
Extending C Global Surveyor

Silvia Breu
NASA Ames Research Center/MCT

silvia.breu@gmail.com

Abstract

This paper describes an extension of C Global Sur-
veyor (CGS), a static program analysis tool developed at
the NASA Ames Research Center. CGS is used to analyse
mission-critical flight software of NASA Mars missions. In
order to enhance CGS and support the analysis of very large
systems, the abstract interpretation techniques on which
CGS is based need to be augmented by complimentary pro-
gram analysis techniques. Here we describe the construc-
tion of control flow graphs that represent the programs to
be analysed. This is a first step towards the application of
more advanced techniques such as program slicing.

1. Motivation

Analyzing a program’s structure can help to ascertain
the software’s strengths as well as its weaknesses. Usu-
ally, appropriate documentation is not available and pro-
grammers are not able to get the information needed to
understand a system completely. Large programs thus re-
quire tools to help the developer in program understand-
ing and debugging. The Automated Software Engineering
Group at NASA Ames has developed C Global Surveyor
(CGS) [1, 3], a static analysis tool based on abstract inter-
pretation. In order to enhance CGS and support the analysis
of very large systems, the abstract interpretation techniques
on which CGS is based need to be augmented by compli-
mentary program analysis techniques. We need visual tools
that can help users to trace error causes through large pro-
grams. In this paper we describe the construction of con-
trol flow graphs that represent the programs to be anal-
ysed. This is a first step towards the application of more ad-
vanced techniques such as program slicing; this was the task
of this internship. The next section gives a short introduc-
tion to program analysis. Section 3 describes CGS, Section
4 introduces control flow graphs and slicing, and Section
5 presents the developed extension. The last section con-
cludes with ideas for future work.

2. Static and Dynamic Program Analysis

A wide variety of techniques has been developed which
all provide additional information to the programmer. Those
methods can be split into two main categories:static pro-
gram analysisanddynamic program analysis.

Basically, static analysis denotes any form of analysis
which does not require the execution of the system to be
analyzed but surveys the source code directly. It abstracts
from the code while considering all program execution
paths. Static program analysis is thuscompleteand input-
insensitive. It also is a finite approximation of a system’s
actual run-time behaviour. This approximation is conserva-
tive if it has no false negatives, and it is precise if it has
no false positives. For example, a bug finding static analy-
sis is conservative, if every bug is discovered—it is precise
when all discovered candidates are bugs in reality. How-
ever, since the analysis takes all potential program execu-
tion paths into account, the computational effort may ex-
plode and the results may become less and less precise, if
unfeasible paths are not pruned away. The best known ex-
ample for static program analysis is program slicing.

In contrast to static analysis techniques, dynamic pro-
gram analysis reasons about actually observed behaviour
and properties of software systems. The evaluation of a pro-
gram’s run-time behaviour is based on a certain set of input
data and thus, the information produced will be accurate
but it will only hold for a particular set of program inputs.
While static analysis also explores unrealizable paths, dy-
namic analysis even leaves feasible executions unexplored.
This means that dynamic analysis isinput-sensitivebut in-
complete. A complete dynamic analysis is not practical as it
is impossible to execute all possible paths. As dynamic anal-
ysis depends on the test suites, it can detect errors but it can-
not prove their nonexistence. Some established approaches
are dynamic traces, delta debugging, or dynamic program
slicing.

3. C Global Surveyor

C Global Surveyor (CGS) [1, 3] is a software verification
tool that is used to analyse NASA software, in particular
flight software systems, using static analysis techniques. It

1Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006/487

set=# select * from abc result table;
context | file | function | function id | line number | column number | tree number | beg line | exactcol number | end line | end column | color

---------+-------+----------+-------------+-------------+---------------+-------------+----------+-----------------+----------+------------+-------
? | set.c | main | 65537 | 13 | 10 | 21 | 13 | 5 | 13 | 9 | G
? | set.c | main | 65537 | 14 | 8 | 33 | 14 | 3 | 14 | 7 | R
? | set.c | main | 65537 | 17 | 6 | 12 | 17 | 3 | 18 | 17 | O
? | set.c | set | 65538 | 25 | 9 | 55 | 25 | 4 | 25 | 8 | U
? | set.c | set | 65538 | 26 | 17 | 7 | 26 | 13 | 27 | 32 | O

(5 rows)

Figure 1. Example abc result table

focusses on the detection of run-time errors in C programs.
It checks whether any operation performed in an instruction
might cause a problem while the program is executed. CGS
checks for problems that can occur at run-time, corrupting
the memory and thus causing non-deterministic behaviour
during NASA-missions. In particular, it could check for the
following critical problem classes, of which only the first is
implemented so far.

Out-of-bound array accessesoccur when the program at-
tempts to access an element of an a array using an in-
dex that is outside (strictly smaller or bigger than) the
index bounds of the array.

Accesses to non-initialized variablesoccur when the pro-
gram attempts to use or read a variable that has not yet
been assigned a value.

De-references of null pointersoccur when the pro-
gram attempts to access the memory location refer-
enced by the pointer even though the reference points
to no memory location.

CGS can analyse any program written in C but the analy-
sis algorithms have been tuned to be very precise on NASA
flight software, especially from the Mars Path Finder family
that includes flight software for the Deep Space 1 as well as
the Mars Exploration Rover mission. The CGS implementa-
tion uses the commercial C/C++ frontend of the Edison De-
sign Group (edg) [5]. This frontend is also part of the Green
Hills’ compiler [6] that is widely used at NASA for the de-
velopment of flight software. It also supports a huge variety
of C dialects.

The static analysis techniques used in CGS are based on
abstract interpretation. The core idea is the formalisation
of the notion of approximation: abstract interpretation, for-
malised by [4], is a theory of sound approximation of the
semantics of computer programs, based on monotonic func-
tions over ordered sets, especially lattices. It can be viewed
as a partial execution of a computer program which gains
information about its semantics without performing all the
calculations: The classic example of an abstract interpreta-
tion is the sign-rule. It allows predicting the sign of an arith-
metic expression before even calculating it. Assume thatx
is a positive number, andy is a negative number. The ab-
straction of the expressionx ∗ x + y ∗ y over the sign-rule
allows to deduce that this expression has a positive value be-
fore calculating it.

Its main concrete application is formal static analysis,
the automatic extraction of information about the possible

executions of computer programs. Such analyses have two
main usages, inside compilers, to analyse programs in or-
der to decide whether certain optimisations or transforma-
tions are applicable, and for debugging or even the certi-
fication of programs against classes of bugs, as it is used
in CGS. CGS’s approximation is conservative in the sense
that it performs all checks necessary to find all errors. In
most cases, CGS can guarantee that a check is correct, in-
correct, or irrelevant. The later is the case when the check
refers to dead code. In some cases, the analysis cannot cer-
tify the correctness of the check, in which case it issues a
warning.

CGS is designed so that it can distribute the static anal-
ysis over different processors in a cluster of machines
as well as a single processor. It runs in five phases, the
initialisation-, thebuild-, thebootstrap-, thesolve-, and the
array-bound check-phase (abc). In the first phase, the ini-
talisation, general information about the program (e.g., ta-
ble of global variables and functions) is collected. The build
computes the points-to constraints and the numerical in-
equalities for each program function. This is needed for
the third phase: The bootstrap performs a flow-insensitive
points-to-analysis and a context-independent resolu-
tion of the previously computed numerical inequali-
ties. This is the first approximation of all memory ac-
cesses. The subsequent solve-phase performs a forward
or backward interprocedural propagation of numerical in-
variants. The results obtained at the end are used to refine
the previous results. The solve can and should be re-
peated until the level of precision obtained is sufficient.
The last phase, the abc, checks the safety of all mem-
ory accesses based on the analysis results available, and the
results (as many other results and information of the analy-
sis) are stored in an SQL database (see Fig. 1) and flagged
with the safety status of the memory access: R for cer-
tain errors, G for certain correct accesses, O for potential
errors, or U for unreachable (i.e., dead code).

In summary, the CGS resultsdo pinpoint the places
where for example out-of-bound accesses occur, and it also
stores all accesses in the SQL database, marking whether
there is definitely an error, possibly an error, or no error
at all. Theydo not tell what part of the code causes a par-
ticular error. Therefore, further analysis is needed to nar-
row down and locate the appropriate erroneous code. This
is where control flow analysis and program slicing in par-
ticular can help.

2

4. Program Slicing and Control Flow Graphs

Program slicing is based on a very simple idea. Con-
sider an erroneous value for a variable. Instead of searching
through possibly thousands and thousands of lines of code,
the programmer can compute a slice instead, that contains
only the statements which may have accounted for the er-
ror. Hence, fewer lines of code have to be examined to find
the bug. It is obvious that slices should be as small as pos-
sible since the needed information is retrieved much easier
in slices where fewer statements are included. Therefore,
an algorithm for finding the minimal slice would be worth-
while. However, this problem is undecidable [11] and ev-
ery slicing algorithm can thus only provide conservative ap-
proximations of program slices.

Slicing is a functional method for automatically decom-
posing and reducing programs by analyzing their data and
control flow. It was originally introduced by Mark Weiser
in 1979 [10]. As the name implies, program slicing cuts a
slice from the code based on aslicing criterion: This tech-
nique tries to calculate all the code relevant for a specific
computation by throwing away the extraneous code state-
ments. A slice is a subset of a program’s statements and con-
trol predicates which (in)directly influence the values com-
puted at the slicing criterion but do not essentially create an
executable program. For a given program, there can exist
many different slices for a specific slicing criterion. How-
ever, at all times, there is at least one slice for a specific
criterion—the program itself.

Definition A slicing criterionspecifies the subset of a pro-
gram behaviour by a pair〈s,X〉, with s specific program
statement,X subset of all program variables. �

(Static) slices1 can be distinguished regarding the way they
are calculated:backwardand forward slice. A backward
slice consists of the program statements which influence a
variable’s value at a specific program position, compared to
a forward slice which consists of the statements being af-
fected by modifying a variable at a particular point in the
code.

To actually compute a program slice, thecontrol flow
graph (CFG) representation of the program can be used,
as introduced by Weiser [10]. The CFG is a static represen-
tation of the program’s control flow at the intraprocedural
level. Each node in the graph represents a basic block, i.e.,
a straight-line piece of code, an executable statement, with-
out any jumps or jump targets; jump targets start a block,
and jumps end a block. Directed edges are used to repre-
sent jumps in the control flow. Edges may also be labeled
with values (e.g.,true, false) to mark under which con-
ditions they are executed. The CFG of a program represents

1 Slices can be differentiated by static and dynamic slices: Static slices
are computed without making assumptions in terms of any program in-
put whereas the dynamic variant relies upon some specific test cases.

.

.

.
<name name="A"/>

</variable_body>
<function_body id="fun4"

storage="none"
scope="nam0">

<text position="fil0/3/4"/>
<type_ref type="typ4"

name="int"/>
<name name="set4"/>
<variable_body id="var1"

storage="auto"
scope="fun4">

<text position="fil0/3/13-13"/>
<type_ref type="typ4"

name="int"/>

<name name="i"/>
</variable_body>
<variable_body id="var2"

storage="auto"
scope="fun4">

<text position="fil0/3/20-20"/>
<type_ref type="typ4"

name="int"/>
<name name="j"/>

</variable_body>
<block>

<text position="fil0/3/23-5/0"/>
<return_stmt>

<text position="fil0/4/2-12"/>
<int_multiply type="typ4">

.

.

.

Figure 2. Example AST in XML representation

all alternatives of control flow, e.g., both arms of anif -
statement are represented in the CFG. A cycle in a CFG may
imply that there is a loop in the code. The CFG contains two
specially designated nodes: the entry node, through which
control enters into the flow graph, and the exit node, through
which all control flow leaves.

Based on the CFG, slicing with respect to a certain slic-
ing criterion is possible. This kind of analysis is also called
iterative data flow analysis as the slices are computed in an
iterative process: For each node in the CFG consecutive sets
of relevant variables are computed. First, the directly rele-
vant variables are determined, taking only data dependen-
cies into account; second, variables referenced in the con-
trol predicate ofif - andwhile -statements are determined
as they are indirectly relevant if at least one of the state-
ments in its body is relevant. This way we can calculate
slices in programs, narrowing down the code that influences
a certain statement in the program code.

5. Extension to CGS

The developed CGS-extension builds the intraprocedural
control flow graphs of functions in C programs and stores it
in the database used by CGS. We focussed on intraprocedu-
ral control flow graphs, as we mostly want to analyse spe-
cific functions in the C programs and not the flight software
system as a whole. Moreover, we first assume that the rea-
son for array-out-of-bounds errors is mostly located in the
same function.

As CGS relies on the edg-frontend, we use the same
frontend to generate the abstract syntax tree (AST) of
the analysed program as representation in the Extensi-
ble Markup Language (XML) [12] (see Fig. 2). The
XML-file is parsed in order to retrieve the AST in inter-
nal Java object representation. Therefore, we usedccast[2],
a tool that was developed in the ASE group. ccast offers
all necessary interfaces, and (abstract) classes to rep-
resent abstract syntax trees for both C and C++ pro-
grams as objects, e.g.,Variable, VariableBody,

FunctionBody, BinaryOperator, AssignRight-

Shift, WhileStmt, CaseStmt and many more.

3

1 int A[10];
2
3 int set(int i, int j) {
4 return i*j;
5 }
6
7 main () {
8 int *p, j, i;
9 int k;

10
11 char c;
12
13 p = &A[1];
14 j = 5; k = 7;
15
16 for (i=1; i<7; i++) {
17 while (j<10) {
18 do {
19 if (i < 10) {
20 i = i + set(i,i);
21 continue;
22 i++;
23 } else {
24 break;
25 p[i] = set(3,19);
26 }
27 } while (j+i<15);
28 j=17;
29 break;
30 }
31 continue;
32 }
33
34 switch(c) {
35 case ’Y’:

36 c=’y’;
37 break;
38 case ’N’:
39 c=’n’;
40 break;
41 default:
42 c=’ ’;
43 }
44
45 goto NoHands;
46
47 for(k=10; k>1; k--) {
48 burp: --k;
49 }
50
51 if(j < 100) {
52 goto burp;
53 }
54
55 NoHands:
56 k=42;
57
58 switch(c) {}
59
60 switch(c) {
61 case ’A’+1:
62 case 3:
63 ;
64 }
65 }
66
67 int add(int i, int j) {
68 return i+j;
69 }

Figure 3. Example C code weirdo.c

The actual computation of the control flow graphs is per-
formed by traversing the AST. The tool takes as parameters
C-files and function names; thus the user can define what
control flow graphs should be built (for our running exam-
pleweirdo.c in Fig. 3 we specified onlyset andmain but
not add). Instead of a huge distinction over more than 400
different object types that can exist in an AST for a C/C++
program, a visitor following the visitor pattern is used to
traverse the AST correctly. The visitor implements the nec-
essary actions for building the CFG when visiting the dif-
ferent nodes of the AST. To store the calculated control
flow graphs, a representation in the relation database, also
used by CGS, was chosen: This way, it is possible to eas-
ily extend the analysis in any programming language, and
to use the CFG for further analysis, provided that an inter-
face to access a SQL database exists. As we already had
to use the edg-frontend, an XML parser, ccast implemented
in Java, CGS written in C with the results stored in a Post-
greSQL relational database, there were enough limitations
and problems to overcome. To make things easier for any
user of the built control flow graphs, we decided to store the
CFG in the same database CGS uses.

The database tablestmt table stores all nodes (see
Fig. 4), with the information about file- and function-name,
line- and column-number of the beginning of the statement
represented by the node, as well as the type of the node, and
the information whether the statement contains any calls to
other functions. For example, line20 in Fig. 3, represented
by node withstmt id 16 in Fig. 4 contains a function call,
which is indicated with the boolean flagtrue for the at-
tribute with call in the database table. We can see that
in the case ofswitch -statements, the edg-frontend unfor-
tunately does not provide the exact location, where the dif-
ferent case -statements begin (e.g., see nodes 24, 25, 27,
28, 30, 31, 33 in Fig. 4 for lines34–43 in Fig. 3). Thus,

CGS=# select * from stmt_table;
stmt_id | file | function | line_number | column_number | type | with_call

---------+----------+----------+-------------+---------------+--------------+-----------
0 | weirdo.c | set | -1 | -1 | ENTER | f
1 | weirdo.c | set | 4 | 2 | ReturnStmt | f
2 | weirdo.c | set | -1 | -1 | EXIT | f
3 | weirdo.c | main | -1 | -1 | ENTER | f
4 | weirdo.c | main | 8 | 7 | VariableBody | f
5 | weirdo.c | main | 8 | 10 | VariableBody | f
6 | weirdo.c | main | 8 | 13 | VariableBody | f
7 | weirdo.c | main | 9 | 6 | VariableBody | f
8 | weirdo.c | main | 11 | 7 | VariableBody | f
9 | weirdo.c | main | 13 | 2 | EvalStmt | f

10 | weirdo.c | main | 14 | 2 | EvalStmt | f
11 | weirdo.c | main | 14 | 9 | EvalStmt | f
16 | weirdo.c | main | 20 | 3 | EvalStmt | t
17 | weirdo.c | main | 21 | 3 | ContinueStmt | f
18 | weirdo.c | main | 22 | 3 | EvalStmt | f
19 | weirdo.c | main | 24 | 3 | BreakStmt | f
20 | weirdo.c | main | 25 | 3 | EvalStmt | t
15 | weirdo.c | main | 19 | 1 | IfStmt | f
14 | weirdo.c | main | 18 | 6 | DoStmt | f
21 | weirdo.c | main | 28 | 6 | EvalStmt | f
22 | weirdo.c | main | 29 | 6 | BreakStmt | f
13 | weirdo.c | main | 17 | 4 | WhileStmt | f
23 | weirdo.c | main | 31 | 4 | ContinueStmt | f
12 | weirdo.c | main | 16 | 2 | ForStmt | f
25 | weirdo.c | main | 34 | 2 | CaseStmt | f
26 | weirdo.c | main | 36 | 6 | EvalStmt | f
27 | weirdo.c | main | 34 | 2 | BreakStmt | f
28 | weirdo.c | main | 34 | 2 | CaseStmt | f
29 | weirdo.c | main | 39 | 6 | EvalStmt | f
30 | weirdo.c | main | 34 | 2 | BreakStmt | f
31 | weirdo.c | main | 34 | 2 | DefaultStmt | f
32 | weirdo.c | main | 42 | 6 | EvalStmt | f
33 | weirdo.c | main | 34 | 2 | BreakStmt | f
24 | weirdo.c | main | 34 | 2 | SwitchStmt | f
34 | weirdo.c | main | 45 | 2 | GotoStmt | f
36 | weirdo.c | main | 48 | 2 | LabelStmt | f
37 | weirdo.c | main | 48 | 8 | EvalStmt | f
35 | weirdo.c | main | 47 | 2 | ForStmt | f
39 | weirdo.c | main | 52 | 4 | GotoStmt | f
38 | weirdo.c | main | 51 | 2 | IfStmt | f
40 | weirdo.c | main | 55 | 1 | LabelStmt | f
41 | weirdo.c | main | 56 | 2 | EvalStmt | f
42 | weirdo.c | main | 58 | 2 | SwitchStmt | f
44 | weirdo.c | main | 60 | 2 | CaseStmt | f
45 | weirdo.c | main | 60 | 2 | CaseStmt | f
46 | weirdo.c | main | 60 | 2 | BreakStmt | f
43 | weirdo.c | main | 60 | 2 | SwitchStmt | f
47 | weirdo.c | main | 7 | 8 | ReturnStmt | f
48 | weirdo.c | main | -1 | -1 | EXIT | f

(49 rows)

Figure 4. CFG nodes for set and main

we decided to choose the beginning of the corresponding
switch -statement. Additionally, the table also contains the
dedicated entry and exit nodes of each computed control
flow graph which are necessary as described in Section 4.
They have typeENTERandEXIT resp. (see Fig. 4).

stmt succ table represents the edges (see Fig. 5), de-
termined by the numbers of source and target CFG node, in-
CGS=# select * from stmt_succ_table;

src | target | label | jump
-----+--------+---------+------

0 | 1 | | f
1 | 2 | | f
3 | 4 | | f
4 | 5 | | f
5 | 6 | | f
6 | 7 | | f
7 | 8 | | f
8 | 9 | | f
9 | 10 | | f

10 | 11 | | f
11 | 12 | | f
12 | 13 | true | f
13 | 15 | true | f
15 | 16 | true | f
16 | 17 | | f
17 | 14 | | t
15 | 19 | false | f
14 | 15 | true | f
20 | 14 | | f
18 | 14 | | f
14 | 21 | false | f
19 | 21 | | t
21 | 22 | | f
13 | 23 | false | f
22 | 23 | | t
23 | 12 | | t
12 | 24 | false | f
24 | 25 | 89 | f

25 | 26 | | f
26 | 27 | | f
24 | 28 | 78 | f
28 | 29 | | f
29 | 30 | | f
24 | 31 | default | f
31 | 32 | | f
32 | 33 | | f
27 | 34 | | t
30 | 34 | | t
33 | 34 | | t
35 | 36 | true | f
36 | 37 | | f
37 | 35 | | f
35 | 38 | false | f
38 | 39 | true | f
38 | 40 | false | f
40 | 41 | | f
41 | 42 | | f
42 | 43 | default | f
43 | 44 | 3 | f
44 | 45 | | f
43 | 45 | 66 | f
45 | 46 | | f
43 | 47 | default | f
46 | 47 | | t
39 | 36 | | t
34 | 40 | | t
47 | 48 | | f

(57 rows)

Figure 5. CFG edges for set and main

4

cluding the information whether the edge represents a jump,
and whether the edge is labeled and if labeled with what
value. Here, due to the edg-frontent, we have the limita-
tion that we cannot retrieve the information whether the la-
bel is an integer value or the ASCII value of a character (see
switch -statement in lines60–64in Fig. 3 and the appropri-
ate labels for edges43 −→ 44, and43 −→ 45 resp., labeled
with 3 and66 resp. in Fig. 5).

For convenience, a database tablegoto table sepa-
rately encapsulates all jumps in the control flow, including
the information whether the jump is forward or backwards
in the code, and whether the jump stays in the scope of the
current control structure or not.

CGS=# select * from goto_table;
src | target | forward | in_scope

-----+--------+---------+----------
39 | 36 | f | f
34 | 40 | t | t

(2 rows)

Another convenient table iscfg list table which
stores all already computed control flow graphs, speci-
fied by file- and function-name.

CGS=# select * from cfg_list_table;
file | function

----------+----------
weirdo.c | set
weirdo.c | main

(2 rows)

6. Future Work

The extension of CGS by the CFG-construction en-
ables the integration of further program analysis techniques.
There exist several directions in which future work could
continue:

• extension of CFG for C++
• slicing using CFG
• computation of program dependence graph (PDG)
• slicing using PDG
• extension for multi-threaded software

In order to also support C++ programs, e.g., software de-
veloped at the Jet Propulsion Lab (JPL), additional nodes in
the AST like exceptions, or templates have to be treated. For
that, ccast already offers the necessary classes for the inter-
nal object representation of the AST. On top of the CFG we
could implement Weister-style slicing.

Building the appropriateprogram dependence graphof-
fers even more and better possibilities to analyse the pro-
grams. The PDG eases the task of slicing: The computation
of the slice, based on a certain slicing criterion which can
be extraced easily from theabc result table of CGS, is
then reduced to a simple graph reachability problem. PDG-
based slicing is a very common technique.2

A PDG is a directed graphG = 〈V, E〉 with V set of ver-
tices denoting program statements and control predicates,
and E set of edges representing data and control depen-
dences between statements. Data dependence of two state-
ments means that the value of a variable set in one state-
ment is used by means of evaluating that variable at another
statement, whereas control dependence between two state-
ments exists if one statement controls whether and how of-
ten the other statement is executed.

Having calculated the PDG of a certain program, the slic-
ing criterion is now a single vertex in the graph as each
v ∈ V does not only denote a specific program statement
but also the program variable being assigned by that partic-
ular statement. Thus, determining forward- and backward-
sliceS+(s) andS−(s) based on a criterions is quite sim-
ple: S+(s) = {v ∈ V | ∃s →∗ v} (all vertices which
are reachable from the vertex representing the slicing cri-
terion), while S−(s) = {v ∈ V | ∃v →∗ s} (all ver-
tices from which the considered vertex is reachable). Note,
that u →∗ v is the reflexive transitive closure of(u, v) ∈
E with u, v ∈ V.

Furthermore, there already exist approaches to slice mul-
tithreaded programs based on control flow and program de-
pendence graphs, e.g., [7].

References

[1] Guillaume Brat and Arnaud Venet.Precise and Efficient
Static Array Bound Checking for Large Embedded C Pro-
grams. In Proc. of PLDI 2004, pp. 231–242, Washington,
DC, June 2004. ACM.

[2] Owen O’Malley et. al.Propel: Tools and Methods for Prac-
tical Software Model Checking. Workshop on Model Check-
ing for Software Intensive Systems at Dependable Systems
and Networks Conference, June 2003.

[3] C Global Surveyor.http://ase.arc.nasa.gov/brat/cgs/ .
[4] Patrick Cousot and Radhia Cousot.Abstract interpretation:

A unified lattice model for static analysis of programs by con-
struction or approximation of fixedpoints. In Proc. of 4th
POPL, pp. 238–252, London-New York, Jan. 1977. ACM.

[5] Edison Design Group.http://www.edg.com/ .
[6] Green Hills Software.http://www.ghs.com/ .
[7] Jens Krinke. Static Slicing of Threaded Programs. In Proc. of

PASTE, 33(7):35–42, Montreal, June 1998.
[8] The PostgreSQL Global Development Group.

http://www.postgresql.org/ .
[9] Frank Tip. A Survey of Program Slicing Techniques.Jour-

nal of Programming Languages, 3(3):121–189, Sep. 1995.
[10] Mark Weiser. Program Slices: Formal, Psychological, and

Practical Investigations of an Automatic Program Abstrac-
tion Method. PhD thesis, University of Michigan, 1979.

[11] Mark Weiser.Program Slicing. IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, July 1984.

[12] Extensible Markup Language.http://www.xml.com/ .

2 A good overview of different slicing techniques as well as links to con-
tinuative and more detailed literature about slicing can be found in [9].

5

