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Chapter 1

Introduction

1.1 Historical perspective

The concept of the wiretap channel was first introduced by Wyner [1]. The model which
he proposed is shown in Figure 1.1. It is a form of degraded broadcast channel [2], but
the goal here is quite different. For the degraded broadcast channel, one seeks to maximize
the flow of information to both receivers. However, for the wiretap channel, we assume
that the wiretapper knows the encoding scheme used at the transmitter and the decoding
scheme used at the legitimate receiver. The objective is to maximize the rate of reliable
communication from the source to the legitimate receiver, subject to the constraint that
the wiretapper learns as little as possible about the source output.

Source Encoder
channel
Main

Wiretap
channel

Decoder Legitimate receiver

Wiretapper

PSfrag replacements
SK XN Y N

ŜK

ZN

Figure 1.1: Wyner wiretap channel.

In this thesis, we will denote random variables U, V,X, etc. by capital letters and their
ranges by corresponding script letters. Let U be a finite set. Denote its cardinality by |U|.We
will denote various joint and conditional probability distributions by pUV (u, v) = Pr{U =
u, V = v}, pU |V (u|v) = Pr{U = u|V = v}, u ∈ U , v ∈ V. Consider UN , the set of N vectors

with components in U . The members of UN will be written as uN = (u1, u2, · · · , uN ), where
subscripted letters denote the components and superscripted letters denote the vector. A
similar convention applies to random vectors and random variables, which are denoted by
upper-case letters.

1.1.1 Wyner wiretap channel

Wyner [1] investigated the communication system as shown in Figure 1.1. He considered
the situation when both the main channel and the wiretap channel are discrete memoryless
channels (DMCs). Let S be the source with finite alphabet S. Denote SK = (S1, · · · , SK),
where Si, 1 ≤ i ≤ K are independent, identically distributed (i.i.d.) random variables that
take values in the finite set S. The encoder encodes every K source outputs SK into an
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N -vector XN , which is the input of the main channel. Let Y N and ZN be the output of
the main channel and overall wiretap channel, respectively. The rate of transmission to the
legitimate receiver is defined to be

R =
KH(S)

N
. (1.1)

The equivocation of the source at the output of the wiretap channel is defined to be

∆ =
1

K
H(SK |ZN ). (1.2)

Upon receipt of Y N the decoder at the legitimate receiver makes an estimate ŜK of the
source output SK . The error-rate for a given encoder-decoder pair is defined as

Pe =
1

K

K
∑

i=1

Pr{Ŝi 6= Si}. (1.3)

We say that the pair (R∗, d∗) (where R∗, d∗ > 0) is achievable if, for all ε > 0, there exists
an encoder-decoder pair such that

R ≥ R∗ − ε, ∆ ≥ d∗ − ε, Pe ≤ ε. (1.4)

In particular, if ∆ is equal to H(S), then it is considered that the transmission is accom-
plished in perfect secrecy. Wyner showed that in most cases, there exits a secrecy capacity
Cs such that reliable transmission at rates up to Cs is possible in approximately perfect
secrecy. Define the capacity region of the wiretap channel as the set of all achievable (R∗, d∗)
pairs. Let the capacity of the main channel be CM . Then the capacity region, when both
the main channel and the wiretap channel are DMCs, is characterized as follows:

R 4
= {(R, d) : 0 ≤ R ≤ CM , 0 ≤ d ≤ H(S), Rd ≤ H(S)Γ(R)}, (1.5)

where
Γ(R) = sup

pX(x)∈P(R)
I(X;Y |Z), (1.6)

and P(R) is the set of pX(x) such that I(X;Y ) ≥ R.
A particular simple example results when the main channel is noiseless and the wiretap

channel is a binary symmetric channel (BSC) with crossover probability p. Wyner showed
that

R ≤ 1, d ≤ 1, Rd ≤ h(p) (1.7)

defines the set of all achievable rate equivocation pairs. As noted by Wyner, this region is
not convex.

However, when a source with memory is considered, it is necessary to modify the def-
initions of rate R and equivocation ∆. In [1, Appendix C], Wyner discussed an exam-
ple to illustrate such a need. Consider a stationary and ergodic source and suppose that
H(S1) > H(S). Let the main channel be a noiseless binary channel and the wiretap chan-
nel be a BSC with zero capacity. A possible encoder-decoder has K = N = 1 and takes
X1 = S1. Such a scheme has Pe = 0, but R = H(S) and ∆ = H(S1) > H(S) due to the
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definitions given in (1.1) and (1.2). Using (1.4), this would lead us to accept the rate equiv-
ocation pair (H(S), H(S1)) as achievable, which would not be reasonable. Accordingly,
Wyner [1] modified the definition of the equivocation per source letter to be

∆ = lim
v→∞

1

Kv
H(SKv|ZNv).

Recall that for a stationary source S,

H(S) = lim
v→∞

1

v
H(Sv).

Therefore, we have an achievable pair ( lim
v→∞

1
vH(Sv), lim

v→∞
1
KvH(SKv|ZNv)) according to the

modified definitions. However, such a rate equivocation pair could not tell explicitly about
rate and security of the transmission, though it is clear that the rate to the legitimate
receiver is H(S1) and the transmission is accomplished in perfect secrecy.

In [3], Leung-Yan-Cheong considered the wiretap channel of Wyner’s model with an
ergodic source with a finite alphabet. Differently from Wyner [1], he defined the rate of
transmission to the legitimate receiver to be

R =
H(SK)

N
, (1.8)

the fractional equivocation of the wiretapper to be

∆ =
H(SK |ZN )

H(SK)
, (1.9)

and the error rate at the legitimate receiver to be

Pe = Pr{SK 6= ŜK}. (1.10)

The new definitions have the advantage that they are adaptive also to a source with memory,
for instance, a stationary and ergodic source. Furthermore, the equivocation is normalized
by the entropy of the source and thus ∆ is always bounded by a constant 1, which is not
dependent on the source. In particular, ∆ = 1 implies that the wiretapper’s posterior
uncertainty about the source output is equal to his priori uncertainty. Thus the wiretapper
is no better informed after he receives his data than he was before. So the transmission
is accomplished in perfect secrecy. Recall the example [1, Appendix C] discussed above.
According to the new definitions, we have an achievable pair (H(S1), 1), which tells explicitly
that the rate to the legitimate receiver is H(S1) and the transmission is accomplished in
perfect secrecy.

The pair (R∗, d∗) is said to be achievable if, for all ε > 0, there exists an encoder-decoder
pair such that

R ≥ R∗ − ε, ∆ ≥ d∗ − ε, Pe ≤ ε. (1.11)

Consequently, the secrecy capacity Cs is defined to be the maximum R such that (R, 1) is
achievable. Based on the new definitions, Leung-Yan-Cheong [3] rewrote Wyner’s result on
the achievable (R, d) region as the following.

R={(R, d) : 0 ≤ R ≤ CM , 0 ≤ d ≤ 1, Rd ≤ Γ(R)}, (1.12)
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where Γ(R) is the same as defined in (1.6). Furthermore, Leung-Yan-Cheong [3] showed
that, if I(X;Y ) and I(X;Z) are simultaneously maximized by the same probability dis-
tribution pX(x), then Γ(R) is a constant and equals the difference of the capacities of the
main channel and overall wiretap channel. It is clear that in this case Γ(R) is also the
secrecy capacity. As proved by Leung-Yan-Cheong [3], such situation happens when both
main channel and overall wiretap channel are symmetric discrete memoryless channels.

1.1.2 Broadcast channel

The broadcast channel was first introduced by Cover [23]. A model is given in Figure. 1.2
for the two-receiver broadcast channel. Here the problem is how to send different pieces of
information simultaneously from a single source to different receivers. This problem is still
open in the sense that for the general case, there is no single-letter characterization of the
set of achievable rates to different receivers known yet.

Source Encoder
Broadcast

Channel

Receiver 1

Receiver 2

PSfrag replacements

S X
Y

Z

Figure 1.2: Broadcast channel.

In [31], Körner and Marton introduced two ways of partially ordering DMCs with the
same input alphabet. They defined a DMC X → Y to be more capable than a DMC X → Z,
if I(X;Y ) ≥ I(X;Z) for every probability distribution on X. They defined a DMC X → Y
to be less noisy than a DMC X → Z, if I(U ;Y ) ≥ I(U ;Z) for every DMC U → X with
finite input alphabet and for every probability distribution on U. In [2], Bergmans defined
the DMC X → Z to be a degraded version of the DMC X → Y, if there exists a DMC
Y → Z such that X → Z can be represented as the cascade of the channels X → Y and
Y → Z. It is shown in [31] that being more capable is a strictly weaker condition than being
less noisy in the sense that the latter implies the former and that being more noisy is a
strictly weaker condition than being a degraded version.

Classical approaches which can be applied to the broadcast channel are time sharing
and maxmin. Cover [23] introduced a superposition random coding scheme and showed
that one can generally transmit at higher rates. He designed the coding schemes for the
binary symmetric broadcast channel and the Gaussian broadcast channel. The optimality
of his scheme for the binary symmetric broadcast channel was shown by Wyner [26], and
for the Gaussian broadcast channel by Bergmans [27]. The binary symmetric broadcast
channel and the Gaussian broadcast channel are special cases of the degraded broadcast
channel. Bergmans [2] reformulated Cover’s superposition scheme for the case of the de-
graded broadcast channel and proved a rigorous random coding scheme for it. Later his
rate region was shown to be optimal by Ahlswede and Körner [12]. Thus the theory on
the degraded broadcast channel is fairly complete. For the general non-degraded broad-
cast channel, an achievable region was put forth independently by Cover [25] and van der
Meulen [28]. For more results on broadcast channels, please refer to [29] and [30] and the
references therein.
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1.1.3 Broadcast channel with confidential messages

Csiszár and Körner [5] investigated the broadcast channel with confidential messages. The
model is shown in Figure 1.3. It is a broadcast channel but with the additional feature
that the message sent to the legitimate receiver is confidential and the wiretapper should
be kept as ignorant of it as possible. Following Wyner [8], they measured confidentiality
by equivocation per source letter. They showed that when both the main channel and
the wiretap channel are DMCs, the secrecy capacity of this communication system can be
expressed as

Cs = max
U→X→(Y,Z)

[I(U ;Y )− I(U ;Z)], (1.13)

where the maximum is over all possible random variables U in joint distribution with X,Y
and Z such that U → X → (Y,Z) is a Markov chain 1. An example is shown in Figure 1.4
(a).

Source Encoder
channel
Main Decoder Legitimate receiver

Wiretap
channel

Wiretapper

PSfrag replacements
SK XN Y N

ŜK

ZN

Figure 1.3: Csiszár-Körner wiretap channel.

It is clear that, the wiretap channel model of Wyner is a special case of the wiretap
channel model of Csiszár and Körner, in a manner that the overall wiretap channel is a
degraded version of the main channel. Such an example is given in Figure 1.4 (d). So up
to now, the problem of single-letter characterization the secrecy capacity for the discrete
memoryless wiretap channels of these two models has been solved.

In [6], van Dijk considered a special class of broadcast channels with confidential mes-
sages where the main channel is less noisy than the wiretap channel. Following the defini-
tions of the rate, equivocation and error rate by Leung-Yan-Cheong [3] as given in (1.8),
(1.9) and (1.10), he rewrote the capacity region of the broadcast channel with confidential
messages, where the main channel is less noisy than the wiretap channel, given by Csiszár
and Körner as followings.

R={(R, d) : R ≥ 0, 0 ≤ d ≤ 1, ∃ PX s.t. R ≤ I(X;Y ) and Rd ≤ I(X;Y )−I(X;Z)}. (1.14)

In particular, if the main channel is more capable (including less noisy situation) than the
wiretap channel, then the secrecy capacity satisfies

Cs = max
pX(x)

[I(X;Y )− I(X;Z)], (1.15)

where the maximum is over all possible distributions of X. Such an example is given in
Figure 1.4 (b).

Note that at present the calculation of secrecy capacity is still an unsolved problem when
the main channel and wiretap channel are general DMCs. However, it can be simplified

1Random variables U,X, Y are said to form a Markov chain in such a order U → X → Y if the conditional
distribution of Y depends only on X and is conditionally independent of U .
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for some special cases. For instance, if the main channel is less noisy than the wire tap
channel, the expression of the secrecy capacity is given in (1.15). Moreover, as shown by
van Dijk [6], the main channel being less noisy than the wire tap channel is equivalent to the
condition that I(X;Y )− I(X;Z) is a concave function of the input probability distribution
pX(x). Hence, the secrecy capacity can be calculated using convex optimization methods.
In [32], Yasui et al. proposed an Arimoto-Blahut type algorithm for computing the secrecy
capacity for this situation. In addition, van Dijk [6] showed that, if I(X;Y ) and I(X;Z) are
individually maximized by the same probability distribution pX(x), and the main channel
is less noisy than the wiretap channel, the secrecy capacity is

Cs = CM − CMW , (1.16)

where CM and CMW are capacities of the main channel and the wiretap channel, respec-
tively. Such an example is shown in Figure 1.4 (c).

Yp

1

1−p1

00

1

X

1−q

1

q

0 0

1 1

0 0

1 1

X

Y Z

Z

1−q

q

1−p+pq
p−pq

p

1

1

1−p

0 0

11

X Y

X Z

0 0

1

1

q

1

X Y

X Z

p

1−q

1

1−p1

1

0 0

1

00

0 0

1 1

X Z

X Y

0 0

1 1

1

1

1−p

1−p

p

p

1 1

(a) (d)(c)(b)

Figure 1.4: (a), (b), (c) are channels of Csiszár-Körner’s model, (d) is of Wyner’s model. (a)
Cs = max

U→X→(Y,Z)
[I(U ;Y )−I(U ;Z)]; (b) Cs = max

pX(x)
[I(X;Y )−I(X;Z)]; (c) Cs = CM−CMW ;

(d) Cs = max
pX(x)

[I(X;Y )− I(X;Z)].

1.1.4 Gaussian wiretap channel

In [4], Leung-Yan-Cheong and Hellman investigated the Gaussian wiretap channel. It is
a variant of Wyner’s wiretap channel. The model is shown in Figure 1.5. The source is
assumed to be stationary, ergodic and with a finite alphabet. The noise vectors in the main
channel and the wiretap channel, ηN1 and ηN2 are independent and have components that are
i.i.d. according to N (0, N1) and N (0, N2), respectively. The message SK ∈ SK has finite
alphabet. The input XN to the main channel has continuous alphabet with an average
power constraint: 1

N

∑N
i=1 E[X

2
i ] ≤ P, where E(·) is the expectation operator. The outputs

of the main channel and the wiretap channel are Y N = XN + ηN1 and ZN = Y N + ηN2 ,
respectively.

Following the definitions as given in (1.8), (1.9) and (1.10), Leung-Yan-Cheong and
Hellman [4] showed that the secrecy capacity of the Gaussian wiretap channel is

Cs = CM − CMW =
1

2
log

(P +N1)(N1 +N2)

N1(P +N1 +N2)
, (1.17)

where CM and CMW are the capacities of the main channel and overall wiretap channel,
respectively. Furthermore, the capacity region of the Gaussian wiretap channel is defined
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Figure 1.5: Gaussian wiretap channel.

by
R ≤ CM , d ≤ 1, Rd ≤ Cs. (1.18)

Surprisingly, Rd = Cs corresponds to a time-sharing curve as established by [4, Lemma 1].
Note that in order to establish the achievability of the entire region, Leung-Yan-Cheong

and Hellman [4] only proved that two extreme points (Cs, 1) and (CM , Cs/CM ) are achiev-
able. Then time sharing [4, Lemma 1] implies the achievability of the capacity region.

1.1.5 Dirty paper channel

Costa [7] considered a communication problem for the following variation of the standard
additive white Gaussian noise (AWGN) channel. The model is depicted in Figure 1.6.
Here the transmitter wishes to send a message SK over the channel. The channel output
is given by Y N = XN + V N + ηN , where the channel input XN has the average power
constraint 1

NΣN
i=1E[X

2
i ] ≤ P, the noise ηN is distributed according to N (0, N I), and the

side information V N is independent of ηN and is distributed according to N (0, QI). Assume
that the side information V N is known to the transmitter but not to the receiver. Further
assume that the side information V N is noncausally available at the transmitter in the sense
that at time i the channel input signal Xi can be chosen, based on the message SK and the
whole sequence V N .

Source Encoder Decoder Legitimate receiver

PSfrag replacements

SK XN Y N
ŜK

V N ηN

Figure 1.6: Dirty paper channel.

Costa [7] described this channel using an analogy of writing on dirty paper. So the
channel is also named dirty paper channel. The communication problem over the dirty
paper channel can be stated as follows. Imagine a sheet of paper covered with independent
dirt spots having normally distributed intensity. The transmitter writes a message on it
using a limited amount of ink and sends it to a receiver. Along the way the paper acquires
more normally distributed dirt. Assume that the recipient cannot distinguish between ink
and dirt. The question is: how much information can be reliably sent. Surprisingly, Costa [7]
showed that the capacity of the dirty paper channel is

C =
1

2
log(1 +

P

N
), (1.19)

which is equal to the capacity of the corresponding standard AWGN channel. Therefore,
the original dirt on the paper (i.e., side information) has no effect on the channel capacity.
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To prove this result, Costa [7] used a capacity theorem by Gel’fand and Pinsker [10]
and Heegard and El Gamal [11], which states that the capacity of a discrete memoryless
channel with side information V noncausally known at the transmitter is given by

C = max
pU,X|V (u,x|v)

[I(U ;Y )− I(U ;V )], (1.20)

where the maximum is taken over all input distributions pU,X|V (u, x|v) with a finite-alphabet
auxiliary random variable U . Costa [7] also pointed out that this result can be extended
to continuous alphabets and average input constraints by using the standard argument as
in [18, Chapter 7]. Hence, the given problem can be reduced to that of finding an appropriate
choice of U and distribution p(u, x|v). With the choice of the input distribution given by

X ∼ N (0, P ) independent of V,

U = X + αV with α =
P

P +N
,

it can be readily checked that (1.19) is attained.
Channel models similar to the dirty paper channel have been widely studied. An inter-

esting and fruitful application of the dirty paper coding arises in the Gaussian broadcast
channels, where one can treat the encoded signal for one message as the known interference
and use the dirty paper coding for the other message [36]. This strategy turns out to be
optimal for scalar Gaussian broadcast channels. For multiple antenna Gaussian broadcast
channels the optimal sum rate can be obtained [36–39], although the capacity region in
general is unknown.

The result on the property that the side information does not affect the capacity of the
AWGN channel has been extended in many directions. It has been shown that the same
property holds for general ergodic (possibly non-Gaussian) side information and stationary
(but not necessarily white) Gaussian noise [34], for any colored (not necessarily stationary
or ergodic) Gaussian side information and noise [40], and for the case where the side infor-
mation is an arbitrary sequence if common randomness is available at both the transmitter
and receiver [41]. In addition, it has been shown that the same property holds not only for
dirty paper channel but also for some Gaussian multiple user channels [42], for example,
the Gaussian broadcast channel with side information, the Gaussian multiple access channel
with side information and the physically degraded Gaussian relay channel with side infor-
mation. Moreover, in [42], it has been pointed out that this result can be extended to any
(possible non-Gaussian) stationary ergodic side information and any stationary Gaussian
noise.

In practice, the side information could be memory defect locations, known interference,
image or audio etc. Costa’s result has been applied to many scenarios especially in the fields
of watermarking [34] and information hiding [33]. For instance, the watermarking problem
can be viewed as a communication problem over the dirty paper channel. Recall that
watermarking is to hide a message signal or “watermark” in a host signal or “host image”.
The embedding must be done such that the embedded signal causes no serious distortion
to its host. At the same time, the embedding must be robust to common degradations
of the watermarked signal so that the embedded information can be reliably recovered if
needed. Note that the host image in watermarking plays the role of side information in the
dirty paper channel. Furthermore, the condition that the host image should not be overly
perturbed by the watermarking can be translated to an equivalent power constraint on the
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distortion, which is corresponding to the power constraint at the transmitter in the dirty
paper channel. Therefore, the optimal watermarking scheme uses dirty paper coding and
achieves the capacity.

1.1.6 Gaussian wiretap channel with side information

Mitrpant [8, 9] investigated an extension of Wyner’s model: the Gaussian wiretap channel
with side information. The model is shown in Figure 1.7. It is an extension from the
Gaussian wiretap channel by adding an interference (i.e., side information) in the main
channel. The interference is modelled as a sequence V N of i.i.d. random variables such
that V N ∼ N (0, QI), independent of the noises ηN1 , η

N
2 and the message SK . Assume that

the whole sequence of the interference is known to the encoder before the secret message
transmission.

Source Encoder Decoder Legitimate receiver

Wiretapper

PSfrag replacements
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ŜK
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V N ηN1

ηN2

Figure 1.7: Gaussian wiretap channel with side information.

For the Gaussian wiretap channel with side information, Mitrpant gave an achievable
rate equivocation region as shown in [8, Theorem 4.4] or [9, Theorem 3]. In order to
establish the region, he used the technique similar to Leung-Yan-Cheong and Hellman [4]
for the Gaussian wiretap channel without side information. First he showed that under
different conditions, three specific rate equivocation pairs are achievable. Time sharing
then implies the achievability of the rate equivocation region.

Note that the Gaussian wiretap channel with side information is also an extension of
the dirty paper channel by introducing a wiretapper. Using a similar approach of writing
on dirty paper, we consider the following communication problem: the transmitter wants
to send a secret to a receiver and he knows there is a wiretapper. He writes the secret on a
paper using a limited amount of ink and sends it. Along the way to the legitimate receiver,
the paper acquires normally distributed dirt. Assume that the wiretapper has access to
the paper with additional normally distributed dirt. Now the question of our interest is:
how much secret information can be reliably and securely sent to the legitimate receiver
without leaking information about the secret to the wiretapper. If the transmitter uses a
blank paper (i.e., without side information), he can send secret information at rates up to
the secrecy capacity of the Gaussian wiretap channel, which is equal to the difference of the
capacities of the main and overall wiretap channels as shown by Leung-Yan-Cheong and
Hellman [4]. However, to achieve reliable, efficient and especially secure communication, we
wonder whether a dirty paper might be a better choice than the blank paper as one would
choose intuitively. To this question, Mitrpant [8,9] has not provided a complete answer yet.

1.1.7 Other related work

In [43], it was shown that for Wyner’s wiretap channel, it is possible to send several low-
rate messages, each completely protected from the wiretapper individually, and use the
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main channel at rate close to the capacity. However, if any of the messages are available to
the wiretapper, the secrecy of the rest may also be compromised.

In [44], it was suggested that the secrecy constraint developed by Wyner [1] and subse-
quently followed by Csiszár and Körner [5] needed to be strengthened, since it constraints
the rate of information leaked to the wiretapper, rather than the total information, and
the information of interest might be in this small amount. It was also shown that Wyner’s
scenario can be extended to “strong” secrecy constraints, where the limit is on the total
leaked information rather than just the rate, with no loss in achievable rates using extractor
functions.

In [45], Ozarow and Wyner studied another model, referred to as the wiretap channel
II, where the main communication channel is noiseless, but the wiretapper has access to
a subset of the coded bits. In order to transmit a K-bit message, an N -bit codeword is
sent to the channel, where the wiretapper can observe a subset of his choice of u < N .
The encoder is to be designed to maximize the wiretapper’s uncertainty about the message
given his intercepted channel bits, subject to the condition that the legitimate receiver can
recover the message perfectly. The optimal trade-offs among the parameters K,N, u and
the wiretapper’s uncertainty have been characterized in [45].

In [46], Maurer considered the wiretap channel with noiseless feedback. The problem
is how to distill a secret key to be used for encryption between two parties, when the
wiretapper has partial information about a common random variable shared by the two
parties. It was shown that the existence of a public feedback channel (where the wiretapper
can obtain a perfect copy of the messages transmitted over this public channel), can enable
the two parties to generate a secret key even when the wiretapper’s channel is superior
to the other two channels. Upper and lower bounds were derived for the secrecy capacity
of the wiretap channel with noiseless feedback. However, in general, the secrecy capacity
of this channel remains unknown. Maurer et al. [47–49] also examined the case of active
adversaries, where the wiretapper has read/write access to the channel. In [50,51], Csiszár
and Narayan considered the case of multiple terminals where a number of terminals are
trying to distill a secret key and a subset of these terminals act as helper terminals to the
rest.

In [52], Yamamoto extended the wiretap channel model to have two parallel discrete
memoryless broadcast channels, connecting one encoder and one legitimate decoder, where
both channels are wiretapped by non-collaborating wiretappers. Assume that the legitimate
channel is less noisy than the wiretapped channel. The admissible region were given in terms
of single-letter characterization. In [53], Yamamoto investigated the Gaussian case of the
model and described its admissible region by the capacities and secrecy capacities of two
Gaussian wiretap channels.

In [54], Yamamoto extended the wiretap channel model in two ways. First, a secret key
is allowed to be shared between the encoder and the legitimate receiver. Secondly, a certain
distortion in the reconstruction of the source is allowed at the legitimate receiver. In [55],
Merhav adopted the structure of a degraded broadcast channel as in [1]. Similarly as in [54],
he allowed a secret key shared between the encoder and the legitimate receiver, as well as
lossy reconstruction of the source within a prescribed distortion level. But, moreover, he
introduced side information, correlated to the source, to be available both to the legitimate
receiver and the wiretapper. Assume that the wiretapper receives its side information via a
channel that is degraded relative to the side information channel of the legitimate receiver. A
single letter characterization of the optimal trade-off was provided among the equivocation
at the wiretapper, the rate of the secret key, the distortion in reconstructing the source
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at the legitimate receiver, the bandwidth expansion factor of the coded channels, and the
average transmission cost (generalized power).

In [56], Tekin and Yener considered the Gaussian multiple access wiretap channel. In
this scenario, multiple users communicate with a legitimate receiver in the presence of
an wiretapper who receives a degraded version of the signal at the receiver. Achievable
rate regions were found for different secrecy constraints. Furthermore, it was shown that
the secrecy sum-capacity could be achieved by using Gaussian codebooks and stochastic
encoders. In [57], Tekin and Yener considered another scenario, two-way wiretap channels.
In this situation, two users communicate with each other in the presence of a wiretapper,
who has access to the communications through a multiple access channel. They found
achievable rates for the Gaussian two-way wiretap channel and the binary additive two-
way wiretap channel. The showed that the two-way channels inherently provide a unique
advantage for wiretapper scenarios, as the users know their own transmitted message and
in effect help encrypt the other user’s message, similar to a one-time pad. Note that the
Gaussian multiple access wiretap channel [56] and the Gaussian two-way wiretap channel
[57] are of interest in wireless communications as they correspond to the case where a single
physical channel is utilized by multiple transmitter, such as in an ad-hoc network.

1.2 Thesis outline

Recall that Gel’fand and Pinsker [10] and Heegard and El Gamal [11] proved that the
capacity of a discrete memoryless channel with side information V noncausally known at
the transmitter is given by the formula (1.20). This result was extended to the Gaussian
case by Costa in [7], where he considered the Gaussian channel with side information when
side information is known to the transmitter. He showed that the capacity of the Gaussian
channel with side information, also called dirty paper channel, is the same as if there is no
side information present. Therefore, the side information does not affect the capacity of the
channel. Furthermore, he showed that for the dirty paper channel, by choosing codewords
orthogonal to the side information, the channel capacity could be reached by dirty paper
coding.

Note that the Gaussian wiretap channel with side information is an extension of the
dirty paper channel by introducing a wiretapper. If Costa’s result shows that the dirty
paper could carry as much information as the blank paper, then we wonder whether for the
wiretap channel, dirty paper is a better choice than the blank paper to hide information from
the wiretapper as one would choose intuitively. Besides, due to Costa’s analysis on dirty
paper coding, one prefers to send codewords independent of the side information in order
to yield the optimal efficiency from the transmitter to the receiver. However, we wonder
whether it might be a better choice to send codewords dependent on the side information
for the wiretap channel, in order to yield a higher efficiency to the legitimate receiver at a
certain security level from the wiretapper.

In order to answer the above questions, we first review some theoretical background
on information theory in Chapter 2. Motivated by Costa’s method, in Chapter 3, we
investigate the discrete memoryless wiretap channel with side information. The model is
shown in Figure 1.8. For this model, we give an achievable rate equivocation region. In
addition, the secrecy capacity in some special cases is also determined.

In Chapter 4, we extend our result for the discrete memoryless case to the Gaussian case.
An achievable rate equivocation region is derived for the Gaussian wiretap channel with side
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Figure 1.8: Wiretap channel with side information.

information by using the strategy similar to Costa. Then, we compare the performance of
the region with the capacity region given by Leung-Yan-Cheong and Hellman [4, Theorem 1]
for the wiretap channel without side information. We show that, for the Gaussian wiretap
channel, unlike the dirty paper channel, side information helps to get a larger secrecy
capacity and achieve a larger rate equivocation region. Furthermore, we generalize Costa’s
strategy by taking the correlation coefficient of the codeword and side information as another
parameter into our consideration. As a consequence of an additional parameter in our
optimization, the rate equivocation region is improved by using the generalized Costa’s
strategy. In other words, for the Gaussian wiretap channel with side information, it might
be a better choice in some cases to send codewords dependent on side information, in
order to yield a higher efficiency to the legitimate receiver at a certain security level from
the wiretapper. As we will see, our region for the Gaussian wiretap channel with side
information improves the one given by Mitrpant in [8, Theorem 4.4] or [9, Theorem 3].

In Chapter 5, we focus on the problem of developing forward coding schemes with linear
codes for secure communication over the wiretap channel. An example has been provided
by Wyner in [1] for the special case when the main channel is noiseless and the wiretap
channel is a BSC. Another example is given by Thangaraj et al. [22] for the situation when
the main channel is noiseless and the wiretap channel is a binary erasure channel (BEC).
We consider the specific case when both the main channel and the wiretap channel are
BSCs. We prove that the secrecy capacity can be achieved by using random linear codes2.
However, the random coding technique used in the proof is rather impractical. For practical
purpose, we investigate the performance of the coding schemes when linear codes are used
in the construction. The performance is evaluated from the perspectives of the efficiency,
reliability and security.

In Chapter 6, we reformulate the security problem in biometrics as a communication
problem for the wiretap channel. Two fuzzy commitment schemes based on error correcting
codes are reviewed. We characterize the performance of both schemes with the terminologies
for the wiretap channel.

In Chapter 7, we summarize the contributions of this thesis and discuss some future
research directions.

2Refer to [21, Chapter 14] for random linear code.
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Chapter 2

Theoretical Background

The communication problem for the wiretap channel with side information is primarily
concerned with finding its capacity region. To do this, first we need to prove that a particular
region is achievable. Furthermore, a converse should be given to establish that no points
outside the region is achievable. The region then is the capacity region. In this chapter, we
will introduce most of the basic definitions required for the subsequent development of the
analysis on the wiretap channel with side information.

2.1 Basic definitions

First we recall some basic definitions on the information measures of random variables. For
discrete random variables, we follow the definitions of entropy, joint entropy, conditional
entropy and mutual information given by Cover and Thomas [19].

Definition 2.1.1 The entropy of a discrete random variable X with a probability mass
function pX(x) is defined by

H(X) = −
∑

x∈X
pX(x) log pX(x) = −E log pX(X). (2.1)

Definition 2.1.2 The joint entropy of a pair of discrete random variables (X,Y ) with a
joint probability mass function pXY (x, y) is defined as

H(X,Y ) = −
∑

x∈X

∑

y∈Y
pXY (x, y) log pXY (x, y) = −E log pXY (X,Y ). (2.2)

Definition 2.1.3 The conditional entropy of a pair of discrete random variables (X,Y )
with a joint probability mass function pXY (x, y) and a conditional probability mass function
pY |X(y|x) is defined as

H(Y |X) = −
∑

x∈X

∑

y∈Y
pXY (x, y) log pY |X(y|x) = −E log pY |X(Y |X). (2.3)

Definition 2.1.4 The mutual information of a pair of discrete random variables (X,Y )
with a joint probability mass function pXY (x, y) and marginal probability mass functions
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pX(x) and pY (y) is defined as

I(X;Y ) =
∑

x∈X

∑

y∈Y
pXY (x, y) log

pXY (x, y)

pX(x)pY (y)
= E log

pXY (X,Y )

pX(X)pY (Y )
. (2.4)

Correspondingly, replacing the summations by integrations and the probability mass
functions by probability density functions, we have the definitions of differential entropy,
joint differential entropy, conditional differential entropy and mutual information for con-
tinuous random variables. In this thesis, the logarithms in these quantities are taken to the
base 2 for discrete random variables, and to the base e for continuous random variables.

In particular, applying the definitions of differential entropy, joint differential entropy
and mutual information to Gaussian random variables, we have the following:

Definition 2.1.5 The differential entropy of a Gaussian variable X, where X ∼ N (0, σ2X)
with mean zero and variance σ2X , is

H(X) =
1

2
log 2πeσ2X . (2.5)

Definition 2.1.6 The joint differential entropy of a pair of Gaussian variable (X,V ), where
(X,V ) ∼ N (0,K) with means zero and covariance matrix K, is

H(X,V ) =
1

2
log(2πe)2|K|, (2.6)

where |K| denotes the determinant of K.
Definition 2.1.7 Let X and V be two Gaussian variables, where X ∼ N (0, σ2X) and V ∼
N (0, σ2V ). Suppose the covariance matrix of X and V is K with |K| = σ2Xσ

2
V (1 − ρ2XV ),

where ρXV is the correlation coefficient. Then, the mutual information between X and V is

I(X;V ) =
1

2
log

1

1− ρ2XV

. (2.7)

2.2 Asymptotic equipartition property (AEP)

In probability theory, assume that the components of XN , X1, X2, · · · , XN are generated
independently according to pX(x). Then the law of large numbers states that, 1

N

∑N
i=1Xi

is close to its expected value EX for large values of N .
In information theory, as a direct consequence of the weak law of large numbers, the AEP

states that 1
N log 1

p
XN (xN )

is close to the entropy H(X), where pXN (XN ) =
∏N

i=1 pX(xi).

Thus the probability assigned to an observed sequence will be close to 2−H(X). This enables
us to divide the set of all sequences into two sets, the typical set, where the sample entropy
is close to the true entropy, and the non-typical set, which contains the other sequences.
Most of our attention will be on the typical sequences. The reason is that any property that
is proved for the typical sequences will then be true with high probability and will determine
the average behavior. Now we recall some basic results concerning typical sequences.

Definition 2.2.1 The typical set TN
X (ε) with respect to pX(x) is the set of sequences xN ∈

XN with the following property

2−N(H(X)+ε) ≤ pXN (xN ) ≤ 2−N(H(X)−ε), (2.8)
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where pXN (xN ) =
∏N

i=1 pX(xi).
A sequence is said to be ε-typical with respect to pX(x) if xN ∈ TNX (ε). As a direct

consequence, we have the following lemma. Refer to [19, Chapter 3] for its proof.

Lemma 2.2.2 The typical set TN
X (ε) has the following properties:

1. For any δ > 0, Pr{TN
X (ε)} > 1− δ for N sufficiently large.

2. |TNX (ε)| ≤ 2N(H(X)+ε), where |TNX (ε)| denotes the number of the elements in the set
TNX (ε).

3. |TNX (ε)| ≥ (1− ε)2N(H(X)−ε) for N sufficiently large.

Consider the AEP of Gaussian sequences. The following lemmata show the characteris-
tics of typical Gaussian sequences. Refer to [8, Chapter 2] for their proofs. Note that here
we use the natural logarithm.

Lemma 2.2.3 If XN is a sequence of random variables i.i.d. according to N (0, σ2X), and
xN ∈ TNX (ε) for any ε > 0, then

| 1
N

N
∑

i=1

x2i
σ2X

− 1| < 2ε.

Lemma 2.2.4 Let XN be a sequence of random variables i.i.d. according to N (0, σ2X). If
xN ∈ TNX (ε) for any ε > 0, and σ2X ≤ P

1+2ε , then

1

N

N
∑

i=1

x2i ≤ P.

Lemma 2.2.5 Let (XN , Y N ) be a pair of sequences of random variables i.i.d. according to
the joint probability density function pXY (x, y) and the marginal probability density func-
tions pX(x) ∼ N (0, σ2X) and pY (y) ∼ N (0, σ2Y ), where

pXY (x, y) =
1

2πσXσY

√

1− ρ2XY

exp{− 1

2(1− ρ2XY )
[
x2

σ2X
− 2ρXY xy

σXσY
+

y2

σ2Y
]}

and ρXY is the correlation coefficient. If (x
N , yN ) ∈ TNX,Y (ε) for any ε > 0, then

| 1
N

N
∑

i=1

x2i
σ2X

− 1| < 2ε,

| 1
N

N
∑

i=1

y2i
σ2Y

− 1| < 2ε,

| 1
N

N
∑

i=1

xiyi
ρXY σXσY

− 1| < (
3

ρ2XY

− 1)ε.

In [8, Chapter 2], a special setup, in which UN = XN + αV N for a real constant α,
and XN and V N are independent Gaussian sequences, is also discussed. Two lemmata
regarding it are shown as follows. Refer to [8, Chapter 2] for their proofs.
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Lemma 2.2.6 Let XN and V N be two independent sequences of i.i.d. random variables
X ∼ N (0, σ2X) and V ∼ N (0, σ2V ), respectively. Let U

N = XN + αV N for a constant real
number α. If (uN , vN ) ∈ TNU,V (ε) for any ε > 0, then xN = uN − αvN satisfies

xN ∈ TNX (2ε),

| 1
N

N
∑

i=1

xivi| <
3σ2X + 2α2σ2V

α
ε.

Lemma 2.2.7 Let XN and V N be two independent sequences of i.i.d. random variables
X ∼ N (0, σ2X) and V ∼ N (0, σ2V ), respectively. Let U

N = XN + αV N for a constant real
number α. If (uN , vN ) ∈ TNU,V (ε) for any ε > 0 and σ2X ≤ P

1+4ε , then

1

N

N
∑

i=1

x2i ≤ P.

We consider a more general setup, in which UN = XN +αV N for a real constant α, and
XN is not necessarily independent of V N . As a general version of the above two lemmata,
we have the following.

Lemma 2.2.8 Let XN and V N be two sequences of i.i.d. random variables X ∼ N (0, σ2X)
and V ∼ N (0, σ2V ), respectively. Let ρXV be the correlation coefficient between X and V.
Let UN = XN + αV N for a constant real number α. If (uN , vN ) ∈ TNU,V (ε) for any ε > 0,

then xN = uN − αvN satisfies

xN ∈ TNX (cε),

| 1
N

N
∑

i=1

xivi
σXσV

− ρXV | <
( 3
ρ2
UV

− 1)|ρUV |σU + 2|α|σV
σX

ε.

where σU =
√

σ2X + α2σ2V + 2ασXσV ρXV , ρUV = (σXσV ρXV + ασ2V )/σUσV and c = {σ2U +

α2σ2V + |α|( 3
ρ2
UV

− 1)|ρUV |σUσV }/σ2X .

Proof: Note that XN and V N are two sequences of i.i.d. Gaussian random variables.
Clearly, UN = XN +αV N is a sequence of i.i.d. Gaussian random variables U ∼ N (0, σ2U ),
where σ2U = σ2X + α2σ2V + 2ασXσV ρXV . Let ρUV be the correlation coefficient between U
and V. Due to X = U − αV, we have σ2X = σ2U + α2σ2V − 2ασUσV ρUV . It is easy to verify
that σUσV ρUV = σXσV ρXV + ασ2V .

Since (uN , vN ) ∈ TNU,V (ε), by Lemma 2.2.5, we have

| 1
N

N
∑

i=1

u2i
σ2U
− 1| < 2ε⇔ | 1

N

N
∑

i=1

u2i − σ2U | < 2σ2U ε,

| 1
N

N
∑

i=1

v2i
σ2V

− 1| < 2ε⇔ | 1
N

N
∑

i=1

v2i − σ2V | < 2σ2V ε,

| 1
N

N
∑

i=1

uivi
ρUV σUσV

− 1| < (
3

ρ2UV
− 1)ε⇔ | 1

N

N
∑

i=1

uivi − ρUV σUσV | < (
3

ρ2UV
− 1)|ρUV |σUσV ε.
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Note that for i = 1, · · · , N, ui = xi + αvi. In addition that σUσV ρUV = σXσV ρXV + ασ2V ,

| 1
N

N
∑

i=1

uivi − ρUV σUσV | = | 1
N

N
∑

i=1

(xivi + αv2i )− (σXσV ρXV + ασ2V )|

= | 1
N

N
∑

i=1

xivi − σXσV ρXV +
1

N

N
∑

i=1

αv2i − ασ2V |

< (
3

ρ2UV
− 1)|ρUV |σUσV ε.

Therefore,

| 1
N

N
∑

i=1

xivi − σXσV ρXV | ≤ | 1
N

N
∑

i=1

uivi − ρUV σUσV |+ |α| · |
1

N

N
∑

i=1

v2i − σ2V |

< [(
3

ρ2UV
− 1)|ρUV |σUσV + 2|α|σ2V ]ε.

This is equivalent to

| 1
N

N
∑

i=1

xivi
σXσV

− ρXV | <
( 3
ρ2
UV

− 1)|ρUV |σU + 2|α|σV
σX

ε.

Due to xi = ui − αvi for i = 1, · · · , N, x2i = u2i + α2v2i − 2αuivi. Easily we have

| 1
N

N
∑

i=1

x2i − σ2X | = | 1
N

N
∑

i=1

(u2i + α2v2i − 2αuivi)− (σ2U + α2σ2V − 2ασUσV ρUV )|

≤ | 1
N

N
∑

i=1

u2i − σ2U |+ α2| 1
N

N
∑

i=1

v2i − σ2V |+ 2|α| · | 1
N

N
∑

i=1

uivi − ρUV σUσV |

< 2[σ2U + α2σ2V + |α|( 3

ρ2UV
− 1)|ρUV |σUσV ]ε.

Since σ2X > 0,

| 1
N

N
∑

i=1

x2i
2σ2X

− 1

2
| <

σ2U + α2σ2V + |α|( 3
ρ2
UV

− 1)|ρUV |σUσV
σ2X

ε.

Note that pXN (xN ) =
∏N

i=1 pX(xi) and PX(x) = 1√
2πσX

exp{− x2

2σ2
X

}. Furthermore, due to

X ∼ N (0, σ2X), H(X) = 1
2 log 2πeσ

2
X . Therefore, we have the following.

| − 1

N
log pXN (xN )−H(X)| = | − 1

N

N
∑

i=1

log pX(xi)−H(X)|

= | − 1

N

N
∑

i=1

log
1√

2πσX
exp{− x2

2σ2X
} − 1

2
log 2πeσ2X |

17



= | 1
N

N
∑

i=1

x2i
2σ2X

+
1

2
log 2πσ2X −

1

2
log 2πeσ2X |

= | 1
N

N
∑

i=1

x2i
2σ2X

− 1

2
|

<
σ2U + α2σ2V + |α|( 3

ρ2
UV

− 1)|ρUV |σUσV
σ2X

ε.

Let c = {σ2U + α2σ2V + |α|( 3
ρ2
UV

− 1)|ρUV |σUσV }/σ2X . The last inequality implies that xN ∈
TNX (cε).

Lemma 2.2.9 Let XN and V N be two sequences of i.i.d. random variables X ∼ N (0, σ2X)
and V ∼ N (0, σ2V ), respectively. Let ρXV be the correlation coefficient between X and V.
Let UN = XN + αV N for a constant real number α. If (uN , vN ) ∈ TNU,V (ε) for any ε > 0

and σ2X ≤ P
1+2cε , then

1

N

N
∑

i=1

x2i ≤ P.

Here c is a constant as defined in Lemma 2.2.8.

Proof: Since (uN , vN ) ∈ TNU,V (ε), by Lemma 2.2.8, xN ∈ TNX (cε). Due to Lemma 2.2.3,
it implies

| 1
N

N
∑

i=1

x2i
σ2X

− 1| < 2cε⇒ 1

N

N
∑

i=1

x2i
σ2X

< 1 + 2cε.

Therefore,

1

N

N
∑

i=1

x2i < σ2X(1 + 2cε) ≤ P

1 + 2cε
(1 + 2cε) = P.

2.3 Fano-inequality

In this thesis, the achievability proofs are mostly given in terms of typical sequences. The
converse proofs are provided for some special cases. The well-known Fano-inequality forms
the basis of these proofs. We will now recall this inequality. Refer to [19, Theorem 2.11.1]
for its proof.

Lemma 2.3.1 For discrete random variables X,Y, X̂ such that X → Y → X̂ forms a
Markov chain, define the probability of error Pe = Pr{X 6= X̂}. Then

h(Pe) + Pe log(|X | − 1) ≥ H(X|Y ), (2.9)

where h(·) is the binary entropy function and

h(Pe) = −Pe logPe − (1− Pe) log(1− Pe). (2.10)
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Chapter 3

Wiretap Channel with Side
Information

3.1 Introduction

In this chapter, we investigate the discrete memoryless wiretap channel with side informa-
tion. The model is shown in Figure 3.1. We consider the following problems: what is the
secrecy capacity and what is the rate equivocation region of a discrete memoryless wiretap
channel with side information?

Source Encoder Decoder Legitimate receiver

Wiretapper

PSfrag replacements

SK XN Y N
ŜK

ZN

V N

DMC

DMC

Figure 3.1: Discrete memoryless wiretap channel with side information.

The rest of the chapter is organized as follows. In section 3.2, we present the basic
definitions and the main result. In section 3.3, we give the proof of a coding theorem for
the discrete memoryless channel with side information. In section 3.4, three corollaries are
derived. Finally we conclude in section 3.5.

3.2 Model description

We assume that the source has a finite alphabet. The side information is noncausally known
at the encoder and Vi, 1 ≤ i ≤ N, are i.i.d. ∼ pV (v). The encoder examines every K source
outputs, sK . Based on sK and vN , the encoder sends a codeword xN to the main channel.
Upon receipt of yN the decoder at the legitimate receiver makes an estimate ŝK of the
message sK . Note that yN is also the input of the wiretap channel. The corresponding
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output at the wiretapper is zN . The channels are memoryless, i.e.,

pY N |XN ,V N (yN |xN , vN ) =
N
∏

i=1

pY |X,V (yi|xi, vi); (3.1)

pZN |Y N (zN |yN ) =
N
∏

i=1

pZ|Y (zi|yi). (3.2)

Now consider a (2NR, N) code with encoder

XN : {1, 2, · · · , 2NR} × VN → XN

and decoder
ŜK : YN → {1, 2, · · · , 2NR}.

Assume that SK is uniformly distributed. Then the average probability of error Pe is

Pe =
1

2NR

2NR
∑

i=1

Pr(ŜK 6= i|SK = i). (3.3)

We define the rate of transmission to the legitimate receiver to be

R =
H(SK)

N
, (3.4)

and the fractional equivocation of the wiretapper to be

d =
H(SK |ZN )

H(SK)
. (3.5)

We say that the pair (R∗, d∗) is achievable if, for all ε > 0, there exists an encoder-decoder
pair such that

R ≥ R∗ − ε, d ≥ d∗ − ε, Pe ≤ ε. (3.6)

Define the secrecy capacity Cs as the maximum R∗ such that (R∗, 1) is achievable.
Denote

RU1 = I(U ;Y )−max{I(U ;V ), I(U ;Z)}, (3.7)

RU2 = I(U ;Y )− I(U ;V ), (3.8)

dU2 =
I(U ;Y )−max{I(U ;V ), I(U ;Z)}

I(U ;Y )− I(U ;V )
, (3.9)

where U is an auxiliary parameter such that U → (X,V )→ Y → Z forms a Markov chain.
In general, we have the following result.

Theorem 3.2.1 For the discrete memoryless wiretap channel with side information, we
denote RU as the set of points (R, d) with

RU1 ≤ R ≤ RU2, 0 ≤ d ≤ 1, Rd = RU1.
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Let
R′U

∆
= {(R′, d′) : 0 ≤ R′ ≤ R, 0 ≤ d′ ≤ d, (R, d) ∈ RU}.

Then the set R, defined as follows, is achievable:

R =
⋃

U→(X,V )→Y→Z

R′U . (3.10)

The region is already obtained if we limit the cardinality of the range of U by the constraint
|U| ≤ |X ||V|+ 3.

Remarks:
(a) The widely used definition of the achievable rate equivocation pair was first intro-

duced by Wyner [1, (9a)-(9c)]. It implies that if (R, d) is achievable, then for any 0 ≤ d′ ≤ d,
(R, d′) is achievable. Therefore, we concentrate on the problem to achieve as high as possible
equivocation for the wiretapper at any fixed rate of reliable transmission to the legitimate
receiver.

In addition, if (R, d) is achievable, by time sharing (0, 0) and (R, d), it is easy to prove
that for any 0 ≤ R′ ≤ R , (R′, d) is achievable. Therefore, it is enough to show that RU is
achievable so as to establish R′U . Surprisingly, Rd = c corresponds to a time-sharing curve
as shown in [4, Lemma 1], where c is a constant.

(b) Recall that the capacity region of the Gaussian wiretap channel given by Leung-
Yan-Cheong and Hellman [4, Theorem 1] is defined by

R ≤ CM , d ≤ 1, Rd ≤ Cs,

where CM is the capacity of the main channel and Cs is the secrecy capacity. In order
to establish the achievability of the entire region, Leung-Yan-Cheong and Hellman [4] only
proved that two extreme points (Cs, 1) and (CM , Cs/CM ) are achievable. Then time sharing
implies the achievability of the region. Thereafter, Mitrpant [8,9] used similar technique to
establish the achievability of the rate equivocation region for the Gaussian wiretap channel
with side information. However, our technique is more general. Instead of proving that
some particular points are achievable, we introduce an auxiliary parameter U . For each
U such that U → (X,V ) → Y → Z forms a Markov chain, we show that (RU1, 1) and
(RU2, dU2) are achievable. Then time sharing implies the achievability of R′U . To establish
the region R, we go through all possible U .

(c) The constraint on the cardinality of the range of U is implied by [12, Lemma 3]. The
proof is given in Appendix II.

(d) The points (R, d) in R with d = 1 is of considerable interest. These correspond to
the situation of perfect secrecy. Define

Rs = max
U→(X,V )→Y→Z

RU1, (3.11)

CM = max
U→(X,V )→Y

[I(U ;Y )− I(U ;V )]. (3.12)

Clearly, we can easily bound the secrecy capacity of the wiretap channel with side informa-
tion by Rs ≤ Cs ≤ CM .
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PSfrag replacements

2N [max{I(U ;V ),I(U ;Z)}+εUV Z ] codewords per bin

2N [I(U ;Z)−εUZ ] codewords per subbin

2N [max{I(U ;V ),I(U ;Z)}−I(U ;Z)+εUV Z+εUZ ] subbins

per bin

2N [I(U ;Y )−εUY ] codewords per codebook

Number of bins

= 2N [I(U ;Y )−max{I(U ;V ),I(U ;Z)}−εUY −εUV Z ]

Figure 3.2: The codebook to achieve rate equivocation pair (RU1, 1) .

3.3 Achievability proof

In this section, we establish the achievability of the region R. We only need to prove that
the rate equivocation pairs (RU1, 1) and (RU2, dU2) are achievable, since time-sharing then
implies the achievability of the region R′U .

3.3.1 (RU1, 1) is achievable

The encoding and decoding strategy is as follows:

1. Codebook Generation

First, generate 2N [I(U ;Y )−εUY ] i.i.d. sequences uN , according to the distribution pUN (uN ) =
∏N

i=1 pU (ui). Next, distribute these sequences at random into 2NR bins such that each
bin contains 2N [max{I(U ;V ),I(U ;Z)}+εUV Z ] sequences. Here, R = [RU1 − εUY − εUV Z ].
Index each bin by j ∈ {1, 2, · · · , 2NR}. Then place the 2N [max{I(U ;V ),I(U ;Z)}+εUV Z ]

sequences in every bin randomly into 2N [max{I(U ;V ),I(U ;Z)}−I(U ;Z)+εUV Z+εUZ ] subbins
such that every subbin contains 2N [I(U ;Z)−εUZ ] sequences. Let W be the random
variable to represent the index of the subbin containing UN . Index each subbin by
w ∈ {1, 2, · · · , 2N [max{I(U ;V ),I(U ;Z)}−I(U ;Z)+εUV Z+εUZ ]}.

2. Encoding

To send message j through an interference vN , the sender looks in bin j for a sequence
uN (j) such that (uN (j), vN ) is jointly typical, i.e., (uN (j), vN ) ∈ TNU,V (ε). If there is no

such uN (j) jointly typical with vN , then the sender randomly chooses one sequence in
bin j. Send the associated jointly typical xN (j). (xN (j) can be generated according
to pXN |UN ,V N (xN (j)|uN (j), vN ) =

∏N
i=1 pX|U,V (xi|ui, vi).)

3. Decoding

The legitimate receiver receives yN according to the distribution
∏N

i=1 pY |X,V (yi|xi, vi).
The receiver looks for the unique sequence uN in the codebook that is jointly typical
with the received sequence yN , i.e., (uN , yN ) ∈ TNU,Y (ε). Declare the index of the bin

containing uN as the message received.
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4. Wiretapper

The wiretapper knows the encoding scheme used at the transmitter and the decoding
scheme used by the legitimate receiver. He receives a sequence zN according to the
distribution

∏N
i=1 pY |X,V (yi|xi, vi)pZ|Y (zi|yi).

For the legitimate receiver, there are three sources of potential error.

• EV (j): in the encoding process, given vN and message j, there is no sequence uN in
the bin j that is jointly typical with vN .

• EY1(j): in the decoding process, there is no sequence uN that is jointly typical with
the received sequence yN .

• EY2(j): in the decoding process, there is a sequence uN (j′) in bin j′, j′ 6= j, jointly
typical with the received sequence yN .

From the above encoding and decoding strategy, the codebook we use here is similar to
the one used in [7,10,11]. Hence, it is easy to show that the information rate RU1 from the
transmitter to the legitimate receiver is achievable.

Intuitively, a possible decoding strategy for the wiretapper would be to use the same
strategy to decode as the legitimate receiver. He will try to find a sequence uN in the code-
book that is jointly typical with the received sequence zN , and declare the index of the bin
in which the sequence is found as the received message. We know that for any zN , the prob-
ability that uN is jointly typical with zN is larger than (1− ε)2−N [I(U ;Z)+3ε]. While in every
bin there are 2N [max{I(U ;V ),I(U ;Z)}+εUV Z ] sequences, which is more than 2N [I(U ;Z)+εUV Z ]. By
choosing appropriate εUV Z and N , we can construct a codebook such that in every bin,
with high probability larger than 1 − ε, a sequence uN is found to be jointly typical with
zN . Therefore, the probability that he decodes the correct message goes to 2−NR as N
approaches ∞, which means that pSK |ZN (sK |zN ) → pSK (sK) and H(SK |ZN ) → H(SK).
Thus, the equivocation for the wiretapper goes to 1 as N approaches ∞.

We will prove in the following that (RU1, 1) is achievable in two parts, the reliability:
Pe → 0, as n→∞, and the security: d→ 1, as n→∞.
Proof of Pe → 0.
We first analyze the probability of EV (j). By the code generating process, uN and

vN are independent. The probability that a pair (uN , vN ) is jointly typical is larger than
(1− ε)2−N [I(U ;V )+3ε] for n sufficiently large. So we have

Pr{(uN , vN ) ∈ TNU,V (ε)} ≥ (1− ε)2−N [I(U ;V )+3ε]

Pr{(uN , vN ) /∈ TNU,V (ε)} ≤ 1− (1− ε)2−N [I(U ;V )+3ε]

Pr{EV (j)|SK = j}
(a)

≤ [1− (1− ε)2−N [I(U ;V )+3ε]]2
N [max{I(U ;V ),I(U ;Z)}+εUV Z ]

(b)

≤ exp{−(1− ε)2−N [I(U ;V )+3ε]}2N [max{I(U ;V ),I(U ;Z)}+εUV Z ]

= exp{−(1− ε)2N [max{I(U ;V ),I(U ;Z)}−I(U ;V )+εUV Z−3ε]}
≤ δ/3,

where
(a) follows from the fact that there are 2N [max{I(U ;V ),I(U ;Z)}+εUV Z ] codewords in a bin;
(b) follows from the inequality ea ≥ 1 + a.
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As shown above, for given ε and arbitrary small δ, there exists εUV Z and N1 such that
when εUV Z > 3ε, N ≥ N1, both Pr{(uN , vN ) ∈ TNU,V (ε)} ≥ (1 − ε)2−N [I(U ;V )+3ε] and

Pr{EV (j)|SK = j} ≤ δ/3 hold.
The probability of EY1(j). If the event EV (j) does not occur, which means that there

is a sequence uN (j) in bin j and a sequence xN (j) such that (uN (j), xN (j), vN ) is jointly
typical, then (uN (j), xN (j), vN , yN ) will be jointly typical with high probability. For given
ε and arbitrary small δ, there exists N2 such that when N ≥ N2,

Pr{(uN , yN ) ∈ TNU,Y (ε)} ≥ 1− δ/3,

which implies that

Pr{EY1(j)|EV (j)C , SK = j} ≤ δ/3.

The third source of potential error. If we say that EY ∗
2 (j) occurs when some other uN

is jointly typical with yN , then it is clear that

Pr{EY2(j)|EV (j)C , SK = j} ≤ Pr{EY ∗
2 (j)|EV (j)C , SK = j}.

But a sequence uN , different from uN (j), being jointly typical with yN has probability at
most 2−N [I(U ;Y )−3ε]. Since there are only 2N [I(U ;Y )−εUY ]−1 other sequences, for given ε and
arbitrary small δ, there exists εUY and N3 such that when εUY > 3ε, N ≥ N3, we have

Pr{EY2(j)|EV (j)C , SK = j} ≤ Pr{EY ∗
2 (j)|EV (j)C , SK = j}

≤
∑

uN 6=uN (j)
2−N [I(U ;Y )−3ε]

≤ (2N [I(U ;Y )−εUY ] − 1)2−N [I(U ;Y )−3ε]

< 2N [I(U ;Y )−εUY ]−N [I(U ;Y )−3ε]

= 2−N [εUY −3ε]

≤ δ/3.

This shows that all three error events are of arbitrarily small probability. By the union
bound 1 on these three probabilities of error, for εUY , εUV Z > 3ε, N ≥ max{N1, N2, N3},
the average probability of error

Pe =
1

2nR

2nR
∑

j=1

Pr(ŜK(Y N ) 6= j|SK = j)

≤ 1

2nR

2nR
∑

j=1

[Pr{EV (j)|SK = j}+ Pr{EY1(j)|EV (j)C , SK = j}

+Pr{EY2(j)|EV (j)C , SK = j}]

≤ 1

2nR

2nR
∑

j=1

[δ/3 + δ/3 + δ/3]

= δ.

1Let Ei, i ∈ {1, · · · , N} be events of interest of an experiment. Then Pr{⋃N

i=1 Ei} ≤
∑N

i=1 Pr{Ei}.
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This concludes the proof of reliability.
Proof of d→ 1.
Consider the uncertainty of the message to the wiretapper in three steps:

1. show that

H(SK |ZN ) ≥ NRU1 −N [εUV Z + εUZ ]−H(UN |SK ,W,ZN ).

(See the codebook generation in section 3.3.1.)

2. show that
H(UN |SK ,W,ZN ) ≤ h(PSB) + PSBN [I(U ;Z)− εUZ ].

Here PSB means a wiretapper’s error probability in the case where the bin and the
subbin number are known to the wiretapper.

3. show that for arbitrary 0 < λ < 1/2, PSB ≤ λ.

Combining the above steps, we have

d =
H(SK |ZN )

H(SK)

≥ NRU1 −N [εUV Z + εUZ ]−H(UN |SK ,W,ZN )

NR

≥ NR+N [εUY − εUZ ]− h(PSB)− PSBN [I(U ;Z)− εUZ ]

NR

≥ NR+N [εUY − εUZ ]− h(λ)− λN [I(U ;Z)− εUZ ]

NR

= 1− εUZ − εUY + h(λ)/N + λ[I(U ;Z)− εUZ ]

RU1 − εUY − εUV Z
.

We now proceed to step 1 by considering

H(SK |ZN ) = H(SK , ZN )−H(ZN )

= H(SK ,W,ZN )−H(W |SK , ZN )−H(ZN )

= H(SK ,W,UN , ZN )−H(UN |SK ,W,ZN )−H(W |SK , ZN )−H(ZN )

= H(SK ,W |UN , ZN ) +H(UN , ZN )−H(UN |SK ,W,ZN )

−H(W |SK , ZN )−H(ZN )

(a)
= H(UN |ZN )−H(UN |SK ,W,ZN )−H(W |SK , ZN )

(b)

≥ H(UN |ZN )−H(UN |SK ,W,ZN )− log |W | −H(UN |Y N )

(c)
= N [I(U ;Y )− I(U ;Z)]−H(UN |SK ,W,ZN )

−N [max{I(U ;V ), I(U ;Z)} − I(U ;Z) + εUV Z + εUZ ]

= NRU1 −N [εUV Z + εUZ ]−H(UN |SK ,W,ZN ),

where
(a) follows from the fact that H(SK ,W |UN , ZN ) ≥ 0;
(b) follows from the fact that H(W |SK , ZN ) ≤ H(W ) ≤ log |W | and H(UN |Y N ) ≥ 0;
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(c) follows from the fact that I(UN ;Y N ) = NI(U ;Y ), I(UN ;ZN ) = NI(U ;Z) and
log |W | = N [max{I(U ;V ), I(U ;Z)} − I(U ;Z) + εUV Z + εUZ ].

Thus the proof of step 1 is completed.
To prove step 2, we need to bound the entropy of the codeword conditioned on the

bin j, subbin w and the wiretapper’s observation zN . We take the subbin w in bin j as
a codebook, UN in the codebook as the input messages, ZN as the result of passing UN

through the discrete memoryless channel. From ZN , we estimate the message UN that was
sent. Let g(·) be the decoder and the estimate be ÛN = g(ZN ). Define the probability of
error

PSB = Pr(ÛN 6= UN ). (3.13)

By the Fano’s inequality, we have

H(UN |SK = j,W = w,ZN )
(a)

≤ h(PSB) + PSBN [I(U ;Z)− εUZ ],

where (a) follows from the fact that, in bin j, subbin w, the number of the possible sequences
is at most 2N [I(U ;Z)−εUZ ]. Hence,

H(UN |SK ,W,ZN ) ≤ h(PSB) + PSBN [I(U ;Z)− εUZ ].

Thus we complete the proof of step 2.
Now we proceed to step 3. Note that given the codebook described in the proof of step

2,

• the decoder g(·) knows the indices of the bin and the subbin, i.e., j and w;

• the estimate g(zN ) can be arbitrary.

Here we set g(zN ) as uN , the one in the codebook which is jointly typical with zN , i.e.,
(uN , zN ) ∈ TNU,Z(ε). When one of the following events occurs, an error is declared.

• EZ1(j, w) : there is no sequence uN in the codebook (i.e., subbin w in bin j) that is
jointly typical with the received sequence zN .

• EZ2(j, w) : some other sequence in the codebook (i.e., subbin w in bin j) is jointly
typical with the received sequence zN .

Then, PSB can be bounded as follows:

PSB ≤ Pr{EZ1(j, w)}+ Pr{EZ2(j, w)}.

First we analyze the probability Pr{EZ1(j, w)}. For given ε and λ, there exists N4 such
that, when N ≥ N4, Pr{(uN , zN ) ∈ TNU,Z(ε)} ≥ 1−λ/2, which implies Pr{EZ1(j, w)} ≤ λ/2.

The probability Pr{EZ2(j, w)}. When there is other sequence uN which is jointly typical
with zN , clearly such uN is independent with zN . Since there are only 2N [I(U ;Z)−εUZ ] − 1
other sequences in the codebook, for given ε and λ, there exists εUZ and N5, so that when
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εUZ > 3ε, N ≥ N5, we have

Pr{(uN , zN ) ∈ TNU,Z(ε)} ≤ 2−N [I(U ;Z)−3ε]

Pr{EZ2(j, w)} <
∑

uN

2−N [I(U ;Z)−3ε]

= 2N [I(U ;Z)−εUZ ]2−N [I(U ;Z)−3ε]

= 2−N [εUZ−3ε]

≤ λ/2.

Thus, we have bounded PSB for given ε and λ, when εUZ > 3ε and N > max{N4, N5},

PSB ≤ Pr{EZ1(j, w)}+ Pr{EZ2(j, w)}
≤ λ/2 + λ/2

= λ.

This completes the proof of step 3 and consequently also the security d→ 1, as N →∞.
Now we have given an encoding-decoding scheme such that, when

N ≥ max{N1, N2, N3, N4, N5},

R = RU1 − εUY − εUV Z ,

Pe ≤ δ,

d ≥ 1− εUZ − εUY + h(λ)/N + λ[I(U ;Z)− εUZ ]

RU1 − εUY − εUV Z
. (3.14)

Choosing ε, εUY , εUV Z , εUZ , δ and λ arbitrarily small and εUY , εUV Z , εUZ > 3ε, we have
completed the proof that (RU1, 1) is achievable. In this case, although the wiretapper
knows the decoding strategy used by the legitimate receiver, it can not help him since the
equivocation goes to 1.

3.3.2 (RU2, dU2) is achievable

From (3.7), (3.8) and (3.9) it follows that if I(U ;V ) ≥ I(U ;Z), then the rate equivocation
pair (RU2 , dU2) coincides with (RU1 , 1). So we only need to prove that, when I(U ;V ) <
I(U ;Z), (RU2 , dU2) is achievable. While if I(U ;V ) < I(U ;Z), then

RU2 = I(U ;Y )− I(U ;V ), (3.15)

dU2 =
I(U ;Y )− I(U ;Z)

I(U ;Y )− I(U ;V )
. (3.16)

The encoding and decoding strategy is as follows:

1. Codebook Generation

First, generate 2N [I(U ;Y )−εUY ] independent sequences uN , according to the distribution
pUN (uN ) =

∏N
i=1 pU (ui). Next, distribute these sequences at random into 2NR bins

such that each bin contains 2N [I(U ;V )+εUV ] sequences. Here, R = [RU2 − εUY − εUV ].
Index each bin by j ∈ {1, 2, · · · , 2NR}. Since I(U ;V ) < I(U ;Z), without loss of
generality, we assume that I(U ;V ) + εUV ≤ I(U ;Z)− εUZ .

2. Encoding
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PSfrag replacements

2N [I(U ;V )+εUV ] codewords per bin,

where 2N [I(U ;V )+εUV ] < 2N [I(U ;Z)−εUZ ]

2N [I(U ;Y )−εUY ] codewords per codebook

Number of bins = 2N [I(U ;Y )−I(U ;V )−εUY −εUV ]

Figure 3.3: The codebook to achieve rate equivocation pair (RU2, dU2), when I(U ;V ) <
I(U ;Z) .

To send message j through an interference vN , the sender looks in bin j for a sequence
uN (j) such that (uN (j), vN ) is jointly typical, i.e., (uN (j), vN ) ∈ TNU,V (ε)., If there is

no such uN (j) jointly typical with vN , then the sender randomly chooses one sequence
in bin j. Send the associated jointly typical xN (j). (xN (j) can be generated according
to pXN |UN ,V N (xN (j)|uN (j), vN ) =

∏N
i=1 pX|U,V (xi|ui, vi).)

3. Decoding

The legitimate receiver receives yN according to the distribution
∏N

i=1 pY |X,V (yi|xi, vi).
The receiver looks for the unique sequence uN in the codebook that is jointly typical
with the received sequence yN , i.e., (uN , yN ) ∈ TNU,Y (ε). Declare the index of the bin

containing uN as the message received.

4. Wiretapper

The wiretapper knows the encoding scheme used at the transmitter and the decoding
scheme used by the legitimate receiver. He receives a sequence zN , according to the
distribution

∏N
i=1 pY |X,V (yi|xi, vi)pZ|Y (zi|yi).

For the legitimate receiver, there are three sources of potential error.

• EV (j): in the encoding process, given vN and message j, there is no sequence uN in
the bin j that is jointly typical with vN .

• EY1(j): in the decoding process, there is no sequence uN that is jointly typical with
the received sequence yN .

• EY2(j): in the decoding process, there is a sequence uN (j′) in bin j′, j′ 6= j, jointly
typical with the received sequence yN .

The encoding and decoding strategy shown above is almost the same as the one to
achieve the rate equivocation pair (RU1, 1). Only the codebook is different. In this code-
book, the number of the sequences in every bin is less and thus there are more bins, which
means that we can transmit more messages. So the rate RU2 = I(U ;Y )− I(U ;V ) is larger
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than RU1 = I(U ;Y ) − max{I(U ;V ), I(U ;Z)}. However, RU2 is still not larger than the
capacity of the main channel: CM = max

pU,X|V (u,x|v)
[I(U ;Y )− I(U ;V )]. By similar arguments

as in [7, 10,11], it is easy to show that the information rate RU2 is achievable.
Intuitively, a possible decoding strategy for the wiretapper would be to use the same

strategy to decode as the legitimate receiver. He will try to find a sequence uN in the
codebook that is jointly typical with the received sequence zN , and declare the index of the
bin in which the sequence is found as the received message. We know that for any zN , the
probability that uN is jointly typical with zN is larger than (1−ε)2−N [I(U ;Z)+3ε]. In the code-
book, there are 2N [I(U ;Y )−εUY ] sequences uniformly distributed. Thus, with high probability
the wiretapper will find approximately 2N [I(U ;Y )−I(U ;Z)−εUY −3ε] sequences that are jointly
typical with zN . These sequences are also uniformly distributed in the codebook. However,
there are 2N [I(U ;Y )−I(U ;V )−εUY −εUV ] bins in the codebook. Since I(U ;V ) < I(U ;Z), choos-

ing appropriate ε, εUY , εUV , for example, ε < I(U ;Z)−I(U ;V )
10 , εUY , εUV = 4ε , we can have a

codebook such that

2N [I(U ;Y )−I(U ;V )−εUY −εUV ] ≥ 2N [I(U ;Y )−I(U ;Z)−εUY −3ε].

So, in every bin there is at most one sequence that is jointly typical with zN . That is, there
are 2N [I(U ;Y )−I(U ;Z)−εUY −3ε] bins that have such a sequence that is jointly typical with zN .
Hence, for the wiretapper, the number of possible messages is about 2N [I(U ;Y )−I(U ;Z)−εUY −3ε].
The probability that he decodes the correct message goes to 2−N [I(U ;Y )−I(U ;Z)] as N ap-
proaches ∞. Therefore, we have pSK |ZN (sK |zN ) → 2−N [I(U ;Y )−I(U ;Z)] and H(SK |ZN ) →
N [I(U ;Y )− I(U ;Z)]. Since H(SK)→ N [I(U ;Y )− I(U ;V )], the normalized equivocation

dU2 goes to I(U ;Y )−I(U ;Z)
I(U ;Y )−I(U ;V ) as N approaches ∞. So, we reach more rate for the legitimate

receiver, but less equivocation for the wiretapper. The perfect security can not be guaran-
teed.

In the following we will prove that when I(U ;V ) < I(U ;Z), (RU2, dU2) is achievable in

two parts, the reliability: Pe → 0, as N → ∞, and the security: dU2 → I(U ;Y )−I(U ;Z)
I(U ;Y )−I(U ;V ) , as

N →∞.
Proof of Pe → 0.
We first analyze the probability of EV (j). By the code generating process, uN and vN

are independent. The probability that a pair (uN , vN ) is jointly typical is greater than
(1− ε)2−N [I(U ;V )+3ε] for N sufficiently large. So we have

Pr{(uN , vN ) ∈ TNU,V (ε)} ≥ (1− ε)2−N [I(U ;V )+3ε]

Pr{(uN , vN ) /∈ TNU,V (ε)} ≤ 1− (1− ε)2−N [I(U ;V )+3ε]

Pr{EV (j)|SK = j}
(a)

≤ [1− (1− ε)2−N [I(U ;V )+3ε]]2
N [I(U ;V )+εUV ]

(b)

≤ exp{−(1− ε)2−N [I(U ;V )+3ε]}2N [I(U ;V )+εUV ]

= exp{−(1− ε)2N [I(U ;V )−I(U ;V )+εUV −3ε]}
= exp{−(1− ε)2N [εUV −3ε]}
≤ δ/3,

where
(a) follows from the fact that there are 2N [I(U ;V )+εUV ] codewords in a bin;
(b) follows from the inequality ea ≥ 1 + a.
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As shown above, for given ε and arbitrary small δ, there exists εUV and N1 such that
when εUV > 3ε, N ≥ N1, both Pr{(uN , vN ) ∈ TNU,V (ε)} ≥ (1 − ε)2−N [I(U ;V )+3ε] and

Pr{EV (j)|SK = j} ≤ δ/3 are satisfied.
The probability of EY1(j). If the event EV (j) does not occur, which means that there is

a sequence uN (j) in bin j and a sequence sent xN (j) such that (uN (j), xN (j), vN ) ∈ TNU,V (ε)

is jointly typical, then (uN (j), xN (j), vN , yN ) will be jointly typical with high probability.
For given ε and arbitrary small δ, there exists N2 such that when N ≥ N2,

Pr{(uN , yN ) ∈ TNU,Y (ε)} ≥ 1− δ/3,

which implies that

Pr{EY1(j)|EV (j)C , SK = j} ≤ δ/3.

The third source of potential error. If we say that EY ∗
2 (j) occurs when some other uN

is jointly typical with yN , then it is clear that

Pr{EY2(j)|EV (j)C , SK = j} ≤ Pr{EY ∗
2 (j)|EV (j)C , SK = j}.

But a sequence uN , different from uN (j), being jointly typical with yN has probability at
most 2−N [I(U ;Y )−3ε]. Since there are only 2N [I(U ;Y )−εUY ]− 1 other uN sequences, for given ε
and arbitrary small δ, there exists εUY and N3 such that when εUY > 3ε, N ≥ N3, we have

Pr{EY2(j)|EV (j)C , SK = j} ≤ Pr{EY ∗
2 (j)|EV (j)C , SK = j}

≤
∑

uN 6=uN (j)
2−N [I(U ;Y )−3ε]

≤ (2N [I(U ;Y )−εUY ] − 1)2−N [I(U ;Y )−3ε]

< 2N [I(U ;Y )−εUY ]−N [I(U ;Y )−3ε]

= 2−N [εUY −3ε]

≤ δ/3.

This shows all three error events are of arbitrarily small probability. By the union
bound on these three probabilities of error, for εUY , εUV > 3ε and N ≥ max{N1, N2, N3},
the average probability of error

Pe =
1

2nR

2nR
∑

j=1

Pr(ŜK(Y N ) 6= j|SK = j)

≤ 1

2nR

2nR
∑

j=1

[Pr{EV (j)|SK = j}+ Pr{EY1(j)|EV (j)C , SK = j}

+Pr{EY2(j)|EV (j)C , SK = j}]

≤ 1

2nR

2nR
∑

j=1

[δ/3 + δ/3 + δ/3]

= δ.

This concludes the proof that the rate RU2 is achievable.
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Proof of dU2 → I(U ;Y )−I(U ;Z)
I(U ;Y )−I(U ;V ) .

Consider the uncertainty of the message to the wiretapper in three steps:

1. show that
H(SK |ZN ) ≥ N [I(U ;Y )− I(U ;Z)]−H(UN |SK , ZN ).

2. show that
H(UN |SK , ZN ) ≤ h(PB) + PBN [I(U ;V ) + εUV ].

Here PB means a wiretapper’s error probability in the case where the bin number is
known to the wiretapper.

3. show that for arbitrary 0 < λ < 1/2, PB ≤ λ.

Combining the above steps, we have

d =
H(SK |ZN )

H(SK)

≥ N [I(U ;Y )− I(U ;Z)]−H(UN |SK , ZN )

NR

≥ NRU2dU2 − h(PB)− PBN [I(U ;V ) + εUV ]

NR

≥ NRU2dU2 − h(λ)− λN [I(U ;V ) + εUV ]

NR

=
RU2

RU2 − εUY − εUV
dU2 −

h(λ)/N + λ[I(U ;V ) + εUV ]

RU2 − εUY − εUV
.

We now proceed to step 1 by considering

H(SK |ZN ) = H(SK , ZN )−H(ZN )

= H(SK , UN , ZN )−H(UN |SK , ZN )−H(ZN )

= H(SK |UN , ZN ) +H(UN , ZN )

−H(UN |SK , ZN )−H(ZN )

(a)

≥ H(UN , ZN )−H(UN |SK , ZN )−H(ZN )

= H(UN |ZN )−H(UN |SK , ZN )

(b)

≥ H(UN |ZN )−H(UN |Y N )−H(UN |SK , ZN )

= I(UN ;Y N )− I(UN ;ZN )−H(UN |SK , ZN )

(c)
= N [I(U ;Y )− I(U ;Z)]−H(UN |SK , ZN ),

where
(a) follows from the fact that H(SK |UN , ZN ) ≥ 0;
(b) follows from the fact that H(UN |Y N ) ≥ 0;
(c) follows from the fact that I(UN ;Y N ) = NI(U ;Y ) and I(UN ;ZN ) = NI(U ;Z).
Thus the proof of step 1 is completed.
To prove step 2, we need to bound the entropy of the codeword conditioned on the bin j

and the wiretapper’s observation zN . We take the bin j as a codebook, UN in the codebook
as the input messages, ZN as the result of passing UN through the discrete memoryless
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channel. From ZN , we estimate the message UN that was sent. Let g(·) be the decoder
and the estimate be ÛN = g(ZN ). Define the probability of error

PB = Pr(ÛN 6= UN ). (3.17)

By the Fano’s inequality, we have

H(UN |SK = j, ZN )
(a)

≤ h(PB) + PBN [I(U ;V ) + εUV ],

where (a) follows from the fact that, in bin j, the number of the possible sequences is at
most 2N [I(U ;V )+εUV ]. Hence

H(UN |SK , ZN ) ≤ h(PB) + PBN [I(U ;V ) + εUV ].

Thus we complete the proof of step 2.
Now we proceed to step 3.Note that given the codebook described in the proof of step

2,

• the decoder g(·) knows the index of the bin, i.e., j;

• the estimate g(zN ) can be arbitrary.

Here we set g(zN ) as uN , the one in the codebook which is jointly typical with zN , i.e.,
(uN , zN ) ∈ TNU,Z(ε). This decoding strategy is good enough to bound PB. When one of the
following events occurs, an error is declared.

• EZ1(j) : there is no sequence uN in the codebook (i.e., bin j) that is jointly typical
with the received sequence zN .

• EZ2(j) : in the codebook (i.e., bin j) some other sequence is jointly typical with the
received sequence zN .

Then, PB can be bounded as follows:

PB ≤ Pr{EZ1(j)}+ Pr{EZ2(j)}.

First we analyze the probability Pr{EZ1(j)}. For given ε and λ, there exists N4 such
that, when N ≥ N4, Pr{(uN , zN ) ∈ TNU,Z(ε)} ≥ 1− λ/2, which implies Pr{EZ1(j)} ≤ λ/2.

The probability Pr{EZ2(j)}. When there is other sequence uN which is jointly typical
with zN , it is easy to see that such uN is independent with zN . Since there are at most
2N [I(U ;V )+εUV ]−1 other sequences uN in the codebook, and 2N [I(U ;V )+εUV ] ≤ 2N [I(U ;Z)−εUZ ],
for given ε and λ, there exists εUZ and N5, so that when εUZ > 3ε, N ≥ N5, we have

Pr{(uN , zN ) ∈ TNU,Z(ε)} ≤ 2−N [I(U ;Z)−3ε]

Pr{EZ2(j)} <
∑

uN

2−N [I(U ;Z)−3ε]

< 2N [I(U ;V )+εUV ]2−N [I(U ;Z)−3ε]

≤ 2N [I(U ;Z)−εUZ ]2−N [I(U ;Z)−3ε]

= 2−N [εUZ−3ε]

≤ λ/2.
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Thus, we have bounded PB for given ε and λ, when εUZ > 3ε and N > max{N4, N5},

PB ≤ Pr{EZ1(j)}+ Pr{EZ2(j)}
≤ λ/2 + λ/2

= λ.

This completes the proof of step 3.
Now we have proved that when I(U ;V ) + εUV ≤ I(U ;Z)− εUZ , there is an encoding-

decoding scheme such that, when N ≥ max{N1, N2, N3, N4, N5},

R = RU2 − εUY − εUV ,

Pe ≤ δ,

d ≥ RU2

RU2 − εUY − εUV
dU2 −

h(λ)/N + λ[I(U ;V ) + εUV ]

RU2 − εUY − εUV
. (3.18)

We choose ε, εUY , εUV , εUZ , δ and λ arbitrarily small, such that εUY , εUV , εUZ > 3ε and
εUV + εUZ < I(U ;Z)− I(U ;V ). From this it follows that (RU2, dU2) is achievable.

Note that when εUV and εUZ approach zero, then the condition I(U ;V ) + εUV ≤
I(U ;Z) − εUZ can be written as I(U ;V ) < I(U ;Z). Therefore, when I(U ;V ) < I(U ;Z),
(RU2, dU2) is achievable.

3.4 Discussion

In section 3.3, we have proved the achievability of the region R. In this section, we are
interested in the secrecy capacity of the wiretap channel we investigated.

Let

RWs = max
U→(X,V )→Y→Z

[I(U ;Y )− I(U ;Z)}]. (3.19)

We have the following theorem.

Theorem 3.4.1 For the discrete memoryless wiretap channel with side information,

Rs ≤ Cs ≤ min{CM , RWs},

where CM is the capacity of the main channel.

We give the following two corollaries, which may be useful for the calculation of secrecy
capacities of some particular wiretap channels with side information. Besides, their proofs
also establish the proof of Theorem 3.4.1.

Corollary 3.4.2 For the discrete memoryless wiretap channel with side information, if
there is an auxiliary parameter UM such that

1. UM → (X,V )→ Y → Z forms a Markov chain;

2. I(UM ;Y )− I(UM ;V ) = CM ;

3. I(UM ;V ) ≥ I(UM ;Z),
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then the secrecy capacity Cs is equal to CM .

Corollary 3.4.3 For the discrete memoryless wiretap channel with side information, if
there is an auxiliary parameter UW such that

1. UW → (X,V )→ Y → Z forms a Markov chain;

2. I(UW ;Y )− I(UW ;Z) = RWs;

3. I(UW ;Z) ≥ I(UW ;V ),

then the secrecy capacity Cs is equal to RWs.

Proof: We know from the definitions of Rs and RWs, Rs ≤ RWs. And, since
I(UW ;Z) ≥ I(UW ;V ) and UW maximizes I(U ;Y )− I(U ;Z), it follows that

RWs = I(UW ;Y )− I(UW ;Z)

= I(UW ;Y )−max{I(UW ;V ), I(UW ;Z)}
≤ Rs.

Thus, we have Rs = RWs.
Furthermore, it is known that Cs ≥ Rs = RWs. Now we only need to prove that

Cs ≤ RWs.
First, by the data processing theorem and Fano’s inequality,

H(SK |Y N , ZN ) ≤ H(SK |Y N ) ≤ H(SK |ŜK) ≤ h(Pe) +NRPe.

Then, using the definitions (3.4) and (3.5), we obtain

NRd = H(SK |ZN )

≤ H(SK |ZN )−H(SK |Y N , ZN ) + h(Pe) +NRPe

= I(SK ;Y N |ZN ) + h(Pe) +NRPe

(a)

≤
N
∑

i=1

I(SK ;Yi|Y i−1
1 , ZN ) + h(Pe) +NRPe

(b)
=

N
∑

i=1

I(SK ;Yi|Y i−1
1 , ZN , V i−1

1 , V N
i+1) + h(Pe) +NRPe

(c)

≤
N
∑

i=1

I(Ui;Yi|Zi) + h(Pe) +NRPe

(d)
=

N
∑

i=1

[I(Ui;Yi)− I(Ui;Zi)] + h(Pe) +NRPe,

where
(a) follows from the fact of chain rule for information;
(b) follows from the fact that V N is independent of SK ;
(c) follows from the assumption that

Ui = (SK , Y i−1
1 , Zi−1

1 , ZN
i+1, V

i−1
1 , V N

i+1);
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(d) follows from the fact that (Ui, Vi)→ Yi → Zi forms a Markov chain.
Now choosing i∗ to be the index i such that

I(Ui∗ ;Yi∗)− I(Ui∗ ;Zi∗) = max
1≤j≤N

[I(Uj ;Yj)− I(Uj ;Zj)],

we have

Rd ≤ I(Ui∗ ;Yi∗)− I(Ui∗ ;Zi∗) +
h(Pe)

N
+RPe

≤ RWs +
h(Pe)

N
+RPe.

Cs is the maximum value of R when d approaches to 1, so we have

Cs ≤ RWs +
h(Pe)

N
+RPe.

Thus Cs ≤ RWs has been proved. This also completes the proof of this corollary.

3.5 Concluding remarks

In this chapter, we give an achievable rate equivocation region for the discrete memoryless
wiretap channel with side information. Furthermore, the secrecy capacities in some special
cases are also determined. However, it is still an open problem whether Rs completely
characterizes the achievable rate equivocation region of the discrete memoryless wiretap
channel with side information.

It should be pointed out that our restriction to finite alphabets is just a matter of
convenience. Theorem 3.2.1 here can be readily extended to memoryless channels with
discrete time and continuous alphabets by the standard technique of discrete approximations
[18, Ch. 7]. It is very interesting that the situation described in Corollary 3.4.2 happens in
the Gaussian case. Such an example is given in [8, Theorem 4.2].
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Chapter 4

Gaussian Wiretap Channel with
Side Information

4.1 Introduction

In Chapter 3, we give a coding theorem for the discrete memoryless wiretap channel with
side information. In this chapter, we focus on the Gaussian wiretap channel with side
information as shown in Figure 1.7. Recall that Costa [7] has shown that the Gaussian
channel with side information, also called dirty paper channel, has the same capacity as
the corresponding standard Gaussian channel. Therefore, the side information does not
affect the capacity of the channel. Here we wonder, how does side information influence
the secrecy capacity of the wiretap channel? Especially in the Gaussian case, can we get a
similar result as for the dirty paper channel?

On the other hand, Costa has shown that for the dirty paper channel, by choosing
codewords orthogonal to the side information, the channel capacity could be reached by dirty
paper coding. That is, one prefers to send codewords independent of the side information
in order to yield the optimal transmission rate. Note that the coding strategy used for the
wiretap channel with side information is similar to the one used for the dirty paper channel.
However, we wonder whether it might be a better choice to send codewords dependent on
the side information in some cases, in order to yield higher rate with the same equivocation.

The rest of the chapter is organized as follows. In section 4.2, we derive an achievable
region for the Gaussian wiretap channel with side information. In section 4.3, we generalize
Costa’s strategy and show a general result for the dirty paper channel. In section 4.4, for
the Gaussian wiretap channel with side information, an extended rate equivocation region
is derived by applying the generalized Costa’s strategy.

4.2 An achievable rate equivocation

In this section, we extend Theorem 3.2.1 to the Gaussian case and derive an achievable
region for the Gaussian wiretap channel with side information. Furthermore, we compare
the performance of the region with the capacity region of the Gaussian wiretap channel
given by Leung-Yan-Cheong and Hellman [4, Theorem 1] and show how side information
influences the secrecy capacity and the rate equivocation region.

As we have discussed in Remark (b) after the statement of Theorem 3.2.1, the technique
we use to establish the region R is more general compared with the one used by Mitrpant
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[8,9] for the Gaussian wiretap channel with side information. Here we make use of the same
auxiliary random variable U as Mitrpant in [8, 9], which is similar to Costa [7]. Applying
our technique given in Section 3.3, we provide a straightforward proof to extend Theorem
3.2.1 to the Gaussian case as follows.

Theorem 4.2.1 Consider the Gaussian wiretap channel with side information as shown in
Figure 1.7. We make use of the auxiliary random variable U = X + αV, where α is a real
number and X is independent of V. Denote RU as the set of points (R, d) with

RU1 ≤ R ≤ RU2, 0 ≤ d ≤ 1, Rd = RU1,

where RU1 and RU2 are defined in (3.7) and (3.8). Let

R′U
∆
= {(R′, d′) : 0 ≤ R′ ≤ R, 0 ≤ d′ ≤ d, (R, d) ∈ RU}.

Then the set R⊥, defined as follows, is achievable:

R⊥ =
⋃

U=X+αV,α∈R

R′U ,

where R represents the set of all real numbers.

Proof: The proof is almost the same as the proof of Theorem 3.2.1 given in section
3.3. We only need to show that RU is achievable for the specified α and U. Assume that
the channel has power constraint P and the side information satisfies V ∼ N (0, Q). For a
fixed ε, let P ′ = P (1 + 4ε)−1. Due to the Gaussian characteristic of the channel, we make
slight modifications in the achievability proof of RU as follows:

• In the codebook generation, sequences uN are generated according to f(uN ) =
∏N

i=1 f(ui).
Here we specify f(ui) ∼ N (0, P ′ + α2Q) for all i ∈ {1, 2, · · · , N}.

• In the encoding process, xN (j) = uN (j)− αvN .

• The legitimate receiver observes yN = xN (j) + vN + ηN1 and the wiretapper observes
zN = yN + ηN2 .

As a consequence of these modifications, there is one more source of potential error for the
legitimate receiver.

• EX(j): in the encoding process, xN (j) = uN (j) − αvN does not satisfy the power
constraint.

However, provided that there is at least one sequence uN (j) jointly typical with vN , the
probability that EX(j) occurs is 0 according to Lemma 2.2.7 or [9, Lemma A.1]. Therefore,
the modifications do not influence the achievability proof of RU . Let ε be arbitrarily small.
Since P ′ → P as ε→ 0, we have shown that RU is asymptotically achievable for α ∈ R and
U = X +αV, where X is independent of V and X ∼ N (0, P ). Thus we conclude our proof.

As a direct consequence of the technique improvement, our region R⊥ is better than the
one given by Mitrpant in [8, Theorem 4.4] or [9, Theorem 3]. You can find the comparison
in Subsection 4.2.4.
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4.2.1 Model description

As depicted in Figure 1.7, the Gaussian wiretap channel with side information is extended
from the Gaussian wiretap channel by adding an interference (i.e., side information) in the
main channel. Assume that the interference is independent of the channel noise and the
message. Further assume that the interference is noncausally known to the transmitter.
Let X be the input to the main channel. Then the output of the main channel is Y =
X +V + η1 and the output of the wiretap channel is Z = Y +V + η2, where η1 ∼ N (0, N1)
and η2 ∼ N (0, N2) are independent noises of the main channel and the wiretap channel,
respectively.

We note that the main channel of the Gaussian wiretap channel with side information is
a dirty paper channel as investigated in [7]. Simlarly to Costa [7], we consider U = X+αV ,
where X and V are independent random variables distributed according to N (0, P ) and
N (0, Q), respectively, and α is a parameter to be determined. Note that there could be a
loss of generality in restricting attention to such U , but we shall see that the derived answer
is clearly optimal in some special cases. For convenience, we use the following notations:

U∗ = X + ∗V, (4.1)

Rs(∗) = I(U∗;Y )−max{I(U∗;V ), I(U∗;Z)}, (4.2)

R(∗) = I(U∗;Y )− I(U∗;V ), (4.3)

RZ(∗) = I(U∗;Y )− I(U∗;Z), (4.4)

d(∗) = Rs(∗)/R(∗). (4.5)

First, we calculate the values of I(U, V ), I(U, Y ) and I(U,Z) with respect to U =
X + αV . Note that here X is independent of V. We have the following:

I(U ;V ) = I(X + αV ;V )

= H(X + αV ) +H(V )−H(X + αV, V )

=
1

2
log

(P + α2Q)Q

(P + α2Q)Q− α2Q2

=
1

2
log

(P + α2Q)

P
;

I(U ;Y ) = I(X + αV ;X + V + η1)

= H(X + αV ) +H(X + V + η1)−H(X + αV,X + V + η1)

=
1

2
log

(P + α2Q)(P +Q+N1)

((P + α2Q)(P +Q+N1)− (P + αQ)2

=
1

2
log

(P + α2Q)(P +Q+N1)

PQ(1− α)2 + (P + α2Q)N1
;

I(U ;Z) = I(X + αV ;X + V + η1 + η2)

= H(X + αV ) +H(X + V + η1 + η2)−H(X + αV,X + V + η1 + η2)

=
1

2
log

(P + α2Q)(P +Q+N1 +N2)

((P + α2Q)(P +Q+N1 +N2)− (P + αQ)2

=
1

2
log

(P + α2Q)(P +Q+N1 +N2)

PQ(1− α)2 + (P + α2Q)(N1 +N2)
.
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It is a straightforward consequence that

I(U ;Y )− I(U ;V ) =
1

2
log

P (P +Q+N1)

(1− α)2PQ+N1(P + α2Q)
; (4.6)

I(U ;Z)− I(U ;V ) =
1

2
log

P (P +Q+N1 +N2)

(1− α)2PQ+ (N1 +N2)(P + α2Q)
; (4.7)

I(U ;Y )− I(U ;Z) =
1

2
log

(P +Q+N1){(1− α)2PQ+ (N1 +N2)(P + α2Q)}
(P +Q+N1 +N2){(1− α)2PQ+N1(P + α2Q)} .(4.8)

Note that Z is a degraded version of Y. Thus, we have I(U ;Y ) ≥ I(U ;Z). You can also
find a proof of it in Appendix III. So we distinguish the following three cases:

(1) I(U ;V ) > I(U ;Y ) > I(U ;Z);

(2) I(U ;Y ) ≥ I(U ;V ) ≥ I(U ;Z);

(3) I(U ;Y ) ≥ I(U ;Z) > I(U ;V ).

Case 1: I(U ;V ) > I(U ;Y ) > I(U ;Z)

Consider the inequality I(U ;V ) > I(U ;Y ).

I(U ;V ) > I(U ;Y )

1

2
log

P + α2Q

P
>

1

2
log

(P + α2Q)(P +Q+N1)

PQ(1− α)2 + (P + α2Q)N1

P + α2Q

P
>

(P + α2Q)(P +Q+N1)

PQ(1− α)2 + (P + α2Q)N1
1

P
>

P +Q+N1
PQ(1− α)2 + (P + α2Q)N1

PQ(1− α)2 + (P + α2Q)N1 > P (P +Q+N1)

α2Q(P +N1)− 2αPQ > P 2

Q(P +N1)(α
2 − 2αP

P +N1
+ (

P

P +N1
)2) > P 2 +

P 2Q

P +N1

(α− P

P +N1
)2 >

P 2(P +Q+N1)

Q(P +N1)2
.

Therefore, under the assumption that P,Q,N1, N2 > 0, we have

I(U ;V ) > I(U ;Y ) ⇐⇒ α > α00 or α < α−00, ; (4.9)

I(U ;Y ) ≥ I(U ;V ) ⇐⇒ α−00 ≤ α ≤ α00, (4.10)

where

α00 =
P

P +N1
(1 +

√

P +Q+N1
Q

); (4.11)

α−00 =
P

P +N1
(1−

√

P +Q+N1
Q

). (4.12)
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By Theorem 4.2.1, the rate equivocation pair (I(U ;Y )−max (I(U ;V ), I(U ;Z)), 1) is
achievable. If I(U ;V ) > I(U ;Y ) > I(U ;Z), then the information rate from transmit-
ter to the receiver, I(U ;Y ) − I(U ;V ), will be smaller than 0. For practical reasons,
we only need to consider Case 2 and Case 3 when α−00 ≤ α ≤ α00.

Case 2: I(U ;Y ) ≥ I(U ;V ) ≥ I(U ;Z)

As shown in (4.10), when α−00 ≤ α ≤ α00, I(U ;Y ) ≥ I(U ;V ). Now let us consider
the inequality I(U ;V ) ≥ I(U ;Z).

I(U ;V ) ≥ I(U ;Z)

1

2
log

P + α2Q

P
≥ 1

2
log

(P + α2Q)(P +Q+N1 +N2)

PQ(1− α)2 + (P + α2Q)(N1 +N2)

P + α2Q

P
>

(P + α2Q)(P +Q+N1 +N2)

PQ(1− α)2 + (P + α2Q)(N1 +N2)

1

P
>

P +Q+N1 +N2
PQ(1− α)2 + (P + α2Q)(N1 +N2)

PQ(1− α)2 + (P + α2Q)N1 > P (P +Q+N1 +N2)

α2Q(P +N1 +N2)− 2αPQ > P 2

(α2 − 2αP

P +N1 +N2
+ (

P

P +N1 +N2
)2) >

1

Q(P +N1 +N2)
(P 2 +

P 2Q

P +N1 +N2
)

(α− P

P +N1 +N2
)2 >

P 2(P +Q+N1 +N2)

Q(P +N1 +N2)2
.

Therefore, we have

I(U ;V ) ≥ I(U ;Z) ⇐⇒ α ≥ α0 or α ≤ α−0; (4.13)

I(U ;Z) > I(U ;V ) ⇐⇒ α−0 < α < α0, (4.14)

where

α0 =
P

P +N1 +N2
(1 +

√

P +Q+N1 +N2
Q

); (4.15)

α−0 =
P

P +N1 +N2
(1−

√

P +Q+N1 +N2
Q

). (4.16)

In particular, when I(U ;V ) = I(U ;Z),

I(U ;Y )− I(U ;V ) = I(U ;Y )− I(U ;Z)⇐⇒ α = α0 or α−0.

So we have

R(α0) = RZ(α0); (4.17)

R(α−0) = RZ(α−0). (4.18)

In Case 2, I(U ;Y )−max (I(U ;V ), I(U ;Z)) = I(U ;Y )− I(U ;V ). By Theorem 4.2.1,
the rate equivocation pair (I(U ;Y )−I(U ;V ), 1) is achievable. Therefore, we have the
following lemma.
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Lemma 4.2.2 For any α such that α ≥ α0 or α ≤ α−0, the rate equivocation pair
(R(α), 1) is achievable. Here U = X + αV and X is independent of V.

Note that the expression of the secret rate R(α) and the code strategy here are similar
to those for the dirty paper channel. It is well known that in the dirty paper channel,
the rate R(α) = I(U ;Y )− I(U ;V ) is maximized at α = P

P+N1
. However, since in our

case the range of α is limited, we are not sure whether the optimal result, the secrecy
capacity will be achieved at the point α = P

P+N1
.

Case 3: I(U ;Y ) ≥ I(U ;Z) > I(U ;V )

From (4.14) and the fact that I(U ;Y ) ≥ I(U ;Z), we have

I(U ;Y ) ≥ I(U ;Z) > I(U ;V )⇐⇒ α−0 < α < α0.

In this case, I(U ;Y )−max (I(U ;V ), I(U ;Z)) = I(U ;Y )−I(U ;Z). By Theorem 4.2.1,
the rate equivocation pair (I(U ;Y )−I(U ;Z), 1) is achievable. Therefore, we have the
following lemma.

Lemma 4.2.3 For any α such that α−0 ≤ α ≤ α0, the rate equivocation pair (RZ(α), 1)
is achievable. Here U = X + αV and X is independent of V.

Note that the expression of the secret rate RZ(α) is similar to the one for the Gaussian
wiretap channel [4]. However, here U is an auxiliary parameter. If we take U =
X+αV, according to different values of α, U has different so-called power constraints.
In the Gaussian wiretap channel, the expression of the secret rate is different. It
is shown in [4] that, the rate equivocation pair (I(X;Y ) − I(X;Z), 1) is achievable.
In that case, X has a constant power constraint P . The difference of I(X;Y ) and
I(X;Z) is maximized when X is Gaussian. Here, since U is a linear combination
of two Gaussian variables X and V, U is also Gaussian. Our problem is: which U
maximizes the secret rate RZ(α) = I(U ;Y )− I(U ;Z)?

4.2.2 Analysis of R and RZ

In this subsection, we will investigate the properties of R(α) and RZ(α) with respect to α.
We also denote R(α) as R, RZ(α) as RZ for brevity.

Consider R = I(U ;Y )− I(U ;V ) as defined in (4.6).

R =
1

2
log

P (P +Q+N1)

(1− α)2PQ+N1(P + α2Q)

=
1

2
log

P (P +Q+N1)

Q(P +N1)α2 − 2PQα+ P (Q+N1)

=
1

2
log

P (P +Q+N1)

Q(P +N1)(α− P
P+N1

)2 − P 2Q
P+N1

+ P (Q+N1)

=
1

2
log

P (P +Q+N1)

Q(P +N1)(α− P
P+N1

)2 + PN1(P+Q+N1)
P+N1

.

Let

αmax =
P

P +N1
. (4.19)
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As shown in Figure 4.1, we have the following lemma.

Lemma 4.2.4 R, which is defined in (4.6), is an increasing function with respect to α as
α < αmax; a decreasing function as α > αmax; maximized at α = αmax. In particular,

R(αmax) = CM =
1

2
log(1 +

P

N1
). (4.20)

PSfrag replacements

α−00 αmax α00 α

R(α)

CM

Figure 4.1: Function R when U = X + αV, X and V are independent.

Consider RZ = I(U ;Y )− I(U ;Z) as defined in (4.8).

RZ =
1

2
log

(P +Q+N1){(1− α)2PQ+ (N1 +N2)(P + α2Q)}
(P +Q+N1 +N2){(1− α)2PQ+N1(P + α2Q)} .

Define

αmin = −P
Q
. (4.21)

An easy calculation shows the following lemma. See also Figure 4.2.

Lemma 4.2.5 RZ , which is defined in (4.8), is an increasing function with respect to α as
αmin < α < 1; a decreasing function as α < αmin or α > 1; minimized at α = αmin and
maximized at α = 1. In particular,

RZ(αmin) = 0; (4.22)

RZ(1) =
1

2
log

(P +Q+N1)(N1 +N2)

(P +Q+N1 +N2)N1
. (4.23)

Proof: See the proof in Appendix IV.

1

PSfrag replacements

α−00 α−0

α0

αmax ααmin

RZ(α)

maxR(α)

Figure 4.2: Function RZ when U = X + αV, X and V are independent.
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4.2.3 Achievable region

So far, from Lemma 4.2.2 and Lemma 4.2.3, we know that at perfect secrecy, R is achievable
when α ≥ α0 or α ≤ α−0; RZ is achievable when α−0 ≤ α ≤ α0. In particular, R = RZ

when α = α0 or α−0.

PSfrag replacements

(a) 0 < P ≤ Plow (b) Plow ≤ P ≤ Phigh (c) P ≥ Phigh

RRR

ddd

111

R(α0)

CMCM CM

RZ(αmax)
R(αmax)

RZ(αmax)
R(αmax)

RZ(α0) RZ(1)

RZ(1)
R(1)

Rd = RZ(α)

Rd = RZ(α) Rd = RZ(1)

Rd = RZ(αmax)Rd = RZ(αmax)

Figure 4.3: An achievable rate equivocation region for Gaussian wiretap channel with side
information.

Easy comparisons show the following lemma.

Lemma 4.2.6 αmin ≤ α−0 ≤ αmax < 1, α0 ≤ α00 and αmin ≤ α−00.

By Lemma 4.2.6, we know that α−0 ≤ α0 ≤ α00. According to the different possible
positions of α0, we have the following situations.

(1) α−0 ≤ α0 ≤ αmax.
It is clear that α−0 ≤ α0. Let us consider the inequality αmax ≥ α0.

αmax ≥ α0

P

P +N1
≥ P

P +N1 +N2
(1 +

√

P +Q+N1 +N2
Q

)

PN2
(P +N1)(P +N1 +N2)

≥ P
√

Q(P +Q+N1 +N2)

Q(P +N1 +N2)

N2
(P +N1)

≥
√

Q(P +Q+N1 +N2)

Q

QN2 ≥ (P +N1)
√

Q(P +Q+N1 +N2)

QN2
2 ≥ (P +N1)

2(P +Q+N1 +N2)

QN2
2 − (P +N1)

2N2 ≥ (P +N1)
2(P +Q+N1)

N2 ≤ −(P +N1) or N2 ≥ P +N1 +
(P +N1)

2

Q
.

If we define

Nhigh = P +N1 +
(P +N1)

2

(
√
Q+

√
PρXV )2

; (4.24)

Qhigh =
(P +N1)

2

N2 − (P +N1)
; (4.25)

Plow = −N1 −
Q

2
+

√

Q2 + 4QN2
2

. (4.26)
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Under the assumption that P,Q,N1, N2 ≥ 0, it is easy to verify that

N2 ≥ Nhigh ⇐⇒ Q ≥ Qhigh ⇐⇒ 0 ≤ P ≤ Plow. (4.27)

Therefore, we have the following lemma.

Lemma 4.2.7
N2 ≥ Nhigh =⇒ α−0 ≤ α0 ≤ αmax,

where
N2 ≥ Nhigh ⇐⇒ Q ≥ Qhigh ⇐⇒ 0 ≤ P ≤ Plow.

PSfrag replacements

α

Rs(α)

αmin α−0 α0 αmax 1

R↗ R↗ RZ ↗ R↗ R↘ R↘

Figure 4.4: Rs(α) when X and V are independent and N2 ≥ Nhigh.

As shown in Figure 4.4, the maximal achievable secret rate in this case is R(αmax) =
CM . That is, the secrecy capacity in this case is the capacity of the main channel.

The achievable rate equivocation region in this case is shown in Figure 4.3 (a). Clearly,
in this case, the achievable region is in fact the capacity region.

(2) αmax ≤ α0 ≤ 1.

Consider the inequality α0 ≤ 1.

α0 ≤ 1

P

P +N1 +N2
(1 +

√

P +Q+N1 +N2
Q

) ≤ 1

P
√

Q(P +Q+N1 +N2)

Q(P +N1 +N2)
≤ N1 +N2

P +N1 +N2

P
√

Q(P +Q+N1 +N2) ≤ Q(N1 +N2)

P 2(P +Q+N1 +N2) ≤ Q(N1 +N2)
2

P 2(P +Q) ≤ Q(N1 +N2)
2 − P 2(N1 +N2)

N2 ≤ −P or N2 ≥ P −N1 +
P 2

Q
.

Similarly to the analysis of the inequality αmax ≥ α0, we have

αmax ≤ α0

QN2
2 − (P +N1)

2N2 ≤ (P +N1)
2(P +Q+N1)

−(P +N1) ≤ N2 ≤ P +N1 +
(P +N1)

2

Q
.
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Thus we have the following:

αmax ≤ α0 ≤ 1

−(P +N1) ≤ N2 ≤ −P or P −N1 +
P 2

Q
≤ N2 ≤ P +N1 +

(P +N1)
2

Q
.

If we define

Nlow = P −N1 +
P 2

Q
; (4.28)

Qlow =
P 2

N1 +N2 − P
; (4.29)

Phigh = −Q
2
+

√

Q2 + 4Q(N1 +N2)

2
. (4.30)

Under the assumption that P,Q,N1, N2 ≥ 0, it is easy to verify that

Nlow ≤ N2 ≤ Nhigh =⇒ Qlow ≤ Q ≤ Qhigh ⇐⇒ Plow ≤ P ≤ Phigh. (4.31)

Therefore, we have the following lemma.

Lemma 4.2.8
Nlow ≤ N2 ≤ Nhigh =⇒ αmax ≤ α0 ≤ 1,

where

Nlow ≤ N2 ≤ Nhigh ⇐⇒ Qlow ≤ Q ≤ Qhigh ⇐⇒ Plow ≤ P ≤ Phigh.

PSfrag replacements

α

Rs(α)

αmin α−0 αmax α0 1

R↗ R↗ RZ ↗ RZ ↗ R↘ R↘

Figure 4.5: Rs(α) when X and V are independent and Nlow ≤ N2 ≤ Nhigh.

As shown in Figure 4.5, the maximal achievable secret rate in this case is RZ(α0).

The achievable rate equivocation region in this case is shown in Figure 4.3 (b). The
curve which bounds the region can be divided into two parts. The first part is the line
d = 1 as R goes from 0 to RZ(α0). The second part is the curve Rd = RZ(α) as R
goes from RZ(α0) to R(αmax). Note that RZ(α0) = R(α0). Correspondingly, α, the
parameter used to achieve (R, d) on the curve, goes from α0 to αmax. The property
of the curve follows immediately from the fact that RZ(α) is non-increasing as α goes
from α0 to αmax.

(3) α0 ≥ 1.
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Similarly to the analysis of the inequality α0 ≤ 1, we have

α0 ≥ 1

P 2(P +Q) ≥ Q(N1 +N2)
2 − P 2(N1 +N2)

−P ≤ N2 ≤ P −N1 +
P 2

Q
.

Under the assumption that P,Q,N1, N2 ≥ 0, it is easy to verify that

0 ≤ N2 ≤ Nlow ⇐⇒ 0 ≤ Q ≤ Qlow ⇐⇒ P ≥ Phigh. (4.32)

Therefore, we have the following lemma.

Lemma 4.2.9
0 ≤ N2 ≤ Nlow =⇒ α0 ≥ 1,

where
0 ≤ N2 ≤ Nlow ⇐⇒ 0 ≤ Q ≤ Qlow ⇐⇒ P ≥ Phigh.

PSfrag replacements

α

Rs(α)

αmin α−0 αmax 1 α0

R↗ R↗ RZ ↗ RZ ↗ RZ ↘ R↘

Figure 4.6: Rs(α) when X and V are independent and N2 ≤ Nlow.

As shown in Figure 4.6, the maximal achievable secret rate in this case is RZ(1).

The achievable rate equivocation region in this case is shown in Figure 4.3 (c). The
curve which bounds the region can be divided into three parts. The first part is the line
d = 1 as R goes from 0 to RZ(1). The second part is the curve Rd = RZ(1) as R goes
from RZ(1) to R(1). This part is achieved by time sharing the two rate equivocation

pairs (RZ(1), 1) and (R(1), RZ(1)
R(1) ). Note that RZ(1) is a constant. The third part

is the curve Rd = RZ(α) as R goes from R(1) to R(αmax). Correspondingly, α, the
parameter used to achieve (R, d) on the curve, goes from 1 to αmax. The property of
the curve follows immediately from the fact that RZ(α) is non-increasing as α goes
from 1 to αmax.

4.2.4 Discussion

As a result of the analysis in last subsection, we have the following theorem.

Theorem 4.2.10 For the Gaussian wiretap channel with side information, a rate equivo-
cation pair (R, d) is achievable if

R ≤ CM ,

d ≤ 1,
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Rd ≤























CM 0 < P ≤ Plow
{

R(α0) R ≤ R(α0)
RZ(α) R(α0) ≤ R ≤ CM

Plow ≤ P ≤ Phigh
{

RZ(1) R ≤ R(1)
RZ(α) R(1) ≤ R ≤ CM

P ≥ Phigh

.

Furthermore,

0 ≤ P ≤ Plow ⇐⇒ N2 ≥ Nhigh ⇐⇒ Q ≥ Qhigh;

Plow ≤ P ≤ Phigh ⇐⇒ Nlow ≤ N2 ≤ Nhigh ⇐⇒ Qlow ≤ Q ≤ Qhigh;

P ≥ Phigh ⇐⇒ 0 ≤ N2 ≤ Nlow ⇐⇒ 0 ≤ Q ≤ Qlow.

Denote the region as R⊥. It is shown in Figure 4.3. Note that for fixed points (R, d) on
the curve Rd = RZ(α), α can be determined by the value of R. Unlike the region for some
special wiretap channels shown in [3,4], here RZ(α) is not a constant. In addition, it is easy
to verify that RZ(α) is decreasing, as R goes from R(α0) to CM when Plow ≤ P ≤ Phigh
and as R goes from R(1) to CM when P ≥ Phigh.

We define a rate equivocation region is better or larger than another one, if at the
same rate of reliable transmission to the legitimate receiver, a larger equivocation for the
wiretapper can be achieved.

Recall that the entire rate equivocation region RL for the Gaussian wiretap channel
given by Leung-Yan-Cheong and Hellman [4, Theorem 1] is defined by

R ≤ CM , d ≤ 1, Rd ≤ C ′s, (4.33)

where CM is the capacity of the main channel and

C ′s =
1

2
log

(P +N1)(N1 +N2)

(P +N1 +N2)N1
(4.34)

is the secrecy capacity.
Compare our region R⊥ with RL for the corresponding Gaussian wiretap channel with-

out side information. The following results show that the side information plays a positive
role in the secret communication over the Gaussian wiretap channel.

Theorem 4.2.11 For the Gaussian wiretap channel, the side information helps to get a
larger secrecy capacity.

Proof: By Theorem 4.2.1, the rate equivocation pair (min{RZ(αmax), CM}, 1) is
achievable, where αmax is defined in (4.19). So we have Cs ≥ min{RZ(αmax), CM}. If
we can show that both RZ(αmax) and CM are larger than C ′s, which is the secrecy capacity
of the Gaussian wiretap channel as defined in (4.34), then the proof is a straightforward
consequence. It is clear that CM ≥ C ′s. Now let us prove that RZ(αmax) ≥ C ′s.

RZ(αmax) =
1

2
log

(P +Q+N1)(PQ(1− αmax)
2 + (P + α2maxQ)(N1 +N2))

(P +Q+N1 +N2)(PQ(1− αmax)2 + (P + α2maxQ)N1)

=
1

2
log

(P +Q+N1)(PQ(1− P
P+N1

)2 + (P + ( P
P+N1

)2Q)(N1 +N2))

(P +Q+N1 +N2)(PQ(1− P
P+N1

)2 + (P + ( P
P+N1

)2Q)N1)

=
1

2
log

QN21 + ((P +N1)
2 + PQ)(N1 +N2)

(P +Q+N1 +N2)(P +N1)N1
.
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In order to prove that RZ(αmax) ≥ C ′s, we need:

1

2
log

QN21 + ((P +N1)
2 + PQ)(N1 +N2)

(P +Q+N1 +N2)(P +N1)N1
≥ 1

2
log

(P +N1)(N1 +N2)

(P +N1 +N2)N1

QN21 + ((P +N1)
2 + PQ)(N1 +N2)

(P +Q+N1 +N2)(P +N1)N1
≥ (P +N1)(N1 +N2)

(P +N1 +N2)N1

QN21 + ((P +N1)
2 + PQ)(N1 +N2)

(P +Q+N1 +N2)(P +N1)
≥ (P +N1)(N1 +N2)

P +N1 +N2

(QN21 + ((P +N1)
2 + PQ)(N1 +N2))(P +N1 +N2) ≥ (P +Q+N1 +N2)(P +N1)

2(N1 +N2)

(QN21 + PQ(N1 +N2))(P +N1 +N2) ≥ Q(P +N1)
2(N1 +N2)

QN21 (P +N1 +N2) + PQ(N1 +N2)N2 ≥ N1Q(P +N1)(N1 +N2)

QN21P + PQ(N1 +N2)N2 ≥ N1QP (N1 +N2)

PQ(N1 +N2)N2 ≥ N1QPN2

PQN22 ≥ 0,

which is always valid under the assumption that P,Q,N1, N2 ≥ 0.

Theorem 4.2.12 For the Gaussian wiretap channel, the side information helps to achieve
a larger rate equivocation region.

Proof: Compare the region R⊥ with RL as defined by (4.33).
(a) When 0 < P ≤ Plow, CM ≥ C ′s.
(b) When Plow ≤ P ≤ Phigh, RZ(α) is decreasing as R goes from R(α0) to CM . There-

fore, RZ(α) ≥ RZ(αmax) ≥ C ′s.
(c) When P ≥ Phigh, RZ(α) is decreasing as R goes from R(1) to CM . Therefore,

RZ(1) ≥ RZ(α) ≥ RZ(αmax) ≥ C ′s.
As we have discussed above, the theorem is concluded.
Recall that the region RM given by Mitrpant in [8, Theorem 4.4] or [9, Theorem 3] can

be expressed as follows:

R ≤ CM ,

d ≤ 1,

Rd ≤







CM 0 < P ≤ Plow
min{CMdC , R(α0)} Plow ≤ P ≤ Phigh
min{CMdC , RZ(1)} P ≥ Phigh

,

where
dC = 1− I(Uαmax ;Z)/CM . (4.35)

An easy comparison shows the following result.

Corollary 4.2.13 The region R⊥ is better than RM .

Proof: We compare the region R⊥ with RM . Since CMdC = CM − I(Uαmax ;Z) =
RZ(αmax)− I(Uαmax ;V ), then

(a) When Plow ≤ P ≤ Phigh, as R goes from R(α0) to CM , RZ(α0) ≥ RZ(α) ≥
RZ(αmax) ≥ CMdC ;
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(b) When P ≥ Phigh, asR goes fromR(1) to CM , RZ(1) ≥ RZ(α) ≥ RZ(αmax) ≥ CMdC .
In addition that when 0 < P ≤ Plow, R⊥ and RM are the same, we complete the proof.

From above proof, min{CMdC , R(α0)} = CMdC exists in both cases when Plow ≤ P ≤
Phigh and P ≥ Phigh. Hence, the region RM can be simplified as follows:

R ≤ CM ,

d ≤ 1,

Rd ≤
{

CM 0 < P ≤ Plow
CMdC P ≥ Plow

.

It is very interesting to find that, for the wiretap channel in Gaussian case, unlike
the dirty paper channel, the side information helps to get a larger secrecy capacity and a
larger capacity region. Therefore, the side information provides an advantage to achieve
secure communication over the Gaussian wiretap channel. Furthermore, we extend our
result for the dicrete memoryless wiretap channel with side information to the Gaussian
case by applying Costa’s strategy [7] to the auxiliary parameter U. As a straightforward
consequence of the technique improvement as shown in the proof of Theorem 4.2.1, we
derive an achievable rate equivocation region which is better than the one given by Mitrpant
in [8, Theorem 4.4] or [9, Theorem 3].

4.3 A general result on dirty paper channel

Note that in Costa’s strategy, the codewords chosen to send to the channel are independent
of the side information. In this section, we generalize Costa’s strategy by taking codewords
dependent on the side information into our consideration. In addition, for easy calculations,
we develop a geometric interpretation of the mutual information of Gaussian variables.
Then, reconsidering the communication problem for the dirty paper channel, we give a
more general result.

4.3.1 Preliminaries

Let X and V be two random variables with expected values uX and uY and standard
deviation σX and σV . The covariance between X and V is defined as:

cov(X,V ) = E((X − ux)(V − uv)). (4.36)

It is clear that cov(X,V ) = cov(V,X). The correlation coefficient ρXV between X and V is
defined as:

ρXV =
cov(X,V )

σXσV
. (4.37)

Note that the correlation coefficient cannot exceed 1 in absolute value by applying the
Cauchy-Schwarz inequality 1. The covariance matrix is defined as:

K =

[

cov(X,X) cov(X,V )
cov(V,X) cov(V, V )

]

=

[

σ2X ρXV σXσV
ρXV σXσV σ2V

]

. (4.38)

1For any variables X and V, the Cauchy-Schwarz inequality states that [E(XV )]2 ≤ E(X2)E(V 2).
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If X, V are jointly Gaussian and with zero-mean, and U = X + αV = (1, α)(X,V )T,
where (X,V )T is the transpose of the vector (X,V ), then U also has a Gaussian distribution
with mean uU and variance σ2U , where

uU = (1, α)(uX , uV )
T = (1, α)(0, 0)T = 0 (4.39)

σ2U = (1, α)K(1, α)T

= (1, α)

[

σ2X ρXV σXσV
ρXV σXσV σ2V

](

1
α

)

= σ2X + 2αρXV σXσV + α2σ2V . (4.40)

In particular, when α = 1, then uU = 0 and σ2U = σ2X + 2ρXV σXσV + σ2V .

4.3.2 Geometric interpretation of Gaussian mutual information

Consider a standard AWGN channel with input X ∼ N (0, P ), noise η ∼ N (0, N) and
output Y = X + η ∼ N (0, P +N).

PSfrag replacements

−→
X

√
P

−→η
√
N

−→
Y

√
P + N

θXY

Figure 4.7: Geometric interpretation of mutual information.

It is known that the correlation coefficient can also be viewed as the cosine of the angle
between the two vectors X and Y , when both X and Y are zero-mean. As shown in Figure

4.7, we define the angel θXY as the angel anti-clockwise from vector
−→
X to vector

−→
Y . The

symmetric property of the correlation coefficient follows immediately: ρXY = ρY X , since
cos θXY = cos(2π − θXY ) = cos θY X . Then, by the definition of the two Gaussian variables

and cos θXY =
√
P√

P+Q
, we have

I(X;Y ) =
1

2
log

1

1− ρXY
2

=
1

2
log

1

1− cos2 θXY

=
1

2
log

1

1− P
P+N

=
1

2
log(1 +

P

N
).

Thus, we get the capacity of the AWGN channel.
So far, we can re-denote the mutual information of two zero-mean Gaussian signals X

and Y as follow:

I(X;Y ) =
1

2
log

1

1− cos2 θXY
=

1

2
log

1

sin2 θXY
. (4.41)

Furthermore, the formula (4.40) can also be derived in a geometric way easily. If X, V
are jointly Gaussian and with zero-mean and U = X + αV , then U also has a Gaussian
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Figure 4.8: Geometric interpretation of U = X + αV , when X and V are dependent.

distribution with mean 0 and variance σ2U . As shown in Figure 4.8, if we take the length of
the vector as its standard deviation, since ρXV = cos θXV ,

σ2U = |−→U |2
= P + α2Q+ 2α

√

PQ cos θXV (4.42)

= P + α2Q+ 2αρXV

√

PQ.

4.3.3 Rate

Now we return to the communication problem for the dirty paper channel. Proceeding
similarly to Costa’s approach, we use the result on the capacity of the discrete memoryless
channel with side information noncausally available at the transmitter by Gel’fand and
Pinsker [10] and Heegard and El Gamal [11], the formula (1.20). Extending the result to
Gaussian case, instead of looking for an appropriate auxiliary variable U , we try to go
through more possible auxiliary variable U , in the matter that U is also Gaussian.

PSfrag replacements
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X

α
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V

−→
V
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θXV

θUV

θUY

Figure 4.9: Geometric interpretation of dirty paper coding, when X and V are dependent.

Similarly to Costa [7], we consider U = X+αV, where X and V are normally distributed
according to N (0, P ) and N (0, Q), respectively; α is a parameter. Here we generalize
Costa’s strategy by taking the correlation coefficient ofX and V, ρXV into our consideration.
Referring to Figure 4.9, we have the followings:

|−→X | =
√
P ,

|−→V | =
√

Q,

|−→η | =
√
N,

|
−→
η′ | =

√

(1− α)2Q+N,
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|
−→
U ′| =

√

P +Q+ 2
√

PQ cos θXV ,

|−→U | =

√

P + α2Q+ 2α
√

PQ cos θXV ,

|−→Y | =

√

P +Q+N1 + 2
√

PQ cos θXV .

By the law of cosines, it is easy to get that

cos θUY =
|−→U |2 + |−→Y |2 − |−→η′ |2

2|−→U | · |−→Y |

=
P + α2Q+ 2α

√
PQ cos θXV + P +Q+N + 2

√
PQ cos θXV − (1− α)2Q−N

2
√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N + 2
√
PQ cos θXV

=
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N + 2
√
PQ cos θXV

;

cos θUV =
|−→U |2 + |α−→V |2 − |−→X |2

2|−→U | · |α−→V |

=
P + α2Q+ 2α

√
PQ cos θXV + α2Q− P

2
√

P + α2Q+ 2α
√
PQ cos θXV · α

√
Q

=
α
√
Q+

√
P cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV

.

By Pythagorean identity, for any θ, sin2 θ + cos2 θ = 1, we have

sin2 θUY = 1− cos2 θUY

= 1− (
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N + 2
√
PQ cos θXV

)2

=
(1− α)2PQ(1− cos2 θXV ) +N(P + α2Q+ 2α

√
PQ cos θXV )

(P + α2Q+ 2α
√
PQ cos θXV )(P +Q+N + 2

√
PQ cos θXV )

;

sin2 θUV = 1− cos2 θUV

= 1− (
α
√
Q+

√
P cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV

)2

=
P (1− cos2 θXV )

P + α2Q+ 2α
√
PQ cos θXV

.

Recalling (4.41), the difference of mutual information can be calculated to yield

I(U ;Y )− I(U ;V ) =
1

2
log

1

sin2 θUY
− 1

2
log

1

sin2 θUV
=

1

2
log

sin2 θUV

sin2 θUY
.

Taking ρXV = cos θXV , we have

I(U ;Y )− I(U ;V ) =
1

2
log

P (1− ρ2XV )(P +Q+N + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )

.
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Let
R = I(U ;Y )− I(U ;V ). (4.43)

Then

R =
1

2
log

P (1− ρ2XV )(P +Q+N + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )

=
1

2
log

P (1− ρ2XV )(P +Q+N + 2
√
PQρXV )

Q[P (1− ρ2XV ) +N ]α2 − 2[PQ(1− ρ2XV )−N
√
PQρXV ]α+ P [Q(1− ρ2XV ) +N ]

=
1

2
log

P (1− ρ2XV )(P +Q+N + 2
√
PQρXV )

Q[P (1− ρ2XV ) +N ](α− αmax)2 +
PN(1−ρ2

XV
)(P+Q+N+2

√
PQρXV )

P (1−ρ2
XV
)+N

,

where

αmax =
PQ(1− ρ2XV )−N

√
PQρXV

Q(P (1− ρ2XV ) +N)
. (4.44)

Maximizing R over α, we get

max
α

R =
1

2
log(1 +

P (1− ρ2XV )

N
) (4.45)

obtained at α = αmax. Therefore, we have the following theorem.

Theorem 4.3.1 For the dirty paper channel, generalizing Costa’s strategy [7], we choose
the auxiliary variable U in the form of U = X + αV , where the correlation coefficient of X
and V is ρXV . Then the maximal rate we could achieve by dirty paper coding is

max
α

R =
1

2
log(1 +

P (1− ρ2XV )

N
).

The maximum is achieved at α = αmax, where αmax is defined in (4.45).

4.3.4 Discussion

The value of the correlation coefficient indicates the degree of linear dependence between
the variables. The closer the coefficient is to either -1 or 1, the stronger the correlation
between the variables. If the variables are independent, then the correlation is 0. But the
converse is not true, because the correlation coefficient detects only linear dependencies
between two variables. However, in the special case when X and V are jointly normal
distributed, independence is equivalent to uncorrelatedness.

Theorem 4.3.1 shows that, in order to achieve reliable transmission with as high as
possible rate by dirty paper coding, the best choice ofX is orthogonal to the side information
V . In particular, when X is dependent on V , here we use the correlation coefficient ρXV to
represent their dependency, so far the best we can do, can be achieved with less power by
the way of sending codewords orthogonal to V but only with power P (1− ρXV

2). That is,
if the chosen X is dependent on V , in fact, only 1 − ρXV

2 part of the power is efficient in
the transmission.
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4.4 An extended rate equivocation region

In this section, we think of the best choice of codewords sent to the channel for the Gaussian
wiretap channel with side information. Recall that Costa [7] showed that for dirty paper
channel, the optimal encoder adapts to the side information and uses it to his advantage,
rather than attempting to fight and cancel it. By choosing codewords orthogonal to the side
information, the channel capacity could be reached by dirty paper coding. Note that the
coding strategy used for the wiretap channel with side information is similar to the one for
the dirty paper channel. However, we wonder whether it might be a better choice to send
codewords dependent on the side information in some cases, in order to yield higher rate
with the same equivocation. We will show in this section that it is true, as a consequence
of an additional parameter ρXV in our optimization.

Differently from Mitrpant in [8, 9] and more general than Costa in [7], we make use
of the auxiliary random variable U = X + αV, where α is a real number and X can be
dependent on V. Using our technique given in Section 3.3, we provide a straightforward
proof to extend Theorem 3.2.1 to the Gaussian case by applying the generalized Costa’s
strategy to the auxiliary parameter U as follows.

Theorem 4.4.1 Consider the Gaussian wiretap channel with side information as shown in
Figure 1.7. We make use of the auxiliary random variable U = X + αV, where α is a real
number and X can be dependent on V. Let ρXV be the correlation coefficient of X and V.
For fixed α ∈ R and ρXV ∈ [−1, 1], denote RU as the set of points (R, d) with

RU1 ≤ R ≤ RU2, 0 ≤ d ≤ 1, Rd = RU1,

where RU1 and RU2 are defined in (3.7) and (3.8). Here R represents the set of all real
numbers. Let

R′U
∆
= {(R′, d′) : 0 ≤ R′ ≤ R, 0 ≤ d′ ≤ d, (R, d) ∈ RU},

and
RρXV

=
⋃

U=X+αV,α∈R

R′U .

Then the set R, defined as follows, is achievable:

R =
⋃

ρXV ∈[−1,1]
RρXV

.

Proof: The proof is almost the same as the proof of Theorem 3.2.1 given in section
3.3. We only need to show that RU is achievable for the specified α, ρXV and U. Assume
that the channel has power constraint P and the side information satisfies V ∼ N (0, Q).
For a fixed ε, let P ′ = P (1+2cε)−1, where c is a constant as defined in Lemma 2.2.8. Due to
the Gaussian characteristic of the channel, we make slight modifications in the achievability
proof of RU as follows:

• In the codebook generation, sequences uN are generated according to f(uN ) =
∏N

i=1 f(ui).
Here we specify f(ui) ∼ N (0, P ′ + α2Q) for all i ∈ {1, 2, · · · , N}.

• In the encoding process, xN (j) = uN (j)− αvN .

• The legitimate receiver observes yN = xN (j) + vN + ηN1 and the wiretapper observes
zN = yN + ηN2 .
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As a consequence of these modifications, there is one more source of potential error for the
legitimate receiver.

• EX(j): in the encoding process, xN (j) = uN (j) − αvN does not satisfy the power
constraint.

However, provided that there is at least one sequence uN (j) jointly typical with vN , the
probability that EX(j) occurs is 0 according to Lemma 2.2.9. Therefore, the modifications
do not influence the achievability proof of RU . Let ε be arbitrarily small. Since P ′ → P as
ε → 0, we have shown that RU is asymptotically achievable for α ∈ R and U = X + αV,
where X ∼ N (0, P ) and the correlation coefficient of X and V is ρXV . Thus we conclude
our proof.

As you will see in Section 4.2.4, the extended region by applying the generalized Costa’s
strategy to the auxiliary parameter U improves the region R⊥ which is derived by applying
Costa’s strategy to U.

4.4.1 Model description

For the dirty paper channel, Costa [7] considers U = X+αV, whereX and V are independent
random variables distributed according to N (0, P ) and N (0, Q), respectively, and α is a
parameter to be determined. Here we use the generalized Costa’s strategy as introduced
in last section. We take U = X + αV and investigate the more general situation when
the correlation coefficient of X and V is ρXV . It is clear that ρXV = 0 when X and V are
independent. With an abuse of the notation, we still use the notations U∗, Rs(∗), R(∗), RZ(∗)
and d(∗) as defined in (4.1)∼(4.5) for convienence. We need to keep in mind that in this
section, the correlation coefficient of X and V is ρXV . For a fixed ρXV , we denote the
maximal secret rate as

Rs = max
α
{I(U ;Y )−max{I(U : V ), I(U ;Z)}}. (4.46)
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Figure 4.10: Geometric interpretation of dirty paper coding in the wiretap channel with
side information, when X and V are dependent.

Now Let us calculate the values of I(U, V ), I(U, Y ) and I(U,Z) with respect to U =
X+αV . Note that here X and V can be dependent and their correlation coefficient is ρXV .
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Referring to Figure 4.10 and the calculations in Appendix I, we have the following:

I(U ;Y ) =
1

2
log

(P + α2Q+ 2α
√
PQρXV )(P +Q+N1 + 2

√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

;

I(U ;Z) =
1

2
log

(P + α2Q+ 2α
√
PQρXV )(P +Q+N1 +N2 + 2

√
PQρXV )

(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α
√
PQρXV )

;

I(U ;V ) =
1

2
log

P + α2Q+ 2α
√
PQρXV

P (1− ρ2XV )
.

It is a straightforward consequence that

I(U ;Y )− I(U ;V ) =
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

;

(4.47)

I(U ;Z)− I(U ;V ) =
1

2
log

P (1− ρ2XV )(P +Q+N1 +N2 + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α
√
PQρXV )

;

(4.48)

I(U ;Y )− I(U ;Z) =
1

2
log(

(P +Q+N1 + 2
√
PQρXV )

(P +Q+N1 +N2 + 2
√
PQρXV )

·

{(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α
√
PQρXV )}

{(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )}

).

(4.49)

Note that Z is a degraded version of Y. Thus, we have I(U ;Y ) ≥ I(U ;Z). You can also
find a proof of it in Appendix V. So we distinguish the following three cases:

(1) I(U ;V ) > I(U ;Y ) > I(U ;Z);

(2) I(U ;Y ) ≥ I(U ;V ) ≥ I(U ;Z);

(3) I(U ;Y ) ≥ I(U ;Z) > I(U ;V ).

Case 1: I(U ;V ) > I(U ;Y ) > I(U ;Z)

From (4.47), through easy calculation, we obtain that

I(U ;V ) > I(U ;Y ) ⇐⇒ α > α00 or α < α−00; (4.50)

I(U ;Y ) ≥ I(U ;V ) ⇐⇒ α−00 ≤ α ≤ α00, (4.51)

where
α00 =

P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N1)

Q[P (1− ρ2XV ) +N1]

+
PQ(1− ρ2XV )−N1

√
PQρXV

Q[P (1− ρ2XV ) +N1]
; (4.52)

α−00 = −P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N1)

Q[P (1− ρ2XV ) +N1]

+
PQ(1− ρ2XV )−N1

√
PQρXV

Q[P (1− ρ2XV ) +N1]
. (4.53)
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See the proof of (4.50) and (4.51) in Appendix VI.

In Case 1, I(U ;Y ) −max (I(U ;V ), I(U ;Z)) = I(U ;Y ) − I(U ;V ) is less than 0. For
practical purpose, we only need to consider the situation when α−00 ≤ α ≤ α00.

Case 2: I(U ;Y ) ≥ I(U ;V ) ≥ I(U ;Z)

From (4.48), through easy calculation, we obtain that

I(U ;V ) ≥ I(U ;Z) ⇐⇒ α ≥ α0 or α ≤ α−0, (4.54)

I(U ;Z) > I(U ;V ) ⇐⇒ α−0 < α < α0. (4.55)

where

α0 =
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

+
PQ(1− ρ2XV )− (N1 +N2)

√
PQρXV

Q[P (1− ρ2XV ) +N1 +N2]
; (4.56)

α−0 = −P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

+
PQ(1− ρ2XV )− (N1 +N2)

√
PQρXV

Q[P (1− ρ2XV ) +N1 +N2]
. (4.57)

We can derive (4.54) in the way similar to the proof of (4.50). Note that when
I(U ;V ) = I(U ;Z),

I(U ;Y )− I(U ;V ) = I(U ;Y )− I(U ;Z)⇐⇒ α = α0 or α−0.

Thus,

R(α0) = RZ(α0); (4.58)

R(α−0) = RZ(α−0). (4.59)

Due to (4.51) and (4.54), we have

I(U ;Y ) ≥ I(U ;V ) ≥ I(U ;Z)⇐⇒ α−00 ≤ α ≤ α00 and α ≥ α0 or α ≤ α−0,

In Case 2, I(U ;Y )−max (I(U ;V ), I(U ;Z)) = I(U ;Y )− I(U ;V ). By Theorem 4.4.1,
the rate equivocation pair (I(U ;Y )−I(U ;V ), 1) is achievable. Therefore, we have the
following lemma.

Lemma 4.4.2 For any α such that α−00 ≤ α ≤ α00, and α ≥ α0 or α ≤ α−0, the
rate equivocation pair (R(α), 1) is achievable. Here U = X + αV , and the correlation
coefficient of X and V is ρXV .

Note that the expression of the secret rate R(α) and the code strategy here are similar
to those for the dirty paper channel. It is well known that in the dirty paper channel,
R(α) = I(U ;Y ) − I(U ;V ) is maximized at α = P

P+N1
. The codeword sent by the

optimal encoder is orthogonal to V. However, in our case, we are not sure whether
this α and ρXV = 0 still yield the optimal result.
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Case 3: I(U ;Y ) ≥ I(U ;Z) > I(U ;V )

From (4.55) and the fact that I(U ;Y ) ≥ I(U ;Z), we obtain that

I(U ;Y ) ≥ I(U ;Z) > I(U ;V )⇐⇒ α−0 < α < α0.

In this case, I(U ;Y )−max (I(U ;V ), I(U ;Z)) = I(U ;Y )−I(U ;Z). By Theorem 4.4.1,
the rate equivocation pair (I(U ;Y )−I(U ;Z), 1) is achievable. Therefore, we have the
following lemma.

Lemma 4.4.3 For any α such that α−0 ≤ α ≤ α0, the rate equivocation pair (I(U ;Y )−
I(U ;Z), 1) is achievable. Here U = X + αV , and the correlation coefficient of X and
V is ρXV .

Here, the expression of the secret rate RZ(α) is similar to the one for the Gaussian
wiretap channel [4]. However, note that U is an auxiliary parameter. If we take
U = X + αV, according to different values of α, U has different so-called power
constraints. In the Gaussian wiretap channel, the expression of the secret rate is
different. It is shown in [4] that, the rate equivocation pair (I(X;Y ) − I(X;Z), 1)
is achievable. In that case, X has a constant power constraint P . The difference of
I(X;Y ) and I(X;Z) is maximized when X is Gaussian. Here we only consider the
situation when U is Gaussian. Now we can state the following problems: which U
maximizes the secret rate RZ(α) = I(U ;Y )− I(U ;Z)? Is ρXV = 0 still a best choice
to achieve higher rate with the same equivocation, as it is optimal to yield the channel
capacity in the dirty paper channel?

4.4.2 Analysis of R and RZ

In this subsection, we will investigate for a fixed ρXV , the properties of R(α) and RZ(α)
with respect to α. We also denote R(α) as R, RZ(α) as RZ for brevity.

Consider R = I(U ;Y )− I(U ;V ) as defined in (4.47).

R =
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

=
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

Q[P (1− ρ2XV ) +N1](α− αmax)2 +
PN1(1−ρ2XV

)(P+Q+N1+2
√
PQρXV )

P (1−ρ2
XV
)+N1

, (4.60)

where

αmax =
PQ(1− ρ2XV )−N1

√
PQρXV

Q[P (1− ρ2XV ) +N1]
. (4.61)

An easy calculation shows the following lemma. See also Figure 4.11.

Lemma 4.4.4 R, which is defined in (4.47). is an increasing function with respect to α as
α < αmax; a decreasing function as α > αmax; is maximized at α = αmax. In particular,

R(αmax) =
1

2
log(1 +

P (1− ρ2XV )

N1
). (4.62)
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Figure 4.11: Function R when U = X + αV, the correlation coefficient of X and V is ρXV .

Consider RZ = I(U ;Y )− I(U ;Z) as defined in (4.49).

RZ =
1

2
log

(P +Q+N1 + 2
√
PQρXV )

(P +Q+N1 +N2 + 2
√
PQρXV )

+
1

2
log

(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

.

Define

αmin = −
√
P (
√
P +

√
QρXV )√

Q(
√
PρXV +

√
Q)

. (4.63)
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Figure 4.12: Function RZ when U = X+αV, the correlation coefficient of X and V is ρXV .

An easy calculation shows the following lemma. See also Figure 4.12.

Lemma 4.4.5 RZ , which is defined in (4.49), is maximized at α = 1 and minimized at
α = αmin. Furthermore,

(a) when
√
PρXV +

√
Q > 0, RZ is

a non-increasing function with respect to α as α ≤ αmin;
a non-decreasing function as αmin ≤ α ≤ 1;
a non-increasing function as α ≥ 1.

(b) when
√
PρXV +

√
Q < 0, RZ is

a non-decreasing function with respect to α as α ≤ 1;
a non-increasing function as 1 ≤ α ≤ αmin;
a non-decreasing function as α ≥ αmin.

(c) when
√
PρXV +

√
Q = 0, RZ is

a non-decreasing function with respect to α as α ≤ 1 and a non-increasing function
as α > 1.
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In particular,

RZ(αmin) = 0; (4.64)

RZ(1) =
1

2
log

(P +Q+ 2
√
PQρXV +N1)(N1 +N2)

(P +Q+ 2
√
PQρXV +N1 +N2)N1

. (4.65)

Proof: See the proof in Appendix VII.

4.4.3 Achievable region

So far, from Lemma 4.4.2 and Lemma 4.4.3, we know that at perfect secrecy, R is achievable
when α ≥ α0 or α ≤ α−0; RZ is achievable when α−0 ≤ α ≤ α0. In particular, R = RZ

when α = α0 or α−0. Note that, according to the sign of
√
PρXV +

√
Q, RZ with respect to

α has different property. Hence, we investigate the achievable region in the following three
cases.
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Figure 4.13: The general achievable rate equivocation region for Gaussian wiretap channel
with side information. If

√
PρXV +

√
Q > 0, α∗ = α0; else if

√
PρXV +

√
Q < 0, α∗ = α−0.

A:
√
PρXV +

√
Q > 0

Easy comparisons show the following lemma.

Lemma 4.4.6 If
√
PρXV +

√
Q > 0,

αmin ≤ α−0 ≤ αmax < 1, α0 ≤ α00, αmin ≤ α−00.

Proof: See the proof in Appendix VIII.

By Lemma 4.4.6, we know that α−0 ≤ α0 ≤ α00. According to the different possible
positions of α0, we have the following situations.

(1) α−0 ≤ α0 ≤ αmax.

Lemma 4.4.7 If
√
PρXV +

√
Q > 0,

N2 ≥ Nhigh =⇒ α−0 ≤ α0 ≤ αmax,

where

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

. (4.66)
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Figure 4.14: Rs(α) when
√
PρXV +

√
Q > 0 and N2 ≥ Nhigh.

Proof: See the proof in Appendix X.

As shown in Figure 4.14, the maximal achievable secret rate in this case is
R(αmax).

The achievable rate equivocation region in this case is shown in Figure 4.13 (a).

(2) αmax ≤ α0 ≤ 1.

Lemma 4.4.8 If
√
PρXV +

√
Q > 0,

Nlow ≤ N2 ≤ Nhigh =⇒ αmax ≤ α0 ≤ 1,

where Nhigh is defined in (4.66) and

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

. (4.67)

Proof: See the proof in Appendix XI.
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Figure 4.15: Rs(α) when
√
PρXV +

√
Q > 0 and Nlow ≤ N2 ≤ Nhigh.

As shown in Figure 4.15, the maximal achievable secret rate in this case is
RZ(α0).

The achievable rate equivocation region in this case is shown in Figure 4.13 (b).
The curve which bounds the region can be divided into two parts. The first part
is the line d = 1 as R goes from 0 to RZ(α0). The second part is the curve
Rd = RZ(α) as R goes from RZ(α0) to R(αmax). Note that RZ(α0) = R(α0).
Correspondingly, α, the parameter used to achieve (R, d) on the curve, goes from
α0 to αmax. The property of the curve follows immediately from the fact that
RZ(α) is non-increasing as α goes from α0 to αmax.

(3) α0 ≥ 1.

Lemma 4.4.9 If
√
PρXV +

√
Q > 0,

N2 ≤ Nlow =⇒ α0 ≥ 1,

where Nlow is defined in (4.67).

Proof: See the proof in Appendix XII.
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Figure 4.16: Rs(α) when
√
PρXV +

√
Q > 0 and N2 ≤ Nlow.

As shown in Figure 4.16, the maximal achievable secret rate in this case is RZ(1).

The achievable rate equivocation region in this case is shown in Figure 4.13 (c).
The curve which bounds the region can be divided into three parts. The first
part is the line d = 1 as R goes from 0 to RZ(1). The second part is the curve
Rd = RZ(1) as R goes from RZ(1) to R(1). This part is achieved by time sharing

the two rate equivocation pairs (RZ(1), 1) and (R(1), RZ(1)
R(1) ). Note that RZ(1)

is a constant. The third part is the curve Rd = RZ(α) as R goes from R(1) to
R(αmax). Correspondingly, α, the parameter used to achieve (R, d) on the curve,
goes from 1 to αmax. The property of the curve follows immediately from the
fact that RZ(α) is non-increasing as α goes from 1 to αmax.

B:
√
PρXV +

√
Q < 0

Easy comparisons show the following lemma.

Lemma 4.4.10 If
√
PρXV +

√
Q < 0,

1 < αmax ≤ α0 ≤ αmin, α−00 ≤ α−0, α00 ≤ αmin.

Proof: See the proof in Appendix IX.

By Lemma 4.4.10, we know that α−00 ≤ α−0 ≤ α0. According to the different possible
positions of α−0, we have the following situations.

(1) αmax ≤ α−0 ≤ α0.

Lemma 4.4.11 If
√
PρXV +

√
Q < 0,

N2 ≥ Nhigh =⇒ αmax ≤ α−0 ≤ α0,

where Nhigh is defined in (4.66).

Proof: See the proof in Appendix XIII.
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Figure 4.17: Rs(α) when
√
PρXV +

√
Q < 0 and N2 ≥ Nhigh.

As shown in Figure 4.17, the maximal achievable secret rate in this case is
R(αmax).

The achievable rate equivocation region in this case is shown in Figure 4.13 (a).
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(2) 1 ≤ α−0 ≤ αmax.

Lemma 4.4.12 If
√
PρXV +

√
Q < 0,

Nlow ≤ N2 ≤ Nhigh =⇒ 1 ≤ α−0 ≤ αmax.

where Nhigh and Nlow are defined in (4.66) and (4.67), respectively.

Proof: See the proof in Appendix XIV.
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Figure 4.18: Rs(α) when
√
PρXV +

√
Q < 0 and Nlow ≤ N2 ≤ Nhigh.

As shown in Figure 4.18, the maximal achievable secret rate in this case is
RZ(α−0).

The achievable rate equivocation region in this case is shown in Figure 4.13 (b).
The curve which bounds the region can be divided into two parts. The first
part is the line d = 1 as R goes from 0 to RZ(α0). The second part is the curve
Rd = RZ(α) as R goes from RZ(α−0) to R(αmax). Note that RZ(α−0) = R(α−0).
Correspondingly, α, the parameter used to achieve (R, d) on the curve, goes from
α−0 to αmax. The property of the curve follows immediately from the fact that
RZ(α) is non-increasing as α goes from α−0 to αmax.

(3) α−0 ≤ 1.

Lemma 4.4.13 If
√
PρXV +

√
Q < 0,

N2 ≤ Nlow =⇒ α−0 ≤ 1.

where Nlow is define in (4.67).

Proof: See the proof in Appendix XV.
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Figure 4.19: Rs(α) when
√
PρXV +

√
Q < 0 and N2 ≤ Nlow.

As shown in Figure 4.19, the maximal achievable secret rate in this case is RZ(1).

The achievable rate equivocation region in this case is shown in Figure 4.13 (c).
The curve which bounds the region can be divided into three parts. The first
part is the line d = 1 as R goes from 0 to RZ(1). The second part is the curve
Rd = RZ(1) as R goes from RZ(1) to R(1). This part is achieved by time sharing

the two rate equivocation pairs (RZ(1), 1) and (R(1), RZ(1)
R(1) ). Note that RZ(1)

is a constant. The third part is the curve Rd = RZ(α) as R goes from R(1) to
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R(αmax). Correspondingly, α, the parameter used to achieve (R, d) on the curve,
goes from 1 to αmax. The property of the curve follows immediately from the
fact that RZ(α) is non-increasing as α goes from 1 to αmax.

C:
√
PρXV +

√
Q = 0

Assume that the values of P and Q satisfy P ≥ Q so that the equality
√
PρXV +√

Q = 0 may exist. Taking ρXV = −
√
Q√
P
, we could simplify the expressions of

αmax, α−0, α0, α−00 and α00 as follows:

αmax = 1;

α−0 = 1− (P −Q)
√

Q(P −Q+N1 +N2)
;

α0 = 1 +
(P −Q)

√

Q(P −Q+N1 +N2)
;

α−00 = 1− (P −Q)
√

Q(P −Q+N1)
;

α00 = 1 +
(P −Q)

√

Q(P −Q+N1)
.

We can also simplify the expressions of R(αmax) and RZ(1) as:

R(αmax) =
1

2
log(1 +

P −Q

N
); (4.68)

RZ(1) =
1

2
log

(P −Q+N1)(N1 +N2)

(P −Q+N1 +N2)N1
. (4.69)
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Figure 4.20: Rs(α) when P ≥ Q and
√
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It is easy to verify that in this case, α−00 ≤ α−0 ≤ 1 ≤ α0 ≤ α00. As shown in Figure
4.20, the maximal achievable secret rate in this case is RZ(1).

In this case, the achievable rate equivocation region is a degraded version of Figure
4.13 (c). The curve Rd = RZ(α) is degenerated to one point, since R(αmax) = R(1).
The curve Rd = RZ(1) gives a bound on the rate equivocation. Note that RZ(1)
is a constant. In fact, this rate equivocation region is equivalent to the region of
the corresponding Gaussian wiretap channel channel with power constraint P −Q at
the transmitter. However, in this case, the rate does not reach the channel capacity
and the secret rate is also smaller than the secrecy capacity. The reason is that the
transmitter always give some power out to cancel the side information.

65



4.4.4 Discussion

As a result of our analysis in last subsection, if we define

R(α∗) =

{

R(α0) if
√
PρXV +

√
Q > 0

R(α−0) if
√
PρXV +

√
Q < 0

, (4.70)

then we have the following theorems.

Theorem 4.4.14 For the Gaussian wiretap channel with side information, when the corre-
lation coefficient of X and V is ρXV , then the following rate is achievable at perfect secrecy:

Rs =







R(αmax) N2 ≥ Nhigh

R(α∗) Nlow ≤ N2 ≤ Nhigh

RZ(1) N2 ≤ Nlow

. (4.71)

Theorem 4.4.15 For the Gaussian wiretap channel with side information, when the cor-
relation coefficient of X and V is ρXV , a rate equivocation pair is achievable if

R ≤ R(αmax)

d ≤ 1

Rd ≤































R N2 ≥ Nhigh
{

R R ≤ R(α∗)
RZ(α) R(α∗) ≤ R ≤ R(αmax)

Nlow ≤ N2 ≤ Nhigh






R R ≤ RZ(1)
RZ(1) RZ(1) ≤ R ≤ R(1)
RZ(α) R(1) ≤ R ≤ R(αmax)

N2 ≤ Nlow

. (4.72)

Denote the set of above achievable rate equivocation pair as RρXV
. For the Gaussian wiretap

channel with side information, we give an achievable rate equivocation region R as follows:

R =
⋃

ρXV ∈[−1,1]
RρXV

. (4.73)

Note that the region RρXV =0 is exactly R⊥, the one given in Theorem 4.2.10. In Figure
4.21, we give an example that R⊥ is a proper subset of R. Recall the capacity region RL

given by Leung-Yan-Cheong and Hellman [4, Theorem 1], for the corresponding Gaussian
wiretap channel without side information. Here we define R′

L to be the capacity region for
the Gaussian wiretap channel with power constraint P +Q+ 2

√
PQ, i.e.,

R ≤ CM , d ≤ 1, Rd ≤ 1

2
log

(P +Q+ 2
√
PQ+N1)(N1 +N2)

(P +Q+ 2
√
PQ+N1 +N2)N1

.

Clearly, R′
L is an outer bound of R. As we see in Figure 4.21, we have

RL ⊂ R⊥ ⊂ R ⊂ R
′
L,

which shows that side information helps to get larger rate equivocation region of the Gaus-
sian wiretap channel; Furthermore, for a given wiretap channel with side information, we
can get a rate equivocation region R larger than R⊥ by applying the generalized Costa’s
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strategy in the encoding scheme; At last, R′
L gives an outer bound of the capacity region

of the Gaussian wiretap channel with side information.
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Figure 4.21: (R, d) region when Q = 1, P = N1 = N2 = 10.

Given a wiretap channel, the maximal secret rate max
ρXV

Rs is of considerable interest.

We try to find the optimum correlation coefficient of X and V to send the information as
efficient as possible at the perfect secrecy. In order to use Theorem 4.4.14 for this purpose,
We give the following lemata to show the properties of Nlow, Nhigh, R(αmax), RZ(1) and
R(α∗) with respect to ρXV .

Lemma 4.4.16 Nlow, which is defined in (4.67), with respect to ρXV has the following
properties:

(a) when P = Q, Nlow is decreasing as −1 ≤ ρXV ≤ 1;

(b) when P > Q, Nlow is increasing as −1 ≤ ρXV ≤ −
√
Q√
P
and decreasing as −

√
Q√
P
≤

ρXV ≤ 1;

(c) when P < Q, Nlow is increasing as −1 ≤ ρXV ≤ δ0 and decreasing as δ0 ≤ ρXV ≤ 1,
where

δ0 =
2
√
6

3

√

Q− P

P
cos

θ − π

3
−
√

Q

P
, θ = arccos

3
√
6

8

√

Q− P

Q
.

Proof: See the proof in Appendix XVIII.

Lemma 4.4.17 Nhigh, which is defined in (4.66), with respect to ρXV has the following
properties:

(a) when P = Q, Nhigh is decreasing as −1 ≤ ρXV ≤ 1;
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(b) when P > Q, Nhigh is increasing as −1 ≤ ρXV ≤ −
√
Q√
P
and decreasing as −

√
Q√
P
≤

ρXV ≤ 1;

(c) when P < Q, if N1 ≥ 4
√
P ( 4
√
P + 4

√
Q)(

√
Q−

√
P ), Nhigh is increasing as −1 ≤ ρXV ≤

δ00 and decreasing as δ00 ≤ ρXV ≤ 1; otherwise, Nhigh is decreasing as −1 ≤ ρXV ≤ 1.
Here

δ00 =
2
√
6

3

√

Q− P −N1
P

cos
φ− π

3
−
√

Q

P
, φ = arccos

3
√
6

8

√

Q− P −N1
Q

.

Proof: See the proof in Appendix XIX.

Given a wiretap channel, when N2 ≤ max
ρXV

Nlow, let δ1 be the correlation coefficient

satisfying N2 = Nlow|ρXV =δ1 . If there are two solutions to N2 = Nlow|ρXV
, let δ1 be the

larger one and δ−1 be the smaller one. Similarly, when N2 ≥ min
ρXV

Nhigh, let δ2 be the only

correlation coefficient or the larger solution to N2 = Nhigh|ρXV
. If there are two solutions,

let δ−2 be the smaller one.

Lemma 4.4.18 R(αmax), RZ(1) and R(α∗) with respect to ρXV have the following prop-
erties:

(a) R(αmax) is increasing as −1 ≤ ρXV ≤ 0; decreasing as 0 ≤ ρXV ≤ 1; maximized at
ρXV = 0.

(b) RZ(1) is increasing as −1 ≤ ρXV ≤ 1.

(c) R(α∗) satisfies the following inequalities.

R(α0)|ρXV
≤ R(α0)|ρXV =δ1 if ρXV ≤ δ1,

R(α0)|ρXV
≤ R(α0)|ρXV =δ2 if |ρXV | ≥ δ2,

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
2

if − 1 ≤ ρXV ≤ δ−2 < −
√

Q/
√
P ,

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
1

if − 1 ≤ ρXV ≤ δ−1 < −
√

Q/
√
P .

In particular,

R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 , R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 ,

R(α−0)|ρXV =δ
−
1
≤ R(α0)|ρXV =δ1 , R(α−0)|ρXV =δ

−
2
≤ R(α0)|ρXV =δ2 .

Proof: See the proof in Appendix XX.

By Lemma 4.4.17, it is easy to verify that

min
ρXV

Nhigh = Nhigh|ρXV =1 = N1 +
N21

(
√
P +

√
Q)2

. (4.74)

Furthermore, by Lemma 4.4.16, we could bound Nlow as follows:

max
ρXV

Nlow =

{

∞ if P > Q
Nlow|ρXV =δ0 if P ≤ Q

. (4.75)
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Consider Rs with respect to ρXV as given in (4.71). As a result of our optimization on Rs

over ρXV , we have the following theorem.

Theorem 4.4.19 For the Gaussian wiretap channel with side information, the following
secret rate is achievable at perfect secrecy:

max
ρXV

Rs =

{

CM if N2 ≥ Nhigh|ρXV =0

max
ρXV ∈[δ∗,δ′ ]

R(α0)|ρXV
else, (4.76)

where

δ∗ =

{

−1 if N2 > max
ρXV

Nlow

δ1 else
,

δ
′

=

{

1 if N2 < min
ρXV

Nhigh

δ2 else
.

Proof: Consider the following situations.

(a) N2 ≥ Nhigh|ρXV =0.

By Theorem 4.4.14,
max
ρXV

Rs ≥ R(αmax)|ρXV =0 = CM .

In addition that CM is an outer bound of the secret rate Rs, so we have in this case,
max
ρXV

Rs = CM .

(b) max
ρXV

Nlow < N2 < min
ρXV

Nhigh < Nhigh|ρXV =0.

Clearly, for any ρXV ∈ [−1, 1], we have Nlow|ρXV
< N2 < Nhigh|ρXV

. Therefore, by
Theorem 4.4.14, we have in this case,

max
ρXV

Rs = max
ρXV ∈[−1,1]

R(α0)|ρXV
.

(c) N2 > max
ρXV

Nlow and min
ρXV

Nhigh ≤ N2 < Nhigh|ρXV =0.

Clearly, this situation exists only when P ≤ Q. For any ρXV ∈ [−1, 1], we have√
PρXV +

√
Q ≥ 0 and N2 > Nlow|ρXV

.

Suppose that there is only one ρXV ∈ [−1, 1] satisfying N2 = Nhigh|ρXV
. Then N2 =

Nhigh|ρXV =δ2 . Due to min
ρXV

Nhigh ≤ N2 < Nhigh|ρXV =0, we have δ2 > 0. By Lemma

4.4.17, we know that if ρXV ∈ [δ2, 1], then N2 ≥ Nhigh|ρXV
; if ρXV ∈ [−1, δ2], then

N2 ≤ Nhigh|ρXV
. Therefore, by Theorem 4.4.14, we have

Rs =

{

R(αmax)|ρXV
for ρXV ∈ [δ2, 1]

R(α0)|ρXV
for ρXV ∈ [−1, δ2] .

In addition, for δ2 ≤ ρXV ≤ 1, by Lemma 4.4.18, R(αmax)|ρXV
≤ R(αmax)|ρXV =δ2 =

R(α0)|ρXV =δ2 . So we have in this case,

max
ρXV

Rs = max
ρXV ∈[−1,δ2]

R(α0)|ρXV
.
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If there are two solutions ρXV ∈ [−1, 1] to the equation N2 = Nhigh|ρXV
, then we

have N2 = Nhigh|ρXV =δ2 = Nhigh|ρXV =δ
−
2
. Furthermore, δ2 > 0 > δ−2 and |δ−2 | > δ2.

By Lemma 4.4.17, we know that if ρXV ∈ [δ2, 1] ∪ [−1, δ−2 ], then N2 ≥ Nhigh|ρXV
; if

ρXV ∈ [δ−2 , δ2], then N2 ≤ Nhigh|ρXV
. Therefore, by Theorem 4.4.14, we have

Rs =

{

R(αmax)|ρXV
for ρXV ∈ [δ2, 1] ∪ [−1, δ−2 ]

R(α0)|ρXV
for ρXV ∈ [δ−2 , δ2]

.

Note that |δ−2 | > δ2. By Lemma 4.4.18, for ρXV ∈ [δ2, 1] ∪ [−1, δ−2 ], R(αmax)|ρXV
≤

R(αmax)|ρXV =δ2 = R(α0)|ρXV =δ2 . Thus, we have in this case,

max
ρXV

Rs = max
ρXV ∈[δ−2 ,δ2]

R(α0)|ρXV
.

However, by Lemma 4.4.18, if −1 ≤ ρXV ≤ δ−2 , R(α0)|ρXV
≤ R(α0)|ρXV =δ

−
2
. There-

fore,
max
ρXV

Rs = max
ρXV ∈[δ−2 ,δ2]

R(α0)|ρXV
= max

ρXV ∈[−1,δ2]
R(α0)|ρXV

.

(d) N2 ≤ max
ρXV

Nlow and N2 < min
ρXV

Nhigh < Nhigh|ρXV =0.

Clearly, for any ρXV ∈ [−1, 1], we have N2 < Nhigh|ρXV
.

Suppose that there is only one ρXV ∈ [−1, 1] satisfying N2 = Nlow|ρXV
. Then N2 =

Nlow|ρXV =δ1 . Furthermore, δ1 > −
√
Q√
P
. By Lemma 4.4.17, we know that if ρXV ∈

[δ1, 1], then N2 ≥ Nlow|ρXV
; if ρXV ∈ [−1, δ1], then N2 ≤ Nlow|ρXV

. Therefore, by
Theorem 4.4.14, we have

Rs =

{

R(α0)|ρXV
for ρXV ∈ [δ1, 1]

RZ(1)|ρXV
for ρXV ∈ [−1, δ1] .

Note that for −1 ≤ ρXV ≤ δ1, by Lemma 4.4.18, RZ(1)|ρXV
≤ RZ(1)|ρXV =δ1 =

R(α0)|ρXV =δ1 . So we have in this case,

max
ρXV

Rs = max
ρXV ∈[δ1,1]

R(α0)|ρXV
.

If there are two solutions ρXV ∈ [−1, 1] to the equation N2 = Nlow|ρXV
, then we

have N2 = Nlow|ρXV =δ1 = Nhigh|ρXV =δ
−
1
. Furthermore, δ1 > −

√
Q√
P

and |δ−1 | > δ1.

By Lemma 4.4.17, we know that if ρXV ∈ [δ1, 1] ∪ [−1, δ−1 ], then N2 ≥ Nlow|ρXV
; if

ρXV ∈ [δ−1 , δ1], then N2 ≤ Nlow|ρXV
. Therefore, by Theorem 4.4.14, we have

Rs =







R(α∗)|ρXV
for ρXV ∈ [−1, δ−1 ]

R(α0)|ρXV
for ρXV ∈ [δ1, 1]

RZ(1)|ρXV
for ρXV ∈ [δ−1 , δ1]

It is easy to verify that if P > Q, then δ−1 < −
√
Q√
P
. Thus we have for ρXV ∈ [−1, δ−1 ],

Rs = R(α∗)|ρXV
=

{

R(α−0)|ρXV
if P > Q

R(α0)|ρXV
else

.
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Note that for ρXV ∈ [−1, δ−1 ], by Lemma 4.4.18, if P > Q, we have R(α−0)|ρXV
≤

R(α−0)|ρXV =δ
−
1
< R(α0)|ρXV =δ1 ; otherwise, R(α0)|ρXV

≤ R(α0)|ρXV =δ1 . In addition,

for ρXV ∈ [δ−1 , δ1], RZ(1)|ρXV
≤ RZ(1)|ρXV =δ1 = R(α0)|ρXV =δ1 . Therefore, in this

case, we have
max
ρXV

Rs = max
ρXV ∈[δ1,1]

R(α0)|ρXV
.

(e) N2 ≤ max
ρXV

Nlow and min
ρXV

≤ N2 < Nhigh|ρXV =0.

First, we consider the case if there is only one solution δ1 to N2 = Nlow|ρXV
and one

solution δ2 to N2 = Nhigh|ρXV
. Then δ2 > δ1 > −

√
Q√
P
. By Lemma 4.4.16 and Lemma

4.4.17, we know that if ρXV ∈ [−1, δ1], then N2 ≤ Nlow|ρXV
; if ρXV ∈ [δ1, δ2], then

Nlow|ρXV
≤ N2 ≤ Nhigh|ρXV

; if ρXV ∈ [δ2, 1], then N2 ≥ Nhigh|ρXV
. Therefore, by

Theorem 4.4.14 and Lemma 4.4.18, we have

Rs =







RZ(1)|ρXV
≤ RZ(1)|ρXV =δ1 for ρXV ∈ [−1, δ1]

R(α0)|ρXV
for ρXV ∈ [δ1, δ2]

R(αmax)|ρXV
≤ R(αmax)|ρXV =δ2 for ρXV ∈ [δ2, 1]

In addition, by Lemma 4.4.18, R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 and
R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 . Therefore, in this case, we have

max
ρXV

Rs = max
ρXV ∈[δ1,δ2]

R(α0)|ρXV
.

Secondly, we consider the case if there are two solutions δ−1 and δ1 to N2 = Nlow|ρXV

and one solution δ2 to N2 = Nhigh|ρXV
. It is easy to verify that δ−1 < δ1 < δ2.

By Lemma 4.4.16, we know that if ρXV ∈ [δ1, 1] ∪ [−1, δ−1 ], then N2 ≥ Nlow|ρXV
; if

ρXV ∈ [δ−1 , δ1], then N2 ≤ Nlow|ρXV
. By Lemma 4.4.17, we know that if ρXV ∈ [δ2, 1],

then N2 ≥ Nhigh|ρXV
; if ρXV ∈ [−1, δ2], then N2 ≤ Nhigh|ρXV

. Therefore, by Theorem
4.4.14 and Lemma 4.4.18, we have

Rs =















R(α∗)|ρXV
for ρXV ∈ [−1, δ−1 ]

RZ(1)|ρXV
≤ RZ(1)|ρXV =δ1 for ρXV ∈ [δ−1 , δ1]

R(α0)|ρXV
for ρXV ∈ [δ1, δ2]

R(αmax)|ρXV
≤ R(αmax)|ρXV =δ2 for ρXV ∈ [δ2, 1]

It is easy to verify that if P > Q, then δ−1 < −
√
Q√
P
. Thus we have for ρXV ∈ [−1, δ−1 ],

Rs = R(α∗)|ρXV
=

{

R(α−0)|ρXV
if P > Q

R(α0)|ρXV
else

.

Note that when ρXV ∈ [−1, δ−1 ], by Lemma 4.4.18, if P > Q, we have R(α−0)|ρXV
≤

R(α−0)|ρXV =δ
−
1
< R(α0)|ρXV =δ1 ; otherwise, R(α0)|ρXV

≤ R(α0)|ρXV =δ1 . In addition,

R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 , R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 . Therefore, in this
case, we have

max
ρXV

Rs = max
ρXV ∈[δ1,δ2]

R(α0)|ρXV
.
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At last, we consider the case if there are two solutions δ−1 and δ1 to N2 = Nlow|ρXV
and

two solutions δ−2 and δ2 to N2 = Nhigh|ρXV
. It is easy to verify that δ−2 < δ−1 < δ1 < δ2.

By Lemma 4.4.16, we know that if ρXV ∈ [δ1, 1] ∪ [−1, δ−1 ], then N2 ≥ Nlow|ρXV
; if

ρXV ∈ [δ−1 , δ1], then N2 ≤ Nlow|ρXV
. By Lemma 4.4.17, we know that if ρXV ∈

[δ2, 1] ∪ [−1, δ−2 ], then N2 ≥ Nhigh|ρXV
; if ρXV ∈ [−1, δ2], then N2 ≤ Nhigh|ρXV

.
Therefore, by Theorem 4.4.14 and Lemma 4.4.18, we have

Rs =















R(α∗)|ρXV
for ρXV ∈ [δ−2 , δ

−
1 ]

RZ(1)|ρXV
≤ RZ(1)|ρXV =δ1 for ρXV ∈ [δ−1 , δ1]

R(α0)|ρXV
for ρXV ∈ [δ1, δ2]

R(αmax)|ρXV
≤ R(αmax)|ρXV =δ2 for ρXV ∈ [−1, δ−2 ] ∪ [δ2, 1]

It is easy to verify that if P > Q, then δ−1 < −
√
Q√
P
. Thus we have for ρXV ∈ [δ−2 , δ

−
1 ],

Rs = R(α∗)|ρXV
=

{

R(α−0)|ρXV
if P > Q

R(α0)|ρXV
else

.

Note that when ρXV ∈ [δ−2 , δ
−
1 ], by Lemma 4.4.18, if P > Q, we have R(α−0)|ρXV

≤
R(α−0)|ρXV =δ

−
1
< R(α0)|ρXV =δ1 ; otherwise, R(α0)|ρXV

≤ R(α0)|ρXV =δ1 . In addition,

R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 , R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 . Therefore, in this
case, we have

max
ρXV

Rs = max
ρXV ∈[δ1,δ2]

R(α0)|ρXV
.

From the above theorem, it is clear that if N2 ≥ Nhigh|ρXV =0, the optimum correlation
coefficient is ρXV = 0. Otherwise, when N2 < Nhigh|ρXV =0, the optimal choice of ρXV is
the one between δ∗ and δ

′
which maximizes R(α0).

In the following we will give an example to show that ρXV = 0 is not always the best
choice to obtain high rate at perfect secrecy. Assume that N2 is relatively small so that
N2 < Nlow|ρXV =0. If we choose X independent of V , then the maximal rate at perfect
secrecy is

RZ(1)|ρXV =0 =
1

2
log

(P +Q+N1)(N1 +N2)

(P +Q+N1 +N2)N1
.

However, since N2 < Nlow|ρXV =0, there is a δ > 0 such that N2 = Nlow|ρXV =δ. If we choose
X dependent on V , say that the correlation coefficient of X and V is δ, then we can achieve
RZ(1)|ρXV =δ at perfect secrecy. It is clear that

RZ(1)|ρXV =δ =
1

2
log

(P +Q+ 2
√
PQδ +N1)(N1 +N2)

(P +Q+ 2
√
PQδ +N1 +N2)N1

> RZ(1)|ρXV =0.

Therefore, in this case, it is a better choice to choose X dependent on V .
In Figure 4.22, we illustrate the performance of Rs with respect to ρXV when Q =

1, P = N1 = 10. As we see, when N2 = 10, the secret rate 0.17 nats can be achieved at
ρXV = 0.5. Comparing with the secret rate 0.15 nats achieved at ρXV = 0, we gain more
than 10% efficiency.
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Figure 4.22: Rs w.r.t ρXV when Q = 1, P = N1 = 10.

4.5 Concluding remarks

In [7], Costa showed that for the dirty paper channel, to choose X independent of the side
information V is a best choice to yield the optimal efficiency by dirty paper coding. However,
for the Gaussian wiretap channel with side information, as shown in last section, it is not
always true. Especially in the case that the noise of wiretap channel is relatively small, to
choose X dependent on the side information V can be a better choice, in order to achieve
a higher efficiency to the legitimate receiver at a certain security level from the wiretapper.
In addition, we give the best choice of the correlation coefficient for the generalized Costa’s
strategy to achieve the maximal rate at the perfect secrecy.

For the Gaussian wiretap channel with side information, the achievable rate equivocation
region is more complicated than that for the Gaussian wiretap channel where the side
information is absent. In Section 4.2, we have shown that for the Gaussian wiretap channel,
side information helps to achieve a larger secrecy capacity and a larger capacity region.
Using the method similar to Costa [7], we derive the region R⊥ which is better than the
one given by Mitrpant in [8, Theorem 4.4] or [9, Theorem 3]. Furthermore, we improve
the region R⊥ by applying the generalized Costa’s strategy. However, it still remains an
open problem whether R is the capacity region of the Gaussian wiretap channel with side
information.
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Chapter 5

Random Linear Code for the
Wiretap Channel

5.1 Introduction

The problem of developing forward coding schemes for secure communication over the wire-
tap channel has not received much attention. Code construction methods and their con-
nection to security have not been explored extensively so far. A basic example introduced
by Wyner [1] is only for the wiretap channel with a noiseless main channel and a binary
symmetric wiretap channel. The model is shown in Figure 5.1. Another example is given by
Thangaraj et al. [22] for the situation when the main channel is noiseless and the wiretap
channel is a binary erasure channel.

Source Encoder Decoder Legitimate receiver

WiretapperBSC

PSfrag replacements
SK XN XN

ŜK

ZN

Figure 5.1: Wyner wiretap channel with a noiseless main channel and a binary symmetric
wiretap channel.

In this chapter, we focus on the problem of developing coding schemes with linear code
for secure communication across the wiretap channel. We consider the specific case that
both the main channel and the wiretap channel are binary symmetric. The model is shown
in Figure 5.3. It is equivalent to the model shown in Figure 5.2, in the manner that the
overall wiretap channel is more noisy than the main channel. This chapter is broadly divided
into two parts. In the first part, we provide a proof to show that secrecy capacity could be
achieved by using random linear codes. In the second part, we investigate the performance
of the coding schemes when linear codes are used in the construction.

5.2 Model description

We consider the situation as given in Figure 5.3. Suppose that all alphabets of the source,
the channel input and the channel output are equal to {0, 1}. Source S satisfies Pr{S =
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Figure 5.2: Wyner wiretap channel when both main channel and wiretap channel are binary
symmetric.

BSC

Source Encoder Decoder Legitimate receiver

Wiretapper

BSC

PSfrag replacements
SK XN Y N

ŜK

ZN

Figure 5.3: Csiszár-Körner wiretap channel when both main channel and the wiretap chan-
nel are binary symmetric, and the wiretap channel is more noisy.

0} = Pr{S = 1} = 1
2 . The main channel is a BSC with crossover probability p (0 ≤ p ≤ 1

2)
and the wiretap channel is a BSC with crossover probability pw (0 ≤ pw ≤ 1

2 and pw ≥ p).
The encoder encodes every K source outputs, SK , into a codeword XN , which is the input
of the main channel. Assume that SK is uniformly distributed, so we have H(SK) = K.
The outputs of the main channel and the wiretap channel are Y N and ZN , respectively.
Let EN = Y N −XN and EN

w = ZN −XN . It is clear that EN is the noise sequence added
into the main channel and EN

w is the noise sequence added into the wiretap channel. Then,
every component of EN and EN

w , denoted as Ei and Ewj , respectively, where 1 ≤ i, j ≤ N,
has the following distribution:

Pr(Ei = 1) = p, Pr(Ei = 0) = 1− p; (5.1a)

Pr(Ewj = 1) = pw, Pr(Ewj = 0) = 1− pw. (5.1b)

The transmission rate to the legitimate receiver is

R =
H(SK)

N
=
K

N
. (5.2)

The equivocation of the wiretapper is

d =
H(SK |ZN )

H(SK)
=
H(SK |ZN )

K
. (5.3)

At the legitimate receiver, on receipt of Y N , the decoder makes an estimate ŜK of the
message SK . Then, corresponding to a given encoder and decoder, the error probability Pe
is defined to be

Pe = Pr{ŜK 6= SK}. (5.4)

We refer to the above as an encoder-decoder (K,N, d, Pe).
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5.3 Random linear codes to achieve secrecy capacity

The notion of the secrecy capacity has an operational meaning of being the maximum
possible rate of the information transmission between the transmitter and the legitimate
receiver that still enables the wiretapper to be kept totally ignorant. Thus, the coding
problem to achieve the secrecy capacity of the wiretap channel involves adding redundancy
for enabling the legitimate receiver to correct errors and adding randomness for keeping
the wiretapper ignorant. By [1], for the model shown in Figure 5.3, the secrecy capacity is
Cs = CM − CMW = h(pw) − h(p). Now we perform a random linear code to establish the
achievability of the secrecy capacity. For this aim, we need to construct a random linear
code (N,K, d, Pe) such that for arbitrary ε, ζ, δ > 0,

K

N
≥ h(pw)− h(p)− ε, (5.5a)

d ≥ 1− ζ, (5.5b)

Pe ≤ δ. (5.5c)

We now proceed to this task.

5.3.1 Parameter settings

First, we set up the parameters for an encoder-decoder (K,N, d, Pe). Randomly choose a
binary matrix H1 with N − K1 rows and N columns. Independently, randomly choose
another binary matrix H with K rows and N columns. Assume that K ≤ K1. Let K2 =
K1 −K and

H2 =

[

H1
H

]

. (5.6)

Then H2 is a binary matrix with N − K2 rows and N columns. Later in our proof we
will increase N and keep K1,K proportional to N. In order to ensure that K1 and K are
integers, for arbitrary small ε > 0, we take

K1 = bN [1− h(p)− 2ε]c;
K1 −K = bN [1− h(pw)− 2ε]c.

Here bxc stands for the maximal integer which is not larger than x. Straightforwardly,

K

N
=

bN [1− h(p)− 2ε]c − bN [1− h(pw)− 2ε]c
N

≥ N [1− h(p)− 2ε]− 1−N [1− h(pw)− 2ε]

N

= h(pw)− h(p)− 1

N
.

It is clear, for given ε > 0, there exists an integer N0 >
1
ε , such that when N ≥ N0,

K

N
≥ h(pw)− h(p)− ε.

In what follows, we will assume that both H1 and H are with full rank, i.e., the rank of
H1 is N −K1, and the rank of H is K. The reason is that by Lemma 5.3.1, the rows of the
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H1 and H are linear independent with probability approaching 1 as N goes to infinity. See
the proof of Lemma 5.3.1 in Appendix XVI.

Lemma 5.3.1 A randomly chosen binary matrix H with K rows and N columns has rank
K with probability approaching 1 as N goes to infinity and K

N = R.

Based on the assumption that H1 and H are with full rank, H2, as defined in the equation
(5.6), has full rank with probability approaching 1 as N goes to infinity. The proof is the
following:

Pr{H2 has full rank |H1,H are with full rank}

=
Pr{H2 has full rank and H1,H are with full rank}

Pr{H1,H are with full rank}
(a)
=

Pr{H2 has full rank}
Pr{H1 has full rank} · Pr{H has full rank} ,

where (a) follows from the fact that when H2 has full rank, then its sub-matrices H1
and H are surely with full rank; Furthermore, since H1 and H are chosen independently,
Pr{H1,H are with full rank} = Pr{H1 has full rank}·Pr{H has full rank}. Now we increase
N and keep K1,K proportional to N. By Lemma 5.3.1, we have

lim
N→∞

Pr{H2 has full rank|H1,H are with full rank}

= lim
N→∞

Pr{H2 has full rank}
Pr{H1 has full rank} · Pr{H has full rank}

=
lim
N→∞

Pr{H2 has full rank}
lim
N→∞

Pr{H1 has full rank} · lim
N→∞

Pr{H has full rank}

=
1

1 · 1 = 1.

Therefore, without loss of generality, we also assume that H2 is with full rank.
Let C1 be the dual code of the (N,N − K1) linear code generated by H1 and C2 be

the dual code of the (N,N − K2) linear code generated by H2. In other words, H1 is a
parity check matrix of C1 and H2 is a parity check matrix of C2. To transmit a K-bit secret
message sK , an N -bit codeword xN is sent to the channel. The corresponding output at the
legitimate receiver is yN , at the wiretapper is zN . Because of the channel noises, yN and zN

may be different from xN . Let eN = yN −xN be the noise added into the main channel and
eNw = zN−xN be the noise added into the wiretap channel. Since the main channel is a BSC
with crossover probability p and the wiretap channel is a BSC with crossover probability
pw, we have

Pr{EN = eN} = pw(e
N )(1− p)N−w(e

N );

Pr{EN
w = eNw } = pw(e

N
w )

w (1− pw)
N−w(eNw ),

where w(eN ) is the number of the nonzero components of eN , also called the Hamming
weight of eN ; and w(eNw ) is the Hamming weight of eNw .

In this chapter and also next chapter, when the dimension of a sequence is clear from
the context, we will denote the sequences in boldface letters for simplicity. For example,
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x is the sequence xN and s is sK , etc. A similar convention applies to random variables,
which are denoted by upper-case letters. For example, X is the random variable XN , etc.

Now let us specify the encoder. To send the secret message s, a sequence x is chosen at
random from the solution set of the following equation

xH2
T = x

[

H1
H

]T

=
[

xH1
T xHT

]

=
[

0 s
]

, (5.7)

where H2
T is the transpose of the matrix H2; H1

T and HT are the transposes of the matrices
H1 and H, respectively. Due to the matrix H2 with rank N −K2, the number of solutions
of the above equation is 2K2 . Furthermore, for different secret messages s, the solution
sets are disjoint. Note that the number of solutions of the equation xH1

T = 0 is 2K1 .
So corresponding to different secret messages s, the solutions of the equation xH1

T = 0
is equally divided into 2K1

2K2
= 2K subsets. In other words, C1 is equally divided into 2K

subsets corresponding to different values of s, and C2 is the subset of C1 with s = 0. As for
the subset corresponding to a message s 6= 0, we denote as s+ C2.

In the following, we will show that the secrecy capacity can be achieved by a random
linear code in two parts, the reliability: Pe → 0 as N → ∞; and the security: d → 1 as
N →∞.

5.3.2 Reliability proof

In this subsection, we will prove that Pe → 0 as N →∞.
The legitimate receiver uses typical set decoder. The decoder examines the typical set

TNE (ε), the set of noise sequences e that satisfy

2−N [h(p)+ε] ≤ Pr(E = e) ≤ 2−N [h(p)−ε].

Check to see if any of those typical noise sequences, e satisfies

eH1
T = yH1

T.

If exactly one typical sequence e does so, the typical set decoder reports e as the hypoth-
esized noise sequence. The secret message s is decoded as ŝ = (y − e)HT. However, if no
typical sequence in the set TN

E (ε) matches the observed syndrome yH1
T, or more than one

does, then the typical decoder reports an error.
The error probability of the typical set decoder at the legitimate receiver, can be written

as follows,
Pe = PT + PH1 , (5.8)

where PT is the probability that the true noise sequence is itself not typical, and PH1 is the
probability that the true noise sequence is typical and at least one other typical sequence
clashes with it.

We first analyze PT . For given ε > 0 and δ > 0, there exists an integer N1, such that
when N ≥ N1, Pr{e ∈ TN

E (ε)} ≥ 1 − δ/2. Therefore, when N ≥ N1, PT = 1 − Pr{e ∈
TNE (ε)} ≤ δ/2.

The probability PH1 . Let the true noise sequence is e. It belongs to the set TN
E (ε). If any

of the typical noise sequence e∗, different from e, satisfies (e∗ − e)H1
T = 0, then we have
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an error. We use the truth function

1[(e∗ − e)H1
T = 0], (5.9)

whose value is one if the statement (e∗− e)H1T = 0 is true and zero otherwise. Then when
the true noise is e, the number of such errors can be bounded as:

[ Number of errors given e and H1] ≤
∑

e∗:
e∗ ∈ TN

E
(ε)

e∗ 6= e

1[(e∗ − e)H1
T = 0]. (5.10)

The number of errors is either zero or one; the sum on the right-hand side may exceed one,
in case where several typical noise sequences have the same syndrome.

Now we can write down the probability PH1 by averaging over e :

PH1 ≤
∑

e∈TN
E
(ε)

Pr(E = e)
∑

e∗:
e∗ ∈ TN

E
(ε)

e∗ 6= e

1[(e∗ − e)H1
T = 0]. (5.11)

We will find the average of PH1 , P̄H1 , by averaging over all possible H1. By showing that
P̄H1 vanishes as N approaches infinity, we will thus show that there exists a H1 such that
PH1 with vanishing error probability.

We denote averaging over all possible binary matrices H1 by 〈· · · 〉H1 . Then we have

P̄H1 = 〈PH1〉H1

≤ 〈
∑

e∈TN
E
(ε)

Pr(E = e)
∑

e∗:
e∗ ∈ TN

E
(ε)

e∗ 6= e

1[(e∗ − e)H1
T = 0]〉H1

=
∑

e∈TN
E
(ε)

Pr(EN = e)
∑

e∗:
e∗ ∈ TN

E
(ε)

e∗ 6= e

〈1[(e∗ − e)H1
T = 0]〉H1 .

Since for any non-zero binary sequence v, the probability that vH1
T = 0, averaging over

all possible H1, is 2
−(N−K1). So

P̄H1 ≤ (
∑

e∈TN
E
(ε)

Pr(E = e))(|TN
E (ε)| − 1)2−(N−K1)

< |TNE (ε)|2−(N−K1)

≤ 2N [h(p)+ε]2−(N−K1)

= 2−N(1−h(p)−ε−
K1
N
).

Note that K1
N ≤ 1 − h(p) − 2ε < 1 − h(p) − ε. Therefore, for given ε > 0 and δ > 0, there

exists an N2, when N ≥ N2, P̄H1 ≤ δ/8. By Markov inequality 1, we have

Pr(PH1 >
δ

2
) <

P̄H1

δ/2
≤ δ/8

δ/2
=

1

4
.

1Let X be a nonnegative random variable. Markov inequality states that for any a > 0, Pr(X ≥ a) ≤
E(X)

a
.
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Thus,

Pr(PH1 ≤
δ

2
) = 1− Pr(PH1 ≥

δ

2
) >

3

4
.

That is, from all possible H1, more than 3/4 random choices yield PH1 ≤ δ
2 .

Thus we have shown that there are H1 such that, for given ε > 0 and δ > 0, when
N ≥ max{N1, N2},

Pe = PT + PH1 ≤ δ/2 + δ/2 = δ.

This concludes the proof of reliability.

5.3.3 Security proof

In this subsection, we will prove that d→ 1 as N →∞.
Consider the uncertainty of the secret to the wiretapper in three steps:

1. show that H(S|Z) ≥ N [h(p)− h(pw)]−H(X|S,Z).

2. show that H(X|S,Z) ≤ h(Pew) + PewK2. Here Pew means a wiretapper’s error prob-
ability to decode x in the case where s is known to the wiretapper.

3. show that for arbitrary 0 < λ < 1/2, Pew ≤ λ.

Combining the above steps, we have

d =
H(S|Z)
H(S)

≥ N [h(p)− h(pw)]− h(Pew)− PewK2
K

≥ N [h(p)− h(pw)]− h(λ)− λK2
K

(a)

≥ [h(p)− h(pw)]− ε− λK2/N

K/N

(b)

≥ 1− ε+ λK2/N

h(p)− h(pw)− ε

(c)

≥ 1− ε+ λ(1− h(pw))

h(p)− h(pw)− ε

(d)

≥ 1− ζ.

where
(a) follows from the fact that h(λ) ≤ 1 and when N ≥ N0, ε ≥ 1

N .
(b) follows from the fact that h(p)− h(pw)− ε ≤ K

N ≤ h(p)− h(pw).

(c) follows from the fact that K2
N = K1−K

N < 1− h(pw).
(d) follows from the fact that there exists 0 < λ < 1/2 such that for given arbitrary

small ε and ζ, ζ ≥ ε+λ(1−h(pw))
h(p)−h(pw)−ε .
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We now proceed to step 1 by considering

H(S|Z) = H(S,Z)−H(Z)

= H(S,X,Z)−H(X|S,Z)−H(Z)

= H(S,X|Z)−H(X|S,Z)
= H(X|Z) +H(S|X,Z)−H(X|S,Z)
(a)
= H(X|Z)−H(X|S,Z)
(b)

≥ H(X|Z)−H(X|Y)−H(X|S,Z)
= I(X;Y)− I(X;Z)−H(X|S,Z)
(c)
= N [I(X;Y )− I(X;Z)]−H(X|S,Z)
= N [h(p)− h(pw)]−H(X|S,Z),

where
(a) follows from the fact that H(S|X,Z) = 0 since S = XHT.
(b) follows from the fact that H(X|Y) ≥ 0.
(c) follows from the fact that I(X;Y) = I(XN ;Y N ) = NI(X;Y ) and I(X;Z) =

I(XN ;ZN ) = NI(X;Z).
Thus the proof of step 1 is completed.
To prove step 2, we need to bound the entropy of the codeword X conditioned on the

message S and wiretapper’s observation Z. When S takes value s, we consider the subset of
C1, s+C2 as a codebook, X in the codebook as the input codeword, Z as the corresponding
output of passing X through the wiretap channel. From Z, the decoder estimates X as
X̂ = g(Z). Define the probability of error

Pew = Pr(X̂ 6= X). (5.12)

From Fano’s inequality, we have

H(X|s,Z)
(a)

≤ h(Pew) + PewK2,

where (a) follows from the fact that, there are 2K2 codewords in the codebook s + C2.
Furthermore, we have

H(X|S,Z) =
∑

s

Pr(S = s)H(X|s,Z)

≤ {h(Pew) + PewK2}
∑

s

Pr(S = s).

= h(Pew) + PewK2.

Thus we complete the proof of step 2.
Now we proceed to step 3. Note that the estimate g(Z) of the decoder can be arbitrary.

Here we use the typical set decoder. With the knowledge of s and z, the decoder tries to
find the codeword x sent to the channel. The decoder examines the typical set TN

Ew
(ε), the

set of noise sequences ew that satisfy

2−N [h(pw)+ε] ≤ Pr(Ew = ew) ≤ 2−N [h(pw)−ε].
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Check to see if any of those typical noise sequences, ew satisfies

ewH2
T = zH2

T.

If exactly one typical sequence ew does, the typical set decoder reports ew as the hypoth-
esized noise sequence. The codeword x is decoded as x̂ = z − ew. However, if no typical
sequence in the set TN

Ew
(ε) matches the observed syndrome zH2

T, or more than one does,
then the typical decoder reports an error.

The error probability of the typical set decoder at the legitimate receiver, can be written
as follows,

Pew = PTw + PH2 , (5.13)

where PTw is the probability that the true noise sequence is itself not typical, and PH2 is the
probability that the true noise sequence is typical and at least one other typical sequence
clashes with it.

We first analyze PTw . For given ε > 0 and λ > 0, there exists an integer N3, such that
when N ≥ N3, Pr{ew ∈ TNEw

(ε)} ≥ 1− λ/2. Therefore, when N ≥ N3, PTw = 1− Pr{ew ∈
TNEw

(ε)} ≤ λ/2.

The probability PH2 . Let the true noise sequence is ew. It belongs to the set TN
Ew

(ε). If

any of the typical noise sequence e∗w, different from ew, satisfies (e∗w − ew)H2
T = 0, then

we have an error. We use the truth function

1[(e∗w − ew)H2
T = 0], (5.14)

whose value is one if the statement (e∗w − ew)H2
T = 0 is true and zero otherwise. Then

when the true noise is ew, the number of such errors can be bounded as:

[ Number of errors given e and H2] ≤
∑

e∗w:
e∗w ∈ TN

Ew
(ε)

e∗w 6= ew

1[(e∗w − ew)H2
T = 0]. (5.15)

The number of errors is either zero or one; the sum on the right-hand side may exceed one,
in case where several typical noise sequences have the same syndrome. Here, note that

1[(e∗w − ew)H2
T = 0] = 1[(e∗w − ew)H1

T = 0] · 1[(e∗w − ew)HT = 0].

We can write down the probability PH2 by averaging over ew :

PH2 ≤
∑

ew∈TN
E
(ε)

Pr(Ew = ew)
∑

e∗w:
e∗w ∈ TN

E
(ε)

e∗w 6= ew

1[(e∗w − ew)H2
T = 0]. (5.16)

Now we will find the average of PH2 , P̄H2 , by averaging over all possible H2 with N−K1+K
rows and N columns. Note that H2 can be randomly generated in the way that H1 and H
are randomly generated independently.

We denote averaging over all possible binary matrices H2 by 〈· · · 〉H2 . Then we have

P̄H2 = 〈PH2〉H2
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≤ 〈
∑

ew∈TN
Ew
(ε)

Pr(Ew = ew)
∑

e∗w:
e∗w ∈ TN

Ew
(ε)

e∗w 6= ew

1[(e∗w − ew)H2
T = 0]〉H2

=
∑

ew∈TN
Ew
(ε)

Pr(Ew = ew)
∑

e∗w:
e∗w ∈ TN

Ew
(ε)

e∗w 6= ew

〈1[(e∗w − ew)H2
T = 0]〉H2

=
∑

ew∈TN
Ew
(ε)

Pr(Ew = ew)
∑

e∗w:
e∗w ∈ TN

Ew
(ε)

e∗w 6= ew

〈〈1[(e∗w − ew)H1
T = 0] · 1[(e∗w − ew)HT = 0]〉H1〉H

=
∑

ew∈TN
Ew
(ε)

Pr(Ew = ew)
∑

e∗w:
e∗w ∈ TN

Ew
(ε)

e∗w 6= ew

〈1[(e∗w − ew)H1
T = 0]〉H1 · 〈1[(e∗w − ew)HT = 0]〉H.

Since for any non-zero binary sequence v, the probability that vH1
T = 0, averaging over

all possible H1, is 2−(N−K1) and the probability that vHT = 0 averaging over all possible
H, is 2−K . So

P̄H2 ≤ (
∑

ew∈TN
Ew
(ε)

Pr(Ew = ew))(|TNEw
(ε)| − 1)2−(N−K1) · 2−K

< |TNEw
(ε)|2−(N−K1+K)

≤ 2N [h(pw)+ε]2−(N−K1+K)

= 2−N(1−h(pw)−ε−
K1−K

N
).

Note that K1−K
N ≤ 1 − h(pw) − 2ε < 1 − h(pw) − ε. Therefore, for given ε > 0 and λ > 0,

there exists an N4, when N ≥ N4, P̄H2 ≤ λ/8. By Markov inequality, we have

Pr(PH2 >
λ

2
) <

P̄H2

λ/2
≤ λ/8

λ/2
=

1

4
.

Thus,

Pr(PH2 ≤
λ

2
) = 1− Pr(PH2 ≥

λ

2
) >

3

4
.

That is, from all possible H2, more than 3/4 random choices yield PH2 ≤ λ/2. Due to the
structure of H2, this implies that, there are more than 3/4 random choices from all possible
H1, independently more than 3/4 random choices from all possible H such that H2 satisfies
PH2 ≤ λ/2.

Thus we have shown that there exists H1 and H such that, for given ε > 0 and λ > 0,
when N ≥ max{N3, N4},

Pew = PTw + PH2 ≤ λ/2 + λ/2 = λ.

This completes the proof of step 3.
Note that we have shown that for given ε, δ, ζ, ε > 0, whenN ≥ max{N0, N1, N2, N3, N4},

there are more than 3/4 random choices from all possible H1 such that Pe ≤ δ; Furthermore,
there are more than 3/4 random choices from all possible H1, more than 3/4 random choices
from all possible H, such that Pew ≤ λ. Therefore, there are at least 1/2 random choices of
all possible H1 and more than 3/4 random choices from all possible H such that Pe ≤ δ and
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Pew ≤ λ are both satisfied at the same time. Thus we have shown that there exist H1 and
H that lead to a random linear code such that

K

N
≥ h(pw)− h(p)− ε, d ≥ 1− ζ, Pe ≤ δ.

5.4 Performance of linear codes in wiretap channel

We have proved that the secrecy capacity of the wiretap channel as shown in Figure 5.3,
can be achieved by using random linear codes. However, the typical set decoder used in the
proof is not easy to implement. Thus, the method is existent but not effective in practice.
Until now it is still an unsolved problem to write down an explicit and practical encoder
and decoder to achieve the reliable and secure communication over the wiretap channel at
rates close to the secrecy capacity.

The motivation of this section is the need of constructive and applicable codes for the
wiretap channel. We restrict our attention to the binary linear codes for ease of implemen-
tation. The performance of the codes is evaluated from three perspectives: the efficiency
measured by the rate from the source to the legitimate receiver, the reliability measured by
the error probability of decoding at the legitimate receiver and the security measured by
the equivocation of the wiretapper about the information transmitted.

Consider the situation as given in Figure 5.3. The main channel is a BSC with crossover
probability p (0 ≤ p ≤ 1

2) and the wiretap channel is a BSC with crossover probability pw
(0 ≤ pw ≤ 1

2 and pw ≥ p). We use the encoding strategy similar to the one for the random
linear code given in Section 5.3. Let H1 be an N −K1 by N binary matrix and H be a K
by N binary matrix. From (5.6), we construct H2 as

H2 =

[

H1
H

]

.

Assume that H1,H and H2 are with full rank. Let C1 be the dual code of the (N,N −K1)
linear code generated by H1 and C2 be the dual code of the (N,N−K2) linear code generated
by H2. That is, H1 is a parity check matrix of C1 and H2 is a parity check matrix of C2.

5.4.1 Efficiency

By the encoding strategy, to transmit a K-bit secret message s, an N -bit codeword x is
sent to the channel. So the rate of the transmission is

R =
K

N
. (5.17)

Furthermore, x is chosen at random from the solution set of the equation (5.7)

xH2
T = x

[

H1
H

]T

=
[

xH1
T xHT

]

=
[

0 s
]

.

Due to the 2K different secret messages, the solution set of the equation xH1
T = 0, i.e.,

C1, is equally divided into 2K subsets. Every subset is a coset of C2 by Lemma 5.4.1. In
particular, C2 is the subset of C1 corresponding to s = 0. Let x(s(i)) be the coset leader of
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the coset corresponding to the secret message s(i), 0 ≤ i ≤ 2K − 1. Then, the codebook in
the encoding scheme can be shown as follows:

Table 5.1: The codebook in the encoding scheme

Space of input x Secret s Set of codewords corresponding to secret s

C1

s(0)
s(1)
...

s(2K − 1)

x(s(0)) + C2
x(s(1)) + C2

...
x(s(2K − 1)) + C2

Lemma 5.4.1 The solution set of the equation (5.7) is a coset of C2. Here C2 is the dual
code of the code generated by the matrix H2.

Proof: See the proof in Appendix XVII.
Using the above codebook, in order to transmit the secret s, we randomly choose a

sequence x from the set x(s) + C2. Let y, z be the outputs of the main channel and the
wiretap channel, respectively, corresponding to the input x. Note that x is chosen from C1,
which is a subspace of {0, 1}N , while y, z can be any sequence from the whole space {0, 1}N .

5.4.2 Reliability

At the legitimate receiver, the decoder uses syndrome decoding [20, Chapter 3]. The reason
is that the true error sequence e has the same syndrome as y, i.e.,

eH1
T = yH1

T.

However, there are 2K1 error patterns that result in the same syndrome, and the true error
sequence e is just one of them. Note that for a BSC, the error patterns with smaller Ham-
ming weight are more probable. In order to minimize the probability of a decoding error,
the decoder chooses the one with the minimum Hamming weight from the 2K1 candidates
to be the error sequence e. Then, the secret s is decoded as

ŝ = (y − e)HT.

It is clear that the set of 2K1 candidates is a coset of code C1. Furthermore, there are 2N−K1

disjoint cosets of C1 in {0, 1}N and they together span the whole space {0, 1}N . We denote
the 2N−K1 coset leaders as e(i), where 0 ≤ i ≤ 2N−K1 − 1 and e(0) = 0.

The error probability of decoding. If the true error sequence e is one of 2N−K1 coset
leaders, x = y − e will be correctly decoded. So does s = xHT. Furthermore, if the true
error sequence e belongs to any coset e(i)+C2, s will also be decoded correctly. The reason
is that in this case, since e ∈ e(i) + C2, we have

eH2
T = e(i)H2

T ⇒ eHT = e(i)HT.
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The codeword x is decoded as x̂ = y − e(i). However,

x̂HT = (y − e(i))HT = yHT − e(i)HT

= yHT − eHT = (y − e)HT

= xHT = s.

Thus, when the true error sequence is from the 2N−K1 cosets e(i) + C2, where 0 ≤ i ≤
2N−K1 − 1, the secret s can be decoded correctly by the legitimate receiver. The total
number of such error patterns is 2N−K1 · 2K2 = 2N−K . The probability of correct decoding
is

Pr{ŝ = s} =
2N−K1−1
∑

i=0

∑

e∈e(i)+C2

pw(e)(1− p)N−w(e).

By the theorem for the weight distribution of a coset of a linear code given in [13], we have

∑

e∈e(i)+C2

xN−w(e)yw(e) =
1

2N−K2

N
∑

j=0

(2bj(e(i))−Bj)(x+ y)N−j(x− y)j ,

where bj(e(i)) is equal to the number of codewords of weight j in the dual code C⊥2 orthog-
onal to e(i), and Bj is equal to the number of codewords of weight j in the dual code C⊥2 .
Taking x = 1− p and y = p, we have

∑

e∈e(i)+C2

pw(e)(1− p)N−w(e) =
1

2N−K2

N
∑

j=0

(2bj(e(i))−Bj)(1− 2p)j .

Therefore,

Pr{ŝ = s} =
1

2N−K2

2N−K1−1
∑

i=0

N
∑

j=0

(2bj(e(i))−Bj)(1− 2p)j

=
1

2N−K2

2N−K1−1
∑

i=0

N
∑

j=0

2bj(e(i))(1− 2p)j − 1

2K

N
∑

j=0

Bj(1− 2p)j

=
1

2N−K2

N
∑

j=0

(2
2N−K1−1
∑

i=0

bj(e(i)))(1− 2p)j − 1

2K

N
∑

j=0

Bj(1− 2p)j .

The error probability of decoding Pe is

Pe = Pr{ŝ 6= s} = 1− Pr{ŝ = s}

= 1 +
1

2K

N
∑

j=0

Bj(1− 2p)j − 1

2N−K2

N
∑

j=0

(2

2N−K1−1
∑

i=0

bj(e(i)))(1− 2p)j . (5.18)

Clearly, when i = 0, e(0) = 0. We have

bj(e(0)) = Bj . (5.19)

87



Now let us try to simplify (5.18) for the special cases when C1 spans the whole space
{0, 1}N and when C1 is a binary Hamming code.

C1 spans the whole space {0, 1}N .
Note that when C1 spans the whole space {0, 1}N , then K1 = N and there is only one
coset in {0, 1}N : e+ C1 with e = 0. In this case, (5.18) can be simplified as follows:

Pe = 1− 1

2N−K2

N
∑

j=0

Bj(1− 2p)j . (5.20)

C1 is a binary Hamming code.

Note that when C1 is a binary Hamming code, then C1 has 1 error correcting capability
and its parameters N,K1 satisfy that N = 2N−K1 − 1. In this case, the coset leader
e(i) of the coset e(i) + C1, 1 ≤ i ≤ N is of weight 1. Since e(i′) is different from e(i)
when i′ 6= i, so these N coset leaders are all possible N -bit sequences of weight 1.

Consider
∑N

i=1 bj(e(i)). Let v be a codeword of weight j. Since {e(i), 1 ≤ i ≤ N} are
all possible sequences of weight 1, it is clear that there are j sequences from them
not orthogonal to v. In other words, for fixed v of weight j, there are N − j coset
leaders orthogonal to v. Furthermore, there are Bj such v of weight j in the code C⊥2 .
Therefore, we have

N
∑

i=1

bj(e(i)) = (N − j)Bj . (5.21)

Taking account of (5.19), we have

N
∑

i=0

bj(e(i)) = (N + 1− j)Bj . (5.22)

The probability of correct decoding in this case can be calculated as follows:

Pr{ŝ = s} =
1

2N−K2

N
∑

j=0

(2
N
∑

i=0

bj(e(i)))(1− 2p)j − 1

2K

N
∑

j=0

Bj(1− 2p)j

=
1

2N−K2

N
∑

j=0

2(N + 1− j)Bj(1− 2p)j − 1

2K

N
∑

j=0

Bj(1− 2p)j

(a)
=

1

2K

N
∑

j=0

Bj(1− 2p)j − 2

2N−K2

N
∑

j=0

jBj(1− 2p)j

(a)
=

1

2K

N
∑

j=0

(1− 2j

N + 1
)Bj(1− 2p)j ,

where (a) follows from the fact that N = 2N−K1 − 1, since C1 is a binary Hamming
code. Thus, the error probability of decoding has the following form

Pe = 1− Pr{ŝ = s}
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= 1− 1

2K

N
∑

j=0

(1− 2j

N + 1
)Bj(1− 2p)j , (5.23)

where {Bj , 0 ≤ j ≤ N} is the weight distribution of the code C⊥2 , the code generated
by the matrix H2.

So far, we have given a way to calculate Pe with the knowledge of the weight distri-
bution of C⊥2 , for the case that C1 is a binary Hamming code. By the Macwilliams
identity [20, Chapter 3], it is easy to show that Pe can also be calculated with the
knowledge of the weight distribution of C2.

Using the Macwilliams identity [20, Chapter 3] for a (n, k) linear code C, we have

∑

v∈C
xn−w(v)yw(v) =

1

2n−k

n
∑

j=0

Wj(x+ y)n−j(x− y)j ,

where Wi is the number of codewords of weight j in the dual code C⊥. Let {Dj , 0 ≤
j ≤ N} and {Bj , 0 ≤ j ≤ N} be the weight distribution of C2 and it dual code C⊥2 ,
respectively. Taking x = 1 − p, y = p and applying the Macwilliams identity for C2,
we have the following

N
∑

j=0

Djp
j(1− p)N−j =

1

2N−K2

N
∑

j=0

Bj(1− 2p)j

2N−K2

N
∑

j=0

Djp
j(1− p)N−j =

N
∑

j=0

Bj(1− 2p)j .

Consider the first derivative of the above equation with respect to p.

N
∑

j=0

−2jBj(1− 2p)j−1 = 2N−K2

N
∑

j=0

[jDjp
j−1(1− p)N−j − (N − j)Djp

j(1− p)N−j−1]

N
∑

j=0

2jBj(1− 2p)j = −2N−K2

N
∑

j=0

(1− 2p)[jDjp
j−1(1− p)N−j − (N − j)Djp

j(1− p)N−j−1]

= 2N−K2

N
∑

j=0

(N − j(1− p)

p
− (N − j)p

1− p
)Djp

j(1− p)N−j .

From (5.23), we have

Pe = 1− 1

2K

N
∑

j=0

(1− 2j

N + 1
)Bj(1− 2p)j

= 1− 1

2K

N
∑

j=0

Bj(1− 2p)j +
1

2K
1

N + 1

N
∑

j=0

2jBj(1− 2p)j

= 1− 2N−K1

N
∑

j=0

Djp
j(1− p)N−j +

2N−K1

N + 1

N
∑

j=0

(N − j(1− p)

p
− (N − j)p

1− p
)Djp

j(1− p)N−j
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(a)
= 1−

N
∑

j=0

(1 +
j(1− p)

p
+

(N − j)p

1− p
)Djp

j(1− p)N−j , (5.24)

where (a) follows from the fact that 2N−K1 = N + 1 since C1 is a binary Hamming
code.

5.4.3 Security

Consider the wiretapper’ s equivocation about the secret message. We have

d =
H(S|Z)
H(S)

=
H(S) +H(Z|S)−H(Z)

H(S)

=
K +H(Z|S)−H(Z)

K

= 1− H(Z)−H(Z|S)
K

. (5.25)

To calculate d, we need to know the entropy of Z and the conditional entropy of Z given
the secret message S.

First let us consider the conditional probability of z given s(i), 0 ≤ i ≤ 2K − 1.

pZ|S(z|s(i)) =
∑

x∈x(s(i))+C2

pX|S(x|s(i))pZ|X,S(z|x, s(i))

(a)
=

1

2K2

∑

x∈x(s(i))+C2

pZ|X(z|x)

(b)
=

1

2K2

∑

x∈x(s(i))+C2

pw(x+z)
w (1− pw)

N−w(x+z)

=
1

2K2

∑

v∈x(s(i))+z+C2

pw(v)w (1− pw)
N−w(v),

where
(a) follows the fact that pX|S(x|s) = 1

2K2
and p(z|x, s(i)) = p(z|x). The reason is that

to send s(i), x is chosen randomly from the coset x(s(i)) + C2. Furthermore, S → X → Z
forms a Markov chain;

(b) follows the fact that the wiretap channel is a BSC with crossover probability pw.
Applying the theorem for the weight distribution of a coset of a linear code given in [13],

we have

∑

v∈x(s(i))+z+C2

pw(v)w (1− pw)
N−w(v) =

1

2N−K2

N
∑

j=0

(2bij −Bj)(1− 2pw)
j ,

where bij is equal to the number of codewords of weight j in the dual code C⊥2 orthogonal
to x(s(i))+z, and Bj is equal to the number of codewords of weight j in the dual code C⊥2 .
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Therefore, pZ|S(z|s(i)) can be calculated as follows:

pZ|S(z|s(i)) =
1

2K2

∑

v∈x(s(i))+z+C2

pw(v)w (1− pw)
N−w(v) (5.26)

=
1

2N

N
∑

j=0

(2bij −Bj)(1− 2pw)
j . (5.27)

From (5.26), we see that the probability of z given s(i) is decided by the weight distribu-
tion of the coset x(s(i))+ z+C2. Note that given s(i), x(s(i)) is a fixed sequence. Thus for
given s(i), {x(s(i)) + z, z ∈ {0, 1}N} is a permutation of {z, z ∈ {0, 1}N}. As a straightfor-
ward consequence, {x(s(i))+z+C2, z ∈ {0, 1}N} is a permutation of {z+C2, z ∈ {0, 1}N}.
If we consider the distribution of Z given S = s, it is clear that for s(0) = 0 and any
1 ≤ i ≤ 2K − 1, {pZ|S(z|s(i)), z ∈ {0, 1}N} is a permutation of {pZ|S(z|s(0)), z ∈ {0, 1}N}.
As a result, we have the following lemma.

Lemma 5.4.2 H(Z|S) = H(Z|S = 0).

Proof:

H(Z|S) =
2K−1
∑

i=0

Pr(S = s(i))H(Z|S = s(i))

=
2K−1
∑

i=0

Pr(S = s(i))
∑

z∈{0,1}N
pZ|S(z|s(i)) log

1

pZ|S(z|s(i))

= H(Z|S = 0)
2K−1
∑

i=0

Pr(S = s(i))

= H(Z|S = 0).

Easily, from (5.26) and (5.27), given s(0) = 0, we have

pZ|S(z|s(0)) =
1

2K2

∑

v∈z+C2

pw(v)w (1− pw)
N−w(v) (5.28)

=
1

2N

N
∑

j=0

(2bj(z)−Bj)(1− 2pw)
j , (5.29)

where bj(z) is equal to the number of codewords of weight j in the dual code C⊥2 orthogonal
to z. By Lemma 5.4.2, the conditional entropy of Z given S can be calculated as follows:

H(Z|S) =
∑

z∈{0,1}N
− 1

2N

N
∑

j=0

(2bj(z)−Bj)(1− 2pw)
j log(

1

2N

N
∑

j=0

(2bj(z)−Bj)(1− 2pw)
j).

(5.30)
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Now let us consider the probability of z.

pZ(z) =
∑

s

pS(s)
∑

x∈x(s)+C2

pX|S(x|s)pZ|X,S(z|x, s(i))

(a)
=

∑

s

1

2K

∑

x∈x(s)+C2

1

2K2
pZ|X(z|x)

(b)
=

1

2K1

∑

x∈C1

pw(x+z)
w (1− pw)

N−w(x+z)

=
1

2K1

∑

v∈z+C1

pw(v)w (1− pw)
N−w(v) (5.31)

(c)
=

1

2N

N
∑

j=0

(2aj(z)−Aj)(1− 2pw)
j , (5.32)

where
(a) follows the fact that PS(s) = 1

2K
, pX|S(x|s) = 1

2K2
and p(z|x, s(i)) = p(z|x). The

reason is that S is uniformly distributed. In order to send s(i), x is chosen randomly from
the coset x(s(i)) + C2. Furthermore, S→ X→ Z forms a Markov chain;

(b) follows the fact that K1 = K +K2 and the wiretap channel is a BSC with crossover
probability pw.

(c) follows from the theorem for the weight distribution of a coset of a linear code given
in [13]. Here aj(z) is equal to the number of codewords of weight j in the dual code C⊥1
orthogonal to z, and Aj is equal to the number of codewords of weight j in the dual code
C⊥1 .

Therefore, the entropy of Z is

H(Z) =
∑

z∈{0,1}N
− 1

2N

N
∑

j=0

(2aj(z)−Aj)(1−2pw)
j log

1

2N

N
∑

j=0

(2aj(z)−Aj)(1−2pw)
j . (5.33)

5.5 Two special cases

As we have discussed, when linear codes C1, C2 are used for the wiretap channel, theo-
retically, the rate R, the error probability Pe and the equivocation d can be calculated to
evaluate the performance from the perspectives of the efficiency, reliability and security.
However, in general, the computation of Pe and d becomes practically impossible for large
N,K1 and K2. In this section, we show the calculation for two special cases. The first is the
case when C1 is a Hamming code and C2 is a repetition code. The second is the degraded
case when p = 0, C1 spans the whole space {0, 1}N , and C2 is a special kind of linear code,
for example, the binary Hamming code or the repetition code.

5.5.1 C1 is a Hamming code and C2 is a repetition code

When C1 is a Hamming code and C2 is a repetition code, the parameters satisfy the following
equations:

K1 = N − log(N + 1);
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K2 = 1;

K = K1 −K2 = N − log(N + 1)− 1.

First, let us consider the efficiency R.

Recalling the expression of R from (5.17), we have:

R =
K

N
=
N − log(N + 1)− 1

N
.

As shown in Figure 5.4 (a), R is closer to 1 as N increases.

0 3 7 15 31 63 127

0.43
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0.89

0.93

1
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(a) R w.r.t N.

0 3 7 15 31 63 127
10−5

10−4
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10−2

N

B
E

R

(b) Pe w.r.t N, when p = 0.001.

Figure 5.4: Rate R and error probability of decoding Pe with respect to N, when C1 is a
Hamming code of length N , C2 is a repetition code.

The reliability.

Recall the expression of Pe for the case that C1 is a Hamming code from (5.23) and
(5.24). We have

Pe = 1− 1

2K

N
∑

j=0

(1− 2j

N + 1
)Bj(1− 2p)j

= 1−
N
∑

j=0

[Djp
j(1− p)N−j + jDjp

j−1(1− p)N−j+1 + (N − j)Djp
j+1(1− p)N−j−1],

where {Bj , 0 ≤ j ≤ N} is the weight distribution of C⊥2 and {Dj , 0 ≤ j ≤ N} is the
weight distribution of C2. If C2 is the (N, 1) repetition code, then we have

D0 = 1;

DN = 1;

Dj = 0, j 6= 0, N.

It is easy to calculate Pe with the knowledge of the weight distribution of C2. Therefore,
when C1 is a Hamming code and C2 is a repetition code, we have Pe in the following
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form:
Pe = 1− [(1− p)N +Np(1− p)N−1 + pN +N(1− p)pN−1]. (5.34)

It is easy to verify that for fixed p, Pe is increasing with respect to N as shown in
Figure 5.4 (b).

The security.

From (5.25) and Lemma 5.4.2, we can calculate the equivocation as follows:

d = 1− H(Z)−H(Z|S)
K

= 1− H(Z)−H(Z|S = 0)

N − log(N + 1)− 1
. (5.35)

Consider the probability of z given s(0) = 0. From (5.28), since C2 is a binary repe-
tition code, we have

pZ|S(z|s(0)) =
1

2K2

∑

v∈z+C2

pw(v)w (1− pw)
N−w(v)

=
1

2
(pw(z)w (1− pw)

N−w(z) + pN−w(z)w (1− pw)
w(z)).

The conditional entropy of Z given that S = 0 can be calculated as follows:

H(Z|S = 0) = −
∑

z∈{0,1}N
pZ|S(z|s(0)) log pZ|S(z|s(0))

= −
N
∑

i=0

(

N

i

)

1

2
(piw(1− pw)

N−i + pN−iw (1− pw)
i) log[

1

2
(piw(1− pw)

N−i + pN−iw (1− pw)
i)]

= 1− 1

2

N
∑

i=0

(

N

i

)

(piw(1− pw)
N−i + pN−iw (1− pw)

i) log(piw(1− pw)
N−i + pN−iw (1− pw)

i).

Since pw ≤ 1
2 , then for any 0 ≤ i ≤ N,

piw(1− pw)
N−i + pN−iw (1− pw)

i ≤ pNw + (1− pw)
N .

Thus we have

H(Z|S = 0) ≥ 1− 1

2

N
∑

i=0

(

N

i

)

(piw(1− pw)
N−i + pN−iw (1− pw)

i) log(pNw + (1− pw)
N )

= 1− log(pNw + (1− pw)
N )

= 1−N log(1− pw)− log(1 + (
pw

1− pw
)N )

≥ −N log(1− pw).

In addition, we have

H(Z|S = 0)
(a)

≤ 1− 1

2

N
∑

i=0

(

N

i

)

piw(1− pw)
N−i log piw(1− pw)

N−i
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−1

2

N
∑

i=0

(

N

i

)

pN−iw (1− pw)
i log pN−iw (1− pw)

i

= 1−
N
∑

i=0

(

N

i

)

piw(1− pw)
N−i log piw(1− pw)

N−i

= 1−
N
∑

i=0

(

N

i

)

piw(1− pw)
N−i log(1− pw)

N (
pw

1− pw
)i

= 1−N log(1− pw)−
N
∑

i=0

i

(

N

i

)

piw(1− pw)
N−i log

pw
1− pw

(b)
= 1−N log(1− pw)−Npw log

pw
1− pw

= 1 +Nh(pw), (5.36)

where

(a) follows from the inequality (x+ y) log(x+ y) ≥ x log x+ y log y for x, y > 0.

(b) follows from the fact that, since
∑N

i=0

(

N
i

)

xi = (1 + x)N and
∑N

i=0 i
(

N
i

)

xi =

x(
∑N

i=0

(

N
i

)

xi)′, we have
∑N

i=0 i
(

N
i

)

xi = Nx(1 + x)N−1.

So far, due to (5.36) and (5.36), we can bound H(Z|S = 0) as follows:

−N log(1− pw) ≤ H(Z|S = 0) ≤ 1 +Nh(pw). (5.37)

Now let us consider the probability of z. From (5.31) and (5.32), we have

pZ(z) =
1

2K1

∑

v∈z+C1

pw(v)w (1− pw)
N−w(v)

=
1

2N

N
∑

j=0

(2aj(z)−Aj)(1− 2pw)
j .

Here aj(z) is equal to the number of codewords of weight j in the dual code C⊥1
orthogonal to z, and Aj is equal to the number of codewords of weight j in the dual
code C⊥1 . Note that when C1 is a binary Hamming code, its dual code C⊥1 has only
one all zero codeword 0 and N codewords of weight N+1

2 . Then we have

A0 = 1;

AN+1
2

= N ;

Aj = 0, j 6= 0,
N + 1

2
.

If z ∈ C1, the coset z+ C1 is C1 itself. We have

pZ(z) =
1

2K1

∑

v∈z+C1

pw(v)w (1− pw)
N−w(v)

=
1

2K1

∑

v∈C1

pw(v)w (1− pw)
N−w(v)
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=
1

2N

N
∑

j=0

Aj(1− 2pw)
j

=
1

2N
(1 +N(1− 2pw)

N+1
2 ).

If z /∈ C1, then z must be belong to one of cosets of C1. Suppose z ∈ e(i) + C1,
where e(i) is the coset leader of e(i) + C1. Thus the coset z + C1 in fact is the same
as e(i) + C1. It is easy to verify that aj(e(i)) = aj(z), where aj(e(i)) is equal to
the number of codewords of weight j in the dual code C⊥1 orthogonal to e(i). Let
m = N −K1 and the syndrome of e(i) be e(i)H1

T. Assume this syndrome contains k
zeros and m − k ones. We have m − k ≥ 1, since e(i) /∈ C1. Note that C⊥1 has only
N codewords of weight N+1

2 except for the sequence 0, the number of codewords of
weight N+1

2 in the code C⊥1 orthogonal to e(i) can be counted as follows:

aN+1
2

(e(i))
(a)
= (2k − 1) + [

(

m− k

2

)

+

(

m− k

4

)

+ . . .]

+(2k − 1)[

(

m− k

2

)

+

(

m− k

4

)

+ . . .]

= 2k[1 +

(

m− k

2

)

+

(

m− k

4

)

+ . . .]− 1

(b)
= 2k2m−k−1 − 1

= 2m−1 − 1
(c)
=

N − 1

2
,

where

(a) Note that H1 is the generator matrix of the code C⊥1 . The first item (2k−1) is the
number of possible combinations to yield codewords of weight N+1

2 orthogonal to e(i)

from the k codewords orthogonal to e(i) in H1. The second item [
(

m−k
2

)

+
(

m−k
4

)

+ . . .]

is the number of possible combinations to yield codewords of weight N+1
2 orthogonal

to e(i) from the m− k codewords not orthogonal to e(i) in H1. The third item is the
number of possible choices to yield codewords of weight N+1

2 orthogonal to e(i) from
the combinations of the k codewords orthogonal to e(i) in H1 and n − k codewords
not orthogonal to e(i) in H1.

(b) follows the fact that 1 +
(

m−k
2

)

+
(

m−k
4

)

+ . . . = 2m−k−1, here m − k ≥ 1 and
(

m−k
i

)

= 0, if m− k < i.

(c) follows the fact that N = 2m − 1, since C1 is a binary Hamming code.

Thus, when z /∈ C1, we have

a0(z) = 1;

aN+1
2

(z) =
N − 1

2
;

aj(z) = 0, where j 6= 0,
N + 1

2
.
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The probability of z, when z /∈ C1, can be calculated as follows:

pZ(z) =
1

2K1

∑

v∈z+C1

pw(v)w (1− pw)
N−w(v)

=
1

2K1

∑

v∈e(i)+C1

pw(v)w (1− pw)
N−w(v)

=
1

2N

N
∑

j=0

(2aj(e(i))−Aj)(1− 2pw)
j

=
1

2N
(1− (1− 2pw)

N+1
2 ).

Now we can draw a conclusion that when C1 is a binary Hamming code, Z has the
following distribution:

pZ(z) =

{

1
2N

(1 +N(1− 2pw)
N+1

2 ) when z ∈ C1
1
2N

(1− (1− 2pw)
N+1

2 ) when z /∈ C1
. (5.38)

Therefore,

H(Z) = −
∑

z∈{0,1}N
pZ(z) log pZ(z)

= −
∑

z∈C1

pZ(z) log pZ(z)−
∑

z/∈C1

pZ(z) log pZ(z)

=
2K1

2N
(1 +N(1− 2pw)

N+1
2 ) log

2N

1 +N(1− 2pw)
N+1

2

+
2N − 2K1

2N
(1− (1− 2pw)

N+1
2 ) log

2N

1− (1− 2pw)
N+1

2

= N − 2K1

2N
(1 +N(1− 2pw)

N+1
2 ) log(1 +N(1− 2pw)

N+1
2 )

−2N − 2K1

2N
(1− (1− 2pw)

N+1
2 ) log(1− (1− 2pw)

N+1
2 )

= N − 1

N + 1
(1 +N(1− 2pw)

N+1
2 ) log(1 +N(1− 2pw)

N+1
2 )

− N

N + 1
(1− (1− 2pw)

N+1
2 ) log(1− (1− 2pw)

N+1
2 ).

Clearly, H(Z) ≤ N and

H(Z)
(a)

≥ N − N

N + 1
(1− 2pw)

N+1
2 (1 +N(1− 2pw)

N+1
2 )

+
N

N + 1
(1− 2pw)

N+1
2 (1− (1− 2pw)

N+1
2 )

= N(1− (1− 2pw)
N+1), (5.39)

where (a) follows from the inequality log x ≤ x− 1 for x ≥ 0.
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So far, we can calculate the equivocation d from (5.35) by knowing H(Z|S = 0) and
H(Z). In particular, for fixed pw, as N approaching infinity, the equivocation d can
be bounded as follows.

− log(1− pw) ≤ lim
N→∞

d ≤ h(pw). (5.40)

The proof is the following. From (5.35), (5.37) and (5.39),

d = 1− H(Z)−H(Z|S = 0)

N − log(N + 1)− 1

≥ 1− N(1 + log(1− pw))

N − log(N + 1)− 1

→ − log(1− pw) as N →∞;

d ≤ 1− N −N(1− 2pw)
N+1 − 1−Nh(pw)

N − log(N + 1)− 1

= 1− N − 1

N − log(N + 1)− 1
+
N(h(pw) + (1− 2pw)

N+1)

N − log(N + 1)− 1

→ h(pw) as N →∞.

As we see in Figure 5.5, when we use a Hamming code C1 and a repetition code C2 for
the wiretap channel, as N increases, the equivocation d could behave quite differently
with respect to different values of pw. However, as N becomes larger, d changes slower
and seems to converge. Besides, for fixed N, we can always gain more equivocation d
as pw increases.

5.5.2 C1 spans the whole space {0, 1}N

Consider the degraded case when the main channel is noiseless, i.e., p = 0. Let C1
span the whole space {0, 1}N . It is clear that K1 = N and Pe = 0. In this case, the
coding strategy is the same as the one given by Wyner [1]. Here, we will show the
performance of the coding scheme when C2 is a binary Hamming code or a repetition
code.

C2 is a Hamming code.

First we consider the efficiency. Since C2 is a Hamming code, then N = 2N−K2−
1, i.e., K2 = N − log(N +1). Thus we have K = K1−K2 = log(N +1). The rate

R =
K

N
=

log(N + 1)

N
.

It is clear that R is decreasing with respect to N .

Now let us consider the security. From (5.25) and Lemma 5.4.2, we can calculate
the equivocation as follows:

d = 1− H(Z)−H(Z|S)
K

= 1− H(Z)−H(Z|S = 0)

log(N + 1)
. (5.41)

98



0 3 7 15 31 63 127
0.66

0.68

0.69

0.7

0.71

0.72

N

d

(a) pw = 0.2.
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Figure 5.5: Equivocation d with respect to N, when C1 is a Hamming code of length N , C2
is a repetition code.

99



Since C1 spans the whole space {0, 1}N and the wiretap channel is a BSC, Z is
uniformly distributed in the space {0, 1}N due to the encoding strategy. Thus
we have H(Z) = N.

Since C2 is a binary Hamming code, we have

pZ|S(z|s(0)) =
1

2K2

∑

v∈z+C2

pw(v)w (1− pw)
N−w(v)

=

{

1
2N

(1 +N(1− 2pw)
N+1

2 ) when z ∈ C2
1
2N

(1− (1− 2pw)
N+1

2 ) when z /∈ C2
.

Therefore,

H(Z|S = 0) = −
∑

z∈{0,1}N
pZ|S(z|s(0)) log pZ|S(z|s(0))

= −
∑

z∈C2

pZ|S(z|s(0)) log pZ|S(z|s(0))−
∑

z/∈C2

pZ|S(z|s(0)) log pZ|S(z|s(0))

=
2K2

2N
(1 +N(1− 2pw)

N+1
2 ) log

2N

1 +N(1− 2pw)
N+1

2

+
2N − 2K2

2N
(1− (1− 2pw)

N+1
2 ) log

2N

1− (1− 2pw)
N+1

2

= N − 1

N + 1
(1 +N(1− 2pw)

N+1
2 ) log(1 +N(1− 2pw)

N+1
2 )

− N

N + 1
(1− (1− 2pw)

N+1
2 ) log(1− (1− 2pw)

N+1
2 ).

The last equation follows from the fact that N = 2N−K2 −1, since C2 is a binary
Hamming code. Similarly to the proof of (5.39), we have

N(1− (1− 2pw)
N+1) ≤ H(Z|S = 0) ≤ N. (5.42)

So far, we can calculate the equivocation d.

d = 1− H(Z)−H(Z|S = 0)

log(N + 1)

= 1 +
(1 +N(1− 2pw)

N+1
2 ) log(1 +N(1− 2pw)

N+1
2 )

(N + 1) log(N + 1)

+
N(1− (1− 2pw)

N+1
2 ) log(1− (1− 2pw)

N+1
2 )

(N + 1) log(N + 1)
.

Furthermore, we can bound d as follows:

d = 1− H(Z)−H(Z|S = 0)

log(N + 1)

≥ 1− N −N +N(1− 2pw)
N+1

log(N + 1)
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= 1− N

log(N + 1)
(1− 2pw)

N+1

→ 1 as N →∞.

Therefore, when C2 is a Hamming code, we have

lim
N→∞

d = 1. (5.43)

As we see in Figure 5.6, as N becomes larger, the rate R decreases while the
equivocation d increases. The family of codes offers good security, in the manner
that the perfect secrecy can be asymptotically achieved by increasing the code
length N . However, low efficiency is its disadvantage.
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R

(a) R w.r.t N.
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d

(b) d w.r.t N when pw = 0.01.

Figure 5.6: Rate R and equivocation d with respect to N, when C1 spans the whole space,
C2 is a Hamming code of length N .

C2 is a repetition code.

First we consider the efficiency. Since C2 is a repetition code, then K2 = 1.
Thus we have K = K1 −K2 = N − 1. The rate

R =
K

N
=
N − 1

N
= 1− 1

N
.

It is clear that R is closer to 1 as N increases.

Now let us consider the security. From (5.25) and Lemma 5.4.2, we can calculate
the equivocation as follows:

d = 1− H(Z)−H(Z|S)
K

= 1− H(Z)−H(Z|S = 0)

N − 1
. (5.44)

Since C1 spans the whole space {0, 1}N and the wiretap channel is a BSC, Z is
uniformly distributed in the space {0, 1}N due to the encoding strategy. Thus
we have H(Z) = N.
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Since C2 is a repetition code, we have

pZ|S(z|s(0)) =
1

2K2

∑

v∈z+C2

pw(v)w (1− pw)
N−w(v)

=
1

2K2
(pw(z)w (1− pw)

N−w(z) + pN−w(z)w (1− pw)
w(z)).

Therefore,

H(Z|S = 0) = −
∑

z∈{0,1}N
pZ|S(z|s(0)) log pZ|S(z|s(0))

= 1− 1

2

N
∑

i=0

(

N

i

)

(piw(1− pw)
N−i + pN−iw (1− pw)

i) log(piw(1− pw)
N−i + pN−iw (1− pw)

i).

Similarly to the proof of (5.36) and (5.36), we have

−N log(1− pw) ≤ H(Z|S = 0) ≤ 1 +Nh(pw). (5.45)

So far, we can calculate the equivocation d.

d = 1− H(Z)−H(Z|S = 0)

N − 1

=

∑N
i=0

(

N
i

)

(piw(1− pw)
N−i + pN−iw (1− pw)

i) log(piw(1− pw)
N−i + pN−iw (1− pw)

i)

2(N − 1)
.

Furthermore, we can bound d as follows:

d = 1− H(Z)−H(Z|S = 0)

N − 1

≥ 1− N +N log(1− pw)

N − 1

= −N log(1− pw) + 1

N − 1
→ − log(1− pw) as N →∞;

d ≤ 1− N − 1−Nh(pw)

N − 1

=
Nh(pw)

N − 1
→ h(pw) as N →∞.

As we see in Figure 5.7, as N becomes larger, the rate R increases while the
equivocation d decreases. The family of codes offers good efficiency, in the manner
that the rate approaches to the capacity of the main channel by increasing the
code length N . Note that in this case, perfect secrecy can not be achieved.
However, as we have shown above, the equivocation up to − log(1− pw) can be
always guaranteed.
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Figure 5.7: Rate R and equivocation d with respect to N, when C1 spans the whole space,
C2 is a repetition code.

5.5.3 Example

Choose

H1 =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1



 ; H =





0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1



 .

We construct H2 as follows:

H2 =

[

H1
H

]

=

















1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1

















.

Let C1 be the (7, 4) Hamming code and C2 be the (7, 1) repetition code. It is clear
that H1 is a parity check matrix of C1. The code generated by H2 is the (7, 6) even
weight code, whose dual code is C2. The codebook in the encoding scheme is shown
in Table 5.2.

The efficiency. Since N = 7, K1 = 4, K2 = 1 and K = K1 −K2 = 3, the rate of the
transmission is

R =
K

N
=

3

7
.

The reliability. Since C1 is a binary Hamming code and C2 is a repetition code, from
(5.34), the error probability of decoding can be calculated as

Pe = 1− [(1− p)7 + 7p(1− p)6 + p7 + 7(1− p)p6].
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Table 5.2: The codebook in the encoding scheme with N = 7,K = 3

Space of input x Secret s Set of codewords corresponding to secret s

C1

000
001
010
011
100
101
110
111

{0000000, 1111111}
{0101101, 1010010}
{0001011, 1110100}
{0110001, 1001110}
{0010111, 1101000}
{0111010, 1000101}
{0011100, 1100011}
{0100110, 1011001}

The security. From (5.35), the equivocation

d = 1− H(Z)−H(Z|S = 0)

3
,

where

H(Z|S = 0) = 1−1

2

7
∑

i=0

(

7

i

)

(piw(1−pw)7−i+p7−iw (1−pw)i) log(piw(1−pw)7−i+p7−iw (1−pw)i);

H(Z) = 7− 1

8
(1+7(1−2pw)

4) log(1+7(1−2pw)
4)− 7

8
(1−(1−2pw)

4) log(1−(1−2pw)
4).

The performance of this coding scheme is shown in Figure 5.8 for different main
channel and wiretap channels.

5.6 Concluding remarks

In this chapter, we focus on the problem of developing coding schemes for secure commu-
nication across the wiretap channel. We investigate the specific case when both the main
channel and the wiretap channel are BSCs. We show that the secrecy capacity can be
achieved by using random linear codes. The coding method used in our proof is not strictly
new. It is contained in the proof as given by Wyner [1] for the special case when the main
channel is noiseless and the wiretap channel is a BSC. Note that for the case investigated
by Wyner [1], the transmitter need not to think of the reliability of the transmission to
the legitimate receiver since the main channel is noiseless. However, in our case, we need
a secrecy capacity achieving coding scheme which guarantees both the reliability and the
security of the wiretap channel at the same time.

Theoretically, the secrecy capacity is shown to be achievable by using random linear
codes. However, the decoder used in the proof is not easy to implement. For practical pur-
pose, we use linear codes of short code length for the wiretap channel. Their performance
is evaluated from the perspectives of the efficiency, reliability and security, which are mea-
sured by the rate, the error probability of decoding and the equivocation of the wiretapper,
respectively. In particular, we show the performance evaluation when Hamming codes and
repetition codes are used in our construction.
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Figure 5.8: Error probability Pe and equivocation d with respect to p and pw, respectively,
when C1 is (7, 4) Hamming code and C2 is a (7, 1) repetition code.
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Chapter 6

Application to Biometrics

Biometric data are said to identify a person based on “who he is”, rather than on “what
he has” (such as a smartcard) or “what he knows” (such as a password). Since biometric
properties can not be lost or forgotten in contrast to tokens and passwords, they offer an
attractive and convenient alternative to identify and authenticate people. In this chapter,
a fuzzy commitment scheme proposed by Juels and Wattenberg [15] and a modified version
by Cohen and Zémor [16] are reviewed. In particular, for practical purpose, we consider the
case when linear codes of short code length are used in the scheme of Cohen and Zémor. As
noted in [16], the security problem in biometrics can be reformulated as a communication
problem for the wiretap channel. Using the terminologies for the wiretap channel, we give
an information theoretic security analysis for both schemes.

6.1 Introduction

In biometrics, a human being needs to be identified by measuring a set of parameters of the
body, such as DNA, fingerprints, face and iris features. At enrollment, the biometric of a
person is measured and a derived template is encoded in reference information and stored
in a database. At the authentication phase, a server measures a biometric, retrieves the
corresponding reference information from the database and performs a match. We assume
that the database is publicly accessible. Then, it is desirable that no information on the
biometric template is leaked to a third party.

Note that changes occur naturally in biological characteristics over time. Additionally,
successive biometrical measures of the same person always tend to differ slightly. Therefore,
protecting the biometrical data through a straightforward means of commitment like hash-
ing is not possible. The reason is that small changes in input values to a hash function will
yield large and unpredictable changes in output values and thus results in a rejection. So
at the authentication phase, not only the original biometric template but also the slightly
modified version should be accepted.

To solve this problem, Juels and Wattenberg [15] introduced a fuzzy commitment
scheme, whose construction is based on the error-correcting codes and tolerates small errors
in biometric templates. Their scheme enjoys rigorous provable information-theoretic secu-
rity for uniformly distributed biometric templates. However, in practice, the distribution
of the biometric templates may be far from uniform. For that case, Cohen and Zémor [16]
proposed a generalized coset scheme, where they remodelled the problem in biometrics as
a communication problem over the wiretap channel. Their scheme involves random codes
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with an unacceptable decoding complexity and thus is impractical. In [60], a concrete sys-
tem based on the scheme of Juels and Wattenberg [15] is proposed for iris scans. Their
work is reported to generate up to 140-bit biometric key with 0.47% false rejection rate.

However, the scheme of Juels and Wattenberg [15] does not tolerate translation and
rotation errors. Any elements missing or adding will also result in the failure of matching.
To overcome these problems, Juels and Sudan [58] proposed a new architecture. In contrast
to the scheme of Juels and Wattenberg [15] which is based on the Hamming metric, their
construction is based on the set difference metric and hence possesses the advantage of
order invariance. The security of this scheme is based on the infeasibility of the polynomial
reconstruction problem. In [59], Dodis et al. modified the scheme of Juels and Sudan [58]
and provided a strict security analysis for both, the original scheme and the modified version.
The modified scheme has the advantages of lower storage and being easier to analyze. Since
the scheme of Juels and Sudan [58] enjoys the property of order invariance, it is a promising
candidate for biometric cryptosystems. In [62], Clancy et al. proposed an application
using fingerprints based on the scheme of Juels and Sudan [58]. Their work is reported to
derive a 69-bit biometric key but unfortunately with 30% false rejection rate. Furthermore,
their scheme inherently assumes that fingerprints are pre-aligned. This is not a realistic
assumption due to different types of distortion that can occur in biometric data acquisition.

A different approach has been taken by Linnartz and Tuyls in [61], where they focused on
the continuous space and assumes a particular continuous distribution (typically a Gaussian
distribution) on the biometric template. Their work was later generalized by Dodis et al.
in [59], where the authors focused on discrete metric spaces.

In this chapter, we will focus our attention on the scheme of Juels and Wattenberg [15]
and a modified version by Cohen and Zémor [16]. Review the security problem in biometrics
as a communication problem for the wiretap channel. We provide an information theoretic
sense security analysis by using the terminologies for the wiretap channel.

6.2 Juels-Wattenberg scheme

Let C be a binary linear code. The Juels-Wattenberg scheme is as follows.

• At enrollment, randomly choose a k-bit secret vector s and encode it as an n-bit
codeword c, where c ∈ C.

• Store the vector w = c+b and the Hash value of c. Here b is the submitted biometric
template.

• At the authentication phase, when b′ = b + e is submitted, add it to w and yield a
noisy version c+ e of c. Decode c+ e as c′. Clearly, correct decoding delivers c′ = c.

• Validity is checked by calculating the Hash value of c′ and comparing it to the stored
Hash value of c.

Note that in the Juels-Wattenberg scheme [15], c,b and b′ are all binary vectors.
Consider w = c+ b as a very noisy version of the secret codeword c. Since w is stored

in the database, a third party, i.e., a wiretapper may have access to w. Furthermore, for the
legitimate user who has submitted b at enrollment, when he submits b′ at the authentication
phase, we consider him to have access to a less noisy version c+e of the secret codeword c.
Here e is the noise due to the biometric instability and e = b+ b′. Our main concern is to
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Figure 6.1: The reformulation of the Juels-Wattenberg scheme as a wiretap channel.

insure no leakage of the secret information to the wiretapper. As noted in [16], this problem
can be remodelled as that of maximizing the amount of information that can be reliably
transmitted through the less noisy “channel” with maximum “equivocation”, i.e., insuring
that the wiretapper gets essentially no information on the secret data. Thus, as shown
in Figure 6.1, the security problem in biometrics can be reformulated as a communication
problem for the wiretap channel. From the results given by Wyner [1], the secrecy capacity
of this wiretap channel max

p(c)
[I(c; c+ e)− I(c; c+ b)].

6.3 Security analysis of Juels-Wattenberg scheme

One of the important properties of the Juels-Wattenberg Scheme is “fuzziness”, which means
that the scheme is resilient to small corruptions in the biometric templates. More precisely,
in their scheme, the corruption is measured by Hamming distance and the “fuzziness”
property is achieved by using an error-correcting code C. In fact, the resilience of a fuzzy
commitment scheme is bounded by the error-correcting capability of code C used in its
construction.

Now we consider the information leakage problem as a wiretap problem and characterize
the performance of the Juels-Wattenberg scheme with the terminologies for the wiretap
channel. Referring to Figure 6.1, we calculate the rate R to the legitimate user and the
equivocation d of the wiretapper as follows:

R =
k

n
;

d =
H(c|c+ b)

H(c)
= 1− I(c; c+ b)

H(c)
.

Note that in the idealized setting of [15], the biometric vector b is assumed to be uniformly
distributed among vectors of a given length n. It is easy to verify that c+b is also uniformly
distributed in {0, 1}n. So we have

H(b+ c) = H(b) = n.

Therefore,

I(c; c+ b) = H(c+ b)−H(c+ b|c)
= H(c+ b)−H(b|c)
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= H(c+ b)−H(b)

= n− n

= 0.

Thus we have

d = 1− I(c; c+ b)

H(c)
= 1.

In this case, the vector c + b yields no information on the secret codeword c or the orig-
inal secret s. Note that there is no assumption on the distribution of c. If b is uniformly
distributed, then from c + b there is no information leakage on c, regardless of whatever
distribution c has. However, in practice, the distribution of b may be far from uniform and
in that case, c + b is liable to leak undesirable partial knowledge of c, and hence of s, to
an unauthorized third party.

As we have discussed above, we consider the information leakage problem in biometrics
as a wiretap problem and give a security proof in the information theoretic sense. Note that
the rate of the wiretap channel is corresponding to the storage of the commitment scheme.
In order to save the storage of the database at a certain security level, it is equivalent to
design a code to achieve the higher rate to the legitimate user with the same equivocation of
the wiretapper. Besides, the equivocation of the wiretapper shows how much information on
the secret is accessible to a third party. Higher equivocation corresponds to less information
leakage and offers better security. Especially, the equivocation d = 1 implies the perfect
secrecy. It is clear that for the general case when b is not uniformly distributed, the perfect
secrecy can not be guaranteed by the scheme.

6.4 A modified fuzzy commitment scheme

A modified fuzzy commitment scheme is proposed by Cohen and Zémor [16] for the general
case when b is not uniformly distributed. It is a secrecy capacity achieving fuzzy com-
mitment scheme, whose security is based on the random coding argument for the wiretap
channel. However, it requires a decoder with unacceptable decoding complexity. Further-
more, it is based on the hypothesis that there exists a typical set T of typical biometric
templates b such that the probability Pr(b /∈ T ) decreases exponentially with the code
length n. And the distribution of b conditional to b ∈ T is very close to uniform. Here we
mention that as n increases, the storage of the data will increase exponentially and thus
the scheme will become impractical. So we need to find the trade-off between the ideality
and the reality.

Although the random coding technique is rather impractical, it provides a limit of how
far one can go and, often enough, a clue of how a practical scheme may be implemented.
Here, instead of random codes, we use linear codes with reasonable length n and analyze its
security. Similarly to the parameter settings in last chapter for the wiretap channel when
the main channel and the wiretap channel are both noisy, let H1 be an n− k1 by n binary
matrix and H be a k by n binary matrix. Let k2 = k1 − k. Both H1 and H are with full
rank. Let C1 be the dual code of the (n, n− k1) linear code generated by H1. The modified
fuzzy commitment scheme is as follows.

• At enrollment, randomly choose a k-bit secret s. Encode s as the codeword c ∈ C1
such that cHT = s.
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• Store the vector w = c+ b and the Hash value of s.

• At the authentication phase, when b′ = b + e is submitted, add it to w and yield a
noisy version c+ e of c. Decode c+ e as c′. Clearly, correct decoding delivers c′ = c
and then c′HT = s.

• Validity is checked by calculating the Hash value of c′HT and comparing it to the
stored Hash value of s.

Compare the above scheme with the one given in [16]. The only difference is the setting
of H. In [16], H is randomly chosen and here we require that it is of full rank. In fact, by
Lemma 5.3.1, as n goes to infinity, a randomly chosen H is of full rank with probability
approaching 1. So we can regard the above scheme as the one in [16] in the case that the
code length is limited. In particular, we assume that every component of e and b, denoted
as ei and bj, respectively, where 1 ≤ i, j ≤ N, has the following distribution:

Pr(ei = 1) = p, Pr(ei = 0) = 1− p;

Pr(bj = 1) = pb, Pr(bj = 0) = 1− pb.

Then, the maximal rate without information leakage on the secret data is the secrecy
capacity of the wiretap channel: h(pb)− h(p).

6.5 Security analysis of the modified scheme

Now let us consider the performance of the above scheme. Similarly to the Juels-Wattenberg
scheme, the resilience of the modified fuzzy commitment scheme is bounded by the error-
correcting capability of code C1. Furthermore, it is clear that the rate is

R =
k

n
.

The equivocation is

d =
H(s|c+ b)

H(s)
.

As analyzed in [17], we have the following lemma.

Lemma 6.5.1 H(s|c+ b) = H(s|s+ bHT).

Proof: First, since s+ bHT is a function of c+ b, we have

H(s|c+ b) ≤ H(s|s+ bHT).

Now let us prove the reverse inequality. Consider

H(s|c+ b)−H(s|s+ bHT) = H(s, c+ b)−H(c+ b)−H(s, s+ bHT) +H(s+ bHT)

= H(s, c+ b, s+ bHT)−H(s, s+ bHT)

−H(c+ b, s+ bHT) +H(s+ bHT)

= H(c+ b|s, s+ bHT)−H(c+ b|s+ bHT)

≥ H(c+ b|s,b)−H(c+ b|s+ bHT)

111



= H(c|s,b)−H(c+ b|s+ bHT)

= H(c|s)−H(c+ b|s+ bHT)

≥ 0.

The last inequality is due to c being chosen randomly from the codewords such that c ∈ C1
and cHT = s.

Thus we have proved that H(s|c + b) = H(s|s + bHT). In other words, there is no
advantage for the wiretapper in possessing c+ b on top of its syndrome.

By Lemma 6.5.1, the equivocation can be calculated as follows.

d =
H(s|c+ b)

H(s)
=
H(s|s+ bHT)

H(s)
= 1− I(s; s+ bHT)

H(s)
.

Note that

I(s; s+ bHT) = H(s+ bHT)−H(s+ bHT|s)
= H(s+ bHT)−H(bHT|s)
= H(s+ bHT)−H(bHT)

= k −H(bHT).

The last equation follows from the fact that since s is uniformly distributed, H(s+bHT) =
H(s) = k. Now, we could simplify the calculation of the equivocation as follows.

d = 1− I(s; s+ bHT)

H(s)
= 1− k −H(bHT)

k
=
H(bHT)

k
.

Clearly, in order to guarantee perfect secrecy on the secret s, we need

d = 1 ⇔ H(bHT) = k.

This give us some insight into the choice H so as to yield as high as possible security. That
is, the best choice of H for this scheme is the one so that bHT is uniformly distributed, or
as close as possible to be uniformly distributed.

6.6 Concluding remarks

In this chapter, a fuzzy commitment scheme by Juels and Wattenberg [15] and a modified
version by Cohen and Zémor [16] are reviewed. Note that we use binary codes in both
schemes. We point out that both schemes are easy to extend by using linear codes over ar-
bitrary finite fields. Furthermore, the information leakage problem in biometrics is modelled
as a wiretap problem. For the Juels-Wattenberg scheme, an information theoretic security
proof is provided. For the modified version given by Cohen and Zémor [16], we consider
the practical case when linear codes of reasonable length are used in the scheme. At last
but not least, we give some insight into the choice of the parameters C1 and H so that the
scheme has good performance in resilience, storage and security.
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Chapter 7

Conclusions

7.1 Summary of the thesis

In this thesis, we explore the security capacity and the capacity region for the wiretap
channel with side information. For the discrete memoryless case, we give a bound for the
secrecy capacity and an achievable rate equivocation region. In particular, the secrecy
capacity in some special cases is determined.

We extend our result for the discrete memoryless case to the Gaussian case. Our contri-
bution to the Gaussian wiretap channel with side information is twofold. First, we derive
an achievable rate equivocation region R⊥ by using Costa’s strategy. We compare it with
the region RL for the Gaussian wiretap channel given by Leung-Yan-Cheong and Hell-
man [4, Theorem 1]. We draw a conclusion that for the Gaussian wiretap channel, side
information helps to get a larger secrecy capacity and achieve a larger rate equivocation
region. Furthermore, we generalize Costa’s strategy by taking the correlation coefficient
of the codeword and side information as another parameter into our consideration. The
region R⊥ is improved by using the generalized Costa’s strategy. That is, for the Gaussian
wiretap channel, it is a better choice in some cases to send a codeword dependent on side
information, in order to yield higher secret rate with the same equivocation. In addition,
we give the best choice of the correlation coefficient for the generalized Costa’s strategy to
achieve the maximal rate at the perfect secrecy.

In this thesis, we also investigate the problem of developing forward coding schemes for
secure communication over the wiretap channel. A code construction is considered for the
specific case when both the main channel and the wiretap channel are binary symmetric.
Theoretically, we show that the secrecy capacity can be achieved by using random linear
codes. For practical purpose, we evaluate the performance of the coding schemes when linear
codes especially Hamming codes and repetition codes are used in the construction. The
performance is characterized from the perspectives of the efficiency, reliability and security
which are measured by the rate, the error probability of decoding and the equivocation of
the wiretap, respectively.

As an application, we reformulate the security problem in biometrics as a communication
problem for the wiretap channel. A fuzzy commitment scheme by Juels and Wattenberg [15]
and a modified version by Cohen and Zémor [16] are reviewed. Both schemes are based on
error correcting codes and promise a secure biometric template storage. The performance
of the schemes is characterized with the terminologies for the wiretap channel, where high
rate corresponds to efficient storage of the protected biometric data and high equivocation
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corresponds to low information leakage to a third party. For the Juels-Wattenberg scheme,
under the assumption that the biometric template is uniformly distributed, we give a se-
curity proof in the information theoretic sense. For the Cohen-Zémor scheme, we focus on
the case when linear codes of reasonable length are used in its construction. In particular,
we also give some insight into the choice of the parameters so that the scheme has good
performance in resilience, storage and security.

7.2 Possible directions for future work

There are still many problems left to solve. For example, for the discrete memoryless
wiretap channel with side information, the secrecy capacity is not totally determined and
the capacity region remains unknown. Even for the Gaussian wiretap channel with side
information, both the secrecy capacity and capacity region problems are not totally solved
yet. A theoretical challenge is to enlarge the achievable region or show the converse of the
coding theorem.

Note that the secrecy capacity achieving codes are mostly random codes and difficult to
implement. For practical purpose, more attention should be paid to the code construction
methods which offer high efficiency and high security for reliable communication over the
wiretap channel. In this thesis, we explore the wiretap channel in the specific case when
both the main channel and the wiretap channel are binary symmetric. In particular, we
show the performance when linear codes are used in the construction. Further work is to
allow other types of codes to be used in our coding strategy or to design secrecy capacity
approaching codes for other special wiretap channels.

Another possible direction for future research is the application to biometrics. Consid-
ering the biometric scheme as a communication scheme for the wiretap channel, one can
provide a precise evaluation of the performance of the biometric scheme. Furthermore,
lighted by our results for the wiretap channel with side information, in order to better
design a biometric scheme with efficient storage and high security, it might be helpful to
introduce side information noncausally known to the encoder in the scheme.
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Appendices

Appendix I

Calculation of I(U ;Y ), I(U ;Z) and I(U ;V ):
Referring to Figure 4.10, we have the followings:

|−→X | =
√
P ,

|−→V | =
√

Q,

|−→η1| =
√

N1,

|−→η12| =
√

N1 +N2,

|
−→
η′1| =

√

(1− α)2Q+N1,

|
−→
η′12| =

√

(1− α)2Q+N1 +N2,

|
−→
U ′| =

√

P +Q+ 2
√

PQ cos θXV ,

|−→U | =

√

P + α2Q+ 2α
√

PQ cos θXV ,

|−→Y | =

√

P +Q+N1 + 2
√

PQ cos θXV ,

|−→Z | =

√

P +Q+N1 +N2 + 2
√

PQ cos θXV .

By the law of cosines, it is easy to get that

cos θUY =
|−→U |2 + |−→Y |2 − |−→η′1|2

2|−→U | · |−→Y |

=
P + α2Q+ 2α

√
PQ cos θXV + P +Q+N1 + 2

√
PQ cos θXV − (1− α)2Q−N1

2
√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N1 + 2
√
PQ cos θXV

=
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N1 + 2
√
PQ cos θXV

;

cos θUZ =
|−→U |2 + |−→Z |2 − |−→η′12|2

2|−→U | · |−→Z |

=
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N1 +N2 + 2
√
PQ cos θXV

;

cos θUV =
|−→U |2 + |α−→V |2 − |−→X |2

2|−→U | · |α−→V |
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=
P + α2Q+ 2α

√
PQ cos θXV + α2Q− P

2
√

P + α2Q+ 2α
√
PQ cos θXV · α

√
Q

=
α
√
Q+

√
P cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV

.

By Pythagorean identity, for any θ, sin2 θ + cos2 θ = 1. So we have

sin2 θUY = 1− cos2 θUY

= 1− (
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N1 + 2
√
PQ cos θXV

)2

=
(1− α)2PQ(1− cos2 θXV ) +N1(P + α2Q+ 2α

√
PQ cos θXV )

(P + α2Q+ 2α
√
PQ cos θXV )(P +Q+N1 + 2

√
PQ cos θXV )

;

sin2 θUZ = 1− cos2 θUZ

= 1− (
P + αQ+ (1 + α)

√
PQ cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV ·

√

P +Q+N1 +N2 + 2
√
PQ cos θXV

)2

=
(1− α)2PQ(1− cos2 θXV ) + (N1 +N2)(P + α2Q+ 2α

√
PQ cos θXV )

(P + α2Q+ 2α
√
PQ cos θXV )(P +Q+N1 +N2 + 2

√
PQ cos θXV )

;

sin2 θUV = 1− cos2 θUV

= 1− (
α
√
Q+

√
P cos θXV

√

P + α2Q+ 2α
√
PQ cos θXV

)2

=
P (1− cos2 θXV )

P + α2Q+ 2α
√
PQ cos θXV

.

Recalling that I(X;V ) = 1
2 log

1
1−ρ2

XV

= 1
2 log

1
1−cos2 θXV

= 1
2 log

1
sin2 θXV

, we have

I(U ;Y ) =
1

2
log

1

sin2 θUY

=
1

2
log

(P + α2Q+ 2α
√
PQ cos θXV )(P +Q+N1 + 2

√
PQ cos θXV )

(1− α)2PQ(1− cos2 θXV ) +N1(P + α2Q+ 2α
√
PQ cos θXV )

;

I(U ;Z) =
1

2
log

1

sin2 θUZ

=
1

2
log

(P + α2Q+ 2α
√
PQ cos θXV )(P +Q+N1 +N2 + 2

√
PQ cos θXV )

(1− α)2PQ(1− cos2 θXV ) + (N1 +N2)(P + α2Q+ 2α
√
PQ cos θXV )

;

I(U ;V ) =
1

2
log

1

sin2 θUV

=
1

2
log

P + α2Q+ 2α
√
PQ cos θXV

P (1− cos2 θXV )
.

The difference of mutual information can be calculated to yield

I(U ;Y )− I(U ;V ) =
1

2
log

1

sin2 θUY
− 1

2
log

1

sin2 θUV

=
1

2
log

sin2 θUV

sin2 θUY
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=
1

2
log

P (1− cos2 θXV )(P +Q+N1 + 2
√
PQ cos θXV )

(1− α)2PQ(1− cos2 θXV ) +N1(P + α2Q+ 2α
√
PQ cos θXV )

;

I(U ;Z)− I(U ;V ) =
1

2
log

1

sin2 θUZ
− 1

2
log

1

sin2 θUV

=
1

2
log

sin2 θUV

sin2 θUZ

=
1

2
log

P (1− cos2 θXV )(P +Q+N1 +N2 + 2
√
PQ cos θXV )

(1− α)2PQ(1− cos2 θXV ) + (N1 +N2)(P + α2Q+ 2α
√
PQ cos θXV )

;

I(U ;Y )− I(U ;Z) =
1

2
log

1

sin2 θUY
− 1

2
log

1

sin2 θUZ

=
1

2
log

sin2 θUZ

sin2 θUY

=
1

2
log(

(P +Q+N1 + 2
√
PQ cos θXV )

(P +Q+N1 +N2 + 2
√
PQ cos θXV )

·

{(1− α)2PQ(1− cos2 θXV ) + (N1 +N2)(P + α2Q+ 2α
√
PQ cos θXV )}

{(1− α)2PQ(1− cos2 θXV ) +N1(P + α2Q+ 2α
√
PQ cos θXV )}

).

Note that ρXV = cos θXV . Replacing cos θXV with ρXV , we easily get the expressions
of I(U ;Y ), I(U ;Z), I(U ;V ) and the differences of the mutual information with respect to
ρXV .

Appendix II

Lemma 3 in [12]: Let Pn be the set of all probability n-vectors p = (p1, · · · , pn) and let
fj(p), j = 1, · · · , k, be continuous functions on Pn. Then, to any probability measure u
on (the Borel subsets of) Pn there exists (k + 1) elements pi of Pn and constants αi ≥ 0,
i = 1, · · · , k + 1 with

∑k+1
i=1 αi = 1 such that

∫

fj(p)du =
k+1
∑

i=1

αifj(pi), j = 1, · · · , k.

Proof of |U| ≤ |X ||V|+ 3.
Proof: By applying Lemma 3 in [12] to the present situation, we show that the

cardinality of the range of U can be bounded by |X ||V|+ 3. Let us denote the product set
X × V = {1, 2, · · · , n}, n = |X ||V|. Choose Pn as the set of all probability distributions on
X × V. We can interpret {Pr((X,V ) = (x, v)|U = u)}(x,v)∈X×V as an element of Pn and
{Pr(U = u)}u∈U as a Borel measure on Pn. Consider the following continuous functions on
Pn:

a) For p = (p(1), · · · , p(n)) ∈ Pn, set

fj(p) = p(j), j = 1, 2, · · · , n;

b)

fn+1(p) = H(Y ) +
∑

y

∑

x,v

p(x, v)p(y|x, v) ·
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log(
∑

x,v

p(x, v)p(y|x, v));

c)

fn+2(p) = H(Z) +
∑

z

∑

y

∑

x,v

p(x, v)p(y|x, v)p(z|y) ·

log(
∑

y

∑

x,v

p(x, v)p(y|x, v)p(z|y));

d) fn+3(p) = H(V ) +
∑

v

∑

x p(x, v) log(
∑

x p(x, v)).

Observe that

∑

u∈U
Pr(U = u)fj(Pr(·|U = u)) = p(j),

for j = 1, 2, · · · , n− 1;
∑

u∈U
Pr(U = u)fn+1(Pr(·|U = u)) = I(U ;Y );

∑

u∈U
Pr(U = u)fn+2(Pr(·|U = u)) = I(U ;Z);

∑

u∈U
Pr(U = u)fn+3(Pr(·|U = u)) = I(U ;V ).

Lemma 3 in [12] implies that the alphabet of the random variable U can be restricted as
|U| ≤ n+ 3, i.e. |U| ≤ |X ||V|+ 3.

Appendix III

Proof of I(U ;Y ) ≥ I(U ;Z).

Proof: Let f(N) = (P+α2Q)(P+Q+N)
PQ(1−α)2+(P+α2Q)N

.

First, we prove that f(N) is a non-increasing function with respect to N as follows:

f ′(N) =
(P + α2Q)(PQ(1− α)2 + (P + α2Q)N)− (P + α2Q)2(P +Q+N)

(PQ(1− α)2 + (P + α2Q)N)2

=
(P + α2Q)(PQ(1− α)2 + (P + α2Q)N − (P + α2Q)(P +Q+N))

(PQ(1− α)2 + (P + α2Q)N)2

=
(P + α2Q)(PQ(1− α)2 − (P + α2Q)(P +Q))

(PQ(1− α)2 + (P + α2Q)N)2

=
−(P + α2Q)(P + αQ)2

(PQ(1− α)2 + (P + α2Q)N)2

≤ 0.

Note that I(U ;Y ) = 1
2 log f(N1) and I(U ;Z) = 1

2 log f(N1 + N2). Since f(N) is a
non-increasing function with respect to N , we have f(N1) ≥ f(N1+N2), which means that
I(U ;Y ) ≥ I(U ;Z). This completes the proof of I(U ;Y ) ≥ I(U ;Z).
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Appendix IV

Lemma 4.2.5: RZ , which is defined in (4.8), is a increasing function with respect to α as
−P
Q < α < 1; a decreasing function as α < −P

Q or α > 1; minimized at α = −P
Q and

maximized at α = 1.
Proof: Let

g(α) =
PQ(1− α)2 + (P + α2Q)(N1 +N2)

PQ(1− α)2 + (P + α2Q)N1
.

First, we consider g′(α),

g′(α) = (
PQ(1− α)2 + (P + α2Q)(N1 +N2)

PQ(1− α)2 + (P + α2Q)N1
)′

=
(−2PQ(1− α) + 2αQ(N1 +N2))(PQ(1− α)2 + (P + α2Q)N1)

(PQ(1− α)2 + (P + α2Q)N1)2

− (−2PQ(1− α) + 2αQN1)(PQ(1− α)2 + (P + α2Q)(N1 +N2))

(PQ(1− α)2 + (P + α2Q)N1)2

=
2PQN2(1− α)(P + α2Q)− 2QN1N2α(P + α2Q) + 2QN2α(PQ(1− α)2 +N1(P + α2Q))

(PQ(1− α)2 + (P + α2Q)N1)2

=
2PQN2(1− α)(P + α2Q) + 2PQN2α(1− α)2Q

(PQ(1− α)2 + (P + α2Q)N1)2

=
2PQN2(1− α)(P + α2Q+ α(1− α)Q)

(PQ(1− α)2 + (P + α2Q)N1)2

=
2PQN2(1− α)(P + αQ)

(PQ(1− α)2 + (P + α2Q)N1)2
.

Clearly, if α > 1 or α < −P
Q , g

′(α) < 0; and if −P
Q < α < 1, we have g′(α) > 0. Thus,

we have proved that: g(α) is an increasing function with respect to α when α ∈ (−P
Q , 1);

g(α) is a decreasing function with respect to α when α ∈ (−∞,−P
Q)∪ (1,∞); g(α) is locally

maximized at α = 1 and locally minimized at α = −P
Q . Note that

g(1) =
N1 +N2

N1
;

g(−P
Q
) =

P +Q+N1 +N2
P +Q+N1

.

Now let us consider lim
α→∞

g(α).

lim
α→∞

g(α) =
P +N1 +N2

P +N1
.

It is clear that g(1) ≥ lim
α→∞

g(α) and g(−P
Q) ≤ lim

α→∞
g(α), so we have shown that g(α) is

globally maximized at α = 1 and globally minimized at α = −P
Q . In addition,

RZ =
1

2
log

P +Q+N1
P +Q+N1 +N2

+
1

2
log g(α).
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Then the function RZ has the same property as g(α). Thus we completed the proof of this
lemma.

Appendix V

Proof of I(U ;Y ) ≥ I(U ;Z).
Proof: Let

f(N) =
(P + α2Q+ 2α

√
PQρXV )(P +Q+N + 2

√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )

.

First, we prove that f(N) is a non-increasing function with respect to N as follows:

f ′(N) = [(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√

PQρXV )−
(P +Q+N + 2

√

PQρXV )(P + α2Q+ 2α
√

PQρXV )]

· (P + α2Q+ 2α
√
PQρXV )

[(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )]2

= [(1− α)2PQ(1− ρ2XV )− (P +Q+ 2
√

PQρXV )(P + α2Q+ 2α
√

PQρXV )]

· (P + α2Q+ 2α
√
PQρXV )

[(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )]2

= −(P + α2Q+ 2α
√
PQρXV )[(P + αQ) + (1 + α)

√
PQρXV ]

2

[(1− α)2PQ(1− ρ2XV ) +N(P + α2Q+ 2α
√
PQρXV )]2

≤ 0.

Note that I(U ;Y ) = 1
2 log f(N1) and I(U ;Z) = 1

2 log f(N1 + N2). Since f(N) is a
non-increasing function with respect to N , we have f(N1) ≥ f(N1+N2), which means that
I(U ;Y ) ≥ I(U ;Z). This completes the proof of I(U ;Y ) ≥ I(U ;Z).

Appendix VI

Proof of (4.50) and (4.51).
From (4.47), we have

I(U ;V ) > I(U ;Y )

0 > I(U ;Y )− I(U ;V )

0 >
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

(1−α)2PQ(1−ρ2XV )+N1(P+α2Q+2α
√

PQρXV ) > P (1−ρ2XV )(P+Q+N1+2
√

PQρXV )

[P (1−ρ2XV )+N1]Qα
2−2[PQ(1−ρ2XV )−N1

√

PQρXV ]α > P (1−ρ2XV )(P+2
√

PQρXV )−PN1ρ2XV .

Let us consider the equality

[P (1−ρ2XV )+N1]Qα
2−2[PQ(1−ρ2XV )−N1

√

PQρXV ]α+PN1ρ
2
XV−P (1−ρ2XV )(P+2

√

PQρXV ) = 0.
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The discriminant of the above quadratic equation is:

∆ = 4[PQ(1− ρ2XV )−N1
√

PQρXV ]
2

−4Q[P (1− ρ2XV ) +N1][PN1ρ
2
XV − P (1− ρ2XV )(P + 2

√

PQρXV )]

= 4P 2Q(1− ρ2XV )
2(P +Q+ 2

√

PQρXV +N1).

Let

α00 =
2[PQ(1− ρ2XV )−N1

√
PQρXV ] +

√
∆

2Q[P (1− ρ2XV ) +N1]

=
2[PQ(1− ρ2XV )−N1

√
PQρXV ] + 2P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1)

2Q[P (1− ρ2XV ) +N1]

=
PQ(1− ρ2XV )−N1

√
PQρXV + P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1)

Q[P (1− ρ2XV ) +N1]
;

α−00 =
2[PQ(1− ρ2XV )−N1

√
PQρXV ]−

√
∆

2Q[P (1− ρ2XV ) +N1]

=
2[PQ(1− ρ2XV )−N1

√
PQρXV ]− 2P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1)

2Q[P (1− ρ2XV ) +N1]

=
PQ(1− ρ2XV )−N1

√
PQρXV − P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1)

Q[P (1− ρ2XV ) +N1]
.

Therefore, under the assumption that P,Q,N1, N2 > 0, we have

I(U ;V ) > I(U ;Y ) ⇐⇒ α > α00 or α < α−00;

I(U ;Y ) ≥ I(U ;V ) ⇐⇒ α−00 ≤ α ≤ α00.

Appendix VII

Lemma 4.4.5: RZ , which is defined in (4.49), is maximized at α = 1 and minimized at
α = αmin. Furthermore,

(a) when
√
PρXV +

√
Q > 0, RZ is

a non-increasing function with respect to α as α ≤ αmin;
a non-decreasing function as αmin ≤ α ≤ 1;
a non-increasing function as α ≥ 1.

(b) when
√
PρXV +

√
Q < 0, RZ is

a non-decreasing function with respect to α as α ≤ 1;
a non-increasing function as 1 ≤ α ≤ αmin;
a non-decreasing function as α ≥ αmin.

(c) when
√
PρXV +

√
Q = 0, RZ is

a non-decreasing function with respect to α as α ≤ 1 and a non-increasing function
as α > 1.
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Proof: Let

f(α) =
(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α

√
PQρXV )

(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )

.

Consider

f ′(α) =
g(α)

{(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√
PQρXV )}2

,

where

g(α) = [−2(1− α)PQ(1− ρ2XV ) + 2(N1 +N2)(αQ+ ρXV

√

PQ)]

·[(1− α)2PQ(1− ρ2XV ) +N1(P + α2Q+ 2α
√

PQρXV )]

−[−2(1− α)PQ(1− ρ2XV ) + 2N1(αQ+ ρXV

√

PQ)]

·[(1− α)2PQ(1− ρ2XV ) + (N1 +N2)(P + α2Q+ 2α
√

PQρXV )]

= −2(1− α)PQ(1− ρ2XV )(1− α)2PQ(1− ρ2XV )

−2(1− α)PQ(1− ρ2XV )N1(P + α2Q+ 2α
√

PQρXV )

+2(N1 +N2)(αQ+ ρXV

√

PQ)(1− α)2PQ(1− ρ2XV )

+2(N1 +N2)N1(αQ+ ρXV

√

PQ)(P + α2Q+ 2α
√

PQρXV )

+2(1− α)PQ(1− ρ2XV )(1− α)2PQ(1− ρ2XV )

+2(1− α)PQ(1− ρ2XV )(N1 +N2)(P + α2Q+ 2α
√

PQρXV )

−2N1(αQ+ ρXV

√

PQ)(1− α)2PQ(1− ρ2XV )

−2N1(N1 +N2)(αQ+ ρXV

√

PQ)(P + α2Q+ 2α
√

PQρXV )

= 2(1− α)(1− ρ2XV )PQN2(P + α2Q+ 2α
√

PQρXV )

+2(1− α)2PQN2(1− ρ2XV )(αQ+
√

PQρXV )

= 2(1− α)(1− ρ2XV )PQN2(P + α2Q+ 2α
√

PQρXV + (1− α)(αQ+
√

PQρXV ))

= 2(1− α)(1− ρ2XV )PQN2(P +
√

PQρXV + (Q+
√

PQρXV )α)

= 2(1− α)(α+
P +

√
PQρXV

Q+
√
PQρXV

)(1− ρ2XV )(Q+
√

PQρXV )PQN2

= −2(α− 1)(α− αmin)(1− ρ2XV )(
√

Q+
√
PρXV )PQ

√

QN2.

Here

αmin = −
√
P (
√
P +

√
QρXV )√

Q(
√
PρXV +

√
Q)

.

Note that when |ρXV | = 1, g(α) = 0. In this case, for fixed ρXV , RZ is a constant.

RZ =
1

2
log

(N1 +N2)(P +Q+N1 + 2
√
PQρXV )

N1(P +Q+N1 +N2 + 2
√
PQρXV )

.

Assume that |ρXV | < 1, when
√
Q+

√
PρXV > 0, the coefficient of g(α) is less than 0, i.e.,

−2(1− ρ2XV )(
√
Q+

√
PρXV )PQ

√
QN2 < 0. Moreover, in this case, αmin ≤ 1. The reason
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is that under the condition
√
Q+

√
PρXV > 0,

αmin ≤ 1 ⇔ −
√
P (
√
P +

√
QρXV )√

Q(
√
Q+

√
PρXV )

≤ 1

⇔ −
√
P (
√
P +

√

QρXV ) ≤
√

Q(
√

Q+
√
PρXV )

⇔ P +Q+ 2
√

PQρXV ≥ 0.

Therefore, when
√
Q +

√
PρXV > 0, g(α) ≤ 0 as α ≤ αmin; g(α) ≥ 0 as αmin ≤ α ≤ 1;

g(α) ≤ 0 as α ≥ 1. So does f ′(α). It is clear that f(α) is locally maximized at α = 1 and
locally minimized at αmin. Note that

f(1) =
N1 +N2

N1
;

f(αmin) =
P +Q+ 2

√
PQρXV +N1 +N2

P +Q+ 2
√
PQρXV +N1

=
(
√
PρXV +

√
Q)2 + P (1− ρ2XV ) +N1 +N2

(
√
PρXV +

√
Q)2 + P (1− ρ2XV ) +N1

;

lim
α→∞

f(α) =
P (1− ρ2XV ) +N1 +N2

P (1− ρ2XV ) +N1
.

It is easy to verify that f(1) ≥ lim
α→∞

f(α) and f(αmin) ≤ lim
α→∞

f(α). So far, we have shown

that f(α) is globally maximized at α = 1 and globally minimized at α = αmin. In addition,

RZ =
1

2
log

P +Q+N1 + 2
√
PQρXV

P +Q+N1 +N2 + 2
√
PQρXV

+
1

2
log f(α).

RZ has the same property as f(α). Thus, we have proved the part (a) of this lemma.
Similarly, part (b) can be easily derived.

Now let us prove the part (c). When
√
Q+

√
PρXV = 0, we have ρXV = −

√
Q√
P
. In this

case, since the absolute value of ρXV can not exceed 1, P ≥ Q. We simplify f(α) as follows:

f1(α) =
(1− α)2Q(P −Q) + (N1 +N2)(P + α2Q− 2αQ)

(1− α)2Q(P −Q) +N1(P + α2Q− 2αQ)
.

Consider

f ′1(α) =
g1(α)

{(1− α)2Q(P −Q) +N1(P + α2Q− 2αQ)}2 ,

where
g1(α) = 2(1− α)(P −Q)2QN2.

Clearly, when P = Q and ρXV = −1, g1(α) = 0. In this case, it is easy to verify that
RZ = 0. If P 6= Q, when

√
Q +

√
PρXV = 0, g1(α) ≥ 0 as α ≤ 1 and g1(α) ≤ 0 as

α ≥ 1. So does f ′1(α). Therefore, f1(α) is maximized at α = 1. In this case, if we define
f1(αmin) = lim

α→∞
f1(α), we have

f1(1) =
N1 +N2

N1
;
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f1(αmin) =
P −Q+N1 +N2

P −Q+N1
.

Clearly, f1(1) ≥ lim
α→∞

f1(α) since P ≥ Q in this case. So far, we have shown that f1(α) is

maximized at α = 1 and minimized at αmin. In addition,

RZ =
1

2
log

P +Q+N1 + 2
√
PQρXV

P +Q+N1 +N2 + 2
√
PQρXV

+
1

2
log f1(α).

RZ has the same property as f1(α). Thus, we have proved the part (c) of this lemma. This
also completes this proof.

Appendix VIII

Lemma 4.4.6: If
√
PρXV +

√
Q > 0,

αmin ≤ α−0 ≤ αmax < 1, α0 ≤ α00, αmin ≤ α−00.

Proof: First we prove that αmax < 1. Since
√
PρXV +

√
Q > 0, then

αmax =
PQ(1− ρ2XV )−N1

√
PQρXV

Q[P (1− ρ2XV ) +N1]

<
PQ(1− ρ2XV ) +N1Q

Q[P (1− ρ2XV ) +N1]

= 1.

Secondly, we will show in the following that α−0 ≤ αmax, if
√
PρXV +

√
Q > 0.

αmax ≥ α−0
1− αmax ≤ 1− α−0√

QN1(
√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1]
≤

√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]

+
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

N1(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1
≤ (N1 +N2)(

√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

+
P (1− ρ2XV )

√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2
.

Since
√
PρXV +

√
Q > 0 and N1

P (1−ρ2
XV
)+N1

≤ N1+N2

P (1−ρ2
XV
)+N1+N2

, it is clear that α−0 ≤ αmax.

Now let us prove that αmin ≤ α−0.

αmin ≤ α−0
1− αmin ≥ 1− α−0

P +Q+ 2
√
PQρXV√

Q(
√
Q+

√
PρXV )

≥
√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]
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+
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

P +Q+ 2
√
PQρXV√

Q+
√
PρXV

≥ (N1 +N2)(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

+
P (1− ρ2XV )

√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2

{

(P +Q+ 2
√
PQρXV )P (1− ρ2XV )

+(P +Q+ 2
√
PQρXV )(N1 +N2)

}

≥







(Q+ Pρ2XV + 2
√
PQρXV )(N1 +N2)

+P (1− ρ2XV )(
√
Q+

√
PρXV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2







{

P (1− ρ2XV )
·(P +Q+ 2

√
PQρXV +N1 +N2)

}

≥
{

P (1− ρ2XV )(
√
Q+

√
PρXV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2

}

√

P +Q+ 2
√

PQρXV +N1 +N2 ≥
√

Q+
√
PρXV

P +Q+ 2
√

PQρXV +N1 +N2 ≥ Q+ Pρ2XV + 2
√

PQρXV

P (1− ρ2XV ) +N1 +N2 ≥ 0.

Similarly, αmin ≤ α−00 can be easily derived.
At the last, we will show that α0 ≤ α00, if

√
PρXV +

√
Q > 0. Let

f(N) =
PQ(1− ρ2XV )−N

√
PQρXV + P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N)

Q[P (1− ρ2XV ) +N ]
.

We will prove that f(N) is a non-increasing function with respect to N . Note that f(N)
can be written as f(N) = f1(N) + f2(N), where

f1(N) =
PQ(1− ρ2XV )−N

√
PQρXV

Q[P (1− ρ2XV ) +N ]
;

f2(N) =
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N)

Q[P (1− ρ2XV ) +N ]

=
P (1− ρ2XV )√

Q

√

(P (1− ρ2XV ) +N + Pρ2XV +Q+ 2
√
PQρXV )

[P (1− ρ2XV ) +N ]2

=
P (1− ρ2XV )√

Q

√

1

P (1− ρ2XV ) +N
+

(ρXV

√
P +

√
Q)2

[P (1− ρ2XV ) +N ]2
.

It is clear that the second term f2(N) is non-increasing with respect to N . Now let us
consider the first term f1(N),

f1
′(N) =

−√PQρXVQ[P (1− ρ2XV ) +N ]−Q[PQ(1− ρ2XV )−N
√
PQρXV ]

Q2[P (1− ρ2XV ) +N ]2

=
−PQ√Q(1− ρ2XV )(

√
PρXV +

√
Q)

Q2[P (1− ρ2XV ) +N ]2
.
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When
√
PρXV +

√
Q > 0, f1

′(N) ≤ 0. So f1(N) is non-increasing with respect to N .
Therefore, as a summation of f1(N) and f2(N), f(N) is a non-increasing function with
respect to N .

Note that
α0 = f(N1 +N2), α00 = f(N1).

Since f(N) is a non-increasing function with respect to N, we have α0 ≤ α00. This completes
the proof.

Appendix IX

Lemma 4.4.10: If
√
PρXV +

√
Q < 0,

1 < αmax ≤ α0 ≤ αmin, α−00 ≤ α−0, α00 ≤ αmin.

Proof: First we prove that αmax > 1. Since
√
PρXV +

√
Q < 0, then

αmax =
PQ(1− ρ2XV )−N1

√
PQρXV

Q[P (1− ρ2XV ) +N1]

>
PQ(1− ρ2XV ) +N1Q

Q[P (1− ρ2XV ) +N1]

= 1.

Secondly, we will show in the following that αmax ≤ α0, if
√
PρXV +

√
Q > 0.

αmax ≤ α0

αmax − 1 ≤ α0 − 1

−
√
QN1(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1]
≤ −

√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]

+
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

−N1(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1
≤ −(N1 +N2)(

√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

+
P (1− ρ2XV )

√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2
.

Since
√
PρXV +

√
Q < 0 and N1

P (1−ρ2
XV
)+N1

≤ N1+N2

P (1−ρ2
XV
)+N1+N2

, it is clear that αmax ≤ α0.

Now let us prove that α0 ≤ αmin.

αmin ≥ α0

αmin − 1 ≥ α0 − 1

−P +Q+ 2
√
PQρXV√

Q(
√
Q+

√
PρXV )

≥ −
√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]

+
P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]
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−P +Q+ 2
√
PQρXV√

Q+
√
PρXV

≥ −(N1 +N2)(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

+
P (1− ρ2XV )

√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2

{

(P +Q+ 2
√
PQρXV )P (1− ρ2XV )

+(P +Q+ 2
√
PQρXV )(N1 +N2)

}

≥







(Q+ Pρ2XV + 2
√
PQρXV )(N1 +N2)

−P (1− ρ2XV )(
√
Q+

√
PρXV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2







{

P (1− ρ2XV )
·(P +Q+ 2

√
PQρXV +N1 +N2)

}

≥
{

−P (1− ρ2XV )(
√
Q+

√
PρXV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2

}

√

P +Q+ 2
√

PQρXV +N1 +N2 ≥ −(
√

Q+
√
PρXV )

P +Q+ 2
√

PQρXV +N1 +N2 ≥ Q+ Pρ2XV + 2
√

PQρXV

P (1− ρ2XV ) +N1 +N2 ≥ 0.

Similarly, α00 ≤ αmin can be easily derived.
At the last, we will show that α−00 ≤ α−0, if

√
PρXV +

√
Q < 0. Let

f(N) =
PQ(1− ρ2XV )−N

√
PQρXV − P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N)

Q[P (1− ρ2XV ) +N ]
,

We will prove that f(N) is a non-decreasing function with respect to N . Note that f(N)
can be written as f(N) = f1(N) + f2(N), where

f1(N) =
PQ(1− ρ2XV )−N

√
PQρXV

Q[P (1− ρ2XV ) +N ]
;

f2(N) = −P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N)

Q[P (1− ρ2XV ) +N ]

= −P (1− ρ2XV )√
Q

√

(P (1− ρ2XV ) +N + Pρ2XV +Q+ 2
√
PQρXV )

[P (1− ρ2XV ) +N ]2

= −P (1− ρ2XV )√
Q

√

1

P (1− ρ2XV ) +N
+

(ρXV

√
P +

√
Q)2

[P (1− ρ2XV ) +N ]2
.

It is clear that the second term f2(N) is non-decreasing with respect to N . Now let us
consider the first term f1(N),

f1
′(N) =

−√PQρXVQ[P (1− ρ2XV ) +N ]−Q[PQ(1− ρ2XV )−N
√
PQρXV ]

Q2[P (1− ρ2XV ) +N ]2

=
−PQ√Q(1− ρ2XV )(

√
PρXV +

√
Q)

Q2[P (1− ρ2XV ) +N ]2
.

When
√
PρXV +

√
Q ≥ 0, f1

′(N) > 0. So f1(N) is also non-decreasing with respect to N .
Therefore, as a summation of f1(N) and f2(N), f(N) is a non-decreasing function with
respect to N .
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Note that
α−0 = f(N1 +N2), α−00 = f(N1).

Since f(N) is a non-decreasing function with respect to N, we have α−0 ≥ α−00. This
completes the proof.

Appendix X

Lemma 4.4.7: If
√
PρXV +

√
Q > 0,

N2 ≥ Nhigh =⇒ α−0 ≤ α0 ≤ αmax,

where

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

.

Proof: Since α−0 ≤ α0 is always valid, we only need to prove that α0 ≤ αmax.

αmax ≥ α0

1− αmax ≤ 1− α0√
QN1(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1]
≤

√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]

−P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

N1(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1
≤ (N1 +N2)(

√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

−P (1− ρ2XV )
√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2

{

N1(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

+N1N2(
√
Q+

√
PρXV )

}

≤















N1(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

+N2(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

−[P (1− ρ2XV ) +N1]P (1− ρ2XV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2















P (1− ρ2XV )[P (1− ρ2XV ) +N1]

√

P +Q+ 2
√

PQρXV +N1 +N2 ≤ P (1− ρ2XV )N2(
√

Q+
√
PρXV )

(P (1− ρ2XV ) +N1)
2(P +Q+ 2

√

PQρXV +N1 +N2) ≤ N22 (
√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2((
√

Q+
√
PρXV )

2 + P (1− ρ2XV ) +N1 +N2) ≤ N22 (
√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2(P (1− ρ2XV ) +N1 +N2) ≤

{

(P (1− ρ2XV ) +N1 +N2)

·(N2 − P (1− ρ2XV )−N1)(
√
Q+

√
PρXV )

2

}

(P (1− ρ2XV ) +N1)
2 ≤ (N2 − P (1− ρ2XV )−N1)(

√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2

(
√
Q+

√
PρXV )2

≤ (N2 − P (1− ρ2XV )−N1)
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P (1− ρ2XV ) +N1 +
(P (1− ρ2XV ) +N1)

2

(
√
Q+

√
PρXV )2

≤ N2.

Appendix XI

Lemma 4.4.8: If
√
PρXV +

√
Q > 0,

Nlow ≤ N2 ≤ Nhigh =⇒ αmax ≤ α0 ≤ 1,

where

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

;

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

Proof: By the proof of Lemma 4.4.7, we have

N2 ≤ P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

=⇒ αmax ≤ α0.

By the proof of Lemma 4.4.9, we have

N2 ≥ P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

=⇒ α0 ≤ 1.

Let

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

;

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

We can easily get that

Nlow ≤ N2 ≤ Nhigh =⇒ αmax ≤ α0 ≤ 1,

Appendix XII

Lemma 4.4.9: If
√
PρXV +

√
Q > 0,

N2 ≤ Nlow =⇒ α0 ≥ 1,

where

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.
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Proof: Consider α0 ≥ 1 when
√
PρXV +

√
Q > 0.

α0 ≥ 1

PQ(1− ρ2XV )− (N1 +N2)
√
PQρXV + P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]
≥ 1

P (1− ρ2XV )

√

Q(P +Q+ 2
√

PQρXV +N1 +N2) ≥
√

Q(N1 +N2)(
√

Q+
√
PρXV )

P 2(1− ρ2XV )
2((
√

Q+
√
PρXV )

2 + P (1− ρ2XV ) +N1 +N2) ≥ (N1 +N2)
2(
√

Q+
√
PρXV )

2

P 2(1− ρ2XV )
2(P (1− ρ2XV ) +N1 +N2) ≥ (P (1− ρ2XV ) +N1 +N2)

·(N1 +N2 − P (1− ρ2XV ))(
√

Q+
√
PρXV )

2

P 2(1− ρ2XV )
2 ≥ (N1 +N2 − P (1− ρ2XV ))(

√

Q+
√
PρXV )

2

P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

≥ N2.

Appendix XIII

Lemma 4.4.11: If
√
PρXV +

√
Q < 0,

N2 ≥ Nhigh =⇒ αmax ≤ α−0 ≤ α0,

where

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

.

Proof: Since α−0 ≤ α0 is always valid, we only need to prove that αmax ≤ α−0.

αmax ≤ α−0
αmax − 1 ≤ α−0 − 1

−
√
QN1(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1]
≤ −

√
Q(N1 +N2)(

√
Q+

√
PρXV )

Q[P (1− ρ2XV ) +N1 +N2]

−P (1− ρ2XV )
√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]

−N1(
√
Q+

√
PρXV )

P (1− ρ2XV ) +N1
≤ −(N1 +N2)(

√
Q+

√
PρXV )

P (1− ρ2XV ) +N1 +N2

−P (1− ρ2XV )
√

P +Q+ 2
√
PQρXV +N1 +N2

P (1− ρ2XV ) +N1 +N2
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{

−N1(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

−N1N2(
√
Q+

√
PρXV )

}

≤















−N1(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

−N2(
√
Q+

√
PρXV )[P (1− ρ2XV ) +N1]

−[P (1− ρ2XV ) +N1]P (1− ρ2XV )

·
√

P +Q+ 2
√
PQρXV +N1 +N2















P (1−ρ2XV )[P (1−ρ2XV )+N1]

√

P +Q+ 2
√

PQρXV +N1 +N2 ≤ −P (1−ρ2XV )N2(
√

Q+
√
PρXV )

(P (1− ρ2XV ) +N1)
2(P +Q+ 2

√

PQρXV +N1 +N2) ≤ N22 (
√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2((
√

Q+
√
PρXV )

2 + P (1− ρ2XV ) +N1 +N2) ≤ N22 (
√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2(P (1− ρ2XV ) +N1 +N2) ≤ (P (1− ρ2XV ) +N1 +N2)

·(N2 − P (1− ρ2XV )−N1)(
√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2 ≤ (N2 − P (1− ρ2XV )−N1)(

√

Q+
√
PρXV )

2

(P (1− ρ2XV ) +N1)
2

(
√
Q+

√
PρXV )2

≤ (N2 − P (1− ρ2XV )−N1)

P (1− ρ2XV ) +N1 +
(P (1− ρ2XV ) +N1)

2

(
√
Q+

√
PρXV )2

≤ N2.

Appendix XIV

Lemma 4.4.12: If
√
PρXV +

√
Q < 0,

Nlow ≤ N2 ≤ Nhigh =⇒ 1 ≤ α−0 ≤ αmax,

where

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

;

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

Proof: By the proof of Lemma 4.4.11, we have

N2 ≤ P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

=⇒ αmax ≥ α−0.

By the proof of Lemma 4.4.13, we have

N2 ≥ P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

=⇒ α−0 ≥ 1.

Let

Nhigh = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
Q+

√
PρXV )2

;
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Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

We can easily get that

Nlow ≤ N2 ≤ Nhigh =⇒ 1 ≤ α−0 ≤ αmax.

Appendix XV

Lemma 4.4.13: If
√
PρXV +

√
Q < 0,

N2 ≤ Nlow =⇒ α−0 ≤ 1,

where

Nlow = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

Proof: Consider α−0 ≤ 1 when
√
PρXV +

√
Q < 0.

α−0 ≤ 1

PQ(1− ρ2XV )− (N1 +N2)
√
PQρXV − P (1− ρ2XV )

√

Q(P +Q+ 2
√
PQρXV +N1 +N2)

Q[P (1− ρ2XV ) +N1 +N2]
≤ 1

−
√

Q(N1 +N2)(
√

Q+
√
PρXV ) ≤ P (1− ρ2XV )

√

Q(P +Q+ 2
√

PQρXV +N1 +N2)

(N1 +N2)
2(
√

Q+
√
PρXV )

2 ≤ P 2(1− ρ2XV )
2((
√

Q+
√
PρXV )

2 + P (1− ρ2XV ) +N1 +N2)

{

(P (1− ρ2XV ) +N1 +N2)

·(N1 +N2 − P (1− ρ2XV ))(
√
Q+

√
PρXV )

2

}

≤ P 2(1− ρ2XV )
2(P (1− ρ2XV ) +N1 +N2)

(N1 +N2 − P (1− ρ2XV ))(
√

Q+
√
PρXV )

2 ≤ P 2(1− ρ2XV )
2

N2 ≤ P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
Q+

√
PρXV )2

.

Appendix XVI

Lemma 5.3.1: A randomly chosen binary matrix H with K rows and N columns has rank
K with probability approaching 1 as N goes to infinity and K

N = R.
Proof: We consider the K by N binary matrices with rank K. Because there are

2N − 1 choices for the first row of H; there are 2N − 2 choices for the second row of H
once the first row is chosen (any N -vector not in the one dimensional subspace spanned by
the first row of H will do, and there are 2i vectors in a i-dimensional subspace); there are
2N − 22 choices for the third row of H once the first two rows are chosen (any N -vector not
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in the two-dimensional subspace spanned by the first two rows will do), etc. So, there are

(2N − 1)(2N − 2)(2N − 4) · · · (2N − 2K−1)

possible K by N binary matrices with rank K since there rows are K linearly independent
N -vectors.

It is clear that the number of all possible H with K rows and N columns is 2NK . Let
the probability that a randomly chosen binary matrix H has rank K be PN . Then,

PN =
(2N − 1)(2N − 2)(2N − 4) · · · (2N − 2K−1)

2NK

= (1− 1

2N
)(1− 1

2N−1
)(1− 1

2N−2
) · · · (1− 1

2N−K+1
)

≥ (1− 1

2N−K+1
)K

(a)
= (1− 1

2N(1−R)+1
)NR,

where (a) follows that R = K
N . Therefore, we have

(1− 1

2N(1−R)+1
)NR ≤ PN ≤ 1.

Recall that

lim
x→−∞

(1 +
1

x
)x = e.

Note that

lim
N→∞

(1− 1

2N(1−R)+1
)NR = lim

N→∞
e
− NR

2N(1−R)+1 = e0 = 1.

Therefore, we have lim
N→∞

PN ≥ 1. In addition that PN ≤ 1, we have lim
N→∞

PN = 1 and thus

complete the proof.

Appendix XVII

Lemma 5.4.1: The solution set of the equation (5.7) is a coset of C2. Here C2 is the dual
code of the code generated by the matrix H2.

Proof: Denote the solution set of the equation (5.7) is s+ C2. Let x(s) be a solution
of the equation equation (5.7). In the following, we show that s+C2 is the coset x(s)+C2.

Let v be any sequence in the solution set s+ C2. Then,

vH2
T = x(s)H2

T =
[

0 s
]

.

Therefore,
(v − x(s))H2

T = 0.

Thus we have v−x(s) ∈ C2 and v ∈ x(s)+C2. So far we have shown that s+C2 ⊆ x(s)+C2.
Note that s + C2 and x(s) + C2 have the same amount of sequences, which is equal to

|C2|. In addition that s + C2 ⊆ x(s) + C2, we complete the proof that s + C2 is the coset
x(s) + C2.
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Appendix XVIII

Lemma 4.4.16: Nlow, which is defined in (4.67), with respect to ρXV has the following
properties:

(a) when P = Q, Nlow is decreasing as −1 ≤ ρXV ≤ 1;

(b) when P > Q, Nlow is increasing as −1 ≤ ρXV ≤ −
√
Q√
P

and decreasing as −
√
Q√
P
≤

ρXV ≤ 1;

(c) when P < Q, Nlow is increasing as −1 ≤ ρXV ≤ δ0 and decreasing as δ0 ≤ ρXV ≤ 1,
where

δ0 =
2
√
6

3

√

Q− P

P
cos

θ − π

3
−
√

Q

P
, θ = arccos

3
√
6

8

√

Q− P

Q
.

Proof: Consider

f(δ) = Nlow|ρXV =δ = P (1− δ2)−N1 +
[P (1− δ2)]2

(
√
Pδ +

√
Q)2

.

Calculate the derivative of f(δ) with respect to δ. We have

f ′(δ) = − 2P

(
√
Pδ +

√
Q)3

{
√
P (
√
P +

√

Qδ)2 +
√

Qδ(
√
Pδ +

√

Q)2}

= − 2P 2
√
Q

(
√
Pδ +

√
Q)3

{δ3 + 3

√
Q√
P
δ2 + (2 +

Q

P
)δ +

√
P√
Q
}

= − 2
√
PQ

(δ +
√
Q√
P
)3
{(δ +

√
Q√
P
)3 + 2

P −Q

P
(δ +

√
Q√
P
) +

(P −Q)2

P
√
PQ

}.

If P = Q, it is easy to verify that

f ′(δ) = −2
√

PQ.

Otherwise, we let

g(x) = x3 + 2
P −Q

P
x+

(P −Q)2

P
√
PQ

.

Consider the cubic equation g(x) = 0. Let

a = 1; b = 0; c = 2
P −Q

P
; d =

(P −Q)2

P
√
PQ

,

and

A = b2 − 3ac = −6P −Q

P
;

B = bc− 9ad = −9(P −Q)2

P
√
PQ

;

C = c2 − 3bd = 4
(P −Q)2

P 2
.
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By Shengjin’s Formula [14], we can calculate the discriminant as follows:

∆ = B2 − 4AC = 3
(P −Q)3

P 3Q
(27P + 5Q).

Therefore, under the assumption that P,Q > 0, we have

∆ > 0, if P > Q and ∆ < 0, if P < Q.

By Shengjins Distinguishing Means [14], if P > Q, g(x) has only one real root; Otherwise,
if P < Q, g(x) has three distinct real roots.

Consider the situation when P > Q. Let

Y1 = Ab+ 3a(−B +
√
∆)/2

=
27(P −Q)2

2P
√
PQ

(

√

P + 5Q/27

P −Q
+ 1);

Y2 = Ab+ 3a(−B −
√
∆)/2

= −27(P −Q)2

2P
√
PQ

(

√

P + 5Q/27

P −Q
− 1).

By Shengjin’s Formula [14], the only real root is

x0 =
−b− 3

√
Y1 − 3

√
Y2

3a

= − 3

√

(P −Q)2

2P
√
PQ

(
3

√

√

√

√

√

P + 5Q/27

P −Q
+ 1− 3

√

√

√

√

√

P + 5Q/27

P −Q
− 1).

Correspondingly, the only real root of equation f ′(δ) = 0 is

δr = x0 −
√
Q√
P
.

It is clear that δr < −
√
Q√
P
, since x0 < 0. Therefore, we have f ′(δ) ≥ 0, if δr ≤ δ ≤ −

√
Q√
P
;

otherwise, f ′(δ) ≤ 0. However, we only care about the δ such that −1 ≤ δ ≤ 1. If δr ≤ −1,
then f(δ), also Nlow|ρXV =δ, is increasing as −1 ≤ δ ≤ −

√
Q√
P
and decreasing as −

√
Q√
P
≤ δ ≤ 1.

In the following, we will prove that δr < −1. It is known that f ′(δ)|δ=δr = 0. Here, we
calculate f ′(δ)|δ=−1.

f ′(δ)|δ=−1 = − 2
√
PQ

(−1 +
√
Q√
P
)3
{(−1 +

√
Q√
P
)3 + 2

P −Q

P
(−1 +

√
Q√
P
) +

(P −Q)2

P
√
PQ

}

= 2P > 0.

Since f ′(δ) > 0 only happens when δr ≤ δ ≤ −
√
Q√
P
, so we have δr ≤ −1.

141



Now let us consider the situation when P < Q. Let

T =
2Ab− 3aB

2A
√
A

=
3
√
6

8

√

Q− P

Q
;

θ = arccosT.

By Shengjin’s Formula [14], the three distinct roots are

x1 =
−b− 2

√
A cos θ3

3a
=

2
√
6

3

√

Q− P

P
cos

θ + 3π

3
;

x2 =
−b+

√
A(cos θ3 +

√
3 sin θ

3)

3a
=

2
√
6

3

√

Q− P

P
cos

θ − π

3
;

x3 =
−b+

√
A(cos θ3 −

√
3 sin θ

3)

3a
=

2
√
6

3

√

Q− P

P
cos

θ + π

3
.

It is easy to verify that x2 ≥ x3 ≥ 0 ≥ x1. Correspondingly, the three distinct real roots of
equation f ′(δ) = 0 are

δr1 = x1 −
√
Q√
P
; δr2 = x2 −

√
Q√
P
; δr3 = x3 −

√
Q√
P
.

It is clear that δr2 ≥ δr3 ≥ −
√
Q√
P
≥ δr1 . Therefore, we have f ′(δ) ≥ 0, if δr1 ≤ δ ≤ −

√
Q√
P

or

δr3 ≤ δ ≤ δr2 ; otherwise, f
′(δ) ≤ 0. However, we only care about the δ such that −1 ≤ δ ≤ 1.

If δr3 ≤ −1 ≤ δ2, then f(δ), also Nlow|ρXV =δ, is increasing as −1 ≤ δ ≤ δr2 and decreasing
as δr2 ≤ δ ≤ 1.

In the following, we will prove that δr3 ≤ −1 ≤ δr2 . It is known that f ′(δ) > 0 when

δr1 ≤ δ ≤ −
√
Q√
P

or δr3 ≤ δ ≤ δr2 . Since P < Q, −
√
Q√
P
< −1. Thus, we only need to prove

that f ′(δ)|δ=−1 > 0. Note that f ′(δ)|δ=−1 = 2P > 0. Let δ0 = δr2 . Thus we complete the
proof.

Appendix XIX

Lemma 4.4.17: Nhigh, which is defined in (4.66), with respect to ρXV has the following
properties:

(a) when P = Q, Nhigh is decreasing as −1 ≤ ρXV ≤ 1;

(b) when P > Q, Nhigh is increasing as −1 ≤ ρXV ≤ −
√
Q√
P

and decreasing as −
√
Q√
P
≤

ρXV ≤ 1;

(c) when P < Q, if N1 ≥ 4
√
P ( 4
√
P + 4

√
Q)(

√
Q−

√
P ), Nhigh is increasing as −1 ≤ ρXV ≤

δ00 and decreasing as δ00 ≤ ρXV ≤ 1; otherwise, Nhigh is decreasing as −1 ≤ ρXV ≤ 1.
Here

δ00 =
2
√
6

3

√

Q− P −N1
P

cos
φ− π

3
−
√

Q

P
, φ = arccos

3
√
6

8

√

Q− P −N1
Q

.
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Proof: Consider

f(δ) = Nhigh|ρXV =δ = P (1− δ2) +N1 +
[P (1− δ2) +N1]

2

(
√
Pδ +

√
Q)2

.

Calculate the derivative of f(δ) with respect to δ. We have

f ′(δ) = − 2
√
P

(
√
Pδ +

√
Q)3

{(P +N1 +
√

PQδ)2 +
√

PQδ(
√
Pδ +

√

Q)2}

= − 2P 2
√
Q

(
√
Pδ +

√
Q)3

{δ3 + 3

√
Q√
P
δ2 +

2P + 2N1 +Q

P
δ +

(P +N1)
2

P
√
PQ

}

= − 2
√
PQ

(δ +
√
Q√
P
)3
{(δ +

√
Q√
P
)3 + 2

P +N1 −Q

P
(δ +

√
Q√
P
) +

(P +N1 −Q)2

P
√
PQ

}.

If P +N1 = Q, it is easy to verify that

f ′(δ) = −2
√

PQ.

Otherwise, we let

g(x) = x3 + 2
P +N1 −Q

P
x+

(P +N1 −Q)2

P
√
PQ

.

Consider the cubic equation g(x) = 0. Let

a = 1; b = 0; c = 2
P +N1 −Q

P
; d =

(P +N1 −Q)2

P
√
PQ

,

and

A = b2 − 3ac = −6P +N1 −Q

P
;

B = bc− 9ad = −9(P +N1 −Q)2

P
√
PQ

;

C = c2 − 3bd = 4
(P +N1 −Q)2

P 2
.

By Shengjin’s Formula [14], we can calculate the discriminant as follows:

∆ = B2 − 4AC = 3
(P +N1 −Q)3

P 3Q
(27(P +N1) + 5Q).

Therefore, under the assumption that P,Q > 0, we have

∆ > 0, if P +N1 > Q and ∆ < 0, if P +N1 < Q.

By Shengjins Distinguishing Means [14], if P + N1 > Q, g(x) has only one real root;
Otherwise, if P +N1 < Q, g(x) has three distinct real roots.

Consider the situation when P +N1 > Q. Let

Y1 = Ab+ 3a(−B +
√
∆)/2
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=
27(P −Q)2

2P
√
PQ

(

√

P + 5Q/27

P −Q
+ 1);

Y2 = Ab+ 3a(−B −
√
∆)/2

= −27(P +N1 −Q)2

2P
√
PQ

(

√

P +N1 + 5Q/27

P +N1 −Q
− 1).

By Shengjin’s Formula [14], the only real root is

x0 =
−b− 3

√
Y1 − 3

√
Y2

3a

= − 3

√

(P +N1 −Q)2

2P
√
PQ

(
3

√

√

√

√

√

P +N1 + 5Q/27

P +N1 −Q
+ 1− 3

√

√

√

√

√

P +N1 + 5Q/27

P +N1 −Q
− 1).

Correspondingly, the only real root of equation f ′(δ) = 0 is

δr = x0 −
√
Q√
P
.

It is clear that δr < −
√
Q√
P
, since x0 < 0. Therefore, we have f ′(δ) ≥ 0, if δr ≤ δ ≤ −

√
Q√
P
;

otherwise, f ′(δ) ≤ 0. However, we only care about the δ such that −1 ≤ δ ≤ 1. If P ≤
Q < P + N1, we have δr < −

√
Q√
P
≤ −1. Then f(δ), also Nhigh|rhoXV =δ, is decreasing as

−1 ≤ δ ≤ 1. Otherwise, if P > Q and δr ≤ −1, then f(δ), also Nhigh|rhoXV =δ, is increasing

as −1 ≤ δ ≤ −
√
Q√
P

and decreasing as −
√
Q√
P
≤ δ ≤ 1.

In the following, we will prove that when P > Q, δr < −1. It is known that f ′(δ)|δ=δr = 0.
Here, we calculate f ′(δ)|δ=−1.

f ′(δ)|δ=−1 = −
2
√
PQ

(−1 +
√
Q√
P
)3
{(−1 +

√
Q√
P
)3 + 2

P +N1 −Q

P
(−1 +

√
Q√
P
) +

(P +N1 −Q)2

P
√
PQ

}

= − 2
√
P

(
√
Q−

√
P )3

{(P +N1 −
√

PQ)2 −
√

PQ(
√

Q−
√
P )2}

= − 2
√
P

(
√
Q−

√
P )3

{(P +N1 −
√

PQ)2 −
√

PQ(
√

Q−
√
P )2}

≥ − 2
√
P

(
√
Q−

√
P )3

{(P −
√

PQ)2 −
√

PQ(
√

Q−
√
P )2}

= − 2
√
P

(
√
Q−

√
P )3

{(P −
√

PQ)2 −
√

PQ(
√

Q−
√
P )2}

= 2P > 0.

Since f ′(δ) > 0 only happens when δr ≤ δ ≤ −
√
Q√
P
, so we have δr ≤ −1.

Now let us consider the situation when P +N1 < Q. Let

T =
2Ab− 3aB

2A
√
A

=
3
√
6

8

√

Q− P −N1
Q

;
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φ = arccosT.

By Shengjin’s Formula [14], the three distinct roots are

x1 =
−b− 2

√
A cos θ3

3a
=

2
√
6

3

√

Q− P −N1
P

cos
φ+ 3π

3
;

x2 =
−b+

√
A(cos θ3 +

√
3 sin φ

3 )

3a
=

2
√
6

3

√

Q− P −N1
P

cos
φ− π

3
;

x3 =
−b+

√
A(cos θ3 −

√
3 sin φ

3 )

3a
=

2
√
6

3

√

Q− P −N1
P

cos
φ+ π

3
.

It is easy to verify that x2 ≥ x3 ≥ 0 ≥ x1. Correspondingly, the three distinct real roots of
equation f ′(δ) = 0 are

δr1 = x1 −
√
Q√
P
; δr2 = x2 −

√
Q√
P
; δr3 = x3 −

√
Q√
P
.

It is clear that δr2 ≥ δr3 ≥ −
√
Q√
P
≥ δr1 . Therefore, we have f ′(δ) ≥ 0, if δr1 ≤ δ ≤ −

√
Q√
P

or

δr3 ≤ δ ≤ δr2 ; otherwise, f
′(δ) ≤ 0. However, we only care about the δ such that −1 ≤ δ ≤ 1.

If δr3 ≤ −1 ≤ δ2, then f(δ), also Nhigh|ρXV =δ, is increasing as −1 ≤ δ ≤ δr2 and decreasing
as δr2 ≤ δ ≤ 1. Otherwise, if δr3 ≤ δ2 ≤ −1, then f(δ), also Nhigh|ρXV =δ, is decreasing as
−1 ≤ δ ≤ 1. In the following, we will prove that

δr3 ≤ −1 ≤ δr2 , when N1 ≤ 4
√
P (

4
√
P + 4

√

Q)(
√

Q−
√
P );

δr3 ≤ δr2 ≤ −1, when
4
√
P (

4
√
P + 4

√

Q)(
√

Q−
√
P ) ≤ N1 ≤ Q− P.

It is known that f ′(δ) > 0 when δr1 ≤ δ ≤ −
√
Q√
P

or δr3 ≤ δ ≤ δr2 . Since P + N1 < Q,

−
√
Q√
P
< −1. Thus, if f ′(δ)|δ=−1 ≥ 0, then δr3 ≤ −1 ≤ δr2 . Note that

f ′(δ)|δ=−1 = −
2
√
P

(
√
Q−

√
P )3

{(P +N1 −
√

PQ)2 −
√

PQ(
√

Q−
√
P )2}

= − 2
√
P

(
√
Q−

√
P )3

(N1 +
4
√
P ( 4
√

Q− 4
√
P )(

√

Q−
√
P ))(N1 − 4

√
P (

4
√
P + 4

√

Q)(
√

Q−
√
P )).

It is clear that if N1 ≤ 4
√
P ( 4
√
P + 4

√
Q)(

√
Q−

√
P ), f ′(δ)|δ=−1 > 0. In this case, δr3 ≤ −1 ≤

δr2 . Otherwise, if 4
√
P ( 4
√
P + 4

√
Q)(

√
Q−

√
P ) ≤ N1 ≤ Q− P, f ′(δ)|δ=−1 ≤ 0. In addition,

f ′(δ)|
δ=−

√
P+N1√

P

= − 2
√
PQ

(−
√
P+N1√
P

+
√
Q√
P
)3
·

{(−
√
P +N1√

P
+

√
Q√
P
)3 + 2

P +N1 −Q

P
(−
√
P +N1√

P
+

√
Q√
P
) +

(P +N1 −Q)2

P
√
PQ

}

= 2
√

P (P +N1) > 0.

Thus we have δr3 ≤ −
√
P+N1√
P

≤ δr2 . Since −1 > −
√
P+N1√
P

and f ′(δ)|δ=−1 ≤ 0 when
4
√
P ( 4
√
P + 4

√
Q)(

√
Q −

√
P ) ≤ N1 ≤ Q − P, so in this case, we have δr3 ≤ δr2 ≤ −1. Let

δ00 = δr2 . We complete the proof.
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Appendix XX

Lemma 4.4.18: R(αmax), RZ(1) and R(α∗) with respect to ρXV have the following proper-
ties:

(a) R(αmax) is increasing as −1 ≤ ρXV ≤ 0; decreasing as 0 ≤ ρXV ≤ 1; maximized at
ρXV = 0.

(b) RZ(1) is increasing as −1 ≤ ρXV ≤ 1.

(c) R(α∗) satisfies the following inequalities.

R(α0)|ρXV
≤ R(α0)|ρXV =δ1 if ρXV ≤ δ1,

R(α0)|ρXV
≤ R(α0)|ρXV =δ2 if |ρXV | ≥ δ2,

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
2

if − 1 ≤ ρXV ≤ δ−2 < −
√

Q/
√
P ,

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
1

if − 1 ≤ ρXV ≤ δ−1 < −
√

Q/
√
P .

In particular,

R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 , R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 ,

R(α−0)|ρXV =δ
−
1
≤ R(α0)|ρXV =δ1 , R(α−0)|ρXV =δ

−
2
≤ R(α0)|ρXV =δ2 .

Proof: First, we consider R(αmax). From (4.62),

R(αmax) =
1

2
log(1 +

P (1− ρ2XV )

N1
).

Since |ρXV | ≤ 1, it is clear that R(αmax) is increasing with respect ρXV as −1 ≤ ρXV ≤ 0,
is decreasing as 0 ≤ ρXV ≤ 1, and is maximized at ρXV = 0.

Secondly, we consider RZ(1). From (4.65),

RZ(1) =
1

2
log

(P +Q+ 2
√
PQρXV +N1)(N1 +N2)

(P +Q+ 2
√
PQρXV +N1 +N2)N1

.

In addition to |ρXV | ≤ 1, it is clear that RZ(1) is increasing with respect to ρXV as
−1 ≤ ρXV ≤ 1.

At the last, we consider R(α0) and R(α−0). First, referring to the definitions of α0 in
(4.56), R(α) in (4.47) and RZ(α) in (4.49), we have

R(α0) =
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

(1− α0)2PQ(1− ρ2XV ) +N1(P + α02Q+ 2α0
√
PQρXV )

= −1

2
log{ N1

P (1− ρ2XV ) +N1
+ f(ρXV )};

RZ(α0) =
1

2
log(

(P +Q+N1 + 2
√
PQρXV )

(P +Q+N1 +N2 + 2
√
PQρXV )

·

{(1− α0)
2PQ(1− ρ2XV ) + (N1 +N2)(P + α0

2Q+ 2α0
√
PQρXV )}

{(1− α0)2PQ(1− ρ2XV ) +N1(P + α02Q+ 2α0
√
PQρXV )}

)

=
1

2
log(1− N2

(P +Q+N1 +N2 + 2
√
PQρXV )

)(1 +
N2

g(ρXV ) +N1
),
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where

f(ρXV ) =
P (1− ρ2

XV
){

√

P + Q + N1 + N2 + 2
√
PQρXV [P (1− ρ2

XV
) + N1]−N2(

√
PρXV +

√
Q)}2

(P + Q + N1 + 2
√
PQρXV )[P (1− ρ2

XV
) + N1][P (1− ρ2

XV
) + N1 + N2]2

,

g(ρXV ) =
{P (1− ρ2

XV
)
√

P + Q + N1 + N2 + 2
√
PQρXV − (N1 + N2)(

√
PρXV +

√
Q)}2

[P (1− ρ2

XV
) + N1 + N2]2 + P (1− ρ2

XV
){

√

P + Q + N1 + N2 + 2
√
PQρXV + (

√
PρXV +

√
Q)}2

.

First, let us consider f(ρXV ). Let

f1(ρXV ) =

√

P +Q+N1 +N2 + 2
√

PQρXV [P (1− ρ2XV ) +N1]−N2(
√
PρXV +

√

Q).

Then we have if
√
PρXV +

√
Q ≥ 0,

f1(ρXV ) = 0

N2(
√
PρXV +

√

Q) =

√

P +Q+N1 +N2 + 2
√

PQρXV [P (1− ρ2XV ) +N1]

N22 (
√
PρXV +

√

Q)2 = (P +Q+N1 +N2 + 2
√

PQρXV )[P (1− ρ2XV ) +N1]
2

N2 = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
PρXV +

√
Q)2

N2 = Nhigh|ρXV
.

If δ2 is the only correlation coefficient or the larger solution to the equation N2 = Nhigh|ρXV
,

then by Lemma 4.4.17,
√
PρXV +

√
Q ≥ 0. It is clear that f1(δ2) = 0 and f(δ2) = 0. Note

that for |ρXV | ≥ |δ2|, f(ρXV ) ≥ f(δ2). Correspondingly, we have

R(α0)|ρXV
≤ R(α0)|ρXV =δ2 , for |ρXV | ≥ |δ2|.

In particular,

R(α0)|ρXV =δ2 = −1

2
log{ N1

P (1− δ2
2) +N1

+ f(δ2)}

=
1

2
log(1 +

P (1− δ2
2)

N1
)

= R(αmax)|ρXV =δ2 .

Furthermore, if δ−2 is another solution to the equation N2 = Nhigh|ρXV
and

√
Pδ−2 +

√
Q ≥ 0,

then δ−2 < 0. By Lemma 4.4.17, |δ−2 | ≥ |δ2|. Note that f1(δ
−
2 ) = 0 and f(δ−2 ) = 0. Then for

−1 ≤ ρXV ≤ δ−2 , f(ρXV ) ≥ f(δ−2 ). Correspondingly, we have

R(α0)|ρXV
≤ R(α0)|ρXV =δ

−
2
, for − 1 ≤ ρXV ≤ δ−2 .

In particular,

R(α0)|ρXV =δ
−
2

= −1

2
log{ N1

P (1− δ−2
2
) +N1

+ f(δ−2 )}

=
1

2
log(1 +

P (1− δ−2
2
)

N1
)
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= R(αmax)|ρXV =δ
−
2
.

Clearly, since |δ−2 | ≥ |δ2|,

R(α0)|ρXV =δ
−
2
≤ R(α0)|ρXV =δ2 .

Now let us consider g(ρXV ). Let

g1(ρXV ) = P (1− ρ2XV )

√

P +Q+N1 +N2 + 2
√

PQρXV − (N1 +N2)(
√
PρXV +

√

Q).

Then we have if
√
PρXV +

√
Q ≥ 0,

g1(ρXV ) = 0

(N1 +N2)(
√
PρXV +

√

Q) = P (1− ρ2XV )

√

P +Q+N1 +N2 + 2
√

PQρXV

(N1 +N2)
2(
√
PρXV +

√

Q)2 = (P +Q+N1 +N2 + 2
√

PQρXV )[P (1− ρ2XV )]
2

N2 = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
PρXV +

√
Q)2

N2 = Nlow|ρXV
.

If δ1 is the only correlation coefficient or the larger solution to the equation N2 = Nlow|ρXV
,

then by Lemma 4.4.17,
√
PρXV +

√
Q ≥ 0. It is clear that g1(δ1) = 0 and g(δ1) = 0. Then

for −1 ≤ ρXV ≤ δ1, g(ρXV ) ≥ g(δ1). Correspondingly, we have

RZ(α0)|ρXV
≤ RZ(α0)|ρXV =δ1 , for − 1 ≤ ρXV ≤ δ1.

In particular,

RZ(α0)|ρXV =δ1 =
1

2
log(1− N2

(P +Q+N1 +N2 + 2
√
PQδ1)

)(1 +
N2

g(δ1) +N1
)

= RZ(1)|ρXV =δ1 .

Note that from (4.58) we have R(α0) = RZ(α0). As we have discussed above, we can
draw such a conclusion that

R(α0)|ρXV
≤ R(α0)|ρXV =δ2 , for |ρXV | ≥ |δ2|;

R(α0)|ρXV
≤ R(α0)|ρXV =δ1 , for − 1 ≤ ρXV ≤ δ1.

Furthermore,

R(α0)|ρXV =δ
−
2
≤ R(α0)|ρXV =δ2 = R(αmax)|ρXV =δ2 , R(α0)|ρXV =δ1 = RZ(1)|ρXV =δ1 .

Similarly, applying α−0 defined in (4.57) to R(α) and RZ(α), we have

R(α−0) =
1

2
log

P (1− ρ2XV )(P +Q+N1 + 2
√
PQρXV )

(1− α−0)2PQ(1− ρ2XV ) +N1(P + α−02Q+ 2α−0
√
PQρXV )

= −1

2
log{ N1

P (1− ρ2XV ) +N1
+ ff(ρXV )};
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RZ(α−0) =
1

2
log(

(P +Q+N1 + 2
√
PQρXV )

(P +Q+N1 +N2 + 2
√
PQρXV )

·

{(1− α−0)2PQ(1− ρ2XV ) + (N1 +N2)(P + α−02Q+ 2α−0
√
PQρXV )}

{(1− α−0)2PQ(1− ρ2XV ) +N1(P + α−02Q+ 2α−0
√
PQρXV )}

)

=
1

2
log(1− N2

(P +Q+N1 +N2 + 2
√
PQρXV )

)(1 +
N2

gg(ρXV ) +N1
),

where

ff(ρXV ) =
P (1− ρ2

XV
){

√

P + Q + N1 + N2 + 2
√
PQρXV [P (1− ρ2

XV
) + N1] + N2(

√
PρXV +

√
Q)}2

(P + Q + N1 + 2
√
PQρXV )[P (1− ρ2

XV
) + N1][P (1− ρ2

XV
) + N1 + N2]2

,

gg(ρXV ) =
{P (1− ρ2

XV
)
√

P + Q + N1 + N2 + 2
√
PQρXV + (N1 + N2)(

√
PρXV +

√
Q)}2

[P (1− ρ2

XV
) + N1 + N2]2 + P (1− ρ2

XV
){

√

P + Q + N1 + N2 + 2
√
PQρXV − (

√
PρXV +

√
Q)}2

.

First, let us consider ff(ρXV ). Let

ff1(ρXV ) =

√

P +Q+N1 +N2 + 2
√

PQρXV [P (1− ρ2XV ) +N1] +N2(
√
PρXV +

√

Q).

Then we have if
√
PρXV +

√
Q < 0,

ff1(ρXV ) = 0

−N2(
√
PρXV +

√

Q) =

√

P +Q+N1 +N2 + 2
√

PQρXV [P (1− ρ2XV ) +N1]

N22 (
√
PρXV +

√

Q)2 = (P +Q+N1 +N2 + 2
√

PQρXV )[P (1− ρ2XV ) +N1]
2

N2 = P (1− ρ2XV ) +N1 +
[P (1− ρ2XV ) +N1]

2

(
√
PρXV +

√
Q)2

N2 = Nhigh|ρXV
.

Suppose there is δ−2 such that
√
Pδ−2 +

√
Q < 0 and N2 = Nhigh|ρXV =δ

−
2
. By Lemma 4.4.17,

δ−2 ≤ δ2 and |δ−2 | ≥ |δ2|. Note that ff1(δ
−
2 ) = 0 and ff(δ−2 ) = 0. Then for −1 ≤ ρXV ≤ δ−2 ,

ff(ρXV ) ≥ ff(δ−2 ). Correspondingly, we have

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
2
, for − 1 ≤ ρXV ≤ δ−2 .

In particular, since |δ−2 | ≥ |δ2|,

R(α−0)|ρXV =δ
−
2

= −1

2
log{ N1

P (1− δ−2
2
) +N1

+ ff(δ−2 )}

=
1

2
log(1 +

P (1− δ−2
2
)

N1
)

= R(αmax)|ρXV =δ
−
2

≤ R(αmax)|ρXV =δ2 = R(α0)|ρXV =δ2 .

Now let us consider gg(ρXV ). Let

gg1(ρXV ) = P (1− ρ2XV )

√

P +Q+N1 +N2 + 2
√

PQρXV + (N1 +N2)(
√
PρXV +

√

Q).
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Then we have if
√
PρXV +

√
Q < 0,

gg1(ρXV ) = 0

−(N1 +N2)(
√
PρXV +

√

Q) = P (1− ρ2XV )

√

P +Q+N1 +N2 + 2
√

PQρXV

(N1 +N2)
2(
√
PρXV +

√

Q)2 = (P +Q+N1 +N2 + 2
√

PQρXV )[P (1− ρ2XV )]
2

N2 = P (1− ρ2XV )−N1 +
[P (1− ρ2XV )]

2

(
√
PρXV +

√
Q)2

N2 = Nlow|ρXV
.

Suppose there is δ−1 such that
√
Pδ−1 +

√
Q < 0 and N2 = Nlow|ρXV =δ

−
1
. By Lemma 4.4.16,

δ−1 ≤ δ1. Note that gg1(δ
−
1 ) = 0 and gg(δ−1 ) = 0. Then for −1 ≤ ρXV ≤ δ−1 , gg(ρXV ) ≥

gg(δ−1 ). Correspondingly, we have

RZ(α−0)|ρXV
≤ RZ(α−0)|ρXV =δ

−
1
, for − 1 ≤ ρXV ≤ δ−1 .

In particular, since δ−1 ≤ δ1,

RZ(α−0)|ρXV =δ
−
1

=
1

2
log(1− N2

(P +Q+N1 +N2 + 2
√
PQδ−1 )

)(1 +
N2

gg(δ−1 ) +N1
)

= RZ(1)|ρXV =δ
−
1

≤ RZ(1)|ρXV =δ1 = R(α0)|ρXV =δ1 .

Note that from (4.59) we have R(α−0) = RZ(α−0). As we have discussed above, we can
draw such a conclusion that

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
2
≤ R(α0)|ρXV =δ2 , for − 1 ≤ ρXV ≤ δ−2 < −

√
Q√
P
;

R(α−0)|ρXV
≤ R(α−0)|ρXV =δ

−
1
≤ R(α0)|ρXV =δ1 , for − 1 ≤ ρXV ≤ δ−1 < −

√
Q√
P
.
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