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1 General Introduction 

 

itness, defined in the classical ecological sense, is a measure of an individual’s 

reproductive success or its success in passing its genes on to future generations. 

Estimated relative to the reproductive output of other genotypes in the same 

environment, fitness is the ultimate cause of an organism’s evolutionary success. The 

frequency with which an individual’s genotype is represented in the gene pool of the next 

generation is supposed to be the product of the individual’s survival and fecundity. 

Maximizing fitness by increasing both lifetime and fecundity should therefore be adaptively 

favored by natural selection. Consequently, unfavorable conditions that either reduce the 

possibility of survival or decrease the fecundity of an individual impair its fitness. The 

spectrum of unfavorable conditions is multifarious, spanning disadvantageous environmental 

factors, poor nutrition, competition, diseases, pathogens, predators or herbivores. In order to 

counteract such fitness-imperiling stresses, organisms are able to respond behaviorally, 

morphologically or physiologically. Such adaptive traits can either be constitutively 

manifested or expressed only when actually needed. The latter, known as phenotypic 

plasticity, describes the ability of an organism with a given genotype to change its phenotype 

in response to environmental changes.  

For plants, the attack of phytophageous insects can have detrimental effects on fitness, 

which explains the enormous variety of adaptations plants have against insect herbivores. 

Plant defenses against herbivory are generally classified into two main groups: resistance and 

tolerance. 

 

1.1 Resistance against insect-herbivory 

 Resistance is commonly defined as any plant trait that reduces the preference or 

performance of herbivores, thereby limiting the amount of damage a plant incurs (Strauss, 

Watson & Allen 2003). Constitutive traits offer plants the potential to keep herbivores away, 

whereas induced traits generally reduce the performance of attacking insects. Both 

constitutive as well as induced mechanisms can be direct or indirect, resulting in four defined 

categories which are commonly used to group resistance mechanisms of plants against insect 

herbivores. 
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Typical examples of direct constitutive resistance traits are trichomes (uni- or multi-

cellular epidermal outgrowths), thorns (sharp outgrowth from a stem other than at a node), 

spines (modified stipules or sharp branchlets found in a leaf axil or on the margin of a leaf) or 

leaf waxes. By involving a third interaction partner, plants have evolved indirect constitutive 

resistance mechanisms. Central American Acacia species, for example, are known to be kept 

free from herbivores by ants of the genus Pseudomyrmex. As a reward for this service, the 

plants provide the ants with nesting space in their hollow spines as well as with food, which is 

offered as specialized lipid-rich cells called Beltian bodies at the tips of the leaflets.  

In contrast to these constitutively expressed resistance traits, induced resistance 

responses are activated upon attack by an herbivorous insect. A well-studied direct induced 

resistance trait is the production of protease inhibitors. These proteins are able to deactivate 

both endo- and exopeptidases including proteolytic digestive enzymes of the phytophage, 

thereby decreasing the digestibility of the ingested food (Ryan 1990; Jongsma & Bolter 

1997). Herbivores feeding on transgenic Nicotiana attenuata plants silenced in the expression 

of protease inhibitors were shown to grow faster and having a higher survivorship than those 

feeding on untransformed wild-type plants (Zavala et al. 2004). Consequently, the induction 

of protease inhibitors may reduce the herbivore’s growth, most likely resulting in less plant 

damage. Indirect induced resistance mechanisms again involve a third interaction partner. The 

inducible extrafloral nectar (EFN) of Lima bean (Phaseolus lunatus), for example, has been 

recently reported to attract ants, wasps and flies. The increased presence of these insects 

reduced the amount of leaf damage of plants in which EFN availability was experimentally 

increased (Kost & Heil 2005). Likewise, the emission of volatile organic compounds (VOCs) 

following herbivory attracts arthropod predators (Kessler & Baldwin 2001) and parasitoids 

(Van Poecke, Posthumus & Dicke 2001), which may kill the herbivore and thereby limit 

damage to the plant.  

  

1.2 Tolerance to insect herbivory 

In contrast to resistance, tolerance mechanisms -- defined as all plant characteristics 

that reduce the detrimental effects of herbivore damage on plant fitness without affecting the 

herbivore (Tiffin 2000) -- have been largely neglected. Generally, tolerance is expressed as 

the degree to which plant fitness is affected by herbivore damage relative to the individual’s 

fitness in the undamaged state (Strauss & Agrawal 1999). As a consequence, tolerance can 
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only be estimated from a group of related plants as it is not possible to examine the fitness of 

an individual in both damaged and undamaged states. When damage levels are continuous, 

tolerance is measured as the slope of the linear regression between plant fitness and damage 

levels (Fig. 1). If the slope is 0, the plant is able to fully compensate for the damage (C). In 

cases where the slope is > 0, plants are 

overcompensating for herbivory (O); if the slope is < 0, 

undercompensation (U), meaning no tolerance, occurs. 

Tolerance mechanisms result from the interaction of 

traits which are either genetically or developmentally 

determined (i.e. intrinsic factors) with environmental 

characteristics (extrinsic factors) such as the availability 

of resources to support regrowth (Rosenthal & Kotanen 

1994). Among the intrinsic factors is the increased 

photosynthetic activity in remaining tissues after partial 

defoliation, which however, seems to be unaffected by 

leaf miners or phloem sap suckers (Welter 1989). 

Intriguingly, increased photosynthesis may also be necessary to support induced resistance 

traits (Karban & Baldwin 1997). Furthermore, herbivore damage may result in compensatory 

growth and activation of dormant meristems (McNaughton 1979; Paige & Whitham 1987), 

thereby allowing the plant to replace some or all tissues removed by the herbivore. Moreover, 

some plant species seem to be able to escape from herbivory by allocating increasing 

resources to the roots while aboveground herbivores are present, thereby positively affecting 

their root-shoot ratio. These belowground reserves allow the plant to regrow when the attack 

has ceased (Van der Meijden, Wijn & Verkaar 1988; Schwachtje et al. 2006). Alternatively, 

plants may respond phenologically (Marquis 1988), delaying their growth and reproduction 

when partially defoliated or damaged by herbivores.  

Fi
tn

es
s 

C 

O 

U 

Figure 1: Reaction norm 
approach for depicting the 
degree to which plant fitness is 
affected by herbivore damage. 
O = overcompensation 
C = compensation 
U = undercompensation  

Besides the given characteristics that only occur after herbivore damage and are thus 

classified as induced traits, tolerance like resistance can also result from constitutive 

mechanisms. Individuals with constitutively high root masses in relation to their shoot masses 

may be more tolerant as they already have the foundation for acquiring more nutrients to 

regrow and compensate for tissue losses. Alternatively, as photosynthetic activity of 

reproductive structures may commonly contribute more than 20% of the carbon needs of 
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developing fruits and seeds (Bazzaz, Carlson & Harper 1979), genotypes with a higher 

proportion of photosynthetic surfaces in stems and fruits may be less dependant on 

photoassimilates provided by leaves and thus more tolerant of folivory (Tiffin 2000). Any 

discussion of tolerance should include the possible interaction and interdependence of the 

different mechanisms and be aware of the fact that different kinds of damage can result in 

disparate tolerance responses even in the same species (Sadras 1996; Rosenheim et al. 1997). 

However, one may generalize tolerance as the capacity of a plant to regrow and reproduce 

despite or after herbivory.  

  

1.3 Elicitation of induced defense responses 

 While tolerance in plants remains nearly uncharacterized on the molecular level, the 

signals and signal pathways leading to herbivore resistance have been extensively studied. 

Induced resistance responses are generally initiated by primary wound signals such as 

mechanical tissue damage and the introduction of the herbivore’s oral secretions into the site 

of wounding.  

Mechanical damage has been demonstrated to lead to much weaker emissions of 

volatile organic compounds (VOCs) than damage by herbivores (Mattiacci, Dicke & 

Posthumus 1994; Paré & Tumlinson 1997). One hypothesis for this phenomenon is that plants 

are able to discriminate between a single wounding event as it is usually performed in such 

comparative studies and the continuous feeding of an herbivore. Using an artificial caterpillar 

(MecWorm), Mithöfer et al. (2005) were able to mimic the time and leaf area of herbivore-

caused tissue damage sufficiently to induce the emission of VOCs qualitatively similar to 

those known to be induced by real herbivores. In tomato (Solanum lycopersicum), mechanical 

tissue damage has been shown to systemically induce the expression of systemin (McGurl et 

al. 1992), a polypeptide exclusively found in Solanaceae. Systemin, which has been proposed 

to be one of the early signals that play a central role in tomato, has received exceeding 

attention;  however, to date it has been mainly studied in crop plants.  

Regarding the second primary wound signal, the introduction of the herbivore’s oral 

secretions into the site of wounding, constituents of the oral secretions of Pieris brassicae and 

Spodoptera exigua - ß-glucosidase and volicitin - have been demonstrated to elicit the release 

of parasitoid-attracting volatile organic compounds (Mattiacci, Dicke & Posthumus 1995; 

Alborn et al. 1997). Similarly, all measured direct and indirect resistance responses of wild 
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tobacco (Nicotiana attenuata) can be attributed to the two most abundant fatty-acid amino-

acid conjugates present in the oral secretions of the tobacco hornworm Manduca sexta (Roda 

et al. 2004). Recently, Maischak et al. (2007) were able to show that oral secretions of eight 

lepidopteran larvae exhibit ion channel-forming activities, presumably leading to intracellular 

calcium influx and depolarization of the cell membrane, both of which considered secondary 

signals of the plant.  

Such secondary signals are commonly generated after the primary signals (tissue 

damage and the introduction of the herbivore’s oral secretions into the site of wounding) have 

been perceived at the outer membranes of the damaged cell layers (Zimmermann et al. 1999; 

Maffei et al. 2004). Other secondary signals suggested to be involved in the induction of 

induced resistance responses are reactive oxygen species (Orozco-Cardenas, Narvaez-

Vasquez & Ryan 2001) and the activation of kinase cascades (Kodama et al. 2000). The 

orchestration of these secondary wound signals activates the octadecanoid-pathway via a yet 

to be fully elucidated interaction (Fig. 2). Starting with the release of linolenic acid from the 

cell membrane, this lipid-based pathway produces the plant hormone jasmonic acid (JA), 

which together with its derivatives, represents the best characterized class of signals 

mediating direct and indirect resistance responses to wounding and herbivory (reviewed in 

(Halitschke & Baldwin 2004). By silencing the expression of the lipoxygenase3 (lox3) gene 

in wild tobacco (Nicotiana attenuata), Kessler et al. (2004) were able to elegantly 

demonstrate that plants impaired in the production of JA are more susceptible to herbivores 

and even attract novel herbivore species, highlighting the key role of the octadecanoid 

pathway in the regulation of plants’ anti-herbivore resistance responses.   

Even though these signaling pathways occur locally in the damaged tissue, plants are 

well known to also show resistance responses to herbivory in distal, undamaged leaves. The 

signals mediating these so-called systemic responses have been extensively studied. 
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Figure 2: Schematic overview over the octadecanoid pathway including proposed signaling steps 
downstream of jasmonic acid which are currently under investigation in several plant species.  

 

 

1.4 Systemin(s) and the systemic wound response: a little history  

A multitude of different signals has been proposed as capable of transmitting the 

information from herbivore attack from the site of wounding to the rest of the plant. Among 

them are electrical impulses (Chessin & Zipf 1990), oligosaccharide fragments of damaged 

plant cell walls (Ryan 1987), chitin and chitosan fragments from fungal cell walls (Walker-

Simmons, Hadwiger & Ryan 1983), jasmonic acid and its derivatives (Farmer & Ryan 1990), 

the plant hormones salicylic acid and abscisic acid (Doherty, Selvendran & Bowles 1988; 

Pena-Cortez et al. 1989) as well as systemin, which has been studied in the most detail. 
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 Systemin, an 18-amino acid polypeptide, was first isolated and purified from tomato 

leaf extracts by Ryan and coworkers; they demonstrated its mobility in the phloem by treating 

fresh wounds of tomato plants with 14C-labeled synthetic systemin (Pearce et al. 1991). The 

mature peptide is processed from its larger precursor prosystemin, which is synthesized and 

processed in the vascular phloem parenchyma cells (Narvaez-Vasquez & Ryan 2004). Scheer 

and Ryan (1999; 2002) purified and identified a 160 kDa leucine-rich repeat receptor-like 

kinase (LRR-RLK) from wild tomato (Lycopersicon peruvianum) to be the systemin receptor 

(SR160). Astonishingly, cloning revealed that it was homologous to the brassinosteroid 

receptor BRI1 (Scheer & Ryan 2002). Wounding tomato leaves systemically induced 

prosystemin mRNA as well as proteinase inhibitor (PI) I mRNA (McGurl et al. 1992), and 

supplying young tomato plants with low concentrations of systemin through their cut stems 

led to the accumulation of PI I and PI II (Pearce et al. 1991). Supporting the positive 

correlation between systemin and PIs, the systemic induction of PI I and II has been shown to 

be almost completely suppressed in transgenic tomato plants silenced for the expression of 

prosystemin (McGurl et al. 1992). As a consequence, Manduca sexta larvae consumed more 

leaf material and gained three times more weight when grown on plants silenced in their 

prosystemin expression as compared to wild-type tomato plants (Orozco-Cardenas, McGurl 

& Ryan 1993). Transgenic plants overexpressing the prosystemin gene constitutively 

produced PI I and II proteins and accumulated more PIs in local and systemic leaves after 

wounding than did wild-type plants (McGurl et al. 1994). Grafting experiments using 

prosystemin-overexpressers as root stocks led to the constitutive production of PIs in wild-

type scions (McGurl et al. 1994), supporting former observations suggesting that systemin 

was the mobile wound signal. The situation changed when Howe and Schilmiller (2004; 

2005) reciprocally grafted wild-type tomato plants and jasmonic acid biosynthesis mutants 

(spr2 mutants) or wild-type tomato plants and systemin signaling mutants (spr1 mutants). 

With these elegant experiments they could show that both JA biosynthesis and the presence 

of systemin are needed in the local, damaged leaf to produce a systemic signal and hence to 

induce PIs in distal, unwounded leaves. Moreover, neither JA biosynthesis nor systemin 

seemed to be required in undamaged leaves to produce PIs. With these findings the role of 

systemin in the wound response of tomato had to be reconsidered; according to the current 

model, systemin acts at or near the site of wounding by amplifying the JA-derived mobile 

wound signal. Evidence that systemin acts upstream of JA, at the top of the octadecanoid 
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pathway, as proposed earlier by Farmer and Ryan (Farmer & Ryan 1992) is given by Chen 

and Stenzel (2003; 2006). They reported higher constitutive as well as induced JA-levels in 

leaves of plants overexpressing prosystemin compared to wild-type plants.  

 The grafting experiments performed by Howe and Schilmiller (2004; 2005) mentioned 

earlier strongly suggest that JA or a related compound is the systemic wound signal;  the 

location of OPDA biosynthesis enzymes in vascular bundles as well as the preferential 

formation of JA in the vasculature supports such a hypothesis (Hause et al. 2000; Hause et al. 

2003; Stenzel et al. 2003). Furthermore, intact phloem is required for a systemic wound 

response and the timing of the systemic response fits the rate of transport occurring in the 

phloem (Schilmiller & Howe 2005). Recently, JA-isoleucine has been shown to play an 

important role in the defense response of Nicotiana attenuata to herbivory by activating the 

production of the most effective direct resistance traits, PIs and nicotine (Kang et al. 2006). 

As these findings are supported by the work of Wang et al. (2007), who demonstrated three 

JA-amino acid conjugates formed by the action of JAR 4 and JAR 6 to induce PIs in 

Nicotiana attenuata, it is tempting to speculate that one of these conjugates might be the 

actual systemic wound signal.  

 Besides the ‘classical’, proline-rich tomato systemin described by Pearce et al. (1991), 

three other hydroxyproline-rich glycopeptides have been isolated so far from tomato 

(TomHypSys I, II and III) and described to induce the synthesis of PI proteins (Pearce & 

Ryan 2003). Interestingly, all three peptides are derived from the same, wound-inducible 

precursor, which is supposed to be synthesized through the secretory pathway, in which it is 

hydroxylated and glycosylated. The amino acid sequence of this precursor exhibited weak 

identity to the precursor of two hydroxyproline-rich glycopeptides found in tobacco plants 

(TobHypSys I and II), which are likewise potent inducers of PIs (Pearce et al. 2001) and 

therefore included in the systemin family, which is a functionally defined family of peptide 

signals that regulate defensive genes in solanaceous species (Ryan & Pearce 2003). A 

homolog to the tobacco precursor has recently been described in wild tobacco (Nicotiana 

attenuata) by Berger & Baldwin (2007), and the two encoded hydroxyproline-rich 

glycopeptides (NaHypSys I and II) were shown not to play a central role in the plant’s anti-

herbivore defense response. Also quite recently, Ryan and coworkers discovered a wound-

inducible homolog of the tomato and tobacco HypSys precursors in Petunia hybrida, which 

contains three hydroxyproline-rich glycopeptides (Pearce et al. 2007). Intriguingly, the 
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peptides do not induce resistance responses to herbivores but could be shown to activate the 

expression of defensin I, a gene known to be involved in defense responses to pathogens. A 

similar response has been observed in Arabidopsis thaliana, where a peptide called AtPep 1, 

which is derived from an inducible precursor, has been isolated (Huffaker, Pearce & Ryan 

2006).  

 Homologs of the ‘classical’, proline-rich tomato systemin have been described in three 

closely related species of the Solanaceae family: bell pepper, Capsicum annum; potato, 

Solanum tuberosum; and black nightshade, Solanum nigrum (Constabel, Yip & Ryan 1998). 

 

 1.5 Black nightshade (Solanum nigrum) as a model plant system 

The black nightshades form a complex group of plants in the section Solanum of the 

genus Solanum that are still not completely resolved taxonomically (Defelice 2003). As the 

section Solanum centering around Solanum nigrum L. is one of the largest and most variable 

species groups of the genus, it is often referred to as the Solanum nigrum complex. Causes of 

this taxonomic complexity may be the phenotypic plasticity of the Solanum species 

(particularly its vegetative features), floral and vegetative genetic variations, polyploidy 

levels ranging from diploid to octoploid, as well as inter- and intraspecific hybridization 

(Edmonds & Chweya 1997). Although black nightshades occur on most continents, the center 

of diversity appears to be South America. Interestingly, Solanum species native to South 

America are diploid, whereas all polyploid species are introduced. Conversely, species native 

to the old world are tetra- and hexaploid, and all diploids are introduced.  

 The hexaploid species Solanum nigrum has been suggested to genetically originate 

from an allopolyploidy event involving the tetraploid S. villosum and the diploid S. 

americanum or conspecific taxa (Edmonds 1979). S. nigrum, originally distributed throughout 

Eurasia, was introduced to North America, Australia, and New Zealand. A herbaceous plant, 

it prefers moist environments and dry areas where crops are under irrigation, growing as a 

pioneer plant in open woodlands, waste areas, rubbish dumps, gardens, and cultivated fields 

(Edmonds 1979; Edmonds & Chweya 1997).  

Resistance responses to insect herbivory and the underlying signal pathways have 

been nearly exclusively studied in crop plants such as tomato. An important question arising 

from this fact is whether the findings also apply to related but undomesticated species such as 

Solanum nigrum. S. nigrum may be regarded as a model system for studying plant-insect 
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interactions focusing on the plant’s responses to insect herbivory on the basis of two main 

characteristics: First, as a wild species it has never been cultivated and thus still exhibits its 

natural responses to herbivores, which is not the case for tomato and potato. Second, it 

belongs to the same genus as potato (Solanum tuberosum) and tomato (Solanum 

lycopersicum) for which several molecular tools such as microarrays or transformation 

systems to silence the gene expression are readily available. This phylogenetic proximity 

most likely allows the adoption of the mentioned methods to study S. nigrum and its 

interaction with its biotic and abiotic environment.  

 

1.6. Aim of this thesis 

 To address the question of whether the mainly crop-plant-based findings regarding 

herbivory resistance also apply to an undomesticated species, the responses of Solanum 

nigrum to attack by phytophageous insects should be studied. As systemin, of which a 

homolog has been found in S. nigrum, is known to play a central role in the wound response 

of tomato, the function of this polypeptide should be elucidated in particular. The following 

questions are addressed on detail: 

(1) What are the natural herbivores of S. nigrum in the field and is it possible to 

effectively study their interactions by developing and adopting molecular tools, 

thus establishing S. nigrum as a model plant system (manuscript I)? 

(2) How does S. nigrum respond to herbivory by a solanaceous specialist and is the 

resulting transcriptional pattern comparable to that of another solanaceous species 

(manuscript II)? 

(3) Does systemin play a crucial role in S. nigrum by mediating the plant’s direct 

resistance responses as it does in tomato (manuscript III)? And if not, 

(4) What is the actual role of systemin in S. nigrum (manuscript IV)? 
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2 Thesis outline – List of manuscripts and authors’ contribution 

 
Manuscript I  

 

Solanum nigrum: A model ecological expression system and its tools 

 

Dominik D. Schmidt, André Kessler, Danny Kessler, Silvia Schmidt, Michelle Lim, 

Klaus Gase and Ian T. Baldwin 

 

Molecular Ecology (2004) 13, 981-995 

 

This manuscript describes the establishment of Black Nightshade (Solanum nigrum) as a 

model system to study plant-insect interactions. By developing new tools and adopting tools 

that have previously been established for other solanaceous species to quantify and 

manipulate the responses of S. nigrum to herbivory, this manuscript sets the methodological 

stage for all further studies of this thesis.  

 Dominik D. Schmidt was responsible for the planning, realization and analysis of the 

experimental work. The field experiments were supported by André Kessler and Danny 

Kessler who primarily adapted the volatile measurements to S. nigrum and identified the 

insect herbivores. I optimized a Southern Blot procedure to characterize the asRuBPCase 

lines by checking for the number of inserted transgenes. The transgenic lines were generated 

by Michelle Lim who transformed S. nigrum with the pRESC2RUB vector which was 

provided by Klaus Gase. The manuscript was written by Dominik D. Schmidt, optimized 

after suggestions of Ian T. Baldwin. 
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Manuscript II 

 

Specificity in ecological Interactions. Attack from the same lepidopteran herbivore 

results in species-specific transcriptional responses in two solanaceous host plants 

 

Dominik D. Schmidt, Claudia Voelckel, Markus Hartl, Silvia Schmidt, and Ian T. Baldwin 

 

Plant Physiology (2005) 138, 1763-1773 

 

In this manuscript, the transcriptional responses of Solanum nigrum and Nicotiana attenuata 

to the attack by leaf-chewing Manduca sexta larvae are compared by means of a 10k-cDNA 

microarray. Despite some commonly regulated genes involved in resistance against 

herbivores, the responses of both species were quantitatively and qualitatively distinct from 

one another and exceeded the anticipated differences in alkaloid biosynthesis.  

Dominik D. Schmidt and Claudia Voelckel were responsible for the planning, 

realization and analysis of the Manduca sexta experiments. Markus Hartl and me conducted 

and analyzed the methyl jasmonate experiments. The writing of the manuscript was a joint 

effort of Dominik D. Schmidt and Claudia Voelckel; I contributed to the materials and 

methods section (MeJA treatment). The first draft of the article was refined after suggestions 

of Ian T. Baldwin.  
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Manuscript III 

 

Systemin in Solanum nigrum. The tomato-homologous polypeptide does not mediate 

direct defense responses 

 

Silvia Schmidt and Ian T. Baldwin 

 

Plant Physiology (2006) 142, 1751-1758 

 

In this manuscript the role of the 18-amino acid polypeptide systemin in the defense response 

of Solanum nigrum against herbivory is studied. In field and glasshouse experiments, wild-

type (WT) plants were compared to transgenic plants transformed with an inverted repeat 

prosystemin construct (IRSys) to silence the expression of the endogenous S. nigrum 

prosystemin gene. Neither the accumulation of proteinase inhibitors as a direct defense 

mechanism, nor the performance of herbivores or the levels of elicited jasmonic acid levels 

differed between WT and IRSys plants. Thus, we concluded that the tomato-homologous 

polypeptide does not mediate direct defense responses in S. nigrum.  

 I planned and realized all field and glasshouse experiments. The data evaluation 

including the statistical analyses was done by me. The manuscript was written by me and 

optimized after suggestions of Ian T. Baldwin. 

 

 

 

 

 

 

 

 

 

 



                                                                                                                    Thesis outline 14 

Manuscript IV 

 

Down-regulation of systemin after herbivory is associated with increased root allocation 

and competitive ability in Solanum nigrum 

 

Silvia Schmidt and Ian T. Baldwin 

 

Submitted to Functional Ecology (date of submission: 09/08/2007) 

 

In this manuscript, the hypothesis that the down-regulation of systemin after elicitation helps 

the plant to tolerate rather than resist herbivory was examined. Growth experiments revealed 

that both elicited wild-type (WT) plants and transgenic plants silenced in prosystemin 

expression (IRSys) had significantly more root mass than untreated WTs. IRSys plants 

produced significantly more berries than did WT competitors. Berry production of elicited 

and unelicited WT plants did not differ, but when elicited WTs were additionally treated with 

systemin, plants produced fewer berries than did unelicited WT competitors. We proposed 

that the rapid down-regulation of systemin after herbivory is associated with increased root 

allocation which allows plants to more effectively compete with conspecifics and may allow 

plants to compensate for tissue losses during herbivory 

In agreement with Ian T. Baldwin I planned and realized the experiments. I did the 

data analyses and wrote the manuscript, which was refined after suggestions of Ian T. 

Baldwin. 
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Abstract 

Plants respond to environmental stresses through a series of complicated phenotypic 

responses, which can be understood only with field studies because other organisms must be 

recruited for their function. If ecologists are to fully participate in the genomics revolution 

and if molecular biologists are to understand adaptive phenotypic responses, native plant 

ecological expression systems that offer both molecular tools and interesting natural histories 

are needed. Here, we present Solanum nigrum L., a Solanaceous relative of potato and tomato 

for which many genomic tools are being developed, as a model plant ecological expression 

system. To facilitate manipulative ecological studies with S. nigrum, we describe: (i) an 

Agrobacterium-based transformation system and illustrate its utility with an example of the 

anti-sense expression of RuBPCase, as verified by Southern gel blot analysis and real-time 

quantitative PCR; (ii) a 789-oligonucleotide microarray and illustrate its utility with 

hybridizations of herbivore-elicited plants, and verify responses with RNA gel blot analysis 

and real-time quantitative PCR; (iii) analyses of secondary metabolites that function as direct 

(proteinase inhibitor activity) and indirect (herbivore-induced volatile organic compounds) 

defences; and (vi) growth and fitness-estimates for plants grown under field conditions. Using 

these tools, we demonstrate that attack from flea beetles elicits: (i) a large transcriptional 

change consistent with elicitation of both jasmonate and salicylate signalling and (ii) 

increases in proteinase inhibitor transcripts and activity, and volatile organic compound 

releases. Both flea beetle attack and jasmonate elicitation increased proteinase inhibitors and 

jasmonate elicitation decreased fitness in field-grown plants. Hence, proteinase inhibitors and 

jasmonate-signaling are targets for manipulative studies. 

 

 
Key words: Agrobacterium-mediated transformation, herbivore-induced volatile production, 

indirect and direct defenses, oligonucleotide microarray, plant fitness, proteinase inhibitor 
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Introduction 

Molecular techniques are widely used in all biology, but their incorporation into ecological 

studies has largely been confined to the characterization of population structure and species 

distributions. As a consequence, the extraordinary advances that molecular techniques have, 

permitted most biological disciplines, namely the ability to identify the genetic basis of a 

biological phenomenon and manipulate it, have yet to be realized in ecology. Many reasons 

underlie the nonparticipation of ecologists in the genomics revolution, but the limited 

availability of appropriate model systems has played an important role.  Molecular tools 

developed for one model system can be difficult to transfer to other systems without 

substantial investment in technique development. Most techniques have been developed for 

agronomically and economically important organisms and cannot be readily applied to wild 

relatives. Transformation systems, in particular, can be difficult to use with near relatives. 

Agrobacterium-mediated gene transfer protocols are available for a number of higher plants 

and fungi, and allow the manipulation of the expression of genes mediating ecological 

interactions if these transformation systems have been adapted for native species. Plants and 

herbivores account for the majority of all higher species (Strong et al., 1984), and their 

interactions structure many of the planet’s biological processes. The transformation of 

autotrophs allows for the ‘bottom-up’ manipulation of ecological interactions and thereby 

provides a powerful tool for studying community and ecosystem processes. 

Once the ability to manipulate the expression of individual genes in a native species is 

available, the next task is to decide which genes to manipulate and how to interpret the 

responses to the manipulations. Microarrays allow biologists to examine the expression of 

hundreds of genes simultaneously, and their use in combination with elicitation studies 

provides a powerful means of identifying ‘suspect’ genes relevant for ecological interactions 

(Hui et al., 2003; Korth, 2003). Alternatively, various differential display procedures 

(Voelckel, Baldwin, 2003) allow researchers to ‘ask the organism’ to identify transcripts 

relevant in a given ecological interaction. Once a gene or a suite of genes has been selected 

for manipulation, the next challenge lies in interpreting the fitness consequences of the 

manipulation. Laboratory bioassays are not likely to provide a full functional understanding 

of many traits elicited by biotic interactions as is illustrated by the traits mediating plant-

herbivore interactions.  
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Plants are known to recruit components of their community, as is graphically 

illustrated by the elicitation of indirect defenses (volatile organic compound [VOC] 

emissions, extrafloral nectar production, etc.) that plants use to enlist the natural enemies of 

herbivores in their defense against herbivores. A functional understanding of these complex 

responses is possible only in the context of the selective forces under which these responses 

evolved, namely their natural environments. Moreover, ecologists have long known that 

competition from other plants and herbivore pressure represent the two most important 

selective forces determining relative plant fitness in natural habitats (Begon et al., 1996). As a 

consequence, traits mediating competitive ability and herbivore resistance are likely 

intertwined, and understanding the genetic basis of these responses will require experimental 

manipulations in natural environments. Lastly, since environmental performance is a whole-

plant trait best measured by various surrogates of Darwinian fitness (seed set, male 

reproductive success), an understanding of how the expression of a gene product contributes 

to a plant’s Darwinian fitness is required. 

The choice of an ecologically relevant organism is crucial for the study of plant-

environment interactions. Adaptive responses are mediated by complex polygenic traits 

(Simms, Rausher, 1992), and because agricultural plants have long been under intense 

selection for particular yield-enhancing traits, genetic associations mediating adaptive traits 

are likely to have been altered during agricultural selection and hence are difficult to interpret 

in these plants. We introduce a suite of molecular tools for the native plant Solanum nigrum 

that should facilitate the identification and manipulation of the genes that mediate these 

complex environmental responses. S. nigrum was selected not only because of its 

phylogenetic proximity to the agricultural species tomato and potato for which substantial 

genetic tools are available, but also because its particular natural history makes it ideal for 

studying the interaction of competition and herbivore resistance. S. nigrum is attacked by 

various herbivores from different feeding guilds and grows in association with many other 

species. As an annual, it colonizes nitrogen-rich agricultural and disturbed habitats at a wide 

range of altitudes throughout its pan-arctic distribution (Edmonds, Chweya, 1997).  

If S. nigrum is to become a model ecological system, a minimum number of molecular 

tools are necessary. Most important, it must be readily transformable so that hypotheses about 

the ecological function of particular genes can be falsified. Here, we present such a 

transformation system for S. nigrum using an antisense (as) construct of the photosynthetic 
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gene RuBPCase. cDNA libraries of environmentally elicited plant tissues provide a means of 

cloning genes and microarrays allow biologists to examine the expression of hundreds of 

genes simultaneously. Here we present such a library and a 789-oligonucleotide microarray, 

representing 558 genes of ecological interest. We analyze traits thought to be important for 

plant performance that are quantifiable in complex environments and offer a means of 

measuring their correlation with S. nigrum’s Darwinian fitness. We have selected a direct 

defense and an indirect defense for the analysis. Proteinase inhibitors (PIs) are among the 

best-studied induced direct defense chemicals in plants (Heath et al., 1997; Jongsma et al., 

1994; Koiwa et al., 1997; Ryan, 1990), which function by inhibiting particular digestive 

proteinases of herbivores, such as chymotrypsin and trypsin. High PI content has been found 

to reduce herbivore growth in plants that were transformed with heterologous PI genes 

(Rahbe et al., 2003; Xu et al., 1996). (Xu et al., 2001) characterized two PIs of the pin2 

family (SaPIN2a and SaPIN2b) in S. americanum, a species belonging to the taxonomically 

diverse S. nigrum group (Edmonds, Chweya, 1997). We isolated the SaPIN2b homologue 

from S. nigrum (SnPIN2b) and used it to verify the responses observed on the array with a 

RNA-gel blot and real-time quantitative polymerase chain reaction (qPCR). We present a 

technique for quantifying the herbivore-induced VOC emissions from plants and illustrate its 

use with measurements from field-grown plants. VOCs are known to attract predators to the 

herbivore-damaged plant and therefore play a key role in plant-insect interactions (Baldwin et 

al., 2002; Dicke et al., 2003; Kessler, Baldwin, 2001). 

 

Materials and Methods 

Plant growth 

The hexaploid Solanum nigrum L. inbred line, Sn30, of seeds collected from the field site in 

Jena, Germany (voucher specimens of the Sn30 line are deposited in the Max Planck Institute 

for Chemical Ecology branch of the Herbarium Haussknecht [JE], Jena) was used in all 

experiments. Seeds were incubated in 3.5mM Ca(NO3)2 overnight at 4°C and germinated in a 

peat-based substrate with clay additions (Tonsubstrat). Plants were grown in individual 400-

mL pots for 3 weeks in the greenhouse (26 °C / 16 h light; 25 °C / 8 h dark). After 5 days of 

acclimatization to outside conditions, plants were randomly planted into monoculture plots at 

the experimental field site. The site is a former agricultural field with alluvial loam as 

substrate and located north of Jena, Germany. For the greenhouse experiments, plants were 
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grown in 2 L pots with supplemental lighting from 400 W Na-vapour HID lamps and watered 

once a day. 

 

Agrobacterium-based transformation 

A fragment of the Nicotiana  attenuata gene for RuBPCase (Hermsmeier et al. 2001) was 

PCR amplified. After digestion with XhoI and BstEII the resulting fragment (323 bp) was 

cloned in pRESC20 (Zavala et al. 2004), yielding the transformation vector pRESC2RUB 

(10.0 kb) which was used for the transformation of S. nigrum. 

S. nigrum seeds (inbred line Sn30) were used for transformation. Seeds were sterilized 

for 5 min in a 5-mL aqueous solution of 0.1 g dichloroisocyanuric acid (Sigma) with 50 µL of 

0.5 % (v/v) Tween-20 (Merck). Seeds were washed three times with sterile water and 

incubated for 3 days at 4 ºC in an aqueous solution of 3.5mM Ca(NO3)2.4H2O (Merck). 

Subsequently, seeds were washed 3 times with sterile water and transferred onto a 

germination medium containing Gamborg’s B5 with minimal organics (Sigma) and 0.6% 

(w/v) phytagel (Sigma). The plates were maintained in a growth chamber (Percival) at 

26ºC/16h light with 155 µm/m2/s PAR at shelf height and 24ºC/8h dark. Agrobacterium 

tumefaciens strain 4404 was maintained and cultivated for transformation as described in 

Krügel et al. (2002). Hypocotyls of sterile 1-week-old seedlings were excised with a scalpel 

dipped into the Agrobacterium suspension, and co-cultivated as described in Krügel et al. 

(2002). Within a month, explants on callus induction media developed calli followed by green 

shoot primordia and shoots, so that sub-culture onto maturation media (described in Krügel et 

al. 2002) was necessary only until plantlets formed. Plantlets were subsequently sub-cultured 

onto maturation media, which also served as rooting media in this case, until roots appeared. 

Further selection of the putatively transformed plants, including segregation analysis of T1 

plants using germination bioassays on hygromycin-containing media, is described in Krügel 

et al. (2002). 
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Microarray hybridization and analysis 

Pooled leaf samples were ground under liquid nitrogen and total RNA was extracted with TRI 

REAGENTTM (Sigma) according to the manufacturer’s instructions. The herbivore-infested 

test samples were labeled with Cy3 and the corresponding control (reference) samples with 

Cy5 according to the procedure described in (Halitschke et al., 2003). The labeled samples 

were hybridized to the microarray (789 50-mer oligonucleotides spotted onto an epoxy-coated 

glass slide; Quantifoil Microtools) according to the published procedure (Halitschke et al., 

2003). 

An Affymetrix 428™ Array Scanner (Affymetrix) was used to scan the hybridized 

microarrays with sequential scanning for Cy5 cDNA and then for Cy3-labeled cDNA at a 

maximum resolution of 10 µm/pixel with a 16-bit depth. The images were evaluated with the 

AIDA IMAGE ANALYZER (Raytest Isotopenmeßgeräte GmbH) software. Each image was 

overlaid with a grid to assess the signal strength (quantum level = QL) for both dyes from 

each spot. The background correction was calculated with the ‘non spot’ mode of the AIDA 

software package. 

The microarray-specific normalization factor was calculated based on the Cy5 / Cy3 

total fluorescence ratio (Halitschke et al., 2003). The ratios of normalized fluorescence values 

for Cy3 and Cy5 of each individual spot (expression ratio = ER) and the mean of the four 

replicate spots for each cDNA were calculated. A transcript was defined as being 

differentially regulated, if the following three criteria were fulfilled: (i) the average 

expression ratio for the 4 spots exceeded the thresholds (0.67 and 1.5); (ii) the individual 

expression ratios were significantly different from 1, as determined by a t-test; (iii) the 

combined signal fluorescent intensity from both Cy3 and Cy5 averaged over the 4 spots was 

> 1000 QL. A complete list of all signal ratios (± SE) and details on all spotted genes is 

available from the authors. To evaluate these criteria, we hybridized two microarrays with the 

same cDNA pools and found that 84% of the genes had the same regulation (Heidel, Baldwin, 

2004). 

 

RNA gel blot analysis 

RNA samples (20µg) were size-fractionated by 1.2% (w/v) agarose formaldehyde gel 

electrophoresis and capillary blotted onto a nylon membrane (GeneScreenPlus; NEN-

DuPont) as described in the manufacturer’s instructions. Ethidium bromide staining of the gel 
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prior to blotting revealed rRNA bands, which served as the loading control. After blotting and 

UV-crosslinking, 32P-labeled probes specific for PIN2b were used for detection. The probe 

for PIN2b was obtained by PCR of S. nigrum cDNA with primers specific for SaPIN2b from 

S. americanum (Xu et al., 2001). This fragment was used to screen a S. nigrum leaf cDNA 

library (Lambda ZAP II kit, Stratagene), and the longest resulting PIN2b sequence (679 bp; 

SnPIN2b; AY422686) was used as a probe to detect PIN2b transcripts. 

 

Real-time quantitative PCR (qPCR) 

Total RNA was reverse transcribed into cDNA using SuperScriptTM II RNaseH- Reverse 

Transcriptase (Invitrogen) according to the manufacturer’s instructions. The amount of cDNA 

template used per well was reverse transcribed from 10 ng total RNA; each sample was 

replicated three times. The following sequences were used for the design of primers specific 

for PR-1, SnPIN2b, psbA and RuBPCase: Lycopersicon esculentum PR-1 (Tornero et al., 

1997), S. nigrum PIN2b (see above), S. nigrum photosystem II D1 protein (Zhu et al., 1989) 

and L. esculentum RuBPCase LESS17 (McKnight et al., 1986). 18S RNA (template for 

primers: S. tuberosum gene for 18S RNA, GenBank Accession no. X67238) was used for 

quantitative normalization. The ABI PRISM® 7700 Sequence Detection System (1997) was 

used for the SYBR Green I-based assay. The qPCRTM Core Kit for SYBR® Green I 

(Eurogentec) was used according to the manufacturer’s instructions with the following cycler 

conditions: 10 min at 95°C; 40 cycles: 30 s at 95°C and 30 s at 60°C. To ensure the 

specificity of the PCR, a melting curve analysis was conducted using the ABI PRISM® 7700 

Dissociation Curve Software. To detect asRuBPCase transcripts amplicons specific for the 

as-construct were designed ((Halitschke et al., 2003). The assay using a double dye-labeled 

probe was performed on an ABI PRISM® 7700 Sequence Detection System (qPCRTM Core 

Kit, Eurogentec) with 18S RNA for normalization (TaqMan® Ribosomal RNA Control 

Reagents, Applied Biosystems). The relative expression of the target genes was determined 

by using standard curves (Applied Biosystems 1997).  

 

Isolation and blotting of genomic DNA 

Plant genomic DNA was prepared from leaves of S. nigrum using CTAB (Reichhardt, 

Rogers, 1994). DNA samples were restriction digested with EcoRV, size-fractionated by 0.8 

% agarose gel electrophoresis, and Southern blotted onto a nylon membrane with high-salt 
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buffer (Brown, 1995). The blot was analyzed with 32P-labelled probe specific for the 

hygromycin resistance gene (hph). 

 

Plant treatments 

MeJA-induction: We applied 250 µg of methyl jasmonate (MeJA; Sigma) in 20µL lanolin 

(Sigma) to the stem of the 5-week-old plants (n = 62) above the third leaf node. To exclude 

possible lanolin effects, we treated control plants (n = 55) with 20µL lanolin.   

Flea beetle damage: Flea beetles (Epitrix pubescens) were abundant at our field site. To 

compare uninfested control plants with flea-beetle-infested plants, we sprayed the controls (n 

= 28) with the pyrethroid-based insecticide Spruzit (0.1 %, Neudorff) and the infested plants 

(n = 31) with water directly after planting each day until tissue was harvested for microarray 

and PI analysis. The average flea beetle load of the water-sprayed plants for the duration of 

the experiment was ~ 40 adults per plant compared with 1-5 adults per plant for pyrethroid-

sprayed plants. In a comparable field experiment, Baldwin (1998) detected no influence of 

pyrethrin treatment on inducible defences (nicotine) in the Solanaceous plant, Nicotiana 

attenuata.  

For the microarray analysis, we harvested and pooled fully expanded leaves of eight 

individual plants 48h after exposure to flea beetles, flash-froze them in liquid nitrogen, and 

stored the leaf samples at –80°C until RNA extraction. For the PI analysis, a systemic leaf 

near the youngest node of all control and elicited plants was harvested 3 days after induction 

(MeJA or flea beetle), flash-frozen in liquid nitrogen, and stored at –80°C until protein 

extraction.  

Herbivore comparison: Leptinotarsa decemlineata originated from wild populations on S. 

tuberosum, Acherontia atropos, from a laboratory population reared on S. nigrum.  To 

achieve approximately the same leaf area damage among herbivore treatments, we placed two 

L. decemlineata adults or two second-instar A. atropos larvae on individual 5-week-old plants 

(five replicates per treatment). After 24h of continuous feeding, we collected VOCs from the 

differentially treated plants (see VOC analysis). 
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Trypsin-PI analysis 

Harvested leaves were ground in liquid nitrogen. Proteins were extracted according to the 

protocol used for Nicotiana attenuata (Van Dam et al., 2001) and protein content was 

measured by the method of (Bradford, 1976) with IgG (Sigma) as standard. We determined 

the activity of trypsin inhibitors by the radial immunodiffusion assay (Jongsma et al., 1993). 

A series of soybean trypsin inhibitor (STI, Sigma) solutions was used to obtain a reference 

curve. Trypsin-PI activity is expressed as nmol/mg of total protein. 

 

VOC analysis 

In an open-flow trapping system, VOCs of one fully-expanded stem leaf were collected (see 

Fig. 3A). To confine insects to a single leaf and to trap volatiles from the same leaf, leaf and 

insects were enclosed in 400-mL polystyrene chambers fitted with holes at both ends. Air was 

pulled through the chamber at 450-500 mL min-1 (measured by a mass flow meter: Aalborg 

Instruments) and subsequently through a charcoal air-sampling trap (ORBOTM-32; 

SUPELCO) by a portable vacuum pump. Each charcoal trap was spiked with 300 ng tetraline 

as an internal standard (ISTD) for quantification, eluted with 750µL dichloromethane, and 

analyzed by GC-MS according to (Halitschke et al., 2000).  

 

Results 

Herbivore community 

Fig. 1: Herbivores on 
Solanum nigrum: (A) 
Colorado potato beetle 
(Leptinotarsa decemlineata 
Say); (B) flea beetle (Epitrix 
pubescens Koch); (C) cicada  
(Macrosteles sexnotatus 
Fallèn); (D) mirid bug 
(Lygus wagneri Remane); 
(E) pentatomid bug 
(Dolycoris baccarum 
Linnè); (F) bean aphids 
(Aphis fabae Scopoli) and 
syrphid fy. 
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Table 1: List of herbivore species observed feeding on Solanum nigrum in experimental field plots in Jena, 
Germany, during two growing seasons. Species are classified by feeding guild (C- leaf chewing, PP-piercing 
sucking on phloem, PM- piercing sucking on mesophyll) and whether they are specialized on Solanaceous 
plants.  

Species Order Family 

Feeding 

guild Specialization 

Epitrix pubescens  Coleoptera Chrysomelidae C Specialist 

Leptinotarsa 

decemlineata  Coleoptera Chrysomelidae C Specialist 

Barypeithes pellucidus. Coleoptera Curculionidae C Generalist 

     

Plutella xylostella Lepidoptera Plutellidae C Generalist ? 

     

Lygus pratensis Heteroptera Miridae PM Generalist 

Lygus rugulipennis Heteroptera Miridae PM Generalist 

Lygus wagneri  Heteroptera Miridae PM Generalist 

Stenodema sericans  Heteroptera Miridae PM Generalist 

Dolycoris baccarum Heteroptera Pentatomidae PM Generalist 

Holocostethus vernalis Heteroptera Pentatomidae PM Generalist 

Corizus hyoscyami Heteroptera Rhopalidae PM Generalist 

     

Philaenus spumarius Auchenorrhyncha Cercopidae PP Generalist 

Balclutha punctata Auchenorrhyncha Cicadellidae PP Generalist 

Evacanthus interruptus Auchenorrhyncha Cicadellidae PP Generalist 

Empoasca spec. Auchenorrhyncha Cicadellidae PP Generalist 

Eupteryx aurata Auchenorrhyncha Cicadellidae PP Generalist 

Macrosteles sexnotatus Auchenorrhyncha Cicadellidae PP Generalist 

     

Aulacorthum solani 

langei  Sternorrhyncha Aphididae  PP Generalist 

Aphis fabae Sternorrhyncha Aphididae PP Generalist 
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During the 2002 and 2003 growing seasons, we sampled different native and planted 

populations of Solanum nigrum near Jena for insects. In 2002, the main collection sites were a 

planted population in Jena-Isserstedt (~100 plants) and native and planted populations in 

Jena-Nord (~500 plants); 2003 specimens were collected mainly from a planted population 

(~140 plants) on the Jena/Beutenberg-Campus. Populations were sampled at least once a 

week from May to September of each year. We classified insects as being herbivores on S. 

nigrum only if the adult insects or their larvae were repeatedly observed to feed on S. nigrum 

in both years (Table 1). Many additional insect species were observed on the plants, but only 

a small subset was observed to consistently feed on this plant. For example, only 3 of at least 

24 Coleopteran species repeatedly found on the plants were classified as S. nigrum 

herbivores. The phytophagous insects belong to different groups according to their feeding 

behavior and host-plant specialization. Two Solanaceous specialists, both leaf-chewing 

beetles, namely the Colorado potato beetle L. decemlineata and the flea beetle E. pubescens, 

were repeatedly found on S. nigrum (Fig. 1). The flea beetles infested the plantation and 

native S. nigrum plants heavily throughout 2002 in Jena-Nord. L. decemlineata appeared in 

August, having dispersed from small potato fields. In addition to the leaf-chewing species, we 

found a variety of piercing-sucking insects, including bugs, cicadas, and aphids. Aphis fabae 

colonized S. nigrum plants from May until September. Later in the season (July/August) 

mirid bugs of the genus Lygus were the most abundant herbivores. The rich herbivore fauna 

attracted a large variety of parasitoids and predatory species [syrphids (Fig. 1F), chysopids, 

coccinellids, etc]. 

 

Transformation 

We developed an Agrobacterium-based transformation procedure for S. nigrum, which 

requires approximately 5-6 months from the transformation to the production of T0 plants 

bearing mature fruit. Transformation and regeneration of plantlets (2 cm in size) that can be 

transferred into soil requires 2 months. Callus generation in S. nigrum occurred at a lower rate 

than it does in Nicotiana attenuata, but the calli that did generate, did so at a higher rate (M. 

Lim unpublished results). Short tissue culture times are helpful in reducing somaclonal 

variation, which limits the production and utility of transgenic plants (Beaujean et al., 1998). 

In comparison to the published S. nigrum protoplast transformation procedure using 
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Agrobacterium rhizogenes (Wei et al., 1986), our protocol proved to be more efficient in the 

regeneration of plants. Also, the use of Ri-based vectors increases the frequency of 

phenotypically abnormal and infertile plants in comparison to the T-DNA based vectors used 

here (Davey et al., 1987). Hygromycin resistance (hph) proved to be a reliable selectable 

marker that could be incorporated into the germination media and subsequently allowed 

seedlings to be rapidly selected. The efficiency of the procedure is high (Fig. 2 B inset): 19 of 

the 22 haphazardly selected asRuBPCase lines (86 %) could be verified as harboring the 

transgene by means of antibiotic selection and PCR. Remarkably, the transgenes in the 

hexaploid S. nigrum line segregated as in a diploid, in accordance with findings for 

transgenes in the tetraploid Arabidopsis suecia (Lawrence & Pikaard 2003), indicating that 

chromosome 

pairing occurs among homologues. For further characterization, we selected 10 T1 lines and 

examined them by DNA gel blot analysis (four lines are shown in Fig. 2A). All lines 

contained the transgene, and 2 of the 10 lines tested contained the transgene as a single copy 
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Fig. 2: Characterization of asRuBPCase S. nigrum lines. (A) DNA gel-blot analysis 
of three as-RuBPCase T1 lines (as1, as2, as3, as4; three replicates each) and one 
wildtype, untransformed line (wt). Genomic DNA was digested with EcoRV and 
the blot was hybridized with a probe specific for the hygromycin resistance gene 
(hph). The lines as1 and as2 have single copy insertions of the transgene, while as3 
has two copies and as4 has multiple copies. The wt DNA is shown as a negative 
control. (B) Summary of transformation efficiency. Twenty-two independent lines 
were examined in detail, 19 were found to be transformed as verified by antibiotic 
selection and PCR. (C) Relative expression of asRuBPCase (lower panel) and 
RuBPCase (upper panel) in as-lines (as1-as4) and wt, as determined by real-time 
qPCR. The as-lines showed expression of the as-transcript in different amounts and 
had reduced amounts of RuBPCase transcripts in comparison to the amounts 
measured in wt plants (r = -0.549, P = 0.0326). Transformation clearly resulted in 
differential silencing of the endogenous RuBPCase transcripts. 



28     Manuscript I 
 

insertion. Real-time qPCR supported the successful incorporation of the transgene into S. 

nigrum´s genome (Fig. 2C). As expected no antisense (asRuBPCase) transcripts were 

detected in wildtype (wt) plants, whereas these transcripts were abundant in the transformed 

lines. The quantity of asRuBPCase-transcripts in transformed lines correlated negatively with 

the quantity of RuBPCase-transcripts (Pearson´s correlation coefficient r = -0.549, P = 

0.0327), demonstrating that the transformation had successfully reduced the expression of this 

important photosynthetic gene.  

 

Microarray analysis 

Results of the oligonucleotide microarray analysis are summarized in Fig. 3 and the complete 

list of all regulated genes, their expression ratios, and annotations can be obtained from the 

authors. The hybridization compared E. pubescens-infested plants with plants treated with 

insecticide to protect from damage by flea beetles. We found a total of 155 genes to be 

significantly regulated (27 % of 568 genes on the microarray). The regulated genes were 

assigned to different putative functional categories (Fig. 3A). Several genes involved in the 

biosynthesis of defense-related secondary metabolites were downregulated (tropinone 

reductase, TRII; phenylalanine ammonia lyase, PAL). A suite of PI genes were strongly 

upregulated (SaPIN2a, SaPIN2b, pin2, PI-WuSP), which correlated with the observed 

increase of trypsin-PI activity in flea beetle-infested plants (Fig. 4C). Amongst defence-

related genes, we found an α-dioxygenase (PIOX; cv57.4) to be upregulated, in addition to 

several pathogenesis-related proteins (PR-1, PR-2, PRP4, PRP5, PRP-6, PRp27). 

Photosynthesis-related genes were generally downregulated (e.g. different subunits of 

RuBPCase). Genes involved in defense-signaling processes were strongly upregulated in flea 

beetle-infested plants (octadecanoid pathway: lipoxygenases LOX; alleneoxide synthase AOS; 

12-oxophytodienoate reductase opr). The microarray results were verified by RNA gel blot 

analysis with a SnPIN2b probe and real-time qPCR for the genes SnPIN2b, PR-1, and psbA 

(Fig. 3 B-E). 
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Proteinase inhibitors 

We assayed systemic leaves of MeJA- and flea beetle (E. pubescens)-infested plants for their 

trypsin-PI content. Greenhouse-grown plants showed a significant increase in trypsin-PI 

activity (Student´s t-test, t = -15.239, P = 0.001) after treatment with 250µg MeJA (Fig. 3A). 

A similar increase was found in field-grown plants (Fig. 3B; Student´s t-test, t = 5.301, P < 

Fig. 3: Expression of S. nigrum genes in response to attack from flea beetles, Epitrix pubescens, by 
microarray, RNA gel-blot, and real-time quantitative PCR analysis (C = control, FB = flea-beetle-
infested). Microarray analysis revealed gene regulation in different categories and independent gel-
blot and real-time PCR analyses verified expression patterns of individual genes from the array. The 
expression ratios (normalized mean Cy3/Cy5 ratio) for three categories (defense, photosynthesis, 
signaling) from an array hybridized with fluorescently labeled cDNA from attacked and unattacked 
plants are depicted. Inset  table (A) summarizes the numbers of up- and down-regulated genes in the 
categories (see Supplemetary Table 1 for a complete list of regulated genes and gene descriptions). 
Arrows identify genes used for verification of the expression data (panel B-E). (B) RNA gel blot 
analysis hybridized with an SnPIN2b probe (18S RNA is shown as a control for equal loading). (C-E) 
Real-time qPCR for the genes (C) SnPIN2b, (D) PR1, and (E) psbA. The expression level in the 
control sample equals 1. 
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0.001), but the constitutive trypsin-PI-levels of field plants were higher than those of 

greenhouse plants at a similar developmental stage. Trypsin-PI-levels in field-grown S. 

nigrum plants were significantly higher in response to attack from the naturally occurring 

herbivore, E. pubescens (Fig. 3B; Student´s t-test, t = 2.397, P = 0.0199). The increase of PIs 

was similar in MeJA-elicited and flea beetle-infested plants. 

 

Volatile organic compounds 

In a field experiment, we collected VOCs emitted from plants in response to attack from 

phytophagous insects. We used an open-flow trapping system (Fig. 5A), which allowed us to 

synchronously sample all experimental replicates and to maintain the sampled leaves under 

physiological conditions. We allowed two herbivore species (L.  decemlineata and A. 

atropos) to feed separately on S. nigrum for 24h and compared the composition of VOCs 

trapped with those trapped from uninfested control plants. Emissions of several compounds, 

ranging from monoterpenes (e.g. 3-carene, β-myrcene, +/-limonene) to green- leaf volatiles 

(cis-3-hexenyl acetate, cis-3-hexen-1-ol) and sesquiterpenes (longifolene, trans-β-

caryophyllene), was increased in insect-attacked plants (Fig. 5B).  

Fig. 4: Trypsin-PI protein levels (mean ± SE) in MeJA-treated (250 
µg/plant) and flea beetle-infested plants. (A) Greenhouse-cultivated 
S. nigrum plants, MeJA-treated; (B) field-grown S. nigrum, MeJA-
treated; (C) field-grown S. nigrum, flea beetle-infested. All 
treatments significantly increased Trypsin-PIs in the leaves of S. 
nigrum. Trypsin-PI-levels correlated with expression of Trypsin-PI 
genes (Fig. 3A, B, G). 
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Fitness 

We evaluated the fitness consequences of MeJA-elicitation under field conditions in the 

plants previously assayed for trypsin-PIs. S. nigrum is extremely plastic in its growth form 

and is able to adjust its morphology to diverse conditions. In botanically precise terminology, 

the growth shape varies from decurrent with plagiotropic to fastigiate branching to excurrent  

with orthotropic branching. Plant size at reproductive maturity varies from 5 cm to over 1 m. 

We manipulated plant size in a greenhouse experiment by planting S. nigrum into different 

sized pots and found that the dry biomass correlated strongly with the number of fruits 

produced (R2 = 0.665). Pot size was used to manipulate above-ground biomass, but also likely 

influenced the root architecture and biomass and the available rooting space may 

fundamentally influence plant fitness. In the field, we did not find morphologically detectable 

changes in response to a single elicitation with MeJA, nor was the number of flowers 

produced (data not shown) significantly influenced by elicitation. However, fruit number and 

Fig. 5: Volatile organic compounds (VOCs) released in response to attack from different 
herbivore species. (A) VOCs were collected from 15 field-grown plants, using an open-flow 
trapping system. (B) Representative Total Ion Chromatograms of the headspace volatiles eluting 
from a GC column of an undamaged leaf from an undamaged Solanum nigrum plant (control), a 
leaf damaged by Leptinotarsa decemlineata, and a leaf damaged by an Acherontia atropos 
hornworm (from separate plants). The labels represent an unknown monoterpene (1), 3-carene 
(2), β-myrcene (3), +/-limonene (4), unknown compound (5), cis-3-hexenyl acetate (6) cis-3-
hexen-1-ol (7), longifolene (8), trans-β-caryophyllene (9), unknown sesquiterpene 1 (10), 
unknown sesquiterpene 2 (11). 
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seed production differs significantly between induced and uninduced plants. MeJA-treated 

plants produced ~ 40 % fewer fruits than did control plants (Fig. 6), suggesting that MeJA-

elicited responses result in large fitness costs for an individual plant.  

Fig. 6: Fitness estimates of S. 
nigrum. (A) Fruit number: 
Comparison of MeJA-elicited vs. 
control plants. Fruit numbers 
were significantly lower in plants 
that received a single treatment of 
250 µg MeJA (Student´s t-test, t = 
3.256, p = 0.0038). One fruit 
contained 77 ± 1.45 (SEM, n = 
33) seeds; hence control plants 
produced approximately 130,000 
seeds, while elicited plants 
produced 80,000 seeds per plant. 
(B) Fruit number is linearly 
correlated with the above-ground 
dry mass of greenhouse-grown 
plants. Different plant sizes were 
obtained by growing plants in (1) 
1-L pots, (2) 2-L pots, or (3) 3-L 
pots. 

 
Discussion 

To facilitate the identification of genes mediating responses to ecological interactions, and to 

allow for the manipulation of their expression, we present the following tools for the Solanum 

nigrum expression system: (i) an Agrobacterium-based transformation system; (ii) an 

oligonucleotide microarray, enriched with ecologically relevant genes; (iii) measures of direct 

(PIs) and indirect defences (VOC emission) under both field and laboratory conditions; and 

(iv) measures of Darwinian fitness. These tools have been optimized to analyze responses that 

are rapidly elicited by ecological interactions. We illustrate their utility by analyzing 

responses to attack by a native herbivore of S. nigrum and compare the elicited responses 

with those elicited by MeJA treatment. The analysis links changes in transcript abundance 
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with phenotypic changes, which, in turn, are correlated with changes in the fitness of plants 

grown under field conditions. 

An initial survey of the differential gene expression of S. nigrum revealed a large-

scale change in the plants’ transcriptome in response to flea beetle attack: 27% of the 

monitored genes showed a significant change in expression pattern. Genes involved in 

important primary processes, such as carbon fixation and metabolism, were largely down-

regulated, while defence genes, including genes involved in defence-related signalling, were 

largely upregulated. The octadecanoid signalling cascade with its key compound, jasmonic 

acid (JA), is known to play an important role in triggering many of the insect-induced 

responses of a plant (Blee, 2002; Farmer et al., 2003). Consistent with a regulatory role for 

oxylipins in the elicitation of defense-related genes in S. nigrum, oxylipin biosynthetic 

enzymes  (AOS, allene oxide synthase; LOX, lipoxygenase; OPR, 12-oxophytodienoate 

reductase) were strongly upregulated, as were the transcripts of the JA-elicited PI defence 

genes (e.g. SaPIN2a, SaPIN2b, pin2).  PIs are known to adversely affect the performance of 

herbivorous insects (Rahbe et al., 2003; Xu et al., 1996), and the causal associations among 

JA signalling, PI elicitation, and insect resistance were recently established with Nicotiana 

attenuata plants in which JA signaling was silenced by expressing LOX-H3 in an antisense 

orientation (Halitschke et al., 2003). In this study herbivore performance was enhanced on 

asLOX plants most likely due to attenuated PI and nicotine defence responses.  

Several pathogenesis-related (PR) proteins (PR-1; PR-2, β-1,3-glucanase; PR3, PR4 

both chitinases; PRP6; Prp27), which are known to be elicited by pathogen attack or salicylic 

acid (SA) treatment, were among the strongest upregulated transcripts.  From this, we deduce 

that herbivore attack to S. nigrum may elicit both SA- and JA-related signalling and the 

commonly invoked tradeoff between systemic resistance of plants to microorganisms and 

resistance to insect herbivores (Felton et al., 1999; Thaler et al., 2002) may not apply to this 

plant species. Some transcripts may be co-regulated by both insects and microorganisms. For 

example, α-dioxygenase (α-DOX; formerly PIOX, pathogen-induced oxygenase), an enzyme 

which catalyzes the conversion of linolenic acid to its 17-hydroperoxy-derivative (Hamberg 

et al., 1999), is upregulated in S. nigrum in response to flea beetle feeding. In N. tabacum, α-

DOX can be induced by bacterial elicitors (de Leon et al., 2002; Sanz et al., 1998), and in N. 

attenuata, by attack from Manduca sexta larvae (Hermsmeier et al., 2001). Although the 
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biological function of α-DOX remains unclear, its transcriptional behaviour illustrates the 

likely interactions of pathogen and herbivore signalling under natural conditions. 

Adaptive responses are likely to be the result of complex interacting signal networks 

rather than single signal cascades (Genoud et al., 2001; Reymond, Farmer, 1998), and 

transcription factors may play an important role in coordinating the responses from these 

many signal cascades. In plants attacked by flea beetles, a transcription factor of the WRKY 

family (WRKY3) was strongly upregulated, as it was shown to be in N. attenuata attacked by 

M. sexta larvae (Hui et al., 2003). WRKY transcription factors occur in large gene families 

and are known to regulate numerous stress-related genes, including those responsive to 

pathogens and wounding (Eulgem et al., 2000). Transcription factors may coordinate large-

scale patterns of transcriptional changes and deserve more attention in the regulation of 

environmental responses. 

The coordination of transcriptional responses to flea beetle attack extends beyond the 

upregulation of stress-responsive transcripts to include a coordinated downregulation of 

growth-related transcripts, which is most clearly seen in the negative correlation between the 

expression of photosynthetic and that of defense genes (Hermsmeier et al., 2001; Schittko et 

al., 2001). The herbivore-induced suppression of RuBPCase transcripts (pDH64.7, RUB inas, 

rbcL) and of additional elements of the photosynthetic machinery (e.g. photosystem proteins: 

N. tabacum PSI, N.t. PSII precursor, S. nigrum PSII D1) might benefit the plant by redirecting 

carbon flux toward the production of defenses. RuBPCase activase (rca), a stromal protein 

catalyzing the dissociation of inhibitory sugar bisphosphates from uncarbamylated and 

carbamylated RuBPCase in an ATP-requiring process (Portis, 1995; Robinson, Portis, 1989), 

may play an important role in regulating RuBPCase transcripts and perhaps other 

photosynthetic proteins, and was downregulated in attacked plants. It has been shown that the 

light-dependent regulation of RuBPCase is controlled by rca (Zhang et al., 2002) but recently, 

(Voelckel, Baldwin, 2003) demonstrated that the expression of rca in N. attenuata increased 

in response to attack by the mirid bug, Tupiocoris notatus. Hence it is possible that rca 

participates in the herbivore-induced downregulation of photosynthetic metabolism.  In 

addition to the down-regulation of photosynthetic genes, genes involved in cell wall 

metabolism (XTH4, xyloglucan endotransglycosylase), glycolysis (DH63, homologous to 

Petunia hybrida triosephosphate isomerase; DH123 and cGap, both homologous to N. 

tabacum glyceraldehyde-3-phosphate dehydrogenase), and nitrogen metabolism (nir, nitrate 
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reductase; GOGAT, glutamine oxoglutarate aminotransferase; etc.) were also down-regulated. 

These alterations suggest many hypotheses about the regulation of primary metabolism in 

response to herbivore attack and require additional work.  

Even though only a few of the sequences on this ‘Solanaceous’ microarray were 

designed from S. nigrum specific-sequences, it is clear from the verifications of selected array 

responses by RNA gel blot analysis and real-time qPCR (Fig. 3B-E) that the microarray 

provided valuable information about differential gene expression in S. nigrum. Several studies 

have established the utility of using sequence information of related species for monitoring 

gene expression. (Kane et al., 2000) demonstrated that expression patterns derived from 

oligonucleotide (50-mer) microarrays reflected those from cDNA (~300-400bp PCR 

products) microarrays and that 50-mer oligonucleotides are specific, if the target sequences 

shared 80% or more with the oligonucleotide. (Izaguirre et al., 2003) analyzed the 

transcriptome of N. longiflora with a cDNA microarray consisting of N. attenuata sequences 

and (Held et al., 2004) used the same microarray to characterize transcriptional responses in 

N. clevelandii and N. quadrivalvis. (Girke et al., 2000) compared gene expression in 

developing seeds of Arabidopsis thaliana and Brassica napus with an Arabidopsis-specific 

microarray.  Regardless of whether the array is designed from homologous or heterologous 

sequences, responses should always be verified before a hypothesis about the functional 

significance of a gene is pursued. The need for verification is particularly acute when 

microarray studies suggest a lack of response, as negative results can be caused by small 

sequence differences between the oligonucleotides and the targeted transcripts. When a 

microarray produces signals, the spotted oligonucleotides will likely function as probes for 

screening S. nigrum cDNA libraries, thus facilitating the verification procedure. Once a 

transcriptional response is verified, the next step in an ecological analysis is to determine if 

the response correlates with a change in phenotype, not only in the laboratory but also in the 

field. 

The hypothesis from the microarray analysis that flea beetle attack elicited JA 

signalling and thereby increased PI production was supported by the observations with both 

field- and greenhouse-grown plants that beetle attack and MeJA treatment significantly 

increased PI levels. The absolute levels of PI activity were higher in field-grown plants (Fig. 

4), suggesting that plants growing in the rough-and-tumble of the natural world may be 

partially induced in comparison to the coddled plants grown in the glasshouse, which 
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excludes normal solar UV-B radiation. PIs are probably elicited by exposure to UV-B, as 

shown by (Izaguirre et al., 2003), who used phenotypic measures and microarrays to compare 

transcriptional patterns in N. longiflora  elicited by UV-B with the pattern elicited by 

Manduca sexta herbivory. In this study, UV-B exposure not only increased PI transcripts and 

activity but also downregulated photosynthesis-related transcripts in a manner similar to 

herbivore-elicited responses, suggesting that common regulatory elements had been recruited 

by this pair of abiotic and biotic stressors. 

In response to herbivore attack, plants frequently activate indirect defense responses 

that complement the function of the direct defences (Kessler, Baldwin, 2002). By releasing 

VOCs in response to herbivore attack, plants attract predators and parasitoids of herbivorous 

insects (Dicke et al., 2003; Kessler, Baldwin, 2001; Turlings et al., 1990). When S. nigrum 

plants were attacked by herbivores from two different Orders of insects in the field (Fig. 6), 

the composition and the quantities of the VOCs trapped from the headspace of leaves 

significantly differed from those of unattacked plants. The fact that an induced response was 

observed in field-grown plants is significant, particularly in light of recent reports on Zea 

mays demonstrating just how significantly abiotic factors such as soil nutrition, air humidity, 

temperature, and light can influence the herbivore-induced VOC response (Gouinguene, 

Turlings, 2002; Schmelz et al., 2003). The large and diverse predator community (syrphids, 

chrysopids, coccinellids and braconid wasps) we observed during our field studies of S. 

nigrum could respond to these VOC emissions. Whether any of these potential predators 

actually respond to increased VOCs can be readily tested by adding components of or the 

entire herbivore-induced volatile blend to plants containing a ‘predator-monitor’ (an 

herbivorous insect or egg used to score predation events: (Kessler, Baldwin, 2001).  

Whether or not a trait can be formally considered to be a defense depends on whether 

it increases a plant’s Darwinian fitness in environments with aggressors. The best surrogate 

measures for Darwinian fitness are determined by a plant’s life history, but for selfing annual 

plants such as S. nigrum, lifetime seed production is likely to be an adequate measure. Fruit 

and seed production were found to be strongly correlated with plant above-ground dry mass 

(Fig. 6B), and these are an important measures for the resource partitioning to growth, 

reproduction and defense in response to biotic interactions (Bazzaz et al., 1987; Givnish, 

1986; Mauricio et al., 1993). The reproductive output of plants that have been under strong 

artificial selection for particular yield components will frequently be strongly buffered from 
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variations in canopy size. For example, tomato plants are strongly buffered from leaf area loss 

from herbivores and do not decrease fruit number in response to herbivore attack (Thaler, 

1999). We found that jasmonate elicitation of S. nigrum did not reduce plant size, a 

conclusion (Thaler et al., 1996) had reached with regard to jasmonate treatment of tomato. 

Moreover, we found that jasmonate elicitation in S. nigrum significantly reduced lifetime fruit 

and seed production, although this is not observed in tomato (Thaler, 1999), which likely 

reflects differences between agronomic and native species in their selective history. 

Jasmonate elicitation is known to significantly decrease lifetime seed production in N. 

attenuata (Baldwin, 1998), and a large fraction of these fitness costs can be attributed to the 

induced production of PIs (Zavala et al., 2004). The underlying mechanisms of S. nigrum’s 

fitness costs remain to be explored.  

Direct manipulation of the genetic basis of an observed response is the most powerful 

means of falsifying functional hypotheses available to biologists. Agrobacterium-based 

transformation systems provide the means to produce stably transformed lines in which 

particular genes are silenced or over-expressed. Independently transformed lines are typically 

variable in their phenotypes due to the random insertion of the transgene into the genome, 

which, in turn, leads to differences in transcriptional activity (‘positional’ effects). Krügel et 

al. (2002) demonstrated that N. attenuata lines, transformed with an asLOX construct 

exhibited up to 71% reduction in wound-induced JA accumulation. This genetically 

determined phenotypic variation is enormously useful, because it allows the fitness 

consequences of a trait to be quantitatively analyzed. Also, possible pleitropic effects 

resulting resulting from single genetic changes must to be considered in the analysis of 

transgenic lines, and such effects require that multiple independently transformed lines with 

the same transgene must be examined before the phenotype can be attributed to the 

expression of the transgene. The S. nigrum asRuBPCase lines showed a clear reduction in 

RuBPCase transcripts (Fig. 2C), yet they did not reveal differences in their growth phenotype 

in comparison to wildtype plants in the glasshouse. Whether this lack of growth phenotype 

persists when these plants are grown under field conditions will be interesting to determine. 

Experiments in realistic environments may reveal why plants appear to be ´over-engineered` 

with respect to their RuBPCase pools (Matt et al., 2002; Quick et al., 1991). The rapid 

development of new transformation vectors that allow for more efficient silencing of 

endogenous genes (RNAi with inverted repeat elements: (Waterhouse, Helliwell, 2003), will 
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make the process of producing transformants with fully silenced genes more efficient, thereby 

facilitating the search for phenotypes of plants that are grown in complex environments.  

Most of the tools presented in this paper have been used only in controlled laboratory 

experiments. The results obtained from such experiments can be different from those seen in 

plants growing in nature. For example, although constitutive PI levels were higher in field-

grown plants than in greenhouse-grown plants, field-grown plants (Fig. 4) were still 

inducible. The combination of several stresses often provokes a potentiation of a response, 

leading either to an increase or a decrease of subsequent responses to the same or other 

stresses (Zimmerli et al., 2000). Therefore the plant may recruit similar fundamental cellular 

reactions in response to various stresses, which may be what is happening in response to UV-

B irradiation and herbivory (Izaguirre et al., 2003) or cold and drought stress in comparison 

to disease resistance (Singh et al., 2002). Experimentation with field-grown plants in which a 

variety of stresses are factorially manipulated will elucidate both the amount of cross-talk that 

occurs among environmental responses and also the fitness consequences of the different 

selective forces for plants whose ability to respond is selectively impaired. 

  While molecular biology has provided the ability to manipulate the expression of 

individual genes, understanding the functional consequences of these manipulations will 

require additional ecological tools to dissect the complex interplay of selective forces that all 

organisms face in nature. Multivariate and path analyses provide a means to examine 

correlations among the different levels of analysis that occur from gene expression to the 

formation of a phenotype with a given Darwinian fitness. Ecologists have been successful in 

using such approaches to evaluate complex correlations and to recognize interrelationships 

among the biotic and abiotic factors that structure ecosystems. The challenge remains to find 

a way to incorporate the powerful manipulative and descriptive molecular methods into this 

“big picture” analysis so as to harvest the fruits of the molecular revolution. 
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Abstract 

Model systems have proven enormously useful in elucidating the biochemical function of 

plant genes. However their ecological function, having been sculpted by evolutionary forces 

specific to a species, may be less conserved across taxa. Responses to wounding and 

herbivore attack differ among plant families and are known to be mediated by oxylipin, 

ethylene and systemin signaling networks. We analyzed transcriptional responses of two 

native Solanaceous species to the attack of an herbivore whose elicitors are known not to be 

influenced by diet. With the TIGR 10k-cDNA potato microarray, we compared the 

transcriptional responses of Nicotiana attenuata with those of black nightshade (Solanum 

nigrum) when both were attacked by the Solanaceous generalist herbivore, Manduca sexta. 

Based on an ndhF (NADH dehydrogenase subunit F) phylogeny, S. nigrum is more closely 

related to potato than N. attenuata, but responded significantly less to M. sexta attack. Apart 

from transcriptional differences anticipated from their differences in secondary metabolism, 

both species showed distinct transcriptional patterns (with only 10% overlap in significantly 

regulated genes), which point to fundamental differences in the signaling cascades and 

downstream genes mediating herbivore resistance. The lackluster transcriptional response of 

S. nigrum could not be attributed to its inability to respond to elicitation, because MeJA 

elicitation of S. nigrum resulted in a strong transcriptional response.  Given that attack from 

the same herbivore elicits profoundly different response in two Solanaceaous taxa, we 

conclude that “blueprints” for commonly regulated responses to plant-herbivore interactions 

appear unlikely.  
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Introduction 

Understanding the genetic basis of plant secondary metabolism will require multiple model 

systems (Kutchan 2001) because clades of plant species are biochemically specialized to 

produce particular classes of secondary metabolites (e.g. Brassicaceous taxa emphasize 

glucosinolates, while Solanaceous plants produce steroidal, tropane or pyridine alkaloids; 

Fraenkel 1959). Such metabolic specialization is thought to have evolved in response to 

selection pressures from the plant’s enemies (Ehrlich and Raven 1964, Fraenkel 1959, Jones 

and Firn 1991). For example, the model Brassicaceous and Solanaceous plants, Arabidopsis 

and tomato, respectively, have each evolved a different arsenal of biochemical weapons that 

can be activated upon attack from herbivores (Walling 2000). While it has long been clear 

that the downstream defense responses of a plant would differ among taxa, the mechanisms 

that activate the defense responses are thought to be more conserved, and it has been assumed 

that Arabidopsis would provide a “blueprint” for the mechanisms that elicit ecological 

responses in higher plants (Mitchell-Olds 2001). However evidence is emerging that this 

“blueprint” has undergone some revisions at the family level. 

Three plant hormones, jasmonic acid (JA), ethylene (ET), and salicylic acid (SA), 

mediate responses to wounding and attack from herbivores and pathogens in most taxa 

studied, but research on “crosstalk” among these signals has identified important differences 

at the family level. For example in Arabidopsis, wounding leads to the activation of two 

pathways: an oligosaccharide-dependent and a JA-dependent pathway in the damaged leaves 

(Walling 2000, Leon et al. 2001). The former produces ET, which antagonizes the elicitation 

of JA-responsive genes in the wounded leaves, but not in unwounded leaves from the same 

plant. In contrast, both ET and JA are required for the elicitation of wound-inducible genes in 

tomato (Walling 2000, Leon et al. 2001). In addition to differences in “crosstalk” among the 

same signal molecules, Brassicaceous and Solanaceous plants differ in the signal molecules 

that are recruited. Systemin, a polypeptide hormone, which mediates local and systemic 

responses to wounding, has only been found in Solanaceous species to date (Ryan 2000). In 

addition to these family-level differences, differences have also been found between taxa 

within the same family. 

Within-family differences have been observed in the crosstalk between JA and ET 

signaling in the elicitation of defense responses. While JA and ET interact synergistically to 
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elicit proteinase inhibitor expression in tomato, attack from Manduca sexta larvae in 

Nicotiana attenuata elicits an ET burst, which antagonizes the JA-mediated increase in 

nicotine (Kahl et al. 2000, Winz and Baldwin 2001). Within-family differences in signals 

have also been found. Systemins of potato, bell pepper and black nightshade are structurally 

similar and differ each in three (of 18) amino acids from the tomato systemin and their ability 

to elicit tomato proteinase inhibitors (Constabel et al. 1998). Two tobacco systemins that 

elicit the accumulation of proteinase inhibitors have been identified, but these are structurally 

dissimilar to the tomato systemin (Pearce et al. 2001). Tobacco does not produce peptide 

signals that activate the tomato systemin receptor and does not react to tomato systemin 

(Scheer et al. 2003). 

Given this evidence for differences in defense signaling among several Solanaceous 

taxa, we were interested in a more thorough characterization of the potential differences in 

responses to herbivore attack within a plant family. For this analysis, we compared the 

herbivore-induced transcriptome of two native Solanaceous species – Nicotiana attenuata and 

Solanum nigrum - to attack from the same native herbivore, M. sexta larvae. Three aspects of 

this analysis make this a valuable comparison. First, we analyze the responses of two native 

plants, in which the responses observed to herbivore attack are not confounded by a history of 

artificial selection for yield-associated traits. Second, we measure the responses to attack by a 

shared native herbivore (Fraenkel 1959), which is particularly well-studied with regard to 

how it elicits responses in its host plants. M. sexta larvae produce a suite of 8 fatty acid-amino 

acid conjugates (FAC) which are thought to be introduced into wounds during feeding and 

are necessary and sufficient to account for all of the observed changes in the plant’s wound 

response - including defense metabolites, signals and transcriptional responses - that are 

elicited by larval feeding (Halitschke et al. 2001, 2003; Roda et al. 2004). Simply adding 

these FACs to plant wounds simulates the plant’s responses to herbivore attack. Moreover, M. 

sexta’s  FAC profile is not substantially altered when it feeds on different host plants (Alborn 

et al. 2003) and specifically does not quantitatively or qualitatively change when it feeds on 

N. attenuata or S. nigrum (D.D. Schmidt, A. Steppuhn and R. Halitschke, unpublished 

results). Third, the secondary metabolites produced by both species are well-studied and 

provide a valuable backdrop against which to compare their herbivore-elicited transcriptomes. 

N. attenuata and S. nigrum constitutively produce nicotine and glycoalkaloids (Baldwin 1999, 

Dopke et al. 1987, Ridout et al. 1989), respectively, and both species are capable of 
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producing proteinase inhibitors in response to wounding and release monoterpenoid and 

sesquiterpenoid volatiles in response to herbivore feeding (Van Dam et al 2001, Kessler and 

Baldwin 2001, Schmidt et al. 2004). In summary, for this pair of hostplants, attack by M sexta 

larvae is likely to provide a standardized elicitation of the responses to herbivore attack, 

which, in turn, are likely sculpted by natural selection.  

In order to provide an unbiased comparison of the herbivore-regulated transcriptome 

in both species, we used a microarray with over 10,000 potato cDNAs (representing 

approximately a third of the potato genome). We were particularly interested in the scope of 

the response (how many genes are involved?) and the specificity of the response (how many 

transcripts are commonly and specifically regulated?). The potato microarray was established 

through the NSF Potato Functional Genomics project (http://www.tigr.org/tdb/potato) and is 

available from The Institute of Genomic Research (TIGR, Rockville, Maryland, USA). The 

scope and specificity of the response could be influenced by the taxonomic similarity between 

the source of the genes on the array (S. tuberosum) the samples used in the hybridizations (S. 

nigrum and N. attenuata). To clarify the phylogentic relationship among the three species, we 

analyzed sequence similarities among the plastidial ndhF gene of several Solanacaeous 

species. Based on this analysis, S. nigrum is more closely related to S. tuberosum than N. 

attenuata, which generated the expectation that the array analysis would likely reveal a 

stronger response from S. nigrum than from N. attenuata. However, we found the opposite to 

be true - S. nigrum showed a weaker response to M. sexta than N. attenuata. To test the 

hypothesis whether S. nigrum is generally less responsive, we examined the transcriptional 

responses of S. nigrum after elicitation by methyl jasmonate (MeJA), the volatile derivative of 

JA. MeJA is known to be both a product and elicitor of the oxilipin signaling pathway, the 

signal cascade that mediates many defense responses to herbivore and pathogen attack 

(Walling 2000). 

 

Results 

Phylogenetic analysis 

To clarify the phylogenetic relationship between N. attenuata and S. nigrum, we analyzed 

sequence similarities among the plastidial ndhF gene of several Solanaceous species. Based 

on this comparison, S. nigrum is more closely related to S. tuberosum than N. attenuata, as 
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demonstrated by a 97% homology between S. nigrum and S. tuberosum and 94% between N. 

attenuata and S. tuberosum (Fig. 1). 

Figure 1: The single most 
parsimonious tree recovered using 
sequences of ndhF (length=372, 
CI=0.949, RI=0.835). The two 
species of interest (N. attenuata 
and S. nigrum) are in bold as is the 
source species for the cDNA 
clones spotted onto the TIGR 
potato array (S. tuberosum). 
Branch lengths correspond to 
parsimony steps and the numbers 
above branches indicate 
parsimony bootstrap support 
values for that clade. 

 
Microarray analysis of M. sexta-induced responses 

Three replicate TIGR chips were hybridized with RNA from thrice replicated M. sexta-

infested N. attenuata plants and M. sexta-infested S. nigrum plants. Of 11,243 cDNAs, a total 

of 754 were regulated (mean ratio >1.5 or <0.67 for up- and down-regulated genes, 

respectively) in either N. attenuata, S. nigrum or both species in response to M. sexta attack 

(Fig. 2). Interestingly, there were more genes up-regulated (561) than down-regulated (203) 

and only 75 cDNAs (10%) were equally regulated in both species (Fig. 2). When the 

expression ratios of the 754 responsive cDNAs were subjected to a cluster analysis, the three 

N. attenuata arrays were clearly separated from the three S. nigrum arrays and patterns of 

commonly and specifically regulated genes were discernable (Supplementary Fig.1). Based 

on the annotations of the 754 regulated cDNAs, we grouped the genes into functional 

categories (Supplementary Table 1) and in the following use this classification to discuss 

some striking differences in gene up-regulation that occur between these two Solanaceous 

species. For the details (expression ratios, annotations, categories) of gene down-regulation 

see Supplementary Table 1.  
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Figure 2: Venn diagram of the numbers of overlapping and non-overlapping 
significantly up-regulated (↑; ER>1.5) or down-regulated (↓; ER<0.67) genes in N. 
attenuata and S. nigrum that are elicited by M. sexta herbivory. In summary, 561 and 
203 genes were found to be up- and down-regulated, respectively, but only 10% had 
the same regulation in both plant species. (S. nigrum from: 
http://www.rmc.sierraclub.org/outings/images/weeds_blacknightshade_drawing.jpg) 

Signal transduction  

Additionally to a common up-regulation of lysophospholipase and lipoxygenase (oxylipin 

signaling), N. attenuata and S. nigrum activate different signal cascades in response to leaf-

chewing M. sexta larvae. Increases in genes coding for a G-protein-coupled receptor, a GTP- 

binding protein, phospolipase C, diacylglycerol kinase, calmodulin, annexin, a Ca2+-activated 

kinase and a Ca2+-activated ion channel indicate calcium- and inositol phospholipid-based 

signaling, as well as, G-protein-mediated signaling in N. attenuata. Moreover, the generation 

of 2-hydroperoxides (α-dox) and glucosylated salicylate (UDP-glucose:SA 

glucosyltransferase) appears to be specific to N. attenuata, while a zeatin-glucosyltransferase 

and a 12-oxo-phytodienoate reductase seem to have in role in signaling in S. nigrum. An 

auxin-amino acid hydrolase and several kinases (calcium-dependent kinases, receptor kinases, 

and MAP kinases) are activated in both species.  

 

Proteolysis 

Among the genes coding for proteolytic enzymes, a leucine aminopeptidase (LAP), which 

catalyzes the release of N-terminal residues from proteins and peptides, was up-regulated up 

to 20-fold in S. nigrum. In contrast, increases in ubiquitin-mediated proteolysis 

(polyubiquitin, ubiquitin-conjugating enzyme) are specific to N. attenuata. An up-regulation 
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of protein disulfide isomerase and peptidylprolyl isomerase was found in both species, but the 

response of the latter was stronger in S. nigrum. 

 

Both NA SN

Primary metabolism
(cell wall, carbohydrates, amino
acids, nucleotides, photosynthesis,
precursors for  secondary metabolites)

putrescine 6x (ODC 2x, ADC 4x)
SAM 10x (SAM synthetase 1 and 3)
acetyl CoA 2x (acetyl CoA synthase)
malonyl CoA (acetyl CoA carboxylase)
cw (XET 2x, glucan endo glucosidase,
polygalacturonase inhibiting protein)
carb 21x (formate dehydrogenase 2x, starch
synthase 4x, ATP citrate lyase 3x)
aa 4x (glutamate synthase 2x, aspartate
transaminase, aminotransferase)
nuc 7x (APRT 3x, nucleotide sugar epimerase
2x, UPRT, nucleoside triphosphatase)

cw (PME 5x,
extensin 5x,
glucan
glucosidases
3x)
carb (fructose
bisphosphate
aldolase 2x,
GAPDH)
lipids (acyl-
CoA synthetase
2x)

cw 2x
(expansin, cellulose synthase)
aa 6x
(tryptophan decarboxylase,
serine acetyltransferase,
amino acid transporter, N-
acetylornithine deacetylase 2x)
lipids
(diacylglycerol acyltransferase)
ps 3x
(Rubisco, Lhcb6, thioredoxin H)

transcription ,
translation , proteolysis,
protein metabolism

tl (40S ribosomal protein S2)
prot 9x (polyubiquitin 3x,
ubiquitin conjugating enzyme
2x, serine carboxypeptidase
2x, subtilisin, Ftsh protease)

tl (RNA helicase, RNA binding
protein)
prot 4x (cysteine protease 3x,
protease related)
protm (peptidylprolyl isomerase
4x, protein disulfide isomerase 5x)

tc (simga factor 2)
tl 8x (elongation factor 2x,
initiation factor, ribosomal protein
S9, RNA binding protein
F6N18.17 A. thaliana 4x)
prot 4x(leucine aminopeptidase
3x, endopeptidase)

DNA binding
proteins
(putative trans-activating factors)

6x (MADS box protein,
bHLH factor, NDX1,
WRKY 22, homeobox
protein)

8x (WRKY65, RING protein, KNAT3
homeodomain protein, Yabby2, zinc finger
protein, heat shock factor, dehydration-
responsive element binding protein)

5x (SPF1, AT-hook DNA
binding protein, SCARE-
CROW gene regulator,
zinc finger protein)

Signal
transduction
(hormone synthesis,
second messenger synthesis,
receptors, kinases)

calcium  7x (calmodulin, calcium-dependent kinase 2x,
calmodulin-binding ion channel, annexin 2x)
DAG (diacylglycerol kinase) lipases 3x (patatin,
phosholipase C 2x)
G proteins (GTP binding protein, G protein-coupled
receptor) oxilipins 2x ( -dox 2x)
SA (UDP-glucose:SA glucosyltransferase)

auxins (IAA-amino acid
hydrolase 2x) oxylipins
(lipoxygenase 6x)
kinases 12x lipases
(lysophospholipase 2x)

cytokinins  3x
(zeatin O-
glucosyltrans-
ferase 3x)
oxilipins
(OPR1)

chap 7x  (HSP83, HSP20, HSP17.6 2x,
heat shock protein MTSHT, chaperone
hsc70-3, HSP18 ) dehyd 3x
(dehydration-induced protein RD22 2x,
dehydrin) herb (whitefly-induced gp91-
phox) nulim (autophagy 8i) path
(peroxidase prx14, Prf) ox (glutathione
transferase 2x)

chap (DNAJ protein)
dehyd (dehydration-induced protein
ERD15 2x) herb (vegetative storage
protein) nulim (iron-stress related
protein) path (TMV-response-related
gene) ox (superoxid dismutase 2x,
phospholipid hydroperoxide glutathione
peroxidase 3x)

Stress responses
(chaperones, dehydration,
herbivory, nutrient limitation,
pathogens, oxidative)

chap 6x
(endoplasmin 2x,
calreticulin,
calnexin, luminal
binding protein,
HSP90)

Secondary
metabolism
(putative direct and
indirect defense
metabolites , e.g.
polypheyol oxidases,
terpenoids, polyamines
green leaf volatiles,
shik imates , digestibility
reducers, phenylpro-
panoids , flav onoids ,
green leaf volatiles,
sterols)

 

PPOs 8x (PPOA 2x, PPOB,
catechol oxidase 4x)
shik 8x (chorismate
synthase 3x, chorismate mutase,
dehydroquinate
synthase 3x, shikimate kinase)
phepro 9x (PAL 2x, 4CL 2x, C4H,
coumaryl shikimate hydroxylase 2x,
cinnamoyl CoA reductase)
pa 6x (SAMDC 6x)
terp 11x (IPP isomerase 4x, DOX
reductoisomerase 4x, DOX synthase,
linalool synthase)
flav 3x (rhamnosyltransferase 2x,
dihydroflavonol reductase)

pa  (spermidine
synthase 3x)
terp (HMGR2)
glv (HPL 2x)

 

flav
(leucanthocyanidin dioxygenase-like
protein)
terp 11x
(FPPS1 3x, sesquiterpene synthase 1,
sesquiterpene synthase 2 2x,
germacrene C synthase 2x, HMGS,
HMGR1 farnesyltranstransferase,
sabinene synthase)
dig red (proteinase inhibitor 1 3x)
ste 4x
(sterol C-14 reductase 2x,
7-dehydrocholesterol reductase,
3-beta hydroxysteroid dehydrogenase)

Selected genes
cytochrome P450s 6x,
acid phosphatase 3x,
unknown protein TC58032
3x

2-oxoglutarate-dependent
dioxygenase 2x
2-oxoglutarate dehydrogenase

membrane protein YLR436c 3x,
membrane related protein C5 2x,
metal-transporting ATPase 4x,
putative protein TC57777 4x,
hypothetical protein TC65797 3x

Figure 3: Categories of genes up-regulated in response to M. sexta herbivory with examples from both 
plant species (Both: clear boxes), N. attenuata (NA: darkly shaded boxes), and S. nigrum (SN: lightly 
shaded boxes; multiple clones for the same gene are indicated in parentheses). 
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Secondary metabolism 

Little overlap between N. attenuata and S. nigrum was found in the expression of genes 

involved in secondary metabolism, including up-regulation of hydroperoxide lyase, an 

important gene in the synthesis of C6 volatile organic compounds (VOCs), spermidine 

synthase, which is involved in polyamine synthesis and 3-hydroxy-3-methylglutaryl 

coenzyme A reductase (HMGR2), the key enzyme in the cytosolic route to the terpenoid 

precursor isopentenyl pyrophosphate (IPP). In S. nigrum, HMGR1 is also up-regulated and it 

has been shown for potato that HMGR2 is mainly involved in the biosynthesis of 

sesquiterpenes, whereas HMGR1 produces precursors for sterol biosynthesis (Choi et al. 

1994). Moreover, enzymes involved in the biosynthesis of sterols, such as cholesterol (7-

dehydrocholesterol reductase), were up-regulated in S. nigrum. Sterol contents in Solanum 

species are tightly linked to levels of glycoalkaloids and cholesterol is thought to be a 

precursor of steroidal alkaloids (Bergenstrahle et al. 1996), which in turn suggests increased 

production of glycoalkaloids in S. nigrum in response to M. sexta feeding. Further evidence 

for the deployment of alkaloidal defenses in S. nigrum is the up-regulation of a 2-

oxoglutarate-dependent dioxygenase, which is homologous to hyoscyamine 6β-hydroxylase 

of Hyoscyamus niger (Lantin et al. 1999). Up-regulated genes of terpenoid biosynthesis 

include farnesyl pyrophosphate synthase and several sesquiterpene synthases, which are 

among the most strongly up-regulated genes in S. nigrum. It is known that S. nigrum produces 

a rich bouquet of VOCs in response to herbivory from flea beetles or the moth Acherontia 

atropos (Schmidt et al. 2004).  

In contrast to S. nigrum, N. attenuata induces transcripts involved in the plastid-

localized glyceraldehydes/pyruvate pathway (DOX synthase, DOX reductoisomerase) of IPP 

production, suggesting that not only sesquiterpenes but also mono- and diterpenes, are 

elicited in N. attenuata upon M. sexta-herbivory. This is supported by the up-regulation of 

linalool synthase. IPP isomerase, which is recruited by both terpenoid pathways, is 

specifically up-regulated in N. attenuata.  

Also in contrast to the response in S. nigrum, N. attenuata plants elicit a strong 

transcriptional commitment to the production of phenol-based secondary compounds. Starting 

with the synthesis of shikimate (dehydroquinate synthase, shikimate kinase, 3-

arboxyvinyltransferase (EPSP synthase), chorismate synthase), 

preceding to the synthesis of prephenate (the committed step in phenylalanine and tyrosine 

phosphoshikimate 1-c
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synthesis catalyzed by chorismate mutase), continuing with the synthesis of cinnamic acid 

(PAL), p-coumaric acid (cinnamate-4-hydroxylase) and p-coumaroyl-CoA (coumaric acid-

CoA ligase), the genes providing the precursors for flavonoid- and phenylpropanoid 

biosynthesis are induced. Transcripts related to flavonoid metabolism (UDP rhamnose-

anthocyanidin-3-glucoside rhamnosyltransferase, dihydroflavonol reductase) and 

phenylpropanoid metabolism (p-coumaroyl shikimate 3'-hydroxylases, cinnamoyl-CoA 

reductase) were up-regulated as well. These results are consistent with the following earlier 

findings in the M. sexta - N. attenuata interaction: 1. the cloning of a UDP rhamnose-

anthocyanidin-3-glucoside rhamnosyltransferase by DDRT-PCR from M. sexta-induced N. 

attenuata plants (Voelckel and Baldwin 2003), the production of phenylpropanoid-derived 

compounds (caffeoyl-putrescine, chlorogenic acid) in M. sexta-attacked N. attenuata plants 

(Kessler and Baldwin 2004) and the production of flavonoids (quercetin, rutin) in N. 

attenuata leaf trichomes (Roda et al. 2004). Several transcripts for polyphenyl oxidases, 

which catalyzes the production of o-quinones, which, in turn react with insect dietary proteins 

and impair their digestion (e.g. Constable et al. 2000), increase in abundance specifically in 

M. sexta-attacked N. attenuata. 

Proteinase inhibitor induction, an induced defense response well characterized in 

Manduca attacked N. attenuata (Zavala et al. 2004, Zavala and Baldwin 2004) was seen only 

in S. nigrum, probably because of the lack of tobacco-specific probes on the array. 

 

Primar

ion of malonyl-CoA, an essential precursor of 

flavono

y metabolism  

Manduca attack up-regulated in both plant species genes involved in cell wall biosynthesis, 

such as pectin methyl esterase (PME) and extensin; genes related to lipid metabolism (acyl-

CoA synthetase); and genes that play a central role in carbohydrate metabolism (e.g. 

glyceraldehyd 3-phosphate dehydrogenase). Interestingly, transcripts for acetyl-CoA 

carboxylase which catalyzes the format

id biosynthesis, increased specifically in N. attenuata. Other precursors of secondary 

metabolism whose production is elicited in N. attenuata include acetyl-CoA, S-

adenosylmethionine, and putrescine. Putrescine may be needed for nicotine and polyamine 

synthesis and S-adenosylmethionine may be used in ethylene and polyamine synthesis. The 

up-regulation of two different isoforms of S-adenosylmethionine decarboxylase (secondary 

metabolism) suggests that a supply of decarboxlated S-adenosylmethionine is required to 
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complement the supply of putrescine for higher polyamine synthesis. Additional evidence of 

tobacco-specific regulation in primary metabolism includes increases in xyloglucan 

endotransglycosylase, starch synthase, ATP citrate lyase, adenine phosphoribosyl transferase 

and nucleotide sugar epimerase. S. nigrum up-regulates genes involved in cell wall 

biosynthesis (cellulose synthase), amino acid metabolism and lipid synthesis. The most 

striking difference with the responses of primary metabolism in N. attenuata was the up-

regulation of photosynthesis-related genes (e.g. Rubisco, light-harvesting complex b6) in 

caterpillar-infested S. nigrum plants. In general, herbivory is thought to down-regulate 

photosynthesis genes and, thereby, divert resources to secondary metabolism (e.g. 

Hermsmeier et al. 2001).  

Figure 4: Simplified overview of major pathways of secondary-metabolite biosynthesis and their 
interrelationships with primary metabolism (modified from Gershenzon 2002). Genes found to be up-

secondary metabolites. Genes up-regulated in N. attenuata (#), S. nigrum (•), or both (#,•) are indicated. 
Abbreviations: 4CL 4-coumarate coenzyme A ligase; 7DCR 7-dehydrocholesterol reductase; ADC 
arginine decarboxylase; C4H cinnamate-4-hydrogenase; CCR cinnamoyl-CoA reductase; CM chorismate 
mutase; CS chorismate synthase; CS3’H p-coumaroyl shikimate 3'-hydroxylase; DHFR dihydroflavonol 
reductase; DHQS 3-dehydroquinate synthase; DXR 1-deoxy-D-xylulose-5-phosphate reductoisomerase; 
DXS 1-deoxy-D-xylulose-5-phosphate synthase; EPSP 5-enolpyruvylshikimate-3-phosphate synthase; 
G3P glycerol-3-phosphate; HMGR 3-hydroxy-3-methylglutaryl coenzyme A reductase; HMGS 3-
hydroxy-3-methylglutaryl coenzyme A synthase; HPL hydroperoxide lyase; LDOX leucanthocyanidin 
dioxygenase; LIS linalool synthase; LOX lipoxygenase; ODC ornithine decarboxylase; OPR 
oxophytodienoate reductase; PAL phenylalanine ammonia lyase; PLC phospholipase C; SabSYN sabinene 
synthase; SAMDC S-adenosyl methionine decarboxylase; SAMS S-adenosyl methionine synthase; SHKK 
shikimate kinase; SPDSYN spermidine synthase; STS sesquiterpene synthase(s); VOCs volatile organic 
compounds. 

regulated are italicized and examples of Solanaceous secondary compounds are listed for some classes of 
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Stress responses and selected genes 

The stressed metabolic state of herbivore-attacked plants is reflected in the up-regulation of 

chaperones (HSP90, luminal binding protein, endoplasmin, etc.), dehydration induced 

proteins (with distinct genes elicited in both species, e.g. dehydrin in S. nigrum) and several 

cytochrome P450 monooxygenases. Among the most strongly up-regulated genes in both 

species were a putative acid phosphatase and the EEF53 gene. N. attenuata induces a 

vegetative storage protein reported to be herbivory-induced in Arabidopsis (Berger et al. 

2002), a salt stress-related phospholipid-hydroperoxide glutathione peroxidase (Mittova et al. 

2002), a TMV response related gene, an iron-stress related protein, a superoxid dismutase and 

Again LAP was among the highest up-regulated genes in MeJA-elicited plants and further up-

a metal-transporting ATPase. A remarkably large number of chaperones are induced only in 

S. nigrum. Further stress-related responses in S. nigrum include the up-regulation of enzymes 

involved in oxidative stress, such as an herbivory-induced NADPH oxidase subunit (whitefly-

induced gp91-phox), a peroxidase, and a glutathione transferase. 

 

Verification of microarray data by TaqMan® real-time PCR 

The results of the quantitative PCR analysis for the genes α-DOX, HPL, LOX and XTH 

confirmed the expression ratios obtained with microarrays in N. attenuata (Supplementary 

Table 2). The relative expression ratios of α-DOX, LOX and XTH were significantly higher 

(approximately two-fold) than the microarray expression ratios. Hence, the microarray data 

seem to even underestimate the magnitude of the gene expression differences.   

 

Microarray analysis of MeJA-induced responses of S. nigrum 

The weaker response of S. nigrum to M. sexta herbivory in comparison to the response of N. 

attenuata raised the question whether S. nigrum was a non-responding species. To test this 

hypothesis, we hybridized three additional microarrays with RNA from three biological 

replicates of MeJA-treated plants. Of 11,243 analyzed clones on the microarray, 339 were 

differentially regulated (263 > 1.5; 76 < 0.67) in S. nigrum in response to MeJA elicitation 

(about 3 % of the total number of spotted clones; Supplementary Table 3). In accordance with 

the ubiquitous role of oxilipins (JA, MeJA) in mediating plants´ responses to herbivory, 72 

genes are commonly up-regulated in S. nigrum in response to MeJA or to M. sexta (Figure 5). 
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regulated genes are involved in oxylipin biosynthesis (LOX), secondary metabolism (HMGR, 

FPS, PIs), synthesis of chaperones (BiP), to name just a few (Supplemental Table 3). A 

majority of the up-regulated genes (191) were up-regulated only in MeJA-elicited plants 

clearly demonstrating that S. nigrum is fully capable of responding to elicitation. These genes 

included genes involved in secondary metabolism (e.g. shikimate 5-dehydrogenase), 

transcription factor genes (e.g. C2H2 zinc finger protein), genes related to ubiquitin-mediated 

proteolysis (clone # STMDG12, STMHH55) and genes coding for several cytochrome P450s. 

A subset of 33 genes were commonly up-regulated in MeJA-elicited S. nigrum and M. sexta-

infested N. attenuata plants (Figure 5B) and were dominated by genes involved in primary 

metabolism (carbohydrates) and secondary metabolism (phenylpropanoids, terpenoids). A 

similar sized (33) subset of genes were commonly up-regulated among all three treatments 

and were dominated by genes related to oxylipin signaling and chaperones. 

 

treatment or herbivory. (B) 

same 

Figure 5: Transcriptional responses of S. 
nigrum to MeJA and M. sexta. (A) Venn 
diagram of the numbers of overlapping and 
non-overlapping significantly up-regulated (↑; 
ER>1.5) or down-regulated (↓; ER<0.67) 
genes in S. nigrum that are elicited by MeJA 

M. sexta 
Overlapping up-regulated genes of M. sexta-
infested N. attenuata and MeJA-elicited S. 
nigrum. S. nigrum´s weaker response to M. 
sexta is not due to a basic unresponsiveness, 
because MeJA induced the expression of 
many genes that are up-regulated in N. 
attenuata in response to M. sexta herbivory, 
such as genes related to carbohydrate or 
secondary metabolism (multiple clones for the 

gene are indicated in parentheses). 
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Discussion 

Small scale microarrays are often criticized for their bias in gene selection, which makes them 

suitable for answering the questions for which they were designed but unsuitable for other 

research questions. Here we used the potato 10K-cDNA clone microarray (TIGR) to provide 

an unbiased comparison of the transcriptional responses of two Solanaceous species, N. 

attenuata and S. nigrum, to herbivory from the Solanaceous generalist, M. sexta. Based on the 

diversity of secondary metabolites produced by Solanaceous plants (e.g. Frohne and Jensen 

1992) and the suite of signals that mediate plant responses to herbivory in this family 

(Walling 2000, Leon et al. 2001), we hypothesized that the analysis of M. sexta-elicited 

transcriptomes would yield two major results: (1) attack would elicit increases in secondary 

metabolism in both species, but the elicited pathways would differ, reflecting the different 

the oligonucleotide array. Disagreements between the two analyses were mainly due to four 

secondary metabolites constitutively produced by the two species and (2) signal transduction 

would be similar. After having found drastic differences between the two plant species and a 

clearly weaker transcriptional response in S. nigrum, we asked whether this plant species 

generally less responsive and tested this hypothesis with an additional microarray experiment 

with MeJA-elicited S. nigrum.  We discuss our findings in the light of the outlined predictions 

and relate the results to what is known from other plant species. First, we evaluate what we 

learned about the M. sexta-responsive transcriptome in N. attenuata with a customized 

oligonucleotide microarray (Voelckel and Baldwin 2004) as compared to the large scale 

TIGR array. 

The TIGR array analysis confirmed previously measured increases in the expression 

of jasmonate cascade genes and of genes known to be positively regulated by jasmonate 

signaling, such as genes involved in green leaf volatile, polyamine or phenylpropanoids 

synthesis. Additionally, the TIGR array analysis found many more genes representing the 

above mentioned branches of metabolism, including p-coumaroyl shikimate 3'-hydroxylase 

and cinnamoyl-CoA reductase (phenylpropanoids and their conjugates, Gang et al. 2002), 

SAM synthetase and spermidine synthase (polyamines), arginine- and ornithine 

decarboxylase (precursors for polyamines and nicotine) and several polyphenol oxidases to be 

induced. The TIGR array analysis also revealed the activation of almost every gene in the 

shikimate pathway, the plastidic route to terpenoid synthesis and additional cell wall related 

genes (pectin methyl esterase, extensin), to name just a few of the genes not monitored with 
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reasons: 1) Some genes were not present on the TIGR array (e.g. thionins); 2) differential 

es, N. attenuata and S. nigrum activated different sets of signaling genes and in 

N. atte

regulation was observed in less than three biological replicates (e.g. proteinase inhibitors) and 

hence the gene was automatically excluded from further analysis; 3) some genes were not 

regulated in the TIGR array analysis (e.g. Rubisco). 4) The raw signals of the hybridized 

TIGR arrays were not interpretable (e.g. threonine deaminase). In general, the large scale 

transcriptional analysis with the TIGR array has substantially extended our understanding of 

the plastic responses of N. attenuata to M. sexta attack, and additionally allowed for a 

detailed comparison of these responses with those elicited in S. nigrum by this Solanaceous 

generalist.  

Apart from the anticipated differences in alkaloid (steroidal alkaloids in S. nigrum) 

and alkaloid/polyamine precursor (putrescine in N. attenuata) formation, our analysis 

revealed the production of different defense metabolites in both species. N. attenuata 

predominantly elicited genes for the production of antinutritive polyphenol oxidases, 

phenylpropanoids and their precursors, and plastidic isopentenyl pyrophosphate, which is 

primarily channeled into mono- and diterpene synthesis (Lichtenthaler 1999). In S. nigrum, 

the transcriptional emphasis was on sesquiterpene synthesis. Both species likely increase 

flavonoids, polyamines and green leaf volatiles in response to attack. Analyses of the 

metabolome are needed to test the predictions emerging from this transcriptional analysis. 

Contrary to our assumption that the two species would activate a similar suite of 

signaling gen

nuata more signaling cascades appeared to be up-regulated. Jasmonic acid signaling 

was regulated in both species; calcium-based signaling, inositol-phospholipid signaling, and 

G-protein-mediated signaling were found to be specific to N. attenuata, and cytokinin 

signaling was only detected in S. nigrum. While calcium-signaling has been implicated in 

systemin-mediated activation of phospholipase A2 and subsequent jasmonic acid synthesis 

(Ryan 2000), the role of phospholipase C and heterotrimeric G proteins in defense signaling 

in Solanaceous plants is largely unexplored. The only prosystemin gene on the array was up-

regulated in two of three replicates of S. nigrum but did not yield interpretable results in N. 

attenuata, consistent with the structural dissimilarities of potato and tobacco systemins 

(Scheer et al. 2003; Ryan 2000).  

Our analysis also provided a deeper insight into the changes that accompany 

alterations in signaling and secondary metabolism, namely changes in carbohydrate and 

 



Manuscript II 55

amino acid metabolism, nucleic acid and protein metabolism or changes associated with other 

biotic or abiotic stressors. For example, both plants increased similar and dissimilar 

transcripts for chaperones, dehydration-related genes and oxidative stress genes. Transcript 

levels of enzymes involved in protein degradation / processing were increased in both species 

but with distinct differences. Ubiquitin-related proteolysis, which plays an important role in 

eliminating misfolded or abnormal proteins that probably accumulate in stressed plants, is 

activated only in N. attenuata. Furthermore, ubiquitin-dependent protein turnover influences 

many cellular processes by modulating levels of regulatory proteins (Hare et al. 2003) and 

there is increasing evidence that ubiquitin-dependent proteolysis is essential in regulating 

oxilipin

en 

intensiv

g herbivore resistance, branches of secondary metabolism 

and sig

-mediated plant responses. An important element in JA signal transduction, COI1 

(CORONATINE INSENSITIVE 1), is part of an E3-type ubiquitin ligase complex and 

tomato mutants expressing non-functional COI1 are compromised in their resistance to two-

spotted spider mites (Xie et al. 1998, Devoto et al. 2002, Li et al. 2004). Hence, ubiquitin-

dependent proteolysis may play an important role in regulatory networks that mediate defense 

responses of N. attenuata.  

In S. nigrum other genes involved in protein metabolism are induced by M. sexta 

herbivory, with the most dramatic example being a LAP gene whose expression was up-

regulated 20 fold. LAPs are present in pro- and eukaryotes and plant LAPs have be

ely studied in tomato, where they are elicited by JA, wounding and pathogens and are 

present in floral tissues (Tu et al. 2003 and references therein). Although tomato LAPs are 

biochemically and physiologically well characterized, their function in plant defense 

responses remains elusive. Animal aminopeptidases are involved in modulation of peptide 

and protein activities (Barr 1991) and therefore it is tempting to speculate that a LAP cleaves 

precursors of polypeptide hormones that are known especially among Solanaceous plants 

(Ryan et al. 2002). Alternatively, wound-induced LAPs may have a more general role in the 

turnover of proteins that are essential components of plant defense responses (Walling et al. 

1995). The fact that LAP was also highly up-regulated on the arrays of MeJA-elicited plants 

emphasized the importance of this gene in defense responses of S. nigrum.  

When S. nigrum was treated with MeJA, a derivative of the jasmonate cascade which 

is largely responsible for mediatin

naling were activated that the previous microarray experiment had only shown for N. 

attenuata’s responses to M. sexta attack. These included genes involved in phenylpropanoid 

 



  Manuscript II 56 

and shikimate biosynthesis, the plastidic pathway of terpenoid production, genes involved in 

ubiquitin-mediated proteolysis and a gene related to G protein signaling. Hence, the 

genuinely weaker transcriptional response of S. nigrum to M. sexta herbivory can not be 

explained by S. nigrum’s inability to respond to elicitation. N. attenuata has likely had a 

longer evolutionary association with M. sexta and hence has had more time to evolve a strong 

response to M. sexta attack. S. nigrum appears not to have evolved strong responses to this 

herbivore, but has to others, e.g. flea beetles (Schmidt et al. 2004).  

In summary, the transcriptional comparison of M. sexta attacked N. attenuata and S. 

nigrum plants did not support the existence of a Solanaceous “blueprint” for herbivore 

defense. Most strikingly, the differences extended beyond the activation of different alkaloid 

pathways and included a profound divergence in signaling pathways mediating the elicited 

responses. The likely difference in the length of their evolutionary associations with M. sexta 

may account for the differences in their responses. 

 

Materi

One da

als and methods  

Plant and insect growth and experimental setup 

Seeds of a Nicotiana attenuata inbred line were smoke-germinated on Phytagel as described 

by Krügel et al. (2002). Twelve days after germination seedlings were planted in soil into 

Teku pots (Waalwijk, the Netherlands), and after 12 additional days, transferred to 0.5 L pots 

with a peat based substrate (Klasmann Tonsubstrat, Geeste-Groß Hesepe, Germany). Seeds of 

a Solanum nigrum inbred line were germinated as described in Schmidt et al. (2004) and ten 

day-old seedlings were transferred to 0.5 L pots with the same substrate as for N. attenuata. 

Both plant species were grown in the glasshouse of the Max Planck Institute for Chemical 

Ecology (Jena, Germany) at 24-26°C (16h light; supplemental lighting by Philips Sun-T Agro 

400 and 600 W sodium lights; 65% humidity). 

 

Insect treatment 

y prior to the herbivore treatment, 24 randomly selected plants of each species were 

placed in glass insect cages (30cm x 30cm x 60cm, each cage accommodating 4 plants). 

Twelve plants were used in both herbivore and control treatment; plants were harvested 
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individually and later RNA from the four plants of a single cage were pooled to provide one 

biological replicate of the experiment. Eggs of Manduca sexta were obtained from a 

laboratory colony. On each plant of the herbivore treatment (n=12 plants for each species) ten 

freshly hatched caterpillars were placed on two different leaves and allowed to feed freely. 

After 24h of feeding, herbivores and their frass were removed and shoots and leaves of the 

herbivore-damaged and of non-attacked control plants were harvested, flash-frozen in liquid 

nitrogen, and stored at –80°C until microarray analysis. 

To determine whether first instar M. sexta larvae consume different amounts of leaf 

area from the two hostplant species, we placed 2 freshly hatched caterpillars on each of 

another five plants per species and measured the amount of leaf material consumed after 24h. 

After 24h the damaged leaves were harvested, scanned (HP Scanjet 8200, 300 dpi; Hewlett 

Packard, Palo Alto, CA, USA), the leaf area consumed was determined by counting pixels 

with image analysis software (Sigma Scan Pro 5, Point Richmond, CA, USA) and the larvae 

were weighed. Five leaves were not included in the analysis because the caterpillars died or 

walked off the leaf during the experiment leaving n=8 for N. attenuata and n=7 for S. nigrum. 

ed did not differ significantly between the two host 

 23.6 ± 3.0 mm2; t0.025, 13=-1.375, p=0.192). 

s pooled to provide one biological replicate.  

sis 

under http://www.tigr.org/tdb/potato/microarray_comp.shtml. For the transcriptional analysis 

The amount of consumed leaf area consum
2species (N. attenuata 17.0 ± 2.9 mm ; S. nigrum

Lavae feeding on N. attenuata (2.7 ± 0.2 mg) tended to be slightly heavier than those feeding 

on S. nigrum (2.0 ± 0.1 mg). 

 

MeJA treatment 

Twelve S. nigrum plants were used in both control and MeJA treatment. Ten µl lanolin 

containing 75 µg MeJA (both Sigma, St. Louis, MO, USA) were applied to one leaf  (7th leaf 

above cotyledons) of each plant; control plants were treated with 10 µl pure lanolin. After 24 

h, the treated leaves were harvested, flash-frozen in liquid nitrogen, and stored at –80°C until 

RNA extraction. RNA of 4 individual plants wa

 

Microarray analy

For gene expression analysis, we used two versions of the TIGR potato 10,000-clone cDNA 

microarray that contain 11,243 (version 10Kv1) and 11,512 (10Kv2) annotated cDNA clones 

spotted as duplicates on the array. Detailed information about this microarray can be found 
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of M. sexta-induced responses of N. attenuata and S. nigrum, we used to array version 

10Kv1; for the MeJA-elicited responses of S. nigrum we used array version 10Kv2. For 

comparisons of the datasets produced from the two versions of the microarray, we analyzed 

only the clones present on both versions of the array (11,243 clones). Gene expression data 

obtained from hybridizations of this potato microarray with a variety of Solanaceous species 

can be accessed through a database maintained at the TIGR website (http://www.tigr.org/tigr-

scripts/sgedb/studies_SGED.pl) and thus compared and shared across different laboratories. 

Althou

d the four plants of the treatment cage (Cy3 labeled). The three 

biological replicates of the M. sexta-N. attenuata elicitation experiment are named NA1, 

SN1, SN2, and SN3 designated the corresponding replicate microarrays of 

We analyzed the normalized data of the six microarrays with GeneSpring 6.1 (Silicon 

ity, CA, USA) using Hierarchical Cluster Analysis. For further analysis 

gh Solanaceous species clearly differ in morphology, life cycle, secondary metabolism, 

tuber and fruit formation etc., they have similar genomes with respect to gene content and 

genome organization (see transcriptional analysis of several Solanaceous plants by Robin 

Buell, http://www.tigr.org/tigr-scripts/sgedb/search2_std.pl?study_id=35). 

Plant material was ground under liquid nitrogen and total RNA was extracted with 

TRI ReagentTM (Sigma) according to the manufacturer’s instructions. All steps of microarray 

processing (cDNA production, cDNA labeling, microarray hybridization, data quantification, 

data normalization using LOWESS) were carried out by the TIGR Expression Profiling 

Service according to published methods 

(http://www.tigr.org/tdb/potato/microarray_SOPs.shtml). The cDNAs hybridized to an 

individual array was produced from RNA extracted individually from the four plants of a 

control cage (Cy5 labeled) an

NA2, and NA3. 

the M. sexta-S. nigrum elicitation experiment; the arrays of the S. nigrum MeJA experiment 

are named SNmj1, SNmj2, and SNmj3. The raw data from the nine hybridizations including 

all details of the experiment are available from the TIGR Solanaceae Gene Expression 

Database (http://www.tigr.org/tigr-scripts/sgedb/search2_std.pl?study_id=53, experiment IDs 

2450, 2455, 2460, 2465, 2470, 2475, 2928, 2929, 2930). 

Genetics, Redwood C

we calculated the mean expression ratio (ER) from the biological replicates and defined a 

transcript as being differentially regulated when the following criteria were fullfilled: (1) The 

ER was significantly different from 1 as determined by a Student’s t-test (p<0.05); (2) the ER 

exceeded the thresholds of 0.67 and 1.5 for down- and up-regulation, respectively. These 
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criteria had been previously tested and found to give reproducible results (Heidel and 

Baldwin 2004; Halitschke et al. 2003). 

We confirmed the microarray expression data using TaqMan® real-time PCR (ABI 

PRISM® 7700 Sequence Detection System; Applied Biosystems, Foster City, CA, USA). 

Additionally, to test the suitability of this potato microarray for S. nigrum and N. attenuata, 

we chose to assay the species that is more distantly related to potato, namely N. attenuata 

(Fig. 1). We analyzed the three biological replicates of M. sexta-challenged N. attenuata 

using TaqMan® probes for N. attenuata-specific genes that are homologous to genes present 

on the potato array, namely α-dioxygenase (α-DOX), lipoxygenase (LOX), hydroperoxid 

lyase (HPL) and a xyloglucan endotransglycosylase (XTH, formerly XET; Supplementary 

Table 2). We calculated the relative gene expression of each sample using the comparative 2-

ΔΔCt me

 

thod (Livak and Schmittgen 2001) with ECI (sulfite reductase) as endogenous control 

gene, which under our experimental conditions is not regulated  (B. Bubner and I.T. Baldwin, 

unpublished results) and the non-infested control plants as the calibrator.  
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Abstract 

We extend Ryan’s seminal work on the 18-aa polypeptide, systemin, in tomato’s systemic 

wound response to the closely related solanaceaous species, Solanum nigrum. We compared 

wild-type (WT) plants to plants transformed with an inverted repeat prosystemin construct 

(IRSys) to silence the expression of the endogenous S. nigrum prosystemin gene. In WT 

plants elicited with wounding + oral secretions (OS) from Manduca sexta larvae, trypsin-

proteinase inhibitors (TPIs) accumulated even though prosystemin transcripts were down-

regulated. Neither reducing the endogenous systemin levels by RNAi nor complementing the 

plants with systemin by exogenously supplying the polypeptide through excised stems 

significantly increased TPI activity, indicating that systemin and TPIs are not correlated in S. 

nigrum. The performance of two herbivore species from two feeding guilds, Manduca sexta 

larvae and Myzus persicae nicotianae, did not differ between WT and IRSys plants, 

demonstrating that varying endogenous systemin levels do not alter the direct defenses of S. 

nigrum. Field experiments with WT and IRSys plants and the flea beetle Epitrix pubescens 

supported these glasshouse data. That levels of OS-elicited jasmonic acid (JA) did not differ 

between WT and IRSys plants suggests that systemin is unlikely to mediate jasmonate 

signaling in S. nigrum as it does in tomato. We conclude that the tomato-homologous 

polypeptide does not mediate direct defense responses in S. nigrum.  

 

 

Key words: systemin, proteinase inhibitors, Solanum nigrum, direct defense, plant-herbivore-

interaction 
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Introduction 

Plants not only respond locally to leaf damage caused by wounding, herbivory or pathogen 

attack but they also induce defenses in distal, unwounded leaves. These systemic defense 

responses have been extensively studied in tomato (Solanum lycopersicum), where an 18-aa-

polypeptide called systemin is known to play an essential role in generating the mobile 

wound signal. Systemin is processed from its larger precursor, prosystemin, which is 

synthesized and processed in the vascular phloem parenchyma cells (Narvaez-Vasquez and 

Ryan, 2004). Constitutive prosystemin mRNA expression has been found throughout the 

plant except for the roots (McGurl et al., 1992). After leaf wounding, prosystemin mRNA is 

induced systemically; the highest accumulation is seen after 3 to 4 hours (McGurl et al., 

1992). Like the prosystemin mRNA, proteinase inhibitor (PI) I mRNA, which encodes for a 

protein with antinutritional effects against several lepidopteran herbivores (Johnson et al., 

1989; Ryan, 1990), accumulates systemically after wounding; it is  most abundant 8 to 10 h 

after wounding (McGurl et al., 1992). Young tomato plants supplied with low concentrations 

of systemin through their cut stems accumulated PI I and II (Pearce et al., 1991). This positive 

correlation between systemin and PIs is supported by the work of McGurl et al. (1992), who 

transformed tomato plants with an antisense prosystemin construct. A transgenic line lacking 

prosystemin was almost completely suppressed in its systemic induction of PIs I and II. 

Furthermore, Manduca sexta larvae that fed on another transgenic plant silenced in its 

prosystemin expression consumed more leaf material and became three times heavier than 

those that fed on wild-type (WT) plants (Orozco-Cardenas et al., 1993). After wounding, 

transgenic plants transformed to over-express the prosystemin gene constitutively produce PI 

I and II proteins and accumulate more PIs in local and systemic leaves than do WT plants 

(McGurl et al., 1994). Grafting experiments using these over-expressers as root stocks 

revealed the constitutive production of PIs in wild-type scions (McGurl et al., 1994), 

indicating the central role of systemin in generating the systemic wound signal in tomato.  

More recent grafting experiments between jasmonic acid (JA) biosynthesis mutants 

(called spr2 mutants) and WT plants, or between systemin signaling mutants (called spr1 

mutants) and WT plants showed that both JA biosynthesis and the presence of systemin are 

required in the local, wounded leaf to produce the systemic signal and hence to induce PIs 

systemically. On the other hand, neither JA nor systemin is needed in the systemic, 

undamaged leaves of tomato plants (Howe, 2004; Schilmiller and Howe, 2005). These 
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findings suggest that systemin acts at or near the site of wounding by amplifying the JA-

derived mobile wound signal and are consistent with the previously proposed model that 

places systemin at the top of the octadecanoid-based signaling pathway upstream of JA 

(Farmer and Ryan, 1992). Evidence that systemin levels influence the JA levels of a plant was 

provided by Stenzel et al. (2003), who reported a larger and more rapid rise in JA levels when 

leaves of prosystemin over-expressing plants were wounded compared to WT plants and less 

JA in plants transformed with an antisense prosystemin construct. Chen et al. (2006) also 

observed three-fold higher constitutive JA levels in prosystemin over-expressing plants 

compared to WT plants. 

Using the tomato cDNA as a probe, systemin homologs have been found in three other 

solanaceous species (Constabel et al., 1998), including black nightshade (Solanum nigrum 

L.). S. nigrum is a wild relative of potato and tomato (Schmidt et al., 2005) and has been 

established as a model system to study plant-herbivore interactions and its underlying 

signaling processes. A proteinase inhibitor gene called pin2b was found in S. nigrum which is 

homologous to and shares 86 % sequence similarity with the tomato piII gene. S. nigrum has 

been shown to locally and systemically induce trypsin- proteinase inhibitor (TPI) activity 

after wounding (Constabel et al., 1998) as well as to respond systemically by eliciting TPI 

activity after methyl-jasmonate (MeJA) treatment or after attack by the flea beetle Epitrix 

pubescens (Schmidt et al., 2004).  

S. nigrum systemin, which has 83 % amino acid identity to the tomato systemin with 

the respective prosystemins being 81 % identical, induced ten times less PI I when supplied to 

excised tomato plants than did tomato systemin itself or any of the other systemin homologs 

(Constabel et al., 1998). On the other hand S. nigrum plants supplied with S. nigrum systemin 

did not accumulate more proteinase inhibitors than control plants supplied with buffer despite 

a difference in the proteinase inhibitor transcript levels between both treatments (Constabel et 

al., 1998). These findings led us to hypothesize that in S. nigrum systemin is not mediating 

direct systemic defense responses as it does in tomato. To test this hypothesis, we posed the 

following questions: (i) Which tissues of S. nigrum express systemin constitutively? (ii) Does 

S. nigrum induce systemin after treatment with wounding + M. sexta oral secretions (OS)? 

(iii) Do proteinase inhibitors accumulate differently in WT S. nigrum plants than in plants 

silenced in their prosystemin expression after a wounding + OS elicitation? (iv) Does 

application of systemin induce proteinase inhibitor accumulation in S. nigrum? (v) Do 
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herbivores perform differently on WT plants than on plants silenced in their prosystemin 

expression? (vi) Do constitutive and induced JA levels differ in S. nigrum WT plants from 

plants silenced in their prosystemin expression? 

 

Results 

Spatial and temporal prosystemin transcript patterns 

Prosystemin, of which at least three genes are present in S. nigrum (Supplemental Fig. 2A) 

was constitutively expressed in all reproductive and vegetative WT tissues except for the 

roots.  The sites with the highest expression were the flower buds and the leaves, respectively 

(Fig. 1A + B). Interestingly low prosystemin mRNA levels were detected in black berries and 

stems (Fig. 1A + B). After a wounding + OS treatment, the expression of prosystemin 

decreased rapidly in leaves of WT plants and were lowest 30 minutes after elicitation, 

whereas in both lines transformed with an inverted repeat prosystemin construct (IRSys lines), 

the expression of prosystemin remained very low (Fig. 2 A + B).  
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Figure 1: Constitutive 
prosystemin transcript levels 
in reproductive (A) and 
vegetative (B) tissues of WT 
plants. A: mean ± SD of five 
to six pooled samples. B: 
mean ± SD of four to five 
replicates; LB = leaf blade, 
MR = midrib, P = petiole, y = 
young, o = old. Different 
letters indicate significant 
differences 
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B Figure 2: Prosystemin transcrips 
levels in (A) local and systemic 
leaves of WT plants and IRSys line 
1 in the glasshouse and (B) in local 
leaves of WT plants and IRSys lines 
1 and 2 in the field after elicitation 
with wounding + OS. Shown are the 
mean ± SE (A) or SD (B) of three to 
five replicates.  

 
TPI accumulation in WT and IRSys plants 

To test whether the accumulation of TPI depends on the (pro)systemin level of a plant, the 

amount of TPIs was quantified in uninduced and induced WT and IRSys plants. Although 

constitutive levels in WT and transgenic plants were below the detection limit of the assay, 

levels increased dramatically after induction (Fig. 3). No significant difference was detected 

between WT and IRSys plants, either in local or in systemic leaves.  
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Figure 3: Trypsin-proteinase 
inhibitor accumulation in local (L) 
and systemic (S) leaves after 
wounding + OS treatment. Shown 
are the combined data of two 
independent experiments in which 
either IRSys line 1 or 2 was 
compared to WT. Constitutive levels 
were below the detection limit of the 
assay in all cases. Bars represent 
mean ± SD of three to five replicates. 
Different letters indicate significant 
differences.  
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Influence of exogenously applied systemin on TPI levels 

As reducing prosystemin mRNA levels in IRSys plants did not reduce TPI accumulation, we 

tried to enrich plants with systemin by applying the polypeptide through their cut stems. 

Applying S. nigrum systemin or tomato systemin to WT S. nigrum plants did not increase TPI 

levels compared to those of controls (Fig. 4A). However, the application of MeJA was clearly 

capable of inducing TPIs (Fig. 4A). In tomato plants the application of tomato systemin 

significantly increased the level of TPIs compared to control levels, whereas S. nigrum 

systemin did not (Fig. 4B). Using a MeJA dilution series, we demonstrated that S. nigrum WT 

plants are able to respond to an exogenously applied elicitor in a dose-dependent manner (Fig. 

4A, Insert). The patterns resulting from treatment of the IRSys lines did not differ 

significantly from those of treated WT plants (Supplemental Fig. 3).  

Figure 4: Trypsin-proteinase 
inhibitor accumulation in leaves 
of S. nigrum (A) and tomato 
plants (B) after application of 
water, S. nigrum systemin, 
tomato systemin or methyl 
jasmonate (MeJA) through the 
cut stems. Insert in (A): Dose-
dependent accumulation of 
trypsin-proteinase inhibitors in S. 
nigrum leaves after application 
of different concentrations of 
MeJA through the cut petioles. 
Shown are mean ± SD of three 
to five replicates. Different 
letters indicate significant 
differences.  0
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Influence of systemin levels on herbivores of different feeding guilds  

To evaluate the influence of systemin on direct defense mechanisms, we compared the 

performance of herbivores on WT plants and IRSys lines. Herbivores from two different 

feeding guilds, namely, leaf chewers (i.e. caterpillars of the tobacco hornworm M. sexta 

(Sphingidae) and the flea beetle E. pubescens (Chrysomilidae)) and phloem sap suckers (i.e. 

Myzus persicae nicotianae (Aphididae)), were chosen. As measures of the leaf quality of the 

different genotypes, we quantified the mass gain of M. sexta, the leaf damage caused by E. 

pubescens, and the population growth of M. persicae nicotianae, respectively. The measures 

of M. sexta larval mass and the E. pubescens assay were repeated three times. The data shown 

in Fig. 5 are representative for all three experiments. In none of the three herbivore species 

was a significant difference between WT and IRSys lines detected (Fig. 5; all Ps > 0.1240).  
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B Figure 5: Herbivore performance on 
WT and IRSys plants. (A) Mass of M. 
sexta caterpillars reared on WT and 
IRSys plants. Shown are mean ± SD 
of 19 to 22 larvae feeding individually 
on the respective genotypes (repeated 
measures ANOVA: P = 0.51). (B) 
Mean leaf damage caused by E. 
pubescens feeding on field-grown WT 
plants and IRSys lines. Shown are 
mean ± SD of 15 plants per genotype 
(Bonferroni corrected Wilcoxon 
Signed Rank test for WT singly 
compared to each IRSys line at each 
day: P > 0.025). (C) Number of M. 
persicae nicotianae aphids after 10 
days starting from one female placed 
on each of 15 plants of each genotype. 
Shown are mean ± SD. Different 
letters indicate significant differences.  
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Influence of systemin on JA levels  

 To test whether systemin acts at the top of the octadecanoid pathway upstream of JA, 

the level of the plant hormone was quantified in the leaves of WT plants and IRSys lines 

treated with wounding + OS.. The time series of WT plants were characterized by two peaks 

30 minutes and 3 h after elicitation (Fig. 6, Insert). The pattern was similar for IRSys lines, 

with the second peak more prominent than the first. Neither in uninduced nor in induced 

leaves were significant differences between WT and transgenic lines detected (Fig. 6). The 

WT time series as well as the comparison between WT plants and IRSys lines were repeated 

twice with similar results (only one graph is shown). 
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Figure 6: Jasmonic acid (JA) content in leaves of WT plants and IRSys lines after wounding + oral 
secretion (OS) treatment. Shown are mean ± SD of five individual plants per timepoint and 
genotype (single ANOVA followed by LSD post-hoc test per timepoint: P > 0.05). Insert: Shown 
are mean ± SE of five individual WT plants per timepoint.  

 
Discussion 

The aim of this study was to determine whether systemin’s role in tomato also applies to a 

solanaceous species which is closely related to tomato. The question was addressed by 

extending Ryan’s work to S. nigrum and testing whether systemin mediates direct systemic 

defense responses in this species. To compare transgenic S. nigrum plants silenced in their 

prosystemin expression to WT plants, we measured TPI and JA accumulation after wounding 

+ OS treatment. In addition, we compared the performance of three different herbivore 

species on WT and IRSys plants and observed TPI levels in plants supplied with systemin. 
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  S. nigrum harbors at least three prosystemin genes (Supplemental Fig. 2A) which are 

effectively silenced in both IRSys lines (Fig. 2A + B). The tissue-specific expression pattern 

of prosystemin in S. nigrum (Fig. 1A and B) seems to reflect that observed in tomato (McGurl 

et al., 1992) with high mRNA levels in reproductive and above-ground vegetative tissues. 

The small amounts of prosystemin mRNA detectable in the black berries (as opposed to the 

green berries) and roots suggest that systemin is unimportant in these tissues. While the levels 

of constitutive prosystemin transcript in S. nigrum match the levels reported from tomato, the 

picture changes after induction. In tomato, prosystemin is systemically induced after 

wounding (McGurl et al., 1992). In contrast, in S. nigrum local and systemic transcript levels 

rapidly decrease after OS elicitation under both glasshouse as well as field conditions (Fig. 

2A and B). To demonstrate that the (pro)systemin levels have an influence on defense 

responses, PI levels are typically quantified as a response variable in tomato.  

The ability of a transgenic tomato line, silenced in its prosystemin expression, to  

systemically increase PI I and II (McGurl et al., 1992) was almost completely suppressed, 

indicating a positive correlation between prosystemin expression and PI accumulation. 

Compared to tomato, the situation is different in S. nigrum. Dramatically reducing levels of 

prosystemin (in both IRSys lines; Fig. 2A and B) does not reduce TPI (Fig. 3).  In addition, 

TPI levels in WT plants increase while prosystemin transcript levels decrease after elicitation. 

This demonstrates an absence of correlation between systemin and TPIs in S. nigrum. The 

observed positive correlation in tomato, however, could theoretically be due to an insertion 

effect of the transgene, as only the F1-progeny of a single primary tomato transformant was 

tested. Working with transformed plants always carries the risk of detecting a transgene-

insertion-effect rather than a gene-of-interest-effect; this risk is greatly reduced when the 

phenotype occurs in more than one independently transformed line. Fig. 3 shows the 

combined data from two independent experiments in which either IRSys line 1 or IRSys line 2 

was compared to WT. Even though the absolute TPI levels differed between the two 

experiments, in none of the experiments did TPI levels differ significantly between transgenic 

and WT plants.  

To increase endogenous systemin levels, plants were supplied with additional 

systemin by applying the polypeptide through the cut stems or petioles. In S. nigrum WT 

plants, neither S. nigrum systemin nor tomato systemin was able to elicit higher TPI levels 

compared to those of water-treated controls (Fig. 4A). The former phenomenon was reported 
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previously by Constabel et al. (1998), which suggests that the excision itself activated the 

wound response to maximal levels, making it difficult to discern whether the PI accumulation 

was affected by exogenously applied systemin. By using MeJA as a positive control (Fig. 

4A), we demonstrated that this was not the case but that excised S. nigrum plants supplied 

with MeJA are able to significantly increase TPI levels over control levels in a dose-

dependant manner (Fig. 4A, Insert). Constabel et al. (1998) hypothesized that S. nigrum 

systemin mediated defense gene induction in S. nigrum because systemin treatments 

increased PI-mRNA accumulation more than did treatment with buffer only, even though this 

differential transcriptional expression was not reflected on protein level. Our analysis of S. 

nigrum does not support this hypothesis. We applied tomato systemin to tomato plants, with 

the expected result: levels of TPIs significantly increased compared to control levels (Fig. 

4B). However, applying S. nigrum systemin to tomato did not (Fig. 4B), which was consistent 

with the findings of Constabel et al. (1998), who pointed out that in tomato S. nigrum 

systemin is ten times less effective than tomato systemin in eliciting PI I. Supplying both S. 

nigrum IRSys lines with water or S. nigrum systemin did not lead to any significant 

differences compared to the WT plants (Supplemental Fig. 3), supporting the absence of a 

correlation between systemin and TPIs in S. nigrum.  

To test the influence of endogenous systemin levels on S. nigrum’s resistance to insect 

attack, the performance of different herbivores on WT and IRSys plants was evaluated. 

Larvae of the tobacco hornworm M. sexta, a Solanaceae specialist, gained the same mass 

when reared on the different genotypes (Fig. 5A). Dramatic differences in weight gain have 

been reported for tomato plants over-expressing the prosystemin gene compared to WT 

tomato plants (Orozco-Cardenas et al., 1993). Nevertheless, data derived from these over-

expressor lines need to be interpreted cautiously as the ectopic expression of prosystemin 

mRNA driven by an S35 promotor, produces systemin in tissues that normally do not express 

the gene, for example roots (McGurl et al., 1992). The flea beetle E. pubescens, another 

Solanaceae specialist, has been repeatedly observed to feed on S. nigrum at our field site. The 

mean damage inflicted by this species on the IRSys lines did not differ significantly from that 

done to WT plants (Fig. 5B). Finally, the population growth of M. persicae nicotianae did not 

differ between genotypes (Fig. 5C). Taken together, these results demonstrate that the quality 

of IRSys and WT leaves does not differ for these herbivores. 
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To test whether the endogenous systemin levels influence a plants' ability to produce 

JA, the plant hormone was quantified in both uninduced and OS elicited WT and IRSys 

plants. WT plants clearly responded to the treatment (Fig. 6, Insert), showing a two-peaked 

pattern of JA accumulation. The amount of JA did not differ significantly between WT and 

IRSys plants (Fig. 6), indicating little or no correlation between systemin and JA in S. nigrum.  

Given that prosystemin transcripts are down-regulated after induction (Fig. 2), systemin and 

JA may be negatively correlated in S. nigrum, but the low constitutive JA levels in both IRSys 

lines argue against this. These data suggest that systemin in S. nigrum does not act at the top 

of the octadecanoid-based signaling pathway upstream of JA as has been proposed for tomato 

(Farmer and Ryan, 1992). Current knowledge about systemin based on research in tomato 

appears not to apply to a closely related member of the same family.  

The possibility that systemin might play completely different roles even in closely 

related species is supported by Boller’s (2005) analysis of systemin sequences, which 

concluded that systemin appears to be under diversifying selection. 

 

Materials and Methods 

Plant growth 

The Solanum nigrum L. inbred line Sn30 (Schmidt et al., 2004) was used as a WT control for 

all experiments. To synchronize germination, seeds of WT and transgenic plants were 

incubated in 5mL 1 M KNO3 supplemented with 50 µL 0.1 M gibberellic acid (Roth, 

Karlsuhe, Germany) and 25 µL 0.5% (v/v) Tween-20 (Merck, Darmstadt, Germany) at 4°C 

overnight. Seeds were germinated in Teku pots (Waalwijk, The Netherlands) with a peat-

based substrate (Klasmann Tonsubstrat, Geeste-Groß Hesepe, Germany) and transferred to 9 

x 9 x 9.5 cm pots containing the same substrate after about 14 days. At all stages the plants 

were grown in the greenhouse (16 h light, supplemental lighting by Philips Master Sun-T PIA 

Agro 400 and Sun-T PIA Plus 600 W sodium lights (Turnhout, Belgium) / 23-25°C / 45-55 % 

humidity; 8 h dark / 19-23°C / 45-55 % humidity) of the Max Planck Institute for Chemical 

Ecology (Jena, Germany).  

The procedure was the same for Solanum lycopersicum cv. Castlemart except that the 

seeds were soaked in water at 4°C over night.  

Plants used in the two field experiments in July and August 2005 (flea beetle 

herbivory and prosystemin expression after wounding + OS treatment) were planted at the 
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field site in Dornburg (north of Jena, Germany) 24 or 21 days post-sowing after being 

acclimatized to outdoor conditions for three to five days. The release of transformed plants at 

the Dornburg field site was conducted in compliance with EU and German regulations 

(release application no. 6786-01–0156 (IRSys line 1) and 6786-01–0165 (IRSys line 2) as 

administered by the Thüringer Landesverwaltungsamt (TLVwA) and the Thüringer 

Landesamt für Lebensmittelsicherheit und Verbraucherschutz (TLLV). 

All experiments were conducted with four- to five-week-old plants except those 

involving the harvesting of reproductive tissues. 

 

Inverted repeat prosystemin lines (IRSys lines) 

Transgenic S. nigrum lines silenced in their prosystemin expression were constructed using 

the silencing vector pSOL3SYS1 (Supplemental Fig. 1) which is based on the pSOL3RCA 

silencing vector described in detail by Bubner et al.(2006). The original RCA inverted repeat 

fragments were consecutively replaced by two 399 bp fragments of the S. nigrum prosystemin 

gene after being PCR amplified using the primer pairs SYS5-32 (5’-

GCGGCGCCATGGTCTGTCTGCATTTTGGGAGG-3’), SYS6-31 (5’-

GCGGCGCTGCAGTGGAACATGAGGAGGGAGG-3’) and SYS7-32 (5’-

GCGGCGCTCGAGTCTGTCTGCATTTTGGGAGG-3’), SYS8-32 (5’-

GCGGCGGAGCTCGTGGAACATGAGGAGGGAGG-3’), respectively, based on the 

mRNA sequence published by Constabel et al. (1998). Agrobacterium tumefaciens-mediated 

transformation was conducted as described by Kruegel et al. (2002) and T1 (transformation 

generation 1) -plants homozygous for the trans-gene were selected by a hygromycin 

resistance screen of their progeny. The progeny of homozygous T1-plants was additionally 

tested to see if it harbored a single copy of the transgene. Southern blot analysis 

(Supplemental Fig. 2B) resulted in two independently transformed inverted repeat lines. 

Seeds of these lines were used for all experiments and will be made freely available to 

academic investigators for non-commercial research purposes. Line S03-71-13 and line S03-

82-3 are referred to as IRSys line 1 and IRSys line 2. 

 

Southern blot analysis 

Genomic DNA of WT and IRSys plants was isolated from S. nigrum leaves using a modified 

cetyl trimethyl ammonium bromide (CTAB) method (Rogers and Bendich, 1994) as 
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described in Bubner et al. (2004). The final DNA pellet was rehydrated in 50 µL 1 x 

Tris/EDTA (TE) buffer (10 mM TrisCl pH 8, 1 mM EDTA pH 8). Restriction digests were 

done using BamHI, EcoRI, and EcoRV for the WT DNA and EcoRV or XbaI for the DNA of 

the two IRSys lines. Plasmids (pSOL3SYS1) were linearized using BamHI, XhoI or XbaI. 

Size-fractionation by 0.8% agarose gel electrophoresis was followed by Southern blotting 

onto a nylon membrane with a high-salt buffer (Brown, 1995). The blots were hybridized 

with 32P-labeled probes specific for the prosystemin gene (primer pair SYS5-32 [5’-

GCGGCGCCATGGTCTGTCTGCATTTTGGGAGG-3’] and SYS6-31 [5’-

GCGGCGCTGCAGTGGAACATGAGGAGGGAGG-3’]) or the hygromycin resistance gene 

hptII. 

 

Plant treatments  

To mimic herbivore feeding one leaf was wounded with a fabric pattern wheel, causing three 

rows of punctured wounds at each side of the midrib. The wounds were immediately supplied 

with the oral secretions (OS) of M. sexta larvae. OS were collected from third- to fourth-instar 

larvae hatched from eggs (Carolina Biological Supply, Burlington, NC, USA) and reared on 

S. nigrum WT plants. OS were diluted 1:1 (v/v) with deionized water prior usage. For the 

prosystemin expression time series, the PI assay, and the JA measurements, a fully expanded 

leaf of the main axis (normally one leaf at nodes six to eight) was induced as described above. 

After the respective time-points (for the PI assay, after 72 h) the locally treated leaf and in the 

case of the prosystemin time series the uninduced leaf one node above the treated leaf were 

harvested, flash frozen in liquid nitrogen and stored at -80°C until further processing. As the 

plants grew slower in the field than in the glasshouse, in the field experiment the leaf at the 

fourth node has been treated and harvested as described above. To measure the constitutive 

prosystemin expression in different plant tissues the whole plant remained untreated and 

RNA was extracted from old (third node) leaf blades, petioles and midribs; young (seventh 

node) leaf blades, petioles; and midribs; and stems, roots, buds, flowers, and green and black 

berries.  

The PI-inducing effect of S. nigrum and tomato systemin was tested by excising S. 

nigrum and tomato WT plants at the base of the stem according to Pearce et al. (1993) with a 

scalpel and placing them into tubes containing 500 µL water either pure or supplemented with 

2.5 pmol systemin (AnaSpec, San Jose, CA, USA; according to protein sequences published 
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by Constabel et al., 1998) or 150 µg MeJA as a positive control. After the complete solution 

had been taken up, plants were transferred to water for 72 hours and the leaf at the sixth (S. 

nigrum) or the third node (tomato) was harvested, flash frozen in liquid nitrogen, and stored 

at -80°C until processing for TPI assay. The experiment was complemented by supplying 

IRSys leaves with pure water or water supplemented with 2.5 pmol systemin or 150 µg MeJA 

through their cut petioles. To demonstrate that excised S. nigrum leaves are capable of 

responding to exogenously applied MeJA in a dose-dependent manner, S. nigrum WT leaves 

were supplied with different concentrations of MeJA in 500 µL water through their cut 

petioles followed by the procedure described above.  

 All experiments described above were based on four to six individual plants for each 

treatment and / or harvest time-point. The individual reproductive tissues samples were 

pooled out of 15 buds, 5 flowers, 3 green berries, and 2 black berries per plant, respectively.  

 

Herbivore experiments 

M. sexta larvae were reared from eggs (obtained from the M. sexta colony at the Max Planck 

Institute for Chemical Ecology in Jena, Germany) and one neonate was placed on each of the 

25 individual plants per genotype (WT and both IRSys lines). The caterpillars were weighed 

after 3, 5, 9, and 11 days.  

 Naturally occurring adult flea beetles (E. pubescens) were allowed to feed on 45 field 

grown plants planted as triplicates of the three genotypes over a period of 10 days. The 

damage done to the plant was recorded on days 2, 4, and 10. To quantify the damage, each 

individual leaf was categorized according to the following damage classes: 0 = 0% damage, 1 

= 1-5% damage, 2 = 6-10% damage, 3 = 11-25% damage, 4 = 26-50% damage, 5 = 51-100% 

damage. Based on the damage level estimated for each individual leaf, a mean value was 

calculated for the entire plant. As these mean plant data are non-continuous percentage values 

and the damage experienced by WT plants was compared singly to the damage done to each 

IRSys line, thus having two analyses per recording day, Bonferroni corrected Wilcoxon 

Signed Rank tests have been performed. 

Myzus persicae nicotianae aphids were collected on Nicotiana attenuata plants in our 

greenhouse and transferred to S. nigrum, where they were allowed to establish a population 

for about two weeks. Single females of this population have been used to infest 15 S. nigrum 
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plants of each genotype (WT and both IRSys lines) and after 10 days the population size on 

each plant was counted.  

 

RNA extraction and quantitative real-time PCR  

Harvested tissues were ground individually in liquid nitrogen and total RNA was isolated 

following a modified TRI Reagent® procedure for polysaccharide- and proteoglycan-rich 

sources (TIGR, 2003). Total RNA (100 ng) was reverse-transcribed into complementary 

DNA (cDNA) using MultiScribeTM reverse transcriptase (Applied Biosystems, Darmstadt, 

Germany) according to the manufacturer’s instructions. Prosystemin mRNA expression was 

quantified by real-time PCR (ABI PRISMTM 7700 Sequence Detection System; Applied 

Biosystems, Darmstadt, Germany) using the qPCRTM core reagent kit (Eurogentec, Seraing, 

Belgium), a specific TaqMan primer pair, and a double fluorescent dye-labeled TaqMan 

probe specific for the S. nigrum prosystemin gene based on the sequence published by 

Constabel et al. (1998). The probe was designed to detect only the endogenous prosystemin 

gene and not the region selected for the inverted repeat construct. The relative target gene 

expression of each sample was determined using standard curves. cDNA for these standards 

has been obtained by reverse transcription of S. nigrum RNA extracted from a wounding + 

OS treated WT plant using SuperScriptTM II RNaseH-Reverse Transcriptase (Invitrogen) 

according to the manufacturer’s instructions. With each measurement TaqMan reactions of 

four defined cDNA dilutions (20 ng / µL to 0.02 ng / µL) were run using the primers and 

probe described above. Ct values (the cycle number C at which the PCR product triggers a 

certain amount of fluorescence (threshold t)) of the four standards were plotted against the 

respective cDNA concentration and the obtained curve was used to relatively calculate the 

transcript amount of the samples. 

 

Trypsin-proteinase inhibitor assay 

Harvested leaves were ground in liquid nitrogen individually and total protein was extracted 

using 2 mL protein extraction buffer (Jongsma et al., 1994) per mg plant tissue followed by 

vortexing and centrifugation as described in van Dam et al. (2001). Protein content of the 

samples was determined in technical triplicates using the method of Bradford (1976) with an 

IgG-based (Sigma) standard curve. TPI was determined by the radial immunodiffusion assay 
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(Jongsma et al., 1993) using a soybean trypsin inhibitor (STI, Sigma) dilution series as a 

standard. The final TPI activity is expressed as nmol mg-1 total protein.  

 

Jasmonic acid measurements 

Approximately 300 mg of harvested leaf tissue were homogenized in 1 mL ethyl acetate 

spiked with 200 ng mL-1 methanolic [13C2]jasmonic acid as an internal standard. After 

centrifugation at 13000 rpm for 20 min at 4°C, the supernatant was evaporated and the dried 

extract was re-dissolved in 1 mL ethyl acetate. Following another centrifugation step the 

supernatant was evaporated and the dried sample was re-dissolved in 500 µL 70 % (v/v) 

methanol. After vortexing for 5 min the sample was centrifuged for 10 min at 13000 rpm and 

15 µL of the supernatant was analyzed using a Varian 1200L Triple-Quadrupol-MS.  

For the high-performance liquid chromatography a Pursuit C8 column (150 mm x 2.0 

mm, 3 µm particle size) was used and a gradient of water and methanol, both including 0.05 

% (v/v) formic acid, was run as the mobile phase with a flow rate of 0.2 mL / min. The mass 

spectrometer was run in negative electro spray ionization (ESI) mode with an argon pressure 

of 0.279972 Pa (= 2.1 mTorr) in the collision cell. The MS was set up with a capillary voltage 

of -3200 V, a shield voltage of 600V and a detector voltage of 1800V. The pressure of the 

drying gas was 131005 Pa (= 19 psi) at 300 °C, that of the nebulizing gas was 379225 Pa (= 

55 psi). The most abundant and characteristic fragment ion was chosen for quantification.  

The amount of JA per sample was calculated with the following formula ((peak area 

endogenous JA * 200 ng mL-1) * peak area ISTD-1) and related to 1 mg leaf tissue.  

 

Statistics 

Data were analyzed by ANOVA followed by an LSD post-hoc test. To ensure homogeneity 

of variances data were transformed if necessary (square root: Figure 1A, 2A; LG10: Figure 3 

left, 4A, 7C, partly 8B; reciprocal: Figure 3 right, 6). In cases in which variances could not be 

homogenized by transformation, a Welch test followed by a Dunnett T3 test was performed 

(Figure 1B, 2B, 5A). The M. sexta caterpillar mass data were analyzed using repeated 

measures ANOVA. All analyses were done using the software package SPSS.  
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Supplemental Figure 1: Silencing vector 
pSOL3SYS1. The transferred T-DNA is shown in 
grey with RB = T-DNA right border, TCaMV = 
terminator cauliflower mosais virus, sys = 
prosystemin gene fragment, pdk i3 = spacer (intron 
3 of pyruvate, orthophosphate dikinase gene), 
PCaMV = promoter Cauliflower mosais virus, 
PNOS = promoter of nopaline synthase, hptII = 
hygromycin phosphotransferase gene, TNOS = 
promoter of nopaline synthase, LB = T-DNA left 
border. 
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Supplemental Figure 2: Southern blots of WT and 
both IRSys lines. (A) Genomic WT DNA has been 
restriction digested with BamHI, EcoRI and 
EcoRV, pSOL3SYS1 plasmid (= p) DNA with 
BamHI. The Blot was hybridized with a 32P-labled 
probe specific for the prosystemin gene. (B) 
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XbaI. The blot was hybridized with a 32P-labled 
probe specific for the hygromycine 
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Supplemental Figure 3: Trypsin-
proteinase inhibitor accumulation in 
leaves of S. nigrum WT plants and both 
IRSys lines after application of water, 
S. nigrum systemin (S.n.sys) or methyl 
jasmonate (MeJA) through the cut 
petioles. Shown are mean ± SD of four 
to five replicates. Different letters 
indicate significant differences. 
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Summary 

1.   After simulated Manduca sexta herbivory (OS-elicitation), transcripts of the systemin-

precursor, prosystemin, are down-regulated in Black Nightshade (Solanum nigrum). Systemin 

is known not to mediate direct defense responses against herbivores and here we examine the 

hypothesis that systemin helps the plant to tolerate rather than resist herbivory.  

2.   Growth experiments revealed that both OS-elicited wild-type (WT) plants and transgenic 

plants silenced in prosystemin expression (IRSys) had significantly more root mass than 

untreated WTs. When OS-elicited WTs were additionally treated with synthetic systemin, 

root mass did not differ from that of uninduced WTs.  

3.   Microarray analysis of leaves revealed that the differences in root growth were associated 

with the regulation of transcripts involved in sugar and spermine metabolism.  

4.   Lifetime berry production of plants grown in pots with and without barriers was used to 

evaluate the fitness consequences of the systemin-associated increase in root allocation. 

When competition for below-ground resources was prevented by a barrier, no significant 

differences in berry production were found among any of the genotypes or treatments.  

However, when unelicited plants competed, IRSys plants produced significantly more berries 

than did WT plants. Berry production of OS-elicited and unelicited WT plants did not differ, 

but when OS-elicited WTs were additionally treated with systemin, plants produced fewer 

berries than did unelicited WT competitors.  

6.   We propose that the rapid down-regulation of systemin after herbivory is associated with 

increased root allocation which allows plants to more effectively compete with conspecifics 

and may allow plants to compensate for tissue losses during herbivory.  

 

 

Key-words: competition, plant-herbivore interaction, root growth, tolerance 
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Introduction 

Plants generally exhibit two strategies in response to herbivory: resistance and tolerance. 

While resistance traits directly or indirectly reduce the amount of damage a plant receives 

either by repelling potential herbivores or by decreasing the amount of tissue removed, 

tolerance traits reduce the detrimental effects of herbivore damage on plant fitness without 

affecting the herbivore (Tiffin 2000). Tolerance can be achieved by various mechanisms 

(Strauss & Agrawal 1999; Tiffin 2000): increases in photosynthetic activity (Welter 1989), 

compensatory growth (McNaughton 1979; Paige & Whitham 1987), bunkering reserves in 

protected tissues (Schwachtje et al. 2006), and phenological changes (Marquis 1988).  

As resistance and tolerance represent opposing ways a plant can cope with attack from 

herbivores, trade-offs between these two strategies are assumed to occur. While some studies 

found a negative correlation between resistance and tolerance (Fineblum & Rausher 1995), 

other studies did not (Mauricio, Rausher & Burdick 1997). Leimu & Korchiva (2006) 

recently concluded from their meta-analysis of 31 ecological and agricultural studies that 

resistance and tolerance are not mutually exclusive.  

Black Nightshade (Solanum nigrum LINNÉ), a weedy, pioneer-like plant that grows 

in open, disturbed areas, is likely to experience strong selection from both herbivores as well 

as competitors in its native habitats. After attack by the flea beetle Expitrix pubescens or 

methyl jasmonate (MeJA) elicitation, S. nigrum systemically induces trypsin-proteinase 

inhibitor (TPI) activity as a direct resistance trait (Schmidt et al. 2004). This response can 

also be elicited by a treatment involving wounding and the application of oral secretions (OS) 

to the wounds (Schmidt & Baldwin 2006), which mimics the responses elicited by herbivore 

attack and thus represents a useful way of eliciting plants in a standardized manner. The 

effectiveness of such OS-elicitation can be largely attributed to the fatty acid amino acid 

conjugates (FACs) which are present in the OS and have been shown to be responsible for all 

measured direct and indirect resistance responses of wild tobacco Nicotiana attenuata (Roda 

et al. 2004).  

In addition to the induction of TPIs, another response of S. nigrum to simulated 

herbivory by OS-elicitation is the rapid and dramatic transcriptional down-regulation of 

prosystemin (Schmidt & Baldwin 2006), the precursor of the peptide hormone systemin. 

Unlike tomato (Solanum lycopersicum LINNÉ), in which systemin has been shown to be 

involved in plants’ resistance to herbivory by locally amplifying a jasmonate-based mobile 
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wound signal (Howe 2004; Schilmiller & Howe 2005), S. nigrum does not rely on systemin to 

mediate direct resistance responses (Schmidt & Baldwin 2006). In OS-elicited WT plants, 

TPIs accumulated even though prosystemin transcripts were down-regulated. Furthermore, 

neither reducing the endogenous systemin levels by RNAi nor supplementing plants with 

synthetic systemin significantly increased TPI activity, indicating that systemin and TPIs are 

not correlated in S. nigrum. That levels of OS-elicited jasmonic acid (JA) did not differ 

between WT and IRSys plants suggests that systemin is unlikely to mediate jasmonate 

signaling in S. nigrum in the same way that it does in tomato. 

However, the question remains: why is systemin down-regulated after simulated 

herbivory? Here we examine the hypothesis that systemin helps the plant to tolerate rather 

than resist herbivory. We propose that low systemin levels after herbivory are associated with 

increases in root mass, which in turn enhance the plants’ competitive ability. In this way, the 

down-regulation of systemin may enable plants to compensate for the costs of induced 

resistance traits and perhaps as well for tissues lost to herbivores. 

 

Material and Methods 

Plant growth 

Seeds of Solanum nigrum wild-type (WT) and an inverted-repeat prosystemin line (IRSys 

line) were germinated as previously described (Schmidt & Baldwin 2006) and transferred into 

either 1L pots containing quartz sand (particle size 0.7-1.2 mm, Euroquarz GmbH, Germany) 

or 2L pots containing a peat-based substrate (Klasmann Tonsubstrat, Geeste-Groß Hesepe, 

Germany) 16 or 17 days post-sowing. The plants were grown in the greenhouse of the Max 

Planck Institute for Chemical Ecology (Jena, Germany) under the light, temperature, and 

humidity conditions previously described (Schmidt & Baldwin 2006). Every watering event 

supplied all plants with 0.5 g/L combination fertilizer containing phosphate, potassium and 

magnesium (Euflor GmbH, Germany) and 0.5 g/L Ca(NO3)2 (MERCK, Germany).  

 

Plant treatments 

Singly grown WT plants planted into 1L sand pots were either left untreated or treated with 

wounding and 1:6 diluted oral secretions of Manduca sexta larvae (OS-elicitation) to mimic 

herbivory as described in Schmidt & Baldwin (2006). A third group of WT plants was treated 

with wounding, 1:6 diluted OS of M. sexta larvae and 2.5 pmol S. nigrum systemin (AnaSpec, 
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San Jose, CA, USA; systemin was synthesized according to the protein sequence published 

by Constabel, Yip & Ryan (1998)) in 40 µL water (systemin-augmented OS-elicitation). The 

systemin solution was applied to the puncture wounds after the oral secretions were dried to 

minimize the possibility that systemin would be digested by proteases possibly contained in 

the oral secretions. IRSys plants were left untreated. The first of five consecutive treatments 

was performed 24 days post-sowing on the node five leaf; the respective treatment was 

repeated every second day on the next younger leaf. Five days after the last treatment (37 

days post-sowing), the shoots and roots of all plants were harvested separately, dried for four 

days at 60°C in a drying oven, and weighed.  

To determine whether the different systemin levels were reflected in transcriptional 

changes in the above-ground-tissues, plants were grown in competition in 1L sand pots in the 

following combinations: (1) uninduced WT versus OS-elicited WT and (2) uninduced WT 

versus systemin-augmented OS-elicited WT. The treatment procedure as well as the schedule 

was the same as that of the singly grown plants described above, except that consecutive 

treatments started on the node four leaf. Four days after the fifth treatment (36 days post-

sowing), the plants were treated at the node nine leaf. One hour after elicitation, the treated 

leaf was harvested together with the corresponding leaf of the uninduced competitor. All 

samples were flash-frozen in liquid nitrogen and stored at -80°C until RNA extraction. 

To test for the fitness consequences of different systemin levels, plants in 2L soil pots 

were grown in competition in the following combinations: (1) uninduced WT versus 

uninduced IRSys line, (2) uninduced WT versus OS-elicited WT, and (3) uninduced WT 

versus systemin-augmented OS-elicited WT. For all combinations, the 2L pots were either 

partitioned with plastic barriers to separate the below-ground space of the competing plants or 

the competitors shared the entire 2 L pot. The first of eight consecutive treatments was 

performed 23 days post-sowing beginning on the node five leaf and repeated every second 

day on the next younger leaf. 47 to 51 days after the last treatment (84 to 88 days post-

sowing), the berries of all plants were counted individually.  

To ensure that the experiments started with plants of comparable sizes, the singly 

grown plants belonging to the four groups as well as the competing plants growing together in 

one pot were matched according to their initial shoot lengths.  

All experiments described above consisted of seven to ten replicate plants per 

treatment group. 
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RNA extraction and microarray procedure 

Harvested leaves were ground individually in liquid nitrogen and total RNA was extracted 

according to a modified TRI Reagent procedure for polysaccharide- and proteoglycan-rich 

sources (TIGR 2003).  

Equal amounts of RNA of three plants per treatment were pooled to give 400 µg 

RNA. After poly(A)+ RNA isolation the generated cDNA was fluorescent labeled with cy3 

and used together with cy5-labeled cDNA originating from a similarly pooled and treated 

RNA sample of the respective, uninduced competition partners to hybridize a custom-made 

1.4k 50mer-oligonucleotide microarray. On this microarray all clones were spotted twice in 

pairs, resulting in four spots per clone. The first hybridization (OS-elicited WT versus 

uninduced WT) was repeated twice; the second (systemin-augmented OS-elicited WT versus 

uninduced WT) was repeated three times. cDNA from different plants was used for all 

hybridizations.  

The microarrays were analyzed by extracting the cy3 and cy5 spot intensities (SIs) 

from image files using the software AIDA (Raytest, Straubenhardt, Germany), followed by 

local-background (lBg) subtraction and LOWESS normalization of these SIs using the 

software MIDAS (Saeed et al. 2003). Spots below 1.5x signal-to-noise ratio (= 2 x SI / lBg) 

were set to zero. For statistical analyses, the Bg-corrected SIs were log-transformed. Single 

slides were evaluated on the basis of an average treatment /control ratio > 1.5 or < -1.5 and a 

P-value (t-test of four spots per clone and exclusion of zero values) < 0.05. When 

hybridizations were conducted with three biological replicates, a nested ANOVA was 

performed to identify significantly regulated clones as determined by an average treatment 

/control ratio > 1.5 or < -1.5 and a P-value < 0.05. When only two hybridizations were 

available, clones were considered to be regulated when they were regulated in the same way 

on both single slides, each fulfilling the criteria of an average treatment /control ratio > 1.5 or 

< -1.5 and a P-value (t-test of four spots per clone and exclusion of zero values) < 0.05. 

Clones that had a calculated treatment/control ratio of 0 and P-value of 1 were recalculated on 

the basis of their un-normalized signals. These clones were considered to be up-regulated if 

the cy3 value exceeded the signal-to-noise-ratio 2.5x or down-regulated if the cy5 value 

exceeded this threshold.  
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Results 

Low systemin levels were associated with greater root mass 

When wild-type (WT) plants were OS-elicited, a treatment previously shown to rapidly 

decrease the accumulation of prosystemin transcripts (Schmidt & Baldwin 2006), elicited 

plants accumulated significantly more root mass compared to uninduced WT plants 37 days 

after sowing (Fig. 1A). This difference could be negated by an additional systemin treatment; 

root mass in the OS-elicited WT plants supplied with synthetic systemin did not differ 

significantly from root mass in uninduced WT plants (Fig. 1A). The root mass of a transgenic 

line silenced in its prosystemin expression (IRSys line) was significantly greater than that of 

the uninduced WT plants (Fig. 1A). 

Figure 1: Root dry mass (A), shoot 
dry mass (B), and root to shoot ratio 
(C) of singly grown wild-type (WT) 
and IRSys plants. WT plants were 
either left untreated, elicited with 
wounding (w) and M. sexta oral 
secretions (OS) or supplied with 
systemin (sys) in addition to OS-
elicitation. Bars represent mean ± SE 
of seven replicates. Different letters 
indicate significant differences 
(ANOVA followed by LSD post-hoc 
test; data shown in A and C were log-
transformed before analysis).  
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None of the treatments significantly changed the shoot mass of WT plants compared to 

uninduced WT plants (Fig. 1B). Similarly, no significant differences in shoot mass between 

WT plants and IRSys plants were observed (Fig. 1B). As differences in shoot mass were 

absent, the root-to-shoot (Fig. 1C) ratio reflected the different root masses. 

 

Systemin positively affected growth-related genes 

OS-elicited WT plants significantly down-regulated 86 clones, whereas systemin-augmented 

OS-elicited WT plants significantly down-regulated 230 clones (Fig. 2A). Both treatments 

commonly down-regulated 78 clones, and specifically down-regulated 8 clones in OS-elicited 

plants and 152 clones in systemin-augmented OS-elicited WT plants (Fig 2A). A similar 

pattern was found for the up-regulated clones: 95 were significantly up-regulated in OS-

elicited WT plants and 218 were significantly up-regulated in systemin-augmented OS-

elicited WT plants (Fig. 2B). 88 clones were up-regulated in both treatment groups; 7 and 130 

clones were up-regulated in OS-elicited and systemin-augmented OS-elicited treatments, 

respectively. Among the 152 clones exclusively down-regulated in systemin-augmented OS-

elicited WT plants when compared to uninduced WT competitors were 11 clones involved in 

starch metabolism or spermine metabolism (Fig. 3).  

Figure 2: Number of down- (A) and up-regulated (B) clones in WT plants treated either with 
wounding (w) and oral secretions (OS) of M. sexta or with wounding and OS and systemin (sys) 
when compared to their uninduced WT competitors. Numbers given are based on two (WT w + OS 
versus uninduced WT) or three (WT w + OS + sys versus uninduced WT) microarrays, each 
hybridized with the cDNA of three individual plants per treatment. 
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Figure 3: Regulation of growth-related clones in WT plants treated with wounding (w) and 
oral secretions (OS) and systemin (sys) (A) or with wounding and OS  (B) when compared to 
their respective uninduced WT competitors. In the case of three replicates per hybridization 
(A), clones were referred to as significantly regulated when an average treatment /control ratio 
> 1.5 or < -1.5 and a P-value (nested ANOVA) < 0.05 was achieved. When only two 
hybridizations were available (B), clones were referred to as regulated when they were 
regulated in the same way on both single slides, each fulfilling the criteria of an average 
treatment /control ratio > 1.5 or < -1.5 and a P-value (t-test of four spots per clone) < 0.05. 
Data shown are means ± SE of the respective microarray replicates. Stars indicate significant 
differences (* < 0.05, ** < 0.01, *** < 0.001). 
AMY = alpha-amylase, GPH = alpha-glucan phosphorylase H, HXK = hexokinase, FBPA = 
fructose-bisphosphate aldolase, SPS = sucrose-phosphate-synthase, GAPDH = 
glyceraldehyde-3-phosphophate dehydrogenase, PYK = pyruvate kinase, QPT = 
quinolinatephosphoribosyltransferase, SPMS = spermidine synthase, St = Solanum tuberosum, 
Nt = Nicotiana tabacum, Ps = Pisum sativum, Sl = Solanum lycopersicum.  
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Plants with low systemin levels showed greater fitness under competitive growth 

When the below-ground space of plants grown together in one pot was separated by a plastic 

barrier, no significant differences in berry production were observed (Fig. 4A-C). Only OS-

elicited WT plants showed a trend (P = 0.086) towards lower berry production compared to 

uninduced competitors (Fig. 4B). In the absence of a root barrier, uninduced IRSys plants 

produced significantly more berries compared to competing, uninduced WT plants (Fig. 4D). 

When OS-elicited WT plants were grown in competition with uninduced WT plants, no 

significant difference in berry production was observed (Fig. 4E). However, if the down-

regulation of (pro)systemin in OS-elicited WT plants was counteracted by systemin 

supplementation, plants produced significantly fewer berries compared to their uninduced 

competitors (Fig. 4F).  

Figure 4: Number of berries produced by plants growing in competition, both competitors either being 
belowground separated by a solid root barrier (A-C) or having root contact (D-F). Bars represent means 
± SE of nine to ten replicates. Stars (**) indicate significant differences (paired t-test, P < 0.01; data 
shown in B were log-transformed before analysis). WT = wild-type; IRSys line = transgenic line 
silenced in prosystemin expression; w = wounding; OS = M. sexta oral secretions; sys = systemin. 
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Discussion 

The study aimed to reveal the function of systemin in S. nigrum by testing the hypothesis that 

the rapid transcriptional down-regulation of (pro)systemin after induction enables plants to 

tolerate herbivory. In growth experiments, uninduced WT plants were compared with WT 

plants that had been either only OS-elicited or additionally supplied with systemin and with 

plants silenced in their prosystemin expression (IRSys line). To gain insight into what effects 

the observed phenotypic responses may have had on the above-ground tissues, transcriptional 

analyses of treated plants grown in competition with uninduced WT plants were conducted. 

The reproductive output of competing plants was quantified to evaluate the fitness 

consequences of different endogenous systemin levels.  

The root mass of OS-elicited WT plants significantly exceeded the root mass of 

uninduced WT plants and of systemin-augmented OS-elicited WT plants (Fig.1A). These 

data, along with those from our previous study (Schmidt & Baldwin 2006), where we showed 

that prosystemin was rapidly down-regulated after induction, led us to conclude that large 

root masses after OS-elicitation are associated with low systemin levels. This attribution was 

supported by the root mass of IRSys plants, which was significantly larger than the root mass 

of uninduced WT plants (Fig.1A). Importantly, (pro)systemin is expressed only in the above-

ground tissues, not in the roots of S. nigrum (Schmidt & Baldwin 2006). This fact suggests 

some form of shoot-root communication in which systemin affects distal plant parts.  

Our findings that systemin regulation is associated with changes in root growth is 

consistent with the recent work of Holton et al. (2007). When seedlings of wild tomato 

(Solanum pimpinellifolium) were grown on systemin-containing medium, their roots were 

longer than those of untreated seedlings. However, the roots of cultivated tomato (Solanum 

lycopersicum) cu3 mutants which are brassinosteroid (BR)-insensitive due to a defect in the 

systemin-brassinosteroid-double receptor (SR160/BRI1) were inhibited when grown on 

systemin-containing medium. These observations indicate the involvement of both BRI1-

dependent and -independent systemin signaling in the root-growth response. Unlike in wild 

tomato, root length in a systemin-treated tomato line silenced in prosystemin expression was 

reduced, suggesting that species-specific factors influence how roots respond to systemin. 

That root lengths of the ethylene-insensitive tomato mutant Never ripe were not altered by 

adding systemin indicates that ethylene-perception is required for the systemin-mediated root 

response.  
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Having found that low systemin levels were associated with increased root mass, we 

were interested in the consequences for above-ground tissues. We assumed that the 

phenotypical changes in root mass would be reflected in the transcriptome of the leaves, as 

resources transported from the roots might be used in the shoots and vice versa. Our first 

assumption was that the transcriptional down-regulation of prosystemin in OS-elicited plants 

would result in regulation of growth-related clones relative to uninduced plants. Second, we 

expected this regulation to be absent in systemin-augmented OS-elicited WT plants relative to 

their uninduced competitors. Surprisingly, we observed the opposite, which indicated that the 

permanent presence of systemin positively affected gene regulation. The majority of 

specifically elicited clones were found in systemin-augmented OS-elicited plants (Fig. 2A 

and B) which had high systemin levels, like their uninduced WT competitors. In contrast, 

clones of OS-elicited plants were only a marginally regulated (Fig. 2A and B); these plants 

are characterized by a dramatic down-regulation of systemin compared to the competing WT 

plants. The clones that were regulated in the continuously high levels of systemin were no 

longer regulated when systemin was down-regulated or absent.  

Even though our microarray was primarily defense-related, we found eight clones 

involved in sugar metabolism to be down-regulated solely in systemin-augmented OS-elicited 

WT plants (Fig. 3). This suggests that high systemin levels after OS-elicitation along with an 

unchanged root mass compared to unelicited WT plants may be associated with a reduced 

ability to convert sugars into energy, which in turn could contribute to diminished growth. As 

OS-elicited plants, however, did not regulate these clones, the negative effect on their energy 

levels might be low, leading to unchanged growth rates.  

As in sugar metabolism, clones involved in spermine metabolism were down-

regulated exclusively in systemin-augmented OS-elicited WT plants (Fig. 3). Spermine, like 

other polyamines, is essential for growth and development, which again suggests that high 

systemin levels after OS-elicitation may be associated with reduced growth. The regulation of 

spermine metabolism in OS-elicited WT plants did not differ from that in uninduced WT 

plants, which would be consistent with a lack of differences in growth. 

When the below-ground space of competing plants was separated by a root barrier, 

low systemin levels seemed not to influence plant fitness as measured by lifetime berry 

production (Fig. 4A-C). Only OS-elicited WT plants showed a trend towards lower fitness 

compared to uninduced WT plants (Fig. 4B). However, low systemin levels became 
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advantageous when the root barrier was removed: IRSys plants, with their large root 

allocations, represented potent competitors that were able to produce significantly more 

berries when competing with uninduced WT plants (Fig. 4D). Similarly, OS-elicited WT 

plants were not impaired in competitiveness and fitness (Fig. 4E) even though the OS-

elicitation of S. nigrum is known to induce costly resistance traits such as the production of 

proteinase inhibitors (Constabel, Yip & Ryan 1998; Schmidt et al. 2004; Schmidt & Baldwin 

2006). However, treating OS-elicited WTs additionally with systemin reduced their 

competitive abilities and caused them suffer a significant reduction in berry production when 

competing with uninduced WT plants (Fig. 4F). 

Two explanations of these findings come to mind. First, the increased root mass which 

was associated with low systemin levels (Fig. 1A) may allow plants to “steal” resources from 

their competitors. Their competitiveness enhanced, these plants may be able to compensate 

for the costs of induced resistance or tissue loss due to herbivory. As IRSys plants mimic OS-

elicited WT plants in terms of low systemin levels but not induced defenses, and thus had no 

defense costs to compensate for, their berry production increased in comparison to that of 

uninduced WT competitors (Fig. 4D). Consistent with the proposed “resource stealing 

hypothesis”, the advantage of low systemin levels and increased root masses would disappear 

in the presence of a root barrier. In accord with this, fitness differences between IRSys and 

uninduced WT plants were absent (Fig. 4A) and OS-elicited WT plants showed a trend 

towards lower fitness compared to uninduced WT plants (Fig. 4B) in the presence of a root 

barrier. 

Alternatively, the increased root mass may function as a below-ground storage 

reserve, such as is described in Schwachtje et al. (2006). Plants could use such a reserve to 

(re)grow and hence to compensate for the costs of induced defenses or tissues lost to 

herbivores when the attack ceases. An elegant experiment to test this hypothesis would be to 

quantify photoassimilate flux to roots by supplying OS-elicited or systemin-augmented OS-

elicited leaves with 11CO2 and measuring the amount of 11C in the roots.  

Assuming that the increased root mass may have functioned as a below-ground 

storage reserve for (re)growth, the lack of fitness differences between uninduced IRSys plants 

and uninduced WT competitors (Fig. 4A) as well as the tendency of OS-elicited WT plants 

toward lower berry production compared to their uninduced competitors (Fig. 4B) in the 

presence of a root barrier might be a negative effect of overlapping nutrition uptake zones of 
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adjacent roots in the restricted rooting volume. Such observations are described by 

McConnaughay & Bazzaz (1992). As the number of overlapping uptake zones would have 

increased with increasing root mass, plants having more roots ( = plants with low systemin 

levels) would have had a reduced net nutrient uptake per root unit; the upshot would have 

been the loss of the beneficial effect of a larger root mass.  

Unexpectedly, the berry production of systemin-augmented OS-elicited WT plants 

equaled that of uninduced WT competitors when both were separated below-ground (Fig. 

4C). As both treatment groups were characterized by equal root masses (Fig. 1A), other 

mechanisms probably independent of root mass and systemin appear to be involved in the 

compensatory actions taken by systemin-augmented OS-elicited WT plants in the presence of 

a root barrier.  

  The fundamental observation that large root masses which are associated with low 

systemin levels are beneficial for a competing plant presumably also applies to singly-grown 

plants (Fig. 1). As long as the extra roots do not lead to overlapping nutrient uptake zones, as 

in the restricted volume of a pot and increase the possibility of acquiring additional nutrients, 

they may be advantageous.  

Even though the underlying mechanisms have not yet been clarified, the systemin-

associated increase in root mass after herbivore elicitation seems to enhance the fitness of 

competing plants. Thus, we propose that the down-regulation of systemin helps S. nigrum 

tolerate herbivory. Still needing more detailed investigation, our data compared to those of 

the well-studied tomato system suggest divergent roles of systemin in different species. Thus, 

tolerance hypothesis presented here will hopefully stimulate research into alternative 

functions for this intriguing suite of peptides.  
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4 General discussion  

 

he present thesis demonstrates the successful establishment of S. nigrum as a 

model system by developing new tools and adopting tools that have been 

previously established for other solanaceous species to manipulate and quantify 

its responses to herbivory. Concurrently it exemplifies the great need and scientific value of 

using wild species to understand a plant’s response to herbivory, as those responses likely 

change or are even lost during domestication. Field-grown S. nigrum plants were attacked by 

several herbivores belonging to different feeding guilds, which resulted in the production of 

proteinase inhibitors (PIs) and the emission of volatile organic compounds (manuscript I). 

Both traits represent induced resistance responses of plants to herbivory which are well-

known from other plant systems. Furthermore, insect attack led to a drastic transcriptional 

reorganization (manuscripts I and II), which appeared to be quite distinct from that of another 

solanaceous plant, indicating that herbivore resistance is regulated via fundamentally different 

signaling cascades even within closely related species (manuscript II). In line with these 

diverging responses was the finding that systemin did not mediate direct resistance responses 

in S. nigrum as shown previously for the homologous polypeptide in tomato (manuscript III). 

Moreover, the regulation of systemin in S. nigrum was associated with enhanced root growth 

and improved the plant’s competitive ability, suggesting that systemin might be involved in 

tolerance to herbivory (manuscript IV). Thus, systemin seemed to reduce the detrimental 

effects of herbivore damage on S. nigrum’s fitness without affecting the herbivore rather than 

reducing the preference or performance of the phytophageous insects. 

 

4.1 Transgenic plants as powerful tools for studying plant-insect interactions 

wledge of a 

plant’s

To understand plant-herbivore interactions, detailed mechanistic kno

 responses to herbivory is required. Since these responses are regulated via complex, 

often interacting pathways, the challenge is to dissect these pathways and identify the 

ecological relevance of a particular gene or trait. A useful approach is to experimentally 

manipulate the gene or trait of interest by engineering a change or disrupting the DNA. A 

subsequent study of the resulting phenotype can provide insights into the function of the 

manipulated gene. This approach is generally termed reverse genetics and differs from the 
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forward genetic screen of classical genetics in which the researcher starts with a mutation 

phenotype and tries to identify the mutated gene. The process of disruption or alteration can 

be non-targeted and random and is achieved by transposon or chemical mutagenesis. Both 

techniques involve the creation of large mutagenised populations similar to those used in 

forward genetic screens. Alternatively, the disruption or alteration can be targeted specifically 

as happens in gene silencing by RNA interference (RNAi) or virus-induced gene silencing 

(VIGS). As the screening of large numbers of individuals to detect mutations in a given gene 

represents an enormous experimental effort and requires advanced high-throughput 

techniques (Gilchrist & Haughn 2005), the mutation approach rather is the method of choice 

for unraveling the genetic basis of a given mutated phenotype (i.e. forward genetics). In 

contrast, the use of targeted gene silencing can be regarded as the most straightforward 

approach to manipulate a gene or trait in order to understand its functions. Moreover, gene 

silencing represents a method for knocking genes down, thus allowing the study of genes 

which might be lethal when knocked out completely by insertion or point mutations.  

Our studies on S. nigrum plants that are silenced in the expression of prosystemin 

highlig

ific gene or trait 

to stud

ht the great potential of this technique in tracking down the phenotype that resulted 

when a given gene was disrupted (manuscripts III and IV). The fact that this was even 

possible in a newly established model species for which almost no genomic sequence 

information was available adds further to the potential of this approach in studies on 

functional genomics. Furthermore, the great value of returning silenced plants to their natural 

habitat to study the function of the focal gene in the natural situation was demonstrated 

(manuscript III). Studying the gene or trait of interest not only in the greenhouse but also 

under field conditions is essential, as it is not possible to simulate the complexity of a field 

situation in an artificial environment. Thus, hypotheses tested solely in greenhouse 

experiments risk leading to conclusions that are not of ecological relevance.  

Whereas gene silencing provides a powerful tool to manipulate a spec

y its phenotypic consequences and its relevance in a plant’s response to herbivory, 

microarrays are capable of providing a general overview over the transcriptional responses of 

a plant to a given situation such as herbivory.  
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4.2 The big picture provided by microarrays 

vae resulted in a drastic reorganization of S. 

 S. nigrum’s response was both quantitatively and qualitatively 

.3 The (ongoing) evolution of systemin 

 play a central role in the wound response of tomato 

by amplifying the jasmonate-based mobile wound signal, it is quite surprising that its function 

 Attack by leaf-chewing M. sexta lar

nigrum’s transcriptome as demonstrated by means of a 10k-cDNA microarray (manuscript 

II). As a general and rather unspecific response, S. nigrum up-regulated chaperones as well as 

several genes related to oxidative stress and dehydration. Among the up-regulated genes 

which specifically targeted herbivory were those leading to the production of jasmonic acid, 

the central molecule mediating induced resistance responses. The main transcriptional 

emphasis regarding secondary metabolism was on (i) the mevalonic acid pathway leading to 

steroidal alkaloids and (ii) sesquiterpenoid biosynthesis; a leucine amino peptidase (LAP) 

gene, which appeared to be 20-fold up-regulated, was the most pronounced answer to M. 

sexta attack. In summary, this transcriptional analysis indicated that S. nigrum possesses an 

array of induced resistance mechanisms as a response to herbivory. As only little is known 

about S. nigrum’s defense responses, the predictions that can be made as a result of the 

identification of these genes represent a reasonable basis for further metabolomic and 

functional studies.  

 Most interestingly,

distinct from that of Nicotiana attenuata, another solanaceous plant: S. nigrum was 

characterized by the regulation of fewer genes compared to N. attenuata and differences in 

gene regulation exceeded the anticipated differences in alkaloid biosynthesis. The 

comparative analysis pointed to fundamental differences in the signaling cascades and 

downstream genes mediating herbivore resistance even in these species belonging to the same 

family. In accordance with this observation were our findings that systemin is associated with 

tolerance to herbivory in black nightshade rather than with resistance to herbivores as has 

been demonstrated for tomato. These findings suggest that systemin might be under 

diversifying selection. However, at present it is unclear whether this resulted from the 

comparison between two different species or from the fact that wild and domesticated plants 

were compared. Thus, future studies in wild tomato genotypes that investigate the plant’s 

response to herbivory in general and the role of systemin in particular will be necessary. 

 

4

Given that systemin is supposed to
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seems not to be conserved among Solanaceae. Whether the divergent roles of systemin in S. 

nigrum and tomato can be attributed only to systemin  or  can be expanded to structural or 

functional changes of the systemin receptor is still an open question. Comparing the capacity 

of tomato and black nightshade systemin to induce proteinase inhibitors in the corresponding 

species and across species (Table 1) gives rise to different speculations. The observation that 

tomato systemin but not S. nigrum systemin induced proteinase inhibitors in tomato suggests 

that the loss of the PI-inducing ability of S. nigrum systemin could be attributed solely to 

changes in the systemin sequence which might reduce or prevent it  from binding effectively 

to the tomato systemin receptor. To explain the absence of a PI-inducing effect of tomato 

systemin in S. nigrum, three related hypotheses are possible. First, the absence might again be 

due to differences in the systemin sequences which may prevent an effective binding of 

tomato systemin to the S. nigrum receptor. Second, this would imply a changed systemin 

receptor in S. nigrum as compared to tomato. Third and most intriguingly, independent of 

possible differences between the receptors in both species, tomato systemin could be able to 

effectively bind to the S. nigrum receptor yet activate different down-stream cascades in the 

two species. The activation of different cascades is suggested by the data presented in 

manuscript IV, which indicated systemin was associated with root growth and tolerance to 

herbivory. Thus, it would be fascinating to see whether tomato systemin has the same effect 

on S. nigrum’s root growth as S. nigrum systemin does. It might well be that systemin also 

effects root growth in tomato, a line of thought which is supported by the recent work of 

Holton et al. (2007) as discussed in manuscript IV. This argues for a dual role of systemin in 

tomato.  

Tomato Black Nightshade 

Tomato systemin 

Black Nightshade systemin 

YES  

Table 1: Capacity of systemins derived from tomato and Black 
Nightshade to induce proteinase inhibitors (PIs) in the two species.  

NO NO 

NO 
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Complementing the above-mentioned hypothesis that the binding of systemin to its 

receptor activates different down-stream cascades, the binding of diverse ligands to the same 

recepto

lution of systemin and its receptor along the phylogeny of the genus Solanum. 

exciting 

ce in S. nigrum: an interplay of extrinsic and intrinsic factors 

As demonstrated in manuscript IV, the down-regulation of systemin after elicitation is 

lities of induced 

r may cause the activation of different down-stream cascades. This connection is 

supported by the finding that the systemin receptor SR160 of wild tomato (Lycopersicon 

peruvianum) shows a high sequence similarity with the brassinosteroid receptor BRI1 from 

Arabidopsis (Scheer & Ryan 2002). If SR160 serves as a BR receptor in tomato (Yin, Wu & 

Chory 2002), depending on its ligand, the same receptor would activate either defense or 

brassinosteroid signaling within one species. It is tempting to speculate and currently under 

investigation in tomato whether and how systemin is involved in the brassinosteroid-mediated 

regulation of growth and development. Alternatively, the question arises if brassinosteroids 

also influence systemin-related defense responses, be it resistance as in tomato or tolerance as 

in S. nigrum.  

 To better understand the recent functions of systemin, it appears to be indispensable to 

follow the evo

Future comparative molecular and functional studies between different species may 

disentangle the basal and derived characteristics of systemin. Beyond this, such studies may 

detect whether the observed functional switch between tomato systemin and S. nigrum 

systemin has occurred repeatedly during evolution. Including the proposed diploid and 

tetraploid ancestors of S. nigrum, S. americanum and S. villosum in the analysis may 

contribute to elucidating the effect of polyploidization on the evolution of systemin.  

 Both the current lack of knowledge concerning systemin’s evolution of as well as the 

emerging understanding of its recent function in S. nigrum bring up new and 

questions.  

 

4.4 Toleran

 

associated with an increased root mass that enhances the competitive abi

plants. Increased competitive abilities might in turn enable the plant to compensate for costs 

of induced defenses and probably also for tissue loss to herbivores. The fact that the higher 

allocation to roots seemed not to be advantageous when the below-ground space of the 

competing plants was separated by a solid root barrier suggested that extrinsic (biotic and 

abiotic environmental characteristics) and intrinsic factors (genetically or developmentally 
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determined traits) leading to tolerance in S. nigrum are tightly linked. As the extra roots only 

seemed to benefit the plant as long as they increased the possibility of acquiring additional 

resources, the most important extrinsic factor seemed to be the availability of soil-derived 

resources. The importance of a high availability of nutrients in addition to water and light in 

effecting tolerance has also been suggested by Maschinski & Witham (1989). Even though 

the role of light and nutrients has received little attention, surprisingly, nutrient availability 

was found to be negatively associated with tolerance in several plant systems (Gertz & Bach 

1995; Mutikainen & Walls 1995; Irwin & Aarssen 1996). As one possible explanation for this 

phenomenon, the decrease in the root-shoot-ratio has been proposed (Olff, Vanandel & 

Bakker 1990), which is generally believed to be associated with reduced tolerance. Besides 

resource availability, low competition is thought to be positively associated with tolerance as 

(i) competitors might reduce soil-based resources and, (ii) the loss of apical dominance would 

be particularly detrimental in competitive environments where light is limited. However, in S. 

nigrum soil-borne resource availability and competition seemed to be positively associated 

with tolerance.  

To substantiate the interpretation of these associations, a more detailed knowledge of 

the intrinsic factors, especially the underlying mechanisms following the down-regulation of 

system

t lose systemin completely during evolution? Assuming that 

systemin is not a genetic load, two hypotheses to explain this phenomenon come to mind. 

in, is essential. Tests of the two hypotheses proposed in manuscript IV might shed 

light on the advantage of increased root mass in a competition situation and thus contribute to 

a better understanding of the observed phenotype. The first hypothesis, which involves 

nutrients stolen from the competitor with the fewest roots, could be tested in experiments with 

varying nutrient levels of different kinds such as nitrogen or phosphate. Furthermore, an 

understanding of uptake rates for different resources in plants at different life stages and in 

different tissues by using labeled compounds such as K15NO3 could help illuminate the 

mechanism that forms the basis of the observed phenotype. The second hypothesis, which 

proposes that the increased root mass functions as a below-ground storage reserve, could be 

elegantly tested by quantifying the photoassimilate flux to roots. This could be done by 

supplying OS-elicited or systemin-augmented OS-elicited leaves with 11CO2 and measuring 

the amount of 11C in the roots. 

Given that a lack of systemin seems to help S. nigrum, an important question can be 

posed: Why did S. nigrum no
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First, s

temin-dependent and -

olerance and resistance represent opposing ways a plant can cope with herbivore 

ttack, and trade-offs between these two strategies are assumed to occur. Some studies found 

 & Rausher 1995), whereas 

others 

 

constitutive 

induced 

ystemin may have one or more yet to be elucidated functions that support the 

conservation of the gene. Second, the down-regulation of systemin after induction along with 

the accompanying root growth might be considered a plastic response that allows the plant to 

react to unfavorable conditions such as herbivory. Even though constitutive high root growth 

would benefit the plant in the absence of herbivores, by always growing a maximum root, the 

plant would lose its ability to respond to the presence of herbivores. 

 Although we are only just starting to understand S. nigrum’s responses to insect 

herbivory in general and the role of systemin in particular, the data presented in all four 

manuscripts indicate that the plant possesses an array of sys

independent strategies to reduce the fitness-imperiling stresses caused by phytophageous 

insects. 

 

4.5. Fitness safeguards in S. nigrum: tolerance and resistance 

T

a

a negative correlation between resistance and tolerance (Fineblum

did not (Mauricio, Rausher & Burdick 1997). Leimu & Korchiva (2006) recently 

concluded from their meta-analysis of 31 ecological and agricultural studies that tolerance 

and resistance are not mutually exclusive. This conclusion also seems to apply to S. nigrum: 

although we propose systemin-associated and root-growth mediated tolerance to occur in S. 

nigrum (manuscript IV), the plant exhibits in addition several putative resistance traits with 

which it might defend itself against herbivores (Table 2).  

direct indirect 

sesquiterpenes 

extrafloral nectaries 

poteinase inhibitors 
steroidal alkaloids 

trichomes 

Table 2: Overview over (putative) resistance traits in S. nigrum.  
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The leaves and stems of S. nigrum feature multicellular trichomes with glandular or 

aglandular heads (Edmonds & Chweya 1997) that likely function as a direct constitutive  

resistance trait to repel herbivorous insects. Whether these epidermal outgrowths actually 

have a defensive function such as in Arabidopsis lyrata (Clauss et al. 2006) or Liabum 

mandonii (Molina-Montenegro et al. 2006), and if they are potentially inducible, remains to 

be tested. Another poorly studied characteristic is S. nigrum’s secretion of extrafloral nectar 

(EFN) on the abaxial leaf surface. By attracting ants and wasps which benefited the nectar-

producing plant by reducing the damage level, EFN has been shown to positively affect plant 

fitness (Bronstein 1998; Cuautle & Rico-Gray 2003). As the nectar collected from field-

grown 

 S. 

nigrum

S. nigrum plants has also been shown to attract ants (Hartl & Schmidt, personal 

observation), its involvement in indirect constitutive or induced resistance is likely.  

As shown in manuscripts I and III, S. nigrum produces proteinase inhibitors as a direct 

induced resistance trait upon herbivore damage by the flea beetle Expitrix pubescens, or after 

induction with methyl jasmonate or treatment with wounding and oral secretions. While the 

defensive function of proteinase is already known from other plant systems such as tomato 

(Ryan 1990; Orozco-Cardenas, McGurl & Ryan 1993) and wild tobacco (Zavala et al. 2004), 

the importance of the production of proteinase inhibitors in the defense response of S. nigrum 

is currently under investigation (Hartl & Baldwin, in preparation). Importantly, it still remains 

to be demonstrated that the growth-inhibiting effect of proteinase inhibitors on caterpillars 

results in less plant damage. Complementing its repertoire of direct induced resistance,

 elicits steroidal alkaloids such as solasodine (Eltayeb, AlAnsari & Roddick 1997), the 

production of which is also reflected in its induced transcriptome (manuscript II). As steroidal 

alkaloids could be shown to disrupt membranes and inhibit actylcholine esterase, a key 

enzyme in nerve impulse transmission, they are likely to act as defensive compounds against 

a broad range of organisms, from microorganisms to mammals.   

Besides the up-regulation of genes involved in the production of steroidal alkaloids, a 

second transcriptional emphasis laid on sesquiterpenes’ synthesis (manuscript II). These 

volatile organic compounds were shown to be induced upon herbivore damage in several 

plant species and are known to be involved in indirect induced defenses. Sesquiterpenes such 

as ß-caryophyllene were also detected in the volatile blend of field-grown S. nigrum plants 

that were attacked by the Colorado potato beetle (Leptinotarsa decemlineata) or Deathhead 
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Hawk-moth (Acherontia atropos) (manuscript I). However, studies including predators or 

parasitoids which might be attracted to the volatiles emitted by S. nigrum have yet to be done.  

 Taken together, the (putative) defense responses of S. nigrum are diverse, ranging 

from sy

mbin

stemin-associated tolerance to resistance and covering the whole spectrum from direct 

constitutive to indirect induced resistance. This breadth might be regarded as a response to the 

diverse herbivore community that feeds on S. nigrum: the plant has been observed to be 

commonly attacked by 17 generalist and a two specialist herbivores belonging to three 

different feeding guilds (manuscript I). In response to such a diverse herbivore community, 

evolution should favor a broad range of defense mechanisms. Such a pattern is commonly 

found in nature (Berenbaum 1985): plants are known to produce either two or more different 

classes of secondary compounds (Hugentobler & Renwick 1995) or, alternatively, a 

co ation of chemical and physical defenses. Although this pattern suggests that different 

resistance mechanisms are not necessarily mutually exclusive, to what extent different types 

of defenses have evolved in response to different sets of herbivores is not yet clear. It can 

only be assumed that mutual exclusivity is likely when two defense mechanisms are 

redundant by being directed towards the same group of herbivores. In this light it is even 

more surprising that tolerance and resistance can coexist, because tolerance is a rather 

unspecific response that allows the plant to compensate for damage inflicted by a wide 

variety of herbivores. Tolerance might thus be redundant to other types of resistance. 

However, S. nigrum seems to have evolved several defense mechanisms to maintain its 

fitness after herbivore attack.  
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5 Summary 

 

In order to minimize the fitness-imperiling stress caused by phytophageous insects, plants 

have evolved an enormous variety of defensive adaptations. These plant defenses against 

herbivory are generally categorized as either tolerance or resistance. Tolerance traits reduce 

the detrimental effects of herbivore damage on plant fitness without affecting the herbivore. 

In contrast, resistance traits either directly or indirectly reduce the amount of damage a plant 

receives by repelling potential herbivores or impairing their performance.  

While tolerance mechanisms in plants remain nearly uncharacterized on the molecular 

level, the signals and signal pathways leading to herbivore resistance have been extensively 

studied. As plants are well known to show resistance responses to herbivory in not only 

locally attacked but also distal, undamaged leaves, the signals mediating these so-called 

systemic responses have received extensive attention. Among the signals proposed to be 

capable of transmitting information about herbivore attack from the site of wounding to the 

rest of the plant is the 18-aa polypeptide systemin. Systemin has long been thought to be the 

mobile wound signal in tomato (Solanum lycopersicum), but recent grafting experiments have 

demonstrated that both the presence of systemin and jasmonic acid (JA) biosynthesis are 

required in the local, damaged leaf to produce a systemic signal which subsequently induces 

proteinase inhibitors (PIs) in distal, unwounded leaves. Moreover, neither systemin nor JA 

biosynthesis seemed to be required in undamaged leaves to produce PIs. With these findings, 

the role of systemin in the wound response of tomato had to be reconsidered. According to 

the revised model, systemin plays a central role in tomato’s wound response acting at or near 

the site of wounding by amplifying the jasmonate-derived mobile wound signal.  

So far, resistance responses to insect herbivory and the underlying signal pathways 

have been studied almost exclusively in crop plants such as tomato. An important question 

thus arises: do the above-mentioned findings also apply to related but undomesticated species. 

The present thesis aimed to address this question by studying the defense responses of an 

undomesticated relative of tomato, black nightshade (Solanum nigrum), in general, and the 

role of systemin, in particular.  
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S. nigrum was attacked by a diverse herbivore community 

In two consecutive growing seasons, native and planted S. nigrum plants around Jena, 

Germany, were attacked by 17 generalist and two specialist herbivores belonging to three 

different feeding guilds (manuscript I). Insects were only classified as being herbivores on S. 

nigrum when adults or their larvae were repeatedly observed feeding on S. nigrum in both 

years. Thus, many species, for example, 21 species of Coleoptera were not included in this 

listing. The occurrence of a diverse herbivore community gave rise to the hypothesis that S. 

nigrum might respond with a similarly diverse set of defense mechanisms. 

 

S. nigrum was established as a model plant system 

Molecular tools were developed and adopted from other solanaceous species to manipulate 

and quantify S. nigrum’s responses to herbivory (manuscript I). An Agrobacterium-based 

transformation system was established as a method to specifically target and silence genes of 

interest in order to study their roles in plants’ subsequent defense responses. The use of 

microarrays was demonstrated to be a useful tool for identifying genes potentially involved in 

S. nigrum’s defense against herbivory. Furthermore, methods were developed to quantify PIs 

as a direct, induced resistance trait and volatile organic compounds (VOCs) as an indirect, 

induced resistance trait. 

 

S. nigrum featured an array of different defense strategies 

Upon herbivore damage by the flea beetle Expitrix pubescens, induction with methyl 

jasmonate or treatment with wounding and oral secretions, S. nigrum produced PIs; this was 

considered a direct induced resistance trait (manuscripts I and III). The attack of the Colorado 

potato beetle (Leptinotarsa decemlineata) or Deathhead Hawk-moth (Acherontia atropos) 

elicited the emission of several VOCs, including sesquiterpenes in field-grown S. nigrum 

plants (manuscript I). The production of sesquiterpenes in response to herbivory also became 

apparent in the transcriptome of induced plants, as genes involved in the production of 

sesquiterpenes were highly up-regulated (manuscript II). Moreover, the expression of genes 

encoding proteins involved in the biosynthesis of steroidal alkaloid increased, indicating that 

S. nigrum might use these secondary metabolites to complement its direct induced resistance 

repertoire (manuscript II).  
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Systemin did not mediate direct induced resistance in S. nigrum (manuscript III) 

Comparing wild-type (WT) plants and transgenic plants transformed with an inverted-repeat 

prosystemin construct (IRSys) to silence the expression of the endogenous S. nigrum 

prosystemin gene in field and glasshouse experiments revealed that amounts of PIs 

accumulated did not differ between WT and IRSys plants. Moreover, complementing plants 

with systemin by supplying the polypeptide exogenously through excised stems did not 

significantly increase PI activity, indicating that systemin and PIs were not correlated in S. 

nigrum. As neither the performance of three different herbivore species on these plants nor 

the elicited jasmonic acid levels differed between WT and IRSys plants, we concluded that 

the tomato-homologous polypeptide does not mediate direct defense responses in S. nigrum.  

 

Down-regulation of systemin after herbivory was associated with increased root 

allocation and competitive ability in S. nigrum (manuscript IV) 

Growth experiments revealed that both induced WT and uninduced IRSys plants had 

significantly more root mass compared to untreated WT plants. When induced WT plants 

were additionally treated with synthetic systemin, their root mass did not differ significantly 

from that of uninduced WTs. When competition for below-ground resources was prevented 

by a barrier, no significant differences in berry production were found among any of the 

genotypes or treatments.  However, when uninduced plants competed, IRSys plants produced 

significantly more berries than did WT plants. Berry production of induced and uninduced 

WT plants did not differ, but when induced WTs were additionally treated with systemin, 

plants produced fewer berries than did unelicited WT competitors. Thus, we propose that the 

rapid down-regulation of systemin after herbivory was associated with increased allocation of 

resources to roots; this in turn allowed plants to compete more effectively with conspecifics 

and hence may allow plants to compensate for tissue loss during herbivory.  
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6 Zusammenfassung 

 

Um den durch phytophage Insekten ausgelösten, fitnessgefährdenden Stress zu minimieren, 

haben Pflanzen eine Vielzahl an Verteidigungen entwickelt. Im Allgemeinen werden diese 

pflanzlichen Verteidigungen gegen Herbivorie in zwei Gruppen klassifiziert: Toleranz und 

Resistenz. Toleranzmechanismen reduzieren die nachteiligen Effekte des Fraßschadens auf 

die pflanzliche Fitness ohne den Herbivoren direkt zu beeinflussen. Im Gegensatz dazu 

reduzieren Resistenzmechanismen direkt oder indirekt den Schaden, indem sie mögliche 

Herbivoren abwehren oder deren Entwicklung beeinträchtigen. 

 Während die molekulare Basis pflanzlicher Toleranzmechanismen weitgehend 

unerforscht ist, wurden die in Resistenz involvierten Signale und Signalkaskaden ausgiebig 

untersucht. Da Pflanzen dafür bekannt sind, Resistenzmechanismen nicht nur in den lokalen, 

beschädigten Blättern, sondern auch in entfernt gelegenen, unbeschädigten Blättern zu 

aktivieren, wurde den Signalen, die diese sogenannten systemischen Antworten vermitteln, 

besondere Beachtung zuteil. Unter den Signalen, die in Frage kommen die Information vom 

Ort des Schadens in den Rest der Pflanze zu transportieren, befindet sich das aus 18 

Aminosäuren bestehende Polypeptid Systemin. Systemin wurde lange Zeit für das 

systemische Signal in Tomate (Solanum lycopersicum) gehalten. Neueste 

Pfropfungsexperimente zeigten jedoch, dass sowohl die Anwesenheit von Systemin als auch 

die Biosynthese von Jasmonsäure im lokalen, geschädigten Blatt benötigt wird, um ein 

systemisches Signal zu erzeugen und folglich Proteinaseinhibitoren (PIs) in entfernt 

liegenden, unverwundeten Blättern zu induzieren. Darüber hinaus schienen weder Systemin 

noch die Biosynthese von Jasmonsäure in den unbeschädigten Blättern nötig zu sein, um die 

Produktion von PIs zu erzielen. Mit diesen Ergebnissen musste die Rolle von Systemin in der 

Wundantwort von Tomate neu überdacht werden. Entsprechend des überarbeiteten Modells 

spielt Systemin eine zentrale Rolle in der Wundantwort von Tomate, indem es an oder nahe 

der verwundeten Stelle agiert und das von Jasmonsäure abgeleitete, mobile Signal verstärkt.  

 Pflanzliche Resistanzantworten auf Herbivorie und deren zugrunde liegenden 

Signalkaskaden wurden fast ausschließlich in Kulturpflanzen, wie zum Beispiel Tomaten 

untersucht. Eine wichtige, sich daraus ergebende Frage ist, ob sich die gewonnenen 

Erkenntnisse auch auf verwandte, nicht domestizierte Pflanzenarten übertragen lassen. Die 
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vorliegende Arbeit greift diese Frage auf, indem sie die Verteidigungsmechanismen einer 

nicht domestizierten Verwandten von Tomate, dem Schwarzen Nachtschatten (Solanum 

nigrum) im Allgemeinen und die Rolle von Systemin im Speziellen untersucht.  

 

S. nigrum wurde von einer diversen Herbivorengemeinschaft befallen 

In zwei aufeinanderfolgenden Wachstumsperioden wurden S. nigrum Pflanzen, die um Jena 

(Deutschland) entweder wild wuchsen oder ausgepflanzt wurden, von 17 Generalisten und 

zwei Spezialisten befallen, die drei verschiedenen Fraßgilden angehörten (Manuskript I). 

Nachdem Insekten nur als Herbivoren klassifiziert wurden, wenn die adulten Tiere oder ihre 

Larven wiederholt und in beiden Jahren fressend auf S. nigrum beobachtet wurden, wurden 

einige Arten, darunter 21 Coleopteren, nicht in die Auflistung aufgenommen. Das Auftreten 

einer diversen Herbivorengemeinschaft warf die Hypothese auf, dass S. nigrum durch eine 

gleichermaßen diverse Kombination an Verteidigungsmechanismen reagiert.  

 

S. nigrum wurde als pflanzliches Modellsystem etabliert 

Molekulare Methoden wurden entwickelt oder von anderen Solanaceenarten übernommen, 

um die Antworten von S. nigrum auf Herbivorie zu manipulieren und zu quantifizieren 

(Manuskript I). Insbesondere ein auf Agrobacterium basierendes Transformationssystem 

wurde entwickelt, um relevante Gene ausschalten und deren Rolle in der pflanzlichen Abwehr 

untersuchen zu können. Genchips wurden dazu verwendet weitere Gene mit einer potentiellen 

Rolle in pflanzlicher Abwehr zu identifizieren. Darüber hinaus wurden Methoden zur 

Quantifizierung von PIs als direkte, induzierte Abwehr und von Duftstoffen als indirekte, 

induzierte Abwehr entwickelt.   

 

S. nigrum weist eine Vielzahl von Verteidigungsstrategien auf 

Nachdem S. nigrum Pflanzen entweder von Flohkäfern (Expitrix pubescens) befallen oder mit 

Methyljasmonat beziehungsweise durch Verwundung induziert wurde, produzierten sie PIs 

als eine direkte, induzierte Form von Resistenz (Manuskript I und III). Der Befall von 

Kartoffelkäfern (Leptinotarsa decemlineata) oder Larven des Totenkopfschwärmers 

(Acherontia atropos)  löste in im Freiland wachsenden S. nigrum Pflanzen die Abgabe 

verschiedener Duftstoffe, darunter Sesquiterpene, aus (Manuskript I). Die Produktion von 

Sesquiterpenen spiegelte sich  auch im induzierten Transkriptom der Pflanze wieder 
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(Manuskript II). Neben der Hochregulierung von Genen, die in der Sesquiterpenbiosynthese 

von Bedeutung sind, lag der zweite transkriptionelle Schwerpunkt auf der Biosynthese von 

Steroidalkaloiden. Dies deutete darauf hin, dass S. nigrum diese Sekundärmetabolite zur 

Eränzung seines direkten, induzierten Verteidigungsrepertoires nutzt (Manuskript II).  

 

Systemin vermittelte nicht die direkte, induzierte Abwehr in S. nigrum (Manuskript III) 

Vergleichende Freiland- und Gewächshausexperimente mit Wildtyppflanzen (WT) und 

transgenen Pflanzen, die mit einem ’inverted repeat’ Prosystemin Konstrukt transformiert 

wurden, um die Expression des endogenen S. nigrum Prosystemingens auszuschalten, 

ergaben, dass sich die Akkumulierung von PIs als direkte Verteidigung nicht zwischen WT- 

und IRSys-Pflanzen unterschied. Darüber hinaus, steigerte die exogene Applikation des 

Polypeptides durch die abgeschnittenen Stengel nicht die PI-Aktivität. Dies deutete darauf 

hin, dass Systemin und PIs in S. nigrum nicht  korrelierten. Nachdem weder die Entwicklung 

dreier verschiedener Herbivoren auf, noch Mengen der induzierten Jasmonsäure in WT- und 

IRSys-Pflanzen unterschiedlich war, kamen wir zu dem Schluß, dass das der Tomate 

homologe Polypeptid nicht für die Vermittlung der direkten, induzierten Abwehr in S. nigrum 

verantwortlich ist. 

 

Herabregulierung von Systemin nach Herbivorie ging mit einem gesteigerten 

Wurzelwachstum sowie einer gesteigerter Konkurrenzfähigkeit einher (Manuskript IV) 

Wachstumsexperimente ergaben, dass sowohl induzierte WT-Pflanzen als auch uninduzierte 

IRSys-Pflanzen signifikant mehr Wurzelmasse aufwiesen als unbehandelte Pflanzen des WTs. 

Wenn induzierte WT-Pflanzen zusätzlich mit Systemin behandelt wurden, unterschied sich 

die Wurzelmasse nicht von der uninduzierter WT-Pflanzen. Wenn die Konkurrenz um 

unterirdische Ressourcen durch eine Barriere unterbunden wurde, wurden keine signifikanten 

Unterschiede bezüglich der Beerenproduktion zwischen Genotypen oder 

Behandlungsgruppen beobachtet. In einer Konkurrenzsituation produzierten IRSys-Pflanzen 

signifikant mehr Beeren als WT-Pflanzen. Die Beerenproduktion induzierter und nicht 

induzierter WT-Pflanzen unterschied sich jedoch nicht. Wenn die induzierten WT-Pflanzen 

allerdings mit Systemin behandelt wurden, produzierten sie weniger Beeren als uninduzierte 

WT-Konkurrenten. Deshalb schlugen wir vor, dass die schnelle Herabregulierung von 

Systemin nach Herbivorie mit einer gesteigerten Wurzelallokation und gesteigerter 
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Konkurrenzfähigkeit einhergeht, die es der Pflanze erlaubt, effektiver mit Artgenossen zu 

konkurrieren und es ihr dadurch ermöglicht Gewebeverluste während des Herbivorenbefalls 

zu kompensieren.  
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