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Summary

Quantum Chromodynamics (QCD) is the theory of the strong interaction within
the Standard Model of elementary particles. Today’s research in this area dedicates
substantial resources to numeric solutions of the QCD field equations and experi-
mental programs exploring the phases of QCD. This thesis proceeds along a com-
plementary line — that of modelling QCD, with the aim of identifying its dominant
degrees of freedom. This is possible by minimally coupling effective potentials for
the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields
to model chiral symmetry breaking respecting colour confinement. The fermion sign
problem resulting from the minimal coupling is addressed in this work establishing
a novel, systematically ordered approach. The modifications to the approximative
order parameter of colour confinement, the Polyakov loop, are in direct connection
with the fermion sign problem. Furthermore an effective coupling of quark densities
of different flavours is induced. This mechanism, most likely also present in QCD,
produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities
are amongst the most promising physical quantities for the experimental exploration
of the phase transition at high temperatures and densities.

Zusammenfassung

Die Quantenchromodynamik (QCD) ist die Eichtheorie der starken Wechselwirkung
im Rahmen des Standardmodells der Elementarteilchen. Die aktuellen Forschung
auf dem Gebiet verwendet beachtliche Ressourcen zur numerischen Lösung der QCD-
Feldgleichungen und in experimentellen Programmen zur Untersuchung der Phasen
der QCD. In dieser Doktorarbeit wird ein komplementärer Weg beschritten — die
Modellierung der QCD mit dem Ziel, die dominanten Freiheitsgrade der QCD zu
identifizieren. Durch die minimale Kopplung effektiver Potentiale für die Polyakov-
Schleife an Nambu-Jona-Lasinio Modelle mittels zeitlicher Hintergrundfelder ist es
möglich, die spontane chirale Symmetriebrechung zu modellieren und dabei Effekte
des Farbconfinements zu berücksichtigen. Das aus der minimalen Kopplung resul-
tierende “Fermion Sign Problem” (FSP) wird in dieser Arbeit mittels einer neuar-
tigen, systematisch geordneten Methode behandelt. Die Modifikationen, die der
approximative Ordnungsparameter für das Farbconfinement (die Polyakov-Schleife)
erfährt, stehen in direkter Verbindung mit dem FSP. Desweiteren wird eine effektive
Kopplung der Quarkdichten mit unterschiedlichen Flavours induziert. Dieser Mech-
anismus, der vermutlich auch in der QCD präsent ist, erzeugt Beiträge zu Flavour-
abhängigen Suszeptibilitäten. Suszeptibilitäten zählen zu den vielversprechenden
physikalischen Größen in der experimentellen Erforschung des Phasenübergangs bei
hohen Temperaturen und Dichten.
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Introduction

Modern physics classifies the interactions of particles into four groups: gravitation,
electro-magnetic, weak and strong. Aside from the gravitational force, the remaining
interactions of particles are described by a widely accepted theory called the Stan-
dard Model of particle physics. Within this Standard Model the strong interaction
takes a special position, as it can be considered as an individual theory, which can
be detached from the rest of the Standard Model. It was developed independently
of the Standard Model and referred to as Quantum Chromodynamics (QCD). The
definition of the strong forces via the Standard Model leads to the finding that there
are quite some phenomena in our every day world that are governed by this fun-
damental interaction. The interaction of nucleons (neutrons and protons) and the
formation of nuclei is governed by the strong force. But also the formation of nucle-
ons themselves is driven by the strong force. In QCD nucleons are no fundamental
particles but the outcome of the dynamics of QCD and its fundamental incrediences,
which are quarks and gluons.

Interestingly the energies needed to break up the nucleon compound at high
temperatures almost correspond to its rest mass. The remaining fragments (quarks
and gluons) are highly relativistic possessing a rest mass of only a small fraction
of the total available energy. The inverse process, the formation of nucleons from
quarks, has to be seen as the origin of the vast majority of mass we are experiencing
in our every day lives. This transition from quarks and gluons to hadrons happened
shortly after the “Big Bang”. For this type of problems it is not adequate to consider
individual particles. The large number of individual degrees of freedom can only be
discribed statistically. In such an ensemble of particles the focus has to shift to bulk
properties, i. e. statistical properties of matter, supplying a description requiring
only few relevant degrees of freedom.1 Of course, it is in the end the microscopic
interactions of the individual particles that determine the behaviour of bulk matter.
All properties of bulk material can only depend analytically on microscopic degrees
of freedom.

In the limit of infinitely many particles, changes of bulk properties may happen
non-analytically. The instantaneous, non-analytic change of bulk properties is un-
derstood in terms of phase transitions. Control parameters that allow to distinguish
two phases by their non-analytic behaviour are called order parameters. The qual-

1In classic approximation the particle energies follow a Boltzmann statistic, in quantum theory
we find a Bose-Einstein distribution for bosons and a Fermi-Dirac distribution for fermions of the
particle energies.

1
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itative difference in the microscopic and macroscopic descriptions is related to the
process of decoherence which happens on some unknown scale. This yet unsolved
problem will not be subject to the discussion in this work. The connection of the
bulk properties represented by an order parameter with a microscopic symmetry may
grant important insight into the dynamics of the system. On microscopic scales it is
the internal symmetries that distinguish two distinct thermodynamic phases, while
at the macroscopic scale it is the thermal expectation value of the order parameter.
The way how order parameters change across a phase transition line determines
what we call the order of the phase transition. As mentioned above QCD is able to
explain very different phenomena at different energy scales, which hints towards the
presence of various phases.

This thesis uses a model approach to mimic the dynamics of QCD. One important
application of this model, the so-called Polyakov loop extended Nambu and Jona-
Lasino (PNJL) model, is the investigation of the phase transitions of QCD. Using
such a model some outstanding phenomena generated by the dynamics of QCD can
be followed in the regime of the phase transition.

Outline

Chapter 1 gives a brief introduction to Quantum Chromodynamics (QCD). We fo-
cus on those aspects of QCD which are most important for the thereafter presented
work. These are chiral and flavour symmetries addressed in Sec. 1.1.1 and 1.1.2. Fur-
thermore aspects of confinement, namely the Z(3) centre-symmetry of SU(3)c, are
discussed in Sec. 1.2.3. The general field theoretic treatment of finite temperatures
and densities are in the focus of Sec. 1.2.1. Chapter 1 closes with a presentation of
different ways of addressing QCD and an overview of the phase diagram in Secs. 1.3
and 1.4.

Chapter 2 approaches the centre of this thesis: models for the thermodynamics of
QCD. After a short introduction to the topic of models (see Sec. 2.1) we concentrate
on the foundations of the Polyakov loop extended Nambu and Jona-Lasinio (PNJL)
model, introducing the Nambu and Jona-Lasinio (NJL) model and the Polyakov
loop model in Secs. 2.2 and 2.3. Sec. 2.4 works out several interesting issues arising
in the process of extending the NJL model by introducing Polyakov loop dynamics.
Chapters 1 and 2 present a brief and compact sketch of important aspects of QCD.
For further elaboration the reader is referred to the textbooks [TW, PS, LB].

The brief introduction and overview of QCD thermodynamics in chapters 1 and
2 is followed by a novel contribution to this field. First in Sec. 3.1 the model used,
the PNJL model, is specified. Subsequently the aspects of confinement in the PNJL
model are investigated. Both the influence of the modelled confinement on ther-
modynamic properties and on mesons in random phase approximation are studied
on a quantitative basis. Unfortunately this implementation of confinement does not
completely circumvent unphysical meson decays into quark-antiquark pairs. Never-
theless several model independent quantities of interest to the scientific community
can be investigated without falling short. Most of these quantities are directly de-
rived from the modelled equation of state (Sec. 3.3). On the one hand the results
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may be used for predictions on fireball evolution (speed of sound) or the investiga-
tion of critical phenomena in the phase diagram of QCD (cumulants of the pressure
with respect to various chemical potentials). On the other hand the PNJL model
can be benchmarked comparing details of the equation of state with other calcula-
tions (e. g. QCD on the lattice). The extraction of the phase diagram of QCD in
Sec. 3.4 requires further extrapolating steps. Some quantities like the position of the
critical point can therefore only be investigated on a qualitative level. Quantitative
results turn out to depend sensitively on the physical input used to adjust model
parameters.

Without further input from QCD the PNJL model can be extended by isovector
quantities (see Sec. 3.6). Some of the benchmarking using pressure and moments of
the pressure is repeated using this generalised model. The calculations presented in
this work do not include terms that break the symmetry of up- and down-quarks ex-
plicitly. Nevertheless the PNJL model exhibits non-vanishing isovector quantities,
such as susceptibilties. This phenomenon which at first glance seems contradic-
tory can be explained by the dynamics of Polyakov loop degrees of freedom. The
presentation of the mechanism at work in the PNJL model closes this chapter.



Chapter 1

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is considered to be the theory that correctly
describes the nature of strongly interacting matter even beyond the energy regime
accessable in today’s experiments. Among others the observation of asymptotic
freedom in high energy collisions of protons has most strongly supported that QCD
has been accepted as the correct description of nature. In the low energy regime
where the vacuum and its hadronic excitations have been studied experimentally it
is the observed symmetries and symmetry breaking patterns that support QCD as
the theory of the strong interaction. The different behaviour of matter at low and
high energies leads one to expect that QCD has a rich phase structure. One of the
main objectives of this thesis is to contribute to the exploration of the QCD phase
structure.

The current chapter summarises those features of Quantum Chromodynamics
(QCD) that are of mayor importance to the following discussions. For more de-
tailed exposition of this theory we refer to other publications [AL73, PS, TW]. As
modern quantum field theories like QCD are built on a framework of symmetries
the introductory part of this thesis uses them as a guiding principle. The role of a
symmetry in a quantum field theory is determined first of all by its nature which can
be local or global. Local symmetries (also called gauge symmetries) take the most
outstanding position in the symmetry framework (see Sec. 1.1). Global symmetries
essential to QCD are the chiral symmetry discussed in Sec. 1.1.1 and the flavour
symmetry discussed in Sec. 1.1.2. The centre symmetry of the gauge group turns
out to be very useful in the discussion of the phase structure of QCD. Sec. 1.2.3 is
dedicated to this sub-symmetry of the gauge symmetry.

The QCD Lagrangian density is given by

LQCD = Lquark + Lmass + Lglue

= ψ̄ (iγµDµ)ψ − ψ̄ mψ − 1
2
trc (GµνGµν) . (1.1)

Here ψ represent the quark fields which are fields in Dirac-, colour- and flavour
space. An essential element is the covariant derivative

Dµ = ∂µ − i g Aµ (1.2)

as it couples the quark and gluon sectors of this Lagrangian. Here the fields Aµ =∑N2
c −1

a=1 taA
µ
a are the gauge or gluon fields. Empirical data, e. g. for branching ratios,

4
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determine Nc = 3. The N2
c −1 = 8 fields Aµa give the contributions of each generator

of the SU(3)c (colour) gauge group. From now on we would like to simplify notations
by extending the Einstein summation convention to colour and flavour indices. The
generators of the SU(3)c-group ta obey the commutation rule [ta, tb] = ifabc tc, where
fabc are the totally antisymmetric structure constants of SU(3)c. We will use the
representation named after Gell-Mann thoughout this work. Its explicit form can
be found in many textbooks such as [PS, TW]. The presence of the mass term in
the Lagrangian Lmass is essential for QCD dynamics as it is the only term breaking
the chiral symmetry explicitly (see Sec. 1.1.1). Finally the quantity

Gµν = taG
µν
a =

i

g
[Dµ, Dν ] (1.3)

is the field strength tensor generated by the gluon fields. As for non-Abelian sym-
metries the commutator of two generators do not vanish, Lglue introduces a self
interaction of the gauge fields which is closely related to colour confinement.

1.1 Symmetries of QCD

The backbone of a modern quantum field theory is its gauge symmetry. In case
of QCD we have to deal with SU(3)c. By definition, a gauge symmetry is a local
symmetry meaning that all symmetry transformations at each individual space-time
point are independent. Gauge transformations of the quark and gluon fields can be
written as

ψ −→ ψ̃ = U(x)ψ Aµ(x) −→ Ãµ(x) = U(x)

(
Aµ(x) +

i

g

)
U(x)−1 , (1.4)

where U(x) is an element of SU(3)c with an arbitrary space-time dependence. At
finite temperatures this arbitrary space-time dependence will be limited due to the
choice of boundary conditions (see Sec. 1.2).

1.1.1 Chiral symmetry

In the limit of vanishing quark masses, i. e. if Lmass in Eq. (1.1) is not present the
Lagrangian density of QCD, LQCD breaks up into two independent identical pieces.
These two pieces can be obtained by separating right (left) handed quark fields ψR

(ψL) where these chiral quark fields are defined by

ψR/L = PR/L ψ = 1
2
(1± γ5)ψ . (1.5)

Therefore the QCD Lagrangian in the chiral limit features an SU(Nf)R × SU(Nf)L

symmetry which can be recast into the form of a vector and an axial vector symmetry
SU(Nf)V × SU(Nf)A.

Finite quark masses break the symmetry of right and left handed quarks as the
mass term Lmass in Eq. (1.1) mixes right and left handed quarks:

ψ̄ mψ = ψ̄RmψL + ψ̄LmψR . (1.6)
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In nature it is observed however that the axial symmetry is broken while the
vector symmetry remains almost unbroken. This is explained in the QCD framework
by the appearance of spontaneous symmetry breaking (χSSB):

SU(Nf)R × SU(Nf)L
χSSB−−−→ SU(Nf)V . (1.7)

Firstly spontaneous chiral symmetry breaking is discussed in the chiral limit, i. e. in
the absence of explicit symmetry breaking mass terms in the QCD Lagrangian. If
spontaneous chiral symmetry breaking does not occur we expect the vacuum to be
“empty”, meaning that there is no charge operator with a finite vacuum expectation
value. As mentioned above the breaking of the axial symmetry is observed to be
much stronger than the breaking of the vector symmetry. We define i-flavoured
vector and axial vector current operators by

V µ
i = ψ̄ γµ λi

2
ψ and Aµi = ψ̄ γµγ5

λi

2
ψ . (1.8)

The vacuum expectation values of the vector and axial charge density correlation
functions of the vacuum in the unbroken phase1 should therefore vanish:

〈0|V 0
i
†
V 0
i |0〉 = 〈0|A0

i
†
A0
i |0〉 = 0 . (1.9)

It is observed in the meson spectra that the pseudoscalar and vector mesons ap-
pear at lower energies than their scalar and axialvector partners. In the discussed
idealised chiral limit we conclude that in the spontaneously chiral broken phase

〈Ω|V 0
i
†
V 0
i |Ω〉 = 0 whereas 〈Ω|A0

i
†
A0
i |Ω〉 6= 0 , (1.10)

which implies A0
i |Ω〉 6= 0. This is the statement that the vacuum of spontaneously

broken chiral symmetry now carries a non-zero axial charge density.2 If the vacuum
expectation value of

[
Aµi (x), A

ν
j (y)

]
is evaluated one finds

〈Ω|
[
Aµi (x), A

ν
j (y)

]
|Ω〉 = −1

4
gµν δ4(x− y) 〈Ω| ψ̄ {λi, λj}+ ψ |Ω〉 . (1.11)

In the chiral limit this expectation value can only be non-zero once the anticom-
mutator on the right hand side is diagonal. This implies that i = j. We conclude
that a condensate of the form 〈ψ̄iψi〉 6= 0 with i labelling all flavours is a necessary
condition for a non-vanishing axial charge in the chiral limit.3 The fact that the
axial current does not annihilate the Nambu-Goldstone vacuum state |Ω〉 implies
the existence of a new particle. The operator QA

i =
∫

d3x A0
i (x), which generates

such a particle, is the axial charge operator. The particles generated by the axial
charge operator QA

i |Ω〉 in the Nambu-Goldstone phase are called Goldstone bosons.
In the chiral limit, i. e. in the absence of explicit symmetry breaking terms these

1The vacuum |0〉 in the unbroken phase is also called Wigner-Weyl phase or perturbative vac-
uum.

2The vacuum state |Ω〉 implements the Nambu-Goldstone realization of the chiral symmetry.
3With finite current quark masses this conclusion is no longer necessary but sufficient if we

allow for different values of 〈ψ̄iψi〉 6= 0 for different flavours i.
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bosons are necessarily massless. As the existence of the Goldstone boson state is
part of the vacuum properties, it must not interfere with the Lorentz invariance.
Thus the axial current operator Aµi is proportional to the only covariant quantity
available which is the 4-momentum density of the Goldstone boson, and the mass
of Goldstone bosons has to vanish m2

GB = 0.
Once chiral symmetry is explicitly broken by non-zero current quark masses

equal for all flavours the divergence of the vector current still vanishes, while the
divergence of the axial current does not. Using the Dirac equation we find

∂µV
µ
i = ψ̄ i/p

λi

2
ψ = ψ̄ i

2
mq [1, λi]ψ = 0 (1.12)

∂µA
µ
i = ψ̄ i/pγ5

λi

2
ψ = ψ̄ i

2
mqγ5 {1, λi}+ ψ = imq ψ̄ γ5λi ψ 6= 0 . (1.13)

Now axial charge is carried not only by the vacuum ground state but also by quarks.
As quark operators are involved in the construction of the axial charge operator QA

i

Goldstone bosons can no longer be generated from the vacuum without generating
massive quarks. The massless Goldstone boson field is being mixed with massive
particle fields such that pure Goldstone bosons no longer exist. Amongst the pseu-
doscalar mesons it is primarily the (massive) pion that carries Goldstone boson
character. Therefore the pion is usually referred to as the Goldstone boson of spon-
taneous chiral symmetry breaking in QCD. The Gell-Mann-Oakes-Renner relation
[GMOR68] which allows to determine the pion mass to lowest order using the chiral
expansion is discussed in the next section 1.1.2.

1.1.2 Flavour symmetry

To lowest order one can consider up, down and strange quarks as light quarks while
charm, top and bottom are heavy. In the chiral limit as lowest order approximation,
up, down and strange quark are considered massless, while the other three quarks
are not considered at all, as they are too heavy to be excited. In this approximation
the flavour symmetry SU(3)f is exact.4 Quarks with different masses are able to
explain the mass differences within the meson octet as explicit chiral symmetry
breaking is now flavour dependent. The quark content of the meson states which
are superimposed quark-antiquark states of different flavours determine the mass
differences. The mechanism generating meson masses is demonstrated here only in
the simplest case where the strange quark mass is finite and large compared to up
and down quark mass, i. e. we reduce SU(3)f to SU(2)f .

Finite but small up and down quark mass do modify the Goldstone boson state.
Nevertheless the pion state still carries most of the Goldstone boson character. Let
the pion state be normalised, such that 〈πa(p)|πb(p′)〉 = 2Epδab(2π)3δ3(~p−~p′). Then
the Goldstone boson contribution to the pion state can be projected out using the
state Aµa(x)|Ω〉 generated from the vacuum. As Aµa(x)|Ω〉 is a covariant quantity the
matrix element 〈Ω|Aµa(x)|πb(p)〉 has to be proportional to the pion momentum pµ

4In nature one observes however a meson octet of similar masses while a single meson exists at
higher energies. In the QCD framework this can be understood in the context of an anomalously
broken global U(1)A, which is part of the chiral SU(3)R × SU(3)L symmetry.
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which is the only covariant structure available. Furthermore flavour and momentum
conservation allows to define the strength of the matrix element, which is called pion
decay constant fπ:

〈Ω|Aµa(x)|πb(p)〉 = i fπ p
µδabe

−ip·x (1.14)

If we use Eq. (1.13) to evaluate the degree of non-conservation of the axial charge
QA
a =

∫
d3x A0

a by taking the vacuum matrix element of the commutator
[
QA

1 , ∂µA
µ
a

]

we find a connection to the chiral condensate

〈Ω|
[
QA

1 , ∂µA
µ
a

]
|Ω〉 =

i

2
(mu +md) 〈ūu+ d̄d〉 , (1.15)

which can be used together with Eq. (1.14) to derive the Gell-Mann-Oakes-Renner
relation (GMOR) [GMOR68]

m2
π = − 1

f 2
π

mu +md

2
〈ūu+ d̄d〉 , (1.16)

which gives the lowest order dependence of the pion mass on the current quark
masses. Note that while the pion mass mπ and the pion decay constant fπ are
renormalised quantities, current quark masses and chiral condensates are scale de-
pendent. This mechanism in combination with different current quark masses for
up, down and strange quark, allows to explain the spectrum of the lightest mesons
to astonishing accuracy.

1.2 QCD at finite temperatures

The standard approach to quantum field theories at finite temperatures and chemical
potentials uses the statistical density matrix ρ̂. The expectation values 〈φ|ρ̂|φ〉 then
give the relative probability that the system at a specific temperature and chemical
potential finds itself in a given state |φ〉. The normalisation factor is called grand
canonical partition function Z and defined by Z = Tr ρ̂, and the thermal expectation
value of an operator Â can be evaluated using

〈A〉 = Z−1 Tr Â ρ̂ . (1.17)

The central piece in this formalism, the density matrix ρ̂, can be accessed via the
Hamiltonian Ĥ of the system:

ρ̂ = exp
[
−β
(
Ĥ − µN̂

)]
, (1.18)

where β is the inverse temperature and N̂ is the particle number operator. In
the first part of this section (Sec. 1.2.1) it will be outlined how the density matrix
can be derived from the QCD Lagrangian (Sec. 1.1). The second part (Sec. 1.2.2)
concentrates on the commonly used gauge, named after Polyakov, which is frequently
used at finite tempertature. The final part of this section (Sec. 1.2.3) is dedicated to
some important effects of the finite temperature treatment on the gauge symmetry.
The finite temperature treatment imposes periodic boundary conditions for (gauge)
bosons. This allows to separate the centre of the gauge group as a global symmetry.
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1.2.1 Imaginary-time formalism

The partition function of QCD is given by

ZQCD = Tr e−β(Ĥ−µN̂) , (1.19)

where the trace is evaluated by summing over all possible quantum states. These
states are characterised by the quark fields ψ and the gluon fields Ai: |Ai, ψ〉.
In thermodynamic equilibrium these states are time independent. Due to the
anti-commutation relation of fermions an integration over all quark fields ψ is
an integration over a Grassmann variable, such that the trace can be written as∫
Dψ 〈−ψ| · · · |ψ〉 in accordance with the identity operation which in this case can

be expressed as
∫
Dψ|ψ〉〈ψ| [LB]. Rewriting the trace we find

ZQCD =

∫
DAi

∫
Dψ 〈Ai, −ψ|e−β(Ĥ−µN̂)|Ai, ψ〉 , (1.20)

where an integration over the gauge group is implied in the integration
∫
DAi.

The index i in the gluon field Ai labels the three spatial components. The time
component A0 can be fixed by choice of a certain gauge. We choose the gauge such
that A0 = 0 (Weyl gauge). Furthermore finite temperatures and finite chemical
potentials imply the presence of a heat bath which specifies an absolute rest frame
which breaks the symmetry of space and time. Due to the reduced symmetry too
many independent field variables are present. The redundant degrees of freedom can
be removed by specifying spacelike manifolds on which Gauss’ law must be satisfied.
To write down Gauss’ law we use the charge density and the colour electric fields,
given in QCD as

ρa = ψ† λa

2
ψ = −iπ λa

2
ψ and Ei

a = G0i
a = ∂0Aia = −Π0i

a , (1.21)

where π and Πi
a refer to the canonic momenta corresponding to ψ and Aia. On

the right hand side we exploited A0 = 0 (i. e. the Weyl gauge) to evaluate the
field strength tensor G0i

a . Using these objects the projector PG enforcing Gauss’
law PG = δ(DiE

i
a − ρa) on each individual point in space can be rewritten using

Lagrange multipliers here noted as Γa:

PG =

∫
DΓa exp

[
i

∫
d3x Γa

(
DiE

i
a − ρa

)]
(1.22)

Now we use Trotter’s formula5 to split the density matrix and the projec-
tion operator enforcing Gauss’ law on each space-like sheet (PG) into n partitions
equally spaced in inverse temperature. Here we use the idempotence of the pro-
jection operator and the fact that it commutes with the density matrix, or equiva-
lently, with the Hamiltonian. Additionally we insert identity operators of the form∫
DAiDψ |Ai, ψ〉〈Ai, ψ| and

∫
DΠiDπ |Πi, π〉〈Πi, π| in between each partition of

the density matrix:

5Trotter’s formula (or Lie product): limn→∞
(
eA/neB/n

)n
= eA+B
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ZQCD = lim
n→∞

∫
DAi

∫
Dψ 〈Ai, ψ|e−

β
n(Ĥ−µN̂) PG

∫
DΠiDπ|Πi, π〉 〈Πi, π|

×
∫

DA′
i

∫
Dψ′ |A′

i, ψ
′〉 〈A′

i, ψ
′|e− β

n(Ĥ−µN̂) PG · · · |Ai, ψ〉 . (1.23)

Using 〈Πi, π|Ai, ψ〉 = eiΠ
i Aiei π ψ and the representation of the projection operator

(1.22) with the explicit definitions of charge density and colour electric fields (1.21),
we perform the limit n→ ∞:

ZQCD =

∫
DAai

∫
DΓa

∫
DΠi

a

∫
Dψ

∫
Dπ exp

[ ∫ β

d4x

{
iΠi∂4A

a
i + iπ∂4 ψ

+ iΓa
(
DiΠ

i
a − igπ

λa
2
ψ

)
−H

}]
. (1.24)

Renaming Γa and π by Aa4 and iψ̄γ0 allows to reconstruct the Lagrangian density
applying a Legendre transform to the Hamiltonian density:

ZQCD =

∫
DAµ

∫
Dψ

∫
Dψ̄ e−

R β d4x L , (1.25)

where here and in Eq. (1.24) (anti-) periodic boundary conditions are implied for
(quark) and boson fields, which are a leftover of the properties of the trace. Note
that after introduction of the Euclidean time the metric applied to the Lagrangian
density (1.1) is the Euclidean metric diag(+1, +1, +1, +1).

Just as in the Minkowskian space-time one is free to choose the space-time basis.
The usual Minkowskian space corresponds to an Euclidean space-time with a tem-
poral extend reaching from 0 to β with (anti-)periodic boundary conditions. The
other common basis is the momentum basis. In Minkowskian space, time is Fourier
transformed just like the spatial directions. In Euclidean time, with its finite extent
and boundary conditions, all fields can be expanded in terms of a Fourier series. Due
to the boundary conditions the required frequencies differ for fermions and bosons:

ωn =

{
2nπ T for bosons

(2n+ 1)π T for fermions
. (1.26)

These are called Matsubara frequencies.
All the steps discussed above can be summarised in simple replacement rules.

First of all the energy or zero component of the momentum, p0, is replaced by the
Matsubara frequencies iωn. This produces a minus sign in the metric which allows
to factor out an overall minus sign simplifying the metric to unity. The functional
trace (integration over all direct or momentum space) needs to be modified as well:

∫
d4p

(2π)4
(· · · ) −→ i T

∑

n

∫
d3p

(2π)3
(· · · ) , (1.27)

where the summation runs over all Matsubara frequencies, fermionic or bosonic
depending on the nature of the looping particle.
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1.2.2 The Polyakov gauge

It is important to note that the integration over A4 is necessary to remove ambi-
guities from the equations. In the finite temperature case these ambiguities appear
upon breaking the Lorentz symmetry explicitly by the heat bath. The gauge of A4

is not directly related to the original gauge field A0 and the original gauge. Note
that it is in general not possible to apply a simple gauge transformation to remove
finite values of A4, i. e. to enforce a Weyl gauge like condition in Euclidean space-
time. The choice of gauge in Euclidean space-time is always related to the choice of
the Euclidean time direction (the breaking of Lorentz symmetry by the heat bath).
The so-called static gauge ∂4A4 = 0 is in accordance with the common structure
of space-time. Additionally A4 as a generator of SU(3)c may be diagonalised. This
static, diagonal gauge is referred to as Polyakov gauge [tH81, FMT+98].

The fact that a Weyl gauge like condition in Euclidean space-time is incompatible
with a canonic space-time structure has further consequences. A Wilson line which
gives the relative gauge transformation between two space-time points can be defined
using the exponential of a path ordered integral

W (x, y) = P exp

[
ig

∫ y

x

dzµA
µ

]
(1.28)

where the path of integration is arbitrary. In Euclidean space-time the path of
integration may reach from the spatial position ~x at Euclidean time τ = 0 to the
same point ~x at τ = β. Such a path may be interpreted as a closed loop that wraps
around the Euclidean thermal torus and is referred to as Polyakov loop:

L(~x ) = P exp

[
ig

∫ β

0

dτA4(~x )

]
(1.29)

The fact that it is not possible to choose a gauge such that A4 vanishes all along
the thermal torus from τ = 0 to β implies that a Polyakov loop cannot be changed
to unity by simply applying an appropriate gauge. There is in general an overall
transformation collected along the path of integration which cannot be made to
vanish. As the Polyakov loop L(~x ) is an element of SU(3)c there are two gauge
invariant quantities that can be derived from L(~x ): the traces of L(~x ) and L†(~x ).
The denomination of L(~x ) and L†(~x ) and the traces thereof is ambiguous. Also in
this work we will refer to both L(~x ) and L†(~x ) as well as to the normalised colour
traces of L(~x ) and L†(~x ) as the Polyakov loop. We define the normalised colour
traces of L(~x ) and L†(~x ) as Φ and its complex conjugate Φ∗ by

Φ(~x ) =
1

Nc

trc L(~x ) Φ∗(~x ) =
1

Nc

trc L
†(~x ) . (1.30)

1.2.3 Confinement and Z(3) center-symmetry of SU(3)c

To keep the familiar structure of Euclidean space-time one is restricted to periodic
boson and antiperiodic fermion fields. The periodicity of the gauge boson fields
however does not imply the same periodicity in the gauge transformation. We



12 Chapter 1. Quantum Chromodynamics

have to require that the transformation operator U(x) in Eq. (1.4) is such that the
β-periodicity in Euclidean time of the gauge fields A4 is preserved. In Eq. (1.4)
a transformation U(x) always appears in combination with its inverse. Thus the
boundary condition for the transformation U(x) can always be modified by an ad-
ditional SU(3)c transformation, which commutes with all other SU(3)c transforma-
tions and its generators, namely the gluon fields. The boundary condition for a
gauge transformation of the gauge sector of the Lagrangian therefore reads

U(x4, ~x) = z · U(x4 + β, ~x) with z ∈ SU(3)c ∋ z Q = Qz, ∀ Q ∈ SU(3)c .
(1.31)

A group element z with the property that it commutes with all other group elements
is by definition an element of the centre of the group. The centre group of SU(Nc)
is Z(Nc) and is composed of the SU(Nc) group elements

1, 1 e2πi/Nc , . . . , 1 e2πi(Nc−1)/Nc (1.32)

in the most common representation. The centre symmetry allows to write down
Nc equivalent finite temperature formulations of a SU(Nc) gauge field theory cor-
responding to the Nc different realizations of the periodic boundary conditions for
boson fields. Therefore the centre symmetry is not part of the gauge symmetry as it
is equal for all space. The centre symmetry is a global symmetry generated by the
finite temperature formulation. As the field equations of QCD are symmetric un-
der centre symmetry transformations, there are two conceivable scenarios: the field
configuration (vacuum state) may or may not share the centre symmetry. In a situ-
ation where it is only the quantum state that breaks a global symmetry of the field
equations we refer to spontaneous symmetry breaking. One quantity that is able
to measure whether the vacuum state breaks the centre symmetry is the Polyakov
loop. Applying a gauge transformation such that the transformation matrix U at
τ = β is twisted by an element of the centre group (not changing the boundary
conditions in the gauge sector of the Lagrangian) leads to a transformation of the
Polyakov loop:

〈Φ〉 → 〈z · Φ〉 = e2πki/Nc 〈Φ〉 k ∈ Z (1.33)

If 〈Φ〉 equals 〈z · Φ〉 for arbitrary z taken from the centre of SU(Nc) the centre sym-
metry is unbroken by the vacuum state. In this case we can immediately conclude
from Eq. (1.33) that 〈Φ〉 has to vanish as well as 〈Φ∗〉.

〈Φ〉 = 〈Φ∗〉 = 0 indeed has some important physical consequences. By its def-
inition (1.30) the traced Polyakov loop Φ is related to a Wilson line (1.29) which
wraps once around the Euclidean time torus. Wilson lines are the colour transfor-
mations needed to connect two points in space-time. In case of a Polyakov loop it
is the connection of the same spatial position at different Euclidean times. I. e. the
Polyakov loop connects a colour source at Euclidean time τ = 0 with a colour sink
at τ = β. Given the periodicity in Euclidean time, source and sink are at equiv-
alent positions. As the path integral together with its ficticious Euclidean time is
used as a tool to evaluate the trace over all thermodynamic states we need to find
the physical situation which belongs to this path integral. In fact the only isolated
colour sources available in QCD are infinitely heavy quarks. The path integral used
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to evaluate 〈trc L〉 therefore is equivalent to the thermodynamic trace over all states
in which there is one static quark at a fixed position in space:

〈trc L(~x)〉 =

∫
DAµ

∫
Dψ

∫
Dψ̄ e−SQCD trc L(~x)

=

∫
DAi

∫
Dψ

Nc∑

a=1

〈Ai, −ψ|q̄a(~x) ρ̂ qa(~x)|Ai, ψ〉 (1.34)

= Zq(~x) = e−β Fq(~x) , (1.35)

where ρ̂ is the density matrix of QCD, and the colour trace has been interpreted
as an average over all colours. In the last line of Eq. (1.35) we conclude that
the expectation value 〈trc L〉 is equivalent to the canonical partition function of
a thermodynamic system with exactly one quark at position ~x averaged over all
colours. The partition function can be rewritten in terms of a free energy (1.35).
Finally we find that 〈Φ〉 = 〈Φ∗〉 = 0 implies a vanishing partition function or an
infinite free energy of a single static quark [Wei81, Wei82, Sve86]. All open colour
sources are infinitely suppressed, i. e. colour is confined.

A situation at which 〈Φ〉 vanishes can only occur in QCD with static quarks, i. e.
in the limit of infinitely heavy quarks.6 In this case of infinitely heavy quarks the
Polyakov loop expectation value is an order parameter for confinement. According to
lattice simulations using the gauge action only, the deconfinement phase transition
is of first order [B+96]. The argument above that 〈Φ〉 can only vanish once colour
is confined was based on the existence of the centre-symmetry in the QCD action.
The quark terms however spoil this symmetry, as gauge transformations for quarks
only involve one unitary transformation operator U(x). Therefore a change of the
gauge transformation by an element of the centre of SU(3)c will not lead to the
same transformed quark field:

ψ −→ ψ̃ = U ψ 6= z · U ψ . (1.36)

In QCD at finite temperature and finite quark masses the global Z(3) centre sym-
metry of the Lagrangian is broken explicitly. Therefore any order parameter will
always indicate that the symmetry is broken: 〈Φ〉 6= 0. Strict colour confinement
does not occur, implying a deconfinement crossover instead of first order phase
transition. Physically this is not difficult to accept simply because an infinite free
energy of course would allow to generate an arbitrary number of quarks carrying
colour charges, screening the field of the original static colour charge. The fact that
the free energy of a colour source is finite implies that colour confinement can only
occur above a certain length scale. This observation is compatible with asymptotic
freedom. At asymptotically high energies and short length scales we expect quarks
(colour charges) to be free. In principle it is conceivable that there is a certain length
scale above which QCD dynamics screens colour completely. In lattice QCD cal-
culations an exponential screening has been observed. In Refs. [BBV98, DDGM03]

6In fact it is sufficient if the ratio of quark mass and temperature becomes infinite, which implies
that at finite current quark masses QCD can confine colour at zero temperature.
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the correlation lengths of the field strength tensors have been evaluated using an
exponential ansatz. The typical correlation length scale is of the order of 0.2 fm.7

1.3 Approaches to QCD

QCD shows very distinct behaviour at low energy, temperature and density com-
pared to high energy and momentum scales. Due to the complexity of QCD the
methods used to investigate QCD has become extremely diverse. This section only
summarizes our present knowledge about QCD thermodynamics from lattice QCD
and experiment.

1.3.1 QCD on the lattice

In Sec. 1.2.1 a method to evaluate thermal traces using path integrals was sketched.
In principle these path integrals are infinite dimensional integrals. It is however
possible to evaluate numeric approximations to these integrals, by discretizing space
and Euclidean time. The infinite number of integrals is reduced to a finite number
and can be approximated using Monte Carlo methods.

One of the first lattice calculations emphasizing the connection of chiral sym-
metry and confinement was conducted by Gocksch and Ogilvie [GO85]. Presently
the main obstacle in the perfection of these calculations is lacking computing power.
Optimisation for speed has to trade off between the number of lattice sites and the
convergence improvements employed in the discretized action.

One major obstacle in finite density lattice QCD calculations is the so-called
fermion sign problem. It appears at non-zero chemical potential and manifests
itself in a complex eigenvalue spectrum of the Euclidian action. In principle this
is no limitation to the applicability of the path integral formalism. It is easily
shown that all physically accessable quantities remain real valued as they should.
The convergence of the computational Monte Carlo methods however degrades and
finally fails.

At present stage there are several approaches to circumvent these issues. One
straight forward approach is to Taylor expand the effective action about µ = 0 were
the sign problem does not occur [C+08, GG08]. This method can be criticised for the
fact that the radius of convergence remains unknown and is limited by the nearest
singularity in the effective potential, which appears at the latest at a critical point.
Instead of using Taylor series expansions it is also possible to use a Padé approxima-
tion to map regions with finite chemical potentials [Lom06]. In reweighing methods
a statical ensemble is generated at µ = 0 and applied to finite chemical potentials
while changing the parameters, current quark mass(es) and coupling strength, such
that physical quantities remain unchanged [AFKS06a, Eji08]. Here in addition the
so-called overlap problem appears, which names the issue that the ensemble should
be modified upon changing the chemical potential. Finally it is possible to exploit

7It is interesting to note that the correlation length scales of the field strength tensor correspond
to the energy scale of the cutoff in the Nambu and Jona-Lasinio model presented in Sec. 2.2.
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Figure 1.1: The trace anomaly θµµ(T ) = ǫ−3p in units of T 4 versus temperature as given
in Ref. [C+08] obtained from calculations on lattices with temporal extent Nt = 4, 6, and
8.

the analytic properties of the effective action. The effective action is an analytic
function with singularities at critical points which in principle can be analytically
continued to imaginary chemical potential. At imaginary chemical potential the
fermion sign problem does not occur. It is therefore much easier to evaluate the
lowest order coefficients of a polynomial approximating the analytic effective poten-
tial. The extracted expansion coefficients can then be used to trace the analytic
function back to real chemical potentials [dFP08]. As in the case for the Taylor
series expansion the truncation of the approximating polynomial limits the range of
applicability of this method.

Despite the diversity of calculations we pick only one representative to outline
the major outcome of the finite temperature calculations. The primary quantity
evaluated in thermodynamic lattice QCD calculation is the interaction measure,
ǫ− 3p, which is the trace of the relativistic energy-momentum-tensor (see Fig. 1.1).
This interaction measure vanishes for ultrarelativistic non-interacting particle gases.
Based on this quantity, energy density ǫ, pressure p and entropy density s are ex-
tracted from the data (see Fig. 1.2). Tracing these quantities along temperature
reveals rapid changes around a characteristic transition temperature. As for fi-
nite volume and lattice spacing the effective potential cannot be singular, no true
phase transitions can appear in lattice calculations. Only the scaling behaviour with
changing lattice volume and lattice spacing can answer the question of the order of
the phase transition. The current consensus is that there is no true phase transition
at µ = 0 [AEF+06]. The rapid changes in energy density ǫ, pressure p and entropy
density s therefore indicate a rapid crossover. For crossover transitions no true or-
der parameters exist. This is why the crossover temperature cannot be fixed by a
unique criterion. The pseudocritical temperature varies depending on the details
of the lattice analysis and the chosen criterion. Values in the literature for 2 + 1
flavours range from about 151 MeV [AFKS06b] to about 196 MeV [C+06, C+08].
Ambiguities in setting a scale on the lattice are part of the cause for these rather
large variations.

Order parameters (or in case of crossover transitions: order parameter like quan-
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Figure 1.2: Energy density and pressure (left) and entropy density (right) plotted as
functions of the temperature as given in Ref. [C+08]. The shown results have been obtained
from calculations on lattices with temporal extent Nt = 4 and 6. The small vertical bar in
the left hand figure at high temperatures shows the estimate of the systematic uncertainty
on these numbers that arises from the normalisation of the pressure at T0 = 100 MeV.

tities) are important indicators of the dynamics at finite temperatures. There are
in fact two transitions located close together: the chiral and the deconfinement
crossover (see Sec. 1.1 and Fig. 1.3). It is suspected that there is a dynamic mecha-
nism at work in QCD that intertwines these two crossovers [GO85]. However there
is no consensus on the question whether the transitions do happen exactly simulta-
neously or if there is a slight shift of the chiral transition to lower temperatures (see
Fig. 1.4)

At zero density lattice QCD calculations provide strong indications that there is
only a rapid crossover transition bordering the confined phase8 with broken chiral
symmetry. Model calculations using different approaches indicate that there exists
a first order phase transition at low temperatures and high densities. Therefore a
widely accepted scenario of the QCD phase diagram in the plane of temperature
and chemical potential assumes the existence of a first order line starting on the
µ-axis which ends in a critical point at finite T and µ. In Ref. [Ste06], where the
phase diagram is discussed in detail, a substantial collection of model calculations
supporting such a scenario are referenced. Using the current quark mass as an addi-
tional parameter the critical point may become tricritical once the light quark masses
come to zero and the chiral crossover turns into a second order phase transition (see
Sec. 1.4.2). However it is crucial how the strange quark and its mass as a parameter
are treated in such approaches. For three degenerate light quarks the chiral phase
transition is expected to be of first order in the chiral limit.9 The order of the phase
transition on the temperature axis (at µ = 0) as a function of strange quark mass
on the one and up and down quark mass on the other hand is often illustrated using
the so-called Columbia plot [B+90] (see Fig. 1.7 in Sec. 1.4.2). Interestingly in this
Columbia plot the physical realization of the current quark masses is located very

8The word phase is used here even though there is no phase transition in the strict sense.
9Pisarkski and Wilczek advocate such a first order transition line [PW84].
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Figure 1.3: Renormalised Polyakov loop on lattices with temporal extent Nt = 4, 6 and 8
(left) and the normalised difference of light and strange quark chiral condensates defined in
Ref. [C+08]. The vertical lines show the location of the transition temperature determined
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Nt = 6 (left line). The transition temperatures determined in terms of chiral condensate
and Polyakov-loop almost coincide. [C+08]
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close to the borderline of first order transition and crossover. In other words the
question whether there is a first order phase transition or a crossover at µ = 0 has
not been settled yet (see discussions on Ref. [dFP08]). Away from the T and µ-axis
even less is known about about the QCD phase diagram.

On the one hand lattice calculations need to produce more consistent results at
µ = 0 while experimental output on the other hand needs better interpretation.
This requires understanding and insight into the dynamics during the evolution of
the hot and dense matter produced in high energy collisions of heavy nuclei. Model
calculations can then proceed to draw a picture of the QCD phases once they can
make use of a solid data basis [Raj99, Alf03, Ste06].

1.3.2 Empirical insights into strongly interacting matter

The experiments concerning the issues discussed in this thesis have been performed
mainly at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory (BNL) and at the Super Proton Syncrotron (SPS) at CERN. Future
experiments may include a low energy run at RHIC dedicated to the search of
the critical point, very highly energetic heavy-ion collisions at the LHC and the
Compressed Barionic Matter (CBM) experiment at the planned FAIR facility next
to GSI in Darmstadt. However, so far only few observables have been proposed and
measured that do not require involved calculations for their interpretation in terms
of the physics of strongly interacting matter.

The observation of the angular distribution of low energy particles has been
interpreted in terms of hydrodynamic flow. This requires an extremely fast ther-
malization of large fractions of the fireball after a highly energetic nuclear collision
leading to a thermal medium of particles with much lower energies than the initial
centre of mass energy. Thermalization has become an accepted assumption also
because measured particle ratios in the final state are in good agreement with ther-
mal equilibrium statistics. The particle ratios allow to estimate the temperature
at which the particles do no longer interact, the so-called freeze-out temperature
[ABMS06] (see Fig. 1.5 in Sec. 1.4.1).

Particle abundances with different valence quark content show quark number
scaling, i. e. abundances of particles only depend on the number of valence quarks
independent of mass and other quantities [A+07a, A+07b]. The generation and
thermalization of quarks therefore must have happened under conditions where light
and strange quarks can be treated approximately equal. This indicates that shortly
after thermalization the fireball was in a partonic, high temperature phase, a so-
called quark-gluon plasma.

On the other hand high energetic particles are observed that did not equilibrate.
These particles are interpreted as remnants of partonic collisions at very early times.
Typically these so-called particle jets are observed in spatially anticorrelated pairs,
carrying momenta in opposite directions. Comparing jets in heavy-ion collisions
with jets in proton collisions leads to the observation that one of these paired jets is
attenuated in the heavy-ion case. This phenomenon is referred to as jet suppression.
The difference in the jet energies of a pair of jets in a heavy-ion collision is usually
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explained by the asymmetry of the primary partonic collision. In general each jet of
the same pair has to travel along paths of different lengths. The differences in their
way through the thermalizing background of low energy particles leads to different
attenuation of the two jets. The understanding of the in-medium effects leading to
jet suppression require involved simulations of the fireball and its evolution.

Observables which can be interpreted without detailed modelling of the fireball
are rare. On the one hand experimental corner stones are urgently needed to refine
models and to benchmark lattice QCD calculations, on the other hand it is difficult to
extract information from experimental data without sophisticated models describing
the expansion of the fireball.

In the early stages of the fireball evolution the assumptions needed for the ap-
plicability of hydrodynamics seems to be sufficiently well fulfilled. Both ideal and
viscous hydrodynamics have been used to describe such systems reproducing many
features of the system [SH08, RR07]. At later stages of the evolution the assump-
tions needed for hydrodynamics become questionable. Here ultra-relativistic quan-
tum molecular dynamics (UrQMD) codes have been applied to the fireball evolution
[B+99, B+98]. At the present stage efforts are made to reduce the diversity of models
and focus on the most promising approaches.

High energy probes like jets or dileptons originating in a highly energetic photon
and their spatial correlations are expected to carry information about the very early
collision and their journey through the medium. The difficulty in the interpretation
of the obtained data is to de-convolute different interactions with the medium at
different times from the process of generating these particles. On the other hand
a multitude of interaction processes with the medium is accessable through such
probes.

One of the methods to extract further information from heavy-ion collisions is the
measurement of fluctuations. Particle abundances and ratios have revealed the high
degree of thermalization of the fireball [ABMS06]. However, these measurements
represent a snap-shot of the sphere of last interaction. This sphere of last interaction
may show a dependence on the interactions involved. Typically different mesons
dissolve in the thermal medium at different conditions depending on the binding
strength of the quark-antiquark pair. Therefore the concept of a sphere of last
interaction is a difficult concept to begin with. In contrast to this, fluctuations are
able to give some insight into the evolution of the final state observed in the detector.
Due to the fast evolution of the fireball, fluctuations generated in early stages may
survive the ongoing interactions in the medium.10

One way to study fluctuations works on an event-by-event basis. If the used
detectors would cover the total solid angle one could not expect fluctuations on an
event-by-event basis of conserved charges. Due to the fact that the collision products
are highly relativistic a large fraction of the particles leaves the detector in forward
direction without being measured. The acceptance of the detector cuts out a window
in phase space. If fluctuations are smaller than this window it is in principle possible
to extract the correlation length (the size of the fluctuations) from the ensemble of

10Such analyses are analogous to the analysis of the cosmic microwave background to investigate
the “Big Bang”. Heavy-ion collisions are sometimes referred to as “little Big Bang”.
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individual events. Especially in the investigation of phase transitions, fluctuations
are of major interest, as they are expected to be large near the critical point (second
order phase transitions). In principle it is also possible to detect first order phase
transitions using event-by-event fluctuations due to the fact that the fast expansion
of the medium across first order phase transition will lead to spinodal instabilities.
The typical size of these instabilities is a characteristic quantity which carries lots
of information about the interactions in the fluid.

1.4 Phases of QCD

One of the central purposes of the models used in this work is to compute and predict
a phase diagram which has as many features as possible in common with the “true”
QCD phase diagram. The variables of such a phase diagram are chemical potentials
and temperature. In a second step parameters of the theory of interest are varied.
In the case of QCD these parameters are the current quark masses. In addition
to the parameters of QCD, the quark masses, each model usually has several other
constants such as interaction strengths. This opens up a variety of “theoretical”
phase diagrams for qualitative and conceptual explorations.

To draw a phase diagram one needs some criterion to distinguish different re-
gions in parameter space. The only solid criterion for a phase transition we know
is the non-analyticity in some observable. This also implies a non-analyticity in the
partition function. The partition function, however, is only accessable from the the-
ory side. Strictly speaking such non-analycities can only appear in infinite systems.
The border line between microscopic, quantum mechanical behaviour and classic,
macroscopic behaviour is difficult to determine. This issue is connected to decoher-
ence and the measurement process and shall not be discussed here. It is remarkable,
however, that phase transitons as macroscopic phenomena are governed by changes
on the microscopic scale.

Given an observable that displays non-analytic behaviour along some border
line in parameter space, we can distinguish two different regions in parameter space.
This border line defines a phase transition and the observable with its non-analytic
behaviour is called order parameter. The choice of order parameter is generally not
unique. It is possible to construct many different quantities that involve the same
non-analyticity. In most cases it is however possible to associate a distinct micro-
scopic symmetry with these equivalent order parameters. In this case the phase
boundary separates areas where this symmetry is broken by quantum dynamics
and areas where all occupied states share this symmetry. In cases where no micro-
scopic symmetry is associated with the transition, phase transition lines may end
in a so-called critical end point. As an ending transition line cannot separate two
different regions in space, the existence of a critical end point implies that no micro-
scopic symmetry is broken or restored when crossing the transition line. The most
prominent example is the liquid-gas transition of ordinary substances like water.

As a first step in approaching these issues theoretically it is often usefull and
possible to suppress terms in the Lagrangian density that break some symmetry
explicitly. Having enforced the Lagrangian to be symmetric the derived thermody-
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namic system may or may not share this symmetry. The symmetry of the Lagrangian
is the precondition for the existence of a phase transition. In fact it may happen
that this transition only happens at infinite or vanishing temperature or chemical
potentials. Having constructed such a system it is then possible to study the vicinity
of the symmetric Lagrangian by reintroducing a symmetry breaking term. As the
symmetry is now broken everywhere in parameter space no non-analycities in the
derived partition function can appear. In the limit of vanishing symmetry breaking
the change in the order parameter remains sharp. Away from this limit the transi-
tion in this parameter becomes smoother. Due to this smooth and continous change
it can no longer be consided an order parameter in the strict sense. In such cases
the transition is referred to as a fast crossover transition and the order parameter is
only approximate. As in the unbroken symmetry case it is possible to construct sev-
eral equivalent order parameters. There are several quantities that exhibit a rapid
crossover. However, now, considering the different approximate order parameters
the exact position of the transition is not well defined. The uncertainties in its de-
termination are of the order of the width of the peak in the susceptibility associated
with an approximate order parameter.

1.4.1 QCD phase diagram at finite densities

In this section we concentrate on the physical phase diagram in the plane of tem-
perature and chemical potential. Only in small regions of the QCD phase diagram
a common consensus on the QCD phase structre has been achieved. The empiri-
cally well established points are the vacuum at zero temperature and zero chemical
potential, and the saturation point of nuclear matter. Known from lattice QCD
calculations allowing for some systematic uncertainties is the behaviour along the
temperature axis at vanishing quark chemical potential. The fact that QCD pro-
duces a colour superconducting colour-flavour-locked (CFL) phase at asymptotically
large chemical potential and low temperatures is based on theoretical arguments
[ARW99]. Already at much lower chemical potentials we expect the baryon number
density to become large, such that there is no space left in between the baryons.
From this percolation argument we conclude that deconfinement should set in at
large quark chemical potentials. The MIT bag model (see Sec. 2.1) predicts this to
happen at about 0.4 GeV in quark chemical potential. From the existence of nu-
clear matter with baryons (neutrons and protons) we know that the quark chemical
potential at zero temperature for this to happen should definitely be above MN/3.
Whether this deconfining transition directly merges into a colour superfluid phase
or a quark-gluon phase is not a settled issue. Some models like the MIT bag, the
NJL model, the PNJL model, quark meson models [SPW07] and the random matrix
model [HJS+98] predict this transition to be of first order.

From the assumption that the phase transition is of first order on the chemi-
cal potential axis and of crossover type on the temperature axis, the existence of a
critical point is inferred. This can be seen from an angle that associates the end-
ing transition line with the chiral transition. The fact that we observe an ending
transition line is owed to the explicit breaking of the chiral symmetry by non-zero
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current quark masses in the QCD Lagrangian (see Sec. 1.1.1). From another angle
the confinement-deconfinement transition may be considered to be at the origin of
the ending transition line. Here the situation is similar, the corresponding symme-
try (the Z(3) center of SU(3)c) is explicitly broken by the presence of quarks with
finite masses (see Sec. 1.2.3). Within the systematic errors and depending on which
approximate order parameters are chosen, lattice QCD calculations indicate that
the chiral and the deconfinement crossover transition are observed within a rather
narrow corridor in the phase diagram. Yet, the existence and position of a critical
end point is under intensive discussion.

In the t’Hooft limit11 of large Nc it can be argued that chiral and deconfinement
transitions remain completely separated [McL08]. In this limit the deconfinement
transition should become independent of the quark chemical potential and remain at
fixed temperature throughout the phase diagram. Chiral symmetry is broken once
the Fermi sea of baryons fills up. This happens once µB > mB, where µB and mB

are baryon chemical potential and mass. At large chemical potentials and low tem-
peratures matter is confined while chiral symmetry is spontaneously broken. This is
in accordance with an argument by Gocksch and Ogilvie [GO85] who conclude that
confinement implies chiral symmetry breaking. The author of Ref. [McL08] refers
to this region of the (unphysical) phase diagram in the t’Hooft limit as quarkionic
phase. Considering the possibility of the existence of this new quarkionic state of
matter, one has to admit that there is no reason why chiral and deconfinement
transitions have to coincide. Assuming that there is no first order phase transi-
tion on the temperature axis, which is supported by lattice QCD calculations, there
still could exist separated first order phase transitions for chirality and confinement.
Even though explicit symmetry breaking would prohibit the complete vanishing
of the approximate order parameters (chiral condensate and Polyakov loop) they
could still exhibit abrupt changes at different chemical potentials. Thus two critical
end points are not ruled out. Even with only one order parameter several critical
endpoints may appear which has been conjectured in Ref. [HTYB06]. It is also
conceivable that distinct first order phase transitions for chirality and confinement
surround an area in phase space. In principle a quarkionic phase could exist in such
a bubble. However perfect confinement of this state of matter would be inhibited
by the explicit symmetry breaking of the centre symmetry of SU(Nc).

12

On the experimental side scans of the phase diagram are proposed (e. g. the
RHIC low energy run). New programs are also proposed, dedicated to the inves-
tigation of regions of high chemical potentials (e. g. CBM at the planned FAIR
facility). It is very difficult, however, to construct an observable that represents
a unique indicator for critical behaviour. So far statistical models are used to ex-
tract a lower bound for the deconfinement and chiral transition lines [BMRS04]. In
Fig. 1.5 a graph taken from [BMRS04] is shown for orientiation to indicate the lower
bound of the actual phase transition. The distance from these freeze-out curves to

11Nc → ∞, while g2Nc remains finite.
12In the PNJL model calculations presented in this work (see Sec. 2.4) such a scenario cannot be

realised as the Polyakov loop effective potential has been assumed to be independent of the quark
chemical potential.
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Figure 1.5: Reproduction of Fig. 28 in Ref. [BMRS04]. Comparision of two chemical

freeze-out conditions: net baryon density nB = 0.12 fm3 (dashed) and constant energy per
particle ≃ 1.0 GeV (solid).

the transition is an issue under debate. Detailed models are needed to extract more
information on this issue (see discussion in Sec. 1.3.2). In theory it is foremost
the lattice calculations that are expected to quantify the position of the critical
end point. These calculations suffer, however, from the technical problems (sign
problem, overlap problem etc.) discussed in Sec. 1.3.1.

1.4.2 Phase diagrams in “theory space”

An instructive extension to the phase diagram in the temperature chemical potential
plane discussed in the previous section is the generalisation of this phase diagram
using the physical parameters of QCD (the quark masses) as additional dimensions.
In the temperature region below 1 GeV it is the up and down quark masses that
are considered as parameters. The influence of the heavier quarks is assumed to be
negligible. In this thesis, we focus on the two lightest quark flavours.

The two dimensional phase diagram discussed in Sec. 1.4.1 is extended by a
third dimension, the mass of the two light quarks, up and down. The change of the
current quark masses is of particular interest, first of all because the quark masses
are the only parameter of QCD, and secondly because at the latest in the chiral
limit (i. e. for vanishing up and down quark mass) the chiral phase transition has
to switch from crossover to a true phase transition. In fact there is a new first
order phase transition plane.13 This plane appears in the region where the chiral

13A phase transition line in two dimensions can extend to an additional direction in a three
dimensional parameter space. The line in two parameter dimensions is just a projection of a plane
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Figure 1.6: Reproduction of Fig. 4 in Ref. [Ste04]: A three-dimensional view (T , µB, mq)
of the QCD phase diagram near the tricritical point.

condensate 〈ψ̄ψ〉 near mq ≡ mu/d = 0 is finite. At mq = 0 the chiral condensate
switches sign which is the indication for non-analytic behaviour corresponding to
a first order phase transition. Towards high temperatures the chiral condensate
will drop to zero. The line delimiting the area where the chiral condensate is non-
zero in the chiral limit, is a critical line. On this line bordering a first order phase
transition plane the transition is of second order. Approaching the plane mq = 0
from finite quark mass the first order transition lines in the phase diagrams for
temperature and chemical potential span a first order phase transition plane, too.
Just as before this plane is bordered by a critical line of second order. The point
where the three critical second order lines come together is a tricritical point. This
tricritical point is discussed in more detail in Ref. [Ste04] and references therein. To
illustrate this theoretical phase diagram in three dimensions, Fig. 4 of Ref. [Ste04]
has been reproduced in Fig. 1.6.

Besides the extension of the QCD phase diagram in direction of the quark mass
each model has intrinsic parameters which may be used to study aspects of QCD
in terms of effective QCD parameters. As one example, QCD can be modelled in
the low energy regime with gluons integrated out. The strengths of the remaining
quark coupling constants can be used to extend the phase diagram in the plane of
temperature and chemical potential. Such studies using Polyakov loop extended
NJL models have been performed in Refs. [Fuk08b, Fuk08a]. In Ref. [Fuk08b] it
is the strength of the t’Hooft coupling introduced to control the strength of the
anomalous breaking of the axial U(1)A symmetry of QCD, that is used as an addi-
tional dimension in the phase diagram. In Ref. [Fuk08a] it is the effective four-quark
vector coupling that is modelled. Interestingly these rather subtle changes produce
large variations in the predicted phase diagrams. First of all this shall be taken as
a warning, that modelling the QCD phase diagram is a very delicate issue, due to

in three dimensions.
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Figure 1.7: Columbia plot [B+90] reproduced as shown in Fig. 1 in Ref. [dFP08]. The areas
indicate the order of the phase transition at µ = 0 as a function of the QCD parameters.
At the scales below 1 GeV only the light quark masses mu = md = 0 and the strange
quark mass ms = 0 are of interest.

the high sensitivity of the order of phase transitions on small changes in an effective
potential. Secondly Refs. [Fuk08b, Fuk08a] are credited here to give examples for
the large variety of studies of the QCD phase diagram using models.

A further generalisation of the phase diagram is the so-called Columbia plot
[B+90]. In this plot the physical quantities accessible in experiments, temperature
and chemical potential, are removed from the plot. Instead only the dependence on
light and strange quark mass is plotted (see Fig. 1.7). The different areas in this
figure indicate for which quark masses QCD would produce a first order, a second
order or a crossover transition at µ = 0. Sometimes the baryonic chemical potential
is kept as third axis. The authors in Ref. [dFP08] claim that this generalised three
dimensional Columbia plot indicates the non-existence of a critical point. Their line
of reasoning starts from the observation that at µ = 0 the physically realized quark
masses lie in the crossover region. When expanding their lattice QCD results around
µ = 0 they observe a curvature of the plane separating quark mass values leading
to crossover transitions and first order phase transitions that bends this separating
plane away from the first order region. This would mean that even at higher chemical
potentials no first order phase transition will set in removing the critical point from
the phase diagram. The results are criticised for the fact that higher order terms
could lead to a back-bending of the plane. When changing current quark masses
in lattice QCD calculations lattice scales need re-adjustment. This re-adjustment,
which is part of the renormalization proceedure on the lattice, may influence the
µ-expansion, such that the small curvature at vanishing µ changes sign. These issues
are currently under discussion.



Chapter 2

Modelling QCD thermodynamics

The preceeding chapter has given a short overview of QCD. Solving QCD with its full
complexity arising from the non-Abelian gauge symmetry is the task of numerical
simulations on Euclidean space-time lattices. Such computations, however, do not
give insights into a relevant physics question, namely to identify the most important
degrees of freedom that govern the thermodynamics of QCD.

2.1 Simple models

One easy way to implement asymptotic freedom on the one hand and confinement
on the other hand is achieved by the MIT bag model [CJJ+74, CJJT74, DJJK75]. In
this model the two different phenomena are allowed to coexist by simply separating
them in space. There are space regions where quarks and gluons exist in their de-
confined realizations, and there are “bags” in which quarks and gluons are confined.
The colour neutrality of the bags is not ensured by some dynamic mechanism as in
QCD but merely postulated. To keep the quarks inside the bag and stop them from
breaking up their colourless compound they are bound together by putting them
in a cavity, the so-called bag. The ansatz for this bag is formulated covariantly by
adding a constant term to the stress-energy tensor

T µνin = T µνout + gµν B . (2.1)

Here the stress-energy tensor T µν is defined in terms of the Lagrangian L, the quark
field q and the canonic 4-momentum πµ of q by T µν = πµ∂νq − δµνL. The pressure
inside the bag is therefore reduced: pin = pout − B, while the energy density of the
quarks inside the bag is increased: εin = εout+B. The size of the bag is then adjusted
such that the total hadron energy made up by the quark localization energy and the
contribution of the bag constant becomes minimal. This leads to a direct connection
of the bag radius R0 and the bag constant B: R0 ∝ B1/4. Typical values for R0

are . 1 fm and B ≈ (200 MeV)4 ≈ T 4
c . This is equivalent to the statement that

the mass of baryons and mesons is almost completely generated by the interaction
energy and the large kinetic localization energy in the bag due to the uncertainty
principle. The phase transition towards high temperatures and chemical potentials
appears once temperatures and chemical potential reach the typical scale λ of the

26
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bag constant, B ≈ λ4. Under these conditions the pressure of quarks inside a bag
will surpass the pressure generated by the bags on the outside. The bags begin to
vanish and the modelled hadronic confined phase makes way for deconfined quark
matter. This implementation of the confinement-deconfinement phase transition in
the bag model produces a first order phase transition, as entropy and density of the
two phases differ in general.

As the bag model only knows inside and outside the bag, it is not able to produce
quark properties in the transitional region of the confinement-deconfinement tran-
sition correctly. Quasiparticle models avoid this problem by turning to free quarks
in the high temperature region. A simple approach is to adjust the dynamically
generated mass of the quarks. This may be accomplished with the guidance from
lattice QCD calculations. Using this pragmatic approach it is of no interest whether
the quark mass generation is of perturbative origin or due to spontaneous (chiral)
symmetry breaking.

More realistic approaches have been using perturbative techniques to find the
effective quark mass above the transition temperature. Hard thermal loop (HTL)
approximation is one of the main tools to perform such calculations [LB]. However
these calculations are limited to the perturbative regime of QCD [PKS02, LH98].
It is an issue under debate down to what temperatures HTL approximation can be
trusted. One way to extend the range of applicability and to improve the agreement
with other approaches like lattice QCD calculations is to introduce factors modifying
thermal distribution functions [SW01, TSW04]. Quasiparticle models have been
applied to reproduce and predict many different quantities. Considering the studies
of isovector quantities in Sec. 3.6 it is in order to refer to Ref. [BK08] presenting
similar studies using a quasiparticle approach.

One can also think of the confinement-deconfinement transition as a percolation
transition. The general concept of percolation is such that particles of a distinct size
arrange in space arbitrarily according to some statistical distribution producing a
given correlation function. Percolation appears once one cluster of particles is formed
that dominates over all other clusters of particles. In case of the second percolation
transitions this picture is inverted: it is not the particle clusters that percolate
but the percolation of unoccupied, free space. Very simple percolation models for
the confinement-deconfinement transition ask at which temperatures and chemical
potentials percolation appears if space is filled up with free mesons and baryons.
At zero chemical potential Ref. [CRS09] estimates the percolation temperature to
be T ≈ 230 MeV. When considering a hadron resonance gas this value decreases
according to this reference to T ≈ 177 MeV. The baryon critical chemical potential
at zero temperature is estimated to be of the order of µB ≈ 1.1 GeV. In the context of
such a percolation model a repulsive baryon interaction could explain the appearance
of a critical endpoint [CRS09]. At low chemical potentials thermodynamics will be
dominated by mesons that for the sake of their boson character like to cluster.
Therefore the equation of state will not exhibit an inflection point allowing for
only one minimum. At high chemical potentials and baryon densities the repulsive
interaction could however be so important that this situation changes such that the
equation of state becomes instable and the system splits into two phases of distinct
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density.
It is quite instructive to see that both bag model and percolation model produce

rather similar transition temperatures and densities even though the origin of the
induced phase transition is quite different. In the bag model the phase transition
is governed by the interplay of bag constant, energy density and pressure. In a
percolation model it is geometry and density that control the phases. Of course the
assumed sizes of mesons and baryons is a crucial input value for the estimate in
percolation models. In principle one can determine this size in terms of the baryon
density or in terms of the range of colour correlations. In either case we end up with
two very different transitions which correspond to the chiral and the deconfinement
transitions. Percolation therefore provides an interesting way to relate particle sizes
and correlation lengths to temperatures and densities. However this model is not
able to explain the coincidence of chiral and deconfinement transitions nor give
reasons for the absolute values of the length and energy scales involved.

2.2 The Nambu and Jona-Lasinio (NJL) model

The Nambu and Jona-Lasinio (NJL) model was first proposed as a model to describe
nucleons and mesons [NJL61a, NJL61b], while the elementary particles of the model
were interpreted as baryons having fermionic character. The mesons as bosons are
created in this original version of the NJL model by a fermion-antifermion ladder
in random phase approximation (RPA). Once the quark hypothesis had settled in
the scientific community the NJL model seemed to be unsuited to describe strong
interaction phenomenology and was abandoned. It was much later that the NJL
model was revived and its elementary fermions were reinterpreted as quarks [HK84,
Vol84]. The one feature of the NJL model that remains in both interpretations of
the fermions is that the fermions are implemented chirally symmetric. The chiral
symmetry of the underlying Lagrangian is the interface to the Lagrangian of QCD.
What makes the NJL model so valuable for the intermediate energy range where
QCD starts to become non-perturbative is spontaneous chiral symmetry breaking
(see Sec. 2.2.1). Spontaneous symmetry breaking implies the existence of Goldstone
bosons discussed in Sec. 2.2.2.

2.2.1 Quarks and mesons

Nambu and Jona-Lasinio models (in Nf = 2 flavours) are based on Lagrangian
densities of the form

L = Lchiral + Lmass + LI + Ldet
I . (2.2)

The chiral part of the free Lagrangian Lchiral is just the kinetic term for the fermions
in the model and is equivalent to the corresponding part in the QCD-Lagrangian:
Lchiral = ψ̄ /p ψ = ψ̄ (iγµ∂

µ)ψ. Just as in QCD it is the mass term Lmass = ψ̄Lm0 ψR+

ψ̄Rm0 ψL that mixes fermion fields with right- and left-handed chirality (1.5). Thus
Lmass breaks the chiral symmetry explicitly. These two analogous terms in the NJL
and the QCD Lagrangian motivated the interpretation of the NJL model as a model
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for QCD. By construction the first interaction term LI shall only represent four-

quark interaction terms of the form 1
2
GΓ

(
ψ̄ Γψ

)2
, where Γ is a structure in Dirac,

flavour and colour space.1 In the case used here to model QCD, Γ is set to γµta,
where the ta are the generators of SU(3)c with implied summation over repeated
indices µ and a. Such an interaction is motivated by one gluon exchange where
the gluon is integrated out and contracted to a point. For momentum scales below
the inverse correlation length of the field strength tensor this simplification can be
justified. Lattice QCD results predict values of the order of (0.2 fm)−1 ≈ 1 GeV
for this inverse correlation length (see Sec. 1.2.3) which lies above typical NJL 3-
momentum cutoffs.

The four-quark interaction terms have great impact on the realization of the
chiral symmetry. The symmetries of interest are the flavour symmetries of QCD:
G = U(Nf)R × U(Nf)L = SU(Nf)V × SU(Nf)A × U(1)V × U(1)A. The interaction
terms should be chosen such that the symmetry pattern of QCD is reproduced. A
vector colour-current interaction term with Γ = taγ

µ (implying summation over µ
and a) is indeed invariant under G.

The last part of the Lagrangian as it is given in Eq. (2.2) only comprises max-
imally flavour mixing terms while explicitly avoiding to mix chiralities2. Maximal
flavour mixing terms avoid breaking parts of the flavour symmetry other than U(1)A.
Named after t’Hooft these terms are important in modelling the anomalous break-
ing of U(1)A in QCD. The maximal mixing of flavour is achieved by a total anti-
symmetrisation in flavour space which can be enforced using the determinant in
flavour space detf :

Ldet
I = K

(
detf

[
ψ̄(1 + γ5)ψ

]
+ detf

[
ψ̄(1− γ5)ψ

])
. (2.3)

In Nf = 2 flavours this term looks rather simple: Ldet
I = 1

2
K[(ψ̄ψ)2 + (ψ̄iγ5~τψ)2 −

(ψ̄iγ5ψ)2 − (ψ̄~τψ)2].
Due to the local character of the interaction terms, a Fierz rearrangement of the

fermion fields in the covariant four-quark colour current interaction does not change
the general form of the interaction. A Fierz rearrangement interchanges direct and
exchange terms, i. e. transforms Hartree to Fock terms and vice versa. Adding the
Fierz transformed interaction Lagrangian to the original Lagrangian does not change
the character of the interaction in Hartree or Hartree-Fock approximation.

The Fierz rearrangement of a colour current interaction can be found in the
Appendix of Ref. [Bub05] or similar review articles. As long as we are inter-
ested in the model only on mean field level, it is legitimate to neglect all terms
which do not lead to non-vanishing mean fields. In this work the approxima-
tion is taken somewhat further neglecting terms with non-significant condensation.
The Lagrangian used for the actual modelling of QCD first of all contains chiral
SU(2)R × SU(2)L invariant interaction terms already implemented by Nambu and

1The original NJL model used two structures Γ = 1, and Γ = iγ5~τ . The first one is essential
to create spontaneous chiral symmetry breaking, the second one is responsable for the proper
generation of mesons in the RPA formalism.

2Keeping right and left handed quarks separated is achieved here by adding two individual
terms, explicitly making use of projection operators on right and left chirality PL/R = 1

2 (1± γ5)
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Jona-Lasinio [NJL61a, NJL61b]:

LI =
G

2

[(
ψ̄ψ
)2

+
(
ψ̄iγ5~τψ

)2]
. (2.4)

This interaction term is in fact already U(1)A breaking such that an additional
determinant interaction term is not needed.3 For the general discussion of the NJL
model in this chapter no additional interaction terms are included. However this
will be done in Chapt. 3 to take into account degrees of freedom important at high
quark chemical potentials.

At mean field level the only effects that contribute to quark dynamics other than
the terms bilinear in the quark fields are effects generated by a shift of some vac-
uum expectation value. The shift in a vacuum expectation value appears whenever
the vacuum spontaneously breaks a symmetry of the Lagrangian density. In the
NJL calculation with Nf = 2 flavours such a shift of vacuum expectation values can
be accounted for using a Hubbard-Stratonovic transformation. This transformation
removes the four-quark interaction terms by introducing an auxiliary boson field.
Free quarks in the NJL model corresponding to free quarks in QCD turn into quasi-
particles when transformed. The quark quasiparticle hypothesis can only hold in
a certain energy range. The transformation of the quark fields therefore limits the
range of applicability of the NJL model to scales where deconfinement has set in
while perturbative effects are still dominated by first order chiral effects.

In a Hubbard-Stratonovic transformation one uses the fact that the integral

∫
dφa exp

[
−G

2

(
ψ̄Γaψ − φa

)2
]

= N (2.5)

evaluates to a constant N . Therefore this integral can be multiplied with the par-
tition function without changing physics. At the same time this method introduces
the auxiliary field φa, which should be integrated out. An appropriate choice of G
however allows to remove all four-quark interaction terms leaving only the terms
bilinear in ψ̄ and ψ. It is the bilinear coupling term of the quarks to the new auxil-
iary field that modifies the quarks from free (NJL) quarks to constituent quarks as
quasiparticles. It is said that constituent quarks move in a background field. Back-
ground fields are a specific way to describe the properties of a vacuum state which
breaks a symmetry of the Lagrangian. The perturbative vacuum combined with an
auxiliary boson field can account for different vacuum states. In this sense the auxil-
iary boson field is part of the vacuum description and not a degree of freedom of the
Lagrangian. The integration over the auxiliary field weighted thermodynamically
allows to construct an approximation to the proper vacuum state.

A significant further approximation can be performed if the thermodynamic
weight is well localised around one field configuration. In mean field approximation
only this most important field configuration is used to approximate the weighted
integral. Four-quark coupling channels with small coupling strengths inducing only

3In Nf = 2 there is in fact no meson mode which could be used to anchor physical input for an
additional U(1)A breaking strength.
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small quark-antiquark or quark-quark correlations may safely be neglected, as addi-
tional variations in these channels usually do not improve the mean field approxima-
tion significantly. This is the case if the potential is already very close to minimal,
i. e. if the curvature of the potential and the field values are small. The configuration
with maximal weight satisfies the so-called mean field or gap equation, which is the
necessary condition for the minimisation of SE(φa):

∂SE(φa)

∂φa

∣∣∣∣
φa=φa, MF

= 0 . (2.6)

After bosonisation and optimisation only bilinear terms in the fermion fields re-
main, such that the fermion fields can be integrated out. The calculus of Grassmann
variables [LB] allows to write

∫
Dψ

∫
Dψ̄ e−ψ̄(βS−1)ψ = det

[
βS−1

]
. (2.7)

Using the relation log det = tr log the determinant can be evaluated. We can now
evaluate the effective action (with respect to the fermion fields):

Seff(φa) = − logZ = log

∫
Dψ

∫
Dψ̄ e−SE(φa)

= − log d̃et
[
βS−1(φa)

]
+
φ2
a

2G
= −T̃r log

[
βS−1(φa)

]
+
φ2
a

2G
, (2.8)

where all quantities still depend on the vacuum configuration parametrised by φa.
Applying mean field approximation this is the effective action realized by a vacuum
that may develop a non-zero expectation value of φa.

Another way of finding how a NJL quark effectively propagates in the vacuum
(i. e. to find the correct quasiparticle) is to apply recursive equations that have to be
solved self consistently. The propagator of the quasiparticle quark is derived from
the bare NJL-quark using a Dyson Schwinger equation

= + , (2.9)

where the thick lines depict full quark quasiparticle propagators, while thin lines are
bare quark propagators. Multiplication from the left with an inverse bare and from
the right with an inverse quasiparticle propagator plus some algebraic rearrangement
allows to rewrite this as

Σ = GΓ T̃r [S Γ] with S−1 = /p−m0 − Σ , (2.10)

where S−1 denotes the quasiparticle propagator and Γ is the Dirac, colour and flavour
structure in the four-quark coupling channel. For Σ = Γφa the two formulations of
the gap equations (2.9) and the minimisation of Eq. (2.8) are equivalent, if all Γ are
chosen orthogonal (tr [ Γ Γ̃ ] = 0)4.

4If all mean fields can be assigned with distinct and unique sets of quantum numbers this
orthogonality is granted.
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The trace T̃r is understood as a trace over all space: functional space, Dirac,
colour and flavour. The functional trace at finite temperature transforms to an
infinite summation over Matsubara frequencies5 and integration over momentum
space:

T̃r[· · · ]T 6=0 = T
∑

ωn

∫
d3p

(2π)3
· · · T̃r[· · · ]T=0 =

∫
d4p

(2π)4
· · · (2.11)

In the NJL model the summation and integration over one quark loop is not con-
vergent. The usual way to deal with this in a quantum field theory is the renormal-
isation proceedure. In principle this could be done in the NJL model as well. This
would imply that the coupling strength and regularisation scale are no independent
quantities but connected by the constraint of a physical observable that the model
would have to match at some scale. It turns out, however, that there are too many
physical observables and other relevant quantities to be reproduced: pion mass, pion
decay constant, chiral condensate and constituent quark mass (M ≈ 1

3
MN). Even

though the current quark mass is another parameter that can be used to match the
model to nature the problem remains overdetermined. It is not possible to repro-
duce all physical quantities while keeping the degree of freedom in the regularisation
scale. From another point of view the problem is that QCD and the NJL model
do not show the same scale dependence. If the pion decay constant as a physical
observable6 is kept at its physical value, the chiral condensate as a scale dependent
quantity shows different scale dependence in NJL model and in QCD. Therefore we
do not allow the NJL parameters to run. Instead the regularisation scale is fixed
and treated as an ordinary model parameter. The NJL model is regularised not
renormalised.

With these considerations in mind the quantities used to fix the NJL parameters
have to be evaluated in the model framework. The physical entities that have to be
reproduced are the pion decay constant, the pion mass and the chiral condensate at
some low energy scale. The simplest way to couple meson fields to quarks is a piece
in the Lagrangian of the form [Kle92]:

Lπqq ∝ gπqq ψ̄ (γ5~τ · ~π)ψ , (2.12)

with the pion to quark coupling strength gπqq and ~τ · ~π = τ 1π1 + τ 2π2 + τ 3π3 =
τ+π+ + τ 3π0 + τ−π−. Here π+, π− and π0 are meson (pion) field operators. Using

the bosonisation proceedure in the four-quark coupling channel
(
ψ̄ γ5 τa ψ

)2
as shown

above, such a term is indeed produced. The meson (pion) fields are introduced in
a Hubbard-Stratonovic transformation introducing a self interaction term for each
meson (pion) field of the form ~π 2

2G
. As there are no isospin breaking terms, vacuum

expectation values in the pion channel vanish for µI ≤ mπ. There are two ways
to derive the meson (pion) propagator: the first one uses a recursive formulation of
quark loops, the other one is a direct derivation from the quark effective action (2.8).

5The Matsubara frequencies for fermions (bosons) are ωn = (2n + 1)πT (ωn = 2nπT ) with
n ∈ Z.

6The pion decay constant being a low energy limit is necessarily scale invariant.
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Further details on the evaluation of the pion propagator can be found in App. A.1 or
in various reviews on the NJL model [KLVW90, VLKW90, VW91, Kle92, Bub05].
Only the final result is quoted here.

m2
π =

m0

M

1

2GNcNf I2(m2
π)

f 2
π = 4NcM

2 I2(0) , (2.13)

where we have defined the integral I2 in the zero-temperature7 case by

I2(q) = −i
∫

d4p

(2π)4

1[
(p+ q

2
)2 −M2

] [
(p− q

2
)2 −M2

] (2.14)

The derivation of the Gell-Mann-Oakes-Renner (GMOR) [GMOR68] relation and
the Goldberger-Treiman relation are reproduced in the Appendix (see App. A.1 and
Refs. [KLVW90, VLKW90, VW91, Kle92, Bub05]).

2.2.2 Meson properties in the NJL model

Using the formulae given in Sec. 2.2.1 it is possible to vary the parameters of the
NJL model (m0, G and Λ) such that physical quantities are reproduced. Of pri-
mary importance are pion mass mπ and pion decay constant fπ as they are scheme
invariant quantities. But also the constituent quark mass M ≈ 1

3
MN and the chiral

condensate 〈ψ̄ψ〉 should be reproduced as accurate as possible. Due to the overde-
termination of this problem it will only be possible to find a parameter set which
reproduces these quantities to a certain accuracy. The standard parameters used
here are the ones given in Tab. 2.1 and Ref. [RTW06]. If these parameters are
used to evaluate the pion mass mπ and the pion decay constant fπ as function of
temperature (at µ = 0) the behaviour shown in Fig. 2.1 is found. In the phase
of broken chiral symmetry we find a light pion and a heavy sigma boson. Above
threshold temperature the pion becomes lighter than two constituent quarks, kine-
matically allowing for a decay of the pion into two quarks. In the NJL case we find
Tthr ≈ 187 MeV ' Tc ≈ 177 MeV, where Tc is defined as the crossover temperature
of the chiral phase transition using the quark mass susceptibility as indicator for
the transition.8 The NJL model always ensures m2

σ = m2
π + M2 enforcing that at

any time the decay of the sigma mode into a quark-antiquark pair is kinematically
allowed.

2.3 The Polyakov loop model

The Polyakov loop model is motivated by the observation that the Polyakov loop
defined in Eq. (1.29) can be used as an order parameter for confinement [Pol78,
Sus79, SY82]. In Refs. [Pol78, Sus79, SY82, Sve86] the Polyakov loop is used to
build an effective model for SU(3)c gauge theories. At higher temperatures we

7At finite temperature I2 is transformed to I2(q) =
∑
n

∫ Λ d3p
(2π)3

1
[ω2

n
+~p 2+M2][(ωn−ω)2+(~p−~q)2+M2]

.
8Interestingly the relation Tthr ' Tc is inverted in the PNJL model described in Sec. 2.4.
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Figure 2.1: The pion mass (solid, left) and the pion decay constant (right) as functions of
temperature at vanishing chemical potential. The standard set of NJL model parameters
was used to evaluate the pion properties. On the left the pion mass is compared to the
sigma meson mass (dashed) and twice the constituent quark mass (dotted). The decay of
pions into a quark pair at low temperature is only kinematically forbidden; at temperatures
above Tthr ≈ 187 MeV ' Tc ≈ 177 MeV this decay channel is coming on shell.

Λ [GeV] G
[
GeV−2

]
m0 [MeV]

0.651 10.08 5.5

|〈ūu〉| 13 [GeV] fπ [MeV] mπ [MeV]

0.251 94.0 140.5

Table 2.1: NJL model parameters (top) reproducing the physical quantities (bottom),
resulting in a constituent quark mass of M = 0.325 GeV (Nf = 2 and Nc = 3) [RTW06].



2.3. The Polyakov loop model 35

expect that all gauge degrees of freedom are excited equally. In this temperature
regime other degrees of freedom are needed to describe the system exhaustively.

It has been outlined in Sec. 1.2.3 that the Polyakov loop can be used as order
parameter of confinement, with 〈Φ∗〉 = 〈Φ〉 = 0 implying confinement. The quanti-
tative information in 〈Φ∗〉 > 0 and 〈Φ〉 > 0 can be used to describe the vicinity of the
phase transition.9 Around the transition a so-called strong coupling expansion can
approximate the system with Polyakov loop degrees of freedom only [Pol78, Sus79].
The strong coupling expansion is based on large (diverging) field strength correlation
lengths. In this approximation the temporal extend of Euclidean space-time may
be considered small. Large field strength correlation lengths imply slowly changing
gauge fields. This only allows for large (but almost constant) gauge field values
in Euclidean time direction, resulting in non-trivial values of the Polyakov loops.10

Pure gluonic systems do not appear in nature. Therefore one has to rely on the re-
sults of lattice calculations [B+96, KKPZ02]. As these calculations without quarks
do not face the difficulty of approximating the fermion determinant they are believed
to be very accurate and reliable. The calculations indicate that the deconfinement
transition in the absence of quarks is of first order and appears at T0 = 270 MeV.
The available lattice data only constrain the potential at temperatures around and
above the transition temperature T0. At low temperatures, where the Polyakov loop
vanishes, predictions on the loop susceptibilities strongly rely on the functional form
of the potential. The single minimum at Φ = 0 in the effective potential plotted in
Fig. (2.3) is independent of the steepness of the potential.

The quickest way to arrive at an effective potential is to start immediately with
an ansatz for the functional form of the effective potential adjusting its parameters
to physics input in Ginzburg-Landau manner. In such a potential all terms in
agreement with the realized symmetries have to be considered. In the present case
of a pure gluonic system this is the center of the gauge group. The effective potential
has to be a polynomial in Φ∗Φ, Φ∗3 and Φ3. A minimal polynomial has to comprise
at least terms up to fourth order to allow for a first order phase transition.11 Each
term is assigned a temperature12 dependent prefactor. Considering the fact that Φ∗

and Φ are traces of SU(3)c matrices implies restrictions on the functional form of
the potential. The group volume of SU(3)c results in a term in the potential of the
form log [J(Φ,Φ∗)], where J(Φ,Φ∗) = 1 − 6Φ∗Φ + 4

(
Φ∗3 + Φ3

)
− 3 (Φ∗Φ)2 [Fuk04].

As this term already incorporates fourth order terms, it is sufficient to add a second

9This statement is true, if the Polyakov loop degrees of freedom are a complete set of order
parameters. This is the case once there is no other symmetry which is broken alongside the Z(3)-
center symmetry of SU(3)c, i. e. if we are dealing with a single transition and not with several
transitions that accidentally coincide.

10Large values of the spatial gauge fields would imply strong spatial colour correlations, which
have not been observed. As Euclidean time is a ficticious functional dependence, introduced only
to respect the the quantum character of the theory, large gauge fields do not result in physically
observable colour correlations.

11An effective potential leading to a first order phase transition has to produce at least two
degenerate local minima. A more detailed discussion of the effect of these terms can be found in
Ref. [Sve86].

12In presence of quarks temperature and chemical potential dependence are required.
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order term with a temperature dependent strength to induce a first order phase
transition. A second order term (Φ∗Φ) is the leading order in a strong coupling
expansion.

As the group volume is fixed the prefactor of log [J(Φ,Φ∗)] has to follow the tem-
perature dependence ∝ T . The simplest approach for the modelled Φ∗Φ-dependence
is a polynomial ansatz. Using such an ansatz it is possible to adjust the parameters
such that lattice data are reproduced to astonishing accuracy. This has been done
in Ref. [RRW07b], from where we adopt the form of the Polyakov loop effective
potential:

U(Φ, T )

T 4
= −1

2
a(T ) Φ∗Φ + b(T ) ln

[
1 − 6 Φ∗Φ + 4

(
Φ∗3 + Φ3

)
− 3 (Φ∗Φ)2] , (2.15)

where the prefactors are given by

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
and b(T ) = b3

(
T0

T

)3
. (2.16)

In Ref. [RRW07b] the values for these coefficients have been adjusted to repro-
duce lattice data [B+96, KKPZ02] (see Tab. 2.2 with error estimates given in
Ref. [RRW07b]).

As can be seen from Fig. 2.4 the Polyakov loop model is able to reproduce lattice
data for pressure, entropy density and energy density [B+96] as well as lattice data
[KKPZ02] for the expectation value of the Polyakov loop (Fig. 2.5). While adjusting
the parameters several constraints were imposed in Ref. [RRW07b].13 The Z(3)-
center symmetry of the Polyakov loop effective potential and the SU(3)c volume
constraints are illustrated in Fig. 2.2 [RHRW08].

Of course this ansatz is limited in its applicabiltity to a finite temperature range.
The argument that the Polyakov loop (as an order parameter for deconfinement) is
well-suited to describe gluon dynamics is only true close the deconfinement phase
transition. At high temperatures one expects all gluonic degrees of freedom to
contribute equally to the thermodynamic properties of the system. The reason why
the Polyakov loop model works so well even at high temperatures remains unknown.
In this work all conclusions are restricted to the temperature range well below the
NJL cutoff. Other forms of the potential which are strictly derived from strong
coupling expansions [Fuk04, HF04] do not reproduce the Stefan-Boltzmann limit.
However in the temperature region of interest (well below the NJL cutoff) the models
in Ref. [Fuk04, HF04] and Ref. [RRW07b] do not differ significantly.

2.4 The Polyakov loop extended NJL model

In the effort to model the thermodynamics of QCD two main features of QCD
have to be implemented. On the one hand the chiral properties of QCD have to

13In Ref. [RRW07b] it was made sure that a first order phase transition appears at T = T0. This
leads to a constraint which can be frased numerically by the relation b3 = −0.108 (a0 + a1 + a2).
Additionally the potential was required to reproduce the Stefan-Boltzmann limit which is enforced

by a0 = 16π2

45 .
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a0 a1 a2 b3
16π2

45
≈ 3.51 −2.47 15.2 −1.75
— 6 % 3 % 2 %

Table 2.2: The parameters used in Ref. [RRW07b] which reproduce [B+96, KKPZ02]
lattice data for Polyakov loop and the equation of state. Requiring a first order phase
transition at T = T0 leads to the constraint b3 = −0.108 (a0 + a1 + a2). a0 is fixed by
virtue the Stefan-Boltzmann limit.

Figure 2.2: The Polyakov loop poten-
tial U(Φ, Φ∗, T )/T 4 plotted in the com-
plex plane of Φ at T = T0 = 0.27 GeV
[RHRW08].

Figure 2.3: Resulting effective potential
(2.15) that drives spontaneous Z(3) symme-
try breakdown at T = T0.

Figure 2.4: Fit to scaled pressure, entropy
density and energy density as functions of
the temperature in the pure gauge sector,
compared to the corresponding lattice data
taken from Ref. [B+96].

Figure 2.5: The Polyakov loop evaluated in
the Polyakov loop model (dotted line) and
the PNJL model (solid line) is compared
to lattice results for the pure gauge sector
[KKPZ02] (empty symbols) and to lattice
results incuding dynamical quarks [KZ05]
(full symbols).
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be respected, on the other hand aspects of confinement have to be included. In
quasiparticle models [TSW04] confinement can be accounted for by an additional
factor controlling the thermodynamic multiplicity of quarks. Such a mechanism
suppresses the thermodynamic weight of free quarks in regions where quarks should
feel the onset of confinement. The QCD situation can also be approached from
the Polyakov loop side. Here QCD is approximated by implementing the explicit
Z(3) breaking effects of dynamic quarks14. Starting from the interpretation of the
Polyakov loop as the partition function of a static quark, the free energy of a quark
is influenced by a finite quark chemical potential. This point of view leads to the
formal substitution rules Φ → eµ/TΦ and Φ∗ → e−µ/TΦ∗. Now it is the Polyakov loop
that obtains a control factor, namely the quark fugacity, enhancing or suppressing
its influence on the properties of the system. This approach has been chosen in
Ref. [DPZ05] to study matrix models of SU(N) gauge theories. The ansatz presented
here balances these two ways by joining a quark model (the NJL model) and a
Polyakov loop model [MO96, MOM04].

2.4.1 Coupling Polyakov loops to quarks: the PNJL model

As the NJL model and the Polyakov loop model shall be unified, the total effective
action of the new composite model shall comprise both individual actions. The
simple summation of the two actions however does not produce any interaction
between the degrees of freedom. In QCD quarks are coupled to the gluonic sector of
the Lagrangian via the minimal gauge-covariant substitution which is the principle
to be adopted here. Even though the gluons have been integrated out in the NJL
model the partial derivative ∂µ can still be substituted by a covariant derivative
Dµ = ∂µ + iAµ connecting the quarks to an additional gluon field. In the definition
of the covariant derivative Dµ the QCD coupling constant g has been absorbed into
the gauge field Aµ. On the other hand the Polyakov loop defined in Eqs. (1.29) and
(1.30) is a gauge link which establishes the connection around the Euclidean time
torus. For simplicity the spatial dependence of the Polyakov loop is neglected such
that the Polyakov loop can be parametrised in Polyakov gauge by only two real
degrees of freedom. On the one hand we are dealing with Φ∗ and Φ, on the other
hand Φ∗ and Φ can be parametrised by the zero momentum gauge fields in Euclidean
time direction A

(3)
4 and A

(8)
4 . A4 has two components, A

(3)
4 and A

(8)
4 , corresponding

to the two diagonal SU(3) generators λ3 and λ8 in Gell-Mann representation. The
simplified Polyakov loop is defined by

Φ =
1

Nc

exp

[
i

T

(
A

(3)
4 t3 + A

(8)
4 t8

)]
=

1

Nc

exp [i (φ3λ3 + φ8λ8)] , (2.17)

where we use the definition φ3 = A
(3)
4 /(2T ) and φ8 = A

(8)
4 /(2T ). With this approx-

imation of the Polyakov loop the minimal substitution has to be carried out in the
temporal directions with diagonal colour representations. Using the Matsubara for-
malism we find a substitution rule of the form ωn → ωn+A4 with A4 = A

(3)
4 t3+A

(8)
4 t8.

14In contrast to infinitely heavy, static quarks, dynamic quarks with finite quark mass break the
Z(3) symmetry.
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This proceedure results in the PNJL action

SPNJL =
V

T
U (Φ, Φ∗, T ) − V

2

∑

n

∫
d3p

(2π)3 Tr ln
[
βS̃−1

]∣∣∣
ωn→ωn+A4

+ V , (2.18)

where S̃−1 is the inverse quasiparticle quark propagator and V is the potential in the
boson fields produced during bosonization. In the quasiparticle quark propagator
both the Matsubara frequency ωn and the quark chemical potential µ appear as
prefactors of the Dirac structure γ0: S̃

−1 = · · · iγ0ωn + γ0µ · · · , such that a shift in
ωn by A4 can be reinterpreted as a shift of the quark chemical potential µ by −iA4.
It is therefore possible to use the effective action derived in the NJL model for the
Polyakov-loop extended NJL model by formally shifting the chemical potential:

SPNJL =
V

T
U (Φ, Φ∗, T ) + SNJL|µ→µ−iA4

. (2.19)

Of course the substitution µ→ µ− iA4 is different for each colour as A4 = A
(3)
4 t3 +

A
(8)
4 t8 is a quantity with non-trivial colour structure.

2.4.2 The fermion sign problem in the PNJL model

The action of the NJL model SNJL is by construction an analytic function in µa,
where µa is the chemical potential for quarks with colour a. For real values of the
quark chemical potentials the action SNJL is real valued. The analyticity of SNJL

in µa implies that once we choose µa ∈ C we cannot expect SNJL to remain real.
The variations of µa in the complex plane are constraint by the fact that A4 =
A

(3)
4 t3 + A

(8)
4 t8, where A4 can only vary in two real degrees of freedom. There is no

reason why this constraint could prevent the potential SNJL from assuming complex
values. Nevertheless, complex values of the action SPNJL do not imply unphysical
behaviour as SPNJL is only an effective action with respect to the quarks which have
been integrated out after bosonization. The auxiliary boson fields introduced by
bosonization have not been integrated out at this stage. The analytic properties of
SPNJL require that inversion of the sign of A4 (complex conjugation of µ̃ = µ− iA)
leads to the complex conjugate of the effective action SPNJL.15 If the gauge fields
A

(3)
4 and A

(8)
4 are integrated out one can find another set of values of A

(3)
4 and A

(8)
4

for which the action is exactly the complex conjugate of the original value. It is
therefore possible to construct an explicitly real integrand.

The situation in lattice QCD calculations is very similar to this one: In lattice
QCD calculations the fermions are integrated out analytically, while the integration
over the gauge fields is performed using Monte Carlo methods. Once the quark
chemical potential becomes finite the lattice action becomes complex. In lattice
QCD this problem is referred to as the fermion sign problem. The fermion sign
problem also arises in the PNJL model, where it can be addressed with less effort.
One possible approach not applicable to lattice QCD calculations will be discussed

15S =
∑
n anx

n ⇒∑
n anx

∗n = S∗ with an ∈ R.
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in detail in the following section. For the time being we establish a zeroth order
approximation suppressing the fermion sign problem. This lowest order approxima-
tion retains the identification of the action with the pressure: p = − T

V
Sbos, where

Sbos is the effective action16 after bosonization. One straight forward way to define a
mean field thermodynamic potential ΩMF and a mean field action SMF is to truncate
imaginary parts

ΩMF =
T

V
SMF = Re[ Ω0] =

T

V
Re[Sbos] . (2.20)

Of course this truncation of the imaginary parts is a rather crude approximation. In
the present model the Polyakov loop potential is a polynomial in Φ∗ and Φ with real
coefficients. Dropping its imaginary part makes this potential insensitive to changes
of Im Φ = 1

2
(Φ−Φ∗) around Im Φ = 0 as ∂Ω0

∂ Im Φ
∈ iR at Im Φ = 0. The lowest order

(mean field) approximation will therefore not be able to describe Im Φ = 1
2
(Φ−Φ∗)

properly. The description of the real part of Φ, Re Φ = 1
2
(Φ∗ + Φ), should not be

affected significantly by this approximation.
When determining solutions to the mean field equations the fields must only

be varied such that the field configuration allows for a physical interpretation at
all times. In particular real fields must not assume complex values with non-zero
imaginary part. In order to always comply with A

(3)
4 , A

(8)
4 ∈ R we define the mean

field equations using only the real part of the thermodynamic potential

∂ ΩMF

∂ (σ,∆, φ3, φ8)
=

∂ Re[ Ω0]

∂ (σ,∆, φ3, φ8)
= 0 . (2.21)

A complex mean field action would result in complex mean field equations which
determine two real degrees of freedom, an imaginary and a real part possibly leading
to unphysical mean field solutions. The presented approach of “quenching” the
complex action and limiting it to its real part avoids such difficulties. Treating the
truncated imaginary parts as perturbations the leading order approximation can
be refined systematically by a systematic series of perturbative corrections. This
approach is presented in the following section.

2.4.3 Perturbative approach to the PNJL sign problem

In the previous section the notion of mean fields as it is used in this work has
been defined. The mean field equations (2.21) in this definition only determine the
stationary point of the real part of the potential, which is the lowest order approxi-
mation of thermodynamic expectation values. Eq. (2.21) maximises the modulus of
the thermodynamic weight. The imaginary part of the gradient in Eq. (2.21) and
higher order terms in a Taylor expansion of the thermodynamic potential are not
considered in lowest order, i. e. in mean field approximation.

Before working out details of a systematic perturbative series we assure that
complex values of the action SPNJL as such are not unphysical. The quantities

16Sbos is an effective action with respect to quarks, but a standard action with respect to the
auxiliary boson fields (see Sec. 2.4.3).
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that have to remain real at all times are firstly the Lagrangian (together with the
Hamiltonian) and secondly the effective action (equivalent to the thermodynamic
potential). While Lagrangian and Hamiltonian only figure bare fields, the effective
action is the result of integrating out all bare fields. The action that we are con-
sidering is neither of these two, as only the fermion fields (the quark quasiparticles)
have been integrated out while auxiliary boson fields, which have been introduced
through bosonization, still figure explicitly in this action. Integrating over the gauge
boson fields leads to a subtle cancellation of all imaginary parts. The gauge boson
fields responsable for the complex values of the action are those in Euclidean time
direction.17 If the temporal gauge boson fields are set to zero, the action as function
of chemical potential is real valued. In this case the quark propagator is hermitian
such that the determinant transforms into its complex conjugate under hermitian
conjugation of the argument. Thus the action at vanishing gauge fields is an ana-
lytic function in µ with real valued expansion coefficients. In the quark quasiparticle
propagator both temporal gauge fields A4 and chemical potential µ appear as pref-
actors of the Dirac structure γ0. The action at finite gauge fields A4 can be derived
from the action at vanishing fields by the substitution µ → µ− iA4. For simplicity
colour indices have been omitted here. In principle this substitution would have to
be carried out for each colour separately. The properties of the action (analytic-
ity with real expansion coefficients) guarantees that S(A4) = S∗(−A4). Using this
property the integration over the gauge field A4 can be transformed in the following
way:
∫

dA4 e
−S(A4) =

∫
dA4 e

−S∗(−A4) =

∫
d(−A4) e

−S∗(A4) =

∫
dA4 e

−S∗(A4) (2.22)

⇒
∫

dA4 e
−S(A4) =

1

2

∫
dA4 e

−S(A4) + e−S∗(A4) =

∫
dA4 Re

[
e−S(A4)

]
, (2.23)

where we have exploited the fact that the SU(3) integration measure dA4 is in-
variant under sign changes of A4. For the evaluation of thermal expectation
values the considered quantities have to be split into even and odd contribu-
tions in their A4 dependence. Even contributions are weighted thermodynami-
cally with Re

[
e−S(A4)

]
= cosh [S(A4)], while odd contributions are weighted with

Im
[
e−S(A4)

]
= − sinh [S(A4)].

In general it is not possible to integrate out the gauge fields A4 due to technical
difficulties. An approach which allows to perform approximations to the integrals
over A4 is perturbation theory. The action is split into two parts: “free” parts that
can be integrated out and “perturbative” parts (interactions). For the free part we
restrict ourselved to the gaussian approximation, i. e. only the zeroth and second
order terms of a Taylor expansion of the action are considered. This Taylor series of
the action SPNJL is an expansion in the fields about their mean field values. Eq. (2.21)
is the necessary condition for the maximisation of the modulus of the thermodynamic
weight

∣∣e−SE
∣∣.18 The most important corrections to mean field are generated by

17In spatial direction the minimal substitution ~p→ ~p+ ~A does not cause complex values of the
action as it is a real shift of the spatial momenta.

18In analogy to the procedure in Minkowskian space-time one might argue that the complex
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the first order Taylor coefficient. By construction of the mean field approximation
the real part of the first order term vanishes. Being imaginary valued this term
may formally be treated like a source term, which allows to apply the calculus
of generating functions. In contrast to this formalism the generating function is
evaluated at finite values of the source. Further corrections can be calculated using
higher order derivatives (third order and higher). In the name of conciseness of this
model such corrections have been omitted. These corrections only lead to small
changes which are not able to change physics qualitatively. The technical details
of this derivation of correction terms are summarised in Appendix B. The central
result including next-to-leading order is

Ω = ΩMF − 1

2

(
∂Ω0

∂θ

)T
·
[
∂2Ω0

∂θ2

]−1

· ∂Ω0

∂θ

∣∣∣∣∣
θ=θMF

, (2.24)

starting from the (complex) Ω0, with ΩMF and θMF defined by Eq. (2.21). The
gradients ∂Ω0/∂θ are understood with the set of field variables θ = (θi) arranged in
vector form. ∂2Ω0/∂θ

2 represents the Hessian matrix (∂2Ω0/∂θi∂θj). The correction
term in (2.24) is evaluated at the mean field configuration: θ = θMF. Note that this
term respects contributions generated by non-vanishing imaginary parts of Ω0. Up
to second order the corrected potential Ω is a real quantity by construction. The
thermal expectation value 〈f〉 of a physical quantity f is calculated according to

〈f〉 = f(θMF) −
(
∂Ω0

∂θ

)T
·
[
∂2Ω0

∂θ2

]−1

· ∂f
∂θ

∣∣∣∣∣
θ=θMF

. (2.25)

2.4.4 Perturbative corrections and mean field equations

A useful consistency check, performed here only to lowest order, is to verify that
the thermal expectation values are now closer to the properties of an order pa-
rameter than the mean field result. In other words: we examine whether the
thermodynamic potential Ω is a Landau effective action minimised with respect
to 〈σ〉 , 〈∆〉 , 〈Φ〉 , 〈Φ∗〉 using Eq. (2.25) for the expectation values. The analysis
below is done for the lowest order terms, α = 0 and β = 0, 1. We start from the
form also used for the numerical calculations, presented below Eq. (2.24), and dif-
ferentiate with respect to the expectation values 〈θ〉 = (〈σ〉 , 〈∆〉 , 〈Φ〉 , 〈Φ∗〉)T . To
orders α = 0 and β = 0, 1 we find that 〈θ〉 = θ0 + δθ, where δθ is given by

δθi =
1

2

( [
∂2ΩMF

∂θ2

]−1

· ∂ΩMF

∂θ

∣∣∣∣∣
θ=θMF

)

i

(2.26)

phase needs to become stationary. Taking the thermodynamic limit one observes that the field
configuration in stationary phase approximation is favoured over other configurations proportional
to V

T , while the absolute value is enhanced over other configurations exponentially, i. e. ∝ exp
[
V
T

]
.
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(which is Eq. (2.25) with f(θ) = θi ). After some calculation we arrive at the lowest
order term in β

∂Ω

∂θi

∣∣∣∣
θ=〈θ〉

=
9

8

∑

jk

[
∂3ΩMF

∂3θ

]

ijk

([
∂2ΩMF

∂θ2

]−1

· ∂ΩMF

∂θ

)

j([
∂2ΩMF

∂θ2

]−1

· ∂ΩMF

∂θ

)

k

∣∣∣∣∣
θ=θMF

· · · + higher orders, (2.27)

which is of order β = 2, i. e. the self consistency equations are satisfied to the order we
have been working in. As a consequence the corrections necessary to account for the
fermion sign problem do not modify the mean field equations. A backward reaction
on the mean field equations does not occur at this level of the approximation.

2.4.5 Self consistency and saddle point approximation

Another way to approximate a complex integral over an exponential is the so-called
saddle point approximation. In this approximation the analyticity of the integrand
is exploited. For analytic integrands an integration along a contour in the complex
plane may be deformed without changing the value of the integral. The deformation
used in saddle point approximation deflects this contour to the path of steepest
descent19. Using this approximation it is possible to approximate an integral of the
form

∫
e−f(z)dz up to gaussian (second) order. This approximation incorporates

first order terms which may not vanish on the real axis where the original path
of integration is located. The approach chosen here is to implement these non-
vanishing terms perturbatively. In a first step higher order terms are neglected. We
restrict ourselves to the case of a gaussian action which can be expanded in the fields
around mean field solutions defined by

∂ ReS[φ]

∂φ

∣∣∣∣
φ=φMF

= 0 (2.28)

and around the saddle point defined by

∂S[φ]

∂φ

∣∣∣∣
φ=φSP

= 0 ⇐⇒ ∂ ReS[φ]

∂φ

∣∣∣∣
φ=φSP

=
∂ ImS[φ]

∂φ

∣∣∣∣
φ=φSP

= 0 . (2.29)

These expansions are of the form

S[φ] = SMF + S(1)
MF(φ− φMF) +

1

2
S(2)

MF(φ− φMF)2 and

S[φ] = SSP +
1

2
S(2)

SP (φ− φSP)2 ,
(2.30)

where SMF = S[φMF] and SSP = S[φSP]. The upper index in S(n) labels the nth

derivative with respect to the fields φ: S(n) = (∂nS)/(∂φ)n. We can now calculate

19The path of steepest descent minimises the absolute value of the integrand all along the contour.
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the action at the saddle point SSP in terms of the expansion coefficients about the
mean fields

SSP = SMF + S(1)
MF(φSP − φMF) +

1

2
S(2)

MF(φSP − φMF)2 . (2.31)

We find the difference φSP − φMF by virtue of Eq. (2.29)

φSP − φMF = −
[
S(2)

MF

]−1

S(1)
MF , (2.32)

where S(1)
MF is purely imaginary due to Eq. (2.28). Inserting Eq. (2.32) in Eq. (2.31)

yields

SSP = SMF − 1

2
S(1)

MF

[
S(2)

MF

]−1

S(1)
MF , (2.33)

which is equivalent to Eq. (2.24). On top of the gaussian approximation higher order
terms in a Taylor expansion of S[φ] in terms of φ can be respected establishing an
additional perturbative series. Such a series can be performed about both the saddle
point and the mean field configuration. However, due to the different expansion
points the coefficients are different.

Once the integration variables φ3 and φ8 are not constraint to real (physical)
values, but are chosen along a contour in the complex plane Γ, they can no longer
be considered as physical fields. Instead they have to be seen as a mere reparametri-
sation of 〈Φ〉 and 〈Φ∗〉 (note the brackets 〈· · ·〉). Saddle point approximation imme-
diately jumps from bare fields to thermodynamic expectation values due to

〈φ〉 =
1

N

∫

Γ

Dφ φ e−S[φ] ≈ 1

N

∫

Γ

Dφ φ e−SSP− 1
2
S(2)

SP (φ−φSP)2

=
1

N

∫

Γ

Dφ φ e−SMF+ 1
2
S(2)

MF(φSP−φMF)2− 1
2
S(2)

SP (φ−φSP)2 = φSP .

(2.34)

Therefore this approximation does not allow to separate the bare fields from the
perturbative corrections.

In general the direct connection Φ = Φ(φ3, φ8) of the two parametrisations, (φ3,
φ8) on the one hand and (Φ, Φ∗) on the other hand, is lost once we step away from
mean field and calculate thermodynamic expectation values: 〈Φ〉 6= Φ(〈φ3〉 , 〈φ8〉).
This observation is crucial when comparing the present method of approximation
to schemes in previous publications [RTW06, SFR07, GMMR06, MMR07, ZL07].
In these publications the fields φ3, φ8 have been abandoned in favour of Φ, Φ∗

before doing mean field approximation. This implies that 〈Φ〉 and 〈Φ∗〉 (and not
Φ, Φ∗) are treated as independent mean field degrees of freedom. The minimisation
of Ω0 is then performed requiring that 〈Φ〉 and 〈Φ∗〉 are real quantities. In such
approximation schemes it is not possible to find a way back to the (real) quantities
φ3, φ8: 〈Φ〉 and 〈Φ∗〉 already comprise fluctuations of φ3, φ8 ∈ R. In other words,
the definition of the lowest order approximation (which is usually referred to as mean
field approximation) is different in Refs. [RTW06, SFR07, GMMR06, MMR07, ZL07]
and this work. The definition of the lowest order (mean field) approximation in this
work allows to strictly separate contributions originating in constant and fluctuating
parts of the fields.



Chapter 3

Applications of the PNJL model

After the previous chapters have given guidance to the centre of this work the
current chapter will concentrate on numeric results. Already on the mean field
level the PNJL model shows a variety of most interesting and striking results
[RRTW07, RRW07b, RRW07a, Fuk04, SFR07, GMMR06, ZL07, H+07, AAG+08].
Perhaps the most outstanding one is how chiral and Polyakov loop dynamics coop-
erate to produce crossover transitions. These two crossover transitions end up (at
zero chemical potential) in a narrow overlapping range of temperatures (see Fig. 3.1).
In isolation, the pure gauge Polyakov loop sector and the NJL sector in the chiral
limit show first and second order phase transitions with critical temperatures far
separated, as demonstrated by the dashed and dash-double dotted lines in Fig. 3.1.
When entangled in the PNJL model, these transitions (with non-zero quark masses)
move together to form a joint crossover pattern. The joint transition pattern has
first been proposed by Gocksch and Ogilvie in Ref. [GO85]. Lattice calculations
do not give a completely unanimous answer to the relation of these two crossovers.
Within the tolerance of systematic uncertainties of those lattice calculations and in
view of the model character of the PNJL calculations it can be stated that there is
agreement.

After having convinced ourselves that the PNJL model has incorporated the
correct degrees of freedom to model the dynamics of QCD, the realization of con-
finement in the PNJL model will be studied in greater detail in Sec. 3.2. This section
will first illuminate the modifications of the Fermi-Dirac distribution function of the
quark quasiparticles due to the presence of confinement in its PNJL realization.
Further important issues studied are the properties of the vacuum implementing
spontaneous chiral symmetry breaking, in particular the properties of the lightest
mesons which are governed by the properties of the Nambu-Goldstone modes.

The following sections of this chapter concentrate on the equation of state
(Sec. 3.3), the QCD phase diagram in the temperature and chemical potential plane
(Sec. 3.4), the Polyakov loop degrees of freedom 〈Φ∗〉 and 〈Φ〉 at finite chemical
potentials beyond mean field approximation (Sec. 3.5) and isovector degrees of free-
dom (Sec. 3.6). In Sec. 3.7 the qualitative behaviour of 〈Φ∗〉 − 〈Φ〉 is compared to
isovector degrees of freedom. The similar behaviour suggests a mechanism that is
most likely also at work in full QCD.

45
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Figure 3.1: Chiral condensate normalised to its value at temperature T = 0 (dash-double-
dotted line) in the NJL model with massless quarks, and Polyakov loop 〈Φ〉 in the pure
gauge model (dashed line). The PNJL model (with non-zero quark masses) shows dynam-
ical entanglement of the chiral (solid line) and Polyakov loop (dash-dotted line) crossover
transitions. For comparison lattice data for the Polyakov loop in pure gauge and full QCD
(including quarks) are also shown [KZ05] .

3.1 Thermodynamic potential and mean field equa-

tions

An alternative way to derive the PNJL Euclidean action is via the Hamiltonian which
in thermal field theory is the principal quantity determining the thermodynamics of
a system as explained in Sec.1.2.1. The Euclidean action of the two-flavour PNJL
model including diquark degrees of freedom [RRW07b, RHRW08] written down in
terms of the fermionic Hamiltonian density reads

SPNJL(ψ, ψ†, φ) =

∫ β=T−1

0

dτ

∫
d3x

[
ψ† ∂τ ψ + H(ψ, ψ†, φ)

]
+ δSE(φ, T ) (3.1)

with the fermionic Hamiltonian in Euclidean space1:

H = −iψ† (~α · ~∇ + γ4m0 − A4)ψ + V(ψ, ψ†) , (3.2)

where ψ is the Nf = 2 doublet quark field and m0 = diag(mu,md) is the quark
mass matrix. The quarks move in a background colour gauge field A4 discussed
above Eq. (2.17). The matrix valued, constant field A4 relates to the (traced)

Polyakov loop as in Eq. (1.29). The two fields A
(3)
4 and A

(8)
4 are a parametrisation

of the diagonal elements of SU(3)c. The piece δSE = V
T
U of the action (3.1) carries

information about the gluon dynamics presented in Sec. 2.3 using the parameter
choice of Refs. [RRTW07, RRW07b] quoted in Tab. 2.2.

1~α = γ0 ~γ and γ4 = iγ0 in terms of the standard Dirac γ matrices.
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The NJL interaction term V in Eq. (3.2) includes chiral SU(2)L×SU(2)R invariant
four-point couplings of the quarks acting in pseudoscalar-isovector/scalar-isoscalar
quark-antiquark and scalar diquark channels:

V = −G
2

[(
ψ̄ψ
)2

+
(
ψ̄ iγ5~τ ψ

)2]− H

2

[(
ψ̄ Cγ5τ2λ2 ψ̄

T
) (
ψTγ5τ2λ2C ψ

)]
, (3.3)

where C is the charge conjugation operator. These interaction terms in Eq. (3.3) are
obtained from a local colour current-current interaction between quarks,

Lint = −Gc(ψ̄γµt
aψ)(ψ̄γµtaψ) ,

by a Fierz transformation which relates the coupling strengths G and H as G = 4
3
H

which we choose not to alter. Additional terms generated by the Fierz transforma-
tion are of no importance in the present context and will be omitted.

To evaluate the thermodynamic properties of the model the quark degrees of
freedom are integrated out. New auxiliary fields are introduced by bosonisation, ab-
sorbing quark-antiquark and quark-quark (antiquark-antiquark) correlations. These
are a scalar-pseudoscalar field (σ, ~π ) and a diquark (antidiquark) field ∆ (∆∗). The
resulting thermodynamic potential then reads

Ω0 =
T

V
Sbos = U (Φ, Φ∗, T ) +

σ2

2G
+

∆∗∆

2H

− T

2

∑

n

∫
d3p

(2π)3 Tr ln
[
βS̃−1 (iωn, ~p )

]
, (3.4)

where the Matsubara sum runs over ωn = (2n + 1)π T reproducing antiperiodic
boundary conditions in the Euclidean time direction. The inverse Nambu-Gor’kov
propagator S̃−1 in Eq. (3.4) is defined by

S̃−1 (iωn, ~p ) =

(
/p−m+ γ0 (µ− iA4) ∆γ5τ2λ2

−∆∗γ5τ2λ2 /p−m− γ0 (µ− iA4)

)
(3.5)

with /p = iγ0 ωn − ~γ · ~p . (3.6)

The mass of the quark-quasiparticles is given as in the standard NJL model by
the gap equation m = m0 − σ = m0 − G 〈ψ̄ψ〉. The Matsubara sum is evaluated
analytically. The quasiparticle energies emerging in this procedure are related to
the solutions of det

[
S̃−1(p0)

]
= 0. The thermodynamic potential then reads

Ω0 = U (Φ, Φ∗, T ) +
σ2

2G
+

∆∗∆

2H

− 2Nf

∫
d3p

(2π)3

∑

j

{
T ln

[
1 + e−Ej/T

]
+

1

2
∆Ej

}
, (3.7)

with six distinct quasiparticle energies

E1,2 = ε(~p ) ± µ̃b ,

E3,4 =
√

(ε(~p ) + µ̃r)2 + |∆|2 ± i T φ3 ,

E5,6 =
√

(ε(~p ) − µ̃r)2 + |∆|2 ± i T φ3 , (3.8)
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where ε(~p ) =
√
~p 2 +m2, µ̃b = µ+2i T φ8√

3
and µ̃r = µ−i T φ8√

3
. The energy difference

∆Ej is defined as the difference of the quasiparticle energy and the energy of a free

fermion, ε0 =
√
~p 2 +m2

0: ∆Ej = Ej − ε0 ± µ. The form of the bosonised action,

Eq. (3.7), does not allow to factor out the Polyakov loop fields Φ and Φ∗, as it was
done in Ref. [RTW06]. Instead we keep the form of Eq. (3.7) using φ3 and φ8 with
φ3, φ8 ∈ R.2 The mean field equations (2.21) with the current choice of degrees of
freedom are four equations determining the set of fields (σ,∆, φ3, φ8). The hereby
neglected imaginary part of this derivative will be taken into account using the
proceedure outlined in Sec. 2.4.3 and App. B.

3.2 Realization of confinement

While the NJL model is unable to model the effects of confinement present in QCD
the Polyakov loop extended version of the NJL model shows promising results. The
implications of the Polyakov loop effective potential present in the PNJL model are
discussed in detail in this section. The first subsection concentrates on the quark
quasiparticle properties produced by the PNJL model. Next we focus on the lightest
mesons, the Goldstone modes of spontaneous chiral symmetry breaking, which are
accessable in this model using the random phase approximation (RPA). We close
with the discussion of spectral functions of the lightest mesons which are the most
sensitive benchmark in the comparison to QCD.

3.2.1 Modified Fermi-Dirac distribution

Using the PNJL model without explicit inclusion of diquarks it is shown in
Ref. [H+07] that the coupling of the NJL model to the Polyakov loop effective
potential can be accounted for by substituting the standard Fermi-Dirac distribu-
tion f±(E), by a modified distribution function f±

Φ (E). The Polyakov loop modified
distribution function f±

Φ (E) merges to a standard Fermi-Dirac distribution f±(E)
in the case of perfect deconfinement (Φ = Φ∗ = 1), while it becomes a Fermi-Dirac
distribution f(3E)|µ=0 once the Polyakov loop indicates confinement (Φ = Φ∗ = 0):.

f±(E) → f±
Φ (E) =

Φ∗e−
E∓µ

T + 2 Φe−2E∓µ
T + e−3E∓µ

T

1 + 3 Φ∗e−
E∓µ

T + 3 Φe−2E∓µ
T + e−3E∓µ

T

(3.9)

f±
Φ (E)

Φ→0−−−→ 1

1 + e+3E∓µ
T

f±
Φ (E)

Φ→1−−−→ 1

1 + e
E∓µ

T

(3.10)

The behaviour for intermediate values of the Polyakov loop shows some interpolation
between the extreme cases (Φ = Φ∗ = 0 and Φ = Φ∗ = 1) which have been

2As the parameter space of φ3 and φ8 is periodic there are different parameter sets representing
the same physics. We use the (triangular shaped) domain {(φ8 ≧ − π√

3
)∧(φ8 ≦

√
3(φ3+

2π
3 ))∧(φ8 ≦√

3(−φ3+ 2π
3 ))}. Note that the periodic domain of L and L† is 3!-times larger than the domains for

Φ and Φ∗ (or equivalently φ3 and φ8) due to the trace’s invariance under unitary transformations
of L.
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Figure 3.2: The Polyakov loop modified Fermi-Dirac distribution of quark quasiparticles.
Fixing the Polyakov loop to specific values (here from Φ = 0.0 to 1.0 in 0.2 steps) shows
that the quark distribution function remains centered at the same energy, its slope however
is getting steeper.

illustrated in Fig. 3.2. The limiting case of deconfinement (f±
Φ (E)

Φ→1−−−→ 1/(1+e
E∓µ

T ))
reproduces the standard Fermi-Dirac distribution as expected. The confinement
case can be interpreted as follows. One can argue that the thermodynamically
active quasiparticles are three quark compounds with three times the energy of one
quark quasiparticle [SFR08]. This interpretation is quite intuitive as baryons, which
are the correct QCD degrees of freedom at low temperatures, contain three valence
quarks. The chemical potential relevant for such compounds is three times the quark
chemical potential µ approving the identification of the Baryon chemical potential
µB with three times the quark chemical potential.

3.2.2 Meson spectral functions

Meson propagators can be evaluated in the PNJL model in the very same fashion
as in the NJL model (see App. A.1). With a propagator of a meson at hand the
spectral functions can be evaluated

ρM(ω, ~q; T ) =
G Im ΠM(ω, ~q; T )

(1 −GRe ΠM)2 + (G Im ΠM)2
(3.11)

with the inverse meson propagator S̃M = (1 − GΠ) and with the thermal quark-
antiquark polarisation function

ΠM(ω, ~q; T ) = T
∑

ωn

∫
d3p

(2π)3
Tr
[
ΓMS̃(iωn + µ, ~p )ΓMS̃(i(ωn − ω) + µ, ~p− ~q )

]
,

(3.12)
where the sum is taken over the Matsubara frequencies ωn = (2n + 1)π T . Here
ΓM is a Dirac, flavour and colour representation of a meson current labelled M.
Further details of the evaluation of real and imaginary part of the quark-antiquark
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Figure 3.3: The mass of the pion evaluated in RPA in the PNJL framework [RHRW08].
At vanishing temperature all three colours decouple in the PNJL model reproducing the
NJL meson mass spectrum. The transition to the chirally unbroken phase sets in at
higher temperatures than in the NJL case (compare Fig. 2.1) and occurs more rapidly. At
temperatures of ≈ 1.1Tc the pion mass exceeds twice the constituent quark mass. Already
at T ≈ 1.3Tc the meson masses surpass the NJL cutoff scale.

polarisation function ΠM are given in App. A.2. In this work we only focus on
the pseudoscalar isovector channel (i. e. pionic excitations) and the scalar isoscalar

channel. S̃(iωn, ~p ) = − m+/p

ω2
n+p2+m2 denotes the quark quasiparticle propagator with

/p = iωnγ0 −~γ · ~p. The spectral function of pion and sigma are illustrated in Fig. 3.4.
The left panel of Fig. 3.4 is evaluated at threshold temperature (i. e. at the temper-
ature at which the pion exceeds the mass of two constituent quarks, see Fig. 3.3).
The peak in the pion spectral function indicates this situation at which an on-shell
pion can interact resonantly with a quark-antiquark pair. The fact that the spectral
function of the sigma is quite distinct from the pion spectral function and shifted to
higher ω values indicates chiral symmetry breaking. At temperatures above thresh-
old (right panel of Fig. 3.4) these two spectral functions merge into one indicating
the restoration of the chiral symmetry. The situation at very low temperatures shall
not be shown here in detail, as the PNJL model which uses quark degrees of freedom
is not expected to give correct results, as at low temperatures all quark degrees of
freedom have to disappear due to confinement.3

3.3 The Equation of State

This section concentrates on the equation of state evaluated in the PNJL model at
temperatures around the crossover transition. The principle quantity in the PNJL
model is the thermodynamic potential which is related to the pressure (3.17). The

3In fact by performing an explicit calculation it can be seen that the pion spectral function does
not vanish. This indicates that even at low temperatures pion and sigma do decay into quarks. As
discussed in Sec. 3.2 the confinement implemented in the PNJL model only has an impact on the
quark distribution functions leading to good approximations in thermodynamic calculations.
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Figure 3.4: The spectral functions ρM = G Im ΠM
(1−GRe ΠM)2+(G Im ΠM)2

taken at ~q = ~0 for pion

and sigma at T ≈ Tthr (left) and at T > Tthr (right).

Figure 3.5: In the temperature range suited for calculations in the PNJL model the
pressure (solid) shows agreement with lattice data in Nf = 2 [KLP00] within systematic
errors of the two approaches.

pressure at vanishing quark chemical potential is plotted in comparison with lattice
QCD data in Fig. 3.5.

In the course of this section several quantities derived from here are compared
with lattice QCD calculations. Lattice QCD starts at the so-called interaction mea-
sure ε− 3p which is related to the pressure as follows

ε− 3p

T 4
= T

∂

∂T

p(T )

T 4
. (3.13)

A comparison of this quantity and of the moments of the pressure as a function of
quark chemical potential is presented in Sec. 3.3.2. The moments of the pressure
as a function of quark chemical potential represents a sensitive benchmark of the
PNJL model in comparison with lattice QCD. The cumulant ratios derived from this
quantities are related to the quark number fluctuations across the deconfinement and
chiral crossovers, and may be a valuable handle in the experimental search for the
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critical point (see Sec. 3.3.4). In view of the effort to model the fireball evolution
in heavy-ion collisions the speed of sound is a central quantity. It is presented in
Sec. 3.3.5.

3.3.1 Estimating mesonic pressure contributions

The calculation presented in Fig. 3.5 only included fluctuations beyond mean field
of space-time independent fields. Especially at temperatures below the crossover
temperature the resonant interaction of instable mesons with the quark sea above
Tc produces an additional pressure contribution. This contribution is not part of
the quark pressure previously calculated in Hartree-Fock approximation. The meson
decay products form rings of RPA chains. Such kind of pressure contributions are
investigated in Ref. [HKZV94] and calculated performing the ring sum. However,
below Tc the NJL model does not handle the mesonic degrees of freedom properly.
In the hadronic phase the coupling of mesonic modes to the quark-antiquark con-
tinuum is suppressed by confinement, whereas the meson spectral function ρM (see
Sec. 3.2.2) receives contributions from decays into qq̄ even below Tc. This unphysical
feature persists [H+07] in the PNJL generalisation of the NJL approach. Moreover,
the non-renormalisability of the NJL model requires to introduce further subtrac-
tions when following the lines of Ref. [HKZV94]. To avoid such arbitrariness and
unphysical features we ignore the decay of meson modes into qq̄-pairs altogether
when calculating an estimate for the meson contributions to the pressure

δΩ = ν

∫
d3q

(2π)3
T ln(1 − e−Eq/T ) +B(T ) , (3.14)

where ν is the statistical weight of the corresponding meson species, Eq =(
~q 2 +m2

pole(T )
)1/2

with mpole(T ) the temperature dependent pion and sigma pole
mass determined by 1 −GRe Π = 0. Furthermore B(T ) is an appropriately chosen
vacuum energy constant ensuring thermodynamic consistency. B(T ) is fixed such
that the temperature dependence of the pole mass mpole(T ) is compensated on dif-
ferentiating Ω with respect to the temperature T . This implies that the inclusion of
B(T ) ensures that ∂Ω/∂mpole|T = 0.

In Fig. 3.6 the calculated pressure of π0,± and sigma modes are compared with
the quark Hartree-Fock pressure and the result for the overall pressure of Hartree-
Fock plus RPA is plotted. For comparison the pressure of a Bose gas with three
internal degrees of freedom is indicated by the thin solid line. Below the crossover
temperature Tc one can clearly identify the pion gas contribution resulting from the
RPA calculations. Once the meson masses reach the scale of the NJL cutoff Λ the
used approximation breaks down. The inversion of the scale hierarchy appears at
temperatures of about 1.3Tc.

For larger current quark masses the meson gas contributions and correlations are
reduced. This effect is illustrated by Fig. 3.7 where the pressure of the PNJL model
is plotted using an increased current quark mass leading to an unphysically heavy
pion. Thus for heavy pions the agreement with lattice data observed in a previous
publication [RRW07b] remains.
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Figure 3.6: The pressure contribution orig-
inating from pion modes, sigma modes and
from quarks in Hartree-Fock approximation
(dotted). The thin solid line represents the
pressure of a gas of bosons with three inter-
nal degrees of freedom and a constant mass
m = mπ(T = 0).

Figure 3.7: Same as Fig. 3.6, but with
higher current quark mass m0 = 50 MeV ⇒
mπ = 421 MeV (compared to m0 =
5.5 MeV ⇒ mπ = 139 MeV in Fig. 3.6).
The pressure of the boson gas (thin solid
line) was now plotted using the heavier pion
mass.

The approach discussed in the remainder of this thesis does not include RPA
correction. Such RPA approaches allow to address meson properties and correlation
lengths. Near phase transitions correlation lengths may diverge modifying mean
field critical exponents. Correlation lengths cannot be addressed with spatially and
temporally constant fields used in the remaining parts of this work. The corrections
implemented in the following sections only release constraints imposed on degrees
of freedom which are already part of the mean field PNJL model. Thus there are no
backward reactions on the mean field equations. Due to the non-renormalisability of
the local PNJL model the implementation of 1/Nc corrections is a very delicate issue.
Additional regularisation prescriptions suppressing infinities appearing in the higher
loop integrals cannot be motivated within the PNJL framework. One way to avoid
this uncontrolled influence of further regularisation is the non-local generalisation of
the PNJL model [BBRV08, AAG+08, HRCW09]. Such approaches are beyond the
scope of this work. The calculations in Refs. [BBRV08, AAG+08, HRCW09] however
show that the contribution of meson loops generated in resonant interaction with
quark-antiquark states are small. Thus estimating the meson pressure by only taking
into account pole contributions, as it has been done here, is a good approximation.

3.3.2 Moments of the pressure

One benchmark for the PNJL model is its surprising capability of reproducing the
trends of lattice QCD calculations.4 One way to handle the fermion sign problem
in lattice QCD is to expand the calculated pressure about µ = 0 in a Taylor series.

4Note however the discussion concerning the dependence on quark masses in Ref. [RRW07a].
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Figure 3.8: The moments of the pressure with respect to µ
T as defined in Eq. (3.15). c2

is shown in the left panel, c4 is displayed to the right where c6 is shown in the inset. The
data deduced from lattice computations are taken from [A+05].

Such an expansion is given in Ref. [A+05]:

p(T, µ)

T 4
=

∞∑

n=0

cn(T )
(µ
T

)n
with cn(T ) =

1

n!

∂n(p(T, µ)/T 4)

∂(µ/T )n

∣∣∣∣
µ=0

(3.15)

with even n as the situation is charge conjugation invariant. Specifically:

c2 =
1

2!

∂2(p/T 4)

∂(µ/T )2

∣∣∣∣
µ=0

, c4 =
1

4!

∂4(p/T 4)

∂(µ/T )4

∣∣∣∣
µ=0

,

c6 =
1

6!

∂6(p/T 4)

∂(µ/T )6

∣∣∣∣
µ=0

, c8 =
1

8!

∂8(p/T 4)

∂(µ/T )8

∣∣∣∣
µ=0

.

(3.16)

The pressure in the PNJL model is evaluated by subtracting the divergent vacuum
contributions of the thermodynamic potential:

p = − (Ω − Ω(T = 0)) (3.17)

Results for c2, c4 and c6 are shown in Fig. 3.8. In comparison with the plots
for cn presented in Ref. [RRW07b] at the mean field level the moments cn show
slightly more structure. The rise in c2 is somewhat sharper, the peak in c4 is about
5 % higher. In summary the corrections induced by the more carefull treatment
of 〈Φ∗ − Φ〉 around its mean field values are small. Pionic fluctuations tend to be
more important. In presently available lattice results [A+05], these latter effects are
however suppressed by the relatively large pion masses (see also the discussion in
Sec. 3.3.1 including Figs. 3.6 and 3.7).

The PNJL results for the interaction or conformal measure ε− 3p are illustrated
in Fig. 3.10. The total interaction measure normalised to T 4 is split into quark and
Polyakov loop parts. Note the sensitive balance between quark quasiparticle and
Polyakov loop contributions to ε − 3p close to Tc. In pure gauge QCD (or with
infinitely heavy quarks) the Polyakov loop interaction measure is positive through-
out. The presence of light quarks and their dynamical coupling to the Polyakov
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loop changes their pattern significantly. The Polyakov loop part of the pressure
itself, that determines the dashed curve in Fig. 3.10, is found to be consistent with
calculations reported in Ref. [Fuk08b]. For orientation, the total PNJL interaction
measure (with Nf = 2) is shown in Fig. 3.10 along with recent Nf = 2 + 1 lattice
QCD results [Kar08].

3.3.3 Chiral and Polyakov loop susceptibilities

A susceptibility χg involving a quantity g is defined by

χ2
g = V 〈(g − 〈g〉)2〉 = V

(
〈g2〉 − 〈g〉2

)
. (3.18)

Susceptibilities of special interest in the present context are the ones related to the
dynamical quark mass, m = m0 − σ, and to the Polyakov loop. They are expressed
in terms of the inverse matrix of the second derivatives of the full thermodynamic
potential Ω:

χ2
M = V

(
〈m2〉 − 〈m〉2

)
= T

[
∂2Ω

∂θi∂θj

]−1

m,m

(3.19)

χ2
Φ = V

(
〈Φ2〉 − 〈Φ〉2

)
= T

[
∂2Ω

∂θi∂θj

]−1

Φ,Φ

(3.20)

χ2
Re Φ =

T

4

[
∂2Ω

∂θi∂θj

]−1

Φ,Φ

+
T

2

[
∂2Ω

∂θi∂θj

]−1

Φ,Φ∗

+
T

4

[
∂2Ω

∂θi∂θj

]−1

Φ∗,Φ∗

. (3.21)

These susceptibilities are calculated using the graph rules given in Tab. B.2 of the
appendix which lead to the following explicit form:

χ2
g = T

(
∂g

∂θ

)T
·
[
∂2Ω0

∂θ2

]−1

· ∂g
∂θ

∣∣∣∣∣
θ=θMF

− 2T

(
∂g

∂θ

)T
·
[
∂2Ω0

∂θ2

]−1

· ∂
2g

∂θ2
·
[
∂2Ω0

∂θ2

]−1

· ∂Ω0

∂θ

∣∣∣∣∣
θ=θMF

+ T
∑

i,j,k

∂3Ω0

∂θi∂θj∂θk

([
∂2Ω0

∂θ2

]−1

· ∂g
∂θ

)

i

([
∂2Ω0

∂θ2

]−1

· ∂g
∂θ

)

j

×
([

∂2Ω0

∂θ2

]−1

· ∂Ω0

∂θ

)

k

∣∣∣∣∣
θ=θMF

. (3.22)

Here g stands for m or Φ, respectively. The first term in Eq. (3.22) is the suscepti-
bility of the gaussian theory whereas the other terms are interpreted as corrections.

The definition of susceptibilities in Eq. (3.18) gives a statistical interpretation
of the susceptibility χg. It is the measure for the typical size of deviations of the
quantity g from its mean value. Large χg indicate large deviations form the expec-
tation value 〈g〉 which can be explained on the basis of a Ginzburg-Landau model
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in terms of a small curvature of the effective potential around 〈g〉. In a Ginzburg-
Landau analysis a vanishing curvature of the effective potential is characteristic for
a second order phase transition, while a first order transition even requires a sign
change of the curvature of the effective potential creating an instability and a split
of the system in two phases. As the sign change of the curvature in a system with
first order phase transition does not happen at the expectation value of 〈g〉 we do
not observe large susceptibilities in thermodynamic equilibrium. At a second order
phase transition the system lingers, however, exactly at the position of the effective
potential where the curvature vanishes. This leads to diverging susceptibilities at
second order phase transitions. At some distance to second order phase transitions
we expect the divergence to become finite. In mean field calculations5 one finds the
critical exponent γ = 1 for the quark number susceptibility. I. e. approaching the
phase transition the susceptibility will diverge according to a (T − Tc)

−1-law. It is
however a very delicate issue along which path such a singularity is approached. In
general there are two directions that have to be distinguished: the temperature-like
and the magnetic field-like direction. The given mean field scaling law refers to a
temperature-like approach to the critical point. According to Ref. [HI03] approach-
ing the critical point on a trajectory asymptotically not parallel to the temperature
direction results in the critical exponent −2/3.

Similar relations can be established in mean field calculations considering the
vicinity of the tricritical point using the current quark mass as one direction in the
phase diagram of our model [HI03]. Here the quark number susceptibility diverges

with a m
−2/5
0 power law, where m0 is the current quark mass. Nevertheless, as the

current quark mass in nature is of course fixed, we expect that susceptibilities are
enhanced near the second order phase transition at vanishing current quark mass,
i. e. near the chiral limit. Unfortunately it is not guaranteed that the physical quark
mass is still close enough to the second order transition such that this enhancement
is significant. The size of the critical region has been investigated numerically in
an NJL model in Ref. [HI03]. It is concluded that the tricritical point in the QCD
phase diagram at m0 = 0 is located sufficiently close to physically realized quark
masses to dominate the pseudo-critical behaviour along the chiral crossover. The
size of the prefactor of the divergences is a model (theory) dependent quantity. The
region where the divergent part of a quantity dominates over the regular part is
usually called critical region. The presented model calculation (in agreement with
others [SFR08]) predict that QCD with physical quark masses is still inside the
critical region of QCD in the chiral limit. The proximity of the second order phase
transition and the tricritical point at m0 = 0 also influences which direction in the T ,
µ and m0 parameter space is temperature-like and which one is magnetic field-like.
These issues may complicate the extraction of critical exponents and influence shape
and size of the critical region. The direction orthogonal to the ending first order
phase transition region typically exhibits temperature-like scaling behaviour, while

5If spatial fluctuations are respected along the divergence of the susceptibilities, the correlation
length diverges. This changes the effective size of the system simultaneously, leading to modifi-
cations of the mean field critical exponents. These changes are model (theory) dependent. Using
this highly non-trivial effect allows to categorise models (theories) by a universality class.



3.3. The Equation of State 57

the directions parallel to the first order phase transition manifold behave magnetic
field-like. Considering the different critical exponents leads to a flattening of the
critical region in temperature-like direction if the threshold of irregular domination
over regular contributions is increased.

The critical behaviour of susceptibilities may be exploited to locate the chiral
crossover transition experimentally. The extraction of susceptibilities from heavy-
ion collisions is difficult, however. One of the main difficulties in the extraction of
thermodynamic quantities from heavy-ion collisions is the fact that thermodynamics
is an equilibrium description of nature, whereas the experimental situation is highly
dynamic. Together with the divergence of the susceptibilities we expect correlation
lengths to diverge. Thus size and limited timescales in the dynamic evolution of two
colliding nuclei smoothens all divergences and peaks which are present in thermal
equilibrum. Even though the fireball expansion is highly dynamic local thermody-
namic equilibration has proven to be a good assumption. The successful description
of the fireball evolution by hydrodynamic calculations is an indication towards local
equilibration. The elementary processes that lead to very short equilibration times
is not known yet. The inhomogeneity of the fireball brings about that heavy-ion
collisions probe rather large areas in the QCD phase diagram at the same time. To
de-convolute the experimental prerequisites from the theoretical phase diagram re-
quires very detailed understanding of the processes involved in the fireball expansion
and the experimental setup. We are facing a “chicken or the egg” dilemma here: the
analysis of experimental data require accurate description of the processes involved,
which at the moment is hard to achieve due to the poor quality of experimental
input. This vicious circle can only be broken in an iterative interplay of experiment
and theory refining theory and experiment successively. Therefore all additional
experimental data collected (even when collected with outdated machines) will help
refining our understanding in this iterative process.

To measure susceptibilities in heavy-ion collisions one has to come back to the
definition in Eq. (3.18). Having available a large piece of bulk matter the measure-
ment of a fluctuation requires to define a test volume, in which a certain quantity e. g.
quark number is measured. Ideally this test volume is much larger than the size of
the fluctuations. From an ensemble of independent measurements at different times
and (or) in different equivalent subvolumes susceptibilities can then be extracted.
One way to do this in heavy-ion collisions is to take various successive collisions as
statistical ensemble. The finite acceptance of every detector defines a fixed window
in phase space. The measured value e. g. for the quark number is then subject to the
statistical properties of the system. This approach to measure fluctuations on the
so-called event-by-event basis [BJK00, SRS99, BH99, Koc08] suffers from a varying
and limited number of nucleons participating in successive collisions due to changing
impact parameters. I. e. the systems we are probing is neither very large nor are
they equivalent. Therefore, in a first step all events have to be binned according
to the number of participants6 to define an ensemble of equivalent systems. To
increase the test volume large detector acceptances are required in addition. The

6The number of participants is the number of nucleons that actually participate in primary
collisions. The trajectories of these nucleons cross the intersection area of the two colliding nuclei.
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phase space volume cut out by the acceptance involves limitations in direct and
momentum space. These two issues can in principle be solved by large statistics
and careful detector analysis. A more principle problem poses the proper separation
of scales. It is difficult to fulfil the prerequisite that the system size is much larger
that the test volume which again has to be much larger than the fluctuations (the
correlation length). Estimates are that the correlation length is of the order of 2 fm
which is substantially smaller that the system size [Koc08] such that two colliding
nuclei produce a sufficiently large system for this investigation. Finally one relies
on the fact that the interactions in the hadronic final state are small, such that
correlations which have piled up crossing the phase transition are not washed out
during the final stages of the evolution of the collision. In Ref. [Koc08] high collision
energies and large detector acceptances are mentioned as prerequisites for this final
requirement to be fulfilled. Despite all those difficulties quite some experimental
data on fluctuations has been collected. However, according to Ref. [Wes08], the
data currently available is not conclusive.

At present the direct extraction of susceptibilities from the QCD Lagrangian can
only be accomplished with numeric lattice QCD calculations. To avoid the highly
complex problems involved we switch to PNJL model calculation. One of the rea-
sons for doing this is the possibility to implement small current quark masses in the
model frame work. Rather large current quark masses often applied in lattice QCD
calculations are expected to dampen the signatures of the crossover imprinted in
susceptibilities. In Fig. 3.9 the chiral and the Polyakov loop susceptibilities as func-
tions of temperature at vanishing quark chemical potential (left panel) are compared
to the temperature derivatives of the constituent quark mass and the Polyakov loop
(right panel). While the chiral susceptibility to the left of Fig. 3.9 only shows a single
peak structure the temperature derivative of the constituent quark mass to the right
exhibits a widened peak, indicating the influence of both chiral symmetry breaking
and Polyakov loop induced confining effects. This indicates that the constituent
quark mass plays a major role in the correct implementation of thermodynamics in
the PNJL model; after all the PNJL model is a (quark-) quasiparticle model.

If we consider the behaviour of χM , χRe Φ and χΦ at T → 0 we find that χRe Φ is
finite, while χM and χΦ vanish. This can be explained by the fact that (Re Φ)2 =
1
4
(Φ2 + 2 |Φ|2 + Φ∗2) contains a U(1)-symmetric term |Φ|. As the U(1) symmetry

incorporates the Z(3) centre of SU(3)c this term does not have to vanish once the
Z(3) symmetry is fully restored at T = 0.7 The width of the peak in the temperature
derivative of the dynamical quark mass m = m0 − σ suggests that this crossover is
influenced by the crossover of the Polyakov loop.

The PNJL model predicts rather articulately structured susceptibilities at van-
ishing chemical potentials using physical quark masses. This is an indication for
the proximity of the critical behaviour in the chiral limit. The presented calcula-
tion implementing Polyakov loop dynamics is in agreement with the investigation
in Ref. [HI03] using an NJL model without Polyakov loop which predicts the model
implementing physical quark masses to be located in the critical region of the tri-

7The author thanks Chihiro Sasaki for pointing this out to him.
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Figure 3.9: The chiral susceptibility χM (left panel solid line) and the Polyakov loop
susceptibilities χRe Φ (left panel dashed line) and χΦ (left panel dotted line) plotted as
functions of temperature at vanishing quark chemical potential. These susceptibilities
defined by Eqs. (3.19, 3.20, 3.21) and evaluated using Eq. (3.22) are compared here to the
derivative of the constituent quark mass (right panel solid line) and the expectation value
of the real part of the Polyakov loop (right panel dashed line) with respect to temperature.
[RHRW08]

critical point in the chiral limit. Thus fluctuation are in principle suited to find
the chiral crossover transition at small chemical potentials, which may be accessable
in heavy-ion collisions at highest energies like ALICE at LHC. An interesting issue
that could be clarified using these new experimental data is the relation of chiral
crossover transition and chemical freeze-out.

3.3.4 Cumulant ratios along the deconfinement transition

The ratio of the moments c4 and c2 has been discussed [EKR06] as a suitable indi-
cator of fluctuations close to the phase transition.8 The quantity of interest here is
the cumulant ratio Rq

4,2 defined in [EKR06] and given as Rq
4,2 = 12 c4/c2. The PNJL

model calculation for this ratio is shown in Fig. 3.11. The dashed curve is found
in the mean field limit with 〈Φ∗〉 = 〈Φ〉 which suppresses one of the two Polyakov
loop degrees of freedom. The solid curve is computed with inclusion of corrections
beyond mean field and demonstrates the role of 〈Φ∗ − Φ〉 being non-zero. According
to Ref. [SFR08] the low and high temperature limits for the cumulant ratio are given
by

Rq
4,2

T→0−−−→ (3B)2 Rq
4,2

T→∞−−−→ 6

π2
, (3.23)

where B is the baryon number carried by the effective degrees of freedom. Af-
ter taking into account the full dynamics of the Polyakov loop Φ and its complex

8The expansion coefficient c2 is related to the quark number susceptibility at µ = 0 by: χq|µ=0 =

2 c2 T
2.
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Figure 3.10: Contributions to the inter-
action measure from quarks and Polyakov
loop, as well as the total PNJL interaction
measure for Nf = 2. The Nf = 2 + 1 lattice
QCD results [Kar08] (with Nτ = 8 for p4-
improved and asqtad action) are shown for
orientation.

Figure 3.11: The cumulant ratio Rq
4,2 from

the PNJL model in and beyond mean field
approximation in comparison with lattice
QCD results, with c2 and c4 as given in
Ref. [A+05].

conjugate Φ∗ we reach B = 1 at low temperatures. At low temperatures the ther-
modynamically active degrees of freedom in the PNJL model beyond mean field are
compounds with three valence quarks. However, the PNJL model remains a quasi-
particle model with quarks, which becomes visible even at low temperature once
more detailed quantities like spectral functions are investigated.

At low temperatures the degrees of freedom can only be excited marginally.
The partition function of a fermion gas of non-interacting gas can be approximated
at low temperatures by the sum of fermion and antifermion contribution: Z ∝
e−(E−µ)/T+e−(E+µ)/T = 2e−E/T cosh[µ/T ]. An expansion in µ/T immediately reveals
that Rq

4,2 will assume one. In the presence of Polyakov loop dynamics the first two
lowest terms in the approximation of the partition function Z are suppressed such
that Z ∝ cosh[3B µ/T ] resulting in the low temperature limit (3B)2 of Rq

4,2. At
high temperatures it is the prefactors of fourth and second order coefficient of the
µ/T -expansion of p/T 4 that determine the high temperature limit.9 One could
add an additional factor of (3B)2 here as well, as Polyakov loop dynamics again
would suppress all terms in the partition function not proportional to e3µ/T . At
high temperatures we find 3B ≈ 1 (see Fig. 3.11) indicating deconfinement, which

is realized because the terms proportional to
(
eµ/T

)1
and

(
eµ/T

)2
are not suppressed

by the Polyakov loop.

If the influence of the Polyakov loop is quenched by the mean field approximation
some deconfined quarks remain part of the active degrees of freedom. In mean
field approximation Rq

4,2 < 9 at low temperatures as can be seen in Fig. 3.11. In
the intermediate temperature regime near the crossover transition the PNJL model

9 p
T 4 ∝ 1

12π2

(
µ
T

)4
+ 1

6

(
µ
T

)2
+ 7π2

180 .
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predicts a rather strong peak which is not visible in the lattice QCD data used for
comparison. Such a peak cannot be interpreted in the way done before. A value
larger than 9 does not imply effective degrees of freedom with a baryon number
above 3 as this interpretation was based on expansions in µ/T which is neither a
small nor large quantity around the crossover transition. We rather have to go back
to the definitions of c2 and c4:

c4
c2

=
〈(δNq)

4〉 − 3 〈(δNq)
2〉2

〈(δNq)2〉 with 〈(δNq)
2〉 = 〈N2

q 〉 − 〈Nq〉2 . (3.24)

A strong increase of Rq
4,2 therefore indicates a rise of 〈(δNq)

4〉 − 3 〈(δNq)
2〉2 or a

decrease of 〈(δNq)
2〉. In terms of an effective potential the increase of the quartic

fluctuations relative to the quadratic fluctuations indicates that the quadratic fluctu-
ations are variable in their extend. That is, once the quark density changes we have
to expect strong relative changes in the second order term of the effective potential.
Such strong relative changes happen once the absolute value of the second order
term is close to zero, i. e. the effective potential is dominated by the fourth order
term. It is well known that at a second order phase transition (in mean field) the
second order term vanishes. Therefore large Rq

4,2-values identify regions in the phase
diagram close to a second order phase transition. A second order phase transition
is realized in the unphysical case of vanishing current quark masses (in the chiral
limit) along the restoration of the chiral symmetry and for a critical end point. The
relict of this second order phase transition may still be visible at physical current
quark masses. The closer we get to the second order phase transition the sharper
we expect the structures in Rq

4,2 to be. These considerations are equivalent with the
observation that large pion masses suppress the peak in Rq

4,2 [SFR08]. The authors
of Ref. [SFR08] argue on the basis of their Polyakov loop extended quark meson
model that this peak increases towards the chiral limit finally exhibiting a cusp in
the chiral limit. These considerations also motivate why the lattice data shown in
Fig. 3.11 do not peak near the crossover. The used current quark mass of 0.4T is
too large to see relicts of the tricitical point at vanishing quark mass.

While the peak in Rq
4,2 indicates the close existence of the chiral tricritical point,

the regular parts in Rq
4,2 give some indication towards the nature of the active degrees

of freedom. The interpretation of the low and high temperature limits in Eq. (3.23)
allow to identify the deconfined crossover transition. Thus Rq

4,2 is suited to study
both crossover transitions of chiral symmetry restauration and deconfinement. The
regular parts of Rq

4,2 hint towards confinement, while the irregular parts relate to
chiral effects. In disrespect of the enormous required effort for this task it would
even be possible to study the order of the phase transition by looking for peak-
or cusp-like structures. The experimental difficulties, however, will most likely not
allow for such an analysis in the near future.

3.3.5 The speed of sound

In the construction of models for the fireball evolution in heavy-ion collisions the
speed of sound in medium is of major importance: The PNJL model predicts sig-
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Figure 3.12: The speed of sound (solid) and the ratio of pressure over energy density
(dashed) at vanishing chemical potential as function of temperature (left panel). The
right panel shows the same quantities at a quark chemical potential slightly below the
critical point (µ = 0.3 GeV . µcrit ≃ 0.31 GeV).

nificant temperature dependence of the speed of sound across the deconfinement
crossover transition. The elliptic flow is rather insensitive to the speed of sound. El-
liptic flow piles up at very early stages of the fireball evolution, where temperatures
are still high such that quarks are light and may be considered weakly interacting
resulting in v2

s ≈ 1
3

during the relevant early times. In Fig. 3.12 the squared speed
of sound in units of the speed of light is plotted as a solid line. The speed of sound
vs is defined by

v2
s =

∂p

∂ε

∣∣∣∣
S

=
∂Ω

∂T

∣∣∣∣
V

/
T
∂2Ω

∂T 2

∣∣∣∣
V

, (3.25)

where the denominator is the specific heat capacity cV . The specific heat capacity
cV is the main source of this strong temperature dependence. In the chiral limit one
expects that the heat capacity diverges at the second order phase transition bringing
the speed of sound to zero. This divergence in the specific heat is caused by large
susceptibilities which allow for strong energy deposition in diverging fluctuations.
The dashed line in Fig. 3.12 gives the size of the ratio of pressure and energy density,
p
ε
. This quantity corresponds to the speed of sound for an ideal gas. In the panel

to the left where the quantities are plotted at vanishing chemical potential µ = 0
both graphs show a pronounced dip near the crossover transition temperature. In
the panel to the right the same situation is plotted at a quark chemical potential
close to the chemical potential of the critical point µ . µcrit.. Here one can identiy
two distinct minima which correspond to the chiral and the deconfinement crossover
transitions.

The vanishing of the speed of sound in the chiral limit is part of the critical
slowing down at a second order phase transition. The fast evolution and the critical
slowing down will prevent the fireball from equilibrating in the vicinity of the critical
point. Therefore it is not only the system size that limits the size of possibly
observed fluctuations but also the time spent near the critical region. Crudely
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approximating the fireball as a homogeniously expanding gas ball, the speed of
sound will define some sort of event horizion. If we parametrize this expansion in
analogy to the Hubble expansion, we can estimate the maximal correlation length
by ∆l ≈ vs/H, where H is the “Hubble”-constant of the litte Big Bang. We can
estimate H by H ≈ c/r, where c is the speed of light and r is the fireball radius.
Using the Stefan-Boltzmann energy density ε =

(
8
15

+ 7Nf

20

)
π2 T 4 we estimate the

fireball radius: r ≈
(

3
4π

Etot

ε

)(1/3)
= 1

π

(
45
74
Etot

T 4

)(1/3) ≈ 19 fm.10 This allows to estimate
the maximal size of a fluctuation that can build up at a given speed of sound:
∆l ≈ r × vs

c
≈ 19 fmvs

c
.11 Using the minimal value in Fig. 3.12 we find ∆l ≈ 4 fm.

3.4 Phase diagram with and without diquarks

To distinguish different phases in a phase diagram order parameters are needed. I. e.
phases are determined as function of certain control parameters; here we concentrate
on temperature and quark chemical potential. In case of true phase transitions it
is a non-analyticity in the dependence on the order parameter, that indicates a
phase transition. The order at which this non-analyticity appears determines the
order of the phase transition. In case of QCD where both chiral and deconfinement
transition are related to symmetries that are broken not only spontaneously but
also explicitly by finite current quark masses the order parameters do not show such
non-analytic behaviour. Nevertheless the transition from weak to strong symmetry
breaking appears within a small range of the control parameters (here temperature
and chemical potential). In this case the transition is classified as rapid crossover.
To quantify the position of such a rapid crossover an indicator for the steepness of
the change of the approximate order parameter is needed. One class of measures
commonly used are susceptibilities which are discussed in detail in Sec. 3.3.3.

The susceptibilities χM and χΦ serve as indicators for crossover transitions be-
tween approximate phases when drawing a phase diagram in the plane of temper-
ature and chemical potential. Several criteria can be used to determine a transi-
tion line separating the region of spontaneously broken chiral symmetry from the
quark-gluon phase. We use the maxima of the chiral susceptibilities χM and of the
Polyakov loop susceptibility χRe Φ. Alternatively we could use the slopes dm/dT
and d 〈Φ∗ + Φ〉/dT of constituent quark mass and Polyakov loop which act as order
parameters in the limiting situations of exact chiral SU(2)L × SU(2)R symmetry
or Z(3) symmetry, respectively. Fig. 3.13 shows a comparison of crossover transi-
tion lines found with the two criteria just mentioned. As both criteria are linked
via the quadratic term in the action, all curves finally converge to the same point,
the critical point (here in the absence of diquark condensation). A singularity in
the second derivative of the action (or equivalently in the propagator) enforces this

10We have used Nf = 2 at T ≈ 200MeV and Etot = 200GeV × 197 × 2 for a gold on gold
collision.

11In this estimate correlations grow with total energy i. e. with the system size. For increas-
ing system sizes the pressure gradients will drop leading to a more moderate and longer lasting
expansion of the system.
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unique intersection point where the specific heat and other quantities show singular
behaviour. In the PNJL model this critical point is the remnant of the critical point
of the NJL model, i. e. critical behaviour is driven by chiral dynamics. In principle
Polyakov loop dynamics could also produce criticality. Here where it is assumed that
the Polyakov loop effective potential is independent of the quark chemical potential
µq this does not happen.

Comparing our Fig. 3.13 with corresponding results in other publications (see
Fig. 16 in Ref. [SFR07] and Fig. 4 in Ref. [AAG+08]) one finds that the detailed
behaviour of the deconfinement crossover transition line depends sensitively on the
parameter choice and regularisation prescription. In the present case of a strong
coupling a joint course of chiral and deconfinement crossover line is observed. When
the coupling becomes weaker (e. g. due to parameter choice and regularisation pre-
scription as in Refs. [SFR07, AAG+08]) the transition lines may deviate. In any case
one should note that such deviations appear at large chemical potentials approach-
ing the typical cutoff scale of the model. Any conclusions drawn at such energy or
momentum scales should be handled with care.

At finite current quark mass m0 the PNJL model produces an approximate coin-
cidence of the peaks in the susceptibilities of the Polyakov loop and the constituent
quark mass m, consistent with the pattern observed in Fig. 3.1. The approximate
coincidence of the peaks in the chiral and Polyakov loop susceptibilities is demon-
stated at µ = 0 in Fig. 3.9. The width of the peak in the temperature derivative
of the dynamical quark mass m = m0 − σ (shown in the right panel of Fig. 3.9) is
widened. This may be explained by the superposition of two peaks. When compar-
ing the left and the right panel of this figure it becomes obvious that these peaks
are at the position of the chiral and Polyakov loop crossover. This suggests that the
dynamical quark mass m = m0 − σ is significantly influenced by both chiral and
Polyakov loop susceptibility.12

We now turn to the phase diagram in the (T, µ) plane studying the influence
of confinement [RRW07b]. The left panel of Fig. 3.14 shows the phase diagram
in the (T, µ)-plane computed using the PNJL model in comparison with the NJL
model (the limiting case in which Φ ≡ 1). Of particular interest is the location
of the critical endpoint at which the chiral and deconfinement crossover transitions
at lower µ turn into a first-order phase transition above some critical µ. In these
mean field calculations the position of the transition lines were determined using
the position of the local maxima of dσ/dT and dΦ/dT . The crossover transition
lines fixed by either the susceptibilities of σ and Φ or by maximal changes with
temperature, i.e. zeros of d2σ/dT 2 or d2Φ/dT 2, do coincide with the critical point
for our PNJL model in the absence of diquarks (see left panel of Fig. 3.15). This is
a consequence of the divergences in these quantities at the critical point. However,
when including diquarks, a coincidence of critical point and crossover transition line
is not guaranteed. In general one finds that the critical endpoint depends sensitively

12In the present parametrisation of the PNJL model the Polyakov loop susceptibility is that
pronounced that it governs also the chiral sector. In Refs. [SFR07, AAG+08] the coupling of the
loop sector to the chiral sector seems to be too weak to lead to this forced coincidence of chiral
and loop sector.
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Figure 3.13: Comparison of the transition lines obtained by determination of the maxi-
mum in the chiral susceptibility (left panel solid line) and the Polyakov loop susceptibility
χRe Φ (right panel solid line) with the transition lines fixed by the maximal change with
respect to temperature of constituent quark mass (left panel dashed line) and average of
the real part of the Polyakov loop 1

2 〈Φ + Φ∗〉 (right panel dashed line). [RHRW08]

on the degrees of freedom involved. From its position in the restricted NJL case this
point is shifted to higher T by both, the Polyakov loop effective potential, and by
the presence of diquark degrees of freedom. Near the critical endpoint not including
diquarks, dσ

dT
diverges together with the chiral susceptibility. This extreme behaviour

is not observed in the case with inclusion of diquarks. The region where this critical
behaviour would appear is now already located in the diquark dominated phase.
Thus there is a qualitative difference of the critical endpoints in these two compared
cases: not including diquarks the critical endpoint lies on top of the merging chiral
and deconfinement crossover transition lines, while in the case including diquarks
the critical endpoint is shifted away from this line. The critical endpoint now lies
on the second order transition line bordering the diquark dominated phase (see left
panel of Fig. 3.15). I. e. the endpoint is not at the junction of all three transition
lines and therefore is not a tricritical point but still a critical point.

Next we use the PNJL model including diquark degrees of freedom to study the
dependence of the position of the critical endpoint on the bare (current) quark mass.
The right panel of Fig. 3.15 shows phase diagrams in the chiral limit, for current
quark masses m0 = 5.5 MeV and m0 = 50 MeV. The change of the critical endpoint
with varying quark mass mainly reflects the dependence of the critical chemical
potential on the quark mass. The presence of the diquark dominated phase appears
to stabilise the temperature of the critical endpoint at rather high values.

Generally, the PNJL model exhibits its critical endpoint at a temperature which
is significantly higher than the one found with the standard NJL model, i. e. ignoring
Polyakov loop dynamics. The reason is that the diquark phase as well as the chiral
phase is stabilised by the confinement imitation via the Polyakov loop effective
potential. The size of the gap ∆ is strongly influenced by the Polyakov loop. The
detailed dependence of the gap on the Polyakov loop is displayed in Fig. 3.16. The
systematics of this effect becomes evident when the Polyakov loop is held at fixed
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Figure 3.14: Left panel: comparison of the NJL and PNJL phase diagrams in mean field
[RRW07b]. Right panel: PNJL phase diagram with the phase diagram including correc-
tions to the order β ≤ 1 [RHRW08]. Solid lines: crossover transition of the susceptibility
related to the real part of the Polyakov loop; dashed lines: first order phase transition;
dotted lines: second order phase transitions.

Figure 3.15: Left panel: comparison of the PNJL model in mean field approximation with
and without inclusion of diquarks. Right panel: comparison of the phase diagram in mean
field approximation at different current quark masses with inclusion of diquark degrees of
freedom. (Note the scale on the temperature axis.) [RRW07b].
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Figure 3.16: Dependence of the gap ∆ on the presence of the Polyakov loop. The solid
lines are the solutions to the self consistency equations of the NJL and the PNJL model
at µ = 0.4 GeV. The dashed lines are obtained by enforcing fixed values for the Polyakov
loop. Note that the PNJL model with the Polyakov loop fixed at Φ = 1 (deconfinement)
coincides with the self consistent solution of the NJL model [RRW07b].

values and varied. The gap resulting from this calculation is then compared to
the gap in the PNJL model (with self-consistent determination of Φ) and in the
NJL model. The case where the Polyakov loop is fixed to Φ = 1 (i. e. complete
deconfinement) coincides with the NJL calculation. The presence of the Polyakov
loop restricts the phase space available for quarks in the vicinity of their Fermi
surface where Cooper pair condensation takes place. Hence higher temperatures are
effectively required to break the pairs. This is the primary reason for the difference
in behaviour of the gap ∆ when comparing NJL and PNJL results in Fig. 3.16.

A comparison of the phase diagram obtained in mean field approximation (left
panel of Fig. 3.14 [RRW07b]) and the phase diagram including corrections to the
order β ≤ 1 shown in the right panel of Fig. 3.14 [RHRW08], explicitly approves
that corrections to the phase diagram due to the fermion sign problem are indeed
small [RRW07b]: the influence of Im Ω0 and the splitting of 〈Φ∗〉 and 〈Φ〉 are rather
modest.

3.5 Polyakov loop degrees of freedom

With the mean field definition (2.20) the Polyakov loop expectation values 〈Φ〉 and
〈Φ∗〉 turn out to be equal in this limit, given the reality constraint on ΩMF. It is
the corrections from Im Ω0 induced by the temporal gauge fields which cause the
splitting of 〈Φ〉 and 〈Φ∗〉. The difference 〈Φ∗〉−〈Φ〉 vanishes at zero quark chemical
potential µ. It has the same sign as µ, which is in agreement with Ref. [DPZ05]. As
can be seen from Fig. 3.17 the difference 〈Φ∗〉−〈Φ〉 is pronounced around the phase
transitions. In the upper left panel of Fig. 3.17 the influence of the first order phase
transition separating the chiral and the diquark phase at low temperature can be
seen as a jump in both 〈Φ〉 and 〈Φ∗〉. The second order phase transition separating



68 Chapter 3. Applications of the PNJL model

Figure 3.17: Examples of thermal expectation values of the Polyakov loop 〈Φ〉 and its
conjugate 〈Φ∗〉. In the upper row 〈Φ〉 and 〈Φ∗〉 are plotted as functions of the chemical
potential µ at constant temperature T . Below 〈Φ〉 and 〈Φ∗〉 are plotted as functions of
temperature T at constant chemical potential µ [RHRW08].

the diquark regime from the high temperature quark-gluon phase can be identified
as a kink in the lower right panel of Fig. 3.17.

3.6 Isovector degrees of freedom

Up to this section the PNJL model has been considered only in the iso-symmetric
case. The influence of confinement on isovector quantities has been studied in
Refs. [MMR07, ZL07]. For large isovector chemical potentials µI = µu − µd of
the order of the pion mass pion condensation may set in. To study such effects a
mean field with the quantum numbers of the pion has to be introduced into the
thermodynamic potential. We follow Ref. [ZL07] and add isovector terms to the
Lagrangian

δLPNJL = ψ̄ (γ0τ3µI − iλγ5τ1)ψ . (3.26)
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The quark and Baryon chemical potentials µ, µB and the isovector chemical potential
µI are connected to the up- and down-quark chemical potentials µu and µd via the
equations

µ =
µB

3
=
µu + µd

2
and µI = µu − µd . (3.27)

The parameter λ allows to study explicit isovector breaking effects [ZL07], which is
not done in this work. We define the chiral up- and down-quark condensates and
the pion condensates for π+, π− and π0,

π+ = 〈ψ̄iγ5τ+ψ〉 , π− = 〈ψ̄iγ5τ−ψ〉 , π0 = 〈ψ̄iγ5τ0ψ〉 ,
σu = 〈ūu〉 , σd = 〈d̄d〉 , (3.28)

where τ± = (τ1 ± τ2)/
√

2 and the τi are the Pauli matrix in flavour space (see
App. C). The flavour structures τ+, τ− and τ0 can be rotated freely under SU(Nf)
transformations. It is therefore only necessary to consider one pionic condensate.
We choose π = 〈ψ̄iγ5τ1ψ〉.

After bosonization in the pion channel an additional potential term appears in
the thermodynamic potential

δΩ = δV =
N2

2G
with N = λ−Gπ = λ−G 〈ψ̄iγ5τ1ψ〉 . (3.29)

The inverse quark quasiparticle propagator obtains an additional structure

δS̃−1 = γ0τ3 µI − iγ5τ1N . (3.30)

The mean field equations have to be supplemented by

∂ΩMF

∂π
=
∂ Re Ω0

∂π
= 0 . (3.31)

For simplicity in most studies including isovector condensates, diquark condensation
is neglected.13 This has been done for the current study as well.

In the following subsections the result of Ref. [ZL07] on the additional phases
occurring due to the appearance of spontaneous breaking of the isovector symmetry
at large isovector chemical potentials is discussed (see Sec. 3.6.1). In analogy to the
case with diquark condensation, there exists a critical point. We will study its posi-
tion in the three dimensional space of temperature, chemical potential and isovector
chemical potential. The physical relevance of pion condensates is however strongly
criticised [A+08]. In Sec. 3.6.2 and 3.6.3 we abandon finite isovector chemical po-
tentials and concentrate on a Taylor expansion about µI = 0, which allows to use
lattice QCD data as reference. Even though dealing with a Lagrangian with unbro-
ken isovector symmetry, the PNJL model exhibits finite off diagonal susceptibilities.
This phenomenon is discussed in detail in Sec. 3.7.

13When including both diquark and isovector condensates at the same time it is no longer pos-
sible to determine the quasiparticle energies in analytically closed form, complicating the numeric
evaluation of the thermodynamic potential and the solution of the mean field equations.
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Figure 3.18: The (T , µI) phase diagram of the two flavour PNJL model. (NP: normal
hadronic phase; QGP: quark-gluon plasma phase) The solid line (dashed line) indicates
first order (second order) pion superfluidity phase transitions. The dotted line in the left
panel indicates the crossover for deconfinement phase transition. This Figure is taken
from Ref. [ZL07] using a different regularisation and parameter set.

3.6.1 Pion condensation

Once the quark chemical potential exceeds the mass of the sigma mode we observe
condensation of diquarks. Same is true for the isovector chemical potential. If it
reaches the mass of the pion mode we expect pions to condensate. In Ref. [A+08]
pion degrees of freedom have been considered under the additional constraint of
keeping electric neutrality. According to this work the isovector chemical potential
will not exceed such large values at the order of the pion mass, such that pion
condensation does not happen in nature. It is nevertheless interesting to study the
case of large isovector chemical potentials, not only as the arguments in [A+08] are
under debate.

In Fig. 3.18 presented in Ref. [ZL07] the superfluid pion phase is separated from
the normal hadronic phase by a second order phase transitions. At large isovector
chemical potentials the separation towards the high temperature quark gluon phase
is of first order. The position of the critical point in the three dimensional space
of temperature T , chemical potential µ and the isovector chemical potential µI is
visualised in Fig. 3.19 which has been produced making use of the current regulari-
sation prescription and parameter set. We find first order phase transition surfaces
at large isovector and quark chemical potentials which are not connected.14

14A possible phase of coinciding diquark and pion condensation has not been considered in this
analysis due to technical issues. The simultaneous presence of finite pion and diquark fields requires
the numeric determination of the eigenvalues of the inverse quark quasiparticle propagator.
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Figure 3.19: The space (T , µ, µI) illustrated in a 2D projection. The first order transi-
tion separating the pion phase from the quark gluon phase is indicated with solid lines,
dashed lines show the region with a second order transition. Pion condensation sets in a
isovector chemical potenitals µI ≥ mπ. The first order phase transition at large chemical
potentials exists at low isovector chemical potentials (dotted) only. The two first order
phase transition surfaces are disconnected.
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3.6.2 Off-diagonal isovector susceptibilities

Now we focus on isovector quarknumber susceptibilities. As we are considering
an isosymmetric Lagrangian at vanishing isovector chemical potential, we have to
expect that up- and down- quark degrees of freedom decouple completely. However,
this is only true if there is no degree of freedom that couples to up- and down-
quarks simultaneously. This is true in mean field approximation. If we allow for
lowest order corrections in the context of the corrections presented in Sec. 2.4.3 and
App. B this is no longer true. The principal mechanism at work here is presented
in Sec. 3.7.

We define the up-down quark number susceptibility χud and the moment of the
pressure cud

2

χud

T 2
=

∂2p

∂µu∂µd

and cud
2 =

1

2!

∂2( p
T 4 )

∂(µu

T
)∂(µd

T
)

∣∣∣∣
µu=µd=0

=
1

4

(
c2 − cI2

)
. (3.32)

In the same fashion we define the up-up quark number susceptibility χuu and the
moment of the pressure cuu

2

χuu

T 2
=

∂2p

∂µu∂µu

and cuu
2 =

1

2!

∂2( p
T 4 )

∂(µu

T
)∂(µu

T
)
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µu=µu=0

=
1

4

(
c2 + cI2

)
.15 (3.33)

Here and in Eq. (3.32) µu/d are the up- and down-quark chemical potentials. Due
to the vanishing chemical potentials these quantities can be compared to 2-flavour
lattice QCD results [A+05]. In addition we use the nth moment and the nth isovector
moment of the pressure which are defined in Ref. [A+05] by

cn =
1

n!

∂n( p
T 4 )

∂( µ
T
)n

∣∣∣∣
µ=µI=0

cIn =
1

n!

∂n( p
T 4 )

∂(µI

T
)2 ∂(µI

T
)(n−2)

∣∣∣∣
µ=µI=0

. (3.34)

If the off diagonal moment of the pressure cud
2 is evaluated in mean field we recover

our expectation that it vanishes identically to zero. Including first order corrections
we find the situation illustrated in Fig. 3.20 (solid line). The quantity cud

2 is negative
and peaks just below the crossover transition temperature Tc.

The quantity cuu
2 just as c2 is in astonishingly good agreement with lattice QCD

data such that the ratio cud
2 /c

uu
2 shown in Fig. 3.21 (solid line) reproduces lattice

results [A+05] to the same extend as the more sensitive quantity cud
2 .

3.6.3 Isovector and charge cumulant ratios

In Sec. 3.3.4 quark (baryon) number cumulants and cumulant ratio have been dis-
cussed. As experiments are able to measure charge and baryon number indepen-
dently, charge number cumulants are worthwhile studying as well. The chemical
potentials conjugate to charge density, quark number density and isovector density

15In the present isosymmetric case up-up and down-down quark number quantities are equivalent.
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Figure 3.20: Comparison of the PNJL model predictions for cud
2 as function of temperature

(solid line) with lattice QCD results [A+05]. The dotted (a3 = −6) and dashed (a3 = −12)
lines indicates the model result for a changed Polyakov loop effective potential. The inset
illustrates the behaviour of 〈Φ∗〉 − 〈Φ〉 (solid, left scale) and 1

2 (〈Φ∗〉 + 〈Φ〉) (dotted, right
scale) as predicted by the presented PNJL model at µ > 0. The similarities in the
behaviour of 〈Φ∗〉 − 〈Φ〉 and cud

2 document their joint origin.

Figure 3.21: The ratio χud
χuu

as function of temperature at µ = µI = 0. The dotted
(a3 = −6) and dashed (a3 = −12) lines indicates the model result for a changed Polyakov
loop effective potential.
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are linearly dependent. This linear dependence can be used to establish the following
relation

∂

∂µQ

=
2

3

∂

∂µu

− 1

3

∂

∂µd

=
1

6

∂

∂µ
+

1

2

∂

∂µI

. (3.35)

This equation allows to connect charge, quark number and isovector cumulants. All
of these cumulants are related to fluctuations as given by the following relations

dx2 =
∂2( p

T 4 )

∂(µx

T
)2

=
1

V T 3
〈(δNx)

2〉 , x = q, I, Q and

dx4 =
∂4( p

T 4 )

∂(µx

T
)4

=
1

V T 3

(
〈(δNx)

4〉 − 3〈(δNx)
2〉2
)
, (3.36)

where x = q corresponds to quark number density, x = I to the isovector quark
density and x = Q to charge density. The cumulants are closely linked to the
expansion coefficients cn. To deal with different chemical potentials, the expansion
coefficients cn of p/T 4 in µ/T are generalised to a double Taylor series expansion in
µ/T and µI/T

cn,m =
1

n!m!

∂(n+m)( p
T 4 )

∂( µ
T
)n∂(µI

T
)m

. (3.37)

Using the relations
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second and fourth charge cumulant have been calculated in Ref. [EKR06] using
lattice QCD results for quark number and isovector cumulants. All three cumulants
represent an additional benchmark for our model. In particular we compare the
ratios of fourth and second moment, which are a measure for the relative strength
of density fluctuations. These so-called cumulant ratios are defined by

RI
4,2 =

dI
4

dI
2

RQ
4,2 =

dQ
4

dQ
2

. (3.39)

The comparison of the isovector and the charge density cumulant ratio from the
PNJL model to lattice QCD results is shown in Fig. 3.22. As discussed in Sec. 3.3.4
the low temperature limit of the quark number cumulant ratio, which is 9 = (3B)2,
is an indication for confinement. In nature we expect that only the lightest mesons,
namely the pions, contribute to RQ

4,2 producing the low temperature limit of unity
as all charged degrees of freedom carry one unit of charge. The high temperature
limit is 34

15π2 [EKR06]. The charge cumulant ratio RQ
4,2 is in principle also accessable

by heavy-ion experiments (see discussion in Sec. 3.3.4).16 The absence of the strong
peak in the lattice data may be understood when considering the large explicit
chiral symmetry breaking by the large implemented current quark mass of m0 =

16The isovector cumulant ratio RI
4,2 can be derived from quark number and charge cumulant

ratios.
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Figure 3.22: Comparison of the cumulant ratios RI
4,2 and RQ

4,2 obtained in the PNJL model
with results shown in Ref. [EKR06].

0.4T , as this peak is a remnant of the second order phase transition in the chiral
limit. The deviation of the PNJL result from lattice data at temperatures below
the deconfinement crossover document shortcomings of the description of hadrons
and mesons in the PNJL model. This weakness of the PNJL is more articulate in
isovector and charge cumulant ratio than in the quark number cumulant ratio.

3.7 Isovector susceptibilities

In this section we present a general mechanism that is able to explain how the
PNJL model in its current isosymmetric formulation can produce off diagonal sus-
ceptibilities χud and expansion coefficients cud

2 at µI = 0. The key to the mechanism
presented is an additional degree of freedom that couples to both up- and down-
quark densities equally. As it will turn out, Polyakov loop degrees of freedom may
act as such an intermediary between up- and down-quarks.

For a short investigation of the problem we consider a schematic thermodynamic
model with the following partition function

Z(0)(µu, µd) = Zu(µu) · Zd(µd) . (3.40)

In this model up and down quarks are completely decoupled. Using the standard
formulae, we derive the pressure, quark densities and quark number susceptibilities:

p(0)
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= − logZ(0)

V T 3
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T 3
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(3.41)
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V T 3
δux

∂2 logZu
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T
)2

, (3.42)

where δux denotes a Kronecker delta, i. e. the unperturbed off diagonal susceptibility
vanishes. To this partition function we add a perturbation ZI(µu, µd, ξ) such that
the total partition function reads

Z(µu, µd, ξ) = Z(0)(µu, µd) ·ZI(µu, µd, ξ) = Zu(µu) ·Zd(µd) ·ZI(µu, µd, ξ) . (3.43)
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Note that the perturbation (interaction) partition function ZI(µu, µd, ξ) includes
the dependence on an additional degree of freedom, here named ξ. In our model we
are free to construct this interaction. We define it such that there is an isosymmetric
coupling g of ξ to the quark densities

logZI(µu, µd, ξ) = V T 3 g ξ
(nu

T 3
+
nd

T 3

)
. (3.44)

We now derive the full susceptibilities

χux

T 2
=
χ

(0)
ux

T 2
− g

(
dξ

d(µu

T
)

+
dξ

d(µx

T
)

)(χuu

T 2
+
χud

T 2

)
. (3.45)

Using the fact that dξ
dµu

= dξ
dµd

= 1
2

dξ
dµ

, we solve for χuu

T 2 and χud

T 2 and obtain

χuu

T 2
=
χ

(0)
uu

T 2

1 + g (dξ/d( µ
T
))

1 + 2g (dξ/d( µ
T
))

χud

T 2
=
χ

(0)
uu

T 2

−g (dξ/d( µ
T
))

1 + 2g (dξ/d( µ
T
))
. (3.46)

Eq. (3.46) explains non-vanishing off diagonal flavour susceptibilities χud in the
presence of an additional degree of freedom, here named ξ, that couples to both up-
an down-quark densities in an isosymmetric way. From Eq. (3.46) it may be seen
that a necessary condition for non-vanishing χud is that ξ has a finite derivative with
respect to the quark chemical potential µ, i. e. ξ has to be charge conjugation odd
and density sensitive.

This approach can also be reversed: if there is a field that reacts to density or
chemical potential at lowest order and satisfies a mean field equation, i. e. if

dξ

dµ
6= 0 and

∂Ω

∂ξ
= 0 , (3.47)

we find

d

dµ

(
∂Ω

∂ξ

)
= 0 =

[
∂2Ω

∂ξ2

]
dξ

dµ
+

∂2Ω

∂µ∂ξ
⇒ dξ

dµ
= −

[
∂2Ω

∂ξ2

]−1
∂2Ω

∂µ∂ξ
. (3.48)

Using the inequality in (3.47) this implies that

∂2Ω

∂µ∂ξ
6= 0 . (3.49)

Thus a Taylor series of Ω in ξ and µ necessarily contains a term of the form

δΩ =
∂2Ω

∂µ∂ξ
µ ξ = −g n0 µ ξ , with g n0 = − ∂2Ω

∂µ∂ξ
. (3.50)

Using Eq. (3.44) the constant n0 (at µ = 0) evaluates to n0 = T χ0, where χ0 is the
quark number susceptibility at µ = 0.

For small g the denominators in Eq. (3.46) may be simplified by setting them

equal to one. With Eqs. (3.48) and (3.50) and n0/T
3 = χ0/T

2 = 2χ
(0)
uu /T 2 we find

χud = −1

2

∂2Ω

∂µ∂ξ

[
∂2Ω

∂ξ2

]−1
∂2Ω

∂µ∂ξ
, (3.51)
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manifestly featuring the negative sign of χud. Eq. (3.51) reveals a close relation of
the ξ-susceptibilty [∂2Ω/∂ξ2]

−1
and χud.

Using the fact that the quark density n vanishes at µ = 0 the quark density n
can be expressed as n = n0(µ/T ) + · · · (at µ = 0). A Legendre transformation of
the thermodynamic potential Ω produces the free energy density f

f = Ω + nµ . (3.52)

Using Eq. (3.50) we find

δf = g n0 µ ξ +
dξ

d( µ
T
)
n0 µ

2 + · · · = g (nu + nd)︸ ︷︷ ︸
n

ξ +
dξ

d( µ
T
)

n2 T 2

n0

+ · · · (3.53)

The lowest term in n and ξ is g = −n−1
0 ∂2Ω/(∂µ∂ξ). If we derive the free energy f

around µu = µd = 0 from the assumptions above, the free energy f can be written
in the following form

f = f0 +
1

2




ξ
nu

nd



T 

a b b
b c 0
b 0 c






ξ
nu

nd


 , (3.54)

where the first order terms vanish due to the requirement that the free energy is
minimal. With nx ∝ µx we conclude that b = g/2. Evaluating the eigenvectors of
the matrix in Eq. (3.54) one finds that if a 6= c increasing n = nu + nd has to be
accompanied with a change of ξ to conserve the minimal value of the free energy.
Considering the eigenvalues17 of this matrix it can also be concluded, that for this
matrix to remain positively definite, the following conditions have to be met:

g2

2
= 2 b2 > a c a > 0 c > 0 . (3.55)

The first inequality states that large coupling constants g of the quark densities to
the field ξ lead to unphysical susceptibilities. Considering the isosymmetric eigen-
vectors the one corresponding to the smaller eigenvalue, 1

2
(a+ c−

√
(a− c)2 + 8b2),

determines the behaviour of ξ around µ = 0. By virtue of the eigenvectors, quark
density and quark chemical potential on the one hand and the field ξ on the other
hand have the same (opposite) sign if b > 0 (b < 0).

Comparing the functional forms of the thermal expectation values of the imagi-
nary part Polyakov loop 1

2
〈Φ∗ − Φ〉 = Φ− (see inset of Fig. 3.20) and the off diagonal

expansion coefficient cud
2 a striking coincidence is observed. If we consider the quan-

tity dΦ−/dµ at vanishing chemical potential and consider its quotient with cud
2 we

find the behaviour shown in Fig. 3.23. The pronounced extrema in both cud
2 and

dΦ−/dµ compensate.
To consolidate the study of the PNJL model behaviour the Polyakov loop effec-

tive potential has been modified. The lattice QCD results, that have been used as

17The eigenvalues evaluate to: λ1 = c and λ2,3 = 1
2 (a+ c±

√
(a− c)2 + 8b2). The corresponding

eigenvectors are v1 = (0 , 1 , −1)T and v2,3 = (λ2,3 − c , b , b)T .
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a guidance in the adjustment of the Polyakov loop effective potential, constrain the
potential at temperatures around T0 = 270 MeV and above. The region where the
Polyakov loop effective potential interferes with the chiral crossover in the PNJL
model is much lower. Thus the potential used in Refs. [RRW07b, RHRW08] may be
supplemented by an additional higher order term term in the polynomial ansatz of
the coefficient a(T ) in Eq. (2.16). The coefficient a3 of the additional term a3 (T0/T )3

has been fixed to the values −6 and −12. The remaining parameters in the Polyakov
loop effective potential have been readjusted to optimize the agreement with lattice
data in Nf = 0. The result of this proceedure is given in Tab. 3.1. The χ2 in these
fits does not increase significantly by this biased modification of the potential. The
behaviour of the potential around Tc changes however. This has the consequence
that first of all Tc varies slightly while the flavour off diagonal quantity cud

2 is altered
quite significantly as illustrated in Fig. 3.20. The ratio of cud

2 and dΦ−/dµ is almost
flat around Tc and remains almost unaffected by changes to the potential. The
changes to the Polyakov loop effective potential are changes to the stiffness of the
potential in Φ−-direction around Tc. In the presented toy model this corresponds to
a change of the parameter a in Eq. (3.54). As the Polyakov loop effective potential
is constraint by lattice QCD data [B+96, KKPZ02] around T0 and above, it is legit-
imate to modify the effective potential without losing physical relevance. We argue
that it is therefore possible to extract information about an Polyakov loop effective
potential from flavour off diagonal quantities.

From Eq. (3.46) we can derive the isovector coupling stength of the field Φ− and
the flavoured quark densities nu/d

g = −2 cud
2

c2

[
dΦ−

d(µ/T )

]−1

. (3.56)

It is interesting to note that the quasi universal quantity plotted in Fig. 3.23 reap-
pears in this formula with the prefactor −2/c2. In Fig. 3.24 the logarithm of the
coupling constant g has been plotted. The overall view to the left indicates that
the coupling decreases towards the crossover transition exponentially. The detailed
graph in the right panel of Fig. 3.23 focuses on the behaviour above the crossover
temperature Tc. With increasing temperature the coupling constant g decreases
approximately ∝ T−1. This qualitative behaviour seems to be in agreement with
lattice data within their errors.

The extraction of this information on the Polyakov loop effective potential can
however only work if the presented mechanism is in fact at work in QCD as it is in
the presented model. Even under this assumption it is expected, however, that the
flavour off diagonal susceptibility χud depends on 1/Nc (pion) corrections. The un-
known size of the 1/Nc contributions complicates to extract quantitative information
about an Polyakov loop effective potential. The presented PNJL calculation does
not include 1/Nc-corrections, which are in principle included in lattice QCD. One
has to note that Ref. [A+05] which have been used for reference in Fig. 3.20 reports
on calculations implementing rather large current quark mass of 0.4T . This large
current quark mass implies heavy pions which strongly suppresses meson loops (i. e.
1/Nc-corrections). We conclude that for a quantitative extraction of information
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Figure 3.23: The ratio of cud
2 and dΦ−/dµ as a function of temperature at vanishing

chemical potential. The rather flat behaviour demonstrates that the peaks in cud
2 and

dΦ−/dµ are shaped very much alike indicating the close relation of the two quantities.
The ratio has been plotted for different Polyakov loop effective potentials (see Tab. 3.1).
The plotted ratio is almost universal even though the peaks of cud

2 and dΦ−/dµ are quite
distinct. This almost universal behaviour hints towards the mechanism outlined in Sec. 3.7.

a0 a1 a2 a3 b3 χ2/χ2
0

−2.47 15.2 0 −1.75 1.0
16π2

45
−3.70 16.2 −6 −1.08 1.3
−6.06 20.6 −12 −0.66 1.9

Table 3.1: Supplementing a(T ) by an additional summand a3 (T0/T )3 and readjusting
a1, a2 and b3 increases χ2. The overall quality of the reproduction of the lattice data
in pure gluonic theory [B+96, KKPZ02] has to be judged by χ2/χ2

0. Using this new
parametrisation changes the stiffness of the Polyakov effective potential at temperatures
just below Tc increasing the mixing of up and down quark number.

from lattice data it is in order to use more recent lattice data with lower current
quark masses [C+08, GG08]. As these more recent results are obtained including
strange quarks a reasonable comparison will have to be performed using a 2 + 1-
flavour PNJL model.
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Figure 3.24: The proposed coupling g of Φ− to the flavoured quark densities nu/d has
been extracted using Eq. (3.56) from the PNJL model for three different Polyakov loop
potential parametrizations. The numeric values employed in these parametrisations are
listed in Tab. 3.1. The outcome is compared to lattice points obtained from data in
Refs. [A+05, Dör06].



Chapter 4

Conclusion and Outlook

The investigation of the QCD phases in this work is based on an assumption albeit
widely accepted: QCD at scales of the order of ΛQCD and below is governed by
spontaneous chiral symmetry breaking and confinement. The work presented here
and other NJL based model rely on the correct modelling of spontaneous chiral sym-
metry breaking in QCD. The standard NJL approach only respects leading order
chiral effects. Due to the non-renormalisability of the NJL model the regularisa-
tion proceedure has to be part of the model. This does not allow to implement the
running of quark masses and coupling characteristic of QCD. Further higher loop
corrections suffer from this non-renormalisability as well. Higher loop contributions
(1/Nc-corrections) involve higher powers of the four-quark coupling G and further
divergent loop integrals. The subtraction of the infinities in each of these diver-
gent integrals should be done using physical input. For the one-loop integrals it is
the properties of the pion that anchor the regularisation in physical properties. If
mesonic contributions involving higher loop integrals shall be estimated these infini-
ties cannot be fixed to physical input. The arbitraryness in the subtraction of the
divergences destroys the predictive power of such calculations. While it is possible
to consider contributions originating in the meson pole consistently, pressure gener-
ated in resonant interactions of mesons with quark-antiquark pairs involve divergent
loop integrals and cannot be determined unambiguously.

Despite these shortcomings of local NJL model, they are able to reproduce the
observed meson spectrum of QCD to high accuracy by implementing spontaneous
chiral symmetry breaking at leading order. Considering Polyakov loop extended
NJL (PNJL) models it may be concluded that spontaneous chiral symmetry break-
ing as the leading chiral effect is deeply involved in QCD dynamics generating pres-
sure. As shown by these PNJL models spontaneous chiral symmetry breaking is
also complexly intertwined with confinement. Confinement effects are implemented
by Polyakov loop effective potentials. If higher accuracy in the description of QCD
dynamics is needed, mesonic pressure contributions play an essential role below
the crossover transition temperature. More accurate description can be accom-
plished by generalising the local PNJL approach to non-local quark coupling terms
[SFR07, AAG+08, GDGS06, BBRV08, HRCW09]. Such calculations reveal that
pressure contributions originating in resonant meson to quark-antiquark interac-
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tions are small. Therefore the astonishing agreement with lattice data observed
in local PNJL models [RTW06, RRTW07, RRW07b, RHRW08] remains in non-
local calculations. Much larger uncertainties in the comparison of model and lattice
QCD calculation originate in systematic errors of available lattice calculations. Due
to lacking computing power, data is very noisy at low temperatures requiring to
normalise the pressure at temperatures of approximately 0.5Tc. Even though small
compared to the crossover temperature such temperatures are still rather large in
terms of the pion mass, leading to uncertainties at the order of mesonic pressure
contributions (see discussion in Ref. [RHRW08]).

Besides spontaneous chiral symmetry breaking confinement exerts mayor influ-
ence on the QCD pressure. There are two ways how confinement plays into the
QCD equation of state. Firstly it is the pressure from freely propagating gluons
in the high temperature and high density phase of QCD. Secondly it is the in-
fluence of confinement on the quark pressure. The ratio of the asymptotic high
temperature pressures generated by free quark and gluon degrees of freedom is
Nc·Nf ·Nspin

(N2
c −1)·Nspin

× pfermion
SB

pboson
SB

= 12
16

× 7
8
≈ 0.66 (for Nf = 2). This indicates that both ef-

fects are equally relevant. This is the reason why the extension of the NJL model
by a Polyakov loop effective potential is essential in the description of QCD ther-
modynamics. To find a quantitatively reliable parametrisation of the Polyakov loop
effective potential, lattice QCD calculations without quarks have been exploited. In
the absence of quarks, i. e. for infinitely heavy quarks, the Z(3) centre symmetry
of SU(3)c is exact. Thus there must not exist an explicit Z(3) symmetry breaking
term in this effective potential once 〈Φ∗〉 = 〈Φ〉 = 0.

Even though the ansatz (2.15) only includes Polyakov loop degrees of freedom,
it works very well at crossover temperatures and far above. However Polyakov loop
degrees of freedom are not able to describe the dynamics of gluons at very high tem-
peratures. Transverse gluon degrees of freedom will start to dominate the generation
of pressure. Even though the Polyakov loop effective potential produces reasonable
quantitative results, it implements the wrong physics at high temperatures. The re-
gion where Polyakov loop degrees of freedom as constant temporal background fields
are appropriate to describe gluon dynamics is where spatial correlation lengths are
larger than the inverse temperature.1 A better implementation of the Polyakov loop
effective potential relies on the strong coupling expansion [Fuk08a].

Coupling the Polyakov loop effective potential to the quark sector via minimal
substitution produces an equation of state that agrees with full QCD lattice calcula-
tions to an astonishing accuracy. Even though the PNJL model is able to model the
equation of state correctly, there are aspects of confinement in this model description
that cannot fully satisfy. The good reproduction of the equation of state is due to
the suppression of the quark degrees of freedom below the crossover temperature.
This suppression is caused by a formal decrease of the effective quark temperature.
The reduced effective temperature of the quarks does only influence the relationship

1Lattice QCD calculations found that the spatial correlation length of the field strength λ is of
the order of λ ≈ 0.25 fm ≈ (0.8GeV)−1 > T−1

c . In the region where λ > T−1 the dimensionality is
effectively reduced from 4 to 3.
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of quarks and mesons quantitatively and not qualitatively. This is why unphysical
decays of mesons into quark-antiquark pairs are not suppressed [H+07] to the extent
it is happening in QCD. Again NJL models show weaknesses as soon as applied
beyond leading order in the 1/Nc-expansion. Here non-local generalisations could
bring some improvement.

One central part of this thesis is the proper description of Polyakov loop degrees
of freedom coupled to quarks using the minimal coupling scheme. One of the suc-
cesses of the presented formalism is the description of the behaviour of the thermal
expectation values of the Polyakov loop and its complex conjugate 〈Φ∗〉 and 〈Φ〉. It
has been shown that up to the used order of approximation the calculated values
of 〈Φ∗〉 and 〈Φ〉 (and other thermal expectation values) do maximise the partition
function. As parts of these Polyakov loop degrees of freedom cannot be separated
from the appearance of the fermion sign problem, this requires to constrain all mean
fields such that their physical meaning is maintained. In the context of isovector
quantities and the low temperature limit of cumulant ratios it became obvious that
the pure mean field treatment (imposing constraints like formost 〈Φ∗〉 = 〈Φ〉) is
not appropriate for quark models coupled to Polyakov effective potentials. Pertur-
bative corrections to the mean field approximation represent a possible systematic
treatment of the fermion sign problem in the PNJL model. At the same time this
approach allows for a clear separation of bare fields and thermal expectation val-
ues. The saddle point approximation, which is an alternative way to deal with the
fermion sign problem, directly jumps to thermal expectation values, which destroys
this clear separation of mean field from fluctuational contributions. The approach
advocated here uses a perturbative expansion in spatially and temporally constant
fields to recover the dynamics of the Polyakov loop entering the model through com-
plex contributions of the action. Mesonic quark-antiquark loops involving physics
beyond constant fields are treated in random phase approximation (RPA) of the
corresponting correlation functions.

One of the questions currently of hightest interest is the issue of a critical point
in the QCD phase diagram. Many model calculations and lattice QCD approaches
predict its existence, however, both ways to address QCD are not completely decisive
on this. The possibility to remove the critical point from the PNJL phase diagram
by introduction of a repulsive vector coupling term has been shown in Ref. [Fuk08a].
Lattice QCD calculations studying the extension of the Columbia plot to non-zero
chemical potential [dFP08] also question the existence of the critical end point.

In the experimental search for the critical end point, fluctuations are key quan-
tities. As both the critical end point as well as the chiral phase transition in the
chiral limit are second order phase transitions, one expects fluctuations to diverge
at these points. Critical analysis of the chiral tricritical point (in the chiral limit)
indicate that physical quark masses are in its critical region. Therefore fluctuations
are suitable measures for the chiral crossover. The rapidly changing amplitude of
the fluctuations allows to determine the position of the critical endpoint. We have
studied susceptibilities in the PNJL model supporting the idea of locating the criti-
cal end point using fluctuations. The experimental accomplishment of this task will
however require huge effort. As the system size in heavy-ion collisions is finite, the
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growth of fluctuations in the critical region is limited. The fast evolution of the fire
ball also restricts the time spent in the critical region. In combination with the crit-
ical slowing down, which has been observed in this PNJL analysis in the reduction
of the speed of sound near the chiral crossover transition, the size of fluctuations
building up while passing through the critical region is additionally limited. To
maximise the size of the observable fluctuations, it is most promising to use the full
detector acceptance to select a fixed volume in phase space for this measurement of
fluctuations. The way to create large statistics is to assume the equivalence of many
successive heavy-ion collisions. The observed fluctuations are then considered on
the so-called event-by-event basis, requiring to bin successive events by the number
of participants (or impact parameter).

Quantities sensitive to changes in fluctuations are cumulants and cumulant ratios
such as R4,2 = d4/d2 proposed in Ref. [SFR08]. Close to the tricritical point at small
current quark masses, a peak in the cumulant ratios R4,2 is expected along chiral
symmetry restauration. As this peak has to be understood as part of the critical
region of the tricritical point in the chiral limit, it will be strongly current quark
mass and pion mass dependent. In accordance with this interpretation of this peak
Ref. [SFR08] reports a reduction of the peak height with increasing pion mass also
seen in this PNJL analysis of the chiral crossover transition. On the other hand the
regular parts of the cumulant ratios R4,2 = d4/d2 are determined by the number
of degrees of freedom that can be accessed thermodynamically. Thus the absolute
value of the regular parts of the cumulant ratios allow to distinguish confined and
deconfined matter. In case of the quark number cumulant ratio the PNJL model is in
very good agreement with lattice QCD results, when respecting the considerations on
large pion masses given above. The extraction of the isovector cumulant ratio from
the PNJL model gives a handle on the charge cumulant ratio possibly accessable in
heavy-ion collision experiments in the future.

The inclusion of fluctuating temporal gauge background fields allows for dif-
ferences in Polyakov loop expectation values 〈Φ〉 and 〈Φ∗〉. The accessibility of
the degree of freedom Φ− = 1

2
〈Φ∗ − Φ〉 modifies the model’s reaction on isovector

chemical potentials. Even though the model has been formulated symmetrically for
up- and down- quarks finite up-down quark susceptibilities are observed. It is the
coupling of both up- and down- quark densities to Φ− that allows one quark den-
sity to influence the other by changing the mean field value Φ−. The possibility of
different expectation values 〈Φ∗〉 and 〈Φ〉 therefore may induce an effective isovec-
tor coupling strength. In principle this isovector coupling strength which has been
evaluated in the presented PNJL model may also be non-vanishing in full QCD. At
finite quark densities non-vanishing off diagonal susceptibilities χud do not imply
explicit isospin breaking, even though the differences in the measured quark masses
of heavy quarks suggest that also the light quark masses may differ. The effects gen-
erated by the presented mechanism may be overruled by effects of dynamic pionic
degrees of freedom. Nevertheless the comparison of isovector quantities with lattice
QCD calculations does in principle allow for a more accurate determination of the
coefficients in the Polyakov loop effective potential. Missing pion contributions to
the equation of state in the local PNJL model prohibit this extraction of information
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from lattice QCD. On the other hand the contributions of pion correlations are also
strongly suppressed on the lattice QCD side. The available data for Nf = 2 flavours
unfortunately features a rather high current quark mass of 0.4T [A+05]. The current
data with smaller explicit chiral symmetry breaking are however produced includ-
ing strange quarks [C+08]. Trustworthy procedures to extract 1/Nc-corrections in
the PNJL model and access to lattice QCD data at more realistic pion masses are
necessary to refine the information on the Polyakov loop effective potential using
flavour off diagonal susceptibilities.

In view of the enormous difference between the simplicity of the PNJL model
and the complexity of full QCD it is stunning how QCD is modelled by PNJL
calculations. Already at mean field level thermodynamic quantities are reproduced
to astonishingly high accuracy. Moreover the approach of extending the NJL model
by a Polyakov loop effective potential by minimally coupling the NJL sector to
temporal gauge background fields causes the so-called fermion sign problem. A
strict mean field treatment which only allows variations of fields within a physically
meaningful range cannot deal with all effects generated by this fermion sign problem.
The present work introduces a treatment of this problem in the PNJL model which
permits to evaluate the differences in 〈Φ〉 and 〈Φ∗〉 in agreement with complementary
model studies [DPZ05] and lattice QCD [Dör06]. It is this degree of freedom, Φ− =
1
2
〈Φ∗ − Φ〉, that induces a finite isovector coupling, also observed in lattice QCD

calculations [A+05]. The very good agreement of PNJL calculations with QCD, as
far as we know it, will hopefully serve as a true guidance in the experimental search
of the position of a possible critical end point in the QCD phase diagram. There
are PNJL approaches to QCD that improve on several issues of the presented PNJL
calculation. Many of the unphysical features of the PNJL mesons can be avoided
using non-local approaches to the PNJL model [GDGS06, HRCW09]. To keep up
with current lattice QCD simulations it will be necessary to extend this two-flavour
study by explicit implementation of strangeness.



Appendix A

Pion mass and decay constant

A.1 Evaluation of pion mass and pion decay con-

stant

Meson propagators are the correlation of two fields at different space-time which
can be derived from the effective action by differentiation:

S−1
π (x, y) =

δ

δπ(x)

δ

δπ(y)
Seff . (A.1)

We apply the formulae ∂x tr log[M−1] = tr[M ∂xM
−1] and ∂xM

−1 = −M ∂xM
−1 M

to derive

S−1
π (p, q) = −T̃r

[
S(p) δπS

−1 S(q) δπS
−1
]
+

1

G
= [ ]−1 (A.2)

= 2NcNf NM(p2) I2(p
2) − 1

G

m0

M
(A.3)

where the spatial dependence has been replaced by a momentum dependence, and
the derivative δπS

−1 is a constant structure representing the meson quantum num-
bers (in the pion case: δπS

−1 = i γ5τ±,3). The polynomial NM(p2) depends on the
quantum numbers of the considered meson. For pions we find NM(p2) = p2, for
the sigma meson we find NM(p2) = p2 − 4M2. Another way of deriving the meson
propagator is to write down a recursive equation:

= + ⇒ =
1

1 −
,

(A.4)
where the filled vertex implies the multiplication with the coupling strength G, while
the empty vertex excludes this factor G. We can now identify the meson mass mM

and the quark-meson coupling gMqq performing a Taylor expansion in q2 = −s:

=
g2
Mqq

q2 −m2
M

(A.5)

⇒ ∂ [ ]−1

∂q2

∣∣∣∣∣
q2=m2

M

= g−2
Mqq −g2

Mqq [ ]−1
∣∣
q2=0

= m2
M (A.6)
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For the pion this reads

⇒ 2NcNfI2(m
2
π) = g−2

πqq and g2
πqq

1

G

m0

M
= m2

π . (A.7)

The pion decay constant is defined as the matrix element given in Eq. (1.14), con-
necting the vacuum to the pion wave function. In the NJL framework the axial
current Aµa is discribed by the structure iγµγ5

τa
2

and the vertex Γ connecting two
quarks to the pion πb(p) is Γ = igπqqγ5τb. The pion decay constant therefore can be
evaluated using

〈Ω|Aµa(x)|πb(p)〉 = i fπ p
µδabe

−ip·x = iγµγ5
τa
2

Γ
p, b . (A.8)

The loop graph to the right can be translated into a trace and integration over all
loop momenta. Making use of the cyclic invariance of the trace, γµ inside the trace
in Eq. Eq. (A.8) can be eliminated and replaced by pµ in front of the trace, allowing
to rewritte Eq. (A.8) using the integral I2 defined in Eq. (2.14):

fπ p
µ = −2NcNf gπqqM pµ I2(p

2) , (A.9)

where we have set a = b and x = 0. The quark pion coupling contant gπqq is
eliminated from Eq. (A.9) using the first relation in Eq. (A.7).

f 2
π = 2NcNf M

2 I2(0) . (A.10)

Combining the two equations in Eq. (A.7) to eliminate the quark pion coupling
contant gπqq produces a relation for the pion mass:

m2
π =

m0

M

1

2GNcNf I2(m2
π)

(A.11)

Multiplication of Eqs. (A.10) and (A.11) eliminates the integral I2 if we use the
simplification that I2(m

2
π) ≈ I2(0), which holds true near the chiral limit. This

manipulation returns the 2-flavour NJL Gell-Mann-Oakes-Renner (GMOR) relation
[GMOR68]:

m2
π f

2
π =

m0M

G
= −m0 〈ψ̄ψ〉 +O(m2

0) , (A.12)

where Eq. (2.10) has been used, which establishes a direct connection of the constiu-
tent quark mass to the chiral condensate, M = m0 −G 〈ψ̄ψ〉, only true in the local
2-flavour NJL framework. Eq. (A.12) is the 2-flavour NJL Gell-Mann-Oakes-Renner
(GMOR) relation [GMOR68].

The elimination of the integral I2(m
2
π) from Eqs. (A.7) and (A.10) again using

I2(m
2
π) ≈ I2(0) near the chiral limit produces the Goldberger-Treiman relation:

fπ gπqq = M . (A.13)
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A.2 Energy of mesonic modes

The derivation of the meson mode self energy at finite temperature and chemical
potential can be found in some detail in [HK94]. We would like to repeat some
of the calculations and extend them such that the pressure from mesons and qq̄
correlations can be evaluated.

We start with the real part following the lines of Ref. [H+07]. We include also
the ~q-dependence in our calculation. The self energy is derived from the RPA ap-
proximation:

ΠXY (iω, ~q ) = T
∑

ωn

∫
d3p

(2π)3
Tr
[
ΓX S̃(iωn + µ, ~p )ΓY S̃(i(ωn − ω) + µ, ~p− ~q )

]

(A.14)

Here X and Y represent a mesonic current and Γ(X/Y ) is the corresponding Dirac,
flavour and colour structure that connects this current with its quantum numbers to
a quark-antiquark loop. The quark propagator is given by S(iωn, ~p ) = − m+/p

ω2
n+p2+m2

with /p = iωnγ0 − ~γ · ~p. From now on we will focus on the pseudoscalar isovector
channel (i. e. the pionic excitations with ΓX = ΓY = ΓP = iγ5τa) and the scalar
isoscalar channel (i. e. the sigma excitations with ΓX = ΓY = ΓS = 1). As the trace
vanishes for different flavour structures in the pion and sigma case, we suppress the
index Y and the flavour index a.

ΠP/S(iω, ~q ) = 4Nf

∑

j

T
∑

ωn

∫
d3p

(2π)3
Ñ

P/S
j ∆(iωn + µj, ~p )∆(i(ωn − ω) + µj, ~p− ~q )

(A.15)

ÑP
j = (ωn − iµj)(ω − ωn + iµj) −m2 − ~p · (~p− ~q )

ÑS
j = (ωn − iµj)(ω − ωn + iµj) +m2 − ~p · (~p− ~q )

∆(iωn, ~p ) =
1

ω2
n + p2 +m2

=
1

ω2
n + E2

p

=
∑

s=±1

−s
2Ep

1

iωn − sEp
(A.16)

Here the colour trace has been written out in form of the sum over all colours j. In
addition we use the formal rule µj → µ − iTφj = µ − iAj, which can be derived
once the Polyakov loop is in its diagonal representation (in Polyakov gauge). We
separate the expression in Eq. (A.15) into partial fractions:

ΠP/S = 2Nf

∑

j

T
∑

ωn

∫
d3p

(2π)3
(∆(iωn + µj, ~p ) + ∆(i(ωn − ω) + µj, ~p− ~q ))

+2Nf N
P/S

∑

j

T
∑

ωn

∫
d3p

(2π)3
∆(iωn + µj, ~p )∆(i(ωn − ω) + µj, ~p− ~q )

(A.17)

with NP = −(ω2 + q2) = s and NS = −(ω2 + q2) − 4m2 = s− 4m2 .

We shift the arguments in the second term of the integrand in the first line of
Eq. (A.17). Applying the correct regularisation, we recover the gap equation for the
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constituent quark mass

1

G

(
1 − m0

m

)
= 4Nf

∑

c

T
∑

ωn

∫ Λ d3p

(2π)3
∆(iωn + µc, ~p ) = 4NfNcI1 . (A.18)

After performing the Matsubara sum, the integral I1 can be re-expressed in terms
of the Fermi-Dirac distribution. The effect of the Polyakov loop is then taken
into account following Ref. [H+07]. The modified Fermi-Dirac distributions f±

Φ of
Ref. [H+07] are introduced to rewrite I1 as1

I1 =
1

2π2

(∫ Λ

0

p2dp
1

2Ep
−
∫ ∞

0

p2dp
f+

Φ (Ep) + f−
Φ (Ep)

2Ep

)
(A.19)

We define the integral I2 by rewriting Eq. (A.17) in the following form:

ΠP/S = 4NfNc I1 − 2NfNc N
P/S I2 . (A.20)

The Matsubara sum implied in the integral I2 can be evaluated leaving us with the
divergent integral over the three-momentum ~p:

I2 =

∫ Λ d3p

(2π)3

1

4EpEp−q

(
1

iω − Ep − Ep−q
− 1

iω + Ep + Ep−q

)
+

∫
d3p

(2π)3

1

4EpEp−q

(−f+
Φ (Ep) − f−

Φ (Ep−q)

iω − Ep − Ep−q
− −f−

Φ (Ep) − f+
Φ (Ep−q)

iω + Ep + Ep−q

− f−
Φ (Ep) − f−

Φ (Ep−q)

iω + Ep − Ep−q
+
f+

Φ (Ep) − f+
Φ (Ep−q)

iω − Ep + Ep−q

)
. (A.21)

The divergent part of this integral is treated with a three momentum cutoff at Λ,
while the finite parts in line two and three of Eq. (A.21) are integrated over all ~p ∈
R3. The separation of finite and divergent parts is derived from the regularisation
procedure for the pressure, defined such that the Stefan-Boltzmann limit at high T
is reproduced.

We split the quark self energy into real and imaginary part:

Re ΠP/S = 4NfNc I1 − 2NfNc N
P/S Re[I2] (A.22)

Im ΠP/S = −2NfNc N
P/S Im[I2] (A.23)

The real part of I2 involves the principal value of the momentum space. Here we
have shifted the integration variable ~p by ~q/2 to obtain a symmetric cutoff behaviour.
For the imaginary part this shift is not needed as the imaginary part is finite and
therefore is not subject to regularisation.2 The evaluation of the imaginary part

1Note that we have defined the Integrals I1 and I2 without the prefactor i as done in Ref. [H+07].
Additionally we have implemented a mixed cutoff scheme, regularising only divergent pieces, such
that the Stefan-Boltzmann limit for the pressure at asymtotically high temperatures is reached.

2The regularisation however destroys the analytic structure of the polarisation function Π. One
way to connect real and imaginary parts of Π is to use a Hilbert transformation where the integral
over ω is regularised by a sharp cutoff at ω2 = 4Λ2 + 4M2 [HK94].
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requires the following change of variables:

(
p2dp, d cos θ

)
=
(
EpdEp,

1
|~q |d [~p · ~q]

)
=
(
EpdEp,

1
2
|~q | d

[
E2
p−q − E2

p − q2
])

=
2EpEp−q

|~q |
(
d
[

1
2
(Ep + Ep−q)

]
, d
[

1
2
(Ep−q − Ep)

])
. (A.24)

Cauchy’s integral theorem

1

x− x0 ± iε
= ∓δ(x− x0) + P 1

x− x0

(A.25)

is then used where the sign in front of the Feynman ε is always given by the sign
of ω leading to an integral that can be given in closed form. Of course, it is crucial
to keep track of the limits of integration and the question whether the Dirac deltas
do lie inside these limits. For fermions that do not propagate in a Polyakov loop
background field we arrive at the following form of the imaginary part of I2, where
we have Wick-rotated back from Euclidean space to Minkowski space substituting
iω → ω = q0

Im I2 = − 1

16π |~q |
(
Θ(s− 4m2)

[
Θ(ω)J+

pair + Θ(−ω)J−
pair

]
+ Θ(−s)JLandau

)
(A.26)

J±
pair = T ln

(
[1 − f±(E−)] f∓(E−)

[1 − f±(E+)] f∓(E+)

)

JLandau = T ln

(
f+(E−)f−(E−)

f+(−E+)f−(−E+)

)
= 2ω + T ln

(
f+(−E−)f−(−E−)

f+(E+)f−(E+)

)
.

We have used the definitions E± = ω
2
± q

2

√
1 − 4m2

s
with s = ω2 − q2. Note that due

to the kinematic ranges the arguments of the Fermi-Dirac distribution functions f±

in Eq. (A.26) are always positive except for the first expression of the definition of
the Landau term JLandau.

In the case of fermions propagating in a Polyakov loop background field the
expression for Im I2 becomes:

Im I2 = − 1

16π |~q |
(
Θ(s− 4m2)

[
Θ(ω)J+

pair + Θ(−ω)J−
pair

]
+ Θ(−s)JLandau

)
(A.27)

J±
pair =

T

3
ln

(
z̃∓Φ (E+)z̃∓Φ (−E+)

z̃∓Φ (E−)z̃∓Φ (−E−)

)
JLandau =

T

3
ln

(
z̃+
Φ (E+)z̃−Φ (E+)

z̃+
Φ (−E−)z̃−Φ (−E−)

)

with z̃±Φ (E) = 1 + 3Φ∗e−
E∓µ

T + 3Φe−2E∓µ
T + e−3E∓µ

T

and z±Φ = ln[z̃±Φ ] = trc

[
ln
(
1 + L†e−

E∓µ
T

)]
.

In a completely deconfined setting where all fields only incorporate trivial colour
structures (proportional to unity) Eq. (A.27) translates into Eq. (A.26).



Appendix B

Derivation of corrections to the
mean field approximation

This appendix displays some technical details concerning the treatment of fluctua-
tion corrections beyond mean field approximation in the PNJL model (cf. Sec. 2.4.3).

In the following we denote by θ = (θi) a set of fields which operate as
bosonic degrees of freedom in the effective action Sbos. Furthermore, let θ0 =
(〈σ〉0 , 〈∆〉0 , 〈φ3〉0 , 〈φ8〉0) be the set of mean field (expectation) values of these
quantities, and introduce deviations from the mean fields by ξ = (ξi) = θ − θ0.

A frequently used procedure that we follow here, is to expand the effective action
in powers of ξ around a properly chosen mean field configuration. The gaussian
part of such an expansion of the path integral can be handled analytically. In
Sec. 2.4.3 the mean field approximation has been defined such that the (formally)
complex action Sbos produces, to this leading order, a real-valued thermodynamical
potential (or pressure), ΩMF = Re[Ω0], subject to the mean field equations (2.21).
The expansion of Sbos is then of the generic form

Sbos =
V

T

(
ΩMF + ω(1) · ξ +

1

2
ξ · ω(2) · ξ · · ·

)
, (B.1)

where we have introduced the notations a · b =
∑

i ai bi and a · A · b =
∑

ij aiAij bj,
with summations extending over all bosonic degrees of freedom. The expansion
(B.1) is performed such that the path integral is optimally approximated. This is
achieved when the perturbative terms in the expansion of the action are maximally
suppressed. With the thermodynamic weight e−S ∈ C this approximation is optimal
near the maximum of

∣∣e−S∣∣. The equations to determine θ0 are the mean field
equations (2.21) (also used in [RRW07b]).

Given the expansion (B.1) in terms of the ξ fields, thermal expectation values
incorporate fluctuations around the mean field configuration θMF ≡ θ0. We refer to
these corrections as fluctuations even if the fields themselves (such as the Polyakov
loop field variables φ3 and φ8) are constant in space and time.

A perturbative approach is now used to calculate corrections to the mean field
solutions. The action Sbos is split into “large” and “small” parts, Sbos = S0 + SI,
as follows: the “large” part S0 incorporates the leading mean field terms plus the

91
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additional gaussian part of O(ξ2) in Eq. (B.1):

S0 =
V

T

(
Re[Ω0] +

1

2
ξ · ω(2) · ξ

)
, (B.2)

while SI deals with the remaining pieces, in particular with the non-vanishing Im[Ω0].
The leading correction of this sort is the term δSI = V

T
ω(1) ·ξ. In the present context

we truncate Eq. (B.1) as it stands and keep only this term in SI, for the moment.
The thermal expectation values of a given quantity f(ξ) is proportional to

∫
Dξ f(ξ) e−Sbos =

∫
Dξ f(ξ) e−S0 e−SI , (B.3)

where, for fields constant in space-time, the path integral reduces to

∫
dξ f(ξ) e−S0(ξ) e−SI(ξ) =

∫
dξ f(ξ) e−S0(ξ) e−ik·ξ , (B.4)

with

k =
V

iT
ω(1) =

V

T
Imω(1) . (B.5)

A perturbative expansion of f(ξ) about ξ = 0 (i. e. about θ = θMF) in powers of ξ
involves integrals of the form

∫
dξ ξn e−S0(ξ) e−ik·ξ = (i∂k)

nZ0(k)|k=V
T

Imω(1) , (B.6)

where we have introduced the generating function Z0(k) =
∫

dξ e−S0(ξ) e−ik·ξ. Each
power of i∂k evidently produces a factor T

V
. At the same time, performing this

derivative explicitly on Z0(k), with S0(ξ) specified in Eq. (B.2), produces a factor

δ = i
T

V

[
ω(2)

]−1 · k =
[
ω(2)

]−1 · ω(1) , (B.7)

which is independent of T
V

.
Hence there are two small quantities at hand to establish a perturbative ex-

pansion: T
V

and δ. The smallness of T
V

is given here as we are interested in the
thermodynamic limit. The size of δ, however, is controlled by the action itself.
Whether the expansion in δ is justified or not depends on the model and must be
examined accordingly. The explicit calculations presented in the main body of this
work shows that in the present version of the PNJL model the expansion in δ is
indeed a good approximation.

We are now in a position to write down the thermal expectation value of a generic
function f as an expansion in powers of T

V
and δ. We proceed here with establishing

Feynman diagrams for this perturbative approach. We write generically

Z =
1

N

∫
Dξ e−Sbos =

1

N

∫
Dξ

∞∑

l=0

1

l!
(−SI)

l e−S0 . (B.8)
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If corrections to the partition function of the PNJL model are to be calculated,
the S0 part of the action only comprises zeroth and second order terms, while the
“small” part SI is identified with all other orders. The first order term acts as a
source term. We establish the following Feynman rules:

j
= −∂Sbos

∂ξj j k
= +

[
∂2Sbos

∂ξj∂ξk

]−1

j

k

l
= − ∂3Sbos

∂ξj∂ξk∂ξl j
k

l
m = − ∂4Sbos

∂ξj∂ξk∂ξl∂ξm
(B.9)

...
...

In perturbation theory it can be shown that only connected diagrams contribute
to the partition function, i. e.

ZI = 〈e−SI〉0 =
∞∑

l=0

1

l!
〈(−SI)

l〉0 = exp

{ ∞∑

n=1

1

n!
〈(−SI)

n〉0c

}
, (B.10)

where 〈· · ·〉0 denotes the expectation value with respect to the unperturbed action,
and 〈· · ·〉0c is the expectation value of the connected diagrams with respect to this
unperturbed action. Note that here the corrections depicted by the Feynman di-
agrams are corrections to the negative action, −S, as the partition function was
defined by Z = e−Seff. . The corrections therefore need to be subtracted from the
mean field result of the action SMF.

For the thermal expectation values of f we write

〈f〉 =
〈f e−SI〉0
〈e−SI〉0

=
1

〈e−SI〉0

∞∑

l=0

1

l!
〈f (−SI)

l〉0 . (B.11)

Here each term under the sum can be written in terms of connected expectation
values

〈f (−SI)
l〉0 =

∞∑

a1,a2··· , an,m=0

l!

a1!a2!(2!)a2 · · · (an!)(n!)anm!
〈(−SI)〉a1

0c 〈(−SI)
2〉a2

0c · · ·

· · · 〈f (−SI)
m〉0c δν, l , (B.12)

where ν = a1 + 2a2 + · · · + nan +m. Substituting back in Eq. (B.11) gives

〈f e−SI〉0 = exp

{ ∞∑

n=1

1

n!
〈(−SI)

n〉0c

}
×

∞∑

m=0

1

m!
〈f (−SI)

m〉0c . (B.13)

Using Eq. (B.10) we find the final result

〈f〉 =
〈f e−SI〉0
〈e−SI〉0

=
∞∑

n=0

1

n!
〈f (−SI)

n〉0c . (B.14)
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In terms of Feynman diagrams Eq. (B.14) can be translated into all those connected
diagrams that contain exactly one insertion coming from the function f . The Feyn-
man rules for the insertions of f are

j
=
∂f

∂ξj j k
=

∂2f

∂ξj∂ξk

j

k

l
=

∂3f

∂ξj∂ξk∂ξl j
k

l
m =

∂4f

∂ξj∂ξk∂ξl∂ξm
(B.15)

...
...

What is needed to use these rules systematically is a scheme that orders all possible
diagrams according to their importance in powers of the small parameters T

V
and δ.

The lowest order corrections in T
V

and δ are shown in Table B.1.
The formalism allows to determine susceptibilities involving a quantity g, χg =

[V (〈g2〉 − 〈g〉2)]1/2. All that needs to be done is to apply the previously developed
formalism to the function g2. In Table B.1 the Feynman rules and multiplicity
factors are written down for the evaluation of 〈f〉. In a second step f is replaced
by g2. In this step the product rule of differentiation has to be applied producing
additional prefactors. In this procedure it will happen that vertices of f with m =
2, 3, . . . or more legs will split into two vertices with m1 +m2 = m legs. The lowest

orders of the expression are shown in Table B.2. The contributions of order
(
T
V

)0

cancel. In this framework susceptibilities scale with V
1
2 as expected. Additionally,

it becomes obvious from Table B.2 that there are no mean field contributions to
susceptibilities in the sense that 〈(g − 〈g〉MF)2〉

MF
= 〈g2〉MF−〈g〉2MF = g2

MF−g2
MF = 0.

In the framework of mean field calculations, susceptibilities are usually evaluated by
inverting the second derivative of the mean field action with respect to the fields.
This is seen in the present framework as well: the entry for α = 1 and β = 0 in
Table B.2 produces exactly this expression.
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β = 0 β = 1 β = 2

α = 0 f(θMF) 1
2

1
2

α = 1

1
2

1
2

1
2

1
2

1
2

1
4

1
2

1
2

1
2

1
4

1
4

1
4

1
4

α = 2

1
8

1
3!

1
4

1
4

1
3!

1
3!

1
8

1
3!

1
3!

1
4

1
4

1
8

1
8

1
3!

1
3!

1
3!

1
4

...

...

...

Table B.1: The Feynman graphs contributing to 〈f〉, ordered in
(
T
V

)α
and δβ with

multiplicity factors.
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β = 0 β = 1

α = 0 — —

α = 1 1
2
× 2 1

2
× 4 + 1

2
× 2

Table B.2: The lowest order Feynman graphs contributing to χ2
g. The vertices depicted

as a circle are now the contributions of g, defined analogously to the contributions of f
in Eq. (B.15). The prefactors are the product of the multiplicity factors of the original
Feynman graphs and the factors arising from the differentiation.



Appendix C

Conventions

This appendix shall facilitate the combined study of this present work and other
publications by summarizing some notations and conventions as they are used in
the current work.

Traces

• The separate trace over Dirac, color or flavor indices is denoted explicitly as
trDirac = trd, trc or trf .

• The trace over Dirac, color and flavor indices is denoted as Tr = trdtrctrf

• In analogy the determinant over Dirac, color or flavor indices is denoted Det
(in contrast to det)

• A functional trace with an additional trace over Dirac, color and flavor indices
is denoted as

T̃r Ô =

∫
d4p

(2π)4 Tr 〈p|Ô|p〉 =

∫
d4xTr 〈x|Ô|x〉

Polyakov loops

• The Polyakov loop L is defined by Eq. (1.29) as an operator in colour space.

• The normalized trace of the Polyakov loop L is a scalar quantity and defined
by Φ = 1

Nc
trc [L]. Both normalized trace Φ and the Polyakov loop L itself are

referred to as the Polyakov loop, as it is usually done in the literature.

• The thermal expectation value of real and imaginary parts of the traced
Polyakov loop Φ is denoted as Φ+ = 〈Re Φ〉 = 1

2
〈Φ + Φ∗〉 and Φ− = −〈Im Φ〉 =

1
2
〈Φ∗ − Φ〉.
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Notations of SU(N) structures

• The generators of SU(N) are denoted τa with a = 1, . . . , N2−1. In the special
case SU(3)c the generators are sometimes denoted λa.

• The generators are normalized such that tr [τaτb] = 2δab.

• The N ×N unity matrix is denoted 1.

• The generators are supplemented by τ0 =
√

2/N 1.

• In SU(2) we define the ladder generators τ± = (τ 1 ± τ 2)/
√

2

• In case of the colour group where N = Nc = 3 the Gell-Mann matrices λi are
chosen as an explicit representation of the SU(3)c generators.

Classification of the order of phase transitions

• An nth order phase transition appears once an nth derivative of the thermo-
dynamic potential (or the partition function) with respect to some thermody-
namic quantity is discontinuous.

• A crossover transition is not a phase transition in the strict sense. There is no
discontinuous behaviour of the thermodynamic potential what so ever. If there
exists a symmetry that corresponds to the crossover transition, it is broken on
both sides of the transition line.

Isovector densities and chemical potentials

µ =
µu + µd

2
=
µB

3
µI =

µu − µd

2
(C.1)

∂

∂µQ
=

2

3

∂

∂µu

− 1

3

∂

∂µd

=
1

6

∂

∂µ
+

1

2

∂

∂µI

(C.2)

nq = nu + nd (C.3)

Chiral condensates

〈ψ̄ψ〉 =
σ

G
=
σu + σd
G

= 〈ūu〉 + 〈d̄d〉 (C.4)
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List of Symbols

p : pressure
Ω : thermodynamic potential density
ε : energy density
s : entropy density
nB : baryon number density
nI : isovector quark number density
nq : quark number density
nu/d : up/down quark number density
χ : susceptibility
χud : up/down quark number susc.
vs : speed of sound
cn : expansion coefficient of p/T 4

R4,2 : cumulant ratio
T : temperature
β : inverse temperature
mπ : pion mass
fπ : pion decay constant
gπqq : pion to quark coupling const.
M, m : constituent quark mass
m0 : current quark mass
Φ : Polyakov loop
φ : generic field
σ : sigma field
π : pion field
ξ : in Sec. B: shifted boson field
|0〉 : Wigner-Weyl vacuum state

µ : chemical potential
µI : isovector chemical potential
µB : baryon chemical potential
µu/d : up/down quark chemical pot.
L : Lagrangian density
H : Hamilton denity
Z : partition function
S : action
ψ : fermion field
C : charge conjugation operator
Γ : generic operator structure
γx : Dirac structures

S̃ : quark propagator
f± : Fermi Dirac distrubution
f±

Φ : modified FD distrubution
N : pionic mean field
∆ : diquark mean field
A4

3/8 : temporal gauge background field

φ4
3/8 : Polyakov loop parametrizations

〈· · ·〉 : (thermal) expectation value
G : NJL coupling strength
H : NJL diquark coupling strength
Nc : number of colours
Nf : number of flavours
ξ : in Sec. 3.7: generic boson field
|Ω〉 : Nambu-Goldstone vacuum state
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