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Summary 

 

In the anterior subventricular zone (aSVZ) of the postnatal murine brain, quiescent 

neural stem cells (NSCs) divide rarely to generate transit-amplifying precursors (TAPs) 

expressing high levels of epidermal growth factor receptor (EGFR) and distalles 

homeobox (DLX)-2 transcription factor. Both NSCs and TAPs form clones upon EGF 

stimulation. Similar cells expressing high levels of EGFR (EGFRhigh) are also present in 

the hippocampus. However, it is not clear whether they represent NSCs and whether 

they undergo a lineage progression similar to aSVZ precursors. In this study, clonogenic 

EGFRhigh cells were isolated from the postnatal (or prenatal) mouse aSVZ (or GE) and 

hippocampus by flow cytometry. I found that Nkx2.1, a regional marker of medial 

ganglionic eminence (MGE), is also expressed in hippocampal EGFRhigh cells as well as 

GE precursors, indicating that at least a subset of hippocampal clonogenic EGFRhigh 

precursors originates from the MGE during embryonic development. Microdissection of 

the hippocampus following FACS and clonal analysis revealed those clonogenic cells 

are localized to the hippocampal SVZ (hSVZ), rather than the dentage gyrus (DG), 

neurogenic region in the hippocampus. However, hippocampal EGFRhigh cells expressed 

less Egfr and Dlx2 mRNA, than GE EGFRhigh cells. Reflecting the differential pattern of 

gene expression, clonal analysis revealed hippocampal EGFRhigh cells are less self-

renewing and proliferative than EGFRhigh cells derived from the aSVZ. Forced 

expression of DLX2 increased the proliferative and neurogenic capacity of aSVZ clone-

forming precursors by promoting neuroblast generation. DLX2 over-expression also 

increased the ability of aSVZ stem cells to form clones in response to EGF by 

promoting a lineage transition from NSCs to TAPs. Finally, over-expression of DLX2 



  

in hippocampal precursors had a similar effect on neurogenesis but not on NSC lineage 

progression. Taken together, these observations suggest that clonogenic EGFRhigh cells 

in the hSVZ originate from the GE; however, they are intrinsically different from aSVZ 

precursors with respect to their stem cell properties.  

 
 
 

Zusammenfassung 

 

Im postnatalen Mäusegehirn befinden sich neurale Stammzellen (NCSs) in der 

anterioren subventrikulären Zone (aSVZ). NSCs teilen sich nur selten und generieren 

bei ihrer Zellteilung schnell proliferierende Vorläuferzellen (transit-amplifying 

precursors; TAPs). TAPs exprimieren den Homeobox-Transkriptionsfaktor Distalles-2 

(DLX2) und weisen eine starke Expression des Rezeptors des Epidermalen 

Wachstumsfaktors (EGFRhigh Zellen) auf. Nach Stimulation mit exogenem EGF in vitro 

bilden TAPs, wie auch NSCs der SVZ, Klone. Auch einige Zellen des Hippocampus 

zeigen ein hohes Expressionsniveau des EGFR. Ob diese Zellen NSCs repräsentieren 

und eine ähnliche Abfolge an Vorläuferzellen bilden wie NSCs der aSVZ ist jedoch 

noch ungeklärt. In der vorliegenden Arbeit wurden aus dem Gehirn pre- und postnataler  

Mäuse EGFRhigh Vorläuferzellen des Striatums (ganglionic eminence, GE) 

beziehungsweise der aSVZ und des Hippocampus mit Hilfe eines Durchlußzytometers 

isoliert. Dabei konnte gezeigt werden, dass Nkx2.1, ein Marker für Zellen der medialen 

GE (MGE), auch in EGFRhigh Zellen des Hippocampus exprimiert wird. Dies deutet 

daraufhin, dass zumindest eine Subpopulation der hippocampalen EGFRhigh 

Vorläuferzellen während der Embryonalentwicklung von der MGE abstammen. 



  

Separate Analysen von EGFRhigh Zellen der hippocampalen SVZ and des Gyrus 

Dentatus (dentate gyrus; DG) hinsichtlich ihrer Fähigkeit, Klone zu generieren, zeigte, 

dass solche klonbildende Zellen vorwiegend in der hippocampalen SVZ und nicht im 

DG lokalisiert sind. Diese hippocampalen EGFRhigh Zellen exprimieren die mRNA des 

Egfr und des Transkriptionsfaktors Dlx2 auf einem niedrigerem Niveau als EGFRhigh 

Zellen der GE. Dieses Ergebnis spiegelt sich auch in dem verminderten Potenzial dieser 

Zellen zur Selbsterneuerung und zur Proliferation im Vergleich zu EGFRhigh 

Vorläuferzellen der aSVZ wieder. Überexpresion von DLX2 verstärkt hingegen das 

proliferative und neurogene Potenzial klonbildender Vorläuferzellen der aSVZ durch 

Förderung der Neuroblastenbildung. Des Weiteren beschleunigt die Überexpression von 

DLX2 den Übergang von NSCs zu TAPs und somit die Fähigkeit von Stammzellen der 

aSVZ in Gegenwart von EGF Klone zu bilden. Die Überexpression von DLX2 in 

hippocampalen Vorläuferzellen zeigt zudem ähnliche Effekte auf die Neurogenese, aber 

nicht auf die Bildung von TAPs aus NSCs. Diese Beobachtungen weisen darauf hin, 

dass klonbildende EGFRhigh Zellen in der hippocampalen SVZ von der GE abstammen, 

aber intrinsische Unterschiede bezüglich ihrer Stammzelleigenschaften von anterioren 

SVZ Stamm- und Vorläuferzellen aufweisen. 
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1. Introduction 

 

1.1. Neurogenesis 

 

Neurogenesis, a process of generating new neurons from neural stem/precursor cells 

(NPCs) was traditionally believed to occur only during embryonic stages in the 

mammalian central nervous system. However, it is now established that NPCs are also 

present in the adult mammalian brain. Furthermore, cell-tracing studies have confirmed 

that neurogenesis continues in restricted areas of the brain throughout the lifespan of the 

animal.  

NPCs have been defined on the basis of their potential to generate multiple cell types 

(e.g. neurons, astrocytes and oligodentrocytes) and their ability to self-renew in vitro 

(Fig 1.1). During development, NPCs progressively modify their morphological and 

antigenic characteristics as well as their potential to generate different progenitor types 

(Merkle FT 2006). Thus, this introduction will start to describe how NPCs are specified 

in space and time, and change their appearance. 
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Fig 1.1. Defining properties of neural stem cells  
Neural stem cells can give rise to more stem cells (self-renewal) and give rise to 
neurons, astrocytes and oligodendrocytes (multipotency). 

 

 

1.2. Neural stem cells during embryonic development 

 

The central nervous system (CNS) is originally formed by the neural plate, a layer of 

NPCs named as neuroepithelial cells. The lateral edges of this sheet fold together to 

form the neural tube, whose fluid-filled cavity will subsequently give rise to the 

ventricular system and spinal canal. Neuroepithelial cells are radially elongated and 

contact both the apical (ventricular) and basal (pial) surfaces. Radial glia, a second NPC 

type appears before the beginning of neurogenesis. Since radial glia and neuroepithelial 

cells share many characteristics, including the maintenance of some features of apical-

basal polarity and the expression of the intermediate filament protein nestin (Alvarez-

Buylla A 2001), it is thought that neuroepithelial cells transform directly into radial glial 

cells stretching to maintain contact with both the apical and basal brain surface while 
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the thickness of the brain increases during development (Fig 1.2A). However, this 

transformation has not yet been experimentally demonstrated.  

Radial glia cells were originally thought to have a mere structural function and 

considered a scaffold for neuronal migration. However, they have now been shown to 

function as neural stem cells that give rise to glia and neurons in vitro and in vivo 

(Malatesta P 2000; Merkle FT 2004; Malatesta P 2008). In the ventricular zone, radial 

glia cells undergo either symmetric division to generate two radial glial cells, or divide 

asymmetrically. By asymmetric divisions radial glia precursors will give rise to a new 

radial glial cell and either a neuron, which migrates into the cortical plate through the 

intermediate zone, or a basal progenitor, which moves to the subventricular zone (SVZ) 

and divides symmetrically to generate two neurons (Fig 1.2B).  
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Fig 1.2. Two types of NPCs during embryonic development  
(A) During forebrain development, neuroepithelial cells progressively convert to radial 
glia that elongate following the thickening of the neural tube wall. Neurons (green and 
red) are generated from basal progenitors which are generated from neuroepithelial at 
early stages or radial glia at later stages. Neurons (blue) are also generated directly from 
radial glia at later stages. (Figure adapted from (Malatesta P 2008). (B) Radial glia cells 
divide in the ventricle zone either symmetrically to generate two radial glial cells, or 
asymmetrically to generate a radial glial cell and either a neuron, which migrates away 
from the germinal region to more superficial layers, or a basal progenitor, which divide 
symmetrically to generate two neurons. NEPs, neuroepithelial precursors; CP, cortical 
plate; IZ, intermediate zone; MZ, marginal zone; CP, cortical plate; SVZ, subventricular 
zone; VZ, ventricular zone. This cartoon has been adapted from (Guillemot F 2005). 
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1.3. Neural stem cells in the adult brain 

 

Radial glial cells share many features with astrocytes of the anterior SVZ (aSVZ) in 

postnatal mouse brain. Both cell types reside in the germinal epithelium at different 

developmental times, and some aSVZ astrocytes maintain a polarized morphology with 

a long radial process similar to that of radial glia. In songbirds and other organisms, a 

subset of radial glia remains neurogenic during adult life (Alvarez-Buylla A 1990; 

Garcia-Verdugo JM 2002; Russo RE 2004; Zupanc GK 2006). In mammals, this 

function appears to be carried out instead by the germinal zone astrocytes, which are 

direct descendants of radial glia. Experiments with a Cre-lox-based strategy to 

specifically label neonatal radial glia have shown that these cells give rise to multiple 

cell types, including the astrocytes of the aSVZ (Merkle FT 2004). Therefore, it has 

been proposed that adult neural stem cells are part of a continuous lineage from 

neuroepithelial cells to astrocytes in the adult germinal zone, with radial glia 

representing the intermediate precursor type (Fig. 1.3). 
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Fig 1.3. Lineage of neural stem cells (blue) during CNS development  
NPCs change their shape and produce distinct progeny as the brain develops. 
Neuroepithelial cells are the principle neural stem cells of the early developing brain. 
During brain development, these cells may change to radial glia, which in turn gives 
rise to the astrocyte-like neural stem cells in the postnatal aSVZ. Both neuroepithelial 
cells and radial glia maintain contacts with both the ventral surface and pial surface of 
the brain and project a single cilium into the developing ventricle. Although aSVZ 
astrocytes does not contact the pial surface, they often project a single cilium to the 
ventricle. This cartoon has been adapted from (Ihrie RA 2008) and modified. 

 

 

1.4. Neurogenic regions in the postnatal brain  

 

In the adult brain, generation of new neurons occurs throughout life primarily in two 

specific regions; the aSVZ of lateral ventricle and the subgranular zone (SGZ) of 

hippocampal dentage gyrus (DG) (Temple S 1999; Gage FH 2000). 
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In the aSVZ, three main types of precursors drive the process of neurogenesis leading to 

the generation of olfactory inhibitory interneurons throughout adulthood (Fig 1.4) 

(Alvarez-Buylla A 2004). Primary NPCs, known as type B, exhibit structural and 

biological markers of astrocytes. Type B cells undergo rare cell divisions and generate 

rapidly dividing precursors, called type C cells, which in turn give rise to immature 

neuroblasts also termed type A cells (Doetsch F 1997). Newly generated neuroblasts are 

arranged in tubes of tangentially oriented cells ensheathed by astrocytes. Such chains of 

neuroblasts form a complicated network throughout the wall of the lateral ventricle, 

immediately below the ependymal layer which lines the ventricular cavity. Migrating 

neuroblasts converge in the anterior dorsal SVZ to form the rostral migratory stream 

(RMS) leading to the olfactory bulb where neuroblasts will differentiate into 

interneurons. Fundamental elements of the stem cell niche in the postnatal aSVZ are 

represented by the extracellular matrix, blood vessels and microglia (Fig 1.4) (Mercier F 

2002). A subset of type B cells contacts the lateral ventricle via a cilium (Doetsch F 

2002) and the blood vessels via an elongated basal process. This highly specialized 

architecture allows extensive cell-cell interaction and the propagation of signals from 

the cerebrospinal fluid in the ventricle, the surrounding extracellular matrix and local 

blood vessels. 

Both type B primary precursors and type C cells are able to self-renew in response to 

growth factors (EGF and FGF-2), forming neurospheres which contain neural stem cells 

and differentiated NPCs that, upon removal of exogenous growth factors, differentiate 

to neurons, astrocytes and oligodendrocytes (Doetsch F 2002). Thus, both type B and 

type C cells are clone-forming cells and multipotent in vitro. However, only type B cells 

express the intermediate filament protein glial fibrillary associated protein (GFAP) 
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whereas distalless (DLX)2 homeoprotein is found in type C cells and neuroblasts but 

not in stem cells (Doetsch F 2002). DLX2, as a homeodomain transcription factor, is 

essential for neuronal differentiation of late born precursors (after embryonic days 12.5) 

in the basal ganglia and for their migration to the cerebral cortex, olfactory bulb and 

hippocampus during embryonic development (Anderson SA 1997; Anderson SA 1997; 

Eisenstat DD 1999). Besides promoting neurogenesis during embryonic development, 

DLX2 also promotes neurogenesis in the postnatal aSVZ, albeit at this age the function 

of DLX2 is still unclear (see also below 1.6). 

 

 

 

 

 

 

 

 

Fig 1.4. Structure and cytoarchitecture of the postnatal aSVZ  
(A) Schematic illustration of a coronal section of the adult mouse brain. The ventricular 
area contained in the squared region is magnified in (B). The aSVZ is localized next to 
walls of the lateral ventricles (LV) and is separated from the ventricular cavity by a 
layer of ependymal cells. Neuroblasts (type A cells, red) are surrounded by astrocyte-
like neural stem cells (type B cells, blue), whereas transit-amplifying cells (type C cells, 
green) are localized on the side of the neuroblast chain. A subset of type B cells has 
direct contact with the lateral ventricle (LV) via a short cilium. Type B cells also contact 
with the basal lamina (BL) surrounding the blood vessels (BV). (C) Lineage 
relationship between different aSVZ precursor types. Type B cells generate type C cells, 
which will give rise to type A cells. This cartoon has been adapted from (Alvarez-
Buylla A 2004). 
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The subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus is also a 

major site of adult neurogenesis. In contrast to the aSVZ, the SGZ is not in direct 

contact with the lateral ventricle and the cerebrospinal fluid (Fig 1.5). Furthermore, cells 

born in the SGZ migrate a short distance and differentiate into granule neurons in the 

DG (Cameron HA 1993). As in the aSVZ, primary SGZ precursors are also represented 

by GFAP+ astrocytes and give rise to granule neurons via generating intermediate 

progenitor cells (Seri B 2001). In the SGZ, a group of astrocytes have a prominent 

radial process and extend shorter tangentially oriented processes at the base of the SGZ 

(Fig 1.5). These cells, called radial astrocytes, have been identified as the primary SGZ 

neural stem cells (Seri B 2001; Filippov V 2003; Fukuda S 2003; Steiner B 2006). The 

SGZ also contains horizontally oriented astrocytes that lack a radial process (Fig 1.5). It 

is not known whether these astrocytes also act as precursor cells. 

Unlike stem cells derived from the aSVZ, SGZ precursors do not display stem cell 

properties such as long-term self-renewal and multipotency in vitro. NPCs have also 

been identified in the hippocampal subependyma (hSVZ) (Seaberg RM 2002; Bull ND 

2005). In contrast to SGZ precursors, these cells display in vitro properties of stem cells 

and in the neonatal brain generate cells that migrate to surrounding regions including 

the SGZ (Navarro-Quiroga I 2006). Thus, although neurogenesis clearly occurs in the 

SGZ of the hippocampal DG, it remains still controversial whether these cells represent 

bona fide neural stem cells. In the first part of this doctoral work, I further investigated 

this specific issue by directly isolating hSVZ and SGZ precursors and performing a 

comparative analysis of their properties. 
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Fig 1.5. Structure and cytoarchitecture of the subgranular zone (SGZ)  
Schematic illustration of a coronal section of the adult mouse brain shows that the SGZ 
is located within the dentate gyrus of the hippocampus. The SGZ contain radial (rA) and 
horizontal (hA) astrocytes. Radial astrocytes have long radial processes that penetrate 
the granular layer and tangential processes that are oriented parallel to this layer. These 
astrocytes give rise to type D immature precursors (D), which divide and further 
differentiate into new granule neurons (G). This cartoon has been adapted from (Ihrie 
RA 2008) and modified. 

 

 

1.5. Regional specification and migration of neural precursors during 

embryonic development 

 

During embryonic forebrain development, neural precursors are specified by regional 

and temporal cues present in the germinative niche. The mechanisms of regional 

specification of neural precursors in the forebrain remain unclear. However, genetic 

analyses have revealed that expression of specific transcription factors in a regionally 

restricted manner is a key to the specification of regional identity within the 

telencephalon. Through a mechanism that involves mutually repressive interactions, 

these transcription factors establish boundaries between different precursor zones, 

leading to the establishment of precursor domains. For example, specification of the 

medial ganglionic eminence (MGE) and anterior entopeduncular area (AEP) requires 
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the expression of the homeobox transcription factor Nkx2.1 (Sussel L 1999) (Fig 1.6). In 

the absence of Nkx2.1, progenitor cells from the MGE and AEP are re-specified to the 

more dorsal fate, similar to that of lateral ganglionic eminence (LGE) progenitors (Fig 

1.6B) (Sussel L 1999). Similarly, the homeodomain gene Gsh2 is required for the 

specification of the dorsal part of the LGE. In mice lacking Gsh2 function, dorsal LGE 

progenitor cells express molecular markers that are associated with the cortex, 

indicating that this transcription factor is necessary to establish the boundary between 

the LGE and the adjacent cortex (Corbin JG 2000; Toresson H 2000; Yun K 2001) (Fig 

1.6). Pax6 and Nkx2.1 antagonize each other to establish the boundary between the 

MGE and LGE (Sussel L 1999; Stoykova A 2000). Accordingly, Pax6 mutants show a 

phenotype that is complementary to the one displayed by Nkx2.1 mutants. In Pax6 

mutant mice, LGE precursor cells are re-specified to a more ventral fate, leading to an 

expansion of the MGE (Fig 1.6B). In addition, Pax6 and Gsh2 have opposing roles in 

the establishment of the boundary between the LGE and cortex (Toresson H 2000; Yun 

K 2001). So, loss of Pax6 function results in the expression of dorsal LGE markers in 

the cortex, and severe disruption of the boundary between the cortex and basal ganglia.  
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Fig 1.6. Homeobox genes and regional specification of neural 
precursors in mouse embryonic forebrain  
(A) Schematic drawing of a coronal hemisection through the murine brain at embryonic 
day 14.5, showing distinct precursor cell domains of the telencephalon. (B) The 
expression of Nkx2.1, Gsh2 and Pax6 is required to define independent precursor cell 
populations in the lateral ganglionic eminence (LGE) and medial ganglionic eminence 
(MGE). Gene interaction defines boundaries between the different precursor zones. In 
Nkx2.1 mutants, Pax6 expression is expanded ventrally in the MGE and anterior 
ependuncular area (AEP) (arrowhead 1). In Gsh2 mutants, Pax6 expression is expanded 
ventrally into the dorsal LGE (dLGE), along with other pallial markers (arrowhead 2). 
Finally, in Pax6 mutants, Nkx2.1 expression is expanded dorsally in to the LGE 
(arrowhead 3) and Gsh2 expression is expanded dorsally into the ventral pallium (VP) 
(arrowhead 4). DP, dorsal pallium; LP, lateral pallium; MP, medial pallium; POA, 
anterior preoptic area; SVZ, subventricular zone; VZ, ventricular zone. This cartoon has 
been adapted from (Marin O 2001). 

 

 

Once neural precursors are specified, they are set to migrate to their final position in the 

mantle of the forebrain. Regionally specified neural precursors migrate via diverse 

pathways to reach their final destinations in the developing mammalian telencephalon. 

Two general modes of migration occur in the embryonic forebrain; radial migration, in 

which cells migrate from the germinal zone toward the surface of the brain along the 
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radial glia scaffold; and tangential migration, in which cells migrate orthogonal to the 

direction of radial migration. Most newborn cortical neurons migrate radially from the 

ventricular zone to the overlying mantle zone, while some neural precursors migrate 

tangentially from the basal ganglionic eminence to the cortex, the olfactory bulb and the 

hippocampus. The routes of tangential migration from the basal telencephalon to the 

cortex have been studied by means of vital dye labelling (de Carlos JA 1996; Anderson 

SA 1997; Wichterle H 1999). Further studies have shown that in the murine brain 

tangentially migrating cells mostly give rise to GABAergic interneurons (Anderson SA 

1997; Sussel L 1999; Pleasure SJ 2000; Corbin JG 2001; Marin O 2001).  

Mice lacking transcription factor, Nkx2.1 that is required for the MGE development 

showed a reduction of GABAergic interneurons in the cortex. Analysis of this mutant 

strain has indicated that the MGE contributes at least ~50% of GABAergic interneurons 

to the developing cortex. Besides the cortex, Nkx2.1 expressing cells also give rise to 

GABAergic interneurons in the hippocampus (Pleasure SJ 2000). During migration, a 

subset of cells seems to keep the expression of their regional transcription factor, Nkx2.1 

(Marin O 2000). Mice with mutation of Dlx1/2 showed more severe reduction of 

GABAergic neurons in the developing cortex and hippocampus, suggesting many of 

tangentially migrating cells appear to require the function of the Dlx2 homeobox gene 

(Anderson SA 1997; Pleasure SJ 2000; Nery S 2003).  

In this doctoral work, therefore, I explored the relationship between hippocampal clone-

forming cells and tangentially migrating cells originated from the basal ganglionic 

eminence by investigating the expression of transcription factors involved in the 

regional specification of NPCs. 
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1.6. Distal-less homeobox 2 (DLX2)  

 

The Dlx genes are the murine orthologs of the Drosophila gene distalless. The Dlx 

genes encode homeodomain proteins that are required for forebrain and craniofacial 

development. Of six known mouse Dlx genes, four (Dlx1, Dlx2, Dlx5 and Dlx6) are 

expressed in the developing CNS (Anderson SA 1997; Liu JK 1997; Eisenstat DD 

1999). Dlx genes are expressed in the two longitudinal domains described in the 

prosomeric model of forebrain development (Rubenstein JL 1994). Dlx1/Dlx2 and 

Dlx5/Dlx6 genes are arranged in bigenic clusters on mouse chromosomes 2 and 6 (Zhou 

QP 2004) and map to human chromosomes 2q31.1 and 7q21.3, respectively. Dlx1 and 

Dlx2 are only 10 kb apart on mouse chromosome 2 near the HoxD locus (McGuinness T 

1996). The four Dlx genes in the forebrain are sequentially expressed (Fig 1.7; Dlx2 → 

Dlx1 → Dlx5 → Dlx6) and have overlapping domains of expression in the subpallium: 

DLX1 and DLX2 are localized to the ventricular zone, DLX1/2/5 to the SVZ and 

DLX5/6 to the mantle zone. There are distinct boundaries of DLX1/DLX2 expression at 

the pallial/subpallial boundary (Fig 1.7).  

Mice lacking Dlx1, Dlx2, Dlx5, Dlx1/Dlx2 and Dlx5/Dlx6 have been generated and their 

phenotypes analyzed (Panganiban G 2002). All Dlx heterozygote mice are normal. 

Single Dlx1 or Dlx2 homozygous mutants die at birth with relatively subtle forebrain 

defects (Qiu M 1995). Mice lacking both genes have a time-dependent block in striatal 

neurogenesis and also die at P0 (Anderson SA 1997). Although Dlx2 expression starts 

around embryonic 9.5 (E9.5), only cells born after E12.5 are impaired in their migration 

and remain in the SVZ. In Dlx1/Dlx2 double mutants, tangential migration from the 

MGE to the LGE is also blocked (Anderson SA 1997) and Dlx1/Dlx2 double mutants 
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lack GABAergic interneurons in the olfactory bulb and in the hippocampus (Pleasure SJ 

2000). After birth, Dlx2 is expressed in transit amplifying cells and immature 

neuroblasts of the aSVZ.  However, few studies have investigated the function of Dlx2 

in the postnatal brain. In this study I have manipulated the expression of DLX2 in NPCs 

derived from the aSVZ and the hippocampus. These experiments were aimed at further 

investigating the function of DLX2 in NPCs and neurogenesis as well as at unveiling 

intrinsic differences between these two precursor groups. 
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Fig 1.7. Expression domains of Dlx genes during mouse embryonic 
brain development  
Most cells in the subpallial telencephalon express Dlx1, Dlx2, Dlx5 and Dlx6 at 
different stages of differentiation. The arrows indicate cell migration from the 
subpallium to the pallium (cortex). The Dlx genes appear to be expressed in sequential 
manner (Dlx2→Dlx1→Dlx5→Dlx6). Dlx2 is expressed in scattered cells in the VZ and 
mantle zone (green dots), and in most cells in the SVZ (uniform green). Dlx6 is 
primarily expressed in differentiated cells in the mantle zone (uniform peach). Dlx1 
(red) and Dlx5 (blue) are expressed in intermediate patterns. NCX, neocortex; PCX 
palliocortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; VZ, 
ventricular zone; SVZ, subventricular zone; LV, lateral ventricle; III, third ventricle. 
This cartoon has been adapted from (Panganiban G 2002) and modified. 
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1.7. The Aims of the work 

 

Neurogenesis in adult mammalian brain has a great potential to develop new strategies 

to treat a number of incurable brain disorders, from neurodegenerative disease to brain 

and spinal cord injuries, multifocal diseases and tumors. To fully realize the potential of 

neural stem cell therapy, it is necessary to know their identity, the signals and the 

molecular mechanisms by which their proliferation/differentiation is regulated. 

Neurogenesis in the aSVZ and in the hippocampus appears to be regulated by different 

mechanisms and it is not clear whether this is due to intrinsic functional differences 

between the populations of NPCs residing in these neurogenic regions.  

 

Thus, to investigate this issue I focussed on the following specific aims:  

(1) To isolate and characterize putative neural stem cells in the hippocampus and in the 

aSVZ  

(2) To investigate expression pattern of specific genes in two groups of NPCs  

(3) To investigate the function of DLX2 in NPCs  
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2. Materials and Methods 

 

2.1. Materials 

 

2.1.1. General reagents 

Reagents      Company 

Agarose       Invitrogen 

40% Acrylamide/Bis     Roth 

Ammonium persulfate      Roth 

Boric acid      J.T Baker 

Bromophenolblue      CHROMA 

BSA       Roth 

Chloroform       Fluka 

DAPI        Boehringer 

EDTA       Applichem 

Enhanced Luminol reagent     PerkinElmer 

Ethanol       Sigma 

Ethidiumbromide      Serva 

Glycine       Sigma 

Isopropanol       Applichem 

Low melting agarose      Invitrogen 

Methanol      Sigma 

Moviol       Calbiotech 

Non fat milk powder      Frema/Reform 
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NP-40       CN Biomedicals Inc. 

PageRuler Prestained protein ladder    Fermentas 

Paraformaldehyde     Fluka 

SDS        Serva 

Sucrose       Riedel-deHaën 

TEMED       Merck 

Tria base      Roth 

Trizol       Invitrogen 

Tween 20      Roth 

* Other general reagents and chemicals like MgCl2, CaCl2, NaCl etc. were purchased 

from Sigma 

 

2.1.2. Plasmids 

pFUGW (Lois C 2002) 

pFUGW Dlx2 

pLenti6 CITE EGFP (modified pLenti6/V5DEST (Invitrogen) by (Oh-hora M 2003)) 

pLenti6 CITE EGFP Dlx2 

pDlx2 (modified from pEGFP-N1 vector; GenBank Accession #U55762) 

pCMVdelta8.9 (Lentiviral packaging plasmid) 

pVSVG (pseudotyping plasmid) (Naldini L 1996; Zufferey R 1997)  

 

2.1.3. Oligonucleotides 

Dlx2 forward primer with BamHI  5`- AGGATCCTCTTTCCTGTCCCGGGTCAGG-3   

Dlx2 reverse primer with NheI   5`-TGCTAGCGAAAATCGTCCCCGCGCTC-3`  
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Dlx2 reverse primer with NotI    5`-AGCGGCCGCTTAGAAAATCGTCCCCGC-3` 

(annealing sequences are underlined, extensions containing restriction sites are shown in 

bold). 

The attB-containing Dlx2 forward primer:  

5`-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGGATGACTGGAGTCTTTGACAGTC-3`  

The attB-containing Dlx2 reverse primer:  

5`-GGGGACCACTTTGTACAAGAAAGCTGGGTGTTAGAAAATCGTCCCCGCGCTCAC-3`  

(Dlx2 specific sequences are underlined). 

 

Nkx2.1-forward primer    5`-TACAGGTTCAGTCCAGGCTG-3`   

Nkx2.1-reverse primer    5`-TGAAAAAGTGAGGGACTAGG-3` 

Dlx2-forward primer    5`-GGATGACTGGAGTCTTTGACAGTC-3`  

Dlx2-reverse primer    5`- GCTTGTGCAGGCTGCTGTTGCTGC-3` 

GFP-forward primer    5`-CCTACGGCGT GCAGTGCTTCAGC-3`  

GFP-reverse primer    5`-CGAGCTGCA CGCTGCCGTCCTC-3`  

Gapdh-forward primer    5`-ACCACAGTCCAT GCCATCAC-3`  

Gapdh-reverse primer     5`-TCCACCACCCTGTTGCTGTA-3`  

 

2.1.4. Enzymes 

Restriction enzymes      New England Biolabs 

       or MBI Fermentas 

T4 DNA Ligase      Promega 

DNase       Sigma 

GoTaq DNA polymerase    Promega 
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PWO DNA polymerase     Roche 

M-MLV Reverse Transcriptase, RNase H Minus   Promega 

Trypsin-EDTA      Gibco 

Papain       Sigma 

BP clonase      Invitrogen 

LR clonase      Invitrogen 

 

2.1.5. Quantitative PCR reagents 

TaqMan® Universal PCR Master Mix (10x)  Applied Biosystems 

Probes:  Dlx2 (assay ID: Mm00438427_m1) Applied Biosystems 

Egfr (assay ID: Mm00433023_m1)  Applied Biosystems 

B2m (assay ID: Mm00437762_m1)  Applied Biosystems 

 

2.1.6. Mouse and cell lines 

▪ Mouse : CD1 (Charles River) albino mice or CB57 BL/6 

Prenatal embryos at day 18 (E18) or postnatal mice at day 7 (P7) 

▪ HEK293FT: cell line established from primary embryonal human kidney transformed  

with sheared human adenovirus type 5 DNA (Graham FL 1977). 

 

2.1.7. Cell culture reagents and media 

B-27       Gibco 

DMSO      Sigma 

Dulbecco's MEM (4.5 g/l glucose)  Gibco 

EGF-conjugated Alexa 488   Molecular probes 
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EGF-conjugated Alexa 647    Molecular probes 

Euromed-N medium     Euroclone 

F-12      Invitrogen 

FCS       BioWhittaker 

Glucose      Sigma 

Geneticin     Gibco 

Human recombinant EGF    Peprotech 

Human recombinant FGF2    Peprotech 

Leibovitz medium     Gibco 

L-Glutamine      Gibco 

Lipofectamine 2000    Invitrogen 

Non-Essential Amino Acids (100x)  Gibco 

OPTI-MEM I Reduced Serum Medium  Invitrogen 

Penicillin/Streptomycin    Gibco 

PI (propidium iodide)    Sigma 

Sodium pyruvate (100x)    Gibco 

Trypan Blue     Sigma 

Ovomucoid     Sigma 
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2.1.8. Antibodies 

 

2.1.8.1. Primary antibodies 

Dilution ratio 
Antibody 

Immunocytochemistry Western blot 
Company 

Mouse anti-β-tubulin type III (Tuj1) 1:400  Sigma 

Rabbit anti-Dlx2 1:500 1:800 Chemicon 

Rabbit anti-GFP 1:500 1:1000 Molecular Probes 

Goat anti-DCX 1:500  Santa Crutz 

Mouse anti-alpha Tubulin  1:100000 Sigma 

 

2.1.8.2. Secondary antibodies 

Dilution ratio 
Antibody 

Immunocytochemistry Western blot 
Company 

Anti-rabbit cy3 1:200  Jackson ImmunoRes

anti-mouse alexa 488 1:1000  Molecular Probes 

anti-sheep cy3 1:500  Dianova 

Goat Anti-Mouse IgG (H+L)  1:5000 Jackson ImmunoRes

Goat Anti-Rabbit IgG (H+L)  1:5000 Jackson ImmunoRes
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2.2. Methods 

 

2.2.1. Methods in Nucleic Acids 

 

2.2.1.1. Purification of Nucleic Acids 

 

2.2.1.1.1. Mini-preparation 

A single bacterial colony was picked with a sterile tip and was inoculated to 3 ml of LB 

medium containing appropriate antibiotics. Plasmid was isolated from 2 ml of overnight 

cell culture. The purification procedure was performed using QIAprep Spin Miniprep 

kit (Qiagen) according to the manufacturer’s instructions. 

 

2.2.1.1.2. Maxi-preparation 

A single bacterial colony was picked with a sterile tip and was inoculated to 200 ml of 

LB medium containing appropriate antibiotics. Plasmid was isolated from 200 ml of 

overnight cell culture. The purification procedure was performed using HiPure plasmid 

Maxiprep kit (Invitrogen) according to the manufacturer’s instructions. 

 

2.2.1.1.3. Extraction of DNA from agarose 

DNA fragments were purified by QIAquick Gel Extraction Kit (Qiagen). The 

procedures were followed as indicated in the protocol of the manufacturer. Finally, 

DNA fragments were eluted with 30 µl Elution buffer. 
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2.2.1.1.4. PCR product purification 

To change buffer condition for enzymatic reactions such as restriction or ligation, PCR-

amplified DNA fragment was purified by Qiaquick PCR Purification kit (Qigen). 

 

2.2.1.1.5. RNA extraction 

Cells in Trizol (1~1.5 ml) were briefly homogenized by pipetting. Chloroform was 

added as 0.33 times as the volume of Trizol and strongly vortexed for 15 sec. All the 

above procedures were done at room temperature. After vortexing, it was centrifuged at 

4 °C for 15 min. The upper phase was taken to a new tube and the isopropanol was 

added approximately 0.5 volumes of Trizol. It was incubated at least 10 min at room 

temperature and centrifuged at 4 °C. The supernatant was discarded and the pellet was 

washed with 75% ethanol in RNase-free H2O. The ethanol was evaporated at room 

temperature and then the RNA pellet was suspended in RNase-free H2O. 

Alternatively, RNA was also extracted by RNeasy Mini Kit (Qiagen). In case of small 

number of cells (e.g sorted cells), RNA was extracted by RNeasy Micro Kit (Qiagen). 

For RNA extraction, cells (1000~2000 cells) were directly sorted to lysis buffer (Buffer 

RLT with beta-mercaptoethanol) and strongly vortexed. All procedures were followed 

by manufacturer’s instructions. 

 

 

2.2.1.2. Photometric determination of DNA and RNA concentrations 

The DNA and RNA concentrations are measured at wavelength 260 nm and calculated 

by the following formulas: 
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double stranded DNA : 1 O.D at 260 nm = 50 µg/mL  

single stranded RNA : 1 O.D at 260 nm = 40 µg/mL  

The purity of DNA or RNA was estimated by the following values: 

Pure DNA: A260/A280 ≥ 1.8 

Pure RNA: A260/A280 ≥ 2.0 

 

 

2.2.1.3. Restriction of DNA 

For cloning procedure, 5~10 µg of plasmid DNA was restricted in 20~40 μl reaction 

volume. For restriction analysis, 300~600 ng of plasmid DNA was digested in 15 µl. 

Around 2 unit of restriction enzyme was used for 1 µg DNA plasmid digestion. The 

reaction was done at 37 °C for 2 hours. 

 

 

2.2.1.4. Ligation of DNA 

Ligation reaction was prepared in 14 µl volume and incubated at room temperature for 1 

hour. Approximately 150 ng DNA plasmid was used for reaction. The amount of insert 

DNA fragment was 1:3 molar ratio of vector:insert and calculated by the following 

equation. 

kb size of insert 
(ng of vector) x 

kb size of vector 
x (molar ratio of  insert/vector) = ng of insert
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2.2.1.5. Agarose gel electrophoresis of DNA 

After DNA restriction or PCR reaction, DNA fragments were resolved by size using 

agarose gel electrophoresis in TBE-buffer. The DNA bands were visible in agarose gel 

containing ethidium bromide when exposed to UV light. As size marker for DNA, 

GeneRuler™ 100 bp Plus or φ174 (Hae III) or λ DNA (Hind III and EcoR I) were used. 

All size markers were purchased from Fermentas. 

 

TBE (10x)  108 g  Tris Base 

  55 g  Boric acid 

  0.5 M  EDTA 20 ml 

H2O filled up to 1000ml 

 

 

2.2.1.6. Transformation of E. coli 

Transformation of E. coli was carried out using the method of Himeno and coworkers 

(Himeno 1984). The frozen competent cells were thawed on ice. 100 μl of thawed cells 

was added into a tube containing 14 µl of ligation mixture, mixed gently and incubated 

on ice for 30 min. The tube was then heated at 42 °C thermo block for 1 min. The tube 

was rapidly transferred and cooled on ice. 1ml of LB medium was added and the cells 

were incubated at 37 °C for 1hour with agitating. After 1hour, cells were plated on LB 

agar plates containing antibiotics for selection and were incubated at 37 °C over night.  
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2.2.1.7. Polymerase Chain Reaction (PCR) 

PCR reaction was done in 25 or 30 µl volume. Pipetting scheme for reaction mixture 

was prepared as indicated in Table 2.1. 

 

Table 2.1. Pipetting scheme for reaction mixture 

Template DNA 

Primer (forward) 

Primer (reverse) 

dNTP's (10 mM) 

Buffer (10x) 

MgCl2 (25 mM) 

Polymerase 

H2O 

1~2 µl 

10~20 pmol 

10~20 pmol 

0.5 µl (or 0.75 µl) 

2.5 µl (or 3 µl) 

0~4 µl 

0.3 µl (1.5 U) 

up to 25 µl (or 30 µl) 

 

Reaction condition was set up depending on primers and amplified DNA fragment size. 

The annealing condition (temperature and time) was decided by considering length and 

GC content of primers. The elongation time was set by considering DNA fragment size 

(~1 min for 1 kb) to be amplified. The amplification cycles usually were 25 to 40 cycles.  

 

Step 1. Denaturing, 2~3 min at 94 °C 

Step 2. Denaturing, 30 sec at 94 °C 

Step 3. Annealing, 20~40 sec at 55~67 °C 

Step 4. Elongation, 20~60 sec at 72 °C (cycle to step 2) 

Step 5. 30~40 cycling (2-3-4) 
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Step 6. Elongation, 3 min at 72 °C 

Step 7. Holding at 4 °C 

 

 

Reagents for PCR reaction 

GoTaq DNA polymerase (5 U/μl, Promega) 

Green GoTaq Reaction Buffer (5x, Promega) 

PWO DNA polymerase (used for Dlx2 cloning, Roche) 

PCR buffer (10x, Roche) 

dNTPs (100 mM, Sigma) 

MgCl2 (50 mM, Sigma) 

 

 

2.2.1.8. Semi-quantitative RT PCR 

Total RNA was extracted from cells by RNeasy Mini Kit (Qiagen) according to 

manufacturer’s instructions. 1~2 μg total RNA was reversely transcribed to the first-

strand cDNA using oligo dT primers (Promega) by M-MLV Reverse Transcriptase, 

RNase H Minus (Promega). The mixture 1 (RNA and oligo dT primer in RNase free 

H2O; below Table 2.2) was preheated for 3 min at 80 °C and then cool down on ice. It 

followed to add mixture 2 (buffer, dNTPs, RNasein, DTT, M-MLV; below Table 2.2). 

RT reaction was allowed at 42 °C for 50 min. M-MLV was then inactivated at 80 °C for 

10 min and reaction mixture was hold on 4 °C. The first-strand cDNA was then 

amplified with 25 cycles by PCR. The amount of amplified DNA bands was analyzed 
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by the intensity of ethidium bromide-staining. Gapdh was amplified for endogenous 

control gene. 

 

 

Table 2.2. Pipetting scheme for reaction mixture 

Mixture 1 Mixture 2 

1 μg RNA 

0.5 μl Oligo dT primers (0.5 μg /μl)

 

3 μl Buffer (5x) 

0.75 μl dNTPs (10 mM) 

0.35 μl RNasin (40 U/μl) 

1.5 μl DTT (100 mM) 

1 μl M-MLV (200 U/μl) 

Up to 6 μl RNase free H2O Up to 9 μl RNase free H2O 

 

Reagents for RT reaction 

Oligo dT Primers (0.5 μg/ μl, Promega) 

dNTPs (10 mM, Promega) 

Ribonuclease inhibitor (40 U/μl, Promega) 

M-MLV Reverse Transcriptase, RNase H Minus (200 U/ μl, Promega) 

Buffer (5x, Promega) 

DTT (100 mM, Sigma) 

RNase free H2O (Qiagen) 
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2.2.1.9. Quantitative RT-PCR 

Cells (2000~3000 cells) were sorted directly into lysis buffer (100 μl) and vortexed 

strongly. The total RNA was then extracted from cells by RNeasy Micro Kit (Qiagen). 

Total RNA was reversely transcribed into cDNA using M-MLV reverse transcriptase 

(Promega) at 42℃ for 50 min in 20 μl reaction volumes. M-MLV was then heat-

inactivated at 80 ℃ for 10 min. 

TaqMan gene expression assays for genes of interest, Dlx2 (assay ID: 

Mm00438427_m1), Egfr (assay ID: Mm00433023_m1) and a house-keeping gene, 

beta-2 microglobulin (B2m) (assay ID: Mm00437762_m1) were purchased from 

Applied Biosystems. The quantitative reverse transcription (qRT)-PCR was performed 

in 7300 Real Time PCR system from Applied Biosystems. Ct values (cycle threshold) 

were obtained from the logarithmic phase of the amplification plot between normalized 

fluorescence of Fam reporter dye of TaqMan MGB probe and cycle numbers for the 

PCR. Ct values for Dlx2 and Egfr were normalized against B2m. 

 

 

2.2.1.10. Gateway Cloning 

Gateway Cloning is a universal cloning technique developed by Invitrogen life 

technologies. Gateway Cloning Technique allows transfer of DNA fragments between 

different cloning vectors while maintaining the reading frame. It has effectively 

replaced the use of restriction endonucleases and ligases. Using Gateway, one can 

clone/sub-clone DNA segment for functional analysis. The Gateway Technology is 

based on the bacteriophage lambda site-specific recombination system which facilitates 

the integration of lambda into the E. coli chromosome and the switch between the lytic 
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and lysogenic pathways (Ptashne M 1992). In the Gateway Technology, the components 

of the lambda recombination system are modified to improve the specificity and 

efficiency of the system (Bushman W 1985). Two recombination reactions constitute 

the basis of the Gateway cloning.  

 

2.2.1.10.1. BP reaction (PCR fragment + Donor vector = Entry Clone) 

BP Reaction facilitates recombination of an attB substrate (attB-PCR product or a 

linearized attB expression clone) with an attP substrate (donor vector) to create an attL-

containing entry clone. PCR amplified attB-containing Dlx2 (20~50 fmol) and donor 

vector, pDONR221 (150 ng/μl) were mixed in total volume 8 μl TE buffer. Reaction 

was allowed by adding 2 μl of the BP Clonase™ II enzyme (Invitrogen), gently mixing 

and incubating at 25°C for 1 hour. Reaction was stopped by adding 1 μl of the 

Proteinase K solution and incubating at 37°C for 10 min. For one transformation of 

competent E. coli, 1 μl of the BP recombination reaction was used. BP recombination 

reaction could be stored at -20°C for up to 1 week before transformation, if desired. 

 

2.2.1.10.2. LR reaction (Entry Clone + Destination Vector = Expression Clone) 

LR Reaction facilitates recombination of an attL substrate (entry clone) with an attR 

substrate (destination vector) to create an attB-containing expression clone. This 

reaction is catalyzed by LR Clonase™ II enzyme mix. Entry vector (pDONR221 Dlx2) 

and destination vector (pLenti6 CiteEGFP) were mixed in total volume 8 μl TE buffer. 

Reaction was allowed by adding 2 μl of the LR Clonase™ II enzyme (Invitrogen), 

gently mixing and incubating at 25°C for 1 hour. Reaction was stopped by adding 1 μl 

of the Proteinase K solution and incubating at 37°C for 10 min. For one transformation 
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of competent E. coli, 1 μl of the LR recombination reaction was used. LR 

recombination reaction could be stored at -20°C for up to 1 week before transformation, 

if desired. 

 

 

2.2.1.11. Lentiviral plasmid construction 

 

2.2.1.11.1. Amplification of Dlx2 gene 

By PCR, the murine Dlx2 cDNA (Accession number, NM_010054) was amplified from 

the cDNA obtained by reverse transcription of total RNA extracted from neurosphere 

culture. Due to GC-rich in sequence of Dlx2 gene, reverse transcription reaction was 

done at high temperature, 67 ℃ using C. therm. Polymerase One step RT-PCR system 

(Roche) to overcome secondary or tertiary structure of GC rich template, and was 

amplified by PCR using PWO DNA polymerase (Roche) with proof reading activity 

Also, two parts of Dlx2 gene was amplified by each PCR reaction. At first PCR, two 

parts of Dlx2 gene fragment (501 bp and 558 bp) was amplified by each set of primers 

as shown in Fig 2.1A and B. At 2nd PCR, a full length of Dlx2 (1031 bp) was amplified 

(Fig 2.1A and C). For cloning sites, two restriction sites (BamHI and NheI) were 

introduced at each ends of Dlx2 gene and stop codon was deleted by primers. 
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Fig 2.1. Amplification of Dlx2 cDNA by RT-PCR  
(A) Schematic drawing of PCR procedure showing Dlx2 cDNA (1031 bp) is amplified 
by two steps of PCR using indicated primers as shown in (A). (B) Gel photos of two 
parts of Dlx2 cDNA amplified by 1st PCR and (C) gel photo of complete Dlx2 cDNA 
amplified by 2nd PCR are shown. Two restriction sites (BamHI and NheI) were 
introduced at each ends of Dlx2 gene and stop codon was deleted by primers (Dlx2 1a 
and Dlx2 2b). 

 

 

2.2.1.11.2. Cloning of Dlx2 into lentiviral plasmid 

First, the Dlx2 cDNA was cloned to pFUGW (Lois C. 2002 Science). After BamHI and 

NheI digestion and gel purification, the cDNA was ligated into the BamHI–NheI sites of 

pFUGW vector so that Dlx2 cDNA is inserted between ubiquitin-C promoter and 

enhanced green fluorescence protein (GFP) gene (hereafter named as plasmid for pLV 

Dlx2GFP; Fig 2.2G). pLV Dlx2GFP was checked by restriction analysis (Fig 2.2F) and 
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was sequenced by GATC Biotech AG. The Dlx2 cDNA was cloned to another lentiviral 

vector, pLenti6 CITE EGFP (modified from pLenti6/V5DEST, Invitrogen; (Oh-hora M 

2003) by Gateway cloning technology (Invitrogen). The attB-containing Dlx2 cDNA 

was amplified by PCR (Fig 2.2A) and was purified by gel extraction and was cloned to 

donor vector (pDONR221, Invitrogen) by BP recombination reaction (Fig 2.2A, 

Invitrogen). After BP recombination, pDONR Dlx2 was propagated in E.coli DH5α by 

negative selection with ccdB gene which has lethal effect in most E. coli strains 

(Bernard P 1992) and is replaced with Dlx2 gene by recombination. Minipreps plasmids 

were prepared by selecting randomly four colonies and were analysed by restriction of 

NheI site. The pDONR221 is restricted to two fragments (4496 bp and 266 bp) (Fig 

2.2D, line 5) and the pDONR221Dlx2 to two fragments (3283 bp and 266 bp) with 

different size (Fig 2.2D, line 1~4). As shown in Fig 2.2D, four colonies were all positive, 

showing high efficiency of recombination and negative selection. In a similar way, the 

Dlx2 gene of pDONR221Dlx2 was then cloned to pLenti6 CITE EGFP by LR 

recombination reaction (Fig 2.2B, Invitrogen) and the construct was named as pLV 

Dlx2 (Fig 2.2G). pLV Dlx2 was checked by restriction analysis (Fig 2.2E) and was 

sequenced by GATC Biotech AG.  
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Fig 2.2. Cloning of lentiviral constructs  

(A-E) pLV Dlx2 by Gateway cloning. (A and B) Schematic drawing showing two steps 
of recombination reactions of Gateway cloning. (A) PCR-amplified attB-containing 
Dlx2 cDNA was replaced with ccdB gene of donor vector, pDONR221 by BP 
recombination reaction. (B) Dlx2 in pDONR221 was then replaced with ccdB gene in 
pLenti Cite-EGFP by LR recombination reaction and it was named to pLV Dlx2. (C) 
Gel photo of PCR-amplified attB-containing Dlx2 cDNA. (D) Restriction analysis of 
pDONR221Dlx2 by NheI. Lane 1-4 indicates mini-preps plasmids from randomly 
selected colonies after BP recombination. Lane 5 and 6 indicate pDONR221 digested by 
NheI and non-digested, respectively. (E-F) Restriction analysis of lentiviral constructs. 



  Materials and Methods  

 - 48 -   

(continued Fig 2.2)  (E) Lane 1, pLenti Cite-EGFR and Lane 2, pLV Dlx2 was 
restricted by EcoRI. (F) Lane 1, pFUGW and Lane 2, pLV Dlx2GFP was restricted by 
SmaI. All restriction analysis showed DNA bands at expected sizes. (G) Schematic 
drawing of lentiviral plasmids used in the experiment. 

 

 

 

 

 

 

 

 

2.2.2. Methods in Proteins 

 

2.2.2.1. Cell lysis for protein 

Cell culture was spined down and the supernatant was discarded. Cells were lysed by 

adding 100 μl of preheated sample buffer and boiled at 95 °C for 5 min. It was vortexed 

several times during heating time. After heating, cell lysates were cooled down on ice 

until loading to SDS PAGE. 

 

Sample buffer (2x) 
Glycerol    30 ml 
20% SDS   20 ml 
1M Tris (pH 6.8)  16 ml 

0.2% bromophenol blue  10 ml 

H2O    filled up to 100 ml 

* DTT was added to a final concentration of 1 mM just before use. 
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2.2.2.2. SDS PAGE 

SDS discontinuous polyacrylamide gel electrophoresis was prepared for separating all 

proteins in size. For this, 10% resolving gel and 5% stacking gel and running buffer 

were prepared as described below. The cell lysates were boiled in sample buffer for 5 

min at 95 °C and were on ice until loading. The prestained protein molecular weight 

marker (Fermentas) was used for protein size marker. The electrophoretic separation 

was carried out at a constant current of 80 mA/gel (vertical slab gel, 1.5 mm x 14 cm x 

14 cm). Following this, the gel was subjected to a western blotting.  

 

Resolving gel buffer (4x): 1.5 M Tris-HCl pH 8.8  181.71 g/l 
     0.4% SDS   4.00 g/l 
 
Stacking gel buffer (4x): 0.5 M Tris-HCl pH 6.8  60.55 g/l 
    0.4% SDS   4.00 g/l 
 
Running buffer (10x)  190 mM glycine   142.63 g/l 
    25 mM Tris   30.27 g/l 
    0.1% SDS   10.00 g/l 
 
Resolving gel (10%, 20 ml) 40% Acrylamide/Bis  5 ml 
    Resolving buffer (4x)  5 ml 
    H2O    9.8 ml 
    APS (100x)   200 ul  
    TEMED (1000x)  20 ul 
 
Stacking gel (5%, 8ml)  40% Acrylamide/Bis  1 ml 
    Resolving buffer (4x)  1 ml 
    H2O    5.9 ml 
    APS (100x)   80 ul  
    TEMED (1000x)  8 ul 
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2.2.2.3. Western Blot 

Following electrophoresis, proteins in a polyacrylamide gel were transferred to a 

nitrocellulose membrane by wet electroblotting. The gel and membrane are sandwiched 

between two stacks of filter paper that have been pre-wetted with transfer buffer. The 

membrane is placed near the anode, and the gel is placed near the cathode. SDS-coated, 

negatively charged proteins are transferred to the membrane when an electric current is 

applied. To control protein transfer, the nitrocellulose membrane was stained in 

Ponceau S for 1 min and then washed with dH2O. At this step the nitrocellulose can be 

dried. The protein-blotted nitrocellulose was then washed twice for 10 min each time in 

15 ml PBST buffer and incubated overnight in blocking solution at 4 °C. The membrane 

was washed briefly in PBST buffer and incubated in primary antibody solution for 1 

hour at room temperature. The membrane was washed again three times in PBST buffer 

for 10 min each time at room temperature and incubated in secondary antibody solution 

for 1 hour at room temperature. The membrane was washed in the same way and was 

ready for chemiluminescent detection. The chemiluminescent reagent was freshly 

prepared by mixing enhanced luminol reagent and oxidizing reagent with 1:1 ratio. The 

reagent was simply spread on the membrane and incubated around 1~3 min. After 

removing the excess of reagent the membrane was covered with thin plastic wrap and 

exposed to X-ray film with variable exposure time (1~40 min) in darkness. Finally the 

film was developed by using an automated film developer. 

 

Transfer buffer (10X) 150 mM Glycine  112.6 g/l 
   20 mM Tris   24.2 g/l 
   0.1% SDS   10.0 g/l 
   20% Methanol 
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PBST    0.1% (v/v) Tween 20 in PBS 
 
Blocking solution 5% non fat milk powder in 1x PBST 
 
* Primary and secondary antibody were prepared in 3~5% non fat milk powder PBST. 

 

 

2.2.3. Lentiviral production and transduction 

 

Replication-incompetent lentivirus was produced from HEK293FT cells by 

lipofectamin-mediated cotransfection of three plasmids (see method 2.2.5.2.3). Briefly, 

HEK293FT cells cultured in growth medium (see Method 2.2.5.2.1) were cotransfected 

with 7.5 µg lentiviral packaging plasmid, pCMVdelta8.9, 5 µg pseudotyping plasmid 

pVSVG (Naldini L 1996; Zufferey R 1997) and 1 µg lentiviral expression plasmid in 10 

cm plates (NUNC). Viral supernatant was collected ~65 hours after transfection, 

centrifuged at low speed and filtered through a 0.45 μm low-protein-binding PVDF 

filter (Millipore), aliquoted and stored at –80 ℃. 

aSVZ or hippocampal cells were infected in a 1:1 mixture of DMEM (4.5 g/l) and F12 

medium (Gibco) supplemented with 5% FCS, 0.05 mM MEM Non-essential Amino 

Acids, 25 μM sodium pyruvate, 2% B27 and growth factors, 10 ng/ml FGF-2 and 20 

ng/ml EGF with cell density, 250000 cells/ml, 5.2 x 104 cells/cm2 in 6-well plate 

(NUNC). After 4~5 hours, cells were plated with cell density, 200000 cells/ml, 5.2 x 

104 cells/cm2 in Euromed-N basal medium supplemented with 100 U/ml 

Penicillin/Streptomycin, 2 mM L-glutamine, 2% B27 and growth factors, 10 ng/ml 

FGF-2 and 20 ng/ml EGF, hereafter referred as E/F medium. Four to five days later, 

infected cells were sorted by flow cytometry based on green fluorescence protein 
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expression and/or EGFR levels. In the latter case prior to sorting, EGF was not added to 

the growth medium.  

 

 

2.2.4. Tissue dissection 

 

Brains were obtained from day 7 postnatal (P7) CD1 (Charles River) albino mice or 

CB57 BL/6 and prenatal mouse embryos at day 18 (E18) of embryonic development 

(plug day = E1). Time-mated pregnant (plug day=1) dames were killed by increasing 

CO2 concentrations followed by neck dislocation, whereas P7 animals were killed by 

decapitation, in accordance with the local ethical guidelines for the care and use of 

laboratory animals (Karlsruhe, Germany). The aSVZ and the hippocampus were 

dissected from P7 mouse brains in cold sucrose solution. Dissected tissues were then 

incubated in papain solution at 37 ℃. After 10~15 min, the papain solution was 

removed and enzymatic digestion was stopped by washing the tissue in Euromed-N 

basal medium containing 0.7 mg/ml ovomucoid and 20 U/ml DNase. Dissociated cells 

were plated in growth medium with or without prior infection. For micro-dissection of 

the hippocampus, brains were dissected in ice-cold Krebs buffer. Dissected brains were 

covered with 4% low-melting agarose gel in PBS at ~40 ℃ and then immediately 

placed at 4 ℃ to harden the agarose solution. Afterwards brains were sliced on a 

vibratome (HM650V, Microm, Germany) into 300 μm coronal section in ice-cold Krebs 

buffer. Under a dissecting microscope, hippocampal SVZ and DG regions were 

precisely dissected from the brain sections with fine surgical forceps.  
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For the embryonic tissue (E18), the GE and the hippocampus were dissociated 

mechanically instead of enzymatic treatment in sorting medium (see 2.2.7). On the same 

day, EGFRhigh/low cells were sorted to lysis buffer for RNA extraction (see 2.2.1.1.5). 

 

Krebs buffer  

126 mM  NaCl 

2.5 mM  KCl 

1.2 mM  NaH2PO4·H2O 

1.2 mM  MgCl2 

2.5 mM  CaCl2  

11 mM  Glucose 

10 mM  Hepes 

 

Papain solution (in PBS) 

 2.5 U/ml Papain 

 0.6%  Glucose 

 

Sucrose solution 

150 mM  Sucrose  

125 mM  NaCl  

3.5 mM   KCl  

1.2 mM   NaH2PO4·H2O 

2.4 mM   CaCl2·2H2O  

1.3 mM   MgCl2·6H2O  
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0.1%   Glucose  

2 mM   Hepes 

 

 

2.2.5. Cell culture 

 

2.2.5.1. Bacterial cell culture 

The E. coli was cultured at 37°C on LB agar plate or liquid LB medium with vigorous 

shaking at 120 rpm. Ampicillin (100 µg/ml) or kanamycin (50 µg/ml) was added for 

selection of transformants. 

 

Strains   Escherichia coli DH5α 

Escherichia coli Stbl3TM (Invitrogen) 

 

LB medium  10 g tryptone 

5 g yeast extract 

10 g NaCl in 1 L deionized H2O  

adjusted pH 7.0 

1.5% agar was added for agar plates. 
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2.2.5.2. HEK293FT cell culture 

 

2.2.5.2.1. Cell line and culture conditions 

The HEK293FT cell line stably expressing the SV40 large antigen from 

pCMVSPORT6TAg.neo plasmid, is derived from the HEK293F cell line which is a 

permanent line established from primary embryonic human kidney transformed with 

sheared human adenovirus type 5 DNA (Graham FL 1977; Harrison T 1977). 

HEK293FT cells were cultured in growth medium at 37 °C in 5% CO2 atmosphere with 

saturating humidity. Cells were trypsinized with trypsin-EDTA every 2~3 days before 

becoming confluent. HEK293FT cells stably express the neomycin resistance gene from 

pCMVSPORT6TAg.neo and maintained in growth medium containing Geneticin at the 

concentration, 50 μg/ml. 

 

Growth medium 

Dulbecco's MEM (4.5 g/l glucose) 

10% FCS       

0.1 mM MEM Non-essential Amino Acids   

50 μM sodium pyruvate      

50 μg/ml Geneticin     

  

2.2.5.2.2. Freezing and thawing cells 

For a storage of cells, 70~90% confluent cells were trypsinized with trypsin-EDTA for 

5 min. After removing trypsin-EDTA by pippeting, the rest of cells were resuspended 

with 1~2 ml cold freezing medium. The cells in freezing medium were aliquoted to 
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cryovials with 500 μl. The cells was then stored at -80 ℃. When cells are necessary, 

the frozen cells were thawed quickly at 37 ℃ water bath and then transferred to 10 cm 

plate containing growth medium. On the next day, Geneticin was added in the cell 

culture. 

 

Freezing medium 

90% Growth medium 

10% DMSO 

 

2.2.5.2.3. Transfection 

One day before transfection, HEK293FT cells were trypsinized and were plated without 

any antibiotics into 10 cm plates to make them 70~90% confluent on the day of 

transfection. Before transfection, the growth medium was replaced with 5 ml fresh 

growth medium. Plasmid DNA (2~13.5 μg) was diluted in 1 ml OPTI-MEM I without 

serum. Separately, Lipofectamine 2000 (6~40 μl) was diluted in 1 ml OPTI-MEM I 

with serum. The amount ratio of DNA and lipofectamine was 1:3 (DNA:lipofectamine). 

After 5 min incubation at room temperature, the diluted plasmid DNA was then 

combined with the diluted lipofectamine 2000 and it was mixed gently and was 

incubated at room temperature for 20 min to allow DNA-Lipofectamine 2000 complex 

to form. The formed complex was added directly to cell culture. Cells were then 

incubated overnight at 37 °C in a 5% CO2 incubator and on the next day, the medium 

was replaced with growth medium without antibiotics. 
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2.2.5.3. Primary neural precursor cell (NPC) culture 

Neural precursor cells obtained from dissecting the aSVZ and the hippocampus of 

postnatal day 7 (P7) CD1 albino mice were cultured in growth E/F medium. After 

infection of cells, neural precursor cells were cultured in growth E/F medium with a cell 

density, 2 x 105 cells/ml, 5.2 x 104 cells/cm2 in 6-well plate (NUNC) for 5 days before 

sorting. When necessary for sorting EGFRhigh cells, neural precursor cells were cultured 

in growth F medium prior to sorting.  

 

Growth E/F medium 

Euromed-N basal serum free medium    

100 U/ml Penicillin/Streptomycin    

2 mM L-glutamine      

2% B27       

10 ng/ml FGF-2     

20 ng/ml EGF      

 

Growth F medium 

Euromed-N basal serum free medium   

100 U/ml Penicillin/Streptomycin   

2 mM L-glutamine      

2% B27       

10 ng/ml FGF-2      
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2.2.6. Clonal analysis 

 

Transduced cells and/or EGFRhigh or EGFRlow cells were sorted and were plated at a 

density of 1~10 cells per well in 96-well plates containing growth E/F medium (50 μl). 

Cultures were kept in the incubator for a week during which a subset of plated NPCs 

proliferate and give rise to clones. After 7 days, the number of clones per plate was 

counted and the clone size was measured by counting the average number of cells per 

clone. To this end, more than 20 clones were collected and dissociated in a known 

volume of medium and the number of cells was counted. Alternatively, the diameter of 

each clone was measured by the grid space occupied by the clone to obtain cross-

sectional area. Around 15 clones were analyzed for one experiment. For the secondary 

clone formation, the clones were dissociated in sorting medium and plated again at a 

density of 10 cells per well to 96-well plate by FACS automated cell deposition. After 7 

days, the number of clones per plate was scored. For differentiation, the clones were 

dissociated in growth E/F medium containing DNase and dissociated-cells were then 

plated onto chamber slide coated with matrigel and were incubated in growth E/F 

medium for 2~3 days and the medium was replaced with differentiative medium. After 

5~7 days incubation, differentiated cells were fixed and were immunostained to analyze 

their phenotypes. 

 

Differentiative medium 

Euromed-N basal serum free medium    

100 U/ml Penicillin/Streptomycin    

2 mM L-glutamine      
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2% B27 

1% FCS 

10 ng/ml FGF-2 

  

 

2.2.7. Fluorescence Activated Cell Sorting (FACS) 

 

Dissociated-cells from clones or dissected-tissues were resuspended in ice-cold sorting 

medium. For sorting of EGFRhigh cells, the dissociated-cells were stained by adding an 

equal volume of sorting medium containing (40 ng/ml) EGF-conjugated Alexa 488 or 

647 as described before (Ciccolini F 2005). The cell suspension was then filtered by 

using polypropylene round-bottom tube with cell strainer cap (BD). Sorting gates were 

set by using unstained cells and cells that had been were incubated in culture medium 

with unlabelled EGF for at least 20 minutes previous to the staining with EGF-

conjugated Alexa 488 or 647. Transduced-cells were sorted based on their GFP 

expression. Thus, transduced-cells were simply resuspended in ice-cold sorting medium 

and were filtered by polypropylene round-bottom tube with cell strainer cap (BD). 

Sorting gates were set by using non-transduced cells. Viable cells were revealed by 

propidium iodide exclusion (PI). Sorting was performed on FACSAria (Becton 

Dickinson). Cells were plated with clonal cell density (1~10 cells/well) to 96-well plates 

containing 50 μl growth E/F medium by FACS automated cell deposition units. 
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Sorting medium 

Euromed-N basal medium/Leibovitz medium (1:1) 

100 U/ml Penicillin/Streptomycin 

2 mM L-glutamine 

2% B27  

1% FCS 

10 ng/ml FGF-2 

20 U/ml DNase 

1 μg/ml Propidium Iodide 

 

 

2.2.8. Immunocytochemistry 

 

Cells were fixed in 3% paraformaldehyde in PBS containing 4% sucrose for 15 min, 

rinsed twice in PBS containing 10 mM glycine and permeabilized in NP-40 (0.5% in 

PBS) for 5 min and rinsed twice with PBS. All was done at room temperature. After 

fixation, cells were incubated with primary antibodies overnight at 4 . ℃ Next day, cells 

were washed several times with PBS to washout extra primary antibody and then 

incubated with fluorescently labelled secondary antibodies for 1 hour. Cells were 

washed twice with PBS and rinsed with water to remove PBS. Excess water was 

removed by gently tilting and tapping the chamber-slide or coverslip on a tissue paper. 5 

μl of moviol was placed on each well of a chamber-slide and a glass coverslip was 

gently placed on top of it. Chamber- slides or coverslips were stored at 4 ℃ in 
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darkness to preserve fluorescence. Immunostaining was analyzed using a Xeiss-

Axiophot inverted microscope.  
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3. Results 

 

3.1. Comparative analysis of EGFRhigh cells isolated from the two main 

neurogenic regions 

 

3.1.1. Isolation and clonal analysis of EGFRhigh cells 

 

NPCs of the aSVZ form clones in response to epidermal growth factor (EGF) and 

display in vitro self-renewal and multipotency. EGF-responsive clone-forming cells can 

also be isolated from the hippocampus, the second main neurogenic region in the 

postnatal mammalian brain; however it is not clear whether there is a relationship 

between these two populations of NPCs and whether their proliferation and 

differentiation are regulated by common mechanisms. 

To further investigate this issue I first performed a comparative analysis of the 

characteristics of cells expressing high levels of EGF receptor (EGFRhigh) isolated from 

the two main neurogenic regions of the postnatal brain. For this, the aSVZ and the 

hippocampus were dissected and EGFRhigh cells or cells expressing low levels of EGFR 

(EGFRlow) were isolated using fluorescence activated cell sorting (FACS) as shown at 

Fig 3.1A (Ciccolini F 2005). Since dissociation of the postnatal tissue requires 

enzymatic digestion, EGFR expression was analysed after dissociated-cells had been 

cultured overnight to recover cell surface expression of EGFR (Fig 3.1A). After sorting, 

the proliferation of NPCs within the two populations of EGFRhigh cells was analyzed by 

clonal analysis. After 7 days, the number of clones was counted and the proliferation 

rate of the original clone-forming cell was measured by quantifying the number of cells 
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in each clone (Fig 3.1B and C). The FACS analysis revealed that in both regions 

EGFRhigh cells represented only a subset of the total cell population (aSVZ: 5~8%; 

hippocampus: 0.5~0.8%). Although both EGFRhigh populations, either isolated from the 

aSVZ or the hippocampus, were enriched in clone forming cells (Fig 3.1B), aSVZ 

EGFRhigh cells had higher clone forming capacity and formed bigger size clones, than 

hippocampal EGFRhigh cells (Fig 3.1B and C). To compare their self-renewal capacity, 

primary clones were dissociated and plated for the formation of secondary clones. This 

analysis revealed no differences between the two groups in the incidence of cells 

capable of forming secondary clones (Fig 3.1D left). However, when I normalized the 

percentage of secondary clones (Fig 3.1D left) to the clone size (Fig 3.1D right), to 

calculate the total number of secondary clones generated by primary clone forming cell, 

I found that aSVZ EGFRhigh cells in a given time give rise to more secondary clone 

forming cells than hippocampal EGFRhigh cells.  

Taken together, these data show that EGFRhigh cells isolated from the aSVZ and the 

hippocampus are both enriched in clone-forming NPCs. However, hippocampal 

EGFRhigh cells have a slower proliferation rate than EGFRhigh cells isolated from aSVZ 

NPCs and therefore in vitro the first give rise to less secondary clone forming cells than 

the latter. 
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Fig 3.1. Clonal analysis of EGFRhigh cells derived from the aSVZ and 
the hippocampus  
(A) Representative FACS plots for the analysis of EGFR (E) expression as revealed by 
binding of EGF-alexa488. After tissue dissection and dissociation, aSVZ cells have 
been cultured for 24 hours and then stained with EGF-alexa488 with (central panel) or 
without (left panel) previous incubation with unlabelled EGF. Dead cells were excluded 
by propidium iodide (PI) exclusion. EGFRhigh (Ehigh) and EGFRlow (Elow) cells are 
shown in P3 and P4 gates, respectively. (B) Quantitative analysis of the percentage of 
clone forming cells in the sorted populations based on the levels of EGFR expression. 
Though selection of EGFRhigh cells allows to enrich clone-forming NPCs independently 
of the brain region, aSVZ EGFRhigh cells are more clonogenic than hippocampal 
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(continued Fig 3.1) EGFRhigh cells. (C) Quantitative analysis of the number of cells per 
clone shows that hippocampal EGFRhigh cells proliferate slower than aSVZ EGFRhigh 
cells. (D) Quantitative analysis of the secondary clone formation. Primary clones were 
dissociated to single cells and were plated again at clonal density by FACS cell 
deposition to allow the formation of secondary clones. The relative and total number of 
secondary clones generated are shown in the right and left panel, respectively. Data 
represent the means ± SEM of at least three independent experiments (**, P<0.01; *, 
P<0.05). 

 

 

3.1.2. Localization of clone-forming cells within the hippocampus 

 

It is well established that neurogenesis occurs in the dentate gyrus (DG) subgranular 

zone (SGZ) of the hippocampus throughout life (Alvarez-Buylla et al., 2002; Gage 

2000). However, previous studies have shown that the majority of clone-forming cells 

within the hippocampus reside in the hippocampal SVZ (hSVZ) but not in the DG 

(Seaberg RM 2002). To further characterize hippocampal NPCs, I investigated the 

subregional localization of clonogenic NPCs within the postnatal hippocampus. To this 

end, I microdissected the dentate gyrus and the hSVZ adjacent to the CA1 region, from 

vibratome coronal telencephalic sections and analysed the clone forming ability of the 

cells derived from these two subregions (Fig 3.2A). Clonal analysis revealed a 10-fold 

higher frequency of clone forming cells in hSVZ dissociated cells than in the DG (Fig 

3.2B). Since my previous data show that EGFRhigh cells are particularly enriched in 

clone-forming NPCs, I next analyzed whether the hSVZ contains more EGFRhigh cells 

than the DG. FACS analysis showed that, even after overnight culturing in medium 

containing FGF-2 which is known to promote EGFR expression in NPCs (Ciccolini F 

1998), cell suspensions derived from the DG contained very few EGFRhigh cells 



  Results  

 - 66 -   

(0.9±0.5%, Fig 3.2C and D). In contrast, in cultures from the hSVZ, EGFRhigh cells 

represented 7.8±2.1% of the total cell population (Fig 3.2C and D). Taken together, 

these data show that within the hippocampus most EGFRhigh cells and clone-forming 

cells are localized in the hSVZ. 

 

 

Fig 3.2. Clonogenic cells in the hippocampus at postnatal day 7 are 
mostly localized in the hippocampal subventricular zone (hSVZ)  
The dissected subregions, hSVZ and DG of the hippocampus, are shown in (A). (B) 
Quantitative analysis of the percentage of clone-forming cells in plated hSVZ and DG 
cells. (C) Representative FACS plots measuring cell surface expression of EGFR in 
hSVZ and DG cells that after dissection and enzymatic dissociation had been cultured 
overnight in FGF-2 containing medium. EGFR is measured by binding of EGF-
alexa488. EGFRlow and EGFRhigh are shown in R1 and R2, respectively. Quantification 
of EGFRhigh cells is shown in (D). Numbers represent the means ± SEM of at least three 
independent experiments (**, P<0.01). 
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3.1.3. Origin of hippocampal EGFRhigh cells  

 

From early (E11) to late embryonic development (E18) subsets of cells generated within 

the ganglionic eminences (GE) migrate dorsally along tangential routes of cell 

migration to the cortex and the hippocampus where they give rise to GABAergic 

interneurons (Anderson SA 2001). Since most GABAergic interneurons in the 

hippocampus derive from precursors of the medial ganglionic eminence (MGE) 

characterised by the expression of Nkx2.1 (Pleasure SJ 2000), I investigated the 

possibility by semiquantitative reverse transcription (RT) PCR that hippocampal 

EGFRhigh cells express Nkx2.1. As shown in Fig 3.3, Nkx2.1 specific transcript was 

detected not only in EGFRhigh and EGFRlow cells isolated from the GE, but also in 

EGFRhigh cells derived from the hippocampus, whereas Nkx2.1 transcript was rarely 

detected from RNA extracted from hippocampal EGFRlow cells. This data suggests that 

at least a subset of EGFRhigh cells may migrate from the basal GE to the hippocampus 

during embryonic development. 

 

 

 

 

 

Fig 3.3. Expression of Nkx2.1 in hippocampal EGFRhigh cells  
Nkx2.1 expression is analyzed by semiquantitative RT-PCR in dissociated cells of the 
E18 ganglionic eminence (GE) and hippocampus (HP) that had been sorted by FACS on 
the basis of EGFR (E) expression. The endogenous Gapdh gene was used for 
normalization. Note that Nkx2.1 expression is detected not only in GE EGFRhigh/low cells 
but also in hippocampal EGFRhigh cells. 
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3.1.4. Differential expression of genes associated with transit-

amplifying cells between EGFRhigh cells isolated from the GE and the 

hippocampus 

 

Most EGFRhigh cells in the postnatal aSVZ represent transit-amplifying cells (TAPs, 

Type C), one of three main precursor types (Type B, C and A), driving the process of 

adult neurogenesis in this region. However it is not known whether EGFRhigh cells in the 

hippocampus have similar functional properties. I here found that hippocampal 

EGFRhigh cells share many characteristics with EGFRhigh cells derived from the aSVZ. 

For example, they are both located in the SVZ, express MGE marker such as Nkx2.1 

and can form clones mainly in response to EGF. I therefore next investigated whether 

they also express DLX2 and EGFR, whose co-expression identifies type C cells in the 

aSVZ, at the same level of aSVZ EGFRhigh cells. Thus, I used quantitative reverse 

transcription (qRT) PCR to quantify levels of Egfr and Dlx2 mRNAs in the cell 

populations. Consistent with the pattern of EGFR protein expression revealed by FACS 

analysis (Fig 3.4A-D), Egfr mRNA was found in both hippocampal and GE EGFRhigh 

cells, albeit at different levels. Compared to EGFRhigh cells derived from the GE, 

expression of Egfr mRNA was significantly lower in hippocampal EGFRhigh cells (Fig 

3.4E). Interestingly, even greater difference was observed between the two cellular 

subsets in the expression of Dlx2 (Fig 3.4E). Indeed this analysis revealed that respect 

to GE EGFRhigh cells, expression of Dlx2 is drastically lower in hippocampal EGFRhigh 

cells. Thus, despite they are both localized to the SVZ and both originate from basal GE, 

hippocampal and GE EGFRhigh cells differ not only in proliferation rate but also display 

a different pattern of gene expression. 
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Fig 3.4. Quantitative analysis of Egfr and Dlx2 mRNA levels in E18 
EGFRhigh cells sorted by FACS  
(A-D) Representative FACS plots for sorting EGFRhigh cells derived from the GE and 
the hippocampus of E18. After tissue dissection and dissociation, cells were then stained 
with EGF-alexa488 with (B) or without (C, D) previous incubation with unlabelled EGF. 
The plot (A) indicates cells without staining of EGF-alexa488. Dead cells were 
excluded by propidium iodide (PI) exclusion. EGFRhigh and EGFRlow cells are shown in 
R3 and R4 gates, respectively. (E) Quantification of mRNA by qRT-PCR. Total RNA 
was extracted from EGFRhigh cells sorted by FACS and relative gene expression levels 
of Egfr and Dlx2 were quantified by qRT PCR. Numbers represent the ratio between GE 
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(continued Fig 3.4) and HP mRNA levels, which are both normalized to the respective 
mRNA levels of endogenous gene beta-2 microglobulin (β2M). Note that both Egfr and 
Dlx2 mRNA levels are higher in GE EGFRhigh cells than hippocampal EGFRhigh cells. 
Numbers represent the means ± SEM of at least three independent experiments (*, 
P<0.05). 

 

 

3.2. Lentivirus-mediated Dlx2 gene delivery and expression 

 

The above data showed that despite being both clonogenic and localized in the germinal 

epithelium lining the lateral ventricle, hippocampal EGFRhigh cells are less clonogenic 

and self-renewing, and express lower level of Dlx2 than their counterpart isolated from 

the GE. Since DLX2 is expressed in Type C cells of postnatal aSVZ that are also 

capable of undergoing clone formation, I next attempted to manipulate DLX2 

expression in NPCs derived from these two different neurogenic regions in postnatal 

mouse brain, the aSVZ and the hippocampus, using a lentivirus-mediated gene delivery 

system. For this, I cloned cDNA encoding the murine DLX2 protein, (Accession 

number, NM_010054) into the pFUGW (Lois C. 2002 Science) and pLenti6 CITE EGFP 

(Oh-hora M 2003) lentiviral backbones to obtain expression of DLX2 and GFP as a 

fusion protein or two proteins, respectively (see materials and methods 2.2.1.11). 

To investigate the effectiveness of this approach to modulate DLX2 expression, I 

transduced HEK293FT cells with LV GFP, LV Dlx2GFP or LV Dlx2. Four days after 

infection, transducd-HEK293FT cells were sorted on the basis of GFP expression by 

FACS and then processed for protein and RNA extraction to analyse the expression 

levels of GFP and DLX2 (Fig 3.5). In western blot, both GFP and DLX2 antibodies 

revealed a band of ~72 kDa in LV Dlx2GFP-infected HEK293FT cells showing their 
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expression as a fusion protein, whereas in LV GFP-infected HEK293FT cells GFP 

antibodies revealed a single band of ~29 kDa corresponding to the size of GFP protein 

(Fig 3.5A). To analyse levels of DLX2 and GFP expression in single NPCs, I used 

DLX2 antibodies to immunostain aSVZ NPCs that had been previously transduced with 

LV GFP or LV Dlx2GFP. As shown in Fig 3.5B fluorescence levels of DLX2 were 

much higher in LV Dlx2GFP-transduced than in LV GFP-transduced NPCs which only 

expressed endogenous levels of DLX2. The same analysis was attempted with LV Dlx2. 

However, due to very low infection rate of LV Dlx2 (LV GFP, 50~90%; LV Dlx2GFP, 

2~10%; LV Dlx2, 0.5~2%), it was difficult technically to sort enough number of cells 

transduced with LV Dlx2. For this reason, I next analyzed mRNA levels of Dlx2 

between the control and Dlx2-transduced HEK293FT cells. Total RNA was extracted 

from HEK293FT cells infected by each lentivirus. RT-PCR was done with the same 

amount of RNA and normalized by endogenous gene expression of Gapdh. As shown in 

Fig 3.5C, when the PCR reaction was performed under stringent conditions (i.e. high 

annealing temperature, 63 ℃), the GFP transcript was amplified in HEK293FT cells 

transduced with either lentiviral construct, whereas the Dlx2 transcript was amplified 

only from HEK293FT cells transduced with LV Dlx2GFP or LV Dlx2. However, using 

the same Dlx2 primers in less stringent conditions (i.e. low annealing temperature, 

56 ℃), a band was also observed in HEK293FT cells that had been transduced with LV 

GFP (not shown). However, the amplified band was slightly smaller than the Dlx2-

specific band. Since human DLX2 can be amplified in a case that HEK293FT cells 

express DLX2, I compared the sequence of Dlx2 gene between murine and human to 

check whether primers used in this experiment also matches with human DLX2. It 

showed that although forward primer matches 100% with both human and murine Dlx2, 
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the reverse primer does not match well with human DLX2 but partly. Moreover, the 

comparison revealed that human DLX2 transcript would be amplified by RT-PCR with 

the size of 139 bp, which is 20 bp smaller than mouse Dlx2 specific band, 159 bp. Thus, 

the smaller band in the control GFP-transduced cells would be from amplification of the 

endogenous human DLX2 mRNA.  

By qRT-PCR, the mRNA level of Dlx2 was also analyzed from clones formed by 

transduced-NPCs. To this end, total RNA was extracted from primary clones formed by 

aSVZ precursors transduced by lentiviral construct. Consistently, this analysis revealed 

that aSVZ precursors transduced by either DLX2-expressing lentiviral construct 

expressed more Dlx2 transcript, compared to the control GFP-transduced NPCs (Fig 

3.5D; Dlx2GFP, 39±14 times; Dlx2, 14±6.7 times higher than GFP). Taken together, 

these data indicate that the lentivirus constructs can be used to drive the expression of 

the two DLX2 recombinant proteins in NPCs. 
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Fig 3.5. Analysis of lentiviral-mediated gene delivery and expression 
(A) Western blot analysis of DLX2 and GFP protein expression in non-transduced and 
tranduced-HEK293FT cells with the indicated lentiviruses. (B) Detection of DLX2 
protein (red) by immunocytochemistry in NPCs five days after transduction with either 
LV Dlx2GFP or LV GFP. Note that aSVZ precursors transduced with LV Dlx2GFP 
express higher levels of DLX2, compared to the endogenous levels shown in aSVZ cells 
transduced with LV GFP. DAPI counterstain of the nuclei is shown in blue. (C) 
Transgene GFP and mouse Dlx2 mRNA expression in HEK293FT cells transduced with 
the indicated lentiviruses. The endogenous Gapdh gene was used for normalization. (D) 
Quantitative analysis of Dlx2 mRNA level by qRT-PCR. Total RNA was extracted from 
primary clones formed by aSVZ NPCs transduced by indicated lentiviral construct and 
relative gene expression levels of Dlx2 was quantified by qRT-PCR. The mRNA level of 
Dlx2 was normalized by beta-2 microglobulin (β2M). Numbers represent the relative 
levels of Dlx2 mRNA, compared to the levels of GFP-transduced cells. Note that Dlx2-
transduced NPCs express higher levels of Dlx2, compared to the control GFP-
transduced NPCs. 
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3.3. Effect of DLX2 over-expression on hippocampal and aSVZ NPCs  

 

3.3.1. DLX2 increases cell proliferation rate 

 

To investigate the functional role of DLX2 in NPCs, I transduced dissociated postnatal 

aSVZ and hippocampal cells with LV Dlx2GFP, LV Dlx2 and LV GFP as control. 

Since cells transduced by either lentiviral construct express GFP, five days after 

infection and growth in culture medium containing both EGF and FGF-2 with a cell 

density of 2 x 105 cells/ml, GFP-expressing cells were sorted into 96-well plates by 

FACS automated cell deposition (Fig 3.6A) and left them to proliferate for seven days. 

To determine the effect of DLX2 over-expression on cell proliferation, I analysed in 

each group of transduced-NPCs both the number of clones (see below 3.3.3) and the 

size of clone as a read out of cell proliferation. To analyze clone size, the cross-sectional 

area of each clone was calculated by measuring the diameter of the clone under the 

microscope with the aid of a graded objective. This analysis revealed that both aSVZ 

and hippocampal cells transduced with either DLX2 expressing lentiviral construct form 

bigger size of clones, compared to the control counterpart (Fig 3.6, aSVZ: Dlx2GFP, 

1.6 times; Dlx2, 1.3 times bigger than GFP, hippocampus: Dlx2GFP, 2.0 times; Dlx2, 

2.2 times bigger than GFP). To establish the relationship between clone size and cell 

number, I also analyzed the average number of cells in a clone by collecting more than 

30 clones, dissociating and counting the number of cells. This analysis revealed that 

clones derived from Dlx2GFP-transduced aSVZ cells contain around four times more 

cells than clones derived from GFP-transduced cells. Thus, although the measure of 

cross-sectional area underestimates the number of cells in a clone, it reflects the size of 
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clone. Taken together, these observations suggest that DLX2 affects on clone growth by 

modifying the proliferation rate of clone forming cells derived from both the aSVZ and 

the hippocampus. 

 

 

 

 

Fig 3.6. Effect of DLX2 on clone size  
(A) Representative FACS plots for isolating transduced-cells on the basis of GFP 
expression. GFP-expressing cells were distinguished by setting gate with non-
transduced cells. Dead cells were excluded by propidium iodide staining. (B-C) 
Representative clone photos (scale bar is 100 μm) and measurement of clone size seven 
days after sorting and plating of transduced-cells. More than 15 clones were analyzed 
for one experiment. Numbers represent the means ± SEM of at least three independent 
experiments (**, P<0.01; *, P<0.05). 
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3.3.2. Effect of DLX2 over-expression on the differentiation of 

hippocampal and aSVZ NPCs 

 

I next investigated whether DLX2 over-expression affects on the differentiation of 

NPCs. To this end, clones derived from transduced-cells were dissociated and plated for 

differentiation. After 5-7 days neurogenesis in the different culture groups was analyzed 

by immunocytochemistry with TUJ1 antibodies, which is a marker for immature 

neurons (Menezes JR 1994). This analysis revealed that Dlx2-transduced cultures 

derived both from the aSVZ and the hippocampus generated more neurons than control 

GFP-transduced cultures (Fig 3.7). Furthermore, consistent with a previous report 

suggesting that DLX2 is exclusively expressed in the nucleus (Eisenstat DD 1999), in 

Dlx2GFP-transduced precursors GFP was detected only in the nucleus, whereas GFP-

transduced precursors displayed GFP immunofluorescence in the whole cytoplasm (Fig 

3.7).  
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Fig 3.7. DLX2 promotes neuronal differentiation  
Dissociated clones were analyzed 5~7 days after induction of differentiation by 
immunocytochemistry with TUJ1 specific antibodies. (A) Representative 
microphotographs showing immunoreactivity to GFP (red) and TUJ1 (green) antibodies 
and DAPI counterstain (blue) of the nuclei in cultures of dissociated primary clones 
obtained from aSVZ precursors that had been tranduced as indicated. (B-C) Quantitative 
analysis of the percentage of TUJ1+ neurons in the total cell population of Dlx2GFP 
and Dlx2-transduced cultures. Numbers represent the means ± SEM of at least three 
independent experiments (*, P<0.05). 
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DLX2 could promote neuronal differentiation by either increasing the number of 

neurogenic TAPs that upon differentiation will give rise to neuroblasts or by promoting 

the proliferation of neuroblasts. To investigate the mechanisms underlying the effect of 

DLX2 on neurogenesis, I analyzed which cell type, neuroblasts or TAPs is over 

represented in clones formed by DLX2-transduced precursors. To this end, I took 

advantage of the fact that stem cells/TAPs form more secondary clones, compared to 

neuroblasts. I therefore compared the ability to form secondary clones across the 

various groups of transduced-NPCs. This analysis revealed that clones originating from 

NPCs transduced with either DLX2 expressing lentivirus contained a smaller proportion 

of cells capable of generating clones than the control counterpart (Fig 3.8). Taken 

together, these data suggests that DLX2 over-expression promotes neuronal 

differentiation by the generation of more committed neuroblasts. 

 

 

 

 

 

 

 

 

 

Fig 3.8. Quantitative analysis of the percentage of plated cells 
undergoing secondary clone formation 
Primary clones were dissociated and plated with clonal density by FACS automated cell 
deposition. Numbers represent the means ± SEM of at least two independent 
experiments (**, P<0.01). 
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3.3.3. Effect of DLX2 over-expression on clone formation 

 

To investigate whether DLX2 expression affects the ability of NPCs to form clones, 

postnatal aSVZ and hippocampal cells were tranduced with the lentiviral constructs (LV 

GFP, LV Dlx2GFP and LV Dlx2) and allowed to form clones as previously described. 

The number of clones formed by transduced-cells was scored after 7 days. This analysis 

showed that cells derived from the aSVZ upon transduction with either DLX2-

expressing lentiviral constructs formed significantly more clones than control GFP-

transduced cells (Fig 3.9A, GFP, 10.3±1.29%; Dlx2GFP, 15.4±1.8%; Dlx2, 18.2±2.3%, 

mean ± SEM). In contrast, forced expression of DLX2 in hippocampal cells had no 

effect on clone formation (Fig 3.9B). Taken together, these data show that DLX2 over-

expression has similar effects on clone size and neurogenesis of both aSVZ and 

hippocampal NPCs, however it leads to an expansion of the pool of clone-forming cells 

only when overexpressed in NPCs derived from the aSVZ, suggesting DLX2 has 

another distinct mechanisms on aSVZ NPCs. 
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Fig 3.9. Effect of DLX2 over-expression on the percentage of clone-
forming cells present in cultures of aSVZ and hippocampal NPCs  
The number of clones formed by precursors transduced with the indicated lentiviruses 
was counted seven days after FACS sorting of transduced-cells to 96-well plates. Note 
that DLX2 over-expression increased the number of clone forming cells in cultures of 
aSVZ cells (A), but not in cultures of hippocampal cells (B). Numbers represent the 
means ± SEM of at least three independent experiments (**, P<0.01). 
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3.4. Mechanisms underlying the effect of DLX2 over-expression on 

clone formation  

 

3.4.1. The effect of DLX2 on proliferation depends on EGFR signaling 

 

Next, I investigated the mechanisms underlying the increase in the number of clone-

forming cells observed upon over-expression of DLX2 in aSVZ NPCs. Since EGF 

provides main mitogenic signals for NPCs, I tested whether the effect of DLX2 on 

proliferation also requires EGF. To this end, dissociated aSVZ cells were transduced 

with the lentiviral constructs as previously described. After five days of growth in 

medium containing both EGF and FGF-2, transduced-cells were sorted by FACS and 

were grown in medium containing both EGF and FGF-2 (E/F medium) or medium 

containing only FGF-2 without EGF (F medium). This analysis revealed that both the 

number and the size of clones generated in F medium were greatly reduced (~10 times 

less in the number; ~2.5 times smaller in clone size), compared to the clones obtained 

upon culturing in E/F medium (Fig 3.10; also see Fig 3.6B). Moreover, the effect of 

DLX2 on clone number and size was not observed when transduced-cells were grown 

only in the presence of FGF-2 without exogenous EGF (Fig 3.10A and B). Thus, these 

data suggest that the effect of DLX2 on proliferation depends on EGFR signaling. 
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Fig 3.10. Effect of DLX2 on proliferation depends on EGFR signaling 

Five days after infection and growth in E/F medium, transduced-cells were sorted to 
medium containing both EGF and FGF-2 or only FGF-2. Quantitative analysis of the 
percentage (A) and of the size (B) of clones revealed that in the absence of exogenous 
EGF, DLX2 over-expression had no effect on cell proliferation. Numbers represent the 
means ± SEM of at least three independent experiments (**, P<0.01). 
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quantified by FACS analysis. Indeed, this analysis revealed that Dlx2-transduced aSVZ 

cells had a higher percentage of EGFRhigh cells, compared to the GFP-transduced 

control (Fig 3.11A). In contrast, the percentage of EGFRhigh cells in hippocampal 

precursors was not increased but rather slightly decreased by DLX2 over-expression 

(Fig 3.11B). 

Since DLX2 promoted cell proliferation (see Fig 3.6), the greater number of EGFRhigh 

cells observed upon over-expression of DLX2 in aSVZ cells could be a consequence of 

a general boost of cell proliferation in these cultures. However, this is unlikely because 

before the quantitative analysis of EGFRhigh cells, cell cultures had been kept in the 

presence of only FGF-2, a condition in which DLX2 over-expression has no effect on 

proliferation as shown before (see Fig 3.10). Furthermore, if the increase in the number 

of EGFRhigh cells upon DLX2 over-expression was due to higher proliferation rate, it 

should also be observed in hippocampal cultures whose proliferation rate is also 

promoted by DLX2 over-expression (see Fig 3.6B).  
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Fig 3.11. Effect of DLX2 on the number of EGFRhigh cells  
After tissue dissection and transduction with the indicated lentiviral constructs cells 
were cultured in medium containing only FGF-2 for three days. Thereafter, cells were 
stained with EGF-alexa647 and analyzed by FACS. Quantitative analysis of the number 
of EGFRhigh cells in aSVZ (A) and hippocampal (B) cultures tranduced with the 
indicated lentiviral construct showing that Dlx2 over-expression increased the 
percentage of EGFRhigh cells only in aSVZ but not in hippocampal cultures. Numbers 
represent the means ± SEM of at least three independent experiments (*, P<0.05; **, 
P<0.01). 
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forming cells in the EGFRlow cell population. To this end, dissociated aSVZ and 

hippocampal cells were transduced with the lentiviral constructs as previously described 

and then grown in F medium. Three days after transduction EGFRlow cells were sorted 

by FACS and their clonogenic potential was analyzed by clonal analysis. As shown in 

Fig 3.12A, compared to GFP-transduced controls, the number of clone-forming cells 

was significantly lower in aSVZ EGFRlow cells transduced with either DLX2 expressing 

lentiviral construct. Thus, both the increase in the number of EGFRhigh cells and the 

decrease in the number of clonogenic EGFRlow cells observed upon over-expression of 

DLX2 in aSVZ NPCs suggest that in this population DLX2 promotes a lineage 

transition from EGFRlow to EGFRhigh clone forming cells. 

A similar analysis of hippocampal EGFRlow cells revealed that the proportion of clone-

forming cells in EGFRlow cell population was not affected by DLX2 over-expression 

(Fig 3.12B). In addition, although EGFRlow clone-forming cells were detected, their 

incidence was dramatically lower than the incidence of clonogenic NPCs in the 

population of aSVZ EGFRlow cells (Fig 3.12C). Taken together, these results indicate 

that the DLX2 over-expression in aSVZ precursors leads to an expansion of EGFRhigh 

TAPs by promoting a lineage transition from EGFRlow to EGFRhigh cells. Instead, over-

expression of DLX2 did not lead to a similar cell lineage transition in hippocampal cells. 

Moreover, these data suggest that EGFRlow precursors capable of becoming EGFRhigh 

cells are not present in the hippocampus or that their ability to up-regulate EGFR 

expression may be regulated by different mechanisms.  
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Fig 3.12. Effect of DLX2 on cell lineage transition  
(A-B) Quantitative analysis of the percentage of clones formed by EGFRlow cells 
isolated by FACS from cultures of aSVZ and hippocampal cells that after dissociation 
and transduction with the indicated lentiviral constructs had been grown in FGF-2 
containing medium for three days. Note that DLX2 over-expression decreases the 
number of clone-forming EGFRlow cells in aSVZ (A) but not in hippocampal (B) cell 
cultures. (C) Quantitative analysis of the percentage of clones formed by EGFRlow cells, 
which were sorted from dissociated aSVZ and hippocampal cells cultured overnight in 
FGF-2 containing medium after dissection. Numbers represent the means ± SEM of at 
least three independent experiments (*, P<0.05; **, P<0.01). 
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(Fig 3.13A). In addition, qRT PCR analysis showed that DLX2 over-expression in 

aSVZ EGFRhigh cells did not lead to an increase of Egfr mRNA level (Fig 3.13B). Taken 

together, these data indicate that DLX2 does not directly regulate transcription/stability 

of Egfr mRNA.  

 

 

Fig 3.13. DLX2 does not affect levels of EGFR mRNA  
(A) HEK293FT cells were transfected by Dlx2 expression vector and/or transduced by 
LV EGFRP GFP, in which GFP is expressed under the control of EGFR promoter. 
Levels of Dlx2 and GFP were analyzed by semi-quantitative RT-PCR. The level of 
Gapdh mRNA was used for endogenous control. Note that GFP expression is not 
affected by over-expression of Dlx2. (B) EGFRhigh cells transduced by LV GFP or LV 
Dlx2GFP were sorted for RNA extraction after 4 days of transduction of aSVZ cells 
dissected from postnatal (P7) mice. Gene expression levels of Dlx2 and Egfr were 
analyzed by qRT PCR and were normalized to the expression of endogenous gene, beta-
2 microglobulin (β2M). Numbers represent the relative levels of mRNA, compared to 
one of GFP-transduced EGFRhigh cells. Note that though Dlx2 expression was higher, 
Egfr expression was not increased in Dlx2GFP-transduced EGFRhigh cells. 
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4. Discussion 

 

4.1. Hippocampal EGFRhigh cells display intrinsically different 

properties from aSVZ EGFRhigh cells  

 

In this doctoral work, I have used direct isolation to compare the characteristics of 

clone-forming cells of the hippocampus and the aSVZ. Using this approach I was able 

to show that at least a portion of EGFRhigh cells in the hippocampus display 

characteristics of NPCs derived from the MGE, suggesting that hippocampal EGFRhigh 

cells have a ventral origin. I found that hippocampal EGFRhigh cells, like their 

counterpart in the GE, express Nkx2.1, the homeobox transcription factor. Nkx2.1 is 

known to define the regional boundary of the medial GE (MGE). Transgenic mice 

lacking the expression of Nkx2.1 showed abnormal development of the MGE with an 

apparent conversion of the MGE to an LGE-like phenotype (Sussel L 1999). In 

particular, the hippocampus of Nkx2.1 mutant mice showed a decrease in the number of 

cells expressing DLX2 and GABAergic interneurons. It has been previously shown that 

MGE-derived cells expressing NKX2.1 and DLX2, migrate dorsally along tangential 

routes into the cortex and the hippocampus from early to late stages of embryonic 

development and give rise to GABAergic interneurons (Anderson SA 2001; Marin O 

2001). Mice with mutation of both Dlx1 and Dlx2 display also defects in the 

development of the MGE and LGE (Anderson SA 1997; Marin O 2000). In addition, 

these mice showed almost a complete loss of GABAergic interneurons in the 

hippocampus, suggesting that many of tangentially migrating cells appear to require the 

function of the Dlx2 homeobox gene. However, although DLX2 is required for the 
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development of hippocampal interneurons, it is likely that tangentially migrating cells 

down-regulate DLX2 expression while migrating to the hippocampus. Indeed, it was 

found that a population of Dlx2-expressing cells migrates tangentially from the GE to 

the hippocampus during embryonic development where they are mainly concentrated in 

the CA1 region, similar region to hSVZ and after migration to the hippocampus they are 

weakly DLX2 immunopositive (Nery S 2003). Consistent with these observations, my 

data showed that hippocampal EGFRhigh cells are localized in the hSVZ region. In 

addition, I also found that although Nkx2.1 is similarly expressed in EGFRhigh cells 

derived from both the aSVZ and the hippocampus, the expression of Dlx2 is 

dramatically down-regulated in the hippocampal population. Taken together, these 

observations suggest that hippocampal EGFRhigh cells may represent NPCs migrating 

from the GE to the hippocampus during embryonic development. This interpretation is 

further supported by previous observation from our laboratory showing that EGFR 

expressing cells in the embryonic cortical germinal zone display both radial and 

tangential orientation (Ciccolini F 2005). In particular, analysis of EGFR expressing 

cells in the hSVZ mainly displayed a tangential orientation and no radially oriented cells 

were observed in this region (Suh et al., submitted). 

Despite the similarities of their origin and enrichment in clone-forming cell population, 

hippocampal EGFRhigh cells seem to be intrinsically different from aSVZ EGFRhigh cells. 

Although hippocampal EGFRhigh cells expressed relatively higher levels of EGFR than 

the rest of hippocampal cells, their expression levels of Egfr were significantly lower, 

compared with GE EGFRhigh cells. Moreover, hippocampal EGFRhigh cells expressed 

drastically lower levels of Dlx2. Reflecting these differences, the two precursor groups 

displayed differential potential of proliferation. Hippocampal EGFRhigh cells in 
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postnatal mice were less clonogenic, formed smaller clones and were less self-renewing, 

than aSVZ EGFRhigh cells. Taken together, this doctoral work suggests that clonogenic 

EGFRhigh cells in the hSVZ originate from the GE; however, they are intrinsically 

different from aSVZ precursors in terms of their potential of proliferation and the 

pattern of gene expression. 

 

 

4.2. Relationship between precursors in the hSVZ and neurogenesis in 

the dentate gyrus  

 

It is well established that lifelong neurogenesis persists in the dentate gyrus, and 

precursors supporting this process have been identified in this region (Seri B 2001; 

Kempermann G 2004). However, neural progenitors isolated from the adult murine DGs 

have limited proliferative capacity, and do not display in vitro long term self-renewal 

and multipotency, which are distinctive stem cell characteristics (Seaberg RM 2002). 

Instead, self-renewing multipotent NPCs were isolated from the hSVZ although it was 

shown that they require BDNF to undergo neurogenesis (Bull ND 2005). Becq et al 

compared the properties of hSVZ and DG precursors in adult mouse brain in vivo and in 

vitro (Becq H 2005). They showed DG precursors scarcely respond to EGF and produce 

around 8 times less neurospheres than hSVZ precursors in vitro, supporting my 

observation that EGFRhigh cells are more concentrated around 8 times in the hSVZ than 

the DG.. Taken together, these previous reports are in line with my observation that most 

clone-forming EGFRhigh cells are not localized in the DG, but in the hSVZ. 

Given the large continuous turnover of hippocampal neurons in the DG, this raises a 
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fundamental question of the location of the precursors responsible for neurogenesis in 

the DG. However, the fact that DG cells do not form clones does not necessarily 

implicate that there are no neural stem cells in this region. It is possible that neural stem 

cells in the DG are intrinsically different from the neural stem cells in the aSVZ and 

they require different conditions to proliferate in vitro. In line with this hypothesis, Babu 

et al showed the existence of self-renewing multipotent neural precursors from micro-

dissected DG by using optimized-culture conditions (Babu H 2007). Also, Bonaguidi et 

al suggested that high levels of bone morphogenetic protein (BMP) signaling occur in 

hippocampal but not aSVZ precursors in vitro, and blocking BMP signaling is sufficient 

to foster hippocampal cell self-renewal and multipotency. Therefore, DG stem cells may 

be intrinsically different from aSVZ stem cells, requiring different conditions for their 

expansion in vitro. 

It is also conceivable that, at least in the neonatal brain, precursors in the hSVZ give rise 

to a subset of cells in the DG precursors. Injection of retrovirus encoding GFP in the 

neonatal hSVZ revealed that dividing precursors in this area give rise to cells that 

migrate to surrounding regions, including the DG (Navarro-Quiroga I 2006). They 

found that a subset of postnatal hSVZ cells are multipotent and express the precursor 

markers Sox2 and Musashi-1 and migrate into the DG giving rise to granule neurons 

and both radial and horizontal astrocytes in the DG, suggesting that postnatal hSVZ 

precursors contribute astrocyte-like neural stem cells to the adult stem cell niche in the 

SGZ of the hippocampal DG. More recently, it has also been found that cells migrating 

from the hSVZ to the DG are not homogenous as indicated by the expression of 

Neurogenin 2 and of Mash-1 (Kim EJ 2007; Galichet C 2008). Therefore, it will be 

important in the future to investigate the contribution of EGFR expressing cells to this 
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hSVZ/DG migratory stream observed in the neonatal hippocampus. 

 

 

4.3. Differential effect of DLX2 in precursors of the aSVZ and the 

hippocampus 

 

DLX2 is an essential regulator of interneuron neurogenesis not only during embryonic 

development but also in the postnatal brain (Doetsch F 2002; Panganiban G 2002; 

Saino-Saito S 2003; Brill MS 2008). However, the mechanisms underlying the effect of 

DLX2 on neurogenesis are not clear. This doctoral work suggests that DLX2 promotes 

neurogenesis by selectively amplifying a pool of non-clonogenic precursors that upon 

differentiation give rise to GABAergic neurons. In this study, Dlx2-transduced cells 

derived from both the aSVZ and the hippocampus formed bigger size of clones, 

meaning that they proliferated more than the control counterpart. Since the effect of 

DLX2 on cell proliferation depended on EGFR signaling, DLX2 may have promoted 

the proliferation of EGFR expressing TAPs. However, although the extra proliferating 

cells found in DLX2 over-expressing clones responded to EGF, they were not self-

renewing. This is consistent with the previous observations showing that blockade of 

DLX2 transcriptional activity in vivo decreases the number of fast proliferating aSVZ 

precursors leading to a decrease in neuroblasts (Brill MS 2008). However, Brill et al 

observed that over-expression of DLX2 in vivo promoted generation of more 

neuroblasts without affecting proliferation. Thus, they concluded that DLX2 affects 

directly the neuronal fate decision, while at the same time also being required for 

regulating precursor proliferation. One explanation of the discrepancy between in vivo 
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and in vitro would be that levels of EGFR signaling and DLX2 may determine the 

proliferative behavior of NPCs. It is possible that in vivo, in the absence of up-

regulation of EGFR signaling, DLX2 over-expressing cells will not proliferate. Instead, 

in this situation, DLX2 may affect directly neuronal fate decision. In contrast, in vitro, 

EGFR signaling may not be a limiting factor anymore by exogenous EGF. Levels of 

DLX2 rather than EGFR signaling may limit proliferation in vitro, in which over-

expression of DLX2 could promote proliferation. Therefore, by concomitantly up-

regulating DLX2 and EGFR signaling in vitro, my work has underscored previously 

unknown mechanisms by which DLX2 affects neurogenesis.  

Furthermore, this doctoral work suggests that DLX2 promotes cell lineage transition 

from slowly dividing quiescent stem cells to rapidly proliferating TAPs in aSVZ cells 

(Fig 4.1A). Previous analysis have shown that EGFRhigh TAPs are generated from 

clonogenic EGFRlow precursors (Morshead CM 1994; Ciccolini F 2001). In this study, I 

show that over-expression of DLX2 in aSVZ precursors leads to an initial increase in 

the percentage of EGFRhigh cells (TAPs) and to a concomitant decrease in type B cells, 

EGFRlow precursors. My data also reveal that this effect is not due to an extra 

proliferation of EGFRhigh cells or to a direct effect of DLX2 on EGFR expression. 

Rather, my data suggest that DLX2 may instructs or accelerates the cell lineage 

transition from EGFRlow primitive stem cells to EGFRhigh clone forming cells (Ciccolini 

F 2001), resulting in the increase of EGFRhigh cells and more clone forming cells.  

Although, as in the aSVZ, forced expression of DLX2 in hippocampal cells also 

promoted proliferation and neurogenesis, an increase in lineage transition from EGFRlow 

to EGFRhigh cells was not observed in this cell group (Fig 4.1B). DLX2 over-expression 

in hippocampal cells neither increased the percentage of EGFRhigh cells (TAPs) nor 
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decreased quiescent stem cells so that DLX2 did not affect on the percentage of 

hippocampal clone-forming cells. The observations that DLX2 promote cell lineage 

transition only in aSVZ precursors but not in hippocampal precursors suggest that 

primitive EGFRlow precursors being able to convert to EGFRhigh TAPs are not present in 

the hippocampus or that the lineage transition may be regulated by different 

mechanisms. The interpretation of this data is complicated by the fact that is not still 

clear whether aSVZ and hSVZ precursors are directly related. If the lineage transition is 

regulated by different mechanisms in the hippocampus, it would mean that hippocampal 

EGFRhigh cell population could be regulated locally by cell lineage transition. Instead, if 

the lineage transition does not occur, all hippocampal EGFRhigh cells may originate from 

the GE and the population would be decreased by postnatal migration or differentiation 

with aging. Thus, it remains to investigate whether there are resident EGFRlow cells 

being able to convert to EGFRhigh cells in the hippocampus.  

It was previously found that sustained EGF infusion in the lateral ventricle elicits neural 

stem cell activity in TAPs and causes a down-regulation of DLX2 expression in the 

aSVZ (Doetsch F 2002), suggesting that TAPs are not irreversibly committed to the 

generation of neuroblasts. Taken together, therefore, this doctoral work suggests that a 

cross talk between DLX2 and EGFR signaling is a key for the maintenance of cell 

homeostasis in the aSVZ.  
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Fig. 4.1. Schematic model of DLX2 effect in NPCs derived from the 
aSVZ and the hippocampus 
DLX2 over-expression has positive effect on generation of neurons in both aSVZ (A) 
and hippocampal NPC cultures (B), however it promotes cell lineage transition from 
NSC to TAP only when over-expressed in NPCs derived from the aSVZ (A) but not 
hippocampal cell culture (B). NSC, quiescent neural stem cell; TAP, transit-amplifying 
precursor; N, neuroblast. 

 

 

 

 

 

 

5. Conclusions and prospects 

 

To realize the potential of neural stem cell therapy, it is important to know their identity 

and the molecular mechanisms by which their proliferation/differentiation is regulated 

to maintain cell homeostasis. In this study, I characterized putative neural stem cells in 

the hippocampus and the aSVZ of postnatal mouse and investigated the function of 

DLX2 in NPCs. Similarly to the aSVZ, hippocampal clone-forming cells were localized 
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to the SVZ rather than neurogenic region, the DG in the hippocampus. Their expression 

of Nkx2.1, a regional marker of the MGE suggested that at least a subset of them 

originate from the GE during embryonic development. However, despite their similarity 

of origin, localization in the SVZ and enrichment in clone-forming cell population, the 

analysis of gene expression levels (Egfr, Dlx2) and clonal analysis revealed that they are 

intrinsically different each other. Since subsets of dividing precursors in the hSVZ are 

known to migrate to surrounding regions, including the DG (Navarro-Quiroga I 2006), 

it would be important in a future to study the contribution of EGFR expressing cells to 

this hSVZ/DG migratory stream observed in the neonatal hippocampus. 

A study to modulate gene expression levels of DLX2 indicated that DLX2 increases 

proliferation rate and neuronal differentiation in NPCs derived from both the aSVZ and 

the hippocampus, depending on EGFR signaling. However, DLX2 promoted cell 

lineage progression from EGFRlow quiescent stem cells to EGFRhigh TAPs only in 

aSVZ-derived NPCs but not in hippocampal NPCs, suggesting primitive EGFRlow 

precursors being able to convert to EGFRhigh TAPs may not be present in the 

hippocampus or that the lineage transition may be regulated by different mechanisms. 

Thus, it remains to investigate whether there are resident EGFRlow cells being able to 

convert to EGFRhigh cells in the hippocampus.  

Taken together, this doctoral work suggests that hippocampal EGFRhigh cells are 

intrinsically different from aSVZ precursors with respect to their stem cell properties. 

Also, this study suggests that a cross talk between DLX2 and EGFR signaling is a key 

for the maintenance of cell homeostasis in the aSVZ. Thus, a further study to 

understand the mechanisms by which DLX2 promotes cell lineage transition may also 

provide important tools to modulate stem cell activity in vivo. 
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7. Abbreviations 
 
AEP  anterior entopeduncular area 
Amp  Ampicillin 
aSVZ  anterior SVZ 
bp  base pair 
CA1  Cornu Ammonis area 1 
cDNA  complementary DNA 
CNS  central nervous system 
Dlx  dista-less homeobox gene 
DG  dentage gyrus 
DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 
dNTP  Deoxyribonucleoside triphosphate 
DTT  Dithiothreitol 
E. coli   Escherichia coli 
EDTA  Ethylene-diamine-tetraacetic acid 
EGF  epidermal growth factor 
EGFR  epidermal growth factor receptor 
FACS  fluorescent-activated cell sorting 
FCS  fetal calf serum 
FGF-2  fibroblast growth factor-2 
Fig  Figure 
GABA  gamma-aminobutyric acid 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
GE  ganglionic eminence 
GFAP  glial fibrillary associated protein 
GFP  green fluorescence protein 
HP  hippocampus 
hSVZ  hippocampal SVZ 
kb  kilo base pair 
kDa  kilodaltons 
LB  Luria-Bertani 
LGE  lateral ganglionic eminence 
LV  lentivirus 
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MGE  medial ganglionic eminence 
mRNA  messenger RNA 
NKX2.1 NK2 homeobox 1 
NPCs  neural stem/precursor cells 
Pax6  paired box 6 gene  
PBS  phosphate buffered saline 
PCR  polymerase chain reaction 
PI  propidium iodide 
qRT PCR quantitative RT PCR 
RNA  Ribonucleic acid 
RT PCR reverse transcription PCR 
SDS  Sodium dodecyl sulfate 
SDS-PAGE SDS polyacrylamide gel electrophoresis 
SGZ  subgranular zone 
SVZ  subventricular zone 

TAPs  transit-amplifying precursors 
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