connected locally
S � Vn � graph Γ for n �

7.  is statement is optimal in the following sense.  e
graph S � V8 � is a connected locally S � V6 � graph but also the graph on the funda-
mental SU2 � C � subgroups of the compact real form E2 6 � C

� � 
 E6, � 78 of the group
E6 � C � , see §4, chapter IX of [11] or proposition 7.18 in chapter 3 of [91]. In chapter
4 we will classify all connected locally S � V6 � graphs.
From a group theoretical point of view, theorem 2.1.2 implies a local recognition of
PGUn � 2 � C � :
 eorem 2.1.3 Let n

�
7 and G be a group with subgroups A and B isomorphic to

SU2 � C � , and denote the central involution of A by x and the central involution of B
by y. Moreover, we assume that the following is satis�ed:

• CG � x � 
 X � K with K � GUn � C � and A �
X;

• CG � y � 
 Y � J with J � GUn � C � and B �
Y;

• A is a fundamental SU2 � C � subgroup of J;
• B is a fundamental SU2 � C � subgroup of K;
• the subgroup J 	 K contains a central involution z of a fundamental SU2 � C �
group of both J and K.

If G 
 � J,K � then (up to isomorphism) PSUn � 2 � C � �
G � Z � G � �

PGUn � 2 � C � .
 eorem2.1.3 is deduced from theorem2.1.2 in exactly the sameway as its respective
counterparts in [22] and [38].

2.2 The line graph of the unitary vector space V5

In section 2.5 we will focus on connected graphs Γ, which are locally S � V7 � . To
obtain control over the intersection of two induced subgraphs x

�
and y

�
inside Γ

for two adjacent vertices x and y, we need to study the line graph S � V5 � of the �ve-
dimensional unitary vector space V5 over C. Our intention is to reconstruct the
vector space V5 from the graph S � V5 � . More precisely, we will construct a point-
line geometry

� 
 � � , �
, �
�
from S � V5 � which is isomorphic to the geometry on

points and lines of V5 along with its natural anisotropic polarity.

12



2.2  e line graph of the unitary vector space V5

First we determine the diameter of S � V5 � . Any two di�erent vertices l and m of
S � V5 � can have distance one, i.e., they are adjacent, distance two, three or four. For
each case we describe precisely in which con�guration the lines l and m are in the
vector space V5.

Observation 2.2.1 Let l and m be two lines of V5.  en l and m have distance one
in the graph S � V5 � if and only if l �

mπ.

Certainly this is only another formulation of the de�nition of the adjacency relation
for the line graph S � V5 � .

Lemma 2.2.2 Let l and m be two lines of V5.  en l and m have distance two in
S � V5 � if and only if � l,m � is a three-dimensional subspace, a plane, in V5.
Proof: Let l andmbe two lines ofV5 which have distance two in S � V5 � .  ereforewe
�nd a vertex z of S � V5 � , which is a line in V5, adjacent to l and m.  e orthogonal
space zπ is a three-dimensional space, a plane of V5, and contains the lines l and
m. Since l and m are at distance two, they are di�erent lines in V5 implying that� l,m � 
 zπ.
Nowwe assume that the subspace � l,m � is a plane inV5. SinceV5 is a vector space
of dimension �ve, the orthogonal space � l,m � π 
 h is a line in V5. So h is a vertex
in S � V5 � adjacent to the vertices l and m, which shows that the distance between
l and m is at most two.  e fact that � l,m � π is a two-dimensional subspace forces
that m �� lπ.  us l and m have distance at least two. ■

Lemma 2.2.3 Let l and m be two lines of V5.  en l and m have distance three in
S � V5 � if and only if l and m are two non-intersecting non-perpendicular lines in V5
such that lπ 	 m is a point of V5.
Proof: Suppose the vertices l and m have distance three in S � V5 � , then by obser-
vation 2.2.1 and lemma 2.2.2 we obtain that m �� lπ and the lines l and m do not
intersect each other in V5. Moreover we �nd a chain l � z � y � m in the graph
S � V5 � . By the statement of lemma 2.2.2 the lines z and m contain a common point
d 
 z 	 m and by observation 2.2.1 the line z is contained in the orthogonal space of
l, hence z

�
lπ, which implies that d is a point of the subspacem 	 lπ. In particular,

the intersection of the subspaces lπ and m is the point d.
Conversely let l and m be two non-intersecting non-perpendicular lines in V5
satisfying the condition that lπ 	 m is a point d. By observation 2.2.1 and lemma
2.2.2 the vertices l and m do not have distance one or two in the graph S � V5 � . To
prove the statement, we will identify two di�erent lines z and y in the vector space
V5 such that l � z � y � m in S � V5 � .  erefore we consider the orthogonal space
lπ of l, the point d 
 lπ 	 m and choose any line z in lπ incident with the point
d.  e lines z and m are di�erent and intersect in the point d, thus by lemma 2.2.2

13



2 On the complex unitary geometry for n � 7

the vertices z and m have distance two in the graph S � V5 � .  erefore we can pick a
vertex y in S � V5 � with the property that z � y � m. Clearly, the line y is di�erent
from the line l and we are done. ■

Lemma 2.2.4 Let l and m be two lines of V5.  en l and m have distance four in
S � V5 � if and only if l and m are two di�erent non-intersecting non-perpendicular
lines with the property that lπ 	 m is empty.
Proof: By the three previous lemmata the vertices l and m have at least distance
four in the graph S � V5 � . To prove the statement it is enough to show that the graph
S � V5 � contains a path of length four between the vertex l and the vertex m.
Fix a point d in the subspace lπ 	 mπ, which is at least of dimension one in V5
and choose a line z in lπ containing the point d. Certainly the vertices z and l are
adjacent in the graph S � V5 � , moreover the vertices m and z have distance three in
S � V5 � by lemma 2.2.3 and the fact that z 	 mπ is the point a.  us there is path of
length four between l and m in S � V5 � . ■

Proposition 2.2.5  e line graph S � V5 � is connected and its diameter is four. More-
over S � V5 � is locally the line graph S � V3 � .
Proof:  e �rst statement is immediate from observation 2.2.1 and lemma 2.2.2 to
lemma 2.2.4 since the line graph S � V5 � contains vertices l andm at distance one to
four. To show the second statement we �x any vertex l of S � V5 � which is the line l in
V5.  e set of points which are contained in l

π span a three-dimensional subspace
U of V5 and each linemwhich is perpendicular to l is contained inU, in particular
the graph S � V5 � is locally the line graph of V3. ■
Our goal is to reconstruct the vector space V5 from the graph S � V5 � .  erefore we
will describe the line graph S � V5 � inmore detail to establish properties of S � V5 � that
can be used to achieve our goal. In particular we will investigate how subspaces of
V5 correlate to the induced subgraphs X

� � 
 � X � � �
of certain sets X of vertices of

the graph S � V5 � .

De�nition 2.2.6 Let U be a subspace of the unitary vector space V5.  e set of all
lines in U is denoted by L � U � .

Lemma 2.2.7 Let l and m be two distinct vertices of S � V5 � with � l,m �
� �
 � .  en

any vertex contained in the graph � l,m � � �
is contained as a line in L � � l,m � � and

vice versa.

Proof: Since � l,m � � � 
 � � l,m � � � � 
 �
z ��� l,m ��� z

� 
 �
z ��� l,m ��� L � zπ

�
and since for

every z � � l,m � �
it follows from the de�nition that L � � l,m � � �

L � zπ � , we get that
each line of L � � l,m � � is contained as a vertex in the set � l,m � � �

.
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2.2  e line graph of the unitary vector space V5

Conversely, let p be a point not contained in the subspace spanned by the lines
l and m whence � l,m � π �� pπ. Since dim � � l,m � π 	 pπ

� �
1 we �x a point s �� l,m � π 	 pπ. Now let t be an one-dimensional subspace of � l,m � π which is not

contained in the subspace pπ and regard the line h 
 � s, t � .  e line h is not a
subspace of � l,m � π 	 pπ but a line in � l,m � π, therefore h � � l,m �

�
.  e statement

is proved since for each point pnot contained in � l,m � we can �x an element h of
L � � l,m � π � such that p �� hπ implying that no line through p is adjacent to h. ■
A similar statement can be proved about three di�erent vertices under some addi-
tional premises.

Lemma 2.2.8 Let k, l and m be three distinct vertices of S � V5 � . If the lines k, l and
m intersect in a common point in V5 and

� k, l,m � �
is not empty then L � � k, l,m � � 
� k, l,m � � �

.

Proof: Since the lines k, l and m intersect in a common point in V5 the subspace� k, l,m � has dimension three or dimension four.
Suppose dim � � k, l,m � � 
 3 then the line m is contained in � k, l � . Using that� k, l,m � �

is not empty it follows also that � k, l � � �
 � and by lemma 2.2.7 we
observe L � � k, l,m � � 
 L � � k, l � � 
 � k, l � � �

.  e equality between � k, l � � �
and� k, l,m � � �

is obtained from the following identities: � k, l,m � � � 
 � � k, l,m � � � � 

�
z � � k,l,m � � z

� 
 �
z ��� k � � � � l � � � � m � � z

� 
 �
z � L � kπ � � L � lπ � � L � mπ � z

� 
 �
z � L � � k,l,m � π � z

� 

�
z � L � � k,l � π � z

� 
 �
z ��� k,l � � z

� 
 � � k, l � � � � 
�� k, l � � �
. If dim � � k, l,m � � 
 4, then� k, l,m � π is a one-dimensional subspace of the vector space V5 and therefore the

induced subgraph � k, l,m � �
is empty, so we are done. ■

Lemma 2.2.9 Let k, l and m be three distinct vertices in S � V5 � then � k, l,m �
� 


� k, l,m � � � �
.

Proof: In the case that � k, l,m � �
is empty, then by de�nition � k, l,m � � � 
 � � 


S � V5 � .  us � k, l,m �
� � � 
 S � V5 �

� 
 � 
 � k, l,m � �
.

Alternatively if � k, l,m � �
is not empty, then by lemma 2.2.8 we have equality

between the induced subgraph � k, l,m � � �
in S � V5 � and all lines contained in the

subspace � k, l,m � of V5.  at leads to the following containments: � k, l,m �
� � � 


� � k, l,m � � � � � 
 �
z ��� k,l,m ����� z

� 
 �
z � L � � k,l,m � � z

� � �
z � � k,l,m � z

� 
 k
�
	 l

�
	

m
� 
 � k, l,m � �

.  e other direction is given directly from the de�nition, since� k, l,m � � 
 � z � Γ � z � k,z � l,z � m � � � z � Γ � z � k,z � l,z � m � � � 

� k, l,m � � � �

. ■
If we can identify all points and lines of the unitary vector spaceV5 in terms of S � V5 �
as well as their incidence relation to each other, then a reconstruction ofV5 from the
graph S � V5 � is possible. Certainly we have an obvious one-to-one correspondence
between the lines of V5 and the vertices of S � V5 � , thus the idea is to recover points
of the unitary space V5 as pencils of the lines. Hence we have to determine under
which conditions two di�erent lines intersect in a point.
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2 On the complex unitary geometry for n � 7

Lemma 2.2.10 Two distinct lines l andm intersect in a common point in the unitary
space V5 if and only if the graph

� l,m � �
is not empty.

Proof:  e claim follows directly from lemma 2.2.2. ■

Remark 2.2.11 If two distinct lines l and m intersect in a common point in the
unitary spaceV5 then the induced subgraph

� l,m � � �
of the graph S � V5 � is minimal

with respect to inclusion (i.e. for any distinct vertices s1, s2 in
� l,m � � �

we have the
equality � s1, s2 �

� � 
 � l,m � � �
).  is claim follows directly from lemma 2.2.7 and

from lemma 2.2.10.

Obtaining every point of the unitary space V5 as a pencil of lines, we need some
condition to check in the graph S � V5 � whether three distinct lines ofV5 intersect in
one point or not. We propose the following:  ree di�erent pairwise intersecting
lines k1, k2 and k3 of V5 intersect in one point if we can �nd a line s in V5 such that

• the line s intersects the line ki, if s �
 ki, for 1 �
i

�
3,

• � s, k1, k2 � is a four-dimensional subspace in V5.

Rephrasing these in terms of induced subgraphs yields the following conditions:
 ree di�erent vertices k1, k2 and k3 of S � V5 � with � ki, kj �

� �
 � , 1 �
i �
 j

�
3,

intersect in one point if we can �nd a vertex s of S � V5 � with the two properties:

• the induced subgraph � s, ki �
�
is not empty, if s �
 ki, for i � � 1,2,3 � (cf.

lemma 2.2.10),

• the graph � s, k1, k2 �
�
is empty (cf. lemma 2.2.8).

To verify that every point of V5 can be realized by three pairwise intersecting lines
as above, we only have to show that for any two distinct vertices k and l of S � V5 � ,
we can �nd a vertex s of S � V5 � such that � s, k, l �

� 
 � and � s, k � � �
 ��� � s, l � �
.

 at statement will be proved in the next lemma.

Lemma 2.2.12 For any distinct intersecting lines k and l of V5 there is a line s in V5,
intersecting the lines k and l and the subspace spanned by k, l and s is of dimension
four.

Proof: Let k and l be two distinct intersecting lines inV5 and denote the intersection
point with d. Next we choose a point pinside the two-dimensional subspace � k, l � π .
Certainly the subspace generated from the two di�erent points p and d is a line s 
� p,d � ofV5. By construction the line s intersects the lines k and l in the point d. We
are done if the subspace � k, l, s � ofV5 has dimension four. Since p �� � k, l � , d � � k, l �
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2.2  e line graph of the unitary vector space V5

and � k, l � is a three-dimensional subspace of V5 it follows that � k, l, s � 
 � k, l, p� is
of dimension four. ■
Now we want de�ne a geometry

� 
 � � , �
, �
�
consisting of the recovered points

and the vertices of S � V5 � .

De�nition 2.2.13 Let Γ be a graph isomorphic to S � V5 � . Two di�erent vertices k
and l of Γ are de�ned to intersect if the graph � k, l � �

is not empty.  ree di�erent
pairwise intersecting vertices k1, k2 and k3 of Γ are de�ned to intersect in one point
if the graph Γ contains a vertex s with the following properties:

• the vertex s intersects each vertex ki, if s �
 ki, for 1 �
i

�
3,

• the induced subgraph � k1, k2, s �
�
of Γ is empty.

An interior point of the graph Γ is a maximal set � of di�erent pairwise intersect-
ing vertices of Γ such that any three elements of � intersect in one point.  ese
maximal sets exist by Zorn’s lemma. We denote the set of all interior points of Γ by
� . Moreover, a vertex of the graph Γ is also called an interior line of the graph Γ.
 e set of all interior lines of Γ is denoted by

�
.

Proposition 2.2.14 Let Γ be a connected graph isomorphic to S � V5 � .  e geometry� 
 � � , �
, �
�
on the interior points and interior lines of Γ with symmetrised con-

tainment as incidence relation is isomorphic to the geometry of points and lines of the
unitary vector space V5.

Proof: Let
�
V5

 � � V5 ,

�
V5

�
be the geometry of points and lines ofV5, thus � V5 is the

set of all one-dimensional subspaces of V5 and
�
V5 is the set of all two-dimensional

subspaces of V5.
Now we consider the map µ � � V5 �

�
, which maps each line l of V5 to the

interior line l, in symbols µ � l � 
 l, for every l � �
V5 and the image of a point p of

V5 is the set of all interior lines of
�
such that p is a point of each line, in symbols

µ � p� 
 � l � � � p is a point of l in V5 � .
We claim that µ is a homomorphism of geometries, in fact a correlation, and the
map φ � � �

�
V5 de�ned as below is the inverse map of µ.  e image of each

interior line l under the map φ is the line l of V5, so φ � l � 
 l for each l � �
, and

for each p � � we de�ne the image of punder φ to be the intersection point of all
interior lines of p, in symbols φ � p� 
 � l � p l 
 � qp.
First we show that themaps φ and µ are homomorphisms between the geometries�
and

�
V5 .  erefore let p be a point of

�
V5 and l be a line of the set

�
V5 incident

to the point p, then µ � p� 
 � k � � � p is a point of k in V5 � and µ � l � 
 l. Since the
line l contains the point p it follows that l � µ � p� , thus µ � l � is incident to µ � p� in�
. Now we consider an interior point p and an interior line l such that l is incident
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2 On the complex unitary geometry for n � 7

to p, which means that l � p. Since φ � l � 
 l and φ � p� 
 qpwith the property that
each line k of p contains the point qp, we have that qp is a point of l and thus φ � l �
and φ � p� are incident in the geometry � V5 .
Next we prove the two identities φ � µ 
 id � V5

and µ � φ 
 id � .  us let l be
a line and p be a point of

�
V5 , then � φ � µ

� � l � 
 l and � φ � µ
� � p� 
 φ � � l � � �

p is a point of l in V5 � � 
 qp such that every line k of the set � l � � � p is a point of
l in V5 � contains the point qp. If qp 
 p then of course � φ � µ

� � p� 
 p, otherwise if
p �
 qp, then every line k of the line set � l � � � p is a point of l in V5 � contains the
point qp and the point p, hence k


 � qp, p� , contradiction. It follows that φ � µ 

id � V5
.

Now let pbe an interior point and l be an interior line l of
�
, then � µ � φ

� � l � 
 l
and � µ � φ

� � p� 
 µ � qp � 
 � l � � � qp is a point of l in V5 � . Of course p 
 � l � � �
qp is a point of l in V5 � by the de�nition of φ and µ and the de�nition of an interior
point.  is �nishes the proof of µ � φ 
 id � .
It follows that µ is an isomorphism and that

�
V5 �

�
. As consequence we proved

that the geometry
�
is a projective space. ■

Remark 2.2.15 Directly from the proposition above we get that two interior points
pand q of the projective space

�
have a unique interior line l in common, l � p 	 q.

Moreover two intersecting lines k and l of the space
�
determine a unique point p,

by � l, k � �
p.

If the graph Γ is isomorphic to S � V5 � , then we call the projective space � 
 � � , � �
the interior space on Γ.  e �nal step is to de�ne an endomorphism π on the inte-
rior geometry

�
, which is an anisotropic polarity, and prove the following corollary.

Corollary 2.2.16  e automorphism group of S � V5 � is isomorphic to the automor-
phism group of the projective unitary space P � V5 � .

Consider on the projective geometry
�
V5 the polarity β �

�
V5 �

�
V5 , which arises

from the scalar product � � , �
�
as follows β � l � 
 � p � � V5 � � p,q

� 
 0 for every point
q incident to the line l � for any line l � �

V5 and for every point p � � V5 we de�ne
β � p� 
 � q � � V5 � � q, p

� 
 0 � . Let π be the endomorphism of � de�ned as the
following composition map π 
 µ � β � φ.

Lemma 2.2.17  e endomorphism π is an anisotropic polarity of the projective ge-
ometry

�
.

Proof: We need to show that π is a correlation of order two, which means that π is
a order-reversing bijection with the property that π � π 
 id.
Of course the map π is a bijection since µ,φ and β are bijections.  e second
claim is clear by the fact that β is an anisotropic polarity of

�
V5 and the identities

� µ � β � φ
�

� � µ � β � φ
� 
 µ � β � φ � µ � β � φ 
 µ � β � id � V5

� β � φ 
 µ � id � V5
� φ 
 id � .
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2.3  e line graph of the unitary spaces Vn for n � 6

 erefore it is le� to show that the image of an interior point is a hyperplane and
the image of an interior line is a hyperline in

�
.  us let pbe an interior point of

�
.

 e image of punder the endomorphism π is π � p� 
 � µ � β � φ
� � p� 
 � µ � β

� � qp � 

µ � � a � � V5 � � a,qp

� 
 0 � � , which is a hyperplane in � using the fact that β is a
polarity, hence � a � � V5 � � a,qp

� 
 0 � is a hyperplane, and µ is a isomorphism of
projective geometries.
With the same arguments we get that π � l � 
 � µ � β � φ

� � l � 
 � µ � β
� � l � 
 µ � � a �

� V5 � � a,q
� 
 0 for every points q incident to the line l � � is a hyperline in � . ■

Proof of corollary 2.2.16:  e statement follows now from the fact that the map
δ � Aut � S � V5 � � � Aut � P � V5 � � with δ � α � 
 φ � α � µ is an isomorphism. ■

2.3 The line graph of the unitary spaces Vn for n � 6

 e purpose of the following section is to reconstruct the n-dimensional unitary
vector space Vn over C for n

�
6 from the line graph S � Vn � . As in the preceding

section we will build a geometry
� 
 � � , �

, �
�
from the graph S � Vn � and prove

that
�
is isomorphic to the geometry of points and lines of the unitary vector space

Vn.  e results obtained in this section are very similar to the results of the previous
section, however the methods of proof are a bit di�erent.

As before we start by determining the diameter of the line graph S � Vn � for n �
6.

Proposition 2.3.1 Let n
�
6.  e line graph S � Vn � of Vn is connected, its diameter

is two and the graph S � Vn � is locally S � Vn � 2

�
. Moreover for any two distinct lines l

and m of S � Vn � the induced subgraph � l,m �
�
is not empty.

Proof: Let l and m be two di�erent lines of Vn. Since dim � l � 
 dim � m � 
 2,
certainly dim � lπ � 
 dim � mπ � 
 dim � Vn � � 2 
 n � 2 and the dimension formula
implies that dim � lπ 	 mπ � �

n � 4 �
6 � 4 
 2. Hence we can choose a line h in the

subspace lπ 	 mπ. In particular any two di�erent vertices of the graph S � Vn � are
connected by a path of length at most two in the graph S � Vn � .
To establish the local property, we �x any vertex l of S � Vn � which is the two-
dimensional subspace l in the vector space Vn.  e points and lines which are con-
tained in the orthogonal space lπ of l span an � n � 2 � -dimensional subspace U of
Vn. Furthermore each line m perpendicular to l is contained in U. Since the re-
striction of the scalar product � � , �

�
to the subspace lπ is again a scalar product, the

graph S � Vn � is locally the line graph of the unitary vector space Vn � 2.
To prove the last claim let l and m be any two di�erent lines in Vn. Since the
diameter of S � Vn � is two, they are connected either by a third line z in S � Vn � , so
l � z � m or the two vertices l and m are adjacent. Certainly in the �rst case the
line z lies in the intersection subspace lπ 	 mπ implying z � � l,m � �

. Otherwise if
l � m then the space spanned by the lines l andmhas dimension four, consequently
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2 On the complex unitary geometry for n � 7

z 
 � l,m � π is a two-dimensional subspace of Vn. It follows again that z � � l,m �
�
.
■

Since we want to recover the unitary space Vn from the line graph S � Vn � we will
describe a translation from graph language into vector space notation.  erefore
recall de�nition 2.2.6 for the unitary vector space Vn, n

�
6.

Lemma 2.3.2 Let n
�
6 and let l andm be two distinct vertices of S � Vn � . Any vertex

of � l,m � � �
is contained as a line in L � � l,m � � and vice versa.

Proof: Use the arguments from the proof of lemma 2.2.7. ■
We will show an analogous lemma dealing with three di�erent vertices under sim-
ilar conditions.

Lemma 2.3.3 Let n
�
6 and let k, l and m be three di�erent vertices in S � Vn � . Sup-

pose k, l andm intersect in a common point in the unitary space Vn and suppose that
the subgraph � k, l,m � �

is not empty, then L � � k, l,m � � 
 � k, l,m � � �
.

Proof: Since the lines k, l and m intersect in a common point in Vn, they span a
subspace of dimension three or four in Vn.
If � k, l,m � is of dimension three, then the line m is properly contained in the
subspace � k, l � , thus � k, l,m � 
 � k, l � . From the previous lemma 2.3.2 it follows
that L � � k, l,m � � 
 L � � k, l � � 
 � k, l � � �

.
In the other case if dim � � k, l,m � � 
 4 then we choose a lines s in � k, l,m � and
consider its two-dimensional polar subspace t 
 sπ 	 � k, l,m � inside � k, l,m � . Now,
again by lemma 2.3.2 and the fact that � k, l,m � 
 � s, t � , it follows that L � � k, l,m � � 

L � � s, t � � 
 � s, t � � �

.
It is le� to show in the �rst case that � k, l,m � � �

is equal to � k, l � � �
and in the sec-

ond case that the induced subgraph � s, t � � �
is equal to � k, l,m � � �

. But this can be
obtained under the assumption that g 
 k and d 
 l in the case thatdim � � k, l,m � � 

3 and g 
 s and d 
 t if dim � � k, l,m � � 
 4 from the next identities: � k, l,m � � � 

� � k, l,m � � � � 
 �

z ��� k,l,m � � z
� 
 �

z � � k � � � � l � � � � m � � z
� 
 �

z � L � kπ � � L � lπ � � L � mπ � z
� 


�
z � L � � k,l,m � π � z

� 
��
z � L � � g,d � π � z

� 
 �
z ��� g,d ��� z

� 
 � � g,d � � � � 
 � g,d � � �
. ■

 e next part of this section will describe the reconstruction of any point of the
vector space Vn using only the vertices of the graph S � Vn � , which are the lines of
the unitary vector spaceVn. First we give a criterion to decide whether two di�erent
lines intersect or not. Recall from remark 2.2.11 that for two distinct vertices l and
m the induced subgraph � l,m � � �

in S � Vn � is minimal with respect to inclusion if
for any pair of distinct vertices s1, s2 in the induced subgraph

� l,m � � �
it is satis�ed

that � s1, s2 �
� � 
 � l,m � � �

.

Lemma 2.3.4 Let n
�
6. Two distinct lines l and m of Vn intersect in a common

point if and only if the induced subgraph � l,m � � �
in the graph S � Vn � is minimal

with respect to inclusion.
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2.3  e line graph of the unitary spaces Vn for n � 6

Proof: First, let l and m be two intersecting lines in Vn, then dim � � l,m � � 
 3. Take
any two distinct vertices s1 and s2 of

� l,m � � �
. Of course, s1 and s2 are di�erent

lines of the set L � � l,m � � by lemma 2.3.2, thus � s1, s2 � is a three-dimensional sub-
space of � l,m � in Vn implying that � s1, s2 � 
 � l,m � . Using lemma 2.3.2 again, we
obtain L � � l,m � � 
 � l,m � � �

and L � � s1, s2 � � 
 � s1, s2 �
� �
, which leads to the identi-

ties � s1, s2 �
� � 
 L � � s1, s2 � � 
 L � � l,m � � 
 � l,m �

� �
.

Suppose the subspace � l,m � has dimension four so the two distinct lines l andm
are skew to each other inVn. Pick a point pon the line l and a point q on the linem.
 e two-dimensional subspace � p,q � is contained in � l,m � and intersects the dis-
tinct line l. Furthermore the subspace � � p,q � , l � 
 � q, l � has dimension three and
is properly contained in � l,m � , thus � � p,q � , l � � � 
 L � � � p,q � , l � � � L � � l,m � � 
� l,m � � �

by lemma 2.3.2, which proves that � l,m � � �
is not minimal in S � Vn � with

respect to inclusion. ■
Our next goal is to recover all points of the space Vn as pencils of lines.  ree
di�erent pairwise intersecting lines k1 , k2 and k3 intersect in one point in the unitary
vector space Vn if we can �nd a line s in Vn such that

• the line s intersects ki, if s �
 ki, for 1 �
i

�
3,

• � s, k1, k2 � is a four-dimensional space in Vn.

 e same statement in terms of induced subgraphs is the following:  ree di�er-
ent vertices k1, k2 and k3 of S � Vn � , where the vertex set � ki, kj �

� �
is minimal with

respect to inclusion in S � Vn � for 1 �
i �
 j �

3, intersect in one point, if in the line
graph S � Vn � is a vertex s with the properties:

• the induced subgraph � s, ki �
� �
isminimalwith respect to inclusion in S � Vn � ,

if s �
 ki, for i � 1,2,3 (cf. lemma 2.3.4),
• � k1, k2 �

� � 
 L � � k1, k2 � � � L � � k1, k2, s � � 
 � k1, k2 , s �
� �
(cf. lemma 2.3.2,

lemma 2.3.3 and lemma 2.3.5).

 e identities � k1, k2 �
� � 
 L � � k1, k2 � � and L � � k1, k2, s � � 
 � k1, k2 , s �

� �
have been

proved in lemma 2.3.2 and in lemma 2.3.3.  erefore let k and l be two di�erent
intersecting lines inVn . By this assumption the subspace

� k, l � has dimension three,
thus the orthogonal space � k, l � π has dimension greater or equal to three in the
unitary space Vn. Now we consider the line s


 � p,q � where p is a point in the
space � k, l � π and q is the intersecting point of the lines l and k.  e space � k, l, s � 
� k, l, p� has dimension four, since p �� � k, l � .  us the dimension of the orthogonal
space � l, k, p� π is greater or equal to two in Vn.  erefore we can choose a line in
subspace � k, l, s � π which shows that the graph � k, l, s � �

is not empty. So we have
proved the next lemma.
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2 On the complex unitary geometry for n � 7

Lemma 2.3.5 Let n
�
6. For any two di�erent intersecting lines k and l of Vn there

is a line s in Vn intersecting the lines l and k such that
� k, l, s � is a four-dimensional

space, in particular the induced subgraph � k, l, s � �
of S � Vn � is not empty.

De�nition 2.3.6 Let n
�
6 and Γ be a graph isomorphic to the line graph S � Vn � .

Two di�erent vertices k and l of Γ are de�ned to intersect if the induced subgraph� k, l � � �
is minimal in Γ with respect to inclusion.

 ree distinct pairwise intersecting vertices k1, k2 and k3 of Γ are de�ned to inter-
sect in one point if there is a vertex s in Γ satisfying the following conditions:

• the vertex s intersects the vertex ki, if s �
 ki, for 1 �
i

�
3,

• the induced subgraph � k1, k2, s �
�
is non-empty and � k1, k2 �

� � 
 L � � k1, k2 � � �
L � � k1, k1, s � � 
 � k1, k2, s �

� �
.

An interior point of the graph Γ is a maximal set � of distinct pairwise intersecting
vertices of Γ such that any three elements of � intersect in one point. We denote
the set of all interior points of Γ by � . Moreover, an interior line of the graph Γ is
a vertex of the graph Γ.  e set of all interior lines of Γ is denoted by

�
.

Proposition 2.3.7 Let n
�
6 and let Γ be a graph isomorphic to S � Vn � .  e geometry� 
 � � , �

, �
�
on the interior points and interior lines of Γwith symmetrised contain-

ment as incidence relation is isomorphic to the geometry on points and lines of the
unitary vector space Vn.

Proof:  e proof is a analogue to the proof of proposition 2.2.14. ■
If the graph Γ is isomorphic to S � Vn � , then we call the geometry � 
 � � , � �

the
interior space on Γ.

Corollary 2.3.8 Let n
�
6.  e automorphism group of S � Vn � is isomorphic to the

automorphism group of the projective unitary space P � Vn � .
Proof: See the proof of corollary 2.2.16. ■

2.4 The graph S
�
Vn � 2 � inside the graph S

�
Vn � for n � 7

We will concentrate on the line graph S � Vn � for n �
7. By proposition 2.3.7 we

can construct the interior space
� 
 � � , � �

on S � Vn � , which is isomorphic to the
geometry of points and lines of the complex unitary vector space Vn. If we �x a
vertex x of the graph S � Vn � , the induced subgraph x

�
is isomorphic to the graph

S � Vn � 2

�
by proposition 2.3.1, so by proposition 2.2.14 and proposition 2.3.7 we can
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2.4  e graph S � Vn � 2 � inside the graph S � Vn � for n � 7

construct the interior space
�
x

 � � x, �

x
�
on x

�
� S � Vn � 2

�
, which is isomorphic

to the geometry of points and lines of the complex unitary vector space Vn � 2. In
this section we will prove that the unitary projective space

�
x is a subspace of

�
.

Notation: We will index every local object of the interior space
�
x by the ver-

tex x. In particular, for vertices k, l,m of the subgraph x
�
we use the notations� k, l,m � �

x

 � k, l,m � �

	 x
�
and � k, l,m � � �

x

 � � k, l,m � �

x �
�
x

 � � k, l,m � �

x �
�
	 x

�
.

Obviously the line set
�
x is properly contained in the line set

�
since every line of�

x is a vertex in the graph x
�
and therefore also a vertex in the graph S � Vn � . We

will prove a similar statement for points, i.e., for each point p of the interior space�
the set of lines p 	

�
x is either a point px of the projective space

�
x or empty.

Let us start with the case n 
 7.

Lemma 2.4.1 Let p be a point of
�
. Any two di�erent elements l and m of p 	

�
x

admit an intersection in
�
x.

Proof: Take two di�erent lines l and m of p 	
�
x.  e claim follows from lemma

2.2.10 if we can show that � l,m � �
x �
 � in the graph x

�
. Since the vertices l and m

are adjacent to vertex x in the graph S � V7 � , the plane � l,m � of the interior space �
is orthogonal to the line x.  us � l,m � is a three-dimensional subspace of the �ve-
dimensional subspace xπ in

�
.  e orthogonal space of � l,m � inside the subspace

xπ is the two-dimensional space h 
�� l,m � π 	 xπ, thus the line h is perpendicular
to the lines l,m and x in

�
. It follows that h � � x, l,m � � 
 � l,m � �

	 x
� 
 � l,m � �

x,
which implies that � l,m � �

x
� � and proves that l and m intersect in the projective

space
�
x. ■

Lemma 2.4.2 Let p be a point in
�
. Any three di�erent elements k1, k2 and k3 of

p 	
�
x intersect in one point in

�
x.

Proof: Let k1, k2 and k3 be three di�erent elements in the set p 	
�
x. By de�nition

2.2.13 we have to �nd a vertex s in the graph x
�
such that

• the graph � s, ki �
�
x is not empty, if s �
 ki, for i � � 1,2,3 � ,

• the graph � s, k1, k2 �
�
x is empty.

Using lemma 2.4.1 we conclude that k1, k2 and k3 are mutually intersecting lines in�
x. Since k1, k2 and k3 are vertices of the graph S � V7 � , adjacent to x, the span of k1,
k2 and k3 in

�
is a subspace of xπ. As the vertices k1, k2 and k3 are elements of the

point p � � , the point d � 
 k1 	 k2 
 k2 	 k3 
 k1 	 k3 is a one-dimensional subspace
of xπ, as well.
Suppose � k1, k2, k3 � is a subspace of dimension four in � .  en we choose s equal
to the line k3.  e orthogonal space of

� k1, k2, s � 
 � k1, k2, k3 � inside the subspace
xπ is a point, say z. Any line l of � k1, k2, s � π in � intersects the subspace xπ either in
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2 On the complex unitary geometry for n � 7

the point z or not at all.  us the induced subgraph � s, k1, k2 �
�
x

 � s, k1, k2 �

�
	 x

�
is

empty. Moreover the graphs � s, k1 �
�
x and

� s, k2 �
�
x are not empty, since the vertices

k1, k2 and k3 are mutually intersecting lines in
�
x. Hence, in this case, the claim

follows.
If, on the other hand, the subspace � k1, k2 , k3 � is a plane in � , then �x a point

y in � k1, k2, k3 � π 	 xπ and consider the line s 
 � d, y � of the space
�
.  e line

s is contained in the subspace xπ and intersects each line ki in the point d, for
i � � 1,2,3 � . By lemma 2.2.10, the induced subgraph � s, ki �

�
x of x

�
is not empty for

i � � 1,2,3 � . Because y �� � k1, k2 � , the subspace � s, k1, k2 � has dimension four inside
the subspace xπ and with a similar argument as above it follows that � s, k1, k2 �

�
x is

empty. ■

Proposition 2.4.3 Let pbe a point in
�
.  en either the set of lines p 	

�
x is a point

px of
�
x or the empty set.

Proof: If p 	
�
x �
 � then we �x an element l � p 	

�
x.  e vertex l is adjacent to

the vertex x in S � V7 � , thus l �
xπ in the projective space

�
. Let m be an element

of the point pdi�erent from l. Due to remark 2.2.15 the two distinct lines l and m
de�ne the unique point d � 
 l 	 m in the projective space

�
. Certainly, we can also

�nd line n
�
xπ, di�erent from l and containing the point d, which implies that n

is a line of p. Moreover since n � x we observe that n is an element of p 	
�
x. By

lemma 2.4.1, the interior lines l and n intersect in
�
x, say in the point px .

Let k be an arbitrary line of the interior point px. We will show that k is a
line of the interior point p of

�
, thus completing the proof. By de�nition the ver-

tex k is a line in the subspace xπ of
�
incident to the point d. Also, any ver-

tex g of p is a line in the space
�
incident to the point d.  erefore the space

spanned by k and some line g is a plane in
�
. By lemma 2.3.2 we obtain � k, g � � � 


L � � k, g � � . Due to lemma 2.3.2, again, and the fact that the span of two lines s1, s2
of the plane � k, g � equals that plane, we verify the identities � k, g � � � 
 L � � k, g � � 

L � � s1, s2 � � 
 � s1, s2 �

� �
, which is the �rst condition in de�nition 2.3.6. To establish

the second condition, choose h, f � p. By the above the lines h, f and k mutually
intersect in the projective space

�
.  e subspace � h, f, k � is either of dimension

three or four in
�
. If dim � � h, f, k � � 
 4, then certainly � k,h � � � 
 L � � k,h � � �

L � � k, f,h � � 
 � k, f,h � � �
by lemma 2.3.2 and lemma 2.3.3. If � h, f, k � is a plane in�

, then � h, f, k � 
 � h, f � . By lemma 2.3.5 we �nd a line s intersecting the lines h,
f and k in the point d such that � s,h, f � is a four-dimensional space in � . Hence
k � p, which proves the claim. ■
Next we want to show the converse, i.e. for each point px of the geometry

�
x there

is a unique point p in
�
such that px

�
p.

Lemma 2.4.4 Let px be a point in
�
x. Any two distinct elements k and l of px are

intersecting vertices of S � V7 � .
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Proof: Let k and l be two distinct elements of the point px. By de�nition 2.3.6 we
have to check that � k, l � �

is not empty and the double perp � k, l � � �
in S � V7 � is

minimal with respect to inclusion. Since k � x � l in S � V7 � the �rst condition is
obvious. By lemma 2.3.2, the subgraph � k, l � � �

in S � V7 � is minimal with respect
to inclusion, if and only if the lines k and l span a three-dimensional subspace of
V7. By way of contradiction, suppose k and l span a four-dimensional subspace
of V7. Using now that k and l are two di�erent lines of the point px , we get the
chain k � x � l in the graph S � V7 � . Since the subspace � k, l � is supposed to be
four-dimensional, the space xπ does not contain a line orthogonal to � k, l � , whence� k, l � �

	 x
� 
 � , a contradiction to k, l � px, cf. de�nition 2.2.13. ■

Lemma 2.4.5 Let px be a point in
�
x . Any three distinct elements k1, k2 and k3 of px

intersect in one point in
�
.

Proof: Lemma 2.4.4 implies that the lines k1, k2 and k3 mutually intersect in
�
. It

remains to show, cf. de�nition 2.3.6, that in the graph S � V7 � is a vertex s such that
• the induced subgraph � s, ki �

� �
is minimal in S � V7 � with respect to inclusion,

if s �
 ki, for i � � 1,2,3 � ,
• � k1, k2 �

� � 
 L � � k1, k2 � � � L � � k1, k2, s � � 
 � k1, k2 , s �
� �
.

By de�nition 2.2.13 there is a line s in
�
x such that

� ki, s �
� �
 � if s �
 ki, 1 �

i
�
3

and � k1, k2, s �
� 
 � .  e induced subgraph � s, ki �

� �
is minimal in S � V7 � with

respect to inclusion, if s �
 ki for 1 �
i

�
3, by lemma 2.2.11 and 2.4.4.  us it is le�

to show that � k1, k2 �
� �
� � k1, k2, s �

� �
. But this is obvious, because s � � k1, k2, s �

� �
and s �� � k1, k2 �

� �
. ■

From the preceding lemmata we obtain the following result:

Proposition 2.4.6 Let px be a point of
�
x.  e interior space on S � V7 � contains a

unique point p such that px
�
p. In particular, the interior space

�
x on x

�
is isomor-

phic a codimension two subspace of the space
�
.

Proof: It remains to prove the claim about the codimension.  is, however, follows
from the fact that

�
x � P � V5 � and � � P � V7 � . ■

 e analogue holds for arbitrary n
�
8.

Proposition 2.4.7 Let n
�
8 and let x be a vertex of the graph S � Vn � 2

�
.  e interior

space
�
x on the subgraph x

�
is isomorphic to a hyperline of the interior space

�
on

the graph S � Vn � .

 e statement follows if for each vertex x of the line graph S � Vn � the interior space�
x is isomorphic to a subspace of

�
� P � Vn � .  e di�erence to the preceding part
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of this section is the identical de�nition of an interior point in
�
x and in

�
. In order

to observe that for each interior point p and every line x of
�
the line set p 	

�
x

is either an interior point px or empty and also that each interior point px of
�
x is

contained in a unique interior point p, the next lemma is important.

Lemma 2.4.8 Let l andm be two di�erent intersecting lines of
�
x.  e induced sub-

graph � l,m � � �
of S � Vn � is equal to � l,m �

� �
x of x

�
.

Proof:  e vertices l andm are adjacent to the vertex x in the line graph S � Vn � , thus
the plane � l,m � is a subspace of xπ and � l,m � � � 
 L � � l,m � � in � by lemma 2.3.2.
 erefore all vertices of the induced subgraph � l,m � � �

are adjacent to x in S � Vn � .
 is fact combined with � � l,m � �

	 x
� � � � � l,m � � �

implies the containment of� l,m � � �
in � l,m � � �

x .
On the other hand let k be a vertex of the graph � l,m � � �

x .  e following con-
struction shows the incidence between the line k and the plane � l,m � in � . Let� l,m � πx 
 � l,m � π 	 xπ be the orthogonal space of the plane � l,m � inside the sub-
space xπ. Since dim � � l,m � πx

� 
 n � 5 we �x a point p in � l,m � πx and choose n � 6
di�erent lines hi, i


 1, . . . ,n � 6, in the subspace � l,m � πx , mutually intersecting
in the point p. Certainly � h1, . . . hn � 6 � 
 � l,m � πx and moreover every line hi with
i 
 1, . . . ,n � 6, corresponds to a vertex adjacent to the vertices x, l and m in the
graph S � Vn � . Using the de�nition of the perp relation we obtain that the vertex
k is an element of z

�
x for all z � � l,m �

�
x. In particular the vertex k is connected

with each vertex hi, i

 1, . . . ,n � 6, in the graph S � Vn � .  us the line k is con-

tained in the subspace xπ 	 � h1, . . . ,hn � 6 � π 
 xπ 	 � � l,m � πx
� π 
 � l,m � implying

that � l,m � � �
x

� � l,m � � �
and we are done. ■

Lemma 2.4.9 Let n
�
8 and p be a point in

�
. Any two distinct elements l and m of

p 	
�
x intersect in a common point in

�
x.

Proof: For two di�erent elements l andm of the line set p 	
�
x in view of de�nition

2.3.6 we have to verify that � l,m � �
x �
 � and that the induced subgraph � l,m �

� �
x is

minimal in x
�
with respect to inclusion.

In the line graph S � Vn � both vertices l and m are adjacent to x and � l,m � is a
plane in the interior space

�
.  us � l,m � is a subspace of the � n � 2 � -dimensional

space xπ. Since n
�
8 the subspace � l,m � π 	 xπ has dimension n � 5 �

3 and we
can pick a line h inside � l,m � π 	 xπ.  us h is a vertex of the subgraph � l,m �

�
x

implying the �rst condition � l,m � �
x �
 � .

Since l andm intersect in the interior space
�
we obtain that � l,m � � �

is minimal
in S � Vn � w.r.t. inclusion. By the statement of lemma 2.4.8 we conclude that the
induced subgraph � l,m � � �

x is minimal in x
�
with respect to inclusion, as well. ■

Lemma 2.4.10 Let n
�
8 and pbe a point in

�
. Any three pairwise distinct elements

k1, k2 and k3 of p 	
�
x intersect in one point in

�
x.
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Proof: Let k1, k2 and k3 be three pairwise di�erent elements of the line set p 	
�
x.

Using lemma 2.4.12 we conclude that k1, k2 and k3 are pairwise intersecting lines in�
x. As the vertices k1, k2 and k3 are elements of the point p � � , the three points
k1 	 k2, k1 	 k3 and k2 	 k3 coincide with a unique point d in

�
.

By de�nition 2.3.6 the claim follows if we �nd a vertex s in the graph x
�
such that

• the induced subgraph � s, ki �
� �
x is minimal in x

�
with respect to inclusion if

s �
 ki, i 
 1,2,3
• � k1, k2 �

� �
x � � s, k1, k2 �

� �
x .

Since k1, k2 and k3 are pairwise di�erent vertices of the line set p 	
�
x , the vertices

k1, k2 and k3 are adjacent to x in the line graph S � Vn � thus � k1, k2 , k3 � is a subspace
of the space xπ inside the interior space

�
.

Suppose that the subspace � k1, k2, k3 � has dimension four in � .  en we choose
s 
 k3 andwe are done by lemma 2.3.3 and the fact that � s, k1 , k2 �

� � 
 � k1, k2, k3 �
� � 


� k1, k2 �
�
	 � k2, k3 �

� � 
 � k1, k2 �
�
x 	 � k2, k3 �

� �
x

 � k1, k2, k3 �

� �
x

 � k1, k2, s �

� �
x by

way of lemma 2.4.8.
Alternatively, if � k1, k2, k3 � is a plane in � , then we can choose a line h of xπ
through the point d not contained in the plane � k1, k2, k3 � .  e line h is a ver-
tex of the graph S � Vn � , adjacent to x. Moreover the induced subgraphs � h, ki �

� �
are minimal in S � Vn � w.r.t. inclusion for i 
 1,2,3 and � k1, k2 �

� �
� � h, k1, k2 �

� �
since h is an element of the point p. Using again lemma 2.4.8 we obtain the iden-
tities � k1, k2 �

� � 
 � k1, k2 �
� �
x ,
� h, k1, k2 �

� � 
 � h, k1, k2 �
� �
x as well as

� h, ki �
� � 


� h, ki �
� �
x for i


 1,2,3, in particular for each vertex z � � k1, k2, k3 � the induced
subgraph � h, ki �

� �
x is minimal in x

�
with respect to inclusion and � k1, k2 �

� �
x �� h, k1, k2 �

� �
x . ■

Proposition 2.4.11 For n
�
8 let p be a point in

�
.  e set of lines p 	

�
x is either a

point px of the interior space
�
x or the empty set.

Proof:  e claim follows by lemma 2.4.9, lemma 2.4.10 and a similar argumentation
as used in the proof of proposition 2.4.3. ■
We also show the opposite statement that each point px of the interior space

�
x is

contained in a unique point pof the interior space
�
if n

�
8

Lemma 2.4.12 Let n
�
8 and px be a point of

�
x. Any two di�erent lines k and l of

px intersect in a common point in
�
.

Proof: By lemma 2.3.4 if the induced subgraph � l,m � � �
isminimal in the line graph

S � Vn � with respect to inclusion then the lines k and l intersect in a common point
in
�
. Using the statement of lemma 2.4.8 � k, l � � � 
 � k, l � � �

x and since k and l
are elements of the point px the induced subgraph

� k, l � � �
x is minimal in x

�
with

respect to inclusion. By lemma 2.4.8 again we obtain the identities � s1, s2 �
� � 
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� s1, s2 �
� �
x

 � k, l � � �

x

 � k, l � � �

for any s1, s2 � � k, l �
� � 
 � k, l � � �

x which con�rms
that the graph � k, l � � �

is minimal in S � Vn � w.r.t. inclusion. ■

Lemma 2.4.13 Let n
�
8 and px be a point of

�
x. Any three distinct elements k1, k2

and k3 of px intersect in one point in the space
�
.

Proof:  e previous lemma 2.4.12 implies that any three di�erent elements k1, k2
and k3 of a point px � � x are mutually intersecting lines of the interior space � .
 e subgraph x

�
is isomorphic to the line graph S � Vn � 2

�
and n � 2 �

6 thus
x

�
contains a vertex s intersecting each line ki in

�
x if s �
 ki for i � � 1,2,3 � and� k1, k2 �

� �
� � k1, k2, s �

� �
by de�nition 2.3.6, in particular the line s is an element

of the point px. Since x
�
is an induced subgraph of S � Vn � it follows that s is also

a line of the interior space
�
intersecting each line ki in

�
if s �
 ki for i � � 1,2,3 �

by lemma 2.4.12.  e statement of this lemma is proved if we can verify the con-
dition � k1, k2, s �

� � 
 � k1, k2, s �
� �
x . However

� k1, k2, s �
� � 
 � k1, s �

� �
	 � k2, s �

� �
and � ki, s �

� � 
 � ki, s �
� �
x for i


 1,2 by lemma 2.4.8 consequently � k1, k2, s �
� � 


� k1, s �
� �
	 � k2, s �

� � 
 � k1, s �
� �
x 	 � k2, s �

� �
x

 � k1, k2, s �

� �
x ■

A conclusion from the previous lemmata is the following proposition.

Proposition 2.4.14 Let n
�
8 and let px be a point of the interior space

�
x.  e

interior space of the line graph S � Vn � contains a unique point pwith px �
p.

Notice that the interior space
�
x is isomorphic to a subspace of

�
since every line

l of
�
x is a line of

�
and any point px ��� x is contained in a unique point pof the

interior space of S � Vn � by proposition 2.4.14.  e claim about the dimension of � x
inside

�
follows from the fact that

�
x � P � Vn � 2

�
and

�
x � P � Vn � , which proves

proposition 2.4.7.

2.5 The global space

In this section we will study the following situation: Let n
�
7 and let Γ be a con-

nected graph which is locally isomorphic to the line graph S � Vn � . Our goal is to
show that the graph Γ is isomorphic to S � Vn � 2 � .
Since the graph Γ is locally S � Vn � , for every vertex x of Γ, we can construct the inte-
rior space

�
x isomorphic to P � Vn � from the induced subgraph x

�
, see proposition

2.3.7.  e idea to prove the main theorem 2.1.2 is to construct a global geometry on
Γ using the family � � x � x � Γ of interior spaces and to identify this global geometry as
a projective space. Observe that any local object (point, line, plane, etc.) only exists
in an interior space

�
x for some vertex x in the graph Γ, so one task will be to show

that there are well-de�ned global objects, in order to de�ne our global geometry.
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2.5  e global space

In the last part of this section we prove that the global geometry on Γ is a projective
space over the complex numberswith an anisotropic polarity and that the line graph
of that global geometry is isomorphic to Γ.

Notation: To avoid confusion, wewill index every local object by the vertex x whose
interior space it belongs to. For example, if x � y in the graph Γ, then y is a vertex of
the subgraph x

�
corresponding to the local object yx, an interior line, in the space�

x. By yx we denote the vertex y considered as a vertex of the subgraph x
�
. With the

symbol y
�
x we denote the subgraph

� x,y � �
which is of course an induced subgraph

of x
�
.  e interior space obtained from the graph y

�
x will be denoted with

�
yx .

De�nition 2.5.1 A global line of Γ is a vertex of the graph Γ.  e set of all global
lines of Γ is denoted by

�
Γ.

Let x,y,z and w be four vertices of Γ such that z � x � w � y. Notice that Ux
zx ,wx

� 
� zx,wx � π 
 zπx 	 wπx is a subspace of the interior spaces
�
x and

�
xz . Since

�
xz

 �

zx ,
by propositions 2.4.6 and 2.4.7 this spaceUx

zx ,wx
can also be considered as a subspace

of the interior space
�
z, in fact of x

π
z . For emphasis we denote this space U

x
zx ,wx
by

Uz
zx ,wx
when considering it in

�
z. Notice also that dim � Ux

zx,wx

� 
 dim � Uz
zx ,wx

�
. For

the same reasons as above any local object contained in Ux
zx ,wx 	 Ux

xw ,yw is a local
object of the interior spaces

�
z,
�
x,
�
y and

�
w.

Proposition 2.5.2 Let n
�
7 and let Γ be a connected graph which is locally isomor-

phic to S � Vn � .  en the graph Γ has diameter two.
Proof: Let z � x � y � w be a chain of di�erent vertices in Γ. We will distinguish be-
tween the cases n

�
8 and n 
 7.

In case n
�
8, the dimension of the intersection of U

y
zx ,yx and U

y
xy ,wy
is greater

than or equal to two, because the codimension of U
y
zx,yx and of U

y
xy,wy
is at most

two in the space xπy of dimension at least six.  erefore we can choose an interior

line ly in U
y
zx ,yx 	 Uy

xy ,wy
.  e interior line ly corresponds to a vertex l in the graph

Γ and is adjacent to x,y,z and w. It follows by induction that the connected graph
Γ has diameter two.
Now we turn to the case n 
 7. Either dim � Uy

zx,yx 	 Uy
xy ,wy

� �
2— in which case

we �x an interior line ly in the intersection of the spaces U
y
zx,yx andU

y
xy,wy
as before

— or U
y
zx,yx 	 Uy

xy,wy


 py is an interior point of the interior spaces � y, � z (denoted
by pz),

�
x (denoted by px) and

�
w (denoted by pw).

Assuming the latter case, �x an interior line nx in the subspace U
x
zx,yx which has

at least dimension three, incident to the interior point px. Since nx corresponds to a
vertex n in Γ adjacent to x,y and z, we can consider the chain z � n � y � w in the graph
Γ. With the construction as above we obtain an interior point qn


 Un
zn ,yn 	 Un

ny,wy

in
�
n which is also an interior point of

�
y (denoted by qy).  e interior points qy

and py are di�erent by the fact that py is a point on the line ny and qy is a point
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in the orthogonal subspace nπy of ny.  us we regard the interior line ly

 � py ,qy �

generated from the two points qy and py, which is contained in the subspace w
π
y of�

y. Furthermore the interior line ly matches with a vertex l in the graph Γ adjacent
to the vertices y and w by construction.
At this point we have constructed the chain z � n � y � l in the graph Γ with the
property that the subspace � ny , ly � has dimension three in the interior space � y.
 erefore dim � Uy

zn ,yn 	 Uy

ny,ly

� �
2, so using arguments from above we �nd a vertex

t in Γ adjacent to the vertices z, n, y, l.
In the seven-dimensional interior space

�
t the vertices y and z correspond to

the interior lines yt and zt.  e intersection of y
π
t and z

π
t is a three-dimensional

subspace of
�
t which contains the unique interior point pt induced from the point

py 	
�
t and the unique interior point qt such that qy 	

�
t

�
qt.  us the interior line

ly is incident to the subspace U
t
zt,yt . It follows that the vertices l and z are adjacent

in the graph Γ. Again by induction the connected graph Γ has diameter two. ■
Our next goal is to construct a notion of global points for Γ such that each interior
point px for some x � Γ is contained in a unique global point.

Lemma 2.5.3 Let x, y and z be three vertices of Γ and px be an interior point of
�
x

such that x � y � z � x and yx,zx � pπx . Denote the unique interior point of y
�

induced from the point pyx by py and the unique interior point of z
�
induced from the

point pzx by pz.  en zy � pπy and the unique interior point qz of z
�
induced by pzy is

equal to the interior point pz.

Proof: Consider the unique interior point py � pyx in
�
y and the unique interior

point pz � pzx in
�
z, cf. section 2.4. Since y

π
x 	 zπx is of dimension at least three and

incident to the point px, we can �nd distinct interior lines g
1
x and g

2
x of the point px

in the subspace yπx 	 zπx , so that g1x, g2x � pyx and g1x, g2x � pzx .  us the global lines
g1 and g2 are also lines of the point py and pz. Moreover g

1
y, g

2
y � pzy and, thus, the

unique interior point qz induced from pyz also contains both interior lines g
1
z and

g2z . Due to remark 2.2.15 we have qz

 pz. ■

De�nition 2.5.4 A global point pof Γ is a set of vertices of the graph Γ such that

p 
 px �
�
h � x �
� ph � � h � pxh �

ph �

for some vertex x of Γ and some interior point px of the interior space
�
x.  e set

of all global points of Γ is denoted by � Γ.

In order to understand the above de�nition better, wewill show that a global point is
stable under iteration of the above process. To this end, let x be a vertex of Γ and px
be an interior point of the point set � x. We set p0 � 
 px ��� h � x � � ph � � h � pxh �

ph �
and by the above de�nition, p0 is a global point.
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2.5  e global space

De�ne

p1

 px �

�
h � x �
� ph � � h � pxh �

ph � �
�

k
�
h

�
x

� pk � � k � pxh �
ph, phk

�
pk � .

Certainly p0
�
p1. Assume p1 �
 p0 and let k be a global line in p1 such that k is not

contained in the vertex set p0.  en by construction we can �nd a chain of vertices
x � y � w � k in Γ and interior points py and pw with pxy

�
py, pyw

�
pw and

k � pw. Due to the proof of proposition 2.5.2 there is a vertex z � � x,y,k �
�
and a

pathw � c1 � � � cn � z in the induced subgraph � y,k � �
. Since the interior line c1w

is in the orthogonal space of kw, we can �nd an interior point pc1 � pwc1
containing

the interior line kc1 in the interior space
�
c1 . Using lemma 2.5.3 we obtain pyc1

�
pc1 .

Arguing along the path w � c1 � � � cn � z, we end up with pyz
�
pz, kz � pz.  is

implies pxz
�
pz, so k � p0. Hence p0 
 p1.  is consideration has two immediate

consequences.

Proposition 2.5.5 Let pbe a global point and x be vertex of Γ.  e intersection of the
line set

�
x of the interior space

�
x and the global point p is either an interior point px

of
�
x or the empty set.

Proposition 2.5.6  e notion of a global point p is well-de�ned and does not depend
on the starting interior point px

�
p.

Proof: If x � y and px, py
�
p, then

py �
�
l � y �
� pl � � l � pyl �

pl �

 py �

�
l � y �
� pl � � l � pyl �

pl � �
�

k
�
l

�
y

� pk � � k � pyl �
pl, plk

�
pk �

� px �
�
l � x �
� pl � � l � pxl �

pl � ,

so by symmetry px and py de�ne the same global point.  e general case is proved
by an iteration of this argument along each path between the vertices x and z with
px, pz

�
p in the connected graph Γ. ■

 e triple
�
Γ

 � � Γ,

�
Γ, �
�
is a point-line geometry, called the global geometry on

Γ.

Proposition 2.5.7  e point-line geometry
�
Γ

 � � Γ,

�
Γ, �
�
is a projective space.

Proof: We have to show that the geometry
�
Γ satis�es the axioms of a projective

space, see de�nition A.1.2. Let p and q be two distinct global points of
�
Γ and let

l � pandm � q, where l andm are two distinct global lines of � Γ . Due to proposition
2.5.2 we �nd a vertex z � Γ adjacent to l and m. Using proposition 2.5.5 and the
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2 On the complex unitary geometry for n � 7

condition that l,m � z �
we get two distinct interior points p 	 z

� 
 p 	
�
z

 pz and

q 	 z
� 
 q 	

�
z

 qz of � z. Since

�
z is a linear space by proposition 2.3.7 it contains

a unique interior line kz connecting the interior points pz and qz.  is interior
line kz corresponds to a unique vertex k of the graph Γ and we have found a global
line k joining the global points p and q. If h were another global line joining the
global points pand q, again by proposition 2.5.2 we would �nd a vertexm � � k,h � ,
yielding a contradiction to the linearity of

�
m. So the global geometry

�
Γ is a linear

space.
Next we verify the axiom of Veblen-Young in

�
Γ, thus let a,b, c,d and e be global

points of
�
Γ such that the global points a,b, c and a,d, e are collinear triples on

distinct global lines, say labc, the joining line of a,b and c and kade, the joining line
of a,d and e. We claim that the joining line mbd of the points b and d intersects
the joining line nce of the points c and e. Due to proposition 2.5.2 we �x a vertex
z in Γ such that mbd � z � nce.  e claim follows now from local analysis of the
interior space

�
z and from the propositions 2.3.7 and 2.5.5. Indeed the interior space�

z contains the interior lines m
bd
z and n

ce
z and the interior points bz, cz,dz and ez.

Moreover, the space
�
z contains also the connecting line of bz and cz and the line

joining dz and ez, thus l
abc
z and kadez are interior lines in

�
z.  erefore c 	

�
z is an

interior point cz in the space
�
z. Since

�
z is a projective space by proposition 2.3.7

and the �ve interior points az,bz, cz,dz and ez satisfy the axiom of Veblen-Young
cf. page 2 or de�nition A.1.2, we conclude that the interior linesmbd

z and n
ce
z have a

point in common, say fz. Now we can extend the interior point fz to a global point
f of the geometry

�
Γ and, of course,m

bd ,nce � f by the fact that mbd ,nce � fz. ■

De�nition 2.5.8 With the symbol � x � � for a vertex x in the graph Γwe will denoted
the pair of sets � � x,

�
x

� � � � Γ,
�
Γ

�
such that � x contains all global points of the

graph Γ that have a non-empty intersection with the line set
�

x of the interior space�
x, i.e. p � � x if and only if p 	

�
x �
 � .

Let pbe a global point of the geometry
�
Γ. We denote with

� p� � the pair of sets

� � p,
� p � � 
 � �

x � p
� x,

�
x � p

�
x

� 
 �
x � p
� x � � � � � Γ,

�
Γ

�
.

We claim that � x � � is a hyperline of � Γ for each global line x and � p
� � is a hyperplane

of the geometry
�
Γ for each global point pof

�
Γ.

Lemma 2.5.9 Let n
�
7.  e geometries � x � � and � p� � are subspaces of the global

space
�
Γ.

Proof: We start to prove that for any vertex x of the graph Γ the point-line geometry� x � � 
 � � x,
�
x

�
is a subspace, so for any two global points p,q � � x the global line

l joining both points has to be an interior line of
�
x.
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2.5  e global space

Let p,q be two di�erent global points of � x.  en by proposition 2.5.5 we derive
two interior points px


 p 	
�
x and qx


 q 	
�
x of the interior space

�
x. By the

linearity of the space
�
x there exists a unique interior line lx which is incident to

both interior points px and qx. In particular the global line l is contained in
�
x and

connects the two global points p and q, which proves the claim.
Nextwe show that for any two di�erent global points a and b of the point set � p of
some global point pof

�
Γ, the global line l joining a and b is an element of the line set� p. Let x be a vertex of p such that a � � x and y be a vertex of pwith b � � y and �x

two interior lines hax � ax and hby � by. By lemma 2.5.2we �nd a vertex z in Γ adjacent
to x and y, thus in the graph Γwe have the chain ha � x � z � y � hb. In the interior
space

�
x we regard the intersection of the � n � 3 � -dimensional subspaceUx

xz ,yz and
the hyperline � hax

� π. Since this intersection space has dimension at least three, we
can �x an interior line gx inside this space and get the chain g � ha � x � g � y � hb

in Γ.  erefore, without loss of generality, we can assume that a 	
�

z is an interior
point az and h

a
x

 haz .

In the interior space
�
z we obtain the following spaces and its intersections.  e

space Uz
xz ,yz is of dimension n

� 3 and aπz is a hyperplane of
�
z, thus a

π
z 	 Uz

xz ,yz

 �

Hz
xz ,yz,az is at least an � n � 4

�
-dimensional subspace of the hyperplane pπz in

�
z.

Since Hz
xz ,yz,az is a subspace of y

π
z whence H

y
xz,yz,az is a subspace of dimension at

least n � 4 in the interior space
�
y. Considering also the hyperplane b

π
y in

�
y we

can choose a line ty in the intersection of H
y
xz,yz,az and b

π
y and regard the chain of

vertices t � ha � x � t � y � hb � t.  erefore w.l.o.g. we can also assume that
b 	

�
z is an interior point bz and h

b
y

 hbz .

Consider the path z � ha � x � z � y � hb � z in Γ to see that p 	
�
z is the interior

point pz and the joining line l
a,b
z of the interior points az and bz is contained in the

hyperplane pπz .  us there is an interior line wz in the interior point pz such that
la,bz

�
wπz . It follows directly that l

a,b � �
w

� � p, hence the joining line la,b is
contained in � p� � . ■

Proposition 2.5.10 Let n
�
7.  e subspace � x � � is a hyperline of the projective space�

Γ for each vertex x in Γ.

Proof:  e set � x � � is not a hyperplane or the whole space, due to the fact that none
of the global lines h � �

x intersects the global line x.
Let E be any global plane of

�
Γ. We claim that the space

�
Γ contains a global

point p in the subspace � x � � such that p is a also a point of the global plane E.
Since

�
Γ is a projective space we can choose in the plane E two distinct global

lines k and l, which span the global plane E. Certainly, the vertices k and l are
not adjacent in Γ but by the fact that the diameter of Γ is two, due to proposition
2.5.2, we �nd a vertex z in the graph Γ adjacent to the vertices k and l.  erefore
in
�
z we consider the orthogonal space k

π
z of the interior line kz.  e intersection

of the spaces kπz and the interior plane
� kz, lz � contains an interior point pz. We
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2 On the complex unitary geometry for n � 7

choose an interior line hz in k
π
z through the point pz. Obviously, the interior line hz

corresponds to a unique vertex h adjacent to k and we can assume that the vertices
k and h are not adjacent to x, as otherwise h,k � �

x and we are done.
However using proposition 2.5.2 again we �nd a vertex y such that h � y � x and
with the construction from proposition 2.5.2 we choose also a vertex s in the sub-
graph � k,h,x � �

.
In the interior space

�
s the orthogonal subspace x

π
s of the interior line xs has

dimension n � 2 �
5 and the space spanned by the interior lines ks and hs is a four-

dimensional subspace which contains the global plane � ks, ps � 
 � k, l � 
 E.  us
the intersection space of E and xπs contains an interior point qs. We conclude that
the global plane E and the space � x � � contain the global point q, which shows that� x � � intersects each global plane E in at least one global point. Consequently � x � �
is a hyperline of the projective space

�
Γ. ■

Proposition 2.5.11 Let n
�
7.  e subspace � p� � is a hyperplane of the projective

space
�
Γ for each global point p of Γ.

Proof: Certainly the subspace � p� � is properly contained in the projective space � Γ,
as for each vertex x � p the intersection p 	

�
x

 � implying that p �� � p� � .

Furthermore let l be any global line of Γ, we will give a proof that the projective
space

�
Γ contains a global point qwith the property that l � q and q � � p

� � .
We �x a global line k of the point p and from lemma 2.5.2 we can �nd a line z in
the graph Γ such that k � z � l. Since the orthogonal space pπz of the interior point pz
has dimension n � 1 in

�
z, the interior line lz intersects p

π
z in at least one interior

point qz.  erefore the global point q contains the global line l and the global point
p contains a global line m such that qz

�
mπ

z in
�
z. Consequently l � q 	

�
m �
��

and q is a point of the subspace � p� � . ■

Remark 2.5.12 Notice that the hyperline � x � � is isomorphic to the interior space�
x. Indeed the map α � � x

� � �
�
x with α � l � 
 l for every l � �

x and α � p� 
 p 	
�
x

for p � � x, is a bijective incidence preserving map. So α is an isomorphism between
the point-line geometries � x � � and � x for every vertex x of Γ. Because � x � P � Vn �
by proposition 2.3.7, we observe that � x � � is isomorphic to the point-line geometry
of the complex unitary vector space Vn.

 e fundamental theorem of projective geometry, see [16], implies that
�
Γ is iso-

morphic to the projective space of the � n � 2 � -dimensional complex vector space.

Proposition 2.5.13 Let n
�
7 and let Γ be a connected graph locallyS � Vn � .  e point-

line geometry
�
Γ

 � � Γ,

�
Γ

�
is isomorphic to the point-line geometry of the complex

vector space Vn � 2.
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2.5  e global space

Proof: Using again the fundamental theorem of projective geometry and the fact
that

�
Γ contains projective subspaces de�ned over the �eld of the complex numbers,

the space
�
Γ itself is a projective space over the complex numbersC. Its dimension is

determined as follows: For every line x � �
Γ the space

�
Γ contains the codimension

two subspace � x � � of dimension n, so the space � Γ has dimension n � 2. ■
 e last step to prove ourmain theoremwill be to de�ne an endomorphism πΓ of the
global space

�
Γ, which turns out to be an anisotropic polarity.  is polarity allows

us to de�ne a line graph on the projective space
�
Γ, which will be isomorphic to the

graph Γ. To de�ne the polarity on
�
Γ weneed two statements about the classi�cation

of hyperplanes and hyperlines in
�
Γ.

Lemma 2.5.14 Let H be a hyperline of
�
Γ, then H


�� h � � for some unique global line
h in

�
Γ.

Proof: Let k be a global line in the hyperline H.  en due to lemma 2.5.10 the pro-
jective space

�
Γ contains the hyperline

� k � � . Moreover the hyperline � k � � does not
intersect the global line k. Indeed � k � � 	 H 
 L is either a hyperline or a hyperplane
of the interior space

�
k. Suppose L is a subspace of codimension one in

�
k.  en L

is a hyperplane of the hyperlineH, which leads to the fact that L intersects each line
of H in at least one point.  us L intersects also the global line k, contradiction.
 erefore L is a hyperline of the interior space

�
k and it follows with the polarity

π from lemma 2.2.17 that π � L � 
 lk is an interior line in � k and of course k � � l
� �

as well as L
� � l � � .  erefore H 
 � k,L � 
 � l � � for the unique global line l. ■

Lemma 2.5.15 Let P be a hyperplane of
�
Γ, then P


 � p� � for a unique global point
p in

�
Γ.

Proof: Now let k be a global line of the hyperplane P, then � k � � is a hyperline of the
projective space

�
Γ, which does not intersect the global line k. In fact the hyper-

line � k � � is not properly contained in the hyperplane P. Hence by the dimension
formula � k � � 	 P 
 L is a hyperplane of the interior space

�
k.

With the polarity π of the projective space
�
k we obtain that π � L � 
 pk is an in-

terior point of the interior space
�
k. As before we have that k � � p

� � and L � � p� � .
 is leads to the statement that the space spanned by the line k and the space L is
incident to the subspace � p� � , in particular � k,L � 
 � p� � using a dimension argu-
ment.  erefore P 
 � k,L � 
 � p� � for the unique global point p, which contains
the interior point pk. ■
Denote the set of all hyperplanes of the projective geometry

�
Γ with � Γ and de�ne

the transformation πΓ � � Γ � � Γ � � Γ � � Γ to map each global point p to the
hyperplane � p� � and each hyperplane � p� � to the global point p.  is is a well-
de�ned map by the two preceding lemmas.
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2 On the complex unitary geometry for n � 7

To conclude that πΓ is a polarity on the �nite dimensional projective space
�
Γ, due

to lemma 9.1.6 of [16], it su�ces to show that for all global points p,q in � Γ the map
πΓ satis�es the property that p � � q

� � implies q � � p� � . Let p be a point incident
to the hyperplane � q � � , then we can �nd a global line k of the global point q with
the property that p 	

�
k

 pk is an interior point of � k by de�nition 2.5.8. So �x an

interior line hk incident to the interior point pk in
�
k.  e global line h is adjacent

to k in the graph Γ and thus k � �
h. Due to proposition 2.5.5 we know that q 	

�
h is

an interior point in
�
h and πΓ � � q

� � � 
 q is incident to πΓ � p� 
 � p
� � by de�nition

2.5.8 again.  e polarity πΓ is anisotropic, because p �� � p
� � for all p � � Γ.  us we

have proved the following.

Proposition 2.5.16  e endomorphism πΓ is an anisotropic polarity on the complex
projective space

�
Γ. In particular, πΓ is induced by a scalar product on some complex

vector space.

Proof: It remains to prove the �nal claim. By proposition 2.5.13, the projective space�
Γ is isomorphic to the complex projective space P � Vn � 2 � . By the classi�cation of
polarities, see theorem 1.1.5, πΓ is induced by a symmetric or an alternating bilinear
form or a hermitian sesquilinear form on Vn � 2. Since πΓ is anisotropic, it has to
be induced by an anisotropic hermitian sesquilinear form, i.e., a complex scalar
product. ■
 e �nal step is to de�ne the line graph S � � Γ � of the unitary projective space � Γ 

� � Γ,

�
Γ

�
.  e vertex set of S � � Γ � is the set of global lines of � Γ where two distinct

global lines k and l are adjacent, in symbols k � Γl if and only if k � � l
� � 
 πΓ � l � or

equivalently if and only if l � � k � � 
 πΓ � k � .

Proposition 2.5.17  e graph Γ is isomorphic to the line graph S � � Γ � of � Γ.
Proof: Let φ be the map Γ � S � � Γ � de�ned by x � x. Since the vertex set of Γ
is equal to

�
Γ, the map φ is a bijection. Take two adjacent vertices x and y in Γ,

obviously x is contained in � y � � 
 πΓ � y � and so x is adjacent to y in the graph
S � � Γ � . It follows that φ is an isomorphism between the graph Γ and the line graph
of S � � Γ � . ■

 eorem 2.1.2 Let n
�
7 and let Γ be a connected locallyS � Vn � graph. en the graph

Γ is isomorphic to S � Vn � 2 � .
Proof:  e statement follows immediately fromproposition 2.5.17, because the global
point-line geometry

�
Γ on Γ together with the anisotropic polarity πΓ is isomorphic

to the projective space P � Vn � 2 � with the polarity induced by the complex scalar
product, cf. propositions 2.5.13 and 2.5.16. ■
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C H A P T E R THREE

On the finite hyperbolic unitary geometry for n � 7

3.1 Local recognition of the hyperbolic line graph of finite
unitary space for n � 7

 e geometry on the points and hyperbolic lines of a non-degenerate �nite unitary
polar space (or, short, hyperbolic unitary geometry) is interesting for a number
of reasons. One reason is the fact that every pair of intersecting hyperbolic lines
either spans a dual a�ne plane (sometimes also called a symplectic plane), for a
de�nition see page 64, or some well-understood linear plane related to a classical
unital, cf. [72], [85]. With some additional technical hypotheses this observation
can actually be used to characterise the hyperbolic unitary geometries over �nite
�elds.  is characterisation of the geometry on singular points and hyperbolic lines
of a �nite unitary space — the hyperbolic unitary geometry — is described in the
unpublished manuscript [25] of H. Cuypers. In section 3.4 we will study Cuypers’
approach in detail, his result is restated as theorem 3.4.1. Another observation is
the 1-1 correspondence between the set of long root subgroups, resp. fundamental
SU2 � Fq2 � subgroups of a SUn � Fq2 � and the points, resp. hyperbolic lines of the
corresponding unitary geometry via the map that assigns the respective groups to
their commutator in the module.  is correspondence is well-known, see e.g. [91,
chapter 2]. Our interest in the unitary hyperbolic geometry stems from this second
observation.  is chapter can be viewed as a cousin to chapter 4 of [35], see also
[39] where the same setting is studied for the groups Sp2n � Fq

�
for arbitrary �elds

and to chapter 2.

However these �rst-grade relatives are much better behaved and a lot easier to han-
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3 On the �nite hyperbolic unitary geometry for n � 7

dle than the current chapter.  e increased di�culty compared to [39] origina-
tes from the fact that we prove theorem 3.1.2 for n

�
7 instead of n

�
8 (odd-

dimensional non-degenerate symplectic forms do not exist), while the increased
di�culty compared to chapter 2 comes from the fact that subspaces of non-degene-
rate subspaces can be very far from being non-degenerate, whereas subspaces of
anisotropic subspaces are anisotropic.

We recall the de�nition of the hyperbolic line graph.

De�nition 3.1.1 Let Un

 U denote an n-dimensional vector space over Fq2 en-

dowed with a non-degenerate hermitian form. Certainly for a subspace U
�
V the

orthogonal space of U is Uπ 
 � x � V � � x,u � 
 0 for all u � U � .  e hyperbolic
line graph G � Un

�
is the graph on the hyperbolic lines, i.e., the non-degenerate

two-dimensional subspaces, ofUn, where hyperbolic lines l and m are adjacent (in
symbols l � m) if and only if l is perpendicular to m with respect to the unitary
form.

For a vertex x in G � Un
�
we denote the neighbourhood graph of x with G � Un

�
x



x
�
and for a set of vertices X of G � Un

�
we de�ne G � Un

�
X

 �

x � X x
� 
 X �

.

 e �rst part of this chapter focuses exclusively on the hyperbolic lines and their
relative positions.

It is easily seen (cf. proposition 3.3.3) that the graphG � Un
�
is locallyG � Un � 2

�
. Con-

versely, this property is characteristic for this graph for su�ciently large n:

 eorem 3.1.2 Let n
�
7, let q

�
3 be a prime power, and let Γ be a connected graph

that is locallyG � Un
�
.  en Γ is isomorphic to G � Un � 2 � .

 e requirement in the preceding theorem that Γ be connected results from the fact
that a graph is locally ∆ if and only if each of its connected components is locally
∆. So in fact, its primary role is to provide irreducibility.

For n
�
8 this result has been stated without proof in the PhD thesis,  eorem 4.5.3

of [35], of R. Gramlich. Comparing the proofs of lemmata 3.6.5, 3.6.6 and 3.6.7 with
the proof of lemma 3.6.8, the reader will understand why the case n 
 7 is so much
more di�cult than the case n

�
8. Counter-examples to the local recognition are

only known for n 
 6.  ey come from the exceptional groups of type E2 6 � Fq2
�
,

see [91].

As mentioned before, the motivation of our research was of group-theoretic nature.
If the �eld F has characteristic distinct from 2, translating theorem 3.1.2 into the
language of group theory yields the following.
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3.2  e hyperbolic line graph of U5

 eorem 3.1.3 Let n
�
7 and let q be an odd prime power. Let G be a group with

subgroups A and B isomorphic to SU2 � Fq2 � , and denote the central involution of A
by x and the central involution of B by y. Furthermore, assume the following holds:

• CG � x � 
 X � K with K � GUn � Fq2 � and A �
X;

• CG � y � 
 Y � J with J � GUn � Fq2 � and Y �
B;

• A is a fundamental SU2 � Fq2 � subgroup of J;
• B is a fundamental SU2 � Fq2 � subgroup of K;
• there exists an involution in J 	 K that is the central involution of a fundamental
SU2 � Fq2 � subgroup of both J and K.

If G 
 � J,K � , then PSUn � 2 � Fq2 � �
G � Z � G � �

PGUn � 2 � Fq2 � .
In sections 3.2 and 3.3 we study properties of the hyperbolic line graph G � Un

�
for

n
�
5. Section 3.4 deals with the interaction of the graphG � Un

�
with the hyperbolic

unitary geometry. In particular, we investigate how to reconstruct the hyperbolic
unitary geometry using intrinsic properties of G � Un

�
only. In section 3.5 we study

embeddings of G � Un � 2

�
in G � Un

�
, which provides us with valuable information

for the proof of theorem 3.1.2 that we give in section 3.6. Most of our arguments are
based on counting in subspaces of Un of various dimensions and ranks, so that for
the convenience of the reader we include a collection of known counting results in
appendix B. For quick reference we also give some tables containing the necessary
information at the end of appendix B on pages 262 and 264. A proof of theorem
3.1.3 is not included in this thesis, because the problem of how to deduce a result
like theorem 3.1.3 from a result like theorem 3.1.2 has been thoroughly studied in
[35] and, thus, is well-understood.

3.2 The hyperbolic line graph of U5

Let q
�
3 be a prime power and letU5 be a �ve-dimensional non-degenerate unitary

vector space over Fq2 with polarity π. SoU5 is equipped with a non-degenerate her-
mitian form � � , �

�
. We have de�ned the graphG � U5

�
with the set of non-degenerate

two-dimensional subspaces of U5 as the set of vertices where two vertices l and m
are adjacent if and only if l � mπ.  e aim of this section is to reconstruct the uni-
tary vector space U5 from the graph G � U5

�
. To this end we will de�ne a point-line

geometryG 
 � � , �
, �
�
using intrinsic properties of the graphG � U5

�
and establish

an isomorphism between G and the geometry on singular points and hyperbolic
lines of U5. From there U5 is easily recovered.
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3 On the �nite hyperbolic unitary geometry for n � 7

Using this strategy as our road map we �rst determine the diameter ofG � U5

�
. Any

two di�erent vertices l andm ofG � U5

�
can have distance one, l andm are adjacent,

two, three, or four. In the following few lemmata, for each case we will thoroughly
investigate the con�guration of the lines l and m in the unitary vector space U5.

A reformulation of the adjacency relation for the hyperbolic line G � U5

�
is the fol-

lowing observation.

Observation 3.2.1 Let l and m be two di�erent hyperbolic lines of U5.  en l and
m have distance one in the graph G � U5

�
if and only if l � mπ.

Lemma 3.2.2 Let l andm be two di�erent hyperbolic lines ofU5.  en l andm have
distance two in G � U5

�
if and only if the subspace � l,m � is a non-degenerate plane in

U5.

Proof: Let l andm be two hyperbolic lines ofU5 which have distance two inG � U5

�
.

 us the graphG � U5

�
contains a vertex z, which is a hyperbolic line inU5, adjacent

to the vertices l and m. Its orthogonal space zπ, a regular plane of U5, contains the
two di�erent hyperbolic lines l and m, whence the hyperbolic lines l and m span
the non-degenerate plane zπ.
Conversely, suppose that � l,m � is a regular three-dimensional subspace of U5.
SinceU5 is a �ve-dimensional non-degenerate unitary vector space, the polar space
of � l,m � is a hyperbolic line h 
 � l,m � π ofU5. By de�nition the vertex h is adjacent
to the vertices l andm in G � U5

�
. Since the hyperbolic lines l andm intersect inU5

and, thus, span the plane � l,m � , it follows that l �� m and therefore the vertices l
and m have distance two in G � U5

�
. ■

Lemma 3.2.3 Let l andm be two di�erent hyperbolic lines ofU5.  en l andm have
distance three in G � U5

�
if and only if l and m are two non-intersecting hyperbolic

lines such that lπ 	 m is a one-dimensional subspace p of U5.

Proof: Suppose the vertices l and m have distance three in the graph G � U5

�
.  en

we �nd a vertex z in the graph G � U5

�
adjacent to l such that � z,m � is a regular

plane of U5 using lemma 3.2.2. Since the hyperbolic lines z and m span a plane in
U5 the intersection of the subspaces z and m is a one-dimensional space p


 m 	 z.
As z

�
lπ, the hyperbolic line m intersects the subspace lπ in at least the point p.

Since the vertices l andm are not adjacent inG � U5

�
, we havem �� lπ, som 	 lπ 
 p.

In order to prove the �rst implication of the statement it is le� to show that the
hyperbolic lines l and m do not intersect in U5. By way of contradiction we as-
sume that � l,m � is a three-dimensional subspace.  e plane � l,m � is degenerate
by lemma 3.2.2, thus lπ 	 mπ is a singular two-dimensional subspace of U5. Since
p, the intersection point of m and lπ, is incident to the hyperbolic line m, we have
p �� rad � � m, l � � and mπ �

pπ, whence mπ 	 lπ �
pπ 	 lπ. Of course p is either

40



3.2  e hyperbolic line graph of U5

singular or regular. Furthermore dim � mπ 	 lπ
� 
 2 
 dim � pπ 	 lπ

�
, consequently

mπ 	 lπ 
 pπ 	 lπ.
If p is a regular point, then pπ 	 lπ is a regular line, contradicting the fact that

mπ 	 lπ is degenerate. If p is a singular point, then of course pπ 	 lπ is a singular
two-dimensional subspace s of rank one containing the point pitself and the radical
of pπ 	 lπ.  erefore p 
 rad � pπ 	 lπ

� 
 rad � mπ 	 lπ
� 
 rad � � m, l � � � p, a con-

tradiction.  us � m, l � has to be a four-dimensional space and the two hyperbolic
lines l and m have a trivial intersection in U5.
Now for the other implication. If l and m are two non-intersecting hyperbolic
lines inU5 such that l

π 	 m is a one-dimensional subspace p, then, due to lemma 3.2.1
and lemma 3.2.2, the vertices l and m do not have distance one or two in the graph
G � U5

�
. To prove the statement, we construct a hyperbolic line z in the subspace lπ

with the property that the subspace � m, z � is a non-degenerate plane inU5 , implying
that l � z and that the distance between the vertices z and m in G � U5

�
is two, by

lemma 3.2.2.
Consider the orthogonal subspace lπ of the hyperbolic line l and two points

p � lπ 	 m and x � lπ 	 mπ. Note that p and x are uniquely determined by the
assumptions that dim � lπ 	 m

� 
 1 and dim � � l,m � � 
 4 in U5. Moreover p � xπ
since p � m and x � mπ.
If both, the point p and the point x are regular then z 
 � p,x � is a hyperbolic
line contained in lπ, since p and x are perpendicular to each other as noted before.
Furthermore � m,x � is a non-degenerate plane of U5 due to the fact that x � mπ,
proving the statement in this special case.
If p is singular and x is regular, then � p,x � is a singular line of rank one, because

p is an element of xπ as mentioned above. We consider the q2 � q hyperbolic lines
hi, 1

�
i

�
q2 � q, in lπ incident to x, cf. lemma B.1.5. Any two di�erent hyperbolic

lines hi and hj span the plane l
π and each subspace hπi is a regular plane in x

π

for 1
�
i � j

�
q2 � q. Moreover the intersection of hπi with the hyperbolic line

m is a point ri

 hπi 	 m in xπ with ri � rj for 1 �

i � j
�
q2 � q. Indeed,

m �� hπi , because hi 	 mπ is the one-dimensional subspace x for each hyperbolic
line hi. If ri


 rj for i � j, then we obtain that ri

 hπi 	 m 
 rj 
 hπj 	 m 


hπi 	 hπj 	 m 
 � hi,hj � π 	 m 
 l 	 m 
 � 0 � , a contradiction.  us we have q2 � q
di�erent one-dimensional subspaces ri on the hyperbolic line m, whence on the
line m is a regular point r 
 rk for some k � � 1, . . . ,q2 � q � , because q2 � q �

q � 1
for q

�
3, where q � 1 is the number of singular points on a hyperbolic line (cf. the

formula B.3 on page 255 and table B.3 on page 264). Note that the points r and pspan
the hyperbolic line m. Note also that rπ 	 lπ 
 hk. For, rπi 
 � hπi 	 m

� π 
 � hi,mπ � ,
so rπ contains hk; since l

π contains hk as well and since r
π 	 lπ is two-dimensional,

we have rπ 	 lπ 
 hk. Due to lemma B.1.5 each point on the hyperbolic line hk
di�erent from the point x generates with the point p a regular two-dimensional
subspace of lπ.  erefore the hyperbolic line hk contains q

2 � q � 1 di�erent regular
points yi such that

� yi, p� is a hyperbolic line. Furthermore the span of the two
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3 On the �nite hyperbolic unitary geometry for n � 7

hyperbolic lines m and hk is a four-dimensional space of rank at least three, since� r,hk � � � m,hk � and rk � � r,hk � � 
 rk � � r, rπ 	 lπ �
� 
 3.

If the four-dimensional space � m,hk � is non-degenerate, then, by the statement
of lemma B.1.6, we obtain that the hyperbolic line hk contains at least q

2 � 2q � 2 � 0
(recall that q

�
3) di�erent regular points zi such that

� zi, p� 
 z is a hyperbolic line
and � m,z � 
 � r, p,zi � is a non-degenerate plane. Alternatively, if the rank of the
four-dimensional space � m,hk � is three, then due to lemma B.1.7 on the hyperbolic
line hk are at least q

2 � q � 2 � 0 di�erent regular points zi, which satisfy the condi-
tions that � zi, p� 
 z is a hyperbolic line and � m,z � 
�� r, p,zi � is a non-degenerate
plane and we are done in this case.
Next we assume the point p to be regular and the point x to be singular.  en the
hyperbolic line h 
 lπ 	 pπ is incident to the singular point x 
 lπ 	 mπ, because p
is incident to m. Moreover the regular point r 
 pπ 	 m and the hyperbolic line h
span a plane P of rank two or three. Due to lemma B.1.4 and lemma B.1.5 the plane
P contains at least q2 � qdi�erent hyperbolic lines incident to the point r. Certainly,
the intersections of these q2 � q hyperbolic lines with h are pairwise distinct using
a similar argument as above. At least q2 � 2q � 1 of those intersection points are
regular. Choosing one of those, say a, the line z 
 � a, p� � lπ is a hyperbolic line,
as a � pπ.  e plane � m,z � 
 � r, p,a � has the Gram matrix (with respect to some

suitably chosen basis in r, p, and a) of the form

��
� 1 0 0
0 1 γ
0 γ 1

���
� .  is matrix has a non-

zero determinant as z is a hyperbolic line, so � m,z � is regular. Again, by lemma 3.2.2
we are �nished in this case.
 e case that both points x and p are singular does not occur, as otherwise the
regular plane lπ would contain the totally singular line � x, p� , a contradiction. ■

Lemma 3.2.4 Let l andm be two di�erent hyperbolic lines ofU5.  en l andm have
distance four in G � U5

�
if and only if either

• l and m are two non-intersecting lines such that lπ 	 m is trivial inU5, or

• l and m are two intersecting lines spanning a degenerate plane in U5.

Proof: Let l and m be two vertices in the graph G � U5

�
of distance four. If the

subspace � l,m � is a non-degenerate plane, then l andmhave distance two by lemma
3.2.2.  erefore, if � l,m � is a plane, then � l,m � is a degenerate subspace of U5.
Alternatively, if � l,m � is a four-dimensional subspace in U5 and l

π 	 m �
 � 0 � ,
then l and m have distance one in G � U5

�
by de�nition or distance three in G � U5

�
by lemma 3.2.3, a contradiction again. It follows that, if the subspace � l,m � is of
dimension four, then lπ 	 m is trivial.
In order to show the converse implication of the statement let � l,m � be either a
degenerate plane or a four-dimensional subspace such that lπ 	 m 
 � 0 � . By the
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3.2  e hyperbolic line graph of U5

previous results, (observation 3.2.1, lemma 3.2.2 and lemma 3.2.3), the vertices l and
m do not have distance one, two or three in G � U5

�
.  erefore it is enough to �nd

a path of length four in G � U5

�
between the vertices l and m to �nish the proof of

this lemma.
We choose a hyperbolic line z in the polar space lπ intersecting the orthogonal
space mπ in a point. Such a choice is possible, because lπ is a regular subspace of
U5 and the non-trivial subspace l

π 	 mπ � lπ. By construction the vertices l and
z are adjacent in G � U5

�
. Moreover, m 	 lπ is trivial either by assumption (case 1)

or since � l,m � is a degenerate plane (case 2) and the facts that only the radical of
the singular plane � l,m � is contained in lπ as well as that rad � � l,m � � 	 m 
�� 0 � .
Hence m and z do not intersect, but satisfy the condition dim � z 	 mπ � 
 1. So m
and z have distance three in the hyperbolic line graph G � U5

�
by lemma 3.2.3 and,

thus, the distance between the vertices l and m is four in G � U5

�
. ■

Proposition 3.2.5  e graph G � U5

�
is a connected locallyG � U3

�
graph of diameter

four.

Proof: For any singular point p in the orthogonal space lπ of a hyperbolic line l in
U5, the subspace

� l, p� is of dimension three and rank two. By the formula B.4 on
page 255 it is possible to choose a hyperbolic line m di�erent from l in the plane� l, p� , thus l andm span the degenerate plane � l, p� and hence the vertices l andm
have distance four inG � U5

�
by lemma 3.2.4.  e statement about the diameter now

follows from the fact that two hyperbolic lines cannot form a con�guration other
than the ones described in 3.2.1 to 3.2.4.  e local property is obvious. ■

Remark 3.2.6 Let l and m be two arbitrary vertices of the hyperbolic line graph
G � U5

�
. An important induced subgraph of G � U5

�
is the common perp of the ver-

tices l and m. If the induced subgraph � l,m � �
is not empty then the subspace� l,m � π of U5 contains some hyperbolic line. We observe that

� l,m � � �
 � 0 � in
G � U5

�
if and only if l and m have distance two in G � U5

�
. Indeed, if l and m are

at distance two in G � U5

�
, then the hyperbolic lines l andm span a regular plane in

U5, thus
� l,m � π is a hyperbolic line, by lemma 3.2.2. In all other cases, i.e., if the

vertices have distance one, three or four, then either � l,m � is a four-dimensional
subspace and therefore � l,m � π is a single point of U5 or the hyperbolic lines l and
m span a degenerate planes, which implies that � l,m � π is a rank one line.  us in
these cases the subgraph � l,m � �

is the empty graph. Of course if the vertices l and
m have distance one in G � U5

�
, then � l,m � is a four-dimensional non-degenerate

space in the unitary vector space U5 and l
π 	 mπ 
�� l,m � π is a regular point ofU5.

De�nition 3.2.7 LetW be a subspace of U5.  e set of all hyperbolic lines ofW is
denoted by L � W � .
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3 On the �nite hyperbolic unitary geometry for n � 7

Lemma 3.2.8 Let l andm be two distinct vertices of G � U5

�
with � l,m � � �
 � .  en

any vertex in � l,m � � �
is a hyperbolic line of the subspace � l,m � inU5 and vice versa.

Proof: Let l andm be two distinct vertices inG � U5

�
such that � l,m � �

is not empty.
Due to remark 3.2.6 the vertices l and m have distance two in G � U5

�
and it follows

that the graph � l,m � �
is the single vertex � l,m � π.  us we obtain the equalities� l,m � � � 
 � � l,m � � � � 
 �

z ��� m,l ��� z
� 
 L � � l,m � π � � 
 L � � l,m � ππ � 
 L � � l,m � � .

■
It will prove useful to know whether two hyperbolic lines intersect in the projective
space (i.e., the two hyperbolic lines span a plane in the projective space) or not (i.e.,
they span a four-dimensional space in the projective space). Lemmas 3.2.2 to 3.2.4
show that in order to distinguish the above two cases, we have to study vertices of
G � U5

�
at distance three and four more thoroughly.

Lemma 3.2.9 If l and m are two non-intersecting hyperbolic lines of U5 such that
lπ 	 m is a point p, then in the graph G � U5

�
the number of di�erent paths of length

three between l tom is at most q2. On the other hand, this number is at least q2 � q � 1,
if p is a singular point, and at least q2 � 2q � 1, if p is a regular point.

Proof: Let h be an arbitrary neighbour of l in G � U5

�
, i.e., h � lπ. By lemma 3.2.2

there exists a common neighbour k of h and m (and, thus, a path of length three
from l to m through h) if and only if � h,m � is a regular plane. In fact, if � h,m � is
a regular plane, then k is uniquely determined as � h,m � π.  erefore it su�ces to
study all regular planes E with m

�
E

� � m, lπ � such that E 	 lπ is a regular line.
Let us �rst deduce the upper bound in the statement of the lemma from the ob-
servations made in the above paragraph. If p 
 lπ 	 m is a singular point, then q2
di�erent hyperbolic lines and exactly one singular line of the orthogonal space lπ

run through the point pby lemma B.1.5. If p 
 lπ 	 m is a regular point, then q2 � q
di�erent hyperbolic lines and q � 1 distinct singular lines are incident to the point
p in the subspace lπ. Hence there are at most q2 paths from l to m.
Next we want to establish the respective lower bounds. Regard the four-dimensi-
onal subspaceW 
 � m, lπ � , which is of rank three or four. In the subspaceW the
hyperbolic linem is contained in q2 � 1 di�erent planes Ei by the formula B.3 on page
255. Each plane Ei ofW intersects the regular plane l

π in a line, by the dimension
formula and because m �� lπ. Since p � lπ is incident to each plane Ei, every line
hi

 Ei 	 lπ runs through p. Moreover the lines hi are mutually distinct, because

the identity hi

 hj implies Ei 
 � hi,m � 
 � hj,m � 
 Ej.

If the subspaceW is of rank four, then the hyperbolic linem lies on q2 � qdi�erent
non-degenerate planes Emi by lemma B.1.6.  erefore we obtain q

2 � qdi�erent lines
Emi 	 lπ 
 hmi incident to the point p in the subspace lπ. At least q2 � q � 1 lines of the
q2 � q lines hmi are hyperbolic lines, if p is a singular point, due to lemma B.1.5. On
the other hand, if p is a regular point, then at least q2 � q � � q � 1 � 
 q2 � 2q � 1 lines of
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3.2  e hyperbolic line graph of U5

the q2 � q lines hmi are hyperbolic lines by lemma B.1.5 again. Alternatively ifW is of
rank three, then exactly q2 di�erent non-degenerate planes Emi are incident to the
hyperbolic line m by lemma B.1.7. Hence we obtain q2 di�erent lines Emi 	 lπ 
 hmi
in the regular plane lπ containing the point p. By lemma B.1.5, at least q2 � 1 of these
q2 lines hmi are regular, if p is a singular point and at least q

2 � � q � 1 � 
 q2 � q � 1
lines are regular, if p is a regular point. ■

Lemma 3.2.10 If l and m are two non-intersecting hyperbolic lines of U5 which are
at distance four in the graphG � U5

�
, then there are at most q4 di�erent paths of length

four from l to m.

Proof: By lemma 3.2.4 we have dim � � l,m � � 
 4 with lπ 	 m 
 � 0 � . A neighbour h
of l in G � U5

�
is at distance three from the vertex m if and only if dim � � h,m � � 
 4

and dim � h 	 mπ � 
 1 by lemma 3.2.3.  us h is a hyperbolic line in lπ running
through the point x � 
 � l,m � π. If the one-dimensional subspace x is singular, then
lπ contains q2 di�erent hyperbolic lines hli incident with x by lemma B.1.5. If x is
regular point, then, by lemma B.1.5 again, there are q2 � q hyperbolic lines through
x in lπ. By lemma 3.2.3 the vertices m and hli are at distance three in G � U5

�
. Com-

bining the above numbers with lemma 3.2.9 we obtain at most q2 � q2 
 q4 paths
from l to m. ■

Lemma 3.2.11 If l andm are two intersecting hyperbolic lines spanning a degenerate
plane, then the hyperbolic line graph G � U5

�
contains at least q6 � 3q5 � 2q4 � q2

di�erent paths of length four from l to m.

Proof: If h is a neighbour of l, then the vertex h is at distance three from m in
G � U5

�
if and only if dim � � h,m � � 
 4 and dim � h 	 mπ � 
 1 in U5 by lemma 3.2.3.

Consequently h is a hyperbolic line in the polar space lπ of l such that � l,m � π 	 h
is a one-dimensional subspace. Since the rank one line � l,m � π contains exactly
one singular point x and q2 regular points pi by the formula B.3 on page 255 and
table B.3 on page 264, thus, due to lemma B.1.5, the regular plane lπ contains q2

hyperbolic lines hxi incident to the point x. Each regular point pi admits q
2 � q

incident hyperbolic lines hpi,j of l
π. Certainly, all those hyperbolic lines hxi and

hpi,j are pairwise distinct as otherwise they would coincide with the line
� l,m � π.

By lemma 3.2.9 we have at least q2 � q � 1 di�erent paths of length three in G � U5

�
between each vertex hxi and the vertex m and not less than q

2 � 2q � 1 di�erent
paths of length three in G � U5

�
from each vertex hpi,j to the vertex m. Accordingly

we obtain at least q2 � q2 � q � 1 � � q2 � q2 � q � � q2 � 2q � 1 � 
 q6 � 3q5 � 2q4 � q2
di�erent paths of length four from l and m in the graph G � U5

�
. ■

Lemma 3.2.12 Two di�erent vertices l andm of distance four inG � U5

�
intersect in a

point in the vector space U5 if and only if the number of di�erent paths of length four
between l and m in G � U5

�
is greater than q4.
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3 On the �nite hyperbolic unitary geometry for n � 7

Proof: Since q
�
3, we have q6 � 3q5 � 2q4 � q2 � q4, so the claim follows from lemma

3.2.10 and lemma 3.2.11. ■

Lemma 3.2.13 Two distinct vertices l and m of the hyperbolic line graph G � U5

�
in-

tersect in a common point in U5 if and only if either

• the subgraph � l,m � �
is not empty, or

• the vertices l and m have distance four in G � U5

�
and there are more than q4

di�erent paths of length four from l to m.

Proof:  is is an immediate consequence of lemma 3.2.2 to lemma 3.2.4 together
with the statements of lemma 3.2.12, lemma 3.2.8 and remark 3.2.6. ■
In the next step we want to recover all points of the space U5 as pencils of hyper-
bolic lines.  erefore we need a construction to check in the graph G � U5

�
whether

three distinct lines ofU5 intersect in one point or not.  erefore take the following
characterisation:  ree di�erent hyperbolic lines k1, k2 and k3 ofU5 intersect in one
point if we can �nd a hyperbolic line s in U5 such that

• the plane � s, ki � is regular for 1 �
i

�
3 and s �
 ki,

• � s, k1, k2 � is a four-dimensional space in U5.

 e same statement in graph language is that three di�erent vertices k1, k2 and k3 of
G � U5

�
intersect in one point if we can �nd a vertex s of G � U5

�
with the following

properties:

• the induced subgraph � s, ki �
�
is not empty for i � � 1,2,3 � and s �
 ki,

• � s, k1, k2 �
�
is the empty graph.

To verify the claim that every one-dimensional subspace of the U5 can be detected
by three pairwise intersecting distinct vertices k1, k2 and k3 of G � U5

�
as stated

above, we have to show that we can �nd a vertex s of the graph G � U5

�
such that� s, k1, k2 �

� 
 � and � s, ki �
� �
 � for i 
 1,2,3 and s �
 ki.  is will be proved in the

next lemma.

Lemma 3.2.14 Let k1, k2 and k3 be three distinct hyperbolic lines of U5, which inter-
sect in a unique one-dimensional subspace p.  en the unitary polar spaceU5 contains
a hyperbolic line l with the properties that � k1, k2, l � is a four-dimensional space and
that � l, ki � is a non-degenerate plane for i 
 1,2,3 and l �
 ki.
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3.2  e hyperbolic line graph of U5

Proof: First we consider the case that p is a regular point.  erefore the orthogonal
space pπ is a non-degenerate four-dimensional subspace of U5.  e three lines k1,
k2 and k3 intersect the subspace p

π in the three di�erent regular points pk1

 k1 	 pπ,

pk2

 k2 	 pπ and pk3 
 k3 	 pπ. Furthermore, � pki � 1 �

i
�
3 � is either a plane or

a line of pπ containing some regular points. If dim � � pki � 1 �
i

�
3 � � is a subspace

of dimension two, then � pki � 1 �
i

�
3 � π 	 pπ is a line of rank at least one.  us

we choose a regular point mp of
� pki � 1 �

i
�
3 � π 	 pπ and see that s 
 � mp, p�

is a hyperbolic line through the point p, the plane � s, ki � is of rank three for each
i � � 1,2,3 � and that dim � � s, k1, k2 � � 
 dim � � p,mp, pk1 , pk2 �

� 
 4. On the other
hand, if dim � � pki � 1 �

i
�
3 � � 
 3, then we consider the regular plane Pk1 
 pπk1 	 pπ,

which contains q4 � q3 � q2 regular points ri. Either at least q4 � q3 � q2 � � q3 � 1 � 

q4 � 2q3 � q2 � 1 di�erent regular points of the plane Pk1 span together with pk2
a hyperbolic line if pk2 �� Pk1 or at least q4 � q3 � q2 � 1 � � � q � 1

� � q2 � 1 � � 

q4 � q3 � q2 � 1 � � q3 � q2 � q � 1 � 
 q4 � 2q3 � q � 1 di�erent regular points of the
plane Pk1 span together with pk2 a hyperbolic line if pk2 � Pk1 .  is implies that at
least

q4 � 2q3 � q2 � 1 � � q3 � 1 � 
 q4 � 3q3 � q2 � 2 if pk2 , pk3 �� Pk1 ,
q4 � 2q3 � q2 � 1 � � q3 � q2 � q � 
 q4 � 3q3 � q � 1 if pk2 �� Pk1 , pk3 � Pk1 ,
q4 � 2q3 � q � 1 � � q3 � 1 � 
 q4 � 3q3 � q if pk2 � Pk1 , pk3 �� Pk1 ,
q4 � 2q3 � q � 1 � � q3 � q2 � q � 
 q4 � 3q3 � q2 � 2q � 1 if pk2 , pk3 � Pk1
di�erent regular points of the plane Pk1 span together with pk2 and also together
with pk3 a hyperbolic line in p

π. Since the �rst three numbers are greater than zero
for q

�
3 in these cases we �nd a regular point mp � Pk1 such that s 
 � mp, p� is a

hyperbolic line through the point p, � s, ki � is a rank three plane for each i � � 1,2,3 �
and that dim � � s, k1, k2 � � 
 dim � � p,mp, pk1 , pk2 �

� 
 4.
 erefore we consider the case that the two di�erent regular points pk2 and pk3
are contained in the regular plane Pk1 .  e line h


 � pk2 , pk3 � contains regular
points, thus the rank of h is one or two. If the rank of h is two then we choose
s 
 k3 and conclude that the planes � k1, k3 � and � k2, k3 � are of rank three. Certainly
the three lines k1, k2 and k3 span a subspace of dimension four. Otherwise if h is a
singular line of rank one, then both the point pk2 is incident to q di�erent singular
line di�erent from h in Pk1 and the point pk3 is incident to q di�erent singular line
di�erent from h in Pk1 . It follows that at most q � q2 � 1

� � q � q2 � 1 � � q2 � 2 

2q3 � q2 � 2q � 2 di�erent regular points distinct from pk2 and pk3 of the plane Pk1
span either with pk2 or with pk3 a singular in line in Pk1 . So at least q

4 � q3 � q2 �
2 � � 2q3 � q2 � 2q � 2 � 
 q4 � 3q3 � 2q di�erent regular points of the plane Pk1 span
with pk2 a hyperbolic line and with pk3 a rank two line in p

π. As q4 � 3q3 � 2q �
0

for q
�
3 we can �nd a regular point mp � Pk1 such that s 
�� mp, p� is a hyperbolic

line through the point p, � s, ki � is a rank three plane for each i � � 1,2,3 � and that
dim � � s, k1 , k2 � � 
 dim � � p,mp, pk1 , pk2 �

� 
 4.
For the next part of this proof we assume that p is a singular point. In the unitary

47
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polar space U5 every hyperbolic line k is incident to q
4 � q3 � q2 di�erent non-

degenerate planes Ekj and to q
3 � 1 di�erent singular planes Ski inU5 by the formula

B.3 on page 255. For the hyperbolic line k1 we obtain the q
4 � q3 � q2 di�erent non-

degenerate planes E
j
k1
, 1

�
j

�
q4 � q3 � q2 and consider in each of these planes the

hyperbolic lines running through the point p. As p is a singular point each plane

E
j
k1
has q2 � 1 di�erent hyperbolic lines hr

E
j

k1

, 1
�
r

�
q2 � 1, incident to pand di�erent

from the hyperbolic line k1 by lemma B.1.5. Recall that E
i
k1 	 E

j
k1

 k1 if and only

if the planes are di�erent, which leads to the fact that a hyperbolic line hr
E
j

k1

with

r � � 1, . . . ,q2 � 1 � is not incident to the regular plane Eik1 if i �
 j.  erefore the

polar space U5 contains � q4 � q3 � q2 � 1 � � q2 � 1 � 
 q6 � q5 � q3 � 2q2 � 1 di�erent
hyperbolic lines hr

E
j

k1

, 1
�
j

� 4 � q3 � q2 and 1 �
r

�
q2 � 1 with the same properties

as above.
Next we consider the singular planes S

j
k2
and Sik3 in U5.  e point p is not con-

tained in the radicals of the planes S
j
kn
for n 
 2,3, because the hyperbolic lines k2

and k3 are running through the point p, and thus in each rank two plane S
j
kn
are

q2 � 1 di�erent hyperbolic lines lr
S
j

kn

, 1
�
r

�
q2 � 1 incident to p and di�erent from

the hyperbolic line kn for n

 2,3.  erefore in the planes S jk2 and S

j
k3
are together

at most 2 � q2 � 1 � � q3 � 1 � 
 2q5 � 2q3 � 2q2 � 2 di�erent hyperbolic lines lr
S
j

kn

, n 
 2,3
and 1

�
r

�
q2 � 1, with the assumed properties.  us if p is singular inU5 and q

�
3,

then q6 � q5 � q3 � 2q2 � 1 � � 2q5 � 2q3 � 2q2 � 2 � 
 q6 � 3q5 � 3q3 � 4q2 � 1 � 0,
which implies that we �nd a hyperbolic line s in U5 with the claimed properties. ■

De�nition 3.2.15 Let Γ be a graph isomorphic to G � U5

�
. Two di�erent vertices k

and l of Γ are de�ned to intersect if

• either the induced subgraph � k, l � �
is not empty, or

• the vertices k and l have distance four in Γ and the number of di�erent paths
of length four between l and m in G � U5

�
is greater than q4.

 ree distinct pairwise intersecting vertices k1, k2 and k3 of Γ are de�ned to inter-
sect in one point if there is a vertex s of Γwith the following properties:

• the induced subgraph � s, ki �
�
is not empty for i � � 1,2,3 � and s �
 ki,

• � s, k1, k2 �
�
is the empty graph.

An interior point of the graph Γ is a maximal set pof distinct pairwise intersecting
vertices of Γ such that any three elements of p intersect in one point. We denote
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3.3  e hyperbolic line graph of Un for n � 6

the set of all interior points of Γ by � . Moreover, an interior line of the graph Γ is a
vertex of the graph Γ.  e set of all interior lines of Γ is denoted by

�
.

 e discussions in this section imply the following result.

Proposition 3.2.16 Let Γ be a connected graph isomorphic toG � U5

�
.  en the geom-

etry ��� , �
, �
�
is isomorphic to the geometry on arbitrary one-dimensional subspaces

and regular two-dimensional subspaces of the unitary polar space U5.

3.3 The hyperbolic line graph of Un for n � 6

Let q
�
3 be a prime power, let n

�
6, and let Un be an n-dimensional non-

degenerate unitary vector space over Fq2 with polarity π, more precisely Un is en-
dowed with a non-degenerate hermitian form � � , �

�
. Let G � Un

�
be the graph with

the set of all non-degenerate two-dimensional subspaces of Un as set of vertices.
Two vertices l andm are adjacent if and only if l � mπ. In analogy to the preceding
section, the aim of this section is to reconstruct the unitary vector space Un from
the hyperbolic line graph G � Un

�
.

Proposition 3.3.1 Let n
�
8.  en G � Un

�
is a connected graph of diameter two.

Proof: Let l and k be two distinct vertices of the graphG � Un
�
.  e spaceH 
 � l, k �

has dimension three or four. Since it contains the hyperbolic lines l andm, the rank
of H is at least two. In particular the radical of H has dimension at most two.  e
spaceHπ has dimension at least four and rank at least two, since rad � Hπ � 
 rad � H � .
 erefore Hπ 
 � k, l � π 
 kπ 	 lπ contains a hyperbolic line h, so that the distance
between the vertices l and k is at most two inG � Un

�
, for n

�
8. Because the unitary

vector space Un contains two intersecting hyperbolic lines l and m, it follows that
l �� m by de�nition and the diameter of G � Un

�
is two. ■

Proposition 3.3.2  e graphs G � U6

�
and G � U7

�
are connected of diameter three.

Proof: Let l and m be two distinct vertices of the graph G � U6

�
.  en P 
�� l,m � is

a three- or four-dimensional subspace of U6. Suppose P

 � l,m � is a plane.  en

the planes P and Pπ have rank two or three, because the hyperbolic line l and m
are proper subspaces of P.  erefore the plane Pπ contains a hyperbolic line h and
thus the vertices l and m have distance two in G � U6

�
.

If P 
 � l,m � is a four-dimensional subspace of U6, then P is of rank two, three,
or four. In the case that P is a regular subspace, then of course Pπ is a hyperbolic
line and the vertices l and m have distance two. Finally, we assume that the four-
dimensional space P is a singular subspace ofU6 . We �x a point x in the radical of P.
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 en x is incident to the orthogonal space lπ of the hyperbolic line l, which is a reg-
ular four-dimensional subspace ofU6. We choose a hyperbolic line h in l

π running
through the point x in lπ. Certainly the vertex h is adjacent to l in the hyperbolic
line graph G � U6

�
. If � h,m � is a plane, then there exists a common neighbour of h

andm by the above, yielding a path of length three from l tom inG � U6

�
. Hence we

can assume that subspace of � h,m � is of dimension four.  e rank of this space is

four as well. Indeed, the Grammatrix of � m,h � isG 

����
�
0 1 0 α
1 0 0 β
0 0 0 δ

α β δ γ

�����
� with respect

to a basis vm1 , v
m
2 , x

h, vh2 of
� m,h � such that the pair of vectors vm1 , vm2 is a hyperbolic

pair of is line m, the vector xh is some non-trivial vector of the point x and vh2 is
a non-trivial vector of a regular point of the line h, in particular � xh,vh2

� 
 δ �
 0.
 is Gram matrix has determinant δδ �
 0 and, thus, the space � m,h � is of rank
four. By the above h andm have distance two, so the vertices l andm have distance
three in G � U6

�
.

Now let l and m be two vertices of the graph G � U7

�
. Since the subspace � l,m �

has dimension at most four and rank at least two, there exists a non-degenerate six-
dimensional subspace W of U7 containing l and m. By the above, the vertices l
and m have distance at most three in the hyperbolic line graph G � W � , which is a
subgraph of G � U7

�
. Hence the diameter of G � U7

�
is at most three.

To establish diameter three for the graphs G � U6

�
and G � U7

�
, we have to �nd

two vertices that are not at distance one or two. Choose a four-dimensional rank
two subspace H of U6 respectively of U7. By the formula B.4 on page 255 and the
formula B.2 on page 254 the subspace H contains q8 hyperbolic lines and any point
of this space is incident to q4 � q2 � 1 di�erent lines. Since q8 � � q2 � 1 � � � q4 � q2 � 1 � 

q6 � q4 � q2 � 1 we �nd two non-intersecting hyperbolic lines l and m of U6 resp.
U7 spanning the subspace H.  e polar space

� l,m � π 
 Hπ has dimension two
resp. three and rank zero resp. one in the vector space U6 resp.U7, thus there is no
common neighbour of l and m in the hyperbolic line graph G � U6

�
resp. G � U7

�
.

Hence the diameter of G � Un
�
with 6

�
n

�
7 is three. ■

 e next proposition describes two key properties of the hyperbolic line graph
G � Un

�
which will turn out to characterise G � Un

�
for n

�
9, cf. theorem 3.1.2.

Proposition 3.3.3 Let n
�
5.  en the hyperbolic line graph G � Un

�
is connected and

locallyG � Un � 2

�
.

Proof: See propositions 3.2.5, 3.3.1, 3.3.2.  e local property is obvious. ■

Lemma 3.3.4 Let n
�
6 and let l and m be two distinct vertices of the graph G � Un

�
such that � l,m � � �
 � .  en any element of � l,m � � �

is a hyperbolic line in the
subspace � l,m � of Un and vice versa.
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Proof: Since � l,m � � � 
 � � l,m � � � � 
 �
z ��� l,m � � z

� 
 �
z ��� l,m � � L � zπ

�
, obviously

L � � l,m � � � � l,m � � �
.

Conversely, let k be a hyperbolic line of Un not incident to the subspace
� l,m � ,

then of course � l,m � π �� kπ implying � l,m � π � kπ �
 � .  e statement is proved if
we can �nd a hyperbolic line h

� � l,m � π, which is not incident to the orthogonal
space kπ of the hyperbolic line k. From the assumption that the induced subgraph� l,m � �

is not empty it follows that rad � � l,m � π � is properly contained in the sub-
space � l,m � π. We claim that the unitary space Un contains some point y in the set� l,m � π � � kπ � rad � � l,m � π � � . If rad � � l,m � π � �

kπ then kπ � rad � � l,m � π � 
 kπ and
we can �x some point y in the set � l,m � π � rad � � l,m � π � 
 � l,m � π � kπ. On the other
hand if rad � � l,m � π � �� kπ then rad � � l,m � π � � kπ is not a subspace of the vector
space Un and

� l,m � π is neither a subspace of rad � � l,m � π � nor a subspace of kπ,
thus the set � l,m � π � � kπ � rad � � l,m � π � � contains a point y.
An arbitrary line g ofUn through the point y intersects the set k

π � rad � � l,m � π � in
at most two points by the fact that dim � kπ 	 g

�
as well as dim � rad � � l,m � π � 	 g

�
is at

most one.  erefore, we choose a hyperbolic line running through y in � l,m � π and
�nd a singular point x � � l,m � π � � kπ � rad � � l,m � π � � . Using x �� rad � � l,m � π � we
obtain a hyperbolic line h in � l,m � π incident to the point x which is not contained
in the subspace kπ.  e lemma is proved. ■
A similar conclusion can be proved for three di�erent vertices in the graph G � Un

�
.

Lemma 3.3.5 Let n
�
6 and l, k and m be three distinct vertices in G � Un

�
. Suppose

the hyperbolic lines l, k andm intersect in a common pointUn and satisfy
� l, k,m � �

�

� .  en L � � l, k,m � � 
 � l, k,m � � �
.

Proof: By assumption the subspace spanned by the hyperbolic lines l, k andm is of
dimension three or four. Denote the common intersection of the three hyperbolic
lines by p.
Suppose � l, k,m � is a plane.  en m is a hyperbolic line of the subspace � l, k �
and, thus, � l, k,m � 
 � l, k � . Using lemma 3.3.4 we obtain the following equality,
L � � l, k,m � � 
 L � � l, k � � 
 � l, k � � �

.
If � l, k,m � is a four-dimensional subspace, then we need to �nd a hyperbolic line

h such that � l, k,m � 
 � l,h � . In the case that the subspace � l, k,m � has rank four,
we choose h 
 lπ 	 � l, k,m � . If the subspace � l, k,m � has rank two, take as h an
arbitrary line in the complement of both l and rad � � l, k,m � � . Indeed, we can �nd
such a line h in � l, k,m � by the fact that at most 2q6 � 4q4 � 4q2 � 2 of the q8 � q6 �
2q4 � q2 � 1 di�erent lines of � l, k,m � intersect l or rad � � l, k,m � � . Certainly h is a
hyperbolic line since every line not intersecting the radical of � l, k,m � is regular by
lemma B.1.2. Finally, if � l, k,m � has rank three, then we choose the rank two plane
P 
 � k, rad � � l, k,m � � . Since the hyperbolic lines k and l are distinct and intersect
in a common point we have dim � l 	 P

� 
 1. Moreover the radical of P coincides with
the point rad � � l, k,m � � . In the plane P we choose the line h in the complement of
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both rad � � l, k,m � � and l 	 P. Certainly the subspace h is regular by lemma B.1.2. It
follows from the construction that � l,h � 
 � l,P � 
 � l, k, rad � � l, k,m � � � 
 � l, k,m �
and, by lemma 3.3.4, that L � � l, k,m � � 
 L � � l,h � � 
 � l,h � � �

.
For g � � h, k � as appropriate, the equality between the sets � l, k,m � � �

and� l, g � � �
follows as � l, k,m � � � 
 � � l, k,m � � � � 
��

z � � l,k,m � � z
� 
 �

z � l � � k � � m � z
� 


�
z � L � lπ � � L � kπ � � L � mπ � z

� 
 �
z � L � � l,k,m � π � z

� 
 �
z � L � � l,g � π � z

� 
 �
z ��� l,g � � z

� 
 � l, g � � �
.
■

Our main goal in this section is to construct a point-line geometry from the graph
G � Un

�
which is isomorphic to the geometry on arbitrary one-dimensional sub-

spaces and regular two-dimensional subspaces of Un. We want to use the vertices
ofG � Un

�
as lines and to de�ne the points as pencils of lines.  erefore we will study

properties of vertices of G � Un
�
that correspond to intersecting hyperbolic lines of

G � Un
�
.

Lemma 3.3.6 Let n
�
6. Two hyperbolic lines l and m intersect in a common point

in the unitary polar space Un if and only if
� l,m � �

is non-empty and � l,m � � �
is

minimal in G � Un
�
with respect to inclusion (i.e. for any pair of distinct hyperbolic

lines s1, s2 � � l,m �
� �
we have � s1, s2 �

� � 
 � l,m � � �
).

Proof: Assume that two distinct hyperbolic lines l andm intersect in the point p in
Un, so that

� l,m � is a plane of rank two or three. Since n �
6, the polar space � l,m � π

of � l,m � is a subspace of dimension at least three, which contains a hyperbolic line,
since dim � rad � � l,m � π � � 
 dim � rad � � l,m � � � �

1. Hence � l,m � �
� � . Using

lemma 3.3.4, we have � l,m � � � 
 L � � l,m � � . It follows immediately that � l,m � � �
is

minimal in G � Un
�
with respect to inclusion.

Conversely, assume l andmdonot intersect.  erefore � l,m � is four-dimensional
of rank two, three, or four. By the formulas B.3 and B.4 on page 255 we can choose
a plane P of rank two in � l,m � containing distinct hyperbolic lines s1 and s2 span-
ning P itself. Lemma 3.3.4 yields � s1, s2 �

� � 
 � s1, s2 � � � l,m � , thus � l,m �
� �
is not

minimal in G � Un
�
with respect to inclusion. ■

For the same problem with three di�erent vertices of G � Un
�
, we propose the fol-

lowing.  ree di�erent mutually intersecting hyperbolic lines intersect in one point
in un if we can �nd a hyperbolic line s such that:

• the hyperbolic line s intersects each hyperbolic line ki with s �
 ki for 1 �
i

�
3,

and

• the space � s, k1 , k2 � is of dimension four.

Translated into graph language the above conditions say that three di�erent mutu-
ally intersecting vertices k1, k2, k3 intersect in one point if there exists a vertex s of
G � Un

�
such that:
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• � s, ki �
� � � and � s, ki �

� �
is minimal in G � Un

�
with respect to inclusion, if

ki �
 s, for 1 �
i

�
3 (cf. lemma 3.3.6), and

• � k1, k2 �
� � 
 L � � k1, k2 � � � L � � k1, k1, s � � 
 � k1, k2, s �

� �
(cf. lemma 3.3.7).

For the above de�nition to be useful we only need to verify that for any two inter-
secting hyperbolic lines l and m, there exists a hyperbolic line s in the vector space
Un such that

� l,m, s � is a four-dimensional space and � l,m, s � �
� � .

Lemma 3.3.7 Let n
�
6. For any two intersecting hyperbolic lines k and l there is a

hyperbolic line g, intersecting k and l, such that � k, l, g � is four-dimensional subspace
with � k, l, g � �

� � .
Proof: Suppose we can �nd a hyperbolic line g such that W 
 � k, l, g � is a four-
dimensional subspace. IfW is non-degenerate, thenWπ is of dimension at least two
and non-degenerate, so the subspaceWπ contains some hyperbolic line.  erefore
we will construct a regular four-dimensional subspace of Un containing the plane� l, k � in order to prove the lemma.
If the plane � k, l � is non-degenerate, then a non-degenerate four-dimensional
subspace containing this plane obviously exists. We simply choose an arbitrary reg-
ular one-dimensional subspace y � � k, l � π and consider � k, l, y � . If the subspace� k, l � is degenerate, then it has rank two. Denote the one-dimensional radical of� k, l � by x. In this case we choose an arbitrary one-dimensional space y � lπ � xπ and

obtain a Gram matrix

����
�
1 0 0 0
0 1 0 0
0 0 0 �

0 0 � α

� ���
� for � l,x, y � with respect to an orthonormal

basis of l and arbitrary non-trivial vectors in x and y.  is matrix has determinant
distinct from 0 for any value of α. Hence � l,x, y � 
 � k, l, y � is a four-dimensional
non-degenerate space as required.
As g we choose in both cases some hyperbolic line in � k, l, y � running through
the point p, which is di�erent from k and l.  is is possible since the regular four-
dimensional space � l, k, y � contains at least q4 � q3 � q2 distinct hyperbolic lines
incident to pby lemma B.1.6. ■

De�nition 3.3.8 Let n
�
6 and let Γ be a graph isomorphic toG � Un

�
. Two vertices

k and l of Γ are de�ned to intersect if � k, l � � � � and if � k, l � � �
is minimal in

Γ with respect to inclusion.  ree mutually intersecting vertices k1, k2, k3 of Γ are
de�ned to intersect in one point if there exists a vertex s in Γ with the following
properties:

• the vertex s intersects with each vertex ki, if s �
 ki, for 1 �
i

�
3,
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• � k1, k2 , s �
� �
 � and � k1, k2 �

� � 
 L � � k1, k2 � � � L � � k1, k1, s � � 
 � k1, k2, s �
� �
.

An interior point of the graph Γ is a maximal set pof distinct pairwise intersecting
vertices of Γ such that any three elements of p intersect in one point. We denote
the set of all interior points of Γ by � . Moreover, an interior line of the graph Γ is a
vertex of the graph Γ.  e set of all interior lines of Γ is denoted by

�
.

 e discussions in this section yield the following statement.

Proposition 3.3.9 Let n
�
6 and let Γ be a graph isomorphic to G � Un

�
.  en

the point-line geometry � � , �
, �
�
is isomorphic to the geometry on arbitrary one-

dimensional subspaces and regular two-dimensional subspaces of Un.

3.4 The hyperbolic geometry

In this section we study the point-line geometry � � , � �
of a graph Γ isomorphic to

G � Un
�
for n

�
5, which has been de�ned in de�nition 3.2.15 for n 
 5 and in de�ni-

tion 3.3.8 for n
�
6. By construction it is clear that � � , � �

is isomorphic to the ge-
ometry on arbitrary one-dimensional subspaces and regular two-dimensional sub-
spaces of Un. In section 3.6 we will de�ne a similar geometry on an arbitrary con-
nected locally G � Un

�
graph for n

�
7 and prove that it is isomorphic to the point-

line geometry of singular one-dimensional subspaces and regular two-dimensional
subspaces of some unitary polar geometry over some �nite �eld.  is result will be
achieved via theorem 1.2 of [25], restated below as theorem 3.4.1. In order to be able
to deal with the setting of an arbitrary connected locally G � Un

�
graph in section

3.6, we will in this section investigate the interaction of the graph Γ � G � Un
�
, the

geometry ��� , � �
, and the geometry on (singular) one-dimensional subspaces and

non-degenerate two-dimensional subspaces ofUn in the context of Cuypers’ theo-
rem. In this thesis non-collinearity is denoted by the symbol � and by convention,
a point is non-collinear to itself.

 eorem 3.4.1 (Cuypers [25], theorem 1.2) Let G 
 � P,L � be a non-linear, planar
connected partially linear space of �nite order q

�
3. Suppose the following holds in

G:

1. all planes are �nite and either isomorphic to a dual a�ne plane or linear plane;

2. in a linear plane no four lines intersect in six points;

3. for all points x and y the inclusion x
� �

y
�
implies x 
 y;

4. if E is a linear plane and x a point, then x
� 	 E �
 � .
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3.4  e hyperbolic geometry

 en q is a prime power and G is isomorphic to the geometry of singular points and
hyperbolic lines of a non-degenerate symplectic or unitary polar space over the �eld
Fq, respectively Fq2 .

 e �rst step we have to take in order to apply theorem 3.4.1 to the geometry � � , � �
is to distinguish singular one-dimensional subspaces from regular one-dimensional
subspaces. In particular, we need to reconstruct the concept of perpendicularity.

De�nition 3.4.2 Two interior points a and b of the graph Γ are orthogonal, de-
noted by a � b, if there exist a vertex m � a and a vertex l � b satisfying m � l, i.e.,
m and l are adjacent in Γ. Also, we say that an interior point p is orthogonal to an
interior line l, if p contains a vertex m adjacent to l.

Let p � � . Denote the set of all interior points orthogonal to pby � p and the set of
all interior lines orthogonal to pby

� p.

For an interior line l of Γwedenote by � l the set of all interior points of Γ orthogonal
to l.

Furthermore, if X is a set of interior points, then by � X denote the set of all interior
points orthogonal to each interior point in X. Similarly,

� X stands for the set of all
vertices orthogonal to each point in X. We have � X 
 �

p� X � p and
� X 
 �

p� X
� p.

In lemma 3.2.8 and lemma 3.3.4 we showed an equivalence between the hyperbolic
lines of the plane � k, l � and the vertices of � k, l � � �

for any two vertices k, l � Γ
with � k, l � � �
 � . For n �

6 any pair of intersecting hyperbolic lines k and l of Un

satis�es the condition � k, l � � �
 � , since rk � � k, l � π � �
2. In that case we have full

control over the hyperbolic lines contained in a plane P generated by two intersect-
ing hyperbolic lines k and l and, thus, over the elements of � k, l � � �

. However in
case n 
 5 the induced subgraph � k, l � �

is not empty if and only if the span of k and
l is a regular plane due to remark 3.2.6. In the case that two hyperbolic lines k and l
generate a singular plane, so far we have nomethod to describe the hyperbolic lines
contained in � k, l � as vertices of the graph Γ.  is defect is �xed in the next lemma,
thus enabling us to de�ne planes of the graph Γ.

Lemma 3.4.3 Let k and l be two intersecting vertices ofG � U5

�
such that � k, l � � 
 � .

 en any vertex of
���

k
� �

l is a hyperbolic line of the space � l, k � inU5 and vice versa.

Proof: Since
� �

k
� �

l 
 �
p� � k � � l

� p 
 �
p� � k � � l � � m� pm

� � 
 �
p� � k � � l � � m� pL � mπ � � ,

it is enough to show that for any hyperbolic line h
� � k, l � each interior point p �

� k 	 � l contains a vertex m such that h
�
mπ, to prove the inequality L � � k, l � � �

���
k
� �

l

Let h be an arbitrary hyperbolic line in the degenerate plane � l, k � , so lπ 	 kπ �
hπ

and hπ is a non-degenerate plane ofU5. We choose some point gof the singular line
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3 On the �nite hyperbolic unitary geometry for n � 7

lπ 	 kπ and some hyperbolic line mg in h
π incident to g, in particular h � L � mπ

g

�
.

 us h � � m� pL � mπ � for each point p � � k 	 � l . Hence L � � k, l � � � � m� pL � mπ �
for each point p � � k 	 � l , so L � � k, l � � � ���

k
� �

l .
Conversely, let h be a hyperbolic line of U5 not contained in the plane

� k, l � . It
su�ces to realize that the singular line kπ 	 lπ contains a point s not incident to
hπ. But since hπ 	 kπ 	 lπ is one-dimensional, this is obvious. Hence the identity� �

k
� �

l 
 L � � l, k � � follows. ■
We come now to the de�nition of a plane of the graph Γ.

De�nition 3.4.4 Let n
�
5 and let Γ be a graph isomorphic toG � Un

�
. Two vertices

k and l of Γ are said to span a graphical plane EΓ

 � k, l � Γ, if k and l are two

intersecting vertices of Γ; cf. de�nitions 3.2.15 and 3.3.8 for the notion of intersecting
vertices.  e graphically plane � k, l � Γ is the point-line geometry whose line set
equals either

• the set � k, l � � � 
 L � � k, l � � in case � k, l � � �
 � (thus k and l have distance
two in Γ) or

• the set
� �

k
� �

l 
 L � � k, l � � in case � k, l � � 
 � (so n 
 5 and k and l have
distance four in Γ).

 e point set of � k, l � Γ contains all interior points d which are incident to some line
of � k, l � Γ, i.e., d � � k, l � Γ if and only if there exists a linem � d contained in � k, l � Γ.

Let pbe an interior point of Γ then we consider all graphical planes E
ij
Γ

�� ki, kj � Γ

for ki, kj � p and ki �
 kj and count the number
�

E
ij

Γ

of interior lines in E
ij
Γ . By

the formulas B.3 and B.4 on page 255 the number
�

E
ij

Γ

is either equal to q4 or to

q4 � q3 � q2. In fact by lemma B.1.11 we �nd a plane � ki, kj � 
 EijΓ such that
�

E
ij

Γ



q4 � q3 � q2. In this graphical plane we count the number �

p of hyperbolic lines

incident to p, in other words
�
p

 � p 	 EijΓ � and due to lemma B.1.5 the number

�
p

is either q2 � q or q2.

We call p an interior singular point of Γ if
�
p

 q2. An interior point that is not

singular, is called regular.

Two intersecting vertices k and l of Γ are de�ned to intersect in a singular point
if the intersecting point of k and l is an interior singular point.

De�nition 3.4.5 Let n
�
5 and let Γ be a graph isomorphic to G � Un

�
. By

� 

� � , � �

we denote the point-line geometry which consists of all interior singular
points and all interior lines of the geometry � � , � �

from de�nitions 3.2.15 and 3.3.8.
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3.4  e hyperbolic geometry

It is called the interior hyperbolic geometry. Two interior lines k and l of
�
are

said to span an algebraic plane � k, l � � of the geometry
�
, if k and l intersect in an

interior singular point of Γ.  e algebraic plane � k, l � � consists of all interior lines
and all interior singular points of the graphical plane � k, l � Γ.

Lemma 3.4.6  e geometry
�
is a connected partially linear space of order q.

Proof: Since the interior hyperbolic lines of the geometry
�
are in one-to-one cor-

respondence to the hyperbolic lines of a unitary polar space Un the order of
�
is q.

Indeed by the formula B.3 on page 255 each hyperbolic line of Un contains exactly
q � 1 singular points and so each interior line of � is incident to exactly q � 1 interior
singular points.
Let p and d be two interior singular points, which are collinear to more than one
common line, so let k, l � p 	 d.  en the interior lines k and l intersect in the
interior singular point p implying that k and l span the algebraic plane � k, l � � . By
de�nition 3.4.5 the algebraic plane � k, l � � contains the two di�erent interior points
p and d and the line set of � k, l � � coincides with L � � l, k � � , so we conclude that
l 
 � p,d � 
 k, contradiction. By de�nition 3.2.15 and de�nition 3.3.8 the interior
singular points are pencils of hyperbolic lines and the diameter of Γ is two, three
or four by lemma 3.2.5, proposition 3.3.1 and proposition 3.3.2. In particular the
geometry

�
is a connected space. ■

Recall that we denote by p
�
all interior singular point of

�
which are not collinear

to a given interior singular point p of
�
.  erefore for any interior singular point

p � � we obtain that p� 
 ��� p 	 �
�
� p.

Lemma 3.4.7  e geometry
�
is a non-linear space, so the space

�
contains two non-

collinear interior points.

Proof: To verify the statement, it is su�cient to show that � p 	 � is not empty for
some interior singular point pof

�
.  is is certainly satis�ed since the order of the

geometry
�
is q and any interior singular point incident to k with k � h �

and h � p
is an element of � p 	 � . ■

De�nition 3.4.8 Let n
�
5 and let Γ be a graph isomorphic to G � Un

�
. Let

� 

� � , � �

be the interior hyperbolic geometry and let k and l be two interior lines of�
spanning an algebraic plane � k, l � � . Denote the intersection point of k and l,
which is singular, by p.

If � k, l � � contains q4 � q3 � q2 interior lines, then the geometric plane � k, l � g�
spanned by k and l is de�ned to be the algebraic plane � k, l � � .

If otherwise � k, l � � contains q4 interior lines, then the geometric plane � k, l � g�
spanned by k and l is de�ned as the following object: Its line set consists of all
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3 On the �nite hyperbolic unitary geometry for n � 7

interior lines of � k, l � � intersecting both l and k in interior singular points distinct
from p (those lines are called connecting lines), and all interior lines of � k, l � � that
contain pand intersect one of the connecting lines in an interior singular point.  e
points of � k, l � g� are all interior singular points d incident with some of the above
lines.

 e next results are fundamental and will be needed in the proof of proposition
3.4.20.

Lemma 3.4.9 Let E
g

�

 � k, l � g� be a geometric plane of

�
coincidingwith the algebraic

plane � k, l � � .  en � k, l � g� is a �nite linear subspace of � generated by any two of its
intersecting lines.

Proof: Let p be the intersection of k and l. Since � k, l � g� coincides with the alge-
braic plane � k, l � � the geometric plane � k, l � g� contains q4 � q3 � q2 interior lines
and the subspace � k, l � �

Un is a non-degenerate plane. Hence
� k, l � � �
 � , and

by de�nitions 3.4.4, 3.4.5, 3.4.8 the line set of � k, l � g� equals � k, l �
� �
. If an inte-

rior line m intersects the geometric plane E
g

� in two interior singular points, then
the hyperbolic line m intersects also the plane � k, l � in at least two singular points
and thus m

� � k, l � . It follows that m � � k, l � � �
, whence m is an interior line of� k, l � g� .  erefore � k, l � g� is a subspace of the geometry

�
.  e subspace � k, l � g�

is a linear subspace, since the interior singular points of � k, l � g� are in one-to-one
correspondence with the singular points of the regular plane � k, l � ofUn and every
pair of singular points contained in a regular plane of Un spans a hyperbolic line
of this plane. Certainly the geometric plane � k, l � g� is a �nite plane because � k, l � g�
contains a �nite number of interior lines and

�
has order q.

It remains to prove that � k, l � g� is spanned by any two of its intersecting lines, say
s and t. Any subspace A of � k, l � g� containing s and t has at least q2 � q � 1 points.
Indeed, let x be a point on s and not on t.  en each of the q lines connecting xwith
a point y, which is on t and not on s, contains q points distinct from x, totalling q2.
Together with the q � 1 points on s this gives q2 � q � 1 points contained in A. If
there exists a point z in � k, l � g� outside A, then, by linearity of � k, l � g� , there are at
least q2 � q � 1 interior lines in � k, l � g� through z, contradicting the fact that there
exist exactly q2 interior lines of � k, l � g� through z by lemma B.1.5. Hence a point z
of � k, l � g� not contained in Adoes not exist, so A 
 � k, l � g� and any two intersecting
lines of � k, l � g� in fact span the geometric plane � k, l � g� . ■

Lemma 3.4.10 Let E
g

�

 � k, l � g� be a geometric plane of

�
such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines and let c be a connecting line
of � k, l � g� intersecting the interior line k in the interior singular point kc. Moreover let
t be an interior line through the interior point pof � k, l � g� , where p is the intersection
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of k and l, which intersects c in an interior singular point.  en the interior line
t intersects each connecting line of � k, l � g� going through kc in an interior singular
point.

Proof: Since � k, l � g� �
 � k, l � � the hyperbolic lines k and l span a rank two plane
P 
 � k, l � inUn.  us for any singular point s on the hyperbolic line k the subspace
sπ 	 P is a totally singular line and sπ 	 l is a unique singular point on l. Moreover� s,d � is a hyperbolic line in P for any singular point d on l distinct from sπ 	 l.
As c is a connecting line of � k, l � g� through the point kc, the interior line c is
spanned by the interior singular points kc and lc, where lc is incident to l and
collinear to kc. We denote the intersection point of c and t by h. Let g be con-
necting line of � k, l � g� incident to kc and di�erent from c, so g 
 � kc, lg � for some
interior singular point lg � l, which is collinear to kc and di�erent from lc.
In order to prove the statementwewill show that in the rank two plane � k, l � ofUn

the hyperbolic line t intersects the hyperbolic line g in a singular point.  erefore
we �x a vector kvc � kc and a vector pv of the singular point p such that � kvc , pv

� 
 1,
where � � , �

�
denotes the hermitian form on Un. Furthermore let skc


 � kc � π 	 l and
svkc be some vector of the point skc .
By lemma B.1.12 the vector svkc

� µ � svkc , pv
�
pv 
 lvg spans the singular point lg for

some µ � F
σ,1 � , for the de�nition ofFσ,1 � see appendix B and svkc � ν � svkc , pv

�
pv 
 lvc

spans the singular point lc for some ν � F
σ,1 � . Also the vector hv 
 lvc � δ � lvc , kvc

�
kvc

spans the singular point h for some scalar δ � F
σ,1 � . Hence every singular point of

the hyperbolic line t is spanned by a vector of the form

hv � λ � hv, pv � pv

 lvc � δ � lvc , kvc

�
kvc
� λ � lvc � δ � lvc , kvc

�
kvc , p

v � pv

 lvc � δ � lvc , kvc

�
kvc
� λ � lvc , pv

�
pv � λδ � lvc , kvc

� � kvc , pv
�
pv


 svkc � ν � svkc , pv
�
pv � δ � svkc � ν � svkc , pv

�
pv , kvc

�
kvc
� λ � svkc � ν � svkc , pv

�
pv , pv

�
pv �

λδ � svkc � ν � svkc , pv
�
pv, kvc

� � kvc , pv
�
pv


 svkc � ν � svkc , pv
�
pv � δ � svkc , kvc

�
kvc � δν � svkc , pv

� � pv, kvc
�
kvc
� λ � svkc , pv

�
pv �

λν � svkc , pv
� � pv, pv � pv � λδ � svkc , kvc

� � kvc , pv
�
pv � νλδ � svkc , pv

� � pv, kvc
� � kvc , pv

�
pv


 svkc � ν � svkc , pv
�
pv � δ � svkc , kvc

�
kvc � δν � svkc , pv

�
kvc
� λ � svkc , pv

�
pv � δλ � svkc , kvc

�
pv�

λνδ � svkc , pv
�
pv

for some λ � F
σ,1.

Suppose δ � ν 
 � 1 then for any non-zero scalar λ � F
σ,1 we determine that

hv � λ � hv, pv � pv 
 svkc � ν � svkc , pv
�
pv � � svkc , pv

�
kvc

 lvc � kvc ,
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thus � hv, pv � 
 0, contradiction.  erefore δ � ν �
 � 1 and due to lemma B.1.13 for
the three non-zero scalars µ,ν and δ of Fσ,1 we can determine three scalars λ, ε and
α � F

σ,1 � such that
svkc
� ν � svkc , pv

�
pv � δν � svkc , pv

�
kvc
� λ � svkc , pv

�
pv � λνδ � svkc , pv

�
pv


 svkc
� ν � svkc , pv

�
pv � δ � svkc , kvc

�
kvc � δν � svkc , pv

�
kvc
� λ � svkc , pv

�
pv �

δλ � svkc , kvc
�
pv � λνδ � svkc , pv

�
pv


 svkc
� ε � svkc , kvc

�
kvc
� µ � svkc , pv

�
pv � µε � svkc , kvc

�
pv � α � svkc , kvc

�
kvc �

αµ � svkc , pv
�
kvc
� αµε � svkc , kvc

�
kvc


 svkc
� µ � svkc , pv

�
pv � αµ � svkc , pv

�
kvc


 lvg
� α � lvg, kvc

�
kvc ,

which implies that the hyperbolic line t 
�� h, p� intersects � kc, ld � 
 g in a singular
point. ■
A consequence of lemma 3.4.10 is the following result.

Lemma 3.4.11 Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines and let p be the intersection
point of k and l. Any line through the interior singular point p intersects each con-
necting line of � k, l � g� in an interior singular point.

Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic plane � k, l � �

contains exactly q4 di�erent interior lines and let p be the intersection point of k
and l. We claim that any interior point d of � k, l � g� is on a line through p in � k, l � g�
or an element of p

�
.

To prove this we assume that d is some interior point of � k, l � g� not on a line through
p, otherwise there is nothing to prove. So by de�nition 3.4.8, d is incident to some
connecting line c. Since the plane � k, l � in Un is of rank two, only the singular
point pπ 	 c of the hyperbolic line c is not incident to some hyperbolic line running
through p in � l, k � by lemma B.1.4.  erefore if d 
 pπ 	 c then d � p�

. If on the
other hand d is a singular point distinct from pπ 	 c then � c,d � is a hyperbolic line
in � l, k � and thus by de�nition 3.4.8, the interior singular point d is a line through
p in � k, l � g� .

Lemma 3.4.12 Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines and let kp be some interior
singular point incident to k.  en any interior point d of � k, l � g� not on k is either
an element of k

�

p or incident with a connecting line through kp, i.e., an interior line
through kp intersecting l in an interior singular point.
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Proof: Let d be an interior singular point of � k, l � g� not incident to a connecting
line through the interior point kp, since otherwise d is collinear to kp and there is
nothing to prove.
Let d be not contained in k

�

p and suppose d is on an interior line t through p,
where p is the intersecting point of k and l.  en by lemma 3.4.11, the interior line t
intersects a connecting line c going through kp say in the interior point h. Moreover
we consider the interior singular point lc


 l 	 c of l. We will show the claim by the
method used in lemma 3.4.10. So let kvp be a vector of kp and p

v be a vector of the
singular point p such that � pv, kvp

� 
 1. Furthermore let sp 
 pπ 	 c and svp be some
vector of the point sp.
By lemma B.1.12, for some µ,ν � F

σ,1 � the vector svp � µ � svp, kvp
�
kvp

 lvc spans the

singular point lc and the singular point h is generated by s
v
p
� ν � svp, kvp

�
kvp

 hv.

Moreover for some scalar δ � F
σ,1 � the span of the vector dv 
 hv � δ � hv, pv � pv is

the singular point d.  erefore the vector

dv � λ � dv, kvp
�
kvp


 svp
� ν � svp, kvp

�
kvp
� δ � svp, pv

�
pv � δν � svp, kvp

�
pv � λ � svp, kvp

�
kvp �

δλ � svp, pv
�
kvp
� λνδ � svp, kvp

�
kvp

generates a singular point of the hyperbolic line � kp,d � for every λ � F
σ,1. If δ � ν 
 � 1

then dv � λ � dv, kvp
�
kvp

 hv � � svp, kvp

�
pv, thus � dv , kvp

� 
 0, contradiction. Hence
δ � ν �
�� 1 and due to lemma B.1.13 for the three non-zero scalars µ,ν and δ of Fσ,1

we can determine three scalars λ, ε and α � F
σ,1 � such that

svp
� ν � svp, kvp

�
kvp
� δ � svp, pv

�
pv � δν � svp, kvp

�
pv � λ � svp, kvp

�
kvp �

δλ � svp, pv
�
kvp
� λνδ � svp, kvp

�
kvp


 svpv
� ε � svpv , pv

�
pv � µ � svp, kvp

�
kvp � µε � svp, pv

�
kvp
� α � svp, pv

�
pv �

αµ � svp, kvp
�
pv � αµε � svp, pv

�
pv


 lvc
� α � lvc , pv

�
pv ,

which implies that the hyperbolic line t 
 � kp,d � intersects l in a singular point.
Next we turn to the case that d is a singular point on some connecting line c,
which intersects the interior line k in an interior singular point kc di�erent from
kp, and an element of p

�
. Let lc be the intersecting point of l and c. If the interior

points kp and lc are on a common connecting line m, then we have the same con-
�guration as above, we just exchange the roles of the singular point p and lc, and
replace the point h by the point kc.  erefore the hyperbolic line

� k,d � intersects
the hyperbolic line l in an singular point implying that d is on a connecting line
through kp in the geometric plane

� k, l � g� .
On the other hand if lc � k �

p then we consider the singular point d in the rank two
plane � k, l � ofUn. As d � p�

the totally singular line pπ 	 � k, l � is going through d.
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By lemma B.1.4 any line through d in � k, l � di�erent from pπ 	 � k, l � is regular.  us
let kg be a singular point on k, which is not contained in l

π
c .  en g


 � kg,d � is a
hyperbolic line implying that d �� k �

g. Furthermore l
π
c 	 k is the unique singular point

kp, so lc �� k �

g and by the argumentation from above the hyperbolic line g

 � kg,d �

intersects the hyperbolic line l in a singular point lg di�erent from lc. It follows also
that lg is not a subspace of k

π
p 	 � k, l � , as kπp 	 l 
 lc.

Next we use the connecting line g in place of c. So d is on the connecting line g,
which intersects k in the interior point kg and the interior line l in lg, which is not
an element of k

�

p.  us the interior line
� kp,d � intersects the interior line l in an

interior singular point and we are done. ■

Lemma 3.4.13 Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines and let p be the intersecting
point of k and l.  en any interior point d of � k, l � g� distinct from p is incident to

some connecting line of E
g

� .

Proof: Let d be some interior point of the geometric plane � k, l � g� then d is on some
interior line of � k, l � g� , thus d is either on a connecting line or an interior singular
point of a line through p.
Suppose d is incident to some line t through p. We choose some interior singular
point kp on k, then by lemma 3.4.12 the point d is either collinear to kp, implying
that d is on a connecting line through the point kp and we are done, or d � k �

p.
If d � k �

p then d is a point on the totally singular line k
π
p 	 � k, l � in Un. Moreover

d is not the radical of the rank two plane, as d � t. It follows by lemma B.1.4 that� d, kb � is a hyperbolic line for every singular point kb � k di�erent from kp. In
fact d is collinear to the interior singular point kb by lemma 3.4.12, thus d is on a
connecting line through kb in

� k, l � g� . ■
Let x and y be two di�erent interior singular points of a geometric plane � k, l � g� of�
, which does not coincide with the algebraic plane � k, l � � .  en xπ 	 k 
 kx and
yπ 	 k 
 ky are unique singular points on the hyperbolic line k in the rank two plane� k, l � ofUn.  e hyperbolic line k contains q � 1 �

4 di�erent singular points, thus k
contains a singular point kp such that

� x, kp � and � y, kp � are hyperbolic lines.  is
argumentation together with lemma 3.4.12 and lemma 3.4.13 proves the statement
of the next lemma.

Lemma 3.4.14 Let E
g

�

 � k, l � g� be a geometric plane of

�
such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines.  en any two interior singu-
lar points of � k, l � g� not both on k are incident to a connecting line of some interior
singular point kp of the interior line k.

Lemma 3.4.15 Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines.  en � k, l � g� is a �nite plane
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of
�
.

Proof: Let h be an interior line of
�
intersecting the geometric plane � k, l � g� in two

di�erent interior singular points x and y. We may assume that neither x nor y
are on the line k nor coincide with the point p. Indeed if x � k or y � k then by
lemma 3.4.12 the interior singular points are on a connecting line of � k, l � g� implying
h � � k, l � g� and moreover if x 
 p or y 
 p then x and y are on a line through p,
again h � � k, l � g� .
By lemma 3.4.14 there is an interior singular point kp on k such that x as well as y
are on some connecting line through kp, we denote the lines by gx (x � gx) and gy
(y � gy). From the fact that x, y � hwe get that either x �� p�

, or y �� p�
. So without

loss of generality we can assume that x �� p�
, thus the interior singular point x is

on an interior line t through p in � k, l � g� . Due to lemma 3.4.10 the intersection of t
and gx is an interior singular point d.
To prove the statement it is su�cient to verify that the hyperbolic line h intersects
the line k resp. the line l in a singular point in Un.  erefore we �x a vector x

v � x
and a vector kvp of the singular point kp such that � kvp,xv

� 
 1. Furthermore let

skp

 � kp � π 	 t and svkp be some vector of the point skp. For some µ,ν � F

σ,1 � the
vector svkp

� µ � svkp,xv
�
xv 
 pv spans the singular point pand the point d is generated

by the vector svkp
� ν � svkp,xv

�
xv 
 dv due to lemma B.1.12. Moreover y 
 � yv � with

yv 
 dv � δ � dv , kvp
�
kvp for some δ � F

σ,1 � . Certainly every singular point of h is
spanned by a vector of the form

yv � λ � yv,xv � xv

 svkp

� ν � svkp,xv
�
xv � δ � svkp, kvp

�
kvp � δν � svkp,xv

�
kvp
� λ � svkp,xv

�
xv �

δλ � svkp, kvp
�
xv � λνδ � svkp,xv

�
xv

for some λ � F
σ,1. If δ � ν 
 � 1 then for any non-zero scalar λ � F � 0 we have the

equation

yv � λ � yv,xv � xv

 svkp

� ν � svkp,xv
�
xv � � svkp,xv

�
kvp


 lvc
� � svkp ,xv

�
kvp ,

thus � yv,xv � 
 0, contradiction.  erefore δ � ν �
 � 1 and due to lemma B.1.13 for
the three non-zero scalars µ,ν and δ of Fσ,1 we determine three scalars λ, ε and
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α � F
σ,1 � such that

svkp
� ν � svkp,xv

�
xv � δν � svkp,xv

�
kvp
� λ � svkp,xv

�
xv � λνδ � svkp,xv

�
xv


 svkp
� ν � svkp,xv

�
xv � δ � svkp, kvp

�
kvp � δν � svkp,xv

�
kvp
� λ � svkp,xv

�
xv �

δλ � svkp, kvp
�
xv � λνδ � svkp,xv

�
xv


 svkp
� ε � svkp , kvp

�
kvp
� µ � svkp,xv

�
xv � µε � svkp, kvp

�
xv � α � svkp, kvp

�
kvp �

αµ � svkp,xv
�
kvp
� αµε � svkp, kvp

�
kvp


 svkp
� µ � svkp ,xv

�
xv � αµ � svkp,xv

�
kvp


 pv � α � pv, kvp
�
kvp ,

which implies that the hyperbolic line h intersects k in a singular point. By symme-
try also the intersection of l and h is a singular point and thus � k, l � g� is a subspace
of
�
.
 e geometry

�
is of order q. By the formula B.4 on page 255 we have � � � k � � l � 


�L � � k, l � � � 
 q4, so that the subspace � k, l � g� is �nite. To complete the proof let P
the plane of the geometry

�
spanned by k and l. As P is a subspace of

�
, the plane

P contains all interior lines intersecting k and l in an interior singular point.  us
P contains all connecting lines of the � k, l � g� . Because every point of � k, l � g� is on a
connecting line of � k, l � g� by lemma 3.4.13, we have � k, l � g� 
 P, which shows that� k, l � g� is a plane of

�
. ■

Before we determine the isomorphism type of the geometric plane � k, l � g� �
 � k, l � � ,
we recall the de�nition of a dual a�ne plane. A subspace P of a geometry is iso-
morphic to a dual a�ne plane (also called a symplectic plane) if

• any two lines of P intersect in a point;

• to any linemof P and any point d of P not incident tom, there exists a unique
point pon m not collinear to d;

• the subspace P contains at triangle, i.e. three di�erent lines that do not inter-
sect in a common point.

 us P is isomorphic to a projective plane fromwhich a point and all lines through
that point have been removed.

Lemma 3.4.16 Let E
g

�

 � k, l � g� be a geometric plane of � such that the algebraic

plane � k, l � � contains exactly q4 di�erent interior lines.  en � k, l � g� is isomorphic to
a dual a�ne plane. In particular, any two lines of � k, l � g� generate � k, l � g� .
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Proof:  e plane � k, l � g� clearly contains a triangle, so that the last condition in
the de�nition of a dual a�ne plane is satis�ed. Let m be an interior line and d be
an interior singular point not incident to m of the plane � l, k � g� .  e hyperbolic
lines l and k span the degenerate plane � l, k � in Un, thus

� k, l � 
 � m,d � , where
d is singular point di�erent from the radical of � k, l � . It follows that the totally
singular line dπ 	 � k, l � intersects the hyperbolic linem in the unique singular point
m 	 dπ 
 md. Hence the interior singular pointmd is an element of d

�
and all other

interior points incident to m are collinear to d by lemma 3.4.12 and lemma 3.4.13,
which proves the second condition for the subspace � k, l � g� .
Finally letm and n be two interior lines of � k, l � . Ifm and n are two lines through

por if one of them is a line through pand the other a connecting line, then by lemma
3.4.11 we have nothing to prove. So we can assume thatm and n are connecting lines
of � k, l � not intersecting in an interior singular point of k or l, as otherwise there
is nothing to prove. We �x the following notation: let k 	 m 
 km, k 	 n 
 kn,
l 	 m 
 lm and l 	 n 
 ln.
If the interior singular points km and ln are collinear in

�
, then let kvm be a vector

of the singular point km and choose l
v
n � ln in such away that � lvn , kvm

� 
 1. Moreover
let sln


 � ln � π 	 k and svln be some vector of the singular point sln .
As before we get that the vector svln

� µ � svln , kvm
�
kvm

 kvn spans the singular point

kn for some µ � F
σ,1 � and svln � ν � svln , kvm

�
kvm

 pv spans the singular point p for

some ν � F
σ,1 � . Furthermore the vector lvm 
 pv � δ � pv, lvn

�
lvn generates the singular

point lm for some scalar δ � F
σ,1 � and every singular point of the hyperbolic linem

is spanned by a vector of the form

lvm
� λ � lvm, kvm

�
kvm


 svln
� ν � svln , kvm

�
kvm

� δ � svln , lvn
�
lvn � δν � svln , kvm

�
lvn
� λ � svln , kvm

�
kvm �

δλ � svln , lvn
�
kvm

� λνδ � svln , kvm
�
kvm

for some λ � F
σ,1. Certainly δ � ν �
 � 1. Indeed if δ � ν 
 � 1 then for any non-zero

scalar λ � F
σ,1 we have that lvm

� λ � lvm, kvm
�
kvm

 pv � � svln , kvm

�
lvn, thus � lvm, kvm

� 
 0,
contradiction. By lemma B.1.13 for the three non-zero scalars µ,ν and δ of Fσ,1 we
can determine three scalars λ, ε and α � F

σ,1 � such that

svln
� ν � svln , kvm

�
kvm � δν � svln , kvm

�
lvn
� λ � svln , kvm

�
kvm

� λνδ � svln , kvm
�
kvm


 svln
� µ � svln , kvm

�
kvm � αµ � svln , kvm

�
lvn


 kvn
� α � kvn, lvn

�
lvn ,

which implies that the hyperbolic line n intersects m in a singular point.
On the other hand if km � l �

n then we choose an interior singular point w of n
collinear to km and p.  usw is on a connecting line z through km and on the line t
through p in the geometric plane � k, l � g� . By lemma 3.4.11 the line t intersects m in
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an interior singular point d. Replacing in the above calculation ln by w and lm by
d, we see that the interior lines m and n also intersect in an interior singular point.
 e fact that any two lines of � k, l � g� generate � k, l � g� follows immediately from
the fact that any two lines intersect. Indeed let m and n be two di�erent interior
lines of � k, l � g� .  en these two interior lines intersect in an interior singular point
by the argumentation above. Let P be the subspace generated by m and n in

�
. It

is su�cient to show that k, l � P to conclude that P coincides with the geometric
plane � k, l � g� . Certainly if m,n are two connecting lines or if either of them is a
connecting line and the other is a line through p then by the property that P is a
subspace of

�
the interior lines k and l are elements of P. If otherwise m and n are

two di�erent lines through p then by lemma 3.4.11, the subspace P contains some
connecting line of � k, l � g� and the interior point p, thus k, l � P. ■

Proposition 3.4.17  e point-line geometry
�
is a connected planar non-linear par-

tially linear space of order q whose planes are linear or symplectic.

Proof:  e statement follows from lemma 3.4.6, lemma 3.4.7 and the sequence of
lemmata from 3.4.9 to 3.4.16. ■
In the next lemmata we check that

�
satis�es condition three and condition four of

theorem 3.4.1.

Lemma 3.4.18 Let x and y be distinct points of
�
.  en x

� �� y
�
.

Proof: If x � y, then we �nd interior lines l � x and m � y such that l � m in the
graph Γ. Since l and m by de�nition correspond to orthogonal hyperbolic lines of
the unitary space Un, any point on l is on a singular line going through y inUn, so
for every point p � l distinct from x we have p �� x �

but p � y�
. If x �� y, then there

exists an interior line l incident to x and y. By de�nition x � x �
and x �� y�

. ■

Lemma 3.4.19 Let E be a linear plane and x be an interior singular point of the ge-
ometry

�
.  en the linear plane E intersects the point set x

�
, in symbols E 	 x � �
 � .

Proof: If x is a point on the plane E, then from x � x �
we obtain x � E 	 x � �
 � .

If x is not in E, then let k, l be two interior lines of
�
such that E 
 � l, k � g� . We can

consider the subspace � k, l � 	 xπ of the regular plane � k, l � orthogonal to x, which
is at least of dimension two, so it contains a singular point y, whence y � E 	 x �

. ■
We have now reached our goal.

Notation: We denote with H � Un
�
the geometry of all singular points and all hy-

perbolic lines of an n-dimensional non-degenerate unitary polar spaceUn over the
�eld Fq2 .

66



3.5  e graph G � Un � 2 � inside the graph G � Un � for n � 7

Proposition 3.4.20  e point-line geometry
� 
 � � , � �

is isomorphic to the geome-
try of singular points and hyperbolic lines of an n-dimensional non-degenerate unitary
polar space over Fq2 .

Proof: By proposition 3.4.17 the point-line geometry
�
is a connected planar non-

linear partially linear space of order q whose planes are �nite and linear or sym-
plectic.  e geometry

�
satis�es hypothesis three of theorem 3.4.1 by lemma 3.4.18

and the validity of hypothesis four of theorem 3.4.1 is proved by lemma 3.4.19. Any
geometrical plane of the geometry

�
isomorphic to a linear space in fact is isomor-

phic to the geometry on the singular points and the hyperbolic lines of a classical
hermitian unital, so it satis�es hypothesis two, which was observed by O’Nan [72].
Hence we can apply theorem 3.4.1. As the geometry

�
contains linear planes, it is

isomorphic to H � Um
�
.  e number of lines of

�
equals the number of vertices of

Γwhich equals the number of hyperbolic lines of Un. Hence m

 n. ■

De�nition 3.4.21 Let n
�
5 and let Γ be a graph isomorphic to G � Un

�
.  en the

point-line geometry
� 
 � � , � �

is called the interior space on Γ.

Corollary 3.4.22  e automorphism group of G � Un
�
is isomorphic to the automor-

phism group of the projective unitary space P � Un
�
.

3.5 The graph G
�
Un � 2 � inside the graph G

�
Un � for n � 7

In this section we will study the hyperbolic line graph G � Un
�
for n

�
7 and the

interior space
� 
 � � , � �

on G � U7

�
, which is isomorphic to the geometry of sin-

gular points and hyperbolic lines of the non-degenerate unitary vector spaceUn by
proposition 3.4.20. We denote the non-degenerate unitary form Un

� Un � Fq2

by � � , �
�
. Let x be a vertex of the graph G � Un

�
, then the induced subgraph x

�
of

G � Un
�
is isomorphic to the hyperbolic line graph G � Un � 2

�
by proposition 3.3.3.

Using the results of section 3.4 we can construct the interior space
�
x

 � � x , �

x
�
of

the graph x
�
� G � Un � 2

�
. Moreover the geometry

�
x is isomorphic to the geome-

try of singular points and hyperbolic lines of the non-degenerate unitary spaceUn � 2

by proposition 3.4.20.  e corresponding non-degenerate unitary form � � , �
�
x of

�
x

can be identi�ed with the restriction � � , �
� � xπ of � � , �

�
. In this context the elements of

the geometry
�
x are called local.

Notation:We index every local object of the interior space
�
x with the vertex x. In

particular, for vertices k, l,m of x
�
we use the notations � k, l,m � �

x

 � k, l,m � �

	 x
�

and � k, l,m � � �
x

 � � k, l,m � �

x �
�
x

 � � k, l,m � �

x �
�
	 x

� 
 � � k, l,m � �
	 x

� � �
	 x

�
.

With � k, l � x we denote the vector subspace of xπ � Un � 2 generated by the two
interior lines k and l of

�
x.
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In this section we show that the interior space
�
x is isomorphic to a subspace of

codimension two of the interior space
�
. We obtain the result that each singular

interior point px � � x is contained in a unique singular interior point of � and,
conversely, that for any singular interior point pof the geometry

�
either p 	

�
x is

empty or a singular interior point of
�
x.

In this �rst part we concentrate on the case n 
 7.

Lemma 3.5.1 Let pbe a singular interior point in
�
. If l,m � p 	

�
x are two distinct

elements, then the interior lines l and m intersect in a singular interior point of
�
x.

Proof: We need to establish the de�ning properties from de�nition 3.2.15 for l and
m.  erefore we have to verify that either � l,m � �

x
� � or the vertices l and m have

distance four in x
�
with more than q4 di�erent paths of length four between these

two vertices in x
�
. In the graph G � U7

�
both vertices l and m are adjacent to x as

l,m � �
x. Furthermore

� l,m � is a three-dimensional subspace and contained in
xπ. If the plane � l,m � is non-degenerate, then � l,m � �

x �
 � by remark 3.2.6. If on
the other hand the subspace � l,m � is degenerate, then by lemma 3.2.4 the vertices
l andm have distance four in the induced subgraph x

�
. By lemma 3.2.12, the graph

x
�
contains more than q4 di�erent paths of length four between l and m. Hence

the interior lines l and m intersect in the interior space
�
x. ■

Lemma 3.5.2 Let pbe a singular interior point of
�
and k1, k2, and k3 be three pair-

wise distinct elements of p 	
�
x.  en the interior lines k1, k2, and k3 intersect in one

interior singular point of
�
x.

Proof: In order to prove the claim we show that k1, k2, k3 satisfy the properties of
de�nition 3.2.15. By lemma 3.5.1 the interior lines k1, k2, k3 intersect pairwise in a
singular interior point of

�
x. Furthermore the vector subspace ofU7 spanned by the

hyperbolic lines k1, k2 and k3 is a subspace of x
π and since the vertices k1, k2, k3 are

elements of p, the one-dimensional subspace d 
 k1 	 k2 	 k3 is contained in xπ as
well.  is setup satis�es the hypothesis of lemma 3.2.14 implying that the subspace
xπ contains a hyperbolic line s such that

• � s, ki �
�
x
� � , if s �
 ki, for i 
 1,2,3,

• � s, k1, k2 �
�
x

 � .

Hence by de�nition 3.2.15 the three vertices k1, k2 and k3 of p 	
�
x intersect in one

interior point of
�
x, which is singular, cf. de�nition 3.4.4. ■

Proposition 3.5.3 Let pbe an interior singular point in
�
.  e interior line set p 	

�
x

is either an interior singular point px in
�
x or the empty set.
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Proof: Suppose p 	
�
x �
 � , then let l be some element of p 	

�
x and m be an

interior line of the point p di�erent from l. Since l � x in G � U7

�
it follows that

the hyperbolic line l is a subspace of xπ in
�
which intersects the hyperbolic line

m in a one-dimensional singular subspace d. Hence the singular point d is also a
subspace of xπ. Let px be the interior point of

�
x containing all hyperbolic lines of

xπ incident to the point d.
Let k be an arbitrary hyperbolic line of the interior point px.  e proposition is
proved, if the vertex k is an element of p 	

�
x. Since k

�
xπ it su�ces to prove k � p.

Any element n of the interior point p is a hyperbolic line of U7 incident to the
point d.  us we choose a vertex n � p distinct from k and intend to prove that� k,n � �

� � and that � k,n � � �
is minimal in G � U7

�
with respect to inclusion, cf.

de�nition 3.3.8. Since both hyperbolic lines k and n contain the point d in U7, the
vector space spanned by both is a plane of rank at least two. Hence � k,n � π is four-
dimensional subspace of rank at least three, thus � k,n � π contains a hyperbolic line.
In particular, � k,n � �

� � and due to lemma 3.3.4 we have � k,n � � � 
 L � � k,n � � . By
lemma 3.3.4 again and the fact that the span of two di�erent hyperbolic lines s1, s2
of the three-dimensional subspace � k,n � equals this plane, we obtain the equality� k,n � � � 
 L � � k,n � � 
 L � � s1, s2 � � 
 � s1, s2 �

� �
.  erefore � k,n � � �

is minimal in
G � U7

�
with respect to inclusion.

Next, we choose two di�erent elements n and m of p. By the argumentation
above n, m and k are three mutually intersecting interior lines in the unitary space�
and the subspace � n,m, k � of U7 is of dimension three or four. If

� n,m, k � is
a non-degenerate four-dimensional subspace, then � n,m, k � π is a regular plane in�
containing some hyperbolic line. Hence the subgraph � n,m, k � �

is not empty
and by lemma 3.3.4 and lemma 3.3.5 it follows directly that � n, k � � � 
 L � � n, k � � �
L � � n,m, k � � 
 � m,n, k � � �

. If otherwise the subspace � n,m, k � is of dimension
three or degenerate and of dimension four, then by lemma 3.3.7 applied to the plane� n,m � spanned by n and m, there exists a hyperbolic line s in the unitary vector
space

�
intersecting the lines n andm (and consequently k) in d such that � s,n,m �

is four-dimensional non-degenerate subspace.  is implies that � s,n,m � � �
 � and
again we get the inequality � n,m � � � 
 L � � n,m � � � L � � s,n,m � � 
 � s,n,m � � �

,
thus k � pby de�nition 3.3.8. ■

Lemma 3.5.4 Let px be a singular interior point of
�
x for some vertex x in G � U7

�
and let l and m be two distinct elements of px .  en l and m intersect in a singular
interior point of

�
.

Proof: By de�nition 3.3.8 the vertices l,m � px intersect in G � U7

�
, if � l,m � �

� �
and � l,m � � �

is minimal in G � U7

�
with respect to inclusion. Since l and m are

vertices of the induced subgraph x
�
of G � U7

�
, we conclude that x � � l,m � �

. By
lemma 3.3.4 we have � l,m � � � 
 L � � l,m � � .  e plane � l,m � is a subspace of xπ,
since l and m are incident to xπ.  is implies � l,m � 
 � l,m � x and L � � l,m � � 

L � � l,m � x � .
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Next, let s and t be two di�erent vertices of � l,m � � �
. By the identities above

s, t � � l,m � � � 
 L � � l,m � � 
 L � � l,m � x � 
 � l,m � x . In fact the interior lines s and
t span the plane � l,m � in � . Moreover � l,m � � � 
 �

z ��� k,l � � z
�
, so � l,m � � � �

x
�
,

which implies that s and t are vertices of the subgraph x
�
. Again, � s, t � 
 � s, t � x

and � s, t � � � 
 L � � s, t � � 
 L � � s, t � x � .  erefore � s, t �
� � 
 L � � s, t � � 
 L � � l,m � � 
� l,m � � �

, which shows that the double perp � l,m � � �
isminimal in the graphG � U7

�
with respect to inclusion. ■

Lemma 3.5.5 Let px be an interior point of
�
x. Any three distinct vertices k1, k2 and

k3 of px intersect in one point in
�
.

Proof: By the previous lemma 3.5.4 any three distinct lines k1, k2 and k3 of an in-
terior point px � � x are mutually intersecting interior lines in the interior space�
. Moreover the induced subgraph x

�
contains a vertex s with the properties that� s, ki �

�
x �
 � in x

�
if ki �
 s for i � � 1,2,3 � and � s, k1, k2 �

�
x

 � .  us the plane� k1, k2 � x is properly contained in the four-dimensional subspace � k1, k2, s � x of xπ

in
�
, so � k1, k2 � 
�� k1, k2 � x � � k1, k2, s � x 
 � k1, k2, s � .
Furthermore the vertex s is also an interior line of the space

�
and by lemma 3.5.4

the interior line s intersects each interior line ki di�erent from s in
�
for i � � 1,2,3 � .

 e proof of the statement is �nished if we can show that � k1, k2 �
� �
� � k1, k2, s �

� �
in G � U7

�
.  e interior lines k1, k2 and s are vertices of x

�
thus � k1, k2, s �

� � 

L � � k1, k2, s � � 
 L � � k1, k2, s � x � by lemma 3.3.5 and the fact that x � � k1, k2 , s �

�
.

Using lemma 3.3.4 we get equality between the vertex set of the induced subgraph� k1, k2 �
� �
and the hyperbolic lines set L � � k1, k2 � � 
 L � � k1, k2 � x � . Finally we obtain

the equalities � k1, k2 �
� � 
 L � � k1, k2 , � x � � L � � k1, k2, s � x � 
 � k1, k2, s �

� �
, and we

are done. ■

Proposition 3.5.6 Let px be an interior point of
�
x.  ere is a unique interior point

p in the interior space of G � U7

�
such that px

�
p.

Proof:  e uniqueness of the interior point p follows directly from the fact that
the interior space of G � U7

�
is isomorphic to U7. For, suppose the interior space

�
contains two di�erent interior points pand g such that px

�
pand px

�
g.  en let

k be an interior line of pwhich is not incident to g and let l1 and l2 be two di�erent
interior lines of px. In the unitary polar space

�
the two di�erent hyperbolic lines l1

and l2 intersect in the point p, but on the other hand p

 k 	 l1 
 l2 	 k 
 l1 	 l2 
 g,

contradiction. ■
 e line set

�
x of the interior space

�
is a subset of the interior line set

�
. Also every

interior point px of � x is contained in a unique point pof the interior space � , thus
the interior space

�
x is a subspace of the interior space

�
. In the next proposition

we also determine the dimension of the subspace
�
x in the interior space

�
.
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Proposition 3.5.7 Let x be a vertex of the graph G � U7

�
.  e interior space

�
x on x

�
is isomorphic to a codimension two subspace of the interior space

�
on G � U7

�
.

Proof: Since
�
x � H � U5

�
and

�
� H � U7

�
the claim follows. ■

 e same result holds for n
�
8.

Proposition 3.5.8 Let n
�
8 and let x be a vertex of the graph G � Un

�
.  e interior

space
�
x on x

�
is isomorphic to a codimension two subspace of the interior space

�
on G � Un

�
.

 e proof of this statement is similar to the proof of proposition 3.5.7.  e remain-
der of this section is devoted to this proof.

Lemma 3.5.9 Let l and m be two intersecting interior lines of
�
x.  en the induced

subgraph � l,m � � �
of G � Un

�
is equal to � l,m � � �

x .

Proof: Let l and m be two intersecting lines in
�
x.  en by lemma 3.3.6 we have� l,m � �

x �
 � and � l,m �
� �
x

 L � � l,m � x � in � x. Moreover l � x � m in G � Un

�
,

so x � � l,m � �
and � l,m � � � �

x
�
implying the identity � l,m � � �

	 x
� 
 � l,m � � �

.
Since � l,m � �

x

 � l,m � �

	 x
� � � l,m � �

we obtain that � � l,m � �
	 x

� � �
� � l,m �

� �
and conclude that � � l,m � �

	 x
� � �
	 x

�
� � l,m �

� �
	 x

�
, hence � l,m � � � � � l,m � � �

x .
Suppose � l,m � � �

x �� � l,m �
� �
. Let kbe a vertex in � l,m � � �

x � � l,m �
� �
and x� l,m � � 
� l,m � π 	 xπ be the orthogonal space of � l,m � inside xπ in

�
. Since dim � xπ � 
 n � 2

and � l,m � is a plane of rank at least two, the subspace x� l,m � contains at most a
one-dimensional radical and is of dimension n � 5.  us we �x a regular point y in
x� l,m � and consider the � n � 6 � -dimensional subspace yπ 	 x� l,m � , which is again
either non-degenerate or contains the one-dimensional radical rad � yπ 	 x� l,m �

� 

rad � x� l,m � � 
 r.
If yπ 	 x� l,m � is regular then by [20, theorem6.3.1] or [86, chapter 10] the subspace

yπ 	 x� l,m � is either the direct sumof n � 6
2
hyperbolic lines hi, y

π 	 x� l,m � 
��
n � 6
2

i � 1 hi
(in case n � 6 is even) or the direct sum of � n � 6

2 � hyperbolic lines hi and a regular
point c, yπ 	 x� l,m � 
����

n � 6
2 	

i � 1 hi � c (in case n � 6 odd).
On the other hand if the subspace yπ 	 x� l,m � is degenerate then we choose a
rank one line s through the point r in yπ 	 x� l,m � .  e orthogonal space sπ 	
� yπ 	 x� l,m � � is an � n � 7 � -dimensional degenerate subspace with radical r, so
sπ 	 � yπ 	 x� l,m � � 
 � s1, . . . , sn � 8 , r � for some points si. Hence S 
 � s1, . . . , sn � 8 �
is an � n � 8 � -dimensional non-degenerate subspace implying together with [20,
theorem 6.3.1] or [86, chapter 10] that S is either the direct sum of n � 8

2
hyperbolic

lines hi, S

�� n � 8

2

i � 1 hi if n � 8 is even or otherwise the direct sum of � n � 8
2 � hyperbolic

lines hi and a regular point c, S

 �
� n � 82 	

i � 1 hi � c, if n � 8 is odd. We also denote the

71



3 On the �nite hyperbolic unitary geometry for n � 7

line s by h � n � 82 	 � 1 
 h � n � 62 	 .  en either yπ 	 x� l,m � 
 � n � 6
2

i � 1 hi if n � 6 is even or
yπ 	 x� l,m � 
��
�

n � 6
2 	

i � 1 hi � c if n � 6 is odd.
Next, in both cases, we �x on each line hi for 1

�
i

� � n � 6
2 � two di�erent regular

points h1i and h2i.  us the two-dimensional subspaces hij,y

 � y,hji � are hyper-

bolic lines for 1
�
i

� � n � 6
2 � ,1 �

j
�
2 and x� l,m � 
 � y, yπ 	 x� l,m � � is either equal

to the subspace

� hji,y � for j 
 1,2; i 
 1, . . . , n
� 6
2
�

if n � 6
2
is even or to the subspace

� hji,y, � y, c � � for j 
 1,2; i 
 1, . . . , � n
� 6
2 � �

if n � 6
2
is odd. Every hyperbolic line hji,y, 1

�
i

� n � 6
2
, j 
 1,2 as well as the hyper-

bolic line cy

 � y, c � belongs to a vertex in the graphG � Un

�
adjacent to the vertices

x, l and m.
Since k is an element of � l,m � x, the vertex k is contained in each induced sub-
graph z

�
x for every z � � l,m �

�
x.  erefore k is adjacent to each vertex hji,y, i



1, . . . , � n � 6

2 � , j 
 1,2, and to the vertex cy in the graph G � Un
�
. Hence the vertex k is

either a hyperbolic line of the subspace xπ 	 � hji,y � for j 
 1,2; i 
 1, . . . , n � 6
2
� π 


xπ 	 � x� l,m �
� π 
�� l,m � (in case that n � 6 is even) or a hyperbolic line of the sub-

space xπ 	 � hji,y, cy � for j 
 1,2; i 
 1, . . . , � n � 6
2 � � π 
 xπ 	 � x� l,m �

� π 
 � l,m � (in
case that n � 6 is odd), contradiction. ■
On occasion we will use this result in the following form.

Lemma 3.5.10 Let k, l andm be three di�erent mutually intersecting interior lines of
the space

�
x .  en

� k, l,m � � � 
 � k, l,m � � �
x .

Proof: By lemma 3.5.9 from above, we know � k, l � � � 
 � k, l � � �
x and

� l,m � � � 

� l,m � � �

x . Since
� k, l,m � � � 
 � k, l � � �

	 � l,m �
� �
we regard the following identities� k, l,m � � � 
 � k, l � � �

	 � l,m �
� � 
 � k, l � � �

x 	 � l,m �
� �
x

 � � k, l � �

	 x
� � �

	 x
�
	

� � l,m � �
	 x

� � �
	 x

� 
 � � k, l � �
	 x

� � �
	 � � l,m �

�
	 x

� � �
	 x

� 
 � � k, l � �
	 � l,m �

�
	

x
� � �

	 x
� 
 � � k, l,m � �

	 x
� � �

	 x
� 
 � k, l,m � � �

x . ■
Wenow start to prove the claim that for each interior singular point pof

�
and each

vertex x of G � Un
�
the line set p 	

�
x is either an interior singular point of

�
x or

empty.

Lemma 3.5.11 Let n
�
8 and p be an interior singular point of

�
. Any two distinct

elements l and m of p 	
�
x intersect in the space

�
x.

Proof: For two distinct elements l and m of the set p 	
�
x we need to verify by

de�nition 3.3.8 the two conditions that � l,m � �
x �
 � and that the induced subgraph� l,m � � �

x is minimal in x
�
with respect to inclusion.
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Since the vertices l andm are adjacent to x inG � Un
�
, the plane � l,m � , which is of

rank at least two, is contained in the � n � 2 � -dimensional non-degenerate subspace
xπ of Un. As n

�
8 the � n � 5 � -dimensional subspace � l,m � π 	 xπ has at least two.

So � l,m � π 	 xπ contains some hyperbolic line h implying that h � � l,m �
�
x �
 � .

 e induced subgraph � l,m � � �
is minimal inG � Un

�
with respect to inclusion by

de�nition 3.3.8. By lemma 3.5.9, � l,m � � �
x

 � l,m � � �

, and for two distinct vertices
s and t of � l,m � � �

x we obtain the identities
� s, t � � � 
 � l,m � � � 
 � l,m � � �

x . Since
s and t are two vertices of � l,m � � �

they are two di�erent intersecting hyperbolic
lines of the plane � k, l � �

xπ. By lemma 3.3.6 and de�nition 3.3.8 the interior lines
s and t intersect in the space

�
, which implies that � s, t � � � 
 � s, t � � �

x by lemma
3.5.9. In fact � s, t � � �

x

 � s, t � � � 
 � l,m � � � 
 � l,m � � �

x proving the minimality with
respect to inclusion in x

�
of � l,m � � �

x . ■

Lemma 3.5.12 Let n
�
8 and pbe an interior singular point in

�
. Any three di�erent

elements k1, k2 and k3 of p 	
�
x intersect in one point in

�
x.

Proof: Let k1, k2 and k3 be three di�erent vertices of p 	
�
x. By lemma 3.5.11 we

get that k1, k2 and k3 are pairwise intersecting lines in
�
x. By de�nition 3.3.8 the

interior lines k1, k2 and k3 intersect in one point in
�
x if we �nd an interior line

s � �
x such that

� s, ki �
�
x is not empty,

� s, ki �
� �
x is minimal in x

�
with respect to

inclusion if s �
 ki for i 
 1,2,3 and that � k1, k2 �
� �
x � � s, k1, k2 �

� �
x in x

�
.

 e span of the hyperbolic lines k1, k2 and k3 in the unitary space
�
� Un is a

subspace either of dimension three or four of the subspace xπ since k1, k2 and k3
are vertices of x

�
. Moreover as k1, k2 and k3 are interior lines of the point p � �

the points k1 	 k2, k2 	 k3 and k1 	 k3 coincide with a unique singular point d in
�
.

Certainly this point is incident to xπ.
Suppose � k1, k2, k3 � is a regular four-dimensional subspace in � then let s 


k3 and we are done by the fact that
� k1, k2 �

� �
x

 � k1, k2 �

� �
� � k3, k1, k2 �

� � 

� k3, k1, k2 �

� �
x , by lemma 3.5.9 and lemma 3.5.10.

If � k1, k2, k3 � is either a plane or a singular four-dimensional subspace inUn then
we consider the plane P 
 � k1, k2 � � � k1, k2, k3 � �

xπ, which is of rank at least two
and contains the intersecting point d. Since dim � xπ � 
 n � 2 �

6we can �x a hyper-
bolic line s in the subspace xπ intersecting the regular two-dimensional subspaces
k1 and k2 such that

� k1, k2, s � is a rank four four-dimensional space in xπ by lemma
3.3.7. We can also conclude that s 	 k1 
 k1 	 k2 
 k2 	 s 
 d implying that the� s, ki �

�
x are not empty, the induced subgraphs

� s, ki �
� �
x are minimal with respect

to inclusion in x
�
if s �
 ki and i 
 1,2,3 and also that � k1, k2 �

� �
x � � s, k1, k2 �

� �
x in

x
�
due to lemma 3.5.9, lemma 3.5.10 and lemma 3.3.6. ■

Proposition 3.5.13 Let n
�
8 and let pbe an interior singular point in

�
.  e line set

p 	
�
x is either an interior singular point px in

�
x or the empty set.

Proof:  is statement follows under the use of lemma 3.5.11 and lemma 3.5.12 by an
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argumentation similar to the one used in the proof of proposition 3.5.3. ■

Finally we show the converse direction, so we verify that each interior point px of�
x is contained in a unique point pof

�
.

Lemma 3.5.14 Let n
�
8 and let px be an interior singular point of

�
x. Any two

distinct lines k and l of px intersect in a common point in
�
.

Proof: By de�nition 3.3.8 the vertices k and l of the interior point px intersect in
�

if � k, l � �
is not empty and � k, l � � �

is minimal in the graph G � Un
�
with respect to

inclusion in the graph G � Un
�
.

Note that k and l are vertices of the graph x
�
, so k � x � l in G � Un

�
and we

conclude that x � � l,m � � �
 � . By lemma 3.5.9 we have equality between the graphs� k, l � � �
and � k, l � � �

x . Moreover,
� k, l � � �

x is minimal with respect to inclusion in
x

�
.  us, for any two di�erent vertices s1, s2 of

� k, l � � �
x

 � k, l � � �

we obtain with
lemma 3.5.9 the identities � k, l � � � 
 � k, l � � �

x

 � s1, s2 �

� �
x

 � s1, s2 �

� �
, which shows

that � k, l � � �
is minimal with respect to inclusion in G � Un

�
. ■

Lemma 3.5.15 Let n
�
8 and px be an interior singular point of

�
x.  en any three

distinct lines k1, k2 and k3 of px intersect in one interior point in
�
.

Proof: By lemma 3.5.14 any three distinct elements k1, k2 and k3 of px � � x are
pairwise intersecting interior lines of

�
. Since n

�
8 we can �x a vertex s in x

�
with the properties that s intersects each line ki in

�
x if s �
 ki for i � � 1,2,3 � and� k1, k2 �

� �
x � � k1, k2, s �

� �
x , in particular s is also an element of the interior point px .

 e subspace s is also an interior line in
�
and this regular line intersects each line ki

in
�
if s �
 ki for i � � 1,2,3 � by lemma 3.5.14.  e proof of the statement is complete

since � k1, k2, s �
� � 
 � k1, k2, s �

� �
x by lemma 3.5.10. Indeed the hyperbolic lines k1

and k2 are vertices of the subgraph x
�
. By lemma 3.5.9 we obtain that � k1, k2 �

� �
x



� k1, k2 �
� �
, which leads to the fact that � k1, k2 �

� � 
 � k1, k2 �
� �
x � � k1, k2, s �

� �
x



� k1, k2, s �
� �
x . ■

Proposition 3.5.16 Let n
�
8 and let px be an interior point of Gx.  ere is a unique

point p in the interior space of G � Un
�
such that px

�
p.

Proof: A similar argument as used in proposition 3.5.6 implies the statement. ■
Proof of proposition 3.5.8: Recall that every interior line of

�
x is an interior line of�

and any interior point px of
�
x is contained in a unique interior point pof

�
, thus�

x is isomorphic to a subspace of the interior space on G � Un
�
. As

�
x � H � Un � 2

�
and

�
is isomorphic to the geometry H � Un

�
the codimension of the isomorphic

image of
�
x inside

�
is two, proving the claim. ■
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3.6 The global space

In this section we analyse the following situation. Let n
�
7 and let Γ be a connected

graph which is locally isomorphic to the hyperbolic line graph G � Un
�
. At the end

of this section we prove theorem 3.1.2, i.e., that Γ is isomorphic to the hyperbolic
line graph G � Un � 2 � .
Due to the property that for every vertex x of Γ the induced subgraph x

�
is iso-

morphic to G � Un
�
, we can construct the interior spaces

�
x on x

�
, see proposition

3.3.9 and proposition 3.4.20. We use this family � � x � x � Γ of local interior spaces to
construct a global geometry

�
Γ on Γ, which via theorem 3.4.1 will turn out to be iso-

morphic to the geometry on the singular points and the hyperbolic lines of some
unitary polar space.

Interior objects are a priori only de�ned in some interior space
�
x, x � Γ.  ey

are called local objects.  erefore one problem we have to tackle in this section is
to introduce well-de�ned global points and lines for our point-line geometry

�
Γ.

A�er that we will establish the validity of the hypothesis of theorem 3.4.1 for
�
Γ.

Notation: To avoid confusion, wewill index every local object by the vertex x whose
interior space it belongs to. For example, if x � y in the graph Γ, then y is a vertex of
the subgraph x

�
corresponding to the local object yx, an interior line, in the space�

x. By yx we denote the vertex y considered as a vertex of the subgraph x
�
. With the

symbol y
�
x we denote the subgraph

� x,y � �
which is of course an induced subgraph

of x
�
.  e interior space obtained from the graph y

�
x will be denoted with

�
yx .

Furthermore by � yx,zx � we denote the subspace of � x spanned by the two interior
lines yx and zx as a subspace of the underlying projective space.

De�nition 3.6.1 A global line of Γ is a vertex of the graph Γ.  e set of all global
lines of Γ is denoted by

�
Γ.

Lemma 3.6.2 Let n
�
7 and let w, x, y, z be vertices of Γ with the property that

z � x � w � y � z. Assume that the vertices w and z are connected by a path in the in-
duced subgraph � x,y � �

of Γ.  en � xw,yw �
� �
w

 � xz,yz �

� �
z . In particular, the spaces� xw, yw � and � xz, yz � have equal line sets and can be identi�ed.

Proof: By assumption there exist vertices c1, . . . ,cn of the graph Γ such that z �
c1 � c2 � . . . � cn � w is a path from z to w in � x,y � �

. Since c1 � � x,y,z � �
the

hyperbolic lines xz and yz are perpendicular to the line c
1
z in the interior space

�
z.

Hence the space spanned by xz and yz is orthogonal to the hyperbolic line c
1
z in

�
z.

In particular, every vertex ubz, which belongs to a hyperbolic line uz contained in� xz, yz � , is adjacent to c1z.  erefore the space � xz, yz � can be identi�ed with a sub-
space of

�
c1z
, whence with a subspace of

�
c1 , cf. Propositions 3.5.7 and 3.5.8. Hence,
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by lemma 3.3.4, we have � xz,yz �
� �
z

 � xc1 ,yc1 �

� �
c1 . Repeating the above argument

along the path z � c1 � . . . � cn � w, we obtain � xw,yw �
� �
w

 � xz,yz �

� �
z . ■

Lemma 3.6.3 Let n
�
7 and z � x � y � w be a chain in Γ such that the rank of the

subspace � zπx 	 yπx ,xy � is at leastmax � n � 4,6 � .  en there is a vertex h � � z,y,w �
�

in the same connected component as x in � y,z � �
.

Proof: We consider the subspace � zx, yx � and the polar space Hx
zx,yx


 zπx 	 yπx 
� zx, yx � π in the interior space � x.  e subspace Hx
zx ,yx has dimension m

�
n � 4

and is of rank r
�
n � 6. Since this subspace is perpendicular to the hyperbolic

line yx in
�
x, it can be identi�ed with a unique subspace of dimension m and rank

r of
�
y, denoted by H

y
zx,yx .  e subspace Wy


 � xy,Hy
zx ,yx � � �

y has dimension
d 
 m � 2 �

n � 2 and rank r � 2 �
n � 4. By hypothesis the rank of Wy is at

least six, thus Wy contains a six-dimensional non-degenerate space Vy. It follows
that the spaceVy 	 Hy

zx,yx contains a four-dimensional subspace of rank at least two,
as H

y
zx,yx has codimension two in Wy. Hence there exists a hyperbolic line ky in

Vy 	 Hy
zx,yx . Also, the intersection Vy 	 wπy contains a four-dimensional subspace

of rank at least two, so there also exists a hyperbolic line hy in Vy 	 wπy .  e local
line hy leads to a vertex h � � y,w �

�
and the local line ky corresponds to a vertex

k � � y,x � �
. Local analysis of x

�
and

�
x shows k � z. Indeed ky is a hyperbolic

line of Vy 	 Hy
zx ,yx

�
H

y
zx,yx and k � x in Γ, it follows that the hyperbolic line kx is

contained inHx
zx,yx

�
zπx , thus k and z are two adjacent vertices of Γ. By proposition

3.3.3 we can �nd a path from k to h in the graph G � Vy

� �
y

�
. In particular, the

vertex h lies in the same connected component of y
�
as the vertex x.

Let s0 � s1 � � � sm be a path from k 
 s0 to h 
 sm in G � Vy

�
. To �n-

ish the proof it su�ces to prove that γ is a path in the induced subgraph z
�
. We

proceed by induction.  e vertex k is adjacent to z by construction. We have
My � 
 kπy 	 Wy


 kπy 	 � xy,Hy
zx ,yx � 
 � xy, kπy 	 Hy

zx,yx � , because x � k. Notice that

My

 � xy, kπy 	 Hy

zx,yx � is a dim � Hy
zx,yx

�
-dimensional subspace of kπy

� �
y. Consid-

ering this space inside the interior space
�
k, denoted byMk, we obtain dim � Mk

� 

dim � My

� 
 dim � Hy
zx,yx

� 
 dim � Hx
zx,yx

� 
 dim � Hk
zk ,yk

�
by lemma 3.6.2, where

Hk
zk,yk


 zπk 	 yπk 
 � zk, yk � π. Furthermore, Mk

 � xk, � kπy 	 Hy

zx,yx

� k � �
Hk
zk ,yk ,

whence Mk

 Hk

zk,yk
. Here � kπy 	 Hy

zx,yx

� k denotes the subspace of � k correspond-
ing to the subspace kπy 	 Hy

zx,yx of
�
y. Consequently, k

π
y 	 Wy


 Mk

 Hy

zk,yk and in

particular,Wy

 � ky,Hy

zk ,yk � .
By induction we assume that the vertices si with i

�
n, n � N, are adjacent

to z.  en an argument as in the paragraph above yields Wy

 � siy,Hy

z
si ,ysi

� and
� siy
� π 	 Wy


 H
y
z
si ,ysi
, whence Wy


 � siy ,Hy
z
si ,ysi

� for i 
 1, . . . ,n.  e vertex
sn � 1 is adjacent to y and sn in the graph Γ. Moreover, sn � 1y is a hyperbolic line
of the subspace Vy in the interior space

�
y.  us s

n � 1
y is a hyperbolic line of the

� dim � Vy

� � 2 � -dimensional subspace � sny
� π 	 Vy in

�
y. Since � sny

� π 	 Vy is a sub-

space of � sny
� π 	 Wy


 Hy
zsn ,ysn it follows that s

n � 1
y

� � sny
� π 	 Wy


 Hy
zsn ,ysn .  erefore

76



3.6  e global space

the vertex sn � 1 is adjacent to z. ■

Lemma 3.6.4 Let n � � 7,8 � and let z � x � y � w be a path in Γ such that

• the subspace � zπx 	 yπx ,xy � is of dimension six and of rank �ve, or
• the subspace � zπx 	 yπx ,xy � is a non-degenerate subspace of dimension �ve and� zπx 	 yπx ,xy � 	 wπy of rank at least two.

 en there is a vertex h � � z,y,w � �
in the same connected component as x in � y,z � �

.

Proof: We will prove this statement in a way similar to the proof of lemma 3.6.3,
using the same notation.
First we assume that the subspace Wy


 � Hy
zx ,yx ,xy � is of dimension six and of

rank �ve, which implies that H
y
zx,yx is a four-dimensional subspace in

�
y of rank

three.  e radical of H
y
zx,yx coincides with the radical ofWy. FurthermoreWy 	 wπy

is at least four-dimensional of rank at least two as wπ
y is a � n � 2

�
-dimensional non-

degenerate subspace of
�
y.  us we can �x a hyperbolic line hy inWy 	 wπy . In the

case that hy can be chosen to lie inside the subspace H
y
zx,yx , then there is nothing

else to prove, so we may assume for the rest of this proof that hy �� H
y
zx,yx . Next

we choose a non-radical point sy of H
y
zx ,yx in the subspace h

π
y 	 Hy

zx,yx , which is of
dimension at least two. If possible, we choose sy to be singular and �x a hyperbolic
line ly inH

y
zx,yx going through sy.  is construction implies directly that the hyper-

bolic lines hy and ly span a regular four-dimensional space inside the subspaceWy,
which is contained in some �ve-dimensional non-degenerate subspace Vy ofWy.
If sy has to be chosen regular, then we pick a hyperbolic line ly incident to sy
and not intersecting the line hy in H

y
zx,yx in such a way that the radical of

� ly,hy � is
di�erent from the radical ofWy. We can satisfy this requirement by the following

argument. Let ly and l̃y be distinct hyperbolic lines inH
y
zx,yx containing the point sy

such that � hy, ly � �
 � hy, l̃y � . Since the regular plane � hy, sy � is contained in both, we
have rad � � hy, ly � � � rad � � hy, l̃y � � . Now, hπy 	 lπy 	 Wy


 � rad � Wy

�
, rad � � hy, ly � � � ,

whence there is a point ry � Wy not contained in
� hy, ly � and not contained in� rad � Wy

�
, rad � � hy, ly � � � . HenceVy


 � ry,hy, ly � is a �ve-dimensional regular space
ofWy containing both hyperbolic lines hy and ly.
 e local hyperbolic line hy yields a vertex h � � x,y,z �

�
and the local line ly a

vertex l � � y,w � �
. By proposition 3.3.3 there exists a path from h to l inside G � Vy

�
,

so that h lies in the same connected component of y
�
as the vertex x.  e vertex h

is also adjacent to the vertex z by the same argument as in the proof of lemma 3.6.3.
Alternatively letWy


 � Hy
zx,yxxy � be a non-degenerate �ve-dimensional subspace

of
�
y andWy 	 wπy be a subspace of rank at least two.  en Hy

zx,yx is a regular plane

and n 
 7. We choose a hyperbolic line hy � Hy
zxyx and a regular two-dimensional

subspace ly in the planeWy 	 wπy . Again, the local line hy yields a vertexh � � x,y,z �
�

77



3 On the �nite hyperbolic unitary geometry for n � 7

and the local line ly belongs to a vertex l � � y,w �
�
. Now the proof is identical to

the �rst part with Vy replaced byWy. ■
For the next few lemmata let z, x, y, w be vertices of Γ with z � x � y � w. In
the interior space

�
x the vertices z and y belong to hyperbolic lines zx and yx, and

xy and wy are the unique regular lines in
�
y of the vertices x and w. Moreover,

Hx
zx,yx


 zπx 	 yπx is a subspace of dimension n � 4 or n � 3 in
�
x. Since H

x
zx,yx is

contained in yπx .  is subspace can also be identi�ed with a unique subspace of�
y, denoted by H

y
zx,yx . Similarly, H

y
xy ,wy


 xπy 	 wπy is an � n � 4
�
- or an � n � 3 � -

dimensional subspace of
�
y, corresponding to the subspace H

x
xy ,wy
in
�
x.

Lemma 3.6.5 Let n
�
10.  en the graph Γ has diameter two.

Proof:  e space Wy

 � xy,Hy

zx ,yx � is of dimension at least n � 2 and of rank at
least n � 4 �

6.  us, by lemma 3.6.3, the spaceWy contains a hyperbolic line hy,
which corresponds to a vertex h � � z,y,w � �

. It follows that z and w have distance
two. Hence by induction each connected component of Γ has diameter two, and
the claim results from the connectedness of Γ. ■

Lemma 3.6.6 Let n 
 9.  en the graph Γ has diameter two.
Proof: If the subspace H

y
zx,yx is either of dimension six and of rank at least �ve

or of dimension �ve and of rank at least four, then Wy

 � Hy

zx,yx ,xy � is an eight-
dimensional subspace of rank at least seven or a seven-dimensional subspace of
rank at least six. In both cases by lemma 3.6.3 the subspaceWy contains a hyperbolic
line hy, such that the corresponding vertex h is an element of

� z,y,w � �
, yielding

diameter two by induction.
 e remaining possibility is that H

y
zx ,yx is a �ve-dimensional subspace of rank

three in
�
y. In this case we choose a hyperbolic line hy in H

y
xy,wy
intersecting H

y
zx,yx

in a one-dimensional subspace.  is choice is possible, because the subspacesH
y
zx ,yx

and H
y
xy,wy
are both contained in xπy , which implies that H

y
xy ,wy 	 Hy

zx,yx has dimen-
sion at least three and so this intersection subspace contains a one-dimensional
space which is not contained in the radical of H

y
xy ,wy
.  is hyperbolic line hy yields

a vertexh � � x,y,w � �
. Furthermore the subspace � hx ,zx � in � x is four-dimensional

and of rank at least three. Hence H
y

zx,hx
is a �ve-dimensional subspace of rank �ve

or four. Applying the argumentation from above to the path z � x � h � w, it fol-
lows that the vertices z and w have distance two in Γ, again yielding diameter two
by induction. ■

Lemma 3.6.7 Let n 
 8.  en the graph Γ has diameter two.
Proof: We will prove the statement by induction.  erefore let z,x,y and w be four
di�erent vertices of Γ such that z � x � y � w.  e subspaces Hx

zx,yx and H
y
xy,wy
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are four- or �ve-dimensional and of rank at least four, so we can distinguish the
following cases:

case dim � Hy
zx,yx

�
dim � Hy

xy,wy

�
dim � Hy

zx,yx 	 Hy
xy,wy

�

one 5 5
�
4

two 5 4
�
3

three 4 5
�
3

four 4 4
�
2

Suppose we are in case one or two, i.e.,H
y
zx,yx is a �ve-dimensional subspace of rank

at least four and the subspaceWy

 � Hy

zx ,yx ,xy � is of dimension seven and of rank
at least six. Using lemma 3.6.3 we obtain a vertex h in Γ adjacent to the vertices z, y,
w, whence the distance between the vertices z and w is at most two in Γ. Symmetry
handles case three.
Assume we are in the �nal case, i.e., dim � Hy

zx,yx

� 
 dim � Hy
xy,wy

� 
 4. We will
proceed by another case distinction depending on the rank of H

y
zx,yx and the rank

H
y
xy,wy
.

case 4-4 4-3 4-2 3-3 3-2 2-2

rank � Hy
zx,yx

�
4 4 4 3 3 2

rank � Hy
xy,wy

�
4 3 2 3 2 2

cases 4- � : If rank � Hy
zx,yx

� 
 4 then Wy

 � xy,Hy

yx ,zx � is a regular subspace of
dimension six. By lemma 3.6.3 the subspaceWy contains a hyperbolic line hy
yielding a unique vertex h � � z,y,w � �

, so the vertices z and w are at most at
distance two in Γ.

cases 3- � : In these two cases the subspace Wy

 � xy,Hy

yx ,zx � has dimension six
and rank �ve. By lemma 3.6.4 there exists again a vertex h � � z,y,w � �

.  us
z and w are at most at distance two in Γ.

case 2-2: Finally we assume that the subspacesH
y
zx,yx andH

y
xy ,wy
are of dimension

four and of rank two. Note that in this case the hyperbolic line wy does not
intersect the subspace xπy .  e intersection H

y
zx,yx 	 Hy

xy,wy
may have rank

zero, one, or two.
IfH

y
zx,yx 	 Hy

xy,wy
has rank two, thenH

y
zx,yx 	 Hy

xy ,wy
equals some hyperbolic

line hy and we are done, because the corresponding vertex h is adjacent to the
vertices z, x, y, and w in Γ implying that the distance between z and w is at
most two in Γ.
Suppose H

y
zx,yx 	 Hy

xy,wy
has rank one.  en we can �nd a hyperbolic line

ly in H
y
zx ,yx , which intersects the subspace H

y
xy,wy
in a one-dimensional sub-

space.  e four-dimensional space � ly,wy � has rank three or four, thus the
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path z � l � y � w from z to w in Γ belongs either to case 4-2 or to case 3-2,
and we are done.
If H

y
zx,yx 	 Hy

xy ,wy
is a totally singular subspace then we de�ne the two set

of points
S
y
zx ,yx � 
 � py � Hy

zx,yx 	 Hy
xy,wy

� py �� rad � Hy
zx,yx

�
, py a singular point �

and
S
y
xy,wy

� 
 � py � Hy
zx,yx 	 Hy

xy ,wy
� py �� rad � Hy

xy,wy

�
, py a singular point � .

If either of S
y
zx ,yx and S

y
xy,wy
is not empty, then with out loss of generality

we assume a�er relabelling that S
y
zx,yx �
 � and choose a point py � Syzx,yx as

well as a hyperbolic line ly in H
y
zx,yx containing the point py.  e subspace� wy, ly � is non-degenerate and of dimension four, moreover the hyperbolic

line ly corresponds to a vertex l � � x,y,z �
�
.  e resulting path z � l � y � w

belongs either to the case 4-3 or to the case 4-2, and again we are done.
In the �nal step we assume S

y
zx,yx


 � 
 Syxy,wy
, which implies rad � Hx

zx,yx

� 

H

y
zx,yx 	 Hy

xy,wy


 rad � Hy
xy,wy

�
. In other words the intersection H

y
zx,yx 	 Hy

xy,wy

is a totally singular radical two-dimensional subspace ofHx
zx,yx and ofH

y
xy ,wy
.

For an arbitrary hyperbolic line ly in H
y
xy,wy
the subspace lπy 	 Hy

xy ,wy
coin-

cides with rad � Hy
xy ,wy

�
and, therefore, rad � Hx

xy,wy

� 
 rad � Hx
zx,yx

� �
lπx 	 zπx 


Hx
zx,lx
. Furthermore � xl,wl � 
 � xy,wy � by lemma 3.6.2, which implies that

rad � Hx
xy,wy

� 
 rad � Hx
xl,wl

�
and so every point of rad � Hx

zx,yx

�
is contained

in Hx
xl ,wl 	 Hx

zx,lx
. As � zx, yx � 	 � zx, lx � 
 zx it follows that rad � � zx, yx �

� �

rad � � zx, lx � � and therefore not every point of rad � Hx

zx,yx

�
is also a point of

rad � Hx
zx,lx

�
. Consequently the path z � x � l � w belongs to some case

already dealt with, because Slzx ,lx is not empty.

Since the vertices z and w have at most distance two in Γ, by induction the graph Γ
has diameter two. ■

Lemma 3.6.8 Let n 
 7.  en the graph Γ has diameter two.
Proof: As before we will use induction to prove the claim, therefore let z,x,y andw
be four di�erent vertices of Γ forming the path z � x � y � w.  e subspaces Hx

zx,yx

and H
y
xy,wy
of
�
x resp. of

�
y have dimension three or four. We will distinguish the

following four cases:

case dim � Hx
zx,yx

�
dim � Hy

xy,wy

�
dim � Hx

zx,yx 	 Hx
xy,wy

�

one 4 4
�
3

two 4 3
�
2

three 3 4
�
2

four 3 3
�
1
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First we consider case one and two, and also case three by symmetry. Since n 
 7
and the dimension of Hx

zx,yx is four, the hyperbolic lines yx and zx span a three-
dimensional space, whenceHx

zx ,yx has a radical of dimension at most one.  us the

subspaceWy

 � Hy

zx,yx ,xy � is of dimension six and rank at least �ve. By lemma 3.6.3
and lemma 3.6.4 there exists a vertex h � � w,y,z � �

, yielding distance two between
z and w in Γ.
It remains to prove the claim in the case thatH

y
zx,yx andH

y
xy,wy
are planes. We split

up this setting into six di�erent cases depending on the rank of the planes H
y
zx,yx

and H
y
xy,wy
:

case 3-3 3-2 3-1 2-2 2-1 1-1

rank � Hy
zx,yx

�
3 3 3 2 2 1

rank � Hy
xy,wy

�
3 2 1 2 1 1

case 3-3: If H
y
zx,yx 	 Hy

xy ,wy
is a three-dimensional subspace of the interior space�

y, thenH
y
zx ,yx 	 Hy

xy,wy


 Hy
zx,yx , thusH

y
zx,yx 	 Hy

xy,wy
is a regular plane, which

of course contains some hyperbolic line hy.  e hyperbolic line corresponds
to a vertex h in the subgraph � x,y,z,w � �

, �nishing the proof.
 erefore we assume that the intersection H

y
zx ,yx 	 Hy

xy,wy
is of dimen-

sion one or two. Under this condition we regard the �ve-dimensional non-
degenerate spaceWy


 � xy,Hy
zx,yx � , which intersectswπy in a three-dimensio-

nal space of rank at least one. Moreover, for each hyperbolic line ly in the
regular plane H

y
zx,yx , the non-degenerate plane H

y
zl ,yl


 � xy, lπy 	 Hy
zx,yx � is

a subspace ofWy and intersects w
π
y in a one- or two-dimensional subspace.

As xy 	 Hy
zx,yx


 � 0 � , for di�erent hyperbolic lines hy and ly in Hy
zx,yx , the

subspaces H
y
zl,yl 	 wπy and Hy

zh ,yh 	 wπy are di�erent.
By the formulas B.3 and B.4 on page 255 the regular plane H

y
zx,yx contains

q4 � q3 � q2 hyperbolic lines, while the planeWy 	 wπy contains atmost q3 � q2 � 1
di�erent singular points. Hence we �nd a hyperbolic line ly in the plane
H

y
zx,yx such that H

y
zl,yl 	 wπy contains some regular point py.  e hyperbolic

line ly determines a vertex l in Γ adjacent to the vertices x,y,z. Furthermore,
we choose a hyperbolic line ny in the regular plane H

y
zl,yl incident to the reg-

ular point py.  e hyperbolic line ny yields a vertex n of
� z,y, l � �

. If the
subspace Hn

ny,wy
is of dimension four, then the path z � n � y � w of Γ be-

longs to one of the cases one, two, or three, so we may assume that Hn
ny,wy

is a three-dimensional subspace. Since the regular point py is perpendicular
to wy, the four-dimensional subspace

� ny,wy � has rank at least three and we
conclude that Hn

ny,wy
has rank at least two.  us, there exists a hyperbolic line

hy in the plane H
n
ny,wy
in such that Hn

nh ,wh 	 zπn contains a regular point dn,
which is possible by the argumentation above. Certainly, if Hn

ny,wy
happens
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to have rank two instead of rank three, then this subspace contains q4 hyper-
bolic lines by the formulas B.3 and B.4on pages 255, and the above argument
is still applicable. Moreover the vertex h corresponding to hy is contained in
the induced subgraph � w,n,y � �

.  e interior space
�
h contains the regular

point dh and the hyperbolic line nh, which in turn contains the regular point
ph. Since the point dh is contained in the subspace n

π
h , the two regular points

ph and dh span a hyperbolic line kh in the space
�
h, in particular kh is a hy-

perbolic line of the subspacewπ
h . Indeed the hyperbolic line nh intersects the

subspace wπh in the regular point ph, while the regular point dh is a point of
wπh by construction.  us we have determined a vertex k adjacent to w and
h. Furthermore, the two hyperbolic lines nh and kh generate a plane in

�
h

implying that dim � Hh
nh,kh

� 
 4. By these facts the path z � n � h � k of Γ be-
longs to case two or three of this proof, so there exists a vertexm � � n,k,z � �
in the same connected component of the subgraph � n,k � �

as the vertex h.
Local analysis of the interior space

�
m shows that the orthogonal space z

π
m

of zm contains the two points pm and dm, whence the hyperbolic line km
spanned by pm and dm. Consequently, the vertex k is adjacent to the vertices
z and w, so z and w have at most distance two in Γ.

case 3-2 and case 3-1: As beforewe study the intersection of the subspacesH
y
zx ,yx

and H
y
wy,xy . If the subspace H

y
zx,yx 	 Hy

wy,xy has rank at least two, then it con-

tains a hyperbolic line and we are done. Otherwise de�ne S
y
zx ,yx,wy,xy to be the

set of all singular points incident toH
y
zx,yx 	 Hy

wy,xy . If S
y
zx,yx,wy,xy

� � , then let
py be a point of S

y
zx,yx,wy,xy and we choose a hyperbolic line ly in the regular

plane H
y
zx,yx going through the singular point py.  e vertex l correspond-

ing to ly is contained in
� z,x,y � �

. Since the hyperbolic lines ly and wy span
either a three-dimensional or a non-degenerate four-dimensional space, the
path z � l � y � w belongs to case four 3-3 or to case two. On the other hand,
if S

y
zx ,yx,wy,xy


 � , then we choose a regular point ry in Hy
zx,yx 	 Hy

wy,xy and a

hyperbolic line ly incident to the point ry in the regular planeH
y
zx ,yx , yielding

the path γ � z � l � y � w in Γ between z and w.  e subspace � ly,wy � is
either of dimension three, in which case the path γ belongs to case two, or of
dimension four. If this four-dimensional subspace is of rank four, then the
path γ belongs to case 3-3. If the rank of � ly,wy � strictly less than four the we
obtain the point set S

y

zl ,yl ,wy,ly

 � sy � sy � Hy

zl,yl 	 Hy

wy,ly
, sy a singular point � .

If S
y

zl ,yl ,wy,ly
� � , then the path γ satis�es the conditions of the previous para-

graph, which leads to the fact that the path γ can be transformed to a path
between the vertices z and w of length three belonging to case two or case
four 3-3. If S

y

zl ,yl,wy,ly
is also empty, then we choose a regular point dy in

H
y
zl,yl 	 Hy

wy,ly
and consider the two-dimensional space hy spanned by the

two di�erent points ry and dy. Since dy is a regular point in l
π
y

�
rπy , the space
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hy is a hyperbolic line, contained in w
π
y .  us the corresponding vertex h is

adjacent to the vertices y and w.  e hyperbolic lines ly and hy span a plane
implying dim � Hy

ly ,hy

� 
 4. Hence there exists a vertex m � � z, l,h � �
in the

same connected component of � l,h � �
as y, because the path z � l � y � h

in Γ belongs to case two or three. Hence, by local analysis of the space
�
m,

the vertex h is also adjacent to z, as the hyperbolic line hm is contained in the
subspace zπm by construction.  erefore w and z have a common neighbour
h and therefore at most distance two in Γ.

case 2-2 and case 2-1: Again we will analyse the subspaceH
y
zx,yx 	 Hy

wy,xy and the

set of singular points S
y
zx ,yx,wy,xy


 � sy � sy � Hy
zx,yx 	 Hy

wy,xy , sy a singular point � .
Suppose py is an element of S

y
zx,yx,wy,xy not contained in the radical ofH

y
zx ,yx .

In this case we choose a hyperbolic line ly in H
y
zx,yx incident to the point py

and obtain the subspace � wy, ly � , which is of dimension three or four and of
rank at least three. As before the path z � l � y � w belongs to case two or to
case four (3-2).
If on the other hand S

y
zx ,yx,wy,xy


 � , then every point of Hy
zx,yx 	 Hy

wy,xy is

regular. Note that dy

 Hy

zx,yx 	 Hy
wy,xy is a unique point, because anisotropic

two-dimensional unitary spaces over a �nite �eld do not exist. Recall also
that the regular point dy is contained in q

2 hyperbolic lines and one singular
line of H

y
zx,yx by lemma B.1.4.  erefore the hyperbolic line wy contains a

singular point sy such that s
π
y 	 Hy

zx,yx is a hyperbolic line ly, containing dy.
 e subspace � wy, ly � is non-degenerate of dimension three or four, so the
path z � l � y � w belongs either to case two or to case four (3-2).
It remains to deal with the case that each point of S

y
zx,yx,wy,xy is contained in

the radical ofH
y
zx,yx . SinceH

y
zx,yx is a rank two plane, the point set S

y
zx,yx,wy,xy

consists of a unique singular point. If the intersection H
y
zx,yx 	 Hy

xy ,wy
is a one-

dimensional subspace, then it equals the radical of H
y
zx,yx . In this situation

xπy

 � Hy

xy ,wy
,H

y
zx,yx � , so that Syzx, yx,wy,xy cannot be contained in the rad-

ical ofH
y
xy,wy
, as otherwise S

y
zx,yx,wy,xy is contained in the radical of x

π
y , a con-

tradiction. Since every singular point of a rank one plane is contained in the
radical of that plane, the plane H

y
xy ,wy
necessarily has rank two. By symme-

try, working with the singular points S
y
zx ,yx,wy,xy not in the radical of H

y
wy,xy ,

we are done. Now we assume that the intersection H
y
zx,yx 	 Hy

xy,wy
is a two-

dimensional subspace. Any hyperbolic line ly of H
y
zx,yx has the property that

lπy 	 Hy
zx,yx equals the radical ofH

y
zx,yx . Hence the subspace

� ly,wy � π 	 Hy
zx,yx

is of dimension one. Since l � x, the path z � l � y � w by lemma 3.6.2
belongs to the situation that H

y
zl ,yl 	 Hy

ly,wy
is of dimension one, that we have

just dealt with.

case 1-1: In this �nal case we assume that Hx
zx,yx and H

y
xy ,wy
are planes of rank

one. Let px be some point in H
x
zx,yx 	 Hx

xy,wy
. Since zπx is a �ve-dimensional
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3 On the �nite hyperbolic unitary geometry for n � 7

non-degenerate subspace, there exists a hyperbolic line mx in z
π
x incident to

px.  e hyperbolic line mx corresponds to a vertex m � � z,x � �
. Moreover,

the subspace � mx, yx � is either three-dimensional or four-dimensional and
of rank at least three. Hence the path m � x � y � w belongs to one of the
above cases.  us the graph Γ contains a vertex n � � m,w � �

.  e resulting
path z � m � n � w from z tow has the property that � mn,wn � is a plane or a
four-dimensional subspace of rank at least three, because the hyperbolic line
mn intersects w

π
n the point in pn.  us this path belongs to one of the cases

above.

 us z andw have distance at most two in Γ, and the claim follows by induction. ■
Altogether, we have proved the following.

Proposition 3.6.9  e graph Γ has diameter two.

In fact, the proofs of lemma 3.6.5 to lemma 3.6.8 also imply that Γ is simply con-
nected.

Next we want to construct a global point-line geometry on the graph Γ that will
allow us to determine the isomorphism type of Γ. Recall the notation introduced
for local objects in the beginning of this section.  e following observation will
play an important role for the de�nition of global points.

Lemma 3.6.10 Let x, y, z be three di�erent vertices of Γ satisfying x � y � z � x and
let px be a local point of

�
x such that yx,zx � pπx .  en the unique local point py �

�
y

induced by the point pyx �
�
yx and the unique local point pz �

�
z induced by the point

pzx �
�
zx satisfy zy � pπy and yz � pπz . Moreover, the unique local point in

�
z induced

by pzy is equal to the local point pz.

Proof:  is lemma is proved using the results from section 3.5. As by assumption
yx,zx � pπx , the local point px �

�
x gives rise to a point px 	 y

� 
 pyx

 pxy of�

yx

 �

xy and to a point px 	 z
� 
 pzx 
 pxz of

�
zx

 �

xz . Consider the unique
local point py of

�
y which contains the point pyx and the unique local point pz of�

z which contains the point pzx . Since y
π
x 	 zπx is a regular subspace of dimension

at least n � 4 incident to the point px, it also contains two hyperbolic lines g1x and
g2x, which are elements of px. By construction the vertices g

1, g2 belong to unique
interior lines of the local points px, py, pz, pxy


 pyx , pxz 
 pzx , pyz 
 pzy . Hence
zy � pπy and yz � pπz and, by partial linearity, cf. proposition 3.4.6, the unique local
point in

�
z induced by pzy is equal to the local point pz. ■

For the construction of global points let px be a local singular point in the interior
space

�
x for some vertex x of the graph Γ and consider the set of vertices p0



px � � h � L � pπx �

� ph � pxh �
ph � in Γ. Furthermore we de�ne inductively the set of
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3.6  e global space

vertices pi

 � ph � pi � 1 � � k � L � pπ

h
� � pk � phk

�
pk � � for i � N. Certainly p0

�
p1 using

the fact that for each local point ph of p0, which is di�erent from the local point px ,
the local hyperbolic line xh is an element of L � pπh

�
.  us px

�
p1. Moreover, note

that px
�
p0, so by construction � h � L � pπx �

� ph � pxh �
ph � �

p1.

Suppose there exists a vertex k in p1 � p0.  en again by construction of the set
p1 there is a path x � y � w � k in Γ from x to k such that yx is a hyperbolic line
contained in pπx andwy is a hyperbolic line in the subspace p

π
y and kw is a hyperbolic

line going through the local point pw. Without loss of generality we may assume
that wy is a hyperbolic line of the subspace p

π
y which is not contained in x

π
y and

that kw is a hyperbolic line of the local point pw but not of the local point pyw , as
otherwise k is a vertex of p0. Because of these assumptions kw is not a hyperbolic
line of the orthogonal subspace yπw, but intersects the y

π
w in the singular point pw.

We conclude that � kw, yw � is a four-dimensional non-degenerate space.
Due to the properties of Γ discussed in the series of lemmata in the beginning of
this section there exists a vertex z � � x,y,k � �

and a path w � c1 � � � cn � z

in � y,k � �
. Since the local hyperbolic line c1w is incident to the subspace k

π
w, it is

also contained in pπw, whence there is a local point pc1 � pwc1
containing the local

hyperbolic line kc1 . By lemma 3.6.10 we have pyc1
�
pc1 and c

1
y � pπy . Repeating this

argument along the path w � c1 � . . . � cn � z, we end up with pyz
�
pz, that kz is a

hyperbolic line of the local point pz and also that zy is contained in the subspace p
π
y .

 is implies that the hyperbolic line zy is incident to the subspace p
π
xy
, and, thus, a

subspace of pπx , in particular pxz
�
pz. Whence the global line k is an element of

the vertex set p0, implying that p0

 pi for each i � N.  is construction leads to

a well-behaved set of vertices p � 
 p0 
 px � � l � L � pπx �
� pl � pxl �

pl � such that the
local singular point px

�
p.

De�nition 3.6.11 A global point pof Γ equals px � � l � L � pπx �
� pl � pxl �

pl � for some
vertex x � Γ and some local singular point px of the interior space � x.  e set of all
global points of Γ is denoted by � Γ.

Notice that the de�nition of a global point pdoes not depend on the starting local
point px

�
p because p 
 p0 
 pi for all i � N.  e next property follows directly

from the construction of a global point p.

Proposition 3.6.12 Let pbe a global point and x be vertex of Γ.  en p 	
�

x is either
empty or a local singular point of

�
x.

 e pair
�
Γ

 � � Γ,

�
Γ

�
with symmetrised inclusion as incidence is a point-line

geometry called the global space on Γ.
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Lemma 3.6.13  e point-line geometry
�
Γ is a connected partially linear space.

Proof: Let p and d be two di�erent global points of � Γ and suppose the vertex set
p 	 d contains two distinct vertices x and y. Since the graph Γ has diameter two by
proposition 3.6.9, there exists a vertex z in the induced subgraph � x,y � �

. It follows
that the two di�erent local points pz


 p 	
�
z and dz


 d 	
�
z are incident to the

two local lines xz and yz in
�
z, thus pz


 pz by lemma 3.4.7, whence p 
 d. Hence�
Γ is partially linear.
In order to prove connectedness of

�
Γ let again p and d be two di�erent global

points. Choose l � pandm � d. Using once again that the diameter of Γ is two, there
is a vertex k � � m, l � �

.  e interior spaceGk contains the interior points pk

 p	

�
k

and dk

 d 	

�
k. Hence connectedness of

�
Γ follows from the connectedness of

�
k,

cf. lemma 3.4.6. ■
We intend to use theorem 3.4.1 to identify the geometry

�
Γ.  erefore we need to

de�ne and study planes of
�
Γ.

De�nition 3.6.14 Two global lines k and l are de�ned to span a global plane � k, l � g
with respect to z � � k, l � �

, if � kz, lz � g� z
is a local geometric plane of

�
z.  e global

plane � k, l � g consists of all global lines m such that m � z �
and mz is an interior

line of the local geometric plane � xz, yz � g�
z
and contains all global points pwith the

property that pz

 p 	

�
z is an interior singular point of the local geometric plane� xz, yz � g� z

.

 e next step is to prove that the de�nition of a global plane is independent of the
vertex z used in the de�nition. To this end let x, y, z, w be vertices of Γ such that
z � x � w � y � z. Since xz and yz are interior lines of the space � z, the span of xz and
yz is either a three-dimensional or a four-dimensional subspace in

�
z. We want to

prove that x and y span a global plane with respect to z if and only if they span a
global plane with respect tow. In view of lemma 3.6.2 it su�ces to show that w and
z can be connected via a path in � x,y � �

.

Lemma 3.6.15 Let n
�
7 and let x, y, z,w be four vertices of Γ satisfying z � x � w � y � z.

If dim � � xz, yz � � 
 3, then there exists a path from z to w in � x,y � �
. In particular,

the global lines x and y span a global plane with respect to z if and only if they span a
global plane with respect to w and those two global planes are equal.

Proof:  e subspace Hz
xz,yz


 xπz 	 yπz has dimension n � 3 and rank at least n � 4
implying that the subspaceWy � 
 � Hy

xz ,yz ,zy � has dimension n � 1 and rank at least
n � 2.  is setting satis�es the assumption of lemma 3.6.3, if n �

8, and the assump-
tion of lemma 3.6.4, if n 
 7.  us the graph Γ contains a vertex h � � x,y,w � �

in
the same connected component of � x,y � �

as the vertex z.  e claim follows now
from lemma 3.6.2. ■
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Proposition 3.6.16 Any global plane of
�
Γ is �nite and isomorphic to a linear plane

or a symplectic plane.

Proof: Let Eg be a global plane of
�
Γ, thus Eg


 � x,y � g for some global line x,y
of Γ. By de�nition 3.6.14, the global plane Eg consists of all global lines m and all
global points p such that the interior lines mz and the interior points pz


 p 	
�
z

are incident to the geometric plane � xz, yz � g� z
for some z � � x,y � �

. We use lemma
3.4.9, lemma 3.4.16 and the facts that for each vertex w of Γ the interior space

�
w

is isomorphic to a subspace of
�
Γ, in particular for each z � � x,y �

�
, and that the

global plane Eg

 � x,y � g is isomorphic to the local geometric plane � xz, yz � g� z

, to
determine that Eg is a �nite plane of order q of the geometry

�
Γ.  e complete

statement follows now from corollary 3.4.9 and lemma 3.4.16. ■

Corollary 3.6.17  e point-line geometry
�
Γ is a non-linear space, thus the geometry�

Γ contains two distinct global points not incident to a common global line.

Proof: Let z be a vertex of Γ.  en the interior space
�
z contains some local geo-

metric plane isomorphic to a symplectic plane, which is a non-linear subspace of�
z. It follows that the geometry

�
yields some global plane, which is isomorphic to

a symplectic plane by proposition 3.6.16. ■

Lemma 3.6.18  e point-line geometry
�
Γ

 � � Γ,

�
Γ

�
is a planar space, any two

distinct intersecting global lines are contained in a unique plane.

Proof: Let k and l be two global lines contained in the global planes Pg and Eg.
By de�nition 3.6.14 we obtain that Pg


 � m,n � g 
 � mz,nz � g� z
for some vertices

m,z,n satisfying m � z � n and that Eg

 � s, t � g 
 � tx, tx � g� x

for some vertices
s,x, t of Γ such that s � x � t. As the global line k and l are elements of Pg as
well as elements of Eg it follows that kz and lz are two di�erent interior lines of
the geometric plane � mz,nz � g� z

, thus � kz, lz � g� z


 � mz,nz � g� z
. Also kx and lx are

di�erent interior lines of � sx, tx � g� x
implying � kx, lx � g� x


 � sx, tz � g� x
. We conclude

that Pg

 � m,n � g 
 � mz,nz � g� z


 � kz, lz � g� z


 � k, l � g 
 � kx, lx � g� x


 � sx , tz � g� x



� s, t � g 
 Eg. ■
We will need the following notation for the last part of this section.

De�nition 3.6.19 Let p and d be two global points of
�
Γ. We say that p is orthog-

onal to d, in symbols p � d, if there is a global line k of p and a global line m of d
satisfying k � m. We denote all global points orthogonal to a global point pby � p

and we de�ne p
� 
 � p � p.

Note that the point set p
�
contains all global points of

�
Γ not collinear to the global

point p.
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Lemma 3.6.20 Let pand d be distinct global points of
�
Γ.  en p

� �� d �
.

Proof: Let l be global line of p andm be an element of d. By proposition 3.6.9 there
exists a vertex z � � l,m � �

. Since p 	
�
z

 pz is a local point of � z distinct from

the local point d 	
�
z

 dz, by lemma 3.4.18 we obtain that p�

z �� d
�

z . Since
�
z is

isomorphic to a subspace of
�
Γ, the unique global point b containing the local point

bz � p�

z is an element of p
�
.  is implies p

� �� d �
. ■

Lemma 3.6.21 Let Eg be a linear global plane and let x be a global point.  en Eg
and x

�
have a global point in common, so Eg 	 x � �
 � .

Proof: If x is incident to Eg, then the property that x � x �
implies x

� 	 Eg �
 � .
Hence we consider the setup that x is not contained in the plane Eg.  e plane
Eg is by de�nition spanned by two di�erent intersecting global lines k and l, i.e.,
Eg

 � k, l � g. Let h be a global line of the x, proposition 3.6.9 implies the existence

of vertices m, n and z such that m � � k,h � �
, of n � � h, l � �

, and of z � � l,k � �
. In

the interior space Gm, the subspace km 	 xπm is of dimension at least one, so there
local point im in the intersection km 	 xπm. We remark here that the interior point
im is not necessarily singular. If the local point im is indeed singular, then im � x �

m,
and therefore i � x � 	 k �

x
� 	 Eg

Γ, where i is the unique global point containing im,
and we are done. Alternatively, we consider in the interior space Gn a local point
jn incident to the subspace ln 	 xπn . Again, if jn is a singular interior point, we are
done.
Hence we may assume that both subspaces ln 	 xπn 
 jn and km 	 xπm 
 im are
regular interior points. By de�nition of a global plane, the global lines k and l in-
tersect in a global point p, so pm


 p 	
�
m is a singular interior point in

�
m as well

as the interior point pn

 p 	

�
n of the space

�
n is singular. We may assume that

neither pm is incident to x
π
m nor pn is incident to x

π
n , as otherwise there is nothing

to prove. It follows that the interior singular points xm and pm span an interior line
gm, which corresponds to a vertex g � Γ. Moreover, as g and k intersect in the global
point p, the lines k and g span the global plane Pg


 � k,g � g � �
m. By construction

of the interior line gm, the span
� km, gm � is a regular three-dimensional subspace

of
�
m, so P

g
� m


 � km, gm � g� m
is a linear geometric plane.

Next we consider the path g � m � k � z � l between the vertices g and l in
Γ. By assumption the global plane Eg is linear, thus H

z
kz,lz


 kπz 	 lπz is an � n �
3
�
-dimensional non-degenerate subspace in

�
z. As Pg is also a linear plane the

subspace Hm
km,gm


 kπm 	 gπm of
�
m is regular and of dimension n

� 3.
We will analyse the unique induced subspace Hk

kz,lz
and Hk

km,gm
inside

�
m and

claim the existence of a vertex t � � k, l,g,z � �
. Since Vk � 
 � mk,H

k
km,gm

� is a regular
� n � 1 � -dimensional subspace we obtain thatWk � 
 Vk 	 zπk is of dimension at least
� n � 3 � . Since the subspace Hk

kz,lz

�
zπk is � n � 3

�
-dimensional and non-degenerate,

the intersectionWk 	 Hk
kz,lz
is at least � n � 4 � -dimensional of rank at least n � 5 �

2.
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3.6  e global space

 erefore there is an interior line tk inWk 	 Hk
kz,lz
.  is interior line tk corresponds

to a vertex t � � k, l,g,z � �
, as claimed.

In the interior space
�
t the interior lines kt and lt span the linear geometric plane

E
g

� t


 � kt, lt � g� t
. Since g is a vertex of the set x 	

�
t, the intersection xt


 x 	
�
t

is an interior singular point of
�
t.  erefore the � n � 1 � -dimensional subspace xπt

intersects the graphical plane EG � � t � at least in a two-dimensional subspace, which
contains an interior singular point st. Certainly st � x �

t , which implies s � x � 	 Eg,
where s is the unique global point containing st.  e claim is proved. ■
We have now reached our goal.

Proposition 3.6.22  e point-line geometry
�
Γ

 � � Γ,

�
Γ

�
is isomorphic to the ge-

ometry of singular points and hyperbolic lines of an m-dimensional non-degenerate
unitary polar space over Fq2 .

Proof: By lemma 3.6.13 the geometry
�
Γ is a connected partially linear space. By

corollary 3.6.17 it is non-linear and by lemma 3.6.18 planar. Since for every vertex x
of Γ the interior space

�
x is of order q using that

�
z � H � Un

�
it follows by lemma

3.6.12 and the property that the geometry
�
z is isomorphic to a subspace of

�
Γ that

the space
�
Γ has order q. By lemma 3.6.16, the space

�
Γ satis�es hypothesis 1 of

theorem 3.4.1.  e validity of hypothesis 2 has been discussed in proposition 3.4.20,
hypothesis 3 follows from lemma 3.6.20, hypothesis 4 from lemma 3.6.21. Hence
by theorem 3.4.1 the geometry

�
Γ is isomorphic to the geometry of singular points

and hyperbolic lines of a non-degenerate symplectic or unitary polar space over
the �eld Fq respectively Fq2 . Since

�
Γ contains linear planes, it is isomorphic to the

geometry of hyperbolic lines of some non-degenerate unitary polar space over the
�eld Fq2 . ■

Corollary 3.6.23  e graph Γ is isomorphic to the hyperbolic line graph of an m-
dimensional non-degenerate unitary vector space over the �eld Fq2 .

 eorem 3.1.2 Let n
�
7, let q

�
3 be a prime power, and let Γ be a connected graph

that is locallyG � Un
�
.  en Γ is isomorphic to G � Un � 2 � .

Proof: By corollary 3.6.23, we have Γ � G � Um
�
for some m � N. Since the con-

nected graph G � Um
�
is locally G � Un

�
if and only ifm 
 n � 2, cf. proposition 3.3.3,

necessarily Γ � G � Un � 2 � ■

 eorem 3.1.3 Let n
�
7 and let q be an odd prime power. Let G be a group with

subgroups A and B isomorphic to SU2 � Fq2 � , and denote the central involution of A
by x and the central involution of B by y. Furthermore, assume the following holds:

• CG � x � 
 X � K with K � GUn � Fq2 � and A �
X;
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3 On the �nite hyperbolic unitary geometry for n � 7

• CG � y � 
 Y � J with J � GUn � Fq2 � and Y �
B;

• A is a fundamental SU2 � Fq2 � subgroup of J;
• B is a fundamental SU2 � Fq2 � subgroup of K;
• there exists an involution in J 	 K that is the central involution of a fundamental
SU2 � Fq2 � subgroup of both J and K.

If G 
 � J,K � , then PSUn � 2 � Fq2 � �
G � Z � G � �

PGUn � 2 � Fq2 � .
Proof: [22, section 6] and [35] provide a standard method how to derive the claim
from theorem 3.1.2. ■
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C H A P T E R FOUR

On locally complex unitary geometries

4.1 Local recognition of the line graph of complex unitary
space for n � 6

 e compact Lie groups G 
 G � E6 � 
 E2 6 � C
� � 
 E6, � 78 resp.G


 G � A7

� 
 SU8 � C �
of type E6 and A7 allow to de�ne graphs with vertex set

� Gα, � α � α a root with re-
spect to a maximal torus ofG � in which two vertices Gα, � α and Gβ, � β are adjacent
if and only if

�
Gα, � α,Gβ, � β � 
 1. Both of these commuting fundamental SU2 � C �

subgroup graphs are locally isomorphic to the commuting fundamental SU2 � C �
subgroup graph of the group SU6 � C � , as can be read o� the extended Dynkin dia-
grams of type Ã7 and Ẽ6.

In this chapter we will study abstract connected graphs that are locally isomor-
phic to the commuting fundamental SU2 � C � subgroup graph of the group SU6 � C � ,
which is isomorphic to the line graph S � V6 � , satisfying that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z,
achieving the following results:

� each such graph contains an induced subgraph isomorphic to the commuting re-
ection graph of either the Weyl group of type A7 or the Weyl group of type E6,

� each such graph admits an abstract group of automorphisms isomorphic to the
group SU8 � C � or to the group E6, � 78 � C � ,

� there exists a canonical topology turning the abstract groups of automorphisms
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4 On locally complex unitary geometries

into compact Lie groups, by [28]
� each connected graph that is locally the commuting fundamental SU2 � C � sub-
groups graph of the group SU6 � C � satisfying that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z,
is isomorphic to the commuting fundamental SU2 � C � subgroups graph of either
SU8 � C � , denoted by F � SU8 � C � � � S � V8 � , or E6, � 78, denoted by F � E6, � 78

�
.

First we focus again on the line graph of an n-dimensional unitary vector space over
C.  erefore we recall the de�nition of S � Vn � for n � N, and state some results from
chapter 2.

De�nition 4.1.1 Let n � N, let V 
 Vn be an n-dimensional vector space over the
complex numbers and let � � , �

�
be an anisotropic form (the scalar product or the

negative of the scalar product) on V � V. For a subspace U
�
V the polar of U is

Uπ 
 � x � V � � x,u � 
 0 for all u � U � .  e line graph S � Vn � of the complex
vector space Vn is the graph on the two-dimensional subspaces of Vn, where two
distinct lines l and k of Vn are adjacent (in symbols k � l) if and only if l �

kπ or,
equivalently, if k

�
lπ.

For a vertex x of S � Vn � , the neighbourhood graph S � Vn � x 
 x
�
is the subgraph

induced by S � Vn � on the set of vertices � y � S � Vn � � x � y � . For a set of vertices X
of S � Vn � the graph X

�
is de�ned as � x � X x

�
.

Our main result is the classi�cation of all connected locally S � V6 � graphs.

 eorem 4.1.2 Let Γ be a connected locally S � V6 � graph satisfying that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z.  en
the universal cover

�

Γ of Γ is isomorphic to S � V8 � or to F � E6, � 78

�
.

Translating this statement into group theoretical language, we obtain the following
characterization.

 eorem 4.1.3 Let n 
 6 and G be a group with subgroups A and B isomorphic to
SU2 � C � , and denote the central involution of A by x and the central involution of B
by y. Moreover, we assume that the following is satis�ed:

• CG � x � 
 X � K with K � GUn � C � and A �
X;
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• CG � y � 
 Y � J with J � GUn � C � and B �
Y;

• A is a fundamental SU2 � C � subgroup of J;
• B is a fundamental SU2 � C � subgroup of K;
• the subgroup J 	 K contains a central involution z of a fundamental SU2 � C � of
both J and K.

If G 
 � J,K � then (up to isomorphism) either PSUn � 2 � C � �
G � Z � G � �

PGUn � 2 � C �
or E6, � 78 � Z � E6, � 78

� �
G � Z � G � �

Aut � E6, � 78

� � Z.

Again this theorem 4.1.3 is directly derived from theorem 4.1.2 in a way similar to
the proof of analogue in [22] and [38].

4.2 Basis systems and closed cycles in the line graph S
�
Vn �

In this part let Γ be isomorphic to the line graph S � V6 � . We state some important
results from chapter 2 section 2.2 and 2.3. Recall also the notation from these sec-
tions, in particular

�
Γ is the interior space of Γ.

Proposition 4.2.1 Let n
�
4.  en the graph S � Vn � is locally S � Vn � 2

�
.

Proof:  is follows from 2.2.5 and 2.3.1. ■

Proposition 4.2.2 Let n
�
5.  en the graph S � Vn � is connected. More precisely, the

graph S � Vn � has diameter four, if n 
 5, and diameter two, if n �
6.

Proof: See 2.2.5 and 2.3.1. ■

Proposition 4.2.3 Let n
�
5 and let Γ � S � Vn � .  en reconstruction of the vector

space Vn over C and the non-degenerate unitary form � � , �
�
is possible from the graph

Γ.

Proof: See 2.2.14 and 2.3.7. ■
We consider closed cycles of vertices in the graph Γ � S � V6 � and claim that each
closed cycle can be decomposed into triangles and quadrangles.  us let γ be a
closed path y0 � y1 � . . . � yk � y0 in Γ. Using proposition 4.2.2 to observe that
each closed path in Γ can be decomposed into pentagons, quadrangles and triangles.
 erefore we will show how to decompose a pentagon in Γ into quadrangles and
triangles.
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Lemma 4.2.4 Let x,w, y,z,v be �ve di�erent vertices of Γwhich forma closed path in
the following way: x � w � y � z � v � x.  en the pentagon x � w � y � z � v � x
can be decomposed into triangles and quadrangles in Γ.

Proof: Inside the space
�
Γ, let zp be a point on the line z.  en z

π
p 	 � z,x � is a

subspace of dimension two or three and contains a point xp incident to the line x.
We de�ne the line h to be the span of the points xp and zp. In particular, the vertex
h is adjacent to v as h

� � z,x � �
vπ. Furthermore we �x a point yp on y and a point

wp on the line w. Let l be the line spanned by yp and xp, so l

 � yp,xp � �

wπ and
the line k to be the two-dimensional space � zp,wp � �

yπ, implying directly that
k � y � w � l. By construction the point xp is orthogonal to the point zp and since
x � w the point wp is a subspace of x

π
p, so k is contained in x

π
p.  e lines w and z

are incident to the subspace yπ, thus w and z are also contained in yπp. We conclude
that the orthogonal space lπ 
 yπp 	 xπp of the line l contains the line k, therefore
k � l in Γ.
Since � h, k, l � 
 � xp,zp, yp,wp � 
 � k, l � is a four-dimensional subspace of � Γ, the
space n 
 � h, k, l � π is a line of � Γ. As the spaces � h, l,x � 
 � x, yp,zp � and � h, k,z � 
� z,wp,xp � are of dimension four, we have that m 
 � h, k,z � π and g 
 � h, l,x � π are
two-dimensional subspaces of

�
Γ. Directly from the equations above we obtain that

g is a vertex of � h,x, l � �
, the vertex m is an element of � h, k,z � and the vertex n is

adjacent to the vertices h, k and l.  us the closed path x � w � y � z � v � x is
decomposed into the triangle n � k � l � n and the quadrangles

x � w � l � g � x
x � g � h � v � x
w � y � k � l � w
z � m � k � y � z
v � h � m � z � v
g � l � n � h � g
h � n � k � m � h .

x

w

y

z

v

k

lm
n

gh

■

We will apply the following constructions and remarks very o�en in section 4.3.

Remark 4.2.5 Let x be a line in the complex vector spaceV6 and α � v1,v2,v3,v4,v5,v6
be an orthonormal basis of V6 such that v1 and v2 are vectors of the line x and the
vectors vi with 3

�
i

�
6 are contained in the subspace xπ. In particular the vectors

v1 and v2 form a basis of the line x, which we denote with α
x and αx

π � v3, . . . ,v6 is
a basis of the subspace xπ.
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An x-SU2 � C � -action on the vector space V6 is the faithful action

x-SU2 � C � -V6 � SU2 � C � � V6 � V6 with � φ, y � �

����
�

�
φ � αx

1
�

1

� ���
� �
y � α ,

where
�
φ � αx is the matrix representation of the automorphism φwith respect to the

basis αx and
�
y � α is the coordinate vector of y � V6 w.r.t. the basis α. We denote

the matrix

����
�

�
φ � αx

1
�

1

�����
� with �

φV6 � α 

�
x � φV6 � α and the corresponding

automorphism with φV6

 x � φV6 for every φ � SU2 � C � and any orthonormal

basis α of V6, which satis�es the conditions from above for the line x. Notice that
φV6 is an element of SU6 � C � as

�
φV6 � α is a unitary matrix with determinant one.

Let β be another basis of V6 then we can determine the matrix
�
φV6 � β via basis

transformation with the transformation matrix β
�
idV6 � α, thus

�
φV6 � β 
 β

�
idV6 � α ��

φV6 � α � β

�
idV6 � � 1

α .  is x-SU2 � C � -V6 action induces a natural x-SU2 � C � action
on the projective space P � V6 � which is de�ned as follows

x-SU2 � C � -P � V6 � � SU2 � C � �
P � V6 � � P � V6 �

� φ, p� � � x � SU2 � C � � V6 � φ, pv � � 
 �
�
φδ

�
pv � δ � ,

where p is a point of the projective space P � V6 � , pv is a non-zero vector ofV6 span-
ning the one-dimensional subspace p and δ is a basis of V6. We denote the auto-
morphism of P � V6 � induced by the vector space automorphism φV6 with φP � V6 � .

Here is the main de�nition of this part.

De�nition 4.2.6 Let Γ be a graph isomorphic to S � V6 � and let x be a vertex of
the graph Γ. An x-SU2 � C � action on the graph Γ, denoted by x-SU2 � C � -Γ, is the
faithful action SU2 � C � � Aut � Γ � induced by the natural x-SU2 � C � - � Γ-action of�
Γ � P � V6 � with respect to the decomposition x � xπ of � Γ given by the vertex x.

In the last part of this section we will construct some special bases of the vector
space V6 under the use of a line x.  is construction of some basis and the corre-
sponding matrices with respect to these bases of the x-SU2 � C � -V6 action will play
an important role in the next section.

Remark 4.2.7  us let k and l be two lines, which are orthogonal to each other so
k � lπ and l � kπ, in the complex vector space V6. We �x an orthonormal basis
α � w1v , . . . ,w6v of V6 such that the following conditions are satis�ed:
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4 On locally complex unitary geometries

C1 the vectors w1v and w2v span the line k

C2 the vectors w3v and w4v span the line l

C3 � w5v ,w6v � 
 kπ 	 lπ.

In particular the vectors w1v and w2v form a basis αk for the line k and αl � w3v ,w4v

is a basis for l.

We regard the vectors wi for i

 1 . . . ,6 and wii � 1 � 
 wi � wi � 1 with 1 �

i
�
5. Let

pj

 � wj � for the indices j � J 
 � 1, . . . ,6, 12,23,34,45, 56 � be the points spanned

by the vectors wj in V6 then the points p1 and p2 as well as the points p1 and p12
span the line k, � p3, p4 � 
 l 
�� p3, p34 � and � p5, p6 � 
 � p5, p56 � 
 kπ 	 lπ.
Each point pj, j � J, contains in�nitely many vectors of length one. Every vector
of length one of the point pj is an element of

� eiφwj � φ �
�
0,2π

� � for 1 �
j

�
6

and for j � � 12,23,34,45, 56 � every vector of length one of the point pj is of the
form 1�

2
eiφwj in V6.  us let x be an element of

� 1, . . . ,6 � and ux be an vector
of length one contained in the point px.  en we determine a orthonormal basis
αux � u1,u2,u3,u4,u5,u6 of V6 and vectors u12,u23,u34,u45,u56 of V6 such that

B1 each vector uj has length one for j � J,
B2 uj is a vector of the point pj for j � J,
B3 � uj,ujj� 1 � 
 1�

2
for 1

�
j

�
5 and � uj� 1j,uj

� 
 1�
2
for 2

�
j

�
6

We call the basis αux together with the vectors u12,u23,u34,u45,u56 of V the basis
system αux with respect to the lines k and l and the vector ux, or shorter the basis
system αux w.r.t. ux.

Proposition 4.2.8  e basis system αux is uniquely determined by the vector ux.

Proof:  e vector ux equals e
iφwx for some �xed φ �

�
0,2π

�
. For x

�
5 the vec-

tor uxx � 1 is of the form 1�
2
eiσwxx � 1 with σ � �

0,2π
�
. We show that the value σ

is uniquely determined by the vector ux. Since
1�
2

 � ux ,uxx � 1 � 
 eiφ �

1�
2

�

e � iσ � wx,wxx � 1 � 
 eiφ �
1�
2

� e � iσ 
 1�
2

� ei � φ � σ � 
 1�
2
� cosφ � σ � i sin φ � σ � implying

the equations cosφ � σ 
 1 and sinφ � σ 
 0.  e equation cosφ � σ 
 1 indicates
that either φ 
 σ or φ 
 2π � σ and the second equation sin φ � σ 
 0 implies that
φ 
 σ or φ 
 π � σ, indeed the only possible solution is φ 
 σ, which proves that
the vector ux uniquely determines the vector uxx � 1. With similar arguments and
calculation we obtain that the vector uxx � 1 �xes the vector ux � 1 and so on. Also
this argumentation implies that the vector ux �xes ux � 1x for x

�
2. Indeed the basis

system αux is uniquely determined by the vector ux, which proves our claim. ■
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For the next step �x an index j � � 1, . . . ,6 � and let αuj and αzj be two di�erent
basis systems of V6 obtained by the speci�ed construction above, which means
that uj and zj are two di�erent vectors of length one of the point pj, thus uj



eiφwj


 eiλeiµwj

 eiλzj for some φ, λ, µ �

�
0,2π

�
.  e transformation matrices

between the bases αuj and αzj in V6 are αzj
�
id � αuj 
 eiλI and αzj

�
id � � 1

αuj

 e � iλI.

Since αuj and αzj are bases of the vector space V6 we can consider for each en-
domorphism µ � V6 � V6 the matrix representation of µ with respect to the ba-
sis αuj, denoted by

�
µ � αuj , resp. relative to the basis αzj, denoted by

�
µ � αzj. Us-

ing the special shape of the transformation matrix αzj
�
id � αuj , we see that

�
µ � αuj 


� αzj
�
id � αuj

�
� 1

�
µ � αzjαzj

�
id � αuj 
 � αzj

�
id � αuj

�
� 1
αzj

�
id � αuj

�
µ � αzj 


�
µ � αzj. In partic-

ular, with regard to an x-SU2 � C � -V6 action of V6 for some two-dimensional linear
subspace x of V6 we have that

�
φV6 � αuj 


�
φV6 � αzj for each φ � SU2 � C � .

4.3 Automorphisms of the graph
�
Γ

Let Γ be a connected locally S � V6 � graph satisfying the condition that
� � z,w � �

	 x
� � 
 1 if and only if � � z,w � �

	 y
� � 
 1 (4.1)

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z. Let
�

Γ be a 2-simply connected cover of Γ (as a 2-dimensional simplicial complex), then
�

Γ is locally S � V6 � and satis�es the axiom from above, as coverings of 2-dimensional
simplicial complexes preserve triangles. A good reference for the covering theory
of simplicial complexes is [78].

Directly from this condition we can derive some basic properties of the graph Γ,
which will be important later in this section.

Notation: As the graph Γ is locally S � V6 � , for every vertex x of Γ, we can construct
the interior space

�
x

 �

x � on the induced subgraph x
�
, which is isomorphic to

P � V6 � , see proposition 4.2.3. Recall that any local object (point, line, plane, etc.)
only exists in an interior space

�
x for some vertex x in the graph Γ , thus to avoid

confusion, we will index every local object by the vertex x whose interior space it
belongs to. For example, if x � y in the graph Γ, then y is a vertex of the subgraph
x

�
corresponding to the local object yx, an interior line, in the space

�
x. By yx we

denote the vertex y considered as a vertex of the subgraph x
�
. With the symbol y

�
x

we denote the subgraph � x,y � �
which is of course an induced subgraph of x

�
.  e

interior space obtained from the graph y
�
x will be denoted with

�
yx .

Lemma 4.3.1 Let x,y,z andw be four di�erent pairwise adjacent vertices in the graph
Γ.  en the interior lines zx and wx span a four-dimensional subspace in

�
x and� z,w � � �

x

 � z,w � � �

y .

97



4 On locally complex unitary geometries

Proof: First of all � z,w � � �
x

 L � � zx,wx � � by lemma 2.3.2 and each element of

L � � zx,wx � � is a two-dimensional subspace of yπx . It follows that each vertex h of� z,w � � �
x is adjacent to x and y in Γ. Since the three lines wy,zy and xy are pair-

wise orthogonal we obtain that xy

 wπy 	 zπy implying the following identities� z,w � � �

y

 L � � zy,wy � � 
 L � xπy

� 
 x �
y . Hence the vertex h is contained in

� z,w � � �
y

proving � z,w � � �
x

� � z,w � � �
y . By symmetry, we also get

� z,w � � �
y

� � z,w � � �
x , so� z,w � � �

x

 � z,w � � �

y . ■

Lemma 4.3.2 Let x,y,z and w be four di�erent vertices in the graph Γ such that x �
w � y � z � x � y then � z,w � � �

x

 � z,w � � �

y .

Proof: In the special case that x,y,z and w are four di�erent pairwise adjacent ver-
tices of Γ lemma 4.3.1 implies the statement.
Suppose z and w are not adjacent in Γ then the subspace spanned by the lines zx
and wx is either of dimension four implying z

π
x 	 wπx is a single line hx (and, thus,� z,w � �

	 x
� 
 1) or of dimension three; then � z,w � �

	 x
� �

1 as � z,w � �
	 x

� 

L � zπx 	 wπx

�
.

If � zx,wx � is a four-dimensional subspace of � x then zπx 	 wπx 
 yπx and by lemma
2.3.2, � z,w � � �

x

 L � � zx,wx � � 
 L � yπx

� 
 y
�
x . From the facts that � � z,w �

�
	 y

� � 
 1
and w � x � z we conclude that the lines zy and wy span a subspace of dimension
four in

�
y and that z

π
y 	 wπy 
 xπy , thus � z,w �

� �
y

 L � � zy,wy � � 
 L � xπy

� 
 x
�
y



x
�
	 y

� 
 y �
x

 � z,w � � �

x and we are done.
If otherwise the subspace � zx,wx � is a plane of � x then � � z,w �

�
	 x

� � � 1 implying
that � � z,w � �

	 y
� � � 1 and dim � � zy,wy � � 
 3 in � y. To prove the statement let hx be

a line of the plane � zx,wx � di�erent from the line zx and from the line wx.  en the
subgraphs � z,h � �

	 x
�
and � h,w � �

	 x
�
of Γ contain more than one vertex.  us

dim � � hy,wy � � 
 dim � � hy,zy � � 
 3 as � � z,h �
�
	 y

� � � 1 and � � h,w � �
	 y

� � � 1.
Suppose the intersection point zx 	 wx is a subspace of the line hx and we assume
that the line hy is not a subspace of

� zy,wy � . From the previous paragraph we see
that hy intersects zy and also wy in the point zy 	 wy. Next we choose a line gy
of the plane � zx,wx � not going through the intersection point zx 	 wx.  erefore
dim � � hy, gy � � 
 4 and � � h,g �

�
	 y

� � 
 1 
 � � h,g � �
	 x

� � . Considering the constella-
tion back in the space

�
x we obtain that the line gx is either contained in the plane� zx,wx � or intersects the subspace � zx,wx � in the point zx 	 wx. In both cases gx

intersects the line hx, contradiction.  us hy is a line incident to the plane
� zx,wx � .

If the line hx is not going through the point zx 	 wx, then we choose a point
px � � zx,wx � in such a way that px is not a point of the three lines zx,wx and
hx and �x the three di�erent lines g

z,h
x

 � px ,zx 	 hx � , gw,hx


 � px ,wx 	 hx � and
gz,wx


 � px,wx 	 zx � . Certainly any two distinct elements kx, lx of the line set� zx,wx,hx, g
z,w
x , gz,hx , gw,hx � span the plane � zx,wx � thus � � k, l �

�
	 x

� � � 1 implying
� � k, l � �

	 y
� � � 1 and dim � � ky, ly � � 
 3 in � y. Suppose the line hy is not contained in

the plane � zy,wy � , then the six lines zy,wy, hy, g
z,w
y , g

z,h
y and g

w,h
y intersect pairwise
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in the point zy 	 wy and, by the previous part, g
z,w
y

� � zy,wy � and gz,hy
� � zy,hy �

and gw,hy
� � hy,wy � . In particular we can �x a line vy in the three-dimensional

subspace � gw,hy , gz,hy � , which does not intersect the line gz,wy .  us we conclude

that dim � � vy, gz,wy � � 
 4 
 dim � � vy,zy � � 
 dim � � vy,wy � � as well as that gw,hy , gz,hy

and vy are three mutually intersecting lines in x
π
y .  erefore vx intersects the plane� zx,wx � either in the point px (a contradiction as vx 	 gz,wx


 � 0 � ) or in the two
di�erent points gz,hx 	 vx and gz,hx 	 vx implying that vx is a line of the plane � zx,wx � ,
contradiction. In fact hy is a line of the plane

� zx,wx � .
It follows that � z,w � � �

x

 L � � zx,wx � � �

L � � zy,wy � � 
 � z,w �
� �
y and by symmetry

we also obtain that � z,w � � �
y

 L � � zy,wy � � �

L � � zx,wx � � 
 � z,w �
� �
x , which shows

that � z,w � � �
x

 � z,w � � �

y . ■
We will o�en use this basic result in the following form.

Lemma 4.3.3 Let x,y,z and w be four di�erent pairwise adjacent vertices in the
graph Γ.  e interior lines zx and wx span a plane in

�
x if and only if the interior

lines zy and wy span a plane in
�
y.

Lemma 4.3.4 Let x,y,z and w be four di�erent vertices in the graph Γ with x � w �
y � z � x � y and dim � � zx,wx � � 
 3.  e line hx � � zx,wx � is incident to the point
zx 	 wx if and only if the line hy

� � zy,wy � is incident to the point zy 	 wy.

Proof: By lemma 4.3.2 the subspace hy is a line of the plane
� zy,wy � . By way of

contradiction we assume that the point zy 	 wy is not contained in hy.  en we �x
an interior line gy in x

π
y running through the point zy 	 wy, which is not contained

in the plane � zy,wy � .  e vertex g is adjacent to x and � � g,z �
�
	 y

� � � 1 as well as
� � g,w � �

	 y
� � � 1.  us gx is not a line of the plane � zx,wx � but the two-dimensional

subspace gx intersects the two lines zx and wx, so gx 	 zx 
 gx 	 wx

 zx 	 wx



zx 	 wx 	 hx, contradiction. ■

Lemma 4.3.5 Let z � x � y � w be chain in Γ such that zπx 	 yπx and xπy 	 wπy are
planes.  en there is a vertex h � � z,x,y,w � �

.

Proof: By lemma 4.3.2 the plane Hx
zx,yx


 zπx 	 yπx can be identi�ed with a unique
subspace of dimension three in

�
y; we denote it by H

y
zx,yx . Since H

y
zx,yx

�
xπy ,

dim � xπy
� 
 4 and dim � xπy 	 wπy

� 
 3 the two planes Hy
zx,yx and x

π
y 	 wπy intersect in

the line hy.  us the vertex h belonging to the line hy is an element of
� z,x,y,w � �

in the graph Γ. ■
In lemma 4.3.2 and lemma 4.3.3 we have concluded that we can preserve in some
special con�gurations planes in a connected locally S � V6 � graph Γ. In the following
we show that for a vertex x � Γ we can also identify points of the line xy in � y with
unique points on the line xz in

�
z if z,y � x

�
.
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Lemma 4.3.6 Letw, x, y, z be distinct pairwise adjacent vertices of Γ.  en the graph
Γ contains vertices xy � � x,y � �

and xz � � x,z � �
and yz � � y,z � �

such that

(i) the interior lines xzz, yzz and wz intersect in one point of
�
z,

(ii) the interior lines xyy and yzy and wy intersect in one point of
�
y, and

(iii) the graph Γ contains a vertex u adjacent to z, y, xy, xz, yz in the same connected
component of xy

�
	 xz

�
as the vertex x.

Proof: Inside the interior space
�
y we choose an interior point py on wy and con-

sider the orthogonal space pπy of py.  e space p
π
y 	 xπy is three-dimensional and

contains the interior line zy, because zy
�
wπy 	 xπy . Choose a point ay on the line

zy and de�ne xyy � 
 � ay, py � . Furthermore choose a point by on the line xy and
de�ne yzy � 
 � by, py � .  e interior lines yzy and xyy correspond to vertices xy and
yz in the graph Γ satisfying xy � � x,y � �

and that yz � � y,z � �
. By construction xy,

yz and w satisfy condition (ii). Let sy
�
zπy be a line containing py distinct from wy.

Analysing the constellation in
�
z by lemma 4.3.4 the interior line yzz intersects wz

in the point pz

 sz 	 wz. De�ne xzz � 
 � pz, cz � for some point cz on yz.  e vertex

xz obtained from the interior line xzz satis�es xz � � x,z �
�
and condition (i) holds

for w, yz, xy.
Next, we consider the line uy


 zπy 	 yzπy 
 zπy 	 � py,by � π 
 zπy 	 pπy 	 bπy in
�
y.

 e subspace uy intersects the line wy in the point p
π
y 	 wy and the line xy in the

point bπy 	 xy, as wy
�
bπy 	 zπy and xy �

pπy 	 zπy . Hence uy 
 � pπy 	 wy,b
π
y 	 xy � .

Since uy
�
zπy

�
aπy , the interior line uy is incident to the subspace xy

π
y

 pπy 	 aπy ,

proving that u � � y,z,xy,yz � �
.  e vertex u corresponds to the interior line uz



� wz 	 pπz ,bπz 	 xz � , where bz 
 xz 	 yzz by lemma 4.3.4. As uz �

yπz
�
cπz and uz

�
pπz ,

we have uz
�
cπz 	 pπz 
 xzπz , proving u � xz.

To complete the proof of the statement we have to construct a path from x to
u in the induced subgraph � xy,xz � �

. Let vy be a line through by in z
π
y 	 xyπy �

xy � by. We have v � � y,z,xy,xz �
�
. By construction bz


 xz 	 yzz � uπz 	 xzπz
and, moreover, by lemma 4.3.4 the line vz passes through the point bz


 xz 	 yzz,
whence the plane Hz

zy,xyy induced by the plane H
y
zy,xyy


 zπy 	 xyπy via lemma 4.3.3
contains the point bz. It follows that the interior space

�
u contains a unique point

bu on the line yzy contained in xy
π
u 	 xzπu. By lemma 4.3.3 the space � xyu, yzu �

is three-dimensional and also � xzu, yzu � �
zπu is a plane. Finally the two interior

lines xyu and xzu either intersect in a point of
�
u or not. Assuming the latter, the

space � xyu,xzu � has to be four-dimensional and has to contain yzu. We deduce� 0 � 
 � xyu,xzu � π 	 yzu 
 xyπu 	 xzπu 	 yzu � bu, a contradiction. So xyu and xzu
intersect in a common point, therefore xyπu 	 xzπu is three-dimensional. Moreover
uπxy 	 xπxy is also a plane by lemma 4.3.3 and the facts that uy intersects the line xy
in a point as well as y � xy.  us lemma 4.3.5 applied to the path xy � u � xz � x

yields a vertex h � � xy,xz,x,u � �
, �nishing the proof. ■
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Lemma 4.3.7 Let w, x, y, z, v be �ve di�erent vertices of Γ such that x,y,z,v are
elements of w

�
and x � y � z � v � x.  en to each point px on wx the graph Γ

contains a vertex xvy � � x,y,v � �
and a vertex vyz � � y,z,v � �

such that

(i) the interior lines xvyx and wx intersect in px,

(ii) the interior lines xvyy, vyzy and wy intersect in a common point of
�
y, and

(iii) the graph Γ contains a vertex u � � y,v,xvy,vyz � �
.

Proof: Inside
�
w we analyse the combination of the four lines yw, xw, zw and vw.

Since yw and vw are incident to the subspace x
π
w 	 zπw the lines xw and zw span a

plane in
�
w, as otherwise yw


 vw, contradiction. By symmetry also � yw,vw � is a
plane.
Next we consider this con�guration inside

�
x. Due to lemma 4.3.3 the space� yx,vx � is of dimension three. Also wx

�
yπx 	 vπx , because v � w � y. Let px

be a point on the interior line wx and choose xvyx to be a two-dimensional sub-
space in yπx 	 vπx through px.  e line xvyx corresponds to a vertex xvy � � y,v,x �

�
.

In particular xvy satis�es condition (i).
By lemma 4.3.3 the subspace � wy,xvyy � is of dimension three and incident to

xπy in
�
y.  e same corollary implies that the space H

y
vz ,yz induced by the three-

dimensional spaceHz
vz,yz


 vπz 	 yπz , is a plane of zπy , which contains the line wy. We

pick a line vyzy of H
y
vz,yz incident to the point py


 wy 	 xvyy. From this construc-
tion it follows that the lines xvyy, vyzy and wy intersect in a common point and
that vyz � � v,z,y � �

. In particular xvy and vyz satisfy condition (ii). Furthermore
vyzy and xvyy intersect in the point py, so H

y
yvzy ,xyvy is also a plane. In fact the

four-dimensional subspace yπyvz contains the planes H
yvz
yvzy,xyvy (which is induced

by H
y
yvzy,xyvy) and H

yvz
vyvz,yyvz


 vyvz 	 yyvz. Analysing dimensions we conclude that
H

yvz
yvzy ,xyvy 	 Hyvz

vyvz,yyvz contains some line uyvz.  e corresponding vertex u satis�es
u � � y,v,xyv,yvz � �

. ■
Let x, y and z be three pairwise adjacent vertices of Γ. By proposition 4.2.3 we can
consider the projective spaces

�
x,
�
y and

�
z for the respective induced subgraphs

x
�
, y

�
, z

�
. Moreover, the intersections x

�
	 y

�
, x

�
	 z

�
, y

�
	 z

�
are isomorphic to sub-

spaces of the respective projective spaces of codimension two. In particular, we can
translate a point pof the projective space on x

�
that lies in the subspace on x

�
	 y

�
to the projective space on y

�
, because we can identify each point as the intersection

of two suitable lines. However, if p is a point contained in the subspace x
�
	 y

�
	 z

�
,

then it is not immediately clear that the point in
�
z obtained by translating it di-

rectly from
�
x coincides with the point in

�
z obtained by translation from

�
x to

�
y

and then to
�
z, because for n


 6 the induced subgraph x �
	 y

�
	 z

�
is a unique

vertex, so it is not possible to identify a point as the intersection of two lines.  e
purpose of the next lemma is to establish that these two points coincide.
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Lemma 4.3.8 Let w � y be vertices of Γ and let γ 
 y0 � y1 � . . . � yt � y0 be a cycle
in the induced subgraph w

�
based at the vertex y0


 y. Furthermore let py 
 py0 be
a point on the interior line wy of the projective space

�
y and let inductively pyi �

1 be
the point on the interior line wyi �

1 in
�
yi �

1 induced by the point pyi on the line wyi in�
yi .  en the point on the interior linewy in

�
y induced by the point pyt onwyt in the

interior space
�
yt is equal to py.

Proof: By proposition 4.2.2 and lemma 4.2.4 the graph w
�
� G � V6 � has diameter

two and any cycle γ � w �
can be decomposed into triangles and quadrangles.  e

triangle situation of the statement is studied in lemma 4.3.6. Let x, y, z be a triangle
in w

�
and let xy, xz, yz be vertices of Γ satisfying the hypotheses and, thus, the

conclusion of lemma 4.3.6.  en the lines wx and xyx intersect in a point p
w
x



wx 	 xyx of
�
x and induce the point p

w
y

 wy 	 xyy 
 wy 	 yzy inside

�
y . Furthermore

the interior lines wz and yzz de�ne the point p
w
z

 wz 	 yzz 
 wz 	 xzz of the

interior space
�
z. We claim that the two points p

w
x

 wx 	 xyx and wx 	 xzx of the

space
�
x coincide. Indeed, by lemma 4.3.6 there is a vertex u in

� y,z,xy,xz,yz � �
,

which implies that the three interior lines xyu, xzu and yzu intersect in one point
cu

 xyu 	 xzu 	 yzu of

�
u. Moreover by lemma 4.3.6 the vertices u and x lie in

the same connected component of the subgraph � xy,xz � �
, thus by lemma 4.3.3 the

lines xyx and xzx have to intersect inside
�
x, as dim � � xyu,xzu � � 
 3. Since xyx is

incident to yπx and xzx is a subspace of z
π
x the only possible intersection point of xyx

and xzx is p
w
x

 xyx 	 wx.  us we see that p

w
x

 xyx 	 wx


 xyx 	 xzx 
 xzx 	 wx,
and we have proved the claim for triangles.
It remains to study quadrangles. Let x � y � z � v � x be a cycle in w

�
.  en

there exist xyv,yvz � Γ and a vertex u � � y,v,xyv,yvz � �
as in lemma 4.3.7 such

that the interior lines xyvv and wv intersect in the point p
w
v

 xyvv 	 wv, which

induces the point pwx

 xyvx 	 wx, as the intersection of xyvx andwx.  erefore the

lines xyvy andwy de�ne the point p
w
y

 wy 	 xyvy 
 wy 	 yvzy (cf. lemma 4.3.7(ii)),

which implies that wz and yvzz intersect in the point p
w
z

 wz 	 yvzz. Finally, the

interior lines wv and yvzv induce the point wv 	 yvzv. We claim that the points pv
and wv 	 yvzv coincide. As the lines xyvy and yvzy intersect in a point, the two-
dimensional subspaces xyvu and yvzu span a plane in

�
u by lemma 4.3.3. Hence

by lemma 4.3.3 again also xyvv and yvzv intersect. Furthermore xyvv is incident
to the subspace xπv and not contained in z

π
v . On the other hand the line xyvv lies

inside zπv and is not incident to x
π
v . It follows that the only possible point, which is

incident to both lines xyvv and yvzv, is p
w
v

 xyvv 	 wv


 xyvv 	 xyvx 
 yvzv 	 wv,
which proves the claim. ■

Lemma 4.3.9 Let y � w � z be vertices of Γ and let py and qy be two points on the
linewy.  e points py and qy are orthogonal in

�
y if and only if the induced points pz

and qz are orthogonal in
�
z. Conversely, py �� qπy in

�
y if and only if pz �� qπz in

�
z.

Proof: By lemma 4.3.8 we may assume without loss of generality that y � z. Let py
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and qy be two orthogonal points on the line wy in
�
y, i.e., py

�
qπy . Since w � z,

we have the line py,qy
�
wy

�
zπy and, thus, qy

�
pπy 	 zπy . Hence there exists a

line ly in p
π
y 	 zπy through qy. Furthermore, the line lπy 	 zπy 
 my is orthogonal to

the line ly and, in particular, contains the point py.  e orthogonal lines ly and my

correspond to adjacent vertices l,m � � y,z � �
. By lemma 4.3.8 the induced point pz

is incident towz andmz and the induced point qz is incident towz and lz.  e lines
mz and lz are orthogonal in

�
z, as l � m, implying that each point of the line lz is

orthogonal to each point of the line mz.  us pz
�
qπz , proving the claim. ■

 e identi�cation of points in di�erent local projective spaces implies some inter-
esting adjacency relations in the graph Γ. Let x,y,z and w be four di�erent vertices
in the graph Γ such that x � w � y � z � x � y. We claim that any vertex m � z �
which belongs to a line mz intersecting the orthogonal lines xz and yz in

�
z, is ad-

jacent to the vertex w.

We start with the setting that x,y,z and w be four di�erent vertices in the graph Γ
such that x � w � y � z � x � y and � zx,wx � is a plane in the projective space � x.
Let mz be some line of the subspace

� xz, yz � such that xz 	 mz is the point p
x
z and

yz 	 mz is the point p
y
z . Furthermore we �x also the two points s

x
z

 � pxz

� π 	 xz and
s
y
z

 � pyz � π 	 yz. By lemma 4.3.8 the points syz and pyz induce unique orthogonal

points s
y
x and p

y
x on the line yx in the projective space

�
x.

We consider the path m � z � x � w in Γ and by lemma 4.3.5 we �nd a vertex
h � � m,z,x,w � �

. Moreover, we identify unique points pxh, p
y
h and s

x
h on the lines

mh and xh induced from the points p
x
z , p

y
z and s

x
z by lemma 4.3.8. As x � y � w and

the points s
y
x and p

y
x are pairwise orthogonal, we obtain thatH

x
xz ,mz 	 wπx contains the

point s
y
x .  us we choose the vertex h in suchmanner that hx is a line inH

x
xz,mz 	 wπx

going through the point s
y
x .

Again by lemma 4.3.5 we �nd a vertex l � � h,m,x,y � �
as m � h � x � y and

dim � � hx, yx � � 
 3. Using lemma 4.3.8, the projective space � l contains unique pair-
wise orthogonal points pxl , p

y
l , s

x
l and s

y
l on the linesml, xl, yl and hl induced from

the one-dimensional subspaces pxh, p
y
x , s

x
h and s

y
x . In particular, the point p

y
l of

�
l

and the point p
y
h
of
�
h induce each other and the two lines hl and yl intersect in

the point s
y
l . Furthermore lx

�
Hx
xh ,mh 	 hπx 	 yπx , where Hx

xh,mh
is the unique plane

in the subspace hπx induced from the plane H
h
xh ,mh


 � xπh ,mπ
h � , and wx

�
hπx 	 yπx

implying that the lines lx and wx intersect each other.

As dim � � hl, yl � � 
 3 by lemma 4.3.3 we �nd a vertex n � � h, l,y,w �
�
by application

of lemma 4.3.5 to the path h � l � y � w. Certainly the points p
y
l and s

y
l induce

unique orthogonal points p
y
n and s

y
n on the line yn. Since y � w and p

y
n

�
hπn, it

follows that p
y
n

�
hπn 	 wπn . Furthermore pyh �

wπh , as the three points p
y
l of

�
l and

p
y
h
of
�
h and p

y
n of

�
n induce each other.  us the orthogonal space w

π
h contains

the two intersecting lines xh and mx in
�
h implying that m � w, which veri�es the

claim for this special choosen setting.
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Lemma 4.3.10 Let x,y,z and w be four di�erent vertices in the graph Γ such that
x � w � y � z � x � y and � zx,wx � is a plane in the projective space � x.  en any
vertex m � z �

, which belongs to a line mz intersecting the orthogonal lines xz and yz
in
�
z, is adjacent to the vertex w.

If x,y,z and w are four di�erent vertices in the graph Γ such that x � w � y � z �
x � y and � zx,wx � is of dimension four in � x.  en � zx,wx � 
 yπx and we choose a
line kx in the subspace y

π
x intersecting zx and wx in some point.  us k is a vertex

of the graph Γ adjacent to x and y and dim � � zx, kx � � 
 3 
 dim � � wx, kx � � . It follows
by lemma 4.3.10 that any vertexm � z �

, which belongs to a line mz intersecting xz
and yz in some point is adjacent to the vertices k and w.

Lemma 4.3.11 Let x,y,z and w be four di�erent vertices in the graph Γ such that
x � w � y � z � x � y.  en any vertex m � z

�
which belongs to a line mz

intersecting the orthogonal lines xz and yz in
�
z, is adjacent to the vertex w.

We now turn to the construction of automorphisms of the graph
�

Γ.  us let Γ be a
connected locally S � V6 � graph satisfying the condition that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1
for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z and

�

Γ be a 2-simply connected cover of Γ.  e complex vector space of the projective
space

�
x for some vertex x will be denoted by V � � x � .

Lemma 4.3.12 Let x,y,z,w be four vertices of
�

Γ such that x � z � y � w � x.  en
we can determine a unitary isomorphism between the vector subspaces � wx,zx � of
V � � x � and � wy,zy � of V � � y � such that each point px � � wx,zx � is mapped to the
induced point pz � � wy,zy � .
Proof: We choose an orthonormal basis α � u1, . . . ,u4 of the subspace � wx,zx � such
that � u1,u2 � 
 wx and

� u3,u4 � 
 zx. Let v4 be a normal vector contained in the
one-dimensional space � u4 � and let αv4 � v1, . . . ,v4 together with vii � 1 for 1 �

i
�
3

be the basis system w.r.t. v4 of
� wx,zx � . Next we consider the points px,vj 
�� vj � for

j � J 
 � 1, . . . ,4, 12,23,34 � of the projective space � x, which induce unique points
py,vj for j � J by lemma 4.3.8. Any two point py,vj and py,vt of the subspace � wy,zy �
have the same relation to each other as the points px,vj and px,vt by lemma 4.3.9
for any j, t � J. Hence we �x a normal vector g4 of the point py,v4 and compute
the basis system βg4 � g1, . . . , g4; gii � 1 for 1 �

i
�
3 of � wy,zy � w.r.t. the vector g4.

 e map γ � � wx,zx � � � wy,zy � with vj � gj for 1
�
j

�
4 is an isomorphism

between the vector subspaces � wx,zx � and � wy,zy � . Directly from the construction
it follows that the isomorphism γ preserves the scalar product and the points, thus
γ is a unitary isomorphism. ■
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Remark 4.3.13  e isomorphism γ between the subspaces � wx,zx � and � wy,zy � in
lemma 4.3.12 is not unique. However, we claim that any two isomorphisms γ and γ̂
di�er only by a scalar eiλ in the sense that δ

�
γ � µ 
 eiλδ

�
γ̂ � µ with δ a basis of � wx,zx �

and µ a basis of � wy,zy � .
We will prove this statement in two steps. Keeping the notation used in the proof
of lemma 4.3.12, let α � u1, . . . ,u4 be an orthonormal basis of � wx,zx � such that� u1,u2 � 
 wx and

� u3,u4 � 
 zx.  en, as in the proof, we obtain the basis system
αv4 w.r.t. a normal vector v4 of px,u4 and the basis system βg4 w.r.t. a normal nor-
mal vector g4 of py,u4


 py,v4 . Suppose we choose the normal vector v̂4 instead of
v4 and the normal vector ĝ4 in place of g4.  en v̂4


 eiλv4 and ĝ4 
 eiρg4 for
some λ, ρ � �

0,2π
�
. Furthermore αv̂4

�
id � αv4 
 eiλI and βĝ4

�
id � βg4 
 eiρI, where

αv̂4 is the basis system of
� wx,zx � w.r.t. v̂4 and βĝ4 is the basis system of � wy,zy �

w.r.t. ĝ4. As the two unitary isomorphisms γ and γ̂ from
� wx,zx � to � wy,zy � have

the matrix representation βg4

�
γ � αv4 
 I with respect to the bases αv4 and βg4 , re-

spectively βĝ4
�
γ̂ � αv̂4 
 I with respect to bases αv̂4 and βĝ4 , we get that βĝ4

�
γ � αv̂4 


βĝ4

�
id � βg4 � βg4

�
γ � αv4 � αv4

�
id � αv̂4 
 eiρ � eiλI 
 eiρ � eiλ � βĝ4

�
γ̂ � αv̂4 .

For the next step let αu � u1, . . . ,u4 and αr � r1, . . . , r4 be two orthonormal bases
of � wx,zx � such that � u1,u2 � 
 � r1, r2 � 
 wx and

� u3,u4 � 
 � r4, r4 � 
 zx. Again we
construct two basis systems αv4 and αr4 w.r.t. some normal vectors v4 and r4 and
obtain the basis transformation matrix α̂r4

�
id � αv4 .

As described in the proof of lemma 4.3.12 we also obtain the two basis systems βg4
and βs4 w.r.t. some normal vectors g4 of the point py,v4 and s4 of the point py,r4
and the resulting unitary isomorphisms γ � � wx,zx � � � wy,zy � with vj � gj and
γ̂ � � wx,zx � � � wy,zy � � rj � sj, for 1

�
j

�
4. If � v4, r4 � 
 c �
 0, then the vectors

g4 and s4 are not perpendicular, in fact e
iλc 
 � g4, s4 � for some λ �

�
0,2π

�
. In

case � v4, r4 � 
 0, then we consider the normal vector 1�
2
� v4 � r4 � 
 v44, so that

� v44,v4 � 
 1�
2

 � v44, r4 � . De�ne px,v44 
 � v44 � in

�
x, which induces the unique

point py,v44
� � wy,zy � .  e one-dimensional space py,v44 contains a unique normal

vector g44 such that � g44, g4 � 
 1�
2
, thus � g44, s4 � 
 1�

2
eiλ for some λ � �

0,2π
�
.

 erefore in both cases it follows that the basis transformation matrix between βg4
and βs4 is βs4

�
id � βg4 
 eiλ � αr4

�
id � αv4 , hence βs4

�
γ � αr4 
 βs4

�
id � βg4 � βg4

�
γ � αv4 �

αv4

�
id � αr4 
 eiλαr4

�
id � αv4 � αv4

�
id � αr4 
 eiλ � βs4

�
γ̂ � αr4 .

Since all these isomorphisms di�er only by a scalar, we can �x one isomorphism

and denote it by θ 
 θ
�
wy ,zy ��
wx ,zx � �

� wx,zx � � � wy,zy � . A vector v � � wx,zx � has the
image θ

�
wy ,zy ��
wx ,zx � � v

� 
 θ � v � 
 vθ.

Lemma 4.3.14 Let x, y, z be mutually adjacent vertices of
�

Γ. An x-SU2 � C � - � y action
on the projective space

�
y induced by the x-SU2 � C � -V � � y � action can be uniquely
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4 On locally complex unitary geometries

extended to an action x-SU2 � C � - � � y � � z � � SU2 � C � � �
y �

�
z �

�
y �

�
z such

that � φ �
y

� �
z

� � � x


 id � � � y
� � z � � � x

for each φ � SU2 � C � and the action � x-SU2 � C � -
� � y � � z � � � � z

is the x-SU2 � C � - � z action on the projective space � z.
In particular, if a vector space automorphism φV � � y � has a matrix representation of
the shape given in 4.2.5 with respect to a basis system αu6 � u1, � ,u6;ujj� 1 with 1 �

j
�
5 of V � � y � w.r.t. u6 satisfying � u5,u6 � 
 xy , then the corresponding vector space

automorphism φV � � z � y also has a matrix representation of the shape given in 4.2.5
with respect to a basis system βv6 � v1, � ,v6; vjj� 1 with 1 �

j
�
5 of V � � y � satisfying� v5,v6 � 
 xz such that the points � uj � � �

y and
� vj � � �

z correspond to each other
for 3

�
i

�
6.

Proof: In view of 4.2.5 and 4.2.6, we can study the x-SU2 � C � -V � � y � action, where
V � � y � is the complex unitary vector space corresponding to � y . By the construction
described in remark 4.2.7, we can assume that αu6 � u1,u2,u3,u4,u5,u6;ujj� 1 for 1 �

j
�
5 is a basis system of the vector spaceV � � y � with � u1,u2 � 
 zy, � u3,u4 � 
 zπy 	 xπy

and � u5,u6 � 
 xy.  e matrix representation
�
φV � � y � � αu6 of the automorphism

φV � �
y � relative to the basis αu6 for every φ � SU2 � C � is

�����
�
1

�

1 �
φ � αxyu6

������
� .  ere-

fore the restriction � φV � � y �
� � zπy of the automorphism φV � � y � to the subspace zπy has

thematrix representation
� � φV � �

y �
� � zπy �

α
zπy
u6



��
� 1 1 �

φ � � αu6 � xy

� �
� with respect to the

basis α
zπy
u6 � u3,u4,u5,u6 of zπy .  us the restriction of the x-SU2 � C � -V � � y � - action

to the four-dimensional subspace zπy is a x-SU2 � C � -action on zπy which we denote
by x-SU2 � C � -zπy � SU2 � C � � zπy � zπy with � φ,wy

� �
� � φV � � y �

� � zπy �
α
zπy
u6

�

�
wy �

α
zπy
u6

.

 e four-dimensional subspace zπy of
�
y corresponds to the subspace y

π
z of

�
z,

every interior line ky of z
π
y corresponds to the interior line kz of y

π
z and every

point py of z
π
y corresponds to the point pz incident to y

π
z in

�
z by lemma 4.3.8.

 erefore the points pj,y

 � uj � , j � � 3,4, 5,6,34,45, 56 � 
 J, inside

�
y induce

points pj,z in
�
z for each j � J having identical properties. In particular p3,z,

p4,z, p5,z, p6,z are pairwise orthogonal with
� p5,z, p6,z � 
 xz and

� p3,z, p4,z � 

xπz 	 yπz . Choosing a normal vector v6 of the point p6,z we determine the basis
system β

yπz
v6 � v3,v4,v5,v6; vjj� 1 for 3 �

j
�
6 of yπz w.r.t. v6. Hence each auto-

morphism � φV � � y �
� � zπy with φ � SU2 � C � induces a unique automorphism φyπz of

yπz with matrix representation
�
φyπz �

β
yπz
v6


 � � φV � �
y �
� � zπy �

α
zπy
u6

w.r.t. the basis β
yπz
v6 , so

that the x-SU2 � C � -zπy action determines an x-SU2 � C � -yπz action. Notice that by
remark 4.3.13 the x-SU2 � C � -V � yπz

�
action is only determined up to multiplication
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with eiλ, λ � �
0,2π

�
. All these x-SU2 � C � -V � yπz

�
actions, however, induce the same

x-SU2 � C � -yπz action, which therefore is unique.
Moreover each automorphism φyπz of the subspace y

π
z can be extended to the

automorphism φV � � z � y such that � φV � � z � y
� � yz 
 id � yz . Indeed we complete the basis

β
yπz
v6 of the subspace y

π
z to a basis β � v1,v2,v3,v4,v5,v6 such that vectors v1 and

v2 have length one and span the line yz of V � � z � . We de�ne φV � � z � y to be the
automorphism

φV � � z � y � V �
�
z

�
� V � � z �

w �

���
�
1

1 � � φV � � y � y
� � zπy �

α
zπy
u6

� ��
� �

�
w � β

and the desired x-SU2 � C � -V � � z � y action on V � � z � has the description:

x-SU2 � C � -V � � z � y � SU2 � C � � V � � z � � V � � z �

� φ,w � �

���
�
1

1 � � φV � �
y � y
� � zπy �

α
zπy
u6

� ��
� �

�
w � β .

By de�nition 4.2.6 this x-SU2 � C � -V � � z � y-action on the vector spaceV � � z � de�nes
a unique action x-SU2 � C � - � yz on the projective space

�
z. Since the subspace x

π
z is

spanned by the basis vectors v1, . . . ,v4 we obtain that

���
�
1

1 � � φV � � y � y
� � zπy �

α
zπy
u6

����
� 


�����
�
1

�

1 �
φ � αxyu6

������
� 


����
�
1

�

1 �
φ � βxy

�����
� 
 �

φV � � z � y � β

is the matrix representation of the automorphism φV � � z � y for some φ � SU2 � C � .
Certainly the restriction map � φV � � z � y

� � xπz is the identity of the subspace xπz for
each φ � SU2 � C � . Notice also that

�
φV � � z � y � β � SU6 � C � , so φV � � z � y is a unitary

automorphism.
 e above construction of the automorphism φV � �

z � y for each φ � SU2 � C � relies
on the orthonormal basis β of the vector space V � � z � induced from the basis αu6 of
V � � y � . It remains to prove the independence of this construction from the choice
of the bases. To this end let α � a1, . . . ,a6 and α̂ � â1, . . . , â6 be two orthonormal
bases of V � � y � with � a1,a2 � 
 zy 
 � â1, â2 � and � a3,a4 � 
 zπy 	 xπy 
 � â3, â4 � and� a5,a6 � 
 xy 
 � â5, â6 � .
Remark 4.2.7 yields two basis systems αu6 � u1, . . . ,u6;ujj� 1, 1 �

j
�
5 w.r.t. a

normal vector u6 of
� a6 � and α̂û6 � û1, . . . , û6; ûjj� 1, 1 �

j
�
5 w.r.t. a normal vec-

tor û6 of
� â6 � of V � � y � and a transformation matrix α̂û6

�
id � αu6 from the basis αu6

to the basis α̂û6 . Moreover α
zπy
u6 � u3, . . . ,u6 and α̂

zπy
û6
� û3, . . . , û6 are orthonormal

107



4 On locally complex unitary geometries

bases of zπy with transformation matrix
α̂
zπy

û6

�
id �

α
zπy
u6

. De�ne pj,y

 � uj � �

zπy and

qj,y

 � ûj � �

zπy for every j � J 
 � 3,4, 5,6,34,45, 56 � .  e points pj,y induce
unique points pj,z in y

π
z , for each j � J; similarly, the points qj,y induce points qj,z.

Fix normal vectors v6 � p6,z and v̂6 � q6,z, so that remark 4.2.7 again determines
basis systems β

yπz
v6 � v3, . . . ,v6; vjj� 1 for 3 �

j
�
6 w.r.t. v6 and β̂

yπz
v̂6
� v̂3, . . . , v̂6; v̂jj� 1

for 3
�
j

�
6 w.r.t. v̂6. As the subspaces z

π
y and y

π
z are isomorphic to each other we

can �x the isomorphism θ 
 θyπzzπy � zπy � yπz of remark 4.3.13 which maps each vec-

tor w of zπy to the corresponding vector θ � w
�
of yπz , in particular ujmaps to θ � uj

�
and ûj to θ � ûj � for each j � J. As θ is an isomorphism between zπy and yπz both
βθ � u6 � � θ � u3

�
, . . . ,θ � u6 � and β̂θ � û6 � � θ � û3

�
, . . . ,θ � û6 � are orthonormal bases of

yπz in V �
�
z

�
with the basis transformation matrix β̂θ � û6 �

�
id � βθ � u6 �



α̂
zπy

û6

�
id �

α
zπy
u6

. Fur-

thermore θ � u6 � 
 eiλv6 and θ � û6 � 
 eiµv̂6 for some λ, µ �
�
0,2π

�
, which implies

that
β
yπz
v6

�
id � βθ � u6 �


 e � iλ
� I and

β̂
yπz
v̂6

�
id � β̂θ � û6 �


 e � iµ
� I, in particular

β̂
yπz
v̂6

�
id �

β
yπz
v6




β̂
yπz
v̂6

�
id � β̂θ � û6 �

� β̂θ � û6 �

�
id � βθ � u6 � � βθ � u6 �

�
id �

β
yπz
v6


 eiλ � e � iµ
�
α̂
zπy
û6

�
id �

α
zπy
u6

describe the basis

transformation between the bases β
yπz
v6 and β̂

yπz
v̂6
.

 e independence is proved if we can show that
�
φV � � z � y � β 
 β

�
id � β̂ �

�
φV � � z � y � β̂ �

β̂

�
id � β for any φ � SU2 � C � , any basis completion β � v1, . . . ,v6 from β

yπz
v6 such that

the vectors v1 and v2 span the two-dimensional subspace yz and any basis com-

pletion β̂ � v̂1, . . . , v̂6 from β̂
yπz
v̂6
with � v̂1, v̂2 � 
 yz. Using the special shape of the

basis transformation matrix β
�
id � β̂ 


�� P 0
0

β
yπz
v6

�
id � � 1

β̂
yπz
v̂6

�� , where P 
 v1,v2 �
id � v̂1 ,v̂2 , to

obtain that

β

�
id � β̂ �

�
φV � � z � � β̂ � β̂

�
id � β



�� P 0
0

β
yπz
v6

�
id �

β̂
yπz
v̂6

�� �

����
�
1

�

1 �
φ � � α̂û6 � xy

� ���
� �

�� P � 1 0
0

β̂
yπz
v̂6

�
id �

β
yπz
v6

��



����
�
P � P � 1

β
yπz
v6

�
id �

β̂
yπz
v̂6

�

��
� 1 1 �

φ � � α̂û6 � xy

���
� �

β̂
yπz
v̂6

�
id �

β
yπz
v6

�����
�




�������
�

1
1

� eiλ � � 1
� eiµ �

α
zπy
u6

�
id �

α̂
zπy

û6

�

��
� 1 1 �

φ � � α̂û6 � xy

� �
� � eiλ � � eiµ � � 1

�
α̂
zπy

û6

�
id �

α
zπy
u6

� ������
�
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�������
�

1
1

α
zπy
u6

�
id �

α̂
zπy

û6

�

��
� 1 1 �

φ � � α̂û6 � xy

� �
� �

α̂
zπy

û6

�
id �

α
zπy
u6

��������
�



����
�
1

�

1 �
φ � � αu6 � xy

�����
� 
 �

φV � � z � y � β ,

and we are done. ■

Proposition 4.3.15 Let x � y be vertices of
�

Γ. An x-SU2 � C � - � y action on � y induced
by the x-SU2 � C � -V � � y � action can be uniquely extended to an action x-SU2 � C � -
� a � x �

�
a � SU2 � C � � � a � x �

�
a � � a � x �

�
a such that � φ �

a � x � � a

� � � x


 id � �
x
for each

φ � SU2 � C � and that for each vertex w � x
�
the action � x-SU2 � C � - � a � x �

�
a

� � �
w
is

an x-SU2 � C � - � w action on the projective space � w.
Proof: Since the induced subgraph x

�
is connected by lemma 4.2.2, we can use

lemma 4.3.14 inductively to de�ne the automorphism φV � � a � cn uniquely up to mul-
tiplication with eiλ, λ � �

0,2Π
�
for φ � SU2 � C � and arbitrary a � x

�
along a path

γ � y � c1 � . . . � cn � a from y to a in x
�
.  e automorphism φV � �

a � cn and the
resulting x-SU2 � C � -V � � a � cn and x-SU2 � C � - � cna actions may depend on the path γ.
 us it remains to prove path independence. In order to achieve this, it su�ces to
prove that this induced x-SU2 � C � - � cna action coincides with the natural x-SU2 � C � -�
a action on

�
a with respect to the direct decomposition V � � a � 
 xa � xπa , cf. by

remark 4.2.5.
 ematrix representation of the automorphism φV � � c1 � y w.r.t. some orthonormal

basis α � a1, . . . a6 such that � a5,a6 � 
 xc1 is
�
φV � � c1 � y � α 


����
�
1

�

1 �
φ � αxc1

� ���
� .

 e automorphism φV � � c1 � from the natural x-SU2 � C � -V � � c1
�
action on the vector

space V � � c1
�
has the matrix representation

�
φV � � c1 � � α 


����
�
1

�

1 �
φ � αxc1

� ���
� by

remark 4.2.5, thusφV � � c1 �

 φV � � c1 � y for eachφ � SU2 � C � and the x-SU2 � C � actions

x-SU2 � C � -V � � yc1
�
and x-SU2 � C � -V � � c1

�
on the vector space V � � c1

�
coincide.

Using this argument inductively we see that for every path γ � y � c1 � . . . �
cn � a from the vertex y to the vertex a in the subgraph x

�
the induced x-SU2 � C �
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action x-SU2 � C � -V � � cna
�
and the natural x-SU2 � C � -V � � a � action on the vector

space V � � a � coincide. ■

Lemma 4.3.16 Let x � y be vertices of
�

Γ and let α and β be automorphisms of
�

Γ�xing
the subgraph x

�
and the complex vector space V � � x � elementwise and α � xy 
 β � xy

inside the vector space V � � y � .  en the automorphisms α and β coincide.

Proof: We consider the vector spaceV � � y � decomposed into the direct sum xy � xπy ,
where xy is the line corresponding to the vertex x �

�

Γ and xπy is the orthogonal space
of the line xy, a four-dimensional unitary complex subspace of V � � y � . Since α and
β are automorphisms of the graph

�

Γ �xing the vector space V � � x � elementwise, it
follows that both α and β act trivially on the subspace xπy , so the action of α and
β on the vector space V � � y � is determined by the respective action of α and β on
the line xy in V � � y � . By assumption we have α � xy 
 β � xy and hence α � 1� xyβ � xy 
 id � xy
and, thus, α � 1�V � �

y � β �V � � y � 
 id
V � � y � , so the automorphism α � 1β acts trivially on

V � � y � . Certainly, α � 1β acts trivially on V � � x � , in particular α � yx 
 β � yx inside the
vector space V � � x � . If z is a neighbour of y in

�

Γ, connectedness of the induced
subgraph y

�
, by proposition 4.2.2, implies that α � yz 
 β � yz inside V �

�
z

�
. Indeed,

by lemma 4.2.2 either zy is incident to x
π
y , so we conclude that α � xπz 
 α � zπx 
 αzπx

and β � xπz 
 βzπx and since the automorphism α � zπx and β � zπx �x the vector space zπx
elementwise, we see by the fact that yz

�
xπz that α � yz 
 β � yz inside

�
z or the vertices

x and z have distance two in the induced subgraph y
�
, thus y

�
contains a vertex

k such that x � k � z. In that case we obtain that α � 1�V � �
k � β �V � �

k �

 id �V � �

k � and
α � yk 
 β � yk inside V �

�
k

�
by the argumentation above. Moreover α � kπz 
 α � zπk and

β � kπz 
 β � zπk . Using the fact that yz
�
kπz and yk

�
zπk 	 xπk we also get that α � yk 
 α � yz

and β � yk 
 β � yz , therefore α � yz 
 β � yz . Hence α � 1�V � � z � β �V � � z � 
 id �V � � z � by the above,
thus α 
 β follows by connectedness of the graph

�

Γ. ■

Lemma 4.3.17 Let x be a vertex of the graph
�

Γ and let y be a neighbour of x. Let
φ be an element of SU2 � C � and φV � � y � be the automorphism of V �

�
y

�
such that

� φV � � y �
� � xy 
 φxy 
 φ and � φV � � y �

� � xπy 
 idxπy .  en there exists a unique automor-
phism αx,φ


 α of
�

Γ with α � x � 
 id and α � y � is the graph automorphism induced by
the vector space automorphism φV � � y � .

Proof:  is proof has several steps.

Definition of αx:  e action on the vector space V � � x � equals the identity map
φV � �

x � � 
 id
V � � x � , thus the automorphism φ � x

induced by φV � �
x � on the

projective space
�
x is the identity map id �

x
. Hence we de�ne the graph au-

tomorphism αx � x
�
� x � x

�
� x via w � w.
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Definition of αx �
y: Recall from lemma4.3.14 and proposition 4.3.15 the de�nition

of the vector space automorphism φV � � w � for each neighbour w of the vertex
x in

�

Γ. For any neighbour w of the vertex x in
�

Γ, we have the decomposition
xw � xπw of the vector space on V �

�
w

�
, the unique vector space automor-

phism φV � � w � of V �
�
w

�
with the properties that � φV � � w �

� � xw 
 φxw 
 φ and
� φV � � w �

� � xwπ 
 id � xwπ and the unique automorphism φ � w
of the projective

space
�
w induced from φV � � w � by proposition 4.3.15, see also de�nition 4.2.5

and lemma 4.3.14. Hence we can uniquely extend the automorphism φV � � x �
to the set V � � x � � V � � y � and the graph automorphism αx to the neighbours
of the vertex y by proposition 4.3.15, where y � x in

�

Γ, if we accept for a mo-
ment that our de�nition of the image of the line zy and of the vertex zdepends
on the chosen path x � y � z. We set

φV � � x � �
V � � y � � V �

�
x

�
� V � � y � � V � � x � � V � � y �

v � φV � �
x � � v

�
if v � V � � x �

v � φV � � y � � v
�
if v � V � � y �

and we de�ne the automorphism
αx �

y � x
�
� y

�
� x

�
� y

�
w � αx � w � for w � x

�
w � d if dy


 φV � � y � � wy

�
for w � y �

.

Notice that the images of two adjacent vertices z and w under the automor-
phism αx �

y are adjacent in the induced subgraph x
�
� y

�
and, thus, also in

the graph
�

Γ.

Extension of αx �
...

�
v

�
y to a neighbour z of y via the map φ � z

: Nextwe con-
sider the vector space V � � z � on the subgraph z

�
and describe how the map

φV � � v � �
V � � y � determines an isomorphism between the vector spaces V �

�
z

�
and V � � αγ � z �

�
, which is unique up to a scalar eiλ, λ � R, where γ is the path

x � . . . � v � y of length at least one. To avoid confusion in the notation we
will leave out the index γ if possible, so the line in the space V � � αγ � y �

�
be-

longing to a vertex αγ � w � if αγ � y � � αγ � w � will be denoted with α � w � αγ � y � .
Let ky be a line of v

π
y 	 vπy in

�
y and β � u1, . . . ,u6 be an orthonormal basis of

the complex vector spaceV � � y � such that � u1,u2 � 
 zy and � u3,u4 � 
 kπy 	 zπb
and � u5,u6 � 
 ky.  e construction in remark 4.2.7 yields the basis system
βb6 � b1, . . . ,b6;bjj� 1 for 1 �

j
�
5w.r.t. some normal vector b6 � � v6 � from the

basis β.  e automorphism φV � � y � � V �
�
y

�
� V � � αγ � y �

�
maps each vector

bj, j

 3, . . . ,6, to dj 
 φV � �

αγ � y � � � bj
� � α � z � αγ � y � π. Since φV � � y � is a unitary

automorphism, the vectors d3, . . . ,d6 ,djj� 1 for j 
 3,4, 5 constitute this basis
system with respect to d6 of � α � z � αγ � y �

� π, where djj� 1 
 φV � � y � � bjj� 1 � .
Furthermore, we consider the points py,bj


 � bj � �
zπy and the points

pαγ � y � ,dj 
 � dj � � � α � z � αγ � y �
� π for every j � J 
 � 3, . . . ,6,34,45, 56 � .  e

points py,bj correspond to points pz,bj of y
π
z for every j � J by lemma 4.3.8,
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4 On locally complex unitary geometries

which by lemma 4.3.9 satisfy the same orthogonality relations. Hence a nor-
mal vector c6 of the point pz,b6 determines via remark 4.2.7 the basis sys-

tem ψ
yπz
c6 � c3, . . . , c6; c34, c45, c56 with respect to c6 of yπz . Analogously, the

points pαγ � y � ,dj induce points pαγ � z � ,dj in α � y
�
αγ � z �

π
and a normal vector

g6 � pαγ � z � ,d6 determines the basis system κ
α � y � αγ � z �

π

g6 � g3, . . . , g6; g34, g45, g56
with respect to g6 of the subspace � α � y � αγ � z �

� π.
We have py,b5 , py,b6 , py,b56

�
vπy , because py,b56

� � py,b5 , py,b6 � 
 ky, and
therefore pαγ � y � ,d5 , pαγ � y � ,d6 , pαγ � y � ,d56

�
α � v � παγ � y � . By lemma 4.3.8 the pro-

jective space
�
v contains points pv,b5 , pv,b6 and pv,b56 induced by the points

py,b5 , py,b6 , py,b56 of
�
y. Again for a normal vector a6 of pv,b6 we obtain the

basis system νkva6 � a5,a6; a56 with respect to a normal vector a5 � pv,b5 . Fix
two orthogonal vectors v1 and v2 of length one spanning the line yv to get
the orthonormal basis v1,v2,a5,a6 of the subspace

� yv, kv � . Remark 4.2.7
gives the basis system ν

�
kv,yv �
a6 � a1,a2,a5,a6; a12, a25, a56 with respect to a6 of� yv, kv � and we �x also the linemv


 � v2,a2 � , which contains the point � a25 �
and belongs to a vertexm adjacent to v and z by lemma 4.3.11.
We denote by rj the image under the map φV � � v � of the vector aj, for
each j � � 1,2, 5,6, 12,25, 56 � , and obtain the points pαγ � v � ,rj 
 � rj � con-
tained in � α � k � αγ � v � ,α � y

�
αγ � v � � . Since v � y � z � k � v � m � z, also

αγ � v � � αγ � y � � αγ � z � � αγ � k � � αγ � v � � αγ � m � � αγ � z � , so the point
pαγ � v � ,rj induces a unique point pαγ � z � ,rj, for every j � � 1,2, 5,6, 12,25, 56 � ,
contained in � α � k � αγ � z � ,α � y

�
αγ � z � � , by lemma 4.3.8. Using this lemma again

we conclude that pαγ � z � ,rj

 pαγ � z � ,dj and pz,aj 
 pz,bj for j � � 5,6, 56 � .  us

we complete the basis ψ
yπz
c6 to the orthonormal basis ψc6 � c1, . . . , c6 of the

vector space V � � z � such that the vectors ci are normal vectors of pz,aj for
j � � 1,2, 12,25 � and � c1, c12 � 
 � c12, c2 � 
 � c2, c25 � 
 � c25, c5 � 
 1�

2
. We

also make up the basis κ
� α � y � αγ � z � � π
g6 to the orthonormal basis κg6 � g1, . . . , g6

with the properties that gj is a vector of length one of the point pαγ � z � ,rj for
j � � 1,2, 12,25 � and � g1, g12 � 
 � g12, g2 � 
 � g2, g25 � 
 � g25, g5 � 
 1�

2
.

Since the bases κg6 and ψc6 are uniquely determined by c6, respectively g6,
we can de�ne themapφ

g6 ,c6
V � �

z � between the vector spacesV �
�
z

�
andV � � αγ � z �

�
as follows: x-φV � � z � 
 φV � � z � 
 φg6 ,c6V � � z � � V �

�
z

�
� V � � αγ � z �

�
with cj � gj

for 1
�
j

�
6. Certainly this map φ

g6,c6
V � � z � is an isomorphism between V �

�
z

�
and V � � αγ � z �

�
preserving the scalar product, so that φ

g6 ,c6
V � � z � is a unitary iso-

morphism.
Furthermore this isomorphism is unique up to a scalar eiλ, λ � R in the
sense that, if we choose ĉ6


 eiµc6 instead of c6 and ĝ6 
 eiδg6 instead of g6,
then the isomorphism φ

ĝ6 ,ĉ6
V � � z � equals e

i � δ � µ � φg6 ,c6
V � � z � with δ, µ � R. Indeed, for
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the bases κĝ6 and ψĉ6 instead of κg6 and ψc6 , we compute

κĝ6

�
φ
g6 ,c6
V � � c � � ψĉ6 


κĝ6

�
id � κg6 � κg6

�
φ
g6 ,c6
V � � c � � ψc6 � ψc6

�
id � ψĉ6


 eiδ � e � iµI

 ei � δ � µ � I,

because ψĉ6
�
id � ψc6 
 eiµI and κĝ6

�
id � κg6 
 eiδI as well as ψc6

�
φ
g6 ,c6
V � � c � � κg6 
 I 


ψĉ6

�
φ
ĝ6 ,ĉ6
V � �

c � � κĝ6 .
 us we de�ne the unique isomorphism φ � z


 x-φ � z
between the pro-

jective spaces
�
z and

�
αγ � z � from the vector space isomorphism φV � � z � by

φ � z
� � z �

�
αγ � z � such that the image of a point pz 
 � pvz � is � φg6 ,c6V � � z � � pvz

� �
for some vector pvz � pz.
Of course, we have to prove that the isomorphism φ � z

is independent from
all the choices we made. However, before doing that we will indicate how to
continue the construction in order to obtain a graph automorphism α.

Extension of αx �
y to αx �

y
�
z and of αx �

...
�
v

�
y to αx �

...
�
v

�
y

�
z: Using the iso-

morphism φ � z
we can extend the map αx �

y to the map

αx �
y

�
z � x

�
� y

�
� z

�
� x

�
� y

�
� αx �

y � z �
�

w �
����� ���� w for w � x �
d if dy


 φV � � y � � wy

�
for w � y �

h if hαx � y � z �

 φ � z � wz

�
for w � z � .

In general, for γ 
 x � . . . � v � y we extend αγ to

αγ �
z � x

�
� � � v

�
� y

�
� z

�
� x

�
� � � αγ � v �

�
� αγ � y �

�
� αγ � z �

�

w �
�

h if hαγ � z � 
 φ �
z
� wz

�
for w � z �

αγ � w � else .

 e connectedness of the graph
�

Γ implies that we will end up with a unique
automorphism αx,φ


 α �
�

Γ �
�

Γ satisfying the hypotheses.
It remains to check that α is well-de�ned.

Independence of φ � z
from β, v1, v2: Let ky be a two-dimensional subspace of

vπy 	 zπy . We choose two orthonormal bases β � u1, . . . ,u6 and β̂ � û1, . . . , û6
of the vector space V � � y � such that � u1,u2 � 
 zy 
 � û1, û2 � and � u3,u4 � 

kπy 	 zπy 
 � û3, û4 � and � u5,u6 � 
 ky


 � û5, û6 � . Following the described
construction we determine the two orthonormal bases βb6 � b1, . . . ,b6 and
β̂b̂6 � b̂1, . . . , b̂6 of the vector space V �

�
y

�
.  e next step in the construction

is to get the images of the vectors b3, . . . ,b6 which are dj

 φV � � y � � bj

�
for

3
�
j

�
6 and the vectors d̂j


 φV � � y � � b̂j
�
for 3

�
j

�
6. Notice that d3, . . . ,d6

and d̂3, . . . , d̂6 are two di�erent orthonormal bases of the subspace α � v � παγ � y � ,
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4 On locally complex unitary geometries

in particular we have the equality

d̂3,...,d̂6

�
id � d3 ,...,d6 
 β̂

zπy

b̂6

�
id �

β
zπy

b6



b̂3,b̂4,b̂5 ,b̂6

�
id � b3 ,b4,b5 ,b6

of the basis transformation matrices by the fact that φV � � y � is an unitary au-
tomorphism of V � � y � .
Following the plan, we get the bases ψ

yπz
c6 � c3, . . . , c6 and ψ̂

yπz
ĉ6
� ĉ3, . . . , ĉ6

of yπz . Our next stopover is to get control over the basis transformation ma-
trix ψ̂ĉ6

�
id � ψc6 . Since zπy and yπz are isomorphic and since each point of one

subspace induces a unique point in the other subspace, by lemma 4.3.8, we

can choose the isomorphism θ 
 θ
yπz
zπy
� zπy � yπz of remark 4.3.13 which

maps each vector v of the space zπy to its corresponding vector θ � v
�
of yπz ,

in particular it maps bj to θ � bj � and b̂j to θ � b̂j � for 3 �
j

�
6 implying

that ψθ � b6 � � θ � b3
�
, . . . ,θ � b6 � and ψ̂θ � b̂6 � � θ � b̂3

�
, . . . ,θ � b̂6 � are orthonor-

mal bases of yπz with the property that ψ̂θ � b̂6 �

�
id � ψθ � b6 �



β̂b̂6

�
id � βb6 . Since the

vectors θ � b6 � and c6 have length one with � θ � b6 � � 
 pz,b6 
 � c6 � , we have
c6

 eiλθ � b6 � for some λ �

�
0,2π

�
. Hence the basis transformation matrix

between ψθ � b6 � and ψ
yπz
c6 is ψyπz

c6

�
id � ψθ � b6 �


 eiλ � I. Also by the same argument

ĉ6

 eiρθ � b̂6 � for some ρ �

�
0,2π

�
and

ψ̂
yπz
ĉ6

�
id � ψ̂θ � b̂6 �


 eiρ � I. Finally, we get

the equality

ψ̂ĉ6

�
id � ψc6 


ψ̂
yπz
ĉ6

�
id � ψ̂θ � b̂6 �

� ψ̂θ � b̂6 �

�
id � ψθ � b6 � � ψθ � b6 �

�
id �

ψ
yπz
c6


 � eiλ � � 1
� eiρ �

β̂
yπz

b̂6

�
id �

β
yπz
b6


 ei � ρ � λ �
�
β̂
yπz

b̂6

�
id �

β
yπz
b6

.

Next we construct the two orthonormal bases κ
α � y � αγ � z �

π

g6 � g3, . . . , g6 and
κ̂
α � y � αγ � z �

π

ĝ6
� ĝ3, . . . , ĝ6 for the subspace α � y � αγ � z � π of V �

�
αγ � z �

�
. With a sim-

ilar argument as above we see that the basis transformation matrix between

κ
α � y � αγ � z �

π

g6 and κ̂
α � y � αγ � z �

π

ĝ6
is of the form

κ̂
α � y � αγ � z � π
ĝ6

�
id �

κ
α � y � αγ � z � π
g6


 � eiρ � � 1
� eio �

β̂
yπz

b̂6

�
id �

β
yπz
b6


 ei � o � ρ �
�
β̂
yπz

b̂6

�
id �

β
yπz
b6

for ρ,o � �
0,2π

�
.
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 e next step of the construction is to determine the two bases νkva6 � a5,a6
and ν̂kvâ6 � â5, â6. As above we have

ν̂kv
â6

�
id �

νkva6


 � eiε � � 1
� eiσ �

β̂
yπz

b̂6

�
id �

β
yπz
b6


 ei � σ � ε �
�
β̂
yπz

b̂6

�
id �

β
yπz
b6

for some σ, ε � �
0,2π

�
. We now choose four normal vectors v1, v2, v̂1 and v̂2

of the line yv such that
� v1,v2 � 
 yv 
 � v̂1, v̂2 � and � v1,v2 � 
 0 
 � v̂1, v̂2 � .  is

leads by construction to the bases ν
�
kv,yv �
a6 � a1,a2,a5,a6 (with ai � � vi � for i �

� 1,2 � ), ν̂
�
kv,yv �
â6

� â1, â2, â5, â6 (with âi � � v̂i � for i � � 1,2 � ), and to the images
of these vectors under the isomorphism φV � � v � , which are rj 
 φV � � v � � aj

�
and r̂j


 φV � � v � � âj
�
for j 
 1,2, 5,6.

As � a1,a2 � 
 yv 
 � â1, â2 � we have

ν̂ � kv ,yv �
â6

�
id �

ν � kv ,yv �
a6


 �
ν̂kvâ6

�
id �

νkva6 �



�� â1,â2 �
id � a1 ,a2 0

0 ei � σ � ε �
�
β̂
ky

b̂6

�
id �

β
ky

b6

��
and r̂1 ,r̂2,r̂5 ,r̂6

�
id � r1 ,r2,r5 ,r6 
 ν̂ � kv ,yv �

â6

�
id �

ν � kv ,yv �
a6

. Following the road map of the

construction we complete the two bases ψ
yπz
c6 and ψ̂

yπz
ĉ6
of the subspace yπz to

the orthonormal bases ψc6 � c1, . . . , c6 and ψ̂ĉ6 � ĉ1, . . . , ĉ6 and determine the
basis transformation matrix

ψ̂ � kz ,yz �
ĉ6

�
id �

ψ � kz ,yz �
c6


 ei � ϑ � η �
�
ν̂ � kv ,yv �
â6

�
id �

ν � kv ,yv �
a6


 ei � ϑ � η �
�

�� â1,â2 �
id � a1 ,a2 0

0 ei � σ � ε �
�
β̂
ky

b̂6

�
id �

β
ky

b6

��
for η, ϑ � R by a similar argument as above. With these arguments we also
compute the basis transformation matrix

κ̂ � � α � k � αγ � z � ,α � y � αγ � z � �
ĝ6

�
id �

κ � α � k � αγ � z � ,α � y � αγ � z � �
g6


 ei � ξ � ι �
�
ν̂ � kv ,yv �
â6

�
id �

ν � kv ,yv �
a6


 ei � ξ � ι �
�

�� â1,â2 �
id � a1 ,a2 0

0 ei � σ � ε �
�
β̂
ky

b̂6

�
id �

β
ky

b6

�� ,
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with ι, ξ � R, where κg6 � g1, . . . , g6 is the basis completion of κ
α � y � παγ � z �
g6 and

κ̂ĝ6 � ĝ1, . . . , ĝ6, is the completion of the basis κ̂
α � y � παγ � z �
ĝ6

.

Finally putting all this information together we conclude that

ei � ρ � λ �
�
β̂
ky

b̂6

�
id �

β̂
ky

b6



ψ̂kz
ĉ6

�
id � ψkzc6


 ei � ϑ � η �
� ei � σ � ε �

�
β̂
ky

b̂6

�
id �

β
ky

b6

ei � o � ρ �
�
β̂
ky

b̂6

�
id �

β
ky

b6



κ̂
αγ � k � αγ � z �
ĝ6

�
id �

κ
α � k � αγ � z �
g6


 ei � ξ � ι �
� ei � σ � ε �

�
β̂
ky

b̂6

�
id �

β
ky

b6

thus � η � ϑ 
 � λ � ρ � ε � σ and � ι � ξ 
 � ρ � o � ε � σ. Hence we obtain the
following basis transformation matrices.

ψ̂ĉ6

�
id � ψc6 


�� ei � ϑ � η �
� â1,â2

�
id � a1 ,a2 0

0 ei � ρ � λ �
�
β̂
zπy

b̂6

�
id �

β
zπy

b6

��

κ̂ĝ6

�
id � κg6 


�� ei � ξ � ι �
� â1,â2

�
id � a1 ,a2 0

0 ei � o � ρ �
�
β̂
zπy

b̂6

�
id �

β
zπy

b6

��
implying that

κ̂ĝ6

�
id � κg6 � κg6

�
φ
c6 ,g6
V � � z � � ψc6 � ψc6

�
id � ψ̂c6



κ̂ĝ6

�
id � κg6 � ψc6

�
id � ψ̂c6



���
� e

i � η � ϑ � ι � ξ �
� â1,â2

�
id � a1 ,a2 � � â1,â2

�
id � a1 ,a2

�
� 1 0

0 ei � λ � ρ � ρ � o �
�
β̂
zπy

b̂6

�
id �

β
zπy

b6

�
β̂
zπy

b̂6

�
id � � 1

β
zπy

b6

� ��
�



�
ei � η � ϑ � ι � ξ �

� I 0

0 ei � λ � ρ � ρ � o �
� I �


 ei � λ � ρ � ρ � o �
� I



κ̂ĝ6

�
φ
c6 ,g6
V � � z � � ψ̂ĉ6


 eicκ̂ĝ6
�
φ
ĉ6,ĝ6
V � � z � � ψ̂ĉ6

for λ � ρ � ρ � o 
 c � R, which �nishes the proof of the claim that the
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construction of the isomorphism φ �
z
is independent from the choice of the

basis β and the vectors v1 and v2.

Independence of φ � z
from ky: Now we show that the construction of the iso-

morphism φ � z
is also independent from the choice of the two-dimensional

subspace ky inside the vector subspace v
π
y 	 zπy . If the intersection of vπy and

zπy is of dimension two, then ky

 vπy 	 zπy and there is nothing to prove. If

otherwise vπy 	 zπy is a plane, then any two di�erent lines ky and ly of vπy 	 zπy
intersect in a one-dimensional subspace of V � � y � . We start with two or-
thonormal bases βk � uk1 , . . . ,uk6 and βl � ul1 , . . . ,ul6 such that � uk1 ,uk2 � 
 zy 
� ul1 ,ul2 � and � uk3 ,uk4 � 
 zπy 	 kπy and � ul3,ul4 � 
 zπy 	 lπy and � uk5 ,uk6 � 
 ky and� ul5,ul6 � 
 ly. Since the construction ofφV � �

z � is independent from the choice
of the basis, we may assume that uk4


 ul4 and uk5 
 ul5, so � uk5 � 
 � ul5 � 
 ky 	 ly
and � uk4 � 
 � ul4 � 
 kπy 	 lπy 	 zπy . From the bases βk and βl we obtain the or-
thonormal bases βbk6 � b

k
1 , . . . ,b

k
6 and βbl6 � b

l
1 , . . . ,b

l
6 via the construction

in remark 4.2.7 together with the extra condition that we choose the normal
vector bl6 in such a manner that b

k
4

 bl4 and bk5 
 bl5. Since both the set of

vectors bk3 , . . . ,b
k
6 and the set of vectors b

l
3, . . . ,b

l
6 constitute a basis of z

π
y ,

there exists a basis transformation matrix between the two bases, which is of
the form

β
zπy

bl
6

�
id �

β
zπy

bk
6



����
�

� � 0 �

� 1 0 0
0 0 1 �

� 0 � �

� ���
� .

Next we consider the images of the vectors bk3 , . . . ,b
k
6 and b

l
3, . . . ,b

l
6 under

the isomorphism φV � � y � and get the vectors d
k
j

 φV � � y � � bkj

�
as well as

the vectors dlj

 φV � � y � � blj

�
for 3

�
j

�
6. Certainly both dk3 , . . . ,d

k
6 and

dl3 , . . . ,d
l
6 are orthonormal bases of the subspace α � z

� π
αγ � y � , as φV � � y � is a

unitary isomorphism and we get that dl3 ,...,dl6

�
id � dk3 ,...,dk6 
 β

zπy

bl
6

�
id �

β
zπy

bk
6

.

Following the concept of the construction of the isomorphism φ � z
we com-

pute the bases ψ
yπz
ck6
� ck3 , . . . , ck6 and ψy

π
z

cl6
� cl3, . . . , cl6 under the extra condition

that ck5

 cl5 implying that ck4 
 cl4 and by previous arguments that

ψ
yπz

cl
6

�
id �

ψ
yπz

cl
6


 � eiλ � � 1
� eiµ �

β
zπy

bl
6

�
id �

β
zπy

bk
6

for some λ, µ � �
0,2π

�
. As bk5


 bl5 and c
k
5

 cl5 it follows that λ


 µ
thus

ψ
yπz

cl
6

�
id �

ψ
yπz

ck
6



β
zπy

bl
6

�
id �

β
zπy

bk
6

. Applying this argumentation also to the bases

κ
α � y � παγ � z �
gk6

� gk3 , . . . , gk6 and κ
α � y � παγ � z �
gl6

� gl3 , . . . , gl6, where the vectors gk5 and gl5
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4 On locally complex unitary geometries

are equal we have also

κ
α � y � παγ � z �
gl
6

�
id �

κ
α � y � παγ � z �
gk
6



β
zπy

bl
6

�
id �

β
zπy

bk
6

.

In the next step we determine the bases ν
�
kv,yv �
al6

� ak1 ,ak2 ,ak5 ,ak6 and ν
�
lv,yv �
al6

�
al1 ,a

l
2,a

l
5,a

l
6. Since the complete construction is independent of the choice

of the basis β and the vectors v1 and v2, we require that a
k
5

 al5 implying

directly that ak1

 al1 and ak2 
 al2. Furthermore we consider also the images

of the vectors of the bases ν
�
kv,yv �
al6

and ν
�
lv,yv �
al6

under the isomorphism φV � � v �
and identify the vectors rkj


 φV � � v � � akj
� 
 φV � � v � � alj

� 
 rlj for j 
 1,2, 5 and
rk6

 φV � � v � � ak6

�
as well as rl6


 φV � � v � � al6
�
. Next we complete the basis ψ

yπz
ck6

to the orthonormal basis ψck6 � c
k
1 , . . . , c

k
6 of the vector space V �

�
z

�
and the

basis ψ
yπz
cl6
to ψcl6 � c

l
1 , . . . , c

l
6.  e fact that c

k
5

 cl5 indicates also that ck2 
 cl2 as

well as ck1

 cl1 and implies that

ψ
cl
6

�
id � ψ

ck
6



����
�
1 0 0
0 1 0
0 0

β
zπy

bl
6

�
id �

β
zπy

bk
6

�����
� .

We determine also the bases κgk6 � g
k
1 , . . . , g

k
6 and κgl6 � g

l
1 , . . . , g

l
6 of V �

�
z

�
.

Again from gk5

 gl5 we obtain that gk2 
 gl2 and gk1 
 gl1 , thus

κ
gl
6

�
id � κ

gk
6



����
�
1 0 0
0 1 0
0 0

β
zπy

bl
6

�
id �

β
zπy

bk
6

� ���
� .

We verify that

κ
gl
6

�
id � κ

gk
6

� κ
gk
6

�
φ
ck6 ,g

k
6

V � �
z � � ψ

ck
6

� ψ
ck
6

�
id � ψ

cl
6


 κgl6

�
id � κ

gk
6

� ψ
ck
6

�
id � ψ

cl
6


 I



κ
gl
6

�
φ
ck6 ,g

k
6

V � � z � � ψ
cl
6


 eiµκ
gl
6

�
φ
ĉk6 ,ĝ

k
6

V � � z � � ψ
cl
6

for some µ � �
0,2π

�
. Hence the construction of the isomorphism φ � z

is in-
dependent from the choice of the line ky inside the space v

π
y 	 zπy .
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Independence of αx �
...

�
v

�
y

�
z from x � . . . � v � y � z: In order to prove that α

is a graph automorphism of
�

Γ, we still have to show that it is well-de�ned,
i.e., we have to prove that the image of a vertex a is independent from the
path between x and a used to de�ne that image.  is again is equivalent to
proving that the de�nition of α is consistent on a set of generators of the 1-
fundamental group of

�

Γ, i.e., the fundamental group of
�

Γ considered as a two-
dimensional simplicial complex. Since

�

Γ is 2-simply connected i.e., simply
connected as a two-dimensional simplicial complex, its 1-fundamental group
is generated by its triangles.
 e consistency of α along triangles is proved, if we can show that for pair-
wise adjacent vertices y, z, w in

�

Γ the isomorphism φ �
d
for d � � z,w � �

is uniquely determined, regardless whether the isomorphism is de�ned us-
ing the path y � z � d or the path y � w � d.  is in turn follows, if
we can show that � φ � z

� �wπ
z
coincides with � φ � w

� � zπw , which is equivalent to
� φV � � z �

� �wπ
z


 eiλ � � φV � � w �
� � zπw for some λ � R, where the isomorphisms

φ � z
and φ � w

are de�ned using the path γ � z resp. the path γ � w where
γ � x � . . . � v � y is the path from x to y that we used to de�ne the isomor-
phism φ � y

.
We consider the two-dimensional subspaces ky

�
zπy 	 vπy and ly �

wπy 	 vπy
and uy


 zπy 	 wπy . Choose an orthonormal basis u1, u2 of uy and obtain a
basis system ωh2 � h1,h2; h12. Now let βz � vz1 , . . . ,vz6 and βw � vw1 , . . . ,vw6
be two orthonormal bases of the vector space V � � y � such that � vz1 ,vz2 � 

zy,
� vw1 ,vw2 � 
 wy,

� vz3 ,vz3 � 
 zπy 	 kπy , � vw3 ,vw4 � 
 wπy 	 lπy , � vz5 ,vz6 � 
 ky
and � vw5 ,vw6 � 
 ly. Suppose the vector vz6 is not orthogonal to the vector h1,
i.e., c � 
 � vn,h1 � �
 0 for some normal vector vn � � vz6 � . For ν �

�
0,2π

�
and sz 
 eiνc we �x a normal vector bz6 � � vz6 � such that � bz6,h1

� 
 sz and
determine the basis system βbz6 � bz1 , . . . ,bz6 of

�
y. Otherwise, if � vz6,h1

� 
 0,
then the normal vector 1�

2
� u1 � vz6

�
is not orthogonal to h1 and v

z
6.  us we

can identify a unique normal vector hvz6 � � 1�
2
� u1 � vz6

� � with 1�
2

 � h1,hvz6

�
and from the vector hvz6 a unique normal vector b

z
6 satisfying the equation

1�
2

 � bz6,hvz6

�
. Again we use the normal vector bz6 and the construction of

a basis systems to obtain the basis βbz6 � bz1 , . . . ,bz6 of
�
y. Hence we obtain an

orthonormal basis βbz6 � bz1 , . . . ,bz6 and, analogously, an orthonormal basis
βbw6 � bw1 , . . . ,bw6 of

�
y.

De�ne py,hj

 � hj � for j 
 1,2, 12 and py,hvz

6


 � hvz6 � and py,hvw6

 � hvw6 � .

By lemma 4.3.8 these points induce points pz,hj for each j � � 1,2, 12 � , pz,hvz
6

,

pz,hvw
6
of yπz

� �
z and points pw,hi , i


 1,2, 12, pw,hvz
6

, pw,hvw
6
of yπw

� �
w.

Using basis systems as before, we obtain the orthonormal basis τqz2 � qz1 ,qz2
of the two-dimensional space uz for some normal vector q

z
2 � pz,h2 and the

orthonormal basis τqw2 � qw1 ,qw2 of uw for a normal vector qw2 � pw,h2 . From
the vector qz2 we get a normal vector c

z
6 � pz,vz6 — in complete analogy to
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4 On locally complex unitary geometries

the construction of bz6 above — and, again using basis systems, we obtain the

basis ψ
yπz
cz6
� cz3 , . . . cz6 of yπz . Similarly, we get a normal vector cw6 � pw,vw6 and

the basis ψ
yπw
cw6
� cw3 , . . . cw6 of yπw.

Since the vector spaces zπy and y
π
z are isomorphic, we �x the isomorphism

θ 
 θyπzzπy � zπy � yπz of remark 4.3.13 and determine the orthonormal basis

β
yπz
θ � bz6 � � θ � b

z
3

�
, . . . ,θ � bz6

�
and the corresponding basis transformation matrix

ψ
yπz
cz
6

�
id �

β
zπv
bz
6



ψ
yπz
cz
6

�
id �

β
yπz
θ � bz

6 �


 eiλI

for some λ � �
0,2π

�
. Likewise, de�ne β

yπw
θ � bw6 � , where θ


 θ
yπw
wπ

y
with basis

transformation matrix

ψ
yπw
cw
6

�
id �

β
wπy

bw
6



ψ
yπw
cw
6

�
id �

β
yπw
θ � bw

6 �


 eiσI

for some σ � �
0,2π

�
.

 e isomorphism θ 
 θ
�
uw,yw ��
uz,yz � �

� uz, yz � � � uw, yw � from remark 4.3.13
with image θ � a � for every vector a � � uz, yz � maps the orthonormal basis
τ � qz2 � of uz to the orthonormal basis τθ � qz2 � � θ � qz1

�
,θ � qz2

�
of uw. Since

τqz2

�
id � τθ � qz2 �



ψ
yπw
cw
6

�
id �

β
wπy

bw
6

�
β
wπy

bw
6

�
id �

β
zπy

bz
6

�

��
ψ
yπz
cz
6

�
id �

β
zπy

bz
6

�� � 1

the transformation matrix between the bases τqz2 and τqw2 is

τqw2

�
id � τqz2



τqw2

�
id � τθ � qz2 �



ψ
yπw
cw
6

�
id �

β
wπy

bw
6

� I �

��
ψ
yπz
cz
6

�
id �

β
zπy

bz
6

�� � 1


 ei � σ � λ � I.

Following the idea of the construction of the isomorphisms φV � � z � and
φV � � w � we obtain the images fj 
 φV � � v � � hj

�
of the vectors hj, j


 1,2, 12,
under the isomorphism φV � � y � and the images fvz6


 φV � � y � � hvz6
�
and fvw6



φV � � y � � hvw6

�
of hvz6 and hvw6 . Moreover, let pαy ,fj


 � fj � for j � � 1,2, 12 � and
let pαy,fvz

6


 � fvz6 � , resp. pαy,fvw6

 � fvw6 � . Using lemma 4.3.8 we obtain the

points pαz,fj

 � fj � and pαz,fvz

6

in
�
α � z � and the points pαw ,fj and pαw,fvw

6
in�

α � w � induced by the points pαy ,fj, for j � � 1,2, 12 � , and pαy ,fvz
6

, resp. pαy,fvw
6
.

Now let tz2 � pαz ,f2 and tw2 � pαw,f2 be normal vectors.  en we determine the
basis system ηtz2 � tz1 , tz2 ; tfz6 of α � u

�
α � z � and the basis system ηtw2 � tw1 , tw2 ; tfw6

of α � u � α � w � .
Again in analogy to the construction of bz6, the vector t

z
2 determines a nor-

mal vector gz6 � pαz,dz6 , where pαz,dz6 is induced by the point pαy ,dz6 
 � dz6 �
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with dz6

 φV � � y � � vz6

�
and, similarly, the vector tw2 induces a normal vector

gw6 � pαz ,dw6 . Via basis systems the vectors gz6 and gw6 determine the bases

κ
α � y � πα � z �
gz6

� gz3 , . . . , gz6

of α � y � πα � z � and
κ
α � y � πα � w �
gw6

� gw3 , . . . , gw6
of α � y � πα � w � .
As above, the isomorphisms θ 
 θ

α � y � πα � z �
α � z � π

α � y �
and ϑ 
 θ

α � y � πα � w �
α � w � π

α � y �
de�ned in

remark 4.3.13 imply

κ
α � y� πα � z �
gz
6

�
id � dz3 ,...,dz6 


κ
α � y � πα � z �
gz
6

�
id � θ � dz3 � ,...,θ � dz6 � 
 eiµI

for µ � �
0,2π

�
and

κ
α � y � πα � w �
gw
6

�
id � dw3 ,...,dw6 


κ
α � y � πα � w �
gw
6

�
id � ϑ � dw3 � ,...,ϑ � dw6 � 
 eiρI

for ρ � �
0,2π

�
, where dzj


 φV � � y � � vzj
�
and dwj


 φV � � y � � vwj
�
for 3

�
j

�
6.

Hence the basis transformation matrix between the bases ηtz2 of α � u
�
α � z � and

ηtw2 of α � u
�
α � w � is

ηtw2

�
id � ηtz2



ηtw2

�
id � ηθ � tz2 �



��
κ
α � y� πα � w �
gw
6

�
id � dw3 ,...,dw6

�� � 1

�

κ
α � y � πα � z �
gz
6

�
id � dz3 ,...,dz6


 ei � ρ � µ � I,

where θ is the isomorphism between the subspaces � α � y � α � z � ,α � u
�
α � z � � and� α � y � α � w � ,α � u

�
α � w � � from remark 4.3.13.

Suppose the vectors vz6 and v
w
6 are not orthogonal, i.e., m � 
 � vz6,vw6

� �
 0.
 en we choose a normal vector az6 of the point pv,vz6 (induced by py,vz6) and

obtain via basis systems the orthonormal basis νkvaz6
� az5 ,az6. Let aw6 be the

normal vector of the pv,vw6 such that � az6,aw6
� 
 m, which yields the oth-

onormal basis νlvaw6
� aw5 ,aw6 . Moreover, since νkv

az
6

�
id �

β
ky

bz
6


 eiδI for some

δ � �
0,2π

�
, we see that

νlv
aw
6

�
id �

β
ly

bw
6


 eiδI. For the next step let v1 and v2 be

an orthonormal basis of yv and let ν
�
kv,yv �
az6

� az1 ,az2 ,az5 ,az6 be the orthonormal
basis of � kv, yv � resulting from v1,v2,az5 ,az6 via basis systems. Furthermore,
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let ν
�
lv,yv �
aw6

� aw1 ,aw2 ,aw5 ,aw6 be the orthonormal basis of � lv, yv � determined
analogously. Of course the basis transformation between az1 ,a

z
2 and a

w
1 ,a

w
2

is a scalar multiple of the identity matrix, i.e., aw1 ,aw2
�
id � az1 ,az2 
 eiεI for some

ε � �
0,2π

�
. Notice that rw1 ,rw2

�
id � rz1 ,rz2 
 eiεI as well, where rzj 
 φV � � v � � azj

�
and rwj


 φV � � v � � awj
�
for i 
 1,2, 5,6.

By the plan of the construction for the isomorphisms φV � � z � andφV � � w � we
complete the basis ψ

yπz
cz6
to the orthonormal basis ψcz6 � cz1 , . . . cz6, the basis ψ

yπw
cw6

to the orthonormal basis ψcw6 � cw1 , . . . cw6 , the basis κ
α � y � πα � z �
gz6

to κgz6 � gz1 , . . . gz6,
and the basis κ

α � y � πα � w �
gw6

to κgw6 � gw1 , . . . gw6 , in each case using basis systems.
We compute the basis transformation matrices

ν
yv
az
6

�
id � ψyz

cz
6



ν � kv ,yv �
az
6

�
id �

ψ � kz ,vz �
cz
6


νkv
az
6

�
id �

ψkz
cz
6


νkv
az
6

�
id �

β
ky

bz
6

�
β
ky

bz
6

�
id �

ψkz
cz
6
 ei � δ � λ � ,

ν
yv
aw
6

�
id � ψyw

cw
6



ν � lv ,yv �
aw
6

�
id �

ψ � lw ,yw �
cw
6


νlv
aw
6

�
id �

ψlw
cw
6


νlv
aw
6

�
id �

β
ly

bw
6

�
β
ly

bw
6

�
id �

ψlz
cz
6
 ei � δ � σ � I ,

rz1 ,r
z
2

�
id �

κ
α � y� α � z �
gz
6



rz1 ,r

z
2 ,r

z
5 ,r

z
6

�
id �

κ � α � k � α � z � ,α � y � α � z � �
gz
6


rw5 ,r
w
6

�
id � dw5 ,dw6 � dw5 ,d

w
6

�
id �

κ
α � k � α � z �
gz
6


ν
ky

az
6

�
id �

βkv
bz
6

� dz5 ,d
z
6

�
id �

κ
α � k � α � z �
gz
6
 ei � δ � µ � I ,

rw1 ,r
w
2

�
id �

κ
α � v � α � w �
gw
6



rw1 ,r

w
2 ,r

w
5 ,r

w
6

�
id �

κ � α � l � α � w � ,α � v � α � w � �
gw
6


rz5 ,r
z
6

�
id � dz5 ,dz6 � dw5 ,d

w
6

�
id �

κ
α � l � α � w �
gw
6


ν
ly

aw
6

�
id �

βlv
bw
6

� dz5 ,d
z
6

�
id �

κ
α � k � α � z �
gz
6
 ei � δ � ρ � I .
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It follows that

κ
α � w � πα � z �
gz
6

� � φV � � z �
� �wπ

z
�
ψ
wπz
cz
6



κ
α � w � πα � z �
gz
6

�
id �

κ
α � z � πα � w �
gw
6

�

κ
α � z � πα � w �
gw
6

� � φV � � w �
� � zπw �

ψ
zπw
cw
6

�
ψ
zπw
cw
6

�
id �

ψ
wπz
cz
6



�
ei � µ � ρ � λ � σ � I 0

0 ei � µ � ρ � λ � σ � I � �

κ
α � z � πα � w �
gw
6

� � φV � �
w �
� � zπw �

ψ
zπw
cw
6


 eiι �

κ
α � z � πα � w �
gw
6

� � φV � � w �
� � zπw �

ψ
zπw
cw
6

for some ι 
 µ � ρ � λ � σ � R as the basis transformation matrix

κ
α � w � πα � z �
gz
6

�
id �

κ
α � z � πα � w �
gw
6



���
� κ

α � y � α � z �
gz
6

�
id � rz1 ,rz2 0

0
κ
α � u � α � z �
gz
6

�
id � ηtz2

� ��
� � η̃

�
id � ν̃ �

���
�
rw1 ,r

w
2

�
id �

κ
α � y � α � w �
gw
6

0

0 ηtw2

�
id �

κ
α � u � α � w �
gw
6

� ��
�



�
ei � µ � δ � I 0

0 I � �

�
rz1 ,r

z
2

�
id � rw1 ,rw2 0
0 ηtz2

�
id � ηtw2 � �

�
ei � � ρ � δ � I 0

0 I �



�
ei � µ � δ � I 0

0 I � �

�
e � iεI 0

0 ei � µ � ρ �
� I � �

�
ei � � ρ � δ � I 0

0 I �



�
ei � µ � ε � ρ � I 0

0 ei � µ � ρ � I � ,
with η̃ and ν̃ are the bases η̃ � rz1 , rz2 , tz1 , tz2 and ν̃ � rw1 , rw2 , tw1 , tw2 , and

ψ
zπw
cw
6

�
id �

ψ
wπz
cz
6



��
� ψyw

cw
6

�
id � νyv

aw
6

0

0 ψuw
cw
6

�
id � τqw2

� �
� �

�� νyvaw6
�
id � νyv

az
6

0

0 τqw2

�
id � τqz2

�� �

��
� νyvaz6

�
id � ψyz

cz
6

0

0 τqz2

�
id � ψuz

cz
6

� �
�



�
ei � σ � δ �

� I 0
0 I � �

�
eiε 0

0 ei � � λ � σ � I � �

�
ei � � λ � δ � I 0

0 I �



�
ei � σ � λ � ε � I 0

0 ei � σ � λ � I � ,
which proves that the isomorphisms � φ � w

�
zπw and � φ � z

�
wπ

z
coincide.  us α

is a graph isomorphism, the uniqueness of α follows from lemma 4.3.16.

■
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4 On locally complex unitary geometries

Remark 4.3.18  e method to de�ne a graph automorphism along each path and
then check that it is well-de�ned for each generator of the 1-fundamental group of
that graph has been pointed out to us by Sergey Shpectorov [79].

 e above lemmas allow us, for each vertex x of
�

Γ, to construct a faithful action
SU2 � C � � Aut �

�

Γ
�
�xing x

�
elementwise and acting naturally on the two-dimensio-

nal vector space xy inside
�
y for a neighbour y of x.  e subgroup of Aut �

�

Γ
�

isomorphic to SU2 � C � obtained in this way is denoted by SU2 � C � x.  e group
SU2 � C � x induces an action of SU2 � C � as a fundamental SU2 � C � subgroup on the
vector space structure V � � y � for any neighbour y of the vertex x in

�

Γ, the cen-
traliser � v � V � � y � � v f 
 v for all f � SU2 � C � x � being xπy and the commutator� v f � v � V � � y � � f � SU2 � C � x,v � V � � y � � being xy.

De�nition 4.3.19 Let G �
Γ be the subgroup of Aut �

�

Γ
�
generated by the subgroups

� SU2 � C � x � x � �
Γ of Aut �

�

Γ
�
, in symbols G �

Γ

 � SU2 � C � x � x �

�

Γ � .

In the sequel we will prove that the group G �
Γ admits a weak Phan system of type

A7 or of type E6 over C. It then follows from [42] that G �
Γ is a central quotient of

the compact group SU8 � C � or of the compact group E2 6 � C
� 
 E6, � 78.

4.4 A reflection graph inside the graph Γ

Let V be an euclidean space, so V is a �nite dimensional vector space over R en-
dowed with a symmetric bilinear form ω � V � V � R, which is positive de�nite.
A reection in V is an invertible linear transformation �xing some hyperplane H
of V pointwise and mapping any vector u perpendicular to H with respect to ω to
its negative � u. Furthermore for any non-zero vector u � V we determine the re-
ection ρu with reecting hyperplane Hu


�� w � V � ω � u,w � 
 0 � .  e explicit
formula for the reection ρu is

ρu � V � V

w � w � 2ω � w,u �
ω � u,u � u .

A root system of V is a �nite set Φ of non-zero vectors, called roots, that satis�es
the following properties:

•  e roots span the euclidean space V .

•  e only scalar multiples of a root α � Φ that belong to Φ are α and � α.
• For every root α � Φ, the reection ρα leaves Φ invariant.
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4.4 A reection graph inside the graph Γ

• (Integrality condition)

If α and β are roots in Φ, then the projection of β onto the line through α is

a half-integral multiple of α, that is,
2ω � β,α �
ω � α,α � � Z.

 e group of isometries of V generated by the reections ρα with α a root of the
root system Φ of V is called theWeyl group � � Φ � of Φ.  e Weyl group � � Φ �
acts faithfully on the �nite set Φ and is always �nite. Directly from the de�nition
we know that ω � α,β � 
 0 implies that the reections ρα and ρβ commute for any
pair of roots α,β in Φ.  e length of a root α � Φ is just the length of the vector
α w.r.t. to the form ω. Furthermore we call a root system Φ reduced whenever for
two proportional roots α and β we have either β 
 α or β 
 � α. A root system Φ
is called irreducible ifΦ admits no nontrivial disjoint decomposition Φ 
 Φ1 � Φ2

where every member of Φ1 is orthogonal to every member of Φ2.

Root systems Φ1 of the euclidean space E1 w.r.t. ω1 and Φ2 of the euclidean space
E2 w.r.t. ω2 are isomorphic if the vector spaces E1 and E2 are isomorphic via an
isomorphism φ, which is not necessarily an isometry, for which φ � Φ1

� 
 Φ2 and
2ω1 � β,α �
ω1 � α,α �


 2ω2 � φ � β � ,φ � α � �
ω2 � φ � α � ,φ � α � � for any two roots α,β � Φ1. It is well know that for two

non-proportional roots α,β of a root system Φ of V the element α � β is a root in
Φ if ω � α,β � � 0 and otherwise if ω � α,β � � 0 then α � β � Φ.  us for two non-
proportional roots α and β inΦwe look for all roots of the form β � λαwith λ � Z,
denoted by the α-string through β. For a root system Φ of V we call n 
 dim � V �
the rank ofΦ.

De�nition 4.4.1 A subset ∆ of Φ is called a basis of the root stem Φ of V if ∆ is
a basis of the vector space V and each root β � Φ can be written as β 
�� α � ∆ λαα
where all integral scalars kα are either non-negative or non-positive.

Once a basis ∆has been chosen, the root β for which all kα
�
0 for all α � ∆ is called

positive rootwith respect to the basis ∆. Certainly a root β is called a negative root
if all integral scalars kα are non-positive.

 e elements of a basis ∆ are called simple roots. Furthermore the height of a root
βw.r.t. the basis ∆ is just the integral scalar � α � ∆ λα 
 ht � β

�
if β 
 � α � ∆ λαα.

Important properties are that the Weyl group � act transitively on the collection
of all bases of Φ, that for a basis ∆ of Φ the Weyl group � is generated by the
reections ρα with α � ∆ and that for any root α � Φ there is an element w ���
such that w � α � � ∆.
A consequence for root systems, which will be used later in section 4.6 is the next
result.
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4 On locally complex unitary geometries

Lemma 4.4.2 (lemma C and lemma A in 10.4 of [55]) LetΦ be an irreducible root
system with basis ∆. Relative to the de�nition of a height of a root, there is a unique
maximal root α̃ with respect to the basis ∆ in Φ, in particular for each root α � Φ
di�erent from α̃ the equations ht � α � � ht � α̃ � and ω � α̃,α � �

0 hold. If α̃ 
 � α � ∆ λαα
for some basis∆ofΦ then all integral scalars λα are positive. Furthermore at most two
root lengths occur in the root system Φ, and all roots of a given length are conjugate
under � .

Notation: In an irreducible root systemΦ, with two distinct root lengths, we speak
of long and short roots. If all roots are of equal length, it is convention to call all
roots long.

Corollary 4.4.3 Let Φ be an irreducible root system with basis ∆ and let α̃ be the
maximal root w.r.t. ∆ in Φ.  en any root α � Φ is conjugate under the Weyl group
� to α̃ if α and α̃ have the same length. In particular every root α � Φ is a maximal
root with respect to some basis of Φ if all roots are long roots.

For the next part let ∆ be a basis, with a �xed ordering � α1, . . . ,αl � of a root system
Φ of V.  e matrix � Φ


 � 2ω � αi,αj �
ω � αj,αj �

�
1 � i,j� l is called the Cartanmatrix .  is matrix

is independent of the choice of ∆ as � acts transitively on all bases of Φ. It turns
out that the Cartan matrix characterise a root systemΦ completely by the following
theorem.

Proposition 4.4.4 (chapter III 11.1 of [55]) Let E and E � be two euclidean vector
spaces over R with root system Φ respectively Φ � and basis ∆ 
 � α1, . . . ,αl � respec-
tively ∆ � 
 � α �1, . . . ,α �l � . If 2ω � αi,αj �ω � αj,αj �


 2ω � � α �i,α �j �
ω � � α �j,α �j � for all 1

�
i, j

�
l then the bijection

αi � α �i extends uniquely to an isomorphism φ � E � E � mappingΦ ontoΦ � and sat-
isfying 2ω � α,β �

ω � β,β �

 2ω � � φ � α � ,φ � β � �

ω � � φ � β � ,φ � β � � for all α,β � Φ.  us the Cartan matrix determines
the root system Φ up to isomomorphism.

We de�ne the Coxeter graph of a root systemΦw.r.t. a basis ∆ 
 α1, . . . ,αn, with a
�xed ordering, to be the graph having n vertices, where the ith vertex is joined with

the jth vertex by
2ω � αi,αj �
ω � αj,αj � �

2ω � αj,αi �
ω � αi,αi � di�erent edges. If two or more edges between

twodi�erent vertices occur in the Coxeter graph ofΦ thenwe use an arrowpointing
to the shorter root of the two roots, to add the information which is the short root
and which is the long root of both.  is �gure is called the Dynkin diagram of Φ.

 ere exists a classi�cation of irreducible root systems or equivalently of connected
Dynkin diagrams.
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4.4 A reection graph inside the graph Γ

 eorem 4.4.5 (chapter III 11.4 of [55]) IfΦ is an irreducible root system of rank n,
its Dynkin diagram and Cartan matrix are one of the following:

• An, for n
�
1

�����

�

�

�

A1

A2

A3

An

a1

a1 a2

a1 a2 a3

a1 a2 a3 an � 1 an

�����������
�

2 � 1
� 1 2 � 1

� 1 2 � 1
� � �

� 1 2 � 1
� 1 2 � 1

� 1 2

� ����������
�

• Bn, for n
�
1

�����

�

�

�

B1

B2

B3

Bn

b1

b1 b2

b1 b2 b3

b1 b2 b3 bn � 1 bn

�����������
�

2 � 1
� 1 2 � 1

� 1 2 � 1
� � �

� 1 2 � 1
� 1 2 � 2

� 1 2

������������
�

• Cn, for n
�
1

�����

�

�

�

C1

C2

C3

Cn

c1

c1 c2

c1 c2 c3

c1 c2 c3 cn � 1 cn

�����������
�

2 � 1
� 1 2 � 1

� 1 2 � 1
� � �

� 1 2 � 1
� 1 2 � 1

� 2 2

� ����������
�
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• Dn, for n
�
3

�

�

�

�����

D3

D4

D5

Dn

d1

d2

d3

d1 d2

d3

d4

d1 d2 d3

d4

d5

d1 d2 d3 d4 dn � 3 dn � 2

dn � 1

dn

�������������
�

2 � 1
� 1 2 � 1

� 1 2 � 1
� 1 2 � 1

� � �

� 1 2 � 1 � 1
� 1 2 0
� 1 0 2

��������������
�

• E6

e1 e3 e4 e5 e6

e2

���������
�

2 0 � 1
0 2 0 � 1
� 1 0 2 � 1

� 1 � 1 2 � 1
� 1 2 � 1

� 1 2

� ��������
�

• E7

e1 e3 e4 e5 e6 e7

e2

�����������
�

2 0 � 1
0 2 0 � 1
� 1 0 2 � 1

� 1 � 1 2 � 1
� 1 2 � 1

� 1 2 � 1
� 1 2

� ����������
�
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4.4 A reection graph inside the graph Γ

• E8 e1 e3 e4 e5 e6 e7 e8

e2

�������������
�

2 0 � 1
0 2 0 � 1
� 1 0 2 � 1

� 1 � 1 2 � 1
� 1 2 � 1

� 1 2 � 1
� 1 2 � 1

� 1 2

� ������������
�

• F4

f1 f2 f3 f4

����
�
2 � 1
� 1 2 � 2

� 1 2 � 1
� 1 2

�����
�

• G2

g2 g1

�
2 � 1
� 3 2 �

 eorem 4.4.6 For each Dynkin diagram ∆ (or Cartan matrix � ∆

 � Φ∆) of type A

to G there exists an irreducible root system Φ having the given diagram.

We then callΦ a (irreducible) root system of type∆ and setΦ 
 Φ∆. All irreducible
root systems of type A to G are listed in [10] or [56].  e (irreducible) root systems
ΦAn andΦE6 are also listed in appendix A.9. Moreover letΦ


 Φ∆ be a root system
of type∆. We call � � ,S

�
a spherical Coxeter systemof type∆, where � 
 � � Φ �

is theWeyl group ofΦ, S 
 � ρα � α � Φ � .  enotation of a spherical Coxeter system
is de�ned in a more general context, see [10] or [56] or appendix A.6.

Let � � ,S
�
be a spherical Coxeter system of type ∆ and letW � ∆ � be the graph on

the reections of � , i.e. the graph on the conjugates of the elements of S, in which
distinct reections are adjacent if and only if they commute in the group � . Our
�rst aim is to �nd an induced subgraph Σ in the graph Γ, which is locally W � A5

�
(i.e., theKneser graphK � 6,2 � , de�ned in [48]). Using theorem 2 of [17] or theorem
2 of [49] we know that a connected locallyW � A5

�
graph Σ is isomorphic to

� W � A7

�
(i.e., the Kneser graph K � 8,2 � ) with 28 elements,

� W � E6 � with 36 elements, or
� a graph related to D6 (but not isomorphic toW � D6

�
) with 32 elements.
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4 On locally complex unitary geometries

In this section we construct a locallyW � A5

�
induced subgraph Σ of Γ, which will

enable us to construct a weak Phan system for the groupGΓ, see [42] whichwe stud-
ied in section 4.5.  e philosophy is to construct a Coxeter system from local data
that is naturally associated to Γ. Recall also the de�nition of the induced subgraph
Ψz of a graph Ψ and a vertex z � Ψ from the introduction.
Let x be a vertex of the graph Γ. We consider the interior space

�
x from the in-

duced subgraph x
�
, which is a unitary projective space, and the unitary vector space

V � � x � , which is of dimension six by proposition 4.2.3. Next we �x a orthonormal
basis α � v1, . . . ,v6 of V � � x � and obtain the 15 di�erent two-dimensional subspaces
y
ij
x

 � vi,vj � for 1 �

i � j
�
6. Certainly each line y

ij
x corresponds to a unique

vertex yij of the induced subgraph x
�
for 1

�
i � j

�
6.  ese 15 di�erent vertices

yij for 1
�
i � j

�
6 together with the vertex x form the vertex set � � Υ � for the

graph Υ. We de�ne the graph Υ to be the induced subgraph of Γ on the vertex set� x,yij � 1 �
i � j

�
6 � 
 � � Υ � .

Regard that the indices i, j for the vertices yij � � � Υ � are ordered.  is ordering
is not necessary as the line y

ij
x equals the line y

ji
x in

�
x for i, j � � 1, . . . ,6 � , i �
 j.

We still use this ordering for the next parts and we will mention if we disregard the
ordering.

Lemma 4.4.7  e induced subgraph Υx of the connected graph Υ is isomorphic to the
graphW � A5

�
� K � 6,2 � .

Proof: Two di�erent vertices yij and ykl of � � Υ � are adjacent, so yij � ykl , if and

only if y
ij
x

� � yklx
� π by de�nition of Γ. Since yijx 
 � vi,vj � and yklx 
 � vk,vl � , we get� vi,vj � 
 yijx � � yklx
� π 
 � vk,vl � π if and only if � i, j� 	 � k, l � 
 � , thus the map

Υx � K � 6,2 � � W � A5

� � yij � � i, j� is a graph isomorphism. ■
Next we will specify the construction of the graph Σ. We consider again the vector
space V � � x � of the vertex x and in this vector space we obtain the one-dimensional
subspaces px,vi


 � vi � for 1 �
i

�
6.  ese are the intersection points of the lines

y
ij
x and y

mn
x with � � i, j,m,n � � 
 3, where i, j,m,n � � 1, . . . ,6 � , i � j, m � n.

More precisely two di�erent lines y
ij
x and y

mn
x intersect in the point px,vk if and

only if � � i, j,m,n � � 
 3 and � k � 
 � i, j� 	 � m,n � .  ese unique interior points of
the projective space

�
x induce explicit points pyst ,vk in the projective space

�
yst for

1
�
s � t

�
6, k � � 1 . . .6 � � � s, t � . Indeed each pair of indices s and t with 1 �

s �

t
�
6 the projective space

�
yst contains the interior lines y

ij
yst
with 1

�
i � j

�
6,

� i, j� 	 � s, t � 
 � and any two di�erent lines yijyst and ymnyst with � � i, j,n,m � � 
 3
and � k � 
 � i, j� 	 � m,n � de�ne the point pyst ,vk . Directly from the construction
we get that each line y

ij
yst
contains the points pyst,vi and pyst ,vj, which are orthogonal

to each other by similar arguments as in lemma 4.3.9 applied to the vertices � � Υ � .
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4.4 A reection graph inside the graph Γ

Remark 4.4.8 We would like to point out that we can not use lemma 4.3.8 for the
construction above if we restrict ourselves to use only the 16 vertices of the graph Υ
without additional information about Γ. Indeed let k be a �xed element of the in-
dex set � 1, . . . ,6 � then it is not possible to conclude that the points pyij,vk induced
by the three di�erent vertices ynm,yst,ypq for 1

�
i � j

�
6, � n,m, s, t, p,q � 
� 1, . . . ,6 � � � i, j� , � n,m � 	 � s, t � 	 � p,q � 
 � k � induce each other. As an exam-

ple we consider the line y34x in the projective space
�
x. Certainly the vertices y

34,
y35 and y36 de�ne the explicit point py12 ,v3 in the projective space

�
y12 . Also y

34,
y31 and y32 identify the point py56 ,v3 as the intersection point of the lines y

34
y56
, y31

y56

and y32
y56
in the space

�
y56 . But it is not possible to conclude that the point py12 ,v3

induces the point py56 ,v3 using only the vertices of Υ, since only the vertex y
34 be-

longs in both projective spaces,
�
y12 and

�
y56 , to a two-dimensional subspace. Hence

the point py12 ,v3 correlates either to the point py56 ,v4 of the line y
34
y56
or the point

py56 ,v3 of y
34
y56
.  us in general if yij and ymn are two di�erent adjacent vertices with

i, j,m,n � � 1, . . . ,6 � , i � j,m � n in Υ then the point pyij,vk on the line y
st
yij
of�

yij correlates either to the point pymn,vs of the line y
st
ymn or the point pymn,vt of y

st
ymn ,

where � s, t, i, j,m,n � 
 � 1, . . . ,6 � , k � � s, t � . In particular these two possibilities
will turn out to distinguishW � A7

�
fromW � E6 � .

We consider the complex vector space V � � y12 � . Let β � d1,d2 ,v3,v4,v5,v6 be an
orthonormal basis of V � � y12 � such that vi � py12 ,vi for 3 �

i
�
6 and the orthogonal

vectors d1 and d2 span the line xy12 . By construction the two vectors vi and vjconsti-

tute a basis for the line y
ij
y12 in

�
y12 for 3

�
i � j

�
6. We �x the lines � zij12 � y12 
 � di ,vj �

for 3
�
i

�
6, j � � 1,2 � , which belong to the vertices zij12 of the graph Γ, and

the two points py12 ,d1

 � d1 � and py12 ,d2 
 � d2 � . Hence this projective space

�
y12

contains the line xy12 , the six lines y
34
y12 , y

35
y12 , y

36
y12 , y

45
y12 , y

46
y12 , y

56
y12 and the eight two-

dimensional subspaces � z1312
�
y12 , � z1412

�
y12 , � z1512

�
y12 , � z1612

�
y12 , � z2312

�
y12 , � z2412

�
y12 , � z2512

�
y12 ,

� z2612
�
y12 . Analysing the con�guration of these 15 di�erent lines it follows that for

indices i,m � � 1,2 � , j, k, l,n � � 3 . . . ,6 � , k � l, we know � zij12 � y12 � � ykly12
� π if and

only if j �� � k, l � and � zij12 � y12 � � zmn12
� π
y12 if and only if i

� m and j � n.  us for
indices i,m � � 1,2 � , j, k, l,n � � 3 . . . ,6 � , k � l, we obtain

z
ij
12 � ykl in Γ if and only if j �� � k, l � , and

z
ij
12 � zmn12 in Γ if and only if i � m and j � n.

Furthermore for k � � 1,2 � , l � � 3, . . . ,6 � every line � zkl12
�
y12 intersects the line xy12

in the point py12 ,dk and the two lines � z1l12
�
y12 and � z2l12

�
y12 intersect each other in the

point py12 ,vl .  e three lines y
mn
y12 , y

pq
y12 and y

st
y12 with

� p,q,m,n, s, t � 
 � 3, . . . ,6 �
intersect in the point py12 ,vl for l � � m,n � 	 � s, t � 	 � p,q � . Also any two lines
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� zkl12
�
y12 and � zmn12

�
y12 with k,m � � 1,2 � , n, l � � 3, . . . ,6 � , n �
 l either intersects in

the point py12 ,dk of the line xy12 if k

 m or do not intersect in the projective space�

y12 .

Using the discussion from above the unique interior points py12 ,dk for k � � 1,2 � of
the projective space

�
y12 induce explicit points pyij,dk on the line xyij in the projective

space
�
yij for 3

�
i � j

�
6. As before we de�ne the point pyij,dk of the projective

space
�
yij to be the intersection point of the three lines xyij, � zkl12

�
ykj and � zkm12

�
yij

with l,m � � 3, . . . ,6 � � � i, j� , l �
 m. Certainly the two points pyij,d1 and pyij,d2 are
pairwise orthogonal and orthogonal to the points pyij,vq for q � � 1, . . . ,6 � � � i, j� by
a similar argumentation as in lemma 4.3.9 applied to the vertices � � Υ � � � zij12 � i �� 1,2 � , 3 �

j
�
6 � .

 erefore let 4
�
k � l

�
6, then we obtain in the projective space

�
ykl the six

pairwise orthogonal points pykl ,d1 , pykl ,d2 and pykl ,vj for j � � 1, . . . ,6 � � � k, l � . We
determine the eight di�erent two-dimensional subspaces � zijkl

�
ykl

 � pykl ,di , pykl ,vj �

for i � � 1,2 � , j � � 1, . . . ,6 � � � k, l � in � ykl , which again belong to the vertices zijkl in
the graph Γ. A similar analysis for the projective space

�
ykl as was done for the space�

y12 leads to the facts that the vertices z
1i
kl , z

1j
kl , z

2i
kl and z

2j
kl are elements of the induced

subgraph � yst � �
in Γ for � i, j, s, t � 
 � 1, . . . ,6 � � � k, l � , that the two di�erent lines

xykl and � zmnkl
�
ykl intersect in the point pykl ,dm for m � � 1,2 � , n � � 1, . . . ,6 � � � k, l �

and that any two di�erent lines � zstkl
�
ykl and � zmnkl

�
ykl either intersect in the point

pykl ,dm of the line xykl if s

 m or do not intersect at all in the projective space � ykl

for s,m � � 1,2 � , n, t � � 1, . . . ,6 � � � k, l � , n �
 t.
 e points pykl ,d1 and pykl ,d2 induce non-ambiguous points pyij,d1 and pyij,d2 in the
spaces

�
yij where i � � 1,2 � , j � � 3, . . . ,6 � � � k, l � . As before the point pyij,ds is

de�ned to be the intersection point of the three di�erent lines xyij, � zstkl
�
yij, � zsrkl

�
yij

with � r, t � 
�� 1, . . . ,6 � � � i, j, k, l � , s � � 1,2 � . Certainly with an argument similar
to the one used in lemma 4.3.9 applied to the vertices � � Υ � � � zmn12 � m � � 1,2 � ,3 �

n
�
6 � � � zmnoq � m � � 1,2 � ,4 �

o � q
�
6,n � � 3, . . . ,6 � � � o,q � � it follows that the

two points pyij,d1 and pyij,d2 are pairwise perpendicular and also orthogonal to the
points pyij,vc for any c � � 1, . . . ,6 � � � i, j� .
At this point, in each projective space

�
yij for 1

�
i � j

�
6 we have identi�ed six

pairwise orthogonal points pyij,dk , pyij,vl with k � � 1,2 � , l � � 1, . . . ,6 � � � i, j� . No-
tice, as before in remark 4.4.8, we can not conclude that the point pyij,dk correlates to

the point pyst ,dk for any two vertices y
ij � yst in Γ for k � � 1,2 � , i, j, s, t � � 1, . . . ,6 � ,

i � j, s � twithout any additional information. Next we consider in each projective
space

�
yij for 1

�
i � j

�
6, the eight di�erent two-dimensional subspace � zklij

�
yij

for k � � 1,2 � , l � � 1, . . . ,6 � � � i, j� which belong to the vertices zijkl of the graph Γ.
Here we have an ordering on the indices i, jand k, l for a vertex z

ij
kl.  e ordering
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on the pair k, l is not essential. Certainly the two vertices z
ij
kl and z

ij
lk coincide and

later we will disregard this ordering. But we would like to point out that we can not
interchange the position of the indices i and j. As an example z1256 �
 z2156 in Γ.
We de�ne the graph Σ to be the induced subgraph of Γ on the vertex set� � Σ � 
 � x,yij,zklmn � k � � 1,2 � , i, j, l,m,n � � 1, . . . ,6 � , i � j, m � n, m �
 l �
 n � .

Since � � Σ � possesses 15 di�erent vertices yij, at most 15 � 8 
 120 vertices of type zklmn
and the vertex x, it follows that the set � � Σ � contains at most 136 di�erent elements.
We denote with � � z � the vertices of type zklmn of the graph Σ.  us� � z � 
 � zklij � k � � 1,2 � , l,m,n � � 1, . . . ,6 � , m � n, m �
 l �
 n � .

In order to show that the induced subgraph Σ of Γ is locally W � A5

�
, we need to

establish the isomorphism type of the induced subgraphs Σw for each vertex w in� � Σ � .
Corollary 4.4.9 Every vertex zklij of � � z � is di�erent from x and not adjacent to x in
the graph Σ.

Proof: Since each line � zklij
�
yij intersects the line xyij in the unique point pyij,dk by

construction, the vertices zklij and x are neither adjacent nor equal. ■

Lemma 4.4.10  e induced subgraph Σx of the connected graph Σ is isomorphic to
the graphW � A5

�
� K � 6,2 � .

Proof:  is statement follows from corollary 4.4.9 and lemma 4.4.7. ■
Study now the projective space

�
y12 with the four lines � z1312

�
y12 , � z1412

�
y12 , � z2312

�
y12 ,

� z2412
�
y12 , which are orthogonal to the line y

56
y12 .  erefore we can consider these lines

in the projective space
�
y56 . Recall that the two lines � zi312

�
y56 and � zi412

�
y56 intersect

the line xy56 in the point py56 ,di by construction for i � � 1,2 � . Also recall that � z1312
�
y56

and � z2312
�
y56 intersect the line y

34
y56
either in the point py56 ,v3 or in the point py56 ,v4 , cf.

remark 4.4.8.  us the �rst case is that � z1312
�
y56 	 � z2312

�
y56 	 y34y56 
 py56 ,v3 implying that

� z1312
�
y56

 � py56 ,d1 , py56 ,v3 � 
 � z1356

�
y56 and � z2312

�
y56

 � py56 ,d2 , py56 ,v3 � 
 � z2356

�
y56 , so we

conclude the equality zi312

 zi356 in the graph Σ for i � � 1,2 � . Alternatively, we get that

� z1312
�
y56 	 � z2312

�
y56 	 y34y56 
 py56 ,v4 , which leads to � z1312

�
y56

 � py56 ,d1 , py56 ,v4 � 
 � z1456

�
y56

and � z2312
�
y56

 � py56 ,d2 , py56 ,v4 � 
 � z2456

�
y56 , thus z

i3
12

 zi456 in Σ for i � � 1,2 � .
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Case 1 : zi312

 zi356 for i � � 1,2 �

Proposition 4.4.11 Suppose zi312

 zi356 for i � � 1,2 � .  en the following identities for

k � � 1,2 � hold in Σ :

zk1 � 
 zk123 
 zk124 
 zk125 
 zk126 
 zk134 
 zk135 
 zk136 
 zk145 
 zk146 
 zk156,
zk2 � 
 zk213 
 zk214 
 zk215 
 zk216 
 zk234 
 zk235 
 zk236 
 zk245 
 zk246 
 zk256 ,
zk3 � 
 zk312 
 zk314 
 zk315 
 zk316 
 zk324 
 zk325 
 zk326 
 zk345 
 zk346 
 zk356 ,

zk4 � 
 zk412 
 zk413 
 zk415 
 zk416 
 zk423 
 zk425 
 zk426 
 zk435 
 zk436 
 zk456 ,

zk5 � 
 zk512 
 zk513 
 zk514 
 zk516 
 zk523 
 zk524 
 zk526 
 zk534 
 zk536 
 zk546,
zk6 � 
 zk612 
 zk613 
 zk614 
 zk615 
 zk623 
 zk624 
 zk625 
 zk634 
 zk635 
 zk645 .

Proof:  e proof of this statement is the technical part of case 1. By assumption
� z1312

�
y56 	 � z2312

�
y56 	 y34y56 
 py56 ,v3 and zi312 
 zi356 in Σ for i � � 1,2 � .  en the inter-

section point of the three lines � z1412
�
y56 , � z2412

�
y56 and y

34
y56
, which is orthogonal to the

intersection point of � z1312
�
y56 , � z2312

�
y56 and y

34
y56
is the point py56 ,v4 implying directly

that � zi412
�
y56

 � py56 ,di , py56 ,v4 � 
 � zi456

�
y56 and that z

i4
12

 zi456 for i � � 1,2 � .  is con-

�guration yields also that the line � zi312
�
y56

 � zi356

�
y56 intersects the lines y

j3
y56
in the

projective space
�
y56 for i, j � � 1,2 � . Hence the vertices zi312 
 zi356 and y

j3 are not
adjacent in the graph Σ for i, j � � 1,2 � .
Switching to the projective space

�
y45 , certainly the two lines � zi312

�
y45 for i � � 1,2 �

intersect in the line y36y45 either in the point py45 ,v3 or in the point py45 ,v6 and the

two lines � z1j12 � y45 for j � � 3,6 � intersect the line xy45 in the point py45 ,d1 .  us
� z1312

�
y45 equals either the line � z1345

�
y45 or the line � z1645

�
y45 . Suppose � z1312

�
y45 inter-

sects the subspace y36y45 in the point py45 ,v6 , then � z1312
�
y45

 � py45 ,d1 , py45 ,v6 � 
 � z1645

�
y45 ,

which is contained in the orthogonal space � y23y45
� π of the line y23y45 , contradicting the

fact that z1312 is not adjacent to the vertex y
23 in Γ.  erefore the two-dimensional

subspaces � z1312
�
y45 and y

36
y45 intersect in the point py45 ,v3 implying that � z1i12

�
y45



� py45 ,d1 , py45 ,vi � 
 � z1i45
�
y45 and � z2i12

�
y45

 � py45 ,d2 , py45 ,vi � 
 � z2i45

�
y45 for i � � 3,6 � ,

hence z1312

 z1345 and z1612 
 z1645 and z2312 
 z2345 and z2612 
 z2645 .

 e vertices z1i12 and z
2i
12 are adjacent to the vertex y

46 for i � � 3, 5 � , therefore the
intersection of the lines � zi312

�
y45 for i � � 1,2 � and y35y46 is either the point py46 ,v3 or the

point py46 ,v5 and the two lines � z1j12
�
y45 for j � � 3, 5 � intersect the line xy46 in the point

py46 ,d1 in
�
y46 . Again the line � z1312

�
y46 is either equal to the subspace � z1346

�
y46 or the

line � z1546
�
y46 . If � z1312

�
y46

�� py46 ,d1 , py46 ,v5 � 
 � z1546

�
y46 , then the two vertices z

13
12

 z1546

and y23 are adjacent in Γ, contradiction to the fact that the lines � z1312
�
y56

 � z1356

�
y56
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and y23
y56
intersect in

�
y56 .  is implies that � zij12 � y46 
�� py46 ,di , py46 ,vj � 
 � zij46

�
y46 for

i � � 1,2 � , j � � 3, 5 � . Summarising the identities, we know that:

zi312

 zi356 
 zi345 
 zi346 for i � � 1,2 � zi512


 zi546 for i � � 1,2 �
zi412

 zi456 for i � � 1,2 � zi612


 zi645 for i � � 1,2 � .

Next we consider the vertices zi312

 zi3kl and z

ij
kl for i, j � � 1,2 � , 4

�
k � l

�
6, cer-

tainly for these indices we know that zi312

 zi3kl and zijkl are elements of the induced

graphs � ymn � �
for m � � 1,2 � � � j� , n � � 4, 5,6 � � � k, l � .  e line � zi3kl

�
ymn is orthog-

onal to the line yklymn , intersects the line xymn in the point pymn,di by construction
and the line ys3ymn either in the point pymn,vs or in the point pymn,v3 in the projective

space
�
ymn for m, s � � 1,2 � , n � � 4, . . . ,6 � � � k, l � . Suppose � zi3kl

�
ymn 	 ys3ymn is the

point pymn,vs in
�
ymn then of course � zi3kl

�
ymn

 � pymn,di , pymn ,vs � 
 � zismn

�
ymn , which

is contained in the polar space � y3kymn
� π of the line y3kymn , contradiction as the vertices

zi3kl and y
3k are not adjacent in the graph Γ.  erefore � zi3kl

�
ymn

 � pymn ,di , pymn ,v3 � 


� zi3mn
�
ymn and � zijkl

�
ymn

 � pymn ,di , pykl ,vj � 
 � zijmn

�
ymn for the indices i,m, j � � 1,2 � ,

m �
 j, 4 �
k � l

�
6, n � � 4, . . . ,6 � � � k, l � .  us we obtain the relations

zi312

 zi356 
 zi345 
 zi346 
 zi314 
 zi315 
 zi316 
 zi324 
 zi325 
 zi326 for i � � 1,2 �

zi412

 zi456 for i � � 1,2 � zi126


 zi145 for i � � 1,2 �
zi512

 zi546 for i � � 1,2 � zi214


 zi256 for i � � 1,2 �
zi612

 zi645 for i � � 1,2 � zi215


 zi246 for i � � 1,2 �
zi124

 zi156 for i � � 1,2 � zi216


 zi245 for i � � 1,2 �
zi125

 zi146 for i � � 1,2 � .

Furthermore the fact that the six di�erent points pyij,vk , pyij,dl for i, j, k � � 1, . . . ,6 � ,
i � j, i �
 k �
 j, l � � 1,2 � are mutually orthogonal in the projective space � yij in-
dicates that zmnst � ycd for three pairwise di�erent indices d,n, t under the con-
dition that � d,n, t � 
 � 4, 5,6 � , c,m, s � � 1,2 � and c �
 m. Certainly, in

�
ycd ,

the line � zmnst
�
ycd intersects the subspace xycd in the unique point perpendicular

to pycd ,dw

 � zw3st

�
ycd 	 xycd 
 � zw3cd

�
ycd 	 xycd for w � � 1,2 � � � m � . Also the inter-

section space of � zmnst
�
ycd and y

3n
ycd
is of dimension one and perpendicular to the

point � zw3st
�
ycd 	 y3nycd 
 � zw3cd

�
ycd 	 y3nycd 
 pycd ,v3 for w � � 1,2 � .  us we determine

that � zmnst
�
ycd

 � pycd ,dm , pycd ,vn � 
 � zmncd

�
ycd in the projective space

�
ycd .  us the

vertices zmnst and z
mn
cd coincide in the graphs Γ and Σ for three pairwise di�erent in-

dices d,n, t under the condition that � d,n, t � 
 � 4, 5,6 � , c,m, s � � 1,2 � and c �
 m.
Combining all known relations, we observe for Σ that
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zi312

 zi356 
 zi345 
 zi346 
 zi314 
 zi315 
 zi316 
 zi324 
 zi325 
 zi326 for i � � 1,2 �

zi412

 zi456 for i � � 1,2 � zi624


 zi615 for i � � 1,2 �
zi426

 zi415 for i � � 1,2 � zi124


 zi156 for i � � 1,2 �
zi416

 zi425 for i � � 1,2 � zi125


 zi146 for i � � 1,2 �
zi512

 zi546 for i � � 1,2 � zi126


 zi145 for i � � 1,2 �
zi524

 zi516 for i � � 1,2 � zi214


 zi256 for i � � 1,2 �
zi514

 zi526 for i � � 1,2 � zi215


 zi246 for i � � 1,2 �
zi614

 zi625 for i � � 1,2 � zi216


 zi245 for i � � 1,2 �
zi615

 zi624 for i � � 1,2 � .

Since the vertex zi312 is equal to the vertex z
i3
kl for i � � 1,2 � , k, l � � 1, . . . ,6 � � � 3 � and

k � l it follows that zi312 � � ykl �
�
and zi312 � zmnkl in the graph Γ if m � � 1,2 � � � i �

and n � � 1, . . . ,6 � � � 3, k, l � . Moreover, by lemma 4.3.2 and remark 4.3.3 the vertices
ykl correspond to the lines ykl

zi312
in the projective space

�
zi312
, which induces the �ve

pairwise orthogonal points p
g

zi312


 yop
zi312
	 yqrzi312 	 y

st
zi312
	 yunzi312 for

� g � 
 � o, p� 	 � q, r � 	� s, t � 	 � u,n � and � n,o, p,q, r, s, t,u � 
 � 1, . . . ,6 � � � 3 � in
�
zi312
. Furthermore the

line � zm412

�
zi312

 � zm456

�
zi312
, which is orthogonal to the two lines y12

zi312
and y56

zi312
, inter-

sects the subspaces y46
zi312
and y24

zi312
.  erefore, we obtain that � zm412

�
zi312

 � p4

zi312
, p3

zi312
� ,

where p3
zi312


 � pg
zi312
� g � � 1,2,4, 5,6 � � π. Using now stepwise lemma 4.3.1, lemma

4.3.2 and corollary 4.3.3 we regard that � zmnkl
�
zi312

 � pn

zi312
, p3

zi312
� .  us we get the re-

lations � zmnkl
�
zi312

 � zmncd

�
zi312
in the space

�
zi312
for m � � 1,2 � � � i � , n � � 1, . . . ,6 � � � 3 � ,

c,d, k, l � � 1, . . . ,6 � � � 3,n � , k � l, c � d, which imply directly the identities

zi412

 zi456 
 zi426 
 zi415 
 zi416 
 zi425 for i � � 1,2 �

zi512

 zi546 
 zi524 
 zi516 
 zi514 
 zi526 for i � � 1,2 �

zi214

 zi256 
 zi215 
 zi246 
 zi216 
 zi245 for i � � 1,2 �

zi124

 zi156 
 zi125 
 zi146 
 zi126 
 zi145 for i � � 1,2 �

zi614

 zi625 
 zi615 
 zi624 
 zi624 
 zi615 for i � � 1,2 �

in the graph Σ.
Next we analyse the situation for the line � zi412

�
y12 in the projective space

�
y12 for

i � � 1,2 � .  is line is orthogonal to the lines y56y12 , y35y12 and y36y12 , intersects the lines
y45y12 , y

46
y12 and y

34
y12 in the point py12 ,v4 and the line xy12 in py12 ,di .  erefore in the

projective spaces
�
y3k with k � � 5,6 � , we determine that the two-dimensional sub-

space � zi412
�
y3k intersects the line xy12 also in the point py3k ,di by construction and

the line y
4j

y3k
with j � � 5,6 � � � k � either in the point py3k ,v4 or in the point py3k,vj. If

� zi412
�
y3k 	 y4jy3k 
 py3k ,vj then � zi412

�
y3k

�� py3k ,di , py3k ,vj � 
 � zij3k

�
y3k

� � y24
y3k

� π, contra-
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diction.  us � zi412
�
y3k

�� py3k ,di , py3k ,v4 � 
 � zi43k

�
y3k implying that � zij12

�
y3k

 � zij

3k

�
y3k

for j � � 5,6 � � � k � and furthermore the line � zi412
�
y3k is orthogonal to the line y

jm

y3k

with j � � 1,2 � and m � � 5,6 � � � k � .
 e projective space

�
ykl with k � � 1,2 � , l � � 5,6 � contains the four di�erent

lines � zi43m
�
yjk , � zij3m

�
yjk for i, j � � 1,2 � , j �
 l, m � � 5,6 � � � k � . Since zi412 
 zi456



zi426

 zi415 
 zi416 
 zi425 
 zi435 
 zi436, it follows that the intersecting of the lines � zij3m

�
ykl

and y
j4

ykl
is the one-dimensional subspace pyjk,vj implying that � zij3m

�
ykl

 � zij

1l

�
ykl .

Switching now back to the projective space
�
y56 , we know that � zi412

�
y56

 � zi456

�
y56

for i � � 1,2 � .  is line � zi456
�
y56 is orthogonal to the subspace y

j3
y56
for j � � 1,2 � ,

intersects xy56 in the point py56 ,di and the three lines y
14
y56
, y24

y56
and y34

y56
. With a similar

argumentation as we used several times before we obtain the relations � zi456
�
yn3



� zi4n3
�
yn3 and � zij56

�
yn3

 � ziln3

�
yn3 for i, j,n � � 1,2 � , j �
 n.  us for the moment we

worked out the following list of relations for the graph Σ:

zi312

 zi356 
 zi345 
 zi346 
 zi314 
 zi315 
 zi316 
 zi324 
 zi325 
 zi326 for i � � 1,2 �

zi412

 zi456 
 zi426 
 zi415 
 zi416 
 zi425 
 zi413 
 zi423 
 zi435 
 zi436 for i � � 1,2 �

zi512

 zi546 
 zi524 
 zi516 
 zi514 
 zi526 
 zi536 for i � � 1,2 �

zi614

 zi625 
 zi615 
 zi624 
 zi624 
 zi615 
 zi635 for i � � 1,2 �

zi124

 zi156 
 zi125 
 zi146 
 zi126 
 zi145 
 zi135 
 zi136 for i � � 1,2 �

zi214

 zi256 
 zi215 
 zi246 
 zi216 
 zi245 
 zi235 
 zi236 for i � � 1,2 � .

 e last step in the identi�cation of all relations between the vertices of � � z � is to
analyse the situation for the lines � zi512

�
y12 in the projective space

�
y12 for i � � 1,2 � .

Obviously these lines are orthogonal to y34y12 and using a similar argument as above

we get that � zi512
�
y34

 � zi534

�
y34 and � zi612

�
y34

 � zi634

�
y34 in

�
y34 . From the facts that

� zi526
�
y34

 � zi512

�
y34

 � zi534

�
y34 , � zi615

�
y34

 � zi612

�
y34

 � zi634

�
y34 and that z

i5
26,z

i6
15 � � y34 �

�
we obtain equality between the lines � zi126

�
y34 and � zi134

�
y34 and between the lines

� zi215
�
y34 and � zi234

�
y34 for i � � 1,2 � . Next we consider the lines � zi512

�
y46

 � zi546

�
y46 in

the space
�
y46 for i � � 1,2 � and the two-dimensional subspaces � zi612

�
y45

 � zi645

�
y45

inside
�
y45 for i � � 1,2 � . In both cases the lines � zij4n � y4n are orthogonal to the lines

ym3y4n for
� j,n � 
 � 5,6 � , i,m � � 1,2 � .  erefore we also detect the lines � zij4n � ym3 in

the projective space
�
ym3 . Certainly � zij4n � ym3 intersects xym3 in a unique point and

the subspace � zij4n � ym3 	 xym3 
 � zij12
�
ym3 	 xym3 is orthogonal to the point � zkj12

�
ym3 	

xym3

 � zk412

�
ym3 	 xym3 
 � zk456

�
ym3 	 xym3 
 pym3 ,dk for k � � 1,2 � � � i � implying

� zij4n
�
ym3 	 xym3 
 pym3 ,di . Of course the intersection point of � zij4n

�
ym3 and y

kj
ym3 is

the point pym3 ,vj for k � � 1,2 � � � i � , as otherwise � zij4n
�
ym3


 � zikm3
�
ym3

� � y4nym3
� π,

contradiction. Finally, we get that � zij4n � ym3 
 � zijm3 � ym3 and � zip4n � ym3 
 � zipm3 � ym3 for� j,n � 
 � 5,6 � , i,m, p � � 1,2 � , m �
 p. ■
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Corollary 4.4.12  e graph Σ consists of the 28 pairwise distinct vertices x, y ij, zkl

with 1
�
i � j

�
6, 1

�
l

�
6, k � � 1,2 � .

Proof:  e vertex x is distinct from each vertex yij, 1
�
i � j

�
6, because yij � Σx.

As zkl 
 zklij for 1
�
i � j

�
6, i �
 l �
 j by lemma 4.4.9, we get x � zklij


 zkl .

Furthermore two vertices yijwith 1
�
i � j

�
6 are pairwise distinct by de�nition.

Because x � yij and x �� zkl , cf. lemma 4.4.9, we have yij � zkl for any indices
1

�
i � j

�
6, 1

�
l

�
6, k � � 1,2 � .

Finally, the vertices zkl for 1
�
l

�
6, k � � 1,2 � are pairwise distinct. Indeed for

each pair of vertices zkl and zmn with l,n � � 1, . . . ,6 � , k,m � � 1,2 � there exists a
set � i, j� � � 1, . . . ,6 � � � l,n � with zkl 
 zklij � yij � zmnij


 zmn, whence zkl 
 zklij 

zmnij


 zmn if and only if k 
 m and n 
 l.  erefore Σ contains 1 � 15 � 12 
 28
pairwise di�erent vertices. ■

Lemma 4.4.13 Any two vertices zkl and yij are adjacent in the graph Σ for some
indices 1

�
i � j

�
6, 1

�
l

�
6, k � � 1,2 � if and only if zkl 
 zklij .

Proof: By proposition 4.4.11 we have zkl 
 zklmn for indices m,n � � 1, . . . ,6 � � � l � ,
n � m and yij � ycd for any indices c,d � � 1, . . . ,6 � � � i, j� , c � d.  us the
vertices zkl and yij are elements of the induced subgraph � yst � �

for 1
�
s � t

�
6

if � s, t � 	 � l, i, j� 
 � .  e line � zklmn
�
yst is contained in the polar space � yijyst

� π if
and only if l �� � i, j� by construction, which is equivalent to zkl � yij if and only if
l �� � i, j� which is equal to zkl 
 zklij by proposition 4.4.11. ■

Lemma 4.4.14 Any two vertices zij and zkl are adjacent in the graph Σ for some
indices j, l � � 1, . . . ,6 � , i, k � � 1,2 � if and only if i �
 k and l �
 j.
Proof: By lemma 4.4.13 the vertex ycd with 1

�
c � d

�
6 is adjacent to zij and zkl

in Σ if and only if � j, l � 	 � c,d � 
 � . In the induced subgraph � ycd �
�
, the vertices

zkl and zij are adjacent if and only if � zklcd
�
ycd

� � zijcd
� π
ycd
in
�
ycd which is equivalent

to i � k and j � l by construction. ■

Corollary 4.4.15 Let w be a vertex of Σ then the induced subgraph Σw has exactly 15
vertices.

Proof: If w 
 x then the statement follows from lemma 4.4.7. For 1 �
i � j

�
6 the

induced subgraph Σyij has the vertex set� � Σyij
� 
 � x,ymn,zkl � m,n, l � � 1, . . . ,6 � � � i, j� , m � n, 1

�
k

�
2 �

by lemma 4.4.13 and lemma 4.4.14. As we have two possibilities to choose the index
k, four possibilities to choose the index l and

�
4
2 � options for the pairm,n it follows

that � � � Σyij
� � 
 1 � 2 � 4 �

�
4
2 � 
 15.
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Alternatively if w 
 zij then� � Σzij
� 
 � ymn,zkl � m,n, l � � 1, . . . ,6 � � � j� , m � n, k 
 � 1,2 � � � i � �

by corollary 4.4.9, lemma 4.4.13 and lemma 4.4.14. Since we have no choice for the
index k, �ve possibilities to choose the index l and

�
5
2 � options for the pair m,n it

follows that � � � Σyij
� � 
 1 � 5 �

�
5
2 � 
 15. ■

Lemma 4.4.16 For any vertex w � Σ the induced subgraph Σw is isomorphic to
W � A5

�
.

Proof:  e statement is proved in lemma 4.4.10 for the vertex x � Σ, so Σx � W � A5

�
.

For a vertex yij, the statement follows from the construction of Σ together with
lemma 4.4.13 and corollary 4.4.15 for any indices 1

�
i � j

�
6. Finally,� � Σzij

� 
 � ymn,zkl � m,n, l � � 1, . . . ,6 � � � j� , m � n, k 
 � 1,2 � � � i � � ,
by corollary 4.4.15 for a vertex zij with i � � 1,2 � , j � � 1, . . . ,6 � . In this last part
of the proof we will disregard the ordering of the indices k, l for the vertices ykl ,
therefore ykl 
 ylk. Let γzij � Σzij � Σx be the map such that the image of y

mn is
ymn, γzij � zkl

� 
 y jl . To verify that γzij is a graph isomorphism, let u and v be two
adjacent vertices of the graph Σzij. Certainly if u


 ymn and v 
 yst for suitable
indices m,n, s, t � � 1, . . . ,6 � � � j� , then by construction � m,n � 	 � s, t � 
 � and of
course γzij � u

� 
 γzij � ymn
� 
 ymn � yst 
 γzij � yst

� 
 γzij � v
�
in Σx. If alternatively

ymn 
 u � v 
 zkl with k 
 � 1,2 � � � i � , l,m,n � � 1, . . . ,6 � � � j� , m �
 n in Σzij

then the indices l,m,n are pairwise di�erent, the index jdoes not belongs to the
set � l,m,n � and k �
 i. Furthermore γzij � u

� 
 γzij � ymn
� 
 ymn and γzij � v

� 

γzij � zkl

� 
 y jl . In particular the four indices l,m,n and j are pairwise di�erent,
which implies that γy � u � and γy � v � are two adjacent vertices in Σx. Hence γzij is a
graph isomorphism between Σzij and Σx implying Σzij � Σx � W � A5

�
by lemma

4.4.7. ■

Proposition 4.4.17 Suppose zi312

 zi356 for i � � 1,2 � .  en Σ � W � A7

�
.

Proof: By lemma 4.4.16 the graph Σ is locallyW � A5

�
. By corollary 4.4.12 the graph

Σ has 28 vertices. Hence by theorem 2 in [17] or theorem 2 in [49] the graph Σ is
isomorphic toW � A7

�
. ■

Case 2 : zi312

 zi456 for i � � 1,2 �

Proposition 4.4.18 Suppose zi312

 zi356 for i � � 1,2 � .  en the following identities for� k, l � 
 � 1,2 � hold in Σ :

zk312

 zk213 
 zk123 
 zk645 
 zk546 
 zk456
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zk412

 zk214 
 zk124 
 zk635 
 zk536 
 zk356

zk512

 zk215 
 zk125 
 zk634 
 zk436 
 zk346

zk612

 zk216 
 zk126 
 zk534 
 zk435 
 zk345

zk156

 zk423 
 zk324 
 zl234 
 zl615 
 zl516

zk145

 zk623 
 zk326 
 zl236 
 zl514 
 zl415

zk146

 zk523 
 zk325 
 zl235 
 zl614 
 zl416

zk256

 zk413 
 zk314 
 zl134 
 zl625 
 zl526

zk245

 zk613 
 zk316 
 zl136 
 zl524 
 zl425

zk246

 zk513 
 zk315 
 zl135 
 zl624 
 zl426

Proof: As in the proof of proposition 4.4.11 we will work out a list of relation of the

vertices z
ij
kl � � � z � in the graph Σ. By assumption we have the relation zi312 
 zi456 for

i � � 1,2 � , in Σ.
Looking at the unitary space

�
y56 the intersection point of the three lines y

34
y56
,

� z1412
�
y56 and � z2412

�
y56 , which is orthogonal to the point � z1312

�
y56 	 � z2312

�
y56 	 y34y56 , is

the point py56 ,v3 .  us we determine that � z1412
�
y56 	 � z2412

�
y56 	 y34y56 
 py56 ,v3 and

� zi412
�
y56

 � zi356

�
y56 for i � � 1,2 � in � y56 . Furthermore the line � zi312

�
y56

 � zi456

�
y56

is contained in the polar space � y13
y56

� π of y13
y56
and in the subspace � y23

y56

� π and the
line � zi412

�
y56

 � zi356

�
y56 is a subspace of � y14y56

� π 	 � y24y56
� π.  erefore we conclude the

connectivity of zi312

 zi456 with the vertex y j3 and the adjacency of zi412 
 zi356 with the

vertex y j4 in the graph Γ for j, i � � 1,2 � .
Using now the complete analysis of the space

�
y12 , we recall that the vertices z

i3
12,

zi612 are adjacent to y
45 and zi312,z

i5
12 � � y46

� �
for i � � 1,2 � .  us the two-dimensional

subspace � zik12
�
y45 intersects the line xy45 in the point py45 ,di and the line y

36
y45 ei-

ther in the point py45 ,v3 or in py45 ,v6 for k � � 3,6 � . Since the lines � zi312
�
y45 and

y
j3
y45 are orthogonal for i, j � � 1,2 � and the point � zi312

�
y45 	 y36y45 is perpendicular

to the point � zi512
�
y45 	 y36y45 it follows that � zi312

�
y45

 � py45 ,dipy45 ,v6 � 
 � zi645

�
y45 and

� zi612
�
y45

 � py45 ,di , py45 ,v3 � 
 � zi345

�
y45 for i � � 1,2 � . Consequently, the vertex zi312

coincides with the vertices zi545 and z
i6
12 equals z

i3
45 in Γ for i � � 1,2 � .

Next we consider the lines which correspond to the vertices zi312 and z
i5
12 in the

projective space
�
y46 for i � � 1,2 � . Each subspace � zik12

�
y46 intersects the subspace

xy46 in the point py46 ,di for i � � 1,2 � , k � � 3, 5 � by construction of Σ.
Moreover the line � zi312

�
y46 is orthogonal to the lines y

13
y46
and y23

y46
in
�
y46 for

i � � 1,2 � and the intersection point of the three lines � z1312
�
y46 , � z2312

�
y46 and y

35
y46
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is orthogonal to the point � z1512
�
y46 	 � z2512

�
y46 	 y35y46 . So � zi312

�
y46

 � py46 ,di , py46 ,v5 � 


� zi546
�
y46 and � zi512

�
y46

 � py46 ,di , py46 ,v3 � 
 � zi346

�
y46 .

We now switch to the projective space
�
ym3 for m � � 1,2 � .  is space contains

the lines corresponding to the vertices zi312

 zi546 
 zi645 
 zi456 and zijkl for i, j � � 1,2 � ,

j �
 m, 4 �
k � l

�
6. By construction of Σ the lines � zi456

�
ym3 intersect the subspace

xym3 in the point pym3,di , thus � zijkl
�
ym3 	 xym3 
 pym3,di .  e fact that zi312 � � y45 �

�
for implies � zi456

�
ym3

� � y45ym3
� π. So we conclude that the line � zi456

�
ym3 intersects the

subspace y
j4
ym3 in the point pym3,vj. In particular � zi456

�
yj3

 � py3j,di , pyj3,vj � 
 � zijm3

�
ym3

and � zijkl
�
ym3 	 yjhym3 
 pym3 ,vh for h � � 4, . . . ,6 � � � k, l � .  erefore we veri�ed that

� zijkl
�
ym3

 � zihm3

�
ym3 in the projective space

�
ym3 . Hence we achieved the following

relation in the graph Γ.

zi312

 zi456 
 zi645 
 zi546 
 zi213 
 zi123 for i � � 1,2 � zi245


 zi613 for i � � 1,2 �
zi412

 zi356 for i � � 1,2 � zi246


 zi513 for i � � 1,2 �
zi512

 zi346 for i � � 1,2 � zi156


 zi423 for i � � 1,2 �
zi612

 zi345 for i � � 1,2 � zi145


 zi623 for i � � 1,2 �
zi256

 zi413 for i � � 1,2 � zi146


 zi523 for i � � 1,2 �
Next we perform the same procedure for the vertices zi412 for i � � 1,2 � .  us we
will consider the line � zi412

�
y35 in

�
y35 , the line � zi412

�
y36 inside

�
y36 and the subspace

� zi456
�
yj4 in

�
yj4 for j � � 1,2 � .

We start with the lines � zi412
�
y3l and � zik12

�
y3l in the unitary space

�
y3l for i � � 1,2 � ,� k, l � 
 � 5,6 � . As before we have � zi412

�
y3l 	 xy3l 
 py3l ,di 
 � zik12

�
y3l 	 xy3l by the

construction of Σ. Since zi412 � y14 in Γ and the two-dimensional subspace � zi412
�
y3l

intersects the line y4k
y3l
, it follows that � zi412

�
y35 	 y4ky3l 
 py3l ,vk , � zik12

�
y3l 	 y4ky3l 
 py3l ,v4 ,

� zi412
�
y3l

 � py3l ,di , py3l ,vk � 
 � zik3l

�
y3l and � zik12

�
y3l

 � py3l ,di , py3l ,v4 � 
 � zi43l

�
y3l for

i � � 1,2 � and � k, l � 
 � 5,6 � .
Next we consider the line � zi456

�
ym4 in the unitary projective space

�
ym4 for the

indices i, k � � 1,2 � . Looking back to the projective spaces � y56 , � y35 and � y36 we
obtain that � zijkl

�
ykl

� � yj4
ykl

� π and that the lines � zi412
�
ykl intersect the subspace y

jh

ykl

for j � � 1,2 � � � m � , � h, k, l � 
 � 3, 5,6 � , k � l.  us the intersection of � zi456
�
ym4

and xym4 coincides with the point pym4 ,di , implying � zi456
�
ym4 	 yjhym4 
 pym4 ,vj and

� zijkl
�
ym4 	 yjhym4 
 pym4 ,vh . Certainly we have equality between the subspaces � zi456

�
ym4

and � zijm4
�
ym4 as well as � zijkl

�
ym4

 � zihm4

�
ym4 in the space

�
ym4 .
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Summarising all known relations of the vertices z
ij
kl � � � z � with in the graph Γ at

this point in a list, we see that

zi312

 zi456 
 zi645 
 zi546 
 zi213 
 zi123 for i � � 1,2 �

zi412

 zi356 
 zi635 
 zi536 
 zi214 
 zi124 for i � � 1,2 �

zi512

 zi346 
 zi436 for i � � 1,2 � zi612


 zi345 
 zi435 for i � � 1,2 �
zi256

 zi413 
 zi314 for i � � 1,2 � zi156


 zi423 
 zi324 for i � � 1,2 �
zi245

 zi613 for i � � 1,2 � zi246


 zi513 for i � � 1,2 �
zi235

 zi614 for i � � 1,2 � zi236


 zi514 for i � � 1,2 �
zi145

 zi623 for i � � 1,2 � zi146


 zi523 for i � � 1,2 �
zi135

 zi624 for i � � 1,2 � zi136


 zi524 for i � � 1,2 �

From the analysis of the spaces
�
y12 and

�
yj6 for j � � 3,4 � we know already that the

vertex zi512

 zi346 
 zi436 is adjacent to the vertices y34 and yk5 for i, k � � 1,2 � and that

the line � zi512
�
y12 intersects the lines y

35
y12 and y

56
y12 . Moreover the subspace � zi346

�
y46

intersects the subspace ym3
y46
in the projective space

�
y46 for m � � 1,2 � as well as the

subspace � zi436
�
y36 	 yn4y36 is not trivial in

�
y36 for n � � 1,2 � .

 erefore in the unitary space
�
y34 the line � zil12

�
y34 intersects the subspace xy34 in

the point py34 ,di for l � � 5,6 � . Furthermore two-dimensional subspace � zi512
�
y34 in-

tersects the line y56y34 either in the point py34 ,v5 or in the point py34 ,v6 and is contained

in the subspace � yk5y34
� π, thus � zi512

�
y34

 � py34 ,di , py34 ,v6 � 
 � zi634

�
y34 . Using now the

fact that the two points � zi512
�
y34 	 y56y34 and � zi612

�
y34 	 y56y34 are perpendicular, we get

� zi612
�
y34

 � py34 ,di , py34 ,v5 � 
 � zi534

�
y34 for i � � 1,2 � . Notice that � zi634

�
y34

� � yk5y34
� π,

the line � zij34 � y34 is a subspace of the polar space � yk5y34
� π of yk5y34 if j � � 1,2 � � � k � and

that each of the lines � zij34 � y34 and � zij34 � y34 intersects the two-dimensional subspace
y
j6
y34 .
 e analysis of the projective space

�
yk5 for k � � 1,2 � implies that the intersection

of the subspaces � zim46
�
yk5 and xyk5 is the point pyk5 ,di for i � � 1,2 � ,m � � 1,2,3 � � � k � .

Since � zi346
�
yk5 intersects the line y

l3
yk5
for l � � 1,2 � � � k � and is orthogonal to the

lines yst
yk5
for s, t � � 3,4,6 � , s � t, the point pyk5 ,vl is the intersection point of the

subspaces � zi346
�
yk5 and y

l3
yk5
.  erefore the orthogonal point pyk5 ,v3 of pyk5 ,vl on the

two-dimensional subspace yl3
yk5
is the intersection point of the lines � zil46

�
yk5 and y

l3
yk5
,

implying � zil46
�
yk5

 � zi3k5

�
yk5 . Taking this argumentation again under the use of the

lines ycd
yk5
for c � � 1,2 � � � k � , � d, p� 
 � 4,6 � we obtain that � zic3p

�
yk5 	 ycdyk5 
 pyk5 ,vd

implying � zic3p
�
yk5

 � zidk5

�
yk5 . We extend the relation list accordingly now have:
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zi312

 zi456 
 zi645 
 zi546 
 zi213 
 zi123 for i � � 1,2 �

zi412

 zi356 
 zi635 
 zi536 
 zi214 
 zi124 for i � � 1,2 �

zi512

 zi346 
 zi436 
 zi634 
 zi215 
 zi125 for i � � 1,2 �

zi236

 zi514 
 zi315 for i � � 1,2 � zi256


 zi413 
 zi314 for i � � 1,2 �
zi246

 zi513 
 zi415 for i � � 1,2 � zi156


 zi423 
 zi324 for i � � 1,2 �
zi146

 zi523 
 zi425 for i � � 1,2 � zi136


 zi524 
 zi325 for i � � 1,2 �
zi245

 zi613 for i � � 1,2 � zi235


 zi614 for i � � 1,2 �
zi234

 zi615 for i � � 1,2 � zi145


 zi623 for i � � 1,2 �
zi135

 zi624 for i � � 1,2 � zi134


 zi625 for i � � 1,2 �
zi612

 zi345 
 zi435 
 zi534 for i � � 1,2 � in the graph Γ.

A similar argumentation in the projective spaces
�
yj6 for j � � 1,2 � about the lines

� zi612
�
yj6

 � zi345

�
yj6 shows that � zi345

�
yj6

 � zilj6

�
yj6 for i, l � � 1,2 � , l �
 j. Indeed each of

the lines � zikmn
�
yj6 for k � � 1,2,3 � � � j� ,m,n � � 3, . . . , 5 � � � k � intersect the subspace

xyj6 in the point pyj6 ,di and � zi345
�
yj6 	 yl3yj6 
 pyj6,vl by the containment of � zilmn

�
yj6

in � y34
yj6

� π 	 � y35yj6
� π. Furthermore pyj6,vt is the intersection of � zilmn

�
yj6 and y

lt
yj6
for

t � � 3, . . . , 5 � � � m,n � due to the facts that � zilmn
�
yj6 	 yltyj6 is orthogonal to the point

� zi345
�
yj6 	 yl3yj6 
 � zi435

�
yj6 	 yl4yj6 
 � zi534

�
yj6 	 yl5yj6 , which show that � zi345

�
yj6

 � zilj6

�
yj6

and � zilmn
�
yj6

 � zitj6

�
yj6 . We end up with the list

zi312

 zi456 
 zi645 
 zi546 
 zi213 
 zi123 for i � � 1,2 �

zi412

 zi356 
 zi635 
 zi536 
 zi214 
 zi124 for i � � 1,2 �

zi512

 zi346 
 zi436 
 zi634 
 zi215 
 zi125 for i � � 1,2 �

zi612

 zi345 
 zi435 
 zi534 
 zi216 
 zi126 for i � � 1,2 �

zi256

 zi413 
 zi314 for i � � 1,2 � zi245


 zi613 
 zi316 for i � � 1,2 �
zi246

 zi513 
 zi315 for i � � 1,2 � zi235


 zi614 
 zi416 for i � � 1,2 �
zi236

 zi514 
 zi415 for i � � 1,2 � zi234


 zi615 
 zi516 for i � � 1,2 �
zi156

 zi423 
 zi324 for i � � 1,2 � zi145


 zi623 
 zi326 for i � � 1,2 �
zi146

 zi523 
 zi325 for i � � 1,2 � zi135


 zi624 
 zi426 for i � � 1,2 �
zi136

 zi524 
 zi425 for i � � 1,2 � zi134


 zi625 
 zi526 for i � � 1,2 �
for the vertices z

ij
kl � � � z � in Σ for this moment.

In the last step in the identi�cation of all relations between the vertices of � � � z �
in Γ, we consider simultaneously the unitary projective spaces

�
z1512
and

�
z1612
. So for

the next part we �x the indices h and g such that � h, g � 
 � 5,6 � and we remind the
reader of the adjacency in the graph Γ between the vertex z

1g
12 and the three vertices

z2c12

 z

2g
mn with c � � 3,4,h � , m,n � � 3,4,h � � � c � , m � n, between z

1g
12 and y

mn for
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either m,n � � 1,2, g � , m � n or m,n � � 3,4,h � , m � n and of the connectivity
between z

1g
12 and the six vertices z

2k
mn

 z2dfg for

� k, f � 
 � 1,2 � , m,n � � 3,4,h � ,
m � n, d � � 3,4,h � � � m,n � in Γ.
First of all the three lines y12

z
1g
12
, y

1g

z
1g
12
and y

2g

z
1g
12
and also the three two-dimensional

subspaces y34
z
1g
12
, y3h

z
1g
12
and y4h

zi312
intersect pairwise in the space

�
z
1g
12
for i � � 1,2 � by

corollary 4.3.3.  us let pa
z
1g
12
be the intersection point of the two lines ymn

z
1g
12
and ykl

z
1g
12

for k, l,m,n � � 1,2, g � , k � l, m � n and for k, l,m,n � � 3,4,h � , k � l, m � n
where a 
 � m,n � 	 � k, l � . Moreover, any two points paz1g12 and p

b
z
1g
12
are orthogonal

in
�
z
1g
12
if a �
 b. Indeed this follows from the argumentation of lemma 4.3.9 and the

statements that
– each vertex of the set � ymn � m,n � � 1,2, g � , m � n � is adjacent to every
vertex of � ymn � m,n � � 3,4,h � , m � n � ,

– the vertex z2c12

 z2gmn is adjacent to the vertices y12 and ymn for c � � 3,4,h � ,

m,n � � 3,4,h � � � c � ,m � n,
– the two vertices ymn and y fg are connected with the vertex z2kmn


 z2dfg in the
graph Γ if � k, f � 
 � 1,2 � , � m,n,d � 
 � 3,4,h � ,m � n,

– the intersection of the three lines � z2c12
�
ymn

 � z2gmn � ymn , y1gymn and y2gymn in the

space
�
ymn is the point pymn ,vg for c � � 3,4,h � , m,n � � 3,4,h � � � c � ,m � n,

and

– the three lines � z2kmn
�
y fg


 � z2dfg
�
yfg, y

st
y fg
and y

pq

y fg
intersect in the point

py fg,vd in the space
�
y fg for

� k, f � 
 � 1,2 � , � d,m,n � 
 � 3,4,h � , m � n,� s, t, p,q � 
 � 3,4,h � , s � t, p � q, d 
 � s, t � 	 � p,q � .
So we conclude that ymn

z
1g
12
equals � pm

z
1g
12
, pn

z
1g
12
� for either m,n � � 1,2, g � , m � n or

m,n � � 3,4,h � , m � n. Next we consider the lines � z2c12
�
z
1g
12


 � z2gmn � z1g12 in the space�
z
1g
12
for the indices � c,m,n � 
 � 3,4,h � , n � m and obtain that the two-dimensional

subspace � y12
z
1g
12

� π 	 � ymnz
1g
12

� π 
 � pc
z
1g
12
, p

g

z
1g
12
� contains the line � z2c12

�
z
1g
12


 � z2gmn � z1g12 imply-
ing � z2c12

�
z
1g
12


 � z2gmn � z1g12 
 � y12z1g12
� π 	 � ymnz

1g
12

� π. Using the same argumentation again for
the lines � z2kmn

�
z
1g
12


 � z2dfg
�
z
1g
12
under the conditions that � k, f � 
 � 1,2 � , � d,m,n � 


� 3,4,h � andm � nwe get that � z2kmn
�
z
1g
12


 � z2dfg
�
z
1g
12


 � ymn
z
1g
12

� π 	 � yfgz1g12
� π 
 � pk

z
1g
12
, pd

z
1g
12
� .

 us the polar space � z2c12
� π
z
1g
12
of � z2c12

�
z
1g
12
for c � � 3,4,h � contains every line of the

set � � z2kmn
�
z
1g
12
� k � � 1,2 � , m � n, m,n � � 3,4,h � , c � � m,n � � . In particular the

vertex z2312 is adjacent to the vertices z
21
36, z

22
36, z

21
34, z

22
34, z

21
35, z

22
35 in Γ.

Finally we study the projective spaces
�
y45 ,
�
y46 and

�
y56 again. We �x two indices

4
�
k � l

�
6. Notices that the line � zij12 � ykl coincides with the two-dimensional

subspace � ziukl
�
ykl in

�
ykl if j,u � � 3,4, 5,6 � � � k, l � , i � � 1,2 � . Moreover this pro-

jective space
�
ykl contains the four lines � zim12

�
ykl and � zim3n

�
ykl for m � � 1,2 � and

n � � 4, 5,6 � � � k, l � . Due to the facts that zim34 
 zi6p5

 zi5p6, z

im
35

 zi6p4


 zi4p6 and
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zim36

 zi5p4


 zi4p5 for an index p � � 1,2 � � � m � , we get that the line � zim3n
�
ykl is con-

tained in the polar space � yph
ykl

� π of yph
ykl
if h � � 3,n � , thus � zim3n

�
ykl 	 y12ykl is the point

pykl ,vq for q � � 1,2 � � � m � . Furthermore using the results from above we obtain that
� z2m3n

�
ykl is orthogonal to the line � z2312

�
ykl

 � z2nkl

�
ykl , hence we conclude that the

point � z2m3n
�
ykl 	 xykl is orthogonal to � z2312

�
ykl 	 xykl 
 � z2nkl

�
ykl 	 xykl 
 pykl ,d2 .

All together we know now that � z2m3n
�
ykl

 � z1pkl

�
ykl and � z1m3n

�
ykl

 � z2pkl

�
ykl for� m, p� 
 � 1,2 � , n � � 4, 5,6 � � � k, l � . ■

Observation 4.4.19 Let zabcd � � � z � be a vertex of the graph Σ.  en for each index
set � m,n � � � b, c,d � withm � n there exists an index i � � 1,2 � such that zabcd 
 zijmn
where � j,m,n � 
 � b, c,d � . Also, for each index set � m,n � � � 1, . . . ,6 � � � b, c,d �
with m � n there exists an index i � � 1,2 � such that zabcd 
 z

ij
mn where

� j,m,n � 
� 1, . . . ,6 � � � b, c,d � .

For a better understanding we will divide this observation up into two parts.

Observation 4.4.20 Let zab12 be a vertex of Σwith indices a � � 1,2 � , 3 �
b

�
6.  en

zab12

 zajmn for either � j,m,n � 
 � 1,2,b � ,m � n or � j,m,n � 
 � 1, . . . ,6 � � � 1,2,b � .

Observation 4.4.21 Let zabcd be a vertex of Σ such that a,b � � 1,2 � , 3
�
c � d

�
6.

 en zabcd

 z

ij
mn for

� m,n � 
 � 3, . . . ,6 � � � c,d � , m � n, i, j � � 1,2 � , i �
 a, j �
 b.
Furthermore zabcd


 z
ij
bn for

� j,n � � � c,d � , i � � 1,2 � � � a � and also zabcd 
 z
aj
mn for� j,n � 
 � 4, . . . ,6 � � � c,d � , i 
 � 1,2 � � � b � .

Corollary 4.4.22 (of proposition 4.4.18)  e graph Σ consists of the 36 pairwise
distinct vertices x, yij, zklcd for indices 1

�
i � j

�
6, k � � 1,2 � , 1 �

c � d
�
6,

l � � 1, . . . ,6 � � � c,d � .
Proof:  e vertex x is distinct from each vertex yij for 1

�
i � j

�
6, because yij � Σx

and x is not an element of � � z � by lemma 4.4.9.  e vertices yij for 1 �
i � j

�
6

are pairwise distinct by the construction of the graph Σ. We also have y ij � zklcd for

1
�
i � j

�
6 and zklcd � � � z � because x � yij and x �� zklcd, cf. lemma 4.4.9.

Finally we have to prove that the vertices zklcd for k � � 1,2 � , 1
�
c � d

�
6 and

l � � 1, . . . ,6 � � � c,d � are pairwise distinct. For each pair of vertices zklcd and zmnst
such that the indices satisfy m, k � � 1,2 � , 1 �

c � d
�
6, l � � 1, . . . ,6 � � � c,d � ,

1
�
s � t

�
6, n � � 1, . . . ,6 � � � s, t � there exists a set � i, j� of cardinality two con-

tained either in � c,d, l � � � n, s, t � or in � 1, . . . ,6 � � � � c,d, l � � � n, s, t � � . Indeed if
� � c,d, l � � � n, s, t � � �

1 then we �nd two di�erent indices g and h in the index set� c,d, l � 	 � n, s, t � thus 3 � � � c,d, l � � � n, s, t � � �
4 implying that the index set� 1, . . . ,6 � � � � c,d, l � � � n, s, t � � contains at least two di�erent elements.  erefore,

by observation 4.4.19, there exist indices a,b, p,qwith zklcd

 zabij � yij � z

pq
ij

 zmnst ,
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whence, by local analysis of the subgraph Σyij, we have z
kl
cd

 zabij 
 zpqij 
 zmnst if and

only if a 
 p and b 
 q. Hence proposition 4.4.18 describes all identities that exist
between vertices of Σ.  erefore Σ contains 1 � 15 � 20 
 36 vertices. ■

Lemma 4.4.23 Any two vertices z
ij
mn � � � z � and ykl of the graph Σ are adjacent in

Σ if and only if z
ij
mn

 zabkl for some indices a � � 1,2 � , b � � 1, . . . ,6 � � � k, l � . More

precisely, the vertex z
ij
mn is adjacent to y

kl if and only if either k, l � � m,n, j� or
k, l � � 1, . . . ,6 � � � m,n, j� .
Proof: One of the sets � j,m,n � � � k, l � or � 1, . . . ,6 � � � � j,m,n � � � k, l � � necessarily
contains two elements c and d. Truly if � � j,m,n � � � k, l � � �

1 then � k, l � � � j,m,n �
and therefore we count � � 1, . . . ,6 � � � � j,m,n � � � k, l � � � 
 � � 1, . . . ,6 � � � j,m,n � � 
 3.
By observation 4.4.19 we have z

ij
mn

 zstcd for suitable indices s, t, whence zijmn 
 zstcd

and zstcd � ycd � ykl .  e vertices z
ij
mn and y

kl are adjacent in Σ if and only if

� zijmn � ycd 
 � zstcd
�
ycd

� � ykl
ycd

� π which is equal to the condition that k �
 t �
 l.  us
� k, l � � � 1, . . . ,6 � � � c,d, t � and by observation 4.4.19 there exists a suitable index
p � � 1,2 � such that zstcd 
 zpqkl with q 
�� 1, . . . ,6 � � � c,d, t, k, l � .  e second claim
now follows immediately from observation 4.4.19. ■
Notation: Let zim12 be a vertex of Σ with i � � 1,2 � and 3 �

m
�
6. We denote with� im12 the vertex set

� zst12,zsvcd � s � � 1,2 � � � i � , v � � 1,2 � , t, c,d � � 3, . . . ,6 � � � m � , c � d � 

� zst12,zst1m,zst2m � s � � 1,2 � � � i � , t � � 3, . . . ,6 � � � m � � .

On the other hand let zmngh be a vertex of the graph Σ for some indicesm,n � � 1,2 � ,
g,h � � 4, . . . ,6 � and g � h, then we set� mngh � 
 � zabgh,zmbng ,zmbnh � a � � 1,2 � � � m � , b � � 1, . . . ,6 � � � n, g,h � � 
�

zabgh,z
ag
cd ,z

ah
cd ,z

mg
3k ,z

mh
3k �

c,a,b � � 1,2 � , a �
 m, c �
 n, b �
 n
d, k,b � � 3, . . . ,6 � � � g,h � , k �
 3

�
.

In general for a vertex z
ij
cd of Σwith the indices i � � 1,2 � , c,d, j � � 1, . . . ,6 � , c � d,

c �
 j �
 d, we denote with � ij
cd the vertex set

� ijcd 
 ���� ��� � im12 with 3 �
m

�
6 � if zijcd 
 zim12� mngh with n,m � � 1,2 � , 4 �

g � h
�
6 � if zijcd 
 zmngh

.

It will turn out that the elements of � ij
cd are just the neighbours of z

ij
cd in Σ, which

are contained in the vertex set � � z � . More precisely, we will prove that � ij
cd

 Σ

z
ij

cd
	� � z � .
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Lemma 4.4.24 Let z
ij
kl � � � z � and zuwst � � � z � be two di�erent vertices of Σ.  ese

two vertices z
ij

kl and z
uw
st are adjacent in Σ if and only if z

uw
st � � ijkl .

Proof: Let z
ij
kl and z

uw
st be two adjacent vertices in Γ. For the �rst part we assume

that z
ij
kl

 zim12 for some m � � 3, . . . ,6 � .

If also the vertex zuwst equals a vertex z
uv
12 for some v � � 3, . . . ,6 � , then the as-

sumption implies that � zijkl
�
y12

 � zim12

�
y12

� � zuv12
� π
y12

 � zuwst

� π
y12 in

�
y12 .  us u �
 i

and v �
 m and due to the relation list we have that zuwst 
 zuv12 � � im12 . Suppose
zuwst


 zabgh for some a,b � � 1,2 � , g,h � � 4, . . . ,6 � , g � h, then we �x the vertex

ynm with n � � 1,2 � � � b � if m �� � g,h � and n 
 b if m � � g,h � . Due to lemma
4.4.23 the vertices z

ij
kl

 zim12 and z

uw
st

 zabgh are adjacent with the vertex y

nm in the

graph Σ, moreover z
ij
kl

 zim12


 zirnm for r � � 1,2 � � � b � and zuwst 
 zabgh

 zcdnm with

c 
 a, d � � 3, . . . ,6 � � � g,h,m � if m �� � g,h � and c � � 1,2 � � � a � , d � � g,h � � � m � if
m � � g,h � .  e fact that � zuwst

�
ynm

 � zcdnm

�
ynm

� � zijkl
� π
ynm

 � zirnm

� π
ynm in

�
ynm im-

plies that c �
 i and using the relation list again we get that zuwst 
 zabgh 
 zcdnm � � im12 .
For the next part of this proof let z

ij
kl

 zmngh for some indices m,n � � 1,2 � ,

g,h � � 4, . . . ,6 � , g � h. Againwe have to consider the two di�erent cases that either
zuwst


 zuv12 for some v � � 3, . . . ,6 � or zuwst 
 zabcd for a,b � � 1,2 � , c,d � � 4, . . . ,6 � ,
c � d.
We start with the possibility that zuwst


 zuv12 for some v � � 3, . . . ,6 � .  en by
the argumentation above z

ij
kl
� � uv12 and it follows that zuwst 
 zuv12 � � mngh . Next let

zuwst

 zabcd for a,b � � 1,2 � , c,d � � 4, . . . ,6 � , c � d. Suppose we have equality

between the sets � g,h � and � c,d � then the adjacency of the vertices zijkl and zuwst
in Γ leads to the containment of the line � zijkl

�
ygh

 � zmngh

�
ygh in the polar space

� zuwst
� π
ygh

 � zabgh

� π
ygh
of the line � zuwst

�
ygh

 � zabgh

�
ygh inside

�
ygh implying that m �
 a

and n �
 b so zuwst 
 zabgh ��� mngh . Alternatively � g,h � 	 � c,d � 
 � r � , then the vertex
yef is adjacent to both, the vertex z

ij
kl

 zmngh and the vertex zuwst 
 zabcd in Γ for either

e � � 1,2 � � � n � , f 
 3 if n 
 b or e 
 n, f � � g,h � � � r � if n �
 b. Using the relation list
of proposition 4.4.18 we obtain that z

ij
kl

 zmpe3 for p � � 4, 5,6 � � � g,h � and zuwst 
 zuve3

for v � � 4, 5,6 � � � c,d � if n 
 b. In the projective space � ye3 the two di�erent lines
� zijkl

�
ye3

 � zmpe3 � ye3 and � zuwst

�
ye3

 � zuve3

�
ye3 are orthogonal, as z

ij
kl � zuwst , thusm �
 u,

implying zuwst

 zabcd


 zuve3 � � mngh . In the other case, if n �
 b then we get equality
between the vertices z

ij
kl and z

pr
nf with p � � 1,2 � � � m � and zuwst 
 zu3nf. Due to the

assumption that z
pr
nf

 z

ij
kl

� zuwst

 zu3nf we obtain that the indices p and u are

di�erent and that zuwst

 zu3nf is an element of the vertex set � mngh .

 e other direction of the statement is obviously true. ■
Again we split up this statement into two parts.
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Corollary 4.4.25 Let zim12 be a vertex of Σ with i � � 1,2 � , 3 �
m

�
6.  en zim12 is

adjacent to each element of � im
12 . Moreover two di�erent elements h and q of � im

12 are
adjacent in Σ if and only if

• eitherh 
 zrg12 andq 
 zrhjmwith g �
 h for j, r � � 1,2 � , i �
 r, g,h � � 3, . . . ,6 � � � m �
• or h 
 zrg1m and q 
 zrh2m such that g �
 h for r � � 1,2 � � i, g,h � � 3, . . . ,6 � � � m � .

Proof: Let g be an element of the index set � 3, . . . ,6 � � � m � then � � 1,2, g,m � � 
 4
and we set � v,w � 
 � 1, . . . ,6 � � � 1,2, g,m � with v � w. By observation 4.4.21 and
observation 4.4.20 we get that z

rg
12

 zrmvw and z

rg
jm

 zrtvw for t � � 1,2 � � � j� .  e

vertices zrmvw and z
rt
vw are not adjacent in Σ as � zrmvw

�
yvw �� � zrtvw

� π
yvw and

� r,m � 	� r, t � �
�� . Also zrg2m 
 zr1vw �� zr2vw

 zrg1m due to the fact that � zr1vw

�
yvw �� � zr2vw

� π
yvw in

the space
�
yvw .

Next let g and h be two di�erent elements of the index set � 3, . . . ,6 � � � m � . Since
� 1,2, g � � � j,m,h � 
 � t, g � for � j, t � 
 � 1,2 � we know that zrg12 
 zrjtg and zrhjm 
 zistg
for s 
 � 3, . . . ,6 � � � m, g,h � by observation 4.4.21 and observation 4.4.20. Certainly
the lines � zrjtg

�
ytg and � zistg

�
ytg are orthogonal in

�
ytg thus z

rg
12

 zrjtg � zistg


 zrhjm in Σ.
By the same argumentation we get that z

rg
2m

 zim2g � zrs2g


 zrh1m in Σ. Indeed� 2, g,m � � � 1,m,h � 
 � 2, g � , so due to observation 4.4.21, we get zrg2m 
 zim2g and

zrh1m

 zis2g for s � � 3, . . . ,6 � � � m, g,h � . Moreover � zis2g

�
y2g

� � zrm2g
� π
y2g in

�
y2g as� i, s � 	 � r,m � 
 � . ■

For the last statements of this section we will disregard the ordering of the two
di�erent indices i, j for the vertices yij, thus we make no di�erence between the
vertices yij and y ji for i, j � � 1, . . . ,6 � . We are also allowed to interchange the
position of k and l for any vertices zstkl � � � z � , so zstkl 
 zstlk, but we can not approved
to interchange the position of the two indices s and t for the vertices zstkl .

Corollary 4.4.26 Let zmngh be a vertex of Σwithm,n � � 1,2 � , g,h � � 4 . . . ,6 � , g �
 h.
 en zmngh is adjacent to each element of � mngh . Furthermore two di�erent elements h
and q of � mngh are adjacent in Σ if and only if

• eitherh 
 zrvgh andq 
 zmknl with k �
 v for l � � g,h � , k,v � � � 1, . . . ,6 � � � g,h,n �

• or h 
 zmvng and q 
 zmknh such that v �
 k for v, k � � 1, . . . ,6 � � � g,h,n � .
Proof: For a �xed index v � � 1, . . . ,6 � � � g,h,n � , the index set � g,h,n,v � has
cardinality four. We �x two di�erent indices p,q � � 1, . . . ,6 � � � g,h,n,v � and let
w � � g,h � � � l � . By observation 4.4.21 and observation 4.4.20, we get

zrvgh



�
zmnpq if v � � 1,2 � � � n �
zrnpq if v � � 3, . . . ,6 � � � g,h � and zmvnl



�

zmwpq if v � � 1,2 � � � n �
zrwpq if v � � 3, . . . ,6 � � � g,h � .

148



4.4 A reection graph inside the graph Γ

 us the lines � zrvgh
�
ypq and � zmvnl

�
ypq intersect in the projective space

�
ypq and

� zmvng
� π
ypq 	 � zmvnh

� π
ypq is a subspace of dimension one.  erefore in the graph Σ we

obtain the relations that zrvgh �� zmvnl and z
mv
ng �� � zmvnh �

�
.

On the other hand let k and v be two di�erent indices of � 1, . . . ,6 � � � g,h,n � and
let w � � g,h � � � l � . Using observation 4.4.21 and observation 4.4.20 we determine
that

zrvgh



�
zmlvw if v � � 1,2 � � � n �
zrlvw if v � � 3, . . . ,6 � � � g,h � and zmknl



����� ���� zmtvw if k � � 1,2 � � � n �

or if k,v � � 3, . . . ,6 � � � g,h �
zrtvw if v � � 1,2 � � � n �

for t � � 1, . . . ,6 � � � k, l,n,v,w � as � g,h,v � � � k, l,n � 
 � v,w � . Also

zmvng



�
zmnvg if v � � 1,2 � � � n �
zrnvg if v � � 3, . . . ,6 � � � g,h � and zmknh



����� ���� zmtgv if k � � 1,2 � � � n �

or if k,v � � 3, . . . ,6 � � � g,h �
zrtgv if v � � 1,2 � � � n �

for t � � 1, � ,6 � � � g,h, k,n,v � as � g,n,v � � � k,n,h � 
 � g,v � .  is implies that
zrvgh � � zmknl �

�
and zmvng � zmknh in Σ. ■

Lemma 4.4.27 Let w be a vertex of Σ.  en the induced subgraph Σw has exactly 15
vertices.

Proof:  e statement is proved in lemma 4.4.10 for the vertex x of the graph Σ.

If w 
 z
ij
kl � � � z � then each element of the vertex set � yab,ycd � a,b � � j, k, l � ,

c,d � � 1, . . . ,6 � � � j, k, l � � and every vertex of the set � ij
kl is adjacent to the vertex

z
ij
kl in the graph Γ. Since � � yab,ycd � a,b � � j, k, l � , c,d � � 1, . . . ,6 � � � j, k, l � � � 
 6
and � � ijkl � 
 9 the graph Σz

ij

kl

contains exactly 15 vertices by lemma 4.4.23 and 4.4.24.

 e last possibility is the case that w 
 ykl with 1 �
k � l

�
6. Certainly the vertex

ykl is adjacent to the six di�erent vertices � ycd � c,d � � 1, . . . ,6 � � � k, l � � and to the
vertex x. Furthermore the elements of the set � zijkl � i � � 1,2 � , j � � 1, . . . ,6 � � � k, l � �
are vertices of the induced graph Σykl and due to lemma 4.4.23 and lemma 4.4.9

we obtain that the set � x,ycd ,zijkl � c,d, j � � 1, . . . ,6 � � � k, l � , i � � 1,2 � � 
 � kl

contains exactly 15 di�erent vertices of the graph Σykl . Suppose p is a vertex of Σ

not contained in � kl then either p 
 yef with � e, f � 	 � k, l � �
 � implying that
p 
 yef �� ykl in Γ or p 
 zstmn for some indices s � � 1,2 � , 1 �

m � n, t
�
6,m �
 t �
 n

with p 
 zstmn �� � zijkl � i � � 1,2 � ; j � � 1, . . . ,6 � � � k, l � � . By lemma 4.4.23 we observe
that the vertex p 
 zstmn is adjacent to the vertex y

kl if and only if p 
 zstmn

 z

ef
kl

for some indices e � � 1,2 � , f � � 1, . . . ,6 � implying that p 
 zstmn �� ykl in Γ, which
�nishes the proof of the statement. ■
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Lemma 4.4.28 For any vertex w � Σ the graph Σw is isomorphic toW � A5

�
.

Proof:  e statement is proved in lemma 4.4.10 for the vertex x � Σ, thus we know
that Σx � W � A5

�
. For a vertex yijwith i, j � � 1, . . . ,6 � , i �
 j the statement follows

from the construction of Σ together with lemma 4.4.23 and lemma 4.4.27. Finally,

a vertex z
ij
cd � � � z � has the six neighbours ykl such that either � k, l � � � c,d, j� or� k, l � � � 1, . . . ,6 � � � c,d, j� by lemma 4.4.23 and is adjacent to each element of the

vertex set � ijcd of nine elements by lemma 4.4.27.  e map
γ
z
ij

cd

� Σ
z
ij

cd
� Σx

ykl � ykl

zklst � yuj

with u 
 � 1,2, j� � � s, t � if zijcd 
 zim12 for m � � 3, . . . ,6 � and u 
 � g,h,n � � � s, t � if
z
ij
cd

 zmngh for m,n � � 1,2 � , ı �

g � h
�
6 is a bijection.

In order to prove Σ
z
ij

cd

� W � A5

�
, we will verify that γ

z
ij

cd

is a graph homomor-

phism. Wewill illustrate themap γ
z
ij

cd

� Σ
z
ij

cd
� Σx for the vertex z

ij
cd

 z1312 
 z1213 
 z1123.

Its yij-neighbours are y12, y13, y23, y45, y46, y56 and its zklst -neighbours plus their im-
ages are

z2412 � y34 z2413 � y24 z2423 � y14 � � y56 � �
z2512 � y35 z2513 � y25 z2523 � y15 � � y46 � �
z2612 � y36 z2613 � y26 z2623 � y16 � � y45 � �
� � y12 � � � � y13 � � � � y23 � �

.

In general, the map Σ
z
ij

cd
� Σx looks as follows:

if z
ij
cd

 zim12 
 zi12m 
 zi21m for some m � � 3, . . . ,6 � then

zru12 � yum zru1m � y2u zru2m � y1u � � yvw � �
zrv12 � yvm zrv1m � y2v zrv2m � y1v � � yuw � �
zrw12 � ywm zrw1m � y2w zrw2m � y1w � � yuv � �
� � y12 � � � � y1m � � � � y2m � �

,

where r � � 1,2 � � � i � , � u,v,w � 
 � 3, . . . ,6 � � � m � .
If otherwise z

ij
cd

 zmngh


 z
rg
nh

 zrhng for some indices g,h � � 4, 5,6 � , m,n � � 1,2 �

then
zrwgh � ynw ziwng � ywh ziwnh � ywg � � y3t � �
zr3gh � yn3 zi3ng � y3h zi3nh � y3g � � ywt � �
zrtgh � ynt zitng � yth zitnh � ytg � � yw3 � �
� � yuv � � � � yng � � � � ynh � �

,

where r,w and t are indices satisfying the conditions r � � 1,2 � � � m � , � w, t � 
� 1, . . . ,6 � � � n, g,h,3 � .
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To verify that these maps are graph homomorphisms �rst we consider the case

that z
ij
cd

 zim12 for some indexm � � 3, . . . ,6 � . Let h and q be two adjacent vertices of

Σzim12
such that h 
 yab for either � a,b � � � 1,2,m � or � a,b � � � 3, . . . ,6 � � � m � and

q 
 zrnef � � im12 . As yab 
 h � q 
 zrnef by assumption lemma 4.4.13 yields that either� a,b � 
 � e, f � or � a,b � � � 3, . . . ,6 � � � m,n � implying n �� � a,b � . Furthermore
γ
z
ij

cd

� zrnef
� 
 ynp such that p 
 � 1,2,m � � � e, f � and ynp � yab.  erefore � a,b � 	

� n, p� 
 � implying γ
z
ij

cd

� zrnef
� � yab 
 γ

z
ij

cd

� yab � . Next let h and q be two adjacent
vertices of � im12 
 � ij

cd in Σzim12

 Σ

z
ij

cd

, then by lemma 4.4.25 either h 
 z
rg
12 and

q 
 zrhkm or h

 z

rg
1m and q


 zrh2m for the some indices r � � 1,2 � � � i � , k � � 1,2 � ,
g,h � � 3, . . . ,6 � � � m � , g �
 h.  us γ

z
ij

cd

� zrg12 � 
 ymg � yqh 
 γ
z
ij

cd

� zrhkm
�
for q �

� 1,2 � � � k � and γ
z
ij

cd

� zrg1m
� 
 y2g � y1h 
 γ

z
ij

cd

� zrh2m
�
, which proves that γ

z
ij

cd

is a graph

homomorphism if z
ij
cd

 zim12 .

On the other hand if z
ij
cd

 zmngh for some indices m,n � � 1,2 � , g,h � � g,h � then

�rst we consider two adjacent vertices h and q of the subgraph Σzkl
cd


 Σzmn
gh
such that

h 
 yab with a �
 b and either � a,b � � � n, g,h � or � a,b � � � 1, . . . ,6 � � � n, g,h � and
q 
 zuvef � � mngh . By assumption h � q in the subgraph Σzkl

cd
thus due to lemma4.4.26

� a,b � 
 � e, f � or � a,b � � � 1, . . . ,6 � � � n, g,h,v � implying that v � � a,b � . As
γ
z
ij

cd

� zuvef
� 
 yvw for w � � n, g,h � � � e, f � we have � a,b � 	 � v,w � 
 � , hence

γ
z
ij

cd

� zvuef
� � yab 
 γ

z
ij

cd

� yab � .
 e other case is that h and q are two adjacent vertices of � ij

cd

 � mngh .  en either

h 
 zrvgh and q

 znlmk or h


 zmvng and q

 zmknh for r � � 1,2 � � � m � , l � � g,h � ,

k,v � � 1, . . . ,6 � � � n, g,h � , k �
 v by lemma 4.4.26. It follows that γ
z
ij

cd

� zrvgh
� 
 ymv �

ykw 
 γ
z
ij

cd

� zmknl
�
for w � � g,h � � � l � and γ

z
ij

cd

� zmvng
� 
 yvh � ygk 
 γ

z
ij

cd

� zmknh
�
, thus

γ
z
ij

cd

is also a graph homomorphism if z
ij
cd

 zmngh . ■

To have better control over this proposition and its proof in the appendix C all graph
isomorphism γzkl

cd
are listed for a vertex zklcd � � � z � .

Proposition 4.4.29 Suppose zi312

 zi456 for i � � 1,2 � .  en Σ � W � E6

�
.

Proof: By lemma 4.4.28 the graph Σ is locallyW � A5

�
. By corollary 4.4.22 the graph

Σ has 36 vertices. Hence by [17, theorem 2] or [49, theorem 2] the graph Σ is iso-
morphic toW � E6 � . ■
Altogether we have proved the following in this section.

Proposition 4.4.30  e graph Σ is isomorphic to eitherW � A7

�
orW � E6 � .
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4.5 Properties of the group G �Γ

In section 4.3 we have de�ned the big subgroup G �
Γ

 � SU2 � C � x � x �

�

Γ � of the
automorphism group Aut �

�

Γ
�
, where for each vertex x of the graph

�

Γ the group
SU2 � C � x �

Aut �
�

Γ
�
has the following properties:

• SU2 � C � x � SU2 � C �

• α � x � 
 x for each α � SU2 � C � x
• every α in SU2 � C � x �xes the vector space structure V � � x � constructed from
the subgraph x

�
elementwise

• SU2 � C � x induces the natural action of a fundamental SU2 � C � subgroup on
the two-dimensional subspace xy of the complex vector space V � � y � for any
vertex y � x �

of
�

Γ.

In this section we collect some properties of the group G �
Γ. In particular, we show

that the groupG �
Γ acts transitively on the set of vertices of

�

Γ and on the set of ordered

edges of
�

Γ. Before we start to prove these properties we observe some local features
of the group G �

Γ.

We denote byGLn � C � the complex general linear group consisting of all complex
non-singular n � n-matrices, which is a subset of Cn2 � R

2n2 . Hence GLn � C � is a
topological real group in a natural way.  e group

SU8 � C � 
 � X � GLn � C � � X � X
� 
 I,det � X � 
 1 �

is a closed subgroup of GLn � C � with respect to this topology, where X � 
 Xt.
If A is a complex n � n-matrix, then we de�ne

exp � A� 
 eA 

��

n� 0
1

n!
An,

the exponential of the matrix A. It is well know that the exponential function of
matrices has the following algebraic properties.

Proposition 4.5.1 (Proposition 0.11 of [63]) For any complex n � nmatrices X and
Y:

• eX � eY 
 eX � Y if X and Y commute,
• eX is a nonsingular matrix,
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• t � etX is a smooth curve into GLn � C � with e0 � X 
 I,
• d

dt
etX 
 XetX,

• det � eX � 
 etr � X � , where tr � X � 
 � ni � 1 xii, is the trace of X,
• X � eX is a � �

mapping from the matrix space into itself.

Let G be a closed subgroup of GLn � C � .  en we relate to G the set of matrices
g 
 L � G � 
 � X � Mn � C � � exp � RX � �

G � , where Mn � C � is the set of all complex
n � nmatrices.  e set g is a vector space over C and we de�ne

�
X,Y � 
 XY � YX

for any two X,Y � g. Now we turn to the notion of a Lie algebra.

A vector space V over F with an operation
�

� , � � � V � V � V , called Lie bracket,
that is linear in each variable and satis�es the properties

•
�
x,x � 
 0 for all x � V, hence �

x, y � 
 � �
y,x � ,

•
� �
x, y � ,z � � � �

y,z � ,x � � � �
z,x � , y � 
 0 for all x, y,z � V, the Jacobi identity,

is called an F-Lie algebra.

Here are some very elementary de�nitions and notations of a Lie algebra, which
we will need later. A homomorphism of Lie algebras is a linear map φ � g � h

such that φ � �
x, y � � 
 �

φ � x � ,φ � y � � for all x, y � g. Of course an isomorphism is a
one-to-one and onto homomorphism. If a and b are subsets of a Lie algebra g then
we write

�
a,b � 
 � �

x, y � � x � a, y � b � . A Lie subalgebra h of a Lie algebra g is a
linear subspace of g satisfying

�
h,h � �

h, in particular a Lie subalgebra is itself a Lie
algebra. An ideal h of a Lie algebra g is a linear subspace of gwith the property that�
h,g � �

h. We call a Lie algebra g abelian if
�
g,g � 
 0. A Lie algebra g is de�ned

to be nilpotent if there exists a decreasing �nite sequence of ideals � gi � 0 � i � l with
g 
 g0, gl


 0 such that
�
g,gi � �

gi � 1 for 1 �
i

�
l. We say a Lie algebra g is

solvable if there exits a �nite chain of subalgebras g 
 g1 � g2 � � � gl

 0 such

that
�
gi,gi � �

gi � 1. Certainly a nilpotent Lie algebra is solvable. Let g be a Lie
algebra, then for a subset s of g we call Zg � s � 
 � x � g � �

x, s � 
 0 for all s � s �
the centraliser of s in g . Moreover for a Lie subalgebra s of g we denote with
Ng � s � 
 � x � g � �

x, s � � s for all s � s � the normaliser of s in g.

Accordingly for any closed linear subgroup G of GLn � C � we call g 
 L � G � the Lie
algebra of G .

 e complex Lie algebra ofGLn � C � is the vector space gln � C
�
of all complex n � n-

matrices and the real Lie algebra of SUn � C � is the space sun � C � 
 � X � gln � C
� �

X � X � 
 0, tr � X � 
 0 � , where X � 
 Xt for every complex n � n-matrix. From this
description, it is clear that dimR � sun � C � � 
 n2 � 1.

153



4 On locally complex unitary geometries

One can verify that the three matrices�
i 0
0 � i � , � 0 1

� 1 0 � , � 0 i
i 0 �

generate the real Lie algebra su2 � C � . A similar set of generators can be given for
the real Lie algebra sun � C � . If X 
 � xst � 1 � s,t � n � sun � C � , then for each 1 �

s
�
n

we have xss

 λi for some λ � R, while for any 1

�
s � t

�
n we have xst


 � xst. By
dimension, the following n2 � 1matrices, 1 �

k � l
�
n, 1

�
m

�
n � 1, form a basis

of the vector space sun � C � , if they are R-linearly independent:

Akl

 � ast � 1 � s,t � n with ast 


�������� �������
1 if s 
 k, t 
 l
� 1 if s 
 l, t 
 k
0 otherwise

,

Bkl

 � bst � 1 � s,t � n with bst 


�������� �������
i if s 
 k, t 
 l
i if s 
 l, t 
 k
0 otherwise

and

Cmm � 1 
 diag � c1, . . . , cn � with cj 

�������� �������

i if j 
 m
� i if j 
 m � 1
0 if j �� � m,m � 1 �

.

To check that these matrices are linearly independent over R, suppose

�

1 � k �
l � n

λklAkl �
�

1 � d �
e � n

µdeBde �
n � 1�

1 � r δrCrr � 1 
 H 
 � hst � 1 � s,t � n 
 0
for some scalars λkl , µde ,δr � C.  en for each pair of indices s, t with 1

�
s, t

�
n

we get

�

1 � k �
l � n

λkl � ast � kl �
�

1 � d �
e � n

µde � bst � de �
n � 1�

1 � r δr � cst
�
rr � 1 
 hst,

so that

0 
 hst 

�
λkl � ast � kl � µkl � bst � kl if s �
 t, � s, t � 
 � k, l �

δr � cst � rr � 1 if s 
 t .

 us, δr

 0 for 1 �

r
�
n � 1. Moreover, λkl � µkl i 
 0 for λkl , µkl � R implies

λkl

 µkl 
 0 for all 1 �

k � l
�
n and we have proved R-linear independence.
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Proposition 4.5.2 (Corollary 0.20 of [63]) If G is a closed linear subgroup of a Lie
group and g is its Lie algebra, then exp � g � generates the identity component G0 of G.

Proposition 4.5.3  e group SUn � C � is generated by the set of matrices
� eλAk,l , eλBk,l , eλCr � 1 �

k, l
�
n; 1

�
r

�
n � 1; λ � R � .

Coming back to the graph
�

Γ and the group G �
Γ, let y be a vertex of

�

Γ. We de�ne
Uy to be the subgroup Uy


 � SU2 � C � z � z � y
� � of G �

Γ. For each vertex z of y
�

the subgroup SU2 � C � z �
Uy acts as the identity on the subgraph z

�
. Furthermore,

� SU2 � C � z � � y � 
 z-SU2 � C � -y
�
by lemma 4.3.17. Notice that, in particular, the action

z-SU2 � C � -y
�
on the graph y

�
is induced by the natural z-SU2 � C � - � y action on the

projective space
�
y with respect to the line zy.

Lemma 4.5.4 Let y be a vertex of
�

Γ and let δ � v1, . . . ,v6 be an orthonormal basis of
the unitary vector space V � � y � . Furthermore, let lsty 
 � vs,vt � for 1 �

s � t
�
6. Each

line lsty belongs to a vertex of the subgraph y
�
of

�

Γ, thus � SU2 � C � lst � 1 �
s � t

�
6 � is

a subgroup of � SU2 � C � z � z � y
� � .

 e following groups are isomorphic:

� SU2 � C � lst � 1 �
s � t

�
6 � � � SU2 � C � z � z � y

� �
� � � SU2 � C � z � � y � � z � y

� �
� � � SU2 � C � lst

� � y � � 1 �
s � t

�
6 �

� SU6 � C � .
Proof: Let γ be the restriction map � SU2 � C � z � z � y

� � � � � SU2 � C � z � � y � � z � y
� �

with γ � φ � 
 φ � y � , which certainly is a surjective group homomorphism.  e kernel
of the restriction map γ contains all elements φ � � SU2 � C � z � z � y

� � such that
φ � y � 
 idy � . If φ � ker � γ

�
, then φy � 
 id � y � , so that φ �xes the vector space structure

of the vertex y elementwise, whence φ 
 id�
Γ
by lemma 4.3.16. We conclude that γ

is a group isomorphism, thus

� SU2 � C � z � z � y
� � � � � SU2 � C � z � � y � � z � y

� � .
With the same argument

� SU2 � C � lst � 1 �
s � t

�
6 � � � � SU2 � C � lst

� � y � � 1 �
s � t

�
6 � .

Hence it su�ces to study the situation in V � � y � . For each line lsty , we consider
the lij-SU2 � C � -V � � y � action.  e generators eλAlst , eµBlst , eεClst with
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Alst

 � � alst

�
nm
�
1 � n,m� 6 with alst 


����� ���� 1 if m 
 s,n 
 t
� 1 if n 
 t,m 
 s
0 otherwise

,

Blst

 � � blst

�
nm
�
1 � n,m� 6 with blst 


����� ���� i if m 
 s,n 
 t
i if n 
 t,m 
 s
0 otherwise

,

Clst

 diag � � clst

�
1, . . . , � clst

�
6

�
with � clst

�
j



����� ���� 1 if j 
 s
� 1 if t 
 s
0 if j �� � s, t �

and λ, µ, ε � R—as de�ned in the beginning of this section—generate the group� � SU2 � C � lst
� � y � � 1 �

s � t
�
6 � , so by proposition 4.5.3 this group is isomorphic to

SU6 � C � .  e isomorphism � � SU2 � C � z � � y � � z � y
� � � � � SU2 � C � lst

� � y � � 1 �
s � t

�
6 �

�nally follows from the observation that each � SU2 � C � z � � y � is already contained in� � SU2 � C � lst
� � y � � 1 �

s � t
�
6 � . ■

Since the subgroup Uy

 � SU2 � C � z � z � y

� � of G �
Γ acts transitively on the ordered

edges of the graph y
�
, we have the following result.

Lemma 4.5.5 Let y be a vertex of the graph
�

Γ.  en both the stabiliserGy � 
 StabG � Γ
� y �

and the subgroup Uy

 � SU2 � C � z � z � y

� � act transitively on the ordered edges of the
induced subgraph y

�
.

Lemma 4.5.6  e group G �
Γ acts transitively on the ordered edges of the graph

�

Γ.

Proof: Since the graph
�

Γ is connected, the statement follows from the fact that the
group Gy acts transitively on the set of ordered edges of the subgraph y

�
for every

y �
�

Γ, cf. lemma 4.5.5. ■

Lemma 4.5.7  e group G �
Γ acts transitively on the vertices of

�

Γ.

Proof: Let x and y be two vertices of
�

Γ and let � x,x � � and � y,y � � be ordered edges
of

�

Γ. By lemma 4.5.6 there exists an element of G �
Γ mapping � x,x � � to � y,y � � and,

hence x to y. ■
In the next part we study some special subgroups of G �

Γ.

Lemma 4.5.8 Let x and y be two adjacent vertices of
�

Γ.  en

� SU2 � C � x,SU2 � C � y � 
 SU2 � C � x � SU2 � C � y � SU2 � C � � SU2 � C � .

Proof: Since
�

Γ is locally S � V6 � , we �nd a vertex z � x
�
	 y

�
. By lemma 4.5.4, we can

study � SU2 � C � x � � z � and � SU2 � C � y � � z � instead.  ere the claim is obviously true. ■
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Lemma 4.5.9 Let x and y be two di�erent vertices of the induced subgraph z
�
for

some z �
�

Γ. If the lines xz and yz intersect in a point and xz 	 yπz 
 pz is one-
dimensional, then Gz

xy � 
 � SU2 � C � x,SU2 � C � y � � SU3 � C � and ZGz
xy
� v � 
 SU2 � C � y,

where v � pz �
V � � z � is normal.

Proof: By the proof of lemma 4.5.4 we have SU2 � C � � SU2 � C � x � � SU2 � C � x � � z �
and SU2 � C � � SU2 � C � y � � SU2 � C � y � � z � , so that we can study the situation in
V � � z � . Fix an orthonormal basis δ � v1, . . . ,v6 of V � � z � with � v1,v2 � 
 xz and� v2,v3 � 
 yz and � v2 � 
 xz 	 yz, which is possible by our assumption. By propo-
sition 4.5.3 every element of � SU2 � C � x � � z � � SU2 � C � is generated by the elements� eλA12 , eλB12 , eλC12 � λ � R � and any element of � SU2 � C � y � � z � is generated by the
elements � eλA23 , eλB23 , eλC23 � λ � R � with Akk � 1,Bkk � 1 and Ckk � 1 as in the be-
ginning of this section for n 
 6 and k 
 1,2. It follows that each element of� � SU2 � C � x � � z � , � SU2 � C � x � � z � � is a �nite product of elements of the set � eλA12 , eλB12 ,

eλC12 , eλA23 , eλB23 , eλC23 � λ � R � . Fix isomorphisms φ, µ � SU2 � C � y such that

v1,v2,v3

�
φ � v1,v2,v3 


��
� 1 0 0
0 0 � 1
0 1 0

���
� 
 � T

and

v1,v2,v3

�
µ � v1 ,v2,v3 


��
� 1 0 0
0 0 1
0 � 1 0

���
� 
 � S.

Since TeλA12S 
 eλTA12S 
 eλA13 and TeµB12S 
 eµTB12S 
 eµB13 , it follows that
� � SU2 � C � x � � z � , � SU2 � C � y � � z � �


 � eλA12 , eµB12 , eεC12 , eλA23 , eµB23 , eεC23 � λ, µ, ε � R �

 � eλA12 , eµB12 , eεC12 , eλA23 , eµB23 , eεC23 , eλA13 , eµB13 � λ, µ, ε � R �
� SU3 � C �

by proposition 4.5.3.
So it remains to study ZGz

xy
� v � , which by lemma 4.5.4 we can do via the action of

Gz
xy on

� xz, yz � �
V � � z � . Choose a normal vector w � xz 	 yz and a normal vector

u � wπ 	 yz.  en v,w,u is an orthonormal basis of � xz, yz � .  e claim now follows
from the observation that the centraliser of v consists of matrices of the form��

� 1 0 0
0 � �

0 � �

���
�

with respect to the basis v, w, u. ■
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 e group G �
Γ is a subgroup of Aut �

�

Γ
�
.  erefore we obtain the group homomor-

phism υg � G �
Γ � G �

Γ with υg � h
� 
 ghg � 1 for some g � G �

Γ. Let γ � G �
Γ then

γ � y � � 
 γ � y � �
which gives arise to the isomorphism γ � � y �

�
γ � y � by proposition

4.2.3 for every vertex y �
�

Γ.

Lemma 4.5.10 Let x be a vertex of �
�

Γ and γ be an element of group G �
Γ, then

υγ � SU2 � C � x � 
 γ � SU2 � C � x � γ � 1 
 SU2 � C � γ � x � .
Proof: Let αx,φ � SU2 � C � x be the automorphism induced by the map φ � y


 x-φ � y

for some y � x
�
and an element φ � SU2 � C � . We set γ � x � 
 z and regard that

υγ � αφ,x � � z � 
 � γαφ,xγ � 1 � � z � 
 � γαφ,x � � γ � 1z
� 
 γαφ,xx 
 z. Furthermore for ev-

ery vertex w � z �
we obtain that υγ � αφ,x � � w � 
 � γαφ,xγ � 1 � � w � 
 � γαφ,x � � γ � 1w

� 

γγ � 1w 
 w as γ � 1 � w � 
 υγ � 1 � w � � x �

and αφ,x � a � 
 a for each a � x
�
.

 e next step is to prove that υγ � αφ,x � 
 αφ,z, where αφ,z is the element of
SU2 � C � z induced byφ �

y


 x-φ �
y
for some y � z �

and an elementφ � SU2 � C � . From
above we verify that υγ � αφ,x � � � z


 γαφ,xγ � 1� � z


 γ � αφ,x � � � x


 γ � x-φ � x

� 
 γ � id � x

� 

id � z


 z � φ � z
and υγ � αφ,x � � � w


 γαφ,xγ � 1� �
w


 γ � αφ,x � � � γ � 1 � w �

 γ � x-φ �

γ � 1 � w �
� 


z � φ � w
for some w � x

�
. Finally let v be a vertex of

�

Γ, then we conclude that
υγ � αφ,x � � � v


 γαφ,xγ � 1� � v


 γ � αφ,x � � � γ � 1 � u �

 γ � x-φ �

γ � 1 � u �
� 
 z � φ � v

. ■

4.6 The identification of the group G �Γ
�
Aut

� �
Γ �

Recall the construction of the induced subgraph Σ of
�

Γ from section 4.4. By propo-
sition 4.4.30 the graph Σ is isomorphic to eitherW � A7

�
orW � E6 � .  e goal of this

section is to identify the group G �
Γ from the graph Σ, which we will achieve by the

case distinction Σ � W � A7

�
or Σ � W � E6 � .

For that task we will consider a certain induced subgraph of Σ.

De�nition 4.6.1 Let Φ be a root system with basis ψ � α1, . . . ,αl and Dynkin dia-
gram (resp. Coxeter graph) of type∆.  enwe call the graphH � ∆ � on the vertex set� α1, . . . ,αl � where two elements αi and αj are joint by an edge if and only αi and
αj are not connected by an edge in the Dynkin diagram to be the graph associated
to the Dynkin diagram (resp. to the Coxeter graph) of type ∆.

 e graphH � A7

�
has the seven vertices a1, . . . a7 such that the vertex a1 is adjacent

to the �ve vertices a3, . . . ,a7, the �ve vertices a1, . . . ,a5 are neighbours of the vertex
a7 and for i � � 2, . . . ,6 � the vertex ai is connected to each element of thevertex set� aj � 1 �

j
�
7; i � 1 �
 j �
 i � 1 � , i.e., H � A7

�
is the complement of the following

Coxeter graph of type A7:
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A7
a1 a2 a3 a4 a5 a6 a7 H � A7

� a1

a2

a3

a4

a5

a6

a7

In contrast the graph H � E6 � has six vertices e1, . . . , e6 and the vertices satisfy the
following neighbourhood properties:

• e1 is adjacent to the vertices e3, e4, e5, e6,

• e6 is adjacent to the vertices e1, e2, e3, e4,

• e2 is adjacent to the vertices e4, e5, e6,

• e5 is adjacent to the vertices e1, e2, e4,

• e3 is adjacent to the vertices e1 and e6

• e4 is adjacent to the vertices e1, e2, e5, e6,

i.e.,H � E6 � is the complement of the following Coxeter graph of type E6.

E6 e1 e2 e3 e5 e6

e4

H � E6 � e1e2e3

e4

e5

e6

Since the graph Σ is isomorphic to one of the reection graphsW � A7

�
orW � E6 � ,

it contains an induced subgraph Λ isomorphicH � A7

�
, resp.H � E6 � .

Case 1: Σ � W � A7

�

In this case we want to construct an induced subgraph Λof Σ isomorphic toH � A7

�
.

Fix the vertices w1

 x, w2


 z11, w3

 y12, w4


 y23, w5

 y34, w6


 y45, w7

 y56 of

Σ, cf. section 4.4, and let Λ be the induced subgraph of Σ on these vertices.

 us by section 4.4 we conclude that

Λx is the induced subgraph of Λ on the vertex set y
12,y23,y34,y45,y56,
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4 On locally complex unitary geometries

Λz11 is the induced subgraph of Λ on the vertex set y
23,y34,y45,y56,

Λy12 is the induced subgraph of Λ on the vertex set x,y
34,y45,y56,

Λy23 is the induced subgraph of Λ on the vertex set x,y
45,y56,z11,

Λy34 is the induced subgraph of Λ on the vertex set x,y
12,y56,z11,

Λy45 is the induced subgraph of Λ on the vertex set x,y
12 ,y23,z11,

Λy56 is the induced subgraph of Λ on the vertex set x,y
12,y23,y34,z11.

Lemma 4.6.2 We have Λ � H � A7

�
.

Proof:  e map φ � Λ � H � A7

� � φ � wi
� 
 ai, 1 �

i
�
7, is a graph isomorphism.

Indeed, the list

φ � � y12,y23,y34,y45,y56 � � 
 � a3,a4,a5,a6,a7 � ,
φ � � y23,y34,y45,y56 � � 
 � a4,a5,a6,a7 � ,
φ � � x,y34,y45,y56 � � 
 � a1,a5,a6,a7 � ,
φ � � x,y45,y56,z11 � � 
 � a1,a6,a7,a2 � ,
φ � � x,y12,y56,z11 � � 
 � a1,a3,a7,a2 � ,
φ � � x,y12,y23,z11 � � 
 � a1,a3,a4,a2 � ,

φ � � x,y12,y23,y34,z11 � � 
 � a1,a3,a4,a5,a2 �

shows that neighbours of wi in the graph Λ are mapped to neighbours of ai in
H � A7

�
, so that the bijection φ indeed is a graph isomorphism. ■

Let A be the subgroup of G �
Γ generated by the groups SU2 � C � wi � SU2 � C � for

1
�
i

�
7, i.e.

A 
�� SU2 � C � wi � 1 �
i

�
7 � .

We want to identify the isomorphism type of A via the main theorem of [42]. In
order to apply this theorem, we need to check its hypotheses for which we need the
following de�nitions.

For n
�
2, let ∆ be a Dynkin diagram of rank n and I 
 � 1, . . . ,n � be the set of

labels of ∆. A group H admits a weak Phan system of type ∆ over the complex
numbers, if H is generated by subgroups Ui, i � I, that are central quotients of
simply connected compact semisimple Lie groups of rank one, i.e. Ui � SU2 � C �
or Ui � SO3 � R � � PSU2 � C � for all 1 �

i
�
n, and if the groups Ui are embed-

ded as rank one groups with respect to a fundamental system of roots of the groups
Uij


 � Ui ,Uj � , which have the following isomorphism types:
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� Ui,Uj � �

��������������� ��������������

� Ui
� Uj

� � Z in case i j where

Z is a central subgroup of Ui
� Uj

SU3 � C � or PSU3 � C � in case i j

U2 � H � or SO5 � R � in case i j or i j

G2, � 14 in case i j or i j .

By lemma 4.5.8 and lemma 4.5.9, the group A admits a weak Phan system over C

of type A7, so that by the main theorem of [42], we have that A is isomorphic to a
central quotient of SU8 � C � .
Next we consider the induced subgraphs Λx and Λy56 of Σ, which are isomorphic to
the graph H � A5

�
, and the corresponding subgroups Ax


 � SU2 � C � w � w � � � Λx
� �

and Ay56

 � SU2 � C � w � w � � � Λy56

� � ofA. By the same argument as above, the sub-
groups Ax and Ay56 admit weak Phan systems of type A5 over C, thus the subgroup
Ax is isomorphic to a central quotient of SU6 � C � , say Ax � SU6 � C � � Zx, where
Zx

�
Z � SU6 � C � � and also Ay56 is isomorphic to a central quotient of SU6 � C � , say

Ay56 � SU6 � C � � Zy56 , where Zy56
�
Z � SU6 � C � � .  us we can link the two groups A

and G �
Γ by the next proposition.

Proposition 4.6.3  e group G �
Γ is isomorphic to a central quotient of SU8 � C � .

Proof: Since A is isomorphic to SU8 � C � � Z for some subgroup Z �
Z � SU8 � C � �

and as A
�
G �

Γ, it su�ces to show that G
�
Γ is a subgroup of A. To this end, for

each vertex w �
�

Γ, we will show that SU2 � C � w is a subgroup of A.  is in turn is
equivalent to showing that for each vertexw �

�

Γ there is a group element h � Asuch
that hx 
 w for the vertex x � Λ, by lemma 4.5.10. Recall that Ay56 � SU6 � C � � Zy56

and x, y12 � � y56 � �
.  e group Ay56 contains an element φx with φx � x � 
 y12,

because the group Ay56 � SU6 � C � � Zy56 acts transitively on the vertices of the graph� y56 � � 
 S � V � � y56 � � � S � V6 � by lemma 4.5.5. Now let u be a vertex of x
�
.  en

there exists a graph automorphism µx,u � Ax � SU6 � C � � Z such that µx,u � y12 � 
 u,
as SU6 � C � � Zx acts transitively on all lines of

�
x. We conclude that A contains the

element δx,u

 µx,u � φx which maps x to the vertex u � x

�
. Since δx,u is a graph

automorphism of
�

Γ, the image of Λ under δx,u, denoted byΛδx,u , is also isomorphic
to H � A7

�
. Furthermore, δx,u � SU2 � C � z � δ � 1

x,u

 SU2 � C � δx,u � z � , cf. lemma 4.5.10, is a

subgroup ofA for each z � Λ. Hence, for each neighbour u of x, the group SU2 � C � u
is a subgroup of A.
An iteration of this argument, using the connectedness of

�

Γ, shows that the group
G �

Γ

 � SU2 � C � z � z �

�

Γ � is a subgroup of A. ■
Case 2: Σ � W � E6 �

As before we will construct an induced subgraph Λ of Σ isomorphic to H � E6 � on
the six vertices w1


 y12, w2

 y23, w3


 z1412 
 z1356, w4

 x, w5


 y45, w6

 y56.
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 ese six vertices satisfy the following neighbourhood properties in the graph Λ by
section 4.4:

e1 is adjacent to the vertices e3, e4, e5 and e6 in Λ,

e6 is adjacent to the vertices e1, e2, e3 and e4 in Λ,

e2 is adjacent to the vertices e4, e5 and e6 in Λ,

e5 is adjacent to the vertices e1, e2 and e4 in Λ,

e3 is adjacent to the vertices e1 and e6 in Λ,

e4 is adjacent to the vertices e1, e2, e5 and e6 in Λ.

Lemma 4.6.4 We have Λ � H � E6 � .
Proof:  e map φ � Ψ � H � E6 � with φ � wi

� 
 ei, 1 �
i

�
6 is a graph isomorphism.

Indeed,

φ � � x,y45,y56,z1412 �
� 
 � e4, e5, e6, e3 � ,

φ � � x,y45,y56 � � 
 � e4, e5, e6 � ,
φ � � y12,y56 � � 
 � e1, e6 � ,

φ � � y12,y23,y45,y56 � � 
 � e1, e2, e5, e6 � ,
φ � � x,y12,y23 � � 
 � e4, e1, e2 � ,

φ � � x,y12,y23,z1356 �
� 
 � e4, e1, e2, e3 � ,

implying that the neighbours of wi in Λ are mapped onto the neighbours of ei in
H � E6 � . It follows that the map φ is a graph homomorphism, thus Λ � H � E6 � . ■
Again due to the main theorem of [42], the group E 
 � SU2 � C � wi � 1 �

i
�
6 � is

isomorphic to a central quotient of the simply connected compact semisimple Lie
group 2E6 � C � , whose complexi�cation is the simply connected complex semisim-
ple Lie group of type E6, because E admits a weak Phan system of type E6 over the
complex numbers by lemma 4.5.8 and lemma 4.5.9. Following the strategy from
above, we want to identify the group G �

Γ by proving that G
�
Γ is a subgroup of E.

 e next lemma will turn out to be very useful to reach this result.

Lemma 4.6.5  e group E contains the subgroup � SU2 � C � z � z � x
� � .

Proof:  e group E contains the subgroup Ey12

 � SU2 � C � w � w � � � Λy12

� � ,
which is isomorphic to SU5 � C � � Zy12 , where Zy12

�
Z � SU5 � C � � , as Ey12 admits

a weak Phan system of type A4.  is group act transitively on the set of lines

of � wy12 � w � � � Λy12
� � , which contains the lines y46y12 , � zj512

�
y12 and � zj612 � y12 for
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j � � 1,2 � implying that SU2 � C � v �
E for v � � y46,zj512,zj612 � 1 �

j
�
2 � . We

consider the subgroup Ey56

 � SU2 � C � w � w � � � Λy56

� � of E. Also the subgroup
Ey56 admits a weak Phan system of type A4, hence Ey56 � SU5 � C � � Zy56 , where
Zy56

�
Z � SU5 � C � � and therefore the subgroup Ey56 acts transitively on the set of

lines of � wy56 � w � � � Λy56
� � and this �ve-dimensional subspace of � y56 contains the

line � z2256
�
y56 , thus SU2 � C � z2256

�
E. We switch now to the projective space

�
y45 and to

the subgroup subgroup Ey45

 � SU2 � C � v,SU2 � C � z1612 � v � � � Λy45

� � of E, which is
isomorphic to a central quotient of SU4 � C � and acts transitively on the lines of the
subspace � � z1612

�
y45 ,xy45 , y

12
y45 , y

23
y45 � . Indeed, the subgroup Ey45 admits a weak Phan

system of type A3 over C. Since the two-dimensional subspace � z1145
�
y45 is a line

of the subspace � � z1612
�
y45 ,xy45 , y

12
y45 , y

23
y45 � in

�
y45 , we conclude that SU2 � C � z1145

�
E.

Furthermore, the subgroup Ey46

 � SU2 � C � v � v � � x,y12,y23,z1512 � � of G �

Γ admits a
weak Phan system of typeA4 overC, so Ey46 � SU5 � C � � Zy46 with Zy46

�
Z � SU5 � C � .

Since � x,y12, y23, z1512 � � � y46 � �
, the group Ey46 acts transitively on the lines of

the subspace � xy46 , y12y46 , y23y46 , � z1512
�
y46 � of � y46 containing the line � z1246

�
y46 .  ere-

fore SU2 � C � z1246
�
E.

Finally, the vertices z2512 , z
26
12 , z

26
12 , z

26
12 and z

26
12 are all adjacent to z

14
12 and y

36
z1412
and

are lines of the space � � z2512
�
z1412
, � z2612

�
z1412
, � z2612

�
z1412
, � z2612

�
z1412
, � z2612

�
z1412
� 
 � z1412 . Moreover,

the group Ez1412

 � SU2 � C � z2512 , SU2 � C � z2612 , SU2 � C � z2612 ,SU2 � C � z2612 ,SU2 � C � z2612 � is iso-

morphic to a central quotient of the SU6 � C � , as Ez1412 admits a weak Phan system of
type A5 over C, implying that SU2 � C � y36 �

E.
In the followingwe verify that the group Ex


 � SU2 � C � v � v � � y12,y23,y36,y56,y45 � �
is isomorphic to SU6 � C � � Zx � � SU2 � C � z � z � x

� � , where Zx
�
Z � SU6 � C � � . If this

is the case, then Ex
� � SU2 � C � z � z � x

� � � Ex implies � SU2 � C � z � z � x
� � �

E. In-
deed, the group Ex � SU6 � C � � Zx as Ex admits by construction a weak Phan system
of type A5 over C. ■

Proposition 4.6.6  e group G �
Γ is isomorphic to the group E �

2E6 � C � � Z.
Proof: Recall that the subgroup Ey56


 � SU2 � C � w � w � � � Λy56
� � � SU5 � C � � Zy56 of

E acts transitively on the set of lines of the subspace � wy56 � w � � � Λy56
� � containing

xy56 , y
12
y56 .  us E contains a graph automorphism φx such that φx � x � 
 y12. Fur-

thermore the group E contains an element µx,u � � SU2 � C � z � z � x
� � mapping y12 to

the vertex u for some vertex u � x �
. Certainly the automorphism δx,u


 µx,u � φx is
an element of E satisfying the property that δx,u � x � 
 u for some u � x

�
. Fur-

thermore δx,u � Ex � 
 Eu

 � SU2 � C � v � v � u

� � and δx,u � Ey56 � 
 Eδx,u � y56 � 
� SU2 � C � v � v � δx,u ��� � Λy56
� � � � SU5 � C � � Zy56 acts transitively on all lines of� uδx,u � y56 � ,δx,u � y12

�
δx,u � y56 � ,δx,u � y23

�
δx,u � y56 � ,δx,u � z1356

�
δx,u � y56 � � .  us we can �x an

automorphism φu � Eδx,u � y56 � �
E with φu � u � 
 δx,u � y12 � and µu,v � Eu �

E such
that µu,v � δx,u � y12 � � 
 v for a vertex v � u

�
implying that E contains the graph au-

tomorphism δu,v

 µu,v � φu mapping u to v and the element δu,v � δx,u sending x

to v.

163



4 On locally complex unitary geometries

By the connectivity of the graph
�

Γ we can �x some path γw � x � c1 � � �
cn � w between the vertices x and w for each w �

�

Γ. Applying the construction
from above in each step on the path γw we determine the graph automorphism
δcn,w � � � δc1,c2 � δx,c1 whichmaps the vertex x tow. Certainly δcn,w � � � δc1,c2 � δx,c1
is an element of E, hence SU2 � C � w is a subgroup of E.
It follows that E contains the group � SU2 � C � z � z �

�

Γ � 
 G �
Γ. ■

Altogether we have proved the following:

 eorem 4.6.7  e group G �
Γ is isomorphic to a central quotient of SU8 � C � if and

only if Σ � H � A7

�
and isomorphic to a central quotient of 2E6 � C � if and only if

Σ � H � E6 � .

4.7 The fundamental SU2

�
C � subgroups graph of E6, � 78 and

SU8

�
C �

Here we study the fundamental SU2 � C � subgroups graph F � SU � V8 � � � S � V8 � ,
where V8 is an eight-dimensional vector space over C with the scalar product � � , �

�
and the graph F � E6, � 78

�
, the fundamental SU2 � C � subgroups graph of the compact

Lie group E6, � 78. We will prove that both graphs, S � V8 � and F � E6, � 78

�
are locally

S � V6 � and simply connected. Moreover we show that S � V8 � contains the reec-
tion graphW � A7

�
andW � E6 � is an induced subgraph of F � E6, � 78

�
.  erefore the

universal cover
�

Γ of a graph Γ, which is locally S � V6 � satisfying certain technical
condition 4.1 is either isomorphic to S � V8 � or to F � E6, � 78

�
.

 e graph S � V8 � is a connected locally S � V6 � graph of diameter two by proposition
4.2.1 and proposition 4.2.2.

Lemma 4.7.1  e graph S � V8 � contains an induced subgraph Σ � W � A7

�
.

Proof: Let β � v1, . . . ,v8 be an orthonormal basis ofV8. We consider the 28 di�erent
two-dimensional subspaces lij


 � vi,vj � such that 1 �
i � j

�
8 and we de�ne� � Σ � 
 � lij � 1 �

i � j
�
8 � to be the vertex set of Σ. Hence Σ is the induced

subgraph of S � V8 � on 28 di�erent vertices.
By de�nition of the graph S � V8 � , see de�nition 1.1.10, two di�erent vertices lmn
and lst of � � Σ � are adjacent if and only if lmn �

lπst or equivalent if and only if� m,n � 	 � s, t � 
�� .  us the map Σ � K � 8,2 � � W � A7

� � lst � � s, t � is a graph
isomorphism. ■
In order to state and prove the next result, we have to introduce some notation and
to recall some known facts. We turn back to the situation that g is a Lie algebra over
the �eldK.

164



4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

De�nition 4.7.2 Let g be a Lie algebra overK and x be an element of g.  e linear
mapping ad

x
� g � g with y �

�
x, y � is called the adjoint linear mapping of x.

 e Killing form is the symmetric bilinear form on the Lie algebra g de�ned by
B � x, y � 
 tr � ad

x
ad

y

�
. It is invariant in the sense that B � �

x, y � ,z � 
 B � x, �
y,z � �

for all x, y,z � g.

Furthermore a Lie algebra homomorphism of g into the Lie algebra GL � M � , where
M is a K-module, is called a representation of g on the module M. An injective
representation is called faithful.  e representation g � GL � g � with x � ad

x
of g

on the Kmodule g is called the adjoint representation of g. A representation of g
onM is called semi-simple if this representation is similar to a direct sum of simple
representations.

A Lie algebra g is semi-simple if and only if the only commutative ideal of g is � 0 � .
Also we call a Lie algebra g reductive if its adjoint representation is semi-simple.

Here is a connection between semi-simple Lie algebras and reductive Lie algebras.

Lemma 4.7.3 (lemma 1, chapter I 6.2 of [9]) Let g be a semi-simple Lie algebra. en
the adjoint representation of g is semi-simple.

In particular, any semi-simple Lie algebra is reductive.

De�nition 4.7.4 Let g be a Lie algebra over an in�nite �eld. A Cartan subalgebra
of g is a nilpotent subalgebra of g equals to its own normaliser.

A Cartan subalgebra h of a semi-simple Lie algebra g is called splittable if for all
x � h the adjoint linear map ad

x
of x is triangularizable. A semi-simple Lie algebra

g is called splittable if it has a splitting Cartan subalgebra and a split semi-simple
Lie algebra is a pair � g,h � , where g is a semi-simple Lie algebra and h is a splittable
Cartan subalgebra of g.

Suppose thatK is an in�nite algebraically closed �eld of characteristic zero.  en a
Lie algebra g over K has Cartan algebras, all of the same dimension and conjugate
to each other under the group of elementary automorphisms of g. It turns out that a
Cartan subalgebra of a Lie group g over an in�nite �eld is a maximal nilpotent sub-
algebra of g, by proposition 2, chapter VII 2.2 by [11]. Moreover every semi-simple
Lie algebra g over an algebraically closed �eld is splittable and every Cartan subal-
gebra of g splits. In this case it follows also that a Cartan subalgebra is commutative,
due to theorem 2, chapter VII 2.4 of [11].

Next we shall de�ne the notion of a root of a split semi-simple Lie algebra � g,h �
overK. We consider the dual space h

�
of a Cartan subalgebra h and denote for each
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λ � h
�
the subspace � y � g � �

h, y � 
 λ � h � y for all h � h � with gλ � h � or just gλ.
Notice that g0


 � y � g � �
h, y � 
 0 for all h � h � 
 h and that g 
�� λ� h � gα.

De�nition 4.7.5 A root of a semi-simple split Lie algebra � g,h � is a non-zero ele-
ment λ � h

�
such that gλ �
�� 0 � . We denote by R � g,h

� 
 R the set of all roots of
� g,h � , the root system of g relative to h.

It is known that R � g,h � is a reduced root system in h
�
and we can form the root-

space decomposition of g
g 
 g0 �

�

λ� R
gα.

 eorem 4.7.6 (theorem 1, chapter VIII 2.2 of [11]) Let α be a root of a semi-simple
split Lie algebra � g,h � over F.  en

• gα is a one-dimensional vector subspace of g.

•  e vector space
�
gα,g � α � 
 hα of the Cartan subalgebra h is of dimension one.

•  e vector space gα, � α

 � hα,gα,g � α � is a Lie subalgebra of g isomorphic to

sl2 � F � , also called a fundamental sl2 � F � Lie subalgebra of g . Furthermore,
gα, � α is generated as a Lie subalgebra by gα and g

� α.

Proposition 4.7.7 (section 14.2 of [55]) Let g be a semi-simple Lie algebra, h a Car-
tan subalgebra of g,Φ 
 R � g,h � the root system of g relative to h and∆ 
 � α1, . . . ,αl �
a basis of Φ.  en g is generated as a Lie algebra by the root spaces gα, g � α for α � ∆
or equivalently g is generated by arbitrary non-zero root vectors xα � gα, x � α � g

� α

for α � ∆.

We shall call the set � xα,x � α � α � ∆ � or � xα,x � α � with
�
xα,x � α � 
 hα a standard

set of generators for the semi-simple Lie algebra gwith respect to the Cartan subal-
gebra h, the corresponding root systemΦ 
 R � g,h � and the basis ∆ 
 � α1, . . . ,αl � .
 en these generators satisfy at least the following relations:

� S1 � �
hαi ,hαj � 
 0 for αi,αj � ∆

� S2 � �
xαi ,x � αi � 
 hαi and

�
xαi ,x � αj � 
 0 if αi �
 αj

� S3 � �
hαi ,xαj � 
 2σ � αj,αi �

σ � αi,αi � xαj and
�
hαi ,x � αj � 
 � 2σ � αj,αi �

σ � αi,αi � x � αj

� S �ij � � adxαi � � 2σ � αj,αi �
σ � αi ,αi � � 1 � xαj � 
 0 for αi �
 αj

� S �

ij

� � ad
x � αi
� � 2σ � αj,αi �

σ � αi ,αi � � 1 � x
� αj

� 
 0 for αi �
 αj
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 eorem 4.7.8 (Serre, section 18.3 of [55]) Let Φ be a �xed root system with ba-
sis ∆ 
 � α1, . . . ,αl � and let g be the unique Lie algebra generated by 3l elements� xi, yi,hi 


�
xi, yi � � 1 �

i
�
l � with 0 �
 xi � gαi ,0 �
 yi � g

� αi , subject to the
relations S1 to S3, S �ij and S �

ij.  en g is a �nite dimensional semi-simple Lie algebra,
with Cartan subalgebra spanned by the hi and with corresponding root system Φ.

 eorem 4.7.9 (section 18.4 of [55]) Let g and g � be semi-simple Lie algebras with
respective Cartan subalgebras h,h � and root systems Φ,Φ � . Let an isomorphism be-
tween the root systems Φ � Φ � be given sending a given basis ∆ of Φ to a basis ∆ � of
Φ � and denote by π � h � h � the associated isomorphism between the Cartan subal-
gebras. For each α � ∆, (α � � ∆ � ) select arbitrary non-zero xα � gα, (x �α � � g �α � ).  en
there exists a unique isomorphism π � g � g � extending π � h � h � and sending xα to
x �α � for each α � ∆.

Moreover for a semi-simple Lie algebra over an algebraic closed �eld K of char-
acteristic zero with Cartan subalgebra and root system R � g,h � 
 Φ with basis
∆ � α1, . . . ,αl , we can construct a Chevalley basis of g . A Chevalley basis of g
is any basis � xα � gα � � 0 � � α � Φ � � � hi � 1 �

i
�
l � such that

•
�
xα,x � α � 
 hα

• if α,β,α � β � Φ and �
xα,xβ � 
 cα,β then cα,β 
 � c � α, � β

• hi

 hαi for some basis ∆ 
 � α1, . . . ,αl � ofΦ.

Indeed by chapter VII of [55], a Chevalley basis of a semi-simple Lie algebra g exists
and has the following structure constants.

 eorem 4.7.10 (Chevalley, section 25.2 of [55] ) Let g be a semi-simple Lie alge-
bra and � xα � gα � � 0 � � α � Φ � � � hi � 1 �

i
�
l � be a chevalley basis of g.  en

•
�
hi,hj � 
 0 for 1 �

i, j
�
l

•
�
hi,xα � 
 2 � α,αi �

� αi,αi � xα for 1
�
i

�
l, α � Φ

•
�
xα,x � α � 
 hα is a Z-linear combination of h1, . . . ,hl .

• if α and β are independent roots, β � rα, . . . ,β � qα the α-string through β,
then

�
xα,xβ � 
 0 if q 
 0 while �

xα,xβ � 
�� � r � 1 � xα � β if β � α � Φ.
Let g be semi-simple Lie algebra overC, h

�
g a Cartan subalgebra andΦ 
 R � g,h �

be the root system of g relative to h. We choose a basis ∆ ofΦ and a decomposition
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Φ 
 Φ � � Φ � , whereΦ � denotes the set of positive roots with respect to ∆ and Φ �

denotes the set of negative roots with respect to ∆.

Now we de�ne
n � 
 �

α � Φ�

gα and n � 
 �

α � Φ� gα.
 e subalgebra b � 
 h � n � is the Borel subalgebra of g.
 eorem 4.7.11 Let g be semi-simple complex Lie algebra, h a Cartan subalgebra of
g, Φ 
 R � g,h � be the root system of g relative to h and ∆ some basis of Φ.  en
g 
 h � n � � n � 
 b � n � . Moreover

• n � and n � are nilpotent subalgebras of g.

•  e Borel subalgebra b is a solvable subalgebra of g.

 eorem 4.7.12 (Borel-Morozow) Every solvable subalgebra of a semi-simple com-
plex Lie algebra g is conjugate via an inner automorphism to a subalgebra of the Borel
subalgebra b. Inparticular, b is a maximal solvable subalgebra of g.

Next we want to introduce the notion of a Lie group. Let G be a set. A group
structure and an analytical K-manifold structure on G are called compatible if the
following condition holds:

(GL) e mapping � g,h � � gh � 1 of G � G � G is analytic.

De�nition 4.7.13 (1.1, chapter III, of [9]) A Lie group over K is a set G with a
group structure and an analytic K-manifold structure such that these two struc-
tures are compatible.

A Lie group over R (resp. C) is called a real (resp. complex) Lie group .

By [9] a Lie group is a complete metrizable topological group.  us a Lie group
is compact if the topological group is also a compact space. Moreover a real (resp.
complex) Lie group is locally connected , by proposition 2, chapter III, 1.1 of [9]. For
a Lie groupGwedenote byG0 the identity component ofG, which is the connected
component ofG containing the identity element e. G0 is a normal closed subgroup
of G. Next, we describe a natural construction that associates a certain Lie algebra
L � G � to every Lie group G.
Suppose M is a C

�
manifold. A real-valued function g � M � R belongs to

C
� � M,R

� 
 C
� � M � if g � φ � 1 is in�nitely o�en di�erentiable for every chart

φ � U � R
n. With respect to the pointwise product and sum of functions and

scalar multiplication C
� � M � is a real associative algebra. Pick a point p in M. A
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derivation at p is a linear mapD � C � � M � � Rwhich has the property that for all
g,h in C

� � M � we have the identity

D � gh � 
 D � g � � h � p� � g � p� � D � h � ,

modelled on the product rule of calculus.  ese derivations form a real vector
space in a natural manner for every element p � M, which is the tangent space
Tp � M � . Let f � M � N be a smooth map of smooth manifolds. Given some
p � M the di�erential dfp of f is the linear map dfp � Tp � M � � Tf � p� � N

�
given

by dfp � D � g � � 
 dfp � D � � g � 
 D � g � f
�
. If dfp is injective, then f is said to be an

immersion at x. If f is an immersion at every point, it is called an immersion. A
vector �eld of amanifoldM is a derivation of the algebra C

� � M � , therefore a linear
map X � C � � M � � C

� � M � with X � fg � 
 f � X � g � � � � X � f � � g. We denote the
set of all vector �elds ofM with � � M � . � � M � is a Lie algebra with the Lie bracket�
X,Y � 
 X � Y � Y � X.

LetG be a Lie group and let λg � G � G denote the di�eomorphisms corresponding
to le� multiplication by g for every g � G. If X is a vector �eld on G, then let
Xp be the value of X at a point p � G, so Xp � Tp � G � . A vector �eld X on G
is called le�-invariant if X is invariant with respect to all le� multiplications, so
X � f � λg

� 
 X � f � � λg for all g � G and f � C � � G � .  e map α of the real vector
space of all le�-invariant vector �elds X on G onto Te � G � with X � Xe is a linear
isomorphism, see [53].

De�nition 4.7.14  e Lie algebra of a Lie group G, denoted by L � G � 
 g, is the
tangent space Te � G � under the Lie bracket

�
X,Y � 
 α � �

α � 1X,α � 1Y � � .  e linear
actionAd of the Lie groupG on the Lie algebra L � G � mapping each g � G to the dif-
ferentialAd � g � 
 d � intg � of the inner automorphism intg � G � Gwith x � gxg � 1,
is called the adjoint representation of the Lie groupG.  e adjoint representation
of L � G � 
 g is the di�erential of Ad at the identity, thus ad 
 d � Ad � � g � End � g � .
Moreover for an element X � L � G � we de�ne exp � X � � 
 γX � 1 � , where γX is an
integral curve of Xwith γX � 0 � 
 1, see [53].

We recall some properties of the exponential function. Let G be a Lie group.  ere
exists one and only one exponential mapping ofG de�ned on the Lie algebra L � G � .
 is mapping has the following properties for ρ an analytical linear representation
of G, x � L � G � and g � G.

• ρ � exp � x � � 
 exp � L � ρ � x �

• Ad � exp � x � � 
 exp � ad
x

�

• g � exp � x � � g � 1 
 exp � Ad � g � x �
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Furthermore let α � G1 � G2 be an analytic homomorphism of Lie groups.  en
the di�erential of α is the homomorphism L � α � 
 d � α � � 1 � � L � G1

�
� L � G2

�
such

that α � expG1
X
� 
 expG2

� d � α � � 1 � X � 
 expG2
� L � α � X � for all X � L � G1

�
, i.e. the

next diagram commutes, see [53].

L � G1

�

expG1

��

L � α �
// L � G2

�

expG2

��

G1
α

// G2

Corollary 4.7.15 (corollary 1, chapter IX 2.2 of [11])  eexponentialmap of a com-
pact connected Lie group G is surjective.

An integral subgroup of a Lie groupG is a subgroup with a connected Lie group
structure such that the canonical injection from the subgroup into G is an immer-
sion. Recall that a connected Lie subgroup of G is an integral subgroup of G. Inte-
gral subgroups have some nice properties, which we will use later.

Proposition 4.7.16 (proposition 10, III 6.4 and proposition 9, III 9.5 of [9]) LetG be a
Lie group and H be an integral subgroup of G, then expH


 � expG
� � L � H � .

Furthermore, if G is a �nite dimensional real or complex Lie group, g is Lie algebra
and h 
 L � H � .  en ZG � H � is a Lie subgroup of G with Lie algebra Zg � h � .

Proposition 4.7.17 (proposition 4.7 of [27]) If G is a Lie group and G0 is the con-
nected identity component, then G0 is generated by exp � g � , where g is the Lie algebra
of G.

 eorem 4.7.18 ( theorem 3 (i), chapter III 6.3 [9] ) If g is a �nite dimensional Lie
algebra, then there exists a simply connected Lie groupG such that L � G � is isomorphic
to g.

A torus of a Lie group G is any closed commutative connected compact subgroup
of G.  us a torus T of G is a Lie subgroup isomorphic to S

1 � � �
S
1, where S

1

is the circle group U1 � C � 
 � � x, y � � R
2 � x2 � y2 
 1 � identi�ed with the unit

circle T

 � z � C � � z � 
 1 � .  e maximal closed commutative connected compact

subgroup of G, ordered by inclusion, are called themaximal tori of G.

 eorem 4.7.19 (theorem 2, chapter IX 2.2 of [11]) Let G be a connected compact
Lie group.  en the Lie algebras of the maximal tori of G are the Cartan subalgebras
of the Lie algebra L � G � and any two maximal tori of G are conjugate. Moreover for
a Cartan subalgebra t in L � G � , the integral subgroup of G, whose Lie algebra is t is a
torus of G, so exp � t � 
 T for T a torus of G and L � T � 
 t or vice versa.
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For a connected compact Lie group G, let T be a maximal torus of G and denote
by NG � T � 
 � g � G � gTg � 1 
 T � the normaliser of T in G.  e quotient group
NG � T � � T is �nite and called theWeyl groupWG � T � of G relative to the maximal
torus T. Any two maximal tori are conjugate, so di�erent choices of maximal tori
in G yield isomorphic Weyl groups. Certainly the subgroup NG � T � acts on T by
conjugation, so we obtain an induced action of the Weyl group Wg � T � on T by
Wg � T � � T � T with � nT, t � � ntn � 1.

In the next part we obtain compact real forms of a complex Lie algebra a.

LetV be a vector space overR. We callVC � 
 V � RC

 V � iV the complexi�cation

of V. Certainly VC

 V � R C is a vector space over C with the natural embedding

V � V � R C by v � v � 1.

On the other hand let W be a complex vector space, then restricting the scalars
to R leads to a vector space WR over R, thus we regardW as a real vector space.
Let � wj � j � I � be a basis of W, then � wj, i � wj � j � I � is a basis of WR and
WR


 V � Vi 
 � VC

�
R if V is the real span of the basis vectors

� wj � j � I � .
If a is a complex Lie algebra, then by aR we denote the real Lie algebra obtained by
restricting the scalars of a to R. On the other hand if g is a real Lie algebra then gC

is the complex Lie algebra g � R C

 g � ig.

A real form of a complex Lie algebra a is a real subalgebra g of a such that the
subspace g and ig of the real vector space aR are complementary and aR


 g � ig.
 e real form g of a is associated a conjugation σ of aR relative to g, which is the R

linear that is 1 on g and � 1 on � ig, so x � iy � x � iywith x, y � g.

Let g be a real Lie algebra and gC its complexi�cation.  emap
�

� , � � � gC
�
gC � gC

given by � x � a, y � b � � � �
x, y ��� ab � extends the Lie bracket of g in a complex

bilinear way. In an analog way we have the complexi�cation of ad
x
with x � g to

ad
x
� gC � gC for any x � gC.

Observation 4.7.20 Let g be a real Lie algebra and gC its complexi�cation. If the
complexi�cation tC


 t � R C of t is a Cartan subalgebra of gC then t is a Cartan
subalgebra of g.

De�nition 4.7.21 A Lie algebra g is called compact if g is isomorphic to the Lie
algebra of a compact Lie group.

By proposition 1 of [11] chapter IX 1.3 and theorem 1 of [9] chapter I 6.2, a compact
Lie algebra g is reductive and semi-simple.

If a is a reductive complex Lie algebra then a real subalgebra g is a compact real
form if g is real form of a and g is compact.
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 eorem 4.7.22 (theorem 1 and corollary 2, chapter IX 3.3 of [11] ) Let a be a com-
plex semi-simple Lie algebra.  en a has compact (resp. splittable) real forms. Fur-
thermore there exists a compact real Lie algebra g such that a � gC and also there
exists a compact Lie group G such that a � L � G � C .

Moreover we consider the conjugation ρ � aR � aR with ρ � x � iy � 
 x � yi of a
complex semi-simple Lie algebra a relative to a real form g.

Proposition 4.7.23 (proposition 1, chapter IX 3.1 of [11] ) Let a be a complex semi-
simple Lie algebra and g a real form of a.  en

ρ2 
 ida , ρ � λx � µy � 
 λρ � x � � µρ � y � , �
σ � x � � σ � y � � 
 σ � �

x, y � �

for any λ, µ � C, x, y � a. An element belongs to g if and only if σ � x � 
 x.
On the other hand let ρ � aR � aR be a map satisfying the properties just stated, for a
complex Lie algebra a.  en the set g of �xed points of ρ is a real form of a and ρ is
the conjugation of a relative to the real form g.

Auseful result ofH.Weyl is the following theorem about connected Lie groups with
compact Lie algebras.

 eorem 4.7.24 (Weyl, theorem 1, chapter IX 1.4 of [11]) Let G be a connected Lie
group whose Lie algebra is compact and semi-simple.  enG is compact and its centre
is �nite.

We now introduce the notion of roots for connected compact Lie groups. We de-
note with X � G � the commutative group of continuous homomorphism from the
compact Lie group G to the topological group C

� .  e elements of X � G � are mor-
phisms of Lie groups, therefore for all α � X � G � , the di�erential of α is an R-linear
map L � α � 
 d � α � � 1 � � L � G � � L � C � � 
 C.  us every element α � X � G � is asso-
ciated to an element L � α � � Hom R � L � G � ,C � . We denote by δ � α � the element of
HomR � L � G � C ,C � 
 L � G � �

C
whose restriction to L � G � coincides with L � α � , thus

we obtain a map δ � X � G � � L � G � �
C
. Certainly for all x � L � G � and α � X � G �

we have α � expG x
� 
 eδ � α � x, where z � ez denotes the usual exponential function

from C to C
� .

Let V be a �nite dimensional vector space over K, whereK is either the real num-
bers or the complex numbers. We consider a continuous (real analytic) represen-
tation φ � G � GL � V � of a connected compact Lie group G on V . We de�ne
Ṽ 


�
V ifK 


C

VC



C � R V ifK 

R
and φ̃ 


�
φ ifK 


C

µ � φ ifK 

R
, where µ is the

canonical homomorphism between GL � V � and GL � Ṽ � .
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We consider now the adjoint representation Ad � G � GL � L � G � � 
 GL � g � and
a maximal torus T of G. For all λ � X � T � , we denote by g̃ � T � λ 
 g̃λ the vector
subspace � v � g̃ � Ãd � g � v 
 λ � g � v for all g � T � .

De�nition 4.7.25 A root of G relative to T is a non-zero element λ � X � T � such
that g̃ � T � λ �
 � 0 � Wewrite for the set of root ofG relative to T the symbol R � G,T

�
.

Certainly g̃ 
 g̃ � T � 0 � � λ� R � G,T � g̃ � T
�
λ.

Following chapter IX 4.4 of [11], the map δ � X � T � � t
�
C
, where t

�
C
is the dual space

of the complex Lie algebra tC and t 
 L � T � is the Lie algebra of the torus T, maps
the root system R � G,T � bijectively onto the set R � gC, tC

�
.

Finally we consider the reduced irreducible root system ΦE6

 Φ of type E6 and

the basis ∆E6

 ∆ 
 α1, . . . ,α6 described in [10] Plate V. Let L � E6 � 
 g � E6 � 
 g

be the �nite dimensional semi-simple complex Lie algebra with corresponding root
system Φ and Cartan subalgebra h, which exists by theorem 4.7.8. Furthermore let� xα � gα � � 0 � � α � Φ; hi � 1 �

i
�
6 � be a Chevalley basis of g � E6 � .  en g is gener-

ated by the non-zero root vectors xαi ,x � αi for 1
�
i

�
6 by proposition 4.7.7 and for

each α � Φwe know the Lie subalgebra gα, � α � E6 � 
 gα, � α

 � xα,x � α,

�
xα,x � α � � �

sl2 � C � due to theorem 4.7.6.
Let α̃ be themaximal root ofΦwith respect to∆, so α̃ 
 α1 � 2α2 � 2α3 � 3α4 � 2α5 � α6
by Plate V of [10].  en due to theorem 4.7.10,

�
xα̃,xαi � 
 0 
 �

xα̃,x � αi � and�
x

� α̃,xαi � 
 0 
 �
x

� α̃,x � αi � in g for 1
�
i

�
6, i �
 2 as � α̃,αi � 
 0 for 1 �

i
�
6, i �
 2.

Furthermore we determine also that
�
xα̃,xα2 � 
 0 
 �

x
� α̃,x � α2 � by the fact that

� α̃,α2 � 
 1 
 � � α̃, � α2 � �
0 and thus α̃ � α2 and � α̃ � α2 are not roots of g.

On the other hand � α̃, � α2 � 
 � 1 
 � � α̃,α2 � � 0 therefore the elements α̃ � α2
and � α̃ � α2 are roots of Φ. A�er calculation we obtain that � α̃ � α2,α2 � 
 1 

� � α̃ � α2, � α2 � � 0 thus α̃, α̃ � α2 is the � α2-string through α̃ and � α̃, � α̃ � α2 is the
α2-string through

� α̃. So
�
xα̃,x � α2 � 
 � xα̃ � α2 and

�
x

� α̃,xα2 � 
 � xα̃ � α2 by theorem
4.7.10. Using the same statement again we get that

�
xα̃,hαi � 
 0 
 �

x
� α̃,hαi � for all

i � � 1, . . . ,6 � � � 2 � as � α̃,αi � 
 0 for 1 �
i

�
6; i �
 2 and �

xα̃,hα2 � 
 2 � α2,α̃ �� α2α2 � xα̃



xα̃ as well as
�
x

� α̃,hα2 � 
 2
� α2, � α̃ �
� α2α2 � x � α̃


 � x
� α̃. Because gα̃


 � xα̃ � respectively
g

� α̃

 � x

� α̃ � we conclude that Zg � gα̃ � 
 � xαi ,x � αj,hαj � 1 �
i, j

�
6, j �
 2 � resp.

Zg � g � α̃
� 
 � xαj,x � αi ,hαj � 1 �

i, j
�
6, j �
 2 � . Indeed let y 
 λx

� α2 � µhα2 then�
y,xα̃ � 
 � λxα̃ � α2 � µxα̃ �
 0 for λ �
 0 �
 µ as xα̃ � α2 and xα̃ are linearly independent.

Furthermore we obtain also that Zg � � hα̃ � � 
 � xαj,x � αj,hαi � 1 �
i, j

�
6, j �
 2 � .

Indeed by theorem 4.7.10,
�
xα̃,x � α̃ � 
 hα̃, which is a Z-linear combination of the

vectors hαi with 1
�
i

�
6 implying

�
hα̃,hαj � 
 0 for every 1

�
j

�
6. By the

Jacobi identity,
�
hα̃, y � 
 � �

xα̃,x � α̃ � , y � 
 � � �
x

� α̃, y � ,xα̃ � � � �
y,xα̃ � ,x

� α̃ � for any
y � g � E6 � , therefore we determine that

�
hα̃,xαj � 
 0 
 �

hα̃,x � αj � for 1 �
j

�
6, j �
 2

and
�
hα̃,xα2 � 
 � �

� x
� α̃ � α2 ,xα̃ � 
 � xα2 resp.

�
hα̃,x � α2 � 
 � �

� xα̃ � α2 ,x � α̃ � 
 � x
� α2 .
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Since the non-zero vectors xα2 and x � α2 are linearly independent we determine that�
hα̃, λxα2 � µx � α2 � 
 0 if and only if λ 
 µ 
 0, which con�rms that Zg � � hα̃ � � 
� xαj,x � αj,hαi � 1 �

i, j
�
6, j �
 2 � .

 is proves

Zg � gα̃, � α̃
� 
 Zg � � xα̃,x � α̃,hα̃ � �

 Zg � � xα̃ � � 	 Zg � � x � α̃ � � 	 Zg � � hα̃ � �

 � xαi ,x � αi ,hαi � 1 �

i
�
6, i �
 2 � .

Lemma 4.7.26  e centraliser Zg � gα̃, � α̃
�
of gα̃, � α̃ in g 
 g � E6 � is isomorphic to the

Lie algebra sl6 � C � .
Proof: First of all Zg � gα̃, � α̃

� 
 � xαi ,x � αi ,hαi � 1 �
i

�
6; i �
 2 � from the argumen-

tation above.  us by theorem 4.7.8, Zg � gα̃, � α̃
�
is a �nite dimensional semi-simple

Lie subalgebra with root system � β � Φ � β 
 � 6
i � 1,i �� 2 λiαi, λi � Z � 
 ΦZg � gα̃, � α̃ � ,

basis ∆Zg � gα̃, � α̃ � � α1,α3, . . . ,α6 and Cartan subalgebra HZg � gα̃, � α̃ � 
 � hαi � 1 �
i

�

6, i �
 2 � .  e Cartan matrix of ΦZg � gα̃, � α̃ � is

� Zg � gα̃, � α̃ � 


���������
�

2 � 1
� 1 2 � 1

� 1 2 � 1
� 1 2 � 1

� 1 2 � 1
� 1 2

����������
�
,

thus the map ∆Zg � gα̃, � α̃ � � ∆A5 with α1 � α
A5
1 and αi � α

A5

i � 1 for 3
�
i

�
6 is a

bijection between the bases ∆Zg � gα̃, � α̃ � and ∆A5 such that � Zg � gα̃, � α̃ � 
 � A5 . Propo-
sition 4.4.4 implies an isomorphism between the root systems ΦZg � gα̃, � α̃ � and ΦA5 .
It follows directly from theorem 4.7.9 and chapter VIII 13.1 of [11] that Zg � gα̃, � α̃

�
�

L � A5

�
� sl6 � C � . ■

Corollary 4.7.27  ecentraliser Zg � gα, � α
�
of gα, � α in g � E6 � is isomorphic to sl6 � C �

for each root α � ΦE6 .

Proof: Since ΦE6 is a reduced irreducible root system and all roots in ΦE6 have
the same length, we conclude by lemma 4.4.2 that any root α � ΦE6 is conjugate
to α̃ under the Weyl group � .  e Weyl group � permutes the root system Φ.
 us let α be a root ofΦ then there exists an element w � � such that wα̃w � 1 
 α,
moreoverw∆w � 1 � wα1w � 1, � ,wα6w

� 1 is a basis ofΦwith the property that α is the
maximal root ofΦ relative tow∆w � 1 implying by lemma 4.7.26 that Zg � gα, � α � E6 � �
is isomorphic to sl6 � C � . ■
 e complex semi-simple Lie algebra g 
 g � E6 � has real compact forms by theorem
4.7.22. More precisely there exists a real compact reductive semi-simple Lie algebra
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a such that aC � g � E6 � . Denote with ρ the involution of gR with respect to a.
Furthermore by theorem 4.7.18 we also �nd a simply connected Lie group G such
that L � G � � a implying that L � G � C � aC � g � E6 � . Certainly theorem 4.7.24 implies
that the Lie group G is compact.

Let T be a torus of G andΦ � G,T � be the root system ofGwith respect to T.  ere
is a bijection between the root systemΦ � G,T � andΦ � L � G � C , tC � , where t 
 L � T �
a Cartan subalgebra of a and Φ � L � G � C , tC � is the root system of L � G � C � g � E6 �
w.r.t. the Cartan subalgebra tC, see observation 4.7.20.

Corollary 4.7.28  e simply connected compact Lie groupG has a root system of type
E6.

Proof: By the argumentation above we have a bijection between the root systems
Φ � G,T � and Φ � L � G � C , tC � � Φ � g � E6 � ,h � , where h is a Cartan subalgebra of
g � E6 � . By chapter IX 4.9, proposition 16, remark part(b) of [11] it follows from
the choice of G that Φ � G,T � � Φ � g � E6 � ,h � 
 Φ, which is the reduced irreducible
root system of type E6. ■
Let α be an element of the root system Φ � G,T � and let δ be the isomorphism
between Φ � L � G � C , tC � � Φ � g � E6 � ,h � and Φ � G,T � , thus δ � α � � h

�
is a root

of Φ � g � E6 � ,h � . We know that gδ � α � ,δ � � α � � sl2 � C � and denote with aδ � α � , � δ � α �
the �xed points of gδ � α � , � δ � α � under the involution ρ. Certainly ρ �gδ � α � , � δ � α � satis-
�es the condition of proposition 4.7.23, thus aδ � α � , � δ � α � is a real compact form of
gδ � α � , � δ � α � , as a is a compact form of g. By chapter IX.3.4 of [11], the real compact
form of sl2 � C � is the Lie algebra su2 � C � implying that aδ � α � , � δ � α � � su2 � C � . Recall
that exp � su2 � C � � 
 SU2 � C � . It follows that Uα, � α � 
 exp � aδ � α � , � δ � α �

�
� SU2 � C � .

We call the subgroup Uα, � α of G be fundamental SU2 � C � subgroup of the Lie
group G for each root α � Φ � G,T � .

Lemma 4.7.29  e identity component ZG � Uα, � α
� 0 of the centraliser ZG � Uα, � α

�
of

Uα, � α in G is isomorphic to SU6 � C � for each root α of G.
Proof: Since all maximal tori of G are conjugate and the Lie algebra of a maximal
torus is a Cartan subalgebra of L � G � by theorem 4.7.19, w.l.o.g. we can �x amaximal
torus T of G and prove that ZG � Uα, � α

� 0 � SU6 � C � for all roots α � Φ � G,T � .
From corollary 4.7.27 we obtain that for each root α � Φ � G,T � the centraliser of

gδ � α � , � δ � α � in g � E6 � 
 g is isomorphic to sl6 � C � . By Za � aδ � α � , � δ � α �
�
we denote the

�xed points of Zg � gδ � α � , � δ � α �
�
under the involution ρ.  us using the argumenta-

tion from above and by chapter IX.3.4 of [11], the Lie subalgebra Za � aδ � α � , � δ � α �
�

is isomorphic to su6 � C � . Furthermore as Uα, � α

 exp � aδ � α � , � δ � α �

�
� SU2 � C �

and SU2 � C � is a connected Lie group we conclude that Uα, � α is an integral sub-
group of G and also that Za � aδ � α � , � δ � α �

�
is the Lie algebra of the Lie subgroup

ZG � Uα, � α
�
of G by proposition 4.7.16. Due to proposition 4.7.17 it follows that
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exp � Za � aδ � α � , � δ � α �
� �
generates the identity component ZG � Uα, � α

� 0 of the cen-
traliser ZG � Uα, � α

�
. Aswe know � exp � Za � aδ � α � , � δ � α �

� � � � exp � su6 � C � � 
 SU6 � C �
implying ZG � Uα, � α

� 0 � SU6 � C � . ■
Finally, for some torus T of the Lie group G, we consider the set

� 
 � α � Φ � G,T � � T be a torus of G � 
 � α � Φ � G, gTg � 1 � � g � G � ,
by lemma 4.7.19.

 e graph F � G � 
 F � G � E6, � 78

� � 
 F � E6, � 78

�
has the vertex set � Uα, � α � α � � �

and two fundamental SU2 � C � subgroups of G, say Uα, � α and Uβ, � β are joined by
an edge if and only ifUα, � α

�
ZG � Uβ, � β

�
or equivalently Uβ, � β

�
ZG � Uα, � α

�
. Since

Uα, � α � SU2 � C � for each α � �
, which is a connected Lie subgroup of G, we work

with the weaker version, so two fundamental SU2 � C � subgroups of G, say Uα, � α

and Uβ, � β are joined by an edge if and only if Uα, � α
�
ZG � Uβ, � β

� 0 or equivalently
Uβ, � β

�
ZG � Uα, � α

� 0.
In the next part we show that F � E6, � 78

�
is a locally S � V6 � graph containing a locally

W � A5

�
subgraph Σ � W � E6 � .

By the notation above let α̃ be the root of maximal height of Φ � E6 � with respect
to the basis ∆.  en Zg � gα̃, � α̃

� 
 � xαi ,x � αi ,hαi � 1 �
i

�
6; i �
 2 � � sl6 � C � with

irreducible reduced root system � β � Φ � β 
 � 6
i � 1,i �� 2 λiαi, λi � Z � 
 ΦZg � gα̃, � α̃ �

and basis ∆Zg � gα̃, � α̃ � � α1,α3, . . . ,α6 implying gαi, � αi

 � xαi ,x � αi ,hαi � �

Zg � gα̃, � α̃
�
.

Moreover let φ be the isomorphism between Zg � gα̃, � α̃
�
and sl6 � C � , where every

element µ of sl6 � C � will be represented as the matrix
�
µ � δ with respect to some

orthonormal basis δ � d1, . . . ,d6 of the complex six-dimensional unitary vector
space V6 endowed with the usual scalar product � � , �

�
, such that

xαi �
�
µαj � δ 
 Aj


 � akl � 1 � k,l � 6 with

������� ������
akl

 1 if k 
 jand l 
 j � 1

akl

 0 else

,

x
� αi �

�
µ

� αj � δ 
 Bj 
 � bkl
�
1 � k,l � 6 with

������� ������
bkl

 1 if k 
 j � 1 and l 
 j

bkl

 0 else

and

hαi �
�
ϑαj � δ 
 Cj 
 � ckl � 1 � k,l � 6 with

������� ������
ckl

 1 if k 
 jand l 
 j

ckl

 0 else

for j 
 i if i 
 1 and j 
 i � 1 if 3 �
i

�
6. Using the Cartan involution σ of g � E6 � R

relative to a, we obtain an induced isomorphism between Za � aα̃, � α̃
�
and su6 � C �
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such that aαi, � αi maps to the set of matrices

� �
ταj � δ 
 D 
 � dkl � 1 � k,l � 6 �

�
Dj

 � djj djj�

1

dj�
1j dj�

1j
�
1 � Dj � su2 � C �

dkl

 0 else

�

for i 
 1 
 jand j 
 i � 1 for 3 �
i

�
6. Using this map we obtain the isomorphism

φG � Z � Uα̃, � α̃
�
� SU6 � C � such that

Uαi, � αi � �
�
ψαj � δ 
 H 
 � hkl

�
1 � k,l � 6 �

�������� �������
Hj

 � hjj hjj�

1

hj�
1j hj�

1j
�
1 � Hj � SU2 � C �

hkl

 1 for k 
 l and

k � � 1, . . . ,6 � � � j, j � 1 �
hkl


 0 else

�

for i 
 1 
 j and j 
 i � 1 for 3 �
i

�
6, hence 
 φG � Uαi, � αi

�
� SU2 � C � . Fur-

thermore let γ be the action of SU6 � C � on the vector space V6.  e commutator�
φG � Uαi, � αi

�
,V6 � 
 � �

ψ � δ
�
v � δ �

�
v � δ � v � V6,ψ � φG � Uαi, � αi

� � � of φG � Uαi, � αi

�
is

a two-dimensional subspace ofV6 and its centraliser is the four-dimensional vector
subspace CV6 � φG � Uαi, � αi

� � 
 � v � V � �
ψ � δ

�
v � δ 


�
v � δ for all ψ � φ � Uαi, � αi

� � .
 erefore the subgroup Uαi, � αi corresponds to a line in V6 for i � � 1,3, . . . ,6 � im-
plying that for each root α � ΦZg � gα̃, � α̃ � the fundamental SU2 � C � subgroup Uα, � α

belongs to a two-dimensional subspace in V6, as theWeyl group acts transitively on
the root system ΦZg � gα̃, � α̃ � .
Let g � g � E6 � then ggαg � 1 
 � v � g � �

h,v � 
 � gαg � 1 � h � � v for all h � gtg � 1 � 

ggαg� 1 
 gβ for a root α � Φ � E6 � and a root β 
 gαg � 1 � gtg � 1 � C

� with
w � α � g � 1wg

�
.  us for each g � G the subgroup gUα, � αg

� 1 coincides with
the fundamental SU2 � C � subgroup Ugαg� 1, � gαg� 1 of G. Since the group SU6 � C �
acts transitively on all lines of the vector space V6, it follows that the fundamen-
tal SU2 � C � subgroups of G which are contained in Zg � gα̃, � α̃

�
are in one-to-one

correspondence with lines of V6.

As φG is an isomorphism we get that two fundamental SU2 � C � subgroups of G
which are contained in Zg � gα̃, � α̃

�
, say Uα, � α and Uβ, � β, commute if and only if

their images, so φG � Uα, � α
�
and φG � Uβ, � β

�
, commute.

Furthermore we claim that
�
φG � Uα, � α

�
,V6 � π 
 CV6 � φG � Uα, � α

� �
for any root α

of the root sytem Φ � E6 � .  us let w � CV6 � φ � Uα, � α
� �
, so τ � w � 
 w for every

τ � φG � Uα, � α
�
then � µ � v � � v,w � 
 � µ � v � ,w � � � v,w � 
 � µ � v � , µ � w � � � � v,w � 


� v,w � � � v,w � 
 0 for every v � V6 and any element µ in φG � Uα, � α
�
implying

CV6 � φG � Uα, � α
� � � �

φG � Uα, � α
�
,V6 � π. On the other hand let v � �

φG � Uαi, � αi

�
,V6 � π,

hence � µ � w � � w,v � 
 0 forw � V6 and µ � φG � Uα, � α
�
, in particular � µ � v � � v,v � 


0 for every µ � φG � Uα, � α
�
.  erefore µ � v � � v 
 0, which is equivalent to µ � v � 
 v,

thus
�
φG � Uα, � α

�
,V6 � π �

CV6 � φG � Uα, � α
� �
proving the claim.
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Finally we will show that two fundamental SU2 � C � subgroups of G, say Uα, � α and
Uβ, � β commute if and only if

�
φG � Uα, � α

�
,V6 � �

CV6 � φG � Uβ, � β

� �
by the claim

above. Since
�
φG � Uα, � α

�
,V6 � is a line of V6 and dim � CV6 � φG � Uα, � α

� � � 
 4 we
choose an orthonormal basis κ � k1, . . . , k6 such that � k1 , k2 � 


�
φG � Uα, � α

�
,V6 � and� k3, . . . , k6 � 


�
φG � Uα, � α

�
,V6 � π 
 CV6 � φG � Uα, � α

� �
.  us for each µ � φG � Uα, � α

�
we get

�
µ � κ 


�
Ma,b 0
0 1 � with Mab



�
a b
� b a � and det � Mab

� 
 aa � bb 
 1,

thus Mab � SU2 � C � .
Suppose φG � Uα, � α

�
and φG � Uβ, � β

�
commute then φG � Uβ, � β

�
is a subgroup of

ZSU6 � C � � φG � Uα, � α
� �
implying that

�
ψ � ν 


�
1 0
0 Mab � , for each ψ � φG � Uβ, � β

�
with

respect to an orthonormal basis ν � k1, k2,n3, . . . ,n6. Certainly
�
φG � Uβ, � β

�
,V6 � 
� n5,n6 � and we conclude that

�
φG � Uβ, � β

� �
,V6 � �

CV6 � φG � Uα, � α
� �
.

For the other direction if
�
φG � Uβ, � β

�
,V6 � �

CV6 � φG � Uα, � α
� �
then we �nd an or-

thonormal basis ν � k1, k2 ,n3, . . . ,n6 such that
�
φG � Uβ, � β

�
,V6 � 
 � n5,n6 � implying

�
ψ � ν 


�
1 0
0 Mab � , for each ψ � φG � Uβ, � β

�
. As any twomatrices

�
µ � ν 


�
Mab 0
0 1 �

and
�
ψ � ν 


�
1 0
0 Mcd � commute for ψ � φG � Uβ, � β

�
and µ � φG � Uα, � α

�
, we also

get that the subgroups φG � Uβ, � β

�
and φG � Uα, � α

�
of SU6 � C � commute and we are

done. So we have proved that the induced subgraph F � E6, � 78

�
α̃, � α̃ is isomorphic to

S � V6 � and veri�ed the next proposition.

Proposition 4.7.30  e graph F � E6, � 78

�
of the fundamental SU2 � C � subgroups ofG

is locally S � V6 � .
Proof:  e statement is proved for the maximal root α̃ inΦwith respect to a basis ∆
by the argumentation above. Using a similar argument as in corollary 4.7.27, it fol-
lows that for each root α inΦ the induced subgraph of F � E6, � 78

�
on the neighbours

of Uα, � α is isomorphic to S � V6 � . ■
We will construct in the last step an induced subgraph Σ of F � E6, � 78

�
containing

32 di�erent vertices such that Σ � W � E6 � . We start with the root system Φ 
 ΦE6

of G and de�ne the vertex set of Σ to be � � Σ � 
 � Uα, � α � α � Φ � . We recall the
de�nition for the reection graphW � E6 � .  e vertices of the graphW � E6 � are the
reections � ρα � α � Φ � E6 � � and two di�erent reections are joined by an edge if
and only if they commute. Notice that two reections ρα and ρβ commute if and
only if σ � α,β � 
 � α,β � 
 0. Also for two fundamental sl2 � C � Lie subalgebras gα, � α

and gβ, � β in g 
 g � E6 � we know via a Chevalley basis of g that gα, � α
�
Zg � gβ, � β

�
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or equivalently gβ, � β
�
Zg � gα, � α

�
, if and only if � α,β � 
 0.  erefore two funda-

mental SU2 � C � subgroupsUα, � α andUβ, � β inG commute if and only if � α,β � 
 0.
It follows that the bijective map Σ � W � E6 � with Uα, � α � ρα


 ρ
� α is a graph

isomorphism.

Lemma 4.7.31  e graph F � E6, � 78

�
contains an induced subgraph Σ � W � E6 � .

Moreover we have to prove that S � V8 � and F � E6, � 78

�
are simply connected graphs.

To achieve this result we will reconstruct from the graphs S � V8 � and F � E6, � 78

�
a

building of type A7 respectively of type E6 and use that certain chamber systems
are simply connected.

Let g be a real semi-simple Lie algebra and B its Killing form. An involution θ of
the Lie algebra g (understood to respect brackets) such that the symmetric bilinear
form Bθ � x, y � 
 � B � x,θ � y � � is positive de�nite, is called a Cartan involution of g.
Correspondingly there is a Cartan decomposition of g given by g 
 k � p, where the
subspaces are understood to be the 1 and � 1 eigenspaces of θ and B is negative on
k, positive on p and B � k,p � 
 0.
Let a be a complex semi-simple Lie algebra, let g be a compact real form of a and
let ρ be the corresponding conjugation of a. If a is regarded as a real Lie algebra,
then ρ is a Cartan involution of a.

Corollary 4.7.32 (chapter VI.2 of [63])

• Every real semi-simple Lie algebra g has a Cartan involution.

• If a is a complex semi-simple Lie algebra and is considered as real Lie algebra,
then the only Cartan involutions of a are the conjugations with respect to the
compact real forms of a.

 eorem 4.7.33 (theorem 6.31 of [63]) Let G be connected semi-simple Lie group,
let θ be a Cartan involution of its Lie algebra g, let g 
 k � p be the corresponding
Cartan decomposition, and K be the analyic subgroup of G with Lie algebra k.  en

• there exists a Lie group automorphism Θ of G with di�erential θ, andΘ2 
 id.
• the subgroup of G �xed by Θ is K.

• the map K � ρ � G given by � k,x � � k exp � x � is a di�eomorphism onto G.
• K is closed.

• K contains the center Z of G.

• K is compact if and only if Z is �nite.

• When Z is �nite, K is a maximal compact subgroup of G.
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Next we will obtain the Iwasawa decomposition of a complex Lie groupG, which is
the complexi�cation of a compact connected Lie group K.

Let K be a Lie group. A complexi�cation of K consists of a complex Lie group
G with a Lie group homomorphism τ � K � G such that whenever f � K � H
is a Lie group homomorphism into a complex Lie group, there exists an analytic
homomorphism F � G � H with f 
 F � τ.  is is a universal property, so it
characterizes the Lie group G up to isomorphism.

 eorem 4.7.34 (theorem 27.1 of [19]) LetK be a compact connected Lie group.  en
K has a complexi�cation τ � K � G, where G is a complex Lie group.  e Lie algebra
L � G � of G is the complexi�cation of the Lie algebra L � K � of K.

LetG be a complexi�cation of a compact connected Lie groupK, let T be amaximal
torus of K and t 
 L � T � be the Lie algebra of T. Moreover let TC be the complexi-
�cation of T and tC be the complexi�cation of the Cartan subalgebra t.  us tC is a
Cartan subalgebra of L � G � 
 g. We consider the root system R � L � G � , tC

� 
 Φwith
respect to tC and choose a basis ∆ of Φ.  en N


 � exp � x � � x � n � � and B 
 TCN
are closed complex Lie subgroups of G, whose Lie subalgebras are n 
 � α � Φ� gα
and b 
 tC � n � by theorem 29.2 of [19].  e group B is called the standard Borel
subgroup of G. A conjugate of B is called a Borel subgroup.  e subgroups of G
containing a Borel subgroup are called parabolic subgroups.

 e Borel subgroup B has non trivial intersection with the compact Lie group K.
We set a 
 it.  en a is a Lie subalgebra of some connected Lie subgroup A of the
maximal torus T.

 eorem 4.7.35 (Iwasawa Decomposition, theorem 29.3 of [19]) Let G be a com-
plexi�cation of a compact connected Lie group K and let T be a maximal torus of K.
 en every element g � G can be factored uniquely as bk with b � AN and k � K, or
g 
 ank with a � A,n � N and k � K.  e multiplication map A � N � K � G is a
di�eomorphism.

LetΦ be a reduced irreducible root system and ∆ be a basis ofΦ. Let g be the �nite
dimensional semi-simple complex Lie algebra with corresponding root system Φ
and Cartan subalgebra h, which exists by theorem 4.7.8. By theorem 4.7.22, let a be
a real compact form of g such that aC


 g and denote with θ the involution of gR

with respect to a.  us a 
 � x � g � θ � x � 
 x � 
 gθ and θ is a Cartan involution
of g by corollary 4.7.32. Furthermore, by theorem 4.7.18 and theorem 4.7.24, there
exists a simply connected compact Lie group A such that L � A� � a.  us the Lie
group A has a complexi�cation G such that L � G � 
 aC


 g by theorem 4.7.34.
It follows now from theorem 4.7.33 that A 
 � g � G � Θ � g � 
 g � 
 GΘ, where
Θ is a Lie group homomorphisms of G with di�erential θ. Next we consider the

180
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maximal torus t of the Lie group GΘ such that L � t � 
 hθ, where hθ is a Cartan
subalgebra of gθ with hθ

C


 h.  en R � L � G � , tC � 
 Φ and B 
 TN � is the standard
Borel subgroup of G with Lie algebra b 
 hθ

C
� n � with N � 
 � exp � x � � x � n � � ,

n � 
 � α � Φ� gα and T

 tC. By the Iwasawa decomposition, theorem 4.7.35, we

may write G 
 GΘB. Moreover, let N 
 NG � T � be the normaliser of T 
 tC in the
Lie group G and let S be the set of simple reections inW 
 N � T with respect to
the basis ∆ of the root system R � G,T � .  en � G,B,N,S

�
is a Tits system by [57].

Hence � G � B,δ � is a thick building of type � W,S
�
by proposition A.7.4 and by the

Bruhat decomposition. Certainly, the compact Lie group GΘ acts on the chamber
system � � G � B � by le� multiplication.  us α � GΘ � Aut � � � G � B � � with h � αh
and αh � � � G � B � � � � G � B � such that gB � hgB for every g � G. Furthermore,
using the notation from section A.4, gB � i kB if and only if g

� 1k � Pi, whence
g � 1h � 1hk � Pi implying that hgB � i hkB. Since αh is a bijective homomorphism
with inverse αh � 1 for every h � GΘ, the map α is a permutation representation of
GΘ in � � G � B � . Proposition A.4.2 implies now that � � G � B � � � � GΘ,GΘ

B , � PBi
�
i � I
�
.

Lemma 4.7.36  e stabiliser GΘ
B of B in G

Θ is the maximal torus t of GΘ.  e sta-
biliser PBi of the i-panel of � � G � B � containing B in GΘ is Pi 	 GΘ for every i � I.
Proof: Stab GΘ � B � 
 GΘ

B

 � g � GΘ � gB 
 B � 
 � g � GΘ � g � B � , therefore

GΘ
B

 GΘ 	 B. Since Θ � B

� 
 B � where B � is the Lie group of the Lie algebra
b � 
 h � � α � Φ� gα by [47], it follows that B 	 Θ � B � 
 T.  us we obtain that
GΘ 	 B 
 GΘ 	 B 	 Θ � B

� 
 GΘ 	 T 
 t.
For the second statement let

�
i � B � be the i-panel of the chamber system � � G � B �

containing B for some i � I, thus �
i � B � 
 � gB � g � G, gB � i B � .  en

Stab GΘ � �
i � B � � 
 PBi


 � g � GΘ � ghB � �
i � B � for all hB � �

i � B � �

 � g � GΘ � ghB � i B for all hB � �

i � B � �

 � g � GΘ � gh � Pi for all hB � �

i � B � � 
 GΘ 	 Pi .

■
For the next part let Φ to be the reduced irreducible root system of type A7.  us
Φ 
 Φ � A7

� 
 ΦA7 and the basis ∆

 ∆A7


 α1, . . . ,α7 as describe in [10] Plate I.
Moreover by the notation from above we obtain that g 
 g � A7

� 
 gA7 � sl8 � C � , the
�nite dimensional semi-simple complex Lie algebra with a root system of type A7,
g � A7

� θ � su8 � C � , the compact real form of sl8 � C � and Gθ 
 SU8 � C � . Further-
more, let � xα � sl8 � C � α � � 0 � � α � ΦA7 ; hi � 1 �

i
�
7 � be a Chevalley basis of the

Lie algebra sl8 � C � .
We also consider the connected graph S � V8 � 
 F � SU8 � C � � and choose the induced
subgraph Σwith the vertex set � � Σ � 
 � L � su8 � C � δ � α � , � δ � α �

� � α � ΦA7
� , where δ is
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4 On locally complex unitary geometries

the isomorphism between the root systemsΦA7 � Φ � sl8 � C
�
,h
�
andΦ � SU8 � C � , t � ,

h is a Cartan subalgebra of sl8 � C � and t is the maximal torus of SU8 � C � , both with
respect to the basis ∆A7 . Certainly, L � su8 � C

�
δ � α � , � δ � α �

�
� SU2 � C � and Σ is iso-

morphic toW � A7

�
.  erefore Σ contains the induced subgraph Λ isomorphic to

H � A7

�
, whose vertex set is � � Λ � 
 � L � su8 � C � δ � α � , � δ � α �

� � α � ∆A7 � . We �x
the set of induced subgraphs � 
 � gΛ � g � SU8C � of F � SU8 � C � � and claim
that β � SU8 � C � � t � � with gt � gΛ is a bijection.  e map β is surjective
by construction, since for any element gΛ of � with g � SU8 � C � the preim-
age is gt � SU8 � C � � t.  e map β is injective if from the equality gt 
 ht for
some di�erent g,h � SU8 � C � follows that gΛ 
 hΛ.  e relation gt 
 ht for
some di�erent g,h � SU8 � C � implies g � 1h � t.  erefore the map β is injective
if the stabiliser of Λ in SU8 � C � is the maximal torus t, thus we have to show that
StabSU8 � C � � Λ

� 
 � g � SU8 � C � � gΛ 
 Λ � 
 t. Since the vertices of Λ are the Lie
subgroups L � su8 � C � δ � α � , � δ � α �

�
for α � ∆A7 we get that

StabSU8 � C � � Λ
� 
 � g � SU8 � C � � gL � su8 � C � δ � α � , � δ � α �

�
g � 1 
 L � su8 � C � δ � α � , � δ � α �

�

for every α � ∆A7 � .
Hence the Lie group StabSU8 � C � � Λ

�
is therefore the Lie group of the Lie subalgebra

�
α � ∆A7

Nsu8 � C � � su8 � C
�
δ � α � , � δ � α �

�
implying that StabSU8 � C � � Λ

�
is the Lie group of

Lie subalgebra � � α � ∆A7
Nsl8 � C � � sl8 � C

�
α, � α

� � θ. Since sl8 � C � is generated by the
non zero vectors xαi ,x � αi for 1

�
i

�
7 of the choosen Chevalley basis of sl8 � C �

by proposition 4.7.7 and sl8 � C � αi, � αi

 � hi,xαi ,x � αi � 1 �

i
�
7 � we know that

Nsl8 � C � � sl8 � C
�
αi, � αi

� 
 � g � sl8 � C � �
�
g,xαi � , �

g,x
� αi � , �

g,hi � � sl8 � C � αi, � αi � .
By theorem 4.7.10

Nsl8 � C � � sl8 � C
�
α1, � α1

� 
 � xα1 ,x � α1 ,xαj,x � αj,hk � 1 �
k

�
7,3

�
j

�
7 � ,

for 2
�
i

�
6

Nsl8 � C � � sl8 � C
�
αi, � αi

� 
 � xαj,x � αj,hk � 1 �
k

�
7, j � � 1, . . . ,7 � � � i � 1, i � 1 � � and

Nsl8 � C � � sl8 � C
�
α7, � α7

� 
 � xα7 ,x � α7 ,xαj,x � αj,hk � 1 �
k

�
7, 1

�
j

�
5 � ,

implying that � α � ∆A7
Nsl8 � C � � sl8 � C

�
α, � α

� 
 � hk � 1 �
k

�
7 � 
 h and thus we con-

clude that � � α � ∆A7
Nsl8 � C � � sl8 � C

�
α, � α

� � θ 
 hθ, which proves the statement that

StabSU8 � C � � Λ
� 
 t.

Using this fact, we de�ne the chamber system � ��� � 
 ��� , � � i
�
1 � i � 7

�
, where two

chambers gΛ and hΛ are i-adjacent for 1
�
i

�
7, in symbols gΛ � i hΛ, if and only

if g � 1h � Pi 	 SU8 � C � , see lemma 4.7.36 to get the following lemma by construction.

Lemma 4.7.37  e two chamber systems � � SU8 � C � , t, � Pi 	 SU8 � C � � i � � 1,...,7 �
�
and

� � SL8 � C � � B � are isomorphic. Furthermore via the map β � SU8 � C � � t � � with
gt � gΛ the two di�erent chamber systems � � SU8 � C � , t, � Pi 	 SU8 � C � � i ��� 1,...,7 �

�
and � ��� � 
 ��� , � � i

�
1 � i � 7

�
are also isomorphic.
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By lemma 4.7.37 and the fact that � � SL8 � C � � B � is a simply connected chamber sys-
tem, see proposition A.7.2, the chamber system � ��� � 
 � � , � � i

�
1 � i � 7

�
is simply

connected.  erefore let γ � gΛ, g1Λ, . . . , gnΛ, gΛ be a closed gallery of the cham-
ber system � ��� � 
 ��� , � � i

�
1 � i � 7

�
then γ is null-2-homotopic, thus there is a

�nite sequence γ0,γ1, . . . ,γl of galleries of � � � �
such that γ 
 γ0, gΛ 
 γl and the

gallery γk � 1 is elementary 2-homotopic to γk for each 1
�
k

�
l.

It follows that γk � 1

 εκk � 1ψ and γk


 εκkψ for some galleries ε and ψ and two
J-galleries κk � 1 and κk for some subset J

� � 1, . . . ,7 � of cardinality two for each
1

�
k

�
l .  at implies that κk � 1κk is a closed gallery in

�
i,j � hΛ � for some di�erent

indices i, j � � 1, . . . ,7 � and h � SU8 � C � . So κk � 1κk is a combination of closed
galleries hΛ,h1Λ,h2Λ,h3Λ,hΛ of length four with hΛ � i h1Λ � j h2Λ � i h3Λ � j

hΛ for some di�erent i, j � � 1, . . . ,7 � if �
i,j � hΛ � is a rank two building of type

2 or a combination of closed galleries hΛ,h1Λ,h2Λ,h3Λ,h4Λ,h5Λ,hΛ
with hΛ � i h1Λ � j h2Λ � i h3Λ � j h4Λ � i h5Λ � j hΛ of length six for some
di�erent i, j � � 1, . . . ,7 � if �

i,j � hΛ � is a rank two building of type 3 .

Let γ � vα0 ,vα1 , . . . ,vαn � 1 ,vαn 
 vα0 be a closed cycle in the connected graph S � V8 � 

F � SU8 � C � � with vαi 
 L � su8 � C

�
δ � αi � , � δ � αi �

�
for αi � ΦA7 and 0

�
i

�
n. Since

SU8 � C � acts transitively on the graph S � V8 � we �nd for each i � � 1, . . . ,n � an
element gi � SU8 � C � such that giΛ is an induced subgraph of S � V8 � containing
the vertex vαi . By the connectivity of the chamber system � � � �

we �nd �nitely
many group elements gi � 1,i

1 , . . . , gi � 1,i
li � 1 in SU8 � C � for 1 �

i
�
n in such a way

that g0Λ,g
0,1
1 Λ, . . . , g0,1l0 Λ,g1Λ,g

1,2
1 Λ, . . . , gn � 1Λ,g

n � 1,n
1 Λ, . . . , gn � 1,n

ln � 1 Λ,gnΛ

 g0Λ is

a closed gallery in � � � �
. By the last paragraph and the transitivity of the group

SU8 � C � on S � V8 � , the graph S � V8 � 
 F � SU8 � C � � is simply connected if each closed
gallery Λ, g1Λ, . . . , g2m � 1 ,Λ in every rank two residue

�
i,j � Λ � , for i, j � � 1, . . . ,7 � ,

i �
 j, which is a rank two building of type m with either m 
 2 or m 
 3, is
simply connected as graph in S � V8 � . In other words, S � V8 � is simply connected if
Λ � � � 2m � 1

k � 1 gkΛ
�
is a simply connected graph.

Recall that in the chamber system � � � �
two elements gΛ and hΛ are i-adjacent

if and only if Λ � i g
� 1hΛ if and only if g � 1h � Pi 	 SU8C for 1

�
i

�
7. Since

the Lie subgroup Pi 	 SU8C is the Lie group of the Lie subalgebra pi 	 su8 � C �
with pi


 tC
�
α � Φ� � � � αi � sl8 � C � α for each i � � 1, . . . ,7 � , we obtain for each index

i � � 1, . . . ,7 � that pi 	 su8 � C � 
 t � sl8 � C � θαi, � αi .  us

p1 	 su8 � C � �
Nsl8 � C � � sl8 � C

�
αj, � αj

�
for 3

�
j

�
7 and j 
 1 ,

for 2
�
i

�
6

pi 	 su8 � C � �
Nsl8 � C � � sl8 � C

�
αj, � αj

�
for j � � 1, . . . ,7 � � � i � 1, i � 1 � and

p7 	 su8 � C � �
Nsl8 � C � � sl8 � C

�
αj, � αj

�
for 1

�
j

�
5 and j 
 7 .

Hence for g � SU8 � C � we get that
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4 On locally complex unitary geometries

for i 
 1 and for 3 �
j

�
7 and j 
 1

Λ � 1 gΛ
� gL � su8 � C � δ � αj � , � δ � αj �

�
g � 1 
 L � su8 � C � δ � αj � , � δ � αj �

�

for 2
�
i

�
6 and for j � � 1, . . . ,7 � � � i � 1, i � 1 �

Λ � i gΛ
� gL � su8 � C � δ � αj � , � δ � αj �

�
g � 1 
 L � su8 � C � δ � αj � , � δ � αj �

�

for i 
 7 and for 1 �
j

�
5 and j 
 7

Λ � 7 gΛ
� gL � su8 � C � δ � αj � , � δ � αj �

�
g � 1 
 L � su8 � C � δ � αj � , � δ � αj �

�
.

We simplify the notation, thus for 1
�
j

�
7 we set L � su8 � C � δ � αj � , � δ � αj �

� 
 aj
and gL � su8 � C � δ � αj � , � δ � αj �

�
g � 1 
 agj.  erefore Λ is the induced subgraph on the

vertices a1, . . . ,a7 and gΛ is the induced subgraph on the vertices a
g
1 , . . . ,a

g
7 .  us

for g � SU8 � C � obtain that

gΛ � 1 hΛ
� a

g
j

 ahj for 3 �

j
�
7 and j 
 1

for 2
�
i

�
6

gΛ � i hΛ
� a

g
j

 ahj for j � � 1, . . . ,7 � � � i � 1, i � 1 �

gΛ � 7 hΛ
� a

g
j

 ahj for 1 �

j
�
5 and j 
 7.

In the next table we collect some information of every
�
i,j � Λ � residue of � ��� �

for i, j � � 1, . . . ,7 � , i �
 j.
�

1,2 � Λ �
3-gon

Λ � 1 g1Λ � 2 g2Λ � 1 g3Λ � 2 g4Λ � 1

g5Λ � 2 Λ
al

 agkl for 1

�
k

�
5,

4
�
l

�
7

�
1,3 � Λ �

2-gon
Λ � 1 g1Λ � 3 g2Λ � 1 g3Λ � 3 Λ al


 a
gk
l for 1

�
k

�
3,

l � � 1,3, 5,6,7 �
�

1,4 � Λ �
2-gon

Λ � 1 g1Λ � 4 g2Λ � 1 g3Λ � 4 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,4,6,7 �
�

1,5 � Λ �
2-gon

Λ � 1 g1Λ � 5 g2Λ � 1 g3Λ � 5 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3, 5,7 �
�

1,6 � Λ �
2-gon

Λ � 1 g1Λ � 6 g2Λ � 1 g3Λ � 6 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3,4,6 �
�

1,7 � Λ �
2-gon

Λ � 1 g1Λ � 7 g2Λ � 1 g3Λ � 7 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3,4, 5,7 �

�
2,3 � Λ �

3-gon
Λ � 2 g1Λ � 3 g2Λ � 2 g3Λ � 3

g4Λ � 2 g5Λ � 3 Λ
al

 a

gk
l for 1

�
k

�
5,

5
�
l

�
7

�
2,4 � Λ �

2-gon
Λ � 2 g1Λ � 4 g2Λ � 2 g3Λ � 4 Λ al


 a
gk
l for 1

�
k

�
3,

l � � 2,4,6,7 �
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�

2,5 � Λ �
2-gon

Λ � 2 g1Λ � 5 g2Λ � 2 g3Λ � 5 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 2, 5,7 �
�

2,6 � Λ �
2-gon

Λ � 2 g1Λ � 6 g2Λ � 2 g3Λ � 6 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 2,4,6 �
�

2,7 � Λ �
2-gon

Λ � 2 g1Λ � 7 g2Λ � 2 g3Λ � 7 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 2,4, 5,7 �

�
3,4 � Λ �

3-gon
Λ � 3 g1Λ � 4 g2Λ � 3 g3Λ � 4

g4Λ � 3 g5Λ � 4 Λ
al

 a

gk
l for 1

�
k

�
5,

l � � 1,6,7 �
�

3,5 � Λ �
2-gon

Λ � 3 g1Λ � 5 g2Λ � 3 g3Λ � 5 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3, 5,7 �
�

3,6 � Λ �
2-gon

Λ � 3 g1Λ � 6 g2Λ � 3 g3Λ � 6 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3,6 �
�

3,7 � Λ �
2-gon

Λ � 3 g1Λ � 7 g2Λ � 3 g3Λ � 7 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,3, 5,7 �

�
4,5 � Λ �

3-gon
Λ � 4 g1Λ � 5 g2Λ � 4 g3Λ � 5

g4Λ � 4 g5Λ � 5 Λ
al

 a

gk
l for 1

�
k

�
5,

l � � 1,2,7 �
�

4,6 � Λ �
2-gon

Λ � 4 g1Λ � 6 g2Λ � 4 g3Λ � 6 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,2,4,6 �
�

3,7 � Λ �
2-gon

Λ � 4 g1Λ � 7 g2Λ � 4 g3Λ � 7 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,2,4,7 �

�
5,6 � Λ �

3-gon
Λ � 5 g1Λ � 6 g2Λ � 5 g3Λ � 6

g4Λ � 5 g5Λ � 6 Λ
al

 a

gk
l for 1

�
k

�
5,

l � � 1,2,3 �
�

5,7 � Λ �
2-gon

Λ � 5 g1Λ � 7 g2Λ � 5 g3Λ � 7 Λ al

 a

gk
l for 1

�
k

�
3,

l � � 1,2,3, 5,7 �

�
6,7 � Λ �

3-gon
Λ � 6 g1Λ � 7 g2Λ � 6 g3Λ � 7

g4Λ � 6 g5Λ � 7 Λ
al

 a

gk
l for 1

�
k

�
5,

l � � 1,2,3,4 �

To prove that the graph Λ � � � 2m � 1
k � 1 gkΛ

�
is simply connected for a closed gallery

Λ, g1Λ, . . . , g2m � 1 ,Λ in the rank two building
�
i,j � Λ � of type m for some

i, j � � 1, . . . ,7 � , i �
 j, we will use the following statements.

Lemma 4.7.38 Let Γ 
 � � ,E
�
be a simply connected graph.  en the derived graph

�

Γ 
 � � � � v � ,E � � � v,v1 � , � v,v2 � � � from Γ with v1,v2 � � , v1 �
 v2 and v �� � is
simply connected if and only if � v1,v2 � � E.
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Proof: Certainly if � v1,v2 � � E then
�

Γ is simply connected. If otherwise the edge� v1,v2 � not an element of E then let γ � v1,x1, . . . ,xn,v2 be path from v1 to v2 in
Γ.  e closed path v,v1,x1, . . . ,xn,v2,v in

�

Γ can not be decomposed into triangles,
thus

�

Γ is not simply connected. ■

Lemma 4.7.39 Let Γ 
 � � ,E
�
be a simply connected graph.  en the derived graph

�

Γ 
 � � ,E � � � v1,v2 � � � from Γ with v1,v2 � � , v1 �
 v2, is simply connected if and
only if � v1,v2 � � E or there exists a vertex v � � such that � v1,v � , � v2,v � � E.
Proof: If � v1,v2 � � E then Γ 


�

Γ and we have nothing to prove.  erefore, we
assume � v1,v2 � �� E. If we can �nd a vertex v � � such that � v1,v � , � v2,v ��� E,
then certainly

�

Γ is simply connected. Suppose the vertices v1 and v2 have distance
d

�
3 in Γ. Let γ � v1,x1, . . . ,xd � 1 ,v2 be a shortest path between v1 to v2 in Γ,

then v1,x1, . . . ,xd � 1,v2,v1 is a closed path in
�

Γ, which can not be decomposed into
triangles, thus

�

Γ is not simply connected. ■
Let Λ, g1Λ, . . . , g2m � 1 ,Λ be a closed gallery in the rank two building

�
i,j � Λ � of

type m for some di�erent indices i, j � � 1, . . . ,7 � . We colour the vertices of
the graphs Λ, g1Λ, . . . , g2m � 1 in di�erent ways. First of all the vertices

� � Λ � 	 � 2m � 1�

k � 1 � � gkΛ � � 
 � a1, . . . ,a7 � 	 �
2m � 1�

k � 1
� agk1 , . . . ,agk7 �

�


 � ai � 1 �
i

�
7,ai


 agki for 1 �
k

�
2m � 1 �

are coloured black.  en the vertices � � Λ � 
 � a1, . . . ,a7 � are coloured in blue and
the vertices � � gkΛ � 
 � agk1 , . . . ,a

gk
7 � are coloured in cgk for 1 �

k
�
7. Moreover

we setΨ 
 Λ � � � 2m � 1
k � 1 gkΛ

�
, thus Ψ is a subgraph of S � V8 � . We denote withΨc the

induced subgraph of Ψ on the vertex set � � Ψc � , which contains all vertices with
the colour c, for c � � black,blue, cg1 , . . . , cg2m � 1 � .
Recall that Λ � H � A7

�
� gkΛ for 1

�
k

�
7 and that H � A7

�
is a simply connected

graph by lemma 4.7.38 and lemma 4.7.39.

Proposition 4.7.40 LetΛ, g1Λ, . . . , g2m � 1 ,Λbe a closed gallery in the rank two build-
ing

�
i,j � Λ � of type m for some i, j � � 1, . . . ,7 � , i �
 j. If the graph Ψblack

is simply connected and contains a vertex w � � � Ψblack � such that every vertex
v � � � Ψ � � � � Ψblack � is adjacent to w in Ψ, then Ψ is a simply connected graph.
Proof: Let γ � z 
 0,z1, . . . ,zt,z be a closed path in Ψ. If the vertices of γ have
a colour in common then γ is a path in the simply connected graph Ψc for some
colour c � � black,blue, cg1 , . . . , cg2m � 1 � and we are done. Suppose the vertices of γ
have no colour in common, then let cc1 be the �rst index in

� 1, . . . , t � 1 � such that
the vertices � zk � 0 �

k
�
cc1 � have a colour c1 � � black,blue, cg1 , . . . , cg2m � 1 � in

common and the vertex zcc1 � 1 has not the colour c1. Now let ccl be the index of
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� 1, . . . , t � 1 � such that the vertices � zk � ccl � 1
�
k

�
ccl � have a colour cl of the set� black,blue, cg1 , . . . , cg2m � 1 � in common and the vertex zccl � 1 has not the colour cl .

 us γ 
 z, . . . ,zcc1 ,zcc1 � 1, . . . ,zccr ,zccr � 1, . . . ,z for some 1 �
r � t � 1.

For every index cci � � 1, . . . , r � and cci 
 ccr � 1we provide the following changes
on the path γ. If zcci is not equal to w and has the colour black, then let γ

t
cci be a

path in Ψblack from zcci to w and γ
b
cci be a path from w to zcci in Ψ

black. If zcci

 w

or zcci has not the colour black then we choose the pathes γ
t
cci and γ

b
cci are equal to

the empty path.
By the assymption that graphΨblack is simply connectedwe obtain that γ is homo-
topically equivalent to the closed path z, . . . ,zcc1 ,γ

t
cc1 ,w,γ

b
cc1 ,zcc1 ,zcc1 � 1, . . . ,zccr ,

γtccr ,w,γ
b
ccr ,zccr ,zccr � 1, . . . ,z and homotopically equivalent to the path z, . . . ,zcc1 ,

γtcc1 ,w,γ
b
cc1 � 1,zcc1 � 1 ,γtcc1 � 1,w,γbcc1 ,zcc1 ,zcc1 � 1 , . . . ,zccr , γtccr ,w,γbccr � 1 ,zccr � 1,γtccr � 1,

w,γbccr ,zccr ,zccr � 1, . . . ,z. Since zccl � 1,γtccl � 1,w,γbccl ,zccl ,zccl � 1 is either a closed path
in the simply connected graph Ψcl �

1 if γtccl � 1 is the empty path or a closed path
in the simply connected graph Ψcl if γbccl is the empty path or a closed path in

the simply connected graph Ψblack if γtccl � 1 and γbccl are not the empty path or the
triangle zccl � 1,w,zccl ,zccl � 1 if γtccl � 1 and γbccl are the empty path, for each index
1

�
l

�
r.  erefore we get that γ is homotopically equivalent to the closed path

z, . . . ,zcc1 ,γ
t
cc1 ,w,γ

b
cc1 � 1,zcc1 � 1, . . . ,zcc2 ,γtcc2 ,w,γbcc2 � 1,zcc2 � 1, . . . ,zccr ,γtccr ,w,γbccr � 1,

zccr � 1, . . . ,z. Furthermore, for each index 1 �
l

�
r � 1 the closed pathw,γbccl � 1,zccl � 1,

. . . ,zccl �
1
,γtccl �

1
,w runs completely in the simply connected graph Ψcl �

1 , thus γ is

homotopically equivalent to the closed path z, . . . ,zcc1 ,γ
t
cc1 ,w,γ

b
ccr � 1,zccr � 1, . . . ,z.

Finally is the colour c1 equal to the colour cr � 1 , where cr � 1 is the common colour of
the vertices zccr � 1, . . . ,z then z, . . . ,zcc1 ,γtcc1 ,w,γbccr � 1,zccr � 1, . . . ,z is a closed path
in the simply connected graph Ψc1 implying that Ψ is simply connected.
If otherwise c1 and cr � 1 are to di�erent colours.  en let γtz be a path from w
to z and γbz be a path from z to w in Ψblack if z � � � Ψblack � and if z has not the
colour black then we choose γtz and γ

b
z are equal to the empty path. Certainly

z, . . . ,zcc1 ,γ
t
cc1 ,w,γ

b
ccr � 1,zccr � 1, . . . ,z is homotopically equivalent to the closed path

z, . . . ,zcc1 ,γ
t
cc1 ,w,γ

t
z,z,γ

b
z ,w,γ

b
ccr � 1,zccr � 1, . . . ,z. Moreover z, . . . ,zcc1 ,γtcc1 ,w,γtz,z

is a closed path in Ψc1 and z,γbz ,w,γ
b
ccr � 1,zccr � 1, . . . ,z a is closed path in Ψcr �

1 im-
plying that Ψ is simply connected. ■
Next, we consider the graphs Λ � piΛ and Λ 	 piΛ for some pi � Pi 	 SU8 � C � for
1

�
i

�
7. Recall that the vertices of Λ are coloured blue and the we set in each case

cpi

 red. So the vertices of the graph piΛ are coloured red.
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Λ � piΛ Λ 	 piΛ

p1 � P1 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

ap12

a1

a3

a4

a5

a6

a7

p2 � P2 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

ap21

ap23

a2

a4

a5

a6

a7

p3 � P3 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

a
p3
2

a
p3
4

a1

a3a5

a6

a7

p4 � P4 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

a
p4
3a

p4
5

a1

a2

a4

a6

a7
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Λ � piΛ Λ 	 piΛ

p5 � P5 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

a
p5
4

a
p5
6

a1

a2

a3a5

a7

p6 � P6 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

a
p6
5

ap67
a1

a2

a3

a4

a6

p7 � P7 	 SU8 � C �

a1

a2

a3

a4

a5

a6

a7

a
p7
6

a1

a2

a3

a4

a5

a7

Table 4.7: the graphs Λ � piΛ and Λ 	 piΛ for 1 �
i

�
7

Proposition 4.7.41  e graph Λ � piΛ is simply connected for each pi � Pi 	 SU8 � C �
and 1

�
i

�
7.

Proof: Let pi � Pi 	 SU8 � C � for 1 �
i

�
7. By the facts that Λ � H � A7

�
� piΛ,H � A7

�
is a simply connected graph and Λ 	 piΛ is simply connected by table 4.7, lemma
4.7.38 and lemma 4.7.39, we obtain that the graph Λ � piΛ is simply connected by
theorem A.5.2. ■
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4 On locally complex unitary geometries

LetΛ, g1Λ, . . . , g2m � 1 ,Λbe a closed gallery in the rank two building
�
i,j � Λ � of type

m for some di�erent indices i, j � � 1, . . . ,7 � . By proposition 4.7.40 and the
following table 4.8, the graph Ψ 
 Λ � � � 2m � 1

k � 1 gkΛ
�
is simply connected for the in-

dices pairs � i, j� � � � 1,2 � , � 1,3 � , � 1,4 � , � 1,7 � , � 2,4 � , � 3,4 � , � 4, 5 � , � 4,6 � , � 4,7 � ,� 5,7 � , � 6,7 � � .
�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
1,2 � Λ � 3-gon

a4

a5

a6

a7
yes
a5,a6,a7

�
1,3 � Λ � 2-gon a1

a3a5

a6

a7
yes
a7

�
1,4 � Λ � 2-gon

a1

a4

a6

a7

yes
a7

�
1,5 � Λ � 2-gon

a1

a3a5

a7

yes

�
1,6 � Λ � 2-gon

a1

a3

a4

a7
yes

190



4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �
�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
1,7 � Λ � 2-gon

a1

a3

a4

a5

a7

yes
a4

�
2,3 � Λ � 3-gon

a5

a6

a7 no

�
2,4 � Λ � 2-gon

a2

a4

a6

a7

yes
a7

�
2,5 � Λ � 2-gon

a2

a5

a7
yes

�
2,6 � Λ � 2-gon

a2

a4

a6

yes

�
2,7 � Λ � 2-gon

a2

a4

a5

a7
yes
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4 On locally complex unitary geometries

�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
3,4 � Λ � 3-gon

a1

a6

a7

yes
a7

�
3,5 � Λ � 2-gon

a1

a3a5

a7

yes

�
3,6 � Λ � 2-gon

a1

a3

a6

yes

�
3,7 � Λ � 2-gon

a1

a3a5

a7

yes

�
4,5 � Λ � 3-gon

a1

a2

a7

yes
a1

�
4,6 � Λ � 2-gon

a1

a2

a4

a6

yes
a1

�
4,7 � Λ � 2-gon

a1

a2

a4

a7

yes
a1
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �
�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
5,6 � Λ � 3-gon a1

a2

a3

no

�
5,7 � Λ � 2-gon a1

a2

a3a5

a7
yes
a1,a2

�
6,7 � Λ � 3-gon a1

a2

a3

a4

yes
a1

Table 4.8: the graph Ψblack for 1
�
i � j

�
7

 us to obtain that S � V8 � is simply connected we have to show that the connected
graphΨ 
 Λ � � � 2m � 1

k � 1 gkΛ
�
is simply connected for every closed galleryΛ, g1Λ, . . . ,

g2m � 1 ,Λ in the rank two building
�
i,j � Λ � of type m for � i, j� � � � 1, 5 � , � 1,6 � ,� 2,3 � , � 2, 5 � , � 2,6 � , � 2,7 � , � 3, 5 � , � 3,6 � , � 3,7 � , � 5,6 � � . Using proposition 4.7.41we

know already that the graph Λ � g1Λ is simply connected. Futhermore by theo-
rem A.5.2 and the facts that the graphs Λ � g1Λ, g2Λ and Λ � g1Λ 	 g2Λ, see table
4.9, are simply connected, we obtain also that the graph Λ � g1Λ � g2Λ is simply
connected for � i, j� � � � 1, 5 � , � 1,6 � , � 2, 5 � , � 2,6 � , � 2,7 � , � 3, 5 � , � 3,6 � , � 3,7 � � . If� i, j� � � � 2,3 � , � 5,6 � � then the graph Λ � � � 4

k � 1 giΛ � is simply connected again
by theorem A.5.2, as the graph Λ, the graphs glΛ for 1

�
l

�
4 and the graphs

Λ � � � ts � 1 gsΛ � and � Λ � � � ts � 1 gsΛ � � 	 gt � 1Λ for 1 �
t

�
3 are simply connected,

see table 4.10.

For the next paragraph, the vertices of Ψblack are only coloured black and the ver-
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4 On locally complex unitary geometries

tices � � Λ � � � � Ψblack � are coloured blue. Moreover cg1 
 red, cg2 
 goldenrod,
cg3

 green, cg4 
 thistle and cg4 
 cornower and the vertices � � giΛ � � � � Ψblack �

are coloured with cgi for 1
�
i

�
4.

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ
�

1,5

a1

a2

a3

a4

a5

a6

a7

ag12
ag24

a
g2
6

a1

a3a5

a7

ag12

�
1,6

a1

a2

a3

a4

a5

a6

a7

ag12

ag25

ag27
a1

a3

a4

a6

ag12

�
2,5

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag24

a
g2
6

a2

a5

a7

ag11

ag13
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ
�

2,6

a1

a2

a3

a4

a5

a6

a7

ag11

ag13ag25

ag27

a2

a4

a6

ag11

ag13

�
2,7

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

a
g2
6

a2

a4

a5

a7

ag11

ag13

�
3,5 with a4 �
 ag24

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

ag24

a
g2
6 a1

a3a5

a7

ag12
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4 On locally complex unitary geometries

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ
�

3,5 with a4

 ag24

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

a
g2
6

a1

a3

a4

a5

a7

ag12

�
3,6

a1

a2

a3

a4

a5

a6

a7

ag12

ag14

ag25

ag27

a1

a3

a6

ag12

ag14

�
3,7

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

a
g2
6

a1

a3a5

a7

ag12
ag14

Table 4.9: the graphs Λ � g1Λ � g2Λ and � Λ � g1Λ � 	 g2Λ in
�
i,j � Λ � for� i, j��� � � 1, 5 � , � 1,6 � , � 2, 5 � , � 2,6 � , � 2,7 � , � 3, 5 � , � 3,6 � , � 3,7 � �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �
�

2,3 � Λ �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag22

ag24

a5

a6

a7

ag11

ag13

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag22

ag24 a
g3
1

a
g3
3

a5

a6

a7

ag22

ag24

Λ � g1Λ � g2Λ � g3Λ � g4Λ � Λ � g1Λ � g2Λ � g3Λ � 	 g4Λ

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag22

ag24 a
g3
1

a
g3
3

a
g4
2

a
g4
4

a5

a6

a7

a
g3
1

a
g3
3

197



4 On locally complex unitary geometries

�
5,6 � Λ �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

a1

a2

a3

a4

a5

a6

a7

ag14

a
g1
6

ag25

ag27

a1

a2

a3

ag14

a
g1
6

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

a1

a2

a3

a4

a5

a6

a7

ag14

a
g1
6

ag25

ag27

a
g3
4

a
g3
6

a1

a2

a3

ag25

ag27

Λ � g1Λ � g2Λ � g3Λ � g4Λ � Λ � g1Λ � g2Λ � g3Λ � 	 g4Λ

a1

a2

a3

a4

a5

a6

a7

ag14

a
g1
6

ag25

ag27

a
g3
4

a
g3
6

a
g4
5

a
g4
7

a1

a2

a3

a
g3
4

a
g3
6

Table 4.10: the graphs Λ � g1Λ � � tk � 2 gkΛ and � Λ � g1Λ � � lk � 2 gkΛ � 	 gl � 1Λ for
2

�
t

�
4 and l � � 2,3 � in �

i,j � Λ � for � i, j� � � � 2,3 � , � 5,6 � �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

For the �nal statement, we study each single case.

• � i, j� 
 � 1, 5 � : �
1,5 � Λ � is a rank two building of type 2 .

As a2

 ag32 we obtain that Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ � g1Λ � g2Λ � ,E � Λ �

g1Λ � g2Λ
�
� � � a2,ag24 � , � a2,ag26 � �

�
, which is a simply connected graph by

lemma 4.7.39 as a2 and a
g2
4 are adjacent to a7 in Λ � g1Λ � g2Λ and a2 and

a
g2
6 are adjacent to a

g2
4 in the graph ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ � g2Λ � �� � a2,ag24 � �

�
.

a1

a2

a3

a4

a5

a6

a7

ag12
ag24

a
g2
6

Graph 4.1: the graph Λ � g1Λ � g2Λ � g3Λ in
�

1,5 � Λ �

• � i, j� 
 � 1,6 � : �
1,6 � Λ � is a rank two building of type 2 .

From the fact that a2

 ag32 , we conclude that Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ �

g1Λ � g2Λ
�
,E � Λ � g1Λ � g2Λ � � � � a2,ag25 � , � a2,ag27 � � � . From lemma 4.7.39

and the facts that a2 and a
g2
7 are adjacent to a4 inΛ � g1Λ � g2Λ and the vertices

a2 and a
g2
5 are adjacent to a

g2
7 in the graph ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ �

g2Λ
�
� � � a2,ag27 � � � follows that the graph Λ � g1Λ � g2Λ � g3Λ is simply

connected.

a1

a2

a3

a4

a5

a6

a7

ag12

ag25

ag27

Graph 4.2: the graph Λ � g1Λ � g2Λ � g3Λ in
�

1,6 � Λ �

• � i, j� 
 � 2,3 � : �
2,3 � Λ � is a rank two building of type 3

We know that Λ � g1Λ � g2Λ � g3Λ � g4Λ is a simply connected graph. Since
a
g5
1

 a1 and ag53 
 a3 we have Λ � g1Λ � g2Λ � g3Λ � g4Λ � g5Λ 
 ��� � Λ �

g1Λg2Λ � g3Λ � g4Λ
�
,E � Λ � g1Λ � g2Λ � g3Λ � g4Λ � � � � a1,ag44 � � � . As the
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4 On locally complex unitary geometries

vertices a1 and a
g4
4 are adjacent to a6 in the graph Λ � g1Λ � g2Λ � g3Λ � g4Λ,

the graph Λ � g1Λ � g2Λ � g3Λ � g4Λ � g5Λ is simply connected by lemma
4.7.39.

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag22

ag24 a
g3
1

a
g3
3

a
g4
2

a
g4
4

Graph 4.3: the graph Λ � g1Λ � g2Λ � g3Λ in
�

2,3 � Λ �

• � i, j� 
 � 2, 5 � : �
2,5 � Λ � is a rank two building of type 2

Since a
g2
1

 a1 and ag23 
 a3 we have Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ � g1Λ �

g2Λ
�
,E � Λ � g1Λ � g2Λ � � � � a1,ag24 � , � a1,ag26 � , � a3,ag26 � �

�
. By lemma 4.7.39,

the graph Λ � g1Λ � g2Λ � g3Λ is simply connected as a1 and ag24 are adjacent
to a7 in Λ � g1Λ � g2Λ, the vertices a1 and ag26 are adjacent to a

g2
4 in the

graph ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ � g2Λ � � � � a1,ag24 � � � and a3 and ag26
are adjacent to a1 in the graph ��� � Λ � g1Λ � g2Λ

�
,E � Λ � g1Λ � g2Λ

�
�� � a1,ag24 � , � a1,ag26 � �

�
.

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

ag24

a
g2
6

Graph 4.4: the graph Λ � g1Λ � g2Λ � g3Λ in
�

2,5 � Λ �

• � i, j� 
 � 2,6 � : �
2,6 � Λ � is a rank two building of type 2

Weconsider the graphΛ � g1Λ � g2Λ � g3Λ, which is equal to the graph ��� � Λ �
g1Λ � g2Λ

�
,E � Λ � g1Λ � g2Λ � � � � a1,ag27 � , � a3,ag27 � , � a3,ag25 � , � a1,ag25 � � �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

as a
g3
1

 a1 and ag33 
 a3.  is graph is simply connected, using lemma 4.7.39

and the relations that a1 and a
g2
7 are adjacent to a4 in Λ � g1Λ � g2Λ, the

vertices a3 and a
g2
7 are adjacent to a1 in the graph ��� � Λ � g1Λ � g2Λ � ,E � Λ �

g1Λ � g2Λ
�
� � � a1,ag27 � � � , the vertex ag27 is a common neighbor of a3 and ag25

in ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ � g2Λ � � � � a1,ag27 � , � a3,ag27 � � � and that
the vertices a1 and a

g2
5 have the common neighbor a3 in the graph ��� � Λ �

g1Λ � g2Λ
�
,E � Λ � g1Λ � g2Λ � � � � a1,ag27 � , � a3,ag27 � , � a3,ag25 � � � .

a1

a2

a3

a4

a5

a6

a7

ag11

ag13ag25

ag27

Graph 4.5: the graph Λ � g1Λ � g2Λ � g3Λ in
�

2,6 � Λ �

• � i, j� 
 � 2,7 � : �
2,7 � Λ � is a rank two building of type 2

Since a1

 ag31 and a3 
 ag33 we get that Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ � g1Λ �

g2Λ
�
,E � Λ � g1Λ � g2Λ

�
� � � a1,ag26 � , � a3,ag26 � �

�
. Moreover the vertices a1

and a
g2
6 are adjacent to a4 in Λ � g1Λ � g2Λ and a3 and ag26 are adjacent to

a1 in ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ � g2Λ
�
� � � a1,ag26 � �

�
, thus by lemma

4.7.39 the graph Λ � g1Λ � g2Λ � g3Λ is simply connected.

a1

a2

a3

a4

a5

a6

a7

ag11

ag13

a
g2
6

Graph 4.6: the graph Λ � g1Λ � g2Λ � g3Λ in
�

2,7 � Λ �

• � i, j� 
 � 3, 5 � : �
3,5 � Λ � is a rank two building of type 2

First we see that a2

 ag32 in Λ � g1Λ � g2Λ � g3Λ, but in di�erence to all cases

before, we obtain that a4 �
 ag14 , a4 �
 ag34 , ag14 �
 ag24 and ag24 �
 ag34 .  erefore
we have to consider four di�erent possibilities in this case.
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4 On locally complex unitary geometries

case one a4,a
g1
4 ,a

g2
4 and a

g3
4 are four di�erent vertices of the graph

Λ � g1Λ � g2Λ � g3Λ
case two a4


 ag24 and ag14 �
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
case three a4


 ag24 and ag14 
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
case four a4 �
 ag24 and ag14 
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
In each case we obtain that the graph � Λ � g1Λ � g2Λ � 	 g3Λ is simply con-
nected, see table 4.11.  us by theorem A.5.2 the graph Λ � g1Λ � g2Λ � g3Λ
is simply connected.

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case one

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

ag24

a
g2
6

a
g3
4

a1

a2

a3a5

a7
a
g2
6

case two

a1

a2

a3

a4

a5

a6

a7

ag12 ag14

a
g2
6

a
g3
4

a1

a2

a3a5

a7

a
g2
6
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case three

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

a
g2
6

a1

a2

a3a5

a7

ag14

a
g2
6

case four

a1

a2

a3

a4

a5

a6

a7

ag12 ag14
ag24

a
g2
6

a1

a2

a3a5

a7

ag14

a
g2
6

Table 4.11: the graphs Λ � g1Λ � g2Λ � g3Λ and � Λ � g1Λ � g2Λ
�
	 g3Λ in�

3,5 � Λ �

• � i, j� 
 � 3,6 � : �
3,6 � Λ � is a rank two building of type 2

Certainly, a2

 ag32 and a4 
 ag34 implying that Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ �

g1Λ � g2Λ
�
,E � Λ � g1Λ � g2Λ � � � � a2,ag25 � , � a2,ag27 � , � a4,ag27 � � , which is a

simply connected graph by lemma 4.7.39. In detail the vertices a4 and a
g2
7 are

adjacent to a1 in Λ � g1Λ � g2Λ, thus by lemma 4.7.39 the graph ��� � Λ � g1Λ �
g2Λ

�
,E � Λ � g1Λ � g2Λ

�
� � � a4,ag27 � � � is simply connected. As a2 and ag27

have the common neighbor a4 in ��� � Λ � g1Λ � g2Λ
�
,E � Λ � g1Λ � g2Λ

�
�� � a4,ag27 � � � , again by lemma 4.7.39 the graph ��� � Λ � g1Λ � g2Λ

�
,E � Λ �

g1Λ � g2Λ
�
� � � a4,ag27 � , � a2,ag27 � � is simply connected. Finally the vertex

a
g2
7 is adjacent to a

g2
5 and a2 in the graph ��� � Λ � g1Λ � g2Λ

�
,E � Λ � g1Λ �

g2Λ
�
� � � a4,ag27 � , � a2,ag27 � � . HenceΛ � g1Λ � g2Λ � g3Λ is simply connected

by lemma 4.7.39 as stated above.
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a1

a2

a3

a4

a5

a6

a7

ag12

ag14

ag25

ag27

Graph 4.7: the graph Λ � g1Λ � g2Λ � g3Λ in
�

3,6 � Λ �

• � i, j� 
 � 3,7 � : �
3,7 � Λ � is a rank two building of type 2

Since a2

 ag32 , a4 
 ag34 , the vertices a4 and ag26 are adjacent to a1 in the graph

Λ � g1Λ � g2Λ and the vertices a2 and ag26 are adjacent to a4 in ��� � Λ � g1Λ �
g2Λ

�
,E � Λ � g1Λ � g2Λ

�
� � � a4,a6 � � � it follows that the graph Λ � g1Λ �

g2Λ � g3Λ is simply connected by lemma 4.7.39.

a1

a2

a3

a4

a5

a6

a7

ag12
ag14

a
g2
6

Graph 4.8: the graph Λ � g1Λ � g2Λ � g3Λ in
�

3,7 � Λ �

• � i, j� 
 � 5,6 � : �
5,6 � Λ � is a rank two building of type 3

Weobtain that the graphs ��� � Λ � � 4
k � 1 gkΛ � ,E � Λ � � 4

k � 1 gkΛ � � � � a4,ag47 � � �
and Λ � � 5

k � 1 gkΛ are identical. Certainly a4 
 ag54 and a6 
 ag56 , furthermore
as Λ � � 4

k � 1 gkΛ is simply connected and the vertices a4 and ag47 are adjacent
to a2 in the graph Λ � � 4

k � 1 gkΛwe see that Λ � � 5
k � 1 gkΛ is simply connected

graph by lemma 4.7.39.
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a1

a2

a3

a4

a5

a6

a7

ag14

a
g1
6

ag25

ag27

a
g3
4

a
g3
6

a
g4
5

a
g4
7

Graph 4.9: the graph Λ � g1Λ � g2Λ � g3Λ � g4Λ � g5Λ in
�

5,6 � Λ �

 us we have the following theorem.

 eorem 4.7.42  e connected graph S � V8 � 
 F � SU8 � C � � is simply connected.

Next let Φ to be the reduced irreducible root system of type E6. Recall the nota-
tion from above, then Φ 
 Φ � E6 � 
 ΦE6 and ∆


 ∆E6 
 α1, . . . ,α6 as described
in [10] Plate V is a basis of ΦE6 . Moreover, g


 g � E6 � 
 gE6 is the �nite dimen-
sional semi-simple complex Lie algebra with root system of type E6, the Lie algebra
g � E6 � θ 
 gθE6


 L � E6, � 78

�
is the compact real form of gE6 , G


 E6 � C � 
 L � gE6
�

and Gθ 
 E6, � 78. Furthermore, let
� xα � g � E6 � α � � 0 � � α � ΦE6 ; hi � 1 �

i
�
6 �

be a Chevalley basis of the Lie algebra g � E6 � . We consider the connected graph
F � E6, � 78

�
and prove in the next parts that F � E6, � 78

�
is simply connected.  ere-

fore, let Σ be the induced subgraph of lemma 4.7.31, thus the vertex set of Σ is� � Σ � 
 � Uα, � α � α � Φ � , where Uβ, � β is a fundamental SU2 � C � subgroup of
E6, � 78 for β � Φ and Σ � W � E6 � . Via the isomorphism δ between the root sys-
temsΦE6 � Φ � g � E6

�
,h
�
andΦ � E6, � 78, t

�
, where h is a Cartan subalgebra of g � E6 �

and t is the maximal torus of E6, � 78 both with respect to the basis ∆E6 , we describe
the vertex set of Σ in the following way, � � Σ � 
 � L � g � E6 � θδ � α � , � δ � α �

� � α � Φ � .
Certainly, Σ contains the induced subgraph Λ isomorphic to H � E6 � , whose ver-
tex set is � � Λ � 
 � L � g � E6 � θδ � α � , � δ � α �

� � α � ∆E6 � . As in the case before we �x
the set of induced subgraphs � 
 � gΛ � g � E6, � 78 � of F � E6, � 78

�
and show that

β � E6, � 78 � t � � with gt � gΛ is a bijection.  e map β is by construction sur-
jective, as the preimage of gΛ � � with g � E6, � 78 is gt. Moreover, β is injective
if we can deduce from the equality of gt and ht for some di�erent g,h � SU8 � C �
the equality of the graphs gΛ and hΛ. Certainly we know that gt 
 ht if and only
if g � 1h � t for di�erent elements g,h � E6, � 78.  us the map β is injective if and
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only if StabE6, � 78 � Λ � 
 � g � E6, � 78 � gΛ 
 Λ � 
 t. As the vertices of Λ are the
fundamental SU2 � C � subgroups L � g � E6 � θδ � α � , � δ � α �

� 
 Uα, � α of E6, � 78 for α � ∆E6 ,
we obtain that

StabE6, � 78 � Λ � 
 � g � E6, � 78 � gΛ 
 Λ �

 � g � E6, � 78 � gL � g � E6 � θδ � α � , � δ � α �

�
g � 1 
 L � g � E6 � θδ � α � , � δ � α �

�

for every α � ∆E6 � .
It follows that the Lie group StabE6, � 78 � Λ � is the Lie group of the Lie subalgebra
�
α � ∆E6

Ng � E6 � θ � g � E6
� θ
δ � α � , � δ � α �

�
, which is equal to the Lie group of the Lie alge-

bra � � α � ∆E6
Ng � E6 � � g � E6

�
α, � α

� � θ. By proposition 4.7.7 the �nite dimensional semi-
simple complex Lie algebra g � E6 � is generated by the non-zero vectors xαi ,x � αi ,hi
for 1

�
i

�
6 of the choosenChevalley basis of g � E6 � and g � E6 � αi, � αi


 � hi,xαi ,x � αi �
for 1

�
i

�
6.  erefore, we have

Ng � E6 � � g � E6
�
αi, � αi

� 
 � g � g � E6 � �
�
g,xαi � , �

g,x
� αi � , �

g,hi � � g � E6 � αi, � αi � .
Using theorem 4.7.10, it follows that

Ng � E6 � � g � E6
�
α1, � α1

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 1,2,4, 5,6 � � ,

Ng � E6 � � g � E6
�
α2, � α2

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 1,2,3, 5,6 � � ,

Ng � E6 � � g � E6
�
α3, � α3

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 2,3, 5,6 � � ,

Ng � E6 � � g � E6
�
α4, � α4

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 1,4,6 � � ,

Ng � E6 � � g � E6
�
α5, � α5

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 1,2,3, 5 � � and

Ng � E6 � � g � E6
�
α6, � α6

� 
 � xαj,x � αj,hk � 1 �
k

�
6, j � � 1,2,3,4,6 � � .

 us

�

α � ∆E6

Ng � E6 � � g � E6
�
α, � α

� 
 � hk � 1 �
k

�
6 � 
 h and

� �

α � ∆E6

Ng � E6 � � g � E6
�
αi, � αi

� � θ 
 hθ ,

which implies that StabE6, � 78 � Λ � 
 t. Using this argumentation, we de�ne the cham-
ber system � ��� � 
 ��� , � � i

�
1 � i � 6

�
, where the chambers gΛ and hΛ are i-adjacent,

in symbols gΛ � i hΛ, if and only if g
� 1h � Pi 	 E6, � 78, see lemma 4.7.36. By con-

struction we obtain the following statement.

Lemma 4.7.43  e chamber system � � E6, � 78, t, � Pi 	 E6, � 78

�
i ��� 1,...,6 �

�
is isomorphic

to � � E6 � C � � B � . Moreover the chamber systems � � E6, � 78, t, � Pi 	 E6, � 78

�
i � � 1,...,6 �

�
and � ��� � 
 � � , � � i

�
1 � i � 6

�
are also isomorphic via the map β � E6, � 78 � t � �

with gt � gΛ.
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By proposition A.7.2 and lemma 4.7.43 the chamber system � � E6 � C � � B � is simply
connected, thus the chamber system � ��� � 
 ��� , � � i

�
1 � i � 6

�
is also simply con-

nected implying that every closed gallery γ � gΛ, g1Λ, . . . , gnΛ, gΛ in the cham-
ber system � ��� � 
 � � , � � i

�
1 � i � 7

�
is null-2-homotopic. Furthermore, we �nd

a �nite sequence γ0,γ1, . . . ,γl of galleries of � ��� �
such that γ 
 γ0, gΛ


 γl
and the gallery γk � 1 is elementary 2-homotopic to γk for each index 1

�
k

�
l.

In detail, for each index 1
�
k

�
l there are some galleries ε and ψ and two J-

galleries κk � 1 and κk with J
� � 1, . . . ,6 � and � J � 
 2 such that γk � 1


 εκk � 1ψ
and γk


 εκkψ. Moreover we regard the closed gallery κk � 1κk in the rank two
residue

�
i,j � hΛ � for i, j � � 1, . . . ,6 � , i �
 j and h � E6, � 78.  e closed gallery

κk � 1κk is a combination of closed galleries hΛ,h1Λ,h2Λ,h3Λ,hΛ of length four
with hΛ � i h1Λ � j h2Λ � i h3Λ � j hΛ for some di�erent i, j � � 1, . . . ,6 � if
�
i,j � hΛ � is a rank two building of type 2 or a combination of closed gal-
leries hΛ,h1Λ,h2Λ,h3Λ,h4Λ,h5Λ,hΛ with hΛ � i h1Λ � j h2Λ � i h3Λ � j h4Λ � i

h5Λ � j hΛ of length six for some di�erent i, j � � 1, . . . ,6 � if �
i,j � hΛ � is a rank

two building of type
3
.

Let γ � vα0 ,vα1 , . . . ,vαn � 1 ,vαn 
 vα0 be a closed cycle in the graph F � E6, � 78

�
, then

vαi

 L � g � E6 � θδ � αi � , � δ � αi �

�
with αi � ΦE6 for each index 1

�
i

�
n. We use the fact

that E6, � 78 acts transitive on the graph F � E6, � 78

�
to �nd for each i � � 1, . . . ,n � an

element gi � E6, � 78 such that giΛ is an induced subgraph of F � E6, � 78

�
containing

the vertex vαi . Furthermore, by the connectivity of � ��� �
we obtain �nitely many

group elements gi � 1,i
1 , . . . , gi � 1,i

li � 1 in E6, � 78 for each index 1
�
i

�
n in such a way that

g0Λ, g
0,1
1 Λ, . . . , g0,1l0 Λ, g1λ, g

1,2
1 Λ, . . . , gn � 1Λ, g

n � 1,n
1 Λ, . . . , gn � 1,n

ln � 1 Λ, gnΛ

 g0Λ is a

closed gallery in the chamber system � � � �
.  e last paragraph together with the

transitivity of E6, � 78 on F � E6, � 78

�
implies that the graph F � E6, � 78

�
is simply con-

nected if each closed gallery Λ, g1Λ, . . . , g2m � 1 ,Λ in the rank two residue
�
i,j � Λ � ,

which is a rank two building of type m with either m 
 2 orm 
 3, for each
pair i, j � � 1, . . . ,6 � , i �
 j, is as graph simply connected inside F � E6, � 78

�
. In other

words, F � E6, � 78

�
is simply connected ifΛ � � 2m � 1

k � 1 gkΛ is a simply connected graph.

Recall that two elements gΛ and hΛ are i-adjacent in the chamber system � � � �
if and only if Λ � i g

� 1hΛ if and only if g � 1h � Pi 	 E6, � 78 for 1
�
i

�
6.  e

Lie subgroup Pi 	 E6, � 78 is the Lie group of the Lie subalgebra pi 	 g � E6 � θ with
pi

 tC

�
α � Φ� � � � αi � g � E6 � α for each i � � 1, . . . ,6 � by theorem A.7.8.  erefore

pi 	 g � E6 � θ 
 t � g � E6 � θαi, � αi for each i � � 1, . . . ,6 � . and it follows that
p1 	 g � E6 � θ �

Ng � E6 � � g � E6
�
αj, � αj

�
forj � � 1,2,4, 5,6 � ,

p2 	 g � E6 � θ �
Ng � E6 � � g � E6

�
αj, � αj

�
for j � � 1,2,3, 5,6 � ,

p3 	 g � E6 � θ �
Ng � E6 � � g � E6

�
αj, � αj

�
forj � � 2,3, 5,6 � ,

p4 	 g � E6 � θ �
Ng � E6 � � g � E6

�
αj, � αj

�
for j � � 1,4,6 � ,

p5 	 g � E6 � θ �
Ng � E6 � � g � E6

�
αj, � αj

�
for j � � 1,2,3, 5 � and

p6 	 g � E6 � θ �
Ng � E6 � � g � E6

�
αj, � αj

�
for j � � 1,2,3,4 � .
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Hence for g � E6, � 78 we obtain that

Λ � 1 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 1,2,4, 5,6 �

Λ � 2 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 1,2,3, 5,6 �

Λ � 3 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 2,3, 5,6 �

Λ � 4 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 1,4,6 �

Λ � 5 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 1,2,3, 5 �

Λ � 6 gΛ
� gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 L � g � E6 � θδ � αj � , � δ � αj �

�
for j � � 1,2,3,4,6 �

To simplify the notation thus for 1
�
j

�
6 and g � E6 we set L � g � E6 � θδ � αj � , � δ � αj �

� 

aj and gL � g � E6 � θδ � αj � , � δ � αj �

�
g � 1 
 agj.  erefore Λ is the induced subgraph on the

vertices a1, . . . ,a6 and gΛ is the induced subgraph on the vertices a
g
1 , . . . ,a

g
6 .

 erefore we get for g � E6, � 78 the relations

gΛ � 1 hΛ
� a

g
j

 ahj for j � � 1,2,4, 5,6 �

gΛ � 2 hΛ
� a

g
j

 ahj for j � � 1,2,3, 5,6 �

gΛ � 3 hΛ
� a

g
j

 ahj for j � � 2,3, 5,6 �

gΛ � 4 hΛ
� a

g
j

 ahj for j � � 1,4,6 �

gΛ � 5 hΛ
� a

g
j

 ahj for j � � 1,2,3, 5 �

gΛ � 6 hΛ
� a

g
j

 ahj for j � � 1,2,3,4,6 � .

In the next table we collect some information of every
�
i,j � Λ � residue of � ��� �

for i, j � � 1, . . . ,6 � , i �
 j.
�

1,2 � Λ �
2-gon

Λ � 1 g1Λ � 2 g2Λ � 1 g3Λ � 2 Λ al

 agkl for 1

�
k

�
3,

l � � 1,2, 5,6 �
�

1,3 � Λ �
3-gon

Λ � 1 g1Λ � 3 g2Λ � 1 g3Λ � 3 g4Λ � 1

g5Λ � 3 Λ
al

 agkl for 1

�
k

�
5,

l � � 2, 5,6 �
�

1,4 � Λ �
2-gon

Λ � 1 g1Λ � 4 g2Λ � 1 g3Λ � 4 Λ al

 agkl for 1

�
k

�
3,

l � � 1,4,6 �
�

1,5 � Λ �
2-gon

Λ � 1 g1Λ � 5 g2Λ � 1 g3Λ � 5 Λ al

 agkl for 1

�
k

�
3,

l � � 1,2, 5 �
�

1,6 � Λ �
2-gon

Λ � 1 g1Λ � 6 g2Λ � 1 g3Λ � 6 Λ al

 agkl for 1

�
k

�
3,

l � � 1,2,4,6 �

�
2,3 � Λ �

2-gon
Λ � 2 g1Λ � 3 g2Λ � 2 g3Λ � 3 Λ al


 agkl for 1
�
k

�
3,

l � � 2,3, 5,6 �
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�

2,4 � Λ �
3-gon

Λ � 2 g1Λ � 4 g2Λ � 2 g3Λ � 4

g4Λ � 2 g5Λ � 4 Λ
al

 agkl for1

�
k

�
5,

l � � 1,6 �
�

2,5 � Λ �
2-gon

Λ � 2 g1Λ � 5 g2Λ � 2 g3Λ � 5 Λ al

 agkl for1

�
k

�
3,

l � � 1,2,3, 5 �
�

2,6 � Λ �
2-gon

Λ � 2 g1Λ � 6 g2Λ � 2 g3Λ � 6 Λ al

 agkl for 1

�
k

�
3,

l � � 1,2,3,6 �

�
3,4 � Λ �

3-gon
Λ � 3 g1Λ � 4 g2Λ � 3 g3Λ � 4

g4Λ � 3 g5Λ � 4 Λ
al

 agkl for 1

�
k

�
5,

l � � 6 �
�

3,5 � Λ �
2-gon

Λ � 3 g1Λ � 5 g2Λ � 3 g3Λ � 5 Λ al

 agkl for1

�
k

�
3,

l � � 2,3, 5 �
�

3,6 � Λ �
2-gon

Λ � 3 g1Λ � 6 g2Λ � 3 g3Λ � 6 Λ al

 agkl for 1

�
k

�
3,

l � � 2,3,6 �

�
4,5 � Λ �

3-gon
Λ � 4 g1Λ � 5 g2Λ � 4 g3Λ � 5

g4Λ � 4 g5Λ � 5 Λ
al

 agkl for 1

�
k

�
5,

l � � 1 �
�

4,6 � Λ �
2-gon

Λ � 4 g1Λ � 6 g2Λ � 4 g3Λ � 6 Λ al

 agkl for 1

�
k

�
3,

l � � 1,4,6 �

�
5,6 � Λ �

3-gon
Λ � 5 g1Λ � 6 g2Λ � 5 g3Λ � 6

g4Λ � 5 g5Λ � 6 Λ
al

 agkl for 1

�
k

�
5,

l � � 1,2,3 �

Let Λ, g1Λ, . . . , g2m � 1 ,Λ be a closed gallery in the rank two building
�
i,j � Λ � of

type m for some i, j � � 1, . . . ,6 � , i �
 j. We colour the vertices of the graphs
Λ, g1Λ, . . . , g2m � 1 in di�erent ways as in the case above. First of all

� � Λ � 	 � 2m � 1�

k � 1 � � gkΛ � � 
 � a1, . . . ,a6 � 	 �
2m � 1�

k � 1
� agk1 , . . . ,a

gk
6 �
�


 � ai � 1 �
i

�
6,ai


 agki for 1 �
k

�
2m � 1 �

are coloured black.  e vertices � � Λ � 
 � a1, . . . ,a6 � are coloured in blue and the
vertices � � gkΛ � 
 � agk1 , . . . ,a

gk
6 � are coloured in cgk for 1 �

k
�
2m � 1. Moreover

we set Ψ 
 Λ � � � 2m � 1
k � 1 gkΛ

�
, thus Ψ is a subgraph of F � E6, � 78

�
. We denote with

Ψc the induced subgraph of Ψ on the vertex set � � Ψc � , which contains all vertices
coloured with the colour c, for c � � black,blue, cg1 , . . . , cg2m � 1 � .
Next, we consider the graphs Λ � piΛ and Λ 	 piΛwith pi � Pi 	 E6, � 78 for 1

�
i

�
6.

 e vertices of the graph Λ are coloured in blue and for each index 1
�
i

�
6 we set

cpi

 red.  us the vertices of the graph piΛ are coloured red.
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4 On locally complex unitary geometries

Λ � piΛ Λ 	 piΛ

p1 � P1 	 E6, � 78

a1

a2

a3

a4

a5

a6

ap13

a1

a2

a4

a5

a6

p2 � P2 	 E6, � 78

a1

a2

a3

a4

a5

a6

ap24

a1

a2

a3 a5

a6

p3 � P3 	 E6, � 78

a1

a
p3
1a2

a3

a4

a5

a6

a
p3
4

a2

a3 a5

a6
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Λ � piΛ Λ 	 piΛ

p4 � P4 	 E6, � 78

a1

a2

a3

a4

a5

a6

a
p4
2

a
p4
3 a

p4
5

a1

a4

a6

p5 � P5 	 E6, � 78

a1

a2

a3

a4

a5

a6

a
p5
4

a
p5
6

a1

a2

a3 a5

p6 � P6 	 E6, � 78

a1

a2

a3

a4

a5

a6

a
p6
5

a1

a2

a3

a4

a6

Table 4.15: the graphs Λ � piΛ and Λ 	 piΛ for 1 �
i

�
6
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4 On locally complex unitary geometries

Proposition 4.7.44  e graph Λ � piΛ is simply connected for each pi � Pi 	 E6, � 78

and 1
�
i

�
6.

Proof: Since Λ � H � E6 � � piΛ and the graphs H � E6 � and Λ 	 piΛ are simply
connected by table 4.15, lemma 4.7.38 and lemma 4.7.39 for each index 1

�
i

�
6, by

theorem A.5.2 we obtain that the graph Λ � piΛ is simply connected for each index
1

�
i

�
6. ■

By proposition 4.7.40 and the following table 4.16, the graph Ψ 
 Λ � � 2m � 1
k � 1 gkΛ is

simply connected for � i, j��� � � 1,2 � , � 1,3 � , � 1,6 � , � 2,3 � , � 2, 5 � , � 2,6 � , � 5,6 � � .
�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
1,2 � Λ � 2-gon

a1

a2

a5

a6

yes
a6

�
1,3 � Λ � 3-gon a2

a5

a6

yes
a6

�
1,4 � Λ � 2-gon

a1

a4

a6

yes

�
1,5 � Λ � 2-gon

a1

a2

a5

yes
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �
�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
1,6 � Λ � 2-gon

a1

a2

a4

a6

yes
a2

�
2,3 � Λ � 2-gon a2

a3 a5

a6

yes
a6

�
2,4 � Λ � 3-gon a1a6 yes

�
2,5 � Λ � 2-gon

a1

a2

a3 a5

yes
a1

�
2,6 � Λ � 2-gon

a1

a2

a3

a6

yes
a1

�
3,4 � Λ � 3-gon a6 yes

�
3,5 � Λ � 2-gon

a2

a3 a5

yes
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4 On locally complex unitary geometries

�
i,j � Λ � m-gon Ψblack simply connected

possible choice for
w � � � Ψblack �

�
3,6 � Λ � 2-gon a2

a3

a6

yes

�
4,5 � Λ � 3-gon a1 yes

�
4,6 � Λ � 2-gon

a1

a4

a6

yes

�
5,6 � Λ � 3-gon

a1

a2

a3

yes
a1

Table 4.16: the graph Ψblack for 1
�
i � j

�
6

To �nish the proof of the statement that the graph F � E6, � 78

�
is simply connected

we have to show that for every closed gallery Λ, g1Λ, . . . , g2m � 1 ,Λ in the rank two
building

�
i,j � Λ � of type m for � i, j� � � � 1,4 � , � 1, 5 � , � 1,6 � , � 2,4 � , � 3,4 � ,� 3, 5 � , � 3,6 � , � 4, 5 � , � 4,6 � � the graph Ψ 
 Λ � � � 2m � 1

k � 1 gkΛ
�
is simply connected.

By proposition 4.7.44 the graph Λ � g1Λ is simply connected for every closed gallery
Λ, g1Λ, . . . , g2m � 1 ,Λ in

�
i,j � Λ � for 1 �

i � j
�
6. Furthermore, since the graphs

Λ � g1Λ, g2Λ and � Λ � g1Λ � 	 g2Λ are simply connected, see table 4.18, it follows by
theorem A.5.2 that also the graph Λ � g1Λ � g2Λ is simply connected for the pairs of
indices � i, j� � � � 1,4 � , � 1, 5 � , � 1,6 � , � 3,6 � , � 4,6 � � and for � i, j� 
 � 3, 5 � under the
assumption that a4 �
 ag24 . If � i, j� 
 � 3, 5 � and a4 
 ag24 then by lemma 4.7.39 the
graph ��� � Λ � g1Λ � ,E � Λ � g1Λ � � � ag11 ,a4 � � is simply connected as the vertices ag21
and a4 are adjacent to a6 in the simply connected graph Λ � g1Λ. By table 4.18, the
graph ��� � Λ � g1Λ � ,E � Λ � g1Λ

�
� � ag11 ,a4 � � 	 g2Λ is simply connected implying

that Λ � g1Λ � g2Λ is a simply connected graph by theorem A.5.2. If otherwise
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

� i, j� � � � 2,3 � , � 3,4 � , � 4, 5 � � then the graph Λ � � � 4
k � 1 giΛ � is simply connected

again by theorem A.5.2 as the graphs Λ, glΛ for 1
�
l

�
4, Λ � � � ts � 1 gsΛ � and

� Λ � � � ts � 1 gsΛ � � 	 gt � 1Λwith 1 �
t

�
3 are simply connected, see table 4.19.

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

�
1,4 with a

g2
3 �
 a3

a1

a2

a3

a4

a5

a6

ag13

ag22

ag23 ag25

a1

a4

a6

�
1,4 with a

g2
3

 a3

a1

a2

a3

a4

a5

a6

ag13

ag22 ag25

a1

a3

a4

a6

�
1,5

a1

a2

a3

a4

a5

a6

ag13

ag24

a
g2
6

a1

a2

a5

ag13
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4 On locally complex unitary geometries

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

�
3,5 with a

g2
4 �
 a4

a1

ag11

a2

a3

a4

a5

a6

ag14

ag24

a
g2
6 a2

a3 a5

ag11

�
3,5 with a

g2
4

 a4

a1

ag11

a2

a3

a4

a5

a6

ag14

a
g2
6 a2

a3

a4

a5

ag11

�
3,6

a1
ag11

a2

a3

a4

a5

a6

ag14

ag25

ag11

a2

a3

a6

ag14
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Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

�
4,6 with a5 �
 ag25

a1

a2

a3

a4

a5

a6

a
g1
2

ag13 ag15

ag25

a1

a4

a6

ag12
ag13

�
4,6 with a5


 ag25

a1

a2

a3

a4

a5

a6

ag12

ag13 ag15

a1

a4

a6

a5

ag12
ag13

Λ � g1Λ � g2Λ ��� � Λ � g1Λ � ,E � Λ � g1Λ
�
� � ag11 ,a4 � � 	 g2Λ

�
3,5 � Λ � with ag24 
 a4

a1

ag11

a2

a3

a4

a5

a6

ag14

a
g2
6 a2

a3

a4

a5

ag11

Table 4.18: the graphs Λ � g1Λ � g2Λ and Λ � g1Λ 	 g2Λ in
�
i,j � Λ � for the indices� i, j��� � � 1,4 � , � 1, 5 � , � 3, 5 � , � 3,6 � , � 4,6 � �
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4 On locally complex unitary geometries

�
2,4 � Λ �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

a1

a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a1a6

ag14

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

a1

a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a
g3
4

a1a6

ag22

ag23 ag25

Λ � g1Λ � g2Λ � g3Λ � g4Λ � Λ � g1Λ � g2Λ � g3Λ � 	 g4Λ

a1

a2

a3

a4

a5

a6

ag14

a
g2
2

ag23 ag25

a
g3
4

a
g4
2

a
g4
3 a

g4
5

a1a6

a
g3
4
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �
�

3,4 � Λ �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

a1

ag11

a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a6

ag11

ag14

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

a1

ag11

a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a
g3
1

a
g3
4

a6

ag22

ag23 ag25

Λ � g1Λ � g2Λ � g3Λ � g4Λ � Λ � g1Λ � g2Λ � g3Λ � 	 g4Λ

a1

ag11a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a
g3
1

a
g3
4

a
g4
2

a
g4
3 a

g4
5

a6

a
g3
1

a
g3
4
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4 On locally complex unitary geometries

�
4,5 � Λ �

Λ � g1Λ � g2Λ � Λ � g1Λ � 	 g2Λ

a1

a2

a3

a4

a5

a6

ag12

ag13 ag15

ag24

a
g2
6

a1

ag12

ag13 ag15

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

a1

a2

a3

a4

a5

a6

a
g1
2

ag13 ag15

ag24

a
g2
6

a
g3
2

a
g3
3 a

g3
5

a1

ag24

a
g2
6

Λ � g1Λ � g2Λ � g3Λ � g4Λ � Λ � g1Λ � g2Λ � g3Λ � 	 g4Λ

a1

a2

a3

a4

a5

a6

a
g1
2

ag13 ag15

ag24

a
g2
6

a
g3
2

a
g3
3 a

g3
5

a
g4
4

a
g4
6

a1

a
g3
2

a
g3
3 a

g3
5

Table 4.19: the graphs Λ � g1Λ � � � tk � 2 gkΛ � and � Λ � g1Λ � � � lk � 2 gkΛ � � 	 gl � 1Λ
for 2

�
t

�
4 and l � � 2,3 � in �

i,j � Λ � for � i, j��� � � 2,4 � , � 3,4 � , � 4, 5 � �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

For the �nal statement, we will study each single case.

• � i, j� 
 � 1,4 � : �
1,4 � Λ � is a rank two building of type 2 .

We obtain that a2

 ag32 and a5 
 ag35 in the graph Λ � g1Λ � g2Λ � g3Λ but

in di�erence, we also get that a3 �
 ag13 , ag13 �
 ag23 , ag23 �
 ag33 and ag33 �
 a3.
 erefore we have to consider four di�erent possibilities in this case.

case one a3,a
g1
3 ,a

g2
3 and a

g3
3 are four di�erent vertices in the graph

Λ � g1Λ � g2Λ � g3Λ
case two a3


 ag23 and ag13 �
 ag33 in the graph Λ � g1Λ � g2Λ � g3Λ
case three a3


 ag23 and ag13 
 ag33 in the graph Λ � g1Λ � g2Λ � g3Λ
case four a3 �
 ag23 and ag13 
 ag33 in the graph Λ � g1Λ � g2Λ � g3Λ
In each case, we know that the graph � Λ � g1Λ � g2Λ

�
	 g3Λ is simply con-

nected, see table 4.20.  us by theorem A.5.2, the graph Λ � g1Λ � g2Λ � g3Λ
is simply connected.

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case one

a1

a2

a3

a4

a5

a6

ag13

a
g2
2

ag23 ag25

a
g3
3

a1

a4

a6

ag22

ag25
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4 On locally complex unitary geometries

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case two

a1

a2

a3

a4

a5

a6

ag13

ag22 ag25

a
g3
3

a1

a4

a6

ag22 ag25

case three

a1

a2

a3

a4

a5

a6

ag13

ag22

ag25

a1

a4

a6

ag22

ag25

ag13

case four

a1

a2

a3

a4

a5

a6

ag13

a
g2
2

ag23 ag25

a1

a4

a6

ag22
ag25

ag13

Table 4.20: the graphs Λ � g1Λ � g2Λ � g3Λ and � Λ � g1Λ � g2Λ � 	 g3Λ in�
1,4 � Λ �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

• � i, j� 
 � 1, 5 � : �
1,5 � Λ � is a rank two building of type 2 .

As a3

 ag33 , we obtain that Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ � g1Λ � g2Λ � ,E � Λ �

g1Λ � g2Λ
�
� � � a3,ag26 � �

�
, which is a simply connected graph by lemma 4.7.39

by the fact that a3 and a
g2
6 are adjacent to the vertex a2 in Λ � g1Λ � g2Λ.

a1

a2

a3

a4

a5

a6

a
g1
3

ag24

a
g2
6

Graph 4.10: the graph Λ � g1Λ � g2Λ � g3Λ in
�

1,5 � Λ �

• � i, j� 
 � 2,4 � : �
2,4 � Λ � is a rank two building of type 3

.

We use theorem A.5.2 to prove that the graph Λ � � � 5
i � 1 giΛ � is simply con-

nected. Certainly a4

 ag54 which implies that � Λ � � � 4

i � 1 giΛ � � 	 g5Λ is a
simply connected graph, see table 4.21. Moreover the graph Λ � � � 4

i � 1 giΛ �
is simply connected and Λ � � � 5

i � 1 giΛ � 
 � Λ � � � 4
i � 1 giΛ � � � g5Λ thus by

theorem A.5.2, Λ � � � 5
i � 1 giΛ � is a simply connected graph.

Λ � � � 5
i � 1 giΛ � � Λ � � � 4

i � 1 giΛ � � 	 g5Λ

a1

a2

a3

a4

a5

a6

ag14

a
g2
2

ag23 ag25

a
g3
4

a
g4
2

a
g4
3 a

g4
5

a1

a4

a6

a
g4
2

a
g4
3 a

g4
5

Table 4.21: the graphs Λ � � � 5
i � 1 giΛ � and � Λ � � � 4

i � 1 giΛ � � 	 g5Λ in �
2,4 � Λ �
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4 On locally complex unitary geometries

• � i, j� 
 � 3,4 � : �
3,4 � Λ � is a rank two building of type 3 .

We consider the graph connected Λ � � � 5
i � 1 giΛ � . Since a1 
 ag51 and a4 


a
g5
4 as well as Λ � � � 5

i � 1 giΛ � 
 ��� � Λ � � � 4
i � 1 giΛ � � ,E � Λ � � � 4

i � 1 giΛ � � �� � a1,ag42 � , � a1,ag45 � � � , we obtain that the graph Λ � � 5
i � 1 giΛ is simply con-

nected by lemma 4.7.39. In detail, the vertices a1 and a
g4
2 are adjacent to the

vertex a6 in the graphΛ � � � 4
i � 1 giΛ � implying that ��� � Λ � � � 4

i � 1 giΛ � � ,E � Λ �
� � 4

i � 1 giΛ � � � � � a1,ag42 � � � is simply connected by lemma 4.7.39 and the two
vertices a1 and a

g4
5 are adjacent to the vertex a

g4
2 in the simply connected

graph ��� � Λ � � � 4
i � 1 giΛ � � ,E � Λ � � � 4

i � 1 giΛ � � � � � a1,ag42 � � � . Hence, again by
lemma4.7.39 ��� � Λ � � � 4

i � 1 giΛ � � ,E � Λ � � � 4
i � 1 giΛ � � � � � a1,ag42 � , � a1,ag45 � � �

is a simply connected graph.

a1

ag11a2

a3

a4

a5

a6

ag14

ag22

ag23 ag25

a
g3
1

a
g3
4

a
g4
2

a
g4
3 a

g4
5

Graph 4.11: the graph Λ � g1Λ � g2Λ � g3Λ in
�

3,4 � Λ �

• � i, j� 
 � 3, 5 � : �
3,5 � Λ � is a rank two building of type 2 .

We have to consider four di�erent cases as a4 �
 ag14 , ag14 �
 ag24 , ag24 �
 ag34 and
a
g3
4 �
 a4.

case one a4,a
g1
4 ,a

g2
4 and a

g3
4 are four di�erent vertices in the graph

Λ � g1Λ � g2Λ � g3Λ
case two a4


 ag24 and ag14 �
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
case three a4


 ag24 and ag14 
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
case four a4 �
 ag24 and ag14 
 ag34 in the graph Λ � g1Λ � g2Λ � g3Λ
On the other hand, we know that a1


 a
g3
1 , thus in case one and two, the

graph Λ � g1Λ � g2Λ � g3Λ is simply connected by theorem A.5.2 as � Λ �
g1Λ � g2Λ

�
	 g3Λ is simply connected, see table 4.22.
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Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case one

a1

ag11

a2

a3

a4

a5

a6

ag14

ag24

a
g2
6

a
g3
4

a2

a3 a5

a1

a
g2
6

case two

a1

ag11

a2

a3

a4

a5

a6

ag14

a
g2
6

a
g3
4

a2

a3 a5

a1

a
g2
6

case three

a1

ag11

a2

a3

a4

a5

a6

ag14

a
g2
6 a2

a3 a5

a1

a
g2
6

ag14
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Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case four

a1

ag11

a2

a3

a4

a5

a6

ag14

ag24

a
g2
6 a2

a3 a5

a1

a
g2
6

ag14

Table 4.22: the graphs Λ � g1Λ � g2Λ � g3Λ and � Λ � g1Λ � g2Λ
�
	 g3Λ in�

3,5 � Λ �

In case three and four we will use lemma 4.7.39 to obtain that the graph Λ �
g1Λ � g2Λ � g3Λ is simply connected. In both cases we regard that the graph
Λ � g1Λ � g2Λ � g3Λ is identical to the graph ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ �
g2Λ

�
� � � a1,ag14 � , � a1,ag26 � , � ag14 ,ag26 � �

�
. Since a1 and a

g2
6 are neighbors of

the vertex a2 as well as a1 and a
g1
4 are neighbors of the vertex a6 in the graph

Λ � g1Λ � g2Λ by lemma 4.7.39 the graph ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ �
g2Λ

�
� � � a1,ag14 � , � a1,ag26 � �

�
is simply connected. Furthermore the vertex

a1 is adjacent to the vertices a
g2
6 and a

g1
4 in ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ �

g2Λ
�
� � � a1,ag14 � , � a1,ag26 � �

�
implying that ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ �

g2Λ
�
� � � a1,ag14 � , � a1,ag26 � , � ag14 ,ag26 � �

�
is a simply connected graph using

lemma 4.7.39 again.

• � i, j� 
 � 3,6 � : �
3,6 � Λ � is a rank two building of type 2 .

Λ � g1Λ � g2Λ � g3Λ 
 ��� � Λ � g1Λ � g2Λ � ,E � Λ � g1Λ � g2Λ � � � � a1,ag25 � � �
as a1


 ag31 and a4 
 ag34 . Since a2 is a common neighbor of the vertices a1
and a

g2
5 in the simply connected graph Λ � g1Λ � g2Λ, it follows by lemma

4.7.39 that Λ � g1Λ � g2Λ � g3Λ is a simply connected graph, too.

a1
ag11

a2

a3

a4

a5

a6

ag14

ag25

Graph 4.12: the graph Λ � g1Λ � g2Λ � g3Λ in
�

3,6 � Λ �
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4.7  e fundamental SU2 � C � subgroups graph of E6, � 78 and SU8 � C �

• � i, j� 
 � 4, 5 � : �
4,5 � Λ � is a rank two building of type 3 .

By construction we obtain that a2

 ag52 , a3 
 ag53 and a5 
 ag55 , thus Λ �

� � 5
i � 1 giΛ � 
 ��� � Λ � � � 4

i � 1 giΛ � � ,E � Λ � � � 4
i � 1 giΛ � � � � � a2,ag46 � , � a3,ag46 � � � .

As the vertices a2 and a
g4
6 are adjacent to the vertex a1 in the simply con-

nected graph Λ � � � 4
i � 1 giΛ � and the vertices a3 and ag46 are adjacent to a2

in the graph � � Λ � � � 4
i � 1 giΛ � � ,E � Λ � � � 4

i � 1 giΛ � � � � � a2,ag46 � � � , the two
graphs � � Λ � � � 4

i � 1 giΛ � � ,E � Λ � � � 4
i � 1 giΛ � � � � a2,ag46 � � andΛ � � � 5

i � 1 giΛ �
are simply connected by lemma 4.7.39 and we are done in this case.

a1

a2

a3

a4

a5

a6

a
g1
2

ag13 ag15

ag24

a
g2
6

a
g3
2

a
g3
3 a

g3
5

a
g4
4

a
g4
6

Graph 4.13: the graph Λ � g1Λ � g2Λ � g3Λ in
�

4,5 � Λ �

• � i, j� 
 � 4,6 � : �
4,6 � Λ � is a rank two building of type 2 .

First of all a2

 ag32 and a3 
 ag33 in the graphΛ � g1Λ � g2Λ � g3Λ. On the other

hand we obtain the relations that a5 �
 ag15 , ag15 �
 ag25 , ag25 �
 ag35 and ag35 �
 a5.
 erefore we have to consider the following four di�erent possibilities in this
case.

case one a5,a
g1
5 ,a

g2
5 and a

g3
5 are four di�erent vertices in the graph

Λ � g1Λ � g2Λ � g3Λ
case two a5


 ag25 and ag15 �
 ag35 in the graph Λ � g1Λ � g2Λ � g3Λ
case three a5


 ag25 and ag15 
 ag35 in the graph Λ � g1Λ � g2Λ � g3Λ
case four a5 �
 ag25 and ag15 
 ag35 in the graph Λ � g1Λ � g2Λ � g3Λ
SinceΛ � g1Λ � g2Λ � g3Λ 
 � Λ � g1Λ � g2Λ � � g3 and the graphs Λ � g1Λ � g2Λ
and � Λ � g1Λ � g2Λ

�
	 g3Λ are simply connected by table 4.18 in each case,

we conclude via theorem A.5.2 that the graph Λ � g1Λ � g2Λ 	 g3Λ is simply.
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Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case one

a1

a2

a3

a4

a5

a6

a
g1
2

ag13 ag15

ag25

a
g3
5

a1

a4

a6

a2

a3

case two

a1

a2

a3

a4

a5

a6

ag12

ag13 ag15

a
g3
5

a1

a4

a6

a2

a3

case three

a1

a2

a3

a4

a5

a6

ag12ag13
ag15

a1

a4

a6

a2

a3

ag15
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4.8 Classi�cation of the graph �Γ

Λ � g1Λ � g2Λ � g3Λ � Λ � g1Λ � g2Λ � 	 g3Λ

case four

a1

a2

a3

a4

a5

a6

ag12ag13
ag15

ag25

a1

a4

a6

a2

a3

ag15

Table 4.23: the graphs Λ � g1Λ � g2Λ � g3Λ and � Λ � g1Λ � g2Λ � 	 g3Λ in�
4,6 � Λ �

Finally we have the following theorem.

 eorem 4.7.45  e connected graph F � E6, � 78

�
is simply connected.

4.8 Classification of the graph
�
Γ

In this �nal part we will show that the universal cover
�

Γ of a connected locally S � V6 �
graph Γ is isomorphic to either S � V8 � or F � E6, � 78

�
.  us let

�

Γ and
�

Υ be universal
covers of the connected locally S � V6 � graphs Γ and Υ such that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1
for any chain x � w � y � z � x � y in Γ resp.Υ of four di�erent vertices x,w,y and
z. Moreover, let Σ�

Γ be the induced subgraph of
�

Γ and Σ�
Υ the induced subgraph of

�

Υ
as constructed in section 4.4. If Σ�

Υ � Σ
�
Γ, then by theorem 4.6.7 we have G

�
Γ � G

�
Υ.

We denote with NG� Γ
� w�

Γ

�
the normaliser of the subgroup SU2 � C � w� Γ

in G�
Γ for a

vertex w�
Γ �

�

Γ, thus

NG� Γ
� w�

Γ

� 
 NG� Γ
� SU2 � C � w� Γ

�

 � g � G�

Γ � g � SU2 � C � w� Γ

�
g � 1 
 SU2 � C � w� Γ

� .
Moreover we �x the induced subgraphs Λ�

Γ in Σ
�
Γ and Λ

�
Υ in ΣΥ, as in lemma 4.6.2,

respectively lemma 4.6.4.
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4 On locally complex unitary geometries

To avoid confusion we will index every vertex by the graph which it belongs to, thus

� � Λ�
Γ

� 

���� ��� � x�

Γ,z
11�
Γ
,y12�

Γ
,y23�

Γ
,y34�

Γ
,y45�

Γ
,y56�

Γ
� if Σ�

Γ � H � A7

�
,

� y12�
Γ
,y23�

Γ
, � z1412

�
�
Γ,x

�
Γ,y

45�
Γ
,y56�

Γ
� if Σ�

Γ � H � E6
�
,

and � � Λ�
Υ

� 

���� ��� � x �

Υ,z
11�
Υ
,y12�

Υ
,y23�

Υ
,y34�

Υ
,y45�

Υ
,y56�

Υ
� if Σ�

Υ � H � A7

�
,

� y12�
Υ
,y23�

Υ
, � z1412

�
�
Υ,x

�
Υ,y

45�
Υ
,y56�

Υ
� if Σ�

Υ � H � E6
�
.

Furthermore G�
Γ

 � SU2 � C � v� Γ

� v�
Γ � Λ�

Γ � � � SU2 � C � w�Υ
� w �

Υ � � � Λ�
Υ

� � 
 G�
Υ.

 erefore we �x the isomorphism µ � G�
Γ � G�

Υ with µ � SU2 � C � w� Γ

� � SU2 � C � w�Υ

and µ � αw� Γ,φ
� 
 αw�Υ,φ

for everyφ � SU2 � C � and each vertexw�
Γ � � � Λ�

Γ

�
. Moreover

we consider an element δ � � SU2 � C � v� Γ
� v�

Γ � � � � Λ�
Γ

�
y56� Γ

� � �
���� ���SU6 � C � if Σ�

Γ � H � A7

�

SU5 � C � if Σ�
Γ � H � E6

�
where δ � x�

Γ

� 
 y12�
Γ
. Of course δ 
 Πn

i � 1Πv� Γ ��� � � Λ� Γ � y56
� Γ

� αv� Γ,φ
v
i
such that φv

i � SU2 � C �

for 1
�
i

�
n.  en µ � δ � 
 µ � Πn

i � 1Πv� Γ ��� � � Λ� Γ � y56
� Γ

� αv� Γ,φ
v
i

� 
 Πn
i � 1Πv�Υ ��� � � Λ�Υ � y56

�Υ

� αv�Υ,φ
v
i

and µ � δ � � x �
Υ

� 
 y12�
Υ
.

We claim that
�

Γ and
�

Υ are isomorphic. In order to prove this statement, we con-
sider the map γ �

�

Γ �
�

Υ with x�
Γ � x �

Υ and gx
�
Γ � µ � g � x �

Υ for every g � G�
Γ.

By lemma 4.5.7, G�
Γ acts vertex-transitively on

�

Γ, thus γ �
�

Γ
�
is a subgraph of

�

Υ.

To prove injectivity of γ let gx�
Γ and hx

�
Γ be two di�erent vertices of

�

Γ. Suppose
γ � gx�

Γ

� 
 µ � g � x �
Υ

 µ � h � x �

Υ

 γ � hx�

Γ

�
then � µ � h � � � 1µ � g � � NG�Υ

� x �
Υ

�
, which is

equivalent to µ � h � 1g
� � NG�Υ

� x �
Υ

�
implying that h � 1g � NG� Γ

� x�
Γ

�
, contradiction.

Let u �
Υ be a vertex of

�

Υ. By the vertex transitivity of G�
Υ we �nd a group element

g � G�
Υ such that gx

�
Υ

 u �

Υ. In particular µ
� 1 � g � x�

Γ is a preimage of u
�
Υ under γ as

γ � µ � 1 � g � x�
Γ

� 
 µ � µ � 1 � g � � x �
Υ

 u �

Υ. Hence γ is a bijective map between the graphs
�

Γ and
�

Υ. We consider the vertex y12�
Γ
and a graph isomorphism δ � � SU2 � C � � y56� Γ

such that δ � x�
Γ

� 
 y12�
Γ
, thus µ � δx�

Γ

� 
 µ � δ � � x �
Υ

� 
 y12�
Υ
. Finally let w�

Γ and u
�
Γ be

two adjacent vertices of
�

Γ.  en by lemma 4.5.6 the group G�
Γ contains an element

g such that w�
Γ

 gx�

Γ and u
�
Γ

 gy12�

Γ
, thus u�

Γ

 gδx�

Γ for some δ, g � G�
Γ. From

the properties of the group isomorphism µ it follows that γ � gx�
Γ

� 
 µ � g � x �
Υ and

γ � gδx�
Γ

� 
 µ � g � µ � δ � x �
Υ

 µ � g � y12�

Υ
. Applying that µ � g � is a graph automorphisms

of
�

Υ we obtain that the vertices µ � g � x �
Υ and µ � g

�
y12�
Υ
are adjacent, which con�rms

the statement that γ is a graph isomorphism, so that we obtain the following result.

Proposition 4.8.1 Let
�

Γ and
�

Υ be universal covers of connected locally S � V6 � graphs
Γ and Υwhich satisfying the property that

� � z,w � �
	 x

� � 
 1 if and only if � � z,w � �
	 y

� � 
 1
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for any chain x � w � y � z � x � y in Γ resp. in Υ of four di�erent vertices x,w,y
and z. If the induced subgraphs Σ�

Γ and Σ
�
Υ constructed in section 4.4 are isomorphic,

then the graphs
�

Γ and
�

Υ are isomorphic as well.

 us the �rst main result is the following.

 eorem 4.8.2 Let Γ be a connected graph locally S � V6 � satisfying that
� � z,w � �

	 x
� � 
 1 if and only if � � z,w � �

	 y
� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z and
�

Γ
its universal cover. If Σ�

Γ � W � A7

�
, then

�

Γ � S � V8 � .
Proof:  e statement follows directly from lemma 4.7.1, theorem 4.7.42 and propo-
sition 4.8.1. ■

 eorem 4.8.3 Let Γ be a connected locally S � V6 � graph satisfying that
� � z,w � �

	 x
� � 
 1 if and only if � � z,w � �

	 y
� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z and
�

Γ
its universal cover. If Σ�

Γ � W � E6
�
, then

�

Γ � F � E6, � 78

�
.

Proof: As before the statement follows from lemma4.7.31, theorem4.7.45 and propo-
sition 4.8.1. ■
Now theorem 4.8.2, proposition 4.8.1 and theorem 4.8.3 imply together the men-
tioned result.

 eorem 4.1.2 Let Γ be a connected locally S � V6 � graph satisfying that
� � z,w � �

	 x
� � 
 1 if and only if � � z,w � �

	 y
� � 
 1

for any chain x � w � y � z � x � y in Γ of four di�erent vertices x,w,y and z and
�

Γ
its universal cover.  en

�

Γ is isomorphic to S � V8 � or to F � E6, � 78

�
.
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A P P E N D I X ONE

Synthetic geometry

Here we will collect some basic de�nitions, concepts and notations, that we use
throughout the main part of this work. For a more systematical approach we refer
the reader to the literature, for example [16], [20] or [73] and for an overview see
[15].

A.1 Concept of a geometry

We use the word geometry or more precisely incidence geometry in a quite tech-
nical sense. A geometry consists of elements of di�erent types like points, lines or
subspaces.  e rank of a geometry is the number of distinct types, moreover inci-
dence is a symmetric, reexive relation on the set of elements of a geometry. Here
is the formal de�nition.

De�nition A.1.1 Let I be a set, called the type set. An incidence system is a triple� 
 � X, � , typ
�
, where X is a set containing the elements of

�
, � is a symmetric and

reexive relation de�ned on the set X, called the incidence relation of
�
and typ

is a map from X to I such that the two identities typ � x � 
 typ � y � and x � y imply
that x 
 y.
To an incidence system is associated in a natural way the graph Γ� 
 � X, �

�
, which

we also call the incidence graph of
�
.  e vertices of Γ� are just the elements of

�
and two di�erent elements x and y of

�
are joined by an edge in Γ� if and only if

x � y in
�
. An incidence system

�
is connected if Γ� 
 � X, �

�
is a connected graph.
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A Synthetic geometry

With the notation above, if A
�
X we say A is of type typ � A� and the rank of A

is just the cardinality of typ � A� .  e corank of A is the cardinality of I � typ � A� .
Furthermore for an element x � X, we denote with x �

all elements of X which are
incident to x. For a non empty subset A of X we de�ne A

� 
 � x � A x
�
, thus A

�

contains all elements of Xwhich are incident with every element of A.

A set of mutually incident elements of an incidence system
�
is called ag of

�
.

Certainly by Zorn’s lemma, every ag is contained in at least one maximal ag,
which is a ag not properly contained in any other ag. We denote ags of type I
as chambers .

A geometry over I is an incidence system
�
over I in which every maximal ag

is a chamber. A geometry is �rm resp. thick, if every ag of type other than I is
contained in at least two resp. three distinct chambers of

�
.

De�nition A.1.2 A point-line geometry or point-line space is a rank two geom-
etry.

A subspace X of a point-line geometry G 
 � P,L � is a subset of the point set P such
that any line of L intersecting the set X in at least two points is completely contained
in X. Using the observation that the intersection of subspaces again is a subspace,
we de�ne for each subset Y of the point set P the subspace � Y � generated by Y to
be the intersection of all subspaces of G containing the set Y. Hence � Y � denotes
the smallest subspace of G containing Y. A plane is a subspace of G generated by
two intersecting lines.  e point-line geometry G is called planar if any pair of
intersecting lines are contained in a unique plane.

 e order of a geometry G equals k � N, if all lines of G are incident with exactly
k � 1 points.
A partially linear space is a point-line geometry G 
 � P,L � with the property that
each line contains at least two di�erent points and two di�erent points are in at most
one common line, the connecting line of these two points. We call two di�erent
points contained in a common line collinear. A partial linear space is called thick,
if all lines contain at least three points.

 e point graph of G is the graph with vertex set P in which two di�erent points
are adjacent if and only if a, b are collinear. G is connected if the point graph of G
is a connected graph.

A linear space is a partially linear space in which any two points are collinear, so
any two di�erent points admit a connecting line.

A projective space is a linear space in which the Veblen-Young axiom is satis�ed:
Suppose a,b, c and d are distinct points.  en the connecting line lab of a and b
intersect the connecting line lcd of c and d if and only if the connecting lines lac
and lbd of a and c resp. of b and d intersect, see also page 2.
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A.1 Concept of a geometry

A polar space is a partially linear space in which the Buekenhout-Shult axiom, see
[18], holds: Suppose p is a point and l is a non-incident line.  en either one or all
points on l are collinear to p.

We recall the de�nition of a graph. A graph is a set of vertices with a family of
(unordered) pairs of distinct vertices, called edges. Two vertices are called adjacent
if there is an edge towhich they both belong. A graph is bipartite if its set of vertices
can be partitioned into two disjoint subsets such that no two vertices in the same
subset lie on a common edge. A clique or complete graph is a graph in which all
unordered pairs of vertices are edges. A circuit or a cycle of a graph is a closed path
in that graph.  e girth of a graph is the length of the shortest cycle contained in
that graph. It is simple to identify all ags of a geometry

�
in the incidence graph

Γ� as a ag of
�
is a clique in Γ� and a clique in the incidence graph Γ� is a ag of�

.

We will associate to a graph some geometries.  erefore let Γ be a graph with vertex
set � and edge set E. We set I 
 � vertex, edge � ,
let X 
 � � E,
let typ � X � I be the map with typ � x � 


���� ��� vertex if x � �
edge if x � E , and

let � be the symmetrised containment on the set X, so x � y if and only if either
x � y or y � x for any two elements x, y � X.

 en
�
Γ

 � X, � , typ

�
is called the vertex-edge-incidence system of the graph Γ or

the 1-simplex incidence system of Γ.

Next we denote with T the set of all triples � x, y,z � � � such that any pair � g,h � �

� x, y,z � is an edge in Γ.  erefore T is the set of all 3-cliques, or triangles, of the
graph Γ. In this setup we de�ne I 
 � vertex, edge, triangle � ,

let X 
 � � E � T,
let typ � X � I be the map with typ � x � 


������� ������
vertex if x � �
edge if x � E
triangle if x � T

, and

let � be the symmetrised containment on the set X, so x � y if and only if either
x � y or y � x for any two elements x, y � X.
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 en
�
Γ

 � X, � , typ

�
is called the vertex-edge-triangle incidence system of the

graph Γ or the 2-simplex incidence system of Γ.

Let V be a vector space of �nite dimension n � 1.  en the projective geometry
P � V � 
 � X, � , typ

�
is de�ned as follows.

•  e elements are all non-trivial subspaces ofV, so X 
 � 1 � k � nGk � V
�
, where

Gk � V
�
are the Grassmannian of V of dimension k.

• For an non-trival subspaceW of V of dimension k � 1, we set typ � W � 
 k,
thus I 
 � 0, . . . ,n � 1 � .

• Subspaces U and W are incident, in symbols U � W, if and only if either
U

�
W orW

�
U, (this condition is also called symmetrised inclusion).

 e elements of type 0 resp. 1 are called points resp. lines.

Next we give the de�nition of a residue. Let
� 
 � X, � , typ

�
be an incidence system

over the index set I and F be a ag of
�
.  en the residue of F in

�
is the triple�

F

 � XF, � F , typ F

�
, where XF


 F � � F and � F , typ F are just the restrictions of �

and typ to XF
� XF and XF, respectively.

Proposition A.1.3 (Proposition 1.5.3 of [16]) For a geometry
� 
 � X, � , typ

�
over

I and a ag F of
�
, the following assertions hold.

•  e residue
�
F is a subgeometry of

�
over type I � typ � F � .

• A subset A of XF is a ag of
�
F if and only if F � A is a ag of

�
.

• If A is a ag of
�
F, then � � F � A 
 � F �

A.

An incidence system
� 
 � X, � , typ

�
over I is called residually connected if and

only if for each ag F of corank at least two of
�
the incidence system

�
F is con-

nected. Residual connectedness gives rise to some powerful properties.

Proposition A.1.4 (Lemma 1.6.4 of [16]) A residually connected incidence system is
a residually connected geometry if no ag of corank one is maximal.

In the following part, we capture some characteristics of rank 2 geometries.  ere-
fore for the next part we consider a rank 2 geometry over � p, l � . Recall, in a con-
nected geometry

� 
 � X, � , typ
�
over I, two elements x, y of

�
are said to be at

distance k 
 d � x, y � if they are at distance k in the incidence graph Γ� . For j � I,
the j-diameter dj of

�
is the largest number occurring as a diameter of Γ� at some

236



A.2 Coverings and simple connectedness of geometries

element of type j. If I 
 � p, l � , then the di�erence between dp and dl is at most one
and the larger one is equal to the diameter d of Γ� .

A circuit in a geometry
�
over I 
 � p, l � is a chain x 
 x0 � x1 � x2 � . . . � x2n


 x from
x to x, with xi �� � xi � 2,xi � 1,xi � 1,xi � 2 � for i 
 0, . . . ,2n (all indices taken modulo
2n and n

�
0). Its length 2n is necessarily even.  e minimal number g

�
0 such

that
�
has a circuit of length 2g is called the girth of the geometry

�
. If
�
has no

circuits, we put g 
 � .
 e girth g of a geometry

�
over I 
 � p, l � satis�es

either 2
�
g

�
dp

�
dl

�
dp � 1

or 2
�
g

�
dl

�
dp

�
dl � 1.

For a proof of this statement see lemma 2.3.6 of[16].

De�nition A.1.5 If
�
is a � p, l � -geometry with �nite diameter d and with girth

g having the same diameter di at all elements of type i, for i � � p, l � then � is
called a � g,dp,dl

�
-gon over � p, l � . If, in addition, g 
 dp 
 dl , then

�
is called a

generalized g-gon.

Generalized 2-gons are also called generalized digon and in a generalized digon
each element of type p is incident with each element of type l. Generalized 3-gons
are also called projective planes or generalized triangle , generalized 4-gons are
called generalized quadrangles and likewise, generalized 6-gons (respectively, 8-
gons) are called generalized hexagons (respectively, generalized octagons ). Gen-
eralized polygons is the name used for all generalized g-gons (g

�
2).

A.2 Coverings and simple connectedness of geometries

De�nition A.2.1 Let
�
be a geometry. A path or a chain of length k in the geom-

etry is a sequence of elements x0,x1, . . . ,xn such that xi �
 xi � 1 (we do not allow
repetitions) and xi � xi � 1 for 0 �

i
�
n � 1. A cycle or a circuit based at an element

x 
 x0 is a path of length k in � with the property that x0 
 xk. So a path (cycle) of�
is a path (cycle) in the incidence graph Γ� .

Two paths of the geometry
�
are homotopically equivalent if one can be obtained

from the other using only the following operations: inserting or deleting a cycle of
length two, a return, or a cycle of length three, a triangle.  ese operations are
called elementary homotopies. A cycle that is homotopically equivalent to a cycle
of length 0 is called null homotopic, or homotopically trivial.
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 e equivalence classes of homotopically equivalent cycles based at an element x
is a group with concatenation as operation.  is group is called the fundamental
group of

�
(at x) and is denoted by π1 � � ,x � .  e fundamental group π1 � � ,x � of

the geometry
�
is independent of the choice of the base point x in a �xed connected

component.

In geometry, as in every structure theory, the concept of di�erent types of mor-
phisms is essential.

De�nition A.2.2 Let
� 
 � X, � , typ

�
be an incidence system over the index set

I and
�� 
 �

�

X, �̂ ,
�

typ
�
be an incidence system over the index set

�

I. A morphism
φ �

��
�
�
is a map φ �

�

X � X such that for all x, y �
�

X,

• x �̂ y implies φ � x � � φ � y � ,
•

�

typ � x � 
 �

typ � y � if and only if typ � φ � x � � 
 typ � φ � y � � .

If also I=
�

I and if typ � x � 
 �

typ � φ � x � � for all x � X then the morphism φ is called
a homomorphism.

An injective homomorphism φ �
��
�
�
of incidence systems is also called an

embedding of
��
into

�
. A bijectivemorphism φ is called a correlation if the inverse

map φ � 1 is a morphism, as well.

Suppose a morphism φ �
��
�
�
of incidence systems is a homomorphism and a

correlation, then φ is an isomorphism and we write
�

Γ � Γ.

A morphism φ �
��
�
�
of incidence systems is called covering if and only if φ

is surjective and for every non-empty ag F in
��
the morphism φ induces an iso-

morphism between the residue
��
F and the residue

�
φ � F � . We call

��
a cover of

�
.

Furthermore a connected incidence system
�
is called simply connected if any cov-

ering φ �
��
�
�
is in fact an isomorphism.

If I is a �nite set and k � � I � , then a k-covering φ �
��
�
�
between connected

incidence systems
��
and

�
over I is a surjective homomorphism such that for every

ag F of
��
of corank at most k the morphism φ induces an isomorphism between

��
F and

�
φ � F � . We call

��
a k-cover of

�
.

Directly from the de�nitions we have that a covering between incidence systems
��

and
�
is a covering between geometries

��
and

�
if and only if either

��
or
�
is a

geometry.

If we consider a geometry via its incidence graph, which is a simplicial complex, we
can use the following result from the theory of simplicial complexes.
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A.3 Permuatation groups

Proposition A.2.3 (chapter 8 of [78]) If
�
is a connected geometry and x an ele-

ment of
�
, then the group π1 � � ,x � is trivial if and only if all coverings of � are iso-

morphisms.

In particular, a connected geometry with trivial fundamental group is simply con-
nected. We are returning to graphs and want to de�ne the notion of a covering for
graphs. Let Γi


 ��� i,Ei � for i 
 1,2 be two graphs. A graph morphism is a map-
ping δ � Γ1 � Γ2 such that if

� x, y � is an edge of E1 then either δ � x � 
 δ � y � or
else � δ � x � ,δ � y � � is an edge of E2. A graph morphism is injective resp. surjective if
and only if the map δ as a map between the vertex sets � 1 and � 2 is injective resp.
surjective.

De�nition A.2.4 A 1-covering π �
�

Γ � Γ between connected graphs is a covering
between the standard vertex-edge incidence systems of

�

Γ and Γ. A 2-covering, also
called a covering π �

�

Γ � Γ between connected graphs is a covering between the
standard vertex-edge-triangle incidence systems of

�

Γ and Γ.

From a graph theoretical point a 1-covering π �
�

Γ � Γ of connected graphs is a
surjective graph morphism, such that for each vertex x of

�

Γ the map π induces a
bijective graph morphism between

�

Γx and Γπ � x � . On the other hand a 2-covering
π �

�

Γ � Γ of connected graphs is a surjective graph morphism π inducing a graph
isomorphism between Γ̂x and Γπ � x � for every vertex x of

�

Γ.

Let Γ be a connected graph then Γ is 2-simply connected, or simply connected, if
the vertex-edge-triangle incidence system of

�
is simply connected.

A covering π �
�

Γ � Γ of connected graphs
�

Γ and Γ mapping the vertex x̂ �
�

Γ to
x � Γ is called universal if for any covering δ � ∆ � Γ and any y � δ � 1 � x � , there
exists a unique covering map φ �

�

Γ � ∆with π 
 φ � δ and φ � x̂ � 
 y.

Proposition A.2.5 Let Γ be a connected graph.  en a universal covering π �
�

Γ � Γ
for Γ always exists. Moreover this universal cover

�

Γ is simply connected and Γ is locally
Σ if and only

�

Γ is locally Σ.

Proposition A.2.6 A connected graph Γ is simply connected if and only if every cycle
of Γ can be decomposed into triangles.

A.3 Permuatation groups

If G is a group and X a set, a group homomorphism α � G � Sym � X � is called a
permutation representation ofG in X. In this case, X is also referred to as aG-set.
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A permutation representation is called faithful if α is injective. Let x � X, the set� α � g � � x � � g � G � is called theG-orbit of x inX.  epermutation representation is
called transistive if there is only oneG-orbit in X.  e stabiliser of x inG, denoted
by Gx is the subgroup

� g � G � α � g � � x � 
 x � of G.
As usual, instead of a permutation representation ofG in X, we shall o�en speak of
an action ofG on X. IfH is a subgroup ofG, there is a standard way of constructing
a transitive permutation representation.

For H a subgroup of the group G, set α � g � � aH � 
 gaH for all g,a � G. We call the
representation α � G � Sym � G � H � the permutation representation of G over H.
Any transitive permutation representation can be described as a permutation rep-
resentation over a subgroup. To bemore precise, we need the notion of equivalence.

Two permutation representations α � G � Sym � X � and β � G � Sym � Y � are said
to be equivalent if there is a bijection γ � X � Y such that γα � g � γ � 1 
 β � g � for
each g � G or equivalently, γα � g � 
 β � g � γ for all g � G.
For instance, if α is the permutation representation of G over a subgroup H, then,
for a � G, the stabiliser of aH is aHa � 1. So, α is equivalent to the permutation
representation of G over the conjugate aHa � 1 of H.

 eorem A.3.1 (Fundamental  eorem of Permutation Groups, theorem 8.1.5 of [16])

Let α � G � Sym � X � be a transitive permutation representation.  en, for any x � X,
the permutation representation of G over Gx is equivalent to α.

 is theorem has analogue for several structures whose underlying set admits a
transistive permutatution. Certainly, if the structure will be transferred into group
data, the group of the representation should act as a group of automorphisms.

De�nition A.3.2 If ∆ denotes a structure and Aut � ∆ � the group of all automor-
phisms of ∆ then we shall say that α is a representation of G in ∆ if it is a group
homomorphism α � G � Aut � ∆ � .
Two representations α,β of a group G in structures ∆,∆ � (of same kind) are called
equivalent if there is an isomorphism γ � ∆ � ∆ � establishing equivalence between
the associated ordinary representations α � G � Sym � ∆ � and β � G � Sym � ∆ � � ,
where Sym � ∆ � is the symmetric group on the natural set underlying ∆.

A.4 Chamber system

A chamber system � 
 � C, � � i
�
i � I
�
over a type set I is a set C whose elements are

called chambers together with equivalence relations � i, i � I, on the chamber set C,
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A.4 Chamber system

such that if c � i d and c � j d then either i

 jor c 
 d. For i � I and chambers

c,d � Cwe say that c and d are i-adjacent if c � i d.  e chambers c and d are called
adjacent if they are i-adjacent for some i � I.  e rank of the chamber system � is
� I � .
A chamber system called thick if for every i � I and every chamber c � � , there are
at least three chambers (c itself and at least two other chambers) i-adjacent to c. A
chamber system is called thin if c is i-adjacent to exactly two chambers (to c itself
and excatly one other chamber) for every i � I and every c � � .

Let I be a �nite index set and � 
 � C, � � i
�
i � I
�
be a chamber system over I. A

gallery γ in � is a �nite sequence γ 
 c0, c1, . . . , cn of chambers in � such that ck � 1

is adjacent to ck for 1
�
k

�
n.  e length of the gallery γ is the number k. Let γ

be a gallery of � , then we set α � γ � 
 c0 and ω � γ � 
 cn.  e chambers c,d � � are
joint by a gallery γ in � if there is a gallery γ of � such that α � γ � 
 c and ω � γ � 
 d.
We say also the gallery γ joints the chambers c and d of � .  e chamber system �
is connected if for any two chambers of � are joint by a gallery. A gallery γ is called
closed if α � γ � 
 ω � γ � and we say a gallery γ is simple if ck � 1 �
 ck for all 1 �

k
�
n.

Let γ 
 c0, c1, . . . , cn be a gallery of a chamber system � then we denote with γ � 1

the gallery cn, cn � 1, . . . , c1, c0 and if δ

 d0,d1, . . . ,dm is also a gallery of � with

α � δ � 
 ω � γ � then γδ is the gallery c0, c1, . . . , cn,d0,d1 , . . . ,dm of � .

Next let J
�
I, a J-gallery of � is a gallery γ such that ck � 1 � j ck with j � J for

each index 1
�
k

�
n. Given two chamber c and d of � , then we say c and d are

J-equivalent if there is a J-gallery γ of � joining c and d and we write c � J d.
Certainly, if two chambers c and d are i-adjacent then c and d are also i-equivalent.

We �x a subset J of I and a chamber c � � .  e set of chambers RJ � c � 
 � d � � �
c � j d for some j � J � is the J-residue of c. For each c � � and each subset J of I the
pair

�
J � c � 
 � RJ � c � , � � j

�
j� J
�
is a connected chamber system of type J and rank

� J � . If J 
 i, then we call the rank one residue �
i � c � of type i the i-panel of c or the

i-panel containing c.

 rought the next part, let � be a chamber system of type I, where I is �nite and m
be some natural number, so m

�
1.

Two galleries γ and δ of � are elementary m-homotopic if there are two galleries
ε and ψ and two J-galleries γ0 and δ0 for some J

�
I of cardinality at most m such

that γ 
 εγ0ψ and δ 
 εδ0ψ. Two galleries are m-homotopic if there is a �nite
sequence γ0,γ1, . . . ,γl of galleries of � such that γ 
 γ0, δ 
 γl and γk � 1 is elemen-
tary m-homotopic to γk for each 1

�
k

�
l. Certainly if two galleries γ and δ are

m-homotopic then α � γ � 
 α � δ � and ω � γ � 
 ω � δ � .
Let γbe a closed gallery of � , then γ is callednull-m-homotopic if γ ism-homotopic
to the gallery α � γ � . A chamber system � is m-simply connected if every closed

241



A Synthetic geometry

gallery of � is null-m-homotopic. If m 
 2 then we also say � is simply connected
instead of 2-simply connected.

Amorphism α � � C, � � i
�
i � I
�
� � C � , � � i �

�
i � � I
�
of chamber systems over I is a map

α � C � C � for which a permutation π of I can be found such that, for all c,d � C,
the relation c � i d implies α � c � � π � i � α � d

�
. If π 
 id, the morphism is said to be a

homomorphism. As usual, a bijective homomorphism whose inverse is also a ho-
momorphism is called an isomorphism and an isomorphism from � to � is called
an automorphism of � . We denote by Aut � � � the group of all automorphisms of
� .

Let G be a group of automorphisms of a chamber system � . When G is transitive
on the set of chambers of � , we say G is chamber transistive on � . We also say that
a chamber system � is chamber transistive if Aut � � � is chamber transistive.
If � is chamber transitive, an easy description of � can be given in terms of G and
of some its subgroups.

Let G be a group, B a subgroup, � Pi � i � I a family of subgroups of G such that B �
Pi

for every i � I.  e chamber systemdetermined byG on Bwith respect to � Pi � i � I,
notation � 
 � � G,B, � Pi � i � I � , is de�ned as the set of all cosets gB, g � G, with
gB � i hB if and only if gPi


 hPi.
 e group G acts as a group of automorphisms of � � G,B, � Pi � i � I � by le� multipli-
cation and of course G is chamber transistive on � � G,B, � Pi � i � I � .

Proposition A.4.1 (proposition 3.4.5 of [16]) Suppose that � is a chamber system
over I with chamber transitive group of automorphisms G.  en there are subgroups
B and subgroups � Pi � i � I of G such that � is isomorphic to � � G,B, � Pi � i � I � .

Fix a chamber c in � then we put B 
 Gc and set Pi 
 Pci the stabiliser in G of the
i-panel in � containing c.  en � is isomorphic to � � G,B, � Pi � i � I � .
 e next proposition is a variation of theorem A.3.1 concerns chamber systems, in
which G is a chamber transitive group of automorphisms of a chamber system �
over I.

A homomorphism G � Aut � � � is called a permutation representation of G in the
chamber system � .

Proposition A.4.2 (proposition 8.6.2 of [16]) If α � G � Aut � � � is a chamber
transitive representation of G on a chamber system � , then, for any chamber c of � ,
the canonical representation of G in � � G,Gc, � Pci

�
i � I
�
is equivalent to α.
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A.5 The fundamental group of a topological space and the
Seifert-Van Kampen theorem

 e fundamental group is a tool to study topological spaces. First we concern paths
in a topological space, which leads to a description of the �rst homotopy group π1.

Apathω in a topological spaceX is de�ned to be a continuousmapω � I 
 �
0, 1 � � X.

 e origin of the path ω is the point ω � 0 � and the end of the path ω is the point
ω � 1 � . We say, that ω is a path fromω � 0 � to ω � 1 � . A closed path or a loop , at x0 � X
is a path ω such that ω � 0 � 
 ω � 1 � 
 x0. For paths ω and ω � in Xwith ω � 1 � 
 ω � � 0 � ,
we de�ne the product path ω � ω � in X be the formula

ω � ω � � t � 
 ���� ��� ω � 2t � 0
�
t

� 1
2

ω � � 2t � 1 � 1
2

�
t

�
1
.

Two paths ω and ω � in X are briey said to be homotopic, denoted by ω � ω � ,
if there exists a continuous map F � �

0, 1 � �
�
0, 1 � � X such that F � t,0 � 
 ω � t �

and F � t, 1 � 
 ω � � t � for every t � �
0, 1 � and F � t, s � 
 ω � t � for t � � 0, 1 � and every

s � �
0, 1 � . For any points x0,x1 � X the relation ω � ω � is an equivalence relation

in the set of paths from x0 to x1.  e resulting equivalence classes are called path
classes and if ω is a path in X, the path class containing ω is denoted by

�
ω � .

 eorem A.5.1 (theorem 1.7.7 and theorem 1.7.8 of [81]) For each topological space
X there is a category � � X � whose objects are the points of X, whose morphisms from
x1 to x0 are the path classes with x0 as origin and x1 as end, and composite is the
product of path classes. Moreover � � X � is a groupoid.

Furthermore we say a topological space X is path-connected if any two point of X
can be joined by a path. Let X be a topological space and x0 � X.  e fundamental
group of X at x0, denoted by π � X,x0 � , is de�ned to be the group of path classes
with x0 as origin and end. Certainly, π � X,x0 � is a group.
We de�ne a topological space X to be simply connected if and only if X is path-
connected and the fundamental group of X is trivial, i.e. consists only of the identity
element.

 e Seifert-Van Kampen theorem is a very important computational tool used for
computing the fundamental group, and essentially relates a space to (smaller) por-
tions of that space.

 eorem A.5.2 (Seifert-Van Kampen eorem, see [81]) Let X 
 U � V be a con-
nected topological space, where U,V and U 	 V are nonempty and connected. Let
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furthermore x0 be a point in U 	 V and iU � π � U,x0
�
� π � X,x0 � as well as

iV � π � V ,x0
�
� π � X,x0 � be the induced homomorphisms by the inclusions maps.

 en π � X,x0 � 
 π � U,x0
�

�

π � U �
V,x0 � π � V ,x0

�
, that is, the fundamental group of X

is the free product of the fundamental groups ofU andV with amalgamated subgroup
the fundamental group of U 	 V.

In detail G1
�

AG2 is the free productG1
� G2 with relations given by φ1 � a � 
 φ2 � a � ,

where φi � A � Gi for i

 1,2.

For example, if X 
 U � V and U 	 V is simply connected, then π � X,x0
� 


π � U,x0
�

� π � V ,x0
�
. Likewise, if V is simply connected and X 
 U � V , then

π � X,x0 � 
 π � U,x0
� � N, where N is a subgroup of π � U,x0

�
generated by the im-

age of π � U 	 V ,x0
�
.

A.6 Coxeter systems

In this section we introduce Coxeter systems.

De�nition A.6.1 A Coxeter matrix is a symmetric matrix M 
 � mij
�
i,j� I where

I is some index set of arbitrary cardinaliy, such that for all i, j � I the entry mij is
either a positive integer or

�
andmij


 1 if and only if i 
 j.  e Coxeter diagram
or Coxeter graph of a Coxeter matrix M is the graph with vertex set I joining two
di�erent vertices i and jby an edge labelled mijwhenever this number (including�
) is at least three.

A Coxeter diagram is called irreducible if its underlying graph is connected.  e
rank of a Coxeter diagram is the cardinality of its vertex set.

De�nition A.6.2 A Coxeter system is a pair of � W,S
�
consisting of a group W

and a set of generators S � W, subject only to relations of the form � ss � � mss � 
 1,
wheremss


 1 and mss � 
 ms � s
�
2 for s �
 s � in S. In case that no relation occurs for

a pair s, s � of S, we set mss � 
 � .

 us formallyW 
 F � N, where F is a free group on the set S and N is the normal
subgroup generated by all elements � ss � � mss � . Moreover we call W be a Coxeter
group.

To specify a Coxeter system � W,S
�
is to specify a �nite set S and the symmetric

matrixM � W,S � 
 � mss �
�
s,s � � S, thus theCoxetermatrixM � W,S � of theCoxeter system

� W,S
�
.
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A Coxeter system � W,S
�
is called spherical if the corresponding Coxeter groupW

is �nite.

Here are some examples:

Example 1: In case all m � s, s � � are in�nite, when s �
 s � , we call W a universal
Coxeter group. If � S � 
 2, thenW is just the in�nite dihedral group D � .

Example 2: Let S 
 � s1, s2, s3 � with ms1,s2

 3, ms1,s3


 2, ms2 ,s3

 � , so the

Coxeter graph is
�

.  e resulting Coxeter group W turns
out to be isomorphic to PGL2 � Z � 
 GL2 � Z � � � � 1 � .

A.7 Buildings

LetΦ 
 Φ∆ be a root system of type ∆over I

 � 1, . . . ,n � and � W,S

�
be a spherical

Coxeter system of type ∆, so S 
 � ραi � i � I � whereΦbasis � α1, . . . ,αn is a basis of
the root system Φ.

De�nition A.7.1 A building
�
of type ∆ is a pair

� 
 � C,δ � where C is a set and
δ � C � C � W is a distance function satisfying the following axioms for x, y � C
and w 
 δ � x, y � :
(Bu 1) w 
 1 if and only if x 
 y
(Bu 2) if z � C is such that δ � y,z � 
 s � S, then δ � x,z � � � w,ws � , and if, further-

more, l � ws � 
 l � w � � 1, then δ � x,z � 
 ws (or if no shortest representation
of w ends with s, then in fact δ � x,z � 
 ws

(Bu 3) if s � S, there exists z � C such that δ � y,z � 
 s and δ � x,z � 
 ws.

 e groupW is called theWeyl group of the building
�
and the building

�
is called

spherical if its Weyl groupW is �nite.

Given a building
� 
 � C,δ � , then we de�ne from the building �

a chamber system
� � � � 
 � C, � � i

�
i � I
�
where two chambers x, y � C are de�ned to be i-adjacent if

δ � x, y � 
 si or δ � x, y � 
 1.  e building
�
can be recovered from its chamber

system � � � �
.

Proposition A.7.2 Let M be a Coxeter diagram over a set I and let
�
be a building

of typeM.  en the chamber system � � � �
is simply connected.

Proof:  is is theorem 4.3 in [76]. ■

245



A Synthetic geometry

Let G be a group and B a subgroup of G.  en the group B � B act on G by
� b,h � � g � 
 bgh � 1 for b,h � B and g � G.  e orbits of B � B in G are the sets
BgB.  ey form a partition of G and the corresponding quotient space is denoted
by B � G � B.
Assume G is generated by B and an other subgroup N such that T 
 B 	 N is a
normal subgroup in N. LetW 
 N � T and suppose that W is generated by a sub-
set S consisting of involutions, elements of order two.  en we have the following
de�nition.

De�nition A.7.3 A Tits-system or a BN-pair in a group G is a pair B,N of sub-
groups such that following axioms are satis�ed:

(i) G 
 � B,N �
(ii) H � 
 B 	 N is a normal subgroup of N and the factor group N � H is a Coxeter
group with a set S of distinguished generators s1, . . . , sn

(iii) BsBwB
�
BwB � BswB for s � S and w � W

(iv) sBs �
 B for s � S.

Note that the double cosets like BwB are well-de�ned, if n,n � � N have the same
image inW, then nB 
 n � B and so wB is well de�ned. Furthermore axiom (i) and
(ii) imply that G 
 BNB.  us these axiom lead to the Bruhat decompostion, see
[19] or [76], which says that G is the disjoint union G 
 � w � W BwB.  e Bruhat
decomposition allows to go from BN-pair to a building, as follows:

Proposition A.7.4 Let � G,B,N,S
�
be a Tits system, G � B 
 � gB � g � G � and

δ � G � B � G � B � W by δ � gB,hB � 
 w if and only if g � 1h � BwB for all g,h � G.
 en � G � B,δ � is a thick building of type � W,S

�
and G is strongly transitive on G � B.

We want see how a Tits system can arise in the context of semi-simple Lie groups.
Let K be a compact connected Lie group,G its complexi�cation and t be a maximal
torus of K. We consider the complexi�cation T 
 tC of t and regard the standard
Borel subgroup B of G. Let N 
 NG � T � be the normaliser in G of T and S be the
set of simple reections inW 
 N � T with respect to the basis ∆ of the root system
R � L � G � ,L � T � � determined by B.  en by [19] or [57] we obtain that � B,N � is a
Tits system of G.

We want recall some facts for a Tits system � B,N � of groupG. Proofs can be found
in [57].

Lemma A.7.5  e set S of simple reections of the Weyl group W 
 N � T contains
precisely those w � W for which B � BwB is a group.
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 eorem A.7.6 If I
�
S.  en PI


 BWIB withWI

 � I � is a subgroup of G. Fur-

thermore for w,w � � W we get BwB 
 Bw � B if and only if w 
 w � .
 eorem A.7.7 •  e only subgroups of G containing B are those of the form

PI

 BWIB with I � S.

• If PI is conjugate to PJ then PI

 PJ.

• NG � PI � 
 PI
• IfWI

�
WJ then I

�
J.

• If PI
�
PJ then I

�
J.

Let � G,B,N,S
�
be a Tits system, where G is the complexi�cation of a compact

connected Lie group K, B a Borel group including a maximal torus T, which is
the complexi�cation of a maximal torus t of K, N 
 NG � T � , W the Weyl group
and S the set of simple reections with respect to the basis ∆ of the root system
Φ 
 R � L � G � ,L � T � determined by B.
 e parabolic subgroups of G containing B (not one of its conjugate) are called
standard parabolic subgroups of G relative to B. Let g 
 L � G � be the lie algebra
of G, then the lie algebra of PI is pI


 tC
�
α � Λ gα, where t is a Cartan subalgebra of

L � K � and tC the complexi�cation of t and Λ is some subset of the root system Φ
containing Φ � .
 eorem A.7.8

• Each parabolic subgroup of G is conjugate to one and only one subgroup PI,
where I

�
∆.

•  e roots of PI relative to T are those inΦ
� along with those roots inΦ � which

are Z-linear combinations of I.

Recall, that for any integer g
�
2 or for g 
 � , a generalized m-gon is a connected

rank 2 geometry
�
over I 
 � p, l � with of diameter m and grith 2m, in which each

element of type p is incident to at least two di�erent elements of type l.  us the
incidence graph Γ� of

�
is a connected bipartite graph with diameter m and grith

2m in which each vertex has at least two neighbors.

Proposition A.7.9 A rank two building of type m is a generalized m-gon,
and vice versa.

Proof:  is is proposition 3.2 in [76]. ■
 us the shortest cycle in a rank two building of type 2 is of length four

and the shortest cycle in a rank two building of type
3
is of length six.
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A.8 Phan theory

In 1977 Kok-Wee Phan [74] gave a method for identifying a groupG as a quotient of
the �nite unitary group SUn � 1 � Fq2 � by �nding a generating con�guration of sub-
groups

SU3 � Fq2 � and SU2 � Fq2 � � SU2 � Fq2 �

inG. Suppose n
�
2 and suppose q is a prime power. ConsiderG 
 SUn � 1 � Fq2 � act-

ing as matrices on a unitary � n � 1 � -dimensional vector space over Fq2 with respect
to an orthonormal basis and let Ui � SU2 � Fq2 � , i 
 1,2, . . . ,n, be the subgroups
of G, represented as matrix groups with respect to the chosen orthonormal basis,
corresponding to the � 2 � 2

�
-blocks along the main diagonal. Let Ti be the diago-

nal subgroup in Ui, which is a maximal torus of Ui of size q � 1. When q � 2 the
following hold for 1

�
i, j

�
n:

(P1) if � i � j� � 1, then �
x, y � 
 1 for all x � Ui and y � Uj;

(P2) if � i � j� 
 1, then � Ui,Uj � is isomorphic to SU3 � Fq2 � ; moreover
�
x, y � 
 1 for

all x � Ti and y � Tj; and
(P3) the subgroups Ui, 1

�
i

�
n, generate G.

Suppose G is an arbitrary group containing a system of subgroups Ui � SU2 � Fq2 � ,
and suppose a maximal torus Ti of size q � 1 is chosen in each Ui. If the conditions
(P1)–(P3) above hold for G, we will say that G contains a Phan system of type An

over Fq2 .

In [74] Kok-Wee Phan proved the following result:

Phan’s eorem:
Let q

�
5 and let n

�
3. If G contains a Phan system of type An over Fq2 , then G is

isomorphic to a central quotient of SUn � 1 � Fq2 � .
In [75] Phan proved similar results for �nite groups corresponding to all simply
laced Dynkin diagrams. Phan’s theorems were used for the identi�cation of simple
groups.  us Phan’s theorem are important for the revision of the classi�cation of
the �nite simple groups [29], [30], [31], [32], [33], [34]. Also the question was raised
whether one could generalise and unify Phan’s results.  e programdescribed in [5]
led to new proofs of some of Phan’s old results, see [6], [41], and to new unexpected
Phan-type theorems, see [36], [37].  e ideas for the new proofs can be found in the
theory of ag-transitive diagram geometries and the area of amalgams of groups.
In fact, Phan’s theorem is a characterisation of the geometry

� 
 � � n,Fq2
�
of

all proper non-degenerate subspaces in the unitary vector space Un over Fq2 .  e
connection between Phan’s theorems and diagram geometries was �rst observed by
M. Aschbacher in [3].
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Here we give the exact results, which are proved in [6], [36], [42] and [44].

For n
�
2, let ∆ be a Dynkin diagram of rank n and I 
 � 1, . . . ,n � be the set of

labels of ∆. A group H admits a weak Phan system of type ∆ over the complex
numbers, if H is generated by subgroups Ui, i � I, that are central quotients of
simply connected compact semisimple Lie groups of rank one, i.e., Ui � SU2 � C �
or Ui � SO3 � R � � PSU3 � C � for all 1 �

i
�
n, and if the groups Ui are embedded

as rank one groups with respect to a fundamental system of roots of the groups
Uij


 � Ui ,Uj � , which have following isomorphism types:

� Ui,Uj � �

�������������� �������������

� Ui
� Uj

� � Z in case
i j

where

Z is a central subgroup of Ui
� Uj

SU3 � C � or PSU3 � C � in case
i j

U2 � H � or SO5 � R � in case
i j

or
i j

G2, � 14 in case
i j

or
i j

.

 eorem A.8.1 (Main eorem of [42]) Let ∆ be a Dynkin diagram and let G be a
group admitting a weak Phan system of type ∆ over C.  en G is a central quotient
of the simply connected compact semisimple Lie group whose complexi�cation is the
simply connected complex semisimple Lie group of type∆. In particular, for irreducible
Dynkin diagrams, the group G is a central quotient of

• SUn � 1 � C � , if ∆ 
 An,
• Spin2n � 1 � R � , if ∆ 
 Bn,
• Un � H � , if ∆ 
 Cn,
• Spin2n � R

�
, if ∆ 
 Dn,

• E6, � 78, if ∆

 E6,

• E7, � 133, if ∆

 E7,

• E8, � 248, if ∆

 E8,

• F4, � 52, if ∆

 F4.

For a �nite �eld Fq2 , we have the following de�nition and result. We will say that
subgroups U1 and U2 of SU3 � Fq3 � form a standard pair whenever each Ui is the
stabilizer in SU3 � Fq2 � of a non-singular vector vi (vi is then unique up to a scalar
factor) and, furthermore, v1 and v2 are perpendicular. By Witt’s theorem, standard
pairs are exactly the conjugates of the pair formed by the two subgroups SU2 � Fq2 �
arising from the 2 � 2 blocks on the main diagonal. Standard pairs in PSU3 � Fq2 � will
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be de�ned as the images under the natural homomorphism of the standard pairs
from SU3 � Fq2 � . For n �

2, let ∆ be a Dynkin diagram of rank n and I 
 � 1, . . . ,n �
be the set of labels of ∆. A group H admits a weak Phan system of type ∆ over
the Fq2 , if H is generated by subgroups Ui, i � I, such that Ui � SU2 � Fq2 � for all
1

�
i

�
n, and if the groups Ui are embedded as rank one groups with respect to

a fundamental system of roots of the groups Uij

 � Ui,Uj � , which have following

isomorphism types:

� Ui,Uj � �

������������ �����������

� Ui
� Uj

� � Z in case
i j

where

Z is a central subgroup of Ui
� Uj

SU3 � Fq2 � or PSU3 � Fq2 � in case
i j

Sp4 � Fq
� � Z in case

i j
or

i j
.

 eorem A.8.2 (theorem of [44]) Let n
�
3, q be some prime power, ∆ be a spher-

ical irreducible Dynkin diagram of rank at least three and G be a group admitting a
Phan system of type ∆ over Fq2 .  en G is a central quotient of

• SUn � 1 � Fq2 � , if ∆ 
 An, q �
4,

• Spin2n � 1 � Fq � , if ∆ 
 Bn, q �
4,

• Sp2n � Fq
�
, if ∆ 
 Cn, q �

3,

• Spin �2n � Fq
�
, if ∆ 
 Dn, q

�
4,

• 2E6 � Fq2 � , if ∆ 
 E6, q �
4,

• E7 � Fq � , if ∆ 
 E7, q �
4,

• E8 � Fq � , if ∆ 
 E8, q �
4,

• F4 � Fq � , if ∆ 
 F4, q �
11.

A.9 Root systems of type An and E6

In this part we will explicitly describe the root system of type An and of E6. A good
reference is [10] or [55].

root system of type An for n
�
1

• V is the hyperplane of Rn � 1 equipped with the standard scalar product � � , �
�
,

consisting of the vectors whose coordinates add up to 0 with respect to the
standard basis α � e1, . . . , en � 1.
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•  e root system ΦAn

 Φ is the set of all vectors of length

�
2 in the inter-

section of V 	 Ze1 � � � Zen � 1. So Φ consists of the n � � n � 1 � di�erent
vectors

ei
� ej for 1

�
i, j

�
n � 1, i �
 j.

• A basis ∆ for Φ is

α1

 e1 � e2,α2 
 e2 � e3, . . . ,αn 
 en � en � 1.

 en the root of maximal height with respect to ∆ is

α̃ 
 e1 � en � 1 
 α1 � α2 � � � αn.
root system of type E6

• Westart with vector spaceR8 equippedwith the standard scalar product � � , �
�
.

We consider the set L 
 � � ni � 1 λiei � λi � Z and � 8
i � 1 λi is even � . We take all

vectors v � L � Z � 1
2
� 8
i � 1 ei � such that � v,v � 
 2.  e six vectors

α1

 1

2
� e1 � e2 � e3 � e4 � e5 � e6 � e7 � e8 � ,

α2

 e1 � e2,

αi

 ei � 1

� ei � 2 for 3
�
i

�
6

are elements of L � Z � 1
2
� 8
i � 1 ei � . We de�ne V 
 � α1, . . . ,α6 � .

•  e root system ΦE6

 Φ is the set of all 72 vectors of length

�
2 lying in V .

So Φ consists of the di�erent vectors:

� ei
� � ej for 1

�
i, j

�
5, i �
 j,

� 1

2
� e8 � e7 � e6 �

5�

i � 1
� ei
�
,

where the number of minus signs in the sum is odd.

• A basis ∆ for Φ
α1, . . . ,α6.

 en the root of maximal height with respect to ∆ is

α̃ 
 1

2
� e1 � e2 � e3 � e4 � e5 � e6 � e7 � e8 � 
 α1 � 2α2 � 2α3 � 3α4 � 2α5 � α6.
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A P P E N D I X TWO

Enumeration in finite unitary spaces

In this appendix for convenience of the reader we collect a number of known results
that will be used extensively throughout the thesis. Let U be a �nite dimensional
vector space over the �nite �eld Fq2 .  e �nite �eld Fq2 has an automorphism of
order two σ � Fq2 � Fq2 with a � a 
 σ � a � 
 aq. By F0


 � a � Fq2 � a 
 a � we
denote the �xed �eld of order q of Fq2 under the automorphism σ. We start with
the following lemma which is proved in [86] or [98].

Lemma B.1.1 For any non-zero scalar λ of F0 the equation x � x 
 λ has exactly q � 1
solutions in F

�
q2 and the equation x � x 
 µ has precisely q solutions in Fq2 for any

µ � F0.

Notation:With F
σ,1 we will denote the set of scalars solving the equation λ � λ 
 0,

so F
σ,1 
 � λ � Fq2 � λ � λ 
 0 � and F

σ,1 � 

F
σ,1 � � 0 � .

Next we �x a non-degenerate sesquilinear form � � , �
�
on the n-dimensional vector

space U.  e Gram matrix Gα

 � � vi,vj � � 1 � i,j� n has full rank with respect to any

basis α � v1, . . . ,vn ofU. A vector v ofU is said to be isotropic (degenerate, singular)
resp. non-isotropic (non-degenerate, regular) if � v,v � 
 0 resp. � v,v � �
 0. If the
dimension of U is at least two then the unitary vector space U contains isotropic
and non-isotropic vectors, which is proved in [86] or [98]. In the �rst part of this
section we want to classify all subspaces up to dimension six in an n-dimensional
unitary vector space Un and simultaneously we will also �x some notation.

Let W be an m-dimensional vector subspace of Un such that m
�
n then W has

rank p
�
m, in symbols rk � W � 
 p if the rank of the Grammatrix GW

β with respect
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to some basis β of W is p. We call the subspace W non-degenerate (regular) if
rk � W � 
 dim � W � . Otherwise if rk � W � � dim � W � thenW is a degenerate (sin-
gular) subspace of U. We sayW is a totally singular subspace of the vector space
Un if rk � W � 
 0. Furthermore a regular subspace of dimension two is also called a
hyperbolic line.

An n-dimensional vector space Un over Fq2 is isomorphic to F
n
q2 , so Un contains

� q2 � n vectors. Consequently the number of k-dimensional subspaces, k �
n, inUn

is described by the Gaussian coe�cent

� n
k

�
q2

�� ni � n � k � 1 � q2i � 1 �
� k
i � 1 � q2i � 1 �

. (B.1)

Next letW be some k-dimensional subspace ofUn then exactly

� n � k
m � k

�
q2

(B.2)

di�erent m-dimensional subspaces of the n-dimensional vector spaceUn contains
the subspaceW.

For quick reference we refer to tables B.1 and B.2 on page 262.

Our next goal is to count and to arrange all k-dimensional subspaces of Un with
respect to their order of singularity. Since Un is a non-degenerate unitary vector
space for each subset M of Un we denote the orthogonal subspace ofM by

Mπ 
 � u � Un � � u,m � 
 0 for all m � M � .

 e radical of a subspace W of Un, denoted by rad � W � , contains all elements w
ofW such that � w,v � 
 0 for all elements v � W. Certainly in a non-degenerate
unitary vector space U a subspace W is totally singular if and only if W

�
Wπ

andW is non-degenerate if and only ifW 	 Wπ 
 � 0 � . Moreover the radical of a
degenerate subspaceW ofU is not trivial andwe get the identity rad � W � 
 W 	 Wπ

for every subspace W of a non-degenerate unitary vector space U. Two di�erent
subspaces W and V of the unitary vector space U are orthogonal to each other if
and only ifW

�
Vπ and equivalent V

�
Wπ.

From lemma 5.19 of [98] we get that an n-dimensional non-degenerate unitary vec-
tor space Un contains

qr � n � r � 2m � � n
i � n � r � 2m � 1 � qi � � � 1 � i �

� ri � 1 � qi � � � 1 � i � � m � r
i � 1 � q2i � 1 � (B.3)
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di�erent subspaces of dimension m and rank r for 2r
�
2m

�
n � r. Furthermore

in a � n � l � -dimensional unitary vector space Un � l of rank n are
min � l,m � r ��

k � max � 0, 2m � n � r �
1

2
�

qr � n � r � 2m � 2k � � 2 � m � k � � l � k �
�

n

�
i � n � r � 2m � 2k � 1 � qi � � � 1 � i � l

�
i � l � k � 1 � q2i � 1 �

r

�
i � 1 � q

i � � � 1 � i � m � r � k

�
i � 1 � q

2i � 1
� k

�
i � 1 � q

2i � 1
�

(B.4)
di�erent m-dimensional subspaces of rank r for max � 0, 2m � n � r

2
� �

min l,m � r.
Again for quick reference regarding these formulas, we list the possibilities for all
m-dimensional subspace with the rank of a n-dimensional non-degenerate unitary
vector space Un, m

�
n, 1

�
n

�
6 as well as of a n � l-dimensional rank n unitary

vector space for 1
�
n � l �

6 in table B.3 on page 264.

Beforewe start to determine the number of certain subspaces in someunitary vector
space, we make a simple observation.

Lemma B.1.2 LetW be an m-dimensional subspace of rank d of the unitary vector
space Un. An � m � d

�
-dimensional subspace H of the subspaceW is regular if and

only if H 	 rad � W
� 
 � 0 � .

Proof: Since one implication is certainly true we �x an � m � d
�
-dimensional sub-

space H with H 	 rad � W
� 
 � 0 � . Suppose dim � rad � H � � �

1 then rad � W � �� rad � H � , rad � W � � 
 rad � � H, rad � W � � � 
 rad � W � , contradiction. ■
Next letW be an m-dimensional vector space of rank r. It is natural to ask for the
number of all k-dimensional subspaces of rank l of the vector spaceUn containing
the given subspaceW. We determine this number for some special cases, which we
need later.

Observation B.1.3 Let P be a plane of rank one, then any two-dimensional sub-
space di�erent from the radical of P has rank one.

Next we consider a plane P of rank two.

Lemma B.1.4 Let P be a singular plane of rank two, so the radical of P is a one-
dimensional subspace x, a point. Every line not through the point x of P is a hyperbolic
line. Also every point y di�erent from x is incident to q2 di�erent hyperbolic lines.

Proof: Let l be a two-dimensional subspace of P not incident to the point x, so x �� l.
Suppose l is a singular subspace of P then we choose z to be a point in rad � l � .  e
three-dimensional space � l,x � is the plane P. However the radical of � l,x � contains
the two-dimensional space � z,x � , contradiction. In fact l is a hyperbolic line.
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For the second claim let y be a point of P distinct from x and denote the set of
lines containing the point ywith L. Suppose all q2 � 1 elements of L are singular
lines then any element of L contains the radical x.  us any line l � L contains the
point y and the point x implying that l 
 � y,x � , contradiction. Hence the point y
is incident to exactly one singular line s 
 � y,x � and all other lines di�erent from s
containing y are hyperbolic lines, which proves the statement. ■

Now we look at the non-degenerate planes P of the unitary polar space U. Recall
that a non-degenerate plane P ofU only contains lines of rank two and rank one by
the formula B.3 of page 255 and table B.3.

Lemma B.1.5 In a non-degenerate plane, any regular point is incident to q2 � q dif-
ferent hyperbolic lines and to q � 1 di�erent two-dimensional rank one subspaces. Any
singular point of a regular plane is contained in q2 hyperbolic lines and in one singular
line of this regular plane.

Proof: Let s be a singular point in P.  e orthogonal space sπ of s in P is a two-
dimensional singular subspace of P containing the point s itself as radical, which
show that the points s lies at least on one singular line in P. Suppose we can �nd
two di�erent singular lines l and m through the singular point s in P. We denote
the radical of the line l by xl resp. the radical of the line m by xm. A line of rank
one contains exactly one singular point by the formula B.4 of page 255 and table B.3
and we obtain that xl


 xm 
 s.  e space H spanned by the two di�erent lines l
and m in the plane P has dimension three, thus H 
 P. However the space H has
the radical rad � H � 
 s, contradiction. In fact a singular point of a regular plane is
incident to one singular line and to q2 hyperbolic lines.
Now we consider the case that z is a regular point of P.  e orthogonal space

zπ of the point z is a hyperbolic line in P, which contains q � 1 singular points and
q2 � q regular points by the formula B.3 of page 255 and table B.3. We pick one of
these points, call this point p, and obtain the two-dimensional subspace h 
�� z, p�
in P.  e Gram matrix of the line hwith respect to the basis β � zv, pv where zv is a

vector of z as well as pv is a vector of the point p, is of the form

�� � zv,zv � 0

0 � pv , pv �
��

implying that h is a hyperbolic line if p is a regular point and h has rank one if p is
a singular point of zπ. By construction the intersection of line h and zπ is the point
p, thus each regular point z of the regular plane P is incident to q2 � q di�erent
hyperbolic lines and to q � 1 di�erent two-dimensional rank one subspaces. ■

 e last statement implies that any two di�erent singular points of a non-degenerate
three-dimensional space P lie on di�erent singular lines. Indeed let z and s be two
singular points in P and suppose there is a singular line l containing both points, z
and s. It follows that rad � l � 
 s 
 z, contradiction.
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With the same methods we determine the number of all k-dimensional subspaces
of rank l of a four-dimensional spaces H containing a �xed point, line or plane of
H in the unitary vector space U over Fq2 .

Lemma B.1.6 Let H be a space of rank four.  en every hyperbolic line h of H is
incident to q2 � qnon-degenerate planes and to q � 1 planes of rank one. Furthermore
a regular point is incident to q4 � q3 � q2 hyperbolic lines and a singular point of H is
on q4 di�erent hyperbolic lines.

Proof: To prove this statement, let hbe a hyperbolic line and hπ its two-dimensional
non-degenerate orthogonal space in H. Due to the formula B.3 of page 255 and
table B.3 the hyperbolic line hπ has q2 � q regular points pi, 1

�
i

�
q2 � q, and

q � 1 singular points sj, 1 �
i

�
q � 1.  e planes � h, pi � are non-degenerate since

rad � � h, pi � � �
hπ 	 pπi 
 � 0 � and the spaces � h, sj � are planes of rank one using

that the Gram matrix of the subspace � h, sj � has rank two.
Next let pbe some point of H. Suppose p is regular then the polar space pπ of p
is a non-degenerate plane, which contains q4 � q3 � q2 regular points ri and q3 � 1
singular points sjby the formula B.4 on page 255. Since

� p, ri � is a hyperbolic line in
H for each point ri and

� p, sj � is a rank one line inH for any point sj, the statement
follows. On the other hand if p is a singular point, then of course pπ is a rank two
plane with radical p. Every line running through the point p in the plane pπ is
singular, thus p is incident to at least q2 � 1 singular lines in H. Let l be some two-
dimensional subspace in H with p � l and l �� pπ. Hence l 
 � p, r � for some point
r � l � pπ and thus the points pand r are not orthogonal to each other implying that
l is a hyperbolic line in H. Counting the number of lines through pwhich are not
contained in the plane pπ, we conclude that p is incident to q4 di�erent hyperbolic
lines. ■

Lemma B.1.7 Let H be a space of rank three.  en every hyperbolic line l of H lies
on q2 non-degenerate planes and on one plane of rank one. Every non-radical point
p of H is incident either to q4 hyperbolic and to q2 � 1 singular lines, if p is singular,
or to q4 � q3 hyperbolic and to q3 � q2 � 1 singular lines under the condition that p is
regular.

Proof: Let l be a hyperbolic line in H.  e orthogonal space lπ of the line l is a line
of rank one containing the radical ofH, since the spaceH has rank three. Clearly l is
contained in exactly one singular plane P 
 � l, rad � H � � and in q2 non-degenerated
planes � l, y � where y is a regular point of lπ.
For the second statement let p be a non-radical point of the 3-space H. If p is a
regular point then pπ is a rank two plane, which contains q4 � q3 di�erent regular
points and q3 � q2 � 1 distinct singular point. In fact the regular point p is incident
to q4 � q3 di�erent hyperbolic lines and to q3 � q2 � 1 distinct singular lines in H.
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B Enumeration in �nite unitary spaces

Alternatively if p is a non-radical singular point then pπ is rank one plane and
thus every line in pπ through the point p is singular. On the other hand every
line incident to the point p in H, which is not contained in the subspace pπ is a
hyperbolic line.  erefore the singular point p lies on q4 hyperbolic lines and on
q2 � 1 singular lines in H. ■

Observation B.1.8 In a four-dimensional rank two space H every hyperbolic line
h of H is incident to q2 � 1 planes of rank one.

Finally we consider a �ve-dimensional non-degenerate unitary spaceW and deter-
mine the number of regular planes as well as singular planes ofW, which contains
a �xed hyperbolic line h ofW.

Lemma B.1.9 LetW be a non-degenerate �ve-dimensional space.  en every hyper-
bolic line h ofW lies on q4 � q3 � q2 non-degenerate planes and is incident to q3 � 1
di�erent singular planes.

Proof: Let h be a hyperbolic line inW and hπ its three-dimensional non-degenerate
orthogonal space, a regular plane inW. Using the formula B.3 frompage 255 and the
tabular B.3we obtain that hπ contains q4 � q3 � q2 regular points pi , 1 �

i
�
q4 � q3 � q2

and q3 � 1 singular points sj, 1 �
i

�
q � 1.  e planes � h, pi � are regular and the

planes � h, sj � are of rank one. ■
Later we will need an easy formula to determine the number of hyperbolic lines in
an n-dimensional non-degenerate unitary vector space Un. We �nd this formula
by using the formula B.3 on page 255 for m 
 r 
 2 and some n �

2.

Observation B.1.10  e number of di�erent hyperbolic lines in an n-dimensional
regular unitary space Un is

q2m � 4
� � qm � 1 � � qm � 1 � 1 �
� q � 1 � � q2 � 1 �

if n is odd and
q2m � 4

� � qm � 1 � � qm � 1 � 1
�

� q � 1 � � q2 � 1 �

if n is even.

From table B.3 we get that a regular plane has q4 � q3 � q2 hyperbolic lines. A singular
plane of rank two contains q4 hyperbolic lines, while in a plane of rank less than two
are no hyperbolic lines.  us by counting the number of hyperbolic lines in a given
plane we can determine if the plane is regular or not. Moreover in a regular plane
we can also determine if a given point is singular or not by counting the number
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of hyperbolic lines through this given point by lemma B.1.5.  e just described
method of classifying a given point p of a unitary vector space Un is only usable if
every point pofUn is incident to both some regular plane and some singular plane
of rank two.

Lemma B.1.11 Let p be a point in the n-dimensional non-degenerate unitary vector
space Un for n

�
4.  en the point p is incident to a non-degenerate plane P of Un

and also p lies in some rank two plane S with a radical y �
 p.
Proof: Let p be some point of the unitary vector space Un. We consider the two
di�erent cases that either p is a singular point or that p is a regular point of Un.
Suppose p is a singular point of Un then by the regularity of the space Un we
choose a point z inUn such that � p,z � �
 0, which implies that � p,z � is a hyperbolic
line hofUn. Moreover the orthogonal space h

π of h is a � n � 2 � -dimensional regular
subspace containing a singular point y and a regular pointw. It follows that � h,w � 
� p,z,w � is a non-degenerate plane and � h, y � 
 � p,z,w � is a rank two plane with
the radical point y of Un.
Alternatively if p is a regular point in Un, then p

π is � n � 1 � -dimensional regular
space containing a hyperbolic line l and a rank one line h by the fact that n � 1 �

3.
Certainly � p, l � is a non-degenerate plane of Un and

� p,h � is a plane of rank two
with a radical ydi�erent from p. ■
In the last part of this section we collect some properties of points on a hyperbolic
lines l and the vectors which generate a given point on l. For this purpose we recall
the de�nition of the �xed �eld F0


 � x � Fq2 � x̄ 
 x � of Fq2 and the de�nition of
F
σ,1 
 � λ � Fq2 � λ � λ 
 0 � .

Lemma B.1.12 Let l 
 � a,b � be a hyperbolic line spanned by two di�erent singular
points of the unitary vector spaceUn and let av a non-zero vector of a,so

� av � 
 a and
bv be a non zero vector of b, so

� bv � 
 b.  en every singular point s of l is spanned
by a vector sv


 av � µ � av,bb � bv with µ � F
σ,1.

Proof: Let µ � F
σ,1 then the point � av � µ � av,bv � bv � 
 pa,b,µ spanned by the vector

av � µ � av,bv � bv is clearly incident to the line � a,b � . Because

� av � µ � av,bv � bv,av � µ � av,bv � bv �

 � av,av � � µ � av,bv � � bv,av � � µ � av,bv � � av,bv � � µ � av,bv � µ � av,bv � � bv,bv �

 µ � av,bv � � bv,av � � µ � av,bv � � av,bv �

 � av,bv � � bv,av � � µ � µ �

 0

we see that pa,b,µ is a singular point for every µ � F
σ,1.
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B Enumeration in �nite unitary spaces

Conversely let s be a singular point of l and sv be a non-zero vector of s then
s 
 � sv � and � sv, sv � 
 0. Moreover sv 
 av � δ � av,bv � bv for some δ � Fq2 and we
get that

0 
 � sv, sv � 
 � av � δ � av,bv � bv,av � δ � av,bv � bv �

 � av,av � � δ � av,bv � � bv,av � � δ � av,bv � � av,bv � � δ � av,bv � δ � av,bv � � bv,bv �

 δ � av,bv � � bv,av � � δ � av,bv � � av,bv �

 � av,bv � � bv,av � � δ � δ � ,

which implies that δ � F
σ,1 as � av,bv � �
 0. ■

Lemma B.1.13 Let l 
 � a,b � be a hyperbolic line of the unitary vector space Un

spanned by two di�erent singular points a and b. Furthermore let av an non-zero
vector of a, so � av � 
 a, and bv be an non-zero vector of b, so � bv � 
 b, such that
� av,bv � 
 1.
For three non-identity scalars r, s, t � F

σ,1 either the vector av
� tbv � rtav spans the

point b or there are scalars u,v,w � F
σ,1 � such that

x � t � x,bv � bv � r � x,av � av � rt � x,bv � av � w � x,bv � bv � rw � x,av � bv � wrt � x,bv � bv

 x � u � x,av � av � s � x,bv � bv � su � x,av � bv � v � x,av � av � vs � x,bv � av � vsu � x,av � av
for all vectors x � Un.

Proof: Suppose av
� tbv � rtav spans the point b then av � tbv � rtav 
 µbv for

some µ � Fq2 , which implies that � 1 � rt � av � � t � µ � bv 
 0 and 1 � rt 
 0 
 t � µ
using that av and bv are two linearly independent vectors, in particular rt


 � 1.
In the other case we start with the fact that rt �
 � 1 and choose u 
 r � s � t �

s � 1 � tr � ,v 
 tr
s

and w 
 s � t
1 � tr .  en

x � t � x,bv � bv � r � x,av � av � rt � x,bv � av � w � x,bv � bv � rw � x,av � bv � wrt � x,bv � bv

 x � t � x,bv � bv � r � x,av � av � rt � x,bv � av � s � t

1 � tr � x,bv � bv � r s � t
1 � tr � x,av � bv �

s � t
1 � tr rt � x,bv � bv


 x � r � x,av � av � rt � x,bv � av � r � s � t �
1 � tr � x,av � bv � � x,bv � bv � � t � � s � t �

� 1 � tr � � 1 � tr � �

 x � r � x,av � av � rt � x,bv � av � r � s � t �

1 � tr � x,av � bv � s � x,bv � bv
for all x � Un.
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Furthermore

x � u � x,av � av � s � x,bv � bv � su � x,av � bv � v � x,av � av � vs � x,bv � av � vsu � x,av � av

 x � r � s � t �

s � 1 � tr � � x,av � av � s � x,bv � bv � s r � s � t �
s � 1 � tr � � x,av � bv � tr

s
� x,av � av � trs s � x,bv

�
av
�

tr
s
s r � s � t �
s � 1 � tr � � x,av � av


 x � s � x,bv � bv � r � s � t �
s � 1 � tr � � x,av � bv � tr � x,bv � av � � x,av � av �

� r � s � t �
s � 1 � tr � � 1 � tr � � tr

s �

 x � s � x,bv � bv � r � s � t �

s � 1 � tr � � x,av � bv � tr � x,bv � av � r � x,av � av
for all vectors x of the unitary vector space Un. ■
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E
n
u
m
eratio

n
in
�
n
ite
u
n
itary
sp
aces

number of k-dimensional subspace in Un

n k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

1 1

2 q2

�

1 1

3 q4

�

q2

�

1 q4

�

q2

�

1 1

4 q6

�

q4

�

q2

�

1 q8

�

q6

�

2q4

�

q2

�

1 q6

�

q4

�

q2

�

1 1

5 q8

�

q6

�

q4

�

q2

�

1 q12

�

q10

�

2q8

�

2q6

�

2q4

�

q2

�

1

q12

�

q10

�

2q8
�

2q6

�

2q4

�

q2
�

1

q8

�

q6

�

2q4

�

q2

�

1 1

6 q10

�

q8

�

q6

�

q4

�

q2

�

1 q16

�

q14

�

2q12

�

2q10

�

3q8

�

2q6

�

2q4

�

q2

�

1

q18
�

q16

�

2q14

�

3q12

�

3q10
�

3q8

�

3q6

�

2q4

�

q2

�

1

q16

�

q14

�

2q12

�

2q10

�

3q8

�

2q6

�

2q4

�

q2

�

1

q10

�

q8

�

q6

�

q4

�

q2

�

1 1

Table B.1: number of k-dimensional subspace in Un
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number of m-dimensional subspaces of Un containingW

n dim

�

W

�

� k m � 2 m � 3

3 1 q2

�

1

4 1 q4

�

q2

�

1 q4

�

q2

�

1

4 2 1 q2

�

1

number ofm-dimensional subspaces of Un containingW

n dim

�

W

�

� k m � 2 m � 3 m � 4 m � 5

5 1 q6

�

q4

�

q2

�

1 q8

�

q6

�

2q4

�

q2

�

1 q6

�

q4

�

q2
�

1

5 2 1 q4

�

q2

�

1 q4

�

q2
�

1

5 3 1 q2
�

1

6 1 q8

�

q6

�

q4

�

q2

�

1 q12

�

q10

�

2q8

�

2q6

�
2q4

�

q2

�

1

q12

�

q10

�

2q8

�

2q6

�

2q4

�

q2

�

1

q8

�

q6

�

q4

�

q2

�

1

6 2 1 q6

�

q4

�

q2

�

1 q8

�

q6

�

2q4

�

q2

�

1 q6

�

q4

�

q2

�

1

6 3 1 q4

�

q2

�

1 q4

�

q2

�

1

6 4 1 q2

�

1

Table B.2: number ofm-dimensional subspaces of Un containingW
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E
n
u
m
eratio

n
in
�
n
ite
u
n
itary
sp
aces

number ofm-dimensional subspace of rank r in Un

�

l

one-dimensional subspace two-dimensional subspace

n

�

l n r � 1 r � 0 r � 2 r � 1 r � 0

2 2 q2 � q q

�

1

1 q2 1

0 q2

�

1

3 3 q4 � q3

�

q2 q3

�

1 q4 � q3

�

q2 q3 � 1

2 q4 � q3 q3

�

q2

�

1 q4 q2 � 1 q

�

1

1 q4 q2

�

1 q4
�

q2 1

0 q4

�

q2

�

1 q4

�

q2

�

1

4 4 q6 � q5

�

a4 � q3 q5

�

q3

�

q2

�

1 q8 � q7

�

2q6 � q5
�

q4 q7 � q6

�

q5 � q3

�

q2 � q q4

�

q3

�

q

�

1

3 q6 � q5

�

q4 q5

�

q2

�

1 q8 � q7

�

q6 q7

�

2q4 � q3

�

q2 q3

�

1

2 q6 � q5 q5

�

q4

�

q2

�

1 q8 q6 � q5

�

q4 � q3 q5

�

q4

�

q3

�

q2

�

1

5 5 q8 � q7

�

q6 � q5

�

q4 q7

�

q5

�

q2

�

1 q12 � q11
�

2

�

q10 � q9

�

q8

�

� q7
�

q6
q11 � q10

�

2q9 � q8

� �

q7

�

q6 � q5

�

2q4 � q3

�

q2
q8

�

q5

�

q3

�

1

4 q8 � q7

�

q6 � q5 q7

�

q5

�

q4

�

q2

�

1 q12 � q11

�

2q10 � q9

�

q8 q11 � q10

�

q9 � q7

�

2q6 �

2q5

�

q4 � q3
q8

�

q7

�

2q5

� �

q4

�

q3

�

q2

�

1

6 6 q10 �q9

�

q8 �q7

�

q6 �q5 q9

�

q7

�

q5

�

q4

�

q2
�

1 q16 � q15

�

2q14 � 2q13

�

3q12 �2q11

�

2q10 �q9

�

q8
q15 � q14

�

2q13 � 2q12

�

2q11 �

q10

�

q8 � 2q7

�

2q6 � 2q5

�

q4 � q3

q12

�

q10

�

q9

�

q8

�

2q7

�

2q5

�

q4

�

q3

�

q2

�

1

number ofm-dimensional subspace of rank r in Un

�

l

three-dimensional subspace four-dimensional subspace

n

�

l n r � 3 r � 2 r � 1 r � 0 r � 4 r � 3 r � 2

4 4 q6 � q5

�

q4 � q3 q5
�

q3

�

q2

�

1

3 q6 q4 � q3

�

q2 q3

�

1

2 q6

�

q4 q2 � q q

�

1

5 5 q12 �q11

�

2q10 �2q9

�

2q8 � q7
�

q6
q11 � q10

�

2q9 � q8

� �

q7

�

q6 �q5

�

2q4 �q3

�

q2
q8

�

q5

�

q3

�

1 q8 � q7

�

q6 � q5

�

q4

q7

�

q5

�

q2

�

1

4 q12 � q11

�

2q10 � q9 q11

�

q9

�

2q8 �q7

�

3q6 �

q5

�

q4
q7 � q6

�

q5 �

q3

�

q2 � q
q4

�

q3

�

q

�

1
q8 q6 � q5

�

q4 � q3
q5

�

q3

�

q2

�

1

Table B.3: number of m-dimensional subspace of rank r in Un

�

l
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Graph isomorphisms

As mentioned at the end of section 4.4 we state explicitly for each vertex z
ij
mn with

indices i � � 1,2 � , j,m,n � � 1, . . . ,6 � , � � j,m,n � � 
 3 of proposition 4.4.18 the de-
sired isomorphism γ

z
ij
mn
between Σ

z
ij
mn
and Σx given in proposition 4.4.28.

We consider case 2 of section 4.4, thus zi312

 zi456 for i � � 1,2 � . Let Σ be the induced

subgraph of Γ on the 32 vertices� � Σ � 
 � x,yij,zklcd � 1 �
i � j

�
6, k � � 1,2 � , 1 �

c � d
�
6, l � � 1, . . . ,6 � � � c,d � �

with the relation list:

zi312

 zi456 
 zi645 
 zi546 
 zi213 
 zi123 for i � � 1,2 �

zi412

 zi356 
 zi635 
 zi536 
 zi214 
 zi124 for i � � 1,2 �

zi512

 zi346 
 zi436 
 zi634 
 zi215 
 zi125 for i � � 1,2 �

zi612

 zi345 
 zi435 
 zi534 
 zi216 
 zi126 for i � � 1,2 �

zi256

 zi413 
 zi314 
 zj134 
 zj625 
 zj526 for � i, j� 
 � 1,2 �

zi245

 zi613 
 zi316 
 zj136 
 zj524 
 zj425 for � i, j� 
 � 1,2 �

zi246

 zi513 
 zi315 
 zj135 
 zj624 
 zj426 for � i, j� 
 � 1,2 �

z
j1
56

 zj423 
 zj324 
 zi234 
 zi615 
 zi516 for � i, j� 
 � 1,2 �
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C Graph isomorphisms

z
j1
45

 zj623 
 zj326 
 zi236 
 zi514 
 zi415 for � i, j� 
 � 1,2 �

z
j1
46

 zj523 
 zj325 
 zi235 
 zi614 
 zi416 for � i, j� 
 � 1,2 �

For each vertex zklcd � � zi312,zi412 ,zi512,zi612 ,zmn56 ,zmn45 ,z
mn
46 � i,m,n � � 1,2 � � we deter-

mine in detail the vertex set � � Σzkl
cd

�
and the isomorphism γzkl

cd
.

� zi312

 zi213 
 zi123 for i � � 1,2 �

� � Σzi312

� 
 � y12,y13,y23,y45,y46,y56,zj412 ,zj512,zj612 ,zj413 ,zj513 ,zj613 ,zj423 ,zj523,zj623 � j� � 1,2 � � � i � �

z
j4
12 � y34 z

j4
13 � y24 z

j4
23 � y14 � � y56 � �

z
j5
12 � y35 z

j5
13 � y25 z

j5
23 � y15 � � y46 � �

z
j6
12 � y36 z

j6
13 � y26 z

j6
23 � y16 � � y45 � �

� � y12 � � � � y13 � � � � y23 � �

� zi412

 zi214 
 zi124 for i � � 1,2 �

� � Σzi412

� 
 � y12,y14,y24,y35,y36,y56,zj312 ,zj512,zj612 ,zj314,zj514,zj614 ,zj324,zj524,zj624 � j� � 1,2 � � � i � �

z
j3
12 � y43 z

j3
14 � y23 z

j3
24 � y13 � � y56 � �

z
j5
12 � y45 z

j5
14 � y25 z

j5
24 � y15 � � y36 � �

z
j6
12 � y46 z

j6
14 � y26 z

j6
24 � y16 � � y35 � �

� � y12 � � � � y14 � � � � y24 � �

� zi512

 zi215 
 zi125 for i � � 1,2 �

� � Σzi512

� 
 � y12,y15,y25,y34,y36,y46,zj312,zj412 ,zj612 ,zj315 ,zj415 ,zj615 ,zj325,zj425 ,zj625 � j� � 1,2 � � � i � �

z
j3
12 � y35 z

j3
15 � y23 z

j3
25 � y13 � � y46 � �

z
j4
12 � y45 z

j4
15 � y24 z

j4
25 � y14 � � y36 � �

z
j6
12 � y56 z

j6
15 � y26 z

j6
25 � y16 � � y34 � �

� � y12 � � � � y15 � � � � y25 � �
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� zi612

 zi216 
 zi126 for i � � 1,2 �� � Σzi612

� 
 � y12,y16,y26,y34,y35,y45,zj312 ,zj412 ,zj512,zj316,zj416 ,zj516,zj326,zj426,zj526 � j� � 1,2 � � � i � �

z
j3
12 � y36 z

j3
16 � y23 z

j3
26 � y13 � � y45 � �

z
j4
12 � y46 z

j4
16 � y24 z

j4
26 � y14 � � y35 � �

z
j5
12 � y56 z

j5
16 � y25 z

j5
26 � y15 � � y34 � �

� � y12 � � � � y16 � � � � y26 � �

� zi156

 zj615 
 zj516 for � i, j� 
 � 1,2 �� � Σzi156

� 
 � y23,y24,y34,y15,y16,y56,zj256,zj356,zj456,zi215 ,zi315 ,zi415 ,zi216,z1316,z1416 � � i, j� 
 � 1,2 � �

z
j2
56 � y12 zi215 � y26 zi216 � y25 � � y34 � �

z
j3
56 � y13 zi315 � y36 zi316 � y35 � � y24 � �

z
j4
56 � y14 zi415 � y46 zi416 � y45 � � y23 � �

� � y56 � � � � y15 � � � � y16 � �

� zi256

 zj625 
 zj526 for � i, j� 
 � 1,2 �� � Σzi256

� 
 � y13,y14,y34,y25,y26,y56,zj156,zj356,zj456,zi125,zi325,zi425,zi126,z1326,z1426 � � i, j� 
 � 1,2 � �

z
j1
56 � y12 zi125 � y16 zi126 � y15 � � y34 � �

z
j3
56 � y23 zi325 � y36 zi326 � y35 � � y14 � �

z
j4
56 � y24 zi425 � y46 zi426 � y45 � � y13 � �

� � y56 � � � � y25 � � � � y26 � �

� zi146

 zj614 
 zj416 for � i, j� 
 � 1,2 �� � Σzi146

� 
 � y23,y25,y35,y14,y16,y46,zj246,zj346,zj546,zi214,zi314,zi514,zi216,z1316,z1516 � � i, j� 
 � 1,2 � �

z
j2
46 � y12 zi214 � y26 zi216 � y24 � � y35 � �

z
j3
46 � y13 zi314 � y36 zi316 � y34 � � y25 � �

z
j5
46 � y15 zi514 � y56 zi516 � y45 � � y23 � �

� � y46 � � � � y14 � � � � y16 � �
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� zi246

 zj624 
 zj426 for � i, j� 
 � 1,2 �� � Σzi246

� 
 � y13,y15,y35,y24,y26,y46,zj146,zj346,zj546,zi124,zi324,zi524,zi126 ,z1326,z1526 � � i,j� 
 � 1,2 � �

z
j1
46 � y12 zi124 � y16 zi126 � y14 � � y35 � �

z
j3
46 � y23 zi324 � y36 zi326 � y34 � � y15 � �

z
j5
46 � y25 zi524 � y56 zi526 � y45 � � y13 � �

� � y46 � � � � y24 � � � � y26 � �

� zi145

 zj514 
 zj415 for � i, j� 
 � 1,2 �� � Σzi145

� 
 � y23,y26,y36,y14,y15,y45,zj245,zj345,zj645,zi214,zi314,zi614,zi215 ,z1315 ,z1615 � � i, j� 
 � 1,2 � �

z
j2
45 � y12 zi214 � y25 zi215 � y24 � � y36 � �

z
j3
45 � y13 zi314 � y35 zi315 � y34 � � y26 � �

z
j6
45 � y16 zi614 � y56 zi615 � y46 � � y23 � �

� � y45 � � � � y14 � � � � y15 � �

� zi245

 zj524 
 zj425 for � i, j� 
 � 1,2 �� � Σzi245

� 
 � y13,y16,y36,y24,y25,y45,zj145,zj345,zj645,zi124,zi324,zi624,zi125,z1325,z1625 � � i, j� 
 � 1,2 � �

z
j1
45 � y12 zi124 � y15 zi125 � y14 � � y36 � �

z
j3
45 � y23 zi324 � y35 zi325 � y34 � � y16 � �

z
j6
45 � y26 zi624 � y56 zi625 � y46 � � y13 � �

� � y45 � � � � y24 � � � � y25 � �
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A P P E N D I X FOUR

Some open problems

• local recognition of all connected graphs Γ which are locally the hyper-
bolic line graphG � U6

�

See de�nition 1.1.10, to recall the de�nition of G � U6

�
.

� Determine all connected locally G � U6

�
graphs Γ.

 e local structure should determine the isomorphism type. Let
�

Γ be the 2-
simply connected cover of Γ (as a 2-dimensional simplicial complex). Look-
ing back to chapter 4, a central problem is to de�ne a subgroupG �

Γ ofAut �
�

Γ
�

such that for each vertex x �
�

Γ the groupG �
Γ contains a subgroup SU2 � Fq2 � x �

SU2 � Fq2 � � SL2 � Fq � acting naturally on the two-dimensional regular sub-
space xy for some vertex y �

�

Γ and �xing x
�
elementwise or, stronger, �xing

the vector space U � � x � of the unitary projective space � x elementwise.
• local recognitionof all connectedgraphs Γwhichare locally the line-hyper-
line graph L � P � V6 � �

De�nition Let n � N and V be an n-dimensional vector space over a divi-
sion ring F. We consider the projective space P � Vn � F � � 
 Pn � 1 � F � .  e line-
hyperline graph L � Pn � 1 � F � � 
 Ln � F � of Pn � 1 � F � is the graph whose vertices
are the non-intersecting line-hyperline pairs of Pn � 1 � F � and in which one
vertex � a,A� is adjacent to another vertex � b,B � , in symbols � a,A� � � b,B � ,
if and only if a

�
B and b

�
A.

It has been shown in [37] that the graph Ln � 2 � F � is locally Ln � F � (cf. Propo-
sition 2.2 of [37]) and that, for n

�
7, a connected locally Ln � F � graph is iso-
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D Some open problems

morphic to Ln � 2 � F � , with the possible exception of the case � F,n � 
 � F2,7
�

(cf.  eorem 1 of [37]).
� Classify all connected locally L6 � F � graphs Γ.
We denote againwith

�

Γ be the 2-simply connected cover of Γ. Also in this case
one problem to solve is to de�ne a subgroup SL2 � F � x � SL2 � F � of Aut �

�

Γ
�
,

which acts in a natural sense on the line xy for some y �
�

Γ and �xing x
�

elementwise.  en a transvection subgroup A of SL2 � F � x acts as such on
the projective space structure of y

�
.  e idea is now to de�ne the subgroup

G �
Γ

 � SL2 � F � x � x �

�

Γ � of Aut �
�

Γ
�
and show that this group is generated

by a class of abstract root subgroups in the sense of de�nition 1.1 of chapter
II of [91] and subsequently conclude from Timmesfeld’s theorem 5 of [90]
(see also §9 of chapter III of [91]) that the group G � Z � G � is isomorphic to
PSLn � 2 � F � or to the adjoint version of E6 � F � .

• local recognition of all connected graphs Γ which are locally the hyper-
bolic line graphW � W6

�

De�nition LetWn

 W denote an n-dimensional vector space over Fq en-

dowed with a non-degenerate symplectic form � � , �
�
. For a subspace U

�
W

the orthogonal space of U is Uπ 
 � x � W � � x,w � 
 0 for all u � U � .  e
hyperbolic line graphW � Wn

�
is the graph on the hyperbolic lines, i.e., the

non-degenerate two-dimensional subspaces, ofWn, where hyperbolic lines l
and m are adjacent (in symbols l � m) if and only if l is perpendicular to m
with respect to the symplectic form.

It has been proven in [39], that for n
�
8 a connected locallyW � Wn

�
graph

Γ is isomorphic toW � Wn � 2 � .
� Find all connected locallyW � W6

�
graphs Γ.

Here one has not only to deal with the problem of de�ning a suitable auto-
morphism subgroupG �

Γ ofAut �
�

Γ
�
, where

�

Γ is the 2-simply connected cover

of Γ. Also one has to identify all possibilities for induced subgraphs Σ of
�

Γ,
which are locally the reection graph W � F4 � of the root system ΦF4 .  at
implies directly that one now has to consider roots of di�erent lengths.

• local recognition of all connected graphs Γwhich are locally the line graph
S � Vn � R � �

Here we take the n-dimensional vector space V over R equipped with the
scalar product � � , �

�
.  e line graph S � Vn � R � � is the graph on the two-dimensi-

onal subspaces ofV , where two di�erent lines l andm are adjacent if and only
if l

�
mπ or equivalent if m

�
lπ.

� Characterise all connected locally S � Vn � R � � graphs Γ for n �
6.
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Especially for the case n 
 6, it might be possible to de�ne the group G �
Γ

as has been done in section 4.3. But since there are no results and structure
theory for groups G admitting a (weak) Phan system of type ∆ over R, the
technique to identify the group G �

Γ used in this work is not yet available.
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[14]  eodor Bröcker, Tammo tom Dieck, Representations of compact Lie groups,
Springer, Berlin 1985.

[15] Francis Buekenhout, editor,Handbook of incidenceGeometry, North-Holland,
Amsterdam, 1995.

[16] Francis Buekenhout, Arjeh Cohen, Diagram Geometry, in preparation,
http://www.win.tue.nl/ � amc/buek.

[17] Francis Buekenhout, Xavier Hubaut, Locally polar spaces and related rank 3
groups, J. Algebra 45 (1977), 391–434.

[18] Francis Buekenhout, Ernest Shult, On the foundations of polar geometry,
Geom. Dedicata 3 (1974), 155–170.

[19] Daniel Bump, Lie groups, Gradute Texts in Mathematics 225, Springer-Verlag,
New York, 2004.

[20] Peter J. Cameron, Projective and Polar Spaces, School of Mathematical Sci-
ences, Queen Mary and West�eld College (University of London), QMW
Maths Notes 13, 1991.

[21] Arjeh Cohen, Hans Cuypers, Hans Sterk, Linear Groups Generated by Re-
ection Tori, Cand. J. Math. Vol. 51(6) (1999), 1149–1174.

[22] Arjeh Cohen, Hans Cuypers, Ralf Gramlich, Local recognition of non-
incident point-hyperplane graphs, Combinatorica 25 (2005), 271–296.

[23] Harold Scott MacDonald Coxeter, Projective Geometry, Springer-Verlag 1963,
second edition.

[24] Hans Cuypers,  e geometry of k-transvection groups, J. Algebra 300 (2006),
455–471.

[25] Hans Cuypers,  e geometry of hyperbolic lines in polar spaces, unpublished.
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Birkhäuser Verlag 1996.

[61] William Kantor, Robert A. Liebler, Stanley E. Payne, Ernest E. Shult, editors,
Finite Geometries, Buildings, and Related Topics, Clarendon Press, Oxford,
1990.

[62] Felix Klein, Vergleichende Betrachtungen über neuere geometrische Forschun-
gen , Programm zum Eintritt in die philosophische Facultät und den Senat
der königlichen Friedrich-Schiller Universität zu Erlangen, Verlag von An-
dreas Deichert, Erlangen.

[63] Anthony W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser Verlag,
2002, Progress in Mathematics, Volume 140, Second Edition.

[64] MarkusKohm, Jens-UweMorawski, Koma-Script, dante e.V., Lehmanns Fach-
buchhandlung, April 2003.

[65] James Krüss, James Tierleben, Carlsen Verlag, Hamburg, 2003.

[66] Wolfgang Kühnel, Lie-Gruppen, Manusskript zur Vorlesung, Insitut für Ge-
ometrie und Topologie, Universität Stuttgart, undated.

[67] Anselm Lingnau, Latex Hacks, O’Reilly Verlag, 2007, Hacks Series.
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BN-pair, 248

action
SU2 � C � -action graph, 95
SU2 � C � -action projective space,
95

SU2 � C � -action vector space, 95
anti-automorphism, 3

basis system, 96
Bruhat decomposition, 248
building, 247
spherical, 247
Weyl group, 247

chamber system, 243
J-equivalent, 243
J-gallery, 243
J-residue, 243
i-adjacent, 243
i-panel, 243
m-simply connected, 244
adjacent, 243
automorphism, 244
chamber transistive, 244
connected, 243
gallery, 243
m-homotopic, 243

closed, 243

elementarym-homotopic, 243
length, 243

null-m-homotopic, 244
simple, 243

homomorphism, 244

isomorphism, 244

morphism, 244

rank, 243

simply connected, 244

thick, 243

thin, 243

cogredient, 6

complexi�cation, 171, 180

correlation, 3

Coxeter diagram, 246

irreducible, 246

Coxeter graph, 246

Coxeter group, 246

universal, 247

Coxeter matrix, 246

coxeter system, 129

derivation, 169

di�erential, 169

digon, 239

distance function, 247
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duality, 3

elementary homotopies, 239
homotopically trivial, 239
fundamental group, 240
homotopically equivalent, 239
null homotopic, 239
return, 239
triangle, 239

exponential function, 152, 169

form
degenerate, 4
Gram matrix, 5, 255
hermitian, 5
isometric, 4
isotropic vector, 3
non-degenerate, 4
reexive, 4
regular vector, 3
sesquilinear, 3
singular, 4
singular vector, 3
symmetric, 5
symplectic, 4

fundamental SU2

Lie group, 175
of SUn, 9

fundamentalSL2, 9

Gaussian coe�cent, 256
generalized polygon, 239

� g,dp,dl � -gon, 239
g-gon, 239
digon, 239
generalized hexagon, 239
generalized octagon, 239
generalized quadrangle, 239
generalized triangle, 239

geometry, 235, 236
� g,dp,dl

�
-gon, 239

j-diameter, 238
projective geometry, 238

circuit, 239

collinear, 2, 236

�rm, 236

ag, 2

global, 31, 85

grid, 239
hyperbolic unitary, 37

incidence geometry, 235

interior hyperbolic geometry, 57

order, 236

orthogonal, 5
partially linear, 236

planar, 236

plane, 236

point-line geometry, 236

polar geometry, 3

projective, 2
projective geometry, 1

rank, 235

subspace, 2, 236

symplectic, 5

thick, 236
unitary, 5

graph, 7, 237

1-covering, 241

1-simplex incidence system, 237

2-covering, 241

2-simplex incidence system, 238
2-simply connected, 241

induced subgraph, 8

associated to theDynkin diagram,
158

bipartite, 237

circuit, 237

clique, 237

complete graph, 237

connected, 8

cycle, 237
diameter, 8

fundamental SU2 � F � subgroups
graph, 10

girth, 237
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hyperbolic line graph, 38

hyperbolic line graph , 9

incidence graph, 235

incidence system, 235

isomorphic, 8

Kneser graph, 129

line graph, 9, 11, 92
locally homogeneous, 1, 8

morphism, 241

neighbourhood graph, 8

path, 8

point graph, 236

reection graph, 129

simply connected, 241
universal cover, 241

vertex-edge-incidence system, 237

vertex-edge-triangle incidence sys-
tem, 238

Grassmannian, 1
group

general linear group, 9

special linear group, 9

building

Weyl group, 247

circle group, 170
complex Lie group, 168

Coxeter group, 246

fundamental SL2 � F � subgroup,
10

fundamental SU2 � F � subgroup,
10

fundamental group, 240

general linear group, 152

general unitary group, 10

Lie group, 168

adjoint representation, 169
compact, 168

identity component, 168

integral subgroup, 170

Lie algebra of a Lie group, 169

locally connected, 168

maximal torus, 170

root, 173
torus, 170
Weyl group, 171
permutation representation, 242
real Lie group, 168
special unitary group, 10
unitary group, 10
Weyl group, 125

hyperline
projective, 1

hyperplane
projective, 1

immersion, 169
incidence system, 235

1-simplex incidence system, 237
2-simplex incidence system, 238
k-covering, 240
simply connected, 240
chamber, 236
connected, 235
corank, 236
correlation, 240
covering, 240
embbedding, 240
ag, 236
graph, 235
homomorphism, 240
incidence graph, 235
incidence relation, 235
isomorphism, 240
morphism, 240
rank, 236
residually connected, 238
residue, 238
vertex-edge-incidence system, 237
vertex-edge-triangle incidence sys-
tem, 238

Iwasawa Decomposition, 180

Lie algebra, 153
abelian, 153
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adjoint mapping, 165

adjoint representation, 165

Borel subalgebra, 168

Cartan subalgebra, 165

splittable, 165
centraliser, 153

compact, 171

compact real form, 171

faithful representation, 165

fundamental sl2 � F � Lie subalge-
bra, 166

homomorphism, 153

ideal, 153

isomorphism, 153
Killing form, 165

Lie bracket, 153

Lie subalgebra, 153

nilpotent, 153

normaliser, 153
of a group, 153, 169

real form, 171

reductive, 165

representation, 165
semi-simple, 165

semi-simple representation, 165

solvable, 153

splittable, 165

Lie group, 168
adjoint representation, 169

Borel subgroup, 180

compact, 168

complex Lie group, 168

fundamental SU2 � C � , 175
identity component, 168

integral subgroup, 170

Lie algebra of a Lie group, 169

locally connected, 168
maximal torus, 170

parabolic subgroup, 180

real Lie group, 168

root, 173

torus, 170

Weyl group, 171
line
connecting line, 236
global, 29, 75
hyperbolic, 4, 38
interior, 17, 22, 49, 54
projective, 1

maximal torus, 170

permutation representation, 242
G-orbit, 242
G-set, 242
faithful, 242
stabiliser, 242
transistive, 242

Phan system
Phan system over Fq2 , 252
weak Phan system, 160, 251

plane, 236
algebraic plane, 57
dual a�ne plane, 64
geometric plane, 57
global, 86
graphical plane, 56
projective, 1
symplectic plane, 64

point
collinear, 236
global, 30, 85
interior, 17, 22, 48, 54
interior regular, 56
interior singular, 56
orthogonal, 55
projective, 1

polarity, 3
projective
dimension, 2

reection, 124
representation, 242
root, 124, 166, 173

α-string through β, 125
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height, 125

long, 126

root system, 124, 166

Chevalley basis, 167
basis, 125

Cartan matrix, 126

Coxeter matrix, 126

Dynkin diagram, 126
irreducible, 125

negative root, 125

positive root, 125

rank, 125
reduced, 125

short, 126

simple, 125

space

interior, 67

non-degenerate, 4
totally singular, 256

Veblen-Young axiom, 236

anisotropic, 4

Buekenhout-Shult axiom, 237
degenerate, 4, 256

hyperbolic line, 256

interior, 18, 22

isotropic, 255
linear space, 236

non-degenerate, 256

non-isotropic, 255

orthogonal complement, 4
orthogonal subspace, 4

partial linear, 236

perpendicular subspace, 4
point-line space, 236

polar space, 237

polar subspace, 4

projective, 2
projective space, 1, 236

radical, 4

regular, 4, 256

singular, 4, 256

subspace, 2
totally singular, 4

subspace
rank, 255

tangent space, 169
theorem
Birkho�-von Neumann, 4
Chevalley, 167
fundamental theoremof projec-
tive geometry, 2

Serre, 167
Sylvester, 6
Weyl, 172

Tits-system, 248
topological space
homotopic, 245
path-connected, 245
closed path, 245
end, 245
fundamental group, 245
loop, 245
origin, 245
path, 245
path classes, 245
product path, 245
simply connected, 245

torus, 170

Veblen-Young, 2
vector
isotropic, 3
orthogonal, 3
perpendicular, 3
regular, 3
singular, 3

Weyl group, 171
building, 247
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Lebenslauf

12. März 1978 geboren in Berlin als Tochter von Angelika
und Wilhelm Altmann

September 1984 – Juli 1990 Besuch der Oberschule in Berlin

August 1990 – Juli 1993 Besuch des Ernst–Abbe–Gymnasiums in
Berlin

August 1993 – Juni 1997 Besuch des Sportgymnasiums
”
Coubertin“ in

Berlin, Abschluß: Abitur Juni 1997

Juli 1997 – Februar 1998 Sportjahr mit der Juniorennationalmann-
scha� Volleyball

Februar 1998 – September 1998 freiwilliges ökologisches Jahr

Oktober 1998 – August 2001 Studium der Mathematik mit Nebenfach In-
formatik/Elektrotechnik an der Technischen
Universität Darmstadt

August 2001 – August 2002 Studium an der Tulane University (USA, New
Orleans), Abschluß: Master of Science

August 2002 – Oktober 2003 Studium der Mathematik mit Nebenfach In-
formatik/ Elektrotechnik an der Technischen
Universität Darmstadt, Abschluß: Diplom

16. August 2003 Geburt meines Sohnes Bjarne Grothe

Oktober 2003 – März 2007 wissenscha�liche Mitarbeiterin in der Ar-
beitsgruppe Funktionalanalysis an der Tech-
nischen Universität Darmstadt

6. Februar 2007 Promotion in Mathematik an der Techni-
schen Universität Darmstadt

seit April 2007 wissenscha�liche Mitarbeiterin am Lehrstuhl
für Netz- und Datensicherheit an der Ruhr
Universität Bochum
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