
On Updates of Epistemic States
Belief Change under Incomplete Information

Doctoral Thesis
(Dissertation)

to be awarded the degree of
Doctor rerum naturalium (Dr.rer.nat.)

submitted by

M.Sc. Juan Carlos Acosta Guadarrama
from Toluca, Mexican United States

approved by

the Faculty of Mathematics/Computer Science and Mechanical Engineering,
Clausthal University of Technology,

Date of oral examination
18.12.2009

mailto:jguadarrama@gmail.com
http://www.fakultaeten.tu-clausthal.de/math-inf-maschinenbau/
http://www.tu-clausthal.de

Chairperson of the Board of Examiners: Prof. Dr. G. Zachmann

Chief Reviewer: Prof. Dr. J. Dix

Reviewers: PD. Dr. habil. W. Jamroga
Prof. Dr. S. Hartmann

Abstract

In this dissertation I present some aspects of belief-change theory and rep-
resentation of knowledge as one of the main theoretical basis to formulate
semantics for updates of logic programs. Firstly, there is an introduction to
relevant principles and postulates, like the classical belief-revision formula-
tion and a following proposal to make a difference between belief revision
and updates. Next, there is a survey of some few proposals to update logic
programs that are the main motivation for this thesis. Finally, I present
a progressive approach that overrides the problems pointed out in other
alternatives, and that meets most of the principles here introduced.

In particular, revising and updating knowledge bases is an important prob-
lem in knowledge representation and reasoning. It has led to various propos-
als for updating logic programs, specifically with respect to the well known
answer-sets semantics. However, most of these approaches are based on the
causal rejection principle, which leads to counter-intuitive behaviour. The
proposed approach in this thesis is a semantics for abduction known as gen-
eralised answer sets, which allows one to choose potential models, without
changing the semantics of the original given update programs. With gen-
eralised answer sets one can actually formulate semantics for updates that
consist in choosing between generalised models that satisfy an intended set
of properties and overcome certain problems from other approaches. Weak
Irrelevance of Syntax and Strong Consistency are two of the main properties
an update semantics should manifest, which are a keystone to overcome the
mentioned problems.

Finally, as an important component of logic programming and as a useful
tool in the classroom, this work also provides the research community with
online solver prototypes that help close the gap between theory and practice.
These automatic testbeds make the semantics more accessible, and open
up a path with a solid component for further more-complex prototypes of
knowledge management.

COPYRIGHT

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEI-
THER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AU-
THOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN
THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY
PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND
THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

c©Copyright 2008, Juan Carlos Acosta Guadarrama

Acknowledgements

I would like to acknowledge the National Council of Science and Technology
of Mexico for a doctoral grant, which has funded a large part of this project.

Software Tools

The typesetting of this document has been accomplished with help of LATEX2e,
BibTEX, and ACM’s bibliography style, all running on TeXShop on Mac
OSTM systems. Most of the implementations are running on Apache Mac
OSTMor Linux servers.

Reviewers

This work has also been accompanied by close reviews from PD. Dr. W. Jam-
roga, as well as some other anonymous reviewers from workshops and con-
ferences. Prof. M. Osorio also played a key role in publishing one of the
papers.

Juan Carlos Acosta Guadarrama

TU-Clausthal, 2009

J.C.A.Guadarrama

iv

Contents

Preface xi

1 Introduction 1
1.1 Knowledge and Belief Representation . 2
1.2 A Question of Principles . 2

1.2.1 Logic in Artificial Intelligence . 3
1.2.2 Knowledge Incompleteness . 3
1.2.3 Theory Change . 4

1.3 Representing Knowledge with Logic Programs 6
1.4 Updating Theories with Logic Programming 7

1.4.1 Semantics for Updates . 7
1.4.2 Problem Definition . 9
1.4.3 A Principle-based Approach to Represent Knowledge and Beliefs 11

1.5 Summary of Contributions . 12
1.6 Publications . 13

2 Foundations 15
2.1 Logics . 15

2.1.1 Intuitionistic Logic . 15
2.1.2 Multi-Valued Logic . 17
2.1.3 Nelson’s Logic and N2-logic . 18

2.2 Change and Belief Representation . 19
2.3 Belief Revision . 20
2.4 Belief Update . 23
2.5 Conclusion for Chapter 2 . 24

3 Preliminaries 27
3.1 Logic Programming and Answer Sets . 27
3.2 Stable Models and Answer Sets . 27
3.3 Equivalence in Logic Programming . 30
3.4 Weak Constraints . 33
3.5 Ordered Disjunctions . 35

3.5.1 ODLP-reduct . 35

v

Contents J.C.A.Guadarrama

3.5.2 ODLP-semantics . 36
3.5.3 ODLP and Weak Constraints . 37
3.5.4 ODLP-solver . 38

3.6 Abductive Programming and GAS . 38
3.7 Complexity Notation . 40

3.7.1 The Polynomial Hierarchy . 40
3.7.2 The Exponential-time Hierarchy 41

4 A Road Map for Update Semantics 43
4.1 Eiter and Others . 44
4.2 DyLP and Other Dialects . 49
4.3 Sakama & Inoue . 53

4.3.1 Extended Abduction Framework 54
4.3.2 �SI-operation . 55
4.3.3 Discussion . 57

4.4 Zhang’s line . 65
4.4.1 General View . 65
4.4.2 Prioritised Logic Programs . 67
4.4.3 Eliminating Contradictions . 71
4.4.4 Solving Conflicts . 77

4.5 Logic Approaches . 81
4.6 Conclusions for Chapter 4 . 83

5 Observations and Examples 85
5.1 Vacuous Information . 85
5.2 Updates at the Object Level . 87
5.3 Conflicting Information . 89
5.4 Initialisation . 92
5.5 Conclusions for Chapter 5 . 92

6 Relaxing Knowledge-bases 95
6.1 Model Choice . 96
6.2 Structural Properties for Updates in ASP 98
6.3 Computing Updates with ODLP . 101

6.3.1 ODLP-reduct . 101
6.3.2 ODLP-semantics . 102
6.3.3 ODLP and Weak Constraints . 103
6.3.4 ODLP-solver . 104
6.3.5 Translating into ODLP . 104
6.3.6 Updating with ODLP . 106

6.4 Conclusions for Chapter 6 . 107

vi

TU-Clausthal Contents

7 Update Sequences 109
7.1 Introduction . 109
7.2 ⊗-Operation . 111
7.3 ⊗-Properties . 117

7.3.1 Inconsistencies . 117
7.3.2 Structural Properties . 118

7.4 ⊗′-Operation . 124
7.5 ⊗′-Properties . 124
7.6 ⊗-prototype . 125

7.6.1 Implementing Updates on DLV . 126
7.6.2 DLV’s Weak Constraints . 127
7.6.3 The Parser . 128
7.6.4 The Top Module . 130

7.6.4.1 The Abductive Program 131
7.6.4.2 Computing MSGAS’s 131
7.6.4.3 The Update Answer Sets 131

7.6.5 ⊗-Complexity . 131
7.6.6 Discussion . 132

7.7 Conclusions for Chapter 7 . 133

8 Generalised Update 135
8.1 Problem Description . 136
8.2 ⊗o-operation . 140
8.3 ⊗o-properties . 144

8.3.1 Equivalence . 145
8.3.2 ⊗o-structural Properties . 148
8.3.3 Dealing with Inconsistencies . 149
8.3.4 ⊗o-principles . 151
8.3.5 Other Properties . 153

8.4 ⊗′o-prototype . 155
8.4.1 Implementing Updates on DLV . 155
8.4.2 Weak-constraints Characterisation 158
8.4.3 ⊗′o-complexity . 161
8.4.4 The Parser . 163
8.4.5 Discussion . 165

8.5 Conclusions of Chapter 8 . 165

9 Conclusions 167
9.1 Overview of the Thesis . 167
9.2 Relevance of the Major Contributions 168

9.2.1 Update Benchmark . 169
9.2.2 Relaxation Technique . 169
9.2.3 Semantics for Belief Revision and Update 170
9.2.4 Semantics for a Minimal Belief Change 170

vii

Contents J.C.A.Guadarrama

9.2.5 A Semantics Independent from Syntax 171
9.2.6 Preference Characterisations . 171

Bibliography 181

A Summary of Properties 183

B Software-support Summary 187
B.1 Solvers . 187
B.2 Applications . 189

C Stable-Models Procedure 191

Glossary 193

Index 211

viii

List of Tables

2.1 Intuitionistic-logic Heytig’s Axioms . 16
2.2 N-axioms, including HI axioms from Table 2.1.1 19
2.3 AGM-postulates . 21
2.4 KM-postulates —Katsuno and Mendelzon’s AGM-interpretation 22
2.5 KM′-postulates —Darwiche and Pearl’s KM paraphrase 22
2.6 Belief Update on Knowledge Bases, by Katsuno and Mendelzon. 23
2.7 Belief Update Postulates for Epistemic States 25

8.1 AGM in N2-logic . 137
8.2 Postulates for belief revision of logic programs. 152

A.1 Summary of General Properties . 184
A.2 Summary of General Properties . 185
A.3 Summary of General Properties . 186

ix

List of Tables J.C.A.Guadarrama

x

Preface

The original title of my project was A Language for Beliefs and Knowledge Represen-
tation. However, such a language requires many subproblems to be solved, that range
from theoretical and philosophical view points up to practical and industrial applica-
tions. One of the most interesting problems is an intermediate solution based upon a
strong theoretical foundation that might model a large number of situations in order to
maintain knowledge bases in an automatic way.

This dissertation consists of a study of identified problems in several existing ap-
proaches and comprises two solutions generalised into a set of properties. There are two
main streams to explore in this study. On the one hand, this work also consists of a
small collection of the most relevant (to the author’s opinion) and well-known principles
for knowledge evolution. On the other hand, it recaps logic programming by means of
Answer Sets semantics as an alternative and practical framework to solve problems of
knowledge representation. Nevertheless, the determination to remain in both streams is
by no means an exhaustive decision, but focused on research interests and existing back-
ground. As a result, the author’s efforts have been stressed on producing a sound and
robust framework that overcomes the presented drawbacks of other particular proposals.

To begin with, the author of this dissertation gives a general introduction in Chap-
ter 1 including basic concepts of beliefs, knowledge representation and reasoning, related
fields of research around it and a general picture of existing problems. The chapter in-
cludes some background on the role of logic programming to represent knowledge and
some of its limitations. Next, there is a background of current proposals to represent-
ing dynamic knowledge and a statement of the broad problem to be addressed in this
research work, together with the pursued general goal and a proposal. Finally, there is
a list of contributions followed by a brief description of the publications that constitute
the final dissertation.

Chapter 2 is an overview of the main theoretical foundation of this thesis: logics,
postulates and non-monotonic reasoning, which shall be recapitulated in subsequent
chapters. The chapter is a collection of particular principles that should be observed
when representing knowledge evolution. They include non-classical logics that have a
strong relation to logic programming, postulates for belief revision and for updates, as
well as relevant particular properties.

The next foundation layer for the proposals in this dissertation is a general frame-
work in Chapter 3, which includes logic programming, notation, and some theoretical

xi

Chapter 0. Preface J.C.A.Guadarrama

results from the literature, useful in upcoming chapters. The suggested language to pur-
sue the representation of dynamic knowledge is the language of a well-known semantics,
named Answer Set Programming (ASP) or Stable Models Semantics. Finally, the chap-
ter comprises a particular instance of logic programming called abduction modelled by
generalised answer sets and two semantics of preferences.

Chapter 4 is the initial motivation of this work and describes (to my knowledge)
the most relevant and well known approaches to this thesis and points out some of
their features and limitations to represent evolving knowledge. The selection of such
proposals is based upon relevance and research interests, like Answer Set Programming
and their impact, and the survey is by no means exhaustive.

Chapter 5 is a summary of the initial motivation for this thesis, where problems
found in other approaches, up to then, are put together into a list of counterintuitive
examples that I call observations. The function of such observations is to highlight key
differences with the approaches in Chapter 4 and the proposals of this dissertation.

The main contribution of this thesis is distributed along Chapters 6–8. Such a con-
tribution starts with the basic concept of a mechanism of relaxation to weaken beliefs
(Chapter 6) and its relation with preferences, followed by a proposal to perform updates
sequences of logic programs. Finally, Chapter 8 comprises a generalised approach to
perform iterated updates along with further properties and variants for specific needs.
In other words, this research work provides a combination of strong theoretical founda-
tion on well-known principles and fundamental properties shared mainly in Chapters 6
to 8, that overcome problems of redundant information and provide a framework with
intuitive behaviour to represent evolving knowledge. Nevertheless, the goal of this re-
search does not mean an exhaustive comparison with alternative existing approaches,
which would be matter of further research and out of the scope of this current proposal.
The reader may find a list of properties and principles introduced along this disserta-
tion summarised in a table in Appendix A. That summary is a comparison between the
approaches introduced in Chapters 6–8 and also includes a brief glimpse to the other
alternatives introduced in Chapter 4. In addition, each chapter includes a description
of a prototype that implements the semantics and the employed tools to compute it,
and they are summarised and collected in Appendix B, which is a list of solvers and
prototypes with their respective links of implementations.

Last, Chapter 9 is a final general view of the addressed problem, solution, contri-
butions, potential applications, the role of a theoretical foundation and solvers, and
general discussions.

xii

Chapter 1

Introduction

Revising and updating knowledge is an important problem in knowledge representation
and reasoning that has led to various proposals for updating logic programs, in par-
ticular with respect to the well-known answer-sets semantics. However, most of these
approaches have been based on a causal rejection principle, which sometimes leads to
counter-intuitive behaviour. The approach proposed in this thesis is a semantics for
abduction known as minimal generalised answer sets that allows to choose candidate
models without changing the semantics of the original given update programs. Such
semantics are formulations for updates that consist in choosing between generalised
models that satisfy several structural properties and thus overcomes certain problems
of earlier approaches. Some of the main properties an update process should exhibit
are independence from syntax and logical-model reliance.

Finally, as an important component of logic programming, this work also provides
the research community with online solver prototypes that help close the gap between
theory and practice. These automatic testbeds make the semantics more accessible and
opens up a path with a solid component for more-complex prototypes of knowledge
management.

The present chapter consists of a short background from which the topic of this
dissertation emerges, and is organised as follows. Firstly, it includes a recap to its main
stream of the earliest years of Artificial Intelligence and Logic Programming. Secondly, it
includes a description how problems from knowledge representation and reasoning came
about, and how they were to be solved by these new disciplines. Next, it comprises a
basic background of belief change and how logic programming semantics have taken
up the problem. Then, the chapter includes a particular example that motivated this
research. Finally, it comprised the goals and contributions of this work, with a list of
publications on which this thesis is built.

1

Chapter 1. Introduction J.C.A.Guadarrama

1.1 Knowledge and Belief Representation

To begin with, Knowledge is defined in the literature as a justified true belief an entity
may have. On the other hand, a belief is understood in the literature as a propositional
attitude represented in a form of sentence or statement called proposition. These broad
definitions are of particular interests to philosophers and logicians and have gain influ-
ence in computer science over the last few decades, due to the huge advance in power
and storage of computer systems, as well as its potential to manage symbolic operations.

Knowledge representation is by no means trivial tasks, and the particular theory
of information to deal with it is called Epistemology. This discipline is one of several
theories of information, which is known in the literature as the theory of knowledge and
has to do with what propositions are true and what to reason about them, obviously
underpinned by a logic system. In contrast, procedural knowledge, which has also the
popular term: know-how, deals with a set of steps or maybe a fuzzy process on how to
perform a specific operation, typically supported by boolean or continuos bases. There
are other notions of knowledge in the literature that shall be out of scope of this thesis,
including imperative and procedural ones, to mention a few.

Some particularly specialised fields in computer science for which this notion of
knowledge is relevant, are Knowledge Representation and Reasoning, Common-sense
Reasoning and Nonmonotonic Reasoning. Those specialised fields come out of more
general and earlier theories of information like Artificial Intelligence and Logic Pro-
gramming, whose Holy Grail has been the ambitious achievement of an intelligent au-
tonomous computer than may take decisions with little or null human intervention.
The merge of these two produced yet a more specialised applied discipline called Expert
Systems, which may be considered an ancestor of modern agent systems.

Commonsense Reasoning and Logic Programming, in particular, sprang up as two
major fields in computer science to represent knowledge. The role of mathematical logic
in these disciplines is particularly important for providing unambiguous succinct formal
languages to effectively manipulate propositions.

Finally here comes the concept of an agent that should manipulate such knowledge.
An agent may be described as an intelligent entity capable of being an assistant to
other agent(s) in decision making, because of its potential precision to operate, and
vast knowledge on a particular task or topic. Later, several architectures arose and
made possible to classify agents and multi-agent systems into several categories, where
logical, belief-desire-intention, and intelligent agents are of particular interest in knowl-
edge representation and reasoning.

1.2 A Question of Principles

The purpose of this section is to introduce a general background of basic concepts in
representing and changing knowledge. It starts with a little history of the problem and
concludes with particular proposals to found this thesis.

2

TU-Clausthal 1.2 A Question of Principles

1.2.1 Logic in Artificial Intelligence

Knowledge representation and reasoning is a very old activity that dates back to Aris-
totle, who started formulating principles to achieve a correct reasoning from natural
language. His activity consisted in establishing relations between an agent and a propo-
sition by means of a symbolic representation. By following a set of principles, the agent
could manipulate symbols and draw conclusions. Such principles later derived in a set
of axioms that became a logic system better known as Aristotelian logic or classical
logic, which is well-known and widely used in current technology.

After many centuries of its conception, classical logic started to show many limi-
tations so as to be useful in the solution of any problem. Some of such limitations is
to represent time and other resources, for which several other logic systems were for-
mulated. One of those systems is intuitionistic logic, due to Brouwer, relevant to this
thesis for its computing meaning.

In 1907 the Dutch mathematician L.E.J. Brouwer questioned the principles of Clas-
sical Logic, that were considered untouchable until then [Brouwer, 1907]. In particular,
the principle of the excluded middle (α ∨ ¬α) was criticised because it enforces that a
truth-value is assigned without even knowing whether a constructive proof for α (or its
negation) can be obtained. In other words, intuitionism takes only the “safe” princi-
ples from Classical Logic and gets rid of those for arbitrary undefined witnesses [Mints,
2000].

There are other relevant logic systems derived from intuitionistic logic, like Gödel’s
G3, Heyting’s Here-and-There HHT, Nelson’s logic N and N2 that specify notions of
proof, truth values and negations, also useful in knowledge representation that constitute
part of a solid theoretical basis for this thesis.

Besides these logic systems, there are alternative ones designed to specify dynamic
theories, like non-monotonic logics and Reiter’s Default Logic that, although very rel-
evant to logic programming, shall not be introduced in this thesis. Some others more
related to knowledge and beliefs and less to logic programming aremodal logic, epistemic
logic that shall not be introduced in this work either.

1.2.2 Knowledge Incompleteness

One general and very old principle is the one that states knowledge as boundless, and
typical logic systems assume a closed world and complete knowledge of a given problem.
Of course, there are many current applications of such complet knowledge and classical
logic like digital circuits or game theory. However, there are many more problems of
incomplete knowledge in an open world that require systems to model them. Nonmono-
tonic logics and, particularly, nonmonotonic reasoning are specialised fields of research
that study such problems.

Nonmonotonic reasoning emerges when problems from commonsense reasoning con-
sidered unexpected possibilities, which may contradict current conclusions. Such prob-
lems come especially from planning domains, where propositional logic isn’t expressive
enough.

3

Chapter 1. Introduction J.C.A.Guadarrama

On the one hand, classical logics and mathematics are essentially monotonic, which
means that their foundational theories evolve by building up more principles that do
not contradict previous ones. That is to say, current principles are always implied in
expanded versions.

On the other hand, nonmonotonic theories evolve by following a classical inertia
principle, stating that conclusions remain unless new information contradicts them.
Accordingly, there are new concepts introduced that can be modelled by such formalism,
like normality, abnormality, defaults, expectations and inertia, as well as incompleteness,
closed-world assumption and uncertainty. As a result, not only can a nonmonotonic
theory expand, but also contract.

In summary, incomplete knowledge is a basic principle assumed in this research
work. There are other related approaches like probabilistic reasoning, paraconsistent
logics and Default Logic that lie beyond the scope of this thesis.

1.2.3 Theory Change

Nonmonotonic reasoning then implies a dynamics in formulation of theories, although it
does not imply the procedure to change them. Inevitably a new mechanism to perform
such changes is needed. belief change is a new field of research that studies such changes
under some basic principles of truth maintenance and minimal change.

One of the most studied formalisms is called belief revision, dated back to the 1980’s
as a new framework to represent changes in theories, which was something missing in
nonmonotonic reasoning. There is a typical theory of change from Alchourrón et al.
commonly known as the AGM-postulates.

There are three particular basic problems to solve in belief change. One is how to
represent beliefs, already sketched in Section 1.1. Secondly, another problem is how
to incorporate new observations to background knowledge. Finally, the problem of a
changing environment is also to be considered.

One of the earliest ways to represent beliefs is by means of infinite belief sets of
sentences logically closed in a formal language, on which AGM theory was defined.
As everything, this conception has many advantages and disadvantages. Some of its
advantages are that it is general-enough to idealise any belief-change system. However,
the ultimate goal of artificial intelligence assumes an automatic agent with a finite
knowledge base.

After AGM-postulates, there were further paraphrases to make them suitable to
particular problems. A particular representation of beliefs is due to Katsuno and
Mendelzon (KM postulates hereafter), who proposed a finite way to represent beliefs
called (computer-based) belief bases —from now on knowledge bases— with the neces-
sary paraphrase to the original postulates. There is yet another relevant paraphrase
of the postulates by Darwiche and Pearl that suggests representing beliefs by means of
epistemic states rather than belief bases.

Besides considering finite sets of beliefs, an epistemic state also includes the par-
ticular strategy to perform belief revision, which is the representation adopted in this

4

TU-Clausthal 1.2 A Question of Principles

thesis.
Regarding the second problem of belief change, some of the most accepted and

original strategies to perform revision on an agent’s belief set is a set of postulates that
specify changes to a belief set, better known as AGM-postulates. Such specifications are
strategies to incorporate new information coming up form the environment, by means
of three basic operations: expansion, contraction and revision. The problem is crucial
in this thesis, and is fully introduced in Section 2.3.

The basic operations performed by AGM-postulates, as mentioned above, are ex-
pansion, contraction and revision. Expansion consists in adding a new sentence to the
knowledge set without any concern about its conflict with other sentences. In contrast,
in an operation ofcontraction a specific sentence is removed from the knowledge set so
that it is no longer implied by the resulting set of sentences, also known as deroga-
tion. Finally, revision is an expansion of a new sentence and contraction of its possible
inconsistent sentences from the knowledge set, which is also called amendment. Such
a process of contraction and expansion has a formal definition and is known in the
literature as Levi’s identity.

The third problem for belief change to deal with is the environment. The environ-
ment may be defined as the state of the universe in which a specific agent is acting.
Traditionally, an agent makes belief revision when incorporating new information from
a static environment. On the other hand, it performs belief update when incorporat-
ing from a changing environment. Katsuno and Mendelzon formalised the difference
between the two of them by means of a new set of postulates known as belief update
postulates, and are fully introduced in Section 2.4.

Both of the two types of environment are useful for specific applications, and an
update setting seems to be more general and what real world is. In such a case, an
agent would perform updates of “perfect” (coherent) information from scratch without
need to make any revision at all. And that would require a perfect agent as well, whose
observations are never mistaken. However, it might be the case that real world never
changes and that agents just cannot know everything!

In practice, electronic circuits have to be constrained to a small-scale static envi-
ronment. In such a case, an evolving agent formulating a theory out of a circuit would
make revision when a contradictory observation occurred. Still the observation would
come from the closed world of a circuit and would mean that the theory has a bug.
Then, the agent would act accordingly by retracting the necessary information to re-
move the bug so that the theory is correct. But what if the circuit is extended1 with
new features to innovate in the world of technology? Of course, such events normally
do not happen so often in industry so that belief update might be interesting to them
now, but the problem still exists. What is more, electronic circuits and even the digital
ones are known to consider uncertainty principles to operate!

In accordance with the theses of knowledge incompleteness, uncertainty and of com-
monsense reasoning, a correct combination of principles from both belief revision and
belief update must be the most optimal framework to be able to solve real-wold prob-

1Here “extended” may mean either update or revision!

5

Chapter 1. Introduction J.C.A.Guadarrama

lems.

1.3 Representing Knowledge with Logic Programs

A famous concept of Logic Programming was first introduced by Robert Kowalski in
the 1970s with the aim at having automated theorem proving and a problem-solving
system. Such a system should be founded on logic and produced its first results with
Colmerauer and Prolog. Another contemporary system with similar goals and features
is LISP, which shall be out of the scope of this thesis.

Both Prolog and logic programming differ from traditional imperative programming
in the specifications of a problem to be solved, rather than the necessary steps to find a
solution. As a result, the task to work it out is left up to a particular underlying theorem
prover. This singular way of specifying a problem to solve is known as declarative
programming, and gave fundament to the classical equation from Kowalski:

algorithm = logic + control

Accordingly, Prolog introduced new concepts like negation-by-failure, rules, facts,
goals, assertions, retractions, and with them new problems. To begin with, such
negation-by-failure did not correspond to the classical negation in logic. In fact it came
up from a particular way of resolution at the lower control level, which also obliged the
programmer to be aware of a particular order of rules. Consequently, choosing a wrong
order might lead to an endless loop, and other new control statements at the meta-
language were in order. So, the new programming paradigm was not that declarative
after all.

Then logic programming led to other fields of research called satisfiability of logic
formulas, theorem-proving itself, auto-epistemic logic, and again Default Logic.

Stable Models (or SM in short) was a result of research on auto-epistemic logic and
default logic by Gelfond and Lifschitz. One of the main goals in the research was to
find a foundation of provability to Prolog’s deduction mechanism [Gelfond and Lifschitz,
1988; Pearce, 1999a]. Not much later, Lifschitz and Woo formulated an extension to
Stable Models called Answer Set Programming (or ASP in short) that has become a
little more expressive by allowing two kinds of negation: a founded study of Prolog’s
negation-as-failure was then default negation, and strong negation would have an equiv-
alent of classical negation. Although strong negation is easy to be “captured” in Stable
Models, ASP programs with such negation are more succinct, and their models are then
composed by literals rather than only atoms, like in Stable Models.

Many other ways to define both SM and ASP may be found in the literature; namely,
default theory, non-monotonic reasoning, logical, planning, algorithmic, declarative, and
others. Each of them is a characterisation of ASP or SM with a particular framework
of interest. The particular approaches proposed throughout this thesis are logical and
non-monotonic, as major building blocks of a solid theoretical basis to correctly represent
knowledge.

6

TU-Clausthal 1.4 Updating Theories with Logic Programming

Finally, there are at least two major and efficient competitive proving solvers for
ASP, SMODELS [Niemela and Simons, 1997] and DLV [Calimeri et al., 2002; Leone et al.,
2006], which contribute to the equation of logic programming proposed by Kowalski,
and significantly help in the research of new properties and rapid prototyping of complex
applications.

There are yet other comparable proposals to do logic programming with advantages
and disadvantages, like Well-founded Semantics or simply WFS, by Van Gelder et al..
Although it has been deeply studied in the literature [Dix, 1995a,b] it lies beyond the
focus of this thesis.

1.4 Updating Theories with Logic Programming

Logic programming then has become a widely supported field to represent knowledge,
and one major challenge both in Prolog and ASP is how to change a logic program.
Some preliminary and fundamental studies in ASP aimed at changes in logic programs
derived several concepts of equivalence, namely, weak and strong equivalence, due to
Lifschitz et al.. These concepts are very important to be considered when changing
non-monotonic theories and shall be recapitulated in the next chapters.

Representation of knowledge by means of logic programs has been traditionally
static, even after Prolog introduced statements in the meta-language to self-change its
propositions, namely, assert and retract. The problem with the propositions, however,
is that they were too general so as to be useful: their simple operations themselves
are executed without any condition, producing unpredicted effects in a knowledge base,
also known as side effects. Although there are quite many applications of static knowl-
edge, like circuit problems mentioned in Section 1.2.3, both languages do not seem
to be enough to correctly represent dynamic knowledge by themselves, in a dynamic
environment. So, one still has to work on an extension to either.

1.4.1 Semantics for Updates

In order to represent dynamic knowledge, one of the first problems to work out is
how to avoid inconsistencies due to potentially contradictory new information from the
environment [Alchourrón et al., 1985; Katsuno and Mendelzon, 1991b; Zhang, 1995].
As a result, various researchers proposed a particular semantics to specify changes in
knowledge bases, satisfying certain properties and postulates [Alferes et al., 2005; Eiter
et al., 2001, 2002, 2005; Zhang, 2006]. What is more, some few of them were beyond
and made complete frameworks of existing different approaches to compute them, like
[Eiter et al., 2005; Zhang, 2006].

From the various proposals to update programs, Zhang classified them in three types:
syntax-based, model-based and combined semantics. According to Zhang, a model-based
semantics is characterised by the particular semantics of the logic programs under con-
sideration. In contrast, a syntax-based semantics is characterised by the resulting logic

7

Chapter 1. Introduction J.C.A.Guadarrama

programs from the update. Finally, a combined semantics integrates both methodolo-
gies. Like everything, each of them has advantages and disadvantages, as shown later
in Chapter 4 that shows how to update under different criteria.

Zhang’s approach combines advantages from the two methodologies and propose
three general principles to meet: contradiction elimination, conflict resolution and syn-
tactic representation. The first principle is one of the most obvious in semantics for
updates and belief revision, which should be real by preserving a minimal-change prin-
ciple and a proper justification. On the other hand, conflict resolution has to do with
potential future contradictions an update might yield because of the introduction of the
two kinds of negations in logic programs —strong and default negation. Finally, once
the process meets the two main goals, the author argues that a proper semantics should
also preserve as many as possible of the original rules from the updating knowledge base.

Unfortunately, their approach seems too specific and thus appropriate to solve par-
ticular sorts of problems. As a result, there is a lack of general properties in their
approach, as well as counterintuitive behaviour in certain circumstances. Such is the
case of most of the rest of the semantics under consideration, even though Eiter et al.
introduce a vast amount of general properties from the literature.

In consequence, this thesis claim is that combining both a solid theoretical basis
and a proper operational semantics, one may overcome counterintuitive behaviour to
correctly represent dynamic knowledge. The combination proposed is a generalisation
of declarative logic programming to represent dynamic knowledge, consisting of a strong
background of principles, and a semantics based upon both models and syntax. Be-
cause well-known principles are supported by decades of studies, debate and coherent
languages, one may expect an intuitive behaviour from a framework that satisfies them.
On the other hand, by having a combined approach of models and syntax in an oper-
ational semantics, the result must be general-enough for a wider range of applications,
then problems should be represented in a more succinct, natural and efficient way.

Considering a solid background of principles when performing updates of logic pro-
grams is not new. In fact, Eiter et al. is one of the first or even the first to realise a deep
study from the literature of belief change of logic programs, in particular in ASP, most of
which will be introduced in Chapter 2. Other recent studies have been on belief-revision
postulates and logic, by Osorio and Cuevas, characterised with operational semantics,
but still specific, limited and inconclusive from the operational point of view.

Once a solid theoretical background is defined, one should be able to define a frame-
work for updates of logic programs with intuitive behaviour, robust enough to keep a
knowledge base against unexpected information that might jeopardise its integrity. In
addition, formulating a semantics with such basis should have a number of advantages.
First, the semantics may be more unambiguous for its logic foundation. Because it is
unambiguous, the semantics should satisfy its own constraints and specifications, lead-
ing to a robust semantics. A robust system is reliable against unforeseen situations
that make it more autonomous. Finally, after combining two lines of research from a
taxonomical study, the semantics should be easier to integrate to more complex systems
and thus should be general-enough to solve a wider range of problems.

8

TU-Clausthal 1.4 Updating Theories with Logic Programming

Part of such theoretical foundation has already been established by some authors
like Eiter et al. and Osorio and Cuevas, who employ ASP as a common framework.
The former, as mentioned before, introduce a large set of principles, in particular from
belief change and non-monotonic literature. On the other hand, Osorio and Cuevas
have introduced a logical framework to characterise updates.

On the operational side, there are also background proposals with implementations
called solvers. For example, of the earliest approaches to update logic programs is due
to Alferes et al., who propose three basic principles to meet: inertia, persistency and
causal rejection. The semantics that satisfy them is called Dynamic Logic Programming
(or simply DyLP) and derived interesting logic-programming languages like LUPS and
EVOLP. Most of them have been implemented both in ASP and WFS, and have also been
inspiration to other update approaches like Eiter et al.’s who proposes an alternative
semantics based upon DyLP’s causal rejection.

Unfortunately, such principle of causal rejection of rules is particularly highly de-
pendent on syntax and yields to counterintuitive behaviour under certain general cir-
cumstances, introduced in Section 4.2 and studied in Section 6.1.

There is an alternative approach proposed by Sakama and Inoue, which is general-
enough to overcome some of the counterintuitive behaviour from such a syntax de-
pendency. They even establish three basic operations in their semantics: Consistency
Restoration, variant and invariant knowledge updates. A main objection against this
kind of syntax-based semantics is the lack of a semantic foundation to justify its updates
[Zhang, 2006], and that might conflict with the semantics that performs the update op-
eration. Instead, Sakama and Inoue justify their updates with a particular extended
abductive framework, which is still a specific problem and then leads to an absence of
update characterisation.

Despite the existence of many principles and approaches to update logic programs,
and existing solvers for most of them —summarised in Appendix B— some counterin-
tuitive results still persist as a common problem, and is a case study in the survey of
Chapter 4. As a result, each of the introduced approaches is appropriate for particu-
lar contexts and the need of the “right” semantics to represent dynamic knowledge still
persists. A major contribution of the research work in this thesis is a careful analysis
of typical semantics for updates in Chapter 4, as well as a summary of counterintuitive
examples to these approach, presented in Chapter 5, which may be employed as a sort
of “benchmark” for further studies on update semantics and to support claims in this
thesis. A correct combination of advantages from the background literature, as well as
a complete basis of belief-change theory should yield to a general semantics that may
overcome at least the mentioned counterintuitive behaviour, proposed in Chapter 8.

1.4.2 Problem Definition

The following example has been the initial motivation to carry out the research work
of this thesis. It can generalise a preliminary main problem that most of the semantics
mentioned above and presented in Chapter 4 fail to overcome. It also help illustrate one

9

Chapter 1. Introduction J.C.A.Guadarrama

of the main claims of this thesis to formulate a semantics based on models rather than
syntax to represent a propositional theory by means of ASP. A little-different original
version of the coded story has been employed by Alferes et al. to point out problems
with, what they call, tautological rules. However, the current version of the example
also represents a problem for them, as shown in Section 4.2.

In order to better understand the example and before introducing formal definitions,
the reader should read “¬” as “no evidence” and “∼” as “not”. Finally, “←” (respectively
“↔”) should be read as a consequence relation, similar to the one used in Prolog’s if:
“:− ”.

Consider the following scenario, first proposed by [Alferes et al., 2005]1 and here
modified, describing some beliefs about the sky.

Example 1.1. Suppose an agent who believes that when it is day it is not night and vice
versa, and that there are stars when it is night and when there are no clouds. Finally,
that at the current moment it is a fact that there are no stars. This simple story may
be coded into Π1 as follows:

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼ stars }

whose unique answer set is {day ,∼stars}. Later, the agent acquires new information
stating that stars and constls (constellations) are the same thing, as coded in Π2. As
soon as the agent updates Π1 with program

Π2 = {stars ↔ constls}

the expanded alphabet of the two programs contains only one new extra atom with
respect to Π1: constls. As the model of Π2 is obviously the empty answer set, constls
is considered synonym of stars by means of Π2, and thus the update should not change
the original beliefs.

If one carefully analysed this example, it would be easy to realise that the update
does not really generate new information, and previous knowledge should remain un-
changed. So there is a naive solution to the problem, consisting of a simple union of the
two propositional theories in question, because the union remains consistent and does
not change previous knowledge.

1Please note that the semantics presented in [Alferes et al., 2005] has no strong negation, and thus
they use a syntax-dependent “default” negation in heads! to have a similar effect when updating with
tautological rules, like {a← a}, although in a peculiar way.

10

TU-Clausthal 1.4 Updating Theories with Logic Programming

The problem with other approaches studied in Chapter 4 is that most of them are
modifying the initial knowledge base justified by an apparent conflict between a negative
fact of an old rule and its positive counterpart as a consequence of a new rule.

On the other hand, a few approaches can overcome this problem but still present
shortcomings in some principles from the literature, like information loss, semantic
justification and update characterisation. All of the problems are fully analysed in the
chapters to come.

1.4.3 A Principle-based Approach to Represent Knowledge and Beliefs

By extending Kowalski’s principle (i.e. his equation from Section 1.3), one of the claims
of this thesis states that the process or semantics to change knowledge in a dynamic
environment should be at a lower epistemic level of it, and constitute a theory of belief
change rather than a specific procedure to achieve a particular change. As a result, the
logic programming to formulate such a semantics should be declarative and implemented
solvers may be allowed to use procedures that would illustrate how to compute it, mainly
in its “user” interface —modular interface. In other words,

Belief Change = logic + principles + control

In order to solve the equation, the approaches proposed in this thesis shall depend
on the semantic contents of logic programs, rather than the particular syntax they
are written with. As a result, a semantics ought to meet two key principles: Weak
Irrelevance of Syntax and Strong Consistency.

Intuitively, Strong Consistency states that supplementary rules like {a↔ b}, should
not result in any additional models, provided that a or b are atoms already in the
underlying language. Such a property implies that the update should coincide with
the union of the theories in question whenever the union is consistent. The property
is a particular case of the well-known Bordiga’s principle, introduced in Chapter 2.
Weak Irrelevance of Syntax, on the other hand, says that one of two logically-equivalent
theories updating a third one shall give the same result than updating with the other.
This property is also a particular case of another well-known principle called Dalal’s
principle of irrelevance of syntax, introduced in the same Chapter 2. Further structural
properties for updates of logic programs, as well as more general principles from the
literature are also considered in this work.

Finally, as an important component of logic programming, this thesis provides on-
line solver prototypes that support their declarative semantics and help close the gap
between theory and practice. These labs of automatic testbeds make the semantics
more accessible and opens a path with a solid component for further more-complex
prototypes in management of knowledge systems.

11

Chapter 1. Introduction J.C.A.Guadarrama

1.5 Summary of Contributions

This section summarises the contributions of the research work that has been docu-
mented along this dissertation. In general, the contributions of this thesis may be
grouped into two main streams: one that corresponds to the theoretical aspects of up-
dating logic programs, and the other groups practical results to confirm claims from
them. Next, a third group includes some work that may be relevant to further research.
Finally, Section 9.2 includes a discussion about potential interest and impact that these
contributions may have on the research community. Although they have an associated
number, it does not necessarily reflect any other order of importance.

The theoretical side of this dissertation includes the following contributions.

1. a case study on how redundant updates jeopardise the integrity of most of exist-
ing semantics for updates of logic programs —Section 1.4.2 and Chapter 4 and
Chapter 5.

2. a preliminary study on how information loss may be relevant in different scenarios
for existing semantics for updates of logic programs —Section 4.3 and Chapter 5.

3. a general method of knowledge relaxation to reasoning about inconsistent infor-
mation —Chapter 6.

4. a preliminary basic collection of structural properties to be satisfied by a reason-
able semantics to override problems with redundant information —Section 6.2.

5. a study on how to deal with inconsistencies to perform both belief revision and
updates —Section 7.3.1, Section 7.5 and Section 8.3.3.

6. a case-study to update sequences of logic programs that meet the proposed struc-
tural properties —Section 7.

7. a particular interpretation of AGM-postulates in ASP to deal with the non-monotonic
nature of ASP—Section 8.3.4.

8. a characterisation of updates with preferences of both cardinality and set-inclusion
criteria to satisfy particular requirements of minimal change, conflict resolution
and persitency —Section 6.3.6, Section 7.6 and Section 8.4.

9. characterisation of semantics for updates with Ordered-disjunctive Logic Program-
ming —Section 6.3.6.

10. characterisation of semantics for updates with weak constraints —Section 8.4.2

11. a particular interpretation of AGM-postulates in ASP and a semantics that satisfies
five out of six postulates —Section 8.3.4.

The applied results from the theoretical side of this dissertation include the following
contributions.

12

TU-Clausthal 1.6 Publications

1. automatic methods to translate abductive programs into weak-constraints pro-
grams, which also may automate the process of finding their generalised answer
sets —Section 8.4.2.

2. two main functional prototype solvers to compute updates transformed into weak-
constraint programs —Section 7.6 and Section 8.4, with analysis of complexity
—Section 8.4.3.

Some work potentially relevant results to further research include

1. a survey of the most relevant semantics for updates of logic programs —Chapter 4

2. a frame of reference, consisting of a series of challenging examples that might
serve as a preliminary “benchmark” to assess intuitive behaviour with respect to
redundant updates of logic programs —Chapter 5.

In this thesis I argue that there are important principles of logic-program updates
that have not yet been observed in most of the cited proposals. For instance, the two
fundamental properties described above: are Weak Irrelevance of Syntax (WIS, Sec-
tion 6.2), which suggests that, if one can update a theory τ by τ1, the result should only
depend upon the logical contents of τ1, and not on the particular syntax used to express
τ1. Secondly, a property of Strong Consistency (Section 6.2) states that supplementary
rules of equivalence like {a ↔ b}, should not result in any additional model, provided
that a and b are atoms already contained in the underlying language. As a result, this
thesis is a progressive1 proposal of a general semantics to overcome the problems of
current semantics by following the most relevant postulates and principles in the liter-
ature in order to give more intuitive results and to provide the most general semantics
as possible. Moreover, in this thesis I describe and provide online solver prototypes of
the proposed formulations.

1.6 Publications

This thesis is based upon a number of papers that are diluted into the core chapters of
this work, and they are shown below.

Chapter 4 uses most of [Guadarrama, 2007d].

Chapter 5 is a compilation of the counter-intuitive examples and others, shown mainly
in [Guadarrama, 2007d].

Chapter 6 uses most of [Guadarrama et al., 2005] and [Guadarrama, 2008c].

Chapter 7 is built upon the results presented in [Guadarrama et al., 2006], [Guadar-
rama, 2007a] and [Guadarrama, 2009].

1With this word I mean that the results start from the basic concept up to a generalised formulation.

13

Chapter 1. Introduction J.C.A.Guadarrama

Chapter 8 uses most of [Guadarrama, 2007c], [Guadarrama, 2008a] and [Guadarrama,
2008b].

Appendix B is a compilation of software tools mainly reported in [Guadarrama et al.,
2005], [Guadarrama, 2007a] and [Guadarrama, 2008b].

14

For he looked for a city which hath
foundations, whose maker and
builder is God.

Hebrews 11,10

Chapter 2

Foundations

This chapter is the suggested theoretical basis of this thesis: logics, postulates and non-
monotonic reasoning, which shall be recapitulated in subsequent chapters. It is a col-
lection of particular principles that should be observed when representing knowledge
evolution and they include non-classical logics that have a strong relation with logic
programming and reasoning, postulates for belief revision and for updates that state
specifications for knowledge evolution, as well as relevant particular properties for up-
dating knowledge bases. Although logic may be and is often omitted in logic program-
ming, the purpose of introducing them in this dissertation is to serve as a reference
for subsequent chapters, to found the notion of coherence and inference engines and to
emphasise the importance of a solid theoretical foundation both to knowledge principles
and to dynamic knowledge representation. For example, they are main deductive bases
and provide further properties of ASP, as seen in upcoming chapters, like two kinds
of negation in the context of knowledge and beliefs (Section 3.2), as well as notion of
program equivalence in logic programs —Section 3.3.

In particular, the axioms of non-classical logic include intuitionistic logic, a three-
valued logic and Nelson’s logic, as well as a collection of related principles that goes
from the original AGM-postulates [Alchourrón et al., 1985], to diverse interpretations
for particular purposes.

2.1 Logics

This section consists of several logics from the literature, as a major foundation to
reasoning. It is assumed that the reader is familiar with classical logic and logic pro-
gramming.

2.1.1 Intuitionistic Logic

To begin with, a good reference about logics and history may be found in the En-
cyclopædia Britannica [Safra and Yeshua, 2002] and in the Stanford Encyclopædia of

15

Chapter 2. Foundations J.C.A.Guadarrama

Philosophy, [Moschovakis, 1999], from which the following gentle gross introduction is
compiled.

In 1907 the Dutch mathematician L.E.J. Brouwer questioned the principles of Clas-
sical Logic, that were considered untouchable until then [Brouwer, 1907]. In particular,
the well-knonw principle of the excluded middle (A ∨ ¬A) was criticised because it en-
forces that a truth-value is assigned without even knowing whether a constructive proof
for A (or its negation) can be obtained. In particular, Intuitionism takes only the “safe”
principles from Classic Logic and gets rid of those for arbitrary undefined “witnesses”
[Mints, 2000]. As a result, the axioms in Table 2.1.1 formalise the logic system, also
known as Heyting’s Intuitionistic Logic, or HI in short, and its language is defined as
follows.

Definition 2.1 (Language LHI of intuitionistic logic). The language LHI is defined from
propositional logic with propositional symbols (p0, p1, . . .); binary connectives (∧,∨,⊃
,⊥,>); auxiliary symbols: “(” , “)” (parentheses); ⊥ is absurdity constant and > is
true constant. The propositional symbols are also called atoms or atomic propositions.
Formulae and theories are defined as usual in logic. The formula ¬A is introduced as
an abbreviation of A ⊃ ⊥.

Equivalence ≡, defined as A ≡ B, is shorthand for A ⊃ B ∧ B ⊃ A. In order
to distinguish such relation from other notions of equivalence in upcoming chapters,
it shall also be denoted as “≡HI”. The set of axioms consists of A1-HI to A10-HI on
Table 2.1.1.

A1-HI: A ⊃ (B ⊃ A)

A2-HI: (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))

A3-HI: A ⊃ (B ⊃ A ∧B)

A4-HI: A ∧B ⊃ A

A5-HI: A ∧B ⊃ B

A6-HI: A ⊃ A ∨B

A7-HI: B ⊃ A ∨B

A8-HI: (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨B ⊃ C))

A9-HI: (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

A10-HI: ¬A ⊃ (A ⊃ B)

Table 2.1: Intuitionistic-logic Heytig’s Axioms

16

TU-Clausthal 2.1 Logics

In contrast, the following axioms from classical logic do not hold:

¬¬A ⊃ A (2.1)
A ∨ ¬A (2.2)

¬(A ∨B) ≡ ¬A ∧ ¬B (2.3)

As in classical logic, Modus Ponens is the only inference rule.
The expression `K A denotes the standard derivation of A from the axioms in

system K using its axioms and derivation rules. In other words, A is provable in system
K. Accordingly, A `K B denotes `K A ⊃ B. As a result, if Γ is a set of formulae,
Γ `K A means that from Γ the formula A can be proved (in system K).

Because Stable Models Semantics (SM) can be seen as Answer Set Programming
with one negation, intuitionistic logic proves to be useful in characterising SM, as shown
in Section 3.2, and also to help construct the following logic systems with one more
negation and more than two truth values.

2.1.2 Multi-Valued Logic

Non-intuitionist logics may be defined in terms of truth-values and evaluation functions.
Gödel’s logic Gi is a generalisation of the well-know truth tables and its interpretation
or model is defined as a function I : LGi

7−→ {0, 1, . . . , i− 1} (where LGi
is the set

containing the language atoms), evaluated on logic formulae as follows:

I(A ⊃ B) = i− 1 if I(A) ≤ I(B), and I(A ⊃ B) = I(B) otherwise.

I(A ∨B) = max(I(A), I(B)).

I(A ∧B) = min(I(A), I(B)).

I(¬A) = 0 if I(A) > 0 and I(¬A) = i− 1 if I(A) = 0.

I(>) = i− 1 and I(⊥) = 0.

Particularly in this work, i = 3 shall be enough to define HHT-logic, that is to say,
G3. It is also worth noticing that G2 corresponds to the axioms of classical logic. In
addition, HHT-logic may also be defined in terms of the intuitionist axioms A1-HI–
A10-HI from Table 2.1.1 —see [Moschovakis, 1999]— and the axiom A1-HHT [Pearce,
1999a]1:

A1-HHT:
(A ⊃ ¬B) ⊃ (((B ⊃ A) ⊃ B) ⊃ B).

1Note that [Lifschitz et al., 2001] state that they can obtain HHT-logic from HI by adding the axiom
A ∨ (A ⊃ B) ∨ ¬B. Proving equivalence between the two statements lies beyond the intended focus of
this dissertation.

17

Chapter 2. Foundations J.C.A.Guadarrama

As said above, logics may be defined in terms of truth-values and evaluation func-
tions. As a result, Gödel’s logic G3 is defined as a three-valued logic, with values
in {0, 1, 2} where 2 is the designated value, with the following evaluation function
f : LG3 7−→ {0, 1, 2} as follows

f(A ⊃ B) = 2 if f(A) ≤ f(B), and f(A ⊃ B) = f(B) otherwise.

f(A ∨B) = max(f(A), f(B)).

f(A ∧B) = min(f(A), f(B)).

f(¬A) = 0 if f(A) > 0 and f(¬A) = 2 if f(A) = 0.

f(>) = 2 and f(⊥) = 0.

An interpretation in such three-valued logics is the function that assigns to each
atom in LGi

a value from {0, 1, 2}. The interpretation of an arbitrary formula is obtained
propagating the valuation of each connective as defined above. An interpretation is said
to be definite if it assigns only values 0 or 2, and indefinite if some intermediate value
is assigned to an atom. In addition, given an interpretation I, we write I(p) to denote
the value that I assigns to the atom p.

For a given interpretation I and a formula φ we say that I is a G3 model of φ (or
I models φ) if I(φ) = 2. Of course, we extend this definition as usual to a theory
(set of formulas). Last, a tautology is a formula that evaluates to 2 for every possible
interpretation.

An interesting application of this logic is in alternative related work like paraconsis-
tent systems, as suggested in [Guadarrama et al., 2002; Guadarrama and Osorio, 2002,
2003; Osorio et al., 2005]. On the other hand, in this particular thesis it is useful to
understand a second kind of negation and to introduce Nelson’s logics.

2.1.3 Nelson’s Logic and N2-logic

Another non-classical logic, foundation of this thesis, is N-logic, which is an extension
to intuitionistic logic by expanding LHI with a second kind of negation, “∼”, known in
the literature as strong negation for `N ∼A ⊃ ¬A, and by adding to HI the axioms in
Table 2.2. Other names for this second kind of negation sketched before in Section 1.3
are explicit negation, classical negation or also constructible falsity. In this dissertation,
such negation shall be represented as “∼”.

Finally, N2-logic consists of axioms

A1-N2: A ∨ (A ⊃ B) ∨ ¬B

as well as N’s axioms [Pearce, 1999a]. Logic N2 will prove to be a main deduction system
to ASP in Section 3.2 and Section 3.3, as HHT and HI are to SM.

An intuitive meaning of strong negation “∼” and the more classical logic-programming
negation “¬” is that ¬p can also be denoted as ⊥ ← p, i.e., “¬” means that it is believed

18

TU-Clausthal 2.2 Change and Belief Representation

A1-N: ∼(A ∧B) ≡ (∼A ∨ ∼B)

A2-N: ∼(A ∨B) ≡ (∼A ∧ ∼B)

A3-N: ∼(A ⊃ B) ≡ (A ∧ ∼B)

A4-N: ∼∼A ≡ A

A5-N: ∼¬A ≡ A

A6-N: ∼A ⊃ ¬A, for an atomic A.

A1-HI–A10-HI: inclusive.

Table 2.2: N-axioms, including HI axioms from Table 2.1.1

that there is no evidence from p: p is not true by default or not provable. In contrast,
∼p is stated when it is known that p does not exist, is false or does not happen.

In the particular language of ASP introduced later in Section 3.2, the strong negation
symbol is allowed to occur at the atomic level only. Namely, one may have expressions
like ∼a but never expressions like ∼¬a as in the axiom A5-N, which is an extra axiom
with respect to G3.

To sum up, N-logic is an extension of HI for it includes axioms A1-HI–A10-HI,
axioms A1-N–A6-N and strong negation; while N2 is an extension of HI with axiom
A1-N2 and N axioms. On the other hand, HHT-logic is an extension of HI-logic for the
axiom A1-HHT. Finally, N-logic is also an extension of HHT, but their differences lie
beyond the intended focus of this research1. The focus of this research shall be on ASP,
where N2-logic shall prove to have more advantages for it, as discussed in upcoming
sections, like Section 3.2.

Although logics are meant to manipulate theories (sets of formulas closed under a
logical inference), the logics themselves do not specify any particular structure for such
theories or where they are to be held. In following sections, include frameworks to
realise it.

Up to now, this is some of the necessary framework to reasoning, that underpins
decades of research and resulting semantics to solve problems in a static and/or non-
monotonic setting. However, one of the main goals of this thesis is to correctly represent
knowledge, which is the endeavour of upcoming sections on research of principles and
proposals to realise it.

2.2 Change and Belief Representation

Once the machinery to reason about knowledge has been established, a following evident
need is how to represent knowledge. Although the logics introduced in Section 2.1 are

1For further details, refer to [Pearce, 1999a].

19

Chapter 2. Foundations J.C.A.Guadarrama

meant to manipulate logical theories (sets of formulas closed under a logical inference),
the logics themselves do not specify any particular structure for such theories or where
they are to be held. An obvious general way to group them is to associate the theories
with sets of beliefs, what is commonly known in the literature as knowledge sets or belief
sets.

In the context of this research work of evolution of knowledge (thus incomplete), let
us adopt the same Gärdenfors and Makinson’s stance: a theory or a belief set is a partial
description of the environment that represent commitments. On the other hand, beliefs
are to be partially represented as sentences in a formal language, L.

In particular, Alchourrón et al. define a consequence operation “Cn” as a function
from sets of propositions to sets of propositions that satisfy three conditions: Given two
sets of propositions, Γ1,Γ2, in a language L,

inclusion: Γ1 ⊆ Cn(Γ1).

iteration: Cn(Γ1) = Cn(Cn(Γ1)).

monotony: Cn(Γ1) ⊆ Cn(Γ2) when Γ1 ⊆ Γ2.

In addition, Γ1 ` ψ is an abbreviation for ψ ∈ Cn(Γ1) that means Γ1 logically entails ψ.
Accordingly, Cn(Γ1) = {y | Γ1 ` y} and a theory is a set of propositions A closed under
Cn. In symbols, A = Cn(B) for some set of propositions, B.

It is assumed that Cn includes classical implication and propositional language con-
nectives and constants. Moreover, an inconsistent theory Γ means that Γ ` φ for every
sentence φ of the language L, denoted as Γ⊥.

2.3 Belief Revision

The problem of belief revision comes up when integrating different sources of information
into a current belief system, with a minimal impact on such change. In addition,
the system must be kept consistent. There are at least two situations in which the
information may be inconsistent: that new information contradicts previous one, and
that the integrity of current information need be restored. The former may have to
do with updates, depending on the “openness” of the environment, as discussed in
Section 1.2.3, and recapped in Section 2.4 and upcoming chapters. On the other hand,
the other situation has to do just with belief revision, which is the focus of this section.

After years of research, Alchourrón et al. formulated a set of properties a belief
revision mechanism should meet, proposed into a series of eight postulates that are
described in Table 2.3.

As sketched earlier in Section 1.2.3, they identified three main operations known as
expansion, revision and contraction, here denoted with operators], u and 	, respec-
tively. In particular, given a theory Γ and a proposition φ, expansion consists in adding
the latter to Γ without any concern about its conflict with other sentences. In contrast,
contraction removes φ from Γ so that it is no longer implied by the resulting set of

20

TU-Clausthal 2.3 Belief Revision

(Ru 1) Closure: Γu φ = Cn(Γu φ) is a theory

(Ru 2) Success: φ ∈ Γu φ

(Ru 3) Inclusion: Γu φ ⊆ Cn(Γ ∪ {φ})

(Ru 4) Vacuity: If ¬φ /∈ Γ, then Cn(Γ ∪ {φ}) ⊆ Γu φ

(Ru 5) Consistency: Γu φ = Γ⊥ iff ` ¬φ

(Ru 6) Extensionality: If ` φ↔ ψ, then Γu φ = Γu ψ

(Ru 7) Super-expansion: Γu (φ ∧ ψ) ⊆ Cn(Γu φ ∪ {ψ})

(Ru 8) Sub-expansion: If ¬ψ /∈ Γu φ, then Cn(Γu φ ∪ {ψ}) ⊆ Γu (φ ∧ ψ)

Table 2.3: AGM-postulates

sentences, together with some more propositions to make the set closed under logical
consequences. Finally, revision is an expansion of a new sentence φ and contraction of
its possible inconsistent sentences from Γ.

In terms of logical closure, expansion operator “]” is defined as

Γ] φ = {ψ | Γ ∪ {φ} ` ψ} = Cn(Γ ∪ {φ})

With two out of the three operations, Alchourrón et al. formulated a set of postulates
that specify changes to knowledge base, better known as AGM-postulates. Table 2.3
shows a version of them in my own notation.

However, a problem in computer science is that belief sets may be infinite and un-
specified. As a result, a more practical way to represent and manipulate theories seems
to be arbitrary sets of propositional sentences known as knowledge bases rather than
belief sets; and for the particular application of Artificial Intelligence, finite knowledge
bases [Katsuno and Mendelzon, 1991b] without making any distinction between knowl-
edge and beliefs. Formally, K is a base for a belief set Γ if and only if K is a finite subset
of Γ and Cn(K) = Γ.

Accordingly, Katsuno and Mendelzon redefined the AGM-postulates in terms of
knowledge bases by representing any belief set Γ with some propositional formula φ
such that Γ = {ψ | φ ` ψ}. By satisfying four of their new postulates —(R∗1)–(R∗4)—
they prove to satisfy six of the AGM-postulates —(R u 1)–(R u 6). In addition, the
remaining two postulates (R ∗ 5)–(R ∗ 6) are equivalent to (Ru 7) and (Ru 8), respec-
tively. Their paraphrase with ∗-operator is shown in Table 2.4, which gave a basis to
further postulates to differentiate belief update from belief revision introduced later in
Section 2.4.

Finally, Darwiche and Pearl put forward yet another interpretation of postulates
(R ∗ 1)–(R ∗ 6), by means of two proposals: that a belief revision operation should be

21

Chapter 2. Foundations J.C.A.Guadarrama

(R ∗ 1) φ ∗ χ implies χ.

(R ∗ 2) If φ ∧ χ is satisfiable, then φ ∗ χ↔ φ ∧ χ.

(R ∗ 3) If χ is satisfiable, then φ ∗ χ is also satisfiable.

(R ∗ 4) If φ1 ↔ φ2 and χ1 ↔ χ2 then φ1 ∗ χ1 ↔ φ2 ∗ χ2.

(R ∗ 5) (φ ∗ χ) ∧ µ implies φ ∗ (χ ∧ µ).

(R ∗ 6) If (φ ∗ χ) ∧ µ is satisfiable, then φ ∗ (χ ∧ µ) implies (φ ∗ χ) ∧ µ.

Table 2.4: KM-postulates —Katsuno and Mendelzon’s AGM-interpretation

(R ◦ 1) Bel(E ◦ χ) implies χ.

(R ◦ 2) If Bel(E) ∧ χ is satisfiable, then Bel(E ◦ χ) ≡ Bel(E) ∧ χ.

(R ◦ 3) If χ is satisfiable, then Bel(E ◦ χ) is also satisfiable.

(R ◦ 4) If E1 = E2 and χ1 ≡ χ2 then Bel(E1 ◦ χ1) ≡ Bel(E2 ◦ χ2).

(R ◦ 5) Bel(E ◦ χ) ∧ µ implies Bel(E ◦ (χ ∧ µ)).

(R ◦ 6) If Bel(E ◦ χ) ∧ µ is satisfiable, then Bel(E ◦ (χ ∧ µ)) implies Bel(E ◦ χ) ∧ µ.

Table 2.5: KM′-postulates —Darwiche and Pearl’s KM paraphrase

performed on an epistemic state rather than on a knowledge base; and that postulate
(R ∗ 4) should be more cautious by requiring identical epistemic states (ref. sets) rather
than equivalent belief sets (ref. states). They proposed that each epistemic state should
include the particular specifications to perform belief revision on the beliefs themselves,
as well as the necessary information to reason with such beliefs.

Accordingly, each epistemic state E has an associated belief set Bel(E) that can itself
be represented by some propositional formula φ that is a knowledge base for it when
it –Bel(E)– is finite, as Katsuno and Mendelzon proposed earlier. As a result, a belief
base K ⊆ Bel(E), such that Bel(E) = Cn(K). However, each (ref. equivalent) belief
set(s) may have more than one epistemic state, which means that E and Bel(E) do not
necessary have the same language. In other words, Bel(E) = {ψ | φ ` ψ} where φ is a
base for a finite belief set of E , and Bel(E) ` ψ. On the other hand, it is possible to
have more than one epistemic state with equivalent (ref. the same) belief sets.

The proposed interpretation to KM-postulates in Table 2.4 are shown in Table 2.5
as KM′-postulates, where the new revision operator “◦” performs over an epistemic state
updated with a propositional sentence, which results in a new epistemic state. That is
to say, E ◦ χ is an epistemic state.

Just after these rephrases over rephrases of the original AGM-postulates, a new

22

TU-Clausthal 2.4 Belief Update

(U~ 1) φ~ χ implies χ.

(U~ 2) If φ implies χ then φ~ χ is equivalent to φ.

(U~ 3) If both φ and χ are satisfiable then φ~ χ is also satisfiable.

(U~ 4) If φ1 ↔ φ2 and χ1 ↔ χ2 then φ1 ~ χ1 ↔ φ2 ~ χ2.

(U~ 5) (φ~ χ) ∧ φ implies φ~ (χ ∧ φ).

(U~ 6) If φ~ χ1 implies χ2 and φ~ χ2 implies χ1 then φ~ χ1 ↔ φ~ χ2

(U~ 7) If φ is complete then (φ~ χ1) ∧ (φ~ χ2) implies φ~ (χ1 ∨ χ2).

(U~ 8) (φ1 ∨ φ2)~ χ↔ (φ1 ~ χ) ∨ (φ2 ~ χ).

where a knowledge base φ is complete iff, for each atom A, either A ∈ φ or ¬A ∈ φ.

Table 2.6: Belief Update on Knowledge Bases, by Katsuno and Mendelzon.

theory of change would question them again, stating that belief-revision operations
would not solve certain specific problems. That is matter of the following section.

2.4 Belief Update

As one of the major and traditional topics of Artificial Intelligence over the last years,
knowledge representation and reasoning has proved to be a strong theoretical framework
for Logic Programming to manage knowledge bases. As a result, this particular topic
has become more widely applied in the administration knowledge bases of intelligent
(rational) agents, particularly when considering an agent’s incomplete knowledge in
a changing environment. This area of research is known in the literature as belief
updates and has inspired numerous proposals to update logic programs, as presented in
Chapter 4.

As discussed in Section 2.3, Katsuno and Mendelzon redefined the AGM-postulates in
terms of knowledge bases rather than belief sets. Having done that, they also proposed
to make a difference between belief revision and belief updates, arguing that belief revision
is not adequate to solve some particular problems [Katsuno and Mendelzon, 1991a].

Specifically, they state that an update to a knowledge base brings it up-to-date when
the environment described by it changes. belief revision, on the other hand, incorporates
new information to the knowledge base from the modelled environment that never
changes. As a result, Katsuno and Mendelzon came off with a set of eight new postulates
for belief updates that a generic update operator “~” ought to satisfy, as shown in
Table2.6.

Accordingly, Katsuno and Mendelzon state that each revision postulate (R∗1)–(R∗5)
has a corresponding one in the other system. However, one of the main differences

23

Chapter 2. Foundations J.C.A.Guadarrama

between updating and revising a knowledge base lies in postulate (U ~ 2), which says
that an update to a knowledge base with a derived proposition does not alter the
knowledge base. This means that both the knowledge base and the update have to be
consistent to guarantee a consistent result, as stated in (U~3). Otherwise, the resulting
knowledge base shall be inconsistent no matter what the update is, as formally expressed
in Lemma 2.1:

Lemma 2.1 (Updated inconsistency [Katsuno and Mendelzon, 1991a]). If an update
operator ~ satisfies (U~2), and ψ is inconsistent, then ψ~χ is inconsistent for any χ.

On the other hand, postulate (R∗3) states that the revision of a knowledge base is al-
ways consistent, provided that the revising sentence is consistent too. As a consequence,
there is an implicit Consistency Restoration by a revision function in the postulates,
for an original knowledge base. Postulate (U ~ 3), in contrast, is more precise and re-
quires that both the original knowledge base and the update are consistent so that the
resulting knowledge base is also consistent.

Moreover, they add postulates (U ~ 6)–(U ~ 8) instead of (R ∗ 6). According to
Katsuno and Mendelzon, (U~7) states that some possible world resulting from updating
a complete knowledge base with an update and also resulting from another update, such
a possible world must also result from updating the knowledge base with the disjunction
of the two updates. On the other hand, (U~8) states that updating each possible world
of a knowledge base has independent updates.

Finally, let us introduce an interpretation of postulates (U~ 1)–(U~ 8) in terms of
belief states, where each epistemic state E has an associated belief set Bel(E), which is
itself a proposition φ, as stated earlier in Section 2.3. Moreover, “�” is a generic update
operator over an epistemic state updated with a propositional sentence, which results
in a new epistemic state. That is to say, E �χ is an epistemic state. The set of redefined
postulates from Eiter et al. are shown in Table 2.7.

2.5 Conclusion for Chapter 2

This chapter consists of a progressive collection from the literature of logic axioms as
a major theoretical foundation to reasoning and knowledge representation, as well as
belief postulates and principles that specify regulations to modify knowledge and to
reason about changes in logical settings.

The main stream has its origin in representation of theories as sets of formulas closed
under a logical inference. Such sets of formulas are associated with belief sets that are
a partial description of the world. Out of these groups, one can define basic properties
as iteration, inclusion and monotony.

As a partial description of the world, the evolution of such groups of formulas makes
them prone to run across contradictory information, which is to be incorporated intro
the group of formulas to draw consistent conclusions. belief revision postulates are
specifications of minimal changes to those structures and the first formulation is the

24

TU-Clausthal 2.5 Conclusion for Chapter 2

(U � 1) φ ∈ Bel(E � φ).

(U � 2) φ ∈ Bel(E) implies Bel(E � φ) = Bel(E).

(U � 3) If Bel(E) is consistent and φ is satisfiable, then Bel(E � φ) is consistent.

(U � 4) If Bel(E) = Bel(E ′) and φ ≡ ψ, then Bel(E � φ) = Bel(E ′ � ψ).

(U � 5) Bel(E � (φ ∧ ψ)) ⊆ Bel((E � φ)] ψ).

(U � 6) If φ ∈ Bel(E � ψ) and ψ ∈ Bel(E � φ), then Bel(E � φ) = Bel(E � ψ).

(U � 7) If Bel(E) is complete, then Bel(E � (φ ∨ φ′)) ⊆ Bel(E � φ) ∧ Bel(E � φ′)

(U � 8) Bel((E ∨ E ′) � φ) = Bel((E � φ) ∨ (E ′ � φ)).

where a belief set K is complete iff, for each atom A, either A ∈ K or ¬A ∈ K.

Table 2.7: Belief Update Postulates for Epistemic States

AGM-postulates. The structures on which they specify changes are belief sets closed
under a logical consequence, by means of three operations: expansion, revision and
contraction.

In order to make such a framework appropriate to computer science, Katsuno and
Mendelzon redefined the AGM-postulates in terms of finite belief sets not logically closed,
known as knowledge bases, which of course, can have an associated belief set closed under
a logical consequence. These KM-postulates also included an equivalent abbreviation
from eight to six postulates. At the same time, they postulated new specifications
to establish subtle differences between belief revision and belief update, also in terms
of knowledge bases. With the new postulates, they argued that belief update repre-
sent beliefs in a changing environment, while belief revision in a static one, with the
corresponding consequences.

Although the main proposed semantics in this thesis are called “semantics for up-
dates of logic programs” for historical and practical reasons, the main focus, according
to Katsuno and Mendelzon terms, shall be on belief revision, as further discussed in
subsequent sections starting with Section 7.5.

Finally, Darwiche and Pearl made yet another refinement to KM-postulates in terms
of epistemic states rather than belief bases. One of the purposes of such tune-up is
to encode into an epistemic state, both the necessary information to reason and the
particular specifications to further belief revision.

To sum up, a general difference between belief revision and updates is the changing
environment, and an agent should both correct its own misconceptions of it (belief
revision) and suppose that the environment exceptionally changes. As a result, a useful
semantics to model such changes is one that performs as many principles as possible,
from belief revision and updates of epistemic states, including the necessary machinery
to perform coherent reasoning.

25

Chapter 2. Foundations J.C.A.Guadarrama

26

Readability is more important than
parsimony.

Russell & Norvig

Chapter 3

Preliminaries

This chapter is a global compilation of a standard notation employed along this thesis,
from logic programming, Answer Set Programming (ASP) and Generalised Answer Sets
or GAS. In particular, ASP is a knowledge-representation semantics that has several
classes of programs from which this chapter comprises extended disjunctive logic pro-
grams as the main core of this work. Finally, GAS is a semantics on ASP that shall
prove to be helpful in preferring models to characterise updates of logic programs. The
reader is expected to be familiar with definitions and basic notions of logic —see for ex-
ample Chapter 1 of [Shankar, 1997] or [Lloyd, 1987]. Additionally, this chapter includes
standard notation of complexity classes as in [Johnson, 1990].

3.1 Logic Programming and Answer Sets

Up to Chapter 2, I have considered the language of classical logic and introduced some
logic systems with their respective axioms, which are a very abstract foundation to
this thesis. The same chapter also includes some general logical principles that lead
to a correct belief-change. Such strong theoretical bases, however, may not compute
the changes in the knowledge bases described by their sole principles, and need to be
integrated into another operational framework that inherits the desired properties to
perform belief changes.

3.2 Stable Models and Answer Sets

One foundation of this thesis is Answer Set Programming, ASP [see Gelfond and Lifs-
chitz, 1988; Lifschitz and Woo, 1992], characterised in some non-classical logics intro-
duced in Chapter 2 due to [Osorio et al., 2004; Pearce, 1999a,b], with a long background
and suitability to represent non-monotonic knowledge. Its main applications in problem
solutions range from typical AI toy examples to yet-preliminary agent prototypes and
planning settings. Other name to identify this semantics from the literature is Stable

27

Chapter 3. Preliminaries J.C.A.Guadarrama

Model Semantics or simply SM for its name in the original paper [Gelfond and Lifschitz,
1988].

Characterising ASP with a logic means that a propositional theory represented by
a program over the non-monotonic answer-sets language can be inferred in terms of a
monotonic logic [Osorio et al., 2004]. In other words, there are particular logics that are
deductive bases of ASP inferences —i.e. Here-and-There Logic and N2-logic— [Pearce,
1999a]. Accordingly, one may take advantage of some inference features of a particular
logic that are not so obvious in ASP. For example, one may transform nested expressions
in logic to its equivalent in ASP or one may check strong equivalence of logic programs
by proving equivalence in a particular logic system, as shown in upcoming sections.

The following formalism gives the description of ASP, which is identified with other
names like Stable Logic Programming or Stable Model Semantics and A-Prolog. Its
formal language and some more notation are introduced as follows.

Definition 3.1 (ASP Language of logic programs, LASP). In the following LASP is a
language of propositional logic with propositional symbols: a0, a1, . . . ; connectives: “,”
(conjunction) and meta-connective “;”; disjunction, denoted as “|”; ← (derivation, also
denoted as →); propositional constants ⊥ (falsum); > (verum); “¬” (default negation
or weak negation, also denoted with the word not); “∼” (strong negation, equally denoted
as “−”1); auxiliary symbols: “(”, “)” (parentheses). The propositional symbols are called
atoms too or atomic propositions. A literal is an atom or a strong-negated atom. A
rule is an ordered pair Head(ρ)← Body(ρ).

An intuitive meaning of strong negation “∼” —also called explicit negation, con-
structible falsity and classical negation— in logic programs with respect to the default
negation “¬” is the following: a rule

ρ0 ← ¬ρ1

allows to derive ρ0 when there is no evidence of ρ1, while a rule like ρ0 ← ∼ρ1 derives
ρ0 only when there is an evidence for ∼ρ1, i.e. when it can be proved that ρ1 is false.

With the notation introduced in Definition 3.1, one may construct clauses of the
following general form that are well known in the literature.

Definition 3.2 (Extended Disjunctive Logic Program, EDLP). An extended disjunctive
logic program is a set of rules of form

`1 ∨ `2 ∨ . . . ∨ `l ← `l+1, . . . , `m,¬`m+1, . . . ,¬`n (3.1)

where `i is a literal and 0 ≤ l ≤ m ≤ n.
1Some times “−” is a strong-negation symbol in some ASP solvers.

28

TU-Clausthal 3.2 Stable Models and Answer Sets

Naturally, an extended logic program (or ELP hereafter) is a finite set of rules of form
(3.1) with l = 1; while an integrity constraint (also known in the literature as strong
constraint) is a rule of form (3.1) with l = 0; while a fact is a rule of the same form
with l = m = n. In particular, for a literal `, the complementary literal is ∼` and vice
versa; for a setM of literals, ∼M = {∼` | ` ∈M}, and LitM denotes the setM∪∼M;
finally, a signature LΠ is a finite set of literals occurring in Π. Additionally, given a set
of literalsM⊆ A, the complement setM = A \M.

The well-known semantics of an EDLP consists of reducing general rules to rules
without default negation “¬” because the latter can be interpreted in classical logic by
means of the well-known Herbrand models. In particular, the reduced rules with no
default negation Mon of a rule of the form (3.1) is

`1 ∨ p1 ∨ . . . ∨ `l ← `l+1, . . . , `m (3.2)

where `i are literals and 0 ≤ l ≤ m. This kind of rules is known in the literature as
monotonic counterpart or positive program. Additionally, the monotonic counterpart of
a set of rules is the set of the monotonic counterparts of its rules.

Intuitively, the monotonic counterpart is where ASP may coincide with classical
propositional logic. On the other hand, default negation is precisely the main difference
between the two systems —alternatively with Prolog too. As a result, the correspond-
ing derivation symbols, “←” for ASP and “⊃” for Classical Logic, cannot have the
same meaning, as formally stated in the following orientation principle —introduced by
Brewka and Dix, who identify it as a weak form of negation-by-failure:

If a ground atom α does not unify with some head of a rule from a given
program Π, then α is considered to be false. In such a case, ¬α is derivable
from Π to distinguish it from classical ∼α .

Now let us introduce the meaning of programs with both monotonic and nonmono-
tonic counterparts.

Suppose a finite ground program Π, consisting of clauses of form (3.1). For any set
S ⊆ LΠ, the answer-sets reduct ΠS corresponds to

ΠS = {`1 ∨ `2 ∨ . . . ∨ `l ← `l+1, . . . , `m | (3.3)
{`m+1, . . . , `n} ∩ S = ∅}

Stating S as a set of literals rather than atoms, makes one of the differences with
Stable-models semantics.

Next, the meaning of a monotonic counterpart corresponds to its minimal classical
model as follows.

Definition 3.3 (Minimal Closure, Cn(Π)). Let Π be a positive extended disjunctive
program and LΠ the signature (set of all ground literals) from Π. The set Cn(Π) denotes
the minimal subset of LΠ where

29

Chapter 3. Preliminaries J.C.A.Guadarrama

1. for each ground clause p0 ∨ p1 ∨ · · · ∨ pl ← q1, . . . , qm in Π, q1, . . . , qn ∈ S implies
pi ∈ S for some 0 ≤ i ≤ l; and for each ground clause of the form

⊥ ← q1, . . . , qm (3.4)

{q1, . . . , qm} * S.

2. if S contains a pair of complementary literals, then S = LΠ.

Note that item (2.) in this Definition 3.3 extends Stable Models by giving a meaning to
strong negation.

Finally, an answer set of a given program Π is a minimal closure of its reduct as
following stated.

Definition 3.4 (Answer Set). Suppose Π is a EDLP and S a set of literals. Then, S
is an answer set of Π if and only if S = Cn(ΠS).

Notice that all stable models can be viewed as minimal Herbrand models of a set of
first-order sentences, but not the converse. Additionally, S is a consistent answer set of
a given program Π if it does not contain a complementary pair of literals.

Last, one may not conclude this section without mentioning that two major ad-
vantages of ASP over other approaches is a hard work in research both its declarative
programming framework, and at least two efficient competitive proving solvers with
long backgrounds: SMODELS [Niemela and Simons, 1997] and DLV [Calimeri et al., 2002;
Leone et al., 2006]. Their respective online running versions may be located at http:
//www2.in.tu-clausthal.de/~guadarrama/updates/dlv.html and at http://www2.
in.tu-clausthal.de/~guadarrama/updates/smodels.html, which are just (graphi-
cal) web interface to the original implemented engines mentioned above. That means
they can run on their server and thus there is no need to download and locally install
the binaries or sources.

This remarkable asset of implemented solvers has come along to study the same prob-
lems presented in this work, that makes possible having a formal framework with prac-
tical experimental implementation of updates, like the one in[Crescini and Zhang, 2005],
available at http://www.cit.uws.edu.au/~jcrescin/projects/PolicyUpdater/.

3.3 Equivalence in Logic Programming

Checking equivalence between logic programs is of great value, especially when it comes
to simplifying them by ignoring some portions of code that might be redundant and time-
consuming. Moreover, there is a close relation between a particular kind of equivalence
and updates of logic programs, as discussed along this section.

There are several kinds of equivalence in the literature, particularly in ASP and
monotonic logics [Eiter et al., 2005; Inoue and Sakama, 2004; Lifschitz et al., 2001;

30

http://www2.in.tu-clausthal.de/~guadarrama/updates/dlv.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/dlv.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/smodels.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/smodels.html
http://www.cit.uws.edu.au/~jcrescin/projects/PolicyUpdater/

TU-Clausthal 3.3 Equivalence in Logic Programming

Osorio et al., 2001]. Since ASP programs may be expressed in some monotonic logics,
one may take advantage of checking equivalence in either system. In this dissertation
I use N2-logic as one of its fundamental basis that characterises ASP, as well as a
translation function between programs and N2 theories. The set of axioms may be
found in Section 2.1.3

When establishing a relation between N2 and ASP, a translation function between
ASP programs and N2 theories is necessary. The function is similar to the one from
Lifschitz et al.:

Definition 3.5 (Translation into Nelson’s logic [Lifschitz et al., 2001]). The mapping
function TN2 (·) translates an EDLP into propositional formulas of Nelson’s logic N2.

The rule
p0 ∨ p1 ∨ · · · ∨ pl ← q1, . . . , qm,¬qm+1, . . . ,¬qn

is mapped into the formula

(q1 ∧ · · · ∧ qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn) ⊃ p0 ∨ p1 ∨ · · · ∨ pl

and the strong-negation propositional symbol “∼” has the same meaning of the logical
symbol “∼” in N2.

With this translation, one may redefine ASP in terms of N2-logic, which shall be
useful to provide even more features, discussed along this section.

Chapter 2 gives a general picture on how the results of such a characterisation
arose: From the logics side, Nelson defined N2 by introducing constructible falsity into
intuitionistic logic, HI, and defined N2 as a least constructive extension to Here-and-
There Logic, HHT, which can be defined by extending HI. Pearce calls it conservative
extension of HI —see Chapter 2 for further details.

From the ASP side, Pearce discovered a new way to define stable models in terms of
both intuitionistic logic and in the logic of Here-and-There in [Pearce, 1999a]. Accord-
ingly, as ASP without strong negation is SM, the former can have the same characterisa-
tions of SM and vice versa1. Besides these characterisations, Pearce discovered that by
introducing strong negation, like in Definition 3.3, Nelson’s N2-logic characterises ASP
as well.

The main result of such characterisations that is more relevant to this thesis, can be
expressed by Theorem 3.1, by using the notation from Osorio and Cuevas, and originally
due to Pearce, introduced also in Section 2.1.3.

To begin with, the notation τ
N2 M is a shorthand for both τ is consistent and
derives M in N2-logic.

1Note that strong negation can be introduced in SM very easily, with extra atoms and integrity
constraints.

31

Chapter 3. Preliminaries J.C.A.Guadarrama

Theorem 3.1 ([Osorio and Cuevas, 2007]). Let Π be a program over a set of atoms A
and M⊆ LA a consistent set of literals. The set M is an answer set of Π if and only
if TN2 (Π) ∪ ¬M∪ ¬¬M
N2 M.

With such a theorem, one may easily establish an equivalence relation between ASP
programs for some upcoming update properties:

Theorem 3.2 ([Lifschitz et al., 2001]). For any programs Π1 and Π2, TN2 (Π1) ≡N2

TN2 (Π2) if and only if for every program Π, Π ∪Π1 and Π ∪Π2 have the same Answer
Sets.

In order to simplify notation and with a slight abuse of notation, for any ASP
programs Π0, Π1, Π0 ≡N2 Π1 shall actually stand for TN2 (Π0) ≡N2 TN2 (Π1).

This theorem expresses how two programs may have a logical content in N2 logic,
whose axioms are introduced in Section 2.1.3. For practical reasons, however, one might
want to avoid introducing more axioms and work just at a simpler side of ASP. That is
to say, the following paraphrase of Theorem 3.2 is also possible:

Theorem 3.3 (Strong Equivalence [Lifschitz et al., 2001]). For any programs Π1 and
Π2, Π1 is strongly equivalent to Π2 if and only if for every program Π, Π ∪ Π1 and
Π ∪Π2 have the same Answer Sets.

Now one can define at least three kinds of equivalence that are useful in the properties
of updates semantics presented in this dissertation. The most basic one in this set of
three, Π1 ≡ASP Π2, means that Π1 and Π2 have the same answer sets, and is known
in the literature as weak equivalence of logic programs, also denoted as simply “≡”.
Secondly, Π1 ≡N2 Π2 means that programs Π1 and Π2 have identical Answer Sets
for any set of rules added to them. This corresponds to strong equivalence in the
literature. Finally, a third kind of equivalence has been introduced by Inoue and Sakama
that, besides characterising addition of logic programs, it may also capture removal
operations. They named it strongly-update equivalence and it is formalised in my own
notation as follows.

Definition 3.6 (S-strong equivalence [Inoue and Sakama, 2004]). Programs Π1 and Π2

are strongly-update equivalent (or S-update equivalent) if for any programs Πx and Πy,
(Π1 \Πx) ∪Πy and (Π2 \Πx) ∪Πy have the same answer sets.

The authors give an example where a strongly-equivalent logic program cannot be
S-update equivalent to another: {p∨p← q} is strongly-equivalent to {p← q}. However,
it is easy to test that these two programs are not S-update equivalent.

By following Definition 3.6, Inoue and Sakama noticed that two S-update equivalent
programs, Π1 and Π2 are strongly equivalent when Πx = ∅. In addition, they are weakly
equivalent if and only if Πx = Πy = ∅.

Note that ≡N2 is much stronger than ≡ASP, and replacing TN2 (Π1) ≡N2 TN2 (Π2)
with Π1 ≡ASP Π2 is not correct. Take for example, Π = {b ← >}, Π1 = {(a ←

32

TU-Clausthal 3.4 Weak Constraints

>); (b ← b)}, Π2 = {(a ← ¬b); (b ← b)}. Clearly, Π1 ≡ASP Π2 holds. However, an
arbitrary semantics Sem(·) for updating Π with Π1 should correspond to Sem(Π�Π1) =
{a, b}, and updating Π with Π2 should correspond to Sem(Π � Π2) = {¬a, b}. As a
result, Sem(Π � Π1) ≡ASP Sem(Π � Π2) does not hold! Therefore, a weak equivalence
between updating logic programs is not enough to produce the same resulting update.
A stronger notion of equivalence between the two updates is necessary, simply because
belief changes (to nonmonotonic theories imply a dynamics.

In summary, this section is an introduction of several kinds of equivalence of logic
programs, its importance and relevance in belief changes. These different settings of
equivalence may help simplify logic programs when some portions of code are redundant.
There are also helpful equivalence-settings that can capture dynamic changes, and thus
relevant to the study of this dissertation. Finally, a logic characterisation of ASP has
been considered in this section as an alternative tool to equivalence-checking of logic
programs by translating them into N2-propositional theories.

3.4 Weak Constraints

Leone et al. introduced a nice feature of DLV solver [see Buccafurri et al., 2000; Leone
et al., 2006] known as Weak Constraints that may be employed to set up preferences
between models. In particular, a weak constraint is a variant of an integrity constraint
that may be violated in order to establish priorities amongst models. One of its dif-
ferences is the introduction of a new derivation symbol “:∼”, rather than “:− ” or “←”.
Moreover, one can specify the priority level and weight of the constraint. Formally,

Definition 3.7 (Weak Constraint [Leone et al., 2006]). A weak constraint (ω) is an
expression of the form

:∼ `1, . . . , `k,¬`k+1, . . . ,¬`m[w : p] (3.5)

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables. For convenience, w and/or p may be
omitted and are set to 1 in such a case.

In addition, Ω(Π) shall denote the finite set of weak constraints occurring in a given
program Π. Likewise, a ω-program is a logic program with weak constraints.

The intuition behind interpretations of ω-programs consists in minimising the sum
of weights of violated weak constraints at the highest priority level, and amongst them
those which minimise the sum of weights of the violated weak constraints in the next
lower level, and so on.

Next, it is worth noticing the introduction of a new symbol “:∼” to specify a weak
derivation, very different from the classical Prolog derivation symbol: “:− ”. Both of
them, however, are widely used in ASP solvers.

33

Chapter 3. Preliminaries J.C.A.Guadarrama

In order to provide a more syntactic sugar, another way to define a weak-consitraint
expression from Definition 8.10 is as follows.

Definition 3.8 (Weak Constraint). A weak constraint (ω) is an expression of the form

[w : p]← `1, . . . , `k,¬`k+1, . . . ,¬`m (3.6)

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables. For convenience, when w and/or p
are omitted, they are set to 1.

From now on, the previous weak-constraints form shall be employed in the context
of DLV-code, while the other in higher abstraction levels.

Similarly to integrity constraints in Section 3.1, one may say that a weak constraint
ρ = ([w : p] ← `1, . . . , `k,¬`k+1, . . . ,¬`m) is violated by an answer set S of a program
Π if the following three conditions hold:

1. ρ ∈ Π

2. {`1, . . . , `k} ⊆ S

3. {`k+1, . . . , `m} * S

Additionally, Leone et al. simplify the combination of weights in levels by introducing
a function HΠ(S) that grows in direct proportion to the weight and level of the weak
constraint as follows:

Definition 3.9 (Objective Function, HΠ(S) [Leone et al., 2006]). Given a ground
program Π with weak constraints Ω(Π) and an answer set S, the ω objective function
HΠ(S) for Π is a product sum and is defined by using an auxiliary function fΠ that
maps levelled weights to weights without levels:

fΠ(1) = 1

fΠ(n) = fΠ(n− 1) · |Ω(Π)| · wΠ
max + 1, n > 1

HΠ(S) =
lΠmax∑
i=1

(fΠ(i) ·
∑

ρ∈NΠ
i (S)

weight(ρ))

where wΠ
max and lΠmax denote the maximum weight and maximum level over the weak

constraints in Π, respectively; NΠ
i (S) denotes the weak constraints at level i violated by

S, and weight(ρ) the weight of weak constraint ρ.

34

TU-Clausthal 3.5 Ordered Disjunctions

Leone et al. states that |Ω(Π)| · wΠ
max + 1 is greater than the sum of all weights in

the program, and therefore guaranteed to be greater than the sum of weights of any
single level.

Finally, the best models of such a logic program are those that minimise the number
of violated weak constraints. The definition of a weak-constraint model from Buccafurri
et al. in my own notation is the following.

Definition 3.10 (Weak-Constraint Model [Leone et al., 2006]). For an EDLP Π with
weak constraints, a set S is a weak-constraint model of Π if and only if

1. S is an answer set of Π

2. HΠ(S) is minimal over all the answer sets of Π.

When the underlying semantics is ASP in Definition 8.13, a weak-constraint model
is also known as Optimal Answer Set.

Moreover, the language of EDLP’s with weak constraints shall be called DATALOG∨,ω,
which is very similar to the notation from the literature.

3.5 Ordered Disjunctions

Ordered-disjunctive Logic Programming, ODLP by [Brewka, 2002; Brewka et al., 2004],
is an extension to ELP’s and may be defined in broad way as follows: a simple ordered-
disjunction program is a set of rules of form

C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

where Ci, Aj and Bl are all ground literals. C1, . . . , Cn are usually named the choices
of a rule and their intuitive reading is as follows: The ordered disjunction is used only
in rule heads to select some of the answer sets of a program as the preferred ones. If
C1 is possible, then C1; if C1 is not possible, then try C2; . . . ; if neither Ci, . . . , Cn−1

is possible then try Cn. Moreover, one may identify some special cases such as: if
n = 0 the rule is a constraint; and finally, facts are those rules where m = k = 0. In
the particular case of this dissertation, the required codification of ordered disjunctive
programs shall be just n = 2,m = k = 0, as in Section 6.3.5.

3.5.1 ODLP-reduct

In particular, there is a reduct of ODLP-rules with respect to a set of literals, as well as
a reduct of ODLP-programs:

Definition 3.11 (×-reducts, [Brewka et al., 2004]). Let

ρ = C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

35

Chapter 3. Preliminaries J.C.A.Guadarrama

be a rule andM a set of literals. Then, the ×-reduct ρM× of ρ is defined as

ρM× = {Ci ← A1, . . . , Am | Ci ∈M and

M∩ {C1, . . . , Ci−1, B1, . . . , Bk} = ∅}.

Let Π be an ODLP. The ×-reduct ΠM× of Π is defined as:

ΠM× =
⋃
ρ∈Π

ρM× .

One may compute the answer sets of a ×-reduct, ΠM× as possible interpretations of
an ODLP, by means of the following proposition.

Proposition 3.1 ([Brewka et al., 2004]). Let Π be an ODLP and M a set of literals.
Then,M is an answer set of Π if and only if the following three conditions hold:

1. M = Cn(ΠM×),

2. M is consistent, and

3. M satisfies every rule ρ ∈ Π.

Finally, the models of an ODLP are defined in terms of preferred answer sets in
at least three categories with respect to its satisfaction degree. Namely, cardinality-
preference, inclusion-preference and paretto-preference. In this dissertation, the focus is
on the first two of them, as later explained in Section 6.3.5 and Section 8.4.1.

3.5.2 ODLP-semantics

Before introducing semantics to characterise ODLP’s, it is necessary to define what a
satisfaction degree is.

Definition 3.12 (Degree of satisfaction, dM(ρ) [Brewka et al., 2004]). Let M be an
answer set of an ODLP. The satisfaction degree dM(ρ) byM of a rule ρ of form

C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

• is 1 if Aj /∈M, for some j, or Bi ∈M for some i;

• is j with 1 ≤ j ≤ n, if all Aj ∈M, no Bi ∈M, and

j = min{r | Cr ∈M}

36

TU-Clausthal 3.5 Ordered Disjunctions

With the degree of satisfaction, one can define many preference relations, as the
ones suggested by Brewka et al.. For that purpose, they also define the set of rules with
a degree of satisfaction as follows: Given a set of literals M, let Mi(Π) = {ρ ∈ Π |
dM(ρ) = i}.

Definition 3.13 (Cardinality Preference [Brewka et al., 2004]). Let M1 and M2 be
answer sets of an ODLP, Π. Then, M1 is cardinality-preferred to M2 (denoted as
M1 >c M2) if and only if there is an i such that |Mi(Π)1| >c |Mi(Π)2|; and for all
j < i and |Mj(Π)1| = |Mj(Π)2|.

In other words, model M1 is cardinality-preferred to M2 from program Π if and
only if there is a satisfaction degree for which a set of rules satisfied by M1 is bigger
than the set of rules satisfied byM2. The inclusion preference has a similar intuition:

Definition 3.14 (Inclusion Preference [Brewka et al., 2004]). Let M1 and M2 be
answer sets of an ODLP, Π. Then, M1 is inclusion-preferred to M2 (M1 >i M2)
if and only if there is an i such that Mi(Π)2 ⊂ Mi(Π)1; and for all j < i and
Mj(Π)1 =Mj(Π)2.

Brewka et al. also state the following important relation.

Proposition 3.2 (Brewka et al.). Let M1 and M2 be answer sets of an ODLP, Π.
ThenM1 >iM2 implies thatM1 >cM2.

Finally, the indented models of an ODLP are called k-preferred answer sets and are
based on the satisfaction degree and the preference criterion. Formally,

Definition 3.15 (Preferred Answer Sets, Brewka et al.). A set of literals M is a k-
preferred answer set (where k ∈ {c, i}) of an ODLP, Π, if and only if M is an answer
set of Π and there is no answer setM′ of Π such thatM′ >kM.

There are more preference criterions, but the two definitions just introduced are the
most relevant to this dissertation.

3.5.3 ODLP and Weak Constraints

There is a very-interesting alternative to preferred answer sets by means of weak con-
straints. For this end, Brewka et al. have found a relation between them. They propose
a translation of a normal logic program Π with weak constraints into an ODLP, Π′, by
replacing every weak constraint ω of form (3.6) —with w = p = 1— into the following
pair of rules:

αω ×∼αω ← > (3.7)
⊥ ← αω, b1, . . . , bk,¬bk+1, . . .¬bm (3.8)

37

Chapter 3. Preliminaries J.C.A.Guadarrama

where αω is a new atom that denotes the constraint ω is not violated.
Accordingly, Brewka et al. state that ω-preference corresponds to c-preference be-

cause the amount of violated weak constraints is exactly the same amount of rules
satisfied to the second degree [Brewka et al., 2004]. Such correspondence may be useful
for the implementations of both Section 6.3.5 and Section 8.4.2, in upcoming chapters.

3.5.4 ODLP-solver

Finally, as one of the distinguishing features of logic programming, it is very important
to notice that PSmodels1 is an ODLP implemented prototype [Brewka et al., 2002], which
consists of an extension to SMODELS2 [Niemela and Simons, 1997] to compute preferred
stable models of normal logic programs. However, it is also important to point out that
the sources themselves need some debugging3.

PSmodels, in a bug-free implementation however, should compute preferred stable
models (also known as k-preferred answer sets) of normal logic programs under ODLP
and should be considered when thinking of implementing the update semantics proposed
in this dissertation.

One of the features of PSmodels is to tell how many times the test program has been
invoked to check whether a stable model of a given ODLP is a preferred one. Besides
the original implementation sources available at the author’s sites, there is a compiled
online front-end running at http://www.in.tu-clausthal.de/~guadarrama/updates/
psmodels.html that provides the original compiled PSmodels to run as an Internet
service in a webpage, rather than the classical online run. This overcomes the need to
download it, compile it and run it locally.

3.6 Abductive Programming and GAS

This section is a recapitulation of some basic definitions about syntax and semantics of
abductive logic programs. Abduction is an alternative framework to deductive reasoning
in Classical Logic [Kakas and Mancarella, 1990] whose general intuition consists in
forming hypotheses and choosing the best ones that explain observations or conclusions.
This intuition will prove to be very useful to generalise the simple formulation for
updates of logic programs here presented.

As one of the semantics to interpret abductive programs, Minimal Generalised An-
swer Sets (MGAS) provides a more general and flexible semantics than standard ASP,
with a wide range of applications. In particular, this framework has been employed to
restore consistency [Balduccini and Gelfond, 2003], to set up preferences [Osorio et al.,

1The sources may be downloaded from http://www.tcs.hut.fi/Software/smodels/priority
and there is a graphical user front end at http://www.in.tu-clausthal.de/~guadarrama/updates/
psmodels.html that allows to execute preferred logic programs online.

2This solver may be downloaded from http://www.tcs.hut.fi/Software/smodels/ and run via
online with a graphical user front end at http://www.in.tu-clausthal.de/~guadarrama/updates/
smodels.html.

3For instance, Version 2.26a will crash with a simple program like {a.}.

38

http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.tcs.hut.fi/Software/smodels/priority
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.tcs.hut.fi/Software/smodels/
http://www.in.tu-clausthal.de/~guadarrama/updates/smodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/smodels.html

TU-Clausthal 3.6 Abductive Programming and GAS

2004], as well as in an earlier proposal to perform (limited) updates [Guadarrama et al.,
2005], for instance.

Definition 3.16 (Abductive Logic Program [Kakas and Mancarella, 1990]). An abduc-
tive logic program is a pair 〈Π,A∗ 〉 where Π is an arbitrary program and A∗ a set of
literals, called abducibles.

As a consequence, one may extend the well-known standard signature definition with
L〈Π,A∗ 〉, which means the finite set of literals occurring both in Π and in A∗.

On the other hand, there already exists a semantics to interpret abductive programs,
called generalised answer sets (GAS) due to Kakas and Mancarella. The intuition behind
it consists of merging combinations of abducibles with an original program. Then, the
resulting program(s) may be interpreted in ASP, as formally expressed in the following
definition.

Definition 3.17 (GAS [Kakas and Mancarella, 1990]). The expressionM(∆) is a gen-
eralised answer set of the abductive program 〈Π,A∗ 〉 if and only if ∆ ⊆ A∗ andM(∆)
is an answer set of Π ∪ {α← > | α ∈ ∆}.

In case of more than one generalised answer sets, a preferred inclusion order may be
established.

Definition 3.18 (Abductive Inclusion Order [Balduccini and Gelfond, 2003]). Let
M(∆1) and M(∆2) be generalised answer sets of 〈Π,A∗〉. The relation M(∆1) ≤A∗
M(∆2) holds if and only if ∆1 ⊆ ∆2.

From now on, let us introduce a “sweeter” syntactic sugar to represent generalised
answer sets by M∆, where M is the resulting answer set with the abducible set ∆.
This is equivalent to the well known notationM(∆), but in a form that uses less paper.

Example 3.1. Let {a, b} be abducibles and Π be {(a ← b), (b ← a), (c ← a)}. Then
{a, b, c}{a} —that is, the resulting answer set {a, b, c} with {a} as abducible— is a GAS
of 〈Π, {a, b}〉, since {a, b, c} is an answer set of Π ∪ {a ← >}, as well as {a, b, c}{a,b}
and {}{}. Therefore, {a, b, c}{a} ≤A∗ {a, b, c}{a,b}, since {a} ⊆ {a, b}. However, {}{} is
the minimal GAS of Π, as ∅ is a subset of any set. Finally, note that {a, b, c}{c} �A∗
{a, b, c}{a,b}

Last, one can easily establish the minimal generalised answer sets from an abductive
inclusion order with the following definition

Definition 3.19 (MGAS [Balduccini and Gelfond, 2003]). Let M(∆) be a minimal
generalised answer set (MGAS) of 〈Π,A∗ 〉 if and only ifM(∆) is a generalised answer
set of 〈Π,A∗ 〉 and it is minimal with respect to its abductive inclusion order.

39

Chapter 3. Preliminaries J.C.A.Guadarrama

It is worth mentioning that minimal generalised answer sets define the semantics of
CR-Prolog, where Balduccini and Gelfond characterised Consistency Restoring Rules
by means of MGAS.

This simple and strong framework is the main core of a solid foundation for the
update formulation, presented in the following sections.

3.7 Complexity Notation

The following two sections are a recapitulation of Johnson’s complexity hierarchy. Fur-
ther concepts can also be found in [Cai, 2003].

3.7.1 The Polynomial Hierarchy

To begin with, the classes of complexity relevant to this thesis can be briefly summarised
as follows. There is a class with name P that denotes the set of problems from which
a solution can be found in polynomial time by a deterministic Turing machine, also de-
noted as PSPACE and PTIME, depending on which of the two most common resources
(time and space) is being considering. Next, NP denotes the class of problems solved
in polynomial time by a nondeterministic Turing machine, which usually correspond
to guess/decision problems, also denoted as NPSPACE and NPTIME, again depending
on which of the two most common resources is being considered. Accordingly, the class
coNP denotes the set of decision problems whose complement is in NP-time. In the lit-
erature they say that x is an NP-hard problem if for some NP-complete problem there
is a polynomial-time Turing reduction from it to x, which usually corresponds to search
problems. In addition, an NP-hard problem is defined likewise.

On the other hand, under the assumption that P 6= NP and that P 6= coNP, one
can establish that P ⊆ NP and P ⊆ coNP. As a result, a problem is said to be in
P-tractable or in NP-hard vs. coNP-hard intractable for the case of being solved in a
super-polynomial time.

This is the basis of further superclasses. In particular, one in which the problems
of this thesis reside is known in the literature as polynomial hierarchy. According to
Johnson, they are due to Meyer and Stockmeyer and denoted as follows:

∆P
0 = ΣP

0 = ΠP
0 = P

and for 0 ≤ k,
∆P
k+1 = PΣP

k ; ΣP
k+1 = NPΣP

k ; ΠP
k+1 = co-ΣP

k+1

where NPC corresponds to the class of decision problems that can be solved in a poly-
nomial time by a nondeterministic Turing machine using a cost-free (one-step) oracle
(strategy) in the class C; while ΠP

k+1 corresponds to the complement of the class of
problems that can be solved in ΣP

k+1 Accordingly, a problem x is complete in class C if
x ∈ C and for every problem y ∈ C, it has a polynomial reduction to x. Finally, it is

40

TU-Clausthal 3.7 Complexity Notation

easy to see that

∆P
1 = P; ΣP

1 = NP; ΣP
2 = NPNP; ΠP

1 = coNP; ∆P
2 = PNP.

In general, Johnson defines the class PH =
⋃∞
k=0 ΣP

k that makes sense with the
earlier supposition P 6= NP. Otherwise, if P = NP, then ΣP

k+1 = ΣP
k = P with 0 ≤ k,

and consequently, it is said that the hierarchy collapses to P and P = PH. Back to
the supposition that P 6= NP, the hardest problems in PH are said to be intractable,
as previously mentioned.

On the other hand, for all 1 ≤ k,

ΣP
k ⊆ ΘP

k+1 ⊆ ∆P
k+1 ⊆ ΣP

k+1 ⊆ PSPACE,

by considering the initial conjectures. Notice that the class ΘP
k (also known as ∆P

k [O(log n)])
is a refinement to the classes ∆P

k for k ≥ 2, where the number of calls to the oracle in
each computation is bounded by O(log n) to the size of the input, n [Buccafurri et al.,
2000].

3.7.2 The Exponential-time Hierarchy

This section is a brief introduction to the complexity notation to describe the classes of
intractable problems, whose execution time grows exponentially in the size of the input,
growing faster than any polynomial time.

According to Johnson, that class can be defined as

EXPTIME =
⋃
k>0

TIME[2n
k
].

That is to say, EXPTIME is the set of all decision problems whose execution time is
bounded by 2p(n), where p is a polynomial. Accordingly, the nondeterministic definition
is trivial: NEXPTIME =

⋃
k>0 NTIME[2n

k
].

Finally, higher-hierarchy classes continue to grow to 2-EXPTIME, and 2-NEXPTIME
respectively, where

2-EXPTIME =
⋃
k>0

TIME[22nk

]

to constitute a 2-EXPSPACE and 2-NEXPSPACE. In general, a called elementary class
is defined in [Johnson, 1990] as

ELEMENTARY =
⋃
k>1

k-EXPTIME.

41

Chapter 3. Preliminaries J.C.A.Guadarrama

42

Remember that his own religion is
the truest to every man even if it
stands low in the scales of
philosophical comparison.

Mohandas Gandhi

Chapter 4

A Road Map for Update
Semantics

As one of the major and traditional topics in Artificial Intelligence over the last years,
knowledge representation and reasoning has proved to be a strong theoretical framework
to manage knowledge bases. As a result, this particular topic has become more widely
studied in administration of knowledge bases of intelligent (rational) agents, especially
in situations of incomplete knowledge from a changing environment, and this area of
research is known in the literature as belief update.

The history of semantics for updates of logic programs is rather long. Indeed, it
starts in the days of some of the first versions of Prolog with its commands assert
and retract. However, sooner they started to yield conflicting information and other
(unexpected) side effects. It was also time of research on databases with publications
like [Fagin et al., 1983], and in particular for logical databases: [Fagin, 1995; Fagin
et al., 1986; Winslett, 1990]. Nevertheless, some of the first formalisms to carry out
proper changes to monotonic theories have been originally studied by Alchourrón et al.;
Katsuno and Mendelzon; Katsuno and Mendelzon; Lehmann; Makinson, while in the
non-monotonic side by Kraus et al.; Lehmann and Magidor; Makinson.

On the other hand, Gelfond and Lifschitz formulated the Stable Models Semantics
in [Gelfond and Lifschitz, 1988] (also refereed as Answer Sets Semantics, SM or simply
ASP), and more concrete proposals arose within that framework, aimed at the problem
of updating knowledge: [Alferes et al., 1999; Eiter et al., 2000a,b, 2001, 2002; Osorio
and Zacarías, 2003; Sakama and Inoue, 1999, 2003; Zhang, 1995, 2001, 2006].

The purpose of this chapter is to introduce current and some of those past proposals
to update logic programs (or alike), by pointing out features as well as some of their
limitations to represent correct evolving knowledge. Nevertheless, this survey is just
a small thread of a massive research over more than two decades, and by no means
exhaustive. It just takes into account those proposals that are the most relevant and of
interest for this thesis.

43

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

4.1 Eiter and Others

To the best of my knowledge, Eiter et al. achieved the most complete survey of most
known semantics for updating logic programs, by gathering relevant postulates and
principles from the literature. The approach first appeared in [Eiter et al., 2000b]
with a vast study of well-known and well-accepted postulates and properties, and later
refined in [Eiter et al., 2002] and extended to be a main component in more gen-
eral problems like agents in [Eiter et al., 2005] or preferences in [Eiter et al., 2002],
and they also implemented a solver available at http://www.kr.tuwien.ac.at/staff/
giuliana/project.html#Download that is the main engine of an experimental graph-
ical front end from us at http://www2.in.tu-clausthal.de/~guadarrama/updates/
upd.html.

One of the main assets of Eiter et al.’s proposal, as already mentioned, is being one
of the first or even the first to realise a deep study of the literature of belief change
of logic programs, in particular in ASP, most of such study is already introduced in
Chapter 2.

Eiter et al. formulate a natural definition for updating logic program sequences on a
restricted Answer Sets language by rejecting rules under a causal rejection principle. The
principle is due to Alferes et al. that later, however, turned out to be counterintuitive,
even to themselves: [see Alferes et al., 2005; Eiter et al., 2005; Osorio and Zacarías,
2003]. This “counter-intuition” comes from their strong dependency in the syntax of
programs, according to Eiter et al. Section 4.2 includes further discussion about this
claim.

In particular, the natural formula under which Eiter et al. analyse and describe
update properties comes from [Eiter et al., 2002] as follows.

Given an update sequence (Π1,Π2, . . . ,Πn), with n ≤ 2, over a set of atoms A,
assume A∗ as an extension of A by new pair-wise unique atoms rej(ρ); αi, for each rule
ρ occurring in Π; each atom α ∈ A, and 1 ≤ i ≤ n. An injective naming function
Name(·, ·) is also assumed, which assigns to each rule ρ in a program Πi a unique name,
Name(ρ,Πi), provided that Name(ρ,Πi) 6= Name(ρ′,Πj) whenever i 6= j. Finally, for a
literal `, `i denotes the result of replacing an atomic formula α of ` by αi.

The intuitive idea of rej(ρ) is that of an atom that blocks (rejects or inhibits) a related
rule ρ when true, provided that there is another more recent rule ρ′ with conflicting
information.

Definition 4.1 (Update program [Eiter et al., 2002]). Given an update sequence

(Π1,Π2, . . . ,Πn)

over a set of atoms A, the update program Π/ = (Π1 / · · · /Πn) over A∗ consists of the
following items:

(i) all constraints in Πi, 1 ≤ i ≤ n;

44

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html

TU-Clausthal 4.1 Eiter and Others

(ii) for each ρ ∈ Πi, 1 ≤ i ≤ n:

`i ← Body(ρ),¬rej(ρ) if Head(ρ) = `;

(iii) for each ρ ∈ Πi, 1 ≤ i < n:

rej(ρ) ← Body(ρ),¬`i+1 if Head(ρ) = `;

(iv) for each literal ` occurring in (Π1,Π2, . . . ,Πn) (1 ≤ i ≤ n):

`i ← `i+1; `← `i.

Note that in (iv) the authors write `1 rather than `i. Moreover, at the same (iv) they
write 1 ≤ i < n instead of 1 ≤ i ≤ n. Zhang also detected and corrected these typos
in [Zhang, 2006]. Lastly, they do not state how to treat double negations that might
happen in (iii).

Next, Eiter et al. define the intended answer sets of an update sequence (Π1,Π2, . . . ,Πn)
in terms of the answer sets of Π/ = (Π1 / · · ·/Πn). In other words, the models are back
to the original alphabet by filter them out with the original atoms:

Definition 4.2 (Answer sets of an update sequence [Eiter et al., 2002]). Let

(Π1,Π2, . . . ,Πn)

be an update sequence over a set of atoms A. Then, S ⊆ LitA is an update answer
set of (Π1,Π2, . . . ,Πn) if and only if S = S ′ ∩ A for some answer set S ′ of Π/ =
(Π1 / · · · / Πn). The collection of all of the update answer sets of (Π1,Π2, . . . ,Πn) is
denoted by U((Π1,Π2, . . . ,Πn)).

There is a solver available for downloading at http://www.kr.tuwien.ac.at/staff/
giuliana/project.html#Download and I have installed it to run online at http://
www2.in.tu-clausthal.de/~guadarrama/updates/upd.html, which also provides a
graphic-oriented interface on the server itself. Obviously, no download or installation is
necessary to run the latter version.

Supposing the corrected semantics is what the authors wanted, computing their
following example is possible:

Observation 4.1. [Eiter et al., 2002] Assume a daily update regarding an energy flaw

45

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

represented by the sequence (Π1,Π2) where

Π1 = {sleep ← night ,¬tvon

night ← >

watchtv ← tvon

tvon ← >}

Π2 = {∼tvon ← pfailure

pfailure ← >}

by Definition 4.1, the update program Π/ = (Π1 / · · · / Πn) consists of the following
rules:

sleep1 ← night ,¬tvon,¬rej(ρ1)

night1 ← ¬rej(ρ2)

watchtv1 ← tvon,¬rej(ρ3)

tvon1 ← ¬rej(ρ4)

∼tvon2 ← pfailure,¬rej(ρ5)

pfailure2 ← ¬rej(ρ6)

rej(ρ1) ← night ,¬tvon,∼sleep2

rej(ρ2) ← ∼night2

rej(ρ3) ← tvon,∼watchtv2

rej(ρ4) ← ∼tvon2

sleep1 ← sleep2 sleep ← sleep1

night1 ← night2 night ← night1

tvon1 ← tvon2 tvon ← tvon1

watchtv1 ← watchtv2 watchtv ← watchtv1

∼tvon2 ← ∼tvon3 ∼tvon ← ∼tvon2

pfailure2 ← pfailure3 pfailure ← pfailure2

46

TU-Clausthal 4.1 Eiter and Others

whose unique answer set is

{sleep1,night ,night1, rej(ρ4),∼tvon2, pfailure, pfailure2, sleep,∼tvon}

and its update answer set is easily obtained: {night , pfailure, sleep,∼tvon}.

However, by following the original Definition 2 in [Eiter et al., 2002], the last four
rules would not exist, for i should also equal n in Definition 4.1 item (iv), and the
answer set of the resulting program is

{night , tvon,night1,watchtv1, tvon1, pfailure2,watchtv}

that means the TV is on and the agent is watching it. On the other hand, by changing
i to be within the range I suggest and by leaving the second rule in (iv) as the original
definition, that is to say, `← `1, the resulting program would have the four rules

∼tvon2 ← ∼tvon3 ∼tvon ← ∼tvon1

pfailure2 ← pfailure3 pfailure ← pfailure1

instead, and would have the same strange answer set.
In other words, by following the original restriction presented in (iv) in Definition 2

in [Eiter et al., 2002], pfailure /∈ (Π1,Π2, . . . ,Πn) when 1 ≤ i < n. Moreover, if the
second rule in (iv) of Definition 4.1 was `← `1, a strange answer set would result:

{night ,night1, pfailure2,watchtv1,watchtv , tvon1, tvon}

Anyway, their solver at http://www.kr.tuwien.ac.at/staff/giuliana/project.html#
Download seems1 to behave well. Unfortunately, their solver does not show intermedi-
ate transformations to figure out the correct semantic parameters so that I can give a
precise statement. Notice that I have only provided a frond end to execute their solver
in the web with a graphical interface, and I employed the latter as the main engine of
my front end: http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html.

Back to the corrections I suppose, let us complete Observation 4.1:

Observation 4.2 (Continued from Observation 4.1). Consider again Observation 4.1
and perform a second update to the sequence with program Π3 = {∼pfailure}. Accord-
ingly, the new answer set of the resulting update program is

{tvon1, tvon,night1,night ,watchtv1,watchtv , rej(ρ6),∼pfailure3,∼pfailure}

1Unfortunately the sources are not available so as to confirm the latest definition.

47

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Finally, by Definition 4.2, the corresponding update answer sets are

U(Π1,Π2) = {night , pfailure, sleep,∼tvon}

and
U(Π1,Π2,Π3) = {tvon,night ,watchtv ,∼pfailure}

Despite the complete deep nice analysis Eiter et al. make of known postulates and
principles in the literature, one of the major shortcomings of their approach has to do
with syntactic and semantic contents.

Take again, for instance, the example inspired from Alferes et al. and modified in
Observation 1.1 that may produce counterintuitive models:

Observation 4.3. [recapped from Observation 1.1]
Suppose an agent who believes that when it is day it is not night and vice versa, and

that there are stars when it is night and when there are no clouds. Finally, that at the
current moment it is a fact that there are no stars. This simple story may be coded1

into Π1 as follows:

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼ stars ← >}

whose unique answer set is {day ,∼stars}. Later, the agent acquires new information
stating that stars and constls (constellations) are the same thing, as coded in Π2. As
soon as the agent updates Π1 with program

Π2 = {stars ← constls

constls ← stars}

the expanded alphabet of the two programs contains only one new extra atom with
respect to Π1: constls. As the model of Π2 is obviously the empty answer set, constls is
considered synonym of stars by means of Π2, and thus the update should not change the
original beliefs. However, the update yields an extra answer set in some of the existing
update semantics based on the causal rejection principle —Section 4.2:

{stars, constls,night}
1Notice that there are other ways to represent the story. The problem is, however, what to do in

this particular situation, when the agent runs across this piece of information.

48

TU-Clausthal 4.2 DyLP and Other Dialects

which does not coincide with common intuition.
The reason is that, although stars can not be true, introducing constls gives another

possibility for stars to be true. Thus, the additional answer set is implied.
In general, these supplementary rules in the update are a conservative extension

[Osorio et al., 2001] to Π1: the original language is extended and all answer sets ought
to be extensions of the old answer sets. In this specific situation, constls should be true
if and only if stars is true.

To recapitulate, Eiter et al. were very good in gathering postulates and principles
from the literature and in analysing them in terms of their proposal. Their approach,
however, suffers from drawbacks owing to its reliance on the causal rejection principle
[see Alferes et al., 1999].

4.2 DyLP and Other Dialects

One of the earliest approaches in updating logic programs appeared in late 90’s in
[Alferes et al., 1999, 1998] that was extended in an interesting language called LUPS by
Alferes et al., to specify explicit updates in programs on a semantics that they called
Dynamic Logic Programming or DyLP —[Alferes et al., 1999]. Some years later, they
refined the latter in [Alferes et al., 2005], whom over the previous period formulated a
principle of rejection (also causal rejection principle [see Alferes et al., 2005, 1999; Eiter
et al., 2002] and [Alferes et al., 2005]) in the above citations.

Informally, the refined principle consists in rejecting rules of previous and upcoming
programs in an update sequence whenever there are other rules at the current state with
which they conflict.

Starting with motivation in Alferes et al., they claim to give a simple example to
what they called a tautology (a rule from which they expect no models):

¬p← ¬p (4.1)

Of course that rule alone does not produce any model in their semantics —i.e. just the
empty model, {}. However, it is a clear counterexample why strong negation in our
framework should not be a simple replacement to “¬`” in heads.

Observation 4.4. Take for example, program

{∼p← ¬p}

whose unique answer set is not the empty set. Namely, the answer set of the program
is just {∼p}.

What is more, in their article, Alferes et al. explain in a footnote what tautology
means: A rule of the form ` ← Body with ` ∈ Body, where ` and Body are an atom

49

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

(or default-negated atom) and the body of a rule, respectively. This high dependency on
syntax will prove to be one of their major shortcomings, as explained along this thesis.

Before starting with their proper definitions, a very special notation, taken from
[Alferes et al., 2005], is necessary.

Let A be a set of propositional atoms. As before introduced, a default literal is an
atom preceded by “¬”, while a literal is either an atom or a default literal. A rule ρ
is an ordered pair Head(ρ)← Body(ρ) where Head(ρ) (the head of the rule) is a literal
and Body(ρ) is a finite set of literals, and it has the form L0 ← L1, . . . ,Ln. A rule with
Head(ρ) = L0 and Body(ρ) = ∅ is called a fact, simply written as L0.

A generalised logic program (GLP1) Π over A, is a finite or infinite set of rules,
and Π∅ denotes an empty set of rules. If Head(ρ) = a (resp. Head(ρ) = ¬a) then
¬Head(ρ) = ¬a (resp. ¬Head(ρ) = a). Two rules ρ and ρ′ are in conflict, denoted by
themselves as ρ ./ ρ′, if and only if Head(ρ) = ¬Head(ρ′). An interpretation M of A
is a set of atoms such that M ⊆ A. An atom a is true in M, denoted by M |= a, if
and only if a ∈ M, and false otherwise. A default literal ¬a is true inM, denoted by
M |= ¬a, if and only if a /∈ M, and false otherwise. A set of literals L is true in M,
denoted by M |= L, if and only if each literal in L is true in M. A rule ρ is satisfied
by an interpretationM if and only if wheneverM |= Body(ρ) thenM |= Head(ρ). An
interpretationM is a model of a program Π if and only ifM satisfies all rules in Π. An
interpretationM of A is a stable model of a generalised logic program Π if and only if2

M = least(Π ∪ {not_a | a /∈M}) (4.2)

where3

M =M∪ {not_a | a /∈M} (4.3)

with a as an atom and with least(·) as the least model of the definite program obtained
from the argument program by replacing every default literal ¬a by a new atom not_a4.

With this notation, one can define a dynamic program as follows.

Definition 4.3 (Dynamic Logic Program, DyLP [Alferes et al., 2005]). A dynamic logic
program (DyLP) is a sequence of generalised logic programs. Let P = (Π1, . . . ,Πs) and
P ′ = (Π′1, . . . ,Π

′
s) be two DyLP’s. The expression ρ(Π) denotes the set of all rules

1Although the name sounds familiar, GLP has little or nothing to do with generalised answer sets
(GAS), from Section 3.6. Moreover, there is also an alternative to generalised logic programs called
Well Supported Semantics [see Alferes et al., 2005].

2Consider that there seems to be a typo in [Alferes et al., 2005]: they typed “not a” rather than
“not_a” in (4.2). Later they state that least function takes a definite program as an argument by
replacing every default literal “not a” with a new atom not_a, which later results in a confusing abuse
of notation with (4.6) and ρ(Π).

3Notice that the authors did not define the domine of a in setM, which would result in an infinite
set in (4.3).

4Note that indeed this sort of atoms is positive.

50

TU-Clausthal 4.2 DyLP and Other Dialects

appearing in the programs Π1, . . . ,Πs, and P∪P ′ denotes the DyLP: (Π1∪Π′1, . . . ,Πs∪
Π′s).

Intuitively, a refined interpretation of a DyLP program is a dynamic stable model
if the least model(s) of the positive program that result(s) from the difference of the
rejected rules and the union of the default assumptions is the same than the union of the
interpretation and the default-negated literals that do not appear in the interpretation.
The intuition behind Rej(·, ·) is the set of rules that are in conflict with both current
and previous rules in the sequence. Moreover, Def(·, ·) consists of the positive “default-
negated” atoms that do not appear in the intended model.

Definition 4.4 (Dynamic Stable Model [Alferes et al., 2005]). Let P be a dynamic logic
program andM an interpretation. M is a dynamic stable model of P if and only if

M = least(ρ(P) \ Rej(P,M) ∪ Def(P,M)) (4.4)

where

Rej(P,M) = {ρ | ρ ∈ Πi, ∃ρ′ ∈ Πj , i ≤ j, ρ ./ ρ′,M |= Body(ρ′)} (4.5)

and1

Def(P,M) = {not_a | @ρ ∈ ρ(P),Head(ρ) = a,M |= Body(ρ)} (4.6)

⊕R is the corresponding update operator.

This approach has had several implementations for download, including one for the
original version before the refined principle, and another for the refined principle. LUPS
is also implemented and the following list shows their respective locations:

• http://centria.di.fct.unl.pt/~jja/updates/dlp.html

• http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm

• http://centria.di.fct.unl.pt/~jja/updates/lups.html

By considering Example 4.3 again, and inspired from the original example from
Alferes et al., the reader may rewrite the pair of programs as follows.

1Notice that it seems they have missed the “_” and have typed “not a” rather than “not_a” in
(4.6) from the original paper in [Alferes et al., 2005]. Moreover, (4.6) should be a set of rules, rather
than a set of literals, to be sound with the equality in (4.4)! In the rest of the section, it is assumed
the former, as the authors do.

51

http://centria.di.fct.unl.pt/~jja/updates/dlp.html
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm
http://centria.di.fct.unl.pt/~jja/updates/lups.html

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Observation 4.5. Let P = Π1 ⊕R Π2, where

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

not_stars ← >}

and

Π2 = {stars ← constls

constls ← stars}

A resulting dynamic stable model isM = {day} because least function of the definite
logic program gives out the following model

{day ,not_night ,not_cloudy ,not_stars,not_constls}

where
Rej(P,M) = {stars ← night ,¬cloudy}

and
Def(P,M) = {not_night ,not_stars,not_cloudy ,not_constls}

Thus, M = M∪ {not_night ,not_stars,not_cloudy ,not_constls}, which equals the
model got by least. Moreover, the interpretation M = {night , stars, constls} is not
a refined dynamic stable model, because Def(P,M) = {not_cloudy ,not_day} and
Rej(P,M) = {(stars ← night ,¬cloudy), (not_stars ← >)}. As a result, the least
model

{night ,not_day ,not_cloudy} 6=M

which meansM is not a refined dynamic stable model, as one would expect, despite the
unnecessary emulation of strong negation and “default” negation in heads.

Next, let us analyse an example inspired by Sakama and Inoue, originally proposed
by Alferes et al..

Observation 4.6. Suppose the same story introduced in Observations 4.1 and 4.2 as

52

TU-Clausthal 4.3 Sakama & Inoue

follows: P = Π1 ⊕R Π2 ⊕R Π3 where

Π1 = {sleep ← ¬tvon

watchtv ← tvon

tvon ← >

Π2 = {pfailure ← >

not_tvon ← pfailure}

Π3 = {¬pfailure ← >}

M = {tvon,watchtv} is a refined dynamic stable model of the update, since the unique
rejected rule is pfailure ← > and the unique default is not_sleep, where the least model
is {watchtv , tvon,not_pfailure,not_sleep} = M. However, Sakama and Inoue argue
that the resulting model is counterintuitive because, after the first update, the refined
dynamic stable model was {pfailure, sleep} and thus there is no reason to believe that
once the electric power is restored, the TV should be on back again! A similar counter-
intuitive result is given in Observation 4.2.

Despite its nice behaviour in those typical examples up to now analysed, there is
still a simple example, first suggested by Eiter et al., that still causes counterintuitive
results in this DyLP-semantics.

Observation 4.7. Suppose an initial knowledge base Π0 = {(c ← r), (r ← >)} up-
dated with Π1 = {not r ← not c}. Firstly, the initial generalised stable model of Π0

is {c, r}, and one would expect no changes after the update. However, the update P =
Π0 ⊕R Π1 has the extra model M = {not_c,not_r} because M = {not_c,not_r};
Rej(P,M) = {r ← >}; Def(P,M) = {not_c}; and least[(Π0 ∪ Π1) \ Rej(P,M) ∪
Def(P,M)] = {not_c,not_r} =M.

Although it is true that Alferes et al. were some of the first researchers [Alferes
et al., 1999] to formulate and implement a semantics for updates, one can easily realise
the clear shortcomings this approach has: firstly for the different syntax of the so-
called generalised logic programs that is a different concept of SM-semantics —a non-
standard concept of SM [Eiter et al., 2002]; secondly for their causal rejection principle
that produces the mentioned counterintuitive results and excludes the approach, as they
themselves state it in [Alferes et al., 2005], from other semantics like Sakama and Inoue’s
or Zhang and Foo’s —[see Alferes et al., 2005].

4.3 Sakama & Inoue

Sakama and Inoue; Sakama and Inoue propose three types of updates, to which they call

53

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

inconsistency removal, view updates and theory updates. Each of them correspond to a
special case of updates and revision in the literature.

In particular, my thesis is focused on theory updates, rather than other special
cases of making an inconsistent program consistent or differentiating between variant
and invariant knowledge. As a result, this section does not describe the other types here,
although they are sometimes implicit in the proposals of this thesis, like for example a
special case of recovering consistency from a program or sequence of programs. They
are studied in upcoming sections.

4.3.1 Extended Abduction Framework

Before introducing the definitions for theory updates, some new notation and specialised
terminology is necessary to understand their approach. For instance, the authors de-
fine their particular framework of abduction, and they call it extended abduction, which
differs from the standard abduction framework in [Kakas et al., 1998; Kakas and Man-
carella, 1990; Poole, 1988]. For instance, besides an explanation to satisfy

K ∪ E |= G

they also introduce the notion of negative explanations, such that

K \ F |= G

where K is a first-order theory; E,F sets of hypotheses; G an observation; and K ∪ E
and K \ F are consistent.

According to Sakama and Inoue, an extended abductive program is a pair 〈P,A• 〉,
where P and A• are DLP’s. An extended abductive program 〈P,A• 〉 is consistent if P
is consistent.

In the process of updating a program with another, Sakama and Inoue define a set
of conditions that the intended update must meet.

Definition 4.5 (Theory Updates [Sakama and Inoue, 2003]). Given a DLP-program
pair P and Q, P ′ accomplishes a theory update of P by Q if

1. P ′ is consistent,

2. Q ⊆ P ′ ⊆ P ∪Q,

3. there is no consistent program P ′′ such that P ′ ⊂ P ′′ ⊆ P ∪Q.

In words of Sakama and Inoue, the intended update is the union of the new informa-
tion and a maximal subset of the original program that is consistent with the update,
which obviously is not always unique.

54

TU-Clausthal 4.3 Sakama & Inoue

Their update approach starts with the extended abductive program

〈P ∪Q,P \Q 〉

The intuition behind this program consists in merging the update with the original
theory and combining the rules of P that do not belong to Q so as to get a consistent
update.

In order to reduce the set of abducible rules P \Q to abductive facts and to compute
their models in a conventional way, the extended abductive program (as defined in [Inoue
and Sakama, 1995]) must be transformed into a normal (traditional) abductive program
—similar to [Kakas et al., 1998]— in which abducibles contain only non-disjunctive
facts, as in the definition below. In this manner, the models of an update program
(later introduced) will contain both facts and names of rules to remove, rather than the
rules themselves.

Definition 4.6 (Normalised Abductive Program [Sakama and Inoue, 2003]). Given an
extended abductive program 〈P,A• 〉, and

R = {Σ← Γ | (Σ← Γ) ∈ A• and Σ← Γ is not a non-disjunctive fact}.

Then, let

P n = (P \ R) ∪ {Σ← Γ, γR | R = (Σ← Γ) ∈ R} (4.7)

∪{γR ← > | R ∈ R ∩ P},

A•n = (A• \ R) ∪ {γR ← > | R ∈ R} (4.8)

where γR is a newly introduced atom (called the name of R) uniquely associated with
each rule R in R, and 〈P n,A•n 〉 is the normalised form of 〈P,A• 〉. For any rule
R ∈ R, its name comes from the function n(R) = γR. In particular, any abducible fact
L← > has the name L, i.e., n(L) = L.

Note that in [Sakama and Inoue, 2003], there seems to be a typo when they wrote
(4.8) as A•n = (A• \ R) ∪ {γR | R ∈ R}.

4.3.2 �SI-operation

Once the extended abductive program is normalised, its interpretations shall correspond
to update programs that consist of the rules of the original theory that don’t belong to the
normalised abductive set, merged with a new set of update rules, as following specified.

Definition 4.7 (Update Rule; Update Atom [Sakama and Inoue, 2003]). Given an
abductive program 〈P,A• 〉, where A• contains only (non-disjunctive) facts, the set UR
of update rules is constructed as follows.

55

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

1. For any literal1 a ∈ A•, the following rules are in UR:

a← ¬a,

a← ¬a,

where a is a newly introduced atom uniquely associated with a. The above pair of
rules is abd(a) hereafter. In addition, yet another semantically equivalent way to
represent it, according to Sakama and Inoue, is by a ∨ a← >.

2. For any literal a ∈ A• \ P , the following rule is in UR:

a+ ← a.

3. For any literal a ∈ A• ∩ P , the following rule is in UR:

a− ← ¬a.

where a+ and a− are atoms uniquely associated with any a ∈ A•, which they call update
atoms.

Sakama and Inoue interpret, at a meta-level, that a+ means making a true, when
it is not in P , while a− means making a false when it is in P . In other words, they
represent the introduction and deletion of a, respectively. On the other hand, a would
represent an unknown truth value of a, i.e. neither true nor false a. Last, they define
the set of all update atoms associated with the abducibles in A• by UA. That is to say,
UA = UA+ ∪UA−, where UA+ and UA− are the sets of update atoms of form a+ and
a−, respectively.

Next, these update rules take part of the update program of the normalised ex-
tended abductive program that is an intermediate EDLP. This intermediate program
specification is as follows:

Definition 4.8 (Update Program, UP [Sakama and Inoue, 2003]). Given an abductive
program 〈P,A• 〉, its update program, UP, is defined as an EDLP such that

UP = (P \ A•) ∪ UR.

1Note that it seems there is an ambiguity here, as in Definition 4.6, the authors construct A•n
with literals unified to rules! Then, in Definition 4.7 they state that “for every literal in A• . . . ”, which
confirms that A• is already normalised, but that it contains literals rather than facts. So, strictly
speaking, I would use the term signature of A• rather than A• alone. Moreover, I would change the
construction of A•n to A•n = (A• \ R) ∪ {γR ← > | R ∈ R}

56

TU-Clausthal 4.3 Sakama & Inoue

Then the models of an update program denote the deletion of facts or rules from
the original program in the pair. As a result, one or more new updated programs are
constructed.

Definition 4.9 (U-minimal Answer Sets [Sakama and Inoue, 2003]). An answer set
S of UP is called U-minimal (U-MAS) if there is no answer set S ′ of UP such that
S ′ ∩ UA ⊂ S ∩ UA.

4.3.3 Discussion

This abduction framework proves to have nice properties of a syntactical minimal change
of rules in the original non-monotonic theory (Definition 4.5) by means of consistent
interpretations of hypothetical changes. With this framework, they can perform partic-
ular kinds of updates and maintenance of their consistency, by providing a vast analysis
of shortcomings in other approaches.

Sakama and Inoue’s first goal is providing a mechanism (an update semantics) to
compute their extended abduction. Secondly, they also characterise updates through
extended abduction, as they themselves state it. Consequently, the approach lacks of
a proper analysis of more principles and postulates from the literature. Additionally,
they characterise different kinds of updates with their extended abduction, claiming
that they can provide an algebra of rules deletion, besides the addition of them, to
explain observations.

Let us recapitulate Sakama and Inoue’s approach in a few words. They construct
their update program out of the normal abductive form of an extended abductive program

〈P ∪Q,P \Q 〉

whose models are U-MAS’s, interpreted from an update program. Last, the interpreta-
tion produces one (or more) new programs representing knowledge bases, derived from
the addition/deletion of facts that the U-MAS’s describe in turn.

In order to illustrate the above definitions, consider the following example extended
from the original in [Sakama and Inoue, 2003]1 that shows one of the differences with
several approaches.

Observation 4.8. Suppose an update to the knowledge base

Π1 = {sleep ← ¬tvon

watchtv ← tvon

tvon ← >}

1Originally, Alferes et al. proposed this example, but it is a little modified in [Sakama and Inoue,
2003] to contrast their differences. Moreover, I have extended it here in order to see further details.

57

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

with1

Π2 = {pfailure ← >

⊥ ← pfailure, tvon}

The situation is to be coded into the extended abductive program 〈Π1 ∪ Π2,Π1 \ Π2 〉.
The update program UP of 〈 (Π1 ∪Π2)n, (Π1 \Π2)n 〉 is specified as

UP : pfailure ← >

⊥ ← pfailure, tvon

sleep ← ¬tvon, γ1

watchtv ← tvon, γ2

abd(tvon), abd(γ1), abd(γ2),

tvon− ← ¬tvon

γ−1 ← ¬γ1

γ−2 ← ¬γ2

where γ1 and γ2 are names of the abducible rules in Π1 \Π2. Then, UP has the unique
U-MAS

{pfailure, sleep, tvon, tvon−, γ1, γ2}

which represents the deletion of fact tvon from Π1 ∪ Π2. Accordingly, the update of Π2

to Π1 is the resulting program

Π3 : sleep ← ¬tvon

watchtv ← tvon

pfailure ← >

⊥ ← pfailure, tvon

whose answer set is just {pfailure, sleep}

Next, suppose yet another update (Π4 : ¬pfailure ← >) to Π3, which represents
that there is power again. Sakama and Inoue code this new pair by the abductive program

1In [Alferes et al., 1999] the rule “← pfailure, tvon” is given as “¬tvon ← pfailure”. These two rules
are semantically equivalent under the answer set semantics, as the authors explain in [Sakama and
Inoue, 2003]. However, as later seen in this example, the difference between either expression would
result in the existence of ∼tvon in the corresponding model!

58

TU-Clausthal 4.3 Sakama & Inoue

〈Π3 ∪Π4,Π3 \Π4 〉. So, the update program of 〈 (Π3 ∪Π4)n, (Π3 \Π4)n 〉 turns into

UP : ¬pfailure ← >

sleep ← ¬tvonγ1

watchtv ← tvonγ2

⊥ ← pfailure, tvonγ3

abd(pfailure), abd(γ1), abd(γ2), abd(γ3),

pfailure− ← ¬pfailure

∼γ1 ← ¬γ1,∼γ2 ← ¬γ2,∼γ3 ← ¬γ3.

Then, UP has the unique U-MAS

{¬pfailure, sleep, γ1, γ2, γ3, pfailure,∼pfailure},

which implies that the result of the update is (Π3 ∪ Π4) \ {pfailure ← >}. As a result,
the unique answer set of the unique resulting program is {∼pfailure, sleep}.

Sakama and Inoue propose this example as an argument against other approaches
like [Alferes et al., 1999; Eiter et al., 2002]1, which bring back previous knowledge of
the original theory. That is to say, their interpretation is that the TV turns itself
on again and it is possible to watch it as well: {tvon,watchtv ,∼pfailure}, which does
not coincide with their intuition. However, this argument seems to be too strong to
generalise that all update semantics should behave accordingly, because Sakama and
Inoue are differentiating fluents and actions in a language that does not have such an
explicit difference.

In order to illustrate this assumption, let us modify Example 4.8 in such a way that
the language contains only fluents, naturally at a higher abstraction level. As a result,
the new story goes like this.

Observation 4.9. Suppose a learning agent whose simple knowledge base states that he
is innocent when he is not guilty, and at the beginning he believes he is not guilty, thus
innocent. A following update states that any person is no longer innocent when guilty,
that the person is guilty when murderer and now the agent in question turns out to be
a murderer! Thus, he is no longer innocent. However, more relevant rules come up
that state that any person is not a murderer when self defended; that the person is self
defended when first attacked; and it is a fact that the agent in question was first attacked.
Consequently, common intuition would suggest that the agent’s innocence should be in

1This is also the case for our approach in [Guadarrama et al., 2006].

59

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

effect. Under Sakama and Inoue’s approach, however, that previous knowledge is lost
forever and there is no way to conclude that he is innocent.

Here is how Sakama and Inoue’s approach can process this knowledge. The knowledge
base consists of the original theory represented by Π1, as well as an update to it, Π2,
where

Π1 : {innocent ← ∼guilty

∼guilty ← >}

Π2 : {∼innocent ← guilty

guilty ← murderer

murderer ← >}

and its normalised abductive program 〈Pn,A•n 〉, where

Pn = {∼guilty ← >

γ1 ← >

murderer ← >

innocent ← ∼guilty , γ1

∼innocent ← guilty

guilty ← murderer}

A•n = {∼guilty ← >

γ1 ← >}

The update rules and the update program consist respectively of

UR : {∼guilty ∨ ∼guilty ← >

∼guilty− ← ¬∼guilty

γ1 ∨ γ1 ← >

γ−1 ← ¬γ1}

UP : {∼guilty ∨ ∼guilty ← >

∼guilty− ← ¬∼guilty

γ1 ∨ γ1 ← >

γ−1 ← ¬γ1

murderer ← >

innocent ← ∼guilty , γ1

∼innocent ← guilty

guilty ← murderer}

60

TU-Clausthal 4.3 Sakama & Inoue

that has two answer sets

{murderer ,∼guilty ,∼guilty−, γ1, γ
−
1 ,∼innocent , guilty}

{murderer ,∼guilty ,∼guilty−, γ1,∼innocent , guilty}

from which the unique U-MAS

{murderer ,∼guilty ,∼guilty−, γ1,∼innocent , guilty}

leads to the updated knowledge base where ∼guilty is no longer present:

Π3 : {innocent ← ∼guilty

∼innocent ← guilty

guilty ← murderer

murderer ← >}

Next, the following program represents the second update as:

Π4 : {∼murderer ← self _defence

self _defence ← attacked

attacked ← >}

which, after the same process yields the following update program

UP : {γ1 ∨ γ1 ← >

γ−1 ← ¬γ1

γ2 ∨ γ2 ← >

γ−2 ← ¬γ2

murderer ∨murderer ← >

murderer− ← ¬murderer

γ3 ∨ γ3 ← >

γ−3 ← ¬γ3

attacked ← >

innocent ← ∼guilty , γ1

∼innocent ← guilty , γ2

guilty ← murderer , γ3

∼murderer ← self _defence

self _defence ← attacked}

61

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

that has the following answer sets

{attacked , γ1, γ
−
1 , γ2, γ

−
2 ,murderer ,murderer−, γ3, γ

−
3 ,∼murderer , self _defence}

{attacked , γ1, γ2, γ
−
2 ,murderer ,murderer−, γ3, γ

−
3 ,∼murderer , self _defence}

{attacked , γ1, γ
−
1 , γ2,murderer ,murderer−, γ3, γ

−
3 ,∼murderer , self _defence}

{attacked , γ1, γ2,murderer ,murderer−, γ3, γ
−
3 ,∼murderer , self _defence}

{attacked , γ1, γ
−
1 , γ2, γ

−
2 ,murderer ,murderer−, γ3,∼murderer , self _defence}

{attacked , γ1, γ2, γ
−
2 ,murderer ,murderer−, γ3,∼murderer , self _defence}

{attacked , γ1, γ
−
1 , γ2,murderer ,murderer−, γ3,∼murderer , self _defence}

{attacked , γ1, γ2,murderer ,murderer−, γ3,∼murderer , self _defence}

with the unique U-MAS

{attacked , γ1, γ2,murderer ,murderer−, γ3,∼murderer , self _defence}

that produces a knowledge base

P5 : {innocent ← ∼guilty

∼innocent ← guilty

guilty ← murderer

∼murderer ← self _defence

self _defence ← attacked

attacked ← >}

whose model {attacked ,∼murderer , self _defence} reflects the loss of previous relevant
information —no conclusions about guilt or innocence are available.

If this counterintuitive example was not enough, let us change a bit the original
Example 4.8 in such a way that both actions and fluents are inverted.

Observation 4.10. Suppose a simple scenario where an agent can see in a room and
the blinds of the room are open. Later, new information is at hand and the agent knows
that it cannot see when the blinds are closed; that by closing them means they are closed,
and that they cannot be closed and open at the same time. Simultaneously, there is also
an event that closes the blinds. Following, a program that codes the initial information:

62

TU-Clausthal 4.3 Sakama & Inoue

Π1 : {can_see ← b_open

b_open ← >}

updated with

Π2 : {∼can_see ← b_closed

⊥ ← b_open, b_closed

b_closed ← close_b

close_b ← >}

After updating Π1 with Π2, the update program

UP : {b_open ∨ b_open ← >

b_open− ← ¬b_open

γ1 ∨ γ1 ← >

γ−1 ← ¬γ1

close_b ← >

can_see ← b_open, γ1

∼can_see ← b_closed

⊥ ← b_open, b_closed

b_closed ← close_b}

has the following U-MAS:

{close_b, b_open, b_open−, γ1,∼can_see, b_closed}

This model means the deletion of fact b_open from the original knowledge base.
Now suppose the agent decides not to close the blinds when it is reading, that it is

reading when it wants to read, and that now it wants to read. Then, the updated program
and the new update are

{can_see ← b_open

∼can_see ← b_closed

⊥ ← b_open, b_closed

b_closed ← close_b

close_b ← >}

{∼close_b ← reading

reading ← want_to_r

want_to_r ← >}

63

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

whose unique U-MAS

{want_to_r , γ1, γ2, γ3, close_b, close_b−, γ4,∼close_b, reading}

produces an updated program

{can_see ← b_open

∼can_see ← b_closed

⊥ ← b_open, b_closed

b_closed ← close_b

∼close_b ← reading

reading ← want_to_r

want_to_r ← >}

with an answer set that again reflects a loss of information on the ability to see:

{want_to_r ,∼close_b, reading}

Clearly, the objection Sakama and Inoue propose against other semantics may have
different interpretations in planning scenarios, where there is indeed a formal explicit
distinction between fluents and actions, and might be a matter for further investigation.
Meanwhile, neither interpretation is correct or incorrect when talking about simple logic-
program updates, unless formalising which rules must persist and which must not, which
is clearly beyond the scope of my thesis.

Finally, there is a simple example that might represent another disadvantage of this
approach.

Observation 4.11. Suppose the initial knowledge base Π = ∅ updated by a simple fact
Π1 = {x← >}. Following Sakama and Inoue’s framework, the answer sets of its update
program is empty: UP = (∅ \ {x ← >}) ∪ UR, where UR is clearly empty because the
extended abductive program from the update pair has no abducibles: A• = ∅ \ {x← >}.

Moreover, although the authors present a deep analysis of their proposal and al-
though it seems to be robust-enough for agent’s changing environment, there is a lack
of further and more general properties and solver that make it hard to compare with
other alternative approaches. As pointed out by Zhang, this approach is classified into
a syntax-based semantics. As a result, it has no general semantic foundation that justi-
fies its updates [Zhang, 2006], and by interpreting the resulting knowledge bases with
a given semantics might interfere with the ASP semantics that performs the update
operation. It is clear that they justify their updates with an extended abductive frame-

64

TU-Clausthal 4.4 Zhang’s line

work, which is still a specific problem and then leaves the mentioned absence of update
characterisation.

Finally, a minor disadvantage is that the approach is undefined to update a knowl-
edge base with an inconsistency. Sakama and Inoue state that such a kind of update
“makes no sense” in Definition 4.5, which clearly does not mean that an agent will never
come across an originally inconsistent observation. Nevertheless, they do consider cases
where an initial knowledge base is originally inconsistent, and they identify such case as
inconsistency removal. This method consists in updating an inconsistency knowledge
base with an empty update.

4.4 Zhang’s line

An interesting proposal for updates comes from Zhang that followed preliminary pro-
posals reported in [Zhang, 1995; Zhang and Foo, 1998], where the author identifies
three types of problems to solve in an update process: elimination of contradictory
information, conflict resolution and syntactic representation.

Additionally, one of the applications from that line is an interesting language intro-
duced in [Crescini and Zhang, 2005] that is specialised in updates of agent policies and
defined at the top of ASP. Crescini and Zhang specify such policies in terms of clauses
with a predefined semi-imperative syntactical structure, as well as an initial planning
approach.

However, owing to a special focus the work has on policies, the programmer is
restricted and obliged to use reserved words like “always”, “implied by”, “with absence”,
etc. which, besides constraining the domain to specific applications, it ‘reduces’ the
language and has potentially different meanings in the meta-language. Nevertheless,
they already have a fully-fledged system, as they themselves mention it in [Crescini and
Zhang, 2005].

4.4.1 General View

As mentioned above, Zhang characterises updates in terms of three main objectives:
contradiction elimination, conflict resolution and syntactic representation. The first
topic is one of the most obvious in semantics for updates, which should be real by
preserving a minimal-change principle and a proper justification. On the other hand,
conflict resolution has to do with potential future contradictions an update might yield
because of the introduction of the two kinds of negations in logic programs —strong
and default negation. Finally, once the process meets the two main goals, the author
argues that a proper semantics should also preserve as many as possible of the original
rules from the updating knowledge base.

In order to realise these three goals, Zhang characterises a program update by means
of a called prioritised logic program. In an intuitive way, this kind of program consists in
preferring the latest update to the original knowledge base including non-contradictory
but conflicting rules.

65

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Zhang motivates his proposal by introducing a representative example that exposes
the two kinds of problems he studied, and the example looks as follows:

Observation 4.12 ([Zhang and Foo, 2005]). Suppose

Π0 = {member(a, g) ← >

member(b, g) ← >

access(a, f2) ← >

access(X, f1) ← member(X, g)

∼access(X, f2) ← member(X, g),¬access(X, f2)}

updated with

Π1 = {member(c, g) ← >

∼access(X, f1) ← member(X, g)

access(X, f2) ← member(X, g),¬∼access(X, f2)}

According to Zhang, this update ought to have the unique answer set

S = {∼access(a, f1),∼access(b, f1),∼access(c, f1),

access(a, f2), access(b, f2), access(c, f2)}

Then he claims that the last rule in Π1,

access(X, f2)← member(X, g),¬∼access(X, f2)}

should override rule

∼access(X, f2)← member(X, g),¬access(X, f2)}

in Π0. That is to say, Zhang states that there is information loss in some other pre-
liminary semantics, but at the same time, his semantics says both b and c have access
to f2, ignoring the possible situation when they explicitly do not. In fact, one might
expect that b has no access to f2 in Π0 and that such a situation persists.

Regarding the controversy from this syntactical change of rule, his approach proposes
a two-fold process of eliminating contradictory information, as well as resolution of
conflicting rules and a final syntactic representation stage. Nevertheless, before the
introduction of those two main processes, some fundamental definitions are in order.

The following definition can be seen as assuming true the given ground literals in S
to Π:

66

TU-Clausthal 4.4 Zhang’s line

Definition 4.10 (e-program, e(Π,S) [Zhang, 2006]). Given a set of ground literals S,
e(Π,S) denotes the program obtained from program Π by deleting

1. each rule in Π that has a formula ¬` in its body with ` ∈ S, and

2. all formulas of form ` in the bodies of the remaining rules with ` ∈ S.

The following example from Zhang illustrates the definition.

Example 4.1 ([Zhang, 2006]). Given S = {a,∼b} and the program

Π = {c ← a

∼d ← ¬a}

e(Π, S) = {c← >}.

This definition will prove to be useful to test a coherence property in Zhang’s ap-
proach.

Definition 4.11 (Coherence [Zhang, 2006]). A set of ground literals S is coherent with
an extended logic program Π if for any answer set S ′ of e(Π,S), S ∪ S ′ is consistent.

By continuing Example 4.1, the only answer set of e(Π, S) is {c}. Thus, S is coherent
with Π.

As another example, let us consider Zhang’s: S = {a,∼b} is coherent with Π =
{c← a,∼d← ¬a} because the only answer set of e(Π,S) is {c}. However, {a,∼b,∼c}
is not coherent with Π.

These are basic steps towards a general proposal that consists in two main steps
to perform an update of two programs. Firstly, eliminating contradictory rules from a
previous program with respect to the last one. Secondly, the semantics solves conflicts
between the remaining rules of the programs. The semantics that determines the spec-
ifications of such an elimination and conflict resolution is Prioritised Logic Programs.

4.4.2 Prioritised Logic Programs

In order to specify the algebra for this logic program update proposal, Zhang employs
an earlier platform called Prioritised Logic Programming [Zhang, 2003b; Zhang and
Foo, 1997], or simply PLP. Informally, this sort of logic programs consists of a set of
preference relations and of a naming function that assigns a name to each rule.

Definition 4.12 (Prioritized Logic Program PLP [Zhang, 2006]). A prioritised logic
program P is a triple (Π,N , <), where Π is an extended logic program, N is a naming
function mapping each rule in Π to a name, and “<” is a strict partial order on names.
Moreover, P(<) denotes the set of <-relations of P.

67

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

According to Zhang, if N (ρ) < N (ρ′) holds in P, rule ρ is preferred to be applied
over rule ρ’ when evaluating P. What is “evaluation” of P anyhow? The following
definitions code what an evaluation of a P is. Meanwhile, it is worth recalling from
Section 3.2 what an extended logic program is, before going any further:

Definition 4.13 (Extended Logic Program, ELP). An extended logic program is a set
of rules of form

`← `1, `2, . . . , `m,¬`m+1, . . . ,¬`n

where `i is a literal and 0 ≤ m ≤ n.

Finally, the definition of a Defeated rule looks as follows.

Definition 4.14 (Defeated rule [Zhang, 2003b]). Let Π be a ground extended logic
program and ρ an ELP ground rule like in Definition 4.13 —ρ does not necessarily
belong to Π. Rule ρ is defeated by Π if and only if Π has an answer set and for any
answer set S of Π, there exists some `i ∈ S where m+ 1 ≤ i ≤ n.

In other words, a program defeats a rule whenever there is a literal in any of the
answer sets of the program that is default-negated in the rule.

For example, given a program

Π = {a ← >
c ← b

d ← ¬e}

whose answer set is {a, d}, Π defeats rules like

⊥ ← ¬d;
a ← ¬a;
c ← b,¬a,¬d,¬e

Similarly to the case of extended logic programs, an evaluation of a PLP shall be
in terms of its ground form. Moreover, Zhang states that a PLP like P ′ = (Π′,N ′, <′)
is the ground instantiation of P = (Π,N , <) if (1) Π’ is the ground instantiation of Π;
and (2) <′ is a strict partial ordering and N ′(ρ′1) <′ N ′(ρ′2) ∈ P ′(<′) if and only if
there exist rules ρ1 and ρ2 in Π such that ρ′1 and ρ′2 are ground instances of ρ1 and ρ2,
respectively, and N (ρ1) < N (ρ2) ∈ P(<).

Definition 4.15 (P< Reduct [Zhang, 2003b]). Let P = (Π,N , <) be a prioritised logic
program. P< is a reduct of P with respect to “<” if and only if there exists a sequence
of sets Πi (i = 0, 1, . . .) such that:

68

TU-Clausthal 4.4 Zhang’s line

1. Π0 = Π;

2. Πi = Πi−1 \ {ρ1, ρ2, . . . } such that the following two conditions hold:

(a) there exists ρ ∈ Πi−1 such that for every j (j = 1, 2, . . .),
N (ρ) < N (ρj) ∈ P(<)
and ρ1, ρ2, . . . are defeated by Πi−1 \ {ρ1, ρ2, . . . }

(b) there are no rules ρ′, ρ′′, · · · ∈ Πi−1 such that
N(ρj) < N(ρ′), N(ρj) < N(ρ′′), . . .
for some j (j = 1, 2, . . .) and ρ′, ρ′′, . . . are defeated by Πi−1 \ {ρ′, ρ′′, . . . }

3. P< =
⋂∞
i=0 Πi.

In Definition 4.15, P< is an extended logic program that comes from Π by removing
some defeated rules from Π, by following the order relations in P(<) on rules named by
N . Specifically, if N (ρ) < N (ρ1), N (ρ) < N (ρ2), . . . , and Πi−1 \ {ρ1, ρ2, . . . } defeats
{ρ1, ρ2, . . . }, then, the rules ρ1, ρ2, . . . will be out from Πi−1 unless a less preferred rule
than can be removed in turn: conditions (2a) and (2b). One ought to compute the
reduct procedure until a fixed point. Note that it is said “less preferred” rather than the
converse for, at this stage, there is no update semantics.

In addition, condition (2b) in Definition 4.15 is necessary. In its absence, some
counterintuitive results may be derived —[Zhang, 2006]. For instance, consider the
following example from Zhang:

Example 4.2 ([Zhang, 2006]). Consider program

P1 = (Π,N , <):
N1 : flies(X)← bird(X), not ¬flies(X)
N2 : ¬flies(X)← penguin(X), not flies(X)
N3 : bird(tweety)← >
N4 : penguin(tweety)← >
N2 < N1

If one added the preference N3 < N2 in P1, then using a modified version of Defini-
tion 4.15 without condition (b), program

{flies(tweety)← bird(tweety),¬¬flies(tweety)
bird(tweety)← >
penguin(tweety)← >}

is a reduct of P1, from which it concludes that Tweety flies. On the other hand, by
considering both the added preference and condition (2b) one will conclude that Tweety
does not fly from a unique reduct that lacks rule N3.

69

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Finally, an interpretation of a PLP is the answer sets of its reduct, as formally
specified in the following definition.

Definition 4.16 (Answer Set of P [Zhang, 2003b]). Let P = (Π,N , <) be a PLP and
Lit the set of all ground literals in the language of P. For any subset S of Lit, S is an
answer set of P if and only if S is an answer set for some reduct P< of P.

Using Definition 4.15 and Definition 4.16, it is easy to conclude that P1 in Exam-
ple 4.2 has a unique reduct as follows:

P<1 = {¬flies(tweety)← penguin(tweety), not flies(tweety)
bird(tweety)← >
penguin(tweety)← >}

from which one concludes the following answer set of P<1 :

S = {bird(tweety), penguin(tweety), ¬flies(tweety)}.

Let us analyse a complete example inspired from the same reference [Zhang, 2006],
which illustrates in detail when a PLP has more than one reduct. Before that, one
should be aware that a PLP may or may not have answer sets. In the first case, the
program is called well-defined program.

Example 4.3 ([Zhang, 2006]). Suppose a PLP consisting of

P = (Π,N , >) := {N1 : a← >

N2 : b← ¬c

N3 : d← >

N4 : c← ¬b

N1 < N2, N3 < N4}

By Definition 4.15, one reduct is constructed as

1. Π0 = Π

2. Π1 = Π0 \ {b ← ¬c} because rule a ← > ∈ Π0 and with its tag N1, one can find
the relation N1 < N2 ∈ P(<) and b ← ¬c is defeated by Π0 \ {b ← ¬c}. Last,
there are no rules ρ′, ρ′′, · · · ∈ Π0, whose tag is “greater than” N2, and defeated by
Π0 \ {ρ′, ρ′′, . . . }.

3. Finally, the reduct is the intersection of the two programs:

P(<) = {(a← >); (d← >); (c← ¬b)}

70

TU-Clausthal 4.4 Zhang’s line

and the other reduct as

1. Π0 = Π

2. Π1 = Π0 \ {c ← ¬b} because rule d ← > ∈ Π0 and with its tag N3 there is
the relation N3 < N4 ∈ P(<) and c ← ¬b is defeated by Π0 \ {c ← ¬b} and
there are no rules ρ′, ρ′′, · · · ∈ Π0, whose tag is “greater than” N4, and defeated by
Π0 \ {ρ′, ρ′′, . . . }.

3. Finally, P(<) = {(a← >); (b← ¬c); (d← >)}

This section of prioritised logic programs is the necessary background to give the
interpretation of the following procedure for updates under the approach of Zhang, that,
as mentioned before, consists in two main steps: contradiction elimination and conflict
resolution.

4.4.3 Eliminating Contradictions

The first step in updating two extended logic programs under Zhang’s approach is
eliminating contradictions by means of an extended simple-fact update program. Infor-
mally, the extended simple-fact program consist of establishing a high preference to
inertia rules over update rules so that facts in the initial knowledge base may persist
after an update. Then, it consists in interpreting the semantics of a resulting (possibly
empty) update program(s) that should have a minimal difference with the answer sets
of the original program. This interpretation of the update program(s) is the same as
for PLP’s.

Before going straight to the main definition, some minor notation is necessary:

Definition 4.17 (Initial Knowledge; PLP Languages [Zhang, 2006]). Let

B denote an initial consistent knowledge base of ground literals of a language L;

Π an update extended logic program over L; and

Lnew an extension to L, by propositional literals of the form new-` | ` ∈ L.

Zhang represents a generalised simple-fact update through a triple, which specifies
the changes to an original knowledge base, according to a new update.

Formally,

Definition 4.18 (UPLP-specification, UPLP(B,Π) [Zhang, 2006]). Let B, Π, L, and Lnew

be specified as in Definition 4.17. The specification of updating B with Π is a PLP over
Lnew, denoted as UPLP(B,Π) = (Π∗,N , <), as follows:

1. Π∗ consists of following rules:

71

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Initial knowledge rules: for each literal ` in B, there is a rule `← >

Inertia rules: for each predicate symbol1

P ∈ L, there are two rules:

new-P (x)← P (x),¬∼new-P (x)

and
∼new-P (x)← ∼P (x),¬new-P (x)

Update rules: for each rule

`0 ← `1, ..., `m,¬`m+1, . . . ,¬`n ∈ Π

there is a rule2

new-`0 ← new-`1, . . . , new-`m,¬new-`m+1, . . . ,¬new-`n

2. Naming function N assigns a unique name N for each rule in Π∗.

3. For any inertia rule ρ and update rule ρ′, N (ρ) < N (ρ′).

According to Zhang, an answer set of Π∗ represents possible resulting knowledge
bases from the update of B by Π, and a literal new-` represents the persistence of ` if
` ∈ B or a change of ` if ∼` ∈ B or ` /∈ B with respect to the update. For instance,
in Example 4.4, interpreting Π∗ corresponds to simple-fact update semantics, and it
has two answer sets: {∼a, b, c, newa, newc,∼newb} and {∼a, b, c, newa, newc, newb},
which means that the truth value of b is indefinite by newb with respect to the update
because the new atom newb is true in one answer set and false in the other, whose
conclusion is coming up —(4.9) from Example 4.4.

Up to now, one can transform an initial knowledge base into an initial logic program
and inertial rules together with the update rules to form a PLP. In addition, one can
establish preference relations among PLP rules, in order to specify a UPLP(B,Π). Once a
PLP is interpreted, another definition is necessary to get the results of the specifications
and to eliminate contradictions of the original sets of rules.

In general, the interpretations of an update program UPLP come from the answer sets
of its corresponding PLP. Such an interpretation shall lead to one or more possible new
knowledge bases, as expressed in the following definition.

1A predicate symbol corresponds to an atom, in my notation.
2There is no formal specification in [Zhang, 2006] for strong-negated atoms. However, on the basis of

his examples, one may suppose that for every literal of form ∼` in the formula, there is a strong-negated
form ∼new-`.

72

TU-Clausthal 4.4 Zhang’s line

Definition 4.19 (Possible Resulting Knowledge Base, B’ [Zhang, 2006]). Let UPLP(B,Π)
be specified as in Definition 4.18. A set B’ of ground literals is called a possible result-
ing knowledge base with respect to UPLP(B,Π), if and only if B’ satisfies the following
conditions:

1. if UPLP(B,Π) has a consistent answer set S, then B′ = {` | new-` ∈ S};

2. if UPLP(B,Π) does not have a consistent answer set (i.e., UPLP(B,Π) is not well
defined), then B′ = B.

The name SPLP(UPLP(B,Π)) denotes the set of all resulting knowledge bases of UPLP(B,Π).

Notice that what Zhang calls knowledge base is actually a set of literals.
Now, let us start with a simple but representative and thorough example (proposed

by Zhang) that illustrates this process.

Example 4.4 ([Zhang, 2006]). Suppose the initial knowledge base B = {∼a, b, c} and
the update program Π ={(∼b ← ¬b), (a ← c)} By Definition 4.18, the corresponding
PLP specification is UPLP(B,Π) = (Π∗,N , <), consisting of the following rules:

Initial knowledge: Π0:

∼a← > b← >

c← >

Inertia rules:

i1 : newa← a,¬∼newa

i2 : ∼newa← ∼a,¬newa

i3 : newb← b,¬∼newb

i4 : ∼newb← ∼b,¬newb

i5 : newc← c,¬∼newc

i6 : ∼newc← ∼c,¬newc

Update rules:

u1 : ∼newb← ¬newb

u2 : newa← newc

Rule preferences By Definition 4.18, ii < uj with i, j > 0 are

N(i1) < N(u1) N(i1) < N(u2) N(i2) < N(u1)

N(i2) < N(u2) N(i3) < N(u1) N(i3) < N(u2)

N(i4) < N(u1) N(i4) < N(u2) N(i5) < N(u1)

N(i5) < N(u2) N(i6) < N(u1) N(i6) < N(u2)

73

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

With these specifications, one may compute the two answer sets of Π∗. Namely,

{∼a, b, c, newa, newc, newb}

{∼a, b, c, newa, newc,∼newb}

However, the prioritised logic program P has the unique answer set

{∼a, b, c, newa, newc, newb}

from its unique reduct because there is only one rule (u1) defeated by Π0\{u1} with which
one may establish the relations N(i3) < N(u1) ∈ P and there are no less-preferred rules
than ui in P(<) —Definition 4.15. As a consequence, SPLP(B,Π) = {a, b, c} = S(Π0,Π1)

from Definition 4.19, and the transformed program from Π0 with respect to Π1 that is
a maximal subset of Π0 and is coherent with S(Π0,Π1) is just {b, c}. From this program,
the U�Z(Π0,Π1) specification corresponds to the following P:

ρ1 : ∼b← ¬b

ρ2 : a← c

ρ3 : b← >

ρ4 : c← >

ρ1 < ρ3 ρ1 < ρ4

ρ2 < ρ3 ρ2 < ρ4

whose unique answer set out of the unique reduct is {a, b, c}. That is because defeated
rules may not derive from a simple fact update, and that is the difference with the
extended simple fact update.

This simple-fact update approach originally appeared in [Marek and Truszczynski,
1994, 1998]. However, it is not adequate for practical applications for the simple rea-
son that, as its name suggests, its definition does not deal with general (non-factual)
rules. As a result, Zhang reformulates the approach to allow updating ELP’s, rather
than only facts, by means of the following two definitions, where the first one eliminates
contradictory rules between Π0 and Π1.

Definition 4.20 (Transformed Program, Π(Π0,Π1) [Zhang, 2006]). Given two consistent
programs Π0 and Π1, with SΠ0 as an answer set of Π0 and S(Π0,Π1) as an answer set
of the update of SΠ0 with Π1. Suppose S(Π0,Π1) ∈ SPLP(UPLP(SΠ0 ,Π1)). An extended
logic program Π(Π0,Π1) is called a transformed program from Π0 with respect to Π1, if

74

TU-Clausthal 4.4 Zhang’s line

Π(Π0,Π1) is a maximal subset of the ground instantiation of Π0 such that S(Π0,Π1)
1 is

coherent with Π(Π0,Π1).

In order to illustrate this definition, see the transformed program in Example 4.5.

Once there is a transformed program, a set of preferences between its rules is to
solve possible conflicts.

Definition 4.21 (Update Specification, U�Z(Π0,Π1) [Zhang, 2006]). Let Π(Π0,Π1) be
defined as in Definition 4.20. A specification of updating Π0 with Π1 is a PLP, denoted
as U�Z(Π0,Π1) = (Π1 ∪ Π(Π0,Π1),N , <), where, for each rule ρ in Π1 and each rule ρ′

in Π(Π0,Π1), there is a preference relation N (ρ) < N (ρ′).

Extended from Zhang, the following example illustrates this definition.

Example 4.5 (Transformed Program). Consider the following set of programs

Π0 = {a ← >

c ← b

d ← ¬e}

Π1 = {b ← a

∼c ← b

e ← ¬d}

it is easy to verify that SΠ0 = {a, d}. Next, its UPLP(SΠ0 ,Π1) = (Π∗,N , <), where Π∗

consists of

Initial rules:

a← > d← >

1Note that the original definition must have a typographical error when reading SΠ0 rather than
S(Π0,Π1).

75

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Inertial rules:

i1 : newa ← a,¬∼newa

i2 : ∼newa ← ∼a,¬newa

i3 : newd ← d,¬∼newd

i4 : ∼newd ← ∼d,¬newd

i5 : newb ← b,¬∼newb

i6 : ∼newb ← ∼b,¬newb

i9 : newc ← c,¬∼newc

i10 : ∼newc ← ∼c,¬newc

i13 : newe ← e,¬∼newe

i14 : ∼newe ← ∼e,¬newe

Update rules:

u1 : newb ← newa

u2 : ∼newc ← newb

u3 : newe ← ¬newd

and its <-specifications are

N(i1) < N(u1); N(i1) < N(u2); N(i1) < N(u3);

N(i2) < N(u1); N(i2) < N(u2); N(i2) < N(u3);

N(i3) < N(u1); N(i3) < N(u2); N(i3) < N(u3);

N(i4) < N(u1); N(i4) < N(u2); N(i4) < N(u3);

N(i5) < N(u1); N(i5) < N(u2); N(i5) < N(u3);

N(i6) < N(u1); N(i6) < N(u2); N(i6) < N(u3);

N(i9) < N(u1); N(i9) < N(u2); N(i9) < N(u3);

N(i10) < N(u1); N(i10) < N(u2); N(i10) < N(u3);

N(i13) < N(u1); N(i13) < N(u2); N(i13) < N(u3);

N(i14) < N(u1); N(i14) < N(u2); N(i14) < N(u3)

Note that, as there is no conflict between rules of inertia and update, the <-specifications

76

TU-Clausthal 4.4 Zhang’s line

of this example do not apply. Next, the unique answer set of Π∗ is just

{a, d, newa, newd, newb,∼newc}

which corresponds to the possible resulting knowledge base S(Π0,Π1) = {a, b,∼c, d}, and
e(Π0,S(Π0,Π1)) = {(a ← >), (c ← >), (d ← ¬e)}, whose unique answer set is {a, c, d}.
By Definition 4.20, the maximal subset of Π0 that is coherent with S(Π0,Π1) is just the
unique transformed program Π(Π0,Π1) = {(a ← >), (d ← ¬e)}. Finally, the update
specification from Π0 and Π1 is defined as

U�Z(Π0,Π1) = (Π1 ∪Π(Π0,Π1),N , <)

where

i1 : a← >

i2 : d← ¬e

t1 : b← a

t2 : ∼c← b

t3 : e← ¬d

and its <-relations are tx < iy. In addition, the reduct of U�Z(Π0,Π1) is

a ← >

b ← a

∼c ← b

e ← ¬d

Up to now, a transformed program can eliminate contradictions between an original
knowledge base and its update. On the other hand, there are circumstances that do
not cause contradiction, but indefinite conclusions that must be observed.

4.4.4 Solving Conflicts

In the process of updating a logic program with another, there are rules that might
be in conflict when producing indefinite conclusions. The way in which Zhang deals
with this problem is by overriding old conflicting rules with the new ones, coded in
the preferences of a transformed program, and by producing a called possible resulting
program, as follows.

77

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Definition 4.22 (Possible Resulting Program, Π′0 [Zhang, 2006]). A program Π′0 is a
possible resulting program of U�Z(Π0,Π1) after updating Π0 with Π1 if Π′0 is a reduct
of the ground instantiation of U�Z(Π0,Π1).

For example, the unique possible resulting program of updating Π0 with Π1 is illus-
trated in Example 4.5.

In summary, this process consists in deriving possible resulting program(s) Π′0 =
U�Z(Π0,Π1) —and eventually their answer set(s)— that are the reduct(s) of a PLP
from an update specification U�Z(Π0,Π1) = (Π1 ∪ Π(Π0,Π1),N , <), where Π(Π0,Π1) is a
transformed program of Π0 and Π1, derived from a possible resulting knowledge base of
a generalised simple-fact update from the answer sets of the original program and its
updating program, which is defined as initial knowledge.

A mandatory test is Example 1.1, already introduced in Chapter 1 and recapped
in the current chapter as Example 4.3, which produces counterintuitive results in many
of the existing semantics for updates. So, I will compute it under Zhang’s approach as
follows.

Observation 4.13. Suppose an initial program

Π0 = {day ← ¬night

night ← ¬day

stars ← night , ¬cloudy

∼stars ← >}

updated with

Π1 = {stars ← constls

constls ← stars}

Its corresponding PLP specification, UPLP(SΠ0 ,Π1) = (Π∗,N , <), is as follows:

Initial Knowledge:

i0 : day ← >

i0 : ∼stars ← >

78

TU-Clausthal 4.4 Zhang’s line

Inertial Rules:

i1 : newday ← day ,¬∼newday

i2 : ∼newday ← ∼day ,¬newday

i3 : newstars ← stars,¬∼newstars

i4 : ∼newstars ← ∼stars,¬newstars

i5 : newnight ← night ,¬∼newnight

i6 : ∼newnight ← ∼night ,¬newnight

i7 : newconstellations ← constls,¬∼newconstellations

i8 : ∼newconstellations ← ∼constls,¬newconstellations

i9 : newcloudy ← cloudy ,¬∼newcloudy

i10 : ∼newcloudy ← ∼cloudy ,¬newcloudy

Update Rules:

u1 : newstars ← newconstellations

u2 : newconstellations ← newstars

Rule Preferences:

N(i1) < N(u1) N(i1) < N(u2)

N(i2) < N(u1) N(i2) < N(u2)
...

N(i8) < N(u1) N(i8) < N(u2)

where its unique SPLP(UPLP(SΠ0 ,Π1)) = {day ,∼stars}. In this case, Π(Π0,Π1) coincides
with Π0 because SPLP(UPLP(SΠ0 ,Π1)) is coherent with Π0—resp. Π(Π0,Π1), where

e(Π0, SPLP(UPLP(SΠ0 ,Π1))) = {day ← ¬night

stars ← night , ¬cloudy

∼stars ← >}

and its answer set is {day ,∼stars}, which is consistent with SPLP(UPLP(SΠ0 ,Π1)). Thus,
Π(Π0,Π1) is a maximal subset of Π0.

79

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

Finally, its update specification U�Z(Π0,Π1) = (Π1 ∪Π(Π0,Π1),N , <), whose possible
resulting program is just

Π1 ∪Π(Π0,Π1) \ {night ← ¬day} =

{stars ← constls

constls ← stars

day ← ¬night

stars ← night ,¬cloudy

∼stars ← >}

with its expected answer set {day ,∼stars}.

Despite this nice behaviour, one of the counter-intuitive examples to Zhang’s ap-
proach has to do with solving conflicts between rules, where most of the current seman-
tics differ, as first pointed out by Eiter et al. [Eiter et al., 2002]:

Example 4.6. Suppose an initial knowledge base Π0 = {p ← ¬q} being updated with
Π1 = {q ← ¬p}. Its simple-fact update specification corresponds to UPLP(SΠ0 ,Π1) =
(Π∗,N , <), where

Initial Knowledge:

i0 : p← >

Inertial Rules:

i1 : newp ← p,¬∼newp

i2 : ∼newp ← ∼p,¬newp

i3 : newq ← q,¬∼newq

i4 : ∼newq ← ∼q,¬newq

Update Rule

u1 : newq ← ¬newp

80

TU-Clausthal 4.5 Logic Approaches

Preferences

N(i1) < N(u1) N(i2) < N(u1)

N(i3) < N(u1) N(i4) < N(u1)

As a result, its unique answer set SPLP(UPLP(SΠ0 ,Π1)) = {p} and none of its <-relations
are used. Next, the minimal subset of Π0 that is coherent with its answer set is just
Π(Π0,Π1) = Π0. Then, the update specification of Π0 and Π1 is U�Z(Π0,Π1) = (Π1 ∪
Π(Π0,Π1),N , <) where

t : p← ¬q

u : q ← ¬p

and u < t. Finally, its unique reduct q ← ¬p comes from (Π1 ∪Π(Π0,Π1)) \ {t} defeating
rule t. Therefore, the conclusion of such an update is just {q}.

Last, besides not satisfying some of the principles already pointed out, one of the
major drawbacks of this approach is being limited to only one update to a knowledge
base. Namely, it is undefined for update sequences and for successive updates, which
does not seem to lead to immediate practical use. Although Zhang also suggests an
extension to one of his earliest approaches in [Zhang, 2003a] to deal with multiple
updates, his proposal still makes the same strong assumptions when deciding between
multiple models, as in Example 4.6.

4.5 Logic Approaches

Inspired by the semantics presented in Section 4.1, and similar to the mechanisms sug-
gested in Section 4.3, Osorio and Cuevas; Osorio and Zacarías proposed two approaches
to depend upon the logical contents rather than on the syntax of logic programs. More-
over, they provided a case study of new properties out of the intermediate logics char-
acterising ASP, in Section 2.1, by reinterpreting the AGM-postulates from Table 2.3 in
such a logic, shown later in Table 8.1. Finally, they also proposed a new formulation of
Eiter et al.’s operator for one-step updates in a simpler way, without introducing new
atoms —see Section 4.1 for further details.

Definition 4.23 ([Osorio and Cuevas, 2007]). Given an update sequence (Π1,Π2) over
a set of atoms A, an update program Π1 ⊕2 Π2 over A∗ consists of the following items:

(i) all constraints in Π1 ∪Π2;

(ii) for each rule ρ ∈ Π1

`← Body(ρ),¬∼` if Head(ρ) = `;

81

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

(iii) all rules ρ ∈ Π2.

In order to illustrate this process, let us go through the following instance recapped
from previous sections.

Example 4.7. Consider the sequence (Π1,Π2) from Example 4.1:

Π1 ⊕2 Π2 = {sleep ← night ,¬tvon,¬∼sleep

watchtv ← tvon,¬∼watchtv

night ← ¬∼night

tvon ← ¬∼tvon

∼tvon ← pfailure

pfailure ← >}

where the answer set of the updated is just {pfailure, sleep,night ,∼tvon}, as one would
expect.

Unfortunately, besides the strong limitation of lacking a method for more than one
update, this semantics does not meet the least minimal set of properties proposed in
this thesis.

In order to illustrate this claim, let us recap Example 4.3.

Example 4.8. Consider the initial knowledge base

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼stars ← >}

whose unique answer set is {day ,∼stars}. Now consider the following update

Π2 = {stars ← constls

constls ← stars}

A missing feature in Definition 4.23 is how to deal with double strong negation in the
fourth rule of Π1. Taking advantage of N2 logic, one of its axioms gives the equivalence:
double negations yields a positive atom. Accordingly, the ⊕2 -updated program is

82

TU-Clausthal 4.6 Conclusions for Chapter 4

day ← ¬night ,¬∼day
night ← ¬day ,¬∼night
stars ← night ,¬cloudy ,¬∼stars
∼stars ← ¬stars

stars ← constls
constls ← stars

As a result, some extra answer sets make ⊕2 -operator fail to comply with postulate
(Ru 4) and SC property: {day ,∼stars}; {night ,∼stars}; {night , stars, constls}. Opera-
tor ⊕3 is also limited to one update and lacks some other properties too, as summarised
in Table A. On the other hand, their corresponding ⊕1 -operator is /-operator in Sec-
tion 4.1 for the case of single updates. Finally, ⊕1 ≡ASP ⊕3 as they themselves prove
it, which helps complete the column of /-operator in table A.

4.6 Conclusions for Chapter 4

This chapter is a survey of update semantics in ASP in a wide range from simple-fact one-
step updates of logic programs, up to unlimited updates in a sequence. Some of these
works present a vast collection of postulates and principles, and/or implementation.
However, all the proposals here introduced still present drawbacks either for being
limited to only one update, or for relying on syntactical principles to change the original
logic program that leads to counterintuitive results. In need of a general semantics
that meets as many principles as possible, upcoming chapters shall present proposals to
overcome the mentioned limitations and to meet general principles. In the next chapter,
the reader may find a summary of representative examples presented to a certain extent,
as well as a summary of properties in Appendix A.

On the other hand, for practical and comercial reasons all of the proposals here
presented are called semantics for updates, although there are implicit operations in some
of them that may suggest a different classification, say semantics for belief revisions.
The difference is a technical issue, as briefly introduced in Section 2.4, and shall be
recapped in upcoming chapters.

83

Chapter 4. A Road Map for Update Semantics J.C.A.Guadarrama

84

Chapter 5

Observations and Examples

This chapter is an arrangement of specific key observations, already introduced in
previous sections, along with a discussion of what they intend to show in general.
They are examples of updates and are classified according to general concepts of vacuous
information, object-level updates, conflicting information and initialisation. Besides the
examples and their descriptions, each section shows a summarised comparison of the
results when evaluated in each of the four semantics from Chapter 4.

5.1 Vacuous Information

Vacuous or inert information shall be an intuitive term in this thesis to describe knowl-
edge that may be an extension to an initial one, but should not produce major changes
after its update. In particular, the main motivation to this dissertation is the following
example from Section 1:

Observation 5.1. Suppose an agent who believes that when it is day it is not night
and vice versa, and that there are stars when it is night and when there are no clouds.
Finally, that at the current moment it is a fact that there are no stars. This simple
story may be coded1 into Π1 as follows:

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼ stars ← >}

whose unique answer set is {day ,∼stars}. Later, the agent acquires new information
1Notice that there are other ways to represent the story. The problem is, however, what to do in

this particular situation, when the agent runs across this piece of information.

85

Chapter 5. Observations and Examples J.C.A.Guadarrama

stating that stars and constls (constellations) are the same thing, as coded in Π2. As
soon as the agent updates Π1 with program

Π2 = {stars ← constls

constls ← stars}

the expanded alphabet of the two programs contains only one new extra atom with
respect to Π1: constls. As the model of Π2 is obviously the empty answer set, constls is
considered synonym of stars by means of Π2, and thus the update should not change the
original beliefs. However, the update yields an extra answer set in some of the existing
update semantics based on the causal rejection principle —Section 4.2:

{stars, constls,night}

which does not coincide with common intuition.
The reason is that, although stars can not be true, introducing constls gives another

possibility for stars to be true. Thus, the additional answer set is implied.
In general, these supplementary rules in the update are a conservative extension

[Osorio et al., 2001] to Π1: the original language is extended and all answer sets ought
to be extensions of the old answer sets. In this specific situation, constls should be true
if and only if stars is true.

This example shows an expansion to the original alphabet of a knowledge base,
known in the literature as conservative extension of such alphabet. In this case, the
rules in Π2 mean that constls is a synonym of stars. As a result, one would expect that
the original beliefs before the update do not change except that constellations have
exactly the same truth value than stars.

In the literature of updates of logic programs, however, various of the most relevant
semantics give counterintuitive results with this example, as shown in the following
summary.

Eiter’s et alii —Section 4.1: Observation 4.3 shows that the corresponding seman-
tics results in counterintuitive update answer sets, {day ,∼stars} as well as
{night , stars, constls}.

DyLP—Section 4.2: As shown in Observation 4.5, the resulting dynamic stable mod-
els is {day} without {night , stars, constls}.

Sakama-Inoue’s —Section 4.3: This semantics computes {day ,∼stars} only, as one
would expect.

Zhang’s —Section 4.4: The unique answer set in this semantics, {day ,∼stars}, as
shown in Observation 4.13, coincides with common intuition.

86

TU-Clausthal 5.2 Updates at the Object Level

As a result, the only semantics that does not meet the expected model is Eiter’s et
alii from Section 4.1, for its base on the causal-rejection principle. On the other hand,
DyLP does meet the expected result when using its refined version.

The following observation illustrates a variant of updates that should produce no
extra models, first introduced in Observation 4.7.

Observation 5.2. Suppose an initial knowledge base Π0 = {(c ← r), (r ← >)} up-
dated with Π1 = {not r ← not c}. Firstly, the initial generalised stable model of Π0

is {c, r}, and one would expect no changes after the update. However, the update P =
Π0 ⊕R Π1 has the extra model M = {not_c,not_r} because M = {not_c,not_r};
Rej(P,M) = {r ← >}; Def(P,M) = {not_c}; and least[(Π0 ∪ Π1) \ Rej(P,M) ∪
Def(P,M)] = {not_c,not_r} =M.

The purpose of this example, inspired by Eiter et al., is to show that making knowl-
edge more precise may produce counterintuitive models in some semantics, where one
would expect no extra models. As a result, the rest of the semantics analysed in previous
chapters show the corresponding behaviour summarised as follows.

Eiter’s et alii —Section 4.1: The semantics gives the update answer set {c, r} and
an extra {∼r}.

DyLP—Section 4.2: The resulting dynamic stable models are also both {c, r} and the
extra {not_c,not_r}, as shown above in Observation 5.2.

Sakama-Inoue’s —Section 4.3: This semantics computes just {c, r}, as one would
expect.

Zhang’s —Section 4.4: This semantics computes just {c, r}.

To sum up, both Eiter’s et alii (Section 4.1) and DyLP (Section 4.2) show counter-
intuitive behaviour when updating an initial knowledge base with vacuous information.

5.2 Updates at the Object Level

The following example shows how to perform updates at the object level, rather than
the meta-level, introduced in Observation 4.8.

Observation 5.3. Suppose an update to the knowledge base

Π1 = {sleep ← ¬tvon

watchtv ← tvon

tvon ← >}

87

Chapter 5. Observations and Examples J.C.A.Guadarrama

with1

Π2 = {pfailure ← >

⊥ ← pfailure, tvon}

The situation is to be coded into the extended abductive program 〈Π1 ∪ Π2,Π1 \ Π2 〉.
The update program UP of 〈 (Π1 ∪Π2)n, (Π1 \Π2)n 〉 is specified as

UP : pfailure ← >

⊥ ← pfailure, tvon

sleep ← ¬tvon, γ1

watchtv ← tvon, γ2

abd(tvon), abd(γ1), abd(γ2),

tvon− ← ¬tvon

γ−1 ← ¬γ1

γ−2 ← ¬γ2

where γ1 and γ2 are names of the abducible rules in Π1 \Π2. Then, UP has the unique
U-MAS

{pfailure, sleep, tvon, tvon−, γ1, γ2}

which represents the deletion of fact tvon from Π1 ∪ Π2. Accordingly, the update of Π2

to Π1 is the resulting program

Π3 : sleep ← ¬tvon

watchtv ← tvon

pfailure ← >

⊥ ← pfailure, tvon

whose answer set is just {pfailure, sleep}

Next, suppose yet another update (Π4 : ¬pfailure ← >) to Π3, which represents
that there is power again. Sakama and Inoue code this new pair by the abductive program

1In [Alferes et al., 1999] the rule “← pfailure, tvon” is given as “¬tvon ← pfailure”. These two rules
are semantically equivalent under the answer set semantics, as the authors explain in [Sakama and
Inoue, 2003]. However, as later seen in this example, the difference between either expression would
result in the existence of ∼tvon in the corresponding model!

88

TU-Clausthal 5.3 Conflicting Information

〈Π3 ∪Π4,Π3 \Π4 〉. So, the update program of 〈 (Π3 ∪Π4)n, (Π3 \Π4)n 〉 turns into

UP : ¬pfailure ← >

sleep ← ¬tvonγ1

watchtv ← tvonγ2

⊥ ← pfailure, tvonγ3

abd(pfailure), abd(γ1), abd(γ2), abd(γ3),

pfailure− ← ¬pfailure

∼γ1 ← ¬γ1,∼γ2 ← ¬γ2,∼γ3 ← ¬γ3.

Then, UP has the unique U-MAS

{¬pfailure, sleep, γ1, γ2, γ3, pfailure,∼pfailure},

which implies that the result of the update is (Π3 ∪ Π4) \ {pfailure ← >}. As a result,
the unique answer set of the unique resulting program is {∼pfailure, sleep}.

The purpose of Observation 5.3 is to illustrate that various semantics produce coun-
terintuitive results when changing the truth value of a belief with no intuitive justifi-
cation. In particular, one would expect that, after the second update, the belief set
{pfailure, sleep} changes to {∼pfailure, sleep}. The following summary is an outlook of
the behaviour of major semantics for updates in the literature.

Eiter’s et alii —Section 4.1: Observation 4.2 shows that the corresponding seman-
tics gives the counterintuitive update answer set, {tvon,watchtv ,∼pfailure}.

DyLP—Section 4.2: The corresponding resulting dynamic stable model, as shown in
Observation 4.6, is {tvon,watchtv}, which is clearly counterintuitive .

Sakama-Inoue’s —Section 4.3: This semantics computes

{∼pfailure, sleep}, as one would expect.

Zhang’s —Section 4.4: This semantics is unable to perform more than one update.

In conclusion, the only semantics to meet the expected result is Sakama-Inoue’s —
Section 4.3. The others’ problem is either a meta-level update or a lack of a definition
to perform multiple updates.

5.3 Conflicting Information

The following observation illustrates how to solve conflicting updates that are not nec-
essary contradictory in their semantics, introduced in Observation 4.12.

89

Chapter 5. Observations and Examples J.C.A.Guadarrama

Observation 5.4 ([Zhang and Foo, 2005]). Suppose

Π0 = {member(a, g) ← >

member(b, g) ← >

access(a, f2) ← >

access(X, f1) ← member(X, g)

∼access(X, f2) ← member(X, g),¬access(X, f2)}

updated with

Π1 = {member(c, g) ← >

∼access(X, f1) ← member(X, g)

access(X, f2) ← member(X, g),¬∼access(X, f2)}

According to Zhang, this update ought to have the unique answer set

S = {∼access(a, f1),∼access(b, f1),∼access(c, f1),

access(a, f2), access(b, f2), access(c, f2)}

The purpose of Observation 5.4 is to show how to solve conflicting information that
derives indefinite models, as the rest of the semantics, that present four models of the
grounded programs equivalent to the following:

{member(c, g),∼access(c, f1),member(a, g),member(b, g), access(a, f2),
∼access(c, f2),∼access(b, f2),∼access(a, f1),∼access(b, f1)}

{member(c, g),∼access(c, f1),member(a, g),member(b, g), access(a, f2),
∼access(c, f2), access(b, f2),∼access(a, f1),∼access(b, f1)}

{member(c, g),∼access(c, f1),member(a, g),member(b, g), access(a, f2),
access(c, f2),∼access(b, f2),∼access(a, f1),∼access(b, f1)}

{member(c, g),∼access(c, f1),member(a, g),member(b, g), access(a, f2),
access(c, f2), access(b, f2),∼access(a, f1),∼access(b, f1)}

In order to simplify matters, the problem may be analogous to a simpler and more
representative one, introduced earlier in Example 4.6, Section 4.4.4:

Observation 5.5. Suppose an initial knowledge base Π0 = {p← ¬q} being updated with
Π1 = {q ← ¬p}. Its simple-fact update specification corresponds to UPLP(SΠ0 ,Π1) =
(Π∗,N , <), where

90

TU-Clausthal 5.3 Conflicting Information

Initial Knowledge:

i0 : p← >

Inertial Rules:

i1 : newp ← p,¬∼newp

i2 : ∼newp ← ∼p,¬newp

i3 : newq ← q,¬∼newq

i4 : ∼newq ← ∼q,¬newq

Update Rule

u1 : newq ← ¬newp

Preferences

N(i1) < N(u1) N(i2) < N(u1)

N(i3) < N(u1) N(i4) < N(u1)

As a result, its unique answer set SPLP(UPLP(SΠ0 ,Π1)) = {p} and none of its <-relations
are used. Next, the minimal subset of Π0 that is coherent with its answer set is just
Π(Π0,Π1) = Π0. Then, the update specification of Π0 and Π1 is U�Z(Π0,Π1) = (Π1 ∪
Π(Π0,Π1),N , <) where

t : p← ¬q

u : q ← ¬p

and u < t. Finally, its unique reduct q ← ¬p comes from (Π1 ∪Π(Π0,Π1)) \ {t} defeating
rule t. Therefore, the conclusion of such an update is just {q}.

The purpose of this example, due to Eiter et al., is to show that solving conflicts
in the way Zhang does has an impact in very specific applications but might not be
suitable for a general semantics for updates of logic programs. As a result, the rest of
the semantics analysed in previous chapters show the behaviour summarised as follows.

Eiter’s et alii —Section 4.1: The semantics gives the update answer sets {p} and

91

Chapter 5. Observations and Examples J.C.A.Guadarrama

{q}, as one would expect.

DyLP—Section 4.2: The corresponding resulting dynamic stable models are both {p}
and {q}.

Sakama-Inoue’s —Section 4.3: This semantics computes {p} and {q}, as one would
expect.

Zhang’s —Section 4.4: This semantics computes just {q}.

To sum up, Zhang’s (Section 4.4) is the only semantics that fails to meet the ex-
pected models, due to its formulation to behave just like that: a current rule overrides
an earlier one when both of them together produce indefinite results. In very par-
ticular application, however, that behaviour may be an advantage, as they suggest in
Observation 5.4.

5.4 Initialisation

The following observation illustrates updates to an empty knowledge base, first intro-
duced in Observation 5.6.

Observation 5.6. Suppose the initial knowledge base Π = ∅ updated by a simple fact
Π1 = {x← >}. Following Sakama and Inoue’s framework, the answer sets of its update
program is empty: UP = (∅ \ {x ← >}) ∪ UR, where UR is clearly empty because the
extended abductive program from the update pair has no abducibles: A∗ = ∅ \ {x← >}.

Eiter’s et alii —Section 4.1: Observation 4.2 shows that the corresponding seman-
tics gives the update answer set, {x}, as one would expect.

DyLP—Section 4.2: The corresponding resulting refined dynamic stable model is {x}
as well.

Sakama-Inoue’s —Section 4.3: Surprisingly, this semantics computes {}, which is
clearly counterintuitive.

Zhang’s —Section 4.4: {x} is a model of his semantics.

To conclude this section, the only semantics to fail this property is Sakama-Inoue’s
from Section 4.3, for its strong syntactic-approach.

5.5 Conclusions for Chapter 5

The purpose of this chapter has been to classify the semantics presented in Chapter 4
according to a general type of problem they exhibit, by means of key examples pre-
sented up to Chapter 4. Each key example has a description of its purpose as well

92

TU-Clausthal 5.5 Conclusions for Chapter 5

as a comparison of its results when computed by every semantics presented in Chap-
ter 4. Accordingly, the empirical results of this survey show that each of the analysed
semantics have advantages and disadvantages for the specific purpose they were formu-
lated. In consequence, there is no known general semantics that can cope with all the
key-problems in this chapter.

93

Chapter 5. Observations and Examples J.C.A.Guadarrama

94

Chapter 6

Relaxing Knowledge-bases

One of the traditional and general goals of belief updates is dealing with new information
that might contradict current knowledge. As shown in the survey of Chapter 4, a
number of researchers have put forward approaches to update knowledge coded in ASP.
However, there are particular rare challenging (even so possible) situations that might
lead to counterintuitive models of the environment that have been subject of recent
research and matter of formulation of new principles. Some of the latest proposals to
overcome such missing properties have appeared in [Alferes et al., 2005; Guadarrama,
2008c; Osorio and Zacarías, 2003, 2004] and the properties, amongst others, are compiled
in a literature-review unit, in Chapter 2 and summarised in Appendix A.

In particular, although most of those proposals have a strong ASP foundation, some
of them are highly dependent on the syntax of the programs, which leads to counterin-
tuitive results. In general, they do not observe the basic set of structural properties for
updates discussed in Chapter 4, although their original goals are to provide an update
characterisation to their particular proposes.

Having said that, this chapter consists of a set of properties to be met and a basic
alternative method to overcome those deficiencies in current approaches mentioned in
Chapter 4. The general feature in this proposal is to depend upon the logical contents of
programs rather than on their syntax, based on a formalism introduced in Section 3.6:
Generalised Answer Sets by Kakas and Mancarella and employed in [Balduccini and
Gelfond, 2003]. Such a formalism shall prove to be a foundation to characterise a basic
method of relaxation by two main structural properties: Weak Irrelevance of Syntax and
Strong Consistency. Other relevant properties are also a basis to an extended particular
formulation in Chapter 7. Additionally, Section 6.3 includes an alternative to compute
Minimal Generalised Updates by Preferred Answer Sets on Ordered-disjunctive Logic
Programming, ODLP in [Brewka, 2002; Brewka et al., 2002], by means of a translation.

Last but not least, it good to recap that, for historical and practical reasons, we call
these frameworks update semantics without an explicit difference between belief revision
and updates. The technical difference has been introduced in Section 2.4 and shall be
made explicit in upcoming chapters. Meanwhile, let us analyse the problem of syntax

95

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

dependency in the next sections.

6.1 Model Choice

Over the last years several approaches have been formulated to update logic programs
in Answer Set semantics [Alferes et al., 2005, 1999; Eiter et al., 2000a, 2005; Osorio
and Zacarías, 2003, 2004; Sakama and Inoue, 1999, 2003; Zhang, 2006; Zhang and Foo,
2005]. As already explined in Chapter 4, most of these works are based upon particular
notions of a (refined) causal rejection of rules by [see Alferes et al., 2005, 1999], which
enforces that, in case of conflicts between rules, more recent rules are preferred and older
rules are overridden. Such a principle has been particularly studied by [Eiter et al.,
2000a,b, 2001, 2002] and reformulated by Alferes et al.1, although its new formulation
still remains limited —Section 4.2. Other approaches are not that explicit in using a
syntactical approach but they do follow it, as introduced in Chapter 4.

Inspired by the studies of the above citations and in particular from [Osorio and
Zacarías, 2004], this section comprises an alternative solution to the latter, as an ap-
plication of a formalism called Minimal Generalised Answer Sets, MGAS, introduced in
Section 3.6.

It is worth noting that this chapter just considers update pairs rather than update
sequences, as an introduction of the proposed properties and of a method to depend upon
models. Notwithstanding, this chapter shows the basic formulation to relax knowledge
bases and to compute them with ODLP. It also leads to an extension, in Chapter 7, as
a study to update sequences of knowledge bases.

Formally, an update pair is a tuple (Π1,Π2) of logic programs over A if and only if
A represents the set of atoms occurring in Π1 ∪Π2.

As a consequence, an update program corresponds to an abductive program from the
pair, as expressed in the following statement.

Definition 6.1 (�-Update Program). Given an update pair Π = (Π1,Π2) of extended
logic programs over a set of atoms A, an update program Π� = Π1 � Π2 corresponds
to the abductive program 〈Π′ ∪ Π2,A∗ 〉, where A∗ extends A by new unique abductive
atoms and Π′ is constructed as follows:

(i) all constraints in Π1.

(ii) for each non-constraint rule ρ ∈ Π1 there is a unique abducible α (a new atom) and
the rule is replaced by Head(ρ)← Body(ρ),¬α.

1Note that [Alferes et al., 2005] uses a refined principle of rejection of rules to overcome some of
the drawbacks pointed out in this work, but they have to make particular transformations in order to
be classified in Answer Set Programming. Unfortunately, the ASP does not seem to be reflected in the
class of updating programs used at the front end, for their ultimate goal seems to be Well Founded
Semantics.

96

TU-Clausthal 6.1 Model Choice

where � represents the the corresponding update operator.

In order to illustrate this method, see Π′ in Example 6.1.
Next, the following definition states the interpretation of such an update program.

Definition 6.2 (�-update Answer Set). Let Π = (Π1,Π2) be an update pair over a set
of atoms A. Then, S ⊆ A is an update answer set of Π if and only if S = S ′ ∩ A for
some minimal generalised answer set S ′ of Π.

The following example illustrates a daily update regarding energy flaw, and it is an
adaptation from the original examples in [Alferes et al., 1999] and [Eiter et al., 2002].

Example 6.1.

Π1 = {sleep ← ¬tv(on)

night ← >

watch(tv) ← tv(on)

tv(on) ← >}

Π2 = {∼tv(on) ← power(failure)

power(failure) ← >}

By following Observation 4.1, the single answer set of Π1 / Π2 (under [Eiter et al.,
2002] approach) is just as one would expect:

{power(failure),∼tv(on), sleep, night} (6.1)

On the other hand, by codifying this example under � operator, Π1 is transformed
as follows: for each rule in Π1, there is a new atom from the set of abducibles A∗. Next,
each abducible ought to be default-negated and appended to the body of every rule in
Π1. As a consequence, the update program is the abductive program 〈Π′ ∪ Π2,A∗ 〉,
where A∗ = {α1, α2, α3, α4} and

Π′ ∪Π2 = {sleep ← ¬tv(on),¬α1

night ← ¬α2

watch(tv) ← tv(on),¬α3

tv(on) ← ¬α4

∼tv(on) ← power(failure)
power(failure) ← >}

whose unique update answer set, out of the unique MGAS

{night , sleep, power(failure),∼tv(on)}{∼α1 ,∼α2 ,∼α3 ,α4 }

97

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

coincides with (6.1).
As Example 1.1 shows in Chapter 1, there are some particular cases that most

current semantics solve in a counterintuitive way, like introducing extra models where
one would not expect1. However, the operator presented in this chapter can already
cope with them.

Example 6.2 (continued). Suppose the same update pair as in Example 1.1. Under the
approach just presented in this chapter, Π1�Π2 is the abductive program transformation
〈Π′ ∪Π2,A∗ 〉 where A∗ = {α1, α2, α3, α4} and

Π′ ∪Π2 = {day ← ¬night ,¬α1

night ← ¬day ,¬α2

see(stars) ← night ,¬cloudy ,¬α3

∼see(stars) ← ¬α4

stars ← constellations

constellations ← stars}

The MGAS of this program is {∼stars, day}{∼α1,∼α2,∼α3,∼α4,∼α5,∼α6} and the sole update
answer set: {∼stars, day} that coincides with our intuition.

After having seen a couple of examples, the following section consists of a set of
generalised fundamental properties properties. Many more examples may be tested au-
tomatically via online at http://www2.in.tu-clausthal.de/~guadarrama/updates/
pairs.html.

6.2 Structural Properties for Updates in ASP

As above mentioned, this chapter is a proposal of just a small set of fundamental
properties an update semantics ought to meet, but they should serve as an initial basis
of further extensions, like in Chapter 7.

An appropriate complete motivation for this section has already been introduced in
Chapter 4 and this set of properties highlights the main difference with other proposals,
in particular with the ones in such chapter.

The main contribution of this chapter is a method to update knowledge bases de-
pending upon the semantical contents rather than syntactical approaches to discard
conflicting clauses. Such a goal may be coded into a set of structural properties hereby
introduced and characterising �-operator to perform updates and to overcome the prob-
lems discussed in Chapter 4.

1See Chapter 4 for further discussions.

98

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html

TU-Clausthal 6.2 Structural Properties for Updates in ASP

�-SP-2, Initialisation [Eiter et al., 2002]: ∅ �Π ≡ Π.

This property states that the update of an initial empty knowledge base yields
just the update itself.

�-SP-3, Inertia: If Π is consistent, Π� ∅ ≡ Π.

A consistent theory is in effect unless new evidence states otherwise.

�-SP-4, Idempotence [Eiter et al., 2002]: Π�Π ≡ Π.

This property means that the update of program Π with itself has no effect.

�-SP-6, Non-interference, WNI: [Eiter et al., 2002]: If Π1 and Π2 are programs
defined over disjoint alphabets, and either both of them have answer sets or not,
then Π1 �Π2 ≡ Π2 �Π1.

This property is a specialisation from Eiter et al.’s and implies that the order of
updates that do not interfere with each other, does not matter.

�-SP-7, Augmented Update [Eiter et al., 2002]: If Π1 ⊆ Π2 then Π1�Π2 ≡ Π2.

Updating with additional rules makes the previous update obsolete.

�-SP-8, Strong Consistency, SC: If Π1 ∪Π2 is consistent, then Π1�Π2 ≡ Π1 ∪Π2.

The update coincides with the union when Π1 ∪Π2 is consistent. This property
corresponds to Bordiga’s principle, studied by [Katsuno and Mendelzon, 1991b].

�-SP-9, Weak Irrelevance of Syntax, WIS: Let Π, Π1, and Π2 be logic programs
under the same language. If TN2 (Π1) ≡N2 TN2 (Π2) then Π�Π1 ≡ Π�Π2.

It means that if we update a program Π with Π1 or with Π2, the result should
depend upon the logical contents of Π1 and Π2, rather than the particular syntax
to spell them.

This property corresponds to Dalal’s Principle of Irrelevance of Syntax, studied
in [Katsuno and Mendelzon, 1991b], and it says that if one updates a program Π
with Π1 (or Π2), the result should depend upon the logical contents of Π1 (or Π2),
and not on the particular syntax employed to write Π1 (or Π2).

The following result is a formal contribution of this chapter.

Theorem 6.1. �-operator satisfies Structural Properties �-SP-2 to �-SP-9.

Proof. �-SP-2, Initialisation: ∅ �Π ≡ Π.

∅ � Π has the update program 〈 ∅ ∪ Π, ∅ 〉, whose MGAS’sM∅ correspond to the
answer setsM of Π. Hence, ∅ �Π ≡ Π.

�-SP-3, Inertia: If Π is consistent, Π� ∅ ≡ Π.

Π � ∅ has the update program 〈Π′ ∪ ∅, ∅ 〉, whose MGAS M∅ correspond to the
answer setsM of Π′. Therefore, Π� ∅ ≡ Π.

99

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

�-SP-8, Strong Consistency: If Π1∪Π2 has at least one answer set, then Π1�Π2 ≡
Π1 ∪Π2.

AssumeM is an answer set of Π1 ∪Π2. Then,M is the same model of Π1 �Π2.
As Π1 � Π2 = 〈Π′ ∪ Π2,A∗ 〉, and an answer set of Π′ ∪ Π2 ∪ {H ← > | H ∈
∆} is M2(∆), then an MGAS of 〈Π′ ∪ Π2,A∗ 〉 is M2(∅). Then the literals in
L〈Π′∪Π2,A∗ 〉 ∩A∗ are never positive and Π′ is an ordinary extended logic program
that coincides with Π1. Therefore, Π1 �Π2 ≡ Π1 ∪Π2.

�-SP-4, Idempotence: Π�Π ≡ Π.

Suppose Π has answer sets. Then, Π∪Π does too (namely the same). By Strong
Consistency, Π � Π ≡ Π ∪ Π ≡ Π. Suppose Π does not have answer sets. Then
Π�Π has the update program 〈Π′∪Π,A∗ 〉 that does not have generalised answer
sets either. Thus, Π ≡ Π�Π.

�-SP-9, Weak Irrelevance of Syntax: Let Π, Π1, and Π2 be logic programs under
the same language. If TN2 (Π1) ≡N2 TN2 (Π2) then Π�Π1 ≡ Π�Π2.

Suppose TN2 (Π1) ≡N2 TN2 (Π2), and each Π ∪ Π1 and Π ∪ Π2 have at least an
answer set. By Strong Consistency, Π�Π1 ≡ASP Π∪Π1 and Π�Π2 ≡ASP Π∪Π2.
Thus, TN2 (Π ∪ Π1) ≡N2 TN2 (Π ∪ Π2). Therefore, if TN2 (Π1) ≡N2 TN2 (Π2), then
Π�Π1 ≡ASP Π�Π2.

�-SP-7, Augmented Update: If Π1 ⊆ Π2 then Π1 �Π2 ≡ Π2.

Suppose Π1 ⊆ Π2 and that both Π1 and Π2 have answer sets. This means that
Π1∪Π2 = Π2. By Strong Consistency, Π1�Π2 = Π2. Suppose Π1 ⊆ Π2 and that
at least one of them has no answer sets. By Π1 ∪ Π2 = Π2, Π2 never has answer
sets. Thus, the update program 〈Π′1 ∪Π2,A∗ 〉 never has generalised answer sets.
In each case, Π2 ≡ Π1 �Π2.

�-SP-6, Non-interference: If Π1 and Π2 are programs defined over disjoint alphabets,
and either both of them have answer sets or do not, then Π1 �Π2 ≡ Π2 �Π1.

Assume that Π1 and Π2 are defined over disjoint alphabets and that both Π1 and
Π2 have at least an answer set. Then, Π1 ∪ Π2 has at least an answer set too.
Thus, by Strong Consistency, Π1 � Π2 ≡ Π1 ∪ Π2 ≡ Π2 ∪ Π1 ≡ Π2 � Π1. Now
suppose that both Π1 and Π2 have no answer sets. Then, the update program
〈Π′1 ∪ Π2,A∗ 〉 never has generalised answer sets. Thus, Π1 � Π2 ≡ Π2 � Π1 in
either case.

100

TU-Clausthal 6.3 Computing Updates with ODLP

These are the properties considered as fundamental for a proper semantics for up-
dates. Further properties are left to a more general semantics. Moreover, Appendix A
summarises semantics versus properties, seen along this thesis.

Following the reader can find a general formal description of an implementation of
this operator, as well as the implementation itself at http://www2.in.tu-clausthal.
de/~guadarrama/updates/pairs.html.

6.3 Computing Updates with ODLP

As an important element of Logic Programming that distinguishes it over other the-
oretical approaches, this section comprises both foundation and software tools of the
implementation of this semantics, coming from Ordered-disjunctive Logic Programming,
introduced in Section 3.5. 1

Ordered-disjunctive Logic Programming, ODLP by [Brewka, 2002; Brewka et al.,
2004], is an extension to ELP’s and may be defined in broad way as follows: a simple
ordered-disjunction program is a set of rules of form

C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

where Ci, Aj and Bl are all ground literals. C1, . . . , Cn are usually named the choices
of a rule and their intuitive reading is as follows: The ordered disjunction is used only
in rule heads to select some of the answer sets of a program as the preferred ones. If
C1 is possible, then C1; if C1 is not possible, then try C2; . . . ; if neither Ci, . . . , Cn−1

is possible then try Cn. Moreover, one may identify some special cases such as: if
n = 0 the rule is a constraint; and finally, facts are those rules where m = k = 0. In
the particular case of this dissertation, the required codification of ordered disjunctive
programs shall be just n = 2,m = k = 0, as in Section 6.3.5.

6.3.1 ODLP-reduct

In particular, there is a reduct of ODLP-rules with respect to a set of literals, as well as
a reduct of ODLP-programs:

Definition 6.3 (×-reducts, [Brewka et al., 2004]). Let

ρ = C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

be a rule andM a set of literals. Then, the ×-reduct ρM× of ρ is defined as

ρM× = {Ci ← A1, . . . , Am | Ci ∈M and

M∩ {C1, . . . , Ci−1, B1, . . . , Bk} = ∅}.
1For complete formal definitions on ODLP please refer to Section 3.5.

101

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

Let Π be an ODLP. The ×-reduct ΠM× of Π is defined as:

ΠM× =
⋃
ρ∈Π

ρM× .

One may compute the answer sets of a ×-reduct, ΠM× as possible interpretations of
an ODLP, by means of the following proposition.

Proposition 6.1 ([Brewka et al., 2004]). Let Π be an ODLP and M a set of literals.
Then,M is an answer set of Π if and only if the following three conditions hold:

1. M = Cn(ΠM×),

2. M is consistent, and

3. M satisfies every rule ρ ∈ Π.

Finally, the models of an ODLP are defined in terms of preferred answer sets in
at least three categories with respect to its satisfaction degree. Namely, cardinality-
preference, inclusion-preference and paretto-preference. In this dissertation, the focus is
on the first two of them, as later explained in Section 6.3.5 and Section 8.4.1.

6.3.2 ODLP-semantics

Before introducing semantics to characterise ODLP’s, it is necessary to define what a
satisfaction degree is.

Definition 6.4 (Degree of satisfaction, dM(ρ) [Brewka et al., 2004]). Let M be an
answer set of an ODLP. The satisfaction degree dM(ρ) byM of a rule ρ of form

C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

• is 1 if Aj /∈M, for some j, or Bi ∈M for some i;

• is j with 1 ≤ j ≤ n, if all Aj ∈M, no Bi ∈M, and

j = min{r | Cr ∈M}

With the degree of satisfaction, one can define many preference relations, as the
ones suggested by Brewka et al.. For that purpose, they also define the set of rules with
a degree of satisfaction as follows: Given a set of literals M, let Mi(Π) = {ρ ∈ Π |
dM(ρ) = i}.

102

TU-Clausthal 6.3 Computing Updates with ODLP

Definition 6.5 (Cardinality Preference [Brewka et al., 2004]). Let M1 and M2 be
answer sets of an ODLP, Π. Then, M1 is cardinality-preferred to M2 (denoted as
M1 >c M2) if and only if there is an i such that |Mi(Π)1| >c |Mi(Π)2|; and for all
j < i and |Mj(Π)1| = |Mj(Π)2|.

In other words, model M1 is cardinality-preferred to M2 from program Π if and
only if there is a satisfaction degree for which a set of rules satisfied by M1 is bigger
than the set of rules satisfied byM2. The inclusion preference has a similar intuition:

Definition 6.6 (Inclusion Preference [Brewka et al., 2004]). LetM1 andM2 be answer
sets of an ODLP, Π. Then,M1 is inclusion-preferred toM2 (M1 >iM2) if and only
if there is an i such thatMi(Π)2 ⊂Mi(Π)1; and for all j < i andMj(Π)1 =Mj(Π)2.

Brewka et al. also state the following important relation.

Proposition 6.2 (Brewka et al.). Let M1 and M2 be answer sets of an ODLP, Π.
ThenM1 >iM2 implies thatM1 >cM2.

Finally, the indented models of an ODLP are called k-preferred answer sets and are
based on the satisfaction degree and the preference criterion. Formally,

Definition 6.7 (Preferred Answer Sets, Brewka et al.). A set of literals M is a k-
preferred answer set (where k ∈ {c, i}) of an ODLP, Π, if and only if M is an answer
set of Π and there is no answer setM′ of Π such thatM′ >kM.

There are more preference criterions, but the two definitions just introduced are the
most relevant to this dissertation.

6.3.3 ODLP and Weak Constraints

There is a very-interesting alternative to preferred answer sets by means of weak con-
straints. For this end, Brewka et al. have found a relation between them. They propose
a translation of a normal logic program Π with weak constraints into an ODLP, Π′, by
replacing every weak constraint ω of form (3.6) —with w = p = 1— into the following
pair of rules:

αω ×∼αω ← > (6.2)
⊥ ← αω, b1, . . . , bk,¬bk+1, . . .¬bm (6.3)

where αω is a new atom that denotes the constraint ω is not violated.
Accordingly, Brewka et al. state that ω-preference corresponds to c-preference be-

cause the amount of violated weak constraints is exactly the same amount of rules
satisfied to the second degree [Brewka et al., 2004]. Such correspondence may be useful
for the implementations of both Section 6.3.5 and Section 8.4.2, in upcoming chapters.

103

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

6.3.4 ODLP-solver

Finally, as one of the distinguishing features of logic programming, it is very important
to notice that PSmodels1 is an ODLP implemented prototype [Brewka et al., 2002], which
consists of an extension to SMODELS2 [Niemela and Simons, 1997] to compute preferred
stable models of normal logic programs. However, it is also important to point out that
the sources themselves need some debugging3.

PSmodels, in a bug-free implementation however, should compute preferred stable
models (also known as k-preferred answer sets) of normal logic programs under ODLP
and should be considered when thinking of implementing the update semantics proposed
in this dissertation.

One of the features of PSmodels is to tell how many times the test program has been
invoked to check whether a stable model of a given ODLP is a preferred one. Besides
the original implementation sources available at the author’s sites, there is a compiled
online front-end running at http://www.in.tu-clausthal.de/~guadarrama/updates/
psmodels.html that provides the original compiled PSmodels to run as an Internet
service in a webpage, rather than the classical online run. This overcomes the need to
download it, compile it and run it locally.

In order to compute the MGAS’s of an abductive logic program, there is a translation
from [Osorio et al., 2004] to realise it in ODLP and the translation goes as follows.

6.3.5 Translating into ODLP

The following function is a version of the one by Osorio et al. in my own notation, that
takes an abductive logic program and translates it into an ordered-disjunctive one.

Definition 6.8 (Ordered Translation, O [Osorio et al., 2004]). Let 〈Π,A∗ 〉 be an ab-
ductive logic program. A translation into an ordered program, denoted as O(Π,A∗),
consists of the following. For any literal ` ∈ A∗, the clause ρα is a rule of the form
α′ × α← >, where α′ is a literal that does not occur in the original abductive program.
Then, O(Π,A∗) = Π ∪ {ρα | α ∈ A∗}.

The intuition behind this is to take an abductive program and to append the abduc-
tive atoms (in a form of ODLP rules) to its ELP program. Then, the resulting union is a
regular ODLP program. The following example, borrowed from [Osorio et al., 2004] who
in turn was inspired by Balduccini and Gelfond’s, illustrates the just defined translation.

1The sources may be downloaded from http://www.tcs.hut.fi/Software/smodels/priority
and there is a graphical user front end at http://www.in.tu-clausthal.de/~guadarrama/updates/
psmodels.html that allows to execute preferred logic programs online.

2This solver may be downloaded from http://www.tcs.hut.fi/Software/smodels/ and run via
online with a graphical user front end at http://www.in.tu-clausthal.de/~guadarrama/updates/
smodels.html.

3For instance, Version 2.26a will crash with a simple program like {a.}.

104

http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.tcs.hut.fi/Software/smodels/priority
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html
http://www.tcs.hut.fi/Software/smodels/
http://www.in.tu-clausthal.de/~guadarrama/updates/smodels.html
http://www.in.tu-clausthal.de/~guadarrama/updates/smodels.html

TU-Clausthal 6.3 Computing Updates with ODLP

Example 6.3 ([Osorio et al., 2004]). Suppose the abductive program 〈Π, {q, s, t} 〉 where

Π = {p ← ¬q

r ← ¬s

q ← t

s ← t

⊥ ← p, r}

The corresponding ordered program O(Π, {q, s, t}) is then

{q′ × q ← >

s′ × s ← >

t′ × t ← >

p ← ¬q

r ← ¬s

q ← t

s ← t

⊥ ← p, r}

with three preferred answer sets: {s, t, q, q′, s′}; {r, q, s′, t′}; {p, s, q′, t′}. Note that Π
is inconsistent. However, the new ordered program is now consistent.

Last, the generalisation of this translation proves to be correct, with a slight correc-
tion of a typo from the original lemma:

Lemma 6.1 ([Osorio et al., 2004]). M∩LΠ is a generalised answer set of an abductive
program 〈Π,A∗ 〉 if and only ifM is a preferred answer set of O(Π,A∗)

and the validity of set inclusion in ODLP:

Theorem 6.2 ([Osorio et al., 2004]). Let 〈Π,A∗ 〉 be an abductive program and M a
set of atoms. M∩ LΠ is a minimal generalised answer set of the abductive program if
and only ifM is an i-preferred answer set of O(Π,A∗).

Now it is easy to see how to use ODLP to update an extended logic program with
� operation.

105

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

6.3.6 Updating with ODLP

Finally, this translation proves to be useful for the context of updates in MGAS with
the following formalisation.

Definition 6.9 (Ordered Disjunctive Update Program). Given an update program
Π� = Π1 � Π2 over a set of atoms A, and its corresponding abductive program 〈Π′ ∪
Π2,A∗ 〉, its Ordered-disjunctive Update Program corresponds to

O(Π′ ∪Π2,A∗)

The following examples illustrate how this translation works and how it can be
computed with ODLP.

Example 6.4 (continued). Consider Example 6.1 again, with its corresponding abduc-
tive program 〈Π′ ∪ Π2,A∗ 〉, whose ODLP transformation, by Definition 6.8, consists
of

O(Π′ ∪Π2,A∗) = {α′1 × α1 ← > α′2 × α2 ← >

α′3 × α3 ← > α′4 × α4 ← >

sleep ← ¬tv(on),¬α1

night ← ¬α2

watch(tv) ← tv(on),¬α3

tv(on) ← ¬α4

∼tv(on) ← power(failure)

power(failure) ← >}

By Theorem 6.2, the minimal generalised answer sets of every abductive program
〈Π,A∗ 〉 correspond to the intended models of some ordered disjunctive program Π′

that can be easily run on a computer. As a result, the unique preferred answer set
of such an ODLP program,

{sleep, α′1,night , α′2, α
′
3, α4,∼tvon, pfailure}

coincides with our intuition.
Another interesting experiment is one that has to do with an update with vacuous

information.

Example 6.5 (continued). Consider Example 1.1 and Example 6.2 again. The trans-

106

TU-Clausthal 6.4 Conclusions for Chapter 6

lation in this particular case corresponds to the following ordered disjunctive program.

O(Π′ ∪Π2,A∗) = {α′1 × α1 ← > α′2 × α2 ← >

α′3 × α3 ← > α′4 × α4 ← >

day ← ¬night ,¬α1

night ← ¬day ,¬α2

see(stars) ← night ,¬cloudy ,¬α3

∼see(stars) ← ¬α4

stars ← constellations

constellations ← stars}

By executing this program in PSmodels on inclusion-based criterion, its sole pre-
ferred answer set is {α′1 , α′2 , day , α′3 , α

′
4 ,∼see(stars)}, which coincides with our in-

tuition.
As an expected result, this kind of translation led to an implemented system1 at

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html. See also Sec-
tion B.1 for further alternatives.

6.4 Conclusions for Chapter 6

This chapter is a preliminary study of one of the major drawbacks in existing update
semantics of ASP programs and comprises a relaxation method to overcome them. Such
a drawback is mainly due to the strong syntax-oriented techniques employed in other
approaches. As a result, this chapter has introduced a basic set of relevant properties to
be met, in particular Weak Irrelevance of Syntax and Strong Consistency. In addition
to that, the chapter includes a method for relaxing an original knowledge base so that
it is flexible-ehough to cope with new possibly-conflicting information upcoming from
a changing environment.

In particular, the proposed method produces a new resulting knowledge base of
merging the relaxed one with the update, which is an abductive logic program. Out of the
new abductive knowledge-base, one can draw a minimal set of conclusions, according to
a minimal-change principle and to a preference relation between the relaxed knowledge-
base and the update.

One of the existing mechanisms to interpret the resulting knowledge base is to
compute the MGAS’s of the merged base, which can also be translated into an ODLP
preference program, here introduced. In consequence, the use of ODLP is three-fold: it

1This implementation is due to the student B. Fuhrmann.

107

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html

Chapter 6. Relaxing Knowledge-bases J.C.A.Guadarrama

can be used to compute MGAS’s, abductive programs, and updates of logic programs,
which is of great interest for its proposed solver.

Finally, this method proves to overcome problems of syntax-oriented approaches
for its model-orientation, satisfying key properties that preserve the logical contents of
knowledge bases. Such properties and operational semantics make the framework a
strong foundation for the rest of the thesis.

108

Chapter 7

Update Sequences

7.1 Introduction

A traditional and general goal of belief updates1 is dealing with contradictory infor-
mation or with new data from a changing environment. As a result, several proposals
(refer to Chapter 4) have been formulated to update sequences of logic programs. Ac-
cording to these semantics, knowledge is given by a sequence of logic programs where
each program is considered an update of the previous one.

All of these semantics are based on the notion of causal rejection of rules—Section 4.2—
, which enforces that, in case of conflicts between rules, more recent rules override older
ones [Alferes et al., 2005, 1999; Eiter et al., 2000a]. However, there are particular rare
challenging (even so possible) situations that might lead to counterintuitive models of
knowledge that have been subject of recent research and matter of formulation of new
principles. As a preliminary result to solve these particular situations, Guadarrama;
Guadarrama et al.; Osorio and Zacarías have proposed approaches based upon the log-
ical contents of programs rather than the syntactical causal rejection of rules, and that
approach is the main core of Chapter 6. Nevertheless, despite the capability to overcome
counterintuitive results of unforeseen situations, the main drawback of the semantics
pointed out in that chapter is the limitation to only one update.

In need of a correct way to represent dynamic knowledge, some authors like Eiter
et al.; Sakama and Inoue; Zhang and Foo made their foundations on Answer Set Pro-
gramming (See Section 3.1) —or simply ASP— for being one of the most solid and
studied semantics for logic programs up to the last decades, as introduced in Chapter 4.
In addition and as an alternative, Alferes et al. proposed an approach of DyLP on Well-
founded Semantics (WFS) [Alferes et al., 2005, 1999], which may be less complex than
ASP (see [Dix, 1995b] for a deeper comparison), but also less representative.

The original problem discussed earlier in Chapter 6 is that most of the mentioned
approaches are founded on their causal rejection principle that leads to counterintuitive

1Notice that in practice, computing researchers call it updates although the difference with belief
revision is both technical and philosophical! See Section 2.4 and Section 7.3 for further details.

109

Chapter 7. Update Sequences J.C.A.Guadarrama

behaviour under certain circumstances, like redundancy or tautological updates. In order
to illustrate this claim, consider the following theory, proposed to solve a very similar
problem in [Alferes et al., 2005], describing a particular situation of the sky.

Example 7.1. [From Example 1.1]
Suppose an agent who believes that when it is day it is not night and vice versa, and

that there are stars when it is night and when there are no clouds. Finally, that at the
current moment it is a fact that there are no stars. This simple story may be coded1

into Π1 as follows:

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼ stars ← >}

whose unique answer set is {day ,∼stars}. Later, the agent acquires new information
stating that stars and constls (constellations) are the same thing, as coded in Π2. As
soon as the agent updates Π1 with program

Π2 = {stars ← constls

constls ← stars}

the expanded alphabet of the two programs contains only one new extra atom with
respect to Π1: constls. As the model of Π2 is obviously the empty answer set, constls is
considered synonym of stars by means of Π2, and thus the update should not change the
original beliefs. However, the update yields an extra answer set in some of the existing
update semantics based on the causal rejection principle —Section 4.2:

{stars, constls,night}

which does not coincide with common intuition.
The reason is that, although stars can not be true, introducing constls gives another

possibility for stars to be true. Thus, the additional answer set is implied.
In general, these supplementary rules in the update are a conservative extension

[Osorio et al., 2001] to Π1: the original language is extended and all answer sets ought
to be extensions of the old answer sets. In this specific situation, constls should be true

1Notice that there are other ways to represent the story. The problem is, however, what to do in
this particular situation, when the agent runs across this piece of information.

110

TU-Clausthal 7.2 ⊗-Operation

if and only if stars is true.

A solution to the problem is a semantics based upon Generalised Answer Sets —
introduced in Section 3.6— that satisfies several structural properties, overcoming the
above problems from the proposals analysed in Chapter 4.

In this chapter, the reader can find a particular case of the framework introduced in
Chapter 6 to perform sequences of updates, that overcomes the referred disadvantages
of the causal-rejection principle. In addition, this chapter includes a general description
to implement update sequences in Section 7.6 that leads to a running prototype, as
well as tools, methods, and directions to get the running solver itself, preceded by the
definition of the semantics in Section 7.2 and properties in Section 7.3. Finally, the
chapter ends with concluding remarks in Section 7.7.

7.2 ⊗-Operation

Intuitively, this approach consists in relaxing all rules in previous programs to the latest
update, with a unique abducible. As a result, a transformed relaxed program is part of an
abductive program, and the other part is the set of abducibles. Out of the corresponding
GAS’s of the abductive program, one may get the minimal with respect to its sequence
order —MSGAS. Finally, the expected model should expressed in its original alphabet
out of the MSGAS’s.

An α-relaxed rule is a rule ρ that is weakened by a default-negated atom α in its
body: Head(ρ)← Body(ρ)∪{¬α}. In addition, an α-relaxed program is a set of α-relaxed
rules.

In the particular case of sequences, there are both relaxed sequences and a relaxed
program, as formally expressed below.

The α-relaxed program of a sequence of ELP’s, (Π1,Π2, . . . ,Πn), over a set of atoms
A, is the set Π′ = Π′1 ∪ Π′2 ∪ · · · ∪ Π′n−1, where Π′i is the α-relaxed program of Πi by a
new unique abducible α /∈ A for each rule ρ ∈ Π1 ∪Π2 ∪ · · · ∪Πn−1 with 1 ≤ i ≤ n− 1,
and (Π′1,Π

′
2, . . . ,Π

′
n−1) is the corresponding α-relaxed sequence.

Moreover, it is necessary to set up an abductive program from the α-relaxed program
of an update sequence and establish an order to get the desired properties. The problem
consists in favouring those models that have the least number of abducibles at the
highest level of the sequence.

The functions introduced in Section 3.4 from DLV’s weak constraints have more gen-
eral characteristics and are a good candidate to figure out the problem. Its general
intuition consists in extending ASP to include constraints that may be violated. Ac-
cordingly, the goal of such an extended program is the optimal model(s) that violates
the minimal number of weak constraints at a certain priority level.

The goal of the main objective function, as called by Leone et al., is to simplify the
combination of weights in priority levels.

This function has a strong relation to GAS, as shown in Section 8.4.2. As a result, it
can be a basis to bring about a cardinality order, and simplified to the needs of update

111

Chapter 7. Update Sequences J.C.A.Guadarrama

sequences as follows.

Definition 7.1 (Abductive Sequence Order; MSGAS). Given an update sequence of
ELP’s, Π1⊗Π2⊗· · ·⊗Πn, over a set of atoms A with n as an integer; with its correspond-
ing α-relaxed sequence (Π′1,Π

′
2, . . . ,Π

′
n−1), where α ∈ A∗ and the α-relaxed program Π′;

and the abductive program ΠA∗ = 〈Π′ ∪Πn,A∗ 〉:

• w(l) =

1, l = 1

w(l − 1) · |A∗|+ 1 l > 1
where l is a positive integer.

• s(∆) =
∑n−1

l=1 (w(l) · |{α | α ∈ LΠ′l
}|), whereM(∆) is a GAS of ΠA∗ and α ∈ ∆.

• M(∆1) ≤S M(∆2) if and only if s(∆1) ≤ s(∆2).

• M(∆1) ≡S M(∆2) if and only if s(∆1) = s(∆2).

• M(∆) is a Minimal Sequenced Generalised Answer Set, MSGAS, of ΠA∗ if and
only ifM(∆) is minimal with respect to ≤S .

Let us illustrate this definition with the following simple sequence of updates:

Example 7.2. Suppose the sequence Π1 ⊗Π2 ⊗Π3 where

Π1 = {(a ← >), (b ← >)}

Π2 = {∼b ← >}

Π3 = {b ← b,¬c}

Its α-relaxed sequence

Π′1 = {(a← ¬α1), (b← ¬α2)}

Π′2 = {∼b← ¬α3}

and its α-relaxed program

Π′ = {(a← ¬α1), (b← ¬α2),

∼b← ¬α3}

112

TU-Clausthal 7.2 ⊗-Operation

The abductive program 〈Π′ ∪Π3,A∗ 〉 has the following GAS’s:

M(∆1) = {a,∼b}{α2}; M(∆2) = {∼b}{α1,α2};

M(∆3) = {a, b}{α3}; M(∆4) = {b}{α1,α3};

M(∆5) = {a}{α2,α3}; M(∆6) = {}{α1,α2,α3}

where

∆1 = {α2}; ∆2 = {α1, α2};

∆3 = {α3}; ∆4 = {α1, α3};

∆5 = {α2, α3}; ∆6 = {α1, α2, α3}

and each w has the following weights:

w(1) = 1;w(2) = 4

and the corresponding weights for each ∆ are

s(∆1) = 1; s(∆2) = 2;

s(∆3) = 4; s(∆4) = 5;

s(∆5) = 5; s(∆6) = 6

According to the sequence, the order of these GAS’s is

M(∆1) ≤S M(∆2) ≤S M(∆3) ≤S M(∆4) ≤S M(∆5) ≤S M(∆6)

Note thatM(∆5) ≤S M(∆4) holds as well! Then,M(∆4) ≡S M(∆5).
Finally, {a,∼b}{α2} is its unique MSGAS.

Strictly speaking, ≤S is a pre-order relation (also known as preorder and quasiorder)
because it is reflexive and transitive. However, ≤S is mapped into a total-order relation
of natural numbers that represent the weight of a preferred model —s(∆)— as shown
in Definition 8.6.

Intuitively, these orders are with respect to the latest update, postulates (R ∗ 1)
and (U~ 1) in Tables 2.5 and 2.6 and to a minimal change with respect to cardinality:
MSGAS. Such postulates are to be recapitulated later in depth, in Section 8.3.4.

Proposition 7.1. Abductive Sequence Order (≤S) is not an antisymmetric relation.

Proof. Consider the update sequence Π1⊗Π2⊗Π3 from Example 7.2, where two of its

113

Chapter 7. Update Sequences J.C.A.Guadarrama

GAS’s areM(∆4) = {b}{α1,α3} andM(∆5) = {a}{α2,α3}. Clearly,M(∆4) ≤S M(∆5)
andM(∆5) ≤S M(∆4). However,M(∆4) 6=M(∆5).

From Proposition 7.1 one can easily verify the following result.

Corollary 7.1. Abductive Sequence Order (≤S) is a total pre-order relation.

These are the necessary definitions to formulate an updating sequence of logic pro-
grams, proposed in this chapter. In short, the formulation consists in the transformation
of the update sequence into a single abductive program for which there is a set of pre-
ferred abducibles according to its order in the relaxed sequence. Finally, Update Answer
Sets are the models one expects from an updating sequence:

Definition 7.2 (⊗-update Answer Set). Given a ⊗-sequence of updating ELP’s Π1 ⊗
Π2⊗ · · ·⊗Πn, with n ≥ 2, over a set of atoms A, the set S ⊆ A is its ⊗-update answer
set if and only if S = S ′ ∩ A for some minimal sequenced generalised answer set S ′ of
the sequence, and ⊗ is the corresponding update operator.

Let us illustrate the entire framework with a couple of more examples.

Example 7.3. Suppose an update to Π1 with Π2, with Π3 with Π4 and with Π5, where
Π1 = {b ← >}; Π2 = {∼b ← >}; Π3 = {b ← b,¬c}; Π4 = {a ← >}; Π5 = {∼a ← >},
from which one would expect {∼a,∼b} as its unique update answer set. The abductive
program of the sequence corresponds to 〈Π′ ∪Π5,A∗ 〉, where A∗ = {α1, α2, α3, α4} and

Π′ = {b ← ¬α1 (7.1)

∼b ← ¬α2 (7.2)

b ← b,¬c,¬α3 (7.3)

a ← ¬α4} (7.4)

whose GAS’s are

M(∆1) = {∼a,∼b}{α1,α4}; M(∆2) = {∼a,∼b}{α1,α3,α4};

M(∆3) = {∼a, b}{α2,α4}; M(∆4) = {∼a, b}{α2,α3,α4};

M(∆5) = {∼a}{α1,α2,α4}; M(∆6) = {∼a}{α1,α2,α3,α4}

114

TU-Clausthal 7.2 ⊗-Operation

and

∆1 = {α1, α4}; ∆2 = {α1, α3, α4};

∆3 = {α2, α4}; ∆4 = {α2, α3, α4};

∆5 = {α1, α2, α4}; ∆6 = {α1, α2, α3, α4}

where each w has the following weights:

w(1) = 1;w(2) = 5;w(3) = 21;w(4) = 85

and the corresponding weights for each ∆ are

s(∆1) = 86; s(∆2) = 107;

s(∆3) = 90; s(∆4) = 111;

s(∆5) = 91; s(∆6) = 112

Next, its unique MSGAS clearly is M(∆1), and last, its update answer set is just
{∼a,∼b}, as one would expect.

Finally, the problem introduced in Example 1.1recapitulated in Example 7.1 and
solved in Example 6.2, can easily be modelled with this current sequencial approach:

Example 7.4. Consider the update sequence Π1⊗Π2 from Example 7.1, whose abductive
program may be coded into 〈Π′ ∪Π2,A∗ 〉.

Π′ = {day ← ¬night ,¬α1

night ← ¬day ,¬α2

stars ← night , ¬cloudy ,¬α3

∼stars ← ¬α4}

and A∗ = {α1, α2, α3, α4}.

When the abductive program is interpreted, there are 16 possible combinations (2|A∗|)

115

Chapter 7. Update Sequences J.C.A.Guadarrama

to include the abducibles with the following GAS’s in this case:

M(∆1) = {∼stars, α1, α2}; M(∆2) = {day ,∼stars};

M(∆3) = {day ,∼stars, α2}; M(∆4) = {day ,∼stars, α2, α3};

M(∆5) = {∼stars, α1, α2, α3}; M(∆6) = {day ,∼stars, α3};

M(∆6) = {night ,∼stars, α3}; M(∆7) = {night ,∼stars, α1, α3};

M(∆9) = {day , α2, α4}; M(∆10) = {day , α2, α3, α4};

M(∆11) = {, α1, α2, α4}; M(∆12) = {, α1, α2, α3, α4};

M(∆13) = {day , α3, α4}; M(∆13) = {night , α3, α4};

M(∆14) = {night , α1, α3, α4}; M(∆16) = {night , stars, constls, α4};

M(∆16) = {day , α4}; M(∆17) = {night , stars, constls, α1, α4}

where

∆1 = {α1, α2}; ∆2 = {};

∆3 = {α2}; ∆4 = {α2, α3};

∆5 = {α1, α2, α3}; ∆6 = {α3};

∆7 = {α1, α3}; ∆9 = {α2, α4};

∆10 = {α2, α3, α4}; ∆11 = {α1, α2, α4};

∆12 = {α1, α2, α3, α4}; ∆13 = {α3, α4};

∆14 = {α1, α3, α4}; ∆16 = {α4};

∆17 = {α1, α4};

Next, the corresponding weights for each w are

w(1) = 1;w(2) = 5;w(3) = 21;w(4) = 85

and the sums of the corresponding weights:

s(∆1) = 2; s(∆2) = 0; s(∆3) = 1;

s(∆4) = 2; s(∆5) = 3; s(∆6) = 1;

s(∆7) = 2; s(∆9) = 2; s(∆10) = 3;

s(∆11) = 3; s(∆12) = 4; s(∆13) = 2;

s(∆14) = 3; s(∆16) = 1; s(∆17) = 2

116

TU-Clausthal 7.3 ⊗-Properties

As a result, from the complete list of GAS, it is easy to realise that its unique MSGAS
is {∼stars, day}, and its update answer set S = {∼stars, day}, as one would expect.

This section consists of the main definitions of an update semantics for sequences of
programs and they have been illustrated with a series of examples. The following natural
step to understand this approach is by means of its main properties that characterise it
as a good candidate to represent dynamic knowledge.

7.3 ⊗-Properties
This section shows the main results of the semantics for update sequences that satisfies
basic structural properties introduced in Sections 6.2 and 6.2, as well as postulates of
Weak Irrelevance of Syntax and Strong Consistency, just as �-operator in Section 6.1.
Notwithstanding, this current ⊗-operator can already deal with multiple updates in a
sequence, as shown in Theorem 8.1 below.

As mentioned along the thesis, this set of properties can overcome the sort of prob-
lems introduced with Example 7.1 of having extra models when updating with either
redundant information or tautological rules. As a consequence, any semantics of logic
programs aimed to be generally accepted should meet at least the basic set of properties
introduced in Section 6.2 and summarised below.

Accordingly, one can formulate the following theorem with the properties interpreted
for and extended to sequences of updates.

7.3.1 Inconsistencies

Before proving theorem 7.1 for the called structural properties, it is necessary to intro-
duce some preliminary results of this work that have to do with inconsistencies. Firstly,
any consistent update to a knowledge base guaranties a consistent result. Formally,

Lemma 7.1 (⊗-weak consistency view). Suppose (Π1,Π2, . . . ,Πn) are ELP’s and an
update sequence Π1 ⊗ Π2 ⊗ · · · ⊗ Πn with its corresponding abductive program ΠA∗ =
〈Π′ ∪Πn,A∗ 〉. If Πn is consistent then ΠA∗ is consistent.

sketch. Suppose (Π1,Π2, . . . ,Πn) are ELP’s and Πn consistent. This means that 〈Π′ ∪
Πn,A∗ 〉 has a generalised answer set M(∆) out of answer sets of Π′ ∪ Πn ∪ {α ←
> | α ∈ ∆}, which is clearly consistent. Therefore, if Πn is consistent, ΠA∗ is also
consistent.

Corollary 7.2 (⊗-consistency Preservation). Suppose that (Π1,Π2, . . . ,Πn) are ELP’s.
The update sequence Π1 ⊗Π2 ⊗ · · · ⊗Πn is consistent if Πn is consistent.

Corollary 7.2 also proves to be useful to restore consistency from an originally in-
consistent knowledge base. This property is also known in the literature as Consistency

117

Chapter 7. Update Sequences J.C.A.Guadarrama

Preservation and is a general case of Sakama and Inoue’s inconsistency removal. Note
that the latter’s sole name confirms the syntactical orientation of their approach. More-
over, the latter requires that Π0 ⊗Π1 ⊆ Π0, which isn’t applicable to ⊗-operator.

As a result, the following proposition follows directly from Corollary 7.2.

Proposition 7.2 (consistency restoration). Suppose Π0 is an ELP’s. The update Π0⊗∅
is consistent.

Finally, the only reason to have an inconsistency in an ⊗-update sequence is by
having an inconsistent update:

Proposition 7.3. Suppose (Π1,Π2, . . . ,Πn) are ELP’s. If Π1 ⊗ Π2 ⊗ · · · ⊗ Πn has no
update answer sets, then Πn has no answer sets.

This preliminary results make a solid framework to introduce the main theorem of
this section: meeting the set of structural properties studied along this research.

7.3.2 Structural Properties

Before listing these properties, it is necessary to recall from Section 3.3 that the state-
ment Π1 ≡ Π2 that means that both Π1 and Π2 have the same answer sets —or
alternatively Π1 ≡ASP Π2. With an abuse of notation, when stating equivalence be-
tween update sequences, indeed it means that they have the same (or different) Update
Answer Sets. Last but not least, notice that equivalence between update sequences of
more than two programs seems to make sense at the level of weak equivalence rather
than strong, and that is because each update sequence means one and only one update.
As a consequence, there is no resulting knowledge base that might contain (in)complete
information. Finally, relevant background like Theorem 3.2 from Section 2.1.3, is also
necessary.

Accordingly, the set of structural properties to update sequences of ELP’s can be
listed as follows.

⊗-SP-1, Addition of Tautologies [Eiter et al., 2002]: If Π has only tautological
clauses of the form `← `, any consistent sequence

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

⊗-SP-2, Initialisation [Eiter et al., 2002]:

∅ ⊗Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

⊗-SP-3, Inertia: If Πn is consistent,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗ ∅ ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

118

TU-Clausthal 7.3 ⊗-Properties

⊗-SP-4, Idempotence: For any sequence Π1⊗Π2⊗· · ·⊗Πn with update answer sets,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

⊗-SP-6, Non-interference: If (Π1,Π2, . . . ,Πn) are programs defined over mutually
disjoint alphabets, then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Πn ⊗Πn−1 ⊗ · · · ⊗Π1

⊗-SP-7, Augmented Update [Eiter et al., 2002]: If Πx ⊆ Πy and Πy is consis-
tent, then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πx ⊗Πy ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy

⊗-SP-8, Strong Consistency, SC : If Π1 ∪ Π2 ∪ · · · ∪ Πn with n ≥ 2 is consistent,
then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ∪Π2 ∪ · · · ∪Πn

⊗-SP-8a, Weak Consistency, WC : If Πn ∪Πm is consistent,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ∪Πm ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πm

This is a particular case of property ⊗-SP-8, applicable to sequences of updates
with n > 2.

⊗-SP-9, Weak Irrelevance of Syntax, WIS: If TN2 (Πx) ≡N2 TN2 (Πy) then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πx ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy

This is the set of minimal structured properties, fully introduced in Section 6.2, that
an update semantics should meet in order to avoid counterintuitive results like the ones
in Example 1.1 and recappedin Example 7.4. With this collection one can formulate
the following theorem.

Theorem 7.1. Given a ⊗-sequence of update extended logic programs Π1⊗Π2⊗· · ·⊗Πn,
with n ≥ 2, over a set of atoms A, ⊗-operator satisfies properties ⊗-SP-1 to ⊗-SP-9.

Proof for Theorem 7.1. ⊗-SP-2, Initialisation: ∅ ⊗Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ⊗Π2 ⊗
· · · ⊗Πn.

∅⊗Π1⊗Π2⊗· · ·⊗Πn has the abductive program 〈 ∅∪Π′1∪Π′2∪· · ·∪Π′n−1∪Πn,A∗ 〉,
that is the same abductive program 〈Π′1∪Π′2∪· · ·∪Π′n−1∪Πn,A∗ 〉 from Π1⊗Π2⊗
· · ·⊗Πn and both of them have the same GAS’s, and the same MSGAS’s and thus

119

Chapter 7. Update Sequences J.C.A.Guadarrama

the same ⊗-update answer sets. Hence, ∅⊗Π1⊗Π2⊗· · ·⊗Πn ≡ Π1⊗Π2⊗· · ·⊗Πn

as required.

⊗-SP-3, Inertia: Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗ ∅ ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn.

Assume Πn consistent. Then Π1 ⊗ Π2 ⊗ · · · ⊗ Πn ⊗ ∅ has the abductive program
〈Π′1∪Π′2∪· · ·∪Π′n∪∅,A∗ 〉, which is logically equivalent to the abductive program
〈Π′1 ∪ Π′2 ∪ · · · ∪ Π′n,A∗ 〉 withM(∆) as its MSGAS. This means thatM(∆) ≤S
M(∆′) and that M(∆) is an answer set of Π′1 ∪ Π′2 ∪ . . .Π′n ∪ {α ← >} where
α ∈ ∆ and ∆ ∩ LΠ′n = ∅. Thus, s(∆) ≤ s(∆′) and w(x) ≤ w(n) for x < n,
which is clearly true. ThenM(∆) is also a MSGAS from the abductive program
〈Π′1 ∪ Π′2 ∪ · · · ∪ Πn,A∗ 〉 out of Π1 ⊗ Π2 ⊗ · · · ⊗ Πn. That means both update
sequences have the same ⊗-update answer sets. Therefore, Π1⊗Π2⊗· · ·⊗Πn⊗∅ ≡
Π1 ⊗Π2 ⊗ · · · ⊗Πn as required.

⊗-SP-8a, Weak Consistency: If Πn ∪Πm is consistent,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ∪Πm ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πm

Suppose Πn∪Πm is consistent. Then, Π1⊗Π2⊗· · ·⊗Πn⊗Πm has the abductive
program 〈Π′1∪Π′2∪ · · · ∪Π′n∪Πm,A∗ 〉 withM(∆) as its MSGAS. Since Πn∪Πm

is consistent, M(∆) ≤S M(∆′) with ∆ ∩ LΠ′n = ∅, and s(∆) ≤ s(∆′);w(x) ≤
w(n);x < n. Thus,M(∆) is the same MSGAS of the abductive program 〈Π′1 ∪

Π′2 ∪ · · · ∪Πn ∪Πm,A∗ 〉 out of Π1 ⊗Π2 ⊗ · · · ⊗Πn ∪Πm. This means that both
update sequences have the same ⊗-update answer sets. Therefore, Π1⊗Π2⊗· · ·⊗
Πn ∪Πm ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πm.

⊗-SP-8, Strong Consistency: If Π1 ∪ Π2 ∪ · · · ∪ Πn with n ≥ 2 is consistent, then
Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ∪Π2 ∪ · · · ∪Πn.

AssumeM is an answer set of Π1 ∪ Π2 ∪ · · · ∪ Πn and n ≥ 2. Then,M must be
the same model of Π1 ⊗Π2 ⊗ · · · ⊗Πn. As Π1 ⊗Π2 ⊗ · · · ⊗Πn has the abductive
program 〈Π′∪Πn,A∗ 〉, and an arbitrary answer set of Π′∪Πn∪{α← > | α ∈ ∆}
isM(∆), then the MSGAS’s of 〈Π′∪Πn,A∗〉 are justM(∅). Because the MSGAS is
M(∅), then the literals in L〈Π′∪Πn,A∗ 〉∩A∗ are not positive and Π′ is an ordinary
extended logic program whose semantics coincides with Π1 ∪ Π2 ∪ · · · ∪ Πn−1.
Therefore, Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ∪Π2 ∪ · · · ∪Πn, as required.

⊗-SP-1, Addition of Tautologies [Eiter et al., 2002]: If Π has only tautological

120

TU-Clausthal 7.3 ⊗-Properties

rules of the form `← `, any consistent sequence

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

Suppose Π1 ⊗Π2 ⊗ · · · ⊗Πn consistent. This means that Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π
has the abductive program 〈Π′1∪Π′2∪· · ·∪Π′n∪Π,A∗ 〉 that is logically equivalent
to 〈Π′1 ∪ Π′2 ∪ · · · ∪ Π′n,A∗ 〉 withM(∆) as its MSGAS. Then by ⊗-SP-3,M(∆)
are also the same MSGAS’s than the ones from the abductive program 〈Π′1 ∪
Π′2 ∪ · · · ∪ Πn,A∗ 〉, which is the abductive program of Π1 ⊗ Π2 ⊗ · · · ⊗ Πn. This
means both update sequences have the same ⊗-update answer sets. Therefore,
Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn, as required.

⊗-SP-4, Idempotence: For any sequence Π1⊗Π2⊗· · ·⊗Πn with update answer sets,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

Suppose Π1 ⊗Π2 ⊗ · · · ⊗Πn has update answer sets. Then, the update sequence
Π1 ⊗ Π2 ⊗ · · · ⊗ Πn ⊗ Π1 ⊗ Π2 ⊗ · · · ⊗ Πn has the ⊗-abductive program ΠA∗ =
〈Π′1∪Π′2∪· · ·∪Π′n−1∪Π′n∪Π′′1∪Π′′2∪· · ·∪Π′′n−1∪Πn,A∗ 〉 where Π′′z is the relaxed
program of Πz such that (Π′′z ∩A∗)∩ (Π′z ∩A∗) = ∅ and thus, the weakened rules
of Πz by Π′z are the same weakened rules by Π′′z in every GAS of ΠA∗ . Hence,
Π1 ⊗ Π2 ⊗ · · · ⊗ Πn ⊗ Π1 ⊗ Π2 ⊗ · · · ⊗ Πn ≡ Π1 ⊗ Π2 ⊗ · · · ⊗ Πn, as required.
Therefore, for a sequence Π1 ⊗Π2 ⊗ · · · ⊗Πn with update answer sets,

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

⊗-SP-9, Weak Irrelevance of Syntax: If TN2 (Πx) ≡N2 TN2 (Πy) then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πx ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy.

Suppose TN2 (Πx) ≡N2 TN2 (Πy) Then, Π1⊗Π2⊗· · ·⊗Πn⊗Πx and Π1⊗Π2⊗· · ·⊗
Πn⊗Πy have the respective abductive programs 〈Π′∪Πx,A∗ 〉 and 〈Π′∪Πy,A∗ 〉,
whose respective GAS’s come from programs Π′ ∪ Πx ∪ {α ← > | α ∈ ∆} and
Π′ ∪ Πy ∪ {α ← > | α ∈ ∆} with ∆ ⊆ A∗ and with the same set of abducibles.
By Theorem 3.2, Π′ ∪ Πx ∪ {α ← > | α ∈ ∆} ≡ Π′ ∪ Πy ∪ {α ← > | α ∈ ∆}.
Consequently, 〈Π′ ∪ Πx,A∗ 〉 and 〈Π′ ∪ Πy,A∗ 〉 have the same GAS’s, the same
MSGAS’s, and Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πx ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy, as required.

121

Chapter 7. Update Sequences J.C.A.Guadarrama

Therefore, if TN2 (Πx) ≡N2 TN2 (Πy), then Π1 ⊗ Π2 ⊗ · · · ⊗ Πn ⊗ Πx ≡ Π1 ⊗ Π2 ⊗
· · · ⊗Πn ⊗Πy.

⊗-SP-7, Augmented Update: If Πx ⊆ Πy and Πy is consistent, then Π1⊗Π2⊗· · ·⊗
Πn ⊗Πx ⊗Πy ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy.

Suppose Πy is consistent and Πx ⊆ Πy. This implies that Πx ∪ Πy = Πy and
Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy is logically equivalent to Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πx ∪Πy.
Then, by weak consistency, Π1⊗Π2⊗· · ·⊗Πn⊗Πx⊗Πy ≡ Π1⊗Π2⊗· · ·⊗Πn⊗Πy,
as required. Therefore, if Πx ⊆ Πy and Πy is consistent, then Π1 ⊗ Π2 ⊗ · · · ⊗
Πn ⊗Πx ⊗Πy ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗Πy.

⊗-SP-6, Non-interference: If (Π1,Π2, . . . ,Πn) are programs defined over mutually
disjoint alphabets, and either all of them are consistent or are not, then

Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Πn ⊗Πn−1 ⊗ · · · ⊗Π1

Assume that (Π1,Π2, . . . ,Πn) are defined over disjoint alphabets and that all of
them are consistent. Then, both Π1 ∪Π2 ∪ · · · ∪Πn and Πn ∪Πn−1 ∪ · · · ∪Π1 are
consistent too and by the commutative law on the union1 , they may have any
order. Thus, by Strong Consistency on any of the orders of the union, Π1 ⊗Π2 ⊗
· · · ⊗ Πn ≡ Π1 ∪ Π2 ∪ · · · ∪ Πn ≡ Πn ∪ Πn−1 ∪ · · · ∪ Π1 ≡ Πn ⊗ Πn−1 ⊗ · · · ⊗ Π1,
as required.

Now suppose that (Π1,Π2, . . . ,Πn) all are inconsistent. Then, the ⊗-update se-
quences Π1 ⊗ Π2 ⊗ · · · ⊗ Πn and Πn ⊗ Πn−1 ⊗ · · · ⊗ Π1 have their respective
abductive programs 〈Π′ ∪Πn,A∗ 〉 and 〈Π′ ∪Π1,A∗ 〉, which are clearly inconsis-
tent and Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Πn ⊗Πn−1 ⊗ · · · ⊗Π1 , as required.

Therefore, if (Π1,Π2, . . . ,Πn) are programs defined over disjoint alphabets, and
either all of them are consistent or not, then Π1 ⊗Π2 ⊗ · · · ⊗Πn ≡ Πn ⊗Πn−1 ⊗
· · · ⊗Π1.

This is the minimal set of properties considered as fundamental for a proper update
semantics as explained in Section 6.2, and ⊗-operator satisfies at least this collection of
properties.

One immediate result from Theorem 7.1 is the equivalence between an abductive
program of the form ΠA∗ in Definition 8.6 where Πn is also α-relaxed and another where
Πn is not relaxed. This is formally expressed in Proposition 7.4 as follows.

1Notice that associativity law does not apply to ⊗-operator.

122

TU-Clausthal 7.3 ⊗-Properties

Proposition 7.4 (Full Relaxation). Suppose (Π1,Π2, . . . ,Πn) are ELP’s and Πn consis-
tent. The abductive program 〈Π′1∪Π′2∪· · ·∪Π′n,A∗ 〉, out of the α-relaxed programs from
the sequence has the same MSGAS’s as the abductive program 〈Π′1 ∪Π′2 ∪ · · · ∪Πn,A∗ 〉
does.

Another nice property has to do with updates to inconsistent programs that shall
be formalised in upcoming sections. Meanwhile, consider the following update that
recovers consistency of a sequence with an inconsistency.

Example 7.5. Suppose an update to Π1 with Π2, and with Π3, where Π1 = {a← >},
Π2 = {(b ← >), (∼b ← >)} and Π3 = {}. Its abductive program corresponds to
〈Π′,A∗ 〉, where

Π′ = {a ← ¬α1

b ← ¬α2

∼b ← ¬α3}

and A∗ = {α1, α2, α3}, whose GAS’s are

M(∆1) = {a,∼b}{α2}; M(∆2) = {∼b}{α1,α2};

M(∆3) = {a, b}{α3}; M(∆4) = {b}{α1,α3};

M(∆5) = {a}{α2,α3}; M(∆6) = {}{α1,α2,α3}

∆1{α2}; ∆2{α1, α2};

∆3{α3}; ∆4{α1, α3};

∆5{α2, α3}; ∆6{α1, α2, α3}

and the corresponding weights for each w are

w(1) = 1;w(2) = 4.

Next, the corresponding sum of weights for each ∆ are

s(∆1) = 4; s(∆2) = 5;

s(∆3) = 4; s(∆4) = 5;

s(∆5) = 8; s(∆6) = 9

that lead to two MSGAS’s, {a,∼b}{α2}, {a, b}{α3} from which one can conclude that the

123

Chapter 7. Update Sequences J.C.A.Guadarrama

update answer sets are just {a, b}, {a,∼b}.

This example shows how to prevent a knowledge base from collapse due to an in-
consistency. One solution, as Example 7.5 shows, is introducing a disjunction until new
evidence supports either conclusion. Another solution, as in the following section, is
relaxing the updating program as well, which produces the same effect as in the example
above.

7.4 ⊗′-Operation
One may find more interesting results when analysing Proposition 7.4 and defining a
slight different construction to update sequences of EDLP’s. Such a difference consists
in relaxing not only the previous sequence to the update program, but also the update
program itself! That shall produce the same effect as in Example 7.5 above, as well
as interesting properties like updating with an inconsistency, formalised in Section 7.5
below, and compared in Appendix A.

Definition 7.3. Given an update sequence of ELP’s, Π1 ⊗′ Π2 ⊗′ · · · ⊗′ Πn, over a
set of atoms A with n as a natural number; with its corresponding α-relaxed sequence
(Π′1,Π

′
2, . . . ,Π

′
n), where α ∈ A∗; and the abductive program ΠA∗ = 〈Π′1 ∪ Π′2 ∪ · · · ∪

Π′n,A∗ 〉 withM(∆) as the GAS’s of ΠA∗ ; and w(l); l; s(∆) defined as in Definition 8.6:

• M(∆1) ≤S M(∆2) if and only if s(∆1) ≤ s(∆2).

• M(∆1) ≡S M(∆2) if and only if s(∆1) = s(∆2).

• M(∆) is an MSGAS of ΠA∗ if and only ifM(∆) is minimal with respect to ≤S .

Finally, Update Answer Sets are the models one expects from an updating sequence:

Definition 7.4 (⊗′-update Answer Set). Given a ⊗′-sequence of updating ELP’s, Π1⊗′

Π2 ⊗′ · · · ⊗′ Πn, with n ≥ 2, over a set of atoms A, the set S ⊆ A is its update answer
set if and only if S = S ′ ∩ A for some minimal sequenced generalised answer Set S ′ of
the sequence, and ⊗′ is the corresponding update operator.

Besides the properties shared with ⊗-operator, the following section includes an
interesting property of consistency view for ⊗′-operator.

7.5 ⊗′-Properties
Having introduced Proposition 7.4 and ⊗′-operator, the following results illustrate an-
other alternative to preserving a knowledge base from collapse, due to an inconsistency
update.

124

TU-Clausthal 7.6 ⊗-prototype

Proposition 7.5 (Full Relaxation Consistency). Suppose (Π1,Π2, . . . ,Πn) are ELP’s
and Π′x as the corresponding α-relaxed program with 1 ≤ x ≤ n. The abductive program
〈Π′1 ∪Π′2 ∪ · · · ∪Π′n,A∗ 〉 is consistent.

This proposition also yields the following obvious result:

Corollary 7.3 (Strong Consistency View). Suppose (Π1,Π2, . . . ,Πn) are ELP’s. The
update sequence Π1 ⊗′ Π2 ⊗′ · · · ⊗′ Πn is consistent.

Another interesting result is its equivalence with the operator just introduced in
Section 7.2, which shows common properties.

Proposition 7.6. Given the sequence (Π1,Π2, . . . ,Πn) of EDLP’s with Πn consistent,
Π1 ⊗′ Π2 ⊗′ · · · ⊗′ Πn ≡ Π1 ⊗Π2 ⊗ · · · ⊗Πn

Proof. This is a straightforward consequence of Proposition 7.4 and Definition 7.3.

Corollary 7.4 (⊗′-structural properties). ⊗′ operator satisfies properties ⊗-SP-1–⊗-
SP-9.

This section has introduced a more general update operator that, besides satisfying
the same properties than ⊗-operation, it is also more robust when new information that
is inconsistent arises.

Notice that Lemma 7.1, together with the resulting corollary and Proposition 7.3 are
properties that suggest a classification of this approach as a framework for belief change
rather than belief updates.1 One of the main goals of this work, however, is representation
of knowledge in general by producing a framework with an intuitive behaviour, even
though the title of this chapter includes the word “updates” for historical and practical
reasons. Another difference from Katsuno and Mendelzon is whether the knowledge
base is evolving in a changing environment or not, which would come to a subjective
statement. As a result, no strict distinction shall be made in this semantics with respect
to belief revision and belief update. It is also worth noticing that Sakama and Inoue
have a similar position with respect to such a difference in update semantics, where
they suggest ambiguous results may arise when trying to state a clear difference under
some contexts [Sakama and Inoue, 2003].

Finally, the following sections present an implemented prototype to automatically
update sequences of logic programs in ASP for the semantics in Section 7.2. This sort
of programs for ASP problem solving are known as solvers in the literature.

7.6 ⊗-prototype
One of the latest ideas introduced in Chapter 6 is choosing between generalised an-
swer sets to overcome disadvantages of previous approaches described in Chapter 4.

1Further details on such differences may be found in Section 2.4.

125

Chapter 7. Update Sequences J.C.A.Guadarrama

However, a solver to automatically compute this semantics is necessary for different
demanding proposes that go from a classroom tool and assistant, to implementations of
more complex prototypes aimed at exploiting knowledge-management fields and further
properties discovery.

7.6.1 Implementing Updates on DLV

As already presented in Section 3.1, there are two major efficient solvers to compute
ASP with a vast background of implementation and research. They are DLV and SMODELS
and the system proposed in this section employs the former at a higher abstraction level
in order to update ELP programs. Towards this end, this section is an introduction to
a transformation that may be interpreted in either system with some slight syntactic
adaptations1.

To begin with, an approach to implement an update semantics in MGAS has al-
ready been introduced in Chapter 6 by means of preferred disjunctive logic programs in
Brewka’s ODLP and has a solver for pairs of programs at http://www2.in.tu-clausthal.
de/~guadarrama/updates/pairs.html, as described in Section 6.3. However, the men-
tioned update semantics and thus the final system itself, are limited to single updates.

Indeed, a justification to use ODLP is that there is a solver available named PSmodels2

that is an extension to SMODELS to compute preferred answer sets. Unfortunately, up
to the printout of this chapter, there is no reliable version of PSmodels and the latest
one (v.2.26a) endures some few bugs under certain circumstances3. In addition to the
running solver, it is believed that DLV significantly outperforms SMODELS, not to mention
that ODLP is such a colossal semantics that can do much more complex tasks than just
computing MGAS’s, which might compromise the performance of the desired system
and mix up its simple formulation.

As a result this section is an introduction to the use of DLV’s Weak Constraints for
their characteristics of optimisation in preferences [Leone et al., 2006] that enjoys the
above benefits of being in DLV with no more extra throughput added to the system.

This section consists of an implementation of the declarative version for updates
sequences in Section 7.2, which is proposed as an alternative to other syntax-based
semantics described in Chapter 4. One of the main contributions from this implemen-
tation is to use DLV’sWeak Constraints to compute the model(s) of any update sequence,
besides providing an online solver for public experiments.

The structure of this section consists of the basic configuration of the system, a
description of the employed technology, a discussion of the major process to compute
the intended models, as well as a set of examples to illustrate its use. Before going
straight to the system description, a short recapitulation of its background is neces-
sary to understand its foundation on ASP, already introduced in Section 3.1,abductive
programming from Section 3.6, and in particular DLV’s weak constraints.

1Refer, for instance, to [Leone et al., 2006] for an equivalence of weak constraints in SMODELS.
2http://www.tcs.hut.fi/Software/smodels/priority/
3Try to compute the preferred models of a simple program like {a.}.

126

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www.tcs.hut.fi/Software/smodels/priority/

TU-Clausthal 7.6 ⊗-prototype

7.6.2 DLV’s Weak Constraints

Let us briefly recap some few formulas for weak constraints, which are fully introduced
in Section 3.4.

Leone et al. introduced a nice feature of DLV solver known as Weak Constraints that
may be employed to set up preferences between models. In particular, a weak constraint
is a variant of an integrity constraint that may be violated in order to establish priorities
amongst models. One of its differences is the introduction of a new derivation symbol
“:∼”, rather than “:− ” or “←”. Moreover, one can specify the priority level and weight
of the constraint. Formally,

Definition 7.5 (Weak Constraint [Leone et al., 2006]). A weak constraint (ω) is an
expression of the form

:∼ `1, . . . , `k,¬`k+1, . . . ,¬`m[w : p] (7.5)

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables.

In addition, Ω(Π) shall denote the finite set of weak constraints occurring in a given
program Π. Likewise, a ω-program is a logic program with weak constraints.

In order to provide a more syntactic sugar, another way to define a weak-consitraint
expression from Definition 8.10 is as follows.

Definition 7.6 (Weak Constraint). A weak constraint (ω) is an expression of the form

[w : p]← `1, . . . , `k,¬`k+1, . . . ,¬`m (7.6)

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables.

From now on, the previous weak-constraints form shall be employed in the context
of DLV-code, while the other in higher abstraction levels.

Similarly to integrity constraints in Section 3.1, one may say that a weak constraint
ρ = ([w : p] ← `1, . . . , `k,¬`k+1, . . . ,¬`m) is violated by an answer set S of a program
Π if the following three conditions hold:

1. ρ ∈ Π

2. {`1, . . . , `k} ⊆ S

3. {`k+1, . . . , `m} * S

Additionally, Leone et al. simplify the combination of weights in levels by introducing
a function HΠ(S) that grows in direct proportion to the weight and level of the weak
constraint as follows:

127

Chapter 7. Update Sequences J.C.A.Guadarrama

Definition 7.7 (Objective Function, HΠ(S) [Leone et al., 2006]). Given a ground
program Π with weak constraints Ω(Π) and an answer set S, the ω objective function
HΠ(S) is defined by using an auxiliary function fΠ that maps levelled weights to weights
without levels:

fΠ(1) = 1

fΠ(n) = fΠ(n− 1) · |Ω(Π)| · wΠ
max + 1, n > 1

HΠ(S) =
lΠmax∑
i=1

(fΠ(i) ·
∑

ρ∈NΠ
i (S)

weight(ρ))

where NΠ
i (S) denotes the weak constraints at level i violated by S, and weight(ρ) the

weight of weak constraint ρ.

Finally, the best models of such a logic program are those that minimise the number
of violated weak constraints.

Definition 7.8 (Weak-Constraint Model [Leone et al., 2006]). For an EDLP Π with
weak constraints, a set S is a weak-constraint model of Π if and only if

1. S is an answer set of Π

2. HΠ(S) is minimal over all the answer sets of Π.

When the underlying semantics is ASP in Definition 8.13, a weak-constraint model
is also known as Optimal Answer Set.

Moreover, the language of EDLP’s with weak constraints shall be called DATALOG∨,ω,
which is very similar to the notation from the literature.

Further details on the characterisation of the transformation shall be provided later
in Section 8.4.2, with an equivalent simpler operator.

7.6.3 The Parser

Differently from the implementation proposed in Section 6.3.6, which has a parser em-
bedded in its PHP1 code, I have implemented the new parser presented in this sec-
tion, it is compiled in C on the MacOS XTM platform at DarwinTM level, as well
as for a Linux alternative at the same location: http://www.in.tu-clausthal.de/
~guadarrama/updates/seqs.html. The advantage of having a UNIX binary module is
the ease to be plugged in to other modules so as to form more complex applications.

On the other hand, MacOS XTM/DarwinTM is a BSD branch of UNIX, that has
a ported set of Lex and Yacc utilities in their GNU versions of Flex and Bison —
respectively. Flex is a short name for Fast Lexical Analyser that generates code to scan
text through regular-expressions pattern matching.

1This is a script language quite suitable for small processes of dynamic contents on web pages.

128

http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html

TU-Clausthal 7.6 ⊗-prototype

In particular, the following specification shows the main tokens implemented for this
update solver.

NAME [−∼] ? [[: alnum :]_]+
PnSTART "{"
PnEND "}"
GETS ":− "
NOT "not␣"
RULEEND " . "
CONJUNCT " , "
DISJUNCT " | "

Tokens like PnSTART and PnEND split the sequence of programs into individual pro-
grams, while the rest of the tokens need no explanation.

As soon as Flex decomposes the text of a program sequence, its output is taken on by
Yacc, which gives a meaning to each correct structure of rules and program sequence.
In particular, the Yacc process specifies a grammar for update sequences. It is also
responsible for weakening each rule in all programs of the sequence with a new unique
atom and establishes a cardinality-preference relation amongst such atoms, according
to the sequence the rule is in. Last, this process is responsible of an error-checking
mechanism that verifies the correctness of a given program sequence according to the
BNF grammar below.

<sequence> ::=<sequence> ’ { ’ <program> ’ } ’
|

<program> ::=<program> <rule>
<rule> ::=<head> END

| <head> GETS <body> END
<head> ::=<POST>

|
<POST> ::=<LITERAL>

| <POST> DISJUNCT <LITERAL>
<body> ::=<PRE>

|
<PRE> ::=<LITERAL>

| NOT <LITERAL>
| <PRE> CONJUNCT <LITERAL>
| <PRE> CONJUNCT NOT <LITERAL>

<LITERAL> ::=NAME
| NAME ’ (’ NAME ’ , ’ NAME ’) ’

As mentioned before, for each rule that is analysed, the system appends a pair of
new rules with weakening atoms and a weak constraint, in programs previous to the

129

Chapter 7. Update Sequences J.C.A.Guadarrama

last one in the sequence, as follows:

[1 : p] ← αi (7.7)
∼αi | αi ← > (7.8)

where i represents the ith abducible α and p the pth program, the latter forming a
weight-level relation that corresponds to [1 : p].

The intuition behind this formulation is computing the MSGAS of the abductive
program by violating the least number of weak constraints. In addition, the [1 : p]
relation represents the sequence order from Definition 8.6. That is to say, the models
are those that have the least weight-level relation.

Example 7.6. Suppose the sequence

Π1 : {a ← ¬b}

Π2 : {(b ← ¬a); (c ← a); (d ← ∼a, b)}

Π3 : {e ← ¬b}

The corresponding abductive program is 〈Π′ ∪Π3,A∗ 〉 where

Π′ = {a ← ¬b,¬α1 b ← ¬a,¬α2

c ← a,¬α3 d ← ∼a, b,¬α4 e ← ¬b}

and A∗ = {α1, α2, α3, α4}. Such an abductive program is transformed into a ω-program
in DLV as

a← ¬b,¬α1 ∼α1|α1 ← > [1 : 1]← α1

b← ¬a,¬α2 ∼α2|α2 ← > [1 : 2]← α2

c← a,¬α3 ∼α3|α3 ← > [1 : 2]← α3

d← ∼a, b,¬α4 ∼α4|α4 ← > [1 : 2]← α4

e← ¬b,¬α5 ∼α5|α5 ← > [1 : 3]← α5

This is the final stage before interpreting the preferred transformed program in DLV
with weak constraints, as explained below.

7.6.4 The Top Module

The top module consists of a display of the original sequence, its transformation to
abductive program, as well as the result of interpreting such an abductive program
under MSGAS and the update answer sets of the sequence. All in all is coded into a

130

TU-Clausthal 7.6 ⊗-prototype

UNIX script, with some simple sub-processes that filter in the needed text from the
formatted output in DLV. Last, this main module is also responsible of dealing with the
user interface in HTML by getting the user’s input sequence into a text pane of a web
page and processing it to display the output within a new web page.

In a black-box system approach, the main module consists of an HTML page with a
text panel to capture the user input of a sequence of ELP, with each program enclosed
in braces “{}”. In the same page, there is another text pane to capture switches for
DLV. Once the user pushes the process button, the system processes the input text and
yields an output divided into the original input sequence; its corresponding abductive
program; the GAS’s of the abductive program and the corresponding update answer
set(s) of the sequence, when they exist.

7.6.4.1 The Abductive Program

The abductive program is, indeed, coded into a cardinality-preference relation of weak
constraints. The relation consists of a weakened program, where each rule has its corre-
sponding pair of disjunctive abducibles (7.8), and a weak constraint (7.7).

This simple process constructs a triple rule at the parser stage by keeping a counter
for each abducible and one for each program in the sequence, which is displayed once a
rule is recognised: the relaxed rule, a disjunctive rule and a leveled weak constraint.

7.6.4.2 Computing MSGAS’s

Computing MSGAS’s is a straightforward process that takes the abductive preference
program from the previous process as an input and hands it to DLV. The general intuition
behind this optimisation solver is computing the ASP reduct (Definition 3.4) of the ELP
input program that returns none or more answer sets. Then, it chooses the best weak-
constraint model(s). As mentioned before, the best answer set(s) are those that violate
the least number of weak constraints (they all have the same weight) at the highest
level.

From Example 7.6, the system returns the following two MSGAS’s:

{b}{−α1,−α2,−α3,−α4,−α5}, {a, c, e}{−α1,−α2,−α3,−α4,−α5}

7.6.4.3 The Update Answer Sets

Finally, the last stage is a simple filtering with UNIX processes of the abductive atoms
that omits them and gives the desired result. For this example, just {b}, {a, c, e}.

7.6.5 ⊗-Complexity

Now it is time to say a few words about complexity of the ⊗-operator. One may divide
the main problem of updating a sequence Π1 ⊗Π2 ⊗ · · · ⊗Πn into two basic processes.
Firstly, there is an implicit simple algorithm in the definition of an α-relaxed program

131

Chapter 7. Update Sequences J.C.A.Guadarrama

that transforms an ELP into a ω-program. Secondly, the resulting ω-program should be
computed by DLV in order to check its models, which are called optimal answer sets.

By following the notation introduced in Section 3.7, the complexity of a DLV program
with weak constraints is known to be exponential, bounded by co-NEXPTIMENP [Leone
et al., 2006]. The program transformation, on the other hand, may be reduced to
the problem of tagging each rule of the programs in the sequence (Π1,Π2, . . . ,Πn−1)
with 1, 2, . . . , r in the definition of α-relaxed program, where r =

∑n−1
i=1 |Πi|. As a

consequence, the following obvious result holds.

Proposition 7.7. The complexity of transforming any sequence (Π1,Π2, . . . ,Πn) of
grounded ELP’s into an α-relaxed program is linear with respect to r =

∑n−1
i=1 |Πi|.

Finally, the size of the input to DLV, produced by weakening rules and introducing
abducibles, grows exponentially in the number of rules in Π1 ∪ Π2 ∪ · · · ∪ Πn−1 by
having an upper bound of 2|A

∗| possible combinations to include abducibles into every
interpretation —see Example 7.4.

As a result, computing weak constraints and any grounded program DLP’s is very
expensive for known to be at the second level of the polynomial hierarchy [Eiter et al.,
2002]. Given the exponential input size of a grounded relaxed sequence, however, the
overall complexity lies in the exponential hierarchy with respect to the original non-
relaxed sequence:

Proposition 7.8. The complexity of computing a ⊗-update answer set of any se-
quence (Π1,Π2, . . . ,Πn) of grounded ELP’s is exponential with respect to r =

∑n−1
i=1 |Πi|,

bounded by co-NEXPTIMENP.

This is a clear shortcoming for semantics of updates of logic programs in ASP so as
to have typical industrial applications of, say, updating large knowledge bases. Notwith-
standing, the implementation to process toy examples in the classroom is an immediate
practical application, as well as others like a properties testbed and more complex pro-
totypes, to mention a few, that shouldn’t be despised.

7.6.6 Discussion

This section has introduced general methods for rapid prototyping in DLV of logic pro-
gramming semantics and for further research in optimisation techniques, as well as direc-
tions to implement the declarative version of both an update semantics and MSGAS’s.
The system has been developed with strong emphasis on declarative programming, in
just some few fragments of imperative-procedural modules, in order to make it easily
modifiable for particular frameworks and to confirm claims of the original semantics
here presented. Another of its highlights is its modularity and UNIX paradigm that
allows it to be a web service and easily plugged into other systems via on-line even
without needing to download it. Moreover, its simple standard graphical user interface
in HTML makes it very easy to use, compared to most of the solvers implemented for
command-line use.

132

TU-Clausthal 7.7 Conclusions for Chapter 7

As one of the main components of Logic Programming, implementation of semantics
helps quickly understand it (for educational proposes and for a reliable comparison tool,
for instance), spread it, test properties and compute knowledge bases for more complex
prototypes and other frameworks. In addition, an analysis on the complexity of the
prototype shows that the transformation from a given sequence of logic programs is
polynomial, while computing the resulting transformed program may be exponential,
due to DLV’s weak constraints. Nevertheless, the implementation shouldn’t be despised,
as it has immediate practical academic applications at least.

7.7 Conclusions for Chapter 7

This chapter is a proposal of a semantics for updates that performs the methods pre-
sented in Chapter 6 of relaxing an original knowledge base and of establishing prefer-
ences amongst candidate models. In particular, the intuition behind the methodology
consists in favouring the latest updates that conflict with an original knowledge base by
means of preferring generalised answer sets, and also by preserving consistency. In ad-
dition, it emphasises the importance of an approach based on key structural properties,
and it may be used for EDLP’s.

The core of this chapter shows that the new semantics satisfies the introduced set of
structural properties for sequences of updating logic programs, as well as other needed
properties of Consistency Preservation and inconsistent updates. The latter set of prop-
erties has to do with Consistency Restoration both from an original inconsistent knowl-
edge base and an inconsistent observation, which makes the difference between belief
revision and updates a little fuzzy. Nevertheless, such a difference is secondary in this
research, as the general goal is to produce a robust semantics to represent knowledge,
with intuitive behaviour.

As a result, the chapter consists of two alternatives to restore consistency. Firstly,
a null update to an inconsistent knowledge base shall relax the source of inconsistency.
Secondly, a slight modification to the semantics so that it relaxes the entire sequence
including the update.

Besides satisfying the principles proposed, this chapter illustrates through several
examples and transformations how to overcome problems occurring in alternative up-
date approaches for ASP. One of the key transformations yields an abductive program
out of a given sequence of updating extended logic programs. Another transformation
constructs a preferred weak-constraint program to find generalised answer sets of the ab-
ductive program. Finally, as one main goal of Logic Programming, Section 7.6 includes
a functional prototype from the declarative semantics version, that finds the update an-
swer sets of a given sequence by means of DLV’s weak-constraints models. The prototype
is fully functional and runs online with a standard browser interface. The section also
includes an analysis of complexity of the corresponding processes.

133

Chapter 7. Update Sequences J.C.A.Guadarrama

134

BeliefChange = ASP + AGM′

J.C.A. Guadarrama

Chapter 8

Generalised Update

One of the goals of commonsense reasoning is to make an agent intelligent that may be
autonomous. As suggested in the logic-programming literature, such a goal requires a
solid theoretical basis on knowledge representation and nonmonotonic reasoning, and
in particular, in knowledge updates. When dealing with knowledge updates, one needs a
way to avoid inconsistencies due to potential contradictory information upcoming from
new evidence. Much work has been done in the context of logic programming based on a
common Answer Set Programming basis (hereafter ASP) by satisfying certain properties
and postulates: [see Alferes et al., 2005; Eiter et al., 2002; Osorio and Zacarías, 2004;
Sakama and Inoue, 2003; Zhang and Foo, 2005, e.g.]. However, despite the existence of
several semantics for updates and a deep analysis of general principles, we are still far
from having a general one that can satisfy many existing and well-known principles to
represent “correct” dynamic knowledge.

In particular, Sakama and Inoue introduce and interesting persistence situation that
the others do not manage well for different reasons, mainly for their approach of se-
quence of updates —see also Section 4.3. However, their semantics is strongly based on
syntactical changes and it lacks of a proper characterisation of principles for updates,
due to their different goals in their approach.

With the aim to define a general semantics and to succeed in the mentioned persis-
tence situation, this chapter consists of another approach to the proposals in previous
chapters, founded on GAS too, and based upon further principles for belief change that
make it independent of syntax.

Besides satisfying most of belief revision postulates, this chapter exhibits an ap-
proach that consists in performing successive updates so that the semantics can deal
with the problem that, according to Sakama and Inoue, produces counterintuitive in-
terpretations in most current approaches. In addition to that, it meets at least the
structural properties presented in Section 6.2., as well as five of the six most represen-
tative postulates for belief change in the literature.

In general, the main contributions of this chapter can be summarised as follows:

• a characterisation of five out of six AGM-postulates.

135

Chapter 8. Generalised Update J.C.A.Guadarrama

• a study of Consistency Preservation and Consistency Restoration within a frame-
work for updates of logic programs at the object level.

• a characterisation of structural properties for updates of logic programs.

• two variants of the semantics: cardinality-preferred and set-inclusion preferred
models.

• an equivalence study with proposals from Chapter 6–7.

• a link to a prototype solver that runs online.

This chapter is organised as follows: Section 8.1 is an analysis of the problem that
Sakama and Inoue pointed out. The core of the chapter is Section 8.2, which includes
a slightly different formulation to the approaches presented in Chapter 7 and shows
the main results and comparison with its predecessors in Section 8.3. Next, there is
a section reserved to describe an implemented prototype of the approach, whose main
feature is its characterisation in DLV’s weak constraints. Finally, concluding remarks are
discussed in Section 8.5.

8.1 Problem Description

As introduced in previous chapters, once there existed a strong theoretical basis for
belief revision and updates, a few authors in the field of logic programming proposed
mechanisms for updates with a vast analysis, taxonomy and comparison of various
known semantics [see Eiter et al., 2000a, 2002, 2005; Sakama and Inoue, 2003; Zhang
and Foo, 2005, e.g.]. Some others even suggested new principles, like [Alferes et al., 2005,
1999], with alternative logic-programming frameworks. However, owing to the different
foundations each semantics has (even within ASP), still some problems arise to meet a
significan number of well-accepted principles for updates as suggested in Chapter 4–5.

Although it is unlikely to come off with a semantics that may satisfy all of them
[Eiter et al., 2002; Osorio and Cuevas, 2007; Sakama and Inoue, 2003], a more general
one that fulfils most of widely-accepted principles is still necessary, which is not an easy
task.

For instance, one of the main conclusions of researchers studying updates of logic
programs in AGM [Alchourrón et al., 1985] theory —and in other principles around it1—
is the difficulty to satisfy many of them by means of a non-monotonic framework like
ASP, owing to the monotonic nature of the postulates themselves —[Brewka, 2001; Eiter
et al., 2002; Osorio and Cuevas, 2007; Sakama and Inoue, 2003]. Nonetheless, Osorio
and Cuevas in [Osorio and Cuevas, 2007] achieved an interpretation of six (R u 1)–
(R u 6) of the original eight AGM postulates in terms of the monotonic N2-logic, for
general “update” operators. They have chosen N2-logic because it characterises ASP
[Ortiz and Osorio, 2005; Pearce, 1999a]. The authors’ result in terms of a general

1For a nice analysis and compilation of such principles, see [Eiter et al., 2002].

136

TU-Clausthal 8.1 Problem Description

(PK ∗ 1) Π ∗ {ρ} is a program and ρ a rule.

(PK ∗ 2) Π1 ∗Π2 `N Π2.

(PK ∗ 3) Π1 ∪Π2 `N Π1 ∗Π2.

(PK ∗ 4) If Π1 ∪Π2 has answer sets then Π1 ∪Π2 ≡ Π1 ∗Π2

(PK ∗ 5) Π2 ≡N2⊥ implies (Π1 ∗Π2) ≡N2⊥ .

(PK ∗ 6) If Π1 ≡N2 Π2 then Π ∗Π1 ≡ Π ∗Π2

(PK ∗ 7) (Π1 ∗Π2) ∪Π3 `N Π1 ∗ (Π2 ∪Π3)

(PK ∗ 8) If (Π1 ∗Π2) ∪Π3 is consistent, then Π1 ∗ (Π2 ∪Π3) `N (Π1 ∗Π2) ∪Π3

where Π `N α implies that Π ≡N2 Π ∪ {α}.

Table 8.1: AGM in N2-logic

semantics, however, seems to be inconclusive [Osorio and Cuevas, 2007], as analysed in
Section 4.5. Their interpretation are postulates (PK ∗ 1)–(PK ∗ 6) in Table 8.1, which I
have completed with postulates (PK ∗ 7)-(PK ∗ 8). Note that their postulates (PK ∗ 2),
(PK ∗ 4) and (PK ∗ 6) in Table 8.1 correspond to KM′-postulates (R ◦ 1), (R ◦ 2) and
(R ◦ 4), respectively, from Table 2.5.

On the other hand, the nearest proposal (to the best of my knowledge) that seemed1

to meet most of the existing principles is due to Sakama and Inoue —refer to Sec-
tion 4.3— who have introduced and interesting persistence situation that others fail to
represent well for different reasons, as pointed out by themselves. In particular, the main
feature of that interesting situation is that Sakama and Inoue’s semantics is capable of
maintaining a knowledge base (coded into a logic program) at an object level throughout
its own evolution, which is computed in detail in Observation 4.8 from Section 4.3:

Example 8.1. Consider the following scenario of two updates to an agent’s knowledge
base, proposed by Sakama and Inoue2 that shows one of the differences between update
sequences and updating at the object level. This scenario starts with two rules stating
that the agent is sleeping when the TV is not on; that is watching it when on; and last,
that the TV is on at that instant. Next, new knowledge is incorporated that says it is
not possible to have the TV on when there is a power failure; and a new observation of
a power failure at that second instant.

1To my knowledge, there is no evidence that their semantics satisfies most of them, although it
does overcome most of the problems that other semantics present, as shown in Section 4.3, Chapter 5
and Appendix A.

2Originally, this example was proposed by [Alferes et al., 1999], but it has been a little modified in
[Sakama and Inoue, 2003] to contrast their differences.

137

Chapter 8. Generalised Update J.C.A.Guadarrama

The following pair of logic programs encode the situation, where the agent is updating
the initial knowledge base Π1 with Π2:

Π1 : sleep ← ¬tvon

watchtv ← tvon

tvon ← >

Π2 : pfailure ← >

⊥ ← pfailure, tvon

Note that in the original example in [Alferes et al., 2005, 1999], they have the rule
“¬tvon ← pfailure” rather than “⊥ ← pfailure, tvon”. However, they use the same “¬”
symbol in bodies of rules, having a different meaning with respect to its position at a
rule.1

After the first update, most proposals like the ones in Chapter 4 and Chapter 7 (pro-
vided the necessary adaptations to update constraints in some of them), coincide with
Sakama and Inoue’s model: {sleep, pfailure}, just as one would expect. However, other
approaches capable of dealing with multiple updates like the ones in Section 4.1; Sec-
tion 4.2; Section 7.2; Section 7.4 diverge after the second update, as first pointed out
by Sakama and Inoue, by forgetting the latest models and “reviving” old knowledge that
does not conflict with the present situation. In this example the problem arises after the
update of Π2 to Π1, with yet the new update program

Π3 : ∼pfailure ← >

having the new unexpected model {tvon,watchtv ,∼pfailure}, which does not coincide
with common intuition, while Zhang’s in Section 4.4 cannot deal with multiple updates.

In other words, updating the resulting knowledge base in Example 8.1 with Π3 brings
back the previous “forgotten” models (conclusions) from the first update: the TV switches
on “itself ” again and the agent is watching it as well! —{tvon,watchtv ,∼pfailure}.

In this way, Sakama and Inoue’s approach modifies the original knowledge base by
producing none or more programs after each update, rather than a model of the complete
sequence. After the program transformation2, their resulting knowledge base(s) may
be interpreted in ASP. For instance, in Example 8.1, their semantics has the unique

1For further details on their “¬” in heads, please refer to Section 4.2
2Refer to Example 5.3, which extends Sakama and Inoue’s original example into their own notation

in order to see it in more detail.

138

TU-Clausthal 8.1 Problem Description

resulting program

Π4 : sleep ← ¬tvon

watchtv ← tvon

pfailure ← >

⊥ ← pfailure, tvon

that, if interpreted in ASP, has the model

{∼pfailure, sleep} (8.1)

that happens to be more intuitive than its counterparts models, according to Sakama and
Inoue, and does meet a minimal-change principle as they themselves state, relative to
its non-sequence update “level”.

Updating at the object level is an argument Sakama and Inoue seem to have had
against most sequential approaches, that has to do with a minimal change principle.
However, their minimal-change principle is syntactic: the changes to the knowledge
base are to be minimal. Moreover, they have no characterisation of their semantics with
further belief-change principles, arguing that they are not applicable to nonmonotonic
propositional theories in general [Sakama and Inoue, 2003].

In addition to that, one big disadvantage of syntactical approaches already discussed
in previous chapters is that, in general, they do not satisfy the structural properties
proposed in Section 6.2, and Sakama and Inoue’s approach is not an exception —See
Chapter 5 and Appendix A.

Regardless the polemic that approach might cause (especially in planning domains,
like in Example 4.9, Section 4.3) and the deployment of extended-abduction properties
in their article, the lack of further and more general properties for belief change makes
it hard to compare with other alternatives for updates of logic programs. Indeed,
their first goal (as they themselves explain) is the converse: to provide a mechanism of
updates to characterise their extended abduction framework, introduced in Section 4.3.
Additionally, they characterise different kinds of updates (mentioned in Section 4.3) with
their framework, claiming that they can provide an algebra of rule deletion, besides the
addition of them, in order to explain observations. Such a syntactic characterisation
may have disadvantages in theory of change, because it may leed to information loss,
as in Observation 4.9 and Observation 4.10.

On the other hand, approaches like LUPS, briefly described in Section 4.2, might
cope well with this situation that explicitly states which rules are persistent and which
are not, even if the language approach is sequencial. However, LUPS and DyLP from
[Alferes et al., 2005, 1999] in general cannot deal with contradictions that do not depend
upon conflicting heads of rules. Take for instance, {p ← q} updated with {q ← ¬p}
which has no (refined) dynamic stable models. For further details on the latter, refer to

139

Chapter 8. Generalised Update J.C.A.Guadarrama

Section 4.2.
The rest of the mentioned proposals perform updates in sequences with the already

described counterintuitive behaviour, or they are undefined for more than one update.
In need to define a general semantics and regardless the difference between belief

revision and updates due to Katsuno and Mendelzon in Section 2.4, this chapter in-
cludes further results from the basic framework in Chapters 6 within the same studied
foundation of Minimal Generalised Answer Sets (MGAS hereafter from Section 3.6) and
an alternative approach to Chapter 7 with a simpler general formulation that likewise
performs multiple updates, but at the object level rather than sequences of updates,
which overcomes the kind of problems described in Example 8.1. Moreover, the simpler
semantics meets the structural properties for updates already introduced in Section 6.2,
as well as the satisfaction of five of the six most general belief revision postulates, from
Section 2.3. Finally, as an important component of logic programming towards auto-
matic reasoning and potential academic purposes, I also provide a running solver for
this update semantics in an online prototype that is a tool and a testbed for further
experimental results, properties discovery, and (agent) prototypes in a unified logic-
programming framework.

8.2 ⊗o-operation

One of the main goals of this proposal is to meet most well-accepted principles for up-
dates at the object level and in Minimal Generalised Answer Sets (MGAS). Similar to the
semantics presented in Section 7, the approach consists of setting up the needed models
for the desired properties in an iterated fashion, rather than a sequence of updates.

In particular, there are two main advantages of this approach over those presented
in Chapter 4 and Chapter 7. First, it comes out of a well-accepted theoretical basis from
Chapter 2, rather than mending existing proposals. This foundation has proven to over-
come counterintuitive results when incorporating redundant or tautological information
that has been motivation for new model-based approaches —see Chapter 4. Secondly,
the framework is capable of maintaining epistemic states at an object level (differently
from sequences of updating programs, like Chapter 7) for multiple updates that meets
an inertia principle from Sakama and Inoue. These two advantages, amongst others,
are encoded into a simple generalised semantics described along this chapter.

To recap from Chapter 6, the process of updating a program with another consists
in relaxing all rules in the original one with a unique abducible. In consequence, there is
a resulting transformed relaxed program representing a new knowledge base that is part
of an abductive program. Next, the interpretation consists of the corresponding GAS’s
of the abductive program from which there is one or more minimal sets of abducibles
with respect to their inclusion —MGAS’s. Finally, the update model(s) are expressed in
the original alphabet out of the MGAS’s.

In this particular operation, the corresponding abducibles take part of one or more
new knowledge bases, which in turn, with their semantics, represent epistemic states
rather than just knowledge bases —see Section 2.3 and Section 8.3.4 for further discus-

140

TU-Clausthal 8.2 ⊗o-operation

sion on epistemic states. The semantics is formally expressed with the following set of
definitions.

An α-relaxed rule is a rule ρ that is weakened by a default-negated atom α in its
body: Head(ρ)← Body(ρ)∪{¬α}. In addition, an α-relaxed program is a set of α-relaxed
rules.

Finally, there is a particular case of ELP from Definition 4.13 that contains facts-
only, defined as follows.

On the other hand, a generalised program of A∗ is a set of rules of form {` ← > |
` ∈ A∗}, where A∗ is a given set of literals.

Accordingly, updating a program with another consists in transforming an ordered
pair of programs into a single abductive program, as follows.

Definition 8.1 (⊗o-update Program). Given an updating pair of extended logic pro-
grams, denoted as Π1 ⊗o Π2, over a set of atoms A; and a set of unique abducibles A∗,
such that A ∩ A∗ = ∅; and the α-relaxed program Π′ from Π1, such that α ∈ A∗; and
the abductive program ΠA∗ = 〈Π′ ∪ Π2,A∗ 〉. Its ⊗o-update program is Π′ ∪ Π2 ∪ ΠG,
where ΠG is a generalised program ofM∩A∗ for some minimal generalised answer set
M of ΠA∗ and ⊗o is the corresponding update operator.

It is obvious that Definition 8.1 allows none or more models. In fact, Corollary 8.2
below shows that the update is always consistent provided that Π1 is also consistent.
Moreover, the number of models is determined by the ⊗o-update program.

Corollary 8.1. Let ΠG be a generalised program out of a minimal generalised answer
setM from ΠA∗ andM1 an answer set of ΠG. The following two statements hold:

a) M1 =M∩A∗.

b) M1 ⊆M.

Last but not least, the associated models S of the new knowledge base correspond
to the answer sets of a ⊗o-update program as follows.

Definition 8.2 (⊗o-update Answer Set). Let Π⊗o = (Π1⊗oΠ2) be an update pair over
a set of atoms A. Then, S ⊆ A is a ⊗o-answer set of Π⊗o if and only if S = S ′ ∩ A
for some minimal generalised answer set S ′ of its ⊗o-update program.

Intuitively, this formulation establishes an order with respect to the latest update
—which corresponds to postulates (R◦1) and (U~1) on their respective Tables 2.5 and
2.6, also recapped below in Section 8.3.4— and with respect to a minimal change when
choosing the most preferred: MGAS.

In order to illustrate this formulation, consider the following theory, inspired from
Alferes et al. and recapped from Example 7.1, describing some knowledge on the sky.

141

Chapter 8. Generalised Update J.C.A.Guadarrama

Example 8.2. [from Example 7.1] Suppose an agent who believes that when it is day
it is not night and vice versa, and that there are stars when it is night and when there
are no clouds. Finally, that at the current moment it is a fact that there are no stars.
This simple story may be coded1 into Π1 as follows:

Π1 = {day ← ¬night

night ← ¬day

stars ← night ,¬cloudy

∼ stars ← >}

whose unique answer set is {day ,∼stars}. Later, the agent acquires new information
stating that stars and constls (constellations) are the same thing, as coded in Π2. As
soon as the agent updates Π1 with program

Π2 = {stars ← constls

constls ← stars}

the expanded alphabet of the two programs contains only one new extra atom with
respect to Π1: constls. As the model of Π2 is obviously the empty answer set, constls is
considered synonym of stars by means of Π2, and thus the update should not change the
original beliefs. However, the update yields an extra answer set in some of the existing
update semantics based on the causal rejection principle —Section 4.2:

{stars, constls,night}

which does not coincide with common intuition.
The reason is that, although stars can not be true, introducing constls gives another

possibility for stars to be true. Thus, the additional answer set is implied.
In general, these supplementary rules in the update are a conservative extension

[Osorio et al., 2001] to Π1: the original language is extended and all answer sets ought
to be extensions of the old answer sets. In this specific situation, constls should be true
if and only if stars is true.

In particular, by updating with ⊗o operator, the example looks as follows.

Example 8.3. The resulting abductive program of Π1 and Π2 from Example 8.2, is
1Notice that there are other ways to represent the story. The problem is, however, what to do in

this particular situation, when the agent runs across this piece of information.

142

TU-Clausthal 8.2 ⊗o-operation

〈Π′ ∪Π2,A∗ 〉 and coincides with the one of � and ⊗, where

Π′ = {day ← ¬night ,¬α1

night ← ¬day ,¬α2

stars ← night , ¬cloudy ,¬α3

∼stars ← ¬α4}

and A∗ = {α1, α2, α3, α4}. Next, its unique MGAS {day ,∼stars}{∼α1,∼α2,∼α3,∼α4} leaves
only one choice to form a ΠG. So, the resulting update program is

{day ← ¬night ,¬α1

night ← ¬day ,¬α2

stars ← night ,¬cloudy ,¬α3

∼stars ← ¬α4

stars ← constls

constls ← stars

∼α1 ← >; ∼α2 ← >

∼α3 ← >; ∼α4 ← >}

whose update answer set is just {day ,∼stars} as one would expect.

This example illustrates our main argument proposing that a semantics for updates
should depend upon the logical contents and not on the particular syntax to represent
knowledge, generalised by SC and WIS properties.

Finally, this framework is appropriate to overcome, among many other problems,
the one introduced in Example 8.1:

Example 8.4. Suppose an update of Π1 ⊗o Π2 with a new update Π3, as suggested in
Example 8.1. First, this iterated update may also be expressed in a simple form as
(Π1⊗oΠ2)⊗oΠ3. By definition, the abductive program of the first pair is 〈Π′∪Π2,A∗ 〉,
where

Π′ = {sleep ← ¬tvon,¬α1; watchtv ← tvon,¬α2;

tvon ← ¬α3}

and A∗ = {α1, α2, α3}, whose unique MGAS {pfailure, sleep,∼tvon}{α3} and the corre-
sponding unique generalised program ΠG = {α3 ← >}. The resulting knowledge base

143

Chapter 8. Generalised Update J.C.A.Guadarrama

of updating Π1 with Π2 is then the ⊗′o-update program

Π = {sleep ← ¬tvon,¬α1

watchtv ← tvon,¬α2

tvon ← ¬α3

∼tvon ← pfailure

pfailure ← >

α3 ← >}

with the corresponding ⊗o-update answer set {pfailure, sleep,∼tvon}.
Next, updating the resulting knowledge base Π with Π3 leads to a new abductive

program 〈Π′ ∪Π3,A∗2 〉 where

Π′ = {sleep ← ¬tvon,¬α1,¬α11

watchtv ← tvon,¬α2,¬α12

tvon ← ¬α3,¬α13

∼tvon ← pfailure,¬α14

pfailure ← ¬α15

α3 ← ¬α16}

with its new set of abducibles A∗2 = { α11, α12, α13, α14, α15, α16} and its corresponding
unique MGAS: {∼pfailure, sleep, α3}{α15} as well as the ⊗o-update answer set one
would expect: {∼pfailure, sleep}.

This section is an introduction to ⊗o-operator by its formal definition and basic
examples. The operation consists in updating an initial knowledge base with another
by relaxing the former using the same relaxation method described in Chapter 6. In
addition, the operation may yield a new knowledge base that allows to perform iterated
updates, and the rest of the chapter describes some properties and an implemented
prototype.

8.3 ⊗o-properties
The following properties of this simple formulation are the main result of this current
semantics for iterated updates of epistemic states. In particular, a basic set of structural
properties was first introduced in Section 6.2, just like the formulation in Chapter 6,
besides other properties from the literature. Accordingly, this section is divided into
five parts that show a comparison with operators � and ⊗ (Section 8.3.1); the referred

144

TU-Clausthal 8.3 ⊗o-properties

structural properties in Section 8.3.2; a case study of consistency-preservation and con-
sistency restoration in Section 8.3.3; Section 8.3.4 generalises this approach in a set of
more general principles; and finally, other relevant properties from the literature are
presented in Section 8.3.5.

8.3.1 Equivalence

To begin with, one contribution of this chapter is to show that this approach coincides
with operators � and ⊗ in the respective Chapter 6 and Chapter 7 for the case of single
updates and single updates with cardinality preference. The main difference, however,
is the limitation to deal with multiple updates that was undefined in Chapter 6 (�-
operator) and later introduced as a sequence of updates in Chapter 7 —⊗-operator.
The latter, however, has the disadvantage of producing the counterintuitive results, for
its meta-level approach, as discussed in Example 8.1.

Before starting with equivalence between operators, a recapitulation of their respec-
tive definitions is in order: From Chapter 6, the update operator for pairs of programs
is

Definition 8.3 (�-Update Program). Given an update pair Π = (Π1,Π2) of extended
logic programs over a set of atoms A, an update program Π� = Π1 � Π2 corresponds
to the abductive program 〈Π′ ∪ Π2,A∗ 〉, where A∗ extends A by new unique abductive
atoms and Π′ is constructed as follows:

(i) all constraints in Π1.

(ii) for each non-constraint rule ρ ∈ Π1 there is a unique abducible α (a new atom) and
the rule is replaced by Head(ρ)← Body(ρ),¬α.

where � represents the the corresponding update operator.

Next, the corresponding update models come out of the MGAS’s from the abductive
program as follows.

Definition 8.4 (�-update Answer Set). Let Π = (Π1,Π2) be an update pair over a set
of atoms A. Then, S ⊆ A is an update answer set of Π if and only if S = S ′ ∩ A for
some minimal generalised answer set S ′ of Π.

while the extension to sequences of logic programs from Chapter 7 is given by a relaxed
sequence of programs.

The α-relaxed program of a sequence of ELP’s, (Π1,Π2, . . . ,Πn), over a set of atoms
A, is the set Π′ = Π′1 ∪ Π′2 ∪ · · · ∪ Π′n−1, where Π′i is the α-relaxed program of Πi by a
new unique abducible α /∈ A for each rule ρ ∈ Π1 ∪Π2 ∪ · · · ∪Πn−1 with 1 ≤ i ≤ n− 1,
and (Π′1,Π

′
2, . . . ,Π

′
n−1) is the corresponding α-relaxed sequence.

Accordingly, the ⊗-update sequence operator for a sequence of programs is defined
as follows:

145

Chapter 8. Generalised Update J.C.A.Guadarrama

Definition 8.5 (⊗-Update Program). Given a ⊗-sequence of update extended logic
programs Π1 ⊗Π2 ⊗ · · · ⊗Πn, with n ≥ 2, over a set of atoms A and its corresponding
relaxed program Π′, its ⊗-update program is the abductive program 〈Π′ ∪Πn,A∗〉 where
A∗ is a set of abducibles, such that A ∩ A∗ = ∅, and ⊗ is the corresponding update
operator.

The interpretation of the abductive program from a ⊗-update sequence is given by
GAS’s and the intended models by minimal sequenced generalised answer sets as follows.

Definition 8.6 (Abductive Sequence Order; MSGAS). Given an update sequence of
ELP’s, Π1⊗Π2⊗· · ·⊗Πn, over a set of atoms A with n as an integer; with its correspond-
ing α-relaxed sequence (Π′1,Π

′
2, . . . ,Π

′
n−1), where α ∈ A∗ and the α-relaxed program Π′;

and the abductive program ΠA∗ = 〈Π′ ∪Πn,A∗ 〉:

• w(l) =

1, l = 1

w(l − 1) · |A∗|+ 1 l > 1
where l is a positive integer.

• s(∆) =
∑n−1

l=1 (w(l) · |{α | α ∈ LΠ′l
}|), whereM(∆) is a GAS of ΠA∗ and α ∈ ∆.

• M(∆1) ≤S M(∆2) if and only if s(∆1) ≤ s(∆2).

• M(∆1) ≡S M(∆2) if and only if s(∆1) = s(∆2).

• M(∆) is a Minimal Sequenced Generalised Answer Set, MSGAS, of ΠA∗ if and
only ifM(∆) is minimal with respect to ≤S .

Finally, its ⊗-update answer sets should be expressed in the original language of the
update sequence out of the MSGAS’s:

Definition 8.7 (⊗-update Answer Set). Given a ⊗-sequence of updating ELP’s Π1 ⊗
Π2⊗ · · ·⊗Πn, with n ≥ 2, over a set of atoms A, the set S ⊆ A is its ⊗-update answer
set if and only if S = S ′ ∩ A for some minimal sequenced generalised answer set S ′ of
the sequence, and ⊗ is the corresponding update operator.

Besides this recapitulation, it is necessary to make a slight change to Definition 8.1,
with the aim to allow a general equivalence, to have an alternative to ⊗o-update oper-
ator. The models of ⊗′o-operator shall be in terms of MGAS’s, rather than MGAS’s, to
make them equivalent.

Definition 8.8 (⊗′o-update Program). Given an updating pair of extended logic pro-
grams, denoted as Π1 ⊗′o Π2, over a set of atoms A; and a set of abducibles A∗, such
that A ∩ A∗ = ∅; and the α-relaxed program Π′ from Π1, such that α ∈ A∗; and the

146

TU-Clausthal 8.3 ⊗o-properties

abductive program ΠA∗ = 〈Π′∪Π2,A∗ 〉. Its ⊗′o-update program is Π′∪Π2∪ΠG, where
ΠG is a generalised program ofM∩A∗ for some minimal sequenced generalised answer
setM of ΠA∗ and ⊗′o is the corresponding update operator.

Now, the models of such a program should be in terms of the original alphabet of
the update pair.

Definition 8.9 (⊗′o-update Answer Set). Let Π⊗′o = (Π1⊗′oΠ2) be an update pair over
a set of atoms A. Then, S ⊆ A is an ⊗′o-answer set of Π⊗′o if and only if S = S ′ ∩ A
for some minimal sequenced generalised answer set S ′ of its ⊗′o-update program.

Note that the purpose of the alternative ⊗′o-operator is both to establish equivalence
with ⊗-operator and to rapidly implement a prototype in DLV, as shown in Section 8.4.

Finally, operators ⊗o, ⊗′o, ⊗ and � are equivalent in pairs of programs, depending
on their corresponding ordering function and other minor details, as formally expressed
in the following proposition.

Proposition 8.1. Suppose an initial extended logic program Π1, without integrity con-
straints, updated with any Π2. Then,

Π1 �Π2 ≡ Π1 ⊗o Π2 and Π1 ⊗′o Π2 ≡ Π1 ⊗Π2

proof sketch. �-equivalence: By Definition 8.1, Π1 ⊗o Π2 has the abductive program
〈Π′∪Π2,A∗ 〉, where Π′ is the relaxed program of Π1 andM an MGAS of the abductive
program. On the other hand, by Definition 8.3, Π1 � Π2 has the abductive program
〈Π′ ∪ Π2,A∗ 〉 with the same relaxed program Π′ whose MGAS correspond to M. By
Definition 8.2, the ⊗o-answer sets of Π1 ⊗o Π2 are exactly the same �-answer sets of
Π1 �Π2. Hence, Π1 �Π2 ≡ Π1 ⊗o Π2.
⊗-equivalence: By Definition 8.8, Π1⊗′oΠ2 has the abductive program 〈Π′∪Π2,A∗ 〉,

where Π′ is the relaxed program of Π1 and M an MSGAS of the abductive program.
On the other hand, by Definition 8.5, Π1⊗Π2 has the abductive program 〈Π′∪Π2,A∗ 〉
with the same relaxed program Π′ whose MSGAS correspond toM. By Definition 8.9,
the ⊗′o-answer sets of Π1 ⊗′o Π2 are exactly the same ⊗-answer sets of Π1 ⊗Π2. Hence,
Π1 ⊗Π2 ≡ Π1 ⊗′o Π2.

As a consequence, this semantics inherits most of the assets from operators �
and ⊗: the characterisation of model-content updates that preserves the system from
being counterintuitive when particular situations of updating with tautological (inert)
information arise, discussed along this thesis, as well as the set of structural properties
shown below.

Additionally, DyLP semantics presented in Section 4.3 has no strong negation, and
therefore they use a syntax-dependent “default” negation in heads of rules! to have

147

Chapter 8. Generalised Update J.C.A.Guadarrama

a similar effect in updates and to solve some problems of tautological rules of form
`← `, in an atypical way —see (4.1) in Section 4.2 for a deeper analysis. Under these
circumstances, a careful analysis and comparison with an approximate translation is
needed (similar to the one in [Eiter et al., 2002]) in order to consider Alferes et al.’s
semantics founded on ASP, which is out of the scope of this current thesis.

Finally, as an important part of logic programming, it is worth mentioning that
all examples presented here have been run and tested using existing solvers and they
are correct and coincide with the discussions in these sections. Firstly, Eiter et al.’s
solver is available for downloading at http://www.kr.tuwien.ac.at/staff/giuliana/
project.html#Download, and I have implemented an online front-end for it at http:
//www2.in.tu-clausthal.de/~guadarrama/updates/upd.html with a graphical user
interface. Secondly, I have implemented a solver for update sequences in GAS, as intro-
duced in Section 7.6, which is available online at http://www.in.tu-clausthal.de/
~guadarrama/updates/seqs.html. Last, I also implemented a solver for this current
⊗′o-updates proposal at http://www.in.tu-clausthal.de/~guadarrama/updates/o.
html as an online version, naturally.

8.3.2 ⊗o-structural Properties

Some basic properties from the literature are the following, called “structural properties
for updates, introduced in Sections 6.2 and 6.2. One of the main contributions of this
chapter is to guarantee that operators ⊗o and ⊗′o satisfy that minimal set of properties
that is briefly recapitulated below and included in the summary of Appendix A.

Most of them have also been analysed by [Eiter et al., 2002] amongst many other
principles from the literature and they should contribute as an initial basis of further
research. The properties make one of the main differences with other approaches and
establishes a common frame of reference to compare further proposals.

⊗o-SP-2, Initialisation [Eiter et al., 2002]: ∅ ⊗o Π ≡ Π.

This property states that the update of an initial empty knowledge base yields
just the update itself.

⊗o-SP-3, Inertia: If Π is consistent, Π⊗o ∅ ≡ Π.

A consistent theory is in effect unless new evidence states otherwise.

⊗o-SP-4, Idempotence [Eiter et al., 2002]: Π⊗o Π ≡ Π.

This property means that the update of program Π with itself has no effect.

⊗o-SP-6, Non-interference, WNI: [Eiter et al., 2002]: If Π1 and Π2 are programs
defined over disjoint alphabets, and either both of them have answer sets or not,
then Π1 ⊗o Π2 ≡ Π2 ⊗o Π1.

⊗o-SP-7, Augmented Update [Eiter et al., 2002]: If Π1 ⊆ Π2 then Π1 ⊗o Π2 ≡
Π2.

Updating with additional rules makes the previous update obsolete.

148

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html
http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html

TU-Clausthal 8.3 ⊗o-properties

⊗o-SP-8, Strong Consistency, SC: If Π1∪Π2 is consistent, then Π1⊗oΠ2 ≡ Π1∪Π2.

The update coincides with the union when Π1 ∪Π2 is consistent.

⊗o-SP-9, Weak Irrelevance of Syntax, WIS: Let Π, Π1, and Π2 be logic programs
under the same language. If TN2 (Π1) ≡N2 TN2 (Π2) then Π⊗o Π1 ≡ Π⊗o Π2.

The set of structural properties has been proposed as fundamental for a proper
update semantics along this thesis, and ⊗o-operator satisfies them. Formally,

Theorem 8.1. Suppose that Π, Π1, Π2 and Π3 are ELP. Operators ⊗o and ⊗′o satisfy
properties ⊗o-SP-2–⊗o-SP-9.

Proof. This is clearly satisfied by Proposition 8.1.

This result shall be helpful to simplify further properties in upcoming sections.

8.3.3 Dealing with Inconsistencies

Something desirable in belief operations, as suggested in Section 7.3.1, is dealing with
inconsistencies, not only when new information contradicts previous one, but also with
an originally-inconsistent knowledge base. This section consists of a study of consistency-
preservation and consistency-restoration as key properties of ⊗o-operator.

In particular, Weak Consistency is similar to Lemma 7.1 and guarantees consistency
of the abductive program from an update pair. From now on, a consistent abductive
program from a ⊗o-update pair shall mean the abductive program with generalised
answer sets.

Lemma 8.1 (Weak Consistency View). Suppose Π0 and Π1 are ELP’s and an updating
pair Π0 ⊗o Π1 with its corresponding abductive program ΠA∗ = 〈Π′ ∪Π1,A∗ 〉. If Π1 is
consistent then ΠA∗ is also consistent.

sketch. Suppose Π0 and Π1 are ELP’s and that Π1 is consistent. This means that the
abductive program 〈Π′ ∪ Π1,A∗ 〉 is consistent and implies a generalised answer set
M(∆) out of the answer sets of Π′ ∪Π1 ∪{α← > | α ∈ ∆}, which is always consistent.
Therefore, if Π1 is consistent, then 〈Π′ ∪Π1,A∗ 〉 is also consistent.

Accordingly, the following result holds.

Corollary 8.2 (Consistency Preservation). Suppose Π0 and Π1 are ELP’s. The update
Π0 ⊗o Π1 is consistent if Π1 is consistent.

This property is known in the literature as Consistency Preservation and by Sakama
and Inoue as inconsistency removal. Note that the sole name of the latter confirms the
syntactical orientation of their approach. Finally, notice that this property is equivalent
to postulate (R ◦ 3) on Table 2.5.

149

Chapter 8. Generalised Update J.C.A.Guadarrama

Finally, the abductive program from Π0 ⊗o Π1 with no abducibles corresponds to
the union of the updating pair:

Lemma 8.2. Suppose Π0 and Π1 are ELP’s and an updating pair Π0 ⊗o Π1 with its
corresponding abductive program 〈Π′0 ∪Π1,A∗ 〉. If A∗ = ∅ then Π′0 ∪Π1 ≡N2 Π0 ∪Π1.

sketch. Suppose Π0 and Π1 are ELP’s and that A∗ = ∅. This means that Π′0 ∪ Π1 ≡N2

Π0 ∪Π1 and thus Π′0 ∪Π1 ∪Πx ≡ASP Π0 ∪Π1 ∪Πx for any program Πx. Additionally,
there are two cases for the abductive program ΠA∗ = 〈Π′0∪Π1, ∅ 〉: That it is consistent
or inconsistent. ΠA∗ consistent means there is a generalised answer set M(∅) out
of the answer sets of Π′0 ∪ Π1 ∪ ∅ where Π′0 coincides with Π0 and means that both
Π0 and Π1 must also be consistent, which clearly satisfies the equivalence Π′0 ∪ Π1 ∪
Πx ≡ASP Π0 ∪ Π1 ∪ Πx for any program Πx. On the other hand, ΠA∗ inconsistent
means that Π′0 ∪Π1 ∪∅ is inconsistent, where Π′0 coincides with Π0, which also satisfies
the equivalence Π′0 ∪ Π1 ∪ Πx ≡ASP Π0 ∪ Π1 ∪ Πx for any program Πx. In either
case, Π′0 ∪ Π1 ∪ Πx ≡ASP Π0 ∪ Π1 ∪ Πx for any program Πx as required, and therefore
Π′0 ∪Π1 ≡N2 Π0 ∪Π1 if A∗ = ∅.

On the other hand, Π1 inconsistent in Corollary 8.2 may lead to two possible sit-
uations: that the resulting update is either consistent or inconsistent, as shown in the
following example.

Example 8.5 (Inconsistent Update). Suppose the update Π1 = {a← ¬a}, which has no
answer sets, to an original empty knowledge base Π0 = ∅. As a result, ⊥ |= Π0 ⊗o Π1.
Now suppose the same update to an initial knowledge base Π′0 = {a ← >}. The ⊗o-
update answer set of such an update {a} |= Π′0 ⊗o Π1.

Corollary 8.2 also proves to be useful when satisfying belief revision postulates and
to restore consistency from an originally inconsistent knowledge base. This property
is a general case of Sakama and Inoue’s inconsistency removal that makes syntactical
changes to the original knowledge base. Note that their property requires that Π0 ⊗o
Π1 ⊆ Π0, contrasting with ⊗o-operator that is a model-oriented approach.

As a result, the following proposition follows directly from Corollary 8.2.

Proposition 8.2 (Consistency Restoration). Suppose Π0 is an ELP. The update Π0⊗o∅
is consistent.

As described in this section, ⊗o-operator guarantees robustness of knowledge bases
in many situations that may break down other alternative frameworks. Accordingly,
the properties presented in this section shall be part of a more general framework of
principles and postulates.

Notice that Lemma 8.1, together with the resulting corollary and Proposition 8.2
are properties that suggest a classification of ⊗o-operation as a framework for belief

150

TU-Clausthal 8.3 ⊗o-properties

revision rather than belief update.1 Notwithstanding, one of the main goals of this work
is representation of knowledge in general, by defining a framework with an intuitive
behaviour, even though the framework in this chapter is called “updates” for historical
and practical reasons. Having said that, in this thesis no strict distinction shall be made
with respect to belief revision and belief update. It is also worth noticing that Sakama
and Inoue have a similar position with respect to such a difference in update semantics,
where they suggest ambiguous results may arise when trying to state a clear difference
under some contexts [Sakama and Inoue, 2003].

Next, the main core of this chapter is the introduction of a particular interpretation
of one of the latest formulations of the AGM-postulates and which of them are met by
⊗o-operator.

8.3.4 ⊗o-principles

One of the main goals of this chapter is a formulation of a semantics for updates of logic
programs that can meet as-many-as possible general properties. So, let us start this
section with a “particular” interpretation and characterisation of KM′-postulates (R◦1)–
(R ◦ 6), presented in Table 2.5 and briefly recapitulated below, as a main foundation to
revising epistemic states, in this case, encoded into logic programs in LASP.

A particular interpretation to a redefinition of AGM-postulates, as fully described
in Section 2.3, is due to Darwiche and Pearl, proposing that besides the necessary
machinery to reason, an epistemic state should also include the specifications to perform
change, as shown with KM′-postulates in Table 2.5.

In a particular context of logic programs, an epistemic state is typically represented
by a logic program (in this case, an EDLP), Π. Accordingly, Π0 ◦ Π1 results in a new
epistemic state, where each program has an associated finite belief set Bel(Π), and a
knowledge base for each of them K ⊆ Bel(Π), such that Bel(Π) is a logical consequence
of K and “◦” is a generic revision operator over epistemic states. In particular, the
language of the logic program is LASP, such that the finite belief sets of the program
are logically closed in N2-logic, as in Theorem 3.1. On the other hand, Π1 ≡ASP Π2

means that both Π1 and Π2 have the same answer sets, while Bel(Π1) ≡N2 Bel(Π2)
means that their corresponding belief sets are equivalent in N2-logic. Last, an epistemic
state is consistent if and only if it has answer sets. As a result, KM′-postulates may be
defined as postulates (RG ◦ 1)–(RG ◦ 6) in Table 8.2.

Postulate (RG ◦ 1) states that new evidence should be retained after the update
and should have more preference over previous information; while (RG ◦ 2) corresponds
to Strong Consistency in Section 8.3.2. Next, (RG ◦ 3) prevents from introducing un-
warranted inconsistency and is equivalent to consistency preservation in Corollary 8.2;
and (RG ◦ 4) corresponds to Dalal’s Principle of Irrelevance of Syntax, introduced in
Section 6.2 and characterising operators �, ⊗ and ⊗o to update ASP programs; and an
obvious trimmed postulate from (RG ◦ 4) is postulate (RG ◦ 4′). Finally, (RG ◦ 5) and
(RG ◦ 6) are specifications of a minimal change.

1Further details on such differences may be found in Section 2.4.

151

Chapter 8. Generalised Update J.C.A.Guadarrama

(RG ◦ 1) Π1 ⊆ Π ◦Π1.

(RG ◦ 2) If Π ∪Π1 is consistent, then Π ◦Π1 ≡ASP Π ∪Π1.

(RG ◦ 3) If Π1 is consistent, then Π ◦Π1 is also consistent.

(RG ◦ 4) If Πx = Πy and Π1 ≡N2 Π2 then Πx ◦Π1 ≡ASP Πy ◦Π2.

(RG ◦ 4′) If Π1 ≡N2 Π2 then Π ◦Π1 ≡ASP Π ◦Π2.

(RG ◦ 5) Π ◦ (Π1 ∪Π2) ⊆ (Π ◦Π1) ∪Π2.

(RG ◦ 6) If (Π ◦Π1) ∪Π2 is consistent, then (Π ◦Π1) ∪Π2 ⊆ Π ◦ (Π1 ∪Π2).

Table 8.2: Postulates for belief revision of logic programs.

An immediate result is the following main theorem of this chapter certifying that
⊗o-operator satisfies most of these belief revision postulates.

Theorem 8.2 (RG ◦ -properties). Suppose that Π, Π1 and Π2 are ELP. Update operator
“⊗o” satisfies properties (RG ◦ 1)–(RG ◦ 4) and (RG ◦ 6).

Proof sketch. (RG ◦ 1) Π1 ⊆ Π⊗o Π1.

By Definition 8.1, Π1 ⊆ Π′ ∪ΠG ∪Π1 that clearly satisfies the objective.

(RG ◦ 2) If Π ∪Π1 is consistent, then Π⊗o Π1 ≡ Π ∪Π1.

This postulate corresponds to property ⊗o-SP-8 and satisfied by Theorem 8.1.

(RG ◦ 3) If Π1 is consistent, then Π⊗o Π1 is also consistent.

This postulate is equivalent to Corollary 8.2.

(RG ◦ 4) If Π1 ≡N2 Π2 then Π⊗o Π1 ≡ Π⊗o Π2.

This postulate is equivalent to property ⊗o-SP-9 in Section 8.3.2 and satisfied by
Theorem 8.1.

(RG ◦ 6) If (Π⊗o Π1) ∪Π2 is consistent, then (Π⊗o Π1) ∪Π2 ⊆ Π⊗o (Π1 ∪Π2).

Suppose (Π⊗oΠ1)∪Π2 is consistent. Then, the abductive program of Π ⊗o Π1 is
〈Π′∪Π1,A∗ 〉 with its respective MGAS’sM(∆1) and its generalised program ΠG1 .
On the other hand, Π⊗o (Π1∪Π2) has the abductive program 〈Π′∪(Π1∪Π2),A∗ 〉
with its MGAS’s M(∆2) and its generalised program ΠG2 . By GAS’s definition,
∆1 ⊆ ∆2 ⊆ A∗ and thus ΠG1 ⊆ ΠG2 . In consequence, the respective ⊗o-update
programs of each pair are Π′ ∪ Π1 ∪ Π2 ∪ ΠG1 and Π′ ∪ Π1 ∪ Π2 ∪ ΠG2 , where

152

TU-Clausthal 8.3 ⊗o-properties

Π′∪Π1∪Π2∪ΠG1 ⊆ Π′∪Π1∪Π2∪ΠG2 as required. Therefore, (Π⊗oΠ1)∪Π2 ⊆
Π⊗o (Π1 ∪Π2).

Nevertheless, postulate (RG ◦ 5) does not hold. As a counterexample, consider the
following programs: Π = {a ← >;∼b ← >;∼c ← >}; Π1 = {b ← >}; Π2 = {c ← >}.
Such an update inverts the direction of the relation.

Finally, as⊗o-operator updates non-monotonic theories represented by ASP-programs,
resulting in a new non-monotonic theory, one must guarantee strong consistency in pos-
tulates (RG ◦ 2) and (RG ◦ 4) of the resulting updated program, which in turn might
be updated. Accordingly, the refined postulates are as follows:

(RG ◦ 2′) If Π ∪Π1 is consistent, then Π ◦Π1 ≡N2 Π ∪Π1.

(RG ◦ 4′′) If Π1 ≡N2 Π2 then Π ◦Π1 ≡N2 Π ◦Π2.

Theorem 8.3 (RG ◦ -properties). Suppose that Π, Π1 and Π2 are ELP. Update operator
“⊗o” satisfies properties (RG ◦ 2′) and (RG ◦ 4′′).

Proof sketch. (RG ◦ 2′) If Π ∪Π1 is consistent, then Π ◦Π1 ≡N2 Π ∪Π1.

Suppose Π∪Π1 consistent. That means Π◦Π1 ≡N2 Π∪Π1 and (Π◦Π1)∪Πx ≡ASP

Π ∪ Π1 ∪ Πx for any program Πx and Π′ ∪ Π1 ∪ Πx ≡ASP Π ∪ Π1 ∪ Πx and
Π′ ∪Π1 ∪ΠG ∪Πx ≡ASP Π∪Π1 ∪Πx. As Π∪Π1 is consistent, A∗ ∩LΠ′ are never
positive and ΠG = ∅ and Π′ ∪Π1 ∪Πx ≡N2 Π ∪Π1 ∪Πx. Then Π′ coincides with
Π and clearly Π′ ∪ Π1 ∪ Πx ≡ASP Π ∪ Π1 ∪ Πx. Thus Π′ ∪ Π1 ≡N2 Π ∪ Π1 and
Π◦Π1 ≡N2 Π∪Π1 as required. Therefore, if Π∪Π1 is consistent, Π◦Π1 ≡N2 Π∪Π1.

(RG ◦ 4′′) If Π1 ≡N2 Π2 then Π ◦Π1 ≡N2 Π ◦Π2.

Suppose Π1 ≡N2 Π2. Then Π ◦Π1 ≡N2 Π ◦Π2 and Π′∪Π1∪ΠG ≡N2 Π′∪Π2∪ΠG

and Π′∪Π1∪ΠG∪Πx ≡ASP Π′∪Π2∪ΠG∪Πx, which is clearly satisfied. Therefore,
if Π1 ≡N2 Π2 then Π ◦Π1 ≡N2 Π ◦Π2.

8.3.5 Other Properties

There are other relevant and interesting general properties for binary operators that may
have a significance in its implementation. As a result, this section includes associativity
and distributivity for ⊗o-operator.

Theorem 8.4 (Binary Properties). Suppose Π1, Π2 and Π3 are ELP’s. ⊗o-operator
satisfies the following properties:

153

Chapter 8. Generalised Update J.C.A.Guadarrama

Associativity: Π1 ⊗o (Π2 ⊗o Π3) ≡N2 (Π1 ⊗o Π2)⊗o Π3.

Distributivity: Π1 ⊗o (Π2 ∪Π3) ≡N2 (Π1 ⊗o Π2) ∪ (Π1 ⊗o Π3).

Weak Commutativity: If Π2 ∪Π3 is consistent, Π1 ⊗o Π2 ≡N2 Π2 ⊗o Π1.

Note that Distributivity is a particular case of postulate (RG ◦ 5) on Table 8.2.

Proof sketch. Suppose Π1, Π2 and Π3 are ELP’s. Then,

Associativity: Π1 ⊗o (Π2 ⊗o Π3) ≡N2 (Π1 ⊗o Π2)⊗o Π3.

The corresponding update programs satisfy the equivalence relation

Π′1 ∪Π′2 ∪Π3 ∪ΠGa ∪ΠGc ≡N2 Π′′1 ∪Π′2 ∪ΠGb
∪Π3

By Strong Equivalence,

Π′1 ∪Π′2 ∪Π3 ∪ΠGa ∪ΠGc ∪Π′′1 ∪ΠGb
≡ Π′′1 ∪Π′2 ∪ΠGb

∪Π3 ∪ΠGa ∪ΠGc ∪Π′1

that clearly satisfies the objective.

Distributivity: Π1 ⊗o (Π2 ∪ Π3) ≡N2 (Π1 ⊗o Π2) ∪ (Π1 ⊗o Π3). The corresponding
update programs satisfy the equivalence relation

Π′1 ∪Π2 ∪Π3 ∪ΠGa ≡N2 Π′1 ∪Π2 ∪ΠGb
∪Π′1 ∪Π3 ∪ΠGc

By Strong Equivalence,

Π′1 ∪Π2 ∪Π3 ∪ΠGa ∪ΠGb
∪ΠGc ≡ Π′1 ∪Π2 ∪Π3 ∪ΠGa ∪ΠGb

∪ΠGc

that clearly satisfies the objective.

Weak Commutativity: If Π2 ∪Π3 is consistent, Π1 ⊗o Π2 ≡N2 Π2 ⊗o Π1.

Assume Π2 ∪Π3 consistent. By postulate (RG ◦ 2′),

Π1 ⊗o Π2 ≡N2 Π1 ∪Π2 ≡N2 Π2 ∪Π1 ≡N2 Π2 ⊗o Π1

that clearly satisfies the objective.

Therefore, ⊗o-operator satisfies Associativity, Distributivity and Weak Commuta-
tivity.

154

TU-Clausthal 8.4 ⊗′o-prototype

This section is an introduction to general properties characterising ⊗o-operator that
go from the structural properties studied along this thesis, most of them inherited from
its equivalent counterparts � and ⊗-operators, to more general ones encoded in a par-
ticular interpretation of belief revision postulates. The satisfaction of AGM-postulates in
ASP is something new and important, provided that other current approaches either do
not meet most of them or have discarded them for considering that their monotonic na-
ture is incompatible with non-monotonic frameworks like ASP, as previously discussed
in Section 8.1.

The section is also a study of inconsistencies not only due to new information that
contradicts current knowledge, but also from both an originally-inconsistent knowledge
base, as well as new originally-inconsistent observations that not necessarily contradict
current beliefs. The former is something that may be considered a key feature of belief
revision. However, as one of the main goals of this thesis is to provide a general frame-
work to correctly represent knowledge, making a strict distinction with belief update
theory might result controversial.

On the other hand, dealing with originally-inconsistent observations might seem
counterintuitive to some researches, but it does not mean that observing such con-
tradictions may not be possible in a changing environment. Take for example two
concurrent observations that contradict each other, updating a current knowledge base.
Another example is an observation that is inconsistent due to a typo or another kind
of human error. Traditionally, those problems are left to future debugging, but with a
tendency to model even-more autonomous entities, tolerating inconsistencies is not only
reasonable, but also necessary to preserve a knowledge base from collapse.

Finally, the rest of the chapter shows directions to implement a fully-functional
prototype that might be helpful to automatically compute updates by means of this
approach in the classroom and in a practical laboratory to test properties.

8.4 ⊗′o-prototype

There are some applications where a credulous semantics like ⊗o-operator is not de-
sired. This section is an introduction to a more-skeptical semantics to ⊗o, called ⊗′o,
as well as general directions to implement a rapid prototype in DLV-solver1and a short
analysis of its complexity. But before going straight to the point, it is necessary a short
recapitulation from Section 3.4 and Section 7.6.2 in previous chapters.

8.4.1 Implementing Updates on DLV

As already presented in Section 3.1, there are two major efficient solvers to compute
ASP with a vast background of implementation and research. They are DLV and SMODELS
and the system proposed in this section employs the former at a higher abstraction level
in order to update ELP programs. Towards this end, this section is an introduction to

1This DLV-solver has been presented in [Calimeri et al., 2002; Leone et al., 2006].

155

Chapter 8. Generalised Update J.C.A.Guadarrama

a transformation that may be interpreted in either system with some slight syntactic
adaptations1.

To begin with, an approach to implement an update semantics in MGAS has al-
ready been introduced in Chapter 6 by means of preferred disjunctive logic programs in
Brewka’s ODLP and has a solver for pairs of programs at http://www2.in.tu-clausthal.
de/~guadarrama/updates/pairs.html, as described in Section 6.3. However, the men-
tioned update semantics and thus the final system itself, are limited to single updates.

Indeed, a justification to use ODLP is that there is a solver available named PSmodels2

that is an extension to SMODELS to compute preferred answer sets. Unfortunately, up
to the printout of this chapter, there is no reliable version of PSmodels and the latest
one (v.2.26a) endures some few bugs under certain circumstances. In addition to the
running solver, it is believed that DLV significantly outperforms SMODELS, not to mention
that ODLP is such a colossal semantics that can do much more complex tasks than just
computing MGAS’s, which might compromise the performance of the desired system
and mix up its simple formulation.

As a result this section is an introduction to the use of DLV’s Weak Constraints for
their characteristics of optimisation in preferences [Leone et al., 2006] that enjoys the
above benefits of being in DLV with no more extra throughput added to the system.

Leone et al. introduced a nice feature of DLV solver known as Weak Constraints that
may be employed to set up preferences between models. In particular, a weak constraint
is a variant of an integrity constraint that may be violated in order to establish priorities
amongst models. One of its differences is the introduction of a new derivation symbol
“:∼”, rather than “:− ” or “←”. Moreover, one can specify the priority level and weight
of the constraint. Formally,

Definition 8.10 (Weak Constraint [Leone et al., 2006]). A weak constraint (ω) is an
expression of the form

:∼ `1, . . . , `k,¬`k+1, . . . ,¬`m[w : p] (8.2)

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables.

In addition, Ω(Π) shall denote the finite set of weak constraints occurring in a given
program Π. Likewise, a ω-program is a logic program with weak constraints.

In order to provide a more syntactic sugar, another way to define a weak-consitraint
expression from Definition 8.10 is as follows.

Definition 8.11 (Weak Constraint). A weak constraint (ω) is an expression of the
form

[w : p]← `1, . . . , `k,¬`k+1, . . . ,¬`m (8.3)
1Refer, for instance, to [Leone et al., 2006] for an equivalence of weak constraints in SMODELS.
2http://www.tcs.hut.fi/Software/smodels/priority/

156

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www.tcs.hut.fi/Software/smodels/priority/

TU-Clausthal 8.4 ⊗′o-prototype

where for 0 ≤ k ≤ m, `1, . . . , `m are literals, while w (the weight) and p (the level, or
layer) are positive integer constants or variables.

From now on, the previous weak-constraints form shall be employed in the context
of DLV-code, while the other in higher abstraction levels.

Similarly to integrity constraints in Section 3.1, one may say that a weak constraint
ρ = ([w : p] ← `1, . . . , `k,¬`k+1, . . . ,¬`m) is violated by an answer set S of a program
Π if the following three conditions hold:

1. ρ ∈ Π

2. {`1, . . . , `k} ⊆ S

3. {`k+1, . . . , `m} * S

Additionally, Leone et al. simplify the combination of weights in levels by introducing
a function HΠ(S) that grows in direct proportion to the weight and level of the weak
constraint as follows:

Definition 8.12 (Objective Function, HΠ(S) [Leone et al., 2006]). Given a ground
program Π with weak constraints Ω(Π) and an answer set S, the ω objective function
HΠ(S) is defined by using an auxiliary function fΠ that maps levelled weights to weights
without levels:

fΠ(1) = 1

fΠ(n) = fΠ(n− 1) · |Ω(Π)| · wΠ
max + 1, n > 1

HΠ(S) =
lΠmax∑
i=1

(fΠ(i) ·
∑

ρ∈NΠ
i (S)

weight(ρ))

where NΠ
i (S) denotes the weak constraints at level i violated by S, and weight(ρ) the

weight of weak constraint ρ.

Finally, the best models of such a logic program are those that minimise the number
of violated weak constraints.

Definition 8.13 (Weak-Constraint Model [Leone et al., 2006]). For an EDLP Π with
weak constraints, a set S is a weak-constraint model of Π if and only if

1. S is an answer set of Π

2. HΠ(S) is minimal over all the answer sets of Π.

When the underlying semantics is ASP in Definition 8.13, a weak-constraint model
is also known as Optimal Answer Set.

Moreover, the language of EDLP’s with weak constraints shall be called DATALOG∨,ω,
which is very similar to the notation from the literature.

157

Chapter 8. Generalised Update J.C.A.Guadarrama

8.4.2 Weak-constraints Characterisation

This section is an alternative to the characterisation in Section 6.3, and it consists in
transforming updates of ELP’s into a ω-program. The answer sets of such a program
shall prove to coincide with the GAS’s of the abductive program from the update.
Finally, the optimal answer sets of the ω-program shall coincide with the MSGAS’s of
the abductive program. So, let us start by introducing some more notation.

A Simple Weak Constraint (ω′) is an expression of the form

[w : p]← `

where ` is a literal; and w and p are optional weight and level parameters as in Defini-
tion 8.10.

A ω′ derives the following result with some new notation in advance: read LΩ(Π)

as the signature of the weak constraints occurring in Π (a finite set of literals), while
LNΠ

1 (M) stands for the signature of the weak constraints in Π at level 1 violated by
M. Something worth recalling is that NΠ

i (M) denotes the weak constraints at level i
violated byM in Π.

Proposition 8.3. Suppose a logic program Π with weak constraints Ω(Π) of the form
of a simple weak constraint with w = p = 1; suppose an answer setM of Π; and a set
of literals ∆ ⊆M∩ LΩ(Π). Then, LNΠ

1 (M) = ∆.

It is worth mentioning that the model(s) of a logic program with weak constraints
are also called answer sets in the literature.

Before introducing the translation function, let us recap the well-known standard
signature definition with L〈Π,A∗ 〉, which means the finite set of literals occurring both
in Π and in A∗.

Definition 8.14 (Abductive-W Translation). Let 〈Π,A∗ 〉 be an abductive logic pro-
gram. A translation into a weak-constraint program W(Π,A∗) corresponds to

Π ∪ {α′ ∨ α← >} ∪ {[1 : 1]← α} (8.4)

where α ∈ A∗ and α′ /∈ L〈Π,A∗ 〉.

This translation and Proposition 8.3 yield the following useful results for the imple-
mentation of GAS-semantics in weak constraints.

Lemma 8.3. M∩L〈Π,A∗ 〉 is a generalised answer set of an abductive program 〈Π,A∗ 〉
if and only ifM is an answer set of W(Π,A∗).

sketch. Only-if part. Suppose M is an answer set of W(Π,A∗). By Definition 8.14,
there are two cases for the answer sets of the ω-program. ThatM is an answer set of

158

TU-Clausthal 8.4 ⊗′o-prototype

Π ∪ {α′ ∨ α ← >} ∪ {[1 : 1] ← α} with α ∈ M and by Definition 3.17, M∩ L〈Π,A∗ 〉

corresponds to the answer set of Π ∪ {α← >} and therefore by Definition 3.17, to the
GAS of 〈Π,A∗ 〉. On the other hand, with α /∈ M,M∩ L〈Π,A∗ 〉 is just an answer sets
of Π ∪ {} and thus the GAS of 〈Π,A∗ 〉 —Definition 3.17. In both cases,M∩ L〈Π,A∗ 〉

is a GAS of 〈Π,A∗ 〉, as required.
If part. Suppose M∩ L〈Π,A∗ 〉 is a GAS of 〈Π,A∗ 〉. By Definition 3.17, there are

two cases for ∆. That ∆ 6= {} means thatM∩L〈Π,A∗ 〉 is an answer set of Π∪{α← >}
for some α ∈ ∆ with ∆ ⊆ A∗, which corresponds to the answer setM of the translated
program (Definition 8.14) Π∪ {α′ ∨α← >}∪ {[1 : 1]← α} with α ∈M. On the other
hand, ∆ = {} means thatM∩ L〈Π,A∗ 〉 is an answer set of Π ∪ {} that corresponds to
the answer setM of the ω-program Π ∪ {α′ ∨ α← >} ∪ {[1 : 1]← α} with α /∈M. In
both cases,M is an answer set of W(Π,A∗), as required.

The equivalence between a GAS of an abductive program and an answer set of a
ω-program ought to be easier to read after a simple example:

Example 8.6. Suppose an update of Π1 with Π2 where Π1 = {b← >}; Π2 = {a← >}.
Its corresponding abductive program is 〈Π′ ∪ Π2,A∗ 〉 where Π′ = {b ← ¬α} and A∗ =
{α}. As a result, W(Π′ ∪ Π2,A∗) = Π′ ∪ Π2 ∪ {α′ ∨ α ← >} ∪ {[1 : 1] ← α} whose
answer setM = {α′, a, b}. On the other hand, the GAS of the abductive program is just
{a, b}∅ =M∩ L〈Π′∪Π2,A∗ 〉.

Up to now, one can compute GAS’s by means of ω-programs. However, this proposal
of updates at the object level requires that the generalised answer sets are minimal with
respect to the number of abducibles, as in Definition 8.6. Thus, the main result of
this section is the following theorem that shows the equivalence between MSGAS’s and
optimal answer sets, the core of the implementation and one more property for the
semantics.

Theorem 8.5 (MSGAS–Optimal Answer Set). Let M be a set of literals. The set
M∩ L〈Π,A∗ 〉 is a minimal sequenced generalised answer set of the abductive program
〈Π,A∗ 〉 if and only ifM is an optimal answer set of W(Π,A∗).

Proof sketch. If part. SupposeM∩L〈Π,A∗ 〉 is a minimal sequenced generalised answer
set of the abductive program 〈Π,A∗ 〉. Then, M∩ L〈Π,A∗ 〉 is a GAS of 〈Π,A∗ 〉 and
is minimal with respect to ≤S and by Lemma 8.3 M corresponds to the answer set
of W(Π,A∗) and therefore, to its weak-constraint model —Definition 8.13— that is
optimal with respect to cardinality.

Only-if part. Suppose M is an optimal answer set of W(Π,A∗). Then, by Defini-
tion 8.13, M is minimal with respect to HΠ(M) and corresponds to the minimal set

159

Chapter 8. Generalised Update J.C.A.Guadarrama

of violated weak constraints that are exactly the minimal number of abducibles in the
generalised answer setM∩ L〈Π,A∗ 〉 of 〈Π,A∗ 〉 by Proposition 8.3.

Finally, the update-answer sets of a resulting ⊗′o-update program are the MSGAS’s
expressed in the original alphabet. Formally,

Definition 8.15 (⊗′o-update Answer Set). Let Π⊗o = (Π1⊗′oΠ2) be an update pair over
a set of atoms A. Then, S ⊆ A is an ⊗′o-answer set of Π⊗o if and only if S = S ′ ∩ A
for some minimal sequenced generalised answer set S ′ of its ⊗′o-update program.

Since ⊗′o-answer sets are minimal sequenced generalised answer sets, it is a seman-
tics that may be considered more skeptical than the original ⊗o, as illustrated in the
following example.

Example 8.7. Let

Π1 = {(a← >); (b← >); (c← >)}

Π2 = {(∼a← c); (∼b← a); (⊥ ← a, b)}

The abductive program 〈Π′1 ∪Π2,A∗ 〉 has the GAS’s

{a,∼b, α2, α3}; {∼a, b, c, α1};

{∼a, c, α1, α2}; {b, α1, α3};

{α1, α2, α3}

and the abductive program has the unique MSGAS: {∼a, b, c, α1} with its obvious cor-
responding ⊗′o-update answer set. On the other hand, the abductive program has two
MGAS’s. Namely, {∼a, b, c, α1} and {a, b, α2, α3}, and its two obvious corresponding
⊗o-update answer sets: {∼a, b, c} and {a, b}.

Before analysing the complexity of ⊗′o-operator, let us fully illustrate more than one
update to an original knowledge base, by means of the following simple example.

Example 8.8. Let Π1 = {(a ← >); (b ← >)} ; Π2 = {∼b ← >} and Π3 = {∼a ← >}
with the updates (Π1 ⊗′o Π2)⊗′o Π3. The corresponding abductive update program of the
first pair is 〈Π′1 ∪ Π2,A∗ 〉 where Π′1 = {(a ← ¬α1); (b ← ¬α2)} and A∗ = {α1, α2}.
Next, W(Π′1∪Π2,A∗) = Π′1∪Π2∪{α′1∨α1 ← >}∪{[1 : 1]← α1}∪{α′2∨α2 ← >}∪{[1 :
1]← α2} whose answer sets correspond to the GAS’s {∼b, a}{α2} and {∼b}{α1,α2}. Then,
the unique MSGAS is just the optimal answer set of the ω-program: {a,∼b, α2}, whose
generalised program ΠG = {α2 ← >} and the new ⊗′o-update program is Π′1 ∪ Π2 ∪ ΠG

160

TU-Clausthal 8.4 ⊗′o-prototype

that corresponds to

Π = {(a← ¬α1); (b← ¬α2); (∼b← >); (α2 ← >)}

The second update is then represented as Π ⊗′o Π3 that has the abductive program
〈Π′ ∪Π3,A∗2 〉 where

Π′ = {(a← ¬α1,¬α11); (b← ¬α2,¬α12); (∼b← ¬α13); (α2 ← ¬α14)}

and A∗2 = {α11, α12, α13, α14}. Next, the new ω-program

W(Π′ ∪Π3,A∗2) = {a ← ¬α1,¬α11

∼α11 ∨ α11 ← > [1 : 1]← α11

b ← ¬α2,¬α12

∼α12 ∨ α12 ← > [1 : 1]← α12

∼b ← ¬α13

∼α13 ∨ α13 ← > [1 : 1]← α13

α2 ← ¬α14

∼α14 ∨ α14 ← > [1 : 1]← α14

∼a ← >}

whose answer sets correspond to the GAS’s

{∼a,∼b}{α11,α2}; {∼a,∼b}{α11,α2,α12};

{∼a}{α11,α2,α13}; {∼a}{α11,α2,α12,α13};

{∼a,∼b}{α11,α12,α14}; {∼a, b}{α11,α13,α14};

{∼a}{α11,α12,α13,α14}

from which, the unique MSGAS is just the optimal answer set of the ω-program is
{∼a,∼b, α2, α11} and its ⊗′o-update answer set is simply {∼a,∼b}, as one would ex-
pect.

8.4.3 ⊗′o-complexity

This section is a brief introduction to the complexity of ⊗′o operator that, broadly
speaking, has its bottleneck in the process of DATALOG∨,ω. That is to say, the problem
of ⊗′o-updating Π0 with Π1 may be divided into two basic processes, very similar to

161

Chapter 8. Generalised Update J.C.A.Guadarrama

updating sequences in Section 7.6.5. Firstly, there is an implicit simple algorithm in
the definition of α-relaxed program that transforms an ELP into a ω-program with
disjunctions. Secondly, the resulting propositional (ground) ω-program is an ordinary
DATALOG∨,ω to be computed by DLV, which calculates its ω-models. By following the
notation introduced in Section 3.7, the time to compute such a process is bounded by ΘP

3

in the size of the ω-program in general [Buccafurri et al., 2000; Leone et al., 2006], while
a propositional ELP without weak constraints is known to be ∆P

2 in general, assuming
that P = co-P; ∆P

2 = co-∆P
2 ; ∆P

3 = co-∆P
3 ; ΘP

3 ⊆ ∆P
3 .

The complexity of computing a propositional DATALOG∨,ω program is still poly-
nomial in the size of the input, for the case of a single ω-component —single ω-level
NΠ

1 (·), in this thesis notation— [Buccafurri et al., 2000; Leone et al., 2006]. For the case
of non-ground input-programs, however, the complexity of DATALOG∨,ω rises to expo-
nential, bounded by co-NEXPTIMENP [Leone et al., 2006]. That is to say, grounding a
program may produce a ground-program that is exponentially larger than the size of the
original non-ground program [Heymans, 2006]. Although the proposals of this thesis
are in the propositional case, there is no restriction to compute non-ground programs,
besides the well-known problem of grounding them: notice that ⊗o-operator does not
change the semantics of the initial theory, while ⊗′o-operator may be more credulous.

In particular, the program transformation, may be reduced to the problem of tag-
ging each rule of a program Π0 with a subset of the natural numbers (1, 2, . . . , r) by
the definition of α-relaxed program, where r = |{ρ | ρ ∈ Π0}|. As a consequence, the
following obvious result holds, like in Proposition 7.7:

Proposition 8.4. The complexity of transforming any extended logic program Π0 into
an α-relaxed program is linear in the number of rules r = |{ρ | ρ ∈ Π0}|.

Notwithstanding, the process of weakening an original knowledge base may tend to
be more expensive while iterations occur, for such a process will introduce new facts
that are true literals in ⊗′o-models. That is to say, a particular application might have
databases large-enough over iterations so as to fall down into program complexity —
polynomial— rather than into data complexity —exponential— or combined complexity.
Note than in general, combined complexity is taken as the main measure, according to
Dantsin et al..

Once the original knowledge base has been weakened, there is an ordinary ground
ω-program to be interpreted in DATALOG∨,ω, whose possible interpretations of the
weakened rules and introduced abducibles grow exponentially in the number of rules
of Π0 by having an upper bound of 2|A

∗| possible combinations to include abducibles
into every interpretation, depending on the algorithm employed to find GAS’s —see
Example 7.4. In the case of ⊗′o-operator, however, such an algorithm is up to DLV.
Finally, as the transformed updating pair is a propositional case (ground) for a single
component1 (single ω-level, in our notation), the particular complexity of the whole
problem of computing it in DLV is bounded by ΘP

3 , which isn’t a bad result, according

1Buccafurri et al.

162

TU-Clausthal 8.4 ⊗′o-prototype

to the hierarchy introduced in Section 3.7.1: ΣP
2 ⊆ ΘP

3 ⊆ ∆P
3 . In other words, NPNP ⊆

ΘP
3 ⊆ PΣP

2 or
NPNP ⊆ PNPNP[O(log n)]

⊆ PNPNP
,

where n is the input size.
However, given the exponential input size of a grounded relaxed initial knowledge

base, the overall complexity lies in the exponential hierarchy with respect to the original
non-relaxed pair:

Proposition 8.5. The complexity of computing a ⊗′o-answer set of any pair of grounded
ELP’s (Π0,Π1) is exponential in the number of rules r = |{ρ | ρ ∈ Π0}|, bounded by co-
NEXPTIMENP.

On the other hand, computing ungrounded programs in DATALOG∨,ω is very ex-
pensive and thus a clear shortcoming for semantics of updates of logic programs in
ASP so as to have typical industrial applications of, say, updating large knowledge bases.
Notwithstanding, the implementation to process toy examples in the classroom is an im-
mediate practical application, as well as others like a property testbed and more complex
prototypes, to mention a few, that shouldn’t be despised.

In summary, the only complexity result relevant to this thesis is Proposition 8.5,
as the complexity of the entire process to find ⊗′o-models depends on the particular
application of updating knowledge bases. Notwithstanding, the entire process is not
affected by the ⊗′o-operation and is still bounded by the complexity of the corresponding
DATALOG∨,ω: whether it is propositional or ungrounded; sequencial or iterative; and
whether it is data-complete or combined with program-completeness.

Having presented the complexity and equivalence between weak-constraint models
and MSGAS, the following section consists of a general view of its implementation, which
confirms the claims along this thesis and provides a testbed with a link to an online
prototype for further research on property tests, toy examples and a component of more
complex (agent) applications.

8.4.4 The Parser

Differently from the implementation at http://www2.in.tu-clausthal.de/~guadarrama/
updates/pairs.html, which has a parser embedded in its PHP1 code, the new parser
presented in this section has been compiled in C-language generated by Lex and Yacc
on UNIX and it may be run online, with no need to download it, at: http://www.in.
tu-clausthal.de/~guadarrama/updates/o.html. The advantage of having a UNIX
binary module is the ease to be a plug-in to other modules so as to form more complex
scenarios.

1This is a well-known script language, quite suitable for small processes of dynamic contents for
web pages, as well as for regular-expressions modules.

163

http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html

Chapter 8. Generalised Update J.C.A.Guadarrama

The parsing process consists in entering two sets of ELP’s (each within braces) that
is analysed, decomposed and transformed into a ω-program, whose interpretation is
executed by DLV.

The BNF grammar and tokens are very similar to the ones in the sequence semantics
presented in Section 7.6.3. Consequently, they are omitted in this section.

As mentioned before, once a rule is analysed and weakened, the system constructs
a pair of new rules with weakening atoms under weak-constraints semantics like Defini-
tion 8.14:

[1 : 1] ← αi (8.5)
∼αi | αi ← > (8.6)

The intuition behind this formulation is computing the MGAS of the abductive
program by violating the least number of weak constraints —refer to Section 3.4.

Example 8.9. Suppose the update of Π1 by Π2 where Π1 = {a ← ¬b}; Π2 = {(b ←
¬a); (c← a)} The corresponding abductive program is 〈Π′ ∪ Π2,A∗ 〉 where Π′ = {a←
¬b,¬α1} and A∗ = {α1}. Such an abductive program is transformed into a preference
program as

a:− not b , not alpha_1 .
∼alpha_1 | alpha_1 .
:∼ alpha_1 . [1 : 1]
b:− not a .
c:− a .

that has two optimal answer sets from which one may form two identical update pro-
grams:

{a:− not b , not alpha_1 .
b:− not a .
c:− a .
∼alpha_1 .}

that have two optimal answer sets:

{∼alpha_1 , a , c } , {∼alpha_1 , b}

At this final stage, the resulting programs are preferred transformed programs to be
interpreted in DLV with weak constraints. Such a process yields zero or more optimal
answer sets to be transformed into MSGAS’s by a control script.

164

TU-Clausthal 8.5 Conclusions of Chapter 8

8.4.5 Discussion

This section is an introduction of general methods for rapid prototyping in DLV of logic
programming semantics, as well as directions to implement the declarative version of
both an update semantics and MSGAS’s. The system has been developed with a strong
emphasis on declarative programming, in just some few fragments of procedural modules,
in order to make it easily modifiable for particular frameworks and to confirm claims
of the original semantics here presented. Another of its highlights is its modularity
and UNIX paradigm that allows it to be a web service and easily plugged into other
systems via on-line even without needing to download it. Moreover, its simple standard
graphical user interface in HTML makes it very easy to use, compared to most of the
solvers implemented for command-line use.

As one of the main components of Logic Programming, implementation of semantics
helps quickly understand it (for educational proposes and for a reliable comparison tool,
for instance), spread it, test properties and compute knowledge bases for more complex
prototypes and other frameworks. In addition, an analysis on the complexity of the
prototype shows that the transformation from a given sequence of logic programs is
polynomial, while computing the resulting transformed program may be exponential,
due to DLV’s weak constraints. Nevertheless, the implementation shouldn’t be despised,
as it has immediate practical academic applications at least.

8.5 Conclusions of Chapter 8

This chapter is an introduction to a new definition for updates at the object level that is
more general than the ones presented in previous approaches, overcoming the problem
that Sakama and Inoue have pointed out in order to meet a persistence principle and a
particular minimality of change —at the object level— essential for a general semantics
for updates. As a result, it is equivalent to the restricted cases of its predecessors, and
meets the same basic structural properties.

The core of this chapter shows that the new semantics satisfies the introduced set of
structural properties for sequences of updating logic programs; a general set of postulates
for belief revision; as well as other needed properties as consistency preservation and
inconsistent updates. The latter set of properties have to do with consistency restoration
both from an original inconsistent knowledge base and an inconsistent observation that
is in turn an inconsistent update, which makes the difference between belief revision and
updates a little fuzzy. Nevertheless, such a difference is secondary in this research, as
the general goal is to produce a robust semantics to represent knowledge with intuitive
behaviour.

On the other hand, in this chapter there is a section devoted to show that the
semantics coincides with other operators introduced in previous chapters, under certain
restrictions. As a result, this semantics is more general and inherits the same theoretical
basis and most of the properties from its predecessors.

Besides satisfying the principles proposed, this chapter illustrates through several

165

Chapter 8. Generalised Update J.C.A.Guadarrama

examples and transformations how to overcome problems occurring in alternative up-
date approaches for ASP, in particular a persistence situation. One of the key trans-
formations yields an abductive program out of a given updating pair of extended logic
programs. Another transformation constructs a preferred weak-constraint program to
compute generalised answer sets of the abductive program. Finally, as one main goals
of Logic Programming, there is a section introducing a functional prototype from the
declarative semantics version, that computes an approximation to the update answer
sets of a given pair of programs by means of DLV’s weak-constraints models, that fully
correspond to the MSGAS’s of a slight modification to the main update operation. Al-
though its cardinality criterion of preference makes it applicable to slightly different
kind of problems than the original operator, it allows to quickly implement a proto-
type naturally, in DATALOG∨,ω, and gives enough background and technology to easily
implement the set-inclusion criterion. The prototype is fully functional, helpful in ex-
ploration of new properties and applications, and it runs online with a standard browser
interface. The section also includes an analysis of complexity of the corresponding pro-
cesses that suggests a polynomial time in the case of propositional theories, imposed by
the computing of EDLP’s with weak constraints, which is not significantly affected by
the update operation nor by the introduction of disjunction and weak constraints to
ELP’s.

In summary, the chapter has presented a more general framework that meets prop-
erties of iterated (non-sequenced) approaches and emphasises the logical contents of
programs that represent knowledge. As a consequence, this semantics may overcome
particular problems associated with persistence and minimality of change at the object
level, as well as with a high dependence of syntax, giving a more general platform for
more complex frameworks in knowledge representation. Finally, as an important com-
ponent of Logic Programming, there is a solver prototype of this current semantics that
closes the gap between theory and practice and opens a path with a solid component
for further applications in management of knowledge systems.

166

In the courtroom of the conscience, a

case is always in progress.

Unknown

Chapter 9

Conclusions

Let us end this thesis by giving a summary of the pursued research, as well as an
appraisal of the presented evidences and syntheses that support its claims. To begin
with, Section 9.1 gives a general overview of the thesis, as well as an assessment of the
original objectives. Next, Section 9.2 is a summarised list of major contributions that
might be interesting to the research community.

9.1 Overview of the Thesis

The main objective of this thesis has been to explore whether an appropriate synthesis
of well-known principles and postulates can be a suitable foundation for a simpler and
stronger framework to update propositional theories in ASP, than earlier approaches.
Once such a synthesis is achieved, the problem of updating knowledge bases turns more
natural and intuitive, by overcoming unexpected circumstances that would bring the
knowledge base to collapse. In consequence, a language with such a strong basis would
lead to correct knowledge and beliefs representation and reasoning.

I have presented a general and simple semantics for updates of logic programs to
support such a claim, whose main feature is a strong theoretical synthesis of general well-
knonwn principles and postulates, and that it can be easily modified to meet particular
needs of consistency and levels of abstraction.

Rather than setting up a very complex formulation to characterise other frameworks
or to carry on building up syntactical ones with brand-new principles, this proposal
starts with a study on theoretical bases to represent knowledge. In addition, there
is a general study focused on the most relevant semantics in ASP to point out their
features and limitations. As a result, this proposals overcomes major drawbacks of the
other approaches, in a simple and robust semantics to reason and represent knowledge
correctly. Finally, this work is also supported by an implemented solver prototype as
an approximation and automatic testbed that makes the semantics more accessible (in
a classroom, i.e.), and potential component for further more complex prototypes in
administration of (toy?) knowledge systems, with precise properties.

167

Chapter 9. Conclusions J.C.A.Guadarrama

9.2 Relevance of the Major Contributions

This section is a highlight of several major contributions of this dissertation that may be
relevant to further study in the research community. Although they have an associated
cardinal number, it does not necessarily reflect their impact or significance.

To begin with, the first contribution is a set of challenging examples to question,
assess and compare existing semantics in a quick survey of the most relevant approaches
that perform updates in ASP. Such a set may be useful as a preliminary “benchmark” to
study properties of further semantics for updates, and has been carefully summarised
into three tables for quick access in Appendix A.

The second contribution is an introduction to a general method of relaxing knowl-
edge bases that allows to reason about conflicting new observations from the environment
that might compromise the integrity of a (current) initial knowledge base. In addition
to that, the method implies an initial specific set of basic structural properties proposed
to be satisfied by any update approach in ASP. Finally, the approach may be tailored
to particular inconsistency needs, as shown in subsequent chapters.

The third one is an introductory method to update sequences of logic programs that
can meet the proposed properties, which may be tailored to model sequences of changes
in more-complex frameworks with a different minimal-change criteria at the meta-level.

The number four is a general framework to update logic programs that can meet
the proposed properties and most of the AGM-postulates, which may be customised to
model changes on knowledge bases in more-complex frameworks at the .

The fifth contribution is a study on how to deal with inconsistencies, which is always
relevant in administration of knowledge bases and provides methods to perform both
belief updates and belief revisions that may be applied in different fields that require
consistent knowledge bases.

A sixth contribution is a characterisation of updates with preferences of both car-
dinality and set-inclusion criteria. Such characterisation studies may be extended to
further different preference-criteria, according to the particular problem to solve within
diverse scenarios of minimal change and conflict resolution.

As a seventh contribution there are automatic methods to translate abductive pro-
grams into preference programs both in DLV’s weak constraints and ODLP, which also
may automate the process of finding their generalised answer sets. Such methods might
be interesting in the implementation of particular needs of GAS’s in other more-complex
prototypes of diagnosis, debugging, preferences, etc.

Number eighth: a particular interpretation of AGM-postulates in ASP and a se-
mantics that satisfies five out of six postulates that may be of interest to communities
from both monotonic and non-monotonic reasoning.

Last but not least, another contribution is a characterisation of updates with two
preference frameworks: Ordered-disjunctive Logic Programming and DLV’s Weak Con-
straints, which leads to to rapid-prototypes frameworks of updates and make it more
accessible to the research community, for the discovery of further properties and more-
complex prototypes. The prototypes may also be easily tailored to particular needs of

168

TU-Clausthal 9.2 Relevance of the Major Contributions

the research community.

9.2.1 Update Benchmark

Chapter 4 and Chapter 5 present an analysis and compilation of the most relevant se-
mantics for updates, as well as a set of key examples that jeopardise the integrity of
the knowledge base in question, and that violate some common-sense intuitive princi-
ples in general. Such an analysis consists of pointing out some of their features and
shortcomings than have motivated the work and scope of this thesis, by means of a set
of counterexamples that suggest a “common benchmark” for further research on each
proposal as well. Nevertheless, there is much work to be done to analyse the impact of
such consideration in each particular case, as some of the proposals’ main goals are more
oriented to characterising different specific aspects to updating of knowledge bases.

The survey also includes an open question on other ways to tackle the problem
of updating knowledge bases in other related frameworks of logic programming —i.e.
Well-founded Semantics [Alferes et al., 2005, 1999; Van Gelder et al., 1991], epistemic
logic programming [Zhang, 2003a, 2006]—, where they may find similar counterintuitive
problems and which has been clearly out of the scope of this thesis. The work done in this
thesis, however, confirms the suitability of AGM-theory and in particular KM′-postulates
and other principles, general enough to be relevant even in other frameworks like modal
logic, linear logic, argumentation, nonmonotonic reasoning, default logic, planning, etc.

9.2.2 Relaxation Technique

Another major contribution is a relaxation technique, to be used in the rest of the thesis,
to an initial knowledge base. The method has been introduced and explored in Chap-
ter 6, and then extended in Chapter 7 and Chapter 8 to meet particular needs. The
technique is so simple that the process takes linear time to compute it, and makes an
initial knowledge-base flexible so that it may cope with new possible-conflicting infor-
mation from the environment. This means that new information has more preference
over background knowledge, by following a proposed set of basic structural properties
and principles.

In particular, weakening the original knowledge base consists in turning it into in-
complete knowledge, so that one can complete it with new upcoming information by giv-
ing more priority to the latter and by preserving two kinds of minimal-change principle
that have different implications on persistence of beliefs. The results of such method
and properties have been encouraging and of great value to this entire thesis, to some
related work of updates in ASP, and should be of interest to other more general fields
of research like nonmonotonic reasoning, commonsense reasoning, knowledge represen-
tation, constraint programming, argumentation, preferences, belief revision and updates,
abduction, and others.

169

Chapter 9. Conclusions J.C.A.Guadarrama

9.2.3 Semantics for Belief Revision and Update

The previous background of relevant proposals and a relaxation technique leads to
a general framework to update logic programs, which is another major contribution.
For both historical and practical reasons, semantics for updates of logic programs are
called so, without making any distinction to belief-revision operations. The difference
may be quite subjective, although there is a key distinction when having an originally-
inconsistent knowledge base or when originally-inconsistent information comes up from
the environment, which are implications of a static or changing environment.

Chapters 6 and 7 take in these concerns and present a case study of managing
two kinds of inconsistencies. Accordingly, the proposed method can be applied when
restoring consistency from an originally-inconsistent knowledge base, as well as from an
originally-inconsistent update. In addition to that, the same method can be applied
when strict consistency is required in either case, which will lead more into the belief-
update.

As a result, the semantics prove to comply with five out of six general postulates
for belief revision of epistemic states, as well as with the full set of proposed basic
structural properties. This result makes the semantics relevant to research communi-
ties from nonmonotonic reasoning, commonsense reasoning, knowledge representation,
argumentation, belief revision and updates, intelligent/rational/BDI-agents, to mention
a few.

9.2.4 Semantics for a Minimal Belief Change

Another main contribution of this research work, introduced in Chapter 4 and 6, and
later developed in Chapter 7 and Chapter 8 are two case studies on how to deal with
minimal-change principles, namely at the object-level and at the meta-level, with cor-
responding repercussions for persistency of beliefs. Chapter 8 comprises a preliminary
empirical evaluation and comparison between the two approaches and leaves room to
customise more than one minimality-criteria from the literature.

As a result, Chapter 7 consists of a semantics that performs updates at the meta-level
with a minimal-cardinality criterion. In contrast, Chapter 8 comprises an object-level
semantics both with a minimal-cardinality and minimal-set-inclusion criteria, besides
a formal equivalence-relation between the two proposed semantics. Consequently, the
method leaves room to easily implement those alternatives from the literature and more.

These minimal-change results should be interesting and useful for different research
communities like nonmonotonic reasoning, commonsense reasoning, knowledge repre-
sentation, constraint programming, argumentation, preferences and qualitative decision
making, belief revision and updates, and others.

170

TU-Clausthal 9.2 Relevance of the Major Contributions

9.2.5 A Semantics Independent from Syntax

A major result out of the survey of other approaches, two properties proved to be corner-
stones to overcome their counterintuitive behaviour of most of them: weak irrelevance
of syntax and strong consistency.

While the majority of alternative proposals here studied are based on syntactic
methods to perform updates, these two principles suggest a opposite method to agree
with general postulates.

Preliminary versions of syntax-based approaches started to show unforeseen cir-
cumstances that caused counterintuitive behaviour. As a result, some improvements
emerged to ad-hoc solutions that might not guarantee further unforeseen situations.

The proposed semantics presented along this thesis are model-based approaches
in the sense that both the change policies and the resulting knowledge bases depend
on semantical-logical contents of the updating knowledge bases, rather than depending
upon the particular way to write them up. This resulted in an update semantics that
meets the proposed structural properties as well as most of the AGM-postulates, besides
overcoming the counterintuitive behaviour of the other alternatives.

The obvious repercussions of such a result lies in the potential autonomy of a com-
puter system that is robust to contradictory situations. A robust system just described
should be interesting to research communities of preferences and qualitative reasoning,
automated reasoning, optimisation, logic programming, nonmonotonic reasoning, com-
monsense reasoning, knowledge representation, constraint programming, belief revision
and updates, and more.

9.2.6 Preference Characterisations

Last but not least, another main contribution is the characterisations of updates both
with ordered disjunctions and with weak constraints. These characterisations have been
introduced from Chapter 6 to Chapter 8, and allow one to easily and quickly implement
the proposed approaches without worrying too much about imperative or procedural
details, for the declarative nature of the proposed programming tools. Likewise, the
characterisations include a formal analysis of complexity that shows no significant ad-
ditional throughput to the process of computing “regular” answer sets, despite the fact
that the study did not pursue any efficient implementation for being beyond the in-
tended thesis scope.

The proposed characterisations in ODLP and DLV’s weak constraints allow one
to express given updates, to an initial knowledge base, into a single corresponding
DATALOG× or DATALOG∨,ω-program; as well as to compute both minimal generalised
answer sets and MSGAS’s in general. Such characterisations open up the possibility
to reason updates within preference frameworks and their respective properties. An
immediate result, for instance, is the implemented prototypes that are a contribution
from this research topic. Such functional prototypes are possible when ODLP and
weak-constraints solvers exist, like PSmodels and DLV’s weak-constraints, respectively,

171

Chapter 9. Conclusions J.C.A.Guadarrama

and allow one to choose between the two preference solvers. As a result, this thesis
includes formal translations and an implemented prototype for update sequences1 in
DATALOG∨,ω; another one for iterated update2 in DATALOG∨,ω; as well as a preliminary
study3 to use DATALOG×. All of them are widely available and running online.

Besides providing an automatic testbed for properties study, for the classroom, and
for other more-complex prototypes, a great advantage of online applications is that they
needn’t downloaded or installed and they are easy to use for their standard web interface.
In consequence, the proposed approaches widespread available online4 are also easy to
distribute, and should be of great interest to research communities of PSmodels, DLV,
preferences and qualitative reasoning, automated reasoning, optimisation, logic program-
ming, commonsense reasoning, knowledge representation, argumentation, and more.

1http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
2http://www.in.tu-clausthal.de/~guadarrama/updates/o.html
3http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
4http://www2.in.tu-clausthal.de/~guadarrama/updates/

172

http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www2.in.tu-clausthal.de/~guadarrama/updates/

Bibliography

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. 1985. On the logic
of theory change: Partial meet contraction and revision functions. The Journal of
Symbolic Logic 50, 2 (June), 510–530. 4, 7, 15, 20, 21, 43, 136

Alferes, J. J., Banti, F., Brogi, A., and Hitzler, P. 2005. The well supported
semantics for multidimensional dynamic logic programs. In Logic Programming and
Nonmonotonic Reasoning, C. Baral, G. Greco, N. Leone, and G. Terracina, Eds.
LNCS, vol. 3662/2005. Springer Berlin/Heidelberg, Diamante, Italy, 356–368. 49, 50,
53

Alferes, J. J., Banti, F., Brogi, A., and Leite, J. A. 2005. The refined extension
principle for semantics of dynamic logic programming. Studia Logica 79, 1, 7–32. 7,
10, 44, 48, 49, 50, 51, 53, 95, 96, 109, 110, 135, 136, 138, 139, 141, 148, 169, 188

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H., and Przy-
musinski, T. C. 1999. Dynamic updates of non-monotonic knowledge bases. Journal
of Logic Programming 45, 1–3, 43–70. 9, 43, 44, 49, 52, 53, 57, 58, 59, 88, 96, 97,
109, 136, 137, 138, 139, 169

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinski, T. C., and Przy-
musinska, H. 1998. Dynamic logic programming. In Proceedings of the 6th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR-98), A. Cohn, L. Schubert, and S. Shapiro, Eds. Morgan Kaufmann Publishers,
San Francisco, 98–111. 49

Alferes, J. J., Pereira, L. M., Przymusinska, H., and Przymusinski, T. C.
2002. LUPS—A language for updating logic programs. Artificial Intelligence 138, 1–2
(June), 87–116. 49, 189

Balduccini, M. and Gelfond, M. 2003. Logic programs with consistency-restoring
rules. In Proceedings of the AAAI Spring 2003 Symposium. AAAI Press, Palo Alto,
California, 9–18. 38, 39, 40, 95, 104

173

Bibliography J.C.A.Guadarrama

Benferhat, S., Kaci, S., Berre, D. L., and Williams, M.-A. 2004. Weakening
conflicting information for iterated revision and knowledge integration. Artificial
Intelligence 153, 1–2, 339–371. 189

Brewka, G. 2001. Declarative representation of revision strategies. Journal of Applied
Non-classical Logics 11, 1–2, 151–167. 136

Brewka, G. 2002. Logic programming with ordered disjunction. In Proceedings of the
18th National Conference on Artificial Intelligence, AAAI-2002. Morgan Kaufmann,
Edmonton, Alberta, Canada. 35, 95, 101, 126, 156

Brewka, G. and Dix, J. 1998. Knowledge representation with logic programs. In
Logic Programming and Knowledge Representation, J. Dix, L. Pereira, and T. Przy-
musinski, Eds. LNAI 1471. Springer, Berlin, 1–55. Full version will appear as Chapter
6 in Handbook of Philosophical Logic, 2nd edition (2005), Volume 6, Methodologies.
29

Brewka, G., Niemelä, I., and Syrjänen, T. 2002. Implementing ordered disjunc-
tion using answer set solvers for normal programs. In Logics in Artificial Intelligence,
8th European Conference, JELIA, G. Goos, J. Hartmanis, and J. v. Leeuwen, Eds.
LNCS, vol. 2424/2002. Springer-Verlag Berlin/Heidelberg, 444–456. 38, 95, 104, 188

Brewka, G., Niemelä, I., and Syrjänen, T. 2004. Logic programs with ordered
disjunction. Computational Intelligence 20, 2, 333–357. 35, 36, 37, 38, 101, 102, 103,
188, 197

Brouwer, L. E. J. 1907. On the foundations of mathematics. Ph.D. thesis, School of
Mathematics, Amsterdam. 3, 16

Buccafurri, F., Leone, N., and Rullo, P. 1997. Strong and weak constraints in
disjunctive datalog. In Logic Programming and Nonmonotonic Reasoning. LNCS, vol.
1265/1997. Springer, 2–17. 162

Buccafurri, F., Leone, N., and Rullo, P. 2000. Enhancing disjunctive datalog by
constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.
33, 35, 41, 162

Cai, J.-Y. 2003. Lectures in Computational Complexity. unpublished, Department of
Computer Science, University of Wisconsin. 40

Calimeri, F., Dell’Armi, T., Eiter, T., Faber, W., Gottlob, G., Ianni, G.,
Ielpa, G., Koch, C., Leone, N., Perri, S., Pfeifer, G., and Polleres, A.
2002. The DLV System. In Proceedings of the 8th European Conference on Artificial
Intelligence (JELIA), S. Flesca and G. Ianni, Eds. Springer, Cosenza, Italy. 7, 30,
155

Crescini, V. F. and Zhang, Y. 2005. Policy updater: A system for dynamic access
control. International Journal of Information Security 5, 3, 145–165. 30, 65, 189

174

TU-Clausthal Bibliography

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 1999. Complexity
and expressive power of logic programming. Tech. Rep. INFSYS RR-1843-99-05, TU
Wien, Viena, Austria. February. 162

Darwiche, A. and Pearl, J. 1994. On the logic of iterated belief revision. In Pro-
ceedings of the fifth Conference on Theoretical Aspects of Reasoning about Knowledge,
R. Fagin, Ed. Morgan Kaufmann, Pacific Grove, CA, 5–23. ix, 4, 21, 22, 25, 151

Dix, J. 1995a. A classification-theory of semantics of normal logic programs: I. strong
properties. Fundamenta Informaticae XXII(3), 227–255. 7

Dix, J. 1995b. A classification theory of semantics of normal logic programs: II. weak
properties. Fundamenta Informaticae XXII(3), 257–288. 7, 109

Eiter, T., Faber, W., Leone, N., and Pfeifer, G. 2002. Computing preferred
answer sets by meta-interpretation in answer set programming. Tech. Rep. INFSYS
RR-1843-02-01, Vienna University of Technology. 44

Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2000a. Considerations on
updates of logic programs. In Logics in Artificial Intelligence, European Workshop,
JELIA 2000, M. Ojeda-Aciego, I. P. de Guzmán, G. Brewka, and L. Moniz Pereira,
Eds. Springer Verlag, Malaga, Spain, 2–20. 43, 96, 109, 136

Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2000b. On updates of logic
programs: Semantics and properties. Tech. Rep. INFSYS RR-1843-00-08, TU Wien,
Institute für Informationssysteme. 43, 44, 96

Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2001. A framework for
declarative update specifications in logic programs. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI, B. Nebel, Ed. Vol. I.
Morgan Kaufmann, Seattle, Washington, 649–654. 7, 43, 96

Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2002. On properties of update
sequences based on causal rejection. Theory and Practice of Logic Programming 2, 6,
711–767. 7, 8, 9, 24, 43, 44, 45, 47, 48, 49, 53, 59, 80, 81, 87, 91, 96, 97, 99, 109, 118,
119, 120, 132, 135, 136, 148, 187, 193, 198

Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2005. Reasoning about evolv-
ing nonmonotonic knowledge bases. ACM Transactions on Computational Logic 6, 2,
389–440. 7, 30, 44, 96, 136

Fagin, R. 1995. Reasoning about Knowledge. The MIT Press, Cambridge, Mas-
sachusetts, USA. 43

Fagin, R., Kuper, G. M., Ullman, J. D., and Vardi, M. Y. 1986. Updating logical
databases. Advances in Computing Research 3, 1–18. 43

175

Bibliography J.C.A.Guadarrama

Fagin, R., Ullman, J. D., and Vardi, M. Y. 1983. On the semantics of updates in
databases. In PODS ’83: Proceedings of the 2nd ACM SIGACT-SIGMOD symposium
on Principles of database systems. ACM Press, New York, NY, USA, 352–365. 43

Gärdenfors, P. and Makinson, D. 1988. Revisions of knowledge systems using
epistemic entrenchment. In Proceedings of the second Conference on Theoretical As-
pects of Reasoning about Knowledge, M. Y. Vardi, Ed. Morgan Kaufmann, Pacific
Grove, CA. 20

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Logic Programming, Proceedings of the Fifth International Conference and
Symposium ICLP/SLP, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Seattle,
Washington. 6, 27, 28, 43, 187

Guadarrama, J. C. 2007a. Implementing knowledge update sequences. In MICAI
2007: Advances in Artificial Intelligence, A. Gelbukh and A. Kuri Morales, Eds.
LNCS, vol. 4827. Springer-Verlag, Aguascalientes, Mexico, 260–270. 13, 14, 188

Guadarrama, J. C. 2007b. Implementing knowledge update sequences. In MICAI
2007: Advances in Artificial Intelligence, A. Gelbukh and A. Kuri Morales, Eds.
LNCS, vol. 4827. Springer-Verlag Berlin/Heidelberg, Aguascalientes, Mexico, 1–8.
188

Guadarrama, J. C. 2007c. Maintaining knowledge bases at the object level. In
Special Session of the 6th International MICAI Conference, A. Gelbukh and A. F.
Kuri Morales, Eds. IEEE Computer Society, Aguascalientes, Mexico, 3–13. ISBN:
978-0-7695-3124-3. 14, 188

Guadarrama, J. C. 2007d. A road map of updating in ASP. ISSN: 1860-8477 IfI-07-
16, Institute für Informatik, TU-Clausthal, Clausthal, Germany. December. 13

Guadarrama, J. C. 2008a. AGM postulates in answer sets. In LANMR’08 Fourth
Latin American Workshop on Non-monotonic Reasoning, M. Osorio and I. Olmos,
Eds. ISSN 1613-0073, vol. 408. CEUR. 14

Guadarrama, J. C. 2008b. A system to maintain knowledge bases of intelligent agents
in DLV’s weak constraints. In Artificial Intelligence and Soft Computing, A. P. del
Pobil, Ed. Number 628. IASTED/ACTA Press, Palma de Mallorca, Spain. ISBN:
978-0-88986-755-0. 14

Guadarrama, J. C. 2008c. Update operation in ASP revisited. ISSN: 1860-8477 IfI-
08-12, Institute für Informatik, TU-Clausthal, Clausthal, Germany. December. 13,
95, 109

Guadarrama, J. C. 2009. Maintaining sequences of knowledge bases in ASP. ISSN:
1860-8477 IfI-09-11, Institute für Informatik, TU-Clausthal, Germany. November. 13

176

TU-Clausthal Bibliography

Guadarrama, J. C., Arrazola, J., and Osorio, M. 2002. Making belief revision
with LUPS. In XI International Conference on Computing, J. H. S. Azuela and G. A.
Figueroa, Eds. CIC-IPN, PO Box 75-476 Col. Nueva Industrial Vallejo 07738, México,
D.F. 18

Guadarrama, J. C., Dix, J., and Osorio, M. 2006. Update sequences in Gener-
alised Answer Set Programming based on structural properties. In Special Session
of the 5th International MICAI Conference, P. Kellenberger, Ed. IEEE Computer
Society, Mexico City, Mexico, 32–41. ISBN: 0-7695-2722-1. 13, 59, 188

Guadarrama, J. C., Dix, J., Osorio, M., and Zacarías, F. 2005. Updates in
Answer Set Programming based on structural properties. In 7th International Sym-
posium on Logical Formalizations of Commonsense Reasoning, S. McIlraith, P. Pep-
pas, and M. Thielscher, Eds. Fakultät Informatik, ISSN 1430-211X, Corfu, Greece,
213–219. 13, 14, 39, 109, 188

Guadarrama, J. C. and Osorio, M. 2002. Exploring belief revision with LUPS. In
Avances en Inteligencia Artificial, J. H. S. Azuela and G. A. Figueroa, Eds. CIC-IPN
and SMIA, PO Box 75-476 Col. Nueva Industrial Vallejo 07738, México, D.F. 18

Guadarrama, J. C. and Osorio, M. J. 2003. Towards modelling an intelligent cal-
endar agent with LUPS. In Applied Informatics, M. H. Hamza, Ed. IASTED/ACTA
Press, Insbruck, Austria, 60–65. 18

Heymans, S. 2006. Decidable open answer set programming. Ph.D. thesis, Vrije Uni-
versiteit Brussel, Faculty of Science, Department of Computer Science, Theoretical
Computer Science. 162

Inoue, K. and Sakama, C. 1995. Abductive framework for nonmonotonic theory
change. In the 14th International Joint Conference on Artificial Intelligence (IJCAI-
95). Morgan Kaufmann Publishers, Montreal, Canada, 204–210. 55

Inoue, K. and Sakama, C. 2004. Equivalence of logic programs under updates.
In Proceedings of the 9th European Conference on Logics in Artificial Intelligence
(JELIA’04), J. J. Alferes and J. A. Leite, Eds. LNAI, vol. 3229. Springer-Verlag,
Lisbon, Portugal, 174–186. 30, 32

Johnson, D. S. 1990. A catalog of complexity classes. In Handbook of theoretical
computer science: algorithms and complexity. Vol. A. MIT Press, Cambridge, MA,
USA, 67–161. 27, 40, 41

Kakas, A., Kowalski, R., and Toni, F. 1998. The role of abduction in logic pro-
gramming. In Handbook of Logic in Artificial Intelligence and Logic Programming,
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Vol. 5, Logic programming.
Oxford University Press, Oxford, UK, 235–324. 54, 55

Kakas, A. C. and Mancarella, P. 1990. Generalized Stable Models: A semantics
for abduction. In ECAI. Stockholm, Sweden, 385–391. 38, 39, 54, 95

177

Bibliography J.C.A.Guadarrama

Katsuno, H. and Mendelzon, A. O. 1989. A unified view of propositional knowledge
base updates. In the 11th International Joint Conference on Artificial Intelligence,
IJCAI-89, N. S. Sridharan, Ed. Morgan Kaufmann, Detroit, Michigan, USA, 1413–
1419. 43

Katsuno, H. and Mendelzon, A. O. 1991a. On the difference between updating a
knowledge base and revising it. In KR’91. Morgan Kaufmann Publishers, Cambridge,
Massachusetts, USA. ix, 5, 23, 24, 25, 125, 140

Katsuno, H. and Mendelzon, A. O. 1991b. Propositional knowledge base revision
and minimal change. Artificial Intelligence 52, 3, 263–294. ix, 4, 7, 21, 22, 43, 99

Kraus, S., Lehmann, D., and Magidor, M. 1990. Nonmonotonic Reasoning, Pref-
erential Models and Cumulative Logics. Artificial Intelligence 44, 1, 167–207. 43

Lehmann, D. 1992. Plausibility Logic. In Computer Science Logic, 5th Workshop, CSL
91, Berne, Switzerland, E. Börger, G. Jäger, H. Kleine-Büning, and M. M. Richter,
Eds. LNCS 626. Springer, Berlin, 227–241. 43

Lehmann, D. and Magidor, M. 1992. What does a conditional knowledge base
entail? Artificial Intelligence 55, 1–60. 43

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and
Scarcello, F. 2006. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic 7, 3, 499–562. 7, 30, 33, 34, 35, 111, 126,
127, 128, 132, 155, 156, 157, 162

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic
programs. ACM Transactions on Computational Logic 2, 4 (October), 526–541. 7,
17, 30, 31, 32

Lifschitz, V. and Woo, T. 1992. Answer sets in general non-monotonic reasoning
(preliminary report). In Third International Conference on Principles of Knowledge
Representation and Reasoning. Morgan-Kaufmann, Cambridge, Massachusetts, USA,
603–614. 6, 27, 187

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer, Berlin. 2nd edition.
27

Makinson, D. 1988. General theory of cumulative inference. In Non-Monotonic Rea-
soning, 2nd International Workshop. Springer, Grassau, Federal Republic of Germany,
1–18. 43

Makinson, D. 1994. General Patterns in Nonmonotonic Reasoning. In Handbook of
Logic in Artificial Intelligence and Logic Programming, Nonmonotonic and Uncer-
tain Reasoning, D. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Vol. 3. Oxford
University Press, Oxford, UK, Chapter 3, 35–110. 43

178

TU-Clausthal Bibliography

Marek, V. W. and Truszczynski, M. 1994. Revision specifications by means of
programs. In Logics in Artificial Intelligence, European Workshop, JELIA. Springer,
York, UK, 122–136. 74

Marek, V. W. and Truszczynski, M. 1998. Revision programming. Theoretical
Computer Science 190, 2 (January), 241–277. 74

Meyer, A. R. and Stockmeyer, L. J. 1972. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT ’72: Proceedings of
the 13th Annual Symposium on Switching and Automata Theory (swat 1972). IEEE
Computer Society, Washington, DC, USA, 125–129. 40

Mints, G. 2000. A Short Introduction to Intuitionistic Logic. Kluwer Academic/Plenum
Publishers, New York, NY, USA. 3, 16

Moschovakis, J. 1999. Intuitionistic logic. In The Stanford Encyclopedia of Philoso-
phy, E. Zalta, Ed. The Metaphysics Research Lab, Stanford University, Stanford, CA
94305-4115. 16, 17

Nelson, D. 1949. Constructible falsity. Journal of Symbolic Logic 14, 1, 16–26. 31

Niemela, I. and Simons, P. 1997. Smodels —an implementation of the Stable
Model and Well-Founded Semantics for normal logic programs. In Proceedings of
the 4th International Conference on Logic Programming and Non-Monotonic Reason-
ing (LPNMR’97). Lecture Notes in Artificial Intelligence (LNCS), vol. 1265. Springer,
Dagstuhl Castle, Germany, 420–429. 7, 30, 38, 104

Ortiz, M. and Osorio, M. 2005. Nelson’s strong negation, safe beliefs and the answer
set semantics. In Answer Set Programming. 136

Osorio, M. and Cuevas, V. 2007. Updates in answer set programming: An ap-
proach based on basic structural properties. Journal of Theory and Practice of Logic
Programming 7, 4, 451–479. 8, 9, 31, 32, 81, 136, 137

Osorio, M., Navarro, J. A., and Arrazola, J. 2001. Equivalence in answer set
programming. In Logic Based Program Synthesis and Transformation: 11th Inter-
national Workshop; selected papers / LOPSTR 2001, Paphos, Cyprus, A. Pettorossi,
Ed. LNCS 2372. Springer-Verlag Berlin, Paphos, Cyprus, 57–75. 31, 49, 86, 110, 142

Osorio, M., Navarro, J. A., and Arrazola, J. 2004. Applications of intuitionistic
logic in answer set programming. Theory and Practice of Logic Programming 4, 3,
325–354. 27, 28

Osorio, M., Navarro, J. A., and Arrazola, J. 2005. Safe beliefs for propositional
theories. Annals of Pure and Applied Logic 134, 1, 63–82. 18

Osorio, M., Ortiz, M., and Zepeda, C. 2004. Using cr-rules for evacuation planning.
In Workshop Proceedings of Deduction and Reasoning Techniques. IEEE Computer
Society, Puebla, Mexico. 38, 104, 105

179

Bibliography J.C.A.Guadarrama

Osorio, M. and Zacarías, F. 2003. Irrelevance of syntax in updating answer set
programs. In Proceedings of the Fourth Mexican International Conference on Com-
puter Science (ENC’ 03) In Workshop on Logic and Agents. IEEE Computer Society,
Apizaco, Mexico. 43, 44, 95, 96

Osorio, M. and Zacarías, F. 2004. On updates of logic programs: A properties-
based approach. In FoIKS. Springer, Wilhelminenburg Castle, Austria, 231–241. 81,
95, 96, 109, 135

Pearce, D. 1999a. From here to there: Stable negation in logic programming. In What
Is Negation?, D. M. Gabbay and H. Wansing, Eds. Applied Logic Series, vol. 13.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 161–181. 6, 17, 18, 19,
27, 28, 31, 136

Pearce, D. 1999b. Stable inference as intuitionistic validity. The Journal of Logic
Programming 38, 79–91. 27, 31

Poole, D. 1988. A logical framework for default reasoning. Artificial Intelligence 36, 1,
27–47. 54

Safra, J. E. and Yeshua, I. 2002. Logic systems. In The New Encyclopaedia Bri-
tannica: macropaedia, 15th ed. Encyclopedia Britannica, Inc., Chicago, Il, USA. 15

Sakama, C. and Inoue, K. 1999. Updating extended logic programs through ab-
duction. In LPNMR ’99: Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning, M. Gelfond, N. Leone, and G. Pfeifer,
Eds. LNCS, vol. 1730. Springer-Verlag, El Paso, Texas, USA, 147–161. 43, 53, 96

Sakama, C. and Inoue, K. 2003. An abductive framework for computing knowledge
base updates. Theory and Practice of Logic Programming 3, 6, 671–715. 9, 43, 52,
53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 88, 92, 96, 109, 118, 125, 135, 136, 137, 138, 139,
140, 149, 150, 151, 165

Shankar, N. 1997. Metamathematics, Machines and Gödel’s Proof. Cambridge Uni-
versity Press, The Edinburgh Building, Cambridge CB2 2RU, UK. 27

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics
for general logic programs. Journal of the ACM 38, 1 (January). 7, 169

Winslett, M. 1990. Updating logical databases. Cambridge University Press, New
York, NY, USA. 43

Zhang, Y. 1995. On propositional knowledge base updates. Australian Journal of
Intelligent Information Processing Systems 2, 20–29. 7, 43, 65

Zhang, Y. 2001. The complexity of logic program updates. In AI ’01: Proceedings
of the 14th Australian Joint Conference on Artificial Intelligence. Springer-Verlag,
London, UK, 631–642. 43

180

TU-Clausthal Bibliography

Zhang, Y. 2003a. Minimal change and maximal coherence for epistemic logic program
updates. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, Acapulco, Mexico, 112–120. 81, 169

Zhang, Y. 2003b. Two results for prioritized logic programming. Theory and Practice
of Logic Programming 3, 2 (March), 223–242. 65, 67, 68, 70

Zhang, Y. 2006. Logic program-based updates. ACM Transactions on Computational
Logic 7, 3 (July), 421–472. 7, 8, 9, 43, 45, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 77, 78, 80, 81, 90, 91, 96, 138, 169, 188, 193, 194, 195, 196, 197

Zhang, Y. and Foo, N. 2005. A unified framework for representing logic program
updates. In Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-2005), M. M. Veloso and S. Kambhampati, Eds. AAAI Press / The MIT
Press, Pittsburgh, Pennsylvania, USA, 707–713. 66, 90, 96, 109, 135, 136

Zhang, Y. and Foo, N. Y. 1997. Answer sets for prioritized logic programs. In ILPS
’97: Proceedings of the 1997 international symposium on Logic programming. MIT
Press, Cambridge, MA, USA, 69–83. 67

Zhang, Y. and Foo, N. Y. 1998. Updating logic programs. In ECAI’98 13th Euro-
pean Conference on Artificial Intelligence, H. Prade, Ed. John Wiley & Sons, Ltd.,
Brighton, UK, 403–407. 53, 65

181

Bibliography J.C.A.Guadarrama

182

Appendix A

Summary of Properties

Following there is a summary of the fundamental properties I propose an update se-
mantics ought to meet. A tick like “X” means the corresponding semantics meets the
property, while “5” stands for the converse with one or more existing counterexam-
ples and/or definition. Lastly, when there exists no known proof nor counterexample
available, the corresponding symbol is just a blank. In particular, Table A shows a list
of properties and those semantics that meet or not the corresponding property. Next,
Table A shows the properties from Table A in an affirmative fashion. Finally, Table A
shows the properties from Table A in a negative fashion.

As discussed in Section 2.3, recall that AGM-postulates (PK∗2), (PK∗4) and (PK∗6)
in Table 8.1 correspond to KM′-postulates (R ◦ 1), (R ◦ 2) and (R ◦ 4), respectively, from
Table 2.5.

183

Chapter A. Summary of Properties J.C.A.Guadarrama

Operator: ⊕R �SI ⊕2 ⊕3 �Z / � ⊗ ⊗′o ⊗′ ⊗o

From Section(s): 4.2 4.3 4.5 4.5 4.4 4.1,4.5 6.1 7.2 8.4.2 7.4 8.2
Augt. Upd. Sec. 6.2 X 5 5 X X X X X

Consy. Res. Sec. 7.3.1 X 5 X X X X X
Idempotence Sec. 6.2 X X X X X X X X

Inertia Sec. 6.2 X X X X X X
Initialitation Sec. 6.2 5 X X X X X X 5 X
Integrity Constraints X 5 5 5 5 5 X X X X
Object level Sec. 5.2 5 X 5 5 X 5 5 5 X 5 X
Conflicting I. Sec. 5.3 5 5 5 5 X 5 5 5 5 5 5

LELPSec. 3.2 5 X X X X X X X X X X
LGLPSec. 4.2 X 5 5 5 5 5 5 5 5 5 5

Min.C. Sec. 1.4.1 X X X X X X X
Multiple Updates X X 5 5 5 X 5 X X X X

SC Sec. 6.2 5 5 5 5 5 X X X X X
WC Sec. 7.3.2 X X X X X
WIS Sec. 6.2 5 5 5 X X X X X
WNI Sec. 6.2 5 X X X X X X X

(R ◦ 1) Sec. 2.3 X X X X X X 5 X
(R ◦ 2) Sec. 2.3 5 5 5 X X X X X
(R ◦ 3) Sec. 2.3 X X X X X
(R ◦ 4) Sec. 2.3 X 5 5 X X X X X
(R ◦ 5) Sec. 2.3 X X 5 5

(R ◦ 6) Sec. 2.3 5 5 X X
(PK ∗ 1) Sec. 8.1 X X X X X X X X X X X
(PK ∗ 3) Sec. 8.1 X X X X X X X X
(PK ∗ 5) Sec. 8.1 X X X X X X 5 X
Assoc. Sec. 8.3.5 5 X

Distrib. Sec. 8.3.5 X X
W.Comm. Sec. 8.3.5 X X

Epist.St. Sec. 2.4 5 5 5 5 5 5 5 X 5 X

Table A.1: Summary of General Properties

184

TU-Clausthal

Operator: ⊕R �SI ⊕2 ⊕3 �Z / � ⊗ ⊗′o ⊗′ ⊗o
From Section(s): 4.2 4.3 4.5 4.5 4.4 4.1,4.5 6.1 7.2 8.4.2 7.4 8.2

Augt. Upd. Sec. 6.2 X X X X X X
Consy. Res. Sec. 7.3.1 X X X X X X
Idempotence Sec. 6.2 X X X X X X X X

Inertia Sec. 6.2 X X X X X X
Initialitation Sec. 6.2 X X X X X X X
Integrity Constraints X X X X X
Object level Sec. 5.2 X X X X

Conflicting I. Sec. 5.3 X
LELPSec. 3.2 X X X X X X X X X X
LGLPSec. 4.2 X

Min.C. Sec. 1.4.1 X X X X X X X
Multiple Updates X X X X X X X

SC Sec. 6.2 X X X X X
WC Sec. 7.3.2 X X X X X
WIS Sec. 6.2 X X X X X
WNI Sec. 6.2 X X X X X X X

(R ◦ 1) Sec. 2.3 X X X X X X X
(R ◦ 2) Sec. 2.3 X X X X X
(R ◦ 3) Sec. 2.3 X X X X X
(R ◦ 4) Sec. 2.3 X X X X X X
(R ◦ 5) Sec. 2.3 X X
(R ◦ 6) Sec. 2.3 X X

(PK ∗ 1) Sec. 8.1 X X X X X X X X X X X
(PK ∗ 3) Sec. 8.1 X X X X X X X X
(PK ∗ 5) Sec. 8.1 X X X X X X X
Assoc. Sec. 8.3.5 X

Distrib. Sec. 8.3.5 X X
W.Comm. Sec. 8.3.5 X X

Epist.St. Sec. 2.4 X X

Table A.2: Summary of General Properties

185

Chapter A. Summary of Properties J.C.A.Guadarrama

Operator: ⊕R �SI ⊕2 ⊕3 �Z / � ⊗ ⊗′o ⊗′ ⊗o
From Section(s): 4.2 4.3 4.5 4.5 4.4 4.1,4.5 6.1 7.2 8.4.2 7.4 8.2

Augt. Upd. Sec. 6.2 5 5

Consy. Res. Sec. 7.3.1 5

Idempotence Sec. 6.2
Inertia Sec. 6.2

Initialitation Sec. 6.2 5 5

Integrity Constraints 5 5 5 5 5

Object level Sec. 5.2 5 5 5 5 5 5 5

Conflicting I. Sec. 5.3 5 5 5 5 5 5 5 5 5 5

LELPSec. 3.2 5

LGLPSec. 4.2 5 5 5 5 5 5 5 5 5 5

Min.C. Sec. 1.4.1
Multiple Updates 5 5 5 5

SC Sec. 6.2 5 5 5 5 5

WC Sec. 7.3.2
WIS Sec. 6.2 5 5 5

WNI Sec. 6.2 5

(R ◦ 1) Sec. 2.3 5

(R ◦ 2) Sec. 2.3 5 5 5

(R ◦ 3) Sec. 2.3
(R ◦ 4) Sec. 2.3 5 5

(R ◦ 5) Sec. 2.3 5 5

(R ◦ 6) Sec. 2.3 5 5

(PK ∗ 1) Sec. 8.1
(PK ∗ 3) Sec. 8.1
(PK ∗ 5) Sec. 8.1 5

Assoc. Sec. 8.3.5 5

Distrib. Sec. 8.3.5
W.Comm. Sec. 8.3.5

Epist.St. Sec. 2.4 5 5 5 5 5 5 5 5

Table A.3: Summary of General Properties

186

Appendix B

Software-support Summary

B.1 Solvers

Following, this section consists of a list of solvers and applications, in no particular
order, with their respective links to implementations. Some of them were adapted by
myself in order to have a classical web-interface to run the original untouched engine
online, with the obvious advantages.

SMODELS [Gelfond and Lifschitz, 1988]

• Section 3.2

• Original source at
http://www.tcs.hut.fi/Software/smodels/

• Original engine with my web-interface at
http://www2.in.tu-clausthal.de/~guadarrama/updates/smodels.html

DLV [Lifschitz and Woo, 1992]

• Section 3.2

• Original source at
http://www.dbai.tuwien.ac.at/proj/dlv/

• Original engine with my web-interface at
http://www2.in.tu-clausthal.de/~guadarrama/updates/dlv.html

/ [Eiter et al., 2002]

• Section 4.1

187

http://www.tcs.hut.fi/Software/smodels/
http://www2.in.tu-clausthal.de/~guadarrama/updates/smodels.html
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www2.in.tu-clausthal.de/~guadarrama/updates/dlv.html

Chapter B. Software-support Summary J.C.A.Guadarrama

• Original source at
http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download

• Original engine with my web-interface at
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html

⊕R [Alferes et al., 2005]

• Section 4.2
• Original source at
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.
htm

• Original source previous to their refined principle at
http://centria.di.fct.unl.pt/~jja/updates/dlp.html

U�Z(Π0,Π1) [Zhang, 2006]

• Section 4.4
• www.cit.uws.edu.au/~yan/plps.html —interpreter for PLP’s
• www.cs.uni-potsdam.de/~torsten/plp/ —Alternative compiler for PLP’s

running on Prolog

� [Guadarrama et al., 2005]

• Chapter 6
• http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html

⊗ [Guadarrama, 2007a,b; Guadarrama et al., 2006]

• Chapter 7
• http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html

⊗o [Guadarrama, 2007c]

• Chapter 7
• http://www.in.tu-clausthal.de/~guadarrama/updates/o.html

ODLP [Brewka et al., 2002, 2004]

• Section 3.5
• Original source at
http://www.tcs.hut.fi/Software/smodels/priority/

• Original source previous to their refined principle at
www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html

188

http://www.kr.tuwien.ac.at/staff/giuliana/project.html#Download
http://www2.in.tu-clausthal.de/~guadarrama/updates/upd.html
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm
http://centria.di.fct.unl.pt/~banti/FedericoBantiHomepage/refdlp.htm
http://centria.di.fct.unl.pt/~jja/updates/dlp.html
www.cit.uws.edu.au/~yan/plps.html
www.cs.uni-potsdam.de/~torsten/plp/
http://www2.in.tu-clausthal.de/~guadarrama/updates/pairs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/seqs.html
http://www.in.tu-clausthal.de/~guadarrama/updates/o.html
http://www.tcs.hut.fi/Software/smodels/priority/
www.in.tu-clausthal.de/~guadarrama/updates/psmodels.html

TU-Clausthal B.2 Applications

AGM [Benferhat et al., 2004]

• Section 2.3

• www.uni-koblenz.de/ag-ki/LP/system.SATEN.html

B.2 Applications

LUPS [Alferes et al., 2002]

• Section 4.2

• http://centria.di.fct.unl.pt/~jja/updates/lups.html

PolicyUpdater [Crescini and Zhang, 2005]

• Section 4.4

• www.cit.uws.edu.au/~jcrescin/projects/PolicyUpdater/

189

www.uni-koblenz.de/ag-ki/LP/system.SATEN.html
http://centria.di.fct.unl.pt/~jja/updates/lups.html
www.cit.uws.edu.au/~jcrescin/projects/PolicyUpdater/

Chapter B. Software-support Summary J.C.A.Guadarrama

190

Appendix C

Stable-Models Procedure

This is a brief informal process from the literature on the procedure to compute stable
models by means of a reduct and Herbrand model in a procedural approach. Note the
alternative to Herbrand model in this case is the minimal closure of the reduct.

ΠM: given a set of atoms M from Π. The reduct program ΠM is constructed by
deleting:

(a) each rule ρ with a negative literal ¬` | ` ∈M.

(b) all negative literals of the remaining rules.

MH : Herbrand (Unique) model of ΠM. If coincides withM,M is a stable model of Π.

Cn: alternative toMH : minimal closure of ΠM or Cn(ΠM):

• for a relation R, a class A is said to be closed under R, if whenever x ∈ A
and xRy then y ∈ A (i.e., R[A] ⊆ A).
• minimality: no proper subset of ΠM is closed under ΠM and consistent.

SM: Any stable set (model) of Π is a minimal Herbrand model (minimal closure) of Π.

191

Chapter C. Stable-Models Procedure J.C.A.Guadarrama

192

Glossary

(Π,N , <) Prioritised Logic Program. 67

HΠ(S) Weak-constraint objective function. 34, 128, 157

Head(ρ)← Body(ρ) ∪ {¬α} ρ-relaxed form. 111, 141

≡ Equivalence. 16, 17, 118

≡HI Equivalence in HI-logic. 16

≡ASP Equivalence in ASP. 118

M(∆) Generalised Answer Set. 39

MH Herbrand Model. 191, 193

Name(·, ·) Injective naming function that assigns to each rule in a program a unique
name [Eiter et al., 2002]. 44

NΠ
i (S) Weak constraints at level i violated by S. 34, 128, 157

ΠA∗ = 〈Π,A∗ 〉 Abductive Logic Program. 112, 117, 121, 122, 124, 141, 146, 147, 149,
150, 193

:− Prolog derivation; ASP derivation. 33

SPLP(UPLP(B,Π)) Set of all resulting knowledge bases of UPLP(B,Π) [Zhang, 2006]. 73

LΠ Signature of Π. 29, 30, 32, 39, 100, 105, 112, 120, 146, 153, 158–160, 193

LNΠ
1 (M) Signature of NΠ

1 (M). 158

L〈Π,A∗ 〉 Signature of an abductive program 〈Π,A∗ 〉. 39, 158

LΩ(Π) Signature of Ω(Π). 158

:∼ Weak-constraint derivation. 33

:∼ `[w : l] Simple Weak constraint. 158

193

Glossary J.C.A.Guadarrama

W(Π,A∗) Translation into a weak-constraint program —ω-program. 158

Cn(·) Consequence operation. 20

Cn(Π) Minimal closure of Π. 29

M = A \M | M ⊆ A
M-complement. 29

a Newly introduced atom uniquely associated with a. 56

≡S Relaxed-sequence Equivalence. 112, 113, 124, 146, 194

≡N2 Equivalence in N2—strongly equivalence. 32

>c Cardinality-preference Order. 37, 103, 194

>i Inclusion-preference Order. 37, 103, 194

>k ×-preference Order. 37, 103, 194

lΠmax Maximum level over the weak constraints in Π. 34

≤A∗ Abductive Inclusion Order. 39, 194

≤S Relaxed-sequence Order. 112–114, 120, 124, 146, 159, 194, 200

�A∗ Abductive Inclusion Order. 39, 194

new-` Extending propositional literal to ` [Zhang, 2006]. 71

〈Π,A∗ 〉 Abductive Logic Program. 39

〈Π,A• 〉 Extended Abductive Logic Program. 54

ΠM Reduct program of Π. 191, 194, 205

P< Reduct program of P with respect to “<” [Zhang, 2006]. 68, 69

rej(ρ) New pair-wise unique atom. 44

Π′ ∪Π2 ∪ΠG ⊗′o-update program. 147

Π′ ∪Π2 ∪ΠG ⊗o-update program. 141

UPLP(B,Π) = (Π∗,N , <) Specification of updating B with Π is a PLP over Lnew [Zhang,
2006]. 71, 73

` Derivation —inference. 20

wΠ
max Maximum weight over the weak constraints in Π. 34

194

TU-Clausthal Glossary

Ω(Π) Weak constraints occurring in Π. 33, 34, 127, 128, 156–158

weight(w) Weight of weak constraint w. 34, 128, 157

e(Π,S) e-program [Zhang, 2006]. 67

fΠ Auxiliary function that maps levelled weights to weights without levels. 34, 128,
157

(Auxiliary symbol for grouping. 28

) Auxiliary symbol for grouping. 28

− Alternative strong-negation symbol. 28

Def(P,M) = {¬a | @ρ ∈ ρ(P),Head(ρ) = a,M |= Body(ρ)}. 51

⊃ Classical implication. 29

← Derivation. 28, 29

Rej(P,M) = {ρ | ρ ∈ Πi,∃ρ′ ∈ Πj , i ≤ j, ρ ./ ρ′,M |= Body(ρ′)}. 51

⊥ Falsum. 28

¬ Default negation symbol. 18, 19, 28

ΠS = Mon({ρ | {qm+1, . . . , qn} ∩ S = ∅})
Answer-sets reduct program. 29

> Verum. 28

, Connective. 28

; Meta-connective. 28

LASP Language of Answer Sets. 28, 195

B initial consistent knowledge base of ground literals of a language L [Zhang, 2006].
71

B’ possible resulting knowledge base with respect to UPLP(B,Π) [Zhang, 2006]. 73

Bel(E) Belief set of E : Bel(E) = {ψ | φ ` ψ}. 22

E Epistemic state. 22, 24

K Belief/Knowledge base. 21, 22

M = least(ρ(P) \ Rej(P,M) ∪ Def(P,M)). 51

⊕1 N2-approach for updates. 83, 195

195

Glossary J.C.A.Guadarrama

⊕2 N2-approach for updates. 81–83, 184–186, 196

	 Expansion operator. 20

| Alternative disjunction symbol. 28

⊕R “Refined” DyLP operator. 51

] Expansion operator. 20, 21

` Literal. 28, 29, 33, 34, 44, 45, 47, 49, 67, 68, 71–73, 104, 118, 121, 127, 141, 148,
156–158, 191, 193, 194, 196, 207

Mon Monotonic counterpart. 29

Mi(Π) set of rules of degree i satisfied byM. 37, 102

N Naming function, mapping each rule in Π to a name [Zhang, 2006]. 67, 72, 206

Lnew extension to L, by propositional literals of the form new-` | ` ∈ L [Zhang, 2006].
71, 194, 196

⊗o Update operator. 141

⊗′o Update operator. 147

� Update operator. 97, 145

Π(Π0,Π1) Transformed program from Π0 with respect to Π1 such that Π(Π0,Π1) is a
maximal subset of Π0 such that S(Π0,Π1) is coherent with Π(Π0,Π1) and S(Π0,Π1) ∈
SPLP(UPLP(SΠ0 ,Π1)) [Zhang, 2006]. 74

Π′0 Possible resulting program of U�Z(Π0,Π1) = (Π1 ∪ Π(Π0,Π1),N , <) after updating
Π0 with Π1 [Zhang, 2006]. 78

Π∗ Logic Program consisting of initial-knowledge rules, inertia rules and update rules
[Zhang, 2006]. 71

U�Z(Π0,Π1) PLP Specification (Π1 ∪ Π(Π0,Π1),N , <) of updating Π0 with Π1 [Zhang,
2006]. 75

∗ Belief-base revision operator. 21

u Belief-set revision operator. 20

◦ Belief-state revision operator. 22, 151

Π′ Relaxed program. 111, 145

⊗ Update-sequence operator. 114, 146

196

TU-Clausthal Glossary

⊗′ Update-sequence operator. 124

∼ Strong-negation symbol. 18, 19, 28

SΠ0 answer set of Π0 [Zhang, 2006]. 74

S(Π0,Π1) answer set of the update of SΠ0 with Π1 [Zhang, 2006]. 74

~ Belief-base update operator. 23

~ Epistemic-state update operator. 24

Π1 ⊗Π2 ⊗ · · · ⊗Πn ⊗-update sequence. 114, 119, 146

Π1 ⊗′ Π2 ⊗′ · · · ⊗′ Πn ⊗′-update sequence. 44, 124

ΠM× Reduct program of Π with respect toM [Brewka et al., 2004]. 36, 102

ρM× Reduct of ρ with respect toM [Brewka et al., 2004]. 36, 101

197

Index

<-relations, 67
c-preference, 38, 103
e-program, 67
k-preferred answer set, 37, 103
k-preferred answer sets, 37, 38, 103, 104
(refined) dynamic stable models, 139
A-Prolog, 28
BNF grammar, 129
C, 128
GLP, 50
HHT, 31
HI, 31
LUPS, 49, 51
MGAS, 38
N2, 31
ODLP, 126, 156
PLP, 67
SM, 31, 43
UR, 55
AGM postulates in N2-logic, 136
ASP, 27, 31
assert, 43
Eiter et al.’s solver, 148
DarwinTM level, 128
DATALOG∨,ω, 35, 128, 157
DLV, 126, 155
DLV with weak constraints, complexity, 132
DyLP, 49
ELP, 29
optimal answer set, 35, 128, 157
G3, 3
G3 model, 18
HHT, 3
N2, 3
N2-logic, 18, 28, 151

N2 Equivalence, 32
N, 3
N’s axioms, 18
N-logic, 18
α-relaxed program, 111, 141, 145
α-relaxed rule, 111, 141
α-relaxed sequence, 111, 145
�SI-operation, 55
⊗′o-answer set of Π⊗′o , 147
⊗′o-answer set of Π⊗o , 160
⊗′o-solver, 148
⊗′o-update Program, 146
⊗′o-update program, 147
P, 67
UA, 56
Sem(·), 33
bird , 69, 70
cloudy , 10, 48, 52, 78–80, 82, 83, 85, 110,

115, 142, 143
constls, 10, 48, 49, 52, 78–80, 82, 83, 86,

110, 116, 142, 143
day , 10, 48, 52, 78–80, 82, 83, 85, 86, 110,

115–117, 142, 143
flies, 69, 70
night , 10, 46–48, 52, 78–80, 82, 83, 85, 86,

110, 115, 116, 142, 143
penguin, 69, 70
pfailure, 46–48, 53, 58, 59, 82, 88, 89, 138,

139, 143, 144
sleep, 46–48, 53, 57–59, 82, 87–89, 138,

139, 143, 144
stars, 10, 48, 49, 52, 78–80, 82, 83, 85, 86,

110, 111, 115–117, 142, 143
tvon, 46–48, 53, 57–59, 82, 87–89, 138, 139,

143, 144

198

TU-Clausthal Index

tweety , 69, 70
watchtv , 46–48, 53, 57–59, 82, 87–89, 138,

139, 143, 144
always, 65
assert, 7, 43, 196
implied by, 65
retract, 7, 43, 197
with absence, 65
ω-component, 162
ω-preference, 38, 103
ω-program, 33, 127, 156, 162
ω objective function, 34, 128, 157
�-SP-2, 99
�-SP-3, 99
�-SP-4, 99, 100
�-SP-6, 99, 100
�-SP-7, 99, 100
�-SP-8, 99, 100
�-SP-9, 99, 100
⊗′-structural properties, 125
⊗o-SP-2, 148, 149
⊗o-SP-3, 148
⊗o-SP-4, 148
⊗o-SP-6, 148
⊗o-SP-7, 148
⊗o-SP-8, 149, 152
⊗o-SP-9, 149, 152
⊗o-answer set of Π⊗o , 141
⊗o-update program, 141
⊗-SP-1, 118–120, 125
⊗-SP-2, 118, 119
⊗-SP-3, 118, 120, 121
⊗-SP-4, 119, 121
⊗-SP-6, 119, 122
⊗-SP-7, 119, 122
⊗-SP-8a, 119, 120
⊗-SP-8, 119, 120
⊗-SP-9, 119, 121, 125
⊗-consistency Preservation, 117
⊗-solver, 148
⊗-update answer set, 114, 146
⊗-update program, 146
⊗-update sequence operator, 145

⊗-weak consistency view, 117
KM′-postulates, 22, 151
UPLP-specification, 71
×-reducts, 35, 101
s sum of abducible weights, 112, 113, 115,

116, 120, 123, 124, 146
w weight of an abducible, 112, 113, 115,

116, 120, 123, 124, 146
Flex, 129
GNU, 128
HTML, 131
Linux, 128
MacOS XTM platform, 128
new-`, 72
ODLP, 35, 101
⊗o-update operator, 141
⊗′o-prototype, 155
⊗′o-update operator, 147
Π∗, 71, 72
Prolog, 43
PSmodels, 126, 156
retract, 43
ω′, 158
Associativity, 154
Closure, 21
Consistency, 21
Distributivity, 154
Extensionality, 21
Inclusion, 21
Sub-expansion, 21
Success, 21
Super-expansion, 21
Vacuity, 21
Weak Commutativity, 154
2-EXPSPACE, 41
2-EXPTIME, 41
2-NEXPSPACE, 41
2-NEXPTIME, 41
ELEMENTARY, 41
EXPTIME, 41
NEXPTIME, 41, 132, 162, 163, 199
NP-hard, 40
NPSPACE, 40

199

Index J.C.A.Guadarrama

NPTIME, 40
NP, 40, 41, 132, 162, 163, 199
NTIME, 41
PSPACE, 40, 41
PTIME, 40
P —polynomial, 40, 41, 162, 163
TIME, 41
UNIX binary module, 128, 163
UNIX paradigm, 132, 165
UNIX script, 131
PH, 41
co-NP-hard, 40
co-NP, 40, 41
AGM-postulates, 5, 21, 81, 151
AGM-postulates in ASP, 168
AI, 27
ASP, 43
ASP Language of logic programs, 28
ASP solvers, 28
DyLP, 50, 139
EDLP, 28
ELP, 68
GAS, 39
KM postulates, 4
LUPS, 139
MGAS, 39, 140
MSGAS–Optimal Answer Set, 159
MSGAS or Minimal Sequenced Generalised

Answer Sets, 112, 146
ODLP-reduct, 35, 101
ODLP-semantics, 36, 102
ODLP-solver, 38, 104
ODLP and Weak Constraints, 37, 103
ODLP implemented prototype, 38, 104
PLP, 67, 70, 71
RG ◦ -properties, 152, 153
SC, 99, 119, 149
SM, 28
U-MAS’s, 57
WC, 119
WIS, 99, 119, 149
WNI, 99, 148
Bison, 128

CR-Prolog, 40
C-language, 163
DLV, 7, 30, 33, 34, 111, 126, 127, 130–133,

136, 147, 155–157, 162, 164–166,
168, 171, 172, 185, 196

Flex, 128
LISP, 6
Lex, 128, 163
PHP, 128, 163
PSmodels, 38, 104, 107, 126, 156, 171, 172,

197
Prolog, 6, 7, 10, 29, 33, 43, 191, 197
SMODELS, 7, 30, 38, 104, 126, 155, 156, 185
Yacc, 128, 163
ω, 33, 34, 127, 156
Yacc, 129

abduction, xii, 38, 169
abductive inclusion order, 39
abductive logic program, 39, 107
abductive preference program, 131
abductive program, 13, 96, 131
abductive programs, 168
abductive sequence order, 112, 146
abductive sequence order (≤S) is a total

pre-order relation, 114
abductive sequence order (≤S) is not an

antisymmetric relation, 113
abnormality, 4
absurdity constant, 16
academic purposes, 140
accessible, 167
actions, 59
addition of tautologies, 118, 120
advantages, 8, 140
advantages of ASP, 30
agent, 2
agent applications, 140
agent prototypes, 27
algebra of rule addition, 139
algebra of rule deletion, 139
amendment, 5
answer set, 30, 151
answer set of P, 70

200

TU-Clausthal Index

Answer Set Programming, xii, 6, 27, 109
answer sets of a ×-reduct, ΠM× , 36, 102
Answer Sets Semantics, 43
answer-sets reduct, 29
approximation, 166
arbitrary semantics, 33
argumentation, 169, 170, 172
Aristotelian logic, 3
Aristotle, 3
Artificial Intelligence, 1, 2
atom, 72
atomic propositions, 16, 28
atoms, 16, 28
Augmented Update, 99, 100, 119, 122, 148
auto-epistemic logic, 6
automated reasoning, 171, 172
automated theorem proving, 6
automatic methods to translate, 168
automatic reasoning, 140
autonomous, 2
autonomous entities, 155
autonomy, 171
auxiliary symbols, 28

base for a belief set, 21
basic structural properties proposed, 168
basis for belief revision and updates, 136
belief, 2, 20
belief base, 4
Belief Change, 11
belief change, 1, 4, 9, 27, 125
belief change postulates, 139
belief representation, 19
belief revision, xi, 4, 5, 15, 20, 23, 25, 109,

125, 151, 168
belief revision and updates, 169–171
belief revision of logic programs, 151
belief revision postulates, 24, 150, 155
belief set, 4, 5, 20, 21, 24, 25, 151
belief update, 5, 23, 25, 43, 125, 151, 168
belief update postulates, 5
belief-desire-intention agents, 2
beliefs and knowledge representation, xi
believed, 18

benchmark, 9, 13, 168, 169
best models, 35, 128, 157
best weak-constraint model, 131
blinds example, 62
blocking atom, 44
Bordiga’s principle, 11, 99
brand-new principles, 167
Brouwer, 3, 16
bug, 5, 126, 156

cardinality, 12, 113, 159, 168
cardinality criterion, 166, 170
cardinality order, 111
cardinality preference, 36, 37, 102, 103, 136
cardinality-preference relation, 129, 131
causal rejection principle, 9, 44, 48, 49, 53,

86, 96, 109, 110, 142
challenging examples, 13, 168
changes to an original knowledge base, 71
changing environment, 5, 64, 125, 155
characterisation in weak constraints, 136
characterisation of updates, 168
choices of a rule, 35, 101
classical logic, 3, 17, 27, 29
classical negation, 6, 18, 28
closed world, 3
closed-world assumption, 4
clouds, 10, 48, 85, 110, 142
co-NEXPTIMENP, 162
coherence, 15, 67, 77
collapse due to an inconsistency, 124
collapse of the polynomial hierarchy, 41
combinations to include abducibles, 132,

162
combined complexity, 162, 163
combined semantics, 8
comercial reasons, 83
common intuition, 49, 86, 110, 142
commonsense reasoning, 2, 135, 169–172
complementary literal, 29
complete, 23, 25
complete knowledge, 3
complexity, 13, 133, 165, 171
complexity of ⊗′o operator, 161

201

Index J.C.A.Guadarrama

complexity of computing a propositional
DATALOG∨,ω program, 162

complexity of the ⊗-operator, 131
Computing MSGAS’s, 131
conclusions, 138
concurrent observations, 155
conflict, 49, 50, 138
conflict between rules, 76
conflict resolution, 8, 12, 65, 71, 168
conflicting information, 44, 85
conflicting rules, 65
conflicts, 67
conflicts between rules, 75
conjunction, 28
connectives, 28
consequence operation, 20
consequence relation, 10
conservative extension, 31, 49, 86, 110, 142
consistency, 20, 24, 31, 54, 57, 99, 133, 149,

151
Consistency Preservation, 149
consistency preservation, 118, 133, 136, 149,

165
Consistency Restoration, 150
consistency restoration, 9, 24, 118, 133, 136,

149, 165
Consistency Restoring Rules, 40
consistency view, 124
consistent, 125
consistent abductive program, 149
consistent answer set, 30
consistent extended abductive program, 54
consistent sequence, 118, 121
constellations, 10, 48, 86, 110, 142
constls, 10, 48, 86, 110, 142
constraint, 35, 101
constraint programming, 169–171
constructible falsity, 18, 28, 31
contraction, 5, 20
contradiction, 8, 65
contradiction elimination, 8, 65, 71
contributions, 148, 168
correct belief-change, 27

correct dynamic knowledge, 135
correct evolving knowledge, 43
correct knowledge and beliefs representa-

tion and reasoning, 167
counterintuitive, 44, 138, 147
counterintuitive behaviour, 110, 140
counterintuitive example, 62
counterintuitive interpretations, 135
counterintuitive models, 48, 95, 109
counterintuitive problems, 169
counterintuitive results, 53, 69, 78, 83, 145
credulous, 162
credulous semantics, 155

Dalal, 99, 151
Dalal’s principle of irrelevance of syntax,

11
data complexity, 162
databases, 43
day, 10, 48, 85, 110, 142
dealing with inconsistencies, 149
dealing with originally-inconsistent obser-

vations, 155
debugging, 38, 104, 168
decision problems, 40
declarative logic programming, 8
declarative programming, 6, 132, 165
declarative programming framework, 30
deduction, 6
deduction system, 18
deductive bases, 28
deductive reasoning, 38
default literal, 50
default logic, 3, 4, 6, 169
default negation, 6, 28, 29
default negation in heads, 49, 52, 138, 147
default-negated atom, 50
defaults, 4
defeated by, 68
defeated rule, 68
definite, 18
definite program, 50
derivation, 28, 31
derivation symbol, 33

202

TU-Clausthal Index

derogation, 5
deterministic, 40
diagnosis, 168
difference between belief revision and up-

dates, 23, 95, 133, 140, 165
differences with other approaches, 98, 148
disjoint alphabets, 99, 100, 119, 122, 148
disjunction, 28, 124
disjunctive abducibles, 131
disjunctive rule, 131
dynamic environment, 7
dynamic knowledge, 7, 9, 109, 117
dynamic knowledge representation, 15
dynamic logic program, 50
Dynamic Logic Programming, 9, 49
dynamic program, 50
dynamic stable model, 51

efficient implementation, 171
electronic circuits, 5
elementary, 41
eliminating contradictions, 71
eliminating contradictory information, 65,

66
eliminating contradictory rules, 67
empty knowledge base, 150
empty update, 65
environment, 5
epistemic level, 11
epistemic logic, 3
epistemic logic programming, 169
epistemic state, 4, 22, 24, 25, 140, 144, 151,

170
Epistemology, 2
equation, 11
equivalence, 16
equivalence and updates of logic programs,

30
equivalence between MSGAS’s and optimal

answer sets, 159
equivalence between a GAS of an abductive

program and an answer set of a ω-
program, 159

equivalence between update sequences, 118

equivalence in pairs of programs, 147
equivalence of logic programs, 33
equivalence of weak constraints, 126, 156
equivalence-checking of logic programs, 33
equivalence-relation, 170
error-checking mechanism, 129
evaluation function, 18
evaluation of a P, 68
evidence, 28, 99, 148
evolution of knowledge, 20
expanded alphabet, 10, 48, 86, 110, 142
expansion, 5, 20
expectations, 4
experimental implementation of updates,

30
Expert Systems, 2
explanation, 54, 139
explicit negation, 18, 28
explicit updates, 49
exponential, 162
exponentially in the number of rules, 132,

162
extended abduction, 9, 54, 65, 139
extended abductive program, 54, 57
extended disjunctive Logic program, 28
extended disjunctive logic program, 27, 28
extended logic program, 29, 67, 68
extended simple fact update, 74
extended simple-fact update program, 71
extended-abduction properties, 139
extra answer set, 48, 86, 110, 142
extra atom, 10, 48, 86, 110, 142

fact, 29
falsum, 28
Fast Lexical Analyser, 128
finite knowledge base, 4, 21
fixed point, 69
fluents, 59
fluents and actions, 64
forgotten models, 138
foundation, 27
frame of reference, 13
Full Relaxation, 123

203

Index J.C.A.Guadarrama

Full Relaxation Consistency, 125
functional prototype, 133, 166
further investigation, 64

Gödel, 3
general framework to update, 168
general principles, 145
general properties, 64
general properties for belief change, 139
general semantics, 9, 83, 135, 140
generalised answer set, xii, 13, 27, 39, 95,

105, 111, 133, 158, 166, 168
generalised program, 50, 141, 143
generalised semantics, 140
generalised simple-fact update, 71, 78
generic revision operator, 151
grammar for update sequences, 129
graphical user interface, 132, 148, 165
ground instantiation, 68
grounding a program, 162
guilty, 59

Herbrand model, 29, 189
here-and-there logic, 3, 28, 31
Heyting, 3
Heyting’s Intuitionistic Logic, 16
high dependency on syntax, 50
Holy Grail, 2
how to compute, 11
hypotheses, 38
hypothetical changes, 57

i-preferred answer set, 105
Idempotence, 99, 100, 119, 121, 148
identical Answer Sets, 32
if, 10
imperative, 171
imperative programming, 6
implementation, 158
implemented prototypes, 171
implemented solvers, 30
inclusion, 20
inclusion preference, 36, 37, 102, 103
incomplete knowledge, 3, 169

incompleteness, 4
inconsistency, 20, 24, 117, 118, 149, 168
inconsistency removal, 54, 65, 118, 149, 150
inconsistency update, 124
inconsistent initial knowledge, 65
inconsistent knowledge base, 117, 150
inconsistent observation, 65
inconsistent update, 118, 133, 165
indefinite, 18, 72
indefinite conclusions, 77
independence from syntax, 1, 135
industrial applications, 132, 163
inert information, 85
inertia, 4, 9, 99, 118, 120, 148
inertia principle, 4, 140
inertia rules, 71, 72
inference engines, 15
inference features, 28
infinite, 21
information loss, 12, 62, 64
inhibiting atom, 44
initial consistent knowledge base, 193
initial knowledge, 71, 78
initial knowledge base, 72, 168
Initialisation, 85, 99, 118, 119, 148
innocent, 59, 60
integrity constraint, 29, 31, 33, 127, 156
intelligent agents, 2, 43
intelligent/rational/BDI-agents, 170
Internet service, 38, 104
interpretation, 17
interpretation of a PLP, 70
interpretations of an update program UPLP,

72
intractable, 40, 41
intuitionistic logic, 3, 15, 16, 18, 31
intuitive behaviour, xii, 125, 151
invariant knowledge, 9, 54
iterated update, xii, 81, 135, 140, 143, 144,

172
iteration, 20, 163

justification, 8, 65
justified true belief, 2

204

TU-Clausthal Index

key examples, 92, 169
key observations, 85
kinds of updates, 139
know-how, 2
Knowledge, 2
knowledge and beliefs, 21
knowledge base, 4, 21, 24, 25, 71, 73, 137,

138, 140, 151
knowledge representation, 27, 135, 169–172
knowledge representation and reasoning, 2,

43
knowledge sets, 20
knowledge systems, 11
knowledge updates, 135
known, 19

language for beliefs and knowledge repre-
sentation, xi

latest update, 141
least model, 50
less preferred rule, 69
leveled weak constraint, 131
Levi’s identity, 5
limitation to only one update, 109
linear logic, 169
linear time, 169
literal, 28, 50, 68
logic programming, 1–3, 6, 15, 27, 171, 172
logic programs, 152
logic system, 2
logic-programming languages, 9
logic-programming negation, 18
logical agents, 2
logical content, 32, 95, 99, 108, 109, 143
logical contents, 171
logical databases, 43
logical framework, 9
logical theories, 20
logical-model reliance, 1
logically entails, 20
logically-equivalent, 11
logics, xi, 15
loss of information, 64

main goals of this work, 125, 151
main problem, 9
maintenance of consistency, 57
mathematical logic, 2
meta-connective, 28
meta-language, 65
meta-level, 56, 168
method to depend upon models, 96
minimal change, 4, 12, 57, 141, 151, 168
minimal change principle, 139
minimal change with respect to cardinality,

113
minimal classical model, 29
minimal closure, 29, 30, 189
minimal closure of ΠM, 189
minimal difference with the answer sets, 71
minimal generalised answer set, 38, 39, 95–

97, 105, 140, 141, 145
Minimal Generalised Updates, 95
minimal Herbrand models, 30
minimal sequenced generalised answer set,

112, 114, 124, 146, 147, 159, 160
minimal set of properties, 122
minimal set of violated weak constraints,

159
minimal sets of abducibles, 140
minimal-cardinality, 170
minimal-change principle, 8, 65, 107, 139,

169
minimal-set-inclusion, 170
minimality, 189
minimality of change, 165, 166
misconceptions, 25
modal logic, 3, 169
model, 17
model of the complete sequence, 138
model(s) of a logic program with weak con-

straints, 158
model-based semantics, 7, 8
model-content updates, 147
model-orientation, 108
model-oriented approach, 150
models S of the new knowledge base, 141

205

Index J.C.A.Guadarrama

modular interface, 11
Modus Ponens, 17
monotonic, 136
monotonic counterpart, 29
monotonic logics, 30
monotonic nature, 136, 155
monotonic reasoning, 4
monotonic theories, 43
monotony, 20
more intuitive, 139
more recent rules override older ones, 109
motivation, xii
multiple updates, 138, 140, 145
multiple updates in a sequence, 117
murderer, 59

name of R, 55
naming function, 67
Naming function N , 72
negation, 15, 17
negation-by-failure, 6, 29
negative explanations, 54
negative fact, 11
Nelson, 3
Nelson’s logic, 15, 31
nested expressions, 28
new evidence, 135, 151
new originally-inconsistent observations, 155
night, 10, 48, 85, 110, 142
no evidence, 10, 19
non-classical logic, xi, 15, 18
non-ground input-programs, 162
Non-interference, 99, 100, 119, 122, 148
non-monotonic, 9
non-monotonic framework, 136, 155
non-monotonic knowledge, 27
non-monotonic theories, 43, 153
non-sequence update, 139
non-sequenced approaches, 166
non-standard concept of SM, 53
nondeterministic Turing machine, 40
Nonmonotonic logics, 3
nonmonotonic reasoning, 2, 3, 135, 169–

171

normal abductive program, 55
Normalised Abductive Program, 55
normalised abductive set, 55
normality, 4
not, 10

object level, 137, 139, 140, 168
object-level updates, 85
objective function, 111
observation that is inconsistent, 155
observations, xii, 38
online front-end, 38, 104, 148
online prototype, 140, 163
online solver for public experiments, 126
open world, 3
operational framework, 27
optimal answer set, 132, 158, 159, 164, 196
optimisation, 171, 172
optimisation in preferences, 126, 156
optimisation solver, 131
optimisation techniques, 132
oracle, 40
order of updates, 99
ordered disjunctions, 171
ordered-disjunction program, 35, 101
ordered-disjunctive logic programming, 12,

35, 95, 101, 168
ordered-disjunctive update program, 106
ordering function, 147
orientation principle, 29
original beliefs, 10, 48, 86, 110, 142
original knowledge base, 65
originally-inconsistent knowledge base, 149,

155, 170
originally-inconsistent update, 170
override, 66

pairs of programs, 145
paraconsistent logics, 4
paraconsistent systems, 18
parentheses, 28
paretto-preference, 36, 102
parser, 163
parser stage, 131

206

TU-Clausthal Index

partial description, 20
partial order on names, 67
perfect agent, 5
persistence, 9, 64, 71, 166
persistence of `, 72
persistence of beliefs, 169, 170
persistence principle, 165
persistence situation, 135, 137, 166
planning, 3, 139, 169
planning approach, 65
planning scenarios, 64
planning settings, 27
policies, 65
polynomial, 162
polynomial hierarchy, 40
polynomial time, 40, 166
positive counterpart, 11
positive extended disjunctive program, 29
positive program, 29
possible resulting knowledge base, 72, 73,

77, 78, 193
possible resulting program, 77, 78
possible world, 24
postulates, xi, 5, 15, 21, 135
postulates for belief change, 135
postulates for belief revision, 165
postulates for belief updates, 23
potential contradictory information, 135
practical reasons, 83
pre-order relation, 113
predicate symbol, 72
preference, xii, 75, 168, 169
preference frameworks, 171
preference over background knowledge, 169
preference programs, 168
preference relation, 37, 67, 72, 102, 107
preference-criteria, 168
preferences, 168
preferences and qualitative decision mak-

ing, 170
preferences and qualitative reasoning, 171,

172
preferred abducibles, 114

preferred answer set, 36, 37, 102, 103, 126,
156

preferred disjunctive logic programs, 126,
156

preferred inclusion order, 39
preferred stable models, 38, 104
preferred transformed program, 130, 164
preferred weak-constraint program, 133, 166
preferring generalised answer sets, 133
preferring the latest update, 65
preorder, 113
preserving a knowledge base from collapse,

124, 155
previous knowledge, 60
Principle of Irrelevance of Syntax, 99, 151
principle of rejection, 49
principle of the excluded middle, 16
principles, 11, 140, 148, 167, 169
principles for updates, 136
prioritised logic program, 65, 67, 68
Prioritised Logic Programming, 67
priority level, 33, 111
probabilistic reasoning, 4
problem solutions, 27
procedural, 171
procedural knowledge, 2
program complexity, 162
program equivalence, 15
program transformation, 132, 138, 162
programs, 138
properties, xi, 15, 135
properties testbed, 132, 163
properties to be met, 95
proposition, 2
propositional attitude, 2
propositional case, 162
propositional constants, 28
propositional formula, 21
propositional logic, 28
propositional sentence, 22
propositional symbols, 28
propositional theory, 28, 166
prototype, 136

207

Index J.C.A.Guadarrama

provability, 6
provable, 17, 19
proving solvers, 7, 30

quasiorder, 113

rapid prototyping, 132, 165
rapid-prototype, 168
rational agents, 43
real world, 5
reason about knowledge, 19
reasoning, 15, 19
reasoning about inconsistent information,

12
recovering consistency, 54
reduct, 77, 189
reduct of P, 68
reduct program, 189, 193
reduct program of P, 192
reduct program of Π, 192, 195
reduct program of ρ, 195
reduct(s) of a PLP, 78
redundancy, 30, 110
redundant, 140
redundant code, 33
redundant information, 12, 117
refined causal rejection of rules, 96
refined interpretation of a DyLP, 51
refined principle, 49, 51, 186
regular-expressions modules, 163
regular-expressions pattern matching, 128
Reiter, 3
rejecting atom, 44
rejecting rules, 49
related work, 18
relaxation, xii, 12, 95
relaxation method, 107, 144, 169
relaxed program, 111, 140
relaxed rule, 131
relaxing, 140
relaxing an original knowledge base, 107
relaxing knowledge bases, 168
relaxing the updating program, 124
representation of knowledge, 125, 151

representative, 109
research community, 168
reserved words, 65
resolution of conflicting rules, 66
restoring consistency, 117, 150, 170
resulting knowledge base, 73, 107, 143, 191
revising sentence, 24
revision, 5, 20, 21
reviving old knowledge, 138
robust, 64, 125
robustness of knowledge bases, 150
rule, 28, 50
running solver, 126, 156

S-update equivalence, 32
satisfaction degree, 36, 102
satisfaction of five of the six most general

belief revision postulates, 140
satisfiability of logic formulas, 6
search problems, 40
second instant, 137
second level of the polynomial hierarchy,

132
second update, 138
self defended, 59
semantical contents, 11, 98, 171
semantics, 11, 168
semantics for belief revisions, 83
semantics for updates, 43
semantics of an EDLP, 29
semantics to represent knowledge with in-

tuitive behaviour, 133, 165
sentences, 20
sequence of updates, 135, 140, 145
sequence order, 111
sequences of logic programs, 168
sequencial, 163
set of all rules appearing in the programs,

51
set of structural properties, 149
set of weak constraints, 33, 127, 156
set-inclusion, 12, 168
set-inclusion criterion, 166
set-inclusion preferred, 136

208

TU-Clausthal Index

sets of propositional sentences, 21
sets of propositions, 20
side effects, 7, 43
signature, 29, 39, 158
signature of the weak constraints, 158
simple weak constraint, 158
simple-fact one-step updates, 83
simple-fact update approach, 74
simpler general formulation, 140
simpler semantics, 140
single abductive program, 141
single component, 162
single updates, 126, 145, 156
skeptical semantics, 155
skeptical update, 160
solid theoretical basis, 6
solver, 9, 125, 126, 140, 148, 155
solver for pairs of programs, 126, 156
solver prototype, 11, 167
specification of updating Π0 with Π1, 75
Specification of updating B with Π, 192
specification of updating B with Π, 71
Stable Logic Programming, 28
stable model, 29–31, 189
Stable Model Semantics, xii, 28, 43
stars, 10, 48, 85, 86, 110, 142
static, 19
static environment, 5
static knowledge, 7
strategy, 40
strict consistency, 170
Strong Consistency, 11, 13, 95, 99, 100,

107, 117, 119, 120, 149, 151, 171
Strong Consistency View, 125
strong constraint, 29
Strong Equivalence, 7, 28, 32
strong negation, 6, 18, 19, 28, 30, 31, 49,

147
strong-negated atom, 28
strongly-update equivalence, 32
structural properties, 98, 133, 135, 139, 144,

147, 155, 169, 170

structural properties for sequences, 118, 133,
165

structural properties for updates, 140, 148
study of inconsistencies, 155
super-polynomial time, 40
suppose, 25
survey, 168
symbolic representation, 3
synonym, 10, 48, 86, 110, 142
syntactic representation, 8, 65, 66
syntactical approaches, 7, 9, 64, 107, 108,

118, 126, 139, 147, 149
syntactical minimal change, 57
syntactical principles, 83
syntactical structure, 65
syntax, 95, 109
syntax to represent knowledge, 143
syntax-based semantics, 8

tagging, 132, 162
tautological (inert) information, 140, 147
tautological clauses, 118
tautological rules, 10, 117, 121, 148
tautological updates, 110
tautology, 18, 49
taxonomy, 136
testbed, 140
text pane, 131
theorem-proving, 6
theoretical basis, 15, 140
theoretical foundation, xi, 9
theories of information, 2
theory, 19–21
theory of belief change, 11
theory of knowledge, 2
theory update, 54
theory update, 54
three kinds of equivalence, 32
three types of updates, 53
three-valued logic, 15
top module, 130
toy examples, 27, 132, 163
tractable, 40
transformed program, 74, 77, 78

209

Index J.C.A.Guadarrama

Transformed Program example, 75
translation into a weak-constraint program,

158
translation into an ordered program, 104
triple rule, 131
true constant, 16
truth maintenance, 4
truth tables, 17
truth values, 17
Turing machine, 40
Tweety does not fly, 69
Tweety flies, 69
two kinds of negation, 6
typo, 155

U-minimal, 57
uncertainty, 4
uncertainty principles, 5
unexpected model, 138
unforeseen situations, 109
ungrounded, 162
ungrounded programs, 163
unified logic-programming framework, 140
unique abducible, 140
unknown truth value, 56
unpredicted effects, 7
update ELP programs, 126, 155
update answer set, 45, 97, 114, 118, 124,

145
update atoms, 56
update characterisation, 95
update model(s), 140
update operator, 97, 114, 124, 145, 146
update pairs, 96
update program, 44, 55–57, 71, 96, 145,

164
update rules, 55, 56, 71, 72
update semantics, 95
update semantics for sequences of programs,

117
update sequence, xii, 49, 96, 137, 140, 172
update specification, 77, 78
update to a knowledge base, 23
updated inconsistency, 24

updates, xi, 15, 83, 109
updates at the object level, 137, 159
updates in ASP, 169
updates to inconsistent programs, 123
updating a program with another, 141
updating knowledge base, 8, 65
updating large knowledge bases, 132, 163
user interface, 11, 131

vacuous information, 85, 87, 106
verum, 28
view updates, 54
violated weak constraint, 34, 35, 127, 128,

157
violating the least number of weak con-

straints, 164

Weak Consistency, 119, 120, 149
Weak Consistency View, 149
weak constraint, 33, 34, 111, 126, 127, 136,

156, 158, 168, 171
weak derivation, 33
weak equivalence, 7, 32, 33
Weak Irrelevance of Syntax, 11, 13, 95, 99,

100, 107, 117, 119, 121, 149, 171
weak negation, 28
weak-constraint model, 35, 128, 133, 157,

166
weak-constraints programs, 13
weak-constraints semantics, 164
weakened, 111, 141
weakened program, 131
weakening atoms, 129
web service, 132, 165
weight-level relation, 130
Well Supported Semantics, 50
well-defined program, 70
Well-founded Semantics, 7, 109, 169
when, 10, 48, 85, 110, 142
witnesses, 16

210

Vita

Juan Carlos Acosta Guadarrama was born in Toluca, Mexico, and lived in several cities
until moving to Clausthal in 2005. He received a B.Sc. degree in Computing Systems
Engineering from University of the Americas, Puebla and a M.Sc. degree specialised
in Computing Systems from the same university. He has been employed in industry,
institutions and services, as a unix-server administrator, webmaster, Internet distributed
systems and security, staff training, tech support, computing engineering and teacher
assistant. During his university studies, he got a bronze medal in a national tournament
of tae kwon do, organized by Moo Duk Kwan. From 2005 onwards, he has been enrolled
in the doctoral program in Computer Science at TU-Clausthal.

211

	Preface
	1 Introduction
	1.1 Knowledge and Belief Representation
	1.2 A Question of Principles
	1.2.1 Logic in Artificial Intelligence
	1.2.2 Knowledge Incompleteness
	1.2.3 Theory Change

	1.3 Representing Knowledge with Logic Programs
	1.4 Updating Theories with Logic Programming
	1.4.1 Semantics for Updates
	1.4.2 Problem Definition
	1.4.3 A Principle-based Approach to Represent Knowledge and Beliefs

	1.5 Summary of Contributions
	1.6 Publications

	2 Foundations
	2.1 Logics
	2.1.1 Intuitionistic Logic
	2.1.2 Multi-Valued Logic
	2.1.3 Nelson's Logic and Ne2-logic

	2.2 Change and Belief Representation
	2.3 Belief Revision
	2.4 Belief Update
	2.5 Conclusion for Chapter 2

	3 Preliminaries
	3.1 Logic Programming and Answer Sets
	3.2 Stable Models and Answer Sets
	3.3 Equivalence in Logic Programming
	3.4 Weak Constraints
	3.5 Ordered Disjunctions
	3.5.1 ODLP-reduct
	3.5.2 ODLP-semantics
	3.5.3 ODLP and Weak Constraints
	3.5.4 ODLP-solver

	3.6 Abductive Programming and GAS
	3.7 Complexity Notation
	3.7.1 The Polynomial Hierarchy
	3.7.2 The Exponential-time Hierarchy

	4 A Road Map for Update Semantics
	4.1 Eiter and Others
	4.2 DyLP and Other Dialects
	4.3 Sakama & Inoue
	4.3.1 Extended Abduction Framework
	4.3.2 SI-operation
	4.3.3 Discussion

	4.4 Zhang's line
	4.4.1 General View
	4.4.2 Prioritised Logic Programs
	4.4.3 Eliminating Contradictions
	4.4.4 Solving Conflicts

	4.5 Logic Approaches
	4.6 Conclusions for Chapter 4

	5 Observations and Examples
	5.1 Vacuous Information
	5.2 Updates at the Object Level
	5.3 Conflicting Information
	5.4 Initialisation
	5.5 Conclusions for Chapter 5

	6 Relaxing Knowledge-bases
	6.1 Model Choice
	6.2 Structural Properties for Updates in ASP
	6.3 Computing Updates with ODLP
	6.3.1 ODLP-reduct
	6.3.2 ODLP-semantics
	6.3.3 ODLP and Weak Constraints
	6.3.4 ODLP-solver
	6.3.5 Translating into ODLP
	6.3.6 Updating with ODLP

	6.4 Conclusions for Chapter 6

	7 Update Sequences
	7.1 Introduction
	7.2 -Operation
	7.3 -Properties
	7.3.1 Inconsistencies
	7.3.2 Structural Properties

	7.4 '-Operation
	7.5 '-Properties
	7.6 -prototype
	7.6.1 Implementing Updates on DLV
	7.6.2 DLV's Weak Constraints
	7.6.3 The Parser
	7.6.4 The Top Module
	7.6.4.1 The Abductive Program
	7.6.4.2 Computing MSGAS's
	7.6.4.3 The Update Answer Sets

	7.6.5 -Complexity
	7.6.6 Discussion

	7.7 Conclusions for Chapter 7

	8 Generalised Update
	8.1 Problem Description
	8.2 o-operation
	8.3 o-properties
	8.3.1 Equivalence
	8.3.2 o-structural Properties
	8.3.3 Dealing with Inconsistencies
	8.3.4 o-principles
	8.3.5 Other Properties

	8.4 o'-prototype
	8.4.1 Implementing Updates on DLV
	8.4.2 Weak-constraints Characterisation
	8.4.3 o'-complexity
	8.4.4 The Parser
	8.4.5 Discussion

	8.5 Conclusions of Chapter 8

	9 Conclusions
	9.1 Overview of the Thesis
	9.2 Relevance of the Major Contributions
	9.2.1 Update Benchmark
	9.2.2 Relaxation Technique
	9.2.3 Semantics for Belief Revision and Update
	9.2.4 Semantics for a Minimal Belief Change
	9.2.5 A Semantics Independent from Syntax
	9.2.6 Preference Characterisations

	Bibliography
	A Summary of Properties
	B Software-support Summary
	B.1 Solvers
	B.2 Applications

	C Stable-Models Procedure
	Glossary
	Index

