Abundanzen der Grünen Pfirsichblattlaus (*Myzus persicae* Sulzer) und der Grünstreiften Kartoffelblattlaus (*Macrosiphum euphorbiae* Thomas) an verschiedenen Kartoffelsorten

Dissertation
zur
Erlangung des akademischen Grades
Doktor der Agrarwissenschaften (doctor agriculturae)
an der Agrar- und Umweltwissenschaftlichen Fakultät
der Universität Rostock

Vorgelegt von
Dipl.-Ing. agr. Hend Aldamen
Aus Syrien

Rostock 2010

urn:nbn:de:gbv:28-diss2011-0041-8
Gutachter:

Prof. Dr. Bärbel Gerowitt
(Universität Rostock, Institut für Landnutzung, Phytomedizin)

Prof. Dr. Bernd Freier
Julius-Kühn-Institut – Bundesforschungsinstitut für Kulturpflanzen

Prof. Dr. Gerhard Lauenstein
Justus-von-Liebig-Universität Gießen

Tag der öffentlichen Verteidigung: 07.02.2011
4.2 Ergebnisse ... 34
4.2.1 M. persicae .. 34
4.2.2 M. euphorbiae .. 37
4.3 Diskussion ... 38

5 Sortenwahl von M. persicae und M. euphorbiae ... 40
5.1 Material und Methoden ... 40
5.1.1 Sortenwahl im Gewächshaus .. 40
5.1.2 Sortenwahl unter Semi-Freilandbedingungen ... 41
5.1.3 Statistische Auswertung .. 42
5.2 Ergebnisse ... 43
5.2.1 Sortenwahl im Gewächshaus .. 43
5.2.1.1 M. persicae .. 43
5.2.1.2 M. euphorbiae .. 43
5.2.2 Sortenwahl unter Semi-Freilandbedingungen ... 45
5.2.2.1 M. persicae .. 45
5.2.2.2 M. euphorbiae .. 45
5.3 Diskussion ... 47

6 Lebensdauer und Fruchtbarkeit von M. persicae und M. euphorbiae im Gewächshaus ... 49
6.1 Material und Methoden ... 49
6.1.1 Statistische Auswertung .. 49
6.2 Ergebnisse ... 50
6.2.1 M. persicae .. 50
6.2.2 M. euphorbiae .. 52
6.3 Diskussion ... 55

7 Freilandversuche zum Blattlausbefall und Farbspektren der Kartoffelsorten .. 58
7.1 Material und Methoden ... 58
7.1.1 Ermittlung des Blattlausbefalls an drei Standorten ... 58
7.1.1.1 Standort Rostock 2007 ... 59
7.1.1.2 Standort Sanitz und Gülzow .. 60
7.1.2 Identifizierung der Farbspektren verschiedener Kartoffelsorten 62
7.1.3 Statistische Auswertung .. 65
7.2 Ergebnisse ... 65
7.2.1 Blattlausbefall an verschiedenen Kartoffelsorten 65
7.2.1.1 Standort Rostock 2007 .. 65
7.2.1.2 Standort Sanitz 2006 und 2007 ... 70
7.2.1.3 Standort Gülzow 2006 und 2007 ... 73
7.2.2 Identifizierung der Farbspektren verschiedener Kartoffelsorten........... 76
7.2.3 Zusammenhang zwischen Reflexion und Blattlausbefall 83
7.2.4 Zusammenhang zwischen NDVI, WBI und Blattlausbefall 84
7.3 Diskussion ... 87
8 Behaarungsintensitäten und Blattlausdichten... 91
8.1 Material und Methode.. 92
8.1.1 Feststellung der Behaarungsdichten verschiedener Kartoffelsorten... 92
8.1.2 Statistische Auswertung ... 95
8.2 Ergebnisse .. 95
8.2.1 Behaarungsintensität an alten Kartoffelsorten der IPK-Genbank........ 95
8.2.2 Die Behaarungsintensität in den Versuchen: Sanitz, Gülzow, Rostock, In-Vitro und Gewächshausversuche .. 99
8.2.3 Korrelation zwischen dem Auftreten von Blattläusen und der Behaarungsintensität ... 102
8.3 Diskussion ... 102
9 Freie Aminosäuren- und Zuckergehalt und Blattlausdichte 106
9.1 Material und Methoden.. 107
9.1.1 Biochemische Untersuchungsmethoden .. 107
9.1.1.1 Bestimmung von freien Aminosäuren .. 107
9.1.1.2 Bestimmung von Zuckergehalt .. 108
9.2 Ergebnisse .. 108
9.2.1 Freie Aminosäuren ... 108
9.2.2 Zuckergehalt .. 111
9.2.3 Korrelation zwischen dem Auftreten von Blattläusen und den Aminosäure- u. Zuckergehalten ... 112
9.3 Diskussion ... 113
10 Schlussfolgerungen und Ausblick ... 116
11 Zusammenfassung ... 117
12 Literaturverzeichnis ... 120
Tabellen- und Abbildungsverzeichnis

Tabellenverzeichnis
Tabelle 1: Entwicklung der Kartoffelanbaufläche in Mecklenburg-Vorpommern. 5
Tabelle 2: Vermehrungsflächen in Hektar in Mecklenburg-Vorpommern 6
Tabelle 3: Entwicklung der Vermehrungsfläche nach Bundesländern............... 6
Tabelle 4: Das elektromagnetische Spektrum.. 14
Tabelle 5: Beschreibung der ausgewählten Kartoffelsorten 19
Tabelle 6: Mittlere Vermehrung der Blattläuse an den Cultivarsorten In-Vitro.. 25
Tabelle 7: Mittlere Vermehrung der Blattläuse an alten Kartoffelsorten und einer
Wildart In-Vitro.. 26
Tabelle 8: Mittlere Vermehrung der Blattläuse an den Kartoffelsorten an
Augenstecklingen im Gewächshaus.. 27
Tabelle 9: Mittlere Vermehrung der Blattläuse an den Kartoffelsorten im Semi-
Freiland ... 28
Tabelle 10: Mittlere Vermehrung der Blattläuse auf den 5 Blattetagen 35
Tabelle 11: Mittlere Besiedlung der Blattläuse auf den Kartoffelsorten unter
Gewächshausbedingungen 2007 .. 44
Tabelle 12: Mittlere Besiedlung der Blattläuse auf den Kartoffelsorten unter
Semi-Freilandbedingungen 2007 ... 46
Tabelle 13: Mittlere Lebensdauer, Gesamtzahl abgesetzter Jungläuse und
Anzahl Jungläuse/Mutterlaus je Tag der Adulten von M. persicae 51
Tabelle 14: Logistische Funktion für die Vermehrung von M. persicae 51
Tabelle 15: Mittlere Lebensdauer, Gesamtzahl abgesetzter Jungläuse und
Anzahl Jungläuse/Mutterlaus je Tag der Adulten von M. euphorbiae 53
Tabelle 16: Logistische Funktion für die Vermehrung von M. euphorbiae 54
Tabelle 17: Pflanzenbauliche Maßnahmen am Standort Rostock im Anbaujahr
2007 ... 60
Tabelle 18: Pflanzenbauliche Maßnahmen an den Standorten Gülzow und
Sanitz in den Anbaujahren 2006 und 2007... 61
Tabelle 19: Vegetationsindices und ihre Berechnung 64
Tabelle 20: Mittlere Anzahl der Blattläuse im Freilandversuch am Standort
Rostock 2007 ... 69
Abbildungsverzeichnis

Abbildung 1: Die Grüne Pfirsichblattlaus .. 8
Abbildung 2: Entwicklungszyklus einer Blattlausart im Jahresverlauf............... 10
Abbildung 3: Typisches spektrales Reflexionsvermögen von Vegetation und Boden ... 15
Abbildung 4: In-Vitro-Kulturen .. 20
Abbildung 5: Insektenkäfige mit Kartoffelpflanzen im Gewächshaus 21
Abbildung 8: Insektenzuchtkäfige unter Semi-Freilandbedingungen 24
Abbildung 9: Vergleich der Kartoffelsorten und Methoden bezüglich der Anzahl
an Blattläusen .. 29
Abbildung 10: Mikrokäfige zur Isolierung der Blattläuse auf 5 Blattetagen 33
Abbildung 11: Vermehrungsrate von \textit{M. persicae} und \textit{M. euphorbiae} auf den 5
Blattstadien .. 36
Abbildung 12: Vergleich der Kartoffelsorten bezüglich der Vermehrung der
Blattlaus \textit{M. Persicae} ... 36
Abbildung 13: Vergleich der Kartoffelsorten bezüglich der Vermehrung der
Blattlaus \textit{M. euphorbiae} .. 37
Abbildung 14: Die Insektenkäfige im Gewächshaus 41
Abbildung 15: Die Gazekäfige im Semi-Freiland .. 42
Abbildung 16: Vergleich der Kartoffelsorten bezüglich der Besiedlung durch die
Blattläuse im Gewächshaus (2007) .. 44
Abbildung 17: Vergleich der Kartoffelsorten bezüglich der Besiedlung durch die
Blattläuse unter Semi-Freilandbedingungen (2007) 46
Abbildung 18: Summenkurve der Anzahl täglicher Nachkommen von \textit{M.
persicae} an verschiedenen Kartoffelsorten ... 52
Abbildung 19: Summenkurve der Anzahl täglicher Nachkommen von \textit{M.
euphorbiae} an verschiedenen Kartoffelsorten .. 55
Abbildung 20: Einfluss der Wirtspflanze auf die Vermehrung von \textit{M. persicae}.. 57
Abbildung 21: Versuchsdesign und Sortenanordnung auf dem Versuchsfield
Rostock .. 59
Abbildung 22: Versuchsdesign und Sortenanordnung auf den Versuchsfeldern
bzw. ausgewählten Sorten in Gülzow und Sanitz 62
Abbildung 23: Artenspektrum der Kartoffelläuse am Standort Rostock 2007 ... 66
Abbildung 24: Auftreten der Blattläuse auf verschiedenen Kartoffelsorten am
Standort Rostock (2007) .. 67
Abbildung 25: Auftreten der Blattläuse am Standort Sanitz (2006 & 2007) 70
Abbildung 26: Artenspektrum der Kartoffelläuse am Standort Sanitz (2006 &
2007) ... 72
Abbildung 27: Vergleich der Kartoffelsorten bezüglich der Besiedlung der Blattläuse am Standort Sanitz (2006 & 2007) .. 73
Abbildung 28: Auftreten der Blattläuse am Standort Gülzow (2006 & 2007) 74
Abbildung 29: Artenspektrum der Kartoffelläuse am Standort Gülzow (2006-2007) .. 75
Abbildung 30: Vergleich der Kartoffelsorten bezüglich Besiedlung der Blattläuse am Standort Gülzow (2006 & 2007) .. 76
Abbildung 31: Veränderung der Remissionssignatur der Kartoffelsorten (Rostock 2007) .. 77
Abbildung 32: Veränderung der Remissionssignatur der Kartoffelsorten(Sanitz 2006).. 79
Abbildung 33: Veränderung der Remissionssignatur der Kartoffelsorten (Sanitz 2007).. 80
Abbildung 34: Veränderung der Remissionssignatur der Kartoffelsorten (Gülzow 2006).. 81
Abbildung 35: Veränderung der Remissionssignatur der Kartoffelsorten (Gülzow 2007).. 82
Abbildung 36: Veränderung des NDVI und des WBI der Kartoffelsorten an den Standorten Gülzow, Sanitz und Rostock (2006 & 2007)........... 84
Abbildung 37: Die einfachen einzelligen Haare auf den Kartoffelblättern....... 95
Abbildung 39: Mittlere Behaarungsintensität auf Blattunter- und oberseite unter Freilandbedingungen in Sanitz und Gülzow................................. 100
Abbildung 40: Mittlere Behaarungsintensität auf Blattunter- und oberseite am Standort Rostock, In-Vitro und Gewächshausversuche...................... 101
Abbildung 41: Korrelation zwischen der Behaarung von Blattunterseite und der Dichte der Blattläuse... 102
Abbildung 42: Der mittlere Gehalt von Saccharose, Glucose und Fructose in den Kartoffelblättern... 111
Abbildung 43: Der Zuckergehalt in den Kartoffelblätter 114
Abkürzungsverzeichnis

ASS Ammonsulfatsalpeter
BAZ Bundesanstalt für Züchtungsforschung an Kulturpflanzen
BEE Besondere Ernte- und Qualitätsermittlung
cv. Cultivar
ha Hektar
inkl. Inklusive
KAS Kalkammonsalpeter
I Liter
M Einheit für Molarität (Konzentrationsangabe in Mol pro Liter, mol/l)
m² Quadratmeter
nm Nanometer
Ø Durchmesser
R.P.M. Rotations per minute
U/min Umdrehungen pro Minute
UV Ultraviolettes Licht
VA vor dem Auflaufen der Kulturpflanzen
WG Wintergerste
1 Einleitung

die Sorten im Reifegrad, Verwendungszweck, Kochtyp und der Anfälligkeit gegenüber Schaderregern und Krankheiten, wie Nematoden oder Viruskrankheiten, unterscheiden. Wie anfällig die Sorten gegenüber Blattläusen sind, ist nicht enthalten.

M. persicae und *M. euphorbiae* sind wichtige Blattlausarten an Kartoffeln (*Solanum tuberosum* L.) (KUROLI & LANTOS 2006; LE ROUX et al. 2007). Die beiden Blattlausarten kolonisieren am häufigsten an der Kartoffel (RADCLIFFE & RAGSDALE 2002), sie sind weltweit verbreitet und bedeutende Virusvektoren (BLACKMAN & EASTOP 1984). Studien zur Besiedlung von Kartoffeln durch Blattläuse sind notwendig, um die Wirtserkennung bzw. die Prüfung auf Wirtseignung durch die Blattläuse zu verstehen. In dieser Arbeit wurde in verschiedenen Versuchen geprüft, ob Sortenunterschiede zwischen den Kartoffeln für die beiden Blattlausarten relevant sind. Im Einzelnen wurde dabei folgenden Fragen nachgegangen:

- Haben die Kartoffelsorten einen Einfluss auf die Vermehrungsleistung (Kapitel 3), Lebensdauer und Fruchtbarkeit (Kapitel 6) der Blattlausarten *M. persicae* und *M. euphorbiae*?
- Welchen Einfluss hat die Blattetage, d. h. das Alter und Höhe der Blätter von verschiedenen Kartoffelsorten auf die Vermehrungsrate von *M. persicae* und *M. euphorbiae*? (Kapitel 4)
• Gibt es Sortenunterschiede in der Präferenz der beiden Blattlausarten *M. persicae* und *M. euphorbiae*? (Kapitel 5)

• Wie verläuft der Befall verschiedener Kartoffelsorten durch Blattläuse unter Freilandbedingungen? (Kapitel 7)

• Gibt es einen Zusammenhang zwischen der Reflexion der Kartoffelblätter (Kapitel 7) sowie der Behaarungsintensität und der Blattlausbesiedlung? (Kapitel 8)

• Wird die Besiedlung der Blattläuse durch die freien Aminosäuren und Zucker (Saccharose, Fruktose, Glukose) in den Kartoffelblättern beeinflusst? (Kapitel 9)

Die Experimente zu diesen Fragen werden in der Arbeit in verschiedenen Kapiteln beschrieben, ihre Ergebnisse vorgestellt und diskutiert.
2 Literaturübersicht

2.1 Geschichte der Kartoffel

Heutzutage treten zwar durch den Einsatz von Pflanzenschutzmitteln keine Epidemien mehr auf, doch die Verluste durch Pflanzenkrankheiten sind nach wie vor groß. Die Weltjahreskartoffelproduktion könnte jedoch 400 Millionen t erreichen, wenn keine Ernteverluste durch Krankheiten auftreten würden (AGRIOS 1997). Es werde zweihundertdreißig bis zweihundertvierzig Kartoffelarten beschrieben, deshalb steht für die Kartoffelzüchtung eine größere Vielfalt an genetischen Variationen zur Verfügung, als für andere Kulturpflanze (MICHAEL 2002; ALVAREZ et al. 2006).

2.2 Entwicklung der Kartoffelanbaufläche in Mecklenburg-Vorpommern

Tabelle 1: Entwicklung der Kartoffelanbaufläche in Mecklenburg-Vorpommern

<table>
<thead>
<tr>
<th>Anbaufläche in ha</th>
<th>1993</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartoffeln (insgesamt)</td>
<td>23.078</td>
<td>15.352</td>
<td>16.319</td>
<td>17.470</td>
<td>15.666</td>
<td>16.599</td>
</tr>
<tr>
<td>Prozentualer Anteil</td>
<td>24,7</td>
<td>23,5</td>
<td>22,0</td>
<td>21,8</td>
<td>21,8</td>
<td>20,2</td>
</tr>
</tbody>
</table>

Quelle: BEE (2006)

Tabelle 2: Vermehrungsflächen in Hektar in Mecklenburg-Vorpommern

<table>
<thead>
<tr>
<th>Reifegruppe</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Bestimmende Sorten 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr früh</td>
<td></td>
<td></td>
<td></td>
<td>Salome (43ha) Solist, Berber (42 ha), Donald (41 ha)</td>
</tr>
<tr>
<td>Speisesorten</td>
<td>188</td>
<td>152</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Wirt-Sorten</td>
<td>87</td>
<td>136</td>
<td>135</td>
<td>Zorba (EU, 98 ha), Terrana (37 ha)</td>
</tr>
<tr>
<td>Früh</td>
<td></td>
<td></td>
<td></td>
<td>Karlena (303 ha), Marabel (44 ha), Vineta (43 ha)</td>
</tr>
<tr>
<td>Speisesorten</td>
<td>899</td>
<td>773</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>Wirt-Sorten</td>
<td>144</td>
<td>83</td>
<td>65</td>
<td>Tomensa (35 ha), Kolibri, Power (7 ha)</td>
</tr>
<tr>
<td>Mittelfrüh</td>
<td></td>
<td></td>
<td></td>
<td>Agria (214 ha), Pirol 76 ha, Adretta (58), R.Burbank 57 ha</td>
</tr>
<tr>
<td>Speisesorten</td>
<td>925</td>
<td>913</td>
<td>884</td>
<td></td>
</tr>
<tr>
<td>Wirt-Sorten</td>
<td>395</td>
<td>362</td>
<td>383</td>
<td>Lady Claire (EU, 51 ha) Jumbo (49 ha), Albatros (42 ha)</td>
</tr>
<tr>
<td>Mittelspät</td>
<td></td>
<td></td>
<td></td>
<td>Fasan (63 ha), Saturna (56 ha)</td>
</tr>
<tr>
<td>Speisesorten</td>
<td>232</td>
<td>179</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Wirt.-Sorten</td>
<td>744</td>
<td>626</td>
<td>490</td>
<td>Kuras (138 ha), Elkana (EU, 81 ha), Festien (EU, 28 ha)</td>
</tr>
</tbody>
</table>

Quelle: PIENZ & MICHEL (2006)

Aus Tabelle 3 geht hervor, dass in Mecklenburg-Vorpommern mit 243 ha (7%) die größte Ausdehnung von Vermehrungsflächen im Jahr 2007 gegenüber 2006 stattfand, während in den meisten anderen Vermehrungsgebieten die Vermehrungsflächen nur geringfügig erweitert wurden.

Tabelle 3: Entwicklung der angemeldeten Vermehrungsfläche 2006-2009 nach Bundesländern

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>ha</td>
<td>%</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>5494</td>
<td>5547</td>
<td>53 1</td>
<td>5326</td>
<td>5607</td>
<td>281 5</td>
</tr>
<tr>
<td>M-V</td>
<td>3355</td>
<td>3598</td>
<td>243 7</td>
<td>3784</td>
<td>3909</td>
<td>125 3</td>
</tr>
<tr>
<td>Bayern</td>
<td>2569</td>
<td>2585</td>
<td>16 1</td>
<td>2388</td>
<td>2512</td>
<td>124 5</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>1783</td>
<td>1817</td>
<td>34 2</td>
<td>1742</td>
<td>1797</td>
<td>55 3</td>
</tr>
<tr>
<td>Sachsen</td>
<td>724</td>
<td>779</td>
<td>55 8</td>
<td>795</td>
<td>827</td>
<td>32 4</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>646</td>
<td>622</td>
<td>-24 -4</td>
<td>563</td>
<td>574</td>
<td>11 2</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>632</td>
<td>656</td>
<td>24 4</td>
<td>573</td>
<td>604</td>
<td>31 5</td>
</tr>
<tr>
<td>Thüringen</td>
<td>455</td>
<td>510</td>
<td>55 12</td>
<td>445</td>
<td>478</td>
<td>33 7</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>452</td>
<td>424</td>
<td>-28 -6</td>
<td>370</td>
<td>384</td>
<td>14 4</td>
</tr>
<tr>
<td>Hessen</td>
<td>221</td>
<td>199</td>
<td>-22 -10</td>
<td>209</td>
<td>213</td>
<td>4 2</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>71</td>
<td>50</td>
<td>-21 -30</td>
<td>81</td>
<td>87</td>
<td>6 7</td>
</tr>
<tr>
<td>Deutschland gesamt:</td>
<td>16402</td>
<td>16787</td>
<td>385 2</td>
<td>16277</td>
<td>16992</td>
<td>715 4</td>
</tr>
</tbody>
</table>

Quelle: ERBE & LÜTHKE 2007, 2009

2.3 Krankheitserreger und Schädlinge der Kartoffel

Aufgrund der weltweiten Verbreitung der Kartoffel und des oft sehr konzentrierten Anbaus ist die Kartoffel dem Befall durch Krankheitserreger und

2.4 Blattlausarten

Die Insektenklasse Blattläuse, die aus mehreren Familien besteht, gehört zur Unterordnung Homoptera, die neben den Heteroptera zu der Ordnung der Schnabelkerfe zählt. Bei den Homoptera sind im Gegensatz zu den Heteropteren die Vorderflügel wie die Hinterflügel dünnhäutig und von etwa gleicher Form. In Ruhestellung sind die Flügel an die Körperseite angelegt und dachförmig (MOLDENHAUER & SCHRÖDER 1980). Die Homopteren gliedern sich in fünf Familiengruppen, die alle ausschließlich Pflanzensauber sind:

1. Zikaden (Cicadina)
2. Blattflöhe (Psyllina)
3. Mottenschildläuse (Aleurodina)
4. Schildläuse (Coccidina)
5. Blattläuse (Aphidina)

Die Blattläuse werden in acht Familien unterteilt:

2.4.1 Grüne Pfirsichblattlaus (*Myzus persicae*)

Beschreibung

Später breiten sich die Kolonien auf die Blätter der Jungtriebe aus. Im Mai und Juni entwickeln sich geflügelte Weibchen, die auf zahlreiche Sommerwie (Zuckerrübe, Kartoffeln, Gräser und andere) abwandern. Erst erscheinen geflügelte Weibchen, deren Nachkommen zu Geschlechtsweibchen heranwachsen, später die Männchen. Im Oktober und November erfolgt die Ablage der befruchteten Wintereier. Der Entwicklungszyklus einer Blattlausart im Jahresverlauf wird in Abbildung 2 beschrieben. Auf Kohlgewächsen und anderen Wirtspflanzen (insbesondere im Gewächshaus) kann sich diese Art auch das ganze Jahr ohne Wirtswechsel lebend gebärend und parthenogenetisch fortpflanzen (HÖHN et al. 1995).

Abbildung 2: Entwicklungszyklus einer Blattlausart im Jahresverlauf (A: Stammmutter, B: Aptere, C: Alate, D: Gynopare, E: Weibchen, F: Männchen, G: Ei, nach JONES 1942)

2.4.2 Gestreifte Kartoffellaus (*Macrosiphum euphorbiae*)

Das Synonym der Grünstreifigen Kartoffelblattlaus ist *Macrosiphum euphorbiae*. Die Grünstreifige Kartoffelblattlaus, weltweit verbreitet, ist in Mitteleuropa alljährlich an Kartoffel zu finden, allerdings nicht so zahlreich wie die Grüne Pfirsichblattlaus (DUBNIK 1991; BLACKMAN & EASTOP 2007). Der Grünstreifigen

Beschreibung

2.5 Blattläuse auf Kartoffel
In der Literatur fanden sich seit vielen Jahren Hinweise auf den Unterschied in der Anfälligkeit von Kartoffeln gegenüber Blattläusen. In den USA berichtete MAUGHAN (1937) über einen großen Unterschied in dem Blattlausbefall auf elf Kartoffelsorten. Aber er hat die Blattlausarten nicht genannt. BURNHAM & MACLEOD (1942) zeigten, dass die Kartoffelsorte Katahdin sehr empfindlich gegen *M. persicae* war. Die Kartoffelsorten Up-to-Date, Green Mountain und President waren weniger anfällig.

2.6 Die Blattoberflächeneigenschaften und Blattinhaltsstoffe

2.7 Fluggewohnheiten der Blattläuse und Farbsehen

Die Fluggewohnheiten der Blattläuse werden in Migrationsflüge (Wanderflüge) und Dispersionsflüge (Verbreitungflüge) unterteilt. Migrationsflüge dienen dem Aufsuchen der Haupt- oder Nebenwirte und bei dem Dispersionsflug erfolgt die Verbreitung der Population im Allgemeinen. Der Abflug von der Wirtspflanze wird durch eine positive Reaktion der Blattläuse auf weißes und ultravioletthaltiges Licht ausgelöst und findet nur bei günstigen

2.8 Spektralverhalten der Vegetation

Tabelle 4: Das elektromagnetische Spektrum

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Abkürzung</th>
<th>Wellenlängen (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichtbares Licht</td>
<td>VIS</td>
<td>400-700</td>
</tr>
<tr>
<td>Violett</td>
<td></td>
<td>400-440</td>
</tr>
<tr>
<td>Blau</td>
<td></td>
<td>440-500</td>
</tr>
<tr>
<td>Grün</td>
<td></td>
<td>500-570</td>
</tr>
<tr>
<td>Gelb</td>
<td></td>
<td>570-590</td>
</tr>
<tr>
<td>Orange</td>
<td></td>
<td>590-620</td>
</tr>
<tr>
<td>Rot</td>
<td></td>
<td>620-700</td>
</tr>
<tr>
<td>Nahes Infrarot</td>
<td>NIR</td>
<td>700-1300</td>
</tr>
<tr>
<td>Mittleres Infrarot</td>
<td>MIR</td>
<td>1300-3000</td>
</tr>
</tbody>
</table>

(nach JUNKER 2003)

Abbildung 3: Typisches spektrales Reflexionsvermögen von Vegetation und Boden (nach SCHNEIDER 1994)
Das Spektralverhalten eines gesunden Blattes kann wie folgt eingeteilt werden:

- **400-700 nm (VIS vom englischen „visible“):** Absorption der für die Photosynthese erforderlichen Energie (photosynthetisch aktive Strahlung PAR) durch Chlorophyll vor allem im Blau- und Rotbereich; vorwiegende Reflexion und Transmission im grünen Bereich (lokales Maximum bei 550 nm). Die Höhe der Absorption ist von der Menge und der Art der Pigmente abhängig und liegt in der Größenordnung von 70-95% der Einstrahlung (HILDEBRANDT 1996).

- **700-1300 nm (NIR, „near infrared“):** steiler Anstieg der Reflexionskurve an einer Absorptionskante (Rotschulter); starkes Streuungs- und Brechungsverhalten durch Gewebestruktur in Abhängigkeit von Zahl, Größe und Form der Zellen im Blattgewebe (KRONBERG 1985). Je nach Pflanzenart beträgt die Reflexion in diesem Bereich 30-70% (HILDEBRANDT 1996), und eine Absorption durch Blattpigmente findet kaum statt.

- **1300-2600 nm (SWIR, „short wave infrared“):** verringerte Reflexion und Transmission, bei steigender Absorption, hervorgerufen durch das im Blattgewebe enthaltene Wasser mit Maxima bei 1450 nm, 1900 nm und 2600 nm (WEVER 1989).
3 Vermehrungsrate der Blattlausarten *M. persicae* und *M. euphorbiae*

Ziel des ersten Experiments der vorliegenden Arbeit war es, die optimale Vermehrungsleistung der Blattlausarten *M. persicae* und *M. euphorbiae* an verschiedenen Kartoffelsorten unter verschiedenen Bedingungen zu erreichen. Das Vorhaben sollte klären, welche Methode (Augenstecklinge im Gewächshaus, In-Vitro-Kulturen und Semi-Freilandversuche) zu der Vermehrung der Blattläuse am besten geeignet ist.

3.1 Material und Methoden

Zur Ermittlung der Vermehrungsleistung der Blattlausarten wurden insgesamt drei verschiedene Versuchsmethoden benutzt (Augenstecklinge im Gewächshaus, In-Vitro-Kulturen und Semi-Freilandversuche).

3.1.1 Anzucht der Blattläuse

Für die Vermehrung der Blattläuse wurde bei allen Versuchen gleich altes Blattlausmaterial (Adulte) benutzt und ein einheitlicher Zeitraum gewählt. 12 Tage nach dem Versuchsbeginn wurden die Anzahl der überlebenden Blattläuse und ihre Vermehrung festgehalten.

3.1.2 Herkunft der Kartoffelsorten

Das In-Vitro-Material der untersuchten Kartoffelsorten Blaue Schweden, Hankkijas Tanu, Hindenburg und der Wildart *Solanum subpanduratum* O. wurde von IPK (Institut für Pflanzengenetik und Kulturpflanzenforschung) Groß Lüsewitz-Rostock zur Verfügung gestellt.
<table>
<thead>
<tr>
<th>Knolleneigenschaften</th>
<th>Albatros</th>
<th>Bowina</th>
<th>Fasan</th>
<th>Kormoran</th>
<th>Pirol</th>
<th>Romanze</th>
<th>Salome</th>
<th>Terrana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knollenform</td>
<td>oval</td>
<td>oval</td>
<td>rundoval</td>
<td>oval</td>
<td>rundoval</td>
<td>oval</td>
<td>oval</td>
<td>rundoval</td>
</tr>
<tr>
<td>Augentiefe</td>
<td>flach bis mittel</td>
<td>flach</td>
<td>flach bis mittel</td>
<td>flach bis mittel</td>
<td>flach</td>
<td>flach</td>
<td>flach</td>
<td>mittel</td>
</tr>
<tr>
<td>Schalenbeschaffenheit</td>
<td>genetzt bis rau</td>
<td>glatt bis genetzt</td>
<td>rau bis genetzt</td>
<td>genetzt</td>
<td>genetzt bis glatt</td>
<td>genetzt bis glatt</td>
<td>genetzt bis rau</td>
<td></td>
</tr>
<tr>
<td>Fleischfarbe</td>
<td>hellgelb</td>
<td>gelb</td>
<td>hellgelb</td>
<td>hellgelb</td>
<td>hellgelb bis gelb</td>
<td>gelb</td>
<td>gelb</td>
<td>gelblich weiß</td>
</tr>
<tr>
<td>Stärkeertrag</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch bis sehr hoch</td>
<td>hoch bis sehr hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>sehr hoch</td>
</tr>
<tr>
<td>Knollenertrag</td>
<td>mittel bis hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>mittel</td>
<td>hoch</td>
<td>hoch</td>
<td>mittel bis hoch</td>
</tr>
<tr>
<td>Knollengröße</td>
<td>mittel bis groß</td>
<td>mittel bis groß</td>
<td>mittel</td>
<td>mittel groß</td>
<td>mittel</td>
<td>mittel bis groß</td>
<td>mittel</td>
<td></td>
</tr>
<tr>
<td>Knollenansatz</td>
<td>mittel</td>
<td>mittel</td>
<td>hoch, relativ spät</td>
<td>mittel bis hoch</td>
<td>mittel</td>
<td>mittel bis hoch</td>
<td>mittel</td>
<td></td>
</tr>
<tr>
<td>Sortierung</td>
<td>ausgeglichen</td>
<td>ausgeglichen</td>
<td>sehr ausgeglichen</td>
<td>ausgeglichen</td>
<td>ausgeglichen</td>
<td>ausgeglichen</td>
<td>ausgeglichen</td>
<td></td>
</tr>
<tr>
<td>Reifegruppe</td>
<td>mfr</td>
<td>sfr</td>
<td>msp-sp</td>
<td>msp-sp</td>
<td>mfr</td>
<td>mfr</td>
<td>sfr</td>
<td>sfr</td>
</tr>
</tbody>
</table>

Resistenzen gegen

| Nematoden | Ro1, Ro4 |
| Krebs | Pathotyp D1 |

Y-Virus	sehr hoch	hoch	sehr hoch	sehr hoch	hoch	mittel	hoch bis sehr hoch	sehr hoch	sehr hoch
Blattrollvirus	sehr hoch	mittel	hoch	hoch	hoch				
Krautfäule	mittel	mittel	mittel	mittel	mittel	hoch	hoch	mittel bis hoch	hoch
Schwarzbeinigkeit	mittel bis hoch	hoch							
Rhizoctonia	hoch	hoch	mittel	hoch	hoch	hoch	sehr hoch	sehr hoch	
Wipfelroller	hoch	hoch	mittel	hoch	hoch	hoch	hoch	hoch	
Eisenfleckigkeit	mittel bis hoch	hoch	sehr hoch	hoch	sehr hoch	hoch	sehr hoch	sehr hoch	
Schorf	mittel	hoch	hoch	mittel	hoch	mittel bis hoch	hoch	mittel bis hoch	
Knollenfäulen	mittel bis hoch	hoch	hoch	hoch	mittel bis hoch	hoch	hoch	mittel	hoch

Quelle: BUNDESSORTENAMT (2005)
fr: frühe Reifegruppe
mfr: mittelfrühe Reifegruppe
msp-sp: mittelspäte bis sehr späte Reifegruppe
R = resistent 1 = sehr anfällig
Ro = Globodera Rostochiensis
3.1.3 Vermehrung In-Vitro

Abbildung 4: In-Vitro-Kulturen

3.1.4 Vermehrung an Augenstecklingen im Gewächshaus

Die Augenstecklinge wurden mit einem Messer von den Knollen gelöst. Dann wurden sie 15 Minuten in eine Lösung bestehend aus 1 mg/l Gibberillinsäure und 6 g/l Thioharnstoff getaucht. Die Augenstecklinge von den acht Kartoffelsorten wurden in mit Einheitserde gefüllte Pflanztöpfe gepflanzt. Die Maße der Gefäße betrugen 7 x 7 x 8 cm. Die Klimabedingungen waren 22±1°C, 16h Licht/ 8h Dunkelheit. Für diesen Versuch wurden Insektenkäfige verwendet,

Abbildung 5: Insektenkäfige mit Kartoffelpflanzen im Gewächshaus

3.1.5 Vermehrung im Semi-Freiland

Der Mai 2006 war mit 61 mm niederschlagsreicher als das langjährige Mittel des besagten Monats. In den Monaten Juni und Juli hat es deutlich weniger geregnet im Vergleich zum langjährigen Mittel dieser Monate. Die Niederschlagsmenge im Juli war mit 14 mm/m² besonders gering. Die Temperaturen im Mai, Juni und Juli waren zum Teil deutlich höher als die Werte des langjährigen Mittels. Der Juli war mit 20,8°C sogar 4°C wärmer als das langjährige Mittel dieses Monats (Abbildung 6).

![Abbildung 6: Witterungsdiagramm der Wetterstation von Groß Lüsewitz im Jahr 2006](image)

Abbildung 7: Witterungsdiagramm der Wetterstation von Groß Lüsewitz im Jahr 2007
3.1.6 Statistische Auswertung

\[
\text{Vermehrungsrate} = \frac{\text{Anzahl der abgesetzten Blattläuse nach 12 Tagen/Pflanze}}{\text{Anzahl der aufgesetzten Blattläusen / Pflanze}}
\]

3.2 Ergebnisse

3.2.1 Vermehrung In-Vitro

3.2.1.1 Vermehrung an Cultivarsorten

Insgesamt betrug die durchschnittliche Anzahl abgesetzter Jungläuse von *M. euphorbiae* 3,6. Die durchschnittliche Anzahl abgesetzter Jungläuse von *M. persicae* betrug 5,3 (Tabelle 6). Die Gegenüberstellung des
Durchschnittsbefalls durch *M. euphorbiae* und *M. persicae* der Varianten aller Untersuchungen ergab eine Streubreite von 2 bis 5 bzw. 4 bis 7. Die höchste Vermehrung der Grünstreifigen Kartoffelblattlaus und der Pfirsichblattlaus trat bei Salome (5,2) bzw. Kormoran (7,1), Borwina (7) und Fasan (6,9) auf. Diese 4 Sorten unterschieden sich statistisch signifikant von den übrigen Sorten.

Bei den Kartoffelsorten Romanze (2,2) und Kormoran (2,4) war die geringste Vermehrungsrate von *M. euphorbiae* zu beobachten. Die geringste Vermehrungsrate von *M. persicae* trat bei Salome (3,9) auf.

Tabelle 6: Mittlere Vermehrung der Blattläuse an den Cultivarsorten In-Vitro (*X* ±SE; n= Anzahl der Pflanzen im Test; einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>M. persicae</th>
<th>M. euphorbiae</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Vitro</td>
<td>n ***</td>
<td>n ***</td>
<td></td>
</tr>
<tr>
<td>Albatros</td>
<td>134 4,4 ± 0,2</td>
<td>165 4,2 ± 0,13</td>
<td>4,3 ± 0,1</td>
</tr>
<tr>
<td>Borwina</td>
<td>112 7,0 ± 0,2</td>
<td>108 3,4 ± 0,16</td>
<td>5,3 ± 0,2</td>
</tr>
<tr>
<td>Fasan</td>
<td>90 6,9 ± 0,19</td>
<td>101 3,1 ± 0,17</td>
<td>4,9 ± 0,2</td>
</tr>
<tr>
<td>Kormoran</td>
<td>94 7,1 ± 0,2</td>
<td>103 2,4 ± 0,17</td>
<td>4,7 ± 0,2</td>
</tr>
<tr>
<td>Pirol</td>
<td>117 4,3 ± 0,2</td>
<td>139 3,2 ± 0,14</td>
<td>3,7 ± 0,2</td>
</tr>
<tr>
<td>Romanze</td>
<td>105 4,5 ± 0,18</td>
<td>118 2,2 ± 0,15</td>
<td>3,3 ± 0,2</td>
</tr>
<tr>
<td>Salome</td>
<td>150 3,9 ± 0,17</td>
<td>147 5,2 ± 0,14</td>
<td>4,6 ± 0,2</td>
</tr>
<tr>
<td>Terrana</td>
<td>156 5,4 ± 0,2</td>
<td>156 4,1 ± 0,13</td>
<td>4,8 ± 0,1</td>
</tr>
</tbody>
</table>

| Mittel | 5,3 ± 0,2 | 3,6 ± 0,15 | 4,4 ± 0,2 |

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (α=0,05; n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

3.2.1.2 Vermehrung auf alten Kartoffelsorten bzw. Arten

Die geringste Vermehrungsrate sowohl von *M. persicae* als auch von *M. euphorbiae* war bei der Wildart *S. subpanduratum* und der Sorte Hindenburg. Diese Sorten wiesen statistisch signifikante Differenzen zu den Sorten Blaue Schweden und Hankkijas Tanu auf.

Im Vergleich mit den Cultivarsorten hatten die beiden Blattlausarten geringere Vermehrungsraten auf den alten Kartoffelsorten. Sowohl bei den Cultivarsorten
als auch bei alten Kartoffelsorten hatte *M. persicae* um 1,7 höhere Vermehrungsraten als *M. euphorbiae*.

Tabelle 7: Mittlere Vermehrung der Blattläuse an alten Kartoffelsorten und einer Wildart In-Vitro (\(\bar{X} \pm SE; n= \) Anzahl der Pflanzen im Test; einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Sorte bzw. Art</th>
<th>M. persicae</th>
<th>M. euphorbiae</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n*</td>
<td>n*</td>
<td>Mittel</td>
</tr>
<tr>
<td>S. subpanduratum (Wildart)</td>
<td>15</td>
<td>45</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>0,4 ± 0,68 a</td>
<td>1,8 ± 0,29 a</td>
<td></td>
</tr>
<tr>
<td>Blaue Schweden</td>
<td>30</td>
<td>75</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>4,8 ± 0,48 b</td>
<td>3,0 ± 0,22 b</td>
<td></td>
</tr>
<tr>
<td>Hankkijas Tanu</td>
<td>45</td>
<td>60</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>6,4 ± 0,39 b</td>
<td>3,8 ± 0,25 b</td>
<td></td>
</tr>
<tr>
<td>Hindenburg</td>
<td>15</td>
<td>30</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>1,9 ± 0,68 a</td>
<td>1,5 ± 0,35 a</td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>4,4</td>
<td>2,7</td>
<td></td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (\(\alpha=0,05; n.s.= \) nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

3.2.2 Vermehrung an Augenstecklingen im Gewächshaus

Tabelle 8: Mittlere Vermehrung der Blattläuse an den Kartoffelsorten an Augenstecklingen im Gewächshaus ($\overline{x} \pm$SE; n = Anzahl der Pflanzen im Test; einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>M. persicae</th>
<th>M. euphorbiae</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n ***</td>
<td>n ***</td>
<td></td>
</tr>
<tr>
<td>Albatros 20</td>
<td>6,3 ± 1,2 ab</td>
<td>12,7 ± 0,99 bc</td>
<td>10,5 ± 1,0</td>
</tr>
<tr>
<td>Borwina 34</td>
<td>13,7 ± 0,9 c</td>
<td>19,2 ± 1,22 d</td>
<td>16 ± 1,0</td>
</tr>
<tr>
<td>Fasan 30</td>
<td>13,9 ± 0,9 c</td>
<td>12,8 ± 1,15 bc</td>
<td>13,4 ± 1,0</td>
</tr>
<tr>
<td>Kormoran 39</td>
<td>10,2 ± 0,8 bc</td>
<td>16,0 ± 1,37 c</td>
<td>12,2 ± 1,0</td>
</tr>
<tr>
<td>Pirol 13</td>
<td>10,5 ± 1,4 bc</td>
<td>12,5 ± 1,03 bc</td>
<td>12 ± 1,1</td>
</tr>
<tr>
<td>Romanze 22</td>
<td>5,9 ± 1,1 a</td>
<td>11,3 ± 1,40 b</td>
<td>8,4 ± 1,2</td>
</tr>
<tr>
<td>Salome 14</td>
<td>9,1 ± 1,4 ab</td>
<td>6,1 ± 1,03 a</td>
<td>6,9 ± 1,1</td>
</tr>
<tr>
<td>Terrana 15</td>
<td>10,7 ± 1,3 bc</td>
<td>11,5 ± 0,90 bc</td>
<td>11,3 ± 1,0</td>
</tr>
<tr>
<td>Mittel</td>
<td>10,5 ± 1,0</td>
<td>12,3 ± 1,09</td>
<td>11,5 ± 1,1</td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin ($\alpha=0,05$; n.s. = nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

3.2.3 Vermehrung im Semi-Freiland

Die Grünstreifige Kartoffelblattlaus (*M. euphorbiae*) hatte die geringste Vermehrungsraten auf den Kartoffelsorten Pirol (2,8) und Terrana (3). Diese Sorten unterschieden sich statistisch signifikant nur von Borwina und Albatros. Im Gegensatz dazu trat die geringste Vermehrungsrate von Grüner Pfirsichblattlaus (*M. persicae*) bei Romanze (3,4) auf, was sie aber nur statistisch signifikant von Kormoran und Borwina unterschied.
Tabelle 9: Mittlere Vermehrung der Blattläuse an den Kartoffelsorten im Semi-Freiland (\[\bar{X} \pm SE; n= Anzahl der Pflanzen im Test; einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>M. persicae</th>
<th>M. euphorbiae</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n ***</td>
<td>n ***</td>
<td></td>
</tr>
<tr>
<td>Albatros</td>
<td>15 4,9 ± 0,95 ab</td>
<td>15 16,7 ± 0,94 b</td>
<td>10,8 ± 0,94</td>
</tr>
<tr>
<td>Borwina</td>
<td>15 7,6 ± 0,99 b</td>
<td>15 18,7 ± 1,21 b</td>
<td>13,2 ± 1,08</td>
</tr>
<tr>
<td>Fasan</td>
<td>15 4,6 ± 0,91 ab</td>
<td>15 6 ± 1,18 a</td>
<td>5,3 ± 1,04</td>
</tr>
<tr>
<td>Kormoran</td>
<td>15 14 ± 0,98 c</td>
<td>15 3,6 ± 1,02 a</td>
<td>8,8 ± 1,00</td>
</tr>
<tr>
<td>Pirol</td>
<td>15 4,9 ± 1,04 ab</td>
<td>15 2,8 ± 1,15 a</td>
<td>3,8 ± 1,12</td>
</tr>
<tr>
<td>Romanze</td>
<td>15 3,4 ± 1,17 a</td>
<td>15 5,9 ± 0,89 a</td>
<td>4,6 ± 1,04</td>
</tr>
<tr>
<td>Salome</td>
<td>15 4,6 ± 1,00 ab</td>
<td>15 9,3 ± 1,02 a</td>
<td>7 ± 1,02</td>
</tr>
<tr>
<td>Terrana</td>
<td>15 4,9 ± 1,02 ab</td>
<td>15 3 ± 1,05 a</td>
<td>3,9 ± 1,04</td>
</tr>
</tbody>
</table>

| Mittel | 6,1 ± 1,00 | 8,3 ± 1,06 | 7,2 ± 1,03 |

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (\(\alpha=0,05;\ n.s.=\) nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

3.3 Diskussion

Abbildung 9: Vergleich der Kartoffelsorten und Methoden bezüglich der Anzahl an Blattläusen

Die Ursache für die unterschiedlichen Ergebnisse (Reproduktionsrate der Blattläuse) könnten die unterschiedlichen Inhaltsstoffe in den Kartoffelsorten sein. BERNAYS & CHAPMAN (1994) haben festgestellt, dass das Protein der wichtigste Nährstoff für phytophage Insekten ist und es am häufigsten der limitierende Nährstoff für ein optimales Wachstum der Insekten wird.

Der Vergleich der Methoden untereinander ergab oftmals bei gleichen Sorten größere Abweichungen in der Vermehrungsrate. Das ist wahrscheinlich auf unterschiedliche Entwicklungsbedingungen der Läuse zurückzuführen. Obwohl die abgesetzten Blattläuse stets gleich alt waren, fanden die Versuche in
4 Vermehrungsraten von *M. persicae* und *M. euphorbiae* auf verschiedenen Blattetagen

Das in diesem Kapitel beschriebene Experiment untersucht die Wirkung der Blattetagen von verschiedenen Kartoffelsorten auf die Vermehrungsrate der Blattlausarten *M. persicae* und *M. euphorbiae* im Einzelblatttest.

4.1 Material und Methoden

4.1.1 Anzucht der Blattlausarten

Ausgewählt wurden die Grüne Pfirsichblattlaus (*M. persicae*) und die Grüngestreifte Kartoffelblattlaus (*M. euphorbiae*), die an der Kartoffelsorte Adretta angezüchtet wurden. Die Anzucht der Blattläuse erfolgt wie in Kapitel 3.1.1. beschrieben.

4.1.2 Versuchsanordnung

Abbildung 10: Mikrokäfige zur Isolierung der Blattläuse auf 5 Blattetagen

4.1.3 Statistische Auswertung

Standardabweichung und 95% Konfidenzintervall für die Vermehrungsrate wurden mit Hilfe des Programms SPSS (Version 15 für Windows) berechnet. Die Ergebnisse wurden als Mittelwert ± Standardabweichung dargestellt. Unterschiede zwischen Blattetagen und Kartoffelsorten wurden mit Varianzanalyse (ANOVA, α= 0,05) getestet. Bei statistisch signifikanten Unterschieden wurde anschließend ein Student-Newman-Keuls-Vergleich innerhalb und zwischen den Kartoffelsorten und Blattetagen durchgeführt. Für die varianzanalytischen Verrechnungen wurden folgende Signifikanzniveaus
angenommen: ***sehr hoch signifikant p<0,001, **hoch signifikant p<0,01, *signifikant p<0,05, n.s. nicht signifikant p≥0,05.

Die Vermehrungsrate wurde nach folgender Formel berechnet:

\[
\text{Vermehrungsrate} = \frac{\text{Anzahl der abgesetzten Blattläuse nach 12 Tagen/Mikrokäfig}}{\text{Anzahl der aufgesetzten Blattläusen / Mikrokäfig}}
\]

4.2 Ergebnisse

4.2.1 M. persicae

Die Vermehrung auf den Blattetagen unterschied sich statistisch signifikant (p<0,001) voneinander (Tabelle 10). Insgesamt wurde die höchste Vermehrungsrate von M. persicae auf den älteren Blättern mit 5,4 Blattläusen je Blattetage auf erstem Blattstadium (Basal) bzw. 6,4 Blattläusen je Blattetage auf zweitem Blattstadium (Untere) festgestellt. Die geringste Vermehrungsrate fand auf den jüngeren Blättern mit 2 Blattläusen je Blattetage auf viertem und fünftem Blattstadium (Ober und Apical) statt.

Tabelle 10: Mittlere Vermehrung der Blattläuse auf den 5 Blattetagen (12 Tagen nach Versuchsbeginn, $\bar{X} \pm SD$; einfaktorielle Varianzanalyse ANOVA)

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>Albatros</th>
<th>Borwina</th>
<th>Fasan</th>
<th>Kormoran</th>
<th>Pirol</th>
<th>Romanze</th>
<th>Salome</th>
<th>Terrana</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. persicae</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Basal</td>
<td>3 4,0 ± 0,0 b 3 6,7 ± 2,1 b 3 7,0 ± 1,7 a 3 5,3 ± 2,3 3 4,3 ± 1,5 b 3 2,7 ± 0,6 bc 3 6,0 ± 1,0 c 3 7,0 ± 3,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untere</td>
<td>3 4,3 ± 1,5 b 3 7,0 ± 1,7 b 3 12,7 ± 4 b 3 7,0 ± 3,0 3 4,3 ± 0,6 b 3 3,7 ± 1,2 c 3 4,7 ± 0,6 bc 3 7,7 ± 4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>3 1,7 ± 0,6 a 3 5,0 ± 2,0 ab 3 2,7 ± 1,2 a 3 3,0 ± 1,7 3 1,0 ± 0,0 a 3 1,0 ± 0,0 ab 3 3,3 ± 0,6 ab 3 5,0 ± 2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ober</td>
<td>3 1,3 ± 0,6 a 3 2,7 ± 0,6 a 3 2,7 ± 3,1 a 3 3,0 ± 3,0 3 1,0 ± 0,0 a 3 0,7 ± 0,6 a 3 1,7 ± 0,6 a 3 2,7 ± 0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apical</td>
<td>3 1,7 ± 0,6 a 3 2,3 ± 0,6 a 3 3,7 ± 0,6 a 3 1,7 ± 0,6 3 1,0 ± 0,0 a 3 2,0 ± 1,0 abc 3 2,0 ± 1,0 a 3 2,0 ± 1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>2,6 ± 1,5 4,7 ± 2,4 5,7 ± 4,5 4,0 ± 2,8 2,3 ± 1,8 2,0 ± 1,3 3,5 ± 1,8 4,9 ± 3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>n n.s.</td>
<td>n ***</td>
<td>n n.s.</td>
<td>n n.s.</td>
<td>n n.s.</td>
<td>n n.s.</td>
<td>n n.s.</td>
<td>n n.s.</td>
</tr>
<tr>
<td>Basal</td>
<td>3 4,7 ± 2,9 3 3,3 ± 1,5 a 3 6,0 ± 3,5 3 2,3 ± 1,5 3 2,0 ± 1,7 3 0,3 ± 0,6 3 1,7 ± 2,1 3 1,0 ± 1,0 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untere</td>
<td>3 5,3 ± 3,1 3 6,3 ± 2,5 a 3 9,3 ± 4,9 3 4,0 ± 2,6 3 2,3 ± 1,5 3 1,0 ± 1,0 3 4,3 ± 4,9 3 2,0 ± 1,7 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>3 8,0 ± 5,0 3 6,7 ± 4,2 a 3 2,7 ± 1,5 3 5,0 ± 2,6 3 1,3 ± 0,6 3 2,0 ± 1,7 3 3,7 ± 1,2 3 1,0 ± 0,0 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ober</td>
<td>3 14,7 ± 4,2 3 15,3 ± 1,5 b 3 7,3 ± 6,4 3 6,7 ± 0,6 3 5,7 ± 3,1 3 3,0 ± 1,7 3 3,3 ± 3,5 3 3,0 ± 0,0 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apical</td>
<td>3 9,3 ± 5,7 3 16,3 ± 2,1 b 3 14 ± 4,4 3 7,0 ± 3,5 3 5,0 ± 1,0 3 3,3 ± 0,6 3 5,3 ± 3,5 3 4,7 ± 1,2 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>8,4 ± 5,2 9,6 ± 5,8 7,9 ± 5,4 5,0 ± 2,7 3,3 ± 2,3 1,9 ± 1,6 3,7 ± 3,1 2,3 ± 1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen der Blattetagen hin (α=0,05; n.s. = nicht signifikant p ≥ 0,05; *= p<0,05; **= p<0,01; ***= p<0,001, SNK-Test).
Abbildung 11: Vermehrungsrate von *M. persicae* und *M. euphorbiae* auf den 5 Blattstadien (Mittelwert ± SE, unterschiedliche Buchstaben weisen auf signifikante Differenzen der Blattetagen hin, SNK-Test, $\alpha < 0.05$)

Abbildung 12: Vergleich der Kartoffelsorten bezüglich der Vermehrung der Blattlaus *M. Persicae* (Mittelwert und 95% Konfidenzintervall, unterschiedliche Buchstaben weisen auf signifikante Differenzen der Sorten hin, SNK-Test, $\alpha < 0.05$)
4.2.2 *M. euphorbiae*

Die Vermehrung auf den Blattetagen der geprüften Kartoffelsorten unterschieden sich statistisch signifikant (p< 0,001) voneinander (Tabelle 10). Insgesamt trat die höchste Vermehrungsrate von *M. euphorbiae* auf den jüngeren Blättern mit 7,4 Blattläusen je Blattetage auf dem vierten Blatt (Ober) bzw. 8,1 Blattläusen je Blattetage auf dem fünften Blatt (Apical) auf (Abbildung 11). Die geringste Vermehrungsrate wurde auf den älteren Blättern mit 2,7 Blattläusen je Blattetage auf dem ersten Blatt (Basal) bzw. 4,3 Blattläusen je Blattetage auf dem zweiten Blatt (Untere) beobachtet. Die Vermehrungsrate von *M. euphorbiae* auf den jüngeren Blattetagen war bei den Kartoffelsorten Terrana und Borwina statistisch signifikant höher. Insgesamt waren die geringste Vermehrungsrate von *M. euphorbiae* bei Romanze (1,9) und die höchste Vermehrungsrate bei Borwina (9,6) zu finden (s. Abbildung 13).

Abbildung 13: Vergleich der Kartoffelsorten bezüglich der Vermehrung der Blattlaus *M. euphorbiae* (Mittelwert und 95% Konfidenzintervall, unterschiedliche Buchstaben weisen auf signifikante Differenzen der Sorten hin, SNK-Test, α < 0.05)
4.3 Diskussion

Behauptung, dass die Vermehrungsrate von *M. persicae* auf Kartoffeln von der physiologischen Entwicklung der Blätter abhängt (TAYLOR 1962).

5 Sortenwahl von *M. persicae* und *M. euphorbiae*

5.1 Material und Methoden

5.1.1 Sortenwahl im Gewächshaus

Im Versuch wurde die Methode der Augenstecklinge und Insektenkäfige im Gewächshaus verwendet (s. Kapitel 3.1.4). Acht Versuchspflanzen wurden in einem Isolierkäfig aufgestellt, so dass in jeden Insektenkäfigen jeweils alle 8

Abbildung 14: Die Insektenkäfige im Gewächshaus

5.1.2 Sortenwahl unter Semi-Freilandbedingungen

5.1.3 Statistische Auswertung

95% Konfidenzintervalle wurden mit Hilfe des Programmes SPSS (Version 15 für Windows) berechnet. Die statistischen Ergebnisse beruhen auf einfaktoriellen Varianzanalysen. Mittelwertvergleiche erfolgten dabei unter Nutzung des Student-Newman-Keuls-Test. Das Signifikanzniveau wurde auf p < 0,05 festgelegt. Signifikanzen sind durch unterschiedliche Buchstaben gekennzeichnet. Zur feineren Unterscheidung werden teilweise Sternchen verwendet, wobei gilt: * ist signifikant mit p < 0,05 und ** ist hochsignifikant mit p < 0,01. Die Vermehrungsrate wurde nach folgender Formel berechnet:

\[
\text{Vermehrungsrate} = \frac{\text{Anzahl der abgesetzten Blattläuse nach 12 Tagen}/\text{Pflanze}}{\text{Anzahl der aufgesetzten Blattläusen} / \text{Pflanze}}
\]
5.2 Ergebnisse

5.2.1 Sortenwahl im Gewächshaus

Die Ergebnisse der Auswahlversuche sind in Tabelle 11 und Abbildung 16 dargestellt.

5.2.1.1 *M. persicae*

Die durchschnittliche Vermehrungsrate von *M. persicae* lag bei den geprüften Kartoffelsorten zwischen 6 und 13 Blattläusen/Pflanze. Insgesamt betrug die durchschnittliche Vermehrungsrate von *M. persicae* 9 Blattläuse/Pflanze. Die Kartoffelsorten unterschieden sich statistisch signifikant voneinander. Die Kartoffelsorten Kormoran und Terrana mit 12,5 Blattläusen/Pflanze bzw. 11,7 Blattläusen/Pflanze wiesen gegenüber den übrigen Kartoffelsorten statistisch signifikant höhere Vermehrungsraten auf.

5.2.1.2 *M. euphorbiae*

Tabelle 11: Mittlere Besiedlung der Blattläuse auf den Kartoffelsorten unter Gewächshausbedingungen 2007 (n= Anzahl der Pflanzen im Test, einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Blattlausart</th>
<th>Kartoffelsorte</th>
<th>Blattläuse / Pflanze (12 Tage nach Versuchsbeginn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Versuchszeit</td>
</tr>
<tr>
<td>M. persicae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Albatros</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>12 Borwina</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12 Fasan</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>12 Kormoran</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>12 Pirol</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>12 Romanze</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>12 Salome</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>12 Terrana</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Mittel</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Albatros</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>12 Borwina</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>12 Fasan</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>12 Kormoran</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>12 Pirol</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>12 Romanze</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>12 Salome</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>12 Terrana</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Mittel</td>
<td>17</td>
<td>14</td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (α=0,05; n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

Abbildung 16: Vergleich der Kartoffelsorten bezüglich der Besiedlung durch die Blattläuse im Gewächshaus 2007
5.2.2 Sortenwahl unter Semi-Freilandbedingungen

5.2.2.1 M. persicae

Die durchschnittliche Vermehrungsrate von M. persicae lag bei den geprüften Kartoffelsorten zwischen 1 und 6 Blattläusen/Pflanze. Insgesamt betrug die durchschnittliche Vermehrungsrate von M. persicae 3,3 Blattläuse/Pflanze. Es traten in keinem der Versuche signifikante Unterschiede in der Besiedlung der untersuchten Kartoffelsorten auf. Die stärkste Besiedlung von M. persicae war auf den Sorten Fasan und Borwina mit 6 Blattläusen/Pflanze bzw. 5 Blattläusen/Pflanze zu beobachten. Die geringste Besiedlung von M. persicae war auf der Sorte Romanze mit 1,1 Blattläusen/Pflanze zu finden.

5.2.2.2 M. euphorbiae

Tabelle 12: Mittlere Besiedlung der Blattläuse auf den Kartoffelsorten unter Semi-Freilandbedingungen 2007 (n= Anzahl der Pflanzen im Test, einfaktorielle Varianzanalyse, UNIANOVA, SNK-Test)

<table>
<thead>
<tr>
<th>Blattlausart</th>
<th>Kartoffelsorte</th>
<th>Blattläuse/Pflanze (12 Tage nach Versuchsbeginn)</th>
<th>Versuchzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>21.06-02.07.2007</td>
<td>7.06-18.06.2007</td>
</tr>
<tr>
<td>M. persicae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albatros</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Borwina</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fasan</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Kormoran</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pirol</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Romanze</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Salome</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Terrana</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Mittel</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

M. euphorbiae

	Albatros	2	3	2,6
	Borwina	3	5	4,0
	Fasan	4	2	3,1
	Kormoran	2	4	3,0
	Pirol	3	2	2,0
	Romanze	2	2	2,1
	Salome	4	4	3,7
	Terrana	1	1	0,9
Mittel		3	3	2,7

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (α=0,05; n.s. = nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

Abbildung 17: Vergleich der Kartoffelsorten bezüglich der Besiedlung durch die Blattläuse unter Semi-Freilandbedingungen 2007 (Mittelwert und 95% Konfidenzintervall)
5.3 Diskussion

Um die Bevorzugung der Blattläuse besser zu erklären, wurden verschiedene Theorien aufgestellt. IRWIN et al. 2007 zeigten, dass die Blattläuse wegen unterschiedlicher physikalischer und chemischer Wirtspflanzeneigenschaften eine Sorte mehr als die andere bevorzugen. Die physikalischen und chemischen Pflanzeneigenschaften haben großen Einfluss auf die Blattläusewanderung, so z. B. Pflanzenstruktur (HODGSON & ELBAKHEIT 1985), Behaarung (GUNASINGHE et al. 1988; IRWIN & KAMPMEIER 1989), Blattwachstum (BERGMAN et al. 1991; POWELL et al. 1999). Die Qualitäts- und

In unseren Versuchen traten klarere Unterschiede in der Vermehrungsrate der beiden Blattlausarten zwischen den Sorten im Gewächshaus auf als im Semi-Freilandversuch.

Die unterschiedliche Besiedlung der geprüften Kartoffelsorten durch Blattläuse zeigt, dass die Blattläuse bestimmte Kartoffelsorten bevorzugt besiedeln. In weiteren Schritten müssen Sortenmerkmale hinsichtlich ihres Einflusses auf die Blattlausbesiedlung untersucht werden.
6 Lebensdauer und Fruchtbarkeit von *M. persicae* und *M. euphorbiae* im Gewächshaus

Anhand der Lebensdauer und Fruchtbarkeit adulter Blattläuse der Arten *M. persicae* und *M. euphorbiae* auf acht Kartoffelsorten bis zum Tod der Tiere sollte untersucht werden, ob beide Merkmale durch die verschiedenen Sorten beeinflusst werden.

6.1 Material und Methoden

6.1.1 Statistische Auswertung

6.2 Ergebnisse

6.2.1 M. persicae

Differenzen in der Zahl der täglich abgesetzten Jungläuse zeigten sich insbesondere in den letzten zehn Reproduktionstagen (Abbildung 18). Die höhere Fruchtbarkeit an der Sorte Fasan beruhte demnach nicht nur auf einer längeren Reproduktionszeit, sondern auch auf einer höheren Anzahl täglich abgesetzter Nachkommen mit 2,4 Jungläusen/Mutterlaus. Die Sorte Romanze hatte die geringste tägliche Fruchtbarkeit mit 0,5 Jungläusen/Mutterlaus. Bei den anderen geprüften Kartoffelsorten schwankten die täglich abgesetzten Jungläuse von 1 bis 1,7 Jungläuse/Mutterlaus.
Tabelle 13: Mittlere Lebensdauer, Gesamtzahl abgesetzter Jungläuse und Anzahl Jungläuse/Mutterlaus je Tag der Adulten von *M. persicae* auf den Kartoffelsorten (n= Anzahl der Pflanzen im Test, einfaktorielle Varianzanalyse, SNK-Test)

<table>
<thead>
<tr>
<th>Sorte</th>
<th>Lebenstage der Adulten (Tage)</th>
<th>Gesamtzahl abgesetzter Jungläuse (je Blattlaus)</th>
<th>Jungläuse/Mutterlaus (je Tag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>Albatros</td>
<td>4</td>
<td>29 b</td>
<td>29 ab</td>
</tr>
<tr>
<td>Borwina</td>
<td>4</td>
<td>28 b</td>
<td>48 bc</td>
</tr>
<tr>
<td>Fasan</td>
<td>4</td>
<td>28 b</td>
<td>66 c</td>
</tr>
<tr>
<td>Kormoran</td>
<td>4</td>
<td>22 a</td>
<td>29 ab</td>
</tr>
<tr>
<td>Pirol</td>
<td>4</td>
<td>28 b</td>
<td>35 ab</td>
</tr>
<tr>
<td>Romanze</td>
<td>4</td>
<td>29 b</td>
<td>15 a</td>
</tr>
<tr>
<td>Salome</td>
<td>4</td>
<td>22 a</td>
<td>23 ab</td>
</tr>
<tr>
<td>Terrana</td>
<td>4</td>
<td>30 b</td>
<td>44 abc</td>
</tr>
<tr>
<td>Mittel</td>
<td>27</td>
<td>36</td>
<td>1,34</td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (α=0,05; n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

Tabelle 14: Logistische Funktion für die Vermehrung von *M. persicae* an verschiedenen Kartoffelsorten

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>Logistisches Modell: y= a/(1+b*exp(-cx))</th>
<th>SE</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a =</td>
<td>b =</td>
<td>c =</td>
</tr>
<tr>
<td>Albatros</td>
<td>30</td>
<td>15</td>
<td>0,18</td>
</tr>
<tr>
<td>Borwina</td>
<td>50</td>
<td>35</td>
<td>0,23</td>
</tr>
<tr>
<td>Fasan</td>
<td>71</td>
<td>39</td>
<td>0,22</td>
</tr>
<tr>
<td>Kormoran</td>
<td>31</td>
<td>24</td>
<td>0,25</td>
</tr>
<tr>
<td>Pirol</td>
<td>39</td>
<td>29</td>
<td>0,2</td>
</tr>
<tr>
<td>Romanze</td>
<td>21</td>
<td>15</td>
<td>0,13</td>
</tr>
<tr>
<td>Salome</td>
<td>29</td>
<td>40</td>
<td>0,21</td>
</tr>
<tr>
<td>Terrana</td>
<td>48</td>
<td>58</td>
<td>0,22</td>
</tr>
<tr>
<td>Durchschnitt an allen Sorten</td>
<td>43</td>
<td>29</td>
<td>0,2</td>
</tr>
</tbody>
</table>

a ist der Endwert, *b* und *c* freie Parameter zur Modulierung der Kurvenform

y= Anzahl der abgesetzten Jungläuse/Blattlaus

x = Lebenstag

Abbildung 18: Summenkurve der Anzahl täglicher Nachkommen von *M. persicae* an verschiedenen Kartoffelsorten

6.2.2 *M. euphorbiae*

Die mittlere täglich abgesetzte Anzahl von Jungläusen betrug 1,13 Jungläuse/Mutterlaus. Auf der Sorte Borwina trat die höchste Fruchtbarkeit mit 1,5 Jungläusen/Mutterlaus und Tag auf. Dagegen war die geringste Fruchtbarkeit mit 0,7 Jungläusen/Mutterlaus und Tag an der Sorte Romanze zu verzeichnen. Bei den anderen geprüften Kartoffelsorten schwankten die täglich abgesetzten Jungläuse von 0,9 bis 1,3 Jungläuse/Mutterlaus.

Tabelle 15: Mittlere Lebensdauer, Gesamtzahl abgesetzter Jungläuse und Anzahl Jungläuse/Mutterlaus je Tag der Adulten von *M. euphorbiae* auf verschiedenen Kartoffelsorten (n= Anzahl der Pflanzen im Test, einfaktorielle Varianzanalyse, SNK-Test)

<table>
<thead>
<tr>
<th>Sorte</th>
<th>Lebenstage der Adulten (Tage)</th>
<th>Gesamtzahl abgesetzter Jungläuse (je Blattlaus)</th>
<th>Jungläuse/Mutterlaus (je Tag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatros</td>
<td>4</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Borwina</td>
<td>4</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Fasan</td>
<td>4</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>Kormoran</td>
<td>4</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Pirol</td>
<td>4</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>Romanze</td>
<td>4</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Salome</td>
<td>4</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Terrana</td>
<td>4</td>
<td>27</td>
<td>25</td>
</tr>
</tbody>
</table>

Mittel

<table>
<thead>
<tr>
<th>Lebenstage der Adulten</th>
<th>Gesamtzahl abgesetzter Jungläuse</th>
<th>Jungläuse/Mutterlaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>28</td>
<td>1,13</td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (α=0,05; n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

Tabelle 16: Logistische Funktion für die Vermehrung von *M. euphorbiae* an verschiedenen Kartoffelsorten

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>Logistisches Modell: (y = \frac{a}{1+b\exp(-cx)})</th>
<th>SE</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatros</td>
<td>a = 34, b = 23, c = 0,25</td>
<td>0,92</td>
<td>0,997</td>
</tr>
<tr>
<td>Borwina</td>
<td>a = 38, b = 21, c = 0,24</td>
<td>0,9</td>
<td>0,998</td>
</tr>
<tr>
<td>Fasan</td>
<td>a = 23, b = 13, c = 0,23</td>
<td>1,25</td>
<td>0,986</td>
</tr>
<tr>
<td>Kormoran</td>
<td>a = 28, b = 21, c = 0,28</td>
<td>1,07</td>
<td>0,995</td>
</tr>
<tr>
<td>Pirol</td>
<td>a = 37, b = 14, c = 0,2</td>
<td>1,52</td>
<td>0,993</td>
</tr>
<tr>
<td>Romanze</td>
<td>a = 19, b = 20, c = 0,24</td>
<td>0,83</td>
<td>0,993</td>
</tr>
<tr>
<td>Salome</td>
<td>a = 29, b = 27, c = 0,23</td>
<td>0,61</td>
<td>0,998</td>
</tr>
<tr>
<td>Terrana</td>
<td>a = 33, b = 18, c = 0,15</td>
<td>0,83</td>
<td>0,996</td>
</tr>
</tbody>
</table>

Durchschnitt an allen Sorten

<table>
<thead>
<tr>
<th>Logistisches Modell: (y = \frac{a}{1+b\exp(-cx)})</th>
<th>SE</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>33, 16, 0,19</td>
<td>1,05</td>
<td>0,996</td>
</tr>
</tbody>
</table>

a ist der Endwert, b und c freie Parameter zur Modulierung der Kurvenform.
y = Anzahl der abgesetzten Jungläuse/Blattlaus, x = Lebenstag

Abbildung 19: Summenkurve der Anzahl täglicher Nachkommen von *M. euphorbiae* an verschiedenen Kartoffelsorten

6.3 Diskussion

Anzahl der Nachkommen in enger, stabiler Beziehung zur Lebensdauer der adulten Blattläuse.

Abbildung 20: Einfluss der Wirtspflanze auf die Vermehrung von *M. persicae* (nach FRANCIS et al. 2001)

7 Freilandversuche zum Blattlausbefall und Farbspektren der Kartoffelsorten

Das Ziel der in diesem Kapitel beschriebenen Arbeiten war es, verschiedene Sorten von Kartoffeln hinsichtlich des Befalls durch Blattläuse im Feld an drei Standorten (Gülzow, Sanitz, Rostock) zu untersuchen. In diesem Kapitel wird den Fragen nachgegangen, ob der Blattlausbefall unterschiedlich war und was mögliche Ursachen dafür sein können. Dazu wurde Reflexionsmessung an Kartoffelblätter vorgenommen.

7.1 Material und Methoden

7.1.1 Ermittlung des Blattlausbefalls an drei Standorten

7.1.1.1 Standort Rostock 2007

Abbildung 21: Versuchsdesign und Sortenanordnung auf dem Versuchsfeld Rostock
Die pflanzenbaulichen Maßnahmen am Standort Rostock im Jahr 2007 werden in Tabelle 17 beschrieben.

Tabelle 17: Pflanzenbauliche Maßnahmen am Standort Rostock im Anbaujahr 2007

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Termin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflugfurche</td>
<td>14.11.2006</td>
</tr>
<tr>
<td>Grubber</td>
<td>26.03.2007</td>
</tr>
<tr>
<td>Kreiseln</td>
<td>22.04.2007</td>
</tr>
<tr>
<td>Pflanzen, Häufeln</td>
<td>24.04.2007</td>
</tr>
<tr>
<td>Düngung 70 kg N*ha⁻¹ ASS</td>
<td>04.05.2007</td>
</tr>
<tr>
<td>Herbizid Artist 2,5 kg*ha⁻¹ VA</td>
<td>27.04.2007</td>
</tr>
<tr>
<td>Sencor WG 0,5 kg*ha⁻¹</td>
<td>14.05.2007</td>
</tr>
<tr>
<td>Acrobat 2,0 kg*ha⁻¹</td>
<td>06.06.2007</td>
</tr>
<tr>
<td>Fungizid Shirlan 0,4 l*ha⁻¹</td>
<td>09.07.2007</td>
</tr>
<tr>
<td>Ernte</td>
<td>18.07.2007</td>
</tr>
</tbody>
</table>

7.1.1.2 Standort Sanitz und Gülzow

Auf den Versuchsflächen in Sanitz und Gülzow wurden jeweils 254 unterschiedliche Sorten auf offenen Agrarflächen angebaut. Sowohl die Sortenauswahl als auch die Anordnung der Sorten im Versuchsfeld erfolgte auf beiden Standorten gleich. Der Reihenabstand betrug 0,75 m und der Abstand zwischen den Pflanzen 0,30 m. In jeder Reihe befanden sich, bei einem optimalen Auflaufen der Knollen, zehn Kartoffelpflanzen (s. Abbildung 22). In Sanitz wurde eine Reihe je Sorte angebaut, woraus sich eine bepflanzte Gesamtfläche von 572 m² ergab. In Gülzow sind auf der Versuchsfläche jeweils vier Reihen pro Sorte hintereinander angebaut worden. Die bepflanzte Gesamtfläche betrug 2276 m². Die pflanzenbaulichen Maßnahmen an den Standorten Sanitz und Gülzow sind in Tabelle 18 beschrieben.

Im Rahmen dieser Arbeit wurden 23 Sorten auf Grund ihrer Anfälligkeit für das Blattrollvirus und das Y-Virus ausgewählt (Abbildung 22). Dabei erstreckt sich

<table>
<thead>
<tr>
<th>Gülzow</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzung</td>
<td>27.04.2006</td>
<td>20.04.2007</td>
</tr>
<tr>
<td>Düngung</td>
<td>N (KAS) 80 kg*ha⁻¹</td>
<td>04.05.2006 N (KAS) 80 kg*ha⁻¹</td>
</tr>
<tr>
<td>Herbizid</td>
<td>Reglone 2,5 l*ha⁻¹</td>
<td>28.08.2006 Bandur 3,5 kg*ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>Bandur 3,5 kg*ha⁻¹</td>
<td>09.05.2006</td>
</tr>
<tr>
<td>Fungizid</td>
<td>Tattoo 4,0 kg*ha⁻¹</td>
<td>10.07.2006 Ranman 8 Mal mit 0,2 l*ha⁻¹</td>
</tr>
<tr>
<td>Insektizid</td>
<td>Karate Zeon 0,075 l*ha⁻¹</td>
<td>Tamaron 1,0 l*ha⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dantop 0,035 kg*ha⁻¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sanitz</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzung</td>
<td>17.05.2006</td>
<td>27.04.2007</td>
</tr>
<tr>
<td>Düngung</td>
<td>N (KAS) 100 kg*ha⁻¹</td>
<td>24.05.2006 N (Harnstoff) 120 kg*ha⁻¹</td>
</tr>
<tr>
<td>Herbizid</td>
<td>Sencor 0,5 kg*ha⁻¹</td>
<td>24.05.2006 Bandur 3,0 kg*ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>Bandur 3,0 kg*ha⁻¹</td>
<td>24.05.2006 Sencor 0,3 kg*ha⁻¹</td>
</tr>
<tr>
<td>Fungizid</td>
<td>6 Mal Fungizidbehandlungen: Acrobat Plus 2,0 kg*ha⁻¹</td>
<td>Ranman 7 Mal mit 0,2 l*ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>Tanos 0,7 kg*ha⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shirlan 0,4 l*ha⁻¹</td>
<td></td>
</tr>
<tr>
<td>Insektizid</td>
<td>2 Mal Insektizidbehandlungen: Tamaron 0,8 l*ha⁻¹</td>
<td>keine Insektizidbehandlung</td>
</tr>
<tr>
<td></td>
<td>Karate Zeon 0,075 l*ha⁻¹</td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 22: Versuchsdesign und Sortenanordnung auf den Versuchsfeldern bzw. ausgewählten Sorten in Gülzow und Sanitz

7.1.2 Identifizierung der Farbspektren verschiedener Kartoffelsorten

In den ersten Phasen der Wirtspflanzenwahl spielen physikalische Faktoren, die visuelle und taktile Reize ausüben, eine besondere Rolle. Der Unterschied in der Vitalität der Pflanzen beeinflusst die Präferenzen der Blattläuse bei der Immigration und die Erhöhung der Blattlauspopulation (HONEK & MARTINKOVA 2002). Die Vegetation reflektiert, absorbiert und transmittiert die einfallende Strahlung in einer typischen Weise (s. Kapitel 2.8).

Im vorliegenden Experiment wurde der Reflexionsgrad von Blättern der verschiedenen Kartoffelsorten untersucht und in Beziehung zum Blattlausbefall

Der Reflexionsgrad einer Sorte wird vorwiegend durch ein wellenlängenabhängiges Absorptions- und Remissionsvermögen der Blätter geprägt. Die Messverfahren machen sich die Lichtrückstrahlung von Kartoffelsorten im sichtbaren (VIS = 400 nm - 700 nm) und nahen Infrarot (NIR = 700 nm - 1300 nm) zunutze. Charakteristisch für grüne Vegetation ist die hohe Absorption im sichtbaren Licht (VIS), die im Bereich des grünen Lichts (500-570 nm) abnimmt und der markante Anstieg der Remission im nahen Infrarot (NIR 700-1300 nm). Die daraus berechneten Vegetationsindices (z. B. Normalisierter Differenz Vegetations-Index NDVI und Wasserbanden-Index WBI) charakterisieren physiologisch relevante Pflanzenzustände auf Bestandesebene.
Der NDVI (normalisierter differenzierter Vegetationsindex) ist unter anderem ein Maß für die Vitalität von Pflanzen und Pflanzenbeständen. Im Allgemeinen gilt: je vitaler die Vegetation, desto höher ist der Pigment- und Wasserhaushalt und dementsprechend desto stärker die Absorption im sichtbaren Spektralbereich und desto höher die Reflexion im Nahen Infrarot. Der NDVI nimmt Werte zwischen -1 und +1 an, wobei positive Werte nahe 1 auf eine besonders hohe Vitalität hinweisen. Die gemessenen Spektren wurden in spezifische Informationseinheiten, die Indices, zergliedert. Berechnet wurden der NDVI und der WBI (Wasserbanden-Index) (Tabelle 19).

Tabelle 19: Vegetationsindices und ihre Berechnung

<table>
<thead>
<tr>
<th>Index</th>
<th>Berechnung</th>
<th>Wellenlängenintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI (Normalisierter Differenz Vegetations-Index)</td>
<td>NDVI = (NIR-R)/(NIR + R)</td>
<td>NIR = 701 nm-950 nm</td>
</tr>
<tr>
<td></td>
<td>nach ROUSE et al. 1973</td>
<td>R = 601 nm- 700 nm</td>
</tr>
<tr>
<td>WBI (Wasserbanden-Index)</td>
<td>WBI = R970 / R900</td>
<td>R = 900 nm bzw. 970 nm</td>
</tr>
<tr>
<td></td>
<td>nach PENUELAS et al. 1993</td>
<td></td>
</tr>
</tbody>
</table>

7.1.3 Statistische Auswertung

Die statistische Auswertung wurde mit dem Statistical Analysis System (SPSS Version 15 für Windows) durchgeführt. Die Varianzanalysen erfolgten mittels der Prozedur GLM und die multiplen Mittelwertvergleiche mit dem Student-Newman-Keuls-Test. Die Irrtumswahrscheinlichkeiten wurden berechnet für: p < 0,05; (*) = signifikant, p < 0,01; (**) = hoch signifikant, p < 0,001; (***) = sehr hoch signifikant, n.s. = nicht signifikant

Es wurde jeweils der lineare Pearson-Korrelationskoeffizient zwischen Blattlausbefall und Reflexionswerten sowie den Vegetationsindices der Kartoffelpflanzen berechnet.

7.2 Ergebnisse

7.2.1 Blattlausbefall an verschiedenen Kartoffelsorten

7.2.1.1 Standort Rostock 2007

Abbildung 23: Artenspektrum der Kartoffelläuse am Standort Rostock 2007

Der Blattlausbefall nahm dann bis zur 24. Kalenderwoche (Juni) in allen Sorten zu. In dieser Woche war der Anstieg der Blattlausbesiedlung am höchsten. Fasan und Borwina hatten mit 70 Blattläusen je 50 Blätter bzw. 54 Blattläusen je 50 Blätter den höchsten Blattlausbefall und sie unterschieden sich statistisch signifikant gegenüber den übrigen Sorten (Tabelle 21). Meridian
hatte mit 23 Blattläusen je 50 Blätter den geringsten Blattlausbefall. Die übrigen Kartoffelsorten unterschieden sich nicht statistisch signifikant voneinander (Tabelle 21).

Tabelle 20: Mittlere Anzahl der Blattläuse im Freilandversuch am Standort Rostock 2007 (\(\overline{X} \pm SE; n= \) Anzahl der Blätter im Test, zweifaktorielle Varianzanalysen, SNK-Test)

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>n</th>
<th>Blattläuse je 50 Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatros</td>
<td>715</td>
<td>24 ± 2,45 e</td>
</tr>
<tr>
<td>Alegria</td>
<td>702</td>
<td>19 ± 2,88 cd</td>
</tr>
<tr>
<td>Borwina</td>
<td>689</td>
<td>32 ± 3,25 f</td>
</tr>
<tr>
<td>Fasan</td>
<td>702</td>
<td>31 ± 3,94 f</td>
</tr>
<tr>
<td>Kormoran</td>
<td>715</td>
<td>16 ± 2,49 bc</td>
</tr>
<tr>
<td>Meridian</td>
<td>728</td>
<td>12 ± 2,45 a</td>
</tr>
<tr>
<td>Pirol</td>
<td>728</td>
<td>25 ± 3,27 e</td>
</tr>
<tr>
<td>Romanze</td>
<td>728</td>
<td>22 ± 2,85 de</td>
</tr>
<tr>
<td>Salome</td>
<td>624</td>
<td>17 ± 1,97 bc</td>
</tr>
<tr>
<td>Terrana</td>
<td>728</td>
<td>15 ± 2,12 b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kalenderwoche</th>
<th>***</th>
<th>Blattläuse je 50 Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>1040</td>
<td>8 ± 2,77 a</td>
</tr>
<tr>
<td>23</td>
<td>1040</td>
<td>18 ± 2,78 b</td>
</tr>
<tr>
<td>24</td>
<td>1040</td>
<td>41 ± 2,59 e</td>
</tr>
<tr>
<td>25</td>
<td>1040</td>
<td>29 ± 2,43 d</td>
</tr>
<tr>
<td>26</td>
<td>1040</td>
<td>22 ± 2,43 c</td>
</tr>
<tr>
<td>27</td>
<td>1040</td>
<td>8 ± 2,66 a</td>
</tr>
<tr>
<td>28</td>
<td>819</td>
<td>22 ± 2,67 c</td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (\(\alpha=0,05; \) n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001)

Tabelle 21: Mittlere Anzahl der Blattläuse im Freilandversuch am Standort Rostock 2007 getrennt nach Kalenderwoche (n= Anzahl der Blätter im Test, einfaktorielle Varianzanalysen, SNK-Test)

<table>
<thead>
<tr>
<th>Mittlere Anzahl der Blattläuse je 50 Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalenderwoche</td>
</tr>
<tr>
<td>22 (Mai) 23 (Juni) 24 (Juni) 25 (Juni) 26 (Juni) 27 (Juli) 28 (Juli)</td>
</tr>
<tr>
<td>n 1040 1040 1040 1040 1040 1040 819</td>
</tr>
<tr>
<td>** *** *** *** *** *** ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatros</td>
<td>10</td>
<td>ab</td>
<td>25</td>
<td>d</td>
<td>39</td>
<td>abc</td>
<td>33</td>
<td>bc</td>
</tr>
<tr>
<td>Alegria</td>
<td>9</td>
<td>ab</td>
<td>11</td>
<td>ab</td>
<td>47</td>
<td>bc</td>
<td>28</td>
<td>ab</td>
</tr>
<tr>
<td>Borwina</td>
<td>9</td>
<td>ab</td>
<td>24</td>
<td>d</td>
<td>54</td>
<td>c</td>
<td>44</td>
<td>d</td>
</tr>
<tr>
<td>Fasan</td>
<td>12</td>
<td>b</td>
<td>30</td>
<td>d</td>
<td>70</td>
<td>d</td>
<td>46</td>
<td>d</td>
</tr>
<tr>
<td>Kormoran</td>
<td>5</td>
<td>a</td>
<td>10</td>
<td>ab</td>
<td>37</td>
<td>ab</td>
<td>20</td>
<td>a</td>
</tr>
<tr>
<td>Meridian</td>
<td>5</td>
<td>a</td>
<td>7</td>
<td>a</td>
<td>23</td>
<td>a</td>
<td>17</td>
<td>a</td>
</tr>
<tr>
<td>Pirol</td>
<td>11</td>
<td>ab</td>
<td>19</td>
<td>c</td>
<td>31</td>
<td>ab</td>
<td>39</td>
<td>cd</td>
</tr>
<tr>
<td>Romanze</td>
<td>8</td>
<td>ab</td>
<td>26</td>
<td>d</td>
<td>35</td>
<td>ab</td>
<td>23</td>
<td>ab</td>
</tr>
<tr>
<td>Salome</td>
<td>12</td>
<td>b</td>
<td>15</td>
<td>bc</td>
<td>46</td>
<td>bc</td>
<td>22</td>
<td>ab</td>
</tr>
<tr>
<td>Terrana</td>
<td>5</td>
<td>a</td>
<td>13</td>
<td>abc</td>
<td>32</td>
<td>ab</td>
<td>23</td>
<td>ab</td>
</tr>
<tr>
<td>Summe</td>
<td>86</td>
<td>181</td>
<td>413</td>
<td>294</td>
<td>215</td>
<td>83</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>

Unterschiedliche Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin (\(\alpha=0,05; \) n.s.= nicht signifikant; *= p<0,05; **= p<0,01; ***= p<0,001), n.e.= nicht erhoben
Über alle Termine hatten die Sorten Borwina und Fasan den höchsten Blattlausbefall mit 32 Blattläusen je 50 Blätter bzw. 31 Blattläusen je 50 Blätter und sie unterschieden sich signifikant gegenüber den übrigen Sorten (Tabelle 20). Die Sorte Meridian hatte den niedrigsten Blattlausbefall mit 12 Blattläusen je 50 Blätter.

7.2.1.2 Standort Sanitz 2006 und 2007

Abbildung 25: Auftreten der Blattläuse (*M. persicae*, *M. euphorbiae*, *A. nasturtii*, *A. frangulae* und *A. solani*) am Standort Sanitz 2006 & 2007
Wie am Standort Rostock waren am Standort Sanitz neben den dominierenden Arten *A. nasturtii*, *M. Persicae* und *M. euphorbiae* zu Beginn der Besiedlung der Kartoffel auch vereinzelt Läuse der Arten *A. frangulae* und *A. solani* zu finden. Sie erreichten auch hier im Verlauf der Vegetationsperiode nur sehr geringe Dichten.

Im **Jahr 2006** war *A. nasturtii* mit einem Anteil von 87% der insgesamt bestimmten Blattläuse mit Abstand die häufigste Blattlausart auf den Kartoffelsorten (Abbildung 26). Teilweise vergesellschaftet mit *M. persicae* kam sie in der Regel zerstreut an älteren Blättern vor. Alle anderen Blattlausarten traten nur selten auf.

Im **Jahr 2007** war *M. persicae* mit einem Anteil von 58% der insgesamt bestimmten Blattläuse mit Abstand die häufigste Blattlausart auf den Kartoffelsorten (Abbildung 26), teilweise vergesellschaftet mit *M. euphorbiae* (23%), die meist die jungen Blätter besiedelte. *A. nasturtii* lag mit einem Anteil von 14% der insgesamt bestimmten Blattläuse an dritter Stelle. Die anderen Blattlausarten traten nur selten auf.

Unter den Feldversuchsbedingungen in Sanitz gab es nur kleine Unterschiede im Blattlausbefall zwischen den ausgewählten Kartoffelsorten. Die Sorte Pirol mit 1 Blattlaus je 50 Blätter unterscheidet sich signifikant von den Sorten Albatros und Alegria mit 8,5 bzw. 10,8 (Abbildung 27). Die Kartoffelsorte Alegria mit 10,8 Blattläusen je 50 Blätter hatte den höchsten Blattlausbefall und sie unterschied sich signifikant von den Sorten Terrana, Karatop, Sieglinde,

7.2.1.3 Standort Gülzow 2006 und 2007

Im Jahr 2007 waren die dominanten Blattlausarten auf den Kartoffelsorten *M. persicae* und *M. euphorbiae* (Abbildung 29), die beiden Arten hatten Abundanzen von 49% bzw. 42%. Im Feld traten sowohl *A. frangulae* als auch *A. solani* nicht auf. Bei dem stärkeren Blattlausbefall in 2006 traten die Sortenunterschiede deutlicher hervor als in 2007 bei schwächerem Befallsdruck (s. Anhang Tab. 13 u. 14).
Die Kartoffelsorten unterschieden sich statistisch signifikant voneinander (Abbildung 30). Die Kartoffelsorten Berber und Topas hatten den höchsten Blattlausbefall mit 13,9 bzw. 13,6 und ließen sich statistisch signifikant gegenüber den Sorten Terrana, Hansa, Salome, Saturna, Meridian, Alegria und Karatop abgrenzen. Der geringste Blattlausbefall war bei den Sorten Karatop...
und Meridian mit 1,1 bzw. 1,7 zu finden. Der Unterschied zwischen den übrigen Sorten ist statistisch nicht gesichert.

7.2.2 Identifizierung der Farbspektren verschiedener Kartoffelsorten

Abbildung 31: Veränderung der Remissionssignatur der Kartoffelsorten im Untersuchungszeitraum 13.06.2007 bis 04.07.2007 in Rostock links, Vergleich der Remissionssignaturen im Wellenlängenband 520 nm - 570 nm rechts
Abbildung 32: Veränderung der Remissionssignatur der Kartoffel Sorten im Untersuchungszeitraum 21.06 bis 26.07 in Sanitz 2006 links, Vergleich der Remissionssignaturen im Wellenlängenband 520 nm - 570 nm rechts
Abbildung 33: Veränderung der Remissionsignatur der Kartoffelsorten im Untersuchungszeitraum 10.06 bis 23.07 in Sanitz 2007 links, Vergleich der Remissionsignaturen im Wellenlängenband 520 nm - 570 nm rechts.
Abbildung 34: Veränderung der Remissionssignatur der Kartoffelsorten im Untersuchungszeitraum 21.06 bis 26.07 in Gülzow 2006 links, Vergleich der Remissionssignaturen im Wellenlängenband 520 nm - 570 nm rechts
Abbildung 35: Veränderung der Remissionssignatur der Kartoffelsorten im Untersuchungszeitraum 10.06 bis 23.07 in Gülzow 2007 links, Vergleich der Remissionssignaturen im Wellenlängenband 520 nm - 570 nm rechts
7.2.3 Zusammenhang zwischen Reflexion und Blattlausbefall

In Sanitz und Rostock ließen die errechneten linearen Korrelationskoeffizienten bei den Wellenlängen 530 nm, 560 nm und 400-700 nm auf einen positiven Zusammenhang zwischen der von der Vegetation ausgehenden Reflexion und dem Blattlausbefall von *A. nasturtii* schließen (Tabelle 22). Der Blattlausbefall von *M. persicae* brachte eine negative signifikante Korrelation mit Reflexionswerten bei den Wellenlängen 560 nm, 530 nm in Rostock bzw. bei den Wellenlängen 530 nm, 560 nm und 400-700 nm in Gülzow. Der Blattlausbefall von *M. euphorbiae* hatte eine negative signifikante Korrelation mit Reflexionswerten bei den Wellenlängen 530 nm und 560 nm in Rostock bzw. bei den Wellenlängen 400-700 nm in Gülzow.

Mit der Abnahme des Chlorophyllgehaltes und der zunehmenden Entwässerung des Pflanzengewebes und dem sequentiellen Verlust an assimilierender Blattfläche bei Alterung und/oder Krankheit, nimmt die Lichtrückstrahlung im sichtbaren Wellenlängenbereich (VIS = 400 nm bis 700 nm) zu und Blattlausbefall im Feld ab. Anders herum gilt: nehmen die Reflexionswerte ab, nimmt der Blattlausbefall zu.

Tabelle 22: Lineare Korrelationstabelle der Reflexionswerte von verschiedenen Wellenlängen und Anzahl der Blattläuse

<table>
<thead>
<tr>
<th>Wellenlängen (nm)</th>
<th>400-700</th>
<th>530</th>
<th>560</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VIS Sichtbares Licht)</td>
<td>Grün</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rostock (n=28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>-0.21</td>
<td>-0.40*</td>
<td>-0.44*</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>0.45*</td>
<td>0.48*</td>
<td>0.47*</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>-0.29</td>
<td>-0.40*</td>
<td>-0.44*</td>
</tr>
<tr>
<td>Sanitz (n=150)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.13</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>0.16*</td>
<td>0.16*</td>
<td>0.17*</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>-0.12</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>Gülzow (n=152)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>-0.17*</td>
<td>-0.19*</td>
<td>-0.22**</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>0.1</td>
<td>0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>-0.16*</td>
<td>-0.12</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

* Die Korrelation ist auf dem Niveau von 0.05 (2-seitig) signifikant.
** Die Korrelation ist auf dem Niveau von 0.01 (2-seitig) signifikant.
7.2.4 Zusammenhang zwischen NDVI, WBI und Blattlausbefall

<table>
<thead>
<tr>
<th>Kartoffelsorte</th>
<th>Gülzow (n= 156)</th>
<th>Sanitz (n= 156)</th>
<th>Rostock (n= 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDVI</td>
<td>WBI</td>
<td>NDVI</td>
</tr>
<tr>
<td>Albatros</td>
<td>0,679</td>
<td>0,939</td>
<td>0,712</td>
</tr>
<tr>
<td>Alegría</td>
<td>0,784</td>
<td>0,920</td>
<td>0,755</td>
</tr>
<tr>
<td>Avano</td>
<td>0,481</td>
<td>0,955</td>
<td>0,457</td>
</tr>
<tr>
<td>Berber</td>
<td>0,673</td>
<td>0,943</td>
<td>0,613</td>
</tr>
<tr>
<td>Borwina</td>
<td>0,68</td>
<td>0,941</td>
<td>0,647</td>
</tr>
<tr>
<td>Cilena</td>
<td>0,639</td>
<td>0,945</td>
<td>0,635</td>
</tr>
<tr>
<td>Eurostar</td>
<td>0,516</td>
<td>0,970</td>
<td>0,531</td>
</tr>
<tr>
<td>Fasan</td>
<td>0,697</td>
<td>0,941</td>
<td>0,68</td>
</tr>
<tr>
<td>Florijn</td>
<td>0,513</td>
<td>0,974</td>
<td>0,512</td>
</tr>
<tr>
<td>Hansa</td>
<td>0,613</td>
<td>0,957</td>
<td>0,506</td>
</tr>
<tr>
<td>Karatop</td>
<td>0,636</td>
<td>0,949</td>
<td>0,693</td>
</tr>
<tr>
<td>Kormoran</td>
<td>0,688</td>
<td>0,940</td>
<td>0,693</td>
</tr>
<tr>
<td>Meridian</td>
<td>0,785</td>
<td>0,932</td>
<td>0,807</td>
</tr>
<tr>
<td>Pirol</td>
<td>0,615</td>
<td>0,958</td>
<td>0,658</td>
</tr>
<tr>
<td>Presto</td>
<td>0,657</td>
<td>0,946</td>
<td>0,649</td>
</tr>
<tr>
<td>Romanze</td>
<td>0,663</td>
<td>0,949</td>
<td>0,652</td>
</tr>
<tr>
<td>Rosara</td>
<td>0,655</td>
<td>0,935</td>
<td>0,669</td>
</tr>
<tr>
<td>Salome</td>
<td>0,634</td>
<td>0,945</td>
<td>0,669</td>
</tr>
<tr>
<td>Saturna</td>
<td>0,664</td>
<td>0,951</td>
<td>0,679</td>
</tr>
<tr>
<td>Selma</td>
<td>0,676</td>
<td>0,943</td>
<td>0,603</td>
</tr>
<tr>
<td>Sieglinde</td>
<td>0,66</td>
<td>0,951</td>
<td>0,655</td>
</tr>
<tr>
<td>Terrana</td>
<td>0,668</td>
<td>0,950</td>
<td>0,694</td>
</tr>
<tr>
<td>Topas</td>
<td>0,658</td>
<td>0,944</td>
<td>0,698</td>
</tr>
<tr>
<td>Ukama</td>
<td>0,659</td>
<td>0,945</td>
<td>0,664</td>
</tr>
<tr>
<td>Vienna</td>
<td>0,663</td>
<td>0,956</td>
<td>0,675</td>
</tr>
</tbody>
</table>
Um einen Zusammenhang zwischen der Vitalität der Kartoffelpflanzen und dem Blattlausbefall festzustellen, wurden die Merkmale korreliert. Die resultierenden linearen Korrelationskoeffizienten zeigen einen positiven linearen Zusammenhang zwischen dem NDVI und dem Blattlausbefall bei allen dominierenden Blattlausarten in Gülzow bzw. dem Blattlausbefall von *M. persicae* und *M. euphorbiae* in Sanitz (Tabelle 24). In Rostock gab es keinen signifikanten Zusammenhang zwischen der NDVI der Sorten und dem Blattlausbefall.

Tabelle 24: lineare Korrelationstabelle der NDVI und WBI mit Anzahl der Blattläuse

<table>
<thead>
<tr>
<th></th>
<th>Wasserbanden-Index</th>
<th>Normalisierter Differenz Vegetation Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WBI</td>
<td>NDVI</td>
</tr>
<tr>
<td>Rostock (n=28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>(0,2)</td>
<td>(-0,16)</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>-0,46*</td>
<td>(-0,05)</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>(0,14)</td>
<td>(0,06)</td>
</tr>
<tr>
<td>Sanitz (n=150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>-0,21*</td>
<td>0,19*</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>(0,14)</td>
<td>(-0,12)</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>-0,29**</td>
<td>0,18*</td>
</tr>
<tr>
<td>Gülzow (n=152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. persicae</td>
<td>(-0,11)</td>
<td>0,18*</td>
</tr>
<tr>
<td>A. nasturtii</td>
<td>-0,25**</td>
<td>0,20*</td>
</tr>
<tr>
<td>M. euphorbiae</td>
<td>-0,26**</td>
<td>0,23**</td>
</tr>
</tbody>
</table>

* Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant
** Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant

7.3 Diskussion

Obwohl in unserer Studie mit Blattlausbefall die Sorte Romanze in der letzten Woche am Standort Rostock den schwersten Befall mit Phytophthora hatte,
wies sie den höchsten Blattlausbefall im Vergleich mit den anderen Kalenderwochen und mit den anderen Sorten auf.

Weiterhin kann als möglicher Fehler die Zeitdifferenz zwischen dem Entnehmen der Blätter und den Messungen an den Blättern angeführt werden, da es aufgrund dieser Zeitdifferenz zu Verfärbungen der Blätter gekommen ist.

8 Behaarungsintensitäten und Blattlausdichten

Das folgende Kapitel geht von der Hypothese aus, dass die Intensität der Behaarung der Kartoffelsorten sich auf die Besiedlung durch kleine Schädlinge, wie z. B. Blattläuse, auswirkt. Aufgrund der Literaturangaben muss von einer...

8.1 Material und Methode

8.1.1 Feststellung der Behaarungsdichten verschiedener Kartoffelsorten

Ebenfalls wurde die Behaarungsintensität an 60 alten Kartoffelsorten der IPK-Genbank «Institut für Pflanzengenetik und Kulturpflanzenforschung» am 17.07.2006 und am 28.06.2007 ermittelt.

Tabelle 25: Pflanzenbauliche Maßnahmen am Standort IPK im 2006 und 2007

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Termin 2006</th>
<th>Termin 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufeln u. Striegeln</td>
<td>02.05.2006</td>
<td>24.04.2007</td>
</tr>
<tr>
<td>N-Streuen 160 kg N*ha⁻¹ (KAS)</td>
<td>28.04.2006</td>
<td>150 kg N/ha⁻¹ (KAS) 27.04.2007</td>
</tr>
<tr>
<td>HerbizidBandur 4,0 l*ha⁻¹</td>
<td>10.05.2006</td>
<td>Bandur 4,0 l*ha⁻¹ 02.05.2007</td>
</tr>
<tr>
<td>InsektizidBulldock 0,3 l*ha⁻¹</td>
<td>07.07.2006</td>
<td>Astac 100 ml*ha⁻¹ 31.05.2007</td>
</tr>
<tr>
<td>Tamaron 1,0 l*ha⁻¹</td>
<td>08.06.2006</td>
<td>Biscaya 300 ml*ha⁻¹ 25.05. u. 29.06.2007</td>
</tr>
<tr>
<td>18.07.2006</td>
<td>Dantop 1,5 kg*ha⁻¹</td>
<td>04.07.2007</td>
</tr>
<tr>
<td>Trafo 150 g*ha⁻¹</td>
<td>22.06.2006</td>
<td>Decis 200 ml*ha⁻¹ 06.06.2007</td>
</tr>
<tr>
<td>FungizidShirlan 0,4 l*ha⁻¹</td>
<td>22.06.2006</td>
<td>Epok 0,5 l*ha⁻¹ 10.07. u. 26.07.2007</td>
</tr>
<tr>
<td>Tattoo 4,0 l*ha⁻¹</td>
<td>07.07.2006</td>
<td>Infinito 1,5 l*ha⁻¹ 13.06. u. 25.06.2007</td>
</tr>
<tr>
<td>18.07.2006</td>
<td>Ranman 0,2 l*ha⁻¹</td>
<td>29.06.2007</td>
</tr>
<tr>
<td>Shirlan 0,4 l*ha⁻¹</td>
<td>16.07.2007</td>
<td>31.05. u. 29.06.2007</td>
</tr>
<tr>
<td>Tattoo 4,0 kg*ha⁻¹</td>
<td>06.06. u. 19.06.2007</td>
<td>04.07. u. 16.07.2007</td>
</tr>
</tbody>
</table>

Um die Behaarungsintensität verschiedener Kartoffelsorten zu bestimmen, wurden zu verschiedenen Terminen von jeder Kartoffelsorte 5 zufällige Blätter genommen (Tabelle 26). Aus den Blättern wurden runde Blattstücke (d=0,7 cm) ausgestanzt. Diese Blattstückchen wurden auf kleine Glasscheiben aufgelegt und die Pflanzenhaare auf der Ober- und Unterseite des Blattes unter dem Binokular gezählt. Die ermittelte Anzahl der Haare wurde anschließend auf die Fläche bezogen, um die Haardichte je 1 cm² zu errechnen.
Tabelle 26: Die ausgewählten Kartoffelsorten und Ermittlungstermine der Behaarungsintensität in den Versuchen

<table>
<thead>
<tr>
<th>Gülzow</th>
<th>Sanitz</th>
<th>Rostock</th>
<th>Freiland</th>
<th>In-Vitro</th>
<th>Augenstecklinge-Gewächshaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatros</td>
<td>Albatros</td>
<td>Albatros</td>
<td>Albatros</td>
<td>Albatros</td>
<td></td>
</tr>
<tr>
<td>Alegria</td>
<td>Alegria</td>
<td>Alegria</td>
<td>Borwina</td>
<td>Borwina</td>
<td></td>
</tr>
<tr>
<td>Avano</td>
<td>Berber</td>
<td>Borwina</td>
<td>Fasan</td>
<td>Fasan</td>
<td></td>
</tr>
<tr>
<td>Berber</td>
<td>Borwina</td>
<td>Fasan</td>
<td>Kormoran</td>
<td>Kormoran</td>
<td></td>
</tr>
<tr>
<td>Borwina</td>
<td>Cilena</td>
<td>Kormoran</td>
<td>Pirol</td>
<td>Pirol</td>
<td></td>
</tr>
<tr>
<td>Cilena</td>
<td>Fasan</td>
<td>Meridian</td>
<td>Romanze</td>
<td>Romanze</td>
<td></td>
</tr>
<tr>
<td>Eurostar</td>
<td>Karatop</td>
<td>Pirol</td>
<td>Salome</td>
<td>Salome</td>
<td></td>
</tr>
<tr>
<td>Fasan</td>
<td>Kormoran</td>
<td>Romanze</td>
<td>Terrana</td>
<td>Terrana</td>
<td></td>
</tr>
<tr>
<td>Florijn</td>
<td>Meridian</td>
<td>Salome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansa</td>
<td>Pirol</td>
<td>Terrana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karatop</td>
<td>Presto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kormoran</td>
<td>Romanze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridian</td>
<td>Rosara</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirol</td>
<td>Salome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presto</td>
<td>Saturna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romanze</td>
<td>Selma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosara</td>
<td>Sieglinde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salome</td>
<td>Terrana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturna</td>
<td>Topas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selma</td>
<td>Ukama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieglinde</td>
<td>Vienna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vienna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termine

<table>
<thead>
<tr>
<th></th>
<th>11.06.2007</th>
<th>11.06.2007</th>
<th>08.06.2007</th>
<th>09.10.2006</th>
<th>12.03.2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.07.2007</td>
<td>09.07.2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.07.2007</td>
<td>23.07.2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zur Bonitur der Behaarungsintensität der Kartoffelblätter für alte Kartoffelsorten der IPK-Genbank wurde folgende Skala verwendet:

- **Boniturklasse 1 = 0-200** Blatthaare/cm²
- **Boniturklasse 2 = 201-400** Blatthaare/cm²
- **Boniturklasse 3 = 401-600** Blatthaare/cm²
- **Boniturklasse 4 = 601-800** Blatthaare/cm²
- **Boniturklasse 5 = 801-1000** Blatthaare/cm²
8.1.2 Statistische Auswertung

8.2 Ergebnisse

Abbildung 37: Die einfachen einzelligen Haare auf den Kartoffelblättern (40-fache Vergrößerung)

An allen ausgewählten Kartoffelsorten sind die Haare unterschiedlich auf den Blättern zwischen Ober- und Unterseiten verteilt.

8.2.1 Behaarungsintensität an alten Kartoffelsorten der IPK-Genbank

An allen ausgewählten Kartoffelsorten war die Blattunterseite stärker behaart als die Blattoberseite. Die Sorten wurden in Abhängigkeit von der
Behaarungsintensität der Blattunterseite in Skala von 1 bis 5 Klassen sortiert (Tabelle 27). Die meisten Sorten wurden den Boniturklassen 2 (37%) und 3 (48%) zugeordnet.

Abbildung 38 ist zu entnehmen, dass die Kartoffelsorten sich in Abhängigkeit von der Haardichte statistisch signifikant gegeneinander (p ≤ 0,001) abgrenzen ließen. Die meisten Sorten hatten Haardichten zwischen 401-600 Blatthaare/cm². Die Sorte Ryecroft Purple hatte die höchste Haardichte an beiden Blattseiten, besonders aber an der Blattunterseite (923 Blatthaare/cm²), und wich damit signifikant von den übrigen Sorten ab.
<table>
<thead>
<tr>
<th>Skala</th>
<th>Haare / cm²</th>
<th>Anzahl der Sorten</th>
<th>% Sorten</th>
<th>Sorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-200</td>
<td>1</td>
<td>2</td>
<td>Pompadour</td>
</tr>
<tr>
<td>2</td>
<td>201-400</td>
<td>22</td>
<td>37</td>
<td>Ackersegen, Aguti, Amyl, Ando, Bananenkartoffel, Blaue Hindelbank, Blaue Wyssachen, Chipbelle, Edgecote Purple, Highland Burgundy, Kongo, MPI 89.497/9, Napoca, Norchip, Pirola, Rubinia, Ruby Crescent, Shetland rosa, Superior, Tarpan, Violette Schwarze, Von Lochow 601</td>
</tr>
<tr>
<td>3</td>
<td>401-600</td>
<td>29</td>
<td>48</td>
<td>Arran Victory, Azur, Bamberger Hörnchen, Blaue Emmensteg, Blue Christie, Bzura, Capella (Gerlinde), Hindenburg, Lady Christel, Mr. Bresee, Newfoundland Purple, P. S. Eigenheimer, Papa Bonita, Parnassia, Peru purple, Purple and White, Roseval, Shetland Blau I, Shetland Rot, Stella, Stobrawa, Szignal, UAC 65, UAC 67, UAC 918, Uptodate, Vitelotte, Wohltmann, Yellow Finn</td>
</tr>
<tr>
<td>4</td>
<td>601-800</td>
<td>7</td>
<td>12</td>
<td>Blanik, Endla, Merkur, Papa Negra 2, Shetland Black, Skerry Blue, UAC 61</td>
</tr>
<tr>
<td>5</td>
<td>801-1000</td>
<td>1</td>
<td>2</td>
<td>Ryecroft Purple</td>
</tr>
</tbody>
</table>
Abbildung 38: Mittlere Behaarungsintensität auf der Blattunter- und obereite an verschiedenen alten Kartoffelsorten in der Vegetationsperiode 2006 und 2007 (einfaktorielle Varianzanalyse, SNK-Test, α= 0,05, Buchstaben weisen auf signifikante Differenzen des Sortenmittels für die Blattunterseite hin)
8.2.2 Die Behaarungsintensität in den Versuchen: Sanitz, Gülzow, Rostock, In-Vitro und Gewächshausversuche

Die Abbildung 39 verdeutlicht, dass die Kartoffelsorten sich unter Freilandbedingungen in Gülzow und Sanitz in der Haardichte (Blattunterseite) unterschieden (p<0,001). Die Blattunterseite wies bei allen Sorten stets eine höhere Haardichte auf als die entsprechende Blattoberseite. Allerdings waren die Haare an der Blattunterseite allgemein länger als an der Blattoberseite. Sowohl in Sanitz als auch in Gülzow war die Haardichte bei der Sorte Romanze mit 353 Blatthaaren/cm² bzw. 365 Blatthaaren/cm² auf der Blattunterseite am höchsten, gefolgt von der Sorte Alegria mit 349 bzw. 361 Blatthaaren/cm². Die niedrigsten Haardichten mit 143 bis 200 Blatthaaren/cm² auf der Blattunterseite wiesen die Sorten Rosara, Sieglinde und Karatop in Sanitz und Gülzow auf.

Abbildung 39: Mittlere Behaarungsintensität auf Blattunter- und oberseite unter Freilandbedingungen in Sanitz und Gülzow (einfaktorielle Varianzanalyse, SNK-Test, $\alpha=0.05$, Buchstaben weisen auf signifikante Differenzen des Sortenmittels für die Blattunterseite hin)
Abbildung 40: Mittlere Behaarungsintensität auf Blattunter- und oberseite am Standort Rostock, In-Vitro und Gewächshausversuche (einfaktorielle Varianzanalyse, SNK-Test, α= 0,05, Buchstaben weisen auf signifikante Differenzen des Sortenmittels hin)
8.2.3 Korrelation zwischen dem Auftreten von Blattläusen und der Behaarungsintensität

Wird die unterschiedliche Anzahl der Blattläuse innerhalb der Versuchszeit zu den entsprechenden Behaarungsdichten der Blattunterseite in Beziehung gesetzt, ergibt sich eine signifikante lineare Korrelation zwischen beiden Parametern ($r = 0.37$). Die Regressionsgerade in Abbildung 41 beschreibt die Beziehung. Mit steigender Behaarungsdichte nimmt das Auftreten von Blattläusen zu.

Abbildung 41: Korrelation zwischen der Behaarung von Blattunterseite und der Dichte der Blattläuse (** Die Korrelation ist auf dem 0,01 Niveau signifikant, zweiseitig)

8.3 Diskussion

Gegen die Schädigung haben die Pflanzen unterschiedliche Strategien entwickelt, um sich zu schützen. Strukturen der Pflanzen wie die Behaarung können die Grundlage für Insektenresistenz in einigen Kulturpflanzen sein (NORRIS & KOGAN 1980). Zahlreiche Autoren kamen zu dem Ergebnis, dass die Blattläuse hauptsächlich an der Blattunterseite auftreten, z. B. DIXON & LOGAN

In unseren Ergebnissen gab es deutliche Unterschiede in der Haardichte zwischen den alten Sorten und den Cultivarsorten. Die Behaarungsintensität an den alten Sorten war zweifacher höher als an den Kulturpflanzen. Unser Versuch an verschiedenen alten Kartoffelsorten zeigte deutlich, dass die Sorten
9 Freie Aminosäuren- und Zucker gehalt und Blattlausdichte

In der Untersuchung, die in diesem Kapitel beschrieben wird, wurde der Gehalt an freien Aminosäuren und Zucker in den verschiedenen Kartoffelsorten analysiert. Mit dieser Untersuchung sollten folgende Fragen geklärt werden:

- Bestehen sortenbedingte Unterschiede in den Aminosäure- und Zuckergehalten?
- Gibt es Zusammenhänge zwischen dem Auftreten von Blattläusen und den Aminosäure- und Zuckergehalten?

9.1 Material und Methoden

9.1.1 Biochemische Untersuchungsmethoden

Die biochemischen Untersuchungen umfassten die Parameter des Gehalts an freien Aminosäuren und Zucker (Saccharose, Fructose und Glucose). Die Analysen wurden im Institut für Nutztierwissenschaften und Technologie der Universität Rostock durchgeführt.

9.1.1.1 Bestimmung von freien Aminosäuren

Für die Bestimmung des relativen Gehalts an freien Aminosäuren in der Trockensubstanz verschiedener Sorten erfolgte die Probenvorbereitung nach der Methode von NAGENGAST (2006). Für den Nachweis der freien Aminosäuren wurde 1 g der homogenisierten Probe in ein 100 ml Zentrifugenglas eingewogen, mit 20 ml destilliertem Wasser versetzt und mit einem Ultra Turrax homogenisiert. Um die Proteine auszufallen, wurden dem Homogenisat 5 ml

9.1.1.2 Bestimmung von Zuckergehalt
Die Zuckergehalte wurden ebenfalls mittels der HPLC-Anlage (Shimadzu) nachgewiesen. 2 g Probenmaterial wurden in 250 ml Blutkonservenflaschen eingewogen und mit destilliertem Wasser und 20 mg Quecksilberchlorid versetzt. Die Extraktion erfolgte 1 Stunde im Schüttelwasserbad (Julabo SW 21) mit einer Schüttelfrequenz von 150 R.P.M. bei Zimmertemperatur. Der Extrakt wurde mittels eines engporigen Rundfilters (z. B. Nr. 390, Spezialpapier Niederschlag) abfiltriert. Die Konzentration an mono- und dimeren Kohlenhydraten im Filtrat wurde nach Durchlaufen der Vor- und Trennsäule (HPX - 87 P von BIORAD) der HPLC-Anlage (Laufmittel: Wasser; Temperatur: 80°C; Flußrate: 0,65 ml/min) mittels Brechungsindex-Dektor (RID) gemessen.

9.2 Ergebnisse

9.2.1 Freie Aminosäuren
Tabelle 28 zeigt die mittleren Gehalte einzelner Aminosäuren in Blättern der geprüften Kartoffelsorten. Die Summe von Alanin und Threonin ergab ca. 30% des Gesamtgehaltes an Aminosäuren. Der Vergleich der Gehalte einzelner Aminosäuren in Kartoffelblättern zeigt, dass als Hauptkomponenten in mengenmäßig absteigender Reihenfolge folgende Aminosäuren hervorzuheben sind: Alanin, Threonin, Valin, Asparagin und Phenylalanin. Alle anderen Aminosäuren treten in geringen Mengen auf. Den höchsten gesamten Aminosäuregehalt wiesen Salome mit 11 g*kg⁻¹ TS und Terrana mit 9,4 g*kg⁻¹ TS auf. Bei allen anderen Kartoffelsorten schwankte der gesamte Aminosäuregehalt zwischen 6,5-9,2 g*kg⁻¹ TS. Alanin wies mit 1,17-2,17 g*kg⁻¹ TS bei allen untersuchten Kartoffelsorten den höchsten Anteil innerhalb der freien Aminosäuren auf. Glycin trat mit 0,07-0,13 g*kg⁻¹ TS in den geringsten Mengen auf.
<table>
<thead>
<tr>
<th>Aminosäuren (g*kg⁻¹ TS)</th>
<th>Salome</th>
<th>Terrana</th>
<th>Fasan</th>
<th>Pirol</th>
<th>Romanze</th>
<th>Albatros</th>
<th>Borwina</th>
<th>Kormoran</th>
<th>Meridian</th>
<th>Alegria</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanin</td>
<td>2,17</td>
<td>1,61</td>
<td>1,75</td>
<td>1,64</td>
<td>1,43</td>
<td>1,55</td>
<td>1,60</td>
<td>1,42</td>
<td>1,55</td>
<td>1,17</td>
<td>1,59</td>
</tr>
<tr>
<td>Threonin</td>
<td>0,82</td>
<td>1,13</td>
<td>0,94</td>
<td>0,84</td>
<td>0,94</td>
<td>0,87</td>
<td>0,90</td>
<td>0,75</td>
<td>0,74</td>
<td>0,60</td>
<td>0,85</td>
</tr>
<tr>
<td>Valin</td>
<td>0,81</td>
<td>0,80</td>
<td>0,79</td>
<td>0,73</td>
<td>0,74</td>
<td>0,68</td>
<td>0,58</td>
<td>0,63</td>
<td>0,53</td>
<td>0,51</td>
<td>0,68</td>
</tr>
<tr>
<td>Asparagin</td>
<td>1,28</td>
<td>0,78</td>
<td>0,68</td>
<td>0,76</td>
<td>0,52</td>
<td>0,32</td>
<td>0,65</td>
<td>0,69</td>
<td>0,52</td>
<td>0,52</td>
<td>0,67</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>0,78</td>
<td>0,70</td>
<td>0,67</td>
<td>0,62</td>
<td>0,64</td>
<td>0,65</td>
<td>0,49</td>
<td>0,49</td>
<td>0,47</td>
<td>0,44</td>
<td>0,60</td>
</tr>
<tr>
<td>Tyrosin</td>
<td>0,63</td>
<td>0,67</td>
<td>0,62</td>
<td>0,51</td>
<td>0,56</td>
<td>0,57</td>
<td>0,38</td>
<td>0,47</td>
<td>0,39</td>
<td>0,37</td>
<td>0,52</td>
</tr>
<tr>
<td>Isoleucin</td>
<td>0,58</td>
<td>0,58</td>
<td>0,53</td>
<td>0,49</td>
<td>0,50</td>
<td>0,43</td>
<td>0,44</td>
<td>0,39</td>
<td>0,38</td>
<td>0,38</td>
<td>0,49</td>
</tr>
<tr>
<td>Lysin</td>
<td>0,63</td>
<td>0,54</td>
<td>0,49</td>
<td>0,46</td>
<td>0,49</td>
<td>0,55</td>
<td>0,47</td>
<td>0,42</td>
<td>0,38</td>
<td>0,41</td>
<td>0,48</td>
</tr>
<tr>
<td>Leucin</td>
<td>0,67</td>
<td>0,50</td>
<td>0,55</td>
<td>0,46</td>
<td>0,53</td>
<td>0,51</td>
<td>0,38</td>
<td>0,44</td>
<td>0,34</td>
<td>0,36</td>
<td>0,47</td>
</tr>
<tr>
<td>Prolin</td>
<td>0,50</td>
<td>0,49</td>
<td>0,45</td>
<td>0,41</td>
<td>0,48</td>
<td>0,38</td>
<td>0,49</td>
<td>0,42</td>
<td>0,44</td>
<td>0,42</td>
<td>0,45</td>
</tr>
<tr>
<td>Histidin</td>
<td>0,56</td>
<td>0,41</td>
<td>0,46</td>
<td>0,40</td>
<td>0,47</td>
<td>0,51</td>
<td>0,34</td>
<td>0,39</td>
<td>0,33</td>
<td>0,32</td>
<td>0,42</td>
</tr>
<tr>
<td>Arginin</td>
<td>0,56</td>
<td>0,30</td>
<td>0,42</td>
<td>0,37</td>
<td>0,36</td>
<td>0,34</td>
<td>0,36</td>
<td>0,31</td>
<td>0,26</td>
<td>0,32</td>
<td>0,36</td>
</tr>
<tr>
<td>Serin</td>
<td>0,60</td>
<td>0,39</td>
<td>0,47</td>
<td>0,34</td>
<td>0,38</td>
<td>0,35</td>
<td>0,21</td>
<td>0,30</td>
<td>0,22</td>
<td>0,19</td>
<td>0,35</td>
</tr>
<tr>
<td>Glutamat</td>
<td>0,34</td>
<td>0,41</td>
<td>0,30</td>
<td>0,34</td>
<td>0,30</td>
<td>0,22</td>
<td>0,35</td>
<td>0,36</td>
<td>0,41</td>
<td>0,38</td>
<td>0,34</td>
</tr>
<tr>
<td>Glycin</td>
<td>0,13</td>
<td>0,07</td>
<td>0,11</td>
<td>0,10</td>
<td>0,09</td>
<td>0,08</td>
<td>0,10</td>
<td>0,09</td>
<td>0,07</td>
<td>0,08</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Summe | 11,06 | 9,40 | 9,22 | 8,49 | 8,44 | 8,09 | 7,73 | 7,63 | 7,05 | 6,48 | 8,36 |
9.2.2 Zuckergehalt

Die Zucker in den Kartoffelblättern bestehen im Wesentlichen aus den beiden Einfachzuckern Glucose und Fructose sowie aus Saccharose, einem zusammengesetzten Zucker. Im Vegetationsverlauf veränderte der Zuckergehalt sich erheblich. In Abbildung 42 sind die durchschnittlichen Zuckergehalte (Glucose, Fructose, Saccharose) in den Kartoffelblättern für jede untersuchte Sorte dargestellt. Der Zuckergehalt aller Kartoffelsorten erreichte im Mittel 16 g*kg⁻¹ TS Fructose, 21 g*kg⁻¹ TS Glucose und 37 g*kg⁻¹ TS Saccharose. Die restlichen Zucker wurden nicht bestimmt. Der Gesamtzuckergehalt variierte in den Kartoffelsorten zwischen 30 und 93 g*kg⁻¹ TS. Bei allen Kartoffelsorten war der Saccharosegehalt höher als der Glucose- und Fructosegehalt. Den höchsten Gesamtzuckergehalt wiesen Kormoran mit 93 g*kg⁻¹ TS und Alegria mit 84 g*kg⁻¹ TS auf. Die geringsten Fructose-, Glucose- und Saccharosegehalte wurden bei Salome mit 30 g*kg⁻¹ TS ermittelt.

Abbildung 42: Der mittlere Gehalt von Saccharose, Glucose und Fructose in den Kartoffelblättern (Mittelwerte aus 2 Messungen)
9.2.3 Korrelation zwischen dem Auftreten von Blattläusen und den Aminosäure- u. Zuckergehalten

<table>
<thead>
<tr>
<th>Aminosäuren g*kg⁻¹</th>
<th>Blattläuse je 50 Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Alanin</td>
<td>19</td>
</tr>
<tr>
<td>Arginin</td>
<td>19</td>
</tr>
<tr>
<td>Asparagin</td>
<td>19</td>
</tr>
<tr>
<td>Glutamat</td>
<td>19</td>
</tr>
<tr>
<td>Glycin</td>
<td>19</td>
</tr>
<tr>
<td>Histidin</td>
<td>19</td>
</tr>
<tr>
<td>Isoleucin</td>
<td>19</td>
</tr>
<tr>
<td>Leucin</td>
<td>19</td>
</tr>
<tr>
<td>Lysin</td>
<td>19</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>19</td>
</tr>
<tr>
<td>Prolin</td>
<td>19</td>
</tr>
<tr>
<td>Serin</td>
<td>19</td>
</tr>
<tr>
<td>Threonin</td>
<td>19</td>
</tr>
<tr>
<td>Tyrosin</td>
<td>19</td>
</tr>
<tr>
<td>Valin</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuckergehalt g*kg⁻¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>19</td>
</tr>
<tr>
<td>Glucose</td>
<td>19</td>
</tr>
<tr>
<td>Saccharose</td>
<td>19</td>
</tr>
</tbody>
</table>

* Die Korrelation ist auf dem 0.01 Niveau signifikant (zweiseitig)
** Die Korrelation ist auf dem 0.05 Niveau signifikant (zweiseitig)
9.3 Diskussion

Aminosäuren sind wahrscheinlich von großer Bedeutung für phloemsaugende Insekten, weil in Phloem die höchsten Konzentrationen auftreten (Weibull 1987; Kazemi & van Emden 1992; Bernays & Chapman 1994). In unserem Versuch stellten wir eine positive Beziehung zwischen den Aminosäuren Threonin u. Serin und den dominanten Blattlausarten fest (Tabelle 29). Hierin bestand also eine Überstimmung mit den Ergebnissen von Auclair et al. (1957), die in Blättern blattlausresistenter Erbsensorten (Pisum sativum L.) eine geringere Gesamtkonzentration an Aminosäuren als in denen anfälliger Sorten feststellen. Wie (Müller 1967) aufzeigte, stieg die Flüssigkeitsaufnahme von *M. persicae* mit der Konzentration der Aminosäuren bis zu 30 g*kg\(^{-1}\) an und verringerte sich dann schwach.

Abbildung 43: Der Zuckergehalt (Saccharose, Glucose, Fructose) in den Kartoffelblättern im Verlauf der Vegetation (nach KOLBE 1996)

10 Schlussfolgerungen und Ausblick

Diese Arbeit konzentriert sich auf zwei Blattlausarten, die an Kartoffeln schädigen, und auf einige aktuell zugelassene deutsche Sorten. Genetische Reserven für die Kartoffelzüchtung wurden in kleinem Umfang in Form von alten Kartoffelsorten bzw. einer anderen Solanum-Art eingebunden.

In Feldversuchen im Rahmen dieser Dissertation wurden neben den wichtigen Kartoffelblattlausarten (*M. persicae*, *M. euphorbiae*) auch andere Blattlausarten wie *A. nasturtii*, *A. frangulae*, *A. solani* gefunden. Untersuchungen zum Verhalten dieser Blattlausarten an Kartoffeln wären eine interessante Arbeit für die Zukunft.

11 Zusammenfassung

- Die optimale Vermehrungsleistung der Blattlausarten *M. persicae* und *M. euphorbiae* wurde auf den acht Cultivarsorten, drei alten Kartoffelsorten und einer Wildart unter verschiedenen Bedingungen (Gewächshaus, In-Vitro, Semi-Freiland) untersucht (s. Kapitel 3). Die Blattlausarten hatten unterschiedliche Vermehrungsraten auf den geprüften Kartoffelsorten unter verschiedenen Bedingungen, d.h. die Anfälligkeit von den Kartoffelsorten (inkl. der genetischen Ressourcen in Form von alten Kartoffelsorten und der Wildart) war gegenüber den beiden Blattlausarten nicht gleich. Die In-Vitro-Untersuchungen zeigten, dass die beiden Blattlausarten an den alten Kartoffelsorten und der Wildart um 17% bei *M. persicae* bzw. um 24% bei *M. euphorbiae* im Vergleich zu den Cultivarsorten geringer vermehrten. Der Vergleich der Methoden untereinander ergab oftmals bei gleichen Sorten größere Abweichungen in der Vermehrungsrate. Insgesamt wurde in den Versuchen an der Sorte Borwina besonders hohe Vermehrungen ermittelt. Auf der Sorte Romanze vermehrten sich beide Blattlausarten weniger stark.

- In Kapitel 4 wurde die Wirkung der Blattetagen von den genannten Kartoffelsorten auf die Vermehrungsrate von *M. persicae* und *M. euphorbiae* im Einzelblatttest im Gewächshaus untersucht. Beide Blattlausarten haben
eine Präferenz für ein bestimmtes physiologisches Alter der Blätter. Ältere Blätter waren besser geeignet für *M. persicae* als junge Blätter. Im Gegensatz dazu erreichte *M. euphorbiae* höhere Vermehrungsraten auf den oberen Kartoffelblättern im Vergleich zu unteren.

- **Versuche zur Sortenwahl der Blattläuse** *M. persicae* und *M. euphorbiae* wurden mit den untersuchten Kartoffelsorten im Gewächshaus und Semi-Freiland durchgeführt (Kapitel 5). Offenbar sind *M. persicae* und *M. euphorbiae* in der Lage, geeignete Sorten auszuwählen. Gemessen an der Besiedlung durch die Blattlausarten waren die Sorten Salome, Fasan und Borwina für *M. euphorbiae* bzw. Fasan, Borwina und Kormoran für *M. persicae* besonders attraktiv.

- *M. persicae* und *M. euphorbiae* wurden im Gewächshaus auf acht Kartoffelsorten vermehrt, wobei die Lebensdauer und die Fruchtbarkeit untersucht wurden (Kapitel 6). Die Vermehrungsraten auf den geprüften Kartoffelsorten waren unterschiedlich, wobei die Vermehrungskapazitäten von *M. euphorbiae* geringer als die von *M. persicae* waren. Die Lebensdauer von *M. persicae* und *M. euphorbiae* betrug Min. 22 (Salome) bis Max. 30 (Terrana) Tage bzw. Min. 23 (Romanze) bis Max. 27 (Terrana) Tage.

dem Blattlausbefall in Gülzow und Sanitz. Die Verlaufskurve des WBI (Wasserbanden-Index) war reziprok zu der des NDVI. Es gab eine negative signifikante Korrelation zwischen WBI und dem Blattlausbefall. D.h. je höher der Wassergehalt der Kartoffelpflanzen war, desto höher war die Blattlausdichte.

- Als weitere mögliche Ursache für das unterschiedliche Verhalten der Blattläuse wurde die Behaarungsintensität der Kartoffelsorten untersucht (Kapitel 8). Bei allen geprüften Kartoffelsorten war jeweils die Blattunterseite stärker behaart als die Blattoberseite. Die Haardichte der Kartoffelsorten war im Gewächshaus am höchsten, gefolgt von Freiland und In-Vitro. Die Beziehung zwischen Behaarungsichten der Blattunterseite und Abundanz der Blattläuse war signifikant positiv.

- In Kapitel 9 wurden die Hauptnährkomponenten für die Blattläuse, Zucker und freie Aminosäuren, für die geprüften Sorten untersucht. Als Hauptkomponenten sind in mengenmäßig absteigender Reihenfolge folgende Aminosäuren hervorzuheben: Alanin, Threonin und Valin. Salome wies die höchsten Gehalte an Aminosäuren auf, Alegria und Meridian wiesen die geringsten Gehalte auf. Der Zuckergehalt aller Kartoffelsorten erreichte im Mittel 16 g*kg⁻¹ TS Fructose, 21 g*kg⁻¹ TS Glucose und 37 g*kg⁻¹ TS Saccharose. Der geringste Anteil am Gesamtzuckergehalt war in der Sorte Salome nachweisbar. Die Sorte Kormoran enthielt die höchsten Zuckergehalte, gefolgt von Alegria. Bei der Ermittlung der Beziehung zwischen den Blattläusen und den Inhaltsstoffen wurde eine signifikant positive Korrelation zwischen dem Gehalt an Aminosäuren (Serin r= 0,48* und Threonin r= 0,71**) und dem Blattlausbefall gefunden, und ein signifikant negativer Zusammenhang zwischen dem Blattlausbefall und dem Saccharosegehalt festgestellt.

Anhand der vorgestellten Ergebnisse ist ein Einfluss der Sorte auf den Befallsverlauf von *M. persicae* und *M. euphorbiae* offensichtlich. Zukünftige Forschungsansätze sollten weitere Blattlausarten der Kartoffel einbeziehen. Für die Kartoffelzüchtung und die praktische Sortenwahl sollten Kriterien entwickelt werden, die Blattlauseignung von Kartoffelsorten zu beschreiben und, wenn möglich, züchterisch zu beeinflussen.
12 Literaturverzeichnis

ANONYM (2006): SPSS für Windows, Version 15.0.1, SPSS Deutschland

association with The Natural History Museum, University Press, Cambridge, pp. 987

COLE, R.A. (1997): The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Ent. Exp. et Appl. 85, 121-133

CRUZ, Y.P. and E.N. BERNARDO (1971): The biology and feeding behavior of the melon aphid, Aphis gossypii Clover (Ahididae, Homoptera) on four host plants. Philipp. Ent. 2,155-166

DAVIES, A.J., B.E. RADCLIFFE and W.D. RAGSDALE (2007): Resistance to green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), in potato cultivars. Amer. J. Pot. Res. 84, 259-269

DIXON, A.F.G. and M. LOGAN (1973): Leaf size and availability of space to the sycamore aphid *Drepanosiphum platanoides*. Oikos 24, 58-63

FRITZSCHE, R., E. KARL, W. LEHMANN und G. PROESELER (1972): Tierische Vektoren pflanzenpathogener Viren, Stuttgart

HIGHLAND, H.B. and J.E. ROBERTS (1984): Feeding preferences and colonization abilities of three aphid vectors (Homoptera: Aphididae) of peanut mottle virus on selected host plants. Envir. Ent. 13, 970-974

KENNEDY, G.G. and A.N. KISHABA (1977): Response of alate melon aphids to resistant and susceptible muskmelon lines. J. Econ. Ent. 70, 407-410

KENNEDY, J.S. (1958): Physiological condition of the host plant and susceptibility to aphid attack. Ent. Exp. et Appl. 1, 50-65

KENNEDY, J.S., M.F. DAY and V.F. EASTOP (1962): A conspectus of aphids as vectors of plant viruses. Commonwealth Agricultural Bureaux, Farnham Royal

Moldenhauer, E. und H. Schröder (1980): Zum Wirtswahlverhalten und zur Schadwirkung der Mehliglen Kohlblattlaus (Brevicoryne brassicae) an Raps, Diplomarbeit Universität Rostock

VIII. Das Verhalten geflügelter Bohnenläuse nach der Landung auf Wirten und Nichtwirten. Ent. Exp. et Appl. 5, 189-210

RADCLIFFE, E.B. and F.I. LAUER (1968): Resistance to Myzus persicae (Sulzer), Macrosiphum euphorbiae (Thomas), and Empoasca fabae (Harris) in the wild tuber-bearing Solanum (Tourn.) L. species. Minnesota Agricultural Experiment Station Technical Bulletin, 259, 2-27

SALAMAN, R.N. (1954): The origin of the early European potato. J. Linn. Soc. 55, 185-190

TINGEY, W.M. and J.E. LAUBENGAYER (1981): Defense against the green peach aphid and potato leafhopper by glandular trichomes of Solanum berthaultii. J. Econ. Ent. 74, 721-725

WOOLDRIDGE, A.W., V.P. HARRISON (1968): Effects of soil fertility on abundance of green peach aphids on Maryland tobacco. J. Econ. Ent. 61, 387-391

Thesen

I. Problemstellung und Forschungsansatz

In dieser Arbeit wurde in verschiedenen Versuchen geprüft, ob Sortenunterschiede zwischen den Kartoffeln für die beiden Blattlausarten relevant sind. Im Einzelnen wurde dabei folgenden Fragen nachgegangen:

- Haben die Kartoffelsorten einen Einfluss auf die Vermehrungsleistung, Lebensdauer und Fruchtbarkeit der Blattlausarten *M. persicae* und *M. euphorbiae*?
- Gibt es Sortenunterschiede in der Präferenz der beiden Blattlausarten *M. persicae* und *M. euphorbiae*?
- Gibt es einen Zusammenhang zwischen der Reflexion der Kartoffelblätter sowie der Behaarungsintensität und der Blattlausbesiedlung?
- Wird die Besiedlung der Blattläuse durch die freien Aminosäuren und Zucker (Saccharose, Fruktose, Glukose) in den Kartoffelblättern beeinflusst?

II. Methodischer Ansatz

Zur Klärung des Einflusses der Wirtspflanze auf die Vermehrung von *M. persicae* und *M. euphorbiae* wurden Versuche mit acht unterschiedlichen Kartoffelsorten (Albatros, Borwina, Fasan, Kormoran, Pirol, Romanze, Salome, Terrana) unter kontrollierten Bedingungen (Gewächshaus und Klimakammer)

III. Die wichtigsten Forschungsergebnisse

- Beide Blattlausarten (*M. persicae, M. euphorbiae*) haben eine Präferenz für ein bestimmtes physiologisches Alter der Blätter. Ältere Blätter waren besser geeignet für *M. persicae* als junge Blätter. Im Gegensatz dazu erreichte *M. euphorbiae* höhere Vermehrungsraten auf den oberen Kartoffelblättern im Vergleich zu unteren.
- Der Vermehrungsrat der Blattläuse *M. persicae* und *M. euphorbiae* auf den geprüften Kartoffelsorten war unterschiedlich, wobei die Vermehrungskapazitäten von *M. euphorbiae* geringer als die von *M. persicae* waren.
- Die Ergebnisse zeigten einen gesicherten Zusammenhang zwischen den Reflexionswerten der unterschiedlichen Sorten und dem Blattlausbefall (*M. persicae, A. nasturtii, M. euphorbiae*). Insbesondere deutlich war dies für die Wellenlänge 530 nm und 560 nm (Grünbereich).
- Bei allen geprüften Kartoffelsorten war jeweils die Blattunterseite stärker behaart als die Blattoberseite. Die Haardichte der Kartoffelsorten war im Gewächshaus am höchsten, gefolgt von Freiland und In-Vitro. Die Beziehung
zwischen Behaarungsdichten der Blattunterseite und Abundanz der Blattläuse war signifikant positiv.

- Bei der Ermittlung der Beziehung zwischen den Blattläusen und den Inhaltsstoffen wurde eine signifikant positive Korrelation zwischen dem Gehalt an Aminosäuren (Serin \(r = 0.48^* \) und Threonin \(r = 0.71^{**} \)) und dem Blattlausbefall gefunden, und ein signifikant negativer Zusammenhang zwischen dem Blattlausbefall und dem Saccharosegehalt festgestellt.

IV. Schlussfolgerung (Fazit und Ausblick)

Erklärung

Ich erkläre, dass ich die eingereichte Dissertation selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Rostock, Hend Aldamen
Danksagung

Mein besonderer Dank gilt Frau Prof. Dr. Bärbel Gerowitt für die Übernahme dieser Dissertation und ihre Geduld bei der Fertigstellung meiner Arbeit. Sie stand aber auch jederzeit als Diskussionspartnerin zur Verfügung und gab mir hilfreiche Anregungen.

Ganz besonders möchte ich mich bei Herrn Dr. Holger Junghans und Martin Effmert von Norika, sowie Dr. Klaus J. Dehmer von IPK (Institut für Pflanzengenetik und Kulturpflanzenforschung) in Groß Lüsewitz - Rostock für die Kooperation, das Saatgut und das In-Vitro-Material bedanken.

Mein besonderer Dank gilt meinen Eltern und meinen Kindern Mohamed und Albaraa. Ebenso lieben Dank an meinen Eyad, der mich tatkräftig unterstützt.
LEBENSLAUF

Name: Aldamen
Vorname: Hend
Geburtsdatum: 19.01.1979
Geburtsort: Syrien, Hama
Staatsangehörigkeit: syrisch

1984 – 1990 Grundschule in Syrien, Hama, Kurnaz
Abschluss: Abitur
1998 – 2003 Hauptstudium der Agrarwissenschaften an der Aleppo Universität, Fachrichtung Pflanzenschutz
Abschluss: Diplom- Agraringenieur
seit Mai 2005 Doktorandenstudium und Anfertigung einer Dissertation am Institut für Landnutzung, Phytomedizin der Universität Rostock