
Graph Transformation in a Nutshell

Reiko Heckel

Universität Dortmund, Germany
(on leave from Paderborn)

reiko@upb.de

Abstract. Even sophisticated techniques start out from simple ideas.
Later, in reply to application needs or theoretical problems new concepts
are introduced and new formalizations proposed, often to a point where
the original simple core is hardly recognizable. In this paper we provide
a non-technical introduction to the basic concepts of typed graph trans-
formation systems, completed with a survey of more advanced concepts,
and explain some of its history and motivations.

1 Introduction

Graphs and diagrams provide a simple and powerful approach to a variety of
problems that are typical to computer science in general, and software engineer-
ing in particular. In fact, for most activities in the software process, a variety of
visual notations have been proposed, including state diagrams, Structured Anal-
ysis, control flow graphs, architectural description languages, function block dia-
grams, and the UML family of languages. These notations produce models that
can be easily seen as graphs and thus graph transformations are involved, either
explicitly or behind the scenes, when specifying how these models should be built
and interpreted, and how they evolve over time and are mapped to implementa-
tions. At the same time, graphs provide a universally adopted data structure, as
well as a model for the topology of object-oriented, component-based and dis-
tributed systems. Computations in such systems are therefore naturally modeled
as graph transformations, too.

Graph transformation has originally evolved in reaction to shortcomings in
the expressiveness of classical approaches to rewriting, like Chomsky grammars
and term rewriting, to deal with non-linear structures. The first proposals, ap-
pearing in the late sixties and early seventies [11,12], are concerned with rule-
based image recognition, translation of diagram languages, etc.

In this paper, we first introduce the basic concepts of graph transformation
systems. Section 3 provides a high-level survey of more advanced concepts, and
Section 4 gives references for further reading.

2 The Basic Approach

Modeling can be described as a two-dimensional abstraction process. The first
dimension consists in building models as representations of reality. The second
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dimension is generalization, i.e., the extraction of concepts from concrete ob-
jets, or of rules from observed behavior. We will deal with generalization first,
reserving representation issues for Sect. 2.2.

2.1 Modeling by Example

It is a matter of philosophical debate if generalizations exist in reality or if,
e.g., the concept of car as generalization of individual cars is part of the human
perception of the world. Avoiding this discission, we will illustrate two forms of
generalization by means of a simple video game of PacMan, for didactic purposes
playing the role of “reality”. Later, the insights gained from this example shall be
transferred to the graph-based representation to explain some of the elementary
concepts of graph transformation.

collect
kill

Rules

Concepts

Scenario

generalization
generalization

Fig. 1. From snapshots and scenarios to concepts and rules

Figure 1 exemplifies both conceptual and behavioral generalization. Our ob-
servation of the game is represented by the scenario in the middle of the figure
in three successive snapshots. Conceptual generalization extracts three types of
characters, PacMan, Ghost, and Marble shown in the bottom, each of which has
several instances in the scenario. This conceptual generalization and the corre-
sponding relation between a concept (type) and its instances is the first basic
idea.

From the observed transformations, behavioral generalization extracts the
rules in the top, encapsulating the changes from one snapshot to the next. Rules
can be derived systematically by determining their scope in the transformation
and cutting off (abstracting from) the irrelevant context. For the rules collect
and kill in the top of the figure, their scope is given by the areas in the dashed
and dotted boxes, respectively.
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The actual game, from which the snapshots are taken, has been produced
using the StageCast visual programming environment for video games. The en-
vironment evolved out of a didactic experiment on teaching the basics of pro-
gramming to children from the age of 7. The idea of extracting rules as general
behavior descriptions from sample state transformations is called programming
by example and represents the main didactic tool of the StageCast environment.
It also provides a perfect example of the second basic idea of graph transforma-
tion: the definition of rules as specifications of state transformations.

In the following, we shall turn back to the first dimension of modeling, trans-
ferring the generalizations described above from “reality” to its representation
in a model. We will use graphs as means to represent snapshots, concepts, and
rules—the third basic idea of the approach.

2.2 Type and Instance Graphs

Graphs provide the most basic mathematical model for entities and relations. A
graph consists of a set of vertices V and a set of edges E such that each edge e
in E has a source and a target vertex s(e) and t(e) in V , respectively. Like the
graph G in the upper right of Fig. 2, graphs can represent snapshots by modeling
concrete entities as vertices and relations between theses entities as edges. In
our model, vertices P:PacMan, G:Ghost M:Marble represent the corresponding
characters in the snapshot. Another type of vertex is used to represent fields,
i.e., the open spaces in the snapshot where characters can be located. Edges
represent the current location of characters as well as the neighborhood relation
of fields.

In modeling the snapshot we have implicitly assumed that vertices have a
type, like F1 to F4 having type Field. The type of a vertex (or an edge) repre-
sents the conceptual generalization of the corresponding real-world entity. Like
an individual snapshot, also a collection of interrelated concepts may be rep-
resented as a graph. Figure 2 in the bottom right shows an example of a type
graph representing the conceptual structure of the PacMan game and providing
the types for the instance graph in the top.

The relation between concepts and their occurrences in snapshots is formally
captured by the notion of typed graphs: A fixed type graph TG represents the type
(concept) level and its instance graphs the individual snapshots. This distinction
is a recurring pattern, like in class and objects, data base schema and states,
XML schema and documents, etc.

We use the notation of class and object diagrams in the Unified Modeling
Language (UML) to visualize type and instance graphs and their relationship,
i.e., o : C represents a vertex o (an object) of type C (a class). In addition to
vertices and edges, graphs may contain attributes to store values of pre-defined
data types. In our example, this notion is used to represent the number of marbles
PacMan has collected before the current snapshot. Also attributes have a type-
level declaration a : T , where a is the name of the attribute and T is the data
type, and an instance-level occurrence a = v where attribute a is assigned value
v.
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instance graph G

type graph TG

typingtyping

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

G:Ghost

F1:Field

F4:Field

F2:Field

F3:Field

M:Marble

P:PacMan
marbles=3representation

snapshot

generalization

representation

concepts

Fig. 2. Type and instance graph of the PacMan example

The relation between type and instance level is subject to the usual compat-
ibility conditions, i.e.,

– for each vertex o : C in the instance graph there must a vertex type C in
the type graph;

– for each edge between objects o1 : C1 and o2 : C2 there must be a corre-
sponding edge type in the type graph between vertex types C1 and C2;

– for each attribute value a = v associated with a vertex o : C in an instance
graph, there must be a corresponding declaration a : T in vertex type C
such that v is of data type T ;

2.3 Rules and Transformations

Having represented snapshots as instance graphs over a type graph built as a
representation of the game’s concepts, we are turning to the genuine core of
the approach: the specification of instance graph transformations by means of
rules. Following the idea of extracting rules from transformation scenarios, Fig. 3
shows a graph representation of the behavioral generalization illustrated in the
upper part of Fig. 1.

The generalization is achieved by focussing on the relevant subgraph in the
source state and observing its changes in the target state. But besides cutting
off context, we also abstract from the concrete attribute values replacing, e.g., 3
in G0 by m and 4 in G1 by m + 1. The resulting rules are shown in the top of
Fig. 4 and 5, with the rules for moving PacMan and Ghost in the bottom.

More formally, fixing a type graph TG, a graph transformation rule p : L → R
consists of a name p and a pair of instance graphs over TG whose structure is
compatible, i.e., vertices with the same identity in L and R have the same type
and attributes, and edges with the same identity have the same type, source,
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Fig. 3. From scenarios to rules: graph representation
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PacManPacMan’’ss rules:rules:
collectcollect has priority over has priority over movePMmovePM

f1:Field f2:Field

p:PacMan

f1:Field f2:Field

p:PacManmovePM(p)

p:PacMan
marbles=m

f1:Field f2:Field

:Marble

f1:Field f2:Field

p:PacMan
marbles=m+1collect(p)

Fig. 4. Rules for PacMan
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GhostGhost’’s rules:s rules:
killkill has priority over has priority over moveGhostmoveGhost

f1:Field f2:Field

g:Ghost

f1:Field f2:Field

g:GhostmoveGhost(g)

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghostkill(g)

Fig. 5. Rules for Ghosts
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and target. The left-hand side L represents the pre-conditions of the rule while
the right-hand side R describes the post-conditions.

But rules do also have a constructive meaning, besides being generalizations
of transformations. They generate transformations by replacing in a given graph
an occurrence of the left-hand side with a copy of the right-hand side. Thus, a

graph transformation from a pre-state G to a post-state H, denoted by G
p(o)
=⇒ H,

is performed in three steps.

1. Find an occurrence oL of the left-hand side L in the given graph G.
2. Delete from G all vertices and edges matched by L \R.
3. Paste to the result a copy of R \ L, yielding the derived graph H.

�	
����	�
����
�����	
����	�
����
����

1.1. SelectSelect rule rule p : L p : L �� RR and and occurrence occurrence ooLL : L : L �� GG
2.2. CutCut from from G  G  thethe occurrence of occurrence of LL \\ RR
3.3. PastePaste to the result a copy of to the result a copy of RR \\ LL

F1:Field

F2:Field P:PacMan
marbles=3

M2:Marble

oL

G

L Rp
p:PacMan
marbles=m

f1:Field f2:Field

m1:Marble

f1:Field f2:Field

p:PacMan
marbles=m+1

F3:Field

M1:Marble

oR

P:PacMan
marbles=4

H F1:Field

F2:Field

M2:MarbleF3:Field

f1 � F2, f2 � F1
p � P, m1 � M1

Fig. 6. Transformation step using rule collect

In Fig. 6 the occurrence oL of the rule’s left-hand side is indicated next to
the left downward arrow. The variable m representing the value of the marble
attribute before the step, is assigned value 3. The transformation deletes the
edge from PacMan P to Field F2, because it is matched by the edge from f1
to p in L, which does not occur in R. The same applies to the value 3 of the
marbles attribute of vertex P . To the graph obtained after deletion, we paste a
copy of the edge from p to f2 in R. The occurrence oL tells us where this edge
must be added, i.e., to the images of p and f2, P and F1, respectively. At the
same time, the new attribute value marbles = 3 + 1 = 4 is computed from the
memorized old value m = 3.

However, this is not the only possibility for applying this rule. Another op-
tion would be to map f1 7→ F2, f2 7→ F3, p 7→ P,m 7→ M2, collecting the
lower marble instead. Also, we could have chosen to apply the movePM rule.
That means, there are two causes of non-determinism: choosing the rule and the
occurrence at which it is applied.

The total behavior of our PacMan game is given by the set of all sequences

of consecutive transformation steps G0
p1(o1)=⇒ · · · pn(on)

=⇒ Gn using the rules of
the game and starting from a valid instance graph G0. As a simple example, we
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recall the two-step sequence in Fig. 3 which is re-generated by application of the
two previously extracted rules. Note that all graphs of a sequence must be valid
instances of the fixed type graph TG.

a:A

a:A b:B ??

a1:A

a:A ??

a2:A a1:A

������	�������	� ���
�	��
���
�	��


Fig. 7. More difficult examples

The example of Fig. 6 is not entirely representative of the problems that may
be caused by deleting elements in a graph during step 2. In fact, we have to make
sure that the remaining structure G \ o(L \R) is still a graph, i.e., that no edges
are left dangling because of the deletion of their source or target vertices. The
problem is exemplified in its simplest form by the step in Fig. 7 on the left. A
related problem is depicted on the right, where we observe a conflict between
deleting vertex a : A as required by a1 : A and preserving it as suggested by
a2 : A.

In both cases, there exist a radical and a conservative solution: The first
gives priority to deletion, deleting the vertex along with the dangling edge in
the left example and vertex a in the right example of Fig. 7. Both may lead to
surprising and undesired effects and may require additional control to restrict
rule applications to the intended cases.

The safer alternative consists in formulating standard applications conditions
which exclude the depicted situations as valid transformations. This is achieved
by the gluing conditions of the algebraic (or double-pushout) approach to graph
transformation, which provides the basis for the presentation in this text.

Next we discuss some extensions to this basic approach.

3 Advanced concepts

The phenomenon of “dangling edges” is caused by the fact that a node in a graph
may, in general, have an unknown number of connections. This is in contrast
with, e.g., the rewriting of strings where the linear structure provides exact
information about the connections of any substring. The additional complication
has led to a number of extensions of the basic approach, some of which shall be
discussed below.

3.1 Constraints

One way of solving the problem is to constrain the number of connections. How-
ever, type graphs are not expressive enough to define such restrictions. For ex-
ample, in order to model the PacMan gamebord it makes sense to require that
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each Ghost, Pacman, or Marble vertex is linked to exactly one Field vertex. Such
constraints need to be expressed by additional cardinality annotations as shown
in the type graph of Fig. 2.

More complex constraints could deal with the (non-) existence of certain
patterns, including paths, cycles, etc. They can be expressed in terms of logic
formulae or as graphical constraints. An example for the latter is given in Fig. 8.
The constraint expresses by means of a forbidden subgraph that there must
not be a Ghost and a PacMan situated at the same Field. In order to satisfy
the constraint, a graph G must not contain a subgraph isomorphic to it. In
first order logic, the same property could read ¬∃g : Ghost; p : PacMan; f :
Field. at(g, f) ∧ at(p, f).

����������������������

g:Ghost

f:Field

p:PacMan

Fig. 8. A graphical constraint

Constraints restrict the set of admissible instance graphs and can be used to
control the transformation process by ruling out transformations leading to non-
admissible graphs. This is comparable to the integrity mechanism in a data base
management system which checks the validity of constraints after each update,
but before the new state is committed.

3.2 Multi-objects

Also more complex operations, like “delete all Ghosts located on Fields directly
reachable from PacMan’s current position”, can only be specified in the pre-
sented approach if the number of reachable fields is known in advance. This is
not the case in our example. Thus, for expressing such universally quantified
operations, we have to adopt the additional concept of multi object from UML
object diagrams.

A multi object like f2 in the rule of Fig. 9 stands for the maximal set of
objects that have the specified connections to the fixed objects in the rule, in
our case all the neighboring fields of the match F2 of f1. Similarly, g : Ghost
stands for all ghosts in G located at these fields. The example shows that the
universal quantification extends smoothly to the actions of the rule, i.e., the
deletion of the ghosts.
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f2:Field f2:Field

g:Ghost
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f1:Field f2:Field f1:Field f2:Field

g:Ghost

superPM

F1:Field

F2:Field P:PacMan
marbles=3

F3:Field

G1:Ghost

G2:Ghost

F3:Field G3:Ghost

oL = {f1 � F2, p � P, 
f2 � {F1, F3},
g � {G1, G2} }

F1:Field

F2:Field P:PacMan
marbles=3

F3:Field

F3:Field G3:Ghost

p:PacMan p:PacMan

Fig. 9. Rule application with multi object

3.3 Application conditions

Generalizing the pre-defined gluing conditions of the algebraic approach, user
defined application conditions are used, for example, to ”sense” the existence or
non-existence of connections in the vicinity of the occurrence of the rule’s left
hand side. Figure 10 shows an improved rule movePM checking that there is no
marble in the place PacMan is moving to. Graphically, this is indicated by the
crossed out vertex in the left-hand side.
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oL = {f1 � F2, f2 � F1, p � P} 
violates application condition

oL = {f1 � F2, f2 � F3, p � P} 
satisfies application condition

f1:Field f2:Field

p:PacMan

f1:Field f2:Field

p:PacManmovePM:Marble

F1:Field

F2:Field P:PacMan
marbles=3

F3:Field

M1:Marble

oL

Fig. 10. Rule application with negative application condition

Intuitively, the rule is applicable at an occurrence if this cannot be extended
to the forbidden elements. That means, the applicability does not only depend
on the graph G, but also on the chosen occurrence, as indicated in the figure.
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3.4 Control conditions

Beside extensions that restrict the applicability of individual rules, global con-
trol structures lead to programmed graph transformations. Here, rules embedded
them into imperative programming constructs or a visual control flow language,
as shown in Fig. 11 where UML activity diagrams are used to express, respec-
tively, the order of rule applications to individual PacMan and Ghost vertices.

�������������������� 	
	


[success]

collect(p) movePM(p)
[failure]

[success]

kill(p) moveGhost(g)
[failure]

Behavior(p:PacMan) : Behavior(g:Ghost) :

Fig. 11. Controlling rules by activity diagrams

Special conditions [failure] and [success] are introduced to make the control
flow dependent of the (non-)applicability of rules. Another notable feature is the
possibility of passing parameters to rules. In our example it is intended that,
e.g., the order of collect and movePM operations is understood locally for any
individual PacMan vertex.

4 Further Reading

Fundamental approaches to graph transformation [13] include the algebraic or
double-pushout (DPO) approach [7], the node-label controlled (NLC) [10] ap-
proach, and the Progres approach [14] which represents the first major appli-
cation of graph transformation to software engineering [8].

The simple core model introduced in Section 2 is based on (a set-theoretic
presentation of) the double-pushout approach [7]) whose features are common
to most graph transformation approaches. Generally, we distinguish two funda-
mentally different views of graph transformation referred to as the gluing and
the connecting approach. They differ for the mechanism used to embed the right-
hand side of the rule in the context (the structure left over from the given graph
after deletion): In a gluing approach like DPO, the new graph is formed by glu-
ing the right-hand side with the context along common vertices. In a connecting
approach like NLC, the embedding is realized by a disjoint union, with as many
new edges as needed to connect the right-hand side with the rest of the graph.

This feature, which provides one possible answer to a fundamental problem,
the replacement of substructures in an unknown context, is known in software
engineering-oriented approaches by the name of set nodes or multi objects, e.g.,
Progres [14,15], a language and tool for PROgrammed Graph REwriting Sys-
tems, and Fujaba [1], an environment for round trip engineering between UML
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collaboration diagrams and Java based on graph transformation as the opera-
tional model.

Both approaches have extended the basic approach by programmed transfor-
mations, concerned with controlling the (otherwise non-deterministic) rewrite
process, as well as application conditions, restricting the applicability of individ-
ual rules, as well as structural constraints over graphs, comparable to invariants
or integrity constraints in data bases, deal with the (non-) existence of certain
patterns, including paths, cycles, etc. They are expressed as cardinalities, in
terms of first- or higher-order logic, or as graphical constraints. The latter are
also supported by AGG [9], which implements the algebraic approach by means
of a rule interpreter and associated analysis techniques.

For recent surveys on graph transformations and its applications see the
handbooks [13,4,6] the survey paper [2] and the tutorial paper [3].
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