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The talk is based on a forthcoming book is about the human-oriented pre-
sentation of a mathematical proof in naturallanguage, in a style as we may find
it in a typical mathematical text book.

How can a proof be other than human-oriented? What we have in mind is a
deduction systems, which is implemented on a computer, that proves—with some
human interaction—a mathematical textbook as may be used in an undergrad-
uate course. The proofs generated by these systems today are far from being
human-oriented and can in general only be read by an expert in the respective
field: proofs between several hundred (for a common mathematical theorem), for
more than a thousand steps (for an unusually difficult theorem) and more than
ten thousand deduction steps (in a program verification task) are not uncom-
mon. ' Although these proofs are provably correct,they are typically marred by
many problems: to start with, that are usually written in a highly specialised
logic such as the resolution calculus, in a matrix format, or even worse, they
may be generated by a model checker. Moreover they record every logical step
that may be necessary for the minute detail of some term transformation (such
as, for example, the rearrangement of brackets) along side those arguments, a
mathematician would call important steps or heureka—steps that capture the
main idea of the proof. Only these would he be willing to communicate to his
fellow mathematicians—provided they have a similar academic background and
work in the same mathematical discipline. If not, i.e. if the proof was written say
for an undergraduate textbook, the option of an important step may be viewed
differently depending on the intended reader.

Now, even if we were able to isolate the ten important steps — out of those
hundreds of machine generated proof steps — there would still be the startling

! The Argonne deduction system OTTER, the old MKRP-System or more recently
the SPASS system from Saarbriicken, SETHEQO in Miinchen or Voronkov’s System
VAMPIRE can generate and represent search spaces of more than a billion clauses
and the proof as thus found may be up to several hundred or even more than a
thousand steps long. The interactive VSE program verification system of the DFKI
at Saarbiicken has generated proofs of more than ten thousand steps for proving
one program assertion, when it verified the control software of a telecommunication
network consisting of about 10,000 lines of source code. This required proofs for
many thousand assertions (and some of these proofs were then a little less than
10,000 steps long). The early verification of a complex hardware component such as
the microprocessor FM8501 that was verified with the Boyer—-Moore System required
about 150 pages of formulas of specifications and lemmata in the Boyer— Moore
Logic and was carried out in about thirteen man-months. The complexity of today’s
verification task surpasses all of this by far.
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problem that they are usually written in the 'wrong’ order. A human reader
might say: ’they do not have a logical structure’; which is to say that of course
they follow a logical pattern (as they are correctly generated by a machine),
but, given the convention of the respective field and the way the trained math-
ematician in this field is used to communicate, they are somewhat strange and
ill structured.

And finally, there is the problem that proofs are purely formal and recorded
in a predicate logic that is very far from the usual presentation that relies on a
mixture of natural language arguments interspersed with some formalism. The
proof is far from such a presentation in the sense that even if all predicate,
function and constant symbols were replaced by their natural language counter-
part and even if all the logical formalisms were replaced by its natural language
equivalent (such as ‘A’ and ’)’ by implies and so forth) the resulting proof in
natural language would still be a far cry from what we consider natural, even
it it were ingeniously augmented by the usual mathematical phraseology such
as "thus follows’, ’em as can easily be seen’ or 'now we have the following cases’
followed by ’quod erat demonstrandum’.

Is there a typical mathematical textbook with a universally accepted way of
proving theorems? Style, notation and level of abstraction in the presentation of
a mathematical argument have changed considerably over the centuries. They
are still changing today.

Moreover every mathematical discipline and even every subarea within this
discipline has its own jargon and its battery of proof techniques and general
methods, that make it distinct and immediately recognisable by an experienced
mathematician of this field.

Apart from these considerations there is a more principle point to the problem
of what constitutes a typical proof. Until the last century a mathematical proof
was essentially a convincing argument a mathematician would use to persuade
his colleagues in believing his theorem. While there was considerable controversy
on the form of such an argument, dating back at least to Euclid’s Elements, it
essential means of presentation was that of natural language prose — albeit highly
stylised and augmented with some formal notation. Now what constitutes a
‘convincing argument’ is open to debate and mathematical truth was — and in
spite of all logicism still is — established through a social process of conjectures
and refutations carried out anew by each generation.

This point of view was challenged and appeared to be irrevocably superseded
by the turn of the century, when the foundational studies in mathematical logic
and the slow but sure recognition of the importance of Frege’s Begriffsschrift
marked the beginning of logicism.

Hilbert’s program with its success in the twenties and thirties seemed to
render the whole of mathematics into a formal and essentially mechanical en-
terprise: a proof is a formal object — itself subject to mathematical rigour and
analysis — that proceeds from the hypothesis (the axioms) through a sequence of
well understood and simple formal operations based on general accepted infer-
ence rules, to its conclusion, the actual theorem. Although there is considerable
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variation within this point of view, which is the subject of proof theory (some of
its standard material is covered in the first part of this book) the essence of this
holds universally true for all logical calculi: axioms and theorems are purely syn-
tactical objects and the intermediate steps are based on formal rules of inference
that could in principle be carried out mechanically on a suitable machine.

Thus the touching seventeenth century prophecy of Gottfried Wilhelm Leib-
niz "that, when the new language is perfected, men of good will desiring to settle
a controversy on any subject whatsoever will take their pens in their hands and
say calculemus — let us calculate, and carry out the argument in a purely formal
manner within the calculus ratiocanator”- this vision had in principle become
true for the mathematical disciplines by the middle of our century and logicism
began to spread into other disciplines as well, as hallmarked inter alia by the
Vienna Circle.

As Martin Davis notes in his Prehistory and Early History of Automated
Deduction, this view was not entirely unchallenged: "Henry Poincare realised
perfectly well that if the claim of the logicians were to be taken seriously, the
possibility of mechanising human reason would be very real. But the very absur-
dity of such a possibility which threatened everything creative and beautiful in
mathematical thought, showed in fact the logicians claims need not be taken seri-
ously”. Poincare expressed his argument by reductio ad absurdum picturesquely
as follows: "Thus it will be readily understood that in order to demonstrate a
theorem, it is not necessary or even useful to know what it means. We might
replace geometry by the reasoning piano imagined by Stanley Jevons; or, if we
prefer, we might imagine a machine where we should put in axioms at one end
and take out theorems at the other, like the legendary machine in Chicago where
pigs go in alive and come out transformed into hams and sausages. It is no more
necessary for the mathematician than it is for these machines to know what he
is doing.” Be this as it may modern textbooks in many mathematical fields now
reflect the logical point of view: set theory, model theory, some books on algebra
and many textbooks on logic itself are typical examples of this purely formal
approach in the sense that their proofs are carried out entirely by syntactical
operations on formulae — often with very little natural language explanation in
between. From Whitehead and Russell’s Principia Mathematica to the Bourbaki
group of mathematicians , there have been many attempts to reconstruct the
whole of mathematics on the basis of a few basic principles, from which follows
all that is known in mathematics by a few syntactical operations, i.e. logical
inferences.

The first mechanical calculating devices for the four numerical operations, ad-
dition, multiplication and their inverses, constructed by W. Schicard, B. Pascal
and G. W. Leibniz in 1623, 1642 and 1671 respectively relied on two fundamental
developments: the arithmetical calculus had developed from an art (for example
calculating the payrolls for the Roman legionnaires) to a purely mechanical ap-
plication of rules in the algorithms for the four basic arithmetic operations. The
craftsmanship and the art of engineering of the time had developed in France
and Germany to a point, where mechanical clocks based on springs, cogwheels
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and so on became a reality,that could now also be used to build a mechanical
calculator for numbers.

Similarly two basic developments had taken place for the art of formal rea-
soning by the mid of our century: the development of logical calculi that only
required mechanically applicable syntactic operations and the advent of the first
electronic computer (such as Konrad Zuse’s Z1 and his Plankalkiil in 1936) to
carry them out. The first computer—generated proof of a mathematical assertion
was found fully automatically in 1954. It became the hallmark of a new area
of formal reasoning by proving the mind-boggling theorem that the sum of two
even numbers is again even.

The computer program that found the proof implemented a decidable frag-
ment, of the first—order calculus known as 'Pressburger’s arithmetic’ and was
developed by Martin Davis at the American Institute of Advanced Studies on
a "JOHNIAL’ machine. At the same time A. Newell, J.C. Shaw and H. Simon
developed a computer program based on entirely different principles that proved
dozens theorems from Principia Mathematica. This program implemented some
general heuristics for proving theorems as could be observed in empirical psy-
chological studies with students.

These two programs, first presented at the Dartmouth Conference in 1956,
nowadays considered as the cradle of artificial intelligence, spawned a debate
that has dominated automated reasoning ever since: should a strong system
for automated theorem proving rely on the advance in computer hardware and
search for a proof within an appropriate logical calculus or else should it try
to emulate human behaviour as observed in a given mathematical task? This
controversy,that became more general and fundamental later on in the whole
field of artificial intelligence is still unresolved — in spite of the success of the
chess laying program Deep Blue that beat the world champion Kasparov in 1997
and appeared to swing the pendulum to the former point of view. Marvin Minsky
suggested in 1961: "It seems clear that a program to solve real mathematical
problems will have to combine the mathematical sophistication of H. Wang 2
with the heuristic sophistication of Newell, Shaw and Simon” — and exactly
how this is to be achieved has been a controversial cornerstone in the field of
automated deduction ever since.

Automated deduction systems, while still inferior in comparison to some hu-
man capabilities, have developed considerably in the four decades that followed
the Dartmouth Conference. They are now routinely used for many formal rea-
soning tasks in mathematics, computer science and artificial intelligence, and
have been instrumental in proving open mathematical problems as well as the
correctness of complex software and hardware components of a computer. While
this book is not on automated deduction systems as such, we assume that there

2 Hoa Wang worked in the logic-oriented tradition of Martin Davies and received
the "Milestone Award for Automated Theorem Proving” in 1983 from the Ameri-
can Mathematical Society for his outstanding contributions to the field. In 1958 he
developed a program at IBM and later at Bell Labs that proved 350 theorem of
Principia Mathematica. It was by far the strongest system at the time.
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is a computer based proof development environment that may either operate in-
teractively with a mathematician (as the tactic based deduction systems do) or
fully automated (as most resolution style theorem provers do) or else in a mixed
mode as in our preferred system ? MEGA, that combines proof of planning with
the best of these two worlds and probably currently comes closest to Marvin
Minsky’s view of 1961. In either case, the output of any of these systems is a
formal proof in some logical calculus, usually ill structured and lengthy. This
formal proof is to be translated into a human oriented style of presentation.

In spite of all logicism, why is the majority of mathematical papers and text-
books still written in natural language at the highly personal, albeit socially in-
fluenced informal level that is typical for a particular mathematical area? While
there is no single and immediate answer, the point we want to emphasise in this
book is this: the important discovery that a proof is a formal object, which is itself
subject to mathematical analysis sometimes tends to overemphasise formality —
and not necessarily needs to de—emphasise its role as a means of communication
between fellow mathematicians and human beings, where clarity, pleasing aes-
thetics, brilliance of the argument and personal style have an important role to
play. As the Bourbaki group of French mathematicians note in the first volume
on the foundation of modern mathematics: "Elements of Mathematics: Theory
of Sets” : ”If formalised mathematics were as simple as the game of chess, then
once our chosen formalised language had been described there would remain only
the task of writingou tour proofs in this language, just as the author of a chess
manual writes down in his notation the games he proposes to teach, accompa-
nied by commentaries as necessary.But the matter is far from being as simple
as that, and no great experience is necessary to perceive that such a project is
absolutely unrealisable: the tiniest proof at the beginning of the theory of sets
would already require several hundreds of signs for its complete formalisation...
Hence formalised mathematics cannot in practice be written down in full, and
therefore we must have confidence analogous to that accorded by a calculator or
an engineer to a formula or a numerical table without any awareness of the ex-
istence of Peano’s axioms, and which ultimately is based on the knowledge that
it has never been contradicted by facts. We shall therefore very quickly abandon
formalised mathematics, but not before we have carefully traced the path which
leads back to it”. While this is no longer entirely true given the advances in proof
theory and more expressively logics tailored to specific mathematical areas, the
essence of the above quotation is still valid: a proof when communicated to a
human fellow mathematician is more of a schema or recipe that could in princi-
ple be expanded into a formal object but in practice never is. And the working
mathematician hardly cares.

The point of view we would like to advance in this book is that there can
be a welldefined computational relationship between the formal and the infor-
mal. Although we may only see the beginning of it today, completely formalised
mathematics can now be written down in full by a machine and translated back
to a surface representation that is easily understandable and possibly pleasing
for a human mathematician. John Alan Robinson, author of the seminal paper:
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A Machine-oriented Logic Based on the Resolution Principle , posed a challenge
to the research community in his invited talk at the Conference on Automated
Deduction, which was held in 1990 at Argonne National Labs, the birthplace
of the resolution principle. A delighted audience that celebrated the quarter—
century anniversary of its invention was captured by a brilliant and humorous
talk that centered around the topic of the lengths of proofs, their ways of com-
munication and falsification and after many examples given, culminated in the
case of the proof of the so—called Enormous Theorem of finite group theory.
This is the classification theorem for finite simple groups, which states that such
groups fall into only finitely many natural classes, whose description is part of
the statement of the theorem. The original proof is published in over 500 differ-
ent papers by several hundred authors over a period of about thirty years. The
late professor Gorenstein published a three—volume summary of the proof and
then, a little later, he published a twenty-page article in the Scientific American,
in which he condensed the proof even further. Hence the challenge: is there a
general procedure for condensing or summarising long proofs into shorter ones?
If so, then ’iterating’ this procedure on a given proof would, as Alan whimsically
conjectured, produce a series of shorter and shorter proofs converging to the one
word proof: ‘OBVIOUS’.

Could all this be done by a machine or is it here, where the stipulated water-
shed between human and artificial intelligence can be located? The PROVERB
systems that is presented in the second and third part of this book, achieves a
compression /abstraction ratio somewhere between one and two orders of mag-
nitude (depending on the particular case at hand and measured in the number
of proof steps of the original machine generated proof at the calculus level). The
condensed and abstracted version of the proof is then fed into a natural language
generator that plans and restructures again and finally produces a mathemati-
cal proof in the form and content as we may find it in a typical mathematical
textbook.The theorem proving system ? MEGA, of which PROVERB is a part,
was used inter alia to prove a large part of a textbook on automata theory
that was widely used at an undergraduate level in the German computer science
curriculum.

The mechanically generated proofs were then fed into the PROVERB system.

Apart from interesting variations and differences most proofs, even those that
were generated entirely without human intervention, were often in shape, proof
technique and natural language diction very similar to those mathematical ar-
guments, the author Peter Deussen had used when he wrote his book 30 years
earlier with paper and pencil — except that he wrote his book in German, whereas
the PROVERB system generates English prose in its current version. The re-
sulting documents, and since 1995, when we first obtained these results, a many
more mathematical proofs have been transformed and translated into natural
language, are an interesting source of inspiration for further research in artifi-
cial intelligence techniques for mathematics and natural language generation. It
shows that the two aspects of a proof, namely as a means of communication and
as a means of assurance, beautifully captured in Alan Robinson’s equation



Proof Presentation 7

Proof = Certification 4+ Explanation
have a computational relationship that is subject to serious scholarship just as
traditional proof theory was earlier on in the previous century.

The views expressed in this book are formed by the intellectual traditions of
mathematical logic (and mathematics), artificial intelligence, natural language
generation and automated reasoning and finally by cognitive psychology. To
make the book self contained as far as possible so that the reader unfamiliar
with one or other of these traditions may be able to follow the argument, we
give some of the proof-theoretical background and an introduction to natural
language generation the first part and concentrate in the second part on the
subject of human oriented but computer generated proof presentation. The de-
velopment of the proof transformation and final translation programs are based
on a sequence of diploma and PhD theses that are built upon each other start-
ing in 1976 with Peter Kursawe, and Christoph Lingenfelder followed by iaosong
Huang in 1995 and Armin Fiedler in 1998 and by Helmuth Hosagelis work on
the linguistic aspects. While most of the technical material and system descrip-
tion is based on Xiasong’s thesis and more than a decade of scientific labour,
the writing and final preparation for this book represents joint work of all the
authors, including some additional material by Erica Melis and Andreas Maier.
The individual contributions of the authors and other contributors are marked
in the appropriate places within the text.

Jorg Siekmann

London, 2005
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