
05451 Abstracts Collection

Beyond Program Slicing

� Dagstuhl Seminar �

Dave Binkley1, Mark Harman2 and Jens Krinke3

1 Loyola College - Baltimore, US
binkley@cs.loyola.edu

2 King's College London, GB
Mark.Harman@kcl.ac.uk

3 FernUniversität in Hagen, D
krinke@acm.org

Abstract. From 06.11.05 to 11.11.05, the Dagstuhl Seminar 05451 �Be-
yond Program Slicing� was held in the International Conference and
Research Center (IBFI), Schloss Dagstuhl. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together
in this paper. The �rst section describes the seminar topics and goals in
general. Links to extended abstracts or full papers are provided, if avail-
able.

Keywords. Program slicing, source coede analysis and manipulation,
progrmadependence, dependence graph

05451 Executive Summary � Beyond Program Slicing

The aim of the "beyond program slicing" seminar was to explore emergent appli-
cations of program slicing and ways in which slicing techniques and ideas could
be combined with those from other areas of program analysis and manipulation.

Keywords: Summary

Joint work of: Harman, Mark; Binkley, Dave; Krinke, Jens

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/584

05451 Group 4 Discussion � Popularizing Slicing

Christian Lindig (Universität Saarbrücken, D)

This report summarizes the results of the discussions of our working group at
the Dagstuhl Seminar, Beyond Program Slicing.

Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006/601

http://drops.dagstuhl.de/opus/volltexte/2006/584

2 D. Binkley, M. Harman and J. Krinke

The group aimed to answer the question �Why is slicing not well-known and
only rarely used outside the slicing research community?�.

Current implementations of slicing algorithms are language speci�c and some-
what monolithic: they are hard to extend and hard to disentangle from support-
ing infrastructure. This limits the service of these implementations both to the
slicing research community and a wider audience of programmers in general. To
address these factors we proposed two ideas. Our �rst proposal is to implement
a general purpose slicing tool in the Datalog language. The algorithm for slicing
could be succinctly and intuitively described in Datalog: the language optimiza-
tions giving an e�cient implementation. Other often-used techniques, such as
points-to analysis, have been or would easily be speci�ed in Datalog. This would
engender a modularized and �exible environment with good separation of the
algorithmic aspects from the infrastructure. This would allow various modules to
be used together and various tweaks to the algorithms to be readily implemented
and explored. These properties make a Datalog based slicing tool a promising
choice for both research and education. The other idea for popularizing slicing
is to include backward (dynamic) slicing in the implementation of runtime en-
vironments of suitable programming languages. This way slices would be made
accessible from within programs - just as stack traces already are in the Java and
.NET platforms. At least, such a solution can help to improve error messages
and debugging. But we expect more. We hope that slicing-improved systems
would familiarize programmers with slicing techniques. This would then allow
programmers to give feedback to the research community on further applications
and extensions of slicing.

In summary, the Datalog tool addresses the needs of the research community.
It provides a nice environment to get directly to the intellectual core of slicing;
allowing for development of algorithms and integration with related analyses.
Integration of slicing technology into the runtime environments of programming
languages brings slicing into the programmer's hands, independently of their
choice of development tools.

Joint work of: Lindig, Christian; Howroyd, John; Kiss, Akos

05451 Group 5 - Bananas, Dark Worlds, and AspectH

Silvia Breu (Universität Saarbrücken, D)

This report summarises our idea of code clone detection in Haskell code and
refactorings based on identi�ed clones as it evolved in our working group-of-
three discussion at the Dagstuhl seminar "Beyond Program Slicing".

Keywords: Haskell, code clone detection, refactoring, functional control graph

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/491

http://drops.dagstuhl.de/opus/volltexte/2006/491

Beyond Program Slicing 3

Using Program Slicing to Identify Faults in Software

Sue Black (London South Bank Univ. - London, GB)

This study explores the relationship between program slices and faults.
The aim is to investigate whether the characteristics of program slices can

be used to identify fault-prone software components. Slicing metrics and depen-
dence clusters are used to characterise the slicing pro�le of a software component,
then the relationship between the slicing pro�le of the component and the faults
in that component are then analysed. Faults can increase the likelihood of a
system becoming unstable causing problems for the development and evolution
of the system. Identifying fault-prone components is di�cult and reliable predic-
tors of fault-proneness not easily identi�able. Program slicing is an established
software engineering technique for the detection and correction of speci�c faults.
An investigation is carried out into whether the use of program slicing can be
extended as a reliable tool to predict fault-prone software components. Prelim-
inary results are promising suggesting that slicing may o�er valuable insights
into fault-proneness.

Keywords: Program slicing, slicing metrics, fault proneness, software quality

Joint work of: Black, Sue; Counsell, Steve; Hall, Tracy; Wernick, Paul

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/587

And now for something completely di�erent...

Sue Black (London South Bank Univ. - London, GB)

A pilot experiment was conducted at Dagstuhl using the 'Beyond program slic-
ing' seminar attendees. Attendees were split into three groups: all were given
the same program to understand and a list of program comprehension related
questions to answer. Group one had only the source code, group two had the
source code and the dynamic trace of the program, group three had the source
and a control-�ow graph of the program.

Keywords: Group experiment, program comprehension, source code, dynamic
trace, control �ow graph

Joint work of: Black, Sue; Bouillon, Philipp; Ducasse, Mireille

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/583

http://drops.dagstuhl.de/opus/volltexte/2006/587
http://drops.dagstuhl.de/opus/volltexte/2006/583

4 D. Binkley, M. Harman and J. Krinke

Extanding C Global Surveyor

Silvia Breu (Universität Saarbrücken, D)

Software failure are noted for their blowing large sums of money and sometimes
even human life, in particular in the area of safety critical mission software. The
most well-known desaster happened in 1996 when Ariane 501 exploded shortly
after launch. The least it did was to cost the European space program half a
billion US$ due to an over�ow in an arithmetic conversion.

The Automated Software Engineering Group at the NASA Ames Research
Center has developed C Global Surveyor (CGS), a static analysis tool based on
abstract interpretation. It particularly concentrates on runtime errors that are
hard to �nd during development such as out-of-bound array accesses, acesses
to non-initialised variables, and de-references of null pointers. CGS proved to
analyse large, pointer intensive and heavily multithreaded code (up to 280 KLoC)
in a couple of hours with a constant precision of 80%. It is used to successfully
analyse mission-critical �ight software of NASA's "Mars Path-Finder" (MPF)
and Deep Space 1 (DS1) legacy as well as software of the Mars Exploration
Rover (MER) mission (650 KLoC) and other JPL-based missions.

However, the abstract interpretation techniques on which CGS is based, need
to be augmented by complimentary program analysis techniques in order to
enhance CGS and support the developer when analysing very large systems. As
a �rst step, we included the construction of control �ow graphs that represent
the programs to be analysed. It is a �rst step towards the application of more
advanced techniques such as program slicing.

Keywords: Static program analysis, abstract interpretation, program slicing

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/487

Domain-speci�c Slices

Magiel Bruntink (CWI - Amsterdam, NL)

Programs in dire need of some form of slicing are those whose concerns are
implemented predominantly by idioms. Programmers working on such programs
want to be able to obtain all the code related to speci�c concerns, in order
to improve their understanding of the program, or to apply transformations
to it. Code for concerns such as exception handling, when implemented in C
by idiom, are not accurately obtained using traditional slicing methods, i.e.,
closures of control/data �ow relations. Exception handling code is often tightly
interconnected, or tangled, with other code, and therefore traditional slices tend
to contain both exception handling and other code. The distinction between
exception handling code and other code must therefore be made at a higher
level of semantical abstraction.

http://drops.dagstuhl.de/opus/volltexte/2006/487

Beyond Program Slicing 5

We have done some work in the area of bug �nding in an idiomatically imple-
mented exception handling mechanism. Our veri�cation tool, implemented as a
state machine that traverses all program paths, is capable of accurately emitting
exception handling code as a side e�ect. The result is a collection of program
points that are traversed by the tool within a certain state, for instance, all the
code that is executed after a certain error has occurred. We intend to use such
"domain-speci�c" slices to improve the programmers' code understanding, or
to facilitate automatic transformations. In my talk I will give a short overview
of this work, and highlight my ideas about the applications of domain-speci�c
slices.

Keywords: Slicing idioms

Association rules for fault localization

Peggy Cellier (IRISA - Rennes, F)

The current trend in debugging and testing is to cross-check information col-
lected during several executions. Jones et al., for example, propose to use the
instruction coverage of passing and failing runs in order to visualize suspicious
statements [Jones, Harrold, Stasko - icse2002].

It has been shown that the method of Jones et al. can be re-interpreted as
a data mining procedure. More particularly, they de�ne a metric which charac-
terizes association rules between the execution of a statement and failure (stmti
-> Fail) [Denmat,Ducasse,Ridoux - ASE 2005].

Association rules produce some sort of non-executable slices. They are smaller
than executable slices and they have a semantics, namely "when statements i,
j, ... k are executed the execution fails most of the time." Another advantage is
that the analysis is not dependent on the semantics of the languages in which
the program is written, only the choice of attributes for the analysis is.

We are currently investigating the use of association rules in their general
form, namely with several attributes on each side of the rules.

Keywords: Debugging, data mining, association rules

Joint work of: Cellier, Peggy; Ducassé, Mireille; Ridoux, Olivier; Ferré, Sébastien

Conditioned Slicing

Sebastian Danicic (Goldsmiths College - London, GB)

One aim of slicing is to simplify programs so they are easier to understand.
One problem is that conventional slices, becauseof their size arenot much

easier to understand than the original.

6 D. Binkley, M. Harman and J. Krinke

In conditioned slicing we further simplify our programs by scattering them
with assertions at di�erent program points. The conditoned slicer, using a com-
bination of symbolic execution and theorThis has the potential to make slices
much smaller and hence easier to understand. Future work will add inductive
reasoning with loop invariants to improve conditioning.

Sequential Recomposition Slicing

Ran Ettinger (Oxford University, GB)

Extracting a slice is easy. Extracting a slice, without duplicating it, is not as
easy. The result is a sequential composition of the slice and its "complement"
(borrowing Gallagher's terminology). Here, the main question is: "what is the
complement?"

According to Lakhotia and Deprez, it is a union of backward slices (from
all non-extracted substatements). This has been criticised (by Komondoor and
Horwitz) for causing too much code duplication, due to lack of data�ow (from
the slice to its complement). I propose to remedy this limitation by introduc-
ing yet another kind of slicing. I (tentatively) call it "sequential-recomposition
slicing", and suggest accordingly an improved slice extraction transformation,
called "sequential-recomposition".

The sequential-recomposition has been developed using a formal framework
for proving correctness of slicing-based code motion refactorings. This opens the
way for a systematic study of a family of refactorings and gives con�dence in
the correctness of this highly non-trivial transformation.

Keywords: Slicing, slice-extraction, refactoring, code-motion, sequential-recom-
position

Beyond Slicing: Program Sliding

Ran Ettinger (Oxford University, GB)

Extracting a slice without duplicating it, in an attempt to improve separation
of concerns in existing code, is not trivial. The result is a sequential composition
of the slice and its 'complement' (borrowing Gallagher's terminology). Here,
the main question is: "what is the complement?" According to Lakhotia and
Deprez, it is a union of backward slices (from all non-extracted substatements).
This has been criticised (by Komondoor and Horwitz) for causing too much
code duplication, due to lack of data�ow (from the slice to its complement).
I propose to remedy this limitation by introducing yet another kind of slice: a
'complement-slice', or 'co-slice'. The case for co-slice is given by example, using a
novel program representation of transparency slides. With slides, the separation
of a slice from its co-slice is illustrated as an operation of program sliding.

Keywords: Slicing, sliding, sequential recomposition, co-slice

Beyond Program Slicing 7

And-Or Dependence Graphs for Slicing Statecharts

Chris Fox (University of Essex, GB)

The construction of an And-Or dependence graphs is illustrated, and its use in
slicing statecharts is described. The additional structure allows for more precise
slices to be constructed in the event of additional information, such as may be
provided by static analysis and model checking, and with constraints on the
global state and external events.

Keywords: Slicing, statecharts, And-Or depdence graphs, interference, condi-
tioning

Joint work of: Fox, Chris; Luangsodsai, Arthorn

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/493

"Real" Decomposition Slicing

Keith B. Gallagher (Loyola College - Baltimore, USA)

This position paper is an attempt to use well-understood mathematical con-
cepts to attack the problem of code evolution. Using linear algebra, we can de-
compose a vector space into a direct-sum decomposition of invariant subspaces.
That is, a transformation FX = B can be represented, with a suitable basis
transformation, as F = F1

⊕
F2

⊕
· · ·Fn such that FiX ⊆ Fi. If we could ap-

ply this method to program transformation, we then have two new ways to to
comprehend the evolution problem. First, a change to F could be written as
F1

⊕
F2

⊕
· · ·F ′

i · · ·
⊕

· · ·Fn, where F ′
i is the change. Second, an extension (en-

hancement) to A could be written as F1

⊕
F2

⊕
· · ·Fn

⊕
E1, where E1 is the

enhancement. The question is: Is slicing up to this?

Keywords: Program slicing, decomposition slicing, direct sum decomposition

Precise Slicing of Java Programs

Christian Hammer (Universität Passau, D)

A new, improved algorithm for Java is presented. The object-sensitive approach
for slicing object-oriented languages did not present a coherent algorithm for
dealing with (nested) objects as parameters. The new algorithm presented here
always generates correct and precise slices for object parameters. In particu-
lar, it contains a criterion for the safe termination of unfolding recursive data
structures. Furthermore a new approach for May-Happen-In-Parallel analysis is
presented. It is formulated in a high-level language "datalog" and extends the
original MHP analysis to Java semantics including recursion, dynamic thread

http://drops.dagstuhl.de/opus/volltexte/2006/493

8 D. Binkley, M. Harman and J. Krinke

creation and must-alias analysis. To do so, it is based on a very precise context-
sensitive Points-To analysis.

The presented analysis could reduce the number of interference dependence
edges drastically, allowing more precise slices of threaded Java programs.

Keywords: Static Program Slicing, Java, Object Trees

Full Paper:
http://www.infosun.fmi.uni-passau.de/st/papers/paste04/

See also: The �rst part of this work was published at PASTE 2004

A New Foundation for Control Dependence and Slicing

John Hatcli� (Kansas State University, USA)

The notion of control dependence underlies many program analysis and transfor-
mation techniques. Despite wide application, existing de�nitions and approaches
to calculating control dependence are di�cult to apply directly to modern pro-
gram structures because modern applications make substantial use of exception
processing and increasingly support reactive systems designed to run inde�nitely.

This talk revisits foundational issues surrounding control dependence and de-
velops de�nitions and algorithms for computing several variations of control de-
pendence that can be directly applied to modern program structures. To provide
a foundation for slicing reactive systems, the paper proposes a notion of slicing
correctness based on weak bisimulation and proves that the new de�nitions of
control dependence generate slices that conform to this notion of correctness.

This new framework of control dependence de�nitions and correctness re-
sults is able to support programs with either reducible or irreducible control
�ow graphs. Finally, a variety of properties show that the new de�nitions con-
servatively extend classic de�nitions. These new de�nitions and algorithms form
the basis of Indus Java Slicer � a publicly available program slicer that has been
implemented for full Java.

Joint work of: Hatcli�, John; Ranganath, Venkatesh Prasad; Amtoft, Torben;
Banerjee, Anindya; Dwyer, Matthew B.

Full Paper:
http://indus.projects.cis.ksu.edu

See also: This work was published at ESOP 2005

Tool Demo: The Indus Program Slicer and Kaveri

Eclipse-based User Interface

John Hatcli� (Kansas State University, USA)

This demo presents a modular program slicer for full Java called Indus Java
program slicer and a Eclipse-based user interface for Indus called Kaveri.

http://www.infosun.fmi.uni-passau.de/st/papers/paste04/
http://indus.projects.cis.ksu.edu

Beyond Program Slicing 9

Indus is a library of classes that enables users to quickly assemble a highly
customized non-SDG based inter-procedural program slicer capable of slicing
concurrent Java programs. The core library contains core slicing engine along
with post processing transformations such as residualization and executability
injection to enable program slicing for purposes with diverse requirements such as
program comprehension and model checking. The accompanying libraries from
Indus provide well-de�ned interfaces (along with implementations) to various
static analyses such as points-to analysis, various dependence analyses, escape
analysis, monitor analysis, etc, that are required by program slicing.

Kaveri is an eclipse plugin that relies on the above library to deliver program
slicing to eclipse platform. Apart from the basic feature for generating program
slices from within eclipse along with an intuitive UI to view the slice, the plugin
also provides the capability for chasing various dependences in the application
to understand the slice.

Joint work of: Ranganath, Venkatesh; Jayaraman, Ganeshan; Hatcli�, John

Full Paper:
http://indus.projects.cis.ksu.edu

Advanced Stratego with some thoughts on the connection

with slicing

Karl Trygve Kalleberg (University of Bergen, N)

I want to present some of the advanced language features of the Stratego/XT
program transformation system, in particular concrete syntax, dynamic rules
and extensible language de�nitions, and go on to highlight the areas we have
applied this system to.

Particularly relevant to our context is the framework we have built for generic
data�ow analysis and dead code elimination, which we already use for some
forms of slicing. I also want to present the work done in the Stratego group on
the Dryad open compiler framework for Java, and discuss how this may be useful
for program slicing of Java code, also outside the Stratego group.

Some questions that I want to discuss in this context are: is there anything
we should add/change in Stratego or the XT environment so that implementing
slicers becomes easier; what should we keep in mind on slicing when designing
our Java open compiler?

Keywords: Stratego, Program Transformation

http://indus.projects.cis.ksu.edu

10 D. Binkley, M. Harman and J. Krinke

Making Slicing Mainstream: How can we be Weiser?

Karl Trygve Kalleberg (University of Bergen, N)

By now, the concept of program slicing has been known in the research com-
munity for around 25 years. As a research topic, it has enjoyed a fair share of
popularity, evidenced by the number of articles published on the topic following
Mark Weiser's seminal paper. However, outside research circles, program slicing
appears to be virtually unknown.

In this report, we take the premise that program slicing is both technically
relevant, and has a su�cient theoretical foundation, to be applied in practice
within the software industry. With this premise in mind, we ask ourselves, �what
are the mechanisms by which we as a community could make program slicing
mainstream�?

Keywords: Program Slicing, Popularization

Joint work of: Kalleberg, Karl Trygve; Hall, Tracy; Ettinger, Ran

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/486

Formalizing Slicing - Results, Current Work and

Challenges

Ákos Kiss (University of Szeged, H)

Based on �common knowledge�, people often expect that a static slice is a valid
dynamic slice as well, even if overly large. However, there are counter examples
which show that it's not always true. The reason for this is in the de�nitions
of the slicing techniques (Weiser's static slicing does not care about the path of
execution, while the dynamic slicing as de�ned by Korel and Laski does). The
problem is that our �common knowledge� does not �t to the original de�nitions.
However, if we have no formal background how can we compare existing slicing
techniques, or how can we reason about them?

We have chosen the program projection theory, which is based on syntactic
orderings and semantic equivalence relations on programs, as the basis of our
work. This work aims at building up a uni�ed formal theory of slicing, where dif-
ferent slicing techniques can be compared. So far, we have been able to formalize
the two most important slicing techniques, i.e., the static and the KL-dynamic
one, and some new ones as a �side e�ect�. With the help of this formalization,
we have been able to compare these techniques in the subsumes relation (which
describes whether slices of one type are always valid slices of another type of slic-
ing) and we have been able to rank the techniques, based on the size of minimal
slices they make possible.

http://drops.dagstuhl.de/opus/volltexte/2006/486

Beyond Program Slicing 11

Now, that the basis of a uni�ed theory has been set, we are facing new
challenges. We have to incorporate new techniques and concepts, like amor-
phous slicing, dependence-based slicing, conditioned slicing, forward slicing, non-
terminating programs and trans�nite loops. To address the emerged issues, we
set out a manifeto, a research agenda, which we are willing to follow in order to
reach our goals.

Keywords: Slicing, formalization, uni�ed theory

Joint work of: Kiss, Ákos; Binkley, Dave; Danicic, Sebastian; Gyimóthy, Tibor;
Harman, Mark; Korel, Bogdan

Information Flow Control for Java Based on Path

Conditions in Dependence Graphs

Jens Krinke (FernUniversität in Hagen, D)

Language-based information �ow control (IFC) is a powerful tool to discover
security leaks in software. Most current IFC approaches are however based on
non-standard type systems. Type-based IFC is elegant, but not precise and can
lead to false alarms.

We present a more precise approach to IFC which exploits 15 years of research
in static program analysis. Our IFC approach is based on path conditions in
program dependence graphs (PDGs). PDGs are a sophisticated and powerful
analysis device, and today can handle realistic programs in full C or Java. We
�rst recapitulate a theorem connecting the classical notion of noninterference to
PDGs.

We then introduce path conditions in Java PDGs. Path conditions are nec-
essary conditions for information �ow; today path conditions can be generated
and solved for realistic programs. We show how path conditions can produce
witnesses for security leaks.

The approach has been implemented for full Java and augmented with classi-
cal security level lattices. Examples and case studies demonstrate the feasibility
and power of the method.

Joint work of: Hammer, Christian; Krinke, Jens; Snelting, Gregor

Automated Compiler Testing

Christian Lindig (Universität Saarbrücken, D)

Code generated by a compiler must obey invariants and any violation of an in-
variant indicates a bug in the compiler. We can automate the test of compilers
by generating source code randomly that tests such invariants when executed.
Testing then becomes generating code, compiling, and running it without super-
vision. Once we �nd the violation of an invariant we also have an executable test

12 D. Binkley, M. Harman and J. Krinke

case that demonstrates the compiler bug. However, such a test case is typically
hard to understand because it is machine generated and contains super�uous de-
tails. By tying the test code generator and the compiler into a feedback loop we
can further minimize such a test case: the code generator removes details from
the test case as long as it is still violating an invariant. This is akin to dynamic
slicing that also identi�es the parts of a program responsible for a given e�ect.

The �nal result is a method to automatically obtain bug reports that are
both executable and minimal.

Keywords: Compiler, random testing, calling convention, bugs, gcc, language
C, invariants

Slicing criteria � moving towards higher levels of

abstraction

Jürgen Rilling (Concordia University - Montreal, CDN)

Over the last 30+ years, since the �rst introduction of static slicing by Mark
Weiser, a variety of new and improved slicing algorithm have been developed.
Common for most of these algorithms is their focus on source code and slicing
criteria that closely match the slicing criterion introduced by Weiser, a variable
at some point of interest.

For program slicing to be accepted by a larger community within the software
engineering, program comprehension domain community, it will be essential to
derive new slicing criteria, at di�erent abstraction levels to support new appli-
cation areas. In this presentation a brief overview of some of the existing slicing
algorithms and their slicing criterion will be given followed by a presentation
of Use Case Map (UCM) slicing. UCM slicing supports as slicing criteria any
artifacts of a UCM diagrams and therefore allows the slicing of software speci�ca-
tion. The presentation concluded with a discussion on other levels of abstractions
program slicing can be extended to as well as other types of slicing criteria.

Architectural Slicing

Nuno Miguel Rodrigues Feixa (University of Minho - Braga, P)

Slicing, understood as a family of techniques for identifying and isolating pro-
gram fragments that depend on or are depended upon by a speci�c entity, plays
a major role in program comprehension and re-engineering. Do such techniques
scale from the micro, program-oriented level, to the macro, architectural one?
Such is the purpose of my research programme, which encompasses the develop-
ment of generic slicing algorithms, applicable to large, multi-language, heteroge-
neous systems as well as new techniques to extract and represent architectural
patterns and decisions from legacy systems and to reason formally upon them.

Beyond Program Slicing 13

Our research e�orts so far targeted the development of speci�c implementa-
tions of slicing algorithms for functional programs, a somewhat neglected area
in terms of program understanding. The results achieved include the develop-
ment of a functional slicer for Haskell, involving suitable extraction algorithms
and appropriate intermediate data representations, and its application in the
context of a methodology for component identi�cation and software clustering.
Another research topic, still in a preliminary phase, concerns the development
of slicing techniques by calculation, i.e., which resort to standard program cal-
culation strategies, based on the so-called Bird-Meertens formalism. The slicing
criterion is speci�ed either as a projection or a hiding function which, once com-
posed with the original program, leads to the identi�cation of the intended slice.

Keywords: Software Architecture

Slicing Functional Programs by Calculation

Nuno Miguel Feixa Rodrigues (University of Minho - Braga, P)

Program slicing is a well known family of techniques used to identify code frag-
ments which depend on or are depended upon speci�c program entities. They are
particularly useful in the areas of reverse engineering, program understanding,
testing and software maintenance.

Most slicing methods, usually targeting either the imperative or the ob-
ject oriented paradigms, are based on some sort of graph structure representing
program dependencies. Slicing techniques amount, therefore, to (sophisticated)
graph transversal algorithms.

This paper proposes a completely di�erent approach to the slicing problem
for functional programs. Instead of extracting program information to build an
underlying dependencies� structure, we resort to standard program calculation
strategies, based on the so-called Bird- Meertens formalism. The slicing crite-
rion is speci�ed either as a projection or a hiding function which, once composed
with the original program, leads to the identi�cation of the intended slice. Go-
ing through a number of examples, the paper suggests this approach may be
an interesting, even if not completely general alternative to slicing functional
programs.

Keywords: Program Slicing, Algebra of Programming, Functional Programming

Joint work of: Rodrigues, Nuno Miguel Feixa; Barbosa, Luís S.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/484

http://drops.dagstuhl.de/opus/volltexte/2006/484

14 D. Binkley, M. Harman and J. Krinke

Generic Slicing on Machine Code

Marc Schlickling (Universität Saarbrücken, D)

The complexity of software used in embedded systems grows rapidly. Moreover,
embedded software is often subject to strict safety constraints. Thus, there is an
urgent need to ensure the safeness and correctness of such a software system.
Due to compiler transformations and optimizations, guaranteeing these charac-
teristics can only be achieved at machine code level.

Programs checking a desired behaviour are rare and are - as a result of the
software's complexity - no one button tools. They require some help from the
developers. Furthermore program understanding at machine code level is hard,
so there is a need for supplementary tools helping the developers. In many cases,
slicing supports �nding relevant parts of a program and thus, understanding it.

Caused by the huge number of embedded processors with di�erent instruction
sets, there is a need for a generic slicing algorithm. This talk presents a solution
for slicing executable programs also taking memory accesses into account.

On the Impact of Alias Analysis Precision on Slicing

Markus Schordan (TU Wien, A)

The applications of program slicing and improvemements to algorithm speed
and precision have found a great interest in the slicing community. But only few
publications address pointers as a major source of imprecision in slicing of real-
world applications. One reason is that alias analysis can be treated as a separate
problem where a slicing algorithm only uses the results of an alias analysis. An-
other reason is that combined approaches, where a slicing algorithm is extended
to cope with all aspects of aliasing, becomes quite complicated which makes it
di�cult to communicate the form or level of imprecision of the implicit alias
analysis to a user in a slicing tool; this scenario becomes worse the more precise
the semantics of strongly typed pointers, unconstrained pointers, function point-
ers or in object-oriented languages virtual functions, are modeled with precise
semantics. In particular it is a problem how precise slices can be visualized with
its corresponding possible di�erent heap con�gurations that actually impact the
slice's size.

We present a combination of static alias analysis with static slicing. The alias
analyses of interest are di�erent forms of shape analyses that lend themselves
for visualization and easier understanding of the di�erent possible heap con�g-
urations in the execution of a program. The combined computation of shape
information and other analysis information is presented, where we focus on the
information impacting the size of a slice.

Keywords: Data-Flow Analysis, Executable Slice, Flow-Shape Graphs, Shape
Analysis, Static Analysis Tools

Beyond Program Slicing 15

Probabilistic Program Slicing - introduction

Jeremy Singer (Manchester University, GB)

I would like to discuss the idea of probabilistic program slicing.
Recently, there has been a growing interest in probabilistic program analysis

of di�erent kinds.
I hope to give an initial formulation for a probabilistic version of program

slicing. I will highlight some example applications, including analysis support for
e�ective speculative thread-level parallelism.

Probabilistic Program Slicing - slides for Monday talk

Jeremy Singer (Manchester University, GB)

Probabilistic Program slicing is a proposal for a new form of slicing. In this talk
we will see that other program analyses have been adapted to handle proba-
bilities. We will provide motivation for a probabilistic form of slicing. Then we
give a simple walk-through example of probabilistic slicing. We conclude with a
survey of the future work required.

Keywords: Probability, slicing

Towards Probabilistic Program Slicing

Jeremy Singer (Manchester University, GB)

This paper outlines the concept of probabilistic program slicing. It walks through
a simple example before describing some algorithmic concerns. Then three mo-
tivating applications are described.

Finally it highlights existing work that may be built upon, and future work
that needs immediate attention if this idea is to succeed.

Keywords: Probability, slicing, speculation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/485

Concern Slicing

Tom Tourwé (CWI - Amsterdam, NL)

Magiel Bruntink and I are working on the same topic, so he will present some-
thing and I will probably only show a demo ...

http://drops.dagstuhl.de/opus/volltexte/2006/485

16 D. Binkley, M. Harman and J. Krinke

Attribute Slicing

Neil Walkinshaw (She�eld University, GB)

It can often be the case in object-oriented programming that classes bloat, par-
ticularly if the represent an ill-formed abstraction. A poorly formed class tends
to be formed from disjoint sets of methods and attributes. This can result in a
loss of cohesion within the class. Slicing attributes can be used to identify and
make explicit the relationships between attributes and the methods that refer
to them. This can be a useful tool for identifying code smells and ultimately
refactoring. Attribute slicing can also be used to examine the relationships be-
tween attributes, which in turn could be useful for reverse engineering object
state machines.

Keywords: Slicing, object-oriented programming, refactoring

Using Attribute Slicing to Refactor Large Classes

Neil Walkinshaw (She�eld University, GB)

It can often be the case in object-oriented programming that classes bloat, par-
ticularly if the represent an ill-formed abstraction. A poorly formed class tends
to be formed from disjoint sets of methods and attributes. This can result in a
loss of cohesion within the class. Slicing attributes can be used to identify and
make explicit the relationships between attributes and the methods that refer
to them. This can be a useful tool for identifying code smells and ultimately
refactoring. Attribute slicing can also be used to examine the relationships be-
tween attributes, as is the case in decomposition slicing. This paper introduces
attribute slicing in the context of refactoring bloated classes.

Keywords: Refactoring, cohesion, object-oriented slicing

Joint work of: Kirk, Douglas; Roper, Marc; Walkinshaw, Neil

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/490

http://drops.dagstuhl.de/opus/volltexte/2006/490

	05451 Abstracts Collection Beyond Program Slicing --- Dagstuhl Seminar ---
	 Dave Binkley, Mark Harman and Jens Krinke

