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"Immunization ranks among the most important health advances of the 20th century. With 

the exception of safe drinking water, vaccinology has more effectively reduced mortality 

than any other modality."  

 

 

"Extraordinary advances in biotechnology make DNA vaccines the most promising area of 

vaccinology." 

 

 

James Mark Simmerman 

http://findarticles.com/p/articles/mi_qa3958/is_200201/ai_n9053796/pg_1 

 

 

 

 

“Tumor antigens are being rapidly revealed, and can be expressed on cell surface or more 

commonly, as peptides in association with the major histocompatibility complex class I (or 

II) molecules. DNA vaccines can be designed to activate antibody and /or T-cell responses, 

providing focused immune attack on selected antigens.” 

 

 

“DNA vaccines offer a precise but flexible strategy for delivering antigens to the immune 

system, and additional sequences encoding molecules to manipulate outcome can be 

included.” 

 

Jason Rice et al. 

Nat Rev Cancer 2008, 8: 108-20 

 

http://findarticles.com/p/articles/mi_qa3958/is_200201/ai_n9053796/pg_1
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Abstract 

DNA vaccination can induce antibodies, helper T cell responses, CTL responses, and 
protective immunity in various animal models for infectious diseases and cancers. 
However, naked DNA immunization is still inefficient in large animals and human.  
 
I demonstrate in this thesis: i) that the site of DNA vaccine application is important; ii) 
that a viral DNA sequence can augment anti-tumor effects; iii) that electroporation 
improves anti-tumor immunity; and iv) that dendritic cells are essential and sufficient 
for antigen presentation in ear pinna DNA immunization. 
 
Intra-ear pinna (ie) DNA injection led to earlier and stronger antigen expression 
compared to intradermal injection at the flank skin (id). The ie site was superior to the 
id site also with regard to induction of humoral and cellular immune responses. 
 
To improve the anti-tumor effect of the DNA vaccines, an immunostimulating 
sequence coding for hemagglutinin-neuraminidase (HN) of Newcastle disease virus 
(NDV) was introduced as an adjuvant. HN expression in cells was demonstrated to 
induce IFN-α production, lymphocyte binding activity as well as anti-tumor activity. 
By combining this adjuvant with ie TAA (tumor associated antigen) DNA 
immunization, prophylactic and therapeutic anti-tumor immunity was improved in 
mouse tumor models. The tumor lines expressed either a surrogate tumor antigen 
beta-galactosidase (β-gal), or a TAA, human epithelial cell adhesion molecule 
(EpCAM). Improvements of the anti-tumor activity might be due to the observed 
increase of Th1 responses, anti-tumor CTL activity and innate immune reactivity, as 
well as due to down-regulated suppressive factors such as TGF-β and level of myeloid 
derived suppressor cells (MDSCs). 
 
To further improve the ie DNA immunization strategy, it was combined with 
electroporation (EP). Such DNA EP led to clear-cut improvements of humoral and 
cellular immune responses when applied ie. The effects in the ear pinna were superior 
to id DNA EP. In both prophylactic (β-gal as a TAA) and therapeutic (human EpCAM 
as a TAA) tumor models, DNA EP was demonstrated to increase anti-tumor activity 
significantly compared to DNA immunization without EP. 
 
I was able to identify a short DC-specific CD11c promoter sequence of 700-bp. Upon 
introduction into the DNA vaccine, such vector was found to induce similar 
anti-tumor immunity as a DNA vector driven by the CMV promoter although the 
latter led to much stronger antigen expression. This observation suggests that DCs are 
sufficient for antigen presentation of ear pinna DNA immunization. 
 
Thus, DNA vaccines encoding xenogeneic TAAs were particularly effective when 
applied to the ear pinna and induced protective and therapeutic anti-tumor immunity 
in mouse tumor models. The combination with HN as an adjuvant or with 
electroporation further augmented the anti-tumor effects. Studies on the mechanisms 
revealed that DCs in the ear pinna are essential for the immunization effect. 
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Zusammenfassung 

Ziel der Arbeit war es, herauszufinden wie man eine DNS Vakzine, die für ein 
Tumorantigen kodiert, so optimieren kann, dass sie in Maus Tumormodellen zu einer 
protektiven anti-Tumor Immunantwort führt. Es konnten mehrere wichtige Parameter 
herausgearbeitet werden, die für eine effektive Immunantwort entscheidend sind: 1. 
Die Injektionsstelle der Vakzine. Die Haut der Ohrmuschel stellte sich als optimal 
heraus und war anderen Injektionsorten überlegen. 2. Durch Einführung einer viralen 
Nukleotidsequence in den DNS Vektor ließ sich die Immunogenität der 
anti-tumoralen Vakzine weiter steigern. 3. Durch zusätzliche Elektroporation der 
Injektionsstelle ließ sich eine weitere Steigerung des Immunisierungseffektes 
erreichen. 4. Was den Mechanismus der Ohrmuschelhaut-Immunisierung betrifft, so 
konnte gezeigt werden, dass hierfür Dendritische Zellen entscheidend wichtig sind. 
 
Immunisierungen in der Ohrmuschel (ie) der Maus führten zu einer früheren und 
stärkeren Antigenexpression im Vergleich zur intradermalen (id) Inokulation in der 
Flanke. ie Immunisierungen führten im Vergleich zu id Immunisierungen auch zu 
einer stärkeren humoralen und zellulären spezifischen Immunantwort.  
 
Die virale Nukleotidsequence, die einen zusätzlichen Adjuvans Effekt ausübte 
kodierte für Hämagglutinin-Neuraminidase (HN) Protein des Newcastle-Disease 
Virus. HN Expression in transfizierten Zellen regte die Produktion von Interferon 
alpha in anderen Zellen an, und führte zu einer verbesserten Bindung von 
Lymphozyten. Durch Kombination von HN und Tumorantigen konnte bei ie 
Immunisierungen in Maus Tumormodellen sowohl in einem prophylaktischen wie 
auch in einem therapeutischen Immunisierungsprotokoll durch DNS Immunisierung 
protektive anti-Tumor Immunität erzeugt werden. Die transfizierten Tumorlinien 
exprimierten wie die DNS Vektoren entweder bakterielle ß-Galaktosidase als Surrogat 
Tumorantigen oder humanes EpCAM als natürliches Tumorantigen. Die optimierten 
Immunisierungsprotokolle führten zu erhöhten Th1 und zytotoxischen T Zell 
Antworten , sowie erhöhter natürlicher Immunität und verminderter suppressiver 
Faktoren with TGF-ß und Level von MDSC Zellen. 
 
Durch Elektroporation konnte der DNS Immunisierungseffekt ie weiter gesteigert 
werden. Das drückte sich auch in einer Verbesserung des anti-tumoralen Effektes aus.  
 
Es konnte gezeigt werden, dass selektive Expression des Vektor vermittelten 
Tumorantigens in Dendritischen Zellen (DZ) mit Hilfe eines DZ-spezifischen 
Promoters (CD11c, eine neue 700 Basenpaar Sequenz)  ausreichend für den 
anti-Tumor Effekt war, obwohl der Gesamt-Antigen-Expressionslevel in der 
Ohrmuschel viel geringer war als bei Verwendung des CMV Promoters. Wurden DZ 
in CD11c-Diphtheria Toxin (DT) Rezeptor transgenen Mäusen durch Einsatz von DT 
eliminiert, so ließ sich ie keine anti-tumorale Immunität mehr erzeugen. DZ in der 
Ohrmuschel sind also essentiell und ausreichend für den DNS vermittelten 
Immunisierungseffekt. 
 



List of Abbreviations 

 - VI - 

List of Abbreviations 

β-gal beta-galactosidase 
Ab  antibody 

Ag antigen 
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http://en.wikipedia.org/wiki/Granulocyte_macrophage_colony-stimulating_factor
http://www.cdc.gov/vaccines/vpd-vac/hpv/default.htm
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1 Introduction 

1.1 Vaccine 

1.1.1 The development of vaccine 

A vaccine is a preparation which is used to improve immunity to a particular disease. 

As early as in the 10th century, variolation (Early form of vaccination in which part of 

the lesions produced by smallpox was used to try and trigger immunity to the disease) 

was practiced in China to protect against a lethal smallpox infection. 200 years ago, 

the concept of vaccination was proven by Edward Jenner who used cowpox 

inoculation to prevent smallpox infection. The work of Louis Pasteur on chicken 

cholera (1880) opened the way to vaccine development in the laboratory (1). Over the 

last century, the development and widespread use of vaccines against different 

infectious diseases have been a great triumph of medical science (2-4). Vaccines for 

some infectious diseases are routinely inoculated to children and special adult 

populations with high risk of infection (5). More than nine million deaths could be 

prevented annually by using vaccines against a few important infectious diseases such 

as pneumonia, meningitis, diarrheal diseases, tuberculosis, malaria, and 

schistosomiasis (2, 6-10). According to a CDC (Centers for Disease Control and 

Prevention) report, the following vaccines (Table 1.1) are available to prevent 

diseases. 

 

Table 1.1 Vaccine-Preventable Diseases 

Anthrax Lyme disease Rotavirus 

Cervical Cancer   Measles Rubella 

Diphtheria Meningococcal Shingles (Herpes Zoster) 

Hepatitis A  Monkeypox Smallpox 

Hepatitis B Mumps Tetanus 

Haemophilus influenzae type b (Hib) Pertussis Typhoid 

Human Papillomavirus (HPV) Pneumococcal  Tuberculosis (TB) 

Influenza (Flu) Polio Varicella (Chickenpox) 

Japanese encephalitis (JE)  Rabies  Yellow Fever 

 

http://www.cdc.gov/vaccines/vpd-vac/anthrax/default.htm
http://www.cdc.gov/vaccines/vpd-vac/lyme/default.htm
http://www.cdc.gov/vaccines/vpd-vac/rotavirus/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hpv/default.htm
http://www.cdc.gov/vaccines/vpd-vac/measles/default.htm
http://www.cdc.gov/vaccines/vpd-vac/rubella/default.htm
http://www.cdc.gov/vaccines/vpd-vac/diphtheria/default.htm
http://www.cdc.gov/vaccines/vpd-vac/mening/default.htm
http://www.cdc.gov/vaccines/vpd-vac/shingles/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hepa/default.htm
http://www.cdc.gov/vaccines/vpd-vac/monkeypox/default.htm
http://www.cdc.gov/vaccines/vpd-vac/smallpox/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hepb/default.htm
http://www.cdc.gov/vaccines/vpd-vac/mumps/default.htm
http://www.cdc.gov/vaccines/vpd-vac/tetanus/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hib/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hib/default.htm
http://www.cdc.gov/vaccines/vpd-vac/pertussis/default.htm
http://www.cdc.gov/vaccines/vpd-vac/typhoid/default.htm
http://www.cdc.gov/vaccines/vpd-vac/hpv/default.htm
http://www.cdc.gov/vaccines/vpd-vac/pneumo/default.htm
http://www.cdc.gov/vaccines/vpd-vac/tb/default.htm
http://www.cdc.gov/vaccines/vpd-vac/flu/default.htm
http://www.cdc.gov/vaccines/vpd-vac/polio/default.htm
http://www.cdc.gov/vaccines/vpd-vac/varicella/default.htm
http://www.cdc.gov/vaccines/vpd-vac/j-enceph/default.htm
http://www.cdc.gov/vaccines/vpd-vac/rabies/default.htm
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Traditional vaccination aims at the prevention of a specific infectious disease by 

delivering an immunogenic antigen derived from the surface of the infectious agent, 

resulting in immunity against the foreign organism replicating and establishing an 

infection (3). There are four types of traditional vaccines: 1) killed microorganisms; 2) 

attenuated microorganisms; 3) toxoid (inactivated toxic compounds); 4) subunit 

vaccines. Most currently used vaccines are based on these technologies. A number of 

innovative vaccines with promising aspects are also in development and in use (Table 

1.2) including both prophylactic and therapeutic vaccines (1). Different to a 

traditional prophylactic vaccine which prevents occurrence of an infection, a 

therapeutic vaccine can limit or eradicate an already present and established infectious 

agent or condition (3, 11-13). 

 

Table 1.2 New strategies for vaccine development 

Strategy  Example  

Live recombinants  Dengue virus, parainfluenza virus, Mycobacterium tuberculosis  

Recombinant protein production  Hepatitis B surface antigen, pertussis toxin, Borrelia burgdorferi outer 
surface protein A  

Replication-defective particles  Human papillomavirus, herpes simplex virus  

Alphavirus replicons  HIV, hemorrhagic fever agents  

Naked DNA plasmid  Hepatitis B virus  

Recombinant vectors  Cytomegalovirus, human immunodeficiency virus  

Prime-boost with DNA/vectors  Human immunodeficiency virus, malaria  

Reverse genetics  Influenza virus, parainfluenza virus, respiratory syncytial virus  

Peptides  Cancer  

T cell receptor  Multiple sclerosis  

 
 

1.1.2 Vaccine and immune responses  

In order to be effective, vaccines should be designed to elicit appropriate protective 

immunological effects. Understanding protective mechanisms (the molecular 

processes involved in the immunological recognition of microbial antigens and in the 

differentiation of cells that mediate effector mechanisms) is useful for the design of 

new vaccines against diseases for which an empirical approach to vaccine 

development has failed (2). 
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A hallmark of the immune system is its ability to remember an encounter with a 

pathogen for several decades, even for a whole lifetime (14, 15). This fundamental 

property of the immune system is the basis for vaccination. The goal of a successful 

vaccine is to induce long-term protective immunity against a given pathogen. The 

process of induction of adaptive immunity by vaccines is shown in Figure 1.1. After 

vaccination, foreign antigens are produced by somatic cells. Antigen presenting cells 

(APCs) can express directly (direct-presentation) or take up (cross-presentation) 

foreign antigens and migrate to draining lymph nodes. There they induce activation 

and proliferation of naive CD8 cytotoxic T lymphocyte (CTL) and CD4 T helper cells 

(Th) in a MHC class I and class II restricted manner, respectively. There are two 

subsets of CD4 T cells: Th1 and Th2. Th1 cells are crucial for activation of 

macrophages, for proliferation of CD8 T cells by producing IL-2 and IFN-γ, and for 

up-regulation of MHC class I molecules on target cells. Th2 cells are most effective 

as helper cells for B cell responses that lead to antibody production (16-18).  

 

For most viral and bacterial infections, primary protection is mediated by a humoral 

immune response (antibody production) (19). For intracellular infections such as 

Mycobacterium tuberculosis, Leishmaniamajor, and other parasites, protection is 

mostly mediated by cellular immunity (20-22). For some diseases, e.g. human 

immunodeficiency virus (HIV) infection, herpes, and malaria, both humoral and 

cellular responses are required (23-28). Exogenous antigens provided by 

killed/inactivated pathogens, recombinant protein, or protein derived from live 

vaccines are taken up by APCs by phagocytosis or pinocytosis and presented by MHC 

class II molecules to stimulate CD4 T cells, which can help generate effective 

antibody responses. In contrast, MHC class I molecules associate with antigens 

synthesized within the cytoplasm of the cell. Live or DNA vaccines involve this 

endogenous pathway of antigen processing and presentation. They also involve 

“cross-presentation”, a mechanism in which exogenous antigen is taken up by 

professional APCs (DCs) and processed similar to the endogenous pathway leading to 

expression of MHC I-antigen peptide-complexes at their cell surface (29, 30). 
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Figure 1.1 Vaccine-induced adaptive immunity. 

Vaccines can be taken up by myocytes (im immunization) or keratinocytes (id immunization) in which 
case antigen will be cross-presented by APCs (mostly DCs). If vaccines are taken up by DCs 
(distributed in most tissues), antigen will be presented directly to naïve T cells in draining lymph nodes 
to induce adaptive immunity. CD4 and CD8 T cells will be activated and proliferate. TH1 CD4 cells 
can further activate macrophage and CD8 T cells. B cells can induce antibodies by the help of TH2 
CD4 cells. 
 

1.1.3 DNA vaccine 

Observations in the early 1990s that plasmid DNA could directly transfect animal 

cells in vivo (31) initiated the use of DNA plasmids encoding antigenic proteins to 

induce immune responses by direct injection into animals (32). This novel method is 

considered to be one of the most important discoveries in the history of vaccine 

development (33, 34).  

 

DNA vaccines consist of a bacterial plasmid with a strong viral promoter, the gene of 

interest, a polyadenylation/ transcriptional termination sequence, an antibiotic 

resistance gene and several CpG motifs (Figure 1.2). The plasmid is grown in bacteria 

(E. coli), purified, dissolved in a saline solution, and then simply injected into the host 

(35). The DNA plasmid is taken up by host cells where the encoded protein is made. 

It is demonstrated now that DNA vaccination can induce antibodies, helper T cell 

responses, CTL responses, and protective immunity in various animal models for 

different infectious diseases and cancers (29, 36). 

Live/attenuated/killed 
microorganisms 

Recombinant 
proteins/peptides 

DNA vaccines 

myocytes 

keratinocytes

dendritic cells

indirect 

 direct 

cross- 
presentation 

CD4 T cells 

CD8 T cells 

B cells 

Antigen presentation Vaccines  Adaptive immunity 

C
el

lu
la

r i
m

m
ni

ty
 

H
um

or
al

 im
m

ni
ty

 

T 
ce

ll 
he

lp
 



Introduction 

     - 5 -           

 

 

 

 

 

 

 

 

Figure 1.2 The basic requirements of a DNA vector. 

A bacterial plasmid contains a viral promoter. CMV (Cytomegalovirus) promoter is the most 
commonly used promoter which is strong and universally active for most tissues. A DNA vaccine 
vector further contains a gene insert for an antigen, a poly A transcriptional termination sequence, an 
antibiotic resistance gene and several CpG motifs 
 
 
DNA vaccination provides several appealing advantages over conventional vaccines. 

Because of the simplicity of altering constructs or of mixing different plasmids, DNA 

vaccines have been used to explore the effect of various vaccination conditions such 

as the use of different forms of an antigen (secreted and membrane-bound), the effect 

of different intracellular targeting signals for a protein, and the effects of coexpressed 

cytokines. The intracellular synthesis of a plasmid protein results in the antigen likely 

to be folded in its natural conformation, correctly glycosylated, and with normal 

post-translational modifications (30, 37), which favor the induction of efficient 

immune responses. In contrast to killed microorganisms, subunits or recombinant 

proteins/peptides, DNA vaccines effectively induce both humoral and cellular 

immune responses. They are especially promising for induction of cellular immunity 

which is less efficient in protein/peptide vaccinated animals. In addition, DNA vectors 

are easy to be manufactured, transported and stored. They are also safer than live and 

attenuated vaccines with their possibility to revert into virulence (29, 33).   

 plasmid backbone 
ori  CMV 

 CpG 

 gene insert  poly A 

  antibiotic resistance 
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Table 1.3 Advantage/Disadvantage of DNA vaccine 

Advantage Disadvantage 

Express native protein antigens in vivo Risk of integration into host genome 

Efficient humoral and cellular responses Inefficient in large animals 

Specially efficient CD8 T cell responses  

Long-term immunity  

Convenient construction  

Versatile combination of several epitopes  

Efficient manufacturing  

Easy transportation and storage  

Low cost  

Safer than live/attenuated microorganisms  

 

1.1.4 Improvement of DNA vaccine 

Performance of gene-based vaccines will have to stand the test of evaluation in human 

subjects. Although it has been proven in many disease models that naked DNA 

vaccines are sufficient to induce protective immunity, in large animals and for human 

application it is still difficult to achieve high efficiency (29, 38). Therefore, it is 

necessary to improve the vaccination strategy. 

 

1.1.4.1 Delivery methods 

The influences of dose, volume, site and method of delivery of DNA vaccines are 

known to be critical for the induction of immune response. New delivery methods 

have proven to be superior to naked DNA injection. These include gene-gun, 

electroporation, tattooing, lipid/liposome (also as adjuvants) and viral carriers (vectors) 

together with different injection routes e.g. intramuscular (im), intradermal (id), 

subcutaneous (sc), intravenous (iv), intranasal (in) and intra-ear pinna (ie) (39-41). 

Electronic pulse dependent strategies of application are most commonly applied to 

skin because of its richness in immune cells. Different delivery methods are listed and 

compared in Table 1.4. Among them, electroporation (EP) appears to provide a 

desirable balance of safety, efficiency, and cost effectiveness. It uses electrical pulses 

to create pores in cell membranes. It can be applied directly to tumor, muscle, skin, or 

mucosal tissue and enhances intracellular delivery of DNA plasmids by 1,000 times or 
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more (42-44). Compared to gene gun immunization which might skew immune 

responses towards Th2 (45, 46), EP is efficient to induce privileged Th1 responses (43, 

47, 48). 

 

Table 1.4 Comparison of DNA delivery methods* 

Advantage/Disadvantage 
Delivery methods 

Simplicity DNA dose Safety Efficiency Cost 

Naked DNA injection ++++ - +++ + ++++ 

Gene gun + ++++ ++ +++ + 

Electroporation +++ +++ +++ +++ ++++ 

Tattooing ++ +++ +++ +++ ++ 

Lipid/liposome ++ ++ ++ ++ + 

Viral carriers - ++ - ++++ - 

 
- no advantage; + low advantage; ++ middle advantage; +++ high advantage; ++++ excellent advantage 
* outline information from reference 29, 39-48 
 

1.1.4.2 Adjuvants 

Adjuvants are components that enhance the specific immune responses against 

co-inoculated antigens, both for the magnitude and duration of immune responses (49). 

The nature of the adjuvant can determine the particular type of immune response, 

which may be skewed toward cytotoxic T cell (CTL) responses, antibody responses, 

or particular classes of T helper (Th) responses and antibody isotypes (50). Adjuvants 

such as lipid/liposome, CpG motifs, coexpression of immunostimulating molecules as 

well as many other adjuvants have been shown to be efficient to improve DNA 

vaccination effects (Table 1.5) (29, 40, 51-54). Obviously, DNA fusion gene vaccines 

(coexpression of immunomodulatory molecules such as cytokines, co-stimulatory 

molecules or chemokines) are an attractive means of modulating an antigen-specific 

immune response without the use of potentially toxic chemical adjuvants (55-57). 



Introduction 

     - 8 -           

 
Table 1.5 Adjuvants for DNA vaccines 

 
Category  Classification  Examples References 

Costimulatory molecules  CD80, CD86, CD40L, CD54, 
LFA-3, L-selectin, CTLA4 

Cytokines 

IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, 
IL-8, IL-10, IL-12, IL-15, IL-18, 
TNF, GM-CSF, TGF-β, IFN-γ, 
IFN-α 

(29, 56, 
58-60) 

Chemokines TCA-3, RANTES, MIP1-a (61, 62) 

CpG motifs Phosphorothioate synthetic ODNs (63, 64) 

Complement  C3d  (65) 

Heat shock protein  Hsp70  (66) 

Apoptosis inducer  Fas, Caspase (67) 

Genetic 
adjuvants  

Transcriptional factors  IRFs  (68) 

Mineral salts  Aluminum phosphate, Aluminum 
hydorxide 

Bacteria-derived adjuvants Monophosphoryl lipid A, Cholera 
toxin, Muramyl peptides 

Lipid particles  Cationic liposomes, 
Mannan-coated liposomes* 

Emulsifier-based adjuvants QS-21** 

Conventional 
adjuvants  

Synthetic adjuvants  Ubenimex*** 

(60, 69) 

 
* Mannose is a carbohydrate moiety that coats the surfaces of many infectious agents including viruses, 
bacteria, yeasts, and protozoans. Several immune systems use carbohydrates as activators. 
** QS-21 is a highly purified triterpene glycoside saponin isolated from the bark of the Quillaja 
saponaria Molina tree. 
*** Ubenimex (UBX; ((2S,3R)-3-amino-2-hydroxy-4-phenyl-butyryl-L-leucine), an immunomodulator 
which has been used for immunotherapy of cancer, is a small molecular weight aminopeptidase 
inhibitor isolated from a culture filtrate of Streptomyces olivoreticuli.  
Abbreviations: IL, Interleukin; TNF, tumor necrosis factor; GM-CSF, granulocyte monocyte colony 
stimulating factor; TGF, transforming growth factor; IFN, interferon; TCA, T cell activator; RANTES, 
regulated upon activation, normal T cell expressed and secreted; MIP, Macrophage inflammatory 
protein; Hsp, heat shock protein; IRF, interferon regulatory factor. 
 

 

http://www.newsrx.com/newsletters/AIDS-Weekly/1997-11-03/199711033336AW.html##
http://www.newsrx.com/newsletters/AIDS-Weekly/1997-11-03/199711033336AW.html##
http://www.newsrx.com/newsletters/AIDS-Weekly/1997-11-03/199711033336AW.html##
http://www.newsrx.com/newsletters/AIDS-Weekly/1997-11-03/199711033336AW.html##
http://www.newsrx.com/newsletters/AIDS-Weekly/1997-11-03/199711033336AW.html##


Introduction 

     - 9 -           

1.1.5 Functions of dendritic cells in DNA vaccine 

A key event that triggers the immune response is when the immune system ‘‘senses’’ 

the vaccine or microbe. DCs are the pivotal APCs to present antigens to T and B cells 

and to modulate the strength, quality, and persistence of the adaptive immune 

response (70). DCs are distributed in almost all tissues. Local inflammation induced 

by DNA vaccination can recruit DCs as well as other immune cells to the injection 

site (e.g. im DNA immunization). Efficiency of antigen presentation might be 

improved by id DNA vaccination because skin is a DC-rich tissue containing both 

epidermal Langerhans cells (LCs) and dermal DCs (71, 72).  

 

Peripheral immature DCs are in a highly pinocytic state and express low-levels of 

MHC and costimulatory molecules. After DNA uptake, these DCs are stimulated 

vigorously by CpG motifs and proinflammatory cytokines. They synthesize and 

process the DNA encoded antigen for presentation at the cell surface and then migrate 

to draining lymph nodes where they can efficiently activate antigen-specific naïve T 

cells. During this migratory process, DCs undergo maturation with MHC and 

costimulatory molecules being up-regulated. During this period of activation and 

antigen (MHC-peptide) presentation, communication with CD4 cells induces the 

ability of the DCs to activate naïve CD8 cells and also induces the establishment of 

memory CD4 T cells. These are potentially capable of long-life existence without 

repeated antigenic stimulation (37). DCs are capable of processing antigen via the 

classical pathways: endogenous antigens via the proteasome into the MHC class I 

compartment; exogenous antigens via the endocytic lysosomes into the MHC class II 

compartment. DCs also possess alternative pathways of antigen processing and can 

route exogenous antigen into the MHC class I pathway through a mechanism known 

as cross-priming (29, 35, 37). 

 

1.1.6 DNA immunization to ear pinna 

Muscle was the first site to be tested for DNA injection (31). By targeting the body’s 

natural defense system, the skin, intradermal DNA immunization attempts to produce 

an immunologically efficacious response (32, 42). DNA vaccines provide DNA for 

protein expression in a variety of cells, including keratinocytes, Langerhans cells (LC), 
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and dendritic cells (DC), which are located in the two main areas of the skin, the 

epidermis and the dermis (42). After maturation, the LC, which are found mainly in 

the epidermis, and the dermal DC, which are found mainly in the dermis, can migrate 

to local lymph nodes where presentation of antigens to T cells can occur and initiate a 

variety of immunological responses (30, 73). In mouse models, id injection is usually 

applied to abdominal or flank skin, sometimes to ear skin when separation of skin 

cells is needed. Interestingly, in our previous studies with the highly metastatic 

lymphoma ESb tumor inoculation, it was shown that the ear pinna is a privileged site 

(compared to sc tumor inoculation) for the induction of antitumor immunity, 

preventing the outgrowth of an otherwise lethal dose of tumor cells (74). Further 

studies then have corroborated the superiority of intra-pinna DNA vaccination to 

induce strong immune responses compared to im and id (flank) DNA immunization 

(75, 76). One of the advantages might be the special structure of ear pinna which 

contains two layers of epidermis and dermis with more professional APCs within a 

certain area. In this thesis, I tried to further analyze and improve this strategy for 

application in mouse tumor models. 
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1.2 Cancer therapy 

Cancer is the general name for a group of more than 100 diseases in which cells in a 

part of the body begin to grow out of control. In USA, a total of 1,444,920 new cancer 

cases and 559,650 deaths from cancer are reported in 2007 (77). Research of efficient 

cancer therapy is highly important to save people’s life. In the U.S. and other 

developed countries, cancer is presently responsible for about 25% of all deaths. On a 

yearly basis, 0.5% of the population is diagnosed with cancer (Wikipedia 

information). 

 

1.2.1 Traditional cancer therapy 

Cancer can be treated by traditional methods such as surgery, chemotherapy,  and 

radiation therapy, as well as by new strategies such as targeted therapy (including 

antibodies, peptides, photodynamic therapy), immunotherapy (including cytokines, 

adoptive transfer of immune cells, gene therapy and cancer vaccines), virus-based 

therapy, hormonal therapy, and angiogenesis inhibitors. The choice of therapy 

depends upon the location and grade of the tumor and the stage of the disease, as well 

as the general state of the patient (performance status). 

 

Surgery is one of the basic strategies to cure cancer if the solid tumor can be 

completely removed. This is the case if the tumor has no metastases and if its removal 

does not damage vital organs such as the brain or the liver. However, if the tumor 

cannot be completely removed, other treatment methods have to be applied as well. 

One of these methods is radiation therapy, the use of ionizing radiation to kill cancer 

cells. Radiation therapy works by damaging the DNA of cells and since cancer cells 

generally proliferate more and have acquired defects in the DNA damage repair, they 

are more susceptible to radiation-induced DNA damage than normal, non-malignant 

cells. Another important way to treat cancer is chemotherapy, the use of drugs that 

interfere with cell division in different ways. Most forms of chemotherapy target all 

rapidly dividing cells and are not specific for cancer cells. Since most 

chemotherapeutic drugs target all proliferating cells, normal replicating cells of the 

body such as bone marrow cells, intestinal cells or cells of hair follicles are also killed. 

This can lead to side-effects such as immunosuppression, diarrhea or hair loss. 

http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Chemotherapy
http://en.wikipedia.org/wiki/Radiation_therapy
http://en.wikipedia.org/wiki/Immunotherapy
http://en.wikipedia.org/wiki/Cancer_staging
http://en.wikipedia.org/wiki/Performance_status
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Primary solid tumors can often be treated successfully with surgical resection, 

chemotherapy or radiation; however, these therapies are mostly ineffective against 

metastatic spreading. Therefore, other new strategies are necessary to be applied. In 

general, the most successful treatment for cancer can be achieved by a combination of 

different strategies. For example, chemotherapy and radiation therapy are commonly 

used after surgical removal of the primary tumor to target residual tumor cells and 

possible metastases in the body. Other strategies are also needed, especially for 

tumors resistant to chemotherapy and radiation, as well as for late-phase patients 

(Information is obtained from NCI (National Cancer Institute) website). 

 

1.2.2 Cancer immunotherapy 

Cancer immunotherapy is a more precisely targeted therapy. The primary goal of this 

strategy is to direct immune responses to tumors that either are ignored by the 

immune system or are actively suppressing the immune system (78, 79). This might 

be fulfilled by stimulating the patients’ own immune system or transferring immune 

components to the patients. Different immunotherapeutic strategies (Table 1.6) are 

studied and combined to improve the traditional methods. 

 

Most cancer vaccines are applied in a therapeutic setting. They are intended to treat 

existing cancer rather than to prevent it (80, 81). The cancer patient would initially 

undergo surgery to remove most of the primary tumor. Vaccination would then be 

undertaken to generate a specific immune response capable of clearing any residual 

cancer, thus preventing relapse (81-83) and extending the period of remission or 

survival in the patient. 
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Table 1.6 Strategies of cancer immunotherapy 

Cancer immunotherapy Clinical application and clinical trials References  

Cytokines IL-2, IL-12, IFN-α, IFN-γ, GM-CSF, 

Antibodies 

trastuzumab (anti-Her2/neu) 

rituximab (anti-CD20) 

Alemtuzumab (anti-CD52) 

Lym-1 (anti-HLA-DR) 

Bevacizumab (anti-VEGF) 

Cetuximab (anti-EGFR) 

Tarceva (anti-EGFR-TK1) 

Iressa  (anti-EGFR-TK1) 

Thalidomide (anti-TNF-α) 

Radioimmunotherapy* 
Zevalin (anti-CD20-111In/90Y) 

Bexxar (anti-CD20-131I) 

Adoptive transfer of 

immune cells 

Antigen specific autologous T cells 

Genetically modified T cells 

Gene therapy 

Advexin (Ad-P53) 

MetXia-P450 (retrovirus-based vector) 

Ad.HSVtk/ganciclovir (adenovirus-based vector) 

Cancer vaccines 

Tumor cell vaccines 

Dendritic cell vaccines 

Synthetic proteins 

NCI website**

 
* Monoclonal antibodies against tumor antigens can also be coupled to radioactive isotopes. 
Abbreviation: VEGF, vascular endothelial growth factor; EGFR, epidermal growth factor receptor; TK, 
thymidine kinase; Ad, adenovirus. 
** NCI website: http://www.cancer.gov/cancertopics/treatment/types-of-treatment 

http://en.wikipedia.org/wiki/Trastuzumab
http://en.wikipedia.org/wiki/Rituximab
http://www.cancer.gov/cancertopics/treatment/types-of-treatment
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1.3 Newcastle Disease Virus (NDV) 

Newcastle disease virus (NDV) is an avian RNA virus of the genus paramyxoviridae. 

Newcastle disease is highly contagious in domestic poultry and wild birds featured by 

gastro-intestinal, respiratory and nervous signs. Human infections have been reported 

with flu-like symptoms and conjunctivitis (84).  

 

1.3.1 Application of NDV for Cancer therapy 

NDV preferentially replicates in tumor cells and can effectively kill tumors in animal 

models. With regard to human application, NDV selectively kills human tumor cells 

with limited toxicity to normal cells. Therefore, NDV has been used in cancer therapy 

for more than 40 years (85-91). Although the virus also binds to normal cells, these 

cells normally resist viral replication. Three major strategies are in clinical 

development now: 1) Oncolysates (extracts of cancer cells that are infected with lytic 

viruses); 2) whole cell vaccines (NDV infected autologous tumor cells); 3) Systemic 

application of oncolytic strains of NDV to patients. Clinical anti-tumor 

immunotherapy with these strategies showed improvement of survival (92-96). NDV 

induced tumor destruction involves several mechanisms: 1) inducing necrosis or 

oncolysis by their excessive replication; 2) inducing programmed cell death 

(apoptosis); 3) stimulating anti-tumor immune responses. Upon replication in infected 

cells, double-strand viral RNA (dsRNA) is produced in the cytoplasma which, via 

interaction with PKR, induces an interferon (IFN) response in the infected cells. The 

interferon response represents an early host defense reaction that occurs prior to the 

onset of adaptive immune responses (84, 86, 87). 

 

In addition, recombinant NDV could be used in vector-based vaccines encoding a 

pathogen antigen. Such vectors were shown competent to lead to pathogen antigen 

expression and to induce anti-pathogen immunity. The following characters enable 

NDV to be used as a good vector: highly attenuated in primates, antigenic distinction 

from human pathogens, stability to accommodate foreign sequences, easy production 

and low incidence of recombination. This vector is especially efficient by intranasal 

immunization to protect respiratory infection because of the respiratory tropism. 

Intranasal inoculation with recombinant NDV vector expressing influenza virus 

http://en.wikipedia.org/wiki/Tumour
http://www.iscid.org/encyclopedia/Cancer
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hemagglutinin or respiratory syncytial virus fusion protein induced sufficient antibody 

responses to protect against virus infection (97-101). DiNapoli et al reported 

promising neutralizing antibody production by using recombinant NDV vector 

encoding SARS-CoV (severe acute respiratory syndrome-associated coronavirus) 

spike S glycoprotein (100). 

 

1.3.2 Functional study of NDV molecules 

NDV is a membrane-enveloped virus of roughly spherical structure with 150 to 300 

nm in diameter. It contains a non-segmented, negative sense and single stranded RNA 

genome of 15-kb size. The NDV genome codes for the following six genes (Figure 

1.2): nucleocapsid protein (NP), phosphoprotein (P), matrix protein (M), fusion 

protein (F), hemagglutinin-neuraminidase (HN) and large protein (L) (84). 

 

 

 

 

 

 

 

 

Figure 1.3 The structure of NDV virus particle. 
NDV virus particle contains a negative-sense, single-stranded, non-segmented RNA genome encoding 
six genes: NP (nucleocapsid protein), P (phosphoprotein), M (matrix protein), F (fusion protein), HN 
(hemagglutinin-neuraminidase) and L (large protein).  
Image is obtained from: http://www.microbiologybytes.com/virology/Paramyxoviruses.html 
 
 

The surface protein HN is anchored in the viral envelope and it is indispensable for 

the attachment of the virus to the cell surface receptors as well as release of virus from 

the cells (102, 103). The F protein, which is also anchored in the viral envelope, 

mediates the fusion of the viral envelope with the host cell membrane and thereby 

enables the entry of the viral capsid (104). The M protein is located between the viral 

capsid and the envelope and is important for the generation and packaging of viral 

RNA as well as for the assembly of new virus particles. The nucleocapsid consists of 

three viral proteins that form a complex with the RNA genome. About 2,200-2,600 

http://www.microbiologybytes.com/virology/Paramyxoviruses.html
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subunits of the NP protein form the nucleocapsid. A complex of the NP, the L and the 

P protein are involved in the transcription of the RNA genome. The L protein is an 

RNA-dependent RNA polymerase that is active only in a complex with the NP and 

the P protein (105, 106). 

 

The HN molecule is a 74-kDa membrane type II glycoprotein which has both 

hemagglutinin (HA) and neuraminidase (NA) activity. HN is crucial in mediating the 

attachment of the virus to host cell receptors, as well as the attachment of infected 

cells to other cells. HN expression in vitro by DNA transfection induced lymphocyte 

binding activity. In vitro studies also showed induction of IFN-α and TRAIL (tumor 

necrosis factor-related apoptosis-inducing ligand) in human PBMCs (peripheral blood 

mononuclear cells) by HN (107-109). It is not clear which receptors are involved in 

the HN induced IFN-α response. Interestingly, it was reported that influenza HA can 

enhance lysis of virus-infected target cells by NK cells, and can directly activate NK 

cells via triggering the NKp44 and NKp46 receptor (110-113). These studies all 

indicate that HN is an immunostimulating molecule. 
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Aims of this thesis 

Aims: To improve the intra-ear pinna DNA vaccination strategy by 

adjuvant viral DNA sequences and by electroporation in mouse 

tumor models. 
 

Naked DNA vaccine based on xenogeneic tumor associated antigens (TAAs) is an 

appealing strategy for anti-tumor immunotherapy for many reasons, but the efficiency 

of such a procedure may need improvements. 

 

We focused on the following issues and studied the anti-tumor effects in mouse tumor 

models: 

 

1) Studying an optimal site for vaccine application: Comparison of different sites 

(ear and flank) of skin. 

 

2) Studying adjuvant DNA sequence effects on DNA vaccine activity: Focus on 

viral HN from NDV. 

 

3) Studying influence of electroporation (EP) on vaccination efficiency: 

Comparison of EP applied to different sites, including ear pinna. 

 

4) Studying a possible role of dendritic cells (DCs) in ie DNA vaccination to 

elucidate mechanism of action: This should be achieved by targeting DCs with 

a short CD11c promoter in vivo. 

 

By analyzing these issues above, it was intended to finally optimize and test new 

ways for efficient anti-tumor DNA vaccination.
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Materials and Methods 

3.1 Equipment 

Axioplan2/AxioCam  Zeiss, Jena, Germany

Binocular microscope  Zeiss, Jena, Germany

Biological safety cabinet Baker, Sanford, USA

Cell culture incubator  Labotec, Göttingen, Germany

Cell homogeniser Ultra-Turrax T25 Werke, Staufen, Germany

Centrifuge Biofuge fresco  Heraeus, Hanau, Germany

Centrifuge Megafuge 2.0R Heraeus, Hanau, Germany

Duolumat LB9507 luminometer Berthold, Bad Wildbad, Germany

Elgen1000 Electroporation system Inovio, San Diego, USA

ELISA reader  Perkin-Elmer,Überlingen,Germany

Flow cytometer FACSCalibur  BD, Heidelberg, Germany

Flow cytometer FACSCantoII BD, Heidelberg, Germany

Freezer -20 °C  Liebherr, Biberach an der Riss, 

Germany

Freezer -80 °C Thermo  Fisher Scientific, Karlsruhe, Germany

Glass pipettes  Hirschmann, Eberstadt, Germany

Glassware  Schott, Mainz, Germany

Heatable magnetic stirrer  Heidolph Instruments, Schwabach, 

Germany

Heat block  Grant Instruments, Cambridgeshire, 

UK

IVIS100 in vivo imaging system  XENOGEN, Alameda, USA

Microwave oven  Bosch, Heidelberg, Germany

Nucleofector I electroporation device Amaxa, Cologne, Germany

Neubauer cell counting chamber  B.Braun, Melsungen, Germany

pH meter  Wissenschaftliche Technische, 

Weilheim, Germany

Pipettes (2-1000 μL)  Eppendorf, Hamburg, Germany
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Pipetting aid Pipetboy acu  INTEGRA Biosciences, Fernwald, 

Germany

Photometer GeneQuant pro Amersham Biosciences, Freiburg, 

Germany

Power supply for electrophoresis  Pharmacia, Freiburg, Germany

PTC-200 Peltier Thermal Cycler  MJ Research, Waltham, USA

Quartz cuvette  Hellma; Fa. Migge, Heidelberg, 

Germany

Shaker Mixer 5432  Eppendorf, Hamburg, Germany

Shaker Reax 2000  Heidolph Instruments, Schwabach, 

Germany

Table centrifuge  WiFug, Sweden

Water baths Grant Instruments, Cambridgeshire, 

UK
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3.2 Molecular biological methods 

3.2.1 Buffers and solutions 

TAE, 50× Tris base 242 g/L 
 Na2EDTA•2H2O 37.2 g/L 
 glacial acetic acid 57.1 mL/L 
 in ddH2O, pH 8.5, RT 

LB, 10× Bacto-Tryptone 100 g/L 
 Bacto-yeast extract 50 g/L 
 NaCl 100 g/L 
 in ddH2O, pH 7.0, autoclave, 4oC 

 

3.2.2 Preparation of DNA from bacteria 

Plasmid DNA used for cloning was purified by QIAprep Spin Miniprep Kit 

(QIAGEN) according to the manufacturer’s instruction (QIAGEN, www.qiagen.com, 

QIAprep Miniprep Handbook as at Dec 2006). 

 

Plasmid DNA used for in vitro transfection was purified by EndoFree Plasmid Maxi 

Kit (QIAGEN) according to the manufacturer’s instruction (QIAGEN, 

www.qiagen.com, Endofree Plasmid Purification Handbook as at Nov 2005). 

 

Plasmid DNA used for DNA immunization was purified by EndoFree Plasmid Giga 

Kit (QIAGEN) according to the manufacturer’s instruction (QIAGEN, 

www.qiagen.com, Endofree Plasmid Purification Handbook as at Nov 2005). 

 

3.2.3 Cloning of DNA vectors 

3.2.3.1 Preparation of DNA fragments by enzyme-cutting 

Fragment DNA was acquired by enzyme-cutting with the following protocol: 

www.qiagen.com
http://www1.qiagen.com/Products/Plasmid/QIAGENPlasmidPurificationSystem/EndoFreePlasmidGigaKit.aspx
http://www1.qiagen.com/Products/Plasmid/QIAGENPlasmidPurificationSystem/EndoFreePlasmidGigaKit.aspx
www.qiagen.com
http://www1.qiagen.com/Products/Plasmid/QIAGENPlasmidPurificationSystem/EndoFreePlasmidGigaKit.aspx
http://www1.qiagen.com/Products/Plasmid/QIAGENPlasmidPurificationSystem/EndoFreePlasmidGigaKit.aspx
www.qiagen.com
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Components For checking (20μL) For gel purification (50μL) 
10×reaction buffer 2 μL 5 μL 
100×BSA* o.2 μL 0.5 μL 
Enzyme 1** 0.3 μL 3 μL 
Enzyme 2** 0.3 μL 3 μL 
DNA 0.5 μg 4 μg 
ddH2O to 20 μL to 50 μL 

* include if required  
** all restriction endonucleases were purchased from NEW ENGLAND BioLabs; digestion was 
performed according to the manufacturer’s protocol; buffer for double digestion depends on if there is a 
universal reaction buffer for the 2 enzymes; if not, digestion should be made one by one;  
 

3.2.3.2 Preparation of DNA fragments by PCR 

PCR was performed with Platinum Pfx DNA Polymerase (Invitrogen) following the 

protocol below by using a PTC-200 Peltier Thermal Cycler (MJ Research): 

 

Components For checking (20μL) For gel purification (50μL) 
10 × Pfx buffer 2 μL 5 μL 
10mM dNTP 0.6 μL 1.5 μL 
50mM MgSO4 0.4 μL 1 μL 
10 × enhancer* 1~4 μL 2.5~10 μL 
Pfx DNA polymerase 2 μL 5 μL 
10μM Primer 1 0.3 μL 3 μL 
10μM Primer 2 0.3 μL 3 μL 
Template DNA 10pg~200ng 10pg~200ng 
ddH2O to 20 μL to 50 μL 

* use more enhancer for problematic PCR 
 

PCR general procedure: 

 

Steps Temperature & Time Cycle 
1 94oC, 2 min 1 

94 oC, 15 s 
56 oC, 30 s* 2 
60oC, 1 min/1 kb 

35 

3 4oC forever 
* Other annealing temperature was applied when this procedure did not work. 



Materials and Methods 

     - 22 -           

Primer sequence 

Name Sequence 5’-3’ Enzymes 
JN1 CTCGAGGGAGGTGGTGGATCCATGTGTTTACTTTGACCAAC XhoI 
JN2 GGGCCCTTATTTTTGACACCAGACCAACTG ApaI 
JN3 GTTTAAACAACATG GACCGCGCAGTTAGCC PmeI 
JN4 CGCCTAGGTACCAACATGGACCGCGCAGTTAGCC   AvrII, KpnI       
JN5 CGATGCATGTCGACTGGCCAGCTGGCAGCGTAAGACTC NsiI, SalI         
JN6 CGGGATCCACTAGTGGTTATTTTCCACC BamHI 
JN7 CGGCATGCGTCGACTTATGGCCAGCTGGCAGCGTAAG SphI, SalI         
JN8 GCTAGCGAGCTCACGCGTAATGACTAATCCACTGAATG NheI, SacI, MluI 
JN9 GCTAGCACGCGTGAGCTCAGCTCAAGTGCTACTTCCCC NheI, MluI, SacI 
JN10 GCTAGCGAGCTCACGCGTTAGCACCCCAGTTCTTTGCTG NheI, SacI, MluI 
JN11 GCTAGCGAGCTCACGCGTGGCCTGCTGTCCAGTGGACT NheI, SacI, MluI 
JN12 GCTAGCGAGCTCACGCGTAGTCTGTCCATCCACCCTGGG NheI, SacI, MluI 
JN13 AAGCTTCTCGAGATCTGACTGGAGAACAGAAGCAGGC XhoI, BglII 
JN14 CGACGCGTCCGGCGAACGTGGCGAGAA MluI 
JN15 CGACGCGTCAAGGCCTGAGACGACA MluI 
JN16 CGACGCGTTGCTTAGCCATTTTAGACC MluI 
JN17 CGACGCGTTATGTTGAGCAAATGACTAATC MluI 
JN18 CGAGATCTTGAGCAACTTGGAGACAGC BglII 
JN19 CGGGTACCTATAGATAGCCCCTCGCAACC KpnI 
JN20 CGACGCGTTTCATTCATTCAGTGGATTAGTCA MluI 
JN21 CGGGTACCCGCCACACCCGCTCCTAACAT KpnI 
JN22 CGACGCGTCATAACCCAGAGATCAGAGTAAAA MluI 
JN23 CGACGCGTCTGCCCAGCCCACCCCTCTA MluI 
JN24 CGACGCGTTTGCCCCTGCTGCCCTGATT MluI 
JN25 CGGGTACC GGGGCCCTACACAAAACCATCC   KpnI 
JN26 CGGATCCGAATTCATGGAAGACGCCAAAAACAT BamHI, EcoRI 
JN27 CGGATCCGAATTCTTACACGGCGATCTTTCCGC BamHI, EcoRI 
JN28 CGCTGCAGATGGAAGACGCCAAAAACAT PstI 
JN29 CGGGATCCGAATTCAGCTCAAGTGCTACTTCCCC BamHI, EcoRI 
PF229 GCTCAGCCCCTTATGGCCAGCTGGCAGCGTAAG    BlpI 

 
PCR fragments were purified by QIAquick PCR purification Kit (QIAGEN) 

according to the manufacturer’s instruction (Qiagen, www.qiagen.com, QIAquick 

Spin Handbook as at July 2002). 

 

3.2.3.3 Extraction of DNA fragments from the gel 

For the extraction of DNA from agarose gels the QIAquick Gel Extraction Kit 

(QIAGEN) was used according to the manufacturer’s instructions (QIAGEN, 

www.qiagen.com, QIAquick Spin Handbook as at July 2002). 

www.qiagen.com
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3.2.3.4 Commercial and ready-to-use plasmids 

Code Name Encoding gene Company Author 

1003 pTandem1 IRES Novagen  

1005 pBK-SFV-HN NDV HN  Jinyang Zeng 

1008 pCMVβ lacZ Clontech  

1009 pGL3-Basic Firefly luciferase promega  

1016 pcDNA3.1/Hygro  Invitrogen  

1026 pCMV SPORT-βgal lacZ Invitrogen  

1078 pCMV-Ruc-GFP Renilla luciferase  

1083 CD11c-PR3562-GCDLA Murine CD11c promoter 
Region: -1~-4046  

Günter 
Hämmerling 

1084 pCMV-luc Firefly luciferase  Daniel 
Scherman 

1118 pSPORT6-EpCAM Human EpCAM  Frank Momburg

1136 pkeratin14-luc Firefly luciferase  

1142 pfascin-luc Firefly luciferase  

Daniel 
Scherman 

 pCMV-GFP EGFP  Yi Ni 

 pmax-GFP EGFP Amaxa  
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3.2.3.4 Cloning strategies 

Code Name Fragment Vector  Enzymes 
1061 pTandem1-HN HN (PCR: PF229+JN3) 1009 BlpI, PmeI 

1067 pSPORT-HN-lacZ HN (PCR: JN4+JN5) 1026 AvrII, SalI 

1068 pSPORT-lacZ-IRES-HN IRES-HN (PCR: JN6+JN7) 1026 BamHI, XhoI 

1072 pSPORT lacZ cut out 1026 SalI, XhoI 

1073 pSPORT-HN HN (PCR: JN4+JN7) 1026 AvrII, SalI/XhoI

1108 pCD11c488-luc CD11c-24~-511* (JN17+JN18) 1003 BglII, MluI 

1109 pCD11c500-luc CD11c-1~-500* (JN8+JN13) 1003 BglII, MluI 

1110 pCD11c700-luc CD11c-1~-700* (JN9+JN13) 1003 BglII, MluI 

1111 pCD11c1082-luc CD11c-24~-1105* (JN16+JN18) 1003 BglII, MluI 

1112 pCD11c2425-luc CD11c-24~-2448* (JN15+JN18) 1003 BglII, MluI 

1113 pCD11c3695-luc CD11c-24~-3383* (JN14+JN18) 1003 BglII, MluI 

1119 pCMV-EpCAM Human EpCAM (cut from 1118) 1009 EcoRV, NotI 

1120 pCMV-EpCAM-IRES-HN Human EpCAM (cut from 1118) 1061 EcoRV, NotI 

1132 pcDNA3-luc-hygro Luciferase (cut from 1003) 1016 HindIII, XbaI 

1139 pCD11c1105-luc CD11c-1~-601* (cut from 1110) 1111 ApaI, BglII 

1140 pCD11c2448-luc CD11c-99~-2448* 
(cut from 1112) 1110 ApaI, MluI 

1141 pCD11c3383-luc CD11c-99~-2881*  
(cut from 1113) 1110 ApaI 

1144 pCD11c5534-luc CD11c -2272~-5534* 
(JN19+JN23) 1141 KpnI, NheI 

1145 pGL3-Basic-m1 NotI mutation 1003 Klenow treated 

1146 pGL3-Basic-m2 BamHI mutation 1003 Klenow treated 

1147 pGL3-Basic-m3 NotI and BamHI mutation 1145 Klenow treated 

1148 pGL3-Basic-MCS1 NotI and BamHI mutation,  
MCS fragment** 1147 HindIII, XbaI 

1149 pGL3-Basic-MCS2 NotI and BamHI mutation,  
MCS fragment*** 1147 NheI, XhoI 

1150 pcDNA3-EpCAM-hygro Human EpCAM (cut from 1118) 1016 EcoRV, NotI 

1151 pCD11c700-EpCAM Human EpCAM (cut from 1150) 1110 HindIII, XbaI 

1152 pCD11c700-GFP EGFP (cut from pCMV-GFP) 1110 HindIII, XbaI 

1153 pCD11c700-lacZ CD11c-1~-700* (JN29+JN13) 1008 EcoRI, XhoI 
* position in murine CD11c promoter region 
** MCS (multiple cloning sites) from pcDNA3.1/Zeo+ between HindIII and XbaI 
*** MCS (multiple cloning sites) from pcDNA3.1/Zeo+ between NheI and XhoI 
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Fragment  Template 

HN Plasmid 1005 

IRES-HN Plasmid 1061 

CD11c -1~-3383 Plasmid 1083 

CD11c -2272~-5534 BAC RP24-78I2 

 

DNA fragments were inserted into linearized vectors by T4 DNA ligase (Invitrogen) 

following the manufacturer’s protocol. Ligation reactions were inactivated at 65oC for 

10 min and transformed to One Shot Top10 Competent Cells (Invitrogen) following 

the manufacturer’s protocol. Problematic ligations (large DNA fragments or blunt 

ends) were transformed to XL10-Gold Ultracompetent Cells (Stratagene) following 

the manufacturer’s protocol. 

 

3.2.4 Determination of nucleic acid concentration 

The plasmid DNA/total RNA concentration in a sample was determined 

photometrically via the absorbance at 260 nm (A260) using the following formula: 

concentration of DNA/RNA sample [μg/mL] = ε×A260×dilution factor with ε 

double-stranded DNA = 50, ε single-stranded DNA and ε RNA = 40. The ratio 

A260/A280 was taken as a measure of the purity of a sample. 

 

DNA Template for PCR 
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3.3 Cell biological methods 

3.3.1 Buffers and solutions 

PBS  NaCl 8 g/L 
 KCl 0.2 g/L 
 KH2PO4 0.2 g/L 
 Na2HPO4•12 H2O 2.85 g/L 
 in ddH2O, pH 7.2, autoclave, 4°C 

Freezing medium  DMSO 10% (v/v) 
 FCS 40% (v/v) 
 Complete medium 50% (v/v) 
 prepared freshly before use  

Trypsin/EDTA  trypsin 0.5 g/L 
 EDTA 0.2 g/L 
 in sterile PBS, storage at 4°C  

Trypan blue solution  trypan blue 0.16% (w/v) 
 NaCl 0.9% (w/v) 
 NaN3 0.1% (w/v) 
 in ddH2O, filtered (0.45 μm), 4°C  

ACK lysis buffer  NH4Cl 8.3 g/L 
 KHCO3 1 g/L 
 EDTA 0.037 g/L 
 in ddH2O, pH 7.2~7.4, autoclave, 4°C 

Tissue digestion buffer Collagenase Type IV 5g/L 
 DNase I 50,000 U/L 
 FCS 1% 
 in PBS, prepared freshly before use 

Fix buffer for X-gal staining 2 % formaldehyde 
 2 % gluteraldehyde 
 in PBS, 4°C 

X-gal dilution buffer K4Fe(CN)6•3H2O 5mM 
 K3Fe(CN)6 5mM 
 MgCl2 2mM 
 in PBS, 4°C, protected from light 

X-gal stock solution X-gal 40g/L 
 in DMF, -20°C, protected from light 
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3.3.2 Cell culture methods 

3.3.2.1 Culture of cell lines 

All cell lines were grown at 37°C in a cell incubator in a 5% carbon dioxide/100% 

humidity atmosphere. Complete medium was supplemented with 100 U/mL penicillin 

and 100 μg/mL streptomycin, 2 mM L-glutamine, 25 mM HEPES, as well as 10% 

FCS (BIOCHROM, AG, heat inactivated at 56°C for 1 h).  

 

Most adherent cells were detached from the surface of the cell culture flasks with the 

help of a trypsin/EDTA solution. Before the detachment the growth medium was 

removed and the cells were washed by the careful addition and subsequent removal of 

10~20 mL PBS. Then 40 μL trypsin/EDTA solution per square centimeter surface 

was added and the cells were kept for 5-10 min at 37°C in a cell incubator. When the 

cells were detached they were washed in 10-20 mL growth medium to inactivate the 

trypsin/EDTA and used for further experiments 

 

DC2.4 is a dendritic cell line which becomes suspended after confluence. No 

treatment with trypsin/EDTA was applied to this cell line. Medium needs to be 

changed every day for confluent cells. Suspended cells could be planted to a new 

flask. 
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List of medium for different cell line 

 

Name Origin Medium Other 
supplements 

B16 Murine melanoma complete RPMI1640  

BHK 21 Hamster kidney fibroblast complete GMEM 0.1mM neAA* 
1.0mM SP*

CT26 Murine colon carcinoma complete DMEM  

CT26EP Murine colon carcinoma complete DMEM  

DA3 Murine mammary carcinoma complete RPMI1640 50μM 2-ME* 

DA3-EpCAM Murine mammary carcinoma complete RPMI1640 50μM 2-ME 

DC2.4 Murine dendritic cells complete RPMI1640 50μM 2-ME 

Eb-lacZ Murine lymphoma complete RPMI1640 50μM 2-ME 

ESb-lacZ Murine lymphoma complete RPMI1640 50μM 2-ME 

LTK-HK Murine fibroblast complete DMEM  

MCF-7 Human breast adenocarcinoma complete DMEM  

NIH 3T3 Murine fibroblastoma complete RPMI1640  

P815 Murine blastocytoma complete RPMI1640 50 μM 2-ME 

RAW264 Murine macrophage-like cells complete DMEM  

RMA-S Murine lymphoma complete RPMI1640  

*neAA: non-essential amino acids; SP: sodium pyruvate; 2-ME: β-Mercaptoethanol 
 

3.3.2.2 Freezing and thawing of cells 

In order to freeze mammalian cells, 1×106 to 1×107 cells were suspended in 1 mL 

freezing medium and transferred immediately to -80°C. After one week at -80°C, the 

cells were transferred to liquid nitrogen (-196°C). 

 

In order to thaw cells, 37°C warm growth medium was added to the frozen cells with 

a Pasteur pipette. One washing step was performed in 10 mL growth medium (250 g, 

5 min.) to remove the DMSO. After that the cells were seeded in fresh medium in a 

cell culture flask. 

3.3.2.3 Determination of cell number and viability 

Cells were counted with the help of a hemocytometer (Neubauer cell counting 

chamber, depth 0.1 μL) and an optical microscope. To distinguish live and dead cells, 
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trypan blue was added to the cell suspension in different dilutions ranging from 1:2 up 

to 1:10. Trypan blue stains only dead cells. The suspension was diluted enough so that 

the cells did not overlap each other on the counting grid. Cells that overlapped the top 

or left ruling of a large square were counted, whereas cells overlapping the bottom or 

right ruling were not counted. At least 100 living cells were counted for each sample 

in order to produce a statistically significant count. The cell number was calculated 

using the following formula: 

 

 
 
 
The viability of a cell population could be determined by calculating the percentage of 

living cells. 

 

3.3.3 Preparation of human PBMC 

The human PBMC used in the experiments were prepared from buffy coats, a fraction 

of a centrifuged blood sample that contains most of the leukocytes. LeucoSep 

centrifuge tubes were filled with 15 mL Ficoll solution and centrifuged shortly (250 g, 

1 min.). The buffy coat was diluted 1:4 in serum-free RPMI1640 and loaded onto the 

prepared LeucoSep tubes with 35 mL volume per tube. The tubes were centrifuged 

(800 g, 20 min., no brake), leading to an interphase enriched in PBMC between the 

Ficoll solution and the plasma. This interphase was collected with a Pasteur pipette 

and washed with serum-free RPMI1640 (PAA) (800 g, 10 min.).  Two more washing 

steps with serum-free RPMI1640 followed (250 g, 5 min. and 100 g, 5 min.). The cell 

pellet was resuspended in PBS and filtered with a cell strainer (40 μm). 

 

3.3.4 Generation of dendritic cells from murine bone marrow 

To prepare bone marrow cells, mice were sacrificed by CO2 inhalation and the fur 

was sterilized with 70% ethanol. All the following steps were carried out under sterile 

conditions in a tissue culture hood. Femora and tibiae from female BALB/c mice, 

8–12 wk, were removed and stripped of muscles and tendons. After soaking the bones 

in 70% ethanol for 2 min and rinsing in complete RPMI1640 medium, both ends were 

cut with scissors and the marrow was flushed with medium using a 27-gauge needle. 

Cells [mL-1] = 
Total cell count 

Number of counted large squares
×Dilution factor×104 
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Cell clusters were dissociated by repeated pipetting. After washing twice in medium 

(300 g, 10 min), bone-marrow cells were counted and used in the subsequent 

experiments. 

 

For generation of dendritic cells, the cell pellet was resuspended in medium 

supplemented with 2000 U/mL recombinant mouse GM-CSF (BD 554586) to reach a 

cell density of 1×106/ml. Transfer the cells into 24-well plates (1 ml/well) and 

incubate them in a 37°C incubator with a 5% CO2 atmosphere. To yield a high 

number of functional dendritic cells it is necessary to maintain a sufficient level of 

GM-CSF. Fresh medium containing GM-CSF should be added every second day. On 

day 2, carefully remove 700 μL of the cell medium from each well and replace it by 

fresh plating medium, to maintain an appropriate GM-CSF concentration. Remove 

and discard the cell medium completely on day 3. Wash the cells carefully with 500 

μL per well using medium to remove residual non adherent cells and add 1 ml per 

well fresh medium containing GM-CSF. Incubate the cells at 37°C in an incubator 

with 5% CO2 atmosphere. Harvest the immature dendritic cells on day 6 by collecting 

non adherent cells and loosely adherent cells or mature cells as described below. To 

release loosely adherent cells, wash off the cells thoroughly by pipetting them with 

medium. Discard adherent cells. 

 

3.3.5 Transfection of mammalian cells with jetPEI 

To transfect mammalian cells with plasmid DNA, the cationic polymer transfection 

reagent jetPEI (PolyPlus, for B16, BHK 21, CT26, DA3, NIH 3T3 cell lines) or 

jetPEI-macrophage (PolyPlus, for RAW264 cell line) was used according to the 

manufacturer’s instructions (www.polyplus-transfection.com, In vitro Transfection 

Protocol, ). The transfections were usually carried out on a 96- to 24-well scale. 

 

3.3.6 Transfection of mammalian cells with Lipofectamine 2000 

To transfect DC2.4 cells with plasmid DNA, the cationic lipid formulation 

transfection reagent Lipofectamine 2000 was used according to the manufacturer’s 

instructions (www.invitrogen.com, Lipofectamine 2000 Reagent, 11, July, 2006). The 

transfections were usually carried out on a 96- to 24-well scale. 

http://www.polyplus-transfection.com/
http://www.invitrogen.com/
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3.3.7 Transfection of dendritic cells with Nucleofector device 

To transfect murine BMDC cells with plasmid DNA, the Mouse Dendritic Cell 

Nucleofector Kit (Amaxa) was used according to the manufacturer’s instructions 

(www.Amaxa.com, Optimized protocol, DPA-1012 Vs. 02-2008) with a Nucleofector 

I electroporation device (Amaxa). The transfections were usually carried out on a 

12-well scale according to the manufacturer’s instructions. 

 

3.3.8 Stable transfection of mammalian cells with jetPEI and CombiMag 

To construct cell lines with stable gene expression, CT26, DA3 and DE cells were 

transfected with plasmid DNA (pcDNA3-EpCAM-hygro for CT26, 

pcDNA3-luc-hygro for DA3 and DE) by using jetPEI (PolyPlus) combined with 

CombiMag (OZ BIOSCIENCES) according to the manufacturer’s instructions 

(www.ozbiosciences.com, Magnetofection: PolyMag & CombiMag INSTRUCTION 

MANUAL). The transfections were carried out on a 6-well plate. 48 h after the 

transfection, cells were splitted to 2× 60mm Petri dish. Since day 3, 200µg/mL 

hygromycin was added to the medium. Medium was changed every 2 days until single 

clones were detectable.  

Single clones of cells were transferred to a 96-well plate  

1) For CT26: simply put a tip in the colony and transfer to fresh medium 

2) For DA3 and DE: with a sterile steel cloning ring, the colony was treated with 

Trypsin/EDTA and then transfered to fresh medium 

Single clones were further analyzed for stable gene expression (EpCAM expression 

by FACS for pcDNA3-EpCAM-hygro transfection, luciferase expression for 

pcDNA3-luc-hygro transfection). 

 

3.3.9 In vitro promoter activity 

For in vitro promoter activity analysis, cells were transfected with DNA vectors 

encoding firefly luciferase driven by different promoters, or pGL3-Basic (negative 

control) and CMV-luc (positive control). A vector CMV-Ruc encoding renilla 

luciferase was used for co-transfection to control the transfection efficiency. Promoter 

activity is expressed relative to the luciferase activity produced by the promoterless 

plasmid, pGL3-Basic, after correction for transfection efficiency by renilla luciferase. 

http://www.amaxa.com/
http://www.ozbiosciences.com/
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Transfections were made by triplicate, and repeated for 3 times. 

 

3.3.10 In vitro luciferase assay 

3.3.10.1 Firefly luciferase assay 

Single clone cells from stable pcDNA3-luc-hygro transfected cells (DA3 and DE) 

were lysed (Passive lysis buffer, Promega: 20µL/well for 96-well plate, 100µL/well 

for 24-well plate) and analyzed for luciferase expression with the Luciferase Assay 

System (Promega) according to the manufacturer’s instructions (www.promega.com, 

Luciferase Assay System, Protocol Vs 6/06) by using a Duolumat LB9507 

luminometer (Berthold). 

 

3.3.10.2 Firefly/Renilla dual luciferase assay 

Cells (transfected with both firefly and renilla luciferase DNA) after 24 h transfection 

were lysed (Passive lysis buffer, Promega: 20µL/well for 96-well plate, 100µL/well 

for 24-well plate) and analyzed for firefly/renilla luciferase activity with the 

Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s 

instructions (www.promega.com, Dual-Luciferase Reporter Assay System, Protocol 

Vs 8/06) by using a Duolumat LB9507 luminometer (Berthold). 

 

3.3.11 X-gal staining 

X-gal staining is a method to visualize β-galactosidase (β-gal) expression (encoded by 

lacZ gene), through hydrolysis of X-gal (5-bromo-4-chloro-3-indoyl-β-D- 

galactopyranoside) which yields a blue precipitate. Briefly, cells were planted (for 

adherent cells) or centrifuged (for suspended cells) in a 24-well plate. Media were 

removed. Cells were washed twice by PBS and fixed 10 min at RT with Fix buffer. 

After 2 times washes, cells were stained in X-gal staining buffer (dilute X-gal stock 

solution 1:40 in X-gal dilution buffer) in a cell culture incubator for 3-12h. Longer 

incubation may produce unspecific staining. Cells with successful staining were then 

washed twice by PBS and photographed under a microscope. 

 

http://www.promega.com/
http://www.promega.com/
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3.3.12 FDG staining 

Fluorescein di-D-galactopyranoside (FDG, molecular weight = 657, F1179, 

Invitrogen) is a fluorogenic substrate for β-gal. Non-fluorescent FDG is sequentially 

hydrolyzed by the β-gal enzyme, first to fluoresce in monogalactoside (FMG) and 

then to highly fluorescent fluorescein (Figure 3.1). Low levels of β-gal activity are 

readily detectable with FDG due to the superior spectral characteristics of fluorescein. 

These characteristics enable β-gal activity to be measured in single cells using FDG. 

 

 
Figure 3.1 Sequential hydrolysis of FDG to FMG and fluorescein by β-galactosidase. 

 

1) Flow Cytometric Analysis of Mammalian Cells 

Cells were assayed for β-galactosidase activity 24 h after transfection with lacZ DNA 

in 6-well plate. 

 

Prepare a 20 mM FDG stock solution (FDG dissolved in dimethylsulfoxide (DMSO)) 

and store at -20oC, protected from light. Dilute this stock 10-fold into sterile deionized 

water and prewarm at 37°C for 10 min. Mix the diluted FDG solution with an equal 

volume of cell suspension in growth medium (1×106 cells in 100μl) and incubate 1 

minute at 37°C. The resulting hypotonic solution will permeabilize the cells, allowing 

the FDG to enter. After 1 minute, stop the FDG loading by adding at least 10-fold 

(1.8mL) ice cold staining medium(1μg/mL propidium iodide, 4% FCS, 10mM 

HEPES in PBS). Maintain the sample on ice until analysis.  

 

2) Fluorometric Assays 

Cells were assayed for β-galactosidase activity 24 h after transfection with lacZ DNA 

in 96-well microplate (black, light protected). 

 

Following aspiration of the medium for each well, wash the cells once with PBS and 
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add 100μL lysis buffer (0.03% Triton X-100 in 100 mM HEPES, pH 7.8, containing 

10 mM KCl, 1 mM MgSO4) incubated at 50oC for 45 min. Cool plate to RT, and add 

10 μL 100 μM FDG. Incubate the plate at 37oC for 3 min, and then measure the 

fluorescein signal with a microplate fluorimeter (Model 7620, Cambridge Technology 

Inc. 
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3.4 Immunobiological methods 

3.4.1 Buffers and solutions 

ELISA coating buffer NaHCO3 10 mM  
 pH 9.6 

FACS buffer NaN3 0.1% 
 FCS 5% (v/v) 
 in PBS, 4°C 

 

3.4.2 ELISA (Enzyme-linked Immunosorbent Assay) 

Enzyme-linked Immunosorbent Assay (ELISA) combine the specificity of antibodies 

with the sensitivity of simple enzyme assays, by using antibodies or antigens coupled 

to an easily-assayed enzyme. ELISA can provide a useful measurement of antigen or 

antibody concentration. There are two main variations on this method: The ELISA can 

be used to detect the presence of antigens that are recognized by an antibody or it can 

be used to test for antibodies that recognize an antigen. Usually, an ELISA is a 

five-step procedure: 1) coat the microtiter plate wells with antigen; 2) block all 

unbound sites to prevent false positive results; 3) add antibody to the wells; 4) add 

anti-mouse IgG conjugated to an enzyme; 5) reaction of a substrate with the enzyme 

to produce a colored product, thus indicating a positive reaction.  

 

3.4.2.1 β-gal ELISA 

To determine mouse serum anti-β-gal antibodies (IgG+M, IgG1 and IgG2a), an β-gal 

ELISA was performed as the following steps: 

 

Immunoabsorbant ELISA-plates (flexible, 96 well, flat bottom, Becton Dickinson) 

were coated with purified β-gal protein (SIGMA, 25µg/mL, 50µL/well) overnight at 4 

°C in a humid chamber. After five washing steps with PBS, 200 µL/well of PBS-2% 

milk were used for blocking for 2 h at room temperature (RT). After five washing 

steps with PBS-Tween 20 (0.05%), 50µL/well of samples (diluted in PBS-2% milk) 

were added to the wells and incubated for 2 h at RT. After 5 washings with 

PBS-Tween 20 (0.05%), detection antibodies IgG+M-HRP (Dianova 1:5000), 
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IgG1-HRP (1:2000) and IgG2a-HRP (1:2000) were added with 50µL/well and 

incubated for 2 h at RT. After the washing steps with PBS-Tween 20, 

tetramethylbenzidine (TMB) substrate (KPL) was used for colour detection 

(50µL/well). After incubation for 20 min at RT (protected from light), the reaction 

was stopped with 50µL/well 2N H2SO4. The colour reaction was read at 450 nm 

within 30 minutes of stopping reaction. 

 

3.4.2.2 Mouse IFN-γ and IL-4 ELISA 

High Sensitivity ELISA Ready-SET-Go (eBioscience) Kits for mouse IFN-γ and 

mouse IL-4 were used in accordance with the manufacturer’s protocol 

(www.ebioscience.com). 

 

3.4.2.3 Human IFN-α ELISA 

BHK21 cells (3.5×104/well, seeding 24 h before transfection in 24-well plate) were 

transfected with DNA (0.4μg/sample) encoding HN and/or lacZ gene. 48 h later, 

freshly prepared human PBMC were tested as responder cells to produce IFN-α by 

overnight incubation at 37oC with transient transfected BHK21 cells in 24-well plates. 

They were incubated at a final concentration of 2.5×106/mL in a total volume of 0.4 

ml/well. As positive controls, PBMC were incubated with NDV or LTK-HN (a stable 

transfectant with HN expression). Cell supernatants were collected, centrifuged to 

remove cells, and stored at -20oC before testing IFN-α content by ELISA. Human 

IFN-α instant ELISA Kit (Bender MedSystems) was used according to the 

manufacturer’s instructions (www.bendermedsystems.com). 

 

3.4.2.4 Mouse IFN-α ELISA 

Immunoabsorbant ELISA-plates were coated with the first antibody Rat anti-mouse 

IFN-α monoclonal antibody RMMA1 (1:2000 in PBS, 50μL/well, PBL), 4oC 

overnight or RT 3 h. After 3 washing steps with PBS-Tween 20 (0.05%), 200 µL/well 

of PBS-1% BSA were used for blocking for 30min at 37oC. After 3 washing steps 

with PBS-Tween 20 (0.05%), 50µL/well of samples (diluted in PBS- 0.05% Tween 

20-1% BSA) were added to the wells and incubated for 2 h at RT. After 4 washings 

http://www.bendermedsystems.com/instant-elisa
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with PBS-Tween 20 (0.05%), the second antibody Rabbit anti-mouse IFN-α 

polyclonal antibody (1:5000 in PBS-0.05% Tween 20-1% BSA, 50μL/well, PBL) was 

added with 50µL/well and incubated for 2 h at RT. After the washing steps with 

PBS-Tween 20, the third antibody Peroxidase-conjugated F(ab)2 Donkey anti-Rabbit 

IgG(H+L) (1:4000 in PBS-0.05% Tween 20-1% BSA, 50μL/well, Jackson 

Immunoresearch) was added with 50µL/well and incubated for 1 h at RT. After the 

washing steps with PBS-Tween 20, tetramethylbenzidine (TMB) substrate (KPL) was 

used for colour detection (50µL/well). After incubation for 20 min~1 h at RT 

(protected from light), the reaction was stopped with 50µL/well 2N H2SO4. The 

colour reaction was read at 450 nm within 30 minutes of stopping reaction. Standard 

IFN-α4 (20,000IU/mL stock concentration) was gifted by Professor Rainer Zawatzky 

(German Cancer Research Center). 

 

3.4.2.5 TGF-β ELISA 

Mouse serum TGF-β was analyzed with 1:60 dilutions by DuoSet ELISA 

Development kit mouse TGF-β1 (R&D Systems) according to the manufacturer’s 

protocol (www.RnDSystems.com). 

 

3.4.2.6 IL-10 ELISA 

Mouse serum IL-10 was analyzed with 1:2 dilutions by BD OptiEIA Mouse IL-10 

ELISA Set (BD Biosciences) according to the manufacturer’s protocol 

(www.bdbioscience.com). 

 

3.4.3 51Cr release assay 

The classical method to analyse the cell-dependent cytotoxicity is based on the release 

of radioactive chromium from dead cells. At the beginning of this experiment the 

target cells were incubated in a [51Cr]-containing medium for one and a half hours, to 

get the chromium isotope into the cytoplasm (cytosol). There it binds covalently at 

proteins and accumulates in the cells. After that a washing step is needed to remove 

unbound [51Cr]. The labelled target cells were co-cultured with the cytotoxic effector 

cells for four hours. After short centrifugation of the cells, the supernatants were 

http://www.rndsystems.com/
http://www.bdbioscience.com/
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carefully removed and by means of a γ-counter the radioactivity could be quantified. 

The higher the amount of [51Cr] released into the culture supernatant (percent specific 

cytotoxicity), the more target cells have been killed by the effector cells. Negative 

controls eliminate the CTL and measure spontaneous release of [51Cr] from the target 

cells. Positive controls use detergent to lyse target cells and determine maximum [51Cr] 

release. Percent specific cytotoxicity is calculated by the formula:  

 

[(experimental cpm - spontaneous cpm)/(maximum cpm - spontaneous cpm)]×100. 

 

To test the specific cytotoxicity induced by DNA vaccines in the mice, 2 weeks after 

DNA immunization, 5×107 spleen cells were re-stimulated in vitro for 5 days in RPMI 

medium containing 10% FCS and 0.5 μg/ml TPHPARIGL in 10 mL volume. 

Supernatant was collected at day 2 for IFN-γ ELISA and day 5 for IL-4 ELISA. 

Re-stimulated spleen cells were used as the effector cells for their cytotoxic activity in 

a standard 4 h 51Cr release assay. 51Cr-labeled P13.1 (lacZ+) and P815 (lacZ-) cells 

was used as the specific and unspecific target cells respectively. Target cells (2×106) 

were labeled with 100µCi Na51CrO4* for 90 min at 37°C. The target cells were 

washed 3 times in complete medium and resuspended at 5000 cells/100μL/well in a 

96-well round-bottomed plate (Corning). Effector cells were added to the target cells 

(100μL/well) at various effector to target (E:T, 100:1, 50:1, 25:1, 12:1) ratios. 1% 

SDS was used as the positive control for maximum release. Complete medium was 

used as the negative control for spontaneous release. The plate was centrifuged (500 

rpm, 3 min) and incubated for 4 h at 37°C. After the incubation, the plate was 

centrifuged again (1000 rpm, 3 min), and 100µl of supernatant were transferred to a 

γ-counter tube and sealed with wax. The amount of 51Cr released was measured in a 

γ-counter (COBRA Packard) and the percentage of lysis was calculated from the 

formula showed before. The 51Cr-release was read on a γ-counter. 
* dose is dependent upon the age of the 51Cr 

1st week  → 200 µL 
2nd week → 250 µL 
3rd week  → 300 µL 

 

3.4.4 Flow cytometry 

For staining of primary mouse cells, 0.5~1 x 106 cells were washed twice with FACS 
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buffer (centrifugation at 4°C, 10 min,  1400rpm) and incubated with 10% Fc block 

(2.4G2 supernatant, gifted by Dr Adelheid Cerwenka) for 10 min on ice to block Fc 

receptors. Subsequently, the primary antibodies were added and cells were further 

incubated for 30 min on ice. For second antibodies or biotinylated antibodies, cells 

were washed twice with FACS buffer and stained with conjugated second antibodies 

or streptavidin for 30 min on ice. After staining, cells were washed twice and 

resuspended in 100~200 μL FACS buffer. Propidium iodide (PI, 1μg/mL) or 7-AAD  

(2.5μg/mL) was added 10 min before FACS acquisition to exclude dead cells. Viable 

cells (5×104~5×105) were acquired with the CellQuest software on a FACSCalibur 

(BD Biosciences) or with the FACSDiva software on a FACSCantoII (BD 

Biosciences) if PE-Cy7/APC-Cy7 was used.  

 

For staining of cell lines, 0.5~1 x 106 cells were washed twice with FACS buffer 

(centrifugation at 4°C 5 min, 1200rpm) and incubated with the primary antibodies for 

30 min on ice. For second antibodies or biotinylated antibodies, cells were washed 

twice with FACS buffer and stained with conjugated second antibodies or streptavidin 

for 30 min on ice. After staining, cells were washed twice and resuspended in 

100~200 μL FACS buffer. Propidium iodide (PI, 1μg/mL) was added 10 min before 

FACS acquisition to exclude dead cells. Viable cells (5×104~5×105) were acquired 

with the CellQuest software on a FACSCalibur (BD Biosciences). 

 

For anti-human and mouse EpCAM antibody analysis, 4×105 MCF-7 (overexpression 

of human EpCAM) and DA3 (overexpression of mouse EpCAM) cells were used 

respectively. Mouse sera were diluted as 1:100 in FACS buffer and stained for 30 min 

on ice. Cells were washed twice with FACS buffer and stained with conjugated 

second antibodies for 30 min on ice. After staining, cells were washed twice and 

resuspended in 100~200 μL FACS buffer. Propidium iodide (PI, 1μg/mL) was added 

10 min before FACS acquisition to exclude dead cells. Viable cells (5×104~5×105) 

were analyzed with the CellQuest software on a FACSCalibur (BD Biosciences). 

 

FlowJo software (Tree Star, San Carlon, CA) was used to analyze FACS data. Data 

were expressed as dot plots or histograms. 

 



Materials and Methods 

     - 40 -           

List of antibodies for FACS staining: 

 

Antigen-label Isotype & Clone Cat. No. or Author Dilution 

Human EpCAM Mouse IgG1, HEA125 Dr. Gerhard Moldenhauer,  1:100 

Mouse EpCAM Rat IgG2a, κ, G8.8, Dr. Gerhard Moldenhauer 1:100 

NDV HN Mouse IgG2a, HN.B Annette Arnold 1:100 

CD3e-APC Hamster IgG1, κ, 145-2C11 BD 553066 1:100 

CD4-PE Rat IgG2a, κ, RM4-5 BD 553049 1:100 

CD8a-APC-Cy7 Rat IgG2a, κ, 53-6.7 BD 557654 1:100 

CD11b-APC Rat IgG2b, κ, M1/70 BD 553312 1:100 

CD11c-PE Hamster IgG1, λ2, HL3 BD 557401 1:100 

CD45.2-FITC Mouse IgG2a, κ, 104 BD 553772 1:100 

CD45.2-PerCP-Cy5.5 Mouse IgG2a, κ, 104 BD 552950 1:100 

CD49b-FITC (Pan-NK) Rat IgM, κ, DX5 BD 553858 1:100 

CD80-PE Hamster IgG2, κ, 16-10A1  1:100 

CD86-PE Rat IgG2a, κ, GL1 BD 553692 1:100 

F4/80-PE Rat IgG2b, CI:A3-1 CL8940PE 1:100 

Gr1-FITC Rat IgG2b, κ, RB6-8C5 BD 553126 1:100 

H2Dd-PE Mouse IgG2a, κ, 34-2-12 BD 553580 1:100 

IAd-PE Mouse IgG2b, κ, AMS-32.1 BD 553548 1:100 

Hamster IgG1-PE Isotype IgG1, λ1, G235-2356 BD 554711 1:100 

Mouse IgM+G+A-PE Goat F(ab’)2 SouthernBiotech1012-09 1:100 

Rat IgG-FITC Goat F(ab’)2 R&D Systems F0104 1:100 

Mouse IgG1 Rat IgG1, κ, A85-1 BD 550083 1:100 

Mouse IgG2a Rat IgG1, κ, R19-15 BD 553390 1:100 

streptavidin-PE  BD554061 1:100 

streptavidin-APC  BD554067 1:100 

All staining was done in 50μL incubation volume. 
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3.4.5 Hemadsorption assay 

The lymphocyte binding activity of HN proteins was determined by testing their 

ability to adsorb sheep erythrocytes. HN expressing BHK cell monolayers (48 h after 

transfection as described in 3.4.3) were incubated for 20 min with a 2% suspension of 

sheep red blood cells (purchased from Oxoid, Wesel, Germany) in PBS supplemented 

with 1% CaCl2 and MgCl2 (Gibco Life Technologies). Microscopic observations 

allowed the detection of bound erythrocytes at the surface of the cells. After extensive 

washings, adsorbed erythrocytes were lysed in 50 mM NH4Cl, and the lysates were 

clarified by centrifugation. HAd activity was quantified by measuring the absorbance 

at 540 nm after subtracting the background absorbance obtained with BHK cells not 

expressing NDV proteins. 

 

3.4.6 Immunohistochemistry 

Freshly isolated tumor, ear and skin tissues were frozen in liquid nitrogen and then 

stored in -80oC until use. Tissues were cut to frozen sections with 4μm thickness 

using a cryostat and stored in -80oC until use. Frozen sections were stained by 

immunohistochemistry. For tumor infiltrated lymphocytes, CD4, CD8 T cells and NK 

cells were stained by anti-CD4 (h129.19), anti-CD8 (53-6.7) and anti-CD49b (Hal/29) 

antibodies (1:200). For DC in ear and flank skin, anti-CD11c and anti-CD207 

antibodies (1:200) were used. Anti-Ig HRP Detection Kits (both anti-Hamster and 

Anti-Rat HRP Kits, BD Bioscience) were used for detection. Cytoseal 60 (Stephens 

Scientific), and visualized with Nomarski optics. Staining was followed the 

manufacturer’s protocol (www.bdbioscience.com). All images were digitally captured 

on a Zeiss Axioplan 2 imaging microscope equipped with a AxioCam camera and 

imaged using AxisoVision 4.0 software. 

 

3.4.7 Preparation of cell lysate 

Cells were harvested, washed 3 times in PBS (250 g, 3 min.) and counted. Cells were 

resuspended in 200 μL PBS per 1×107 cells. The cells were put directly to the liquid 

nitrogen till freeze and transferred immediately to 37oC water bath. Shake the tube 

until the buffer by pipetting up and down and then they were incubated for 15 minutes 

http://www.bdbioscience.com/
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on a shaker at room temperature. After centrifugation in a table centrifuge (16000 g, 

20 min, 4oC), the supernatant was measured for protein concentration by Bradford 

protein assay, transferred to a chilled test tube and stored at -80°C. 
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3.5 In vivo experiments 

3.5.1 Buffers and solutions 

Tissue digestion buffer Collagenase IV (Cell systems) 2.5 mg/mL 
 DNase (Roche) 50U/mL 
 FCS 1% (v/v) 
 in PBS, freshly prepared 

Skin digestion buffer Trypsin 2.5% 
 EDTA 2.5mM 
 in PBS, freshly prepared 

 

3.5.2 DNA immunization and electroporation 

Mice were anesthetized by ip injection of Rompun (4.5mg/kg BW) (Bayer, 

Leverkusen, Germany) and Ketanest (45 mg/kg BW) (Bayer, Leverkusen, Germany). 

25μg/50μL (for gene expression, immune responses and prophylactic tumor model) or 

50μg/50μL (for therapeutic tumor model) of DNA, dissolved in PBS, were injected 

either ie or id or im into the ear or shaved flank or quadriceps by using BD Insulin 

syringe (29-gauge). To control the depth of needle penetration, the needle was 

covered with polyethylene tubing to expose only 2 mm of the bevel. 

 

DNA electroporation (EP) was performed by ELGEN1000 electroporation-based 

DNA delivery system (Inovio) with optimal parameters (Table 3.1) suggested by this 

company. For DNA delivery to the ear pinna and flank skin, caliper electrode and 

pedal were used in the mouse program. After DNA injection with 50μL volume, 

Ultrasound gel was applied to the local injection site. Caliper electrode was placed at 

the injection site, with 1 mm distance between the two electrodes. EP was performed 

by pressing the pedal followed by a triple beep which indicated successful EP. 
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Time1 20 ms 

Volt1 80V/cm 
Number of sequence 5 
Number of trains 1 
Pulse Delay 100 ms 
Train Delay 100 ms 
Current Limit 1000 mA 

 

3.5.3 Tumor inoculation 

Tumor cells were collected, washed 3 times in PBS, and resuspended with desired 

concentration in PBS. 100μL tumor cells were inoculated sc or iv. Tumor growth was 

followed every 2 or 3 days. 

 

3.5.4 Preparation of mouse serum 

Blood samples were obtained from the retro-orbital plexus of mice, incubated at 37°C 

for 30 min or at 4°C for 4 h, centrifuged at 13,000 rpm, 4°C for 15 min. Aliquot the 

supernatant and store at -20 °C or -80 °C. 

 

3.5.5 In vivo imaging of luciferase expression 

The IVIS100 imaging system (Xenogen, Alameda, USA) was used for imaging mice. 

Bioluminescent color images were acquired by Living Image 2.50 software overlay 

(Xenogen, Alameda, USA) and analyzed by Igor Pro 4.09A software. D-luciferin 

potassium salt (SYNCHEM), the firefly luciferase substrate, was diluted to 30 mg/mL 

in PBS (filtered by 0.22μm filter). Imaging of mice was made 5 min after the 

intraperitoneal (ip) injection of 100 μL D-luciferin solution. Bioluminescence signals 

are expressed in units of photons per second per cubic centimeter per steradian 

(p/sec/cm2/sr). Mice injected with DNA encoding firefly luciferase were imaged at 4 h, 

8 h, and 1-7 days, then every week. 

 

Table 3.1 Electroporation parameters 
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3.5.6 Preparation of single cell suspension from murine organs 

Mice were sacrificed by CO2 inhalation and the fur was sterilized with 70% ethanol. 

All the following steps were carried out under sterile conditions in a tissue culture 

hood. The mice were placed on a preparation pad and fastened with metal pins. They 

were then cut open on the ventral side through the skin and the peritoneum, and the 

organs were taken out.  

 

Centrifugation in preparation of primary cells was taken at 4oC, 300g, 10 min. 

3.5.6.1 Spleen  

For preparation of splenocytes for 51Cr release assay, spleen was taken out and placed 

into a 40μm cell strainer in a 60mm dish filled halfway with PBS. With a syringe plug 

the cells were carefully pushed out of the spleen by repeated strokes from the centre 

of the spleen towards its ends. This procedure was continued until all of the cells were 

in suspension in the PBS and only the outer skin of the spleen remained. The 

suspended cells were centrifuged and 1 mL ACK buffer was added the cell pellet. 

After 1min the cells were washed in complete medium twice and then they were 

counted and used in the subsequent experiments.  

 

For FACS analysis, spleen was taken out and digested in Tissue digestion buffer at 

37oC for 10 min. Then it was crushed as indicated in the protocol for preparation of 

splenocytes for 51Cr release assay. 

 

3.5.6.2 Lymph node 

Lymph node was taken out, digested in Tissue digestion buffer at 37oC for 10 min, 

and crush in a cell strainer (40μm). Then the same protocol as for spleen cell 

preparation was followed. 

 

3.5.6.3 Peripheral blood 

For FACS analysis, 200μL fresh blood was mixed immediately with 1 mL 0.01% 

EDTA in PBS to prevent clotting and put on ice. Pellet was collected by centrifugation 

and 1 mL ACK buffer was added. After 10 min at RT, cells were washed twice in 
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complete medium and used in the subsequent experiments. 

 

3.5.6.4 Bone marrow 

Bone marrow cells were prepared as the protocol described in 3.3.4. 

 

3.5.6.5 Tumor 

A single cell suspension of DA3 tumor was obtained by tumor processing and 

enzymatic digestion. Briefly, the tumor was minced into small pieces (<5 mm), and 

washed with complete DMEM. The tumor digestion was carried out at 37°C for 20 

min with shaking. The cell suspension was then filtered through 70 μm filter to 

remove cell clumps and undigested tissue fragments, and washed twice in complete 

DMEM. Cells were counted and used in the subsequent experiments. 

 

3.5.6.6 Ear 

Ear was cut and placed in a petri dish (6cm) until dry. Two ear halves were separated 

in skin digestion buffer (2.5% trypsin, 2.5mM EDTA in PBS). Ventral halves (thin) 

were incubated at 37oC for 45 min, and dorsal halves (thick) were incubated at 37oC 

for 90 min. Both epidermis and dermis (separated if necessary) were placed in a 40μm 

cell strainer and carefully dissociated in ice-cold PBS. Cells were then centrifuged 

and resuspended in 1mL ice-cold H2O for exactly 30 s to lyse keratinocytes. Lysis was 

stopped by 10mL PBS. Cells were washed 3 times and used in the subsequent 

experiments. 

 

3.5.7 Staining of metastases 

Organs from the tumor bearing mice were stained in Boin’s solution (Sigma) for 

metastases. Nodules were counted after 72 h. 
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3.6 Statistical methods 

Experimental data are expressed as mean±SD if not illustrated. The statistical 

significance of differences in mean values was determined using Student’s t test. 

Survival data are presented as a Kaplan-Meier survival curve and analyzed with 

log-rank test. Differences of at least p < 0.05 are considered to be significant.  
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4 Results 

4.1 Superiority of ear pinna to flank skin for antigen expression and 

induction of immune responses by DNA immunization 

Usually, intradermal DNA immunization is administered to the abdominal or flank 

skin in mouse experiments. Previous studies in our group showed, however, a 

superiority of DNA immunization into the ear pinna for induction of immune 

responses compared to abdominal skin and muscle (75). 

 

4.1.1 Comparison of antigen expression in ear pinna and flank  

To directly visualize and measure antigen (Ag) expression induced by DNA 

immunization in vivo, we used a plasmid CMV-luc construct encoding firefly 

luciferase as a reporter gene. The luciferase protein expression can be detected by an 

in vivo imaging system (IVIS 100) after applying the substrate D-luciferin. 

 

To compare the Ag expression in the ear pinna and the flank skin by DNA 

immunization, we injected CMV-luc into both the ear pinna (ie) and the flank skin (id) 

with different amount of DNA (25μg to the left side and 10μg to the right side). In 

vivo imaging showed that luciferase expression was superior in the ear pinna 

compared to the flank skin by different amount of DNA injection. Quantitative 

analysis revealed 10 times higher luciferase expression in the ear pinna than in the 

flank skin (Figure 4.1). The Ag expression reached the plateau 24 h after of the DNA 

injection and maintained the high level for 1 week, before dropping a little after 2 

weeks. 25μg and 10μg DNA induced similar Ag expression in the ear pinna, and 

induced also similar Ag expression for 3 days in the flank skin. From day 4 to day 14, 

25μg DNA showed somewhat better Ag expression to 10μg DNA in the flank skin. 
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Figure 4.1 Ag expression in the ear pinna and flank skin by DNA immunization. 

Balb/c mice (n=5) were immunized with a plasmid CMV-luc encoding firefly luciferase (left: 25μg; 
right: 10μg) ie and id. Luciferase (Ag) expression was monitored by in vivo imaging with the IVIS100 
system at different time-points (exposure time: 60s). Bioluminescent signal was calculated for region of 
interest (ROI) (Unit: p/sec/cm2/sr). 
 

4.1.2 Humoral responses by ear pinna or flank skin DNA immunization 

By DNA immunization with the plasmid CMV-lacZ (pCMV SPRORT-βgal, 

Invitrogen) encoding beta-galactosidase (β-gal) protein as a model Ag, specific 

anti-β-gal antibody and T cell cytotoxicity can be induced (75). To compare the 

humoral immune responses induced by DNA immunization to the ear pinna and to the 

flank skin, we applied CMV-lacZ (25μg/50μL) intradermally to mice at either site. 

Sera were taken at day 7 and day 14 of the immunization. Anti-β-gal antibodies were 

detected at day 7 in both groups. They were highly increased at day 14 (Figure 4.2). 

Antibody titer was higher by ie injection than by id injection at both time-points 

(about 1.7 times higher at day 7 and 15 times higher day 14). These results revealed 

that a better humoral immune response could be induced by injection of DNA to the 

ear pinna rather than flank skin which is used in most cases for DNA intradermal 

injection. 
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Figure 4.2 Titers of serum anti-β-gal antibodies in lacZ-immunized mice. 

DBA/2 mice (n=3/group) were immunized with CMV-lacZ plasmid (25μg/50μL) ie or id. Serum 
anti-β-gal antibodies (IgG+M) at day 7 and day 14 were analyzed by β-gal ELISA. Experiments were 
repeated for 3 times with similar results. 

 

4.1.3 Cellular responses by ear pinna or flank skin DNA immunization 

4.1.3.1 Cytotoxicity 

To evaluate T cell mediated immune responses induced by ie and id DNA 

immunization, splenocytes from mice immunized ie or id with CMV-lacZ 

(25μg/50μL) at day 14 were re-stimulated with an Ld-restricted β-gal peptide for 5 

days in vitro and analyzed for β-gal peptide-specific CTL responses by a 4 h 51Cr 

release assay as described before (75). Re-stimulated splenocytes were used as 

effector cells, lacZ+ tumor cells P13.1 (P815 stably transfected with lacZ gene) were 

used as target cells, and P815 cells were used as the negative control. Spontaneous 

release was always below 10%. Results of one representative experiment from 3 are 

shown in Figure 4.3. Only by ie lacZ gene immunization (25μg), efficient cytotoxicity 

was induced with specific lysis around 60% at 100:1 effector to target cell ratio (E:T) 

and around 20% specific lysis at 12:1 E:T. By id lacZ gene immunization, no specific 

CTL responses were generated at day 14. These results showed ie DNA immunization 

could induce a stronger cytotoxicity than id DNA immunization. 
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Figure 4.3 β-gal specific CTL responses in lacZ immunized mice. 

Splenocytes were isolated from immunized DBA/2 mice (n=3/group) 14 days after a single injection 
with CMV-lacZ (25μg/50μL) ie or id. The splenocytes were re-stimulated for 5 days with 0.5μg/mL 
TPHPARIGL peptide and used as the effector cells in a 4 h 51Cr release assay. lacZ+ tumor cells P13.1  
were used as the target cells, and lacZ- tumor cells P815 were used as the negative control. E:T, effector 
to target cell ratio. Experiments were repeated for 3 times with similar results. 
 

4.1.3.2 IFN-γ and IL-4 secretion 

To further prove the stronger cellular immune responses induced by ie DNA 

immunization than id DNA immunization, IFN-γ and IL-4 secretion to the supernatant 

from the re-stimulated splenocytes were analyzed by ELISA. Ie DNA immunization 

was better for IFN-γ secretion, which is a benefit for cellular immune response 

induction. In contrast, id DNA immunization was better for IL-4 production (Figure 

4.4), which is a benefit to humoral immune response induction.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 β-gal specific IFN-γ and IL-4 secretion in lacZ immunized mice. 

Splenocytes were isolated from immunized DBA/2 mice (n=3/group) 14 days after a single injection 
with CMV-lacZ (25μg/50μL) ie or id. These splenocytes were re-stimulated for 5 days with 0.5μg/mL 
TPHPARIGL peptide and the supernatants from day 2 and day 5 were analyzed for IFN-γ and IL-4 
ELISA respectively. Experiments were repeated for 3 times with similar results. 
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4.2 Adjuvant effect of Newcastle disease virus HN gene for ear pinna 

DNA vaccination with beta-galactosidase as a surrogate tumor 

antigen 

Newcastle Disease Virus (NDV) is an avian paramyxovirus with replication 

competence in human tumor cells and interesting anti-neoplastic and immune 

stimulatory properties (84, 114). Viral hemagglutinin-neuraminidase (HN), a type II 

glycoprotein, is a receptor recognition site for binding sialic acid of host cell receptor 

glycoconjugates. It was shown in our previous studies that HN could stimulate a 

strong human natural interferon-α response (107-109) and could confer T cell 

co-stimulatory function (108, 115). Because of these immunostimulating activities of 

HN, we intended to evaluate the use of HN gene as an adjuvant in anti-cancer DNA 

vaccines. 

 

4.2.1 In vitro activity of the HN molecule 

4.2.1.1 Construction of a plasmid encoding the HN gene 

The HN gene from NDV Ulster was copied by PCR and cloned into pTandem1 

(Novagen) to construct the CMV-HN vector (Figure 4.5a). CMV-HN was transfected 

into BHK21 cells (BHK) which were then analyzed for cell surface HN expression by 

FACS. Figure 4.5b shows HN molecule expression by the transfected cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 CMV-HN vector construction and HN expression analyzed by FACS. 
The HN gene was cloned into the Vector to construct CMV-HN (a). CMV-HN was transfected into 
BHK cells. HN expression at the cell surface was analyzed by FACS with a monoclonal anti-HN 
antibody (HN.B) 24 h after transfection (b). 
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4.2.1.2 Cell binding activity of HN 

The lymphocyte binding activity of HN proteins was determined by testing their 

ability to adsorb sheep erythrocytes (hemadsorption activity, HAd). BHK cells were 

transfected with CMV-HN or a control DNA CMV-lacZ. 24 h later, these transfected 

cells were coincubated with sheep erythrocytes for cell binding activity analysis. 

Transfection with a control DNA did not improve cell binding compared to 

non-transfected control cells. However, HN expression at the cell surface improved 

erythrocyte cell binding activity (Figure 4.6). 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 Cell binding activity of HN in vitro. 
Cell binding activity of HN was analyzed by hemadsorption assay (HAd). Untransfecd BHK cells, 
CMV-HN or CMV-lacZ (pCMV SPORT-βgal, used as a DNA control) transfected BHK cells were 
coincubated with sheep erythrocytes. Bound erythrocytes were lysed in 50 mM NH4Cl, and HAd 
activity was quantified by measuring the absorbance at 540 nm. Experiments were repeated 3 times 
with similar results. 
 

4.2.1.3 IFN-α induction activity of HN 

Human PBMCs were coincubated with BHK cells transected with CMV-HN to test 

for IFN-α induction. While transfected BHK cells themselves did not produce IFN-α 

(Figure 4.7 Cell control group), PBMC coincubated with CMV-HN transfected BHK 

cells produced 16 pg/ml IFN-α in the supernatant. This is 2.7 times higher than the 

IFN-α produced by coincubation with control DNA transfected BHK cells. 

 
 
 
  
 
 
 
  
 
 
 
 

Figure 4.7 IFN-α induction activity of 

HN in vitro. 

Human PBMCs were coincubated with BHK 
cells transfected with CMV-HN or a control 
DNA CMV-lacZ. Untransfected BHK cells 
were used as the negative control. Supernatants 
of the coculture were analyzed for IFN-α 
production by ELISA. Experiments were 
repeated 3 times with similar results. 
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4.2.2 In vivo activity by HN DNA injection 

4.2.2.1 Serum IFN-α induction by NDV administration 

To analyze the IFN-α induction activity by NDV in vivo, we injected NDV Ulster ip 

to the mice. Sera were taken at different time-points, and analyzed for IFN-α levels 

were by ELISA. Serum IFN-α was detected from 4 h after NDV injection, reached the 

peak at 8h, and then decreased. It is not detectable after 24 h with a low dose (500HU) 

and after 48 h with a high dose (2000HU) of NDV per injection. This shows that the 

IFN response is an early induced immune response. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8 Serum IFN-α induction by NDV ip administration.  

NDV Ulster (500HU or 2000HU) was injected ip to the Balb/c mice. Sera from different time-points 
were analyzed for IFN-α production by ELISA. 

4.2.2.2 Serum IFN-α induction by HN DNA ie immunization 

The peak serum IFN-α induction by NDV in mice was detected at 8 h (Figure 4.8). 

Since the gene expression level after DNA immunization reached its peak at 24 h, we 

analyzed serum IFN-α induction by HN DNA immunization at 32 h (24 h + 8 h). 

Mice immunized with HN DNA produced significantly more IFN-α than the control 

groups (Vector and PBS immunization). 
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Figure 4.9 Serum IFN-α induction by HN 

DNA ie immunization 

HN DNA (50μg/50μL) was applied ie to Balb/c 
mice (n=5/group), with Vector and PBS injection as 
controls. Sera at 32h were analyzed by IFN-α 
ELISA (shown are MEAN±SEM).    
* Compared to the Vector and PBS groups, p<0.05 
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4.2.2.3 Prophylactic anti-tumor effect by HN DNA immunization 

To further analyze the potential immunostimulating effect induced by HN DNA 

immunization, HN DNA was applied in a prophylactic immunization protocol of the 

mouse mastocytoma tumor model P815. In this non-aggressive tumor model, 40% of 

the mice with 3 prophylactic HN DNA vaccinations were protected from the tumor 

growth (Figure 4.10). We then applied the HN DNA to the metastatic mouse 

mammary carcinoma tumor model DA3. With 2 prophylactic HN DNA vaccinations 

(ie or sc), tumor growth was significantly inhibited compared to Vector and PBS 

groups as shown in Figure 4.11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.3 Adjuvant effect of HN in prophylactic mouse lymphoma models 

The immunostimulating effect of the HN gene has thus far been shown in vitro and in 

vivo. Therefore, it was of interest to test the HN molecule as a potential adjuvant for 

an Ag specific DNA vaccine. We applied the HN gene as an adjuvant to lacZ DNA 

vaccine in a mouse lymphoma transfected with the lacZ gene so that the gene product 

beta-gal protein served as a surrogate tumor Ag. 
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Figure 4.10 Prophylactic anti-tumor effect 

induced HN DNA ie immunization in P815 

tumor model. 

HN DNA (50μg/50μL) was immunized ie to the 
DBA/2 mice (n=5/group) 3 times with 2 weeks 
interval. 2 weeks after the 3rd DNA immunization, 
2×106 P815 cells were inoculated sc to the mice. 
Compared to the PBS group, p=0.0528 
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Figure 4.11 Prophylactic anti-tumor 

immunization effects by HN DNA in the 

DA3 tumor model. 

HN DNA (50μg/50μL) was applied ie to Balb/c 
mice (n=5/group) twice with 2 weeks interval. 
2 weeks after the 2nd DNA immunization, DA3 
cells (1×107) were inoculated sc to the mice. 
Tumor diameters (MEAN±SEM) from day 48 
are shown. 
∗ Compared to the Vector and PBS groups, 
p<0.05 
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4.2.3.1 Construction of vectors encoding HN and lacZ gene 

The lacZ gene was cut with respective restriction enzymes from CMV-lacZ (CMV 

SPRORT-βgal, Invitrogen) and cloned into the CMV-HN vector either behind the HN 

gene as a fusion protein (expressed at the cell surface) as the HN-lacZ vector or in 

front of the HN gene separated by an IRES sequence (to be expressed separately 

inside the cells) as lacZ-HN vector (Figure 4.12). Those vectors were transfected to 

BHK cells, and analyzed for HN and lacZ expression in vitro. Figure 4.13a shows a 

strong HN expression at the cell surface by HN and lacZ-HN gene transfection, and a 

weak HN expression by HN-lacZ gene transfection. This indicated that by fusion with 

the lacZ gene, the expression of HN gene at the cell surface was decreased. lacZ gene 

expression was analyzed either by FDG staining with FACS assay or by a 

fluorometric assay (Figure 4.13b and c). lacZ and lacZ-HN transfection led to a high 

β-gal expression, while HN-lacZ transfection led only to a very low but detectable 

(about 30 times lower than lacZ and lacZ-HN) β-gal expression (Figure 4.13c). By 

X-gal staining, β-gal expression could also be detected in lacZ and lacZ-HN 

transfected cells (Figure 4.13d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12 Construction of vectors encoding HN and lacZ genes. 

CMV-lacZ (pCMV SPRORT-βgal, Invitrogen) was used as the CMV-lacZ vector. lacZ gene was cut 
out from CMV-lacZ and cloned into CMV-HN either behind the HN gene as a fusion protein or in front 
of the HN gene expressed separately. pTandem1 was used as the control vector (a). HN and lacZ 
expression patterns in cells are illustrated in b. 
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4.2.3.2 Adjuvant effect of HN in the Eb-lacZ tumor model 

The above DNA vaccines were applied in a prophylactic immunization protocol in the 

mouse lymphoma model Eb-lacZ (Eb cell line with stable lacZ gene expression, 

Figure 4.14a). By 2 times prophylactic DNA vaccinations, mice vaccinated with lacZ 

and lacZ-HN were 100% protected from the tumor growth (Figure 4.14). 40% of the 

mice vaccinated with HN-lacZ were tumor-free. The anti-tumor effect was significant 

compared to the PBS group (Figure 4.14). Fusion of HN and lacZ genes impaired 

both the protein expression (Figure 4.13) as well as the anti-tumor activity. 

 

4.2.3.3 Adjuvant effect of HN in ESb-lacZ tumor model 

It was shown in the Eb-lacZ tumor model that lacZ gene immunization protected 

100% mice from tumor growth no matter whether HN was used as an adjuvant or not. 

To analyze further the HN activity as an adjuvant for DNA ie immunization, these 

DNA vaccines were applied next to the ESb-lacZ tumor model (X-gal staining, Figure 

4.15a). ESb is a highly aggressive subline of Eb lymphoma cells.  

 

It was reported that type I IFN has an effect on DC maturation (116). Since HN is a 

strong IFN-α inducer, it is possible to induce IFN-α locally in the ear pinna. To avoid 

a possible interference with DC maturation at the local injection site, we also 

administered the HN plasmid separately subcutaneously to the flank.  

 

In the prophylactic ESb-lacZ tumor model, a significant anti-tumor effect was 

achieved by lacZ gene vaccination (Figure 4.15b). With HN as an adjuvant, tumor 

inhibition was improved, especially by HN sc administration. HN sc immunization, 

rather than a vector sc immunization, induced a significant improvement to the 

anti-tumor activity compared to lacZ immunization alone. This suggested that the 

adjuvant effect resulted from the HN gene and was not just a vector effect. ESb-lacZ 

tumor weight at day 20 (c) corresponded the tumor diameters (b). 

 

In another prophylactic experiment in this tumor model, mice were analyzed for 

survival (Figure 4.16). The median survival was 32 days by lacZ-HN immunization 

and 28 days by lacZ ie+HN sc, compared to 21 days by lacZ immunization and 25 
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days by Vector immunization (Table 4.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13 Verification of vectors encoding HN and lacZ gene. 
Vectors encoding the HN and lacZ genes (Figure 4.12) were transfected to BHK cells. HN expression 
was analyzed by FACS with an anti-HN antibody (HN.B) (a). β-gal expression was analyzed by FDG 
staining with FACS assay (b) and fluorometric assay (c). β-gal expression was also analyzed by X-gal 
staining (d). Original magnification: ×400. 
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Figure 4.14 Prophylactic anti-tumor effect induced by lacZ gene immunization with HN 

as an adjuvant in Eb-lacZ tumor model.  

a. X-gal staining of Eb-lacZ cells. Original magnification: ×400. b. Prophylactic anti-tumor effect of 
lacZ gene immunization with HN as an adjuvant in Eb-lacZ tumor model. DNA vaccines (50μg/50μL) 
were immunized ie to the DBA/2 mice (n=5/group) twice with 2 weeks interval. 2 weeks after the 2nd 
DNA immunization, 4×106 Eb-lacZ cells were inoculated sc to the mice. Tumor diameters 
(MEAN±SEM) from day 11 are shown. 
∗ Compared to the Vector and PBS groups, p<0.05;  
∗∗ Compared to the Vector and PBS groups, p<0.01 
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Figure 4.15 Improvement of anti-tumor immunity by HN in a prophylactic setting of the 

ESb-lacZ tumor model 

a. X-gal staining of ESb-lacZ. Original magnification: ×400. b. ESb-lacZ tumor diameter at day 20. 
DNA vaccines (50μg/50μL) were immunized ie to the DBA/2 mice (n=5~11/group). 2 weeks after the 
DNA immunization, 2×105 ESb-lacZ cells were inoculated sc to the mice. Tumor diameters 
(MEAN±SEM) at day 20 are shown. c. ESb-lacZ tumor weight (MEAN±SEM) at day 20. Mice were 
sacrificed at day 20. Local ESb-lacZ tumors were taken out and weighed. ∗∗ Compared to the Vector 
group, p<0.01 
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Figure 4.16 Survival of mice in the prophylactic ESb-lacZ tumor model. 

DNA vaccines (50μg/50μL) were applied ie to the DBA/2 mice (n=5/group). 2 weeks after the DNA 
immunization, 2×105 ESb-lacZ cells were inoculated sc to the mice. Mice survival was followed. 
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4.3 Adjuvant effect of HN gene for ear pinna DNA vaccination with 

tumor associated antigen EpCAM 

The adjuvant activity of HN was demonstrated when combining it with a surrogate 

tumor Ag, bacterial β-gal. A natural tumor Ag, epithelial cell adhesion molecule 

(EpCAM) was used for further study of the immunostimulating activity of HN. 

 

EpCAM, also known as GA733-2, KSA, 17-1A Ag, is a cell surface glycoprotein 

expressed on some normal and over-expressed on many neoplastic epithelial cells. It 

is primarily expressed on colorectal carcinomas (CRCs), gastric, and pancreatic 

carcinoma and widely recognized as having an important role in tumor biology. 

Approximately 85% of the metastatic CRC lesions from various patients, and >80% 

of the cells within a lesion, are positive (117, 118). Thus, EpCAM is a suitable target 

for active immunotherapy of these cancers (119, 120). Although the Ag is also 

expressed on some normal tissues, such as gastrointestinal, lung, breast, and thyroid 

tissues, the density of the Ag is much higher on colonic tumor tissues than on normal 

colon tissues (121, 122).  

 

4.3.1 Construction and verification of plasmids encoding HN and EpCAM genes 

The human EpCAM gene was cut out from pSPORT6-EpCAM vector and cloned 1) 

into pTandem1 to construct the CMV-EpCAM vector and 2) into the CMV-HN vector 

in front of the HN gene separated by an IRES sequence as CMV-EpCAM-IRES-HN 

vector (Figure 4.17a). Those vectors were transfected to BHK cells, and analyzed for 

EpCAM and HN expression in vitro. Figure 4.17b shows a strong EpCAM expression 

(deep red) on the cell surface by EpCAM and EpCAM-HN gene transfection, and a 

strong HN expression (deep green) by HN and EpCAM-HN gene transfection.  
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Figure 4.17 Construction of vectors encoding HN and human EpCAM genes. 
Human EpCAM gene was cut out from pSPORT6-EpCAM and cloned into the pTandem1 vector as 
CMV-EpCAM vector or into CMV-HN in front of the HN gene separated by an IRES sequence as 
CMV-EpCAM-IRES-HN vector. pTandem1 was used as the control vector (a). Cell surface expression 
of HN and EpCAM was analyzed by FACS with anti-HN antibody (HN.B) and anti-human EpCAM 
antibody (HEA125) (b). 
 

4.3.2 Adjuvant effect of HN in prophylactic mammary carcinoma models 

A mouse mammary carcinoma cell line, DA3, transduced with the human EpCAM 

gene (DA3-EpCAM (DE)) (Figure 4.18a) was used for the prophylactic DNA 

vaccination. DNA vaccines (50μg/50μL) were applied ie to the mice twice with 2 

weeks interval. 2 weeks after the 2nd DNA immunization (day 0), 5×106 DE cells were 

inoculated sc to the mice. Promisingly, EpCAM and EpCAM-HN gene immunization 

protected 100% of the mice from tumor growth (Figure 4.18b), which indicated that a 

strong anti-human EpCAM immunity was induced in these mice. These tumor-free 

mice (from EpCAM and EpCAM-HN groups) were then re-challenged with 1×107 

DE cells at day 36 in the same flank. Re-challenged DE tumors first grew slowly 

(tumor diameters<2mm) and were then completely rejected in 4 weeks. These results 

indicated that memory immunity was induced by the prophylactic DNA vaccinations. 

Tumor diameters at day 50 (Figure 4.18c) and day 53 showed significant anti-tumor 

activity induced by HN gene vaccination (p<0.05 compared to PBS group). 

Anti-human EpCAM immunity was successfully induced in the mice by EpCAM 
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DNA immunization ie  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.18 Prophylactic anti-tumor activity by HN and EpCAM DNA ie immunization 

in the DE tumor model. 
a. Human EpCAM expression on the DE cells was analyzed by FACS with the anti-human EpCAM 
antibody (HEA125). b. DE tumor growth curve with 2 tumor challenges. DNA vaccines (50μg/50μL) 
were applied ie to the Balb/c mice (n=5/group) twice with 2 weeks interval. 2 weeks after the 2nd DNA 
immunization, 5×106 DE cells were inoculated sc to the mice. Tumor-free mice (all mice in EpCAM 
and EpCAM-HN groups) were re-challenged with 1×107 DE cells at day 36. ∗ Compared to the PBS 
group, p<0.05; ** Compared to the PBS group, p<0.01. c. DE tumor diameter at day 50. DE tumor 
diameters by the 1st challenge for PBS/HN group and by the 2nd challenge for EpCAM/EpCAM-HN 
group at day 50 are shown. 
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DNA ie immunization. It was so strong that all immunized mice were completely 

protected and no adjuvant effect of HN could be detected. To further analyze the 

adjuvant activity of HN, all mice (with 2 prophylactic DNA vaccinations and DE 

tumor challenge at day 0) were re-challenged sc in the other flank with 1×107 parental 

DA3 cells (Figure 4.19a) which have mouse EpCAM expression (Figure 4.19b).The 

DA3 tumor growth curve showed significant improvement of anti-tumor immunity 

induced by HN compared to PBS and EpCAM-HN compared to EpCAM vaccination 

(Figure 4.19c). These results revealed the adjuvant effect by HN co-expression with a 

tumor Ag in a prophylactic mammary carcinoma tumor model. The xenogeneic 

human EpCAM DNA was apparently able to break tolerance against the mouse 

EpCAM. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19 Improvement of anti-tumor activity by HN in DA3 rechallenge tumor model 
Balb/c mice with 2 prophylactic DNA vaccinations and DE tumor challenge at day 0 were 
re-challenged at day 36 (a) by DA3 cells which have mouse EpCAM expression. (b) Mouse EpCAM 
expression on the DA3 cells was analyzed by FACS with the anti-mouse EpCAM antibody (G8.8). 
Mice were re-challenged with 1×107 DA3 cells to the other flank. The DA3 tumor growth curve is 
shown in (c). Statistical analysis (t-test) of tumor diameters at day 41 of the rechallenge: ∗ Compared to 
the PBS group, p<0.05; ∗∗ Compared to the EpCAM group, p<0.05 
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4.3.3 Adjuvant effect of HN in a prophylactic colon carcinoma model 

HN was successfully used as an adjuvant in the mouse mammary carcinoma tumor 

DE/DA3 which shows very low MHC I molecule expression. The anti-tumor activity 

might be dependent on innate immunity such as NK cells or on adaptive immunity 

induced by the vaccination because type I IFN induced by HN could up-regulate 

MHC I on the tumor cells. We further applied HN adjuvant to a mouse colon 

carcinoma tumor model, CT26 transfected with the human EpCAM gene. These cells 

showed relatively high expression of MHC I molecules and were possibly more 

affected by adaptive T cell immunity. 

4.3.3.1 Generation of CT26EP with stable human EpCAM expression 

The human EpCAM gene was cloned into the pcDNA3-hygro vector for 

pcDNA3-EpCAM-hygro (Figure 4.20a). The mouse colon carcinoma cell line CT26 

was transfected with this vector. Stable transfection was achieved by using 

hygromycin selection. Human EpCAM expression on single clones was analyzed by 

FACS. Clone 22 with a good human EpCAM expression was used as CT26EP (Figure 

4.20b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.3.2 MHC I expression on the cell surface 

Compared to DA3 and DE which express very low MHC I (H2Dd), CT26EP 

expresses a relatively high level of MHC I (Figure 4.21a). By IFN-α treatment, MHC 

I expression could be up-regulated on the cell surface of DA3 and DE (Figure 4.21b). 
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Figure 4.20 Generation of a mouse 

colon carcinoma cell line with 

human EpCAM expression.  
a. Construction of pcDNA3-EpCAM- 
hygro vector. Human EpCAM gene was 
enzyme-cutted from pSPORT6-EpCAM 
and cloned into pcDNA3-hygro vector 
(Invitrogen) b. Human EpCAM expre- 
ssion on the surface of CT26EP. CT26 
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mycin. Clone 22 with a good human 
EpCAM expression was used as 
CT26EP. 

b 

a 



Results 

     - 67 -           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 MHC I expression on the cell surface with IFN-α treatment  

a. H2Dd expression at the surface of CT26EP, DA3 and DE by FACS analysis. b. Up-regulation of 
H2Dd expression at the cell surface of DA3 and DE by IFN-α treatment. 
 

4.3.3.3 Improvement of prophylactic anti-tumor effect by HN 

CT26EP cells are very aggressive. Tumor-bearing mice were dead in about 2 weeks 

(data not shown). In the ESb-lacZ tumor model, the best adjuvant effect for 

improvement of TAA DNA ie immunization by HN was achieved by sc inoculation 

(Figure 4.15b). In the CT26EP tumor model, EpCAM gene vaccination was combined 

with HN by separate application to get the best adjuvant effect. By 2 prophylactic 

vaccinations, 20% (1/5 mice) of the mice lived more than 50 days by HN sc injection 

as an adjuvant (Figure 4.22). In contrast, mice without adjuvant or with an empty 

vector as an adjuvant were all dead in about 20 days. These results revealed the 

adjuvant activity of HN in the tumor model CT26EP. 
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4.3.4 Adjuvant effect of HN in therapeutic mouse tumor model 

The adjuvant effect of HN has been demonstrated before in different prophylactic 

tumor models. For clinical application of cancer vaccines, therapeutic vaccination, 

however, is more important than prophylactic vaccination. For this reason, we applied 

the HN adjuvant into a therapeutic DE tumor model. 

4.3.4.1 DNA treatment started from day 4 after tumor cell inoculation 

Mice were inoculated sc with DE cells to the flank. After 4 days, tumor-bearing mice 

were treated with DNA (50μg/50μL) weekly for 4 treatments in total (Figure 4.23). 

Different treatment strategies were followed as shown in Table 4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23 DNA therapeutic arrangements in DE tumor model 

Balb/c mice were inoculated sc with 1×107 DE cells. DNA treatments (50μg/50μL/dose) were started 4 
days later weekly for 4 times in total. 
 

Group Strategy Adjuvant 
1 PBS ie - 
2 Vector ie - 
3 EpCAM ie - 
4 EpCAM-HN ie HN 
5 EpCAM ie + HN ie HN 
6 EpCAM ie + HN sc HN 
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Table 4.2 Strategies of DNA treatment 

Day 0   4     11    18    25 

DE  DNA  DNA  DNA  DNA

Figure 4.22 Adjuvant effect of HN in 

the CT26EP tumor model  

Balb/c mice (n=5/group) were immunized 
with EpCAM DNA vaccines (50μg/50μL) 
ie or with HN/Vector sc injection twice 
with 2 weeks interval. 2 weeks after the 2nd 
DNA immunization, 5×105 CT26EP cells 
were inoculated sc to the mice. 
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4.3.4.1.1 Therapeutic anti-tumor effect 

Mice with established DE tumors benefited from EpCAM DNA treatment (anti-tumor 

effect is significant at day 14 compared to the Vector group). This effect was further 

improved by HN adjuvant co-expression and sc injection, but not by HN ie injection. 

HN sc application induced the best anti-tumor activity among the groups. Therapeutic 

anti-tumor activity was more significant in the early phase (from day 11 to day 21) of 

the tumor growth. Tumor growth was also inhibited to some extent in the Vector 

group after day 21. This might be due to the early interference by vaccination (day 4) 

and the strong immunogenicity of DE cells (high expression of a foreign Ag human 

EpCAM). 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 4.24 Adjuvant effect of HN in the therapeutic DE tumor model 

          -early treatment  

Balb/c mice (n=15/group) were inoculated with 1×107 DE cells and followed by DNA treatments as 
Figure 4.23. Tumor growth was followed. * Compared to the Vector group, p<0.05 
 
 
The DE tumors grew very slowly in this therapeutic tumor model (an early DNA 

treatment from day 4). Although an HN effect was detected, tumor regression was 

also seen in the PBS and Vector groups after 3 weeks of the tumor inoculation. To 

further analyze the HN effect, these mice were re-challenged with the parental DA3 

cells at day 47 (Figure 4.25a). EpCAM vaccinations did not affect DA3 tumor growth. 

With HN adjuvant (co-expression, ie and sc injection), significant tumor inhibition 

was seen (Figure 4.25b). These results demonstrate an adjuvant effect of HN in the 

therapeutic DE tumor model upon re-challenged with DA3cells. 
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Figure 4.25 Adjuvant effect of HN in the DA3 re-challenge tumor model 

          -early treatment   

Balb/c mice (n=15/group) with established DE tumor and 4 DNA treatments were re-challenged with 
1×107 DA3 cells (a) and tumor growth was followed (b). * For groups of EpCAM-HN ie, EpCAM 
ie+HN sc and EpCAM ie+Vector sc, compared to Vector and EpCAM groups, p<0.05. 
 

4.3.4.1.2 Serum antibody level in tumor-bearing mice 

Serum anti-human EpCAM and anti-mouse EpCAM antibodies were analyzed at day 

80 by FACS with the human EpCAM positive cell line MCF-7 and the mouse 

EpCAM cell line DA3 (Figure 4.26a). Mice were grouped at day 80 as DE tumor-free 

mice “-” and DE tumor bearing mice “+”. Mice with DE tumor had a high anti-human 

EpCAM antibody level, while mice without DE tumor had a low anti-human EpCAM 

antibody level. With EpCAM DNA immunization, the anti-human EpCAM antibody 

response was slightly improved in the large tumor-bearing mice compared to the PBS 

and Vector immunization groups (Figure 4.26b). Anti-mouse EpCAM antibody levels 

were similar in different groups (Figure 4.26c). These results indicated that the 

antibody response was induced mainly by the tumor cells themselves. Anti-tumor 

immunity apparently was not dependent on humoral immunity in this tumor model. 

High antibody levels in mice with large tumors indicated a bias towards a Th2 

response in those mice. 

 ∗ 
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Figure 4.26 Antibody responses in DE and DA3 tumor-bearing mice. 
DE and DA3 tumor-bearing mice were bled at day 80. Serum anti-human EpCAM antibody was 
analyzed (1:100 dilutions) by FACS with MCF-7 cells (with human EpCAM overexpression) and 
anti-mouse EpCAM antibody was analyzed by FACS with DA3 cells (with mouse EpCAM 
overexpression) (a). b. Anti-human EpCAM antibody level at day 80. Mice were grouped as DE 
tumor-free “-” and tumor bearing “+” mice at day 80. c. Anti-mouse EpCAM antibody level. 
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4.3.4.1.3 Lung metastases 

Mice with DE and DA3 tumors were sacrificed during day 88 to day 101. Lung 

metastases were analyzed by counting the nodules. Figure 4.27 shows that EpCAM 

gene vaccination decreased lung metastases compared to the PBS and Vector group, 

and HN adjuvant improved this effect. By sc injection, the HN effect was the best. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.27 Effect on metastases of HN in DE and DA3 tumor models 

DE and DA3 tumor-bearing mice were sacrificed during day 88 and day 101. Lungs were stained for 
metastases in Boin’s solution. Nodules were counted after 3 days. *Compared to the Vector group, 
p<0.05. 
 

4.3.4.2 DNA treatment started from day 7 after tumor cell inoculation 

By DNA treatment from 4 days of DE tumor inoculation, therapeutic anti-tumor 

activity was significant in the early phase (from day 11 to day 21). Because of the 

early treatment and the strong immunogenicity of DE cells, tumor regression was also 

seen in the Vector and PBS groups after day 21 (Figure 4.24). To get a better tumor 

formation, we designed another therapeutic experiment in which we started DNA 

treatment from day 7 (Figure 4.28a). To further confirm the best adjuvant effect 

achieved by HN sc injection, we included a control group with a Vector sc injection. 

Significant anti-tumor activity was achieved by EpCAM DNA treatment with HN 

adjuvant (EpCAM-HN ie and EpCAM ie + HN sc) after 2 treatments (from day 21 to 

day 28). In correlation to the anti-tumor activity induced by the early DNA treatment 

(Figure 4.24), the best anti-tumor effects were achieved also by HN sc injection. 

Vector sc injection also improved the anti-tumor activity, suggesting that CpG motifs 
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also induced improvement for the DNA vaccination (Figure 4.28b). As shown in 

Figure 4.28c of tumor diameters at day 28, HN gene immunization induced significant 

improvement for anti-tumor immunity, especially by sc injection. Compared to Vector 

sc injection, HN sc injection significantly improved the therapeutic effect. In addition, 

HN as an adjuvant (both by co-expression and by sc injection) down regulated 

systemic TGF-β production (Figure 4.28d). 

 

By DNA treatment starting at day 7 (late treatment), all mice had established DE 

tumors. Although DE tumor volumes were larger than at the time of early treatment 

(from day 4), they still grew slowly (average tumor diameter in Vector group was < 

8mm without increase from day 14, Figure 4.28b). To further analyze the HN effect, 

parental DA3 cells were inoculated to these mice at day 59 (Figure 4.29a). EpCAM 

vaccinations did not inhibit DA3 tumor growth. With HN adjuvant (co-expression and 

sc injection), or even with Vector sc injection, significant tumor inhibition was 

induced (Figure 4.29b). Although CpG motifs in the plasmid backbone might help for 

the anti-tumor activity, HN expression further improved this effect (Figure 4.29c, 

compared to EpCAM ie + Vector, EpCAM ie + HN sc vaccination strategy induced 

significant improvement for anti-tumor immunity at day 14 of the rechallenge). These 

results further proved the existence of adjuvant effect of HN by late DNA treatment in 

the therapeutic DE tumor model and in the DA3 re-challenged tumor model. 
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Figure 4.28 Adjuvant effect of HN in the therapeutic DE tumor model 

          -late treatment  

Balb/c mice (n=10~15/group) were inoculated with 1×107 DE cells and followed by DNA treatments 
(50µg/50µL DNA /immunization) (a). Tumor growth was followed (b). *from day 21 to day 28, DNA 
vaccines of EpCAM-HN ie, EpCAM ie + HN sc and EpCAM ie + Vector sc induced significant 
anti-tumor activity compared to Vector group, p<0.05; **compared to Vector and EpCAM ie groups, 
p<0.05. c. DE tumor diameters (MEAN±SEM) at day 28. *compared to Vector group, p<0.05. d. 
Serum TGF-β level at day 49. *compared to Vector group, p<0.05. 
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Figure 4.29 Adjuvant effect of HN in the DA3 rechallenge tumor model 

          -late treatment   

Balb/c mice (n=10~15/group) with established DE tumor and 4 DNA treatments were re-challenged 
with 1×107 DA3 cells at day 59 (a) and followed tumor growth (b). * For groups of EpCAM-HN ie, 
EpCAM ie+HN sc and EpCAM ie+Vector sc, from day 7 to day 25, compared to Vector and EpCAM 
groups, p<0.05. c. DA3 tumor diameters (MEAN±SEM) at day 14 of rechallenge.  
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4.3.5 Influence of humoral and cellular immune responses 

The adjuvant effect of HN for DNA vaccination has thus been proven in prophylactic 

and therapeutic mouse tumor models. Although the immunostimulating effect of HN 

was detected in our studies, it is still not clear if there are improvements for adaptive 

immunity. Therefore, we analyzed the influence by HN adjuvant on humoral and 

cellular immune responses. 

4.3.5.1 Influence of humoral immune responses 

Mice were immunized with DNA by a prime-boost strategy (Figure 4.30a). Sera were 

taken after prime and boost, and analyzed for anti-β-gal antibody. Figure 4.30b 

showed that HN did not improve the antibody response, both for total antibody 

IgG+M as well as for subtypes IgG1 and IgG2a. However, the ratio of IgG2a/IgG1 

was increased by HN sc application after prime but not after boost (Figure 4.30c). 

Although HN adjuvant did not improve the antibody level for the β-gal Ag, the 

increased ratio of IgG2a/IgG1 by lacZ ie + HN sc immunization indicated that HN sc 

injection might privilege Th1 responses. 

4.3.5.2 Influence of cellular immune responses 

Mice with 2 DNA immunizations for antibody analysis were also analyzed for CTL 

cell mediated cytotoxicity (Figure 4.31a) by a standard 51Cr release assay. Co- 

expression of HN with the lacZ gene induced a significant improvement for CD8 

epitope specific cytotoxicity. No improvement was seen, however, to the cytotoxicity 

by HN sc application. In contrast, Vector sc injection improved specific cytotoxicity, 

which indicated that CpG motifs might be involved. This could be an explanation for 

the improved anti-tumor activity seen after Vector sc injection in different mouse 

tumor models.  
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Figure 4.30 Influence of HN adjuvant on the humoral immune response. 
DBA/2 mice (n=4/group) were immunized ie with lacZ gene with or without HN adjuvant by prime 
and boost strategy (the 2nd DNA vaccination was taken after 2 weeks of the 1st one, 50µg/50µL DNA 
/immunization). Sera from day 14 of the 1st DNA vaccination (prime) and day 10 of the 2nd DNA 
vaccination (boost) were analyzed for antibody responses (IgG+M, IgG1, IgG2a) by β-gal ELISA (a). b. 
IgG2a/IgG1 ratio. 1 of 3 independent experiments was shown. 
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Figure 4.31 Influence of HN adjuvant on the cellular immune response 
a. Immunization strategy. Mice with 2 DNA immunizations (from Figure 4.30) were sacrificed after 10 
days of the 2nd immunization. Spleens were taken out and re-stimulated for 5 days in vitro and analyzed 
cytotoxicity to lacZ+ tumor cells (P13.1) and lacZ- tumor cells (P815) by a standard 4 h 51Cr release 
assay (b). 1 of 3 independent experiments was shown. 
 

4.3.6 Adoptive transfer of Ag specific splenocytes 

Although it is quite clear that HN sc application has the best adjuvant effect compared 

to HN co-expression and Vector sc immunization in vivo, no improvements of 

anti-β-gal antibody levels and cell mediated immune responses by HN sc injection 

were detectable in in vitro experiments.  

 

Because DE is a tumor line with very low MHC I expression, it is not a good target 

for ex vivo killing assay. In addition, no T cell epitopes of human EpCAM were 

available for mouse experiments. Without in vitro peptide stimulation, it is difficult to 

achieve a good CTL response. We tried to use IFN-α treated DE cells as well as DE 

cell lysates and DCs for in vitro stimulation (data not shown). However, the specific 

cytotoxicity was not detectable. 

 

Since ex vivo cytotoxic analysis might fail because some factors produced in vivo may 

be missing, we further tried to analyze cytotoxicity in vivo. T cell adoptive transfer is 

a promising method for clinical application. It is also a good way to analyze 
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functional activity of T cells. To analyze the HN effect in vivo, we designed an 

experiment with adoptive transfer of Ag specific splenocytes including Ag specific T 

cells, B cells as well as APCs. Adoptive transfer was applied to NOD/SCID mice 

which have no functional B and T cells, low natural killer (NK) cell function and 

absence of circulating complement.  

 

4.3.6.1 Stable transfection of firefly luciferase in DA3/DE 

The firefly luciferase gene was cloned into the pcDNA3-hygro vector to construct 

pcDNA3-luc-hygro (Figure 4.36a). The mouse mammary carcinoma cell line DA3 

and DE were transfected with this vector. Stable transfection was achieved by using 

hygromycin selection. Firefly luciferase expression on single clone was analyzed by 

in vitro luciferase assay. 23 hygromycin resistant clones of DA3-luc (D1-D23, Figure 

4.36b) and 32 single clones of DE-luc (DE1-DE32) were analyzed for firefly 

luciferase expression.  

 

After 3 analyses of in vitro luciferase activity, clones D5, D8, D13, DE19, DE30, and 

DE31 were analyzed for luciferase expression by in vitro imaging. By this method, 

luciferase expression could be detected in all transfectants with cells. Only DE19 and 

D13 showed luciferase expression when cells were used at less than 1×103 cells 

(Figure 4.37a). Quantitative analysis confirmed the best luciferase expression by 

DE19 and D13 (Figure 4.37b). These 2 clones were applied to in vivo experiments as 

DE-luc and DA3-luc. 
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Figure 4.36 Generation of a mammary carcinoma cell line with firefly luciferase 

expression.  
a. Construction of pcDNA3-luc-hygro vector. Firefly luciferase gene was enzyme-cutted from 
pGL3-Basic and cloned into pcDNA3-hygro vector (Invitrogen). b. In vitro luciferase activity of single 
clones of DA3-luc. DA3 was transfected with pcDNA3-luc-hygro vector. Single clones of the stable 
transfection were selected by hygromycin. 23 single clones were analyzed for in vitro luciferase 
expression calculated as Relative Light Units (RLU). c. In vitro luciferase activity of single clones of 
DE-luc. DE was transfected with pcDNA3-luc-hygro vector. Single clones of the stable transfection 
were selected by hygromycin. 32 single clones were analyzed for in vitro luciferase expression. Clones 
with the red arrows were further analyzed by in vitro imaging. 
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b 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.37 Verification of firefly luciferase expression in stably transfected single clones 

by in vitro imaging.  

a. Firefly luciferase gene expression in stably transfected single clones with different amounts of cells. 
DA3/DE and their transfectants were imaged in IVIS100 imaging system for luciferase expression with 
the exposure time 30 s. b. Quantitative analysis of the luciferase expression. DE19 and D13 were used 
for further in vivo experiments as DE-luc and DA3-luc. Bioluminescent signal was calculated for 
region of interest (ROI) (Unit: p/sec/cm2/sr). 
 
 
To analyze local subcutaneous tumor formation by DE-luc and DA3-luc in vivo, 

NOD/SCID mice were inoculated sc with 2×106 cells. In vivo imaging showed 

successful local tumor formation with both transfectants (Figure 4.38a), with a stable 

luciferase expression for DE-luc (DE grows also but very slowly in Balb/c mice) and 

an increased luciferase expression for DA3-luc (DA3 grows faster in Balb/c mice). 

After 40 days, lung metastases were detected in both groups (Figure 4.38b). DA3-luc 

produced a higher metastatic load (stronger luciferase signal in the lungs) which was 

also detected by in vivo imaging if the mice (Figure 4.38a, day 40). 

 

To analyze systemic tumor formation of DE-luc and DA3-luc in vivo, NOD/SCID 

mice were inoculated iv with 5×105 cells. In vivo imaging showed tumor located only 

to the lungs with both transfectants (Figure 4.38c), with a decreased luciferase 

expression for DE-luc and an increased luciferase expression for DA3-luc. Following 

iv inoculation, DA3-luc grew very aggressively. One mouse (of 3 mice) was dead 
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after 4 days. DA3-luc induced a much stronger luciferase signal in the lung than did 

DE-luc cells (proven by in vivo imaging of the mice as well as by ex vivo imaging of 

the lungs, Figure 4.38d). These results showed that DA3-luc is suitable for a systemic 

tumor formation, while DE-luc is not. 

a 
 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
c 
 
 
 
 
 
 
 
 
 
 
d 
 
 
 
 
 
 
 
Figure 4.38 In vivo imaging of tumor formation of DE-luc and DA3-luc. 

a. Local subcutaneous tumor formation. Stable transfectants DE-luc (DE19) and DA3-luc (D13) (2×106) 
were inoculated sc to NOD/SCID mice (n=3/group). Tumor growth was followed by in vivo imaging 
(10 s exposure time). Lungs from tumor-bearing mice at day 40 were imaged for metastases (b) 
(exposure time: 120 s for DE-luc, 10 s for DA3-luc). c. Systemic tumor formation. DE-luc and 
DA3-luc (5×105) were inoculated iv to NOD/SCID mice (n=3/group). Tumor formation was followed 
by in vivo imaging (60 s exposure time). Mice were sacrificed at day 24. Lungs were imaged ex vivo 
for metastases (d) (exposure time: 30 s for DE-luc, 1 s for DA3-luc). Bioluminescent signal was shown 
in pseudophoton unit: p/sec/cm2/sr. Experiments were repeated for 3 times with similar results. 
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4.3.6.2 Adoptive transfer of Ag specific splenocytes 

To get the best Ag specific splenocytes, we first tried the vaccination protocol with 

EpCAM ie + HN sc. Immuno-competent Balb/c mice were immunized twice with 2 

weeks interval. 2 weeks after the 2nd vaccination, mice were challenged with 1×107 

DE cells. 1 week later, tumor-free mice were sacrificed to obtain Ag specific 

splenocytes (Figure 4.39a). 1×107 splenocytes from immunized mice or control 

splenocytes from naïve mice were transferred iv to NOD/SCID mice with established 

DE-luc tumor (day 7 after tumor inoculation). The luciferase signal decreased in both 

groups from day 7 to day 45 (immune and non-immune transfer, Figure 4.39b), 

although tumor diameters increased (Figure 4.39c). Thus, no specific anti-tumor 

activity could be seen by adoptive transfer of immune splenocytes. No anti-metastatic 

activity was detectable either (Figure 4.39d).  

 

These results showed that splenocytes from immunized mice upon adoptive transfer 

could not affect tumor cells in vivo in NOD/SCID mice. One possible reason might be 

the low MHC I expression which might facilitate tumor escape. When HN was 

applied to immuno-competent mice, type I IFN production might have up-regulated 

MHC I expression on the tumor cells, thereby improving their sensitivity to 

anti-tumor immunity. In addition, it was reported that NK cell could be activated by 

hemagglutinin neuraminidase of influenza virus. Therefore, it is possible that HN of 

NDV induced NK cell activation. However, NOD/SCID mice have no functional B 

and T cells, low NK cell function and absence of circulating complement. Therefore, 

the failure of adoptive transfer might be due to the various immuno-defects of 

NOD/SCID mice. 
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c 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.39 Adoptive transfer of splenocytes from pre-immunized mice 
a. Immunization protocol. Balb/c mice (n=5) were immunized twice with EpCAM ie + HN sc with 2 
weeks interval. 2 weeks after the 2nd vaccination, mice were challenged with 1×107 DE cells. 1 week 
later, tumor-free mice were sacrificed to get Ag specific splenocytes. b. In vivo imaging of tumor 
bearing mice before and after adoptive transfer. 1×107 immune splenocytes or control splenocytes from 
naïve mice were transferred iv to NOD/SCID mice (n=10/group for specific transfer, n=5/group for 
naïve transfer) with established DE-luc tumor (day 7 of the inoculation). Tumor growth was followed 
by imaging until day 45 (data between day 7 to day 45 were not shown, 10s exposure time). c. Tumor 
diameters at day 7 (before adoptive transfer) and day 45 (38 days after adoptive transfer). d. Ex vivo 
imaging of lungs at day 45. Lungs from tumor bearing mice at day 45 were imaged ex vivo for 
metastases (120 s exposure time). Bioluminescent signal was shown in pseudophoton unit: 
p/sec/cm2/sr. 
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4.3.7 Adjuvant effect of HN in immuno-deficient mice 

The fact that adoptive transfer of splenocytes from immunized mice did not inhibit 

DE-luc tumor growth in NOD/SCID mice indicated that adaptive immunity is not 

enough to kill tumor cells with low MHC I expression. In the DA3/DE tumor model, 

innate immunity might be very important for the anti-tumor activity induced by the 

vaccination, especially for HN induced improvement because HN is an important 

molecule to stimulate innate immunity.  

 

To analyze the adjuvant effect of HN for innate immunity, RMA-S tumor cells were 

used which express very low levels of MHC I molecules and can be influenced by NK 

cells for their tumor growth. We applied HN DNA or Vector DNA at day -1, 3, 6 

relative to RMA-S tumor application (Figure 4.40a). We used the following strains of 

mice: 1) wild-type (WT) C57BL/6, 2) RAG2-/- (lack of functional T and B cells, to 

test the efficiency of innate immunity in anti-tumor responses), 3) RAG2-/-IFNAR-/- 

(lack of functional T and B cells as well as of type I IFN effects, because of absence 

of type I interferon receptor, to analyze the importance of type I IFN response in 

innate immunity) mice. Tumor growth was not inhibited by HN in WT mice (Figure 

4.40b), but it was inhibited by HN in RAG2-/- mice (Figure 4.40c). In RAG2-/- 

IFNAR-/- mice, tumor inhibition was diminished but not completely impaired (Figure 

4.40d). This indicated that type I IFN is crucial but not an absolute factor for HN 

induced RMA-S tumor inhibition. Moreover, peripheral myeloid derived suppressor 

cells (MDSC, CD11b+Gr1+F4/80+) showed a trend towards down-regulation in HN 

immunized RAG2-/- mice. This is correlated with the down-regulation of serum 

TGF-β level in DE therapeutic tumor model (Figure 4.28d). These results 

demonstrated a crucial role for innate immunity mechanisms in HN induced anti- 

tumor activity. 
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Figure 4.40 Adjuvant effect of HN in immuno-difficient 

mice. 
C57BL/6 wild-type (10mice/group), RAG2-/- (5mice/group, 2 
independent experiments were performed), and RAG2-/-IFNAR-/- 
mice (10mice/group) were inoculated with 1×106 RMA-S T cell 
lymphoma cells after 1 DNA pre-treatment either with HN or 
with Vector. DNA treatments were applied also at day 3 and day 
6 (a). Tumor growth was followed in different groups (b-d). 
RMA-S tumor diameters in RAG2-/- mice at day 11 (outline from 
2 experiments, MEAN±SEM) was shown (c). e. Percentage of 
peripheral MDSC (CD11b+Gr1+F4/80+) in PBMC at day 7 from 
RAG2-/- mice.
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4.3.8 Adjuvant effect of HN in tumor infiltrating lymphocytes 

HN activated innate immunity might affect tumor infiltration by lymphocytes. Tumor 

infiltrating lymphocytes (TILs) are essential for the anti-tumor activity. To analyze if 

there is an improvement of TILs by HN vaccination, mice with established DA3 

tumor (tumor diameter is about 8~9 mm) were immunized ie with HN or Vector. 4 

days later, TILs were analyzed by FACS (Figure 4.41a). The lymphocyte population 

of single cell suspension from the tumor was gated with the same gate as defined for 

lymph node cells (Figure 4.41b). TIL (defined as Figure 4.41c-d) were then analyzed 

for CD3+CD4+, CD3+CD8+, CD3+CD49b+ and CD11b+Gr1+F4/80+ cells (CD4, CD8 

T cells, NK cells and MDSC) respectively. Figure 4.41e showed that the percentage 

of CD4 and CD8 T cells in TIL was not significantly improved by HN vaccination, 

while NK cells were significantly increased. Suppressive MDSC were down-regulated 

in the tumor by HN vaccination. Immunohistochemistry results (Figure 4.41f) 

corroborated the FACS analysis. These results demonstrated significant effects on  

TILs induced by HN vaccination. 
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Figure 4.41 Adjuvant effect of HN on tumor infiltrating lymphocytes 

a. Strategy of TIL analysis. Balb/c mice (n=10/group) were inoculated sc with 1×107 DA3 cells at day 
0 and immunized ie with 50µg/50µL HN or Vector DNA at day 8. 4 days after DNA treatment, TILs 
were analyzed by FACS and immunohistochemistry. b. Definition of lymphocyte population by cell 
size. Lymph nodes were taken from vaccinated mice. Cells were analyzed by FACS. The lymphocyte 
gate was used for definition of lymphocyte population by size in tumor. c. Definition of CD4, CD8, NK 
cells in TIL. Single cell suspension of tumor was analyzed by FACS. For CD4, CD8 T cells and NK 
cells, living cells in lymphocyte gate with CD45.2 expression were defined as TIL. Then CD3+CD4+, 
CD3+CD8+ and CD3+CD49b+ cells were defined as CD4, CD8 and NK cells respectively. d. Definition 
of MDSC in TIL. For MDSC, CD45.2+ cells in the lymphocyte gate were defined as TIL, and then 
CD11b+Gr1+F4/80+ cells were defined as MDSC. e. Percentage of CD4, CD8, NK and MDSC in TIL 
(shown are MEAN±SEM). f. Immunohistochemistry of lymphocyte infiltration in tumor. Frozen 
sections of DA3 tumor after DNA treatment (as indicated in a) were stained by anti-CD4 (h129.19), 
anti-CD8 (53-6.7) and anti-CD49b (Hal/29) (1:200), and Anti-Ig HRP Detection Kits (all from BD 
Bioscience). Original magnification: ×250. 
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4.4 Improvement of ear pinna DNA vaccination by electroporation 

One of the most substantial improvements in the efficiency of plasmid based gene 

transfer in vivo has been achieved by DNA electroporation. This approach can be 

considered as a strategy with low cost, safety, and ease of use. Other beneficial 

qualities are a decreased interindividual variability and an increased cellular 

infiltration at the vaccination site.  

 

4.4.1 Parameters and strategy for electroporation 

In this study, we used the ELGEN1000 DNA delivery system (Inovio, San Diego, 

USA) which is applied in many clinical trials. For small animals such as rat and 

mouse, a pedal and an electrode are provided (Figure 4.42a). By application of the 

electrode locally to the DNA injection site, electroporation (EP) can be started by 

clicking the pedal. To compare Ag expression without and with EP, mice were 

immunized with CMV-luc (25µg/50µL) ie and id without (left side) or with (right side) 

EP. Luciferase expression was monitored by in vivo imaging. In vivo DNA 

electroporation was performed with the parameters suggested by the Inovio Company 

(Table 4.3). 

 
 
a 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.42 ELGEN1000 electroporation based DNA delivery system. 
a. ELGEN1000 DNA delivery system supplemented with a pedal and an electrode. b. DNA 
immunization strategy in order to compare Ag expression in the ear pinna and flank skin without and 
with electroporation (EP). CMV-luc DNA (25µg/50µL) were injected intradermally to the ear pinna 
and flank skin without (left side) or with (right side) EP. Ag expression was monitored by in vivo 
imaging. 
 
 
 

CMV-luc 
25μg/50μL 

b



Results 

     - 91 -           

 
 
 
 
 
 
 
 
 
 
 

4.4.2 Optimization of DNA injection volume to ear pinna and flank skin 

To optimize the DNA injection volume for Ag expression by the help of 

electroporation, 25μg CMV-luc DNA was injected either in 25μL or in 50μL (the 

largest volume which can be applied to the ear pinna) to the ear pinna or flank skin 

without (left side) and with (right side) EP. Luciferase expression was monitored by in 

vivo imaging (Luciferase expression at 1 d of DNA injection is shown in Figure 

4.43a). Kinetics of luciferase expression (from 8 h to 28 d) showed that 50μL 

injection volume induced a slightly superior Ag expression than 25μL injection 

volume both in the ear pinna (Figure 4.43b) and in the flank skin (Figure 4.43c). With 

the help of EP, Ag expression was improved 2~3 times in the ear pinna and ~10 times 

in the flank skin.  

 

4.4.3 Optimization of DNA electroporation voltage 

Promising improvement of Ag expression in both ear pinna and flank skin induced by 

EP is shown in Figure 4.43. However, tissue damage induced by EP was serious. The 

ear pinna became punctured (Figure 4.44a) after a few days (4-7 d) of EP. Serious 

inflammation was also found in the local flank skin (data not shown). To avoid serious 

tissue damage, lower voltages (40, 60, 80, 100V) were compared to 120V for the 

efficiency of improving Ag expression and tissue inflammation. Inflammation index 

was defined as in Table 4.4. Short-term tissue inflammation induced by different 

voltages is shown in Figure 4.44b. With 120V of EP, the injected ear pinnas had 

locally concentrated red spots for the first 3 days, and then the tissue got punctured in 

100% mice from day 4 to day 7. 100V of EP induced tissue damage which was not as 

serious as with 120V. 30% of the mice had a hole in the treated ear pinna. Voltages 

lower than 80V induced slight inflammation, which recovered in 1 week. Long term 

Time1 20 
Voltage1 120 
Nsequence 5 
Ntrains 1 
Pulse Delay 250 
TrainDel 250 
CurrLimit 1000 

Table 4.3 Electroporation parameters 
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were checked after 319 days (Figure 4.44c), which showed no visible tissue 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.43 Optimization of DNA injection volume to ear pinna and flank skin. 

To optimize DNA injection volume, 25μg CMV-luc DNA was injected either in 25μL or in 50μL 
volume to the ear pinna or flank skin without (left side) and with (right side) EP (Balb/c mice, n=5). 
Luciferase expression was monitored by in vivo imaging. a. Luciferase expression at 1 d of DNA 
injection. Kinetics of quantitative luciferase expression from 8 h to 28 d with 25μg CMV-luc in 25μL 
or in 50μL volume to the ear pinna (b) or flank skin (c). Bioluminescent signal was shown and 
calculated in pseudophoton unit: p/sec/cm2/sr. Exposure time: 10 s. 
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Figure 4.44 Optimization of DNA electroporation voltage 

a. Local tissue damage in the ear after 7 d of EP with 120V. b. Kinetics of short-term (1-7 d) 
tissue inflammation index in the ear of EP with different voltages (40-120V). DBA/2 mice, 
n=3. c. Long-term (day 319) tissue damage in the ear and flank skin. d. Kinetics of short-term 
(1-7 d) Ag expression in the ear and flank skin without and with EP. Bioluminescent signal was 
calculated in pseudophoton unit: p/sec/cm2/sr. Exposure time: 10 s. 
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tissue damage was checked after 319 days (Figure 4.44c). It revealed no visible tissue 

damage with 80V, slight scars in the flank skin and little holes in the ear with 100V, 

and obvious scars in the flank skin and big holes in the ear pinna with 120V. Ag 

expression (Figure 4.44d) revealed similar improvements (~100 times higher) in the 

flank skin by EP with 80V, 100V and 120V (maximum plateau is 1-7 d), and a slight 

improvement in the ear pinna by EP with 80V (~10 times higher). 100V and 120V 

resulted in too much tissue damage. With 40V and 60V, Ag expression was not 

significantly improved. These results showed that EP could be applied intradermally 

to mouse skin with an optimal voltage 80V. 

 

4.4.4 Improvement of long-term Ag expression 

To analyze long-term effects on Ag expression by DNA electroporation, mice were 

immunized ie and id with CMV-luc (25μg/50μL) with 80V of EP. Luciferase 

expression was monitored by in vivo imaging from 4 h to 350 d. Ag expression 

induced by DNA electroporation was similar in the ear pinna and flank. However, Ag 

expression induced by naked DNA injection was 10-100 times higher in the ear pinna 

than in the flank. With EP, plateau Ag expression was found during the first week in 

both ear pinna and flank, and went down from day 7 in the flank and from day 14 in 

the ear pinna. After 4 weeks, Ag expression decreased about 10-100 times. It 

maintained a stable low expression for almost 1 year. In fact, Ag expression was still 

relatively high after 4 weeks by DNA electroporation (similar level as Ag expression 

in the first week of naked DNA injection). These results revealed that electroporation 

could significantly improve the level and duration of Ag expression. 

 

4.4.5 Improvement of humoral immune responses 

Since DNA electroporation led to increased Ag expression, it might improve immune 

responses to the Ag. Serum antibodies (day 14 after CMV-lac immunization) were 

analyzed by β-gal ELISA. Stronger humoral immunity (IgG+M, IgG1, IgG2a) was 

induced by naked DNA immunization upon ie as compared to id immunization 

(Figure 4.46). Electroporation dramatically improved IgG+M and IgG1 levels and 

improved IgG2a levels upon id DNA immunization because of no detectable IgG2a 

by naked DNA id injection. These results further confirmed the superiority by ie DNA 
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immunization than id DNA immunization and showed the influence of EP could 

improve immune response at both sites. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.45 Improvement of long-term Ag expression by DNA electroporation. 

DBA/2 mice (n=3) were immunized ie and id with CMV-luc (25μg/50μL) without (left) and with (right) 
80V of EP. Luciferase expression was monitored by in vivo imaging from 4 h to 350 d. Bioluminescent 
signal was shown and calculated in pseudophoton unit: p/sec/cm2/sr. Exposure time: 20 s. 1 
representative experiment of 3 was shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.46 Improvement of antibody responses by DNA electroporation. 
DBA/2 mice (n=3/group) were immunized ie or id with CMV-lacZ (25µg/50µL) without or with EP. 
Sera from day 14 of the DNA vaccination were analyzed for antibody responses (IgG+M, IgG1, IgG2a) 
by β-gal ELISA. 1 of 3 independent experiments was shown. 
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4.4.6 Improvement of cellular immune responses 

Although improvements of humoral immunity were induced by DNA electroporation, 

it is more important to induce strong cellular immunity for anti-tumor activity. For 

this purpose, we further analyzed the influence of EP on CTL mediated cytotoxicity 

and on IFN-γ and IL-4 production from in vitro re-stimulated splenocytes. 

 

4.4.6.1 Cytotoxicity 

Mice with 1 DNA immunization without or with EP were analyzed for specific lysis 

to CTL activity against lacZ+ tumor cells (Figure 4.47) by a standard 51Cr release 

assay. Detectable specific cytotoxicity was induced by naked DNA injection only to 

the ear pinna but not to the flank skin. By help of EP, specific lysis was strongly 

improved both for ie and id DNA+EP (71% for ie and 56% for id when E:T is 100:1). 

EP applied to the flank skin affected more unspecific lysis of lacZ- tumor cells. These 

results revealed that improvements of specific CTL activity could be achieved by EP 

at the ear pinna but less so at the flank skin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.47 Improvement of specific cytotoxicity by DNA electroporation. 
Mice for antibody analysis were sacrificed at day 14 of the DNA immunization. Spleens were taken out 
and re-stimulated for 5 days in vitro with 0.5μg/mL TPHPARIGL peptide and analyzed cytotoxicity by 
a standard 4 h 51Cr release assay to lacZ+ tumor cells (P13.1) and lacZ- tumor cells (P815). 
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4.4.6.2 IFN-γ and IL-4 secretion 

To further substantiate the improvement of cellular immune responses induced by 

DNA+EP, IFN-γ and IL-4 secretions into the supernatants from the re-stimulated 

splenocytes were analyzed by ELISA. Ie DNA immunization induced higher IFN-γ 

secretion activity compared to id DNA immunization. EP dramatically improved 

IFN-γ secretion upon ie but not upon id DNA immunization (Figure 4.48). Conversely, 

id DNA immunization induced higher IL-4 production and EP improved it (Figure 

4.48). This would support humoral immune responses. No IL-4 was detectable from 

splenocytes after ie DNA immunization. These results further support the benefit to 

cellular immune responses from ie DNA immunization that was reported before (75) 

and its further improvement by EP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.48 Improvement of cytokine production by DNA electroporation. 

Supernatants from re-stimulated splenocytes (Figure 4.47) were collected and analyzed for IFN-γ (day 
2 supernatant) and IL-4 (day 5 supernatant) by ELISA.  
 

4.4.7 Improvement of prophylactic anti-tumor effect 

Thus, DNA electroporation could improve both humoral and cellular immune 

responses. To analyze if it was possible to improve the anti-tumor effect by DNA+EP, 

vaccination was applied to the prophylactic ESb-lacZ tumor model in which naked 

CMV-lacZ DNA immunization was not sufficient to protect mice completely from 

tumor growth. Vaccinated mice died after about 3 weeks.  

 

2 weeks after DNA immunization without or with EP, mice were challenged with 

ESb-lacZ cells (Figure 4.49a). Tumor growth was followed until day 18 (some of the 
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mice died after day 18). Figure 4.49b shows tumor diameters at day 18. Naked 

CMV-lacZ DNA immunization ie or id did not induce significant anti-tumor activity 

compared to Vector immunization. Significant anti-tumor effects were achieved by 

EP to the ear pinna as well as to the flank skin. Tumor inhibition was better by ie then 

id DNA immunization (compared to Vector EP, p<0.01 for CMV-lacZ ie EP, p<0.05 

for CMV-lacZ ie EP). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.49 Improvement of anti-tumor effect in the prophylactic ESb-lacZ tumor model 

by DNA electroporation. 

a. Vaccination strategy. DNA vaccines (25μg/50μL) were immunized ie or id to the DBA/2 mice 
(n=5/group) without or with EP. 2 weeks after the DNA immunization, 2×105 ESb-lacZ cells were 
inoculated sc to the mice (day 0). Tumor growth was followed until some of the mice died (since day 
18). b. Tumor diameters (MEAN±SEM) at day 18.  
∗ Compared to the Vector ie EP group, p<0.05, ∗∗ Compared to the Vector ie EP group, p<0.01 
 

4.4.8 Improvement of therapeutic anti-tumor effect 

Results from Figure 4.49 show that prophylactic anti-tumor activity was significantly 

improved by DNA combined with EP at the ear pinna as well as at the flank skin. The 

effects from ear pinna were superior to those from flank skin (Figure 4.49b). We then 

combined ie DNA vaccination with EP in the therapeutic DE tumor model. 1 week 

after DE tumor inoculation, tumor bearing mice were treated by DNA vaccines 
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injection. DE tumor growth was, however, significantly inhibited by EpCAM ie+EP 

immunization compared to Vector ie or EpCAM ie immunization (Figure 4.50b). 

After day 42, the DE tumors did not grow further and maintained a stable volume (the 

average tumor diameters in the Vector group was less than 8 mm) due to the strong 

immunogenicity of human EpCAM. To further demonstrate the anti-tumor activity 

induced with the help of EP, the DE tumor bearing mice were re-challenged with 

parental DA3 cells at day 59. DA3 tumor growth was significantly slowed down in 

the EpCAM ie+EP immunized group. These results provided evidence for the 

efficiency of therapeutic DNA vaccination by ie DNA application and its 

improvement by EP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.50 Improvement of anti-tumor effect in the therapeutic DE/DA3 tumor model 

by DNA ie electroporation. 

a. Therapeutic DNA vaccination strategy. Balb/c mice (n=13~15/group) were inoculated with 1×107 
DE cells and followed by DNA treatments 1 week later (50µg/50µL DNA /immunization) for 4 
treatments in total. DE tumor growth was followed (b). DE tumor bearing mice were re-challenged 
with 1×107 DA3 cells at day 59 and followed tumor growth (c). **Compared to the Vector and EpCAM 
ie groups, p<0.01.  
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4.4.9 Down-regulation of suppressive factors 

Therapeutic anti-tumor effects were improved by DNA ie EP. This suggested that 

suppressive factors might be down-regulated because established tumors usually 

produce factors to suppress host anti-tumor immunity (123-125). DE/DA3 cells 

constitutively secrete TGF-β to the supernatant when cultured in vitro (data not 

shown). To analyze the potential influence of EP on TGF-β levels in vivo, sera from 

day 49 in the DE therapeutic tumor model (Figure 4.50a) were analyzed for peripheral 

TGF-β level. DNA ie EP significantly down-regulated the serum TGF-β level in the 

DE tumor bearing mice (Figure 4.51). Myeloid derived suppressor cells (MDSCs) in 

spleen were analyzed during day 88~101. A lower percentage of MDSCs in spleen 

was found in DNA ie EP vaccinated mice (Figure 4.52), but this was not significant. 

This result might be influenced by the time of the analysis (very late tumor phase (day 

88~101)) when a suppressive situation was already formed. 
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Figure 4.51 Serum TGF-β at day 49. 

Sera from DE tumor bearing mice (Figure 
4.50a DE therapeutic tumor model) at day 
49 were analyzed for TGF-β level by 
ELISA. 

Figure 4.52 Splenic MDSC at day 

88~101. 
Spleens from DE/DA3 tumor bearing mice 
(Figure 4.50a DE therapeutic tumor model) 
at day 88~101 were analyzed for 
percentage of MDSC by FACS analysis of 
CD11b+Gr1+F4/80+ cells. 
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4.5 Crucial function of dendritic cells in ear pinna DNA 

immunization 

Dendritic cells (DCs) are the most potent professional Ag presenting cells (APC) 

capable of priming naïve T cells. In DNA vaccination, they are efficient to present 

Ags by direct and cross-presentation. It is reported that in vitro genetically transfected 

DCs with a plasmid DNA elicited immune responses and anti-tumor effects in vivo. 

Ear pinna is a special site and form of skin, where there are two layers of epidermis 

and dermis separated by a cartilage. APCs, especially DCs are concentrated in the 

epidermis and dermis, which suggests that high amounts of APCs are concentrated in 

the ear pinna compared to normal skin. That could be one of the explanations that ear 

pinna is superior to the flank skin for DNA vaccination. 

4.5.1 Distribution of dendritic cells in ear pinna and flank skin 

DC distribution in ear pinna, flank skin and muscle was analyzed by immuno- 

histochemistry staining for CD11c+ dermis DC and Langerin+ epidermis Langerhans 

cells. Langerin+ and CD11c+ cells are abundant in epidermis and dermis (red arrow), 

with higher numbers in the ear pinna because of the special structure of double layers 

of epidermis and dermis. No DCs or LCs were detected in muscle tissue. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.53 Distribution of dendritic cells in ear pinna and flank skin compared to 

muscle. 
Frozen sections were stained for CD11c+ and Langerin+ cells with CD11c and CD207 antibodies 
(1:200), as well as Anti-Ig HRP Detection Kits (BD Pharmingen). Original magnification: ×250. 
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4.5.2 Generation of a short murine CD11c promoter 

A 5.5-kb CD11c promoter is widely used by many groups for DC specific gene 

expression (126-128). This promoter was employed for targeting gene expression 

directly to DC in vivo (126, 128). Previous studies showed restricted gene expression 

in DC by this promoter, but failed to show efficient humoral and cellular immune 

responses following gene gun DNA immunization (127). This might be due to the low 

level of Ag expression. Since in vitro transfection is hard to achieve with high 

efficiency due to the long DNA sequence, we hypothesized that a short version of 

CD11c promoter might be easier for the application both in vitro and in vivo.  

4.5.2.1 Verification of the functional region of murine CD11c promoter 

To test if a short fragment of the murine CD11c promoter could achieve specific 

promoter activity in DC, we generated CD11c promoters by PCR with different length 

(700-bp, 1105-bp, 2448-bp, 3383-bp, 5534-bp) from the BAC vector containing the 

mouse CD11c gene (Figure 4.54). These were cloned into the pGL3-Basic vector 

containing a firefly luciferase as a reporter gene (Table 4.5). These vectors were 

transfected to bone marrow derived DCs (BMDCs) to verify promoter activity and 

compared to the CMV promoter. Luciferase expression revealed a much stronger 

(~100 times) promoter activity for CMV than for all the CD11c promoters. Among the 

versions (700, 1105, were better than the 2 long ones (3383, 5534) (Figure  

 
 
 
 
Figure 4.54 Schematic representations of CD11c promoters in the CD11c genome. 
Mouse CD11c promoters with different lengths were generated by PCR from the BAC vector 
containing mouse CD11c genome based on the sequence in the promoter region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

name Promoter 
length 

sequence in 
CD11c genome 

Encoding 
gene 

pCD11c700 700-bp 0~-700 

pCD11c1105 1105-bp 0~-1105 

pCD11c2448 2448-bp 0~-2448 

pCD11c3383 3383-bp 0~-3383 

pCD11c5534 5534-bp 0~-5534 

Firefly 
luciferase 

3’ 

-1105 -700 CD11c gene -5534 

5’ 

-3383 -2448 

Table 4.5 
Construction of CD11c promoters with different lengths 
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CD11c promoters, the 3 shorter versions (700, 1105, and 2448) were better than the 2 

long ones (3383, 5534) (Figure 4.55a). These 3 short ones were then tested for their 

promoter activity in a CD11c positive cell line (RMA264) and compared to the long 

one (5534-bp) which is normally used DC specific gene expression. Figure 4.55b 

shows similar promoter activity of the 3 short CD11c promoters. These were all better 

than the long one. Therefore, the shortest one, pCD11c700, and the longest one 

pCD11c5534 were used for further study as CD11cS (short CD11c promoter) and 

CD11cL (long CD11c promoter). DNA sequencing results revealed mutations at 2 

bases in the CD11cS promoter (Figure 4.56) (99.7% identity) and 100% identity with 

the CD11cL promoter compared to the genomic sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.55 Verification of in vitro promoter activity of CD11c promoters. 
BMDC (a) and RAW264 (b) were transfected with DNA vectors encoding firefly luciferase regulated 
by CD11c promoters, as well as pGL3-Basic (negative control) and CMV-luc (positive control). A 
vector CMV-Ruc encoding renilla luciferase was used for co-transfection (1:25) to control the 
transfection efficiency. Promoter activity is expressed relative to the luciferase activity produced by the 
promoterless plasmid, pGL3-Basic, after correction for transfection efficiency by Renilla luciferase. 
Transfections were made by triplicate, and repeated for 3 times. 
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Figure 4.56 Two bases of mutations revealed by DNA sequencing in CD11cS promoter. 

 

4.5.2.2 in vitro specific activity of the CD11cS and CD11cL promoters 

To test the specific promoter activity of CD11cS and CD11cL in vitro, CD11c+ and 

CD11c- mouse cell lines as well as mouse bone marrow derived DC (BMDC) were 

transfected with CD11cS-luc or CD11cL-luc. Luciferase expression revealed a 

stronger promoter activity of CD11cS than CD11cL in CD11c+ cells (BMDC, DC2.4, 

RAW264), and a very low activity of both promoters in CD11c- cells (Figure 4.57). 

Both CD11c promoters induced restricted Ag expression in CD11c+ cells. The short 

CD11cS sequence showed a stronger activity. This might be due to the higher copy 

number of plasmid based on the same amount of DNA and the better transcription 

efficiency achieved by the small vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 4.57 In vitro specific activity of the CD11cS and CD11cL promoters. 
Cells were transfected with CD11cS-luc and CD11cL-luc vectors (encoding firefly luciferase), as well 
as pGL3-Basic (negative control) and CMV-luc (positive control). A vector CMV-Ruc encoding renilla 
luciferase was used for co-transfection (1:25) to control the transfection efficiency. Promoter activity is 
expressed relative to the luciferase activity produced by the promoterless plasmid, pGL3-Basic, after 
correction for transfection efficiency by Renilla luciferase. Transfections were made by triplicate, and 
repeated for 3 times. CD11c positive cells: BMDC, DC2.4, RAW; CD11c negative cells: DA3, CT26, 
3T3. 
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4.5.2.3 in vivo activity of the CD11cS and CD11cL promoters 

To prove the stronger promoter activity of CD11cS in vivo, the two DNA constructs 

CD11cS-luc and CD11cL-luc were applied ie and id to mice. Via bioluminescence 

imaging, luciferase expression induced by CD11cS was visible 4 hours after DNA 

injection in both ear pinna and flank, while the expression induced by CD11cL was 

seen only later (at 8 h) and only in the ear pinna (Figure 4.58). Quantitative 

bioluminescence analysis revealed that CD11cS induced a stronger gene expression 

than CD11cL in both ear pinna (~10 times higher) and flank (~1.5 times higher) at all 

time points (from 4 h to 7 d) (Figure 4.58). Both promoters induced a stronger 

luciferase expression than the luciferase containing pGL3-Basic vector with no 

promoter (data not shown). These results demonstrated the stronger promoter activity 

of CD11cS compared to CD11cL in vivo. Therefore, we applied the CD11cS promoter 

to further study gene targeting to DC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.58 In vivo activity of the CD11cS and CD11cL promoters. 
In vivo activity of CD11c promoters was tested by bioluminescence imaging after ie and id DNA 
injection. 25μg/50μL CD11cS-luc (left) or CD11cL-luc (right) DNA was injected ie or id to the ear or 
shaved flank skin (Balb/c mice, n=5). Mice were imaged for firefly luciferase expression at different 
time points using the IVIS100 system with 2 min exposure time. Experiments were repeated 3 times 
with similar results. Below: quantitative analysis of firefly luciferase expression was calculated in the 
Igor Pro 4.09A software for ROI (region of interest, Unit: p/sec/cm2/sr). 
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4.5.3 Verification of the specific activity of the CD11cS promoter in vivo 

4.5.3.1 In vivo activity of CD11cS in mouse muscle tissue 

To further analyze the specific activity of CD11cS in different tissues, we injected the 

CD11cS-luc plasmid into both the ear skin and the muscle (right side), with CMV-luc 

immunization as an unspecific control in the same mice (left side). DNA was applied 

by electroporation (EP) to favor strong gene expression. No luciferase expression was 

detected in muscle tissue (no resident DC) with CD11cS-luc injection, while 

luciferase expression was found in the ear pinna which is a DC rich tissue. CMV-luc 

injection led to luciferase expression in both ear pinna and muscle (Figure 4.59).  

 
 
 
 
 
 
 
 
 
 
Figure 4.59 CD11cS-luc expression in skin compared to muscle.  

25μg/50μL CMV-luc (left) or CD11cS-luc (right) DNA was injected ie or im with electroporation to 
the ear or muscle (DBA/2 mice, n=5). Mice were imaged for firefly luciferase expression at different 
time points with 2 min exposure time. Experiments were repeated 3 times with similar results. 
 

4.5.3.2 In vivo activity of CD11cS in dendritic cell-depleted mice 

To further corroborate the DC specific activity of CD11cS, we used CD11c-DTR-tg 

mice in which DC could be depleted by DT injection. CD11c-DTR-tg and C57BL/6 

mice were injected ie with CD11cS-luc 24 h after DT ie injection, with CMV-luc as a 

control. No luciferase expression was found by CD11cS-luc injection after DC 

depletion (ROI less than 5×103-1×104 is the background) in CD11c-DTR-tg mice, 

while luciferase was expressed to a similar level in CD11c-DTR-tg mice without DC 

depletion and in C57BL/6 mice (Figure 4.60a). Decreased luciferase expression was 

also found in the ear pinna of C57BL/6 mice after DT ie injection, which indicated 

that DT injection could interfere with Ag expression induced by DNA immunization. 

However, the down-regulation of Ag expression derived from interference of DT 

injection (5-10 times) could not compare to the effect achieved by depletion of DC 

(completely blocked). CMV-luc expression also was decreased in DC depleted mice 

Left: CMV 
Right: CD11cS 
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(5.1 times less at 24 h and 7.8 times less at 48 h compared with the mice without DC 

depletion), but by far not as strong as CD11cS-luc expression (33.5 times less at 24 h 

and 82.5 times less at 48 h, visible bioluminescence not detected) (Figure 4.60b). 

These results strongly support the conclusion that the CD11cS promoter regulates 

gene expression specifically in DC. 

a 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.60 Selective expression of CD11cS-luc in DCs.  
CD11c-DTR transgenic mice (CD11c-DTR-Tg, n=3) and C57BL/6 (n=5) were injected DT 
(100ng/50μL) to both ears. 24 h later, 25 μg/50 μL CD11cS-luc (left) or CMV-luc (right) was injected 
i.e. to the DC depleted mice. Mice were imaged for firefly luciferase expression at different time points 
with 2 min exposure time. Pictures shown are 24 h after DNA injection. Experiments were repeated 3 
times with similar results. Below: quantitative analysis of luciferase expression. 
 

4.5.4 Comparison of CMV and CD11cS promoter activity in vivo 

To compare the in vivo promoter activity of CD11cS to CMV, mice were injected with 

CD11cS-luc and CMV-luc ie and id. Bioluminescence signals revealed that luciferase 

expression regulated by CD11cS was much lower in comparison to CMV in both ear 

pinna and flank skin (Figure 4.61). According to the quantitative analysis, it took 24 

hours for CD11cS-luc to achieve plateau expression levels in comparison to 8 hours 
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for CMV-luc. High level of Ag expression was maintained for about 2 weeks, and 

then started to decrease. After 28 days, there was 10 times lower expression for 

CMV-luc (ie and id), and only 2 times lower expression for CD11cS-luc (ear pinna). 

CD11cS-luc expression was ~30-40 times lower than CMV-luc in the ear pinna, and 

~100-200 times lower in the flank dermis. Furthermore, CD11cS-luc expression was 

10-20 times lower in the flank dermis than in the ear pinna.  

 

CD11cS promoter induced much lower Ag expression than the CMV promoter in vivo. 

In order to induce an efficient immune response by DNA vaccine with this promoter, 

EP was applied to improve Ag expression. Ag expression regulated by CMV and 

CD11cS was improved by EP both in the ear pinna (~1-5 times) and the flank skin 

(~10-100 times) (Figure 4.62). These results corroborated the improvement of Ag 

expression by DNA+EP as indicated before (Figure 4.45), but still the CD11cS 

promoter induced much lower Ag expression than the CMV promoter even after EP. 

In addition, although EP improved CMV-luc expression in the flank dermis to a level 

similar in the ear pinna (Figure 4.62a), it improved CD11cS-luc expression only to a 

level comparable to naked DNA ie injection (Figure 4.62b). These results indicated 

that ear pinna is a superior site, especially for CD11cS controlled Ag expression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.61 Comparison of the CMV and CD11c promoter activity in vivo. 

In vivo activity of the CD11cS and CMV promoters were analyzed by in vivo imaging. 25μg/50μL 
CD11cS-luc (left) or CMV-luc (right) was injected ie and id (DBA/2 mice, n=5). Mice were imaged for 
firefly luciferase expression at different time points with 2 min exposure time. Experiments were 
repeated 3 times with similar results. Below: quantitative analysis of luciferase expression with 
CD11cS and CMV promoters.

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

4h 8h 1 2 3 4 5 6 7 14 21 28 day

Lu
ci

fe
ra

se
 e

xp
re

ss
io

n

ear CD11cS

ear CMV

flank CD11cS

flank CMV



Results 

     - 109 -           

 
a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.62 Improvement of Ag expression by DNA electroporation. 
Improvement of Ag expression regulated by CMV and CD11cS by DNA EP was analyzed by in vivo 
imaging. 25μg/50μL CD11cS-luc (a) or CMV-luc (b) was injected ie and id (DBA/2 mice, n=5) 
without (left) and with EP (right). Mice were imaged for firefly luciferase expression at different time 
points with 1 min exposure time. Experiments were repeated 3 times with similar results. Below: 
quantitative analysis of luciferase expression with CMV and CD11cS promoters. 
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No improvements of early Ag expression were detected in the ear pinna before 1 d for 

CMV-luc and 8 h for CD11cS-luc (Figure 4.62). This indicated that EP-dependent 

improvements might take a few hours to result in increased Ag expression. We then 

analyzed Ag expression in the very early time point (Figure 4.63) after DNA injection. 

Ag expression by naked DNA injection was detected in the ear pinna as early as 1 h 

after injection, increased with time and benefited from EP (right side) after 8-24 h. 

Ear pinna was again superior to flank skin with regard to very early Ag expression. 

This might be of great advantage for early and strong immune responses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.63 Improvement of early Ag expression by DNA EP. 

25μg/50μL CMV-luc was injected ie and id (DBA/2 mice, n=5) without (left) and with EP (right). Mice 
were imaged for firefly luciferase expression at different time points (from 1 h, 2 h till 24 h) with 5 min 
exposure time for 1 h and 1 min for the other time points.  
 

4.5.5 Humoral immunity by DNA vaccination with the CD11cS promoter 

Although the CD11cS promoter leads to a specific and stable gene expression in DC, 

the promoter activity is much weaker compared to CMV. To analyze if it is enough to 

induce immune responses in vivo, we applied CD11cS in a DNA vaccine encoding the 

lacZ gene as a model tumor antigen. Plasmid DNA (CMV-lacZ, CD11cS-lacZ or 

Vector) was applied ie or id, and EP was given additionally to improve DNA uptake. 

Two weeks after a single immunization, serum anti-β-gal antibodies could be detected 

in mice immunized ie and id with CMV-lacZ. In contrast, CD11cS-lacZ induced 

antibody production only by ie injection, and the antibody titer was much lower than 

after CMV-lacZ immunization (Figure 4.64). These results showed that humoral 

immune responses could be induced by ie injection of DNA vaccine with the CD11cS 
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promoter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.64 Antibody response induced by DNA with the CD11cS promoter. 

DBA/2 mice (n=3/group) were immunized ie with 25μg/50μL CMV-lacZ, CD11cS-lacZ or Vector 
(pSPORT) with or without electroporation. Serum anti-β-gal antibodies were measured 2 weeks after 
DNA injection. Titers were calculated by the formula from the antibody curves when the OD at 450nm 
is equal to 0.5. Experiments were repeated 3 times with similar results. 
 

4.5.6 Cellular immunity by DNA vaccination with the CD11cS promoter 

We then analyzed the cellular immune responses by a 4 h chromium (51Cr) release 

assay as well as by IFN-γ and IL-4 production by in vitro re-stimulated splenocytes 

(from the immunized mice in Figure 4.64). After 2 weeks of DNA immunization, 

splenocytes isolated from CD11cS-lacZ ie electroporated mice showed a β-gal 

specific CTL lysis (55%, E:T 100:1) compared with CMV-lacZ ie EP (71%, E:T 100:1) 

and CMV-lacZ id EP (56%, E:T 100:1) (Figure 4.65). DNA id immunization induced 

very high unspecific lysis to lacZ- tumor cells (18% for CMV-lacZ and 16% for 

CD11cS-lacZ at E:T 100:1). 

 

Following in vitro re-stimulation with the CD8 CTL specific β-gal peptide, 

splenocytes from CD11cS-lacZ immunized mice secreted IFN-γ to a lower extent 

compared to CMV-lacZ ie immunized mice, but to a higher extent compared to 

CMV-lacZ id immunized mice. Detectable IL-4 secretion was only found in the vector 

control group as well as in DNA id immunized groups (Figure 4.66). These results 

(together with Figure 4.64) demonstrate induction of specific immune response by the 

DNA plasmid with the CD11cS promoter, especially for Th1 T cell medicated (CTL) 

immune responses. 
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Figure 4.65 Specific cytotoxicity induced by DNA vaccines with the CD11cS promoter.  

In vitro re-stimulated splenocytes (by 0.5μg/mL TPHPARIGL peptide for 5 days) from the DNA EP 
immunized mice (CMV-lacZ, CD11cS-luc or Vector, 25μg/μL) were taken a traditional 4 h 51Cr 
cytotoxicity assay targeted to lacZ+ tumor cells (P13.1) and lacZ- tumor cells (P815). Experiments were 
repeated 3 times with similar results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.66 Cytokine production by DNA vaccines with the CD11cS promoter. 

Supernatant from re-stimulated splenocytes (Figure 4.65) was collected and analyzed for IFN-γ (day 2 
supernatant) and IL-4 (day 5 supernatant) ELISA. Experiments were repeated 3 times with similar 
results. 
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4.5.7 Prophylactic anti-tumor effect DC-targeting DNA vaccination 

To determine if a DNA vaccine regulated by the CD11cS promoter can induce 

anti-tumor activity, we applied the CD11cS-lacZ plasmid (compared to CMV-lacZ 

and Vector) ie or id to immunocompetent mice with EP and challenged them 2 weeks 

later with highly metastatic ESb-lacZ cells (Figure 4.67a). All vaccinations with lacZ 

gene led to significantly inhibited tumor growth compared with the Vector control 

group (Figure 4.67b). DNA vaccine with the CMV promoter applied ie induced the 

best tumor inhibition. Median survival of the mice was also improved by all 

vaccinations compared to the Vector group (Table 4.6). Immunization by CD11cS- 

lacZ ie+EP (Median survival: 31 days) provided the best survival. These results 

demonstrated the efficiency of the CD11cS promoter for induction of anti-tumor 

activity in vivo. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.67 Prophylactic anti-tumor effects by DNA vaccines with CD11cS promoter. 
DBA/2 mice (n=5/group) were immunized with CMV-lacZ, CD11cS-lacZ or Vector ie or id with EP. 
After 2 weeks, 2×105 ESb-lacZ lymphoma cells were injected sc to the flank. Tumor diameters at day 
18 after tumor challenge were shown (because some mice died after this time point). ∗ Compared to 
Vector group, p<0.05. Experiments were repeated 3 times with similar results. 
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4.5.8 Therapeutic anti-tumor effect by DC-targeting DNA vaccination 

Since bacterial β-gal only served as a surrogate tumor antigen, we next combined the 

CD11cS promoter to a DNA vaccine encoding human EpCAM. The mouse mammary 

carcinoma cell line DA3 transfected with the human EpCAM gene (DE) served as test 

tumor model. We applied the DNA vaccines by ie injection to the DE tumor therapy 

protocol and included DNA treatments for 4 times, weekly to tumor bearing mice 1 

week after tumor inoculation (Figure 4.68a). Both CMV-EpCAM and CD11c- 

EpCAM plasmid DNA treatments had significant anti-tumor effect. With the help of 

EP, tumor regressions were seen by both treatments, especially by CD11cS-EpCAM 

+EP (Figure 4.68b). 60% tumor-free mice were found in the CMV-EpCAM group and 

67% in the CD11c-EpCAM group at day 42 (2 weeks after the last treatment (Figure 

4.68c). These results further corroborate the strong anti-tumor activity that can be 

induced by a DNA vaccine with the CD11cS promoter. 

 
 

Group Median survival (day) 
Vector ie 22 
CMV ie 25 
CMV id 29 
CD11cS ie  31 
CD11cS id 25 

Table 4.6 Median survival 

Median survival: the day 50% mice died 
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Figure 4.68 Therapeutic anti-tumor effects by DNA vaccines with the CD11cS promoter. 

a. Strategy of DNA treatment. Balb/c mice (n=15/group) were inoculated sc with 1×107 DA3-EpCAM 
mammary carcinoma cells in the flank. DNA treatment was started after 1 week with 50μg/50μL 
CMV-EpCAM, CD11cS-EpCAM or Vector (pTandem1) for 1 treatment, with the total of 4 treatments. 
b. DE tumor growing curve. * Compared to the Vector group, p<0.05; ** Compared to the Vector 
group, p≤0.01. c. % tumor-take (% of mice with palpable tumor at different time points).  
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5 Discussion 

5.1 Improvement of DNA vaccine 

DNA vaccine represents a promising new means of vaccination. In vivo gene transfer 

has been proven to be efficient for different applications. These include prophylactic 

and therapeutic vaccines for infectious diseases and cancer. In order to augment 

specific immunity, administration of cytokines and genes is possible. Application of 

DNA rather than protein has several advantages: 1) endogenous protein synthesis 

enables desirable protein folding and efficient antigen presentation; 2) induction of 

efficient humoral and cellular immunity, especially cell-mediated immunity which is 

difficult to induce by protein vaccine; 3) cost-effective construction and 

manufacturing, as well as ease of public application. In addition, DNA vaccines 

appear to be safer compared to live/attenuated microorganisms (29, 33, 36, 38, 129). 

 

Because of those attractive advantages, DNA vaccine has been analyzed in a large 

number of disease systems in preclinical animal experiments and human clinical trials. 

Although efficient immune responses and protective & therapeutic immunity was 

achieved in some cases in small animals, weak performance was found in primates 

including humans. Various strategies have been tried to improve DNA vaccine, 

including adjuvant, different delivery methods, and optimized plasmid vectors (20, 56, 

130). In this thesis, we included as a new possible adjuvant in the anti-tumoral 

plasmid vector the gene for hemagglutinin-neuraminidase (HN) molecule from 

Newcastle disease virus (NDV). We also tested a more efficient delivery system, 

electroporation (EP). Both strategies improved efficiency of DNA vaccination (Part 

4.2, 4.3, and 4.4). 

 

5.2 Cancer DNA vaccine 

Cancer immunotherapy has made progress in recent years. Passive immunotherapy 

such as antibody treatment (e.g. anti-CD20 antibodies for B-cell leukemia (131, 132) 

and anti-HER2/neu antibodies for breast cancer) has been introduced for clinical 

treatment. Active immunotherapy via cancer vaccine aims at inducing or augmenting 

anti-cancer immune responses to eradicate tumor cells and at inducing long-term 
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immunological memory to maintain continuous immune surveillance against 

emergent cancer cells (4, 133). DNA vaccine is an attractive strategy for cancer 

vaccine development, because it can induce particularly efficient cellular immunity 

which is indispensible for anti-tumor effects, and persistent antigen expression which 

is required for durable immune responses. In addition, genetic strategies made it 

possible to combine different antigen/epitope sequences flexibly. This could help to 

establish a tumor therapy because of the complexity and the antigenic heterogeneity 

and escape mechanisms of tumors (36, 129, 134). 

 

In this thesis, we applied DNA vaccines in different tumor models. In the prophylactic 

model with P815 mastocytoma cells, vaccination with the immunostimulating 

adjuvant NDV HN DNA protected 40% mice from tumor growth (Figure 4.10). In 

other prophylactic models with moderately aggressive Eb-lacZ lymphoma or DE 

(DA3-EpCAM) breast carcinoma cells, HN immunization slowed down tumor growth 

(Figure 4.14 and 4.18). Only vaccination with DNA encoding TAAs (tumor associated 

antigens; lacZ gene encoding β-gal protein was used as a model TAA, and EpCAM is 

a TAA) induced complete protection (100% tumor-free mice) (Figure 4.14 and 4.18). 

In the highly aggressive ESb-lacZ tumor model, prophylactic naked TAA DNA 

immunization without adjuvant showed only partially tumor inhibition (Figure 4.15). 

The ideal cancer vaccine would be applied therapeutically to late phase patients 

especially those with metastases (81). Therefore, it is more important to apply 

vaccines therapeutically to highly metastatic tumors as models. With the help of 

adjuvant HN or EP, prophylactic anti-tumor immunity was improved in the ESb-lacZ 

tumor (Figure 4.15). We then tested therapeutic vaccination strategies in the DE 

model. Tumor progression could be inhibited by TAA DNA immunization with the 

help of HN (Figure 4.24 and 4.28) or EP (Figure 4.50). Such immunizations even led 

to tumor regression in 60-70% of the mice. 

 

5.3 Intra-pinna DNA immunization 

A variety of routes of DNA administration have been studied, including intramuscular, 

intradermal (id), subcutaneous (sc), intravenous (iv), intraperitoneal (ip), oral, vaginal, 

and intranasal (in). Although muscle tissue was the first site for DNA immunization, 

other tissues were later proven to be similar or even better for induction of specific 
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immunity. The skin and mucous membranes are the first physiological front to 

encounter and protect against infection by exogenous organisms. These tissues are 

therefore expected to be efficient routes for immunization (135, 136). Id 

immunization is one of the most widely applied routes for DNA immunization 

because skin is rich in dendritic cells. Id immunization could be easily improved by 

gene-gun, electroporation and tattooing. All these methods have been shown to be 

efficient for improving antigen specific immunity induction (137-141). 

 

Although in most cases in small animal experiments id immunization is applied to the 

abdominal or flank skin, ear pinna is an attractive alternative for DNA immunization. 

Ear pinna is a special site and form of skin. It contains two layers of epidermis and 

dermis (separated by cartilage), rich with DCs. Previous studies in our group showed 

that ear pinna is a better site than muscle tissue or flank skin for DNA immunization. 

Ie immunization of lacZ DNA (with a leukemia virus LTR driven BAG vector) 

induced earlier and stronger antigen expression at the local injection site compared to 

id and im injection. It was also superior with regard to induction of humoral and 

cellular immunity. Interestingly, a highly aggressive lymphoma cell line, ESb, did not 

grow in the ear pinna, although it induced very aggressive metastases when inoculated 

to other sites. ESb inoculation to the ear pinna quickly induced a Th1-type immune 

response, while ESb inoculation sc induced Th2-type cytokine production (74-76).  

 

In this thesis, we proved again the superiority of antigen expression induced by DNA 

immunization to the ear pinna compared to the flank skin by following the kinetics of 

firefly luciferase expression (Figure 4.1). By using the IVIS100 in vivo imaging 

system, in vivo firefly luciferase expression could be visualized in live mice (142, 

143). This strategy is superior to traditional methods of staining for antigen 

expression in situ in which case animals have to be sacrificed. In vivo imaging allows 

following the kinetics of antigen expression. We detected luciferase expression as 

early as 1 h after DNA injection in the ear pinna, compared to 2 h in the flank skin 

(Figure 4.63). Furthermore, the antigen expression level was much higher in the ear 

(~10 times higher, Figure 4.1) then in the flank skin, especially at early time points 

(~50-100 times higher in 1 h - 4 h after DNA injection, quantitative analysis of Figure 

4.63, data not shown). Induced immune responses were also stronger by ie DNA (lacZ 

gene with a CMV promoter) injection compared to id (flank) injection, both for 
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antibody induction (Figure 4.2) and cytotoxicity (Figure 4.3). In addition, preferential 

IFN-γ induction by ie DNA immunization and IL-4 induction by id DNA 

immunization (Figure 4.4) indicated respectively skewed Th1 and Th2 responses at 

these two sites. 

 

5.4 Immunostimulating adjuvant – HN of NDV 

NDV has been shown to be nonpathogenic to humans. This avian paramyxovirus 

preferentially proliferates in tumor cells but not in normal cells (84, 86). Different 

strains of NDV have been developed for clinical cancer treatment including lytic or 

nonlytic strains. Lytic NDV strains induce necrosis or lysis upon infection of tumor 

cells (144-146). Nonlytic strains induce cell death by apoptosis (147). NDV can 

stimulate immune responses by inducing anti-viral proteins (148). One of the key 

cytokines is IFN-α, which is induced primarily by viral double-stranded RNA and the 

HN molecule expression at the cell surface (107-109, 115). HN expression is also 

related to T cell co-stimulation (108, 115). In this thesis, we corroborated that HN 

expression in cells in vitro could induce lymphocyte binding activity and IFN-α 

production (Figure 4.6 and 4.7). In vivo, HN expression by DNA immunization 

induced systemic IFN-α induction (Figure 4.9) and an adjuvant effect in the P815 

tumor model (Figure 4.10). An in vivo adjuvant effect of an HN gene fused into a 

DNA vaccine encoding TAAs could be demonstrated in different tumor models both 

for prophylactic and therapeutic settings (Part 4.2 and 4.3). 

 

Our results also revealed that the increased anti-tumor immunity from HN adjuvant is 

not due to antibody responses. HN adjuvant did not improve antibody level to TAA 

(Figure 4.30). Specific antibody levels were even higher in tumor-bearing compared 

to tumor-free mice after DNA treatment (Figure 4.26). However, HN adjuvant 

increased the IgG2a/IgG1 ratio by sc application (the best adjuvant effect was 

achieved by HN adjuvant sc injection), which indicated HN might privilege Th1 

responses.  

 

Although coexpression of HN together with β-gal improved β-gal specific 

cytotoxicity (Figure 4.31), HN sc injection failed to show such effect. Vector sc 
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injection improved β-gal specific cytotoxicity. HN DNA with the same plasmid 

backbone, however, did not induce any improvements of cytotoxicity. One possible 

explanation is that HN sc injection improves anti-tumor immunity by other factors 

such as innate immunity. Adoptive transfer of spleen cells from immunized mice to 

NOD/SCID mice did not transfer protective immunity (Figure 4.39). Perhaps this is 

due to the immune defect of NOD/SCID mice which lack many helpful immune 

factors. Further efforts are needed to reveal the detailed mechanisms of the adjuvant 

activity of HN. 

 

Because type I IFN induction is one of the most important factors in innate immunity 

and closely related to NK cell activation, it is possible that HN is involved in NK cell 

activation. NK cells are important for innate immunity. They can rapidly recognize 

and eliminate pathogen infected cells as well as tumor cells (149, 150). They function 

by directed exocytosis of lytic granules (majorly granzymes and porferin) and the 

production of cytokines such as IFN-γ and TNF-α (151). In fact, the adjuvant effect of 

HN in RAG2-/- mice (Figure 4.40) suggested a crucial function of innate immunity for 

the HN mediated immunostimulating effect in anti-tumor immunity. Analysis of 

tumor infiltrating lymphocytes further supported this idea. Significantly increased 

NK-cell infiltration was observed in tumor (Figure 4.41). In addition, tumor mediated 

suppressive factors such as TGF-β (Figure 4.28) and myeloid derived suppressor cells 

(MDSCs) (Figure 4.40 and 4.41) were down-regulated by HN application.  

 

Besides the potent tumor eradication activity of NK cells, cross-talk between activated 

NK cells and DCs is important for adaptive immunity (150, 152). Early stages of 

pathogen infections are associated with local recruitment and activation of dendritic 

cells (DC) and NK cells. For our vaccination, HN adjuvant as well as CpG motifs in 

the plasmid backbone might activate NK cells. NK cells are capable of inducing type 

1 polarized "effector/memory" DC (DC1) that further translate NK cell-mediated 

helper signals for the development of Th1 immune responses. DC1s have an increased 

ability to produce IL-12p70, prime naive CD4 cells for high levels of IFN-gamma and 

low levels of IL-4 production, and induce Ag-specific CD8 T cell responses 

(153-161). 
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5.5 Electroporation 

Application of DNA vaccine to large animals and humans poses new challenge for 

increasing the efficiency of this approach. A variety of delivery systems for DNA 

immunization were tried (41). The most efficient gene transfer has been achieved 

when DNA delivery was followed by the application of electrical pulses such as 

electroporation, gene-gun, and tattooing. In vivo electroporation of plasmid DNA is 

the simplest way without particular requirements for DNA preparation and injection. 

It has been tested for skin, skeletal muscle, cardiac muscle, liver, kidney, joints, spinal 

cord, brain, retina, cornea and the vasculature to induce long-term antigen expression 

in these tissues. In most reports, electroporation increased gene expression by 100- to 

1000-fold compared to injection of naked plasmid DNA (31, 71, 137). The exact 

mechanism how EP enhances plasmid DNA delivery into cells is not fully understood. 

It is only clear now that membranes become effectively permeable by the formation of 

hydrophilic pores when a critical voltage has been applied, and subsequent 

plasmid-uptake by the cells would be more efficient. 

 

We used the ELGEN1000 electroporation-based DNA delivery system from the 

Inovio Company. This system is designed for human applications by transferring 

small molecules including genetic materials and therapeutic drugs to certain tissues. 

Clinical trials (phase I/II) have proven the safety, tolerability and immunological 

reactions in human (162-165). The system consists of a pulse generator and a 

needle-electrode applicator that incorporates two syringes/needles. With the pressing 

of two buttons at the integrated applicator, the two needles are inserted into the 

selected tissue to the selected depth, DNA vaccine is injected, and electrical pulses are 

applied. Low-voltage electrical pulses are generated by the pulse generator and 

delivered through an attached electrical cord into the same selected tissue through the 

electrode-needle pair on the applicator, effectively co-localizing the DNA and the 

electrical field. For small animals like mice, EP could be applied to skin by a pedal 

and an electrode (as indicated in Figure 4.42). 
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Figure 5.1 ELGEN1000 electroporation -based DNA delivery system. 
ELGEN1000 electroporation-based DNA delivery system (Inovio) contains a pulse generator and a 
needle-electrode applicator that incorporates two disposable syringes. 
Image is obtained from: http://www.genetronics.com 
 

By using this electroporation system, efficiency of in vivo DNA transfer was highly 

improved. Antigen expression was increased ~10 times in the ear pinna, and ~100 

times in the flank skin by quantitative analysis of luciferase expression (Figure 4.44).  

Long-term antigen expression was achieved by this strategy. Stable and relatively 

strong (similar as the level by naked DNA injection at 24 h) gene expression was 

maintained for about 1 year (Figure 4.45). More importantly, both humoral and 

cellular immune responses, as well as anti-tumor immunity were dramatically 

improved (Figure 4.46-4.50). It is even more promising to use this strategy for the 

DC-targeted DNA vaccine with the CD11cS promoter. Although the antigen 

expression regulated by the CD11cS promoter was improved only ~1-5 times by EP in 

the ear (Figure 4.62), immune responses were much stronger (Figure 4.64-4.66) than 

those induced by naked DNA injection (undetectable by injection of 25μg DNA with 

the CD11cS promoter, data not shown). With the help of EP, significantly improved 

anti-tumor immunity could be induced by this DC-targeted DNA vaccine strategy in 

both the prophylactic and the therapeutic tumor models (Figure 4.67 and 4.68). 

 

5.6 DCs in DNA vaccine 

Dendritic cells (DCs) are the most potent professional antigen presenting cells (APCs) 

capable of priming naïve T cells. In DNA vaccination, they are efficient to present 

antigens by direct and cross-presentation. Adaptive immune responses are initiated in 

http://www.genetronics.com/
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secondary lymphoid organs, where naïve T cells encounter antigen-bearing DCs that 

have migrated there from the site of vaccination (70, 166). 

 

The basic requirements for a DNA vaccine usually contain a bacterial plasmid vector 

containing a eukaryotic promoter, a cloning site, a transgene, a poly- adenylation 

sequence, an antibiotic selectable marker and a bacterial origin of replication (29). An 

efficient promoter may be required for optimal expression in mammalian cells. So far, 

most DNA vaccines have used viral promoters derived from cytomegalovirus (CMV) 

or simian virus 40 (SV40). Both promoters are strong and have no tissue-specificity. 

However, it was reported that CMV promoter induced cell death upon antigen 

overexpression (167). Restricting the site of gene expression should minimize the 

risks related to aberrant expression of an antigen. DCs are pivotal for antigen 

presentation, and directly transfected DCs have been reported to induce efficient 

immune responses by administration of relatively small numbers of cells (168-170). 

Furthermore, DC-targeted DNA vaccination preferentially induced cellular immune 

responses (171-173). Therefore, the idea of targeting antigen expression to DCs is 

promising for DNA vaccine development to lower the potential risk of unwanted side 

effects due to transgene expression in other cells (174). The development of a DNA 

plasmid vector with a DC-specific promoter would allow selective antigen expression 

in DCs and possibly increase the efficiency of the vector (175). 

 

A 5.5-kb CD11c promoter is widely used for DC-specific gene expression (126-128, 

176). Vaccination with such a promoter-regulating vector improved anti-tumor 

immune responses induced by TRP2hsp70 gene therapy (128). On the other hand, 

when using this promoter to regulate expression of the model antigen influenza 

hemagglutinin or ovalbumin, it turned out to be inefficient to induce protective 

humoral and cellular immunity following gene gun DNA vaccination (127). 

Furthermore, Lauterbach et al. claimed that expression of antigen in DCs by using the 

CD11c promoter induced antibody responses which were comparable to those 

induced by CMV promoter-driven constructs. They did not observe significant T cell 

responses after DNA gene gun immunization with their CD11c promoter plasmids 

(176). These previous studies revealed that gene expression by this promoter was 

restricted to DCs, but DNA vaccines with this promoter failed to induce efficient 

humoral and cellular immune responses following gene gun DNA immunization. This 
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might be due to the low level of antigen expression. In vitro transfection of DCs is 

difficult to achieve with high efficiency, especially with a long DNA sequence. 

Therefore, we tried to test if a short version of the CD11c promoter might be more 

appropriate for application in vitro and in vivo. 

 

We constructed various short mouse CD11c promoter sequences (from 

700-bp~5.5-kb). In vitro experiments revealed stronger promoter activity of CD11c 

promoters with 700-bp, 1.1-kb, or 2.4-kb than the 3.4-kb and 5.5-kb promoters 

(Figure 4.55). Since it is more convenient and more efficient to use a short promoter 

for in vivo experiments, we focused then on the 700-bp promoter (CD11cS) for 

further studies and compared it with the 5.5-kb CD11c promoter (CD11cL). 

Interestingly, the CD11cS had a stronger promoter activity than the long CD11cL 

promoter in vitro and in vivo (Figure 4.57 and 4.58). It was reported that a 

transcriptional enhancer element might be located in the region between -640 and 

-253 of the human CD11c promoter, while a negative regulatory element might exist 

between -960 and -640 (177). Although there were no similar studies related to the 

murine CD11c promoter, it is possible that the first few hundreds bases in the 

promoter region of murine CD11c gene are most important for gene regulation. It 

could be one of the explanations for the stronger activity of CD11cS than CD11cL. 

Furthermore, CD11cS appeared to be selectively active in DCs (Figure 4.59 and 4.60). 

With the help of electroporation, DNA vaccines encoding the lacZ gene coupled to the 

CD11cS promoter, when injected into the ear pinna, induced a weak humoral and a 

relatively strong cellular response (Figure 4.64-4.66). Prophylactic immunization 

under this protocol induced protective anti-tumor immunity upon challenge with the 

ESb-lacZ lymphoma cells and caused prolongation of survival (Figure 4.67). We also 

constructed a DNA vaccine in which the CD11cS promoter controlled expression of a 

natural tumor associated antigen (TAA), the human EpCAM. With this vaccine we 

could achieve even therapeutic immunization effects in mice bearing tumors 

expressing this TAA as transgene (Figure 4.68). 

 

5.7 Innate immunity in vaccination 

Generation of effective adaptive immunity is dependent on the initial stimulation of 

strong innate immunity. Similar with a natural infection which initiates innate 
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immunity immediately, DNA vaccines trigger innate immune responses very early 

(70). A central component of a DNA vaccine functions like an adjuvant (e.g. CpG 

motifs, or other immunostimulating molecules constructed into DNA vaccines). Such 

effect is important to enhance the magnitude and duration of immune responses 

induced by DCs and other innate immune cells (56). DCs exert a crucial connection 

function between innate and adaptive immunity, and translate information from 

pathogens or vaccines to T and B cells to regulate the quantity, quality and duration of 

the adaptive immune responses. DCs can sense microbes or adjuvants directly by 

TLRs; or indirectly by detecting inflammatory factors produced by NK cells, NKT 

cells, macrophages, mast cells and epithelial cells (178, 179). 

 

Besides CpG motifs which are included in the vector backbone, we incorporated 

another immune stimulating molecule NDV viral HN to the DNA vaccine as an 

adjuvant. As we showed in Part 5.3, HN improved TAA DNA-mediated anti-tumor 

immunity primarily through stimulating innate immunity. Systemic IFN-α production 

and tumor infiltrating NK cells were increased by HN application. Although no 

significant improvements were found with respect to serum antibodies and cytotoxic 

activity, immune responses became skewed towards Th1 and anti-tumor activity was 

improved. 

 

5.8 Tumor mediated immuno-suppression 

Because of lack of co-stimulatory signals, cell mediated immune responses to TAAs 

become tolerated. Failures of tumor elimination might be due to the following factors: 

1) Down-regulation of MHC class I molecules on tumor cells; 2) Loss or 

down-regulation of TAAs; 3) Physical barriers around the tumor; 4) 

Immuno-suppressive factors such as TGF-β, MDSCs, tumor-associated macrophages, 

tolerogenic DCs, regulatory T cells (Tregs); 5) T cell tolerance or anergy. Successful 

immunotherapy has to circumvent these suppressive mechanisms (123-125, 180-183). 

 

5.8.1 MHC expression at the tumor cell-surface 

Tumor cells can down-regulate expression of MHC I molecules and TAAs. This is 

one mechanism of tumor immune escape. NK cells are innate immune effectors that 
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can kill MHC class I deficient tumor cells in vivo. They can thus function when CTL 

cells can not. Therefore, it is important to induce both innate and adaptive immunity 

by a cancer vaccine (184-186).  

 

We used tumor cell lines with high and low MHC I expression (Eb-lacZ/ESb-lacZ and 

DE/DA3/RMA-S, respectively). In the Eb-lacZ and ESb-lacZ tumor models which 

express MHC I molecules, improvement of anti-tumor activity induced by HN 

adjuvant or EP could be explained by increased cellular immunity and privileged Th1 

responses. In the RMA-S (deficient in MHC I expression) tumor model, tumor growth 

might be inhibited mostly by NK cells. We found in this tumor model that tumor 

growth was reduced stronger in RAG2-/- mice than in wild-type mice after HN 

immunization (Figure 4.40). Improvement of IFN-α production in blood and NK-cell 

infiltration at the tumor site were also noticed after HN immunization 

 

5.8.2 Tumor induced suppressive factors 

Tumors can create a tolerogenic environment by secretion of suppressive cytokines 

such as TGF-β and IL-10 and by enhancing suppressive cell activity including 

MDSCs, tolerogenic DCs, tumor-associated macrophages and Tregs (128, 183, 187). 

We analyzed Gr-1+ CD11b+F4/80+ MDSCs in tumor-bearing mice, and found higher 

levels of these cells in advanced tumor stages. These cells contribute to 

immunosuppression by inhibiting the function of CD8 T cells and by promoting 

tumor angiogenesis. Combing HN or EP with TAA DNA vaccine could down-regulate 

TGF-β production in blood and MDSCs in both peripheral blood and tumor tissues. 

We also checked TGF-β secretion in a late tumor stage after re-challenge with DA3 

tumor cells without observing any benefit from vaccination (data not shown). This 

might be due to the suppressive microenvironment induced by late phase tumor in all 

groups.  

 

5.9 Safety of DNA vaccine 

Accumulating data demonstrate the efficiency of DNA vaccine for infectious diseases 

and cancer in animal models as well as in human clinical trials. However, safety is of 

concern related to this strategy. The following possibilities are potential risks that 
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might occur: 1) integration into the host genome, so increasing the risk of tumor 

formation; 2) destruction of transfected cells, thereby inducing autoimmune disease; 3) 

induction of tolerance rather than immunity. Many efforts were taken to study these 

potential risks (29, 188). Although not all plasmids could be completely safe 

excluding integration into host genome (189), there are no reports of tumor induction 

related to DNA vaccine. Mutation rates induced by DNA integration into the host 

chromosome have been shown to be much lower than the spontaneous mutation rate. 

In addition, a modest induction of autoantibody has not led any autoimmune diseases 

(190). So far, DNA vaccines are reported to be well tolerated and have an excellent 

safety profile in human clinical trials. Therefore, more efforts are needed for the 

improvement of vaccine design and delivery system for human application.  

Understanding of the immune system and development of new delivery strategies will 

provide more possibilities to design optimal DNA vaccines suitable for clinical 

application. 
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7 Appendix 

7.1 Titration of hygromycin sensitivity of different cell lines 

To generate stable gene expression in mammary cell lines, we used pcDNA3-hygro 
vector encoding interested genes. Cells with the gene expression can be selected by 
hygromycin. We first titrated hygromycin sensitivity of different cell lines. Table 7.1 
shows percentage of cells resistant to hygromycin with different concentration. 
Concentration of hygromycin for selection of stable transfection for different cell 
lines is outlined in table 7.2. 
 

Table 7.1 Hygromycin resistance titration (% of resistant cells) 

Hygromycin (μg/mL)Cell line Time 
(day) 800 400 200 0 

2 <5% 30% 80% 100% 

4 0 0 30% 100% 

6 0 0 0 100% 

BHK21 

7 0 0 0 100% 

2 <5% 30% 50% 100% 

4 0 0 0 100% 

6 0 0 0 100% 

DE 

7 0 0 0 100% 

2 50% 70% 80% 100% 

4 50% 60% 80% 100% 

6 10% 50% 70% 100% 

ESb 

7 0 20% 50% 100% 

 

Table 7.2 Hygromycin for stable transfection (conc.) 

Cell line Cell origin Hygromycin (μg/mL) 

BHK21 Fibroblast/Hamster kidney  100-200 

DE Epithelial cells/Mouse mammary carcinoma 100-150 

ESb Lymphcytes/Mouse lymphoma  600-800 
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7.2 Dendritic cell depletion from ear in CD11c-DTR-tg mice 

Diphtheria toxin-based CD11c-DTR transgenic mice were used to deplete DCs in vivo. 
Those mice carry a transgene encoding a simian DTR-GFP fusion protein under 
control of the murine CD11c promoter (Figure 7.1a) (Jung 2002). By systemic DT 
injection (ip), CD11c+ DCs could be depleted in spleen, lymph node, lung, liver and 
lamina propria tissues (as described by The Jackson Laboratory). We depleted DCs in 
the ear skin by applying DT either by ip injection (systemically) or ie injection 
(locally) to these mice. CD11c+ cells isolated from ear skin (both epidermis and 
dermis) of the CD11c-DTR-tg mice express low level of GFP as reported (11). By DT 
ip administration, 80% DCs were depleted in the ear after 24 h, compared to 90% 
depletion by DT ie local injection (Figure 7.1b). No influences of CD11c+ DCs in the 
ear were induced by DT application in wild-type C57BL/6 mice. These results 
showed the possibility to deplete DCs in the ear skin in CD11c-DTR-tg mice. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.1 Depletion of DCs in the ear skin. 
a. Schematic representation of the DTR/GFP transgene in CD11c-DTR-tg mice. b. FACS analysis of 
CD11c+GFP+ DCs in the ear skin. Single cell suspension was prepared from the epidermis and dermis 
of ear skin 24 h after DT injection in CD11c-DTR-tg mice and C57BL/6 mice. Cells were analysis by 
FACS after staining with CD11c-PE antibody. 
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7.3 Comparison of gene expression by ie and im DNA immunization 

Intra-pinna (ie) DNA immunization was also compared to intramuscular (im) DNA 
injection for gene expression. In vivo luciferase expression revealed that earlier and 
stronger antigen expression was detected in the ear by naked DNA injection (Figure 
7.2a). No visible expression was found in the muscle at 4 h by naked DNA injection 
(left ear and quadriceps). This pattern lasted for about 2 weeks, and then antigen 
expression dropped in the ear while maintained the same level in the muscle till 1 
month. After 2 month, luciferase expression decreased about 10 times in both sides. 
However, with the help of EP (right side), im DNA injection benefited more than ie 
injection for antigen expression. From 24 h till 56 d, antigen expression maintained a 
stable high level (Figure 7.2b). These results showed that ie naked DNA injection 
could induce better antigen expression than im injection; while EP improved antigen 
expression in the muscle much more than that in the ear. Im DNA injection is 
particularly superior for long-term antigen expression. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 7.2 CD11cS-luc expression in skin compared to muscle.  
CMV-luc plasmid (25μg/50μL) was injected ie and im without (left side) or with electroporation (right 
side) to the ear and muscle (DBA/2 mice, n=5). Mice were imaged for firefly luciferase expression at 
different time points with 1 min exposure time. Experiments were repeated 3 times with similar results. 
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7.4 Comparison of activities of tissue specific promoters 

Tissue specific promoters are helpful tools for gene therapy by which gene expression 
can be restricted to specific tissues. Besides CD11c promoters, we also analyzed 
murine fascine promoter (specific for mature DCs) and keratin 14 promoter (specific 
for keratinocytes). 
 

7.4.1 In vitro activity 

DNA constructs encoding firefly luciferase gene under control of fascin or keratin 14 
promoters were transfected to B16 (fascin positive cell line) and HaCaT (keratin 
positive cell line, human keratinocytes), compared to CMV and CD11c promoters. As 
it is indicated in Figure 7.3, fascin promoter induced better luciferase expression in 
B16 cells than other promoters (similar with CD11cS promoter), while keratin 14 
promoter induced better luciferase expression in HaCaT cells. 
 
 
 
 
 
 
 
 
 

 

 

Figure 7.3 In vitro luciferase expression regulated by different promoters.  
Cells were transfected with DNA vectors (encoding firefly luciferase) under control of different 
promoters, as well as pGL3-Basic (negative control). A vector CMV-Ruc encoding renilla luciferase 
was used for co-transfection (1:25) to control the transfection efficiency. Promoter activity is expressed 
relative to the luciferase activity produced by the promoterless plasmid, pGL3-Basic, after correction 
for transfection efficiency by Renilla luciferase. Transfections were made by triplicate, and repeated for 
3 times. 
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7.4.2 In vivo activity 

Fascin and keratin 14 promoter induced cell specific antigen expression in vitro 
(Figure 7.3). To further analyze their activity in vivo, we injected those DNA 
constructs into the mice ie and id. EP was applied (the right side) to improve antigen 
expression. All the tissue/cell specific promoters are much weaker than CMV 
promoter. Between these tissue specific promoters, CD11cS induced earliest and 
strongest antigen expression. This indicates CD11cS might be also superior to other 
promoters for cancer DNA vaccine development which might need superior antigen 
expression. 
 
 
 

 

 

 

Figure 7.4 In vivo luciferase expression regulated by different promoters in ear and 

flank skin.  
DNA plasmid (25μg/50μL) encoding firefly luciferase gene under control of different promoters was 
injected ie and id without (left side) or with electroporation (right side) to the ear and flank skin (Balb/c 
mice). Mice were imaged for firefly luciferase expression at different time points with 1 min exposure 
time. Experiments were repeated 3 times with similar results. 
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