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Abstrat
A mirosopi theory is developed and applied to desribe luminesene from semi�ondutor quantum dots (QDs). The radiative emission dynamis is studied by theinvestigation of time-resolved photoluminesene. Speial emphasis is plaed on therole of arrier orrelations and the di�erenes between QDs and atoms. From themost general form of the theory a laser model for QDs in miroresonators is devel�oped, whih is the entral ahievement of this thesis. In this model semiondutore�ets an be inluded in a onsistent manner. Going beyond the rate equation limit,we alulate the �rst- and seond-order orrelation funtions to haraterize the laserthreshold properties, whih are, in the lassial sense, no longer well de�ned in ur�rent state-of-the-art miroavity lasers with high spontaneous emission oupling intothe laser mode. To underline the lose onnetion to appliations, all results are pre�sented together with results from reent experiments. To gain a deeper understandingof the derived laser theory and of the di�erene between QDs and atoms, a detailedomparison with quantum-optial models is performed, namely with the rate equa�tions, a master equation approah and the Liouville/von-Neumann equation for thefull density matrix.
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1. IntrodutionWhenever the dimensionality of a system is redued it gives rise to a variety of stun�ning new e�ets. To name an example from atomi physis, onsider a diluted atomigas of bosons that an undergo a phase transition and form a Bose-Einstein onden�sate at �nite temperatures [5, 36, 43℄. This is true if the gas is not restrited tofewer than three spatial dimensions. A homogeneous Bose gas in two or one dimen�sion, however, is subjet to enhaned phase �utuations that make the formation ofone oherent phase impossible, a fat stated in the Mermin-Wagner Hohenberg theo�rem: Spontaneous symmetry breaking in ontinuous one- or two-dimensional theoriesannot our at �nite temperatures [34, 60, 90, 91℄. Also in semiondutor systemslower-dimensional e�ets play an important role and are an integral part of today's de�vie appliations. The disovery of the integer and frational quantum Hall e�et haswon Nobel prizes in physis [75, 80, 107℄, and band engineering relies to a large extenton the modi�ations the density of states experienes under dimensional redution.This redution is most naturally ahieved in nanosale systems. In fat, the physis oflow-dimensional semiondutor nanostrutures is a more vivid and rapidly evolving�eld of researh than ever, owing to the advanes made in growth tehnologies andmanipulation on suh small length sales. In a series of inreasing on�nement, wherequantum wells and quantum wires restrit the propagation of arriers to two and onesingle dimension, quantum dots de�ne the ultimate limit of no free arrier propagationat all. Quantum dots are zero-dimensional semiondutor strutures typially onsist�ing of thousands up to hundreds of thousands of atoms and being tens of nanometersin size. The prominent e�et of this redution in dimensionality manifests itself in thefree density of states. The ontinuous behavior typial for bulk material beomes dis�rete. In ontrast to atoms, however, the level spaing is determined by the size, geom�etry and omposition of the quantum dots, making it possible to tailor the eletroniand optial properties. The disrete and tunable optial spetrum is the foundation ofquantum dot researh and exerts a vast impulse on optoeletroni devie appliations.With quantum dot emitters one an, in priniple, over the whole visible spetrumand beyond. A �avor of this is given in Figure 1.1, where light emission from olloidalquantum dots is shown. Next to the range of optial �ber teleommuniation networks(1300/1550 nm), laser diodes with wavelengths in the blue and green part of the spe�trum are of great interest for imaging devies. Laser diodes [8, 31, 95, 104, 138, 144℄, 1



1. Introdution

Figure 1.1.: Luminesene from olloidal quantum dots of di�erent size and omposition.The peak wavelength of the emission an be tuned all the way through the visible range ofthe optial spetrum and farther into the infrared. Courtesy of Dr. Andrey Rogah [1℄.single-photon detetors and �eld e�et transistors [48, 131, 132℄, and non-lassiallight soures [3, 15, 94, 96, 105, 112, 119, 126, 134, 158℄ for fundamental studies andquantum information tehnology are among the most relevant appliations.In analogy to the three-dimensional arrier on�nement in quantum dots, light an beon�ned in all spatial diretions. This is ahieved in optial miroavities, see [146℄and referenes therein. As it is possible for quantum dots to tailor their optial proper�ties, the avity an be brought in line with the emission properties of the gain materialby hoosing their struture aordingly. These mirometer-sale resonators possess adisrete photoni density of states and a large free spetral range due to their smallsize, whih is omparable to the wavelength of the light they on�ne� an importantquality for the ahievement of single-mode lasing. The photon on�nement is basedeither on total internal or Bragg re�etion. A ombination of both on�nement meh�anisms is employed in the so-alled VCSEL (vertial avity surfae emitting laser)strutures used for miropillar lasers [151℄. Two examples for miroavities are shownin Figure 1.2, a miropillar and a mirodisk resonator.By embedding quantum dots or other kinds of emitters in miroresonators we enterthe fasinating regime of avity-quantum eletrodynamis (CQED). The oupling ofthe emitter to a single mode (or more) of the resonator leads to a variety of newe�ets that an hange the emission rate from the gain material, the diretionality ofthe emitted light and the spetral properties. If the oupling is strong, emission intothe avity mode is followed by reabsorption in a reversible yle of energy exhangebetween the emitter and the avity. The strong oupling leads to the formation ofpolariton quasipartiles [113℄. This regime plays a role in fundamental studies oflight-matter interation. A topi fervidly disussed is the possibility of Bose-Einsteinondensation of polaritons [39, 68, 133℄. From an appliation point of view, theregime of weak oupling plays a more important role [93, 146℄. Photons emitted by2



Figure 1.2.: Two examples for miroresonators: A VCSEL-pillar (left) and disk (right)miroavity, taken from Refs. [113℄ and [94℄, respetively. In the pillar ase the light ison�ned due to total internal re�etion at the sidewalls and due to alternating layers ofmaterials with di�erent refrative indies (distributed Bragg re�etors) along the vertialdiretion. In the maximum of the on�ned �eld a layer of quantum dots is plaed as thegain medium. In ase of the mirodisk, long-lived modes are so-alled whispering gallerymodes that exist lose to the perimeter of the disk.the gain material leave the avity at a rate determined by the quality fator of theavity. The spontaneous emission into the avity, however, is hanged due to themodi�ed loal density of optial modes inside the resonator, a phenomenon alledthe Purell e�et [110℄. In avities ontaining a loalized long-lived mode, expressedby a large quality fator Q and a small mode volume V , the spontaneous emissionrate beomes inreased ∝ Q/V by fators of ten and more [82, 124℄. This e�et isextensively used in the fabriation of e�ient low-threshold laser devies, where thespontaneous emission into the laser mode is enhaned over the other non-lasing modes[144℄. The important quantity haraterizing a laser is the β-fator that determinesthe fration of the total spontaneous emission that is hannelized into the laser mode.In onventional gas lasers typially only one out of 106 photons is emitted into thelaser mode. In quantum-dot based semiondutor lasers values of β lose to unityhave been obtained [31, 104, 134, 138, 144℄.Typially, in the input/output power trae of onventional lasers, the laser thresh�old is developed as a sudden intensity jump over several orders of magnitude. Insmall lasers with suh e�ient spontaneous emission oupling, however, the thresholdgradually disappears to beome a wide smeared-out transition region [118, 152℄. Nev�ertheless, even if the threshold is not visible at all in the intensity output of the laserdevie, the emitted light hanges qualitatively from thermal to oherent as the dom�inating mehanism hanges from spontaneous to stimulated emission. This behavior 3



1. Introdutionis expressed in the photon statistis, whih is re�eted in the photon seond-orderorrelation funtion. It serves as an unambiguous identi�er for the oherene proper�ties of the emitted light, and a knowledge of the oherene properties is of uttermostrelevane for the development of high-β laser diodes.The view of quantum dots as arti�ial atoms re�ets the historial development inthe �eld, and so does it seem to justify the extensive use of atomi models to explainquantum-dot-related phenomena in the literature. Quantum dots, however, are semi�ondutor materials and semiondutor e�ets in�uene their luminesene propertiesin several ways atomi models are inapable of aounting for. It is the purpose ofthe work presented in this thesis to devise new models on whih basis luminesenefrom quantum-dot-based systems an be desribed. In partiular this inludes thedevelopment of a laser theory for quantum dots in miroavities that allows for asystemati inlusion of semiondutor e�ets. The alulation of the �rst- and se�ond-order photon orrelation funtions is an important part of this thesis and the keyto a better understanding of urrent state-of-the-art laser strutures. The theoretialmodels are presented alongside numerous results from experimental ollaborations.This ombination yields a onsistent piture of the underlying physis.
OutlineThis thesis overs three major topis: The fundamental desription of photolumines�ene from quantum dots together with the introdution of the employed mirosopimodel and the equation-of-motion tehnique, the development of a semiondutorlaser theory, and an in-depth omparison to various atomi models with di�erentdegrees of sophistiation.The desription of luminesene from semiondutor quantum dots by means of amirosopi theory is the topi of the �rst hapter, leading to the introdution ofthe semiondutor luminesene equations. The theoretial methods used in the re�mainder of the thesis are explained and results are presented for the spetrally andtime-resolved photoluminesene. Speial emphasis is plaed on the role of semion�dutor e�ets and di�erenes to atomi models.Based on the theoretial bakground and insight obtained in the �rst hapter, a lasertheory for quantum dots in miroavities is developed from the semiondutor lu�minesene equations in the seond hapter. By inluding higher-order orrelationfuntions aess is granted to the oherene properties and the threshold harater�istis of the laser devie. The appliability of the developed theory is demonstrated4



in omparison with reent experiments on miropillar quantum-dot lasing. By expli�itly onsidering the time evolution, we point out di�erenes in the output behaviorof a laser pumped by pulsed and ontinuous wave exitation. With respet to fre�quently used atomi systems, we disuss the well-known relation of the β fator tothe threshold in the input/output harateristis. This point is of importane forthe interpretation of experimental results, as vital parameters are frequently overes�timated due to the inappropriate usage of atomi models.In the fourth hapter, our theory is extended to the alulation of expetation valuesthat depend on two time arguments. Together with experimental results, the �rstorder oherene properties of semiondutor quantum-dot lasers are analyzed. Thisinludes the two-time �rst-order orrelation funtion, from whih the oherene timeof the emitted light an be obtained.Chapter 5 is a devoted theory hapter, where a `two-level' version of the semiondutorlaser theory is opposed to three di�erent atomi models. Inherent to the many-bodyproblem is the appearane of an in�nite hierarhy of oupled equations. To obtain alosed set of equations, this hierarhy must be trunated by an appropriate method.Firstly, we show how the well-established rate equations are obtained from the semi�ondutor model in the atomi limit. Seondly, by omparing to a birth/death modelfor the diagonal density matrix, we are able to verify the validity of the employedmethod used to trunate the in�nite hierarhy of equations of motion. Finally, weonsider the single-atom laser, a system for whih the exat density matrix an beobtained. This partiular system does not only o�er one more the possibility to testthe trunation method, but also provides insight into the role of dephasing and sat�tering terms� an important step towards the desription of the single-quantum-dotlaser.
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2. Light-Matter Coupling in SemiondutorQuantum DotsSemiondutor quantum dots (QDs) are like atoms in many aspets, but not in all.Most signi�antly, the band-like energy dispersion of the bulk material is augmentedby disrete levels due to the islands of atoms we all QDs. Lying energetially be�low the states of the bulk material, arriers an be aptured in the QD states andreombine at a �xed transition energy, like in an atom. The tunability of this tran�sition energy is one of the biggest advantages in QD-based systems. In priniple,optoeletroni devies with a vast range of emission wavelengths an be designed byhoosing a partiular material system, geometry and surrounding. Appliations in�lude lasers and non-lassial light soures, as well as fundamental researh in the�eld of avity-quantum eletrodynamis [82, 93℄.The foundation of all appliations is the understanding of the luminesene behaviorof QDs. Due to their disrete level spetrum, QDs are often onsidered as `arti�ialatoms' and treated by means of atomi models. Preditions from these models in�lude an exponential deay behavior of the photoluminesene (PL), whih stands inontradition with many experimental �ndings [17, 19, 77, 82, 101, 124℄. As many-�partile physiists, we often use this behavior to stress that QDs are not arti�ialatoms, but semiondutor systems with a large number of eletrons and holes thatare subjet to many-body e�ets and orrelations. In partiular ases this an meanthat QDs behave like we expet it from atomi systems, but it is not true in general.One promising approah for the desription of PL is the equation-of-motion teh�nique [70, 71℄. The resulting semiondutor luminesene equations (SLE) havepreviously been used to study PL spetra [65℄ and exiton formation [62℄ in quan�tum-well systems, and the PL-deay dynamis of an ensemble of QDs embedded intoa miroavity [124℄. It is well-known that the equation-of-motion tehnique leads toan in�nite hierarhy of orrelation funtions due to the Coulomb and the light-mat�ter interations. A systemati way to trunate this hierarhy is found in the lusterexpansion method that is used throughout this thesis [45, 46, 63℄.From an appliation viewpoint the use of QDs as an ative medium in miroresonatorsis of great relevane, reating the possibility to ontrol the spontaneous emission to 7



2. Light-Matter Coupling in Semiondutor Quantum Dotsa large extent. If emitters are plaed inside a avity, the modi�ed optial densityof states an ause an inrease or suppression of the spontaneous emission time,an e�et �rst predited by E. Purell in the 1940s [110℄. While the in�uene ofCoulomb-orrelated multi-exiton states on optial spetra of QDs has been investi�gated by several groups [10, 12, 13, 16, 27, 37, 59℄, muh less is known about thein�uene of orrelations on the spontaneous reombination dynamis. Time-resolvedphotoluminesene studies provide diret aess to the e�ieny of arrier satteringproesses after optial exitation with short pulses [97℄ and to the modi�ation ofthe spontaneous emission lifetime for QDs in optial avities due to the Purell e�et[77, 82, 101℄. The theoretial desription is rather hallenging, beause it requiresnot only a omputation of arrier sattering and orrelations, but also a full quan�tum-mehanial treatment of the light �eld. The derivation of the semiondutorluminesene equations omprises the quantization of the eletromagneti �eld. Con�sequently, spontaneous emission is naturally inluded and this approah is well suitedfor the desription of the disussed systems.
In this hapter we begin with the derivation of the semiondutor luminesene equa�tions, starting with a desription of the model system, the single partile propertiesand the many-body Hamiltonian in the �rst setion. In Setion 2.2 the equation-of-mo�tion tehnique is explained and a systemati lassi�ation- and trunation proedureof operator averages is introdued. In the derivation of the SLE in Setion 2.3, speialemphasis is plaed on the role of arrier orrelations introdued by the Coulomb andthe light-matter interation. Correlations between arriers and photons are of keyinterest in the desription of the statistial properties of laser light and are disussedin Chapter 3. Numerial results are presented in Setion 2.4, where the stationaryspetrum is investigated. The e�et of orrelations on the time-resolved photolumi�nesene from QDs is studied in Setion 2.5 and limiting ases are disussed. In theframework of the DFG researh group �Quantum Optis In Semiondutor Nanos�trutures� we have ollaborated with two experimental groups, so that our theoretialanalysis is omplemented by joint results: In Setion 2.6 the emission into free spaefrom unstrutured QD samples is investigated. Comparing the emission from dopedand undoped QDs, onlusions are drawn about the in�uene of eletron-hole orre�lations. Finally, in Setion 2.7 we study photoluminesene from QDs embedded in amiroavity. The relevant mehanisms are disussed and modi�ed SLE, that ontainfeedbak and damping terms to aount for a photon population in the avity, areintrodued. The theory is ompared with results from experiments performed on QDin miroresonators. A reapitulation of the main ahievements of this hapter an befound in the onlusion.8



2.1. System and Hamiltonian
2.1. System and HamiltonianThe step required prior to being able to formulate the many-body approah is thehoie of the single-partile basis of the non-interating system. In the formulation ofour theoretial model we assume the single-partile problem to be solved. Thus, ourformalism is ompletely independent of the expliit hoie of the single partile states.However, they are needed for the alulation of the interation matrix elements andthe free-arrier spetrum that both enter into the Hamiltonian. Before we start withthe derivation of the dynami equations, the hoie of the single partile states isexplained.
2.1.1. Single-Particle StatesThe alulation of the single-partile states for a given on�nement geometry is allbut trivial, and so is the alulation of the bulk band struture. In the followingwe will give a brief overview that barely srathes the surfae of band struturealulations, but gives a general overview of the relevant physis that determine someof the properties of the single partile states.Due to the three-dimensional arrier on�nement QDs possess loalized states inontrast to the band struture of the bulk material. Nevertheless, the single-partilestates are losely related to the properties of the bulk material, and of ourse theydepend on the QD size and geometry.First-priniple alulations are available for the omputation of the eletroni stru�ture of small QD systems (200�400 atoms) [111, 120℄. Due to the large numberof atoms, together with the absene of translational symmetry to greatly simplifybulk alulations, density funtional theory-based approahes are omputationallytoo demanding to date. Semi-empirial approahes are used instead, either ontin�uum approahes like the k ·p-model [35℄ or the e�etive-mass approah [56, 130, 153℄that is used here. Alternatively, methods where the mirosopi struture of thelattie enters, like in pseudo-potential [30℄ or tight-binding models [121�123℄ an beused. The hoie of the e�etive mass approximation may be understood by look�ing at the band struture of bulk material, whih is basially that of GaAs, shownin the left panel of Figure 2.1. The suitability of Zin-blende material systems likeGaAs, AlAs, InAs, InGaAs, InP, CdSe, and also nitride-based systems grown in theWurtzite struture for optoeletroni devie appliation lies in the diret band gap,allowing for arrier transitions between the ondution and valene bands by emittingor absorbing photons. Thus, the relevant region of the Brillouin zone is restrited to 9



2. Light-Matter Coupling in Semiondutor Quantum Dots
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Figure 2.1.: Left: Band struture for GaAs alulated using a pseudo-potential method.The band gap energy is 4.71 eV. The �gure is taken from [30℄. Right: Simpli�ed shematimagni�ation of the bulk band struture near the Γ point. The valene-band edge is two-�times degenerate. Due to the redued dimensionality in QDs, the degeneray is lifted asboth the light-hold and the split-o� bands shift to lower energies.its enter, the so-alled Γ-point. A simpli�ed lose-up of this region is shown in theright panel of Figure 2.1. Three bands are relevant in the viinity of the Γ-point:the degenerate heavy- and light-hole band, and the split-o� band that ours dueto the spin-orbit oupling. In systems with redued dimensionality, the separationof the omponent in growth diretion, together with strain-indued energy shifts ofthe bands, leads to a separation of the split-o� band and the light-hole band fromthe heavy-hole band [141℄. The single-partile wave funtions are determined by thesolution of the Shrödinger equation.Obvious limitations of ontinuum methods like the single-band e�etive mass and themulti-band k · p approahes arise, if the atomisti struture and symmetry beomesrelevant over the global shape. For Zin-blende-QDs this is the ase if the QD sizebeomes too small (base diameter / 12 nm) [130, 136℄. For the work in this thesis,we neglet band mixing e�ets for the sake of simpliity, so that only one valeneband and ondution band is onsidered. Furthermore, the physis desribed by anHamiltonian that is based on a paraboli approximation of the band struture inthe enter of the Brillouin zone an only be expeted to be orret, if the relevantproesses involve single-partile states in the viinity of the Γ-point, whih an beassumed for optial proesses in semiondutor materials with a diret band gap.10



2.1. System and Hamiltonian
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NIST Boulder LabsFigure 2.2.: Shemati of the oupled QD-WL system. Two on�ned shells are onsideredfor both eletrons and holes, whih lie energetially below a quasi-ontinuum of deloalizedWL states, orresponding to the in-plane motion of arriers in the WL. The transmissioneletron mirograph image of the InGaAs QD on a GaAs substrate is taken from Ref. [135℄.We onsider lens-shaped InGaAs/GaAs QDs grown in the Stranski-Krastanow growthmode [137℄, where lattie-onstant mismath and surfae energy minimization induesthe self-assembly of islands of atoms. In this proess a thin �lm of a few nanometerthikness alled wetting layer is formed between the QDs and the substrate. The QDsand the wetting layer onstitute a oupled system with ommon eletroni states. Typ�ial dimensions of the QDs are 25 nm base diameter and less than 10 nm in height, anexample an be seen in Figure 2.2. From what we have disussed above, the geometryof this kind of QDs allows for a desription within the e�etive-mass approximation,where a free arrier dispersion with e�etive masses for eletrons and holes is as�sumed. In fat, it has been shown that in the ase of �at, ylindrially symmetriInAs/GaAs QDs, the e�etive mass approximation yields results very lose to thoseobtained from a k ·p and a tight-binding model [130℄. We separate the wave funtioninto an axial and an in-plane part. The single-partile bound-state wave funtions inthe plane perpendiular to the growth diretion are well approximated by those of atwo-dimensional harmoni osillator [153℄. Due to the rotational symmetry aroundthe QD axis, the orresponding angular momentum is a good quantum number. Weonsider the �rst two on�ned shells of suh a system, whih are denoted by s and paording to their in-plane symmetry. The s-shell is only spin-degenerate, while the
p-shell has an additional angular-momentum two-fold degeneray. To aount for thestrong on�nement in growth diretion both for the QDs and the wetting layer, weuse an in�nite potential well to model the orresponding �nite extension of the wave-�funtion. The spetrum of the potential well introdues a splitting into subbandswith a spaing that depends on the strength of the axial on�nement, although the 11



2. Light-Matter Coupling in Semiondutor Quantum Dotsterm subband is somewhat misleading for the QD ase, as these posses only a disretespetrum due to the additional in-plane on�nement. For an in�nite potential well,the spaing between the �rst two energy levels is given by ∆E = 3h2/8meffL
2, where

L is the width of the well and meff is the e�etive mass of eletrons or holes. Westudy strutures of only a few nanometers thikness, orresponding to a large energyspaing for the eletrons of roughly 1eV for L = 4 nm. For this reason, only theenergetially lowest subband is onsidered.The disrete states are loated energetially below a quasi-ontinuum of deloalizedstates, orresponding to the two-dimensional motion of arriers in a wetting layer.At this point it is worth mentioning that the atual number of disrete QD states islimited by the height of the on�nement potential and the distane in energy to thewetting layer states. Loalized states exist only below the quasi-ontinuum states ofthe wetting layer. In the wetting layer, the in-plane momentum k is a good quantumnumber if the e�et of the loalized states on the ontinuum is negleted. Thus, inthe most simple approximation the quasi-ontinuum of the wetting layer states anbe modeled by using plane waves with wave vetor k. In Figure 2.2 a shemati ofthe energy levels of the oupled QD-wetting layer system is shown. Further details ofthe QD model are disussed in Ref. [100℄. Stritly speaking, the loalized states andthe wetting layer states are solutions of the single-partile problem for one ommonon�nement potential and must, therefore, form an orthogonal basis. By performinga separate ansatz for the QDs and the wetting layer, this orthogonality is not ensuredand an be enfored, for example by an orthogonalization proedure of the ontinuumstates. The obtained so-alled orthogonal plane waves (OPWs) represent a moreorret desription of the wetting layer states. For details we refer to Ref. [100℄.
2.1.2. Many-Body HamiltonianTo investigate the optial properties of QDs, the system may be o�-resonantly exitedby an optial pulse. The exitation reates arriers in the barrier-, wetting layer-, orhigher QD-states. The possibility of this non-resonant kind of exitation is a featureof self-assembled QDs and is not found in olloidal QDs where the wetting layer ismissing, or even in atomi systems where only an exitation of loalized states ispossible. In the ase of barrier exitation, there are plenty of sattering hannelsbetween the two quasi-ontinua, so that relaxation into the wetting layer states isfast. Fast sattering (relaxation) into the lower QD states is failitated by satteringwith LO-phonons and, espeially at high arrier densities, arrier-arrier sattering[100, 128℄. Both mehanisms provide e�ient sattering hannels both for transitionsbetween loalized states and between loalized states and the wetting layer. Figure 2.312
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Figure 2.3.: Shemati of the relevant proesses in the QD-WL system. O�-resonant exi�tation reates arriers in higher exited loalized states or in the WL, followed by relaxationproesses due to arrier-arrier and arrier-phonon sattering. Carrier reombination viaphoton emission takes plae between the loalized states.shematially displays the relevant proesses in the system for exemplary exitationinto the wetting layer.At low temperatures and low to moderate densities, the arriers solely populate theQD states. In this ase the wetting layer states are mainly important for arrier-sat�tering proesses if the system is exited in the ontinuum states. For the reombina�tion dynamis due to arrier-photon interation, the unpopulated wetting layer statesare of negligible importane. Furthermore, if the wetting layer states are mainly un�populated, Coulomb orrelations between the disrete QD states and the energetiallydisplaed quasi-ontinuum of the wetting layer are muh weaker than those betweenQD states. Calulations presented in this thesis are performed at low temperatures,mostly at 4K. For this reason, the wetting layer is not inluded in our alulations.The driving proess for photoluminesene is the spontaneous reombination of ar�riers in the valene and ondution band. Spontaneous emission is a quantum-ele-trodynamial proess that is aused by �eld �utuations. Thus we treat both theeletromagneti �eld and the arrier system in the formalism of �eld quantization.11It is, however, possible to desribe spontaneous emission with a lassial light �eld in the formalismof quantum mehanis or quantum statistis by onsidering external �utuations, e.g., using theLangevin theory [29℄. 13



2. Light-Matter Coupling in Semiondutor Quantum DotsThe total Hamiltonian for the system has the following ontributions:
H = H0

carr +HCoul +H0
ph +HD . (2.1)The Coulomb Hamiltonian whih desribes the interating system of valene- andondution-band eletrons has the two parts

H0
carr =

∑

ν

εc
ν c

†
νcν +

∑

ν

εv
ν v

†
νvν , (2.2)

HCoul =
1

2

∑

α′νν′α

[

V cc
α′ν,ν′α c

†
α′c

†
νcν′cα + V vv

α′ν,ν′α v
†
α′v

†
νvν′vα

]

+
∑

α′νν′α

V cv
α′ν,ν′α c

†
α′v

†
νvν′cα . (2.3)The free Hamiltonian H0

carr ontains information about the single-partile spetrum
εc,v

ν and desribes a system of non-interating harge arriers. The Coulomb intera�tion between the arriers is aounted for inHCoul. For details we refer to Refs. [10, 58℄.The operators cν (c†ν) annihilate (reate) eletrons in the one-partile states |ν〉 of en�ergy εc
ν . The orresponding operators and single-partile energies for valene-bandeletrons are vν (v†ν) and εv

ν, respetively. The expliit form of the single-partile wavefuntion 〈r|ν, λ〉 = ψλ
ν (r) enters the desription via the Coulomb matrix elements [10℄

V λλ′

α′ν,ν′α =

∫

d3r

∫

d3r′ ψλ∗
α′ (r)ψλ′∗

ν (r′)V (r− r′)ψλ′

ν′(r′)ψλ
α(r) (2.4)with the band index λ = c, v and the Coulomb potential V (r) = e2/4πǫ0ǫr, and viathe light-matter interation (see below). The dieletri onstants of the vauum andthe bakground material are given by ǫ0 and ǫ, respetively.To obtain the expressions for the quantized Hamiltonian involving the eletromag�neti �eld, the transverse eletri �eld2 ET and the magneti �eld B are expandedinto modes, where eah mode ξ is assoiated with a quantum mehanial harmoniosillator with the mode energy ~ωξ. In the usual fashion, operators are introduedthat reate or destroy a photon in the mode ξ, denoted as b†ξ and bξ, respetively. Fordetails we refer to [64, 87, 89℄. The total energy of the free eletromagneti �eld isgiven by the Hamiltonian [92℄

H0
ph =

∑

ξ

~ωξ

(

b†ξbξ +
1

2

)

. (2.5)2For the quantization of the eletromagneti �eld, the Coulomb gauge is usually used. In theCoulomb gauge, the eletri �eld deouples into transversal and longitudinal parts, suh thatthe longitudinal part vanishes in the absene of soures in the system. The transversal part isdetermined by the dynamis of the vetor potential, thus desribing eletromagneti waves.14



2.1. System and HamiltonianIn free spae, the mode label ξ ontains the wave vetor q and the polarization vetorof the eletromagneti �eld ep(q), with the index p = ±. The mode frequenies arethen given by ωξ = c|q|, with  being the speed of light, and the expliit form of themodes is Uξ(r) = ep(q)ei
√

ǫqr [87℄.The light-matter interation Hamiltonian in dipole approximation reads [6, 33, 70℄
HD = −i

∑

ξ, αν

(

gξαν c
†
αvνbξ + gξαν v

†
αcνbξ

)

− h.. (2.6)The resonant elementary proess assoiated with this Hamiltonian is the transition ofan eletron from the valene into the ondution band (or vie versa) by absorption(emission) of a photon. The non-resonant terms ontained in Eq. (2.6) are negletedin the rotating wave approximation3 (RWA) [58℄. As an example for a non-resonantproess, onsider the absorption of a photon while a transition from the ondutionto the valene band takes plae (in Eq. (2.6) the seond term), and vie versa. Thematrix elements gξαν desribe the oupling between the mode ξ of the eletromagneti�eld and the arrier transition between states |α〉 and |ν〉 and are given by
gξαν = Eξ

∫

d3r ψc∗
α (r)erUξ(r)ψ

v
ν(r) , (2.7)where Eξ =

√

~ωξ/2ǫǫ0V is the vauum �eld amplitude [92℄ and V is the normaliza�tion volume. Using the envelope-funtion approximation [58℄ the wave-funtion ψc
α(r)and ψv

ν(r) an now be deomposed into an envelope part, whih varies only slightlyover a unit ell, and the rapidly osillating Bloh-fator uk≈0(r). Taking into aountthat the eletromagneti �eld is approximately onstant over the extent of a QDand onsidering for simpliity equal envelopes for the ondution- and valene-bandeletrons (equal-envelope approximation [58℄), one �nds
gξαν = EξdcvUξ(r0)δαν ≡ gξδαν . (2.8)Here, dcv are the interband matrix elements and r0 is the position of the QD. In thisform, the band indies our only in the interband matrix elements, whih are thesame for idential QDs. Thus, the light-matter oupling onstant depends only onthe mode of the eletromagneti �eld. If di�erent QDs were onsidered, the index νmust be kept with the oupling matrix element to aount for the varying ouplingstrengths in the ensemble, as it ontains both the single-partile state and the QDposition. From Eq. (2.8) it follows that, within the envelope-funtion approximation,optial transitions our only between the s-shells or the p±-shells of eletrons andholes.3The rotating wave approximation is ommonly applied in quantum-optial problems. In the RWA,o�-resonant terms ourring in the equations of motion are dropped. For simpliity, this mayalready be done in the Hamiltonian. These terms posses a phase fator ausing a osillationrapid in omparison to the dynamis aused by the optial proesses lose to resonane. 15



2. Light-Matter Coupling in Semiondutor Quantum Dots
2.2. The Hierarchy Problem and Truncation of Correlations (Cluster

Expansion Method)The time evolution of the single arrier and photon operators is obtained by usingHeisenberg's equations of motion together with the Hamiltonian of the interatingsystem. For an operator a it is given by
i~

d

dt
a = [a,H ] . (2.9)From this we derive oupled equations for operator averages, like the arrier popula�tion or photon number in a avity mode or in a ontinuum mode of free spae. Themany-body problem, and in partiular the equation-of-motion approah inherentlybears a hierarhy problem, aused by the interation parts of the Hamiltonian. Inorder to ahieve a onsistent formulation of this problem, the lassi�ation and truna�tion of orrelation funtions will be addressed before the semiondutor lumineseneequations are introdued.The appearing operator averages are lassi�ed into singlets, doublets, triplets, quadru-plets, et., aording to the number of partiles they involve. Considering interbandtransitions, it must be borne in mind that the exitation of one eletron is desribedas the destrution of a valene band arrier and the reation of a ondution bandarrier. For the orresponding interation proesses, a photon operator is onnetedto two arrier operators [11, 69℄. Formally, this an be seen from integrating the timeevolution of a photon operator, readily obtained from Eq. (2.9),

i~
d

dt
b†ξ(t) = −~ωξb

†
ξ(t) + i

∑

ν

gξc
†
ν(t)vν(t) , (2.10)whih yields

b†ξ(t) = b†ξ(0)eiωξt +
1

~

∑

ν

∫ t

0

dt′gξc
†
ν(t

′)vν(t
′)eiωξ(t−t′) . (2.11)This fat is used to lassify mixed expetation values with photon and arrier opera�tors. For example, the eletron population f e

ν = 〈c†νcν〉 is a singlet ontribution, thesoure term of spontaneous emission 〈c†αvαv
†
νcν〉 and the photon-assisted polarization

〈b†ξv†νcν〉 are doublet terms.In the following,N-partile averages, shematially denoted as 〈N〉 and ontaining 2Narrier operators or an equivalent replaement by photon operators, are fatorized intoall possible ombinations of averages involving one up to N −1 partile averages. For16



2.2. Cluster Expansion Methodthe di�erene between the full operator average and this fatorization, we introduea orrelation funtion of order N , denoted as δ〈N〉. Shematially the fatorizationof singlets, doublets, triplets, and quadruplets is given by
〈1〉 = δ〈1〉 , (2.12a)
〈2〉 = 〈1〉〈1〉 + δ〈2〉 , (2.12b)
〈3〉 = 〈1〉〈1〉〈1〉+ 〈1〉δ〈2〉 + δ〈3〉 , (2.12)
〈4〉 = 〈1〉〈1〉〈1〉〈1〉+ 〈1〉〈1〉δ〈2〉

+ 〈1〉δ〈3〉+ δ〈2〉δ〈2〉 + δ〈4〉 . (2.12d)Looking at the last equation, the �rst four terms on the right hand side representall possible ombinations of singlets, singlets and doublets, singlets and triplets, anddoublets, respetively. The last term is the remaining quadruplet orrelation funtion.Continuing the series (2.12a)�(2.12d) leads to quintuplet terms and so on. Note thatsinglets annot be fatorized any further.The essential idea of what has beome known as the luster expansion method [45,46, 63℄ is to replae all ourring operator expetation values 〈N〉 aording to theEqs. (2.12) so that equations of motion for the orresponding orrelation funtions
δ〈N〉 are obtained. Then the hierarhy of orrelation funtions is trunated ratherthan the hierarhy of expetation values itself. This allows the onsistent inlusion oforrelations up to a ertain order in all of the appearing operator expetation values.Noting that terms of inreasing order in the luster expansion desribe orrelatedevents between more and more partiles justi�es a trunation, as these events are theless probable the more partiles are involved. The desribed trunation proedure haspreviously been used to desribe the luminesene dynamis of quantum wells [62, 70℄and reently also of QDs [11, 44, 124℄. If the hierarhy is trunated at the level oftwo-partile orrelation funtions, the so-alled semiondutor luminesene equationsfor the oupled arrier and photon populations emerge, whih onsistently inludearrier-arrier orrelations up to the doublet level. When we disuss the photonstatistis in Chapter 3, orrelations up to the quadruplet level must be inluded, asthe photon seond-order orrelation funtion g(2)(0) ∝ 〈b†b†bb〉 is of this order itself.It is worth pointing out that the hoie of a trunation method is not unique. Further�more, a trunation at a onsistent level in the number of involved partiles does notneessarily introdue physial e�ets onsistently. One example is the sreening ofthe Coulomb potential ourring in the equations of motion for singlets. There, thesreening is introdued by eletron-hole orrelations, whih are doublet quantities.However, the sreening of the Coulomb potential in the equations of motion for dou�blet quantities is introdued on the triplet level, so that a trunation on doublet level 17



2. Light-Matter Coupling in Semiondutor Quantum Dotsleaves the Coulomb potential relevant for interation proesses between orrelatedarriers unsreened. Thus, if sreening of arrier-arrier orrelations was required,the onsisteny must either be violated to inlude only the sreening terms of thetriplet level, or the triplet level must be inluded all together. Then the problemarries over to the next higher level, where sreening of triplet quantities is intro�dued on the quadruplet level. This stands in ontrast to the diagrammati Green'sfuntion approah, where physial proesses are always onsidered for all ourringquantities via the hoie of an appropriate self energy. The introdued renormaliza�tions or sreening e�ets are then onsidered up to in�nite order due to the reursivestruture of the Dyson equation. However, by the hoie of ertain diagrams for theself energy or the polarization funtion in the ase of Coulomb sreening, the theoryis then restrited to ertain lasses of interation proesses.The orrelation funtions de�ned aording to Eq. (2.12) show peuliarities whenalgebrai manipulations are performed on them. This is illustrated in the followingexample, where we onsider the operator identity
c†νcνc

†
νcν = c†νcν . (2.13)For a orrelation funtion, however,

δ〈c†νcνc†νcν〉 6= δ〈c†νcν〉 , (2.14)as an be seen by expanding the left and right hand sides of this equation aordingto Eqs. (2.12b) and (2.12a), respetively, i.e.
〈c†νcνc†νcν〉 − 〈c†νcν〉2 + 〈c†νcν〉〈cνc†ν〉 6= 〈c†νcν〉 . (2.15)This implies that algebrai operations inside the δ-symbol of the orrelation funtionare not permitted. Otherwise using an identity like Eq. (2.13) ould be used to hangethe order of orrelations, e.g.

δ〈c†νcνc†νcν〉
use Eq. (2.13)inside δ〈...〉

= δ〈c†νcν〉 , (2.16)whih stands in ontradition to Eq.(2.14).Examples for the fatorization of operator averages are given in Appendix A with theintention to larify the appliation of the luster expansion method to the reader.
2.3. Equations of MotionWith the lassi�ation and trunation method at hand, we now derive the so-alledsemiondutor luminesene equations that ontain operator averages onsistently18



2.3. Equations of Motionup to the doublet level. This inludes arrier-arrier orrelations that arise from thesoure term of the spontaneous emission. Amongst these are exitoni populationsthat play an important role in the understanding of the deay behavior of the pho�toluminesene, and we go into detail about this in Setion 2.5. With the theory onthis level we desribe both the spetrum and time-resolved photoluminesene.We assume in the whole of this thesis that the luminesene takes plae in the ino�herent regime where the in�uene of a oherent polarization an be negleted. Exem�plary situations inlude inoherent arrier exitations or oherent exitation of higherstates (barrier, wetting layer or higher loalized states) with rapid dephasing andarrier relaxation, leading to a quasi-equilibrium distribution of the arriers at thelattie temperature. The absene of a oherent external �eld is expressed in the van�ishing expetation values of the �eld operator 〈bξ〉 = 0 and the oherent polarization
〈v†νcν〉 = 0. True at the initial time t = 0, it an be shown to be preserved alsoduring the time evolution: Taking the operator average of Eq. (2.11) we see thatthe evolution of the �eld operator is driven by the oherent polarization. Vie versa,the oherent polarization remains zero at all times without a driving oherent �eld[70℄. However, for situations where a oherent polarization is present, like resonane�uoresene [2, 70�72℄, these additional terms must be onsidered in all equations ofmotion.Operator averages are kept within the rotating wave approximation, implying thatterms with a rapidly osillating phase are negleted.
2.3.1. QD Semiconductor Luminescence Equations

Photon and carrier numbers. Writing down Heisenberg's equation of motion for thephoton number, we �nd
i~

d

dt
〈b†ξbξ〉 = 2iRe

∑

ν

g∗ξ 〈b†ξv†νcν〉 , (2.17)whih ouples to the photon-assisted polarization amplitude 〈b†ξv†νcν〉.4 The orre�sponding equation of motion is given by
i~

d

dt
〈b†ξv†νcν〉 = (ε̃c

ν − ε̃v
ν − ~ωξ − iΓ) 〈b†ξv†νcν〉

+ (f c
ν − f v

ν )
∑

α

Vνανα〈b†ξv†αcα〉

+ i gξf
c
ν(1 − f v

ν ) + i
∑

α

gξC
x
αννα . (2.18)4In the inoherent regime 〈b†ξ〉 = 0 and thus, aording to Eq. (2.12b), 〈b†ξv†νcν〉 ≡ δ〈b†ξv†νcν〉. 19



2. Light-Matter Coupling in Semiondutor Quantum DotsThe evolution is determined by the Coulomb-renormalized energies
ε̃c

ν = εc
ν −

∑

α

Vναναf
c
α ,

ε̃v
ν = εv

ν −
∑

α

Vναναf
v
α ,

(2.19)the resonane frequeny ωξ of the optial mode ξ, and a phenomenologial dephasing
Γ ausing a broadening of the spetral lines. The relevant mehanism for dephasingin semiondutor systems is Coulomb sattering and sattering with aousti or opti�al phonons. This ould be inluded on a mirosopi level by adding a Hamiltoniananalogous to Eq. (2.6) for the arrier-phonon interation [62, 127, 128℄. Predomi�nantly interested in the luminesene and e�ets introdued by the Coulomb andlight-matter interation, we restrit ourselves to a phenomenologial dephasing on�stant in assoiation with arrier interband transitions. For further disussion, seeSetion 5.3.5. The term in the seond line is analogous to the quantum well ase,where it gives rise to the exitoni photoluminesene below the band gap [71℄. Hereit introdues the orresponding exitoni resonanes for the QD states due to theinterband Coulomb exhange interation. The soure term of spontaneous emission
〈c†αvαv

†
νcν〉 enters the theory naturally due to the quantization of the light �eld. Inits fatorized form it appears in the last line of Eq. (2.18), with the eletron-holeorrelation funtion Cx

α′νν′α = δ〈c†α′v†νcν′vα〉. The spontaneous emission soure term isof partiular interest, as it deviates from the soure term obtained in atomi models.While for atoms only the number of eletrons ontributes, here a two-partile averageontaining eletron- and hole operators ours. We have omitted the term represent�ing stimulated emission/absorption, whih ontributes for example if an external �eldis resonant with the onsidered transitions or if a resonator provides feedbak due tothe emitted photons [124℄. This feedbak term is of extreme relevane when onsid�ering QDs in miroavities and will be disussed in Setion 2.7, where the theory ispresented for open-avity systems. Before evaluating the orrelation term in the lastline of Eq. (2.18), we give the time evolution of the arrier population
i~

d

dt
f c

ν = −2i Re
∑

ξ

g∗ξ〈b†ξv†νcν〉 (2.20)
+ 2i Im

∑

αα′ν′

Vνα′αν′ (Cc
να′αν′− Cx

α′ναν′) ,

i~
d

dt
f v

ν = 2i Re
∑

ξ

g∗ξ 〈b†ξv†νcν〉 (2.21)
− 2i Im

∑

αα′ν′

Vνα′αν′ (Cv
να′αν′− Cx

α′ναν′) .

20



2.3. Equations of MotionHere additional intraband orrelation funtions Cc
α′νν′α = δ〈c†α′c†νcν′cα〉 and Cv

α′νν′α =

δ〈v†α′v†ν vν′vα〉 appear. Restriting ourselves to s- and p-shells for the loalized states,we onsider only s-states with zero angular momentum and p-states with angularmomentum of ±1, whih, as we now explain, allows us to take 〈a†νaν′〉 = fa
ν δνν′.Initially all expetation values but for the population in the s- and p-shells are set tozero. The rotational symmetry of the system and the resulting onservation of angularmomentum ensures that all o�-diagonal terms 〈a†νaν′〉 with ν 6= ν ′ desribe forbiddentransitions and remain zero during the time evolution. Therefore, in all equationsexpetation values of two arrier operators are restrited to populations, i.e. averagesof valene- or ondution-band-arrier reator and annihilator with equal indies. Aninlusion of higher angular momentum states is straightforward, but unneessary atlow temperatures and left out for transpareny. Also remember that polarization-likeaverages of the form 〈v†νcν〉 vanish in the inoherent regime, as is explained in thebeginning of this setion.

Carrier correlations. We now turn to the interband, or eletron-hole orrelationsthat our in Eqs. (2.18), (2.20) and (2.21), namely
Cx

α′νν′α = δ〈c†α′v
†
νcν′vα〉

= 〈c†α′v
†
νcν′vα〉 − 〈c†α′v

†
νcν′vα〉S (2.22)

= 〈c†α′v
†
νcν′vα〉 + f c

ν′f v
ν δναδν′α′aording to the general de�nition of a two-partile orrelation funtion in Eq. (2.12b).Here, the fatorization into singlets is equivalent to the Hartree-Fok approximation.With the following disussion we o�er an intuitive interpretation of the interband or�relations Cx

α′νν′α. They desribe a proess where a ondution-band-arrier transitionfrom a state ν ′ to a state α′ is aompanied by a valene-band-arrier transition froma state α to a state ν. It is important to understand that these transitions are orre�lated and do not oinidentally our at the same time, re�eted by the fat that theunorrelated part of the operator average 〈c†α′v†νcν′vα〉 has already been subtrated inthe de�nition of Cx in Eq. (2.22).A speial role inhere the matrix elements Cx
αννα, as they also ontain ontributionsorresponding to exitoni population. This an be inferred from the spontaneous-e�mission ontribution in Eq. (2.18). The term ∝ f c

ν(1 − f v
ν ) is the fatorized part

〈c†αv†νcνvα〉S and desribes an unorrelated eletron-hole plasma for the state ν. Theorrelated part is given by the sum over the matrix elements Cx
αννα. If the matrixelements are non-zero, orrelations between eletrons and holes are introdued intothe eletron-hole system. The orrelation funtion with four idential indies may 21



2. Light-Matter Coupling in Semiondutor Quantum Dotsbe interpreted as exitoni arrier oupations, but also o�-diagonal orrelations on�tribute towards the luminesene. The formation of exitoni populations has beenstudied in quantum wells in Ref. [62℄.Note that a generalization of the soure term of spontaneous emission in Eq. (2.18)to QDs at di�erent positions an be formulated to aount for oupling of arriertransitions in di�erent dots. In that ase, the state indies are understood to inludethe position indies of eah dot, and the sum runs over all QD positions. Then, inaddition to the eletron-hole orrelation (2.22) within one QD, R1 = R2, one obtainsorrelation funtions of the type δ〈c†α,R1
v†ν,R2

cν,R2
vα,R1

〉 with R1 and R2 referring tothe spatial positions of two di�erent QDs. It an be shown that the Coulomb inter�ation anels for QDs at di�erent positions R1 6= R2, leaving only the light-matterinteration as the driving mehanism for these orrelations. A straightforward in�terpretation lies in the radiative, or more preisely, super�uoresent oupling. Thise�et refers to the olletive emission of radiation after an inoherent exitation. Inontrast to stimulated emission, however, this e�et is not mediated by a photonipopulation in a resonator, but is aused by a diret radiative oupling between theemitters. While super�uoresense and superradiane is intensely studied in the liter�ature [22�24, 40, 103, 139, 140, 147, 148℄, we do not onsider this e�et within thisthesis under the assumption that it is small in an ensemble of self-organized QDs.The oupling an only be e�etive if the emitters ouple onstrutively. This is eitherthe ase for very few emitters, or for an array with a regular spaing of half of theemission wavelength between single emitters. In an irregular array of self-assembledQDs, the e�et is expeted to average to zero.The time evolution of the interband orrelations is given by the equation of motion
i~

d

dt
Cx

α′νν′α = −
(
εc

α′ + εv
ν − εc

ν′ − εv
α

)
〈c†α′v

†
νcν′vα〉

−
∑

ν2ν3ν4

[

Vν1ν2ν3α′〈c†ν4
(c†ν2

cν3
+ v†ν2

vν3
)v†νcν′vα〉

+ Vν4ν2ν3ν〈c†α′v
†
ν4

(c†ν2
cν3

+ v†ν2
vν3

)cν′vα〉
− Vν′ν2ν3ν4

〈c†α′v
†
ν(c

†
ν2
cν3

+ v†ν2
vν3

)cν4
vα〉

− Vαν2ν3ν4
〈c†α′v

†
νcν′(c†ν2

cν3
+ v†ν2

vν3
)vν4

vν4
〉
]

− i
∑

ξ

[

g∗ξ 〈b†ξv
†
α′v

†
νcν′vα〉 − g∗ξ 〈b†ξc

†
α′v

†
νcν′cα〉

+ gξ 〈bξc†α′v
†
νvν′vα〉 − gξ 〈bξc†α′c

†
νcν′vα〉

]

− i~
d

dt
〈c†α′v

†
νcν′vα〉S . (2.23)22



2.3. Equations of MotionHere, the �rst line is due to the free arrier Hamiltonian (2.2), the �rst sum due tothe arrier Coulomb interation (2.3), and the seond sum due to the light-matterinteration (2.6) ontaining triplet terms. Note that the time derivative of the singletfatorization must be subtrated in order to obtain the pure four-operator orrelation,whih an be seen by taking the time derivative of Eq. (2.12b), i.e.
d

dt
δ〈2〉 =

d

dt
〈2〉 − d

dt
〈1〉〈1〉 . (2.24)Evaluating Eq. (2.23) on the doublet level, i.e., negleting triplet level and higherorder orrelations, leads to

i~
d

dt
Cx

α′νν′α =
(
εc
ν′− εv

ν − εc
α′ + εv

α

)
Cx

α′νν′α

+ Vν′ανα′

[
(1 − f c

α′)(1 − f v
ν ) f c

ν′f v
α − f c

α′f v
ν (1 − f c

ν′)(1 − f v
α)
]

+

∑

ββ′

{

(f v
ν − f v

α)Vβανβ′

(
Cx

α′βν′β′ + Cc
α′βν′β′

)
+ (f c

α′− f c
ν′)Vν′ββ′α′

(
Cx

βνβ′α + Cv
βνβ′α

) }

+

∑

ββ′

{

f c
β′Vβ′ββ′α′Cx

βνν′α + f v
β′Vβ′ββ′ν′Cx

α′βν′α − f c
β Vν′ββ′β Cx

α′νβ′α − f v
β′Vαββ′β Cx

α′νν′β′

}

+

∑

ββ′

(f c
β + f v

β)
[
Vβ′ββα′Cx

β′νν′α + Vβ′ββν Cx
α′β′ν′α − Vν′βββ′Cx

α′νβ′α − Vαβββ′Cx
α′νν′β′

]

+

∑

ββ′

{

(f v
α − f c

α′) Vβαβ′α′ Cx
βνν′β′− (f v

ν − f c
ν′) Vν′βνβ′ Cx

α′ββ′α + (1 − f v
α − f c

ν′) Vν′αββ′ Cx
α′νβ′β

+ (f c
α′− 1 + f v

ν ) Vββ′να′ Cx
ββ′ν′α + (f c

ν′− f c
α′) Vν′βα′β′ Cx

βνβ′α + (f v
α − f v

ν ) Vβαβ′ν Cx
α′βν′β′

}

− i
∑

ξ

δαα′δνν′

[
g∗ξ (f

v
α − f c

α)〈b†ξv†νcν〉 + gξ(f
v
ν − f c

ν)〈bξc
†
αvα〉

]
. (2.25)Although the quantity of terms makes this equation look very ompliated, an in�terpretation of the single ontributions is possible. The �rst two lines of Eq. (2.25)orrespond to a alulation of Cx in singlet approximation. A theory restrited to thislevel was used in Ref. [65, 72℄ for quantum wells and in Ref. [124℄ for QDs. Note thatthe singlet fatorization of six-operator averages already goes beyond the Hartree-�Fok approximation, whih orresponds to the singlet fatorization of four-operatoraverages. Nevertheless, it is not onsistent in the sense that all ourring operatoraverages are treated on the same level.5 In the Hartree-Fok approximation the or�relations Cx,c,v are negleted altogether. The terms in the third line an be shownto provide sreening aording to the Lindhard theory for the Coulomb potential in5As the photon-assisted polarization is a doublet quantity, all averages must be evaluated up tothe doublet-level for onsisteny. 23



2. Light-Matter Coupling in Semiondutor Quantum DotsEq. (2.18). The next line ontains exhange-like sattering terms, followed by one lineof diret sattering terms, identi�ed by the indies on the Coulomb matrix elements[10℄. The terms in the fourth sum are Coulomb renormalizations due to satteringbetween all possible states. The last line �nally ontains the ontribution due to thelight-matter interation Hamiltonian in Eq. (2.6).An equation similar to (2.25) for the intraband orrelations Cc
α′νν′α = δ〈c†α′c†νcν′cα〉 isobtained along the same lines. We restrit ourselves here to the equation of motionfor the orrelations of the ondution-band eletrons. A similar equation an begiven for the valene-band arrier orrelations Cv

α′νν′α = δ〈v†α′v†νvν′vα〉 by exploitingthe symmetry properties of the Hamiltonian (2.1).
i~

d

dt
Cc

α′νν′α = −
(
εc
α′ + εc

ν − εc
ν′ − εc

α

)
Cc

α′νν′α

−
(
V ∗

α′νν′α − V ∗
α′ναν′

) [
(1 − f c

ν)(1 − f c
α′) f c

ν′f c
α − f c

νf c
α′ (1 − f c

ν′)(1 − f c
α)
]

+

∑

ββ′

{

(f c
ν′− f c

ν)Vν′b β′ν Cc+x
α′b αβ′− (f c

α′− f c
α)Vαb β′α′Cc+x

νb ν′β′

− (f c
ν′− f c

α′)Vν′b β′α′Cc+x
νb αβ′ + (f c

ν − f c
α)Vαb β′ν Cc+x

α′b ν′β′

}

+

∑

ββ′

{

f c
β′Vβ′b β′α′Cc

b νν′α + f c
β′Vβ′b β′ν Cc

α′b ν′α − f c
b Vν′b β′b Cc

α′νβ′α − f c
b Vαb β′b Cc

α′νν′β′

}

+

∑

ββ′

{

(f c
b + f v

b )Vβ′b b α′Cc
β′νν′α + (f c

b + f v
b )Vβ′b b ν Cc

α′β′ν′α

− (f c
b + f v

b )Vν′b b β′Cc
α′νβ′α − (f c

b + f v
b )Vαb b β′Cc

α′νν′β′

}

+

∑

ββ′

{

(1 − f c
α − f c

ν′)Vν′αβ′b Cc
α′νb β′− (1 − f c

α′− f c
ν)Vb β′να′Cc

b β′ν′α

− (f c
α′− f c

α)Vαb α′β′Cc
b νν′β′− (f c

ν′− f c
α′)Vb ν′β′α′Cc

b νβ′α

− (f c
ν′− f c

ν)Vb ν′β′ν Cc
α′b β′α − (f c

ν − f c
α)Vαb νβ′Cc

α′b ν′β′

} (2.26)Here we have used the abbreviation Cc+x
α′νν′α = Cc

α′νν′α + Cx
α′νν′α. The terms an be in�terpreted in analogy to Eq. (2.25). However, the ontribution due to the light-matterinteration vanishes for Cc and Cv. Note that the remaining Coulomb orrelations anonly redistribute arriers without hanging the total population ∑ν f

c,v
ν . Therefore,the hanges of the arrier densities in eah band are determined only by the pho�ton-assisted polarization. From ombination of Eqs. (2.17) and (2.20), one readilyobtains

d

dt

(∑

ν

f c
ν +

∑

ξ

〈b†ξbξ〉
)

= 0 , (2.27)
24



2.4. Stationary Photoluminesene Spetrumwhih reveals that a derease (inrease) of population in the ondution band isbalaned by the inrease (derease) of the total photon number.In the equations of motion (2.25) and (2.26) for the arrier orrelations no dephasingterms appear. In Eq. (2.18) for the photon-assisted polarization we have introdueda phenomenologial dephasing in order to aount for the e�ets of arrier-phononinteration. Without dephasing, the orrelations remain undamped. To aount forthe e�et of phonon interation in the orrelations the obvious hoie would be toadd a onstant dephasing term in analogy to Eq. (2.18). However, it turns out that aonstant diagonal dephasing term leads to an unphysial heating of the system. Thishas also been observed by Hoyer et al. in Ref. [62℄. The solution to this problem isto use a mirosopi dephasing model. However, dephasing of arrier-arrier orrela�tions is provided by triplet terms generated by the phonon-interation Hamiltonian[62℄. At this stage we restrit ourselves to the doublet level, and a small onstant de�phasing is used in Setion 2.5 together with arrier sattering due to interation withLO-phonons [128℄, treated in relaxation-time approximation, in order to demonstratethe e�et of dephasing of orrelations. The sattering redistributes arriers towards asteady-state distribution and manages to ompensate the arti�ial heating aused bythe onstant dephasing term. Nevertheless, a mirosopi treatment of the phononinteration to obtain the orret dephasing terms is desirable and work in progress.
2.4. Stationary Photoluminescence SpectrumBefore we look at the dynamis of the photoluminesene, we show results for thestationary spetrum. The equations are solved in the time domain using a fourthorder Runge-Kutta method. Some numerial details are found in Appendix E. Dueto the free osillating part in Eqs. (2.18) and (2.25) a onstant femtoseond stepsizeis required. The material parameters are those used in Ref. [10℄ for an InGaAsQD system. We onsider a density of 1.5 · 1010 m−2 QDs on the WL and a gapenergy of 1.52 eV. We assume that the exitation involves only arriers with one spinpolarization, e.g., due to exitation with irularly polarized light. The dynamis ofthe arrier generation and relaxation happen on muh faster timesales (∼ 10 ps) thanthe reombination (∼ 1 ns), and we assume a quasi-equilibrium distribution of arrierswith given arrier density and temperature as an initial state for our alulation. Thistreatment is supported by separate studies of relaxation proesses due to Coulombinteration and interation with LO-phonons [17, 100, 127, 128℄.Due to this assumption the initial values for the orrelation funtions Cx, Ce, and Cvremain open. In an unexited system, all orrelation funtions are zero and build up 25



2. Light-Matter Coupling in Semiondutor Quantum Dotsduring the arrier generation proess aording to their equations of motion. Startinga alulation with quasi-equilibrium population and vanishing orrelation funtionsan lead to an abrupt build-up of orrelations, resulting in unphysial osillationsof the orrelation matrix elements that arry over to the population dynamis. Toavoid these unphysial results, we numerially determine the initial onditions for theorrelation funtions from their equations of motion. For this purpose, we performa separate alulation, where the arrier populations are adiabatially ramped up totheir equilibrium values f̃ e,h
ν aording to

d

dt
f e,h

ν =
f̃ e,h

ν

2

π

τ
sin
(π

τ
t
) for 0 < t <

τ

2
. (2.28)The resulting steady-state solutions of the equations of motion for the orrelationfuntions provide the starting point of the time evolution disussed in the following.This approah an be plaed into a physial ontext by taking a loser look at arriersattering due to LO-phonons. Mirosopi alulations of arrier relaxation due tosattering with LO-phonons [17℄, although performed for a di�erent material system,suggest a typial time of a few pioseonds until the inoherently exited populationis transformed into a steady-state distribution. In Figure 2.4 we show the populationbuild-up of eletrons (top panel) and holes (bottom panel) in the p- and s-shells afterpulsed exitation of the wetting layer states for a temperature of 10K. The bold linesare the result of a non-markovian quantum-kineti alulation inluding polaroniand memory e�ets, performed by Jan Seebek in our group. E�ient relaxationis observed despite the frequently used argument of a phonon bottlenek, for detailrefer to [17, 128℄. The steady-state results of the quantum kineti alulation are wellreprodued by hoosing e�etive relaxation times τ , in this ase 3.5 ps for eletronsand 1.5 ps for holes. The results are shown in Figure 2.4. Based on this, we useEq. (2.28) with omparable relaxation times.We de�ne the time-dependent luminesene spetrum aording to [42, 70℄ and on�sider the high-frequeny-resolution limit of a detetor to obtain

I(ω) =
d

dt

∑

ξ

〈b†ξbξ〉
∣
∣
∣
|q|= ω

c

. (2.29)Here the mode label ontains ξ = {q, ep}. Using Eq. (2.17) leads to
I(ω) =

2

~

∑

ν

|ḡξ|2 Re ˜〈b†ξv
†
νcν〉 , (2.30)where ˜〈b†ξv

†
νcν〉 = 〈b†ξv†νcν〉/gξ has been introdued. By means of this rede�nition,the resulting quantity ˜〈b†ξv

†
νcν〉 an be shown to depend only on the photon energy26



2.4. Stationary Photoluminesene Spetrum
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Figure 2.4.: Time evolution of the arrier population (top: eletrons, bottom: holes) intoa steady state after wetting-layer exitation at 10K. The osillating lines represent the re�sults of a non-markovian quantum-kineti alulation, while the monotoni urves representapproximations based on the hoie of an e�etive relaxation time of τ = 3.5 (1.5) ps foreletrons (holes).
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2. Light-Matter Coupling in Semiondutor Quantum Dots
~ω = ~cq and neither on the diretion nor on the polarization of the mode ξ. Asa result the angular part and the polarization an be integrated out in Eq. (2.29),yielding the quantity |ḡξ|2 in Eq. (2.30) in a way similar to the Wigner-Weiÿkopftheory [92℄. The total photon number is obtained from

Itot =

∫

dω I(ω) . (2.31)The frequeny-resolved photoluminesene (PL) spetrum after a time evolution of50 ps is plotted in Figure 2.5 for two di�erent temperatures of 200K and 77K. Saledrelative to the bandgap, the two peaks orrespond to the s-shell resonane at about
−133meV and the p-shell transition at about −79meV. Both peaks are red shifteddue to the Coulomb interation from the non-interating energies εc

p+εv
p = −111meVand εc

s + εv
s = −55.5meV, respetively. Furthermore, the peak height is hanged dueto the Coulomb interation.To explain the origin of the peaks in the spetrum, we onsider a simpli�ed piturewhere Coulomb interation and orrelations (Hartree-Fok limit) are negleted. Wean solve the equation of motion for 〈b†ξv†νcν〉 in the adiabati regime to obtain

1

gξ

〈b†ξv†νcν〉 = −i f c
ν(1 − f v

ν )

εc
ν − εv

ν − ~ωξ − iΓ
. (2.32)Inserting this in Eq. (2.29) yields two peaks, one at the free energy of the s-shellemission εc

s − εv
s , and one at the p-shell emission shown as dotted line in the leftpanel of Figure 2.5. The same arguments, but with less rude approximations, anbe inferred from the Eliot-formula, whih is frequently used in the disussion of PL[44, 70℄ and absorption spetra [58℄.The results of the alulation on the doublet level are ompared in the same �gure tothose obtained in the Hartree-Fok, or singlet approximation (dashed lines) for thesoure term of spontaneous emission. Remember that in the singlet fatorization theorrelations, whih are doublet quantities, are negleted altogether. In the numerialevaluation we found the in�uene of the orrelations Cc and Cv to be negligible inomparison to the eletron-hole orrelations Cx for the studied parameters. The PLat the s-shell is slightly redued, while the p-shell PL beomes negative. Contraryto an absorption spetrum, where a negative peak orresponds to gain, this result isunphysial and an artifat of the Hartree-Fok approximation at low temperatures.It re�ets a violation of the onsisteny required by the trunation sheme, indiatingthat for the alulation of a doublet-level quantity relevant proesses must also betreated on the doublet level. In Chapter 3 this onsisteny requirement leads to thealulation of quadruplet level terms for the seond-order photon orrelation funtion,28



2.5. Time-Resolved Photoluminesene
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~ω − Egap in meVFigure 2.5.: Stationary PL spetra for T = 200K (left) and T = 77K (right). Initially theQD is populated on average with one eletron and one hole. In both �gures the solid lineorresponds to the full alulation and the dashed line to the Hartree-Fok fatorization.For omparison the dotted line shows a spetrum without Coulomb interation. The insetsshow a magni�ation of the peaks.whih is determined by a quadruplet-level orrelation funtion itself. In Ref. [65℄ thedoublet orrelations (2.22) were inluded, but fatorized on the singlet level. As wehave disussed, this orresponds to taking only the �rst two lines in Eq. (2.25) whilenegleting the doublet ontributions (due to the Coulomb- and the dipole Hamiltonianof the light-matter interation). Although the PL signal is less prone to beomingnegative, positivity is still not ensured. Only if the terms in the equations of motionfor the orrelations (2.22) are fatorized on doublet level, do we �nd the spetrumto be positive for all temperatures. Positivity is also naturally ensured if a di�erentapproah based on Green's funtions is hosen [65℄.
2.5. Time-Resolved Photoluminescence

In this setion we study the in�uene of the orrelations on the time-resolved PLand on the orresponding population dynamis. Before we disuss the numerialresults obtained by the solution of the full set of equations derived in Setion 2.3,it is instrutive to analyze the soure term in Eq. (2.18) in more detail to gain adeeper understanding of the deay behavior of photoluminesene in a semiondutorsystem. 29



2. Light-Matter Coupling in Semiondutor Quantum Dots
2.5.1. Understanding the Role of Carrier Correlations in Quantum DotsIn the derivation of Eq. (2.18) the soure term of spontaneous emission gξf

c
ν(1−f v

ν )+

gξ

∑

α C
x
αννα originates from the operator average ∑α gξ〈c†αvαv

†
νcν〉. An illuminatinganalysis is possible if one ompletely neglets the Coulomb interation of arriers.Here, the soure term of spontaneous emission with the four-operator expetationvalue (resulting from the arrier-photon interation) an be evaluated in two limitingases. The �rst is the Hartree-Fok approximation, where orrelations among thearriers are negleted. The seond orresponds to the one-eletron two-level approx�imation, where one assumes that the relevant physis is determined by one on�nedshell for eletrons and one for holes. The latter ase is of partiular interest, sineatomi models are frequently used in the disussion of QDs.Within the Hartree-Fok approximation, the soure term of spontaneous emission issolely determined by the produt f c

ν(1− f v
ν ). In the absene of Coulomb interation,one an formulate the stationary solution of Eq. (2.18) for the ase of slowly varyingpopulations to obtain
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(2.33)where 1/τ c
ν is the Wigner-Weiÿkopf rate of spontaneous emission for ondution-bandarriers in the limit Γ → 0 [92℄. From this equation it is obvious that the deay ofthe population f c

ν is non-exponential, unless f v
ν is held onstant by some mehanism,like bakground doping. Another way to think of it is that the deay rate beomestime dependent, if it is rede�ned as
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=
1 − f v

ν (t)

τ c
ν

. (2.34)Furthermore, the rate of deay depends on the arrier density and is higher for smallerpopulations in the valene band. This behavior arries over to the PL aording toEq. (2.27). Due to the non-exponential PL deay a simple deay rate annot beused to haraterize the PL dynamis. This might appear surprising, beause for atwo-level atom an exponential deay behavior is known.Let us onsider the two-level approximation with a single arrier as the seond limitingase. Carrier indies are dropped while they are not needed if the population dynamisis restrited to one on�ned eletron and hole level. In the unexited (exited) statefor this two-level system the eletron is in the valene- (ondution-) band state. For30



2.5. Time-Resolved Photoluminesenethe two spin polarizations, whih are deoupled in the absene of Coulomb interation,the independent proesses then involve only the exitation of a single eletron. Thishas a signi�ant onsequene for the evaluation of the soure term of spontaneousemission. Within the two-level approximation, the suessive appliation of morethan one annihilation operator always yields zero, so that the soure term 〈c†vv†c〉redues to f c. Along the same lines disussed above, instead of Eq. (2.33) one obtains
d

dt
f c = −f

c

τ
, (2.35)whih orresponds to the exponential deay behavior known from the two-level sys�tem. In this ase, 1/τ is the Wigner-Weiÿkopf rate for the onsidered two-level tran�sition. From this analysis we dedue that the exponential deay within the two-levelapproximation is a manifestation of the fat that the exitation of a QD ondu�tion-band arrier is rigidly linked to the absene of a QD valene-band arrier. Inthe eletron-hole piture, this orresponds to fully a orrelated eletron-hole pair. Onthe operator level this is expressed as c†vv†c = c†c. In a semiondutor QD, however,several arriers are typially present and their orrelations are subjet to satteringand dephasing proesses and must, therefore, expliitly be alulated.

2.5.2. Results for the Emission into Free SpaceNow we turn to the numerial results of the SLE inluding Coulomb interation. InFigure 2.6 we show the evolution of the time-resolved photoluminesene. Again, theinitial arrier density is taken to be 1.5 · 1010 m−2. For the solid line all orrelationsup to the doublet level have been inluded. The result of a alulation in the Hartree-�Fok approximation, whih we an now interpret to orrespond to the situation ofunorrelated arriers, is shown as dashed line. In this ase, the deay is learly non-�exponential, whih is in aordane with Eq. (2.33). Keeping the disussion in theprevious setion in mind, it is obvious from the full alulation on doublet level thatarriers are strongly orrelated.However, our approah so far does not aount for any kind of dephasing of the or�relations. This topi was already mentioned in Setion 2.3, where phonon satteringwas named as one physial mehanism providing suh dephasing. Hoyer et al. havestudied phonon sattering on a mirosopi level for a quantum-well system. It isshown that dephasing of orrelations is indeed provided, although this enters only viahigher-order triplet terms [61, 62℄. Extensions beyond the singlet-doublet fatoriza�tion are not within the sope of this work. Nevertheless, we an aount for the mainfeatures of sattering, whih is dephasing of orrelations and relaxation of the arrier 31
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α′νν′α is added on the right hand side of Eq. (2.25) and the satteringis treated within relaxation-time approximation by introduing
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, (2.36)in Eqs. (2.20) and (2.21), where we onsider a Fermi-Dira distribution F c,v
ν (T ) atthe lattie temperature T , evaluated at every timestep for the orresponding arrierdensity.Several reent experimental and theoretial investigations address the e�ieny of ar�rier-phonon interation in QDs. In the low-temperature and density regime, intera�tion of arriers with LA-phonons [78, 99, 145℄ provide the dominant dephasing meh�anism, while at elevated temperatures the interation of arriers with LO-phononsleads to very e�ient dephasing [86℄. The temperature dependene of the dephasinghas been studied, e.g., in four-wave experiments [25, 26℄. Even for the weakest de�phasing values obtained there (few µeV at elevated temperatures), we �nd that thein�uene of arrier orrelations on the PL deay is strongly redued.To demonstrate the e�et of a very weak onstant dephasing rate, γ = 0.001meV hasbeen used aording to Eq. (2.36) for the dotted line in Figure 2.6. The orrelations32



2.6. Time-Resolved Photoluminesene of Doped and Undoped QDsare drastially redued so that a non-exponential signature of the deay is regained onlonger timesales. Our numerial analysis shows that the results presented here arerather insensitive to the exat value of the relaxation time τ c,v
relax. For the disussedexample, typial values of τrelax = 1 ps for eletrons and holes are taken [17, 128℄.Hoyer et al. have shown that a onstant dephasing γ auses unphysial heating of thesystem. However, this e�et is only weak for a small value for the dephasing and,additionally, the sattering term (2.36) ounterats the heating.While for a onsistent treatment of phonon sattering the inlusion of a mirosopidesription of the eletron-phonon interation is neessary, the important point ishere that any kind of weak dephasing of the orrelations will lead to deviations froman exponential deay.

2.6. Comparison with Experiments – Time-Resolved
Photoluminescence of Doped and Undoped QDsThe development of the desribed theory was arried out side by side with experimentson both unstrutured (no avity) and strutured (with avity) QD samples performedin the group of Prof. Manfred Bayer in Dortmund [19, 124℄. We present some of theresults of this ollaboration to provide diret experimental evidene for the disussede�ets.First we look at the emission of unstrutured doped and undoped InGaAs QD samples.Experimental details of this work an be found in Ref. [19℄. In the doped ase thedopant density was hosen to be about equal to the dot density in eah layer, so thatan average oupation by a single eletron or hole per dot an be expeted.The QD parameters are those used in the previous setion, exept for the QD densityis taken to be N = 1010 m−2, the dipole moment is 16.8 eÅ and the dephasing of theorrelations is 0.05meV. Even though the dephasing is weak it e�etively destroysthe orrelations on a time sale of tens of pioseonds.Figure 2.7 shows results for exitation into the p-shell. For the undoped situationwe pump the system with equal eletron and hole density Ne = Nh = 0.35N . Inthe n-doped ase we assume on average one additional eletron per QD, i.e. Ne =

Nh +N with again Nh = 0.35N . Apart from this di�erene in the initial onditionsboth urves are alulated with exatly the same parameters. Exellent agreementbetween theory and experiment an be observed. For the two di�erent ases we seethe following: In the situation of undoped QDs, we observe a non-exponential deay in 33
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Figure 2.7.: Time-resolved PL for doped and undoped QDs exited into the p-shell. Thealulation (dashed lines) agrees perfetly with the experimental data (solid lines).agreement with our disussion of the emission of QDs into free spae in Setion 2.5. Inontrast, the doped QDs show an exponential deay, whih is faster by approximatelya fator of two when ompared to the undoped ase.To understand the origin of this di�erent behavior, it is insightful to study the timeevolution of the s-shell populations. These are depited in Figure 2.8 for one spinsubsystem. In the undoped ase (top panel) the s-shell populations are zero at �rst.Due to the pump proess and the subsequent arrier sattering, the population in�reases temporarily and then deays towards an empty system. In the n-doped ase(lower panel) the eletron oupation in the s-shell starts with the �nite value of 0.5(orresponding to an average of half an eletron per spin diretion) to aount forthe doping of one additional eletron per QD. As an be seen, the temporal hangeof the eletron population relative to the doping level remains small. Aording toEq. (2.33), a onstant eletron population f e
ν leads to an exponential deay of thehole population fh

ν , and, hene, of the PL intensity.These results learly demonstrate the peuliarities of QD systems if thought of as`arti�ial atoms' and underline the apability of our mirosopi model to aount forintrinsi semiondutor e�ets.34



2.7. Time-Resolved Photoluminesene of QDs in Miroresonators
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Figure 2.8.: Time evolution of eletron and hole populations in the s-shell of undoped (top)and n-doped (bottom) QDs.
2.7. Time-Resolved Photoluminescence of QDs in MicroresonatorsIn the remainder of this hapter we fous on QD-miroavity systems. The partiu�lar ombination of QDs and miroresonators o�ers a variety of new possibilities fordevie appliations. Of partiular interest is the design of e�ient laser diodes withustomized wavelength and emission properties. Additionally, QDs in miroresonatorsare of onsiderable importane for fundamental studies and for quantum informationresearh, e.g. as non-lassial light soures.So far, we have studied photoluminesene into free spae, whih we desribed by aontinuum of plane wave modes. A non-exponential and exitation-density dependentdeay was revealed to be a onsequene of the semiondutor nature of QDs and amanifestation of missing orrelations between eletrons and holes. While we stillexpet these �ndings to hold in a avity system, stimulated emission and absorptionan have a strong e�et on the deay of the PL. Cavity feedbak is proportional to thenumber of photons in the avity mode. State-of-the-art miroavities have very longlifetimes of hundreds of pioseonds, allowing for a large aumulation of photons inthe long-lived modes even if the total spontaneous emission is small. An overview ofvarious miroavity strutures is given in the introdution and in Setion 3.1. In thefollowing we onsider pillar miroavities with diameters of a few mirometers. A SEM(sanning eletron mirosopy) image of a typial struture in shown in Figure 2.9.Between two DBR (distributed Bragg re�etor) mirrors, a layer of InGaAs QDs atingas the ative medium is plaed inside a GaAs λ-avity. The on�nement along thevertial diretion is provided by alternating layers of high and low refrative index 35



2. Light-Matter Coupling in Semiondutor Quantum Dots

Figure 2.9.: SEM image of a pillar miroresonator with InGaAs QDs of the type used inthe experiments disussed in this setion. The sample was grown in the group of A. Forhel,Universität Würzburg, piture taken from Ref. [14℄.materials (AlAs/GaAs), eah layer having a thikness of a quarter of the emissionwavelength.Plaing an emitter into a miroavity an have numerous e�ets on its emission prop�erties, �rst of all the enhanement and inhibition of the spontaneous emission rate,an e�et being of great relevane in optoeletronis. The strength of the light-matteroupling an be tailored to a large degree by hanging the geometry of the avityand the position of the emitters relative to the maximum of the eletromagneti �eldinside the avity, see also Figure 2.10. For a review we refer to Ref. [146℄ and theartile by J.-M. Gérard in Ref. [93℄.Depending on the strength of the light-matter oupling, two regimes are found, andboth show harateristi e�ets whose experimental realizations have stirred exite�ment in the semiondutor ommunity [50, 51, 55, 82, 106, 113, 157℄. In an openavity system several deay hannels exist, like for example the emission into a on�tinuum of leaky modes. If the deoherene introdued by the total losses happenson a slower timesale than the osillation period, we speak of the strong ouplingregime, where the system undergoes damped Rabi osillations, revealing an exhangeof energy between the emitter and the avity mode. This behavior is similar to thatof the ideal ase of a losed avity, where photons remain in the avity mode untilthey get reabsorbed by the emitter. Due to the strong in�uene of the interation, alevel splitting ours if the emitters get lose to resonane with the avity mode.36



2.7. Time-Resolved Photoluminesene of QDs in MiroresonatorsIf the deoherene introdued by losses from the avity mode is faster than the osil�lation period, we speak of the weak oupling regime, where a monotoni relaxation ofan exited emitter into the ground state takes plae. This deay behavior is similarto the situation without avity. However, the presene of the avity alters the spon�taneous emission rate in several ways: The photoni density of states, the amplitudeof the eletromagneti �eld, and the angle between the �eld vetor and the dipole ofthe radiating emitter are hanged and �nally determine the modi�ed deay time τ ofthe emitter inside the avity
τ0
τ

= FP
|E(r)|2
|Emax|2

∆λ2
c

4(λe − λc)2 + ∆λ2
c

cos2 ϑ+
τ0
τleaky

. (2.37)This alteration of the spontaneous emission time is alled the Purell e�et. Equation(2.37) is the result of an adapted alulation for atomi systems (J.-M. Gérard inRef. [93℄). Here τ0 is the deay time in a spatially homogeneous, or unstruturedmedium. It is determined by the Wigner-Weiÿkopf rate of spontaneous emission[92℄. The seond term on the right hand side models the emission into leaky modes.The �rst term desribes the QD emission at a wavelength λe into a avity mode atwavelength λc. An emitter at loation r is subjet to the eletri �eld E(r) whoseamplitude varies between the maximum value |Emax| in a �eld antinode and zero fora node position. ϑ denotes the angle between the eletri �eld vetor and the dipolemoment of the eletroni transition. The Purell fator FP gives the enhanement orsuppression of the emission deay rate in the resonator in omparison to that of thehomogeneous medium,
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3λ3
e

4π2n3
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V
. (2.38)Here, Q is the quality fator of the resonator, V is the e�etive mode volume ofthe avity with refrative index n, and d is the mode degeneray. From Eq. (2.37)it an be seen that the Purell e�et is largest when the emitter is plaed in the�eld maximum and the dipole orientation oinides with the eletromagneti �eldvetor. While the dipole orientation is random in self-organized QDs, the avity istypially designed to have as many emitters as possible in the �eld maximum. Togive a better idea of how this is realized in the heterostruture design, the result ofa mode alulation for a VCSEL- (vertial avity surfae emitting laser) strutureis shown next to a typial SEM image of suh a devie in Figure 2.10. The �eldmaximum oinides with the position of the spaer where the emitters are plaed.The alulation is based on a Green's-funtion approah and was performed by Dr.Jan Wiersig, Universität Bremen. 37
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Figure 2.10.: Left: SEM image of a typial VCSEL struture with embedded II/VI QDs.The pillars have been proessed by foussed ion beam lithography, the diameter is 0.5µm.Courtesy of H. Lohmeyer, Univ. Bremen [84, 85℄. Right: Strength of the eletromagneti�eld for the fundamental mode in a VCSEL-struture, ourtesy of Dr. Jan Wiersig, Univ.Bremen. The position of the avity oinides with the �eld maximum.
38



2.7. Time-Resolved Photoluminesene of QDs in MiroresonatorsWhile the Purell e�et is of importane for the enhanement of spontaneous emissionin miroavity laser devies and will be disussed in this ontext in the next hapter,we now fous on its visualization in time-resolved PL.
2.7.1. SLE for Open-Cavity SystemsIn Setion 2.3.1 we have derived the SLE for a system of QDs oupled to a ontinuumof photoni modes. With this we have modeled the emission into free spae. Introdu�ing a avity has the onsequene that photons emitted into a long-lived avity mode re�main in the viinity of the QDs. This results in stimulated emission or absorption pro�esses (avity feedbak) until the photons have left the avity. In the derivation of theSLE these proesses originate from the operator averages 〈b†bc†νcν〉−〈b†bv†νvν〉. Whilewe disuss the triplet-level orrelations δ〈b†bc†νcν〉 and δ〈b†bv†νvν〉 in Setion 3.2.2, thesinglet-doublet fatorization provides the avity feedbak term, whih appears as theseond term on the right hand side of the avity-ontribution to the photon-assistedpolarization (2.18):

i~
d

dt
〈b†ξv†νcν〉

∣
∣
∣
cavity

= −iκξ〈b†ξv†νcν〉 − (1 − f e
ν − fh

ν )gξ〈b†ξbξ〉 . (2.39)Depending on the sign of the population inversion in the braket, this term providesstimulated emission (negative sign) or absorption (positive sign). Its partiular formwith 〈b†ξbξ〉 diagonal in the mode indies relies on the assumption of a disrete modespetrum with well-separated peaks. In this ase, oupling between di�erent modes
ξ annot take plae. A desription of the system with a ontinuous mode spetrumwith well-separated peaks an be shown to reprodue the results obtained withoutmode oupling if integrated quantities are onsidered. The avity damping an beintrodued via a omplex frequeny ωξ → ωξ − iκξ/~. As a onsequene, every timederivative of photon operators yields a damping term ∝ κξ, from whih the �rst termin Eq. (2.39) arises. The dynami equation for the photon number 〈b†ξbξ〉 is dampedwith a fator of 2κξ, whih must be added to the time derivative on the left hand sideof Eq. (2.17). With it the loss of photons from the avity mode ξ after the lifetime
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(2.40)is introdued, where Qξ is the quality fator of the mode ξ. 39
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Figure 2.11.: Low exitation time-resolved PL emission for miropillars with di�erent di�ameters. For larity, the traes have been shifted vertially relative to eah other. Left: Ex�periment. The exitation power density is 1.3 kW/m2. The deay times orresponding tothe single exponential �ts shown by the solid lines are: 400 ps (6µm), 315 ps (4µm), 200 ps(3µm), 110 ps (2µm), and 80 ps (1µm). Right: Calulation. Calulated photolumines�ene of QDs in pillar miroavities with various diameters for an initial arrier density of
2 · 109 m−2.
2.7.2. Comparison with Experiments – Time-resolved PL of QDs in MicrocavitiesFigure 2.11 shows the deay of the time-resolved PL for detetion at the energy of therespetive fundamental optial mode of miropillars with di�erent diameters, togetherwith results from our mirosopi theory for an ensemble of QDs. Experimental detailsare found in Ref. [124℄. The intensity is plotted on a logarithmi sale. The exitationwavelength was set to 800 nm, orresponding to a reation of arriers in the GaAsbarriers. This wavelength is also above the stop-band of the planar resonator. Thelow exitation power of 1.3 kW/m2 guarantees that the observed PL ours in thespontaneous emission regime, where the Purell e�et is not masked by the avityfeedbak.The observed faster deay for dereasing pillar diameter is a onsequene of the on-�nement-indued enhanement of the vauum �eld amplitude that results in the Pur�ell e�et. The redution of the mode volume leads to an inrease of the Purellfator FP ∝ Q/V aording to Eq. (2.38), beause for the disussed range of diame�ters the mode volume dereases faster than the Q-fators. For the deay of the signalover the �rst order of magnitude, the deviation from an exponential deay is ratherweak. Straight lines indiating an exponential deay behavior have been added to40
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Figure 2.12.: PL deay of QDs in a 5µm avity at di�erent exitation powers. Left:Experiment. The deay times orresponding to single exponential �ts (shown by the solidlines) are: 550 ps (0.17 kW/m2), 475 ps (0.51 kW/m2), 265 ps (1.7 kW/m2), 120 ps(5.0 kW/m2), 30 ps (7.6 kW/m2), and 20 ps (9.1 kW/m2). T = 6 K. For larity, thetraes have been shifted vertially relative to eah other. Right: Calulation. Calulatedphotoluminesene for an ensemble of QDs in a 6 µm diameter pillar miroavity with initialarrier densities from 1 · 109 m−2 to 5 · 109 m−2 in equidistant steps from top to bottom.For better omparison the results are normalized.�t a T1-time6 to the initial deay. However, on a larger sale the deay data learlyreveals a non-exponential harater.The experimental results an be ompared to our alulation in the right panel ofFigure 2.11. With respet to the shape and the speed of the deay, we obtain goodagreement with the measurements. The di�erent heights of the urves an mainly beattributed to the fat that in larger pillars more arriers take part in the reombinationdynamis. The di�erenes between the measured and the alulated results lose to
t = 0, and in partiular the slower rise of the PL signal observed in the experiment,an be attributed to the �nite time resolution of the experimental setup, in additionto the fat that the optial arrier generation followed by relaxation proesses wasnot modeled in our alulation.To obtain more insight into the emission dynamis, a single miropillar was studiedunder varying exitation power. The left panel of Figure 2.12 shows the time-resolved6Longitudinal relaxation time, here orresponding to the exponential deay of the population. Theterm originates from the phenomena of nulear magneti resonane (NMR). The T2-time, on theother hand, desribes the damping of a oherent polarization due to dephasing proesses. 41



2. Light-Matter Coupling in Semiondutor Quantum Dotsemission of a 5 µm pillar for di�erent exitation powers, ranging from extremely low(measurement limit) to above the transition where stimulated emission sets in. Thisis visible in the extremely fast deay at the highest exitation power density. As theexitation power is dereased, the deay beomes slower and slower, but does notsaturate. Even for the lowest exitation power, for whih a time-resolved signal ouldbe reorded, no saturated, power-independent deay is found. The same behavior inobserved in our alulation (right panel): The rapidness of the deay strongly dependson the initial arrier density, whih in the experiment is dependent on the strength ofthe optial pump pulse. In addition the non-exponential shape of the signal is learlyevident.What we have observed in unstrutured QD samples has been shown to persist inthe presene of a avity. These experiments are another example where QDs behavedi�erently to what we expet from atomi systems. Again, no exponential deay isfound, and the deay rate depends on the arrier density in the system, whih weidenti�ed as an intrinsi semiondutor e�et. This shows that it is not meaningfulto introdue a deay time that depends only on the photoni density of states withoutinluding the in�uene of the arrier system. Moreover, it is an indiation that alsoin other ases the desription of QDs by means of atomi models may lead to falseresults.
2.8. ConclusionIn this hapter we have introdued a semiondutor theory for semiondutor quan�tum dots interating with the quantized light �eld. The hierarhy problem inherentto the many-body problem has been addressed by means of the luster expansiontehnique, whih is used to haraterize operator averages and to trunate the hierar�hy.In onnetion with the spetrum the in�uene of the Coulomb interation and ofarrier orrelations was disussed. In partiular we have learned how a violationof the onsisteny required by the luster expansion method an lead to unphysialresults.By studying time-resolved emission without a resonator, we have shown that thedeay behavior is strongly in�uened by the presene or absene of exitoni orrela�tions. We have disussed two limiting ases of i) unorrelated arriers (Hartree-Fokapproximation), leading to a non-exponential deay, and ii) fully orrelated arriers(two-level approximation), resulting in an exponential deay. Our numerial results42



2.8. Conlusionreveal that orrelations of the exited eletrons and holes, treated on the singlet-�doublet level, lead to an exponential deay of the photoluminesene, provided thatdephasing of the orrelations an be negleted, whih is not the ase in general. Wehave also demonstrated that a weak dephasing of the orrelations leads to a lear de�parture from the exponential deay of the PL signal. This result provides an intrinsiexplanation for experimental observations of non-exponential PL deays, in ontrastto extrinsi e�ets like oupling to dark exitons or inhomogeneous broadening e�et�s� e�ets often used to explain bi- or multi-exponential deays.To underline our �ndings, we have summarized results of ollaborations with theexperimental group of Prof. Manfred Bayer, where measurements on samples with(miropillar) and without avity were performed. The theory derived in this hapterlearly agrees very well with the experimental results, on�rming both the non-expo�nentiality and the intensity dependene of the deay of the PL signal. Correspondingto the emission into free spae, we have onsidered the ase of n-doped QDs, whihan formally be mapped to an atomi system of fully orrelated arriers due to theabundane of holes. In agreement with our onsiderations of the limiting ase of fullyorrelated arriers, we observe a fast exponential deay in these systems. Last butnot least, we have studied the luminesene of QDs embedded in pillar miroavities,where the modi�ed environment hanges the emission behavior. While the observa�tions of a non-exponential and exitation-intensity dependent deay remain unalteredin the presene of the avity, we ould observe a strong inrease of the spontaneous de�ay rate with dereasing mode volume of the avities in both experiment and theory,diretly visualizing the Purell-e�et. In these experiments, the interplay of semion�dutor e�ets, like the non-exponential deay, and avity-quantum-eletrodynamis,like the Purell e�et, is niely demonstrated.
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3. Laser Theory for Quantum Dots inMiroavitiesIn reent years, remarkable progress in semiondutor growth and proessing teh�niques has enabled the fabriation of tailored optial miroresonators [146℄. Amongstthe most popular ones are miropillars [105, 113℄, mirodisks [94, 106℄, and, most re�ently, photoni rystals [9, 157℄. The three-dimensional on�nement of light in thesestrutures leads to a disretization of the mode spetrum. The large mode separationdue to the small resonator size enables single-mode lasing. Very small mode volumesin ombination with a high-quality mode enhane the spontaneous emission (SE) rateinto that mode, a phenomenon known as Purell e�et [110℄. For devie appliations,less photons lost into non-lasing modes orrespond to a higher e�ieny, re�eted ina SE oupling fator β lose to unity. The SE oupling fator is de�ned as the ratioof SE into the laser mode divided by the SE into all available modes. With inreasing
β, the step-like `threshold' in the output intensity of onventional β ≪ 1 laser deviesgradually disappears until the so-alled `thresholdless' laser is reahed in the limit
β = 1. This term is of great importane in the literature and the peuliarity of anapparently vanishing threshold has been widely disussed [31, 38, 41, 67, 108, 118℄.Even if the input/output urve of a laser devie reveals no indiation of a threshold,the question of the oherene properties of the emitted light remains. Latest advanesin the growth and design of semiondutor-QD miroavity lasers have now attainedthe regime of β-values lose to unity experimentally [31, 104, 134, 138, 144℄. For thisreason, an understanding of the oherene properties of the emitted light and meansto identify the threshold to oherent light emission is of great relevane for the designof miroavity laser devies.From a devie point of view, the gain material is equally important to the avitydesign. QDs o�er unique qualities as a gain material. Stronger insensibility to tem�perature variations and expeted smaller linewidths are advantages over quantumwells, whih are nowadays used as gain medium in many devies [4℄. Most important,however, is the disrete density of states aused by the three-dimensional arrier on��nement. Consequently, the spetral properties of QDs resemble the atomi asewith transition energies that are determined by the hoie of material and growthparameters. Thereby a tuning to the avity resonanes is possible. 45



3. Laser Theory for Quantum Dots in MiroavitiesIn the literature, semiondutor-QD-based laser devies are almost without exeptionmodeled by onsidering atomi two- or multi-level systems, resulting either in a setof rate equations [155, 156℄, or a master equation for the redued density matrix[18, 98, 118, 148℄. To desribe the statistial properties of the emission from the mi�roavity in terms of the intensity orrelation funtion, the latter approah has beenused. Alternatively, for two-level systems the quantum regression theorem an be ap�plied to obtain two-time operator averages from single-time ones [47, 73, 74, 92, 154℄.All these quantum-optial models and the underlying approximations are well suitedfor atomi systems, but have to be reonsidered when applied to semiondutor sys�tems. In QDs exitations an involve more than a single arrier. The resultingdesription of the interation with the quantized light �eld is di�erent when atomisystems with single-eletron exitations and QDs with multiple exited arriers areompared, even though the elementary interation proesses remain the same. In ad�dition to the modi�ation of the light-matter interation itself, it is also well-knownfrom various semiondutor systems that the interation among the exited arriersleads to e�ets that an modify or even dominate the emission properties and, hene,should be inluded in semiondutor models. Pauli-bloking of states, the Coulombinteration of exited arriers [11, 149℄, their interation with phonons, and a varietyof resulting e�ets like energy renormalizations, ontributions of new quasi-partiles,or interation-indued dephasing have been intensively studied also in QD systems.In atomi systems, interation-indued e�ets are typially of minor importane andthe single-partile exitations are subjet to sattering and dephasing that is usuallydesribed via onstant rates. Some of these e�ets were disussed in the previoushapter, among them the non-exponential deay of the luminesene with a arrier-�density dependent deay rate, f. Setion 2.5. Also, unlike onventional four-level gaslasers, QD-based miroavity lasers usually do not operate at full inversion, resultingin onsiderable di�erenes in the input/output urves. The same applies to the e�etsof Pauli bloking. Espeially for exitation with short laser pulses, the output har�ateristis and the jump from below to above threshold beomes severely modi�ed.If harateristi values, suh as the β-fator, are derived from measured data, onemust be aware of the di�erenes between atomi and semiondutor laser models.Therefore, a semiondutor approah is highly desirable if QD-based laser devies arestudied. A general semiondutor laser model based on a mirosopi Hamiltonianhas previously been used to study the in�uene of the arrier dynamis and many-�body e�ets [32, 66℄, lasing without inversion [109℄, and noise spetra [142℄. Thee�et of arrier sattering on relaxation osillations has been studied by ombiningrate equations inluding a non-linear spontaneous emission term with a mirosopitreatment of Coulomb interation [88℄. However, these approahes do not inludeorrelations required to determine the photon seond-order orrelation funtion.
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As is known from quantum optial and avity-quantum-eletrodynamial (CQED)approahes to the desription of lasing in miroresonators [118℄, an interpretationof the lasing onset and the nature of the emitted light more aurate than the in�put/output harateristis is given by a statistial analysis of the photon emission.The statistial properties of the light emission an be desribed in terms of the photonautoorrelation funtion at zero delay time
g(2)(τ = 0) =

〈n2〉 − 〈n〉
〈n〉2 , (3.1)where n = b†b is the photon number operator for the laser mode. The developmentof a semiondutor laser theory and the alulation of g(2)(τ = 0) for QD-basedmiroavity lasers is the topi of this hapter.Based on the semiondutor luminesene equations introdued in the previous hap�ter, we now formulate a laser model to alulate both the light output and the pho�ton autoorrelation funtion of miroavity lasers with QDs as the ative material.This approah naturally inludes the modi�ed soure term of spontaneous emission,Pauli-bloking, as well as many-body Coulomb e�ets. Most importantly, it possessesthe apability to inlude the full spetrum of semiondutor e�ets in a onsistentand straightforward way. Depending on whih proesses are deemed relevant in theonsidered regime, e�ets like inhomogeneous broadening or arrier sattering anddephasing due to interation with phonons an be expliitly onsidered, either on amirosopi level or using appropriate approximations.The laser model derived in this hapter an be stripped of all semiondutor e�etsto obtain the limiting ase of atomi two-level systems with a single eletron. Resultsobtained in this limit an diretly be ompared to results from quantum-optial mod�els. In partiular, the trunation sheme based on the luster expansion method anbe veri�ed by omparing with master equation models that an be solved without thefatorization of the eletroni and photoni degrees of freedom. This is the topi ofChapter 5.Also related to the desription of lasing is the �rst-order oherene. Interferenemeasurements an be used to obtain the oherene time of the emitted light. Tonumerially obtain the �rst-order oherene properties, an extension of our theory forthe alulation of two-time operator averages is presented in Chapter 4.This hapter is strutured as follows. Preliminary to the derivation of the dynamilaser equations in Setion 3.2, we give an introdutory overview over miroavitylaser systems and the lassi�ation of oherene properties. For the Hamiltonian,the equation-of-motion tehnique and the trunation and lassi�ation of operator 47



3. Laser Theory for Quantum Dots in Miroavities

Figure 3.1.: For illustration purposes, we show the low-temperature PL spetra of twohigh-Q 4µm miropillars, manufatured in the group of A. Forhel at the UniversitätWürzburg. The fundamental mode lies at the lowest energy, the Q-fator is determinedby its width. Left: Measured spetrum above a alulation [144℄. The Q-fator for thefundamental mode is 12 300 ± 500, a typial value for miroavities urrently used for laserdevies. Right: Spetrum of a similar pillar of a newer generation from the same group[116℄. Inset: high resolution spetrum showing the fundamental mode with a resolutionlimited linewidth of 9.6µeV, orresponding to a ten-times larger Q-fator of 165 000± 8 000ompared to the pillar from the left panel.averages by means of the luster-expansion method, we refer to Setions 2.1�2.3. InSetion 3.2.2 speial emphasis is plaed on the role of orrelations beyond the doubletlevel that are required in order to alulate the seond-order orrelation funtion, forwhih analytial limits are disussed. Numerial results for both the input/outputharateristis and the seond-order oherene properties are presented in Setion3.3. A detailed omparison with experimental results of lasing in QD-miropillarstrutures is the topi of Setion 3.4. Finally, the in�uene of pulsed and ontinuouswave exitation on the output harateristis in atomi and semiondutor lasers isstudied in Setion 3.5.
3.1. Preliminary Considerations about QD Microcavity LasersThe laser equations that we now derive an be seen as an extension of the semi�ondutor luminesene equations (SLE) for miroavity systems, f. Setion 2.7.1.To aommodate the typial omponents of a laser model, several modi�ations andsimpli�ations are introdued in the advane of the following setion. To retain anoverview, we introdue the onsidered system and desribe the relevant physial pro�esses that are aounted for in the laser model.48



3.1. Preliminary Considerations about QD Miroavity Lasers
Coupled QD-cavity system. When desribing lasing from an ensemble of QDs in amiroresonator, typially the resonator provides at least one (possibly degenerate)long-lived mode. In miropillars and photoni rystal avities this is usually the so-�alled fundamental mode energetially lowest in the spetrum. In mirodisks thelong-lived modes are the higher-exited whispering gallery modes. The width of theresonane re�ets the lifetime of the fundamental mode. In state-of-the-art semi�ondutor miroavities, quality (Q-) fators (f. Setion 2.7) between 104�105 areahieved, resulting in very narrow linewidths < 100µeV and long avity lifetimes inthe order of pioseonds. Too long avity lifetimes, however, may redue the outputoupling required in a laser devie beyond funtionality. As an illustration, two typ�ial mode spetra of pillar miroavities are displayed in Figure 3.1. Cavities with
Q-fators of the order of 104 (left panel) are typially used in the ontext of lasing. Inthe right panel the mode spetrum of a state-of-the-art miropillar with a Q-fator ofthe order of 105 is shown in omparison. Suh avities play a role for the generationof non-lassial light, as well as quantum information tehnology, strong oupling andother fundamental studies.When using QDs as the ative material in miroavities, the oupling strength isdetermined by the spetral and spatial positions of the dots, f. Eq. (2.8). The QDso�-resonane or only partly in resonane ontribute less to the laser transition thanthose QDs, where the s-shell transition is resonant with the avity mode and theplaement oinides with the maximum of the eletromagneti �eld in the avity[124℄. The number of strongly oupling QDs an be estimated from the dot areadensity and the overlap of the avity resonane with the inhomogeneously broadenedensemble of QDs. Eah QD also possesses a natural linewidth that depends on manyfators, like the temperature, the arrier density in the system, the material systemand the depth of the on�nement potential. However, with a typial value of 10µeVat 4K for the systems we onsider in ollaborations with experimentalists, this e�etis muh smaller than the inhomogeneous broadening (some meV). For miropillaravities with diameters of a few mirons, only a small number of tens of QDs an beonsidered to be in perfet resonane with the avity mode.Besides the laser mode other non-lasing modes exist. Due to the small size of the res�onator, the modes are well separated from eah other so that the QD ensemble an beonsidered to ouple mainly to one single mode. Still, a ontinuum of leaky modes pro�vides dissipation hannels via spontaneous emission into these modes. These modes,as well as the more weakly-oupled avity modes, provide the non-lasing modes. Inour theoretial treatment, the dynamis of the non-lasing modes is eliminated adia�batially in order to introdue the β-fator that determines the fration of the total 49



3. Laser Theory for Quantum Dots in Miroavitiesspontaneous emission (SE) direted into the laser mode:
β =

SE rate into laser modetotal SE rate .The e�et of the non-lasing modes is that a fration 1 − β of the total spontaneousemission is lost for the laser mode. In the regime where spontaneous emission domi�nates, i.e. below the laser threshold, the output-power is redued by a fator of 1/β,visible as a jump in the input/output urve. Note, however, that this is true only inatomi systems operating at full inversion, like onventional four-level gas lasers. Forsemiondutor lasers we �nd deviations from this well-established behavior. Abovethe intermediate threshold region, stimulated emission into the laser mode dominates,so that losses into non-lasing modes are irrelevant. As an illustration we refer thereader to Figure 5.2 on page 96 or to the literature [21, 118, 155℄, where input/outputurves are displayed for an atomi system for various values of the β-fator.So far we have onsidered intrinsi aspets of the oupled
Pump

p-shell

s-shell

electrons

holesFigure 3.2.: QD lasermodel with arrier gener�ation in the p-shells andthe laser transition be�tween the s-shells of ele�trons and holes.

QD-avity system. It remains to inlude a pump meha�nism. Cavity losses were already disussed in Setion 2.7.1,where they were introdued via a omplex mode frequeny.The pump proess an be modeled in several ways. Themost thorough treatment would inlude arrier generationin the barrier, the wetting layer, or in higher on�ned QDstates by an optial pulse, followed by apture and relax�ation proesses desribed by the Coulomb and arrier-phononinteration. It has been shown that both mehanisms leadto an e�ient arrier sattering at low [127℄ and elevatedtemperatures [100, 128℄. In suh a onsistent treatment,the sattering proesses ause dephasing of polarizationsand orrelation funtions at the same time. However, suhan elaborate inlusion of the exitation and relaxation pro�esses is beyond the sope of this work. Primarily we are in�terested in the development of a semiondutor laser modelto learn about the in�uene of the semiondutor e�ets dis�ussed in Chapter 2 and to study seond-order oherene. Conentrating on thesegoals, we fous on the arrier dynamis in the QD s-shells that resonantly ouple tothe laser mode. Optial pumping in the p-shell is aounted for by a arrier generationrate and bloking fators. Relaxation into the s-shell is treated in a relaxation-timeapproximation. This simpli�ed system is shematially shown in Figure 3.2.
Degrees of Second-Order Coherence. Following Glauber, the quantum states oflight an be haraterized in terms of photon orrelation funtions [54℄. The oherene50



3.1. Preliminary Considerations about QD Miroavity Lasers

Figure 3.3.: Shemati desription of thermal (a), oherent (b), and sub-poissonian () lightemission. Eah line represents a photon emission, the time progresses along the horizontaldiretion. The behavior of bunhing (a) and antibunhing () is re�eted in a value of
g(2)

(0) = 2 or 0, respetively. The trae of oherent light is g(2)
(0) = 1. The �gure is takenfrom Ref. [87℄.properties of the emitted light are re�eted to a large degree in the photon statististhat is obtained from the seond-order orrelation funtion at zero-delay time g(2)(0).This funtion re�ets the possibility of the orrelated emission of two photons at thesame time. As a visualization, one may onsider three di�erent ases of light emissionfrom a thermal (a), a oherent (b), and a sub-Poissonian1 () light soure, depitedin Figure 3.3. In thermal light photons ome in lumps so that there is an enhanedprobability that two photons are emitted at the same time (bunhing), re�eted ina value of g(2)(0) = 2. Antibunhing is a harateristis of the single-photon emitterin (), where a single emission is followed by a dark re-exitation time, so that twophotons are never emitted simultaneously and g(2)(0) = 0. In a laser (b), oherentlight emission is statistially random, re�eted in g(2)(0) = 1.The origin of the zero-delay g(2)(0) values of 2, 1 and 0 for thermal, oherent andsub-poissonian light an be understood by onsidering the respetive states of the light�eld. For details we refer to Ref. [87℄. From a theoretial point of view the desriptionin the Fok basis is most onvenient. For small photon numbers it is experimentallypossible to prepare pure Fok or number states, whih are the eigenstates of thenumber operator n̂ as well as of the energy operator, i.e. for a number state |n〉

n̂|n〉 = b†b|n〉 = n|n〉 . (3.2)1In oherent light the photon number probability distribution is Poissonian, and the variane
(∆n)

2
= 〈n2〉 + 〈n〉 redues to the mean photon number: (∆n)

2
= 〈n〉, and thus 〈n2〉 = 0.Therefore, emitters with 〈n2〉 < 0 (〈n2〉 > 0) are referred to as sub-Poissonian (super-Poissonian)light soures [87℄. 51



3. Laser Theory for Quantum Dots in MiroavitiesThus, for arbitrary moments of the number operator one obtains
〈n̂k〉 = nk . (3.3)From Eq. (3.1), whih we reprint here for onveniene,

g(2)(τ = 0) =
〈n2〉 − 〈n〉

〈n〉2it follows for the degree of seond-order oherene
g(2)(τ = 0) = 1 − 1

n
, (3.4)whih yields the signature g(2)(0) = 0 of the single-photon emitter in the ase n = 1.If the system an be desribed in terms of a mixture of oherent states all with thesame absolute value, its probability distribution is Poissonian, i.e.

Pcoh(n) =
〈n〉n
n!

e−〈n〉 (3.5)while, at the same time, the averages 〈b〉 = 〈b†〉 = 0 are preserved, f. �11.8.6(d) inRef. [89℄. The fatorial moments of a Poisson distribution are given by
〈n(n− 1) . . . (n− k + 1)〉 = 〈n〉k , (3.6)so that g(2)(0) = 1 follows from Eq. (3.1). This result is even more easily obtainedif one uses the property that oherent states are the eigenstates of the reation andannihilation operators. Rewriting Eq. (3.1) in terms of photon operators for photonsin the laser mode

g(2)(τ = 0) =
〈b†b†bb〉
〈b†b〉2 , (3.7)the appliation of the operators on a oherent state merely yield numbers and both thenominator and the denominator are equal. For the ase of thermal light, the systemannot be expressed in terms of a pure state but is determined by a density matrixin the basis of the energy eigenstates, whih are the Fok states. The probabilitydistribution for the photon number is given by the Plank distribution

Pth(n) =
〈n〉n

(
1 + 〈n〉

)n+1 (3.8)with the fatorial moments
〈n(n− 1) . . . (n− k + 1)〉 = k!〈n〉k . (3.9)From Eqs. (3.1) and (3.9) follows the degree of seond-order oherene g(2)(0) = 2 forthermal light.52



3.2. Dynami Laser Equations
Calculation of Second-Order Coherence in the Semiconductor Formalism. In orderto alulate the photon statistis numerially, the hierarhy of oupled equationsmust be extended to quadruplet-level photon orrelations (the onept of orrelationfuntions is desribed in Setion 2.2). Expressing Eq. (3.7) aording to Eq. (2.12d)in terms of orrelation funtions, δ〈b†b†bb〉 = 〈b†b†bb〉 − 2〈b†b〉2,† the autoorrelationfuntion an be written in terms of the quadruplet orrelation funtion δ〈b†b†bb〉:

g(2)(τ = 0) = 2 +
δ〈b†b†bb〉
〈b†b〉2 . (3.10)For onsisteny, in all equations of motion operator averages must be taken up to thefour-partile level.In the following we proeed with the derivation of the semiondutor laser equations.We do not onsider the most general ase, but restrit ourselves to the systems andgoals disussed above. In doing so, a onsistent framework is provided that an beadapted and extended if required, e.g., for the desription of superradiane, normalmode oupling, or lasing at room temperature.

3.2. Dynamic Laser EquationsWe use the Hamiltonian and the notation introdued in Setion 2.1. Operator av�erages are obtained by means of the equation of motion tehnique desribed in Se�tion 2.3. To underline the analogy to the semiondutor luminesene equations, wekeep the equations in a general form. The spei�ations of the QD model desribedin the previous setion are then inluded in a seond step. Again we use the fat thatpolarization-like averages of the form 〈v†νcν〉 vanish due to the inoherent arrier gen�eration, and so does the expetation value of the photon operators, 〈bξ〉 = 0. For thedynamial evolution of the photon number 〈b†ξbξ〉 in the mode ξ and the arrier pop�ulations f e
ν = 〈c†νcν〉, fh

ν = 1−〈v†νvν〉, the ontribution of the light matter interation
HD in the Heisenberg equations of motion leads to

(

~
d

dt
+ 2κξ

)

〈b†ξbξ〉 = 2 Re
∑

ν′

|gξ|2 〈b†ξv
†
ν′cν′〉 , (3.11)

~
d

dt
f e,h

ν

∣
∣
∣
opt

= −2 Re
∑

ξ

|gξ|2 〈b†ξv†νcν〉 . (3.12)
†The fator of two arises from the two realizations for this fatorization. Sine 〈b〉 = 〈b†〉 = 0for a system without oherent exitation, f. Setion 2.3.1, only a fatorization into doublets ispossible. 53



3. Laser Theory for Quantum Dots in MiroavitiesNote that we have saled 〈b†ξv†νcν〉 → gξ 〈b†ξv†νcν〉 with the light-matter ouplingstrength to have its modulus appear in the above equations.2 In Eq. (3.11) we haveintrodued the loss rate 2κξ/~. The mode index ξ labels avity modes as well asleaky modes. For the laser mode, the loss rate is diretly onneted to the Q-fatorof the laser mode ξl, Q = ~ωξl
/2κξl

. The dynamis of the photon number in a givenmode is determined by the photon-assisted polarization 〈b†ξv†νcν〉 that desribes theexpetation value for a orrelated event, where a photon in the mode ξ is reatedin onnetion with the transition of an eletron from the ondution to the valeneband. The sum over ν involves all possible interband transitions from various QDs,i.e., ν = {µ,R} with µ being the shell index and R the QD position. Similarly,the dynamis of the arrier population in Eq. (3.12) is governed by photon-assistedpolarizations from all possible modes (both lasing and non-lasing modes).The equation of motion for the photon-assisted polarization is derived in analogy tothe previous hapter and now ontains additional ontributions beyond the doubletlevel:
(

~
d

dt
+ κξ + Γ + i

(
ε̃e

ν + ε̃h
ν − ~ωξ

)
)

〈b†ξv†νcν〉 =

f e
νf

h
ν −

(
1 − f e

ν − fh
ν

)
〈b†ξbξ〉

+ i
(
1 − f e

ν − fh
ν

)∑

α

Vνανα〈b†ξv†αcα〉 +
∑

α

Cx
αννα

+ δ〈b†ξbξc†νcν〉 − δ〈b†ξbξv†νvν〉 . (3.13)The evolution of 〈b†ξv†νcν〉 is determined by the detuning of the QD transitions fromthe optial modes. Hartree-Fok (singlet) ontributions of the Coulomb interationwith the Coulomb matrix element Vνανα lead to the appearane of renormalized ener�gies ε̃e,h
ν and to the interband exhange ontribution that ouples the photon-assistedpolarizations from di�erent states α. The soure term of spontaneous emission is de�sribed by an expetation value of four arrier operators 〈c†αvαv

†
νcν〉, see Setion 2.5.1.For unorrelated arriers, the Hartree-Fok fatorization of this soure term leads to

f e
νf

h
ν , whih appears as the �rst term on the right hand side of Eq. (3.13). Correla�tions remaining after the fatorization are provided by the Coulomb and light-matterinteration and are inluded in Cx

α′νν′α = δ〈c†α′v†νcν′vα〉.The stimulated emission/absorption term in the seond line appears as the singlet-�doublet fatorization of the initial operator averages 〈b†ξbξc†νcν〉 − 〈b†ξbξv†νvν〉. It isproportional to the photon number 〈b†ξbξ〉 in the mode ξ, thus providing feedbak due2The notation is to understood as follows: A new quantity ˜〈b†ξv
†
νcν〉 = 〈b†ξv†νcν〉/gξ is used and thetilde is dropped in the following.54



3.2. Dynami Laser Equationsto the photon population in the avity. The orrelations left after the fatorizationare given by the last two terms in Eq. (3.13). These are triplet-level arrier-photonorrelations that were omitted in the treatment on the doublet level in the previoushapter. Higher-order orrelations beyond the doublet level are disussed in Setion3.2.2.In Eq. (3.13) there are two terms ating as a dephasing: Photon dissipation κξ andarrier-arrier and arrier-phonon interation-indued dephasing. For the latter a mi�rosopi evaluation of these e�ets has been used in [62℄ for the ase of quantumwells. Here the dephasing is inluded via a phenomenologial damping onstant Γin onnetion with transition amplitudes ∝ v†νcν . For a disussion we refer to Se�tions 2.3.1 and 5.3.5.
3.2.1. Laser equationsFollowing the path outlined in Setion 3.1 we now formulate the laser equations fora oupled QD-miroavity system. We onsider QDs with two loalized shells foreletrons and holes. The dots are embedded in a miroavity that provides one(potentially degenerate) mode with a large Q-fator that is in resonane with the QD
s-shell emission. Higher avity modes are assumed to be energetially well separatedfrom this mode, and a ontinuum of leaky modes and other avity modes onstitutethe bakground of non-lasing modes.In the following sheme, several assumptions are made, whih are justi�ed by orre�sponding experimental onditions. While they provide a onvenient formulation ofthe theory, these assumptions are no priniple limitations and an be irumventedat the ost of a more ompliated analytial and numerial formulation.i. We assume that optial proesses involving the laser mode (stimulated andspontaneous emission as well as photon reabsorption) are exlusively onnetedto the s-shell transition. In this ase, higher shells and WL states ontributeonly to the arrier dynamis.ii. In aordane with i) we nelet orrelations between p-shell arriers and pho�tons in the laser mode mediated by the light-matter interation. These orrela�tions are o�-resonant, but an nevertheless beome signi�ant in the ase thatonly one QD emitter ouples to a single avity mode. In the ase of few QDs inan ensemble, the assoiated proesses are less in�uential. For a disussion werefer to Setion 5.3.5. 55



3. Laser Theory for Quantum Dots in Miroavitiesiii. Ultrafast arrier-sattering proesses in QDs have been predited in reent stud�ies of arrier-arrier [100℄ and arrier-phonon [127, 128℄ interation. Based onthis, we assume that the arrier system is lose to equilibrium, so that sat�tering proesses an be desribed in relaxation-time approximation [100℄. Weonsider systems at about 4K. At these low temperatures up-sattering intoenergetially higher levels is negligible.iv. To inlude the simplest possible pump proess, we onsider arrier generationin the p-shell at a given rate P . This an be traed bak either to resonantoptial pumping in onnetion with rapid dephasing, or it an be used to modelarrier injetion into the deloalizedWL or bulk states and fast suessive arrierapture and relaxation proesses towards the s-shell.v. For the non-lasing modes, stimulated emission and reabsorption of photonsan be negleted. This is well justi�ed, as photons spontaneously emitted intonon-lasing modes rapidly leave the avity. Therefore, they an neither pro�vide feedbak, nor build up orrelations with long-lived photons in the avitymode. In ase of strong dephasing (provided by e�ient arrier sattering) it ispossible to analytially solve the equation for the orresponding photon-assistedpolarization and to introdue a rate of spontaneous emission into the non-lasingmodes.vi. It has been shown in Ref. [124℄ that the major emission into the seleted high-Qavity mode is due to those QDs on resonane, whereas slightly detuned dotshardly ontribute. The alulations in [124℄ were performed to desribe thephotoluminesene of an ensemble of QDs in a miroavity. We found the de�ay of an inhomogeneously broadened QD ensemble to oinide with that of anensemble of idential QDs in resonane, with the light-matter oupling strengthbeing hosen as the maximum value in the inhomogeneously broadened QD en�semble. This is depited in Figure 3.4. In our alulations, rather than usinga alulated light-matter oupling strength, the radiative lifetime is obtainedfrom experiments and diretly enters our theory as a parameter. This way, thein�uene of the detuned QDs is already inluded, as the atual light-matter ou�pling strength is then set by the radiative lifetime. Therefore, we an onsiderto a good approximation only those emitters in resonane, rather than usingan inhomogeneously broadened sample of QDs. For a system of idential dotson resonane with the laser mode, whih we assume to be non-degenerate, theourring energy di�erenes with the laser mode ξl, ε̃e
s + ε̃h

s − ~ωξl
, drop out inthe equations of motion. In other situations the e�et of inhomogeneous broad�ening may have to be expliitly onsidered. This is also argued in Ref. [147℄with respet to the theory presented in this Chapter. Their laim, however, is56



3.2. Dynami Laser Equations
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Figure 3.4.: Calulated photoluminesene of an ensemble of QDs with inhomogeneousbroadening (solid line), for idential QDs with maximum oupling strength and on-resonanetransitions (dashed line), and for idential QDs with averaged oupling strengths (dotted).The pillar diameter is 6µm and the initial arrier density if 2 × 10
9 m−2. For details, seeRef. [124℄.based on merely two oupled QDs in the regime of strong oupling. We wouldlike to emphasize that our argument applies to an ensemble of QDs in the weakoupling regime.In the previous hapter we have derived the fundamental equations for the arrier andphoton dynamis, whih, on singlet-doublet level, are known as semiondutor lumi�nesene equations. In order to desribe a pumped laser system, we must inorporatearrier generation and the β-fator into the theory, as well as we must deal with theorrelations appearing in Eq. (3.13). Note that the introdution of β is not stritlyneessary, as the dynamis of the non-lasing modes an be expliitly alulated. How�ever, a formulation of the theory in terms of β is onvenient both for omparison withexperiments and with other laser theories.Regarding the treatment of many-body Coulomb e�ets, one an distinguish betweentwo limiting ases. In the high-temperature regime, the WL states an aommodatea substantial arrier density that sreens the Coulomb interation between the QDarriers. At the same time, the Coulomb interation between QD and WL arriersleads to a broadening and to energy shifts of the QD transitions. Calulations of QDgain spetra in this regime are presented in Ref. [86℄. In the following we onsider thelow-temperature regime that was reently studied in several experiments [8, 124, 144℄,where the population of the WL states is expeted to be marginal. The Hartree-likeCoulomb e�ets between the QD arriers lead to intra- and interband interation 57



3. Laser Theory for Quantum Dots in Miroavitiese�ets and will be summarized in an e�etive transition energy and osillator strengthfor the oupling to the laser mode.In the laser regime, a substantial photon population in the long-lived avity modesupports arrier-photon and photon-photon orrelations. On the inlusion of theseorrelations in the laser equations we onentrate in this hapter. In priniple alsothe expliit inlusion of arrier-arrier orrelations (Cx) is desirable. However, for thealulations in this hapter, these are not inluded and left for further researh. Inthe following we disuss to what extent we expet the e�et due to arrier orrelationsto be small. E�ets due to arrier orrelations are most prominent when stimulatedproesses are small (well below the threshold), and negligible when stimulated emis�sion dominates (above the threshold). This an be inferred from Eq. (3.13), wherearrier orrelations Cx
αννα are diretly onneted to the Hartree-Fok soure term ofspontaneous emission f e

νf
h
ν , as both arise from the same initial operator average. Inthe same way the stimulated emission term (1 − f e

ν − fh
ν ) 〈b†ξbξ〉 and the orrespond�ing orrelations δ〈b†bc†νcν〉 and δ〈b†bv†νvν〉 are onneted by their ommon origin. Forlarge photon numbers the stimulated emission terms an be expeted to overpower theterms onneted to the spontaneous emission. However, the photon number an onlyexpeted to be large well above the threshold. Far below the laser threshold the arrierorrelations diretly in�uene the radiative emission dynamis via Eqs. (2.18)�(2.21),as we have disussed in Setion 2.5.1. Nevertheless, regarding the stationary photonnumber we expet signi�ant modi�ations due to arrier orrelations only in theregime where the spontaneous emission rate exeeds the avity loss rate (�good avitylimit�). These onsiderations suggest that the in�uene of arrier orrelations on thestationary properties, in partiular on the input/output harateristis, is weak. Onthe other hand, if dynamial properties, like the swith-on behavior, are to be studied,these orrelations should be inluded.Under the disussed onditions we now derive the equations for the semiondutorlaser model. The assumptions elaborated above and in the introdutory part of thishapter are hosen to meet urrent experimental onditions under whih miroavitylasing is ahieved [7, 31, 114, 124, 138, 144℄. In deviating situations, e.g. lasing at roomtemperature, appropriate modi�ations are required. It is the greatest strength of ourmirosopi model and the equation-of-motion tehnique that the aommodation ofmodi�ations is straightforward and follows a well-de�ned manner.For the resonant s-shell/laser mode transition, the equation of motion (3.13) for thephoton-assisted polarization takes the form

(

~
d

dt
+ κ + Γ

)

〈b†v†scs〉 = f e
s f

h
s −(1−f e

s −fh
s ) 〈b†b〉+δ〈b†bc†scs〉−δ〈b†bv†svs〉 , (3.14)58



3.2. Dynami Laser Equationswhere, from now on, the index ξ = ξl is omitted for the laser mode. In the equationof motion for the photon-assisted polarization of the non-lasing modes, the negligiblephoton population and the short lifetime of these modes allows for the omission ofthe feedbak term and arrier-photon orrelations,
(

~
d

dt
+ κξ + Γ + i

(
ε̃e

s + ε̃h
s − ~ωξ

)
)

〈b†ξv†scs〉
∣
∣
∣
ξ 6=ξl

= f e
sf

h
s . (3.15)As a result, Eq. (3.15) an be solved in the adiabati limit and the part ξ 6= ξl of thesum in Eq. (3.12) an be evaluated, yielding a time onstant τnl for the spontaneousemission into non-lasing modes aording to the Weiÿkopf-Wigner theory [92℄,

2

~
Re
∑

ξ 6=ξl

|gξ|2

κξ + Γ + i
(
ε̃e

s + ε̃h
s − ~ωξ

) =
1

τnl

. (3.16)In a laser theory, one typially distinguishes between the rate of spontaneous emissioninto lasing and non-lasingmodes, 1/τl and 1/τnl, respetively. Both rates add up to thetotal spontaneous emission rate 1/τsp. It it onvenient to introdue the spontaneousemission oupling fator β, whih is given by
β =

1
τl

1
τsp

=
1
τl

1
τl

+ 1
τnl

(3.17)and to express the rate of spontaneous emission into non-lasing modes in terms ofthis β fator:
1

τnl

=
1 − β

τsp
. (3.18)For a further disussion of the time onstants, see Appendix B.With Eq. (3.12) one an now determine the population dynamis in the s-shell. Forthe spontaneous emission into non-lasing modes, the adiabati solution of Eq. (3.15)is used aording to Eqs. (3.16) and (3.18). Furthermore, we inlude a transitionrate of arriers from the p- to the s-shell in an approximation where only downwardsdireted sattering is onsidered, Re,h

p→s = (1 − f e,h
s ) f e,h

p /τ e,h
r , and g ≡ gξl

to obtain
d

dt
f e,h

s = −2 |g|2
~

Re 〈b†v†scs〉 − (1 − β)
f e

s f
h
s

τsp
+Re,h

p→s . (3.19)Here the �rst term desribes the arrier dynamis due to the interation with the lasermode, while the seond term represents the loss of arriers due to reombination intonon-lasing modes. The bloking fator 1− f e,h
s in Re,h

p→s ensures that the populationsannot exeed unity. 59



3. Laser Theory for Quantum Dots in MiroavitiesThe arrier dynamis for the p-shell an be written as
d

dt
f e,h

p = P (1 − f e
p − fh

p ) −
f e

pf
h
p

τp
sp

− Re,h
p→s , (3.20)where a arrier generation rate P is inluded together with the Pauli-bloking fator

(1 − f e
p − fh

p ). As the arrier generation takes plae in the p-shell of eah QD, Pis to be understood as a �pump rate per emitter�, in ontrast to the pump rate
P̃ = NemitterP typially appearing in atomi models, e.g. Eq. (5.2). The seond termdesribes spontaneous reombination of p-shell arriers and the third ontribution isthe above-disussed arrier relaxation.The sattering term Re,h

p→s transfers arriers only from the p- to the s-shell but notvie versa. Thus, the relaxation rate is proportional to the population in the p-shellindependently of temperature. As a result, the stationary values of the populationsare not neessarily thermal and depend on the pump and sattering rates. Never�theless, this is good approximation at low temperatures, where the p-shell deviatessigni�antly from zero only if the s-shell is ompletely �lled. In fat, we have per�formed alulations where arrier sattering between p- and s-shell was modeled byan evolution towards the equilibrium distribution analogous to Eq. (2.36) showingsimilar results at low and elevated temperatures. Note, however, that the arrier re�laxation time in Eq. (2.36) di�ers qualitatively and quantitatively from the e�etivedown-sattering time used in Re,h
p→s.The resulting set of equations (3.19) and (3.20), together with (3.11) and (3.14) on�stitute the basi equations of the semiondutor laser model, desribing the oupleddynamis for the photon number and the arrier population. It turns out that theinlusion of the arrier-photon orrelations, whih are given by the last two terms inEq. (3.14), hardly modi�es the results for the photon number. Negleting the ar�rier-photon orrelations in Eq. (3.14), the resulting set of equations orresponds toa trunation of the hierarhy on the doublet level. However, the inlusion of theseorrelations in Eq. (3.14) is of ritial importane if 〈b†v†scs〉 is used for the alula�tion of higher-order orrelation funtions, suh as the photon autoorrelation funtion

g(2)(0).
3.2.2. Extended Laser Equations and Photon CorrelationsNow we turn to the extended set of laser equations inluding arrier-photon and pho�ton-photon orrelation funtions. To aess information about the oherene proper�ties of the emitted light in order to haraterize the threshold properties, we alulate60



3.2. Dynami Laser Equationsthe seond-order orrelation funtion (3.10). The orrelation funtion δ〈b†b†bb〉 ap�pearing in this equation is a four-partile average, so that we must inlude all termsonsistently up to the quadruplet level, f. Setion 3.1. Only photons from the lasermode are assumed to build up orrelations. Therefore, in all orrelation funtionsonly photon operators for the laser mode are onsidered. As we onsider only QDsin resonane with this mode, the free evolution energy terms ε̃e
s + ε̃h

s − ~ω drop outand are therefore not expliitly given in the following.We alulate the seond-order photon orrelation funtion g(2)(0) from Eq. (3.10).The time evolution of the intensity orrelation funtion δ〈b†b†bb〉 appearing in thisequation is given by
(

~
d

dt
+ 4κ

)

δ〈b†b†bb〉 = 4 |g|2 Re∑
ν′

δ〈b†b†bv†ν′cν′〉 , (3.21)where the sum involves all resonant laser transitions from various QDs. In this equa�tion another quadruplet funtion enters, whih represents a orrelation between thephoton-assisted polarization and the photon number. For the orresponding equationof motion we obtain
(

~
d

dt
+ 3κ+ Γ

)

δ〈b†b†bv†νcν〉 = −2 |g|2 〈b†v†νcν〉2 − (1 − f e
ν − fh

ν ) δ〈b†b†bb〉

+ 2fh
ν δ〈b†bc†νcν〉 − 2f e

ν δ〈b†bv†νvν〉
− 2δ〈b†bc†ν′v

†
νcνvν′〉 + δ〈b†b†v†ν′v

†
νcνcν′〉 .

(3.22)Here, we have again saled δ〈b†b†bv†νcν〉 → g δ〈b†b†bv†νcν〉 with the light-matter ou�pling g for the laser mode. The triplet arrier-photon, or population-photon orre�lations in the seond line are the same as in Eq. (3.14), and their evolution is givenby
(

~
d

dt
+ 2κ

)

δ〈b†bc†νcν〉 = −2 |g|2 Re
[

δ〈b†b†bv†νcν〉

+
∑

ν′

δ〈b†v†ν′c
†
νcν′cν〉 +

(
〈b†b〉 + f e

ν

)
〈b†v†νcν〉

]

, (3.23)
(

~
d

dt
+ 2κ

)

δ〈b†bv†νvν〉 = 2 |g|2 Re
[

δ〈b†b†bv†νcν〉

−
∑

ν′

δ〈bc†ν′v
†
νvν′vν〉 +

(
〈b†b〉 + fh

ν

)
〈b†v†νcν〉

]

. (3.24)
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3. Laser Theory for Quantum Dots in MiroavitiesThe orrelation funtions in the sum, whih have been saled as δ〈b†v†ν′c†νcν′cν〉 →
g δ〈b†v†ν′c†νcν′cν〉, δ〈bc†ν′v†νvν′vν〉 → g δ〈bc†ν′v†νvν′vν〉, obey equations of motion
(

~
d

dt
+ κ+ Γ

)

δ〈bc†ν′v
†
νvν′vν〉 = (1 − δνν′)

[

(1 − f e
ν′ − fh

ν′) δ〈b†bv†νvν〉 − |g|2 〈b†v†νcν〉∗〈b†v†ν′cν′〉∗
]

, (3.25)
(

~
d

dt
+ κ+ Γ

)

δ〈b†v†ν′c
†
νcν′cν〉 = (1 − δνν′)

[

(1 − f e
ν′ − fh

ν′) δ〈b†bc†νcν〉 + |g|2 〈b†v†νcν〉〈b†v†ν′cν′〉
]

. (3.26)A loser look reveals that the orrelation funtions determined by Eqs. (3.25) and(3.26) only ontribute if orrelations between di�erent QDs exist, i. e. superradiantoupling plays a role in the system. To see this, we refer to the dipole seletion rulesin ubi rystals, where optial transitions with a given irular light polarizationare oupled to a partiular eletron spin and the orresponding hole total angularmomentum. Spei�ally, the s-shell states for eletrons are spin degenerate and thetwo spin states are oupled to di�erent light polarizations. If we onsider orrela�tions between photons with the same irular polarization, we �nd they are linkedto states for whih only one eletron or hole per s-shell and QD are available. Inother words, annihilating two valene-band eletrons in ase of 〈bc†ν′v†νvν′vν〉 and twoondution-band eletrons in ase of 〈b†v†ν′c†νcν′cν〉 is only possible if these arriersbelong to di�erent QDs. Hene, for ν = ν ′ these expetation values vanish alto�gether.3 Thus, neither their fatorization, nor the remaining orrelation funtions
δ〈bc†ν′v†νvν′vν〉 and δ〈b†v†ν′c†νcν′cν〉 exist in the ase ν = ν ′. The remaining orrela�tion funtions referring to di�erent QDs ν 6= ν ′ are related to superradiant oupling.The same applies to the expetation value 〈b†b†v†ν′v†νcνcν′〉, whih also vanishes to�gether with the orresponding orrelation funtion for ν = ν ′. Under the assumptionthat superradiane is weak in the system, the disussed orrelation funtions are ne�gleted. If, however, the phenomenon of superradiant oupling itself is to be studied[22�24, 40, 103, 139, 140, 147, 148℄, the orrelation funtions must be inluded viatheir own equations of motion. Finally, the term δ〈b†bc†ν′v†νcνvν′〉 in Eq. (3.22) is avariation of the arrier orrelations Cx

α′νν′α = δ〈c†α′v†νcν′vα〉. For onsisteny reasons,this ontribution is negleted in aordane with the omission of Cx.E�ets due to the Coulomb interation of arriers an be inluded in the higher-orderorrelation funtions along the same lines desribed in Chapter 2. Although we do3In fat, this is the ase already on the operator level, i.e., before taking the average.62



3.2. Dynami Laser Equationsnot expliitly onsider these terms in our alulation for the arguments given in Se�tion 3.2.1, we would like to point out the analogy between the terms on the doubletand quadruplet levels. The ontributions to Eq. (3.22) remaining on the quadrupletlevel are given by
i~

d

dt
δ〈b†b†bv†νcν〉

∣
∣
∣
Coul

= −2
∑

α

(1 − f e
ν − fh

ν )Vναναδ〈b†b†bv†αcα〉

− 2(f e
α + fh

α)Vναναδ〈b†b†bv†νcν〉 . (3.27)The result shows an analogous struture like the Hartree-Fok Coulomb terms for
〈b†v†νcν〉 in Eq. (3.13) and an be interpreted aordingly as a renormalization ofthe single-partile energies and as interband exhange interation ausing additionalrenormalizations of the transition energies as well as a redistribution of osillatorstrength between di�erent QD transitions. Coulomb interation ontributions to theorrelations δ〈b†bc†νcν〉 and δ〈b†bv†νvν〉 are analogous to those ontributing to the ar�rier dynamis of f e

ν and fh
ν disussed in detail in Setion 2.3.

3.2.3. Analytical results for g(2)(0)Before the numerial results of the semiondutor model are presented, it is instrutiveto study analytial solutions for g2(0) in the two limiting ases of strong and weakpumping. For this purpose we use the stationary limit of Eqs. (3.11), (3.14), and(3.21)�(3.24). Considering the resonant s-shell ontributions from idential QDs, wereplae ∑ν′ by the number of QDs N . Inserting in Eq. (3.11) the photon-assistedpolarization from Eq. (3.14), ignoring spontaneous emission for the above-thresholdsolution, and expressing the higher-order orrelations with the help of Eqs. (3.23) and(3.24), we obtain from (3.10) and (3.21)
g(2)(0) − 1 = − κ(κ+ Γ)

2 |g|2 〈b†b〉

(

1 +
|g|2N
κ(κ+ Γ)

(
1 − f e

s − fh
s

)

)

. (3.28)Above the threshold the photon number beomes large, so that the limit 〈b†b〉/N ≫ 1an be ful�lled. In this ase the right hand side vanishes and we obtain g(2)(0) = 1,i.e. well above threshold the light is oherent.For the limiting ase of weak pumping, we seek again the stationary solution ofour oupled system of equations, now under the assumption that in Eq. (3.14) thestimulated emission term and the higher-order orrelations δ〈b†bc†νcν〉, δ〈b†bv†νvν〉 anbe negleted due to the lak of a photon population. A onvenient way to solvefor the intensity orrelation funtion δ〈b†b†bb〉 is to insert Eq. (3.22) into (3.21). The 63



3. Laser Theory for Quantum Dots in Miroavitieshigher-order orrelations in Eq. (3.22) are replaed by the stati solution of Eqs. (3.23)and (3.24), while in the latter 〈b†v†νcν〉 is replaed by Eq. (3.11), and δ〈b†b†bv†νcν〉 istraed bak to δ〈b†b†bb〉 with the stationary solution of Eq. (3.21). As explainedabove, we ignore the quadruplet orrelations ourring in Eq. (3.22). Together withEqs. (3.10) and (3.11) we �nally obtain
(
κ(3κ+ Γ)

|g|2N
+ (1 − f e

s − fh
s )

)[

g(2)(0) − 2
]

=

− 2(f e
s + fh

s )

N

[

g(2)(0) − 1
]

− 2κ(3κ+ 2Γ)

|g|2 N 2
. (3.29)To evaluate this formula further, we restrit ourselves to the ase

κ2

|g|2N
≫ 1 , (3.30)or 2κ/~ ≫ N/τl, i.e. the avity loss rate is muh larger than the total rate ofspontaneous emission into the laser mode. This regime we refer to as �bad avitylimit� [118℄. Typially, lasers operate in this regime (avities with very large Q-fatorsand lifetimes longer than the spontaneous emission time are used in the ontext ofstrong oupling and quantum information). We obtain

g(2)(0) = 2 − 2

N
. (3.31)This is an important result, beause it provides the statistis of thermal light in thelimit of many QDs, g(2)(0) = 2, and in the opposite limit of a single QD it gives thestatistis of a single-photon emitter, g(2)(0) = 0.

3.3. Numerical ResultsWe now present numerial solutions of the extended semiondutor laser theory in�luding arrier-photon orrelations based on Eqs. (3.11), (3.14), (3.19), (3.20), and(3.21)�(3.24) using an adaptive time integration algorithm. For more details aboutthe numerial methods we refer to Appendix E. We onsider a typial parameter set:The number of emitters is Ñ = 20. The number used in the alulations is inreasedwith dereasing β in order to have the thresholds our at the same pump rate, i.e.
N = Ñ/β. For the spontaneous emission time enhaned by the Purell e�et we use
τsp = 50 ps, and the avity damping is κ = 20µeV. The orresponding avity lifetimeis about 17 ps, yielding a Q-fator of roughly 30, 000. The e�etive relaxation timesfor eletrons and holes are taken to be τ e

r = 1 ps and τh
r = 500 fs, respetively.64



3.3. Numerial Results
3.3.1. Stationary PropertiesIn Figure 3.5 the autoorrelation funtion g(2)(τ = 0) is shown atop the input/outputurve for various values of the spontaneous emission oupling β. There are severalstriking features:i. The jump of the intensity urve from below to above threshold is no longerdetermined by 1/β, like in Figs. 5.2 and 5.4 (f. p.96 and p.101, respetively)and many examples found in the literature [21, 118, 155℄, whih are obtainedfrom a laser theory for two-level systems in whih only a single exitation ispossible and reabsorption is negligible. This is of partiular importane sinemeasurements of the input/output harateristis are often used to experimen�tally dedue the β-fator aording to the preditions of the two-level models. Ifthe atomi 1/β-behavior would be used to extrat the β-fators from the urvesin Figure 3.5, one would obtain 0.017 instead of 0.1, 0.0017 instead of 0.01, and0.00017 instead of 0.001.ii. The usual laser threshold in onventional lasers with low spontaneous emissionoupling (β ∼ 10−6) is very abrupt. We see that for larger β values (β > 0.1),the s-shaped jump in the input/output urve beomes smeared out, and alsothe drop of the autoorrelation beomes softer.iii. For small β values, the intensity jump is aompanied by a derease of the se�ond-order orrelation funtion from the value g(2)(0) = 2 for thermal light to

g(2)(0) = 1 for oherent light (f. Setion 3.1). For higher spontaneous emissionoupling β, g(2)(0) remains smaller than two below the threshold. Correspond�ing to the disussion above, this behavior an arise either in the bad avityregime if the number of emitters is small (ompare Eq. (3.31)), or if the lossrate from the avity beomes smaller than the rate of spontaneous emissioninto the avity. In the latter ase, and this is the reason for the derease ofsub-threshold value of g(2)(0) in Figure 3.5, a substantial population of pho�tons builds up in the avity mainly due to spontaneous emission proesses, andexhibits a deviation from the signature of inoherent thermal light.iv. At high pump intensities saturation e�ets due to Pauli bloking beome visiblein the input/output urve, e�etively limiting the maximum output that anbe ahieved. The strength of the Pauli bloking depends on the number ofavailable states in the pump levels and the number of sattering hannels toquikly redistribute arriers. When pumping into the barrier, where the numberof available states is larger than in the loalized states, saturation e�ets will 65
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κ. be less in�uential ompared to the situation where higher loalized states arepumped.In Setion 3.2.3 we have disussed the analytial solution of the semiondutor modelfor the autoorrelation funtion g(2)(0) below threshold in the `bad avity' limit κ2 ≫
|g|2N . In Figure 3.6 we show the sub-threshold value of the autoorrelation funtionversus the number of emittersN . The analytial solution Eq. (3.31) (solid line), whihwas derived for the limit of large κ, is ompared to numerial solutions of the extendedsemiondutor laser model (open symbols) for β = 1 and various values of κ. All otherparameters are the same as those used in Figure 3.5. If κ = 200meV, the onditionfor the analytial solution is ful�lled and perfet agreement between analytial andnumerial results is obtained. In this ase, the thermal emission g(2)(0) = 2 belowthe laser threshold is approahed for a large number of emitters N . In the limitof one single QD, the antibunhing signature g(2)(0) = 0 is numerially reovered.On the other hand, in the theoretial limit of an in�nitely good avity κ → 0, aonstant value of g(2)(0) = 1 is expeted for atomi models [118℄. The ase of largeravity lifetimes is displayed (irles and squares) and the trend of a derease of thesubthreshold value is observed. For the ase of a small number of emitters in a verygood avity deviations from Eq. (3.31) are observed. 67



3. Laser Theory for Quantum Dots in Miroavities
3.3.2. Switch-on Dynamics and Relaxation for Continuous-Wave ExcitationWhile for the input/output urves and the photon statistis only the stationary so�lution of the laser equations is of interest, from the time evolution insight on thepopulation build-up due to pumping and sattering an be gained.The swith-on dynamis of a laser system is depited in Figure 3.7. The shown datais the time evolution that orresponds to pumping above threshold for the situationwith (lower panel) and without (upper panel) arrier-photon orrelations. The insetin the top panel magni�es the region where population is generated in the laser levels.In the initially empty system, the p-shell beomes populated due to pumping (dashedline). As soon as there is a population, relaxation redistributes arriers, resulting inan inrease of the s-shell population (dotted line). One there are arriers available inthe s-shell, reombination due to spontaneous emission starts to take plae, ausingthe photon population in the laser mode to build up (solid line). When stimulatedemission starts to strongly depopulate the arrier system, whih in turn redues theoptial gain, damped relaxation osillations are observable. Finally, all quantitiesreah stationary values.While in the top panel the in�uene of the higher order orrelations (3.21)�(3.24) isomitted, orresponding to setting δ〈b†bc†νcν〉 and δ〈b†bv†νvν〉 equal to zero in Eq. (3.14),all orrelations up to quadruplet level are inluded in the bottom panel. The station�ary values beome slightly modi�ed ompared to the top panel. The slight redutionof the photon population is marginal for the input/output urve that is typially dis�played on a double-logarithmi sale. Also visible is an enhanement of osillations,espeially one additional osillation period is introdued after about 75 ps before theatual relaxation osillations take plae. The unfamiliar manner of the osillations isyet to be investigated.
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3. Laser Theory for Quantum Dots in Miroavities
3.4. Comparison with ExperimentsA �rst diret appliation of our theory to miropillar QD lasing has been performedin lose ollaboration with the experimental group of Prof. Peter Mihler in Stuttgart.Measurements were performed on pillar miroav�
Figure 3.8.: 3µm miropillarwith InGaAs QDs as the ativelayer. From this type of stru�ture the results presented in Fig�ure 3.9 were obtained.

ities with self-assembled InGaAs QDs as the gainmedium. The pillar presented here has a diameterof 3µm and is made out of 50 alternating layersof AlAs/GaAs, ating as distributed Bragg re�et�ing (DBR) mirrors due to the materials' di�erent re�frative indies [20, 144, 151℄. The struturing wasdone by an ething tehnique [83℄, resulting in lowroughness of the sidewall surfaes and an exellentquality of the samples. An sanning eletron miro�sope (SEM) side view of one of the sample pillarsis displayed in Figure 3.8; the avity ontaining theQDs is indiated by the arrow in the middle of theresonator. The measurements of the autoorrelation funtion were done on a Han�bury-Brown and Twiss (HBT) setup [28℄, whih is basially an interferometer forintensities. Loated at the arms of the interferometer are two detetors that areoupled to a orrelator. In dependene of the delay time τ between two events, theautoorrelation funtion an be extrated. Details are found in Refs. [143, 144℄.The experimental results for the 3µm and for another 4µm pillar are summarized inFigure 3.9. The extrated photon autoorrelation funtion is shown (top panel) inrelation to the orresponding input/output urve (bottom panel) for both pulsed andontinuous wave (w) exitation. Under varied optial exitation over four (w: two)orders of magnitude, high output emission dynamis of up to 8 (w: 5) deades areobserved from eah struture. In the pulsed series in panels (a) and () a harateristis-shaped smooth intensity transition is apparent at intermediate exitation levels of
∼ 300µW (∼ 500µW) for the 3µm (4µm) pillar. The broadened transition regionis a signature of a large spontaneous emission oupling, f. Setion 3.3.1, aused bythe large Q-fator of the avity and a short radiative lifetime enhaned by the Purelle�et. An equivalent trend is also found in the w intensity traes in Figure 3.9 (b) and(d), where an observation of the smooth non-linear emission onset was experimentallylimited to the lower branh. Pumping at higher powers would result in damaging thesamples.Looking at the top panels, we �nd that the autoorrelation funtion is peaked inthe threshold region, rather than showing a monotonous transition from thermal70



3.4. Comparison with Experiments

Figure 3.9.: (a) and () Integrated intensities (bottom) for the 3 and 4µm pillars undernon-resonant pulsed exitation. Strong photon bunhing g(2)
(0) > 1 is found from orre�sponding orrelation measurements (top) over a broadened regime around threshold. (b)and (d) Output intensity (bottom) and g(2)

(τ = 0) autoorrelation series on the 3µm and
4µm fundamental modes under ontinuous wave pumping, again revealing qualitativelystrong �eld �utuations around the threshold.(g(2)(0) = 2) to oherent (g(2)(0) = 1) emission. This is aused by the de�ienttemporal resolution of the setup. To distinguish between this insu�iently resolvedexperimental urve and the true autoorrelation funtion, we introdue the notation
g̃(2)(0) for the experimental result. A quantitative analysis of this e�et is given below.The measured input/output urve (bottom) and intensity orrelation funtion (top)for the 3µm pillar is shown together with results obtained from our mirosopi lasertheory in Figure 3.10. The alulations are based on the parameters obtained for themeasurements on the 3µm pillar under pulsed exitation. With a avity lifetime of
τcav = 13 ps, a spontaneous emission time into the laser mode of τlase = 250 ps, and42 resonant QDs, yielding β = 0.12, we obtain good agreement for the height andthe shape of the output intensity jump (bottom panel). Saturation e�ets beomevisible in the high exitation regime, whih our due to Pauli bloking of the rapidly�lled pump levels. To underline the importane of the saturation e�ets, the dottedline orresponding to a alulation where Pauli bloking is arti�ially swithed o� hasbeen added to the �gure.As mentioned above, the measured autoorrelation funtion shows a peak aroundthe threshold region. The reason for this lies in the limited time resolution of theHBT detetor setup, for whih avalanhe photo diodes with a temporal resolution ofapproximately ∆t = 600 ps are used. The autoorrelation funtion is a funtion of thedelay time τ between two orrelated events at the two detetors of the HBT setup.However, due to the limited time resolution the measurement is performed over a 71
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3.4. Comparison with Experimentsmuh longer time window, during whih the value of g(2) is averaged. If the oherenetime of the output from the miroavity is muh longer than the time resolution of thesetup, this averaging e�et is small. If the oherene time is muh shorter though, theaveraging will produe a result that is smaller than the true value at zero delay. Toresolve this issue, the oherene time has been measured as a funtion of the exitationpower. The results are displayed in Figure 3.11. Details about the oherene timeand its onnetion to �rst order oherene are disussed in Chapter 4. While abovethe threshold the oherene time is larger (> 700 ps) than the time resolution, belowthreshold it is signi�antly smaller (≈ 50 ps).To failitate a diret omparison with the g̃(2)(0) mea�

Figure 3.11.: Measured o�herene times for the 3µm pil�lar.

surements that are limited by the time resolution ∆t,we use the following method. In a two-level system,the autoorrelation funtion as a funtion of the delaytime deays to value of unity on the timesale of theoherene time τc. We determine g(2)(τ) for eah pumpintensity from the alulated g(2)(0) by using
g(2)(τ) = 1 +

(
g(2)(0) − 1

)
e−

2|τ |
τc , (3.32)whih holds exatly for thermal light. To evaluatethis equation, the measured oherene times shown inFig. 3.11 are adapted to our results in Figure 3.10.Then a onvolution with an apparatus funtion desrib�ing the `measurement pro�le' is performed. To a goodapproximation, this an be assumed to be a Gaussianwith the width of the setup's time resolution 2σ = ∆t,i.e.

g̃(2) (τ) =
1√

2πσ2

∫ ∞

−∞
dτ ′g(2) (τ − τ ′) exp

(

− τ ′2

2σ2

)

. (3.33)The τ = 0 value of this onvolution is shown as a red line in the upper panel ofFigure 3.10, reproduing the measured g̃(2)(0) orrelation peak and its inompletedeay into full oherene. The theoretial result g(2)(0) is shown as a dashed line.The derease in the autoorrelation funtion below the threshold is a result of therelatively high avity quality (long avity lifetime) in the samples, as disussed above.The fat that the orrelation funtion does not reah a value of 1 even above thethreshold shows that saturation e�ets in the pump levels prevent more arriers frombeing generated by harder pumping. 73



3. Laser Theory for Quantum Dots in Miroavities
3.5. Pulsed and Continuous-Wave Excitation in Atomic and

Semiconductor QD LasersFor the haraterization of quantum-dot-based miroavity lasers the evaluation of theinput/output urves is the �rst step. In this setion we onentrate on the informationthat an be obtained merely from the input/output urves of a laser devie. InSetion 3.3 it was desribed how the jump from below to above threshold does notsale with 1/β in QD miroavity lasers, as it is known from atomi systems. Wehave also disussed the in�uene of saturation e�ets on the upper branh of theinput/output urve, i.e. at high exitation powers. While these disussions werebased on stationary properties of a ontinuously exited system, we shall now studythe modi�ations that our if the system is exited by a pump pulse. In fat we willshow how saturation e�ets an have a tremendous e�et on the output harateristisand render a simple determination of the spontaneous emission oupling fator βompletely impossible [52℄.Before we turn to our semiondutor model, the basi features of pulsed exitationare disussed for atomi two-level systems that an be desribed by a rate equationmodel. The insight obtained from the atomi model failitates a better understandingof the semiondutor ase, where saturation additionally masks the basi e�ets ofthe pulsed laser dynamis and leads to a rossover behavior for di�erent widths ofthe exitation pulse.
3.5.1. Pulsed Excitation in Atomic Systems without SaturationFor the ase of an atomi four-level system with fast relaxation times the model ane�etively be redued to a two-level system where only the upper and lower laser levelis onsidered. Then the system is desribed by two oupled equations (f. Setion 5.1),desribing the dynamis of the photon number n

ṅ = −2κn +
β

τsp
(1 + n)N (3.34)and the number of two-level systems N in an exited state

Ṅ = − β

τsp
nN − 1

τsp
N + P . (3.35)Here, P is the pump rate, and 1/2κ and τsp are the avity lifetime and the spontaneousemission time, respetively. The pump rate P is either a onstant value in the ase74



3.5. Pulsed and Continuous-Wave Exitation in Atomi andSemiondutor QD Lasersof w exitation, or a time-dependent pump pulse
P (t) = Ptot

1√
2π∆t2

e
−t2

2∆t2 (3.36)in ase of pulsed exitation. The pulse area Ptot diretly orresponds to the numberof two-level systems exited by the pulse.The rate of photons leaving the avity is given by 2κn. For pulsed exitation thephoton number hanges dynamially, and the time integrated emission rate ñpulsed =

2κ
∫∞
−∞ dt n(t) yields the total number of emitted photons. The tilde denotes themeasured photon number outside the avity. In a w measurement the situation issomewhat di�erent. Two-level systems are exited at a onstant rate, and after theswith-on dynamis the system �nds into a stationary state where the rate of emittedphotons per time is onstant. The signal at the detetor is nevertheless integrated overa time window T , so that the olleted number of photons ñcw = 2κTn sales linearlywith the integration time. Thus ñpulsed and ñcw an be ompared only up to a salingfator T . The same argument holds for the pump rate at whih two-level systemsare exited. While for pulsed exitation the total number of exited systems is givenagain by a time integral, in the w ase the exitation takes plae at a onstant rateand the total exitation sales again with the integration time T . For this reason,when omparing input/output traes of w and pulsed exitation onditions on alogarithmi sale, the w and pulsed urves an be shifted relative to eah otheralong the diagonal.We now turn to the input/output urves for the atomi system. In our example weonsider a spontaneous emission time of τsp = 55 ps, a avity lifetime 1/2κ of 19 psand β = 0.027. When disussing the semiondutor model in the following setion,we use the same parameters. In the semiondutor ase they are hosen to meetreent experiments [7℄. The dashed line in Figure 3.12 orresponds to the ase ofw exitation. Considering a pump pulse with ∆t ≤ 10 ps, the input/output urvesoinide with the w result. The latter has been added to the �gure with the pulsedresults and orresponds to an integration time of T ≈ 150 ps, as is disussed above.The physial interpretation is that the number of exited two-level systems reatedby a su�iently short pump pulse equals the number of exited two-level systemsreated by w exitation with a arrier generation rate of P = Ptot/T . When thepulse is muh shorter than the spontaneous emission time, the whole pump pulse isonverted into exited two-level systems before the emission dynamis starts to takeplae. This an be inferred from Figure 3.13(a), where the time evolutions of thenumber of exited two-level systems N and of photons n are shown for a pulse lengthof 1 ps. For all urves in Figure 3.13 Ptot was hosen to orrespond to the middle of thejump in the orresponding input/output urve, indiated by the irles in Figure 3.12. 75



3. Laser Theory for Quantum Dots in Miroavities

10
-1

10
0

10
1

10
2

10
3

time integrated pump rate Ptot

10
1

10
2

10
3

10
4

10
5

10
6

nu
m

be
r 

of
 e

m
itt

ed
 p

ho
to

ns
 n~

cw
∆t=1ps
∆t=10ps

∆t=
100ps ∆t=1ns

Figure 3.12.: Input/output urves for the atomi model for w (dashed blak line) andpulsed exitation with pulse widths ∆t =1, 10, 100 and 1000 ps (solid blue urves). Theurves for 1 and 10 ps pulse duration oinide with the w result. The irles (orange squares)indiate the points on the input/output urves of whih the time evolution is displayed inFig 3.13 (3.14).
0 50 100

0
1
2
3
4

0 500 1000
0

0.5
1

1.5
2

P(
t)

 [
1/

ps
],

 n
(t

),
 N

(t
)

n(t)
N(t)

0 5000 10000
time in ps

0
0.5

1
1.5

2

∆t=1ps

∆t=100ps

∆t=1ns

x140

x50

x4

(a)

(b)

(c)

Figure 3.13.: Time evolution of the number of photons n (solid line, saled up by thefators given in the �gure) and exited two-level systems N (dashed line) after exitationwith di�erent pulse widths ∆t (shaded area). Note the di�erent timesales. In eah panel
Ptot orresponds to the marked points in Figure 3.12.

76



3.5. Pulsed and Continuous-Wave Exitation in Atomi andSemiondutor QD Lasers
0

0.5

1

1.5

2

n(t)
N(t)

0 250 500 750 1000
time in ps

0

0.5

1

1.5

   
   

   
   

   
   

   
   

   
   

 P
(t

) 
[1

/p
s]

, n
(t

),
 N

(t
)

P=0.1

P=100

(b)

(a)

Figure 3.14.: For a pulse duration of ∆t = 100ps the time evolution is shown in analogyto Figure 3.13. In panel (a) Ptot is hosen to be below the threshold, and in (b) above.The orresponding points on the input/output urve are indiated by the orange squares inFigure 3.12. The output intensity is normalized to unity.For a longer pulse length of 100 ps a deviation from the w result beomes apparent.Figure 3.13(b) reveals that now the pulse is broad enough for the emission dynamisto start already during the exitation. As two-level systems get exited, spontaneousemission already redues their number before the stimulated emission starts to set in.Sine only a fration β of the spontaneous emission ontributes to the emission intothe laser mode, the part (1 − β) of exited two-level systems is lost for the emissioninto the laser mode, leading to a smaller number of photons in the input/output urvevisible at equal pulse areas Ptot. The same holds for the 1 ns pulse, the time evolutionof whih is displayed in Figure 3.13().Below the threshold only spontaneous emission takes plae, so that the number ofphotons emitted into the laser mode is ompletely independent of the length of thepulse. This situation is depited for an exitation length of 100 ps in Figure 3.14(a).Above the threshold the deviations visible in the threshold region for broad pulsesdisappear if the system is pumped hard enough. Then the system is driven faster intothe regime of stimulated emission, as an be seen in panel (b) of the same �gure.To get a better understanding one may think of eah point on the input/output urveorresponding to the time integral over the whole dynamis of the photon number n,as it is displayed exemplarily in Figs. 3.13 and 3.14. During the time evolution thesystem passes through di�erent stages from spontaneous emission (when the systemis mainly de-exited) to stimulated emission, and then bak to mainly spontaneous 77



3. Laser Theory for Quantum Dots in Miroavitiesemission (after the stimulated proesses have rapidly de-exited the system and onlyfew exited two-level systems are left). The more pronouned the impat of sponta�neous emission is, the greater the deviation from the w result due to losses into leakymodes.Above we have disussed the di�erenes introdued into the system by pulsed exi�tation. It is important to note that the jump of the input/output urve from belowto above threshold remains unaltered and displays the 1/β behavior known fromw-exited atomi laser models. We now turn to the semiondutor ase.
3.5.2. Pulsed Excitation in Semiconductor Systems with SaturationWe desribe the QD laser by the mirosopi laser model that was introdued inSetion 3.2 for N idential QDs with two energetially separated on�ned shells foreletrons and holes. The transition from the lowest on�ned levels for eletrons andholes is in resonane with the fundamental avity mode, f. Figure 3.2. The pulsedor w exitation takes plae in the p-shells of the QDs. Relaxation of arriers fromthe p- to the energetially lower s-shell is treated in relaxation time approximation.For the pump proess and the relaxation, �lling fators re�eting saturation due toPauli bloking naturally ensure that the population is bound between zero and one.We now present the results of the semiondutor model for the same material param�eters that we have used in the atomi ase. Additionally, relaxation times of 0.15 psand 0.3 ps are used for holes and eletrons, respetively, and the number of resonantQDs is N = 170. Note that these are realisti parameters for urrent miropillarlaser devies [7℄. In fat, the w result displayed in Figure 3.15 orresponds to thealulation for the 2.6µm pillar from Setion 4.3. To avoid onfusion, we antiipatethat two di�erent sets of input/output urves are shown in Figure 3.15: The solidlines represent the results of the semiondutor theory and are disussed with refer�ene to the time evolution displayed in Figure 3.16, as was done before in the atomiase. The dashed lines display the same results without saturation e�ets. We �rstonentrate on the results inluding saturation e�ets. The input/output traes forpulsed exitation (thik lines) are shown in relation to the result for w exitation(thin lines). Here, the time window assumed for the addition of the w result to the�gure is T ≈ 160, f. Setion 3.5.1. Deviations between all �ve urves are striking,indiating a strong impat of the exitation pulse duration. While in the atomi aseshorter pulses more losely resemble the w results, here they show the strongestdeviations due to strong saturation (∆t = 1 and 10 ps). This an be seen by look�ing at Figure 3.16 where the time evolution of the photon number and the eletron78
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−2).
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p + fh
p = 1, orresponding to transpareny of the p-shell.In the ∆t = 10 ps ase some emission an take plae already during the exitation,so that in total more arriers an be reated than in the previous ase. As the pulselength beomes muh longer than the spontaneous emission time, saturation e�etsbeome less important as the arrier generation is distributed over a longer time win�dow with lower exitation. Aording to Figure 3.16(d) for ∆t = 1 ns the p-shell doesnot saturate at all.The e�et of Pauli bloking beomes even more distint if the urves are shownwithout the e�ets of pump saturation. This an be demonstrated by replaing thearea under the pump pulse Ptot on the x-axis by the rate of arriers truly reated80



3.6. Conlusionin the QD s-shells. The orresponding urves have been added as dashed lines toFigure 3.15, to whih the upper x-axis applies. Looking only at the dashed lines,the input/output urves in Figure 3.15 losely resemble the atomi ase displayedin Figure 3.12. Referring to the disussion of the atomi ase, emission after pumppulses muh larger than the spontaneous emission time is subjet to greater lossesinto non-lasing modes. The ombination of the intensity redution due to this e�etfor long pulses together with the saturation e�ets that are muh more prominent forshort pulses leads to the unfamiliar rossover behavior that is observed in Figure 3.15.The presented results are of extreme relevane for urrent experiments where the in�put/output harateristis of semiondutor QD laser devies is used to determine thesystem parameters, espeially the β-fator. Due to heating e�ets pulsed exitationis often preferred over w exitation in experiments. Deviations in the height of thejump from below to above threshold have been observed for idential samples in thease of pulsed and w exitation [144℄. Typial experimental pulse durations are inthe 1 ps range, resulting in a redution of the jump as a aused by saturation e�ets,and thus misleads to estimate larger β-fators. Even in the ase of w exitationsaturation an mask the upper branh of the input/output urve and lead to thepredition of wrong β-fators, whih is learly visible in Figure 3.15. It should benoted that the strength of the saturation e�ets depends on the number of availablestates where the exitation takes plae. Here we onsider arrier generation in theQD p-shells, leading to strong saturation. In ase of WL exitation more arriers anbe aommodated in the quasi-ontinuum states leading to weaker saturation e�etsat omparable pump intensities.Even for a w-exited QD laser showing no saturation at all the jump in the in�put/output urve is not given by 1/β, as an be veri�ed by looking at the blue linein Figure 3.15 where the deviation from this atomi result is approximately a fatorof 2. This e�et has been disussed before and is due to modi�ations to the soureterm of spontaneous emission, and the absene of omplete inversion in the arriersystem [53, 144℄.
3.6. ConclusionIn this hapter we have extended the semiondutor luminesene equations fromChapter 2 to a full semiondutor laser theory. Our model is appliable to any mi�roavity laser devies that use QDs as the ative medium. Furthermore, by takingorrelation funtions up to the quadruplet level, we an alulate the photon se�ond-order orrelation funtion g(2)(0), whih is ruial for the determination of the 81



3. Laser Theory for Quantum Dots in Miroavitiesthreshold harateristis of semiondutor laser with high spontaneous emission ou�pling β.We have presented representative results for urrent state-of-the-art QD lasers andfound that the s-shaped intensity jump in the input/output urve beomes smooth forthe large β-values that an be ahieved with urrent miroresonators. This broadenedtransition region is aompanied by a gradual hange in the photon statistis fromthermal to oherent emission. We have shown that a deviation from thermal emissionis possible already below threshold in two ases: Either in miroavity lasers with fewemitters, as we ould show analytially, or in systems where the avity lifetime exeedsthe spontaneous emission time, resulting in an aumulation of photons in the avityalready in the spontaneous emission regime.Finally, a theory-experiment ollaboration was presented where our theory was usedto haraterize QD miropillar lasers. The broadened laser transition is observedalso in the experiments. Above threshold saturation e�ets beome visible, whihare inluded in our semiondutor approah. The photon statistis of the emissionhas been measured on a Hanbury-Brown and Twiss setup. Expliitly onsideringthe limited time resolution of the experimental setup, our alulations are in goodagreement with the measurements.With the intention to study to what extent information an be obtained merelyfrom the input/output harateristis, we have investigated the in�uene of pulsedexitation in an atomi and a semiondutor-QD laser model. We have revealed asigni�ant impat of the pulse duration on the input/output harateristis. It wasshown that pulses shorter than the spontaneous emission time of the system oinidewith the ase of w exitation if saturation is absent in the system (atomi ase).Pauli-bloking of the arrier states (semiondutor ase), on the other hand, resultsin the deviation from the w result and in a redution of the jump in the input/outputurve espeially for pulses shorter than the spontaneous emission time, but remainingvisible even in the ase of w exitation. Ultimately, the impliation is that, eventhough atomi laser models based on rate equations or a master equation approahprovide onvenient methods to �t the input/output harateristis of QD miroavitylasers, they are likely to misalulate important parameters, like the β-fator.Most importantly, our approah opens up the possibility to inlude the full spetrumof semiondutor e�ets in a onsistent and well-de�ned manner. Besides a moreomplete inlusion of Coulomb orrelations beyond the singlet level, relaxation anddephasing proesses an also be treated on a mirosopi level. Furthermore, intera�tion-indued orrelations between di�erent QDs, like superradiant oupling, an bestudied. While these are future prospets, they outline the diretion of future studies.82



4. Calulation of Two-Time Operator Averages:First-Order Coherene in Quantum-DotMiroavity LasersThe oherene length of radiation is one of the most fundamental properties of a laser.Its knowledge is a ruial preondition for appliations in interferometry and relatedareas. In reent years, intense researh on the fabriation and physis of miroavitylasers has been performed due to their high potential for ultra-low threshold or eventhresholdless lasers [8, 31, 38, 95, 102, 104, 114, 117, 138, 144℄. Due to the lak ofa learly developed threshold in systems where the spontaneous emission ouplingfator β approahes unity, the determination of the lasing onset beomes inreasinglydi�ult. In Chapter 3 the seond-order orrelation funtion was used to identify theregion of oherent emission in quantum-dot-based miroavity lasers. In this hapter,the oherene length of the emitted light will be investigated, whih omplements thestudies of the autoorrelation funtion.Although what follows an topially be understood as a part of the hapter �LaserTheory for Quantum Dots in Miroavities�, it is devoted an own hapter. Thealulation of two-time orrelation funtions is not a mere extension of the lasertheory based on the semiondutor luminesene equations, but a new onept thatan, in priniple, be arried over to the alulation of other two-time quantities.After a short introdution about �rst-order oherene, we demonstrate how orre�lation funtions with two time arguments an be alulated and show theoretialresults in Setion 4.2. The theory has been developed in lose ollaboration withexperimentalists. The ahievements are presented in Setion 4.3.
4.1. First Order CoherenceCoherene in usually assoiated with the ourrene of fringes in an interfereneexperiment. In a Mihelson interferometer, for example, a quasi-monohromati beamis divided into two by a beam splitter. By means of a moving mirror, a time delay ∆tis introdued to one of the beams before they are reunited. Only if this time delay 83



4. First-Order Coherene in Quantum-Dot Miroavity Lasersis shorter than the oherene time τcoh, interferene fringes an be observed betweenthe two beams. The visibility of the interferene fringes is diretly desribed by the�rst-order orrelation funtion, whih we write in terms of photon operators for thelaser mode
g(1)(τ) =

〈b†(t)b(t+ τ)〉
〈b†(t)b(t)〉 . (4.1)The loss of oherene arries over to the seond-order orrelation funtion g(2)(τ). InChapter 3 we were only onerned with its value at zero delay time. No matter if thelight is thermal, oherent or exhibits an antibunhing signature� the seond-orderorrelation approahes a value of unity at long delay times. For thermal light thishappens on the timesale of the oherene time [87℄. The oherene time an bealulated from the �rst-order orrelation funtion:

τ =

∫ ∞

−∞
|g(1)(τ)|2dτ . (4.2)

4.2. Calculation of Two-Time QuantitiesIn quantum optis two-time operator averages an be onveniently aessed by in�voking the quantum regression theorem [29, 154℄. The quantum regression theorem,however, requires the equations of motion to be linear and, therefore, applies totwo-level systems with single exitations. Due to the unavoidable fatorization of theequations of motion in the semiondutor model, the initial linearity of the modelis spoiled. With the soure-term of spontaneous emission, our equations are nonlin�ear already on the singlet level so the quantum regression theorem in its usual formannot be applied.A straightforward approah lies in the equation-of-motion-tehnique itself with thetime derivative now taken with respet to the delay time τ . In order to obtain thedynamis of a quantity F (t, t + τ) with respet to the time di�erene τ , in a �rststep the single-time problem is solved for τ = 0. In a seond step, the τ -evolution isevaluated aording to its own equation of motion. The initial value is given by the
τ = 0 result obtained in the �rst step.This method is now demonstrated in the alulation of the �rst order oherenefuntion. We use the Hamiltonian and the methods introdued in the seond hapter.In order to obtain non-rotating dynamial equations, we introdue

G(τ) = eiωτ 〈b†(t)b(t+ τ)〉 , (4.3)84



4.2. Calulation of Two-Time Quantitieswhih obeys the following equation of motion
(

~
d

dτ
+ κ

)

G(τ) =
∑

ν

g∗νPν(τ) , (4.4)where have introdued the two-time photon-assisted polarization
Pν(τ) = eiωτ 〈b†(t)v†ν(t+ τ)cν(t+ τ)〉 . (4.5)For the time evolution of the two-time photon-assisted polarization with respet to τwe �nd
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〉

−
∑

ξ

gξ 〈b†(t)bξ(t+ τ)v†ν(t+ τ)vν(t+ τ)〉 .

(4.6)
This equation an be simpli�ed signi�antly if we endeavor the same assumptions thatwe have used in the de�nition of the laser system in Chapter 3, f. Setion 3.2.1. Inthe following we shall onsider N idential quantum dots that are on resonane withthe laser mode, so that the omplex energy term in Eq. (4.6) vanishes and the stateindies, now only referring to s-shell arriers, an be dropped. Furthermore, termsoupling di�erent modes are negleted aording to the disussion in Setion 2.7.1.With g(1)(τ) being a doublet quantity (two-partile average) in the luster expansionsheme, we trunate the hierarhy onsistently at the same level. For the averagesin the last two lines of Eq. (4.6) this is similar to the semilassial fatorization,i.e. the fatorization of the photoni and eletroni degrees of freedom. With theseapproximations, we �nally arrive at the losed set of equations

(

~
d

dτ
+ κ

)

G(τ) = g∗P (τ) , (4.7)
(

~
d

dτ
+ Γ

)

P (τ) = gN(f c − f v)G(τ) , (4.8)where we have introdued P (τ) =
∑

ν Pν(τ). These two �rst-order di�erential equa�tions an be ast into a single one of seond order
(

~2 d2

dτ 2
+ ~(κ+ Γ)

d

dτ

)

G(τ) =
(
|g|2N(f c − f v) − κΓ

)
G(τ) , (4.9)whih an be solved to give for the normalized �rst-order orrelation funtion

∣
∣g(1)(τ)

∣
∣ =

−γ−
γ+ − γ−

e−γ+|τ | +
γ+

γ+ − γ−
e−γ−|τ | (4.10) 85
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κ + Γ
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4
. (4.11)The stationary populations of the lowest on�ned QD states f c and f v are obtainedfrom the stationary solutions of the dynami laser equations. From Eq. (4.2) and theequations above, we �nd for the oherene time

τ =
1

γ+

+
1

γ−
+

~

κ+ Γ
. (4.12)In Figure 4.1 the oherene time obtained from Eqs. (4.11) and (4.12) is shown to�gether with the input/output urves for three di�erent values of the spontaneousemission oupling fator β. The parameters for the β = 0.01 urve are the following:86



4.3. Comparison with Experiments
N = 500 QDs, total spontaneous emission time τsp = 80 ps, homogeneous QD broad�ening Γ ≈ 200 µeV, and avity losses 2κ = 30µeV. For the β = 0.1 (β = 1) urve,
N = 50 (5) QDs was used. As the threshold region is approahed, a strong inreasein the oherene time is observed. While below threshold the value lies between 20and 30 ps for all three urves, the oherene time is found to inrease slower withinreasing pump power in avities with larger spontaneous emission oupling: Atomparable points on the input/output urves, we �nd that devies with a larger βfator display shorter oherene times. An illustrative explanation is that �utuationsintrodued by spontaneous emission proesses derease the oherene in the system,and at higher β values more spontaneous emission is oupled into the laser mode. Atthe same time, even in the `thresholdless' ase of β = 1, the slower, but neverthelessdistint rise in the oherene time indiates the beginning of the threshold region.
4.3. Comparison with ExperimentsIn ollaboration with the group of Prof. Peter Mihler in Stuttgart we have performedstudies of �rst-order oherene in elliptial miropillar strutures with InGaAs QDsas the ative medium. Details about growth and experimental setup an be foundin Refs. [7, 8℄. The �eld-orrelation measurements were performed on a Mihelsoninterferometer onsisting of a 50/50 non-polarizing beam splitter and two retro-re�e�tors orthogonal to eah other, one of them movable. The interferene pattern wasreorded with an avalanhe photo diode. As the mode spetrum is non-degenerate inelliptial pillars [8℄ [93, artile by Gérard℄, the measurements were performed on theomponent with higher energy. A typial mode spetrum is shown in Figure 4.2(a),the fundamental mode (left peak) is well separated from the higher exited modes.In the lower panel of Fig 4.2 the input/output urves are shown for the pillars with 6,2.6 and 1.8 µm diameter. An s-shaped smooth transition from spontaneous to dom�inating stimulated emission is observed for all pillars, as it has been in many experi�ments with high-β lasers [114, 138, 144℄, f. also Chapter 3. In analogy to Setion 3.4we alulate the input/output harateristis of the miroavity samples by using theextended laser equations derived in Setion 3.2. With the following parameters we�nd a onsistent overall desription and an estimate of the strutural parameters ofthe experiment. For the 6 µm pillar a number of 500 QDs (2.6 µm: 170, 1.8 µm:80) is used, along with a total spontaneous time of 80 ps (2.6 µm: 55 ps, 1.8 µm:45 ps) and a homogeneous QD broadening of Γ ≈ 200 µeV. Furthermore, we on�sider the measured Q-fators of 44, 500 (6 µm), 38, 000 (2.6 µm) and 20, 000 (1.8 µm)that have been derived from oherene time measurements around the transparenypoint (where the system swithes from absorption to gain) via Fourier transformation 87



4. First-Order Coherene in Quantum-Dot Miroavity Lasers[49℄. The β-fator is used to �t the height of the jump in the input/output urvesto the experiment. The results are shown as solid lines in Fig.4.2. For the 6 µm and2.6 µm pillar we obtain β-values of 0.01 and 0.03, respetively. For the smallest pillarheating e�ets ause instabilities that limit the maximum exitation power. This be�omes learly visible above an exitation power of 3 mW. A β value of 0.05 has beenestimated in this ase by extrapolation.1The oherene properties of the fundamental mode emission have been investigatedby diret measurements of the �rst-order orrelation funtion, whih is possible by theanalysis of the visibility V (τ) of interferene fringes observed at the output port of theMihelson interferometer aording to V (τ) = (Imax − Imin)/(Imax + Imin) =
∣
∣g(1)(τ)

∣
∣[87℄. Therefore, the oherene time of the fundamental mode at a ertain power an beobtained from the evolution of the visibility with inreasing delay times τ . An exampleof suh highly resolved interferene fringes is shown in the inset of Figure 4.3 withmore than 95% visibility around zero delay. Visibility measurements were arried outat di�erent pump powers overing the whole transition regime between spontaneous todominating stimulated emission. Results from the fundamental mode emission of the2.6 µm pillar are presented in Figure 4.3. A lear qualitative hange of the visibilitiesfrom a Gaussian-like pro�le to a more exponential behavior an be observed withinthe transition regimes of all investigated miropillars. In addition to the experimentaldata, the �rst-order orrelation funtion aording to Eqs. (4.1) and (4.11) is shownas solid lines in the same �gure. As an be seen, the theory predits the oherenetimes and lineshapes of the visibilities very well.The qualitative hange of the lineshape an also be seen in the analytial solutionsof the oherene funtion. Expanding Eq. (4.1) in a Taylor series reveals the Gaus�sian-like harateristi in the deay of |g(1)(τ)|, as the term linear in τ drops out.Considering the solutions γ± at transpareny, f c − f v = 0, we get γ+ = Γ ≫ γ− = κ,yielding a deay that is lose to exponential |g(1)(τ)| = e−γ−τ .The deay of the �rst order oherene funtion gives diret aess to the oherenetime aording to Eq. (4.2). The oherene times extrated from the measurementsshown in Figure 4.3 and for two other pillars are shown in Figure 4.4. Interferenemeasurements at low pump powers yield oherene times around 20�30 ps, orre�sponding to linewidths of 140�90 µeV. A nonlinear inrease of τc is observed nearand above the transition region. For the 6 µm pillar the oherene time inreasesfrom 30 ps to ∼ 990 ps. The solid lines represent the numerial results obtained from1For all pillars the parameters were determined not only by mathing the input/output harateris�ti, but also the deay of the �rst-order orrelation funtion and the oherene time. Thus, evenwith unertainties in the upper branh of the measured output intensity, we an reprodue theoverall behavior with the hosen parameters.88



4.4. ConlusionEqs. (4.11) and (4.12). They are in good agreement with the results derived fromthe measurements2, although there is a tendeny of a slight underestimation of theoherene time visible far below threshold.At this point it is important to highlight that with the 6 µm pillar (β = 0.01),the longest ahievable oherene length is lc = cτc ≈ 30 m, whereas signi�antlysmaller values of lc ≈ 7.5 m (β2.6µm = 0.03) and ≈ 3 m (β1.8µm = 0.05) an beobtained from the smaller-sized strutures. The value of τc at a given power level isstrongly a�eted by the value of β, namely the residual ontribution of spontaneous(inoherent) proesses oupled into the emission hannel. Our alulation for various
β-values in the previous setion highlights this feature as well, as an be seen inFigure 4.1.
4.4. ConclusionIn this hapter an extension of the laser model from Chapter 3 to two-time quantitieshas been disussed using the �rst-order oherene funtion g(1)(τ) as an example.For the stationary limit of this partiular ase, and restriting ourselves to the dou�blet-level in the luster expansion, an analyti solution ould be obtained for theoherene time and the �rst-order oherene funtion itself.A steep non-linear inrease in the oherene time is observed around the laser tran�sition. In partiular, at omparable points on the input/output urve, lasers withlarger β fators are found to exhibit a shorter oherene time. This is aompaniedby a gradual hange in the deay harateristis of g(1)(τ) from Gaussian-like to ex�ponential. These �ndings are very well explained by the analytial solution of the�rst-order oherene funtion.In general, the desribed method an be used to alulate other two-time quantities.It must be realized, however, that the number of equations of motions required to besolved inreases rapidly with inreasing order, as ommutation relations do not applyto operators with di�ering time arguments. For the seond-order orrelation funtionat �nite delay times, a di�erent approah based on a modi�ed version of the quantumregression theorem has suessfully been applied [150℄. This topi, however, is notovered in this thesis.2Depending on the shape of the measured visibility V (τ), a Gaussian or a Lorentzian �t funtionhas been used to extrat the oherene times. 89
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Figure 4.2.: (a) A typial high-resolution linearly polarized µ-PL spetrum taken at P =
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5. Comparison with Atomi ModelsDue to their disrete level struture, QDs are frequently referred to as `arti�ialatoms'. To some extent the use of atomi models for the desription of QDs is justi�edas long as many-body e�ets are negligible. In fat, without Coulomb interation andunder the assumption that QDs are true two-level systems, in whih only a singleexitation is possible, the semiondutor theory redues to the atomi model, as wewill show in this hapter.In quantum optis, aess to photon-intensity �utuations an either be obtained byinvoking the quantum regression theorem [92, 125, 154℄, or by using methods to alu�late the diagonal density matrix for the oupled atom-photon system. Both methodsare not diretly appliable in semiondutors due to the presene of many-body ef�fets, multiple exited arriers in a QD, and the modi�ed soure term of spontaneousemission. Nonlinearities are unavoidably introdued by the trunation of the theory.For the general ase we have developed a omprehensive many-body treatment ofthe light-matter interation in QD-based systems in the previous hapters. As itturns out, every equation-of-motion approah inluding either or both light-matterand Coulomb interation inherits a hierarhy problem that must be trunated foralulations.In this hapter we disuss three well-established quantum-optial models that areonneted with eah other and with the equation-of-motion approah that our semi�ondutor model is based on: The rate equations (Setion 5.1) , the master equation(Setion 5.2) and the Liouville/von-Neumann equation (Setion 5.3). The rate equa�tions are the most simple model to desribe lasing. We show how they an be obtainedfrom our semiondutor model in the `atomi limit' mentioned above. The masterequation yields the diagonal elements of the density matrix that desribe probabili�ties. From the solution of the master equation the statistial properties of the emittedlight an be alulated. Therefore, it is possible to ompare both the input/outputurve and the seond-order orrelation funtion obtained from the this density matrixapproah and from the semiondutor model in the `atomi limit'. Sine no fator�ization of the orrelations between the arrier and the photoni system is needed inthe solution of the master equation, this omparison allows for a diret veri�ation ofthe trunation of the in�nite hierarhy of equations of motion by means of the luster 93
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fast relaxationFigure 5.1.: The atomi rate equations desribe the dynamis between the upper and lowerlaser levels. The dynamis of the upper and lower pump levels is adiabatially eliminatedunder the assumption of fast relaxation proesses into and from the laser levels.expansion tehnique. In the third part of this hapter, we present the most funda�mental quantum-optial treatment of light-matter interation, whih is the solution ofthe Liouville/von-Neumann equation that yields the full density matrix. At the sametime, it is possible to derive a hierarhy of equations of motion for operator averagesfrom the Liouville/von-Neumann equation, whih is demonstrated in Setion 5.3.2.This hierarhy an be trunated by means of the luster expansion method, so thatan exat and a trunated version of the very same theory an numerially be om�pared. This o�ers the best possible veri�ation of the trunation method that oursemiondutor model is based on. Furthermore, it is possible to identify the derivedequations of motion with those of the semiondutor laser model from Chapter 3 inthe `atomi limit', so that insight into the appearane of dephasing and satteringterms an be obtained (Setion 5.3.5).
5.1. Rate Equation Limit of the SLEIn both atomi and semiondutor physis rate equations [21, 118, 156℄ are oftenused to desribe lasing. Rate equations provide deterministi equations of motion forthe population inversion and the light intensity. No further information about theproperties of the light �eld an be obtained from this simple model, although two-�time quantities an be derived from one-time quantities via the quantum regressiontheorem [92, 125, 154℄. Aess to the photon statistis an be obtained from moreelaborate approahes, like the master equation that we disuss in the next setion.The frequently used rate equations an be derived in several ways, either phenomeno�94



5.1. Rate Equation Limit of the SLElogially by introduing rates for the relevant proesses indiated in Figure 5.1, orby traing over the density matrix obtained from a master equation or the Liou�ville/von-Neumann equation (f. Setions 5.2 and 5.3). In the latter ase, orrela�tions between atoms and photons are ompletely negleted, i.e., 〈nN〉 = 〈n〉〈N〉.Sine these terms appear only in the ontributions representing stimulated emission,the treatment of these proesses then orresponds to a semi-lassial piture. It is byno means neessary to trunate the equations of motion at the simplest possible levelthat leads to the rate equations. The trunation an be performed on a higher levelin the hierarhy. For the additional terms separate equations of motion have to beformulated. This way, for example, it is possible to obtain insight into the statistialproperties of the light �eld, represented by the photon-photon orrelations 〈n2〉, viathe equation-of-motion approah in an analogous fashion to the rate equations.In the following we show how the atomi rate equation model an be obtained from thesemiondutor theory developed in the previous hapter as a limiting ase. In orderto arrive at an atomi model, the semiondutor spei� soure term of spontaneousemission f e
νf

h
ν in Eqs. (3.14), (3.19) and (3.20) is replaed by the eletron population

f e
ν . This is beause suessive destrution of more than one arrier always yields zeroin the ase of a two-level system, where only one eletron is present per independentemitter, in whih ase cνvν = 0. Then the soure of spontaneous emission 〈c†αvαv

†
νcν〉arising in Eq. (3.13) is found to redue to 〈c†αcν〉δαν = f e

ν . Furthermore, full inversionof the laser transition is assumed, 1− fh
s = 〈v†svs〉 = 0, whih is usually well justi�edfor atomi four-level laser systems (but not for QDs). Finally we insert the adiabatisolution of Eq. (3.14) into Eq. (3.11). Introduing the number of exited emitters

N̄ = f e
sN , where N is the total number of emitters that arises from the sum over allstates in Eq. (3.11), we �nd for the photon number n = 〈b†b〉 in the laser mode

d

dt
n = −2κn +

β

τsp

[
1 + n

]
N̄ . (5.1)The photon population is determined by the interplay of the avity loss rate 2κ andthe photon generation due to spontaneous proesses ∝ N̄ and stimulated proesses

∝ nN̄ . The rate of photons leaving the avity is given by 2κn. For the number ofexited emitters we obtain from Eq. (3.19)
d

dt
N̄ = − β

τsp
nN̄ − 1

τsp
N̄ + P̃ , (5.2)where, for atomi laser systems quite ommon, a onstant pump rate P̃ has been usedto desribe the arrier-generation in the laser-transition level. Note that, in ontrastto the pump rate per emitter in Eq. (3.19), P̃ orresponds to the total pump rate, seeSetion 3.2.1. The arrier reombination is determined by the stimulated emission 95
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Figure 5.2.: Results from the atomi rate equations for β =1 to 10
−5 from top to bottom.into the laser mode ∝ β/τsp = 1/τl, and by the spontaneous emission ∝ 1/τsp into allavailable modes.With Eqs. (5.1) and (5.2) we have obtained the well-established rate equations. Re�sults for the input/output urves for various values of the β-fator are shown inFigure 5.2. We hoose the typial set of parameters that we also used in the previoushapter: τsp = 50 ps and ~κ = 20µeV. The orresponding avity lifetime is about17 ps, yielding a Q-fator of roughly 30, 000. The urves show the typial intensityjump ∝ β−1 from below to above threshold. In the semiondutor ase, where we havea nonlinear soure term and inomplete population inversion, this is not the ase. Inthe limit β = 1 the kink in the input/output urve disappears. The behavior of thejump is a ommonly used riteria to estimate the β-fator from the measurements.For this reason it is important to note the di�erenes between the results of this sim�ple atomi rate equation model and the full semiondutor theory, f. Figure 3.5. Insemiondutor systems, even greater deviations from the 1/β-height of the jump isto be expeted for pulsed exitation due to saturation e�ets, see Setion 3.5.

5.2. The Master EquationIn the previous setion we have shown how the atomi rate equations are ontainedin the semiondutor laser equations derived in Setion 3.2.1 as a limiting ase. Thisis performed by replaing the QDs by two-level systems with only one possible exita�96



5.2. The Master Equationtion. To arrive at the losed rate equations, terms up to the doublet level were kept,thus negleting any arrier-photon and photon intensity orrelations. Usually rateequations for the desription of atomi [87, 118, 156℄ or semiondutor [21℄ systemsare based on a phenomenologial bakground. However, they an also be derivedfrom density-matrix approahes, suh as the master equation [118℄, by using ertainapproximations, like the fatorization of the arrier and photoni degrees of freedom(semilassial fatorization), i.e. 〈nN〉 = 〈n〉〈N〉, where 〈N〉 is the number of exitedatoms and 〈n〉 the photon number.The solution of the master equation yields the diagonal elements of the density ma�trix without any trunation of orrelations, and with it the possibility to obtain allrelevant expetation values where all operators have equal time arguments. Oneimportant ahievement of Chapter 3 is the alulation of the seond-order photonorrelation funtion g(2)(0), whih relies on higher-order ontributions in the lusterexpansion. While photon orrelations annot be addressed in a rate equation modelin the semilassial limit (Setion 5.1), they are ontained in the master equationapproah. To verify our approah in Chapter 3 to obtain the seond-order orrela�tion funtion from an equation-of-motion approah where orrelations are taken upto the quadruplet level, we onsider again the `two-level' limit of the semiondutormodel and ompare the results for the input/output urve and for g(2)(0) with thoseobtained from the master equation model in the formulation of Rie and Carmihael[118℄.
5.2.1. The Master EquationThe master equation desribes the evolution of the diagonal elements of the densitymatrix for the oupled atom-photon system. We introdue the notation

ρn,N = 〈n,N |ρ|n,N〉 (5.3)for the matrix elements. As the diagonal matrix elements an be interpreted as theprobabilities of states with N exited atoms and n photons in the avity, often asimpli�ed approah is taken to derive the time evolution. By onsidering all rele�vant proesses that an at on a given state of the system, a birth/death model anbe formulated where e�etive transition rates are introdued. This is illustrated inFigure 5.3. The �gure is taken from Ref. [118℄, and in the notation of Rie andCarmihael λ is the avity loss rate, P the pump rate and β is the spontaneous emis�sion oupling fator. The arrows desribe proesses that an at on the state ρn,N ,see the �gure aption. 97



5. Comparison with Atomi Models

Figure 5.3.: Shemati representation of the relevant proesses in the birth/death model.On the vertial axis the number of exited emitters N is shown, on the horizontal axis thenumber of photons n in the avity mode. In the diagram, eah dot stands for a matrixelement of the diagonal density matrix ρn,N and represents a state with the orrespondingnumber of exited atoms and photons. Proesses ating on a state with probability ρn,Nare: avity losses, keeping the number of exited atoms unaltered and thus represented ashorizontal line; pump proess, keeping the number of photons unaltered and thus representedas vertial line; spontaneous and stimulated emission, where the number of exited emittersis redued and the number of photons in inreased, thus represented as diagonal lines. The�gure is taken from Ref. [118℄.As an example we onsider the spontaneous emission into non-lasing modes, indiatedas dashed lines in the vertial diretion sine the number of photons in the avityremains unaltered by this proess. The ontribution to the equation of motion is reado� the shemati as
τsp

d

dt
ρn,N

∣
∣
∣
nl

= −(1 − β) [Nρn,N − (N + 1)ρn,N+1] . (5.4)The prefator (1 − β)/τsp desribes the rate of spontaneous emission into non-lasingmodes, assuring that there is no emission at all into these modes in the ase β = 1.There are two possibilities involving a state with N exited emitters, either a deay(`death') of the very same state (after emission a state with N − 1 exited emitters isleft), or its `birth' by the deay of a state with N+1 exited emitters. The full masterequation with all ontributions displayed in Fig. 5.3 an be found in Ref. [118℄.Being a phenomenologial approah, it is not immediately lear that it is aurate.98



5.2. The Master EquationIt is justi�ed by the fat that it reprodues the rate equations if quantum mehanialaverages 〈nN〉 are fatorized into photon and arrier number 〈n〉〈N〉. With goodintuition this also works the other way around: With some physial assumptions, therate equations an be rewritten to yield the master equation, as is shown in Chap�ter 7 in Ref. [29℄. Quantum optis, however, provides us with muh more stringentmethods for desribing non-equilibrium open systems, like lasers. In the third setionof this hapter we present a method for the alulation of the full density matrix
〈n, j|ρ|n′, j′〉 by solving the Liouville/von-Neumann equation. The diagonal densitymatrix onsidered here an be reovered from that model by adiabatially eliminat�ing the dynamis of the o�-diagonal elements. In the adiabati regime, the dephasingis su�iently fast to dominate over the dynamis, so that the o�-diagonal elementssimply follow without delay their soures (inoherent regime). Furthermore, the on�tributions of the avity losses to the dephasing of the o�-diagonal density matrixelements need to be small [98℄.
5.2.2. Comparison with the Equation-of-Motion ApproachIn order to failitate a diret omparison between the input/output urve and theseond-order orrelation funtion obtained from the semiondutor approah in Chap�ter 3 and the master equation, we assume again a modi�ed two-level version of thesemiondutor model, in whih only one exitation per emitter is possible. We haveshown in Setion 5.1 that the soure term of spontaneous emission redues to f e

ν un�der this assumption. The fat that two arriers an never be suessively annihilated,
cνvν = 0 leads to a modi�ation of the equation of motion (3.22) to
(

~
d

dt
+ 3κ+ Γ

)

δ〈b†b†bv†νcν〉 =

− 4 |g|2 〈b†ξv†νcν〉Re〈b†ξv†νcν〉 − (1 − f e
ν − fh

ν ) δ〈b†b†bb〉 + 2δ〈b†bc†νcν〉 , (5.5)again negleting the quadruplet-level orrelation funtions appearing on the righthand side and saling with the light-matter oupling strength.1 All other equationsof motion for the orrelations remain unmodi�ed under the two-level assumptions. Inorder to quantitatively ompare to the master equation given in Ref. [118℄, we mustone more assume a fully inverted system, whih is done by setting 1− fh
ν = 0 in thetwo-level version of Eq. (3.14) and in Eq. (5.5). Due to the oupling to the orrelation1For the derivation of this equation note that cνvν = 0 already on the operator level, i.e. beforetaking the expetation value. In partiular ∑ν′ b†bc†ν′v†νvν′cν ≡ ∑

ν′ 6=ν b†bc†ν′v†νvν′cν . As aonsequene, the term ν = ν′ drops out before the expetation value is taken and the fatorizationis performed, regardless of the fat that the fatorized expetation values 〈b†v†νcν〉〈bc†ν′vν′〉 arenot zero. 99



5. Comparison with Atomi Modelsfuntions in Eq. (3.14), an adiabati solution in the spirit of the rate equations (5.1)and (5.2) is no longer possible. Nevertheless, the numerial steady-state solution anbe diretly ompared to the results of the master equation approah. The masterequation itself relies on the adiabati elimination of the dynamis of the o�-diagonaldensity-matrix elements, whih has no in�uene on the steady-state results.We solve Eqs. (3.11) and (3.13) together with Eqs. (3.19) and (3.20) for the populationdynamis of the laser and pump level (with f e
νf

h
ν replaed by f e

ν for the spontaneousemission). This allows us to avoid the introdution of a number of exited two-levelsystems. For the diret omparison with the master equations, Re,h
p→s is used as ameasure for the arrier generation rate at the laser transition level.Figure 5.4 shows numerial results from our trunated luster expansion model appliedto two-level systems, in omparison to results obtained from the master equation. Thevalues for the parameters κ, Ñ , and τsp were taken from Setion 5.1 and are the sameas for Figure 5.2. Additionally relaxation rates entering Re,h

p→s for both eletrons andholes of 1 ps, and a dephasing Γ = 1.36meV, orresponding to a dephasing timeof approximately 500 fs, was used. The �gure shows the seond-order orrelationfuntion atop the input/output urve for various values of the β-fator. Looking at theinput/output urves, we see that the equation-of-motion approah agrees onvininglywell with the results from the master equation for all values of β. Regarding theautoorrelation funtion in the top panel, there is exellent agreement for small valuesof the β-fator. A deviation of roughly 5% beomes apparent as β is inreased tounity, and the results are in good agreement regarding the onset and the end of thetransition from thermal to oherent light emission.As mentioned above, the x-axis in Figure 5.4 orresponds to the number of arriersthat are truly generated at the laser transition, rather than the arrier generation ratein the pump levels. This means that pump saturation e�ets due to Pauli bloking,although inluded in the alulation, are not visible in the �gure.The deviation between lines and symbols in Figure 5.4 is a diret measure for the ap�pliability of the theory with arrier-photon orrelations trunated on the quadrupletlevel by means of the luster expansion method. The agreement between the trun�ated (luster expansion) and non-trunated (master equation) desription of atomitwo-level systems depends on parameters like the avity lifetime and the spontaneousemission rate. For the above omparison, typial values of urrent miroavities havebeen used. Possible deviations between the two-level version of the luster expansionmodel and the master equation must be onsidered alongside the modi�ations dueto semiondutor e�ets, whih an be signi�ant. As long as the semiondutor the�ory is used for parameters where its two-level version is in agreement with the master100
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5. Comparison with Atomi Modelsequation, we are reassured that the trunation an be applied with respet to the pho�toni orrelations. The full semiondutor theory ontains additional arrier-arrierorrelations introdued by the Coulomb interation. These are treated by means ofthe luster expansion method in analogy to the orrelations introdued by the light-�matter interation. In fat, the luster expansion was developed to treat many-bodye�ets of arriers [45℄, and suessful appliations inlude the photoluminesene ofQDs [11, 44℄, and exiton formation in quantum wells [62℄.
5.3. Extended Jaynes-Cummings Model for a Single Electron

SystemSo far we have studied two atomi laser models and their relation to the equation-of-�motion approah our semiondutor theory is based on. The rate equations providea deterministi desription of the photon number, while the master equation for thediagonal elements of the density matrix gives aess to the photon statistis. As wehave disussed in the previous two setions, both models an be derived by a sim�ple onsideration of all relevant proesses in the system, as is indiated in Figure 5.3.However, this onstitutes more or less a phenomenologial approah. Quantum optisprovides us with muh more stringent methods for desribing non-equilibrium opensystems, like lasers. We will now present an exat theory for the alulation of thefull density matrix by solving the Liouville/von-Neumann equation.To failitate this paragraph, we onsider in the following a single four-level systemwith one eletron oupled to a single mode of an optial avity. This system has beenstudied by Yi Mu and Craig Savage [98℄ in the ontext of the one-atom laser. Thetransfer of this onept to semiondutor systems is urrently of great interest, asnon-lassial light soures are being realized with single-QDs [115℄. The advantageof studying this partiular system lies in the fat that it an be solved without anysigni�ant approximation. While in the birth/death model desribed in Setion 5.2only probabilities for the states of the system were onsidered, we an now obtain thedynamis of the full density matrix by solving the Liouville/von-Neumann equationnumerially.In a seond step we will derive a hierarhy of equations of motion from the Liouvilleequation that we trunate in omplete analogy to the semiondutor theory on thequadruplet level. In doing so we are one more able to test the trunation of equa�tions of motion by means of the luster expansion tehnique explained in Setion 2.2.We show how the formalism an be translated to the semiondutor language with102



5.3. Extended Jaynes-Cummings Model for a Single Eletron Systemreplacemen
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Figure 5.5.: Level diagram of the one-atom laser system. Eletrons are exited at pumprate P̃ from the ground state |1〉 into the pump level |4〉. The rates γ34 and γ12 determinethe sattering into and from the laser levels |2〉 and |3〉, whih are oupled to the laser modevia the transition amplitude T23. Emission into non-lasing modes is desribed by the rate
γ23. The avity mode is oupled to a reservoir of radiative modes outside the avity, givingthe laser mode a �nite lifetime 1/2κ.seond-quantized arrier and photon operators. This enables us to draw onlusionsabout the struture of sattering and dephasing terms.An extension of the Liouville/von-Neumann equation to N atoms is straightforwardand provides a onlusive derivation of the master equation presented in the previ�ous setion. Furthermore, it inludes oupling between di�erent emitters due to theinlusion of the o�-diagonal elements of the density matrix. A partiular type of o�-�diagonal orrelations between di�erent atoms desribe superradiant oupling, whihis an interesting topi on its own.The onsidered four-level system is depited in Figure 5.5. The single eletron, ifin the ground state |1〉, an be exited into the pump level |4〉. Transition proessesbetween the levels and the orresponding dephasing of the o�-diagonal density matrixelements are introdued by oupling the atom to reservoirs. The interation withthese reservoirs is treated in the so-alled Born-Markov approximation [29℄ and isontained in the resulting transition rates P̃ and γij indiated in the level sheme.Of partiular importane are fast transitions into the upper laser level |3〉 at therate γ34 and rapid proesses emptying the lower laser level |2〉 at the rate γ12. Forthe transitions between the laser levels |3〉 and |2〉, the spontaneous emission intonon-lasing modes, desribed by the rate γ23, ompetes with the oupling to the lasermode via the transition amplitude T23. By oupling also the laser mode to a reservoiras disussed above, avity losses with a rate 2κ are introdued.All these proesses determine the time evolution of the density matrix of the oupledatom-avity system. In the following the single ontributions are disussed in detail. 103



5. Comparison with Atomi Models
5.3.1. Derivation of the Liouville/von-Neumann Equation for the Single Atom

LaserThe time evolution of the full density matrix ρ an be obtained from its ommutatorwith the Jaynes-Cummings HamiltonianHJC and the dissipative and pump proessesare desribed by Lindblad terms Lρ (that aount for the above disussed ouplingto the reservoirs [29℄) aording to
d

dt
ρ = − i

~
[HJC, ρ] + Lρ . (5.6)The single ontributions are disussed in the following.

Resonant optical transitions. We �rst onsider the resonant oupling of the emitterto a single avity mode, whih orresponds to the famous and � in the absene ofother proesses � exatly solvable Jaynes-Cummings model. It is desribed by aHamiltonian HJC that ontains ontributions of the free atomi energies H0, the freeeletromagneti �eld H0
em, and the Hamiltonian of the light-matter interation Hlm.Spontaneous emission is a quantum-eletrodynamial e�et that enters the theorydue to the quantization of the eletromagneti �eld. Damping terms will be addedin a seond step via external reservoirs for both the atomi and photoni systems,providing avity losses and dephasing.The basis of the atomi system is given by the energy eigenstates of the Hamiltonian

H0 =
1

2
~ω23σz , (5.7)whih we denote as |j〉, j = 2, 3, where |2〉 =

(
0
1

) and |3〉 =
(
1
0

). The atomiraising and lowering operators are given by a superposition of the Pauli spin matries
σ± = (σx ± iσy)/2, with

σx =

(
0 1

1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0

0 −1

)

. (5.8)The raising and lowering operators an also be written as the outer produts σ+ =

|3〉〈2| and σ− = |2〉〈3|, whih is somewhat more intuitive. Their ation on the basisstates is naturally found to be
σ+|2〉 = |3〉 , σ+|3〉 = 0

σ−|2〉 = 0 , σ−|3〉 = |2〉 .
(5.9)104



5.3. Extended Jaynes-Cummings Model for a Single Eletron SystemThe free part of the eletromagneti �eld is given by the energy of all photons in theonly available mode with frequeny Ω

H0
em = ~Ωb†b . (5.10)The eigenstates of the quantized eletromagneti mode are given by the number states

|n〉, n = 0, 1, 2, . . .The dipole interation Hamiltonian is already known from Chapter 2. With themode expansion of the eletromagneti �eld E =
(

~Ω
2ǫ0V

)1/2

U(r)(b† + b) and the lightmatter oupling onstant g = −d
(

~Ω
2ǫ0V

)1/2

U(r), where d, V and U(r) are the dipolemoment, the volume and the funtion of the eletromagneti �eld mode, respetively,it takes the familiar form
Hlm = i~g(b†σ− − bσ+) . (5.11)The basis states of the non-interating atom-photon system we denote by |n, j〉,

|n, j〉 = |n〉 ⊗ |j〉 , n = 0, 1, 2, . . . , (5.12)where n = 0, 1, 2, . . . is the photon number and j = 1, 2, 3, 4 is the level index. TheJaynes-Cummings Hamiltonian only ats on the laser transition between levels |2〉 and
|3〉. We already inlude the pump level |4〉 and the ground state |1〉, as these statesare subjet to sattering, whih we introdue further down. The photon operatorshave the well-known e�et on the basis states

b†|n, j〉 =
√
n+ 1|n+ 1, j〉 and b|n, j〉 =

√
n|n− 1, j〉 . (5.13)From this we infer that the light-matter interation (5.11) ouples only states with

±1 in the photon number and level index, so that the Hilbert spae of the many-bodyproblem fatorizes e�etively into two-dimensional subspaes. Thus, when alulatingthe time evolution of the density matrix 〈n, j|ρ|n′, j′〉 due to the interation with theavity mode, it su�es to onsider the following three matrix elements2
d

dt
〈n, 2|ρ|n, 2〉

∣
∣
JC

= g
√
n
[
〈n− 1, 3|ρ|n, 2〉 + 〈n, 2|ρ|n− 1, 3〉

]
, (5.14a)

d

dt
〈n, 3|ρ|n, 3〉

∣
∣
JC

= −g
√
n + 1

[
〈n+ 1, 2|ρ|n, 3〉+ 〈n, 3|ρ|n+ 1, 2〉

]
, (5.14b)

d

dt
〈n− 1, 3|ρ|n, 2〉

∣
∣
JC

= g
√
n
[
〈n− 1, 3|ρ|n− 1, 3〉 − 〈n, 2|ρ|n, 2〉

]
. (5.14)The free parts H0 and H0

em of the Hamiltonian ontribute only a term in the equationof motion for the o�-diagonal elements. This term vanishes under the assumption thatthe avity mode is in resonane with the laser transition, i.e., ω23 = Ω.2Note that 〈n, 2|ρ|n− 1, 3〉 ≡ 〈n− 1, 3|ρ|n, 2〉∗, as an be seen from the orresponding equations ofmotion. 105



5. Comparison with Atomi Models
Cavity damping. Dissipation an be inluded in the density matrix formalism byoupling to a heat bath of harmoni osillators. This model is ommonly used inquantum optis to desribe �eld damping, and here we onsider the deay of theoptial avity mode via the oupling to a reservoir of radiative modes. The reservoiris treated in Born-Markov approximation and the degrees of freedom of the reservoirare traed out. In a desriptive piture, this onstitutes an irreversible proess andthe soure of dissipation. The result of this treatment are the damping terms in theLindblad form [29, 81, 154℄

Lcavρ = κ(2bρb† − b†bρ− ρb†b) (5.15)that enter the Liouville equation (5.6). Note that here we have de�ned 2κ as theavity loss rate with dimension [1/s] in onsisteny with the sattering rates γij.The Lindblad terms desribe dissipation while ensuring that the trae of the densitymatrix is onserved. The resulting ontributions to the Liouville equation are givenby
d

dt
〈n, j|ρ|n, j〉

∣
∣
cav

= 2κ
[
(n + 1)〈n+ 1, j|ρ|n+ 1, j〉 − n〈n, j|ρ|n, j〉

]
, (5.16a)

d

dt
〈n− 1, 3|ρ|n, 2〉

∣
∣
cav

= 2κ
√

n(n + 1)〈n, 3|ρ|n+ 1, 2〉 − κ(2n− 1)〈n− 1, 3|ρ|n, 2〉 .(5.16b)While the photon losses from the avity desribed by the �rst equation orrespondto those ourring in the master equation (indiated by the horizontal arrows inFigure 5.4), the seond equation ontains the e�et of avity damping on the lasertransition. As the dynamis of the o�-diagonal elements of the density matrix iseliminated in the master equation approah disussed in Setion 5.2, these termsdo not expliitly appear in the birth/death model (they are negleted under theassumption that the ontributions of the avity losses are small ompared to thedephasing of the o�-diagonal density matrix elements [98℄).
Scattering and pumping. Carrier transitions other than those driven by the resonanttransition amplitude T23 between the upper and lower laser level are desribed in termsof sattering rates. They are introdued in analogy to Eq. (5.15) as

Lscattρ =
∑

M

γij

2

(
2σ−

ijρσ
+
ij − σ+

ijσ
−
ijρ− ρσ+

ijσ
−
ij

)
, (5.17)where only the relevant sattering rates M = {γ12, γ23, γ34} are onsidered. As tran�sitions are mediated via photons in the atomi model, the bak-sattering proesses,desribed by the rates γ21, γ32, γ43, are highly unlikely at low temperatures and an106



5.3. Extended Jaynes-Cummings Model for a Single Eletron Systemsafely be negleted. Spontaneous emission into non-lasing modes is aounted for via
γ23.The inoherent arrier pumping at rate P̃ from level |1〉 to |4〉 is modeled via

Lpumpρ =
P̃

2

(
2σ+

14ρσ
−
14 − σ−

14σ
+
14ρ− ρσ−

14σ
+
14

)
. (5.18)Equations (5.15)�(5.18) and any form of damping in general is introdued the sameway by oupling to a heat bath and integrating out the ontinuum of reservoir modes.For the avity losses and arrier sattering, a physial interpretation is the ouplingto the ontinuum modes of free spae. For the pump proess, however, suh pitureannot be found. Note also that by modelling the inoherent pumping in a formanalogous to the arrier sattering, the pump rate P̃ ats as a soure of dephasing.Eq. (5.18) is one partiular hoie for the pumping between levels |1〉 and |4〉. Otherhoies are possible, so for example oherent pumping via an external �eld [98℄.Considering all transitions indiated by the single-line arrows in Figure 5.5, the sat�tering ontributions to the Liouville equation are the following:

d

dt
〈n, 1|ρ|n, 1〉

∣
∣
sc

= −P̃ 〈n, 1|ρ|n, 1〉+ γ12〈n, 2|ρ|n, 2〉 , (5.19a)
d

dt
〈n, 2|ρ|n, 2〉

∣
∣
sc

= γ23〈n, 3|ρ|n, 3〉 − γ12〈n, 2|ρ|n, 2〉 , (5.19b)
d

dt
〈n, 3|ρ|n, 3〉

∣
∣
sc

= −γ23〈n, 3|ρ|n, 3〉+ γ34〈n, 4|ρ|n, 4〉 , (5.19)
d

dt
〈n, 4|ρ|n, 4〉

∣
∣
sc

= P̃ 〈n, 1|ρ|n, 1〉 − γ34〈n, 4|ρ|n, 4〉 , (5.19d)
d

dt
〈n− 1, 3|ρ|n, 2〉

∣
∣
sc

= − γ23 + γ12

2
〈n− 1, 3|ρ|n, 2〉 . (5.19e)The subsript s denotes all sattering proesses inluding the pumping. Cavity losseswere treated separately in Eqs. (5.16). In ontrast to the o�-diagonal element, thesattering ontributions to the diagonal elements of the density matrix are trivial inthe sense that they an be obtained from a phenomenologial model, f. Setion 5.2.The onsequenes of the partiular form of Eq. (5.19e) are disussed in Setion 5.3.5.Equations (5.14), (5.16) and (5.19) determine the time evolution of the full densitymatrix. To this point the only approximation is the treatment of the avity �elddamping and arrier sattering in Born-Markov approximation [154℄.

5.3.2. Equations of Motion for Operator Expectation ValuesHaving set up the Hamiltonian and the equations of motion for the matrix elementsof the density matrix, the numerial solution of the Liouville equation is straightfor� 107



5. Comparison with Atomi Modelsward, though only feasible for small systems (few atoms). However, before we pursuethis task, the onnetion to the equation-of-motion approah will be established. In�stead of solving the full Liouville equation, we now derive a hierarhy of equationsof motion for expetation values from the Liouville equation. Using the luster ex�pansion method to trunate this hierarhy, we will be able to ompare the full to thetrunated theory.Operator averages are obtained from the density matrix by taking the trae over theatomi or photoni degrees of freedom
fj =

∞∑

n=0

〈n, j|ρ|n, j〉 (5.20)
〈n〉 =

∞∑

n=0

n ρn (5.21)
〈n2〉 =

∞∑

n=0

n2ρn (5.22)with the redued density operator
ρn =

4∑

j=1

〈n, j|ρ|n, j〉 . (5.23)Having alulated the density matrix, operator averages and derived quantities, likethe photon autoorrelation funtion
g(2)(τ = 0) =

〈n2〉 − 〈n〉
〈n〉2 , (5.24)follow diretly.Intending to reformulate the problem as a hierarhy of equations of motion, we nowtake the time derivative of the equations for the operator averages (5.20)�(5.22). Asan example we onsider the population in state |3〉. Adding all ontributions to theLiouville equation from (5.14b), (5.16a) and (5.19), we obtain

d

dt
〈n, 3|ρ|n, 3〉 = 2κ

[
(n+ 1)〈n+ 1, 3|ρ|n+ 1, 3〉 − n〈n, 3|ρ|n, 3〉

]

− γ23〈n, 3|ρ|n, 3〉+ γ34〈n, 4|ρ|n, 4〉
− g

√
n+ 1

[
〈n+ 1, 2|ρ|n, 3〉 + 〈n, 3|ρ|n+ 1, 2〉

]
.

(5.25)
108



5.3. Extended Jaynes-Cummings Model for a Single Eletron SystemAording to Eq. (5.20) we write for the population f3

d

dt
f3 =

d

dt

∞∑

n=0

〈n, 3|ρ|n, 3〉 = 2κ

[ ∞∑

n−1=0

n〈n, 3|ρ|n, 3〉 −
∞∑

n=0

n〈n, 3|ρ|n, 3〉
]

− γ23

∞∑

n=0

〈n, 3|ρ|n, 3〉 + γ34

∞∑

n=0

〈n, 4|ρ|n, 4〉

− g
∞∑

n=0

√
n+ 1

[
〈n+ 1, 2|ρ|n, 3〉 + ..]

= −γ23f3 + γ34f4 − 2gT23 ,

(5.26)
where we have de�ned the transition amplitude of the laser resonane

T23 =

∞∑

n=1

√
n 〈n− 1, 3|ρ|n, 2〉 (5.27)and used T23 = T ∗

23, whih an be veri�ed by omparing the equations of motion forthe matrix elements 〈n − 1, 3|ρ|n, 2〉 and 〈n, 2|ρ|n − 1, 3〉. Aording to Eq. (5.20),the seond line of Eq. (5.26) beomes the sum of the populations. As the sums in the�rst line of Eq. (5.26) run over all possible photon numbers, the ontributions of theavity damping anel. The time evolution of f1, f2 and f4 is found along the samelines, so that we an summarize the population dynamis:
d

dt
f1 = −P̃ f1 + γ12f2 , (5.28a)

d

dt
f2 = − γ12f2 + γ23f3 + 2gT23 , (5.28b)

d

dt
f3 = + γ34f4 − γ23f3 − 2gT23 , (5.28)

d

dt
f4 = +P̃ f1 − γ34f4 . (5.28d)While the terms in the seond olumn on the right hand side desribe transitions dueto arrier sattering, note that the physial meaning of the sattering rate γ23 in thethird olumn is the spontaneous emission into non-lasing modes, i.e. the reombina�tion between the laser levels |2〉 and |3〉 other than the resonant optial transitiondesribed by T23. From the symmetry of Eqs. (5.28) it an be seen that the arriernumber is onserved in the system. Note that the sattering depends only on the pop�ulation of the out-sattering state. In a semiondutor, it would additionally dependon the non-population 1 − f of the in-sattering state.The time evolution of the transition amplitude T23 is derived in Appendix C and isgiven by

d

dt
T23 = −

(

κ+
γ12 + γ23

2

)

T23 + g
[
〈n〉(f3 − f2) + f3 + S3 − S2

]
. (5.29) 109



5. Comparison with Atomi ModelsThis equation is of equivalent form as Eq. (2.18) for the photon-assisted polarization.Indeed we will proof this analogy in the following setion. Looking at Eq. (5.29) itstrikes that both the out-sattering and spontaneous emission into non-lasing modesare soures of dephasing for the transition amplitude. At the same time, the pumplevel |4〉 provides no dephasing to the laser transition amplitude, whih ontrasts thesituation in a semiondutor system. The �rst and seond term in the square braketonstitute stimulated and spontaneous emission ontributions (see Appendix C). Fur�thermore, on the right hand side orrelation funtions appear that are de�ned as
S1 =

∞∑

n=1

n〈n, 1|ρ|n, 1〉 − 〈n〉f1 , (5.30a)
S2 =

∞∑

n=1

n〈n, 2|ρ|n, 2〉 − 〈n〉f2 , (5.30b)
S3 =

∞∑

n=1

n〈n− 1, 3|ρ|n− 1, 3〉 −
[
〈n〉 + 1

]
f3 , (5.30)

S4 =

∞∑

n=1

n〈n− 1, 4|ρ|n− 1, 4〉 −
[
〈n〉 + 1

]
f4 , (5.30d)and whih are shown in Appendix C to obey the following equations of motion:

d

dt
S1 = −(2κ + P̃ )S1 + γ12S2 − 2gT23f1 , (5.31a)

d

dt
S2 = −(2κ + γ12)S2 + γ23S3 − 2gT23

[
〈n〉 + f2

]
+ 2gΠ23 , (5.31b)

d

dt
S3 = −(2κ + γ23)S3 + γ34S4 + 2gT23

[
〈n〉 + 1 − f3

]
− 2gΠ23 , (5.31)

d

dt
S4 = −(2κ + γ34)S4 + P̃ S1 − 2gT23f4 . (5.31d)In this set of oupled equations we an identify ontributions struturally similar todiagonal and o�-diagonal dephasing of interband transitions in semiondutor sys�tems, where the dephasing is onneted to sattering proesses. Diagonal dephasingis typially understood to orrespond to a diret damping by the quantity itself, whileo�-diagonal dephasing is an additional ontribution due to the oupling to all quanti�ties of the same kind with di�erent quantum numbers. Although Eqs. (5.31) do notdesribe interband transitions, the same struture is found.The new orrelation funtion is de�ned in analogy to Eq. (5.27) as

Π23 =

∞∑

n=1

n
√
n〈n− 1, 3|ρ|n, 2〉 , (5.32)110



5.3. Extended Jaynes-Cummings Model for a Single Eletron Systemonly di�ering from T23 by a fator of n in the sum. Its equation of motion is given by
d

dt
Π23 = −

(

3κ+
γ12 + γ23

2

)

Π23 + 2κT23 + g
[
〈n2〉(f3 − f2) + (2〈n〉+ 1)f3 + S̃3 − S̃2

](5.33)The quantities S̃i are de�ned like Si in Eqs. (5.30) with an additional fator n in thesum. As will beome lear a bit further down, they orrespond to the quintuplet levelin the luster expansion and are fatorized aording to Eqs.(C.14) and (C.15), seeAppendix C, so that we an rewrite Eq. (5.33) on the quadruplet level as
d

dt
Π23 ≈ −

(

3κ+
γ12 + γ23

2

)

Π23 + 2κT23 + g
[
〈n2〉(f3 − f2) + (2〈n〉 + 1)f3

+ (2〈b†b〉 + 1)(S3 − S2) + 2S3

]
.

(5.34)The approximation indiates that orrelations on the quintuplet level are negletedafter fatorizing the orrelations S̃2 and S̃3. With this the equations of motion loseon the quadruplet level.To omplete the set of oupled equations we give the time evolution of the meanphoton number
d

dt
〈n〉 = −2κ〈n〉 + 2gT23 (5.35)and the mean square photon number

d

dt
〈n2〉 = −2κ

[
2〈n2〉 − 〈n〉

]
+ 4gΠ23 − 2gT23 . (5.36)As an illustration we show in Appendix D how the rate equations an be obtainedfrom the derived set of equations.

5.3.3. Correspondence to the Semiconductor FormalismFrom the Liouville equation (5.14), (5.16) and (5.19) we have derived operator ex�petation values with their equations of motion (5.27)�(5.36) in the previous setion.In the dynamial equations for the populations and the (squared) photon numbernew quantities T23, Π23, Si and S̃i appear. We have antiipated that a fatorizationof the S̃i is onsistent with a trunation on the quadruplet level, whih we show inthe following. To failitate the omparison with the semiondutor laser model forChapter 3, we denote the upper and lower laser levels with the arrier operators forthe s-shells of the ondution band cs, c†s and the valene band vs, v†s, respetively,and omit the state index for the s-shell in the following. The analogy is depited inFigure 5.6. 111



5. Comparison with Atomi Models
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valence bandFigure 5.6.: `Translation' between the atomi model introdued in Figure 5.5 and thesemiondutor formalism, as explained in the text.To establish a translation method between the operator method used in Setions 3.2.1and 3.2.2 and the density matrix approah, we �rst onsider the expetation valuefor the photon number 〈b†b〉 in the laser mode. It follows from taking the trae withthe density matrix
〈b†b〉 =

∑

n,j

〈n, j|ρb†b|n, j〉

=
∑

n,j

√
n〈n, j|ρb†|n− 1, j〉 =

∑

n

n
∑

j

〈n, j|ρ|n, j〉

=
∑

n

nρn = 〈n〉 ,

(5.37)
where Eqs. (5.13) and (5.23) were used. It omes as no surprise that we obtain theidentity 〈b†b〉 ≡ 〈n〉, but it will help to understand the expliit form of T23 and Π23in Eqs. (5.27) and (5.32). For the photon-assisted polarization we get

〈b†v†c〉 =
∑

n,j

〈n, j|ρb†v†c|n, j〉

=
∑

n

√
n
∑

j

〈n− 1, j|ρv†c|n, j〉 =
∑

n

√
n
∑

j

〈n− 1, j|ρσ−|n, j〉

=
∑

n

√
n〈n− 1, 3|ρσ−|n, 3〉

=
∑

n

√
n〈n− 1, 3|ρ|n, 2〉 = T23 .

(5.38)
In the seond line we have identi�ed the transition amplitude v†c with the loweringoperator for the laser transition de�ned in Eq. (5.9). For it there is only one possibletransition ausing the sum over the atomi states to drop out, revealing the identitybetween the photon-assisted polarization 〈b†v†c〉 and T23.112



5.3. Extended Jaynes-Cummings Model for a Single Eletron SystemFrom Eqs. (5.37) and (5.38) it an be onluded that two additional operators b†badded to an arbitrary expetation value from the left merely yield an extra fator nunder the sum while keeping the matrix elements unhanged, i.e.
〈b†bb†v†c〉 =

∑

n,j

〈n, j|ρb†bb†v†c|n, j〉

=
∑

n

n
√
n〈n− 1, 3|ρ|n, 2〉 = Π23 .

(5.39)The same holds for the mixed arrier-photon averages
〈b†bc†c〉 =

∑

n

n〈n, 3|ρ|n, 3〉 (5.40)
〈b†bv†v〉 =

∑

n

n〈n, 2|ρ|n, 2〉 . (5.41)The luster expansion method requires the use of true orrelations rather than op�erator expetation values, as we have explained in Setion 2.2. For Eq. (5.40), itis obtained aording to δ〈b†bc†c〉 = 〈b†bc†c〉 − 〈b†b〉〈c†c〉. Doing so we �nd thatthe Si orrespond to the population-photon orrelation funtions aording to theirde�nition in Eq. (5.30)3
δ〈b†bc†c〉 =

∞∑

n=0

n〈n, 3|ρ|n, 3〉 − 〈n〉f3 = S3 , (5.42a)
δ〈b†bv†v〉 =

∞∑

n=0

n〈n, 2|ρ|n, 2〉 − 〈n〉f2 = S2 . (5.42b)In order to rewrite Π23 as a orrelation funtion we must restore normal ordering inEq. (5.39) and fatorize o� the unorrelated part:
Π23 = 〈b†bb†v†c〉 = 〈b†b†bv†c〉 + 〈b†v†c〉

= (2〈b†b〉 + 1)〈b†v†c〉 + δ〈b†b†bv†c〉 .
(5.43)If we now solve for the orrelation funtion on the right hand side and take the timederivative, we obtain

d

dt
δ〈b†b†bv†c〉 =

d

dt

(

Π23 − (2〈b†b〉 + 1)〈b†v†c〉
)

= −
(

3κ+
γ12 + γ23

2

)

δ〈b†b†bv†c〉 − 4g〈b†v†c〉2

+ g(f3 − f2)δ〈b†b†bb〉 + 2gδ〈b†bc†c〉 ,

(5.44)3Regarding S3, relabeling n by n − 1 under the sum yields the result in Eq.(5.30). 113



5. Comparison with Atomi Modelswhih we �nd to be equivalent to Eq. (5.5).4 Here we have inserted the equations ofmotion (5.29), (5.34) and (5.35). Along the same lines we obtain the time evolutionfor δ〈b†b†bb〉:
d

dt
δ〈b†b†bb〉 =

d

dt

[

〈n2〉 − 〈n〉
(
2〈n〉 + 1

)]

= −4κδ〈b†b†bb〉 + 4gδ〈b†b†bv†c〉 .
(5.45)

Summary of the equations of motion for the one-atom laser system. In the sum�mary of equations we stik to the notation introdued in Setion 5.3.2. Only forquantities rewritten in Setion 5.3.3 to agree with the luster expansion method, weuse the notation already familiar from the semiondutor ase.The dynamis of the populations, the photon number and the transition amplitudeare determined by Eqs. (5.28), (5.35) and (5.29), respetively. The arrier-photonorrelations Si evolve aording to Eqs. (5.31), where we now replae Π23 in theequations for S2 and S3 by the true orrelation funtion δ〈b†b†bv†c〉 aording toEq. (5.43), i.e.
d

dt
S2 = −(2κ+ γ12)S2 + γ23S3 − 2gT23

[
f2 − 〈n〉 − 1

]
+ 2g δ〈b†b†bv†c〉 , (5.46)

d

dt
S3 = −(2κ+ γ23)S3 + γ34S4 − 2gT23

[
f3 + 〈n〉

]
− 2g δ〈b†b†bv†c〉 . (5.47)The time-evolution of δ〈b†b†bv†c〉 is given in Eq. (5.44). This ouples to the pho�ton-intensity orrelation δ〈b†b†bb〉, whih evolves aording to Eq. (5.45) and yieldsthe seond-order orrelation funtion

g(2)(0) = 2 +
δ〈b†b†bb〉
〈b†b〉2 . (5.48)

5.3.4. Numerical ResultsWhat we have ahieved in the previous setions are two approahes for solving thetime evolution of an atomi one-eletron system oupled to a single avity mode: Thefull time evolution of the density matrix an be obtained from the numerial solutionof the Liouville/von-Neumann equation. Alternatively, the trunated hierarhy ofequations of motion for expetation values based on the luster expansion tehniquean be solved.4When omparing the equations of motion derived in this and the previous hapter, note that inChapter 3 〈b†v†c〉 and δ〈b†b†bv†c〉 are saled with the light-matter oupling strength g, see forexample Eqs. (3.11)�(3.13) and (5.5).114



5.3. Extended Jaynes-Cummings Model for a Single Eletron SystemIn the following, we distinguish between two di�erent regimes: The situation wherephotons leave the avity at a rate faster than the spontaneous emission into thatmode is referred to as `bad avity limit'. On the other hand, the `good avity limit'desribes the situation where photons an aumulate in a avity mode with a lifetimelonger than the spontaneous emission time already below threshold. For the latterase one intuitively expets a greater in�uene of photon orrelations and, therefore,a greater deviation of the trunated theory from the full solution.
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Figure 5.7.: Comparison of the exat Liouville/von-Neumann model (irles) with thetrunated equation-of-motion approah on quadruplet level (solid lines). For all urves,
β = 0.5, τcav = 160ps, g = 18µeV, and idential relaxation times τ12 = τ34 = τ are used.In Figure 5.7 the irles are obtained by the solution of the Liouville equation (5.14)�(5.19)in a trunated Hilbert spae, where it is ensured that the trunation does not havean in�uene on the numerial results by varying the size of the basis.5 The solid linesorrespond to the solution of the trunated hierarhy of equations of motion inlud�ing terms up to the quadruplet level that is summarized on page 114. The avity5Note that the restrition to a set of relevant basis states is a tehniality rather than an approxi�mation to an otherwise exat theory. The impliation of a `trunation' should not be mixed upwith the trunation of the hierarhy of equations of motion, whih onstitutes an approximationin the theory itself. 115



5. Comparison with Atomi Modelslifetime is hosen to be τcav ≈ 160 ps, the spontaneous emission oupling β = 0.5and the light-matter oupling g = 18µeV. The red and blak urves orrespond toalulations for the bad avity limit with a spontaneous emission time τ23 = 4 nsand τ23 = 850 ps, respetively. The green line orresponds to the good avity limitwith τ23 ≈ τcav. As an be seen in the lower panel, the input/output urves showperfet agreement between the full and the trunated theory. In the upper panelthe seond-order orrelation funtion g(2)(0) is shown. Here also perfet agreement isfound, marginal deviations beoming visible only in the good avity regime aroundand above the threshold region (green line).The agreement revealed in Figure 5.7 is so far the most thorough proof of the validityof the luster expansion trunation sheme. As the omparison is performed witha theory that is exat onerning fatorization and trunation, it is truly a test ofthe fatorization of the only ourring hierarhy, here introdued by the light-matterinteration, and is not obsured by other e�ets.
5.3.5. Dephasing Contributions and Analogy to the Semiconductor FormalismHaving shown that the luster expansion method serves extremely well in the desrip�tion of the oupled light-matter dynamis, we now turn bak to the semiondutorformalism as it is introdued in Chapter 3. When omparing this model and thefatorized form of the Liouville/von-Neumann equation in this paragraph, one mustbear in mind that di�erenes arise due to i) deviations between the onsidered systems(one eletron system vs. QD system) and ii) di�erent levels of approximations used inthe derivation. Having identi�ed the equations of motion for the atomi one-eletronsystem in this setion with the operator orrelation funtions that we know from thesemiondutor approah, we an now ompare the struture of the equations in detail.In partiular, this will shine light on the appearane of dephasing terms.In Eq. (5.42) we have identi�ed the population-photon orrelations δ〈b†bc†c〉 and
δ〈b†bv†v〉. Taking a loser look at their equations of motion (5.31), it is obvious thatthe arrier sattering rates at as soures for what we have interpreted to be similarto diagonal and o�-diagonal dephasing. Furthermore, via the o�-diagonal dephasing,the dynamis of the arrier-photon orrelations δ〈b†bc†c〉 and δ〈b†bv†v〉 for the lasertransition are oupled to orrelation funtions of the same kind for the pump levels
S1 = δ〈b†bv†pvp〉 and S4 = δ〈b†bc†pcp〉. In the dynamial equations (3.23) and (3.24)derived in Chapter 3 damping is provided only via the photoni system (expressed interms of κ), and we have negleted arrier-photon orrelations with the QD p-shell.Di�erenes are also found in the transition amplitude T23 = 〈b†v†c〉 for the laserresonane (5.38) and the orrelation funtion δ〈b†b†bv†c〉. In the time evolution of116



5.3. Extended Jaynes-Cummings Model for a Single Eletron Systemthese quantities, given in Eqs. (5.29) and (5.44), respetively, dephasing enters viathe rates γ12 and γ23. Comparing the model from this setion with the approahbased on the semiondutor model, three points are of interest. In the single-atommodeli. dephasing is provided only due to sattering proesses out of the laser transi�tion. The sattering rate γ34 desribing the transition into the upper laser level,however, does not provide dephasing. The reason for this lies in the one-eletronapproximation, where out-sattering is proportional only to the oupation ofthe level sattered from. In a semiondutor the oupation of both the in- andout-sattering states are relevant for sattering proesses.ii. the dephasing provided by γ23 is related to the spontaneous emission intonon-lasing modes. In ontrast to the other transition rates, this is mediatedby oupling to the photoni system in both atomi and semiondutor systems.In the presented formulation of the semiondutor theory, dephasing due toradiative proesses is understood to be ontained in the dephasing onstant Γ.Due to the long radiative lifetime of QDs, the indued dephasing time is ex�tremely long [79℄ in omparison to the dephasing time introdued by ultrafastsattering proesses. Thus, the ontribution of the emission into non-lasingmodes to the total dephasing of the transition amplitude and higher-order po�larization-like orrelations is expeted to be small, i.e. γ12 ≫ γ23. This is truein general, but holds in partiular for high-β lasers, where the ontribution ofnon-lasing modes is suppressed by a fator of 1 − β.iii. the dephasing rates are in all ases related to the sattering rates. While thisis also the ase in a semiondutor system, the onnetion is somewhat moredi�ult. Carrier-phonon interation auses a temperature and arrier-densitydependent dephasing with diagonal and o�-diagonal ontributions. The de�phasing as well as the in- and out-sattering terms are interonneted. In thederivation of the laser model this density-dependent sattering and dephasingis summarized as a onstant dephasing Γ, e.g. in Eq. (3.13), and an e�etivesattering rate Re,h
p→s is used in Eqs. (3.19) and (3.20) for the relaxation from thepump levels. In this approximate treatment of arrier sattering and dephas�ing, the inherent relation between both proesses is lost if the values for Γ andthe relaxation times are hosen independently, e.g. on the basis of experimentalresults.The important point iii) addresses the approximate treatment of dephasing and sat�tering mehanisms that we have employed in the derivation of the laser model. Animplementation of these proesses on a mirosopi level, e.g. via the interation with 117



5. Comparison with Atomi Modelsphonons, onstitutes a onsiderable task worth an own dissertation's work. For thealulation of the photon seond-order orrelation funtion, ontributions must beinluded up to quadruplet level in all of the appearing orrelation funtions. In Chap�ter 3 we have developed a theory aiming at the desription of lasing and seond-orderoherene properties of an ensemble of QDs without having to deal with additionalterms introdued by further interation parts in the Hamiltonian. In fat, the resultspresented in Figure 5.4 demonstrate that our approah and the hosen approxima�tions lead to onsistent results already for small numbers of emitters. However, everyapproximation has its limits, whih we �nd in the desription of lasing from a sin�gle QD by means of the extended laser equations (f. Setion 3.2.2). In this asea treatment of arrier sattering and dephasing beyond the approximations used inChapter 3 is required, as well as the inlusion of arrier-photon orrelations with the
p-shell arriers (δ〈b†bv†pvp〉 and δ〈b†bc†pcp〉). This an be onluded from studying thefatorized version of the single-atom laser in this setion, for whih we have employeda trae-onserving treatment of sattering and dephasing via the muh more easilyimplemented Lindblad terms.
5.4. ConclusionWhat has been ahieved with the work presented in this hapter is twofold: Firstly,we have examined the validity of the equation-of-motion approah and the luster ex�pansion trunation sheme in the developed laser theory. Equally important, we haveestablished the onnetion to formalisms used in quantum optis for the desription ofatomi systems yielding signi�ant insight into the struture and sope of appliationof our model.Based on the redution of the semiondutor laser model to a theory for atoms, wean ompare the methods used in Chapter 3 to other atomi theories. In doing so,we have shown in the �rst setion that the well-established atomi rate equations arereovered as a limiting ase of our model. As the rate equations are insu�ient forthe desription of photon orrelations, we have invoked a master equation approahin Setion 5.2. The obtained density matrix yields the probabilities for eah state ofthe system, from whih photon autoorrelation funtions up to arbitrary order an bealulated without any trunation of orrelations being involved. A omparison withthe laser theory in the atomi limit for realisti parameters shows exellent agreementboth for the input/output urve and the photon autoorrelation funtion, only withsmall deviations for lasers with extremely high spontaneous emission oupling.In Setion 5.3 the most rigorous approah is taken for the simpli�ed model of afour-level atom with one eletron, oupled to a single avity mode. The light-matter118



5.4. Conlusioninteration in this system is governed by the Jaynes-Cummings Hamiltonian, whiledeoherene and damping follows a Markovian master equation. The dynamis ofthe system an be solved in two ways: Firstly, the Liouville/von-Neumann equationan be solved numerially, yielding an exat solution of the full density matrix ofthe system. Seondly, a hierarhy of equations of motion an be derived from theLiouville equation. By means of the luster expansion method, we have trunated thishierarhy onsistently on the quadruplet level. A omparison between both methodsprovides an ultimate test for the luster expansion method and the su�ieny of atrunation on the quadruplet level if the photon seond-order orrelation funtion
g(2)(0) is the aim of the alulation. The agreement revealed in this omparison evenin the �good avity regime� proves the su�ieny of the trunation on quadrupletlevel for the alulation of the photon statistis and the appliability of the lusterexpansion method.Furthermore, towards the desription of the single-QD laser, the trae-onservingtreatment of arrier sattering and dephasing in the single-atom model points outthe signi�ane of both diagonal and o�-diagonal ontributions to the dephasing. Ina semiondutor theory these ontributions enter e.g. via a mirosopi treatment ofthe arrier-phonon or arrier-arrier interation.
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6. ConlusionIn the presented work we have developed and applied methods to desribe the lu�minesene and laser emission from semiondutor quantum dots (QDs). From amirosopi Hamiltonian and Heisenberg's equations of motion the semiondutor lu�minesene equations were derived and used to study the photoluminesene dynam�is. In both unstrutured QD samples and QDs in miroavities we have identi�edthe ommonly observed non-exponential and arrier-density dependent deay of theluminesene as an intrinsi semiondutor property of QDs that re�ets a lak oforrelations between eletrons and holes. We onlude that the desription of theradiative deay using atomi models is not justi�ed in the general ase, as arrierorrelations depend diretly on many-body interation proesses and must thereforebe expliitly alulated.Based on the semiondutor luminesene equations, we have developed a laser theoryfor QDs in miroresonators that allows for the alulation of oherene properties interms of the seond-order orrelation funtion. As the equation-of-motion methoddoes not require the equations to be linear, Coulomb orrelations and other e�etsspei�ally important in semiondutor systems an be inluded in a straightforwardway. In order to alulate the �rst-order oherene properties we have shown howthe desribed model an be used to alulate two-time operator averages. With thisand the seond-order orrelation funtion, we obtain a onsistent overall piture ofthe laser transition in QD-based miroavity laser devies. At the large spontaneousemission oupling fators β that are urrently obtained in state-of-the-art devies, thesignature of the laser transition in the input/output harateristis is washed out andannot be learly identi�ed anymore. At the same time, around the threshold regionwe observe a distint rise in the oherene time by about two orders of magnitude, ahange in the lineshape of the �rst-order orrelation funtion from Gaussian-like toexponential, and a hange in the seond-order oherene properties from (lose to)the signature of thermal (g(2)(0) = 2) to that of oherent (g(2)(0) = 1) light. Theseresults distintly haraterize the threshold region even if a threshold is no longerdiretly visible in the intensity of the emitted light.From atomi models it is expeted that the output intensity shows a jump by a fatorof 1/β at the threshold. For several reasons this does not apply to semiondutor 121



6. Conlusionsystems in general. The reabsorption present in the system modi�es the height ofthe jump. The possibility to have more than single exitation in a QD modi�es thespontaneous emission properties. Saturation e�ets of the pump levels, in ombinationwith the small numbers of QDs typially present in miroavity lasers, an have astrong e�et at higher exitation powers. The upper branh of the input/outputurve an be masked to an extent where the threshold is not even fully developed. Ifin this ase atomi models are used to extrat parameters from measured data, thesmaller jump in the input/output harateristis may be mistaken to be aused by aspontaneous emission oupling fator β larger than it truly is. We have shown thatthis e�et is even more pronouned for pulsed exitation.For a deeper understanding of the di�erenes between QDs and atoms, and to verifyour semiondutor approah, ommon methods in quantum optis for the omputa�tion of laser properties were reviewed and plaed in relation to eah other and toour semiondutor theory. As the most fundamental method we have disussed theLiouville/von-Neumann equation that yields the time-evolution of the full densitymatrix. This model an be redued to a master equation that desribes probabilitiesor to the well-known rate equations. Two points are important to notie: Firstly,in both approahes where the density matrix elements are alulated, informationabout the statistial properties of the light are preserved, whereas in the rate equa�tion formulation this information is lost. And seondly, we have disussed that therate equations are the most simple possible fatorization in a reformulation of the�rst two approahes in a hierarhy of oupled equations of motion. In this ontextwe plae our semiondutor laser theory, whih is based on an equation-of-motionapproah. While rate equations typially desribe the arrier system in terms ofthe expetation value of the number of exited two-level systems, the semiondutorapproah is formulated in terms of population expetation values and transition am�plitudes in a semiondutor basis. Also the hierarhy of equations is not trunated onthe semilassial level, but higher-order orrelation funtions are kept in a onsistentmanner. This enables us to alulate the oherene properties of the emitted light interms of the seond-order orrelation funtion.The lose relation to the disussed atomi models allows for a diret omparison anda veri�ation of the trunation sheme if the semiondutor model is onsidered inthe limit of a single possible exitation. We have performed suh tests and �nd thatthe trunation of the hierarhy, introdued by the light-matter interation, on thequadruplet level delivers an aurate desription of the laser properties inluding theseond-order orrelation funtion for realisti parameters.Finally, we would like to point out that the presented work has been mutually inspiredby the lose and fruitful ollaboration with experimental groups in Dortmund and122



Stuttgart. Therefore, most of our results are shown side-by-side with results fromreent experiments.
Future DirectionsFrom here the work an be ontinued in several diretions. While we have treatedsome aspets of our theory thoroughly and in great detail, in other parts we haveused approximations that allowed us to obtain results on a simpli�ed level. We havepointed out the limitations of those approximations and the irumstanes underwhih a re�nement is required.We have shown that the in�uene of arrier orrelations on the spontaneous emissionproperties an be drasti. The build-up and dephasing of orrelations is of partiularinterest if the emission from semiondutor QDs into free spae, or the emission fromQD-based LEDs or weakly exited laser diodes is to be studied. To aount fordephasing of orrelations, an inlusion of arrier-phonon interation on a mirosopilevel is desirable. An extension of the theory presented in Chapter 2 to the oherentregime would allow to study the build-up of arrier orrelations and exiton formation,as well as the emission behavior under resonant exitation.The laser theory in its partiular form has been developed to desribe urrent exper�iments, where single-mode lasing is ahieved with an ensemble of QDs in a mirores�onator at low temperatures. In di�erent situations, modi�ations are required, suhas, for example, the expliit inlusion of the interation with the wetting layer forlasing at room temperature. Furthermore, a more detailed treatment of Coulomb ef�fets is desirable espeially in the regime where spontaneous emission is the dominantemission mehanism. These are re�nements of the theory in its present form and theexpeted orretions are small.Of greatest interest are di�erent e�ets whih are urrently being disussed in the lit�erature. Super�uoresene and superradiant oupling in QD-based systems has beenexperimentally investigated and desribed by means of atomi models. Nevertheless,a treatment where the semiondutor nature of QDs is aounted for would be worth�while. Finally, reent experiments point towards the diretion of single-QD lasing. Inontrast to the emission from an ensemble of emitters, for single-QD lasing the avitylifetime must exeed the spontaneous emission time. In this regime orrelations arestrongly developed and dephasing terms are of enhaned importane. For a properdesription in this regime, some assumptions that are valid for lasing from an ensem�ble of QDs must be revisited. Our investigations of the single atom laser in Chapter 5have already indiated the diretion for further researh. 123
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A. Appliation of the Cluster-ExpansionMethodIn Setion 2.2 the luster-expansion method is introdued to onsistently trunatethe in�nite hierarhy of equations of motion. Often questions arise in the diretappliation of the fatorization sheme. The following examples aim at larifyingthese issues.Most onveniently, normal order is established before operator averages are fatorized.However, it is not neessary as long as the order of operators is not altered in thefatorized parts, i.e.
〈b†bcc†〉 = δ〈b†b〉〈cc†〉 + δ〈b†bcc†〉 , (A.1)
〈b†bc†c〉 = δ〈b†b〉〈c†c〉 + δ〈b†bc†c〉 . (A.2)Both fatorizations are orret, but note that di�erent quantities appear on the rightand left hand side of these equations.Normal ordering an be performed before or after the fatorization, whih may beomelear by looking at the following example. Diret fatorization of the operator average

〈b†bb†v†c〉 into two doublets (denoted as δ〈2〉δ〈2〉) yields
〈b†bb†v†c〉

∣
∣
∣
∣
δ〈2〉δ〈2〉

= δ〈b†b〉δ〈b†v†c〉 + δ〈bb†〉δ〈b†v†c〉

= δ〈b†v†c〉
[
1 + 2δ〈b†b〉

]
,

(A.3)where the extra term in the last line results from the ommutator for [b, b†]− = 1. Onthe other hand, normal order an be established before the fatorization, i.e.
〈b†bb†v†c〉

∣
∣
∣
∣
δ〈2〉δ〈2〉

=
{

〈b†v†c〉 + 〈b†b†bv†c〉
}

δ〈2〉δ〈2〉

= δ〈b†v†c〉
[
1 + 2δ〈b†b〉

]
.

(A.4)As the same ommutation relation is used as in Eq. (A.3), one obtains the same result.When starting from normal-ordered averages, the resulting fatorizations are alwaysnormal-ordered as well. For eah possible fatorization, the operators are rearranged 127



A. Appliation of the Cluster-Expansion Methodsuh that the fatorization an be performed as a splitting of the operator averageinto smaller operator averages, see the example below. This rearranging is performedfor eah possible fatorization and always from the same initial expetation value.Commutators only yield a hange in the sign for fermions, but never extra terms.The reason for this is that always the same operator average is fatorized. If theoperator average was brought into the desired order using proper ommutation rela�tions yielding additional terms, and if these terms were kept, di�erent initial operatoraverages would atually be used in di�erent fatorizations.As an example we onsider the fatorization of the quadruplet quantity 〈b†b†v†ν′v†νcν′cν〉into two doublets δ〈2〉δ〈2〉. One possibility is obtained from
〈b†v†ν′cν′ b

†v†νcν〉 , (A.5)where the ommutation of the underlined terms yields a minus sign. Bose operators,however, an be moved without hanges of sign. The other possible fatorization1requires ommutation in two steps:
〈b†b†v†ν′v

†
νcν′cν〉 → −〈b†b†v†νv†ν′cν′cν〉 → +〈b†v†νcν′ b

†v†ν′cν〉 . (A.6)Performing the trunations indiated by the gaps in Eqs. (A.5) and (A.6) yields
〈b†b†v†ν′v

†
νcν′cν〉

∣
∣
∣
∣
δ〈2〉δ〈2〉

= −δ〈b†v†ν′cν′〉δ〈b†v†νcν〉 + δ〈b†v†νcν′〉δ〈b†v†ν′cν〉 . (A.7)

1Other fatorizations are tehnially possible, but yield non-resonant terms.128



B. Interplay of Time ConstantsFor the evaluation of our theory, we treat the rate of spontaneous emission intothe non-lasing modes 1/τnl as an extrinsi parameter, whih is determined by theproperties of the laser resonator. Depending on the partiular avity design, otherhigh-Q resonator modes as well as a quasi-ontinuum of low-Q leaky modes anontribute. The spontaneous emission into the laser mode an be alulated from thelight-matter oupling strength |g|2 = |gξl
|2 for this mode, the avity lifetime ~/2κ,and the homogeneous dephasing Γ. Restriting the adiabati solution of Eq. (3.14)to the spontaneous emission into the laser mode and using Eq. (3.12) to de�ne theorresponding rate 1/τl aording to

d

dt
f e,h

s

∣
∣
∣
l,spont = −f

e
s f

h
s

τl
, (B.1)we �nd

1

τl
=

2

~

|g|2
κ+ Γ

. (B.2)With τl and τnl the β-fator follows from Eq. (3.17). In this thesis we present the�gures in the ommon style where the β-fator is varied, as it is the most importantparameter haraterizing the avity e�ieny, while the total rate of spontaneousemission
1

τsp
=

1

τl
+

1

τnl
(B.3)is held onstant. To ahieve suh a situation, for various β-values both τnl and τl needto be hanged. Note that the latter requires a hange of the light-matter ouplingstrength aording to Eq. (B.2), whih is possible for a given dipole oupling by amodi�ation of the mode funtions (f. Eq. (2.7)), and/or by a hange of the lifetime ofthe avity mode. In Setion 3.4 the presented theory is applied to pillar miroavitieswith various resonator diameters. In suh a situation, the spontaneous emission intonon-lasing modes is pratially onstant due to the unhanging ontributions of leakymodes, while the spontaneous emission into the laser mode is modi�ed by the Purell 129



B. Interplay of Time Constantse�et, see Setion 2.7. The Purell fator FP is de�ned as the ratio of the rate ofspontaneous emission into the avity mode, 1/τl, to the rate of spontaneous emissioninto free spae, 1/τfree. We an express the β-fator in terms of FP as
β =

FP

dFP + τfree
τnl

=
1
τl

d
τl

+ 1
τnl

, (B.4)where additionally a possible degeneray d of the fundamental mode has been in�luded, see the artile by J.-M. Gérard in Ref. [93℄.
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C. Operator Equations of Motion in theDensity Matrix FormalismIn the third setion of Chapter 5 a density matrix formulation of the oupled atom�-avity system is used to derive a hierarhy of dynami equations analogous to thelaser equations obtained from the luster expansion method under the assumption oftwo-level emitters. In the following we give the derivations of the ourring equationsthat were omitted in Chapter 5 for the sake of larity.
Resonant transition amplitude. In Setion 5.3.2 the equation of motion for the res�onant transition amplitude T23 is given. By olleting the ontributions from theLiouville equation (5.14), (5.16b) and (5.19e), it follows from

d

dt
T23 =

d

dt

∞∑

n=1

√
n〈n− 1, 3|ρ|n, 2〉

= κ

∞∑

n=1

[

2n
√
n + 1〈n, 3|ρ|n+ 1, 2〉 − (2n− 1)

√
n〈n− 1, 3|ρ|n, 2〉

]

− γ12 + γ23

2

∞∑

n=1

√
n〈n− 1, 3|ρ|n, 2〉

+ g
∞∑

n=1

n
[

〈n− 1, 3|ρ|n− 1, 3〉 − 〈n, 2|ρ|n, 2〉
]

.

(C.1)
The avity damping term an be rewritten by relabeling the indies

∞∑

n=1

[

2n
√
n + 1〈n, 3|ρ|n+ 1, 2〉 − (2n− 1)

√
n〈n− 1, 3|ρ|n, 2〉

]

=

∞∑

n=1

−
√
n〈n− 1, 3|ρ|n, 2〉 , (C.2)whih yields

d

dt
T23 = −

(

κ+
γ12 + γ23

2

)

T23 + g

∞∑

n=1

n
[

〈n− 1, 3|ρ|n− 1, 3〉− 〈n, 2|ρ|n, 2〉
]

. (C.3) 131



C. Operator Equations of Motion in the Density Matrix FormalismTo further evaluate the two terms introdued by the light-matter interation, we�rst onsider their fatorization. In the fashion of the luster expansion method wewill then de�ne a orrelation funtion by subtrating the fatorization from the fullexpetation value.The semilassial fatorization of the atomi and photoni degrees of freedom is ex�pressed by the fatorization of the density matrix
ρ = ρphot · ρatom . (C.4)Then the extended basis states (5.12) fatorize. Aordingly, for the matrix elementswe get

〈n, j|ρ|n′, j′〉 = 〈n|ρphot|n′〉 · 〈j|ρatom|j′〉 . (C.5)Traing out either the photoni or the eletroni states yields the population funtions
fj or the photon number probability pn, respetively:

fj =
∑

n

〈n, j|ρ|n, j〉 = 〈j|ρatom|j〉
∑

n

〈n|ρphot|n〉
︸ ︷︷ ︸

=1

, (C.6)
pn =

∑

j

〈n, j|ρ|n, j〉 = 〈n|ρphot|n〉
︷ ︸︸ ︷
∑

j

〈j|ρatom|j〉 . (C.7)Applying the semilassial fatorization to the �rst term under the sum in Eq. (C.3)yields
∞∑

n=1

n〈n− 1, 3|ρ|n− 1, 3〉 =

∞∑

n=1

n pn−1f3 + S3

=
∞∑

n=0

(n+ 1)pnf3 + S3 =
(
〈n〉 + 1

)
f3 + S3 ,

(C.8)where the orrelation funtion S3 is introdued as the remainder of the subtration ofthe fatorized part from the full expetation value. Reordering Eq. (C.8) yields thede�nition of S3 given in Eq. (5.30). The alulation for the other population-photonorrelations Sj runs along the same lines, and we �nally obtain for the resonanttransition amplitude
d

dt
T23 = −

(

κ+
γ12 + γ23

2

)

T23 + g
[
〈n〉(f3 − f2) + f3 + S3 − S2

]
, (C.9)whih is the equation of motion given in Setion 5.3.2. Spontaneous and stimulatedemission (�rst two terms in the square brakets) arise as the fatorized part of thesum in Eq. (C.3).132



Population-photon correlation dynamics. The time evolution of population-photonorrelations is obtained along the same lines. As an example, we onsider
d

dt
S3 =

d

dt

[ ∞∑

n=1

n〈n− 1, 3|ρ|n− 1, 3〉 −
(
〈n〉 + 1

)
f3

]

=

∞∑

n=1

n

{

2κ
(

n〈n, 3|ρ|n, 3〉 − (n− 1)〈n− 1, 3|ρ|n− 1, 3〉
)

+ γ34〈n− 1, 4|ρ|n− 1, 4〉 − γ23〈n− 1, 3|ρ|n− 1, 3〉

− g
√
n
(

〈n− 1, 3|ρ|n, 2〉 + ..)}
− [2gT23 − 2κ〈n〉]f3 − [〈n〉 + 1](γ34f4 − γ23f3 − 2gT23) .

(C.10)
The terms under the sum are the ontributions from the Liouville equation (5.14)�(5.19),whereas the last line ontains the time derivative of the fatorized part that is sub�trated in order to obtain the orrelation S3. The avity loss terms an be reast intothe following form

∞∑

n=1

n
(

n〈n, 3|ρ|n, 3〉 − (n− 1)〈n− 1, 3|ρ|n− 1, 3〉
)

=
∞∑

n=1

〈n− 1, 3|ρ|n− 1, 3〉
[
(n− 1)2 − n(n− 1)

]

=
∞∑

n=1

〈n− 1, 3|ρ|n− 1, 3〉(1 − n) = −
∞∑

n=1

n 〈n− 1, 3|ρ|n− 1, 3〉 + f3 .

(C.11)
Replaing this into Eq. (C.10) yields the equation of motion for S3 that is given inEq. (5.31) and that is reprinted here for onveniene:

d

dt
S3 = −(2κ+ γ23)S3 + γ34S4 + 2gT23

[
〈n〉 + 1 − f3

]
− 2gΠ23 . (C.12)

Quintuplet level carrier-photon correlations. In the equation of motion for Π23 ana�log orrelations S̃2 and S̃3 with an additional fator n in the sum our. Aordingto the lassi�ation in Setion 5.3.3 these quantities are quintuplet level terms. Asour goal is the omparison to the luster expansion ontaining orrelations up to thequadruplet level, no dynami equation is derived for S̃2 and S̃3, but these quantities 133



C. Operator Equations of Motion in the Density Matrix Formalismare fatorized. After rewriting
S̃3 =

∞∑

n=1

n2
[

〈n− 1, 3|ρ|n− 1, 3〉 − ρn−1f3

]

=
∞∑

n=0

(n + 1)2
[

〈n, 3|ρ|n, 3〉 − ρnf3

]

=
∞∑

n=0

[

(n2 + 2n)〈n, 3|ρ|n, 3〉
]

−
[
〈n2〉 + 2〈n〉

]
f3 .

(C.13)
we an identify the following operator averages in the last line in analogy to Eqs. (5.37)and (5.38)
S̃3 = 〈b†bb†bc†c〉 + 2〈b†bc†c〉 −

[
〈b†bb†b〉 + 2〈b†b〉

]
f3

= 〈b†b†bbc†c〉 + 3〈b†bc†c〉 −
[
3〈b†b〉 + 2〈b†b〉2 + δ〈b†b†bb〉

]
f3

= δ〈b†b†bb〉f3 + 2〈b†b〉〈b†bc†c〉 + 2〈b†b〉2f3 + 3〈b†b〉f3 + 3δ〈b†bc†c〉 + δ〈b†b†bbc†c〉
−
[
3〈b†b〉 + 2〈b†b〉2 + δ〈b†b†bb〉]f3

≈
[
2〈b†b〉 + 3

]
δ〈b†bc†c〉 , (C.14)where the quintuplet level orrelation funtion δ〈b†b†bbc†c〉 has been dropped. Withthis, the theory loses on the quadruplet level. Along the very same lines, for S̃2 one�nds

S̃2 ≈
[
2〈b†b〉 + 1

]
δ〈b†bv†v〉 . (C.15)
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D. Obtaining the Rate Equations from theLiouville/von-Neumann EquationIn Setion 5.3.2 we have derived a hierarhy of oupled equations of motion fromthe Liouville/von-Neumann equation. Here we show how the rate equations fromSetion 5.1 an be reovered for a single atom. For the notation refer to Setion 5.3.2.We onsider the transition amplitude T23 in the semilassial limit, i.e., where onlythe fatorized ontributions are onsidered. As is explained in Appendix C, thisorresponds to Eq. (5.29), where the orrelations S2 and S3 are omitted. Then theadiabati solution is given by
T23 ≈

g

κ + γ12+γ23

2

[
〈n〉(f3 − f2) + f3

]
. (D.1)From Eq. (5.26) we obtain for the population in the exited state

d

dt
f3 = − 2g2

κ + γ12+γ23

2

[
〈n〉(f3 − f2) + f3

]
− γ23f3 + γ34f4 (D.2)First, we identify 2g2

κ+
γ12+γ23

2

with the emission rate into the laser mode 1/τl, f.Eq. (B.2). Furthermore, we assume a fully inverted system due to a rapid learane ofthe lower laser level, i.e. f2 = 0, and identify γ23 with the spontaneous emission intonon-lasing modes 1/τnl. In the one-eletron system that we onsider in Chapter 5, thepump rate into the upper level |4〉 requires the presene of an eletron in the lowestlevel. To reover the atomi rate equations, we must lift the one-eletron restritionand replae the sattering term γ34f4 by a onstant pump rate P̃ . With this, we�nally obtain
d

dt
f3 = −f3

[
〈n〉 + 1

]

τl
− f3

τnl
+ P̃ . (D.3)From Eq. (5.35), we get for the photon number n = 〈n〉

d

dt
n = −2κn +

f3(n + 1)

τl
. (D.4)By means of Eqs. (3.17) and (3.18) these equations are ast into the familiar form

d

dt
f3 = − β

τsp
f3(n+ 1) − 1 − β

τsp
f3 + P̃ , (D.5)

d

dt
n = −2κn+

β

τsp
f3(n+ 1) . (D.6)
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D. Obtaining the Rate Equations from the Liouville/von-NeumannEquationThe only remaining di�erene to Eqs. (5.1) and (5.2) is the saling of f3 with the totalnumber of emitters, whih is here naturally unity for the derivation from a single-atommodel.
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E. Numerial MethodsThe numerial implementation of the theory presented in this thesis is straightforwardin priniple, as it always involves the time integration of oupled non-linear di�erentialequations. Due to the large number of equations and/or required time steps, thee�ieny of the implementation must be given some onsideration. This appendixis meant as an aid for reproduing the presented results or transferring the utilizedmethods to other appliations, rather than being a desription of the used numerialalgorithms, whih an be found in textbooks and publiations.
E.1. Solving the SLE in TimeThe results presented in Chapter 2 have been obtained by solving the semiondutorluminesene equations in time. They onstitute a set of oupled di�erential equa�tions, the total number depending on the number of single-partile states n (loalizedQD and wetting layer states) and the number of modes m of the quantized light �eld.E.g., 〈b†ξv†νcν〉 onstitutes n×m oupled equations. To ope with the osillating freeontribution, f. for example Eq. (2.18), a onstant-time step Runge-Kutta algorithmof fourth order has been used with a stepsize of the order of femtoseonds. Due tothe nested struture of the equations, in partiular beyond the doublet level, a pureimplementation in a language optimized for linear matrix operations like Matlab isine�ient.
E.2. Solving the Laser EquationsThe alulations of the laser harateristis, on the other hand, were performed inMatlab. In Chapter 3 we have assumed that the QDs are in resonane with the lasingmode. Due to this assumption, rapidly osillating phase fators do not appear inthe equations of motion that desribe the laser behavior. At exitation powers highenough to bring the system into the transition region, the time-dynamis may ex�hibit swith-on osillations depending on the parameter regime, but then the systemevolves towards a stationary solution. At low exitation powers the luminesene is 137



E. Numerial Methodsdetermined only by the spontaneous emission and the time evolution is monotoni.For the alulation of input/output urves and the seond order orrelation funtion,only the stationary values are required, whih are sometimes reahed after mirose�onds. In this situation, a variable-step size time-integration algorithm is predestined.Rather than using a Runge-Kutta-like method, we use an algorithm based on a nu�merial di�erentiation formula (NDF) [76, 129℄, namely ode15s.In Matlab, di�erent algorithms for the solution of sti�1 and non-sti� ordinary di�eren�tial equations are onveniently provided by the ode-(ordinary di�erential equations)suite, whih is doumented in the Matlab manual and in Ref. [129℄. For a typi�al alulation of a single point on the input/output urve, as is shown in Fig. 3.5,the numerial expenses are summarized in Table E.1. Compared are three di�er�ent algorithms: ode45 orresponds to an adaptive-step size Runge-Kutta method of4th/5th order and is often the standard method for solving odes. ode23 is a lower-orderRunge-Kutta algorithm of 2nd/3rd order and is faster than ode45 at ruder toleranes.ode15s is a NDF-based solver designed to work e�iently for sti� problems. For eahiteration the Jaobian matrix is required. However, this is alulated only if the re�quired onvergene rate is not ahieved. In fat, this results in very few alulationsof the Jaobian matrix, and, thus, of numerial partial derivatives at all. This makesthe ode15s algorithm very fast also for non-sti� problems. It is astonishing how muhmore e�ient it is than the Runge-Kutta-based algorithms for the integration of thelaser model. The same e�ieny is ahieved in similar situations, like the atomi rateequations disussed in Chapter 5.It should be noted that the oupled laser equations are sensitive to the hoie ofparameters of the physial system and of the ode integration algorithm. Thus, thehoie of initial step sizes and orret toleranes are important.For the alulation of the laser emission after an exitation pulse, disussed in Se�tion 3.5, photons need to be integrated over a long time window to obtain the totalnumber of emitted photons. Appropriate abort riteria an be inorporated withMatlab's ode-suite by means of so-alled event funtions. The event funtion heksif an abort riteria is ful�lled, and if this is the ase, it auses the ode solver to abortthe integration. This method allows for the upper time limit to be determined duringthe time integration.
1Sti� di�erential equations ontain variables that evolve on signi�antly di�erent time sales [57,129℄.138



E.2. Solving the Laser Equations

(a) ode45 ode23 ode15sevaluation time 9 s 11 s 0.9 s# funtion alls 93, 000 122, 000 2, 785# time steps 60, 500 40, 800 1, 500

(b) ode45 ode23 ode15sevaluation time 2.3 s 2.1 s 0.7 s# funtion alls 24, 000 21, 500 1, 700# time steps 15, 300 7, 100 870Table E.1.: Comparison between the numerial expenses of three di�erent ode-solversontained in Matlab's ode-suite. The alulation was performed for one point on the in�put/output urve, as it is shown in Fig. 3.5. Table (a) orresponds to a situation belowthreshold where the evolution is slow. In (b) the evolution into the stationary state is fasterdue to additional stimulated proesses on a faster timesale. Listed are the evaluation time,number of funtion alls and required number of timesteps. All alulations were performedwith the same auray. The numbers should only be onsidered in relation to eah other,as absolute values depend on the hoie of parameters and omputational resoures.
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