Vergleichende Untersuchung zweier rekombinanter humaner Bone Sialoproteine auf humane Osteoblasten und Stromazellen, sowie Osteoblasten und Knochenmarkzellen des Schweins

Inaugural-Dissertation
Zur Erlangung des Doktorgrades
der Medizin
der Medizinischen Fakultät
der Eberhard-Karls-Universität
zu Tübingen

vorgelegt von
Isa Maria Schmandke, geb. Klopp
aus
Berlin-Charlottenburg
2010
Dekan: Prof. Dr. I. B. Autenrieth

1. Berichterstatter: Prof. Dr. Dipl.-Biochem. W. K. Aicher
2. Berichterstatter: Privatdozent Dr. H.-P. Wendel
In Liebe für meine Eltern
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Einordnung Bone Sialoprotein ... 1
 1.2 Proteinstruktur und posttranslationale Modifizierungen 1
 1.3 Expression ... 5
 1.4 Genstruktur .. 9
 1.5 Funktion und Stoffwechselbeteiligung ... 11
 1.6 Prothesenbeschichtung ... 16
 1.7 Beschreibung Projekt ... 16

2 Material und Methoden ... 18
 2.1 Material ... 18
 2.1.1 Chemikalien und Reagenzien ... 18
 2.1.2 Gebrauchs- und Verbrauchsmaterial .. 21
 2.1.3 Geräte ... 22
 2.1.4 Humanes Untersuchungsmaterial .. 23
 2.1.5 Tierisches Untersuchungsmaterial .. 25
 2.1.6 Bone Sialoproteine ... 25
 2.1.6.1 BSP .. 25
 2.1.6.2 DRJ .. 25
 2.2 Methoden .. 26
 2.2.1 Zellkulturmethoden ... 26
 2.2.1.1 Allgemeines ... 26
 2.2.1.2 Anlage von Primärkulturen humaner Zellen 26
 2.2.1.2.1 Anlage humaner Osteoblastenzellkulturen aus Spongiosa 26
 2.2.1.2.2 Anlage humaner Stromazellkulturen aus Spongiosa 28
 2.2.1.3 Anlage Primärkulturen vom Schwein .. 28
 2.2.1.3.1 Anlage Knochenmarkzellkulturen vom Schwein 28
 2.2.1.3.2 Anlage Osteoblastenzellkulturen vom Schwein 29
 2.2.1.4 Medium .. 30
 2.2.1.4.1 Herstellung des Osteoblasten-Vollmediums 30
 2.2.1.4.2 Herstellung des Stammzell-Vollmediums 30
 2.2.1.4.3 Herstellung des Osteoblasten-Differenzierungs-Vollmediums 31
 2.2.1.5 Mediumwechsel und Zellpflege .. 31
 2.2.1.6 Subkultivierung der Zellen .. 31
 2.2.1.7 Zellzahlbestimmung ... 32
 2.2.1.8 Kryokonservierung ... 32
 2.2.2 Methoden zur Untersuchung der verschiedenen Zellparameter 33
 2.2.2.1 RT-PCR .. 33
 2.2.2.1.1 RNA-Extraktion ... 34
 2.2.2.1.2 cDNA-Synthese ... 35
 2.2.2.1.3 Primerpaare .. 36
 2.2.2.2 Bestimmung der Zellproliferation mittels MTT 37
 2.2.2.3 Bestimmung der Zellproliferation mittels BrdU 39
 2.2.2.4 Farbnachweis für die Alkalische Phosphatase-Aktivität 41
 2.2.2.5 Von Kossa Färbung ... 42
3 Ergebenisse ...47

3.1 Zellkultur ...47
 3.1.1 Anlage von Primärkulturen humaner Zellen ...47
 3.1.2 Anlage von Primärkulturen tierischer Zellen ...48

3.2 Real Time PCR50
 3.2.1 RNA Isolierung, cDNA-Synthese und PCR ...50
 3.2.2 Vorversuche RT-PCR ...51
 3.2.2.1 1. Vorversuch: Induktionsverhalten von Osteoblasten51
 nach BSP-Inkubation ...53
 3.2.3 Hauptversuche RT-PCR ...54
 3.2.3.1 1. Hauptversuch: Induktionsverhalten von Osteoblasten54
 nach BSP- und DRJ-Inkubation ...55
 3.2.3.2 2. Hauptversuch: Induktionsverhalten von Stromazellen54
 nach BSP- und DRJ-Inkubation ...55

3.3 MTT-Test ...56
 3.3.1 Vorversuche MTT ...56
 3.3.1.1 1. Vorversuch ...56
 3.3.1.2 2. Vorversuch ...57
 3.3.1.3 3. Vorversuch ...57
 3.3.1.4 4. Vorversuch ...59
 3.3.1.5 5. Vorversuch ...60
 3.3.2 Hauptversuche MTT ...61
 3.3.2.1 MTT Untersuchung von Osteoblasten mit BSP61
 3.3.2.2 MTT Untersuchung von Stromazellen mit BSP62
 3.3.2.3 MTT Untersuchung tierischer Osteoblasten mit BSP62
 3.3.2.4 MTT Untersuchung tierischer Knochenmarkzellen mit BSP63
 3.3.2.5 MTT Untersuchung von Osteoblasten ...63
 nach 24h, 48h, 72h, 96h BSP-Inkubation ...64
 3.3.2.6 MTT Untersuchung von Osteoblasten ...64
 nach 24h, 48h, 72h, 96h DRJ-Inkubation ...66
 3.3.2.7 MTT Untersuchung von Osteoblasten ...66
 nach 24h, 48h, 72h, 96h DRJ-Inkubation ...67
 3.3.2.8 MTT Untersuchung von Stromazellen ...67
 nach 24h, 48h, 72h, 96h DRJ-Inkubation ...68

3.4 BrdU ...69
 3.4.1 Vorversuche BrdU ...69
 3.4.1.1 1. Vorversuch ...69
 3.4.1.2 2. Vorversuch ...70
 3.4.1.3 3. Vorversuch ...71
 3.4.1.4 4. Vorversuch ...72
 3.4.2 Hauptversuche BrdU ...73
 3.4.2.1 BrdU Untersuchung von Osteoblasten nach BSP-Inkubation74
 3.4.2.2 BrdU Untersuchung von Stromazellen nach BSP-Inkubation74
 3.4.2.3 BrdU Untersuchung von Osteoblasten nach DRJ-Inkubation75
 3.4.2.4 BrdU Untersuchung von Stromazellen nach DRJ-Inkubation75
Inhaltsverzeichnis

3.5 Histochemische Färbungen .. 76
 3.5.1 Alkalische Phosphatase Färbung .. 76
 3.5.1.1 1. Vorversuch .. 76
 3.5.1.2 2. Vorversuch .. 77
 3.5.1.3 Hauptversuche .. 78
 3.5.2 Von Kossa Färbung .. 78
 3.5.2.1 Hauptversuche .. 79

3.6 Problem Protein Inkubationsmethode .. 80
 3.6.1 SDS-PAGE Gelelektrophorese .. 80

4 Auswertung, Diskussion .. 82
 4.1 Zellkultur ... 82
 4.1.1 Osteoblasten, Stromazellen, Knochenmarkzellen ... 82
 4.1.2 Real Time PCR .. 84
 4.1.2.1 Osteopontin, Osteonectin, TGF-ß .. 84
 4.1.3 MTT- und BrdU-Test ... 89
 4.1.3.1 Zellproliferation, Zellviabilität ... 89
 4.1.3.2 Auswertung Vorversuche MTT ... 90
 4.1.3.3 Auswertung Hauptversuche MTT ... 93
 4.1.3.4 Auswertung Vorversuche BrdU .. 96
 4.1.4.2 Auswertung Hauptversuche BrdU ... 99
 4.1.5 Histochemische Färbungen ... 100
 4.1.5.1 AP- und von Kossa- Färbung .. 100
 4.1.5.2 Auswertung AP-Färbung ... 101
 4.1.5.3 Auswertung von Kossa-Färbung ... 102
 4.1.6 BSP, Prothesenbeschichtung ... 104

5 Zusammenfassung ... 107

6 Literaturverzeichnis ... 108

7 Primär- und Sekundärdaten .. 115

8 Abkürzungsverzeichnis .. 116

9 Danksagung .. 118

10 Curriculum Vitae .. 119
1 Einleitung

1.1 Einordnung Bone Sialoprotein

1.2 Proteinstruktur und posttranslationale Modifizierungen

Die Primärstruktur des humanen BSP wird durch eine Polypeptidkette von 317 Aminosäuren gebildet, welche nach Abspaltung des Signalpeptids noch 301 Aminosäuren umfasst (Fisher et al. 1990, siehe Abb.1). An funktionellen Domänen weist humanes BSP ein C-Terminal gelegenes Arg-Gly-Asp (RGD) Zellbindungs-Tripeptid auf, über welches eine Bindung an den Vitronektin - ähnlichen αvβ3 Integrin-Rezeptor möglich ist (Oldberg et al. 1988 b), N-
Einleitung

Die Ursache des Größenunterschiedes zwischen der molekularen Masse des Proteins auf cDNA-Ebene und den Ergebnissen des SDS-PAGE Gels liegt an

Einleitung
dem hohen Anteil posttranslationaler Modifizierungen, wobei Kohlenhydrate ca. 30-40% der Gesamtgröße des Proteins ausmachen (Wuttke et al. 2001), nach Fisher et. al. 1990 sogar 50%. Für fötales BSP wurde ein Kohlenhydratanteil von 50% ermittelt (Fisher et al. 1983).

Posttranslationale Modifizierungen des BSP finden in Form von N- und O-Glykosilierungen, Phosphorylierungen, Sulfatierungen und Myristilierungen statt.

Drei verschiedene Proteinkinasen greifen am Protein an. C-Terminal liegt die einzige Phosphorylierungsstelle der Tyrosin Kinase, in der Mitte des Proteins liegen die 11 potentiellen Phosphorylierungsstellen der Casein Kinase II und ebenfalls mittig, als auch N-Terminal, liegen die drei möglichen Phosphorylierungsstellen der Protein Kinase C (Hulo et al. 2008). BSP hat einen hohen Phosphorylierungsgehalt, insbesondere die Aminosäuren Serin (Franzen und
Einleitung

Fötales Kälber BSP weist in Gewichtsprozent eine Zusammensetzung von 50% Protein, 12% Sialinsäuren, 7% Glukosaminen und 6% Galaktosaminen auf, wobei der hohe Anteil an Sialinsäuren dem Protein zu seinem Namen verhalf (Fisher et al. 1983). Insgesamt stellen Glutamin- und Glycinsäuren mit ca 33%
einen hohen Anteil der AS des Proteins (Oldberg et al. 1988 a) dar. Humanes BSP enthält nicht die Aminosäure Cystein (Fisher et al. 1990). Untersuchungen zur Sekundärstruktur bei humanem BSP mittels Circulardichroismus Spektroskopie haben gezeigt, dass 5% α-helikale Strukturen, 32% β-Faltblätter, 17% β-turns und 46% Zufalls-Knäulstruktur im Protein auftreten (Wuttke et al. 2001). Das multiphosphorylierte BSP wurde als intrinsisch ungeordnet und als Mitglied der SIBLING FAMILIE als extended Protein identifiziert, das in Lösung eine flexible Struktur aufweist und erst bei Bindung an spezifische Liganden eine Struktur annimmt (Fisher et al. 2001; Fisher und Fedarko 2003).

1.3 Expression

Einleitung

Des weiteren deuten Forschungsergebnisse bei Rindern darauf hin, dass BSP auch in Megakaryozten, den Vorläuferzellen der Thrombozyten (Blutplättchen), gebildet wird und dann vom Plasma durch Endozytose in die noch nicht aktivierten Thrombozyten aufgenommen -und nicht wie zunächst angenommen- von den Thrombozyten selbst exprimiert wird. Im Folgeschritt wird bei einer Stimulation der Thrombozyten durch Thrombin das BSP ins Serum freigesetzt, so dass Konzentrationen im Bereich von 10-30 ng/ml messbar sind (Chenu und Delmas 1992). Ob BSP eine Funktion in der Blutgerinnung hat, ist aber noch unklar. Bei gesunden Erwachsenen sind BSP Serumspiegel von 5,0-21,6 ng/mL messbar, wobei gesunde postmenopausale Frauen signifikant höhere Serumwerte aufweisen als gesunde prämenopausale Frauen (Seibel et al. 1996).
Neueste Untersuchungen haben entgegen bisheriger Annahmen gezeigt, dass die BSP Expression nicht auf Tumore mit primärer Knochenmetastasierung, wie Brust-, Prostata-, Lungen- und Schilddrüsentumore, als auch Multiples Myelom und Neuroblastom beschränkt ist (Bellahcene et al. 1994; Bellahcene et al. 1997 b; Waltregny et al. 1998; Bellahcene et al. 1998 b; Papotti et al. 2006).

Nachgewiesenermaßen wird BSP auch in Pankreaskarzinomen (Kayed et al. 2007), malignen Hauttumoren (Riminucci et al. 2003), Zervixkarzinomen (Detry et al. 2003) und oralen Plattenepithel Karzinomen (Ogbureke et al. 2007) exprimiert und die Annahme, dass die BSP Expression eine allgemeine Erscheinung maligne entarteter Zellen ist, wurde formuliert (Bellahcene et al. 2008).

<table>
<thead>
<tr>
<th>Expression von BSP in mineralisierendem Gewebe</th>
<th>Spezies</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spongiosabälkchen</td>
<td>Rind</td>
<td>(Fisher et al. 1983)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Shen et al. 1995)</td>
</tr>
<tr>
<td>Schädeldkalotte</td>
<td>Ratte</td>
<td>(Oldberg et al. 1988 a; Fisher et al. 1990)</td>
</tr>
<tr>
<td>Mandibula</td>
<td>Ratte</td>
<td>(Ohnishi et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>Maus</td>
<td>(MacNeil et al. 1996)</td>
</tr>
<tr>
<td>Dentin</td>
<td>Rind</td>
<td>(Fisher et al. 1983)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Ohnishi et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>Maus</td>
<td>(MacNeil et al. 1994)</td>
</tr>
<tr>
<td>Alveolarknochen</td>
<td>Maus</td>
<td>(MacNeil et al. 1994; MacNeil et al. 1996)</td>
</tr>
<tr>
<td>Ephyphysen Knorpel</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td>Keine Expression von BSP in folgenden Weichteilgeweben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skelettmuskel, Sehne, Augen Gewebe, Sklera, Niere, Lunge, Haut</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td>Skelettmuskel, Knorpel, Periost, Gehirn, Leber, Niere, Lunge, Haut, Hoden, Milz</td>
<td>Ratte</td>
<td>(Oldberg et al. 1988 a; Fisher et al. 1990; Ohnishi et al. 1991)</td>
</tr>
</tbody>
</table>

Tab.1: Dargestellt ist sowohl die BSP Expression in mineralisierenden Geweben verschiedener Spezies, als auch das Abhandensein einer BSP Expression in Weichteilgeweben verschiedener Spezies. Erklärung siehe Text.
Expression BSP, skeletal

<table>
<thead>
<tr>
<th>Zelle</th>
<th>Spezies</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoblasten</td>
<td>Mensch</td>
<td>(Bianco et al. 1991; Ohnishi et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>Schwein</td>
<td>(Chen et al. 1993)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Ohnishi et al. 1991)</td>
</tr>
<tr>
<td>Osteozyten</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>Schwein</td>
<td>(Chen et al. 1993)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Ohnishi et al. 1991)</td>
</tr>
<tr>
<td>Osteoklasten</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td>Chondrozyten</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Chen et al. 1992; Shen et al. 1995)</td>
</tr>
<tr>
<td>Odontoblasten</td>
<td>Schwein</td>
<td>(Chen et al. 1993)</td>
</tr>
<tr>
<td></td>
<td>Ratte</td>
<td>(Chen et al. 1992)</td>
</tr>
<tr>
<td>Cementoblasten</td>
<td>Ratte</td>
<td>(Chen et al. 1992)</td>
</tr>
<tr>
<td>Ameloblasten</td>
<td>Ratte</td>
<td>(Chen et al. 1998)</td>
</tr>
<tr>
<td></td>
<td>Hamster</td>
<td></td>
</tr>
<tr>
<td>Osteosarkomzellen UMR-106</td>
<td>Ratte</td>
<td>(Fisher et al. 1990)</td>
</tr>
</tbody>
</table>

Expression BSP, extraskeletal

<table>
<thead>
<tr>
<th>Zelle</th>
<th>Spezies</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trophoblasten Plazenta</td>
<td>Mensch</td>
<td>(Bianco et al. 1991)</td>
</tr>
<tr>
<td>Thrombozyten</td>
<td>Rind</td>
<td>(Chenu und Delmas 1992)</td>
</tr>
<tr>
<td>Serum und Plasma</td>
<td>Rind</td>
<td>(Chenu und Delmas 1992)</td>
</tr>
<tr>
<td>Pankreas Gewebe</td>
<td>Mensch</td>
<td>(Kayed et al. 2007)</td>
</tr>
</tbody>
</table>

Expression BSP in Tumoren

<table>
<thead>
<tr>
<th>Zelle</th>
<th>Spezies</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontogene Tumorzellen</td>
<td>Ratte</td>
<td>(Chen et al. 1998)</td>
</tr>
<tr>
<td></td>
<td>Hamster</td>
<td></td>
</tr>
<tr>
<td>Ameloblastom</td>
<td>Ratte</td>
<td>(Chen et al. 1998)</td>
</tr>
<tr>
<td></td>
<td>Hamster</td>
<td></td>
</tr>
<tr>
<td>Brusttumore</td>
<td>Mensch</td>
<td>(Bellahcene et al. 1994; Bellahcene und Castronovo 1997 a; Castronovo und Bellahcene 1998 a; Camparo und Vieillefond 2007)</td>
</tr>
<tr>
<td>Lungen Karzinom, NSCLC</td>
<td>Mensch</td>
<td>(Bellahcene et al. 1997 b; Papotti et al. 2006)</td>
</tr>
<tr>
<td>Prostata Karzinom</td>
<td>Mensch</td>
<td>(Waltregny et al. 1998; Chaplet et al. 2006)</td>
</tr>
<tr>
<td>Neuroblastom</td>
<td>Mensch</td>
<td>(Waltregny et al. 2000)</td>
</tr>
<tr>
<td>Multiples Myelom</td>
<td>Mensch</td>
<td>(Bellahcene et al. 2000 b)</td>
</tr>
<tr>
<td>Schildrüsen Karzinom</td>
<td>Mensch</td>
<td>(Bellahcene et al. 1998 b)</td>
</tr>
<tr>
<td>Zervix Karzinom</td>
<td>Mensch</td>
<td>(Detry et al. 2003)</td>
</tr>
<tr>
<td>Pankreas Karzinom</td>
<td>Mensch</td>
<td>(Kayed et al. 2007)</td>
</tr>
<tr>
<td>Malignes Melanom</td>
<td>Mensch</td>
<td>(Riminucci et al. 2003)</td>
</tr>
<tr>
<td>PK Mundhöhle</td>
<td>Mensch</td>
<td>(Ogbureke et al. 2007)</td>
</tr>
</tbody>
</table>

Tab.2: Übersicht zum aktuellen Wissenstand der BSP Expression in skeletalen und extraskeletalen Zellen, als auch in Tumoren. Erläuterung siehe Text.

1.4 Genstruktur

Das Gen für humanes BSP (IBSP) liegt zusammen mit 4 weiteren Mitgliedern der SIBLING Familie, dem Dentin Sialophosphoprotein (DSPP), dem Dentin
Einleitung

Terminus vom Protein und der 3´-UTR (untranslatierten) Region, welche sich vom Translations-Stoppcodon bis zum Polyadenylierungs-Startpunkt erstreckt (Kim et al. 1994).

1.5 Funktion und Stoffwechselbeteiligung

Abb.3: Dargestellt sind die Funktionen des BSP, modifiziert nach (Ogata 2008). Erklärung siehe Text.

Die Angiogenese mit der Bildung von neuen Kapillaren stellt einen zentralen Punkt in der Embryonalentwicklung dar. Endothelzellen von neuen Kapillaren exprimieren αvβ3 Rezeptoren auf ihrer Oberfläche (Brooks et al. 1994; Brooks et al. 1994 a) und bei einer passenden Ligandenbindung wird ein Überlebens-Pathway induziert, welcher für die Vervollständigung der Angiogenese

BSP hat auch eine Schutzfunktion für die Zelle, da durch die Bindung an Faktor H, ein humanes Plasma Protein, die Komplement-vermittelte Zelllyse unterbunden wird, was im Rahmen der BSP Expression in Tumorzellen eine wichtige Rolle spielen kann (Fedarko et al. 2000; Zipfel 2001). BSP bindet spezifisch an die inaktive und aktive Matrix Metalloproteinase 2, wobei diese Bindung durch den Faktor H getrennt werden kann (Fedarko et al. 2004).

Da BSP auch in ektopen Gewebe exprimiert wird, nutzen aktuelle Ansätze der Gentherapie die regulativ lytischen Eigenschaften eines verkürzten BSP
Promotors, welcher in einen Adenovirus integriert wurde und konnten damit sowohl eine Zellyse bei humanen Blasentumorzellen, als auch eine signifikante Reduzierung der Tumorgröße in Blasentumoren eines Mausmodels erzielen (Melquist et al. 2006).

BSP kann über noch ungeklärte Mechanismen an Kollagen I binden, wobei die dreifach helikale Struktur des Kollagens wichtig scheint, jedoch die Telopeptide des Kollagens bei der Bindung nicht involviert sind und die Bindung von rekombinannten BSP an Kollagen I die HA Nukleation fördern kann (Baht et al. 2008). Die Bindung des BSP an Kollagen I scheint dabei unabhängig von den posttranslationalen Modifizierungen des BSP statt zu finden (Tye et al. 2005).

Die enzymatische Aktivität der Alkalischen-Phosphatase (AP) steht in enger Beziehung zur Differenzierung von Osteoblasten. Rekombinantes BSP (rBSP)
kann in primären Osteoblastenkulturen der Ratte die Alkalische-Phosphatase Aktivität am 3. und 5. Tag in vitro erhöhen, nach 10 Tagen ist jedoch, im Vergleich zu Kontrollkulturen ohne BSP, kein signifikanter Unterschied mehr nachweisbar. Unbehandelte Osteoblasten-ähnliche MC3T3E1 Kontrollkulturen zeigen in den ersten 5 Tagen ebenfalls eine erhöhte AP Aktivität, wobei diese Aktivität auch nach 20 Tagen noch geringer ist, als die der BSP behandelten Osteoblastenkulturen. Inwieweit BSP die Differenzierung von Knochenvorläuferzellen zu reifen Osteoblasten beeinflusst ist noch unklar. Gezeigt werden konnte, dass die Knochen-assoziierten Transkriptionsfaktoren Runx2 und Osx in primären Osteoblasten der Ratte bei einer Inkubation mit rBSP am 3. und 5. Tag, im Vergleich zu Kontrollkulturen, signifikant erhöht sind, nach 10 Tagen jedoch ähnlicher hoch exprimiert werden (Gordon et al. 2007).

BSP spielt eine entscheidende Rolle in der frühen skeletalen Entwicklung, so weisen BSP knock-out Mäuse im Vergleich zu Wildtypen ein geringeres Gewicht und eine geringere Größe auf. 4 Monate alte knock-out Mäuse haben kürzere Femurknochen mit einer dünneren Kortikalis und einem höheren trabekulären Knochenanteil, als vergleichbare Wildtypen, wobei die Kortikalisdicke, nicht jedoch die Femurlänge, im Verlauf der Entwicklung wieder ausgeglichen werden kann. Die Mineralisierung der Knochenmatrix von BSP knock-out Mäusen ist bis zu einem Alter von 12 Monaten geringer als bei den Wildtypen (Malaval et al. 2008).

An humanen Megakaryozyten konnte gezeigt werden, dass aktivierte Thrombozyten BSP frei setzen, wobei dessen folglich mögliche Rolle in der Blutgerinnung noch ungeklärt ist (Chenu und Delmas 1992).
1.6 Prothesenbeschichtung

1.7 Beschreibung Projekt

Eingebettet in ein größeres Projekt zur Untersuchung der Wirkung von verschiedenen Biomaterialien und Wachstumsfaktoren als neuartige Beschichtungsmöglichkeiten von Endo-Prothesen für die klinische Anwendung, galt es im Rahmen dieser Arbeit die Knochenbildung-assoziierte Wirkung zweier rekombinanter humaner Bone Sialoproteine der Firma Immunodiagnostik auf humane Osteoblasten und Stromazellen, sowie auf Osteoblasten
Material und Methoden

2.1 Material

2.1.1 Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Produkt, Cat. No., Firma, Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton:</td>
<td>Lot. No. K38345914 805, Merck, D-Darmstadt</td>
</tr>
<tr>
<td>Acrylamid:</td>
<td>30% Acrylamide/Bis Solution 29:1, Cat. No.161-0156, Bio-Rad, USA, CA</td>
</tr>
<tr>
<td>Alkalische Phosphatase</td>
<td>5,5 Diäthylbarbitursäure Na-Salz, Art. No. 6318 Merck, D-Darmstadt,</td>
</tr>
<tr>
<td>Färberreagenzien:</td>
<td>Variaminblausalz B, Art. No. 94820, Fluka, Sigma-Aldrich, D-Steinheim</td>
</tr>
<tr>
<td>Alkohole:</td>
<td>Natriumnaphthyl-(1)-sulfat, Art. No. 71090, Fluka, Sigma-Aldrich, D-Steinheim</td>
</tr>
<tr>
<td></td>
<td>Alkohol 80% vergällt, Universitätsapotheke, D-Tübingen</td>
</tr>
<tr>
<td></td>
<td>Ethanol p.a., Lot. No. K36759083 647, Merck, D-Darmstadt</td>
</tr>
<tr>
<td></td>
<td>Methanol p.a., Lot. No. K36193709 630, Merck, D-Darmstadt</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS) 10%:</td>
<td>Cat. No. 161-0700, Bio-Rad, USA, CA</td>
</tr>
<tr>
<td>Ampuwa:</td>
<td>PZN-0041476, Zul. No. 40676.00.00, Fresenius Kabi, D-Homburg</td>
</tr>
<tr>
<td>Antibiotika:</td>
<td>Penicillin/Streptomycin, Cat. No. 15140-122, Invitrogen Corporation, Gibco, D-Eggenstein</td>
</tr>
<tr>
<td>Antimykotikum:</td>
<td>Amphotericin B (250 µg/ml) Cat. No. 1672348 MP Biomedicals, Incorporation, UK</td>
</tr>
<tr>
<td>Aqua dest.:</td>
<td>Aqua dest., Universitätsapotheke, D-Tübingen</td>
</tr>
<tr>
<td>Bromphenolblau:</td>
<td>Cat. No. 15375, SERVA, D-Heidelberg</td>
</tr>
<tr>
<td>BSA-Rinderalbuminserum:</td>
<td>Albumine from bovine serum, Cat. No.</td>
</tr>
</tbody>
</table>
Material und Methoden

Cell Proliferation ELISA BrdU Kit: 5-Bromo-2’-deoxyuridin (BrdU) labeling reagent, Kit, Cat. No. 11647229001, Roche, D-Mannheim

Cell Proliferation Kit I MTT: (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid) labelling reagent (MTT), Kit, Cat. No. 11465007001, Roche, D-Mannheim

Coomasie Brilliant Blue R-250: Cat. No. 161-0400, Bio-Rad Laboratories, USA, CA

DEPEC: Diethylpyrocarbonat behandeltes Wasser, aus Advantage® RT-for-PCR Kit, Cat. No. 639506, Clontech, USA, CA

Desinfektionsmittel: Descosept AF, Cat. No. 311.010, UN 1987, Dr. Schumacher GMBH, D-Melsungen

DMSO (Dimethylsulfoxid): Dimethyl Sulphoxide, Lot. No. 114K2301, Sigma-Aldrich, D-Steinheim

DNA-Synthese Kit: RNase-Free DNase Set, Cat. No. 79254, Qiagen, D-Hilden

EDTA-Natrium: Triplex® III, Cat. No. K31678818 308, Merck, D-Darmstadt

Essigsäure: Eisessig 100%, Cat. No. K28319163 039, Merck, D-Darmstadt

Ethidiumbromid: Cat. No. E-8751, Sigma, USA, St. Louis

Fötales Kälberserum: FBS, Cat. No. S0615, Biochrom AG, D-Berlin

Glycerin: Cat. No. K19201793 336, Merck, D-Darmstadt

Glycin: Cat. No. 4201, Merck, D-Darmstadt

Indometacin: Cat. No. 57413, Fluka, Sigma-Aldrich, D-Steinheim

Kollagenase: Type XI, Art. No. 9407, Sigma-Aldrich, D-Steinheim

LightCycler SYBR Green I: Cat. No. 12239264001, Roche, D-Mannheim

Marker Polyacrylamid-Gel: MagicMark XP Western Protein Standard, Invitrogen, D-Karlsruhe
<table>
<thead>
<tr>
<th>Material und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Stammzellen:</td>
</tr>
<tr>
<td>Medium Osteoblasten:</td>
</tr>
<tr>
<td>Mercaptoethanol:</td>
</tr>
<tr>
<td>PCR-Kit:</td>
</tr>
<tr>
<td>PBS-Pufferlösung:</td>
</tr>
<tr>
<td>Percoll:</td>
</tr>
<tr>
<td>RNA Kit:</td>
</tr>
<tr>
<td>SDS (Natriumdodecylsulfat):</td>
</tr>
<tr>
<td>Tetramethylethylendiamin(TEMED):</td>
</tr>
<tr>
<td>Tris(hydroxymethyl)aminomethan:</td>
</tr>
<tr>
<td>Trypanblau:</td>
</tr>
<tr>
<td>Trypsinlösung/EDTA:</td>
</tr>
<tr>
<td>Trypsinlösung/EDTA (Stammz):</td>
</tr>
<tr>
<td>Vitaminlösung:</td>
</tr>
</tbody>
</table>
2.1.2 Gebrauchs- und Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Produkt, Cat. No., Firma, Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deckgläser:</td>
<td>21x26 mm, Cat. No. H 876, Roth, D-Karlsruhe</td>
</tr>
<tr>
<td>Eppendorf-Cups:</td>
<td>Tubes 2 ml, Lot. No. V125127J;</td>
</tr>
<tr>
<td></td>
<td>Tubes 1,5 ml, Lot. No. V125140J;</td>
</tr>
<tr>
<td></td>
<td>Tubes 0,5 ml, Lot. No. V125165J, Eppendorf AG, D-Hamburg</td>
</tr>
<tr>
<td>Faltenfilter:</td>
<td>18,5 cm Durchmesser, Marchery-Nagel, D-Düren</td>
</tr>
<tr>
<td>Handschuhe:</td>
<td>Kimberly-Clark, D-Koblenz</td>
</tr>
<tr>
<td>Kulturflaschen:</td>
<td>25 cm² Kulturflaschen, Cat. No. 137211, 0,2 µm Vented Blue Plug Seal Cap, Falcon, Becton Dickinson, D-Heidelberg</td>
</tr>
<tr>
<td></td>
<td>75 cm² Kulturflaschen, Cat. No. 137787, 0,2 µm Vented Blue Plug Seal Cap, Falcon, Becton Dickinson, D-Heidelberg</td>
</tr>
<tr>
<td>Kryo-Vials:</td>
<td>Cryo.S, Lot. No. 06100176, Greiner Bio-One, D-Frickhausen</td>
</tr>
<tr>
<td>Makroplatten:</td>
<td>Tissue Culture Plate, 6 Well, Cat. No. 657160, Cellstar, Greiner Bio-One, D-Frickhausen</td>
</tr>
<tr>
<td>Mikroplatten:</td>
<td>Tissue Culture Plate, 96 Well, flat bottom, Cat. No. 655180, Cellstar, Greiner Bio One, D-Frickhausen</td>
</tr>
<tr>
<td>Petrischalen:</td>
<td>Petrischalen rund, steril, Lot. No. 305391, Greiner Bio One, D-Frickhausen</td>
</tr>
<tr>
<td>Pipetten:</td>
<td>Eppendorf Research, D-Wesseling-Berzdorf</td>
</tr>
<tr>
<td>Pipetten:</td>
<td>2 ml Cat. No. 357507; 5 ml Cat. No. 357543; 10 ml Cat. No.357551; 25 ml Cat. No. 357525, Falcon Becton Dickinson, D-Heidelberg</td>
</tr>
<tr>
<td>Pipettenspitzen:</td>
<td>Safe Seal-Tips Premium (Filter), 100, 200, 500 µl, Biozym, D-Hess</td>
</tr>
<tr>
<td>Pipettierhilfe:</td>
<td>Pipetus-Akku, Cat. No. L3010131, Hirschmann, Laborgeräte, D-Eberstadt</td>
</tr>
<tr>
<td>Skalpelle:</td>
<td>Cutfix, Cat. No. 5518016, Braun, Aesculap,</td>
</tr>
</tbody>
</table>
Materialien und Methoden

D-Tuttlingen

Spritzen: Insulinspritzen 1 ml., Cat. No. 300026, Becton Dickinson, D-Heidelberg

Sterilfilter: Minisart, Porengröße 0,45 µm, Lot. No. 17598 050086 Sartorius, D-Göttingen

Sterilfilter Pipettierhilfe: Minisart, Porengröße 20 µm, Lot. No. 17597010396 Sartorius, D-Göttingen

Tubes: Tubes 15 ml, Cat. No. 62.554.002, Sarstedt, D-Nürmbrecht

Tubes 50 ml, Cat. No. 210261, Cellstar, Greiner Bio-One, D-Frickenhausen

Zählkammer: Neubauer Zählkammer, Tiefe 0,1 mm, 0,0025 mm², Assistent Glasswarenfabrik, D-Sondheim

2.1.3 Geräte

Materialien Produkt, Cat. No., Firma, Ort

Absaugpumpe: Typ 86KN.18, Cat. No. 1099874, KNF Neuberger, D- Freiburg

Autoklav: Typ V150, Cat. No. 0458, Systec, D-Bettenberg

Brutschrank: Typ B5060EK-CO2, DIN. Nr. 12880, Heraeus, D-Hanau

ELISA Photometer: PowerWave, Cat. No. 125596, BioTek, D-Bad Friedrichshall

Lichtmikroskop: Leica Fluovert FS, Type:090-128.012, Ernst Leitz GMBH, D-Wetzlar

Light-Cycler: Cat. Nr. 1401101, Roche GMBH, D-Mannheim

PCR-Block: Uno II Thermoblock, Cat. No. 9703065, Biometra, D-Göttingen
Material und Methoden

Photometer: RNA/DNA Calculator, Cat. No. 82738, GeneQuant pro, Biochrom, UK-Cambridge
Schüttler: IKA MTS 2/4 digital, Cat. Nr. 01.298974, IKA-Werk GMBH, D-Staufen
Sterilbank: Typ UVF6.12S, BDK, D-Sonnenbühl
Wasserbad: WB22, Cat. No. 15010065, Din. 12876-1-K1, Memmert, D-Schwabach
Zentrifuge: Centrifuge 5415 D, Cat. No. 542544000, Eppendorf AG, D-Hamburg

2.1.4 Humanes Untersuchungsmaterial

Übersicht Zell-Donatoren

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SRW/1</td>
<td>57</td>
<td>männlich</td>
<td>HTP</td>
<td>Coxarthr. Seite n. b.</td>
<td>verpilzte Primärkultur</td>
<td>i. O.</td>
</tr>
<tr>
<td>HRL/2</td>
<td>67</td>
<td>weiblich</td>
<td>HTP</td>
<td>Coxarthr. Seite n. b.</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>VRH/3</td>
<td>62</td>
<td>weiblich</td>
<td>HTP</td>
<td>Coxarthr. Seite n. b.</td>
<td>verpilzte Primärkultur</td>
<td>i. O.</td>
</tr>
<tr>
<td>O-SEP/4</td>
<td>n. b.</td>
<td>männlich</td>
<td>HTP</td>
<td>Coxarthr. li</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>SRI/5</td>
<td>67</td>
<td>weiblich</td>
<td>HTP</td>
<td>Coxarthr. re</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>ALH/6</td>
<td>69</td>
<td>weiblich</td>
<td>HTP</td>
<td>Coxarthr. re</td>
<td>i. O.</td>
<td>n. i.</td>
</tr>
<tr>
<td>EGG/7</td>
<td>51</td>
<td>männlich</td>
<td>HTP</td>
<td>Coxarthr. re</td>
<td>i. O.</td>
<td>n. i.</td>
</tr>
<tr>
<td>LBI/8</td>
<td>68</td>
<td>weiblich</td>
<td>KTP</td>
<td>Gonarthr. li</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>POF/9</td>
<td>62</td>
<td>weiblich</td>
<td>KTP</td>
<td>Gonarthr. li</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>SLJ/10</td>
<td>64</td>
<td>männlich</td>
<td>KTP</td>
<td>Gonarthr. re</td>
<td>i. O.</td>
<td>i. O.</td>
</tr>
<tr>
<td>SRT/11</td>
<td>64</td>
<td>männlich</td>
<td>HTP</td>
<td>Coxarthr. re</td>
<td>verpilzte Primärkultur</td>
<td>i. O.</td>
</tr>
</tbody>
</table>

Tab.3: Übersicht der Zell-Donor Patienten.

Weitere verwendete Osteoblasten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOB-1</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>i. O.</td>
<td>n. i.</td>
</tr>
<tr>
<td>HOB-2</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>i. O.</td>
<td>n. i.</td>
</tr>
<tr>
<td>HOB-C</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>i. O.</td>
<td>n. i.</td>
</tr>
</tbody>
</table>

2.1.5 Tierisches Untersuchungsmaterial

2.1.6 Bone Sialoproteine

Es wurden zwei Typen rekombinanter Bone Sialoproteine von der Firma Immunodiagnostik, Bensheim, Germany unsteril und ungelöst zur Verfügung gestellt.

2.1.6.1 BSP

Folgende Information wurde uns gegeben:
Protein: Human Bone Sialoprotein, rekombinant, C-terminal His-tag.
Referenz Nr.: Locus ID 3381
Herstellung: Serumfrei in humaner HeLa-Zelllinie
Katalog Nr.: A 1004AG.10
Größe: 70-80kDa
Lot. Nr.: AK072/06AIBI1
In dieser Arbeit wird das Protein unter der Bezeichnung BSP, oder auch 1. rek. BSP aufgeführt.

2.1.6.2 DRJ

Folgende Information wurde uns gegeben:
Protein: Human Bone Sialoprotein, DRJ, rekombinant, His-tag.
Charge: vBSP3-030805A8
Größe: ca.60kDA
Expressionswirt: E. coli.
In dieser Arbeit wird das Protein unter der Bezeichnung DRJ, oder auch 2. rek. BSP aufgeführt.

2.2 Methoden

2.2.1 Zellkulturmethoden

2.2.1.1 Allgemeines

Die Zellkulturarbeiten wurden unter sterilen Bedingungen (Sterilbank mit „laminar airflow“) durchgeführt. Die Inkubation der verschiedenen Zellden erfolgte im Brutschrank bei 37°C und 5% CO₂. Es wurden sowohl sterile Arbeitsmaterialien, als auch sterile Medien verwendet.

2.2.1.2 Anlage von Primärkulturen humaner Zellen

Das intraoperativ steril gewonnene humane Knochenmaterial wurde in ein steriles, verschließbares Plastikgefäß gegeben und mit PBS-Pufferlösung bedeckt, um einer Kontamination und vorzeitigen Austrocknung des Gewebes vorzubeugen. Alle weiteren Arbeitsschritte wurden an der Sterilbank im Labor durchgeführt.

2.2.1.2.1 Anlage humaner Osteoblastenzellkulturen aus Spongiosa

Das Knochenmaterial wurde in einer Petrischale mit 10 ml PBS-Pufferlösung bedeckt, mittels einer chirurgischen Pinzette und Zange vorsichtig die Spongiosa von der Kompakta des Knochens getrennt, sowie die Spongiosa zerkleinert und die Kompakta verworfen. Zur feineren Zerkleinerung der spong-

Abb.4: Dargestellt sind Teile der Arbeitsschritte bei der Aufarbeitung eines humanen Hüftkopfes. a) Proximaler Anteil eines humanen Hüftkopfes vor Aufarbeitung zur Isolierung humaner Osteoblasten und Stromazellen wenige Stunden nach dem operativen Eingriff einer Hüfttotalendoprothese. b) Mittels Zangen und Skalpellen zerkleinerte spongöse Anteile distaler Fragmente des Hüftkopfes, c) Verteilung dieser kleinen Knochenfragmente auf 50ml Tubes. d) Mehrere Wäschschritte mit PBS (-) folgen.
2.2.1.2.2 Anlage humaner Stromazellkulturen aus Spongiosa

Die humanen Stromazellen wurden bei der Isolierung humaner Osteoblasten aus dem Überstand (siehe 2.2.1.2.1) gewonnen. Der Überstand wurde mit einer Pipette in ein steriles 50 ml Tube überführt und 2× 5 min. bei 1700U/min. zentrifugiert, so dass das Pellet weitgehend von Blutzellen gereinigt wurde und weiß erschien. Der Überstand wurde verworfen und das Pellet in 1-2 ml Stammzellmedium gelöst und auf eine 6 Well Platte verteilt. Die 6 Well Platten wurden nun möglichst wenig bewegt um das Anwachsen der stromalen Knochenzellen nicht zu beeinträchtigen. Nach 24h erfolgte der erste Mediumwechsel. Inkubiert wurde mit Stammzellmedium; ab der 1. Passage wurde mit Osteoblastenmedium weiter inkubiert.

2.2.1.3 Anlage Primärkulturen vom Schwein

2.2.1.3.1 Anlage Knochenmarkzellkulturen vom Schwein

Das Knochenmark wurde aus den EDTA-Röhrchen mittels einer Pipette in
50 ml Tubes überführt, im Verhältnis 1:4 mit PBS (-) verdünnt und gut homogenisiert. Eine Zentrifugation bei 150g, für 10 min. bei Raumtemperatur folgte. Fettschicht und Überstand wurden abgenommen und verworfen. Das Knochenmarkpellet wurde in PBS (-) aufgenommen, wobei das Verhältnis Knochenmark zu PBS (-) nicht >1:1 und nicht <1:2 sein sollte. Zur Trennung der Knochen- von den Blutzellen wurden ca. 15 ml Percoll-Trennlösung (Dichte \(\rho \approx 1,077 \text{g/ml} \)) in ein 50 ml Tube gegeben, vorsichtig mit der Zellsuspension über- schichtet und bei 400g 30 min. bei Raumtemperatur, ohne aktiven Abrems- vorgang am Ende, zentrifugiert. Aufgrund der unterschiedlichen Zelldichten setzen sich die Erythrozyten am Boden ab und die mononuklearen Zellen, deren Dichte \(\rho < 0,1077 \text{g/ml} \) ist, bilden zwischen der Percoll-Lösung (unten) und dem PBS (-) (oben) eine schmale weiße Interphase, welche abpipetiert und in ein frisches 50 ml Tube überführt werden kann. Anschließend erfolgte eine Verdünnung mittels PBS (-) und Zentrifugation für 10 min. bei 4°C und 150g, ebenfalls ohne aktiven Abremsvorgang. Das Pellet wurde in Stammzellmedium aufgenommen und die Zellzahl bestimmt. Die Knochenmarkstammzellen wurden in einer Dichte von \(6 \times 10^3 \text{ Zellen/cm}^2 \) in Kulturflaschen (75cm²) ausgesät und im Brutschrank inkubiert. Nach 24h erfolgte der erste Mediumwechsel. Inkubiert wurde mit Stammzellmedium. Die mesenchymalen Stammzellen wurden bei jeder Passage in einer Dichte von \(6 \times 10^3 \text{ Zellen/cm}^2 \) ausgesät. Dies ist wichtig, da diese Zellen schnell wachsen und eine Differenzierung der Zellen- bei Zell-Zell Kontakt- vermieden werden soll.

2.2.1.3.2 Anlage Osteoblastenzellkulturen vom Schwein

Zur Differenzierung von Osteoblasten aus Knochenmarkzellen von jungen Schweinen wurde ein Osteoblasten-Differenzierungsmedium verwendet. Insgesamt wurden von zwei jungen Schweinen mesenchymale Stammzellen aufgearbeitet und ab der zweiten Passage wurde ein Teil dieser Stammzellen in einer Dichte von 20000 Zellen/cm² in Kulturflaschen (75cm²) ausgesät und mit dem Osteoblasten-Differenzierungsmedium für 2-3 Wochen inkubierte. Der erste Mediumwechsel erfolgte nach 24h.
2.2.1.4 Medium

2.2.1.4.1 Herstellung des Osteoblasten-Vollmediums

Zur Herstellung des ca. 10% FCS/D-MEM Vollmediums wurden zu 500 ml Dulbecco´s MEM/Nutrient Mix F12 Grundmedium je 50 ml FCS, 13 ml MEM-Vitamine (Gibco), 10 ml Penicillin-Streptomycin (Gibco), 6,5 ml Amphotericin-B (Fungizone, Gibco) hinzugegeben. Für die Zusätze Dexamethason, Ascorbinsäure und ß-Glycerophosphat wurden Stammlösungen angesetzt und diese portioniert bei -20°C eingefroren.

- **Dexamethason Stammlösungen**
 - Stammlösung 1: 10mg Dexamethason in 25,45ml H₂O
 - Stammlösung 2: 4ml der Stammlösung 1 in 36ml H₂O

- **Ascorbinsäure Stammlösung**
 - Stammlösung 1: 0,05 molar; 0,44g Ascorbinsäure in 50ml PBS (-)

- **ß-Glycerophosphat Stammlösungen**
 - Stammlösung 1: 10mM; 1,53mg in 50ml PBS (-)
 - Stammlösung 2: 10µM; 40µl Stammlösung 1 in 40ml PBS (-)

Zu den 500ml Dulbecco´s MEM/Nutrient Mix F12 Grundmedium wurden 500µl Stammlösung 2 Dexamethason, 500µl Stammlösung Ascorbinsäure und 50µl Stammlösung 2 ß-Glycerophosphat gegeben.

Das Osteoblasten-Vollmedium wurde bei 4°C im Kühlschrank für max. 3 Wochen aufbewahrt. Das föstale Kälberserum wurde vor Gebrauch über Nacht im Kühlschrank aufgetaut, auf 25°C erwärmt, 30 min. bei 56°C hitzeinaktiviert, mit 1g/250 ml FCS versetzt und 30 min. auf dem Schüttler leicht geschüttelt. Nach der Inaktivierung wurde die Lösung steril filtriert (Porengröße 0,45 µm), in 50 ml Röhrchen portioniert und bei -20°C eingefroren.

2.2.1.4.2 Herstellung des Stammzell-Vollmediums

Als Grundmedium wurden 440 ml Mesenchymal Stem Cell Basal Medium (Cambrex) verwendet, welches zusätzlich mit 50 ml Mesenchymal Cell Growth
Supplement (Cambrex), 10 ml L-Glutamine und 0,5 ml Penicillin-Streptomycin (Cambrex) versetzt wurde. Das Stammzell-Vollmedium wurde bei 4°C im Kühlschrank für max. 3 Wochen aufbewahrt.

2.2.1.4.3 Herstellung des Osteoblasten-Differenzierungs-Vollmediums

Zur Herstellung des 20% FCS/D-MEM Vollmediums wurden zu 500 ml Dulbecco’s MEM/Nutrient Mix F12 Grundmedium je 100 ml FCS, 13 ml MEM-Vitamine (Gibco), 10 ml Penicillin-Streptomycin (Gibco), 6 ml Amphotericin-B (Fungizone, Gibco), sowie 1 µM Dexamethason, 50 µM Ascorbinsäure und 10 mM β-Glycerolphosphat hinzugefügt. Das Osteoblastendifferenzierungs-Vollmedium wurde bei 4°C im Kühlschrank für max. 3 Wochen aufbewahrt. Wie in 2.2.1.4.1 beschrieben wurden Dexamethason, Ascorbinsäure und β- Glycerophosphat als Stammlösung angelegt, steril filtriert, portioniert und bei -20°C eingefroren.

2.2.1.5 Mediumwechsel und Zellpflege

2.2.1.6 Subkultivierung der Zellen

Zum Umsetzen der Zellen wurde das Medium abgesaugt und die Zellen 1-2x mit vorgewärmtem PBS(-) gewaschen. Nach dem Absaugen des PBS(-) wurden 5 ml Trypsin/Flasche hinzugefügt und die Zellen mit dem Trypsin für ca. 5 min. im Brutschrank inkubiert. Nachdem alle Zellen abgelöst waren, wurde die Reaktion mit 5 ml des jeweiligen Vollmediums gestoppt und die Zellen gut resuspendiert. Die Zellsuspension wurde mit einer Pipette in ein frisches 50 ml Röhrchen überführt und bei 1500U/min. 5 min. bei 4°C zentrifugiert.
Der Überstand wurde abgesaugt, die Zellen in frisches Vollmedium aufgenommen und entweder erst ausgezählt (siehe 2.2.1.7), oder sogleich auf mehrere Kulturflaschen verteilt.

2.2.1.7 Zellzahlbestimmung

Für die Zellzahlbestimmung wurde ein Hämocytometer (Neubauer-Zählkammer) verwendet. Die abgelösten Zellen wurden in Vollmedium aufgenommen und 20 µl Zellsuspension wurden mit 20 µl Trypanblau, also im Verhältnis 1:1 verdünnt, gut resuspendiert und an den Rand des Deckglases pipettiert. Mittels Lichtmikroskop wurden für die Auswertung vier großen Eckquadrate ausgezählt. Das Volumen dieser Felder betrug 4 x 10^{-4} ml und dementsprechend die Gesamtzellzahl bei n ausgezählten Zellen unter Berücksichtigung des Verdünnungsfaktors 2: n x 2 x (4 x 10^{-4})^{-1} ml = n x 5000 Zellen/ml. Vitale Zellen sehen im Lichtmikroskop hell und glatt berandet aus, tote und avitale Zellen weisen eine defekte Zellmembran auf, nehmen das Trypanblau auf und sehen im Lichtmikroskop blau und deformiert aus. Für einen guten Versuch ist die vorherige korrekte Zählung und Aussaat der Zellen absolut notwendig.

2.2.1.8 Kryokonservierung

Zur Kryokonservierung wurden die Zellen, wie in 2.2.1.6 beschrieben, mittels Trypsin abgelöst, mit der äquivalenten Menge des jeweiligen Vollmediums die Reaktion gestoppt, die Zellen ggf. gezählt, abzentrifugiert bei 1500U/min und 4°C, sowie das Pellet in Einfriermedium aufgenommen und sogleich auf Eis gestellt. Das Einfriermedium für humane Osteoblasten und humane Stromazellen bestand aus frischem, gekühlten (4°C) Osteoblasten-Vollmedium mit 10% DMSO. Das Einfriermedium für die Stammzellen der Schweine bestand aus frischem, gekühltem Stammzell-Vollmedium, ebenfalls mit Zugabe von 10% DMSO. Für die differenzierten Osteoblasten vom Schwein wurde Differenzierungsmedium für Osteoblasten, auch mit 10% DMSO versetzt.
Zum Auftauen wurden die Kryoröhrchen aus dem Stickstofftank herausgenommen und auf Eis bis zur Sterilbank transportiert. Das vorgewärmte (37°C) Vollmedium, entsprechend dem jeweiligen Zelltyp, wurde in kleinen Mengen in die Kryoröhrchen pipettiert, sogleich mit den bereits aufgetauten Zellen wieder abpipettiert, in 50 ml Tubes überführt, welche bereits mit 20 ml Vollmedium und 20 ml PBS gefüllt waren und anschließend zentrifugiert. Die Zentrifugation erfolgte bei 1500U/min. für 5 min. bei 4°C. Der Überstand mit dem bei Raumtemperatur zytotoxischem DMSO wurde verworfen, das Pellet in frischem Vollmedium aufgenommen und die Zellen in Kulturflaschen (75cm²) ausgesät. Nach 24h erfolgte der erste Mediumwechsel mit dem entsprechenden Vollmedium.

2.2.2 Methoden zur Untersuchung der verschiedenen Zellparameter

2.2.2.1 RT-PCR

1. Inkubationsansatz:
Über Nacht (12h)-Beschichtung der 75cm² Flaschen mit einer Absolutmenge von 60µg Protein/Flasche (6ml Proteinlösung, bei einer Arbeitskonzentration von 10µg/ml) im Kühlschrank bei 4°C. Anschließend unter sterilen Bedingungen vorsichtiges abpipettieren der Proteinlösung und Hinzufügen der ausgezählten Zellen (1x10⁶ Zellen/Flasche), gelöst in 10ml Osteoblastenmedium/Flasche. Inkubation der Zellen in den BSP beschichteten Flaschen für 24h im Brutschrank bei 37°C und 5% CO₂. Anschließend folgte die Ablösung der

2. Inkubationsansatz:
Direkte Inkubation der ausgezählten Zellen mit den zwei Proteinen. In den Vorversuchen wurde ausschließlich das BSP und nicht das DRJ-Protein untersucht. Im ersten Vorversuch wurden Proteininkonzentrationen von 1µg und 3µg Protein/Flasche (100µl, bzw. 300µl Proteinlösung, bei einer Arbeitskonzentration von 10µg/ml) untersucht. Basierend auf den Ergebnissen der Vorversuche wurden in den Hauptversuchen BSP und DRJ Proteininkonzentrationen von 3µg und 10µg Protein/Flasche eingesetzt. Sowohl humane Osteoblasten, als auch Stromazellen wurden in einer Konzentration von 1x10⁶ Zellen/Flasche in 10ml Osteoblastenmedium/Flasche ausgesät und für 24h im Brutschrank inkubiert. Anschließend folgte, wie im ersten Inkubations-Ansatz beschrieben, die Ablösung der Zellen, RNA Extraktion, cDNA-Synthese und Real Time PCR der drei untersuchten Gene.

2.2.2.1.1 RNA-Extraktion
Material und Methoden

Zur RNA-Aufreinigung wurden auf die Säulenmitte 80µl DNase-Lösung aufgetragen (Kit RNase free DNase Set, Firma Qiagen) und 20 min. bei Raumtemperatur inkubiert. Es folgte eine Zentrifugation für 15 sec. bei 10.000U/min. Das Eluat wurde verworfen. Die Säule wurde nun in eine neues 2 ml Tube überführt, mit 500µl RPE Puffer versetzt und erneut für 15 sec. Bei 10.000U/min. zentrifugiert. Das Eluat wurde abermals verworfen. Dieser Vorgang wurde 1x wiederholt, anschließend jedoch 2 min. bei 10.000U/min. zentrifugiert und das Eluat wieder verworfen. Zum Trocknen der Säule wurde selbige ca. 15 sec. bei 10.000U/min. zentrifugiert um das Ethanol vollständig zu entfernen. Zur RNA-Eluierung wurde die Säule, in deren Flüss sich nun die mRNA befand, in ein neues Eppendorf Tube gestellt, 40µl RNase freies Wasser zugegeben und selbiges 1 min. bei 10.000U/min. zentrifugiert um die aufgereinigte RNA zu eluieren. Die Proben wurden sofort auf Eis gestellt, die RNA mittels RNA Calculator quantifiziert und anschließend in cDNA umgeschrieben.

2.2.2.1.2 cDNA-Synthese

Für die cDNA-Synthese wurde ein Kit (RNase-Free DNase Set, Qiagen) verwendet. Für die Umschreibung in cDNA wurde immer 1 µg RNA eingesetzt. Jede RNA Probe wurde in einem Eppendorf-Cup mit DEPC-Wasser auf ein Volumen von insgesamt 12,4 µl verdünnt und mit 1 µl Oligo-dt-Primer versetzt. Die Proben wurden gevortext, zentrifugiert und sofort auf Eis gestellt. Im PCR Block wurden die Proben 2 min. auf 70°C erhitzt, dann wieder auf Eis abgekühlt und anschließend mit je 6,5 µl Master-Mix versetzt. Die Umschreibung in cDNA erfolgte durch einständige Inkubation der Proben bei 42°C im PCR-Block. Die umgeschriebenen Proben wurden danach auf Eis gestellt und jeweils mit 80 µl DEPC-Wasser versetzt. Geringe Mengen dieser Proben wurden in den Light-Cycler Versuchen (2.2.2.1.4) direkt weiter untersucht und der restliche Anteil der Proben bei -20°C eingefroren. Der Master-Mix umfasste je Probe 4µl Reaktions-Puffer, 1 µl dNTP-Mix, 1µl reverse Transkriptase und 5µl RNase-Inhibitor.
2.2.2.1.3 Primerpaare

Die Primer für die Gene GapDH (Glycerinaldehyd-3-phosphat-Dehydrogenase), TGF-ß (Transforming Growth Factor-ß) und Osteopontin wurden kommerziell von der Firma Search LC, D-Heidelberg erworben. Die Sequenzen teilt die Firma nicht mit. Annealingtemperaturen aus LC-Product sheets wurden genutzt. Für das Gen Osteonectin kamen zwei verschiedene Primer zum Einsatz.

Osteonectin (1) Upper Primer: 5´-CCTGAGGCTGTAACTGAGAGAAAG-3´
Lower Primer: 5´-GTGGGAGGGAAACAAGAAGATAA-3´
Annealing Temperatur: 59,5°C
MWG Primer, Biotech AG
(Kantorow et al. 2000)

Osteonectin (2) Upper Primer: 5´-TGCGGGACTGGCTCAAG-3´
Lower Primer: 5´-TTGGGGGAAACACGAAGG-3´
Annealing Temperatur: 58,5°C
MWG Primer, Biotech AG

2.2.2.1.4 Versuchsdurchführung Light Cycler

Die cDNA wurde entweder direkt nach der Umschreibung verwandt, oder auf Eis aufgetaut. Zunächst wurde in 0,5 ml Eppendorf Cups eine Standardverdünnungsreihe von 4 Verdünnungen angelegt, bestehend jeweils aus 18 µl Stabilizer (RT-for-PCR Kit, Clontech), sowie in der ersten Probe 2 µl Standard GapDH. In die Proben 2-4 wurden nach vorherigem vortexen und zentrifugieren, jew. 2 µl aus der Probe der höheren Konzentration, also von Probe 1 in Probe 2 und von Probe 2 in Probe 3 und von dieser in Probe 4 überführt, um eine Konzentrationsreihe zu erhalten. Für die Standardverdünnungsreihe wurde anschließend ein Standard-Mix angesetzt, bestehend aus 6 µl H₂O, 2 µl SyberGreen und 2 µl GapDH Primer je Probe. Der Mix wurde gevortext, abzentrifugiert und in die Kapillaren jew. 10 µl Standard-Mix und 10 µl Standardverdünnung pipettiert. Für die Gene GapDH, TGF-ß und Osteopontin (Search LC Primer) wurde für jede Probe ein Mastermix angelegt, bestehend aus 14 µl
H₂O, 2 µl SyberGreen und 2 µl vom jeweiligen Primerpaar. In der Kapillare wurden 18 µl Mix vorgelegt und 2 µl cDNA von der untersuchten Probe hinzupipettiert. Für das Gen Osteonectin (MWG Primer) wurde ein Master-Mix angelegt, bestehend aus 12,6 µl H₂O, 2,4 µl MgCl₂, 1 µl PrimerMix (0,5 µM je Primer) und 2 µl SyberGreen je Probe. In der Kapillare wurden 18 µl Mix vorgelegt und 2 µl cDNA von der untersuchten Probe hinzupipettiert. Die gefüllten Glas Kapillaren wurden 30 sec. bei 200U/min. zentrifugiert und in den LightCycler gestellt.

Wie in anderen Laboratorien (Ge et al. 2008) fand bei diesen Untersuchungen eine relative Quantifizierung zu dem konstitutiv exprimierten housekeeping Gen, Glycerinaldehyd-3-Phosphat Dehydrogenase (GapDH) Anwendung. Die kalkulierten Konzentrationen der mit, oder ohne BSP inkubierten mRNA wurden durch Bezugnahme auf das unter gleichen Reaktionsbedingungen ermittelte housekeeping Gen GapDH relativiert, um einen unterschiedlichen cDNA-Gehalt der Proben auszugleichen und eine Vergleichbarkeit zu ermöglichen.

2.2.2.2 Bestimmung der Zellproliferation mittels MTT

Zellzahl und insbesondere die Zell-Proliferation wurden indirekt durch Bestimmung der Stoffwechselaktivität untersucht. Da die mitochondriale Aktivität als Indikator für die Zellviabilität gilt, wurde die mitochondriale Dehydrogenase-Aktivität (Umwandlung von NADH \(\rightarrow \) NAD⁺ + H⁺ und NADPH \(\rightarrow \) NADP⁺ + H⁺) im MTT-Assay (MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromid) bestimmt. Vitale Zellen reduzieren das gelbe Tetrazoliumsalz MTT zum blauen Formazansalz, welches zunächst in Wasser schlecht löslich ist, jedoch durch 2-Propanol in Lösung gebracht werden kann und anschließend im Spektrophotometer bei 550nm gemessen und quantifiziert werden kann (Mosmann 1983). Die Zellen wurden zunächst, wie in 2.2.1.6 beschrieben abgelöst und anschließend die Zellzahl bestimmt (siehe 2.2.1.7). Die Etablierung der Methode erfolgte in den Vorversuchen 3.3.1.1-3.3.1.5, hier wurden möglichst optimale Zell- und Proteinkonzentrationen für die Hauptversuche ermittelt.
In den Hauptversuchen 3.3.2.1-3.3.2.10 wurden einen Bereich von drei Größenordnungen umspannende BSP und DRJ Proteinkonzentrationen eingesetzt. Die Proteinkonzentrationen betrugen jeweils 1×10^{-6}, 3×10^{-7}, 1×10^{-7}, 3×10^{-8}, 1×10^{-8}, 3×10^{-9} [g Protein/200µl Medium] und eine Zellzahl von 5x10³ Zellen/96 Well wurde in einer Absolutmenge von 200µl Medium/Well eingesetzt.

Beide Proteine waren jeweils in einer Konzentration von 10µg Protein/ml PBS(-) gelöst. Die Zellen wurden 24h im Brutschrank bei 37°C und 5% CO₂ inkubiert.

Verwendet wurde das Cell Proliferation Kit I (MTT) von Roche, sowie 96 Well Platten (flat bottom). Nach entsprechenden Vorversuchen (3.3.1.1-3.3.1.5) kam folgendes Pipettierschema zum Einsatz:

<table>
<thead>
<tr>
<th>c [g BSP, DRJ/200µlMedium]</th>
<th>c [5x10³ Zellen/100µlMedium]</th>
<th>Protein[10µg/ml]</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00E-06</td>
<td>100µl</td>
<td>100µl</td>
<td>0</td>
</tr>
<tr>
<td>3,00E-07</td>
<td>100µl</td>
<td>30µl</td>
<td>70µl</td>
</tr>
<tr>
<td>1,00E-07</td>
<td>100µl</td>
<td>10µl</td>
<td>90µl</td>
</tr>
<tr>
<td>3,00E-08</td>
<td>100µl</td>
<td>3µl</td>
<td>97µl</td>
</tr>
<tr>
<td>1,00E-08</td>
<td>100µl</td>
<td>1µl</td>
<td>99µl</td>
</tr>
<tr>
<td>3,00E-09</td>
<td>100µl</td>
<td>0,3µl</td>
<td>99,7µl</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>100µl</td>
<td>0</td>
<td>100µl</td>
</tr>
</tbody>
</table>

Anschließend wurde das Medium und somit auch die nicht adhäsrenten Zellen vorsichtig abgesaugt, je Well 100µl frisches Vollmedium und 10µl MTT Reagenz hinzu pipettiert und 4h im Brutschrank bei 37°C und 5% CO₂ inkubiert. Um das schlecht lösliche blaue Formazansalz in Lösung zu bringen, wurden je Well 100µl Solubilisationslösung (Kit) hinzugefügt und über Nacht (12h) erneut im Brutschrank inkubiert. Die 96 Wells wurden anschließend bei einer Wellenlänge von 550nm photometrisch auf ihre Extinktion untersucht.

Um störende Extinktionen der Test Reagenzien bei 550nm zu vermeiden wurde immer ein „Blank“ (4-fach-Bestimmung) in den 96 Well Platten mitgeführt. Dieser enthielt alle Reagenzien (100µl Medium, 10µl MTT Reagenz, 100µl Solubilisation), jedoch keine Zellen und wurde synchron mit den Proben pipettiert. Bei den photometrischen Messungen wurden die Extinktionen des

2.2.2.3 Bestimmung der Zellproliferation mittels BrdU

Im Versuch wurde das Cell Proliferation ELISA BrdU Kit von Roche verwendet. Die Zellen wurden zunächst, wie in 2.2.1.6 beschrieben, abgelöst und anschließend, wie in 2.2.1.7 beschrieben, die Zellzahl bestimmt. Da der Wirkbereich des BSPs unbekannt war, wurden in den Hauptversuchen einen Bereich von 3 Größenordnungen umspannende Proteinkonzentrationen eingesetzt. Die Protein- und Zellkonzentrationen betrugen, wie bei den MTT Hauptversuchen, jeweils $1 \cdot 10^{-6}$, $3 \cdot 10^{-7}$, $1 \cdot 10^{-7}$, $3 \cdot 10^{-8}$, $1 \cdot 10^{-8}$, $3 \cdot 10^{-9}$ g Protein/200µl Medium, eine Zellzahl von 5×10^3 Zellen/96 Well wurde in einer Absolutmenge von 200µl Medium/96 Well eingesetzt. Beide Proteine waren jeweils in einer Arbeitskonzentration von 10µg/ml PBS(-) gelöst. Das in Tab.5 dargestellte Pipettierschema kam dabei zum Einsatz. Um eine möglichst hohe Vergleichbarkeit der Messergebnisse zwischen den zwei verschiedenen Bone Sialoproteinen zu gewährleisten, wurden die Hauptversuche am gleichen Tag
2.2.2.4 Farbnachweis für die Alkalische Phosphatase-Aktivität

- Puffer: 0,7g 5,5-Diäthylbarbitursäure Na-Salz in 35ml Aqua dest.
- Lösung 1: 35mg Variaminblausalz B gelöst in 7,5ml des Puffers
- Lösung 2: 17,5mg Natriumnaphtyl-1-sulfat gelöst im restlichen Puffer (27,5ml)

Lösung 1 wurde durch einen Papier-Faltenfilter in Lösung 2 filtriert, wodurch die fertige Färbelösung entstand. In den Vorversuchen wurden Zellkonzentrationen von 1×10^4, 1×10^5 und 5×10^4 Zellen/6 Well untersucht. Im ersten Vorversuch wurden die 6 Well Platten über Nacht mit 1ml BSP/Well (10µg BSP Absolutmenge) beschichtet, anschließend die Proteinlösung abgesaugt, die Zellen ausgesät und nach 4-5 Tagen Inkubation im Brutschrank die Alkalische Phosphatase Färbung durchgeführt. In einem zweiten Ansatz wurden die Zellen direkt mit 20 und 60ng BSP/Well (Absolutkonzentration) im Brutschrank inkubiert und ebenfalls nach 4-5 Tagen die Färbung durchgeführt. In den Hauptversuchen kamen die direkte Inkubationsmethode der Zellen mit Proteinlösung, sowie Zellkonzentration von 5×10^4 Zellen/6 Well und Proteinkonzentrationen von 60 und 200ng BSP/Well (Absolutkonzentration) zum Einsatz. Nach 4-5 Tagen Inkubation im Brutschrank wurde die Färbung durchgeführt. Je Patient wurde immer eine zweifach-Bestimmung der Proben durchgeführt. Vor der Färbung wurden die Zellen 2x mit 2ml PBS(-)/Well gewaschen, mit 1,5ml/Well Färbelösung überschichtet und 10 Minuten bei Raumtemperatur inkubiert. An-
Material und Methoden

schließlich wurde die Färbelösung abgesaugt und die Zellen mit 1,5ml Osteoblastenmedium/Well überschichtet. Bei einer positiven AP-Reaktion färben sich, in Abhängigkeit der Höhe der Exprimierung und Aktivität der Alkalischen-Phosphatase, die Zellen selektiv hellbraun bis tief schwarz an. Die Farbreaktionen der Vorversuche wurden mit dem Lichtmikroskop fotografisch dokumentiert.

2.2.2.5 Von Kossa Färbung

<table>
<thead>
<tr>
<th>Gesamtmenge BSP</th>
<th>V Zellen (c=5x10⁴ Zellen/1000µl Medium)</th>
<th>V BSP (c=10µg/ml)</th>
<th>V Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2µg</td>
<td>1000µl</td>
<td>200µl</td>
<td>800µl</td>
</tr>
<tr>
<td>600ng</td>
<td>1000µl</td>
<td>60µl</td>
<td>940µl</td>
</tr>
<tr>
<td>0</td>
<td>1000µl</td>
<td>0</td>
<td>1000µl</td>
</tr>
</tbody>
</table>

Tab.6: Pipettierschema der von Kossa-Färbung (Kalzifizierungsnachweis im Well). Es erfolgte immer
Material und Methoden

Die Firma Immunodiagnostik stellte uns zwei Typen humaner rekombinanter Bone Sialoproteine (BSPs), welche unsteril und unlöslich geliefert wurden, zur

2.2.3.2 Polycrylamid Gelelektrophorese (PAGE)

Zur Qualitätskontrolle wurde das Bone Sialoprotein mittels SDS-PAGE (Natriumdodecylsulfat-Polyacrylamid) Gelelekrophorese auf Verunreinigungen untersucht.

Folgende Mengen sind für zwei Gele ausreichend:

- **Nativer Probenpuffer:**

 1,5g SDS (Natriumdodecylsulfat)
 125 mM Tris (hydroxymethyl)-aminomethan/HCl (pH 6,8) 3,75ml
 0,05% Bromphenolblau 0,02g
 H₂O 7,5ml
 20% Glycerol 7,5ml
 Sowie je 1ml Puffer/50µl Mercaptoethanol

- **Trenngel:**

 H₂O 5,9 ml
 30% Acrylamid 5,0 ml
 1,5 M Tris (hydroxymethyl)-aminomethan/HCl (pH 8,8) 3,8 ml
10% SDS 150 μl
10% Ammoniumpersulfat (APS) 150 μl
Tetramethylethyldiamin (TEMED) 6 μl

- **Sammelgel:**
 H2O 3,4 ml
 30% Acrylamid 830μl
 1,5 M Tris (hydroxymethyl)-aminomethan/HCl (pH 6,8) 630μl
 10% SDS 50 μl
 10% Ammoniumpersulfat (APS) 50 μl
 Tetramethylethyldiamin (TEMED) 5 μl

- **Laufpuffer:**
 100ml Tris (Hydroxymethyl)-Aminomethan-Glycin
 10ml 10% SDS
 1l Aqua dest.

- **Marker:** MagicMark XP Western Protein Standard der Firma Invitrogen.

Für die denaturierende Gelelektrophorese wurden 20 μl der Proteinprobe (Arbeitskonzentration 10μg BSP/ml) mit 5 μl des Probenpuffers in Eppendorf-Cups gemischt, kurz herunterzentrifugiert, 5 min im 95°C heißen Wasserbad inkubiert, abgekühlt, erneut abzentrifugiert und auf Eis gelagert. Nach Hinzufügung von 20μl der denaturierten Protein-Probenpufferlösung, sowie 5μl des Markers in eine der Geltaschen, wurde die Apparatur an einen Kühlwasserkreislauf angeschlossen und bei einer Spannung von 100V für eine Stunde laufen gelassen.

2.2.3.3 Coomassie Färbung

Zur visuellen Darstellung der aufgetrennten Proteine wurde die Coomassi-Färbung eingesetzt. Dazu wurde zunächst das Gel ca.20 min. in der Coomassi-Färbelösung schüttelnd inkubiert, anschließend der Überschuss an Färbelösung durch mehrmaliges Waschen mit Coomassi-Entfärbelösung entfernt und die einzelnen Banden dadurch sichtbar. Im Rahmen der
Vorversuche wurde die Coomassi-Färbung auch zum Nachweis der BSP-Beschichtung in Kulturflaschen und im 6 Well angewandt. Hierzu wurden die zuvor über Nacht mit BSP beschichteten Kulturlaschen (Absolutmenge 6µg BSP/Flasche) und 6 Wells (Absolutmenge 1µg BSP/Well) nach Absaugen der Proteinlösung großzügig mit Färbelösung beschichtet (6ml/Flasche, 2ml/6 Well), 20 Minuten unter leichtem Schwenken bei Raumtemperatur inkubiert und anschließend durch mehrmaliges Waschen mit Entfärbelösung überschüssige Farbniederschläge entfernt. Zur Kontrolle wurden zwei Flaschen mit 6ml PBS(-), sowie 2 Wells einer 6 Well Platte mit 1ml PBS(-)/Well bei 4°C über Nacht beschichtet. Die Färbung wurde wie oben beschrieben durchgeführt.

Coomassi-Färbelösung:
45ml Methanol
45ml H₂O
10ml Eisessig
0,25g Coomassi Brillantblau
Die Färbelösung wurde anschließend durch einen Faltenfilter filtriert

Coomassi-Entfärbelösung:
Gleiche Zutaten wie bei Coomassi Färbelösung, jedoch ohne Coomassi Brilliantblau.

2.2.4 Statistische Auswertung

Alle statistischen Auswertungen dieser Arbeit wurden mit Excel erstellt, dazu gehören Mittelwertbildungen, Standardabweichungen und T-Test, bei gleicher Anzahl von Proben 2-Seitig, Typ 2, bei ungleicher Anzahl 2-Seitig, Typ 3.
Als signifikante Ergebnisse im T-Test wurden festgelegt:

<0,05 = ⭐ (signifikant)
<0,005 = ⭐⭐⭐
<0,0005 = ⭐⭐⭐⭐
3 Ergebnisse

3.1 Zellkultur

3.1.1 Anlage von Primärkulturen humaner Zellen

Die sterile Aufarbeitung humaner Osteoblasten aus dem spongiösen Material von Hüftköpfen und distalen Femuranteilen gelang bei 8 von 11 Patienten. Bei 3 Patienten verpilzten die Primärkulturen. Nach 3-5 Tagen waren in der Zellkultur vereinzelt adhäsente Zellen auf dem Boden der Zellflaschen erkennbar. Nach 3-4 Wochen waren die Zellflaschen konfluent und wurden dann in die erste Passage überführt. Humane Osteoblasten bildeten zunächst feine lange Ausläufer, jedoch ab einer gewissen Konfluenz (ca. 20 Tage nach Aufarbeitung und 1 Woche nach Passagieren) schienen die Zellen vitaler, sie nahmen eine eher kubisch-längliche Form an und lange dünne Zellausläufer waren dann nur noch vereinzelt zu finden (siehe Abb.5 a). Weniger vitale Zellen fielen sowohl durch ein langsameres Zellwachstum, als auch durch ihre gespreizten, flachen Zellformen (siehe Abb.5 c ⊡), feine lange Ausläufer (siehe Abb.5 c ⊡) und viel Zytoplasma auf.

Ergebnisse

3.1.2 Anlage von Primärkulturen tierischer Zellen

Tierische Knochenmarkzellen wurden insgesamt von 2 jungen Schweinen operativ gewonnen und aufgearbeitet (2.2.1.3). Ein Teil dieser Zellen wurde ab der zweiten Zellpassage mittels Osteoblasten-Differenzierungsmedium in Osteoblasten differenziert. Erste adhäsente Knochenmarkzellen waren nach 3-4 Tagen zu beobachten. Sobald diese Zellen adhärent waren, zeigten sie höhere Proliferationsraten als humane Osteoblasten und Stromazellen. Sie wiesen auch wesentlich schmälere und länglichere Zellformen auf (vgl. hierzu Abb. 5
Ebine Ergebnisse

Eine erfolgreiche Differenzierung der Zellen in Osteoblasten war bereits wenige Tage nach der Inkubation mit entsprechendem Medium im Mikroskop zu beobachten (Abb. 6 b,f).

Abb. 6: a) Knochenmarkzellen Schwein Nr. 1, 4. Passage, Vergrößerung 200-fach. b) Gleiche Zellen wie in a), auch 4. Passage, nach 12 Tagen Inkubation mit Osteoblasten-Differenzierungsmedium (ab der 2. Passage), Vergrößerung 100-fach. c) Knochenmarkzellen Schwein Nr. 1, 5. Passage, Vergrößerung 100-fach. d) Gleiche Zellen wie in c), 5. Passage, nach 3 wöchiger Inkubation mit Osteoblasten-Differen-
Die differenzierten Osteoblasten hatten ein ähnliches Wachstumsverhalten wie humane Osteoblasten und wuchsen langsamer als die tierischen Knochenmarkzellen, was besonders nach dem Passagieren auffällig war. Bemerkenswert war, dass bei beiden untersuchten Schweinen die Osteoblasten nach einer 3 wöchigen Inkubation mit Differenzierungsmedium in ihrem Proliferationsverhalten stagnierten. Außerdem schienen die Zellen den Zell-Zell Kontakt zu verlieren, wiesen optisch mehr Zytoplasma auf und nahmen gespreizte Zellformen an (vgl. hierzu Abb.6 d). Zur mikroskopischen Veranschaulichung der Differenzierung von tierischen Knochenmarkzellen zu Osteoblasten, siehe Abb.6 a-f.

3.2 Real Time PCR

Um auf RNA- bzw. cDNA-Ebene gezielt eine eventuelle Induktion einzelner Gene durch die zwei rekombinanten Bone Sialoproteine erfassen zu können, wurde die Polymerase Kettenreaktion (PCR) angewandt. Als charakteristischer Marker der Osteoblasten wurden in dieser Arbeit die Gene TGF-ß, Osteonectin und Osteopontin untersucht. In Vorversuchen wurde zunächst eine geeignete Inkubationsmethode der Zellen mit Bone Sialoprotein ermittelt.

3.2.1 RNA Isolierung, cDNA-Synthese und PCR

Um die Höhe der Expression einzelner Gene untersuchen und quantitativ bestimmen zu können, wurde die RNA in cDNA umgeschrieben und mittels RT-PCR gemessen.
Ergebnisse

<table>
<thead>
<tr>
<th>c [g Protein/10ml Medium]</th>
<th>0 (Kontrolle)</th>
<th>1·10⁻⁶</th>
<th>3·10⁻⁶</th>
<th>1·10⁻⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorversuche:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Osteoblasten mit BSP</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>n. b.</td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Stromazellen mit BSP</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n. b.</td>
</tr>
<tr>
<td>Hauptversuche:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Osteoblasten mit BSP</td>
<td>9</td>
<td>n. b.</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Stromazellen mit BSP</td>
<td>2</td>
<td>n. b.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Osteoblasten mit DRJ</td>
<td>9</td>
<td>n. b.</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Patientenanzahl (n) untersuchter Stromazellen mit DRJ</td>
<td>2</td>
<td>n. b.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab.7: Dargestellt ist die Anzahl der untersuchten Osteoblasten- und Stromazellkulturen der Vor- und Hauptversuche zur RT-PCR, sowie die untersuchten rekombinanten Bone Sialoproteine und eingesetzte Proteinkonzentrationen derselben.

3.2.2 Vorversuche RT-PCR

Zu Beginn galt es eine geeignete Beschichtungsmethode der untersuchten Proteine mit den Zellen zu finden und sinnvolle, aussagekräftige Proteinkonzentrationen zu erruieren.
3.2.2.1 1. Vorversuch: Induktionsverhalten von Osteoblasten und Stromazellen nach BSP-Inkubation

Abb.7: Vorversuch zur Untersuchung der Genexpression von TGF-ß, Osteopontin und Osteonectin bei einer 24h BSP-Inkubation (Inkubationsansatz, siehe 2.2.2.1) zweier Proteinkonzentrationen (1µg und 3µg BSP Protein/Flasche). Verglichen wurden die Osteoblasten (3.Passage) und Stromazellen (5.Passage) des Patienten HRL/2. In dieser Figur nicht dargestellt: das Gen Osteopontin wird nur sehr schwach exprimiert (siehe Primärdaten 7.1.1); hier sind die normierten Werte (ID) dargestellt.
3.2.2.2 2. Vorversuch: Induktionsverhalten von Osteoblasten nach BSP-Inkubation

Um eine höhere Vergleichbarkeit der Ergebnisse der Osteoblasten untereinander zu erzielen, wurde die gleiche Inkubationsmethode, mit den gleichen Proteinkonzentrationen (1µg und 3µg BSP/Flasche) an Osteoblasten von zwei weiteren Patienten untersucht, die Ergebnisse der 3 Patienten gepoolt, die Mittelwerte gebildet und auf Standardabweichung und Signifikanz (nicht gezeigt) geprüft.

Abb.8: Untersucht wurde hier die Genexpression (TGF-ß, Osteopontin, Osteonectin) der Osteoblasten von 3 Patienten (n=3) nach 24h-Inkubationszeit (Inkubationsansatz, siehe 2.2.2.1) Patient 1: O-HRL/2, (3.Passage), aus 3.2.2.1; Patient 2 :O-SEP/4, (5.Passage); Patient 3: O-POF/9, (6.Passage). Im Schaubild sind die Mittelwerte (Induktionsindex) als Balkendiagramme, sowie die Standardabweichung, bezogen auf den Induktionsindex von Patient 1-3, dargestellt. In dieser Figur nicht dargestellt: das Gen Osteopontin wird nur sehr schwach exprimiert (siehe Primärdaten 7.1.2); hier sind die normierten Werte (ID) dargestellt.
3.2.3 Hauptversuche RT-PCR

3.2.3.1 1. Hauptversuch: Induktionsverhalten von Osteoblasten nach BSP-und DRJ-Inkubation

Untersucht wurde das Induktionsverhalten der zwei Bone Sialoproteine, BSP und DRJ bei Osteoblasten von 9 Patienten. Zwei Proteinkonzentrationen, 3µg und 10µg Protein/Flasche kamen zum Einsatz.

3.2.3.2 2. Hauptversuch: Induktionsverhalten von Stromazellen nach BSP- und DRJ-Inkubation

Hier wurde das Induktionsverhalten der zwei Bone Sialoproteine, BSP und DRJ bei Stromazellen von 2 Patienten untersucht. Eingesetzte Proteine und Proteinmengen wie in 3.2.3.2.1.

3.3 MTT-Test

Zur Etablierung der Methode mussten für die untersuchten Proteine zunächst geeignete Beschichtungsmethoden und anschließend geeignete Zell- und Proteinkonzentrationen ermittelt werden. Primärdaten siehe Anhang.

3.3.1 Vorversuche MTT

3.3.1.1 1. Vorversuch

1. Inkubationsansatz:
Über Nacht (12h) Beschichtung der unbeschichteten 96well Platte mit einer Absolutkonzentration von 1µg BSP/Well (100µl Proteinlösung, Arbeitskonzentration 10µg/ml) bei 4°C im Kühlschrank, anschließend vorsichtiges Abpipettieren der Proteinlösung. Im ersten Ansatz galt es eine aussagekräftige Zellkonzentration für den MTT-Test zu finden. Eingesetzt wurden 3x10³ und 1x10⁴ Zellen/Well, verglichen wurde das Proliferationsverhalten von Osteoblasten und stromalen Zellen eines Patienten, es erfolgte immer eine dreifach-Bestimmung der Proben.

3.3.1.2 2. Vorversuch

Inkubationsansatz wie in 3.3.1.1, jedoch wurden 5×10^3 Zellen/Well eingesetzt und eine 8-fach-Bestimmung der Proben erfolgte. Verglichen wurde das Proliferationsverhalten von Osteoblasten und Knochenmarkzellen eines Schweines.

![2.Vorversuch MTT](image)

Abb. 12: Vergleich der Mittelwerte der Extinktionen der Knochenmarkzellen (6.P.) und daraus differenzierten Osteoblasten eines jungen Schweins (5.P. nach 3 Wochen Inkubation mit Differenzierungsmedium, siehe auch 3.1.2, Abb.6,d). Die Mittelwerte (p1-8) sind als Balkendiagramme dargestellt, die Standardabweichung bezieht sich auf die Knochenmarkzellen und Osteoblasten untereinander.

3.3.1.3 3. Vorversuch

2. Inkubationsansatz:

Direkte Inkubation der ausgezählten Zellen mit dem Protein für 24h bei 37°C im Brutschrank. Die Zellen wurden in einer Dichte von 5×10^3 und 1×10^4 Zellen/Well ausgesät und für 24h mit einer Absolutkonzentration von 20ng und 60ng BSP inkubierte (2µl und 6µl Proteinlösung, Arbeitskonzentration 10µg/ml). Es erfolgte eine 4-fach-Bestimmung der Proben.

3.3.1.4 4. Vorversuch

Inkubationsansatz wie in 3.3.1.3, untersucht wurde die mitochondriale Aktivität der Osteoblasten mittels Extinktionsmessung bei 550nm im MTT von Osteoblasten zweier Patienten.

Abb.15: Erklärung siehe Abb.16.

3.3.1.5 5. Vorversuch

Inkubationsansatz wie in 3.3.1.3, jedoch wurden ausschließlich Zellkonzentrationen von 5×10^3 Zellen/Well eingesetzt und drei BSP Konzentrationen 20ng/60ng/120ng BSP (Absolutkonzentration/Well) an Osteoblasten von drei Patienten untersucht.

Abb.18: Als Balkendiagramme sind die Mittelwerte der Extinktionen von Pat. 1-3, sowie die Standardabweichungen, bezogen auf die einzelnen Messwerte (p1-4), dargestellt. Auf der x-Achse sind die verschiedenen BSP Konzentrationen aufgetragen.
3.3.2 Hauptversuche MTT

Folgende Chargen Bone Sialoprotein wurden untersucht:
- BSP
- DRJ

3.3.2.1 MTT Untersuchung von Osteoblasten mit BSP

Abb.19: Untersuchung der mitochondrialen Aktivität der Osteoblasten von 8 Patienten mittels Extinktionsmessung bei 550nm. Patienten 1-8 humane Osteoblasten. Pat. 1: HOB-1, (6.Passage); Pat. 2: HOB-2, (5.Passage); Pat. 3: HOB-C, (5.Passage); Pat. 4: O-SEP/4, (7.Passage); Pat. 5: O-SRI/5, (5.Passage); Pat. 6: O-SLJ/10, (5.Passage); Pat. 7: O-EGG/7, (5.Passage); Pat. 8: O-POG/9, (7.Passage) bei einer 24h BSP Inkubation. Im Schaubild sind die Mittelwerte der Extinktionen der Patientenproben als Balkendiagramme, sowie die Standardabweichung -bezogen auf die einzelnen Messwerte (p1-p3)- dargestellt. Auf der x-Achse sind die eingesetzten Proteinkonzentrationen des BSPs aufgetragen.
3.3.2.2 MTT Untersuchung von Stromazellen mit BSP

3.3.2.3 MTT Untersuchung tierischer Osteoblasten mit BSP

Abb.21: Untersuchung der mitochondrialen Aktivität der Osteoblasten von zwei jungen Schweinen (differenziert aus deren Knochenmarkzellen ab der 2.Passage) mittels Extinktionsmessung bei 550nm nach einer 24h BSP Inkubation. Patienten 13-14 Osteoblasten vom Schwein. Pat. 13: O-Schwein 1,
4. Passage; Pat. 14: O-Schwein 2, 3. Passage. Im Schaubild sind die Mittelwerte der Extinktionen der Patienten als Balkendiagramme, sowie die Standardabweichung -bezogen auf die einzelnen Messwerte (p1-p3)- dargestellt, auf der x-Achse sind die eingesetzten BSP Konzentrationen aufgetragen.

3.3.2.4 MTT Untersuchung tierischer Knochenmarkzellen mit BSP

3.3.2.5 MTT Untersuchung von Osteoblasten nach 24h, 48h, 72h, 96h BSP-Inkubation

Abb.23: Hier wurde die Extinktion bei 550nm an humanen Osteoblasten dreier Patienten bei einer 24h, 48h, 72h und 96h BSP-Inkubation und verschiedenen Protein-Konzentrationen mit der Fragestellung untersucht, ob eine längere Inkubationszeit zu einer veränderten Zellaktivität führt. (Patient 1, O-LBI/8, 6.Passage; Patient 2, O-SRI/5, 9.Passage; Patient 3, O-SLJ/10, 6.Passage). Im Schaubild sind die Mittelwerte der Extinktionen der Patienten als Balkendiagramme, sowie die Standardabweichung - bezogen auf die einzelnen Messwerte (p1-p3) – dargestellt, auf der x-Achse sind die verschiedenen BSP Konzentrationen aufgetragen.
3.3.2.6 MTT Untersuchung von Stromazellen nach 24h, 48h, 72h, 96h BSP-Inkubation

Abb.24: Wie in 3.3.2.5 wurde die Extinktion bei 550nm, jedoch hier an humanen Stromazellen eines Patienten, (Pat. SRT-HRL/2, 9.P.) bei einer 24h, 48h, 72h und 96h-Inkubation mit verschiedenen Konzentrationen von BSP mit der Fragestellung untersucht, ob eine längere Inkubationszeit zu einer veränderten Zellaktivität führt. Im Schaubild sind die Mittelwerte der Extinktionen des Patienten als Balkendiagramme, sowie die Standardabweichung - bezogen auf die einzelnen Messwerte (p1-p3) - dargestellt, auf der x-Achse sind die verschiedenen BSP Konzentrationen aufgetragen.
3.3.2.7 MTT Untersuchung von Osteoblasten mit DRJ

Abb. 25:
MTT Hauptversuch, vergleichbar mit Versuch 3.3.2.1.
Untersuchung der mitochondrialen Aktivität mittels Extinktionsmessung bei 550nm der Osteoblasten

Ergebnisse von 10 Patienten einer 24h DRJ Inkubation. Pat. 1, HOB-1, 6.Passage; Pat. 2, HOB-2, 5.Passage; Pat. 3, HOB-C, 5.Passage; Pat. 4, O-SEP/4, 5_PASSage; Pat. 5, O-SRI/5, 5_PASSage; Pat. 6, O-SLJ/10, 5_PASSage; Pat. 7, O-EGG/7, 5_PASSage; Pat. 8, O-POG/9, 7_PASSage; Pat. 9, O-HRL/2, 6_PASSage; Pat. 10, O-LBI/8, 8_PASSage. Im Schaubild sind die Mittelwerte der Extinktionen von den Patienten 1-10 als Balkendiagramme, sowie die Standardabweichung bezogen auf die einzelnen Messwerte (p1-p3) dargestellt. Auf der x-Achse sind die eingesetzten Proteinkonzentrationen des DRJ Proteins aufgetragen.

3.3.2.8 MTT Untersuchung von Stromazellen mit DRJ

Abb. 26:
MTT Hauptversuch, vergleichbar mit Versuch 3.3.2.2 zur Untersuchung der mitochondrialen Aktivität mittels Extinktionsmessung bei 550nm der Stromazellen

Ergebnisse von 3 Patienten einer 24h DRJ Inkubation. Pat. 11, STR-SRI/5, 6_PASSage; Pat. 12, STR-LBI/8, 5_PASSage; Pat. 13, STR-HRL/2, 5_PASSage. Im Schaubild sind die Mittelwerte der Extinktionen von den Patienten 11-13 als Balkendiagramme, sowie die Standardabweichung - bezogen auf die einzelnen Messwerte (p1-p3) dargestellt. Auf der x-Achse sind die eingesetzten Proteinkonzentrationen des DRJ Proteins aufgetragen.
3.3.2.9 MTT Untersuchung von Osteoblasten nach 24h, 48h, 72h, 96h DRJ-Inkubation

Abb. 27: MTT Hauptversuch, hier wurde die Extinktion bei 550nm von humanen Osteoblasten dreier Patienten nach einer 24h-, 48h-, 72h- und 96h-Inkubation mit verschiedenen Konzentrationen des DRJ Proteins mit der Fragestellung untersucht, ob eine längere Inkubationszeit zu einer veränderten Zellaktivität führt. Patient 1, O-LBI/8, 6.Passage; Patient 2, O-SRI/5, 9.Passage; Patient 3, O-SLJ/10, 6.Passage. Es erfolgte immer eine 3-fach-Bestimmung der Messwerte. Im Schaubild sind die Mittelwerte der Extinktionen des Patienten als Balkendiagramme, sowie die Standardabweichung bezogen auf die einzelnen Messwerte (p1-p3) dargestellt, auf der x-Achse sind die verschiedenen BSP Konzentrationen aufgetragen. Vergleiche hierzu 3.3.2.5 und ggf. 3.3.2.6.
3.3.2.10 MTT Untersuchung von Stromazellen nach 24h, 48h, 72h, 96h DRJ-Inkubation

Abb.28: MTT Hauptversuch, hier wurde die Extinktion bei 550nm humaner Stromazellen eines Patienten bei einer 24h, 48h, 72h und 96h-Inkubation verschiedener Konzentrationen des DRJ Proteins mit der Fragestellung untersucht, ob eine längere Inkubationszeit zu einer veränderten Zellaktivität führt. Patient 4, STR-HRL/2, 9.Passage. Im Schaubild sind die Mittelwerte der Extinktionen des Patienten als Balkendiagramme, sowie die Standardabweichung bezogen auf die einzelnen Messwerte (p1-p3) dargestellt, auf der x-Achse sind die verschiedenen DRJ Konzentrationen aufgetragen. Vergleiche hierzu 3.3.2.6 und ggf. 3.3.2.5/3.3.2.9.
3.4 BrdU

Mit diesem Test wurde die Proliferationsrate der Zellen auf DNA-Ebene durch DNA-Einbau des Thymidinanalogs BrdU (5-bromo-2-deoxyuridine) und anschließende photometrische Messung zur Quantifizierung des Gehalts an BrdU, bestimmt. Im Folgenden sind die 4 Vorversuche zur Etablierung der Methode, sowie die 4 Hauptversuche aufgeführt. Primärdaten siehe Anhang.

3.4.1 Vorversuche BrdU

3.4.1.1 1. Vorversuch

Abb. 29: Vorversuch zur Untersuchung der Inkubationszeit des BrdU-Reagenz auf DNA-Ebene bei humanen Osteoblasten. Hier wurden die Osteoblasten eines Patienten (O-LBI/8, 4. Passage) bei verschiedenen Zellkonzentrationen (1x10³, 5x10³, 1x10⁴ Zellen/Well) und einer Extinktion von 450nm untersucht. Es erfolgte eine 7-fach-Bestimmung der Proben. Die farbigen Balkendiagramme stellen die Mittelwerte der Extinktionen der Proben dar, die Standardabweichung bezieht sich auf die einzelnen Messwerte p1-7. Der Background enthielt kein BrdU-Reagenz, er lieferte Informationen über die un-
spezifische Bindung des Anti-BrdU Antikörpers mit den Zellen (siehe 2.2.2.3). Hier erfolgte eine 1-fach-Bestimmung der Proben. In diesem Versuch wurde kein BSP/DRJ Protein untersucht.

3.4.1.2 2. Vorversuch

Abb.30: Erklärung siehe Abb.31.

Abb.31: Vorversuch BrdU, hier wurde die Extinktion (450nm) der Osteoblasten (4.Passage) und Stromazellen (6.Passage) des Patienten HRL/2 bei einer Zellkonzentration von 5×10^3 Zellen/Well (Abb.30) und 1×10^4 Zellen/Well (Abb.31), bei einer 24h-Inkubation mit zwei Konzentrationen an BSP (20 und 60ng Absolutkonzentration BSP/Well) untersucht. Es wurde immer eine 4-fach-Bestimmung der Proben durchgeführt. Auf der y-Achse sind die Mittelwerte der 4-fach-Bestimmung der Extinktionen und auf der x-Achse die eingesetzten Proteinkonzentrationen aufgetragen. Die Standardabweichung bezieht sich auf die einzelnen Messwerte p1-4 untereinander. Im T-Test (2-seitig, Typ 2) wurden die Messergebnisse (p1-4) der Kontrollen (kein Protein) mit den Messergebnissen (p1-4) der BSP-behandelten Osteoblasten und Stromazellen verglichen.
3.4.1.3 3. Vorversuch

Abb.32: Beschreibung siehe Abb.33.

Abb.33: Vorversuch BrdU. Ansatz wie in 3.4.1.2, hier wurde die Extinktion bei 450nm von Osteoblasten zweier Patienten, O-POF/9 (5.Passage) und O-LBI/8 (7.Passage) bei einer Zellkonzentration von 5x10^3 Zellen/Well (Abb.32) und 1x10^4 Zellen/Well (Abb.33), nach einer 24h-Inkubation mit 20 und 60ng BSP/Well untersucht. Dieser Versuch wurde durchgeführt um die Ergebnisse aus 3.4.1.2 zu bestätigen. Auf der y-Achse sind die Mittelwerte der Extinktionen und auf der x-Achse die eingesetzten Proteinmengen aufgetragen. Die Standardabweichung bezieht sich auf die einzelnen Messwerte p1-p4 untereinander. Im T-Test (2-seitig, Typ 2) wurden die Messergebnisse (p1-p4) der Osteoblasten-Kontrolle (kein Protein) mit den Messergebnissen (p1-p4) der Osteoblasten mit Protein verglichen. Die Mittelwerte der Extinktionen der Osteoblasten der Patienten aus 3.4.1.2 und 3.4.1.3 sind in Abb.34 graphisch vereint als Balkendiagramme dargestellt. Im T-Test wurden jedoch keine signifikanten Ergebnisse ermittelt.
Ergebnisse

3. Vorversuch BrdU

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Extinktion (Pat. 1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Protein</td>
<td>0,0</td>
</tr>
<tr>
<td>20ng BSP/Well</td>
<td>0,2</td>
</tr>
<tr>
<td>60ng BSP/Well</td>
<td>0,4</td>
</tr>
<tr>
<td>120ng BSP/Well</td>
<td>0,6</td>
</tr>
<tr>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 34: Im Schaubild sind die Mittelwerte der Extinktionen der Osteoblasten O-HRL/2 (4. Passage), O-POF 9 (5. Passage) und O-LBI/8 (7. Passage) aus 3.4.1.2/3.4.1.3 bei zwei untersuchten Zellkonzentrationen und zwei unterschiedlichen Konzentrationen von BSP dargestellt. Es wurde jeweils die Standardabweichung, bezogen auf die einzelnen Messwerte (p1-4) berechnet und in die Balkendiagramme eingezeichnet. Bei den angegebenen Proteinkonzentrationen handelt es sich um Absolutkonzentrationen/Well. Im T-Test wurden keine signifikanten Ergebnisse ermittelt.

3.4.1.4 4. Vorversuch

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Extinktion (p1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Protein</td>
<td>0,0</td>
</tr>
<tr>
<td>20ng BSP/Well</td>
<td>0,2</td>
</tr>
<tr>
<td>60ng BSP/Well</td>
<td>0,4</td>
</tr>
<tr>
<td>120ng BSP/Well</td>
<td>0,6</td>
</tr>
<tr>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 35: Beschreibung siehe Abb.36.
Ergebnisse

Abb.36: Vorversuch BrdU. Hier wurde die Extinktion (450nm) der Osteoblasten dreier Patienten (O-POF/9, 6.Passage; O-SLJ/10, 4.Passage; O-SEP/4, 4.Passage) bei einer Zellkonzentration von \(5 \times 10^3\) Zellen/Well, nach 24-ständiger Inkubation mit 20, 60 und 120ng BSP/Well gemessen und in zwei Figuren dargestellt. In Abb.35 sind die Mittelwerte der Extinktionen der drei untersuchten Patienten – aufgeschlüsselt nach untersuchtem Patient - und in Abb.36 vereint (\(n=3\)) dargestellt. Es wurde immer eine 4-fach-Bestimmung der Proben durchgeführt. Auf den x-Achsen sind die eingesetzten Protein- concentrationen und auf der y-Achse die Mittelwerte der Extinktionen aufgetragen. Im Gegensatz zur statistischen Auswertung der einzelnen Patienten in Abb.35, wurden in Abb.36 bei der Mittelung der Messwerte der verschiedenen Patienten, keine signifikanten Ergebnisse nachgewiesen.

3.4.2 Hauptversuche BrdU

Folgende Bone Sialoproteine wurden untersucht:

- BSP
- DRJ
3.4.2.1 BrdU Untersuchung von Osteoblasten nach BSP-Inkubation

Abb.37: Hauptversuch BrdU humane Osteoblasten. Die Zellproliferation wurde hier mittels eines colorimetrischen Immunoassays, basierend auf dem BrdU Einbau während der DNA Synthese proliferierender Zellen (S-Phase), via spektrophotometrischer Messung (450nm) quantitativ bestimmt. Es wurden humane Osteoblasten von 8 Patienten untersucht. Pat. 1, HOB-1, 6.Passage; Pat. 2, HOB-2, 5.Passage; Pat. 3, HOB-C, 5.Passage; Pat. 4, O-SRI/5, 5.Passage; Pat. 5, O-SLJ/10, 5.Passage; Pat. 6, O-EGG/7, 5.Passage; Pat. 7, O-HRL/2, 6.Passage; Pat. 8, O-LBI/8, 8.Passage. Auf der y-Achse sind die Mittelwerte der Extinktionen von Pat. 1-8 und auf der x-Achse die eingesetzten Proteinkonzentrationen aufgetragen.

3.4.2.2 BrdU Untersuchung von Stromazellen nach BSP-Inkubation

Abb.38: Hauptversuch BrdU. Die Zellproliferation wurde hier wie in 3.4.2.1, mittels BrdU-Assay quantitativ bestimmt. Es wurden humane Stromazellen von 3 Patienten (Pat. 9-11) untersucht. Pat. 9 STR-SRI/5, 6.Passage; Pat. 10 STR-LBI/8, 5.Passage; Pat. 11 STR-HRL/2, 5.Passage. Auf der y-Achse sind
die Mittelwerte der Extinktionen von Pat. 9-11 und auf der x-Achse die eingesetzten Proteinkonzentrationen aufgetragen.

3.4.2.3 BrdU Untersuchung von Osteoblasten nach DRJ-Inkubation

Abb. 39: Wie im Hauptversuch 3.4.2.1, dort jedoch zur Untersuchung des BSPs, wurde hier bei Inkubation mit dem DRJ Protein die Zellproliferation mittels BrdU-Assay quantitativ bestimmt. Es wurden humane Osteoblasten von 8 Patienten (Pat. 1-8) untersucht. (Pat. 1 HOB-1, 6.Passage; Pat. 2 HOB-2, 5.Passage; Pat. 3 HOB-C, 5.Passage; Pat. 4 O-SRI/5, 5.Passage; Pat. 5 O-SLJ/10, 5.Passage; Pat. 6 O-EGG/7, 5.Passage; Pat. 7 O-HRL/2, 6.Passage; Pat. 8 O-LBI/8, 8.Passage). Auf der y-Achse sind die Mittelwerte der Extinktionen von Pat. 1-8 und auf der x-Achse die eingesetzten Proteinkonzentrationen aufgetragen.

3.4.2.4 BrdU Untersuchung von Stromazellen nach DRJ-Inkubation

Abb. 40: Hauptversuch BrdU. Die Zellproliferation wurde wie in 3.4.2.1, 3.4.2.2 und 3.4.2.3 mittels BrdU-
Ergebnisse
Assay quantitativ bestimmt. Im Gegensatz zur Untersuchung des BSPs in 3.4.2.2, wurde hier das DRJ Protein untersucht. Es wurden humane Stromazellen von 3 Patienten (Pat. 9-11) untersucht. (Pat. 9 STR-SRI/5, 6.Passage; Pat. 10 STR-LBI/8, 5.Passage; Pat. 11 STR-HRL/2, 5.Passage). Auf der y-Achse sind die Mittelwerte der Extinktionen Pat. 9-11 (p1-3) und auf der x-Achse die eingesetzten Protein konzentrationen aufgetragen.

3.5 Histochemische Färbungen
Mit der Fragestellung, ob nach einer Inkubation mit Bone Sialoprotein auf histochemischer Ebene eine Stimulation der Zellen beobachtet werden kann, wurden zwei qualitative Färbungen angewandt. Die Alkalische Phosphatase (AP) Färbung dient als Nachweis des gleichnamigen Enzyms in der Umgebung osteoinduktiver Zellen und die von Kossa Färbung wird zum Nachweis der Kalzifizierung der Zellen im Well eingesetzt.

3.5.1 Alkalische Phosphatase Färbung
3.5.1.1 1. Vorversuch
Im 1. Vorversuch wurden exemplarisch an Osteoblasten und Stromazellen eines Patienten die Zellkonzentrationen 1×10^4 und 1×10^5 Zellen/6 Well untersucht und verglichen. Die Abb.41 a-d wurden 2h nach Entfernen der Färbelösung aufgenommen.
3.5.1.2 2. Vorversuch

Osteoblasten und Stromazellen wurden unmittelbar nach der Aussaat direkt mit Proteinmengen von 2,00E-06 und 6,00E-07g BSP/2ml Medium je 6 Well für 4-5 Tage inkubiert. Folgende Bilder wurden unmittelbar nach der Färbung, vor Entfernung der Färbelösung aufgenommen. Da die Färbelösung rasch nachdunkelt variieren die Farben leicht.

3.5.1.3 Hauptversuche

3.5.2 Von Kossa Färbung

Zum qualitativen Kalzifizierungsnachweis der Zellen wurde die von Kossa Färbung angewandt. Da auch diese Färbung im 6 Well durchgeführt wurde,
übernahmen wir die eingesetzten Zell- und Bone Sialoprotein-Konzentrationen der Hauptversuche der Alkalischen Phosphatase Färbung (siehe 3.5.1.3).

3.5.2.1 Hauptversuche

Die von Kossa Färbung wurde bei Osteoblasten von 5 Patienten und Knochenmarkzellen von zwei Schweinen durchgeführt. Es wurde nur das BSP-Protein und nicht das DRJ-Protein auf seine osteoinduktiven Eigenschaften hin untersucht.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Passage</th>
<th>Zellkonz./Well</th>
<th>c[g BSP/2ml Medium]</th>
<th>Protein</th>
<th>Ergebnis Färbung</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-SRI/5</td>
<td>5.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Schwach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Schwach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Schwach</td>
</tr>
<tr>
<td></td>
<td>6.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td>5.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
<tr>
<td>O-EGG/7</td>
<td>4.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td>6.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
<tr>
<td>Osteobl. Schwein Nr.1</td>
<td>2.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
<tr>
<td>Osteobl. Schwein Nr.2</td>
<td>1.P.</td>
<td>5x10⁴</td>
<td>2,00E-06</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>6,00E-07</td>
<td>BSP</td>
<td>Gut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x10⁴</td>
<td>kein Protein</td>
<td>-</td>
<td>Gut</td>
</tr>
</tbody>
</table>

Tab.8: Hauptversuch von Kossa-Färbung. Dargestellt sind die untersuchten Zellen, die jeweilige Zellpassage, eingesetzte Zell- und Proteinkonzentrationen, das untersuchte Protein, sowie das Ergebnis der Färbung. Nicht dargestellt sind die untersuchten Knochenmarkzellen der Schweine, als auch die mit DRJ Protein inkubierten Osteoblasten. Das BSP Protein wurde für 4 Tage mit den Zellen bei 37°C im Brutschrank inkubiert.
Abb. 43: Von Kossa Färbung im 6 Well. Osteoblasten vom Schwein Nr.1, 2.P., 5x10^4 Zellen/Well, nach 4 Tagen ohne BSP Inkubation, Vergrößerung 100-fach. Zellkerne die Osteokalzin sezernieren stellen sich in dieser Färbung schwarz bis rot-braun dar (siehe gerader Pfeil), das Zyttoplasma der Zellen färbt sich zart blau an (siehe gebogener Pfeil). Aufgrund eines Kameradefektes konnten nach diesem Bild keine weiteren Bilder aufgenommen werden, die humanen Osteoblasten stellten sich jedoch ganz ähnlich im Mikroskop dar, unabhängig davon ob sie mit, oder ohne BSP inkubiert worden waren.

3.6 Problem Protein Inkubationsmethode

3.6.1 SDS-PAGE Gelelekrophorese

Wie aus den Messwerten und graphischen Abbildungen der MTT Vorversuche (3.3.1.1/3.3.1.2) und auch aus den Vorversuchen der histochemischen alkalischen Phosphatase Färbung (3.5.1.1) hervorgeht, schien sich die Beschichtungsmethode der Flaschen und Wells, über Nacht (12h) bei 4°C im Kühlschrank, nicht zu bewähren. Um nachzuweisen, ob das BSP Protein bei dieser Inkubationsmetode überhaupt auf der Plastikoberfläche der Flaschen und Wells haften blieb, wurde die Coomassie Färbung durchgeführt (siehe 2.2.3.3). Nach der Färbung wurden sowohl die mit BSP und PBS (-) beschichteten, als auch die nicht beschichteten Flaschen/Wells unter dem Mikroskop betrachtet und verglichen. Die unterschiedlich behandelten Oberflächen ähnelten sich stark und BSP Proteinanteile waren nicht eindeutig nachweisbar. Es stellte sich die Frage, ob das Protein überhaupt in Lösung war, oder eventuell beim steril filtrieren verloren gegangen war. Wir entschieden uns gegen eine Proteinbestimmung nach Lowry, da dieser Nachweis zu unsensitiv gewesen wäre, da die Arbeitskonzentration des Proteins 10µg/ml betrug, statt dessen entschieden wir uns für eine Polyacrylamid Gelelekrophorese, mit anschließender Coomassie Färbung und Coomassi Entfärbung zum Nachweis des Proteins. Dazu wurden, wie in Abb.44 dargestellt, zwei gelöste Proben vom BSP Protein in die Taschen c) und d) und Rückstände von der vorherigen Coomassie Färbung des BSP Proteins im 6 Well vorsichtig abgeschabt und in die Tasche b) pipettiert, ganz links wurde der Marker a) aufgetragen.
Ergebnisse

Abb. 44: Polyacrylamidgel mit anschließender Coomassie-Färbung und Entfärbung zur Darstellung der BSP Proteine. Die Spuren c) und d) stellen das BSP Protein bei ca. 60 kDA dar, die Spur b) zeigt abgetragene Überreste aus einer BSP-beschichteten 6 Well-Plate der Coomassie Färbung. Die Probe in Spur a) stellt den Marker (MagicMark XP Western Blot Protein Standard, Invitrogen) dar. Ergebnis dieses Gels: Das BSP Protein befand sich in beiden steril filtrierten BSP Lösungen und war bei dem sterilen Filtrieren im Labor nicht aus der Lösung filtriert worden. Eine prominente Beschichtung der Flaschen mit BSP konnte aber nicht nachgewiesen werden (siehe Spur b), da auf Höhe von etwas 60kDA keine deutliche Proteinbande nachweisbar war.
4 Auswertung, Diskussion

4.1 Zellkultur

4.1.1 Osteoblasten, Stromazellen, Knochenmarkzellen

Wie in 3.1.1 beschrieben, war beim Aufarbeiten von humanen Osteoblasten, als auch bei der Differenzierung von tierischen Knochenmarkzellen zu Osteoblasten, im Vergleich zu Knochenmarkzellen vom Schwein, ein deutlich langsameres Wachstum bemerkbar. Humane Osteoblasten waren in den Flaschen nach ca. 4 Wochen konfluently, ein Ergebnis welches mit anderen Beobachtungen übereinstimmte (Schaumburger 2000). Humane Stromazellen waren in der 6 Well Platte nach ca. 3 Wochen konfluently, da hier jedoch auch weniger Zellen eingesetzt wurden, sind vergleichende Rückschlüsse bzgl. des Proliferationsverhaltens gegenüber den humanen Osteoblasten nicht zulässig. Knochenmarkzellen vom Schwein waren nach ca. 2 Wochen in den Flaschen konfluently, daraus differenzierte Osteoblasten wuchsen wesentlich langsamer und waren ähnlich, wie humane Osteoblasten erst nach ca. 4 Wochen konfluently. Bei der Aufarbeitung des humanen Knochenmaterials stellten anfänglich Kontaminationsprobleme mit Pilzen ein Problem dar. Humane Osteoblasten und -aus dem Überstand des jeweiligen Patienten- gewonnene Stromazellen, unterschieden sich optisch, wie in 3.1.1, Abb.5 a) und d) dargestellt. Die erfolgreiche Differenzierung von tierischen Knochenmarkzellen zu Osteoblasten war ebenfalls optisch mittels mikroskopischer Untersuchungen erkennbar, siehe 3.1.2, Abb.6 a) bis f). Der Verdacht, dass die differenzierten tierischen Osteoblasten nach einer 3-wöchigen Inkubation mit Osteoblastenmedium in ihrer Proliferation geschwächt waren, wurde im MTT Vorversuch 3.3.1.2 durch negative Messergebnisse bestätigt. Die Zellen waren nicht mehr vital genug, um –im Rahmen des Versuches- innerhalb von 24h adhärent zu werden. Dementsprechend entschieden wir, die MTT Hauptversuche an tierischen Osteoblasten (3.3.2.3) bereits 1-2 Wochen nach Inkubation mit Osteoblastendifferenzierungsmedium zu untersuchen.
10% des knöchernen Skelettsystems des Menschen befinden sich in einem ständigen Umbauprozess, zwischen Knochenauf- und Abbau, dem sog. Knochen-remodeling. Alter Knochen wird dabei kontinuierlich durch Osteoklasten abgebaut und durch neues Gewebe ersetzt, was die Interaktion verschiedener Zell-Phänotypen, allen voran von Osteoblasten, als auch biochemische und mechanische Faktoren einschließt (Hadjidakis und Androulakis 2006). Da Osteoblasten primär an der Knochenheilung beteiligt sind, stellen sie für uns die wichtigsten Zellen in den Untersuchungen dieser Arbeit dar. Da Osteoblasten auch an BSP binden können und BSP wiederum an Hydroxylapatit und Titan binden kann, verfolgten wir den Gedanken die Eigenschaften des BSP zur Biologisierung der Titan-Oberflächen und Verbesserung des Einwachsens von Prothesen zu nutzen. Da sich aber die Beschichtung von Plastikoberflächen mittels BSP als schwierig erwies, (siehe 3.6 und 4.1.2.1) entschieden wir uns das gelöste Protein im Laufe der Versuche direkt mit den Zellen zu inkubieren. Knochenmarkzellen lassen sich durch eine Knochenmarkpunktion relativ einfach isolieren (2.2.1.3) und können in vitro durch Stimulation über induzierbare Osteoprogenitorzellen, zu determinierten Osteoprogenitorzellen und weiter zu Prä-Osteoblasten, welche Alkalische Phosphatase und Kollagen Typ1 exprimieren, zu reifen Osteoblasten, welche u.a. BSP, Kollagen Typ1, Osteocalzin, Osterix und Runx2 exprimieren, differenzieren (Marie und Fromigue 2006; Titorencu et al. 2007). Daher eignen sie sich für vergleichende Untersuchungen zu humanen Osteoblasten im Hinblick auf Knochenregeneration und eine möglicherweise -durch BSP induzierte- veränderte Zellproliferation. Knochenmarkzellen wachsen typischerweise in Kolonien (Krebsbach et al. 1999), wobei jede Kolonie aus einer Vorläuferzelle entsteht. Die Stromazellen, welche aus dem Überstand bei der Isolierung der humanen Osteoblasten gewonnen wurden, ähnelten in ihrem Wachstumsverhalten mehr den humanen Osteoblasten, waren jedoch länglicher und schmäler und proliferierten zwar stärker als humane Osteoblasten, jedoch nicht so stark wie die isolierten tierischen Knochenmarkzellen, dementsprechend betrachteten wir sie als eine eigene Zellpopulation.
4.1.2 Real Time PCR

4.1.2.1 Osteopontin, Osteonectin, TGF-β

Da sich die direkte Beschichtung der Flaschen mit dem Protein über Nacht bei 4°C als schwierig herausstellte, siehe hierzu 2.2.2.1, sowie Vorversuche MTT (3.3.1.1-3.3.1.3) und sich eine erfolgreiche Bindung des Proteins an die Plastikoberfläche der Flaschen als unwahrscheinlich darstellte, das Protein sich jedoch sicher in Lösung befand (3.6.1), entschieden wir uns, das Protein direkt mit den jeweils ausgezählten Zellen für 24h im Brutschrank zu inkubieren. So konnte sichergestellt werden, dass sich das Protein in unmittelbarer Umgebung der Zellen befand und während der Inkubationszeit im Brutschrank gute Wachstumsbedingungen für die Zellen gewährleistet waren. Folge dieser direkten Inkubationsmethode war jedoch auch ein Verlust an Nährmedium durch Verdünnung mit gelöstem Protein. In den Vorversuchen belief sich der Verlust bei 1µg und 3µg BSP/Flasche (100ml und 300ml BSP Lösung) auf 100µl und 300µl Nährmedium/10ml, in den Hauptversuchen ebenfalls bei 3µgBSP/Flasche auf 300µl und bei 10µgBSP/Flasche auf 1ml/10ml Nährmedium. Diesen Zellen stand, im Vergleich zu den Kontrollzellen, bis zu 10% weniger Nährmedium zur Verfügung. Da jedoch die Inkubationszeit nur 24h umfasste und die Zellen in einer Dichte von 1x10^6 Zellen/Flasche ausgesät wurden, schlussfolgerten wir, dass dieser Verlust an Nährmedium in diesem kurzen Zeitraum keinen gravierenden Einfluss auf die Vitalität der Zellen haben sollte. Unser erstes Ziel galt der Exploration einer aussagekräftigen Protein­konzentration, bei welcher es, von BSP induziert, zu einer Induktion, oder Repression der Genexprimierung der drei untersuchten Gene, TGF-β, Osteopontin und Osteonectin kommt.

So wurden im ersten Ansatz die diesbezüglichen RNA-Level der Osteoblasten und Stromazellen eines Patienten, bei Proteinkonzentrationen von 1µg und 3µg BSP/10ml Nährmedium/Flasche untersucht, siehe 3.2.2.1. Insgesamt zeigen
die Ergebnisse des 1. Vorversuchs ein kontroverses Genexprimierungsverhalten der Osteoblasten und Stromazellen eines Patienten. Ein möglicher Grund könnte in der unterschiedlichen Herkunft der Zellen liegen. Denkbar wäre, dass sich die Stromazellen in ihrem Expressionsmuster eher wie Knochenmarkzellen verhalten (siehe hierzu 4.1.1) und das unterschiedliche Verhalten zweier Zellpopulationen hier widerspiegelt wird. Zu beachten ist jedoch, dass, obgleich die Zellen von einem Patienten gewonnen wurden, zwei verschiedene Zellpassagen vorliegen. Der 2. Vorversuch wurde durchgeführt um bei gleichen Proteinkonzentrationen eine höhere Vergleichbarkeit im Genexprimierungsmuster der Osteoblasten erzielen zu können. Da im Rahmen der Vorversuche keine eindeutigen Ergebnisse erzielt werden konnten und um bei der Inkubation der Zellen mit dem Protein, sicher ausreichend hohe Proteimengen zu gewährleisten wurden für die Hauptversuche zwei relativ hohe Proteinkonzentrationen, 3µg Protein/Flasche und 10µg Protein/Flasche, eingesetzt und beide rekombinanten Bone Sialoprotein diesbezüglich untersucht. Im Serum ist BSP an den Komplement Faktor H gebunden. Zur Messung der BSP Konzentration wurde empfohlen diese Bindung zu trennen (Fedarko et al. 2000) um dadurch den Gesamt-BSP Spiegel erfassen zu können. Nach dieser Trennung wurden Serum-Spiegel für BSP im Bereich von 285 +/- 19 ng/ml ermittelt (Fedarko et al. 2001). Wie hoch die BSP-Konzentrationen im Knochengewebe sind, ist in der Literatur bisher nicht beschrieben und es bleibt fraglich, inwieweit die Serum BSP-Konzentrationen auf den Knochen übertragbar sind. Im Gegensatz zu den Ergebnissen der Stromazellen deuten die Ergebnisse der Osteoblasten in 3.2.2.1 bei höheren BSP-Proteinkonzentrationen eher auf eine Hemmung der Genexprimierung von TGF-ß hin, wobei sich dieser Trend im Rahmen der Hauptversuche (3.2.3.1-3.2.3.2) weder für BSP, noch für das DRJ-Protein bestätigen ließ. Eher gegenteilig scheint nun für die Stromazellen bei 10µg BSP/Flasche ein sehr leichter Trend zur gesteigerten Exprimierung beobachtbar zu sein, jedoch ohne signifikantes Ergebnis. Für das Gen Osteopontin ist ebenfalls ein leichter nicht-signifikanter Trend Richtung Induktion mittels BSP als auch DRJ für die humanen Osteoblasten in 3.2.2.1 und 3.2.3.1 erkennbar. Aufgrund der geringen Expressionsraten dieser Gene
können diese Ergebnisse aber täuschen. Bei Betrachtung der Primärdaten (7.1.1-7.1.3) wird deutlich, dass sich die Osteoblasten der verschiedenen Patienten im Transkriptionsverhalten widersprüchlich zueinander verhalten. Es kann hier weder eindeutig von einer Stimulation, noch einer Hemmung auf Geneebene gesprochen werden. Interessant ist, dass die Osteoblasten des Patienten O-HRL/2 sowohl in der 3. Zellpassage in 3.2.2.1 (7.1.1), als auch in der 6. Zellpassage in 3.2.3.1 (7.1.3), bei höheren BSP-Konzentrationen ein gesteigertes Genexpressionsverhalten für Osteopontin und Osteonectin zeigen, was, wenn auch nicht statistisch überprüft, für den Aspekt einer BSP induzierten Genexpression auch noch in höheren Zellpassagen- und gegen ein herabgesetztes Genexprimierungs-verhaltens in höheren Zellpassagen spricht. Bei höheren BSP Proteinkonzentrationen (3µgBSP/Flasche) ist für das Gen Osteonectin der Stromazellen eine leicht gesteigerte Expression in 3.2.2.1 und 3.2.3.2 sichtbar, jedoch ohne signifikantes Ergebnis. Bei den eingesetzten Proteinkonzentrationen war für die untersuchten Osteoblasten, weder in den Vorversuchen, noch im Rahmen der Hauptversuche, ein signifikantes Ergebnis erruierbar und die Expression von Osteonectin sowohl bei einer BSP-, als auch DRJ-Inkubation relativ stabil. Dieses Ergebnis weist Ähnlichkeiten zu Forschungsergebnissen auf, bei denen -in Abwesenheit von BSP- fütale humane Osteoblasten, welche auf einem Lactid und Glycolid-beschichteten 3-D Gerüst in vitro inkubiert wurden, nach 3 Wochen eine stabile Osteonectin Expression aufwiesen, wohingegen die Expression für Osteopontin nach einer 2-wöchigen Inkubation abnahm (Ge et al. 2008).

Dass mit rekombinantem BSP beschichtete Oberflächen einen leichten Einfluss auf die Exprimierung von Osteonectin und TGF-β haben können, wurde zwar nicht direkt mittels PCR-Untersuchungen, jedoch auf histochemischer Ebene, mittels Antikörper-Bindung gezeigt (Graf et al. 2008). Bei diesen Untersuchungen wurde, unabhängig von unserem Labor, die gleiche Arbeitskonzentration von (10µg BSP/ml PBS) verwendet. Die zu untersuchenden Titan- und Ticer ® Oberflächen wurden lediglich 2h mit 300µl der Proteinlösungen beschichtet, selbige anschließend wieder entfernt, die Oberflächen bei Raumtemperatur unter sterilen Bedingungen 12h getrocknet und erst an-

Bei Untersuchungen zur Zelladhäsion zeigen BSP-beschichtete Titan und Ticer® Oberflächen, im Vergleich zu Kontrolloberflächen, binnen der ersten 7 Tage, zwar eine erhöhte Anzahl adhärenter Osteoblasten, jedoch ohne signifikantes Ergebnis. Am 3. Tag der BSP Beschichteten Ticer® Oberflächen ließen sich keine erhöhten Zellbindungswerte ermitteln, was die Überlegenheit von BSP-beschichteten Oberflächen doch in Frage stellt.

In diesen Versuchen wurden die Osteoblasten lediglich von zwei Spendern gewonnen und es stellt sich die Frage, inwieweit diese Ergebnisse verallgemeinert werden sollten, da auch in unseren Versuchen, mittels RT-PCR, wenn gleich auch nur ein Messwert/eingesetzter BSP Konzentration/Proband erfasst wurde, sowie aber auch im Rahmen der MTT und BrdU Versuche, unter den verschiedenen Probanden starke Schwankungen bemerkbar waren. Da hier erst nach 3 Tagen eine Osteonectin Induktion nachweisbar war, stellt sich für uns die Frage, ob in unserem Versuchsansatz eine 24h-Inkubation zu kurz war, auch stellt sich die Frage, ob eine sehr frühe Zellpassage doch einen aussagekräftigeren Effekt hätte erzielen können.

Eine andere Überlegung wäre, dass Osteoblasten, welche ja selbst im Zuge der Differenzierung und Wundheilung BSP produzieren, bei einer Zugabe von BSP bereits abgesätigt sind und folglich das BSP keine zusätzliche Wirkung mehr ausüben kann. Gegen diese Überlegung sprechen aktuellste Forschungsergebnisse, in welchen gezeigt werden konnte, dass primäre Osteoblasten der Ratte, welche täglich mit rekombinantem eukaryotisch hergestelltem BSP inkubiert worden waren, nach 3 und 5, nicht jedoch nach 10 Tagen, mittels RT-PCR nachweisbar signifikant erhöhte Expressionslevel für die Knochen-
assozierten Transkriptionsfaktoren Runx2 und Osx aufweisen (Gordon et al. 2007). Auch stellt sich die Frage ob die untersuchten rekombinanten Bone Sialoproteine überhaupt funktionsfähig sind. Wie in 1.2 beschrieben, spielen die posttranslationalen Modifikationen für die multiple Funktionen des Moleküls (siehe 1.5), eine entscheidende Rolle. Ausgehend von dieser Annahme würde man erwarten, dass das in Eukaryoten hergestellte BSP sich in seiner Wirkung deutlich von prokaryotisch hergesteletem DRJ Protein, welchem posttranslationalen Modifizierungen fehlen und welches aus diesem Grund auch kleiner ist (siehe 2.1.6.1 und 2.1.6.2), unterscheiden würde. Wie in den Versuchen ersichtlich, sind aber keine deutlichen Unterschiede zwischen den Proteinen erkennbar. Möglich auch, dass die posttranslationalen Modifikationen auf die Aktivität nur einen geringen Einfluss nehmen, oder aber sich das rekombinante His-Myc-EK-BSP Protein der Versuche von Graf HL et al. 2008, mittels welchem sich nach mehreren Tagen Inkubation eine gesteigerte Expression von Osteonectin und TGF-ß nachweisen ließ, im Vergleich zu dem von uns untersuchten BSP der Firma Immunodiagnostik, in dafür wichtigen posttranslationalen Modifikationen unterschied.

4.1.3 MTT- und BrdU-Test

4.1.3.1 Zellproliferation, Zellviabilität

Wie in 2.2.2.2 und 2.2.2.3 beschrieben, erfolgte die Bestimmung der Zellproliferation und Viabilität der untersuchten Zelllinien mittels des MTT und
BrdU-Assays, wobei wir die Fragestellung verfolgten, ob durch eine vorausgehende Beschichtung der 96 Wells, als auch eine direkte Inkubation mit den zwei rekombinanten Bone Sialoproteinen auf mitochondrialer und/oder DNA-Ebene eine Veränderung der Zellen im Proliferationsverhalten erkennbar würde.

4.1.3.2 Auswertung Vorversuche MTT

Bei der Etablierung der Methode galt es zunächst eine geeignete Zellkonzentration, sowohl für die Untersuchung der humanen Osteoblasten, als auch Stromazellen und Knochenmarkzellen vom Schwein zu finden. Die Arbeit von J. Schaumburger (Tübingen, 2000) diente uns dabei als Grundlage, so wählten wir im Rahmen der Vorversuche Zellkonzentrationen von 3x10^3, 5x10^3 und 1x10^4 Zellen/96 Well, wobei die Zellkonzentration 1x10^4 bei Schaumburger für Spongiosazellen zum Einsatz kam und er in seinen Untersuchungen damit signifikante Ergebnisse erzielen konnte. Da im Rahmen des ersten Vorversuches (siehe 3.3.1.1) für die Zellkonzentration von 3x10^3 Zellen/96 Well im Vergleich zu der höher eingesetzten Zellkonzentration von 1x10^4 Zellen/96 Well etwas niedrigere Extinktionswerte ermittelt worden waren und der MTT-Test zwar Rückschlüsse auf die Zellzahl und Stoffwechselaktivität der Zellen erlaubt, nicht jedoch unterschieden werden kann, ob es sich im Test um wenig sehr active, oder aber viele, jedoch weniger aktive Zellen handelt (Mosmann 1983), wir jedoch nach mikroskopischer Kontrolle den Eindruck hatten, dass zu wenige Zellen/Well adhärent geworden waren und dementsprechend ein geringeres Proliferationsverhalten detektierbar war, entschieden wir uns in den folgenden Vorversuchen höhere Zellkonzentrationen von 5x10^3 einzusetzen. Um den Bereich einer Sättigung zu meiden wurden keine noch höheren Zellkonzentrationen eingesetzt. Für die Stromazellen wurden in den Vorversuchen höhere Extinktionswerte und wesentlich geringere Fehlerbalken ermittelt als für die Osteoblasten. Nun ist, wie oben angesprochen, nicht eindeutig, ob dies auf eine erhöhte mitochondriale Aktivität dieser Zellen, oder aber, basierend auf einem erhöhten Proliferationsverhalten der Zellen,auf eine erhöhte Zellzahl zurück zu
führen ist. Sicher ist aber, dass diese erhöhten Extinktionswerte sowohl in den Vorversuchen, als auch in den Hauptversuchen für BSP, weniger aber für das untersuchte DRJ-Protein, reproduzierbar sind, was unsere Vermutung, dass diese Zellen Knochenmarkzellen- welche u. a. durch ihre hohen Proliferationsraten charakterisiert werden- ähnlich sind, untermauert. Auf die Untersuchung einer möglichen Signifikanz, zwischen dem Proliferationsverhalten der Osteoblasten und Stromazellen, wurde an dieser Stelle verzichtet, da dies nicht primär unsere Fragestellung war. Die geringere Abweichung der Messergebnisse der Stromazellen der Vorversuche steht sicherlich auch in Zusammenhang mit der Anzahl der untersuchten Probanden, da sich diese Vorversuchs-Ergebnisse auf die 3-fach-Bestimmung der Zellen jeweils nur eines Patienten bezogen und in den Hauptversuchen beim Vergleich von 3-4 Patienten größere Fehlerbalken ermittelt wurden, wobei diese immer noch geringer waren, als vergleichbare Ergebnisse humaner Osteoblasten.

An den Messergebnissen der ersten zwei Vorversuche wird deutlich, dass die BSP-Beschichtungsmethode über Nacht keinen Effekt zeigt. Denkbar wäre, dass die Polystyrol-Oberfläche der 96 Well Platten eine ungeeignete Bindefläche für das BSP Molekül darstellt. Da die flat-bottom 96 Well Platten jedoch für kolorimetrische Messungen bei Enzym-Assays empfohlen werden und die Haftungseigenschaften des BSP in den Wells oder Flaschen (siehe auch 4.1.2.1) nicht Ziel dieser Arbeit waren, sondern wir eine mögliche Veränderung der Stoffwechselaktivität der Zellen in Kombination mit BSP untersuchen wollten, entschieden wir uns nach Verifikation der BSP-Lösung (siehe 3.6), das Protein, wie in 3.3.1.3 beschrieben direkt mit den Zellen zu inkubieren.

Ein Unterpunkt dieser Doktorarbeit stellte die Untersuchung des Proliferationsverhaltens tierischer Osteoblasten und Knochenmarkzellen vom Schwein, bei einer Inkubation mit BSP dar, wobei aufgrund einer geringeren Liefermenge des DRJ-Proteins, in den MTT-Versuchen für die tierischen Zelllinien nur das BSP-Protein zum Einsatz kam. Die negativen Messergebnisse in 3.3.1.2 lassen sich auf unsere oben aufgeführten Erkenntnisse aus der Beobachtung der Zellkultur zurück führen. Nach 3-wöchiger Inkubation der Knochenmarkzellen mit Osteoblasten- Differenzierungsmedium zeigten die Zellen nur noch geringe
Teilungsraten und mikroskopisch ließen sich im 96 Well nur wenige adhärente Zellen beobachten. Wir schlussfolgerten aus diesem Ergebnis und den Beobachtungen der Zellkultur, die differenzierten Osteoblasten vom Schwein zu einem früheren Zeitpunkt in Bezug auf ihr Proliferationsverhalten zu untersuchen, so konnten in den Hauptversuchen (3.3.2.3) aussagekräftige Extinktionen erzielt werden und die mikroskopische Kontrolle zeigte wesentlich mehr adhärente Zellen. Das rege Proliferationsverhalten der tierischen Knochenmarkzellen spiegelt sich bereits in 3.3.1.2 wieder und die gemessenen Extinktionen liegen weit über den Messergebnissen der humanen Osteoblasten- und Stromazellen. Obwohl sich in 3.3.1.2 die Zellen bereits in der 6. Passage befanden, zeigten die Zellen, vergleichbar mit 3.1.2, Abb.6 a) und c), ein ebenso reges, wie homogenes Wachstumsverhalten.

Die Abb.15 und 16 in 3.3.1.4 des 4. Vorversuches veranschaulichen, dass die Osteoblasten der verschiedenen Patienten- obgleich in der gleichen Zellpassage- unterschiedlich aktiv sind und bei Vergleich der zwei Zellkonzentrationen zeigt sich in Bezug zum 3. Vorversuch eine gewisse Kontinuität der Messergebnisse, wobei bei der niedrigeren Zellkonzentration in 3.3.1.3 deutlichere Messwertdifferenzen in Bezug auf die BSP Inkubation erfassbar sind und dementsprechend entschieden wir uns die Zellkonzentration von 5x10³ Zellen/96 Well für die Hauptversuche zu verwenden- und gegen die Zellkonzentration von J. Schaumburger (Tübingen, 2000).

Nachdem wir uns auf die Zellkonzentration festgelegt hatten galt unser Fokus erneut den eingesetzten BSP Konzentrationen. Wie in 3.3.1.5, Abb.17 und 18 ersichtlich, konnte bei den eingesetzten Proteinkonzentrationen, außer feinen individuellen Unterschieden der Patienten, kein aussagekräftiges Ergebnis erzielt werden. Weder Anzeichen einer Repression, noch Induktion der Zellaktivität ließen sich bei eingesetzten Proteinkonzentrationen von 120ng BSP/96 Well verzeichnen.

Um einen weiten Bereich von BSP Konzentrationen abdecken zu können, entschieden wir uns in den Hauptversuchen 3 Größenordnungen umspannende Proteinkonzentrationen einzusetzen (Pipettierschema siehe 2.2.2.2), wobei dies den Nachteil hatte, dass bei unserer Arbeitskonzentration von 10µg BSP/ml,
und der höchsten eingesetzten BSP Konzentration von 1µg BSP/96 Well, die eingesetzte Proteinlösung 100µl entsprach und bei einer Absolutmenge von 200µl Nährmedium, selbiges um 50% verdünnt wurde, den Zellen also 50% weniger Nährstoffe zur Verfügung standen.

4.1.3.3 Auswertung Hauptversuche MTT

Neben den Hauptversuchen 3.3.2.5, 3.3.2.6, 3.3.2.9 und 3.3.2.10, in welchen eine Langzeitinkubation von 24h, 48h, 72h und 96h mit den zu untersuchenden Bone Sialoproteinen durchgeführt wurde, erfolgte für die weiteren Hauptversuche eine 24h Protein-Inkubation. Sowohl das BSP-, als auch DRJ-Protein kamen zum Einsatz. Aus den Abb.19-22 geht bereits hervor, dass weder für die Zelllinie der humanen Osteoblasten und Stromazellen, noch für die Knochenmarkzellen und daraus differenzierten Osteoblasten vom Schwein, bei einer 24h-Inkubation mit BSP, signifikante Veränderungen im Proliferationsverhalten auf mitochondrialer Ebene erkennbar sind. Im Gegensatz dazu sind für die humanen Osteoblasten und Stromazellen bei einer DRJ-Protein Inkubation für 24h, bei hohen Proteinkonzentrationen, signifikante Ergebnisse, in Bezug auf verminderte Extinktionswerte im MTT-Assay nachweisbar (siehe 3.3.2.7 und 3.3.2.8, Abb.25 und 26). Hier wird ein Unterschied zwischen den zwei untersuchten Proteinen deutlich. Dieses Ergebnis wird auch im Vergleich von 3.3.2.9 zu 3.3.2.5 bestätigt.

In 3.3.2.3 zeigen die untersuchten tierischen Osteoblasten, in Bezug auf die Höhe der gemessenen Extinktionen, ein ähnliches Zellaktivitätsverhalten, wie humane Osteoblasten, wobei insgesamt eine relativ niedrige Zellaktivität auffällt. In 3.3.2.4 hingegen kommt das hohe Zellproliferationsverhalten der tierischen Knochenmarkzellen zum vorscheinen, welche wesentlich höhere Extinktionswerte aufweisen, als daraus differenzierte Osteoblasten. Diese Ergebnisse gehen konform mit der Annahme, dass Knochenmarkzellen, im Gegensatz zu Osteoblasten, sehr stark proliferierende Zellen sind.

Insgesamt sind zwischen und innerhalb der humanen und tierischen Zelllinien Unterschiede in der Stärke des Proliferationsverhaltens bemerkbar, jedoch wie
es scheint, BSP-unabhängig. Dieses Ergebnis stimmt mit den Beobachtungen der Vorversuche überein und so weisen Stromazellen höhere Extinktionswerte auf, als vergleichbare humane Osteoblasten, wobei aufgrund des MTT-Test-Designs unklar bleibt, ob dies auf eine höhere Zellzahl, oder aber eine weniger hohe Zellzahl mit stark erhöhter mitochondrialer Aktivität, oder aber auf eine ähnliche Zellzahl mit erhöhter Stoffwechselaktivität zurück zu führen ist. Auch apoptotische Aspekte könnten hier eine Rolle spielen.

Da bei der Ablösung der Zellen von ihrer Unterfläche, Apoptose induziert werden kann, ein Prozess der auch als Anoikis bezeichnet wird (Degterev und Yuan 2008), wäre auch denkbar, dass bedingt durch einen Mangel an Nährstoffen –wie zuvor bereits diskutiert- eine verstärkte Ablösung der Zellen, mit sich anschließendem apoptotischen Signaling die Folge sein könnte. So könnte man hier falsch positive Rückschlüsse auf eine BSP, oder auch DRJ-Protein vermittelte Repression des Proliferationsverhaltens auf mitochondrialer Ebene ziehen.

Da bei einer 24h BSP-Inkubation keine signifikanten Ergebnisse ermittelt werden konnten erschien uns eine Langzeitinkubation bis zu 96h mit BSP als interessanter Ansatzpunkt. Hoch signifikante Ergebnisse konnten bei einer 48h BSP Inkubation bei sehr hohen Protein-Konzentrationen (Absolutkonzentration 1µg BSP/96 Well, siehe Pipettierschema 2.2.2.2), im Vergleich zu leicht signifikanten Ergebnissen nach 24h und 48h bei einer DRJ-Protein-Inkubation, bei der Untersuchung der humanen Osteoblasten von 3 Patienten, ermittelt werden, siehe hierzu 3.3.2.5 und 3.3.2.9, Abb.23, sowie Abb.23 und 27. Deutlich wird hier gezeigt, dass in Bezug auf eine Abnahme der Extinktionen für beide untersuchten Proteine, bei einer Langzeitinkubation über mehrere Tage, hoch signifikante Ergebnisse nachweisbar sind. Hierbei beträgt der Mittelwert der Extinktionen bezüglich der Kontrolle und damit der Gehalt an MTT bei der höchst eingesetzten Proteinkonzentration 68,49% vom Grundwert und ist damit 31,51% geringer, als der Grundwert.

Nun ist, wie bereits in den Vorversuchen angesprochen, bei diesen Ergebnissen zu beachten, dass eingesetzte Proteinkonzentration von c[1,00E-06g Protein/200µl Medium] bei einer Verdünnung des Mediums mit einem 50%
Verlust an Nährmedium einhergehen und schlussfolgernd könnte man sagen, dass bei den unterschiedlich eingesetzten Proteinkonzentrationen die Zellen somit nicht mehr über gleiche Nährstoffmengen verfügen und Kontrollzellen somit einen deutlichen Vorteil hätten. Nun könnte erwartet werden, dass dieses Ergebnis nach 96h am deutlichsten ausfallen würde, dem ist jedoch nicht so und hoch signifikante Ergebnisse werden bereits nach 24h-48h Inkubationszeit ermittelt, ein Ergebnis welches in Zusammenhang mit einer verstärkten Proliferation binnen der ersten 72h stehen könnte. Wie in 2.2.2.2 beschrieben spielte diese unterschiedliche Menge an Nährmedium bei der Messung selbst jedoch keine Rolle, da die einzelnen Proben zu Beginn der eigentlichen Versuchsdurchführung, nach der Inkubation mit dem Protein, vorsichtig ab-pippetiert und alle Wells mit gleichen Mengen an Medium, MTT und Solubilisationsmittel behandelt wurden. Durch das zusätzliche Pipettieren eines Blanks welcher keine Zellen, jedoch alle Reagenzien des Versuches in gleichen Mengen, wie in den Wells enthielt und beim Messen der Extinktion bei 550nm von der Extinktion der Proben subtrahiert wurde, konnten unerwünschte, störende Absorptionen durch Medium, MTT und Solubilisationsmittel herausgefiltert und gezielt die MTT Extinktion der Zellen ermittelt werden.

Die Ergebnisse der BSP und DRJ-Protein Langzeitinkubations-Versuche der humanen Stromazellen sind, obgleich ihrer Signifikanz, weniger aussagekräftig, als vergleichbare Untersuchungen an humanen Osteoblasten, da zwar eine 3-fach-Bestimmung der Proben erfolgte, jedoch nur die Stromazellen eines Patienten untersucht wurden und Schwankungen zwischen verschiedenen Probanden als wahrscheinlich zu betrachten sind (siehe hierzu 3.3.2.6 und 3.3.2.10). Ob die signifikanten Ergebnisse vermindelter Extinktionswerte, sowohl bei einer 24h DRJ Inkubation humaner Osteoblasten und Stromazellen, als auch die hoch signifikanten Ergebnisse der Langzeit-Inkubationsversuche von bis zu 96h mittels MTT-Assay auf einen Mangel an Nährstoffen und auf apoptotische Prozesse zurückzuführen sind, gilt es in zukünftigen Versuchen zu erforschen. So könnte der gleiche Versuchsaufbau, jedoch mit einer höheren Proteinkonzentration als Arbeitslösung zum Vergleich erneut durchgeführt werden.
werden und dadurch eine mögliche Repression der Proliferation, vermittelt
durch die zwei untersuchten rekombinanten Proteine, weiter geklärt werden.

4.1.3.4 Auswertung Vorversuche BrdU

Zur genaueren Bestimmung des Proliferationsverhaltens der Zellen wurde der
BrdU-Assay angewandt. Über die Messung des DNA-Gehaltes der ver-
schiedenen Versuchsansätze, konnten Angaben zur Quantität der zu unter-
suchenden Zellen gemacht werden. Durch diese Möglichkeit stellte dieser Test
bei unserer Fragestellung eine deutliche Bereicherung zum MTT-Assay dar. Zur
Etablierung der Methode galt es zunächst eine geeignete BrdU-Inkorporations-
zeit für die Zelldinien humaner Osteoblasten- und Stromazellen zu finden, wobei
eine Spanne zwischen 2-24h vom Hersteller Roche empfohlen wurde und in
den Untersuchungen von Magaud et al. bereits nach 10 Minuten Inkubation mit
dem BrdU-Reagenz, der Einbau in die DNA nachweisbar war.

Auch orientierten wir uns an der Arbeit von J. Schaumburger (Tübingen, 2000),
bei dessen Untersuchungen an Apophysenzellen eine 18-stündige Inkubations-
zei, sowie eine Zellkonzentration von 1x10^3 Zellen/Well zum Einsatz kamen.

Der Abb.29, in 3.4.1.1 ist zu entnehmen, dass bei niedrigen Zellkonzentrationen
von 1x10^3 Zellen/Well zum einen kein deulcher Unterschied im Proliferstions-
verhalten der humanen Osteoblasten verschiedener Patienten erkennbar ist, als
auch, dass sich die Zellaktivität nicht deutlich vom Background abhebt. Bei
dieser niedrigen Zellkonzentration wären, anhand der untersuchten humanen
Osteoblasten, keine aussagekräftigen Ergebnisse erruierbar. Auch deutet sich
bei einer Zellkonzentration von 1x10^4 Zellen/Well und einer BrdU-
Inkorporationszeit zwischen 18-23h ein Sättigungsbereich an, daher ent-
schieden wir uns zum einen für eine 13-15 stündige BrdU-Inkubationszeit und
um der optimalen Zellkonzentration möglichst nahe zu sein, im Rahmen der
Vorversuche, für die Untersuchung von zwei verschiedenen Zellkonzentrationen
von 5x10^3 und 1x10^4 Zellen/Well. So konnte sich die aussagekräftigste Zell-
konzentration für die Hauptversuche feststellen lassen. Bei einer 24h Inkubation
von 20ng BSP/Well lassen sich für humane Osteoblasten und Stromazellen bei

Aus den Messwerten und den Abb.32 und 33 in 3.4.1.3 geht jedoch hervor, dass sich diese significante Hemmung nicht bestätigen ließ. Betrachtet man in Abb.32, bei eingesetzten Proteinkonzentration von 60ng BSP/Well des Patienten O-LBI/8 und 20ng BSP/Well des Patienten O-POF/9, sowie in Abb.33, die Mittelwerte der Extinktionen, scheint eine leichte Hemmung des Proliferationsverhaltens bemerkbar zu sein, wobei die Standardabweichung zu hoch für ein signifikantes Ergebnis ist. Zu bedenken ist an dieser Stelle, dass sich die Osteoblasten dieses 3. Vorversuches in höheren Zellpassagen (5./7.Passage), als die Osteoblasten aus 3.4.1.2 befanden (4.Passage).

Denkbar wäre, wie bereits angesprochen, dass aussagekräftige Ergebnisse lediglich in niedrigeren Zellpassagen erzielt werden können. Mittelt man die Ergebnisse der humanen Osteoblasten des 2. und 3. Vorversuches, wie in Abb.34 dargestellt, so erkennt man, dass nun lediglich bei der höher eingesetzten Zellkonzentration Unterschiede im Extinktionsverhalten erkennbar sind, wobei auch hier die hohen Standardabweichungen ein aussagekräftiges

In 3.4.1.4, Abb.35, wurde erneut die Zellkonzentration von 5×10^3 humanen Osteoblasten/Well von 3 Patienten untersucht und für die eingesetzten Konzentrationen von 20 und 60ng BSP/Well der Patienten O-SLJ/10 und O-SEP/4 ließen sich signifikante Minderungen der Extinktionen mittels des BrdU-Assays ermitteln. Eine Hemmung der Proliferation, bedingt durch einen Mangel an Nährstoffen, im Vergleich zu Kontrollzellen, kann hier weitgehend ausgeschlossen werden, da bei den betreffenden Zellen über einen Zeitraum von 24h lediglich eine Nährstoffminderung von bis zu 3% bestand.

In Abb.36 wird nun ein weiteres Mal deutlich, wie sehr sich die Osteoblasten der unterschiedlichen Patienten in der Höhe ihrer Proliferations-Level unterscheiden, denn bei der Mittelung der gemessenen Extinktionen sind zwar noch geminderte Extinktionswerte erkennbar, jedoch ohne signifikantes Ergebnis. Da die Fragestellung dieser Arbeit der Untersuchung einer möglichen Änderung im Proliferationsverhalten der Zellen, bei einer BSP Inkubation galt, fokussierten wir uns, nach Eruierung einer aussagekräftigen Zellkonzentration, auf die Untersuchung eben jenen Effektes. In 3.4.1.4 kam eine Verdoppelung der BSP-Höchstdosis von 3.4.1.3 zum Einsatz, jedoch ohne signifikantes Ergebnis. Da lediglich bei Absolutkonzentrationen von 20ng BSP/Well und einer Zellkonzentration von 1×10^4 Zellen/Well an humanen Osteoblasten und Stromazellen, als auch bei Absolutkonzentrationen von 20 und 60ng BSP/Well und einer Zellkonzentration von 5×10^3 Zellen/Well an humanen Osteoblasten signifikante Ergebnisse ermittelt werden konnten (siehe Abb.31 und 35), diese
Ergebnisse bei Mittelung der Ergebnisse der unterschiedlichen Patienten jedoch nicht mehr reproduzierbar waren, entschieden wir uns wie in 3.3.2 die Hauptversuche mit weit umfassenden Proteinkonzentrationen über drei Größenordnungen durchzuführen, um relativ sicher einen potentiellen Wirkungsbereich der zwei untersuchten Proteine abzudecken.

4.1.4.2 Auswertung Hauptversuche BrdU

4.1.5 Histochemische Färbungen

4.1.5.1 AP- und von Kossa- Färbung

Die von Kossa Färbung im Wall dient dem Kalzifizierungs-Nachweis. Im Gegensatz zur AP wird die Osteokalzin Sekretion mit der Endphase der Pro-
liferation der Zellen und frühen Knochenmineralisierung assoziiert und es konnte an humanen periostalen Zellen, welche zu Osteoblasten differenziert wurden gezeigt werden, dass die Osteokalzinexpression zeitabhängig zunimmt, wobei nach 6 Wochen Differenzierung die höchsten Expressions- und Sekretionslevel in den Untersuchungen detektierbar waren und ein weiterer Anstieg sich als wahrscheinlich erwies (Park et al. 2007).

Andere aktuelle Ergebnisse zeigen mittels der von Kossa-Färbung, dass Kollagen I gebundenes Bone Sialoprotein in Zellen der Schädelkalotte von Ratten nach 4-7 Tagen eine erhöhte Knochenmineralisierung induziert (Xu et al. 2007).

4.1.5.2 Auswertung AP-Färbung

Wir konnten in unseren Untersuchungen bestätigen, dass humane Osteoblasten AP in Ihrer Membran exprimieren und wir konnten auch zeigen, dass humane Stromazellen (siehe Abb. 42 d-f) und Osteoblasten vom Schwein das Enzym exprimieren, wobei zwischen den eingesetzten BSP-Konzentrationen im Vergleich zu Kontrollzellen makro- und mikroskopisch kein Unterschied im Färbeverhalten erkennbar war. Da durch Kopplung von BSP an Kollagen nach einer 2-5 tägigen Inkubationszeit an Ratten in vivo eine quantitative Erhöhung der AP-Aktivität, sowie erhöhte Kalzium-Werte nachgewiesen werden konnten (Wang et al. 2006), stellt sich die Frage, ob unsere eingesetzte Färbemethode nicht sensibel genug für eine mögliche mikroskopisch sichtbare Induktion der AP Aktivität durch BSP war, oder aber, ob sich die rekombinanten Bone Sialoproteine vom Knochen-BSP in dafür wichtigen posttranslationalen Modifikationen unterscheiden. Möglich wäre auch, dass diese induzierende Eigenschaft des BSP nur Kollagen-gebunden vermittelt werden kann. Gegen diese Annahmen spricht, dass Osteoblasten der Ratte, welche täglich mit einem eukaryotisch hergestelltem rekombinantem BSP (2µg Protein/ml Medium) inkubiert worden waren, am 3. und 5. Tag, nicht jedoch früher, oder später, eine erhöhte AP-Aktivität aufwiesen, welche jedoch
im Vergleich zu Kontrollzellen zu keinem Zeitpunkt signifikante Ergebnisse aufwies (Gordon et al. 2007).

4.1.5.3 Auswertung von Kossa-Färbung

Kalzifizierungen im Well konnten wir mittels der von Kossa-Färbung an humanen Osteoblasten und auch Knochenmarkzellen vom Schwein in unseren Untersuchungen nachweisen. Da es sich in unserem Ansatz um einen qualitativen Nachweis handelte, waren keine quantitativen Rückschlüsse möglich. Zellen, welche mit unterschiedlichen Bone Sialoprotein- Konzen-

4.1.6 BSP, Prothesenbeschichtung

Aus medizinischer Sicht stellt sich auch die Frage, inwieweit eine medikamentöse Therapie mit Glukokortikoiden über das Glukokortikoid-Response Element eine BSP-Expression beeinflussen könnte.

In unveröffentlichten Arbeiten unseres Labors konnten wir mittels Adhäsionsuntersuchungen zeigen, dass bei einer ca. 20-minütigen BSP und Kollagen I Beschichtung von 6 Well Platten, anschließender Lufttrocknung bei Raumtemperatur und 24h-Inkubation mit humanen Osteoblasten, die BSP Beschichtung, im Vergleich zu Kontrolloberflächen, keine vermehrte Zelladhäsion fördert, jedoch auf Kollagen I beschichteten Oberflächen deutlich mehr Osteoblasten adhärent werden. Diese Ergebnisse deuten darauf hin, dass rekombinantes BSP im Rahmen der Beschichtung von Oberflächen nur eine eingeschränkte Zelladhäsions-Funktion hat. Des weiteren konnte in unseren Untersuchungen ein völlig neuer Aspekt der osteogenen Wirkung des humanen, rek. BSPs beobachtet werden. Im Rahmen der Differenzierung humaner Knochenmarkzellen zu Osteoblasten, mittels BSP beinhaltendem verdünntem Osteoblasten-Differenzierungsmedium, konnten wir nach einer zwei wöchigen Inkubation im 6 Well zeigen, dass rekombinantes BSP die Adipozytogenese humaner Knochenmarkzellen hemmt (Daten noch nicht veröffentlicht) und die Differenzierung in humane Osteoblasten fördert, was u.a. mittels verstärkter Alizarinrot-Färbung gezeigt werden kann (siehe Abb.45). Parallel, mit verdünntem Stammzellmedium und BSP Zusätzen inkubierte Knochenmarkzellen, weisen in der Färbung keine Anzeichen einer Kalzifizierung auf. Diese Ergebnisse waren bei unterschiedlich eingesetzten Zellkonzentrationen und den untersuchten Probanden variabel.
Unsere Ergebnisse zeigen, dass BSP auf die Zellen verschiedener Patienten einen unterschiedlich starken Einfluss hat. Die Beobachtung, dass BSP unter bestimmten Bedingungen die Adipozytogenese der Knochenmarkzellen hemmen kann, könnte einen wichtigen Aspekt für die zukünftigen Einsatzgebiete des BSPs darstellen.
5 Zusammenfassung

7 Primär- und Sekundärdaten

Primär- und Sekundärdaten wurden bei Prof. Aicher hinterlegt und sind auf Wunsch einsehbar.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildungen</td>
</tr>
<tr>
<td>abh.</td>
<td>abhängig</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>BSP</td>
<td>(1. rekombinantes) Bone Sialoprotein</td>
</tr>
<tr>
<td>bp</td>
<td>Basen-Paare</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-bromo-2'-desoxyuridin</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>Coxarthr.</td>
<td>Coxarthrose</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DRJ</td>
<td>(2. rekombinantes) Bone Sialoprotein</td>
</tr>
<tr>
<td>ECM</td>
<td>extrazelluläre Matrix</td>
</tr>
<tr>
<td>Ext.</td>
<td>Extinktion</td>
</tr>
<tr>
<td>Fl.</td>
<td>Flasche</td>
</tr>
<tr>
<td>GapDH</td>
<td>Glycerinaldehyd-3-phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>Gonarthr.</td>
<td>Gonarthrose</td>
</tr>
<tr>
<td>GRR</td>
<td>Glutamat-reiche Region</td>
</tr>
<tr>
<td>HA</td>
<td>Hydroxylapatit</td>
</tr>
<tr>
<td>HTP</td>
<td>Hüfttotalendoprothese</td>
</tr>
<tr>
<td>ID</td>
<td>Induktionsindex</td>
</tr>
<tr>
<td>i. O.</td>
<td>in Ordnung</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilo-Basenpaare</td>
</tr>
<tr>
<td>KTP</td>
<td>Knietotalendoprothese</td>
</tr>
<tr>
<td>LC</td>
<td>LightCycler</td>
</tr>
<tr>
<td>li</td>
<td>links</td>
</tr>
<tr>
<td>Lsg.</td>
<td>Lösung</td>
</tr>
<tr>
<td>min.</td>
<td>Minute</td>
</tr>
<tr>
<td>MMP-2</td>
<td>Matrix-Metalloproteinase-2</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonukleinsäure</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium Bromid
MW Mittelwert
n Anzahl
n. b. nicht bekannt
n. i. nicht isoliert
NSCLC nicht kleinzelliges Lungenkarzinom
Osteobl. Osteoblasten
P. Zell-Passage
p1-p3 Extinktion der Proben: (3-fach Bestimmung)
p1-p4 Extinktion der Proben: (4-fach Bestimmung)
p1-p7 Extinktion der Proben: (7-fach-Bestimmung)
p1-p8 Extinktion der Proben: (8-fach-Bestimmung)
Pat. Patient
PK Plattenepithelkarzinom
rBSP Rekombinantes BSP
re rechts
rek. rekombinant
RGD Arginin-Glycin-Aspartat-Zellbindungstripeptid
RNA Ribonukleinsäure
RT-PCR Real Time-Polymerase-Kettenreaktion
Sek. Sekunde
sog. sogenannte
SP Signalpeptid
Stromaz. Stromazellen
TGF-ß Transforming Growth Factor-ß
U/min. Umdrehungen/Minute
UTR untranslatierter Bereich
ü. N. über Nacht
YKS Tyrosin Kinase
Zellkonz. Zellkonzentration
9 Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. rer. nat. Wilhelm K. Aicher, unter dessen Leitung diese Promotion durchgeführt wurde. Bei Fragen und Verbesserungsvorschlägen stand er mir stets hilfreich zur Seite und beantwortete meine E-Mails so schnell, wie kein anderer Professor der medizinischen Fakultät Tübingen. Sehr gerne habe ich bei ihm meine Promotion absolviert.

Dr. Mathieu Meyer und Dr. Hugues Pascal-Moussellard danke ich für die freien Stunden im OP, in welchen ich an meiner Promotion arbeiten konnte.

Auch möchte ich mich bei allen anderen Personen, welche zum Gelingen dieser Arbeit beigetragen haben und hier aus Platzgründen nicht namentlich erwähnt wurden, bedanken.
10 Curriculum Vitae

Isa Maria Schmandke

18.06.1980 Geboren in Berlin - Charlottenburg als Tochter von Dr. Hans-Weert Klopp, Kinder- und Jugendarzt, und Rosemarie Klopp, Lehrerin

1987-2000 Schulzeit an der Freien Waldorfschule Engelberg bis zum Abitur,
1997 ½ Jähriger Auslandsaufenthalt in den USA (Colorado), dortiger Besuch der William J. Palmer High – School

2000-2001 Dreimonatiges Pflegepraktikum an der Universitäts-Frauenklinik in Freiburg, Arbeit auf der Wochenstation und im Kreißsaal

2002 Beginn des Studiums der Humanmedizin an der Ernst-Moritz-Arndt Universität in Greifswald

2005 Wechsel an die Eberhard Karls Universität in Tübingen

2006-2007 Experimentelle Doktorarbeit im Fachbereich Orthopädie bei Prof. Dr. rer. nat. Wilhelm K. Aicher

2007 ERASMUS Stipendium: ½ Jähriges Auslandsstudium an der Universität Pierre et Marie Curie in Paris. Dreimonatige Arbeit im Kinderklinikum Armand Trousseau in der Abteilung Pulmologie und Allergologie bei Prof. A. Grimfeld und Prof. J. Just, sowie dreimonatige Arbeit im Klinikum Pitié Salpêtrière in der Abteilung Orthopädie und Traumatologie bei Prof. Y. Catonne

2008 Seit Juli 08 Scheinfrei im Studiengang Humanmedizin der Universität Tübingen

2008 1. Preis der Medizinischen Fakultät Tübingen zur Verbesserung der Lehre

2008-2009 August 08-Juli 09 Absolvierung des Praktischen Jahres

17.07.2009 Eheschließung mit André Schmandke und Namensänderung

16./17.11.2009 Ärztliche Prüfung (2.Staatsexamen)