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Abstract

The estimation of unknown signal samples by extrapolation from known data arises in

many signal processing applications. In this thesis, a very generic concept for the estima-

tion of unknown signal samples is derived which is referred to as selective extrapolation.

Several applications in image and video communications are discussed from the point of

view of extrapolation. Unknown areas occurring in images and videos due to erroneous

transmission over unreliable channels are concealed by the proposed selective extrapola-

tion concept. The same technique is applied to the estimation of the video signal covered

by TV logos in order to remove the undesired TV logo. Prediction in hybrid video coding

is also interpreted as the extrapolation of the already coded samples in order to increase

coding efficiency.

The derivation of the principle of selective extrapolation relies on arbitrary basis func-

tions which allows for a straightforward adaptation to any given application. Since the

generic concept is independent of the dimensions of the considered signal space, the pro-

posed approach can be straightforwardly extended from the two-dimensional derivation

to three-dimensions. The new concept of three-dimensional extrapolation allows for an

interpretation of a video signal as a three-dimensional volume. Therefore, spatial and

temporal correlations of the video signal can be simultaneously used for extrapolation

purposes.

The interpretation of image and video signals as a linear combination of multi-

dimensional frequencies explains why DFT like basis functions are especially suited in

the considered extrapolation context. The application of DFT like basis functions leads

to the concept of frequency selective extrapolation. The main advantage of frequency

selective extrapolation is the ability to inherently adapt to the local signal characteris-

tics. Image signals with different characteristics such as smooth areas, edges, patterns as

well as noise-like areas can be extrapolated. With the novel three-dimensional approach,

additionally motion and variations in luminance occurring from frame to frame can be

inherently compensated.
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1 Introduction

Many signal processing applications imply the problem of estimating unknown signal

samples from known data. This task can be interpreted as the extrapolation of known

signal areas towards the unknown areas. The described problem occurs e.g. in medical

image processing for the defect pixel interpolation of flat panel X-ray detectors. These

detectors allow the immediate availability of the acquired images for display, but still

may contain regions with inactive pixels amongst others due to manufacturing problems.

Hence, the provided X-ray images include unknown areas caused by these inactive pixels

site. The corresponding defects in the images can be replaced by extrapolating the signal

from adjacent pixels [4], because the locations of the inactive pixels are known from

calibration measurements.

Modeling the human auditory system including a high-resolution spectral analysis

[50] represents an example for an audio signal processing application. Because only signal

blocks of short time are available, the method for performing a high-resolution short-

time spectral analysis is based on an extrapolation. The influence of the time-limited

observation of the audio signal is removed in the spectral domain which corresponds to

an extrapolation of the audio signal beyond the observed period of time.

A similar problem arises in the completely different field of astrophysics. For aperture

synthesis, the limitations imposed by the recording radio telescopes on the measurements

are eliminated [22]. The recorded so-called “dirty map” is “cleaned” from the so-called

“dirty beam” formed by the recording telescopes. Since the observation space of the

sky covered by the recording telescopes is limited, the method also corresponds to an

extrapolation of the intensity values of the recorded objects beyond the observed part of

the sky.

In nuclear physics, the prediction of nuclear masses in instable regions represents

another extrapolation task [17]. In Fig. 1.1, the difference between two given models for

nuclear mass prediction in dependence of the number of neutrons on the x-axis and the

number of protons on the y-axis is shown [17]. Based on the extrapolation of the given

pattern beyond its limits, the nuclear masses in instable regions can be predicted.

The problem of estimating unknown samples also arises in various image and video

communication applications. Examples which are especially important in practice are

interpreted in this thesis from the point of view of signal extrapolation. For instance, the

problem of concealing corrupted video data caused by transmission errors in mobile video

communications can be interpreted as an extrapolation of the surrounding available video
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MeV

N (Number of neutrons)

Z (number of protons)

Figure 1.1: The difference between two models in nuclear mass prediction is shown according to

[17]. For predicting nuclear masses in instable regions, the pattern is to be extrapolated beyond

its limits.

signal into the missing area. The removal of undesired TV logos can be also considered

in the extrapolation context, where the unknown pixels covered by the logo are to be

estimated from the surrounding video signal. In hybrid video coding, prediction of the

video signal is applied in order to increase coding efficiency. This signal processing step can

also be interpreted as extrapolation of already coded pixels in order to predict following

pixels.

Various methods have been proposed which solve the extrapolation task for two-

dimensional signals by applying spectral estimation. Bandlimited extrapolation methods

[44, 45, 53, 56] are known to cause specific artifacts in the signal domain and are there-

fore not suited for the extrapolation into larger areas. Spectral deconvolution methods

[18, 50, 12, 4] achieve in general better results. However, they explicitly rely on Discrete

Fourier Transform (DFT) basis functions and are therefore limited to the Fourier domain.

Other basis functions which turn out to be useful for certain applications as, e.g., Dis-

crete Cosine Transform (DCT) functions or polynomials can not be applied within this

approach.

The general principles considered in this thesis are not only used for extrapolation

tasks, but also for coding purposes. In [26], successive approximation relying on arbitrary

basis functions is applied to object oriented image coding. Spectral estimation methods

are usually not applied for the extrapolation of video signals. Conventionally, unknown

samples in video signals are estimated by hybrid techniques using either spatial or tem-

poral information as, e.g., in case of prediction in hybrid video coding. Most commonly,

motion compensation is applied to explicitly exploit temporal information.

In this thesis, a generic estimation method is derived referred to as selective extrapola-
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tion. In contrast to previous work for extrapolation purposes [18, 50, 12, 4], this general

approach relies on arbitrary basis functions which allows for an adaptation to the specific

properties implied by the considered application. Based on the principle of successive ap-

proximation [26], the support area surrounding the area to be estimated is approximated

by a linear combination of selected basis functions. The basis functions used for the ap-

proximation are defined on an area which also includes the unknown samples. Therefore,

the approximation of the known area inherently provides an extrapolation into unknown

areas. The error criterion minimized during the extrapolation uses a weighting function

which allows for a further application specific adaptation of the general approach. For

the applications considered in this thesis, a suitable weighting function is specified. The

presented concept is independent of the dimensions of the signal space. Therefore, the

approach of selective extrapolation as initially derived for two-dimensional (2-D) signals

can be straightforwardly extended to 3-D signals. This is achieved by interpreting video

signals as a 3-D volume. Hence, spatial and temporal correlations of the video signal can

be used at the same time for the estimation of unknown areas. This interpretation of

video signals leads to new insights compared to conventional hybrid approaches which

apply either spatial or temporal prediction.

The work presented in this thesis is organized as follows. First, a review of spectral

estimation methods used for signal extrapolation and related techniques is given in Chap-

ter 2. In Chapter 3, the derivation of the generic concept of selective extrapolation is

presented for the 2-D case. For the extrapolation of image signals, DFT like basis func-

tions are especially suited, leading to the concept of frequency selective extrapolation. In

Chapter 4, this concept is extended to the case of 3-D signals.

Following the theoretical derivations, frequency selective extrapolation is applied to

solve several extrapolation problems typically occurring in image and video communi-

cations. In Chapter 5, the application of the developed approach to error concealment

of lost block coded data for video communications in error-prone environments is de-

scribed. After detailed investigations, frequency selective extrapolation is integrated into

the reference software [54] of the H.264/AVC coder [23] as concealment feature.

Other coders such as the JPEG2000 coder [1] work with wavelet based coding princi-

ples. Since this coding principle differs from block based coders, a data loss has completely

different effects. After investigations in combination with the error robustness tools pro-

vided by the standard, the 2-D frequency selective extrapolation is integrated into the

JPEG2000 coder as concealment feature in Chapter 6.

In Chapter 7, two additional applications are investigated as interesting showcases of

the derived frequency selective extrapolation technique: on the one hand the removal of

undesired TV logos and on the other hand prediction in hybrid video coding. TV logos

are commonly present for the entire sequence and located at the same time-invariant

position. The concept of considering the video signal as a volume allows for extrapolating
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the signal from spatial as well as temporal surrounding into the logo area as described

in Section 7.1. In Section 7.2, prediction in hybrid video coding in order to increase

the coding efficiency is also interpreted as extrapolation of already coded data. The 3-D

extrapolation is integrated into the H.264/AVC coder as alternative coding mode.

The main results of this thesis are finally summarized in Chapter 8, where additionally

an outlook to promising topics of future research work is presented.



5

2 Signal Extrapolation

Estimating unknown image areas from the surrounding image signal is an important topic

of various applications in image and video communications. The surrounding consists of

spatial information within the image. In case of video signals, temporal data from previous

and/or following frames is additionally available. Examples for applications which are

especially important in practice and considered in this thesis, such as concealment of lost

data in erroneous image and video communications, removal of undesired TV logos, or

prediction in hybrid video coding are discussed in Section 2.1 from the point of view of

signal extrapolation.

A method of estimating unknown areas in image and video signals is derived in this the-

sis. The estimation problem is interpreted from the point of view of signal extrapolation:

the signal is extended beyond an interval of known values. The image and video signals

being processed are sampled, therefore the signal is extended beyond a limited number of

known samples by discrete signal extrapolation. Here, we consider extrapolation as the

general case, hence interpolation - the extension of values within an interval - is included,

too. In short, we develop a method in order to estimate unknown samples in an image

or video signal by extending the surrounding available signal as consistent as possible.

The generic concept of selective extrapolation is specialized to the technique of frequency

selective extrapolation for image and video signals by exploiting spatial and, wherever

applicable, temporal correlations of the surrounding signal in the spectral domain.

There exists a variety of methods which can be used to extend signals towards unknown

areas. One possibility is to draw conclusions about the area to be estimated from the

spectrum of the given surrounding. The corresponding extrapolation task to be solved

is introduced in Section 2.2.1. Extrapolation methods based on spectral estimation are

reviewed in Section 2.2.2.

2.1 Applications for Extrapolation in Image and

Video Communications

The task of extrapolating image signals in order to estimate unknown image contents

arises in various image and video communication applications.

Transmission errors as they may occur in mobile video communications cause losses

in the received video data. The effects of such losses are concealed by extrapolating the
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surrounding available video signal into the missing area. Examples for the effects of such

losses are presented in Fig. 2.1. For block based coders, the image is coded blockwise

and several successive blocks constitute a packet which is sent to the receiver. In case

of erroneous transmission, the blocks corresponding to the lost packets are substituted

by black blocks as illustrated in Fig. 2.1 (a). Transmission errors cause different visual

degradations for wavelet-based coded data as can be seen in Fig. 2.1 (b).

The same extrapolation principle can be exploited in order to remove undesired TV

logos which are embedded in a video sequence by TV stations. Two examples of a logo

are displayed in Fig. 2.2 (a), (b). The approach considered in this thesis replaces the logo

by image data obtained from extrapolating the signal surrounding the logo with help of

a detected logo mask as exemplified in Fig. 2.2 (c).

(a) (b)

Figure 2.1: Concealment as an extrapolation problem: Lost areas caused by transmission errors

are estimated by extrapolating the signal from the surrounding.

(a) (b) (c)

Figure 2.2: Logo inpainting as an extrapolation problem: The TV logo DSF in (a) and (b) should

be removed with help of the detected logo mask in (c) by replacing them with the estimated

signal extrapolated from the surrounding.
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The coding efficiency in video coding is commonly increased by prediction which can

be seen as extrapolation of the already coded signal in order to predict the samples to be

coded. Then only the difference between the predicted and the actual signal has to be

transmitted.

2.2 Spatial Signal Extrapolation

The extrapolation task to be solved is described in Section 2.2.1 for discrete 2-D signals.

A review of extrapolation methods based on spectral estimation is given in Section 2.2.2.

2.2.1 The Extrapolation Task

Fig. 2.3 shows a part of the sampling grid of a 2-D discrete signal. The shaded area L is

composed of the area B (dark gray) to be estimated from the given samples included in

A (light gray). Note that A as well as B can be arbitrarily shaped but that their union L

forms a circumscribing rectangle in our considerations. The extrapolation task can then

be summarized: The support area A is extrapolated to obtain the unknown area B.

The intensities of the original samples in the area L are denoted by f [m,n], where m is

the spatial dimension in row direction and n in column direction. The number of samples

in the entire area L equals M ×N . The observed signal can be interpreted as a windowed

version of the original signal: The available signal is formed by the multiplication of the

original signal with the binary window function b[m,n] which is one in the support area

and zero elsewhere

b[m,n] =

{
1 , (m,n) ∈ A

0 , (m,n) ∈ B.
(2.1)

The estimated signal is denoted by g[m,n] which is also defined in the entire area L. The

signal in the support area A is extrapolated towards the unknown area B by approximating

the observable samples in the original signal f [m,n] by the estimated signal g[m,n]. Note

that finally the observable samples of f [m,n] in A are kept and only the unknown samples

belonging to B are replaced by the corresponding samples of the estimate g[m,n].

The error energy EA between the available signal f [m,n] and its approximation by

the estimated signal g[m,n] controls the quality of the approximation within the support

area

EA =
∑

(m,n)∈L

b[m,n] (f [m,n] − g[m,n])2 . (2.2)

It should be pointed out that in general the error criterion does not provide any conclusions

about the quality of the signal in the area to be estimated.
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M

N

m

n

Area to be estimated BSupport area A

Entire area L = A ∪ B

Figure 2.3: The principle of extrapolation: The unknown signal in the area B (dark gray) is

estimated by extrapolating the signal from the approximated support area A (light gray).

2.2.2 Extrapolation by Spectral Estimation

For the 1-D and 2-D case, several methods have been presented in literature [44, 45, 18, 50]

that apply a spectral analysis of discrete signals to solve the extrapolation task. The

observed time-limited signal fb[m,n] can be modeled as a multiplication of the desired

signal f [m,n] by the time-limited binary window function b[m,n]. When expressing the

extrapolation task in the frequency domain, the convolution of the unknown signal DFT

F [k, l] with the window DFT B[k, l] leads to a blurred and spread version of the DFT of

the observed signal Fb[k, l] [42]

fb[m,n] = f [m,n]b[m,n] (2.3)
◦
|•

Fb[k, l] =
1

MN
F [k, l] ∗©B[k, l] =

1

MN

M−1∑

κ=0

N−1∑

λ=0

F [κ, λ]B[k − κ, l − λ] (2.4)

where “ ∗©” denotes cyclic convolution. The objective is to eliminate the influence of

the known window DFT B[k, l] from the DFT of the desired signal F [k, l] by spectral

analysis. Thereby, the estimate G[k, l] is obtained and the corresponding spatial-domain

signal g[m,n]◦—•G[k, l] is extrapolated beyond the known samples yielding the estimate

for the unknown samples.

Band-limited Extrapolation

Several iterative approaches are known for Fourier-based spectral analysis. The techniques

in [44] and [45] consider the extrapolation of time-windowed signals with known limited
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bandwidth. Here, the concept derived in [44] and [45] for 1-D continuous signals is adopted

for the case of discrete 2-D signals. It is assumed that the DFT of the original signal F [k, l]

is band-limited to the cut-off frequency bins kc and lc:

F [k, l] = 0 ∀ kc < k < M − kc ; lc < l < N − lc.

The iterative algorithm starts with the observed signal

f
(0)
b [m,n] = fb[m,n] ◦—• F

(0)
b [k, l] = Fb[k, l].

In the νth iteration step, the spectrum of the observed windowed signal F
(ν)
b is first limited

to the known frequency-band by P [k, l] with respect to the cut-off frequencies kc and lc

P [k, l] =

{
1 , k ≤ kc ∨ k ≥ M − kc ; l ≤ lc ∨ l ≥ N − lc
0 , otherwise

. (2.5)

Here, the 1-D ideal lowpass from [44] and [45] is generalized to a separable 2-D function.

The band limitation yields the DFT of the estimated signal G(ν)[k, l] in iteration ν

G(ν)[k, l] = F
(ν)
b [k, l]P [k, l]. (2.6)

The inverse transform to the spatial domain yields a signal g(ν)[m,n] which is extrapolated

beyond the known samples. Band-limitation, however, also alters the samples within the

window. After replacing the altered samples by the known window-internal samples

f
(ν+1)
b [m,n] = g(ν)[m,n] + (f [m,n] − g(ν)[m,n]) b[m,n],

the signal f
(ν+1)
b [m,n] is transformed again into the DFT domain yielding F

(ν+1)
b [k, l],

where band-limitation by P [k, l] is enforced. The extrapolation is obtained by iterating

this procedure implying two transformations in each iteration. In [45], spectral compo-

nents are additionally eliminated which are below an adaptive threshold. However, the

spatial-domain signal obtained after band-limitation decays rapidly beyond the known

samples in the extrapolated area, because the band-limitation by P [k, l] according to

(2.6) corresponds to a convolution with a sinc function in the spatial domain:

g(ν)[m,n] = f
(ν)
b [m,n] ∗© sinc

(
2π kc

M
m,

2π lc
N

n

)
.

Therefore, the approach is not suitable for applications where the emphasis is placed on

extrapolation into larger areas. This approach is extended in [16] for recovering a 1-D

continuous signal from a non-uniformly sampled signal which is assumed to be band-

limited. The extension to 2-D is presented in [53].

Other methods apply Projections Onto Convex Sets (POCS) for the extrapolation

task. The signal in the entire area L is transformed into the Discrete Fourier Transform
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(DFT) domain. There, the spectrum is band-limited and then transformed back into the

signal-domain. Samples in the known area are replaced by the original signal and the

estimated samples in the unknown area are clipped to the valid range of amplitudes. This

procedure is iteratively repeated and also requires two transformations in each iteration.

It is applied in [56] to error concealment. The signal surrounding the missing block is

classified in two categories: smooth and edge areas. Thus, the signal can be filtered

correspondingly. In case of smooth areas, the lowpass filter P [k, l] introduced in (2.5) is

modified to:

Psmooth[k, l] =

{
1 ,

√
k2 + l2 ≤ Rth ∨

√
(M − k)2 + (N − l)2 ≤ Rth

0 , otherwise
(2.7)

where Rth specifies the bandwidth radius. In case of an edge area, a bandpass filter

Pedge[k, l] =

{
1 , |k − l tan(θ + 90◦)| ≤ Bth

0 , otherwise
(2.8)

is applied, where θ denotes the angle of the classified edge and Bth the bandwidth thresh-

old. Hence, the filter characteristic is adopted to the signal content.

Extrapolation by Spectral Deconvolution

Other 2-D spectral approaches model the unknown area by the multiplication of a binary

window function with the available signal. The fundamental idea to restore the missing

samples is to remove the window function in the spectral domain by deconvolution. The

approach aims at estimating F [k, l] by G[k, l] with only D < MN spectral samples

G[k, l] =
∑

(κ,λ)∈KD

G[κ, λ]δ[k − κ, l − λ] (2.9)

with the set KD consisting of D index pairs. The spectral components of G[k, l] are

determined iteratively by minimizing the mean squared error to the windowed original

signal as defined in the error criterion (2.2). The inverse transform to the spatial domain

yields a signal g[m,n] which is extrapolated beyond the known samples. In [18], an

iterative extrapolation approach for region oriented image analysis is described which

selects the spectral component with the largest magnitude in each step. The undesirable

signal decay in the extrapolated area is avoided due to signal expansion restricted to a

small subset of dominant spectral coefficients as given by (2.9). As the previous approaches

the technique alternates in each iteration between signal and frequency domain, and hence

has a high computational complexity. This repetitive transformation is avoided by the

methods proposed in [50, 51]. The desired spectral components are completely estimated

in the frequency domain because the error energy in (2.2) can be expressed equivalently

in the DFT-domain due to Parseval’s theorem [50]. The deconvolution method and its
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relation to the selective extrapolation method derived in this thesis is described in detail

in Section 3.6. The application considered in [50] is modeling the human sense of hearing

by a high resolution spectral analysis. In [51] some examples for a 2-D generalization of

this spectrum estimation are given with application to image extrapolation.

The same principle has been used in [25] for the prediction of uncovered background

in object-based video coding using spatial extrapolation. The surrounding known back-

ground signal is successively approximated yielding thereby a prediction for the uncovered

area. Similar approaches are applied in [12] to restore missing non-rectangular textures

and in [2] to conceal defects occurring in clinical X-ray imaging acquired by flat-panel

detectors.

2.3 Related Techniques Used in Image Coding

Similar principles are used for image coding purposes. Extrapolation principles also occur

as a by-product in object based transform coding. In [26], the texture of an arbitrarily

shaped object is approximated successively by the estimated signal g[m,n] which is defined

as a parametric model given by a linear combination of a few weighted suitable basis

functions ϕk,l[m,n] defined over a circumscribing rectangle L by

g[m,n] =
∑

(k,l)∈K

ck,l ϕk,l[m,n] (2.10)

with ck,l denoting the expansion coefficients. In (2.10), K represents the set of basis func-

tions used for the expansion of the parametric model g[m,n]. The expansion coefficients

ck,l are determined by minimizing the error criterion (2.2) with respect to the support

area. The texture is then cut to the shape of the object by discarding the extrapolated

areas. This approach does not rely on the convolution theorem, and is thus applicable

to transforms other than the DFT, such as the Discrete Cosine Transform (DCT) or the

Discrete Hartley Transform (DHT).

A different approach is based on Matching Pursuits where the signal is decomposed

by a linear expansion of waveforms [31] according to (2.10). Basis functions of limited

extent such as Gabor functions are applied for coding the prediction error signal [41].

However, these approaches are designed for transform coding purposes whereas we

concentrate on signal extrapolation.

2.4 3-D Signal Processing

For 3-D signals, the unknown signal areas are commonly predicted by hybrid approaches,

i.e., either spatial or temporal information is used for the estimation but no combination.

In case of spatial prediction, the block to be predicted is estimated from surrounding
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data within the image, whereas temporal prediction exploits the similarity of subsequent

frames.

Conventional video coding is also based on the hybrid coding approach. Temporal

prediction exploits temporal information by motion compensation based on the motion

vector principle. For block-based techniques, the displacement for each block of the image

from one frame to the next one is described by a motion vector as for instance in the

video coding standard H.264/AVC [23]. Similarly, error concealment methods such as the

Boundary Matching Algorithm (BMA) [29, 61] take advantage of temporal information

by restoring the motion vector.

A real 3-D video coder based on 3-D Matching Pursuits is presented in [47] by extend-

ing the 2-D Matching Pursuit approach to 3-D. This coder offers full scalability in terms

of SNR, spatial and temporal scalability as opposed to a conventional video coder.

A completely different 3-D approach of predicting missing areas in order to restore

severely degraded film sequences is based on stochastic techniques [28]. The missing areas

are reconstructed by interpolation based on the motion and occlusion field estimation.
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3 Spatial Selective Extrapolation

The basic idea of discrete signal extrapolation is to estimate unknown samples from the

given surrounding signal content. Methods solving this problem by using spectral estima-

tion have been reviewed in Section 2.2.2. In this chapter we derive our proposed approach:

the algorithm of selective extrapolation. Based on the principle of successive approxima-

tion [24], the known signal area is approximated by a weighted linear combination of

basis functions [26]. Since the basis functions are defined in the entire area including the

region to be extrapolated, the approximation provides at the same time an estimation

of the missing area. Approximating the known areas successively is extensively treated

in [24, 26]. In this thesis, however, we are interested in estimating the unknown area by

extrapolating the surrounding known signal.

First, the method of selective extrapolation is introduced generically for two-

dimensional signals in Section 3.1. Next, in Section 3.2 the developed approach is in-

terpreted from a geometrical point of view in order to obtain deeper theoretical insights.

The extrapolation result significantly depends on the choice of basis functions which is ad-

dressed in Section 3.3. In this thesis, we choose multi-dimensional DFT functions as basis

functions which are especially suited for image and video signals. Hence, the approach

yields a frequency selective extrapolation which is derived in Section 3.4.1 for the spatial-

domain. The algorithm can be implemented very efficiently in the frequency domain being

subsequently described in Section 3.4.2. The error criterion minimized during the extrap-

olation procedure relies on a weighting function which allows for an application-specific

adaptation of the error criterion. In Section 3.5, a suitable weighting function for the

extrapolation context considered in this thesis as well as the effect on the extrapolation

result compared to a non-adapted function is presented.

Finally, in Section 3.6 an alternative extrapolation approach is investigated. There

exists a variety of methods in the literature based on deconvolution [22, 50, 12, 4]. We

show that the algorithm of frequency selective extrapolation leads to a similar approach

as deconvolution in the spectral domain.

3.1 Spatial Selective Extrapolation for 2-D Signals

In this section, we derive generically the algorithm of selective extrapolation for 2-D signals

using general basis functions [27]. The unknown samples are estimated by minimizing
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an error criterion between the available signal and its approximation as described in

Section 3.1.1. A method for achieving the approximation and the resulting extrapolation

is derived in the remainder of this section.

3.1.1 Principle of Selective Extrapolation

The generic extrapolation task to be solved has been already illustrated in Fig. 2.3. In

order to extrapolate the observed signal beyond the given samples, the support area is

approximated by the parametric model g[m,n] as introduced in (2.10). This parametric

model is defined for the entire area L as linear combination of basis functions ϕk,l[m,n]

which are defined on the entire area L, weighted by the expansion coefficients ck,l. The

number of available basis functions equals M × N and corresponds to the number of

samples in the entire area L.

The support area is approximated by minimizing an error criterion. As error criterion,

the sum of the weighted squared error between the observed signal and the parametric

model is defined. The weighting function w[m,n] has only positive amplitudes ρ[m,n] in

the support area and is zero elsewhere

w[m,n] =

{
ρ[m,n] , (m,n) ∈ A

0 , (m,n) ∈ B.
(3.1)

The weighted instantaneous error energy EA between the available signal and its approx-

imation by the parametric model controls the quality of the approximation within the

support area

EA =
∑

(m,n)∈L

w[m,n] (f [m,n] − g[m,n])2 . (3.2)

In [34], the weighting function with arbitrary positive amplitudes is introduced unlike

previous works which are based on a binary weighting function [24, 26, 35] for the corre-

sponding error criterion as defined in (2.2). The weighting function allows for emphasizing

subareas in A which are more important for the extrapolation and should therefore be

involved stronger into the extrapolation procedure. The extrapolation result is signifi-

cantly influenced by the weighting function depending on both, the shape of the area to

be estimated and the surrounding signal. Therefore, w[m,n] has to be specially designed

for each application considered.

In order to determine the expansion coefficients ck,l of the parametric model (2.10), the

error criterion is minimized by taking the partial derivative with respect to the unknown

coefficients and equating it to zero

∂EA

∂ck,l

!
= 0 (3.3)
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yielding the following system of equations
∑

(k,l)∈K

ck,l

∑

(m,n)∈L

w[m,n] ϕ2
u,v[m,n] =

∑

(m,n)∈L

w[m,n] f [m,n] ϕu,v[m,n]. (3.4)

The system of equations resulting from minimizing (3.4) is underdetermined and does

therefore not yield a unique solution. The minimization leads to a set of possible solutions

because the number of basis functions equals the number of samples in L which is larger

than the number of given signal samples in A. To overcome this problem caused by the

underdetermined system of equations, we apply the technique of selective extrapolation.

This iterative procedure approximates the signal within the support area successively

subject to a specified error criterion in terms of one single weighted basis function per

iteration: The expansion coefficient is optimally estimated as derived in Section 3.1.2

corresponding to the appropriately selected basis function as described in Section 3.1.3.

The parametric model is refined in each iteration step until an approximation with

desired accuracy is reached. The successive approximation yields as result the parametric

model g[m,n] which approximates the data in the support area A by a few dominant

features in terms of selected weighted basis functions. At the same time a signal extrapo-

lation to the unknown area B is provided. Hence, we estimate the signal in the unknown

area by selective extrapolation. Finally, the estimated area corresponding to B is cut out

of the parametric model g[m,n] and inserted accordingly.

3.1.2 Update of Selected Coefficient

Accounting for the iterative extrapolation technique, the parametric model g(ν)[m,n] de-

scribes the known signal content at iteration step ν by a linear combination of weighted

selected basis functions

g(ν)[m,n] =
∑

(k,l)∈K(ν)

c
(ν)
k,l ϕk,l[m,n] (3.5)

with K(ν) denoting the set of basis functions used up to this step. Initially, K(ν) is empty

for ν = 0 and the parametric model g(0)[m,n] is zero. The residual error signal in the

support area (m,n) ∈ A at iteration ν is then given with help of the window function

b[m,n] (2.1) by

r(ν)[m,n] = (f [m,n] − g(ν)[m,n]) b[m,n]. (3.6)

In each iteration, the residual error signal in the support area is further reduced by

∆g[m,n] which represents the change of the parametric model from step ν to ν + 1.

∆g[m,n] is updated in each iteration. Hence, the residual error signal in the next iteration

can be expressed by

r(ν+1)[m,n] = r(ν)[m,n] − ∆g[m,n] b[m,n]. (3.7)
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Analogously to (3.2), the weighted instantaneous residual error energy represents the error

criterion and can be expressed by

E
(ν+1)
A

=
∑

(m,n)∈L

w[m,n]
(
r(ν)[m,n] − ∆g[m,n]

)2
, (3.8)

where b[m,n]w[m,n] = w[m,n] has been used. The update of the parametric model

∆g[m,n] is determined by minimizing E
(ν+1)
A

.

In the following of this section, we assume that an appropriate basis function ϕu,v[m,n]

with index (u, v) is already selected. Strategies how to select an appropriate basis function

are treated in Section 3.1.3. In case of the selective extrapolation, the update of the

parametric model ∆g[m,n] is chosen as the weighted actually selected basis function, i.e.,

∆g[m,n] = ∆c ϕu,v[m,n] (3.9)

where ∆c is the optimal update of the currently available approximation to be estimated

in the next iteration. Thus, ∆c is updated in each iteration. This can be used to express

the reduced error signal in (3.7) by

r(ν+1)[m,n] = r(ν)[m,n] − ∆cϕu,v[m,n] b[m,n]. (3.10)

The error criterion generally defined in (3.8) is obtained by inserting (3.9)

E
(ν+1)
A

=
∑

(m,n)∈L

w[m,n]
(
r(ν)[m,n] − ∆cϕu,v[m,n]

)2
(3.11)

and minimized with respect to the unknown coefficient ∆c

∂E
(ν+1)
A

∂∆c
!
= 0. (3.12)

This yields a single equation in contrary to the underdetermined system of equations (3.4)

∆c
∑

(m,n)∈L

w[m,n] ϕ2
u,v[m,n] =

∑

(m,n)∈L

w[m,n] r(ν)[m,n] ϕu,v[m,n] (3.13)

which can be solved uniquely for ∆c

∆c =

∑
(m,n)∈L

w[m,n] r(ν)[m,n] ϕu,v[m,n]

∑
(m,n)∈L

w[m,n] ϕ2
u,v[m,n]

. (3.14)

The selected expansion coefficient c
(ν+1)
u,v is then updated by

c(ν+1)
u,v = c(ν)

u,v + ∆c. (3.15)
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The index (u, v) is included in the set of basis functions used if it has not been selected

in previous iterations

K
(ν+1) = K

(ν) ∪ (u, v) if (u, v) /∈ K
(ν). (3.16)

Using the definition

r(ν)
w [m,n] = w[m,n] r(ν)[m,n], (3.17)

we can simplify (3.13) to

∆c
∑

(m,n)∈L

w[m,n]ϕ2
u,v[m,n] =

∑

(m,n)∈L

r(ν)
w [m,n]ϕu,v[m,n].

Analogously to (3.17), the residual error r
(ν+1)
w is obtained from (3.10) as

r(ν+1)
w [m,n] = r(ν)

w [m,n] − ∆c ϕu,v[m,n]w[m,n], (3.18)

where we recall that b[m,n]w[m,n] = w[m,n].

It should be noted that the above derivations imply that the weighted instantaneous

residual error energy is minimized and not the energy of the weighted residual error.

Thus, the error signal is weighted after squaring but before summation, i.e., the weighting

function does not affect the residual error signal but the error criterion. This is pointed

out by introducing the binary function in order to calculate the residual error first and

then reformulating the result with help of r
(ν)
w [m,n].

3.1.3 Selection of Basis Function

For the calculation of the expansion coefficients c
(ν+1)
u,v , we assumed that an appropriate

basis function ϕu,v[m,n] was already selected for the expansion of the parametric model

from iteration ν to ν +1. The question not addressed so far is how to select this function.

Generally, we seek to select that basis function ϕu,v[m,n] which maximises the reduction

of the error criterion from step ν to ν+1. Consequently, we calculate the weighted residual

error energy from iteration ν to ν + 1, taking into account that the residuum r
(ν+1)
w [m,n]

is orthogonal to the weighted selected basis function

E
(ν+1)
A

+ ∆E
(ν+1)
A

= E
(ν)
A

(3.19)∑

(m,n)∈L

w[m,n](r(ν+1)[m,n])2 +
∑

(m,n)∈L

w[m,n](∆g[m,n])2 =
∑

(m,n)∈L

w[m,n](r(ν)[m,n])2.

The error criterion E
(ν+1)
A

becomes minimum if the reduction of E
(ν)
A

by ∆E
(ν+1)
A

becomes

maximum. Therefore, we select that basis function with index (u, v) which results in
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a maximal decrease of the error criterion. Combining (3.9) and (3.14), ∆E
(ν+1)
A

can be

written as

∆E
(ν+1)
A

= ∆c2
∑

(m,n)∈L

w[m,n]ϕ2
k,l[m,n] (3.20)

=

(
∑

(m,n)∈L

r
(ν)
w [m,n]ϕk,l[m,n]

)2

∑
(m,n)∈L

w[m,n]ϕ2
k,l[m,n]

.

The basis function ϕu,v[m,n] is then selected according to

(u, v) = argmax
(k,l)

∆E
(ν+1)
A

. (3.21)

As can be seen from (3.19), the convergence of the algorithm is assured since the error

energy in the approximated area is reduced in each step.

The algorithm is initialized by

g(0)[m,n] = 0 (3.22)

and terminates if the reduction of the residual error energy ∆EA normalized per pixel with

respect to its contribution according to the weighting functions drops below a pre-specified

threshold ∆min

∆E
(ν+1)
A∑

(m,n)∈L

w[m,n]
< ∆min.

The termination criterion is then given with respect to the threshold Emin

∆E
(ν+1)
A

< Emin = ∆min

∑

(m,n)∈L

w[m,n]. (3.23)

The successive approximation procedure results in a parametric model g[m,n] given in

the entire area L. The desired signal extrapolation to the missing area B is then obtained

as the corresponding area of the parametric model g[m,n].

3.2 Geometrical Interpretation of Selective Extrapo-

lation

In the following, we interpret the principle of selective extrapolation from a geometrical

point of view. The area L is composed of the support area A and the area to be extrapo-

lated B. Each function in L can be interpreted as a L×1 vector where L = M N . Hence,
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f [m,n]

fL

fA

A

B

Figure 3.1: Geometrical representation of a two-dimensional function by stacking the columns

of the function below each other.

the image signal f [m,n] can be interpreted as a vector fL with L elements. Therefore, the

columns of f [m,n] are subsequently stacked columnwise below each other. On the other

hand it is also possible to compose a vector fA which covers only the support area A.

The vector fA is derived from the vector fL by discarding the elements originally located

in B. Let A and B denote the number of elements included in A and B, respectively. The

vector fL is thus shortened by B elements yielding fA with A elements. This relation is

depicted graphically in Fig. 3.1.

The basis functions ϕk,l[m,n], ∀ (m,n) ∈ L compose the basis vectors ϕL[λ]. In this

thesis, we restrict ourselves to sets of basis functions which are linearly independent to

each other with respect to L and additionally mutually orthogonal

ϕL[i]TϕL[j] = 0, for i 6= j

and span a L dimensional vector space corresponding to L.

In contrast, the observable components of the basis vectors ϕL[λ] that are summa-

rized in the corresponding shortened vector ϕA[λ] are in general not mutually orthogonal

anymore

ϕA[i]TϕA[j] 6= 0, for i 6= j.
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However, the number of available basis vectors has not changed. There exist L vectors

ϕA[λ] spanning a vector space with only maximally A dimensions.

The aim of selective extrapolation can be interpreted therefore in the following way:

The approximation of the vector fL of the original signal by the parametric model takes

place in the known subspace A. The vector fA is approximated by the vector of the

parametric model gA within A. The aim is to extend the vector gA beyond A into

the unknown subspace B due to the fact that the basis vectors are defined in L. The

optimization criterion has to be evaluated with respect to the observable part of fL in

A, i.e. the vector fA. The subspace A is composed of L different basis vectors but has

only the dimension A. As derived in Section 3.1, we select one basis vector per iteration

for the approximation. For presentational convenience we consider the special case that

the weighting function w[m,n] = b[m,n], implying ρ[m,n] = 1. Therefore, the weighting

function can be discarded in the following discussion.

The residual error criterion is maximally reduced for the vector with the largest length

|∆cϕA[λ]|. Hence, the basis vector ϕA[λ] which maximizes

∆E
(ν+1)
A

= |∆cϕA[λu,v]|2 = ∆c2ϕA[λu,v]
TϕA[λu,v] (3.24)

is selected. In order to determine the expansion coefficient ∆c, the vector r
(ν)
A

is projected

onto the selected basis vector

∆c =
r

(ν)T
A

ϕA[λ]

ϕA[λ]TϕA[λ]
. (3.25)

From (3.25) it follows that the length of the vector r
(ν+1)
A

becomes minimum because

r
(ν+1)
A

and ∆cϕA[λ] are mutually orthogonal

(
r

(ν)
A

− ∆cϕA[λ]
)T

ϕA[λ] = 0

⇒ r
(ν+1)T
A

∆cϕA[λ] = 0.

The combination of basis function and expansion coefficient ∆cϕA[λ] is added to the

vector of the parametric model g
(ν)
A

in A so far calculated. This procedure is repeated

iteratively by approximating fA successively by g
(ν)
A

yielding

g
(ν)
A

=
∑

λ∈K(ν)

c
(ν)
λ ϕA[λ]. (3.26)

After termination, the vector g
(ν)
L

of the parametric model is composed with respect to

the complete space by L

g
(ν)
L

=
∑

λ∈K(ν)

c
(ν)
λ ϕL[λ], (3.27)
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with the same expansion coefficients c
(ν)
λ as in (3.26). Thereby, the extension of the

original signal fA beyond the support area A into the unknown area B is achieved.

The principle of selective extrapolation is exemplified step-wise by Fig. 3.2. The area

L considered in this example consists of three pixels, the missing area B of one pixel, and

the support area A of two pixels. Consequentially there exist three basis functions and

their associated basis vectors ϕL[1], ϕL[2], and ϕL[3] which form an orthogonal basis in

L. This orthogonal basis is shown in Fig. 3.2 (a). The vector fL of the original signal

which is located in L is also depicted. For illustration purposes, the location of fL within

the vector space corresponding to L is sketched in. However, the observable part of the

vector of the original signal fL composes the vector fA in the subspace A which is only

two-dimensional. The three basis vectors ϕA[1], ϕA[2], and ϕA[3] span this subspace A

of two dimensions, i.e. the plane A, but they are not mutually orthogonal anymore. The

reduction of the space L to the subspace A with the respective vectors is clarified by

Fig. 3.2 (b). For illustration purposes, the location where the plane A spanned by the

vectors ϕA[1], ϕA[2], ϕA[3] intersects the vector space L is indicated.

The approximation of the vector fA of the observable part of the original signal takes

place in the subspace A. The first iteration of the approximation procedure within A is

shown in Fig. 3.2 (c). Since for the approximation in A the location of fL is unknown,

the relation of the plane A to the vector space L is not sketched in anymore. In fact,

the true approximation situation is shown where fA is approximated in A without any

knowledge of fL. The parametric model is initialized by the zero vector, i.e. the residual

r
(0)
A

equals the vector fA. The basis vector ϕA[2] is selected in the first iteration because

the vector ∆cϕA[2] reduces the residual energy maximally. The expansion coefficient

c
(1)
2 = ∆c is determined by the projection of fA onto ϕA[2]. The residual error r

(1)
A

becomes minimum because the vectors r
(1)
A

and ∆cϕA[2] are orthogonal with respect to

each other. The vector of the parametric model is then given after the first iteration by

g
(1)
A

= c
(1)
2 ϕA[2]. The second iteration of the approximation procedure in the plane A is

shown in Fig. 3.2 (d), where ϕA[3] is selected. Next, r
(1)
A

is projected onto ϕA[3]. In other

words, the expansion coefficient c
(2)
3 = ∆c is obtained when the approximation error r

(2)
A

is orthogonal to c
(2)
3 ϕA[3]. The vector of the parametric model is then given by

g
(2)
A

= g
(1)
A

+ c
(2)
3 ϕA[3] = c

(1)
2 ϕA[2] + c

(2)
3 ϕA[3].

The vector fA is approximated further by gA according to the same procedure. After

termination, the parametric model gL can be composed within the complete space L. The

selected basis vectors ϕL[λ] in L are multiplied by the respective calculated expansion

coefficients c
(ν)
λ . This is shown in Fig. 3.2 (e) for g

(2)
L

which is then finally given by

g
(2)
L

= g
(1)
L

+ c
(2)
3 ϕL[3] = c

(1)
2 ϕL[2] + c

(2)
3 ϕL[3]. (3.28)

Note that the vector g
(2)
L

points into a completely different direction than g
(2)
A

. For presen-

tational clarity and to avoid confusions, the dashed auxiliary lines to indicate the locations
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of the vectors within the respective space as in Fig. 3.2 (b) are discarded. However, it is

more important that the approximation by the vector of the parametric model gA takes

place in a different space than the composition of the vector of the extrapolation by gL.

Because the vector fL is unknown, it is not possible to draw any conclusions how good

the approximation by gL actually is. Therefore, a better or even perfect approximation of

fA by gA in A does not necessarily mean a closer extrapolation of gL to fL in L. In the

applications considered, we rely on the fact that the unknown part of the original signal

is an extension of the signal contents beyond A into B.

The weighting function w[m,n] included in (3.14) should be also incorporated in the

vector representation of the update ∆c (3.25). Therefore, the vector wA with the ele-

ments corresponding to the weighting function w[m,n] is introduced. The diagonal matrix

diag{wA} has the elements of wA on its main diagonal. Hence, the elementwise multi-

plication of the weighting function with the residual error is included by rewriting (3.25)

as

∆c =

(
diag{wA}r(ν)

A

)T

ϕA[λ]

(diag{wA}ϕA[λ])T
ϕA[λ]

(3.24) has to be rewritten accordingly

∆E
(ν+1)
A

= ∆c2 diag{wA}ϕA[λu,v]
TϕA[λu,v].

It should be pointed out that the weighted scalar product does not affect the derivations

and interpretations of the algorithm.
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Figure 3.2: Geometrical interpretation of selective extrapolation: (a) Original vector fL within

space L spanned by orthogonal basis ϕL[λ]. (b) Reduction of vector fL in L to fA within

observable support area A spanned by ϕA[λ]. (c) 1st iteration: approximation of fA by g
(1)
A

within A. (d) 2nd iteration: approximation of fA by g
(2)
A

within A. (e) Aim of selective

extrapolation beyond A: Composition of g
(2)
L

within L.



3.3. Suitable Basis Functions 25

3.3 Suitable Basis Functions

In this thesis we treat extrapolation problems in image and video signal processing. The

aim is that the signal extrapolated into the unknown area is a consistent extension of the

signal in the support area and, most important, that the extrapolation result looks visually

pleasant. For a consistent extension of image or video signals, respectively, suitable basis

function are needed which is treated in the following.

So far, we derived generically an algorithm in order to extrapolate any kind of real-

valued discrete signal beyond its borders by a weighted linear combination of basis func-

tions. The set of basis functions used for the extrapolation should be able to extend the

signal as consistently as possible. The success of the extrapolation depends significantly

on the choice of basis functions which is determined by the underlying signal. We are

aiming at extrapolating image and video signals. The textures in images vary strongly,

they can be smooth, consisting of edges or be detailed, as noise like areas or regular

patterns. All these different textures should be extended beyond its borders. In video

signals, additionally to the different textures motion trajectories should be extended. Our

objective is to search for a set of basis functions which fullfils all these requirements at

the same time.

Thus, we take advantage of the extrapolating properties of basis functions. In general

periodic functions are suited because they are able to extend the signal periodically. In

contrary, functions of limited extent such as polynomials or wavelets are not suited because

they lack the extrapolation ability if the missing area becomes larger. Therefore, periodic

functions like the DCT or DFT are suited for the extrapolation of image or video signals.

Different periodic basis functions such as the 2-D DCT and 2-D DFT are discussed with

respect to their extrapolation properties in the following for two-dimensional signals. The

DCT contains vertical and horizontal basis images as shown in Fig. 3.3(a). As opposed

to the DFT basis images which provide diagonal orientations and a phase relation. The

real part is displayed in Fig. 3.3(b) and the imaginary part in Fig. 3.3(c), both showing

the same orientation but different phasing.

Using the DFT allows to extend also diagonal edges and structures due to the orien-

tations in contrast to the DCT [35]. The DCT is not capable of resolving single diagonal

orientations [5] because only mirrored diagonal orientations can be resolved. Hence, the

DFT is better suited for extrapolation purposes. In [26], the DCT is applied in region

based image coding. However, coding aims at concentrating as much energy as possible

in as few transform coefficients as possible. As well-known, the DCT meets these require-

ments and is widely used in image coding. Therefore, the DCT is the better choice in

terms of coding.

For reasons mentioned above, the DFT basis functions are applied to the extrapolation

of image and video signals derived in Section 3.4 and Section 4.2, respectively.
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(a)

(b) (c)

Figure 3.3: 8 × 8 basis images. (a) DCT. (b) Real and (c) imaginary part of DFT.

3.4 Frequency Selective Extrapolation of Image Sig-

nals Using DFT Basis Functions

Based on the two-dimensional DFT functions, we use

ϕk,l[m,n] = ej 2π

M
mkej 2π

N
nl (3.29)

as basis functions in order to extrapolate an image signal beyond its available area [35]

according to Section 3.3. M denotes the number of rows and N the number of columns.
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0 N
2 N − 1

l

(u, v)

(M − u,N − v)

k

M − 1

M
2

0

Figure 3.4: The conjugate complex symmetry for a DFT spectrum of a 2-D real-valued signal

is shown. Blue: Real-valued DFT coefficients. Colored area: Coefficients which have to be

calculated.

M × N equals both the number of pixels in L and the number of basis functions.

The basis functions fulfill the following conjugate complex symmetry

ϕM−k,N−l[m,n] = ϕ∗
k,l[m,n]. (3.30)

The location in the frequency plane of a pair of conjugate complex basis functions is

illustrated in Fig. 3.4 for M,N being even. In case of real-valued signals such as image

signals, also the DFT-coefficients exhibit this conjugate complex symmetry. The discrete

frequencies belonging to a real-valued spectrum due to a real-valued input signal are

highlighted in blue. They compose the set M for even M,N

M =

{
(0, 0),

(
0,

N

2

)
,

(
M

2
, 0

)
,

(
M

2
,
N

2

)}
. (3.31)

Due to the symmetry properties, the DFT spectrum of a real-valued signal is completely

described by the shaded region shown in Fig. 3.4.

3.4.1 Spatial-Domain Solution

To ensure that the approximation g(ν)[m,n] in each iteration ν yields a real-valued signal,

we modify (3.5) for the parametric model to

g(ν)[m,n] =
1

2MN

∑

(k,l)∈K(ν)

(c
(ν)
k,l ϕk,l[m,n] + c

(ν)
M−k,N−l ϕM−k,N−l[m,n]), (3.32)

where the conjugate complex symmetry of the expansion coefficients is taken into account

as already illustrated in Fig. 3.4 according to

c
(ν)
M−k,N−l = c

(ν)∗
k,l . (3.33)
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The principle of the approximation procedure remains unchanged and proceeds for

the coefficient update as described in Section 3.1.2 and for the selection of an appropriate

basis function according to Section 3.1.3.

The residual error signal in iteration ν + 1 is gained by subtracting ∆g[m,n] from

the already obtained residual error signal in step ν. Taking the symmetry properties into

account, the update of the parametric model

∆g[m,n] =
1

2MN
(∆c ϕu,v[m,n] + ∆c∗ ϕM−u,N−v[m,n]) (3.34)

further approximates the residual error signal in the next iteration

r(ν+1)
w [m,n] = r(ν)

w [m,n] − 1

2MN
(∆c ϕu,v[m,n] + ∆c∗ϕM−u,N−v[m,n]) w[m,n]. (3.35)

The error criterion (3.8) is adapted accordingly

E
(ν+1)
A

=
∑

(m,n)∈L

w[m,n]

(
r(ν)[m,n] − 1

2MN
(∆c ϕu,v[m,n] + ∆c∗ϕM−u,N−v[m,n])

)2

and minimized by partially derivating with respect to ∆c and ∆c∗ and equating the result

to zero

∂E
(ν+1)
A

∂∆c
!
= 0 ∧ (3.36)

∂E
(ν+1)
A

∂∆c∗
!
= 0. (3.37)

Evaluating
∂E

(ν+1)
A

∂∆c∗
!
= 0 leads to

∆c
∑

(m,n)∈L

w[m,n]ϕu,v[m,n]ϕM−u,N−v[m,n]

+ ∆c∗
∑

(m,n)∈L

w[m,n]ϕM−u,N−v[m,n]ϕM−u,N−v[m,n]

= 2MN
∑

(m,n)∈L

r(ν)
w [m,n]ϕM−u,N−v[m,n]. (3.38)

A conjugate complex equation to (3.38) is obtained for (3.36). Solving the two equations

for ∆c yields a solution for ∆c and a conjugate complex equation for ∆c∗ which is derived

in detail in the next section for a frequency-domain solution.

Here, also the conjugate complex coefficient has to be updated due to the symmetry

requirements

c(ν+1)
u,v = c(ν)

u,v + ∆c

c
(ν+1)
M−u,N−v = c

(ν)
M−u,N−v + ∆c∗. (3.39)
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In each step, the weighted basis function with index (u, v) is selected which maximally

decreases the residual error criterion ∆E
(ν+1)
A

with respect to ∆c

∆E
(ν+1)
A

=
1

2 (MN)2


|∆c|2

∑

(m,n)∈L

w[m,n]ϕu,v[m,n]ϕ∗
u,v[m,n]

+ Re{∆c2
∑

(m,n)∈L

w[m,n]ϕ2
u,v[m,n]}


 (3.40)

⇒ (u, v) = argmax
(k,l)

∆E
(ν+1)
A

.

Due to the symmetry properties of 2-D real-valued signals, the search area of the

respective optimum basis function is limited to the shaded region in Fig. 3.4.

3.4.2 Frequency-Domain Solution

The derivation of 2-D signal extrapolation is carried out in the spatial-domain so far.

Using DFT basis functions allows us to express all equations in the frequency domain. The

evaluation of the sums in (3.38), (3.40) is computationally very expensive but with help of

the DFT an efficient implementation of the extrapolation algorithm can be obtained. As

derived in the following, only one DFT transform in the beginning and one inverse DFT

transform at the end is necessary while all intermediate computations can be expressed

in the frequency domain.

Using DFT functions as basis functions, the summation of the product of a function

x[m,n] and the basis function ϕk,l[m,n] over L yields the DFT X[k, l] of x[m,n] at

frequency bin (k, l)

X[k, l] =
∑

(m,n)∈L

x[m,n]ϕ∗
k,l[m,n]. (3.41)

Obviously, the expansion coefficient in the approximation becomes the DFT coefficient

according to (3.41) and (3.32) except for a constant

G(ν)[k, l] =

{
c
(ν)
k,l , (k, l) ∈ M

1
2
c
(ν)
k,l , otherwise

. (3.42)

In the frequency domain, the multiplication of the weighting function with the complex

exponential ϕu,v[m,n] is equivalent to a shift of its conjugate complex DFT by u and v
∑

(m,n)∈L

w[m,n]ϕu,v[m,n]ϕk,l[m,n] = W ∗[k + u, l + v].

Hence, (3.38) can be expressed in the frequency domain according to

∆cW [0, 0] + ∆c∗W [2u, 2v] = 2MN R(ν)
w [u, v]. (3.43)
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Solving (3.43) and its conjugate complex equation for ∆c yields

∆c = 2MN
R

(ν)
w [u, v]W [0, 0] − R

∗(ν)
w [u, v]W [2u, 2v]

W [0, 0]2 − |W [2u, 2v]|2 . (3.44)

Considering the discrete frequencies with a real-valued spectrum, for coefficients and basis

functions with (k, l) ∈ M the following holds

∆c = ∆c∗

ϕk,l[m,n] = ϕ∗
k,l[m,n] (3.45)

which can be used to simplify (3.43). Hence, a combination of the results leads to the

following expression for the unknown ∆c

∆c =





MN R
(ν)
w [u,v]
W [0,0]

, (u, v) ∈ M

2MN R
(ν)
w [u,v] W [0,0]−R

∗(ν)
w [u,v] W [2u,2v]

W [0,0]2−|W [2u,2v]|2
, otherwise

(3.46)

with M defined in (3.31). A conjugate complex solution is obtained for ∆c∗. The ex-

pansion coefficient and its conjugate complex counterpart have to be updated by ∆c and

∆c∗, respectively, according to (3.39).

In order to select the optimum basis function, the residual error energy (3.40) is

expressed in the frequency domain as

∆E
(ν+1)
A

=
1

2(MN)2

(
|∆c|2 W [0, 0] + Re{∆c2 W ∗[2u, 2v]}

)
.

Taking the simplification properties for real-valued coefficients (3.45) into account, the

insertion of ∆c according to (3.46) leads to the selection of the basis function with index

(u, v) which maximizes

∆E
(ν+1)
A

=





2 R
(ν)
w [k,l]2

W [0,0]
, (k, l) ∈ M

2 |R
(ν)
w [k,l]|2 W [0,0]−Re{R

(ν)
w [k,l]2 W ∗[2k,2l]}

W [0,0]2−|W [2k,2l]|2
, otherwise

(3.47)

⇒ (u, v) = argmax
(k,l)

∆E
(ν+1)
A

.

Since the DFT coefficients are real-valued for (k, l) ∈ M, the magnitude is not necessary

for the energy calculation. In case of (k, l) /∈ M, the energy decrease is calculated for the

discrete frequency (k, l) and its conjugate complex frequency. However, for (k, l) ∈ M

the energy decrease would be only calculated for the considered frequency. Thus, the

energy decrease is doubled in (3.47) for (k, l) ∈ M. In fact, we do not consider the total

maximum energy decrease but the energy decrease for the discrete frequencies (k, l) and

(M − k,N − l).
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Due to the symmetry properties of the coefficients, the search area is limited as already

mentioned to the shaded half-plane in Fig. 3.4.

If the termination criterion is not reached yet, the DFT spectrum of the weighted

residual error (3.18) is calculated by

R(ν+1)
w [k, l] = R(ν)

w [k, l] − 1

2MN
(∆cW [k − u, l − v] + ∆c∗W ∗[k − u, l − v]). (3.48)

Due to the symmetry properties only the DFT spectrum of the residual corresponding to

the shaded area in Fig. 3.4 has to be updated in each step.

3.4.3 Summary of Frequency Selective Extrapolation

In this section, we clarify the principle of frequency selective extrapolation and demon-

strate it by means of a representative example.

The extrapolation algorithm is summarized by the flow graph in Fig. 3.5. In the

beginning, the algorithm is initialized with g(0)[m,n] = 0, therefore the residual signal

equals the weighted original signal in the first iteration

r(0)
w [m,n] = w[m,n]f [m,n].

Since all equations are expressed in the frequency domain, there is only one DFT transform

of r
(0)
w [m,n] and w[m,n] required in the beginning. The algorithm works in the DFT

domain until the approximation accuracy is sufficient. The signal in the support area is

approximated successively by computing one expansion coefficient per iteration and its

conjugate complex coefficient if applicable. First, that basis function ϕu,v[m,n] is selected

which maximizes the decrease of the residual error energy. Then the respective coefficient

c
(ν)
u,v is computed by minimizing the residual error energy. Subsequently, the residual error

signal in the support area is computed and further approximated by the next, selected

coefficient. If ∆E
(ν+1)
A

drops below a predefined threshold Emin (3.23), the algorithm

terminates and the parametric model is given in the entire area by the inverse DFT of

the DFT-domain parametric model G(ν)[k, l]

g(ν)[m,n] = IDFTM,N{G(ν)[k, l]}. (3.49)

The unknown samples are replaced by the corresponding area of the parametric model

g[m,n]. Fast Fourier Transform (FFT) algorithms realize efficiently the DFT which are

especially efficient if the transformation length is a power of two [13]. This can be achieved

by zero padding of the signal to the desired transformation length.

In the following, the principle of frequency selective extrapolation is illustrated by

means of an example. We do not go into detail as parameters or implementational issues

but rather demonstrate the extrapolation procedure. As typical application example we
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choose concealment of isolated block losses. In Fig. 3.6 top the image Baboon with losses

of size 16 × 16 pixels is shown. The missing block and the adjacent 13 pixels in each

direction are transformed by the next larger FFT size of 64×64 to the frequency domain.

As weighting function w[m,n] we apply a radial-symmetric function in the support area,

the amplitudes of which decay with distance

w[m,n] =

{
0.74

√
(m−M−1

2
)2+(n−N−1

2
)2 , (m,n) ∈ A

0 , (m,n) ∈ B

The explanation why this model is especially suited for this application as well as the

parameter selection is discussed in detail in Section 3.5. The result with the concealed

losses is shown in the corresponding figure on the bottom.

In each iteration, one DFT coefficient is updated. Fig. 3.7 (a) shows a magnified part

of the original image which should be restored by frequency selective extrapolation. The

progress of the parametric model with increasing number of iterations is demonstrated by

Fig. 3.7 (b) to (l). In the first iteration, the DC component is chosen. Then, subsequently

AC frequencies are selected with respect to the image content. The average number of

iterations per block depends on the image content. Smooth areas require only a few

iterations in contrast to detailed areas such as the fur of the Baboon. For example,

in Fig. 3.7 (c) the direction of the structure of the fur is already noticeable but has

subsequently to be refined by more iterations in order to achieve a natural appearance.

The algorithm terminates if either the residual error energy drops below the threshold

∆min = 15 or 11 iterations are reached because a further improvement for the extrapolated

area can not be expected. 8 iterations are done on average per block, i.e. the image content

is sufficiently described by 8 DFT coefficients on average.

The demonstration shows the strength of the algorithm applied to extrapolation prob-

lems in image processing which is the ability to extrapolate all kinds of different textures:

smooth areas, edges as well as detailed areas as noise like structures or patterns.
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f [m,n]
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IDFT

Extrapolation: parametric model given ∀(m,n) ∈ L

g(ν)[m,n] = 1
2MN
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(ν)
k,l ϕk,l[m,n]+

c
(ν)
M−k,N−l ϕM−k,N−l[m,n])

Replace unknown samples by

extrapolated signal g[m,n]∀ (m,n) ∈ B

Figure 3.5: Flow graph describing the principle of frequency selective extrapolation.
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Figure 3.6: Top: Baboon with losses of 16×16 pixels. Bottom: Unknown pixels are replaced by

frequency selective extrapolation with 8 iterations on average per block.
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(a) Original (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

(e) 4th iteration (f) 5th iteration (g) 6th iteration (h) 7th iteration

(i) 8th iteration (j) 9th iteration (k) 10th iteration (l) 11th iteration

Figure 3.7: Progress of parametric model with increasing number of iterations. (a) Original.

(b)-(l) Iteration 1 to 11.
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3.5 2-D Weighting Function

Introducing the non-binary weighting function [34] allows for an application-specific and

signal-dependent adaptation of the error criterion (3.2). Hence, the right choice of an ap-

propriate weighting function w[m,n] as described in Section 3.1.1 is of great importance.

In the following, the effect of such an application-specific weighting function on the ex-

trapolation result is discussed by means of a representative example. The applications

considered in this thesis are characterized by a connected unknown area which is cen-

trally located within the considered block and surrounded by known data. Therefore, the

extrapolation of the surrounding signal into a quadratic unknown area serves as represen-

tative example. As size of the unknown block we choose 16× 16 pixels which corresponds

to isolated block losses typically appearing in erroneous image and video transmission.

However, this scenario of error concealment in image and video communication is dis-

cussed in detail in Chapter 5.

First, results are shown for the non-adaptable binary weighting function in Sec-

tion 3.5.1 as proposed in [35]. Investigations have been done for different adaptable

2 surrounding pixels

20 pixels

32 pixels

Lost block of 16×16 pixels

Support area A

Unknown area B

Zero padding

Figure 3.8: The missing block of 16× 16 pixels and a number of known surrounding pixels form

a block which is zero-padded to the transformation length of the FFT.
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weighting functions. Only marginal improvements compared to the rectangular binary

function could be achieved for rectangular non-binary functions where the amplitudes

decay along the m-axis and along the n-axis with distance to the unknown block and the

loci of constant amplitudes are therefore rectangular frames surrounding the unknown

block. In contrast, improvements could be achieved for functions which do not consist of

rectangular frames surrounding the unknown block anymore. Different Auto Regressive

(AR) models for the weighting function as the isotropic, the separable, and a generalized

model were investigated. For these models, the loci of constant amplitudes are ellipses or

circles, i.e., the diagonals are not overrated anymore. Since the isotropic model accord-

ing to [34] has shown the best performance, it is introduced in Section 3.5.2 as suitable

model to be used for the weighting function in the considered extrapolation context. The

effect on the extrapolation result and the improvement compared to the binary function

is presented in Section 3.5.3.

Block losses of 16×16 pixels are inserted into different images for the simulations. For

the realization of frequency selective extrapolation as derived in Section 3.4.2, the missing

block of 16×16 pixels and a surrounding of known pixels form a block which is zero-padded

to the transformation length of the DFT. The DFT can be accomplished by a suitable

FFT implementation. Especially efficient algorithms are available if the transformation

length is a power of two. An example is given in Fig. 3.8 where the missing block of

16×16 is surrounded by two known pixels forming a block of 20×20 pixels. This block is

zero-padded and a 2-D DFT of size 32× 32 is performed. Note that also the zero-padded

area belongs to the unknown area where the weighting function equals zero, but that only

the missing 16 × 16 pixels are replaced.

The simulated losses are applied to the three different test images Lena, Peppers,

and Baboon which are depicted in Fig. 3.9 with the corresponding original images. The

images have a size of 512× 512 pixels and are given in RGB format. Since the frequency

ranges of the distinct R, G, and B channels overlap [42], color artifacts appear in the

concealed image when the algorithm of frequency selective extrapolation is applied to

each channel separately. Thus, the images are first converted to the YUV format and

then the concealment is performed with respect to each of the YUV channels separately.

The performance of concealment is defined in terms of Peak Signal to Noise Ratio

(PSNR) in dB [42] which is given for one missing block of an 8-bit image by

PSNR = 10 log10

2552B∑
(m,n)∈B

(f [m,n] − g[m,n])2
(3.50)

with B denoting the number of samples in the area to be replaced B. For the evaluations in

this section uncoded images are used. Thus, the PSNR is measured only at the concealed

parts. The PSNR given in the evaluations is the PSNR of the luminance component.

Different parameters influence the quality of the frequency selective extrapolation and
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have to be adjusted with respect to the considered application. To give an example, the

extent of the support area is an important parameter, because artifacts are produced if it

is chosen too large and the signal in the unknown area has no strong correlation to the

signal in the support area any more. On the other hand, the support area should not be

chosen too small because then it is not possible to restore details. Besides signal dependent

factors, spectral factors of the weighting function play an important role. Furthermore,

we investigate the influence of the DFT size on the extrapolation performance.

(a) Lena, original (b) Lena, block losses of 16 × 16 pixels

(c) Peppers, original (d) Peppers, block losses of 16 × 16 pixels
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(e) Baboon, original (f) Baboon, block losses of 16 × 16 pixels

Figure 3.9: The original test images together with their corresponding corrupted images for

isolated 16 × 16 block losses.

3.5.1 Extrapolation Result for Rectangular Binary Weighting

Function

In the following of this section, we consider the case of a rectangular binary weighting

function given by:

w[m,n] = b[m,n] =

{
1 , (m,n) ∈ A

0 , (m,n) ∈ B.
(3.51)

The window function b[m,n] is introduced in (2.1).

In Fig. 3.10 PSNR results obtained for estimating isolated 16 × 16 losses using the

rectangular binary weighting function are presented for the three different test images

Fig. 3.9 (b), (d), (f). The performance is shown with respect to the number of iterations

for different sizes of the support area expressed by the number of known surrounding

pixels. In all simulations, the DFT size is chosen to 128 × 128.

According to Fig. 3.10, in the first iteration the best solution is achieved if the number

of known pixels is one, i.e., only the adjacent pixels are taken into account. For the

luminance component, the DC component is commonly chosen which can be extrapolated

best possibly from the direct surrounding. However, in order to restore details, both, a

larger support area and more iterations are necessary.

First, we evaluate the impact of the size of the support area. For the image Lena, the

best results are obtained for a small number of known pixels because the image content
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often changes abruptly. If there are details in the support area which do not belong to

the content to be estimated, the performance decreases. Therefore, using only one known

pixel surrounding achieves the best result. However, a larger number of known pixels

achieves better results for the image Peppers due to the clear structures and monotonous

areas. The best result is provided by 6 known surrounding pixels. Usually, the image

content of the missing block becomes more uncorrelated to the image content of the

surrounding as the distance from the missing block increases. Therefore, the performance

decreases again for a larger number of known surrounding pixels. The fur of the Baboon

shows a noise-like frequency behavior. In this case, a larger number of 12 known pixels is

necessary for the reconstruction of distinct details.

The more accurate image details should be restored, the more iterations are required.

On the other hand, even if the approximation in the support area becomes better with

more iterations, the performance of the extrapolation in the missing area can decrease.

If too many iterations are done, the DFT basis images might become visible depending

on the image content. This is indicated by Fig. 3.10 in case of the image Lena where

only 2 iterations at 1 pixel surrounding yield the best result. For such a small number

of surrounding pixels containing only a small part of the signal, hardly any details can

be restored. The performance increases with an increasing number of iterations for the

image Peppers until a saturation point of approximately 7 iterations is reached. The

performance decreases again for more iterations for a small number of surrounding pixels.

In case of the image Baboon the performance also increases first and decreases again if a

certain number of iterations is exceeded. Depending on the number of surrounding pixels,

this point is reached sooner for a small and later for a large number.

The results shown in Fig. 3.10 indicate that iterating beyond a required maximum

number of iterations does not improve the visual impression anymore. Therefore, the

maximum number of iterations is limited. Smooth areas require less iterations than

detailed areas as can be observed from the illustrating example in Fig. 3.7, where the

progress of the parametric model is shown with respect to the number of iterations. For

the result of e.g. the second iteration depicted in Fig. 3.7 (c), it can be observed that

the smooth areas within the cheek are restored but the fur of the Baboon still needs

improvement for a good visual quality. Therefore, the error energy decrease per iteration

represents a suitable termination criterion when dropping below the threshold ∆min (3.23).

The actual value of ∆min is chosen as a compromise between concealment quality and the

number of required iterations, i.e., the computational complexity.
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Figure 3.10: PSNR results for binary weighting function and 16 × 16 losses at a DFT size

of 128 × 128.
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Figure 3.11: Concealed images using binary weighting function at DFT size 128 × 128.

Lena: 1 surrounding pixel, maximally 3 iterations; 22.6 dB at 3 iterations on average per block.

Peppers : 6 surrounding pixel, maximally 7 iterations; 24.5 dB at 5.7 iterations on average per

block. Baboon: 12 surrounding pixel, maximally 7 iterations; 19.0 dB at 6.9 iterations on average

per block.

The visual results of concealing the losses shown in Fig. 3.9 are displayed in Fig. 3.11.

For all images, a DFT of 128 × 128 is applied. The termination criterion is chosen such

that the concealment quality is not affected but the computational cost reduced with

∆min = 6. For the image Lena, only one known pixel at maximally three iterations is

chosen yielding 22.7 dB. One more iteration to the optimum parameter is allowed in

order to be able to restore a few more details. However, the DFT basis image effect is

already visible, e.g., it can be noticed for the restored blocks at the hat. The concealed

image Peppers is generated using 6 known surrounding pixels at maximally 7 iterations

achieving 24.5 dB. Also maximally 7 iterations are done for the image Baboon with 19.0

dB. The combination with a large number of 12 surrounding pixels allows to even imitate

the structure of the fur. However, artifacts occur at the transition of the nose to the cheek

and color artifacts occur at the eyes.
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3.5.2 Isotropic Weighting Function

Introducing the non-binary weighting function as proposed in [34] allows for an

application-specific adaptation of the error criterion. As already mentioned in Sec-

tion 3.1.1, the weighting function (3.1) should emphasize areas which are more important

for the extrapolation over less important ones. In the considered extrapolation context

characterized by a centrally located, connected unknown area surrounded by known data,

it is reasonable to assume that the closer a known pixel is to the unknown area, the more

important it is for the extrapolation. Therefore, the 2-D isotropic function [34]

ρisotrop[m,n] = ρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2

, ρ̂ ≤ 1 (3.52)

represents a suitable model, where ρ̂ is a predefined constant which determines the radial-

symmetric decay of ρisotrop[m,n] with increasing distance from the center at (M−1
2

, N−1
2

).

The loci of constant amplitudes are circles as depicted in Fig. 3.12. This means for the

weighting function

w[m,n] = ρ[m,n]b[m,n]

that the importance of a pixel decays with its distance and the influence of a pixel is

stronger, the closer it is to the missing area.

However, the weighting function depends not only on ρ̂ but also on the shape of

the missing area given by the considered application. Fig. 3.13 depicts the resulting

weighting function for the representative example of an unknown block of 16× 16 pixels.

It corresponds to a single block loss in error concealment where all surrounding blocks are

available.

0 N−1
2

n

m

M−1
2

0

Figure 3.12: Isotropic model with circles as loci of constant amplitudes.
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Figure 3.13: Weighting function using the isotropic model with ρ̂=0.8 for an unknown block of

size 16 × 16 (area B). 13 surrounding pixels (support area A) are used for reconstructing the

unknown area.

3.5.3 Extrapolation Result for Isotropic Weighting Function

In the following, the effect on the extrapolation result of using the application-specific

weighting function introduced in the last section instead of using the binary weighting

function is shown. The performance applying the isotropic weighting function is influenced

by the following parameters:

• The value of the decay parameter ρ̂ as introduced in (3.52).

• The size of the support area expressed by the number of known surrounding pixels.

• The termination criteria: number of iterations and ∆min.

• The DFT size.

Decay Parameter ρ̂

First, the performance is investigated with respect to ρ̂ for the three test images Lena,

Peppers, and Baboon. Furthermore, the improvement which can be achieved compared

to the rectangular binary weighting function is evaluated. The corresponding results are

depicted in Fig. 3.14.
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PSNR is measured with respect to the number of iterations for varying ρ̂ at 13 known

surrounding pixels which is presented by the graphs in the left column of Fig. 3.14 for

each test image. Further, the results as a function of the number of known surrounding

pixels at 11 iterations are presented correspondingly in the right column. The size of

the applied DFT-transform is 64 × 64. For comparison, for each image the best results

using the rectangular binary weighting function are displayed which are achieved by the

parameters selected individually according to Fig. 3.10. Note that the DFT size for the

binary weighting function is doubled in each dimension to 128×128, because better results

are achieved compared with a DFT size of 64 × 64.

As can be noticed from the results for the image Lena, i.e. the two figures in the top

row of Fig. 3.14, the best results can be obtained for 0.66 ≤ ρ̂ ≤ 0.74. For the image

Peppers according to the 2 graphs in the middle row of Fig. 3.14, slightly larger values,

i.e. 0.74 ≤ ρ̂ ≤ 0.86, achieve the best results. This is in accordance to the results for the

binary weighting function where also a larger support area for Peppers compared to Lena

yields the better results. In case of the image Baboon, the results are different as shown

by the graphs in the bottom row of Fig. 3.14. Here, 0.7 ≤ ρ̂ ≤ 0.9 leads to the best results

but the range of the achieved PSNR values is very narrow. However, PSNR is not suited

to evaluate the visual quality of noise-like textures as the fur of the Baboon. Only slight

variations in phase result in large PSNR losses even if they are not visible. Therefore, the

visual impressions are also discussed in Section 3.5.4, following the objective evaluations

presented here.

In summary, the evaluations based on Fig. 3.14 show that the best results for each

individual test image can be obtained for a narrow range of the value ρ̂. Therefore,

we choose ρ̂ = 0.74 for the further evaluations because it leads for all test images to

very satisfying results with only marginal losses in PSNR compared to the optimum

parameters.

Size of Support Area

In the right column of Fig. 3.14 the performance is evaluated with respect to the support

area expressed by the number of known surrounding pixels. For all test images the results

show the same behavior: the performance increases with an increasing number of known

pixels. 12 to 16 pixels are a good choice if ρ̂ is chosen appropriately. Therefore, 13 known

surrounding pixels are chosen as parameter in the following.

The amplitude of the weighting function is attenuated almost to zero at 13 surrounding

pixels as Fig. 3.13 shows. Note that the parameter ρ̂ can be used to control the effective

number of known surrounding pixels.
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Figure 3.14: PSNR results for isotropic weighting function for isolated 16× 16 block losses.

For comparison, the results for the rectangular binary weighting function are also given. Isotropic

weighting function: DFT size 64 × 64. Rectangular binary weighting function: DFT size 128 ×
128.
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Termination Criteria

First, the number of iterations is evaluated as termination criterion. Taking a look at

the graphs in the left column of Fig. 3.14 shows that the performance generally increases

with an increasing number of iterations until a saturation point is reached. Since we

imitate the signal in the support area successively by a linear combination of DFT-like

basis functions, detailed areas require more iterations. This has been already illustrated

by the demonstration in Fig. 3.7 for part of the image Baboon. In the first iteration the

DC component and then subsequently higher frequencies are selected. Hence, restoring

the fur of the Baboon requires more iterations. However, for all images we can observe

a saturation point where further iterations do not lead to an improvement anymore or

even decrease the quality. This phenomenon has been already observed for the binary

weighting function as shown in Fig. 3.10. For a small support area corresponding to only

a small part of the signal, not many details can be restored, i.e. only a few iterations are

appropriate. Hence, 11 iterations are chosen as allowed maximum number of iterations.

For the image Baboon this means a slight decrease in terms of PSNR which, however,

does not reflect the visual impression due to the reasons mentioned above.

The second termination criterion ∆min limits also the computational cost. For smooth

areas it is not necessary to run 11 iterations because one or two might be already sufficient.

Therefore, ∆min is set to 15 with no loss in quality in the considered cases.

DFT Size

Further, the influence of the DFT size on the performance is evaluated. The results for

the DFT sizes 64 × 64 and 128 × 128 comparing the isotropic to the rectangular binary

weighting function with respect to the number of iterations are presented in Fig. 3.15. In

case of the isotropic weighting function, the parameters chosen (ρ̂ = 0.74, 13 surrounding

pixel) are applied. For the binary weighting function the results are presented for 1, 6,

and 12 surrounding pixels.

In case of the image Lena, the DFT size does not influence the result for the isotropic as

well as the binary weighting function. For the binary weighting function only smooth areas

and hardly any details can be restored because the image content is changing abruptly.

Thus, the number of iterations and the number of surrounding pixels has to be kept low.

In the first iteration the DC component is calculated which is not affected by the DFT

size at all. Hence, for this image a larger DFT size does not improve the performance.

For the image Peppers, more details can be restored in general. Hence, more iterations

and surrounding pixels are necessary. For the isotropic weighting, the differences between

the results obtained with the different DFT sizes are again only marginal. Although the

performance for the larger DFT size increases faster, the maximum achievable PSNR

differs only in 0.1 dB. However, differences can be observed for the binary weighting
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Figure 3.15: Evaluation of the DFT size for 16 × 16 losses comparing the isotropic weighting

function (isotr.) to the rectangular binary weighting function (rect.).
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function. For 6 known pixels and 7 iterations as chosen in Section 3.5.1, the difference in

PSNR is even 0.8 dB when using the larger DFT size. The same behavior can be noticed

for the other numbers of surrounding pixels.

In case of the image Baboon, the results for the different DFT sizes differ only

marginally. However, as already mentioned, it is difficult to evaluate the performance

without subjective results. They are provided in the next section.

In summary, in case of the isotropic weighting function no major differences between

the DFT sizes 64 × 64 and 128 × 128 can be observed. Hence, the DFT size of 64 × 64

is applied. For the binary weighting function the larger size of 128 × 128 is chosen due

the gains for the image Peppers. Hence, the quality of the extrapolation result using the

isotropic weighting function could therefore be improved significantly at smaller DFT sizes

[34] compared to using the binary weighting function [35]. Using the isotropic function,

only the next larger power of two to the size of the support area is necessary as DFT size

and further extensions do not show improvements.

3.5.4 Discussion of Results

In the previous section, the effect of an application-specific weighting function on the

extrapolation was investigated. Based on these evaluations, the achieved results are sum-

marized in this section. Furthermore, subjective results are given.

The evaluations have shown that the 2-D isotropic model as specified in (3.52) rep-

resents a suitable model when used for the estimation of unknown blocks surrounded by

known data. A fixed set of parameters can be specified for applying the isotropic weight-

ing function which is important in practice. For all test images including various textures,

this set achieved very satisfying results. For the estimation of blocks of size 16×16 pixels,

the chosen parameters are summarized in Table 3.1.

In Table 3.2 the extrapolation results for concealing 16× 16 unknown pixels are sum-

marized. The comparison of the results for the isotropic weighting function with the

optimum parameters to the fixed set of parameters shows that the loss in PSNR from 0.1

dB to 0.5 dB is indeed only marginal.

Table 3.2 shows further the objective gains achieved by using the isotropic instead

of the binary weighting function. Comparing the corresponding results for the optimum

parameter selection, gains up to 2.2 dB are obtained. For the image Lena 1.5 dB and

for Peppers even 2.2 dB are achieved. In case of the image Baboon, 0.3 dB are reached

but subjective results presented later confirm the significant improvement in perceived

visual quality. Compared to using the binary weighting function, results achieved with

the isotropic weighting function applying the fixed parameter set according to Table 3.1

yields still 1.4 dB improvement for Lena and 1.8 dB for Peppers.

It should be pointed out that in case of the binary weighting function it has not



3.5. 2-D Weighting Function 51

Table 3.1: Parameters for estimating blocks of size 16 × 16 pixels using frequency selective

extrapolation with isotropic weighting function (Section 3.5.3).

ρ̂ 0.74

no. of known pixel 13

Termination max. no. of iterations 11

criterion ∆min 15

DFT size 64 × 64

Table 3.2: PSNR results for estimating blocks of size 16 × 16 pixels measured in dB.

Weighting function Isotropic Isotropic Rectangular binary

Parameter selection Optimum Set (Table 3.1) Optimum

Lena 24.3 dB 24.2 dB 22.8 dB

Peppers 26.7 dB 26.3 dB 24.5 dB

Baboon 19.3 dB 18.8 dB 19.0 dB

been possible to find a single set of parameters that yields satisfying results for all test

images. This implies that for each image the parameters have to be adjusted individually

in advance. Furthermore, the size of the DFT is doubled in each dimension compared to

using the isotropic function implying a higher computational complexity. The images with

the concealed blocks obtained by using the isotropic weighting function are presented in

Fig. 3.16. Note that all images are generated with the same set of parameters according

to Table 3.1 at a DFT size of 64 × 64. The results are very convincing and it is hard

to observe any artifacts. The corresponding images obtained for the binary weighting

function are shown in Fig. 3.11. Comparing 3.11 with Fig. 3.16, it can be noticed that for

Lena the artifacts in the background and the blurring within the feathers as observed for

the binary window are avoided by the isotropic weighting function. In Fig. 3.11 showing

Peppers, the green artifact between the two green peppers in the foreground is also not

present in Fig. 3.16. Also the color artifacts for the image Baboon and the artifacts of

the block at the transition from the nose to the cheek are reduced. Hence, the objective

results can be confirmed by subjective evaluations.
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Figure 3.16: Concealed images using the isotropic weighting function at DFT size 64 × 64

with parameters according Table 3.1. Lena: 24.2 dB at 7.2 iterations on average per block.

Peppers : 26.3 dB at 6.7 iterations on average per block. Baboon: 18.8 dB at 8.9 iterations on

average per block.

In summary, the quality of the extrapolation result using frequency selective extrapola-

tion could be improved significantly by applying an application-specific weighting function

instead of a simple binary weighting function. The isotropic weighting function provides a

suitable function when estimating unknown areas from the surrounding image data. Very

convincing results are achieved for both, subjective and objective evaluations. A fixed set

of parameters can be specified which allows to sufficiently restore different textures such

as smooth areas, edges, and detailed areas. The computational complexity is determined

by the image content, smooth areas require only a few, detailed areas more iterations.

Only the next larger power of two as DFT size has to be applied in order to use a FFT.
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3.6 Frequency Selective Extrapolation Interpreted as

Spectral Deconvolution

In the following, we show that methods known under the name of spectral deconvolution

[50, 12, 4] as already reviewed in Section 2.2.2 lead to a similar approach as selective

extrapolation using DFT basis functions implemented in the frequency domain.

In this chapter we introduced the method of selective extrapolation for two dimen-

sions. The derivation of the algorithm is carried out generically which implies that the

method can be applied with any kind of basis functions. The choice of suitable basis

functions depends on the underlying signal. For image and video signals, we proposed

multi-dimensional DFT functions as basis functions and, thus, we referred to the approach

as frequency selective extrapolation. It turned out that the entire algorithm can be im-

plemented efficiently in the frequency domain. Using arbitrary basis functions does in

general not lead to such a compact representation.

In the literature, there are methods known under the name of spectral deconvolution

which is a special case of selective extrapolation if DFT functions are used as basis func-

tions. The partitioning of the area L in A and B can be interpreted as a windowing of

the area L. The multiplication of the window function with the original signal leads to

a convolution of the respective spectra in the frequency domain. The fundamental idea

is to remove the impact of this window function by spectral deconvolution. However,

this method is limited to the DFT-domain only and does not allow for a more generic

approach.

Deconvolution algorithms are in general applied to most different topics. Removing

successively the impact of a window function by deconvolution is for example derived by

Högbom [22] in radio astronomy. There, the imposed limitations of the recording radio

telescopes on the measurements are eliminated for the aperture synthesis by deconvolu-

tion. The method is called CLEAN because the recorded “dirty map” is “cleaned” from

the “dirty beam” formed by the recording telescopes. Here, the deconvolution takes place

in the signal-domain. A completely different area where spectral deconvolution is applied

represents the modeling of the human sense of hearing with high-resolution analysis by

Sottek [50]. In image processing, spectral deconvolution allows a Fourier-based analysis

of textures of non-rectangular image patches as described in [12] by Clark et al. A similar

principle is applied by Aach in medical image processing for interpolating defect pixels of

flat panel detectors with spectral deconvolution [4].

In the following, the approach of 2-D spectral deconvolution is derived based on the

one-dimensional case presented in [50]. It is shown that the deconvolution algorithm is

a special case of selective extrapolation. In case DFT basis functions are inserted, this

results in the frequency selective extrapolation implemented in the frequency domain

according to Section 3.4.2. The extension to 3-D is straightforward and therefore not
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further discussed here.

The multiplication of the desired signal f [m,n] by the window function w[m,n] is

denoted by fw[m,n] and corresponds to a convolution of the respective DFTs F [k, l] and

W [k, l] resulting in Fw[k, l] [42]

fw[m,n] = f [m,n]w[m,n] (3.53)
◦
|•

Fw[k, l] =
1

MN
F [k, l] ∗W [k, l] =

1

MN

M−1∑

κ=0

N−1∑

λ=0

F [κ, λ]W [k − κ, l − λ] (3.54)

where “∗” denotes convolution.

The approach aims at estimating F [k, l] by G[k, l] with only D spectral samples

G[k, l] =
∑

(κ,λ)∈KD

G[κ, λ]δ[k − κ, l − λ] (3.55)

with the set KD consisting of D index pairs. Thus, the DFT spectrum of the original

signal F [k, l] •—◦ f [m,n] for 0 ≤ (m, k) ≤ M − 1; 0 ≤ (n, l) ≤ N − 1 is estimated

by G[k, l] which corresponds to the parametric model introduced in frequency selective

extrapolation.

For our considerations, the signals f [m,n] and g[m,n] are real-valued. The estimated

values g[m,n] are determined by maximally reducing the mean squared error to the orig-

inal signal weighted by w[m,n]

EA =
∑

(m,n)∈L

w[m,n] (f [m,n] − g[m,n])2 (3.56)

=
∑

(m,n)∈L

(fw[m,n]f [m,n] − 2fw[m,n]g[m,n] + w[m,n]g2[m,n]).

According to Parseval’s theorem [42]

M−1∑

m=0

N−1∑

n=0

x[m,n]y∗[m,n] =
1

MN

M−1∑

k=0

N−1∑

l=0

X[k, l]Y ∗[k, l]

the error energy can be expressed equivalently in the DFT-domain

EA =
1

MN

∑

(k,l)∈KD

(
Fw[k, l]F ∗[k, l] − 2Fw[k, l]G∗[k, l]

+

(
1

MN
W [k, l] ∗G[k, l]

)
G∗[k, l]

)
. (3.57)

Differentiating the error criterion with respect to the DFT coefficients G[k, l] and equating

it to zero

∂EA

∂G[k, l]
=

∂EA

∂G∗[k, l]
!
= 0; ∀ (k, l) ∈ KD (3.58)
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leads to the following system of equations

1

MN
G[k, l] ∗W [k, l] = Fw[k, l]; ∀ (k, l) ∈ KD. (3.59)

In summary, G[k, l] has to be determined as follows: For L DFT-components ∈ KL,

the convolution of W [k, l] and the estimated values G[k, l] has to equal the DFT of the

weighted original signal Fw[k, l] in order to yield the minimum approximation error.

The question considered next is which DFT-components should be selected in order

to obtain a minimum error with respect to the signal. As error criterion we consider

the deviation of the approximation error which depends on the estimation G[k, l] having

contributions only for all (k, l) ∈ KD

∆EA =
1

MN

∑

(k,l)∈KD

(
2Fw[k, l]G∗[k, l] −

(
1

MN
W [k, l] ∗G[k, l]

)
G∗[k, l]

)

Substituting the convolution of W [k, l] with G[k, l] by (3.59), the maximum reduction of

the error criterion can be expressed as

∆EA =
1

MN

∑

(k,l)∈KD

F ∗
w[k, l]G[k, l]. (3.60)

For an optimum selection of D DFT-components we have
(

L

D

)
possibilities to choose

from. Further, a unique solution is not assured or less than D spectral samples might

be sufficient. To overcome these problems, an iterative selection strategy is applied by

selecting one DFT-component with index (u, v) per iteration.

Iterative Spectral Deconvolution

If the DFT of the original signal consists only of one DFT-component corresponding

to a real-valued harmonic described by index (u, v), the estimate G[k, l] according to

(3.59) yields the true spectrum F [k, l]. The estimated signal g[m,n] which is the inverse

transformed DFT of G[k, l] has also values in the unknown area, hence, the signal is

extrapolated beyond the known area. Weighting the extrapolated signal g[m,n] by w[m,n]

results then in fw[m,n].

However, if the original signal consists of more spectral components, the subtraction

of the DFT of the weighted estimated signal w[m,n]g[m,n] from the DFT of the weighted

original signal w[m,n]f [m,n] does not vanish, but yields the DFT of the weighted residual

signal Rw[k, l]•—◦rw[m,n] = w[m,n]r[m,n]. The spectral deconvolution is accomplished

by an iterative approach as noted, hence the DFT of the weighted residual signal in

iteration ν is composed of

R(ν)
w [k, l] = Fw[k, l] − 1

MN
G(ν)[k, l] ∗W [k, l]. (3.61)
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Thereby, in each iteration the impact of the estimated DFT component with index (u, v)

on less dominant components is eliminated with R
(ν)
w [u, v] = 0. The DFT of the resid-

ual is further approximated by eliminating successively the impact of dominant spectral

components.

The algorithm is initialized with G(0)[k, l] = 0 resulting in R
(0)
w [k, l] = Fw[k, l]. The

update of the estimated DFT spectrum is described by ∆G[u, v]

G(ν+1)[u, v] = G(ν)[u, v] + ∆G[u, v]. (3.62)

∆G[u, v] equals the update of the DFT-domain parametric model in frequency selective

extrapolation if ∆G[u, v] = ∆c. Hence, the DFT of the residual error R
(ν+1)
w [k, l] in the

next iteration ν + 1 can be expressed based on (3.61) as

R(ν+1)
w [k, l] = R(ν)

w [k, l] − 1

MN
∆G[u, v] ∗W [k, l]. (3.63)

In order to determine ∆G[u, v], (3.59) has to be revised for the selected index pair

(u, v) to

1

MN
∆G[u, v] ∗W [u, v] = R(ν)

w [u, v]. (3.64)

Applying the notation of (3.55), the convolution of the unit impulse with the DFT of the

window function results in a shift by u and v

∆G[k, l] δ[k − u, l − v] ∗W [k, l] = ∆G[u, v]W [k − u, l − v]. (3.65)

Hence, inserting (3.65) in (3.64) and evaluating it for (u, v) yields the unknown ∆G[u, v]

∆G[u, v] = MN
R

(ν)
w [u, v]

W [0, 0]
. (3.66)

With ∆G[u, v], the reduction of the error criterion in each iteration depends only on (u, v)

and, regarding (3.60), equals

∆Ẽ
(ν+1)
A

=
1

MN
R

∗(ν)
W [u, v] ∆G[u, v]

=
|R(ν)

w [u, v]|2
W [0, 0]

. (3.67)

So far, the estimation assumed the selection of a real-valued DFT-component for

the approximation. But if the chosen index (u, v) belongs to a complex-valued DFT-

component, i.e. if (u, v) /∈ M, a conjugate complex index pair is chosen as already

described for the frequency selective extrapolation in order to yield a real-valued signal

in the spatial domain. Hence, the following equation has to be considered

1

MN
(∆G[k, l] δ[k − u, l − v] ∗W [k, l]

+ ∆G[k, l] δ[k − M + u, l − N + v] ∗W [k, l]) = R(ν)
w [k, l]
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which yields for the selected index (u, v)

1

MN
(∆G[u, v]W [0, 0] + ∆G∗[u, v]W [2u, 2v]) = R(ν)

w [u, v]

and a conjugate complex equation. They can be solved for the unknown coefficient

∆G[u, v]

∆G[u, v] = γ MN
R

(ν)
w [u, v]W [0, 0] − R

∗(ν)
w [u, v]W [2u, 2v]

W [0, 0]2 − |W [2u, 2v]|2 . (3.68)

The clean gain factor γ lies in the range 0.1 < γ < 1.0 and is introduced in [22, 12] based

on the assumption that multiple components have contributed to the amplitude of the

considered frequency bin due to the convolution. Therefore, the true value ∆G[u, v] is

lower. Low values of γ improve the stability of the algorithm at the expense of requiring

more iterations in order to fully extract the clean component. For a complex-valued

component, the relation ∆G[u, v] = 1
2
∆c is already summarized in (3.42) for frequency

selective extrapolation.

The DFT of the residual error in the next iteration is then given by

R(ν+1)
w [k, l] = R(ν)

w [k, l] − 1

MN
(∆G[u, v]W [k − u, l − v] + ∆G∗[u, v]W [k + u, l + v]) .

(3.69)

Based on (3.60), the error criterion is reduced in each iteration by

∆Ẽ
(ν+1)
A

=
1

MN
(R

∗(ν)
W [u, v] ∆G[u, v] + R(ν)

w [u, v] ∆G∗[u, v])

= 2
|R(ν)

w [u, v]|2 W [0, 0] − Re{R(ν)
w [u, v]2 W ∗[2u, 2v]}

W [0, 0]2 − |W [2u, 2v]|2 . (3.70)

After initializing with G(0) = 0, the approach of selective deconvolution can be sum-

marized by the following steps:

• Select index (u, v) at which error criterion is maximally reduced [50, 4]

∆E
(ν+1)
A

=

{
2 ∆Ẽ

(ν+1)
A

, (k, l) ∈ M

∆Ẽ
(ν+1)
A

, otherwise
(3.71)

⇒ (u, v) = argmax
(k,l)

∆E
(ν+1)
A

∆Ẽ
(ν+1)
A

∀ (k, l) ∈ M has to be doubled for the same reasons as for frequency

selective extrapolation, i.e., the energy decrease has to be calculated per frequency

bin. Next, (u, v) and (M − u,N − v) are included into K(ν+1) if they have not been

selected yet. In [22, 12] a simplified selection criterion according to (3.67) is applied.
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• Compute ∆G[u, v] according to (3.66) for a real-valued component and according to

(3.68) for a complex-valued component. Then, G(ν+1)[u, v] = G(ν)[u, v] + ∆G[u, v]

can be computed, where G(ν+1)[M − u,N − v] = G(ν+1)∗[u, v].

• Compose the estimated DFT-spectrum G(ν+1)[k, l] by

G(ν+1)[k, l] =
∑

(κ,λ)∈K(ν+1)

G(ν+1)[κ, λ] δ[k − κ, l − λ] (3.72)

• Evaluate termination criterion according to (3.23):

– ∆E
(ν+1)
A

> Emin: Calculate the DFT of the residual error according to (3.61)

using (3.65) for a real-valued component and (3.69) for a complex-valued com-

ponent, respectively. Then, restart from the beginning.

– ∆E
(ν+1)
A

< Emin: The DFT-domain estimate is given after termination

according to (3.72), yielding the estimated signal by an inverse DFT

g[m,n]◦—•G[k, l]. Finally, the unknown samples are replaced by the extrapo-

lated pixels cutted out of g[m,n].

The fundamental idea and the extrapolation concept of frequency selective extrapola-

tion and spectral deconvolution are summarized in Table 3.3. For basis functions based

on the DFT, the derivations of frequency selective extrapolation result in corresponding

equations as for spectral deconvolution, although the concepts behind the approaches

differ.

The fundamental idea behind spectral deconvolution is that G[k, l] is the estimate

of the original spectrum F [k, l] in terms of dominant frequencies successively obtained by

spectral deconvolution of the DFT of the window function. The inverse DFT yields the

estimated signal g[m,n] with components in the entire signal area, accomplishing thereby

the inherent signal extrapolation.

In contrast, the main concept behind selective extrapolation is the estimation of

the original signal f [m,n] by a parametric model g[m,n] as a linear combination of basis

functions which are defined in the entire signal area. The successive approximation of the

support area in terms of selected weighted basis functions provides the extrapolation in

the unknown area.

Table 3.3 shows that the equation for the update of the expansion coefficient ∆c (3.46)

in frequency selective extrapolation corresponds to the update of the estimated DFT

component ∆G[u, v] expressed in (3.66) and (3.68). The selection criterion of the basis

function in the next iteration (3.47) and the selection criterion of the DFT component

(3.71) are equal for both approaches.
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Table 3.3: Comparison of frequency selective extrapolation to spectral deconvolution.

Frequency Selective Extrapolation Spectral Deconvolution

Fundamental Idea

g[m,n] estimates original f [m,n] by a lin-

ear combination of basis functions defined

in entire signal area

G[k, l] estimates original F [k, l] in terms

of dominant frequencies

Extrapolation Concept

Linear combination of selected basis func-

tions provides extrapolation

Inverse DFT of estimate yields g[m,n]

which provides extrapolation

g[m,n]

Parametric model (DFT fcts. inserted) IDFT of estimate G[k, l]

g(ν)[m,n] = 1
2MN∑

(k,l)∈K(ν)

(c
(ν)
k,l ϕk,l[m,n] + c

(ν)∗
k,N ϕ∗

k,N [m,n]) g(ν)[m,n] =IDFTM,N{G(ν)[k, l]}

G[k, l]

DFT of parametric model The estimate

DFTM,N{g(ν)[m,n]} = G(ν)[k, l] = G(ν)[k, l] =

1
2

∑
(k,l)∈K(ν)

(c
(ν)
k,l + c

(ν)
M−k,N−l)

∑
(κ,λ)∈K(ν)

G(ν)[κ, λ] δ[k − κ, l − λ]

Update equation

∆c = ∆G[u, v] = γ×



MN R
(ν)
w [u,v]
W [0,0]

,

(u, v) ∈ M

2MN R
(ν)
w [u,v] W [0,0]−R

∗(ν)
w [u,v] W [2u,2v]

W [0,0]2−|W [2u,2v]|2
,

otherwise





MN R
(ν)
w [u,v]
W [0,0]

,

(u, v) ∈ M

MN R
(ν)
w [u,v] W [0,0]−R

∗(ν)
w [u,v] W [2u,2v]

W [0,0]2−|W [2u,2v]|2
,

otherwise

Selection of basis function

∆E
(ν+1)
A

=





2 R
(ν)
w [k,l]2

W [0,0]
, (k, l) ∈ M

2 |R
(ν)
w [k,l]|2 W [0,0]−Re{R

(ν)
w [k,l]2 W ∗[2k,2l]}

W [0,0]2−|W [2k,2l]|2
, otherwise

⇒ (u, v) = argmax(k,l) ∆E
(ν+1)
A
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4 Spatio-Temporal Selective

Extrapolation

The concept derived for two-dimensions in the last chapter is extended to spatio-temporal

selective extrapolation for three-dimensional signals in Section 4.1. In case of video sig-

nals, information about the area to be extrapolated can additionally be gained from

previous and/or subsequent frames. Using DFT basis functions, this approach leads also

to the frequency selective extrapolation which is presented in Section 4.2.4 for the efficient

implementation in the frequency domain.

Finally, in Section 4.3 an alternative extrapolation approach is investigated. First,

on basis of [26] extrapolation using best approximation is described. The difference to

the selective approach derived in Section 3.1 is due to a best possible approximation of

the known area in each iteration. However, a better approximation of the known area

does not necessarily lead to a better extrapolation to the unknown area. Therefore, the

extrapolation performance of best approximation is subsequently evaluated and compared

to the performance of frequency selective extrapolation in Section 4.4.

4.1 Spatio-Temporal Selective Extrapolation for 3-D

Signals

In the last chapter, the concept of selective extrapolation is derived for two-dimensional

signals. Since the generic concept is independent of the dimensions of the signal space, it

can be straightforwardly extended to three-dimensional signals which is presented in the

following. In case of video signals, additional information from previous and/or following

frames is obtained about the signal content to be estimated [37, 36]. We introduce a

mathematical description of the video signal in spatial and temporal direction at the same

time. By doing so, we provide a spatio-temporal extrapolation technique which allows for

estimating image areas by exploiting simultaneously spatial and temporal correlations of

the video signal.

Our approach approximates the known signal by a weighted linear combination of

3-D basis functions from spatial as well as temporal directions and extrapolates it into

the missing area. In contrast to the two-dimensional approach derived in Section 3.1, we

do not only exploit the surrounding image content within the image of the signal to be
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Support area AMissing area Bm

n t

ττ − 3 τ − 2 τ − 1 τ + 1 τ + 2 τ + 3

Figure 4.1: Image areas used for 3-D extrapolation consisting of the area to be estimated and

its known surrounding.

predicted but also the image content of preceding and/or proceeding frames.

Fig. 4.1 shows a possible sequence of seven frames where the spatial dimensions are

denoted by m,n and the temporal dimension by t. The area B shaded dark gray reaches

over two frames from τ to τ + 1 and is to be extrapolated from the area A. Note that

the area to be extrapolated can be of spatio-temporal extension and is not limited to one

frame. The support area A ranges from three previous frames over the surrounding of

the area to be estimated in the frame τ and τ + 1 to two subsequent frames. Only the

areas which are used for the reconstruction of the missing area are shown in Fig. 4.1. The

entire region L - consisting of the region to be estimated B and the support area A - is

described by a volume.

Analogously to the 2-D extrapolation described in Section 3.1, the known pixels

f [m,n, t] are approximated iteratively by the parametric model g(ν)[m,n, t]. The spatio-

temporal description by g(ν)[m,n, t] approximates the support area by a linear combi-

nation of basis functions ϕk,l,p[m,n, t] weighted by expansion coefficients c
(ν)
k,l,p according

to

g(ν)[m,n, t] =
∑

(k,l,p)∈K(ν)

c
(ν)
k,l,p ϕk,l,p[m,n, t]. (4.1)

The set K(ν) consists of all basis functions used so far for the approximation. The basis

functions are defined in the entire area L and their number M×N×T equals the number of

pixels in L. Here, the principle is described for real-valued basis functions and expansion

coefficients.
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With help of the 3-D window function b[m,n, t]

b[m,n, t] =

{
1, (m,n, t) ∈ A

0, (m,n, t) ∈ B
(4.2)

the residual error signal in the support area is calculated in this step

r(ν)[m,n, t] = b[m,n, t]
(
f [m,n, t] − g(ν)[m,n, t]

)
. (4.3)

Assuming an appropriate basis function ϕu,v,q[m,n, t] is already selected, the residual error

signal is further reduced by the update of the parametric model ∆g[m,n, t]

r(ν+1)
w [m,n, t] = r(ν)

w [m,n, t] − w[m,n, t] ∆g[m,n, t] (4.4)

which is expressed with help of the introduced variable

r(ν)
w [m,n, t] = w[m,n, t] r(ν)[m,n, t] (4.5)

as described for the 2-D case in (3.35).

In case of taking only the selected coefficient into account for the update step,

∆g[m,n, t] is determined for three-dimensional signals analogously to the two-dimensional

case (3.9) by

∆g[m,n, t] = ∆c ϕu,v,q[m,n, t]. (4.6)

In order to determine the expansion coefficients, the weighted residual error energy

between the original signal and its approximation by the parametric model is evaluated

with respect to the support area

E
(ν+1)
A

=
∑

(m,n,t)∈A

w[m,n, t]
(
r(ν)[m,n, t] − ∆g[m,n, t]

)2
, (4.7)

where the 3-D weighting function w[m,n, t]

w[m,n, t] =

{
ρ[m,n, t], (m,n, t) ∈ A

0, (m,n, t) ∈ B
(4.8)

has only positive amplitudes in the support area and is zero elsewhere. Generally,

w[m,n, t] allows to emphasize pixels which are more important for the extrapolation and

has to be specified for the actual application. The weighting function is a straightforward

extension to 3-D from the 2-D function (3.1).

Assuming a basis function with index (u, v, q) is already selected, the coefficient update

by ∆c is computed by minimizing the error criterion (4.7) by taking the derivative with

respect to the unknown coefficient and setting it to zero

∆c =

∑
(m,n,t)∈L

r
(ν)
w [m,n, t] ϕu,v,q[m,n, t]

∑
(m,n,t)∈L

w[m,n, t] ϕ2
u,v,q[m,n, t]

(4.9)
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The coefficient c
(ν+1)
u,v,q is subsequently updated

c(ν+1)
u,v,q = c(ν)

u,v,q + ∆c. (4.10)

Per iteration, we choose the basis function ϕu,v,q[m,n, t] which leads to a maximum

reduction of the residual error criterion obtained with help of (4.9) by

∆E
(ν+1)
A

=
∑

(m,n,t)∈A

w[m,n, t]
(
∆c ϕk,l,p[m,n, t]

)2

=

(
∑

(m,n,t)∈L

r
(ν)
w [m,n, t]ϕk,l,p[m,n, t]

)2

∑
(m,n,t)∈L

w[m,n, t]ϕ2
k,l,p[m,n, t]

(4.11)

=⇒ (u, v, q) = arg max
(k,l,p)

∆E
(ν+1)
A

.

The index of the selected basis function is included in the set of used basis functions

in case it has not been selected yet

K
(ν+1) = K

(ν) ∪ (u, v, q) if (u, v, q) /∈ K
(ν). (4.12)

The algorithm terminates if the reduction of the residual error energy drops below a

pre-specified threshold.

The derivations in this section provide the extension of the concept of selective extrap-

olation from 2-D as developed in Section 3.1 to 3-D. Summarizing the main points of the

algorithm, the image content in the spatio-temporal volume is described simultaneously

in spatio-temporal direction by dominant features in terms of weighted basis functions.

The basis functions are defined in the entire volume, therefore the approximation

provides at the same time an estimation of the missing samples which in turn can be of

spatio-temporal extend. Finally, the extrapolated area is cut out of the parametric model.

4.2 Frequency Selective Extrapolation of Video Sig-

nals Using DFT Basis Functions

2-D DFT basis functions are used in order to extrapolate image signals. For video sig-

nals, additionally to textures in 2-D motion trajectories in temporal direction have to

be extended. In the following, we apply basis functions based on the 3-D DFT for the

extrapolation of video signals according to

ϕk,l,p[m,n, t] = ej 2π

M
mkej 2π

N
nlej 2π

T
tp (4.13)

where the described volume M × N × T consists of the spatial size M × N extended by

T in the temporal dimension.
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(a) (b)

(c) (d)

(e)

Figure 4.2: The DFT symmetry properties for 3-D real-valued signals are shown for M = N =

T = 8. (a) Real-valued coefficients are marked in blue. (b)-(e) Due to the symmetry properties,

the coefficients in red have to be computed and the conjugate complex coefficients in green can

be obtained. Purple marks the point of conjugate complex symmetry.
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As for 2-D, the basis functions exhibit the conjugate complex symmetry

ϕM−k,N−l,T−p[m,n, t] = ϕ∗
k,l,p[m,n, t]. (4.14)

Due to symmetry properties of the DFT for real-valued signals, the set M consists of

the indices of frequency bins corresponding to a real-valued spectrum for M,N, T being

even

M =

{
(0, 0, 0),

(
M

2
, 0, 0

)
,

(
0,

N

2
, 0

)
,

(
0, 0,

T

2

)
,

(
M

2
,
N

2
, 0

)
,

(
M

2
, 0,

T

2

)
,

(
0,

N

2
,
T

2

)
,

(
M

2
,
N

2
,
T

2

)}
. (4.15)

They are marked blue in the 3-D frequency volume shown in Fig. 4.2(a). As for 2-D,

the DFT-spectrum of a real-valued signal such as a video signal shows conjugate complex

symmetries which is illustrated in the following. In the three following figures (b) to

(d), the purple colour indicates the point of symmetry for conjugate complex symmetry

within a 2-D plane, red indicates the area of values which have to be calculated and green

indicates the DFT values which can be obtained due to conjugate complex symmetry

properties. In Fig. 4.2(b) in the section plane at p = T
2
, in (c) at l = N

2
, and in (d) at

k = M
2

, the 2-D symmetry properties of Fig. 3.4 can be recognized. Fig. 4.2(e) shows

finally in red the values which have to be computed in order to describe completely the

3-D DFT-spectrum of a real-valued signal and in green the values which can be obtained

due to conjugate complex symmetry properties within the volume.

4.2.1 Spatio-Temporal-Domain Solution

The video signal in the spatio-temporal volume is approximated by the corresponding

parametric model in iteration ν, i.e. by

g(ν)[m,n, t] =
1

2MNT

×
∑

(k,l,p)∈K(ν)

(
c
(ν)
k,l,pϕk,l,p[m,n, t] + c

(ν)
M−k,N−l,T−pϕM−k,N−l,T−p[m,n, t]

)

(4.16)

where the expansion coefficients exhibit the conjugate complex symmetry

c
(ν)
M−k,N−l,T−p = c

(ν)∗
k,l,p. (4.17)

The residual error in iteration ν is altered by the update of the parametric model

∆g[m,n, t] =
1

2MNT
(∆c ϕu,v,q[m,n, t] + ∆c∗ ϕM−u,N−v,T−q[m,n, t]) (4.18)
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yielding the residual error in the next iteration ν + 1

r(ν+1)
w [m,n, t] = r(ν)

w [m,n, t]

− 1

2MNT
(∆c ϕu,v,q[m,n, t] + ∆c∗ϕM−u,N−v,T−q[m,n, t]) w[m,n, t].

(4.19)

The error criterion for the 3-D signals (4.7) is minimized analogously to the 2-D case

in (3.36). The resulting 3-D frequency-domain solutions for ∆c and ∆c∗ are discussed in

Section 4.2.2. With the solution ∆c, the unknown expansion coefficient and its conjugate

complex counterpart are updated

c(ν+1)
u,v,q = c(ν)

u,v,q + ∆c

c
(ν+1)
M−u,N−v,T−q = c

(ν)
M−u,N−v,T−q + ∆c∗. (4.20)

The maximum energy decrease (4.11) for the frequency (u, v, q) leads to the selection

of the optimum basis function depending on ∆c

∆E
(ν+1)
A

=
1

2(MNT )2


|∆c|2

∑

(m,n,t)∈L

w[m,n, t]ϕk,l,p[m,n, t]ϕ∗
k,l,p[m,n, t]

+ Re{∆c2
∑

(m,n,t)∈L

w[m,n, t]ϕ2
k,l,p[m,n, t]}


 (4.21)

⇒ (u, v, q) = argmax
(k,l,p)

∆E
(ν+1)
A

.

4.2.2 Frequency-Domain Solution

As in the 2-D case, we express all equations in the frequency domain in order to solve

the extrapolation problem efficiently. Minimizing the 3-D error criterion (4.7) leads to a

solution for ∆c and ∆c∗, respectively. Recalling the simplifications for real-valued DFT

coefficients in the 2-D case (3.45), we obtain for ∆c

∆c =





MNT R
(ν)
w [u,v,q]
W [0,0,0]

, (u, v, q) ∈ M

2MNT R
(ν)
w [u,v,q] W [0,0,0]−R

(ν)∗
w [u,v,q] W [2u,2v,2q]

W [0,0,0]2−|W [2u,2v,2q]|2
, otherwise

(4.22)

and a conjugate complex equation for ∆c∗.

The energy decrease per discrete frequency (4.21) is rewritten in the frequency domain

∆E
(ν+1)
A

=
1

2M2N2T 2

(
|∆c|2 W [0, 0, 0] + Re

{
∆c2 W ∗[2u, 2v, 2q]

})
(4.23)
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Inserting ∆c according to (4.22) leads to the selection of the optimum basis function

according to the maximum energy decrease per discrete frequency

∆E
(ν+1)
A

=





2 R
(ν)
w [u,v,q]2

W [0,0,0]
, (k, l, p) ∈ M

2 |R
(ν)
w [u,v,q]|2 W [0,0,0]−Re{R

(ν)
w [u,v,q]2 W ∗[2u,2v,2q]}

(W [0,0,0]2−|W [2u,2v,2q]|2)
, otherwise

(4.24)

⇒ (u, v, q) = arg max
(k,l,p)

∆E
(ν+1)
A

.

If the approximation of the support area is not sufficient yet, the residuum in the

DFT-domain is further reduced by

R(ν+1)
w [k, l, p] = R(ν)

w [k, l, p]

− 1

2MNT

(
∆cW [k − u, l − v, p − q] + ∆c∗W [k + u, l + v, p + q]

)
.

(4.25)

Otherwise the algorithm terminates if ∆E
(ν+1)
A

drops below ∆Emin and the spatio-

temporal parametric model is given in the entire volume by an inverse DFT of G(ν)[k, l, p]

g(ν)[m,n, t] = IDFTM,N,T{G(ν)[k, l, p]}. (4.26)

4.2.3 3-D Isotropic Weighting Function

The right choice of an appropriate weighting function w[m,n, t] is of great importance and

depends on the application. In Section 3.5, it is already shown for 2-D that the different

weighting functions affect the extrapolation result significantly. By choosing an signal and

application adapted weighting function instead of a simple binary weighting function, the

quality of the extrapolated area could be improved remarkably. The adapted weighting

function takes pixels closer to the unknown area more into account as more distant pixels

and is represented by an 2-D isotropic model. Based on these results, a suitable 3-D

weighting function is specified and investigated in the following.

Again, as representative example a centrally located block of 16 × 16 unknown pixels

is extrapolated from its known surrounding. Since the video signal is interpreted as a

3-D volume, data from previous and subsequent frames about the area to be estimated is

also available which has to be incorporated into the weighting function. The application

example corresponds to 3-D frequency selective extrapolation applied to error concealment

of block losses which is described in detail in Chapter 5.

The principle of the successful 2-D weighting function relying on the isotropic model

(3.52) where pixels closer to the missing area are taken more into account as more distant

pixels is adopted for the 3-D case. Therefore, the 2-D isotropic function (3.52) is extended

to 3-D according to

ρisotrop[m,n, t] = ρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2
+(t−T−1

2 )
2

, ρ̂ ≤ 1 (4.27)
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ρisotrop[m,n, t]

Figure 4.3: 3-D isotropic function for a volume of 7 frames (ρ̂=0.8).

where the loci of constant amplitudes are spheres as depicted for a cut-out of 7 frames in

Fig. 4.3. Pixels with the same distance to the center (M−1
2

, N−1
2

, T−1
2

) in spatial as well as

temporal direction have the same weight.

Applying this model does not allow to weight the spatial and temporal direction

separately. However, intensive investigations in [32] comparing different models where

space and time are treated separately have shown that the 3-D isotropic model provides

the best performance.

Evaluations for 3-D Isotropic Weighting Function

The investigations are done for uncoded YUV sequences. Therefore, the quality of the

extrapolation result is measured in terms of PSNR (3.50) as previously in Section 3.5 only

for the extrapolated parts of the luminance component.

The error patterns of isolated block losses with 16×16 pixels are inserted into a frame

of different video sequences. For evaluation purposes, four different YUV sequences in

common intermediate format (CIF) with 352 × 288 pixels are tested. The original frame

and the corresponding frame with inserted block losses of the test sequences Flowergarden,

Foreman, Table Tennis, and Crew are depicted in Fig. 4.4.

Investigations are done using the 3-D isotropic weighting function defined in (4.27).

The following parameters influence the performance and are evaluated in the following:

• The value of the decay parameter ρ̂ as introduced in (4.27).

• The size of the support area along the time axis in terms of previous and subsequent

frames and along the space axis in terms of number of surrounding pixels.

• The termination criteria: number of iterations and ∆min.

• The DFT size.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.4: Sequences used for concealment with corresponding corrupted frames. 4.4(a): 9th

frame of sequence Flowergarden. 4.4(c): 205th frame of sequence Foreman. 4.4(e): 82th frame

of sequence Table Tennis. 4.4(g): 316th frame of sequence Crew.

Decay Parameter ρ̂

The performance is investigated in terms of PSNR with respect to ρ̂ using the 3-D weight-

ing function as defined in (4.27). The results for concealing the isolated block losses which

are inserted for each of the four different test sequences into a single frame as shown in

Fig. 4.4 are presented in Fig. 4.5. PSNR is measured for varying ρ̂ with respect to the

number of surrounding pixels. The size of the DFT transform is 64 × 64 × 32. As termi-

nation criteria maximally 200 iterations and ∆min = 0.1 are applied. Two previous and

two subsequent frames are taken into account for the extrapolation. The support area in

spatial direction consists of 13 surrounding pixels according to the evaluation results for

2-D in Section 3.5.3.

Fig. 4.5 shows that the best results are obtained for 0.75 ≤ ρ̂ ≤ 0.85. As already

mentioned, space and time can not be treated separately with the 3-D isotropic model.

In [32], investigations have been done for applying the 2-D model to each time index

separately, i.e., the parameter ρ̂ takes different values along the time axis, in ascending

and in descending order. However, the investigations have shown that the isotropic 3-D

model provides the best performance. Therefore, the 3-D model with the fixed value

ρ̂ = 0.8 is chosen in the following.
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Figure 4.5: PSNR measurements for the decay parameterρ̂ (4.27) for isolated block losses. Set of

parameters used: maximum number of iterations: 200, ∆min=0.1, NV =2, NN=2, 13 surrounding

pixels in spatial direction, DFT size 64 × 64 × 32.

Size of Support Area

Let us now take a closer look at the impact of the number of previous NV and/or subse-

quent NN frames involved for the calculation of the parametric model. Fig. 4.6 depicts

the results for the four test sequences. The application of both, previous and subsequent

frames yields always better results than using only previous frames, whereas the optimum

number of frames depends on the motion of the sequence. For slow motion sequences as

Foreman and Crew, the results are very similar for one, two, or three previous and subse-

quent frames. In case of Flowergarden and Table Tennis including stronger motion, the

results improve using two or three previous and subsequent frames. In case only previous

frames are available, one previous frame yields the worst result for all sequences.

In summary, two or three previous frames lead to a satisfying result for all sequences.
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Figure 4.6: PSNR measurements with respect to the number of involved previous NV and

subsequent NN frames. Set of parameters used: maximum number of iterations: 200, ∆min=0.1,

ρ̂=0.8, DFT size 64 × 64 × 32.

If no subsequent frames are available, the best result is also obtained for two or three

previous frames. In the following, we choose NV = NN = 2.

In order to finally determine the size of the support area, the extension in spatial

direction in terms of number of surrounding pixels is investigated. The evaluation ac-

cording to Fig. 4.6 shows that for 10 to 16 surrounding pixels the best results can be

achieved. The image content of several succeeding frames is considered in a volume. The

spatial extension has to assure that the corresponding volume covers the motion. Here,

13 surrounding pixels are chosen as extension of the support area in spatial direction.
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Figure 4.7: PSNR measurements with respect to number of iterations. Set of parameters used:

∆min=0.0, ρ̂=0.8, NV =2, NN=2, DFT size 64 × 64 × 32.

Termination Criteria

Next, the termination criteria are investigated. We start with the maximum number of

iterations. As the demonstration of the principle for 3-D in Section 4.2.4 has shown,

in general more iterations are needed for the approximation of the 3-D signal in the

volume compared to 2-D. Fig. 4.7 depicts the PSNR results for the number of iterations

with respect to the number of surrounding pixels. We can observe a saturation point

where further iterations do not yield a significant improvement anymore. This holds if

the support area is chosen appropriately. If it is chosen too small, the performance even

decreases. Trading off a marginal improvement versus computational load, 200 iterations

are maximally allowed. The investigations in [32] show that ∆min = 0.1 is a good choice

because the corresponding PSNR value is close to the optimum.

If the computational load has to be limited, the maximum number of iterations can

be decreased and ∆min increased.
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Figure 4.8: PSNR measurements with respect to DFT size in temporal direction DFTT. Set of

parameters used: maximum number of iterations: 200, ∆min=0.1, ρ̂=0.8,NV =2, NN=2, DFT

size in spatial direction 64 × 64.

DFT Size

The DFT size for the spatial dimensions is chosen to 64× 64 according to the evaluations

for 2-D in Section 3.5.3. The size of the DFT in temporal direction is considered next.

In Fig. 4.8 the performance with respect to the DFT length in temporal direction DFTT

is depicted. The results for DFTT = 8 are always worse than for the larger DFT lengths.

Since the isotropic function is already truncated after a few frames in temporal direction,

interpolated spectra due to zero padding have to be used. The results for DFTT =

16, 32, 64 are similar. In the following, DFTT = 32 is chosen.
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Table 4.1: Parameters for spatio-temporal extrapolation of 16 × 16 pixels with 3-D isotropic

weighting function (Section 4.2.3).

ρ̂ 0.8

Support no. of known pixel 13

area no. of frames involved NV = NN 2

Termination max. no. of iterations 200

criterion ∆min 0.1

DFT size 64 × 64 × 32

4.2.4 Discussion of Results

In the following, the results of applying 3-D frequency selective extrapolation to the

estimation of unknown areas in video signals are discussed. Furthermore, objective results

demonstrating the principle of the 3-D concept are presented. The improvements of

using 3-D extrapolation by considering the video signal in a volume compared to 2-D

extrapolation are also shown.

As in case of 2-D frequency selective extrapolation, an application-specific weighting

function for 3-D could be specified in the considered extrapolation context. The area to

estimated is centrally located and surrounded by original data. The evaluations in the last

section have shown that the 3-D isotropic model provides as for 2-D a suitable application

adapted model for the 3-D weighting function. A fixed set of parameters can be specified

as for 2-D also for 3-D which is very important in practice. For the extrapolation into

blocks of size 16 × 16 pixels, the set of parameters is given in Table 4.1.

The principle of frequency selective extrapolation was illustrated in Section 3.4.3 for

2-D signals for the representative example. In the following, we want to provide also

subjective results and demonstrate the principle for 3-D. The procedure such as the real-

ization in the frequency domain remains unchanged. Here, the results for the 3-D case and

the effects of extending the support area from 2-D to 3-D are presented. The parameters

according to Table 4.1 are applied.

In Fig. 4.9(a) the frame #9 of the sequence Flowergarden containing block losses of

size 16 × 16 is shown. The missing pixels are to be concealed by 3-D frequency selective

extrapolation, with the result depicted in Fig. 4.9(d). By involving two previous and

subsequent frames, the extrapolation result can be significantly improved compared to

2-D which is displayed in Fig. 4.9(c).

Using temporal data implies that the image contents usually move. However, the

motion between the frames is inherently compensated by the algorithm which can be seen

in Fig. 4.9(b), where for comparison the block spatially located at the same position in
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the previous frame is copied by temporal block replacement [59]. Motion artifacts occur

at the edge of the tree for example.

To further illustrate the inherent motion compensation, we take a look at Fig. 4.10.

In the first row, the input data to the algorithm for the reconstruction of a single block

is displayed in figures (a) to (e). We conceal the loss occurring in frame #9 depicted

in Fig. 4.10 (c) by taking advantage of the spatial surrounding as well as the respective

blocks in the two previous frames, Fig. 4.10 (a), (b), and the two subsequent frames

(d), (f). Obviously the tree is moving across the 5 figures. The algorithm works in

the frequency domain until the approximation accuracy is reached. The evolution of

the parametric model with respect to the number of iterations is displayed step-wise in

figures (f) to (y), demonstrating the inherent motion compensation. After termination the

parametric model is transformed to the spatio-temporal domain and the loss is replaced

by the corresponding samples of the parametric model.

Fig. 4.11 depicts a further example. The losses occurring in Fig. 4.11(a) are concealed

applying the 3-D approach which is displayed in Fig. 4.11(d). We observe again that using

the spatio-temporal surrounding as basis for extrapolation improves the result significantly

compared to using only the spatial surrounding for the 2-D approach shown in Fig. 4.11(c).

The 3-D result appears sharper and more details can be restored. Comparing the result

to the temporal block replacement [59] depicted in Fig. 4.11(b) shows another advantage.

The deviations in luminance occurring in the previous frame due to a flash light can be

compensated, too. This point is further illustrated by Fig. 4.12.

The five figures in the top row (a) to (e) show the original data which is input to

the algorithm. The luminance varies from frame to frame, especially in frame #315

Fig. 4.12 (b) where the flash of a camera illuminates the scene. In Fig. 4.12 (f) to (j)

the progress of the parametric model with respect to the number of iterations is depicted

illustrating the ability to compensate the variations in luminance.

The examples presented in this section clearly show the improvements of the 3-D

spatio-temporal approach compared to the 2-D case. With the new concept of 3-D extrap-

olation, a video signal can be interpreted as a 3-D volume. Hence, spatial and temporal

correlations of the video signal can be used for the extrapolation at the same time. The

3-D algorithm is not only able to extrapolate different 2-D textures, but is additionally

able to extend motion trajectories and to compensate for changes in luminance.
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(a) (b)

(c) (d)

Figure 4.9: Flowergarden sequence. (a) Unknown blocks. (b) Temporal block replacement. (c)

2-D frequency selective extrapolation. (d) 3-D frequency selective extrapolation.
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(f) 1 (g) 2 (h) 3 (i) 4 (j) 5

(k) 10 (l) 20 (m) 30 (n) 40 (o) 50

(p) 60 (q) 70 (r) 80 (s) 90 (t) 100

(u) 110 (v) 120 (w) 130 (x) 140 (y) 150

Figure 4.10: Original input data of loss occurring in frame #9 including the respective areas in

the two previous and subsequent frame. (a) Frame #7 to (e) frame #11. Progress of parametric

model with increasing number of iterations. (f)-(y) Iteration 1 to 150.
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(a) (b)

(c) (d)

Figure 4.11: Crew sequence. (a) Unknown blocks. (b): Temporal block replacement. (c): 2-D

frequency selective extrapolation. (d): 3-D frequency selective extrapolation.
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(a) #314 (b) #315 (c) #316 (d) #317 (e) #318

(f) 1 (g) 5 (h) 10 (i) 50 (j) 100

Figure 4.12: Top: Original input data of loss occurring in frame #316 including the respective

areas in the two previous and subsequent frame. (a) Frame #314 to (e) frame #318. Bottom:

Progress of parametric model with increasing number of iterations. (f)-(j) Iteration 1 to 100.
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4.3 Alternative Approach: Spatio-Temporal Extrap-

olation Using Best Approximation

An alternative extrapolation approach is investigated in this section. Extrapolation using

best approximation of the support area in the update step is described based on [26].

In order to estimate unknown samples, the selective extrapolation strategy is derived

in Section 3.1. There, the residual error signal is further approximated in each iteration by

the update of the parametric model ∆g[m,n] (3.7). In Section 3.1.2, the approximation by

∆g[m,n] consisted only of the currently selected, weighted basis function (3.9). However,

in each update step the expansion coefficients of the previously selected basis functions are

actually altered. We derive in the following the approximation of the known area by taking

all basis functions selected so far into account and refer to it as best approximation. We

investigate wether a better extrapolation in the area to be estimated can be achieved for

the case of approximating the known area best possibly. By this procedure, the residual

error criterion with respect to the known area is maximally reduced in each step. On the

other hand, a better approximation of the known area does not necessarily have to yield

a better extrapolation.

The idea of best approximation is introduced in [26] for object oriented transform

coding using DCT basis functions. First, we introduce the principle of best approximation

in general according to [26]. Then we derive the best approximation for the special case of

applying DFT basis functions [48] analogously to Section 3.4, i.e. we introduce the spatial-

domain solution and then the frequency-domain solution for 2-D. Since the derivations

for 3-D are analogously to 2-D, we give finally in brief the results for a spatio-temporal

extrapolation using the best approximation.

4.3.1 Basic Principle of Best Approximation

We assume as previously that an appropriate basis function ϕu,v[m,n] is already selected

and that its index is included in the set of used basis functions K(ν+1)

K
(ν+1) = K

(ν) ∪ {u, v} if (u, v) /∈ K
(ν). (4.28)

The strategy how to select the basis function follows Section 3.1.2.

In each iteration, the residual is approximated by an updated version of the linear

combination of all basis functions applied so far

∆g[m,n] =
∑

(u,v)∈K(ν+1)

∆cu,vϕu,v[m,n]. (4.29)

Hence, the residual error in iteration ν+1 is determined by adjusting all basis functions
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used best possibly

r(ν+1)
w [m,n] = r(ν)

w [m,n] −
∑

(u,v)∈K(ν+1)

∆cu,vϕu,v[m,n]w[m,n]. (4.30)

The revised error criterion taking all linear combinations of used basis functions into

account is expressed by

E
(ν+1)
A

=
∑

(m,n)∈L

w[m,n]


r(ν)[m,n] −

∑

(u,v)∈K(ν+1)

∆cu,vϕu,v[m,n]




2

. (4.31)

The updates of all selected coefficients are obtained by the partial derivative of E
(ν+1)
A

with respect to all ∆cu,v

∂E
(ν+1)
A

∂∆cu,v

= 0; ∀(u, v) ∈ K
(ν+1). (4.32)

The error criterion is maximally reduced in each step due to the consideration of all basis

functions and yields a system of equations for each coefficient ∆cu,v; ∀ (u, v) ∈ K(ν+1)

∑

(k,l)∈K(ν+1)

∆ck,l

∑

(m,n)∈L

w[m,n] ϕk,l[m,n]ϕu,v[m,n] =
∑

(m,n)∈L

r(ν)
w [m,n] ϕu,v[m,n] (4.33)

∀ (u, v) ∈ K
(ν+1).

The resulting system of equations can be solved uniquely for all ∆cu,v; ∀(u, v) ∈ K(ν+1)

as long as the number of selected basis functions does not exceed the dimension of A.

In order to solve (4.33) for the unknown updates ∆ck,l, we express this equation in

matrix notation. Therefore, the indices of the basis functions which belong to K(ν+1) are

numbered from 0 to ν

K
(ν+1) = {(u0, v0) ; (u1, v1) ; . . . (uν , vν)} = {(k0, l0) ; (k1, l1) ; . . . (kν , lν)} . (4.34)

Further, all update variables and residuals are summarized in two (ν + 1)× 1 vectors ∆c

and r
(ν)
w , respectively,

∆c =




∆ck0,l0

∆ck1,l1

...

∆ckν ,lν




(4.35)

r(ν)
w =




∑
(m,n)∈L

r
(ν)
w [m,n] ϕu0,v0 [m,n]

∑
(m,n)∈L

r
(ν)
w [m,n] ϕu1,v1 [m,n]

...∑
(m,n)∈L

r
(ν)
w [m,n] ϕuν ,vν

[m,n]




(4.36)
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The scalar products of the weighted basis functions are summarized in the (ν + 1) ×
(ν + 1) matrix w

w =


∑
(m,n)∈L

w[m,n] ϕk0,l0 [m,n]ϕu0,v0 [m,n] . . .
∑

(m,n)∈L

w[m,n] ϕkν ,lν [m,n]ϕu0,v0 [m,n]

∑
(m,n)∈L

w[m,n] ϕk0,l0 [m,n]ϕu1,v1 [m,n] . . .
∑

(m,n)∈L

w[m,n] ϕkν ,lν [m,n]ϕu1,v1 [m,n]

...
. . .

...∑
(m,n)∈L

w[m,n] ϕk0,l0 [m,n]ϕuν ,vν
[m,n] . . .

∑
(m,n)∈L

w[m,n] ϕkν ,lν [m,n]ϕuν ,vν
[m,n]




Hence, (4.33) can be expressed in matrix notation

w∆c = r(ν)
w

and solved for the unknown ∆c

∆c = w−1r(ν)
w . (4.37)

The expansion coefficients are obtained by updating all available coefficients c
(ν)
u,v for

(u, v) ∈ K(ν+1)

c(ν+1)
u,v = c(ν)

u,v + ∆cu,v ∀ (u, v) ∈ K
(ν+1). (4.38)

4.3.2 Geometrical Interpretation of Extrapolation by Best Ap-

proximation

After deriving the principle of best approximation, we interpret the best approximation

also from a geometrical point of view and emphasize major differences to the selective

extrapolation derived in Section 3.2. The task of extrapolating the original signal beyond

its observable part is the same. The basis vectors in the different spaces A and L remain

also unchanged. The only difference consists in how the approximation in subspace A

takes place.

Applying the best approximation, the vector of the parametric model g
(ν)
A

is completely

recalculated in each iteration step which is the most important difference compared to

the selective approach. g
(ν)
A

is obtained by projecting fA onto the subspace spanned

by all basis functions ϕA[λ] selected so far. Hence, the vector of the approximation

error is orthogonal to the subspace spanned by all basis functions selected so far after

each iteration. Therefore, it is not possible to choose an already selected basis vector

again. With selective extrapolation, the vector rA is projected onto the just selected

basis function in each iteration and the result of the projection is added to the vector of

the parametric model g
(ν)
A

. Hence, in selective extrapolation a basis vector can be selected
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multiple times. The criterion for selecting a basis function remains unchanged. The final

step is again the same, in both cases the parametric model gL is constructed in L by the

linear combination of the expansion coefficients c
(ν)
λ and basis functions ϕL[λ].

For exemplifying the best approximation we choose the same example as for the se-

lective extrapolation. The area L consists of three pixels, the missing area B of one pixel

and the support area A of two pixels. The orthogonal basis functions in L and the vector

of the original signal fL are depicted in Fig. 4.13 (a). The location of fL within L is

sketched in for illustration purposes. In Fig. 4.13 (b) the reduction of the space L to A

including all respective vectors is shown. Furthermore, the location where the plane A

spanned by the vectors ϕA[1], ϕA[2], ϕA[3] intersects the vector space L is illustrated.

In the first iteration the basis vector ϕA[2] is selected. Since the approximation of fA

of the observable part of the original signal takes place in the subspace A without any

knowledge of fL, the relation of the plane A to the space L is not shown anymore. The

vector c
(1)
2 ϕA[2] is obtained by projection of fA onto ϕA[2]. This equals the parametric

model in the first iteration g
(1)
A

which is displayed in Fig. 4.13 (c). The set of all basis

functions selected so far consists of a single basis function in the first iteration, leading

to the same parametric model g
(1)
A

for both approaches which is also shown by the con-

sistency of Fig. 4.13 (c) with Fig. 3.2 (c). The criterion for selecting a basis function is

the same for both approaches which leads to the choice of ϕA[3] in the second iteration.

The vector of the parametric model is obtained by projecting fA onto the vector space

spanned by ϕA[2] and ϕA[3]. The two-dimensional vector fA is projected onto a two-

dimensional vector space which allows to approximate fA perfectly by linear combination

of ϕA[2] and ϕA[3]

g
(2)
A

= c
(2)
2 ϕA[2] + c

(2)
3 ϕA[3]

as also shown in Fig. 4.13 (d).

Finally, the vector of the parametric model g
(2)
L

within L is composed by

g
(2)
L

= c
(2)
2 ϕL[2] + c

(2)
3 ϕL[3] (4.39)

as illustrated in Fig. 4.13 (e). As for selective extrapolation, it should be emphasized

that the vectors g
(2)
L

and g
(2)
A

point into different directions due to the different spaces of

approximation and extrapolation. The dashed auxiliary lines to indicate the locations of

the vectors within the respective space as in Fig. 4.13 (b) are discarded in order to avoid

confusions.

The expansion coefficient of the first selected basis function ϕA[2] has changed signif-

icantly from iteration 1 to 2 which is depicted in Fig. 4.13 (c) and (d), respectively, by

the different expansion coefficients c
(1)
2 and c

(2)
2 . This deviation occurs due to the non-

orthogonal basis functions with respect to A. The vector of the approximation error r
(ν)
A

is orthogonal to the subspace spanned by the basis functions selected so far. The basis
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fL

ϕL[1]

ϕL[2]

ϕL[3]

(a)

fL

fA

A

ϕL[1]

ϕL[2]

ϕL[3]

ϕA[1]

ϕA[2]

ϕA[3]

(b)

.

fA

A

ϕA[1]

ϕA[2]

ϕA[3]

g
(1)
A

= c
(1)
2 ϕA[2]

r
(1)
A

(c)
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fA

A

ϕA[1]

ϕA[2]

ϕA[3]

c
(2)
2 ϕA[2]

= g
(2)
A

c
(2)
3 ϕA[3]

(d)

fL

fA

A

ϕL[1]

ϕL[2]

ϕL[3]

c
(2)
2 ϕA[2]

c
(2)
2 ϕL[2]

g
(2)
L

= g
(2)
A

c
(2)
3 ϕA[3]

c
(2)
3 ϕL[3]

angle unknown

(e)

Figure 4.13: Geometrical interpretation of extrapolation by best approximation: (a) Original

vector fL. (b) Reduction of vector fL within space L to fA within observable support area A.

(c) 1st iteration: approximation of fA by g
(1)
A

within A. (d) 2nd iteration: approximation of

fA by g
(2)
A

within A. (e) Aim of extrapolation by best approximation beyond A: Composition

of g
(2)
L

within L.
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function which will be selected in the next iteration does due to the non-orthogonality of

the basis functions in A not only point into the direction of r
(ν)
A

, but has also components

in the subspace spanned by the previously selected basis functions. The component into

the direction of r
(ν)
A

is required in order to decrease the approximation error. Since

at the same time components are included which are located in the already considered

subspace, the previously computed projection of fA on that subspace is not valid anymore.

Consequently, all expansion coefficients of the parametric model have to be recalculated.

4.3.3 2-D Extrapolation by Best Approximation Using DFT Ba-

sis Functions

In order to perform the extrapolation for image signals by best approximation, we insert

basis functions based on the 2-D DFT according to (3.29) into the equations derived

in the last section. The definition of the parametric model g[m,n] according to (3.32)

remains unchanged. Due to the symmetry requirements for real-valued signals (3.30),

the approximation of the parametric model in the next iteration by the update ∆g[m,n]

taking all selected basis functions into account has to be revised to

∆g[m,n] =
∑

(u,v)∈K(ν+1)

(∆cu,v ϕu,v[m,n] + ∆c∗u,vϕ
∗
u,v[m,n]) (4.40)

Consequently, the residual error signal in the next iteration is computed by

r(ν+1)
w [m,n] = r(ν)

w [m,n] − 1

2MN

∑

(u,v)∈K(ν+1)

(
∆cu,v ϕu,v[m,n] + ∆c∗u,vϕ

∗
u,v[m,n]

)
w [m,n]

(4.41)

For the resulting approximation error energy we obtain

E
(ν+1)
A

=
∑

(k,l)∈L

w[m,n]
(
r(ν) [m,n]

− 1

2MN

∑

(u,v)∈K(ν+1)

(
∆cu,vϕu,v[m,n] + ∆c∗u,vϕ

∗
u,v[m,n]

)
b [m,n]

)2

. (4.42)

In order to minimize the residual error criterion E
(ν+1)
A

in iteration ν + 1, the partial

derivatives of the approximation error energy with respect to each ∆cu,v and each ∆c∗u,v

have to become zero

∂E
(ν+1)
A

∂∆cu,v

!
= 0 ∀ (u, v) ∈ K

(ν+1) ∧ (4.43)

∂E
(ν+1)
A

∂∆c∗u,v

!
= 0 ∀ (u, v) ∈ K

(ν+1). (4.44)
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This minimization procedure leads to the following system of equations for each

∆c∗u,v ∀ (u, v) ∈ K(ν+1)

∑

(k,l)∈K(ν+1)


∆ck,l

∑

(m,n)∈L

(
ϕk,l[m,n]ϕ∗

u,v [m,n] w [m,n]
)

+ ∆c∗k,l

∑

(m,n)∈L

(
ϕ∗

k,l[m,n]ϕ∗
u,v [m,n] w [m,n]

)



= 2MN
∑

(m,n)∈L

r(ν)
w [m,n] ϕ∗

u,v [m,n] ∀ (u, v) ∈ K
(ν+1) (4.45)

and to a conjugate complex system of equations for ∆cu,v for each (u, v) ∈ K(ν+1).

It is now possible, to express this equation in the frequency domain

∑

(k,l)∈K(ν+1)

(
∆ck,lW

∗ [k − u, l − v] + ∆c∗k,lW [k + u, l + v]
)

= 2MNR(ν)
w [u, v]

∀ (u, v) ∈ K
(ν+1) (4.46)

Analogously, we obtain a system of equations for (4.43) being conjugate complex to (4.46).

The set K(ν+1) of the indices of the basis functions selected so far can be split into two

disjoint subsets. The subset K
(ν+1)
M

consists of the indices of the basis functions which

belong to the set of real-valued DFT components M (3.31). The second subset K
(ν+1)

M

contains accordingly all indices of basis functions which are not part of M

K
(ν+1)
M

=
{
(u, v) | (u, v) ∈ K

(ν+1) ∧ (u, v) ∈ M
}

(4.47)

K
(ν+1)

M
=

{
(u, v) | (u, v) ∈ K

(ν+1) ∧ (u, v) /∈ M
}

(4.48)

The sum in (4.46) can be split into two sums using the two subsets, for the real-valued

and complex-valued components. The sum over (k, l) ∈ K
(ν+1)
M

can be simplified due to

symmetry properties

∑

(k,l)∈K
(ν+1)

M

(
∆ck,lW

∗ [k − u, l − v] + ∆c∗k,lW [k + u, l + v]
)

+
∑

(k,l)∈K
(ν+1)
M

2∆ck,lW [k + u, l + v] = 2MNR(ν)
w [u, v] ∀ (u, v) ∈ K

(ν+1) (4.49)

As previously described, we solve (4.49) and its conjugate complex equation using

matrix notation. Therefore, we number again the indices of the basis functions which

belong to K
(ν+1)
M

from 0 to i and the indices of K
(ν+1)

M
from i + 1 to ν

K
(ν+1)
M

= {(u0, v0) ; . . . ; (ui, vi)} = {(k0, l0) ; . . . ; (ki, li)} (4.50)

K
(ν+1)

M
= {(ui+1, vi+1) ; . . . ; (uν , vν)} = {(ki+1, li+1) ; . . . ; (kν , lν)} (4.51)
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We compose the two (2ν − i + 1) × 1 vectors ∆c and R(ν)
w and the matrix W with

dimension (2ν − i + 1) × (2ν − i + 1)

∆c =




∆ck0,l0

...

∆cki,li

∆cki+1,li+1

...

∆ckν ,lν

∆c∗ki+1,li+1

...

∆c∗kν ,lν




(4.52) R(ν)
w =




R
(ν)
w [u0, v0]

...

R
(ν)
w [ui, vi]

R
(ν)
w [ui+1, vi+1]

...

R
(ν)
w [uν , vν ]

R
(ν)∗

w [ui+1, vi+1]
...

R
(ν)∗

w [uν , vν ]




(4.53)

W =




2W [k0+u0, l0+v0] · · · 2W [ki+u0, li+v0] W ∗ [ki+1−u0, li+1−v0] · · ·
...

. . .
...

...
. . .

2W [k0+ui, l0+vi] · · · 2W [ki+ui, li+vi] W ∗ [ki+1−ui, li+1−vi] · · ·

2W [k0+ui+1, l0+vi+1] · · · 2W [ki+ui+1, li+vi+1] W ∗ [ki+1−ui+1, li+1−vi+1] · · ·
...

. . .
...

...
. . .

2W [k0+uν , l0+vν ] · · · 2W [ki+uν , li+vν ] W ∗ [ki+1−uν , li+1−vν ] · · ·

2W [k0−ui+1, l0−vi+1] · · · 2W [ki−ui+1, li−vi+1] W ∗ [ki+1+ui+1, li+1+vi+1]

2W [k0−uν , l0−vν ] · · · 2W [ki−uν , li−vν ] W ∗ [ki+1+uν , li+1+vν ] · · ·

· · · W ∗ [kν−u0, lν−v0] W [ki+1+u0, li+1+v0] · · · W [kν +u0, lν +v0]
. . .

...
...

. . .
...

· · · W ∗ [kν−ui, lν−vi] W [ki+1+ui, li+1+vi] · · · W [kν +ui, lν +vi]

· · · W ∗ [kν−ui+1, lν−vi+1] W [ki+1+ui+1, li+1+vi+1] · · · W [kν +ui+1, lν +vi+1]

· · ·
...

...
. . .

...

· · · W ∗ [kν−uν , lν−vν ] W [ki+1+uν , li+1+vν ] · · · W [kν +uν , lν +vν ]

· · · W ∗ [kν +ui+1, lν +vi+1] W [ki+1−ui+1, li+1−vi+1] · · · W [kν−ui+1, lν−vi+1]
...

. . .
...

...
. . .

· · · W ∗ [kν +uν , lν +vν ] W [ki+1−uν , li+1−vν ] · · · W [kν−uν , lν−vν ]




(4.54)
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Hence, we express (4.49) and its conjugate complex counterpart in matrix notation

W ∆c = 2MN R(ν)
w (4.55)

and solve for the adaptation vector of all coefficients selected so far

∆c = 2MN W−1 R(ν)
w . (4.56)

If the matrix W is ill-conditioned which might occur for many iterations, the inverse

matrix W−1 can be substituted by the pseudo-inverse matrix W + referred to as Moore-

Penrose pseudo-inverse [46]:

W + = (W HW )−1W H.

The expansion coefficients c
(ν+1)
u,v , ∀ (u, v) ∈ K(ν+1) in step ν+1 are obtained by adding

the adaptation update ∆cu,v to the expansion coefficients c
(ν)
u,v in step ν

c(ν+1)
u,v = c(ν)

u,v + ∆cu,v ∀ (u, v) ∈ K
(ν+1) (4.57)

For further approximations, the weighted residual error in the frequency domain is

required. The transform of (4.41) yields

R(ν+1)
w [k, l] = R(ν)

w [k, l] − 1

2MN

∑

(u,v)∈K(ν+1)

(
∆cu,vW

∗ [k − u, l − v] + ∆c∗u,vW [k + u, l + v]
)

(4.58)

With help of the derivations it is possible to implement the best approximation com-

pletely in the frequency domain. As in the selective case, the parametric model is initial-

ized by G(0)[k, l] = 0 yielding a residual error signal in the first iteration of

R(0)
w [k, l] = DFTM,N{r(0)

w [m,n]} = DFTM,N{w[m,n]f [m,n]}.

Further, only the transform of the weighting function W [k, l] = DFTM,N{w[m,n]} and an

inverse transform of the parametric model g[m,n] = IDFTM,N{G[k, l]} after termination

are required. As termination criterion also the drop of the decrease of the residual error

criterion below the threshold Emin (3.23) is applied.

4.3.4 3-D Extrapolation by Best Approximation Using DFT Ba-

sis Functions

Three-dimensional extrapolation using best approximation works according to the same

principle as for two-dimensions. Therefore, we skip the derivations and give the most im-

portant equations for applying basis functions based on the DFT. They are given mainly in

the frequency domain as required for a corresponding frequency domain implementation.
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The selection of the basis function to be used for further approximating the residual

is analogously to the selective case based on (4.24). Accordingly, the residual error is

further approximated by

∆g[m,n, t] =
∑

(u,v,q)∈K(ν+1)

(∆cu,v,q ϕu,v,q[m,n, t] + ∆c∗u,v,q ϕ∗
u,v,q[m,n, t]) (4.59)

The updates are obtained by equating the partial derivatives of the approximation

error energy E
(ν+1)
A

with respect to the updates of all basis functions selected so far to

zero, i.e.,

∂E
(ν+1)
A

∂∆cu,v,q

!
= 0 ∀ (u, v, q) ∈ K

(ν+1) ∧ (4.60)

∂E
(ν+1)
A

∂∆c∗u,v,q

!
= 0 ∀ (u, v, q) ∈ K

(ν+1). (4.61)

(4.61) leads to the following equation
∑

(k,l,p)∈K
(ν+1)

M

(
∆ck,l,p W ∗ [k − u, l − v, p − q] + ∆c∗k,l,p W [k + u, l + v, p + q]

)

+
∑

(k,l,p)∈K
(ν+1)
M

(2∆ck,l,pW [k + u, l + v, p + q]) = 2MNT R(ν)
w [u, v, q] ∀ (u, v, q) ∈ K

(ν+1)

(4.62)

where the set K(ν+1) is again split into two disjoint subsets K
(ν+1)
M

and K
(ν+1)

M

K
(ν+1)
M

=
{
(u, v, q) | (u, v, q) ∈ K

(ν+1) ∧ (u, v, q) ∈ M
}

(4.63)

K
(ν+1)

M
=

{
(u, v, q) | (u, v, q) ∈ K

(ν+1) ∧ (u, v, q) /∈ M
}

. (4.64)

A conjugate complex equation to (4.62) is obtained for (4.60).

In order to solve the system of equations for the 3-D case, the equations have to be

expressed in matrix notation according to the 2-D procedure (4.52-4.56).

The expansion coefficients are updated by

c(ν+1)
u,v,q = c(ν)

u,v,q + ∆cu,v,q ∀ (u, v, q) ∈ K
(ν+1) (4.65)

Finally, the residual error in the frequency domain R
(ν)
w can be expressed in the next

iteration by

R(ν+1)
w [k, l, p] = R(ν)

w [k, l, p] − 1

2MNT

×
∑

(u,v,q)∈K(ν+1)

(
∆cu,v,qW [k − u, l − v, p − q] + ∆c∗u,v,qW [k + u, l + v, p + q]

)

(4.66)

As it has been shown, the algorithm derived for 2-D can be extended straightforwardly

to the 3-D case including its efficient implementation in the frequency domain.
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4.4 Frequency Selective Extrapolation vs. Best Ap-

proximation

In the following, the extrapolation performance of frequency selective extrapolation is

compared to the performance of best approximation as introduced in Section 4.3. There-

fore, best approximation is applied to the already familiar representative example of

estimating an unknown block of 16 × 16 pixels from its known surrounding. In practice,

this corresponds to concealment of isolated 16 × 16 block losses.

First, the results obtained for 2-D extrapolation are presented in Section 4.4.1 and the

corresponding 3-D results in Section 4.4.2. The interpretation of the results is given in

Section 4.4.3.

4.4.1 Extrapolation Result Using 2-D Best Approximation

The 2-D isotropic weighting function as introduced in Section 3.5.2 is also a suitable

weighting function for best approximation in our extrapolation context. Based on the

investigations in [48], the following parameters are chosen for 16 × 16 block losses: the

decay parameter ρ̂ = 0.8, the support area includes 16 known surrounding pixels, the

DFT size is 64 × 64, and the termination criteria are chosen to maximally 20 iterations

and ∆min = 1.

First, the energy of the error between the approximation and the original signal in
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Figure 4.14: Energy of approximation error for Lena for isolated 16 × 16 block losses. Set of

parameters used: ρ̂ = 0.8, ∆min = 0, 16 surrounding pixels, DFT size 64 × 64.
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Figure 4.15: PSNR results comparing best approximation to selective extrapolation for

isolated 16× 16 block losses. Set of parameters used: ρ̂ = 0.8, ∆min = 0, 16 surrounding pixels,

DFT size 64 × 64.

the support area is evaluated. Therefore, the energy of the approximation error per pixel

obtained by best approximation is compared to frequency selective extrapolation with

respect to the number of iterations for Lena in Fig. 4.14. For both methods, the param-

eters mentioned above are applied. The algorithms work identical in the first iteration

and produce therefore the same result. In the second iteration, the best approximation

yields a stronger decrease in approximation error energy. With an increasing number of

iterations, the curves run nearly parallel at the interval of the gain achieved in the second

iteration.

So far, we have evaluated the energy of the approximation error in the known area.

Next, we evaluate the performance of the extrapolation in the unknown area objectively

as well as subjectively.

The extrapolation performance for best approximation is compared to frequency selec-

tive extrapolation in terms of PSNR in Fig. 4.15. The results are presented for concealing

16 × 16 losses in Lena, Peppers, and Baboon. For Lena, the best approximation yields

the better result in the first few iterations. Then, the performance of the best approxi-

mation decreases, whereas the performance of frequency selective extrapolation remains

nearly constant. For Peppers, the performance of both algorithms is similar until 5 it-

erations are reached. As for Lena, the performance of the best approximation decays

rapidly afterwards. In contrast, the performance increases further for frequency selective

extrapolation with an increasing number of iterations. For Baboon, the performance of the
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Figure 4.16: Extrapolation by 2-D best approximation for 16 × 16 block losses, 24.11 dB.

Figure 4.17: Result by 2-D frequency selective extrapolation for 16 × 16 losses, 24.83 dB.
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two algorithms shows a similar behavior, although the performance of frequency selective

extrapolation is slightly better than best approximation.

In summary, although the best approximation yields the best possible approximation

of the support area in each iteration, in general it does not yield the better extrapolation of

the unknown area. Only for a few iterations, the best approximation may achieve better

results, but with an increasing number of iterations the frequency selective extrapolation

performs better. The performance of best approximation even decreases rapidly for an

increasing number of iterations. Besides, the complexity of the best approximation is

computational very expensive due to the matrix inversion required in each iteration,

especially for an increasing number of iterations.

Visual results are presented in the following in order to confirm the objective results.

Fig. 4.16 illustrates the result obtained with best approximation for Lena and isolated

16 × 16 block losses. For comparison, the corresponding result for frequency selective

extrapolation is shown in Fig. 4.17. Although single blocks are excellent concealed with

best approximation, other blocks suffer from strong artifacts as for instance above the hat

or at the shoulder. Similar artifacts, but by far not as strong, occur also for frequency

selective extrapolation. Besides, the DFT basis images are more pronounced for the best

approximation. Furthermore, the artifacts occur also in the chrominance components and

lead to color artifacts. The same visual effects can be observed for Peppers and Baboon

according to [48].

4.4.2 Extrapolation Result Using 3-D Best Approximation

The 3-D isotropic model as introduced in (4.27) is also applied as weighting function for

extrapolation by 3-D best approximation. According to the investigations in [48], the

following parameters are selected for the estimation of 16×16 block losses in this section:

the decay parameter ρ̂ = 0.8, the support area includes in spatial direction 16 surrounding

pixels and in temporal direction 2 previous and 2 subsequent frames, and the DFT size

equals 64 × 64 × 16.

The results comparing the extrapolation performance in terms of PSNR with respect

to the number of iterations are depicted in Fig. 4.18 for the sequences Flowergarden, Crew,

and Vimto in CIF format. The comparison of the 3-D extrapolation approaches shows a

similar behavior as already observed for 2-D. Better results may be achieved using best

approximation only for a few iterations. An increasing number of iterations does not

improve the result anymore, but the performance may even decrease rapidly. In contrast,

the performance for frequency selective extrapolation yields the better result with an

increasing number of iterations compared to best approximation and it does not decrease

anymore. In [48] it was further observed that the performance of best approximation

generally increases with an increasing size of the support area, i.e. in the 3-D context
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Figure 4.18: PSNR results comparing 3-D best approximation to 3-D selective extrapola-

tion for isolated 16×16 block losses. Set of parameters used: ρ̂ = 0.8, ∆min = 0, 16 surrounding

pixels, NV = NN = 2 frames, DFT size 64 × 64 × 16.

with more frames being involved. Visual results are not presented here, but as it has been

discussed in [48] similar effects as for 2-D can be observed.

4.4.3 Discussion of Results

The geometrical interpretations as described in Section 4.3.2 for best approximation and

in Section 3.2 for selective extrapolation are the basis for the following discussions. For

best approximation, in each iteration the vector of the approximation error is projected

onto the selected basis vectors. The basis vectors in the subspace of the support area are

not mutually orthogonal. The considered image signals commonly consist only of a few

dominant frequencies. Using DFT like functions as basis functions, the basis functions

can be interpreted as the frequency components of the signal and the expansion coefficient

as the corresponding frequency amplitude. If the number of iterations corresponds ap-

proximately to the number of dominant frequencies, these frequencies are selected and the

projection onto the corresponding subspace yields a good parametric model. If the number

of iterations exceeds the number of dominant frequencies, the performance of the extrap-

olation result decreases, because frequencies are selected which are only weakly present in

the original signal. The inclusion of these frequencies into the parametric model leads to

a strong change of the dominant frequencies resulting from the non-orthogonality of the
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basis functions in the approximation subspace. The components of the weak frequencies

in direction of the dominant frequencies have to be compensated. Thus, the amplitudes of

the dominant frequencies of the signal do not correspond to the corresponding amplitudes

in the parametric model anymore. The parametric model consists of a different spectral

composition than the original signal, although it yields the best possible approximation

of the known area. This also explains why the performance of the best approximation

decreases rapidly with an increasing number of iterations.

In order to confirm these statements, simulations with artificially generated signals

are evaluated. A white noise signal is generated and subsequently a varying number of

dominant frequencies are inserted. Single frequencies are excited with an amplitude five

times as high as the mean of the amplitudes of all frequencies. For a 16 × 16 block

with a 8 × 8 block loss, the PSNR is measured for concealing with best approximation

and frequency selective extrapolation. The PSNR difference for one to ten dominant

frequencies with respect to the number of iterations is depicted in Fig. 4.19. If less

iterations are considered than the signal has dominant frequencies, the performance of

best approximation and frequency selective extrapolation are comparable. In case the

number of dominant frequencies equals approximately the number of iterations, the best

approximation performs better than frequency selective extrapolation which is visible

at the valley of the PSNR value along the main diagonal. The performance of best

approximation becomes worse than frequency selective extrapolation if the number of

iterations exceeds the number of dominant frequencies.

Further investigations in [48] have shown that the number of iterations required for

a sufficient visual quality of the extrapolated areas exceeds the number of dominant

frequencies for 2-D as well as 3-D. Hence, for a desired quality of the extrapolation result,

the best approximation performs worse than frequency selective extrapolation. However,

the performance of best approximation generally increases if the support area becomes

larger in relation to the area to be extrapolated according to [48]. The reason is that the

lack of mutual orthogonality of the basis functions in the subspace of the support area

becomes less significant.

In summary, although the best approximation achieves the best possible approxima-

tion of the support area, it leads to an inferior extrapolation result in the unknown area

compared to frequency selective extrapolation. Furthermore, the best approximation may

lead to severe visual artifacts.
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for a 16 × 16 block with 8 × 8 losses, DFT size 16 × 16.
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5 Error Concealment of Lost Block

Coded Data

Multimedia services require error-free transmission of digital image and video data over

distinct communication channels. The data is vulnerable to transmission errors due to

compression. In case of transmission over unreliable channels as a transmission channel

in mobile communications or the Internet, transmission errors may lead to data losses.

Hence, a robust data stream is required using robustness tools like packetization and syn-

chronization markers in order to localize the data losses [59]. Furthermore, the application

of robustness techniques allows to decode the images or video frames except for the lost

regions. At the decoder side error concealment is applied in order to conceal the effects

of data losses. In case of video transmission, concealment is especially important in order

to limit error propagation caused by predictive coding.

In this chapter, the frequency selective extrapolation method derived in the last chap-

ters is applied to various concealment tasks in image and video communications. Depend-

ing on the coding scheme, transmission errors cause different type of losses:

• For block-based coders like JPEG or MPEG transmission errors cause block losses.

In predictive coding commonly applied, the data loss may even lead to consecutive

block losses.

• In wavelet-based coding like JPEG2000, the visual effects of errors are different

because transmission errors cause losses of wavelet coefficients in the subband.

First, a review of related methods developed for error concealment in block based

coding is given in Section 5.1. Then, the concept of frequency selective extrapolation

is applied to error concealment of block losses in Section 5.2. Investigations analyze

the performance and the impact of parameters in simulations. A comparison of the

concealment performance of frequency selective extrapolation to related techniques follows

in Section 5.3. Finally, frequency selective extrapolation is realized in a video decoder as

concealment method. Based on the results of Section 5.2, the developed extrapolation

methods are integrated into the state-of-the-art video decoder H.264/AVC (Advanced

Video Coding) [23] as concealment feature in Section 5.4. The application of frequency

selective extrapolation to concealment of lost wavelet coded data and its integration into

the JPEG2000 decoder is discussed in Chapter 6.
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5.1 Related Work in Concealment of Lost Block

Coded Data

Spatial and temporal correlations of the image and video signal, respectively, are exploited

in order to reconstruct the missing areas by concealment. Depending on the information

used for concealment, three categories can be distinguished: spatial, temporal, and spatio-

temporal methods. Spatial concealment methods make use of the spatial correlations in

image and video signals. The image content of damaged blocks is estimated from the

correctly received neighboring blocks. Temporal concealment methods take advantage

of temporal correlations in video signals by estimating the missing data from previously

transmitted frames. Both, spatial as well as temporal approaches fail in certain con-

cealment scenarios: Spatial methods often have problems to reconstruct high-frequency

and detailed image contents, whereas temporal approaches may fail in case of complex

and fast object motions, scene cuts, or luminance variations. Positive synergy effects are

obtained by combining the spatial and temporal approaches to spatio-temporal methods

which simultaneously exploit spatial and temporal correlations of the video signal.

Several spatial concealment methods are reviewed in Section 5.1.1. In Section 5.1.2,

temporal error concealment methods are briefly described. The performance of frequency

selective extrapolation is compared to the performance achieved by related techniques in

Section 5.3.

5.1.1 Spatial Concealment of Block Losses

Spatial concealment methods are applied to losses occurring in image transmission or video

transmission of Intra coded frames. There exists a variety of different techniques how to

estimate the unknown area from the correctly received surrounding. One possibility is

to apply spectral estimation methods and use techniques as described in Section 2.2.2.

Other algorithms work in the spatial-domain.

A standard approach of Wang et. al [60] allows the reconstruction of smooth areas.

Based on the assumption that the image content is changing smoothly, the algorithm tries

to restore the transition along the block boundary as smooth as possible. Hence, edges

can not be restored and the image appears blurry.

Another approach based on Projection onto Convex Sets (POCS) [56] belongs to the

category of band-limited extrapolation by spectral estimation reviewed in Section 2.2.2.

The surrounding blocks are first classified as either monotonous areas or areas containing

edges. Subsequently, the missing block including the surrounding blocks are transformed

by a DFT. According to its classification, the block is filtered. In case of a smooth area, a

lowpass filter according to (2.7) is applied and otherwise a bandpass in direction of the edge

(2.8). After the inverse DFT the surrounding blocks are replaced by the correct samples
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and the amplitudes are clipped to the valid range. The procedure is repeated iteratively

and requires two transforms per iteration implying a high computational complexity.

A single occurring edge can be restored but multiple orientations can not be resolved.

The reconstruction of smooth areas does not always succeed due to the overshoot effects

caused by band-limited extrapolation methods. Further, block effects occur at the block

boundaries.

The approach [8] places emphasis on a very efficient implementation. The missing

block and the adjacent correct pixels are transformed to the DCT-domain. Based on the

assumption that higher frequencies are less important than lower frequencies, the DCT-

coefficients corresponding to higher frequencies are set at zero. Solving the system of

equations for the unknown pixels yields the missing block. Diagonal edges can not be

restored as well as details due to the cancellation of the high frequencies.

The method [49] is performed in the spatial-domain. The missing block is expressed

by a weighted linear combination of the surrounding blocks. The weighting coefficients

are obtained with a least squares solution minimizing the boundary error between the

known and missing blocks. Partitioning the surrounding blocks can yield an improved

reconstruction of diagonal edges.

The pixel-based method of [63] predicts each pixel from the available next neigh-

bors. The missing block is pixel-based reconstructed from eight directions and given by

a weighted linear combination of these reconstructed blocks. Hence, the method is com-

putationally very complex. In principle the method achieves good results, edges can be

restored but the reconstruction of details is not always satisfying.

5.1.2 Spatio-Temporal Concealment of Block Losses

Temporal concealment methods are commonly applied to conceal losses of temporally pre-

dicted macroblocks in Inter coding mode as they occur for erroneous video transmission.

These methods try to exploit similarities along the time axis of subsequent frames. As

already mentioned in Section 2.4, we are not aware of any existing methods using spec-

tral estimation for temporal concealment. Common approaches are based on the motion

vector recovery principle.

The simplest temporal error concealment technique places the block spatially located

at the same position in the previous frame instead of the lost block. This approach is called

Temporal Block Replacement (TR) [59]. The replacement with the block spatially located

at the same position in the previous frame corresponds to a motion vector of zero length

in block based motion compensation. For non-moving image contents this algorithm is

well suited for concealment. In case of moving contents, however, this algorithm leads to

severe motion artifacts. Therefore, other methods try to restore the motion vector of the

missing block in order to compensate the motion.
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The Boundary Matching Algorithm (BMA) [29] takes advantage of temporal informa-

tion in order to conceal lost blocks. The match of the block compensated with different

motion vectors and its neighboring correctly received blocks is evaluated by the difference

of adjacent pixel values at the block boundaries. Thereby, the zero motion vector, the

vector of the block in the previous frame, the vectors of the neighboring blocks, the me-

dian, and the average of the neighboring vectors are tested. The vector which results in a

minimum boundary error is selected. The BMA assumes that only the motion vectors are

lost. The Extended Boundary Matching Algorithm (EBMA) is applied if also the predic-

tion error signal is lost. Additionally to the motion vectors the prediction error signals of

the neighboring blocks and an assumed zero prediction error are used. The combination

of prediction error and motion vector is selected which is minimizing the boundary error.

The BMA method exploits the spatial correlation of pixels for the recovery of the

motion vector. In contrast, the Decoder Motion Vector Algorithm (DMVE) [67] uses the

temporal correlation of succeeding frames for the estimation of the motion vector. The

surrounding of the lost block consisting of a frame of two to eight lines of pixels is used

to find the block in the previous frame which matches best. Also already concealed pixels

in the surrounding are taken into account. Full search in the previous frame is performed

in order to find the best match. Several methods are suggested in order to speed up

the algorithm. For example, the possible set of motion vectors can be limited to a set

of test vectors which is referred to as optional candidate search. In [19], additional post

processing by a deblocking filter is proposed.

A motion compensated frame interpolation method [66] can also be used for error

concealment. First, the motion vectors embedded in the bit stream of a coded video are

examined if they reflect the true motion. For the non-reliable motion vectors, overlapped

block bidirectional motion estimation is used. The obtained motion vectors are post

processed in order to smooth the motion vector field. Bidirectional Overlapped Block

Motion Compensation (OBMC) is recovering the lost macroblock.

In [20], a fading scheme for block loss recovery is suggested. A boundary error criterion

based on BMA determines if either spatial, temporal, or fading of both methods is used

for recovering the lost image samples in a macroblock. The boundary error is propagated

into the lost MB by interpolation and determines pixelwise which method is to be applied

for concealment.

The previously described BMA, DMVE, and OBMC work in two steps: First, the

motion vector is restored and, second, the motion is compensated. Other methods base

on the principle of motion vector field interpolation computing one motion vector per

pixel [6, 7]. They aim at reproducing not only translational motion but also rotations

and scalings. The motion field is interpolated and compensated for each pixel from the

motion vectors of the neighboring blocks. However, this approach strongly depends on

the reception of the motion vectors of the neighboring blocks. Therefore, the motion field
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is often obtained by a combination of the motion interpolation and the BMA which is

referred to as Motion Field Interpolation Boundary Matching [6]. The extension to using

multiple frames for motion compensation is described in [7].

5.2 Concealment using Frequency Selective Extrap-

olation

In the following, frequency selective extrapolation is applied to concealment of transmis-

sion losses. Depending on the surrounding available data, two cases are addressed: In

Section 5.2.1, 2-D frequency selective extrapolation is used for spatial concealment. 3-D

frequency selective extrapolation is applied to spatio-temporal concealment in 5.2.2.

We investigate both, isolated and consecutive macroblock (MB) losses of 16×16 pixels

that typically appear in erroneous image and video transmission.

5.2.1 Spatial Concealment Using 2-D Frequency Selective Ex-

trapolation

In this section, 2-D frequency selective extrapolation as derived in Section 3.4 is applied

to spatial concealment. For specifying a suitable problem-specific weighting function, the

principle of applying frequency selective extrapolation to the estimation of centrally lo-

cated unknown blocks surrounded by known data was already explained in Section 3.5.

An isotropic model which decays radial symmetrically and involves pixels closer to the

missing area stronger into the extrapolation than distant pixel achieved large gains up

to 2.2 dB compared to a simple binary weighting function. The representative example

chosen for these general investigations in Section 3.5 corresponds to spatial concealment of

isolated block losses. Therefore, using frequency selective extrapolation together with the

Table 5.1: Parameters for concealment of 16 × 16 losses using frequency selective extrapolation

with isotropic weighting function (Section 3.5.3).

ρ̂ 0.74

no. of known pixel 13

Termination max. no. of iterations 11

criterion ∆min 15

DFT size 64 × 64

Consecutive losses: attenuation of concealed blocks 0.1
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Figure 5.1: Weighting function using the isotropic model with ρ̂=0.8 for consecutive lost blocks

of size 16× 16 (area B). 13 surrounding pixels (support area A) are used for reconstructing the

lost area.

isotropic weighting function (3.52) as concealment method provides very convincing re-

sults for both, subjective and objective evaluations done in Section 3.5.3 and Section 3.5.4.

A fixed set of parameters can be specified which allows to sufficiently restore different tex-

tures such as smooth areas, edges, and detailed areas. For convenience, the parameter

selection is reviewed in Table 5.1. The visual results for concealment of isolated block

losses achieved with 2-D frequency selective extrapolation correspond to the results pre-

sented in Section 3.5.4 and are therefore already given by Fig. 3.16.

In the following, concealment using 2-D frequency selective extrapolation for consec-

utive block losses is discussed. The block next to the missing one in raster scan order

is not available in case of consecutive block losses. Furthermore, the previous block is

an already extrapolated block weighted by 0.1 in order to include it in the concealment

procedure but with limiting influence to avoid error propagation. The resulting weighting

function is shown in Fig. 5.1. For comparison, the resulting weighting function in case of

isolated block losses is already given in Fig. 3.13.

Finally, visual results are presented for consecutive macroblock losses of 16×16 pixels.

The losses are concealed macroblock-wise in raster scan order. Blocks which are already

concealed are taken into account with only limited influence, applying the weighting

function depicted in Fig. 5.1. Again, the parameters according to Table 5.1 are used.

The test images with the losses and the corresponding concealed images are displayed in
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Fig. 5.2. For the image Lena artifacts appear in Fig. 5.2 (b) at horizontal structures such

as the shoulder. There, the loss covers the transition between shoulder and background

which can not be restored. Artifacts also arise at diagonal structures like the hat. Also

details are lost which are entirely covered by the loss like the pupils of the Baboon in

Fig. 5.2 (f). However, the visual impression of the images Peppers in Fig. 5.2 (d) and

Baboon in Fig. 5.2 (f) with mainly vertical structures is very convincing. For the image

Baboon also the structure of the fur and the beard can be restored. In consideration of

the extent of the losses the visual quality of the extrapolated areas is remarkable.

The conclusions from these evaluations allow to integrate the method as concealment

feature into the reference software of the H.264/AVC decoder in Section 5.4.3.

(a) (b)
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(c) (d)

(e) (f)

Figure 5.2: Test images with consecutive block losses and corresponding concealed images using

the isotropic weighting function at DFT size 64 × 64 with parameters according Table 5.1.
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5.2.2 Spatio-Temporal Concealment Using 3-D Frequency Se-

lective Extrapolation

In this section, 3-D frequency selective extrapolation as derived in Section 4.2 is applied

to spatio-temporal concealment of isolated and consecutive MB losses. The principle of

spatio-temporal extrapolation from a 3-D volume into a centrally located block is already

described in Section 4.2.3. For isolated MB losses occurring in video communications, this

example corresponds to spatio-temporal concealment of a MB of 16 × 16 pixels. In Sec-

tion 4.2.3, the problem-specific weighting function w[m,n, t] relying on the 3-D isotropic

model (4.27) is specified where the importance of pixels involved in the extrapolation

decreases with distance to the lost block in spatial as well as temporal direction. Sub-

sequent evaluations have shown the suitability of this weighting function. The principle

shape of the 3-D isotropic model is illustrated in Fig. 4.3. The resulting weighting function

w[m,n, τ ] for the frame τ containing the missing block corresponds to the 2-D weighting

function shown in Fig. 3.13.

In case consecutive losses are occurring, the already concealed block in raster scan order

is taken into account with limited influence. Here, the concealed block is weighted with

0.1 as for 2-D, see Fig. 5.1. Subjective results are also presented. The conclusions from

these evaluations are the basis for integrating this method as spatio-temporal concealment

feature into the reference software of the H.264/AVC decoder in Section 5.4. The impact

on subsequent frames caused by error propagation due to predictive coding is addressed

in Section 5.4.3.

As for 2-D, a fixed set of parameters can be specified using the 3-D isotropic weighting

function according to Section 4.2.4 which is given again in Table 5.2 for convenience.

PSNR results achieved with this set of parameters are presented in Table 5.3 for isolated

16 × 16 block losses. Further, the average number of iterations per block is given. For

Table 5.2: Parameters for spatio-temporal concealment of 16 × 16 losses using 3-D frequency

selective extrapolation with 3-D isotropic weighting function (Section 4.2.3).

ρ̂ 0.8

Support no. of known pixel 13

area no. of frames involved NV = NN 2

Termination max. no. of iterations 200

criterion ∆min 0.1

DFT size 64 × 64 × 32

Consecutive losses: attenuation of concealed blocks 0.1
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Table 5.3: PSNR results and average number of iterations per block for block losses for param-

eters according to Table 5.2

Sequence Flowergarden Flowergarden Crew Crew

NV = NN = 2 NV = 2;NN = 0 NV = NN = 2 NV = 2;NN = 0

∆min = 0.1 27.94 dB 26.03 dB 32.40 dB 30.82 dB

177.80 It. 177.24 It. 147.40 It. 148.72 It.

∆min = 1.0 27.35 dB 25.48 dB 31.50 dB 30.60 dB

116.68 It. 103.96 It. 30.0 It. 30.76 It.

∆min = 2.0 26.57 dB 24.84 dB 30.98 dB 30.19 dB

73.8 It. 66.48 It. 17.44 It. 17.40 It.

Sequence Foreman Foreman Table Tennis Table Tennis

NV = NN = 2 NV = 2;NN = 0 NV = NN = 2 NV = 2;NN = 0

∆min = 0.1 37.06 dB 35.22 dB 30.07 dB 26.27 dB

114.84 It. 114.40 It. 166.52 It. 164.36 It.

∆min = 1.0 33.98 dB 33.14 dB 29.47 dB 26.03 dB

26.96 It. 27.68 It. 54.72 It. 53.00 It.

∆min = 2.0 33.20 dB 32.33 dB 28.94 dB 25.69 dB

18.44 It. 18.48 It. 34.32 It. 33.48 It.

each sequence two cases are presented with a support area using the actual and only

previous frames simulating unidirectional coding and a support area using previous and

subsequent frames simulating bidirectional coding. In general, the results are better if

previous and subsequent frames can be used for the extrapolation. However, using only

previous frames yields still very satisfying results.

The number of required iterations depends on the image content within the considered

volume. If the approximation quality is decreased by increasing the threshold ∆min, the

algorithm terminates after less iterations. However, with less iterations still very satisfying

results can be achieved as Table 5.3 shows. The difference in terms of PSNR is 1.1 dB to

1.4 dB for NV = NN = 2 except for the Foreman sequence. There, 3.92 dB are lost but

the quality of the reconstructed areas with 33.14 dB is still sufficiently high. For using

only previous frames, the loss is less in general. In fact, the computational complexity

of the 3-D extrapolation could be reduced by increasing ∆min while providing visually

pleasing concealment results.

Visual results for the sequences Flowergarden and Crew are presented in Fig. 5.3 and

Fig. 5.4, respectively. In the top row, the error patterns and in the middle row the
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Table 5.4: Comparison of 3-D extrapolation for isolated and consecutive block losses. Parameters

used according to Table 5.2 with NV = NN = 2.

Flower Foreman Table Tennis Crew

Isolated losses 27.94 dB 37.06 dB 30.07 dB 32.40 dB

Consecutive losses 28.60 dB 36.11 dB 30.56 dB 32.09 dB

corresponding concealed frames are shown using the parameters according to Table 5.2.

The bottom graphs in Fig. 5.3 depict the number of iterations used per block for each

color component separately where the blocks are numbered in raster scan order. For

the luminance component Y more iterations are required as for the color components U

and V in order to yield the desired quality, because the chrominance components contain

less signal energy than the luminance component. Further, for smooth areas only a few

iterations are done in contrary to high frequent areas as the flowers in the meadow. In

case of the sequence Flowergarden, 177.8 iterations on average per block yielding 27.94

dB are done for isolated losses and 154.73 iterations yielding 28.60 dB for consecutive

losses. For concealment of losses in the sequence Crew, less iterations are required. In

case of isolated block losses 147.4 iterations on average with 32.4 dB PSNR and 130.17

iterations with 32.09 dB PSNR for consecutive losses are used.

The previous evaluations show that the 3-D frequency selective extrapolation is able to

reconstruct smooth and complex image contents as well as edges. The approximation of

the edge of the tree in the sequence Flowergarden in Fig. 5.3 proves that also motion can

be estimated. Fig. 5.4 shows for the sequence Crew that also abrupt luminance changes

can be compensated.

Further investigations presented in [32] emphasize the inherent motion compensation.

There, the four test sequences are motion compensated prior to 3-D extrapolation. Better

results could not be achieved by using prior motion compensation. This means that the

3-D extrapolation accomplishes inherent motion compensation. However, block based

motion compensation in video coding does not necessarily imitate the true motion and

only translational motion can be compensated. In contrast, 3-D extrapolation is more

flexible and can compensate deformations better.

These results already indicate that the performance for concealing consecutive block

losses does not decrease compared to isolated block losses. This is demonstrated in more

detail in Table 5.4 for all test sequences. For consecutive losses the previous block in

raster scan order is weighted by 0.1, as for 2-D.

The visual results corresponding to Table 5.4 in case of Foreman and Table Tennis are

presented in the following. In Fig. 5.5 the concealed frames for isolated block losses are

depicted. The corresponding error patterns are shown in Fig. 4.4(d) and in Fig. 4.4(f),
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Figure 5.3: Results for sequence Flowergarden using parameters according to Table 5.2 with

NV = NN = 2 for isolated and consecutive block losses. Top row: Frames with losses. Middle

row: Concealed frames. Bottom row: Iterations per block numbered in raster scan order.
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Figure 5.4: Results for sequence Crew using parameters according to Table 5.2 with NV =

NN = 2 for isolated and consecutive block losses. Top row: Frames with losses. Middle row:

Concealed frames. Bottom row: Iterations per block numbered in raster scan order.
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(a)

(b)

Figure 5.5: Concealed isolated losses using 3-D frequency selective extrapolation with parameters

according to Table 5.2 and NV = NN = 2. (a) Foreman. (b) Table Tennis.

respectively. The visual quality of the missing areas is excellent and it is almost impossible

to identify artifacts. Also the results for concealment of consecutive block losses, as shown

in Fig. 5.6 for the sequences Foreman and Table Tennis with the corresponding loss

pattern, confirm the excellent concealment properties of the 3-D algorithm.
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(a) (b)

(c) (d)

Figure 5.6: Frame with consecutive losses and corresponding concealed frame using 3-D fre-

quency selective extrapolation with parameters according to Table 5.2 and NV = NN = 2.
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5.3 Comparison to Related Techniques

The performance of the developed concealment strategies using frequency selective extrap-

olation as described in Section 5.2 is compared to the performance of related techniques

reviewed in Section 5.1.

5.3.1 Results for Spatial Concealment

In Section 5.2.1, 2-D frequency selective extrapolation is applied to spatial concealment.

The achieved concealment performance is compared in this section to the performance of

related spatial concealment techniques reviewed in Section 5.1.1. The maximally smooth

recovery [60], POCS [56], the spatial-domain interpolation according to [8], and the se-

quential error concealment [63] are considered for the comparison. The corresponding

results are shown in Table 5.5. The results using frequency selective extrapolation are

obtained with the fixed parameter set according to Table 5.1.

For the images Lena and Peppers, the frequency selective extrapolation performs as

good as the sequential error concealment method. The difference to the next best method

maximally smooth recovery is 0.5 dB for Lena and for Peppers even 2.1 dB. In Fig. 5.7

the corresponding visual results are presented for Peppers. The error pattern is shown

in Fig. 5.7 (a) and the result of maximally smooth recovery in Fig. 5.7 (b). Due to this

maximally smooth recovery edges can not be restored and appear blurry, in contrast to

Fig. 5.7 (c) with restored edges concealed by the sequential method. Edges and even di-

agonal edges can also be restored with frequency selective extrapolation as can be noticed

from Fig. 5.7 (d).

For Baboon, maximally smooth recovery provides the best PSNR, although the visual

evaluation shows a better perceived quality for sequential error concealment and frequency

selective extrapolation. In Fig. 5.8, the corresponding visual results are shown. Even if

the best PSNR is obtained using maximally smooth recovery, the concealed parts as the

Table 5.5: The performance of spatial error concealment techniques in comparison.

16 × 16 Block loss

Lena Peppers Baboon

Maximally smooth recovery [60] 23.7 dB 24.2 dB 19.5 dB

POCS [56] 22.3 dB 22.1 dB 18.9 dB

Spatial-domain interpolation [8] 21.2 dB 23.3 dB 16.4 dB

Sequential error concealment [63] 24.2 dB 26.9 dB 18.8 dB

2-D frequency selective extrapolation 24.2 dB 26.3 dB 18.8 dB
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(a) (b) Maximally smooth recovery [60], 24.2 dB

(c) Sequential error concealment [63], 26.9 dB (d) Frequ. selective extrapolation, 26.3 dB

Figure 5.7: Comparison of different spatial concealment techniques for the image Peppers.
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(a) (b) Maximally smooth recovery [60], 19.5 dB

(c) Sequential error concealment [63], 18.8 dB (d) Frequ. selective extrapolation, 18.8 dB

Figure 5.8: Comparison of different spatial concealment techniques for the image Baboon.
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fur appear blurry. The PSNR is better especially in the detailed areas due to this lowpass

effect as for algorithms which try to restore details. Although the visual impression is

better, small but not visible phase shifts cause the low PSNR. The sequential concealment

method exploits the correlation between pixels in order to predict the missing pixel. If

this assumption is not fulfilled in areas with low correlation like the fur, the algorithm

fails. This area cannot be predicted which results in white spots in Fig. 5.8 (c). For

comparison, Fig. 5.8 (d) shows the concealed image with the proposed method. As can

be noticed, the subjective performance is better than it is indicated by the PSNR values.

In conclusion, the comparison of frequency selective extrapolation to related techniques

shows that its performance is comparable to the sequential concealment method [63] and

superior to the other techniques [60, 56, 8] investigated. However, [63] has problems in

concealing detailed areas and, moreover, is computational very complex due to the pixel

based recovery. The simulation results have clearly shown that, in contrast to the other

methods, frequency selective extrapolation is not only able to restore smooth areas, but

it is also capable to deal with edges and detailed areas.

5.3.2 Results for Spatio-Temporal Concealment

In the following, the performance of 3-D frequency selective extrapolation applied to

error concealment according to Section 5.2.2 is compared to the temporal concealment

methods as described in Section 5.1.2. The parameters according to Table 5.2 are used

for 3-D extrapolation based concealment. The result of the Temporal Blockreplacement

(TR) algorithm copying simply the block from the previous frame illustrates the motion

of the sequences. As temporal methods based on motion vector recovery the Decoder

Motion Vector Estimation (DMVE) [67], the Boundary Matching Algorithm (BMA) and

the Extended Boundary Matching Algorithm (EBMA) described in [29] are considered

for the comparison. Furthermore, the results of Overlapped Block Motion Compensation

(OBMC) [66] with bidirectional motion compensation taking the previous and the subse-

quent frame into account are compared. Motion compensated prediction with full search

at pixel accuracy is performed in order to obtain the motion vectors and the prediction

error. The motion vectors of the blocks to be concealed and additionally the prediction

error signal in case of EBMA, DMVE, and OBMC are discarded. For comparison, the

results of the spatial 2-D extrapolation are also presented.

Table 5.6 summarizes the results for isolated and Table 5.7 for consecutive losses.

The OBMC with bidirectional motion compensation has a comparable performance to

3-D extrapolation, except for the Crew sequence where 3-D extrapolation is better. For

isolated losses, OBMC performs better whereas for consecutive losses the performance of 3-

D extrapolation is superior in most cases. For the remaining simulations, the concealment

performance of 3-D extrapolation outperforms the other algorithms up to several dB in
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Table 5.6: Comparison of different temporal concealment techniques to frequency selective ex-

trapolation for isolated block losses.

Flower Foreman Table Tennis Crew

TR [59] 17.79 dB 28.77 dB 19.75 dB 19.55 dB

BMA [29] 28.99 dB 36.40 dB 25.19 dB 26.46 dB

EBMA [29] 22.95 dB 32.13 dB 22.25 dB 24.44 dB

DMVE [67] 25.43 dB 36.12 dB 28.28 dB 21.45 dB

OBMC [66] 28.30 dB 38.17 dB 32.50 dB 25.80 dB

2-D 17.04 dB 27.43 dB 19.94 dB 27.62 dB

3-D 27.94 dB 37.06 dB 30.07 dB 32.40 dB

Table 5.7: Comparison of different temporal concealment techniques to frequency selective ex-

trapolation for consecutive block losses.

Flower Foreman Table Tennis Crew

TR [59] 17.99 dB 28.64 dB 20.40 dB 19.25 dB

BMA [29] 26.16 dB 33.22 dB 25.16 dB 25.89 dB

EBMA [29] 25.22 dB 33.46 dB 24.06 dB 24.02 dB

DMVE[67] 25.44 dB 35.32 dB 22.78 dB 20.52 dB

OBMC [66] 27.59 dB 38.57 dB 27.76 dB 24.71 dB

2-D 16.12 dB 22.47 dB 19.25 dB 26.15 dB

3-D 28.60 dB 36.11 dB 30.56 dB 32.09 dB

PSNR. The only exception occurs for isolated block losses for Flowergarden, because there

the BMA algorithm is 1 dB better than the 3-D extrapolation and 0.7 dB better than

OBMC. The vector of the homogenous motion can be reconstructed very well from the

vectors of all surrounding blocks. To receive all surrounding vectors is unlikely in a

real-world scenario because several blocks in a row are commonly coded in one packet.

Additionally, the prediction error signal is commonly lost and not reconstructed. In

contrast to the other techniques, the performance of 3-D extrapolation does not decrease

for consecutive losses even if less data is available for the estimation.

Next, we want to confirm the gained insights subjectively. The results for concealing

the consecutive block losses for the sequence Flowergarden in Fig. 5.3 are shown in Fig. 5.9.

The results for the BMA algorithm are not presented, instead, the results for the more
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realistic EBMA are given. Fig. 5.9(a) shows that there is significant motion present

in the sequence and that simple block replacement with 17.99 dB yields strong motion

artifacts. In Fig. 5.9(b) the results using the EBMA with 25.22 dB and in Fig. 5.9(c)

using the DMVE with 25.44 dB are presented. Obviously, the algorithms are not able

to compensate the motion which is apparent at the edges of the tree. The performance

of the OBMC using bidirectional motion compensation yields a better result with 27.56

dB. However, motion artifacts occur also for instance at the bush or the roof of the house

on the right hand side next to the tree. The worst result is obtained using the 2-D

extrapolation displayed in Fig. 5.9(e). Using additionally the third dimension time, the

3-D extrapolation significantly improves the performance to 28.60 dB. 3-D extrapolation

is able to inherently compensate the motion with an improvement of 1.04 dB compared

to the next best temporal method OBMC. Also details like the branches of the tree, the

bushes, or the flowers in the meadow can be extrapolated.

Fig. 5.10 shows the results for concealing consecutive losses in the sequence Crew de-

picted in Fig. 5.4. Using TR visualizes in Fig. 5.10(a) that significant luminance changes

occur from frame to frame at slow motion. The results of the temporal concealment meth-

ods relying on the motion vector recovery principle such as EBMA, DMVE, and OBMC

are shown in Fig. 5.10(b), Fig. 5.10(c), and Fig. 5.10(d), respectively. The algorithms are

not able to compensate the change in luminance caused by a flash of a camera. Therefore,

wrong motion vectors are determined leading to very annoying artifacts. In this case, the

spatial method 2-D extrapolation shown in Fig. 5.10(e) is advantageous and the lost areas

can be reconstructed fairly good. The spatio-temporal extrapolation improves the result

by reconstructing detailed areas like badges on the uniforms proven by Fig. 5.10(f) com-

pared to 2-D. Additionally, the variations in luminance can be compensated which leads

to an improvement from 7.28 dB to 11.47 dB compared to the temporal methods.
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(a) TR 17.99 dB (b) EBMA 25.22 dB

(c) DMVE 25.44 dB (d) OBMC 27.59 dB

(e) 2-D extrapolation 16.12 dB (f) 3-D extrapolation 28.60 dB

Figure 5.9: Comparison of techniques for concealing consecutive losses in Flowergarden.
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(a) TR 19.25 dB (b) EBMA 24.02 dB

(c) DMVE 20.52 dB (d) OBMC 24.71 dB

(e) 2-D extrapolation 26.15 dB (f) 3-D extrapolation 32.09 dB

Figure 5.10: Comparison of techniques for concealing consecutive losses in Crew.
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5.4 Integration of Frequency Selective Extrapolation

into H.264/AVC Decoder

The state-of-the-art video coding standard H.264/MPEG-4 Advanced Video Coding

(AVC) [23], in short H.264/AVC, was released in 2003 as a joint project of the Joint

Video Team (JVT) of the two standardization organizations Motion Picture Experts

Group (MPEG) and International Telecommunication Union Telecommunication Stan-

dardization Sector (ITU-T). As common for video standards, the H.264/AVC defines

only the syntax and the semantic of the bitstream. The implementation details including

coder optimizations are left unspecified. The main concepts of the video coding standard

are summarized in [43, 55].

The codec H.264/AVC was not designed for a special purpose but for a variety of

applications. Besides the increased data compression and the use for different applica-

tions, the standard provides several novel tools for improving the error robustness. Error

robustness tools enable the transmission of coded video data in error prone environments.

The main concepts are described in Section 5.4.1.

In Section 5.4.2 the error concealment methods used in the reference software are

reviewed. The realization of the frequency selective extrapolation in the reference software

decoder as concealment feature is given in Section 5.4.3. Both methods are evaluated by

simulations in Section 5.4.4.

5.4.1 Error Robustness in H.264/AVC

Several error robustness tools are provided by the H.264/AVC standard in order to enable

the transmission of coded video sequences in error prone environments [52]. A Macroblock

(MB) consists of 16 × 16 luminance values and 8 × 8 chrominance values for a YUV

signal in the most common format. Several MBs are organized in slices. The beginning

of a slice thus provides a possible synchronization point. Due to the concept of slice

structured coding, the slices can be coded and decoded independently. This increases the

error robustness and allows the use of concealment techniques. Furthermore, a parallel

processing of the slices is possible. The size of a slice can be adjusted to the maximum

transfer unit (MTU) of the underlying network. In case of IP packet based transmission

over the Internet this would be 1400 bytes [62]. Hence, in case of a packet loss, a complete

slice gets lost. However, H.264/AVC differentiates between the Video Coding Layer (VCL)

and the Network Abstraction Layer (NAL). The VCL is responsible for coding the video

data as efficient as possible. The adaptation of the VCL data to the network is done by

the NAL.

Error robustness can additionally be increased by Flexible Macroblock Ordering

(FMO) which modifies the assignment of MBs to a slice [52]. With help of FMO a frame
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Figure 5.11: FMO patterns. (a) Dispersed. (b) Interleaved.

can be divided into different MB patterns. Two FMO patterns are shown in Fig. 5.11:

the mode dispersed in Fig. 5.11 (a) and interleaved in Fig. 5.11 (b). In both cases, the

MBs are assigned to four slice groups visualized by four different colours. In case of a loss,

the MBs with one colour get lost. Thus, the two loss patterns used in the simulations

for uncoded data are produced. For the mode dispersed in Fig. 5.11 (a), a loss results in

isolated losses causing a checkerboard like loss pattern and for the mode interleaved in

Fig. 5.11 (b) in consecutive MB losses.

Error robustness is, however, increased at the expense of coding efficiency which has

to be traded off for the respective application.

5.4.2 Error Concealment in Reference Software

As already mentioned, error concealment is non-normative in common video coding stan-

dards. In the following the concealment procedure for the reference software of the

H.264/AVC standard is reviewed as described in [61]. In the H.264/AVC reference soft-

ware, spatial concealment is applied for Intra coded MBs only, losses of Inter coded MBs

are concealed by exploiting temporal information.

First, the frame is decoded by H.264/AVC except for the lost areas. The status of

each MB is stored as “correctly received” or “lost” in a status map. The concealment

processing starts at the frame boundaries and proceeds inwards columnwise. The status

of a MB is updated after concealment and marked by “concealed” in the status map as

illustrated in Fig. 5.12.

The concealment algorithm used for Intra coded MBs in the H.264/AVC reference

decoder implementation [61] is based on weighted pixel averaging from surrounding image

data. The inverse distance from the adjacent correctly received pixel serves as weight.

Only correctly received pixels are taken into account for the interpolation if available,

otherwise also already concealed ones. Thus, in case of MB losses in a row, only the top

and bottom MB are used for concealment.

For Inter coded MBs, either TR or motion vector recovery based on EBMA [61] is
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lost

concealed

MB to be processed

correctly received

lost slice

Figure 5.12: The condition of each MB is stored in the status map.

applied. If the average motion vector length of all correctly received motion vectors of

the entire frames is below the threshold 1
4
, the lost MBs are replaced by copying the MBs

spatially located at the same position from the previous frame. If the average motion

vector length exceeds this threshold, the temporal concealment method is based on the

EBMA algorithm. The prediction error signal is lost in case of transmission errors and

no prediction error signal recovery is done. As test vectors, the zero motion vector and

all motion vectors of the correctly received neighboring blocks are used. For motion

compensation in H.264/AVC video coding, a MB can be split into several blocks down

to a size of 4 × 4 pixels which is rate-distortion optimized. Hence, multiple vectors per

MB can be transmitted. Furthermore, five reference frames are available for prediction.

For concealment, the motion vector of the MB to be concealed is estimated from the

surrounding 16× 16 or 8× 8 blocks pointing to the corresponding reference frame. Thus,

4 × 4 blocks are merged to 8 × 8 blocks. The test vector which results in a minimum

boundary error between the MB to be concealed and the correctly received neighboring

blocks is chosen as motion vector.

5.4.3 Realization of Concealment Using Frequency Selective Ex-

trapolation

The algorithm of the frequency selective extrapolation applied to concealment is integrated

into the H.264/AVC reference software version JM9.3 [54]. The concealment processing

order of the MBs according to the status map illustrated by Fig. 5.12 is left unchanged.

2-D as well as 3-D extrapolation is used for concealment.

2-D extrapolation is used for concealment of Intra coded MBs. If several MBs in

a row are lost, for uncoded images the already concealed MB is taken into account for

the extrapolation with limited influence as shown in Fig. 5.1. In case of coded data
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replacements

Lost MB Initialized

Received Concealed
Used for initialization

Figure 5.13: Status of MBs used for concealment in case of consecutive losses.

as considered here, we extend this idea so that the MB to be concealed is completely

surrounded by image data which can be used for extrapolation. Therefore, a missing

surrounding MB is initialized by weighted interpolation from adjacent top and bottom

pixels of the correctly received MB where the inverse distance from the respective pixel

serves as weight. Thereby, the effect of visible basis images can be reduced. The status

of MBs used for concealment providing the input signal f [m,n] is shown in Fig. 5.13.

An attenuation of the concealed block is not necessary anymore in contrast to uncoded

images, so that all surrounding blocks contribute equally to the extrapolation.

Based on the investigations for uncoded images summarized in Section 5.2.1, the

following parameters are chosen for 2-D extrapolation. The coefficient ρ̂ is set to 0.75.

The 8 MBs surrounding the lost MB are taken as support area. The 9 MBs according to

Fig. 5.13 are padded with zeros to a block of size 64×64 which is then transformed by

a suitable FFT implementation. Further, the algorithm terminates if the residual error

decrease falls below the threshold ∆min = 15, or if the maximum number of 20 iterations

is reached.

3-D extrapolation is used for concealing Intra as well as Inter coded MBs. Since the 3-D

extrapolation does not use any information based on motion vectors, the method can be

easily applied to Intra coded frames. As already shown by the investigations for uncoded

frames in Section 5.3.2, the concealment result can be improved significantly using three

dimensions instead of two dimensions. Because no motion information is available for

the first frame of a sequence, it is concealed by the 2-D extrapolation method. For

Inter coded blocks in case of slow motion, i.e., if the average motion vector length of all

correctly received motion vectors is below the threshold 1
4
, the lost MBs are replaced by

copying the MBs spatially located at the same position from the previous frame. If the

average motion vector length exceeds this threshold, the image content of the lost blocks

is estimated instead by using the 3-D frequency selective extrapolation. In contrast to

the reference software, both, the correctly received and the already concealed blocks are

used for the calculation of the parametric model.

In Section 5.2.2 we investigated the performance for uncoded frames with respect

to different parameters. Based on the results, the following parameters are chosen for

the 3-D approach. For the simulations, we used the Baseline profile of the H.264/AVC

coder in order to code the test sequences. The Baseline profile supports only P and no

B frames, hence, only previous frames can be taken into account for the extrapolation.
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We used 2 previous frames in the evaluations. The lost MB and its adjacent MBs form

a block of 48 × 48 pixels which is zero-padded to the next larger DFT size of 64 × 64.

The same configuration is applied to the 9 MBs spatially located at the same position

in the 2 previous frames. The total DFT size of 64 × 64 × 16 per processed block is

obtained by further zero padding in temporal direction. Hence, also the DFT size is

halved in temporal direction compared to the uncoded case summarized in Table 5.2 in

order to reduce the computational complexity. Further, the termination thresholds are

both slightly altered to the threshold ∆min = 0.5 per pixel or a maximum number of 150

iterations. In Section 5.2.2 it was shown that these changes are only at the expense of a

marginal loss in PSNR. The coefficient ρ̂ is set to 0.8.

5.4.4 Simulations and Results

Spatial Concealment of Intra coded MBs

The performance of 2-D extrapolation is compared to the spatial concealment method used

in the reference software [61] for concealing lost Intra coded MBs.

In order to evaluate the performance, 150 frames of two VQEG (video quality experts

group) sequences (VQEG5 Canoe, VQEG7 Fast Food) and 200 frames of the well-known

test sequences City, Harbour, and Crew in PAL format (720× 576 pixels) are encoded by

the H.264/AVC software using the Baseline profile. The Intra frame period is 10, implying

that each I frame is followed by 9 P frames. Here, we want to compare the performance of

spatial concealment methods and its impact on future frames. Therefore, the sequences

are encoded with fixed slice sizes using the FMO patterns dispersed and interleaved (see

Fig. 5.11). Packet losses are introduced in I frames according to a regular pattern.

The PSNR of the entire sequence depends on the number of lost MBs, i.e. the more

blocks are lost, the worse the PSNR is. Therefore, three sets of results are analyzed:

• The absolute number of lost MBs is eliminated by calculating the PSNR for the lost

areas only.

• The PSNR is calculated for I frames only in order to evaluate the overall impression

of the frame including coding artifacts.

• The PSNR for all frames is evaluated taking the effects into account which are

caused by error propagation due to predictive coding.

The objective results measured in terms of PSNR are presented in Table 5.8. First,

we consider the performance of the two algorithms concerning PSNR evaluated for the

concealed areas only. In case of the mode dispersed, the performance for the frequency

selective extrapolation method is better than H.264/AVC from comparable performance

in terms of PSNR up to considerable 1.69 dB for the sequence Fast Food. The visual
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Table 5.8: Objective performance comparison of spatial methods for concealment of Intra coded

MBs measured in PSNR (dB) for H.264/AVC coded sequences.

FMO Pattern Dispersed Interleaved

Concealment Spatial ref. [61] 2-D extrap. Spatial ref. [61] 2-D extrap.

Coded sequ. Fast Food 37.07 Fast Food 37.08

lost areas 23.81 25.52 21.77 22.15

I-frames 29.61 31.11 28.32 28.71

all frames 31.39 32.62 30.09 30.42

Coded sequ. Canoe 34.58 Canoe 34.61

lost areas 23.20 23.46 20.28 20.32

I-frames 28.72 28.98 26.57 26.62

all frames 30.87 31.06 29.30 29.32

Coded sequ. Harbour 35.82 Harbour 35.83

lost areas 20.81 21.01 20.69 20.70

I-frames 26.52 26.70 28.39 28.40

all frames 27.39 27.50 29.14 29.11

Coded sequ. City 35.64 City 35.65

lost areas 23.42 23.25 21.91 22.00

I-frames 28.85 28.69 29.42 29.48

all frames 29.41 29.26 30.00 30.04

Coded sequ. Crew 37.64 Crew 37.65

lost areas 27.41 28.21 27.21 27.53

I-frames 32.54 33.19 34.00 34.24

all frames 33.33 33.86 34.44 34.65

impression shows a clearer result. It should, however, be pointed out again that the

average difference to the original signal measured by PSNR does not necessarily reflect

the subjective visual quality of the image. This has already been observed for concealing

losses in the image Baboon. As discussed in the following, the extrapolation approach

provides a significantly better perceived image quality compared to the reference software

H.264/AVC.

Fig. 5.14 shows the concealed results for the sequence City for the checkerboard like

loss pattern of the mode dispersed. In Fig. 5.14 (a), the frame concealed by H.264/AVC
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(a) Spatial method H.264/AVC [61], 28.84 dB

(b) 2-D extrapolation, 28.59 dB

Figure 5.14: Concealed frame 101 of sequence City, mode dispersed, Intra MBs lost.
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(a) Spatial method H.264/AVC [61], 28.66 dB

(b) 2-D extrapolation, 28.80 dB

Figure 5.15: Concealed frame 81 of sequence Canoe, mode interleaved Intra MBs lost.
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is displayed and in Fig. 5.14 (b) by 2-D extrapolation. The PSNR of the top frame

is 28.84 dB and of the bottom frame 28.59 dB. Although the PSNR is better for the

spatial method of the reference software, the visual impression is clearly different. The

2-D extrapolation method is able to reconstruct the vertical pattern of the building on

the left hand side as well as the cross-like pattern of the windows of the building on the

right hand side. The interpolation method in contrast blurs the patterns and causes also

errors in the luminance. This results in very annoying visual artifacts which appear also

in the following frames due to predictive coding.

As shown in Table 5.8, the PSNR gains of 2-D extrapolation over the spatial method

of H.264/AVC are lower for the interleaved mode. Taking a look at the results for the lost

areas, they reach from equal quality in terms of PSNR to a gain of 0.38 dB. Nevertheless,

the visual result obtained for 2-D extrapolation is by far more convincing than H.264/AVC

as demonstrated by Fig. 5.15 as in case of the mode dispersed. Fig. 5.15 (a) shows the

frame concealed by H.264/AVC and Fig. 5.15 (b) by 2-D extrapolation. H.264/AVC

uses only the top and bottom block for concealment which leads to blurring in vertical

direction. This is visible in the Canoe sequence Fig. 5.15 (a) where diagonal structures

like the paddel or the back of the man cannot be restored. These artifacts do not occur

for frequency selective extrapolation as can be seen from Fig. 5.15 (b). Additionally, the

concealment results of the 2-D extrapolation method for smooth areas like the water or

the background appear very naturally.

As already mentioned, calculating the PSNR only for the lost areas eliminates the

dependence of the number of lost MBs per frame. Thus, the concealment performance is

explicitly reflected and the performance for the mode dispersed can be directly compared

to the mode interleaved. For the dispersed pattern, concealment is more successful up

to 3.37 dB compared to interleaved. In case of the mode dispersed, the lost block is sur-

rounded by correct blocks which improves the concealment result significantly. However,

the coding efficiency is reduced because prediction is not allowed over slice boundaries.

Therefore, error robustness has to be traded off against efficiency for the respective ap-

plication.

Taking a look at Table 5.8, a gain in PSNR for the lost areas apparently results in a

gain in PSNR for all frames. A better concealment of I frames allows a better prediction

for the following P frames and therefore reduces error propagation caused by predictive

coding, too.

Spatio-Temporal Concealment of Intra and Inter coded MBs

In the following, the concealment performance of 3-D extrapolation is compared against

the non-normative methods used in the reference software [61].

In order to evaluate the performance, 65 frames of the test sequences Canoe, Fast Food,

Crew, and Discovery in PAL format (720 × 576 pixels) are encoded by the H.264/AVC
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software using the Baseline profile. The Intra frame period is 20. In order to simulate a

DVB-T like transmission, we choose the slice size to 188 byte which is the corresponding

size of a video data packet. Hence, in case of a loss, a slice simulating one packet gets

lost. We introduce packet losses randomly according to a mobile scenario [58]. In order to

obtain more reliable results, 10 realizations of a channel are simulated for each condition.

Both, weak and strong distortions are introduced. The sequences are encoded using

the FMO patterns dispersed and interleaved (see Fig. 5.11). Again, the increased error

robustness reduces the coding efficiency. However, we are mainly interested in evaluating

the concealment performance of the proposed algorithm.

Three different sets of experiments are considered in the following:

• The proposed 3-D extrapolation is applied to concealing Inter coded blocks. The

concealment results are compared against the temporal method used in the reference

software.

• Since the 3-D extrapolation does not use any information based on motion vectors,

the method is also applied to Intra coded MBs. Note that the first frame is concealed

by the 2-D extrapolation method because no motion information is yet available.

The performance is compared against the spatial concealment method used in the

reference software for a sequence of only Intra coded frames.

• The 3-D extrapolation is used as concealment method for losses occurring in both,

Intra and Inter coded frames. The results are compared against the corresponding

methods used in the reference software.

Both, objective results measured in terms of PSNR and subjective results visualized by

images are presented.

The first set of experiments uses 3-D extrapolation for concealment of lost Inter coded

blocks. The objective results comparing the performance of 3-D extrapolation to the

temporal method of the reference software in terms of PSNR are shown in Table 5.9. In

case of the mode interleaved, the two algorithms show comparable performance. While

the extrapolation shows better results for the sequence Canoe, the motion vector recovery

works better for the sequence Fast Food, especially for severe losses. Clear conclusions,

however, can be drawn from the performance results for the mode dispersed. There, the

3-D extrapolation outperforms the motion vector recovery method in each case. The

performance for Canoe is still slightly better, but for Fast Food the performance has

significantly improved even up to 1.08 dB compared to the reference in case of strong

distortions.

Visual results are presented in Fig. 5.16. Results for checkerboard like losses are

depicted, comparing H.264/AVC concealment in Fig. 5.16 (a) to 3-D extrapolation in

Fig. 5.16 (b). Strong motion is involved in this scene. The motion vectors can not follow
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Table 5.9: Concealment results for PAL sequences comparing 3-D extrapolation to the temporal

method of the reference software. 3-D extrapolation is used for Inter MBs.

Distortions Method Canoe Fast Food

Interleaved - - 34.65 dB 36.86 dB

Strong 3-D extrapolation 29.72 dB 29.37 dB

H.264/AVC [61] 29.54 dB 30.48 dB

Weak 3-D extrapolation 32.81 dB 35.01 dB

H.264/AVC [61] 32.68 dB 35.64 dB

Dispersed - - 34.58 dB 36.81 dB

Strong 3-D extrapolation 32.49 dB 34.60 dB

H.264/AVC [61] 32.33 dB 33.52 dB

Weak 3-D extrapolation 33.91 dB 36.04 dB

H.264/AVC [61] 33.76 dB 35.65 dB

the true motion, hence, the recovery leads to wrong vectors causing very annoying arti-

facts. The 3-D extrapolation method in contrast can compensate the motion inherently.

Successful concealment is very important because it also improves the quality of the sub-

sequent frames due to predictive coding. On the top left border of Fig. 5.16 (a) concealed

by H.264/AVC, the effects of error propagation are visible. No error propagation artifacts

occur in case of 3-D extrapolation based concealment on the top left border of the frame

in Fig. 5.16 (b).

As already mentioned, the 3-D extrapolation can be easily applied to concealment of

Intra coded blocks. The performance of the spatial method used in the reference software

is to be compared to 3-D extrapolation. For this experiment, 10 frames of the sequences

Canoe and Fast Food are Intra coded. Again, 10 runs causing weak and strong distortions

are done. The results are displayed in Table 5.10. Obviously, the 3-D extrapolation

outperforms the spatial concealment method of the reference software in any case by

using both, spatial and temporal information. For the sequence Fast Food improvements

up to more than 2 dB can be gained. Fig. 5.17 confirms this result also visually. The

blocks concealed by the spatial method of the reference software in Fig. 5.17 (a) disturb

the visual impression at the transition from the towel to the background, whereas the

blocks concealed by 3-D extrapolation in Fig. 5.17 (b) are hardly visible.

Therefore, 3-D extrapolation is used to conceal both, Intra and Inter coded MBs. The

overall performance and the comparison to the reference software is shown in Table 5.11.

For the overall performance, two more sequences Crew and ’Documentation’ are simu-

lated. The performance for the sequences Canoe and Fast Food has slightly increased by



5.4. Integration of Frequency Selective Extrapolation into H.264/AVC Decoder 135

(a) Temporal method H.264/AVC [61], 36.58 dB

(b) 3-D extrapolation, 36.73 dB

Figure 5.16: Concealed frame 43 of sequence Fast Food, mode dispersed.
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(a) Spatial method H.264/AVC

(b) 3-D extrapolation

Figure 5.17: Concealed frame 8, sequence Fast Food, mode interleaved, Intra coded.
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Table 5.10: Concealment results for Intra coded PAL sequences. 3-D extrapolation used for

Intra coded frames.

Distortions Method Canoe Fast Food

Interleaved - - 38.32 dB 37.35 dB

Strong 3-D Extrapolation 35.98 dB 35.70 dB

Spatial H.264/AVC 35.69 dB 33.58 dB

Weak 3-D Extrapolation 37.62 dB 36.93 dB

Spatial H.264/AVC 37.46 dB 35.94 dB

Dispersed - - 38.32 dB 37.34 dB

Strong 3-D Extrapolation 37.32 dB 36.31 dB

Spatial H.264/AVC 36.72 dB 35.34 dB

Weak 3-D Extrapolation 38.02 dB 37.00 dB

Spatial H.264/AVC 37.80 dB 36.71 dB

incorporating the 3-D extrapolation also for I frames. However, only 3 frames are coded

Intra in each sequence of 65 frames at an I frame period of 20. Considering the mode

interleaved, the performance of 3-D extrapolation for the sequence Fast Food could be

improved considerably compared to Table 5.9, but is slightly worse than for the reference

software. In contrast, the results for Canoe and Crew are slightly better. The results

for the sequence Discovery obtained by extrapolation are significantly better than by

H.264/AVC. Concealment by recovering motion vectors fails because the sequence con-

tains many scene cuts. Visual results are given later for this case. In case of the mode

dispersed, the 3-D extrapolation used for concealment performs better for each sequence

and loss case. For the sequence Discovery and severe degradations gains even up to 1.72

dB are achieved.

In Fig. 5.18, the results for the sequence Crew obtained for the temporal method of the

reference software in Fig. 5.18 (a) and for 3-D extrapolation in Fig. 5.18 (b) are compared

for the mode interleaved. Based on the motion vector recovery principle, the motion

compensated image content is copied into the frame in Fig. 5.18 (a). Hence, the changes in

luminance to the previous frames caused by the flash of a camera can not be compensated.

However, the concealment works better compared to the motion vector recovery based

methods as shown in Fig. 5.10 for uncoded frames. The advanced motion compensation

of H.264/AVC allows for a better concealment result. The annoying artifacts are avoided

by the spatio-temporal extrapolation method which is able to compensate the variations

in luminance.

The visual impression is even more distorted in case of a scene cut, as Fig. 5.19 shows.
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Table 5.11: Concealment results in dB for PAL sequences. 3-D extrapolation used for Intra as

well as Inter coded frames (except 1st frame, concealed by 2-D extrapolation).

Dist. Method Canoe Fast Food Crew Discovery

Interleaved - - 34.65 36.86 36.92 37.18

Strong 3-D Extrapolation 29.79 30.00 36.42 34.47

H.264/AVC 29.54 30.48 36.08 33.66

Weak 3-D Extrapolation 32.84 35.04 36.65 36.16

H.264/AVC 32.68 35.64 36.60 35.62

Dispersed - - 34.58 36.81 36.92 37.20

Strong 3-D Extrapolation 32.59 34.85 36.42 36.20

H.264/AVC 32.33 33.52 36.08 34.48

Weak 3-D Extrapolation 33.95 36.12 36.72 36.91

H.264/AVC 33.76 35.65 36.59 36.47

The principle is the same, the motion compensated blocks are copied from the previous

frame even if they do not fit at all. The result is depicted in Fig. 5.19 (a) for checkerboard

like losses. Incorporating both spatial and temporal information by 3-D extrapolation

leads to a visually more appealing result. Obviously, the spatially surrounding information

dominates the colour information for the extrapolated area, even though the patterns from

the previous frames causing slight artifacts in colour are visible. As can be noticed from

Fig. 5.19 (b), these artifacts are, however, less annoying.
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(a) Temporal method H.264/AVC [61], 31.65 dB

(b) 3-D extrapolation, 35.90 dB

Figure 5.18: Concealed frame 29, sequence Crew, mode interleaved ; 1.4 Mbit
s

, 25 Hz, PAL.
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(a) Temporal method H.264/AVC [61], 33.98 dB

(b) 3-D extrapolation, 36.99 dB

Figure 5.19: Concealed frame 11, sequence Discovery, mode dispersed ; 1.7 Mbit
s

, 25 Hz, PAL.
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5.4.5 Summary

In this section, both, 2-D and 3-D frequency selective extrapolation has successfully been

integrated into a H.264/AVC decoder as concealment feature. The performance was com-

pared to the non-normative concealment methods of the reference software of H.264/AVC

for sequences in TV quality with PAL resolution.

The pixel interpolation method implemented in the H.264/AVC reference software

results in blurring of the concealed parts, whereas the concealment performance of the 2-D

extrapolation shows very convincing visual results due to its ability to conceal different

textures like monotonous areas, edges, and structures. The method works especially

successfull in combination with FMO using a checkerboard like pattern.

The 3-D extrapolation method is able to inherently compensate motion by exploit-

ing spatio-temporal information without requiring motion vector search. Furthermore,

changes in luminance occurring from frame to frame can be compensated inherently. The

3-D frequency selective extrapolation shows especially convincing results in combination

with FMO applying a checkerboard like pattern, also compared to the motion vector

recovery of the reference software. In case of a scene cut, the motion vector recovery

approach results in severe visual degradations. The 3-D extrapolation performs signifi-

cantly better, although slight artifacts maybe observed. In cases of non-reliable temporal

information, the advantages of the 2-D extrapolation method could be exploited for Inter

coded MBs. However, the motion of the sequence would have to be analyzed in advance

for these cases. The 3-D extrapolation method can also successfully be applied to con-

cealment of Intra coded MBs by exploiting temporal in addition to spatial information.

The simulation results have shown that the 3-D extrapolation significantly improves the

visual quality compared to the pixel based method of the reference software.
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6 Spatial Concealment of Lost

Wavelet Coded Data

In the previous chapter, frequency selective extrapolation applied to error concealment

for lost block based coded data has been investigated. As already mentioned, there are

coders which rely on wavelet based coding principles. Due to the different coding concepts,

losses cause completely different artifacts compared to block based coding. Therefore, the

impact of a loss on the data stream and error robustness tools offered by the decoder

have to be investigated, before frequency selective extrapolation can be integrated into

the JPEG2000 decoder as concealment feature.

In the beginning of 2001, the wavelet based image coding standard JPEG2000 Part

1 [1] was introduced in order to meet the requirements of new multimedia applications.

Compressed bit streams obtained by redundancy and irrelevancy reduction are especially

vulnerable to transmission errors. Therefore, special emphasis was put on error robustness

which is of great importance in the case of image transmission over non-reliable channels

as, e.g., the channels in mobile communications. JPEG2000 offers tools in order to increase

the robustness against these errors.

However, these tools only allow detection of errors and resynchronization within the

code-stream. JPEG2000 Wireless (JPWL) or Part 11 addresses therefore the issue of

correcting transmission errors [15]. The applied techniques use forward error correction

(FEC), data partitioning, interleaving, and unequal error protection (UEP). In case of

non-corrigible residual errors, the standard also includes a residual error descriptor speci-

fying the locations of residual errors in the code-stream. This information can be exploited

in order to conceal the lost data.

After presenting the fundamentals of JPEG2000 in Section 6.1, the error robustness

tools of Part 1 are investigated in Section 6.2 in order to generate a robust bit stream.

Visual distortions caused by packet losses correspond to lost wavelet coefficients. In

Section 6.3, concealment using the 2-D frequency selective extrapolation technique is de-

scribed. Based on the subsequent simulations and results presented in Section 6.4, the

realization of a packet error robust JPEG2000 decoder using frequency selective extrap-

olation for concealment [33] is given in Section 6.4.4.
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Codeblock Precinct

LL3 HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

Figure 6.1: The decomposition in subbands, precincts, and codeblocks is shown.

6.1 Fundamentals of JPEG2000

In the following of this section, we briefly review the fundamentals of the JPEG2000 Part

1 coding standard. In the pre-processing step, the image can be split in independent

non-overlapping rectangles called tiles. A level offset is applied to the image data in order

to center the pixel amplitudes around zero. Further, an optional color transform converts

RGB images into a luminance and two chrominance components. The 2-D discrete wavelet

transform (DWT) decomposes the pre-processed image data into different decomposition

levels. Each decomposition level consists of subbands with the corresponding wavelet

coefficients. The subbands are referred to as LL,HL,LH,HH, where L denotes lowpass

filtering and H highpass filtering. Fig. 6.1 shows an image transformed by three DWT

decompositions generating three decomposition levels and four resolution levels. Each

decomposition level consists of three subbands HL,LH,HH except for the lowest de-

composition level which includes also the LL band. The corresponding index denotes the

decomposition level.

The quantized coefficients are collected in code-blocks whereas the individual code-

blocks are processed in bit-planes by an arithmetic coder. The desired bit-rate is obtained
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LL3 HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

(a) Three decomposition levels after DWT de-

composition

R0

R1

R2

(b) Three resolution levels

Figure 6.2: Wavelet decomposition of image Baboon.

by rate-distortion optimized truncation of the code-block data streams by embedded block

coding with optimal truncation (EBCOT). Optionally it is possible to form layers consist-

ing of the entropy coded bit-plane data. Code-blocks from the same resolution level which

are spatially located at the same position in the subbands are organized in precincts as

illustrated in Fig. 6.1. For each layer, the data in each precinct constitutes a packet. In

case of a packet loss, wavelet coefficients belonging to one precinct get lost.

An example of a 2-D wavelet decomposed image is given in Fig. 6.2. Three DWT de-

compositions are applied to the image Baboon. In Fig. 6.2(a), the corresponding subbands

containing the wavelet coefficients are shown. The corresponding resolution levels are de-

picted in Fig. 6.2(b). As can be seen, the lowpass samples represent the original image

with a lower resolution. The LL bands of the three DWT decompositions are referred to

as R0, R1, and R2. Accordingly, the original is denoted by R3.

6.2 Tools for Error Control in JPEG2000

6.2.1 Effects of Transmission Errors

In the following, we look at the error control tools offered by the JPEG2000 coder. It

should be pointed out that the standard specifies only the code stream syntax, whereas

the use of error control mechanisms depends on the specific coder and decoder implemen-
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tation. Therefore, we investigate the impact of transmission errors on the JPEG2000 bit

stream first. Two types of transmission errors are considered, bit errors and packet losses.

The impact of bit errors strongly depends on the error location as investigations in

[21, 9] show. For example, a bit error in the header may cause a complete data loss in

contrary to an error occurring at the end of a code-block which might hardly be visible.

Packet losses have a fatal result on the coded image because they lead to a synchronization

loss between coder and decoder.

6.2.2 Error Robustness on Entropy Coding Level

Code-blocks are coded independently by the concept of embedded block coding with op-

timal truncation (EBCOT). Bit errors hence affect only the corresponding code-block.

Additionally, JPEG2000 offers the opportunity to use two kinds of termination strategies

of the arithmetic coder on bit plane level. Thereby, the detection of bit errors and the

deletion of corrupted data is made possible. As already mentioned, one precinct consti-

tutes a packet. Investigations in [21, 40] show that using smaller precincts increases the

robustness against bit errors, but the coding efficiency is obviously decreased.

6.2.3 Error Robustness on Packet Level

Assuring the bit stream synchronization plays an important role in JPEG2000 coding.

Start Of Packet (SOP) marker segments can be inserted into the data stream prior to

each packet. The marker segment consist of 6 Bytes including a sequence number. The

sequence number starts with zero for the first packet and increments by one with each

following packet. If a SOP marker segment with the right sequence number prior to the

packet header is not available during decoding, an error occurred in the data stream. A

robust decoder can look for the next correct SOP marker with a higher sequence number

and continue the decoding process.

Using small precincts increases the error robustness also in the packet loss scenario

because the amount of lost data is reduced.

6.2.4 Concealment by Inserting Empty Packets

In order to assure synchronization, the sequence numbers contained in every SOP marker

segment have to be counted. If the sequence number does not increment by one, a packet

has been lost and is replaced by an empty packet with a correct sequence number which

corresponds to inserting zeros instead of the lost wavelet coefficients. Note that due to

the level offset in JPEG2000, the zeros correspond to an average gray value of the wavelet

coefficients. In the case of layered transmission also the packets belonging to lower bit-

planes in the same precinct have to be discarded. The idea of inserting empty packets
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has been proposed in [9]. Additionally, the same technique can be applied when a SOP

marker segment is not found at the expected position which means that a bit error has

occurred in the previous packet header. As in the aforementioned case, the affected packet

can be replaced by an empty packet.

6.3 Concealment by Frequency Selective Extrapola-

tion

Error control is necessary in the presence of transmission errors as shown in the preceding

section. So far we preserve synchronization by using error robustness mechanisms and

obtain a decodable bit stream. However, the affected wavelet coefficients are lost and

can cause a severe spatially limited degradation in visual quality. Our goal is to reduce

the effects caused by packet losses. Therefore, we investigate the 2-D frequency selective

extrapolation algorithm as an error concealment algorithm in order to conceal the lost

wavelet coefficients in a subband. Fig. 6.1 shows an image transformed by a DWT gener-

ating four resolution levels. In case of a packet loss, wavelet coefficients belonging to one

precinct get lost.

The proposed concealment algorithm uses frequency selective extrapolation which is

exemplified for a packet loss in the lowpass band LL3 in the following. The extrapolation

task is illustrated in Fig. 6.3 showing a part of Fig. 6.1. The area L in the LL3 band

consists of the missing wavelet coefficients, the area to be estimated B (light gray), and

the surrounding correctly received wavelet coefficients, the support area A (dark gray).

In this case, f [m,n] denote the original wavelet coefficients of the considered subband.

The parametric model g[m,n] approximates the support area by a linear combination of

weighted basis functions. In order to determine the expansion coefficients, the error crite-

rion (3.2) between the original correctly received wavelet coefficients and the parametric

model is minimized with respect to the support area. The missing wavelet coefficients

are extrapolated from the surrounding correctly received wavelet coefficients of the same

resolution level. The block L as shown in Fig. 6.3 is transformed into the DFT domain

where the extrapolation is performed according to Section 3.4.2.

The 2-D isotropic model introduced for the concealment of lost block coded data is also

applied as weighting function (3.52) for lost wavelet coded data. Regarding the simulation

results in [21], we use the following parameter set for the concealment approach: The size

of the support area is set to 4 surrounding wavelet coefficients and the DFT-size equals

64×64. The concealment performance of the frequency selective extrapolation is therefore

considered in the next section with respect to:

• The decay parameter ρ̂ as introduced in (3.52).

• The termintion criterion maximum number of iterations.
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Figure 6.3: Concealment in case of packet loss in lowpass band LL3: The known area A (dark

gray) is approximated by a parametric model and the missing area B (light gray) is obtained

by extrapolation.

6.4 Simulations and Results

In [33], the standard decoder software JJ2000 [11] has been extended for the use in error

prone environments by the following features: Decoding was enabled for data streams

containing SOP markers including the insertion of empty packets according to [9]. In the

following simulations, the concealment performance of frequency selective extrapolation

is compared to the concealment method described in [9] and concealment by the mean of

the adjacent wavelet coefficients.

We investigate the performance of the concealment algorithms for images with a size

of 512×512 pixels. Four DWTs are applied at a bitrate of 0.5 bpp. A code block consists

of 64 × 64 wavelet coefficients. The impact of a loss depends on the resolution level and

is investigated in combination with subsequent concealment. In order to evaluate the

performance, a lost packet corresponding to a precinct is simulated for the considered

subband. The simulations are done for varying precinct sizes for the considered subband

which are specified for each simulation. For the other subbands not evaluated in the

respective simulation, one precinct per subband is chosen. The PSNR of the concealed

image with respect to the original image is calculated. This procedure is repeated for

each distinct precinct position in the subband. The PSNR is averaged over all blocks.

Based on the conclusions, the realization of a decoder robust against packet losses

using frequency selective extrapolation is presented in Section 6.4.4. The concealment

method is also applicable to colored images and is performed analogously to block coded

data on each decorrelated YUV component separately.



6.4. Simulations and Results 149

6.4.1 Concealment of Lowpass Band Losses

A packet loss in the lowpass band of the layer consisting of the most significant bit planes

causes the most severe visual degradation, since in general the lowpass components contain

most of the image information. Because losses of wavelet coded data have completely

different effects on the reconstructed images compared to block coded data, the behavior

of frequency selective extrapolation using the isotropic weighting function is presented

first for a loss in the lowpass band. The comparison of the concealment performances of

different methods is given afterwards.

Concealment Performance of Frequency Selective Extrapolation

The error robustness is increased in the lowpass band LL4 by choosing a smaller precinct

size compared to the other subbands. A precinct size of 4×4 coefficients is selected which

corresponds to 64 × 64 pixels in the reconstructed image. Although the codeblock size is

chosen to 64 × 64 coefficients, the effective codeblock size is limited by the precinct size

to 4× 4. For the other subbands, one precinct per subband is chosen. The results for the

three test images Lena, Peppers, and Baboon are presented in Fig. 6.4. The evaluations of

the parameters of frequency selective extrapolation are done for a rate of 8 bpp simulating

uncoded images in order to exclude additional coding artifacts. The PSNR gains given in

Fig. 6.4 denote the differences of the PSNR values of the extrapolation based concealed

images and the images which are reconstructed by inserting zeros. Hence, the PSNR

gain measures to what extent the extrapolation based concealed image is more similar

to the original than the other one and, thus, expresses the quality of the extrapolation.

In order to evaluate the performance, a lost packet in the lowpass band is simulated for

each possible precinct position in the lowpass band. The PSNR gain is averaged over all

blocks.

The results in Fig. 6.4 show that the maximum gain can be achieved for 4 to 7 iterations

independent on the image and ρ̂. The best results can be achieved for 0.35 ≤ ρ̂ ≤ 0.45.

In comparison to spatial concealment of block losses in Section 3.5.3, the optimum value

of ρ̂ is much lower. There, 0.74 ≤ ρ̂ ≤ 0.86 leads to the best results. However, the LL4

image is a subsampled version of the original. For a precinct size of 4× 4 and four DWT

decompositions, the loss corresponds to 64 × 64 pixels and the number of surrounding

pixels of the support area to 64 known pixels in the reconstructed image. Therefore, the

value of ρ̂ has to be chosen lower for a loss in the lowpass band.

In summary, based on the evaluations in Fig. 6.4, ρ̂ = 0.3 and a maximum number of

4 iterations are selected as parameters. Using these parameters, very high PSNR gains

of 6 dB, 3.6 dB, and 5.8 dB for the images Lena, Peppers, and Baboon, respectively, are

obtained compared to the empty packet insertion.

So far, the evaluations are done for uncoded images only in order to avoid coding arti-
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Figure 6.4: Average PSNR gain for frequency selective extrapolation of losses in the LL4 band

at a precinct size of 4 × 4 and 8 bpp coding rate.

facts. Next, results are presented for coded images at a rate of 0.5 bpp. The performance

of frequency selective extrapolation applying the chosen parameters is evaluated. For

the reconstructed images Lena, Peppers and Baboon, 32.70 dB, 32.93 dB and 25.28 dB,

respectively, are obtained. The parameters are selected appropriately as the comparison

to results achieved by the optimum parameters with 32.72 dB, 32.96 dB, and 25.30 dB

for Lena, Peppers and Baboon, respectively, shows.
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Table 6.1: Concealment of losses in LL4 band for four DWT decompositions. The PSNR is

calculated with respect to the original image. For extrapolation, results obtained with the

optimum parameters and a set of parameters chosen for each image are presented.

Rate 0.5 bpp

Precinct size 4 × 4

coded [9] mean extrap. opt. extrap. set

Lena: 35.00 29.81 31.60 32.72 32.70

Peppers: 35.66 31.44 31.80 32.96 32.93

Baboon: 25.40 25.00 25.16 25.30 25.28

Table 6.2: Concealment of losses in LL4 band for four DWT decompositions. The PSNR is

calculated with respect to the original image.

Rate 0.5 bpp

Precinct size 2 × 2 Precinct size 8 × 8

coded [9] mean extrap. coded [9] mean extrap.

Lena: 34.54 32.90 33.85 34.22 35.13 24.64 26.29 27.15

Peppers: 35.21 33.58 34.33 34.53 35.78 28.12 27.78 28.33

Baboon: 24.88 24.78 24.85 24.86 25.55 23.95 23.95 24.78

Comparison to Related Techniques

In the following, we compare the different concealment techniques for different precinct

sizes containing 2×2, 4×4, or 8×8 coefficients in the lowpass band LL4 which correspond

to 32×32, 64×64, or 128×128 pixels in the reconstructed image, respectively. The images

are coded at a bitrate of 0.5 bpp.

Table 6.1 shows the average concealment performance of the methods for a precinct

size of 4×4. A lost packet in the lowpass band is simulated and the PSNR of the concealed

image with respect to the original image is calculated. This procedure is repeated for each

possible precinct position in the lowpass band and the PSNR results are averaged. The

results of frequency selective extrapolation are compared to the PSNR results for the

coded and error free image, the concealment method described in [9], and concealment

by the mean of the adjacent coefficients. In case of extrapolation, results obtained with

the optimum parameters according to [21] and a set of parameters chosen for each image

are presented.
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(a) (b)

Figure 6.5: Concealment of four packet losses in the lowpass band (LL4) by empty packet

insertion [9] at a precinct size of 4 × 4 in the LL4 band. The coded, error free image yields

35.00 dB. (a) LL4 band with four concealed packet losses is shown. (b) The concealed and

reconstructed image yields 25.33 dB.

(a) (b)

Figure 6.6: Concealment of four packet losses in the lowpass band (LL4) by frequency selective

extrapolation using ρ̂ = 0.4, maximally 6 iterations at a precinct size of 4 × 4 in the LL4 band.

The coded, error free image yields 35.00 dB. (a) LL4 band with four concealed packet losses is

shown. (b) The concealed and reconstructed image yields 31.70 dB.
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(a) (b)

Figure 6.7: Concealment of four packet losses in the lowpass band (LL4) by empty packet

insertion [9] at a precinct size of 4 × 4 in the LL4 band. The coded, error free image yields

25.40 dB. (a) LL4 band with four concealed packet losses is shown. (b) The concealed and

reconstructed image yields 23.99 dB.

(a) (b)

Figure 6.8: Concealment of four packet losses in the lowpass band (LL4) by frequency selective

extrapolation using ρ̂ = 0.45, maximally 4 iterations at a precinct size of 4 × 4 LL4 band. The

coded, error free image yields 25.40 dB. (a) LL4 band with four concealed packet losses is shown.

(b) The concealed and reconstructed image yields 24.97 dB.



154 6. Spatial Concealment of Lost Wavelet Coded Data

For the coded and error free images, we obtain 35.00 dB for Lena and 35.66 dB for

Peppers according to Table 6.1. The image Baboon has only 25.40 dB because of the noise

like behavior of the fur, which concentrates more energy in the highpass bands than the

other two images. The highpass bands are quantized coarser due to compression using

irrelevancy reduction. The images Lena and Peppers suffer the most from packet losses

in the lowpass band, the obtained image quality using zero insertion [9] is 29.81 dB and

31.44 dB, respectively.

In order to get an impression of the visual degradation caused by a packet loss, we

present the image Lena containing four concealed packet losses. Fig. 6.5 (a) shows the

concealed lowpass signal of four packet losses by inserting empty packets and in Fig. 6.5 (b)

the reconstructed image. Severe visual distortions are clearly visible. Since the amplitudes

of the image data are centered around zero, inserting an empty packet corresponds to an

average gray level. In order to better adapt to the image, we used also the mean value of

the correctly received adjacent coefficients for the concealment process. The PSNR result

of the image Lena can be improved from 29.81 dB to 31.60 dB using this method.

However, using the frequency selective extrapolation method we can further improve

the concealment result up to 32.72 dB using the parameters ρ̂ = 0.4 and a maximum

number of 6 iterations. The visual result is shown in Fig. 6.6. Fig. 6.6 (a) shows the

concealed lowpass image with the four corresponding packet losses as in Fig. 6.5 and in

Fig. 6.6 (b) the reconstructed image. The severe visual degradation is well compensated.

The frequency selective extrapolation method is more successfull than the insertion of

either an average gray level or the mean value of the surrounding coefficients. Note

that the concealment performance of the proposed algorithm for the image Baboon shows

a different behavior than for Lena and Peppers. The PSNR results do not reflect the

achieved good subjective results. Therefore, the concealment results for the method [9]

and the proposed algorithm of four block losses are compared in Fig. 6.7 and Fig. 6.8,

respectively. On the left hand sides the concealed lowpass images are depicted and on the

right hand side the corresponding reconstructed images. Using the proposed method we

can improve the picture quality from 23.99 dB to 24.97 dB which is also clearly visible.

The results for 2 × 2 precincts are given in Table 6.2 as well as the results for 8 × 8

precincts. In case of smaller precincts, the coding efficiency is reduced because each

SOP marker has a contribution of 6 bytes. However, the error robustness and hence

the concealment performance is improved. For larger precincts the coding efficiency is

improved at the expense of a reduced error robustness. The concealment performance is

still improved by the frequency selective extrapolation technique compared to inserting

zeros also for 8 × 8 precincts. However, it is less efficient in this case since more data is

lost in the case of a packet loss. Hence, the data loss has to be limited by error robustness

techniques in order to conceal a loss successfully by the proposed technique. In conclusion,

we can state that depending on the considered application a suitable trade-off has to be
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Table 6.3: Impact of a packet loss depending on the decomposition level for 4 DWT decompo-

sitions. The PSNR is calculated with respect to original image.

Rate 0.5 bpp, loss corresponds to 64 × 64 pixels in reconstructed image

Coded, error free LH4, HL4, HH4 band LH3, HL3, HH3 band

Precinct size 8 × 8 Precinct size 16 × 16

Concealment by [9] extrapolation [9] extrapolation

Lena: 35.00 34.32 34.28 34.45 34.43

Peppers: 35.66 34.98 34.94 35.32 35.30

Baboon: 25.40 25.35 25.35 25.35 25.35

found between error robustness and coding efficiency.

6.4.2 Concealment of Highpass Band Losses

The performance of error concealment in highpass bands is also investigated. As each

packet contains data of one precinct, missing wavelet coefficients in three subbands of the

corresponding resolution level as illustrated in Fig. 6.1 have to be concealed. In Table 6.3,

the concealment performance of empty packet insertion is compared to the frequency

selective method for the highpass bands of the third and fourth decomposition level. Ob-

viously, the performance of inserting zeros is comparable to the proposed method at a

reduced computational complexity. In any case, a packet loss in the highpass subband

affects the received image quality less than in the lowpass case since compressed images

concentrate less energy in the highpass band. Therefore, the need for concealment is de-

creased and the JPEG2000 coder provides excellent inherent concealment strategies. Four

packet losses in the HL4, LH4, HH4 bands of the fourth decomposition level concealed by

empty packet insertion are depicted in Fig. 6.9 (a) and in Fig. 6.9 (b) the reconstructed im-

age is shown. Additionally, in order to successfully conceal from the surrounding, smaller

precincts are required which reduces the coding efficiency noticeably. As can be seen in

Table 6.3, the impact of a packet loss in the third decomposition level is even less strong

than it has been already expected.

6.4.3 Concealment of Lower Layer Losses

The impact of a packet loss in a layer below the most significant one is evaluated next.

For this purpose, we generated an image with 10 equally spaced layers numbered from 0

to 9 with a rate of 0.05 bpp per layer. Four packet losses were applied in the lowpass band

to the first layer which is the layer below the most significant one. The coded, error free
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(a) (b)

Figure 6.9: Concealment of four packet losses in the HL4, LH4, HH4 bands by empty packet

insertion [9] at a precinct size of 8×8 in the HL4, LH4, HH4 bands. The coded, error free image

yields 35.00 dB. (a) The HL4, LH4, HH4 bands with four concealed packet losses are shown.

(b) The concealed and reconstructed image yields 33.51 dB.

image yields 33.31 dB and the image including the four concealed packet losses according

to [9] 33.13 dB. Since the impact is only marginal, we proceed as before. If the packet loss

happens in the lowpass band at the most significant layer, we conceal it by the frequency

selective extrapolation technique, otherwise the lost packet and the packets in the layers

below are replaced by empty packets which corresponds to a coarser quantization of the

wavelet coefficients belonging to the precinct of the packet.

6.4.4 Realization of Packet Error Robust JPEG2000 Decoder

Based on the above investigation results, we give an example of using the developed

decoder which is robust against packet losses. The image Lena with a size of 512 × 512

pixels is transformed by four DWT decompositions and 10 layers are used. The applied

code-block size is 64 × 64 coefficients. We use 16 precincts per resolution level except for

the lowpass band which includes 64 precincts corresponding to a size of 4× 4 coefficients.

The precincts are numbered in raster-scan order. SOP marker segments are inserted

before each packet. In order to test the decoder, packets from different resolution levels,

color components and layers are discarded. Fig. 6.10 shows on top the corrupted image

Lena concealed by inserting empty packets. On the bottom of the figure it shows the

output of the proposed error robust JPEG2000 decoder. The remarkable image quality
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improvement is due to the frequency selective extrapolation technique applied to the

lowpass coefficients.

6.5 Summary

The coding standard JPEG2000 has been investigated with respect to error control fea-

tures. By inserting markers offered by the JPEG2000 coder, it is possible to preserve

synchronization and to generate a decodable bit stream also in error prone environments.

The codestream generated by inserting empty packets for concealment [9] is fully decod-

able by every standard decoder as no changes to the standard JPEG2000 coder have to be

applied. Since packet losses in the lowpass band cause the most severe visual distortion,

smaller precinct sizes should be used in the lowpass band in order to increase the error

robustness by limiting the data loss.

The severe visual degradations introduced by losses in the lowpass band are concealed

using frequency selective extrapolation. The missing wavelet coefficients are replaced by

extrapolating the surrounding correctly received wavelet coefficients of the same resolution

level. Thereby, the image quality of the distorted areas due to a loss is remarkably

improved up to 2.9 dB by using the frequency selective extrapolation technique instead

of simple zero insertion. Losses occurring in the other layers and subbands do not cause

such a degradation of the visual quality due to the decoder inherent error robustness.

Therefore, in these cases it is appropriate to apply zero packet insertion and exploit the

excellent inherent concealment properties due to the EBCOT principle of the JPEG2000

decoder.
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Figure 6.10: Color image Lena (512 × 512). Rate: 1.5 bpp. Layer: 10. Precincts: 128 × 128,

64 × 64, 32 × 32, 16 × 16, 4 × 4. Packet losses (resolution level, component, layer, precinct

number): (0,0,0,34); (0,0,0,20); (0,1,0,17); (0,2,0,36); (0,0,0,51); (0,1,0,51); (0,2,0,51); (1,0,1,15).

Top: Concealment by [9]. Bottom: Improved concealment by frequency selective extrapolation.
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7 Further Applications

In this thesis, the estimation of unknown samples in a video signal is described as ex-

trapolation of the spatio-temporal surrounding signal. Concealment can be seen as an

extrapolation problem and has been already extensively discussed in the previous chap-

ters. In the following, we consider the removal of TV logos and prediction in hybrid video

coding as applications of the introduced frequency selective extrapolation technique.

7.1 TV Logo Removal

the following of this section, we show that the removal of undesired TV logos in TV

sequences can be also treated as an extrapolation problem. Broadcast stations often

want to reuse TV sequences like sports sequences or news originally produced by another

station. They seek to remove the embedded TV logo and to replace it by their own logo.

A common technique is to blur the undesired logo and place the own one in a different

corner. Examples for such blurred logos are given in Fig. 7.1 sampled from analog German

television [39]. Another common method is to overlay multiple logos. The application of

these methods leads to visually unsatisfying results.

In [64], a simple approach for logo removal is presented. The logo region is filled

in by interpolation from adjacent neighboring pixels. The fill in causes blurring in case

of larger logos, because details cannot be restored by this method. Other techniques

which could be used for logo removal are methods commonly applied to the problem of

inpainting. Possible applications are scratch removal from old photographs or the removal

of writings. The most common inpainting algorithm is introduced in [10] which propagates

the information surrounding the region to be inpainted to the inside in a special processing

order along the so-called isophote lines at the region boundaries. The inpainted area of

this spatial pixel based algorithm is obtained iteratively. In [30], it is used as spatial

restoration method as part of a spatio-temporal method applied to the removal of texts in

video sequences. The temporal restoration relies on block matching principles known from

BMA for motion compensation. For stationary texts, the background is classified into two

categories: stationary and moving background. In case of stationary background, the text

is inpainted by the purely spatial inpainting technique of [10]. For moving backgrounds,

all text pixels are replaced by the corresponding motion compensated pixels from the

previous frame if they do not belong to the text in the previous frame. Except for very
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Figure 7.1: Example of common logo removal technique sampled from analog German television.

fast motion with an displacement as large as the text letters, only parts of the text

fonts can be motion compensated. The remaining text pixels in the considered frame are

inpainted according to [10].

Our approach replaces the undesired logo by extrapolating the surrounding signal

into the logo area with the developed frequency selective method [38, 36]. The binary

weighting function is determined by a pixel accurate logo mask which can be detected

by appropriate algorithms as e.g. described in [38] based on change detection [3]. In

order to achieve a good quality for the area of the removed logo, it is important that the

logo is detected accurately. Otherwise artifacts are produced because the logo colours are

propagated into the logo region.

In Section 7.1.1, logo removal using frequency selective extrapolation is described.

Simulations and results are presented in Section 7.1.2 for both, 2-D and 3-D extrapolation.

A comparison of the spatial logo removal technique proposed in [64] to 2-D frequency

selective extrapolation is given in Section 7.1.3.

7.1.1 Logo Removal by Frequency Selective Extrapolation

In the following, the extrapolation task for logo removal is described for 3-D. The logo

is always present at the same position for each frame of the sequence. In contrast to

concealment with a missing 2-D area, the loss reaches over a 3-D volume for logo removal.

Note that this implies that no simple copying from previous frames is possible. The

modified situation is shown in Fig. 7.2. The actual frame τ is marked green. In this

example, three previous frames NV = 3 marked red and three following frames NN = 3

marked yellow are taken into account. Note that the logo area has been already replaced

in previous frames and can be used for extrapolation. On the other hand, the logo region

in the future frames belongs to the missing area B. The entire volume reaching from

frame τ − 3 to τ + 3 is transformed to the DFT domain, where the frequency selective

extrapolation is performed. As already mentioned, each successive approximation provides

an extrapolation of all missing pixels due to the definition of the basis functions in the

entire considered volume. Thus, an estimation for all unknown logo areas is given and

the logo can be replaced in more frames than the actual frame. Here, the logo is replaced

in a volume with NE = 3 frames at once which are the frames τ to τ + 2 bordered
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tn

m τ -1τ -2τ -3 τ+1 τ+2 τ+3τ

Figure 7.2: Example of logo removal with the logo replaced in NE = 3 frames at once (purple

bordered) with NV = 3 previous (red) and NN = 3 subsequent (yellow) frames.

by a purple colored line. After replacing the logos, the volume to be processed is not

shifted frame by frame in this case, but by NE frames. This reduces the computational

complexity compared to a frame by frame processing. If the 2-D extrapolation is used for

logo removal, the extrapolation task is reduced to frame τ .

The isotropic model introduced for concealment represents also a suitable model for

logo removal. For 2-D extrapolation, the isotropic 2-D model as defined in (3.52) is used

for the weighting function. In case of 3-D extrapolation, the weighting function relies on

the 3-D model (4.27). An example for a weighting function using the 2-D isotropic model

is given on the left hand side of Fig. 7.3 using the provided logo mask of the right hand

side.

In case of large logos, the logo is partitioned into blocks and the different blocks are

processed subsequently. The prespecified target size of a block determines the number

of blocks to be processed for the removal of one logo. The investigations in [65] show

that a suitable target size of a block to be processed equals the size of a MB in error

concealment. A block to be processed should be surrounded by as much original data

as possible. Therefore, the processing order of the blocks to be processed is aligned

accordingly: first the corner blocks and then the inner blocks are inpainted. For the

inner blocks already inpainted blocks are used but weighted by 0.1 in order to limit their

influence as previously discussed in the concealment context. If no partitioning of the

logo area is desired and the logo does not show a quadratic shape, separable models for

the weighting function can be applied which allows for choosing the decay parameters in

horizontal and vertical direction separately.

7.1.2 Simulations and Results

The logo removal algorithm was tested for sequences sampled from analog German televi-

sion. The sampled deinterlaced test sequences have PAL format corresponding to 768×576

pixels at a length of 30 s with 25 frames per second. First, a pixel accurate logo mask
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Figure 7.3: Weighting function using the 2-D isotropic model with ρ̂ = 0.8 for the provided logo

mask.

is detected by the algorithm described in [57, 38] which is based on change detection.

Subsequently, the logo is removed by frequency selective extrapolation applying both, the

2-D [38] and the 3-D approach [36]. For 2-D extrapolation, the parameters are chosen

according to the investigations in [65] and for 3-D extrapolation according to [14]. Unless

otherwise noted, they are equal to the parameters already used for concealment. The

performance of 3-D extrapolation depends on the motion of the sequence and is discussed

for sequences with no motion, moderate motion, fast motion and scene cuts.

First, results are presented for a sequence with moderate motion. Objective evalua-

tions are not possible, because the original signal is unknown and covered by the logo.

Therefore, five logos are placed in the surrounding of the original logo in each frame of

the sequence as demonstrated for frame number 77 of the sequence BR in Fig. 7.4. The

five inserted logos are subsequently removed and the performance is measured in terms

of PSNR with respect to the original sequence for the extrapolated areas. In Fig. 7.5,

the performance of 2-D to 3-D extrapolation is compared [36] for a scene of the sequence

RTL with moderate motion. The decay parameter ρ̂ equals 0.8 for both, 2-D and 3-D

extrapolation. The performance of 3-D extrapolation is presented for a varying number of

involved previous NV and following frames NN at one frame NE = 1 with a replaced logo.

The results show that two to three previous and following frames are reasonable as for

concealment. According to the investigations in [14], the logos can be in general replaced

at once in a volume of NE = 2 or NE = 3 frames. As can be seen from Fig. 7.5, the

3-D approach performs better than the 2-D approach. However, the objective improve-
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Figure 7.4: Five logos are placed in the surrounding of the original logo in the top left corner

for evaluation purposes.

ment is only noticeable if the motion of the sequence is moderate and the displacement

between two frames is within the volume described by the support area. Contents which

are occluded by the logo in the actual frame appear in past and future frames and can

be exploited for the estimation of the logo area. The improved quality is confirmed sub-

jectively in Fig. 7.6 for frame number 61 of the sequence DSF. The binary pixel accurate

logo mask is detected by [38] from Fig. 7.6 (a). The logo mask finally used as shown in

Fig. 7.6 (b) is obtained after dilatation in order to account for artifacts like noise [57].

The external size of the logo DSF measures 20 × 89 pixels which leads to a partitioning

of the logo into five blocks of approximately 20 × 18 pixels for separate processing. The

2-D result in Fig. 7.6 (c) is compared to the 3-D result in Fig. 7.6 (d) for the logo to be

replaced in Fig. 7.6 (a). For detailed areas as the tribune, the 3-D result for the replaced

logo appears sharper than the 2-D result.

If no motion is present, the 3-D approach can not benefit from any additional infor-

mation and the objective result can not be improved. However, in [38] a flicker effect

was reported for logo removal based on 2-D extrapolation, because the extrapolation al-

gorithm selects slightly different basis functions for the parametric model for each frame

which the human eye is sensitive to. This effect occurs only for non-moving sequences. It
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Figure 7.5: PSNR results for a scene with moderate motion of the sequence RTL comparing 2-D

to 3-D extrapolation. The decay parameter ρ̂ = 0.8, the 2-D DFT size equals 64 × 64 and the

3-D DFT size 64× 64× 16. The performance of 3-D extrapolation is plotted with respect to the

number of involved NV previous and NN following frames for NE = 1.

can be circumvented by collecting all frames with the same content in a volume, run the

3-D extrapolation algorithm and replace the logo in all considered frames at once [36].

Thus, the number of frames NE with the logo replaced at once bordered by the purple

line in Fig. 7.2 equals the number of frames in the volume. In this case, the decay of the

3-D weighting function based on the 3-D isotropic model along the time axis is undesired.

Instead, a decay only in spatial direction is incorporated for the 3-D weighting function

by applying the 2-D model to each time index separately. Hence, the loci of constant

amplitudes are cylinders in contrast to spheres for the 3-D isotropic model.

If strong motion occurs such that the content within the support area changes signif-

icantly from frame to frame, the support area in temporal direction and the number of

frames with logos replaced at once have to be chosen carefully for the 3-D approach. The

performance of 3-D extrapolation decreases and might even be inferior to the performance

of 2-D extrapolation as investigations in [14] show. Especially if image contents come into

reach of the support area in past and future frames which do not belong to the area to

be replaced, artifacts occur. The support area in temporal direction and the number of

frames with logos replaced at once should then be chosen to e.g. NV = NN = 1 and

NE = 2. Another option is to apply the 2-D approach which also yields satisfying results.

The described problem arises even stronger for scene cuts. For the 3-D extrapolation of

the last frame before the cut, frames of the new scene with a completely different content

are taken into account. The same happens for the first frame of the new scene if frames
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(a) (b)

(c) (d)

Figure 7.6: Comparison of the visual quality for replaced logos. (a) Original frame number 61

of sequence DSF with logo to be replaced. (b) Pixel accurate detected and dilated logo mask

used for logo removal. (c) 2-D extrapolation. (d) 3-D extrapolation with NV = NN = 3.

of the past scene are included in the considered volume. Fig. 7.7 depicts visual results for

logo removal for the last frame before the cut. The original plus five logos inserted into

frame 77 of the sequence BR as illustrated in Fig. 7.4 are removed and their locations are

emphasized by boxes. On the left hand side in Fig. 7.7, the extrapolated result without

consideration of the scene cut is shown. The volume considered for extrapolation takes also

the future frames into account. Strong patterns surrounding the logos in future frames lead

to severe artifacts. Unlike the result on the right hand side obtained with consideration

of the scene cut, because only previous frames are included into the extrapolation.

In summary, the 3-D extrapolation can be applied in general for logo removal. How-

ever, the support area in temporal direction has to be chosen carefully. In case of scene

cuts, severe artifacts might occur. A possibility is to split the entire sequence in smaller

scenes with constant motion and content and process the scenes separately. Algorithms

which allow for analyzing and splitting a sequence into scenes automatically can be found
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Figure 7.7: Impact of a scene cut in the following frame on the visual quality for 3-D extrap-

olation for frame 77 of sequence BR. Left: without scene cut detection. Right: with scene cut

detection.

in [14]. For a scene with no motion, the visual impression can be improved using the 3-D

method instead of the 2-D method, because the flicker effect is avoided. Therefore, the

number of frames of the processed volume and of the volume with the logo replaced at

once equals the length of the scene. Suitable parameters for scenes with moderate and

strong motion are summarized in Table 7.1. If the motion is very fast and the displace-

ment is not within the spatial dimension of the considered volume, the 2-D extrapolation

should be applied.

motion moderate strong

NN = NV 3 1

NE 4 2

Table 7.1: Suitable parameters for scenes with moderate and strong motion.
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(a) #90 (b) Inpainted [64] (c) 2-D extrapolation

(d) #153 (e) Inpainted [64] (f) 2-D extrapolation

(g) #272 (h) Inpainted [64] (i) 2-D extrapolation

Figure 7.8: The original frame with the logo mask is shown in the left column. In the middle

column, the results using pixel based removal according to [64] and in the right column the

results using 2-D frequency selective extrapolation are depicted.
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7.1.3 Comparison to Related Techniques

In the following, visual results are presented comparing the spatial removal technique of

[64] to 2-D frequency selective extrapolation. The spatial domain method described in

[64] computes each pixel as average of the eight nearest available neighbors. As available

neighbors both, original samples and already inpainted logo pixels are considered as valid.

The processing order moves in a circular way from the outside inwards.

In Fig. 7.8, visual results are shown for the removal of the TV logo BR. The original

frames of the sequence BR with logo are shown in the left row. In the column in the

middle, parts of three frames with the logo removed using the pixel based interpolation

method [64] are depicted. The lowpass filtering leads to blurring and the processing order

to error propagation. In the right column the corresponding results achieved using 2-D

extrapolation are shown. The external size of the logo mask measures 49× 53 pixels and

the logo is therefore partitioned into 9 blocks of approximately 16× 17 pixel for separate

processing. The visual impression is clearly improved.

7.2 Prediction

The ability of 3-D frequency selective extrapolation to estimate unknown pixels is now

applied to prediction in video coding. For the applications concealment and TV logo

removal addressed so far, the finally achieved visual impression of the extrapolated area is

the most important criterion. On the other hand, prediction for coding purposes aims at

reducing the data rate of the prediction error as much as possible irrespective of the visual

impression of the predicted signal. The application of frequency selective extrapolation

to prediction is described in Section 7.2.1.

The 3-D extrapolation based prediction is integrated as coding mode into the

H.264/AVC reference software version JM9.3 [54]. The performance in terms of cod-

ing efficiency is compared to Intra and Inter prediction of the coder H.264/AVC by rate

distortion (RD) investigations. The coder decides RD optimized on MB level if a MB is

Intra coded or Inter coded. Intra prediction takes place in the spatial domain by predict-

ing from adjacent samples of previously coded blocks of the same frame that are located

to the left and/or above the block to be predicted. Four prediction modes are available

for blocks of size 16 × 16 pixels and nine modes for blocks of size 4 × 4 pixels. Inter

prediction is based on motion compensation which is supported for blocks of size 16× 16,

16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and 4 × 4 pixels for five reference frames at quarter

pixel accuracy. RD investigations comparing the H.264/AVC coding modes to the 3-D

extrapolation based coding mode are presented in Section 7.2.2.
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Support area A Area to be predicted

Unknown area B

m

n t

ττ − 2 τ − 1

Figure 7.9: Image areas used for 3-D extrapolation in prediction consisting of the area to be

estimated and its known surrounding.

7.2.1 Prediction by Frequency Selective Extrapolation

The block to be coded is predicted from its causal spatial as well as temporal surrounding

pixels by 3-D frequency selective extrapolation. Fig. 7.9 shows schematically the volume

considered for the extrapolation task. The causal pixels used for prediction are marked

light gray. The unknown area is marked dark gray, whereas only the hatched part in

frame τ forms the prediction signal. The number of surrounding MBs which can be used

for prediction depends on the location of the MB within a frame. Here, the common case

where the MB is not located at the border of the frame is depicted.

The processing order of the MBs to be predicted takes place in raster scan order

as illustrated in Fig. 7.10. Furthermore, the MBs which can be used for prediction in

the current frame is shown. For the first MB of a frame, no spatial neighboring MBs

are available. Therefore, the MB is copied from the previous frame for prediction. For

the MBs in the top row of a frame, only the MB to the left is available for prediction

in the current frame. The number of available MBs to predict from is also limited for

MBs located at the frame boundary as illustrated in Fig. 7.10 by the colored MBs. The

majority of the MBs can be predicted from four surrounding MBs which is the case for

the MBs marked darked gray.

Frequency selective extrapolation applied to prediction relies also on a weighting func-

tion w[m,n, t] which is based on the 3-D isotropic model (4.27). The effect of the shape

of the unknown area on the weighting function in 2-D is illustrated in Fig. 7.11. The

parameters for 3-D frequency selective extrapolation applied to prediction are chosen ac-

cording to the investigations in [32, 48]. The computational cost is limited compared to

concealment by reducing the maximum number of iterations to 100 and ∆min = 0.1. The
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Figure 7.10: The processing order and the spatial neighboring MBs available for prediction

depending on the location of the MB to be predicted are shown.

decay parameter of the 3-D isotropic weighting function (4.27) ρ̂ equals 0.8. The support

area in spatial direction consists of 16 pixels and in temporal direction of two previous

frames. The sequences are coded with the Baseline profile which does not support B

frames. Therefore, no future frames can be taken into account. The 3-D DFT size is

adjusted to 64 × 64 × 16 obtained by zero padding.
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Figure 7.11: The effect of the shape of the unknown area in prediction on the weighting function

in 2-D is shown.
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7.2.2 Comparison to Related Techniques

The 3-D extrapolation is integrated into the reference software of the H.264/AVC coder

version JM9.3 [54] as coding mode in order to evaluate the coding efficiency compared to

the prediction modes of H.264/AVC. Twenty three frames of the test sequences Crew and

Flowergarden are coded with the Baseline profile in the corresponding coding mode. The

investigations are done for the 16 × 16 prediction modes, i.e., the MBs are not further

partitioned. The following investigations are done with respect to their RD performance:

• The 3-D extrapolation based prediction is compared to the Intra modes of

H.264/AVC.

• The 3-D extrapolation based prediction is compared to the Inter modes of

H.264/AVC.

• The 3-D extrapolation based prediction mode is integrated into a RD optimized

coder.

Fig. 7.12 (a) shows the results for the sequence Crew and Fig. 7.12 (b) for Flowergar-

den. First, the introduced coding mode 3-D extrapolation is compared to Intra prediction

of the H.264/AVC coder. 3-D extrapolation based prediction performs significantly better

than the H.264/AVC based Intra prediction due to the extrapolation within the spatio-

temporal volume compared to the purely spatial method.

As can be seen, the H.264/AVC Inter prediction performs remarkably better than 3-D

extrapolation, although no side information such as motion vectors has to be transmitted

for the latter. The reason is that 3-D frequency selective extrapolation based prediction

approximates the signal in the frequency domain. Small phase errors produce large pre-

diction errors, even if they might not be visible. The prediction signals for Crew and

Flowergarden are depicted in Fig. 7.13 and at least the result for Flowergarden looks

visually very pleasing. In contrast, motion compensation provides a prediction signal at

sub-pixel accuracy in the spatio-temporal domain. The signal to be predicted which is

known at the encoder side is involved in the prediction process. Therefore, side informa-

tion in terms of motion vectors has to be transmitted which leads, however, to a better

overall coding efficiency.

Since 3-D extrapolation performs significantly better than Intra coding provided by the

H.264/AVC standard, we replaced the conventional Intra prediction by the 3-D extrap-

olation coding mode and ran the codec with RD optimized coding. The rate-distortion

optimized prediction decides the coding mode on MB level for P frames. Intra coding

might be chosen if the temporal information for prediction is not reliable. There, an ad-

equate block can not be found in the previous frame as for example for occlusions. The

results for Crew and Flowergarden are also presented in Fig. 7.12. Although only 2% of

the MBs are Intra coded in case of the Crew sequence, savings of still 10 to 25 kbit/s data
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rate can be achieved. The sequence Flowergarden can be predicted by the mode Inter due

to the translational motion. Thus, the result can not be improved by 3-D extrapolation

because only 0.02% of the MBs are chosen to be Intra.

In summary, the data rate can be reduced for sequences where temporal information

is not sufficiently reliable for prediction by integrating the coding mode 3-D extrapolation

into a RD optimized coder.
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Figure 7.12: Prediction results for 23 frames of the test sequences in CIF format coded by

H.264/AVC. (a) Sequence Crew. (b) Sequence Flowergarden.
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(a)

(b)

Figure 7.13: Frame in CIF format predicted by 3-D extrapolation. (a) 9th frame of sequence

Flowergarden predicted from two previous and two subsequent frames. (b) 316th frame of

sequence Crew predicted from two previous frames.



175

8 Conclusions and Outlook

In this thesis, a generic method for estimating unknown signal samples by extrapolation

from known signal data is derived. The presented concept is referred to as selective extrap-

olation. This very general approach allows for inserting problem-specific basis functions

which makes the approach applicable to numerous extrapolation tasks.

Since image and video signals can be interpreted as a linear combination of multi-

dimensional frequencies, DFT like basis functions are especially suited which leads to the

frequency selective extrapolation approach. With the new concept of 3-D extrapolation, a

video signal can be interpreted as a 3-D volume. Hence, spatial and temporal correlations

of the video signal can be simultaneously used for extrapolation purposes.

The error criterion minimized during the extrapolation procedure allows for an

application-specific adaptation due to an involved weighting function, i.e., subareas which

are more important for the extrapolation can be included with more weight. For the ap-

plications considered in this thesis, where the missing area is connected, centrally located

within the considered block, and surrounded by known data, it is reasonable to assume

that the closer a known pixels is to the unknown area, the more important it is for the

extrapolation. Therefore, the chosen weighting function is based on an isotropic model

decaying radial symmetrically with increasing distance to the unknown area for both,

image and video signals.

The derived frequency selective extrapolation approach was applied to several ex-

trapolation tasks typically occurring in image and video communications. First, error

concealment of lost block coded data is addressed. On the one hand, 2-D frequency selec-

tive extrapolation is applied to spatial concealment. On the other hand, spatio-temporal

concealment is enabled by the 3-D approach. Both methods are successfully integrated

into the H.264/AVC coder as concealment feature. In contrast to conventional tempo-

ral concealment methods, 3-D frequency selective extrapolation can be easily applied to

concealment of Intra coded macroblocks, because it does not rely on motion vectors.

Other coders such as the JPEG2000 coder apply wavelet based coding principles. In

this case, a data loss has completely different effects on the visual quality of the recon-

structed image compared to block based coders. The investigations have shown that

especially a loss in the lowpass band causes severe artifacts. Therefore, robustness tools

provided by the coder are applied in order to assure that the loss of wavelet coefficients

in the lowpass band is even further limited in case of an error compared to the other

subbands. For concealing lowpass losses, the 2-D frequency selective extrapolation tech-
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nique is integrated into the JPEG2000 decoder for spatial concealment of the lost wavelet

coefficients.

Two further applications are addressed from the point of view of extrapolation: on the

one hand TV logo removal and on the other hand prediction in hybrid video coding. For

logo removal, the logo is located at the same spatial position for each frame of the sequence.

Hence, simple copying from previous frames is not possible. Using 2-D extrapolation for

each frame leads to a flicker effect for sequences with non-moving contents, which can be

avoided by extrapolating the entire 3-D volume reaching over the entire scene at once.

However, in case of applying 3-D extrapolation, the visual quality of the replaced areas

depends significantly on the motion of the sequence. Scene cuts may cause severe artifacts.

Therefore, the best results are achieved if the sequence is split into scenes with motion of

similar type and contents which are then processed separately.

In prediction in hybrid video coding, the block to be predicted is estimated by 3-D

extrapolation from already coded spatio-temporal pixels. The approach is integrated into

a H.264/AVC(Advanced Video Coding) coder as prediction mode using rate distortion

optimized coding principles. In cases where temporal information is not reliable as for

occlusions or no purely translational motion, advantage can be taken from the 3-D ex-

trapolation in terms of coding efficiency. Although commonly only a few macroblocks are

not predicted by motion compensation, a gain in coding efficiency can be achieved by the

new prediction mode.

In summary, frequency selective extrapolation provides a very generic approach for

extrapolation tasks in image and video communications. The main advantage is the ability

to inherently adapt to the local signal characteristics due to the frequency selectivity. In

case of the 2-D approach, smooth areas, edges, patterns as well as noise-like areas can

be extrapolated. Since the novel 3-D approach considers the video signal in a volume,

additionally motion and variations in luminance occurring from frame to frame can be

inherently compensated. These powerful extrapolation properties can be successfully

exploited especially for applications where the visual impression of the extrapolated areas

is significant as in concealment and logo removal.

The derivation of this generic technique and the results obtained in this thesis open

up a wide range of future research directions. Conclusions drawn from the theoretical

investigations illustrated by the geometrical interpretations can be the basis for further

algorithmical developments. In each iteration, the residual vector in the approximation

subspace is projected onto the selected basis function in the subspace of the support

area. The basis functions are not mutually orthogonal in this subspace, i.e., the selected

basis function includes also components from other basis functions. Hence, the expansion

coefficient obtained by the projection results not only from the selected basis function,

but also from other basis functions. This lack of orthogonality should be considered for

the calculation of the expansion coefficient. It could be incorporated e.g. by attenuating



8. Conclusions and Outlook 177

the calculated expansion coefficient assuming thus that the true value is lower.

The applications considered so far consist of connected known as well as unknown

areas. Future research directions can involve other types of unknown areas and support

areas, as e.g. in deinterlacing. There, a recorded sequence in interlaced format is to

be converted for a progressive display. The two fields of a frame can be interpreted as a

quincunx subsampling of this frame in column-time domain which leads to spectral replica

in the frequency domain. The consequences of the replica have to be taken into account

for the selection of a basis function and frequency, respectively. The area of frequencies

to be selected from has to be limited in order to avoid aliasing.

Frequency selective extrapolation can be straightforwardly extended to more dimen-

sions and used in corresponding applications. For instance, the coding and transmission

of dynamic lightfields processes four or five dimensions for an efficient handling. The set

of cameras recording such multi-view sequences provide the fourth and possibly fifth di-

mension. In case of errors while transmitting coded dynamic lightfield data in error-prone

environments, the effects of losses should be concealed at the decoder side. Additional

to spatial and temporal data, data from other cameras might be used for concealment

applying a 4-D frequency selective extrapolation.

In this thesis, frequency selective extrapolation was applied to signals in image and

video communications. The excellent extrapolation ability could be also used for other

signals with different statistics which are out of the scope of this thesis. For instance,

medical image signals exhibit a large amount of noise. For extrapolation tasks in medical

imaging, it is very important to be able to imitate the noise in order to lead to a natural

appearance of the images. There, the ability of extrapolating noiselike areas due to the

frequency selectivity of the algorithm could be exploited. For instance, flat panel X-ray

detectors provide images with defective areas amongst others due to manufacturing prob-

lems. Frequency selective extrapolation can be applied in order to restore these defects

by extending the surrounding signal into the defective area. In [4], spectral deconvo-

lution is applied which corresponds to frequency selective extrapolation using a binary

weighting function showing already the great potential for medical applications. Benefit

could be therefore derived from applying the 2-D frequency selective extrapolation using

an adapted weighting function for static radiographs. Defects in sequences acquired by

cine-angiography or fluoroscopy could be processed by 3-D extrapolation.



178 8. Conclusions and Outlook



179

A Notations

A.1 Conventions

In general, the following conventions are used: Lower case boldface (a) denotes signal-

domain vectors and matrices. Upper case boldface (A) denotes DFT-domain vectors and

matrices.

A.2 Abbreviations

AVC Advanced video coding

BMA Boundary matching algorithm

DCT Discrete cosine transform

DFT Discrete Fourier transform

DMVE Decoder motion vector estimation

EBMA Extended boundary matching algorithm

FEC Forward error correction

FFT Fast Fourier transform

FMO Flexible macro block ordering

IDFT Inverse discrete Fourier transform

IP Internet protocol

ITU Iternational telecommunication union

JPEG Joint picture experts group

MB Macro block

MPEG Motion picture experts group

MTU Maximum transfer unit

NAL Network abstraction layer

OBMC Overlapped block motion compensation

POCS Projection onto convex sets

PSNR Peak signal to noise ratio

VCL Video coding layer

VQEG Video quality experts group

TR Temporal block replacement
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A.3 Mathematical Symbols

Operators

(·)−1 inverse (·)
(·)∗ conjugate of (·)
(·)T transpose of (·)
(·)H conjugate transpose of (·)
| · | magnitude

diag· diagonal matrix formed by the listed entries

DFT{·} DFT transform of {·}
IDFT{·} IDFT transform of {·}

List of Symbols

L Entire area considered during extrapolation

A Support area

B Area to be estimated

K Set of indices of used basis functions

M Set of indices belonging to real-valued basis functions

M Number of rows of entire area

N Number of columns of entire area

T Number of frames of entire area

NV Number of previous frames

NN Number of following frames

NE Number of frames with estimated area replaced at once

m Row index

n Column index

t Time index

(k, l) Index of 2-D basis function

(u, v) Index of 2-D basis function

(k, l, p) Index of 3-D basis function

(u, v, q) Index of 3-D basis function

f [m,n] Intensities of 2-D original signal

f [m,n, t] Intensities of 3-D original signal

g [m,n] 2-D parametric model

g [m,n, t] 3-D parametric model

r [m,n] 2-D residual error

r [m,n, t] 3-D residual error

rw [m,n] 2-D weighted residual error
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rw [m,n, t] 3-D weighted residual error

b [m,n] 2-D window function

b [m,n, t] 3-D window function

w [m,n] 2-D weighting function

w [m,n, t] 3-D weighting function

x [m,n] Arbitrary 2-D function

x [m,n, t] Arbitrary 3-D function

ϕk,l [m,n] 2-D basis function

ϕk,l,p [m,n, t] 3-D basis functionn

ck,l Expansion coefficient of 2-D basis function

ck,l,p Expansion coefficient of 3-D basis function

∆c Update of expansion coefficient

ρ̂ Decay parameter of isotropic model

∆EA Residual error energy

ν Counter of iterations

W [k, l] 2-D DFT of weighting function at (k, l)

W [k, l, p] 3-D DFT of weighting function at der Stelle (k, l, p)

Rw [k, l] 2-D DFT of rw [m,n] at (k, l)

Rw [k, l, p] 3-D DFT of rw [m,n, t] at (k, l, p)

X [k, l] 2-D DFT of x [m,n] at (k, l)

X [k, l, p] 3-D DFT of x [m,n, t] at (k, l, p)

∆c Vector of expansion coefficient updates

Rw Vector of weighted residuak error in frequency domain

W Matrix of weighting function in frequency domain

W + Pseudoinverse of W

fL Vectorial interpretation of f [m,n] corresponding to area L

fA Vectorial interpretation of f [m,n] corresponding to area A

gL Vectorial interpretation of g [m,n] corresponding to area L

gA Vectorial interpretation of g [m,n] corresponding to area A

xL Vectorial interpretation of x [m,n] corresponding to area L

xA Vectorial interpretation of x [m,n] corresponding to area A

rA Vectorial interpretation of r [m,n] corresponding to area A

κ counter

λ counter
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6.2.1 Auswirkungen von Übertragungsfehlern . . . . . . . . . . . . . . . . 145

6.2.2 Fehlerrobustheit auf Entropiecodierungsebene . . . . . . . . . . . . 146

6.2.3 Fehlerrobustheit auf Paketebene . . . . . . . . . . . . . . . . . . . . 146
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B.3 Einleitung

In vielen Anwendungen der Signalverarbeitung besteht das Problem, unbekannte Signal-

werte aus bekannten Daten zu schätzen. Diese Aufgabenstellung kann als die Extrapo-

lation bekannter Signalbereiche in unbekannte Bereiche interpretiert werden. In der me-

dizinischen Bildverarbeitung tritt diese Fragestellung beispielsweise bei der Defekt-Pixel-

Interpolation von Röntgen-Flachdetektoren auf. Diese Detektoren erlauben die sofortige

Anzeige der aufgenommenen Bilder, können jedoch auf Grund von herstellungsbedingten

Schwierigkeiten Regionen inaktiver Elemente enthalten. Diese inaktiven Elemente verur-

sachen in den aufgenommenen Röntgenbildern unbekannte Stellen. Die entsprechenden

Defekte können in den Bildern durch das aus benachbarten Bildpunkten extrapolierte

Signal ersetzt werden [4], da die Positionen der inaktiven Elemente durch Kalibrierungs-

messungen vorab lokalisiert werden können.

Die Modellierung des menschlichen Gehörs einschließlich einer hochauflösenden Spek-

tralanalyse [50] stellt ein Beispiel für eine Anwendung aus der Audiosignalverarbeitung

dar. Da nur Signalblöcke von kurzer Dauer zur Verfügung stehen, basiert die verwen-

dete Methode zur hochauflösende Kurzzeit-Spektralanalyse auf einer Extrapolation. Der

Einfluss der zeitbegrenzten Beobachtung des Audiosignals wird im Spektralbereich ent-

fernt, was einer Extrapolation des Audiosignals über den beobachteten Zeitraum hinweg

entspricht.

Ein ähnliches Problem tritt in dem völlig andersartigen Gebiet der Astrophysik auf.

Zur Apertur-Synthese werden die Einschränkungen der Teleskope auf die aufgenomme-

nen Messwerte eliminiert [22]. Die aufgenommenen, so genannten “verschmutzten Auf-

nahmen” (“Dirty Map”) werden von den sogenannten “verschmierten Keulen” (“Dirty

Beams”) der aufnehmenden Teleskope “gesäubert”. Da der Ausschnitt des Himmels, der

durch die Teleskope aufgenommen werden kann, begrenzt ist, entspricht die Methode einer
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Extrapolation der Intensitätswerte der aufgenommenen Objekte über den beobachteten

Teil des Himmels hinweg.

In der Nuklearphysik stellt die Prädiktion nuklearer Massen in instabilen Bereichen

eine weitere Extrapolationsfragestellung dar [17]. Die Differenz zweier gegebener Modelle

zur Prädiktion nuklearer Massen ist in Abb. 1.1 in Abhängigkeit der Anzahl der Neutronen

auf der X-Achse und der Anzahl der Protonen auf der Y-Achse gegeben. Die nuklearen

Massen in den instabilen Regionen können basierend auf der Extrapolation des gegebenen

Muster über seine Grenzen hinweg prädiziert werden.

Das Problem der Schätzung unbekannter Signalwerte tritt auch in verschiedenen An-

wendungen der Bild- und Videokommunikation auf. In der Praxis besonders wichtige Bei-

spiele werden in dieser Arbeit aus dem Blickwinkel der Signalextrapolation interpretiert.

Die Problemstellung der Verschleierung gestörter Videodaten, die durch Übertragungs-

fehler in der mobilen Videokommunikation verursacht wurden, kann z.B. als Extrapola-

tion des vorhandenen umgebenden Videosignals in den Fehlbereich verstanden werden.

Die Entfernung unerwünschter TV Logos kann auch im betrachteten Extrapolationszu-

sammenhang gedeutet werden, in dem die durch das Logo verdeckten Bildpunkte aus

dem umgebenden Videosignal geschätzt werden. In der hybriden Videocodierung wird

zur Erhöhung der Codiereffizienz das Videosignals prädiziert. Dieser Signalverarbeitungs-

schritt kann auch als Extrapolation der bereits codierten Bildpunkte zur Prädiktion der

darauf folgenden Bildpunkte interpretiert werden.

Es gibt eine Reihe von Methoden, die die Problemstellung der Extrapolation zwei-

dimensionaler Signale durch spektrale Schätzung lösen. Methoden der bandbegrenzten

Extrapolation [44, 45, 53, 56] verursachen bekanntermaßen Artefakte im Signalbereich

und sind daher zur Signalextrapolation in größere Bereiche nicht geeignet. Methoden der

spektralen Entfaltung [18, 50, 12, 4] erzielen weitaus bessere Ergebnisse. Da sie jedoch die

Basisfunktionen der Diskreten Fourier-Transformation (DFT) verwenden, sind sie auf den

Fourier-Bereich beschränkt. Andere für bestimmte Anwendungen geeignete Basisfunktio-

nen, wie z.B. die der Diskreten Cosinus-Transformation (DCT) oder Polynome, können

bei diesem Ansatz nicht verwendet werden.

Die grundlegenden Prinzipien dieser Arbeit werden nicht nur für Extrapolationsauf-

gaben angewandt, sondern auch zur Codierung benutzt. In [26] wird die auf beliebigen

Basisfunktionen aufbauende sukzessive Approximation zur objektbasierten Bildcodierung

eingesetzt. Zur Extrapolation von Videosignalen werden hingegen normalerweise keine

spektralen Schätzmethoden verwendet. Unbekannte Abtastwerte in Videosignalen wer-

den herkömmlicherweise durch Hybrid-Techniken unter der Verwendung von entweder

örtlicher oder zeitlicher Information geschätzt, wie z.B. die Prädiktion in der hybriden

Videocodierung. Am häufigsten wird die Bewegungskompensation angewandt, um zeitli-

che Information zur Prädiktion zu nutzen.

In dieser Arbeit wird eine generische Schätzmethode entwickelt, die als Selektive
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Extrapolation bezeichnet wird. Im Gegensatz zu früheren Arbeiten zur Extrapolation

[18, 50, 12, 4], beruht dieser allgemeine Ansatz auf beliebigen Basisfunktionen, die ei-

ne Anpassung an die spezifischen Eigenschaften der betrachteten Anwendung ermöglicht.

Basierend auf dem Prinzip der sukzessiven Approximation [26] wird der den zu schätzen-

den Bereich umgebende Unterstützungsbereich durch eine Linearkombination selektierter

Basisfunktionen approximiert. Die für die Approximation verwendeten Basisfunktionen

sind in einem Bereich definiert, der auch das Gebiet der unbekannten Werte umschließt.

Deswegen liefert die Approximation des bekannten Signalbereichs gleichzeitig eine Extra-

polation in den unbekannten Bereich. Das während der Extrapolation minimierte Feh-

lerkriterium verwendet eine Gewichtungsfunktion, die eine weitere anwendungsspezifische

Anpassung des allgemeinen Ansatzes ermöglicht. Für die in dieser Arbeit betrachteten

Anwendungen wird eine geeignete Gewichtungsfunktionspezifiziertt. Da das präsentierte

Konzept unabhängig von den Dimensionen des betrachteten Signalraums ist, kann der

zunächst für zweidimensionale Signale hergeleitete Ansatz der selektiven Extrapolation

direkt auf dreidimensionale Signale erweitert werden. Dies wird durch die Interpretation

eines Videosignals als 3D Volumen erreicht. So können örtliche und zeitliche Korrelationen

des Videosignals gleichzeitig zur Schätzung der unbekannten Signalbereiche genutzt wer-

den. Diese Interpretation eines Videosignals ermöglicht neue Erkenntnisse im Vergleich

zu konventionellen Hybrid-Ansätzen, die entweder örtlich oder zeitlich prädizieren.

Diese Arbeit ist wie folgt gegliedert. Zunächst wird in Kapitel 2 ein Überblick über

spektrale Schätzmethoden zur Signalextrapolation und für verwandte Gebiete gegeben.

In Kapitel 3 wird die Herleitung des generischen Konzepts zur selektiven Extrapolation

für den 2D Fall dargestellt. Zur Extrapolation von Bildsignalen sind DFT ähnliche Ba-

sisfunktionen besonders geeignet, deren Einsatz zu dem Konzept der frequenzselektiven

Extrapolation führt. In Kapitel 4 wird dieses Konzept für 3D Signale erweitert.

Den theoretischen Herleitungen folgend, wird die frequenzselektive Extrapolation zur

Lösung typischer Fragestellungen in der Bild- und Videokommunikation angewandt. In

Kapitel 5 wird die Anwendung des entwickelten Ansatzes zur Fehlerverschleierung ver-

loren gegangener blockcodierter Daten bei der Videokommunikation in fehleranfälligen

Umgebungen beschrieben. Nach detaillierten Untersuchungen wird die frequenzselektive

Extrapolation als Verschleierungsverfahren in die Referenzsoftware [54] des H.264/AVC

(Advanced Video Coding) Coders [23] integriert.

Andere Coder wie der JPEG2000 Coder [1] arbeiten mit Wavelet-basierten Codier-

prinzipien. Da sich dieses Codierprinzip von den blockbasierten Ansätzen unterscheidet,

hat ein Datenverlust völlig andere Auswirkungen. Nach Untersuchungen in Kombination

mit den durch den Standard zur Verfügung stehenden Robustheitstechniken, wird die 2D

frequenzselektive Extrapolation in Kapitel 6 in den JPEG2000 Coder als Verschleierungs-

verfahren integriert.

In Kapitel 7 werden zwei weitere interessante Anwendungsbeispiele für die entwickelte
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frequenzselektive Extrapolationsmethode untersucht: einerseits wird die Entfernung un-

erwünschter TV Logos in Abschnitt 7.1 und andererseits die Prädiktion in der hybriden

Videocodierung in Abschnitt 7.2 betrachtet. TV Logos befinden sich gewöhnlich während

der ganzen Sequenz zeitunveränderlich an der gleichen Position. Das Konzept, ein Video-

signal als Volumen zu interpretieren, ermöglicht das Signal sowohl aus der örtlichen als

auch der zeitlichen Umgebung in den Logobereich zu extrapolieren. Die Prädiktion in der

hybriden Videocodierung wird als Extrapolation bereits codierter Daten zur Erhöhung

der Codiereffizienz interpretiert. Deswegen wird die 3D Extrapolation in den H.264/AVC

Coder als alternativer Codier Modus integriert.

Die wichtigsten Ergebnisse dieser Arbeit werden abschließend in Kapitel 8 zusammen-

gefasst. Zusätzlich wird ein Ausblick auf vielversprechende zukünftige Forschungsrichtun-

gen gegeben.

B.4 Zusammenfassung und Schlussfolgerungen

In dieser Arbeit wird eine generische Methode zur Schätzung unbekannter Signalwer-

te durch die Extrapolation bekannter Signaldaten hergeleitet. Das vorgestellte Konzept

wird als selektive Extrapolation bezeichnet. Durch die Verwendung problemspezifischer

Basisfunktionen kann dieser sehr allgemeine Ansatz auf eine Vielzahl von Extrapolations-

aufgaben angewandt werden.

Da Bild- und Videosignale als eine Linearkombination mehrdimensionaler Frequenzen

aufgefasst werden können, sind DFT ähnliche Basisfunktionen besonders geeignet, was zu

dem Ansatz der frequenzselektiven Extrapolation führt. Mit dem neuen Konzept der 3D

Extrapolation kann ein Videosignal als 3D Volumen interpretiert werden. Daher können

örtliche und zeitliche Korrelationen des Videosignals gleichzeitig für die Extrapolation

genutzt werden.

Das während der Extrapolation minimierte Fehlerkriterium ermöglicht durch die Ver-

wendung einer Gewichtungsfunktion eine anwendungsspezifische Anpassung, d.h. dass

Teilbereiche, die für die Extrapolation wichtiger sind als andere, durch eine größere Ge-

wichtung stärker einbezogen werden können. Für die in dieser Arbeit betrachteten An-

wendungen, die durch einen zusammenhängenden Fehlbereich gekennzeichnet sind, der

zentral innerhalb des betrachteten Blocks lokalisiert und von bekannten Daten umgeben

ist, ist es sinnvoll anzunehmen, dass ein Bildpunkt umso wichtiger für die Extrapolation

ist, je näher er sich am zu schätzenden Bereich befindet. Deswegen basiert die gewähl-

te Gewichtungsfunktion sowohl für Bild- als auch für Videosignale auf einem isotropen

Modell, welches radialsymmetrisch mit zunehmender Distanz zum unbekannten Bereich

abnimmt.

Die hergeleitete Methode der frequenzselektiven Extrapolation wurde auf mehrere Fra-

gestellungen angewandt, wie sie in der Bild- und Videokommunikation typischerweise
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auftreten. Zunächst wird die Fehlerverschleierung von verloren gegangenen blockcodier-

ten Daten behandelt. Einerseits wird die 2D frequenzselektive Extrapolation zur örtlichen

Verschleierung angewandt und andererseits örtlich-zeitliche Verschleierung durch den 3D

Ansatz ermöglicht. Beide Ansätze werden erfolgreich als Verschleierungsmethoden in den

H.264/AVC Coder integriert. Im Gegensatz zu konventionellen Methoden der zeitlichen

Verschleierung, kann die 3D frequenzselektive Extrapolation leicht zur Verschleierung In-

tra codierter Makroblöcke angewendet werden, da sie nicht auf Bewegungsvektoren ba-

siert.

Andere Coder wie der JPEG2000 Coder verwenden Wavelet-basierte Codierprinzipien.

In diesem Fall hat ein Datenverlust völlig andere Auswirkungen auf die visuelle Qualität

des rekonstruierten Bildes als im Vergleich zu blockbasierten Codern. Untersuchungen

haben gezeigt, dass ein Verlust im Tiefpass Band besonders schwerwiegende Artefakte zur

Folge hat. Deswegen werden vom Coder zur Verfügung gestellte Werkzeuge zur Erhöhung

der Fehlerrobustheit eingesetzt, um im Falle eines Übertragungsfehlers den Verlust an

Wavelet-Koeffizienten im Tiefpass-Band im Vergleich zu den anderen Teilbändern weiter

einzuschränken. Um Verluste im Tiefpass-Band zu verschleiern, wird die Technik der 2D

frequenzselektiven Extrapolation in den JPEG2000 Decoder zur örtlichen Verschleierung

verlorener Wavelet-Koeffizienten integriert.

Zwei weitere Anwendungen werden aus dem Blickwinkel der Extrapolation betrach-

tet: einerseits die TV Logoentfernung und andererseits die Prädiktion in der hybriden

Videocodierung. Bei der Logoentfernung ist das Logo für jedes Bild der Sequenz an der

gleichen örtlichen Position platziert. Daher ist ein einfaches Kopieren aus dem vorange-

gangenen Bild nicht möglich. Die Verwendung der 2D Extrapolation auf jedes einzelne

Bild führt zu einem Flacker-Effekt bei Sequenzen mit unbewegtem Inhalt, der dadurch

vermieden werden kann, dass das sich über die gesamte Szene erstreckende 3D Volumen

auf einmal extrapoliert wird. Jedoch hängt die visuelle Qualität der ersetzten Bereiche

beim Einsatz der 3D Extrapolation maßgeblich von der Bewegung der Sequenz ab. Sze-

nenschnitte können schwerwiegende Artefakte hervorrufen. Die besten Ergebnisse können

daher erzielt werden, wenn die Sequenz in Szenen gleichgearteter Bewegung und Inhalte

aufgeteilt wird, die dann separat verarbeitet werden.

Bei der Prädiktion in der hybriden Videocodierung wird der zu prädizierende Block

durch die 3D Extrapolation von bereits codierten örtlich-zeitlichen Bildpunkten prädi-

ziert. Der Ansatz ist in einen H.264/AVC Coder als Prädiktionsmodus integriert worden,

der auf Rate-Distortion optimierenden Codierprinzipien basiert. In Fällen, in denen die

zeitliche Information nicht zuverlässig ist, wie bei Verdeckungen oder nicht ausschließlich

translatorischer Bewegung, kann die Codiereffizienz von der 3D Extrapolation profitie-

ren. Obwohl normalerweise nur einige Makroblöcke nicht durch Bewegungskompensation

prädiziert werden, kann ein Gewinn an Codiereffizienz durch den neuen Prädiktionsmodus

erzielt werden.
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Zusammenfassend lässt sich feststellen, dass die frequenzselektive Extrapolation einen

sehr allgemeinen Ansatz zur Lösung von Extrapolationsfragestellungen in der Bild- und

Videokommunikation darstellt. Der Hauptvorteil besteht in der Eigenschaft des Algorith-

mus, sich auf Grund der Frequenzselektivitätinhärentt an lokale Signalcharakteristiken

anzupassen. Im Falle des 2D Ansatzes können sowohl glatte Flächen, Kanten als auch

rauschartige Bereiche extrapoliert werden. Da der neuartige 3D Ansatz das Videosignal

in einem Volumen betrachtet, können zusätzlich Bewegungen und Luminanzänderungen,

die von Bild zu Bild auftreten, kompensiert werden. Diese leistungsfähigen Extrapola-

tionseigenschaften können besonders erfolgreich für Anwendungen genutzt werden, bei

denen vor allem der visuelle Eindruck der extrapolierten Bereiche von Bedeutung ist, wie

es z.B. bei der Fehlerverschleierung und der Logoentfernung der Fall ist.

Die allgemeine Herleitung dieses Ansatzes und die damit erzielten Ergebnisse, eröffnen

eine große Bandbreite zukünftiger Forschungsaktivitäten. Die Schlussfolgerungen aus den

theoretischen Untersuchungen, die anhand der geometrischen Interpretationen gewonnen

wurden, können die Grundlage für weitere algorithmische Entwicklungen darstellen. In

jeder Iteration wird der Restfehlervektor des Approximationsunterraums auf die selek-

tierte Basisfunktion aus dem Unterraum des Unterstützungsbereichs projiziert. Die Ba-

sisfunktionen in diesem Unterraum sind nicht orthogonal zueinander, d.h. die selektierte

Basisfunktion beinhaltet auch Komponenten anderer Basisfunktionen. Die nicht vorhan-

dene Orthogonalität sollte bei der Berechnung des Expansionskoeffizienten, z.B. durch

eine entsprechende Dämpfung, berücksichtigt werden.

In den bisher betrachteten Anwendungen sind sowohl der Unterstützungsbereich als

auch die zu schätzenden Bereiche zusammenhängend. Zukünftige Forschungsaktivitäten

können andere Formen von bekannten und unbekannten Bereichen betrachten, wie sie

z.B. beim Deinterlacing auftreten. Dort wird eine im Interlaced-Format aufgenommene

Sequenz für die Ausgabe auf einem Bildschirm mit Progressiv-Format konvertiert. Die

zwei Halbbilder eines Vollbildes können als eine Quincunx-Unterabtastung dieses Voll-

bildes in Zeilen-Zeit-Richtung interpretiert werden, die zu spektralen Wiederholungen im

Frequenzbereich führen. Die Auswirkungen dieser Wiederholungen müssen bei der Selekti-

on der Basisfunktion bzw. der Frequenz berücksichtigt werden. Um Aliasing zu vermeiden,

muss deshalb der zur Selektion verfügbare Frequenzbereich eingeschränkt werden.

Die frequenzselektive Extrapolation kann direkt auf mehrere Dimensionen erweitert

und für entsprechende Anwendungen genutzt werden. Die Codierung und Übertragung

dynamischer Lichtfelder verwendet z.B. vier Dimensionen für eine effiziente Verarbeitung,

wobei die Menge der aufnehmenden Kameras solcher Multi-View Sequenzen die vierte

Dimension darstellen. Während der Übertragung solcher codierter dynamischer Lichtfeld-

daten auftretende Fehler sollten auf der Decoderseite verschleiert werden. Zusätzlich zu

örtlichen und zeitlichen Daten könnten Daten der anderen Kameras für die Verschleierung

mittels 4D frequenzselektiver Extrapolation genutzt werden.
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In dieser Arbeit wurde die frequenzselektive Extrapolation auf Signale der Bild-

und Videokommunikation angewandt. Die hervorragenden Extrapolationseigenschaften

könnten auch für Signale mit anderen Statistiken genutzt werden, die nicht im Anwen-

dungsbereich dieser Arbeit liegen. Medizinische Bildsignale beinhalten z.B. einen großen

Rauschanteil. Für Extrapolationsprobleme medizinischer Bildsignale ist es außerordent-

lich wichtig, dieses Rauschen nachbilden zu können, um ein natürliches Erscheinungsbild

der Bilder zu gewährleisten. Auf Grund der Frequenzselektivität des Algorithmus wäre es

möglich, diese rauschartigen Bereiche geeignet zu extrapolieren. Röntgen-Flachdetektoren

erzeugen Bilder mit defekten Bereichen, die unter anderem auf Grund prinzipieller Schwie-

rigkeiten bei der Herstellung entstehen. Die frequenzselektive Extrapolation kann zur Ent-

fernung dieser Defekte durch Extrapolation des umgebenden Signals in den defekten Be-

reich genutzt werden. In [2] wird bereits das große Potenzial für medizinische Anwendun-

gen durch die Verwendung der spektralen Entfaltung gezeigt, die der frequenzselektiven

Extrapolation mittels einer rechteckigen binären Fensterfunktion entspricht. Für statische

Röntgenbilder könnte deshalb eine 2D frequenzselektive Extrapolation mit einer angepas-

sten Gewichtungsfunktion von Vorteil sein. Der 3D Ansatz könnte bei der Bearbeitung

von Defekten in durch Cine-Angiographie oder Fluoroskopie aufgenommenen Sequenzen

verwendet werden.
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