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Abstract

Wave propagation in light weight plates with truss-like cores is investigated
in this thesis.

In a first step, a simplified two-dimensional strip model based on ana-
lytic beam functions is established and validated experimentally. This model
is also valid for line force excitation and response in the direction parallel
to the intermediate webs. The model is employed to investigate the wave
propagation in light weight profile strips with truss-like cores. A study using
different core geometries with and without diagonal stiffeners reveals signifi-
cant differences. Periodic system effects are clearly visible, most pronounced
for the case of solely vertical webs. A stiffening effect of the fillets at the
joints is identified, whereas their additional mass is of minor importance.

The wavenumber content of periodic light weight profile strips is inves-
tigated by using the theory of wave propagation in multi-coupled periodic
systems to extract the dispersion characteristics of typical configurations.
Solving the transfer matrix eigenvalue problem forms a basis for understand-
ing the wave propagation in (infinite) strips; six characteristic waves travel-
ling in each direction arise, either propagating, decaying or complex. Each
characteristic wave consists of multiple wavenumbers of different amplitude,
forming the so called ”space harmonic” series. Typical wave forms of char-
acteristic waves are shown and form the basis for identifying their relative
contributions in the space harmonic series.

Based on the dynamic stiffness matrix of a single subelement of the peri-
odic system the forced response is calculated for infinite, light weight profile
strips. The characteristic wave amplitudes for selected force excitations in
combination with the corresponding wavenumber spectra form the basis for
structural acoustic investigations. Input mobilities for the infinite strip are
presented demonstrating the typical pass- and stop-band behaviour. A brief
study of the influence of periodicity perturbations reveals that for typical
profiles, even quite high random length variations up to about 5% have a
limited effect on the structural dynamics of the strip.

The second part of the work extends the two-dimensional strip model to

4



a full three-dimensional model of the investigated light weight plates.
For the generic light weight plates with periodicity in the lateral dimen-

sion the wavenumber content is characterized by strong directional wave
propagation and resulting wave beaming in some frequency bands, where
local vibrations are of primary concern. In the low frequency region, where
global plate waves dominate, the vibrational behaviour can be reduced to
equivalent plate models. For profiles with inclined webs, global orthotrop-
icity is limited and global bending wave dispersion is similar irrespective of
direction. For profiles with solely vertical webs, strong orthotropicity with
significantly higher wavenumbers in lateral direction, normal to the webs, is
demonstrated.

The strong periodic pass- and stop-band behaviour detected in the strip
investigation is transformed into a spatial stop- and pass-band distribution
of high and low vibration zones. As a result, the stop-bands of the two-
dimensional investigation are weakened for point excitation of full plates,
represented by a rising real part of the input mobilities. In these lateral
stop-bands the imparted power is transmitted mainly in the longitudinal
direction, parallel to the webs of the inner core.

Different methods for the extraction of theoretical and experimental dis-
persion characteristics are applied and discussed. Theoretical dispersion
characteristics and mobilities are validated on a regional train floor section
which serves as an application example.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Körperschallausbreitung in
Leichtbauprofilen mit fachwerkähnlichem Kern. Der erste Teil der Arbeit
widmet sich der Untersuchung eines vereinfachten, zweidimensionalen Mo-
dells, das auf gekoppelten, analytisch zu beschreibenden Balken beruht. Es
repräsentiert einen schmalen Streifen der Leichtbauplatte oder kann als Mo-
dell für Linienkrafterregung parallel zu den inneren Stegen verwendet werden.
Nach der Modellentwicklung und der experimentellen Validierung wird es für
die Untersuchung der Wellenausbreitung in Leichtbau-Plattenstreifen ver-
wendet. Eine Studie unter Berücksichtigung unterschiedlicher grundsätzlicher
Fachwerkkonstruktionen mit schrägen und geraden Versteifungen zeigt deut-
liche, prinzipielle Unterschiede. Typische Effekte periodischer Systeme wer-
den nachgewiesen, insbesondere für Profilstreifen mit ausschließlich vertikalen
Versteifungen. Die fertigungsbedingten radialen Übergänge an den Verbin-
dungsstellen angrenzender Stege führen zu einer deutlichen Versteifung, wäh-
rend die zusätzliche Masse an diesen Stellen von untergeordneter Bedeutung
ist.

Der Wellenzahl-Inhalt von periodischen Leichtbauprofilstreifen wird unter
Verwendung der Theorie mehrfach gekoppelter periodischer Systeme ermit-
telt, wobei die Dispersionseigenschaften typischer Profilgeometrien unter-
sucht werden. Die Lösung des Eigenwertproblems für die Transfermatrizen
bildet die Grundlage für das Verständnis der Wellenausbreitung in (unend-
lichen) Profilstreifen. Sechs charakteristische Wellen in jede Richtung wer-
den identifiziert, die entweder ausbreitungsfähig, abklingend oder schwingend
abklingend (komplex) sind. Jede charakteristische Welle enthält mehrere
Wellenzahlkomponenten mit unterschiedlicher Amplitude, welche die so genan-
nte ’Space harmonic series’ bilden. Die ermittelten charakteristischen Wellen-
formen bilden die Grundlage für die Bestimmung der relativen Anteile in der
’Space harmonic series’.

Mit Hilfe der dynamischen Steifigkeitsmatrix eines einzelnen Grundele-
ments des periodischen Systems wird die Schwingungsantwort für unendliche
Leichtbauprofilstreifen ermittelt. Die charakteristischen Wellenamplituden
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für ausgewählte Kraftanregungen in Verbindung mit den zugehörigen Wellen-
zahlspektren bilden die Grundlage für strukturakustische Untersuchungen.
Die ermittelten Eingangsmobilitäten demonstrieren das typische Durchlass-
und Sperrbandverhalten periodischer Systeme. Eine kurze Betrachtung des
Einflusses von Periodizitätsabweichungen verdeutlicht, dass recht hohe, zufäl-
lige Längenänderungen der Grundelemente bis zu ca. 5 % nur einen geringen
Einfluss auf die Strukturdynamik der Plattenstreifen haben.

Im zweiten Teil der Arbeit wird das Modell des zweidimensionalen Profil-
streifens auf ein volles dreidimensionales Modell der Leichtbauplatte erweit-
ert.

Für die untersuchten Leichtbauprofile mit einer Periodizität in nur einer,
der seitlichen Richtung, sind die Dispersionseigenschaften geprägt von einer
frequenzabhängigen, stark gerichteten Wellenausbreitung, die im höheren
Frequenzbereich in Erscheinung tritt. In diesen Bereichen sind lokale Schwing-
ungsmuster von entscheidender Bedeutung. Für tiefe Frequenzen, in denen
globale Plattenwellen vorherrschen, kann die Leichtbauplatte zu äquivalenten
Platten reduziert werden. Für Profile mit Diagonalversteifung ist die glob-
ale Orthotropizität begrenzt und eine globale Biegewellenausbreitung ohne
signifikante Richtungsabhängigkeit tritt auf. Für Profile, die ausschließlich
vertikale Versteifungen aufweisen, kann ein stark orthotropes Verhalten mit
deutlich höheren Wellenzahlen in lateraler Richtung, senkrecht zu den Ver-
steifungen, beobachtet werden.

Das stark periodische Verhalten, das für die Profilstreifen beobachtet
wird, wird in eine räumliche Verteilung von Sperr- und Durchlassbereichen
überführt. Daraus ergibt sich, dass die Sperrbänder der zweidimensionalen
Betrachtung für punkterregte Leichtbauplatten an Bedeutung verlieren. Dies
manifestiert sich in steigenden Realteilen der Eingangsmobilitäten im Bereich
der lateralen Sperrbänder. In diesen Frequenzbereichen wird die eingespeiste
Körperschallleistung hauptsächlich in longitudinaler Richtung entlang der
Versteifungen transportiert.

Unterschiedliche Methoden für die Extraktion der theoretischen und ex-
perimentellen Dispersionseigenschaften werden angewendet und die Ergeb-
nisse diskutiert. Die theoretischen Dispersionseigenschaften und Mobilitä-
ten werden für die Leichtbau-Bodenplatte eines Regionalzuges ermittelt und
durch Messungen validiert.
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Chapter 1

Introduction

Light weight profiles are extensively used in different industrial applications.
In a world where sustainability should be the main focus for economic and
social behaviour, consumption of energy and raw materials have to be mini-
mized in all sectors. Light weight design, driven historically mainly by tech-
nological and economic constraints in the aeronautics and astronautics is
nowadays commonplace and essential in all industrial branches.

Typical light weight plates are designed of outer face plates in connection
with a core of a variety of materials and geometries, e.g. foams, honey-
comb structures or inclined as well as straight webs. The latter design is
investigated in this thesis (see Fig. 1.1). These types of profiles are often
made of aluminium and formed in an extrusion process, so that nearly ar-
bitrary lengths of the profiles can be manufactured. In this thesis the term
”length” is related to the extension parallel to the intermediate plates (z-
direction), ”width” the extension crossing the web connections (x-direction)
and ”height” the dimension corresponding to the thickness of the light weight
plate (y-direction).

The thesis focusses on the wave propagation in such structures, which
comprise a high static stiffness in combination with low mass. Often there
are two thin outer plates connected via inclined or upright stiffeners.

In the railcar industry carriage design from extruded aluminium profiles
is commonplace and can assist in achieving light weight rail vehicles. In ad-
dition to the light weight there are several advantages of these profiles, e.g.
the high water- and air-tightness that are possible through the line-welding
process to connect the profiles and the quite simple production process by
extrusion. Moreover, the profiles are easier to handle than big sheet metal
plates which are needed alternatively. Furthermore, curvature of the com-
plete structure can be included fairly simply and exactly by including the
radius in the design of each profile [1]. One of the drawbacks of these light
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CHAPTER 1. INTRODUCTION

weight profiles is the low sound transmission loss of the bare profiles in com-
parison to single wall mass law behaviour [2].

With regard to interior acoustic comfort not only the airborne transmis-
sion is of importance, but also the structure-borne sound transmission can
dominate in some frequency bands, mainly expected in the low frequency
regime up to about 500 − 1000 Hz. The reduced mass of the carriage tends
to increase the structure-borne contribution due to higher structural mobil-
ities and increased radiation in the global vibrational regime. The latter is
a consequence of the low mass in connection with high static bending stiff-
ness, resulting in critical frequencies of about 200 Hz [2]. The reduction of
lead time and costs in the vehicle manufacturing process is accompanied by
the abandoning of prototyping in the railcar industry. Hence, the indus-
try demands reliable and manageable prediction processes, which have to be
founded on a profound physical basis in order to assure acoustical quality
without ’trial and error’ modifications on production vehicles or prototypes.

For appropriate design of rail vehicles with respect to structure-borne
sound one has to cope with the complex vibro-acoustic process sketched in
Fig. 1.2.

The structure-borne sound power transmitted from the source to the re-
ceiving structure, in this case the carriage, depends not only on the source,
but also on the mobilities of the source and the receiving structure. This fact
which is strictly true also, but usually neglected, for airborne sound sources,
hinders the separate optimization of source and receiver. An overview of
the concept of structure-borne sound source characterization and structural
power transmission is given in [3]. For a proper source characterization source
activity (free velocity / blocked force) and source mobility have to be evalu-
ated. Besides the source characterization, which is an ongoing research and
development task, the structure-borne sound characteristics of the receiving
structure are essential. They influence not only the transmission process, but

(a) (b) (c)

Figure 1.1: (a) Periodic light weight plate (b) cross sections with vertical
webs (c) cross sections with inclined webs
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CHAPTER 1. INTRODUCTION

Figure 1.2: Complete vibro-acoustic process

form the basis for structure-borne sound propagation and radiation. In this
thesis, the latter is of concern and therefore the wave propagation in typical
light weight plates is investigated. The focus is on the physical understanding
of the inherent wave propagation. Once the dispersion characteristics of the
light weight profiles are sufficiently understood, generic carriage models like
box or cylinder models can be established to calculate the structure-borne
sound propagation and radiation due to vibrational force or moment exci-
tations at the source - carriage connection points. In [4, 5] an example of
a generic cylinder model of a classical steel carriage is published and deals
with exterior sound radiation from structure-borne excited train carriages.

In the automotive industry there is a tendency for increased usage of
extruded aluminium profiles in car bodies, e.g Audi uses the AudiSpaceFrame
technology as a mixture of cast aluminium, aluminium profiles, aluminium
and iron sheets [6].

As typical light weight profiles are often periodic or nearly periodic a
central question is the existence of periodic system effects like pass- and
stop-bands.

Besides these technical light weight plates, periodic systems are significant
also in biological systems, e.g. honeycombs of bees, where structure-borne
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CHAPTER 1. INTRODUCTION

sound transmission seems to be a major means of communication inside the
hive [7]. Measurements and observations indicate that the bees optimize
the honeycombs for transmission in certain frequency bands, probably re-
lated to periodic pass-band effects, where part of the communication takes
place. These effects are not investigated in this work but shall highlight the
significance of periodic vibrational systems also in other scientific domains.

1.1 Previous work

Structural-acoustic investigations of light weight plates as sketched in Fig. 1.1
for mid- and high frequency applications are rare. A short overview of the
related work is given in this section.

Often the lightweight structures are periodic or nearly periodic. This
is especially true for industrial standard profiles, designed for a variety of
applications. The details of the structural loads are unknown or locally
varying and hence no specific (static) design is performed, reinforcing for
example the load carrying regions. Periodic structures show some char-
acteristic effects which have been studied extensively in the past (cf. e.g.
[8, 9, 10, 11, 12, 13, 14, 15, 16]). The periodic nature simplifies the calcula-
tion procedure as only one periodic subsystem has to be analysed. The wave
propagation of a complete profile strip can be deduced from the subsystem
results.

The most important feature of the wave propagation in periodic struc-
tures is the existence of pass- and stop-bands, where unhindered and strongly
suppressed wave propagation appears respectively. Hence, the wave propa-
gation undergoes a mechanical bandpass filtering [17].

Different approaches to describe the structural-acoustic characteristics of
light weight profiles can be found in literature. The global behaviour of the
profile, dominating in the low frequency regime, is investigated using a sand-
wich approach by Lok and Cheng [18, 1]. The structure is treated as an
equivalent orthotropic plate. For higher frequencies, where local vibrations
of the structural members appear, different approaches are necessary. Sta-
tistical methods are applied by Geissler and Neumann [19] and Xie et. al.
[20, 21]. Xie et. al. demonstrate that for a typical railway carriage profile
the local vibrations dominate at frequencies above 500 Hz and introduce a
statistical model as a combination of global and local subsystems. Global vi-
brations are characterized by wavelength which are significantly larger than
the distance between the webs, whereas local vibrations arise in web sections
enclosed between the web joints. The modal density of the extruded pan-
els is estimated in [22] and verified by the modal density extracted from an
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CHAPTER 1. INTRODUCTION

FE-model of the section. The coupling between global and local modes is
described by the coupling between a travelling global wave and uncorrelated
local waves. Presented results for radiation efficiency and level difference of
the face plates are promising for mechanical excitation but less satisfactory
for acoustical excitation.

Pezerat and Guyader [23] use an analytical modal approach to describe
the structural acoustic characteristics of light weight profiles, whereas El-
Raheb [24] uses a transfer matrix approach. Both studies do not focus on
the wave propagation and dispersion characteristics and hence, the physical
insight in the inherent processes is limited.

Pang [25] uses both spectral finite element calculations to extract disper-
sion characteristics and commercial SEA-software to investigate the structu-
ral-acoustic behaviour of extruded aluminium profiles. Investigation of dis-
persion characteristics using spectral finite element calculations reveals some
insights in the wave propagation mechanisms involved and local cut-on phe-
nomena are detailed. The main focus of that work is the calculation of
structural acoustic parameters, e.g. the transmission loss, for acoustically
excited panels by the development of appropriate SEA-models.

Nilsson and Jones introduce a coupled waveguide finite and boundary el-
ement method for calculating the sound transmission through an extruded
profile section [26]. The presented approach is more efficient than full stan-
dard 3D FE/BE calculation and can be used for transmission loss prediction
of panels with large extension in the rib direction. This dimension is assumed
to be infinite in the model. The sensitivity of the calculated transmission loss
to inherent damping is mainly addressed to power transmission in the vicin-
ity of the cut-on frequencies, where the injected power is proportional to the
slope of the dispersion curves.

Cross sections of the profile plates can be treated as plane truss frame-
works which have been investigated extensively in the past, e.g. by Signorelli
and von Flotow [27] who deal with the wave propagation in periodic truss
beams in detail. Characteristic waves are extracted and the periodic system
effects are investigated. As only the translational degrees of freedom at the
joints are included, results are strictly valid only for the special case of sup-
pressed rotations at the joints. Emaci et. al. [28] deal with truss structures of
similar shapes and identify the characteristic waves for the periodic system.
In the first part, they use the complete formulation including rotational com-
ponents at the joints. No detailed investigation of the wavenumber content is
included so that the results are not applicable for sound radiation phenomena.
This is indeed not intended for the investigated structures there. Ruzzene
[29] investigates the dynamics and sound radiation of sandwich beams with
honeycomb truss core and also with a ’square’ core, similar to one of the
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geometries investigated here. The calculation is based on the spectral finite
element method and results are presented for finite strip configurations. No
use is made of periodic system theory and the wave propagation is not in-
vestigated. Sound radiation is treated and a comparison with a unit cell
analysis with special guided boundary condition agree principally with the
results for the complete strip, at least for the investigated average response
for normally incident pressure wave excitation.

The published work on truss-core light weight plates does not focus on the
wave propagation mechanisms in the mid- to high-frequency regime, where
local vibrations are of major significance so that the physical insight in the
structural-acoustic behaviour is limited. This thesis shall shed some light
on the dispersion characteristics of such systems and investigate some of the
major scientific questions in this area:

• Which wave types can propagate freely in the light weight plates?

• Are periodic system effects like pass- and stop-band behaviour of sig-
nificance? If so, how much periodicity perturbations can be allowed to
maintain these effects?

• Which methods can be used to investigate the wave propagation?

1.2 Thesis overview

The thesis starts with the investigation of two-dimensional models of strips of
the light weight profile plates in chapters 2 to 4. This simplification enables
the use of analytical beam elements to calculate the behaviour of the profile
strips. The three-dimensional investigation of the full light weight profiles
starts in chapter 5 with the free wave propagation. The thesis continues
with forced response calculations in chapter 6, an experimental validation on
a regional train floor section in chapter 7 and concludes with a summary and
an outlook in chapter 8.
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Chapter 2

Light weight profile strips:
Theory, modelling and
experimental validation

2.1 Introduction

In this chapter an analytical approach is chosen to investigate the wave prop-
agation in the light weight structures. At first, a two-dimensional model is
established, describing the wave propagation and the resulting mobilities of
a profile strip or the wave propagation for line force excited profile plates,
where the line force extends parallel to the interconnecting plates. The in-
herent wave propagation phenomena for periodic strips are investigated and
constitute together with an experimental validation the central issues in this
chapter. In chapters 3 and 4 the dispersion characteristics of periodic strips,
the forced response and the influence of periodicity perturbations are treated.

2.2 Calculation method

Starting point to handle the complex structure is a two-dimensional model
of a profile cross section (see Fig. 1.1(b) and (c)). The structural dynamic
behaviour of such a section can be investigated by using the methods for
plane truss networks. An analytical description using beam functions for the
bending and longitudinal vibrations of the members can be gained follow-
ing the so called ”slope-deflection method” [30, 31], see also Appendix A.
Euler-Bernoulli bending theory is used in this study as the material thick-
ness of typical light weight profile members is small in comparison with the
governing wavelengths. The inclusion of longitudinal waves is mandatory as
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wave conversion phenomena arise at the joints. Small vibration amplitudes
are postulated so that linear vibration theory and the superposition principle
apply.

2.2.1 Dynamic stiffness matrix assembly

For built-up systems comprising similar, successive elements it is helpful to
divide the complete system in subsystems of similar shape. Therefore, only
the subsystem dynamic stiffness matrix has to be assembled using e.g. the
”slope-deflection method”. The resulting system of equations for a subsystem
can be written in a condensed matrix form using the subsystem dynamic
stiffness matrix Ksub, displacement vector ξ and force vector F,

Ksubξ = F. (2.1)

The complete system dynamics can be developed by connecting the subsys-
tems side by side. This can be done for the dynamic stiffness matrix approach
by just adding the influence of the directly connected elements at the same
global degree of freedom using a topology matrix P,

Kstrip = PT Ksub P. (2.2)

2.2.2 Dynamic stiffness matrix for a typical subsystem

For profiles with inclined webs a subsystem can be defined as shown in
Fig. 2.1. Using this subsystem and the corresponding mirrored one is suffi-
cient to assemble the complete dynamic stiffness matrix of all profile strips
shown in Fig. 1.1 (c). This profile with inclined members is the typical situ-
ation in train carriage applications. In the case of webs normal to the outer
faces, the subsystem can be developed in a similar way which is not outlined
explicitly here for the sake of brevity.

The arrangement of the translational and rotational degrees of freedom in
the vectors and matrices is based on the convention that point after point is
treated with its three degrees of freedom (rotation around z-axis (ϕg), trans-
lation in x-direction (ug) and translation in y-direction (vg)). This results in
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Figure 2.1: Subsystem element with inclined web including nomenclature
and coordinate system

the following definition of the dynamic stiffness matrix K,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. . .
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. . .
. . .

. . .
. . .
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k12,1 k12,2 k12,3 k12,4 . . . k12,12

⎞
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·

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3)

For the sake of brevity, only the non-zero elements of the K-matrix are
given in Eqs. (A.4) in Appendix A. Because of reciprocity, evaluation of the
upper (or lower) off-diagonal elements is sufficient and hence the notation is
restricted to the upper off-diagonal terms.

The solution for a forced response of the finite strip can be calculated by
inverting the K-matrix or by a different solution algorithm, e.g. Gauss elim-
ination for each frequency. Moreover, it is possible to calculate the mobility
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matrix Y from the dynamic stiffness matrix by1

Y = jω · K−1 . (2.4)

2.2.3 Model benchmarking and extensions

The model is extended to encompass also straight vertical stiffeners using
the same approach as described above. Damping is included in the model by
using a complex Young’s modulus E = E0(1+jη) with loss factor η. In order
to check the implementation, different benchmark calculations are performed
with a standard Finite Element code. The equality of mobility results is
strikingly good. Only at higher frequencies a slight frequency shift exists
due to the Euler-Bernoulli beam theory applied, which assumes infinite shear
stiffness, whereas finite shear stiffness is employed in the FE-calculations.
For the sake of brevity, no results are presented here, but results of an FE-
calculation including point masses are found in Figs. 2.6 and 2.7. No need
for a model extension to compensate this shift is identified as the deviations
are negligible for practical profile geometries in reasonable frequency ranges.

2.3 Influence of web geometry on input and

transfer mobility

In order to investigate the influence of different geometries on the structure-
borne sound characteristics of the profile strips, the input and transfer mo-
bilities are studied for three periodic aluminium profiles with different inner
webs, shown in Fig. 2.2. The parameters are listed in Tab. 2.1. In order to
make the results comparable in a light weight design sense, the thickness of
all inner webs is adjusted to maintain a constant profile mass of 83 kg per unit
width. It is expected that the behaviour of the strip can be characterized by
global vibrations at low frequencies below the first bending eigenfrequencies
of the webs. Hence, it is appropriate to compare the resulting mobilities with
that of an equivalent beam. The equivalent homogeneous bending beam is
defined here by using the cross sectional second area moment of the dominat-
ing outer plates, calculating an equivalent thickness according to this second
area moment and adjusting the mass density in order to maintain the same
total mass. The equivalent parameters are included in Tab. 2.1.

A resulting ordinary transfer mobility magnitude from force excitation in
y-direction at the left end to the response at the right end in the same direc-
tion is plotted in Fig. 2.3 for profiles A,B and C versus Helmholtz number,

1The time base e+j ωt is consistently used in this thesis.
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A
B
C
Figure 2.2: Profile strips used for the study on web geometry. The thickness
of the inner webs is adjusted to maintain constant total mass of the profile
strip.

Table 2.1: Calculation parameters for study of profiles A, B, C and the
definition of equiv. beam (see Fig. 2.1 for nomenclature)

Profile A B C Equivalent beam

touter, teq [mm] 3.0 3.0 3.0 34.0
tinner [mm] 3.0 2.6 8.5 -

α [◦] 45.0 26.6 / 90.0 90.0 -
lx [mm] 50 100 100 -

Total length L [mm] 3000 3000 3000 3000
E0 [N/m2] 7.2 · 1010 7.2 · 1010 7.2 · 1010 7.2 · 1010

η [-] 0.01 0.01 0.01 0.01
ρ [kg/m3] 2700 2700 2700 812.5
Total mass

per unit width [kg/m] 83 83 83 83

kBL, of the equivalent beam. The corresponding mobility for the equivalent
beam is also included. All mobilities are given for a force per unit width in
z-direction and free boundary conditions. The real part of the input mobility,
which is proportional to the input power is plotted in Fig. 2.4. It is obvious
that the equivalent beam is capable of capturing the dynamic behaviour of
the profiles A and B with sufficient accuracy in the low frequency regime up
to a Helmholtz number of about 15. The match for beam A is good up to
slightly higher frequencies. At high frequencies, where local vibrations and
periodic system effects govern the structure-borne sound propagation, the
equivalent beam model naturally fails to represent the inherent characteris-
tics. For profile C the equivalent bending beam is nowhere an adequate model
in the complete investigated frequency range, except for the rigid body be-
haviour at very low frequencies. The C-beam exhibits a higher modal density
for global vibrations which can be explained by the shorter global wavelength
extractable from the mode shapes or the dispersion characteristics presented
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Figure 2.3: Magnitude of transfer mobility (Fy, vy) of strip (a) A, (b) B
and (c) C in comparison to equivalent bending beam (— strip A, B, C;
– – equivalent bending beam)
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Figure 2.4: Real part of input mobility (Fy, vy) (a) A, (b) B and (c) C in
comparison to equivalent bending beam (— strip A, B, C; – – equivalent
bending beam)
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(a) Photo (b) Sketch

(c) Point mass model

Figure 2.5: Fillets at joints of extruded profiles and point mass approximation

in chapter 3.
A kind of ’shear’ deformation arises, where the vertical webs mainly trans-

late in y-direction without overall rotation and only the outer beams perform
local bending vibration. For profiles with diagonal webs, this kind of global
vibration is suppressed by the longitudinal stiffness of the diagonal members.
Starting with kBL = 17, clear periodic system effects arise for the C-beam.
In contrast to mono-coupled periodic beams, where in alternation stop- and
pass-bands arise, the C-beam shows wide stop-bands between the pass-bands.
Only one pass-band between Helmholtz numbers 31 and 35 is prominent. The
stop-bands are interrupted by narrow single resonances, resulting from finite
strip end reflections.

The periodic system effects are less pronounced for the profiles with in-
clined webs (A and B). This is due to ’weaker’ wave conversions at the joints
(see e.g. [32, p. 401]) smearing the pass- and stop-bands. Nonetheless, stop-
bands are visible, e.g. between 32 and 35 for profile A and between 27 and 28
for profile B. For these profiles the real part of the input mobilities (Fig. 2.4)
exhibits a distinct peak for frequencies above the first periodic system effects.

2.4 Point masses influence

In order to investigate the significance of welding spots and fillets at the end
of each web (see Fig. 2.5), point masses are introduced at the connection
points of the webs.

The additional inertia forces resulting from these masses have to be added
to the total dynamic stiffness matrix at the appropriate location. For point
masses, i.e. assuming no extension of the mass, the mass moment of inertia
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is zero and hence no moment reaction forces appear. Starting from Newton’s
second law, F = m · a, the dynamic stiffness of the mass reads

Kpointmass =
F

ξ
= −ω2 · mpointmass, (2.5)

which has to be added for the x-and y-translational degrees of freedom in
the global dynamic stiffness matrix K.

The influence of increased web thickness at the joints of real profiles is
investigated by the inclusion of additional point masses in the calculation
model as described above. This is done by adding 1%, 5% and 10% of the
complete profile mass as additional point masses localized to the joints.

The results show that point mass influence is small and hence, only the
results for the highest additional masses (10%) are shown in Fig. 2.6 and
Fig. 2.7 for profile A. The effect of the additional point masses is a slight
shift of the resonance frequencies to lower frequencies and small modifications
at high frequencies, where local motion emerges. Moreover the results of
an FE-calculation using beam elements (length= 10 mm) are presented to
check the implementation of the calculation model. The limiting frequency
according to the six elements per wavelength criterion for bending waves
is approximately 7800 Hz and hence sufficient for the investigated frequency
range up to 5000 Hz. The agreement of FE-calculation and analytical solution
is very good. Only at high frequencies, small deviations come into effect, due
to the Euler-Bernoulli beam theory used in the analytical approach assuming
infinite shear stiffness. In the FE-model, the effects of finite shear stiffness
are included and hence, the resonances are shifted slightly downwards. The
differences are very limited and do not influence the general characteristics
suggesting that the current model using Euler-Bernoulli theory is adequate.

The results for profiles B and C are not presented here, but show the
same general trends as described for profile A.

As expected from the theoretical results, the experimental investigation
reveals that the influence of the fillets is not dominated by the mass, but by
a stiffening effect related to a frequency shift in the measured mobilities (see
section 2.5 for details).
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Figure 2.6: Magnitude of transfer mobility (Fy, vy) with and without addi-
tional point masses (10% of total profile mass) and results of FE-calculation
for profile A
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Figure 2.7: Real part of input mobility (Fy, vy) with and without additional
point masses (10% of total profile mass) and results of FE-calculation for
profile A

2.5 Experimental validation

The theoretical results are compared with those obtained in an experimental
investigation. A strip is considered of a typical extruded aluminium profile
with vertical webs between the outer plates. The strip has a width of about
2 cm so that the two-dimensional beam model should be adequate up to
about 14.5 kHz, where half the bending wavelength approaches the strip
width. For brevity, no details of the geometry are given, but the overall
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Figure 2.8: (a) Photo and (b) sketch of calculation model of the extruded
profile test object including node numbering

length is 1765 mm, the height is 60 mm, the distance of the inner webs is
about 110 mm and the thicknesses of the webs as well as outer flanges are
in the range of 2.5 − 3.5 mm resulting in a total profile mass of 0.873 kg.
The strip is shown in Fig. 2.8. Mobility measurements are performed on the
strip using white noise force excitation in y-direction at one end. Results are
compared with calculated ones for response measurements at the excitation
position (input mobility), node 1 and 2, and at remote positions (transfer
mobility). Moreover, rotational response components are measured using two
laser vibrometers at closely spaced measurement positions (10 mm distance).

The comparison of calculated and measured results for the force input
mobility in the y-direction at node 2 is shown in Fig. 2.9. The measured
results are in agreement with the calculated curves in the complete investi-
gated frequency range. Global vibrations arise mainly up to about 500 Hz,
where the periodic system effects come into play with the lowest stop-band.
A systematic difference between measurement and calculation is detected at
low frequencies, where the measured eigenfrequencies are shifted slightly to-
wards higher frequencies. This observation can be referred to an effect of
the fillets at the joints. It is dominated by the additional stiffening of the
web ends (see Fig. 2.5) and not by the additional mass loading. A calcula-
tion with slightly higher thickness of the webs demonstrates that the shift
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Figure 2.9: Comparison of measured (—) and calculated (– –) y-force input
mobility of extruded profile strip at node 2

of the resonances towards higher frequencies is sensitive to this parameter.
A drawback of simply using the higher web thickness is a deviation at high
frequencies.

The calculation is performed assuming a constant loss factor of η = 0.001.
This is in contrast to results of damping tests of the profile, where it is ob-
served that the loss factor is higher at low frequencies up to about 200 Hz and
diminishes towards higher frequencies. Such a frequency dependency explains
the broader resonance peaks in the measured mobilities at low frequencies.
The transfer mobility from force excitation at node 1 in y-direction to the
response at node 62 is shown in Fig. 2.10. The transfer mobility demonstrates
the existence of periodic system effects in the high frequency range with stop-
bands between 600 and 900 Hz as well as between 2000 and 2600 Hz, bounded
by pass-bands. The lowest frequency where local vibrations come into play
is associated with the lowest bending eigenfrequency of an outer member.
Postulating simply supported boundary conditions for the web beams, this
frequency is approximately 580 Hz, coinciding with the beginning of the low-
est stop-band. This is not in accordance with the results for mono-coupled
periodically simply supported single beams [16], where the pass-bands start
with the eigenfrequency of the simply supported beam section and ends with
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Figure 2.10: Comparison of measured (—) and calculated (– –) y-force trans-
fer mobility of extruded profile strip (y-force at node 1, y-response at node 62)

the clamped eigenfrequency. For multi-coupled systems, a thorough inves-
tigation is necessary to identify the possibly overlapping limits of pass- and
stop-bands (see theory of multi-coupled periodic systems in chapter 3).

The cross transfer mobility from force excitation at node 1 to rotational
velocity at node 61 is included in Fig. 2.11 and corroborates the reliability
of the calculation model also for the rotational components.

From the complex transfer functions to all measured positions along the
strip, the operational deflection shapes are developed and some examples
are presented in Figs. 2.12 to 2.14 together with the calculated ones. The
matching of measured and calculated shapes is good at low frequencies when
the above mentioned slight frequency shift is considered, and remains rea-
sonable at high frequencies. Figs. 2.12 and 2.13 correspond to resonances of
the strip in the global regime whereas Fig. 2.14 illustrates wave propagation
slightly above the first stop-band. Additional deflection shapes are included
in Appendix B.
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Figure 2.11: Comparison of measured (—) and calculated (– –) cross trans-
fer mobility of extruded profile strip (y-force at node 1, rotational velocity
response at node 61)
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Figure 2.12: Comparison of (a) measured and (b) calculated deflection shapes
(fmeas = 139 Hz, fcalc = 130 Hz, y-force at node 1)
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Figure 2.13: Comparison of a) measured and b) calculated deflection shapes
(fmeas = 364 Hz, fcalc = 345 Hz, y-force at node 1)
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Figure 2.14: Comparison of a) measured and b) calculated deflection shapes
(fmeas = 950 Hz, fcalc = 950 Hz, y-force at node 1)
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2.6 Concluding remarks

A calculation model for cross sections of typical light weight profiles based
on beam vibrations is established and experimentally validated for a profile
strip with vertical webs. Parameter studies on periodic systems with straight
and inclined webs between the outer faces show that typical periodic system
pass- and stop-band behaviour is most pronounced in the case of solely ver-
tical stiffeners. These effects are also present for the profiles with inclined
members. The periodic effects are also clearly visible in the experimental
results.

The influence of welds and thicker ends of the webs at the joints is mainly
characterized by a stiffening effect, manifested by an eigenfrequency shift to-
wards high frequencies. The additional mass is of minor importance. Details
of the geometry of the inner profile webs influence the dynamic behaviour
explicitly so that any sandwich approach, neglecting the details, is inappro-
priate.

The wave propagation at low frequencies (global vibrations) can be ap-
proximated for profiles with inclined members by an equivalent bending
beam. For the case of solely vertical stiffeners, however, the global vibrations
are not well represented by an equivalent bending beam since the wavelength
at low frequencies is significantly shorter than with inclined stiffeners here
which is shown in chapter 3. At high frequencies the detailed description
of the dynamics for both configurations with and without inclined webs is
inevitable.
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Chapter 3

Light weight profile strips:
Wavenumber content

3.1 Introduction

In order to get a better understanding of the structure-borne sound char-
acteristics of typical light weight profiles, the wave propagation in different
strips is investigated. The objective is to identify the characteristic waves
that propagate or decay in the strips. The wavenumber content of the outer
plates forms the basis for treating sound radiation problems. Based on the
calculation model established and validated in chapter 2, the wavenumber
content and the wave forms of the characteristic waves in the infinite light
weight structures are investigated in this chapter.

Often the light weight profiles are periodic or nearly periodic so that peri-
odic structure theory can be exploited to investigate the dispersion character-
istics. A general theory for the wave propagation in mono- and multi-coupled
structural periodic systems has been developed by Mead [9, 10]. Mono-
coupled periodic systems are connected by only one displacement variable in
contrast to multi-coupled systems. The light weight profiles investigated here
are typical members of the multi-coupled case for which a general theory is
thoroughly presented in [10].

3.2 Dispersion characteristics of profile strips

For the profiles A to C introduced in chapter 2 the wavenumber content of the
characteristic waves is investigated using three different methods. The first
one uses the determinantal equation resulting from multi-coupled periodic
system theory, the second one is the spatial Fourier transform and the third
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one is the solution of the transfer matrix eigenvalue problem. The complete
set of procedures is illustrated in Fig. 3.1. In order to capture the wave
propagation in the profile strips without the influence of end reflections, the
calculation is performed on prolonged strips or based on infinite strip theory.

DFT
of velocity field

Wavenumber
distribution

Forced response
calculation of

profile

Characteristic
waves

Wave amplitudes
of forced response

Solution of
Eigenproblem

Dynamic stiffness
matrix assemblycomplete profile

periodic subelement

Transfer matrix

periodic subelement

DFT / wave series
fit of characteristic

wave shapes

Figure 3.1: Principal ways to determine dispersion characteristics (quantita-
tive wavenumber distribution) of profile strip
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Figure 3.2: Subelement in periodic chain, illustrated for profile A

3.2.1 Multi-coupled periodic systems and determinan-
tal equation

The subelements of the light weight profile strips under study are connected
at each edge by two points with three degrees of freedom each, resulting in
a multi-coupled periodic system with six coupling coordinates (see Fig. 3.2).
No detailed review of the theory for multi-coupled periodic systems will be
given, but some main features shall be highlighted.

A single subsystem of the periodic system is coupled to the adjacent
subsystems by n degrees of freedom (DOFs), which can be arbitrarily trans-
lational or rotational DOFs. Hence, the mobility matrix of a subsystem
including the left and right connection points can be formulated using a
(2n) × (2n) mobility matrix Y

{
vl

vr

}
= Y

{
Fl

Fr

}
=

[
Yll Ylr

Yrl Yrr

]{
Fl

Fr

}
. (3.1)

Here, index l represents quantities on the left hand side of the element
and index r represents the quantities on the right. The vectors v and F may
contain translational and rotational quantities.

Assuming now that the quantities on the left are always related to the
quantities on the right by an exponential factor (Bloch’s theorem), one may
write the following relation using the complex propagation constant μ =
−δ ± jε,

vr = eμvl = ej kLevl

Fr = −eμFl = −ej kLeFl. (3.2)

δ is the attenuation constant and ε is the phase constant [33, p. 187].
The complex wavenumber k with the real part defining the phase difference
per unit length and the imaginary part the attenuation per unit length, is
included in Eq. (3.2) in conjunction with the periodic length Le.
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Using the exponential ansatz of Eq. (3.2) in Eq. (3.1) and performing some
algebraic transformations results in a homogeneous matrix equation which
has a non-trivial solution when the determinant of the matrix vanishes,

|Yll + Yrr − eμYlr − e−μYrl| = 0. (3.3)

At any frequency, up to 2n different values of μ can exist.
The phase constant related to propagating waves is multi-valued. If ε0 is

a solution between 0 and π, then εn = ε0 + 2πn (n = 0,±1,±2,±3 . . . ) is
also a solution of Eq. (3.3).

The phase constant has a distinct relation to the wavenumber as it rep-
resents the difference in phase of the motion in the periodic system at points
separated by the periodic distance Le. The corresponding phase difference
per unit length (wavenumber kn) is εn/Le.

kn = ±(ε0 + 2nπ)/Le (3.4)

In analogy to the wavenumber definition for travelling waves, an imagi-
nary wavenumber component for the decaying waves can be defined by

kdecay = ±j δ/Le. (3.5)

In contrast to the multi-valued solution for the travelling waves, the de-
caying waves are single valued.

As a result of the multi-valued travelling components, an infinite series of
waves with the given wavenumbers exists in the periodic system. The posi-
tive and negative wavenumbers are related to left- and rightwards travelling
waves, respectively.

From the solution of the determinantal Eq. (3.3) the wavenumbers can
be directly calculated but the solution for propagating waves (imaginary μ)
is multi-valued with a periodicity of 2π. For decaying waves (real μ) dis-
tinct solutions exist. For each characteristic wave the distribution is fixed
between the principal value (n = 0) and the higher and lower values of μ
or k. Nonetheless, the overall wavenumber content for a certain excitation
depends not only on the structure itself but also on the amplitudes of the ex-
cited characteristic waves. Each characteristic wave contributes to the overall
wavenumber spectrum through its definite wavenumber content, weighted
with its wave amplitude. This definite wavenumber content is detailed in
section 3.4.

Herein, the solution of the determinantal Eq. (3.3) is limited to purely
real or imaginary wavenumbers. Hence, only the purely propagating and
decaying waves are shown in Fig. 3.3 for strip A (see Fig. 2.2). Complex
waves are not included.
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Figure 3.3: Wavenumber dispersion plot for periodic profile strip A including
positive, negative travelling waves and decaying waves (* (grey): decaying
waves, . . . (black) propagating waves)

As the wavenumber is periodically repeated with 2nπ/Le, only a fraction
of the complete dispersion diagram can be shown and indeed, there is no
benefit of plotting more than ±k0 except for the decaying part, plotted in
grey, which is not periodic (imaginary wavenumber).

In order to illustrate the periodic character of the propagating waves the
plot is extended beyond the principal values. Regions in the plot indicate
(repeated) rightward or leftward travelling waves.

A drawback of the approach with the determinantal equation is that the
solutions for μ need not be purely real or imaginary but can also be complex.
This means that the wave comprises a propagating and a decaying part. It is
quite a laborious task to find the complex roots of the determinantal equation
for each frequency. Hence, for the complete picture including complex waves,
the approach using the transfer matrix presented later is favourable.
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The dispersion plotted in Fig. 3.3 reveals that for profile A global wave be-
haviour is expected for frequencies up to 1100 Hz, where local waves start to
propagate with significantly higher wavenumbers. Between 1500 and 2000 Hz
a stop-band can be identified, followed alternately by pass- and stop-bands.
Even so, there are some propagating waves remaining in the stop-bands which
are related to mainly longitudinal wave motion with low wavenumbers.

3.2.2 Dispersion characteristics using spatial Fourier

transform

For this approach a spatial sampling at discrete points is necessary, resulting
in the discrete Fourier transform (DFT). For a profile of length L with N
equally distributed spatial sampling points, vn = v(nΔx); n = 1, 2, 3, ..., N ,
results in the following transformation

Vm = V (mΔk) = Δx

N∑
n=1

vne−j 2π m n
N , m = 1, 2, 3, ..., N

= Δx
N∑

n=1

vne−j mΔk xn , Δk =
2π

L
=

2π

N Δx
. (3.6)

To satisfy the Nyquist criterion, the maximum wavenumber, which can
be unambiguously identified, is given by kmax = π

Δx
. Therefore, it has to be

assured that there is only negligible spectral content above this wavenum-
ber. This can only be done by chosing a high resolution so that the critical
wavenumber is above the highest occurring wavenumber.

The advantage of the DFT-approach is that it is easy to implement, stan-
dard FFT algorithms can be used and it is applicable to all profile structures
independent of periodicity. The disadvantage is that it is computationally
quite demanding as the complete vibration field of the profile has to be cal-
culated and the FFT with high resolution has to be performed. One problem
for finite structures is that the wavenumber resolution depends only on the
investigated profile length L. For an adequate resolution a long profile strip
has to be calculated enlarging the computational effort involved.

Another feature of this approach is that the energy distribution in the
periodic wavenumber series is readily obtained. This gives some remarkable
insight for the given excitation conditions as the excitation of different wave
types can be identified. On the other hand, it should be pointed out that
this can also give misleading results when trying to extract the general wave
propagation features. Not all the wave types which are possible in the struc-
ture have to be excited by a certain force or moment excitation. At least,
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Figure 3.4: DFT plot of lower plate profile strip A, unit y-force excitation
at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB re.
5 × 10−8 m/s

different excitation mechanisms should be applied and the results compared
to get a more general picture.

The dispersion characteristics of the profile strip A, using the DFT ap-
proach, are shown in Figs. 3.4 and 3.5 for force and moment excitation re-
spectively. The excitation is located at the left end of the profile strip, the
right end is damped with gradually increasing loss factor in order to simulate
a non-reflective boundary comparable to a semi-infinite strip. The DFT is
performed over a 6 m long section from the left end in order to achieve a
good resolution.

For the DFT, the normal velocity distribution of the lower edge is calcu-
lated and interpolated to give a uniform spatial sampling by using a spline
interpolation function.

The result of the spatial Fourier transform is given by the two-sided spec-
trum V of the velocity distribution. For plotting the logarithmic value of the
magnitude Lv,DFT = 20 log [|V |/(5 × 10−8 m/s)] is used.

Despite the simulated non-reflective boundary on the right, reflections
arise in the low frequency regime and hence, modes are visible manifested by
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Figure 3.5: DFT plot of lower plate profile strip A, unit moment excitation
at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB re.
5 × 10−8 m/s

faint vertical lines up to about 1000 Hz.
The periodic nature of the wavenumber content is visible when using the

DFT, where the energy is distributed in a characteristic way between the
principal value and the ’side bands’. At low frequencies the principal value
with a wavenumber similar to global equivalent bending wave behaviour dom-
inates the wave propagation. Starting with about 1000 Hz, alternating pass-
and stop-bands emerge for profile A. The different excitations (force and mo-
ment) lead to slightly different quantitative distributions in the excited waves,
but do not modify the overall dispersion characteristics. The response for
unit moment excitation exceeds the unit force excitation. The DFT-results
for profiles B and C are included in Appendix C, where profile C exhibits the
most significant periodic system effects and shows also a significant difference
in excited wave types for force and moment excitation respectively.

The decaying waves cannot be found in the DFT-result as they decay
too rapidly and do not contribute significantly to the velocity spectrum of
the complete strip. They can be extracted using the determinantal equation
or by solving the eigenvalue problem. This gives a clearer picture of the
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Figure 3.6: The positions along the periodic chain are labelled in the given
way

characteristic waves, but the energy distribution cannot be extracted directly.

3.2.3 Dispersion characteristics using transfer matrix
eigenvalue problem

As an alternative for finding the wave types in the periodic structure, the
transfer matrix T of a single subsystem can be used.

The notation for the positions along the periodic chain is shown in Fig. 3.6:

Starting with the definition of the T-matrix

{
vk+1

Fk+1

}
= T

{
vk

Fk

}
(3.7)

and invoking Bloch’s theorem, Eq. (3.2), the state vectors on both sides
of the periodic subsystem can be related by

{
vk+1

Fk+1

}
= λ

{
vk

Fk

}
,where λ = eμ. (3.8)

Combining Eqs. (3.7) and (3.8) results in an eigenvalue problem, where
the identity matrix I is introduced,

[T − λI]

{
vk

Fk

}
= 0. (3.9)

From this equation it is obvious that λ are the eigenvalues of the T-
matrix. The number of eigenvalues is two times the number of coupling
coordinates. Routines for the solution of the complex eigenvalue problem are
available and can be used to find all the eigenvalues and related propagation
constants of the periodic system including the complex waves.

The only disadvantage of the approach, apart from the multi-valued so-
lution, is the fact that numerical instabilities can arise in the solution of the
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eigenvalue problem. The multi-valued solution exists not only for the purely
propagating waves, but also for the complex waves as eμcomplex = eμcomplex+2nπj,
n being an arbitrary integer.

Due to the nature of the T-matrix, the eigenvalues are generally complex
and occur in reciprocal pairs (λi, 1/λi). Assuming no internal damping, a
purely propagating wave exists if |λi| = 1, corresponding to pass-bands for
the wave. In a stop band, the eigenvalues are real valued. An eigenvalue
inside the unit circle represents a positive (right) going wave, whereas an
eigenvalue outside the unit circle represents a negative (left) going wave.1

Complex eigenvalues can occur only in groups of four and hence are only
possible for systems with more than one coupling coordinate as there are
only two eigenvalues for mono-coupled transfer matrices (2 × 2).

To each eigenvalue a certain eigenvector exists, defining the wave form of
the wave type. The complete vibration of the profile can be set up by adding
the contributions of all wave types

{
vk

Fk

}
= ΦT

R

{
Lk

Rk

}T

. (3.11)

As there are 2m independent waves, the first m columns of the matrix ΦR

are the eigenvectors of the transfer matrix corresponding to the left travel-
ling waves (λi, i = 1, . . .m, λi ≥ 1) and the last m columns to the right-going
waves (1/λi, i = 1, . . .m, λi ≥ 1). m defines the number of coupling coordi-
nates with corresponding orthogonal eigenvectors, excluding the pass-band
bounding frequencies, where double eigenvalues occur.

The vector Lk contains the amplitudes of the left-going waves and the
vector Rk contains those of the right-going waves. The wave amplitudes at
adjacent bays are related by

{
Lk+1

Rk+1

}
= W

{
Lk

Rk

}
where W = Φ−1

R TΦR. (3.12)

Since ΦR is the (right) eigenvector matrix of T, the matrix W is the
diagonal matrix of the eigenvalues of T and is called the wave transfer matrix,

1This distinction is not possible for undamped systems, where in the pass-bands
|λ| = 1. In this case the distinction can be based on the following rule provided ejωt,

Im(λ) > 0 → k positive → negative (left) travelling wave
Im(λ) = 0 → k = 0 → standing wave
Im(λ) < 0 → k negative → positive (right) travelling wave
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W =

[
Λ 0
0 Λ−1

]
where Λ = diag(λ1, . . . , λm). (3.13)

Solving the eigenvalue problem in Eq. (3.9) results in a complete picture
of free wave propagation in the strip. The eigenvalues can be directly linked
to wavenumbers and the eigenvectors establish the wave form of each char-
acteristic wave. Knowing the wave amplitudes at a certain position makes
it possible to calculate the complete wave amplitudes at all other positions
along an infinite strip using the wave transfer matrix containing the eigen-
values. In practice it is necessary to get the wave amplitudes for a certain
excitation (forced response). This is treated in chapter 4.

The major task after the solution of the transfer matrix eigenvalue prob-
lem is the identification of the different characteristic wave types, i.e. the
unique separation of the wave types over the whole investigated frequency
range. Different algorithms are tried in the complex plane for the propaga-
tion constants, but fail mainly at the points where different wave types join.
A unique separation at these points is difficult (or perhaps not possible) if
the structural damping is set to zero. Nonetheless, it is possible to follow
each characteristic wave in the complex plane by adding a small amount of
structural damping (η = 0.01). The eigenvalues are identified as complex
conjugate pairs and only the eigenvalues with modulus smaller than unity
are taken for the identification procedure. The sorted frequency dependent
wavenumber content for the right-travelling waves 7 to 12 is shown for strips
A, B and C in Figs. 3.7 to 3.9.

It is obvious that the profiles with inclined members (A and B) exhibit
a more involved wave propagation. Low frequency bending wave dispersion
for the equivalent beam can be identified for waves 11 (A) and 10 (B) up to
about 1000 Hz. For strip A, longitudinal wavenumbers can be identified in
wave 8 in the range 2000 to 4000 Hz. Wave 10 exhibits longitudinal character
for strip B between 1000 and 2500 Hz. Hence, it is clear that the character
of a wave can change with frequency. For strip C this kind of change does
not occur; waves 11 and 12 stay longitudinal in the frequency range up to
4000 Hz. Wave 7 of strips A and B is a purely decaying wave having a
wavenumber outside the plotted range. This marked decaying process (or
growing process in the other direction) leads to numerical instability, clearly
visible in the high frequency regime. For Profile C waves 7 to 10 exhibit a
strong decaying component in wide frequency ranges. Wave 10 propagates
only in some frequency bands, whereas wave 9 only around 1500 Hz. Above
4000 Hz both are propagating. Only the mainly longitudinal waves 11 and
12 are propagating in almost the complete frequency range.
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Figure 3.7: Wavenumbers of characteristic waves of profile A extracted using
T-matrix, (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10 (e) Wave 11, (f)
Wave 12, — propagating, - - decaying

3.3 Characteristic waves

In order to plot the wave forms, the eigenvectors, including the end point
velocities and forces, are used to calculate the complete velocity pattern of
the intermediate beams. For subelements without internal joints, this can
be done straightforwardly. For others, the transfer matrix of a part of the
element has to be adopted to calculate the intermediate state vectors from
which the complete pattern can be reconstructed.
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Figure 3.8: Wavenumbers of characteristic waves of profile B extracted using
T-matrix, (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10 (e) Wave 11, (f)
Wave 12, — propagating, - - decaying

The resulting characteristic waves are shown in Figs. 3.10 to 3.12 for a
frequency of 1000 Hz. For profile A the waves 11 and 12 are propagating
whilst the other wave types are either purely decaying or complex. For prac-
tical applications, the propagating waves will dominate the overall vibration
of the profile strips. Wave 11, which can be characterized mainly by a form of
bending vibration, shows a clear mixture of global and local displacements.
Wave 12 is a propagating compressional wave that also contains long and
short wavelength components.
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Figure 3.9: Wavenumbers of characteristic waves of profile C extracted using
T-matrix, (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10 (e) Wave 11, (f)
Wave 12, — propagating, - - decaying

For profile B wave types 8 and 12 are mainly propagating. Wave 8 is of
compressional character and wave 12 is a mixture of long wave bending and
compressional wave.

The propagating waves of profile C at 1000 Hz are number 11 (rotational
wave) and 12 (compressional wave).

It should be kept in mind, that no strict classification of the wave types
over the complete frequency range can be achieved as e.g. wave number 8
of profile A starts as a decaying wave at low frequencies, then reaches a
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(a) Wave 7

(b) Wave 8

(c) Wave 9

(d) Wave 10

(e) Wave 11

(f) Wave 12

Figure 3.10: Wave forms of characteristic right-travelling waves for profile A
(f = 1000 Hz)

propagation zone with bending character, is complex again, turns into a
compressional wave that passes over in a bending type wave, and finally
gets complex again in the investigated frequency range up to 5000 Hz (see
Fig. 3.7).

The identification of the characteristic waves realizes the opportunity to
simplify the wave propagation in the profile strips. It is reasonable, that the
decaying and complex waves do not contribute significantly to the overall
vibration of the panel, at least if there is a limited number of excitation
points such that the waves can decay.
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Figure 3.11: Wave forms of characteristic right-travelling waves for profile B
(f = 1000 Hz)
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Figure 3.12: Wave forms of characteristic right-travelling waves for profile C
(f = 1000 Hz)
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3.4 Wavenumber content in characteristic

waves

3.4.1 Theory

When looking at the wave forms of the profile strips it is obvious that the non-
uniqueness of the wavenumbers, resulting from the solution of the eigenvalue
problem, is only part of the truth. It establishes a set of possible wavenumbers
that mathematically fulfil the periodic system condition. The distribution
among these wave set components is fixed and can be extracted for each
characteristic wave.

The mathematical non-uniqueness for the wavenumbers (periodicity of
2π/Le) can be explained by the limited spatial resolution of the real physical
process. It is not possible to distinguish - with a spatial sampling of Le

- if in between two neighbouring endpoints of the subsystem e.g. one or
two wavelengths exist. For a general phase shift ε from point to point this
means that adding 2π does not change the results at the sampling points
ejε = ej(ε+n2π). In terms of wavenumbers kn = k0 + 2πn/Le.

In contrast to this mathematical ambiguity the physical wavenumber dis-
tribution on the structure has to be definite, which means that the energy
distribution among the corresponding possible wavenumbers is fixed. It is
reasonable that for each characteristic wave such a wavenumber distribution
can be determined regardless of the excitation mechanism. The excitation
only determines the characteristic wave amplitudes and not the distribution
of wavenumbers in each characteristic wave. Hence, it is possible to calcu-
late the fixed wavenumber distribution in each characteristic wave from a
characteristic wave form.2 Summing up the contributions of all excited char-
acteristic waves results in a unique wavenumber spectrum of the strip that
can be used e.g. for the calculation of sound radiation.

One option to extract the frequency dependent wavenumber content, dis-
tributed in the set of wavenumbers is to perform a discrete fourier transform
of the characteristic wave forms. Though this approach is straight forward
and easy to implement, there are some drawbacks:

• To obtain a high wavenumber resolution it is necessary to calculate the
DFT over a long distance of the profile. Hence, the calculation effort
rises.

2The distribution depends not only on the characteristic wave itself but also on the
component of motion of interest. For sound radiation to the exterior the normal velocity
of the outer plates is sought. The wavenumber distribution for vibrations in the x-direction
will probably be significantly different!
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• It is only possible to extract the propagating waves (and perhaps some
portion of the complex waves). The decaying waves will vanish too fast
to be extractable.

• The quantitative portions for complex waves form a kind of mean value
for the investigated range and hence the amplitudes depend strongly
on the length of the transformed section. It is more desirable to get
the wave amplitudes at a characteristic point (x = 0). With this infor-
mation the displacement at any arbitrary position can be recalculated
quite simply.

To circumvent the drawbacks mentioned, it is possible for the periodic sys-
tem to use another method. This is possible since some information about
the wavenumbers and the inherent waves is available. The possible wavenum-
bers are known to be a series of wavenumbers, extracted from the transfer
matrix eigenvalue problem. It is quite reasonable to assume that this series
will converge rapidly since the main contributions will be in the range where
the free wavenumbers arise in a simple homogeneous member. This is easily
seen also from the calculation results presented later. Hence, another op-
tion is just to use the extracted wavenumber series as basis functions with
unknown amplitudes. The amplitudes are estimated from the solution of a
linear system of equations, which can be overdetermined, by projecting the
real displacement pattern on this wavenumber basis.

The displacement ξi for each characteristic wave form at any point on
the profile strip can be written as a series of ’space harmonics’,

ξi(x) =
∞∑

n=−∞
Ai,nϕie

−jki,nx with ki,n = k0 +
2πn

Le
. (3.14)

In a reduced form considering only one direction, Eq. (3.14) holds also
for the y-component, which is the relevant for the radiation,

ξy,i(x) =

∞∑
n=−∞

Ai,ne
−jki,nx. (3.15)

The magnitude of the y-component in the eigenvector ϕi is neglected.
This magnitude only affects the result with a constant factor, which is unim-
portant for the relative contributions of ki,n. The correct scaling can be
achieved by weighting the space harmonic amplitudes in accordance with
these relative contributions.

When truncating the series at M terms and using K positions for the
displacement evaluation, Eq. (3.15) can be written in matrix form
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⎧⎪⎪⎨
⎪⎪⎩

ξy,1

ξy,2

. . .
ξy,K

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

e−jk−Mx1 e−jk(−M+1)x1 . . . e−jkMx1

e−jk−Mx2 e−jk(−M+1)x2 . . . e−jkMx2

. . .

. . .
e−jk−MxK e−jk(−M+1)xK . . . e−jkMxK

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

A−M

A−M+1

. . .
AM

⎫⎪⎪⎬
⎪⎪⎭

(3.16a)

(K, 1) = (K, 2M + 1) × (2M + 1, 1).

The number of displacement positions K must be greater or equal to
2M + 1, i.e. the number of desired wave series amplitudes. If the number is
greater, the system is overdetermined and can be solved using a least square
solution routine. The spacing of the K displacement points is arbitrary but
has to be chosen fine enough to ensure a resolution necessary to represent
the smallest occuring wavelength. It should be pointed out that the space
harmonic amplitudes as well as the displacements ξy are complex. Initially
only the real part of ξy was used but then the method became unstable in
some cases.

3.4.2 Results

The relative space harmonic amplitudes of profile A for the characteristic
waves travelling to the right (waves 7 to 12) are shown in Fig. 3.13 to 3.18
for a frequency of 1000 Hz. For the results presented, the y-displacement
of the upper outer beams is used and the amplitudes are normalized by the
maximum amplitude. In order to check the implementation and the robust-
ness of the method, a comparison is performed of real displacement shapes
and reconstructed displacement shapes using the estimated amplitudes of the
space harmonic series.

It is clear that the method is robust in finding the relative space harmonic
amplitudes; the matching between the calculated displacement and the space
harmonic series fit is that precise that the curves are hardly distinguishable
in the plots. Moreover it can be stated, that in the investigated frequency
range, −5 ≤ n ≤ 5 is sufficient to represent the wave forms. For the prop-
agating waves, −2 ≤ n ≤ 2 could be sufficient as well. The amplitudes are
only symmetric for waves with symmetric wavenumber content in the space
harmonic series, i.e. for Re(k0) = 0. For the presented results this is the case
for waves 7 and 10.

A comparison is also made of the space harmonic identification method
and the DFT method. For the propagating waves, the wavenumber spectra
are quite similar as is seen in Fig. 3.19 but the discrepancy in amplitudes
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Figure 3.13: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 7, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.14: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 8, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.15: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 9, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.16: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 10, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.17: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 11, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.18: Amplitudes of space harmonic series (Profile A, f = 1000 Hz,
wave 12, — calculated displacement (grey) - - wave series fit (black))
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Figure 3.19: Amplitudes of space harmonic series (*) in comparison with
DFT result (—) (Profile B, f = 1000 Hz, wave 12). The occurring pairs for
the space harmonics result from the values for ±n.

increases with wavenumber. For complex waves, the correct wavenumbers
are found in the DFT, but the amplitude is underestimated because of the
decaying process.

The results up to now show only relative space harmonic amplitudes for
a frequency of 1000 Hz. In order to get an overview what happens in the
complete frequency regime, shaded figures are created indicating the distri-
bution of space harmonics for each wave. The plots are normalized by the
maximum amplitude for each frequency and wave. These scaled results, in
combination with the wave amplitudes for a forced response (see chapter 4),
lead to the quantitative space harmonic amplitudes for each wave and as
a sum, the complete wavenumber distribution. The results for the waves
propagating to the right (waves 7 to 12) are shown in the Figs. 3.20 to 3.22.

It is obvious, that not only for 1000 Hz as shown previously, but also in the
complete investigated frequency regime, the wavenumber content is localized
between −150 and 150 m−1. 3 Higher and lower wavenumbers contribute only

3Remarkable high wavenumber components are present only for strongly decaying
waves, e.g. wave 7.
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(a) Wave 7 (b) Wave 8

(c) Wave 9 (d) Wave 10

(e) Wave 11 (f) Wave 12

Figure 3.20: Normalized amplitudes of space harmonic series for right-
travelling characteristic waves (Profile A)
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(a) Wave 7 (b) Wave 8

(c) Wave 9 (d) Wave 10

(e) Wave 11 (f) Wave 12

Figure 3.21: Normalized amplitudes of space harmonic series for right-
travelling characteristic waves (Profile B)
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(a) Wave 7 (b) Wave 8

(c) Wave 9 (d) Wave 10

(e) Wave 11 (f) Wave 12

Figure 3.22: Normalized amplitudes of space harmonic series for right-
travelling characteristic waves (Profile C)
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minutely to the overall result. It is expected that the significant wavenumber
group will gradually drift to larger values, if the behaviour were investigated
for higher frequencies beyond 5000 Hz. For the presented positive travelling
waves the group velocity is mainly positive (positive slope of the curves), also
for the components with negative phase speed (negative wavenumber). This
means that the space harmonic series gives a positive travelling characteristic
wave (energy flow in positive direction) as a sum. However, there are some
components with negative phase speed included, induced by the reflections
at the joints. There are, indeed, some characteristic waves with negative
group velocity in some frequency ranges, e.g. wave 11 of profile A between
1400 and 2000 Hz. The wavenumbers are complex in these regions, so that
this phenomenon is related to backflow of nearfield energy, which can be
explained by the necessarily pairwise occurrence of complex nearfields, see
e.g. [34].

3.5 Concluding remarks

The complete picture of propagating, decaying and complex waves can be
gained by solving the transfer-matrix eigenvalue problem. For the profiles
considered, up to six characteristic waves can be identified, travelling in each
direction. The wavenumber content in each characteristic wave is formed of
several ”space harmonics”, realising a periodic wavenumber spectrum. The
relative contributions in the wavenumber series are fixed for each character-
istic wave and can be identified from the complete characteristic wave forms.
The extraction of the characteristic waves establishes means to simplify the
wave propagation in the light weight profile strips. Provided there is a lim-
ited number of excitation points, the decaying and complex waves will not
contribute significantly to the overall vibration of the strip.
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Chapter 4

Light weight profile strips:
Forced response and influence
of periodicity perturbations

4.1 Introduction

In chapter 2 a calculation model for light weight profile strips was established
and three different geometries were investigated. The wave amplitudes of the
characteristic waves presented in chapter 3 depend on the applied excitation.
This is studied for infinite profile strips in this chapter. Moreover, the influ-
ence of structural periodicity perturbations on the behaviour of the strip is
discussed briefly.

According to Engels [35] the forced response of an infinite or semi-infinite
periodic structure can be calculated based on the eigenvalues and eigenvec-
tors of the transfer matrix. An alternative is the direct use of the dynamic
stiffness matrix of the subsystem, outlined by Thompson [36] to calculate the
wavenumbers and forced response of a structure, applied and extended also
in [37]. For the present study, the employed slope-deflection method directly
establishes the dynamic stiffness matrix. Hence, this alternative is selected
for the eigenvalue problem.

As in reality strict periodicity cannot be achieved, e.g. because of man-
ufacturing tolerances, the influence of these perturbations is investigated
briefly using periodic subelements with random length variations.
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4.2 Forced response of infinite profile strip

For structural acoustic investigations in the mid and high Helmholtz number
regime, theoretical infinite systems are of great value. In those regimes the
influence of boundary effects for finite structures diminishes such that the
corresponding infinite structure can be used to estimate the behaviour of the
former. Hence, forced excitation of infinite strips is investigated here.

4.2.1 Theory of forced response using dynamic stiff-

ness matrix

For the infinite periodic strip, forced response can be developed by using the
dynamic stiffness matrix of a single subsystem [36]. If the periodic subsystem
contains inner degrees of freedom which are not connected to the left or
right side, it is necessary to build a new reduced dynamic stiffness matrix
as the matrix elements depend on the chosen degrees of freedom (blocked
assumptions). In contrast, the mobility enables arbitrary degrees of freedom
to be eliminated without changing the remaining matrix elements. For the
case with inner degrees of freedom, where no force excitation is assumed, the
reduction starts with the definition of dynamic stiffness submatrices K̃ where
index i indicates inner degrees of freedom, l the left and r the right ones,

⎡
⎣ K̃ll K̃li K̃lr

K̃il K̃ii K̃ir

K̃rl K̃ri K̃rr

⎤
⎦

⎧⎨
⎩
ξl

ξi

ξr

⎫⎬
⎭ =

⎧⎨
⎩

Fl

0
Fr

⎫⎬
⎭ . (4.1)

The inner DOFs can be eliminated by using the relation

ξi = −K̃−1
ll

(
K̃ilξl + K̃irξr

)
. (4.2)

After some simple algebraic manipulations the new dynamic stiffness ma-
trix can be assembled as

[
Kll Klr

Krl Krr

]{
ξl

ξr

}
=

{
Fl

Fr

}
(4.3)

with

Kll = K̃ll − K̃liK̃
−1
ii K̃il Klr = K̃lr − K̃liK̃

−1
ii K̃ir

Krl = K̃rl − K̃riK̃
−1
ii K̃il Krr = K̃rr − K̃riK̃

−1
ii K̃ir . (4.4)
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Based on Bloch’s theorem Thompson gives the following eigenvalue prob-
lem (B + λC)Ψ = 0 using the submatrices given in Eq. (4.4)

([
Krl Krr

0 I

]
+ λ

[
Kll Klr

−I 0

]){
ξl

ξr

}
= 0 . (4.5)

After solving the eigenvalue problem for the eigenvalues λ and eigenvec-
tors Ψ, the solution can be arranged in a way such that the eigenvectors of
right travelling waves are put into one submatrix Ψ+ containing the corre-
sponding eigenvectors and another submatrix Ψ− containing the left travel-
ling components. Within each there are displacement degrees of freedom for
the left part Ψ

+/−
l and the right part Ψ

+/−
r of the excited subsystem.1

The following equation relates the excitation forces at an arbitrary ele-
ment within an infinite periodic structure to the wave amplitudes of the right
travelling waves R.2

F =
(
KllΨ

+
l + KlrΨ

+
r + KrlΨ

−
r Ψ−

l
−1

Ψ+
l + KrrΨ

+
l

)
R (4.6)

This can be solved for the desired wave amplitudes R in the special
excitation case by an inversion process once the excitation is specified.

The wave amplitudes of the left-travelling components can be deduced
from the right-travelling amplitudes since [36]:

L =
(
Ψ−

l

)−1
Ψ+

l R (4.7)

These wave amplitudes in combination with the wavenumber content in
each wave gives a quantitative description of the wavenumber content for a
given excitation of an infinite profile strip.

4.2.2 Results for forced wave propagation of infinite
strips

In this section, the outlined theory is used to extract the wave amplitudes
of the characteristic waves for a given force (or moment) excitation of an
infinite strip. The first step is the solution of the eigenvalue problem, in this
case based on the dynamic stiffness matrix of the corresponding subsystem.
The eigenvectors, which are in this case not velocity, but displacement based,
are normalized with the vector (column) norm. After extracting the wave

1Note that the eigenvectors and the eigenvalue problem are defined here on a displace-
ment basis. No forces are included in the eigenvectors.

2This is the version used and given by Thompson. In the equation given by Brown the
first two Ψ matrices in the third term are interchanged.
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amplitudes for the left- and right-travelling normalized waves, the velocities
at the excitation point can be calculated by using Eq. (3.11) of chapter 3,
resulting in the input mobility of the infinite strip. The same profiles used
previously in chapter 2 for the finite strips A to C are used as infinite profiles.
Moreover, in order to benchmark the results, an approximate, infinite profile
strip is investigated by directly assembling the complete dynamic stiffness
matrix. This means that a weakly damped interior part (2.5 m, η = 0.01) is
enclosed between two end parts where damping is slightly increased to form
non-reflective ends. The end parts are both 2.5 m and with the loss factor η
increasing gradually from 0.01 to 0.25.

The resulting wave amplitudes for the positive (right)-travelling waves
are shown in the Figs. 4.1, 4.4 and 4.7. The calculation is done for all three
profiles and for two excitation components (F1,x; F1,y) at node 1 (see Fig. 2.1).
The corresponding input mobilities are shown in Figs. 4.2, 4.3, 4.5, 4.6, 4.8
and 4.9.

The mobilities for the infinite profile strips resemble those of the approx-
imate, infinite strips at sufficiently high frequencies. Because of the longer
wavelength for the longitudinal wave components, which are excited stronger
by axial force excitation, the deviations are larger than for transversal force
excitation.

The contribution of the longitudinal waves is much higher in the low
frequency regime for axial excitation and all profiles than for transversal
excitation (see e.g. wave 12 in Figs. 4.1 and 4.4). Because of the transition
between the wave types this dominance is reduced at high frequencies. For
the transversal excitation the ’bending’ type waves are dominant in the pass-
bands.

It is anticipated that the wave amplitudes are changing along the profile,
at least for decaying and complex waves. Wave amplitudes shown in Figs. 4.1,
4.4 and 4.7 are given for the point of excitation. Two examples of the wave
amplitudes along the strip are shown for profiles A and B in Figs. 4.10 and
4.11. Depending on the type of wave, the wave amplitudes decay strongly for
complex and decaying waves and very limited for propagating waves, where
only the small structural damping attenuates the wave amplitudes.
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Figure 4.1: Wave amplitudes of right-travelling characteristic waves for force
excited profile strip A, (— F1,x, – – (thick) F1,y)
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Figure 4.2: Input mobility, profile strip A, F1,x, (— infinite, – – approximately
infinite)
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Figure 4.3: Input mobility, profile strip A, F1,y, (— infinite, – – approximately
infinite)
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Figure 4.4: Wave amplitudes of right-travelling characteristic waves for force
excited profile strip B, (— F1,x, – – (thick) F1,y)
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Figure 4.5: Input mobility, profile strip B, F1,x, (— infinite, – – approximately
infinite)
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Figure 4.6: Input mobility, profile strip B, F1,y, (— infinite, – – approximately
infinite)
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Figure 4.7: Wave amplitudes of right-travelling characteristic waves for force
excited profile strip C, (— F1,x, – – (thick) F1,y)
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Figure 4.8: Input mobility, profile strip C, F1,x, (— infinite, – – approximately
infinite)
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Figure 4.9: Input mobility, profile strip C, F1,y, (— infinite, – – approximately
infinite)
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Figure 4.10: Wave amplitudes of right-travelling waves along profile strip
(Profile A) for F1,y force excitation at element number 0, f = 1000 Hz, (+
Wave 7, ◦ Wave 8, ∗ Wave 9, • Wave 10, × Wave 11, � Wave 12)
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Figure 4.11: Wave amplitudes of right-travelling waves along profile strip
(Profile B) for F1,y force excitation at element number 0, f = 1000 Hz, (+
Wave 7, ◦ Wave 8, ∗ Wave 9, • Wave 10, × Wave 11, � Wave 12)
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4.3 Aperiodicity

4.3.1 Influence of periodicity perturbations on wave
propagation

Apart from the DFT, the presented approaches in chapter 3 for wavenum-
ber extraction are only applicable to periodic profiles. As industrial profiles
always have periodicity perturbations, it is of interest to investigate the in-
fluence of these perturbations on the dispersion characteristics.

One option is to assume that the periodic element is not part of the
profile but is formed by the complete aperiodic profile, it should be possible
to use the same tools as outlined for strictly periodic systems. In practice
this would mean that one calculates the complete mobility matrix of the
profile strip and uses the result in the determinantal equation to find the
propagating waves. The problem of solving the determinantal equation for
multiple subelements is illustrated for the case of three subelements. By using
the mobility matrix of the three coupled subelements the same wavenumber
content can be extracted as for one subelement but additionally, there are
other spurious waves coming into play. Fig. 4.12 illustrates the resulting
spectrum for three subsystems in comparison with only one subsystem. The
additional wavenumbers in the plots can be linked to the original ones by
mirroring the original values at the periodic lines (π/Le + 2π n/Le). The
periodicity of the wavenumber spectrum with period 2π/Le introduces these
additional spurious waves as Le increases if more than one element is used.
Due to this fact the results using the complete aperiodic strip will not give
real insight into the wave propagation characteristics as the periodicity ’hides’
the dominating wavenumbers.

The solution of the transfer matrix eigenvalue problem for multiple subele-
ments could be used as an alternative. However, this is not practicable
because no stable transfer matrix can be calculated for large systems. More-
over, the same problems as for the determinantal equation are expected.
Upon solving the eigenvalue problem of the three-subelement T-matrix, the
results, not included here for the sake of brevity, show the strong numerical
instabilities arising. No meaningful results can be obtained for more than
two subelements.

As the methods for strictly periodic systems fail, the only feasible alter-
native is the application of the DFT method. The problem here is the low
resolution if a short profile strip shall be investigated. One possibility to get
a higher resolution is the use of a repeated strip. Moreover, the wavenumbers
are smeared by the aperiodic features (see Fig. 4.13 for introducing random
length variations to form aperiodic profiles based on profile A). For a ran-
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Figure 4.12: Wavenumber plot extracted using determinantal equation based
on (a) one element and (b) three elements for profile C (* (grey): decaying
waves, . . . (black) propagating waves)
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(a) 0% (b) 5%

(c) 10% (d) 50%

Figure 4.13: Wavenumber plots using DFT of strip A introducing maximum
random length variations (force excitation F1,y)

domization level of 5%, the characteristic wave distribution is conserved, for
higher randomness, only the low frequency behaviour is maintained whereas
the high frequency wavenumber components are smeared.

4.3.2 Influence of periodicity perturbations on deflec-

tion shapes and mobilities

One objective of this study is the determination of an acceptable criterion for
the perturbations up to which the influence is of minor importance. There-
fore, different calculations with the generic finite profiles presented in chap-
ter 2 are performed with random perturbations. In this case, the length of
each subsystem is varied with a uniformly distributed random number on an
interval set by the maximum deviation (in percent) from the original peri-
odic length. Values in the range from 1 % to 50 % are used and results for
deflection shapes are shown in Fig. 4.14.
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A more general investigation of this topic requires e.g. Monte-Carlo sim-
ulations with different random deviations. This is not done in detail here
because of the inherent computational and evaluation effort involved. Only
one random sample is considered. This can provide an informative basis for
the influence of periodicity perturbations.

For profile A the forced deflection shapes (excitation Fy at left end) are
shown in a pass-band (2500 Hz) in Fig. 4.14. The phenomenon of ’Anderson
localization’ reveals that the disorder induces a kind of damping, where the
vibration amplitudes are ’localized’ in the excitation region. Hence, the typi-
cal undamped wave propagation in the pass-bands is reduced by introducing
the irregularity. The question posed here is if and when such a behavior can
be demonstrated also for the investigated generic profile strips.

From the calculated deflection shapes no strict ’localization’ can be de-
duced. 1 % randomness does not alter the deflection form, the 5 % realization
reduces the vibration levels on the complete strip significantly. Only for 50 %
random length variation the vibration is localized in some regions. However,
this is not the classical ’localization’ as it is not restricted to the left end
excitation region.

The influence on the input and transfer mobility is plotted for profile A
in Figs. 4.15 and 4.16 for force excitation at the left end in y-direction and
response at a joint approximately at the centre of the finite strip, also in
y-direction. The corresponding plots for profile B are shown in Figs. 4.17
and 4.18 and for profile C in Figs. 4.19 and 4.20. As in chapter 2 the re-
sults are again plotted for a force Fy per unit z-length. In order to increase
legibility, the 1% variation case is suppressed. It is obvious that only large
perturbations in the structure have significant influence on the mobilities.
For profile C, where distinct pass- and stop-bands are present, the random
length variations have only a small effect on the general trends. The influ-
ence on the transfer mobilities is more pronounced than for the real part of
the input mobility. For the low frequency behaviour, the influence of peri-
odicity perturbations is less pronounced than for higher frequencies, where
significant distortion of the pattern is more commonplace.

These results suggest that periodic effects will not disappear by small
perturbations, at least for the investigated geometries. Hence, it seems to be
possible to design structures in a way to use e.g. the stop-band behaviour
for noise control purposes.
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(a)

(b)

(c)

(d)

(e)

Figure 4.14: Deflection shapes of (a) strictly periodic profile strip A, (b)
maximum 1%, (c) 5%, (d) 10%, (e) 50% random length variation. Force
excitation Fy at left end, 2500 Hz. Same scaling is maintained for all subplots.

4.4 Concluding remarks

The amplitudes of the characteristic waves for forced vibrations of infinite
profile strips and resulting mobilities can be calculated by using the dynamic
stiffness matrix of a single periodic subsystem. The amplitudes and the
wavenumber content of each characteristic wave form the basis for a quan-
titative wavenumber distribution on the profile faces, which can be used for
structure-borne sound and radiation problems.
A brief study on irregularity effects shows that the influence is limited. The
general dynamic behaviour of the periodic profiles is conserved even for high
random length variations of up to 5%.
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Figure 4.15: Input mobility for randomly varied profile strip A. (force excita-
tion in y-direction at left end) +(red) strictly periodic, ◦(black) 5 %, ∗(green)
10%, •(blue) 50 % random length variations of subsystems
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Figure 4.16: Transfer mobility for randomly varied profile strip A. (force
excitation in y-direction at left end, response in y-direction approximately at
centre of strip) +(red) strictly periodic, ◦(black) 5 %, ∗(green) 10%, •(blue)
50 % random length variations of subsystems
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Figure 4.17: Input mobility for randomly varied profile strip B. (force excita-
tion in y-direction at left end) +(red) strictly periodic, ◦(black) 5%, ∗(green)
10%, •(blue) 50 % random length variations of subsystems
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Figure 4.18: Transfer mobility for randomly varied profile strip B. (force
excitation in y-direction at left end, response in y-direction approximately at
centre of strip) +(red) strictly periodic, ◦(black) 5 %, ∗(green) 10%, •(blue)
50 % random length variations of subsystems
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Figure 4.19: Input mobility for randomly varied profile strip C. (force excita-
tion in y-direction at left end) +(red) strictly periodic, ◦(black) 5 %, ∗(green)
10%, •(blue) 50 % random length variations of subsystems
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Figure 4.20: Transfer mobility for randomly varied profile strip C. (force
excitation in y-direction at left end, response in y-direction approximately at
centre of strip) +(red) strictly periodic, ◦(black) 5 %, ∗(green) 10%, •(blue)
50 % random length variations of subsystems
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Chapter 5

Free wave propagation in light
weight profile plates

5.1 Introduction

The wave propagation in light weight profile strips with different truss-like
core geometries is thoroughly investigated in chapters 2 to 4 and typical pe-
riodic system effects like pass- and stop-band behaviour are identified. The
results presented there are valid also for plates with line force excitation per-
pendicular to the strip plane in z-direction. For structure-borne sound ap-
plications the loads are often concentrated to small areas where e.g. machine
footings are attached to the light weight plate. As long as the wavelength is
larger than the contact dimension they can be treated as point contacts.

In this chapter the wave propagation in the light weight plates illustrated
in Fig. 5.1 is investigated. For the case of point force excitation the wave
propagation spreading from the excitation point is treated in sections 5.2
and 5.3. One of the questions posed is if the pass- and stop-band effects
are also distinct for point excited plate configurations. Langley and Bardell
show in [38] that for two-dimensional periodic systems (beam grillages), the
wave propagation can be highly directional. Similar results are reported by
Ruzzene et. al. in [39]. It is investigated here if such a phenomenon also exists
for a two-dimensional structure with periodicity only in one direction. There-
fore the forced response of typical profiles is calculated using standard Finite
Element techniques. For a physical understanding and interpretation of the
wave propagation in the light weight profiles the two-dimensional wavenum-
ber content is extracted from the calculated vibration fields. Results of the
spatial Fourier-transform method are shown and reveal the wave beaming ef-
fects for the investigated light weight plates. As an alternative to the spatial
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(a) Profile A

(b) Profile B

(c) Profile C

Figure 5.1: Investigated generic light weight profiles. Arrows in (a) indicate
extreme normal force excitation positions (left arrow at centre of plate strip
and right arrow at a stiffener position)
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Fourier transform the dispersion characteristics of propagating waves can be
extracted from a single subelement, repeated in both directions, resulting
in the so-called phase constant surfaces. Results are compared with DFT
and reveal the enhanced resolution capabilities of the subelement approach
for periodic profiles. For profiles of finite width the wavenumber content in
z-direction is extracted using the waveguide finite element technique (WFE),
[40, 41]. A narrow slice of the complete waveguide is modelled with standard
FE methods and periodic system theory delivers the characteristic waves
propagating in z-direction in the infinite light weight plate section.

5.2 Dispersion characteristics using DFT

In order to understand the wave propagation in the light weight profiles,
the wavenumber content for propagation in x- and z-direction is sought (see
Fig. 5.1). There are several options to extract the wavenumber content from
measured or calculated data. A lot of work in the area of one-dimensional
wavenumber estimation has been published, see e.g. [42, 43, 44]. For two-
dimensional extraction procedures details can be found in [45], [46] and [47].
Mainly for usage with experimental data a Correlation method [46] and the
Inhomogeneous Wave Correlation method (IWC) [45, 48] are introduced.
Both are intended to overcome some limitations of the standard spatial dis-
crete Fourier Transform technique when only limited and possibly noisy (ex-
perimental) data is available. For this study calculated vibration fields with
high resolution are available so that the spatial Discrete Fourier Transform
(DFT) technique is applicable. A clearer picture of the two-dimensional wave
propagation can be gained with the evaluation of the phase constant surfaces
from the 2D-periodic subelement. This is compared with the DFT-results in
section 5.3. If the system can be handled as a waveguide, in which wave prop-
agation is of primary concern only along the waveguide, i.e. parallel to the
inner webs of the profile, the dispersion characteristics for this direction can
be investigated e.g. with spectral or waveguide finite element techniques, see
e.g. [26, 41, 40]. From these methods the properties of characteristic waves
propagating in the waveguide direction can be deduced. For profiles of finite
width this approach is favourable for general investigations of wave propaga-
tion in the waveguide direction. This approach is chosen for the investigation
in section 5.4. The IWC method is applied for the experimental dispersion
investigation of a train floor in section 7.2.2 and results are related to the
DFT results.
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5.2.1 Discrete spatial Fourier Transform

For the application of the DFT-method, a spatial sampling at points on a
discrete two-dimensional grid is necessary, resulting in the two-dimensional
discrete fourier transform (2D-DFT). Having a profile section of dimensions
Lx and Lz with Nx ×Nz equally distributed spatial sampling points vnx,nz =
v(nxΔx, nzΔz), nx = 1, 2, 3, ..., Nx; nz = 1, 2, 3, ..., Nz, results in the following
transformation:

Vp,q = V (pΔkx, qΔkz) = ΔxΔz
Nx∑

nx=1

Nz∑
nz=1

vnx,nze
−j pΔkx xpe−j qΔkz zq

Δkx =
2π

Lx
, Δkz =

2π

Lz
(5.1)

This is a direct extension of the one-dimensional Fourier transform intro-
duced in section 3.2.2, where limitations and practical aspects of the method
and its application are discussed.

As stated already for the one-dimensional case the DFT-approach is ben-
eficial for a specific forced excitation, as it directly results in the energy dis-
tribution among different waves for this excitation. On the other hand this
can be a limitation if a more general understanding of possible wave propa-
gation in the light weight plates is sought. It cannot be directly assured that
all the important wave types are excited and hence can be extracted. For a
more general investigation, the WFE method or the phase constant surface
evaluation presented later on are favoured.

The velocity field data on a regular spaced grid is calculated using stan-
dard FE-modeling techniques using MSC NASTRAN 1. In order to suppress
reflections from the model boundaries, the edge regions (0.5 m width) are
highly damped (loss factor 0.1). For a reduced calculation effort, symmetry
is exploited and only a quarter model with symmetry boundary conditions is
established. The principal geometries of the investigated profiles are shown
in Fig. 5.1. Details of geometric dimensions and material properties are listed
in Tab. 5.1. The thickness of the inner webs of profiles B and C is adjusted
to maintain constant total mass per unit area.

As shown already in chapter 3 the vibrations of truss-like light weight
objects can be divided in global and local wave motion. The global waves
dominate at lower frequencies whereas at higher frequencies global and local
vibrations are of significance.

1CQUAD4 shell elements, element length 12.5 mm, frequency limit according to six
elements per (bending) wavelength criterion is about 5300 Hz, direct frequency response
calculation method (SOL 108) is used.
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Table 5.1: Geometry and material properties of investigated profiles (see
Fig. 2.1 for nomenclature)

Profile A B C

touter [mm] 3.0 3.0 3.0
tinner [mm] 3.0 2.6 8.5

Web angle α [◦] 45.0 26.6 / 90.0 90.0
Periodic length lx [mm] 100 100 100
Total length Lx [mm] 3000 3000 3000
Total length Lz [mm] 5000 5000 5000

E0 [N/m2] 7.2 · 1010 7.2 · 1010 7.2 · 1010

ν [−] 0.34 0.34 0.34
η [-] 0.01/0.1 0.01/0.1 0.01/0.1

ρ [kg/m3] 2700 2700 2700
Total mass per unit area [kg/m2] 27.7 27.7 27.7

The geometry of the truss-like light weight profiles is highly orthotropic
as the intermediate plates are orientated only in the z-direction. Despite
this geometrical orthotropicity, the global vibrations for profiles of type A
are mainly isotropic as shown in [2]. The static and low frequency bend-
ing stiffnesses are dominated by the face plates which do not comprise any
orthotropicity. The following investigation shall shed some light on the in-
fluence of generic geometry (A, B, C) on vibrational orthotropicity.

Representative for the global wave region, the 400 Hz results of all three
profile types are presented in Fig. 5.2. The wavenumber content is displayed
on a logarithmic grey scale and strong contributions are dark shaded. The
results presented correspond to unit normal point force excitation at the
centre of a plate field (A and C) or an excitation at a stiffener position (B).
The normal velocity of the outer plate of the excited side is selected for the
evaluation. The influence of excitation position is treated in [49] and section
5.2.2 and can be summarized by a quantitative variation in the wavenumber
content, but the inherent waves are similar.

The results in Fig. 5.2 show the dominance of the global, low wavenumber
waves for all profiles at 400 Hz. The response of A and B is similar, the
wavenumber content displaying the isotropic nature of the wave propagation
with a quarter circle at very low wavenumbers. In contrast to this the velocity
field for profile C comprises much shorter wavelength in x-direction (kx =
30 m−1, kz = 8 m−1, see Fig. 5.2(c)). This is directly linked to the elliptical
wavenumber curve in the DFT-result with a higher wavenumber for kx.

Although the global waves dominate the vibration, there are also higher

86



CHAPTER 5. FREE WAVE PROP. IN LIGHT WEIGHT PLATES

(a) Profile A (left: velocity field, right: wavenumber content), plate field excitation

(b) Profile B (left: velocity field, right: wavenumber content), stiffener excitation

(c) Profile C (left: velocity field, right: wavenumber content), plate field excitation

Figure 5.2: Velocity fields for normal force excitation and DFT wavenumber
content (f = 400 Hz)
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wavenumber components included, representing some local behaviour. For
the periodicity in x-direction, a higher wavenumber component is present
with a separation of 2π/lx = 62.8 m−1 to the global waves, where lx is the
periodic length of 0.1 m in x-direction. For higher frequencies the significance
of the global waves decreases (Fig. 5.3) and the velocity field is dominated by
high wavenumber (short wavelength) components. These wave components
comprise an interesting feature, they propagate only in the direction of a
limited angular segment, which is related to strong wave beaming effects most
clearly visible for types A and C. For profile A the main direction is oblique,
whereas for profile C the lobes are orientated mainly in z-direction. This
kind of wave beaming is similar to the results presented by Langley [50, 38]
for point excited periodic beam grillages. This means that wave beaming is
not only existing for structures with periodicity in both directions, but also
for structures comprising periodicity only in one direction.

Going higher in frequency the wave propagation characteristics shown in
Fig. 5.4 for 5000 Hz arise. For profile A strong wave beaming effects are still
visible. The wave propagation in profile C arises mainly along the excited
plate strip in z-direction. Nonetheless, some less pronounced waves with
periodic wavenumber content propagate also in x-direction, clearly visible in
the wavenumber domain.
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(a) Profile A (left: velocity field, right: wavenumber content), plate field excitation

(b) Profile B (left: velocity field, right: wavenumber content), stiffener excitation

(c) Profile C (left: velocity field, right: wavenumber content), plate field excitation

Figure 5.3: Velocity fields for normal force excitation and DFT wavenumber
content (f = 2000 Hz)
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(a) Profile A (left: velocity field, right: wavenumber content), plate field excitation

(b) Profile B (left: velocity field, right: wavenumber content), stiffener excitation

(c) Profile C (left: velocity field, right: wavenumber content), plate field excitation

Figure 5.4: Velocity fields for normal force excitation and DFT wavenumber
content (f = 5000 Hz)
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5.2.2 Frequency dependent dispersion from DFT

In order to get insight into the frequency dependent behaviour and for com-
parison with WFE and phase constant surface results, the wavenumbers in
the main directions x and z are extracted from the 2D-DFT results. The
extraction procedure is performed with a frequency increment of 50 Hz and
results are shown in Figs. 5.5 to 5.9 for the different generic profiles and
excitation positions.

As expected the dispersion in x-direction is very similar to the character-
istics obtained from the two-dimensional strip investigation, chapter 3. The
periodic stop- and pass-band behaviour is distinct especially for profile C
with two wide stop-bands. Moreover the periodic wavenumber content with
spacing 2π/lx is clearly visible in the pass-bands.

The influence of force position is demonstrated with Figs. 5.5 and 5.6.
The same waves are inherent in the structure independent of excitation posi-
tion but with different amplitudes. The plate field excitation tends to excite
higher wavenumbers, i.e. local waves, especially in the range 1100-3000 Hz.
For this excitation an additional dispersion curve appears for wave propaga-
tion in z-direction cutting on at approximately 1000 Hz.

Figs. 5.7 and 5.8 demonstrate the wavenumber content of the velocity
field of face y = 0.05 m for the excitation on lower (y = 0) and upper plate
face (y = 0.05 m). The wavenumber content is very similar on both sides
with some quantitative differences of the inherent waves.

As expected by the plate geometries, wave propagation in x-direction is
highly influenced by the structural periodicity and to different extent stop-
and pass-band behaviour is observed. Wave propagation in z-direction paral-
lel to the intermediate plates is much more distinct and exists in the complete
frequency range, starting with global bending wave behaviour at low frequen-
cies and a transition to local plate strip bending wave behaviour at higher
frequencies, similar e.g. to dispersion in cylinders, where global torsional
and bending waves of the complete cylinder dominate at low frequencies and
change to bending dispersion of the hull at high frequencies.

The limited resolution of the DFT-results makes the interpretation some-
what difficult. The WFE method and the phase constant surface results shall
give some further insight into the wave propagation in z-direction and the
corresponding characteristic waves.
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(a) kx (kz = 0)

(b) kz (kx = 0)

Figure 5.5: Dispersion characteristics of profile A in x- and z-direction ex-
tracted from 2D-DFT results, plate field excitation
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(a) kx (kz = 0)

(b) kz (kx = 0)

Figure 5.6: Dispersion characteristics of profile A in x- and z-direction ex-
tracted from 2D-DFT results, stiffener excitation
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(a) kx (kz = 0)

(b) kz (kx = 0)

Figure 5.7: Dispersion characteristics of profile B in x- and z-direction ex-
tracted from 2D-DFT results, stiffener excitation, y = 0
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(a) kx (kz = 0)

(b) kz (kx = 0)

Figure 5.8: Dispersion characteristics of profile B in x- and z-direction ex-
tracted from 2D-DFT results, stiffener excitation, y = 0.05 m, velocity field
of face y = 0.05 m

95



CHAPTER 5. FREE WAVE PROP. IN LIGHT WEIGHT PLATES

(a) kx (kz = 0)

(b) kz (kx = 0)

Figure 5.9: Dispersion characteristics of profile C in x- and z-direction ex-
tracted from 2D-DFT results, plate field excitation
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Figure 5.10: Naming conventions of the periodic subelement for dispersion
extraction in x- and z-direction exemplified for profile A. (a) general illus-
tration, (b) detailed assignment of FE-nodes

5.3 Dispersion characteristics using phase con-

stant surfaces

5.3.1 Theory

Based on 2D-periodic system theory the so-called phase constant surfaces can
be extracted from a reduced eigenvalue problem of the 2D-periodic subele-
ment [51, 38, 52].

The naming convention for the subelement used for extraction of the
phase constant surfaces is shown in Fig. 5.10. In contrast to the formulation
by Mead et. al. [51], no inner degrees of freedom and no degrees of freedom
solely related to left and right boundaries are present. This is due to the fact
that the extension in z-direction is intended to be very small (10 mm) in order
to achieve in this direction, which does not comprise classical periodicity, a
high limiting wavenumber.
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Starting with the definition of the displacement and force vectors,

ξ =
[
ξbξfξlfξlbξrbξrf

]T
(5.2)

F = [FbFfFlfFlbFrbFrf ]
T (5.3)

the undamped equations of motion with stiffness matrix S and mass ma-
trix M read:

(
S − ω2M

)
ξ = F (5.4)

Using Bloch’s theorem relating displacement and forces at the boundaries
of the periodic subelement, the equations of motion can be condensed in the
case of free wave propagation. The detailed Bloch conditions read:

ξb = eμzξf

ξlb = eμzξlf

ξrb = eμx+μzξlf

ξrf = eμxξlf (5.5)

Fb = −eμzFf

Flb = −eμzFlf

Frb = +eμx+μzFlf

Frf = −eμxFlf (5.6)

Using these conditions, reduced vectors can be used

ξred =
[
ξfξlf

]T
(5.7)

Fred = [FfFlf ]T . (5.8)

From the reduced vectors the full vectors can be calculated using the
Bloch conditions in matrix form,

ξ = A ξred with A =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ib eμz 0
If 0
0 Ilf

0 Ilb eμz

0 Irb eμx+μz

0 Irf eμx

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.9)
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F = BFred with B =

⎛
⎜⎜⎜⎜⎜⎜⎝

−Ib eμz 0
If 0
0 Ilf

0 −Ilb eμz

0 +Irb eμx+μz

0 −Irf eμx

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.10)

Introducing the reduced force and velocity vectors in equation (5.4) and
pre-multiplying with AH results in a reduced eigenvalue problem with re-
duced mass and stiffness matrices Mred and Sred.

(
Sred − ω2Mred

)
ξred = 0 (5.11)

with Sred = AH SA, Mred = AH MA

The right side of Eq. (5.11) is 0 for purely imaginary propagation con-
stants, i.e. purely propagating waves without losses. For each combination
of purely imaginary μx, μz several real eigenvalue solutions for ω2 exist. The
resulting triples μx, μz, ω form the so called phase constant surfaces represent-
ing the dispersion characteristics of the infinite profile formed by repeated
subelements in x- and z-direction.

5.3.2 Numerical results

Phase constant surfaces are calculated from FE-subelement models of profiles
A, B and C with a mesh size of 10 mm (see Fig. 5.19). Some examples for the
first four phase constant surfaces in the frequency range up to 5000 Hz are
presented in Fig. 5.11. In the x-direction with a periodic subelement length
of Le = 0.1 m wavenumbers are multi-valued with the periodicity given in
Eq. (3.4), forming the space harmonic series.

Only the first phase constant surface of Fig. 5.11 starts at very low fre-
quencies and represents the global wave behaviour. All others cut on with
propagating waves in the phase constant surface at higher frequencies.

As the phase constant surfaces are difficult to interpret directly, contours
for selected frequencies are presented in Figs. 5.12 to 5.14. The contour lines
represent the wavenumber content for these selected frequencies. Periodicity
in x-direction is accounted for in the plotted results by including higher
space harmonics up to kx = 200 m−1. For comparison, the DFT results
presented in section 5.2.1 are included by colour shading in the plots, while
the contour lines are included with blue full lines. The agreement between
DFT results and contour lines is high. The comparison of the phase constant
surface dispersion results with the spatial Fourier transform results reveals
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Figure 5.11: First four phase constant surfaces of profile A subelement, higher
order space harmonics included in x-direction for clarity. The wavenumber
periodicity is kx = 62.8 m−1.

the strength of the former to identify clearly the possible inherent propagating
waves. The drawback is that the energy distribution among the different
components of the space harmonics and the different wave types is not readily
given for a specific excitation. This is particularly the case for the periodic
x-direction. Wave beaming plays a dominant role in some frequency bands,
as expected already from the DFT results. For low frequencies global waves
are prominent. With increasing frequency new wave types cut on, increasing
the complexity of the wavenumber content. For profile C in particular, the
distinct pass- and stop-band behaviour for bending wave propagation in x-
direction is obvious. Significant lateral wave propagation is possible only
in the pass-bands 1500-2200 Hz and beyond 4200 Hz, see Figs. 5.14(c) and
5.17(a).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Wavenumber content of profile A for selected frequencies (DFT
results using colour shading and phase constant surface results in blue)

101



CHAPTER 5. FREE WAVE PROP. IN LIGHT WEIGHT PLATES

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Wavenumber content of profile B for selected frequencies (DFT
results using colour shading and phase constant surface results in blue)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Wavenumber content of profile C for selected frequencies (DFT
results using colour shading and phase constant surface results in blue)
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For propagation in the x- and z-direction the frequency dependent dis-
persion curves extracted in Fig. 5.15 for profile A, Fig. 5.16 for profile B
and Fig. 5.17 for profile C are shown. The dispersion curves for kx agree, as
expected, with the results of the two-dimensional investigation presented in
chapter 3.

The two-dimensional wave propagation results corroborate the DFT re-
sults presented in Figs. 5.5 to 5.9 with much clearer pictures of the inherent
possible waves. Moreover, the calculation and modelling effort is drastically
reduced in comparison with the spatial Fourier transform approach as only
one single periodic FE-subelement has to be modelled and calculated.
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(b) kz (kx = 0)

Figure 5.15: Dispersion characteristics of profile A extracted from phase
constant surfaces in x- and z-direction
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(b) kz (kx = 0)

Figure 5.16: Dispersion characteristics of profile B extracted from phase
constant surfaces in x- and z-direction
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(b) kz (kx = 0)

Figure 5.17: Dispersion characteristics of profile C extracted from phase
constant surfaces in x- and z-direction
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5.4 Dispersion characteristics using

Waveguide Finite Element technique

It is not directly possible to identify the wave shapes of the inherent waves
in the profile from the full 3D-FE-calculations or the phase constant surface
results. These wave shapes are useful to gain insight in the wave propagation
process. Moreover, full 3D-modelling and FE-calculation of the light weight
profiles is quite demanding with regard to computer resources and evaluation
time. Therefore, a different approach is aimed at in order to investigate the
wave propagation in the light weight profiles. In many applications, e.g. in
train carriages the extension of the profiles along the carriage can be quite
long, so that the structure-borne sound propagation is similar to an infinite
extension in this direction whereas it is finite in the lateral direction.

The option is then to model only a cross section of the complete profile
and to use Waveguide Finite Element technique for the infinite extension
in the z-direction. In contrast to the spectral finite element formulation
introduced by Finnveden [53], there is no need to create new element types
for the calculation. Standard FE-libraries and packages can be used to create
the dynamic stiffness matrix of a cross section. This greatly enhances the
applicability for general use so that complex geometries can be modelled
easily.

5.4.1 Theory

The waveguide FE approach models a section of the strip in z-direction by
conventional FE-methods using shell elements. An example of such a strip
is shown in Fig. 7.1(b).2 This technique results in quite small FE-models
as only a small part of a complete plate has to be modelled. For periodic
strips in x-direction it is sufficient to model only one subelement (see e.g.
Fig. 5.19). Extended sections in x-direction can be assembled from these
subelements by using standard FE-assembling methods. In analogy to the
case of multi-coupled periodic elements, it is assumed that this section is not
only assembled in x-direction, but repeated in z-direction also to form an in-
finite plate in the latter direction (see Fig. 5.18). Now the wave propagation
in the z-direction can be investigated in analogy to multi-coupled periodic
systems. Defining the edges of the section in z-direction as front and back
end of the periodic element and assembling the transfer matrix offers the op-

2In chapters 2 to 4 the investigated strip is similar in shape, but in that case no
extension in z-direction is modelled and beam elements are used to calculate the wave
propagation in x-direction only.
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portunity to solve the transfer matrix eigenvalue problem directly or based
on the dynamic stiffness matrix. This approach has been used for rails to
predict the wave propagation along the rail by calculating a small section of
the rail, see e.g. [36, 54, 55]. One problem for a complete profile strip is that
a high number of coupling nodes is introduced enlarging the transfer matrix
involved. In some cases the method can become unstable, but this instability
can be circumvented by using appropriate FE-elements and a stable imple-
mentation to solve the eigenvalue problem. For details see e.g. [56, 57, 58].
The same technique is also used for investigations of wave propagation in
ultrasonics, e.g. [59, 60].

The WFE-calculation is based on a standard FE-model of a subelement
marked in black in Fig. 5.18. Using the subelement mass and stiffness ma-
trices M and S, the equation of motion for harmonic excitation using time
base ejωt and structural damping with loss factor η reads:

(−ω2M + (1 + jη)S
)
ξ = F (5.12)

The dynamic stiffness matrix K is defined and partitioned in front (f) and
back (b) degrees of freedom (DOF), see Fig5.10.3

K ξ =

[
Kff Kfb

Kbf Kbb

]{
ξf

ξb

}
=

{
Ff

Fb

}
(5.13)

A wave basis can be established based on the solution of the eigenvalue prob-
lem of the transfer matrix T, relating front and back edges of the subelement.
The transfer matrix reads:

T

{
ξf

Ff

}
=

{
ξb

−Fb

}
(5.14)

The transfer matrix can be established from the partitioned dynamic stiffness
matrix.

T =

[ −K−1
fb Kff K−1

fb

−Kbf + KbbK
−1
fb Kff −KbbK

−1
fb

]
(5.15)

Based on Bloch’s theorem, relating the front and back edges of all the
connected elements with a constant amplitude and phase shift λ, the eigen-
problem for free wave propagation can be defined as

T

{
ξf

Ff

}
= λ

{
ξf

Ff

}
, λ = ej kzLe. (5.16)

3For the applications used here no inner DOFs are used in the subelement model so
that the dynamic stiffness matrix contains only front and back DOFs. Otherwise the inner
DOFs have to be condensed.
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Figure 5.18: Artificial periodic subelement (marked in black) as part of a
complete light weight plate

Thence, the wavenumber kz can be related directly to the eigenvalues
λ with the periodic length Le in z-direction. In undamped systems the
waves are either purely propagating (|λ| = 1), decaying (Im(λ) = 0), or
complex for all remaining λ. Though the mathematical solution is ambiguous
with a periodicity of 2π/Le for the real part of the wavenumber, a distinct
identification, in this case in z-direction, is possible in contrast to most typical
periodic systems. Assuring a high wavenumber periodicity length by selecting
a very small periodic length Le, the solution for lowest wavenumbers gives
the physical results. For accurate results, the periodic length has to be much
smaller than any occurring physical wavelength, kz Le < 1. This criterion is
in accordance with standard FE-modelling guidelines where six elements per
wavelength is a common rule of the thumb. As pointed out by Mead in [61] a
selection of a small Le increases the accuracy without increasing calculation
time as the dimensions of the eigenproblem to solve are independent of this
choice. This is illustrated also in the dispersion results of Fig. 5.29 and
implies a significant advantage over standard FE-modeling techniques.4

The wave basis is constituted by the pairs of negative and positive travel-
ling waves with eigenvalues λi and corresponding right eigenvectors as defined

in Eq. (5.16), φi =
[
ξf,i F f,i

]T
, which define the wave shapes. These wave

vectors can be assembled in an eigenvector matrix Φ.

5.4.2 Wave propagation in single subelement profiles

To gain insight in the principal wave propagation features of the generic light
weight profiles the different subelements are investigated with free boundary
conditions at left and right edge at first, forming profiles of single subelements
in x-direction.

4The selection of a small Le is bounded by numerical issues, resulting e.g. from round-
off errors in the corresponding matrices for very small elements. [58]
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Figure 5.19: FE-models of subelements A-C, 10 mm element length

The dispersion characteristics of the three configurations are extracted
from the FE-models shown in Fig. 5.19, using shell elements with an element
length of 10 mm. Material parameters are listed in Tab. 5.1.

All six degrees of freedom at each node including the in-plane rotations
are used in the extraction procedure.5

The propagating waves are identified by using a limit for λ, typically
0.99 < |λ| ≤ 1. The real part of these wavenumbers is plotted in Fig. 5.20
for subelements A-C.

In the low frequency regime up to about 600 Hz for profile A global
waves with wavenumber up to 8 m−1 are present. A typical wave shape is
shown for profile A in Fig. 5.21(a) for 500 Hz. For higher frequencies wave
propagation in the member plates cuts on and wave shapes with these local
vibration patterns are shown for 2000 and 5000 Hz. The shading indicates
the displacement in y-direction.

For profile B local wave propagation starts already at 300 Hz. This is
related to the special layout of the subelement with three free plate edges on
both lateral edges. The corresponding wave shapes are plotted in Fig. 5.22.

For profile C some characteristic waves are shown in Fig. 5.23. The
wavenumber content comprises less branches which can be explained by four
similar plate fields concentrating to the same bending wavenumbers.

All the profiles show a global bending branch exceeding the low frequency
range and the non-dispersive longitudinal wave branch with low wavenum-
bers, reaching a wavenumber of about 7 m−1 at 5000 Hz.

5CQUADR shell elements are used for a stable wavenumber extraction. In contrast
to the CQUAD4 elements, these elements include the in-plane roational DOF. This is
important to get the waves in the diagonal stiffeners correctly, where a portion is in-plane
also. [62]
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(a) Profile A: wavenumber content
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(b) Profile B: wavenumber content
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(c) Profile C: wavenumber content

Figure 5.20: Wavenumbers of single subelement in z-direction (0.1 m width)
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(a)
kz = 4.7 m−1

f = 500 Hz

(b)
kz = 37.7 m−1

f = 2000 Hz

(c)
kz = 13.6 m−1

f = 5000 Hz

Figure 5.21: Selected wave shapes of single subelement profile A.
Cross sectional plots (x-y) are included at the bottom for z = 0.

(a)
kz = 13.6 m−1

f = 500 Hz

(b)
kz = 42.9 m−1

f = 2000 Hz

(c)
kz = 77.7 m−1

f = 5000 Hz

Figure 5.22: Selected wave shapes of single subelement profile B.
Cross sectional plots (x-y) are included at the bottom for z = 0.
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(a)
kz = 5.7 m−1

f = 500 Hz

(b)
kz = 39.4 m−1

f = 2000 Hz

(c)
kz = 20.8 m−1

f = 5000 Hz

Figure 5.23: Selected wave shapes of single subelement profile C.
Cross sectional plots (x-y) are included at the bottom for z = 0.
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5.4.3 Wave propagation in multiple subelement pro-
files

The dispersion investigation of a single free subelement profile is not rep-
resentative for industrial applications where a full plate consists of several
adjacent subelements. Hence, it is necessary to investigate the influence of
building a complete profile of the subelements. In order to get an idea of
the general trends, calculations with three and five subelements side by side
are performed. The resulting dispersion characteristics for three and five
subelements are shown in Figs. 5.24 and 5.25 respectively.

Comparing the dispersion plots for one, three and five subelements, it is
obvious that the number of propagating waves increases with the plate width.
Despite the diversity of waves it is possible to distinguish different local wave
groups that can be found in the dispersion plots irrespective of plate width.
Exemplified for profile A the following observations can be made:

• The dispersion curve with the highest wavenumber is related to edge
waves of the cantilevered sections. Because of the free edges these are
the first local waves to cut on (see Fig. 5.26(a)).

• The second group is related to waves comprising first order mode shapes
of the plate strip members. For the waves with the highest wavenum-
bers in this group, adjacent plate strips vibrate in anti-phase (simply
supported mode shape, Fig. 5.26(b)), whereas for the lower wavenum-
bers they vibrate in-phase (clamped mode shape, Fig. 5.26(c)). This
behaviour is similar to the characteristic wave shapes of a simply sup-
ported periodic beam [33, p. 186]. For a fixed wavenumber the region
between these extremes can be regarded as a wave pass-band with the
bounding frequencies of the plate strip with either simply supported or
fixed edges.

• The third group (k = 60 − 67 m−1 for 5000 Hz) is dominated by vi-
brations of the intermediate inclined webs in the first cross mode (see
Fig. 5.26(d)).

• The fourth group (k = 35 − 48 m−1 for 5000 Hz) is characterized by
second order cross modes of the outer plate strips. Again the high
wavenumber limit of this group corresponds to simply supported vi-
brations of the members (Fig. 5.26(e)) and the lower edge is related to
clamped motion, not shown for the sake of brevity.
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(a) Profile A: wavenumber content
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(b) Profile B: wavenumber content
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(c) Profile C: wavenumber content

Figure 5.24: Wavenumbers in z-direction of three subelements (0.3 m width)

116



CHAPTER 5. FREE WAVE PROP. IN LIGHT WEIGHT PLATES

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

f [Hz]

R
e(

k z) 
[1

/m
]

(a) Profile A: wavenumber content
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(b) Profile B: wavenumber content
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(c) Profile C: wavenumber content

Figure 5.25: Wavenumbers in z-direction of five subelements (0.5 m width)
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• In the low wavenumber range (k = 5 − 17 m−1 for 5000 Hz) the waves
comprise mainly rotational behaviour at the joints (Fig. 5.26(f)).

• Oblique directional wave propagation can be observed for the upper
edges of the wave groups (Fig. 5.26(b) and (e)).

Similar observations for infinite periodically-stiffened plates are reported
by Mace in [63], where the bounding frequencies of the propagation zones
are shown to be linked to distinct propagation constants of μ = 0 and μ = π
in the lateral direction (in-phase and out-of phase motion of adjacent bays).
Similar wave groups for extruded profile floor sections are also identified
from spectral finite element investigations [64], but are not linked to the
investigated strip width.

The general observation of wave groups holds also for profile B. An ex-
ample of a low frequency global bending wave is shown in Fig. 5.27(a). Some
selected mode shapes for higher frequencies are shown and support the gen-
eral trends observed for profile A.

The wave groups for profile C are even clearer as the coupling between
different wave types is more distinct than for profiles with inclined webs due
to the right-angled web connections. Some typical wave shapes are plotted
in Fig. 5.28. Global wave motion as shown in Fig. 5.28(a) in the lateral
direction is characterized by significantly smaller wavelengths for a profile
without inclined webs (see chapter 3). This is related to an increased number
of global waves cutting on in the low frequency regime already for a plate
width of 0.5 m. The local waves show similar trends as described previously
for profile A.
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(a)
kz = 41.9 m−1

f = 2000 Hz

(b)
kz = 37.5 m−1

f = 2000 Hz

(c)
kz = 30.0 m−1

f = 2000 Hz

(d)
kz = 63.3 m−1

f = 5000 Hz

(e)
kz = 48.3 m−1

f = 5000 Hz

(f)
kz = 11.2 m−1

f = 5000 Hz

Figure 5.26: Selected wave shapes for profile A (0.5 m width).
Cross sectional plots (x-y) are included at the bottom for z = 0.
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(a)
kz = 6.3 m−1

f = 500 Hz

(b)
kz = 37.8 m−1

f = 2000 Hz

(c)
kz = 28.8 m−1

f = 2000 Hz

(d)
kz = 5.9 m−1

f = 2000 Hz

(e)
kz = 54.0 m−1

f = 5000 Hz

(f)
kz = 74.3 m−1

f = 5000 Hz

Figure 5.27: Selected wave shapes for profile B (0.5 m width).
Cross sectional plots (x-y) are included at the bottom for z = 0.
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(a)
k = 1.2 m−1

f = 500 Hz

(b)
kz = 29.8 m−1

f = 2000 Hz

(c)
kz = 27.4 m−1

f = 2000 Hz

(d)
kz = 7.8 m−1

f = 2000 Hz

(e)
kz = 74.0 m−1

f = 5000 Hz

(f)
kz = 36.7 m−1

f = 5000 Hz

Figure 5.28: Selected wave shapes for profile C (0.5 m width).
Cross sectional plots (x-y) are included at the bottom for z = 0.
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5.4.4 Influence of dynamic reduction on dispersion
characteristics

Calculation time and memory usage grows rapidly for increased number of
elements in x-direction. This limits the application on standard personal
computers currently, but no limitations are identified in principle for appli-
cation to realistic plate width. Reduction techniques as described in section
6.5 or mesh coarsening are applied, but failed for the extraction of dispersion
characteristics of high accuracy when compared to the full solution, especially
in the high frequency regime. Dispersion results for a single subelement and
different mesh sizes are shown in Fig. 5.29. The coarse mesh with 25 mm
edge lengths of the quadratic shell elements cannot capture the wave propa-
gation mechanisms for frequencies higher than 100 Hz. Significant reduction
of the calculation effort without drastic reduction of accuracy can be achieved
by keeping the coarse mesh length in the lateral direction of the cross sec-
tion, but reducing the element length in z-direction to 5 mm. In this case
deviations are acceptable up to about 3000 Hz without an increase in the
calculation effort. This insight is of major importance for practical applica-
tions of the method and underlines the suggestions of Mead in [61] to use a
small periodic length Le.

The influence of Guyan reduction using all massless DOFs (see section 6.5)
on dispersion characteristics is illustrated in Fig. 5.30. It is obvious that the
static reduction technique in this case fails to represent the propagating waves
with wavenumbers higher than 15 m−1 accurately. In the global regime up
to 500 Hz the Guyan reduction is more reliable than mesh coarsening.

The comparison of fine and coarse mesh or full and reduced model dis-
persion curves can serve as a means to identify the frequency / wavenumber
limit for the applied reduction to cover the salient physics.
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Figure 5.29: Influence of mesh size and periodic length Le on evaluated dis-
persion characteristics of profile A, single subelement in x-direction. Black,
no markers: 10 mm×10 mm; Red, o: 25 mm×25 mm; Green,*: 25 mm×5 mm
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Figure 5.30: Influence of Guyan reduction with all massless DOFs on evalu-
ated dispersion characteristics of profile A, single subelement in x-direction.
Black, no markers: full calculation (10 mm×10 mm); Red, o: Guyan reduc-
tion (10 mm×10 mm)
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5.5 Concluding remarks

The dispersion characteristics of light weight plates with truss-like core ge-
ometries demonstrates that wave beaming is not only limited to structures
with periodicity in both directions, but also occurring for structures com-
prising periodicity only in one direction. The strong periodic effects iden-
tified from the two-dimensional investigation in the preceding chapters are
retrieved in the three-dimensional plate investigation in the corresponding pe-
riodic direction. In contrast to the strip investigation, where power transmis-
sion and wave propagation is nearly completely abandoned in the stop-bands,
the effect is reduced for the plates investigated. In the lateral stop-bands wave
propagation in z-direction is still enabled and wave spreading in oblique direc-
tions depends on the geometric profile layout, which influences the coupling
mechanisms and wave conversions at the joints. For profiles with inclined
webs distinct wave beaming in oblique directions arises, whereas for a profile
with straight webs lateral coupling and oblique propagation is reduced. In a
way the frequency dependent stop-band behaviour for one-dimensional wave
propagation is transformed in a frequency dependent and spatially varying
attenuation for the two-dimensional propagation case, resulting in low vi-
bration regions for point excited structures. The weakened stop-band effect
makes general applications for noise control somewhat delicate. In special
situations where low vibration is requested especially in certain regions, e.g.
for installation of vibrational sensitive equipment, this strong wave beaming
might be exploited. Moreover, design of damping treatments can be opti-
mized, at least for point excited structures, by exploiting the wave beaming
effects and aligning the damping treatments in the beaming directions from
the point of excitation.

From a structural acoustic point of view it is vital to differentiate between
subsonic and supersonic waves in the light weight plates. The dispersion char-
acteristics presented in this chapter establish a basis for their discrimination.
Only the supersonic waves can couple efficiently to the ambient fluid which
is of major importance for radiation and transmission investigations. For
proper acoustic design it could be valuable to investigate where major struc-
tural wave components become supersonic. In this respect the significant
components of the space harmonic series have to be included as it seems to
be possible that lower supersonic orders play a dominant role for radiation
and transmission.
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Chapter 6

Forced response of light weight
profile plates

6.1 Introduction

The free wave propagation investigated in the preceding chapter forms the
basis for forced response calculations in this chapter. The calculatons are
founded on the waveguide finite element (WFE) method. For structure-
borne sound problems where the structure-borne input power from source to
the receiving structure is imparted through contacts, which are smaller than
the governing wavelengths, the connections can be treated as point contacts.
This point force excitation is investigated in this chapter and a benchmark
of the WFE forced response with standard FE results is performed with a
section of a light weight plate. The calculation effort can be decreased by the
application of reduction methods like the Guyan reduction. The influence of
such reductions on input and transfer mobilities is investigated.

6.2 Theory

Forced response calculations for light weight plates of finite width can be
performed using the wave basis extracted as outlined in chapter 5 for the
WFE. For finite systems a global dynamic stiffness matrix containing the
DOFs at the front and back ends can be defined and solved as shown in [40].
For infinite waveguide systems, which are treated in this work, the forced
response can be calculated as outlined in [36]. For the systems investigated
here it is favourable from a computational point of view to include only
the most important (propagating) waves in the forced response calculations.
The eigenvalue problem can then be solved only for propagating and slightly
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decaying waves as discussed in [65].
The wave amplitude vector R of the forward (positive z-direction) trav-

elling waves can be calculated with the reduced wave basis for an infinite
waveguide system by

R = −Ψ+
ξ F0 (6.1)

F0 is the external force/moment excitation vector in the slice of excita-
tion, Ψ+

ξ is the matrix containing the displacement components for forward
travelling waves (|λi| < 1) of the left eigenvector matrix Ψ. The individual
left eigenvectors can be deduced from the right displacement eigenvectors by

ψi =
1

di

[
φ(1/λi)

T
ξ,i (Kbb + λiKfb) φ(1/λi)

T
ξ,i

]
(6.2)

.
The eigenvectors are normalized in Eq. (6.2) with di which is defined as

di = ψiφi.
Summing up the contributions of all characteristic waves gives the dis-

placement results at the excitation slice. The response along the chain of
elements can then be calculated from the wave amplitudes at the excitation
position [40].

6.3 Numerical results

Forced response calculations are performed with the theory summarized in
the preceding section. In order to benchmark the method and the implemen-
tation, a comparison with standard FE-calculated results is performed. The
infinite extension in z-direction is approximated by a section of 2 m in the
standard FE-calculation with increasing loss factor in z-direction at the edge
(η = 0.05 . . . 0.1). This non-reflecting boundary is not assumed to be perfect,
but will show the general trends. A real infinite extension in z-direction is
not feasible in standard FE-calculations and a bigger extension in z-direction
would increase calculation time prohibitively. Shell element edge length in
the standard FE-calculation is 10 mm. In order to investigate the influence
of mesh coarsening on forced response results, the calculation is performed
additionally with an element size of 25 mm instead of 10 mm. The 10 mm
WFE model and the full standard FE-model are plotted in Fig. 6.1.

Benchmark results for the comparison of standard FE-result and WFE-
result are shown for the point of excitation and some selected points along
the extension in z-direction in Figs. 6.2 to 6.7. Additional transfer mobility
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(a) WFE model (10 mm mesh) (b) Standard FE-model

Figure 6.1: Models for forced response calculations
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results are included in appendix D. The influence of mesh size is illustrated
for the input mobility in Figs. 6.5 to 6.7.

It is obvious that the course mesh does not give accurate results at fre-
quencies higher than 2000 Hz. For lower frequencies, the differences are
not very significant, but a slight frequency shift to lower frequencies can be
observed for the coarse mesh.

The differences between standard FE-calculation and the WFE-calculation
using the fine mesh reduce with increasing frequency. This is expected as the
simulated non-reflective boundaries are not efficient at low frequencies where
the damped section is far too small. Hence, reflections leading to additional
resonances are expected.

The results demonstrate the applicability and reliability of the WFE-
calculations for forced response. Tendencies for general structural-acoustic
design of the profiles are emphasized in the mobility results, which are irre-
spective of the profile length. This is due to the fact that the mean, infinite
behaviour is gained in z-direction, where probably misleading effects of res-
onances in this direction are suppressed.
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure 6.2: Input mobility profile A, two subelements, free boundary: Stan-
dard FE-results -•- in comparison to WFE-results –(bold) for two mesh sizes
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Figure 6.3: Transfer mobility profile A, two subelements, free boundary,
10 mm mesh: Standard FE-results -•- in comparison to WFE-results –(bold)
(Resp. at x=0, y=0, z=0.1 m)
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Figure 6.4: Transfer mobility profile A, two subelements, free boundary,
10 mm mesh: Standard FE-results -•- in comparison to WFE-results –(bold)
(Resp. at x=0, y=0, z=0.2 m)
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure 6.5: Transfer mobility profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Resp. at
x=0, y=0, z=0.3 m) for two mesh sizes
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(b) 25 mm mesh

Figure 6.6: Transfer mobility profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Resp. at
x=0.1 m, y=0, z=0) for two mesh sizes
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Figure 6.7: Transfer mobility profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Resp. at
x=0.1 m, y=0, z=0.1 m) for two mesh sizes
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6.4 Forced response with reduced wave basis

As shown by Waki et.al. [65] the forced response can be calculated with
a reduced wave basis by limiting the solution to the mainly propagating
characteristic waves. Calculation time and memory usage can be significantly
reduced by this approach as only a limited number of eigensolutions with
|λ| ≈ 1 have to be calculated and stored. This reduced wave basis can then be
used for response calculations with arbitrary excitation and response points
and directions. The loss of accuracy is demonstrated by calculating input
and transfer mobilities for a different number of included waves in the forced
response calculation and is shown in Figs. 6.8 to 6.12.

The reduction from 792 characteristic waves (full) to 150 mainly prop-
agating waves (|λ| closest to 1) gives satisfactory results in the complete
frequency range investigated. As the nearfield in the vicinity of the excita-
tion point is established by non-propagating waves which are not fully taken
into account in the reduced basis, there is an observable underestimation for
the magnitude of the input mobility (Fig. 6.8). A significant deviation can
be observed also for the transfer mobilities to lateral points in x-direction
(Figs. 6.9 and 6.11).

For remote positions the differences between full and moderately reduced
wave basis are negligible which is expected as these positions are only influ-
enced by propagating waves.

The reduction to only 50 propagating waves is related to stronger de-
viations, most pronounced in the vicinity of the excitation position, where
nearfields, i.e. decaying and complex waves contribute significantly. The
results get unreliable at some frequencies, where the strongly reduced wave
basis is not an appropriate representation of the physics any more.

Overall, the reduced wave basis serves as an effective method to simplify
forced response calculations with reliable results as long as the degree of
reduction is moderate and nearfield effects are not of primary concern.
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Figure 6.8: Input mobility of profile A, two subelements, free boundary,
10 mm mesh: Influence of wave basis reduction on forced response
(full: —(grey), 150 waves: – –*– – (black), 50 waves: –o– (black))
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Figure 6.9: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0, z=0): Influence of wave basis
reduction on forced response (full: —(grey), 150 waves: – –*– – (black), 50
waves: –o– (black))
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Figure 6.10: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0, z=0.5 m): Influence of wave basis
reduction on forced response (full: —(grey), 150 waves: – –*– – (black), 50
waves: –o– (black))
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Figure 6.11: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0.05 m, z=0): Influence of wave
basis reduction on forced response (full: —(grey), 150 waves: – –*– – (black),
50 waves: –o– (black))
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Figure 6.12: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0.05 m, z=0.5 m): Influence of wave
basis reduction on forced response (full: —(grey), 150 waves: – –*– – (black),
50 waves: –o– (black))
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6.5 Forced response using dynamic reduction

methods

The usage of a limited wave basis reduces the calculation effort considerably,
but for large plate sections of many subelements it is desirable to further
reduce the system matrices of the eigenvalue problem. The idea is to use
standard dynamic finite element reduction methods commonly used in FE
packages to reduce the calculation effort. Two methods are applied here, the
Guyan or static reduction method [66] and the standard improved reduction
system (IRS), [67]. In general, the IRS is more reliable, see. e.g. [68], but
the widely used Guyan reduction shall be investigated also. After performing
the reduction scheme, the reduced mass and stiffness matrices Mred and Sred

respectively are applied for the WFE wave basis evaluation as outlined in
section 5.4.1.

All the reduction methods eliminate some of the DOFs, the so called slave
DOFs. The remaining DOFs are called master DOFs. For the reduction pro-
cess the mass and stiffness matrices M and S are partitioned in the following
way:

M =

[
Mmm Mms

Msm Mss

]
, S =

[
Smm Sms

Ssm Sss

]
(6.3)

Depending on the reduction method a reduction matrix W is defined and
the reduced mass and stiffness matrices are calculated by

Mred = WT MW Sred = WT SW . (6.4)

.
In the Guyan case the reduction matrix reads:

WGuyan =

[
I

−S−1
ss Ssm

]
(6.5)

This reduction neglects the inertia terms of the slave DOFs, which is a
good approximation at low frequencies and is accurate in the static case,
where inertia forces vanish.

The IRS method uses pseudo-static forces of the inertia terms at low
frequencies and improves the Guyan reduction method in this way,1

1Due to the inherent inversion of the reduced mass matrix, it has to be assured that
all massless DOFs are eliminated therein. Otherwise the matrix is rank deficient and the
reduction process fails.
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WIRS = WGuyan +

[
0 0
0 S−1

ss

]
MWGuyan M−1

red,Guyan Sred,Guyan . (6.6)

For the Guyan reduction method all massless (rotational) degrees of free-
dom are selected as slave DOFs for the presented results. For the IRS half the
nodes are retained and additionally the massless DOFs are reduced, which
is roughly a reduction to a quarter of DOFs. The results are presented in
Figs. 6.13 to 6.15.

Neither the Guyan reduced results nor the IRS results capture the mo-
bilities of the full structure in an appropriate way. At very low frequencies
below the first cross sectional resonances the static reduction is a good ap-
proximation. At higher frequencies the general trends are still appropriately
represented by both methods, but there is a significant frequency shift to
lower frequencies of about 10 − 20 %, illustrating a de-stiffening effect. The
results for the input mobility are more satisfying and give an acceptable
representation of the reference mobility.

6.6 Concluding remarks

The forced response results presented in this chapter demonstrate the strength
of the WFE calculations by demonstrating the reliability in comparison with
standard FE-calculations. The fact that an infinite plate in longitudinal
direction can be investigated without enlarging the computational effort is
especially valuable for general profile design where longitudinal resonances
would obscure the trends for arbitrary lengths otherwise. It is demonstrated
that the application of a reduced wave basis can serve as a promising way to
limit the necessary calculation effort for WFE applications. Only if nearfield
effects are of primary concern, the full wave basis has to be retained. The
application of standard reduction methods like the Guyan or IRS is far less
reliable and should be avoided.
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Figure 6.13: Input mobility of profile A, two subelements, free boundary,
10 mm mesh: Influence of Guyan reduction and IRS (full (396 DOFs): —
(grey), Guyan (198 DOFs): – –*– – (black), IRS (96 DOFs): –o– (black))
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Figure 6.14: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0, z=0): Influence of Guyan reduc-
tion and IRS (full (396 DOFs): —(grey), Guyan (198 DOFs): – –*– – (black),
IRS (96 DOFs): –o– (black))
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Figure 6.15: Transfer mobility of profile A, two subelements, free boundary,
10 mm mesh, (Response at x=0.1 m, y=0, z=0.5 m): Influence of Guyan
reduction and IRS (full (396 DOFs): —(grey), Guyan (198 DOFs): – –*– –
(black), IRS (96 DOFs): –o– (black))
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Chapter 7

Application example: Regional
train floor section

In this chapter dispersion characteristics and forced response of a regional
train floor section are investigated. Since the plate is not strictly periodic, the
extraction of the dispersion characteristics using phase constant surfaces is
not an option. Hence, WFE technique and spatial Fourier transform of stan-
dard FE results are applied. For experimental validation, dispersion char-
acteristics are extracted using the Inhomogeneous Wave Correlation (IWC)
technique.

The light weight train floor section made of extruded aluminium sections
which are line-welded in the longitudinal z-direction is shown in Fig. 7.1(a).

The detailed geometry is not given here for the sake of brevity, but the
plate thicknesses are 2.5-3 mm, overall thickness is 60 mm and the main
spacing between adjacent webs is about 180 mm. This structure is not strictly
periodic and it has some outer ribs for inner floor and equipment fastening
which are neglected in the simulations.

The FE-modelled half cross section is shown in Fig. 7.1(b). As the forced
response for excitation in y-direction at the centre of the plate is investigated
here, only the half cross section is modelled and symmetric boundary condi-
tions are applied at the edge x = 1.2 m. The edge (x = 0 − 0.4 m) is highly
damped with a loss factor of η = 0.1 to reduce edge reflections and simu-
late test conditions, where the edge is embedded in sand and partially filled
with foam wedges and sand to establish a smooth transition to the damped
regions, see [69] for details of the experimental set-up.
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(a) Photo
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(b) WFE model of half cross section, 20 mm element length in z-direction

Figure 7.1: Light weight train floor section (extruded aluminium) and WFE
model

7.1 Free wave propagation

The dispersion characteristics extracted from the WFE eigenvalue problem
for symmetric waves of the plate are shown in Fig. 7.2.1

Because of the irregularity of the cross section, the wave dispersion is less
distinct than for the ideal generic profiles investigated before. However, sim-
ilar general trends can be observed. Solely global bending waves propagate
at frequencies up to 300 Hz. At higher frequencies, again, different wave
groups develop. For 4000 Hz, where most of the types have cut on, some
wave shapes are plotted in Fig. 7.3 as examples of each wavegroup.

The group with highest wavenumbers in Fig. 7.2 at 4000 Hz is related
to first order cross modes of the outer plate strips (see Fig. 7.3(a)). These
local waves are the first to cut on in frequency because of the highest dis-
tance between adjacent web joints. The second dispersion group of Fig. 7.2
is dominated by first order cross modes of the interior diagonal plates (see
Fig. 7.3(b)). The amplitudes of the outer plates for this group are signifi-
cantly lower than for the inner webs.

For all the waves with high wavenumbers in z-direction, the vibrating

1Only symmetric waves are included because of the symmetric boundary condition
applied. This solution is sufficient to investigate the case of symmetric excitation in the
centre position.
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Figure 7.2: Dispersion characteristics of propagating waves in light weight
train floor with symmetric boundary conditions and infinite extension in z-
direction using WFE approach

region in x-direction is bounded and the different waves in each group belong
to different vibrating regions in x-direction. The straight intermediate webs
exhibit a strong barrier for the wave motion which is passed only by the
waves with a low wavenumber in z-direction (Figs.7.3(h) and (i)).

The wavegroups with lower wavenumbers than 60 m−1 at 4000 Hz are
not as distinct as the first order modes previously described since different
wavegroups overlap.

Figs. 7.3(c) and (d) show examples of second and third order cross modes
of the outer plate strips respectively. Fig. 7.3(e) is a combination of third
order outer plate strip and second order diagonal plate strip modes, whereas
Fig. 7.3(f) is a mixture of fourth order outer plate and first order straight
inner web modes.

Some waves with global z-behaviour are shown in Figs. 7.3(g)-(i), where
the last two waves comprise wave motion extended over the complete profile
width.

From the nature of the characteristic wave shapes some important aspects
of structure-borne sound propagation in the light weight profile at frequencies
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(a) kz = 77.0 m−1 (b) kz = 73.9 m−1 (c) kz = 69.2 m−1

(d) kz = 59.2 m−1 (e) kz = 44.7 m−1 (f) kz = 24.7 m−1

(g) kz = 15.2 m−1 (h) kz = 8.0 m−1 (i) kz = 3.7 m−1

Figure 7.3: Selected wave shapes for half train floor plate with symmetric
boundary conditions, f = 4000 Hz
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beyond the global wave region can be deduced:

• For local excitation of structures which are not strictly periodic, bounded
wave motion is expected in the section of excitation with power flow
mainly in the z-direction.

• Irregularities such as heavy straight webs behave as wave ”blockers”.

• Extended lateral vibration of the plate is likely to be connected to
global wave motion in z-direction.

• Damping is acting locally in the region of the damped plate strips.
The edge damping applied in the example has very little effect on the
characteristic waves propagating in the central region of the plate.

• The cut-on frequencies for cross modes in the plate strips are somewhere
between the lateral eigenfrequencies of simply supported and clamped
plate strips. The low frequency edge of the wavegroup corresponds
roughly to the simply supported case, whereas the high frequency edge
belongs to the clamped case. This is in accordance with the observed
wave shapes for the ideal periodic profiles investigated. The variety of
boundary conditions is achieved by different combinations of displace-
ment patterns of adjacent connected plate strips. For narrow light
weight plates the amount of variations is limited which causes a re-
duced set of emerging boundary conditions and related characteristic
waves. For wider plates the number of characteristic waves increases
significantly as illustrated for the regional train floor example.

7.2 Forced Response - Calculation and exper-

imental results

Depending on the excitation position and direction, it is expected that differ-
ent characteristic waves are excited with different contributions to the overall
response. For a local force excitation mainly the characteristic waves with
significant vibration amplitudes at this point are excited. As an example, unit
force excitation at the centre position of the train floor plate (x = 1.2 m,
z = 0 m) in y-direction is applied. The wave amplitudes are calculated as
described in chapter 6. The eigenvectors are normalized to unit length.

The WFE-calculated displacement field for 1000 Hz is shown in Fig. 7.4(b).
For comparison the standard FE-calculated displacement field is plotted in
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Fig. 7.4(a), where additionally edge damping in z-direction is applied to ap-
proximate the infinite extension. As expected wave propagation is confined
to the region in the vicinity of the excitation point in x-direction and waves
propagate mainly in z-direction. For validation purposes, test results from
a fraction of the plate are shown in Fig. 7.4(c). Results for other frequen-
cies are included in Appendix F.1. The tests are performed with strong
edge damping applied to the light weight plate by means of foam wedges
between the webs padded with sand and immersed in sand over the complete
edges (0.5 m width). Electrodynamic point force excitation and contactless
laser vibrometer response testing with manual surface scanning are applied.
An irregular grid with increased grid point spacing for remote points of the
excitation is used, see [69] for details. The general trend of local wave prop-
agation can be recovered in the excited plate strip. Due to a stiffening effect
of the fillets at the joints as reported in chapter 2 and [70], the experimental
wavelength in z-direction is slightly larger and propagation in the adjacent
strips is reduced. The latter observation can be influenced also by effects of
the outer webs of the plate which are not included in the calculation mod-
els. Both aspects give rise to the discrepancies of measured and calculated
displacement fields shown in Figs. F.1 to F.9.

The WFE displacement fields and standard FE results agree for all in-
vestigated frequencies. At high frequencies the additional edge damping
in the standard FE-model, which simulates the non-reflective boundary at
z = 1.5 m, gives rise to slight variations.

The corresponding wave amplitudes for the mainly propagating waves
are shown in Fig. 7.5 and demonstrate the constitution of the displacement
field from a small number of dominating waves. These waves are shown in
Fig. 7.6 and corroborate the possibility to use a reduced wave basis for the
calculations as described in chapter 6.
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(a) (b) (c)

Figure 7.4: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 1000 Hz
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Figure 7.5: Propagating wave amplitudes for forced excitation (Fy at the
centre of plate field, f = 1000 Hz)
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(a) kz = 34.3 m−1 (b) kz = 17.3 m−1

(c) kz = 3.8 m−1 (d) kz = 0.9 m−1

Figure 7.6: Dominating wave shapes for forced excitation of train floor plate
with symmetric boundary conditions at right edge, (Fy at the centre of plate
field, lower right corner of plots), f = 1000 Hz
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Figure 7.7: Measured (—) and WFE-calculated (– –) input mobility of edge
damped train floor section for normal force excitation at the centre position
(plate field)

7.2.1 Calculated and measured mobility results

The input mobility for the damped test section in comparison with the WFE-
calculated result is shown in Fig. 7.7.2

The general trends of calculated and measured input mobility for ex-
citation at the centre of a plate strip are a stiffness-like behaviour at low
frequencies below the first cut-on frequency of the strip, followed by a strong
increase slightly below and a peak at the cut-on frequency of 340/400 Hz
(calculated/measured). Up to the second cut-on frequency accompanied by a
second mobility peak, the behaviour is essentially beam-like, since wave prop-
agation is dominated by one-dimensional bending wave propagation along the
plate strip in z-direction. The smaller peaks between the cut-on frequencies
in the test data are caused by non-ideal anechoic terminations in the test
set-up and are related to standing waves in z-direction. The frequency shift
of the cut-on frequencies between calculated and measured data is related to
the stiffening effect of the fillets at the joints of the extruded profile, reducing

2For practical reasons the acceleration could not be measured directly at the excitation
point. The distance is about 1 cm. This and the fact that the measured mobility data is
not phase calibrated results in a decreasing real part at frequencies greater than 3000 Hz.
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Figure 7.8: Measured, freely suspended (—) and infinite WFE-calculated,
edge damped (– –) input mobility of train floor section for normal force
excitation at stiffener position at the centre of plate

the free width of the plate strip and constraining the edges.
For the case of stiffener excitation test data of the damped test object is

not available. Hence, the comparison is performed with test data of the freely
suspended train floor section which reveals its strong, resonant behaviour
in this case. Following the mean value approach of infinite systems [71],
a comparison demonstrates the influence of the finite length, mainly in z-
direction, but shows the general trends for this excitation case in Fig. 7.8.
Details of the test set-up with free boundary conditions and additional test
results are included in appendix F.4. Appendix F.5 shows a comparison of
standard FE-calculated input and transfer mobilities with measured results
for the case of free boundary conditions.

Though the similarity between calculation and measurement in this case
is not obvious, general characteristics like alternating stop- and pass-band
behaviour can be observed in both real parts. The frequency shift between
calculation and measurement is stronger than in the plate field excitation
case.

As expected, the mobility at a stiffener position is generally lower than
in a plate field (see also Fig. F.30 in appendix F.4).
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Figure 7.9: DFT-calculated (left) and IWC-measured (right) dispersion char-
acteristics of regional train floor section, f = 1000 Hz, Fy at the centre of
plate field

7.2.2 Dispersion characteristics

The measured velocity field of the face plate is used to extract its dispersion
characteristics. The limited test area hampers the application of the spatial
Fourier transform previously used for wavenumber extraction from calculated
response fields. In order to improve the resolution and the applicability for
arbitrary test positions the Inhomogeneous wave correlation method (IWC)
is applied [45, 48] (see Appendix E for details of the IWC).

For each frequency, dispersion characteristics in in the kx-kz domain can
be extracted. As an example the results for 1000 Hz are shown in Fig. 7.9.3

Results for other frequencies can be found in appendix F.2. The strong
wave guiding along the plate strip is obvious in the calculated and measured
results of Fig. 7.9 with a dominant dispersion line parallel to the kx-axis.
The mentioned frequency shift is now manifested by a wavenumber shift
for kz. The stiffening effect speeds up the bending wave and reduces the
wavenumbers.

Evaluated frequency dependent measured dispersion characteristics in the

3Due to different evaluation techniques (DFT and IWC) a direct quantitative compar-
ison of the results is not possible. Interpretation should be based on pattern recognition.
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x- and z-direction are shown in Fig. 7.10. In order to increase legibility the
correlation values are normalized by the maximum value at each frequency.
Dispersion characteristics extracted using the spatial Fourier transform ap-
proach of the force excited plate are shown in Fig. 7.11 for comparison.

In general, wave propagation in x-direction is not so distinct as in z-
direction. In the low frequency range, global wave propagation with similar
wavenumbers in both directions exists. For higher frequencies waves with first
order cross modes dominate the propagation along the plate strips corrobo-
rating the insights gained from the WFE investigations. A slight periodicity
of the wavenumbers in x-direction can be observed as expected for nearly
periodic systems. Faint decreasing dispersion lines related to reflected waves
are also detectable for calculated and measured results.

Dispersion in z-direction can be compared also with WFE-results of
Fig. 7.2 and show a high degree of similarity for both calculation results. The
measured dispersion follows the WFE-dispersion characteristics with highest
wavenumbers. All other WFE dispersion branches with lower wavenumbers
are not excited in the measurement set-up with normal force excitation at
the centre of a plate field.
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(a) kx

(b) kz

Figure 7.10: Measured dispersion characteristics using IWC method in (a)
x- and (b) z-direction, normalized by maximum of each frequency, Fy at the
centre of plate field

154



CHAPTER 7. APPLICATION EXAMPLE: TRAIN FLOOR

(a) kx

(b) kz

Figure 7.11: Calculated dispersion of train floor section in (a) x- and (b)
z-direction using spatial Fourier transform of standard FE-results, Fy at the
centre of plate field
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7.2.3 Impulse propagation

The dispersion characteristics of structures can be exploited not only using
the wavenumber identification techniques previously described, but also from
the measured or calculated impulse response of the structure. The advan-
tage of this method for experimental application is the simple test set-up
and the small measurement time. The structure is excited with an impulse
hammer at a certain position and at some remote distances the response is
recorded as a time signal. For non-dispersive wave propagation the time of
flight can be directly extracted from the measured response signal or the
cross correlation peak of excitation and response. For dispersive waves, the
pulse broadens with travel time. For typical bending wave dispersion, the
low frequency components are slower than the high frequency components.
The frequency dependent propagation time Δt(f) in connection with the
distance between excitation and response Δx results in an estimate for the
group speed cg(f) = Δx/Δt(f). Hence, it is necessary to perform a joint
time-frequency analysis of the response signal with proper resolution in time
and frequency domain, which can be achieved e.g. by a short-time Fourier
transform, Wavelet transform or the (Pseudo-)Wigner-Ville distribution [72].
Wavelet transform seems to be best suited for this application [73], but a
higher resolution can be achieved by the Wigner-Ville distribution [74]. The
limitations of the latter are that it creates unphysical interferences and nega-
tive energy contributions in the regions between physical signal components
which makes the interpretation difficult for complex multi-wave signals.

The time-frequency representation of the signals is performed with the
algorithm and script written by Büssow [75] for the wavelet part and with
a Matlab time frequency toolbox for the Pseudo-Wigner-Ville distribution
[76].

When exciting the regional train floor plate at the centre of a plate field
and recording the signal at a distance of 0.5 m in z-direction in the same
plate field, bending wave dispersion is expected according to plate strip be-
haviour. For a simply supported plate strip sketched in Fig. 7.13(a) the
bending wavenumbers in z-direction kz,n read, where kb is the free plate
bending wavenumber, [77].

k2
z,n = k2

b − (n π/lx)
2 n = 1, 2, 3 . . . (7.1)

The wavenumbers, phase and group velocities of the ideal simply sup-
ported plate strip (aluminium, plate thickness 3 mm, plate width 0.18 m)
are plotted in Fig. 7.12. For comparison, the ordinary infinite bending plate
behaviour is also included in the plots. Free wave propagation is not possible
below the frequency where the first cross-mode cuts on at about 300 Hz.
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Figure 7.12: Dispersion characteristics of a simply supported plate strip for
bending waves, (aluminium, plate thickness 3 mm, plate width 0.18 m) and
infinite plate bending wave behaviour

Upon going higher in frequency, the high order cross modes cut on and start
to propagate. The related wave shapes are illustrated for the lowest cross
modes in Fig. 7.13(b)-(d).

From the wavenumbers the expected travel time for the propagating cross
modes can be deduced using the group velocity cg, defined as cg = ∂ω

∂k
and

the propagation distance. The results for the investigated plate strip are
illustrated in Fig. 7.14.

157



CHAPTER 7. APPLICATION EXAMPLE: TRAIN FLOOR

(a) Sketch (b) First cross mode, n=1

(c) Second cross mode, n=2 (d) Third cross mode, n=3

Figure 7.13: Bending wave shapes in simply supported infinite plate strip
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Figure 7.14: Simply supported plate strip arrival times of bending waves for
a propagation distance of 0.5 m, (aluminium, plate thickness 3 mm, plate
width 0.18 m) and infinite plate bending wave behaviour

For the investigated train floor section the results of a joint time-frequency
analysis of FE-calculated (time-domain) and measured impulse response data
at a distance of 0.5 m are shown in Figs. 7.15 and 7.16 respectively. The plot
at the top shows the acceleration signal in time domain, the central plot is the
time-frequency content extracted using the wavelet method and the bottom
plot corresponds to the time-frequency content of the Pseudo-Wigner-Ville
distribution. The time-frequency plots are scaled for each frequency with
the maximum amplitude in order to enhance visibility of dispersion charac-
teristics for all frequencies. As expected the arrival times follow plate strip
behaviour which is included in the plots for ideal simply-supported bound-
aries for the first cross mode with a green dashed line. Below this line, no
free wave propagation in the strip is possible. The calculated and measured
behaviour is somewhat shifted. This is due to the fact that the boundaries
are not simply supported, but connected to the adjacent plate fields. More-
over, the fillets at the joints increase the rotational stiffness at these edges.
Marked by the blue line, the dispersion in the plate field matches the re-
sult of a simply supported plate strip of reduced width (0.13 m for the blue
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line). The green line shows the result for 0.18 m plate strip width which
represents the overall distance between the joints to the diagonal webs. The
Pseudo-Wigner-Ville result gives a clearer picture of the wave dispersion but
introduces interferences which have no physical meaning. In the measured
results, edge reflections arise from the free plate field edges in the test set-up.

For propagation in lateral direction of the plate crossing the webs of the
plate it is difficult to interpret the corresponding time-frequency results and
extraction of group velocities becomes cumbersome and ambiguous [69]. As
an example, the results for lateral propagation in a distance of 0.5 m from
the plate centre are shown in Figs. 7.17 and 7.18 for calculated and measured
cases respectively. Because of overestimated damping in the calculation, the
response diminishes more rapidly in this case. Because of the multiple reflec-
tions induced within the structure and at the plate edges, no distinct arrival
times can be identified in most of the frequency range. The interferences
in the Pseudo-Wigner-Ville distribution are amplified and hamper physical
interpretations. Results for the case of stiffener excitation in the plate centre
are included in Appendix F.3.

Because of the difficult group velocity identification in the reflective and
multi-wave structure, the joint time-frequency analysis is not suitable for ex-
perimental extraction of dispersion characteristics except for the plate field
dispersion. From the evaluated group velocites it is not possible to differen-
tiate the components of possible inherent space harmonics. This is leading
to all components as they all have the same group velocities. Only their
phase velocities and corresponding wavenumbers are different. If fluid cou-
pling is of interest phase velocities and corresponding wavenumbers are vital
to separate radiating and non-radiating components of the space harmonic
series. Surface scanning techniques in combination with IWC seem to be un-
avoidable to extract the dispersion characteristics of such complex periodic
structures.
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Figure 7.15: FE-calculated impulse response along plate field of train floor
section (response at 0.5 m distance in z-direction) and time-frequency content
of train floor section. Arrival times of first order bending waves in simply-
supported plate strip included by green line (0.18 m width) and blue line
(0.13 m width)
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Figure 7.16: Measured impulse response along plate field of train floor section
(response at 0.5 m distance in z-direction) and time-frequency content of
train floor section. Arrival times of first order bending waves in simply-
supported plate strip included by green line (0.18 m width) and blue line
(0.13 m width)
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Figure 7.17: FE-calculated impulse response at 0.5 m in x-direction and
time-frequency content of train floor section, plate field excitation
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Figure 7.18: Measured impulse response at 0.5 m in x-direction and time-
frequency content of train floor section, plate field excitation
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7.3 Concluding remarks

The regional train floor example demonstrates the applicability of the WFE-
method for free and forced wave propagation on real extruded profile plates.
It is demonstrated by validation measurements on dispersion and mobility
that the salient physical behaviour is adequately described by the calculation
model. An improved model could be established if the outer webs of the real
floor would be included, which is possible in principle by extending the WFE
cross section model in this respect. Moreover, the stiffening effect of the
fillets at the joints should be included to improve accuracy of the models,
e.g. by increasing the shell element thickness at the joints.

The WFE investigation of wave propagation reveals some interesting as-
pects for profile design. For structures which show a significant aperiodicity,
bounded wave motion is expected in the section of local excitation with power
flow mainly in the direction parallel to the webs. Strong irregularities e.g. a
pair of straight webs, mainly arising at weld junctions can behave as wave
blockers in lateral direction. Damping is expected to act locally in the region
of the damped plate strip. This observation can be used for efficient damping
layer layout, if local structure-borne excitation is of concern.

For measurements of dispersion characteristics surface scanning in combi-
nation with IWC is recommended. Impulse response and joint time-frequency
evaluation is difficult if multiple reflections appear. For the light weight plate
all the reflections induced by the multiple webs prevent the reasonable ex-
traction and interpretation of dispersion characteristics for propagation in
lateral direction.
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Chapter 8

Summary and Outlook

The thesis deals with structure-borne sound propagation in light weight pro-
files with truss like core geometries. The focus is on the theoretical and ex-
perimental investigation of wave propagation and dispersion characteristics
for plates with structural periodicity in lateral direction. Periodic structure
theory can be exploited to extract the one- and two-dimensional dispersion
characteristics for strips and full plates respectively.

For the first case, a calculation model for cross sections of typical light
weight profiles based on beam vibrations is established and experimentally
validated for a profile strip with vertical webs. Parameter studies on generic
profile strips reveal the significance of periodic system effects. Distinct pass-
and stop-band behaviour is prominent, especially in the case of solely ver-
tical webs. The periodic effects are also clearly visible in the experimental
results. The influence of welds and thicker ends of the webs at the joints are
mainly characterized by a stiffening effect, manifested by an eigenfrequency
shift towards higher frequencies. The additional mass seems to be of minor
importance.

A brief study on irregularity effects in the strip investigation shows that
the influence is limited. The general dynamic behaviour of the periodic profile
strips are conserved even for high random length variations of up to 5%. It
is expected that the same is true for full profile plates.

The wave propagation at low frequencies (global vibrations) can be ap-
proximated for profiles with inclined members by equivalent bending beams
or plates. Despite the obvious geometric orthotropicity of the layout, the
global behaviour for plates with inclined webs can be described by equivalent
isotropic bending behaviour. Only in the case of solely vertical webs, strong
orthotropicity can be identified represented by significantly higher wavenum-
bers in the lateral direction, normal to the webs. At high frequencies the
detailed description of the dynamics for both configurations is inevitable.
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The complete picture of propagating, decaying and complex waves can be
gained for a profile strip by solving the transfer-matrix eigenvalue problem.
For the profiles considered, up to six characteristic waves can be identified,
travelling in each direction. The wavenumber content in each characteristic
wave is formed of several ”space harmonics”, realising a periodic wavenum-
ber spectrum. The relative contributions in the wavenumber series are fixed
for each characteristic wave and can be identified from the complete charac-
teristic wave forms. For the investigation of the two-dimensional dispersion
characteristics, evaluation of the phase constant surfaces of a 2D-periodic
subelement is the easiest way to gain the wavenumber content. The draw-
back in this case is that the significance of the space harmonic components
in the periodic lateral direction are not directly extractable. In principle it
should be possible to identify the relative contributions for each characteris-
tic wave in analogy with the procedure described in chapter 3 for the strip.
This and an extension to forced response could be a valuable area of future
research. The major challenge is the stable and applicable extension to in-
clude decaying and complex waves, which is possible but computationally
demanding.

By concentrating on the propagating waves, forced response investiga-
tions can be simplified and especially for calculations of the full profile plate,
calculation effort and memory usage can be reduced significantly. Only when
nearfield effects are of primary concern, the full wave basis should be retained.

The waveguide finite element method (WFE) is favourable for plate in-
vestigations, where the lateral direction is finite. Standard FE-packages can
be used to gain the mass and stiffness matrices of a small slice of the plate.
Dispersion characteristics for wave propagation in the longitudinal direction
can be extracted in combination with cross mode shapes for the lateral di-
rection. Results of forced response calculations for infinite extension in lon-
gitudinal direction are valuable for generic profile design, where the length
in the extruded direction is unknown or very large so that edge reflections
are suppressed.

The dispersion characteristics of light weight plates with truss-like core ge-
ometries demonstrate that wave beaming is not only emerging for structures
with periodicity in both directions, but also for structures being periodic
only in one direction. The strong periodic effects identified from the two-
dimensional investigation remain in the three-dimensional plate investigation
in the corresponding periodic direction. In contrast to the strip investiga-
tion, where power transmission and wave propagation is nearly completely
suppressed in the stop-bands, the effect is weakened for the plates investi-
gated. In the lateral stop-bands wave propagation in longitudinal direction
is still possible and wave spreading in oblique directions depends on the de-
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tailed coupling mechanisms involved. For profiles with inclined webs, distinct
wave beaming in oblique directions arises, whereas for a profile with straight
webs lateral coupling and oblique propagation is reduced. In a way the
frequency dependent stop-band behaviour for one-dimensional wave propa-
gation is transformed in a frequency dependent and spatially varying atten-
uation in the two-dimensional propagation case, resulting in low vibration
regions for point excited structures. The weakened stop-band effect makes
general applications for noise control somewhat delicate. In special situations
where low vibration is requested especially in certain regions, e.g. for instal-
lation of vibrational sensitive equipment, this strong wave beaming might
be exploited. Moreover, design of damping treatments can be optimized, at
least for point excited structures, by exploiting the wave beaming effects and
aligning the damping treatments in the beaming directions from the point of
excitation.

From a structural acoustic point of view it is vital to differentiate between
subsonic and supersonic waves in the light weight plates. Only the supersonic
waves can couple efficiently to the ambient fluid which is of major importance
for radiation and transmission investigations. For proper acoustic design it
could be valuable to investigate where major structural wave components
become supersonic. In this respect the significant components of the space
harmonic series have to be included as it seems possible that lower supersonic
orders play a dominant role for radiation and transmission.

The forced response results presented for the light weight plates illus-
trate the strength of the WFE calculations by demonstrating the reliability
in comparison with standard FE-calculations. The fact that an infinite plate
in longitudinal direction can be investigated without enlarging the computa-
tional effort is especially valuable for general profile design where longitudi-
nal resonances would obscure the trends for arbitrary lengths otherwise. It
is demonstrated that the application of a reduced wave basis can serve as a
promising way to limit the necessary calculation effort for WFE applications.
Only if nearfield effects are of primary concern, the full wave basis has to be
retained. The application of standard reduction methods like the Guyan or
IRS is far less reliable and should be avoided.

The regional train floor example demonstrates the applicability of the
WFE-method for free and forced wave propagation on real extruded profile
plates. It is demonstrated by validation measurements of dispersion and
mobility that the salient physical behaviour is adequately described by the
calculation model. An improved model could be gained if the outer webs of
the real floor would be included, which is possible in principle by extending
the WFE cross section model in this respect. Moreover, the stiffening effect
of the fillets at the joints should be included to improve accuracy of the
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models, e.g. by increasing the shell element thickness at the joints.
The WFE investigation of wave propagation reveals some interesting as-

pects for mid to high frequency profile design. For structures which show
a significant aperiodicity, bounded wave motion is expected in the section
of local excitation with power flow mainly in the direction parallel to the
webs. Strong irregularities e.g. a pair of straight webs, mainly occurring at
weld junctions can behave as wave blockers in lateral direction. Damping is
expected to act locally in the region of the damped plate strip.

For measurements of dispersion characteristics surface scanning in combi-
nation with the ”Inhomogeneous Wave Correlation” method is recommended.
Impulse response and joint time-frequency evaluation is difficult if multiple
reflections appear. In this light weight plate case all the reflections induced
by the multiple webs prevent the proper extraction and interpretation of
dispersion characteristics for propagation in lateral direction.

Provided computing resources continue to grow in capacity, it seems to
be possible to extend the WFE application on standard computers for inves-
tigations on full cross sections of extruded aluminium carriages or aircraft
fuselages resulting in detailed understanding of the wave propagation along
the vehicles.
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Appendix A

Slope deflection method and
subsystem dynamic stiffness
matrix

Betti’s reciprocal theorem, extended by Maxwell for dynamics, states that
if there is a mechanical system under two different load situations F1 and
F2, which are equilibrium states with displacements ξ1 and ξ2, the work of
forces F1 acting through displacements ξ2 is equal to the work of forces F2

acting through displacements ξ1. In vector notation it can be expressed by
the following equation

F1 · ξ2 = F2 · ξ1 (A.1)

The equations of motion can be developed by applying the reciprocal theorem
n times (for n degrees of freedom) in succession to two states of the system.
One is always the actual state of motion and the others are auxiliary states,
in the slope deflection case unit displacements (rotations) for the considered
degree of freedom with all other displacements and rotations set to zero
(blocked boundary conditions). This method results in a system of equations,
in which the left side consists only of the force (moment) loadings multiplied
by the corresponding unit displacements (rotations). The right side consist
of the forces and moments in the case of unit displacement (with all other
degrees of freedom blocked) multiplied by the unknown displacements and
rotations.

Considering external harmonic excitation at joint g with an external mo-
ment Mg, an external horizontal force Xg and a vertical force Yg there will
be a harmonic response at the joint with rotational angle ϕg, horizontal dis-
placement ug and vertical displacement vg. Applying successively auxiliary
states using unit rotation and unit displacements, illustrated in figure A.1
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Figure A.1: Auxiliary unit displacement states of a single beam element
(longitudinal and bending vibrations included)

for a single beam, the reciprocal theorem delivers the following system of
equations.

Mg·1rad= ϕg

∑
h

M
ϕg

gh +
∑

h

M
ϕg

hg ϕh+ug

∑
h

X
ϕg

gh +
∑

h

X
ϕg

hg uh+vg

∑
h

Y
ϕg

gh +
∑

h

Y
ϕg

hg vh

Xg·1 m= ϕg

∑
h

M
ug

gh +
∑

h

M
ug

hg ϕh+ug

∑
h

X
ug

gh +
∑

h

X
ug

hg uh+vg

∑
h

Y
ug

gh +
∑

h

Y
ug

hg vh

Yg·1 m= ϕg

∑
h

M
vg

gh +
∑

h

M
vg

hgϕh+ug

∑
h

X
vg

gh+
∑

h

X
vg

hguh+vg

∑
h

Y
vg

gh +
∑

h

Y
vg

hg vh

(A.2)

Here M
ϕg

gh is the moment at end g of bar gh at ϕg = 1 rad. X
ϕg

hg is the

horizontal force at end h of bar gh at ϕg = 1 rad etc. Accordingly M
ug

gh is
the moment at point g of bar gh resulting from ug = 1 m.

The resulting system of equations can be written in a condensed matrix
form using the dynamic stiffness matrix K:

Kξ = F (A.3)

The end forces and moments for unit displacement or rotation, necessary
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APPENDIX A. SLOPE DEFLECTION METHOD AND SUBS. DYN.
STIFFNESS MATRIX

to establish the elements of the matrix K are tabulated in standard dynamics
text books, e.g. [30, 31].

For the subsystem sketched in Fig. 2.1 the elements of the dynamic stiff-
ness matrix are given by:

k1,1 = Mϕ1

13 , k1,3 = Y ϕ1

13 , k1,7 = Mϕ1

31 , k1,9 = Y ϕ1

31

k2,2 = Xu1
13 , k2,8 = Xu1

31

k3,3 = Y v1
13 , k3,7 = Mv1

31 , k3,9 = Y v1
31

k4,4 = Mϕ2
23 + Mϕ2

24 , k4,5 = Xϕ2
23 , k4,6 = Y ϕ2

23 + Y ϕ2
24 , k4,7 = Mϕ2

32 ,
k4,8 = Xϕ2

32 , k4,9 = Y ϕ2

32 , k4,10 = Mϕ2

42 , k4,12 = Y ϕ2

42

k5,5 = Xu2
23 + Xu2

24 , k5,6 = Y u2
23 , k5,7 = Mu2

32 , k5,8 = Xu2
32 ,

k5,9 = Y u2
32 , k5,11 = Xu2

42

k6,6 = Y v2
23 + Y v2

24 , k6,7 = Mv2
32 , k6,8 = Xv2

32 , k6,9 = Y v2
32 ,

k6,10 = Mv2
42 , k6,12 = Y v2

42

k7,7 = Mϕ3

31 + Mϕ3

32 , k7,8 = Xϕ3

32 , k7,9 = Y ϕ3

31 + Y ϕ3

32

k8,8 = Xu3
31 + Xu3

32 , k8,9 = Y u3
32

k9,9 = Y v3
31 + Y v3

32

k10,10 = Mϕ4
42 , k10,12 = Y ϕ4

24

k11,11 = Xu4
42

k12,12 = Y v4
24

(A.4)
As an example the forces and moments for the auxiliary states using Kolousek’s
beam functions Fi for bending vibration are shown for beam I between
points 1 and 3 (see Fig. 2.1 and Eq. (A.5)). The beam functions are
listed in Eq. (A.6). E13 is Young’s modulus, I13 the cross sectional mo-
ment of inertia, S13 the cross sectional area, L13 the length of the beam,

Λ13 = L13kB = L13

(
m′

13ω2

E13I13

)1/4

the Helmholtz number for bending waves, m′
13

the mass per unit length and Ψ13 = L13

(
m′

13ω2

E13S13

)1/2

the Helmholtz number

for longitudinal waves, ω denoting the angular frequency.
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Mϕ1

13 =
E13I13

L13

F2(Λ13)

Y ϕ1
13 = −

(
E13I13

L13

)2

F4(Λ13) cos α

Mϕ1

31 =
E13I13

L13
F1(Λ13)

Y ϕ1

31 = −
(

E13I13

L13

)2

F3(Λ13) cos α

Xu1
13 =

E13S13

L13

Ψ13 cotΨ13 (cosα)2+

(
E13I13

L13

)3

F6(Λ13) (sin α)2 (A.5)

Xu1
31 = −E13S13

L13

Ψ13 csc Ψ13 (cosα)2+

(
E13I13

L13

)3

F5(Λ13) (sin α)2

Y v1
13 =

E13S13

L13
Ψ13 cotΨ13 (sin α)2+

(
E13I13

L13

)3

F6(Λ13) (cos α)2

Mv1
31 =

(
E13I13

L13

)2

F3(Λ13) cos α

Y v1
31 = −E13S13

L13
Ψ13 csc Ψ13 (sin α)2+

(
E13I13

L13

)3

F5(Λ13) (cos α)2

F1 = −Λ
sinh Λ − sin Λ

cosh Λ cosΛ − 1

F2 = −Λ
cosh Λ sin Λ − sinh Λ cosΛ

cosh Λ cos Λ − 1

F3 = −Λ2 cosh Λ − cos Λ

cosh Λ cos Λ − 1
(A.6)

F4 = Λ2 sinh Λ sin Λ

cosh Λ cosΛ − 1

F5 = Λ3 sinh Λ + sin Λ

cosh Λ cosΛ − 1

F6 = −Λ3 cosh Λ sin Λ + sinh Λ cosΛ

cosh Λ cosΛ − 1
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Appendix B

Comparison of measured and
calculated deflection shapes of
profile strip

In the comparison the identified frequency shift between measurement and
calculation is included. The measured deflection shapes are constructed only
from measured translational y-components at the positions indicated by small
circles with linear interpolation in between.

f =52 Hz
x

y

F

(a) Measured

f =45 Hz
x

y

(b) Calculated, compatible frequency

Figure B.1: Comparison of deflection shapes
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APPENDIX B. MEASURED AND CALCULATED DEFLECTION
SHAPES OF PROFILE STRIP

f =72 Hz
x

y

F

(a) Measured
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(b) Calculated, compatible frequency

Figure B.2: Comparison of deflection shapes
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(a) Measured

f =97 Hz
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(b) Calculated, compatible frequency

Figure B.3: Comparison of deflection shapes

182



APPENDIX B. MEASURED AND CALCULATED DEFLECTION
SHAPES OF PROFILE STRIP
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(a) Measured
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(b) Calculated, compatible frequency

Figure B.4: Comparison of deflection shapes
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F

(a) Measured

f =212 Hz
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y

(b) Calculated, compatible frequency

Figure B.5: Comparison of deflection shapes
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APPENDIX B. MEASURED AND CALCULATED DEFLECTION
SHAPES OF PROFILE STRIP
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(a) Measured
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(b) Calculated, compatible frequency

Figure B.6: Comparison of deflection shapes
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(a) Measured

f =292 Hz
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(b) Calculated, compatible frequency

Figure B.7: Comparison of deflection shapes
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APPENDIX B. MEASURED AND CALCULATED DEFLECTION
SHAPES OF PROFILE STRIP

f =387 Hz
x
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F

(a) Measured

f =337 Hz
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y

(b) Calculated, compatible frequency

Figure B.8: Comparison of deflection shapes. The higher damping results
from a higher loss factor used in the calculations compared to the real, mea-
sured loss factor.
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(a) Measured
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(b) Calculated, compatible frequency

Figure B.9: Comparison of deflection shapes
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APPENDIX B. MEASURED AND CALCULATED DEFLECTION
SHAPES OF PROFILE STRIP

f =543 Hz
x
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F

(a) Measured

f =472 Hz
x

y

(b) Calculated, compatible frequency

Figure B.10: Comparison of deflection shapes. The rotational character of
the calculated deflection shape is not included in the measured results as only
the y-component is measured at the locations indicated by the small circles.
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Appendix C

Profile strip spatial Fourier
transform results

Figure C.1: DFT plot of lower flange of profile strip B, unit y-force excitation
at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB re.
5 × 10−8 m/s
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APPENDIX C. PROFILE STRIP SPATIAL FOURIER TRANSFORM
RESULTS

Figure C.2: DFT plot of lower flange of profile strip B, unit moment exci-
tation at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB
re. 5 × 10−8 m/s

Figure C.3: DFT plot of lower flange of profile strip C, unit y-force excitation
at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB re.
5 × 10−8 m/s
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APPENDIX C. PROFILE STRIP SPATIAL FOURIER TRANSFORM
RESULTS

Figure C.4: DFT plot of lower flange of profile strip C, unit moment exci-
tation at left lower side, shading limits Lv,DFT : 10 (white) . . . 90 (black) dB
re. 5 × 10−8 m/s
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Appendix D

WFE forced response
benchmark results
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APPENDIX D. WFE FORCED RESPONSE BENCHMARK RESULTS
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(a) 10 mm mesh
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Figure D.1: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.1 m, y=0.05 m, z=0) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.2: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.1 m, y=0.05 m, z=0.2 m) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.3: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.1 m, y=0.05 m, z=0.5 m) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.4: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.2 m, y=0, z=0) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.5: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.2 m, y=0, z=0.3 m) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.6: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.2 m, y=0.05 m, z=0) for two mesh sizes
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(a) 10 mm mesh
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(b) 25 mm mesh

Figure D.7: Transfer mobility of profile A, two subelements, free boundary:
Standard FE-results -•- in comparison to WFE-results –(bold) (Response at
x=0.2 m, y=0.05 m, z=0.3 m) for two mesh sizes
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Appendix E

Inhomogeneous wave
correlation method

The inhomgogeneous wave correlation method (IWC) published by Berthaut
and Bareille [48] is a method to determine two-dimensional dispersion char-
acteristics from experimental (or numerical) data. The idea is to correlate a
synthetic wave field resulting from a damped or undamped plane wave propa-
gating in a certain direction with the measured or calculated field. In analogy
with the Modal Assurance Criterion (MAC), [78], which is used to compare
measured and calculated mode shapes of structures, an inhomogeneous wave
correlation criterion is defined.

An estimated wave field Ŵ , representing a plane propagating damped
wave in direction θ is introduced,

Ŵk,θ(x, y) = eik(θ)(x cos(θ)+y sin(θ)) with k = kprop + ikdecay . (E.1)

The correlation between the estimated wave field Ŵ and the measured
(or calculated) field W is quantified by introducing a correlation criterion:

IWC(k, θ) =
| ∫ ∫

S
W (x, y)Ŵk,θ(x, y)∗dxdy|√∫ ∫

S
|W (x, y)|2dxdy

∫ ∫
S
|Ŵk,θ(x, y)|2dxdy

(E.2)

The criterion detects, how similar (in shape) this distribution is with the
real measured distribution. The identification of the complex wavenumber k
for a given direction θ can then be achieved by maximizing IWC(k, θ) for
a fixed θ. Note that it is only possible to identify single wavenumbers in
this way. When multiple wavenumbers are expected it is possible to use the
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method in such a way that the magnitude of the IWC is plotted, where high
correlation is expected for inherent waves.

For all practical applications, indeed, the integral will be reduced to sums
over the sampled grid points.

The IWC can easily be modified from an angle-dependance handling to
a handling of two-dimensional wavenumbers kx and kz. In fact this is only a
question of representing the wavenumber in polar or cartesian space.

Ŵkx,kz(x, z) = ei(kxx+kzz) (E.3)

In this case kx and kz can be both complex including an imaginary damping
fraction.

The advantage of the method for experimental wavenumber extraction is
that the achievable resolution from a limited test area is higher than for the
spatial Fourier transform. Moreover, the discrete, uniform sampling neces-
sary for Fourier transform can be circumvented and less test positions are
necessary which greatly simplifies the measurement procedure. In this thesis
only purely propagating waves are extracted from the IWC.
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Appendix F

Regional train floor section
results

F.1 Measured and calculated displacement fields

(a) (b) (c)

Figure F.1: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 500 Hz
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(a) (b) (c)

Figure F.2: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 1500 Hz

(a) (b) (c)

Figure F.3: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 2000 Hz
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(a) (b) (c)

Figure F.4: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 2500 Hz

(a) (b) (c)

Figure F.5: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 3000 Hz
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(a) (b) (c)

Figure F.6: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 3500 Hz

(a) (b) (c)

Figure F.7: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 4000 Hz
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(a) (b) (c)

Figure F.8: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 4500 Hz

(a) (b) (c)

Figure F.9: Displacement field of forced response (Fy at the centre of plate
field, lower right corner of plots), f = 5000 Hz

204



APPENDIX F. REGIONAL TRAIN FLOOR SECTION RESULTS

F.2 Measured and calculated dispersion char-

acteristics

Figure F.10: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 500 Hz, Fy at the centre of plate
field
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Figure F.11: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 1500 Hz, Fy at the centre of plate
field

Figure F.12: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 2000 Hz, Fy at the centre of plate
field

206



APPENDIX F. REGIONAL TRAIN FLOOR SECTION RESULTS

Figure F.13: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 2500 Hz, Fy at the centre of plate
field

Figure F.14: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 3000 Hz, Fy at the centre of plate
field
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Figure F.15: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 3500 Hz, Fy at the centre of plate
field

Figure F.16: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 4000 Hz, Fy at the centre of plate
field
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Figure F.17: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 4500 Hz, Fy at the centre of plate
field

Figure F.18: DFT-calculated (left) and measured (right) dispersion charac-
teristics of regional train floor section, f = 5000 Hz, Fy at the centre of plate
field
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F.3 Time-frequency content

Figure F.19: FE-calculated impulse response at 0.5 m in z-direction and
time-frequency content of train floor section, stiffener excitation
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Figure F.20: Measured impulse response at 0.5 m in z-direction and time-
frequency content of train floor section, stiffener excitation. Arrival times of
first order bending waves in simply-supported plate strip included by green
line (0.18 m width) and blue line (0.13 m width).
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Figure F.21: FE-calculated impulse response at 0.5 m in x-direction and
time-frequency content of train floor section, stiffener excitation
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Figure F.22: Measured impulse response at 0.5 m in x-direction and time-
frequency content of train floor section, stiffener excitation
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F.4 Mobility Tests on regional train floor plate

F.4.1 Test setup

Mobility testing is performed on a freely suspended regional floor section with
dimensions 3 m x 2.4 m. The dynamic free boundary condition is achieved by
placing the plate on four air-filled rubber balls at the corners, resulting in an
eigenfrequency of about 4 Hz in y-direction. This low resonance frequency as-
sures dynamic free boundary conditions in the investigated frequency range.
A B&K miniature shaker is used for force excitation by placing the shaker
directly on top of the plate and measuring the excitation force with a force
transducer. A photo of the test set-up is included in Fig. F.23. The positions
of the investigated sensor points are indicated in Fig. F.24.

Figure F.23: Photo of test set-up, suspension by air-filled balls in red

F.4.2 Mass calibration

A mass calibration is performed to assure magnitude and phase correct mea-
surements. Therefore a calibration mass of 50 g is placed on top of the force
transducer, that is positioned on a white-noise excited shaker. The accelera-
tion is measured with each accelerometer on top of the calibration mass and
the mobility is evaluated.

A correction factor for each accelerometer - force transducer combination
i is calculated from the measured results by:

Corri = Ym,50g,theoretical/Ymeas,i

The resulting corrections are plotted as magnitude and phase in Fig. F.25.
It is obvious that the corrections in the investigated frequency range up to
5000 Hz are quite small.

F.4.3 Support influence

In order to investigate the influence of the support on input and transfer
mobilities in the centre of the plate tests with the plate on four steel supports
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Figure F.24: Sketch of measurement point locations, MP 10 (stiffener) and
MP 60 (plate field) are used for force excitation. Stiffener locations: MP
10-56, plate field locations MP 60-66 & 70-76
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Figure F.25: Complex correction factors for mobility tests
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Figure F.26: Test set-up for boundary conditions with steel support

were also conducted (see Fig. F.26).
Some results for measured input and transfer mobilities are shown in

Fig. F.27. It is obvious that the support at the corners has only negligible
influence on the high frequency characteristics in the centre of the plate,
above 500 Hz. As expected, the influence is significant at low frequencies.

F.4.4 Input mobility for stiffener excitation

Measurement point (MP) 10 is located directly at a stiffener in the centre
axis of the plate. Force excitation is applied at this point and the acceleration
is measured in the vicinity of the excitation point to get the input mobility.

The resulting input mobility with magnitude and phase is plotted in
Fig. F.28.

F.4.5 Input mobility for plate field excitation

MP 60 is located in the centre of a plate field (0.18 cm width). Force excita-
tion is applied at this point and the acceleration is measured in the vicinity
of the excitation point to get the input mobility.

The resulting input mobility with magnitude and phase is plotted in
Fig. F.29.
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Figure F.27: Comparison of selected input and transfer mobilities on centre
of plate for free and steel column support at the four corners, (10000 indicates
steel support case)

F.4.6 Comparison of input mobilities

A direct comparison of input mobilities for stiffener and plate field excitation
is shown in Fig. F.30 and reveals the significantly higher mobility on the plate
field. Only at very low frequencies, the real part of both excitation points is
similar.

F.4.7 Transfer mobilities

Transfer mobilities for excitation at MP10 (stiffener) and MP60 (plate field)
are plotted in this section.

The transfer mobilities along a stiffener are quite similar in the local vi-
bration region (Fig. F.31). Only in the global frequency region below 300 Hz
there are significant differences. Despite the short distance there is a signif-
icant stop-band behaviour in the frequency range 1600-2300 Hz which does
not appear to this extent for the plate field excitation case (Figs. F.32 and
F.40). The transfer mobilities in lateral direction are shown in Figs. F.33 to
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Figure F.28: Input mobility at stiffener excitation point MP10
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Figure F.29: Input mobility at plate field excitation point MP60
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Figure F.30: Comparison of input mobilities at stiffener excitation point
MP10 and plate field excitation point MP60
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Figure F.31: Transfer mobilities along stiffener, excitation at MP10, response
at MP12, MP14 and MP16
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Figure F.32: Transfer mobilities, excitation at MP60, response at MP12,
MP14 and MP16

F.38, where the filtered wave propagation in lateral direction is obvious: a
strong stop-band is visible between 1300 and 2400 Hz, most pronounced for
the stiffener excitation case.

As shown in Fig. F.39 the transfer mobilities to the adjacent plate field
are nearly identical, independent of the distance to the excitation point.
Fig. F.40 illustrates the waveguide behaviour of the excited plate strip. At
low frequencies below 500 Hz wave propagation in the strip is not possible
and the transfer mobility is dominated by global effects. With a strong rise
of the transfer mobility at 500 Hz, the first propagating waves in the strip
cut on.

The transfer mobilities to oblique and lateral response positions illustrate
the strong directivity and stop-band behaviour of the wave propagation in
Figs. F.41 to F.48 irrespective of the excitation position. The results demon-
strate that the detailed response location in z-direction is of minor impor-
tance for oblique and lateral wave propagation.
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Figure F.33: Transfer mobilities across stiffeners (lateral), excitation at
MP10, response at MP10, MP60 and MP20
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Figure F.34: Transfer mobilities across stiffeners (lateral), excitation at
MP60, response at MP10, MP60 and MP20
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Figure F.35: Transfer mobilities across stiffeners (lateral), excitation at
MP10, response at MP10, MP70 and MP30
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Figure F.36: Transfer mobilities across stiffeners (lateral), excitation at
MP60, response at MP60, MP70 and MP30
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Figure F.37: Transfer mobilities across stiffeners (lateral), excitation at
MP10, response at MP10, MP40 and MP50
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Figure F.38: Transfer mobilities across stiffeners (lateral), excitation at
MP60, response at MP60, MP40 and MP50
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Figure F.39: Transfer mobilities (response in adjacent plate field), excitation
at MP10, response at MP62, MP64 and MP66
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Figure F.40: Transfer mobilities (response in the same plate field), excitation
at MP60, response at MP62, MP64 and MP66
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Figure F.41: Transfer mobilities, excitation at MP10, response at MP72,
MP74 and MP76
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Figure F.42: Transfer mobilities, excitation at MP60, response at MP72,
MP74 and MP76
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Figure F.43: Transfer mobilities, excitation at MP10, response at MP30,
MP31 and MP35

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−5

10
−4

10
−3

10
−2

|Y
| [

m
/(

N
s)

]

 

 

f [Hz]

Y
30,60

Y
31,60

Y
35,60

Figure F.44: Transfer mobilities, excitation at MP60, response at MP30,
MP31 and MP35
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Figure F.45: Transfer mobilities, excitation at MP10, response at MP40,
MP41 and MP45
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Figure F.46: Transfer mobilities, excitation at MP60, response at MP40,
MP41 and MP45
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Figure F.47: Transfer mobilities, excitation at MP10, response at MP50,
MP51 and MP55
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Figure F.48: Transfer mobilities, excitation at MP60, response at MP50,
MP51 and MP55
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Figure F.49: Comparison of spatial mean rms-velocity for all measurement
points that are consistently measured for both excitation cases, unit force
excitation on stiffener (MP10) and in plate field (MP60)

F.4.8 Mean square velocity

In an attempt to establish an overview of the response for the plate strip and
stiffener excitation cases, the root mean square velocity of selected response
positions for a unit force excitation is used.

The first comparison includes all the measured points on the plate quar-
ter that are consistently measured for both excitation cases, see Fig. F.49. It
is obvious that for force excitation the stiffener excitation shows extremely
lower average velocity levels, at least for frequencies above the global vibra-
tion region. Nonetheless, it should be pointed out that the plate field case
(MP60) is dominated by the excitation point, where nearfields are also of
major importance. Therefore a second comparison is performed including
only remote points (distance more than 0.5 m) in order to exclude nearfield
vibrations (see Fig. F.50). For farfield vibrations, the excitation point is not
important in the low frequency regime up to about 200 Hz, where the plate
vibrates globally. A last comparison includes only the points that are very
remote, in this case only lateral points 30’s-50’s, see Fig. F.51. A significant
difference for remote positions arises only between 400-1200 Hz, i.e. in the
cut-on region of the first plate strip waves.

229



APPENDIX F. REGIONAL TRAIN FLOOR SECTION RESULTS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
−4

10
−3

10
−2

10
−1

|v
rm

s| [
m

/s
]

 

 

f [Hz]

v (rms) MP10
v (rms) MP60

Figure F.50: Comparison of spatial mean rms-velocity for farfield measure-
ment points (distance > 0.5 m), unit force excitation on stiffener (MP10)
and in plate field (MP60)
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Figure F.51: Comparison of spatial mean rms-velocity for remote measure-
ment points (MP 30’s-50’s), unit force excitation on stiffener (MP10) and in
plate field (MP60)
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Figure F.52: Comparison of measured and FE-calculated input mobility on
stiffener (MP10)

F.5 Comparison Calculation - Measurement

F.5.1 Stiffener Excitation

A standard FE-calculation using a quarter model of the light weight plate is
performed and results are compared in this section with the measured ones.

The overall agreement between measured and calculated mobility for ex-
citation on a stiffener is moderate. In analogy with the results of the two-
dimensional profile strip investigation it is expected that there is a frequency
shift in the calculated results because of the neglected fillets at the joints that
stiffen the real test object. This stiffening effect is not easily implemented in
a calculation model and so it is neglected here. In the case of a profile strip
the frequency shift was about 10 % over nearly the whole frequency range.
Such a constant factor frequency shift is not observed for the plate results
here. The stop-band in the range 1600 − 2300 Hz is shifted as expected to
lower frequencies in the calculation (see Fig. F.56). The overall level at high
frequencies above 3000 Hz is similar for measurements and calculations, at
least for response positions in the vicinity of the excitation point. The over-
all agreement of calculated and measured input mobility is satisfying for the
stiffener excitation case.
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Figure F.53: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.54: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.55: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.56: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.57: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.58: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.59: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.60: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.61: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.62: Comparison of measured and FE-calculated transfer mobilities,
stiffener excitation (MP10)
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Figure F.63: Comparison of measured and FE-calculated input mobility in
plate field (MP60)

What is obvious from the comparison of measured and calculated mobil-
ities is that the loss factor in the calculations, which is chosen to be 0.01
is too high, at least in the higher frequency regime. In the measured re-
sults, the resonance peaks are much more pronounced than in the calculated
results. This is in agreement with damping measurements performed on a
profile strip, where the average loss factor is determined to be around 0.001
or even less. The reason for choosing the higher loss factor in the calculations
is that this reduces the necessary frequency resolution in the calculations as
the smoothness of the mobility curves is increased. For remote points and
frequencies above 2000 Hz, the discrepancy between the measured and cal-
culated results can be explained to some extent by the stronger damping in
the calculations, reducing the amplitudes of the transfer mobilities.

F.5.2 Plate Field Excitation

For excitation directly at the centre of a plate field, the comparison of mea-
sured and FE-calculated results is included in this section. The input mobil-
ity is plotted in Fig. F.63.

The agreement between measured and calculated input mobility is good.
In the global frequency regime below 400 Hz the mobility is stiffness-like,
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Figure F.64: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)

interrupted only by minor global resonance peaks. This region ends with
the cut-on of wave propagation in local waves, which is shifted slightly be-
tween measurement and calculation, lower in the calculated results, which
can again be explained by the stiffening effects of the fillets at the joints. In
the frequency regime between 400 Hz and about 2000 Hz the measured mo-
bility indicates strong resonant behaviour with very sharp resonance peaks.
These peaks are not well identified in the FE-calculation, partly because
of the limited frequency resolution of 5 Hz and partly because of the high
damping in the FE-model. At high frequencies the measured and calculated
input mobility approach the input mobility of an infinite thin plate with a
thickness of the plate strip.

The comparison of transfer mobilities is included in Figs. F.64 to F.73.
The overall agreement for the transfer mobilities is moderate. Significant
underestimations in the calculations arise mainly in the frequency range 500-
2000 Hz. A matching representation can be achieved for the transfer mobili-
ties in the excited plate strip (Fig. F.68), where the strong cut-on effects are
obvious in calculation and measurement.
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Figure F.65: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.66: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.67: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.68: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.69: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.70: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)

241



APPENDIX F. REGIONAL TRAIN FLOOR SECTION RESULTS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−4

10
−2

f [Hz]

|Y
| [

m
/(

N
s)

]

 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−4

10
−2

f [Hz]

|Y
| [

m
/(

N
s)

]

 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−4

10
−2

f [Hz]

|Y
| [

m
/(

N
s)

]

 

 

Y
35,60

 (meas.)

Y
35,60

 (calc.)

Y
31,60

 (meas.)

Y
31,60

 (calc.)

Y
30,60

 (meas.)

Y
30,60

 (calc.)

Figure F.71: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.72: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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Figure F.73: Comparison of measured and FE-calculated transfer mobilities,
plate field excitation (MP60)
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