## Inhaltsverzeichnis

| V | erwendete      | e Formelzeichen und Abkürzungen                                         | 11         |
|---|----------------|-------------------------------------------------------------------------|------------|
| 1 | Einlei         | tung                                                                    | 15         |
| 2 | Stand          | der Forschung und Technik                                               | 17         |
|   |                | inteilung der präkeramischen Polymere                                   |            |
|   |                | recursorsynthese                                                        |            |
|   |                | recursorpyrolyse                                                        |            |
|   | 2.3.1          | Vernetzung                                                              |            |
|   | 2.3.1          | Keramisierung                                                           |            |
|   |                | erstellung keramischer Materialien mittels Precursorpyrolyse            |            |
|   |                |                                                                         |            |
|   |                | yrolyse mittels Laserstrahlung                                          | 23         |
|   | 2.5.1<br>2.5.2 | Herstellung von Massivteilen                                            |            |
|   | 2.5.3          | Herstellung von Schichten                                               |            |
| • |                | · ·                                                                     |            |
| 3 |                | tzung und Lösungsmethodik                                               |            |
| 4 |                | chsdurchführung und Messmethoden                                        |            |
|   | 4.1 V          | erwendetes Probenmaterial                                               | 31         |
|   | 4.1.1          | Substrate                                                               |            |
|   | 4.1.2          |                                                                         |            |
|   |                | .2.1 Polycarbosilazanprecursor ABSE                                     | 32         |
|   |                | .2.2 Polysiloxanprecursor MK                                            |            |
|   | 4.1.3<br>4.1.4 |                                                                         | 33         |
|   |                |                                                                         |            |
|   | 4.2 Pi         | robenpräparation                                                        |            |
|   | 4.2.1          | Ansetzen des Precursor-Füller-Lösungsmittel-Systems Probenvorbehandlung |            |
|   | 4.2.3          |                                                                         |            |
|   |                | 2.3.1 Tauchbeschichtung                                                 |            |
|   |                | 2.3.2 Sprühbeschichtung                                                 |            |
|   | 4.2            | .3.3 Rakelbeschichtung                                                  |            |
|   |                | yrolyse                                                                 |            |
|   | 4.3.1          |                                                                         |            |
|   | 4.3.2          |                                                                         |            |
|   | 4.3            | .2.1 Nd:YAG-Laser                                                       | <b>4</b> 4 |
|   |                | .2.2 CO <sub>2</sub> -Laser                                             |            |
|   |                | 5.2.3 Bestrahlungsstrategie                                             |            |
|   | 4.4 U          | ntersuchungsmethoden                                                    | 53         |
|   | 4.4.1          | Substratcharakterisierung                                               | 53         |
|   | 4.4.2          | Charakterisierung der Precursorschichten                                | 55         |
|   |                | 2.1 Absorptionsmessung                                                  | 55         |
|   |                | 3.2.2 FTIR-Spektroskopie                                                |            |
|   |                | 3.2.3 Schichtdickenmessung                                              | 58         |
|   | 4.4<br>4.4.3   | 1.2.4 Charakterisierung der Füllerverteilung                            | 00         |
|   | *****          | 3.1 Thermogravimetrische Analyse mit gekoppelter FTIR-Spektroskopie     | )0         |
|   |                | 13.2 Warmebildkameraaufnahmen                                           | ان<br>دم   |
|   |                | 3.3 Hochgeschwindigkeitskameraaufnahmen                                 |            |
|   | 4.4.4          |                                                                         | 66         |
|   |                | 1.4.1 Lösemitteltest                                                    | 60         |
|   | 4.4            | 1.4.2 Absorptionsmessung                                                |            |



|    | 4.4.4.3 Infrarotspektroskopie                                | 66  |
|----|--------------------------------------------------------------|-----|
|    | 4.4.4.4 Festkörper-NMR-Spektroskopie                         |     |
|    | 4.4.4.5 Röntgendiffraktometrie                               | 68  |
|    | 4.4.4.6 Materialographische Untersuchung                     | 68  |
|    | 4.4.4.7 Mikrohärteprüfung                                    |     |
|    | 4.5 Selektive Laserpyrolyse                                  | 69  |
|    | 4.5.1 Strukturerzeugung                                      |     |
|    | 4.5.2 Strukturcharakterisierung                              | 70  |
|    | 4.5.3 Strukturfunktionalisierung                             | 71  |
| 5  | Ergebnisse und Diskussion                                    |     |
|    | 5.1 Ofenpyrolyse                                             | 73  |
|    | 5.1.1 Thermogravimetrische Analyse                           |     |
|    | 5.1.1.1 Untersuchung des Pyrolyseverhaltens von ABSE         | 73  |
|    | 5.1.1.2 Untersuchung des Pyrolyseverhaltens von MK           | 75  |
|    | 5.1.2 FTIR-Spektroskopie und Lösemitteltest                  | 76  |
|    | 5.1.2.1 FTIR-Spektren des ABSE-Precursors                    | 76  |
|    | 5.1.2.2 FTIR-Spektren des MK-Precursors                      | 80  |
|    | 5.2 Substratcharakterisierung                                | 83  |
|    | 5.2.1 Fensterglassubstrat SSG Dünnglas                       | 83  |
|    | 5.2.2 Quarzglassubstrat Suprasil®300                         | 86  |
|    | 5.2.3 Aluminiumoxidsubstrat Rubalit 708S                     | 88  |
|    | 5.3 Schichtapplikation                                       |     |
|    | 5.3.1 Beschichtungstechnik                                   |     |
|    | 5.3.1.1 Tauchbeschichtung                                    | 89  |
|    | 5.3.1.2 Sprühbeschichtung                                    | 90  |
|    | 5.3.1.3 Rakelbeschichtung                                    | 91  |
|    | 5.3.2 Optische Eigenschaften der Precursorschichten          | 93  |
|    | 5.3.3 Füllerverteilung in den Precursorschichten             | 96  |
|    | 5.4 Einflussgrößen bei der Laserpyrolyse                     | 99  |
|    | 5.4.1 Einfluss der Laserwellenlänge                          |     |
|    | 5.4.1.1 Bestrahlung mit dem CO <sub>2</sub> -Laser           | 99  |
|    | 5.4.1.2 Bestrahlung mit dem Nd:YAG-Laser                     | 103 |
|    | 5.4.2 Einfluss von Laserleistung und Vorschubgeschwindigkeit | 110 |
|    | 5.4.2.1 Messungen mit der Wärmebildkamera                    |     |
|    | 5.4.2.2 FTIR-Analyse des Laserpyrolysats                     | 115 |
|    | 5.4.3 Einfluss des sich räumlich ändernden Absorptionsgrads  | 117 |
|    | 5.4.4 Einfluss des sich zeitlich ändernden Absorptionsgrads  |     |
|    | 5.4.5 Einfluss des Substrates                                |     |
|    | 5.4.6 Einfluss des Füllermaterials                           | 125 |
|    | 5.4.7 Einfluss der Anzahl an Bestrahlungsdurchgängen         |     |
|    | 5.5 Phänomenologisches Prozessmodell                         |     |
|    | 5.6 Selektive Laserpyrolyse                                  | 139 |
|    | 5.6.1 Struktureigenschaften                                  | 139 |
|    | 5.6.2 Elektrisch leitfähige Strukturen                       | 141 |
|    | 5.6.2.1 Einfluss des Graphitfüllergehalts                    |     |
|    | 5.6.2.2 Einfluss der Laserparameter                          | 142 |
|    | 5.6.2.3 Verhalten bei Erwärmung                              |     |
| 6  | Zusammenfassung und Ausblick                                 |     |
| 7  | Summary and Outlook                                          |     |
| 8  | Literaturverzeichnis                                         |     |
| Ar | nhang                                                        | 171 |